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Abstract

A generally observable trend of the past 10 years is that the amount of sensors embedded
in mobile devices such as smart phones and tablets is rising steadily. Arguably, the available
sensors are mostly underutilized by existing mobile user interfaces. In this dissertation, we
explore sensor-based user interface concepts for mobile devices with the goal of making better
use of the available sensing capabilities on mobile devices as well as gaining insights on the
types of sensor technologies that could be added to future mobile devices. We are particularly
interested how novel sensor technologies could be used to implement novel and engaging
mobile user interface concepts.

We explore three particular areas of interest for research into sensor-based user interface con-
cepts for mobile devices: continuous interaction, around-device interaction and motion gestures.

For continuous interaction, we explore the use of dynamic state-space systems to implement
user interfaces based on a constant sensor data stream. In particular, we examine zoom au-
tomation in tilt-based map scrolling interfaces. We show that although fully automatic zoom-
ing is desirable in certain situations, adding a manual override capability of the zoom level
(Semi-Automatic Zooming) will increase the usability of such a system, as shown through a de-
crease in task completion times and improved user ratings of user study. The presented work
on continuous interaction also highlights how the sensors embedded in current mobile devices
can be used to support complex interaction tasks.

We go on to introduce the concept of Around-Device Interaction (ADI). By extending the interac-
tive area of the mobile device to its entire surface and the physical volume surrounding it we
aim to show how the expressivity and possibilities of mobile input can be improved this way.
We derive a design space for ADI and evaluate three prototypes in this context. HoverFlow is a
prototype allowing coarse hand gesture recognition around a mobile device using only a simple
set of sensors. PalmSpace a prototype exploring the use of depth cameras on mobile devices to
track the user’s hands in direct manipulation interfaces through spatial gestures. Lastly, the
iPhone Sandwich is a prototype supporting dual-sided pressure-sensitive multi-touch interac-
tion. Through the results of user studies, we show that ADI can lead to improved usability for
mobile user interfaces. Furthermore, the work on ADI contributes suggestions for the types
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of sensors could be incorporated in future mobile devices to expand the input capabilities of
those devices.

In order to broaden the scope of uses for mobile accelerometer and gyroscope data, we con-
ducted research on motion gesture recognition. With the aim of supporting practitioners
and researchers in integrating motion gestures into their user interfaces at early development
stages, we developed two motion gesture recognition algorithms, the $3 Gesture Recognizer and
Protractor 3D that are easy to incorporate into existing projects, have good recognition rates and
require a low amount of training data. To exemplify an application area for motion gestures,
we present the results of a study on the feasibility and usability of gesture-based authentication.

With the goal of making it easier to connect meaningful functionality with gesture-based input,
we developedMayhem, a graphical end-user programming tool for users without prior program-
ming skills. Mayhem can be used to for rapid prototyping of mobile gestural user interfaces.

The main contribution of this dissertation is the development of a number of novel user inter-
face concepts for sensor-based interaction. They will help developers of mobile user interfaces
make better use of the existing sensory capabilities of mobile devices. Furthermore, manufac-
turers of mobile device hardware obtain suggestions for the types of novel sensor technologies
that are needed in order to expand the input capabilities of mobile devices. This allows the
implementation of future mobile user interfaces with increased input capabilities, more ex-
pressiveness and improved usability.
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Zusammenfassung

Ein allgemein zu beobachtender Trend in den letzten 10 Jahren zeigt, dass neue Generationen
von mobilen Geräten wie Smartphones und Tablets mit einer stetig wachsenden Anzahl von
Sensoren ausgestattet werden. Es ist anzunehmen, dass die Möglichkeiten der vorhandenen
Sensoren meist nicht vollständig von aktuellen mobilen Benutzerschnittstellen ausgeschöpft
werden. In dieser Dissertation erforschen wir sensorbasierte Konzepte für mobile Benutzungs-
schnittstellen mit dem Ziel, sowohl die derzeit vorhandenen Sensoren auf mobilen Geräten
besser auszunutzen, als auch Erkenntnisse über die Arten von Sensortechnologien zu bekom-
men, mit der zukünftige mobile Geräte ausgestattet werden könnten. Wir interessieren uns
besonders dafür, wie neuartige Sensortechnologien verwendet werden können, um neue und
fesselnde Interaktionskonzepte für mobile Geräte zu entwickeln.

Wir behandeln folgende Themenbereiche, die von besonderem Interesse sind: kontinuierliche
Interaktion, Interaktion in der Umgebung des mobilen Gerätes (

”
Around-Device Interaction“) und

Bewegungsgesten.

Bezüglich kontinuierlicher Interaktion erforschen wir die Verwendung von dynamischen Zu-
standssystemen, um Benutzungsschnittstellen zu implementieren, die auf einem konstantem
Datenstrom eines oder mehrerer Sensoren beruhen. Insbesondere untersuchen wir Zoomauto-
matisierung in neigungsbasierten Benutzungsschnittstellen für die Kartennavigation auf mo-
bilen Geräten. Wir zeigen, dass trotz der Vorteile von vollautomatischem Zoomen in gewissen
Situationen, die Bereitstellung einer manuellen Eingriffsmöglichkeit der Zoomstufe (

”
Semi-

Automatic Zooming“) die Usability eines solches Systems erhöht. Dies belegen wir anhand
der Ergebnisse einer Nutzerstudie, die einen Rückgang der Bearbeitungszeiten sowie verbes-
serte Bewertungen aufzeigen. Die präsentierten Beiträge im Bereich kontinuierlicher Interakti-
on zeigen wie die eingebetteten Sensoren in heutigen mobilen Geräten dazu verwendet werden
können um komplexe Interaktionen zu unterstützen.

Wir befassen uns anschließend das Konzept der Interaktion in der Umgebung des Gerätes—

”
Around-Device Interaction“ (ADI). Durch die Erweiterung des Interaktionsbereiches desmo-
bilen Gerätes auf dessen gesamte Oberäche sowie dessen umgebenden physischen Raumes
wollen wir zeigen, wie die Ausdruckskraft und Möglichkeiten von mobilen Eingabemethoden



viii Zusammenfassung

verbessert werden können. Wir leiten einen Designraum für ADI ab und evaluieren in diesem
Kontext drei Prototypen. HoverFlow ist ein Prototyp, der es unter Verwendung einer geringer
Anzahl von einfachen Sensoren erlaubt, grobe Handgesten in der Umgebung eines mobilen
Gerätes zu erkennen. PalmSpace ist ein Prototyp der dazu dient, die Verwendung von Tiefenka-
meras auf mobilen Geräten zu erforschen, indem die Hände des Benutzers zwecks Entwicklung
vonmobilen Benutzungsschnittstellen zur direktenManipulation mittels räumlicher Handges-
ten erfasst werden. Das iPhone Sandwich ist ein Prototyp eines mobilen Gerätes, das beidseitige
druckabhängige multi-touch Eingabe unterstützt. Durch die Präsentation von Ergebnissen von
Nutzerstudien zeigen wir, dass ADI zu einer verbesserten Usability von mobilen Benutzungs-
schnittstellen führt. DesWeiteren führt unsere Arbeit im Bereich ADI zu neuen Erkenntnissen
über die Arten von Sensoren, die in zukünftigen mobilen Geräten verbaut werden könnten und
die neuen Eingabetechniken welche diese ermöglichen würden.

Um die Verwendungsmöglichkeiten von Beschleunigungs- und Gyroskopdaten von mobilen
Geräten zu erweitern, haben wir die Erkennung von Bewegungsgesten erforscht. Das Ziel war,
Praktiker und Forscher dabei zu unterstützen, Bewegungsgesten in möglichst frühen Entwick-
lungsstadien in deren Benutzungsschnittstellen integrieren zu können. Dazu haben wir zwei
Erkennungsalgorithmen für Bewegungsgesten, $3 Gesture Recognizer und Protractor 3D, entwi-
ckelt, die einfach in bestehende Projekte zu integrieren sind, eine gute Erkennungsrate haben
und nur eine geringe Anzahl an Trainingsdaten benötigen. Um ein mögliches Anwendungsge-
biet von Bewegungsgesten zu untersuchen, haben wir uns mit gestengestützter Authentisie-
rung befasst. Wir präsentieren die Ergebnisse einer Nutzerstudie, welche die Machbarkeit und
Benutzbarkeit dieses Authentisierungskonzepts untersucht.

Mit dem Ziel, die Verknüpfung von Gesteneingaben mit bedeutender Ausgabefunktionalität zu
ermöglichen, entwickelten wirMayhem, ein grasches Programmierwerkzeug für Endbenutzer,
die keine vorherige Programmiererfahrung haben. Mayhem kann für schnelles Prototyping von
gestenbasierten Benutzungsschnittstellen verwendet werden.

Der Hauptbeitrag dieser Dissertation ist die Entwicklung von mehreren neuartigen Konzep-
ten fürmobile sensorbasierte Benutzungsschnittstellen. Entwicklern vonmobilen Benutzungs-
schnittstellen soll somit geholfen werden, die sensorischen Fähigkeiten von mobilen Geräten
besser im Sinne der Benutzungsschnittstelle auszunutzen. Desweiteren bekommen Herstel-
ler von mobilen Geräten Anregungen darüber, welche Arten von neuartigen Sensoren für die
Eingabe auf mobilen Geräten verbaut werden können. Somit können zukünftige mobile Benut-
zungsschnittstellenmit neuartigen Eingabefähigkeiten,mehr Ausdruckskraft und eine höheren
Usability implementiert werden.
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Chapter 1

Introduction

“The best scientist is open to experience and begins with
romance—the idea that anything is possible.”

—Ray Bradbury

In the past years, mobile devices, in particular smart phones and slate- hardware evolution
has a signiöcant
inøuence on mobile
user interfaces

sized devices, have undergone a rapid evolution. Improvements in CPU
speed, memory capacity, screen resolution and sensory capabilities of
the devices profoundly affect the development of mobile user inter-
faces. User interfaces for smart phones, for instance, have transformed
from being mostly button-driven, as was the case just a few years ago,
towards being mainly (multi-)touch-based today.

At the same time, the extension of the sensory capabilities of mobile advanced sensors
enable smarter and
more effective user
interfaces

devices, such as incorporating GPS, accelerometers, gyroscopes, mag-
netometers and distance sensors, not only aids in creating the oppor-
tunities to implement a much wider variety of applications for mobile
devices, but also enables the development of smarter andmore effective
mobile user interfaces than the ones available today.

Desktop computing is moving away from the traditional GUI model of a paradigm shift in
mobile interaction is
needed

interaction, towards natural user interfaces (NUI) (Wigdor andWixon,
2011), where the underlying functions to be controlled are embedded
in the actual physical appearance and behavior of the controlled UI ele-
ments. Looking at currentmobile interfaces, this shift cannot be readily
seen¹. Although multi-touch displays and powerful sensors and pro-
cessors are present on the latest mobile device, interacting with these
doesn’t fundamentally differ from interacting with the very rst, mo-
bile devices, for instance the IBM Simon (Section 1.1.4.1). For instance,

¹We have discussed the possibilities for realizing NUI paradigms in mobile user
interfaces in (Kratz et al., 2010b).
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in most naïve touch-screen interfaces, physical buttons are directly re-
placed by virtual counterparts on the touch-screen.

This dissertation presents novel user interface technologies and
paradigms for mobile user interfaces that leverage the advanced sens-
ing technology and processing capabilities on modern mobile devices.
By conducting user studies we try to show that these novel technolo-
gies can help the users complete their tasks more effectively and in a
more engaging way than existing mobile user interfaces.

This dissertation addresses the aforementioned challenge by proposing
new uses for existing mobile device sensors as well as evaluating previ-
ously unused sensor technologies for use in mobile interfaces. Before
we discuss the research topics and contributions in this dissertation in
more detail (Section 1.2), we need to summarize the evolution of mo-
bile user interfaces and present a brief overview of the status quo of
mobile interaction.

1.1 Milestones in the History of Mobile Interaction

Mobile Interaction is a relatively young eld within Computer Science.mobile interaction
research into new
sensing technologies
allows for improved
input techniques

Due to small screen sizes, limited ways for the user to make inputs and
because mobile devices are used on-the-go rather than in stationary
settings, mobile user interfaces have especially high challenges to over-
come to achieve good usability. One of these challenges is to develop
and apply useful sensing technologies that allow the users to interact
with their devices in ways that are both more enjoyable and expressive.

1.1.1 The Dynabook

In the 1970s the focus of computing started shifting from mainframeminiaturization of
computing devices
begins in the 1970s

systems to smaller computing systems. This marked the start of the
micro computer revolution since the idea that having a computer “on
one’s desktop” was unforeseen at the time. Only few researchers con-
sidered even smaller, portable devices. Alan Kay was one of the rst
researchers who proposed a mobile computer, which he called the Dyn-
abook (Kay, 1972b).

The Dynabook design was intended as a “global information utility” asthe dynabook: a
universal tool for
education

well as an educational tool for “children of all ages”. The Dynabook’s
size was about the size of a modern tablet PC. The design included a
512×512 pixel display supporting “dynamic graphics” with stylus in-
put, audio recording and playback, a large local storage capacity (for the
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Figure 1.1: Alan Kay’s original DynaBook paper prototype. Adapted
from original image by Flickr User Marcin Wichary cp.

time) and network connectivity. Kay discussed the option of providing
either a physical keyboard (Figure 1.1) or letting the screen cover the
entire surface of the device and using an on-screen keyboard for text
entry.

It is interesting to note that it took almost 40 years until the rst
DynaBook-like devices, such as the Amazon Kindle or the Apple iPad
became adopted widely.

1.1.2 Pads, Tabs and Live Boards

In his seminal work onUbiquitous Computing (UbiComp), “The Com- computers will
disappear into the
background

puter for the 21st Century”, MarkWeiser envisions a futurewhere com-
puting will disappear into the background (Weiser, 1991). His vision
is that computing power will be very inexpensive and available every-
where, with “hundreds of devices in a single room”.

The description of the devices, “badges”, “pads”, “tabs” and “live Weiser accurately
predicted the form
factors of future
mobile devices

boards” that Weiser envisions will populate the world of UbiComp is
of particular interest for mobile interaction, as most of these device
classes have at present been fully commercially developed and are used
in ways remarkably similar to what Weiser had envisioned in 1991.

Badge-type devices nowadays exist in a variety of forms, such as
RFID²-enabled public transportation passes and identication docu-
ments where radio waves are used both as communication channel and

²radio frequency identication



4 1 Introduction

as external power source, active price tags in supermarkets, or also in-
teractive door panels. As Weiser envisioned, micro controllers have
nowadays become so cheap that they can be incorporated in almost
any device, with little or no size constraints. Special care, however,
has to be taken when designing user interfaces for very small to minus-
cule devices. A recommended work on that topic is (Ni and Baudisch,
2009).

Today’s smart phones and tablets are a good approximation ofWeiser’smobile phones and
tabs are not yet the
“scrap” devices Weiser
had envisioned

pads and tabs. One property of these devices, however, that Weiser
(arguably) mis-predicted is that they aren’t (yet) “scrap computers”.
Weiser may have underestimated the personal attachment users have
to their mobile devices and also the mobile device’s function as a status
symbol. It may be more appealing to some people to own an expensive
device than a whole bunch of “scrap” devices. Furthermore, mobile
devices store most of the user’s data locally, even though the level of
connectivity to other devices and the internet matches if not surpasses
the capabilities of devices envisioned in Weiser’s article. With decreas-
ing device costs and the shift of data storage and applications towards
“Cloud Computing”, Weiser’s vision of throw-away, ubiquitous devices
may yet become reality.

The nal device class Weiser envisioned, live boards, have also ap-interactive surfaces
are not yet ubiquitous peared, albeit in the preferred form of interactive surfaces. While at-

screen displays may be considered ubiquitous in public spaces of de-
veloped countries, the majority of them are not interactive. Interactive
surfaces, wall-mounted or in a tabletop form factor, are becoming in-
creasingly popular but still are far from being Ubiquitous and are, for
the most part, a novelty when seen or used by the general population.

1.1.3 The Apple Newton

The Newton was a Personal Digital Assistant (PDA) developed by Ap-
ple in 1993. Although similar devices had been developed before, the
Newton (Figure 1.2) was the device for which the term PDA was ac-
tually coined. The device was designed for stylus input and had so-
phisticated handwriting recognition implemented using Articial Neu-
ral Networks (Yaeger et al., 1998). This same handwriting recognition
technology, originally called Rosetta has been incorporated in the later
Apple operating system OS X as Inkwell (Yaeger, 1996)W.

Although the Newton was generally successful and very popular with
its users, it was cancelled as a product in 1997 by Steve Jobs, when he
returned to Apple (Isaacson, 2011).
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Mobile Interaction on Interactive Surfaces:
A niche topic in mobile interaction research that is worth noting is mobile interaction on
interactive surfaces. The work in this area explores the questions of how mobile devices can
be used in conjunction with a surface computer.
The advantage of the mobile device is its quasi-constant connectivity and its role as the
user’s personal data storage while on the go. Interactive surfaces can be used to provide rich
input and output capabilities to the mobile device, allowing the phone to run more complex
applications using the interactive surface as a proxy. A number of interesting papers have
been written on the subject, covering, for instance:
• using the camera image of mobile devices for pointing tasks on remote displays (Boring
et al., 2010).

• using mobile phones as primary input devices on light-weight, or “unobtrusive” inter-
active surfaces (Kratz and Rohs, 2009b).

• conducting collaborative sharing tasks using mobile devices on an interactive tabletop
surface (Kray et al., 2008).

• detecting devices on interactive surfaces (Echtler, 2008).
• augmenting mobile devices with external multi-touch detection when placed on a at
surface (Butler et al., 2008b).

Figure 1.2: The Apple Newton Message Pad 100. Adapted from origi-
nal image by Flickr user Bruno Cordioli cb.

1.1.4 Mobile Phones

4.6 Billion mobile phones are in use throughout the world (CBS News, the mobile phone can
be considered the
most widely used
computer in the
world

2010)W, making them truly pervasive devices. Mobile phone usage has
penetrated all levels of society. Even the poorest people in developing
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countries have access to mobile phones. Thus, the mobile phone can
be considered as the most widely used computer in the world.

The mobile phone has not only revolutionized the way people commu-
nicate in developed countries, but has also fundamentally changed the
way people communicate and live in developing countries.

Mobile user interfaces have undergone a signicant development since
the introduction of the rst commercially available hand-held mobile
phone, the Motorola DynaTAC (Wikipedia, 2012)W in 1983.

Figure 1.3: The IBM Simon in its charging cradle. The large touch-
screen with on-screen keyboard for dialing is visible.

1.1.4.1 The IBM Simon – An Early Touch-Screen Device

Up to the introduction of the IBM Simon in 1993, mobile phones werethe IBM Simon was
the örst
touch-screen-only
mobile phone

mainly button-based, and their functionality rarely extended beyond
placing and receiving phone calls. The IBM Simon, however, changed
this notion radically. It incorporated a touch screen, spanning almost
the entire device’s side (Figure 1.3). Interaction with the Simon was
done entirely through the touch screens, it did not feature physical but-
tons for dialing. The Simonwas also amongst the rst phones to feature
several different applications, i.e., for managing contacts, displaying a
calendar, or even playing games. The device was also one of the rst
smart phones as it had features that went beyond telephony, such as
the capability of sending faxes or emails and saving data on a PCMCIA³
memory card.

³Personal Computer Memory Card International Association.
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1.1.4.2 Phone Cameras

The Kyocera VP-2010 (Wikipedia, 2012)W, introduced in Japan in 1997 camera phones led to
new services and
have a large social
impact

was the world’s rst camera phone. The camera on this phone was
front-facing, as its intended use was for video telephony. Manufac-
turers soon also equipped phones with rear-facing cameras for picture
taking and video recording. The introduction of cameras on mobile
phones was the basis for creating new services such as the Multimedia
Messaging Service (MMS), designed to facilitate the sending of images
from one mobile device to another. Camera phones have so far had a
profound social impact. They have turned picture and video recording
into a commodity—in any given situation, images can be taken quickly
and (when required) discretely using a mobile phone. Because they are
nearly impossible to ban, camera phones have in recent times been me-
dia recording devices. Together with social media services such as Face-
book or Twitter, camera phones enabled protesters and observers to cir-
cumvent censorship during times of social uprisings against oppressive
regimes, as witnessed during the “Arab Spring” in 2011 (Goodman,
2011).

Cameras have also enabled mobile phones to retrieve data from the visual codes enable
phones to retrieve
data from the
physical world

physical world. Small snippets of data, such as URLs, can be encoded in
the form of visual codes. Image processing algorithms running on mo-
bile phones can thus decode the image contained on visual codes using
camera images of the codes as input. Popular visual code formats read-
able by mobile phones are, for instance, the QR and EAN/UPC Codes
(ISO/IEC, 2000b,c). More recent applications such as Google Goggles
(Neven Sr and Neven, 2009);(Google Inc., 2012b)W, allow marker-less
recognition of specic types of everyday objects, such as book covers or
even hardware appliances. There is ongoing work to expand the func-
tionality Google Goggles to recognize biological artifacts such as plant
leaves (PCWorld, 2009)W.

A further use of the phone’s camera is for Augmented Reality (AR)
applications. Here, marker-based (Wagner and Schmalstieg, 2003b) or
marker-less tracking (Lee and Höllerer, 2007) can be used to render
virtual objects in the camera viewnder’s image, making interaction
in a combination of the real and virtual world possible. Commercial
applications, such as Layar have popularized the concept of “Augmented
Reality Browsing” (Layar, 2012)W, although one could argue whether
if such “AR-Browsers” are true AR applications.

The camera feeds of mobile phones can also be used for direct input motion information
can be extracted from
camera image
sequences

to the user interface. When it is moved through the air, it is possible
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calculate a phone’s movement direction using optical ow. This move-
ment information can be utilized for pointing tasks on external dis-
plays (Ballagas et al., 2005b; Rohs), or for gesture recognition (Kratz,
2007b).

1.1.4.3 Multi-touch and Advanced Sensing Capabilities: the iPhone

Apple’s iPhone introduced a number of new technologies to smart
phones, which have since become standard in current devices. The
iPhone was the rst device incorporating a capacitive multi-touch
screen, making the existing touch-screen devices, which relied primar-
ily on resistive touch screens and stylus input, obsolete. By combin-
ing a database containing the geographic coordinates of WLAN access
points, cell tower triangulation and GPS⁴ unit, the iPhone was capable
of determining its geographic location very quickly with a high preci-
sion. This allowed the development of a multitude of well-functioning
location-based applications for the iOS⁵ platform. Although the iPhone
was not the rst device to incorporate an accelerometer ⁶, it was the rst
phone that used accelerometer data extensively throughout the UI, for
instance to rotate the user interface orientation to match the device’s
pose.

Accelerometers allow mobile phone applications to become aware of
how the mobile phone is being moved. This motion information is
used a wide range of applications ranging from sleep activity tracking⁷
to establishing a connection between two devices ⁸.

Although this dissertation does not cover audio as a UI input/output
channel in great detail, interaction through audio input is also a very
important domain of mobile interaction. The iPhone 4S introduces Siri
(Gruber et al., 2011), a novel audio-based assistant. Siri is an online
speech-recognition engine coupled to an articial intelligence backend.
Siri features a high degree of integration with the iPhone’s user inter-
face. As such, Siri can be used to access and control most of the func-
tions of the mobile device, such as sending SMS or email messages. A
voice-based assistance feature such as Siri is particularly useful in sit-
uations when the user can’t use the touch-screen, e.g. when driving an
automobile.

⁴Global Positioning System.
⁵iPhone Operating System.
⁶The Nokia 5500 Sport was on of the rst phones to feature a built-in accelerometer

(Nokia Inc., 2012)W.
⁷Sleep Cycle Alarm Clock (Maciek Drejak Labs AB, 2012)W.
⁸Bump (Wikipedia, 2012)W.
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1.1.4.4 Future Input and Output Technologies for Mobile Phones

In this chapter, we have discussed a number technologies for input as
well as output on mobile phones. We can, nevertheless, only speculate
what types of input and output technologies will be included in future
mobile phones. What is clear is that future mobile phones will likely be
equipped with increasingly powerful I/O capabilities, i.e. sensors and
output devices that are not yet present on current devices.

Whereas we try to envision future input and output technologies for
mobile devices, we cannot claim, nor aim to give a complete overview
of technologies to come. As such, the technologies discussed in the
following represent the author’s personal thoughts on what lies ahead
in the domain of I/O for mobile user interfaces.

Pressure Sensing In answer to the question how multi-touch screens pressure-sensing
could be added to
future multi-touch
devices

can be extended in functionality, pressure is a reasonable answer. The
Android SDK actually already supports the reporting of “pressure” val-
ues (Google Inc., 2012a)W. These values are, however at present of lim-
ited use as the reported values correlate only roughly with the applied
pressure since the reported value is actually the approximate touch
area. As pressure increases, the touched area becomes greater. Un-
fortunately, the mapping between actual pressure and reported values
is not only unclear but also inconsistent.

Existing multi-touch technologies supporting pressure input, how- FSR-ink-based
resistive touch
sensors could be
adapted for use on
mobile devices

ever, could be adapted relatively easily for use on mobile devices. For
instance, the UnMousePad (Rosenberg and Perlin, 2009) uses two
sheets of Mylar printed with an array of line-shaped electrodes of force-
sensing resistive (FSR) ink. The two sheets are aligned such that the
electrodes from a grid. When pressure is applied to the UnMousePad,
the grid nodes in the vicinity of the touch are compressed, creating an
electrical contact. The electrical resistance of the contact points de-
crease as more pressure is applied. Thus the UnMousePad can detect
multiple touches as well as their pressure.

A current issue prohibiting the use of resistive pressure-sensing touch
pads on mobile devices, is that they need to be transparent in order to
be tted over a device’s display. Current force-sensing inks are carbon-
based and thus have a black, opaque color.

Pressure input on mobile devices will allow a higher degree of local de- pressure input allows
more local degrees of
freedom

grees of freedom. For instance, critical device functions, such as delet-
ing personal data could be made more difficult to activate by requiring
more pressure to be applied for activation. We explore several aspects
of pressure-based input on mobile devices in Section 4.5.
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Autostereoscopic Displays A number of recent devices have appeared
that feature (autostereoscopic) 3D displays. Examples are the Nintendo
3DS (Nintendo, 2012)W handheld game platform or the HTC Evo 3D
(HTC, 2012)W smart phone.

The current autostereoscopic display technologies only have a fairly
limited eld of view where the 3D effect can be observed. Wedge op-
tics could be a possible future technology that could be used to build
improved autostereoscopic 3D displays (Large et al., 2010; Travis et al.,
2009).

3D displays could have a number of potential benets on mobile de-
vices. 3D user interfaces for games or articial reality applications
would become more natural to use, due to added depth cues. Con-
sumption of videos lmed in 3D would become possible. A larger, vir-
tual display area could be realized using peephole techniques, e.g. in
a way similar to the IllusionHole (Kitamura et al., 2001), if a way was
found to enable effective eye tracking on mobile devices.

Depth Imaging Depth-imaging cameras have recently become popu-depth imaging will
enable around-device
interaction

lar input devices for electronic entertainment devices such as the Mi-
crosoft Kinect (Microsoft Inc., 2012a)W. Currently, depth sensing cam-
eras are still too bulky to be built into mobile devices. This miniatur-
ization is, nevertheless, very likely to happen, and the possible applica-
tions of depth cameras inmobile devices are very exciting. Applications
range from scanning of objects in 3D from mobile phones to gesture
recognition to improved interaction in augmented reality applications.

HoverFlow (Section 4.3) explores a depth-based user interface that can
detect coarse input gestures such as hand swipes across the device
with different hand poses. In Section 4.4 we explore an around-device
gesture-based interface that uses a depth camera as an input sensor.
The results of the accompanying user demonstrate the usefulness of
integrating depth cameras into future mobile devices.

1.2 Research Motivation and Relevant Contributions

In this dissertation we develop sensor-based user interface concepts for
mobile devices in order to study the following overarching questions:

1. How can sensors on current mobile devices be used to improve
the usability of mobile devices?
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2. What types of new sensor technologies could be incorporated into
futuremobile devices andwhat novel mobile user interfaces could
be realized using them? Will this increase the usability of mobile
user interfaces compared to the state of the art?

3. How can we facilite the access for practitioners and researchers to
relatively complex user interface concepts such as motion gesture
recognition?

In order to address these issues, we focus on three research domains
within mobile HCI, which we believe are relevant to answering the
questions asked in the previous paragraphs: continuous interaction with
model-driven user interfaces (Chapter 3), around-device and sensor-based in-
teraction (Chapter 4) and mobile interaction based on motion gestures
(Chapter 5). In the following, we describe and motivate our choice of
these topics in more detail.

1.2.1 Continuous Interaction

User interfaces based on continuous interaction allow the user to state-space models
allow automatic
control of a large
number of output
parameters with only
a few input
parameters

control a non-discrete parameter through a continuous feedback loop.
User input is usually entered into a dynamic model which then cal-
culates the next state of the system. Thus, these types of models are
also referred to State-Space models in the literature (Eslambolchilar
and Murray-Smith, 2008c). State-Space models allow the creation of
smart user interfaces that can, from a low number user input parame-
ters, control amuch higher number of output parameters. For example,
one-dimensional tilt input fed into a state-space model can control the
zoom level, scrolling speed and the current scroll position in a docu-
ment for a 1D scrolling task (Cho et al., 2007).

A usability drawback of controlling a large number output parameters state-space models
usually follow a
physical analogy to
assist the user’s the
conceptual model

from a low number of input parameters is that it can become unclear
to the user how the system responds to his actions. Thus, state-space
models usually follow some sort of physical analogy, which aims to
make the system’s behavior intuitively clear to the user. Therefore, it
is very important to calibrate carefully the parameters of State-Space
models in order to enable the users to obtain a clear mental model of
how the State-Space model is reacting to their input.

In this work, we present a novel tilt-based map scrolling interface
called Semi-Automatic Zooming (SAZ). SAZ extends a Speed-DependentAu-
tomatic Zooming (SDAZ) approach based on a State-Space model with
2D scrolling and manual control of a base zoom level. Study results
indicate that SAZ performs signicantly better than SDAZ and could
be an alternative to multi-touch for map navigation tasks.
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1.2.2 Around-Device Interaction

Interaction in and on the physical space around the mobile device, ora larger interaction
volume allows for
more input
possibilities

Around-Device Interaction (ADI), is an emerging research topic in the
eld (Butler et al., 2008b). The premise of ADI is to free the device’s
user interface from the physical constraints of the mobile device, and
to utilize the space surrounding the device to provide richer input pos-
sibilities. This is desirable as the capabilities and processing power
of mobile devices are evolving faster than their input possibilities. To
have a larger physical interaction volume can allow for a richer and
more powerful user experience and a better use of the capabilities and
features found on mobile devices.

ADI interfaces allow implementations of interfaces for ne-grained
control of user interface parameters and also enable the implementa-
tion of gestural interfaces using the space in the vicinity of the device
for movement. Technologies supporting the implementation ADI in-
terface include cameras, depth cameras and IR distance sensors.

This work presents the following contributions in the area of around-
device interaction:

• HoverFlow (?) in Section 4.3. HoverFlow is a mobile user inter-
face that explores the use of gesture input in the space above the
mobile device’s screen.

• The iPhone Sandwich (Essl et al., 2009), a prototype device that
provides of pressure-based front and rear multi-touch input ca-
pabilities (Section 4.5).

• To study the benets (if present) that rear-of-device input offers,
we conducted research comparing front, rear and tilt-based input
for 3D rotation tasks (Kratz and Rohs, 2010a), in Section 4.6.

• PalmSpace (Section 4.4) is a further ADI user interface prototype.
Using a depth camera, PalmSpace tracks the user’s hand pose in
3D. We study the usability of PalmSpace for rotation tasks.

1.2.3 Motion Gestures

Motion gestures are part of everyday life for most humans. Because of
this, gestures can be more intuitive to learn than abstract commands.
This in turn can lead to a reduction of cognitive load while operating a
user interface.
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Due to physiological differences, each user performs gestures differ-
ently. Thus, gestures can convey a biometric signature that is specic
to the user performing them. Furthermore, gestures play a large role
in subconscious communication between humans. Similarly, it may be
possible to glean information about the user’s emotional state from the
way gestures are entered.

Many modern smart phones are equipped with accelerometers and gy-
roscopes. These sensors allow the implementation of user interfaces
that use motion gestures as input. Motion gestures can be used in a
number of applications ranging from gaming to security. Because mo-
tion data obtained from gyroscopes and accelerometers generally has a
high noise content and is prone to variations due to changing user pos-
ture and outside conditions, developing algorithms for motion gesture
recognition is challenging.

This dissertation contributes the following work in the area of motion
gestures;

• The 3 Dollar Gesture Recognizer (Kratz and Rohs, 2010b) is a light-
weight, data-driven gesture recognizer for motion gestures that
is simple to implement, requires little training data and does not
rely on external toolkits.

• Protractor3D (Kratz and Rohs, 2011) improves upon the $3 Ges-
ture Recognizer by applying a closed form solution to correctly
match gesture and template rotation differences, thus signi-
cantly increasing the recognition rate as well as make in gesture
recognition rotation-invariant.

• We present the results of an experiment in gesture-based au-
thentication and show that it may be a promising technology for
lightweight authentication in mobile devices.

• We present the results of a study that analyzes the impact of us-
ing gyroscope data in addition to accelerometer data for motion
gesture recognition. We also look at different ways of combining
the two data types.

1.2.4 Design Space of Sensor-Based Interaction

To be able to better discriminate between the sensor-based interfaces
presented in this dissertation it is useful to classify them in the context
of a design space.

Essl et al. (Essl and Rohs, 2007) presented a design space for sensing- design space classiöes
input capabilities of
sensor type
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Figure 1.4: Classication of sensor-based user interfaces presented in
this dissertation in Essl et al.’s Design space for sensor-based interac-
tion.

based interaction with mobile devices in the context of musical per-
formance. The basic idea of this design space, however is applicable
well to the sensor-based mobile user interfaces we developed in this
dissertation. The design space has four major subdivisions, Absolute,
Relative, Limited Velocity and Unlimited Velocity, that relate to the type of
sensor obtained and four minor subdivisions, Rotational, Linear, Limited
Velocity and Unlimited Velocity, that relate to the type of user inputs that
can be measured by the sensors. This design space is thus relatively
useful for classifying the types of inputs which are possible by a given
sensor-based user interface. To put the sensor-based interfaces devel-
oped in this dissertation into context using the design space, we modi-
ed the original measured inputs (Position, Velocity and Acceleration), by
removing Velocity and adding Distance, Rotation and Pressure.

Figure 1.4 shows a classication of the sensor-based user interfaces
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presented in this dissertation using Essl’s design space. HoverFlow
(1) uses an array of infrared distance sensors to obtain an absolute dis-
tance of the user’s hand from the mobile device’s display as well as the
ability to sense the relative motion of the users’ hand across the dis-
play. PalmSpace (2) uses a depth camera to obtain distance and rotation
information of the user’s hand. Pressure-based dual-sided multitouch
(3) allows absolute position and pressure values as user inputs. Motion
gestures and gesture-based authentication (4) can use a combination
of accelerometers and gyroscopes, which sense acceleration and rota-
tion, respectively. Finally, Semi-Automatic Zooming (5) uses tilt input
for relative control of the map scroll speed as well as an absolute map-
ping of a touch screen slider value to the base zoom level of the map
interface.

1.2.5 Classiöcation of Contributions in SIGCHI HCI Curriculum

Use and Context

U1 Social Organization and Work

U2 Application Areas

U3 Human-Machine Fit and Adaptation

Human
H1 Human
Information
Processing

H2 Language,
Communication
and Interaction

H3
Ergonomics

C1 Input and
Output Devices

Computer
C2 Dialogue
Techniques

C4 Computer
Graphics

C5 Dialogue
Architecture

C3 Dialogue
Genre

Development Process

D4 Example Systems
and Case Studies

D1 Design
Approaches

D3 Evaluation
Techniques

D2 Implementation
Techniques and Tools

Figure 1.5: The contributions of this dissertation indicated on a graph-
ical representation of the ACM SIGCHI classication system for HCI.
The categories contributed to are: U2, H3, C1, D2, D4.

The work on this dissertation contributes to a range of elds within
HCI. Looking specically at the ACM⁹ SIGCHI¹⁰ Curriculum (Hewett
et al., 2009)W(Figure 1.5), the contributions lie in the following areas:

• U2. Application Areas biometric, gesture-based authentication
(GBA) for mobile devices (Kirschnick et al., 2010).

• H3. Ergonomics study on the properties of pressure-based input
on mobile devices (Stewart et al., 2010)

⁹Association for Computing Machinery.
¹⁰The ACM Special Interest Group on Human-Computer Interaction.
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• C1. I/O Devices development of gesture recognition algorithms
(Kratz and Rohs, 2010b, 2011), semi-automatic zooming for
map navigation (Kratz et al., 2010a), exploration of dual-sided
(Kratz and Rohs, 2010a), pressure-based interaction by creating
an iPhone Sandwich prototype (Essl et al., 2009).

• D4. Example Systems example applications for ADI (?Kratz
et al., 2012a), tilt-based map navigation system (Kratz et al.,
2010a).

• D2. Implementation Techniques/Tools end-user programming
environment for rapid prototyping of gesture-based interfaces

1.3 Dissertation Structure

This dissertation is structured to emphasize the contributions in the
three main areas of research we focused on that are relevant to the
topic of sensor-based mobile interaction: continuous interaction us-
ing model-driven user interfaces, sensor-based and around-device in-
teraction and, lastly, motion gestures. In the following, we outline the
further structure of this dissertation.

In Chapter 2, we survey related work in order to obtain an overview of
the state of the art in sensor-based mobile interaction. We highlight
how the contributions in this dissertation build upon or extend related
work in the eld.

We present the results of our research on continuous interaction with
model-driven user interfaces in Chapter 3. This chapter portrays how
the sensors embedded in current mobile devices can be used to improve
the usability of mobile user interfaces by allowing the development of
user interface models that simultaneously control a larger range of user
interface parameters than the user would be capable of doing manually.
In addition, the results in this section support our argument that by us-
ing the built-in sensors of mobile devices more effectively, the usability
of mobile user interfaces could be signicantly improved in the future.

We examine future sensor technologies that could be incorporated into
mobile devices in Chapter 4. We introduce the concept of around-
device interaction (ADI) as a way of extending the input capabilities
of mobile devices to encompass their entire surface as well as the phys-
ical space surrounding them. To evaluate the concept ADI, we describe
three hardware prototypes, and present the results of user studies ex-
emplifying the usability improvements for devices supporting ADI in
comparison to conventional mobile user interfaces.
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Motion gestures are a promising user interface input technique for mo-
bile interaction. A difficulty for developers intending to make use of
motion gestures in their applications is that in order to recognize non-
trivial motion gestures, developers may need knowledge of machine
learning techniques and need to resort to specialized libraries or toolk-
its. One of the goals of this dissertation is to facilite access to mobile
gesture recognition for practitioners and developers. In Chapter 5 we
thus present a set gesture recognizers that feature a low implementa-
tion effort and are easy to incorporate into mobile applications. The
algorithms were developed to support rapid application development
and prototyping. In this chapter we also cover a novel application for
motion gestures, gesture-based authentication (GBA). Through the re-
sults of a user study we show this type of authentication is both feasible
to implement on mobile devices and resistant to visual attack attempts.
The chapter concludes by an analysis of the effects of combining ac-
celerometer data and gyroscope data on the accuracy of motion gesture
recognition.

With the goal of making gestural interaction available to the end user
and supporting prototyping of mobile gestural interfaces, we present
Mayhem in Chapter 6. Mayhem is an end-user programming environ-
ment that can be used to prototype gestural interactions for scripting
tasks or home automation. We present a sample application case high-
lighting Mayhem’s salient features.

In Chapter 7, we address open issues and enumerate possibilities for
future continuation of the work presented in this dissertation.

We conclude this dissertation in Chapter 8 by summarizing and con-
textualizing the contributions and discussing their implications for the
eld of mobile human-computer interaction.
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Chapter 2

Background and Related Work

In this chapter we survey previous work that is related to this thesis. It
provides an overview of the state of the art in sensor-based interaction,
in order for the reader to better classify the contributions presented in
this work. The ordering of the related work sections in this chapter
roughly follows the structure of the rest of the thesis.

2.1 Continuous and Model-Driven Interfaces

Speed-dependent automatic zooming (SDAZ) is the navigation tech-
nique that is the foundation of the work presented in Chapter 3 Con-
tinuous Interaction and State-Space Systems.

SDAZ was discussed by (Igarashi, 2000) in 2000 as a technique for
navigating large documents. They conducted a preliminary user study
comprising a 1D document scrolling task and a 2Dmap navigation task
and compared SDAZ to traditional pan-and-zoom navigation. Whereas
SDAZ was clearly preferred by the subjects in the 1D scrolling task, the
preference for SDAZ in the map navigation was only slightly higher
than traditional navigation. Moreover, the authors did not observe an
improvement in task completion time using SDAZ in either the 1D or
2D tasks. The authors used a reciprocal function with the scrolling
speed as denominator to automatically control the magnication level.

(Cockburn and Savage, 2003) conducted a similar study with a larger
number of participants. They, too, compared traditional with SDAZ
navigation (with a linear mapping from scroll speed to zoom level) for
1D document scrolling and 2D map scrolling. Interestingly, their re-
sults are signicantly in favor of SDAZ, both in terms of task comple-
tion times and NASA TLX (Hart and Staveland, 1988a) workload as-
sessments. In contrast to the work presented in this thesis, Cockburn
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et al. used a 2D map display with xed boundaries, which is unlike
modern slippy maps, which we used for our studies. Slippy maps are
used by most online map providers such as Google Maps, for instance.
Slippy maps allow for innite scrolling in latitude and longitude, with
a seamless rollover at the map content boundaries.

In contrast to previous studies on SDAZ-based interfaces for map nav-
igation, the map interface we used contains real map material that cov-
ers a substantial geographic area in a wide range of zoom levels. To
our knowledge, such a realistic testbed has not been used for previous
studies on mobile devices.

(Wallace et al., 2004) evaluated SDAZ scrolling speeds for a 1D text
scrolling interface. Comfortable SDAZ scroll speeds are dependent on
the assigned task (i.e., reading generally allows higher movement rates
than looking at abstract data), visual perception, and the size and reso-
lution of the device’s display. For our research, we could not apply the
results of that paper directly due to the different target domain (mo-
bilemap navigation as opposed to text document scrolling) and because
their study was conducted using a 19 inch monitor connected to a desk-
top PC. We did however include some high-level practical advice, such
as preferring an early zoom-out, in the interface for our study. Cock-
burn et al. conducted a similar study, comparing SDAZ and several
variants of SDAZ, (van Wijk and Nuij, 2004), with traditional scroll
bars in a 1D document scrolling task.

A paper with signicant relevance to our work isOrthoZoomScroller (Ap-
pert and Fekete, 2006), a 1D scrolling technique that uses one mouse
axis to input the panning speed and the orthogonal axis to control the
content’s zoom (a similar technique, GestureZoom, had been previously
presented by Patel et al. (Patel et al., 2004a)). Appert’s results have
shown that OrthoZoom can be twice as fast as SDAZ. The zoom-level
slider in our SAZ prototype (Section 3.1.2.6) interface has a similar
function as the orthogonal axis in OrthoZoom and can also be consid-
ered an orthogonal input dimension. In contrast to OrthoZoom, the
slider in our implementation does not totally override the automatic
zooming behavior but only sets the base zoom level for SDAZ to oper-
ate on.

A study comparing pen-based rate control for map scrolling using
SDAZ, pen-pressure-based zooming and tilt-based zooming was con-
ducted by (Büring et al., 2008). The authors conducted their study on
a tablet PC with the content scaled to the screen resolutions of mobile
devices. In contrast to our study, they did not use tilt for rate-control
and their map content covered a much smaller geographic area, which
is likely to have reduced the amount of zoom levels needed. In their
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study, the application’s display size has a signicant effect on the se-
mantic (i.e., unguided) navigation tasks, SDAZ signicantly reduces
the task completion times in navigation tasks using HALO (Baudisch
and Rosenholtz, 2003) to guide the users and a non-signicant increase
in task completion times when SDAZ is used in unguided navigation
tasks.

Murray-Smith et al. created a dynamic systems-based state-space model
for SDAZ (Eslambolchilar andMurray-smith, 2004; Eslambolchilar and
Murray-Smith, 2008c) and discussed its application in a tilt-based 1D
text browsing interface for PDAs. In their approach, the SDAZ “cam-
era” is modeled as a physical object in an environment simulating mass
and friction, which is coupled to the user’s input. Using this model al-
lows the creation of automatic zooming behaviors that are modeled on
physical analogies, which are likely to be more easily understood by
the users. In addition, the State-Space Model allows developers to pre-
cisely tune the interface’s behavior using a small set of parameters. For
our contributions in Chapter 3 we adapted this previous work by ex-
tending the model proposed by Murray-Smith et al. to support 2D map
scrolling with automatic zooming.

2.2 Sensor–Based Interaction and Around-Device In-
teraction

Interaction in the vicinity of a mobile device, Around-Device Interaction
(ADI), has been discussed in previous work and is also the focus of on-
going research efforts. Our contributions in Chapter 4 were developed
to further explore the design space of ADI and sensor-based interaction.

