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Abstract

The purpose of brain mapping is to advance the understanding of the relationship between
structure and function in the human brain. Several techniques—with different advantages
and disadvantages—exist for recording neural activity. Functional magnetic resonance
imaging (fMRI) has a high spatial resolution, but low temporal resolution. It also suffers
from a low-signal-to-noise ratio in event-related experimental designs, which are com-
monly used to investigate neuronal brain activity. On the other hand, the high temporal
resolution of electroencephalography (EEG) recordings allows to capture provoked event-
related potentials. Though, 3D maps derived by EEG source reconstruction methods have
a low spatial resolution, they provide complementary information about the location of
neuronal activity. There is a strong interest in combining data from both modalities to gain

a deeper knowledge of brain functioning through advanced statistical modeling.

In this thesis, a new Bayesian method is proposed for enhancing fMRI activation detec-
tion by the use of EEG-based spatial prior information in stimulus based experimental
paradigms. This method builds upon a newly developed mere fMRI activation detection
method. In general, activation detection corresponds to stimulus predictor components
having an effect on the fMRI signal trajectory in a voxelwise linear model. We model
and analyze stimulus influence by a spatial Bayesian variable selection scheme, and ex-
tend existing high-dimensional regression methods by incorporating prior information
on binary selection indicators via a latent probit regression. For mere fMRI activation
detection, the predictor consists of a spatially-varying intercept only. For EEG-enhanced
schemes, an EEG effect is added, which is either chosen to be spatially-varying or constant.
Spatially-varying effects are regularized by different Markov random field priors.

Statistical inference in resulting high-dimensional hierarchical models becomes rather
challenging from a modeling perspective as well as with regard to numerical issues. In
this thesis, inference is based on a Markov Chain Monte Carlo (MCMC) approach relying
on global updates of effect maps. Additionally, a faster algorithm is developed based on
single-site updates to circumvent the computationally intensive, high-dimensional, sparse

Cholesky decompositions.
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The proposed algorithms are examined in both simulation studies and real-world applica-
tions. Performance is evaluated in terms of convergency properties, the ability to produce
interpretable results, and the sensitivity and specificity of corresponding activation classifi-
cation rules. The main question is whether the use of EEG information can increase the
power of fMRI models to detect activated voxels.

In summary, the new algorithms show a substantial increase in sensitivity compared to
existing fMRI activation detection methods like classical SPM. Carefully selected EEG-
prior information additionally increases sensitivity in activation regions that have been

distorted by a low signal-to-noise ratio.



Zusammenfassung

Die Gehirnkartierung verfolgt das Ziel, Hirnarealen Funktionen zuzuweisen und damit
die Funktionsweise des Gehirns zu ergriinden. Es existieren verschiedene bildgebende
Verfahren zur Aufzeichnung neuronaler Aktivitit, die unterschiedliche Vor- und Nachteile
aufweisen. Funktionelle Magnetresonanztomographie (fMRT) bietet eine hohe rdumliche,
aber schlechte zeitliche Auflosung. Zusétzlich ist die Erkennung neuronaler Aktivitat
in gdngigen ereigniskorrelierten experimentellen Designs durch ein niedriges Signal-zu-
Rauschen Verhiltnis erschwert. Ein weiteres Verfahren stellt die Elektroenzephalographie
(EEG) dar: Durch deren hohe zeitliche Auflosung konnen in gemittelten EEG Zeitrei-
hen ereigniskorrelierte Potentiale klar identifiziert werden. 3D EEG-Karten, die iiber
Quellenlokalisationsmethoden berechnet werden, haben jedoch eine niedrige raumliche
Aufldosung. Trotzdem enthalten sie komplementédre Information tiber die Lokation neu-
ronaler Aktivitat. Es ist von hohem Interesse, die Information aus beiden Verfahren zu
kombinieren, um tieferes Wissen iiber die Funktionsweise des Gehirns zu erlangen, und

komplexe statistische Verfahren sind dafiir unabdingbar.

In dieser Arbeit wird ein neuer Bayesianischer Ansatz vorgestellt, der in stimulusbasierten
experimentellen Designs die Performanz von fMRT-Aktivierungserkennungsverfahren
verbessern kann indem er zusatzlich EEG-basierte raumliche Priori-Information ein-
bezieht. Dieser Ansatz basiert auf einem neu entwickelten reinen fMRT-Aktivierungs-
erkennungsverfahren. Bei der Aktivierungserkennung wird voxelspezifisch evaluiert,
inwieweit ein experimentell gesetzter Stimulus einen Einfluss auf die gemessene fMRT-
Signalzeitreihe hat. Der vorgestellte Ansatz stiitzt diese Evaluierung auf eine Bayesianische
Variablenselektion und erweitert vorhandene hochdimensionale Regressionsverfahren
indem die Prioriwahrscheinlichkeiten der bindren Indikatorvariablen mit einer latenten
Probitregression verkniipft werden. Fiir reine fMRT-Aktivierungserkennungsverfahren
besteht der Pradiktor aus einem raumlich-variierenden Intercept. Fiir EEG-basierte Ver-
fahren wird ein EEG Effekt hinzugefiigt, der entweder raumlich-variiert oder konstant
ist. Zur Schatzung dieser raumlichen Effektkarten werden Regularisierungsverfahren

verwendet, die auf verschiedenen Markov-Zufallsfeldtypen basieren.



viii Zusammenfassung

Die Herausforderungen bei der Entwicklung statistischer Inferenzmethoden fiir hochdi-
mensionale hierarchische Modelle sind grof: Sowohl modellierungstechnische als auch
numerische Probleme sind dabei zu 16sen. In dieser Arbeit beruht die Inferenz auf einem
Markov Chain Monte Carlo (MCMC)-Ansatz, der die Effektkarten simultan aktualisiert.
Um die darin verwendeten hochdimensionalen Choleskyzerlegungen zu umgehen, wurde
dariiber hinaus ein auf Geschwindigkeit hin optimierter Algorithmus entwickelt, der auf

elementweisen Updates beruht.

Die Performanz der vorgeschlagenen Algorithmen wird anhand umfassender Simula-
tionsstudien und realer Anwendungen untersucht. Dabei wird die Giite der Verfahren
hinsichtlich deren Konvergenzverhalten, Interpretierbarkeit sowie Sensitivitat und Spezi-
titat der daraus abgeleiteten Aktivierungsklassifikationsregeln beurteilt. Von besonderem
Interesse ist die Frage, inwieweit die Hinzunahme von EEG-Information die Performanz

von Aktivierungserkennungsverfahren erhohen kann.

Zusammenfassend zeigen die neuen Algorithmen eine deutliche Steigerung der Sensitiv-
itat gegentiber bestehenden Verfahren wie SPM, ohne an Spezifitdt einzubiifSen. Durch
die Hinzunahme von sorgfaltig ausgewdhlter EEG-Information wird eine zusétzliche

Sensitivitdtssteigerung in verrauschten Aktivierungsregionen erzielt.
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Outline

Recording electrophysiological data simultaneously with functional magnetic resonance
imaging (in the following referred to as fMRI) targets at combining the advantages of both
modalities to gain deeper insight into brain functioning. Recently, extensive experimental
and methodological research has been done to achieve this goal (see Mulert and Lemieux,
2010, for a compelling review). Both measurement techniques capture neuronal activity.
Scalp electroencephalography (in the following referred to as EEG) measures the summed
activity of postsynaptic currents. Hereby, time series of electrical activity are recorded from
multiple electrodes placed on the scalp (see Figures 1.2 on p. 13 and 1.3 on p. 14). fMRI
is one of the most recently developed and at present most popular form of noninvasive
imaging of human brain activity. Just recently, celebrating 20 years of fMRI, an entire
special issue was released by the Neurolmage journal (Bandettini, 2012) demonstrating
the popularity of the fMRI technique. fMRI also captures neuronal activity but in a more
indirect way than EEG: Electrically active neurons are subject to a higher energy demand
leading to an increase in blood flow into active brain regions. fMRI is based on the blood
oxygenation level dependent (BOLD) effect and mirrors the changes in cerebral perfusion
of capillaries with oxygenated blood. The fMRI technique provides a time series of three-
dimensional images of the brain, see Figure 1.4 on p. 17. Both modalities, EEG and fMR]I,
are based on brain processes related to neuronal activity. Therefore, activated brain regions
can be located by analyzing both fMRI and EEG data.

EEG and fMRI can be contrasted by advantages and disadvantages associated with each
technique. Neuronal activity is directly reflected in EEG recordings. Identifying the
exact spatial localization of active neurons, however, is complicated by, on the one hand,
physical constraints underlying the current conduction through brain tissue and, on the
other hand, dispersion effects on the scalp. The time resolution is high and allows to
identify short-lasting or high-frequency events in the submillisecond range. In contrast
to EEG, with fMRI a high spatial resolution in the millimeter range is obtained, whereas
the time resolution is in practice limited through several technical factors, so that data

acquisition of a single whole brain volume takes about 2 seconds.
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EEG and fMRI each capture different aspects of neuronal activity, but neither captures
all. For being recorded at the scalp surface, electric events in deeper brain regions, which
are detected by fMRI, emerge as damped oscillations in the EEG and are hard to localize.
On the contrary, signals recorded by EEG need not necessarily be identifiable in the
simultaneously recorded fMRI time series. For instance, no explicit BOLD response was
identified for some short-lasting EEG signals with high amplitude, as e.g. K-complexes.
See Ritter and Villringer (2006) and Daunizeau et al. (2010) for a more detailed discussion
of situations where discrepancies between concurrent fMRI and EEG recordings emerge,

and Section 1.1.4 for a summary.

The main motivation for developing statistical methods for the fMRI-EEG data fusion
lies in compensating shortcomings—related to technical issues as well as the biophysical
generation process—of one technique by adding information from the other to gain a
deeper insight into brain functioning. A close coupling between measuring EEG and fMRI
data seems indispensable for this. Therefore, in the last couple of years, recording EEG
simultaneously with fMRI has become firmly established. For this to happen, several

technical challenges had to be overcome (Ritter and Villringer, 2006).

Statistical methods that aim at combining EEG and fMRI face the challenge of integrating
two data types that differ strongly in their structure as well as their generative process.
Basically, so far, three different analysis approaches to multimodal integration have been
proposed (Laufs et al., 2008; Daunizeau et al., 2010; Rosa et al., 2010). We distinguish
between (i) EEG-to-fMRI approaches, where the fMRI signal is correlated with an EEG-
defined event or feature to gain information on the location of electrophysiological phe-
nomenons, (ii) fMRI-to-EEG approaches, where the spatial information of the fMRI is used
for a (spatiotemporal) source reconstruction of the EEG and (iii) symmetrical approaches,
usually referring to the use of a common forward or a generative model that explains both
EEG and fMRI data.

In this thesis, this set of approaches is extended by introducing a new type of method:
an EEG-informed fMRI activation detection method. It is based on a high-dimensional
fMRI regression model, which is also the basis for (i). In preparation for incorporating
EEG information, a suitable uninformed fMRI activation detection method was developed.
It grounds on ideas of Smith et al. (2003) and Smith and Fahrmeir (2007), who suggested
to use a Bayesian variable selection approach and model averaging techniques to assess
brain activity. Activity is, thereby, assessed locally at each voxel (a volume element of
a three-dimensional image). A voxel is said to be active—in a narrower sense, to be

responsive—if its fMRI signal trajectory responds to stimuli. That is, a voxel is active
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when a predictor component describing stimulus presentation has an significant effect
on the fMRI signal. Alternatively, in terms of Smith et al. (2003), a voxel is said to be
active if the inclusion of the stimulus predictor component plays a role in explaining
the fMRI signal. To assess voxelwise activity, Smith et al. (2003) introduced voxelwise
binary activation parameters in the form of selection indicators for the stimulus component
and inspected the size of corresponding selection probability estimates, which serve as
activation probability estimates. To account for the correlation between neighboring voxels,
estimation of activation probabilities was regularized by an Ising prior. The authors even
provided a way to incorporate external prior information. This prior information, however,

had to be available in the form of prior probability maps.

In this thesis, we extend the work of Smith et al. (2003) by providing means to include
general prior activation information in continuous or binary form. For this, we replace the
Ising prior with a latent, spatial probit regression stage that accomplishes the mapping
between general variable values and probability estimations. For uninformed fMRI acti-
vation detection, the probit regression predictor consists of a spatially-varying intercept
only (similar to the work of Smith and Smith, 2006). For EEG-informed fMRI activation
detection schemes, spatial EEG information can be included as a further variable—possibly
with a spatially-varying effect. To adjust for correlations within spatially-varying effect
vectors, two different types of Gaussian Markov random field (GMREF) priors were used

resulting in two different modelling choices.

Another extension to the models of Smith et al. (2003) was required to make the activation
detection scheme applicable to general experimental designs commonly applied in the
fMRI literature. We had to adapt the form of the fMRI regression predictor to incorporate
popular event-related stimulus paradigms (Rosen et al., 1998) !, further covariates and
an advantageous choice of highpass filter regressors. For this, we followed modelling
choices as used in the software package Statistical Parametric Mapping (SPM), which
is in common use as a standard tool for assessing human brain activity. The theoretical
framework behind implemented features of SPM is discussed in Friston et al. (2008). Event-
related stimulus types of interest can either be set by an experimental procedure (external
stimuli) or can be defined by spontaneous electrophysiological events (internal stimuli).
Though, we focussed on event-related designs, the model formulation can also incorporate
block designs.

Bayesian posterior analysis is based on a Markov Chain Monte Carlo (MCMC)-approach

!In event-related paradigms single, short-lasting stimuli are presented. This is in contrast to block designs
where longer periods of experimental conditions alternate with control conditions
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that allows to directly calculate all parameters and features of interest. In particular,
the marginal posterior probability for activation at each voxel is of interest, because it
can be thresholded to provide an activation map. Our MCMC implementation relies
on global updates of spatially-varying effect maps. Additionally, a faster algorithm is
developed based on single-site updates circumventing the computationally intensive,
high-dimensional, sparse Cholesky decompositions.

In comparison to previous methods, our approach has several significant advantages. It
shares several advantages of the Ising model (see Smith et al., 2003). First, our Bayesian
formulation allows the explicit modeling of the probability that a voxel is activated,
which circumvents either the problematic interpretation of frequentist p-values in classical
approaches or the counterintuitive selection of an activation threshold on the level of
Bayesian activation amplitude effect estimates (Friston et al., 2002). Second, it incorporates
spatial correlations at the level of activation probabilities, which are the parameters of
interest, and not just indirectly on the level of activation effects as, for example, in Gossl
et al. (2001a), Penny et al. (2005) and Groves et al. (2009). Third, because the posterior
distribution incorporates the spatial structure of a GMREF prior, there is no need for spatial
adjustments in a postprocessing step.

Above that, our approach possesses a major advantage over the Ising model. Our mod-
elling formulation allows to incorporate very general forms of prior information, which
can be used to enhance fMRI activation detection. The intended use of our approach is
to incorporate EEG-prior activation information in the form of three-dimensional source
reconstruction maps (Michel et al., 2004), though any kind of external prior information
can be used as long as it is available as a single three-dimensional map with activation
information. The scale of the contained measurements is quite arbitrary: Voxel values
can be binary or continuous. We generally assume, however, that larger values indicate
activation. Extensions to more than one predictor variable, also of the categorical type, can
easily be accomplished. As a EEG-fMRI data fusion technique, our approach is related to (i)
for being based on fMRI regression, but does not simply search for brain regions showing
a correlation with EEG features. Our approach extends fMRI regression by adding spatial
EEG information to activation detection.

Compared to classical SPM and the Ising model, our uninformed fMRI activation schemes
prove to have superior performance. They have highly increased sensitivity without losing

their high specificity level and possess excellent edge-preserving properties.

Our EEG-enhanced fMRI activation schemes are equally sensitive or at least as sensitive as

our uninformed algorithms. This hints at the usefulness of our enhanced approaches and is
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a prerequisite for their intended purpose. These procedures are developed to compensate
a low signal-to-noise ratio in the fMRI signal, which is often a problem in event-related
designs, to (2) make EEG phenomenons visible otherwise not detected and (b) bring out
activation regions more clearly when activation regions are blurred by noise. Though,
three-dimensional maps derived by EEG source reconstruction methods have a low spatial
resolution, they provide complementary information on the location of neuronal activity.
To make use of EEG information without being biased by inaccurate location information,
EEG-enhanced detection schemes need to be robust against prior misspecifications. Our
developed model ensures this for adapting to the level of EEG and fMRI congruency within
the brain. This is achieved at the expense of a sensitivity increase. However, we identified
data settings in which a substantial performance gain could be achieved compensating

activation loss due to noise.

Though, we focus on deriving a method for combining fMRI and EEG data, our technique
can be used for solving problems arising in other applications as well. Our method is
a special kind of spatial classification technique that can be applied in the absence of a
training sample, but in the presence of structural spatial information. That is, it targets at
estimating a latent binary Markov random field. As noted by Smith and Smith (2006), who
discussed a wider scope for the fMRI activation technique proposed in Smith et al. (2003),
problems adequate for applying the technique have the following properties. First, the
data at each specific spatial location are distributed as a mixture of two distributions repre-
senting two underlying classes. Second, the data likelihood assumes spatial independence
in the data, conditional on the binary variables and any other parameters. The objective
is to provide a binary classification at each site accounting for and making use of spatial
correlations. Hence, in exactly the same way as in Smith and Smith (2006), the uninformed
technique can, for example, be adopted for identifying cells in data images recorded by
confocal fluorescence microscopy. In addition to this, the informed technique can now
be used when additional, spatial information on classification is at hand. It seems, for
example, conceivable, that our technique can be applied for tumor identification. Tumor
tissue can, for example, be identified by typical contrast-curve shapes recorded by dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI) (Parker and Padhani, 2003;
Padhani et al., 2005). Incorporating prior information in form of, e.g., an positron emission
tomography (PET) image can help to quantify location and size of a tumor. Parker and
Padhani (2003) note that it seems unlikely that infiltrating tumors will be entirely delin-
eated by DCE-MRI techniques and that additional techniques such as proton spectroscopy
and PET may provide additional clarification of the extent of tumor spread. Our proposed
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informed classification technique provides a conceptual framework of incorporating such

additional information into DCE-MRI tumor detection methods.

Beside the methodological development, the implementation of a software tool was a
major part of this thesis. High diligence was put into arriving at a software solution that
tulfills a high quality standard. The implementation follows object-orientated program-
ming paradigms and meets requirements as user friendliness and easy extensibility. It
incorporates automatic data management routines for data formats that are commonly
used in neuroimaging analysis and has a good runtime performance for relying on high-
performance linear algebra software libraries. The software is freely available as R package
(R Core Team, 2012) Rfmrieeg. Alternatively, C++ source code is provided for a binary
CfmrieegMain program. Both kinds of software packages can be obtained from the

author.

To facilitate the understanding for the reader unfamiliar with the field of neuroscience, we
start with a short overview and introduction on the neurophysiological basis that both
EEG and fMRI rely on in Chapter 1. To convey a basic understanding of neuronal activity,
we explain what aspects of neuronal activity are measured by each modality. After this,
we give more details on published approaches to combine fMRI and EEG and highlight in
what way the new method proposed in this thesis supplements these approaches.

The main research objective of this thesis is the development of an EEG-enhanced fMRI
regression model. In Chapter 2, we describe the voxelwise fMRI regression framework
it is based on in detail and—in particular—we provide information about three types of
predictor components we decided to integrate into our model: highpass filter regressors,

confounders and regressors that model the contribution of experimental stimuli.

The methodological framework for the EEG-informed fMRI activation detection model,
which incorporates the uninformed model, is proposed in Chapter 3. For this, the underly-
ing Bayesian variable selection approach for activation detection is introduced. We then
describe in detail the used hierarchical parameter structure for incorporating the flexible
latent probit regression. Thereby, hierarchical Bayesian models are based on suitable
choices of (conditional) prior distributions. In particular, spatially-varying probit effects
are regularized by two different types of GMRF priors. Posterior inference is implemented
by a Markov Chain Monte Carlo scheme. Corresponding to the type of GMRF prior and
exact predictor choice, we derive different forms of activation detection algorithms. In
Chapter 4, model extensions are described to improve runtime performance leading to an

accelerated algorithm.
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Chapter 5 contains a description of the developed software making the analyzing tech-
niques discussed in this thesis available to researchers and practitioners. An introduc-
tory section gives details on the basic usage of the Rf mrieeg R-package and the binary
CfmrieegMain program. After this, we provide some insight into numerical solutions
and the software design. Technical notes are included for users that aim at optimizing the

runtime of the implemented algorithms.

In Chapter 6, we report the results of extensive simulation studies based on both controlled,
artificial as well as realistic data settings. These were conducted, on the one hand, to
support model building decisions and to gain insight into the functioning of the algorithms
and, on the other hand, to gain knowledge about the comparative performance of the

proposed models.

In Chapter 7, we demonstrate the applicability of variants of our model in the analysis of
a single-subject analysis of data derived from an auditory oddball experiment. Because
the performance gain by adding EEG information appears limited with our specific choice
of combined fMRI and EEG data, we demonstrate the usefulness of algorithms when
applying them to slightly modified, but realistic, data in Chapter 8. With it, we are able to
list data properties that are favorable to a successful application of EEG-enhanced fMRI
activation detection algorithms. The promising analysis results of an (unmodified) data
combination from the auditory oddball experiment that is chosen in accordance to these

characteristics can be found at the end of Chapter 7.
The thesis closes with concluding remarks and perspectives for the future.

Statistical inference in high-dimensional hierarchical models becomes rather challenging
from a modeling perspective as well as regarding numerical issues. Before arriving at a
solution to EEG-enhanced fMRI activation detection and a description of characteristics
of its applicational scope, various modifications to modeling choices as well as different
data analysis scenarios had to be considered. Therefore, the work at hand does not simply
summarize finished work, but documents the process of finding both a suitable model
and a characterization of its applicability. Hence, in a wider scope, this thesis serves as an
example for accomplishing a complex statistical modeling task for a challenging practical

research question that statisticians face today.
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1 Introduction

This thesis focusses on developing statistical models for locating neuronally active brain
regions by analyzing both fMRI and EEG data. Though a rather abstract notion of neuronal
activity is sufficient to understand most details of the methodological transfer, we give
in Section 1.1 a short overview and introduction on the neurophysiological basis that
each technique relies on. With a basic understanding of neuronal activity, challenges and
problems that arise when combining data from both modalities are easier to comprehend.
In Section 1.2 we give some more details on statistical approaches to combine fMRI and
EEG published so far and highlight in what way the here proposed new method extends
these approaches. Readers interested solely in the technical transfer and application of
newly proposed methods may skip this chapter.

1.1 Neurophysiological basis

Brain imaging modalities like EEG or fMRI are able to capture activity of large ensembles
of neurons, which are connected to each other to form neural networks. A neuron is,
hereby, the basic information-processing unit of the brain whereby neurons are located
in the cortex and the subcortical nuclei. A neuron is active if it processes and transmits
information by electrical and chemical signaling.

In the following, we describe the basics of neuronal signal processing and point out the
connection to biophysical properties that can be recorded by either EEG or fMRL

Note that the following description of biophysical processes is simplistic and targets an
audience unfamiliar with neurophysiology. It is meant to give a basic understanding
of the biophysical processes that generate fMRI and EEG signals. More comprehensive
descriptions can be found in Zschocke and Hansen (2012) and Huettel et al. (2004) which
constitute the basis for this section.
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1.1.1 Neuronal activity

Before we describe the process of neuronal signal processing, the basic morphological
features of a typical neuron need to be described. A cell diagram with the blueprint of a
typical neuron is shown in Figure 1.1'. A typical neuron is organized in three parts: a soma
(cell body), dendrites and an axon. The cell body contains cytoplasm, organelles—such as
the Golgi apparatus and mitochondria—and the nucleus that contains the DNA, the cell’s
genetic information. Dendrites are thin structures that arise from the cell body. They serve
to integrate signals coming from other neurons that connect to the dendrites via synapses,
i.e. specialized connections that transfer chemical signals. An axon is a special cellular
process that branches off from the cell body at a site called the axon hillock. If the neuron’s
excitation is strong enough, an action potential is generated and travels down the axon,

which, at its end, branches out and connects to subsequent neurons via synapses.

In the following, we look at the neuronal signal transmission between two neurons that
are connected to each other by a synapse. Parts of the neuron that are located before
the synapse and emit the signal, are called presynaptic. In contrary, the parts of the
neuron that receive the signal, are called postsynaptic. Typically, these parts are located on

another/second neuron, either its dendrites or its soma.

A postsynaptic neuron receives a signal if neurotransmitters, released by presynaptic
neurons, diffuse across the synaptic cleft and bind to receptors located on the membrane
of its dendrites or cell body (chemical signaling). These receptors open ion channels
provoking an influx or efflux of ions that changes the local polarization of the postsynaptic
neuron (electrical excitation). During rest, a neuron has a negative resting membrane
potential (net potential) of about -80 to -70 mV, as there is an excess of positive ions
outside the cell membrane. That is, if we place two electrodes inside and outside the cell
body of a neuron an electrical potential difference of about 70-80 mV can be recorded.
If an open ion channel provokes an influx of positive ions into the cell, this potential
difference decreases and the postsynaptic cell membrane becomes locally depolarized.
This process is referred to as an excitatory postsynaptic potential (EPSP). In turn, if ion
exchange leads to an increase in potential difference, a local hyperpolarization of the
neuronal membrane is observed. This process is referred to as an inhibitory postsynaptic
potential (IPSP). Whether an EPSP or IPSP arises at the postsynaptic neuron depends on
the type of neurotransmitter released by the presynaptic neuron. A specific presynaptic

1accessed atnttp://en.wikipedia.org/wiki/File:Complete_neuron_cell_diagram_en.svgin March 2012
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neuron always releases the same type of neurotransmitters promoting the same type of
postsynaptic potential at postsynaptic neurons.

Once a signal is transmitted across the synaptic cleft to form an electric excitation, it is
carried across the soma to the axon hillock, which is located where the axon emerges from
the cell body. Individual EPSPs and IPSPs, which have been generated about the same
time by signal transmissions on all the neuron’s synapses, superimpose each other to
influence the net polarization of the axon hillock. IPSPs, hereby, have a hyperpolarizing
effect inhibiting a further signal transmission to successive neurons, whereas EPSPs have

a depolarizing effect promoting a further signal transmission to successive neurons.

If the resulting sum potential at the axon hillock is larger (more depolarized) than a
cell-specific threshold, an action potential (or nerve impulse) in the form of a wave of
depolarization is generated, which sweeps down the axon. Eventually the action potential
reaches the end of the axon, where its presynaptic terms form synapses with another
neuron. Here the wave of depolarization causes a release of neurotransmitters into the
synaptic cleft, again initiating either an EPSP or IPSP at the postsynaptic membrane.
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Once an action potential has been emitted, it takes some time for the cell to restore its
resting membrane potential. During this period no new action potential can be generated.
In order to regenerate the negative resting potential, ion pumps come into operation
that can transport ions against their concentration gradient to restore it. This operation,
however, requires cellular sources of energy. The most important process relevant pump,

the sodium-potassium pump, needs adenosine triphosphate (ATP) to work.

1.1.2 Generators of the EEG

For simplicity, assume that a resting neuron has a constant net potential between extra-
and intracellular space across its whole membrane, which goes along with a uniform ion
density on both sides of the membrane. If neurotransmitters provoke an influx/efflux of
ions by postsynaptic stimulation, this equilibrium is disturbed and a potential difference
between the axon hillock and the region of synaptic activity is created, i.e. a postsynaptic
potential, leading to a movement of ions. This ionic current flow is carried forward
extracellularly, generating a widespread field potential. Field potentials that reach the
head’s surface can be measured by voltmeters on the scalp. During such recordings,
potential differences are recorded from several electrodes fixated on the scalp, with one or

several averaged electrodes serving as reference.

The electric potentials generated by single neurons are far too small to be picked up by the
EEG. EEG activity therefore always reflects the summation of the synchronous activity of
thousands or millions of neurons that have similar spatial orientation—in particular, the
surface EEG is sensitive to an orientation perpendicular to the cortical surface. Excitation
of cells with similar spatial orientation leads to an alignment of corresponding ionic current
flows. If neurons are aligned (approximately) perpendicularly to the scalp surface, these
ionic current flows lead to a charge transfer by increasing/decreasing the amount of ions
under the scalp surface. Particularly, ensembles of the pyramidal neurons of the cortex
share these characteristics, so they are thought to mostly contribute to the EEG signal.
Because ionic current flows from deep sources hardly reach the scalp surface, their activity
is more difficult to detect than currents near the skull, since voltage fields fall off with the
square of distance. This is the reason why activity in the subcortical nuclei of the brain is
difficult to be detected by the surface EEG.

In summary, EEG measures the summed postsynaptic activity of a large group of neurons

that are located (approximately) perpendicular to the head surface. This postsynaptic
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Figure 1.3: Extract (10 s) of EEG signal trajectories of a selected set of electrodes.

activity provokes ionic current flows leading to a charge transfer on the head surface which
can be measured by voltmeters. The EEG signal measured at one electrode then consists of
the difference in the voltage between that electrode and a reference.

Figure 1.2a depicts a subject with an EEG cap with a small number of electrodes. To
enhance the spatial resolution of the EEG data, the number of electrodes can be increased.
Figure 1.2b shows the electrode positions of a 64-channel EEG used for recording the
EEG dataset analyzed in Chapter 7. The acronyms indicate the location on the head (i.e.
the cortical lobe above which the electrode lies): frontal pole (Fp), frontal (F), central (C),
temporal (T), parietal (P) or occipital (O). Combinations of two letters indicate intermediate

locations. In Figure 1.3, the signal trajectories of a subset of the 64 electrodes are depicted.
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The depicted trajectories represent an extract of the full EEG recordings that is processed
and analyzed in Chapter 7. They were recorded in an acoustic oddball experiment during
wakefulness (Kiehl et al., 2005). Typical alpha activity with a basis frequency of around
10 Hz and occipital emphasis are shown. Alpha waves are regularly recurring oscillating
waves, which are a characteristic of the EEG of a normal adult in a fully conscious but
relaxed state. It should be noted that deflections caused by single stimuli (e.g. acoustic
stimuli) can often not be seen by the naked eye, whereas averaging many events typically

unmasks such event-related potential.

1.1.3 Generators of the fMRI signal

In the following, we give a simplified description of neurophysiological processes that are
supposed to underlie the fMRI signal. Up to now, the exact connection between neuronal
activity and the fMRI signal is not fully understood. However, there is converging evidence
that by several subprocesses, referred to as neurovascular coupling, the neuron’s electrical
activity triggers a vascular response that serves the supply of glucose and oxygen. It is
rather these secondary hemodynamic response processes that are captured by the fMRI
signal and that give indirect insights into neuronal activity. In any case, it neither reflects
mere neuronal activity nor captures all neuronal activity happening (see Section 1.1.4
for more details). Nevertheless, we provide some insight into generators of the fMRI
signal enabling the reader to comprehend what is measured. To this end, we follow the
explanations from Huettel et al. (2004).

The fMRI signal captures neuronal activity even more indirectly than the EEG. Better to
say, fMRI creates images of physiological activity that is only correlated with neuronal
activity. As described above, the information-processing activity of neurons increases their
metabolic demand, e.g. by operating ion pumps. Energy must be provided to meet this
demand. The primary energy source for cells in the human body is adenosine triphosphate
(ATP). The majority of ATP is produced in the mitochondria of cells using glucose and
oxygen which are both provided by the vascular system. When transported to active
regions, blood contains oxygenated blood, i.e. hemoglobin with oxygen molecules bound
to it. After the oxygen has been consumed, the venous blood contains deoxygenated
hemoglobin, which is the form of hemoglobin without the bound oxygen.

ATP can be produced in two ways: Anaerobic and aerobic glycolysis. Anaerobic glycolysis

is fast but inefficient for consuming two ATP molecules while producing only four ATP
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molecules. As its name suggests, it does not need oxygen. Contrariwise, aerobic glycolysis
generates additional 34 ATP molecules. Overall, aerobic glycolysis is more efficient in
terms of energy mount supply, but also more slowly.

When neuronal activity suddenly increases, an increase in blood flow ensures a sufficient
supply of glucose and oxygen to satisfy its demand within ATP genesis. The blood-flow
change is localized in arterioles within the distance of 2 or 3 mm of where the neural
activity is. The brain, thereby, transiently prefers the fast but inefficient anaerobic method
for producing ATP to satisfy the local demand—consuming glucose, but less oxygen.
This leads to an oversupply of oxygenated hemoglobin and an decrease in deoxygenated
hemoglobin, so that the ratio of oxygenated and deoxygenated hemoglobin increases.

Importantly, the fMRI signal depends on the so-called blood oxygenation level dependent
(BOLD) effect, which can now be described as follows (Jezzard et al., 2001): Hemoglobin
contains iron and, thus, possesses magnetic properties. If oxygen is bound to hemoglobin,
the molecule alters from being paramagnetic (having a significant magnetic effect on its en-
vironment) to being diamagnetic (having little effect). Inside an MR scanner, paramagnetic
deoxygenated hemoglobin generates local magnetic field inhomogeneities that decreases
the MR signal, whereas diamagnetic oxygenated hemoglobin does not affect the recorded
signal. Such oxygen dependence makes hemoglobin a sensitive magnetic marker to the
level of blood oxygenation and thus indirectly to neuronal activity. If the oxygenation
level of the blood decreases (or more specifically, if the level of deoxygenated hemoglobin
increases), it causes the fMRI signal to decrease. Conversely, if the blood oxygenation level

rises, e.g. due to increased neuronal activity, then the fMRI signal increases.

An fMRI image taken at a given time point contains structural information related to the
blood oxygenation level of examined tissue types and can, hence, be used to visualize brain
anatomy. Conclusions about activation can only be drawn by observing BOLD changes
over time. If the signal in a voxel shows a significant correlation with the presentation of
a series of stimuli, neuronal activation induced by this stimuli is observed at this voxel.
Hence, to gain binary brain maps indicating neuronal responsive voxels, the signal time
series of all voxels have to be examined simultaneously. That is, an fMRI dataset consists

of a time series of three-dimensional brain images as depicted in Figure 1.4.

In this thesis, we focus on applications for event-related experimental designs (Rosen
et al., 1998) where single, short-lasting stimuli are presented to examine the hemodynamic
response they provoke. Event-related designs are very flexible. For example, the ability to

randomize and mix different types of events as well as randomized inter-stimulus-times
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Figure 1.4: fMRI time series.

are among the major advantages of these designs. Such designs are commonly applied
in electrophysiological studies and, hence, are suitable for simultaneous EEG and fMRI
studies. Figure 1.5a displays the voxel time series recorded at the boundary of the auditory
cortex from the acoustic oddball experiment described in Chapter 7 (voxels in the upper
left corner are active). However, as can be seen here, the signal-to-noise ratio of these
designs is low; that is, the relationship between stimulus presentation and hemodynamic
response can hardly be spotted by visual inspection. This is in contrast to block designs
where longer periods of experimental conditions alternate with control conditions. In
block designs a high signal-to-noise ratio can be achieved leading to high statistical power
in detecting activation. Activation can sometimes even be spotted by eye as can be seen in
Figure 1.5b, which depicts—for illustration—simulated signal trajectories of a special type
of block design, i.e. a boxcar design. This is in analogy to the visualization of stimulus time
series of a visual boxcar experiment presented in Gossl (2001), Chap. 1.2. For event-related
designs, the recording time and sensitivity of statistical models must be increased to gain
equally high efficiency.
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Figure 1.5: fMRI signal time series (black lines) for a five by five subset of a voxel layer.
Presented stimulus time series are shown in blue color.
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Figure 1.6: Set-up for a combined fMRI and EEG experiment: A subject with an EEG cap
is lying on a table that slides into the large cylinder of the MR scanner before recording
starts.

An MR scanner is depicted in Figure 1.6. We refrain from explaining the functioning of
an MR scanner, which makes use of the property of nuclear magnetic resonance (NMR)
to image nuclei of atoms inside the body. The interested reader is referred to a detailed
introduction in Huettel et al. (2004) or Jezzard et al. (2001).

1.1.4 Comparing fMRI and EEG information

In this section, we comment on differences in the informational content that both signal
types convey. A more detailed introduction can be found in Daunizeau et al. (2010), which

is summarized in the following.

As noted above, an exact biophysical model that explains the connection between neuronal
activity and hemodynamics does not exist. Therefore, we do not know what aspect
of neural information is reflected in the BOLD signal. While several studies report a
significant correlation between the time courses of hemodynamic and electrophysiological
signals, other research results have been published showing significant differences between
the regions implicated by EEG and fMRI, respectively.
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Ritter and Villringer (2006) and Daunizeau et al. (2010) list several physiological reasons
that can explain a decoupling between electrophysiological activity (recorded by EEG)
and hemodynamic activity (recorded by fMRI). For example, there might be a distance
between the neuronal population, whose electrical activity is generating the EEG signal,
and the vascular tree, which provides the blood supply settling the energy demand of this
activity. Otherwise, we observe BOLD signal changes that are not reflected in the EEG at
all. This might, on the one hand, be traced back to other brain processes with a metabolic
demand, like neurotransmitter synthesis, causing hemodynamic BOLD changes without
EEG correlates. On the other hand, this might be traced back to neuronal activity that is
invisible to EEG, e.g. the activity of non-synchronized neuronal networks. Contrariwise,
EEG events can be recorded without having a BOLD response. This applies, for instance,
for short-lasting electrophysiological activity.

Technical reasons for a mismatch between EEG and fMRI exist as well. Low signal-to-noise
(or rather contrast-to-noise) ratios in recordings of one modality may obscure neuronal
activity. The statistical approach proposed in this thesis is mainly concerned with detecting
masked neuronal activation contained in noisy fMRI signals with the help of EEG. We
contrast our approach with other statistical models for the fMRI-EEG data fusion in the

next section.

1.2 The fMRI-EEG data fusion

As described in the preceding section, neither EEG nor fMRI techniques capture all neu-
ronal activity—and, above that, there is a mismatch between the signals contained in EEG
and fMRI for not being necessarily caused by the same underlying neuronal processes.
Therefore, Daunizeau et al. (2010) follows Friston (2005) and suggests to define “neuronal
activity” operationally as a state of nodes in a network responding to specific events
(e.g. cognitive, sensorimotor or spontaneous changes in brain activity). This definition
unfortunately leads to the inclusion of remote correlates of neuronal activity that should
be treated as artifacts. In fMRI analysis such an artifact, for example, is activity correlated
pulsation of distant arteries or veins like the superior sagittal sinus. In spite of this defi-
nition, activation detection results must be carefully interpreted to differentiate between

artifacts and neuronal activity in a narrower sense.

In the following, we adapt a neuronal source model proposed by Daunizeau et al. (2010)

to formalize the coupling-uncoupling between bioelectric and hemodynamic responses.
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EEG measurements are generated by a subset (g of neuronal activity, whereas fMRI is
generated by another subset (;5/;. Both subsets overlap forming the common source ¢;
of both signals. In the following, we denote (3 as the fMRI source without components
contributing to EEG, and (; vice versa. A diagram of this model can be found in Figure 1.7a.
There, the modality specific sets of neuronal generators are depicted as two overlapping
gray ellipses.

We extend this model and attempt to visualize the contribution of the different inference
techniques to identify neuronal sources. First of all, we observe that all models and
measuring techniques are subject to error and noise. Hence, EEG analysis only provides
information on a subset (i of (gre and fMRI analysis only provides information on
a subset (y)rr; of (sarr- These portions of the true neuronal source are depicted as
red ellipses in Figure 1.7b. Black arrows stand for the process of measuring signals
deduced from neuronal sources, whereas red arrows stand for the application of modeling
and inference techniques to infer neuronal generators. To visualize the contribution of
combined fMRI-EEG analyzing techniques and their corresponding benefit compared
to unimodal methods, we use the following color codes: Dashed yellow areas indicate
neuronal sources that both unimodal and multimodal methods infer, whereas plain yellow
areas indicate neuronal sources that multimodal approaches intend to increase information

on.

In the following subsections, we give some more details on combined fMRI-EEG analyzing
techniques proposed so far in the literature. As mentioned in the introductory section of
this chapter, approaches can be subdivided into three types (Laufs et al., 2008; Daunizeau
et al., 2010; Rosa et al., 2010): two asymmetrical ones, which add information from one
modality into commonly applied analyzing techniques of the other, and symmetrical
data-fusion techniques modeling a common generation process. As noted before, we
distinguish between (i) EEG-to-fMRI approaches (its use is depicted in Figure 1.7c), (ii)
fMRI-to-EEG approaches (Figure 1.7d), and (iii) symmetrical approaches (Figure 1.7e).
At the end of each subsection, we give an explanation for which reason the respective
combined analyzing technique is classified into the introduced neuronal source model as

depicted in Figure 1.7.

We close this section with a motivation for the EEG-enhanced fMRI activation detection
model proposed in this thesis, which can be interpreted as an extension to (i), and show its

additional benefit it has when inferring sources of neuronal activity.
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Figure 1.7: Formalization of the EEG/fMRI coupling-uncoupling with visualization of
neuronal activity components different data fusion approaches aim at. For more details
see the description in the introductory part of Section 1.2.
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1.2.1 EEG-to-fMRI approaches

EEG-to-fMRI approaches utilize the well developed methodological framework of (general)
linear models (LMs) conventionally applied for fMRI analysis. For mere fMRI analyses
without EEG information, they have been introduced by Friston et al. (1994) and Worsley
and Friston (1995). Basically, voxelwise linear models are used to decompose the time
series y;+,t = 1,...,T of T fMRI recordings at each voxel i (¢ = 1,..., N) into

Yir = [1(i,t) + fa(i t) + ...+ [p(ist) + €y,

where f(i,t),. .., f,(i,t) are p additive regressor components, like baseline, confounders,
stimulus components, etc., and ¢; ; is a Gaussian noise term. For linear regression analysis

components are chosen to be linear in unknown parameters:
p
/
Yir = E , X548+ €is
=1

where X', is the design vector at time ¢ for the j-th regressor component (which is the
same for all voxels) and 3, is the voxelspecific parameter vector of the j-th component.
Classical approaches locate neuronal activation by voxelwise hypothesis tests. Activation
induced by a stimulus modeled via component j can, for instance, be assessed by testing
Hy : B;, = 0 for all 7. If this stimulus component is modeled by a single regressor, its
effect can be quantified via voxelwise T-statistics. Voxels with T-statistic values surviving
a critical threshold (derived by multiple test correction procedures) indicate the location
of activation. In Figure 1.8, an exemplary activation map of testing the effect of an odd
stimulus in an auditory oddball experiment is shown (own data, details not shown).
For a description of the experimental paradigm, see Kiehl et al. (2005). Data analysis
has been conducted using the statistical parametric mapping (SPM) software (http:
//www.fil.ion.ucl.ac.uk/spm/software/), version SPMS8. The critical threshold
in this example was 4.985, which controls the family wise error (FWE) rate at a significance
level of 0.05 in an analysis of 203 577 brain voxels. Only voxels surviving this threshold are
depicted in heat-colors. For a more detailed discussion of the linear fMRI regression model

used in this thesis and the modeling of predictor components of interest, see Chapter 2.

EEG-to-fMRI approaches extend this model by adding an EEG regressor component to the
model. That is, the influence of temporal electrophysiological data on the fMRI signal is


http://www.fil.ion.ucl.ac.uk/spm/software/
http://www.fil.ion.ucl.ac.uk/spm/software/
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Height threshold:
T=4 985 {p<0.05 (FWE)}

Figure 1.8: Classical activation map for the odd stimulus component of an acoustic oddball
experiment. For this demonstration, the brain is cut into sagittal, coronal and transverse
planes, which corresponds to a cut in z-, y- and z-direction of a three-dimensional image.
Regions in heat colors indicate activated voxels according to a significance test of the odd
stimulus effect. Heat-colors indicate thereby the size of the used 7T-statistic.

examined at each voxel ¢ using

Yit = fl(i’t) + f2(i7t) +...+ fp(ivt) + fEEG<i7t> + €its

Thereby, categorical or continuous variables are derived from EEG-defined features or
events, where applicable convolved with a hemodynamic response function, to form
feec(i,t). If corresponding explanatory variables have a (significant) effect on the fMRI
response of a voxel, the neuronal generators of the EEG signal are supposed to be located

there. Hence, thresholded T- or F'-statistic maps indicate where neuronal generators of
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included electrophysiological features are located in the brain. Review articles by, e.g. Salek-
Haddadi et al. (2003) and Menon and Crottaz-Herbette (2005), list several applications for
this approach. In the following, some examples are given.

Inclusion of EEG regressors in fMRI LMs is, for example, applied in observational studies
with stimulus- and task-free conditions like sleep or resting states (Damoiseaux et al., 2006)
to study spontaneous physiological as well as pathological brain activity. The inclusion of
power trajectories of frequency bands of interest, for instance, gives information on the
location of corresponding brain rhythm generators (Laufs et al., 2003; Ritter and Villringer,
2006). Other examples of EEG features that are used to define events or epochs as fMRI
predictors, are interictal epileptiform abnormalities or sleep spindles (Gotman et al., 2006;
Schabus et al., 2007).

In experimental studies, regressors defined upon event-related EEG potentials (ERPs)
are, for example, incorporated to find corresponding fMRI activation foci. For one trial,
i.e. experimental session, an ERP is thereby calculated by averaging the EEG signal over
all presented stimuli of one stimulus type within a pre-defined time window to ensure
a sufficient signal-to-noise ratio. Recently, researchers focused on single-trial analyses
(related to random effects analyses) where subject-specific patterns and their variability
are examined instead of group profiles (Eichele et al., 2005; Debener et al., 2006; Bagshaw
and Warbrick, 2007).

Besides locating EEG-defined events or features, electrophysiological data can be used to
define confounds that can be included into fMRI regression to regress out artificial effects
or increase power by reducing error noise. Based on EEG data, for example, cardiac and
respiratory cycles can be captured that might confound effects of regressors of interest
(Glover et al., 2000; Liston et al., 2006).

To classify EEG-to-fMRI approaches into the neuronal source model, introduced in the
beginning of this section, we consider the following arguments. Essentially, EEG-to-fMRI
approaches have the same task as mere fMRI regression approaches; that is, via the LM
framework the fMRI signal is decomposed into predictor components. In EEG-to-fMRI
approaches, in particular, the contribution of EEG regressors to the fMRI signal is evaluated
to locate neuronal EEG generators by using the high spatial resolution of the fMRI. As such
it is not a new analyzing technique developed for the fMRI-EEG data fusion. Hence, we
decided to depict the benefit of these approaches as shown in Figure 1.7c. Yellow stripes
indicate detected sources found by non-EEG regressors, whereas the plain yellow area
indicate the benefit of including EEG regressors to gain information on the common source
of fMRI and EEG.
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1.2.2 fMRI-to-EEG approaches

fMRI-to-EEG approaches target at enhancing the performance of the EEG source recon-
struction problem. EEG source reconstruction techniques try to find the three-dimensional
location of neuronal generators of the corresponding (two-dimensional) signals measured
on the scalp surface. Two different classes of models have been developed to solve the
problem (Michel et al., 2004; Daunizeau et al., 2010): equivalent current dipole (ECD) mod-
els (Mosher et al., 1992; Kiebel et al., 2008) and distributed source models (Haméaldinen

and [lmoniemi, 1994).

For ECD models, an assumption must be made beforehand on how many activation foci
are to be found. This assumption is generally content-driven. Algorithms then estimate
the location and orientation of dipoles via a nonlinear optimization procedure, because
the used forward model is nonlinear in dipole locations. The spatial distribution of the
activated area involved, however, cannot be inferred. ECD models are no imaging tech-
nique in a narrower sense, because they do not calculate a three-dimensional voxel image,
but only a limited number of dipole locations. fMRI information can be incorporated as a
prior constraint for the position of dipoles, which are supposed to lie in the center of fMRI

activation regions (cf. e.g. Wagner and Fuchs, 2001).

Distributed source models do not suffer from mentioned disadvantages of ECD models
like yielding position estimates for only a small, specified number of dipoles without
information about their spatial extend. In the following, we give some more details on
the methodology behind distributed source models based solely on EEG, because we
pursue to incorporate these in the combined fMRI-EEG model proposed later in this thesis.
Afterwards we give some information on fMRI-constrained distributed source models

proposed so far in the literature.

Distributed source models calculate the strength and direction of dipoles on a dense (voxel)
grid typically distributed all over the cortical sheet producing a three-dimensional image
of current density values. This unknown current density distribution is the solution of
an under-determined system of equations, in which the number of parameters p to be
estimated exceeds the number of observations NV, by far (V. < p). Hence, restrictions have
to be introduced to constrain the solution space by prior information. The distributed

source model is generally written as a multivariate linear model

M=KJ+E
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with M being the N, x T observation matrix of scalp EEG measurements recorded at
time points ¢t = 1,...,7, K is a known N, x p transition matrix (i.e. a lead field matrix
as described in Fuchs et al., 2002) containing the mapping of cortical sources to the scalp
surface by an underlying physical model, and J is a p x 7" matrix of unknown current
density parameters of p dipoles (located on the pre-specified voxel grid) at each time
point ¢. Note that, the number of parameters p coincides with the number of grid voxels,
which we generally denote as N in this thesis. It is assumed that the model is correctly
specified except for an additive white noise term E. Proposed distributed source models
use different regularization techniques to yield solutions with certain properties (Mattout
et al., 2006). Estimation is generally based on minimizing a quadratic loss function in the
form of a penalized least squares criterion (PLS):

PLS(A) = [IM = KJ|[w,, + AllJ[lw,

where [|.||3y is the L, norm with respect to metric W and ) is a regularization parameter
controlling the relative weight of both terms, which should be minimized. Given a
normally distributed error, this criterion corresponds to a Bayesian linear regression model
with Gaussian error prior, E ~ N(0,Cy,) with Cy, = (W3 Wy,)™!, and J ~ N (0,C,)
with C, = (AW, W, )" as prior for J. Choosing W, = I, with I, being the p-dimensional
unity matrix, leads to the minimum-norm approach of Himéldinen and Ilmoniemi (1994).
If W, equals a spatial Laplacian matrix the smooth LORETA solution is calculated (Pascual-
Marqui et al., 1994). Mattout et al. (2006) model Cy, and C, as a linear combination of
variance component matrices within a two-stage hierarchical model to adapt variance
structure estimates to more correlated correlation structures. The BASTA method of
Daunizeau et al. (2006) can as well be derived from a multi-stage hierarchical model.
Here, in contrast to Mattout et al. (2006) and related to ECD models, the current density
distribution estimation is based on a brain parcelling into homogeneous clusters.

Source reconstruction of raw EEG trajectories is of minor practical interest, because single-
stimulus profiles suffer from a low signal-to-noise ratio. More commonly, several EEG
responses to a selected stimulus type are averaged in a defined time window, with this
average being referred to as event-related potential (ERP). The improved signal-to-noise
ratio reveals the typical response profile evoked by this stimulus type. For selected time
points of this mean ERP, a source reconstruction method can then be used to infer the
location of neuronal generators. In Figure 1.9, the process of a source reconstruction
of two selected time points of an averaged ERP signal in response to acoustic stimuli

is visualized. Data stem from the acoustic oddball experiment analyzed in Chapter 7.
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Figure 1.9 depicts the mean ERP response to the so-called odd tone stimulus type. The
shown source distribution solution has been calculated by the SLORETA software—an
extension to the LORETA software (http://www.uzh.ch/keyinst/loreta.htm).

Instead of prior information influencing solely the structure of the solution, like its smooth-
ness, fMRI information (or other external information) can be included to constrain the
solution space (Dale and Sereno, 1993). Generally, fMRI activation information in the
form of a binary activation map Z can be incorporated into the prior variance-covariance
matrix of J by choosing C,,  f(Z) where f(.) is an appropriate transformation function
(Daunizeau et al., 2006). The function f(Z) is often chosen as a linear combination of
variance-component matrices with one variance-covariance component being proportional
to Az Dz with \z being an additional, positive weight parameter and D, the diagonal
matrix of the vectorized Z entries (Liu et al., 1998; Phillips et al., 2002; Daunizeau et al.,
2006). Hence, if voxel i is activated, weight Az is added to its element-specific variance
putting higher weight resp. probability to J; values farther away from 0. This approach
is related to the concept of spike-and-slab priors well-known in the Bayesian variable
selection literature (George and McCulloch, 1993).

To classify fMRI-to-EEG approaches into the introduced neuronal source model, we assert
that the high spatial resolution of the fMRI is used to add information to the ill-posed
source construction problem to find more reliable source locations. Noise and modeling
bias is intended to be reduced to detect neuronal sources that could not be detected on the
basis of the EEG alone. Hence, fMRI-to-EEG approaches cover a larger area of neuronal
sources. This is visualized in Figure 1.7d. The gain in knowledge about neuronal sources
is visualized by the plain yellow area, whereas the dashed yellow area indicates sources
that both the unimodal and multimodal method can infer. Having said this, we have
to admit that this is a rather optimistic view. Incorporating fMRI information as prior
information into EEG source reconstruction models can also introduce bias when some
sort of decoupling occurs (as discussed in Section 1.1.4). For more details on this, we refer
to Ahlfors and Simpson (2004), Ritter and Villringer (2006) and Daunizeau et al. (2010),

and references therein.

1.2.3 Symmetrical approaches

Both asymmetrical approaches suffer from problems arising from the decoupling of EEG

and fMRI. EEG-to-fMRI approaches, for instance, only locate EEG generators contained
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in the fMRI signal, whereas results from fMRI-constrained EEG source localization can
be biased if signals are generated by partly- or non-overlapping sources. Symmetrical
approaches are sought that assess brain function by utilizing both electrical and hemody-
namic measurements simultaneously and symmetrically. In the following, we give a short
overview of this topic. Details can, for example, be found in Daunizeau et al. (2010) and
Rosa et al. (2010).

The ultimate goal of symmetric data fusion approaches would be to infer neuronal sources
generating both EEG and fMRI signals with high precision by using the advantages of
each modality. To achieve this, first, two separate generative (resp. forward) models
have to be developed that specify the relationship between neuronal generators and
each signal. Second, these two separate models have to be linked to form a combined
generative model. If data is at hand, inversion of this forward model can be applied to
infer unknown underlying sources, which are treated as unknown model parameters. A
probabilistic framework, thereby, is desired for allowing to establish a connection between

informational content and uncertainty contained in the parameter estimation.

The development of such data fusion model is still an integral part of ongoing research.
There are different approaches to this task: Either commonly applied data analyzing
strategies are extended or realistic neurophysiological models describing the connection
between neuronal generators and electrical resp. hemodynamic measurements are devel-

oped (neurovascular coupling models).

Developing a neurophysiological model is a challenging task. Due to the lack of consen-
sus on the exact nature of the neurovascular coupling process, up to now no generally
accepted modeling approach has been established. Further, due to the complexity of the
brain processes and derived models, no multimodal neurophysiological model has been
proposed containing parameters whose estimation can conjointly be informed by both
EEG and fMRI measurements. Existing neurophysiological models have mainly proven
useful when different biophysiological plausible hypotheses are compared in the context
of building a neurovascular coupling model. Hence, so far they are not ready to be used as
data fusion strategies.

Alternatively, joint models have been developed based on established, unimodal analyzing
techniques of each data type. These are combined in an equally weighted, symmetrical
way to fuse electrophysiological and hemodynamic data. This circumvents modeling
the complex neurovascular coupling by solely estimating certain properties detected by

those two analyzing techniques the data fusion approach is based on. A fine example for
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such an approach is the following: Daunizeau et al. (2007) (and in an extension Luessi
et al., 2011)) combine both the fMRI LM and EEG forward model to estimate the common
spatial activation profile of electrophysiological and metabolic responses. Inferring the
common source of both types of signals, this symmetrical approach can be classified into
the neuronal source model scheme as depicted in Figure 1.7e. As noted in Daunizeau
et al. (2010), the intersection of EEG and fMRI generators (depicted as plain yellow area)
is the neuronal subset that data fusion approach intend to capture. More precisely, a
multimodal approach should benefit from the complementary nature of EEG and fMRI
by providing different perspectives on the common subspace. The goal of symmetrical
approaches is, hence, not to infer other sources than the common neuronal generators.
Since no information about (; (resp. (3) is available from EEG (resp. fMRI), no multimodal
procedure will provide a better characterization of this activity subspace than a unimodal
EEG (resp. fMRI) analysis.

1.2.4 A new asymmetrical EEG-to-fMRI approach

In this thesis, we propose an asymmetric model that extends established EEG-to-fMRI
approaches. That is, we use a spatial regression model for analyzing the fMRI signal and
incorporate EEG information to increase our knowledge about the underlying neuronal
activation profile. Hereby, we focus on modeling the response to a stimulus in event-
related paradigms. Three-dimensional EEG information is used to enhance the detection
of activation provoked by the examined type of stimuli.

The proposed approach differs fundamentally from EEG-to-fMRI approaches in the lit-
erature by not introducing EEG information in the form of a further predictor variable
(as described in Section 1.2.1), but as prior information in the evaluation of whether a
voxel can be classified as active, i.e. responds to a stimulus. The aim of these two ap-
proaches is essentially different. Whereas current EEG-to-fMRI approaches search for the
location of EEG generators, our approach intends to enhance fMRI activation detection
by using EEG-prior information. For this, we extend the approach of Smith et al. (2003)
and Smith and Fahrmeir (2007) who use a spatial Bayesian variable selection approach
to determine whether a regressor modeling the experimental stimulus contributes to
explaining voxelwise fMRI signals. Smith et al. (2003) and Smith and Fahrmeir (2007)
use a spatial Ising prior (Hurn et al., 2003) to incorporate information of neighbors when
determining whether a voxel is active. Instead of this, we now use EEG information in the

form of three-dimensional source maps to influence activation classification. The general
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motivation is that if a strong EEG signal is present at a specific voxel, the prior probability
of a voxel being active in an fMRI model should as well be increased.

In this process, an EEG source map is calculated by means of unimodal source reconstruc-
tion methods as briefly described in Section 1.2.2. Hereby, the high temporal resolution of
the EEG signal renders it possible to access the source distribution of virtually arbitrary
time points within a recording session. For instance, a time point of maximal depolar-
ization after a presented stimulus (i.e. a specific positive ERP component) constitutes a
characteristic of special interest. In an application presented in Chapter 7, we use EEG
source maps calculated by the sSLORETA method (Pascual-Marqui, 2002). Alternatively,
other source reconstruction methods like for example BASTA (Daunizeau et al., 2006) can

as well be used.

Despite the intention to combine EEG and fMRI data, our model is not restricted to the use
of EEG data. Generally, any kind of three-dimensional data based on external knowledge
or measurements from other human brain mapping techniques (e.g. structural MRI) can be
used that potentially adds information to activation classification. For yielding an increase
in sensitivity, it must, however, be ensured that the activation information contained in
the fMRI signal and external prior information match. Though, results cannot be biased if
they contain conflicting information. The prior is adaptive, because the proposed model
incorporates a parameter structure modeling the relationship between data types flexibly.
If the external information completely contradicts the fMRI signal, its weight is decreased
locally or globally—depending on the exact type of proposed algorithm.

The intended use of the proposed model is the following: First, the model should make
EEG phenomenons within activation profiles visible when otherwise not detected. Second,
activation regions should be brought out more clearly when the corresponding fMRI signal
is damped by noise. Overall, the sensitivity of standard fMRI analysis should be increased.
This can as well be used to reduce the examination time of a subject, or the number of
subjects needed for a clinical question. The proposed model is constructed in a way that
the neuronal activity it intends to capture has to be contained in the fMRI signal in some
way, but is covered by noise. Additional information in the form of EEG should help to
detect it. Hence, our approach can be classified into the neuronal source modeling scheme
as depicted in Figure 1.7f. As before, the potential gain in knowledge about neuronal
sources is depicted as the plain yellow area.
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2 Regression models for fMRI

Generally, fMRI studies evaluate brain-wide differences in the response strength to experi-
mental stimuli. Thereby, the main focus lies on the identification of activated voxels. A
voxel is said to be activated if its fMRI time series (compare Figure 2.1a) shows a relation-
ship with the presentation rate of experimental stimuli (compare Figure 2.1b). Early studies
used voxelwise correlation coefficients (Bandettini et al., 1993) to quantify correspondence
between signal time series and stimulus time series. To adjust for confounding effects,
Friston et al. (1994) proposed to use voxelwise multiple regression analysis to assess the
effect of a stimulus regressor—which is a direct extension to the use of mere correlation
coefficients. As Friston et al. (2008) notes (p. 16), with very few exceptions, every fMRI
model is based on a (general) linear model formulation. Likewise, our models are based

on the following single-session regression model.

An fMRI dataset consists of the fMRI signal time series y;;,t = 1,...,T, at voxels i =
1,...,N. We assume that the fMRI signal at voxel i and time ¢, y; ;, can be decomposed

into a linear combination of unknown functions
Yix = fbase(i; t) + fcon(ia t) + fstim (Z7 t) + €ity (21)
where

frase(i,t)  is the value of the baseline trend at voxel i and time ¢,
feon(i,t)  is the effect of further (confounding) covariables at voxel i and time ¢,
fstim(i,t) is the value of the hemodynamic response to experimental stimuli

at voxel 7 and time ¢,

and

€;+ 1is the value of a random error term at voxel i and time ¢.
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(a) Observed fMRI signal time series
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(b) Stimulus time series (blue stick functions) and expected BOLD response (black line)

Figure 2.1: Observed and expected fMRI signal time series of an activated voxel in an
event-related experiment.

The three predictor components can be linearized with respect to unknown parameters so
that voxelwise linear models can be obtained. The exact form of each regression component

is discussed in depth in the following paragraphs.

Note that, in the following, we distinguish between scan time ¢ and real time ¢*: Whereas
t =1,...,T enumerates the 3D fMRI images in the order of their recording, real time ¢*
denotes the time in seconds after recording onset of the first image, i.e. t* = TR(t — 1). TR
is thereby the fixed time of repetition of scans, i.e. the interval between the recording of
two images. By relating a whole image to one time point ¢ resp. t*, we assume that images
are slice-time corrected in a preprocessing step. An image slice is thereby a traverse plane

of one 3D brain image. For technical reasons, a whole brain volume is not recorded at



2.1 Description of predictor components 35

once but as a series of measured 2D slices. Slice-time correction procedures are applied to

adjust for different slice scanning times.

2.1 Description of predictor components

2.1.1 Baseline - modeling of low frequency confounds

The baseline term fj,.(7,t) corrects for slow periodic variations and drift inherent to the
scanning procedure and serves as a highpass filter. It is modeled as a linear combination
of a few, i.e. p;, simple basis functions wy(t), k = 1, ..., p;, which do not vary over voxels,
and voxelspecific weights §;,,k = 1,...,p;. In the literature, different choices of basis
functions wy,(t) can be found. In Smith et al. (2003), Smith and Fahrmeir (2007) and Brezger
et al. (2007) they consist of lower frequency terms of a Fourier expansion and/or piecewise
continuous polynomials. In SPM, the highpass filter consists of a discrete cosine transform
(DCT) set! (Friston et al., 2008, p. 123). DCT was introduced by Ahmed et al. (1974) and is
defined for scan time points t = 1,...,7 as

wa(t) = \/gcos (“2’5 _;%(k - 1)> k=2

The DCT basis set constitutes an orthonormal basis of a subspace of a vector space spanned
by a Toeplitz matrix, i.e. a diagonal-constant matrix (Strang, 1999). To calculate the number
p1 of DCT basis functions needed for a given highpass cutoff d.,;, the argument of the
cosine function % att = d., can be equated with 27. This yields p; = L# +1].
With this value of p;, one oscillation of the cosine function is finished approximately by
time d.;. Basis function k = 2,...,p; — 1 model lower frequencies. With the constant basis
function w (), an intercept term is implicitly contained in the model. Note, if you specify
a highpass filter cutoff d},, in real time, e.g. the default of 128s, it has to be transformed
appropriately to yield a d,.,; value in scan time: d., = d,,/T R. In Figure 2.2 an exemplary
set of DCT basis functions is plotted for a highpass filter of 128s against scan time, i.e. one
oscillation of the basis function with the highest frequency is finished after 64 scan time
points when the repetition time equals 2s. For 200 scans in total, the set consists of 7 basis

functions.

More precisely, the DCT II set.
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Figure 2.2: DCT basis functions for a highpass filter of 128s in a design with repetition time
equal to 2s. The respective basis function values are plotted against scan time.



2.1 Description of predictor components 37

To calculate the baseline trend at voxel ¢ and time ¢, the basis functions are evaluated at

time ¢ to receive
fbase(@ t) = W(t)/(sz (22)

where w(t) = (wi(t),...,wpy () and §; = (d;1,...,0ip, )"

For our analysis, we model the baseline drift with this DCT basis set. Unlike SPM, we
include baseline regressors directly into the model formula, whereas in SPM the highpass
filter is applied to the data in a preprocessing step (Frackowiak et al., 2004, p. 123). Both

approaches are equivalent, but our choice circumvents a further preprocessing step.

2.1.2 Confounding variables

The second term f,,,(i,t) accounts for further confounding effects. It is assumed that

according information is available in the form of several univariate, global variables with

value ¢x(t),k = 1,...,py, at time ¢. This leads to a linearization of f,,(i,t) into
Jeon(i,t) = c(t) vy (2.3)
where c(t) = (c1(t), ..., ¢y (1)) and v; = (v41, ..., Vi, ) is the vector of according voxelspe-

cific effects.

Generally, we consider to include the following covariates into the fMRI regression pre-
dictor. We include the six rotation and translation parameters from a rigid body trans-
formation (Friston et al., 2008, p. 53) as covariates. In a preprocessing step, fMRI scans
are spatially aligned to adjust for head movements. A substantial change in head posi-
tion, which is reflected in large movement parameters, can distort the fMRI signal. Thus,
movement parameters are included to adjust for confounding movement effects.

Additionally, two global signal variables enter the regression. These covariates contain the
scanwise fMRI signal means of white matter and liquor voxels, respectively. In contrast
to gray matter tissue, white matter tissue and liquor are brain components that cannot
contain neuronal activity. A voxel is classified as white matter voxel (resp. liquor voxel) if it
survives a 98% probability threshold for being a white matter voxel (resp. liquor voxel) as
calculated from a brain segmentation (Friston et al., 2008, Chap. 6). These global covariates
seem able to capture effects from cardiac and respiratory cycles, which may confound

stimulus effects and are, thus, considered as further covariables.
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Figure 2.3: Typical (canonical) BOLD response to one impulsive stimulation (blue stick
function) plotted with respect to peristimulus time (PST), i.e. time after stimulus onset.

2.1.3 Modeling experimental stimuli

The third term fy,, (7, t) includes the transformed signal time series of a given stimulus
type. The transformation of the signal time series is necessary for the following reason:
If a neuronal response is induced within a brain region, it occurs immediately (within a
few hundred milliseconds) after presentation of a stimulus. So there is a close correspon-
dence between stimulus presentation and neuronal activity. The fMRI signal, however,
represents aggregated and time delayed neuronal activity. Therefore, the stimulus signal
is transformed to the level of the fMRI response to obtain models that are closer to reality
and yield a higher degree of explained residual variance.

This mapping is described via the so called hemodynamic response function (HRF), which
is based on the typical BOLD response to a single, impulsive stimulation. The canonical
BOLD impulse response is depicted in Figure 2.3—in analogy to Friston et al. (2008), p. 178.
After a possible initial dip, the response peaks approximately 5 s after stimulation, and is
followed by an undershoot that lasts till 32 s after stimulus presentation. This functional
form of the response has to be taken into account when calculating stimulus regressor

values.

Different proposals exist for transforming the stimulus time series to the level of hemody-

namic response. The decision about which modeling approach should be chosen depends
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Figure 2.4: Typical BOLD response (black line) in block designs where epochs with stimulus
presentations (blue stick functions) alternate with periods of rest.

on several factors, e.g. on the underlying experimental design. In the case of conventional
block designs, where periods of rest alternate with stimulus epochs of fixed size, direct
approaches exist for estimating the HRF (Genovese, 2000; Gossl et al., 2001b, and refer-
ences therein). Compare Figure 2.4 for a typical BOLD response in block designs. In direct
approaches, the typical stages of the response (e.g. rise, plateau phase, fall, undershoot) are
modeled by parameters in combination with a few truncated, informative basis functions.

However, the intended application of analyzing strategies proposed in this thesis are exper-
iments with event-related stimuli. Event-related designs greatly expand the flexibility of
the fMRI experiments, since researchers are no longer bound by the constraints of a formal
block design (Lazar, 2008). In these studies stimuli are presented individually, separated
by a, possibly random, interstimulus interval (ISI). If requested, stimulus presentation can
depend on the immediate response of observed subjects, or stimulus types can (randomly)
vary from trial to trial. Short ISI of a few seconds lead to an overlap of the BOLD response
to single stimuli (compare Figure 2.5), but are comparable to those typically used in behav-
ioral and electrophysiological studies and are generally more efficient from a statistical
perspective than studies with long ISI (Friston et al., 2008, p. 178). Hence, the modeling of
hemodynamic response has to accommodate these peculiarities.

A more general and even popular approach to HRF modeling is a transformation of the
stimulus time series via a convolution model. Applying these models to experiments

with event-related stimuli is straightforward, whereas direct approaches become infeasible
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Figure 2.5: Event-related designs with overlapping BOLD response. Stimuli are denoted
by blue stick functions, the black function is the modeled BOLD response, red dots denote
measurement time points of the fMRI time series.

when stimuli are presented irregularly and are not well separated leading to arbitrarily
overlapping responses. Therefore, we use the following convolution model (Josephs et al.,
1997; Friston et al., 1998a,b):

Faim(is1) = /O " f (i, Yt — 1)o7

where t* = TR(t — 1). Conforming to the literature, we write down the components of the
convolution model in real time notation. The function u(t*) describes the given time course
of neuronal activity and hrf (i, 7) is the unknown HRF at voxel i. The integral models the
neuronal signal aggregation from 0 to 7,4, time units in the past. Neuronal signals prior
to Tyna, time units from ¢* are assumed to not have an effect on the signal at time ¢*. The
HREF controls the weight of the neuronal signal u(t* — 7) at time t* — 7 that is used to enter

the aggregation at voxel ¢ at time ¢*.

The exact form of the voxelspecific hrf (i, 7) is usually unknown. Therefore, we have to

estimate it. The approach we follow is a flexible modeling strategy with basis functions B;,
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and corresponding voxelspecific weights (; . (Josephs et al., 1997; Friston et al., 1998a):

hTf(i, T) = Z <17kBk(T)
k=1

This approach leads to a flexible and data driven estimation of the specific functional
form of the hemodynamic response. Usually, a small informed basis set is used making
regularization schemes on weight parameters superfluous. However, estimated HRF
shapes do not necessarily make sense for all voxels. Therefore, Woolrich et al. (2004a)
developed constraints on effect parameters resulting in sensible HRF shapes. For the
Bayesian variable selection approach, which we intend to develop, it is not clear if it is
feasible to include these constraints. For this, we choose to use an unconstrained estimation

scheme.

Different choices of basis sets exist (Henson et al., 2001). We focus on the canonical basis

function set (Friston et al., 2008, pp. 181) and a gamma basis function set as proposed in
Friston et al. (1998b).

The gamma basis function set consists of gamma density functions (and possibly their

time derivatives):

We prefer a gamma basis function set of 3 gamma density functions with shape parameter
a € {4,8,16} and scale parameter s = 1 as used in Friston et al. (1998b), i.e. Bi(7) =
f11(7), Bao(7) = fs1(7) and Bs(7) = fi6.1(7).

For the canonical set, we follow the SPM implementation. In SPM, the canonical basis
function set consists of maximal 3 basis functions including the canonical HRF, i.e. a sum
of two weighted gamma densities, an approximation of its time derivative and of the—so
called—dispersion derivative. This set is motivated by a first order Taylor expansion
allowing for small variations in the form of the canonical HRF with respect to its onset
and dispersion (Friston et al., 2008, pp. 181). In SPM, computation of derivatives are
approximated by differential quotients. From the SPM implementation, the canonical HRF
is defined as

p1/p3 -
%(r/& — pe)"/"* L exp ( fj (7/8: = pﬁ))

B i(Ar/P4)p2/p4
ps  LT(p2/pa)

By(7) =

“A,
/AL — po) P exp ( (/A — p6>)

P4
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where parameter p; is the delay of the response (relative to onset, default p; = 6s), p, is
the delay of the undershoot (relative to onset, default p, = 16s), p; is the dispersion of the
response (default p; = 1s), p4 is the dispersion of the undershoot (default ps = 1s), p5 is the
ratio of the peak response to the peak undershoot (default p; = 6), ps is an offset for the
onset (default ps = 0). The parameter A, controls the window length, i.e. the time it takes
for the HRF response to return to baseline (default A, = 0.125 gives a window length of
about 32 s). SPM uses the Taylor approximation to adjust for variability in p3 (dispersion)
and pg (time). Instead of using an approximation via differential quotients, we use the
exact derivatives in our implementation. For the time derivative define a gamma function

9(73 pa, po, A7, ps) as

(A, ] py)Pe/ee
L(pa/ps)

“AL
9(T5 pas Pos Dry pe) = T/ — pe)Pe/P exp ( o (/A — pe)) :

Its derivative with respect to pg is

ag(T;paapva‘mpﬁ) 1 [&

Pa
= g(T; Pa, ,AT, S eE— TAT_ __+1]'
0 9(T3 Pa, Py /)6>(T/AT_,06) (r/ Ps)

Po Po

Hence, the time derivative can be calculated as

By(r) = OB\(1) _ 0g(T;p1,p3, A7 p6) 1 9g(7; pa, pa, Ar, o)

dpe dps Ps dps

The dispersion derivative can be derived as

Bs(1) = ag;(;)

= —g(7; p1, p3, Ar, ps)

x % {pl (1 +log (&> v (ﬂ) +log(T/A,; — pe)> — A (T/A7 = pe) |

3 P3 P3

where U(z) is the Digamma or Psi function, ¥(z) = 2 logI'(z).

T

Within the estimation procedure in SPM all three basis functions are orthogonalized with
respect to each other via the Gram-Schmidt process. Due to the fact that regression analysis
accounts for non-orthogonality we choose to use them as defined above. Additionally, in
contrast to our implementation, SPM normalizes basis functions to sum 1. A visualization

of the two alternative basis function sets we use can be found in Figure 2.6.

The time series of neuronal activity u(t*) is set equal to the signal time series, which is mod-



2.1 Description of predictor components 43
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Figure 2.6: Gamma and canonical basis function sets plotted with respect to peristimu-
lus time (PST), i.e. time after stimulus onset. For the 3 gamma basis functions, shape
parameters a=4, 8, 16 have been used. The second canonical HRF basis function, the time
derivative, is multiplied by 10 for better visualization.

eled as follows: Suppose we have event-related stimuli of one type at times 7y, 7, ..., 7.
A stimulus at time 7,,, is modeled via a dirac delta function 6(t* — 7,,,), i.e. a stick-function,
so that u(t*) = S°M_ §(t* — 7,,) . Thus, the stimulus predictor for all presented stimuli

m=1

simplifies as follows
p3 Tmax
fstim(i,t) = Z Czk/ Bi(m)u(t" — )07
k=1 0
p3 M Tmax
= Z Cik Z / By (T)o(t" — 7 — T)OT
k=1  m=1"0

D3 M
~ Z Gk Z Bi(t* — 1)
k=1 m=1

J/

-~

=25 (t)

= Z Gik2i(t)
k=1
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where z(t) = (21(t),...,2p(t)) and {; = (Gi1, - - -, Gipy)'- The approximation in the third
step is dependent on the appropriate choice of basis functions with property By, (t*—7,,,) ~ 0
for (t* — 7)) > Timae and By(t* — 7,,) = 0 for (t* — 7,,) < 0, which holds for the selected
basis function sets. For other basis sets, formulas must slightly be adapted to incorporate

the integration limits of 0 to 7,,,4,.

In Figure 2.7, the estimation process is visualized via a toy example with well separated
stimuli times. An estimation procedure yields weight estimates (; ., k = 1,2, 3. Each basis
function is multiplied with the according weight and the final HRF estimate is formed by
the summed weighted basis functions.

Although having the same theoretical background, our implementation differs from the
one in SPM: While we have decided to realize the proposed continuous convolution model,
SPM implements a discretized version (Friston et al., 2008, pp. 119). For this, they use
both a discrete binary stimulus time series in user-provided fine resolution, e.g. 16 time
bins per fMRI scan, and a discrete linear convolution model. We do not expect larger
differences between results of both implementations for the BOLD response occupying a
rather low-frequency band. As noted in Friston et al. (2008), pp. 119, responses to trials a
few hundred milliseconds apart are virtually indistinguishable.

Note, so far fsin(i,t) is defined for one stimulus type presented at times 71,72, ..., Tas.
This approach is easily extendable to several stimulus types: For each stimulus type s
presented at times 7\, 7i” | ... 7\%) a separate predictor f©) (t) is defined as in (2.4). The
final predictor is then formed additively by fum(t) = 325, fs(fi)m(t) where S is the total

number of different stimulus types.
2.1.4 Linearization of all model components
As has been shown in the preceding paragraphs, each model component in (2.1) can be

linearized with respect to unknown parameters. Using (2.2)—(2.4), the regression model

(2.1) can be rewritten as
Yip = W(t)'6; +c(t)vi +2(t)'¢; + €ie- (2.5)

Thus, for inference, we can revert to the vast literature on linear regression models.
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2.1.5 Matrix notation

Let y; be the vector y; = (y;1,...,v:r) of the fMRI signal time series of length 7" at voxel 1.
Accordingly, €; is defined as the vector of measurement noise €; = (¢; 1, ..., €, 1) at voxel i.

Then regression model (2.5) can be rewritten as

where

We define the overall T’ x p design matrix X as X = [W|C|Z] with p = p; + p» + ps3 and an
according parameter vector of unknown weights and effects 3; = (8;, v, ¢;)’. Our further

modeling approach is then based on the following voxelwise model (Friston et al., 1995)

yl:X,Bz+€“ Zzl,,N

Note that the design matrix does not vary over voxels as in Smith et al. (2003) and Smith
and Fahrmeir (2007) where voxel specific HRF estimates and according transformed
stimulus regressors were obtained in a preprocessing step to form a voxel dependent
design matrix X;. Instead, with a basis function approach, differences in hemodynamic
response between voxels are now subsumed in the estimation of 3;, which are already
voxel dependent. Despite being formulated for a constant design matrix X, our modeling
approach proposed in Chapter 3 can directly be reformulated for a voxel dependent X,.

2.2 Distributional assumptions about the error term

For fMRI being measured on a metric scale, it is assumed that €; follows a multivariate

normal distribution
e ~N(0,07V)

with voxel dependent variance o7 and correlation matrix V.
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Usually fMRI data exhibit short-range serial or temporal correlations (Friston et al., 2008, p.
121). Long-range correlations are assumed to be removed by the applied highpass filter, cf.
Section 2.1.1. If ignoring serial correlations, inappropriate estimates for degrees of freedom
are obtained, which enter 7'— or F'—statistics in classical inference approaches. Hence,
V is typically chosen to model serial correlations. A popular choice of V consists of a
AR(1) plus white noise process. Classical estimation for V can be accomplished by ReML
procedures. We refer to Friston et al. (2008) for a detailed discussion of modeling serial
correlations in fMRI.

If the baseline captures small-range trend changes as in Gossl et al. (2000, 2001a), an
uncorrelated error structure seems adequate. Within their Bayesian modeling framework,
the authors have observed that temporal trends are sufficiently captured by their time-
varying trend effect, confirming the assumption of white error noise. In their experience
no gain in precision is obtained by considering correlated error terms. Note, however, that
the application of this small-scale trend component is restricted to the analysis of block
experiments. In event-related designs, this trend component might confound stimulus
effects.

As a starting point, we derive the model proposed in Chapter 3 on the assumption of

independent error terms:
€ ~ Nr(0,071),

where I is the identity matrix of size 7. Though, our chosen highpass filter removes only
long-range frequencies, the derivation of a combined fMRI-EEG model is substantially
complicated when adding serial correlations. For testing whether the model exhibits a

sufficient usefulness, we revert to independent noise.
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3 An EEG-enhanced fMRI model

The main focus of an fMRI study lies on the identification of activated voxels. Thereby,
an voxel is said to be activated if its fMRI time series correlates with the transformed
stimulus time series. In the classical fMRI regression framework, activation detection is
implemented by voxelwise statistical hypothesis tests evaluating whether stimulus effect
parameters equal zero (see for example Friston et al., 1994, 2002). Applying a significance
threshold (derived by spatial multiple test procedures) to corresponding T- or F-maps
results in a so-called statistical parametric map (SPM). In analogy to this, activation maps
of Bayesian models are derived by thresholding posterior probability maps (PPMs) of
effect parameters (see for example Gossl et al., 2000; Friston et al., 2002; Woolrich et al.,
2004b). However, neither the classical approach nor the mentioned Bayesian approach
constitutes a direct measure of activation. In the classical approach, a voxel is declared to be
active when a corresponding test statistic is larger than a critical value. This critical value
represents a limit for test statistic values that are acceptable under the null hypothesis of
the true effect beinh zero. PPMs constitute a more direct measure for being defined as the
posterior probability that the effect is larger than some threshold. The threshold, though,
rests upon a definition from which effect size on a voxel can be declared activated—which

can be quite arbitrary.

To overcome these problems, Smith et al. (2003) resp. Smith and Fahrmeir (2007) proposed
to use a Bayesian activation detection scheme estimating voxelwise probabilities of ac-
tivation directly. For this, they applied the theory of Bayesian variable selection (Smith
and Kohn, 1996; George and McCulloch, 1997) introducing a binary variable being 1 if the
stimulus regressor is selected, i.e. if there is a relationship between stimulus and signal time
series, and 0 otherwise. Estimation of these binary indicators was spatially regularized by
an Ising prior (Hurn et al., 2003). The posterior probabilities of voxelwise indicators being

1 constitute the posterior activation probabilities.

For our combined fMRI and EEG model, we choose to extend their approach to incorporate

EEG information in an fMRI regression model. For this, we exchange the Ising prior with
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a prior based on a binary regression model. EEG information is included as predictor with
an—optionally—spatially-varying coefficient allowing for adaption to local brain response.
Estimation of spatially-varying coefficients is regularized by Gaussian Markov random
tields (GMRF). We consider two alternative regularization schemes either based on an
intrinsic GMRF (Lang and Brezger, 2004; Rue and Held, 2005) or on a Gaussian conditional
autoregression (CAR) (Weir and Pettitt, 2000; Pettitt et al., 2002; Smith and Smith, 2006).
With this spatial probit model, a strong EEG effect at voxel i should increase its activation
probability.

This chapter is organized as follows. After briefly reviewing our choice for the fMRI
regression model for readers who skipped Chapter 2, we introduce the activation detection
scheme based on Bayesian variable selection in Section 3.2. Prior specifications for all
parameters, including the priors for incorporating EEG information in a probit hierarchy,
are discussed in Section 3.3. Posterior inference based on a Markov Chain Monte Carlo
(MCMC) scheme is derived in Section 3.4. A minor model extension is described in
Section 3.5.

3.1 The fMRI regression model

The design of the predictor we use for modeling the fMRI signal is discussed in depth in
Chapter 2. For ease of reading, we shortly summarize its form.

Let y; denote the vector y; = (y;+,t = 1,...,T)" of the fMRI signal time series at voxel i,
i =1,..., N. We include three predictor components which can be linearized with respect
to unknown effect parameters. Hence, the following multiple regression model results

where W is the T x p; design matrix for the baseline trend, C is the 7" x p, design matrix
of covariates and Z is the 7" x p3 design matrix for modeling the hemodynamic response to
stimuli. The vector ¢, is the vector of random errors €; = (¢;;,t = 1,...,T)". Note that all
three design matrices do not vary over voxels, whereas voxel dependent effect estimates

allow for adaption to local brain response.

Simplifying the notation, we combine all linear regression parts into model

y1:X/61+€1> 221,,N, (31)
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where X = [W|C|Z] is the overall T x p design matrix (with p = p; + p» + p3) and
B; = (8;, v}, ¢;) is an according parameter vector of unknown weights and effects.

The likelihood of our model depends on the assumption €; ~ N7(0,02I), where I is the

identity matrix of size 7.

3.2 Bayesian activation detection

We define a spatial Bayesian model for variable selection by introducing binary indicator
variables v; = (Vi1,...,%,), suchthat 5, ; = 0if v, ; = 0Oand §; ; # 0if v, ; = 1 (Smith et al.,
2003; Smith and Fahrmeir, 2007). Given =,, let 3,(vy;) be the vector of nonzero regression
coefficients from regression ¢ and let X(+;) be the corresponding design matrix; then the

regression model (3.1) can be rewritten as
yi = X(v)B;(v;) + €, i=1....N.

The p-dimensional vector v; implements a variable selection scheme for all p regressors
within model equation (3.1), including the baseline trend and further covariates. But,
primary interest lies in the selection of stimulus regressors forming fsi,,(7,t). In this case,
it may prove sufficient to confine variable selection to the detection of activated voxels.
Consider the special case of modeling the response of one stimulus type with p; basis
functions in (2.4). Then, 7, can for example be restricted to the form

’71:( 1,...,1 ,’Yi,...,’}/i)/. (32)
p1+p2—times p3—times

With 7,1 = ... = %ip,+p, = 1, baseline and covariate regressors are always kept in the
model. The scalar binary parameter v; controls the simultaneous selection of all p; basis

functions for the stimulus component. This leads us to the following interpretation:

_ ) 1 if voxeli is activated,
v 0 if voxel 7 is not activated.

The vector of scalar binary indicators v = (71,...,7vy)" then represents an activation
surface. Per definition, it holds for the hemodynamic response that

fstim(iyt) 7é 0 lff Yi = 1,
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fsm'm(i,t) =0 iff Yi = O,
or equivalently

Gidye ooy Gips #0iff 4 =1,
Gidy- o Gipy = 0iff 75 = 0.

3.3 Prior specifications

A Bayesian model requires the specification of prior distributions for all parameters in the
model. In a hierarchical setup, these priors can be chosen to depend on further parameter

constellations imposing specific structural assumptions. We use the following priors.

From the definition of the variable selection scheme, ;; = 0|v;; = 0, a prior is only
required for the nonzero coefficients 3,(v,). This prior, however, has to be proper. If
improper priors are placed on these coefficients, they will be estimated as 0 (Mitchell
and Beauchamp, 1988; Smith and Kohn, 1996; Kohn et al., 2001). Following the literature
(see Smith et al. (2003) and Smith and Fahrmeir (2007) for applications in the context of
fMRI analysis), we select a proper conditional prior for nonzero coefficients by setting
it proportional to a fraction of the likelihood, p(3;(7,)|yi, o2,7;) < p(yilo2,~;, B;(v:)Y7,
such that

B )Iyi, o2,y ~ N (B,(7), To2(X (v, X(,)) ™) (3.3)

where 3;(v;) = (X(v,)X(7,)) "X (7,)"y:. Being a more dispersed version of the likelihood,
this prior avoids the problems of employing improper priors without using additional
prior information where it does not exist. This prior is related to the g-prior of Zellner
(1986) and can be motivated by fitting a linear model based on an “imaginary” sample
prior to the actual analysis. It is attractive because it is invariant to location changes and
possesses automatic rescaling properties (Kohn et al., 2001). The multiplication factor 7" of
the covariance matrix is chosen to keep T'(X(7,)'X(~;)) ! approximately constant as the
number of scans 7 increases. The presence of o7 in the covariance of this prior makes this
prior an element of the family of conjugate hierarchical setups (George and McCulloch,
1997). As opposed to non-conjugate priors as applied in George and McCulloch (1993),

Bi,i=1,...,N,and 0?,i =1,..., N, can be eliminated by routine integration from the full
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posterior to yield a marginalized posterior for ~,. As will be seen in subsequent sections,

this feature yields fast and efficient computational estimation routines.