Our presentation of related work focuses on two important areas in the
space of ADI: sensing input in relation to the device and sensing input in
the environment (including the user’s body).

2.2.1 Sensing Input in Relation to the Device

The Gesture Pendant (Starner et al., 2000) is a chest-worn device that
consists of a wireless camera with IR illumination. This set-up was
used to control a home automation system via in-air hand gestures. An
additional use was monitoring for pathological tremors through analy-
sis of the characteristics of the hand gestures.

(Cassinelli et al., 2005) developed a system for nger tracking in free
space based on a steerable laser beam. This system is highly suited
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for deployment in a mobile device since the laser, imaging sensor and
micro mirror are very compact relatively low-cost components. The
tracking and depth resolutions of the system are comparable to current
depth imaging cameras.

MagiTact, Abracadabra and Nenya (Ketabdar et al., 2010b; Harrison and
Hudson, 2009b; Ashbrook et al., 2011) are systems for around-device
motion detection that use a magnetometer to sense the presence of a
magnetic token worn on the user’s nger. Magnetometers are present
in many current mobile devices. However, it is difficult to derive
precise 3D position information from these sensors. Furthermore,
magnetometer-based techniques force users to use an input artifact
equipped with a magnet, such as a magnetized ring or a stylus with
a magnetic tip. Another limitation of the such systems is that only a
single object can be tracked simultaneously.

SideSight (Butler et al., 2008b) used IR distance sensors to implement
multi-touch input to the sides of a mobile device, when the device is
placed on a at surface.

2.2.2 Sensing Input in the Environment and on the Body

A number of projects have explored the concept of sensing input in the
environment in vicinity of the user, and on the users themselves. The
premise is that input areas are ubiquitous—we only need to nd out
how to sense user input on them. All of the following techniques can
be incorporated into mobile devices.

Acoustic input via scratching on a mobile device was proposed by
(Murray-Smith et al., 2008). (Harrison and Hudson, 2008) explored
the use of arbitrary surfaces such as walls, tabletops or fabrics can be
instrumented with a microphone. Using machine learning techniques,
different gestures can be classied from the acoustic signature of the
scratch.

Using the body as an antenna for ambient electromagnetic noise, (Cohn
et al., 2011) could classify the location of touch inputs on surfaces
near a source of electromagnetic noise, such as a wall outlet or light
switch. Measurements of very low voltages on the user’s body, which
are caused by external electromagnetic noise, were used as input fea-
tures for classication. The scope of this concept was further extended
to detect free-space body gestures in environments with electromag-
netic noise (Cohn et al., 2012). Moving parts of the body alters its
properties as an antenna, which in turn modies the voltages measured
due to electromagnetic noise. Although the techniques discussed pre-
viously look promising, they are currently only experimental, and it is
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unclear how they would perform in environments with high amounts of
electromagnetic noise or highly varying amounts of noise, e.g., in large
buildings, industrial settings or in electried public transport vehicles.

SkinPut (Harrison et al., 2010) uses the transmission of sound via the
body’s skin and the skeletomuscular system to localize on-body input
events. Harrison developed a sensing device worn on the upper arm
that could locate touches at arbitrary positions on the user’s arm. The
device used a set of piezo sensors tuned to a set of resonant frequencies
transmitted from touches on the user’s arm through body tissue and
the skin.

OmniTouch (Harrison et al., 2011) uses a shoulder-mounted projector
and depth camera combination to enable touch interaction on arbitrary
everyday surfaces. The depth camera is used to automatically acquire
surfaces for output, detect touch events and to warp the projected im-
age to approximate the orientation of the projection surface.

2.3 Rear-of-Device Input

HybridTouch (Sugimoto and Hiroki, 2006) was one of the rst mobile
device prototypes with two-sided input capabilities. The authors also
developed dual-sided interaction techniques for map navigation.

Rear-of-device input was further explored by (Wigdor et al., 2007c).
The prototype Wigdor et al. developed consisted of a display with two
resistive touch screens, one on the front and one on the back. In addi-
tion, a camera was mounted at a distance from the rear touch screen, in
order to detect the presence of the user’s hands such that a “shadow”
image of the hand could be displayed to the user. This shadow image
could also be used to represent a hover state for rear-of-device input.
In case of missing visual feedback of the hand or nger position when
interacting behind interactive surfaces, Wigdor demonstrated thatmin-
imum target sizes of around 4.5 cm are required for users to reliably
acquire them (Wigdor et al., 2006).

Baudisch et al. explored rear-of-device input on very small devices
(Baudisch and Chu, 2009). Display-based techniques for compensating
occlusion due to the fat nger problem (Siek et al., 2005), e.g., Shift (Vo-
gel and Baudisch, 2007), aren’t applicable below certain screen sizes
due to the missing screen space for showing additional information
such as callouts. Baudisch et al. show that with rear-of-device interac-
tion, complex tasks can still be accomplished, even on devices with a
screen size smaller than one inch.



24 2 Background and RelatedWork

Wobbrock et al. conducted an extensive study input performance for
front-of-device and back-of-device interaction (Wobbrock et al., 2008).
The authors specically look at performance of Fitts’ Law perfor-
mance, feedback mechanisms for back-of-device interaction and com-
pare stroke-based text entry performance in front and on the rear of the
device.

2.4 Pressure-Based Input

There is a substantial body of work on pressure-based input with pens
and styli. (Mizobuchi et al., 2005; Ramos et al., 2004) show that users
do not keep precise pressure levels well without addition al feedback.
Ramos et al. suggest pressure widgets as a form of visual feedback to
improve performance of pressure-based input. Pen pressure has been
used to improve target selection tasks (Ren et al., 2007). They used
continuous pressure to control the size of a circular cursor area as well
as the zoom level for small targets.

In contrast to touch, it is easier to simultaneously apply pressure and
move a pen on a screen. When using direct touch, friction between
the nger and the touch surface quickly increases with pressure, such
that moving at the same time becomes difficult. Zliding (Ramos and
Balakrishnan, 2005) combines sliding for scrolling and pen pressure for
zooming. (Ramos and Balakrishnan, 2007a) proposed pressure marks,
which are pen strokes with continuously changing pressure, as input
for graphical user interfaces.

Pressure input on handheld devices directly with the ngers has also
been explored. (Harrison et al., 1998) devised the idea of using pres-
sure for embodied interaction with devices. Gummi (Schwesig et al.,
2004) used bending to control gradual transitions between views,
transparency and zooming. (Scott et al., 2009) explored force ges-
tures for mobile devices, such as bending, compressing, squeezing and
stretching.

(McCallum et al., 2009) present a mobile text input technique where
each key can sense three different pressure values: a soft press invokes
the rst, a medium press the second and a rm press the third character
mapped to the key.

For large multi-touch surfaces (Benko et al., 2006) propose mapping
the on-screen width of the nger image (in the case of video-based
multi-touch surfaces) to previous click selections and to improve pre-
cision of selection. Indeed, similar “simulated” pressure readings
are obtained from size of the nger impression in mobile capacitive
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touch screens, and can be accessed on Android devices (Google Inc.,
2012a)W and (unofficially) on iOS devices (Stackoverow user Ken-
nyTM, 2010)W. Of course, these approximations are not as pressure
sensors such as force-sensing resistors (FSRs).

2.4.1 Mapping of Pressure to Input Values

Previous work has discussed different kinds of discretization and trans-
fer functions to process raw sensor input in order to achieve better
user performance. (Cechanowicz et al., 2007a) explored different dis-
cretization functions for a pressure-sensitive mouse and found that a
quadratic mapping centered at the lower range works best. In (Ramos
and Balakrishnan, 2005) a parabolic-sigmoid transfer function was
used. (Shi et al., 2008) found that a sh-eye discretization function
was superior to other mappings.

2.4.2 Feedback for Pressure Input

Most pressure-based input techniques rely on continuous visual feed-
back. Tactile and multimodal feedback play an important role in
pen-based interfaces (Lee et al., 2004; Liao et al., 2006). (Rekimoto
and Schwesig, 2006) implemented a three pressure-level button (“not
pressed”, “pressed lightly” and “pressed hard”). The button provided
tactile feedback upon corssing the boundaries of these levels. The ef-
fectiveness of tactile feedback in mobile devices has been explored in
(Brewster et al., 2007b; Hoggan et al., 2008; Luk et al., 2006). EarPod
(Zhao et al., 2007) investigated auditory feedback for eyes-free inter-
actions on mobile devices.

2.5 Gestural Input in Mobile Interaction

In Chapter 5 we present our work on mobile interaction using motion
gestures. Since previous work on 2D stroke recognition is highly rel-
evant, we will discuss it rst, followed by work on motion gestures,
which are usually captured in 3D from tri-axis accelerometers and gy-
roscopes.
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2.5.1 2D Pen and Touch Gestures

The $1 Gesture Recognizer (Wobbrock and Wilson, 2007) is a recog-
nizer for pen or touch strokes on touch-sensitive screens. The em-
phasis of the $1 Gesture Recognizer lies on simplicity and ease-of-
implementation. It does not require any external toolkits and recog-
nizes input strokes robustly. The algorithm is so simple that its pseu-
docode completely contained in the paper. Multistroke recognition was
added the $1 Gesture Recognizer by (Anthony and Wobbrock, 2010),
and adds several useful optimizations to the basic concept. In Section
5.2, we discuss the $3 Gesture Recognizer, an algorithm that builds on
the concepts of the $1 Gesture Recognizer to allow the recognition of
3D motion gestures.

Protractor (Li, 2010b) is a gesture recognition algorithm for touch
screens. It is a template-based recognizer that resamples the gesture
trace to get a vector with a xed dimension, which is then translated to
the origin and normalized. For each comparison with a template a rota-
tion is performed that optimally aligns the input and template gestures.
This is done in an efficient way using a closed-form analytic approach,
in contrast to the $1 Gesture Recognizer. Protractor3D extends this con-
cept to use a closed-form solution for optimal rotational alignment for
3D motion gestures (see Section 5.3).

Giving continuous feedback and also feedforward during gesture stroke
input can be important, rstly because novice users canmore effectively
learn the gesture stroke vocabulary, and secondly because they get the
opportunity to correct their inputs. OctoPocus (Bau, 2008) is a gestu-
ral input system for menu selection that provides both feedback and
feedforward, and the authors show that OctoPocus performs favorably
compared to a conventional hierarchical menu.

2.5.1.1 Use of Motion Gestures in Mobile User Interfaces

RexPlorer (Ballagas et al., 2007) is a location-aware mobile game that
allows tourists to explore the city of Regensburg, Germany. The in-
teraction is based on movement gestures: The user can cast different
types of “spells‚ to solve a riddle and learn more about the city”. Rex-
Plorer uses very simple u-shaped gestures and an ad-hoc recognition
scheme (Kratz, 2007b). The motivation for using gestures with simple
shapes was to guarantee the gesture recognition when using noisy data
for input. Motion information for gesture entry was obtained from 2D
motion estimation of images from the mobile device’s built-in camera,
thus the system can only recognize motions based on 2D shapes.
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(Kela et al., 2006) developed an accelerometer-based input mechanism
for interaction in a smart workplace for designers and engineers.

DoubleFlip (Ruiz and Li, 2011) addresses the problem of false positive
gestures by employing a simple delimiter gesture (the “double ip”
gesture) for entering gesture input mode. The criteria for choosing
the “double ip” gesture were that (1) the gesture had to be easy to
perform and (2) the gesture had to be sufficiently distinct from every-
day movement. To conrm the latter the authors investigated the false
positive rate for a large corpus of everyday movement data.

(Hinckley and Song, 2011) explored how to combine touch input with
motion gestures. This kind of multi-modal interaction opens up a de-
sign space that allows very expressive kinds of mobile interaction. In
particular, the accelerometer can be used to gain additional information
about touch events, i.e., “soft touch” or “hard touch”.

2.5.1.2 Vocabularies for Interaction via Motion Gestures

Li et al. (Ruiz et al., 2011) applied the approach of Wobbrock et
al. (Wobbrock et al., 2009) to mobile gestures. The idea is to confront
users with a desired task goal (such as deleting items) and let users
choose which gesture they nd the best match for the goal. (Kuehnel
et al., 2011) followed the same approach for gestural interaction in
smart-home environments.

2.5.1.3 Gesture-Based Authentication

In Section 5.4 we present work on gesture-based authentication. There
have been several previous publications on this topic.

(Patel et al., 2004b) created a gesture-based authentication scheme to
authenticate mobile devices on public terminals via shaking. When the
user selects a device to authenticate with, the device generates a gesture
input prompt. If the user performs the gesture as requested, the device
is authenticated an the user can interact with the public terminal via
the authenticated mobile device.

(Farella et al., 2006) studied gesture-based authentication using an
accelerometer-equipped device. The authors particularly focused on di-
mensionality reduction, comparing the results of PCA¹ and LLE² with

¹principal component analysis (Jolliffe, 2002).
²locally linear embedding (Saul and Roweis, 2000).
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a k-nearest neighbor classier. In their study, PCA achieved better re-
sults than LLE. The overall results of the study lead the authors to the
conclusion that gesture-based authentication is feasible given a small
user population size. However, the authors did not evaluate the resis-
tance of their system to visual attacks.

(Mayrhofer and Gellersen, 2007) developed a scheme for device-to-
device authentication based on synchronous shaking. Acceleration data
from the devices’ accelerometers was used as a basis to generate and
authenticate cryptographic keys. This general idea has also been de-
veloped further and commercialized in form of the Bump application
(Wikipedia, 2012)W, which allows the exchange of contact information
between to smart phones by bumping them together.

Liu et al. evaluated gesture-based authentication, based on the uWave
system by the same authors (Liu et al., 2009b,a). Their results show
that movement gestures can be remembered at least as well as stan-
dard pass phrases. Furthermore, they tested the robustness of their al-
gorithm towards visual disclosure of the gesture entry and found that
visual disclosure signicantly raises the false positive rate.

2.5.2 Recognition Systems for Mobile Motion Gestures

uWave (Liu et al., 2009b) is a motion gesture recognizer based on Dy-
namic Time Warping. The accuracy obtained by their system reached
98.6%. The paper suggests a template adaptation system, where a weak
matching templates are periodically replaced by the current gesture in-
put, in order to counter subtle changes in the user’s gesture entry tech-
nique over time.

(Schlömer et al., 2008) presented an HMM-based classier for gestures
input via a WiiMote. The accuracy achieved is, however, does not ap-
pear to be greater than that of simpler, template-based approaches.

(Hoffman and Varcholik, 2010) compared a linear as well as an Ad-
aBoost classier for motion gestures input via aWii Remote³. They ana-
lyzed the effects of adding rotational features to the for recognition by
using data from the gyroscopes on the WiiMote MotionPlus⁴. Although
our work in Section 5.5 partially replicates the study of the effects of
gyroscope data, the sensor setup of the motion plus is different from
that typical of mobile phones, as it has one two-axis gyroscope and one

³The WiiMote is a game controller manufactured by Nintendo that incorporates a
3-axis accelerometer (Lee, 2008).
⁴The MotionPlus is an attachment for the WiiMote that adds gyroscope to the Wi-

iMote. (Wii Brew, 2012)W provides extensive information on sensor information pro-
vided by the MotionPlus.
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single axis gyroscope. Mobile phones usually contain a single three-
axis gyroscope. Moreover, we also focus on methods for combining
accelerometer data with gyroscope data for algorithms that do not sup-
port feature dimensionalities larger than 3.

2.5.3 Development Tools for Gesture-Based Interfaces

In Chapter 6, we present Mayhem. Although Mayhem is not explicitly
designed as a development tool for gesture-based interaction, it can be
used to rapidly connect the output of gesture recognizers to complex
functionality, eliminating the need for additional software development
to attach functionality to gesture recognizers. This can be very useful,
e.g., when prototyping gesture-based user interfaces. In the following,
we discuss two related systems that, in contrast toMayhem, focus more
on developing the actual gesture vocabularies and gestures used for
input.

SATIN (Hong and Landay, 2007) was a development toolkit for pen-
based user interfaces. Built on top of Java Swing (Fowler, 1998)W,
SATIN tried to help developers of such interfaces by providing a scene
graph, rotation and scaling support for virtual objects and also stroke
recognizers and interpreters for pen-based strokes.

MAGIC (Ashbrook, 2010a) is a development tool for the design of
gesture-based interfaces. It specically addresses developers that have
no knowledge of pattern recognition or machine learning. Additionally,
Ashbrook and Starner recorded an “Everyday Gesture Library” that al-
lows developers to test how well their gesture designs can be disam-
biguated from everyday movements.
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Chapter 3

Continuous Interaction and
State-Space Systems

“Any sufficiently advanced technology is indistinguishable from magic.”

—Arthur C.Clarke

Anumber ofmobile interaction tasks require the user to repeatedly per-
form the same input gesture in order for him to accomplish the tasks.
Examples of this are mostly found when the user has to navigate an ex-
tensive set of data, i.e. navigating a lengthy list of contacts or scrolling
through a long web page. A further example of such tasks is map nav-
igation. Here, the space the user is navigating is extremely expansive,
and scrolling takes place in two dimensions and at a much larger scale
than scrolling in lists or multi-page documents.

Concretely, multi-touch user interfaces exhibit a weakness when users
are tasked with navigating large data sets such as maps, forcing the
users to use a high number of “ick” inputs to scroll as well as “pinch”
inputs to zoom in or out of the map.

Our motivation for the UI concepts and user studies presented in continuous input and
automated control of
certain UI parameters
may lead to lower
effort and better
usability

this chapter is to use the sensing capabilities found on existing mo-
bile devices as well as dynamic UI models based on state-space sys-
tems to reduce the number of input repetitions needed for mobile
map navigation, in order to increase the usability. Our two main
strategies to accomplish this goal are to use continuous input vs. dis-
crete input and to allow the UI to assist in controlling the zoom level
and scrolling speed, using a state-space Speed-Dependent Automatic
Zooming (SDAZ)model. The motivation behind automating a number
of important user interface parameters is that by reducing the amount



32 3 Continuous Interaction and State-Space Systems

of inputs the user needs to make, his effort is reduced, thus freeing
some his mental capacity to allow him to better focus on the goal he
wants to achieve by performing the navigation task.

In Section 3.1 we introduce Semi-Automatic Zooming (SAZ). SAZ uses
tilt information obtained from the mobile device’s accelerometer in or-
der to control zoom, scroll speed and scroll direction. SAZ builds upon
SDAZ by adding the capability to override automatic zooming at any
time through a slider that controls the base zoom level.

Motivated by the results obtained from our user evaluation of SAZ, we
evalute if automatic zooming can be integrated into a standard multi-
touch interface in a more subtle way. This approach aims to combine
the advantages of these two techniques in a single map navigation in-
terface. Section 3.2 presents a technical description of such a system
and the results of preliminary we conducted to evaluate it.

3.1 Semi-Automatic Zooming for Mobile Map Naviga-
tion

Semi-Automatic Zooming (SAZ) is a novel interaction technique for
mobile map navigation (Kratz et al., 2010a). SAZ gives the user the
ability to manually control the zoom level of an SDAZ interface, while
retaining the automatic zooming characteristics of that interface at
times when the user is not explicitly controlling the zoom level.

We conducted a user study using a realistic mobile “slippy map” that
covers a large geographic area at a high resolution¹. In the study, we
compare SAZ with existing map UI techniques, such as multi-touch
and Speed-Dependent Automatic Zooming (SDAZ). For the SDAZ im-
plementation, which is also underlying to SAZ, we extended a dynamic
state-space model to accept 2D tilt input for scroll rate and zoom level
control.

The results obtained in our study reveal that SAZ has a signicantlySAZ signiöcantly
improves usability
over SDAZ

improved usability, in terms of task completion times and subjective
ratings, over SDAZ and that, barring a steeper initial lerning curve, SAZ
is comparable in performance and usability to a standard multi-touch
map interface. Thus, the study indicates that SAZ can serve as an alter-
native input technique to multi-touch for mobile map interfaces, espe-
cially for such devices that are not equipped with multi-touch input, or
as a companion technique to touch-based map navigation techniques.

¹The software implementation of SAZ and the user study was conducted by Ivo
Brodien in his Diploma Thesis (Brodien, 2009).
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3.1.1 Introduction

Mobile map applications are becoming increasingly popular on current
smartphones. This trend is likely to continue into the future, with the
newest devices adding additional navigation-related features such as
magnetic compasses.

We believe, however, that navigation interfaces for mobile maps can interacting with
mobile maps requires
a high number of
individual panning
and zooming steps

be signicantly improved. Mobile maps provide expansive and simul-
taneously dense data on a wide range of scales, which makes displaying
all data relevant to a specic navigation task difficult due to the small
screen size on mobile devices. Using current mobile map interfaces,
nding (and selecting) points of interest on mobile maps requires the
user to perform numerous manual zooming and panning steps. This
problem is exacerbated by the lack of a precise pointing device, such as
the mouse on desktop PCs, on touch-screen-based mobile devices.

Speed-Dependent Automatic Zooming (SDAZ) (Igarashi, 2000) is a
rate-based scrolling technique, in which the application automatically
controls the content’s zoom level depending on the scroll speed. The
motivation behind automatic zooming is to preserve the optimal vi-
sual ow rate of the content by zooming out when the scroll rate in-
creases. Also, switching between panning and zooming can increase
mental load and user frustration. Thus, SDAZ is benecial because it
relieves users of an additional control dimension, the need to manually
adjust the zoom level and allows simultaneous zooming and panning of
the user interface. However, past studies have shown that SDAZ is not
always comfortable for the users, although the results suggested that
it improves rate-based scrolling (Cockburn et al., 2005b). As far as we
know, we have conducted the rst study to evaluate SDAZ interfaces
for mobile maps using 2D tilt input.

We examine if dynamic rate-based control with automatic zooming undershooting and
overshooting of
targets is a major
problem of
SDAZ-based
interfaces

as implemented in SDAZ is potentially a benecial technique for map
navigation tasks in mobile map applications. However, for precise se-
lection tasks (i.e. selecting a point of interest on the map), SDAZ can
become uncomfortable to use, as users are forced to slow down to pre-
cisely pinpoint their target. This can precipitate imprecise increases in
zoom at higher zoom levels, in which users “lose” their targets from
the interface’s view. Such conditions unnecessarily force the users to
resume scrolling in order to regain an overview of their location by
zooming out. This target over- or undershoot (or “hunting”) prob-
lem (Igarashi, 2000; Wallace, 2003) signicantly adds to task execution
times when using SDAZ.
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In this section we aim to show that exclusively coupling the content’sadding a manual
override of the zoom
level is desired and
may improve the user
experience of SDAZ

zoom level to the scroll rate is an unfair constraint, and that especially
in the case of mobile map interfaces, the user is likely to benet from
zooming out the content without having to scroll it, as map navigation
tasks require users to view and to classify larger features of the map
(in a zoomed-out state) in order to locate the point of interest they
are interested in. Thus, we propose a novel SDAZ-based mobile map
navigation technique, which we refer to as Semi-Automatic-Zooming
(SAZ). The idea of SAZ is to use a tilt-based SDAZ interface for basic
behavior, with added manual zoom level control, i.e. in the form of
a slider widget mapped directly to the displayed content’s zoom level.
Using manual zoom control, users can keep the zoom level constant
without the need to scroll the map. On the other hand, when scrolling
to distant points of interest, users are relieved of the need to explicitly
control the zoom level.

3.1.2 Implementation and Design of the Mobile UI

In order to study tilt-based mobile map interfaces, we implemented a
custom mobile map application on the Apple iPhone 3GS. Our applica-
tion has three navigation modes: a “standard” multi-touch based-map
interface, a tilt-based SDAZ interface and an SAZ-based interface.

3.1.2.1 Slippy Map

We used the Route-Me toolkit² to implement the slippy map inter-the interface used
OpenStreetMap map
data with Route-Me
as the frontend

face used in our test application. Route-Me allows the use of custom
tile sources, and allowed us to generate a custom map tile database
which was stored directly on the mobile device in the map applica-
tion’s folder. The map tiles for the database were generated³ from
OpenStreetMap geo data which is available for download at no cost from
(openstreetmap.org, 2012)W. Our approach using an on-device map
tile database has the advantage of removing any network latency due
to map tile retrieval, and allows us to scroll and zoom the map dynam-
ically at a maximum refresh rate of 20 fps on an iPhone 3GS.

The map tile database contains tiles for the world map from Open-the map data covered
Central Europe in
high detail ²Route-Me (Michael Tyson and collaborators, 2012)W is an open source replace-

ment map viewer for iOS. The project allows full customizability of all the aspects of
rendering the map on the device. The most important feature for us in this case was
the ability to use a local map tile database. This allowed fast map rendering without
lag from network transfers.
³The raw geo data (in XML format) was imported to a PostgreSQL database with

geoinformation system extensions (OSGeo Project, 2012)W. The map tiles were then
rendered using the Mapnik map renderer (Pavlenko, 2012)W. A Python script then
inserted the individual map tiles into a SQLite data base for use by the mobile map
application.
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StreetMap zoom levels 3 (19567.88 meters per pixel⁴ (m/px)) to 10
(152.87 m/px) and a detailed map of Central Europe is covered from
zoom levels 11 (76.44 m/px) to 15 (4.78 m/px) which is detailed
enough for identifying street names. In total, about 3.5 million map
tiles are stored in the database, which has a size of almost 12 GB.

3.1.2.2 Touch Interface

The multi-touch-based interface is modeled after the user interface of
the iPhone’s on-board map application. Scrolling is controlled by drag-
ging the nger across the map. The pixel distance between the start
and end of dragging is directly mapped to the map canvas. A drag mo-
tion of n pixels scrolls the map by n pixels in the specied direction.
Zoom is controlled by two-nger gestures. A “pinch-in” gesture zooms
out the map and a “spread-out” gesture zooms in the map. Zooming
is implemented by multiplying the current zoom level with the ratio of
the starting and ending distance measured between the touch points of
the pinch and spread gestures.

3.1.2.3 State-Space Model for SDAZ

We chose to implement SDAZ using the dynamic systems approach as
described in (Eslambolchilar and Murray-Smith, 2008c) because this
is the current state of the art in SDAZ implementations and has been
widely published. As the authors only specify a model appropriate for
1D scrolling tasks, we extended their model to be able to support 2D
scrolling tasks with tilt input.

To do this we had to extend the model update matrix to incorporate 2D
tilt input based on accelerometer data and movement on a 2D plane, by
adding two additional rows representing the scroll speed and position
of the additional movement dimension:

Ẋ =



ẋ1

ẋ2

ẋ3
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0 0 0 1 0
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x4

x5
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
ux

uy

uz


(3.1)
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Ẋ represents the changes of the state-space vector with(x1, . . . , x5)
⊺

represent the model’s
state

(x1, x2, x3, x4, x5)⊺ representing PositionX, PositionY, SpeedX, SpeedY
and Zoom. M, Rh and A are parameters of the state-space model.
M represents a mass in kg, Rh is the vertical resistance and A is a
scaling constant. ux, uy are the tilt values obtained from the device’s
acceleration sensor, which is sampled at 20Hz. The tilt values are
used to update the state-space model as shown in Equation 3.1. The
tilt values are computed using the arctangent of the acceleration values
of the x (ax) and y (ay) axis divided by the acceleration value of the z
axis (az), respectively:

ux = atan(ax/az)

uy = atan(ay/az)
(3.2)

Before calculating the tilt values, we applied a basic low-pass lter in
order to decrease noise and lower the impact of unwanted motion. The
low-pass lter however cannot have too much inuence on the values
because otherwise sudden corrective scrollingmovementswould be too
sluggish. Because of the two-dimensional input (tilt in x and y axis)
we also had to adapt the change the zoom level update of our system
in comparison to the one described by Murray-Smith. In Equation 3.1
the zoom update is represented by the uz component. The zoom level
update uz is dependent upon the speed component sc and the current
acceleration az in the z axis (the component of the earth’s acceleration
g in the acceleration value measured by the phone). We calculate uz as
follows:

uz = (B/M)sc + (C/M)(1 + az) (3.3)

We chose to implement the uz update in this way in order to allow theour method of
controlling the zoom
updates allows the
system to react more
quickly to device tilt
changes

device tilt to be the dominating input for controlling the zoom level. B
and C are scaling factors, andM is themass value dened for themodel.
As device tilt increases, az decreases. When the device is completely
level az = −1. On the iPhone, az < 0 when the screen faces upwards.
An interesting property of Equation 3.3, is that we can adjust the in-
uence of both tilt (aZ) and speed (sc) on the interface zoom. This
way, we can, for example, set up the interface zoom to respond faster
to device tilt changes. This allows the user to get a better overview of
the direction he wants to navigate to by increasing the device’s tilt to
zoom out, before a higher scroll rate gradually sets in.

sc = max(abs(ẋ3), abs(ẋ4)) (3.4)
⁴The meter per pixel values approximate map scales at Central European latitudes.
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3.1.2.4 Parameter Selection for the State-Space Model

To allow for the camera to zoom continuously between zoom levels parameters control
physical properties
used by the
state-space model

3 and 15, and to ne-tune the coupling between scroll speed, tilt and
zoom change, we had to adjust the parameters M, Rh, A, B, C,. In effect,
these parameters model the physical properties of the virtual camera
used in the SDAZ visualization. These properties are mass (M, in kg)
and horizontal movement friction (Rh, in kg/s). A, B, C are used as
scaling factors for the output values provided by the model.

In order to nd values for the parameters, we sampled actual ac- we obtained working
parameter settings
analytically

celerometer data and ran an off-line simulation using MatLab (The
MathWorks Inc., 2012)W. By analyzing plots of position, speed and
location produced by the state-space model and different parameter
settings, we found an initial set of values for the parameters. Follow-
ing that, the parameter values were tested by expert users in the map
navigation interface implemented for our study. For map navigation,
feedback provided by expert users suggested that we usemodel settings
that make the map zoom out quickly upon tilt input. This enables the
user to orientate himself more easily, such that she can nd the correct
movement direction towards his target point of interest. We had to
slightly adjust the model parameters obtained via our offline analysis
and used the following settings in our user study:

M = 50, Rh = 5, A = 1.5, B = 100, C = 30 (3.5)

3.1.2.5 Visual Feedback and Diving Mode

Because SDAZ requires the user to center the screen on the exact loca-
tion of the target point of interest before zooming in to see its details,
we added a box around our interface’s map center, as shown in Figure
3.1. In the following we will refer to this box as the “map center box”.

When using SDAZ, it is crucial for the users to know exactly how they
are inuencing the interface’s rate control, in order for them to predict
its future behavior. In our SDAZ interface, rate control is achieved by
tilting the mobile device.

Because we found that users had difficulty to exactly judge the device’s a visual feedback
mechanism indicates
the device’s tilt

tilt, we implemented a visual feedback mechanism to visualize the cur-
rent tilt angles. Visualization of the tilt in the x and y axis is achieved
by drawing a small yellow square (“tilt indicator”) in the area enclosed
by the map center box (Figure 3.1 (a)) . If the device is level, the red
dot remains in the center of this area, and indicates to the user that no
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(a) Tilt Position (b)Warning Tilt

(c) Over Tilt (d) Diving Mode (e) SAZ Mode

Figure 3.1: Visual feedback indicators for SDAZ and SAZ: (a) shows
the visual feedback in default mode, with the tilt indicator displayed as
a yellow square. (b) shows the warning-tilt indicator, when the tilt of
the device approaches the over-tilt region. (c) indicates that the device
has been tilted too far and that the interface is in over-tilt mode. (d)
is the feedback displayed when in diving mode. (e) shows the default
visual feedback given in SAZ mode. (Kratz et al., 2010a).

scrolling is taking place. If the device is tilted in a certain direction, the
red dot moves outwards from the center proportionally to the degree
of tilting, thus indicating the current scroll rate setting in the direction
represented by the dot’s offset with respect to the map center.

To prevent operation of the interface at tilt angles larger than 30◦, atvisual warning
against over-tilting which the map would not be clearly visible to the user anymore, we

introduced feedback for an “over-tilt” mode, which freezes the interface
and displays a warning rectangle around themap center box (Figure 3.1
(c)). When the device’s tilt is within 10% of the boundary after which
over-tilt is likely to occur (≥ 27◦), the tilt indicator is enlarged and
surrounded by a red border, in order to warn the user that the over-tilt
condition is imminent (Figure 3.1 (b)).

A common problem with SDAZ interfaces is the overshooting of tar-
gets, or “hunting effect” (Igarashi, 2000; Wallace, 2003). Because ourdiving mode to

prevent target
overshooting

interface simulates physical properties, such as friction and inertia, it is
possible to overshoot the target, which makes the user compensate by
tilting the device in the opposing direction. This, in turn increases the
zoom level of the interface requiring further adjustment. A solution
to this problem is to introduce a “diving mode” (Eslambolchilar and
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Murray-Smith, 2008c). In our implementation, diving mode is initi-
ated when the device is kept level for a time threshold of half a second.

When diving mode is activated, the interface smoothly zooms the map
to the maximum zoom level. The map center box changes its shape
(Figure 3.1 (d)) to indicate to the user, that the interface is in diving
mode.

3.1.2.6 Semi-Automatic Zooming (SAZ) Interface

The idea of Semi-Automatic Zooming is to give the user manual con- SAZ allows the user to
control the zoom
level manually with a
sider

trol over zooming when he desires it. In our case, this manual control
is implemented as a slider (or “SAZ slider”). As shown in Figure 3.2,
the SAZ slider is placed on the right-hand edge of the screen. This
placement of the slider is optimized for use with a right-handed user’s
thumb, but could just as easily be designed for left-handed use by mov-
ing the slider to the left edge of the screen.

(a) SAZ - Automatic Zoom Control

(b) SAZ - Manual Zoom Control

Figure 3.2: Placement and visualization of the zoom level slider in the
SAZ map interface: (a) shows the SAZ interface in automatic zooming
mode (no touch on slider), (b) shows themanual zoomingmode (nger
on slider thumb controls the zoom level). (Kratz et al., 2010a).
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(a) Landmark Marker (b) Route Markers (c) Route Segment Update

Figure 3.3: Display items shown during the user study trials. (a) shows one of the markers as
displayed in the nd landmark task. (b) shows the markers to be crossed in the follow route task.
(c) shows how the last route segment is updated (color change from yellow to orange) when
the user crosses into the next route segment in the follow route task. (Kratz et al., 2010a).

The slider’s thumb is mapped linearly to the interface’s zoom level,the slider’s thumb
indicates the current
zoom level when it is
not being
manipulated

and automatically updates its position to reect the current zoom level
when manual zooming is not being performed by the user. The user
can manually take control of the zoom level by touching the slider with
his thumb (Figure 3.2 (b)). This is reected in a change of color change
of the slider area from transparent gray to magenta.

The movement of the thumb is mapped in the following way: moving
the slider up increases the zoom level, moving it down decreases the
zoom level. Holding the slider’s thumb at a constant position holds
the zoom level constant. As the thumb’s movement range is mapped
directly to the range of zoom levels, the user can access all map zoom
levels by a single movement with his thumb. Automatic zoom control
is resumed when the slider’s thumb has been released by the user. Au-
tomatic zoom control is indicated by the slider’s color changing from
magenta to transparent gray (Figure 3.2 (a)).

Scroll rate control is not affected by use of the slider, and tilt input to
scroll remains enabled during use of the SAZ slider. One of the ma-
jor advantages of using an underlying model-based SDAZ interface is
that we can keep the visual scroll speed constant irrespective of man-
ual zoom changes input with the SAZ slider. Due to the availability of
manual zoom control, dive-mode has been disabled in SAZ.

Several features of the visual feedback displayed in SDAZ mode are re-
tained in SAZ mode. Here, the tilt indicator is surrounded by a red box
(Figure 3.1 (e)). SAZ mode also shows over-tilt and over-tilt warning
feedback.

3.1.3 User Study

The aim of our experiment was to to compare task execution time, task
load and user satisfaction results for the Touch, SDAZ and SAZmap in-
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terfaces. Additionally, we compared two different task types, nd land-
mark and follow route. Each task type is divided in two sub tasks with
two different map scales large (regional to country scale) and small (city
scale).

3.1.3.1 Participants

We invited a total of 13 right-handed participants, 8 male and 5 female.
The average age was between 24 and 28 years. The majority of the par-
ticipants did not have prior experience with either the iPhone or mobile
map navigation. Participants were given monetary compensation after
completing the study.

3.1.3.2 Experimental Design and Tasks

The experiment used a repeated measures, within-participant factorial
3 × 2 × 2 design. Factors were input method (multi-touch, SDAZ, SAZ),
task type (nd landmark, follow route) and map scale (large, small).

The goal of the nd landmark task was to analyze the usefulness of the users must önd the
exact location of a
point of interest in the
önd landmark task,
whereas in follow
route, they must
follow a prominent
thoroughfare

interface control mode for searching for the exact location of a point
of interest. The nd landmark task was designed to represent nding
the exact location of a certain point of interest, such as a restaurant,
train station or popular sightseeing destination in an actual mobile map
application. In a deployed mobile map application, the follow route task
would be analogous to following a subway line map, for example.

In nd landmark the task of the user was to locate and select a number
of landmarks by navigating to them and selecting them by tapping on
them. The landmark markers (Figure 3.3 (a)) were only visible from
zoom level 11 onwards in the large map types and from zoom level
13 in the small map types, due to the smaller geographic area which
resulted in a lower need to zoom out to lower zoom levels. Selection
of the landmarks was only possible when fully zoomed in. The marker
display constraints for the nd landmark task were implemented to force
the users to precisely locate and select the landmarks. During the trials,
the participants were given a paper overviewmap on which the location
and sequence of the landmarks for the current trial was shown.

The task in follow route was to follow a given route using the mobile
interface. Each route consists of a number of waypoints (Figure 3.1 (b))
on that had to be crossed in sequence. The waypoints are connected
by the route shown in yellow. When a waypoint is crossed, the color
of the previous segment of the route is changed to red, to indicate the
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direction of the next waypoint, as is shown in Figure 3.1 (c). Waypoints
could only be crossed from zoom levels 13 to 15. The aim of this was
to make the test subject follow the route as closely as possible.

Each task was tested on large and small map scales. Our idea was that
regional-scale (150-500 km map diameter) map areas would force the
user to zoom out to a lower zoom level as compared to the same task
on a city-sized map scale (25-100 km map diameter). By having two
types of map scale, we could measure the performance of the input
techniques over a wider range of zoom levels and geographic areas.
The follow route task was designed to evaluate the panning functionality
whereas in the landmark nder task participants had to make additional
use of the zooming functionality (Büring et al., 2008).

Each task was tested on large and small map scales. Our idea was that
regional-scale (150-500 km map diameter) map areas would force the
user to zoom out further compared to the same task on a city-sized
map scale (25-100 km map diameter). By having two types of map
scales, we could measure the performance of the input techniques over
a wider range of zoom levels and geographic areas. The follow route task
was designed to evaluate the panning functionality whereas in the land-
mark nder task participants had to make additional use of the zooming
functionality (Büring et al., 2008).

3.1.3.3 Apparatus

We evaluated SAZ, SDAZ and multi-touch using a custom-built appli-
cation running on an iPhone 3GS. In order to prevent lag from loading
map tiles, all map tiles were stored in a database on the device. The
map data contained the entire world map from zoom levels 3 to 10
(zoom levels 1 and 2 were not used) and a detailed map (zoom levels
11 to 15) covered the boundaries of Central Europe.

For the nd landmark task, we provided the users with a printed
overview map on paper, on which the location of the landmarks was
indicated. We chose to provide a paper map in order to disambiguate
our results from the participants’ geographic knowledge.

3.1.3.4 Procedure and Dependent Measures

The study began with the participants lling out a general question-
naire on their gender, age and experience with smart phones and mo-
bile maps.
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As a warm-up exercise, the participants were required to play three the participants
played a labyrinth
game for warm-up

levels on a tilt-based labyrinth game (Illusion Labs, 2010)W. The goal
of this exercise was to help the user learn the effects of tilting the de-
vice when using a tilt-based interface. The Labyrinth program gave the
users an indication of the lag (if any), sensitivity and precision of the
built-in acceleration sensor. Furthermore, the movement of the ball
when the device was tilted was analogous to the movement direction
of the camera in the SDAZ and SAZ interfaces. This may have helped
to adjust the users’ mental model when using the SAZ and SDAZ map
interfaces in the actual user study.

We counterbalanced the order of input technique to prevent learning
effects. For each input technique, we tested two task variants, nd land-
mark and follow route as well as two map scales (large, small) per sub-
task, which in total resulted in 12 trials (one trial per condition) per
user.

We measured task completion time as a quantitative performance mea-
sure. Task duration was measured directly on the test apparatus. Task
duration gives us a good indication of the performance of the input
technique, although as can (also) be seen from our results, task dura-
tion does not always correlate with satisfaction and ease of use.

Further qualitative measures were task load (measured using the NASA
TLX questionnaire (Hart and Staveland, 1988a)) by input method and
satisfaction, learnability, usefulness and ease of use (measured with the USE
questionnaire (Lund, 1998)) and their respective ranking for each input
method.

A NASA TLX questionnaire was provided to the test subjects after each
trial, to record the direct impact each test condition had on the user’s
task load. Users were required to ll out the USE questionnaires after
completing all the trials for each input method. Apart from the USE
questions, participants were asked to provide negative or positive com-
ments about the input technique, if they had any. After completion of
the study, the users had to give a ranking of the USE variables on a
further questionnaire.

3.1.4 Study Results

In the following, we analyze the quantitative results for average task
completion time, as well as qualitative results for NASA TLX and USE
questionnaires.
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Landmark (small)Landmark (large)Path (small) Path (large)

Figure 3.4: Boxplot of task completion time by input method and sub-
task. (Kratz et al., 2010a).

3.1.4.1 Task Completion Time

Table 3.1 shows the average task completion times ordered by subtask
and input technique. The task completion time of SAZ is signicantly
lower than SDAZ in all subtasks, and multi-touch was the faster tech-
nique across all subtasks.

Figure 3.4 shows the boxplots of the task duration vs. input method
and subtask. A univariate ANOVA yields a combined signicant ef-
fect of input method × task type on the task duration (F(5, 155) =

13, 756, p < 0.001). However task type (nd landmark or follow route)
alone did not have a signicant effect (F(1, 155) = 0.004, p = 0.948). In
contrast, input method showed a signicant effect on task completion
(F(2, 155) = 33.363, p < 0.001). There was no signicant input method
× task type interaction.

3.1.4.2 NASA TLX

To analyze the effects of input method(multi-touch, SAZ or SDAZ) and
task type (nd landmark or follow route) on the NASA TLX ratings of Ef-
fort, Frustration, Performance, Mental Demand, Physical Demand and Tempo-
ral Demand, we conducted a multivariate ANOVA.

The following measures showed a signicant difference:

• Effort: F(5, 150) = 3.27, p = 0.008

• Performance: F(5, 150) = 2.64, p = 0.03
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Subtask Input Technique Mean (s) Std. Dev. (s)

Path (Small)

SAZ 113.1 21.5

SDAZ 117.4 35.9

Multi-Touch 74.3 24.6

Path (Large)

SAZ 163.3 37.0

SDAZ 200.4 42.7

Multi-Touch 91.5 32.6

Landmark (small)

SAZ 106.8 30.3

SDAZ 139.8 75.3

Multi-Touch 83.9 37.5

Landmark (large)

SAZ 140.2 27.4

SDAZ 192.3 65.0

Multi-Touch 100.1 22.9

Table 3.1: Average task completion times by subtask and input tech-
nique.

• Mental Demand: F(5, 150) = 2, 95, p = 0.01

Input technique had a signicant individual effect on the following
measures:

• Effort: F(2, 150) = 7.48, p < 0.001

• Frustration: F(2, 150) = 4.19, p = 0.02

• Performance: F(2, 150) = 4.68, p = 0.01

There was no signicant interaction of input method × task type.

The effects of different input techniques on Effort, Frustration and Perfor-
mance are as expected, due to the different characteristics of the input
techniques. Mental, physical and temporal demand do not appear to
be signicantly affected by the input technique. The sole signicant
individual effect of task type wasMental Demand (F(1, 150) = 9.611, p <

0.01), which can be explained by the difference in difficulty of our tasks.
Follow route appears to be signicantly easier than locating and nding a
target on the mobile map, even with the target marked on a paper map
for guidance.
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Figure 3.5: Results of NASA TLX questionnaires by input technique. (Kratz et al., 2010a).

To analyze the individual differences of the input techniques, we con-
ducted a Sidak post-hoc analysis. For Effort there is a signicant dif-
ference between multi-touch and SAZ (MD⁵ = 1.92, p = 0.032) as well
as multi-touch and SDAZ (MD = −2.81, p = 0.001), although there
is no signicant difference between SDAZ and SAZ. For Frustration,
multi-touch differs signicantly from SDAZ (MD = −2.46, p = 0.023),
whereas there is no signicant difference between SAZ and multi-
touch. There is a borderline signicant difference in Performance be-
tween SAZ and SDAZ (MD = −1.81, p = 0.053) and between multi-
touch and SDAZ (MD = −2.15, p = 0.15). Interestingly, there is no
signicant difference in Performance between SAZ and SDAZ. Conform-
ing to the results of the multivariate ANOVA, Mental Demand, Physical
Demand and Temporal Demand had no signicant effects.