For the variance parameter o = (01, ..., 0% ), we assume standard independent noninfor-

mative priors. That is,

wo®) = [[ne?) <[] = (34)

=1

Following Smith and Fahrmeir (2007), the prior of the binary indicator variables vector
v = (iji = 1,...,N,j = 1,...,p)’ factorizes over regressors. Assume that v, =
(715 -+ 7v5) s then p(y) = [[5_, p(7(;))- Spatial dependencies are then incorporated by an
appropriate choice of p(v(;)). In Smith et al. (2003) and Smith and Fahrmeir (2007) a binary
spatial Markov random f1e1d (MREF) prior in form of an Ising prior was used. In this thesis,
however, we consider an alternative approach where variable selection, i.e. p(y;; = 1), is

based on additional continuous information like a variable with EEG measurements.

In the following, we restrain our derivations to the special case proposed in Section 3.2
where variable selection is confined to the simultaneous selection of p; basis functions
forming foim(i,7), ie.v;, = (1,...,1,7,...,%)" as in (3.2) with 7; being a scalar binary
indicator. Thus, only a prior for the reduced vector v = (74, ..., vn)" must be specified.
The reason for this restriction is that external information in form of EEG data can serve as
an indicator for activation, but not for baseline trend or covariate selection. For simplicity,
no variable selection is applied to these terms. But if variable selection is requested for
all regressors, it seems conceivable that Ising priors can be used for the non-stimulus

regressors as noted above.

Spatial correlations and prior information in form of voxelwise, scalar EEG information
Ji,i = 1,..., N is introduced through priors motivated by binary regression models.
Conditional on a further parameter vector 8, the binary indicators +; follow conditional
independent Bernoulli distributions, so that

p(716) = Hp%w Hm )i (1 — () (3.5)

where 7;(0) = p(v; = 1|6). The parameter vector 8 contains further parameters in lower
hierarchical levels of our model. Following standard theory for generalized linear models,

the parameter 7;(8), which coincides with the expectation of a single Bernoulli distribution,
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is linked to a predictor 7; by a strictly monotonic increasing function h with h(7;) € [0, 1].
In our application, we use probit transformations as link between predictor and 7;(0):

mi(0) =p(vi = 1) = ®(n;), i=1,...,N.
We consider additive predictors of the form
ni = fo(i)+ f(J;), i=1,....N,

where J; € R* are the voxelwise EEG measurements. Here, fy(i) is an intercept term that
is assumed to consist of either a global effect o ¢ or a local effect «; or of a combination

of both. If requested, fy(¢) can also be removed from the model. That is, f(7) can be either

one of
foli) = ae (3.6)
fo(i) = o, (3.7)
fg (’L) = aO,G + Oé[)’i. (38)

Whereas the global effect o ¢ models the basic inclination of the brain being activated
aggregated over all brain regions, the local effect a;,7 = 1,..., N is a spatially-varying
intercept adapting to regional differences.

The term f(J;) of the predictor models the EEG contribution to activation. Like fj(7), it
consists of either only a global effect a; or a local effect «; or of a combination of both. If
requested, f(J;) can also be removed from the model formula. That is, f(.J;) can be either

one of
f(Ji) =0
f(Ji) = agJ; (3.9)
f(Ji) = ai; (3.10)

The global EEG effect o is an aggregated effect over all brain voxels, while the local effect
a;,i =1,..., N is a spatially-varying EEG effect modeling areal differences in the response
to the EEG signal. Inclusion of this flexible structure seems necessary for adapting to

brain regions where either EEG measurements contradict or support fMRI evidence. For
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IGMREFE CAR
foli) — + f(J:) foi) + f(J%)
1 QoG + OéGJi + OéiJZ' Qo.G + OéiJi
2| aog+ap; + agJ; Qi+ agd;
3| agg+ o, Qg,;
4 OJGJZ' + az'Ji CkiJi
S5|ape+a; + agditaidi | ag; + s

Table 3.1: Predictor forms of interest.

instance, small values of the local effect ; can downweight the influence of a large J;-value
in parts of the brain where fMRI activation is entirely absent. Note that, generally, larger
values of J; are considered to be indicative for activation. For a start, we do not introduce
restrictions on «;,7 = 1,...,n and ag, and evaluate whether and which restrictions are
sensible after first analyses.

If a local effect is requested, one parameter per voxel is included in the model, i.e. oty =
(o1, - .., o) for the spatially-varying intercept and o = (v, . .., an)’ for the spatially-
varying EEG coefficient. In this case, the number of parameters for each effect equals the
number of latent observations 7, ...,vy. Hence, estimation of each local effect has to
be regularized by a spatial prior. Suitable choices of priors impose an estimable degree
of smoothness reducing the number of effective parameters. We use either an intrinsic
Gaussian Markov random field (IGMRF)(Lang and Brezger, 2004; Rue and Held, 2005) or a
Gaussian conditional autoregressive (CAR)(Weir and Pettitt, 2000; Pettitt et al., 2002; Smith
and Smith, 2006) prior. The choice of spatial prior has an effect on the choice of predictor.
At first sight the global effects in linear predictors (3.8) and (3.11) seem to be redundant
for being automatically included in the local effect. This is true in models with CAR prior.
However, as can be seen below, it has to be included in models with IGMRF prior.

Summarizing, all predictor forms of interest are listed in Table 3.1. We assume that at
least one of the two components fy(¢) or f(J;) contains a spatially-varying coefficient for
adapting to local brain response. If an IGMREF prior is used for a local effect, the according
global effect is also included in the model. For the CAR model, it suffices to include either

a global or a local effect.

In case of an intrinsic Gaussian random field, the following priors are attached to oy and a:

plel&d) o (6) NP exp (—QL@%Q%) (3.12)
0
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p(a]€?) o (€2 VD72 exp (—2%2@'@@) (3.19)

where Q is the precision matrix of each IGMRFE.

Following the literature for first order IGMRFs on regular lattices (Rue and Held, 2005,
Chap. 3), the precision matrix Q is the Laplacian matrix of the underlying voxel grid, i.e.
Q has elements

ng, l:jv
Q=< -1, i~j,
0, else,

with n; the number of neighbors of voxel ¢ and i ~ j denoting ¢ and j are neighbors.
This choice of Q has a rank deficiency of 1, which is due to linear constraints saying that
the differences in «;-values resp. ay;-values sum to zero over all circuits in the lattice
graph. Thus, the priors (3.12) and (3.13) are also partially improper, which—usually—does
not lead to problems as long as the full posterior of the model is proper (see Fahrmeir
and Kneib, 2009, for a discussion of sufficient conditions for propriety in the context
of structured additive regression models). The conditional distribution of an ;- resp.

ap,-value at voxel i is only dependent on the value of neighboring voxels and has the form

> 1 &
il i & ~ N ;Zao,j,n—i )

! jeo;

1 &2
e, & ~ N (; > ;) :

b jed;

where 0; denotes the neighborhood of i, o, is the vector a without «o; and o j; is
the vector oy without ay;. Hence, the prior mean for «a; resp. ap; is the mean of its
neighbors. With this, departures from a smooth surface in «; and «ag; are penalized.
The degree of enforced smoothness is determined by the variance parameters ¢ and &3.
Complete smoothness, i.e. the case of a constant scaling factor a; = ... = ay and intercept
a1 = ... = apy, is included as a limiting case as £ — 0 resp. £ — 0. Both & and ¢&?
are not set fixed in advance, but are estimated within the derived procedure and with
£ and &7, the respective degree of smoothness. Prior assumptions about these variance

parameters are modeled by inverse gamma (IG) prior distributions

& ~ IG(ao, bo),
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€ ~ IG(a,b),
with densities
p(&) o () exp (-8
e x (€ e ().

Either adding/substracting a constant to the spatially-varying intercept or the spatially-
varying EEG coefficient does not change the corresponding prior value in (3.12) or (3.13),
because a constant vector lies in the null space of the precision matrix Q. Thus, implicitly an
improper prior is used for the global level. However, we have seen some improvements in
the convergency of parameter trajectories within the MCMC sampling procedures if proper
priors are used for every parameter. To keep the model identifiable, we choose to add a
global intercept and/or a global EEG coefficient and center the according spatially-varying
coefficients to mean 0.

If global effects are included, i.e. either in linear predictors (3.8) and (3.11) or in linear
predictors (3.6) and (3.9), corresponding prior distributions have to be specified. The
global EEG coefficient o then is modeled to follow an informative univariate normal
distribution N (uq, %), whereas its variance parameter has an /G(ag, bg) prior. The global
intercept ag ¢ then is modeled to follow an informative univariate normal distribution

N (po.c, &2 ), whereas its variance parameter has an 1G(ag g, b ) prior.

In case of the CAR model, the prior of spatially-varying coefficients are proper with
positive definite precision matrices Py and P which are defined in analogy to Pettitt et al.
(2002). Our choice is based on the good performance of the precision matrix shown in
studies of Smith and Smith (2006) on latent binary Markov random fields. The spatially-
varying intercept has prior ay|7Z, &2 ~ N(0,£3P; "), where Py = I + 72Q. Analogously,
the prior for the spatially-varying EEG coefficient is set to |72, ~ N (0,£2P~!), where
P=1+7%Q.

Like for the IGMRF prior, with the CAR prior the «;- resp. ag;-value at voxel i is only
dependent on the value of neighboring voxels. Being a special case of a general GMRF
distribution, the conditional distributions can be derived as normal distributions with the
following form (Rue and Held, 2005, p. 22):
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2 2
, €2 22 N T—OE , 5—0 3.14
a077,|a0,j7£7,a§077—0 (1+Tgnz = o5, 1+Tgnl>a ( . )
2 22 A 7> 52
Jopn @7~ N (Y a ). 3.15
il &, 1+72nij€a.% 14 72n, (3:15)

Note that Pettitt et al. (2002) and Smith and Smith (2006) use a more general definition of
Q based on varying weights and possibly negative covariance parameters. Our choice of
equal weights in Q is justified by a neighborhood definition where all pairs of neighbors
are equally far apart from each other, which is for example the case for a 3D neighborhood
including the six nearest neighbors of a voxel only. Parameters 72 and 7; are constrained
to be positive (this is emphasized by using the square in notation). This goes along with a
positive correlation between neighboring sites (Pettitt et al., 2002, see Section 2.2)—which
is a sound assumption for our model. A positively truncated N (u,, o) prior is both used
for 7% and 7. In our analysis, we set 1, = 0 and 02 = 5%. Variance parameter £ (£3) either
follows an inverse gamma prior with parameters a (ap) and b (by) or is set constant to 1 to
yield the model used in Smith and Smith (2006).

3.4 Posterior inference

Bayesian model estimation and inference is based on posterior quantities, i.e. quantities of
the posterior multivariate probability distribution of all unknown parameters conditional
on thedatay = (y},...,y%) collected:

p(B,7, 0% 6ly) o< | [ [p(yilvi: B:(v2), o2)p(Bi (v lvi o7 yi)p(o7)] p(710)p(8),

i=1

where 8 = (8], ...,8y) and 0 contains all parameters in lower hierarchical levels—which
depends on the exact model formulation. For ease of exploration, the marginal posteriors,
i.e. the probability distribution of each parameter(-vector) given y, are often examined. In
the case of fMRI analysis, the quantities of immediate interest are the marginal posterior
probabilities of activation p(v; = 1|y) for all voxels i, i = 1,..., N, if ; is the indicator
for selecting fsu.im (i, %) as in (3.2). Closed form calculation of this quantity is not possible

because it involves integration out of the binary variables that have support on 2V possible
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indicator combinations—amongst other parameters of lower hierarchical levels of our
model. Thus, inference relies on an adequate computational strategy that allows exploring

features of the posterior distribution.

An approach to posterior inference, which is commonly applied in the Bayesian variable
selection literature, is a Markov Chain Monte Carlo (MCMC) scheme (see Smith and
Fahrmeir, 2007, and references therein). For each unknown parameter, MCMC methods
are used to generate a Markov chain that converges within a burn-in phase to the de-
sired marginal distribution, i.e. its equilibrium distributions. A particular Markov chain
algorithm is the Gibbs Sampler (Gelfand and Smith, 1990). It can be applied if the (full)
conditional distribution of each unknown parameter(-subvector) given all other parame-
ters in the model and the data y are in a known form. Then, a Gibbs Sampler is based on
repeated sampling from the full conditional distributions given the actual state of all other
model components. If some (or all) full conditional distributions have an unknown form,
the Gibbs Sampler can be extended to include Metropolis-Hasting steps. Within these,
parameters within a batch are sampled from a suitable proposal density and kept with
an accordingly defined acceptance probability, which defines the transition kernel of the
targeted Markov chain. For a thorough introduction to MCMC schemes, see Gilks et al.
(1996) or Gelman et al. (2004).

In the following subsections, the full conditional distributions of the different model
components are derived. In case of the indicator variables «, the according full conditional
can be marginalized with respect to higher level parameters 3 and o to yield a more

efficient update scheme.

3.4.1 Sampling activation probabilities

As noted above, a quantity of immediate interest is the marginal posterior probability of
p(;ly) or rather p(v;|y) in the case of (3.2). To apply the Gibbs sampler and to obtain a
sample from these marginals, the full conditional distributions have to be derived.

The chosen Bayesian variable selection scheme belongs to the family of conjugate hierar-
chical setups (George and McCulloch, 1997), for which the full conditional distribution
of v;, p(7ilV;2,8,0%,0,y), can analytically be marginalized with respect to 3 and o to
yield p(v;|v;4,0,y) up to a proportionality constant. This can be used to derive a more
efficient computational routine in which a sample of «, does not depend on the actual

values of 8 and o*. Note that «,_; denotes the vector v without ;.
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We will proceed as follows. First, we discuss the form of p(v;|v,.;, 8,0%,0,y) for a general
~¥; = (Vi1,---,%p)- Then, we turn towards the special case of simultaneous selection of p;
stimulus basis functions and restrict «, to the form proposed in (3.2).

In analogy to Smith and Kohn (1996) and Smith and Fahrmeir (2007), it can be shown that
p(72|7‘];ﬁ27 07 y) (08 p(}’z|’71)])(’71”7]¢z, 0), where

p(yilv:) o< Si(vy) (1 + T) 792,
Here, ¢; = > _7_, 7i; is the number of nonzero regressors in regression i, and
Si(vi) = yiyi — VX (7)) (X (7:) X(v:)) ' X () 'y
is the sum of squares in regression i corresponding to subset 7,. The derivation of this

distributional form can be found in Appendix A.1.

Since v, has support on 2? different values, it is impractical to generate a random sample
for «, as a whole. Instead, the full conditional is split up into the different regressor

components p(i k| ¥, r, Vi 0, ¥) to yield separate Bernoulli distributions.

In the following, we consider the special form of v; as given in (3.2). Here, we have
only one scalar ; per voxel which implements a simultaneous selection of p; stimulus
basis functions. The sampler for the full conditional can then be derived by the following
procedure. First, note that the posterior distribution can be written as a transform A(.) of
7 given 0:

POVl Vi 0,Y) X p(yilvi)p(vil Y j i @) < A(7i]0). (3.16)

Then, A(y; = 1|0) and A(y; = 0|@) can be calculated. Through normalization, the posterior
update probability is p(v; = 1|v;,;,0,y) = 1/(1+H(0)), where H(0) = A(v; = 0|0) /A(y; =
110).

For the case when v; =1,
A(yi = 118) = " P(1L+T) " p(ys = 17,4, ),

where S;; = yly; — y:X(X'X) ' X'y, and X is the full design matrix, i.e. X = (W|C|Z).

For the case when v; = 0,

A(y; = 0]0) = S (1 + T) #2223, = 0]y, ),
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where S;) = yly; — viXo(X) X)Xl y; and Xy = (W|C). Normalizing the results, we get
7 7 0 0 g g

p(vi = 0”7]‘;&@'»9)
p(yi = 1|7j;éi70)

H(0) = A”;O"’; — exp(l)

with

Sir T/2
l; = log (S> (L+T)Ps/2 3.
10

The term /; is the log-likelihood ratio of the marginalized likelihoods p(y;|v:). A sample ~;
from the marginalized full conditional can now be drawn from a Bernoulli distribution
with probability p(y; = 1]v,4;,0,y) = 1/(1 + H(8)). For an exact specification of #(8), the
relationship to the parameter vector § must be taken into account, which is elaborated in
the next section.

3.4.2 Binary regression level

As discussed before, we restrict the EEG-informed variable selection to the form of «, in
(3.2), so that a scalar ; for detecting brain activation due to stimuli is considered, and use
according priors proposed in Section 3.3.

The exact specification of § and related distributional assumptions depend on the selected
binary regression setup for the scalar activation parameters v; used in this level of the
Bayesian model hierarchy. In particular, this means that the exact model formulation de-
pends on the response function A(.) used to define the relationship between binary variable
7; and the predictor 7; with transformed EEG information f(.J;) (compare Section 3.3). In
our application, we consider a probit link, because it can simply be embedded in a Gibbs
sampling scheme.

The parameter 6 then comprises the regression coefficients of the binary linear model
stage and parameters of the hierarchical stages below. As discussed in Section 3.3, EEG
related regression coefficients comprise either the spatially-varying EEG coefficients o =
(a1,...,an) oraglobal EEG coefficient a¢ or both in case of an IGMREF prior. Analogously,
either a spatially-varying intercept ag = (o1, - .., ap ) is included or a global intercept
ap, or both when an IGMRF prior is used. Additionally, prior distributions of these

regression parameters depend on unknown variance parameters.

In the following, 6_, denotes the parameter vector 8 without the parameter(-subvector) v.
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In analogy to a generalized linear model framework, the v,,7 = 1,..., N, which serve
as latent binary observations, are assumed to be conditionally independent given the

regression coefficients in 7,. Hence, the prior can be written as
N
p(v16) = [ [ p(vilm:)

i=1
N

=TI n6m (1 = )
i=1
N

=TT 20" (1 —@m)' ™. (3.18)
i=1

where v = (71,...,7vn)". Thus, in the model with probit link, the response function A(.)
is equal to the distribution function ®(.) of the standard normal distribution. However,
our exact model does not rely on (3.18), but on a slight model modification. A convenient
posterior sampling scheme can be derived by a data augmentation approach proposed by
Albert and Chib (1993). For this, N latent variables Uy, .. ., Uy are introduced, where the U;
follow independent N (n;,1). Hence, U = (Uy,...,Uy) ~ Nx(n,I) withng = (n1,...,nn)".
Define v; = 1if U; > 0 and +; = 0 otherwise. It can be shown that this goes along with the
assumption of the v;’s being independent Bernoulli random variables with p(v; = 1|n;) =
®(n;). The assumption of a threshold equal to 0 is relaxed by the intercept term fy(7),
which can be interpreted as an automatic threshold estimation for the EEG part f(.J;) of
the predictor in U;. Note that @ now comprises U besides regression and related variance

parameters.

The relationship of U; and +; in form of a probability distribution can be expressed through

a mixture of point masses
p(ilUi) = I(U; > 0)I(v; = 1) + I(U; < 0)I(7; = 0), (3.19)

where I(A) is an indicator function equal to 1 if A is true and 0 otherwise. Again, the
assumption of conditional independence of the ,’s given U; holds, so that the conditional
joint distribution of -y can be written as p(y|U) = Hf\i 1 P(%|Us).

The full conditional distributions for the latent variables U, can be derived as follows.
Being conditionally independent given the regression coefficients—consisting of all or a

subset of o ¢, ¢, g and a—a rather simple form can be derived by
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= [I(Ui > 0)I(7i = 1) + I(Ui < 0)I(7; = 0)]

% (27)" 2 exp (—%(Ui - m)?) |

Hence, samples for U; can be drawn from a truncated normal distribution, i.e.

- 1
p(Ulh/l = 177j7éi7 H—inB7 Uva) X (Qﬂ_) 1/2 €xXp (_§(U’L - 771)2)

restricted on U; > 0if v; = 1,

_ 1
p(UZ|71 = 077]7’517 e*Ui?ﬁ? 0-27y> (8 (27T> 12 €xp (_§<Ul - 771)2)

restricted on U; < 0 if ; = 0.

For updating +;, the exact form of #(8) has to be derived. For this, we have to take
into account the following. If a realization of U; is put into p(v;|U;) = I(U; > 0)I(v; =
1) + I(U; < 0)I(v; = 0), then p(y; = 1|U;) is either 1 or 0. If p(v; = 1|U;) and p(v; = 0|U;) =
1 — p(v; = 1|U;) is then used to calculate 7(8), a reducible sampling scheme evolves, in
which a proposal for v; is fully determined by U; and, thus, by prior believes only. Then,
~v; = 1 for U; > 0, and in the next iteration U; > 0 because 7; = 1. Hence, information
from the data y in form of the marginalized likelihood ratio would be entirely suppressed
and the Markov chain gets stuck. To avoid this, we suggest to update (U;, ;) as a pair by
first sampling from p(v;|0_y;,, B, 0%, y) and then generating from p(U;|y:, 0_v,, 3,0%y) =
p(U;|0_v.,v,3,0% y). The latter coincides with the above full conditional for U;.

The conditional posterior distribution p(v;|0_y,,3,0%y) is derived by marginalizing
p(yilvi)p(vil ¥z, @) in (3.16) with respect to U;. In particular, for this the prior compo-
nent of (3.16) is marginalized with respect to U;. The prior component can be rewritten

as

p(%’|’)’j¢i, Ui, Ujzi, 0-v) = p(7i|Ui, Ujzi, 0 -v)

using that the elements of ~ are conditionally independent given U;. Marginalizing then
leads to

P(Vi|Ujzi, 0_v) = /P(%|Uz‘)P(Uz‘|Uj¢z‘79—U)3Uz‘

_ / p(lU:)p(Ui|0_0)OU,
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Z/ﬁ@%>®H%:1HJH%<®HWZOMMM&uWM.

The conditional density p(U;|0_vy) is the density of a N (;, 1) distribution. Evaluating for
vi = 1, we get

p(vi =1|U 4,0 y) = / p(Us|0_y)oU; =1 — ®(0;m;, 1) = O(n;;0,1), (3.20)
0

where ®(z;7;,1) is the value of the distribution function of a normal distribution with

mean 7; and variance 1 at quantile z € R. For 7; = 0, we get

0
P = 0Us.6-0) = [ p(U]60)0Us = 2(0:3,1) = 1~ B(330.1).
Substituting the marginalized prior distributions into (3.17) yields an improved updating

scheme for ~; as a Bernoulli variate with probability 1/(1 + #(6)) and

1— <I>(77@-)'

Which regression coefficients and related variance parameters have to be updated depends
on the exact specification of the predictor. See Table 3.1 for a listing of suitable predictor
forms. However, full conditional distributions for all parameters can be derived in a
general form—despite the exact choice of predictor and spatial prior. For a specific choice
of predictor and spatial prior, related full conditionals can be selected to update parameters
appearing in the hierarchical modeling setup.

We first elaborate on the derivation of full conditionals for the update of the whole spatially-
varying EEG coefficient vector. Assume that 3~ is the precision matrix of the multivariate
normal spatial prior, i.e. ¥7 = SLQQ in case of the IGMRF prior and ¥~ = f%P in case of
the CAR prior. Let J = diag(Ji, ..., Jy) be the design matrix part for the varying EEG
coefficient. The full conditional for the parameter vector o can be derived by extracting the
components of the full posterior dependent on o and recognizing a multivariate normal

distribution:

plaly,.0_a.8,0%y) x pla,0_o,7,3,0%y)
x p(Uln)p(e€?)

1 1
X exp <—§(U —N_o—Ja)(U—-—mn_, — Ja)) exp (—ﬁa’E_a>
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= exp <_% [(U - n—a)/<U - n—a) - (U - n—a)Ja - a/J/(U - n—a)
+a/JJa] — %a’E_a)
X exp (—% [(JT+E)a— (U—-n_,)Va—-a'J(U- n_a)]) : (3.21)

where 1_,, denotes the vector of predictor values without the Jo component, i.e. n_, =
1n — Ja. Equation (3.21) can be completed to a multivariate normal distribution with mean
(JJ+3X7)"'J(U - n_,) and variance-covariance matrix (J'J + X7)~!, which is then the
full conditional of «, i.e.

al. ~N((JT+E) T U-n_,),I+=)"). (3.22)

Similar arguments lead to a full conditional distribution for c. This random field is

updated with a multivariate normal distribution with mean (I + 3;)~'(U —n_,,) and

variance-covariance matrix (I + X;)~!, where X, = g%Qo in case of the IGMRF prior and
0

¥, = 5%PO in case of the CAR prior. In notation,
0

ool ~ N (I+Z7)(U-n_g,). T+Z5)7"). (3.23)

For each random field, all components are updated in one block. For the IGMRF prior, the
generated a (o) is centered to mean 0 immediately after sampling. An efficient sampling
scheme from these multivariate normal distributions utilizes the sparse matrix nature of
the variance-covariance matrices at hand as described in Rue (2001) and Lang and Brezger
(2004). Implementational details on this efficient Cholesky decomposition algorithm can
be found in Section 5.2.2.

If a global parameter with one-dimensional normal prior is included in the predictor, the
according full conditional distribution is derived as follows. For the global intercept with

N (o6, 0 ;) prior, we have,

p(QO,G’77 07(10,@ 7/87 0-27 y) X p(Um)p(O‘O,GmO,Gv 5(2)76')

1
X exp (_Q(U ~M_age lag ) (U — Mg — 1oz0,G))

1
X exp <—F(Oé0,a - Mo,c)2)
0,G
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1 1
X exp (—5 [043,@ (1’1 + £Q—> —2 ((U - nfao,c)ll + ZS_G> Om@]) ’
0,G 0,G

-1
which can be completed to a univariate normal distribution with variance (N + £+>
0,G

—1
and mean (N + 5%) ((U — M )1+ gS'G>, where 1 is the N-dimensional vector of
0,G ’ 0,G

ones.

Similarly, we can derive a full conditional for a global EEG coefficient with N (u¢, 02,
prior as univariate normal distribution with mean <j’ j+ é) - ((U -n_, G)/ i+ ’g—g) and
variance (j’ j+ é) _1, where j = (Ji, ..., Jn) is the vectorized map of EEG measurements.

If both global parameters are included in the predictor, the two global parameters can be
updated in one block using a two-dimensional multivariate normal distribution. We have
found that doing a simultaneous update improves convergency of the algorithm in the
model with IGMRF priors. The full conditional is derived as follows. The assumption
of two independent normal priori distributions leads to a spheric two-dimensional prior

distribution Ny (e, Xg) with i, = (o g, )’ for (oo q, ag)’ and
G G ’ ’

EG = Eg’G 0 .
0 &
Let a = (o, o) and X¢g = (1,j), then

p(aglv.0-a,, B,0%y) x p(Un)placlp,, Za)
1
X exp (—§(U —N_q, — Xcag) (U-n_qo, — XGgG))
1 _
X exp <—§(QG —1,)E5 (ag — g(;)>
1 _ )
scenp ( = 3 [ab(X6Xa + Bghag ~ (U - no))Xe + 1,552

— (XU —n_o,)+ Eélﬂcﬁ] ) ’

where again 7n_,  is the predictor value without the global part Xcag, ie. n_o, =
n — Xgo ;. The last equation can be completed to a multivariate normal distribution
with mean (X, X¢s + 25" H(XL(U — N_a.)+ 2 yy) ) and variance-covariance matrix
(X Xe + 3g') 7t Note that we choose to not estimate ., later on but to set its value. The

reason for this is that the complexity of the model should not further be increased and,
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thus, to prevent an overload of the estimation procedure. We set the value, for instance, to
zero or to the estimates from a probit model with global variables only (evaluating their
effect on an initial guess of 7).

The choice of a conditional conjugate prior for each variance parameter, i.e. an inverse
gamma prior, leads to a simple update scheme for all variances. The full conditional
distribution of each variance parameter is again an inverse gamma distribution. In the
IGMREF case, for £ (the variance parameter of the spatially-varying EEG coefficient) the
update distribution can be derived by

Py, 0-¢2,B,0%,y) o p(ex]€®)p(€?)

1 1 @ty b
x (€7 exp (‘z—e“’Q“) (&) (&)

= (52)—(a+%<N—k>+1) exp < & {b + 1oz QaD

where £ is the rank deficiency of the singular matrix Q. This can be completed to an inverse
gamma distribution with shape parameter a + 1(N — k) and scale parameter b + ;o'Qa.
When using a first-order IGMRF as proposed, k£ = 1. If the spatial CAR prior is used, & = 0
and Q has to be substituted with P.

In an analogous way, it can be shown that in the IGMREF case the full conditional for & (the
variance parameter of the spatially-varying intercept) is an inverse gamma distribution
with shape parameter ao + (N — k) and scale parameter b, + 1, Qa,y. When using a
first-order IGMREF as proposed, k£ = 1. Again, if the CAR prior is used, k£ = 0 and Q has to
be replaced with Py

Furthermore, we get for the variance parameter £ of the prior for a global EEG effect
ag an inverse gamma distribution with shape parameter a + 0.5 and scale parameter
be + 0.5(a — pe)?. For the variance parameter gva of the prior for a global intercept oy ¢,
we get an inverse gamma distribution with shape parameter q ¢ + 0.5 and scale parameter

bo.c + 0.5(cv0.¢ — pro,c)*-

If the CAR prior for the random field o or o is used, the spatial dependency param-
eter 72 or 7¢ has to be updated additionally. Updates are generated using Metropolis
steps (Gelman et al., 2004, Chap. 11). A proposal 7" is drawn from a positively trun-

cated N (7391 52,) distribution, which is symmetric in 72" and 7%°'?. The acceptance
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probability is defined by

2 0 2,new
a(7_2,new|7_2,old) — min p<67 Y, 07,0 _72,T ‘}’)’ 1
p(B,7v,0%,0_ .2, 720ly)
’Pnew‘1/2 exp <_2§L2a/Pnewa> exp (_#(TZnew o ,up)Q)
— min P , 1 , (324)
|Pold[1/2 exp (_%alpolda> exp <_ﬁ(72’dd _ Mp)2>

where P*% = I 4 72"*Q and P = I + 7>°“Q. A proposal 77" is drawn from a

positively truncated N (75", o2 ) distribution. It is accepted with probability

new|1/2 1/ pnew 1 2,new 2
[Py |Y% exp (_@aopo 040) exp <__gggp(70 — Hop) )

old|1/2 1 ! Pold 1 2,0ld 2
|P0 | / eXp —2—20(0]_30 O | €XP _F(TO - MOJJ)
€0 0,p

2,new | __2,0ld .
a(r, 75'"%) = min

(3.25)

Determinant computation is done via a Cholesky decomposition P = LL/, resp. Py = LLy,
as proposed in Rue (2001). The determinant is then computed by |P| = |L||L/| = |L|> =

2 2
(Hfil lii> , where [;; are the diagonal elements of L. Likewise, |P;| = (Hf\il 107“) , where

lyi; are the diagonal elements of L. For being numerically more stable, we use the log
transformation log |P| = 2 3V log(l;;) resp. log [Po| = 2 32 log(lo.ii)-

Determinant calculation via a Cholesky decomposition, however, is not as efficient as
it may seem at the first sight. Determinants must be recalculated for every iterate for
depending on the spatial dependency parameter. This slows down the MCMC procedure
substantially. We cannot make use of the Cholesky decomposition calculated for the
GMRF updates: Update precision matrix and P resp. Py do not coincide. But for an initial
testing phase of the combined fMRI-EEG algorithm, we rely on this simple determinant
computation approach.

3.4.3 Algorithmic details

Based on the derived full conditional distributions, we propose the following MCMC
algorithm. Due to marginalizing with respect to fMRI level regression parameters, MCMC
iterations update parameters of the EEG stage only. The update of v, however, additionally
depends on the output (a transformation of voxelwise likelihood ratio statistics) of the pure

voxelwise fMRI linear model. Note that this is the point where the estimation of EEG-level
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parameters is connected to the fMRI level. Therefore, we start with a mass-univariate least

squares fit of model (3.1) and then, switch over to the following iterative procedure.

We list an update scheme for a model with all parameters that might appear in the EEG
probit stage. If specific predictor components are not contained in a requested model, their
update can be omitted in later applications.

1. Initialization: Initialize EEG-stage regression parameters to the following values:
Initialize o« and o with independent zero-mean normal random numbers with
variance 1. If global parameters are contained in the model, initialize o, ¢ and o to
their prior means. If a CAR prior is used, choose initial values for 7 and 73. Choose
a maximal number of MCMC cycles L and set | = 1.

2. Estimation: For [ = 1,..., L, draw random samples from the full conditionals:

a. For v i = 1,... N, calculate p(y; = 1|n") = ®(n") and p(y; = 0jn") =
1-— (ID(nZ())and with it

#(0) = exp(t) L2

”
2(n")

Draw %(l) from a Bernoulli distribution with parameter 1/(1 + H(0));
b. Fori=1,...,N,
v~ N 1)
restricted on U; > 0 if %‘(171) =lorU; <0if %(171) =0;
cl. Update of variance parameters in models with IGMREF priors:
. 537(2 ~IG (CZO,G + 0.5, bo.c + 0.5(&8{51) - ,UO,G)2>;
o &0 1 IC (aG +0.5,bg + 0.5(al™V — MG)2);
o &0~ 1G (a0 +0.5(N —1),b + 050 Qaf )

e 20~ [@ (a +05(N —1),b+ O.5a(l*1)/Qa(l*1)> ;
c2. Update of variance parameters in models with CAR priors:

. §OG ~1G <a0G+05 bOG+05( Ve 1)—MO,G)2);
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o &0 L@ (ag +0.5,bg + 0.5 — MG)Q),-
o &~ 1G (ag+ 05N, by + 050 VPl Vel V);

o 220~ IG (a +0.5N,b+ o.5a<l—1>’P<l—1>a<l—1>> ;

2,0ld
)

e Draw a proposal 72" from a positively truncated N (7 o7) distribution

and accept with probability a(72"? |72 from (3.24) — 720;

e Draw a proposal 75" from a positively truncated N (75", (2) ) distribu-
tion and accept with probability a/(72"*|r2"%) from (3.25) — 72";

d. Update of effect parameters:

e ol N (T4 37) (U - nY), (1T +27)7)
¥~ = pQ in case of the IGMREF prior and X~ = gg%P(l) in case of the
CAR prior; if using an IGMRF prior, center o) afterwards by subtracting

its realized vector mean and add this mean to ozg 1),

o o) ~ N <(I +35) (U —n_0), (T+ z—)*l)
¥, = =7 Q in case of the IGMRF prior and X §_>P( ) in case of the

CAR pI‘lOI‘ if using an IGMREF prior, center ol afterwards by subtracting

its realized vector mean and add this mean to &éyGU,

-1 -1
ooz(é)w./\/<<.].]+ 2(1)) ((U n(—)cuG>J+§2(l>)’(j,j+£2_l(”> >;
G G
-1 -1
!
ol ((vegg) (@-nttnegg) (ve) )

o If both global parameters are contained in the model:
~N (p,%,, 0 ) with
-1 l —1(l
u(g)g = (XeXe + 36" ) (XU = nly) + 36 Vi)
—1(1)y—
20, = (XeXe + 26"

@

3.4.4 Monte Carlo Estimates

We first comment on posterior inference for a vector-valued parameter «. An estimate

for the posterior selection probability p(v; = 1|y) for the k-th regressor at voxel i can be
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obtained in two ways. Assume that {v();1 = 1,... L} and {#";1 = 1,..., L} are series of
Monte Carlo samples from the posterior distribution. On the one hand, an estimate can be
obtained by averaging over the MCMC sample of the corresponding activation probability
(Smith and Fahrmeir, 2007), i.e.

L
!
P = 1y) = Z pOyiw = 17\, 09 y).

On the other hand, the {’yl k,l = 1,..., L} series is per construction a sample from the
desired marginal posterior distribution of v; x|y, so that the relative frequency + S %(l,z

is an estimate for p(v;x = 1]y) as well.

In case of (3.2), when variable selection is confined to a scalar voxelwise activation indicator
7, estimators are constructed likewise. Voxelwise estimates of posterior selection proba-
bilities are of special interest, because these can be thresholded to provide an activation

map.

Posterior inference for the regression coefficients 3, and variances 0?,i = 1,..., N can be
based on mixture estimates of the mean of corresponding marginal posterior distributions.
These estimates rely on the theorem of iterated expectations and are in analogy to “model
average” estimates of Raftery et al. (1997). In particular, as in Smith and Fahrmeir (2007), it
holds

E(Bily) = ZE Bilvi y)p(vily), (3.26)

E(oily) = ZE 2y yap(ily). (3.27)

Closed form expressions for estimates of E(8;|v;,y:) and of E(c2|v,,y:) exist for a given
value of ;, so there is no need to estimate these means from an MCMC sample for these
parameters. Specifically, E(B;|v,,y:) = B:(7;) and E(o?|y,,y:) = Si(v,)/(T — 2). See
Appendix A.2 for the derivation of these components.

If ~, is vector-valued and can take 2”7 different forms, an model average estimate for 3,
(Smith and Fahrmeir, 2007) is

bi |
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which is based on approximation of the marginal mean by

L
EBly)~ > BB, y:).
=1

hIH

Likewise, an model average estimate for o7 is

Z - 2),

b« |

which is based on

L
1
ZZE( 2’71 7y2)

=1

E(o]ly) =~

If v, comprises just one scalar v; as in (3.2), the computational burden of calculating the
conditional means is further reduced by using Equations (3.26) and (3.27) directly:

E(Bily) = B;(vi = 1)p(v: = 1ly) + Bi(v: = 0)p(v: = 0ly)
Si(vi=1) . Si(vi =0) .
E(o?|y) ~ 20— iy, = 1 2O by =
(7 ly) 75 POi=1y) + ———p(v = 0ly)
with p(y; = 1ly) = 1 — p(y; = 0|y) being an estimate for p(vy; = 1|y) as given above. These
two estimates can be evaluated after the last iteration of the Gibbs sampling algorithm.

3.4.5 Classification of voxels

As noted at the beginning of this chapter, the main focus of an fMRI study lies on the
identification of activated voxels. To this end, we are interested in binary maps with
voxelwise activation classifications. Thereby, for each voxel a classification into active
versus non-active has to be made according to a classification rule.

The Bayes decision rules are based on posterior probabilities for classes resp. models. In
our case, class probabilities are the voxelwise posterior activation probabilities p(~;|y)—
which can be seen as the continuous output from a discrimination algorithm. Finding an
optimal classification rule corresponds to finding an optimal threshold for dichotomizing
this output.
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In the context of variable selection in Gaussian regression models, Barbieri and Berger
(2004) derived a classification rule for an optimal predictive model selection based on
squared error loss. They showed that the median probability model, i.e. a model consisting
of variables with posterior selection probabilities of at least 0.5 only, is the best predictive
model (given some regularity conditions). This implies for our model that stimuli regres-
sors should enter the model for voxel i if the corresponding posterior activation probability

p(vily) is larger than a threshold of 0.5 to obtain the best predictive fMRI regression model.

If evaluating classification rules, however, the squared error loss does not appear to be
a suitable choice. An alternative criterion for classification algorithms is the 0-1 error
loss—counting the classification errors made in total. Nevertheless, it can be shown that
also the Bayes decision rule classifying a voxel as active with p(v;|y) > 0.5 is optimal
concerning the 0-1 error loss, i.e. it has the smallest expected error count (Fahrmeir et al.,
1996).

This rule puts equal weight on false positives and false negatives. If requested otherwise, an
optimal threshold search can be based upon statistical tools from biometrical diagnostics.
Then, threshold search can be based on ROC curve estimates, cost functions or other

constraints like, e.g., a minimal acceptable specificity or sensitivity value.

Generally, a threshold # 0.5 can, hence, be seen as a classification rule putting unequal
weight on sensitivity and specificity. Therefore, other threshold choices can as well be
motivated.

The following approach from Smith et al. (2003) and Smith and Fahrmeir (2007) shows a
possibility to find a decision rule being comparable to the results of classical significance
tests. Such a decision rule is appealing for enabling us to compare our results to widely-
used activation detection algorithms like SPM. The authors follow Raftery (1996b) and note
that —2log(p(v; = 0ly)/p(v; = 1|y)) is on the same scale as a likelihood ratio LR statistic A
and (for calibration purposes) is distributed approximately x?(ps) where p; is the additional
number of regressors the model v; = 1 has compared to model v; = 0 (cf. Chapter 2). This
relationship is based on the assumption that the posterior odd p(y; = 0ly)/p(y; = 1ly) is
equal resp. approximates the Bayes factor (BF)

p(vi = 0ly) p(vi = 1)

BF,, —
" (i = 1y) p(v: = 0)

)

which in turn can be approximated by A. Clearly, equality of BF and the posterior odd
holds for equal prior model probabilities. For the EEG-enhanced fMRI model, where prior
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model probabilities depend on a probit stage with EEG information, it is not obvious
whether we can act on the assumption of equal prior probabilities.

To clarify whether equal prior probabilities are given in our model, we have to decide
which is the appropriate form of prior model probability. A priori our voxelwise model
probabilities depend on parameters of the probit stage: p(7; = 1|@). To calculate BF, the
unconditional prior probability p(y; = 1) is needed. Therefore, p(7; = 1/6) has to be
marginalized with respect to 6. For this purpose, we use the alternative probit formulation
with latent Gaussian variables U; and translate the search for p(; = 1) to the search for
p(U; > 0) and calculate

p(U) = / / P(U18)p(00 612 ¢ )plac]€)p(al€)p(aE)d 0. o, an, @)
P& IP(ERIPEIP(E)IE g, .62, €2).

Without loss of generality, we use the full form of predictor. If a sub-predictor is used
for the probit stage, corresponding terms can simply be removed. The inner integral
can be solved by concatenating effect vectors & = (a ¢, @, o), ') and recognizing a

multivariate normal distribution yielding (see Appendix A.3 for details)

p0) = [ €l 866 e (U - XXX + QX0
PGP EIEWENE . .5 €), 628)

where C(£3 ,€2,65,€°) is a term depending on constants and probit effect variance pa-
rameters, X is the design matrix of the full predictor with effect vector & and Q =
diag(1/& ¢, 1/88, Q/&5, Q/€?) is the combined prior precision matrix of &. Note that, for
this result, we use prior means equal to zero (resp. zero vectors) for probit effects. The
resulting integral cannot be solved analytically. If the exact value of the marginal p(U; > 0)
probability is needed, we can either calculate it by Monte Carlo integration or deduce
it from the form of (3.28). From (3.28) we see, in fact, that marginalizing with respect
to variance parameters affects the variance-covariance matrix of U, but not the mean
structure. Hence, the marginalized mean of U is the zero vector. Therefore, we conclude
that p(U; > 0) = 0.5 Vi for zero prior mean of probit effects and thus, that the BF is the

quotient of posterior probabilities.

With this, we can try to apply the approach of Smith and Fahrmeir (2007) and derive a

classification threshold that is calibrated to a significance level of 0.05.
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The statement “being on the same scale as the likelihood ratio statistic” of Raftery (1996b)
can easily be misunderstood. It does not necessarily mean that we can simply equate
—2log(BF ;) with the critical value of A, which is a mistake found in the literature. Raftery
(1996a) gives approximations of the BF based on the LR statistic. For each given approxi-
mation, an additional term has to be taken into account.

Belonging to the model class of (generalized) linear models, we can use the approximations
from Raftery (1996a). In the following, we elaborate on approximating BF's for our com-
bined fMRI-EEG model. As can be seen below, these BF approximations can be derived
for one voxelspecific regression model and then be applied voxelwise. This is due, on
the one hand, to the conditional independence of voxelspecific models in our complete
fMRI-EEG model and, on the other hand, to the specific prior and posterior mean structure
of fMRI effect parameters. Therefore, we drop in the following the index ¢ for simplicity

and denote 3(7) (as used in Section 3.2) as 3.,.