Figure 3.5 shows a plot of the average ratings of the NASA TLX mea-
sures by input technique. In terms of user-rated frustration, there was
no signicant difference between SAZ (M = 5.0, SD = 4.14) and multi-
touch (M = 4.58, SD = 3.36). SDAZ was rated signicantly higher in
frustration with the worst average rating of 7.04 (SD = 5.94). The user
rated the effort worst for SDAZ (M = 8.35, SD = 4.26) with no signif-

⁵MD stands for mean difference, the difference of means between conditions in
pairwise comparisons.
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icant difference compared to SAZ (M = 6.44, SD = 3.68). Multi-touch
was rated signicantly better for effort with an average of 5.54 (SD =

3.3) A notable NASA TLX result is the (borderline) signicant increase
in user-rated performance of SAZ over SDAZ (M = 4.88, SD = 3.3 vs.
M = 6.69, SD = 4.6; lower is better), however multi-touch remains
best (M = 4.54, SD = 3.55).

3.1.4.3 USE Questionnaire

Input Technique
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Figure 3.6: Results of USE Questionnaire by input technique (higher
is better). (Kratz et al., 2010a).

The mean ratings given for each input technique on the USE Question-
naire are shown in Figure 3.6. We conducted a multivariate ANOVA
on the results of the USE Questionnaire. Dependent measures were
Ease, Learnability, Satisfaction and Usefulness. Task type and input method
were chosen as factors. There were signicant differences between all
measures. The individual F-values are as follows:

• Ease: F(2, 155) = 7.214, p < 0.001

• Learnability: F(2, 155) = 14.097, p < 0.001

• Satisfaction: F(2, 155) = 3.286, p = 0.008

• Usefulness: F(2, 155) = 4.839, p < 0.001.

Task type had no signicant effect on any of themeasures whereas input
technique had a signicant effect on all measures:

• Ease: F(2, 155) = 17.506, p < 0.001

• Learnability: F(2, 155) = 35.131, p < 0.001

• Satisfaction: F(2, 155) = 8.157, p < 0.001

• Usefulness: F(2, 155) = 11.567, p < 0.001.
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3.1.4.4 USE Rankings

Figure 3.7 shows the results of the USE questionnaire rankings. Sidak
post-hoc analysis for the USE Questionnaire rankings shows that for
Satisfaction andUsefulness, SAZ ranks at least as well as multi-touch. For
the other USEmeasures, SAZ consistently received a higher rating than
SDAZ and SAZ was rated signicantly higher than SDAZ in Ease. The
difference in Learnability between SDAZ and SAZ was not signicant,
as these two techniques seem harder for unskilled users to master than
multi-touch.

The detailed results for the Sidak analysis are as follows: for Ease there
were signicant differences between SAZ and SDAZ (MD = 0.88, p =

0.004), between multi-touch and SAZ (MD = 0.72, p = 0.027) and also
between touch and SDAZ (MD = 0.88, p < 0.001). Multi-touch was
rated best (M = 6.56, SD = 1.48), followed by SAZ (M = 4.74, SD =

1.31) and SDAZ (M = 3.85, SD = 1.48). Learnability had the highest
rating for multi-touch (M = 6.34, SD = 0.69) with a signicant dif-
ference compared to SAZ (MD = 1.49, p < 0.001) and SDAZ (MD =

1.68, p < 0.001). SAZ had the second best rating (M = 4.85SD = 1.27),
with SDAZ worst (M = 4.65, SD = 1.26). There was no signicant dif-
ference in Learnability between SAZ and SDAZ. SAZ had the best rating
for Satisfaction (M = 5.13, SD = 1.42), with multi-touch second (M =

4.93, SD = 1.38), although the difference was not signicant. SDAZ
had the lowest rating (M = 3.96, SD = 1.85) with signicant differ-
ences compared to both SAZ (MD = 1.67, p = 0.001) and multi-touch
(MD = 0.97, p = 0.006). SAZ also had the highest rating for usefulness
(M = 5.03, SD = 1.44) followed bymulti-touch (M = 4.97, SD = 1.25),
although also in the case the differences were not signicant. SDAZ re-
ceived the lowest rating (M = 3.85, SD = 1.51) that was signicantly
different compared to both SAZ (MD = 1.18, p < 0.001) and multi-
touch (MD = 1.13, p < 0.001).

Figure 3.7 reects clearly the borderline differences in Satisfaction and
Usefulness rankings for the input techniques. On average, SAZ ranks
rst in Satisfaction (M = 1.55, SD = 0.55) and Usefulness (M =

1.67, SD = 0.60), with multi-touch (Satisfaction: M = 2.05, SD = 0.67,
Usefulness: M = 1.79, SD = 0.69) second and SDAZ third (Satisfac-
tion: M = 2.39, SD = 0.55, Usefulness: M = 2.53, SD = 0.60) .
Multi-touch ranks rst in Ease (M = 1.38, SD = 0.60) and Learnabil-
ity (M = 1.34, SD = 0.55), with SAZ (Ease: M = 2.089, SD = 0.60,
Learnability: M = 2.19, SD = 0.60) second and SDAZ third (Ease:
M = 2.52, SD = 0.63, Learnability: M = 2.46, SD = 0.63).

The low Ease and Learnability ratings received by SAZ, which are not
signicantly different from those of SDAZ, indicate that this technique
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Figure 3.7: USE Questionnaire ranking results. (Kratz et al., 2010a).

is harder to learn for novice users. However, SAZ was always rated
better than SDAZ and the ratings for Satisfaction and Usefulness indicate
that the users perceived SAZ as being more satisfying to use and more
useful than multi-touch. We believe that the ratings for Satisfaction and
Usefulness would have been even more favored towards SAZ if the users
had had more experience with that technique.

3.1.5 User Feedback

At the end of the USE Questionnaires for each input method, the users
were asked to give positive or negative feedback, if they felt inclined to
do so.

In the case of SDAZ, some users complained about “unwanted loss of
control” due to the coupling of tilt with zooming and scrolling. How-
ever, users also noted some positive aspects of SDAZ, such as “map
always visible” (i.e. no occlusion), “quick zooming” and “fun” to use.

Regarding multi-touch, the users liked the “precise control” they had
over the map view. Frequent negative issues with multi-touch were
“screen is covered” (i.e. occlusion), “slow” and “sticky ngers”. It
is interesting to note that multi-touch was perceived as being slower
although this is contradicted by the experimental results. This percep-
tionmight be due to themental load associated with switching between
zooming and panning the interface (both is not possible simultaneously
using multi-touch).

The users liked the “quick zooming” of SAZ and found this input
method “fun to use”. They also noted that, in contrast to multi-touch,
SAZ makes “one-handed interaction possible”. However, the users rec-
ommended the slider to be designed in a way that it can be “locked”
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at a certain zoom position without the requirement of maintaing touch
contact with the slider. Also, the users commented that they would
“get better with more practice” when using the SAZ interface.

The user feedback we obtained indicates that althoughmulti-touch had
the best experimental results, some users did perceive multi-touch as
being a slow technique and had the impression of being faster while us-
ing SAZ. Feedback provided by the users also suggests that of the main
advantages of using an SDAZ or SAZ interface is that these techniques
are occlusion-free, which was appreciated by many of the users. SAZ
was generally preferred over SDAZ due to the availability of manual
zoom control.

3.1.6 Conclusion

In order to conduct our study comparing SDAZ, SAZ and multi-toucha fully-functional map
viewer with real map
data was used in the
study

for mobile map navigation, we had to implement a high-performance
dynamic map interface. Because we wanted to conduct our study under
the most realistic conditions possible, we chose to implement our in-
terfaces directly on a mobile device, and to use actual real map material
at a high detail level covering a large geographic area with a wide range
of scales. This has not been achieved in previous work in the eld.

Rather than choosing an arbitrary mapping between scroll rate and
zoom level, we chose to use the state-space model by (Eslambolchi-
lar and Murray-Smith, 2008c), as we think that this model provides a
more realistic usage experience due to its sophisticated physical mod-
eling of the scrolling behavior. We had to extend the existing model to
enable the support of 2D tilt input for scroll rate control.

Our study demonstrates that for mobile map navigation, SAZ is a supe-SAZ is superior to
SDAZ and performs at
levels comparable to
multi-touch

rior input technique compared to SDAZ.Not only was the task duration
of SAZ signicantly lower, SAZ was rated better in both the NASA TLX
and the USE questionnaires. Notably, the results from NASA TLX and
the USE Questionnaire indicate that SAZ performs at least as well as
multi-touch. The user feedback and Satisfaction and Usefulness ratings
from the USE Questionnaire indicate that SAZ was seen as increasing
the user’s productivity and effectiveness while at the same time being
fun to use.

A possible reason that the study results are not even more in favorSAZ’s steeper learning
curve and the users’
familiarity with touch
could have biased the
results

of SAZ is that the users had no previous experience with automatic
zooming or tilt-based interfaces. Also, we have to take note that the
iPhone’s support for multi-touch is very mature, as this device was
developed for supporting multi-touch as primary means of interaction.
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This may have contributed towards biasing the study results towards
multi-touch.

In this context, it is interesting to note that informal post-experiment multi-touch was
perceived as being
the slowest technique

discussions, several participants noted that they had perceived multi-
touch as the slowest technique. In addition, several users men-
tioned occlusion problemswhen using themulti-touch interface, which
weren’t present when using SDAZ or SAZ. Because of the very mature
implementation of multi-touch on the iPhone, it may be useful to re-
evaluate SAZ and SDAZ in comparison to a non multi-touch mobile
map interface such as the one found on mobile devices running An-
droid. In this case, SAZ has the potential to be at a clear advantage.

From a more global perspective, the results of this work demonstrate SDAZ is a useful
technique for devices
not capable of
multi-touch

that tilt-based SAZ is an efficient input technique for navigating large
information spaces on mobile devices, and has the potential to be a
very useful input technique for future devices that are not equipped
with multi-touch-based interfaces.

3.1.7 Further Work

From the user feedback, we gained some valuable insight into the de-
sign of future SAZ interfaces. The users appreciated the manual zoom
control provided by the SAZ slider, although it was apparently lacking
a feature allowing the users to lock the zoom level without having to
touch the slider’s thumb.

In the future, it may be useful to analyze how much the users made
use of the SAZ slider in individual task scenarios, i.e. in nd landmark
or follow route. In addition, we believe that in certain scenarios involving
a search for a specic point of interest, such as in the nd landmark task
in our study, there may be certain phases of the task in which the users
prefer to use automatic zooming and other phases where manual zoom
control is preferred. We wish to analyze the phases of SAZ slider usage
in more detail in future user studies.

3.2 Flick-and-Zoom: Touch-Based Automatic Zoom-
ing for Mobile Map Navigation

The results in Section 3.1.5 indicate that although Semi-Automatic
Zooming (SAZ) is liked by the users, tilt-based navigation can be dif-
cult to master without practice, in contrast to standard multi-touch
interfaces. The idea for Flick-To-Zoom is to combine the advantages of
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touch-based navigation with an automatic zooming model, and to re-
evaluate this technique in comparison with SAZ. We⁶ thus decided to
evaluate a combination of State-Space automatic zooming with a touch
based map interface, in order to combine the positives aspects of SAZ
with a multi-touch interface.

3.2.1 Flick-and-Zoom Navigation

The basic idea behind Flick-And-Zoom is to use ick gestures to im-Flick-and-Zoom
reduces the number
of touch inputs

part “momentum” to the virtual camera viewing the map, in the de-
sired direction of scrolling. This similar to the naïve physical scrolling
behavior of the 1D selection wheel widgets found in iOS⁷. We assumed
that adding automatic zooming via ick gestures to a map navigation
interface for mobile device will reduce the number of required inputs
(touches) as well as decrease task completion times when compared to
SAZ and touch without automatic zooming.

As discussed in the following Section in more detail, the speed of the
ick gesture can either be input directly to the state-space model as an
absolute scroll speed value, or in an additive variant, each ick can add
more scrolling speed, in turn forcing the automatic zooming engine to
adjust the zoom value.

3.2.2 Multi-Flick Gestures

For our implementation, we needed to decide which mapping to use
from (multi-ick-) input to the scrolling speed and direction. (Aliak-
seyeu et al., 2008) evaluate a number of possible mappings for multi-
ick gestures.

• Multi-Flick-Add (MFA): with this mapping, the scroll rate is in-
uenced by the scroll direction as well as the scroll velocity. Suc-
cessive icks can thus be used to increase or decrease the velocity,
successively. Figure 3.8 (a).

• Multi-Flick-Standard (MFS): in MFS, a direct mapping is per-
formed from the ick speed to the scroll speed. In contrast to
MFA, the scroll speed can not be additively increased with multi-
ple icks. Rather, the scroll speed and direction is always dened
by the speed of the last ick. Figure 3.8 (b).

⁶Implementation and user study executed as a project thesis by Valerie Kroner (Kro-
ner, 2011).
⁷For an excellent overview of how naïve physics can be applied to user interfaces

see (Jacob et al., 2008b).
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Figure 3.8: Mapping functions for the multi-ick techniques analyzed
by (Aliakseyeu et al., 2008).

• Multi-Flick-Friction (MFF): the mapping from ick speed to
velocity is essentially the same as in MFS. However, friction is
added, which leads to a decrease of the scrolling speed over time.
Figure 3.8 (c).

• Compound-Multi-Flick (CMF): in CMF, the document at rst
follows the displacement of the stylus or nger on the touch
screen. When the stylus or nger is lifted from the screen,
scrolling continues as if a MFS ick had been performed. Once
the nger or stylus is set back down on the screen, scrolling ends.
The advantage of this technique is that it allows precision dis-
placement tasks when the stylus or nger is moved slowly over
the screen as well as ick gestures, when the input artifact is lifted
from the screen. Figure 3.8 (d).

Although we initially considered using MFA for our navigation tech-
nique, we soon realized that for 2D task MFA can be complicated to use
as icks in opposing directions can no longer directly be subtracted or
added to each, as in 1D, due to difference in ick direction afforded by
the 2D input space. Without quantization of the ick direction, i.e. into
8 quadrants, it is effectively too difficult for the user to properly control
scrolling using MFA.

We thus opted to use CMF, as it provides instant feedback of the ick we chose CMF as
input mapping for
øick gestures

direction to the user (in contrast to MFS). Feeding CMF icks into our
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state-space model for SDAZ automatically adds friction to the scroll
tasks, so our scroll behavior could be classied as Compound-Multi-Flick-
Friction (CMFF).

3.2.3 Adjustments to the SDAZ Implementation

We used the implementation of the state-space model from Section
3.1.2 as a basis for Flick-and-Zoom. Because tilt was previously used
to input velocity changes, we had to adjust the State-Spacemodel to use
ick gestures as input. We also had to adjust the friction parameters
in order to obtain an acceptable automatic zooming behavior from the
system. The modied model is dened in Equation 3.6



ẋ1
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(3.6)

(ẋ1, ẋ2, ẋ3, ẋ4, ẋ5)⊺ is the update vector for the state-space model. The
current state of the system is represented by (x1, x2, x3, x4, x5)⊺. The
speed update components ux and uy represent the update components
of the ickmovement in the x and y axes, respectively. Equation 3.8 de-
scribes how the values for ux and uy calculated. uz is the zoom update,
(see Equation 3.9). The parameters used for the modeling of physical
behavior are M, the mass in kg, and scaling factors A, B, and C. A can
be used to explicitly regulate the maximum zoom level. B regulates
the amount of friction applied to the model during each state update.
C controls the responsiveness of the zoom behavior. Based on experi-
mentation and expert evaluation, we chose the following values for the
parameters:

M = 30, A = 1.5, B = 9, C = 30 (3.7)

In our previous SAZ implementation, the zoom friction update uz is
calculated explicitly (Equation 3.3, p.36). For Flick-and-Zoom, we in-
corporated the zoom friction directly in the bottom rows of thematrices
S and U (compare Equation 3.6).

Instead of relying on the acceleration values for updates, Flick-and-
Zoom obtains speed in x and y axes as inputs for each update step.
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We calculate these speeds as follows: we calculate the movement ex-
tents of the ick gestures (∆height, ∆width) by adding up the successive
touch locations of the movement. The speed update components ux, uy

are then calculated as follows:

ux = s

cos(atan(
∆height

∆width
)) · t2

f lick

uy = s

sin(atan(
∆height

∆width
)) · t2

f lick

(3.8)

where t f lick is the ick duration and s is scalar of the values for input
into the state-space model. For our this particular implementation we
obtained an acceptably working value of 1.5 × 105 for s through trial-
and-error. We use an inverse-quadratic mapping of t f lick to mitigate
the effect of long-duration icks as they can be very similar to normal
movements on the touch screen.

The zoom update uz is calculated as the magnitude of (ux, uy):

uz =
√

u2
x + u2

y (3.9)

If the user moves their nger over the touch screen for a very long du-
ration, very large ∆height and ∆width values can result, which would lead
to undened behavior during the ick update. For this reason we intro-
duced a threshold Tupper for ick duration time. If Tupper is exceeded,
the application interprets the movement as a normal translation and
not a ick. In addition, we also dened a threshold for the minimum
ick duration Tlower to lter outminimalmovements, for instance intro-
duced by sensing noise in the touch screen when the nger is resting
on the display in a stationary position. For the same reason we also
only consider icks with a minimum displacement of 10 pixels. We
thus summarize the conditions for processing a movement as a ick as
follows:

Tupper = 3000ms ∧ Tlower = 50ms ∧ |∆height| > 10px ∧ |∆width| > 10px
(3.10)

3.2.4 Preliminary Evaluation

We evaluated the usability of Flick-and-Zoom by comparing it to SAZ
and Multi-Touch for map navigation in a preliminary user study.
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Hypothesis We assumed that a combination of SAZ with Flick-And-
Zoom, i.e retaining the manual slider from SAZ (Section 3.1.2.6) in
the Flick-And-Zoom interface would be more natural and easier to use
than SAZ (H1). The qualitative measurements for H1 were obtained
using the USE questionnaire (Lund, 1998). We also assumed that a
combination of SAZ with Flick-and-Zoom would achieve a lower task
completion time a normal multi-touch map interface (H2).

Test Subjects We invited a total of four test subjects to take part in the
study. The subjects were between 25 and 27 years old. Two test sub-
jects were Media Informatics students, one subject was an industrial
engineer and another was a usability engineer. All test subjects owned
a smart phone with a touch screen and three of them had previously
used an iPad. However, none of the subjects had previously used map
applications on tablet PCs. Two of the test subjects used map applica-
tions on their smart phones.

Apparatus We used a rst-generation iPad, on which we imple-
mented Flick-and-Zoom by extending the original iPhone implementa-
tion which was used for SAZ (Section 3.1.2) and modifying it to work
on an iPad.

3.2.4.1 Design of the User Study

Input Techniques We tested four different input techniques for map
navigation:

(A) FLICK: A combination of Speed Dependent Autmatic Zooming
(SDAZ) and ick input (i.e. Flick-and-Zoom).

(B) FLICK-SAZ: A combination of Semi-Automatic Zooming (SAZ)
and ick input.

(C) SAZ: Semi-Automatic Zooming (from Section 3.1).

(D) TOUCH: The standard multi-touch map interface found on the
iPhone.
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Abbildung 4.1: Karte der Test-Version mit den 8 POIs

Um dem User eine Möglichkeit zu geben sich mit den Navigationsmethoden vertraut zu ma-
chen, musst er eine kurze Demo mit jeder Methode durchlaufen. Dies ist zudem nötig, da zwar
jeder User mit der Standard Multi-Touch Methode vertraut ist, jedoch nur wenige mit der Steue-
rung einer Applikation über Kippbewegungen und niemand mit der Flick-and-Zoom Methode.
Hierfür sind ebenfalls Marker im Münchner Stadtgebiet verteilt und ein Übersichtsplakat vorge-
legt (s.Abbildung 4.2).

Abbildung 4.2: Karte der Demo-Version mit den 3 POIs

Dass eine Demoversion sinnvoll und nötig war, lässt sich an den Demo-Ergebnissen (vgl. 4.6)
erkennen. Variieren diese stark zwischen den einzelnen Probanden, abhängig von der jeweiligen
Erfahrung mit Touch- und Navigationsgeräten, so waren sie im nachfolgendem Test durch die
Nivellierung der Vorkenntnisse besser vergleichbar.

10

Figure 3.9: The poster containing the POIs and the suggested route
which was provided to the test subjects during the study. Most of the
POIs are famous tourist destinations in Munich, Germany. (Kroner,
2011).

Tasks The task the users had to perform were of the LandmarkFinder
type used in Section 3.1.3.2. The users had to use the map interface to
nd particular points of interest (POIs) located on the map of Munich,
Germany.

8 POIs in Munich are marked with a red map marker. Most of the
POIs are famous tourist attractions in the city. Table 3.2.4.1 shows
the specic POIs used in the study. The starting point for each task
is the Munich Central Train Station Trials are initiated by touching the
starting marker. It then changes its color to blue and the remaining
number of POIs to touch are displayed on the screen.

To mitigate the effect of persons who are very knowledgeable about wemitigated the
effects of prior
cartographic
knowledge

the city map, all test subjects could use for guidance a printed out map
of Munich containing all the POIs. In addition, the test subjects had
access to a poster (Figure 3.9) of a possible navigation route through
all POIs, which showed the markers and with a line connecting them,
suggesting the possible route. Most of the test subjects adhered to the
suggested route.

In order for users to get acquainted with each input technique, the a warmup trial was
performed for each
technique to
acclimatize the test
subjects

users were asked to complete a warmup trial consisting of only three
POIs before commencing the main trial for that input technique.
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Table 3.2: Points of interest used in the warmup exercise as well as
the main part of the user study.

Warmup Study

Starting Point Central Station Central Station

POI 1 Hirschgarten Theresienwiese

POI 2 Deutsches Museum Tierpark Thalkirchen

POI 3 Riem Arcaden Klinikum Großhadern

POI 4 - Schloss Nymphenburg

POI 5 - Olympiastadion

POI 6 - Chinesischer Turm

POI 7 - Allianzarena

POI 8 - Flughafen Terminal 1

Trials We chose a within-subjects design for the user study. Thus all
participants performed the study with each of the input techniques.
The order of the input techniques was randomized in order to counter
learning effects. The ordering of input techniques was ABCD, CDAB,
DCBA and BADC for users 1,2,3 and 4, respectively.

A USE questionnaire was presented to the users at the end of each trial.
After completion of all four techniques, the users were presented with
a nal questionnaire asking them to rank the techniques according to
the questions found on the USE questionnaire.

Adjustments to the Application Prior to the Experiment We conducted
a pretest with two Media Computing students prior to the main exper-
iments. As a result, we reduced the geographic area of the map data
to Munich and its surroundings with a radius of approximately 150km.
This was done in order to prevent test subjects with low cartographic
familiarity of Munich from completely losing their orientation on the
map.

We also introduced limits to the zoom level. Because the POIs usedminimum zoom level
was limited to level 12 in the study are located in and around Munich, we limited the mini-

mum zoom level to Google Maps level 12. At this zoom level the entire
geographic area covered by the experiment’s tasks, Munich and its sur-
roundings, are visible completely on the iPad’s display.
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At very high zoom levels (i.e. 18-19), the display becomes too detailed the maximum zoom
level was set to 17 in
order to omit details
not necessary for task
completion

for orientation via geographical features. Such zoom levels are more
suited to gaining specic data from the map such as street names or the
outlines of individual buildings. Because the POIs are clearly visible at
lower zoom labels we did not want to overload the test subjects with
unnecessary information, so we restricted the maximum zoom level
to 17.

3.2.5 Results

We evaluated the quantitative data obtained from the log les of the
iPad application and also qualitative data obtained from questionnaires
given to the test subject as well as comments the test subjects made
during the experiment.

3.2.5.1 Quantitative Results

The average task execution times for both the experiment and the
warmup exercise are shown in Figure 3.10. On average, TOUCH and
SAZ performed better than FLICK or FLICK-SAZ. Due to the low num-
ber of users, however, generalizations are difficult. For instance, FLICK
was the fastest technique for two of the test subjects. In general, the
task execution times varied more for the ick techniques, lying be-
tween 3.2-4.96 minutes for FLICK and 2.86-4.94 minutes for FLICK-
SAZ compared to 1.65-2.23 minutes for TOUCH and 2.87-3.61 min-
utes SAZ. Regarding the two FLICK techniques, FLICK-SAZ was the
faster technique for 3 participants.

In the warmup exercise, TOUCH had the lowest average task comple-
tion time. FLICK-SAZ performed better than FLICK or SAZ, which
can be explained by the higher learning curve inherent to SAZ (Section
3.1.6).

When looking at the number of screen touches counted during the FLICK and FLICK-SAZ
lead to a reduction in
screen touches
compared to TOUCH

experiment, we can observe that FLICK and FLICK-SAZ do reduce the
number of average screen touches from 121 for TOUCH to 78 and 74,
for FLICK and FLICK-SAZ, respectively (Figure 3.11). This amounts
to a reduction of almost 40%. Because SAZ is mainly tilt-based, it we
only counted an average of 11 touches for that technique.
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Figure 3.10: The average task completion times in minutes for each
input technique during the experiment and during the warmup exer-
cise.
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Figure 3.11: The number of touch events measured for each input
technique. The diamonds represent the average number of touches
over all participants for the respective input technique.

3.2.5.2 Qualitative Results

Figure 3.12 shows the average ratings and rankings for the USE ques-
tionnaire. TOUCHwas rated and ranked best, followed by SAZ and the
ick-based techniques for Satisfaction, Usability and Learnability. How-
ever, FLICK and FLICK-SAZ were rated better for Usefulness than SAZ.
This may be due to tilt-based techniques being less familiar to users
than ones based on touch.
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Figure 3.12: Left: the average USE Questionnaire ratings by input technique. Right: the
average USE Questionnaire rank by input technique. Error bars are omitted due to the low
number of study participants (N=4).

3.2.6 User Feedback

During the user study, the test subjects were encouraged to express
their thoughts, impressions and actions orally. In the following, we
summarize the most common items of spoken user feedback:

• All users preferred TOUCH as this is the technique that they were
the most familiar with, since this technique is standard on most
multi-touch mobiles. Because of their knowledge of how the in-
terface would react, the users felt that they had more control over
the map and that they were more effective. However, the users
did criticize the large number of inputs required to reach each tar-
get. Also, several users mentioned that repeated pinch-to-zoom
input was “annoying and slow”.

• Most users mentioned that the tilt-based navigation using SAZ
was easy to learn and fun. Due to the direct translation of the tilt
movement to scroll direction and zoom level, this technique was
easy to grasp for most users. By contrast, the users found that the
zoom-out and zoom-in speeds were too fast. Although the users
mostly liked SAZ during the warmup exercise, some users got
annoyed during the main task and found that “ying on the map”
was fun but not a real alternative to a standard user interface,
since it wouldn’t be appropriate in certain everyday situations,
i.e. in business settings.

• FLICK and FLICK-SAZ obtained positive mentions for providing
a good overview of the map when only the coarse direction of the
target is known. The advantage versus TOUCH is that the map
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keeps moving once scrolling has been initiated, and that the map
can be seen scrolling without occlusion from the user’s hand. Ad-
ditionally, all test subjects liked the possibility to stop scrolling
and zoom in fully using a single touch on themap’s surface. How-
ever, the users would also have liked the ability to stop scrolling
while maintaining the current zoom level, which could be easily
incorporated into the existing application.

• Initially, all users did not feel that FLICK-SAZwas intuitive. With
time, however, all subjects developed skills to interact using this
method and mentioned that the slider would allow them to get
an overview of the map position and the scrolling direction. The
standard interaction sequence that evolved led to the users per-
forming a fast ick in the desired direction and then controlling
the slider to select the preferred zoom level. The scroll direction
was then corrected by inputing additional icks. The ability to
“skip” to the target location directly by tapping on it was used
often. The ability to manually override the automatic zooming
using the slider was mentioned favorably.

3.2.7 Discussion and Future Work

In this section we compared Semi-Automatic Zooming (Section 3.1)
with additional ick-based techniques for (Semi-) Automatic Zooming.
The assumption was that ick-based input would be easier to use by
the users than SAZ.

For the ick-based technique FLICK, we used icks as inputs to a state-
space SDAZ model to control zooming. The second technique, FLICK-
SAZ, was based on SAZ, but used ick input to control the scrolling
direction, as well as slider for manually overriding the zoom level.

Against our expectations, FLICK and FLICK-SAZ performed worse(H1) and (H2) could
not be validated—
adjustments to the
implementation may
be needed

than SAZ and the standard multi-touch interface TOUCH (H1). Al-
though the ick-based techniques led to a reduction in the number of
touch events (Figure 3.11) we observed neither a reduced task com-
pletion time nor a better rating or ranking in the USE questionnaire
for these techniques (H2). A possible reason for this are weaknesses
in the implementation of FLICK and FLICK-SAZ as the users criticized
the speed and duration of the user interface behavior in response to ick
gestures. Some users found the response too quick, some too slow. It
seems likely that further calibration of the mapping of ick input to
scrolling is needed. Also, the speed updates ux and uy (Equation 3.8)
needs to be modied to incorporate the length of the ick gestures as
well as its execution time.
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Furthermore, the preliminary study presented in this section needs to
be repeated as a full user study with the suggested improvements. Be-
cause of the low number of participants (N=4), the results presented
here can only be considered indicative and not statistically signicant.

The user feedback also suggests that dynamic zooming behavior may a combination of
FLICK and TOUCH
should be considered
for future studies

not be needed at all times. A further technique that should be stud-
ied in the future is a combination of FLICK and TOUCH. In this
variant, the UI would exhibit normal scrolling behavior for slow and
short touches, allowing precision manipulation. For faster and longer
touches, i.e. icks, the UI would scroll using speed-dependent auto-
matic zooming, as in FLICK. This hybrid technique would thus com-
bine the familiarity of TOUCH with the advantages of FLICK.

3.3 Summary

In this Chapter, we introduced SAZ and Flick-and-Zoom, two input
techniques designed to help users navigate mobile map interfaces more
effectively. Our initial goals of reducing the number of user inputs have
been achieved by SAZ and Flick-and-Zoom, but our expectations on
their usability gains have only been partially met.

We have shown that SAZ signicantly outperforms SDAZ, but does SAZ is a viable
technique whenever
multi-touch is not
available or when
provided for expert
use

not outperform multi-touch. One of the problems is that tilt-based
continuous input is not intuitive for every user and also that it has a
signicant learning curve. We suggest conducting a longitudinal study
to analyze this learning behavior. SAZ could certainly outperform a
multi-touchwhen used by an expert, as has been demonstrated by some
of our test subjects. What should be noted is that SAZ is a preferred
technique for devices that do not have a multi-touch enabled screen,
i.e. not supporting pinch-to-zoom.

In order to evaluate if automatic zooming for mobile maps can be re-
alized without tilt-based input (which can be difficult for some users
to master), we implemented a ick-based (Semi-)Automatic Zooming
approach, Flick-and-Zoom. The preliminary user study we conducted to
evaluate this technique showed that there still are some issues that
need to be addressed, such as the calibration of the parameters for the
state-space model.

The results of the preliminary user study of Flick-and-Zoom should Flick-and-Zoom
received promising
comments but
requires further
reönement and a
full-scale user study

be regarded as indicative. We obtained numerous suggestions for im-
provements of future versions of this technique, and we still need to
conduct a full-scale user study of this technique. As with SAZ, our
results indicate a steeper learning curve using Flick-and-Zoom. This
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may be a general property of all user interfaces using automatic zoom-
ing, because the users need to generate a suitable mental model of the
system in order understand the effects their inputs—a Gulf of Evaluation
in Norman’s sense (Norman, 2002). The positive feedback obtained by
the study participants does make us condent that we will in the fu-
ture be able to develop a Flick-and-Zoom-based mobile map navigation
interface that outperforms the current standard UI for map navigation.

In summary, the results of our exploration of mobile map navigation
interfaces based on continuous input and a state-space models that au-
tomatically control certain parameters such as scroll speed and zoom
level, show that the performance of multi-touch has been surpassed by
neither SAZ nor Flick-and-Zoom. However, on devices lacking multi-
touch, techniques such as SAZ can offer a real advantage over normal
user interfaces (i.e., which use buttons and digital joysticks for navi-
gation). Tilt-based techniques seem to have a steeper learning curve
than touch, but our results indicate that users tend to perform very
well once they have understood the concept.
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Chapter 4

Around-Device and Sensor-
Based Interaction

“Basically, an input device is a transducer from the physical
properties of the world into logical parameters of an application.”

—Ron Baecker and Bill Buxton

A generally observable trend over the past 10 years is that new gener- novel user interface
concepts need to be
developed for
sensor–equipped
mobile devices

ations of high–end mobile devices are being equipped with more types
of embedded sensors than previous generations. In the previous chap-
ter, we looked at possibilities of using the existing sensors in mobile
devices to develop novel mobile user interfaces. In this chapter, we ex-
plore several types of additional sensor technologies that can be used
to implement novel mobile user interfaces. This exploration enables
us to draw conclusions about what types of sensors could be used in
future mobile devices in order to improve the usability of those devices
and to enable novel interaction concepts.

This chapter is structured as follows. Section 4.1 introduces the con-
cept of Around-Device Interaction, a sensor–driven approach to expand-
ing the interaction capabilities of mobile devices. The design space af-
forded by Around-Device Interaction is detailed further in Section 4.2.
HoverFlow, discussed in Section 4.3, is a prototype featuring Around-
Device Interaction that uses a small number of simple distance sen-
sors. PalmSpace extends the concept of HoverFlow, allowing more ne-
grained interaction using a depth camera (Section 4.4). In Sections 4.5
and 4.6 we examine pressure-enabled dual-sided multi-touch interac-
tion using the iPhone Sandwich, a prototype that we developed.
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4.1 Around-Device Interaction

The idea behind Around-Device Interaction (ADI) is to expand amobile
device’s interactive space on and beyond the device’s physical bound-
aries to permit richer and more expressive forms of interaction. There
has been relatively little previous work in Around-Device Interaction
(ADI) for mobile devices. ADI is of particular interest for mobile in-
teraction, as the size of mobile devices—and thus their interaction
possibilities—is limited.

Figure 4.1: Interacting with very small devices via coarse gestures.
The gestures are detected by an array of proximity sensors extending
in radial direction from the device. (?).

Using sensors, the interaction space of small mobile devices can be ex-sensors enable
expanding the
interaction space
beyond the physical
boundary of the
device

tended beyond the physical boundary of mobile devices to include the
full 3D space around them. Around-device interaction can be a bene-
cial addition to standard interface elements of mobile devices, such as
keypads or touch screens. This is particularly attractive for very small
devices, such as wristwatches, wireless headsets, and future types of
wearable devices such as digital jewelry (Figure 4.1). With these kinds
of devices, it is extremely difficult or even impossible to operate small
buttons and touch screens. The space beyond the device, however, can
easily be used, no matter how small the device may be. Such wearable
devices can also serve as easily accessible controllers for appliances in
the environment or for wireless communication applications.

In a smart home environment, for example, a gesture tracked by the
device could dim the light or control the volume of the entertain-
ment system. In mobile use scenarios, an incoming call could casually
be forwarded to the voice mailbox or an incoming message could be
acknowledged using different gestures. For mobile phones or tablet
PCs—whether handheld, placed on a table, or placed in a cradle in the
car—ADI could open up a range of 3D interaction possibilities. Coarse
movement-based gestures could control tablet applications, such as
turning pages in an electronic book. In a calendar application moving
to the next day or month could be controlled by specic gestures, such
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Figure 4.2: An overview of the hand and nger gestures that can be
recognized by the HoverFlow prototype (see Section 4.3). (?).

as sweeping with the palm or with the edge of the hand, respectively
(Figure 4.2).

Such coarse gestures do not require the activation of a user interface
widget and can be executed without visual feedback. This is especially
benecial for devices for which command selection via visual feedback
is difficult, because the device is not in the line of sight, such as digital
jewelry or wireless headsets. More ne-grained gestures could have a
natural spatial mapping to 3D objects on the screen. Moving the hand
closer to the device or rotating the hand could be mapped to zooming
along the z-axis or rotating 3D objects. In order to mitigate occlusion,
such gestures do not necessarily have to be performed on top of the
device display. If infrared proximity sensors are used, they can be ori-
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ented in such a way, that the interaction does not occlude visibility of
application objects on the screen.

4.2 The Design Space of Around-Device Interaction

Using simple sensors, ADI allows for quick and coarse interaction withwith basic sensors,
ADI can be used for
coarse input at a
distance

the devices, in cases where the desired actions are so simple that ne-
grained interaction with the device’s keypad or touch-screen is not nec-
essary, or use of the mobile device at a distance is required.

For example, simple hand gestures may present an alternative to click-
ing the back, forward or reload buttons in the device’s web browser.
Similar functionality could be implemented to control playback of
songs or movies with the device’s media player. The detection of coarse
hand gestures can also be benecial in cases where the user needs to
deliver a very quick input to the device, such asmuting the device or an-
swering a call. A simple hand gesture here is presumably quicker than
getting the device’s screen into focus, locating the appropriate button
and coordinating the button press.

Although gestural input breaks the metaphor of direct manipulation
(Butler et al., 2008b) when the gestures are symbolic, quick hand ges-
tures may be particularly useful for tasks of an immediate and direct
nature. Also, situations where visual interaction is not preferable, for
example when driving vehicles, may benet from interfaces that allow
the input of simple commands using rough hand gestures.

Given a high enough sensing precision, the entry of non-symbolic ges-using more advanced
sensors, the detection
of complex gestures
becomes possible

tures becomes feasible as certain physical characteristics such as the
rotation of the user’s palm (see Section 4.4) can be obtained from the
sensor data. In this case, the precision and variance of the data is low
enough to allow direct mapping of certain gesture characteristics to
properties of user interface elements.

In the following, we shall characterize some of the elements of the de-
sign space of ADI-based interfaces. We use the term “design space” in
a very broad sense, including elements that we deem to be important
to the delity, usability and development of ADI-based interfaces.

4.2.1 Sensors

ADI is highly dependent on sensors that allow the mobile device to lo-
cate the position of the user or her hands and ngers. In the following,
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we describe four key sensor technologies that can be used to implement
ADI-based user interfaces: distance sensors, depth imaging, pressure
sensing and magnetic tracking. Table 4.1 summarizes the advantages
and disadvantages of the sensor types discussed in this section when
used for ADI.

4.2.1.1 IR Distance

IR distance sensors are a popular choice to sense user proximity in IR distance sensors
are already
embedded in most
touch-screen smart
phones for presence
detection

mobile interfaces. They are built in to most touch-screen based smart
phones to sense if the device is pressed against the user’s head in order
to shut down the touch screen backlight during telephone calls. The
advantage of IR distance sensors over ultrasound range nders, for ex-
ample, is that multiple IR distance sensors working in unison show
much less interference than ultrasound sensors. On the other hand,
the coverage area of IR sensors is usually narrower than that of their
ultrasound counterparts.

Obviously, the delity of ADI increases with the number of sensors.
Technological miniaturization may in the future allow for the devel-
opment of very small sensors. Placed in signicant numbers on the
device, such miniature sensors would allow mobile device to gain a
relatively high-resolution “image” of its surroundings. Covering the
device in printed organic distance sensor circuitry has also been envi-
sioned (Butler et al., 2008b).

However, since energy consumption on mobile devices must be kept
at a minimum, each increase of the amount of sensors will come at a
cost. Not only do the sensors themselves consume energy, but with an
increasing number of sensors that are mounted on a mobile device, the
device’s CPU will have to become active more often to process data due
to the increased supply, rather than remaining in a standby mode.

Sensor placement is thus an important design decision. Sensors should novel interaction
concepts can be
realized by clever
placement of IR
distance sensors

be placed on locations on the device that allow them to optimally track
the features (e.g., hands) of the user that are used for interaction with
the device. As demonstrated by Butler et al., one possible useful place-
ment of IR distance sensors is on the edges of the device facing out-
wards. This allows the device to track the presence of the user’s n-
gers when the device is placed on a at surface. HoverFlow (Section 4.3)
demonstrates a set-up using sensors facing upwards from the device
allow it to track the motion of the user’s hand using information from
only six IR distance sensors. An even more signicant advantage of
HoverFlow-like interfaces is that they do not require the device to be
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placed on a at surface in order to operate correctly. LucidTouch by (Wig-
dor et al., 2007c) demonstrated a technique enabling a mobile device to
track the presence of the user’s ngers to the rear of the device, based
on IR distance sensors placed on the device’s sides.

4.2.1.2 Depth Imaging

Depth imaging cameras, or “depth cams” provide a 2D array of pixels
that each contain a depth value corresponding to the distance of the
object in the scene from the imager of the depth cam. In comparison to
IR distance sensors, which we discussed above, depth cameras provide
a much larger amount of information with a higher precision.

Although depth cameras are currently too large to be incorporated intodepth cameras will
enable complex
around-device
interactions

mobile devices, it is plausible that in the future, miniaturized depth
cameras could be incorporated into mobile devices. On mobile devices,
they will enable much more complex interactions in the around-device
interaction space. Depth cameras on mobile devices will allow very
rich around-device gestures, as depth cams cannot only be used to ac-
curately sense the position of the hand relative to the mobile device,
but also discern between different hand poses, i.e. clenched, open, and
also individual the positions of individual ngers. Users will thus be
able to perform gestures with nger-level granularity. A limitation of
depth cameras is that they can only observe the front-facing surface of
objects within their view. This may limit the usefulness of depth cam-
eras to recognize gestures where one or several of the user’s ngers are
occluded and thus cannot be observed in the depth image.

In Section 4.4 we present PalmSpace, with which we aim to prototype
a possible use of mobile depth cameras for around-device interaction.
By tracking position of the user’s outstretched palm, we implemented
a direct-manipulation interface for rotating 3D content on a mobile de-
vice.

4.2.1.3 Rear-of-Device Interaction and Pressure

It is benecial to make the largest possible area of mobile device in-one of the beneöts of
rear-of-device
interaction is that it
avoids occlusion

teractive. This is especially important for very small devices, where a
ngertip will occlude most of the screen’s content. (Baudisch and Chu,
2009) demonstrated the utility of having a touch-sensitive surface on
the device’s rear, allowing relatively complex interactions, such as play-
ing a 3D shooting game, on a device with a very small form-factor.

The iPhone Sandwich prototype (Section 4.5) we developed adds
pressure-sensing to back-of-device interaction. The advantage of



4.2 The Design Space of Around-Device Interaction 71

adding pressure is that the users can command a very high amount
of local degrees of freedom using variations of pressure at one or more
points on the device’s front or rear side. Furthermore a number of
user interface metaphors become possible with pressure input, such as
pinching an object to deform it, or requiring a higher amount of pres-
sure for critical operations such as delete commands.

Back-of device interaction allows for a large number of possible ges- the iPhone Sandwich
supports a large
number of stroke and
pressure gestures

tures to be performed by the user. Figure 4.3 shows a basic taxonomy
containing a number of possible gestures using a device that supports
back-of device interaction. The taxonomy also includes gestures that
are based on pressure input. Most of the dual-sided gestures consist
of one or more strokes where one touch on either side of the device
is held stationary. This is because, in our experience, it is difficult to
coordinate strokes on both sides of the device at the same time. Thus,
the only dual-sided gestures with simultaneous strokes on both sides of
the device feature strokes that either move in the same direction or in
opposite direction (see Figure 4.3—“Simultaneous Finger Movement
on Front and Back”). The taxonomy shows three useful types of pres-
sure gestures. Pressure can be applied at the same point on the back
and front of the device (pinch), or be coupled with a movement, either
moving away from a central point or towards a central point (see Fig-
ure 4.3, Pressure). Pressure can also be used in conjunction with taps
on the touch screens, which allows for many different combinations,
as shown in Figure 4.3, Taps and Pressure.

The taxonomy shown in Figure 4.3 is not meant to be exhaustive, but
aims to illustrate the numerous possibilities offered to developers of
gesture-based mobile user interfaces when rear-of-device input in ad-
dition to pressure sensing is available. However, future user studies
will need to be conducted in order to analyze the usability characteris-
tics of gestures we propose.

4.2.1.4 Magnetic Tracking

Magnetometers can be used to sense the direction and intensity of
magnetic elds, i.e. as emitted from magnets held in the vicinity of
the device. Since magnetometers are present on most high-end smart
phones and external magnets do not consume additional power, mag-
netic tracking is a useful technique for implementing around-device
interaction.

There has been signicant related work in this area. Abracadabra (Har-
rison and Hudson, 2009b) uses a magnetometer and a ring-mounted
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magnet to enable around-device interaction for very small devices. Har-
rison states an effective range of 10 cm for their sensor, dependent
on the strength of the magnet used. This paper describes methods
of implementing selections via in-air click gestures (using the dipolar
properties of magnets) as well as simple gesture recognition. Harrison
summarizes the advantages afforded by around-device interaction as
follows:

“By extending the input area to many times the size of the
device’s screen, our approach is able to offer a high C-D
gain, enabling ne motor control. Additionally, screen oc-
clusion can be reduced by moving interaction off of the dis-
play and into unused space around the device.”

MagiTact (Ketabdar et al., 2010b,a) used the built-in magnetometer
on an iPhone in combination with a ring-mounted magnet to enable
around-device gesture recognition as well as simple stroke recognition
using a stub-shaped magnet held between thumb and index nger.