Let the prior mean of regression effect parameters be F(3,|y) = w, and the corresponding
prior covariance matrix be Var(3,|y) = W,. Additionally, G, = W' and F, is the
observed or expected Fisher information matrix. Then Raftery (1996a) shows that

—2log BFy = A + (Ey — Ey),

where A = 2 <l1(Bl) - ZO(BO)> is the standard likelihood ratio test statistic with [,(3,) =
log p(y|B,, ) being the log likelihood for model with v = 1 or v = 0 and in the case of

normal priors
E, =1log|G,| - (B, — w,)C,(B, — w,) — log |[F, + G, (3.29)
where C, = G,(I-H,(2-F,H,)G,)and H, = (F, + G,)" "

From Equation (3.3) and Section 3.4.4, we see that the prior mean and the conditional
posterior mean estimate coincide, so that the quadratic form in (3.29) is zero. The inverse
prior covariance is G, = 7 X(7)'X(v) and the (expected and observed) Fisher information
matrix is F, = 5X(7)'X(v). Hence, we have

E, =log|G,| —log|F, + G,| = log |G, (F, + Gv)_1| = log

(%ﬂ) I' = —p,log(T' + 1)

where p, is the number of effects in model with indicator value 7.
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Hence, we obtain the approximation
—2log BFg; = A — palog(T + 1),

where pa is the difference in parameter numbers, i.e. in the notation of our model: po = ps.
This approximation is approximately equal to the Schwarz criterion derived in Schwarz
(1978).

With this, a threshold for classification can be derived for a critical value x,, of the likelihood

ratio test with significance level « as

exp(0.5(ka — palog(T +1)))
14 exp(0.5(ka — palog(T +1)))

Inserting realistic values (o« = 0.05, T = 300 and pa = 3) into this equation yields, however,
a strange threshold below 0.01. Hence, the given approximation leads to an inconsistent

model selection criterion always favoring the more complex model.

It is a known issue that there are difficulties in objective Bayesian model selection proce-
dures based on both BF's or their approximations. Stone (1979) shows that, for instance,
the information criterion BIC—which is closely related to the Schwarz criterion—can lead
to an inconsistent model choice. Berger and Pericchi (2001) discuss difficulties arising in
model selection procedures directly based on BF's: Both noninformative and vague priors
can lead to arbitrary model choices.

Note that the g-prior (Equation (3.3)) as used for 3 is vague and the choice of multiplication
factor T' for the variance is quite arbitrary. As a limiting case (1" — o0), the g-prior is
noninformative. Both properties of the g-prior can be a crucial factor for problems with
a model selection based on derived BFs. Being an essential component of the combined
fMRI-EEG model—enabling us to marginalize with respect to fMRI regression parameter—
the g-prior cannot easily be replaced by other types of priors. Being beyond the scope of
this thesis, we decided to abandon the search for an optimal classification threshold at
this point and use a conservative threshold of 0.8722, which has been derived and used
in Smith and Fahrmeir (2007). This threshold can be calculated by equating —2log(BF,)
with the critical value kg5 of A with test distribution (1) and solving for the posterior
activation probability. To evaluate the robustness of corresponding activation maps, we
also consider a small set of further thresholds: 0.5, 0.75, 0.95.
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3.5 A model extension: A non-negative global EEG effect

First analysis results show that models with predictor type 2 (cf. Table 3.1) may yield a
negative global EEG effect. If a spatially-varying EEG effect is used, we allow local EEG
effects to be negative for indicating regions with non-congruent EEG and fMRI information.
A negative global EEG effect, however, leads to the counterintuitive interpretation that
EEG generally prohibits fMRI activation. Hence, we think it is sensible to introduce a
restriction on the global EEG coefficient in predictor type 2 models. For being independent
of the exact choice of spatially-varying effect priors, the following restriction can be used
in both CAR and IGMRF models—as well as in the fast version of the CAR model (cf.
Chapter 4).

We constrain the global EEG coefficient a; to be non-negative by using a log normal prior,
ie. ag ~ LN (ug, ). With this the full conditional distribution has the following form:

p(aG"Ya 07&@7 /67 0-27 y) 08 p(QGa 0701(;7 Y, ﬁ: UQ‘Y) (08 p(U’n)p(aG‘uGa gé’)

1 . . 1 1
X €xXp <—§(U R JOéG)/(U R J%:)) : a—G €xp <——(10g(040) - MG)2>

262,
1 [ 5., .. log(ag)? log(ag)ug]>
x —exp|—= |ac)i—2(U—-mn_,.)jac + -2 .
o p( 5 { di—2U0-n_.,.)jacg 2 2

This form cannot be completed to a known distribution from which random numbers
can easily be drawn. Therefore, we have to change over to a Metropolis-Hasting step. As
proposal density, we take a distribution with support on positive o values. We decided

to use a log-normal distribution with density

1 1
J(aG,new|aG,old) X eXp | — 9 2 (log(aG’,new) - 10g(aG’,old)) .
G,new gprop,G

This density is not symmetric in o e and ag oq- Hence, we have to account for this in
the Metropolis-Hastings step. The corresponding acceptance probability can be derived as

. p('y,H,aG,,B, 0-27@Gnew‘y)/J(aGnew|aGold) }
A OG new |G 0ld) = TN ’ : : 1
( | l ) { p(77 07&5:7 /87 027 OéG,old|y)/J(aG,old‘&G,new)

IOg(aG,new)z _ 210g(aG,new)P‘G

eXp <_% [aé,neuj/j - 2<U o n*aG,new)/jaG’new + £2G £2G :|> ]_

= min

e . og(ag,oid)? log(ag,o
€xp <_% [a%},old-]/J - 2(U - n—ac,old),JOéG,old + Log( 5% ) _ 2 g( igld)ﬂc}>
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The update for the related variance parameter £ changes as follows:

P&y, 0_c2, B,0%,y) o plac|ug, &)p(E5)

1 1
X m exp <—%(10g(040) - MG)Q) (fé)_(aGH) €exXp (——2)

1
o ()0 exp (- o ((oslac) — /2 + 1))
e
This can be completed to an inverse gamma distribution with shape parameter a¢ + 1
and scale parameter (log(ag) — ug)?/2 + bg, which can be used as the full conditional

distribution for updating &2 in a Gibbs sampling step.



4 A fast CAR model for the
EEG-enhanced fMRI model

Depending on the number of analyzed voxels, the computation time for running the
model proposed in Chapter 3 can become very long. The most time-consuming steps are
the simultaneous updates of the whole spatially-varying EEG coefficient vector and the
spatially-varying intercept vector. The calculation of one Cholesky decomposition of a
large update matrix can take about 2.5 seconds with a brain cuboid of 65280 voxels in
the application presented in Chapter 7, which leads to a total running time of the MCMC
algorithm of about 4.2 h (in the IGMREF prior case updating one spatially-varying coefficient
in 6000 iterations). When using the CAR model, updates of the spatial dependency
parameters add likewise to the increase of running time. Acceptance probabilities of the
corresponding Metropolis-Hastings step need the evaluation of the determinant of the
CAR precision matrix, which we currently also base on a Cholesky decomposition with
same time demand. Thus, running time is doubled.Generally, computation time increases

superlinearly with the number of voxels.

Computation time can for example be decreased by incorporating an analyzing mask,
i.e. a binary image indicating a subset of voxels that should be analyzed. Analysis can
for example be restricted to voxels within gray-matter—where activation is assumed to
happen. Segmentation procedures (Friston et al., 2008, pp. 81) can provide gray-matter
probabilities for voxels in an fMRI dataset. If we restrict analysis to voxels with a gray-
matter probability larger than 0.5, the number of voxels in the given example (Chapter 7)
reduces to about 16 500. Thus, one iteration in the MCMC update scheme takes about
0.2 seconds decreasing the overall computation time of a full CAR model with EEG
information to about 30 min. In Figure 4.1, the resulting analyzing mask is plotted for the
discussed example. Note that the resulting mask corresponds to a connected analyzing
graph, i.e. all pairs of brain voxels (vertices) are connected by a path. This is necessary
for isolated voxel groups being able to distort the estimation process. Nevertheless, the

resulting mask exhibits many small gaps in otherwise continuous gray-matter tissues.
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Figure 4.1: Gray-matter analyzing mask for fMRI image layers 3, 5,7, 9, 11, 13, 15, 17, 19,
21, 23, 25,27, 29, 31. White voxels denote voxels with a gray-matter probability larger than
0.5.

Alternatively, an analyzing mask can be derived depending on a specified threshold. This
selection mechanism is used by software like SPM. Here, a voxel is selected for analysis
when all of its fMRI time series values survive a grand mean dependent threshold. Details
of this procedure can be found below (Section 4.3). As before, we deselect voxels not
connected to the main brain region. The resulting mask exhibits hardly any discontinuities
(cf. Figure 4.2). In total, this threshold mask selects 27300 voxels increasing the time
demand of one MCMC iteration of a full CAR model with EEG information to 1.8 seconds,

which, in turn, leads to an overall computation time of about 3 h.

To circumvent the derivation of suitable analyzing masks, which themselves may be prone
to estimation error, we propose an alternative strategy to fasten the fMRI-EEG procedure.
As noted above, both the random field updates for the spatially-varying coefficients and
the determinant calculation in the update of the spatial dependency updates slow down
MCMC iterations. To speed-up the algorithm, both steps must be accelerated. Speeding-up
random field updates can be accomplished by single-site updates. This idea is discussed

in Section 4.1. Different approaches exist for calculating the determinant of large sparse
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Figure 4.2: Threshold based analyzing mask for fMRI image layers 3,5,7, 9, 11, 13, 15, 17,
19,21, 23, 25, 27, 29, 31. White voxels denote voxels with fMRI time series values surviving
a grand mean dependent threshold.

symmetric positive matrices. We look at different proposals and review the most promising
one in Section 4.2. In Section 4.3, we explain how the combined fMRI-EEG algorithm of
Section 3.4.3 has to be adapted to be accelerated.

4.1 Single site updates for spatially-varying coefficients

Instead of using a global update of the whole varying coefficient vector based on full

conditionals (3.22) and (3.23), we derive full conditionals for the single site updates.

For the EEG coefficient «; at voxel i, the full conditional can be derived as:

p(ai‘770—a17/87 0-27 Y) X p(Oéz, 9—(17;77’ ﬂ7 0'2|y>
o p(Uln) plailejpi, €, 7)p(etzl€?, 7) oc p(Ulm)p(aslejzi, €, 7%)

=p(c|€2,72)

1
X exp <_§(U L XJia’i)/(U Mo, — XJ1a1)> p<a’i|aj75i7 §2> 7_2)
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1' 1 2, 2
uprQ 22 =20, (U= 1) + 22”)@—2%523%[)

L JEO;
1 9 9 1+ Tzni , 7'2
= exp _5 a; Ji + 52 - 20@ XJZ<U - TLai) + 5_2 Z Qs )
L JEO;
where X', = (0,...,0,J;,0,...,0) is a vector with zeros except element i, which equals J;.

Hence, the full conditional for the i-th EEG coefficient is

52 , ,7_2 52
O‘i"NN(ﬁéMHT?m (XJi(U_"‘“"Hf_?Z%)’J3€2+1+r2m>' @D

JEOG;

The full conditional for the intercept at voxel ¢ can be derived as

p(ao,i‘77 070[072., /67 0-27 y) X p(U‘n>p(a0,’L|aj;ﬁl; 5(2)7 Tg)

1
= exp (_§(U — Mgy, — Xo,i0,) (U—=m_g,, — Xo,iao,i)) p(Ulm)p(anilazi, &, 75)

1 1+ 730, 72
o 302582 o v-r 125
0 0

JEO;

where X{; = (0,...,0,1,0,...,0) is the i-th unit vector. Hence, the full conditional for the
i-th intercept term is

& (x i g
il ~ Xo,(U=m_,,.)+ = AR : 4.2
" N<$+Lwﬁi oilU=nw) gl on | gy ) 6

0 jeas

4.2 Calculating the determinant of large sparse update
matrices

4.2.1 Overview of existing methods

The Metropolis step for updating the covariance parameter 72 of the CAR model involves
the evaluation of the determinant of the precision matrix, |P| = [I + 72Q|, where I is the
N-dimensional identity matrix and Q is the Laplacian matrix of the underlying graph
describing the 3D voxel grid (for more details on this see Section 4.2.2). The determinant

|P| has to be recalculated for every update of 72. This can be done via its Cholesky
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N

decomposition P = LL’ as suggested in Rue (2001) using [P| = |L||L/| = |L|* = (Hz’:l li,-)Q,
where [;; are the diagonal elements of L. For large datasets, numerical stability is achieved
by using log [P| = 2% 3.V, log(l;). Calculating the Cholesky decomposition in every
iteration is very time-consuming with time growing superlinearly with N. Hence, Pettitt
et al. (2002) and Smith and Smith (2006) suggest to calculate the eigenvalues Ay, ..., Ay of

—Q once prior to MCMC iterations to yield an efficient evaluation scheme using

N

Pl =[] -7\)

=1

or rather
N
log |P| = Zlog(l —72\).
i=1

However, calculation of all eigenvalues of the sparse Laplacian matrix Q, resp. —Q, for
general graphs present in brain imaging is problematic for large V. Iterative solutions
to the eigenvalue problem aim at calculating only a small subset of eigenvalues. See, for
example Bai et al. (2000), Chapter 4.1, for an overview of several available algorithms and
parts of the spectrum aimed at. In addition, even recently developed algorithms need a
reasonable amount of time for calculating a relatively small number—i.e. in the order of
hundreds—of eigenvalues in large scale problems (Arbenz et al., 2005). Hence, this limits

their usefulness in speeding up MCMC brain analysis.

There is an exception where the eigenspectrum of the Laplacian matrix of the voxel-grid
is analytically tractable. If analysis is refined to a rectangular voxel-slice or voxel-cube,
explicit formulas are available. Results are based on the Cartesian sum of path graphs
with known spectra and are a standard result of algebraic graph theory. A derivation can,
for example, be found in Mohar (2004) and is summarized in Section 4.2.2.

Simpson et al. (2008) mentions different alternative approaches to approximate the deter-
minant appearing in the literature: Methods are based on sparse approximating inverses
(Reusken, 2001), Gauss quadrature (Bai et al., 1996) and diagonal approximations (Ipsen
and Lee, 2003). Simpson et al. (2008) also states that the method of Bai et al. (1996) is
the most popular one. It has to be evaluated which approach is the fastest and can be
implemented with acceptable time and effort at the same time. For a moment, we do not

pursue one of these approaches.

For a start, we take a closer look at the eigenspectrum approach. There are in principle
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two conceivable ways for applying it to brain analysis. If analysis should be restricted to
an individual head shape, we can take the Laplacian spectrum of the enveloping brain
cuboid to approximate the determinant of P. On the other hand, we can analyze all voxels

of the brain cuboid and calculate the Laplacians exact spectrum to calculate |P|.

It may seem reasonable to remove voxels outside the brain. This enhances the performance
of analyzing procedures (1) for reducing the memory needed to store all generated objects,
(2) for speeding up computations which have a demand of larger than O(N) and (3) for
supporting smoothing procedures, which can be deteriorated by smoothing over non-brain
voxels. However, if we approximate |P| by taking the Laplacian spectrum of an enveloping
brain cuboid, we must guarantee that this approximation does not deteriorate MCMC

inference.

For our implementation, we prefer to realize the second approach building upon a cubical
analyzing mask. With the single-site update proposed in Section 4.1, all MCMC update
parts are O(N), so that an increase in voxel numbers does not interfere substantially
with the speed-up. When smoothing over non-brain voxels, we rely on the good edge-
preserving properties of the CAR prior.

For this purpose, we derive the Laplacian spectrum of a 3D grid in the following section.

4.2.2 Laplace eigenspectrum of grids

The following derivation of Laplacian eigenvalues of ¢-dimensional grids can be found in
Mohar (2004).

Let G = (V, E) be a non-directed graph with finite vertex set V' =1,2,..., N and edge set
E of two-element subsets of V. The degree n, of vertex i is the number of edges incident to
vertex i. Let D = diag(ny, ..., ny) be the diagonal matrix of vertex degrees. The Laplacian
matrix is Q = D — A, where A is the (0,1)-adjacency matrix of the graph. The Laplacian Q
is a real symmetric matrix, which can be shown to be positive semi-definite. It therefore
has N non-negative real eigenvalues \; = \;(G), ¢ = 1,..., N. For the row sums being
equal to 0, the vector 1 = (1, 1,..., 1) is an eigenvector with corresponding eigenvalue 0.

By convention, let
0:/\1§)\2§§)\N

be the eigenvalues in ascending order.
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Based on these definitions, a 3D voxel grid in brain analysis is built up as follows. Each
analyzed brain voxel denotes a vertex in the grid. Two voxel vertices are connected by
an edge if they are declared as neighbors by prior believes—as defined by the choice
of adjacency matrix A that is incorporated in the precision matrix of multivariate prior
distributions (e.g. in the IGMRF precision matrix Q or in the CAR precision matrix P).

The following theorem is useful for determining the number of connected brain regions
in a brain imaging example: The multiplicity of 0 as an eigenvalue of Q is equal to the
number of connected components of GG. Hence, 0 is a simple eigenvalue of Q if and only
if the graph G is connected. Applied to brain imaging analysis, a multiplicity of k£ > 1 of
eigenvalue 0 implies the brain voxel grid is decomposed into k subgraphs. Especially, if
small brain parts become disconnected to the main brain grid, effect estimation based on
neighborhood information can be deteriorated.

The Laplacian spectrum of a ¢g-dimensional grid graph builds upon the Cartesian product
of path graphs. A path of length n — 1 (n > 2), denoted by P,, is a graph with n vertices,

say zi,...,%,, and with n — 1 edges in which z; and z,;, are connected by an edge for
i =1,...,n — 1. The Laplace eigenvalues of P, are
)\E):4sm2(7r<l )), 1=1,...,n.
2n

The Cartesian product G; x G5 of two graphs G = (V4, E) and Gy = (Va, E») has vertex
set V(G1 x G2) = V(G1) x V(G2), where vertice (i1, j1) is adjacent to (i, j2) if and only if
i1 = ip and {1, jo} is an edge in G5, or j; = j, and {1,142} is an edge in G;.

The Laplace eigenvalues of the Cartesian product G; x G are
Ai(G1) + A (Ga)

fori=1,2,...,|V(Gy)|and j = 1,2,...,|V(G,)|, where |V (Gj)| is the cardinality of set
V(G k=1,2.

Applied to two path graphs P, and P, of length n and m, respectively, the n x m grid
graph P, x P, has Laplace eigenvalues

)\(Mm) = )\(n) + )x(-m) — 4 gin? (W(Z _ 1)) + 4in® <7T(j — 1>>
1 7 2 ’

J
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which applies in brain imaging to the spectrum of a Laplacian matrix of a two-dimensional
voxel slice of size n x m. Reiterating this procedure to a third dimension gives the Laplacian
spectrum of a three-dimensional n x m x k grid as

— 1 ) — 1 [—1
Alxmxk) )\Z(»n) + Agm) + Al(k) = 4 sin? (W(ZQ )> + 4 8in? <%) + 4 in? (W( )) ;

igl n m 2k

r=1,....,n,5=1,....m, Il =1,...,k, (4.3)

which are the Laplace eigenvalues of P, x P,, x Py, i.e. a graph of a 3D cuboid with side
length n x m x k.

4.3 An accelerated fMRI-EEG algorithm

To implement determinant calculation via the Laplacian spectrum of a brain cuboid, a
cubical analyzing mask has to be determined prior to MCMC iterations. For this, we first
select all brain voxels and then choose the enveloping cubical mask as analyzing mask.

In our implementation we define brain voxels as voxels with all time series values larger
than 1/8 of the grand mean p,,,. The grand mean is thereby calculate as in SPM as the
mean of scanwise global means 4, = + S°F . Hgm. A global mean i, is the mean of all
voxels with signal larger than /8, i.e.

Hgmt = nit Z Yits

©yie >t /8

where 41, is the overall signal mean of scan ¢ and n, is the number of voxels with y; , > 1, /8.

Note that this is the default selection scheme for a brain mask in SPM.

Having selected all brain voxels that should be analyzed, we determine the corresponding
minimum and maximum indices to define the image cuboid. Let z, y, 2 denote the three
spatial indices, the cuboid dimensions are defined as

N = Tmaz — (xmzn - 1)
m = Ymaz — (ymm - 1)

k= Zmax — (me - ]-)
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Therefore, the corresponding Laplacian spectrum can be calculate via (4.3) as

WPi=1, N =™ =10 =1 m, I=1,.. k).
For calculating the determinant we need, however, the eigenvalues of —Q which can be
simply calculated as

The MCMC algorithm proposed in Section 3.4.3 can then be accelerated by using the
following adoptions. On the one hand, a for-loop over single site updates (4.1) and (4.2)
in step d replaces global updates. On the other hand, updates of 72 and 7¢ in ¢2 use the

efficient determinant calculation via

N

Pl =] -7\)

=1
and

N

=1
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5 Software implementation

The algorithms derived from the methodology presented in the previous chapters have
been implemented and combined into an user-friendly software tool. These include the
EEG-enhanced fMRI detection algorithms with IGMRF and CAR prior with all discussed
predictor types (cf. Table 3.1) from Chapter 3. The CAR algorithm can be run as version
with global updates or as the accelerated version from Chapter 4.3. Additionally, the
fMRI activation detection algorithm based on an Ising prior from Smith et al. (2003) is

implemented.

The user can choose between two different software package versions. On the one hand,
all routines are callable from R (R Core Team, 2012), a software environment for statistical
computing and graphics, and are available as package Rfmrieeg. On the other hand,
the analyzing routine can directly be compiled as a binary CfmrieegMain program
from its C++ source code (which can then e.g. be executed in a shell). Both software
versions build upon the identical C++ algorithm collection. Whereas the main executable
CfmrieegMain calls provided algorithms directly within C++, the R package provides
an interface so that algorithms can be accessed from within R. Besides this interface—
which is the core of the R-package—Rfmrieeg provides additional utilities for setting
configuration arguments, output analysis and presentation of results. Both the R-package
as well as the C++ source code (which is contained within the R-package source folder
src) are provided upon request by the author. In the following, we denote parts of the

implementation and algorithms common to Rfmrieeg and CfmrieegMain as fmrieeg.

Section 5.1 is written as a manual for readers intending to use the software. We describe
how to configure and run the fmrieeq algorithms using a configuration text-file in Sec-
tion 5.1.1. A call to the fmrieegq algorithms by the corresponding Rfmrieeg-procedure
as well as by CfmrieegMain relies on this file. In Section 5.1.2, we give details on in-
stalling the R-package Rfmrieeg and demonstrate its functionality by going through the
main analysis steps of an exemplary data analysis. In Section 5.1.3, information on the

installation process of CfmrieegMain is given as well as a short note on its use.
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In Section 5.2, we shed light on the implementation of the C++ algorithms. Efficient
numerical solutions are discussed to solve linear algebra problems (Section 5.2.1 and 5.2.2).
Notes on the object-oriented software architecture of the C++ program can be found in
Section 5.2.3.

Section 5.3 gives some more technical details for users unfamiliar with the used image
data format. Additionally, some advice is given on changing compilation settings that
might increase the performance of the algorithms.

In the following, we denote the fmrieeg algorithms with CAR prior with global updates
of spatially-varying effects from Chapter 3 as gCAR and the fast algorithms from Chapter 4
as fCAR. The model with IGMREF prior is denoted as iMRF. It relies exclusively on simulta-
neous map updates of map coefficients (as described in Chapter 3). We label algorithm
names with numbers 1-5 to differentiate between predictor types, i.e. gCAR1-gCARS5
denotes the gCAR models with predictor 1 to 5. The same applies analogously to the
fCAR model and iMRF model: Model names fCAR1-fCAR5 denote the f{CAR models with
predictor 1 to 5. Model names iMRF1-iMRF5 denote the iMRF models with predictor 1 to
d.

5.1 Usage

5.1.1 Preliminaries: Configuring an fmrieeg algorithm run

The fmrieeg C++ algorithm—the core of both the R package and the binary—can be
controlled by the user via a set of parameters. Though R provides flexible means of passing
arguments to functions, options are limited when executing a binary in a shell. For ease of
usage, we decided to pass arguments by using a configuration file in ASCII text format in
the form ‘keyword = value’ (see Figure 5.1 for an example). We prefer the file ending
“.inp’ to distinguish it from other text files. The path to this file is the only direct argument
the C++ program takes. Hence, we decided that the binary as well as the corresponding
R-procedure are started by passing the configuration file path.

The argument values in the configuration file can be adapted to ones needs either by editing
a template (made available with the source code) in a text editor or by using configuration
functions from the provided R-package Rfmrieeg (see next section). Some arguments are

mandatory to be specified, e.g. the path to the actual data, stimulus presentation times, etc.,
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pathResults = Z:/testsuite

t0 =0

tr = 2

nStimTypes = 1

stimActDect = 1

nPerstimType = 36

pathStimTimes= Z:/testsuite/stim-times.txt
confounder = FALSE

pathConf =

freqHPF = 128

pathNifti = Z:/testsuite/nifti fmrits-RS.nii

Figure 5.1: Example of a configuration ASCII text file.

whereas default values are assigned to remaining arguments if not specified otherwise.
We differentiate between common arguments (needed for all model types) and arguments
specific to the model choice for the Bayesian activation detection hierarchy. That is, the set
of arguments depends on the choice of spatial binary prior, i.e. Ising or probit prior. For
the latter, we differentiate between CAR and IGMREF prior and between predictor types.
The keyword speedup can be used to switch between gCAR and fCAR algorithms. An
overview of arguments common to all models can be found in Table C.1 and an overview

of model specific arguments can be found in Table C.3 in the Appendix.

A call to the algorithms within R can be conducted by passing a string with the path to the
configuration file to the RfmrieegMain () function:

R> returnObj <- RfmrieegMain ("path/to/ConfigurationFile.inp")

The CfmrieegMain program is executed by specifying the path to the configuration file
after the “-config’ flag:

)

% CfmrieegMain -config path/to/ConfigurationFile.inp

In both cases, results are stored in a subfolder of the directory specified with keyword

pathResults or in the working directory if left unspecified.
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5.1.2 Usage of the R-package Rfmrieeg

For installing the R-package Rfmrieeg, the provided version of the package source! must
be saved to a local folder. Having launched R and having changed the working directory
to the corresponding folder (via setwd () ), the package can easily be installed using the
command:

R> install.packages ("Rfmrieeg", repos=NULL, type="source")

Note that installing from source can take several minutes. If working on windows without
an installation of the Rtools collection?, the windows binaries in the zip format can be
used and installed by using;:

R> install.packages ("Rfmrieeg", repos=NULL)

Note that installation from a local repository requires the R-packages Rniftilib (Granert,
2012), lattice (Plummer et al., 2006) and coda (Sarkar, 2008) to be already installed. In
a next step, the package needs to be loaded into the current R session:

R> library ("Rfmrieeg")
Loading required package: coda
Loading required package: lattice

Loading required package: Rniftilib

To view the documentation on provided functions, e.g. RfmrieegMain, or the package

itself use the help command, for example ?RfmrieegMain or ?Rfmrieeq.

The package Rfmrieeg provides functionality for the entire data analysis process, from
configuring the algorithm up to MCMC diagnostics and presentation of results.

In the following, the main functionality of Rfmrieeq is demonstrated with a subset of the
simulated dataset from Chapter 6.1.1 with small error noise (where an error term €; is a
realization from N (0, 07" T)). Subset images have size 27 x 25 x 5. We take a time series of

200 images. This smaller dataset is part of a test suite, which can be used to test whether

ICurrent version at time of thesis publication: Rfmrieeg_1.0.tar.gz
These are tools for building R-packages on windows and are available from http://cran.r-project.
org/bin/windows/Rtools/.


http://cran.r-project.org/bin/windows/Rtools/
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the software is properly installed. This test suite is provided by the author upon request
and includes the following data files. The EEG data is contained in a 3D NIfTI-1 image
nifti_J-RS.nii, the fMRI data is stored in a 4D NIfTI-1 image nifti_fmrits-RS.nii and the
vector with stimulus times is contained in stim-times.txt. For more details on the NIfTI-1
file format see Section 5.3.1.

The following exemplary features for carrying out an analysis are presented: (1) Config-
uring a model run using the S4 Config class, (2) running the algorithm, (3) preparing
results with 54 class Results, and (4) looking at MCMC diagnostics made available by
S4 class Diagnostics. The 54 class system was used for providing the functionality of
object-oriented programming concept within R. Each class, thereby, defines class-specific
member variables characterizing their objects and according member functions, which act
as the intermediaries for retrieving or modifying the member variable values to ensure
data integrity. Thus, setting the values of member variables is normally done via mutator
methods to control for side-effects. In the following, we denote these functions as setter
functions.

After the R session has been started, the user may (1) define the absolute paths to needed
data objects, which are later assigned to the configuration settings, and (2) change the
working directory to a selected folder (via setwd () ). If not specified otherwise, results
outputted by the procedure are saved to the working directory by default. Depending on
whether he/she is working on a unix or windows operating system, the paths have to be

set in the according correct format. For instance, use

R> pathFMRI.Test <- "Z:/testsuite/nifti_fmrits-RS.nii"
R> pathTimes.Test <- "Z:/testsuite/stim-times.txt"

R> pathEEG.Test <- "Z:/testsuite/nifti_J-RS.nii"

R> setwd ("Z:/testsuite/")

when working on a windows system or

R> pathFMRI.Test <- "/home/kalus/testsuite/nifti_fmrits-RS.nii"
R> pathTimes.Test <- "/home/kalus/testsuite/stim-times.txt"

R> pathEEG.Test <- "/home/kalus/testsuite/nifti_J-RS.nii"

R> setwd ("/home/kalus/testsuite/")

when working on a unix system. In the following, we report the output from an R session

that was run on a windows system. Hence, paths are printed out alike.
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Setter function Relates to:

setConfig. fmri () fMRI regression stage arguments

setConfig.MCMC () MCMC algorithm specific arguments

setConfig.pathResults () Setting the path where a results folder
should be generated

setConfig.stimCanonicalBF () or | Setting the HRF basis function type

setConfig.stimGammaBF () and related arguments

Table 5.1: Setter functions for setting arguments common to all model types.

CAR iMRF Ising
setConfig.params.CAR1

setConfig.params.iMRF1 setConfig.paramsIsing ()

setConfig.params.CAR2 setConfig.params.iMRF2

setConfig.params.CAR4 setConfig.params.iMRF4

0) ()
() ()
setConfig.params.CAR3 () | setConfig.params.iMRF3 ()
() ()
0) 0)

setConfig.params.CARS setConfig.params.iMRF5

Table 5.2: Setter functions for setting the algorithm type of the model run and according
arguments.

As noted in the preceding section, the fmrieeg algorithm is run via a configuration file.
If such a file is not at hand, the 54 class Config can be used to generate one. For this, the
class handles up to 59 arguments being employed in different model runs. The arguments
of the fmrieeg algorithm are hereby the member variables of the Config class. We
structured the setting of member variables by providing setter functions that subdivide
arguments with regard to content. The setter function setConfig. fmri (), for instance,
takes and sets arguments needed to configure solely the fMRI regression stage of the model.
See Table 5.1 for an overview of setters for model parameters common to all model runs
and Table 5.2 for setter of algorithm specific arguments. If an algorithm type specific setter
is called, arguments are set in such a way that the corresponding algorithm is selected.
Additionally, these setters take arguments relevant for the specific model type. Which set
of arguments a model setter function takes can be inferred from the according help file and
Table C.3 in the Appendix. For a start, the majority of fmrieeg arguments can be left to
default values, so that configuring an algorithm run is straightforward. For this, initialize
a new Config-object and specify arguments that do not have a default value (cf. Table C.1

in the Appendix). Note that warnings are printed if mandatory arguments are not yet set.

R> configObj <- new ("Config")
R> configObj <- setConfig.pathResults (configObij)
[1] "WARNING: Use setConfig.fmri() to specify paths to fmri data
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(i.e. pathNifti, pathStimTimes) ."

Note that this call to setConfig.pathResults () sets the results path to the working
directory. If another directory should be used, the corresponding path has to be passed via
the setter argument pathResults. If most arguments of the fMRI predictor stage should
be kept to their defaults, only the paths to the actual data have to be specified via

R> configObj <- setConfig.fmri(configObj,pathNifti=pathFMRI.Test,
+ pathStimTimes=pathTimes.Test)

The setter functions listed in Table 5.2 can then be used to request the fitting of a spe-
cific algorithm type as well as to set corresponding model options. If no model set-
ter function is called, RfmrieegMain fits per default an Ising model for uninformed
fMRI activation detection, which can alternatively be requested by using the function
setConfig.paramsIsing (). If another model type is asked for, the corresponding set-
ter has to be used. In the following, we would like to fit a gCAR5 model for EEG-enhanced
fMRI activation detection and, hence, use

configObj <- setConfig.params.CARS5 (configObj, pathEEG=pathEEG.Test,
+ speedup=FALSE,

tauStart=2,

sigma2ProposalTau=0.25,

taulStart=25,

+ + + +

sigmaZ2ProposalTaul0=3)

to set configurations alike and pass over the path to the 3D EEG image file. To improve
convergency, spatial dependency hyperparameters are given non-default values. Note
that, speedup=FALSE selects a gCARS5 model instead of a f{CAR5 model, which can be
chosen by speedup=TRUE. Per default, a gCAR5 model is selected.

As a next step, we write a configuration text-file to the pathResults directory (in this
example the working directory) by using the function writeConfig (). We append the
string “_gCARbS” to the filename to indicate its use. This function returns the path to the
written file, which can then be used to start the algorithm. We assign the returned string to
variable pathConfigFile.

R> pathConfigFile <- writeConfig(configObj,add2Filename="_gCAR5")
[1] "Z:/testsuite/configFile_gCAR5.inp"
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The algorithm is started via
R> returnObj <- RfmrieegMain (pathConfigFile)
and returns the path where all results and diagnostic objects are stored:

R> returnObj
[1] "Z:\\testsuite\\resultsl"

Note that R uses either “\\"” or “/” as a separator since “\” is a special character.

To access the results, the Results-class of the package can be used. For using its function-
ality, a new Results-object has to be generated and initialized by passing over the path
to results (e.g. stored in returnObj) and the configuration object configObj.

R> resObj <- new("Results")
R> resObj <- initResults (resOb7j, returnObj=returnObij,
+ configObij=configObj)

The results objects stored in the results folder can easily be accessed and, for example,
an activation map can be written to the folder via calcActivMap () while returning
the path where it can be found. For plotting, it first has to be read by the Rniftilib-
function nifti.image.read() to be loaded again into the current R session. The
function plotNifti () can then be used to draw the map. The resulting plot is shown
in Figure 5.2. Note that plotNifti () provides an option to write out a PDF of the plot.
Depending on the image dimensions and—optionally—on a calculated pleasant value
for the plotting parameter mfrow resp. mfcol, width and height of the PDF are then
automatically chosen in such a way that voxels appear as proper squares. If another device
type is preferred, the user can calculate optimal graphic dimensions by using function

calcDeviceHeight ().

R> activPath <- calcActivMap (resObij)
R> activMap <- nifti.image.read(activPath)
R> plotNifti (activMap, pdfoutput=TRUE, pdfName="gCARS5active")
null device
1
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results1/activMap
layers: 12345

Figure 5.2: Estimated activation map from the exemplary gCAR5 model run.

Besides this, the Results class provides functions to plot the parameter map estimates via

plotMapEst() and to compute a summary of global parameter estimates via summary().

To determine whether the algorithm shows an acceptable convergency behavior the
Diagnostic-class can be used. Again, a Diagnostic-object has to be generated and
initialized for this:

R> diagObj <- new("Diagnostics")
R> diagObj <- initDiagnostics (diagObj, returnObj=returnObi,
configObj=configObj)

The function summary () prints a six-point summary of global parameter traces.

R> summary (diagOb7j)

This is a summary of global parameter estimates of the following
Rfmrieeg model run.

Used algorithm: gCARS

Results folder: Z:\testsuitel\resultsl
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Min. 1st Qu. Median Mean 3rd Qu. Max.
x120 10.540 13.350 14.260 14.310 15.180 18.960
tau20 11.450 13.630 14.620 14.950 16.230 20.110
xi2 3.960 4.693 4.938 4.951 5.171 6.658
tau2 1.552 2.361 2.724 2.769 3.162 4.291

Trace plots of parameter trajectories can be obtained via the plot () -function.
R> plot (diagObj,what="global", type="trace")

If requested, this function plots autocorrelation functions and diagnostics of voxelspecific
estimates as well. Exemplary trace plots of global parameter trajectories of the gCARS5 run
can be found in Figure 5.3.

5.1.3 Compilation and usage of the executable CfmrieegMain

If desired, the C++ algorithm collection can be accessed via the CfmrieegMain program
without relying on an installation of the R environment. For compiling and building

CfmrieegMain in a shell follow the subsequent steps.

The source code of the C++ application is contained within folder src of the Rfmrieeg
package including a makefile, which controls the compilation process. The most convenient
way to build the CfmrieegMain program is, hence, to change directory to folder src and
use the provided makefile via

[

% make —-f makefileCpp

The binary CfmrieegMain is then generated in this directory from where it can then be
executed.

Note that this instruction assumes a unix-type operating system with linear algebra
libraries BLAS (Blackford et al., 2002) and LAPACK (Andersen et al., 1999) already installed
in the standard library path of your system. These have to be C-libraries that were build
upon a C interface (cblas) to the original Fortran routines. If available, 1ibblas.a
(l1ibblas.so)and liblapack.a (liblapack.so) can, e.g., be found in usr\1libs\.
If CfmrieegMain should be linked to another BLAS or LAPACK library, the makefile has

to be adapted. Further information on this can be found in Section 5.3.3.
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Figure 5.3: Trace plots of global parameters from the exemplary gCAR5 model run.

Standard BLAS and LAPACK routines are generally slow. For high performance, we
recommend to install an optimized native BLAS implementation, like ATLAS (Whaley and
Petitet, 2005) or GotoBLAS (Goto and Van De Geijn, 2008), which also include optimized
LAPACK routines. The makefile can be adapted to incorporate one of these libraries.
Further details on this can also be found in Section 5.3.3.

As noted in Section 5.1.1, the CfmrieegMain program is executed in a shell by using

[e)

% CfmrieegMain -config path/to/ConfigurationFile.inp

Results are stored in a subfolder of the directory specified with keyword pathResults
or in the working directory if left unspecified. No extra functionality is provided for
output analysis. For this, the user may revert to procedures provided by the R-package

Rfmrieeg.
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5.2 Implementational issues

The R-package Rfmrieeg was developed on basis of a C++ implementation of the
fmrieeg algorithm. It provides a standardized installation process and easy to handle
analyzing routines. Above that, the R-package includes extra-functionality for configuring
the algorithm, presenting results and diagnostics. The heart of the fmrieeg algorithm,
however, is implemented in C++ code. The reason for not using R more extensively lies in
the formerly insufficient and missing image data handling routines in R at the beginning
of this project. At this time, the NIfTI-1 C library (http://nifti.nimh.nih.gov/)
provided convenient data handling routines for image data in the NIfTI-1 format (and still
does)—cf. Section 5.3.1 for more details on this. The Rnift ilib package has made such
routines available in R not before 2009. Additionally, to design a fast MCMC algorithm,
it is recommended to implement update loops in a lower-level programming language
like C/C++, which are closer to the machine language. Hence, we decided to use C++ for
implementation. High diligence was put into implementing an algorithm with a good
run-time performance.

To accomplish this, the implementation relies on external, open-source C-libraries that
provide state-of-the-art numerical solutions for efficient linear algebra operations. These
are described in Section 5.2.1 and 5.2.2.

When starting a new programming project, the coding task has to be structured to obtain
comprehensible, easy-extensible code. For this, we decided to use an object-oriented ap-
proach that was constructed using the unified modeling language (UML) (see e.g. Kecher,
2009). To provide insight into the underlying software architecture, the corresponding
UML diagram of the implementation project is discussed and presented in Section 5.2.3.

5.2.1 Efficient linear algebra subprograms

The algorithm comprises several linear algebra operations like scalar products, vector- and
matrix multiplications and a multivariate least squares fit. Where feasible, computations
have been vectorized to omit time-consuming loops. To yield a short computation time
overall, vector and matrix operations are calculated by external libraries, which have
been especially designed to achieve good run-time performances. For basic linear algebra
calculations, we use C-libraries building on BLAS (Blackford et al., 2002). For a multivariate
least squares fit, an interface to the GELS function of the LAPACK library is used—which

relies on a QR matrix factorization (Andersen et al., 1999).
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As noted above, standard BLAS and LAPACK routines are generally not the fastest
available. Further details on including an optimized library can be found in Section 5.3.3.

For a convenient and efficient C++ interface to (optimized) BLAS and LAPACK routines,
the matrix library FLENS (Lehn et al., 2005) is used. FLENS possesses the advantage of no
run-time overhead compared to directly calling BLAS and LAPACK and no side-effects
like internal creation of temporary objects—in spite of providing easy to handle dynamic

vector and matrix objects and related array subsetting functionality.

5.2.2 Efficient GMRF updates via Cholesky decompositions

Updating large random fields in one block is supposed to be beneficial for the convergency
behavior of the MCMC procedure. This applies to the update of parameter vectors o
and «, i.e. the spatially-varying coefficients of the latent probit stage (cf. Chapter 3). An
efficient sampling scheme from corresponding multivariate normal update distributions
utilizes the sparse matrix nature of the variance-covariance matrices at hand as described
in Rue (2001) and Lang and Brezger (2004). In the following, we briefly summarize the

main steps for an update of a. An update for oy can be implemented in an analogue way.

Let K be the precision matrix for the GMRF update of o, i.e. K = (J'J 4+ X7). Drawing
random numbers from the multivariate normal full conditional distribution p(«|.) with
meanm = K~'J'(U—n_,) and precision matrix K is achieved as follows. After calculating
its Cholesky decomposition K = LL’, we proceed by solving L'ac = z, where z is a vector
of independent standard Gaussians. It follows that & ~ N(0,K™!). The update mean is
calculated by solving Km = J'(U—n_,). This is achieved by first solving Lv = J'(U—-n_,)
by forward substitution followed by a backward substitution L'm = v. Adding m to
yields o ~ N (m, K™ 1).

Note that this procedure is not applied to the original matrices, but to permuted ones.
Fill-reducing permutations yield an astonishing increase in speed. Rue (2001) and Lang
and Brezger (2004) suggest to use the Cuthill-McKee algorithm (George and Liu, 1981) to
reduce the band-width of sparse matrices. We, however, slightly modified their approach
by allowing for different reordering algorithms for the underlying spatial grid. Cholesky
decompositions are efficiently calculated using the routines of the C-library CHOLMOD
(Davis and Hager, 1999). In an analyze step, CHOLMOD automatically determines the
best strategy for the dataset at hand to reorder the voxel-IDs of the regular 3D grid to
gain a smaller bandwidth of sparse precision matrices J'J + X~ or I + ¥;. CHOLMOD
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chooses between the natural ordering, AMD (Amestoy et al., 1996, 2004), COLAMD (Davis
et al., 2004; Davis, 2005), different versions of a nested dissection algorithm (George, 1973)
and—if available—the METIS algorithm (Karypis and Kumar, 1998). For an in-depth
discussion of used reordering strategies see the CHOLMOD user manual. A test on an
exemplary brain imaging dataset has shown that CHOLMOD finds permutations leading
to smaller factor bandwidths than the Cuthill-McKee algorithm. The analyze step for
determining the permutation is done once prior to MCMC iterations and thus, all Cholesky
decompositions. The reordering, i.e. index permutation, is repeated in every iteration,
but with negligible time demand. The most time-consuming step in our procedure is the
calculation of Cholesky factors of permuted matrices. Generally, updating large random
tields in one block constitutes the most time-consuming step in the fmrieeg MCMC

procedure.