Nenya (Ashbrook et al., 2011) is a wrist-mounted magnetometer cou-
pled with a magnetized, rotatable ring. The magnetometer is able to
detect the rotation of the ring’s magnetic eld as the ring is rotated,
and also its eld strength. Rotating the ring can thus be used for se-
lection tasks, and varying the distance of the ring to the accelerometer
can be mapped to a “click” event. The advantage of Nenya is that it is
more subtle than the previous ring-based approaches, as the magnetic
input artifact is manipulated locally on the nger, and no further hand
movement is required for interaction.

Magnetic tracking for around-device interaction is elegant, because it
can use already built-in sensors of mobile devices. Furthermore, mag-
nets are passive and have no power requirements. An obvious disad-
vantages of magnetic tracking is that the user needs to be instrumented
with a magnet (via a ring or a stylus). Furthermore, magnetometers
can only track a single magnetic object, so detecting multiple ngers,
for instance, is out of the question.

4.2.2 Mapping of Sensor Data to Interface Actions

Useful mappings of the sensor information to interface elements need
to be developed to make the best use of the available sensor data. Hov-
erFlow, for instance, demonstrates how to use the data from IR dis-
tance sensors to recognize simple hand gestures. In that project, the
data was input into a gesture recognizer in order to recognize simple
hand gestures. However, for other applications alternative mappings
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Sensor Advantages Disadvantages

Pressure (FSR)

• low cost
• adequate precision
• low power consumption

• large sensor size
• difficult to incorporate me-
chanically into device

• sensing only on surface of
device

Magnetometer

• 3D coverage
• can cope with obstructing
materials such as clothing

• adequate precision
• already embedded in cer-
tain mobile devices

• can only sense location of a
single (magnetized) object

• susceptible to electromag-
netic interference

IR Distance

• numerous options for inte-
gration on device

• high precision
• low-cost (as surface-mount
component)

• high power consumption
• requires specialized driver
chip

• senses only within a narrow
beam

Depth Cam-
era

• high precision
• high detail image of sur-
roundings

• enables complex gestures
• detailed tracking of device
surroundings

• high cost
• medium to high power con-
sumption

• size
• processingdepth images re-
quires signiöcant amount of
computational resources

Table 4.1: Comparison of several sensor types for Around-Device Interaction.

may be more advantageous. Currently, our system can only effectively
discern a single user action from sensor noise. An interesting improve-
ment of HoverFlow would be the capability to identify a sequence of
gestures performed in a single user action (for instance the gestures
“rotate-right” followed by “rotate-left” and “sweep left” performed in
close succession, appearing as a single gestural phrase to the user (Bux-
ton, 1986)).

A further example of a useful sensor mapping is the one used by (Butler
et al., 2008b) in SideSight. They use the sensor readings of their pro-
totype to enable multi-touch like user inputs on the sides of a mobile
device. They map their sensor readings to a one-dimensional bitmap,
from which the nger position and estimated distance can be inferred.
In LucidTouch, the user’s ngers are located on the rear of the device
(Wigdor et al., 2007b). The camera image of the ngers is mapped to
the device’s screen in the form of nger shadows.
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PalmSpace (Section 4.4) shows amapping depth image data of the user’s
palm to 3D object rotation. One of the constraints here was the move-
ment range of the human hand. The range of pronations, supinations
and exions of the human hand is limited (see Section 4.4.5.3), and
was taken into consideration when developing the mapping for this in-
terface.

4.2.3 Feedback

Since the direct manipulationmetaphor is broken due to the interaction
taking place away from the device, feedback plays an important role for
the usability of the interface, as it will help users operate ADI interfaces
more effectively. In addition to visual feedback mechanisms, it may be
feasible to use vibrotactile feedback (i.e. using themobile device’s built-
in vibratormotor), if the device is held in one handwhile the other hand
performs the interaction. In a similar way, auditory feedback could
provide feedback on the status of the gesture recognition, i.e. playing
back a notication when a gesture has been recognized.

4.2.3.1 Around-Device Output: the Mobile Ambilight

So far, we have mainly focused on input techniques for around-device
interaction. It is of course also benecial to have output techniques
for ADI. Apart from, i.e., mobile projection, ambient lighting can be
used to output feedback in the near surroundings of themobile devices.
Ambient lighting for atscreen televisions was invented by Philips Re-
search (Diederiks et al., 2003). Ambient lighting on televisions is used
to create a more immersive viewing experience by mimicking the col-
ors of the displayed scene through colored LED strips on the device’s
bevel.

To explore the concept of ambient lighting on a mobile device, we¹ de-
veloped the Mobile Ambilight prototype. The Mobile Ambilight is based
on a Google Nexus One Mobile phone for which we developed a cus-
tom back panel equipped with a PCB containing a microcontroller, 40
RGB LEDs and two IR distance sensors. A Bluetooth module is used
for communication with the mobile device. The LEDs can be updated
at a rate of 60fps. Figure 4.4 shows an image of the PCB we devel-
oped. When used for visual output, the Mobile Ambilight increases
the displayable area of the mobile device by 1664%, albeit at a very low
resolution due to the use of discrete LEDs.
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(a) Public Transportation Locator

Protot y P e  Ha r d wa r e

The prototype consists of a 

HTC Desire Android mobile 

phone and  a silicon case, 

whose back is replaced by 

a custom PCB embedded 

with 40 RGB LEDs, 14 LED 

drivers, 2 proximity sen-

sors, a microcontroller, a 

Bluetooth module and a 

voltage regulator. Com-

munication between the 

phone and the hardware is implemented through 

Bluetooth, allowing the phone to control the LEDs at 

60fps, while reading the sensors at 30fps. The hard-

ware is powered by the phone’s battery and is very slim, 

only increasing the thickness of the device by 6.8mm.

In this example applica-

tion, a user looks at the 

map at pedestrian zoom 

level and tries to  find off-

screen public transpor-

tation stations around 

him/her. Using the  am-

bient light, the user can 

immediately picture his/

her surroundings. Each 

light visulizes one or 

more stations in the di-

rection of the light.  The 

color and the intensity show the type and distance 

of the stations, respectively. This increases the  space 

where relevant information can be shown by 1664%.

Pu b l i c  tr a n s P o rtat i o n lo c at e r ca l l  de t e c to r

The Call Detector ap-

plication demonstrates 

a simple but new way 

of interacting with am-

bient lighting. When a 

call is detected, a light 

aura is displayed, whose 

left half is green and the 

other red. The user can 

now place his hand or 

an object into the red or 

green area to reject or 

accept the phone call, 

respectively.  When the 

user chooses to answer the call, the speakerphone 

is activated, allowing the user to talk handsfree.

(b) Call Detector

Figure 4.5: The demonstration applications developed for the mobile
ambilight. (a) Public Transportation Locator. (b) Call Detector. (Qin
et al., 2011).

Two demonstrator applications were developed for the Mobile Ambi-Public Transport
Locator allows
off-screen
visualization of
transport stops

light: Public Transport Locator and Call Detector. Public Transport Locator
(Figure 4.5 (a)) helps the user nd nearby public transport stops. The
application uses the Mobile Ambilight to indicate off-map stops by in-
dicating their presence using the Ambilight’s LEDs. The position of the

¹The hardware and software for the prototype was developed by Qian Qin in his
Diploma Thesis. We presented the prototype at UIST 2011 (Qin et al., 2011).
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illuminated LEDs indicates the direction of the stop, their direction the
type of stop (bus, subway or suburban train) and the intensity of the
LEDs indicates the distance of the stops from the map center.

Call Detector (Figure 4.5 (b)) serves as an ambient user interface for Call Detector is an
ambient user
interface for
accepting or rejecting
phone calls

accepting or rejecting calls. When a call is received the left side of the
device is illuminated in green, the right side in red. The IR distance sen-
sors incorporated in the PCB allow sensing the presence of the user’s
hands on either side of the device. When she places her hand on the
green side, the call is accepted. The call is rejected when the user places
her hand on the red side of the device.

The Mobile Ambilight shows the utility of having ambient display ca-
pabilities on mobile phones, and how this is especially useful when
combined with around-device interaction, i.e., detection of the hand
placement in the vicinity of the device in conjunction with Call Detec-
tor application. A limitation of the Mobile Ambilight is that it works
best when placed on a at surface. When held in the hand, a large
amount of the LED illumination is not visible as there is no surface to
reect the light emitted by the LEDs. Illuminating the device’s bevel
explicitly or detecting the presence of the hand andmapping the output
to the illuminable areas may be possible solutions to this problem.

4.2.4 Framework Support

The majority of the interface frameworks of existing mobile devices do support for ADI needs
to be made available
to developers
through software
frameworks

not yet support ADI. However, the palette of supported sensors in the
large mobile platforms such as Android or Iphone OS is being continu-
ously expanded and may well support sensors allowing ADI in the near
future.

The general advantage of integrating sensor support into mobile inter-
face frameworks is that this allows the actual processing of the sensor
data to be abstracted away, allowing developers to focus on the core
benets provided by the additional sensing. An example of such an
abstraction can be found in the gesture recognition frameworks pro-
vided by Android since version 2.x. The Android gesture recognition
frameworks provide UI elements that receive events when touch screen
gestures are recognized, as well as utilities to create and manage ges-
ture libraries. The actual gesture recognition algorithm is not visible
and of no concern to Android application developers, which makes it
easy to develop gestural interfaces on a high level of abstraction.



78 4 Around-Device and Sensor-Based Interaction

Thus it is clear that (benecial) abstractions need to be included intodeveloping design
patterns for
sensor-based
interaction may help
to identify useful
abstractions

existing mobile UI frameworks to leverage the numerous capabilities
offered by ADI. Developing such abstractions will require careful iden-
tication and evaluation of the most useful functionalities that are pro-
vided by ADI. This could be achievable in future work by developing
design patterns for sensor-based interaction that comprise common
problems, solutions and exmaples of the solutions.

4.3 HoverFlow

HoverFlow is an example application for the Apple iPhone that demon-HoverFlow is a
demonstrator for
above-device hand
gesture recognition

strates the use of a sensor-based interface for detecting coarse hand
gestures above small mobile devices. The implementation of our appli-
cation is partially based upon the CoverFlow example by (Sadun, 2008).
HoverFlow allows the user to select colors from a color palette through
hand gestures above the device’s touch screen. Possible gestures are
moving the hand across the device, presenting a number of hand pos-
tures, or by moving a hand rapidly towards or away from the device.
Figure 3 shows an overview of all gestures currently implemented in
our system.

4.3.1 Supported Gestures

The CoverFlow view provided by the iPhone’s iPod application inspired
the visual layout of HoverFlow. Thus, we decided to map the user’s
movements in the following way: if her hand moves across the device
from left to right, Figure 4.2 (A), the color palette scrolls from left to
right, and vice-versa (B). A hand-edge movement from left to right (C)
makes the color palette scroll 5 colors to the right and vice-versa (D).
A color is selected when the user moves her hand swiftly towards the
device (G). A color is deselected when the user moves her hand rapidly
away from the device. Rotating the hand towards the left (E) or right
(F) permits the user to scroll directly to the beginning or end of the
palette, respectively.

4.3.2 Interface Implementation

In the following, we will discuss how the presence of the user’s hand
is sensed and how the obtained data can be used to recognize hand
movement gestures.
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Figure 4.6: The sensor set-up of the HoverFlow prototype. Six Sharp
GP2D120X IR distance sensors are placed along the long edges of an
iPhone mobile device running the HoverFlow application. Using sim-
ple hand gestures, the user can scroll and select colors in the color
palette. (?).

4.3.2.1 Sensing

To capture simple hand movements and gestures, HoverFlow uses six
Sharp GP2D120X IR (Sharp, 2008) distance sensors, placed around the
device’s edges and facing vertically away from the device. Figure 4.6
shows the current sensor conguration of our prototype.

An Arduino BT Microcontroller board (Arduino, 2012)W captures the
distance readings provided by the sensors. The sensors supply 256
discrete range readings allowing them to detect objects at a distance
of 4 to 30 cm. The sensor update rate is 25 Hz. A PC processes the
sensor data, and handles the gesture recognition. In future versions of
HoverFlow, we aim to conduct all processing on the mobile device, by
establishing a direct link between the Arduino board and the mobile
device via RS-232 or Bluetooth.

4.3.2.2 Gesture Detection and Recognition

To smooth the raw sensor data, it is passed through a Savitzky-Golay HoverFlow uses
Dynamic Time
Warping on
windowed sensor
data for gesture
recognition

lter (Savitzky and Golay, 1964b) in an initial processing step. The l-
tered data is then added to a queue containing the differences of the
last 16 sensor readings. We use the difference values instead of the
absolute values in order to make gesture recognition independent of
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the distance between the user’s hands and the device. The queue is
updated every time the Arduino provides a new sensor reading. The
window length of 16 was chosen because the sampling rate of the dis-
tance sensors is 25 Hz, which means that the system constantly keeps a
history of the last 640 ms of interaction. This window length provides
us with enough samples do discern user gestures in a meaningful way
while at the same time assuring a response time from the systemwithin
an acceptable time interval (<1000 ms) for a demonstrator system.

An advantage of the method we implemented is that it does not require
any clutchingmechanism to detect the start and end of a gesture, which
is, for example, required for accelerometer-based gesture recognition.
When no IR-reective object is present in the range of the distance sen-
sors, they will provide a noise oor of values close to zero. Gestures
can be distinguished from operations on the touch screens by check-
ing whether the screen was touched after the distance sensors detect
an object in range. If a screen touch event occurs then this activity is
interpreted as touch input and the gesture (if detected) is discarded.
Otherwise the activity is treated as a gesture. Gesture segmentation
is more difficult using accelerometers. This type of sensor constantly
provide sensor data as the user moves. It is therefore much harder, in
comparison to using IR distance sensors, to distinguish betweenmoves
that are part of a gesture and those that are not.

To determine if a signicant user movement has been detected, thethe amplitude of the
sensor readings is
monitored to detect
gesture input

Euclidean norm of the oldest element of the readings queue is con-
stantly calculated. If this norm surpasses a predened threshold, the
remaining 15 sensor readings are analyzed to determine the end of the
sequence representing user input. Interaction with HoverFlow is de-
signed to take place within a certain distance range around the device,
so this threshold is set to the value the sensor array provides when a
large object is held in front of them at a distance of about 5-7 cm away
from it.

Figure 4.7 shows image map representations of several gestures sup-
ported by our system. In each graph, time progresses from top to bot-
tom. The numbers on the y-axis show the sample index. 30 samples
are shown, which corresponds to a time span of 1200 ms. The x-axis
shows one column of data for each of the six sensors. As can be seen
from this visualization, states of inactivity (low-amplitude noise) can
easily be distinguished from a gesture entry by looking for a point in
time from which on the amplitude of the signal rises signicantly.

4.3.2.3 Gesture Classiöcation

Once the bounds of the sequence containing user activity have been
detected, a best-matching gesture template from a set of prerecorded
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Figure 4.7: Image maps of the six IR distance sensor readings against
time. The bright areas signify the proximity of an object. Notice the
staggering of the peaks in the sample data, which is one of the distinc-
tive features by which the gestures can be identied. (?).

user inputs is estimated using Dynamic Time Warping (DTW). Sec-
tion 5.1.3.2 provides a detailed description of DTW. Gestures and tem-
plates are represented as 16-by-6 matrices of sensor values.

DTW performs well in cases where the captured sample and the match-
ing template are distorted in time, but have similar values. In our case,
using DTW allows the recognition of gestures that are similar in move-
ment to but are performed at different speeds than the pre-recorded
templates. In our prototype, we achieved acceptable recognition rates
using only 2 to 3 training samples per gesture, with a gesture vocabu-
lary of up to 9 gestures.

Because they are template-based, DTW-based approaches generally
need less training samples than other methods, such as HiddenMarkov
Models (Liu et al., 2009b). Thus we do not require an extensive corpus
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of gestures to be available in order for our prototype to function cor-
rectly. A possible drawback of the DTW algorithm, its time and space
complexity of O(n2), is not an issue due to the small size of the sam-
pling window, which results in a maximum size of the distortion ma-
trix of 256 elements². Because of the small size of the distortionmatrix,
CPU and memory requirements should not present a constraint for our
algorithm if it is run on modern mobile devices. If, however, sensors
with a higher sampling rate were to be employed, which would result
in larger data sets to be processed at a time, it may be likely that further
optimizations of the DTW algorithm, such as FastDTW (Salvador and
Chan, 2004), will be required.

4.3.2.4 Update of Mobile User Interface

Once a gesture has been detected, the user interface of the mobile de-
vice running the HoverFlow application needs to be updated. In our
prototype, the PC sends XML Remote Procedure Calls (XML-RPC) to
the mobile device to signal interface updates when new gestures have
been detected.

4.3.3 Evaluation of Gesture Recognition

As the initial gesture recognition performance of HoverFlow was ac-we wanted to önd the
recognition behavior
of several gesture
types

ceptable, we decided to perform a small user study to further evalu-
ate our interface. Firstly, we wanted to gain insight into the impact
that our choice of gesture vocabulary makes on gesture recognition.
We were especially interested in identifying gestures possessing simi-
lar features with respect to the gesture recognizer, i.e. leading to false
positive recognitions. Secondly, we wanted to get a basic overview of
our gesture recognizer’s recognition rate.

4.3.3.1 Experimental Design

We conducted an evaluation with four users experienced in mobilea training set of 3
gestures and a test
set of 10 gestures was
recorded for each
gesture type

device usage. Each user was given a brief description of our system and
of the gestures it can recognize. In an initial training phase the users
were asked to train the system with three samples of all the gestures
shown in Figure 3, except the “sweep forward” gesture, which is a total

²Entry (i,j) of the distortion matrix contains the DTW-distance between samples 1
to i of the gesture and samples 1 to j of the template. Entry (16,16) thus contains our
measure of similarity between gesture and template. The distortion matrix is built up
from entry (1,1) using a dynamic programming approach.
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of 7 gestures (A-G in Figure 4.2). After the training phase, the users
were asked to enter each gesture ten times as a test set. For each gesture
entry by the test participants, we recorded which gesture the interface
recognized.

4.3.3.2 Experiment Results

Table 4.2: This confusion matrix shows the actual gesture entries
(row) and the predictions (columns), as the number of the predic-
tions for each gesture class divided by the total number of entered ges-
tures for that class. The average (correct) gesture recognition rate was
88.6%. (The indices A-G correspond to the indices in Figure 4.2.)

Predictions

Gesture A B C D E F G

Ac
tu
al
In
pu

t

A 0.775 0 0.225 0 0 0 0

B 0.025 0.925 0.025 0.025 0 0 0

C 0.1 0 0.9 0 0 0 0

D 0 0.175 0.025 0.825 0 0 0

E 0 0 0 0 0.875 0 0.125

F 0 0 0 0.025 0.025 0.95 0

G 0 0 0.025 0 0.025 0 0.95

In order to determine which gestures are prone to false recognition, we
determined a confusion matrix using the data obtained from our study.
The confusion matrix, as shown in Table 4.2, reveals that gestures A, C
(“sweep right at hand”, “sweep right hand edge”) and B, D (”sweep
left at hand”, “sweep left hand edge”) are prone to be confused by
the recognizer. The similarity of these gestures can be observed in the
example plots in Figure 4.7 A-D. Gestures E and F (“rotate left / right”),
however, are recognized by the system in a much more stable way.

A possible explanation for this behavior is the relative similarity of ges- the similarity of A,C
and B,D may be the
cause of the high
false positive rate

tures A,C and B,D. When gestures A or B are quickly executed, they
may appear similar to gestures C and D to the system. This can be
explained by considering the search strategy of the DTW algorithm,
which aims to compensate feature differences in the time domain. In
general, though, the average gesture recognition rate of 88.6% was
fairly good considering only 3 samples were recorded to train the sys-
tem for each user and gesture. More importantly, the low number of
sensors used by our prototype. We can assume that if more densely
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spaced sensors were used, then gestures A and B would cover more
sensors at a time than gestures C and D, which should be easily distin-
guishable by the recognizer.

The study presented here is not representative of the general user pop-
ulation due to the limited number of participants and their high relative
level of expertise. In spite of this, we gain some indication of the pro-
totype’s performance under controlled conditions. More signicantly,
the confusion matrix allows us to identify those gestures which are
likely to be falsely recognized by the system, which is useful for the de-
sign of the gesture vocabularies of future systems employing a similar
sensor conguration and using DTW for gesture recognition.

4.3.4 Discussion

HoverFlow demonstrates conceptually how mobile interfaces can ex-
pand beyond the physical interaction area of mobile devices, and can
thus increase the expressivity and the physical interaction space of mo-
bile input.

HoverFlow contributes a sensing solution as well as a set of gestures
that can be used for coarse front-of-device interaction, which may be
useful when holding a mobile device or manipulating its touch screen
is impractical or even dangerous. Such a scenario may arise when the
mobile device is used as a navigation device while driving, for example.

4.4 PalmSpace: Continuous Around-Device Gestures
for 3D Object Rotation

PalmSpace is a further project exploring Around-Device Interaction. Themaking use of the
higher detail of depth
images, PalmSpace
builds upon the ideas
developed in
HoverFlow

sensor used here is a time-of-ight depth camera. The advantage over
the sensor conguration used in HoverFlow (Section 4.3) is that the
depth image provided by the depth camera provides amore ne-grained
representation of the user’s hand. This can be used to recognize more
complex gestures than in HoverFlow and also allows us to extract more
complex geometrical properties about the hand, such as the angles
of wrist exion, pronation and supination (Grandjean, 1989; NASA,
1995).

We³ implemented PalmSpace to study ADI for 3D rotation tasks. Rota-
tion was determined by tracking the position of the user’s palm using a

³Collaborators were: Dennis Guse, Michael Rohs, Jörg Müller, Gilles Bailly and
Michael Nischt (Kratz et al., 2012a).
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depth camera mounted on a mobile device. Although the depth camera
that we used is very bulky and was operated at the limits of its near-
eld range, we obtained some very promising results. Task completion
times were signicantly lower than for a traditional touch-screen-based
approach. Furthermore, ratings of PalmSpace were comparable to the
touch-based interface our test subjects were familiar with.

In addition, we gained some insight into the preferred hand pose for
ADI interfaces for direct 3D virtual object manipulation, which will be
useful for further work. In the following we describe the PalmSpace
project and present the results we obtained.

4.4.1 Motivation for PalmSpace

Current graphics hardware for mobile devices now allows for render-
ing sophisticated 3D scenes on mobile devices. This capability is useful
for gaming, but also allows implementing CAD tools and other scenar-
ios, such placement of virtual furniture in a mobile AR environment or
browsing an online shopping catalogue in 3D. While it is now possible
to deliver useful 3D content on mobile devices, interacting with this
type of content is still challenging. Users not only face the limitations
of direct nger interaction on touch screens caused by the fat nger
problem, i.e. occlusion and accuracy (Siek et al., 2005), but 3D content
itself requires more than the two degrees of freedom provided by touch
screens.

Rotation and translation are two fundamental 3D operations. For
PalmSpace, we focus on rotation within 3D scenes or the rotation of
3D objects. It is difficult to implement usable interfaces for 3D rotation
and translation tasks on current mobile devices equipped with touch-
screens. Current solutions for use on (multi-)touch screens, such as
the virtual trackball metaphor (Henriksen et al., 2004), only allow for
an indirect mapping of 2D input gestures to 3D object rotation. With
the virtual trackball metaphor, an invisible sphere is overlaid on top
of the object. Using this approach the 2D movement resulting from
dragging the nger on the touchscreen is mapped to rotation of the 3D
object. However, this technique has the drawback that the movement
is mapped indirectly to rotation.

To overcome the limitations of touch screens, we propose to interact around-device
interaction is a way of
overcoming the
limitations of touch
screens

around the device for manipulating 3D content. Around-device inter-
action (Section 4.1) allows separating the input and the output of the
mobile device by performing gestures in proximity of the device. We
extend this concept by enabling the space around the device for ges-
tural interaction: The gesture space is now delineated by the reach of



86 4 Around-Device and Sensor-Based Interaction

the user’s arm. We denote this reachable space as PalmSpace. This is
well suited for 3D interaction, because (1) it increases the degrees of
freedom for input, (2) it provides a ner control–display gain ratio as
a larger interaction volume with longer distances compared to a touch
screen is available and (3) it allows more natural interaction as 3D op-
erations can be directly mapped to 3D gestures.

Using the space behind and beside the device for gestural interaction
has the advantage of being occlusion-free, as the hand does not cover
the device’s display, and provide a large input space. We refer to the
spaces behind and next to the device as BackSpace and SideSpace, respec-
tively.

We also propose a novel gesture for performing 3D rotations called Palm
Gesture. A user holds the device in one hand and uses the non-holding
hand to perform the gesture in the PalmSpace. The user orients the
palm of the hand, which denes a plane, to manipulate the orientation
of the 3D object/scene on the screen. This has the advantage to in-
troduce a direct mapping between the gesture and the 3D operations,
which is easy to understand and easy to learn for novice users and effi-
cient for expert users.

Figure 4.8: Using the pose of the at hand behind the device to freely
rotate a 3D object. A depth camera is used to determine the hand pos-
ture. (Kratz et al., 2012a).

We propose that such interfaces can be facilitated with depth cameras,
which provide depth information for each pixel. We present a proof-of-
concept based on a depth camera attached to an iPhone to capture the
palm posture (Figure 4.8). We argue that it is reasonable to assume
that manufacturers will be able to equip mobile devices with depth-
sensing cameras in the future. In fact, some manufacturers already
equip mobile phone with stereo RGB cameras⁴.

We conducted a user study to determine the preferred hand poses for
around-device gestural interaction. Based on these results, we report
the ndings of a user study comparing 3D rotation using SideSpace
and BackSpace with the virtual trackball (Henriksen et al., 2004) as

⁴ e.g. the LG Optimus 3D (LG Corp., 2012)W.
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a baseline. The results show that both SideSpace and BackSpace are
faster and obtained ISO9241-9 ratings that are similar to the virtual
trackball.

4.4.2 Related Work

PalmSpace draws from a relatively large body of related work. Previ-
ous work in the domain of Around-Device interaction is summarized
in Section 2.2. In the following, we will elaborate on two specic do-
mains of related work that are relevant to PalmSpace: mobile interac-
tion techniques for interacting with 3D content and also existing work
on interaction with depth sensors.

Interaction with 3D Content Mobile interaction with 3D content is of-
ten implemented using the device’s accelerometer and magnetometer
(compass). These sensors provide a reference orientation for the 3D
objects, i.e. for augmented reality browser applications such as (Layar,
2012)W. The advantage of using this sensor combination is that the
3D scene can be viewed and controlled by holding the device with a
single hand. Nevertheless, a problem when interacting using this tech-
nique is that the orientation of the display may not always be optimal
for viewing, due to the tilt required to control the application. In Sec-
tion 4.6, we demonstrate that using a virtual trackball on a touchscreen
for 3D rotation tasks on a mobile device outperforms tilt-based control
approaches. Hachet et al. (Hachet et al., 2005a) use a regular camera to
detect color codes on a piece of cardboard for controlling a 3D object.
This approach requires markers in the camera view and does not allow
for rapid change between different gestures.

Interactionwith depth sensors PalmSpace is also related to interaction PalmSpace
interaction is based
on a continuous
control paradigm

with depth cameras and hand posture recognition. For instance, (Kol-
lorz et al., 2008) proposed an algorithm for static hand posture recogni-
tion using a depth camera. These works mostly focus on symbolic recog-
nition of certain hand postures or gestures, whereas this work empha-
sizes the use of the hand as a natural and continuous control mechanism
for 3D content in mobile applications.

Expanding upon the concepts just described, PalmSpace uses the 3D
space around the device for hand and nger gestures without the need
for additional tokens. To understand the ergonomic limitations of ges-
tural interaction in this space, we implemented a 3D viewer application.
It is based on a “palm plane” metaphor to control 3D object rotation
(Figure 4.8).
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4.4.3 PalmSpace Interaction

In the following, we detail specic issues that we noticed when im-
plementing PalmSpace interaction, that need to be taken into consid-
eration when implementing PalmSpace-type user interfaces. First, we
discuss the interaction volume and what limitations can arise from its
properties. Second, we discuss the types of gestures that can be recog-
nized with our current and also future systems, as well as the imple-
mentation limitations inherent in our approach. Last, we discuss the
advantages and disadvantages of several strategies for mapping param-
eters obtained from gesture input to virtual object control.

4.4.3.1 Interaction Volume

We refer to the 3D space around the device that allows manipulating
3D virtual objects via hand gestures as the PalmSpace. One of the ad-
vantages of this approach is that the 3D space behind and to the side
of the device avoids display occlusion and also achieves a close spa-
tial correspondence between virtual 3D objects and movements in the
physical space around the screen. However, we also found a number of
critical aspects when designing gestures for this space by analyzing the
ergonomic properties of the interaction volume, the types of gestures
that can be detected robustly using a depth camera, as well as possible
ways of mapping the data obtained from the depth camera to the virtual
object control.

The interaction volume is bound by the pyramid-shaped camera’s view-
ing frustum, i.e. its angle of view and depth range. The corresponding
interaction volume is further restricted by the arm’s reach of the user.
Furthermore, entering and exiting the volume can be used as an im-
plicit clutching or “action selection” mechanism⁵.

4.4.3.2 Gesture Types

PalmSpace allows for the recognition of a wide variety of gesture types.
For the work presented in this section, we chose to implement rotation
gestures as a proof of concept that demonstrates PalmSpace interac-
tion. More complex gestures and input techniques, such as pointing or
palm-bending can, for instance, be implemented using machine learn-
ing techniques such as skeletal matching (Pavlovic et al., 1997).

⁵This has already been implemented for RGB cameras and is available as a commer-
cial library (eyeSight Tech, 2012)W.
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Nevertheless, there are two types of limitations which need to be taken
into account for PalmSpace interaction. The rst is that the depth-map
image provided by the camera scans the 3D volume from one perspec-
tive only and hence occlusions can occur. This becomes an issue if mul-
tiple ngers have to be tracked and one nger is hiding another while
the hand is rotating. Therefore, we focus on palm gestures in which
this kind of occlusion cannot occur. Secondly, there are ergonomic
constraints. In particular, rotations around the wrist are only possible
within certain limits and may be uncomfortable and precision becomes
an issue at the limits of the wrist’s rotation range (Rahman et al., 2009).

With the above in mind, we propose the at hand as a useful continuous
gesture, which we implemented for our prototype and evaluated in the
user study. More precisely, the palm approximates a plane, which yields
two parameters: direction orthogonal to the plane (surface normal) and
distance to the camera center (origin of the coordinate system).

Other types of hand gestures are to be explored in the future – po- high-dexterity
gestures can be
explored in the future
with improved
hardware

tentially with improved hardware – include nger position and direc-
tion, palm bending, or general nger gestures. This opens a large space
of potential high-dexterity gestures, however limitations of the depth
camera have to be considered in the design of suitable gesture sets.

4.4.3.3 Gesture Parameter Mapping

The performed gesture needs to be mapped to the orientation (i.e., Eu-
ler Angles or a rotationmatrix) of themanipulated virtual object. There
are several options to accomplish this. The rst option is to link the
hand orientation directly to the virtual object, so users can change the
orientation of the object by rotating their hand. This corresponds to
absolute control, in which the hand orientation denes the orientation of
the controlled object. This mapping is very intuitive but limited, due
to the rotational ergonomic constraints of the hand and thus does not
allow complete, 360◦, rotations.

A variant of this mapping is scaled absolute control, which extends abso-
lute control by a rotational scaling factor. This enables full rotation
of the object with a smaller rotation of the hand, but it is likely that
scaling will degrade precision. It is also unclear which scaling function
provides the optimal usability in this case.

A further alternative is rate control, which maps the angle between the
initial and the current hand pose to the rotational speed of the virtual
object. This allows to rotate the object completely, but it needs to be
done over time rather than dening the orientation directly and is prone
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to overshoot. In fact, (Oakley and O’Modhrain, 2005) found that rate-
control is signicantly slower than absolute control.

Alternatively , the concept of absolute control can be extended usingextending absolute
control using
clutching appears to
be the best control
method

clutching. Here, the hand orientation is not used to dene the orienta-
tion of the virtual object absolutely, but instead relative to the orienta-
tion of the object and the hand at the time the clutching was engaged.
This is called relative control. This allows performing complete rotation
with the trade-off that using multiple gestures degrades performance.
Clutching, however, preserves the intuitive mapping of the virtual ob-
ject following the rotation of the hand once the clutch has been en-
gaged. Engaging and disengaging the clutch can be accomplished by
moving the hand in and out of the depth camera’s viewing frustrum.

Figure 4.9: Hardware setup: The depth camera is mounted on top of a
mobile phone in a slightly downward angle. The prototype is attached
to a lanyard, such that it can be handled comfortably. (Kratz et al.,
2012a).

We built a prototype system to evaluate PalmSpace interaction. The
prototype consists of a depth cameramounted on a iPhone (Figure 4.9),
a mobile application and a PC that performs computer vision to extract
control inputs from the depth images for use by the mobile application.



4.4 PalmSpace: Continuous Around-Device Gestures for 3D Object Rotation 91

4.4.4 Hardware Prototype for BackSpace and SideSpace

For depth imaging, we use a Mesa Imaging Swiss Ranger 4000 (Mesa the hardware setup
attempts to simulate
the properties of a
depth camera built
into a mobile device

Imaging AG, 2012b)W, which uses modulated IR light to determine
the pixel depth values. Under optimal conditions the camera achieves
an absolute accuracy (deviation of the mean measured distance from
actual distance) less than ±10 mm and a repeatability (standard devi-
ation of measured distances) of 4-7 mm. The camera has a resolution
of 176 × 144 pixels and a horizontal and vertical eld of view (FOV) of
44◦ and 35◦, respectively. For close and/or highly reective objects, the
image can become partially saturated and provide no reliable depth in-
formation. The camera is optimized for distances from 60 cm to 4.40m,
which is too far for the intended PalmSpace setup. Using a low inte-
gration time of 1.8 ms and disabling some IR emitters using adhesive
tape, we decreased the minimal distance from hand to camera down to
15 cm at the cost of accuracy. At the minimum distance the interactive
area has a width of 12 cm and a height of 9.6 cm.

The complete setup aims at mediating the currently bulky hardware
and simulating a system that is completely integrated into the mobile
phone. For the BackSpace prototype the camera is attached above an
iPhone 4 (upside down, portrait orientation) via an iPhone dock in a
38◦ downward looking angle (Figure 4.9). The SideSpace prototype
consists of the iPhone exibly suspended from the top in landscape
orientation, for easier handling, and the depth camera attached to the
backside using adhesive tape. We had to use different device orien-
tations for BackSpace and SideSpace due to mechanical reasons. For
SideSpace we adjusted the order of the rotation axes, so that the map-
ping from hand pose to object rotation remained identical to BackSpace.
In order to relieve the user from the need to carry the additional weight
of the camera, 510 g, the prototype is attached using a lanyard to aMan-
frotto 420b lighting tripod. In this way, the prototype hangs freely in
front of the users and they are not required to hold the relatively heavy
setup.

The described setup allows the iPhone to be viewed and handled com-
fortably, while the non-holding hand is free for interaction behind or
beside the prototype, respectively, in the FOV of the camera.

4.4.4.1 Gesture Recognition Application

For the vision processing, we use a PC with a Dual-Xeon quad core
2.66 GHz CPU running Linux. The prototypical gesture recognition ap-
plication is written in C++ using the SwissRanger Linux Driver (Mesa
Imaging AG, 2012a)W and the Point Cloud Library (PCL) (Rusu and
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Cousins, 2011)W. The RANSAC (Fischler and Bolles, 1981) algorithm
is used to estimate the rotational parameters of the plane described
by the user’s at hand on a down sampled image, which is segmented
using a depth threshold. The application estimates only the rotation
around the x- and y-axes as the z-axis could not be reliably estimated
using due to the limited eld of vision of the camera setup. The es-
timated Euler angles are transferred via UDP multicast to the iPhone
using a wireless router. On the previously described hardware, the ap-
plication runs at 15 Hz.

4.4.4.2 Mobile Application

Wedeveloped an iPhone 4 application as a demonstrator for the interac-
tion concept and as a test application for the user study. The application
allows rotating the Stanford Bunny (Turk and Levoy, 1994) in 3D us-
ing either a conventional touchscreen approach or PalmSpace gestures.
Rotation via the touchscreen is realized by a virtual trackball (Henrik-
sen et al., 2004); please also refer to Section 4.6 for a description of the
particular virtual trackball implementation we used.

The trackball allows rotation on all three axes by mapping the rotation
input to a 3D Gaussian bell curve and converting the 3D translation on
the curve to a rotation relative to the Gaussian’s center as an angle/axis
pair (Kratz and Rohs, 2010a). For PalmSpace the mobile application
uses the Euler angles produced by the gesture recognition application
(see previous paragraph) to calculate a model view rotation matrix for
the Stanford Bunny.

(a) (b) (c)

Figure 4.10: The sequence of screens shown for each trial in the user
study. (a) Countdown screen that can be dismissed with a tap. (b) Trial
screen that shows the target object on top and the controllable object
at the bottom. (c) Feedback screen that indicates success or failure of
a trial. (Kratz et al., 2012a).
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(a) (b) (c)

Figure 4.11: The hand poses we considered in the pre-study: (a) in front of the device (Pfront),
(b) beside the device (SideSpace, Pside) and (c) behind the device (BackSpace, Pback). (Kratz et al.,
2012a).

Figure 4.10 shows the screens of the application: countdown (a), trial
(b) and feedback (c). The countdown screen can be dismissed by tap-
ping the screen. The top/right half of the trial screen shows the target
orientation of the object. The bottom/left half of the screen shows the
user-controllable object.

During the study trials are served to the mobile device via HTTP. Each
trial is separated by a 5 second countdown screen (Figure 4.10 (a)).
When the countdown has reached zero, the countdown screen can be
dismissed by tapping on the device’s screen, and the new trial begins.
Once a trial has completed, the device reports either success or failure
of the task (Figure 4.10 (c)) and the task duration to the server.

4.4.5 User Study

In our user study, we compared BackSpace, SideSpace and a touch-
based virtual trackball for 3D rotation tasks.The goal of the study was
to show that BackSpace and SideSpace outperform the virtual trackball
and are also rated higher, mainly because of the direct correspondence
between palm rotation in 3D space on virtual object rotation.

4.4.5.1 Pilot Study

Initially, the optimal placement of the hand relative to the device was the optimal hand
pose was unclear
initially

unclear to us. Within the design space we are using, we identied three
useful hand poses: hand in front of the device (Pfront), hand to the side
of the device (Pside) and the hand behind the device (Pback). Figure 4.11
illustrates the hand poses we propose.



94 4 Around-Device and Sensor-Based Interaction

To determine the preferred and most comfortable pose, we conductedthe pilot study results
indicate that Pside is
the preferred pose

a pilot study with ve participants. We asked the participants to simu-
late interaction in positions Pfront, Pside, Pback as well as with the virtual
trackball, Ptrackball, as a baseline technique. After the participants made
clear that they understood the interaction metaphor and the task to be
accomplished, we asked them to rate their comfort levels following ISO
9241-9, and to provide a ranking of the techniques Pfront, Pside, Pback,
and Ptrackball. The results of the pilot study indicate that Pside is the pre-
ferred gesture-based technique. It was rated better than Pfront and Pback
for comfort and was unanimously ranked higher than the competing
gesture-based techniques.

Probably owing to familiarity of touchscreen-based interaction, PtrackballPfront was dropped
from the main study
due to bad ratings

was rated best for comfort and was placed rst in the ranking. The
results of the main study, however, demonstrate the advantages of the
gesture-based technique. Because hand pose Pfront was rated lowest
amongst the gesture-based techniques and because it leads to occlusion
of the screen contents, we decided to drop this technique in the main
experiment.

4.4.5.2 Hypotheses

Having obtained insights into the preferred pose of the hand relative to
the device, we formulated the following hypotheses for our experiment:

• H1 BackSpace (Pback) and SideSpace (Pside) have lower task completion
times than the virtual trackball (Pfront).
We presume that BackSpace and SideSpace achieve a lower overall
task completion time as those techniques provide a direct map-
ping.

• H2 SideSpace (Pside) has a lower overall task completion time than
BackSpace.
We presume that SideSpace achieves a lower overall task comple-
tion time than BackSpace as the results of the pilot study revealed
the hand pose of SideSpace is perceived as more satisfying.

• H3 BackSpace (Pback) and SideSpace (Pside) are rated worse with regard
to required force than the virtual trackball (Ptrackball).
We presume that the PalmSpace techniques are rated worse with
regard to the required force as the virtual trackball only requires
small nger movements whereas the PalmSpace techniques re-
quire to hold and move the hand.
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4.4.5.3 Experimental Design

In our main experiment, we compared touch (Ptrackball) with our gestu-
ral rotation techniques using poses Pside and Pback. The experiment
used a counterbalanced within-participants design with interaction
technique as the single factor. The levels of this factor are SideSpace
(Pside), BackSpace (Pback), and virtual trackball (Ptrackball).

Participants and Apparatus We invited 5 male and 5 female partici-
pants (mean age 27, age range 22-47), all of them were right-handed,
and were compensated with a voucher for their participation. None
of them participated in the pilot study. All participants were experi-
enced in touchscreen-based interaction with mobile devices. For the
BackSpace and SideSpace gestures the participants used the mobile ap-
plication and setups described in Section 4.4.4. For the virtual trackball
interaction they used the same application, but the unmodied iPhone
4 only (not suspended to the ceiling).

Procedure and Tasks The user’s task was to rotationally align a 3D- the experiment task
was to rotationally
align a virtual object
with a target object
along two rotation
axes

object with a presented target as fast as possible. The control object
and the target object were both Stanford Bunnies. The control and the
target object differed in color and screen location, with the target object
being located at the top of the mobile device’s screen and the control
object at the bottom. The user interface for the rotation task is shown
in Figure 4.10 (b). For each technique the user had to perform 24 trials.
The trials consisted of single and combined rotations around the x-axis
and y-axis with the Euler angles α and β. Before conducting the trials
with each interaction technique the participants had approximately 5
minutes time to try out and explore the technique.

In terms of human physiology (Grandjean, 1989; NASA, 1995), the Eu-
ler angle α corresponds to the exion rotation of the human wrist, and
β corresponds to both pronation and supination. The hand movements
required to rotate around α and β are further depicted in Figure 4.12.
Keeping within the detection capabilities of our gesture-based system
and the ergonomic constraints of wrist rotation, we selected the fol-
lowing values in degrees for α and β for use in our trials:

α ∈ {−50,−40,−35,−30,−25,−15, 0, 15, 20, 30, 50}
β ∈ {−70,−50,−40,−25,−20,−15, 0, 10}
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↵
Figure 4.12: The Euler angle α is controlled by wrist exion, whereas
β is controlled using pronation and supination. (Kratz et al., 2012a).

For a trial to be completed successfully, the user had to dwell for 300mssuccessful trial
completion
depended on
dwelling on the
target at a maximum
angular distance
Φϵ = 9.9◦ for 300ms

within a rotation distance (Huynh, 2009) of Φϵ = 9.9◦, which corre-
sponds to a maximal offset of ±7 degrees for α and β, respectively. The
dwell time is included in the completion times reported in the results
section. If, after 30s the user had failed to achieve a rotation satisfying
these criteria, the trial was aborted and marked as unsuccessful.

4.4.5.4 Measured Variables

To evaluate the performance of BackSpace, SideSpace, and virtual track-the main
measurements were
the task completion
time and an
ISO9241-9
questionnaire

ball for the rotational task, we measured the time to completion for
each trial and the number of trials that could not be completed. In
addition, the users had to ll out a questionnaire after completing all
trials for a given technique. The questionnaire is based on ISO9241-9
(ISO/IEC, 2000a). At the end of the experiment the user was asked
to ll out an additional questionnaire, which asked to order the inter-
action techniques according to their personal preference, to rate the
intuitiveness and to denote the most comfortable posture. Finally, the
users had to indicate which input technique they would be comfortable
with using in public places.

4.4.6 Study Results

In the following we present our observation on the interaction postures
used by the test subjects during the experiment, as well as the results
for task completion times and the user questionnaires.
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BackSpace (Pback) and SideSpace (Pside) require two handed interaction
as one hand needs to hold the mobile device and the non-holding hand
is used for interaction. This posture was explained and shown to the
participants.

Interaction with the virtual trackball (Ptrackball) is possible one-
handedly using the thumb on the touchscreen as well as using two
hands, i.e. using one hand to hold the device and one nger of the non-
holding hand for interaction. For this interaction technique no specic
instructions where given whether the technique should be used in a
one- or two-handed manner.

In the exploration phase before the test trials, two participants rst participants
eventually all
transitioned to
two-handed
interaction for the
trackball technique

explored one-handed interaction, but switched to two handed interac-
tion as they found the thumb to be too imprecise as well as too big with
regard to occlusion. All other participants directly used two-handed in-
teraction. All participants solved the virtual trackball trials using two
hands.

BackSpace SideSpace Virtual Trackball
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Figure 4.13: Box plots of the task completion times by input tech-
nique. (Kratz et al., 2012a).