5.2.3 Software Design

Several conceptual requirements were imposed for implementing the C++ fmrieeg al-
gorithm. These include a data-independent, easily extensible implementation with a
comprehensible structure. To meet this needs, an object-oriented design was chosen, which
is visualized by the UML diagram in Figure 5.4. A class diagram usually includes the
classes with their attributes and methods. For sake of a condensed presentation, these
features are omitted in the below figure as well as the relationships to external library
classes—except MTRand, which is the Mersenne Twister class for generating random
numbers (Matsumoto and Nishimura, 1998). Three sorts of class relationships are visual-
ized: (1) Every arrow joins the derived class with its base class (e.g. st imCanonicalBF
is derived from st imBF), (2) arrows with open diamonds indicate weak aggregation (e.g.
an instance of XSt imulus contains an ScanInfo, StimulusInfo and St imBF object),
(3) dashed arrows indicate a directed dependency between classes (e.g. an ParamsMIsing
object knows about the DiagnosticsMIsing object but not vice versa). Abstract classes
are printed in italics. For a more detailed introduction on UML, the interested reader is
referred to Kecher (2009).

The software architecture reflects the main two hierarchies of the fmrieeg model. On
the one hand, there is the fMRI predictor stage. On the other hand, there is the Bayesian
activation detection stage with the latent probit resp. Ising model implementation.

The integral part of the fMRI regression stage is the calculation of the fMRI design matrix,
which contains a baseline, (optional) confounders and stimulus regressors (cf. Chapter 2).
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This is reflected by the three classes XBaseline, XConfounder and XStimulus. An
instance of each of these three classes is (can be) contained in an XDesign object, which
combines them to one design matrix. Whereas it is optional to include the XConfounder
object (which is instantiated by reading a confounder matrix from file), the XBaseline

object contains a matrix with at least one basis function modeling the intercept.

The Xstimulus class provides means for calculating the stimulus regressors of an event-
related experimental paradigm. For this, the user has to specify information about the
scanning procedure (ScanInfo), about the experimental setup (St imulusInfo) and the
requested basis functions (St imBF). To incorporate different basis function types, the
class St imBF is realized as an abstract class that cannot be instantiated but provides the
prototype for a virtual bfvValue () function calculating basis function values for a given
peristimulus time. This function is then implemented by concrete St imBF descendants
(classes St imCanonicalBF and St imGammaBF). Extensions to other basis function types
can thus be easily incorporated into the implementation by adding new descendant classes.
Classes for storing, reading and manipulating data objects are provided by classes
EEGData and YData. The latter provides access to the fMRI data and includes masking
routines restricting the program’s internal access to a requested subgroup of voxels. Upon
the definition of the YData class, neighborhood information of the voxel graph is gen-
erated and stored in an object of class GraphMatrix, which can be used to calculate a
sparse Laplacian matrix (class PenaltyMatrix).

Having defined all classes with information needed for executing the fmrieeg update
schemes, the model classes can be defined. Again, for easy extensibility we define an
abstract model class Params which provides an interface to a general MCMC algorithm
(implemented in class MCMC). Descendants of Params implement an updateParams ()
function embedding model-specific MCMC update functions. Optionally, an object from
class Diagnostic with concrete, model-specific realizations can be generated to store

diagnostics for requested model runs.

5.3 Technical notes

In this section, we provide additional information on details that are of interest for users
not being familiar with the used data format and for users seeing the need to improve
the run-time of the algorithm. For this, we give a short introduction on the NIfTI-1 image
data format in Section 5.3.1. Before advice is given on controlling speed-relevant factors in

Section 5.3.3, we point out the dependencies on external C++ libraries in Section 5.3.2.
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5.3.1 Image data format

The NIfTI-1 format (http://nifti.nimh.nih.gov/) is widely used in the functional
neuroimaging field. Popular software packages (AFNI, BrainVoyager, FSL, SPM) agreed
to read and write NIfTI-1 files and provide utilities for this since the end of 2004. Before
fMRI data is analyzed via the fmrieeg-algorithm, the data is generally preprocessed (see
Chapter 7.1 for an example) using one of these software packages and will thus be available
in the NIfTI-1 format. Hence, we decided to incorporate data management routines from
the NIfTI-1 C library to read and write image data with the fmrieeg package. For users
unfamiliar with this data format, the following notes may be helpful.

The NIfTI-1 file format extends the ANALYZE™.-7.5 file format to incorporate features a
task force of functional imaging software experts agreed on. This task force (Data Format
Working Group, DFWG) was commissioned to find a technical solution to the problem of
multiple data formats used in fMRI research and created the NIfT1-1 definition as unifying
tile format. The NIfTI-1 C library is made available by the DFWG on the above given
website to provide utilities for working with the NIfTI-1 format.

A NIfTI-1 file is a binary data format consisting of a 348 byte header followed by im-
age data stored in an one-dimensional array. The header comprises fields (variables)
describing the structure of the subsequent data (cf. http://nifti.nimh.nih.gov/
nifti-1/documentation/niftilfields) including e.g. the dimension of the data
and the datatype. A NIfTI-1 file can be available as a single file (file ending .nii) or as an
.hdr/ . img file pair where the data of the 348 byte header and the image data are stored
separately ina .hdr and . img file, respectively. For the fmrieeg software it is assumed
that the 4D fMRI data is available as a single .nii file to simplify reading. Tools for
aggregating a time series of single images into one .nii file are for example available by
an installation of FSL (Smith et al., 2004). We recommend to use the NIfTI-1 file format as
well for the EEG data map and the (optional) map containing an analyzing mask—instead
of a text-file with row-wise vector entries, which also can be read. To the text-file no extra
information, e.g. about the storage order of voxels in the data array, can be attached. If
this information about image files is missing, it cannot be ascertained that all image maps
intended to be used for analysis are compatible with each other—which constitutes the
basis for all data fusion software. Besides the storage order, for instance, image dimension

and voxel size must match.

A convenient interface to the NIfTI-1 C library in R is provided by the package Rniftilib.

After reading a NIfTI-1 image, the data can easily be accessed via the R-specific array


http://nifti.nimh.nih.gov/
http://nifti.nimh.nih.gov/nifti-1/documentation/nifti1fields
http://nifti.nimh.nih.gov/nifti-1/documentation/nifti1fields
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subsetting.

5.3.2 External dependencies

The liberal license of several external libraries used within the fmrieeg code allows us
to include them into our software package. For details see the license files distributed
with the Rfmrieeg package. We decided to include SuiteSparse sublibraries (CHOLMOD,
COLAMD and AMD), FLENS and the NIfTI-1 C library into the package as well as a
Mersenne Twister random number generator (Matsumoto and Nishimura, 1998). Linear
algebra libraries BLAS and LAPACK are not distributed with our package for their general
availability, large size and customizability to system-specific conditions.

Both the R-package Rfmrieeqg and the CfmrieegMain program (contained in folder src
of the Rfmrieeg package) automatically compile these libraries and include needed code
sections when being build.

If a user prefers individual installations of external libraries, these can be included into the
CfmrieegMain program. For this, we provide a dedicated makefile, where ‘include” di-
rectories and library paths of favored libraries can be specified. This makefile can be found
in folder src\fmrieegDP when CfmrieegMain should work with double-precision
routines (the default). Alternatively the makefile in src\fmrieeg can be adapted and
used to build CfmrieegMain with single-precision routines. The compatibility of other

versions than otherwise automatically included libraries, however, cannot be ensured.

The inclusion of external libraries is sensible in some cases. These cases are discussed
in the following section—as well as difficulties in incorporating external libraries in an

R-package installation.

5.3.3 Influences on the running time

There were several decisions to be made during the process of software development
that have influenced the runtime performance of the fmrieeg C++ algorithm. As noted
above, high diligence was put into using efficient linear algebra routines building on
BLAS and LAPACK. Additionally, when installing the software the user can customize the
compilation and installing process to some extend to increase the runtime performance of

the algorithm even more. Customizing, however, can only be done within the scope of
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the given software application framework. There are less options when configuring the
R-package installation. Hence, in the following, we differentiate between the R-package
and binary program building.

Modifying the building process of CfmrieegMain

The building process of the CfmrieegMain program can be modified at two stages:
Changes can be applied to the building configuration of (A) the self-contained package
of automatically built sublibraries and of (B) a separate fmrieeq library compilation
with links to already installed external libraries. For (A) configurations can be changed
by modifying the makefile ‘makefileCpp” contained in directory src of the R-package.
For (B) the makefile ‘makefileCpp” contained in the fmrieegDP resp. fmrieeg subfolder
can be adapted (depending on whether the single- or double precision library should be
compiled).

In the following, we discuss three options to increase the runtime performance of
CfmrieegMain: (1) the use of alternative BLAS/LAPACK library installations; (2) the
choice between a single- or double-precision version of fmrieeg; (3) usage of own in-
stallations of external libraries. Modifications in form of (1) and (2) can be accomplished
within the compilation process of the self-contained package (case (A)). Thus, we primarily
focus on realizing changes that can be made to (A). In contrast to this, full flexibility,
e.g. in the choice of external library installations, can only be handled by case (B). This,
however, requires that the user knows how to compile external libraries on her/his own.
Because of this, we only comment very briefly on incorporating a specific external library
implementing the METIS algorithm (see below).

An optimized BLAS/LAPACK library increases the speed of the fmrieeg algorithm in
any case. For high performance, we recommend to install an optimized native BLAS
implementation like ATLAS (Whaley and Petitet, 2005) or GotoBLAS (Goto and Van De
Geijn, 2008), which also include optimized LAPACK routines. Note that GotoBLAS must be
compiled in the single-threaded version to not interfere with CHOLMOD routines. To link
against an optimized library, adjust the MY_BLASLAPACK_LIBS statement in the makefile
‘makefileCpp’ contained in folder src of the R-package. The alternative BLAS/LAPACK
versions can then simply be incorporated in the building of CfmrieegMain. Acceleration,
generally, depends on the size of the image data. For a whole-brain analysis, we expect a

substantial decrease in running time. For our installation, we linked the CfmrieegMain
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program to the GotoBLAS library and achieved an acceleration of factor 4 in a brain image
analysis of an fMRI time series with 27 257 voxels.

The fmrieeg algorithm originally has been implemented using single-precision variables
(except for code sections where a higher accuracy is needed for specific calculations).
Reasons for this were threefold: We decided to use float variables on the basis that
image data at hand did not need high precision data formats for being available as short
integers. Hence, on the one hand, float variables offered the advantage of saving working
memory and, on the other hand, running time potentially could be decreased. Acceleration,
however, could not be observed on a Quad-Core AMD Opteron(tm) Processor 8384 (64 bit
system). Nevertheless, the user might revert to the single-precision library when working
memory is limited or another platform promises an increase in speed when processing
floats instead of doubles. The single precision CfmrieegMain program can be compile
by setting configurations in the makefile ‘makefileCpp” provided in directory src of the
R-package alike (see description contained).

A further factor that might influence running time is the inclusion of the METIS C-library
(Karypis and Kumar, 1998). The METIS algorithm is capable of calculating an advan-
tageous permutation to reduce the bandwidth of sparse Laplacian matrices used in the
time-consuming update of large GMRF maps as described in Section 5.2.2. Depending
on the voxel grid at hand, the METIS algorithm can increase the speed of the fmrieeg
algorithm. Because of its license, the METIS C-library is neither distributed with the
SuiteSparse library, which includes CHOLMOD, nor with our self-contained package,
which is used to build CfmrieegMain. Therefore, an individual installation of the
SuiteSparse library may be desired to incorporate the METIS C-library routines. To
revert to the METIS algorithm, the library must be installed on your platform (METIS is
availableathttp://glaros.dtc.umn.edu/gkhome/metis/metis/overview)and
SuiteSparse has to be recompiled to find the METIS library (for more information on
this, see http://www.cise.ufl.edu/research/sparse/SuiteSparse/). To link
against external libraries adapt the makefile ‘makefileCpp” in the fmrieegor fmrieegDP
subfolder of the R-package folder src (depending on whether the single- or double preci-
sion library should be compiled). Adjust the METIS_LPATH (METIS_LIB) and SUITES-
PARSE_DIR statements within the makefile to link against METIS and an own SuiteSparse

installation.


http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://www.cise.ufl.edu/research/sparse/SuiteSparse/
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Changing installation settings within R

It must be ensured that installation of R-packages work on both windows and unix sys-
tems. Although compilation of package-specific source code can be configured using a
‘MAKEVARS’ (‘MAKEVARS.win’") makefile included in folder src, the standard instal-
lation process of an R-package must be accomplishable with the software components
provided by the R-package and a standard R installation. Especially, inclusion of external
libraries is problematic, because their presence cannot generally be assumed. An How-To
on installing general C/C++ libraries on a windows system and including them in an
R-package installation process is beyond the scope of this introduction, hence, we give

some advice on including external libraries on a unix system.

As noted in the preceding section there may be reasons to use BLAS and LAPACK libraries
not included by default. Foremost, the inclusion of an optimized BLAS is desirable, but the
user might also want to include a library providing single-precision routines. An installa-
tion of the software environment R makes a BLAS and LAPACK library available. These
libraries provide double-precision routines only, so that the single-precision fmrieeg
library cannot be used by default. If another BLAS/LAPACK library should be used, we

recommend to proceed as follows.

We assume that an alternative BLAS/LAPACK library (like ATLAS or GotoBLAS) is in-
stalled. If one of these should be used within the R-package, it must be ensured that
the whole R environment uses this library as well to avoid conflicts. There are different
ways of incorporating a shared BLAS library. Probably the most easy one is to sym-
link a dynamic BLAS library to ‘R_HOME/lib/libRblas.so” as described in the R Instal-
lation and Administration-guide (available at http://cran.r-project.org/doc/
manuals/R-admin.pdf). Accordingly, the library containing LAPACK routines must
be symlinked to ‘R_HOME/lib/libRlapack.so’. If an R-package with BLAS/LAPACK rou-
tines is now installed within this modified R version, it now uses routines of the specified

alternative library /libraries.

If single-precision routines should be used or the external BLAS/LAPACK library is called
by a cblas interface, corresponding ‘"MAKEVARS’ statements of the Rfmrieeg package
have to be adjusted as described there.

External libraries like METIS and an accordingly recompiled SuiteSparse can be included
by changing the ' MAKEVARS’ (‘(MAKEVARS.win’) file to include corresponding ‘include’-
paths and linking statements. Some changes to the present form of the ‘MAKEVARS” have
to be applied that are not provided by us, but can be accomplished by the user.


http://cran.r-project.org/doc/manuals/R-admin.pdf
http://cran.r-project.org/doc/manuals/R-admin.pdf

6 Simulation studies

Reasons for conducting the studies in this chapter are threefold: First, we want to base
model building decisions upon the results of data arising under controlled conditions.
Second, uninformed fMRI activation detection schemes should be compared to algorithms
found in the literature to assess their basic performance. Third, promising EEG-enhanced
detection schemes should be compared to uninformed schemes to assess whether our
models are generally capable of increasing sensitivity by the use of spatial EEG informa-
tion. Model building decisions are based on convergency properties and the capability
of yielding sensible estimates for latent fMRI and/or EEG predictor components. Per-
formance is assessed by the power of the different algorithms to detect activated voxels.
Simulation studies are designed in such a way that a true activation map is at hand. Hence,

we quantify performance in terms of sensitivity and specificity.

This chapter is divided into two parts: The first section, Section 6.1, contains simulation
studies based on an artificial simulation design. This section includes an evaluation of
different predictor forms leading to model selection decisions. In Section 6.2, a simulation

study is based on the structure of a given real-world dataset.

6.1 Simulation studies based on artificial data

In this section, simulation setup is based on an artificial simulation design. We control
position, spread and composition of regions of activation or rather non-activation with
each region being very homogenous. In Section 6.1.1, we describe the simulation design
that is used to investigate the performance of models in a controlled setting. Notation and
parameter settings common to all models used in this study are introduced in Section 6.1.2.
In Section 6.1.3, we evaluate different predictor forms of the EEG hierarchy, i.e. the way
EEG information is included in the model. Besides this, the type of spatial prior (i.e. CAR
versus IGMREF prior) and the accelerated version of the CAR algorithm are examined.
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We conclude with a recommendation on which algorithm should be used in further
analyses. In Section 6.1.4, we compare the performance of our proposed models based
solely on fMRI (so-called null models) to competing activation detection methods. Finally,
in Section 6.1.5, we evaluate whether the recommended combined fMRI-EEG algorithms
have increased sensitivity compared to their corresponding null models. Performance of

different algorithms is then evaluated at different noise levels.

6.1.1 Design for generating an artificial dataset

A complete dataset for our combined fMRI-EEG model consists of a 4D fMRI dataset and a
3D EEG dataset, which both need to be generated. We will proceed by first setting up EEG
predictor components including the EEG map. Based on the according predictor map, a

binary activation map is derived which is—in turn—the basis for the generation of the
fMRI dataset.

We construct a dataset with five brain layers of dimension 47 x 56. A binary mask from a
real-world brain dataset is used to fill only voxels within the shape of a human head.

First, we calculate the predictor maps of the latent probit stage of the combined fMRI-EEG
model:

i :f0(2)+f(Jl) :Oéoﬂ'—i—CkiJi, 9, = 1,...,N
&S n=op+Ja

where oy and o are the vectorized parameter maps of spatially-varying coefficients and J

is the diagonal matrix of voxelwise EEG measurements as in Chapter 3.

In our design, we differentiate between four different kinds of activated regions and center
them in layer 3. The regions differ in the combination of ay-, a- and J-values showing
activation. We assumed that activation in « is only present if activation in J is present.
See Table 6.1 for a listing of the considered activation constellations and Figure 6.1 for
a visualization of these. An activated region is represented as the peak density values
of a three-dimensional multivariate normal density function with centers given by z, y
and z coordinates in Table 6.1. The following variance-covariance matrix is used for all
multivariate normal distributions

12 0 0
Y= 0 12 0
0 0 2
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Region oy J a = y =z
Ry 0 1 0 15 35 3
Ry 1 0 0 30 35 3
R3 0 1 1 15 20 3
R, 1 1 1 30 20 3

Table 6.1: Simulation design: The binary indicators in columns ay, J and «a indicate
whether activation, i.e. an area of positive values, is present in region 1 to 4. The regions
are centered in layer 3 with row and column coordinates given in x and y.

R210€0
R3:Joc

Figure 6.1: Overview of experimentally varied activation regions and selected voxels for
diagnostics (labeled as red squares).

For calculating the aiy-map, two separate multivariate normal density maps corresponding
to Ry and R, are calculated. The ayy-map is then composed as the voxelwise maximum of
these two maps. The resulting map is normalized by its maximal value and multiplied
by ©(0.975) to ensure that voxels in this region are set as active in the true activation map
below. To test edge-preserving properties of algorithms, the multivariate normal density
values are truncated at ®!(0.8722) = 1.136852, which is later used as a threshold for
activation classification.

The a-map is calculated in a similar way by setting up separate multivariate normal
density maps for region R3 and R,. The whole a-map is then composed as the voxelwise
maximum of the two maps. After this the a-map is normalized to a maximal absolute
value of ©(0.975) and truncated like the ap-map.
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The EEG map J is again realized by the voxelwise maxima of multivariate normal densities
of EEG activated areas (R, R3 and R4). The J-map is also normalized to a maximal value of
$(0.975), but not truncated for the EEG source construction solutions being very smooth.

Having set all predictor components of the EEG stage, we calculate n = o + Ja and
threshold the resulting map with ®~!(0.8722) = 1.136852 to derive a binary activation

map, which is denoted as the true activation map ~* in the following simulation studies.

The a-, a-, J-maps, the corresponding predictor map of the latent probit stage and the
derived true activation map «* are visualized in Figure 6.2.

The fMRI dataset is calculated as follows. Recall, the fMRI voxel time series y; ;,t = 1,...,T
of voxel i is decomposed into

yi,t = fbase(ia t) + fcon(ia t) + fstim(i7 t) + ei,ta t= 17 ce. 7T7
which can be linearized and written as multiple regression model (cf. Chapter 2)

yi=XB;+ €.

We select y;,,..+,t =1,...,T,i.e. the voxel time series of voxel i,,,, of a given real-world
dataset with maximal likelihood ratio test statistic of the mass-voxelwise tests Hy; :
fstim(i,t) =0V t,i=1,..., N. This data trajectory stems from an additional female subject
who underwent a run of the same experimental procedure as described in Chapter 7, i.e.
an oddball experiment with 60 odd and 540 even stimuli. The total duration of this session,

however, was slightly longer: The resulting fMRI dataset consists of 7" = 354 scans.
The new dataset is generated by
yi=XB+e€, i=1,...,N

where 3 = E(B;|y = ~v*,y) = (X*X*)"'X*y, ... is constructed as the posterior mean of a
model with activation map ~*. The matrix X* = X(+/) is thereby the full design matrix if
7 = 1 and it is the design matrix without the stimulus regressor component if 7; = 0. The
error term € is a realization from N (0, 02" 1) with 0 = E(02|y = ~*,y) = S;(7}) /(T — 2)
where S;(V}) =¥, Vi — Vi X*(X*X*)'X"y;,.... To investigate effects of increased

2%

- . - 2 2 2 2 2 2
noise, we consider noise levels 0", 207, 40", 60;"", 80;"", 100, ™, 120;
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9009 ®
- 90000
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99000

Figure 6.2: Generated maps of the artificial data simulation set up (EEG hierarchy): EEG-
(1st row), effect- (2nd, 3rd row) and predictor maps (4th row). In row five, the resulting
activation map is plotted. Figure columns 1-5 represent brain layers 1-5.
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6.1.2 Notation and common model settings

For our simulation studies, we consider both CAR prior models and IGMRF prior models.
For the model with CAR prior, we use the form with global updates of spatially-varying
effects from Chapter 3 (denoted as gCAR) as well as the fast algorithm from Chapter 4
(denoted as f{CAR). The model with IGMREF prior is denoted as iMRF. It relies exclusively

on simultaneous map updates of map coefficients—as described in Chapter 3.

We use the notation gCAR1-gCARS5 to denote the gCAR models with predictor 1 to 5 (cf.
Table 3.1). The same applies analogously to the f{CAR model and iMRF model: Model
names fCAR1-fCARS5 denote the fCAR models with predictor 1 to 5. Model names iMRF1-
iMRF5 denote the iMRF models with predictor 1 to 5.

For all models, we use the canonical HRF with three basis functions to model odd stimulus
contribution to the fMRI predictor. Regressors for modeling the even stimulus are not
included for introducing collinearity issues. We include the DCT basis set implementing
regressors for a highpass filter of 128s and a set of movement parameters and a global signal
as confounders. This confounder set has been used for analyzing the real-world dataset,
which serves as the prototype for this artificial dataset. Details about the calculation of
these regressors can be found in Chapter 2.

In case of the CAR prior, the prior mean of the spatial dependency parameter 72 (and/or
73) is set to 0 and its prior variance is chosen to be rather uninformative with value 25. In
a testing phase of the gCAR and fCAR algorithms, we have found that convergency of
MCMC trajectories is sensitive to both the choice of £ (§§) hyperparameters, i.e. inverse
gamma shape and scale parameters of respective priors, and 72 (7§) hyperparameters, i.e.
proposal variance and starting value. Hyperparameters of the algorithm are chosen in
such a way that convergency to the equilibrium distribution is acceptable within 1000
iterations (burnin). Convergency is assessed by visual inspection of trace plots and
corresponding diagnostic tools. For variance parameters £?, we use an inverse gamma
prior with shape 227 and scale 1017. This corresponds to an inverse gamma mean of 4.5
and a variance of 0.09. For &3, we use an inverse gamma prior with shape 452 and scale
4 059. This corresponds to an inverse gamma mean of 9 and a variance of 0.18. Suitable
hyperparameters for the spatial dependency parameter 72 and 7§ differ between fCAR
and gCAR. In the gCAR model, we use the following values. For 72, we found a proposal
variance of 0.25 and a starting parameter of 2 to be useful. For 73, we chose a proposal
variance of 3 and a starting parameter of 25. Note that for gCAR4, these values had slightly

to be adapted to yield stationarity. In the fCAR model, we use for 72 a starting parameter



6.1 Simulation studies based on artificial data 117

of 0.05 and a proposal variance of 0.02. For 77, we specify a starting parameter of 5 and a
proposal variance of 0.1.

In case of the IGMREF prior, according IGMRF variance parameters follow an inverse
gamma distribution with shape 204.5 and scale 915.75. This corresponds to an inverse
gamma mean of 4.5 and variance 0.1. In a testing phase of the iMRF algorithm, these
parameter values led to acceptable sample trajectories showing a tolerably stationary
behavior.

If included in the model (either in gCAR, f{CAR or iMRF), global effect parameters have
prior mean zero and a variance parameter that follows an inverse gamma distribution
with shape parameter 3 and scale parameter 1 which corresponds to inverse gamma mean

0.5 and variance 0.25.

The neighborhood, on which the random fields are based on, are defined upon the next 6

(three-dimensional) voxel neighbors.

For each run, we use 6 000 MCMC iterations including a burnin phase of 1000 iterations.
To remove strong autocorrelations, we thin out resulting parameter trajectories with a

stepping of 5.

6.1.3 Evaluation of different EEG predictor forms

The prior probability of each voxel being activated is linked to the EEG measurements
via a probit link, p(y; = 1|n;) = ®(n;),7 = 1,..., N. The predictor contains an intercept
term plus an EEG effect, i.e. n; = fo(i) + f(J;). In Table 3.1, all predictor forms of interest
are listed. We assume that at least one of the two components f(i) or f(J;) contains a
spatially-varying coefficient for adapting to local brain response. If an IGMRF prior is
used for a local effect, the according global effect is also included in the model. For the
model with CAR priors, it suffices to include either a global or local effect. See Section 3.3

for a detailed discussion of predictor types and prior assumptions.

We conduct the following study to determine which predictor form is most suitable for
EEG-informed fMRI activation detection. For this, we run both the CAR prior models
(global and fast version) and IGMREF prior models with all possible predictor forms, i.e.
we apply gCAR1-gCAR5, fCAR1-fCARS and iMRF1-iMRF5 algorithms. Evaluation is then
based upon several criterions. We examine convergency properties, the ability to produce
reasonable probit effect estimates, and their sensitivity to detect activation. The figures

used in this section to display probit effect estimates comprise the following contents:
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Column  Expression Description

1 fo(i) = ( folé) Intercept map estimate

2 f(1) = (f(J) EEG effect map estimate

3 = ( fo@d)+ f (JZ-)) Predictor map estimate

4 7= (p(v: =1|0,y)) Posterior activation probability map estimate
5 ¥=0#R:=1) Activation map estimate (*)

(*) 4 is calculated by binarizing 7 with threshold 0.8722

We restrict simulation runs to an artificial dataset with medium noise, i.e. error noise €;
is generated from AN (0, 607*T). Figure 6.3 depicts the map with voxelwise log-likelihood
ratio (LR) statistic values for testing whether the fMRI stimulus component is 0 in the fMRI
dataset at hand. This map does not depend on the EEG probit stage and is, hence, the

same for all models. It depicts the mere fMRI contribution to activation.

Convergency behavior

For determining whether the MCMC algorithms have converged, we look at the trajectories
of global parameters and the local parameter trajectories of 20 selected voxels. These
selected voxels have been chosen to lie in the center and on the margin of activation
regions and in non-activated areas—which include the brain margin. See Figure 6.1 for
the position of selected brain voxels in the medium brain layer. Exemplary trace plots and
diagnostics for the gCAR5 model are shown in Figure 6.4. Diagnostics of other model runs
can be provided upon request.

After an initial search for suitable hyperparameters, the MCMC procedure did hardly show
any convergency problems for f{CAR. Though global parameter trajectories of variance and
spatial dependency parameters exhibit some autocorrelations, the mean level of posteriori
distributions seems to be well identified.

Stronger mixing problems arise in both model types with global updates, the gCAR
and iMRF models. The gCAR models, however, were more informative concerning
possible reasons for convergency problems. Priors of the gCAR and iMRF models rely on
different variance-covariance matrix forms. Thereby the CAR prior relies on an additional
spatial dependency parameter 72 (resp. 73). After inspection of convergency diagnostics
of the gCAR models, we conclude that identifying the level of spatial dependency is
problematic for all predictor types, whereas acceptable sample trajectories are achieved

for their variance parameters £? (resp. &7). Spatial dependency trajectories exhibit strong
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Figure 6.3: This map depicts voxelwise log(LR) statistic values for testing whether the fMRI
stimulus component is 0. These indicate how much activation information is contained
in an fMRI signal time series of a voxel. The log(LR)-map of the central brain layer is
depicted, i.e. layer 3.

autocorrelations, which are even detectable by visual inspection. The identification of a
mean level, however, seems to work to some extent, i.e. trajectories do not diverge, but

samples fluctuate around approximately the same level.

The iMRF variance-covariance parameter & (resp. £7) subsumes both degree of variance
and spatial dependency. Hence, we cannot differentiate between mixing problems in the
identification of variance or spatial dependency parameters. Additionally, the centering of
spatial-varying effects provides trajectories of global intercept and EEG effect. Surprisingly,
mixing issues appear in these global effect trajectories as well. Generally, convergency
problems are reflected in occasional departures from a sample mean and higher autocorre-
lations. In iMRF2, non-stationary behavior of global parameters is reflected in iMRF field
samples. The strongest non-stationary behavior is detected in the model with predictor
4 (iMRF4): Especially iMRF4 variance parameter {2 and the global parameters ag show
strong trends. Like in the iMRF2 run, this time non-convergency of global parameters is

reflected in the remaining parameter trajectories of the iMRF parameter fields. Conver-
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Figure 6.4: Trace plots and corresponding autocorrelation functions of global parameter
trajectories of the gCAR5 model.
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gency of sample trajectories is improved considerably if both components are allowed to
vary spatially with predictor 5 (iMRF5). In summary, we observe that especially the iMRF
algorithms have difficulties to identify either the global effect levels and/or the magnitude

of variation and spatial dependency within effect maps.

For both the gCAR and iMRF algorithm, it is not out of question whether hyperparameter
constellations can be found that improve convergency. However, search for good parame-
ter values is tedious and must be restarted for every new dataset. To evaluate the influence
of convergency problems of variance-covariance parameters on parameters of interest, i.e.
activation classification, we conducted a robustness study. The results of this study can be
found in Appendix B. The main conclusion from this study is that even strong variations
in variance parameter values lead to nearly negligible changes in activation maps. Hence,
we consider variance-covariance parameters as nuisance and do not try any further to

improve their convergency behavior.

Influence of predictor forms in the gCAR model

In Figure 6.5, the results of gCAR models are shown for brain layer 3. Corresponding
activation maps of all models are compared to the underlying true activation map from
the simulation design in Figure 6.6. Based on the assumption that gCARS5 contains the full
model, we compare its posterior activation probabilities with the results of the remaining
models via difference maps in Figure 6.7. Sensitivity and specificity estimates are presented
in Table 6.2.

We found that estimates for gCAR1 contain a negative estimate for the global intercept,
thus, reducing the influence of non-activated regions. Based on its parametrization, the
EEG part of the predictor is 0 when EEG measurements are zero. We observe that EEG
effects are non-zero as soon as EEG measurements are non-zero. That is, in region R;
where no fMRI activation is present, EEG shows a slight negative effect, and in regions
R3 and R4, congruent fMRI activation is mirrored in positive EEG effects. Otherwise,
the local EEG effect is zero. Surprisingly, the activation in R, is mirrored in 7 although
no positive predictor value could be estimated for it. This is likely due to the fact that
posterior activation probability estimates depend on a transformation of fMRI LR values
(cf. Equation (3.17), p. 61), which is able to compensate for this misspecification in the
predictor. Compared to gCARSD, this model obtains smaller activation probability estimates

overall, which leads especially in activation regions to a strong decrease in sensitivity. The
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Figure 6.5: Map estimates of the EEG probit stage calculated by the gCAR algorithms for
brain layer 3 (cf. legend on p. 118).
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gCAR1 - TRUE gCAR2 - TRUE 9gCAR3 - TRUE 9gCAR4 - TRUE gCARS5 - TRUE

Legend: analyzed voxels true positive . false positive . false negative

Figure 6.6: Activation maps of gCAR models in comparison to the true activation map as
used in the simulation design. The maps contain the results of the central brain layer, i.e.
layer 3.
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Figure 6.7: Activation probability map estimates calculated by the gCAR algorithms for
layer 3. In the leftmost plot, ,cars is plotted. The following plots depict the differences in
m-estimation of the remaining models to 7,c.4r5. Higher probability values of the gCAR5
model are marked in shades of blue, lower probability values are marked in shades of red.
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Predictor gCAR fCAR iMRF Predictor gCAR fCAR iMRF
1 0.7356 0.6743 0.7701 1 1.0000 1.0000 1.0000
2 0.8161 0.5824 0.9042 2 1.0000 0.9998 1.0000
3 0.8046 0.8544 0.8314 3 1.0000 0.9998 1.0000
4 0.8582 0.8544 0.8544 4 1.0000 1.0000 1.0000
5 0.8276 0.8582 0.9080 5 1.0000 0.9997 1.0000
(a) Sensitivity. (b) Specificity.

Table 6.2: Influence of EEG predictor forms on sensitivity and specificity. Note that fCAR
specificity is calculated in relation to the used brain mask. Negligible changes occur if the
cuboid mask is used.

largest negative differences are obtained for R,. Hence, it seems disadvantageous that R,

cannot be recovered by this type of predictor.

Estimates for gCAR2 contain a spatially-varying intercept and a global EEG coefficient.
For the latter, a positive estimate is obtained leading to the desired interpretation that
EEG has a positive effect on fMRI activation. Hence, the global EEG effect can be used to
increase activation probability where positive EEG measurements are present. A global
EEG effect, however, prohibits that the regionally varying relationship between EEG and
fMRI is captured: Region R, gets the same large positive EEG effect as k3 and R4. The
spatially-varying intercept compensates this predictor misspecification to some extent. No
talse positives occur in R;. The sensitivity of gCAR?2 is slightly lower than the sensitivity
of gCARS5 and larger than the ones of gCAR1 and gCAR3. A further advantage compared

to predictor type 1 is that R, is now reflected in the spatial intercept estimate.

Estimates for the gCAR3 model contain only the spatially-varying intercept. The corre-
sponding map estimate reflects the fMRI log(LR) statistic map in Figure 6.3 well. The
missing EEG component does not lead to a substantial decrease in sensitivity compared to
the full model gCARS. But it apparently yields lower activation probability estimates in
regions R3; and R4. We do not want to discuss this phenomenon here. This is postponed to
a general comparison of methods on pp. 135.

Estimates for the gCAR4 model contain only the EEG predictor component. Due to
the parametrization of this model, the predictor cannot decrease the effect to subzero
values (and thus to prior activation probability values below 0.5) in regions with zero
EEG measurements. Only non-zero EEG measurements can be used to adapt probit effect
estimates to the data. We see that 173 and R, are well recovered by the spatially-varying
EEG effect. Good edge-preserving properties of this prior are mirrored in the strong drop

the effect field exhibits on the edge of these activation regions. As desired, R, obtains
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negative effect estimates. Like in the gCAR1 model, region R, cannot be recovered in the
predictor map estimate. Peculiarities of this predictor type can also be seen in the posterior
activation probability map: The brain background obtains higher probability estimates
than gCARS5, which might be an undesirable feature of the missing intercept component
leading possibly to false positives. Activation regions R3; and R, (and also R,, which is
hardly silhouetted against brain background) yield larger posterior probabilities leading
at last to an increased sensitivity compared to gCARS.

In the gCAR5 model both model components are allowed to vary spatially. The spatially-
varying intercept reflects non-activation in the brain background by negative estimates,
but R, is still recovered in the intercept estimate. In region R, where no fMRI activation
is observed, non-activation is supported by a slight negative EEG effect. This even leads
to a drop in the total predictor map below brain background. If activation is present
in EEG and fMRI, the EEG model components obtain a larger effect compared to the
intercept component. Hence, both model components do not contribute equally to the
total predictor map. One might be inclined to interpret the two model components as
follows: The intercept reflects the mere BOLD contribution to activation, whereas the EEG
component reflects effects on activation, which can be traced back to the common source
of fMRI and EEG. This interpretation, however, must be used with caution. Whether this
interpretation is valid has to be corroborated by a specially designed experiment where
both sources can be separated. Whether such a design is realizable is, however, doubtful.
Beyond that, the separation of intercept and EEG component might also be connected with
identification problems of both components. This might be the reason for the decrease in
sensitivity compared to gCAR4. A workaround for possible identification problems of this
type does not exist at the moment.

Influence of predictor forms in the fCAR model

We compare results of the f{CAR model with the gCAR model. In Figure 6.8, the predictor
and activation related result maps of the f{CAR model are plotted. The most prominent
difference between these two figures appears to be the underlying brain mask. Whereas
the gCAR model can be run with various forms of brain masks (like the used head shape),
the fCAR model is based on a cubical brain mask including all brain voxels, which is
applied for accelerating the update of CAR spatial dependency parameters. Thus with
the fCAR model, we also obtain effect estimates for non-brain regions. This, however, has

no effect on activation (probability) map estimates. As can be inferred from voxelwise
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Figure 6.8: Map estimates of the EEG probit stage calculated by the f{CAR algorithms for
brain layer 3 (cf. legend on p. 118).
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Figure 6.9: Activation maps of fCAR models in comparison to corresponding gCAR
activation maps. Separate plots depict differences in classifications for each predictor type
(1-5). The maps contain the results of the central brain layer, i.e. layer 3.
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Figure 6.10: Activation probability map estimates calculated by the f{CAR algorithms in
comparison to corresponding gCAR maps. Separate plots depict the differences in 7r-
estimation for each predictor type (1-5). Higher probability values of the f{CAR model are
marked in shades of red, lower probability values are marked in shades of blue. The maps
contain the results of the central brain layer, i.e. layer 3.
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difference maps of activation probabilities (Figure 6.10), non-brain voxels have activation
probability values of about 0. Activation difference maps between gCAR and f{CAR models
can be found in Figure 6.9.

Pred. Min. 1% Qu. 25% Qu. Median Mean 75% Qu. 99% Qu. Max

1 -0.355 -0.004 0.000 0 -1.618e-03  0.000 0.001 0311
2 -0.994 -0.009 0.000 0 -5.747e-03  0.001 0.027  0.497
3 -0.003  0.000 0.000 0 6.014e-03 0.002 0.064  0.521
4 -0.146  -0.005 0.000 0 5.854e-04 0.001 0.009  0.385
5 -0.204 -0.001 0.000 0 5.112e-03 0.002 0.051  0.567

Table 6.3: Summary of in activation probability difference values between gCAR and fCAR
models

Activation probability differences between gCAR and fCAR models depend on the predic-
tor type. Maximum and minimum difference values per predictor type appear to be large,
but these can be recognized as outliers. Most of the difference values lie in the interval

[—0.01; 0.065] (cf. Table 6.3 for an overview of summary statistics of difference values).

For predictor type 1, only minor differences are obtained for the brain background, but
tCAR1 obtains considerably lower activation probabilities for regions R,, Rs and R,—
which goes along with a drop in sensitivity.

For predictor type 2, {CAR2 obtains a negative global EEG effect estimate leading to the
counterintuitive interpretation that EEG has a negative effect on fMRI activation. In region
R3 and Ry, the spatially-varying intercept cannot compensate for this. Hence, activation
probability values are low and many voxels are falsely classified as non-active. Voxels in
the brain background yield larger activation probabilities than the global model.

Results for predictor types 3, 4 and 5 are similar. For each type, the brain background yields
higher probability values in the f{CAR models than in the gCAR models. This can be seen
as an undesirable property of the fast algorithm that is not able to separate activated and
non-activated regions as well as the global model. Even false positive voxels are obtained.
Within activated regions, we observe the following: f{CAR outperforms gCAR when it
comes to detect active voxels at edges to non-activated regions. Nevertheless, gCAR
appears to be more stable to identify active voxels in the center of activation regions—
where fluctuating effects in the f{CAR model lead to a drop in sensitivity. If calculated over
the whole brain region, f{CAR (with predictor 3, 4, 5) obtains higher sensitivity values than
the corresponding gCAR model. Unfortunately, it seems that using EEG information does

not result in an increase of sensitivity.
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It is not obvious why fCAR and gCAR algorithms yield such different results. After all,
fCAR and gCAR rely on the same probability model. However, differences might be traced
back to differences in variance and spatial dependency parameter estimates (results not
shown). These might be provoked by deviating update schemes and analysis masks. The
fCAR algorithms yield estimates by also averaging over non-brain areas with possibly
lower spatial correlations. This might lead to smaller global estimates for the spatial
dependency parameter, which—in turn—can enhance edge-detection, but interferes with

exploiting information from neighboring voxels.

Influence of predictor forms in the iMRF model

In Figure 6.11, the results of iMRF models are shown for brain layer 3. Sensitivity and
specificity estimates are given in Table 6.2 on p. 124. Activation maps of all iMRF models are
compared to the underlying true activation map from the simulation design in Figure 6.12.
Based on the assumption that iMRF5 contains the full model, we compare its posterior
activation probabilities with the results of the remaining models via difference maps in
Figure 6.13.

At first sight, we notice that predictor map estimates of type 1-4 are very similar to the
estimates of the gCAR model. Effect estimates on edges of regions appear slightly more
blurred than with the gCAR model. That is, the IGMREF prior yields smoother results. This
might have two consequences: Either activated voxels on edges are more easily detected
than in the gCAR model or more false positive voxels are found that lie directly at the
border to activated regions. Concerning the full model, iMRF5 estimates differ slightly
from gCAR5. On the one hand, the spatially-varying EEG effect is based on a larger
variance estimate, so that non-activated regions neighboring activation sites are covered
by the positive EEG effect region. This is partly compensated by the spatially-varying
intercept effect. On the other hand, R, is assigned a positive EEG effect and no negative
effect as in gCARD. The effect size is not as pronounced as in the actual activation regions
Rs and R, and is sufficiently low for not producing false positives. A positive EEG effect
region in R; may indicate that the model tries to transcribe supporting EEG information

into positive effects—which is our intention.

Compared to the gCAR results, the iMRF models obtain higher sensitivity values (except
for predictor type 4). Especially for predictor 2 and 5, a very high sensitivity can be
achieved, which is even larger than for corresponding fCAR models. A comparison
between iMRF5 (resp. iMRF2) and iMRF3 indicates that EEG information adds value to the
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Figure 6.11: Map estimates of the EEG probit stage calculated by the iMRF algorithms for
brain layer 3 (cf. legend on p. 118).
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iMRF1 - TRUE iMRF2 - TRUE iMRF3 - TRUE iMRF4 - TRUE iMRF5 - TRUE

Legend: analyzed voxels true positive . false positive . false negative

Figure 6.12: Activation maps of iMRF models in comparison to the true activation map as
used in the simulation design. The maps contain the results of the central brain layer, i.e.
layer 3.
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Figure 6.13: Activation probability map estimates calculated by the iMRF algorithms for
layer 3. In the leftmost plot, Tivrrs is plotted. The following plots depict the differences in
m-estimation of the remaining models to 7y rr5. Higher probability values of the iMRF5
model are marked in shades of blue, lower probability values are marked in shades of red.
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Figure 6.14: Activation maps of iMRF models in comparison to corresponding gCAR
activation maps. Separate plots depict differences in classifications for each predictor type
(1-5). The maps contain the results of the central brain layer, i.e. layer 3.
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Figure 6.15: Activation probability map estimates calculated by the iMRF algorithms in
comparison to corresponding gCAR maps. Separate plots depict the differences in -
estimation for each predictor type (1-5). Higher probability values of the iMRF model are
marked in shades of red, lower probability values are marked in shades of blue. The maps
contain the results of the central brain layer, i.e. layer 3.
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activation detection: The increase in sensitivity by using EEG information is substantial,
i.e. in the order of magnitude of 7%.

Figures 6.14 and 6.15 directly depict the differences between iMRF and gCAR results.
It seems likely that the higher degree of estimated smoothness leads to an increase in
sensitivity in smooth activated regions for the iMRF. At first sight, this seems to be a
desirable feature of the iMRF model. However, smoothness is present by simulation
design in the dataset at hand. The performance of the iMRF model remains to be tested in
settings with rougher activation structures. Enforced smoothness might then lead to an

increase in classification errors.

Summary

In summary, the examination of predictor and spatial prior types yields the following
conclusions. The activation maps are quite insensitive to misspecifications in the probit
predictor stage. Surprisingly, although R, cannot be recovered via predictor 1 and 4,
reasonable posterior activation probability estimates evolve because the fMRI LR statistic
share in the posterior 7 distribution compensates for this. That is, posterior activation prob-
ability estimates also depend on a transformation of fMRI LR values (cf. Equation (3.17),
p. 61). This leads to appropriately high activation probabilities for voxels showing fMRI
but no EEG activation.

However, the exact form of the predictor does matter. Differences in sensitivity are
observed for the examined predictor types with predictor 5 being the most (or second
most) sensitive one. Virtually no differences are obtained in specificity values, which might
be traced back to the simulation design where brain background is generated with higher
white noise.

For the following analyses, we prefer to use the full predictor 5 with both spatially-varying
components. The full predictor is able to recover EEG influence on the one hand and
fMRI influence on the other hand. Particularly, the spatially-varying intercept makes the
fMRI LR contribution visible in probit effect estimates. It is able to capture fMRI activation
where zero EEG measurements are observed (as in R,). The brain background is identified
by negative estimates downweighting prior activation probabilities in these regions. The
spatially-varying EEG coefficient adapts to local brain response to EEG. If there is no fMRI
activation in spite of non-zero EEG measurements, the according EEG effect is reduced
(in the iMRF case) or estimated to be zero or subzero (in the gCAR case). In regions with

congruent EEG and fMRI activation, we recover a positive EEG effect.
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Even though the gCAR4 model obtains superior performance compared to gCAR5, we
do not recommend its use. The gCAR4 algorithms seems to have worse convergency
properties than the other predictor types and its parametrization yields unreasonable
probit effect estimates. However, it might be interesting to examine its performance in a

real-world application.

Alternatively, an EEG-enhanced fMRI detection model can be based on predictor type 2. A
positive EEG effect then tries to upweight all regions with positive EEG measurements.
Predictor type 2 can, hence, be interpreted as a model implementing a less flexible prior:
Whether reasonable or not, the prior probability for activation is enforced to be higher
in regions with positive EEG measurements. Considered from this point of view, this is
the direct way of substituting (non-adaptive) expert knowledge with EEG information.
However, if local EEG information is non-congruent to fMRI information, the spatially-
varying intercept estimate can compensate for this in this region to some extent. The
predictor type 2 models as used here, however, carry one risk: If a negative EEG effect
is recovered (e.g. because of the EEG and fMRI activation is mostly not congruent), a
counterintuitive situation evolves leading to the interpretation that EEG has a negative
effect on (fMRI) activation. Hence, introducing a restriction of non-negative global EEG
estimates seems sensible. A model extension for this is derived in Section 3.5.

Based on the results presented in this section, we cannot give a final recommendation
whether gCAR or iMRF models should be preferred. In this simulation study, iMRF models
showed clearly the best performance (including the desired increase in power when EEG
information is used). This, however, can be due to the smooth simulation design where the
iMRF model with its better smoothing properties can be advantageous. Rougher datasets
may require the better edge-preserving properties of the gCAR algorithm.

The comparison between gCAR and fCAR model appears to be difficult. On the one
hand, computation time of the f{CAR algorithm is in fact in an order of magnitude shorter.
Convergency issues are easier to be solved and higher sensitivity estimates are obtained.
On the other hand, results of the f{CAR model appear to be less stable than in the gCAR
model, which might be due to single-site updates of spatial fields. For example, f{CAR2
recovers a negative global EEG effect leading to false positives, brain background is
upweighted and centers of activation regions are not as well recovered as might be desired.
Additionally, in the fCAR algorithm, we cannot retrieve a gain in power when using EEG
information. From this point of view, further evaluation of the f{CAR algorithm is necessary

to determine whether its use in practice is recommendable.
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For the following analyses, we use all three model types: iMRF, gCAR and fCAR. For
an EEG-enhanced activation detection algorithm, we use predictor type 5 models and
the newly developed predictor type 2 models with an global EEG effect that has been

restricted to be non-negative (cf. Section 3.5).

6.1.4 Comparison of different fMRI activation detection algorithms

This part of the simulation study is conducted to assess the comparative performance
of the proposed Bayesian activation detection algorithms (with both IGMRF and CAR
priors) without EEG information. Existing methods provide no means of using additional
information to enhance activation detection—so far. Hence, for fairness we compare only
our proposed predictor type 3 models, i.e. gCAR3, f{CAR3, iMRF3, with the performance of
competing activation detection software. Performance relates to the power of the different
algorithms to detect activated voxels and therefore, we quantify performance in terms of

sensitivity and specificity.

We compare our proposed models to the following methods: The Ising model from
Smith et al. (2003) and the widely used classical SPM algorithm (Friston et al., 1995) as
implemented in SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/).

Like our method, the Ising model is a Bayesian activation detection model applying a
Bayesian variable selection approach to determine if stimulus components contribute
to explaining the fMRI signal. Bayesian variable selection approaches were introduced
by Smith and Kohn (1996) and George and McCulloch (1997) for selecting covariates
in linear regression models via i.i.d. indicator priors. To account for spatial structures
these approaches had to be extended. As indicated by its name, the Ising model relies
on an Ising prior to spatially regularize the estimation of a binary field and hence, corre-
sponding activation probabilities—whereas our model uses a probit link to a predictor
with spatially-varying effects regularized by the spatial CAR or IGMREF prior. The Ising
prior is parameterized by two parameters: A spatial dependency parameter ¢, which
models the influence intensity a neighboring voxel has on estimation at a given voxel,
and the—so-called—external field § which is depending on the specified prior probability
of activation. The external field ¢ is usually chosen upon prior believes. It can also be
spatially-varying if spatially-varying information is available, e.g. in form of a gray-matter
probability map. In our artificial dataset no such information exists, so that we decided

to use a global § parameter. In Smith and Fahrmeir (2007), an algorithm was presented
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for estimating the spatial dependency parameter ¢. However, the authors do not provide
software for fitting the model. Therefore, we decided to rely on a simple grid-search to
find optimal values of § and 6 in the simulated dataset of medium noise—where noise
€ is generated from N (0,65, I). We found that sensitivity can arbitrarily be increased
with ¢ becoming larger. Hence, in this simulation study we chose ¢ in such a way (Smith
et al., 2003) that it corresponds to a prior activation probability of 0.04146, which is the
frequency of active voxels in the true activation map of the simulation design (relative to
voxels analyzed). Besides this we found that results are rather insensitive to the choice of
0. Therefore, we set it to a medium level of 0.45, which also has been used in Smith et al.
(2003).

As mentioned above, we chose the classical SPM model for comparing our models to
a widely used classical activation detection algorithm. Activation maps are derived
by thresholding an F-map from the voxelwise statistical F-Tests of HRF effects being
zero. A multiple test correction is applied via the implemented random field theory
(Worsley et al., 1996). Significance level was set to 0.05. For not being directly comparable
(compare Section 3.4.5), we first evaluate the effect of different classification thresholds
on the performance of our models and compare, then, the corresponding activation maps
(differing in their sensitivity level) to classical SPM results on pp. 142.

We analyze seven different datasets differing in the level of noise: af * 202 4oP*, 6o>*

[ [ [
2% 2% 2%
8o;, 100", 1207

Comparison of competing Bayesian activation detection algorithms

In this section, we focus on a comparison of Bayesian activation detection algorithms that
do not rely on external EEG information, i.e. the proposed predictor type 3 models and
the Ising model of Smith et al. (2003). Activation differences to reference model gCAR3
are depicted in Figure 6.16. Activation probability differences to reference model gCAR3
are shown in Figure 6.17. In Table 6.4 sensitivities for the different Bayesian activation

schemes are printed for different classification thresholds.

We foremost base interpretations of activation classifications and, hence, interpretation of
sensitivity and specificity values on a classification threshold of 0.8722 (cf. Section 3.4.5).
Robustness of results with respect to other choices of thresholds are discussed below. For
ease of comparability, we choose gCARS3 as a reference model to highlight differences

between algorithms.



137

6.1 Simulation studies based on artificial data

"€ 19A®[ "9’ ‘Take UTRIq RIFUDD Y} JO SINSII A} UTejuod sdews S ], ‘9SIOU I0LIS JUDIIJJIP 10§
VDS jo dewr uonyeande ay3 03 uostreduwrod Ut sppow 3urs] pue SNIAT ‘S VDJ JO sdewr 90ULIafJIp UOIIRATOY (919 9In3T]

[9POW DU Ul SAIPDR . [SPOW paulwexa Ul AR . 430q Ul 3AIDR

OCt

;99

S|9XON pazAjeue pusba

£HyOb- eHyOb—

£dyOb—
Buis| 44! £4VYO!)



6. Simulation studies

138

"¢ 19K¢] 9T ‘Take]
ureiq [e3uad ) JO SHNsSaI ay} urejuod sdewr sy, ‘pal Jo Sopeys Ul payrew a1e sanfeA Ajiqeqoid 1omof ‘aniq jo sepeys ur
padIeW a1e Ppow (YOS 9y} Jo sanea Aiqeqoid 1oy -€4VOSy 03 sjopowr 3urs] pue CRIAT ‘S VD 9U3 JO UOTIeWSa-L
Ut soouRIdjjTp a3 301dop syo1d urmoroy oy, ‘panord st £4VOSy “o1d 3sourya ay3 U "9SIOU I0LID JUSISHIP 10F £y DS jo dewr
Ayniqeqoid uoneanoe ay3 03 uostredwod ur sppow 3urs] pue RIAL ‘S V¥ Jo sdewr Ljjiqeqord uoneandy :£1°9 a3y

oL S0 00 S0- 0L-

k BN

_———
"..,. |..n“. ..ln .... _ A _
- S . 22¢k ik il
ah. o
o @ :
! ;s !

" St L2201 ’ . 22¢

.. n ’

edy0b—  euy0b- eyyob-  EHVOD
Buis 44! £HVO!

v

:

1
“rl




139

6.1 Simulation studies based on artificial data

"€ I9K%] 9°T ‘T9A®] UTRIq [RIIUD )
jo synsax a3 ureyuod sdewr sy, ‘saarains Ayiqeqord uoneanoe s joxoa aandadsar ayy proysaryy Ayrqeqoid ayj st oy3y
3} 1010D 9y} IY3LIq YT, "'S6'0 PUC 7280 ‘S0 ‘S 0 SploysaIy} 3urpasoxa Ajiqeqoid uorjeande yjim S[oX0A pajeAnde
yuasaxdar sapod 10[0)) sPpow uls] pue SN ‘CAVD ‘v DS 9y 10 sdewr uonyeande yuspuadap proysaryy, :81°9 93]

G6'0 < 22.l80< GL0< G0 < . S|oXOA pazAjeue pusba

- ...,” | | | . N_bw
Buisi S4AHIA! £HVYO) £4vOb
309




140 6. Simulation studies

Whereas sensitivity is 1 for all methods in the lowest noise levels, differences increase
with noise level. The higher the noise level, the worse is the sensitivity of the Ising model
compared to gCAR3. The worse performance of the Ising model can also be inferred
from the posterior activation probability difference maps in Figure 6.17. The Ising model
obtains lower activation probability estimates than the gCAR3 model over the whole brain
region, but especially in activation regions. This might be due to two reasons. First, spatial
dependency parameter ¢ possibly needs to be adjusted in high noise level settings. Second,
our choice of external field parameter § might be suboptimal in this artificial setting. In
real data situations, a more meaningful choice of ¢ (or rather §) might lead to an increase

in sensitivity. The evaluation of this hypothesis is postponed to Section 6.2.

There are slight differences between the iMRF3 and gCAR3 model at medium noise levels:
In runs with 467", 607"

R At SN

801'2 * iMRF3 performs better. In all other runs, sensitivity is
approximately at the same level in both models. Activation probability estimates indicate
that iMRF3 obtains increased values in activation region centers, whereas gCAR3 achieves
higher probabilities at corresponding edges.

The fCARS3 results are substantially different to the gCAR3 results. Like in Section 6.1.3,
fCARS3 generally obtains higher probability estimates in the brain background, which
can be a source of false positives. In our simulation design, only a small decrease in
specificity can be observed, which is likely to be traced back to the peculiarities of our
simulation design. At medium and high noise levels, f{CAR3 yields an astonishing increase
in sensitivity. It outperforms all remaining models in an order of magnitude. Differences
between gCAR3 and fCAR3 models are surprising, because they do not differ in the
underlying probability model, but only in their algorithmic implementation: fCAR3
relies on single-site updates of spatially-varying coefficients and uses a cubical brain
mask for analyses (needed for the fast determinant calculation). We see that posterior
activation probability maps of gCAR3 and fCAR3 hardly differ outside the brain region.
At first sight, this might indicate that not the brain mask, but only single-site updates
are likely to lead to these differences. However, both factors may provoke comparably
small fCAR3 spatial dependency estimates (not shown). On the one hand, the large-scale
spatial correlation structure may not be catched by single-site updates and, on the other
hand, low spatial correlations in non-brain areas might have an diminishing effect on a
spatial dependency parameter that is aggregated over all analyzed voxels. A small spatial
dependency parameter is connected to good edge-preserving properties, but inhibits
advantages going along with higher smoothness. Hence, fCAR3 is capable of capturing
coarse underlying true activations, but also might suffer from noisy effect map estimates.
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05 075 08722 095
o2 11.0000 1.0000 1.0000 1.0000
202 1 1.0000 1.0000 1.0000 1.0000
407% 109962 09962 0.9962 0.9847
607" | 09234 0.8659 0.8046 0.7548
802* | 0.6858 0.5977 0.5479 0.4751
1007* | 0.4943 03831 0.3372 0.2644
1207% | 0.3218 0.2490 0.1954 0.1418
(a) gCAR3
05 075 08722 095
o2 | 1.0000 1.0000 1.0000 1.0000
202 | 1.0000 1.0000 1.0000 1.0000
402* | 1.0000 0.9962 0.9923 0.9847
602" | 09387 09042 0.8544 0.7701
802* | 0.7625 0.6858 0.6245 0.5441
100" | 0.6284 05211 04713 0.3985
1207% | 05057 04253 0.3448 0.2720
(b) f{CAR3
05 075 08722 095
o2 | 1.0000 1.0000 1.0000 1.0000
202 | 1.0000 1.0000 1.0000 1.0000
407% 109962 09962 0.9962 0.9962
60°" | 09387 0.8774 0.8314 0.7739
802 | 07241 0.6360 05862 0.5019
1007* | 0.5134 04100 0.3410 0.2874
1207* | 03257 0.2529 0.1916 0.1379
(c) iMRF3
05 075 08722 095
o2 | 1.0000 1.0000 1.0000 1.0000
202 | 1.0000 1.0000 1.0000 1.0000
407 109962 09923 09808 0.9464
602 | 0.8008 0.7318 0.6705 0.6015
802* | 04866 03908 0.3372 0.2989
100" | 02567 0.1877 0.1494 0.1111
1207* | 01418 0.0881 0.0651 0.0345

(d) Ising

Table 6.4: Sensitivity of algorithms for selected thresholds.
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Specificity is perfect for all methods and noise levels—except for the f{CAR3 algorithm,
which shows a marginal decrease. This is likely to be owed to the simulation design (cf.
Table 6.7 for specificity values of our proposed models; specificity values of the Ising

model are not shown here, but can be provided on request).

For evaluating the robustness of results, we examine changes in activation classification
(Figure 6.18) and corresponding changes in sensitivity (Table 6.4). Clearly more voxels
are classified as active with decreasing probability threshold, but differences between
algorithms are of similar size for most noise levels. Only for high noise, sensitivity
differences of Ising and fCAR3 models compared to gCAR3 decrease with increasing
threshold. Specificity estimates do hardly change: For the fCAR3, model a slight drop in
specificity can be observed for decreasing threshold value, the remaining models retain a
perfect specificity level (results not shown).

Comparison with classical SPM

A comparison of Bayesian activation detection schemes based on posterior activation
probability estimations and classical methods is not as straightforward as in the previous
section, where algorithms rely on both the same inference and detection technique. Despite
the application in Smith et al. (2003) and Smith and Fahrmeir (2007), theoretical consider-
ations yield that the relationship between the classical significance level and a Bayesian
probability threshold—these publications rely on—does not hold (cf. Section 3.4.5). Hence,
we decided to evaluate the robustness of resulting activation maps in relation to several

choices of significance levels (SPM) and probability thresholds (Bayesian procedures).

In Table 6.4, sensitivity estimates of Bayesian algorithms are listed for different probability
thresholds. In Table 6.5, sensitivity estimates of the SPM procedure are listed for selected
significance levels. Corresponding categorical activation maps are depicted in Figure 6.18
(Bayesian) and 6.19 (SPM).

In the following, we compare the sensitivity values of the least conservative significance
level of 0.2 with the most strict probability threshold of the Bayesian activation detection
methods, i.e. 0.95. The fCARS3 algorithm outperforms SPM in any case. The gCAR3 and
iMRF3 methods perform only in very high noise levels worse. At threshold 0.8722, SPM
yields only a better sensitivity value than gCAR3 and iMRF3 at noise level 125;"*. Hence,
we conclude that our proposed Bayesian activation schemes have a superior performance
in most of the cases.



6.1 Simulation studies based on artificial data 143

0.2 0.1 0.05 0.01  0.001
oZ* 1.0000 1.0000 1.0000 1.0000 1.0000

(2

207 1.0000 1.0000 1.0000 1.0000 1.0000

)

407 09732 0.9732 0.9425 0.9004 0.7510

)

602" 0.7241 0.6820 0.6284 0.5249 0.3525

(2

807" 04981 0.4674 0.3946 0.2529 0.1494

)

1007 0.3218 0.2529 0.2261 0.1341 0.0421

()

1207 0.2107 0.1686 0.1341 0.0575 0.0115

(2

Table 6.5: Sensitivity of classical SPM for selected significance levels.

o *
8]
SPM
2, o *
S 1007
2," 2,*
26" 126
Legend: analyzed voxels - <0.2 . <0.1 < 0.05 <0.01 <0.001

Figure 6.19: Significance level dependent activation maps for SPM. Color codes represent
activated voxels which exceed the critical value corresponding to significance level 0.001,
0.01, 0.05, 0.1 and 0.2. The maps contain the results of the central brain layer, i.e. layer 3.
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The conclusions from the comparison to the Ising model is not quite as clear-cut as before.
SPM still inclines to perform better at higher noise levels. For the Ising model lacking an
externally motivated prior information (for determining the external field parameters) in
this artificial data setting, we postpone a comparison between these two methods to a
subsequent part of this thesis.

6.1.5 Evaluation of EEG-enhanced detection schemes

To evaluate whether the proposed models are able to increase sensitivity by using EEG
information, we compare our EEG-enhanced activation detection algorithms with the

corresponding algorithms without EEG information.

For the proposed models, we make use of the results from the previous simulation study
in Section 6.1.3. We use predictor type 3 models as null models, which do not rely on
additional EEG information. Due to its better stability and interpretability, we use predictor
5 to include EEG information. Additionally, we examine predictor type 2 models with a
global EEG effect restricted to be non-negative (cf. Section 3.5), which can be interpreted as
a model with a less flexible EEG-prior. That is, if a voxel has a positive EEG measurement,
activation probability should be forced to be increased—though, the spatially-varying
intercept estimate is able to compensate too large EEG effects when necessary.

We use the same settings as in the preceding sections. We analyze the seven artificial
datasets differing in the level of noise: 0%, 207, 407", 607, 807*, 100", 120"

i 7 7

In Figure 6.20, activation difference maps of gCAR2 and gCARS5 models are plotted in
comparison to the activation map of the null model gCAR3. In Figure 6.21, activation
probability maps of gCAR2 and gCAR5 models are plotted in comparison to the activation
probability maps of gCAR3. Activation difference maps indicate minor differences between
predictor types. In Table 6.6 and Table 6.7, sensitivity and specificity values are printed,
respectively. As can be seen from Table 6.6, sensitivity can only slightly be increased by
using gCAR2 and gCARS5 at medium noise level. Model gCARb5 performs somewhat better
than gCAR2. At high noise level only gCARS has a marginally higher sensitivity than the
other two models—which are on a comparable level. Hence, adding EEG information
to gCAR does hardly yield a gain in power. However, from Figure 6.21, we see that
gCAR2 and gCARS5 in principle do what they are supposed to do: At medium and high
noise level activation probabilities are larger in regions with supporting EEG information.

This increase, however, cannot be observed for all voxels in activation regions Rs; and
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R,—maybe because of the rather good edge-preserving properties of the CAR prior, which
may be able to detect also edges within activation regions produced by high noise. Hence,
the CAR smoothness prior seems not to be able to increase the number of true positives

substantially.

The fCAR2 and fCARS5 models do not yield a gain in sensitivity by using additional EEG
information. As can be seen from Figure 6.22 and Table 6.6, sensitivity values of all three
predictor types are about the same for all noise levels. In contrast to the gCAR models,
not even activation probability estimates are increased in regions with congruent fMRI
and EEG activation (cf. Figure 6.23). Nevertheless, all predictor types are able to yield
surprisingly large sensitivity values at high noise levels. In these cases, f{CAR outperforms
gCAR and iMRF by far.

The iMRF models perform similar to gCAR models at low (0%, 207", 407*) and very high
(1207*) noise level. At medium noise levels (607", 857", 1007*), an impressive gain in
performance can be observed. In these cases, iIMRF2 and iMRF5 have superior performance
compared to all examined models. From Table 6.6, we see that an increase of about 8% in
sensitivity can be achieved by using iMRF5. We note that iMRF2 tends to perform slightly
worse than iMRF5. In spite of this, the f{CAR models outperform the iMRF models at
noise levels 106>* and 120."*. Like for gCAR, we see in Figure 6.25, that the EEG-enhanced
activation scheme works: Activation probability can definitely be increased in regions

with congruent EEG and fMRI activation.

In both gCAR and iMRF models, we see that activation probability estimates in R, are
highly variable at high noise levels. This is due to the higher noise in the fMRI data in this
region. Hence, both model types seem to be less stable to recover activation probability
estimates in these cases. This might also be the case for all runs of the f{CAR model, because

its probability difference maps are also very scattered.

6.1.6 Summary

We pursued different goals with conducting simulation studies based on artificial data.
We were able to evaluate the basic properties of our proposed algorithms in a strictly

controlled setting.

First, we determined which form of predictor in the EEG probit stage is most suitable for

EEG-enhanced activation detection (Section 6.1.3). We recommend to use models with
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predictor type 5, i.e. the predictor with both spatially-varying intercept and spatially-
varying EEG effect. It is the most flexible predictor type recovering regional-specific EEG
influence on the one hand and varying fMRI influence (captured by the intercept) on the
other hand. If necessary, it downweights EEG contribution in regions with non-congruent
fMRI activation.

Alternatively, we recommend to use predictor type 2 models with a non-negatively re-
stricted global EEG effect—where the EEG effect estimate has the same value overall the
brain and does not adapt to regional distinctions. It possesses the ability to increase prior
activation probabilities proportional to the observed EEG measurements as soon as a
reasonable large, positive EEG effect could be retrieved. If necessary, the spatially-varying

intercept can have a region-specific compensating effect to improve the goodness-of-fit.

In Section 6.1.5, we evaluated whether the use of EEG information can increase perfor-
mance of activation detection algorithms. Depending on the algorithm, we obtained the
following results: (1) The sensitivity of the gCAR model can only slightly be increased by
adding EEG information. In either case (wWhether EEG is used or not), gCAR performance
is below the other two models. (2) Performance of the fCAR model is extremely high in
high noise settings and stands out from the performance of remaining models. Though,
incorporating EEG information in fCAR has no effect. (3) In contrast to this, the iMRF
models increases performance substantially in medium noise settings. That is, iMRF5
yields an performance increase of up to 8.8% and iMRF2 still achieves a performance
increase of up to 7.3%. In these cases, iMRF2 and iMRF5 have superior performance
compared to all examined models. Hence, the EEG-enhanced activation scheme works
with the iMRF model. That is, in certain settings, activation probability can substantially
be increased in regions with congruent EEG and fMRI activation leading to increased
sensitivity of the iMRF2 and iMRF5 algorithms.

As a conclusion from this simulation study, we recommend to use the f{CAR3 model in
high noise settings and the iMRF2 /iMRF5 model (with supporting EEG information) in
medium noise settings. This recommendation is supported by results from Section 6.1.4,
where our proposed models outperformed both the Bayesian activation scheme based on

the Ising prior and classical SPM.

Being based on an artificial data setup, performance of our models needs to be evaluated
with real-world data. Various factors—which cannot easily be reproduced in the used
artificial datasets—could affect performance of our models. On the one hand, we are

interested in the effect of less smooth activation structures and the effect of white noise
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level in real-world datasets on the performance of our models. We assume that lacking
smoothness and high noise can lead to a superior performance of fCAR (i.e. f{CAR3).
However, it remains to be tested whether f{CAR yields high sensitivity values at the expense
of specificity. On the other hand, we are interested in the comparative performance of the
Ising model with a meaningful derived external field. In Section 6.2, we provide some

answer to those questions.

6.2 Simulation studies based on real-world data

In this section, we describe the design and results from a simulation study with the
same structure as the application described in Chapter 7. fMRI regression stage and
hyperparameter settings are chosen as described there.

For all simulation runs, we take the output from an initial run of the gCAR3 model
described in Chapter 7 and label the estimated activation map as v*. We calculate the
posterior expected values for the fMRI model parameters conditional on this activation
map, that is 8] = E(B,ly = v",y) = (X*X*)"'X"y; and 0] = E(o?|y = v",y) =
Si(v) /(T — 2) where S;(v;) = yly: — y)X*(X*X*)"'X*y,;. The matrix X* = X(v}) is
thereby the full design matrix if 7/ = 1 and the design matrix without the stimulus
regressor components if 7 = 0. To obtain a new, simulated fMRI dataset, 3;,i =1,..., N,
is plugged into the regression model. Then, voxelwise error vectors generated from
N(0,07*1) are added. In contrast to the artificial simulation study described before in
Section 6.1, each voxel i contains the recorded fMRI time series y; and, thus, the data
structure of the original dataset is preserved. To investigate effects of deviations in noise

levels, we consider noise levels 0.507", 07%, 207*, 407"

1 7 7

Starting configurations and hyperparameter settings of algorithms are chosen as in Chap-
ter 7. For the evaluation of EEG-enhanced activation schemes, we select a redundant prior
information map. As described in Section 7.2, this map is an fMRI activation map estimate
from an uninformed activation detection run with extended activation region boundaries.
It contains mostly congruent activation information. Hence, potentially adverse results
are not due to non-matching EEG information. For each algorithm and noise level, we
conduct 50 simulation runs. For each run, we calculate sensitivity and specificity estimates.
Then, we report the corresponding minimum, median and maximum over the 50 simu-
lated datasets. Note that we calculate sensitivity and specificity estimates in relation to

voxels analyzed. When the fCAR model is examined, estimates can either be calculated
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based on the used cubical mask or the threshold mask of the reference model gCARS3.
Sensitivity values, however, do not change per definition and changes in specificity values
are negligible. Hence, we report the performance values of all models in relation to the
used threshold mask (cf. Section 7.1). Summaries of sensitivity and specificity estimates
are given in Table 6.8a and Table 6.8b, respectively.

All models obtain (almost) perfect specificity. In contrast to our speculation, we notice that
the drop in specificity for the fCAR models (fCAR3, f{CAR2, f{CARD) is negligible. Hence,

in the following, we evaluate all algorithms in terms of their sensitivity.

We first look at the simulation results from model runs without EEG, i.e. gCAR3, fCARS3,
iMREF3 and Ising model results. In contrast to the artificial simulation study, we can now
calculate an informative external field map for the Ising model based on anatomical prior
information (cf. Chapter 7), enabling a valid comparison between algorithms. As before we
set its spatial dependency parameter ¢ to a medium level of 0.45. Looking at the sensitivity
estimates, we see that the proposed models outperform the Ising model in any case. The
iMRF3 and gCAR3 models are similarly sensitive in all model runs, whereas the fCAR3
model has increased sensitivity in runs with noise levels 2~ and 40", At low (0.50")
and medium (o) noise level sensitivity of our algorithms is high—demonstrating the
reliability of our approaches.

Comparing the results from the EEG-enhanced activation schemes to the corresponding
results from schemes without EEG, we see no substantial gain when using EEG information.
The algorithms with global updates (CAR and iMRF) obtain slightly higher sensitivity
estimates in higher noise level settings 20> and 40" with both predictor types. But
no gain in sensitivity can be observed with fCAR2 and fCARS5. Nevertheless, the f{CAR
algorithm retains its high performance level in any case and outperforms all gCAR and
iMREF versions.

To find an explanation why EEG enhancement yields no increased performance, we
try to find a characterization of voxels who switch their state from non-active to active
(or vice versa). In the following, we look at log(LR) statistics for activation, which can
be derived for each voxel as T'log (S;/S;1) where S;; and S; are the residual sum of
squares of the fMRI regression with and without stimulus component as in Section 3.4.1.
To characterize different voxel types, we split up true active voxels into four groups
depending on their estimated activation state in analyses with and without EEG-prior:
voxels staying non-active, voxels changing from non-active to active, voxels changing from

active to non-active and voxels staying active. For each simulation run, we calculate 2.5%,
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50% and 97.5% quantiles of log-likelihood values within subsets. In Figure 6.26, we depict
corresponding average (interval) values over all 50 simulation runs. We notice a good
separation between voxels staying active and non-active, respectively, for all algorithms
and simulation settings indicating that information contained in the fMRI regression
dominates activation classification. A border between these two groups can be drawn
at a log(LR) statistic value of about 20. Voxels changing their activation state are located
around this border. Thereby, voxels becoming active generally have higher values than
those becoming non-active. The higher the noise in the dataset, the more voxels change

their state. In low noise settings (0.50>"*), nearly no state changes happen.

As a conclusion, we suppose that mainly voxels having log(LR) statistic values of about
20 can change their state from non-active to active if suitable EEG-prior information is at

hand—in combination with supporting information from neighboring voxels.

In the next chapter, the application this study is based on is described in detail. We
inspect results from single runs of selected fMRI and EEG data combinations and examine
estimates of parameter maps beyond the level of binary activation classifications. This
should provide deeper insight into the functionality of proposed algorithms in real data
settings.
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Figure 6.26: Mean of log(LR) statistic intervals (based on 2.5% and 97.5% quantiles) of
voxel subsets. Annotation on the right indicates mean subset size.
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7 Application to an oddball study

Proposed algorithms—both mere fMRI and combined approaches—performed well in
artificial simulation studies in Chapter 6. On the one hand, mere fMRI activation detection
schemes outperformed other approaches found in the literature. On the other hand, specific
choices of EEG-enhanced activation schemes had proven to be useful in various settings.
In this chapter, we apply proposed algorithms to real-world data to reveal whether they
prove to be useful in practice. The dataset used for testing is based on simultaneously
recorded fMRI and EEG time series measurements from an acoustic oddball study. For the
assessment of EEG-enhanced activation schemes, we consider different forms of prior EEG
information and fMRI data (the latter differing in their level of smoothness as controlled by
a preprocessing option). Varying the data scenario aims at gaining deeper insight into the
functioning of combined algorithms and at identifying settings where EEG enhancement is
able to improve activation detection in realistic settings. In Section 7.1 and 7.2, we describe
material and methods used (including preprocessing procedures). For a condensed, but
thorough description, we revert to technical terms found in the neuroscience literature. For
explanation of these, the interested reader is referred to introductory texts like Zschocke
and Hansen (2012) and Huettel et al. (2004). In Section 7.3, we describe the results from
both our combined fMRI-EEG algorithm and algorithms based solely on fMRI information.

7.1 Material

Ethics Statement

The study protocol, which was designed in the context of Max Planck Institute of Psy-
chiatry (MPIP) based fMRI/EEG sleep research activities, followed the guidelines of
the Declaration of Helsinki and was approved by the local ethical committee (Bayrische

Landesédrztekammer, Germany, Nr. 01102).
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Subjects

Young healthy subjects were recruited by public advertising and gave their written in-
formed consent prior to the study. All participants underwent a careful screening including
a clinical interview with a particular focus on previous or current neurological or psychi-
atric conditions. They further received an anatomical MRI scan to become acquainted to
the MR environment and to exclude gross abnormality of normal variants that prevents
standard analysis of functional images. Further exclusion criteria were any chronic medical
condition, any regular psychotropic medication, consumption of more than 2 cups of coffee
per day or more than 5 alcoholic drinks per week, any regular medication, crossing of
time zones up to 3 months before the study and any contraindications to MRI. All subjects
were right-handed and non-smokers. Eventually, a total of 10 male volunteers (mean+SD:
26.0£2.7 years) underwent the study protocol.

Acoustic oddball paradigm

For acoustic stimulation, we used an active two tone oddball paradigm programmed using
the Presentations Software (Neurobehavioral Systems, Albany, USA). The paradigm has
been chosen for the following reason (Kiehl et al., 2005). Hemodynamic imaging studies
have shown that processing of low probability task-relevant target stimuli (i.e. oddballs)
elicit widespread activity in diverse, spatially distributed cortical and subcortical systems
of the brain. The nature of this distributed response supports the model that processing
of salient and novel stimuli engages many brain regions regardless of whether said re-
gions were necessary for task performance. Due to its remarkable robustness and due to
established knowledge on the brain’s response to the acoustic oddball stimulation both at
the level of the BOLD signal (Kiehl et al., 2005) and the neurophysiological level (evoked
potentials) (Volpe et al., 2007), the paradigm is particularly interesting for combining both
techniques.

In our paradigm, rare (high-pitched) odd tones (1500 Hz, duration 50 ms) appeared
with 10% probability against the background of frequent (low-pitched) tones (1000 Hz,
duration 50 ms). The interstimulus interval (ISI) was set to an average of 1 000 ms as this
period allows to average electrophysiological responses with minimum overlap between
the single response. A random jitter was used to prevent habituation that occurs more
easily with a strictly regular ISI. While an average of 10% rare tones was defined, the

exact order of the tones was randomly assigned, with two additional rules: (1) Rare
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tones always had to be separated by at least two frequent tones; (2) The 10% rare tone
probability had to be fulfilled in subsets of 20 tones. Acoustic stimuli were delivered by
a magnetostatic headphone (MR-Confon, Magdeburg, Germany). In addition, subjects
wore foam ear plugs for safety reasons. To adjust loudness of the acoustic stimuli, a
preparation scan was performed during which subjects had to repeatedly decide whether
or not they perceived the tones as loud as the fMRI scanner sound. This resulted in
a defined level of subjectively identical loudness of tones and scanner noise. For the
eventual experiment, tones were delivered 3 dB louder than the individualized threshold
to guarantee perception. The main acoustic frequency component of the fMRI sequence
was about 800 Hz, outside the acoustic spectrum of frequent and rare tones. After the
loudness adjustment, subjects were instructed to continuously pay attention to the tones
and press the response button immediately after recognizing an odd (high pitch) tone. The

paradigm was briefly explained to the subjects prior to the scan.

fMRI acquisition

After appropriate EEG montage (see below), subjects were positioned in the scanner (3
Tesla system, General Electric MR750) with their head being immobilized as far as possible
to prevent motion artifacts, and wearing ear protection. Whole brain fMRI time series
were acquired using echoplanar imaging (EPI) sequence (time of repetition [TR] 2 000 ms,
time of echo [TE] 40 ms, slice orientation according to anterior-commissure/posterior-
commissure landmarks, 28 slices, slice thickness 3.5 mm, 0.5 mm gap, in-plane resolution
3.125 x 3.125mm?) while the acoustic oddball paradigm was applied. Per subject, a total of
307 image volumes was recorded over 10 minutes. Recordings of 8 subjects were suitable

for further combined analysis processing.

EEG acquisition

EGG recording was parallel and synchronized to fMRI measurements. An Easy Cap
(http://www.easycap.de/easycap) with 64 EEG electrodes was used, including an
electrocardiogram electrode placed on the left side of participants back close to their
spinal cord, referenced against the fronto-central electrode FCz. Data were continuously
sampled throughout the experiment at 5 kHz. To allow for optimal artifact correction,
EEG recordings and fMRI were synchronized using the scanner’s 10 MHz master clock
(Mandelkow et al., 2006). Electrode impedance was below 5k(). Additionally, trigger

pulses from the MRI system were recorded for subsequent off-line MRI artifact correction.
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7.2 Methods

fMRI data preprocessing

All fMRI preprocessing steps were performed on 64-bit-Linux workstations using the SPM
software (http://www.fil.ion.ucl.ac.uk/spm, version SPMS8). First, data were
corrected for slice time differences to compensate for different acquisition times due to
the interleaved slice acquisition scheme in each volume. Second, images were motion
corrected by rigid-body coregistration with the mean image of the uncorrected time series.
Third, images were spatially normalized using linear and non-linear transformations to
an EPI wholehead template in standard MNI space! with default settings of the SPM8
distribution. Intrinsic to the spatial normalization step is an interpolation step that was
set to gain voxels sized 4 x 4 x 4 mm?® which corresponded to image volumes of each
40 x 48 x 34 voxels per time point. Last, we calculated two versions of smoothed image
trajectories using a symmetric 3D-Gaussian kernel. We generated a very smooth dataset
with high signal-to-noise ratio by applying a kernel with 8 x 8 x 8 mm?* FWHM (full width
half maximum) and a slightly smoothed dataset with rather low signal-to-noise ratio by
applying a kernel with 2 x 2 x 2 mm® FWHM. For functional analysis, the first 5 images

were disregarded due to T1-unequilibration effects.

EEG data preprocessing
Calculation of differential event-related potential trajectories on the subject level

EEG data was corrected for gradient induced and cardioballistic artifacts (Czisch et al.,
2009) using Vision Analyzer 1.05 (Brain Products). That is, after MRI artifact correction an
independent component analysis (ICA) (Beckmann and Smith, 2005) was performed to
clean data from cardioballistic artifacts. Afterwards data was bandpass-filtered with typical
settings for evoked potential analysis (low cutoff 0.5 Hz, high cutoff 30 Hz). After baseline
correction and DC detrending?, EEG time series were segmented into 1000 ms segments
according to odd and even tone onset time points (-200 ms to +800 ms), which after
exclusion of obviously corrupted data segments resulted in an average of ~490 segments
for even tones and ~45 segments for odd tones for each electrode (time resolution 250 Hz).

'The acronym ‘MNI’ originates from the Montreal Neurological Institute, where this type of brain template
was developed.
2A correction method for direct current (DC) drift artifacts.
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For further use, segments of each stimulus type are averaged to gain average event-related
potential (ERP) trajectories. These are assumed to contain an estimate of the amplitude
and morphology of the electrophysiological response. For the odd minus even contrast
being of special interest in oddball studies, we calculated a differential ERP by taking the
pointwise differences of odd and even ERPs.

Calculation of 3D prior EEG information maps

Based on the derived differential ERP, spatial EEG maps were then calculated for each time
point using the sSLORETA software (http://www.uzh.ch/keyinst/loreta.htm).
For later use, EEG source maps had to be reduced to a small number of maps that could be
incorporated as prior information for fMRI activation one at a time. Either SLORETA maps
of selected time points were considered or maps derived by an aggregation over given
sLORETA trajectories. For a subject-specific EEG-prior, EEG source maps were aggregated
over time by an ICA. Alternatively, for EEG priors based on the whole subject group, EEG
source maps were aggregated over both time and subjects by a multi-session tensor based
probabilistic ICA (Tensor-PICA) (Beckmann and Smith, 2005). Both the single-subject ICA
and the group Tensor-PICA arrive at spatial component maps that cluster voxels with a
common time course. We selected those component maps showing an connections to the
differential odd minus even contrast. Selected 3D EEG-prior maps are described in detail
in the following section .

Spatial prior information

The following four types of prior information maps were used to enhance fMRI activation
detection:

e EEG-based prior information map in form of a group and time aggregated SLORETA
map: For this, a spatial Tensor-PICA component (from the group analysis of
sLORETA trajectories described in the preceding paragraph) was selected that
showed a spatial pattern and time course associated with stimulus presentation
(see Figure 7.1). This EEG-based map was chosen for generalizability reasons for be-
ing based on group data. The component map was regarded to be more reliable than
a 3D map based on single-subject data only. From its spatial pattern, it was supposed
to add information to fMRI activation detection especially in upper central parts of
the brain. Because we do not differentiate between activation and deactivation (with

regard to the sign of effects) we take the absolute value of all map values.
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e EEG-based prior information map in form of a subject-specific SLORETA source

reconstruction map for a selected time point (¢ ~ 480 ms (PST); SLORETA map no.
172) of the ERP difference profile of odd minus even stimuli: This SLORETA map was
selected for showing a strong EEG activation in several brain areas—in particular
frontal and in the upper back parts of the brain. In general, this EEG based map
contained information closer (i.e. more congruent) to the individual fMRI data than
the Tensor-PICA map for being recorded on the same subject. We expected that
this prior information map might be easier to handle for proposed algorithms. For

numerical stability, we took the logarithm of all map values, which were all positive.

EEG-based prior information map in form of a subject-specific, time aggregated
sLORETA map: For this, an ICA was run on the SLORETA map trajectory from the
subject the fMRI data was recorded on. We selected a component map that showed a
strong signal in the (neurologically) right part of Brodmann areas 1-4, 6 (containing
the primary somatosensory, primary motor and premotor cortex) (see Figure 7.2).
This is an area where fMRI activation can also be found. To enlarge the strength of
the EEG information, we took the voxelwise square of map values. To adjust for
a mismatch between sLORETA analyzing mask and the brain structure found by
fMRI, we smoothed the SLORETA map with a Gaussian kernel of 8 x 8 x 8 mm?®
FWHM. This should put less emphasize on analyzing mask edges of SLORETA. We
considered this EEG-prior to contain congruent information compared to fMRI in an
selected part of the brain.

Redundant prior information map in form of an extended fMRI activation map: This
map was based on an activation map from an analysis without EEG component
and can, hence, be considered as a redundant prior information map. To increase
sensitivity on activation region boundaries the next 28 neighbors (from the surround-
ing neighborhood cube) were added to the binary activation map. This fMRI based
map was taken as a test case for proposed algorithms: The most likely voxels to be

additionally found active were supposed to lie on activation region boundaries.

If necessary, the selected prior information maps were resliced to the spatial resolution

of the fMRI dataset using the SPMS8 coregister procedure. If component maps contained

negative values, we took the absolute value of the selected ICA and Tensor-PICA com-

ponent maps because, on the one hand, strong deviations from zero indicate component

membership and, on the other hand, our model predictor relies on the assumption that

larger prior information values indicate activation—with the meaning that a specific voxel

shows a reaction to a stimulus.
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Data analysis

For demonstrating the functioning of proposed single-subject activation detection algo-
rithms, we selected the fMRI session data from one of the recorded subjects (subject ID 8).
For (EEG-) enhanced activation detection algorithms, we used the four types of spatial

prior information presented in the preceding subsection.

For analysis, we used the proposed algorithms from Chapter 3 and 4. In the following,
we use the notation introduced in Chapter 5, p. 90, and denote the proposed algorithms
from Chapter 3 with CAR and IGMREF prior as gCAR and iMRE, respectively. In addition,
fCAR denotes the fast algorithm for the model with CAR prior proposed in Chapter 4. For
all three model types, the exact type of predictor had to be specified: We applied gCAR3,
fCAR3 and iMRF3, which rely on predictor type 3 excluding EEG information. For the
evaluation of EEG-enhanced fMRI activation detection algorithms, we considered gCARS,
fCARS5 and iMRF5 (predictor type 5 models with an additional spatially-varying EEG
component) and gCAR2, f{CAR2 and iMRF2 (predictor type 2 models with a global EEG
effect restricted to be non-negative).