4.4.6.1 Task Completion Times

We recorded a total of 240 trials for each technique. Not all trials
were completed successfully. For BackSpace (Pback) 20 trials (8.3%),
for SideSpace (Pside) 21 (8.8%) and for the virtual trackball (Ptrackball)
22 (9.2%) trials were marked as being unsuccessful.

Of the successful trials, we obtained the following average task comple-
tion times for BackSpace (Pback) 6.09s, σ = 4.36, for SideSpace (Pside)
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7.19s, σ = 5.6 and for the virtual trackball (Ptrackball) 8.45s, σ = 5.82.
A box plot of the results for task completion time is shown in Figure
4.13.

A histogram analysis of the task completion data showed a strong left
skew of the task completion times. We log-transformed the data to
obtain an unskewed Gaussian distribution of the data.

We conducted an ANOVA on the log-transformed task completion datawe observed a
signiöcant effect for
input technique on
the task completion
time

and found a signicant effect for input technique: F(2, 16) = 10.42;
p < 0.001. A Sidak post-hoc analysis indicates that the differences
between each of the techniques are signicant:

• BackSpace (Pback) vs. SideSpace (Pside): p = 0.04

• BackSpace (Pback) vs. virtual trackball (Ptrackball): p < 0.001

• SideSpace (Pside) vs. virtual trackball (Ptrackball): p = 0.037

Thus,H1 is validated as BackSpace and SideSpace show lower averageBackSpace and
SideSpace have
signiöcantly lower
task completion times
than the virtual
trackball

task completion times than the virtual trackball. However H2 could
not be conrmed as BackSpace shows signicantly lower average task
completion times than SideSpace, even though SideSpace is the pre-
ferred input technique of the pilot study.

4.4.6.2 User Evaluation

In the nal questionnaire the participants were asked to order the in-we obtained no
statistically signiöcant
results for the
rankings

teraction techniques according to their personal preference and their
perceived intuitiveness. Figure 4.14 shows the results. Employing the
Kruskal-Wallis h-test, we could neither nd a statistically signicant
mean difference for personal preference (χ2 = .817; p = 0.665), nor for
intuitiveness (χ2 = 2, 030; p = 0.362).

After completing all trials for each interaction technique the partic-we obtained
signiöcant results for
overall effort and
required force

ipants were asked to complete the ISO9241-9 questionnaire. Figure
4.15 shows the results. A Kruskal-Wallis h-test shows a signicant
result for the overall effort (χ2 = 10.225; p = 0.006) as well as the re-
quired force (χ2 = 10.205; p = 0.006). Thus, H3 is validated as the
user perception of required force and overall effort for SideSpace and
BackSpace is signicantly higher than for the Virtual Trackball.

In public situations, 6 of the 10 participants would use BackSpacevirtual trackball is
preferred technique
for public use

and their remainder would use SideSpace. The virtual trackball outper-
forms both PalmSpace variants as all participants would use the virtual
trackball in public places. However, it must to be kept in mind that the
participants encountered the PalmSpace interface the rst timewhereas
touchscreen-based interaction is widely known and adopted.
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Figure 4.14: This Figure shows the distribution of rankings given by
input technique for preference, intuitiveness and posture. (Kratz et al.,
2012a).

Figure 4.15: The average ISO90241-9 ratings given by technique on a seven point Likert scale.
The error bars indicate the standard deviation. (Kratz et al., 2012a).

4.4.7 Conclusions and Future Work

PalmSpace presents two new interaction techniques for orientation “palmmetaphor”
with two new
interaction
techniques was
introduced

manipulation of virtual objects for mobile devices. We introduced the
“palm metaphor”, which makes manipulation intuitive and fast as the
manipulated object always adopts the same orientation as the palm.
The results of the presented user study show that our prototypical im-
plementation performs very well with regard to performance as well as
user perception and intuitiveness.

Most notably, the two presented variants of PalmSpace perform better
than the virtual trackball, which is the current state-of-the-art solution
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for rotational tasks on mobile devices using a touchscreen. Moreover,
the PalmSpace might be extendable to translation tasks as well. In this
way it is reasonable to assume that 6DOF are achievable using the palm
metaphor, which would make it fully suited for viewing and manipu-
lation of 3D objects as well as navigation in 3D environments like in
navigational tasks or gaming.

The results we have obtained in the PalmSpace study imply that
around-device interfaces for mobile devices are likely to improve the
usability for tasks requiring a high number of simultaneous degrees of
freedom as well as high precision. We believe that the direct manipu-
lation metaphor afforded by SideSpace allowed the users to rotate the
3D object more intuitively than the virtual trackball because the users
can sense the current hand posture very well through proprioception.
Thus, we argue that the control of user interface artifacts through di-
rect hand gestures will play an important role in future mobile user
interfaces.

In the future we plan to explore even ner gestures, i.e. on an indi-future work will
explore even öner
gestures for
around-device
interaction

vidual nger level, in around-device space. The will enable us to build
even more expressive interfaces, which can be used for very precise
manipulation or selection tasks in 3D and very ne-grained gestures.
Such an interface has a vast potential to increase the expressiveness
of input to mobile devices. To implement these proposed interfaces,
we can no longer rely on a depth camera. Instead we plan to use a
3D tracking system, such as the Naturalpoint OptiTrack (NaturalPoint
Inc., 2012)W, which allows tracking of 6DOF bodies in 3D space with
a sub-millimeter precision.

4.5 The iPhone Sandwich: Pressure-Based Dual-Sided
Multi-Touch Interaction

To study a further aspect of around-device interaction, pressure-based
dual-sided back-of-device interaction we⁶ developed the iPhone Sand-
wich prototype (Essl et al., 2009).

4.5.1 Hardware Setup

The iPhone Sandwich consists of two rst-generation iPhones attachedforce-sensing
resistors were placed
between two iPhones
to allow pressure
sensing and
dual-sided
multi-touch

back-to-back via a 3 mm acrylic plate. We instrumented the acrylic
plate with four force-sensing resistors (FSR), the placement of which

⁶The prototype was developed in collaboration with Michael Rohs and Georg Essl.
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is depicted in Figure 4.16 (b). The 3 mm standoff provided by the plate
allowed us to cut grooves into the plate to route the sensor cables.

We used an Arduino microcontroller to perform analog-to-digital con-
version and transmit the pressure sensor values to the front iPhone via
an serial connection. The touch events from the rear device were trans-
mitted to the front iPhone via wireless LAN using UDP datagrams.

All applications for the iPhone Sandwich were run on the front device
for the sake of simplicity. This setup is, however, by no means limited
to single-sided display only. Two display sides could be used to extend
an application’s usable display size. The display currently being looked
at by the user could by inferred by measuring the direction of gravity
using one of the iPhones’ acceleration sensors.

(a) iPhone Sandwich Prototype

(b) Placement of Pressure Sensors

Figure 4.16: (a) Shows the assembled iPhone Sandwich prototype
with the four pressure sensors attached to the microcontroller board.
(Stewart et al., 2010).
(b) shows the placement of of the pressure sensors in the space between
the two devices that comprise the iPhone Sandwich.

4.5.2 Affordances for Interaction

Besides allowing local input with a high local expressivity, the iPhone
Sandwich affords interactions that are impossible with traditional one-
sided touch input.The degrees of freedom at the touch points of the
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(a) (b)

Figure 4.17: When used in its recommended posture (a), the iPhone Sandwich affords a high
number of local degrees of freedom (b).

user (when grabbing the device using forenger and thumb) are: x, y
position for the index nger, x, y, position for the thumb and the cur-
rent pressure value. These degrees of freedom can be used to manipu-
late a virtual object that is located conceptually in the area between the
two screens (Figure 4.17).

Therefore, everyday actions such as grabbing, sliding, twisting and
turning are readily supported by the iPhone Sandwich. For instance,
it is possible to model grabbing a deformable object with one hand and
allow the user to twist or bend it with the other hand.

4.5.3 Application Scenarios

We developed several application scenarios, examples of which areobject deformation
through pressure shown in Figure 4.18. Pressure is a natural metaphor for the manip-

ulation of deformable objects. Figure 4.18 (a) shows an example map
browser. The map canvas is deformable by applying pressure from the
rear. This allows the user to zoom in on regions of interest (ROI), by
pushing in the map at a certain touch location, which leads to a sheye
lens effect around the selected ROI. Because the iPhone Sandwich is a
multi-touch device, multiple sheye lenses can be applied to the map
canvas by the user.

Another map-related technique is uncovering occluded objects on auncovering of
occluded objects map (Figure 4.18 (b), left). Rather than applying a sheye lens, the

objects can be moved apart when pressure is applied at the location of
the object “stack” (Figure 4.18 (b), right). The user can directly control
the divergence of the objects by varying the amount of pressure applied.
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(a)

(b)

(c)

Figure 4.18: Sample scenarios for interaction using the iPhone Sandwich.
(a) Pressure-basedmap navigation. (b)Revelealing occluded objects (left) by
applying rear-side pressure (right). (c) 3D object manipulation using physi-
cal analogies (left) and rotation using a virtual trackball (right).
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Lastly, dual-sided interaction with pressure input makes it easy to im-dual-sided
manipulation of
virtual objects

plement user interfaces that allow the manipulation of virtual objects.
Figure 4.18 (c), left, shows a manipulation method that derives from
the affordances depicted in Figure 4.17 (b). This interface is intended
to model manipulating physical objects using the hand. Rotation oc-
curs when the ngers of the right hand are moved in divergent paths,
thus rotating the object, as would be the case when manipulating a
physical object (Figure 4.18 (c), upper left). By contrast, moving the
front in rear ngers along parallel paths results in a translation, as the
simulated forces on the object in this case act in equal directions ((Fig-
ure 4.18 (c), lower left).

A more traditional metaphor for object rotation is the virtual trackball,rear-of-device virtual
trackball Figure 4.18 (c), right, which performs very well when it is implemented

on the rear of the device. We performed a detailed study of rotation
tasks comparing a front and a rear virtual trackball as well as a tilt-
based technique, the results of which are discussed in detail in Section
4.6.

4.5.4 Pressure Sensor Characteristics and Mapping Functions

To explore the users’ ability to input pressure using the iPhone Sand-
wich we⁷ conducted a user study on pressure input controllability and
different grip conditions and sensor mappings (Stewart et al., 2010).
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Figure 4.19: Standard deviation for different pressure levels during 3
s intervals. Variability is high for low pressure levels. (Stewart et al.,
2010).

The task was structured such that the user had to keep pressure at a
certain level for ve seconds. Users had to move to the target pressure

⁷Work conducted in collaboration with Craig Stewart, Michael Rohs and Georg Essl.
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Figure 4.20: Combined characteristic of FSR response curve and volt-
age divider. (Stewart et al., 2010).

level and then had to keep pressure at that level as precisely as possible.
The goal was to estimate the variability of pressure input for each of the
levels.

Pressure input was measured for two poses, one with the device ly-
ing at on a table with pressure applied on the front of the device
(front-on-table) the second while the device was gripped in the user’s
hands (grip). Additional conditions were three different sensor output
mappings: linear, quadratic and logarithmic. We measured the pressure
stability by computing the standard deviation of the pressure values
measured during the last three seconds of the ve-second hold-down
time at a given pressure level.

Figure 4.19 shows the results of the study for the front-on-table and
grip techniques using the linear and quadratic mappings. The loga-
rithmic mapping falls between linear and quadratic and is left out for
clarity. The graphs show the median variability over the last three sec-
onds of each ve-second step. We computed this as the median of the
standard deviations for each condition. Variability decreases noticeably
with increasing pressure levels.

Reasoning that the decreased variability may be due to non-linear out-
put introduced by our sensor setup, we conducted a weight-to-sensor
value measurements. We put a range of weight on top of a single FSR
and sampled the sensor output over two seconds. Figure 4.20 shows
the resulting curves.

The blue curve shows the pressure range linearly rescaled from 0 to
1 (linear mapping in the experiment), the red curve shows the result
of the quadratic mapping. It can clearly be seen that the blue curve is
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not linear but steeper for lower pressure values, i.e., the sensor read-
ing is not a linear function of the pressure value. The data has a good
t to a logarithmic function (p = 0.3144 ln(x) − 1.3116, R2 = 0.98).
The quadratic mapping shows a atter slope for low pressure values.
For the linear mapping this means that user input variability at a low
pressure value will be translated into a larger variability in the sensor
output than the same input variability at a higher pressure level. In or-
der to compensate for this characteristic of the FSR and voltage-divider
circuit one would have to use a mapping that is the inverse function of
the resulting logarithmic characteristic, which would be an exponential
function, in this case:

q = exp((p + 1.3116)/0.3144) (4.1)

Vout

FSR

Voltage divider

FSR
V

Vout

V/2

Opamp-based current to voltage converter

-
+

Figure 4.21: Voltage divider (left) and opamp-based circuit (right). The
latter provides linearized sensor input.

4.5.4.1 Linearizing the Sensor Output

As we wanted to use the resolution of the sensor to its full capacity
we decided to build a new hardware setup in which the hardware al-
ready provides linear sensor input. We used an opamp-based current
to voltage converter (Figure 4.21). The transfer function of the voltage
divider is:

Vout =
R

R + RFSR
· Vin (4.2)

Hence, a voltage divider does not simply create a linear relationship
between the resistance of RFSR and the output voltage (Horowitz and
Hill, 1989; Putnam and Knapp, 1996)W. This relationship is arrived by
simple use of Ohm’s law. This is also noted in documentation of the
force sensing resistor (Interlink Electrionics), who propose a current-
to-voltage circuit to achieve a linear relation itself.

The operational amplier has two dening characteristics. One is that
the impedance between the two inputs is very high and theoretically
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Figure 4.22: Combined characteristic of FSR response curve and
opamp- based circuit. (Stewart et al., 2010).

often treated as innite. This has the effect that there is minimal load
on any circuit placed left of the opamp. The second characteristic is
that the output impedance is very low which makes the circuit insensi-
tive to load or energy demand at the output. The operational amplier
will amplify the output as needed to achieve these properties. This
makes this element very versatile for building a range of analogue cir-
cuits (Horowitz and Hill, 1989). To understand the current-to-voltage
converter of Figure 4 note that the input impedance is such that prac-
tically no current will ow into the inputs. Hence all current at the
negative input will instead ow across the resistor connecting to the
output. Hence the output voltage simply obeys Ohm’s law taking the
negative polarity of the input into account. Thus we arrive at a rela-
tionship of

Vout =
V
2
(1 − R

RFSR
) (4.3)

the output will be linear with respect to RFSR for a large range of output
loads since the resistance of the FSR is inverse proportional to the ap-
plied pressure force (Interlink Electrionics) and (Putnam and Knapp,
1996)W:

FFSR ∼ 1
RFSR

⇒ Vout ∼ −FFSR (4.4)

The characteristic of the opamp circuit was measured in the same way
as described above. Figure 4.22 shows the normalized linear mapping
as well as the quadratic mapping. The linear mapping now has a good
t to a linear function (p = 0.0008x + 0.0339, R2 = 0.97).
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4.5.4.2 Pressure Controllability with Linearized Sensor Input

We repeated the study of Section 4.5.4, using only the grip pose and
comparing both hardware setups, voltage divider and op-amp. For the
voltage divider we used the exponential function from Equation 4.1 to
linearize the input data. The experimental factors thus were hardware
(voltage divider and opamp-based) and transfer function (linear and
quadratic). Otherwise the experimental task was identical to the one
previously described.

The results of the input variability are shown in Figure 4.23. For
both the old hardware (voltage divider and exponential correction func-
tion) and the new hardware (opamp-based) the linear transfer function
works better than the quadratic function. The reason is probably that
the quadratic function over compensates the already linearized sensor
input. Moreover, comparing the linear mappings for the old and new
hardware, one can observe that there is an advantage of the new hard-
ware. This is probably due to the better use of the dynamic range and
resolution of the setup.
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Figure 4.23: Standard deviation for different pressure levels during
3s intervals. Overall variability is better for the new hardware and the
linear mapping. (Stewart et al., 2010).

Overall these results are in line with the ndings of (Srinivasan anda linear transfer
function pressure
input is superior to a
quadratic mapping

Chen, 1993) and show that human ability to control pressure input
is not per se worse at lower pressure levels. A linear mapping works
better than a quadratic mapping if the sensor data is a linear mapping
of the input force. The results seem to suggest that controllability of
force is uniform for a wide range of pressure levels.



4.5 The iPhone Sandwich: Pressure-Based Dual-SidedMulti-Touch Interaction 109

4.5.5 Poses for Pressure Input

Pressure-based input usually assumes that the device to which pressure
is applied is resting on a stable surface. Examples are pressure-sensitive
pen input to tablet PCs or pen tablets. (Ramos et al., 2004) explored
pressure-based input for stationary devices. Pressure application to
mobile devices when handheld has not been extensively researched.
In addition, many previous pressure-based interfaces assumed a pen
or stylus to apply pressure (e.g. (Ramos et al., 2004; Mizobuchi et al.,
2005)).

4.5.5.1 Investigating Pressure Input on Handheld Device Poses

We conducted a study to investigate direct nger-based pressure in-
put for handheld devices. Our goal was to nd out which device poses
are most suitable for handheld pressure input. We compared a device
resting on a table with a handheld device as a baseline. Our interest the goal of our study

was to determine the
most suitable pose for
handheld pressure
input

lay in how quickly and accurately users can control pressure they exert
with one or more ngers on the device and what pressure range is use-
ful for interaction. In particular, we investigated user performance of
pressure-based input under the following poses (4.24):

• Front-on-table: index nger on front of device, device resting on
table.

• Front: thumb on front of device, device handheld.

• Back: index nger on back of device, device handheld.

• Grip: thumb on front and index nger on back of device, device
handheld.

4.5.5.2 Apparatus

The target pressure was represented as a value ranging from 0.1 to 0.9
where 0 represents zero pressure and 1 corresponds to the maximum
pressure. We presented target widths on this scale of 0.02 and 0.04.
The pressure input was linearized using the hardware described in Sec-
tion 4.5.4.1.

We measured the pressure using two FSRs, one attached to the front
and one to the back display of the iPhone Sandwich. The device was
always held in landscape orientation. The FSRswere vertically centered
and attached about 3 cm from the right edge of the device to be easily
reachable with both the thumb and the index nger (4.24).



110 4 Around-Device and Sensor-Based Interaction
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Figure 4.24: Device poses tested for handheld pressure input: index
nger on front, device resting on table (baseline); grip with thumb and
index nger; thumb on front; index nger on back. Changing pressure
moves the cursor on the horizontal line. The red rectangle indicates
the target pressure and target width. (Stewart et al., 2010).

4.5.5.3 Participants and Experimental Design

We recruited twelve participants (8 male, 4 female) ranging in age from
15 to 36 years (µ = 26.6, σ = 6.7) for the experiment. All participants
were right-handed.

The experiment used a 4 × 9 × 2 within-subject factorial design. The
factors and levels were pose (front-on-table, front, back, grip), target
pressure (9 levels from 0.1 to 0.9), target width (narrow (0.02) and wide
(0.04)).

To solve the task, the users had to sequentially select targets that ap-
peared at random positions on a horizontal bar (compare Figure 4.24,
top left). The left end of the bar corresponded to zero pressure, the
right end to maximum pressure. The device’s display showed contin-
uous visual feedback. As the user increased pressure a vertical line
cursor moved along the bar. The target was shown as a red rectangle
on the bar. The target was selected by keeping the cursor within the
target rectangle for the dwell time of 1 s. Selecting the target ended
the trial and the target moved to the left end of the bar (zero pressure).
The user had to release pressure and wait for one second after which
the next trial would be started at the new target position.

The order of presentation of the four device poses was counterbalanced
using a latin square design. The order of target widths was counterbal-
anced within the poses. The distances were presented in three blocks.
Within each block the ten distances (0.1 to 0.9) presented in random
order. This amounts to 4 poses × 2 widths × 3 distance blocks × 10
distances per block = 240 trials per user.
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Figure 4.25: Target acquisition times for the four device poses. (Stew-
art et al., 2010).

4.5.5.4 Results

We measured the time required for selecting a target and logged the grip posture performs
comparably to
pressure application
on a solid surface

pressure sensor values over time. The mean selection times (1s dwell
time subtracted from these values) are: 3.14 s for front-on-table, 2.91 s
for grip, 3.74 s for front, and 3.42 s for back (Figure 4.25). A repeated-
measures ANOVA on the log-transformed data shows that these differ-
ences are statistically signicant (F3,33 = 9.11, p < 0.001). Bonferroni
corrected post-hoc comparisons show a difference between front and
other poses, but not among the other poses. The mean values suggest
that handheld pressure application, specically for grip posture is not
disadvantaged compared to pressure application to a solid surface.

The average selection time was 4.46s for the narrow target and 2.14 s target pressure
signiöcantly raises
acquisition time

for the wide target (F1,11 = 152.08, p < 0.001). Wide target selection
differentiates the results more strongly. Front hand-held shows up to
a factor of 3 degradation in time-to-target compared to grip for low
pressure values (Figure 4.26). The median selection time showed a
linear relationship with pressure, ranging from 1.5 s at 0.1 to 3.4 s at
0.9 (t = 2.277p + 1.261, R2 = 0.95). The results show a signicant
effect of target pressure on acquisition time (F8,88 = 50.88, p < 0.001).
We also asked users which of the poses they preferred. Six of twelve
users preferred grip, 3 index nger front-on-table, 2 index nger on
back, and 1 user preferred thumb on front.

The results show that pressure-based selection is possible in reasonable
selection times, even with 9 targets equally distributed on the pressure
range and with fairly narrow target widths. All handheld poses, except
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Figure 4.26: Target acquisition times by target pressure for the four
device poses. The top graph shows the results for narrow the bottom
one for wide targets. (Stewart et al., 2010).

front, are on par with the front-on-table pose, in which the device is
supported by a table surface.

4.6 Rear-of-device interaction for Rotation Tasks

Having developed the iPhone Sandwich prototype, which is described
in Section 4.5, we conducted a user study about using the iPhone Sand-
wich for 3D rotation tasks (Kratz and Rohs, 2010a), by implementing a
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rear-of-device virtual trackball. Our motivation for placing the rotation
control widget on the rear of device is that the occlusion of the display
by the user’s hands and ngers is no longer be an issue. Moreover, the
front side of the display can be used for secondary tasks, such as ob-
ject selection, while the user can continue with the primary task of 3D
viewing using the device’s rear.

4.6.1 Background

Interaction with 3D objects and scenes has many applications on mo-
bile devices, including games and 3D model inspection. The hardware
capabilities of mobile devices for rendering 3D content are increasing
rapidly. Direct touch input on mobile devices potentially allows for
more direct interaction with 3D objects than is possible on desktop
PCs. However, there are unique challenges of devices with small dis-
plays, such as the relatively large amount of occlusion that occurs with
direct nger-based touch interaction. This problem has been named
the “fat nger problem” (Baudisch and Chu, 2009). Several solutions
have been proposed for overcoming or alleviating this issue, including
back-of-device interaction (Baudisch and Chu, 2009; Shen et al., 2009b;
Sugimoto and Hiroki, 2006; Wigdor et al., 2007b), tilting-based inter-
faces (Rekimoto, 1996b), and temporal separation of input event and
interface action (Decle and Hachet, 2009).

x
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o

P1
p2

p1

P2

ș

Figure 4.27: Touch points (p1, p2) inside virtual hemisphere: rotation
dened by great circular arc through projected touch points (P1, P2).
(Kratz and Rohs, 2010a).

Relatively little research has focused on mobile interaction with 3D
content (an example is (Decle andHachet, 2009)). The study presented
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Figure 4.28: Touch points (p1, p2) outside virtual hemisphere: rota-
tion around z-axis. (Kratz and Rohs, 2010a).

in this section focuses on 3D rotation, which is a fundamental task al-
lowing users to inspect and understand 3D objects. A widely used in-
teraction technique for rotating 3D objects around arbitrary axes is the
virtual sphere (Chen et al., 1988), also called the virtual trackball (Hen-
riksen et al., 2004). A further related technique to be mentioned is
the Arcball (Shoemake, 1992). In this technique, rotation is controlled
by projecting cursor points from the display surface onto a virtual half
sphere that is centered on the 3D object (Figure 4.27). Rotation around
the object’s center is then computed using the projected points. The
virtual trackball is typically invisible and does not have to be known
to the user in order to be applied effectively. Virtual trackballs allow
for rotation around arbitrary axes in a natural manner. They integrate
controller and controlled object and can thus be categorized as a di-
rect manipulation technique (Hutchins et al., 1985). In user tests vir-
tual trackballs have been shown to be effective for precise 3D rotation
tasks (Chen et al., 1988).

The axis and angle of rotation are determined as follows. Assume that
p2 is the current touch point and p1 is the previous touch point in a
sequence of touch points produced during a stroke. The axis of rotation
is then the cross product of the projected points: a = m(p1)× m(p2) =

P1 × P2 and the angle of rotation is θ = arccos( P1 P2
∥P1∥∥P2∥ ). This means

that the rotation will be around the z-axis if p1 and p2 are both outside
the circle (Figure 4.28). If both projected points are located on the
hemisphere, then the rotation axis is given by the great circle passing
through P1 and P2 (Figure 4.27).
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4.6.2 Two-Sided Trackball and Gaussian Mapping

As noted in (Henriksen et al., 2004) there is a discontinuity between
positions inside and outside the hemisphere. In our pilot tests we
found that the change in rotation behavior on entering or leaving the
hemisphere during a drag movement can indeed be irritating to users.
To avoid this discontinuity and to have a smoother transition from z-
axis rotation to x- or y-axis rotation, we changed the mapping from a
hemisphere to a Gaussian function (Figure 4.29, upper part), similar to
the combined spherical and hyperbolic mapping function of Bell (Hen-
riksen et al., 2004). The specic mapping function we use is:

z = g(x, y) = r1 exp(
−((x − ox)2 + (y − oy)2)

2r2
2

) (4.5)

where o = (ox, oy) is the center of the screen. Note that we do not
need to distinguish between the cases of the point being located inside
the hemisphere or outside of it. Exclusive rotation in the z axis thus
results if input is performed at a sufficient distance from the center of
the virtual trackball. The parameter r1 corresponds to the height of the
Gaussian curve and r2 to its width. For the 480 × 320 pixel screen of
our target device we set these parameters to r1 = 120 and r2 = 80,
respectively. A precise correspondence to the size of the object was not
found to be necessary.

Figure 4.29: To avoid the discontinuity at the half sphere boundary,
we use a Gaussian function instead. (Kratz and Rohs, 2010a).

To allow for back-of-device interaction we conceptually extended the for back-of-device
rotation control, the
half sphere is
extended to the rear
of the device

half sphere to the backside. For the back side mapping function we
inverted the above Gaussian function to extend its range into negative
z values as shown in Figure 4.29 (lower part). Depending on whether
the touch input event originates from the front side or the back side, the
corresponding mapping function is used. For front-side touch events
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the mapping function is z = g(x, y), for back-side touch events it is
z = −g(x, y).

In addition to the single sided touch input described above and used in
the study, we also implemented a simultaneous front- and back-touch
input. In this mode the thumb provides the front touch point and the
index nger provides the rear touch point. The center of the virtual
sphere is then relocated to be in the center between thumb and index
nger. This relocation of the virtual sphere allows for 3D rotation in
the case of larger displays in which the center of the object might not
be reachable with simultaneous front- and back-input.

4.6.3 Tilt-Based Rotation as a Comparison Technique

Figure 4.30: Tilt-based navigation using tilt around the z-axis (hori-
zontal camera rotation) and x-axis (vertical camera rotation). (Kratz
and Rohs, 2010a).

In addition to touch screen input we implemented a tilt-based schemewe chose tilt as a
comparison
technique due to its
popularity

that uses an accelerometer to sense device orientation (Figure 4.30).
Themotivation for choosing tilt-input is thewidespread use of tilt input
for gaming applications on several current smart-phones.

The navigation is based on a steering-wheel metaphor, in which the
object rotates horizontally as the user tilts the device around the z-
axis. Horizontal rotation of the object is initiated if the device tilt ex-
ceeds ±25◦ around the z-axis. The rotation speed was set to be propor-
tional to the tilt angle of the z-axis, with a minimum rotation speed of
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100◦/s at 25◦ tilt and a maximum rotation speed of 350◦/s at 90◦ tilt.
Pre-tests showed that users could comfortably operate the tilt interface
with these settings. Moreover, the amount of vertical camera rotation
is controlled by tilting around the x-axis. This determines the angle
from which the object is observed. The virtual object is always ori-
ented with the right side up, i.e., the y-axis is always oriented opposite
to the direction of gravity.

4.6.4 Implementation

The front and rear touch interface for our study was implemented on
an iPhone “Sandwich” (see Section 4.5 for more details). The software
consists of a dedicated rear application that runs that sends rear touch
events to the front device, which runs the front application used in the
user study. The data is transferred via UDP over a dedicated WiFi net-
work. There was no perceivable delay. The front and rear virtual track-
balls were implemented using the touch events provided by the front
and rear iPhone, respectively.

We obtained Device tilt readings for the x and z axes, using data from
the front iPhone’s built-in 3axis acceleration sensor, with the following
equations to calculate tiltx and tiltz:

tiltx = arctan
( z

x

)
tiltz = arctan

(y
x

)
(4.6)

The intuition behind Equation 4.6 is that the fractions z/x and y/x
represent the inuence of Earth’s gravity on the acceleration vector of
the respective axis. z represents the acceleration measured perpendic-
ular to the device’s screen, x the acceleration in direction of the long
side of the device and y the acceleration in direction of the short side
of the device.

The graphics for the front application were implemented using
OpenGL ES (Khronos Group, 2012)W. We used Blender (Blender
Foundation, 2012)W to model and export the 3D objects with corre-
sponding normal vectors and texture mapping coordinates. Via a UDP
connection, the experimenter can change the number of objects dis-
played as well as the number of textured faces shown on the objects
in the scene. Through this connection, the experimenter can also start
and stop trials remotely.
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4.6.5 User Study

We conducted a user study in order to measure the effectiveness of 3D
object rotation using a front and rear touch virtual trackball as well as
tilt. We extended the experimental setup of (Decle and Hachet, 2009),
who compared direct and planned 3D object inspection on a touch dis-
play.

4.6.5.1 Task

Following the approach proposed by (Decle andHachet, 2009), the testthe subjects were
tasked with counting
the number of
textured faces in a 3D
scene

subjects were presented with a freely rotatable 3D scene comprising a
regular grid of tetrahedrons. The subjects had to count the number of
object faces textured with a logo. Each face of the tetrahedrons was
colored in a distinct color, which allowed the test subjects to remem-
ber the sides of the objects in a given scene which had already been
observed.

Initially, a blank screen was presented to the test subjects. The exper-
imenter could remotely change the settings for grid size and number
of textured faces remotely as well as initiate a trial. Once the trial had
been initiated, the corresponding scene was presented to the test sub-
ject and a timer started. When the test subjects were satised that they
had found all the textured faces, they reported the number of textured
faces found to the experimenter. The task completion time and number
of found textured faces found was recorded by the experimenter after
each trial.

This type of task is well suited to evaluate 3D rotation input techniques,
because it requires the test subjects to look at all the faces of the ob-
jects, thus requiring a substantial amount of rotation input from the
subjects. The effectiveness of the rotation technique can be deduced
from the trial completion times (input speed) and also the error rates
(an indicator of mental load).

4.6.5.2 Improvement over Existing Methodology

In contrast to the previous work, which used a randomly chosen objectour methodology
allows parametric
deönition of the task
difficulty

in their study, we used a regular grid of tetrahedrons (Figure 4.31) as
object set. The number of objects and the amount of textured faces that
must be found by the test subjects can be programmatically dened.
This not only allows us to precisely parametrize the characteristics of
the experiment, it also provides a more controllable and comparable
scenario for comparison of rotation techniques in future studies.
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(a) (b)

(c) (d)

Figure 4.31: Several variants of the tetrahedron grid presented to the
user in the study are shown. (a) is 2×2 grid with no textures. (b) is
2×2 grid with 3 of 5 textures visible to the user. (c) shows a 4×4 grid
with a single visible texture. (d) shows a 4×4 grid with 6 of 10 textures
visible. (Kratz and Rohs, 2010a).

4.6.5.3 Participants, Apparatus, and Design

We recruited 12 test subjects from a university environment. All par-
ticipants were between 20 and 25 years of age. They all owned a mobile
phone, but only one test subject reported to own a touch-enabled smart
phone. Only two of the subjects had prior experience with mobile 3D
applications. All participants had experience in the use of computers,
with 42 percent of them stating advanced or expert skills. The partici-
pants received a monetary compensation after the experiment.

We conducted the experiment using the iPhone Sandwich discussed in
Section 4.5 for the trials involving the front and rear trackball and an
unmodied iPhone 3G for the trials involving the tilt input.

The experiment had a 3×2×2 within groups factorial design. Factors
were input method for rotation control (front trackball, rear trackball,
and tilt), grid size (2×2 and 4×4) as well as textured face count (3 ± 1
and 9± 1). The textured face count was randomly chosen in a±1 range
around 3 and 9 in order to prevent the test subjects from inferring the
correct number of textured faces and forcing them to really count all
textured faces in the scene presented to them. The order of input tech-
niques was counterbalanced according to a Latin Square design. The
trials for each input technique were conducted in sequence, with the
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Figure 4.32: Box plots of the task completion times in s, grouped by input method (left), grid
size (center) and number of textured faces (right). (Kratz and Rohs, 2010a).

order of the grid size and textured face count settings also counterbal-
anced according to a Latin Square. Each setting was repeated two times
resulting in a total of 12 × 3 × 2 × 2 × 2 = 288 trials conducted.

We measured the task completion time as well as the error rate of themeasured variables
were task completion
time, error rate and
workload

reported textured face counts. Additionally, after each series of trials
for a given input technique, the participants were asked to subjectively
rate the workload of the input method using the NASA TLX (Hart and
Staveland, 1988a) rating scale.

4.6.5.4 Results

Figure 4.32 shows box plots of the task completion times grouped by
input method, grid size and number of textured faces.The mean exe-
cution time for front was 14.72s, SD = 7.51s, for rear 13.89s, SD = 6.56
and for tilt 23.73s, SD = 12.60s.

Task Execution Time A univariate ANOVA shows signicant effect in
the task execution time for input method (F2,287 = 38.73, p < 0.001),
grid size (F1,287 = 34.722, p < 0.001) and number of textured faces
(F1,287 = 16.820, p < 0.001). A Bonferroni pairwise comparison of input
method shows a signicant difference for front vs. tilt and rear vs. tilt
(both p < 0.001), but no signicant difference between front and rear
(p = 1.0).

The error rate, i.e. the number of incorrect responses to the total num-
ber of responses, was 60.4% for front, 69.8% for rear, and 68.6% for tilt.
Participants were not provided with feedback whether they counted the
right number of textured surfaces, because we wanted to measure neu-
tral error performance. The error rates appear quite high, however, the
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responses were very close to the actual numbers. The mean square er-
ror, i.e., the deviation of the reported count from the actual count, was
0.97 for front, 0.70 for rear, and 0.94 for tilt.
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Figure 4.33: The mean square error rates for the faces counting or-
dered by input technique.

Error Rate of Face Count We computed the Mean Square Error (MSE)
for all trials per user for each of the input methods from the difference
between the textured faces counted by the users and the actual number
of textured faces shown for a particular trial. The results for MSE are
shown in Table 4.3.

Table 4.3: Mean Square Error of face counting task, by input technique.
(Kratz and Rohs, 2010a).

Input Method Average Median Std. Dev

front 0.97 0.63 1.33

rear 0.70 0.75 0.16

tilt 0.93 0.81 0.89

Notwithstanding, these differences are not signicant (p = 0.737). differences in face
counting error are not
signiöcant

Grouping the data by grid size or textured face count shows a slight
increase in average MSE for increasing grid size or textured face count,
but the differences weren’t signicant also in those cases.

Our results for error rate suggest that the input methods we tested do
not inuence the precision of counting the textured faces.
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Figure 4.34: The average adjusted workload of the TLX rating scale.
(Kratz and Rohs, 2010a).

NASA TLX The average adjusted NASA TLX workload ratings are
shown in Figure 4.34. Front and Rear received very similar workload
ratings (front: µ = 29.6, σ = 20.6; rear: µ = 27.3, σ = 19.5). Tilt was
rated worse (µ = 41.6, σ = 29.4). These differences are however only
indicative and not statistically signicant (F2,35 = 1.28, p = 0.29).

4.6.6 Results

In this section, we proposed the extension of the virtual trackball
metaphor from single-sided input on a half-sphere to double-sided in-
put on a full sphere .

We described an alternative Gaussian mapping function that avoids
the discontinuity of a spherical trackball, similar to Bell’s (Hart and
Staveland, 1988a) spherical and hyperbolic mapping function (Sec-
tion 4.6.2).

In a user study (see Section 4.6.5), we found that the virtual trackball
with thismapping function is effective for front as well as back touch in-
put and that both outperform a tilt-controlled navigation scheme. Even
though the tilt condition avoids occlusion, it is rate controlled and has
a more indirect mapping compared to the virtual trackball. NASA TLX
showed a slightly higher workload for tilt, however, without being sta-
tistically signicant. Overall, it is noteworthy that the subjective work-
load rating was quite low (the scale ranges from 0 to 100, themaximum
rating was 41.6 for tilt) yet the error rate was relatively high. This
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means that the participants had difficulty in judging their true perfor-
mance and the result might be an indication that 3D object inspection
is inherently difficult.

The results also indicate that occlusion, or “fat nger problem” did not
have a signicant performance effect on the tasks we measured. This
may have been due to the relative rotation of the 3D objects realized
with the virtual trackball, which allowed the users ngers to operate at
an offset with respect to the rotated objects.

In the future we plan to extend this work by adding precision alignment
studies. We also want to investigate the use of multiple ngers on
one side of the device as well as the use of ngers on both sides of
the trackball. Furthermore we aim to integrate the behind-the-device
trackball paradigm in mobile applications scenarios.

4.7 Conclusion

In this Chapter, we presented the concept of Around-Device Interaction
(ADI). In Section 4.2 we outlined the design space afforded by ADI
and detailed sensor technologies, feedbackmechanisms and framework
support in this space.

The rest of the chapter presented mobile user interface prototypes de-
veloped to explore the ADI concept,HoverFlow, PalmSpace and the iPhone
Sandwich. For the most part, these prototypes rely on augmenting the
mobile device with one or more additional sensor types.

Our results for HoverFlow show that around-device gestures can be rec-
ognized with a very simple set of IR distance sensors. HoverFlow-type
user interfaces provide input capabilities tomobile devices in situations
where it is impractical or not advisable to touch the mobile device, such
as when cooking or driving a car.

Our work on PalmSpace shows that if mobile devices were equipped
with depth cameras, they could detect much more complex gestures in
comparison to HoverFlow. Our user study results show that complex
around-device gestures can, for certain task types, lead to performance
benets over the standard interface mechanisms (e.g. touch screen in-
put) in mobile devices.

The iPhone Sandwich compares pressure input with dual-sided multi-
touch capabilities. We contributed insights into the correct sensor
mappings for touch-based pressure input. Whereas previous pressure-
based work mostly relied on pressure input using a stylus with the de-
vice placed on a at surface, we analyzed the properties of touch-based
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pressure input with the device in hand-held poses. Our results indicate
that touch-based pressure input on mobile devices is performs as well
as when the device is placed on a at surface, except in the case that
pressure is applied to the front of the device while the device is held.

Finally, we used dual-sided interaction to extend a well-known 3D rota-
tion interface, the Virtual Trackball. While moving the trackball to the
rear of the device does not provide signicant gains in performance, it
does reduce the occlusion due by the user’s hand and ngers, allowing
an easier view of the object being manipulated. We also demonstrated
that virtual trackballs are superior to tilt-based techniques for 3D object
rotation on mobile devices.
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Chapter 5

Motion Gestures

“Why do people always gesture with their hands when they talk
on the phone?”

—Jonathan Caroll

Modern smart phones are equipped with sophisticated micro-electro-
mechanical (MEMS) acceleration and rotation sensors. These sensors
are so precise that they can be used for dead-reckoning for mobile nav-
igation. Most mobile user interfaces, however, only make relatively
primitive use of the rich data provided by the onboard accelerometers
and gyroscopes. Obvious uses such as rotating the user interface to
match the device’s pose have been implemented. Tilt-labyrinths have
been implemented as one of the rst applications for the iPhone (Il-
lusion Labs, 2010)W. Primitive gesture recognition, such as detecting
device shakes, has also been implemented, for example in the iOS 5
SDK (Apple Computer Inc., 2012a)W.

In this section we present techniques that aim to broaden the scope
of uses—motion gestures in particular—for mobile accelerometer and
gyroscope data. We begin the chapter with a brief overview of machine
learning techniques and algorithms relevant to the sections that follow
(Section 5.1). We then present two motion gesture recognition algo-
rithms, the $3Gesture Recognizer (Section 5.2) and Protractor3D (Section
5.3). The aim of these algorithms is to provide easy-to-implement ges-
ture recognizers for motion gestures that support researchers and prac-
titioners in developing mobile user interfaces using motion gestures.
These algorithms do not rely on any special toolkits or optimizers and
can be deployed early on in the development cycle.

To show a “serious” application of accelerometer and gyroscope data
on mobile devices, we analyze the feasibility, usability and security of
motion gesture-based authentication in Section 5.4.
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It has only recently become commonplace to equip smart phones with a
gyroscope/accelerometer pair. In Section 5.5 we analyze the potential
gains in motion gesture recognition accuracy provided by fusing the
two data types—acceleration and rotation—provided by these sensors.

5.1 Machine Learning Foundations

In this section we will briey describe machine learning algorithms and
techniques which are relevant to the following sections of this chapter.
The aim is to help readers better contextualize the contributions we
made. Furthermore, we wish to describe in additional detail several
concepts which are used throughout this chapter and are relevant to
gaining a better understanding of gesture recognition in general.

In the following, we will describe how to select features for gesture
recognition and normalize them for use in machine learning algo-
rithms. We will then describe the following machine learning algo-
rithms which are used in the later sections of this chapter: k-Nearest-
Neighbors, Dynamic Time Warping, Regularized Logistic Regression
and Hidden Markov Models.

5.1.1 Features for Gesture Recognition

In his seminal work on stroke recognition, Rubine proposed a set of 13
features (Rubine, 1991) for classication of strokes. The original work
was extended by (Long Jr. et al., 2000) with an additional 9 features. In
machine learning, a “curse of dimensionality” (Marsland, 2009) exists.
One of its implications is that if the data to classify has a high amount
of features, a large number of samples must be provided for acceptable
training of the classier. Thus, a classier using all of Rubine’s features
will need a large number of training data to function properly. There-
fore, recent works in stroke recognition (Wobbrock and Wilson, 2007;
Paulson et al., 2008; Li, 2010b) have focused on using the original ge-
ometric data for classication, to great success.

Apart from using the raw sensor data from accelerometers and gyro-
scopes, it is posible to normalize, subsample and transform the data
such that the individual datapoints are of equal Euclidean distance from
each other. This kind of pre-processing is performed by the $3 Gesture
Recognizer and Protractor 3D (Sections 5.2 and 5.3).

More complex features, partially based on a discrete Fourier-transform
of windows of gesture data, can also be calculated. Wheres we have not
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made use of these features in projects featured in this dissertation, we
will mention these more advanced types of features, suggested by (Ravi
et al., 2005) in the context of accelerometer-based activity recognition,
for the sake of completeness. Let xi be a data point of dimensionality k:

• Average:

µ =
1
N

N

∑
i=1

xi (5.1)

• Standard deviation: The standard deviation equal to the square
root of the variance.

σ =

√√√√ 1
N

N

∑
i=1

(xi − µ)2 (5.2)

• Energy: The energy is the sum of squared Fourier-components
x(t) = (x1, x2, . . . , xN) of a discrete time signal , divided by its
length N:

energy =
∑N

i=1 |xi|2
N

(5.3)

• Correlation: For every possible coordinate axis pair (x, y)we cal-
culate the covariance and the standard deviation and then calcu-
late the ratio. The correlation is a measure of statistical depen-
dence between the data for each of the coordinate axes:

corr(x, y) =
cov(x, y)√

var(x)var(y)
(5.4)

with

cov(x, y) =
N

∑
x=1

(xi − µ)(yi − µ) (5.5)

var(x) =
N

∑
i=1

(xi − µ)2 (5.6)

As already mentioned earlier in this section, using a large num- using a large feature
set is only useful if a
large amount of input
samples per gesture
is available

ber of features requires a large number of training samples for
machine learning techniques to be effective. For gesture-based
user interfaces, training samples are usually obtained from users
during user studies. Due to temporal constraints, only a lim-
ited amount of input gestures can be obtained per gesture class.
For projects in this dissertation the average number of recorded
entries per gesture class is about 20. With this relatively low
amount of training samples, using the raw sample data obtained
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from the sensors is usually sufficient for classication. For future
longitudinal or massively deployed studies (i.e., through a mobile
application store) where the amount of obtained gesture entries
is would be much higher, using a larger amount of features may
signicantly increase the gesture recognition accuracy.

5.1.2 Feature Normalization

Features obtained, i.e., from readings of different sensor types can dif-feature normalization
is required to
compensate for
differences in
magnitude and
means between
feature types

fer signicantly in value magnitudes. If left uncorrected, the larger-
magnitude sensor readings will “dominate” the readings with a lower
magnitude. One possible strategy to counter this effect is to apply fea-
ture scaling and mean normalization.The features are normalized such
that their values lie within [−1, 1] and the mean is re-centered to 0. The
components j of a feature vector x(i) are thus scaled and normalized as
follows:

ẋ(i)j =
x(i)j − µj

sj
(5.7)

where sj and µj are the value range (max − min) and the means for
component j of x(i).

5.1.3 Machine Learning Algorithms

In the following, we detail several machine learning classication algo-
rithms that are used by the contributions in this chapter. The descrip-
tion of the algorithms is ordered by implementation complexity.

5.1.3.1 k-Nearest Neighbors

One of the simplest machine learning recognizers is k-Nearest Neigh-
bors (kNN). This algorithms is purely data-driven and classifying is
done by comparing a sample point s to the k closest labeled points in
a training set, and determining the class of s by the majority of the la-
bels of the k nearest neighbors. The usual metric for determining the
proximity of s to other data points is the Euclidean distance (L2 norm):

d(p, q) =

√
n

∑
i=1

(qi − pi)2 (5.8)
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Figure 5.1: (a) Dynamic TimeWarping calculates the optimal alignment between two tempo-
rally skewed sequence. The DTW update rule ensures that a point (i, j) on the optimal DTW
path (green) is always at the minimum distance from its predecessor. (b) The result of DTW
is the cost-optimal alignment between two time sequences.

Although it is simple to implement, kNN has a number of disadvan-
tages. Since for classication, a new sample has to be compared with
all other points in the data set, naïve kNN implementations do not
scale well in terms of computational performance for large data sets.
In the case of large data sets, k-d trees can be used to reduce the near-
est neighbor search time to O(log n) (Marsland, 2009), where n is the
number of data points in the training set. A further weakness of kNN
is that it is not very robust towards noise in the training data. Due
to the simple majority-based classication scheme even relatively few
spurious data points will seriously degrade the classier’s accuracy.

Both the $3 Gesture Recognizer (Section 5.2.2.7) and Protractor3D (Sec-
tion 5.3)use a kNN strategy for classication.

5.1.3.2 Dynamic Time Warping

When dealing with temporal data, such as gestures, it is important to
use a technique that is robust towards temporal variations between
input samples and training data. Dynamic Time Warping (DTW) is a
technique that is used to calculate the minimal-cost alignment between
two time sequences (Figure 5.1).
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DTW works by nding the optimal path through a N × M cost matrix
D, which is initialized to innity. The entries Di,j of the cost matrix are
generated using the following DTW update function:

Di,j =


0 i = j = 0

min(Di−1,j−1, Di−1,j, Di,j−1) + di,j i > 0, j > 0

∞ otherwise

(5.9)

Usually, the Euclidean distance (Equation 5.8) is chosen to calculate
the distance di,j. Following the path starting at DM,N of minimal neigh-
boring entries through the matrix will yield the optimal alignment path
through the matrix. The DTW cost is the matrix entry DN,M.

DTW has been used widely in previous work, both in gesture recogni-
tion for HCI and also in speech recognition (Sakoe and Chiba, 1978),
the eld from which the algorithm originated.

Because the number of entries in the DTW matrix rises quadratically
in relation to the sequence lengths, DTW does not scale well to long
sequences. There have been a number of approaches to compensate for
this problem. One possible solution is to window (or “envelope”) the
search space. There are two very common envelopes called the Sakoe-
Chiba Band, and Itakura Parallelogram (Sakoe and Chiba, 1978; Itakura,
1975). Another approach, called FastDTW (Salvador and Chan, 2004),
is to approximate the full DTW calculations by subsampling the origi-
nal DTW matrix.

Our work on gesture-based authentication in Section 5.4 uses DTW
as one of the main machine learning algorithms. In Section 5.5 the
performance of DTW is evaluated with combined accelerometer and
gyroscope data.

5.1.3.3 Logistic Regression

Logistic regression is a simple but powerful supervised learning classi-
er that is very popular in the machine learning community. Logistic
Regression, in essence, represents the operation of a single neuron of
an Articial Neural Network.
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Hypothesis The hypothesis of Logistic Regression is given by

hθ(x) = g(θTx) (5.10)

where x is a feature vector and the model, θ, is a parameter vector the
length of which corresponds to the number of features. The outputs of
hθ(x) are constrained to 0 ≤ hθ(x) ≤ 1, in order to classify two distinct
classes, 0 and 1. This behavior is obtained by choosing the Sigmoid
(also known as Logistic) function for g:

g(z) =
1

1 + e−z (5.11)
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Figure 5.2: Plot of the Sigmoid function. Values for x > 0 asymptote
at 1, values for x < 0 asymptote at 0.

Figure 5.2 shows a plot of the Sigmoid function. The intuition behind
using the Sigmoid function is that we would like the classier to output
the probability of class 1 given an input x and the parameter vector θ,
i.e. hθ(x) = P(y = 1|x; θ). Thus, we can predict 1 if hθ(x) ≥ 0.5 and 0
if hθ(x) < 0.5, because hθ(x) ≥ 0.5 whenever θTx ≥ 0 and hθ(x) < 0.5
whenever θTx < 0.

Training the Classiöer In order to train the model parameters θ using
input data vectors X and labels y ∈ {0, 1} we need to minimize the
following cost function:

J(θ) =
1
m

m

∑
i=1

Cost(hθ(x(i)), y(i)) (5.12)
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where

Cost(hθ(x), y) =

 − log(hθ(x)) if y = 1

− log(1 − hθ(x)) if y = 0
(5.13)

Using the logarithm guarantees that J(θ) remains convex, i.e. the global
maximum is guaranteed be found using gradient descent. Also, for
y = 1, − log(hθ(x)) captures the intuition that there should be a near
innite penalty when hθ(x) ≈ 0 and a near zero penalty when hθ(x) ≈ 1.
The reverse is the case with − log(1 − hθ(x)), for y = 0. The cost
function can be further simplied as follows:

J(θ) =
1
m

[
m

∑
i=1

y(i) log hθ(x(i)) + (1 − y(i)) log(1 − hθ(x(i)))

]
(5.14)

The minimum of the cost function can be found using gradient descen-
twith the gradient of J(θ):

δ

δθj

J(θ) =
1
m

m

∑
i=1

hθ(x(i) − y(i))x(i)j (5.15)

The gradient descent update function can then be applied repeatedly
up to a given convergence criterium to optimize minθ J(θ) for all com-
ponents j of θ:

θj = θj − α
δ

δθj

(5.16)

α is a parameter that controls the speed of gradient descent. Since α can
be difficult to choose correctly, more advanced gradient descent algo-
rithms, such as the Broyden-Fletcher-Goldfarb-Shannon (BFGS) algo-
rithm¹(Fletcher, 1987) perform calculations on the input data in order
to determine useful values for α.

¹For the application of regularized Logistic Regression to motion gesture recogni-
tion featured in Section 5.5, we used the BFGS (Fletcher, 1987) implementation from
the Scipy.optimize Python library to minimize the cost function. The specic function
call we used was scipy.optimize.fmin_bfgs(...).
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Predictions Tomake a prediction given a new input vector x, we simply
calculate

hθ(x) =
1

1 + e−θT x
(5.17)

to obtain p(y = 1|x; θ).

Multi-Class Classiöcation LR classiers can be used for multi-class clas-
sication. Multi-class classication can be achieved using a one-vs-all
approach. For this, we train one logistic regression classier h(i)θ (x) for
each class i to predict the probability that y = i. In order to make a
prediction for a new input x, we pick the class i that maximizes

max
i

h(i)θ (x)

Decision Boundary and Regularization The version of Logistic Regres-
sion used in this section only determines a linear decision boundary.
To obtain more complex decision boundaries, additional, higher-order
features can be generated. For instance, if we have the features x1 and
x2 a more complex boundary can be calculated by generating higher-
order features such as x1x2

2, x2
1x2, x2

1, x2
2. This will also result in a higher

dimensionality for θ.

In order to avoid overtting due to too many features, regularization can
be applied to the cost function in order to “weaken” the effects of θ.
This will lead to a more “general” hypothesis and reduce the problem
of over tting. The regularized cost function for linear regression is
thus dened as:

J(θ) =
1
m

[
m

∑
i=1

y(i) log hθ(x(i)) + (1 − y(i)) log(1 − hθ(x(i)))

]
+

λ

2m

n

∑
j=1

θ2
j

(5.18)

The gradient for regularized Logistic Regression is dened as²:

δ

δθj

J(θ) =


1
m ∑m

i=1 hθ(x(i) − y(i))x(i)j if j = 0

1
m ∑m

i=1 hθ(x(i) − y(i))x(i)j − λ
m θj if j > 0

(5.19)

²The distinction for j = 0 is made because, by convention, every input vector x is
padded such that x(0) = 1.
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5.1.3.4 Hidden Markov Models

HiddenMarkovModels (HMMs) are a statistical machine learning tech-
nique designed for the classication of time-series data. Developed
originally for speech recognition applications (Rabiner, 1990), HMMs
have become one of the most used machine learning techniques in re-
search.

The basic premise of HMMs is that by looking at a sequence of inputs,
or observations, we can calculate the probability of the model being in
a certain state, e.g, “gesture recognized” or “no gesture recognized”.
Thus, observations are not uniquely tied to a specic state (Marsland,
2009). This makes HMMs very robust towards variations in the time-
series data. More formally, HMMs are composed of:

• an observation alphabet V.

• an underlying (hidden) transition system with a set of states
S = {q(0), . . . , q(N)}.

• a probability distribution matrix A, where the entries ai,j describe
the probability of a transition from state qi to state qj given the
current observation:

p(q(j)
n |q(i)n−1) ≡ ai,j (5.20)

• an emission probability distribution B = bi(v) which tells us the
probability of observing a symbol v ∈ V at state q(i):

p(v|q(i)) ≡ bi(v) (5.21)

• an initial state distribution π = {π(i)} with p(q(i)0 ) ≡ π(i).

The compact notation for an HMM is therefore:

λ = (A, B, π) (5.22)

There are three fundamental problems for HMMs. The rst problem is
called the EvaluationProblem. The question is how to efficiently calculate
the probability of an observation sequence O = o1, o2, . . . , oN given the
model λ. An efficient solution to this problem is given by the Forward
Algorithm (Marsland, 2009).

The second problem of interest is the Decoding Problem. Given an HMM
λ , what is the optimal state sequence Q = q1, q2, . . . , qN given an ob-
servation sequence O = o1, o2, . . . , oN? In other words, we want to nd
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out what state sequence best explains the given observation sequence.
The Viterbi Algorithm solves this second problem (Viterbi, 1967).

To train an HMM, we need to adjust the model parameters of λ =

(A, B, π) such that P(O|λ) is maximized, e.g., training an HMM-based
gesture recognized with labeled sample gestures, in order to increase
its gesture recognition accuracy. This is referred to as the Training Prob-
lem. Through training, we obtain models that yield a high observation
probability for sequences similar to those that they were trained with.
The training problem can be solved using the Baum-Welch Algorithm
(Marsland, 2009).

In Section 5.5 we examine the performance HMMs for gesture-based
authentication.

5.2 The $3Gesture Recognizer: SimpleGesture Recog-
nition for Devices with 3D Accelerometers

The $3 Gesture Recognizer ($3GR) is a simple but robust motion ges-
ture recognition system for input devices featuring 3D acceleration sen-
sors (Kratz and Rohs, 2010b). The algorithm is designed to be imple-
mented quickly in prototyping environments and intended to be device-
independent and does not require any special toolkits or frameworks,
but relies solely on simple trigonometric and geometric calculations.

5.2.1 Motivation and Related Work

Gesture input for mobile devices can be a way to overcome their re-
stricted input capabilities and small display sizes. One of the reasons
for this is that the range of input during gesture entry is not restricted
by the size of device.

The $3 Gesture Recognizer is based on previous work³ byWobbrock et the $3 Gesture
Recognizer extends
Wobbrock’s $1
Gesture Recognizer

al. (Wobbrock and Wilson, 2007), who developed a simple “$1 Recog-
nizer” using basic geometry and trigonometry. The “$1 Recognizer” is
targeted at user interface prototyping for 2D touch-screen-based ges-
ture recognition and therefore focuses on ease of implementation on
novel hardware platforms. The authors even provide a pseudocode im-
plementation of the complete recognizer in the paper. Our contribu-
tion is in extending and modifying Wobbrock et al.’s algorithm to work
with 3D acceleration data. Instead of capturing exact pixel positions on

³Formore relatedwork on accelerometer-based gesture recognition, consult Section
2.5.3



136 5 Motion Gestures

a touch screen, acceleration data is of much lower quality because it is
prone to noise. In addition, drift error accumulates as the path of a
gesture entry is integrated. We extend Wobbrock’s original algorithm
with a scoring heuristic to lower the rate of false positives. Using actual
user input, we present an evaluation of the performance of Wobbrock’s
modied algorithm and show that this method is well suited to imple-
ment 3D gesture recognition in rapid prototyping environments.

The major contribution of this work is the creation of a simple ges-$3GR can recognize
true 3Dmotion
gestures

ture recognizer that is designed to recognize “true” 3D Gestures, i.e.,
gestures which are not limited to shapes that can be drawn in a 2D
plane. The advantage of true 3D gesture recognition is that more natu-
ral movements, such a tennis serve or boxing punches can be input by
the user.

Like the “$1 Recognizer,” our approach is quick and cheap to imple-$3GR can be
implemented quickly
in prototyping
scenarios

ment, does not require library support, needs only minimal parame-
ter adjustment and minimal training, and provides a good recognition
rate. It is therefore very valuable for user interface prototyping and
rapid application development. It can also easily be integrated into mo-
bile interfaces that take advantage of other modalities, like speech, or
touch-based interaction with RFID/NFC.

Figure 5.3: The reference gesture vocabulary containing the gesture
classes used for the preliminary evaluation. (b) describes a clockwise
circular motion, (c) a wrist rolling motion (e) stands for a gesture re-
sembling the serve of a tennis player and (j) represents a repeated rapid
forward-backwards motion. (Kratz and Rohs, 2010b).

5.2.2 Implementation

Extending thework by (Wobbrock andWilson, 2007), we present a ges-
ture recognizer that can recognize gestures from 3D acceleration data
as input. To test our algorithm we used acceleration samples obtained
from aNintendoWii Remote (WiiMote) (Lee, 2008). TheWiiMote fea-
tures an ADXL 330 Accelerometer (Analog Devices Inc., 2012)W and
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the acceleration data can be sent, as in our case, via a Bluetooth con-
nection to a PC. Our algorithm is by no means limited to the WiiMote.
It can be used in any acceleration-enabled device, for instance modern
smart-phones such as the Nokia N95 or Apple’s iPhone.

5.2.2.1 Gesture Trace

In contrast to (Schlömer et al., 2008), we do not modify or pre-process the gesture trace
contains the
differences in
acceleration vectors
over time

the raw acceleration data in any way (ltering, smoothing, etc.). To
determine the current change in acceleration, we subtract the current
acceleration value reported by the WiiMote from the previous one. We
thus obtain an acceleration delta.

By summation of the acceleration deltas, we obtain a gesture trace T
(which can be projected and plotted into a 2D plane to obtain a graph-
ical representation of the gesture (Kallio et al., 2006)).

Gesture Class 
Library Gesture Class Gesture Library1 * 1 *

Figure 5.4: UML object diagram showing the relationship between the
gesture class library, gesture classes and gesture traces.

5.2.2.2 Gesture Class Library

The gesture class library L contains a predened number of gesture traces the gesture class
library contains
training gestures for
every gesture class

for each gesture class G. We also refer to these traces as training gestures.
Figure 5.4 depicts a graphical representation of these relationships.

5.2.2.3 Gesture Recognition Problem

The basic task of our algorithm is to nd the best matching gesture
class G from a gesture class library L, for a given input gesture I. An
example set of gesture classes is given in Figure 5.3.

To nd a matching gesture class, we compare the trace ti of I to the
traces of all training gestures tGk ∈ L and generate a score table that
lists the comparison score of ti and each tGk . A heuristic then is applied
to the score table to determine if a gesture has been recognized.

The following sections describe the steps of the $3 Gesture Recognizer
in detail.
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Algorithm 1 Gesture Trace Resampling :

Input: gesture trace t, desired number of sample points
in normalized trace length N

Output: length-normalized gesture trace tN

Calculate the total length L of the gesture trace, then calculate the
increment length I = L/(N − 1)
n = 0
while n < N do
start a new segment sn
while the current segment’s length lsn < I do
– add points of the original trace to a segment sn
– backtrack along the excessive distance lsn − I along the orig-
inal trace using the unit vector obtained from the difference
of the last two points added to sn
– append sn to tN
– n = n + 1

end while
end while

Our resampling algorithm uses an approach slightly different to
Wobbrock’s version. In this way all points from the original gesture
trace t are consumed, and we obtain a resampled trace tN, which
consists of N equidistant points.

5.2.2.4 Resampling

In order for our trace to be classiable by the gesture recognition al-for classiöcation, the
number of points in
an input gesture must
be resampled to
length N

gorithm, it needs to be resampled so that the gesture trace has a xed
number N of equidistant sample points. This is because the gesture
input duration and movement speeds can vary between users, even for
the same intended gesture. In our case N = 150, which is slightly above
the average amount of acceleration deltas received while users enter a
gesture with theWiiMote. Setting N to a lower value decreases the ges-
ture recognition precision, while choosing a higher N just increases the
computation time for gesture recognition, without a signicant gain in
accuracy.

The Algorithm 1 box shows a pseudocode representation of the resam-
pling algorithm we developed.
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5.2.2.5 Rotation to “Indicative Angle” and Rescaling

To correct for rotational errors during gesture entry, the resampled rotating to indicative
angle aims to correct
for rotational
differences between
gestures

gesture trace TN is rotated once along the gesture’s indicative angle. Like
Wobbrock, we dene the indicative angle as the angle between the ges-
ture’s rst point p0 and its centroid c = (x̄, ȳ, z̄). The angle is deter-
mined by taking the arccosine of the normalized scalar product of p0

and c:
θ = acos(

p0 • c
∥p0∥ ∥c∥ ) (5.23)

The rotation along the indicative angle is then performed using the unit
vector of the vector orthogonal to p0 and c. The orthogonal vector is
obtained using the cross product of P0 and c:

vaxis =
p0 × c

∥p0 × c∥ (5.24)

Using vaxis as axis and θ as angle, we generate a rotation matrix for
rotation around an arbitrary axis to rotate all points of TN to obtain
TNθ
.

After rotation, TNθ
is scaled to t in a normalized cube of 1003 units, scaling needs to be

performed to correct
for size differences

to compensate for scaling differences between gestures. The algorithm
has now nished pre-processing our the original user input and has
obtained a gesture TM, which is ready for matching with candidate ges-
tures from the gesture class library.

5.2.2.6 Golden Section Search for Minimum Distance at Best Angle

Like Wobbrock, we use the average MSE (Mean Square Error) to cal-
culate the path distance d between TM and candidate gesture from the
gesture class library. We convert the path distance to a [0, 1] scale using
a version of Wobbrock’s scoring equation adapted to three dimensions,
where d signies the path distance and l the side length of the cube that
TM was scaled to in the rescaling step.

Score = 1 − d

0.5
√

3l2
(5.25)

Following Wobbrock’s discussion of rotation invariance of path dis- Golden Section
Search is used to
approximate the
optimal rotation
angles

tances, we have adapted a Golden Section Search (GSS) using the
Golden Ratio φ = 0.5(−1 +

√
5) to approximate the local minimum

path distance within an angular range of [−180◦ . . . 180◦], for rotation
around the three axis of the coordinate system, signied by the angles
α, β and γ. We dene a minimum cutoff angle for GSS of 2◦, in order
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to guarantee that the approximate minimum is found after exactly 11
iterations of GSS. We chose a rather large angular search range as we
could not conrm that Wobbrock’s observation that the minimum dis-
tance consistently occurs within±45◦ from the indicative angle applies
for gestures in 3D space.

It seems very likely that this does not hold true for gestures input in
3D⁴. Figure 5.5 shows the presence of a very distinct local minimum in
the vicinity of the indicative angle, notice the steep drop-off in distance
in the vicinity α = β = 180◦ which represents the center of the search-
space.

The GSS-Based minimum distance approximation is repeated for eacha score table is built
from the pairwise
distances of the
gesture entry from all
template

trace for every gesture class in the gesture class library. We thus obtain
a table of scores with classes of likely matches.

distance

�
↵

Figure 5.5: A 3D height map of the classication distance depending
the rotation of the gesture trace. The vertical axis represents distance,
whereas the two horizontal axes represent the rotation angles α and β.
In this projection, γ is xed at 0◦. Section 5.3 contains a closed-form
solution to the problem of nding the optimal rotation.

5.2.2.7 Scoring Heuristic

Wobbrock’s original algorithm did not feature a heuristic to reduce the
occurrence of false positives, which is a common problem for simple
gesture recognition algorithms operating on large gesture vocabularies
(Wobbrock and Wilson, 2007).

The matches obtained from gestures entered as 3D acceleration dataapplying our heuristic
improves the
precision of the
gesture recognition

⁴After the $3GR, we developed Protractor3D which solves the matter of nding the
correct rotation for 3D gestures by applying a closed-form solution to the problem, see
Section 5.3 for more details.
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are not as precise as strokes entered on a touch screen. To compensate
for the weaker matches, we have developed our own scoring heuristic,
which processes the score table described in the previous section.

Using this heuristic, we achieved a considerable reduction of false pos-
itive recognitions compared to Wobbrock’s original strategy of select-
ing the gesture candidate with the highest matching score to deter-
mine the recognized gesture. After sorting the score table by maxi-
mum score, our heuristic determines the recognized gesture with the
following rules:

Algorithm 2 Scoring Heuristic :

input score table S containing all the values of the distance
between the input gestures and the templates in L

output the id of the recognized gesture or “gesture not rec-
ognized”

– ε is dened as the threshold score.
– if the highest-scoring candidate in the score table has a score
> 1.1ε, then return this candidate’s gesture ID.

– else if, within the top three candidates in the score table, two
candidates exist of the same gesture class and have a score
> 0.95ε, respectively, then return the gesture ID belonging to
these two candidates.

– else, return “gesture not recognized”.

5.2.3 Evaluation

To get an initial estimate of the gesture recognition performance of our
method, we evaluated the 3$ gesture recognition algorithmwith twelve
participants, who were compensated for their effort.

Our reference gesture vocabulary contained all of the gestures used by
(Schlömer et al., 2008) as well as a subset ofWobbrock’s unistroke ges-
tures (Wobbrock andWilson, 2007), as displayed in Figure 5.3, totaling
10 unique gesture classes. Each user was asked to enter each of the 10
gestures 15 times using a WiiMote. The gesture data was recorded and
stored on a PC.

The actual gesture recognition was performed offline using the stored gesture recognition
was performed offlinegestures entered by the users. From each gesture class, the rst ve en-

tered gestures of a particular gesture class were chosen as the training
set for that class. The remaining gestures were input into our gesture
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(a) Correct Recognition Rate by Gesture Class

(b) Correct Recognition Rate by User

Figure 5.6: Average correct recognition rates with standard error, sorted by gesture class (top)
and by user (bottom). (Kratz and Rohs, 2010b).
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recognition algorithm. Knowing the gesture class of the tested ges-
ture beforehand, we recorded the number of times the gestures were
correctly recognized, incorrectly recognized or not recognized at all.

Our evaluation resulted in average (correct) recognition rate of 79.83
percent. Between test subjects, the recognition rate varied between
58 and 98 percent, with a standard deviation of 11.4. As can be seen
in Figure 5.6, the recognition rate was fairly constant across all users
and gestures, with gesture class (b) having the highest average recog-
nition rate and gesture class (j) being the most error-prone gesture.
We speculate that the low recognition rate of gesture class (j) is due
to the ambiguity of that gesture, as users varied the “sawing motion”,
which they were expected to perform, considerably. Notably, users
commented that gesture classes (h) and (i) were the most uncomfort-
able gestures to perform. Furthermore, our results indicate that our
scoring heuristic functioned acceptably, as only about 8 percent of all
detected gestures were false positives.

Our gesture recognition algorithm yielded a lower correct recognition
rate than those obtained with the system featured in (Schlömer et al.,
2008). In spite of this, we deem our correct recognition rate to be
fully acceptable given that we used substantially simpler methods, and,
which is more important, twice as many gesture classes with a signi-
cantly smaller gesture training set per class to achieve this recognition
rate.

It is likely that the nearly 20% lower recognition rate of our method
compared to (Wobbrock and Wilson, 2007) is inuenced by the fol-
lowing factors. Gestures in 3D space are more difficult for a human
to re-produce perfectly than in 2D, even for simple 2D shapes. More
important, the equipment which we used to capture the gesture infor-
mation was far from perfect, and may have contributed to the reduced
recognition rate. Instead of capturing exact pixel positions on a touch
screen, we had to rely on acceleration data. Data of this kind is of much
lower quality as it is prone to noise, and additionally, drift error accu-
mulates as the path of a gesture entry is integrated.

5.2.4 Limitations

As it is a simple algorithm, the $3 Gesture Recognizer has several $3GR has lower
performance than
more complex
algorithms

limitations. For one, in contrast to more rened methods such as those
based on HMMs, it cannot be used to detect gestures in a continuous
motion stream. Only gestures which are explicitly started and stopped
by the user, or have automatically computed start and end points, can
be recognized.
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A further limitation is the size of the gesture vocabulary. Not onlyprecision decreases
and computational
cost increases with
gesture vocabulary
size

does the number of false positive recognition rise together with the size
of the gesture vocabulary, but the computational overhead (O(N · M),
where N is the amount of motion samples, and M is the number of
training gestures in the gesture class library), due to the intensive use of
trigonometric functions, increases as well, which limits the maximum
practicable size of the gesture vocabulary to about 10-15 gestures for
current devices.

These limitations, however do not represent an impediment for the use
of our recognizer in its target domain—rapid prototyping of gesture-
based interfaces.

5.2.5 Summary and Future Work

In this Section, we presented a simple, easy-to-implement gesture rec-
ognizer for input devices equipped with 3D acceleration sensors. The
idea behind our gesture recognition algorithm is to provide a quick and
cheap way to implement gesture recognition for true 3D gestures (such
as the reference gesture in Figure 5.3 (e)), for devices equipped with
3D acceleration sensors. Our method does not require any advanced
software frameworks or toolkits. An example application area for our
gesture recognizer is user interface prototyping.

In an initial evaluation of our algorithm, we obtained gesture recogni-acceptable
recognition rates and
low implementation
time

tion rates which are comparable to those of more advanced approaches.
The advantage of our system is that it is specically targeted for use in
prototype environments, in which gesture-based interfaces or multi-
modal interfaces using gestures as one of many input components, are
needed that provide quick results with less coding andminimal training
data.

5.3 Protractor 3D

In Section 5.2 we discussed the $3 Gesture Recognizer ($3GR), a light-
weight gesture recognizer of 3D motion gestures for rapid applica-
tion development and prototyping purposes. A major drawback of the
$3GRwas that it could only heuristically approximate a good rotational
alignment between template gestures and an input gesture by applying
Golden Section Search (Section 5.2.2.6).
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However, if we assume that the point sets of a template and an input a closed-form
solution to the
rotation problem
exists under certain
assumptions

gesture are very similar (which they should be if the input gesture is
similar to the template), a closed-form and optimal solution exists. A
new classier, which we call Protractor3D (Kratz and Rohs, 2011) ex-
tends the $3GR with this closed-form solution, and we show that the
obtained precision of the algorithm is signicantly better than that of
the $3GR.

Although Protractor3D is slightly more complex to implement than Protractor3D retains
most of the desirable
properties of $3GR
and has a higher
precision

the $3GR and needs the support of a linear algebra library to calculate
Eigenvalues and Eigenvectors⁵, we feel that inherits most of the de-
sirable properties, such as ease of implementation, easy integration in
rapid-prototyping scenarios and simple calibration of the relevant pa-
rameters. What is most important, however, is that just like the $3GR,
Protractor3D requires only a low amount of training samples to func-
tion well.

5.3.1 Motivation and Related Work

Motion gesture recognition can be implemented using advanced ma-
chine learning techniques such as Support Vector Machines (SVM)
(Marsland, 2009) or Parzen Windows Classiers (PWC) (Duda et al.,
2000). However, as a growing body of recent work shows, ad-hoc or
simpler classication techniques that are mostly data-driven are grow-
ing in popularity.

On of the reasons for this is that adapting state-of-the art machine
learning techniques can be cumbersome. Most of them require spe-
cial libraries or entail a high implementation effort, due to the high
mathematical and algorithmic complexities of the approaches used. For
instance, while the theoretical concepts of SVMs should be accessible
to most developers, training SVMs requires a Quadratic Programming
(QP) solver (Marsland, 2009), which is nontrivial to implement, and is
in most cases supplied by specialized third-party toolkits. Optimizing
such advanced classiers so that they achieve their best classication
performance is likely to be beyond the grasp of a standard mobile appli-
cation developer, as this requires detailed knowledge of the workings
of a particular classier and also a great deal of experience in machine
learning.

Recent publications (Liu et al., 2009b; Schlömer et al., 2008) have simple motion
gesture recognizers
usually achieve an
average precision of
over 90%

focused on “simple” gesture recognition of 3D motion gestures. We

⁵(Horn, 1987) describes an explicit solution to nding the Eigenvalues and Eigen-
vectors, in case a linear algebra library is unavailable.
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note that this previous body of classiers performs relatively well, with
average correct recognition rates of 90%.

Protractor3D aims to signicantly improve the computational require-
ments and the precision of data-driven motion gesture recognizers. A
major problem of existing recognition techniques for motion gestures
is that the gestures cannot be recognized in a rotation-invariant way.
For instance, a symbolic gesture, such as drawing a circular shape in
the air may be performed either in the vertical or horizontal plane or
simply using a non-standard grip on the mobile device. Such rotated
input data cannot be matched accurately with training templates that
were entered using a different device posture. In the following, we refer
to this problem as the template–gesture rotation problem. Protractor (Li,
2010b), an extension to Wobbrock’s $1 gesture recognizer, addressed
this problem in 2D by extending the original algorithm with a closed-
form solution to nding the optimal rotation between template and
entered gesture.

Protractor3D is a gesture recognition algorithm based on the closed-Protractor3D solves
the template–gesture
rotation problem

form solution to the absolute orientation problem for measurements
in two 3D coordinate systems (Horn, 1987). This technique solves the
template–gesture rotation problem for motion gesture recognition. An
evaluation we conducted shows that, using actual input generated by
test subjects, Protractor3D signicantly increases gesture recognition
accuracy in comparison to an implementation that does not apply ro-
tation correction when matching entered gesture data to gesture tem-
plates.

5.3.2 Optimal Solution to the Gesture–Template Rotation Prob-
lem

The solution to the absolute orientation problem for points measured
in two different Cartesian coordinate systems (Horn, 1987) can be ap-
plied directly to solving the gesture–template rotation problem. In the
following we will only discuss Horn’s technique in sufficient detail to
implement a rotation-invariant recognition algorithm for motion ges-
tures. For the relevant mathematical derivations and correctness proof
we refer the reader back to Horn’s original work.

5.3.2.1 The Template–Gesture Rotation Problem

Let G be a gesture class represented by a set of template gestures. Each
template is a sequence of 3D accelerometer values. We consider a ges-
ture g entered by the user, again a sequence of 3D accelerometer values.
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Ideally, this gesture is entered in a way similar to a template gesture
t ∈ C. However, it is very likely that the posture with which the user
enters g is different from the one with which the user entered the tem-
plate t. This can be due to variations of the user’s grip on the mobile
device or also differences in the user’s own body posture, such as be-
ing seated or standing, while entering g. For gestural interfaces, it is
in many cases undesirable to constrain the device posture for gesture
entry, as for many applications the device’s movement ought to deter-
mine the type of gesture entered, not the device’s posture. To solve
the template–gesture rotation problem, we must nd a rotation R that
minimizes the sum of squares error between g and t.

n

∑
i=1

∥ti − R(gi)∥2 (5.26)

between the points of t and the rotated points of g. Minimizing this
sum of squares is equivalent to maximizing the scalar (or dot) product
of t and R(g) (Horn, 1987).

n

∑
i=1

R(gi)
T · ti (5.27)

5.3.3 Finding the Optimal Rotation with a Quaternion-Based So-
lution

Horn uses a technique based on Quaternions to determine the optimal
rotation R. Using the compound product q̊gq̊∗ with

q̊ = w + iqx + jqy + kqz; q̊∗ = w − iqx − jqy − kqz (5.28)

that represents R(g) utilizing Quaternions. The maximization of the
above equation can be reformulated as follows:

n

∑
i=1

(q̊giq̊∗)T · ti (5.29)

We assume here that g and t have been centered on the origin of the
coordinate system, i.e., g and t are differences of the original point se-
quences and their respective centroids g and t. This means that the
centroid of both g and t is the null vector. Horn shows that maxi-
mizing Equation 5.29 is equivalent to nding the unit Quaternion that
maximizes

q̊T Nq̊
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Here, N (see Equation 5.33is a matrix that is derived from the matrix
sum M of the products of t and g:

M =
n

∑
i=1

ti · gi
T (5.30)

M, dened by its elements can be written as

M =


Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

 (5.31)

where

Sxx =
n

∑
i=1

gx,itx,i, Sxy =
n

∑
i=1

gx,ity,i (5.32)

and so forth.

The matrix N can then be constructed from the elements of M, so that:

N =



Sxx+Syy+Szz Syz−Szy Szx−Sxz Sxy−Syx

Syz−Szy Sxx−Syy−Szz Sxy−Syx Szx+Sxz

Szx−Sxz Sxy−+Syx −Sxx+Syy−Szz Syz+Szy

Sxy−Syx Szx+Sxz Syz+Szy −Sxx−Syy+Szz


(5.33)

Eigenvector
Maximizes Matrix
Product

q̊T Nq̊ is maximized by nding the eigenvector e̊m corresponding to the
largest positive eigenvalue of N. By normalizing e̊m, we obtain the
quaternion q̊ = w+ iqx + jqy + kqz, which encodes the optimal rotation
angle θ = 2 cos−1(w) and the unit representation of the corresponding
rotation axis (qx, qy, qz)T. The optimal rotation matrix R is thus ob-
tained from θ and the imaginary parts of q̊ as follows.

Let s = sin(−θ), c = cos(−θ), then

R =


q2

x(1−q2
x)c qxqy(1−c)−qzs qxqz(1−c)+qys

qxqy(1−c)+qzs q2
y(1−q2

y)c qyqz(1−c)−qxc

qxqz(1−c) qyqz(1−c)+qxs q2
z+(1−q2

z)c


(5.34)
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5.3.4 Protractor3D Gesture Classiöer

Using the optimal solution to the gesture – template rotation prob-
lem, we can now formulate the Protractor3D gesture classication al-
gorithm.

5.3.4.1 Input and Output

We dene
L =

∪
Gi, i ∈ N

as the set of all gesture classes (or gesture library), i.e. the differ- Protractor3D önds
the gesture with the
lowest distance to the
input gesture g

ent gesture movements that Protractor3D is trained to detect. Each Gi
contains a number of training gestures tGi ,k, k ∈ N. For a given input
gesture g, Protractor3D will nd the template tGx ,y ∈ L with the lowest
Euclidean distance, corrected for rotation, with respect to g.

5.3.4.2 Subsampling, Scaling, Centering

In order for gestures and templates to be comparable, we subsample⁶
every input gesture to consist of a xed number of points. We chose
n = 32 as the number of subsampled points per gesture, as a higher
n did not have a noticeable effect on the gesture recognition rate. We
followed a subsampling strategy similar toWobbrock et al. (?), adapted
to work with 3D data (see also Section 5.2.2.4, Algorithm 1).

After subsampling, the input gesture is scaled to t into a cube of a
xed side length, in our case s = 100. Finally, to be able to perform
optimal alignment of the gesture data, we calculate the centroid of the
input gesture and subtract it from all gesture points, thus centering the
gesture. When creating gesture templates for the gesture library, user
inputs are subsampled, scaled and centered in the sameway before they
are added to the gesture library.

⁶Subsampling is not the only strategy which can be applied here. The goal of sub-
sampling is, in essence, only to obtain an equal number of sample points n with that
of the template gestures. An alternative approach would be, for instance, to align the
input gesture and template gestures with Dynamic Time Warping (DTW) (Sakoe and
Chiba, 1978). N-Dimensional variations of DTW could also be used to index the best
matching candidate template for a given gesture class, if multiple templates per gesture
class are available in the gesture library (Keogh and Ratanamahatana, 2005).
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5.3.4.3 Gesture Recognition

In the main part of the algorithm the gesture input, transformed as
described in the previous section, is compared to every template in the
gesture library, using rotational correction, to minimize the effects of
device posture. The algorithm uses the Euclidean distance as themetric
to compare the distance between the template and the input gesture.
An advantage of Protractor3D is that it provides the angle of absolute
rotation θ between an input and the template during comparison steps.
Using θ helps Protractor3D decide if the template should be rejected as
a possible recognition candidate. This does not need to be applied if
complete rotation-invariance is desired.

In our implementation, we have set the cutoff angle θcut to ±45◦. If allgestures at extreme
rotations are
discarded

gestures in the gesture library have been rejected due to θ being greater
than θcut, Protractor3D recognizes the input gesture as “unrecognized.”
Otherwise, Protractor3D reports the gesture class of the template with
the lowest Euclidean distance with respect to the input gesture as the
recognized gesture class.

were not taken into account in this authentication scheme.

Previous work using accelerometer-based gesture authenti-

cation for mobile devices has been conducted using a Dy-

namic Time Warping (DTW)-based approach. Matsuo et

al. [6] achieved an equal error rate (EER) of 14.7%, in which

solely arm swing gestures were used to identify the users.

They identified a problem with fluctuations of the move-

ments of individual users over time and devised a template

adaption scheme. Liu et al. [5] built a ’lightweight” authen-

tication scheme with 3% EER for individual authentication.

However, their scheme is significantly affected by visual dis-

closure of the gestures, i.e. attackers trying to duplicate an

observed gesture will get access more easily. In that case,

the false positive rate rises up to 10%. In the present work,

we evaluate classification algorithms that seem to yield sig-

nificantly improved (lower) false positive rates for this type

of scenario and indicate that visual disclosure will not make

it significantly easier for attackers to gain unwanted access.

Farella et al. [3] applied more complex machine learning

techniques to the problem of mobile gesture recognition. They

performed feature reduction using principal component anal-

ysis (PCA) and local linear embedding (LLE) and classified

input gestures with a k-nearest-neightbor (KNN) classifier.

They achieved a maximum correct recognition rate of 97.5%

but in contrast to the work presented in this paper they nei-

ther discussed the effects of feature selection and the dimen-

sionality of PCA feature reduction nor did they compare the

classification results of their KNN classifier with those of

other popular classification algorithms.

DATA CAPTURE AND FEATURE SELECTION

We captured data from 17 participants over a period of three

weeks. In total 5610 gestures were recorded. There were 9

males and 8 females of whom 15 were right-handed and two

left handed. The participants’ ages ranged between 20 and

32 years (m=23.8, sd=3.23).

Sensor Package and User Sampling

We used the SHAKE SK6 sensor package [4] which has al-

most the same size as a matchbox. This enabled the users to

grasp it in a way one would normally hold a mobile phone

in order to enter a gesture for authentication. The SHAKE

SK6 can record three-dimensional acceleration and angular

rate signals in three axes and transfer this information to a

computer via BlueTooth. The acceleration and angular rate

signals are recorded with 100 Hz sampling frequency. The

start and the end of a gesture were manually delimited by

the participant by pressing a switch on the sensor. The data

collected between the start and stop of a gesture was labeled

with the ID-number we defined for the current participant.

We collected data for eleven different gestures (see Fig. 1).

The gestures we chose were partially inspired by previous

work in the domain of gesture recognition [9, 10]. We think

this is beneficial as the recognition results for several ges-

tures are now comparable to the results in previous work.

We collected a total of 5610 gesture inputs containing accel-

eration and angular rate.

Data Pre-Processing

Figure 1. The gesture set entered by the users in the data collection
phase of our studys. Gestures (1)-(6) represent abstract shapes. Ges-
tures (7)-(10) were chosen as examples of everyday movements and ges-
ture (11) was chosen by the user.

Figure 2. Dataset ready for use in training or classification.

We extracted four features from the six components of the

acceleration and angular rate data: mean, standard devia-
tion, energy and pairwise correlation (15 attributes). Fur-

thermore, we added the gesture duration as an additional

feature. The usefulness of these features has been demon-

strated in prior work by Ravi et al. [8]. Thus, our feature set

contains 34 attributes in total. For each gesture entry, one

feature vector was generated.

Datasets Figure 2 shows a built-up dataset ready for use as a

training or test set with the classification algorithms. Such a

dataset is created for each type of gesture (circle, square,...).

The last value of a feature vector is the class label. Class

1 corresponds to the gesture entered by a user (the person

who should be legitimately authenticated) and class 0 corre-

sponds to the gesture entered by one or many attackers (all

other participants). To test the authentication performance,

the dataset is split into two subsets. The first set is a training

set, which contains the samples of the legitimate user and the

attackers, is used to build a classification model. The second

set, a test set which contains samples of the user and the at-

tackers, is used to test the model obtained from the training

set.

Dimensionality Reduction We used principal component anal-

ysis (PCA) to transform the data from a high dimensional

space into a feature space with fewer dimensions. PCA con-

Circle Square Angular8

LeftRight Edges Zorro

Figure 5.7: This set of iconic gestures is a subset of the gestures we
used in the study. (Kratz and Rohs, 2011).

To evaluate the recognition performance of Protractor3D, we recorded
gestures from ten paid test subjects. This approximate number of sub-
jects has been also been used in previous studies on motion gestures
(Liu et al., 2009b; Schlömer et al., 2008). The gesture set consisted
of 11 gestures, six of which consisted of iconic gestures (see Figure
5.7), partially used in previous work by (Schlömer et al., 2008). The
other half of the gestures was derived from the requirements of a re-
lated study on mobile gestures conducted in our group (Kirschnick
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et al., 2010), which includes a user-dened gesture (own), everyday
movements (shakehand, shakearm) and also some usual movements per-
formedwithmobile phones (“take out of pocket”, “take out of handbag”).

Each test subject recorded at least 40 repetitions of every gesture in
the gesture set. A SHAKE SK6 (SAMH Engineering Services, 2009)W

sensor package was used to capture the data at a rate of 100 Hz. The
accuracy and sampling rate of the SHAKE SK6 acceleration sensor is
comparable to those integrated into modern smartphones. To delimit
individual gesture entries, the users were required to press and hold
the navigation button of the SHAKE SK6 during gesture entry, and to
release the button upon termination of the gesture entry. To determine
the benet of rotational correction that is delivered by Protractor3D, we
measured the Correct Recognition Rate (CRR) of Protractor3D with rota-
tional correction, as well as Protractor3Dwithout rotational correction,
which in the following we refer to as MSE (mean square error).

5.3.4.4 Training and Validation Set

In order to evaluate the performance of Protractor3D, we dened train- 40:60 split between
training and
validation sets

ing and validation sets for each of the gesture types on a per-user basis.
We chose a 40:60 split between training and validation sets. When
constructing the training and validation sets, we took only the rst 40
gesture entries per gesture class, and discarded the rest (if present).
Thus, for each gesture class the training set consisted of the rst 16
gestures, and the remaining 24 were used at the validation set.

As a consequence, we dene CRR as the number of correctly recog- Protractor3D was
trained on the last
öve gestures of the
training set

nized gestures divided by the size of the validation set. To “train” Pro-
tractor3D, we used the last ve gestures of the training set for each
gesture, for each user. We chose this low number of training samples
to demonstrate the ability of Protractor3D to produce relatively robust
gesture recognition results with only a few training samples. This prop-
erty is advantageous for users seeking to rapidly add new gestures to
their mobile device or developers who wish to rapidly prototype new
gestures in a mobile user interface they are creating.

5.3.5 Recognition Results

Figure 5.8 shows the recognition results using Protractor3D with a
training set size of 5 per gesture class. “Angular 8” was the gesture with
the highest correct recognition rate of 98.9%, whereas “shakearm” has
the lowest correct recognition rate of 83.3%. The average CRR over all
gestures was 91% with a standard deviation of 4.5%. The reason for
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Figure 5.8: The average correct recognition (CRR) rates by gesture
for Protractor3D, with a training set size of 5. The error bars show
the 95% condence intervals of the gesture CRR means. The global
average CRR was 91%. (Kratz and Rohs, 2011).

these differences in gesture recognition rate is unclear, but it could
be that the movements corresponding to the gestures with a lower
correct recognition rate may have been more ambiguous to the test
subjects than the gestures which achieved a higher gesture recognition
rate. This ambiguity is also reected, for instance, in the relatively large
standard error in the average recognition of leftright, where we did not
specify the exact way this movement was to be performed.