In case of the CAR prior, the prior mean of the spatial dependency parameter 7* (and/or
73) was set to 0 and its prior variance was chosen to be rather uninformative with value 25.
In a testing phase of the gCAR and fCAR algorithms, we have found that convergency of
MCMC trajectories is sensitive to both the choice of £* (£2) hyperparameters, i.e. inverse
gamma shape and scale parameters of respective priors, and 72 (73) hyperparameters,
i.e. proposal variance (02, resp. 02) and starting value (7o-start resp. 7-start). Hyperpa-
rameters of the CAR algorithms were chosen in such a way that convergency to the
equilibrium distribution was acceptable within 1 000 iterations (burnin). Convergency was
assessed by visual inspection of trace plots and corresponding diagnostic tools. Suitable

hyperparameter values chosen for analysis are listed in Table 7.1.

In case of the IGMREF prior, suitable inverse gamma parameter values had also to be found.
Our choices, which lead to an adequately convergency behavior, are listed in Table 7.1 as

well.

Note that listed hyperparameters lead to satisfactory results in most runs. However, we
had to adapt some of these slightly when incorporating the subject-specific SLORETA map.

We do not list these parameters here, but choices can be provided upon request.

The neighborhood underlying both random field priors incorporate the next 6 direct 3D

voxel neighbors.



168 7. Application to an oddball study

gCAR fCAR iMRF
& ¢ prior: IG(3,1) IG(3,1) 1G(3, 1)
€2, prior: 1G(3, 1) 1G(3, 1) 1G(3, 1)

& prior:  1G(1802,16209) 1G(452, 4059) 1G(902, 4054.5)
¢ prior:  1G(452,4059) IG(452,4059) 1G(902, 4054.5)

0'30 3 0.1 -
o2 0.25 0.1 -
To-start 25 0.1 —
T-start 2 0.1 -

Table 7.1: Hyperparameter settings for gCAR, fCAR and iMRF model runs.

If included in the model (either in gCAR, fCAR or iMRF), global effect parameters had
prior mean zero and a variance parameter that followed an inverse gamma distribution

with shape parameter 3 and scale parameter 1 (cf. Table 7.1).

For each run, we used 6 000 MCMC iterations including a burnin phase of 1 000 iterations.
To remove strong autocorrelations, we thinned out resulting parameter trajectories with a
stepping of 5.

We compare our proposed model to the following methods: The Ising model from Smith
et al. (2003) and the widely used classical SPM algorithm (Friston et al., 1995) as imple-
mented in SPMS8 (http://www.fil.ion.ucl.ac.uk/spm/software/).

For all models, we used the canonical HRF with three basis functions to model odd
stimulus contribution to the fMRI predictor. Regressors for modeling the even stimulus
were not included for introducing collinearity issues. We included the DCT basis set
implementing regressors for a highpass filter of 128s and a set of movement parameters and
two global signals (containing the average white matter and liquor signal) as confounders.
Details about the calculation of these regressors can be found in Chapter 2.

We restricted analysis to all brain voxels lying within a threshold mask defined in analogy
to the selection procedure in SPM (cf. Section 4.3). In a second selection step, we removed
all small, isolated voxel clusters for these being able to distort analysis results. The f{CAR3
model, however, is generally dependent on a cubical mask comprising the used threshold
mask. To emphasize this fact, we use a subscript C to distinguish mask choices: f{CAR3¢
denotes the (standard) fCAR3 model run with the cubical mask. For better comparability
we additionally present fCAR3( results on a threshold mask denoted as fCAR3*.

Ising hyperparameters were chosen as follows: Spatial dependency parameter ¢ was set
to a medium level of 0.45, which also had been used in Smith et al. (2003). The external
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tield map was based on the prior knowledge that about 25% of gray matter is likely
to be activated by this experiment. Gray-matter prior information was obtained from
SPM segmentation of the first image of the fMRI time series, which provides sufficient
anatomical contrast. With this information the external field map could be calculated as in
Smith et al. (2003).

7.3 Results

7.3.1 Comparison of different fMRI activation detection algorithms

We first assess the comparative performance of the proposed Bayesian activation detec-
tion algorithms (with both IGMRF and CAR priors) without EEG information. Existing
methods—so far—provide no means of using additional information in a general form to
enhance activation detection. Hence, for fairness we compare only our proposed predictor
type 3 models, i.e. gCAR3, f{CAR3, iMRE3, with the performance of competing activation
detection software.

For being a Bayesian fMRI model with the same activation detection mechanism, the
Ising model is directly comparable to the proposed models. Hence, results of Bayesian
activation detection schemes comprise the Ising results. To yield an overview of brain
wide responses, results from 8 layers between layer 3 and 31 are plotted. Figure 7.3 shows
activation difference maps in reference to model gCAR3, and Figure 7.4 shows the under-
lying activation probability difference maps as well in reference to gCAR3. In Figure 7.5,
robustness of activation maps is depicted via threshold dependent activation maps. Ro-
bustness of classical SPM results is depicted in significance level dependent activation
maps (each controlling the familywise error (FWE) rate) in Figure 7.6. A comparison
between activation maps of SPM and gCARS3 is presented in Figure 7.7.

In activation difference maps, we find that all methods identify the most prominent
activation regions. Methods differ mostly in the size of found activation clusters. Maps
exhibit only minor differences between gCAR3 and iMREF3, though iMRF3 appears to
be marginally more sensitive. The Ising model detects much less activation compared
to gCAR3: The gCARS3 algorithm possesses the potential to identify larger activation
clusters than the Ising model by classifying more voxels on region boundaries as active

and to detect some new clusters as well. In activation difference maps of {CAR3¢ and
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Min. 1% Qu. 25% Qu. Median Mean 75% Qu. 99% Qu. Max
fCAR3* -0.469 -0.058 0.000 0 0.029 0.016 0.391  0.665
fCAR3¢ -0.469 -0.019 0.000 0 0.044 0.009 0.991 1.000
iMRF3 -0.654 -0.097 -0.001 0 -0.004  0.000 0.026  0.147

Ising  -1.000 -1.000 -0.007 0 -0.083  0.000 0.001  0.008

Table 7.2: Summary of activation probability difference values of Bayesian activation
detection schemes in references to gCARS3.

gCAR3, we notice large activation foci outside the threshold brain mask. These strong
differential activations are located in two areas. First, posterior areas in the midline (layer
7) typically represent large venous vessels (e.g. the sagittal sinus) that do not contain
neuronal tissue but are strongly influenced by effects of respiration and cardiac pulsation.
Correlation with the model in these areas may be explained by some correspondence
between these vegetative parameters and the subject’s (attentional and motor) response
to the odd tone. Second, in anterior areas (layer 3), which correspond to the eye region,
correlations were detected that may be explained by paradigm-correlated eye movement
or blinking. Both areas tend to be excluded by respective anatomical masks. For better
comparability, we additionally look at results of f{CAR*, where f{CAR3 results are masked
with the threshold mask. In these plots, we notice a number of new, small activation
clusters that appear all over the brain. Moreover, changes in large, contiguous activation
regions emerge: On the one hand some activation clusters are enlarged by fCARS3, e.g.
clusters in layer 19. On the other hand, in layer 31 a group of activated voxels appears
on the left posterior area indicating an activation region not found before. However, a
local decrease in sensitivity can be observed as well: The larger dependency parameter
estimate of the gCAR3 algorithm influences sensitivity positively within activation regions
in layers 21 and 28. Increased smoothness leads to more contiguous activation regions in

large activation clusters.

A look at the posterior activation probability difference maps allows to gain a deeper
insight into the functionality of algorithms. Hardly any differences in probability estimates
emerge in centers of most prominent activation centers. The largest differences arise at
activation region boundaries hinting at differences in edge preserving resp. smoothing
properties or the ability to cope with decreasing signal-to-noise ratio. Differences between
iMRF3 and gCAR3 are small and lie mostly in between [—0.097;0.026]. i.e. the 1% and
99% quantiles of the corresponding empirical distribution (cf. Table 7.2). Conform to the

results of the binary activation maps, we notice that the Ising model obtains much lower
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probability estimates whenever differences to gCAR3 emerge. The f{CAR3 model obtains
higher posterior activation probabilities in large parts of the brain. Particularly, a number of
new clusters with increased posterior probability estimates appear in the fCAR3 difference
map leading to isolated small activation foci found in the corresponding activation maps.
Apart from this, differences emerge at region boundaries. fCAR3 tends to gain larger
activation probabilities on region edges, especially in lower brain layers, speaking for
larger cluster sizes. In layers near the top we observe partly the reverse: Within activation
regions, probabilities are distinctly decreased compared to smooth gCAR3 results. To check
whether changes at boundaries can be traced back to an inefficient separation between
head movement and activation effects, we looked at results of a simultaneous F-Test of
movement parameter effects, which were included into analysis as confounds (results
not shown). The corresponding F-map does not indicate movement effects on region
boundaries. Hence, we conclude these differences can be traced back to the fact that the

algorithms have different abilities to cope with decreasing signal-to-noise ratios.

The results from the activation threshold maps—plotted for evaluating the robustness of
algorithms—go along with the peculiarities from probability difference maps. Predomi-
nantly voxels at region boundaries are additionally classified as active with decreasing
probability threshold. Thus, the discrimination power of considered Bayesian algorithms
between activation and non-activation regions attracts positive attention. Only fCAR3

inclines to find new small clusters.

SPM results are not directly comparable to the results of the proposed Bayesian activation
schemes (cf. Section 3.4.5 and 6.1.4). Hence, we decided to first evaluate the robustness
of resulting SPM activation maps in relation to several choices of significance level—in
analogy to probability threshold dependent maps of Bayesian procedures. From signifi-
cance level dependent activation maps we see that SPM possess a good discrimination
power between activated and non-activated sites as well. Varying the significance level
leads mostly to marginal changes in cluster sizes. However, there are also several clusters
that cannot be detected until a less conservative threshold is applied. Having an idea of ro-
bustness of algorithms, we compare next the SPM activation map of the least conservative
considered significance level of 0.2 with the gCAR3 activation map obtained by applying
the most strict considered probability threshold, i.e. 0.95. As we can see from Figure 7.7,
the gCARS3 algorithm yields larger activation regions throughout the brain and appears to
be much more sensitive than SPM.

As we can see from these comparisons, the proposed algorithms seem to be much more

sensitive than both Ising and SPM algorithms. This might be traced back to a better ability
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of proposed models to cope with decreased signal-to-noise ratios. Differences between
proposed algorithms emerge most notably at activation region boundaries. Thereby, iMRF3
and gCAR3 yield very similar results: Posterior probability differences are rather small and
the estimated activation structures are almost identical. The presumption that iMRF3 and
gCARS3 differ substantially in their edge-preserving behavior (cf. Section 6.1.4) can, hence,
not be affirmed in this real-world example. Nevertheless, iMRF3 seems slightly more
sensitive in upper brain layers. In spite of this, f{CAR3 yields higher posterior probability
estimates in areas outside main activation centers and hence, inclines to find an increased
number of small activation clusters not found by other algorithms. It is not clear whether
these small activation areas that are unattached to the larger clusters can be clearly marked
as false positives. Specificity of the f{CAR3 algorithm, anyhow, has been very high in
simulation studies based on an equivalent activation structure (Section 6.2) speaking
against the hypothesis of falsely positive clusters. Smoothness of gCAR3 (iMRF3) seems to
be advantageous in large activation regions: Compared to f{CAR3, sensitivity of gCAR3
(iMREF3) is slightly increased favoring more contiguous activation sites.

It should be added in this context that fMRI activation detection schemes rely on a very
broad definition of activation: A voxel is said to be active if its fMRI signal time series
correlates with stimulus presentation. Of course, this definition includes not only neuronal
activity but also correlates of it (cf. Section 1.2). Hence, it is open for discussion whether a
voxel can be truly marked as false positive if it is not neuronally active in a strict sense,
but has a indirect connection to neuronal activation. Anyhow, a careful interpretation of
results and possible post-hoc analysis steps are indispensable to identify voxel regions that

are neuronally active in a strict sense.

To remove artifact-related activation from analysis results of this study, following aspect
can be considered: The masking procedure was liberal in that non-gray matter areas were
included. By definition, non-gray matter activation cannot exhibit any neural activation
but only correlates of it. Additional masking steps can therefore be applied to remove
non-gray matter regions and reveal truly neuronally active voxels. We, however, do
not report results on this additional gray-matter mask, because it does not add value to
the performance comparison of different algorithms. We, as well, did not use this gray-
matter mask as an analysis mask (i.e. a binary mask that indicates voxels to be analyzed)
for the following reasons: On the one hand, the gray-matter mask itself is a result of a
segmentation routine, which cannot claim to be correct. On the other hand, the analysis

mask exhibits many discontinuities making interpretation difficult.



176 7. Application to an oddball study

Legend: analyzed voxels . <0.2 . <0.1 < 0.05 <0.01 <0.001

Figure 7.6: Significance level dependent activation maps for SPM for selected brain layers.
Color codes represent activated voxels which survive the critical value corresponding to
significance level 0.001, 0.01, 0.05, 0.1 and 0.2.
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1
7 21
u
11 28
Legend: analyzed voxels active in both . active in examined model . active in reference model

Figure 7.7: Activation difference maps between SPM and gCAR3 for selected brain layers.
The most conservative activation map from gCAR3 (corresponding to threshold 0.95)
is compared to the least conservative activation map from SPM (corresponding to a
significance level of 0.2).
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7.3.2 Evaluation of EEG-enhanced fMRI detection schemes

To evaluate whether the proposed models are able to increase sensitivity by using EEG
resp. external activation information, we compare our EEG-enhanced activation detection
algorithms with corresponding uninformed algorithms. We use predictor type 3 models
as null models, which do not rely on additional EEG information. The figures used in this
section to display results comprise the following contents:

Row Expression Description

1 J= () EEG resp. prior information map

2 Yair = (YiMays — Vi) Activation difference map (*)

3 waig = (P(v: = 110,y,May5) — p(y: = 1|6, y,M3))  Posterior activation probability difference
map (*)

4 i = (@ (M3, 0 1530, 1) = @(74, 055 0, 1)) Marginal prior probability difference map (*)

5 e = (@iJs) EEG predictor component map

(*) Predictor type 2 or 5 models (M5/5) in reference to corresponding predictor 3 models (1)
without EEG/additional prior information

To be more precise on marginal prior probability difference values (displayed in figure
row 4), note the following. The calculation of the estimated marginalized prior activation
probability is based on Equation 3.20, p. 64. Here, we insert plugin estimates of the
predictor to calculate p(y; = 1|U;;, 0_y) = ©(7;; 0, 1) for each voxel i. This quantity can
be interpreted as the EEG dependent prior probability for activation—although it is no
prior probability in a strict sense, but rather an adaptive prior that has been estimated. It
contains posterior estimates in form of 7,7 = 1, ..., n, which in turn contains information
about all available data including fMRI information. It can be used to see to which extent
EEG activation influences fMRI activation estimation. To visualize the EEG influence
on the estimate, we display the difference to the marginal prior probability estimate of
the model run without EEG term (predictor type 3 model). Probability values possess
the further advantage of being on a common scale of range [0; 1] leading to a range for
difference values of [-1; 1].

Group and time aggregated sLORETA map

In this section, we report the results of the EEG-enhanced fMRI activation detection

algorithms using the aggregated EEG-based prior information map from the Tensor-PICA
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group analysis of SLORETA trajectories described in Section 7.2. As noted above, it is
supposed to add information to fMRI activation detection especially in upper central parts
of the brain.

In Figures 7.8a, 7.9a and 7.10a the results of the predictor type 5 model runs fCAR5, gCAR5
and iMRF5 with spatially-varying intercept and spatially-varying EEG coefficient are
depicted, respectively. We select result maps from brain layers 21, 23, 25 and 27, because
these layers comprise the parts of the brain where the EEG information is strong and is
supposed to especially add value to the activation detection.

We know from the results of the simulation study presented in Chapter 6 that predictor
type 5 algorithms are able to downweight EEG-prior information when it contradicts fMRI
activation information (contained in voxelwise likelihood values of the model), whereas
it shows a positive EEG effect if activation information is overlapping. An excellent
example of the downweighting-mechanism can be seen in the central part of layer 25.
On the contrary, in central parts of layer 27, a positive EEG effect, for example, supports
fMRI activation. This property of predictor type 5 models can be observed with all three
predictor types: gCARS5, fCARS and iMRF5. The differences in EEG predictor component
maps between models are small indicating that all algorithms recover reliable estimates.
Compared to gCARS5, EEG predictor values of fCARS5 contain somewhat sharper edges
and more coarse structures, whereas iMRF5 effect maps are slightly smoother.

Marginal prior probability difference maps seem to be more suitable to assess algorithm
specific properties. Though all algorithms obtain increased marginal prior probability
values in areas with congruent fMRI and EEG information and decrease prior activation
probabilities in non-congruent parts, we observe the following differences: The gCARS5
estimates differ from its reference, the gCAR3 estimates, in all parts of the brain regardless
of whether EEG values deviate from their zero baseline or not. This seems to be an
undesirable property of the algorithm. In the fCAR5 model, sharp separation between
congruent and non-congruent brain areas are visible. Wherever positive EEG values
and fMRI activation overlap, increased marginal prior probability values emerge. If
positive EEG values arise in regions without fMRI activation, a strong decrease in marginal
prior probability can be observed. This might imply that the inclusion of EEG-prior
information does not provide any additional value: fCARS5 only seems to emphasize
activation effects that are already there. In iMRF5 models, we observe changes mainly in
parts of the brain where some kind of activation happens. This hints at the stability of
the algorithm. Marginal prior activation probability is especially increased on activation

region boundaries, e.g. on the central activation focus in layer 27.
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Marginal prior probability difference maps can be used to evaluate whether latent probit
effects make sense. In posterior activation maps, though, we see whether EEG-prior infor-
mation has an impact on activation estimation at all. The fCARb results show differences to
its reference, the f{CAR3 results, all over the brain: Besides increased activation probability
values in central parts of the brain, regional differences appear that cannot be traced
back to changes in EEG information. Moreover, the map appears to be very coarse, i.e.
changing from positive to negative difference values within the distance of 1 voxel (and
back) without obvious cause. This hints at instability issues of the algorithm. In activation
maps, this is reflected in voxels becoming non-active without clear reason. Nevertheless,

fCARS enlarges the activation focus in the upper central part of the brain.

The gCARS5 and iMRF5 algorithms locate largest posterior probability differences on
activation region boundaries with supporting EEG information, i.e. in central parts of the
brain. These are large enough to slightly increase region sizes in targeted areas (e.g. in
the central part in layer 27). A few voxels become non-active in regions where algorithms
emphasize sharp edges to non-activation. These regions are visible in marginal prior
probability maps where a strong decrease in prior activation probability can be detected
on the right margin of the central activation focus in layer 27.

One of the most interesting observations can be made in the central part of layer 21: Both
gCARS and iMRF5 can find additional activation there and support an existing damped
activation foci. We know from the analysis of different time subsets of the fMRI algorithm
(cf. Appendix D) that this region is subject to a time-varying activation effect: Activation
can be observed in the beginning of the experiment, then the activation focus vanishes. If
the whole fMRI trajectory is analyzed, activation probability estimates are averaged over
all scans and hence, are reduced. With the iMRF5 and gCAR5 models the prior activation
probability can be increased again using external EEG information. However, as a fact
supporting the fCAR algorithm, we observe that the f{CAR algorithm (in particular already
the f{CAR3 algorithm) finds this activation foci in any case. Here, EEG information support

is dispensable.

Considering the results of all three predictor 5 algorithms, we come to the following conclu-
sions. The iMRF5 and gCARS algorithms provide interpretable results and show (slightly)
increased sensitivity in targeted parts of the brain—with iMRF5 being the marginally more
sensitive one. The fCARb algorithm retrieves coarse map estimates. Changes in activation
maps can only partly be traced back to EEG information. Nevertheless, f{CARS5 is also able
to slightly enhance fMRI activation detection by the use of the aggregated sSLORETA map
(in upper central parts of the brain). Whether the algorithm is susceptible to noise or has
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an improved adaptability to coarse activation structures, is not obvious. However, the
sensitivity increase with all algorithms is not as large as expected. This might be traced
back to the following. The fMRI data at hand contains activation peaks with sharp edges
to non-activated areas, whereas the EEG source map is by far smoother. Hence, congruent
areas adjoin non-congruent areas. An EEG-enhanced activation detection algorithm de-
tecting such structures is likely to be hardly able to differentiate between actual edges and
proximate voxels with a noisy fMRI activation signal. Thus, EEG-enhancement does not
take effect. This does not seem to be a problem if congruent and non-congruent areas are

well separated—as in the analysis of the artificial dataset in Chapter 6.

In the simulation study presented in Section 6.1.5, predictor type 2 models with a global
EEG coefficient (restricted to be positive) showed an equally high performance as the
predictor type 5 models. Hence, we also used fCAR2, gCAR2 and iMRF2 for analysis.
Results can be found in Figure 7.8b, 7.9b and 7.10b. Note that the color scale of the EEG
predictor component maps is chosen with respect to the range of the whole predictor.
Hence, if the EEG component is not sufficiently strong, it is not visible on the plotted maps.
This happens with both gCAR2 and f{CAR2 models. Though the gCAR2 model exhibits
some structure (which is visible in marginalized prior probability maps in comparison to
gCARB3), a connection to an EEG dependent decrease/increase in activation probability
can, however, hardly be noticed. Differences between the f{CAR2 and f{CAR3 model seem
to be completely within random error. The iMRF2 model yields a global EEG effect size
that stands out from the intercept component. It is even strong enough to affect posterior
activation probabilities. Nevertheless, none of the three models—neither f{CAR2, gCAR2
nor iMRF2—seems able to increase sensitivity in this application (substantially). As soon
as EEG contradicts fMRI in larger parts of the brain, the global EEG effect is estimated to
be so small that it hardly influences activation probability.

In general, the increase in sensitivity by using EEG-enhanced fMRI activation detection
algorithms with predictor type 2 and 5 seems limited or, at least, not as promising as
expected. We suppose that this might be traced back to incompatible EEG and fMRI maps.
The sLORETA analyzing mask, for example, might not fit to the fMRI data structure on the
whole provoking meaningless sharp edges in effect maps. Hence, we decided to examine

the results of alternative EEG maps.

Subject-specific SLORETA map

EEG-enhanced fMRI activation detection results seem less promising when using an

aggregated sLORETA component map. As noted in the preceding section, this might
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be due to incompatible information contained in EEG and fMRI maps. Amongst other
things, incompatibility may result from the Tensor-PICA specific decomposition of the
sLORETA trajectory into distinct spatial components. Voxels with similar time response
are grouped into one spatial component. This may lead to an adverse decomposition
of activation structures. For example when upper central and lower frontal parts of the
brain are activated at a specific time component, but only the frontal part shows activation
also at another time, then these two activation structures are broken apart into different
component maps. Hence, if we select just one spatial EEG component to combine it
with fMRI, missing activation structures introduce non-congruency possibly influencing
analysis results negatively. Hence, we decided to also look at results from analyses using
a non-aggregated, subject-specific SLORETA map as prior information. The EEG data
this SLORETA map is based on was measured simultaneously on the same individual
as the fMRI data. We choose the SLORETA source distribution map for a selected time
point (t ~ 480 ms (PST); sSLORETA map no. 172) of the ERP difference profile of odd
and even stimuli: This sSLORETA map was selected for showing a strong EEG activation
in several brain areas—in particular frontal and in the upper back parts of the brain. In
general, this EEG based map contained information closer (i.e. more congruent) to the fMRI
data than the Tensor-PICA map. We expected that this prior information map might be
easier to handle for proposed algorithms. For having a strong gradient on EEG activation
boundaries (range [0; 6.5 % 10°]), we decided to logarithmize the map to enhance numerical
stability and spatial dependency estimation. Results from predictor type 5 models are
shown in Figures 7.11a, 7.12a and 7.13a. Results from predictor type 2 models are shown
in Figures 7.11b, 7.12a and 7.13a. Figure contents are described in detail in the beginning of
Section 7.3.2. We select result maps from brain layers 9, 11, 27 and 29, because these layers
comprise the parts of the brain where the EEG information is strong and is supposed to
especially add value to the activation detection.

The predictor type 5 models exhibit mainly the same properties as in the runs with
the aggregated sLORETA map as described in the preceding subsection, e.g. EEG is
downweighted when it contradicts fMRI information. The fCAR5 model seems to
(over-)emphasize EEG effects with sharp edges between congruent and non-congruent
activation regions as can be seen in the marginal prior probability difference maps. Re-
sulting posterior probability activation maps seem noisy. In this example, however, these
properties seem useful to detect an increased number of active voxels in the frontal part of
the brain in layers 9 and 11 and in the center of layer 29. The found activation structure

in the frontal part of layers 9 and 11 is very coarse. Activation in the fMRI signal seems
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to be very weak: Single voxels contain a minimum quantity of activation, whereas direct
neighbors do not. Strong EEG information now brings out this coarse activation pattern.
However, found activation can be due to unwanted blinking artifacts.

The gCAR5 model obtains smooth EEG effect estimates. In contrary to the f{CARb pattern,
it now seems to smooth out the occasional, isolated activation peaks, e.g. in frontal parts.
Nevertheless, gCARS utilizes the EEG-prior information to slightly increase sensitivity in
the center of layers 27 and 29.

The iMRFS5 results, however, point into the opposite direction of fCARS: It uses the fMRI
information on non-activation in the neighborhood to obtain a smooth area of decreased
posterior probability estimates and reduces activation structures in the frontal part of
layers 9 and 11 substantially. In layer 27, EEG can increase sensitivity, though iMRF5
results also pronounce edges leading to some voxels becoming non-active at activation

boundaries.

As we can see from these results, each of the three algorithms comes to different results in
the presence of strong EEG activation and weak and noisy fMRI activation signals. f{CAR5
finds isolated active voxels, whereas gCARb is conservative, i.e. it strengthens exiting
activation foci in this area (found already by gCAR3), but smooths out isolated voxels
with strong EEG activation. The iMRF5, on the contrary, reduces any activation found in
this area. In general, we see that all three algorithms cope in different ways with strong
EEG activation. However, it is not evident which strategy might generally be the most
accurate one. This is likely to vary from case to case. In this example, the iMRF5 behavior

is preferable for eliminating erroneous blinking artifacts.

When looking at the predictor 2 results, we come to the same conclusions as with the
aggregated SLORETA map described before: The EEG component containing the global
EEG effect is not strong enough to be visible on plotted predictor maps for the intercept
component dominating the predictor. Posterior probability differences between fCAR2
and fCARS3 as well as between gCAR2 and gCAR3 seem to be mainly within random
error. Activation changes in binary activation maps seem to be related to this fluctuations.
Again, the iMRF2 model yields a global EEG effect size that stands out from the intercept
component. It is even strong enough to find some additional active voxels in layer 27.
Nevertheless, none of the three models—neither f{CAR2, gCAR2 nor iMRF2—seems able to
increase sensitivity in this application (substantially). Again, the subject-specific SLORETA
map and the fMRI activation structure seem to be fairly non-congruent provoking these

results.
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Test case with congruent prior information

As noted before, component maps derived by a Tensor-PICA of SLORETA map trajectories
contain non-congruent activation information compared to fMRI in several parts of the
brain. From the analysis results presented in the preceding section, we see that the
subject-specific SLORETA map does not contain suitable information to enhance sensitivity
substantially as well. Therefore, we decided to run a test and use prior information
congruent with fMRI activation to see whether sensitivity can be increased in this case.
For this, we take a binary fMRI activation map from a run without EEG information
(gCAR3) and enlarge activation regions by adding the next 28 nearest neighbors of the
cubic neighborhood. The resulting binary map is used as prior information in the enhanced
fMRI activation algorithms. We expect this prior information to enlarge activation regions
at boundaries. Results from predictor type 5 models are shown in Figures 7.14a, 7.15a and
7.16a. Results from predictor type 2 models are shown in Figures 7.14b, 7.15b and 7.16b.
Figure contents are described in detail in the beginning of Section 7.3.2. We select result
maps from brain layers 9, 21, 25 and 27.

The EEG predictor component estimated by the fCAR2 algorithm is virtually zero. Hence,
the marginal prior probability difference maps exhibit no EEG correlated structure. Struc-
tures visible in the posterior probability difference maps seem to be due to fMRI likelihood
influence. In activation difference maps, we notice some voxel state changes from active to
non-active and vice-versa. Regarding the negligibly small EEG effect, this changes might
be traced back to the instability of the fCAR algorithm: Having a negligible dependency
between neighboring voxels, the EEG effect component seems to be subsumed into the

spatially-varying intercept estimation. Possibly, identification problems arise.

The same potentially instable estimation results can be observed in the brain-background
regions of f{CARS. There, both prior and posterior probability maps exhibit a lot of noise.
However, compared to f{CAR2 a strong EEG effect can be retrieved with sharp edges
distinguishing activation regions from their boundaries. At some boundary locations,
nevertheless, EEG-enhancement successfully detects activation not found before, but also

the reverse happens: some voxels are now classified as non-activated.

The gCAR2 algorithm retrieves a reasonable large global EEG effect. This is what we
expected with congruent fMRI and prior information. In marginal prior probability maps,
hence, an increase in prior activation probability can be observed on activation boundaries,
which is also reflected in posterior probability maps as well as in activation maps. Here, an

increase in activated voxels can be observed. Two properties of the algorithm seem to be
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less desirable: As we can see in marginal probability maps, the intercept component of the
probit stage seems, on the one hand, to overcompensate the large global EEG effect and,
on the other hand, to provoke a decrease in prior probability in inner- and inter-region
spaces. This, however, does not affect posterior probability maps.

The gCARSb algorithm does not show this overcompensation. On the contrary, marginal
prior activation probabilities are increased in the inside of activation regions as well as
on several boundaries—which in turn leads to increased posterior probabilities and more
activated voxels. Good edge preserving properties can be observed by down-weighting
EEG influence on extended region boundaries where fMRI activation is entirely absent.
An undesirable property of the model may be the arbitrary increase in prior probability in

non-activation regions. Fortunately, this is not reflected in posterior estimation maps.

The iMRF2 results are very similar to gCAR?2 results. We observe, however, a weaker
overcompensating effect of the probit intercept. An even stronger increase in posterior ac-
tivation maps on region boundaries leads to the detection of comparatively more activated
voxels than with gCAR2.

The iMRF5 model retrieves a strong EEG effect, which leads to increased prior activation
probability values on activation regions and corresponding boundaries. Compared to
gCARb5, this increase affects posterior estimation maps even more positively leading to
increased posterior probability values on region boundaries and additionally activated
voxels. Though the EEG component values does not drop to sub-zero values on region
edges, prior and posterior probability map structures hint at good edge-preserving proper-
ties. In non-activation regions minor changes between the iMRF3 and iMRF5 algorithms

can be observed.

Considering the results of all algorithms, we come to the following conclusions: When
using congruent prior information, the gCAR and iMRF algorithms with both predictor
types yield an increase in sensitivity. These four algorithms have slightly different proper-
ties: The predictor type 2 models, gCAR2 and iMRF2, possess the disadvantage to incline
to overcompensate strong global EEG effects in some regions. The gCARb algorithm seems
to overvalue edges and retrieves large-area changes to gCAR3 results in regions where no
activation happens. The iMRF5 algorithm seems to be the most promising one of the four
algorithms with global updates: It has neither of the mentioned disadvantages, but appears
to be one of the most sensitive algorithms. This might be traced back to its advantageous
smoothness properties. However, compared to the fCAR algorithm (particularly already
tCARB3), the sensitivity of algorithms with global updates is decreased in regions where
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underlying activation structures are coarse and signals are weak. This happens particularly
in lower layers of the brain scan. As noted in Section 7.3.1, advantages of gCAR and iMRF
lie in intensifying large contiguous activation regions—as in upper central brain parts.
Despite the high sensitivity of fCAR3, the fCAR2 and fCARS algorithms seem hardly be

able to increase sensitivity by utilizing external prior information.

Subject-specific, time aggregated sLORETA map

In preceding analyses with highly smoothed fMRI data and two different types of real
EEG-prior information, we did not observe a substantial gain in performance of EEG-
enhanced activation schemes. The test case with congruent prior activation information
showed that the iMRF2/5 and gCAR2/5 algorithms had a slightly increased sensitivity
compared to algorithms without EEG-prior. The results of these analyses and the results of
simulation studies from Chapter 6 hint at characteristics the combined data must possess
for a successful application of EEG-enhanced fMRI activation detection. In Chapter 8
we summarize these findings and conduct an additional study to substantiate these and
to come up with a more precise description of suitable data settings. Following derived
recommendations, we now consider a new combination of fMRI and EEG data supposed

to be suitable for illustrating the usefulness of our approach.

For this analysis, we use a version of the fMRI data that is only slightly smoothed. The
spatially aligned, warped fMRI times series is now smoothed with a Gaussian kernel of
2 x 2 x 2 mm® FWHM (instead of 8 x 8 x 8 mm?). There are several reasons for smoothing
fMRI data before analysis (Friston et al., 2008, p. 225), e.g. increasing the signal-to-noise
ratio in the data. Applying a gaussian kernel, however, smooths over structural edges and
might not preserve image structure. Hence, reducing the kernel size and analyzing less

smooth data might generally be of interest for practitioners.

For the EEG-prior, we take an subject-specific, time aggregated SLORETA map from the
subject the fMRI data was recorded on. An ICA analysis of the SLORETA trajectory was
used to find spatial component maps. We select a spatial component map that shows a
strong signal in the (neurologically) right part of Brodmann areas 1-4, 6 (containing the
primary somatosensory, primary motor and premotor cortex). This area also contains a
strong, but spatially non-smooth, fMRI signal. After reslicing, we smooth the sSLORETA
map with a Gaussian kernel of 8 x 8 x 8 mm?® (FWHM) to adjust for a mismatch between
sLORETA analyzing mask and the brain structure found by fMRI. This should put less
emphasize on analyzing mask edges of sSLORETA.
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In the following, we restrict data analysis to the (neurologically) right part of Brodmann

areas 1-4, 6 to circumvent non-congruency issues arising in other parts of the brain.

Results from predictor type 5 models are shown in Figures 7.17a, 7.18a and 7.19a. Results
from predictor type 2 models are shown in Figures 7.17b, 7.18b and 7.19b. Figure contents
are described in detail in the beginning of Section 7.3.2. We select result maps from brain
layers 25-28.

So far, the fCAR algorithm appeared to be less suitable for EEG-enhanced activation
detection—although, in Chapter 8, we describe some settings where fCAR2 had a
promising performance. Here, neither fCAR2 nor fCAR5 appears to be useful for EEG-
enhancement. On the one hand, EEG-prior information is not able to improve sensitivity
with f{CAR2 and, on the other hand, fCARS slightly deteriorates the already found activa-
tion structure, which renders the algorithm to be inapplicable.

There is not much difference between the performance of algorithms with global updates.
In contrast to the findings in Chapter 8, where the applicability of gCAR5 was questioned,
gCARb does not perform worse than iMRF5 regarding activation classification. Both
algorithms find approximately the same number of additional active voxels, but also some
voxels become non-active. Changes in activation classifications, however, do not occur
at the same locations. In spite of this, when looking at posterior activation probability
estimation maps, iMRF5 seems to perform better. In contrast to gCARS, it increases
activation probabilities in most targeted regions of the observed activation focus—in parts
where EEG-prior information is strong and fMRI is deteriorated by noise, e.g. in the upper
left part of the activation focus.

For the fMRI and EEG information being fairly congruent, both gCAR2 and iMRF2 show a
promising performance by increasing activation probabilities in most targeted parts of the
region of interest. They find some additional voxels that can be classified as active.

Summarizing the results of all algorithms, the fCAR2/5 algorithms appear to be inapplica-
ble for EEG-enhanced fMRI activation detection; the algorithms with global updates had
a similar performance with iMRF2 being the most sensitive one (see results of layer 27).
Nevertheless, none of the algorithms managed to compensate the noisiness of the fMRI
data and fill up all holes in the activation structure.

This might be traced back to the following. On the on hand, the fMRI activation struc-
ture is not as suitable for EEG-enhanced activation detection as we thought it to be (cf.

Figure 7.20a). Most activation gaps occurred at the outside of the activation focus, where
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not enough neighboring information can compensate missing sensitivity. On the other
hand, EEG information maybe has to be even more congruent and must contain even
stronger values in targeted regions. As can be seen from Figure 7.20b, properties of the
EEG information map could have been more advantageous. It seems that even more
diligence has to be put into the search of finding a suitable combined dataset.

7.4 Summary

New methods have to be applied to real-world examples to test whether they yield the
hoped improvements while producing sensible and interpretable results. Having applied
our uninformed as well as EEG-enhanced fMRI detection algorithms to data from an

auditory oddball experiment, we come to the following conclusions.

The performance of fMRI activation detection algorithms without additional EEG infor-
mation was impressive: f{CAR3, gCAR3 and iMRF3 outperformed existing activation
detection algorithms like the Ising algorithm and classical SPM by far. Simulation stud-
ies from Chapter 6 suggested that increased sensitivity is not associated with a loss in
specificity. Differences between proposed algorithms were not too pronounced. Never-
theless, the fCAR3 algorithm with fast single-site updates was highly sensitive when the
underlying activation structure was rather coarse. It could find small isolated activation
clusters/voxels for putting less weight on voxel dependencies. The iMRF3 and gCAR3 had
better sensitivity in smooth structures. They were capable of strengthen existing activation
foci, but smoothed out small activation peaks in brain regions without dominant activa-
tion structures. Thereby iMRF3 seemed to have slightly better performance than gCAR3.
Concluding, we cannot recommend to use just one of the proposed models. Depending on
the brain region of interest and the inherent activation structure either f{CAR3 or iMRF3

should be preferred.

Concerning EEG-enhanced activation detection algorithms, we come to the following
conclusions. Proceed with caution when using predictor type 2 models with global EEG
effect. They did not have any benefit when EEG (or rather external) prior information
contradicts fMRI information in large parts of the brain for yielding virtually zero global
EEG effect estimates. Nevertheless, when using EEG-prior information that was mostly
congruent to fMRI data, gCAR2 and iMRF2 models had a positive impact on sensitivity. For
further analyses, one can make use of this result. Congruent EEG-based prior information

maps have to be retrieved from the original set of EEG recordings that can add information
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at targeted regions where fMRI shows unexplainable gaps in its activation structure. If no
EEG-based prior map can be found that is congruent to fMRI information in whole-brain

analysis, analysis must be restricted to corresponding regions of interest.

We see some potential in using predictor type 5 algorithms with both spatially-varying in-
tercept and spatially-varying EEG effect. The f{CAR5 model could help to find activation in
coarse activation structures by being able to recover some isolated active voxels. Whether
these voxels were rather false than true positives has to be decided by brain research ex-
perts. The iMRF5 and gCARSb algorithms used supporting EEG information to strengthen
existing pronounced activation structures and smoothed out probably erroneous activation
peaks in brain background. Thereby, the iMRF5 algorithm should be preferred, because its
effect map estimates appeared to be more stable and it had a slightly better performance.
Concerning the size of the sensitivity increase, we observed that the number of additional
voxels found to be active was small. There were also some voxels becoming non-activated
when EEG-prior information was included. Whether this can be traced back to the fact
that the prior is also informative for non-activation remains to be clarified. If there is
interest in examining the overlap between EEG and fMRI data, predictor 5 EEG map
estimates can give information about this by highlighting congruent and non-congruent
areas through positive and negative effect resgions, respectively. All algorithms appeared
to have sufficient edge preserving properties. It seems that it is disadvantageous when
congruent areas adjoin non-congruent areas. That is, an algorithm that is able to retrieve
such sharp edges is likely to be hardly able to differentiate between actual boundaries
and neighboring voxels with a noisy activation signal. Hence, it seems to be necessary
that congruent and non-congruent areas are well separated like in the artificial dataset in
Chapter 6. Generally, we saw that EEG-enhanced fMRI activation schemes could increase

sensitivity, but they had not lived up to expectations.
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EEG-enhanced fMRI activation detection algorithms did not achieve a substantial gain in
sensitivity in the application study described in Chapter 7. In Chapter 6, however, they
had a promising performance in artificial data settings. There are some reasons that might
explain these findings. In the following, we motivate some requirements for successful
EEG-enhanced fMRI activation detection and test these by looking at results from a
modified oddball dataset. The study presented in this chapter is, thereby, conceptually a
proof of concept of (a subset of) proposed algorithms in realistic data settings and not a

rigorous test of hypotheses about sufficient conditions for EEG-enhancement.

From the simulation studies described in Section 6.1.5, we know that the global algorithms
(iMRF2/5 and gCAR2/5) can increase sensitivity by the use of EEG-prior information at
medium fMRI data noise levels. These settings are characterized by a smooth underlying
activation structure that has been distorted by noise—though the smooth structure is still
recognizable. From the findings of the real data scenario simulation study (cf. Section 6.2),
we know that voxels at a log-likelihood ratio (log(LR)) statistic level of about 20 can
additionally be found active. Thereby, we use voxelwise log(LR) statistic values—for
voxelwise hypothesis tests for testing whether the stimulus regressor component is 0—as
a characterization of activation information contained in the fMRI data. Figure 8.1 depicts
the voxelwise log(LR) statistic values of the R; region of the artificial simulation datasets
(cf. Section 6.1.1). Note that the gray-scale colors of the voxel areas and annotated numbers
indicate the size of the log(LR) value. The font color of these values is yellow if both the
iMRF3 and iMRF5 algorithm classify a voxel as active. In analogy to the color code in
activation difference maps presented in preceding chapters, red font color indicates that
iMRF5 finds activation not found by iMRF3; blue font color indicates iMRF3 activation not
found by iMRF5. In Figure 8.1, we see that above mentioned requirements for a successful
application of EEG-enhanced schemes are fulfilled in medium noise levels, which leads to
a substantial sensitivity increase in these settings.

When looking at the data structure of the smooth fMRI dataset (smoothed by a gaussian
kernel with 8 x 8 x 8 mm® FWHM) from Chapter 7 in Figure 8.2, we notice that several
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Figure 8.2: log(LR) statistic map (layer 29) with activation information (iMRF5 vs. iMRF3)
for the application discussed in Section 7.



206 8. Proof of concept

properties may be disadvantageous for a performance demonstration of the EEG enhance-
ment: The data exhibits well pronounced, smooth activation peaks. The interesting log(LR)
statistic values of about 20 are only observed at some locations at activation borders—
where there is a balance between active and non-active neighbors. This balance may
cause that an additional number of active voxels can hardly be found there even if prior
EEG information supports activation at borders. This also indicates why performance
demonstration in the simulation study based on the real data setting (Section 6.2) was
rather disappointing. Though the noise level was increased in some runs, the smooth
peak structure of the data was preserved for affecting mainly voxels on region borders.
Lacking suitable neighborhood information, this made the use of EEG-prior information

dispensable.

Considering all these findings, we hypothesize that the data should possess the follow-
ing properties for a successful application of EEG-enhanced fMRI activation detection
algorithms that provoke a local increase in sensitivity. For the fMRI activation structure:

e The underlying activation structure contains activity regions of a reasonably large

size (not just small isolated peaks).

e Some of these large-scale activation regions are distorted by noise leading to a

perforated activation pattern.
e Activation gaps comprise voxels with a log(LR) statistic value of about 20.

In the analyses of preceding chapters, we have seen that it is also necessary that additional

conditions for the prior EEG information structure have to be satisfied. That is:
e Prior EEG information must indicate activation at targeted locations.

e For predictor type 2, models the prior EEG information must be fairly congruent to

fMRI activation information overall the analyzed brain region.

e For predictor type 5 models, regions with congruent activation information should

not adjoin regions with non-congruent activation information.
Additionally, we suppose:
e Prior EEG information must be sufficiently strong.