5.3.6 Effect of Rotational Correction

To verify if Protractor3D has a noticeable correction effect on ro-Protractor3D yields
the same CRR for
each rotation angle

tated input data, we repeated the evaluation of the algorithm with pre-
rotated input gestures and compared the CRR of Protractor3D and (un-
rotated) mean square error (MSE) matching. We chose (1, 1, 1)T as the
rotation axis and pre-rotated the input gestures by 0, 15, 30, 45, 90
and 180 Degrees (positive and negative). As can be seen in Figure 5.9,
MSE is highly unstable under rotation, yielding very poor recognition
results. In contrast, Protractor3D yields the same CRR for each rota-
tion angle, thus showing that Protractor3D is rotation-invariant and
truly nds the optimal rotation compensation for any given rotation of
the input points.
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Figure 5.9: Polar plot of the inuence of rotation on the correct recog-
nition rate. Protractor3D has a constant CRR under all rotations and
thus is rotation-invariant, whereas MSE-only is highly susceptible to
changes in the rotation of the input gestures, and in some cases falls
back to zero recognized gestures. (Kratz and Rohs, 2011).

5.3.7 Discussion

Protractor3D is a lightweight recognizer for motion-based 3D gestures Protractor3D makes
searching for the
optimal rotation
unnecessary

that solves the problem of nding the optimal rotation between an in-
put gesture and a template gesture by employing a closed-form solu-
tion. This solution to the template–gesture rotation problem is a major
step over exhaustive search, since the latter requires nding the opti-
mum in a three-dimensional search space. A brute force approach of
checking all possible rotations for all templates in the gesture library is
thus out of the question, in particular for resource-constrained mobile
devices.

Protractor3D applies a closed-form solution to nding the optimal Protractor3D requires
only a low number of
training gestures but
still maintains an
acceptable
recognition rate

rotation based on a quaternion representation originally proposed by
Horn (Horn, 1987). This approach leads to an efficient and accurate
gesture recognizer that can be implemented easily. Protractor 3D re-
quires only a low number of training gestures and thus imposes a low
overhead in design and prototyping phases of gesture-based interfaces,
in which designers (or later also users) wish to come up with their own
custom gestures. The design and personalization of gesture-based in-
terfaces thus becomes more approachable by designers as well as users.
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5.4 Gesture Based Authentication

At present, mobile devices are used almost ubiquitously for a growing
number of tasks and access to online services. An increasing amount
of sensitive data is accessed, stored and transferred through mobile
devices, exposing mobile device users to potential attacks.

To preventmisuse such as copying ormodifying stored data, it is impor-
tant that only the genuine user is allowed to access security-sensitive
features of the device. This protection can be achieved by employing
a mechanism for user authentication, in order to verify the identity of
the current user.

From the user’s perspective, any authentication mechanism is an ob-
stacle, as the goal of security can be described as “making undesirable
actionsmore difficult” (Kainda et al., 2010). Users often regard authen-
tication mechanisms as annoying and avoidable obstacles as authenti-
cation does not support them in fullling their tasks. To be successful
an authentication mechanism needs to be secure as well as usable. As
the interaction with mobile devices is usually short and happens very
frequently (Falaki et al., 2010), it is necessary that a mechanism must
be not annoying and t in the context of the interaction. The usabil-
ity of an authentication mechanism can either “make or break system
security” (Cranor and Garnkel, 2005).

In the following we⁷ present a behavioral biometric authentication
mechanism for handheld mobile devices based on personalized motion
gestures. The device measures the user movements using a built-in
3D accelerometer and 3D gyroscope. We performed a user study eval-
uating several attack scenarios. Our results show that it is technically
possible to differentiate between persons using gesture data obtained
from accelerometers and gyroscopes. Furthermore, we found several
usability advantages in comparison to existing authentication mecha-
nisms.

5.4.1 User Authentication Mechanisms for Mobile Devices

Most authentication mechanisms for mobile devices are based upon
shared secret between the device and the genuine user. Common ex-
amples are passwords and personal identication numbers (PINs). The
concept of a shared secret is easy to implement and well understood by
users. However, such mechanisms have certain limitations on mobile

⁷The implementation and user study was conducted by Dennis Guse in is Master’s
Thesis (Guse, 2011).
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devices because of their limited text input capability. Entering a com-
plex password correctly on small physical or even virtual keyboard is de-
manding task. PIN entry usually demands the user’s visual attention,
which in many mobile situations might not be possible or impracti-
cal. An inherited problem of knowledge-based mechanisms is that the
genuine user needs to memorize a complex secret that can be recalled
easily but that isn’t guessable easily by attackers. The memorization of
passwords or PINs is thus not a trivial task.

Biometric authentication mechanisms are a promising alternative as
performing authentication this way is usually less demanding mentally,
because one or more inherent physiological or behavioral features of
the user is used for authentication. Physiological features use static
measurable properties of the user’s body, such as nger prints. Behav-
ioral features are usually more complicated to verify than physiological
ones, as they depend on the actual context of the user, i.e., her inputs
during interaction.

Common examples of behavioral features are keystroke dynamics and
written signatures. Generally, user authentication using biometric fea-
tures is more complicated in comparison to knowledge-based mech-
anisms, because measuring the properties of humans is complicated.
The sensors used for measurement are prone to noise and more impor-
tantly, biometric features may vary over time. For this reason, biomet-
ric mechanisms need to be robust under a certain variance. However,
they do remain benecial in many situations.

5.4.2 Gesture-Based Authentication Mechanism

We measure gesture input data from a 3-axis accelerometer as well as
a 3-axis gyroscope. Using a gyroscope adds additional features to the
data and can measure rotations that cannot be derived from analysis of
accelerometer data, for instance when the accelerometer is oriented in
the horizontal and a rotation is performed in the vertical axis—in this
case the accelerometer can only measure minimal acceleration, thus no
valid rotation data can be obtained.

We chose to use personalized motion gestures for authentication as
this does not require the users to learn a gesture from some arbitrary
set but rather use their own movement preferences. We also believe
that this makes reproducibility easier and also makes it more difficult
for gestures to be forged. To delimit the beginning and the end of a
gesture during input, we used a push-to-gesture button, because this is
the simplest approach and we didn’t want an unpredictable automatic
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segmentation technique to confound our results. Indeed, the inter-
action with the push-to-gesture button becomes part of the gesture
through small accelerations registered while the user is pushing the
button, making attacks more difficult.

The authentication mechanism uses the raw sensor readings from both
sensors. The mechanism determines a similarity score for sensor read-
ings representing an input gesture in comparison to a set of enrollment
samples and then uses a threshold to determine if the input gesture is
a valid authentication. An input gesture is accepted as valid if its simi-
larity score lies below the dened threshold.

We evaluated several variants of Dynamic Time Warping (DTW) and
Hidden Markov Models (HMM) for calculating the similarity score.
These machine learning techniques are well suited to classifying se-
quential information and are able to cope with variations in timing,
which is typical for gesture entry.

We implemented our variants of based on the formulation by (Sakoe
and Chiba, 1978), using the weighted Euclidean norm (Redzic et al.,
2010), to compensate for differences in scale between accelerometer
and gyroscope data. A DTW model for an input gesture is consists of
one data sequence. This can either be one of the enrollment (training)
samples, usually the one with the smallest distance to the input ges-
ture, or the sequence best modeling the input gesture can be extracted
from the entire enrollment set using Crosswords Reference Templates
(CWRT), which leads to signicantly improves the recognition rate
(Abdulla et al., 2003).

% As an alternative to DTW, we studied rst-order HMMs with a mul-
tivariate Gaussian emission distribution (Rabiner, 1990) using the nor-
malized likelihood as a metric for similarity. The HMM’s variation in
length was constrained, in order to limit the maximum allowed differ-
ence in length of unknown inputs in comparison to the mean length of
the enrollment samples.

5.4.3 Attack Types

Authentication mechanisms are only useful if they achieve a certain se-
curity performance by being able to resist attacks. An attack is deemed
successful if an attacker is able to forge the gesture of a genuine user.

We distinguish between three types of forgeries depending on the
knowledge available to an attacker about the genuine gesture:
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• Naïve: an attacker that has no knowledge about the genuine ges-
ture can only create naïve forgeries (Ballard et al., 2007).

• Semi-Naïve: if an attacker has knowledge about the general
shape if the genuine gesture, he can perform semi-naïve forgeries.

• Visual: The most sophisticated class of attacks is based upon
visual disclosure of the genuine gesture (Liu et al., 2009a). We
call these visual forgeries.

It is clear that the more knowledge about the genuine gesture is avail-
able to an attacker, the more likely it is that he can produce successful
forgeries. However the attacker must also be able to physically repro-
duce the gesture with enough precision. The difficulty for the attacker
thus depends on the complexity of the genuine gesture as well as the
ability of the genuine user to reproduce the gesture with a variance that
will pass the threshold set by our mechanism.

5.4.4 User Study

We conducted two user studies to evaluate three key aspects relevant
to gesture-based user authentication on mobile devices: feasibility, us-
ability and resistance against attacks.

(a) Left-Right (b) Circle (c) Left-Right-Arc

(d) Inönity (e) Triangle (f) Hand Rotation

Figure 5.10: Visualization of the gestures we designed for use in the
rst user study.

Feasibility addresses the question whether gesture-based authentica-
tion (GBA) is in general possible using motion sensors embedded in
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mobile devices. For the system to be usable, it needs to be perceived
by users as a useful alternative or even a replacement for currently avail-
able authentication mechanisms.

In the rst study 15 participants simulated the perspective of genuine
users, so that we could study the feasibility and usability aspects of our
system. We predened six gestures for use with our system (Figure
5.10). This way, we avoided burdening the participants with inventing
their own gestures, giving them more time to understand the authen-
tication mechanism itself. Also, this allowed us to evaluate semi-naïve
forgeries. The gesture labels helped the test subjects to attach meaning
to the gestures, such that they could memorize them more easily.

Each participant provided 5 enrollment and 15 validation samples for
each predened gesture class. The enrollment samples were used to
build a model for each gesture class and the validation samples were
used to test the model’s accuracy. The enrollment samples and 10 vali-
dation were recorded while the user was standing. Video recordings of
the rst user study were used in the second user study to evaluate the
risks due to visual disclosing the genuine gesture. We selected two in-
terpretations of each designed gesture and showed the video recordings
of the enrollment samples to the so-called forgers. In this study partic-
ipated 10 persons that not participated in the rst user study, who did
not know the visualization and description of the gestures.

We recorded the gesture entries during the rst user study so that we
could use them in the second user study to evaluate the risks due to
visual disclosure of the genuine gesture. We selected two interpreta-
tions of each designed gesture and showed the video recordings of the
enrollment samples to each participant (“forger”) of the second study.
In total, 10 subjects participated in the second user study. None of
those test subjects had participated in the rst study, and the visual-
ization and description of the gestures was unknown to them.

We developed two questionnaires to evaluate the usability as well as
the social acceptability of GBA. For the user study, we implemented an
application for an iPhone 4, which displays the push-to-display button
and logs motion sensor data at a frequency of 80 Hz.

5.4.5 Results

The results of the user study are promising. We found that a length
constraint of ±23% around the average sequence length of the enroll-
ment gestures performs well. This constraint includes 97.3% of the
enrollment and 90.7% of the validation samples. It excludes 58.3% of
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the naïve and semi-naïve forgeries and 36.9% of the visual forgeries.
For DTW, we obtained the best results with a slope constraint of 1 and
a non-diagonal alignment penalty. The integration of multiple samples
for matching performed better than using only the enrollment sample
with the lowest distance.
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Figure 5.11: ROC for the 12 interpretations attacked in the 2nd user
study. The x axis shows the false rejection rate (FRR) and the y axis
shows the false acceptance rate (FAR). (Guse, 2011).

As expected, naïve forgeries were rarely accepted as genuine by both
algorithms. In Figure 5.11, the Receiver Operating Characteristics
(ROC) of HMM and DTW for semi-naïve and visual forgeries are com-
pared with the attacked interpretations. DTW performs as expected,
because visual forgeries are more likely to be accepted than semi-naïve
ones.

We obtained an unexpected result for HMMs. Above a certain thresh-
old, HMMs accept a larger number of semi-naïve forgeries than visual
forgeries. A possible cause for this is the use of likelihood as similarity
metric. In general, HMMs perform better for visual forgeries than all
variants of DTWwe studied. In a detailed evaluation of DTWwe found
that 5 of the 12 attacked interpretations achieved a False-Rejection-
Rate (FRR) of less than 20% without accepting any of the visual forg-
eries. With one model, we achieved a FRR of 0% and a single model
was completely unusable with a FRR of 93%.

According to the evaluation of the questionnaires, none of the partic-
ipants of the rst user study perceived the mechanism as unnatural,
annoying or fatiguing. 2/3 of them would use gestures for authenti-
cation in public places. Nevertheless, 7 participants believed that a
gesture is easily forgeable. The majority of forgers believed that they
can create an exact forgery for 9 of the attacked gestures. However, as
we demonstrated with the second user study, this is not true.
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5.4.6 Discussion

Through our user study, we have shown that GBA is feasible—an iden-
tication based upon biometric input measurements of a user’s move-
ment can be accomplished using the accelerometers and gyroscopes
embedded in mobile devices.

Our results indicate that GBA is usable. It was not perceived negatively
or as annoying or tiring by any participant. The only issue was that
gestural authentication may not be suitable in certain social contexts.
Possible solutions for this are to retain the existing (and socially non–
critical) authentication mechanisms alongside GBA, or to extend the
GBA mechanisms with implicit authentication mechanisms. There has
already been work in this domain, i.e.(Jakobsson et al., 2009).

We have shown that GBA has the potential to be secure. Although, as
shown in Figure 5.11, the FRR for a “reasonable ” FAR still remains
high, with a FRR > 20% for a FAR < 5%, increasing the number of
training templates or applying a more sophisticated learning algorithm
than DTW should signicantly improve these values. The number of
training templates should be trivial to increase, as the user supplies a
new template upon every successful authentication. Of course, DTW
will only scale performance-wise up to a certain number of templates.
Thus, templates with lower similarity will have be discarded over time.
This scheme would also help the system adapt to changes in the users’
movement characteristics over time. Alternatively, a more sophisti-
cated supervised learning algorithm such as an Articial Neural Net-
work. Every successful authentication could then be used for an addi-
tional optimization step of the model. Even though it remains to be
seen if the security level of PIN entry can be achieved with GBA, the
gesture-based technique is a promising candidate for authentication
tasks that need to be used repeatedly in low- to medium-risk scenar-
ios, such as device unlocking or accessing highly frequented services
with a relatively low damage potential, such as chat applications or so-
cial networks⁸.

Finally, what is interesting to note is that the perception of the security of
our system was lower than its actual performance, as most of the forg-
ers believed they could successfully forge legitimate entries. A study
may need to be made with professional movement practitioners, such
as mimes or dancers, to see if the security of the system lies mainly
in the ineptitude of the attackers to properly mimic the movements of
the legitimate users or if the biometric movement characteristics that

⁸It is likely that individual users will have differing views on what the risk level
of a particular task is. This risk-assessment is given solely for exemplication and
represents the author’s opinion on the stated scenarios.
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we measure through acceleration and rotation are truly unique. Future
work may also be directed at identifying the exact biometric invariants
that are measured through GBA.

5.5 CombiningAccelerometer andGyroscopeData for
Motion Gesture Input on Mobile Devices

A growing number of smart phones are being equipped with 3-axis gy-
roscopes in addition to 3-axis acceleration sensors. Combining the data
from these two sensor types provides signicantly more motion infor-
mation compared with using only an accelerometer. This increase in
motion information can be used for more precise recognition of motion
gestures, allowing more complex gesture types to be used in mobile
user interfaces, since the users can also add rotational components to
their motion gesture inputs. Motion gestures can be used for a vari-
ety of applications on smart phones. These include gaming interfaces,
where, for instance, the user interacts via a spell casting metaphor (Bal-
lagas et al., 2007), entering special modes (Ruiz and Li, 2011), naviga-
tion tasks (Ruiz et al., 2011) or user authentication (Guse, 2011).

On devices without a gyroscope, rotation can be approximated using
accelerometers alone by using the direction of gravity as a reference
for tilt. However, this approximation is not reliable as in certain cases,
i.e. when the device is rotated in the plane perpendicular to gravity, no
tilt and thus rotation information can be obtained.

We cannot assume that, in general, developers of mobile applications
have profound knowledge of machine learning algorithms, let alone the
skills to implement them efficiently. However, it is desirable to have
gesture recognizers for motion gestures on mobile devices that can be
used early in development of an application. This requires such algo-
rithms to be easy to implement and to tune. Template-based techniques
such as nearest-neighbor search are generally easy to implement. How-
ever, naïve template-based techniques will generally not compensate
for variations in gesture execution time.

We cannot assume that, in general, developers of mobile applications
have profound knowledge of machine learning algorithms, let alone
the skills to implement them efficiently. However, it is desirable to
have gesture recognizers for motion gestures on mobile devices that
can be used early in the development of an application. This requires
such algorithms to be easy to implement and to tune. Template-based
techniques such as nearest-neighbor search are generally easy to im-
plement. However, naïve template-based techniques will generally not
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compensate for variations in gesture execution time. A popular algo-
rithm that does compensate for differences in time series is Dynamic
TimeWarping (DTW) (Sakoe and Chiba, 1978). Protractor3D (Section
5.3) is a template-based technique developed for 3D acceleration data
that compensates for rotational derivations between input sequences
and templates by nding the optimal registration between input points
and templates, in a way similar to Protractor (Li, 2010b), which only
works with 2D data. A problem with Protractor3D is that this algo-
rithm does not work with data of dimensions higher than 3.

In the following, we present a consensus-based approach using two in-
stances of a template-based gesture recognizer (such as Protractor3D
or DTW) to perform motion gesture recognition on the 6-D data ob-
tained from an accelerometer-gyroscope pair. By analyzing a large cor-
pus of motion gesture entries by users, we show that the combination
of accelerometer and gyroscope data increases the gesture recognition
rate by up to 4% on our data set. We show that combining accelera-
tion data with rotation data from a 3-axis gyroscope will improve the
gesture recognition rates for mobile motion gestures, and we give rec-
ommendations on the choice of a gesture recognizer dependent on the
nature of the data set and the available computational resources.

5.5.1 Extending Protractor3D with Gyroscope Data

By design, Protractor3D cannot use data of a higher dimensionality
than 3. This is inherent in the mathematics it uses to calculate the
optimal registration between input points and templates. A simple ex-
tension to add support for gyroscope data in addition to accelerometer
data is to run a second instance of Protractor3D in parallel on the gy-
roscope data. The remaining challenge is then to reconcile the two
recognition results in order to determine which gesture has been rec-
ognized.

We propose aweighted approach that depends on the order of similarity
of comparisons between input gestures and stored templates, i.e. tem-
plates that are less similar to the current input have a lower inuence
on the nal recognition result. Our results indicate that the match with
the lowest distance (or highest similarity) is most probably the gesture
recognized. In other words, comparisons with a lower similarity are
less likely to contribute to the decision on the recognition result.

Algorithm 3 shows pseudocode for the data combination algorithm
(DCA) we devised. The DCA can be generalized easily to combine the
results for more than two sensor data types.
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The only parameter of the algorithm that needs to be chosen specif- bias is the only
parameter that needs
to be set by the
developer

ically by the developer is bias. The optimal value for bias needs to be
determined by analyzing existing user inputs. Figure 5.12 shows the
inuence of bias on Precision and Recall⁹ results for our data set. In our
case, the optimal value of bias lies between 1.4 and 2.4.

Algorithm 3 Data Combination Algorithm (DCA) :

Inputs accResults acceleration comparison results
(list of gesture IDs sorted in de-
scending order by similarity to the
input)

gyrResults acceleration comparison results
(list of gesture IDs sorted in de-
scending order by similarity to the
input)

N number of items in each of the com-
parison lists

bias bias value determining inuence of
weaker comparisons

nGestureIDs number of gesture classes (each
class has a distinct ID)

Output bestGestureID the ID of the best matching gesture

counter = float[nGestureIDs]
for i=0 to N-1 do
accRecogID = accRresults[i]
gyrRecogID = gyrResults[i]
counter[accRecogID] += 1.0/(bias∗i +1.0)
counter[gyrRecogID] += 1.0/(bias∗i +1.0)

end for
bestGestureID = argmax(counter)
return bestGestureID

5.5.2 Analysis of Combining Accelerometer and Gyroscope Data

To analyze the effects of combining 3-axis acceleration data with 3-axis
rotation data for recognition by motion gesture recognizers, we present
gesture recognition results for the following recognition algorithms:
Protractor3D, DTW and Regularized Logistic Regression (LR) (Lee et al.,
2006). We chose DTW due to its popularity. We chose LR because it is,
in contrast to DTWand Protractor3D, a feature-based supervised learn-
ing algorithm that performs well with higher-dimensional data and it

⁹See Section 5.5.2.2, Page 165, for a denition of Precision and Recall.
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Figure 5.12: The plot shows the inuence of the bias variable in the
weighted reconciliation algorithm. In this case N = 5. Choosing a
bias > 0.8 does not improve the gesture recognition rate further, while
giving each result an equal “vote” (bias = 0) generally results in a lower
gesture recognition rate.

is still fairly easy to implement. LR is very efficient, since classication
basically consists of multiplying a weight vector θ of a xed length N
(where N corresponds to the amount of features) with the features of
the gesture input. Thus, compared with Protractor3D and DTW, the
execution time of LR is independent of the number of training samples
used.

5.5.2.1 Gesture Data Set

The gesture data for our analysis is the same that we used for the user
authentication study in Section 5.4. However we used on only the ges-
tures entered by the 15 users of the rst part of the study (Section
5.4.4).

For all further analysis, we use the rst 5 entries as training templates
and the last 10 entries for validation. In total, we recorded 15× 15× 6 =

1350 gesture entries. 20 gesture entries had to be discarded, because
they had too few samples due to erroneous entry. Our nal data set
size comprises 1330 gestures. Each gesture entry contains an average
of 127 time-based data samples (σ = 38.4).

The hardware we used for recording was an iPhone 4 running a custom-
built application that logged the gesture data and implemented the
push-to-gesture button. We recorded the following data from the
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iPhone 4’s accelerometer¹⁰ and gyroscope¹¹ at a frequency of 80 Hz: ac-
celeration, rotation rate and attitude¹². All acceleration values were mea-
sured in g, all rotation was measured in radians/second and attitude
was given in Euler angles.

5.5.2.2 Recognition Results

We evaluated Protractor3D, DTW and LR for motion gesture recog-
nition on the data set. As input to the algorithms, we used the fol-
lowing data and combinations thereof: acc (acceleration), rot (rota-
tion), att (attitude), acc-rot (acceleration + rotation), acc-att (acceler-
ation+attitude).

We congured Protractor3D to subsample and normalize the gesture
entries to contain 64 samples. In order to keep the length of the fea-
ture representation for each gesture constant, we used the subsampled
data generated by Protractor3D as input for LR. Each gesture was thus
represented as a feature vector with a length of 64 × 3 = 192 for acc, rot
and att and 64 × 6 = 384 for acc-rot and acc-att. DTW used the unmod-
ied sensor samples as input, as this algorithm is specically designed
to cope with length differences between inputs and templates. Our
DTW implementation used the Euclidean (L2) Norm as the distance
function. We did not apply any step constraints for calculating the dis-
tance matrix.

Classiöer Performance Metrics As quantitative metrics for classier
performance, we use the Precision (P), Recall (R) and the F1 Score (F1).
Given the amount of true positives tp, the amount of false positives f p
and the amount of false negatives f n.

Precision is dened as:

P = tp/(tp + f p) (5.35)

i.e., the ratio of correct gesture recognitions out of all generated pre-
dictions.

Recall is dened as:
R = tp/(tp + f n) (5.36)

¹⁰STMicroelectronics STM331DLH 3-axis MEMS accelerometer
¹¹STMicroelectronics L3G4200D (equiv.) 3-axis MEMS gyroscope
¹²attitude represents the absolute change of rotation with respect to an initial refer-

ence frame, i.e. the device attitude at the beginning of a gesture recording.
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i.e., the ratio of correct gesture recognition out of all gestures in the
data set.

F1 is dened as:

F1 = 2
PR

P + R
(5.37)

which represents a combined metric for the accuracy of a classier and
is based on the harmonic mean. The F1 Score ranges from 0 to 1, where
1 is the best score obtainable.

Figure 5.13 shows the results for Precision (P), Recall (R) and F1-Score
(F1) for the classiers Protractor3D, DTW, and LR for each of the com-
binations of data types acc (acceleration), rot (rotation), att (attitude),
acc-rot (acceleration + rotation), acc-att (acceleration+attitude). The
combined data was evaluated using the DCA. In addition, we evaluated
DTW and LR without the DCA by using 6D feature vectors obtained
by merging each 3D acceleration sample with its rotation counterpart.
DTWwith acc-rot and the DCA achieved the best result with an F1 Score
of 0.95, followed by Protractor3D using the same settings with an F1

Score of 0.92. The best F1 Score for LR was 0.86 using combined ac-
celerometer and gyroscope data without the DCA. The lower score for
LR suggests that a larger amount of training samples may be needed in
order to obtain better results for this algorithm.

Algorithm Execution Times For motion gesture recognizers, gesture
recognition performance is not the only important criterion. The ex-
ecution time is, arguably, equally important, especially on mobile plat-
forms. The runtime of template-based approaches Protractor3D and
DTW directly depends on the number of training templates, whereas
this does not affect LR.

To exemplify this for our data set, Protractor3D and DTW have to com-
pare each of the 450 template gestures with 900 gesture entries, result-
ing in a total of 405,000 necessary comparisons for a single pass over
the data set. For each comparison, DTW needs to construct a distance
matrix with a size of n × m, where n is the number of elements in
the template and m of the sample, including evaluation of the distance
function. Protractor3D does not have as much overhead as DTW, but
still needs to complete the same number of comparison operations.

By contrast, LR requires just 900 matrix multiplications to perform
all predictions. However, in comparison to DTW and Protractor3D,
feature-based classiers such as LR need a large number of training
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Figure 5.13: Mean recognition results for Protractor3D, Regularized Logistic Regression and
DTW, for the data types accleration (acc), attitude (att), rotation (rot), acceleration+attitude
acc+att), acceleration+rotation (acc+rot). “Alg.” marks results the using the DCA. “6D”marks
results using a 6Dmerged representation of accelerometer combined with gyroscope data. The
error bars show the standard deviation. DTW with acc+rot using the combination algorithm
achieved the best result with an F1 Score of 0.95.

Algorithm Approx. Number of
required compar-
isons

Proöled Cumulative
Execution Time (s)

Average Processing
Time per Gesture (s)

LR 900 0.4 0.004

Protractor3D 405,000 881 0.98

DTW 405,000 3966 4.4

Table 5.1: The approximate number of operations and the execution time (including data
loading and pre-processing) required by the analyzed algorithms for a run on our data set.
The average processing time per gesture was calculated by dividing the total execution time
by the number of test samples in the training set. DTW (without additional optimizations,
i.e., (Rakthanmanon et al., 2012)) is by far the slowest algorithm as it needs to construct an
O(n2) distance matrix in each comparison step. LR has the lowest measured execution time
as performs only a single operation for each gesture in the validation set.

samples to work optimally, so developers face a trade-off between the
time requested from users to enter training samples and the computa-
tional efficiency of the gesture recognizer.
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Table 5.1 shows the measured execution times for each algorithmwhen
running on our data set. We implemented all gesture recognition algo-
rithms in Python 2.7.1 using the NumPy, SciPy and rpy2 libraries. All
computation was performed on a Mac Pro with 2.66GHz Intel Core i7
processors. In order to measure the classiers’ execution time, we used
Python’s cProle library. All classiers were run exclusively as single-
threaded applications and did not make use of parallel processing.

The comparison in Table 5.1 shows that the average per-gesture exe-
cution time of LR is two orders of magnitude lower than Protractor3D
and three orders of magnitude lower than DTW. The runtime advan-
tage of LR is thus very clear but the problem remains that this algo-
rithm requires an optimization library in order to train models. Thus,
the most benecial use of LR would be in deployment-stage applica-
tions, with appropriate models for gesture recognition already trained,
since the classication step does not require an optimization library.
Protractor3D compares favorably with DTW, requiring about 4s less
computation time. The measured processing time per gesture could
be further improved by decreasing the subsampling size and switching
from Python to a lower-level language such as C.

5.5.3 Discussion

Conrming results obtained in previous work (Hoffman and Varcho-
lik, 2010), our results indicate that combining accelerometer with gy-
roscope data leads to improvement in gesture recognition rates. The is
reected by the 2%, 3%, and 4% increases in F1 score for Protractor3D,
DTW and LR, respectively. Our results also indicate that the DCA we
developed seems to be more benecial for template-based approaches
and not so much for feature-based classiers such as LR.

We recommend that developers choose their gesture recognition algo-
rithm by (1) the number of training samples available (template-based
approaches perform well, even with few training samples), (2) the per-
formance constraints of their target devices (we obtained the highest F1

score when using DTW, but it was also the algorithm with the highest
execution time by far) and (3) the time available for coding during each
iteration (template-based methods are easier to implement and deploy
on different types of devices, since they do not require specialized li-
braries).

5.6 Summary

First, we presented two motion gesture recognizers for accelerometer
data, the $3 Gesture Recognizer and Protractor3D. User studies we
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conducted show that they have an acceptable gesture recognition rate.
The $3 Gesture Recognizer achieved an average correct recognition rate
of 80%. Protractor3D improved upon $3 by adding invariance to rota-
tional differences between gestures and template. The average correct
recognition rate for Protractor3D was 91%. These algorithms are easy
to implement and do not require sophisticated toolkits, thus that they
are easy to deploy in a rapid-prototyping scenario.

Second, we presented the results of a user study on gesture-based au-
thentication (GBA) for mobile devices using acceleration and rotation
data . Our results indicate that GBA is feasible, usable and reasonably
secure, with a high potential for improvement.

Last, we presented a detailed analysis on the effects of combining ac-
celerometer and gyroscope data for motion gesture recognition. Rec-
ognizers, such as Protractor3D, that do not support data dimensions
greater than 3, can be extended using an algorithm we developed. The
results we obtained showed that adding gyroscope data will always im-
prove gesture recognition. Concretely, the gesture recognition F1 Score
improved by 2%–4%, depending on the algorithm we tested.
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Chapter 6

Enabling End-User Program-
ming of Sensor-Based Interac-
tion

“Beauty and brains, pleasure and usability—they should go
hand in hand.”

—Don Norman

In this section we will discuss two software tools for use with sensor-
based input. For user interfaces based gesture input in particular, ob-
taining useful gesture recognition is only a necessary prerequisite for
controlling further functionality. Since the gesture recognition algo-
rithms developed in Chapter 5 return only the symbolic value of the
recognized gesture, it is desirable to be able to quickly attach mean-
ing to recognized gestures, e.g. by triggering actions such as changing
to the next PowerPoint slide or causing a screen shot to be saved. It
would thus be cumbersome if every practitioner or researcher had to
implement the required functionality associated with recognized ges-
tures from scratch.

This issue can be addressed withMayhem, a software utility developed Mayhem can be used
to associate
meaningful
functionality with
gestural input

in conjunction with the Microsoft Applied Sciences Group¹ (Microsoft
Inc., 2012c)W. Mayhem allows the creation of simple scripting tasks in
Windows. Mayhem is a scripting environment for personal and home
automation. Mayhem can be adapted easily to use mobile gestures as
input or, in general, any kind of data from sensors located on mobile
devices. Thus, scripts can be built to allow mobile device users to con-
trol the multitude of output modules provided by Mayhem. Mayhem is

¹Mayhem was developed in collaboration with Paul Dietz, Jay Meistrich and Eli
White.
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based on an extremely simple programming paradigm and is targeted
mainly at end users with no knowledge of programming.

Mayhem can be used by researchers and practitioners to rapidly build
applications with gesture-based input. This is useful, e.g. for rapid
prototyping cycles as well as building output functionality for use dur-
ing user studies. Mayhem’s system architecture is described in Section
6.1, and an example usage case is presented in Section 6.2.

In the remainder of this chapter we will discuss Mayhem in more detail
and present a usage scenario.

6.1 Mayhem: a Scripting Environment for End Users

In this section, we will present a brief overview of theMayhem end user
programming environment and present a usage scenario that exempli-
es the use of Mayhem as a development too for mobile sensor-based
and gesture-based interaction.

6.1.1 Introduction and Related Work

Ever since their invention, computers have been used extensively forthe possibilities for
automation in
modern computing
aren’t easily
accessible by end
users

control and automation tasks. Devices for control and automation are
usually found in special locations, for instance as an engine control unit
(ECU) embedded in motor cars, or in production environments, such
as factories or chemical plants, amongst others. With the advent of
always-on internet connections, integrated web cameras on a growing
number of laptop computers, portable music players, smart phones and
tablet PCs, the proliferation of social networking services, and the in-
creasing popularity of internet-enabled set-top-boxes, a wide range of
new opportunities for personal automation applications has appeared.

Home and personal automation, however, is presently far from
widespread, although there are many cases in which such systems
would be benecial, for instance in order to regulate the efficient use
of heating or to automate the sending of notications of important,
context-based events to friends or coworkers. Any type of automa-
tion or scripting usually requires the developer to have programming
skills. Mayhem is, by contrast, a development environment that does
not require the user to have programming skills, but still allows users
to create complex functionality with a simple programming paradigm.
Seen in the scope of this thesis, Mayhem is an ideal tool to connect
the output of gesture recognizers or mobile sensors with meaningful



6.1 Mayhem: a Scripting Environment for End Users 173

functionality. Using Mayhem, developers, scientists or practitioners
can test new user interfaces and interaction styles rapidly and take ad-
vantage of the functionality provided by Mayhem’s reaction modules
easily.

Mayhem runs on anyWindows PC withWindows 7 or later. Home PCs
have become a very powerful and ubiquitous platform for automation
tasks. PCs can communicate with and control a vast number of periph-
erals using USB, FireWire (IEEE 1394), (wireless) Ethernet, Bluetooth
or, in some cases, legacy interfaces such as RS-232 or the parallel port
(IEEE 1284). However, PCs, being present in 63.5 percent of house-
holds in the United States (National Economics And Statistics Admin-
istration and National Telecommunications and Information Adminis-
tration, 2011), are, in our opinion, underutilized for personal automa-
tion tasks. Mayhem provides a very simple user interface that allows
end-users to implement simple but compelling scripting tasks for Win-
dows and home automation. By using prebuilt but congurable events
and reactions, and using a single Event-Reaction-based connection se-
mantic, Mayhem abstracts away from complex hardware interfaces and
algorithms, making the implementation of automation tasks an excep-
tionally easy task for end users.

A wide body of previous work related toMayhem exists. Amultitude of
visual programming environments (VPEs), for instance Max/MSP (Cy-
cling74, 2012)W, pd (Puredata, 2012)W, Quartz Composer (Apple
Computer Inc., 2012d)W, PopFly (Microsoft Inc., 2012d)W or Kudu
(Microsoft Inc., 2012b)W or App Inventor (Massachusetts Institute
of Technology, 2012)W have been developed. Often, these environ-
ments are suitable for solving specic tasks, such as graphics output
(Quartz Composer), rapid application development (Kodu, App Inven-
tor), mashup creation (PopFly) or to be used by specic user groups,
i.e. musicians or visual artists (Max/MSP and pd) or specialists in in-
dustry as in (Prähofer et al., 2008). Visual programming languages are
not limited to desktop environments. Reactable (Jordà et al., 2007),
for example, is a tangible and visual programming interface for music.
Recent work on visual programming environments for mobile devices
has also been conducted, for instance the urMus (Essl, 2010) project,
which includes a visual audio synthesizer patch builder on iPhone and
iPad.

Operating system wide scripting and automation services as well as
macro recorders are related to Mayhem in functionality. Examples are
AppleScript (Apple Computer Inc., 2012b)W or the Mac OS Automa-
tor (Apple Computer Inc., 2012c)W. In contrast to Mayhem, Apple-
Script requires some basic programming knowledge. Mac OS Automa-
tor has a strong focus on scripting application functions unique to Mac
OS whereas Mayhem is more generic in scope.
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Although several of the existing systems could have been extended toMayhemwas
developed because
existing systems are
still too complex for
unskilled users

support some of the functionality present in Mayhem, creating a com-
pletely new system allowed us much more design exibility. Further-
more, existing visual programming environments often allow for the
creation of very complex programs, in some cases even providing facil-
ities to enter code in special nodes of the visual program. Although we
do not exclude the possibility of adding more complex program struc-
tures to future versions of Mayhem, our goal for the rst version of
Mayhem is to make the creation of automation tasks as simple as pos-
sible, thus the only programming construct available in Mayhem is a
simple Event-Reaction mechanism. To our knowledge, this minimalist
approach is unique and sets Mayhem apart from other more complex
systems. We believe that Mayhem’s ease of use will make the domain
of home and personalized automation accessible to a very wide range
of users for whom existing systems are too complex to work with.

6.1.2 Concept, Design and Goals

Automation tasks in Mayhem consist of two basic building blocks:automation tasks in
Mayhem consist of
Events and Reactions

Events and Reactions. Events are softwaremodules with the task of mon-
itoring a state in the environment. For example, Events can listen for
certain messages received from a sensor board, the completion of a
timer, infrared signals from a universal remote, or detect motion in a
certain region of a camera image. Reactions are software modules that
perform a certain reaction upon being triggered (by Mayhem Events).
Reactions can for instance post status updates on social media sites
such as Twitter, initiate playback of sound or video les, send a text
message or activate a household device interfaced with the PC.

In an example task scenario, a Mayhem user sets up his PC to prevent
his cat from climbing on his precious living room couch. To do this, the
user chooses an image recognizer Event, trained on the image of his cat
andmarks the outline of the couch in the Event conguration’s preview
window. He then connects this Event to an Reaction that will play a
loud sound to scare away the cat when the feline comes too close to the
couch. To verify if his plan worked, the user duplicates the precong-
ured Event instance and attaches it to a “Record Video (10s)” Reaction,
which will make a short recording each time the cat gets scared away
(or not …).

We intentionally chose the simplest possible semantic for couplingour goal was to make
Mayhem easy to use
for users without any
programming
experience

Events to Reactions—Reactions are Triggered by a unary Event. No
state information other than that an Event has occurred is conveyed to
the Reaction. Our motivation for the choice of this semantic is that
we want to make Mayhem accessible to even the most unskilled users.
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Moreover, introducing combinatorial operators such as those contained
in more complex visual programming languages (Max/MSP, Quartz
Composer, etc.), i.e. binary logic gates, multiplexers or function gen-
erators quickly leads to complex and confusing constructs, which con-
ict with our design goals for Mayhem, namely providing an extremely
simple and easy-to-use tool for creating home automation tasks. How-
ever, most Events and Reactions have a conguration screen that pro-
vides the user with a reasonable amount of control over the parameters
of Event or Reaction, depending on the type of functionality it imple-
ments.

6.1.3 User Interface Design

We chose a user-centered, iterative approach to design Mayhem’s user
interface. This involved paper-prototyping (Snyder, 2003), low-delity
and high-delity prototyping stages. In total, we iterated over ve revi-
sions of the user interface. General design goals of Mayhem’s interface
were to enforce simplicity and to reduce visual clutter and to create a
simple workow for construction of automation tasks.

Figure 6.1: Graphical design for Events (left) and Reactions (right) in
Mayhem. The graphical shape and distinct color of Events and Reac-
tions implies the direction of events owing from Event to Reaction
and the establishment of a connection between Reaction and Event.

6.1.3.1 Graphical Representation of Automation Tasks

Automation tasks in Mayhem are represented as Mayhem Connections.
In the remainder of the paper we will refer to Automation tasks as im-
plemented in Mayhem as Mayhem Connections. Each Connection object
assigns an Event to a Reaction. As can be seen in Figure 6.1, Events are
graphically represented as right-facing arrows. Reactions, on the other
hand, have a left-facing V-shaped notch. This visual design implies that
when an Event and a Reaction are brought together, a connection be-
tween the Event and the Reaction is established and that events will
ow from the Event to the Reaction.

The construction of Mayhem connections is accomplished by clicking
on the “add event” and “add reaction” panes of the main user interface
window. Following the click, a dialog appears that enables the user to
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select the desired Event or Reaction (Figure 6.2). Once an Event or
a Reaction is selected, a conguration dialog usually appears allowing
customization of the functionality of that module.

6.1.3.2 User Interface

Mayhem is designed as a single window application. The central UI
component is the run list, where users can manage a list of connections
between Events and Reactions (Figure 6.2, “Run List”). By clicking
on an Event or Reaction, a conguration dialog appears that allows
the user to congure its behavior. A toggle switch to the side of the
connection allows the user to set its activation status. Clicking on the
”x” symbol deletes the corresponding connection from the run list. The
items of the run list are stored persistently when the application is shut
down, so the congured connections and their settings don’t get lost
when the application is started up again.

New connections are constructed by using the placeholder widgets
above the run list (Figure 6.2, “Adding Events and Reactions”). By
clicking on “Choose Event” or “Choose Reaction” a list of available
Events or Reactions appears. When the user clicks on the desired Event
or Reaction, a conguration dialog appears that allows her to congure
its behavior. Once an Event or a Reaction has been selected, it lls the
corresponding placeholder widget. When both an Event and a Reac-
tion have been selected, this pairing is added to the run list as a new
connection.

6.1.4 Implementation Details

Mayhem consists of three implementation layers (Figure 6.3). AMayhem consists of a
GUI, core and
functionality layer

graphical user interface (GUI) written in C# andWindows Presentation
Foundation (WPF) resides at the top level. An intermediate layer that
is written in C# implements the Mayhem runtime environment, which
includes the building of Mayhem Connections, event management and
persistence functionalities. The core functionality of Mayhem modules
is implemented in the lowest layer. Here, care is taken to make sure
that functionality can be re-used for newmodules or variants of existing
ones.

For reasons of simplicity we try to implement as much functionality atwe prefer to
implement most of
the functionality layer
in C#

the lowest level in C#, but if special functionality (such as raw access to
system input events) is required, Mayhem accesses native DLLs or cus-
tom code implemented in C++. For instance, all bindings to OpenCV
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Specific 
Functionality
C# / C++ / 

Native DLLS

Core Runtime
C#

GUI Layer
WPF / C#

Highly customizable layout engine
Custom widgets
Custom visual effects

Construction of Mayhem Connections
Abstract functionality of Mayhem objects
Extensive use of language features

Special functionality of Mayhem modules
Performance critical features
Access to native system libraries
Extension DLLs in C++

Figure 6.3: The three implementation layers of Mayhem.

are implemented at the lowest level as a C++/CLI² DLL accessible by
the .Net Framework Common Runtime Framework (.Net CLR).

We chose to implement Mayhem’s GUI using WPF as this gave usC# has many built-in
features that were
useful for
implementing
Mayhem

the needed exibility and customizability to design the GUI to our re-
quirements. Using C# it is possible to leverage many existingWindows
technologies. Furthermore, the C# language has a number of event-
oriented constructs (i.e. delegates and event listeners) that are partic-
ularly useful for the implementation of the automation semantics we
dened for Mayhem. In addition, integrating lower-level extensions,
such as C++ DLLs is a very easy task using this language. Thus, using
C# allows developers to easily extend the functionality of Mayhem or
to integrate their existing work into Mayhem.

Because the separation between the three layers is kept as high as possi-
ble, it will be possible to make versions of Mayhem that are able to run
on other devices in the Windows ecosystem, such as smart phones and
also other platforms supporting a .Net compatible runtime, for instance
Linux or Mac OS X with the Mono Framework (Xamarin, 2012)W.

²C++/CLI is an extension of the C++ language that is used to compile code to-
wards the .Net runtime. In particular, C++/CLI allows the creation of “managed”
objects in addition to standard (“unmanaged”) C++ objects. Managed objects are
subject to garbage collection by the .Net Runtime. C++/CLI is thus the ideal “glue
language” for building low-level extensions to the .Net Framework. For more infor-
mation on C++/CLI, please refer to (Sivakumar, 2004)W.
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6.1.5 Open Source Project

We have published Mayhem as an open source project³ (Mayhem,
2012)W. From this website, users can download the current build of
Mayhem as well as add-on packages containing more Event and Reac-
tion modules. Mayhem supports on-the-y updates and module exten-
sions using NuGet (Outercurve Foundation, 2012a)W.

The goal of the open source project is to make Mayhem available to as
many users as possible, and, more importantly, to foster and encourage
development of further functionality and improvements to Mayhem.

6.1.6 Discussion

Mayhem is an application aimed at facilitating the creation of home Mayhem sets itself
apart from similar
system as it is not
focused on speciöc
task domain

and personal automation projects for end users lacking programming
skills. Mayhem distinguishes itself from similar systems because it is
not targeted towards a specic expert user group, but to all users that
are interested in creating simple automation tasks. We do not intend
to limit Mayhem’s range of functionality to one single domain, such
as the generation of audio, but want to support the broadest range of
functions possible for personal automation. Furthermore, by paying
special attention to the design of Mayhem’s user interface, and using a
user-centered design approach, we try to avoid several of the barriers
that learners of end-user programming systems are typically confronted
with (Ko et al., 2004):

• Selection Barriers: Mayhem offers an easy-to-browse catalog of
available Actions and Triggers and does not duplicate functional-
ity.

• Coordination Barriers: All interconnections between functional
modules in Mayhem are standardized. There is only a single se-
mantic dened to interconnect Actions and Triggers. Also, the
message behavior of Triggers is unambiguous for the user, as only
a binary event is sent to the connected Action.

• Use Barriers: There is no need to construct complex function-
ality. The complexity is contained within individual Actions or
Triggers, and users employ this complexity only on the abstract
Trigger–Action relationship.

³The development repository is hosted on CodePlex (Dietz et al., 2012)W. The
ownership of Mayhem has been transferred from Microsoft Inc. to the OuterCurve
Foundation (Outercurve Foundation, 2012b)W, where Mayhem is to be hosted in the
“research accelerator gallery”.
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By minimizing these barriers, we also aim to make it far less likely that
the users encounter gulfs of execution and evaluation (Norman, 2002).

We believe that Mayhem has the potential to become a valuable tool for
supporting personal automation in the future. Mayhem purposely has
an extremely simple semantic to connect Actions and Triggers. HCI
literature has long supported the premise that the value of an appli-
cation’s functionality is closely related to the application’s usability
(Goodwin, 1987). As the number of users grows and the users become
experienced with the concepts and the usage of Mayhem, we intend to
provide more complex connection semantics and add more advanced
features to Mayhem, depending on the growing requirements of our
user base.

6.1.6.1 Future Work

Our vision for future versions of Mayhem is to convert the current sin-
gular application to a service-oriented architecture. We thus envision
the entire computing ecosystem of a home user; PCs, Tablets, Smart-
phones or even advanced appliances, will run a Mayhem node that will
provide Triggers and Actions. A centralized Mayhem interface that is
abstracted from individual devices could then be implemented to run
in the user’s local cloud. Smartphones and other devices (even cars)
enabled with localization functionalities could provide Mayhem users
with functionality that extends well beyond their homes.

6.2 Example Usage Scenario for Mayhem

In the following we present an example usage scenario for Mayhem.
The task is to make a media player running on Windows 7 controllable
via gestural input from a mobile device. To accomplish this, we will use
Mayhem to connect Android mobile application that performs motion
gesture recognition with the controls of the media player application⁴.

For our usage scenario, we developed a new Mayhem event that listens
on a UDP socket for a message from the phone. Upon reception of a
certain gesture ID the event triggers a connected media player reaction
that controls one or several functions of themedia player. The reactions
for controlling the media player are already included in Mayhem.

⁴The operating system hooks for media player control in Windows will control any
generic media player application, the specic application we use is VLC 2.0.0 (Vide-
oLAN Organization, 2012)
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6.2.1 Mobile Application

The mobile application uses a Java implementation of Protractor3D
(Section 5.3) for gesture recognition. Delimiting the start and the end
of a gesture is accomplished with a push-to-gesture button. The applica-
tion stores gesture templates in a SQLite database.

The user can access three basic functions via the application menu: the app’s functions
are: gesture entry,
training sample entry
and library
management

recognizingmotion gestures, inputting training samples, andmanaging
the gesture library. Figure 6.4 shows a wireframe representation of the
gesture application’s user interface.

When a gesture has been successfully recognized, the mobile appli- the gesture ID is
transmitted over wiö
via UDP broadcast

cation transmits a UDP broadcast datagram containing the recognized
gesture ID via the phone’s wireless connection. The companion May-
hem event listens for these broadcast messages and triggers when the
correct gesture has been recognized.

6.2.2 Mayhem Event

To receive notications via UDP datagrams, we had to implement a new
Mayhem Event in C#. Implementing an Event basically starts with sub-
classing from MayhemCore.EventBase. If a graphical conguration is to im-
plemented for the Event, the MayhemWpf.ModuleTypes.IWpfConfigurable in-
terface needs to be implemented by the Event. EachMayhem Event has
two C# attributes. [DataContract] enables the persistent storage (serial-
ization) of certain elds belonging to the Event, and the [MayhemModule]
attribute sets metadata about the Event that is later displayed in the
Mayhem GUI.
[DataContract]
[MayhemModule("Phone Gesture",
"Monitors a UDP port for a gesture event sent by a phone")]
public class PhoneGestureEvent : EventBase , IWpfConfigurable{

5 ...
}

The basic functionality of our “Phone Gesture” Event is to monitor a
UDP socket. The socket was implemented using the Singleton pattern⁵,
since multiple “Phone Gesture” Events can listen on the same socket to
trigger multiple Reactions simultaneously.for reception of a predened
gesture ID code. When data is received by the socket, it calls the Event’s
SocketReceivedmethod, to notify themodule that data has been received.
The Event checks if the received string matches the pre-dened gesture
id and triggers its associated Reaction by calling Trigger():

⁵At this point, we omit the detailed socket code for reasons of simplicity. Please
refer to the source code provided on the Dissertation DVD.
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Recognition Mode Gesture Recognized

Gesture ID Entry Training Mode

Gesture Library

"Recognize"

Startup Screen with Active Menu
"Gesture Library"

Motion Gesture

Motion Gesture
OK

OK

"Train"

Figure 6.4: Wireframe of the Android motion gesture application’s user interface. From
the startup screen (gesture recognition mode) the user can select either recognition mode
(“recognize”), training mode for gesture entry (“train”) or view the contents of the gesture
library (“gesture library”). In training and gesture recognition mode a push-to-gesture button
(“Press!”) is used to delimit the start and the end of gesture entries.

private void SocketReceived(object sender, SocketReceivedEventArgs args){
string message = args.message;
if (message.Equals(listenForMessage)){

Trigger();
5 }
}
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Our “Phone Gesture” Event has a minimal user interface to input the
desired gesture ID for triggering. It is implemented in Windows Pre-
sentation Foundation (WPF), a GUI toolkit for Windows. Figure 6.5
shows the UI displayed by the Event, which presents a simple text box
to enable the input of the gesture ID on which the Event triggers.

Figure 6.5: The UI for our “Phone Gesture” Event features a single
text box for entry of the gesture ID on which the Event triggers.

6.2.3 Setting up Events and Reactions to Control theMedia Player

We want to use Mayhem to pause and resume media playback, and
also to mute and unmute the audio volume. To do this we can use
the “Media Play/Pause” and the “Volume: Mute” Reactions, which are
already included in Mayhem.

One instance of “Phone Gesture” is set up to listen for a “play” ges-
ture from the mobile application, and is connected to “Media Play/-
Pause”. A second instance of “PhoneGesture” is congured to listen for
a “mute” gesture from the phone and is connected to “Volume: Mute”.
Figure 6.6 shows the completed conguration.

6.2.4 Discussion

In the scenario described previously, we used Mayhem to enable con-
trolling themedia player usingmotion gestures input via an application
running on a mobile phone.

Implementing the Mayhem Event to listen for datagrams sent from the
phone requires programming skills. However, once this Event has been
developed, users without knowledge of programming can use it with
Mayhem to create their own gesture-based controllers for other appli-
cations in a very easy way. For instance, Mayhem also has pre-built



184 6 Enabling End-User Programming of Sensor-Based Interaction

Figure 6.6: Mayhem conguration that is used to control the media
player via phone gestures.

reactions that can be used to control the display of slides in Power-
Point.

The example application shows how complex functionality provided
by Mayhem’s Reactions and Events can enable end users without any
programming skills to create new functionality that would have been
impossible for them without using Mayhem. The application scenario
also illustrates the need for a critical mass of Events and Reactions to be
implemented for Mayhem in order for the application to be appealing
and useful for its target audience.

6.3 Summary

In this chapter, we presented Mayhem. Mayhem is an end-user pro-
gramming environment target at end-users with no programming expe-
rience. Because of its simple event–reaction semantics, Mayhem allows
any combination of an event and a reaction, which makes it easy to in-
tegrate new functionality in the application. Mayhem has been released
as an open-source application with the goal of fostering a community
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of developers and users that will help expand the scope of functions
end users will be able to perform with PCs.

To demonstrate how sensor-based interfaces can be prototyped easily
without writing additional code, we developed a mobile gesture recog-
nition application for Android, which, when coupled with a Mayhem
event we developed, can be used to trigger events provided by May-
hem. In this way, an end-user can make easy customizations of his
operating system to support gesture-based input via his mobile phone.
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Chapter 7

Future Work

“We can only see a short distance ahead, but we can see plenty
there that needs to be done.”

—Alan Turing

In this thesis, we presented a series of contributions in the domain of
sensor-based user interfaces for mobile devices. For most of these con-
tributions, a number of further aspects remain open for future study,
and novel user interface concepts can be developed based on the ideas
and insights gained through the present work. This chapter presents
recommendations for future work related to the main themes covered
in this thesis: Continuous Interaction and State-Space Systems (Chapter 3),
Around-Device and Sensor-Based Interaction (Chapter 4) andMotionGestures
(Chapter 5). The discussion of future work is thus presented order of
these main themes.

In Section 7.1, we discuss further research into using state-space sys-
tems for tilt-based pointing as well as using them to process sensor
data for around-device interaction (ADI). Following that, we consider
future work on ADI in Section 7.2, in particular discussing two in-
put paradigms for extending the input capabilities of PalmSpace (Sec-
tion 4.4). Finally, in Section 7.3.2, we present a scheme for a machine
learning-based method for the segmentation of motion gestures per-
formed with mobile devices.

7.1 Further Examination of the Usability Beneöts of
State-Space Systems for Mobile Input

In Chapter 3, we used state-space systems to implement automatic
zooming for an evaluation of user interfaces for tilt-based mobile map
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navigation. Of course, substantially more research on the application
of state-space systems to mobile user interfaces is still possible in the
future. In the following, we propose two research ideas for future re-
search on this topic.

7.1.1 Tilt-Based Pointing

Tilt-based user interfaces for mobile devices have recently become pop-
ular through gaming applications. Nevertheless, other uses for tilt have
also been examined, such as controlling a cursor on a public display
(Boring et al., 2009) or fusing tilt input with additional input modali-
ties (Hinckley and Song, 2011). In future work, it would therefore be
interesting to explore the use of state-space systems tomodel tilt-based
cursors and compare such a system to more common input mappings
for tilt-based pointing, such as linear or quadratic mappings. Because
physical properties, such as acceleration, friction and momentum can
be simulated using state-space systems, mappings could be created that
appear more intuitive to the user.

The intuition behind this is that many users have already interactedstate-space systems
could be used to
model more efficient
mappings for
tilt-based pointing

with physical tilt-based “interfaces”, i.e., tilt-based marble mazes, so it
is plausible to assume that they expect the cursors behavior to exhibit
the traits of a real ball, with acceleration, friction and momentum, al-
beit expressed with more subtlety than a fully correct simulation, in
order to make pointing more effective.

To compare state-space systems with other mapping alternatives, we
suggest conducting Fitts’ Law evaluations. The hypothesis here would
be that using a mapping based on a state-space system would signi-
cantly increase the throughput of the tilt-based pointing task. Previous
work in this area has covered an analysis of the inuence of physically
modeled auditory feedback on tilt-based input (Rath, 2007).

7.1.2 State-Space Systems for Around-Device Interaction

Modeling user input for around-device interaction through state-space
systems may be benecial. For around-device interaction, a large
amount of sensor data needs to combined to generate the state of the
system. This makes dening direct mappings from sensor values to
user interface parameters difficult. In addition, the reliability of user
interfaces that use a large number of sensors for input is directly de-
pendent on the reliability of the sensors used. In mobile usage sce-
narios, sensor data may not be 100% accurate or available at all times.
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Thus, state-space systemsmay be a useful approach to copewith unreli-
able sensor data, the prime example being the Kalman Filter (Kálmán,
1960), which maintains the most likely state, e.g., a tracked object’s
position, based on (error-prone) sensor readings and previous states
(Marsland, 2009).

The main advantage of state-space systems is that they can model a state-space systems
can compensate for
intermittent or noisy
sensor readings

closed-loop system. This gives them the ability to keep generating new
states, that can be used as inputs to UI parameters, even when sensor
readings are noisy or intermittent. This, e.g., was some times the case
when tracking of the user’s palm in PalmSpace (Section 4.4) was lost,
halting any interaction with the system until the hand was re-acquired.
In this case, a state-space system could use information about the user’s
previous movements to keep generating updates that appear plausible,
in order to mask the momentary loss of tracking.

Around-device interaction could also be used to control 2D or 3D
virtual entities that are subject to physical phenomena. Simulation
engines supporting rigid-body dynamics, uid dynamics, mass-spring
systems or soft-body physics exist, e.g., (bulletphysics.org, 2012; Ha-
vok.com Inc., 2012; NVidia Inc., 2012)W. These physics engines can
thus also be regarded as (very complex) state-space systems and need to
be taken into account when evaluating state-space systems for around-
device interaction.

7.2 Future Projects in Around-Device Interaction

HoverFlow (Section 4.3) and PalmSpace (Section 4.4) were developed to
explore the design space of around-device interaction, and to demon-
strate what types of around-device interaction (ADI) can be achieved
with the given sensor technology. ADI has recently become a popular
eld in research and development, with technology companies (Ident
Technology AG, 2012)W, car manufacturers (Herrmann et al., 2010)
and the home entertainment industry (Tomsguide.com, 2012)W invest-
ing a substantial amount of effort.

The design space for ADI remains, at present, less explored for in- ADI with mobile
devices needs to be
further explored in
future work

teraction with mobile devices than with xed devices. The relevant
projects in this thesis can be considered as an excellent starting point
for research on future ADI interface concepts. In the following, we will
present some suggestions for research into new mappings for 3D ob-
ject viewing based on hand gestures, extending the ideas realized in
PalmSpace prototype. After that, we present a suggestion on how to
realize around-device output through wearable and steerable mobile
projection.
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Figure 7.1: Two possible paradigms for extending the design space of mobile around-device
interaction for 3D object viewing proposed in PalmSpace (Section 4.4). (a) The device-centric
approach makes all interaction relative to the center point of the mobile device or the virtual
object that the user is currently controlling. (b) By contrast, in the hand-centricmodel all inputs
are relative to the user’s hand.

7.2.1 Additional Input Mappings for Interaction Using Mobile
Depth Cameras

PalmSpace is an interface for 3D object based on around-device hand
gestures. In order to determine rotation values, PalmSpace tries to t a
plane to the user’s outstretched palm. Due to limitations in the depth
imaging hardware, gathering rotational information by other means,
e.g., ngertip tracking, was not possible with the desired reliability. In
addition, we did not implement 3D translation due to the high noise
content in the depth readings of the SwissRanger 4000 depth camera
we used.

Given mobile depth cameras with a smaller size, improved noise char-
acteristics and a wider eld of vision than what is available at present,
PalmSpace could easily be extended to allow 3D translation. It also plau-
sible that the outstretched palm will no longer be needed in the future,
and that rotation could be inferred by analyzing the 3D point cloud of
the user’s hand captured by the depth camera.

For future 3D object viewing interfaces, we propose two general input
paradigms, device-centric and hand-centric. These two paradigms are il-
lustrated in Figure 7.1 and are discussed in the following two sections.
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7.2.1.1 Device-Centric Input

In the device-centric paradigm, all input is relative to the center of all input is relative to
a center point on the
device

the device or the center of the virtual object (Figure 7.1 (a), c) that is
being viewed. The distance from the device to the center of the user’s
hand (Figure 7.1 (a), D, and h), can be mapped to object translation or
zoom. Rotation (Figure 7.1 (a), R) is calculated relative to the device by
calculating the (3D) angle between the line ch and the device centerline
axis a, effectively turning the hand into a rotation “handle”.

The advantage of the device-centric paradigm, is that using the hand as
a rotation handle allows the user to vary the control gain depending on
the distance from the hand to the device. Similar to the original inter-
face in PalmSpace, the user can use proprioception to correctly position
his hands while keeping his focus on the object on the mobile device.
A possible disadvantage of this paradigm is that certain rotations will
require the hand to be moved in front of the display, thus occluding
the mobile device’s display. Also, a range of rotations won’t be possi-
ble without clutching, since the user’s non-dominant arm obstructs a
part of the interaction space.

7.2.1.2 Hand-Centric Input

All input is centered on the hand, specically its center point (Figure
7.1 (b), h) in the hand-centric paradigm. The size (Figure 7.1 (b), D) of
pinch gestures can be mapped to object translation or scaling. Alterna-
tively, free-form 3D object translation could be implemented by using
h to directly map the position of the virtual object. The rotation (Figure
7.1 (b), R) of the hand around h can be mapped to object rotation.

The advantage of the hand-centric paradigm lies in its direct input prop-
erty. Hand rotation is directly mapped to object rotation and the size
of a pinch gesture is directly mapped to object translation or scaling.
Compared to device-centric rotation, there is no (abstract) object han-
dle. Possible disadvantages of the hand-centric paradigm are that the
range of unclutched rotation may be more limited by physiological con-
straints than device-centric and that the translation or zooming range,
when using a pinch gesture is more limited compared to the device-
centric paradigm.

7.2.1.3 Discussion

In the preceding sections, we suggested two possible paradigms to fol-
low in extending the around-device interaction work of PalmSpace. We
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would like to note that at this time, these paradigms are not yet evalu-
ated and may not be the optimal way to design for 3D input in around-
device space. Hand-centric and device-centric are, however, meant to serve
as a basis for initiating future research into this topic.

A further point to note is that realization of the two paradigms is ex-the design of novel
ADI techniques is
highly dependent on
the development of
sensing technology

tremely dependent on the development of depth imaging technology.
Without the resolution necessary to detect individual ngertips, a free-
space pinch gesture (as suggested in the hand-centric paradigm), for ex-
ample, could not be properly implemented. Thus, most of the proposed
input techniques that comprise the two paradigms can, at present, only
be properly implemented and evaluated using an optical tracking sys-
tem, such as OptiTrack (NaturalPoint Inc., 2012)W.

7.2.2 Around-Device Output Using aWearable and Steerable Pro-
jector

In Chapter 4, we focused mainly on the input side of around-device in-
teraction. Around-device output, however is also an interesting subject
for future research. We propose the use of wearable, steerable mobile
projectors as one possible channel for around-device output for mobile
(and wearable) devices.

Steerable and wearable projectors are able to generate output on a large
area in front of the user during mobile use. Projecting information on
the users themselves is also possible (Harrison et al., 2011). Further-
more, such mobile projectors have the ability to follow the users locus
of attention (Raskin, 2000), i.e., by tracking the position of the user’s
hands (Kratz et al., 2012b).

We feel that body-worn, and especially steerable projectors solve one
of the fundamental weaknesses of current mobile projection interfaces:
the fact that the user needs to control aim the projection itself. We be-
lieve that this distracts the users from their main tasks too heavily and
that user’s would be muchmore comfortable and efficient using mobile
projection interfaces if the need to control the actual projection didn’t
exist. For instance, (Cauchard et al., 2011) suggest that typical cong-
urations of handheld pico projectors are unsuited to many projection
tasks, because they couple the device orientation to projector orienta-
tion in a xed way and argue for steerable handheld projection. Using
a mobile, steerable projector, we aim to address a number of research
questions that have not been addressed in previous work.
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wearable steerable projector and camera setup

mobile projection application

(a) Shoulder-mounted and steerable projector (b) Peephole Pac-Man

Figure 7.2: Using a stabilized mobile steerable projection allows the projected image to follow
the user’s locus of attention. (a) conceptually shows a shoulder-worn projector and camera
setup that racks the user’s right hand. (b) an example gaming application for our proposed
set-up, Peephole Pac-Man. By using a steerable projector which follows the user’s hand, a playing
area much larger than the actual projection is realized.

7.2.2.1 Fitts’ Law for Peephole Pointing

Peephole pointing (Yee, 2003) allows interaction with large workspaces
that contain more information than can be displayed on a single screen.
This technique provides a movable window that reveals a portion of
the larger content the user is working with. Peephole pointing is thus
a suitable technique for use with mobile projectors due to their rather
limited projection throw angle.

For peephole pointing, we hypothesize that systems such as a wearable
steerable projector will lead to a higher throughput compared to solu-
tions where the mobile projector is controlled by hand. Our intuition
here is that pointing with the nger is likely to be faster than point-
ing through a proxy such a mobile projector. Of course, a prerequisite
for good performance in a Fitts’ Law evaluation is a well-functioning
gimbal with sufficient speed to track fast hand movements¹.

Peephole interfaces have been previously evaluated in a Fitts’ Law con-
text by (Cao et al., 2008; Rohs and Oulasvirta, 2008), but mobile pro-
jection has, at this time, not been covered yet.

¹The rotating mass of a gimbal can be signicantly reduced by projecting on a steer-
able mirror, rather then moving the projector directly.
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7.2.2.2 Focus-In-Context Displays

Focus-in-context interfaces usually consist a large scale, low resolu-
tion (or low detail) representation of the scene with a smaller, higher-
resolution window that is movable across the low-resolution content
to reveal in high resolution and high detail content in a local scope.
A possible focus-in-context interface scenario for a wearable steerable
projector could be the use of our system in conjunction with a large
projected image created by a full-size projector in a room.

7.2.2.3 Interaction on the Body and in the Environment

A wearable, steerable projector affords seamless switching between in-
put on the body and in the environment. This allows the implementa-
tion of interesting design ideas, such as moving virtual objects between
a projected surface on the body to a projected in the environment and
vice-versa. For example, a picture from a user’s mobile could be trans-
ferred to an interactive surface by dragging its projection on the user’s
palm to the surface. This process, mediated by the steerable projector,
would appear seamless to the user.

7.3 Automatic Segmentation Strategies for Motion
Gesture Recognition

Segmentation of gesture entries for user interfaces based on motion
gesture recognition is still a problem that hasn’t been solved satisfac-
torily. Ideally, we should not require a “push-to-gesture” button to the
segment the start and end of a gesture. Algorithms that analyze the
incoming sensor data from the accelerometer and gyroscope should
instead determine when a gesture entry has started and when it has
stopped.

7.3.1 Discussion of Previous Approaches

DoubleFlip (Ruiz and Li, 2011) attempt to address this problem by us-an explicit preöx
gesture may be
difficult to change
once it has been
incorporated in the
mobile UI

ing a single, very reliable prex gesture to delimit the entry of further
gestures. The detection of this prex gesture is very robust, since its
classier was built from a very large data set. The problem with this
approach is that, while it is more elegant than an on-screen delimiter
button, it remains a manual delimitation step. Furthermore, it is un-
clear if it is easy to switch to an alternative delimiting gesture, since the
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factors inuencing the detection accuracy of individual motion gestures
have not yet been studied formally.

(Ashbrook, 2010b) suggests using a threshold on the variance of the threshold-based
techniques are
difficult to adapt to a
wide range of use
environments

last N samples as a decision criterium for gesture segmentation. This
technique may be useful in controlled settings and for predesigned ges-
ture vocabularies, where the correct threshold setting can be deter-
mined by prior evaluation. It is plausible to assume that this strat-
egy will not perform well when deployed in the eld, for example in
situations where there is substantial “noisy” motion coming from the
user’s environment, i.e., when using a mobile device while using public
transport.

7.3.2 A Machine Learning Approach to Segmenting Motion Ges-
tures

We believe that machine learning can be used to create more effective,
and, what is more important, more general motion gesture segmenta-
tion algorithms, if a sufficiently large amount of training data is avail-
able to create a meaningful model of the characteristics of the start and
the end of motion gesture entries.

Metric Value

average 286

median 266

standard deviation 109

max 1766

min 24

Table 7.1: A set of exploratory statistics on the number data samples
per gesture entry. The basis of this data is the gesture entry data set
also used in Section 5.4.

To this end, we have conducted some exploratory studies on the data
set used in Section 5.4. To recapitulate, this data set consists of a total
of 3507 gesture entries sampled at 100 Hz. The sensor values mea-
sured were acceleration, angular rotation and attitude (a compound
value calculated from the device’s accelerometer, gyroscope and mag-
netometer). Table 7.1 shows a set of exploratory statistics on the num-
ber data samples per gesture entry. This data can be used to set the
number of samples used to dene the beginning, middle, and end of a
motion gesture entry, as depicted in Figure 7.3.
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EndMiddleStart

minimum length: L_cutoff

Lcutoff / 2

Lcutoff = avg-2*std

Lcutoff  / 2n *( Lcutoff  / 2 )

Figure 7.3: The proposed segmentation strategy is to build a classier for each part of a motion
gesture entry. To do this, we segment a data set of example gesture entries into three parts,
start, middle and end. We propose the use of empirical measurements to determine Lcutoff in
order to set the correct number of sample points for each the segment types.

Concretely, our proposed segmentation of the gesture data is based on
calculating a value Lcutoff, with

Lcutoff = µ − 2σ (7.1)

and µ, σ obtained from our analysis of the gesture data entry set (Table
7.1). Lcutoff is also used to lter out gestures that are unusually short ,
i.e. to be used for building a segmentation model a gesture must have
a length of Lcutoff or greater.

Segmenting the gesture data set like this, we obtain three labelled data
classes, start, middle and end. To validate our assumptions that the
data would be separable we conducted a Principal Component Anal-
ysis (PCA)(Jolliffe, 2002) on the labeled data, using all gestures in the
data set as well as randomly chosen subsets of 250 and 512 gesture
entries. Figure 7.4 shows 2D and 3D plots of the PCA. Visually, it in-
dicates that start and end gesture segment classes can be separated by
a classier from middle with relatively good accuracy since the labeled
points are spatially well separated. There appears, however, to be sub-
stantial intermixing of start and end, which may pose a problem (at least
when using linear classier on the data at this degree of dimensionality
reduction).

To obtain some initial classication results, we trained a Support Vec-
tor Machine (SVM) classier with a Radial Basis Function (RBF) ker-
nel with the segmented and labeled data and performed a 6-fold cross-
validation. The gesture segments were correctly classied with an ac-
curacy of 88.1%.
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7.3.3 Aspects that Require Further Work

The results presented in this section are exploratory in nature and
should be regarded as a promising basis for future research. In partic-
ular, there are two aspects that need to be addressed to improve their
signicance:

• Recordings of the sensor readings immediately before and after a
delimited gesture are missing from the data set analyzed. These
time intervals may include important information that could im-
prove the classication of the gesture segments. A new and ex-
tensive data set will need to be gathered.

• Since we want to delimit gestures from other everyday move-
ments, a further data label, noise, will need to be added to the
existing classier, in order to show that it is possible to actually
delimit a gesture entry from uninteresting motions of the mobile
device. This new label, too, will require the recording of substan-
tially more sensor data from users of mobile devices.
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Chapter 8

Conclusion

In this dissertation we demonstrate that the input expressiveness for
mobile user interfaces can be improved bymaking better use of the sen-
sors available on the mobile devices. This has the effect of increasing
the usability of mobile user interfaces, measured by quantitative and
qualitative indicators. To come to this conclusion, we developed and
analyzed several novel interaction concepts making use of sensor data
from sensors that are currently built in to mobile devices, as well as
sensors that are likely to be incorporated into future mobile devices.

In this chapter, we summarize the work presented in this dissertation
and enumerate the contributions we achieved. We conclude by contex-
tualizing the main contributions of this dissertation and discussing its
impact for the future of mobile HCI.

8.1 Summary and Contributions

In Chapter 1, we give a brief overview of the technological development
of mobile interaction. We observe that the development of mobile user
interfaces is closely coupled with the evolution of the sensory capabil-
ities of the device. This motivates us to conduct research on sensor-
based mobile user interface concepts in this dissertation, because the
development of new sensing technologies for mobile devices will con-
tinue into the foreseeable future. We identify three areas of interest
for research into sensor-based interface concepts on mobile devices:
continuous interaction, around-device interaction and motion gestures.
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8.1.1 Continuous Input

In Chapter 3 we examine mobile interfaces supporting continuous in-
teraction. The idea here is to use the additional sensing capabilities
of mobile devices to help users perform more efficiently in tasks that
require repetitive input actions, e.g., map scrolling on a touch-based
mobile device. State-space systems can be used to map a low number of
input parameters to a large number of output parameters. Such dy-
namic models also allow modeling the parts of the user interface as a
physical process, which can improve the user’s mental model of the
user interface during interaction. We employ a state-space system to
create a Speed-DependentAutomatic Zooming (SDAZ) engine for our inves-
tigation on how to improve mobile map interfaces controlled by tilting
the device.

We choose to study tilt-based mobile map navigation with automaticSemi-Automatic
Zooming addresses
several usability
problems of standard
SDAZ interfaces

zooming because on touch-based devices, map navigation interfaces
without automatic zooming require repetitive scrolling and zooming
gestures and can thus lower the productivity of the user. On the other
hand, we feel that fully automatic zooming can by itself cause user er-
rors, such as the hunting effect (Section 3.1.1), in some situations.
Thus, we propose Semi-Automatic Zooming (SAZ), a technique that al-
lows the user to control the base zoom level of an automatic zooming
interface manually. SAZ avoids the hunting problem by allowing the
user to retain a given zoom level even when the map is not scrolling.
In addition, the work in Section 3.1 contributes a software testbed for
mobile map navigation that uses real map data in the form of locally
stored map tiles. We extend a state-space model used by (Eslambolchi-
lar and Murray-smith, 2004) to support two-axis tilt input for SDAZ.
The testbed scales to allow map navigation across a large geographic
area.

To evaluate SAZ, we present the results of a study comparing SAZ,
SDAZ and multi-touch. Our results show signicantly lower task com-
pletion times and higher USE ratings for SAZ in comparison to SDAZ.
There is no signicant difference between SAZ and multi-touch, prob-
ably owing to user familiarity with touch input as well as the excel-
lent support for multi-touch in the testing apparatus (an Apple iPhone
3GS). We notice that the tilt-based input for map navigation has a sig-
nicant learning curve, with users’ performance improving noticeably
towards the end of the trials. As such, we suggest using SAZ as a use-
ful companion technique for complex map navigation tasks on devices
with multi-touch support, in situations that do not afford multi-touch
use (i.e, when only one hand is available to hold and use the mobile de-
vice), and as the main technique on devices without multi-touch input
capabilities.
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In consideration of the positive results we obtained for SAZ for tilt-
based input, we decided to evaluate SAZ and SDAZ for ick-based in-
put. The results of this work are presented in Section 3.2. Our mo-
tivation here is to combine the advantages of SAZ with multi-touch,
which, as our previous study indicates, is more familiar to use for the
users. We obtain insights into the correct mappings for ick-based in-
put for map scrolling and modications to the original tilt-based state-
space model (Section Section 3.2.3) to support tilt-based input. We
describe the results of a preliminary user study (similar to the one in
Section 3.1.3), comparing two ick-based techniques with tilt-based
SAZ and multi-touch. Against our expectations, the ick-based tech-
niques perform worse than SAZ and multi-touch. In future work, a
more extensive study with a further iteration on the implementation
will need to be conducted to verify or invalidate this observation.

Looking at the results from Chapter 3, we can argue that mobile user embedded sensors
on current mobile
devices can be used
to build expressive
UIs and are currently
underused

interfaces using sensors providing a continuous data stream, such as
accelerometers, can be used to drive expressive interactions, such as
mobile map navigation. The work also shows how the embedded sen-
sors on mobile devices are under-used in terms of enhancing the input
capabilities of the user interface. A further observation we can make is
that, while state-space systems are state-of-the-art and can yield very
impressive results in terms of realism, they can be difficult to calibrate
and to adjust to particular user interface requirements. Future work
should therefore focusmore generally on the use of state-space systems
for mobile user interfaces, in order to be able to generate recommenda-
tions for the choice of model and parameters for particular sensor types
and application areas.

8.1.2 Around-Device Input

In Chapter 4 we look at sensor technologies that could be incorpo- Around-Device
Interaction increases
the expressiveness
and possibilities for
input on mobile
devices

rated into future mobile devices. We develop novel mobile UIs using
these sensor technologies and evaluate their usability in comparison
to current UIs. The goal of these evaluations is to enable us to deter-
mine what sensor types can be used in future mobile devices and how
the usability of these devices can be improved by new types of mobile
UIs. To this end, we also introduce the concept of Around-Device Interac-
tion (ADI) in Section 4.1. The idea of ADI is to increase the expressive-
ness and possibilities of mobile input by enabling input on the entirety
of the device’s surface and also the space surrounding the device. A
fundamental motivation of ADI is to break through the constraints of
the 2D touch found on most contemporary mobile devices.
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HoverFlow is the rst prototype we built to evaluate-the concept of ADI.HoverFlow is a
proof-of-concept that
demonstrates the
feasibility of
around-device
interaction

The prototype demonstrates that it is possible to implement ADI by
using a simple set of sensors. HoverFlow contributes a set of coarse in-
put gestures for front-of-device interaction, useful in situations where
touch manipulation of the device is not possible.

The concept of around-device gestures is expanded upon by PalmSpace
(Section 4.4). Here, we use a depth camera attached to a mobile device
which provides depth information with a signicantly higher resolution
than that of the sensors with which HoverFlow was equipped. The aim
of PalmSpace was to allow precise gestural input in the around-device
space, allowing the simultaneous manipulation of user interface pa-
rameters with free-space gestures. To accomplish this, we developed a
palm-based user interface metaphor, based on tracking the pose of the
user’s outstretched palm. As a task to evaluate, we choose 3D rotation
input, since this type of task is relatively difficult to perform on touch
screens due to occlusion and only two degrees of freedom for input.

We contribute insights into the correct depth camera orientation forwe demonstrate that
depth cameras could
be a useful input
device for future
mobile devices

around-device interaction (to the side of the mobile device) and empiri-
cally conrm our hypothesis that rotation tasks can be performed with
a lower task completion time with around-device gestures than with
direct input on the touch screen. On a technical level, we show that it
would be feasible and benecial to incorporate depth cameras on future
mobile devices, once this technology has been sufficiently reduced in
size.

Regarding interaction on the surface of mobile devices, we explore
dual-sided pressure-based mobile interaction using the iPhone Sand-
wich, a prototype mobile device with these input capabilities which we
patented (Essl et al., 2011). One of the advantages of the iPhone Sand-
wich is that it allows a high local expressivity for local input, affording
interactions that are not possible with traditional single-sided touch in-
put. Interactions resembling everyday actions such as squeezing, twist-
ing, grabbing and turning become possible on the mobile device. We
contribute a number of application scenarios in this design space.

Noticing contradictory statements concerning the correct mappingwe resolve
contradictions in the
literature concerning
the correct mapping
of pressure to input
variables

of pressure input to user interface output in the literature, we study
the characteristics of measuring circuits and mapping functions for
pressure-based input in Section 4.5 as well as the inuence of hand-
held device pose on the accuracy of pressure input. Furthermore, we
observe that the performance of pressure input, measured as the target
acquisition time for our task, does not differ signicantly when pres-
sure is applied to the mobile device lying on the table, from both sides
of the device or from the rear of the device. The target acquisition
time for pressure input from the front, however, is signicantly lower
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than for the other poses, indicating that the other compared poses are
preferable.

Input of 3D rotation is a difficult task on single-sided touch-based de- we contribute a
rear-of-device virtual
trackball that avoids
discontinuities using
a gaussian mapping

vices. In Section 4.6 we present the results of a study comparing front
and rear-based virtual trackballs with a tilt-based input technique. We
did not nd a signicant difference between front and rear trackball in-
put for 3D object rotation. However, we did contribute a rear-of-device
virtual trackball implementation using a Gaussian mapping functions
that avoids the discontinuity at the edge of standard virtual trackballs
using a spherical mapping, and allows occlusion-free rotation of 3D
objects.

8.1.3 Motion Gestures

We present a number of contributions in the domain of motion ges-
tures for mobile devices in Chapter 5. Since motion gestures are cur-
rently under-used in mobile user interfaces, one our goals is to develop
gesture recognition algorithms that are easy to implement and to in-
corporate into mobile applications, while at the same time retaining
an acceptable gesture recognition accuracy. By doing this, we hope
to help practitioners and researchers to incorporate gesture recogni-
tion into their applications at an early stage of in the development
of their projects, promoting the use of gesture-based input in mobile
user interfaces. This effort is starting to bear fruit, as recent publi-
cations in human-computer-interaction, e.g., (Alexander et al., 2012),
have made use of Protractor3D (Section 5.3). In addition, there have
been numerous requests from industry expressing interest in using
the open-source versions of the $3 Gesture Recognizer and Protractor3D
(Kratz, 2012a,b)W in their projects.

The $3 Gesture Recognizer (Section 5.2) is an easy-to-implement
template-based gesture recognizer we developed by extending earlier
work by (Wobbrock andWilson, 2007). The $3Gesture Recognizer needs
only few training gestures, can be incorporated rapidly into mobile ap-
plications and has sufficient accuracy for prototyping applications.

Improving upon the $3 Gesture Recognizer Protractor3D (Section 5.3)
signicantly increases gesture recognition accuracy by solving the
template–gesture rotation problem (Section 5.3.2.1), while at the same
time retaining the desirable properties of its predecessor.
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We also examine a novel application area for motion gestures, gesture-gestures for
authentication can be
easier to memorize
than PINs and faster
to execute on mobile
devices

based authentication (GBA) (Section 5.4). Accelerometers and gyro-
scopes inmodernmobile device have sufficient delity and update rates
to be used for authentication purposes. The sensor data provides fea-
tures that can be used to distinguish between motions of individual
users, because users perform motions differently due to physiological
differences. We aim to prove the feasibility of such a system and to
analyze its resistance to forgery attempts. To do this, we analyze three
different forgery scenarios. We demonstrate that GBA is reasonably
secure even for attacks with direct visual information of the performed
gesture. Since the false acceptance rate lies below 5% when the GBA
system is set to be reasonably usable (in terms of the tradeoff between
false acceptance and false rejection rates), we recommend using GBA
for rapid “low-risk” authentication tasks, e.g., for posting updates to
social network sites, where PIN-entry would be cumbersome. Future
renement of the algorithms will most likely lead to a higher level of
security. Embedding GBA capabilities on a low level of the hardware,
i.e., the SIM card of a mobile device, would open very interesting pos-
sibilities. We have laid the foundations for such work to proceed.

Because a growing number of mobile devices is being equipped with
a gyroscope as well as an accelerometer, we investigate how to make
the additional data of the gyroscope available to the gesture recogni-
tion algorithms. In Section 5.5 we present an algorithm for combin-
ing accelerometer and gyroscope data that can be used with algorithms
such as Protractor3D, that only support three dimensional input data.
We present the results of a study showing the effect of combining ac-
celerometer and gyroscope data for Protractor3D and other popular ges-
ture recognition algorithms. Our results indicate that combining ac-
celerometer and gyroscope data increases the gesture recognition F1

score 2%–4%, depending on the gesture algorithm employed.

8.1.4 Empowering End Users

Creating gesture-based user interfaces is at present only possible forMayhem allows end
users to build custom
user interfaces
controlling complex
functionality

those users who have programming skills. To make the scripting of
complex functionality, including gesture-based input, accessible to end
users, we developed Mayhem (Section 6.1). Mayhem packages modules
that implement complex functionality, andmakes these functions avail-
able in a scriptable environment targeted at end users. Mayhem has re-
cently been released as an open-source project and is currently in the
process of building up a user community.
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8.2 Recapitulation and Contextualization of Contribu-
tions and Results

In this dissertation we contribute a range of user interface concepts
for sensor-based interaction aimed at enhancing the scope of mobile
interaction input possibilities for current and future mobile devices.
We have shown that the expressiveness of mobile input can be sig-
nicantly increased when making non-trivial use of the devices’ on-
board sensors. We have made contributions in three promising areas
of sensor-based input for mobile devices: continuous interaction, around-
device interaction and motion gestures. These contributions presented in
this dissertation cumulate in an in-depth view on the possibilities of
sensor-based mobile user interfaces and form a prediction of the devel-
opment of mobile user interfaces in the coming years.

In the following, we list all individual contributions and then present a
contextualization of them within the SIGCHI HCI curriculum system
(Hewett et al., 2009)W.

1. Continuous Interaction and State-Space Systems: develops tilt-based
map navigation
interface as
exploration of
non-trivial usage of
accelerometers on
mobile devices

(a) Semi-Automatic Zooming (SAZ): mobile tilt-basedmap naviga-
tion interface based on Speed-Dependent Automatic Zoom-
ing (SDAZ) that has the option of a manual override of the
base zoom level.

Extension of a state-spacemodel to support 2Dmap scrollingwith au-
tomatic zooming and tilt input. Helps overcome several limitations of
SDAZ, shows signicant decrease in task completion time vs. SDAZ.

(b) Flick-and-Zoom (FAZ): mobile map interface for map naviga-
tion based on SDAZ with ick-based input.

Insights intomappings for ick-based input formap navigation. Cre-
ation of a state-space model for automatic zooming and ick input.
Presents preliminary ndings on user performance with FAZ.

2. Around-Device Interaction (ADI) develops concepts for
future mobile user
interfaces based on
sensor technologies
yet to be
incorporated into
mobile devices

(a) Introduction to the concepts of ADI. Characterization of the ADI de-
sign space.

(b) HoverFlow: prototype ADI interface supporting coarse hand
gestures.

Proof of concept implementation for ADI. Demonstrates sufficiently
accurate around-device gesture recognition with a simple set of sen-
sors.
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(c) PalmSpace: precise around-device gesture-based input based
on a mobile depth camera.

Development of a gesture-based input technique for 3D rotation.
User study shows improved task time performance of around-device
gestures in comparison to existing touch screen 3D rotation tech-
niques.

(d) iPhone Sandwich: a mobile dual-sided multi-touch device
with pressure sensing.

Development of the iPhone Sandwich prototype. Conception of ap-
plication scenarios for dual-sided pressure-based input. Gains new
insights into mapping of pressure sensor data to user interface inputs;
corrects misconceptions about this in the literature. Evaluates the in-
uence of different grip poses on the effectiveness of pressure input.
Development of a dual-sided virtual trackball that enables occlusion-
free 3D object rotation.

3. Motion Gesturesprovides algorithms
that simplify the
integration of gesture
recognition into
mobile applications

(a) $3Gesture Recognizer: a simple-to-implement motion gesture
recognizer for rapid prototyping applications.

Extension of existing recognition technique to cope with 3D input
data. Evaluation of performance in a user study. Technique is eas-
ier to implement and requires less training data than previous gesture
recognizers, while retaining a comparable recognition accuracy.

(b) Protractor 3D: improvement upon the $3 Gesture Recognizer
that is invariant to rotational differences between gesture
inputs and model templates.

Application of a closed-form solution to the gesture–template rota-
tion problem, resulting in signicant accuracy gains of the $3 Ges-
ture Recognizer, and keeping its benecial properties.

(c) Gesture-Based Authentication (GBA) : user authentication on
mobile devices through motion gestures.

Shows that GBA is feasible on devices equipped with accelerometers
and gyroscopes. Shows that GBA is resistant towards direct visual
attacks. Demonstrates that such a system is usable and accepted by
users.
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Figure 8.1: The contributions of this dissertation mapped over a graphical representation of
the ACM’s classication system for HCI. The main classes of contributions and their interre-
lation is shown.

(d) Combining Accelerometer and Gyroscope Data for Motion Gesture
Recognition: analysis of the effects of combining accelerome-
ter and gyroscope data

Introduces an algorithm to combine accelerometer and gyroscope data
for use with algorithms such as Protractor3D. Evaluates effect com-
bining these two data types on a large data set with several gesture
recognition algorithms.

4. Empowering the End User bridges the gap
towards end users,
giving them access to
some of the advanced
concepts presented
in this dissertation

(a) Mayhem : a programming environment for end users.

Demonstrates howMayhem enables end users without programming
skills to use advanced concepts such as gesture recognition in their
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own applications, empowering them to create complex interactions
by themselves.

The majority of the contributions in this dissertation have been pub-
lished in the proceedings of peer-reviewed academic conferences:
(?Kratz and Rohs, 2010b,a, 2011; Kratz et al., 2010a, 2012a; Stewart
et al., 2010).

In order for the reader to better understand the context of the contribu-
tions of this dissertation, we map them over a graphical representation
of the ACM’s classication system for HCI in Figure 8.1. The contri-
butions are grouped into three main classes: concepts, algorithms and
prototypes. Moreover, the gure highlights the relationships between
the individual contributions and concepts.

8.3 Closing Remarks

The use of mobile devices is currently growing rapidly throughout the
world, especially in developing countries. At the same time, the num-
ber of tasks that users perform on mobile devices is increasing steadily.
Because of this shift of focus away from stationary computing, mobile
interaction has become an important eld within HCI. The contribu-
tions in this dissertation provide developers of mobile user interface
with a number of novel interface concepts, that will allow them tomake
better use of the sensory capabilities of mobile devices. Furthermore,
the contributions can guide mobile phone manufacturers in choosing
sensor technologies to embed in future mobile devices, with the objec-
tive of increasing those devices’ usability, usefulness and joy of use.

Sven Kratz
Sunnyvale,CA, January 11, 2013
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Appendix A

Contents of CD-ROM

The CD-ROM accompanying to this dissertation contains material and
media accompanying this work. The root directory of the CD-ROM
contains four folders with the following contents:

• Papers: The papers containing the most of the relevant contribu-
tions to this dissertation.

• Source Code and Software: The source code for the $3 Gesture
Recognizer and Protractor 3D as well as the Gesture Recombina-
tion Algorithm and a Python implementation of regularized lo-
gistic regression. Furthermore, the current Mayhem installer, as
well as the UDP listener event used in the example in Section 6.2
is included.

• Study Data: Some raw data and evaluation scripts the user stud-
ies discussed in this work.

• Web References: Snapshots of online references at time of ac-
cess.

• Videos: Demonstration videos of HoverFlow, PalmSpace and the
iPhone Sandwich.
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