To evaluate whether realistic datasets that fulfill (most of these) conditions are suitable
for a successful application of EEG-enhanced schemes, we modify the application dataset

from Chapter 7 in such a way that it possesses above described properties. To decrease
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computation time, we take a subset of the data (z € [15,38], y € [14,33] and z € [22, 33])
incorporating the (neurologically) right part of Brodmann areas 1-4, 6 (containing the
primary somatosensory, primary motor and premotor cortex), which showed a strong
fMRI signal in prior analyses. Then, we use three different strategies to add noise to
the observed activation structure (cf. Figure 8.3). Scenario 1 contains a hole within the
activation structure with surrounding strongly activated voxels. Scenario 2 contains a
slightly larger hole, but surrounding voxels obtain much smaller log-likelihood ratio
values than in scenario 1. In scenario 3, the whole activation region is distorted by noise.
As artificial prior EEG information, we use two congruent information maps in form of the
binary extended fMRI activation map as described in Section 7.2 (denoted as binary prior)
and the log(LR) statistic map (denoted as log(LR)-statistic prior) from the original dataset
without additional noise. As a form of local prior information, we additionally use the
log(LR) statistic map that is set to zero outside a rectangular region of 8 x 9 voxels covering
the targeted activation focus across all slices (denoted as cut log(LR)-statistic prior). This
prior introduces non-congruency in large parts of the analyzed brain, whereupon non-
congruent regions adjoin the targeted activation focus with congruent information at some

borders.

Figure 8.4 depicts the results of all three data scenarios with binary prior. Some voxels at
the borders of the activation region change their state (mainly from non-active to active),
but no changes occur in the targeted region inside the activation focus. This supports the
hypothesis that if the EEG-prior information is not strong enough (like with this binary

prior), EEG-enhanced activation schemes cannot make use of it.

In Figure 8.5, the results with log(LR)-statistic prior are displayed. We notice that each
algorithm has a similar performance across all data scenarios. Both the iMRF2 and iMRF5
algorithm perform very well compensating the lost activation in any case. The f{CAR2 and
gCAR2 algorithm also find most activation in targeted regions, but these are not as sensitive
as the iMRF algorithms at region borders. This indicates that the CAR prior possesses
better edge-preserving properties, which might interfere with the aim to generally increase
sensitivity. In contrast to this, the iMRF prior inclines to smooth across these edges
(compare Chapter 6.1.3). Despite the good performance of corresponding predictor type 2
models, f{CAR5 and gCARb5 degrade the activation structure by additionally deactivating
formerly active voxels. Hence, f{CARS5 and gCARS appear to be not applicable. They might
suffer from identifiability issues.

In Figure 8.6, the results with the cut log(LR)-statistic prior are shown. Whereas all
predictor type 2 models (fCAR2, gCAR2, iMRF2) perform well in data scenarios 1 and
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2, they cannot compensate the loss in data scenario 3—indicating that if the activation
structure is too noisy, non-congruent EEG information cannot compensate the loss. This
might be traced back to the fact that in the non-congruent setting at hand, there is not
enough information in the data to achieve a sufficiently large global EEG effect estimate.
Similar to the findings with congruent log(LR)-statistic prior, the f{CAR5 and gCARb5
deteriorate the activation structure in each scenario. This also happens with the iMRF5

algorithm in data scenario 3.

In data scenario 1 and 2, the iMRF5 algorithm indeed finds all activation in targeted regions
with the cut log(LR)-statistic, but all other activation is lost in regions where prior values are
zero. In this case, it seems that either iMRF5 uses zero EEG measurements as information
on non-activation or that some kind of overcompensation happens. When looking at the
estimates (not shown here), we notice a strongly negative global intercept estimate that
might be appropriate in the inside of the activation focus—where the congruent EEG effect
tield is operative. However, outside the region the spatially-varying effect fields are not
able to adapt to local activation structures and to compensate this negative estimate. This
behavior might hint at identifiability issues that affect the iMRF5 algorithm in reasonably

non-congruent settings.

Considering all results, we come to the following conclusions. The three data scenarios
were suitable to proof that selected EEG-enhanced activation detection algorithms are
useful under certain conditions. Hence, above listed data properties seem to constitute
a basis for a successful application of proposed algorithms. At last, we can give more
precise advice on favorable conditions for a local increase in sensitivity. For the fMRI data

structure still holds:

e The underlying activation structure contains activity regions of a reasonably large
size (not just small isolated peaks).

e Some of these large-scale activation regions are distorted by noise leading to a
perforated activation pattern. It is advantageous when the smooth structure is
preserved to some degree.

e Activation gaps comprise voxels with a log(LR) statistic value of about 20.
For the EEG-prior information structure:
e Prior EEG information must indicate activation at targeted locations.

e Prior EEG information is preferably on a continuous scale indicating activation with

high peak values, i.e. prior EEG information is sufficiently strong.
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e Especially in higher noise settings, prior EEG information must be fairly congruent to
fMRI activation information overall the analyzed brain region. This is a prerequisite
for the use of all predictor types.

e For predictor type 5 models, particularly, congruent regions should not adjoin non-

congruent regions.

If these properties can be observed in applicational data, predictor type 2 models can
help to identify activation covered by noise. We suggest to proceed with caution with the
predictor type 5 models. If one of these should be used, e.g. if it seems indispensable to

adapt to local brain response, iMRF5 might be a suitable choice.
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9 Conclusion and Perspective

Multimodal neuroimaging approaches shed light on different dynamical and structural
aspects of neuronal activity. Hence, data-fusion strategies seem indispensable for cap-
turing its complex nature. In recent years, the combination of fMRI and EEG data has
been a matter of particular interest for neuroscientists. After simultaneous recording
techniques were firmly established, new statistical approaches have been developed to
fuse information contained in both data types. Combining fMRI with EEG is a field of
ongoing research.

In this work, we proposed a novel strategy for the fMRI-EEG data fusion—unequal to any
fusion approach found in the literature. We developed an EEG-enhanced fMRI activation
detection algorithm that is related to asymmetrical EEG-to-fMRI approaches (Rosa et al.,
2010). Current EEG-to-fMRI approaches incorporate non-spatial EEG information in
form of predictor variables in mass-voxelwise general linear models to localize EEG
generators. Unlike these, we extended the Bayesian fMRI activation detection approach
from Smith et al. (2003) to incorporate spatial EEG information in form of prior activation
information to enhance sensitivity. More precisely, a high-dimensional Bayesian variable
selection approach was used to relate spatial EEG-prior information to voxelwise selection
probabilities of a global stimulus regressor component. These probabilities were then
used as indicators for activation, i.e. as activation probabilities. Continuous or binary EEG
information was thereby connected to activation probabilities by using a latent probit
regression stage. The probit predictor was chosen to consist of at least one spatially-varying
effect (intercept or EEG component) to adapt to local brain response. Spatially-varying
effects were regularized by either an intrinsic Gaussian Markov random field (IGMRF)
prior or a Gaussian conditional autoregressive (CAR) prior to ensure identifiability of
voxelwise effects and to impose a dependency structure on neighboring voxels. In this
thesis, inference was based on a Markov chain Monte Carlo (MCMC) approach relying
on global or single-site updates of effect maps. The algorithms with global updates were
denoted as gCAR and iMRE, respectively. Additionally, a faster algorithm for the CAR

prior choice was proposed based on single-site updates circumventing the computationally
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intensive, high-dimensional, sparse Cholesky decompositions. This algorithm was denoted
as fCAR.

Theoretical considerations led to the choice of five different predictor types (depend-
ing on whether intercept or EEG component was included—and if so—as global or
spatially-varying effect). The resulting algorithms were denoted as gCAR1-gCARS,
fCAR1-fCARS5 and iMRF1-iMRF5. This set of algorithms included uninformed fMRI
activation detection schemes without EEG-prior information, which rely on a spatially-
varying intercept only (gCAR3, f{CAR3 and iMRF3). A major part of this thesis was
concerned with the building process of a model suitable for EEG-enhanced fMRI acti-
vation detection. An extensive simulation study on an artificial dataset was conducted
to base model building decisions upon the results of data arising from a controlled sim-
ulation design. Algorithms were assessed in terms of interpretability, possible adverse
side effects and convergency properties. Afterwards, the performance of selected mod-
els was examined in both simulated settings and a real-world example. On the one
hand, fMRI detection schemes (without EEG) were compared to existing models, i.e.
Bayesian activation detection regularized by the Ising prior (Smith et al., 2003) and SPM
(http://www.fil.ion.ucl.ac.uk/spm/software/, version SPMS8). On the other
hand, selected EEG-enhanced models were compared to their corresponding reference
(without EEG-prior) to evaluate their use. Data from the real-world example was recorded
during an auditory oddball experiment. Corresponding EEG-prior information was
available in form of either an individual, an individual time-aggregated or a group- and
time-aggregated source distribution map. Time series of source distribution maps were
calculated by the sSLORETA software (http://www.uzh.ch/keyinst/loreta.htm).
Finally, we assessed the performance of EEG-enhanced activation schemes in an additional
study with slightly modified fMRI data and artificial congruent EEG data from the odd-
ball study to identify data constellations that are most suitable for EEG-enhanced fMRI
activation detection.

Considering all results, we arrived at the following conclusions: The performance of fMRI
activation detection algorithms without additional EEG information turned out to be
impressive. Both the algorithms with global updates (gCAR3 and iMRF3) and the fast,
single-site CAR algorithm (fCAR3) outperformed existing activation detection algorithms
like the Ising algorithm and classical SPM by far. Thereby, findings did not indicate
that increased sensitivity goes at the expense of specificity. Minor differences between
proposed models exist that led to slightly different recommendations on when to use one

of them. The fCARS3 algorithm performed best when the underlying activation structure


http://www.fil.ion.ucl.ac.uk/spm/software/
http://www.uzh.ch/keyinst/loreta.htm

217

is rather coarse or signals are damped by a rather low signal-to-noise ratio. The iMRF3
and gCARS3 algorithms achieved higher sensitivity values when activation effects were
relatively smooth. In contrast to f{CAR3, iMRF3 and gCARS3 generally yielded estimates
with higher smoothness and were, thus, able to better accommodate the spatial structure.
When using these, the iMRF3 algorithm should be preferred for having a slightly better
sensitivity than gCAR3.

Arriving at recommendations for EEG-enhanced fMRI activation detection was not as clear-
cut as with the algorithms without additional prior information. Considering all results,
we observed that the iMRF algorithms consistently had the most promising performance,
because they appeared to recover the most reliable estimates by retaining a high sensitivity
level. Performance of the iMRF algorithms was always superior to the gCAR algorithms,
which even suffered from instability issues like implausible EEG effect map estimates.
The fCAR algorithms seemed unsuitable for EEG-enhanced fMRI activation detection in
many analysis runs for hardly being able to increase sensitivity compared to f{CAR3 by
using EEG-prior information. However, if the data structure was quite coarse, the f{CAR3
algorithm possessed the best performance of all algorithms. This might indicate that f{CAR
algorithms have superior edge-preserving properties. However, we suppose that strong
edge-preserving properties might interfere with the ability to enhance sensitivity by the
use of EEG prior information. The combination of sufficiently strong EEG information
and the incorporation of neighborhood information (regulated by the degree of estimated

smoothness) appears to be a prerequisite for a local sensitivity increase.

Two types of predictors emerged as suitable choices: On the one hand, predictors consisting
of both a spatially-varying intercept and a spatially-varying EEG effect, i.e. predictor type
5 models, and, on the other hand, predictors consisting of a spatially-varying intercept
and a non-negative global EEG effect, i.e. predictor type 2 models.

Based on all findings presented in this thesis, we suppose that predictor types and accord-
ing predictor components possess the following basic properties. For both predictor types,
the spatially-varying intercept captures the brain-wide activity profile contained in the
fMRI data.

In case of predictor type 5, the spatially-varying EEG coefficient regulates the EEG influence
on activation detection and adapts it to local conditions. That is, it increases EEG influence
in brain parts where EEG and fMRI are in accordance with each other and downweights
EEG influence where it contradicts the fMRI signal. Hence, the algorithm is quite robust

against misspecifications in EEG-prior choice. Nevertheless, a requirement for increasing
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sensitivity in regions of special interest seems that these are not too close to regions
with non-overlapping fMRI and EEG information. If these areas are distant enough,
the downweighting mechanism does not interfere with the positive EEG influence in
other regions. Thereby, the corresponding minimal distance depends on the degree of
smoothness in the data and is likely to span only a small number of voxels. To assess
congruency, EEG effect map estimates can give information about the overlap of fMRI and

EEG data and, hence, give hints on possible problems.

In case of predictor type 2, the global EEG effect possesses the ability to increase prior
activation probabilities proportionally to the observed EEG measurements as soon as
a reasonable large, positive EEG effect is retrieved. If necessary, the spatially-varying
intercept can have a region-specific compensating effect to improve the goodness-of-fit.
The size of the EEG effect depends on the degree of congruency of fMRI and EEG data. If
EEG information does not match fMRI information in large parts of the analyzed brain,
a virtually zero global EEG effect estimate is recovered. Hence, this algorithm is equally
robust against misspecifications, but, in contrast to predictor type 5 models, it loses its

ability to increase sensitivity in remaining congruent areas.

Comparing the performance of both predictor types, we generally expect that predictor
type 5 models possess a better performance than predictor type 2 models when non-
congruency is present in the data. The iMRF2 algorithm retrieves a global EEG effect
by averaging over all analyzed brain parts, so that the effect may be decreased (even
to virtually zero estimates) if too much non-congruency is in the data. In contrast to
this, iMRF5 is able to adapt the EEG effect to local conditions. As long as regions are
sufficiently separated, effects in non-congruent areas do not substantially influence effects
in congruent areas, which can retain their high sensitivity level. Generally, we observed
that both predictor types are at least equally sensitive as its corresponding mere fMRI

activation detection algorithms in most analyses.

Despite our expectations, EEG-enhanced fMRI activation detection schemes only revealed
their benefit in data settings with certain properties. From these findings, we suppose that
they are useful in regions where fMRI data possess activation structures of reasonable large
size (not just isolated peaks) with unnatural gaps in the structure (e.g. due to noise). Within
this region, non-active voxels containing a damped activation signal can then be classified
as active if prior information—in form of sufficiently strong EEG measurements—indicates
activation at these locations. Thereby the prior information must be fairly congruent to

fMRI activation information overall the analyzed brain.
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In our real-world example, the data structure deviated from these guidelines. Therefore,
only a relatively small number of voxels switched their status from being non-active to
active. Hence, we saw indeed that our EEG enhancement possesses some potential to
increase sensitivity, but in the application at hand, it had not lived up to expectations.
In controlled settings, like in simulation studies and analyses of modified real data, we
observed, however, a substantial performance increase with data that possessed above
properties. In the conducted artificial simulation study, iMRF5 could increase sensitivity
in the order of 8.8%.

For further applications of the EEG-enhanced algorithms, we suggest to proceed as follows.
Having applied an analysis run without EEG-prior (e.g. by use of f{CAR3 or iMRF3), regions
of interest have to be identified where neuronal activation appears to be damped by noise
in the fMRI signal. Looking at the log-likelihood ratio statistic map for evaluating the
significance of the stimulus regressor in the fMRI regression stage may be helpful for this.
Then, an EEG (or any other non-redundant) prior information map has to be selected
that supports the hypothesis of activation exactly at these locations. For EEG-enhanced
activation detection, we suggest to use either the iMRF2 algorithm with non-negatively
restricted global EEG effect or the iMRF5 algorithm. The user may start with an iMRF5
analysis. If sensitivity could not be substantially increased, the EEG effect map estimate
may give hints on problems in the data. For example, positive effect areas being located
directly besides negative effect areas indicate that non-congruent and congruent areas are
too close. If the degree of congruency in the combined data is high, the iMRF2 algorithm
can be applied. To ensure a high congruency level, analysis may be restricted to the region
of interest to focus on those parts of the brain, where carefully selected EEG information is
mostly congruent to fMRI information or rather supplements it. In this case, iMRF2 has

the potential to increase sensitivity at targeted locations.

For researcher that want to use either the uninformed or EEG-enhanced fMRI activation
scheme, we have implemented a user-friendly software library making all discussed
Bayesian algorithms available. High diligence was put into arriving at a user-friendly, but
computationally efficient software solution. The software is freely available as R package
Rfmrieeg. Alternatively, C++ source code is provided for a binary CfmrieegMain

program. Both kinds of software packages can be obtained from the author.

Summarizing, the approaches proposed in this thesis were based on a completely new idea
on how to combine fMRI and EEG data. The use of a high-dimensional hierarchical model
was indispensable for this, though no experience with this very specialized modeling

approach existed at all. Hence, large parts of our work consisted of arriving at suitable
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statistical model building decisions and solving problems arising in high-dimensional data
settings like convergency issues and computational feasibility. Generally, we assert that
the proposed models possess several good properties and can be considered as a good

starting point for further developments.

Several minor modelling decisions may be questioned, like, e.g. the use of independent
error terms in voxelwise fMRI regressions or the use of a g-prior for fMRI regression effects.
It might be worth a try to implement alternatives to these choices, but we do not expect
that the performance of proposed algorithms is strongly influenced. In particular, the exact
form of fMRI regression model enters the latent EEG stage very indirectly—only in form
of transformed voxelwise likelihood ratio statistics. Nevertheless, we are not entirely sure
how these changes can affect the algorithms, because their derivation has to be adapted to
alternative modelling choices. Marginalization steps to fMRI regression parameters may

not be feasible anymore.

The most promising extension to our modeling approach is the incorporation of brain
partitioning information (see, for example, the description in Appendix B of Daunizeau
et al., 2007). Estimation of random fields and corresponding variance and spatial depen-
dency parameters should be broken down into parts and be accomplished within (more)
homogeneous brain areas. This is likely to resolve several problems. On the one hand,
the speed of models with global updates can be increased substantially and convergency
issues are likely to be resolved when reducing the high-dimensional dataset into smaller
subgroups. On the other hand, the dependency resp. variance parameter estimation can
be varied over partitions so that the model allows for different smoothness levels over
the brain. The procedure would then incorporate a locally adaptive variance parameter
estimation scheme. This implicates that we finally might arrive at a single model incor-
porating advantageous properties of the fast CAR algorithm (with the tendency to lower
dependency level estimates and resulting better performance in coarse structures) and
of algorithms with global updates (with the tendency to higher dependency level esti-
mates and better performance in smooth structures). For EEG-enhanced fMRI activation
approaches in form of predictor type 2 models, it seems likely that non-congruency issues
can be resolved by this as well. If the constant (i.e. formerly global) EEG effect is estimated
within partitions, it is no longer averaged over inhomogeneous areas, which has led to

implausibly small effect sizes.

Another extension to EEG-enhanced fMRI detection schemes is the incorporation of a
further tuning phase. After one of our algorithms has arrived at estimations for the latent

probit effect estimates (after a predetermined number of MCMC iterations), it seems
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conceivable to set effect maps constant and increase the corresponding (marginal) prior
probability level by a selected multiplication factor. Then, an additional number of MCMC
iterations, in which only the binary activation field is updated, can lead to a more sensitive
solution—though taking account of the general activity structure. Whether this idea is

generally applicable, remains to be tested.

The existing approaches can further be modified by changing the fitting algorithm. Though
the full Bayesian MCMC approach finds the exact posterior distribution of model parame-
ters, it is rather slow. Another popular approach in neuroimaging is a variational Bayes
approach to Bayesian inference (see e.g. Titterington, 2004). It approximates the joint pos-
terior distribution of all unknown parameters with a simpler distribution usually positing
further independence assumptions than those implied by the original generative model.
By this, the computational demand can be decreased substantially. However, a comparison
between full and approximate Bayesian approaches has to be conducted to check whether

the speed is achieved at the expense of accuracy.

A further point of criticism may be the restricted scope of application of our algorithms. In
this thesis, we focussed on modeling activation provoked by just one stimulus type. Nev-
ertheless, it is conceivable that other stimulus types, which are presented within the same
experimental procedure, are either included as confounders or as a further additive stimu-
lus component that is subject to Bayesian activation detection. However, so far, no strategy
has been developed for testing general contrasts between incorporated stimulus types.
Generally, our methodology is not applicable to stimulus-free experimental procedures
like resting state observations. For being inevitably connected to a regressor modeling
some kind of stimulus that provokes neuronal activation, an extension to stimulus-free

settings is not conceivable.

As we have seen in an analysis of different fMRI time subsets, data may contain time-
varying activation profiles. Hence, the assumption of time-constant activation effects—a
standard assumption in most fMRI analyses—may be strongly violated. If checks (e.g.
the analysis of different fMRI subsets) indicate deviations from this assumption, time-
varying activation effects should be incorporated in the fMRI activation detection model.
An example for a time-dependent resp. vigilance dependent fMRI stimulus effect at
the fMRI regression stage can be found in Bothmann (2012). It seems also conceivable to
incorporate time effects into proposed models. The latent probit predictor can, for example,
be extended to include a time trend. The model, however, then would have to handle a
time-varying latent binary activation field. It remains to be tested if the resulting model

for spatio-temporal activation detection can handle this challenging situation.
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At last, we question whether the specific application used to test proposed algorithms was
suitable to show their strengths. We have seen that the analyst has to exercise reasonable
care when selecting both the exact form of fMRI data and EEG-prior information. That is,
there must be room for improvements in fMRI activation detection and, at the same time,
EEG-prior information must both be strong (exactly where it is needed to improve the
result) and mostly congruent with the analyzed fMRI data. In the auditory oddball study
presented in Chapter 7, selecting a suitable combined dataset appeared to be problematic.
On the one hand, the oddball paradigm produces well-defined activation peaks with
reasonable size in smoothed fMRI data. There were few sites, with suitable medium signal-
to-noise level ratio, showing great promise for EEG-enhanced activation detection. Hence,
there might be other applications providing data structures better suited for EEG-enhanced
activation detection. On the other hand, it was a challenging task to find matching 3D
prior EEG information maps that were mostly congruent to fMRI data. There are several
issues possibly introducing non-congruency. To list a few examples, first, both data types
contain different informational content about neuronal activity; second, 3D EEG maps are
prone to pre-processing errors introduced by source construction techniques like sSLORETA
(e.g. by localization errors and non-matching analyzing masks) and by other aggregation
techniques like ICA (e.g. by splitting spatial information into independent components);
third, if used, group-level EEG information does not necessarily match the subject-specific
fMRI dataset. To adopt a rather optimistic attitude towards EEG-enhanced fMRI detection,
we conclude that with other pre-processing options more suitable 3D EEG maps might
be derived. Thereby, finding a suitable EEG-prior map is only important for gaining a
performance increase. The fact, that EEG-prior information cannot be used to arbitrarily

increase activation in any brain region hints at the robustness of our algorithms.

In the fascinating field of neuroscience, a vast variety of experimental strategies is available
to investigate human brain functioning. Hence, there is no doubt that other applications
exist that can benefit from EEG-enhanced activation detection. For these, we recommend a
hypothesis-driven approach to data analysis. If algorithms are applied to carefully selected
regions of interest, where a suitable combined dataset is at hand, these can bring out

otherwise damped fMRI activation.



Appendix A

Derivation of further components of the
EEG-enhanced fMRI model

A.1 Marginalized conditional distributions of binary
indicators

A marginalized full conditional distribution for «; is based on the following factorization
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where g; = Y-, 4, is the number of nonzero regressors in regression i.

The inner integral can be solved by recognizing a multivariate normal distribution in 3;(+;)
with mean 3,(~;) and covariance matrix o? (1 + %)X(v,)'X(;)) !, After completion with
the inverse of amended terms, p(y;|7y,) can be rewritten as
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The integral is solved by recognizing an inverse gamma distribution with shape parameter
T'/2 and scale parameter S;(,)/2, where

Si(v;) = yéyz— - Bi('Yz’)/X('Yz‘)/X(%)Bi (7:)
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is the sum of squares in regression ¢ corresponding to subset ;. Thus,
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A.2 Conditional posterior means of fMRI stage
parameters

In this section, the conditional posterior means of the regression coefficients 3; and variance

parameters o7 are derived.

The marginalized full conditional of 3; is calculated by
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The form of conditional posterior in (A.1) can be completed to an inverse gamma distribu-

tion with shape parameter 7t% and scale parameter 1b. After multiplying inverse terms

and using a proportionality statement once more,
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which is a multivariate T-distribution with mean 3,(v,).

The marginalized conditional mean of 0? is derived by similar arguments as for 3,. First,
we note that the full conditional for o7 is only dependent on 3; and «; to yield
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where b is as in (A.2). The parameter 3, can be integrated out by noting a multivariate
normal distribution with mean 3;(~,) and covariance matrix o (1+ 1) X(v)X(v,)) -
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Hence,
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This can be complete to an inverse gamma distribution with shape parameter 7'/2 and
scale parameter S;(7y,;)/2. Therefore, E(c?|v,;,y:) = Si(v;) /(T — 2).

A.3 Marginal prior probability for activation

In the following, we calculate the marginalized prior probability of U given variance
parameters of probit effect priors: p(U|&3 , €8, &5, &%) For this, we have to integrate out
effect parameters of the probit stage. For vectors of spatially-varying coefficients, we use a
zero vector as prior mean. To show that p(y; = 1) = p(U; > 0) = 0.5, we have to set prior

means of global parameters to 0 as well.
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where Q is the precision matrix of spatial GMRFs and £ its possible loss in rank. Let

a = (apq, 0g, o, o) be the concatenated vector of probit effects and X = (1,j,1,J) the
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according design matrix, then we can rewrite the integral as
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Expanding the exponent and amending with missing terms, a multivariate normal density
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0,G G 50 g

—%(U — X&) (U - Xd)) exp (—%d’Qd) ao.a, oG, o, )

7N N N

in & can be recognized:

2(N—k+1)
2

p(U|€§,Gvfé7£§7€2) = C(&%,G?éé?&%?ﬁ%/ (%) ‘(X,X + Q)

1 3 3
exp (—5 [a’(x’x + Q)& — &XU - UXé + UX(X'X + Q)‘lX’UD a0, ac, g, @)

1/2

1 ~ 1
- exp (éU’X(X'X - Q)_IX’U> exp (—§U'U> ,

where C(£3 ¢, €2, 65, €%) depends on all remaining constant terms and variance parame-
ters. Hence, the integral has value 1 and the marginalized density of U given variance

parameters is

P(Ul8.6,86-0,87) = Cl&.: €665, €7) exp (—%U’ <I - X(X'X + Q)‘IX/> U) :



Appendix B

Robustness of variance parameter
estimation

Convergency diagnostics of Bayesian activation detection schemes with a spatially-varying
effect in a latent probit stage revealed difficulties in variance-covariance parameter esti-
mation. Convergency of variance parameters £ and & are strongly dependent on prior
settings, i.e. inverse gamma shape and scale parameters. Convergency of spatial de-
pendency parameters 72 and 7@ in the models with CAR prior are dependent on the
corresponding starting value and proposal variance of the Metropolis step. Although a
tedious search for optimal hyperparameters has been conducted, some variance parameter
trajectories still show mixing problems like lacking stationarity and strong autocorrelations
(see Figure 5.3 for an exemplary gCARSb trace plot). Convergency to an equilibrium distri-
bution cannot be assessed for sure. Being nuisance parameters of the lowest hierarchical
stage of our models, we decided to conduct a small robustness study to evaluate the
influence these convergency issues have on remaining parameter estimates. Foremost, we
are interested in influences on activation maps. Evaluation is based on the artificial dataset
from Chapter 6. We focus on models with predictor type 5, i.e. the probit predictor with
both spatially-varying intercept and spatially-varying EEG effect and use as a starting
point the settings and results from Section 6.1.3.

B.1 Robustness of gCARS results

The robustness study for the gCAR5 model is conducted as follows. We take the variance-

covariance parameter estimates from gCARS runs in Section 6.1.3. As estimates £2, 72, £2
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and 7§, we take the mean of thinned parameter trajectories (with stepping equal to 5) after a
burnin of 1000 iterations of a total of 6000 MCMC iterations. These estimates are assigned
to reference model M5 of this robustness study. In M5 the analysis is conducted again with
variances and spatial dependency parameters set constant to these values. The remaining
runs evaluate the influence of different variance parameters on a small grid of values. For
this we take a 7%-set of {0.50, 72 = 2.19,4.00} and a 7Z-set of {28,7¢ = 33.13,38.00} and
form all 2-way combinations of these. Note that these 72 resp. 7¢ values are rather far apart
from each other, i.e. the margins of deviation of estimated posteriori distributions from
the original model run are smaller to some extent. It is advantageous if robustness can be

established for these rather extreme choices.

Variance parameters {2 and &7 are set in such a way that the ratios £2 /72 and £} /7¢ are equal
to the ratios of estimates £2/72 and £2/72. This restriction is not as limiting as it may seem
at the first sight: The relative weight of spatial dependence in relation to the total variance
is still varied. However, by this, the number of analysis runs can be reduced to 9. The
constant ratio between variance-covariance components can be motivated by the following
observation: Useful hyperparameter values leading to acceptable variance parameter
trajectories in the gCAR5 model were not as difficult to be found as for spatial dependency
parameters. Hence, we put less weight on the evaluation of £* (&). A summary of all

parameter constellations can be found in Table B.1.

M1 M2 M3
212677 | 31.67 | 36.32
72 [ 28.00 | 33.13 | 38.00
€] 115 | 115 | 115
72| 050 | 050 | 0.50
M, | M | Ms
212677 | 31.67 | 36.32
72 | 28.00 | 33.13 | 38.00
¢ ] 502 | 5.02 | 5.02
72| 219 | 219 | 2.19
M; | Mg | M,
212677 | 31.67 | 36.32
72 | 28.00 | 33.13 | 38.00
€1919 | 919 | 9.19
72| 4.00 | 4.00 | 4.00

Table B.1: Design for robustness evaluation of gCARS variance parameter estimation.
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In the following result tables and figures, we look at differences in activation probability
estimation and activation classification. We note that varying 72 leads to stronger variations
in results than varying 7—which might be due to our choice of values where 72 varies

more strongly relative to its size.

In Table B.2 the sensitivity values of M, to M, are listed. We note that with increasing 72
sensitivity increases slightly. Differences, however, are small and values are in the range of
0.812 and 0.847. This can also be inferred from the activation difference plots in Figure B.1a,
which are exemplary shown for the medium layer 3. Only a small increase in voxels being

classified as active can be observed with increasing 72,

M, M, M;3
0.812 | 0.812 | 0.820
M, | Mz | M
0.828 | 0.839 | 0.835
M; | Mg My
0.839 | 0.847 | 0.843

Table B.2: Sensitivity estimates of gCARS runs.

In Figure B.1b differences in posterior activation probabilities of respective models are
plotted compared to M;. The runs with 72 = 0.50, i.e. My, My and M, yield smaller
activation probabilities in activation regions than M5. The runs with 72 = 4.00, i.e. M7, Mg
and My, yield larger activation probabilities in activation regions than ). The remaining
two models, M, and M, with 72 being equal to M; have activation probability values
similar to M;—though larger variations within activation regions can be observed. As can
be inferred from Table B.3, variations in posterior activation probability values are well
centered around 0 and are maximal in the order of magnitude of £0.15. We assume that
changes in posterior activation probability values must be larger to affect binary activation

maps.
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Min. Mean Max.
M; — Ms -0.1490 -0.0004 0.0530
My — My -0.1430 -0.0004 0.0410
Mz — M5 -0.1380 -0.0004 0.0390
My — My -0.0330 -0.0000 0.0450
Mg — M5 -0.0430 0.0001 0.0530
M, — Ms -0.0410 0.0002 0.0930
Mg — M5 -0.0370 0.0002 0.0840
Mg — M5 -0.0240 0.0002 0.0850

Table B.3: Summary of difference values between posterior activation probability values of
models M; and reference model M5 in the gCARS5 model.
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B.2 Robustness of fCARS5 results

The evaluation runs of the fCARS5 algorithm are constructed in an analogous fashion as
for the gCARS algorithm. We take the variance-covariance parameter estimates of {CAR5
from Section 6.1.3 and set corresponding parameters constant to these values in M;. Then,
we evaluate robustness by varying 72 and 7;-values on a 2D grid. Variances £? and & are
again only varied by keeping £?/72 and &2/7¢ constant. See Table B.4 for a summary of
conducted runs.

M, M, Ms

21214 | 677 | 17.14
| 050 | 1.58 | 4.00
€2 140 | 140 | 140
721 0.01 | 0.01 | 0.01
M4 M5 MG

21214 | 677 | 17.14
5| 050 | 1.58 | 4.00
€| 432 | 432 | 432
721 0.03 | 0.03 | 0.03
M; | Mg | My

21214 | 677 | 17.14
5| 050 | 1.58 | 4.00
€2 | 14.02 | 14.02 | 14.02
721 0.10 | 0.10 | 0.10

Table B.4: Design for robustness evaluation of f{CARS5 variance parameter estimation.

In Table B.5, the sensitivity values of A, to My are listed. Only slight changes in sensitivity

evolve with no specific trend. This can also be inferred from Figure B.2a.

M1 M2 M3
0.862 | 0.854 | 0.858
My | Ms | Ms
0.854 | 0.854 | 0.854
M; | Mg | M
0.851 | 0.851 | 0.854

Table B.5: Sensitivity estimates of f{CARS runs.
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In Figure B.2b, differences in posterior activation probabilities of respective models are
plotted compared to M;. In all models changes in activation probability occur in both
directions well scattered over the brain. Outside the brain (which is included by mask in
the fCAR5 model) minor changes can be observed, whereas in activation regions larger
variations evolve. As can be inferred from Table B.6, variations in posterior activation

probability values are well centered around 0 and are maximal in the order of magnitude

of +0.1.

Min. Mean  Max.
M; — M5 -0.0620 -0.0003 0.0860
My — My -0.0530 -0.0000 0.0780
Mz — Ms -0.0750 0.0001 0.0590
My — Ms -0.0740 -0.0003 0.0880
Ms — Ms -0.0440 0.0002 0.0710
M; — M5 -0.0650 -0.0003 0.0680
Mg — M5 -0.0780 -0.0000 0.0720
Mgy — M5 -0.0610 0.0001 0.1000

Table B.6: Summary of difference values between posterior activation probability values of

models M; and reference model Mj5 in the f{CAR5 model.
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B.3 Robustness of iMRF5 results

The IGMRF prior depends on only one variance-covariance parameter (per spatially-
varying effect) and hence, models both variance and spatial dependency simultaneously.
Parameter ¢? is the variance-covariance parameter of the spatially-varying EEG effect
and & of the spatially-varying intercept. Like for the gCARS5 and fCAR5 models, we
take the variance-covariance parameter estimates £2 and &2 of the iMRF5 model from
Section 6.1.3 and set corresponding parameters constant to these values in M;. Then we
evaluate robustness by varying £* and &3-values on a 2D grid (cf. Table B.7 for a summary

of parameter constellations).

M1 M2 M3
212,00 | 5.10 | 8.00
¢2]2.00 | 2.00 | 2.00
My | Ms | Mg
212,00 | 5.10 | 8.00
€2 | 448 | 448 | 4.48
My, | Mg | My
212.00 | 5.10 | 8.00
¢2 | 8.00 | 8.00 | 8.00

Table B.7: Design for robustness evaluation of iMRF5 variance parameter estimation.

In Table B.8, the sensitivity values of M to M, are listed. We note that with increasing &;
sensitivity increases slightly. Differences, however, are very small and values are in the
range of 0.881 and 0.912. This can also be inferred from the activation difference plots in
Figure B.3a, which are exemplarily shown for the medium layer 3. Only a small increase

in voxels being classified as active can be observed with increasing 7.

M, M, M
0.889 | 0.912 | 0.912
M,y M Mg
0.893 | 0.908 | 0.908
M Mg My
0.881 | 0.897 | 0.908

Table B.8: Sensitivity estimates of iMRF5 runs.
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Min. Mean Max.
M, — M5 -0.1670 -0.0003 0.0290
My — M5 -0.0410 0.0000 0.0570
Mz — M5 -0.0320 0.0001 0.0550
M, — M5 -0.1550 -0.0003 0.0210
Mg — M5 -0.0490 0.0001 0.0670
M; — M5 -0.1860 -0.0004 0.0510
Mg — M5 -0.0820 -0.0000 0.0310
My — M5 -0.0490 0.0001 0.0680

Table B.9: Summary of difference values between posterior activation probability values of
models M, and reference model M5 in the iMRF5 model.

In Figure B.3b, differences in posterior activation probabilities of respective models are
plotted compared to M;. Conform to activation classifications, we note that increasing 7
values lead to increasing activation probability values. Variations, however, are mainly
restricted to activation regions. Like in the models based on the CAR prior, variations in
posterior activation probability values are well centered around 0 with maximal values in
the order of magnitude of £0.17 (cf. Table B.9).

B.4 Summary

In this chapter, we reported results from a robustness study evaluating the influence of
variance and spatial dependency parameter values on estimates of interest. Ultimately, we
are interested in binary activation maps and underlying posterior activation probability
maps. Despite the rather extreme choices of variance parameters, only minor changes
in activation classification occur for all model types (gCARS5, fCARS5, iMRF5). Hence,
sensitivity of each model type remains on a similar level for all runs. Specificity values
were not shown for staying on the same high level (i.e. most of the time equal to 1) for all

runs—which might be due to the simulation design.

The fCAR5 model (which works with single-site updates) appeared to be the most robust
concerning the variation in sensitivity values. Variations in posterior activation probability
maps happen all over the brain and are not restricted to activation regions.

In both gCARS5 and iMRF5 models, which have in common that spatially-varying effects

are updated globally, variations in posterior activation probability maps happen mainly
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in activation regions. With increasing spatial dependency parameter more voxels are
classified as active. For the gCAR5 model this is due mainly to the increase in 72. For the
iMRF5 model this is due particularly to the increase in &2.

We conclude that results are fairly robust against choices of variance and spatial depen-
dency parameters and thus, against mixing issues within the corresponding Bayesian
estimation process. Hence, the results presented in Chapter 6 can be considered to be
reliable.
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Implementation: Arguments for a call
to the fmrieeg algorithm

A data independent implementation of the fmrieeg algorithm collection is inevitably
connected with a large number of arguments needed for configuring different model runs.
For starting the algorithm, up to 58 arguments have to be specified—depending on the
kind of model to be fitted. These arguments have to be passed to the algorithm using a
convenient configuration text-file. In Chapter 5, we demonstrated an easy way to control
the setting of arguments using the utilities of the Rfmrieeg R-package, but also a carefully
documented configuration file template is available that can be modified to ones needs.

In the following, we give an overview of arguments that can be controlled by the user. We
differentiate between arguments being independent of the exact choice of Bayesian activa-
tion detection model. These are listed as common parameters in Table C.1. Arguments
for the latent Ising model (Smith et al., 2003), which serves as a reference to our models,
are listed in Table C.2. Arguments for the latent probit models, which are proposed in
this thesis in Chapters 3 and 4, are listed in Table C.3 combined with the reference to

corresponding algorithm types using each.

With the categorical argument modelType, the model is selected: ‘1" selects a latent
probit model with CAR prior, ‘2" selects a latent probit model with an IGMRF prior
(iMRF algorithm), ‘3’ selects an Ising model (which is the default). If the CAR model is
selected (modelType=2), the boolean probit parameter speedup (cf. Table C.3) switches
between the CAR model with global updates (gCAR) and the fast CAR algorithm (fCAR):
If speedup=FALSE, gCAR is selected and otherwise fCAR. For modelType equal to 1
and 2, the five-level 1inPred argument contains the type of predictor to be fitted (cf.
Table 3.1).
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Name Default Description

setConfig.pathResults(...)

General parameters

pathResults * Path to folder where a results folder can be generated.

setConfig.fmri (...)

Arguments related to the scanning procedure

t0 0 Exact time of first (slice-time corrected) scan in seconds
since recording onset.
tr 2 Repetition time of scans in seconds.

Information about the stimulus presentation

nStimTypes 1 Number of stimulus types to be model. (Note that Bayesian
activation detection—so far—can only be applied to one
stimulus type specified in st imActDect. The remainder
types are modeled as confounders.)

stimActDect 1 Stimulus type for which Bayesian activation detection
should be applied to. (This is a number within range 1
-nStimTypes.)

nPerStimType * Integer array with length nStimTypes: Each element
contains the number of presented stimuli of one of the
nStimTypes stimulus types.

pathStimTimes * Path to text-file with an one-dimensional array of stimulus

presentation times of all stimuli. (Note that presentation
times of one stimulus type must be grouped together. Stim-
ulus groups are ordered according to the same sequence as

in nPerStimType.)

Arguments related to the fMRI data
pathNifti * Path to fMRI data, which is available as a 4D nifti file (i.e.
in form of one .nii file).

maskType threshold  Type of mask for selecting voxels for analysis. Choose
between threshold and implicit; or specify a path to
an explicit binary mask image (file-format “.nii’).

grandMeanScaling FALSE Indicator if grand mean scaling is requested.

Arguments related to the fMRI design matrix: confounders and high pass filter

confounder FALSE Indicator if confounder variables should be modeled.

pathConf * If confounder==TRUE: path to text-file with confounder
matrix.

fregHPF 128 High pass filter frequency. Upon this DCT regressors are

calculated regressing out frequencies below this value.

Continued on next page
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Table C.1 - continued from previous page

Name

Default

Description

setConfig.stimCanonicalBF (...) or setConfig.stimGammaBF (...)

Arguments related to the HRF modeling at the fMRI regression stage

typeStimBF

derivativesStimBF

canonical

Type of HRF basis function (BF). Choose between type
canonical or gamma.

Number of derivatives used for generating basis functions.
For canonical: 0 (just canonical), 1 (plus ‘time” deriva-
tive), 2 (plus ‘dispersion’ derivative). For gamma: 0 (no
derivative) or 1 (plus ‘time” derivative);

Arguments for the gamma type of HRF BF:

shapeVec 4,8,16
noShapeParams 3
scaleVec 1
noScaleParams 1

Vector of shape parameters for gamma basis functions.
Length of shapeVvec.

Vector of scale parameters for gamma basis functions.
Length of scalevec

setConfig.MCMC(...)

Arguments for the MCMC procedure

chainSize 6000
burnin 1000
step 5
diagnostics TRUE
randomSample TRUE
noVoxSample 20
subSample 0

Total number of MCMC iterations to be conducted.
Number of iterations after which convergency of Markov
chains to their equilibrium distribution is assumed.
Thinning parameter.

Indicator if diagnostics should be written out: TRUE if
diagnostics should be saved, FALSE otherwise.

Indicator if the sample of voxels for which the diagnos-
tics should be saved should be randomly chosen (then set
randomSample = TRUE) or indices of voxels are specified
in a vector (then set randomSample = FALSE and specify
an array of integers for argument subSample).

This is either the number of randomly selected voxels (if
randomSample==TRUE) or the length of subSample (if
randomSample==FALSE and an array of indices is speci-
fied in subSample).

If randomSample == FALSE, these are the 1D indices (1-
based) of selected voxels for which diagnostics are saved.
Note that novoxSample has to be specified nevertheless

(for reading in the vector).

Table C.1: Common arguments for the fmrieeg C++ algorithm. Mark “* denotes argu-
ments that are mandatory to be specified by the user and have no default values. When
using the Config class functions within the R-package Rfmrieeg, the arguments
listed underneath the R setter function names are set by the corresponding function.
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Name Default Description
piPrior 0.25 Global prior probability for activation within gray-matter.
gmMap 1 Optional gray-matter probability map, which is available

as a 3D nifti file (i.e. a .nii file). If not specified, all voxels in
the analyzing mask have gray-matter probability 1.
theta 0.45 Spatial dependency parameter for Ising field.

Table C.2: Model specific arguments for an Ising model run provided by the fmrieeg
C++ algorithm.
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Appendix D

Supplementary results: Results of
shortened fMRI data trajectories

In the simulation study presented in Section 6.1.5, an increased performance of EEG-
enhanced fMRI activation detection algorithms was observed at medium signal-to-noise
ratio level. The signal-to-noise level, however, seems to be different in our application:
An fMRI trajectory of 7' = 303 images may contain sufficient information in the fMRI
likelihood to suppress prior EEG information. We hypothesize that the EEG-enhanced
fMRI activation detection algorithms may show their strengths if fMRI trajectories contain
less measurements. If sensitivity is substantially increased, this finding may be useful
to reduce observation time of subjects in experiments. To test this hypothesis, we rerun
some analyses from Chapter 7 with shortened fMRI data trajectories with fMRI subsets of
images 1-200 (referred to as case “A’) and images 101-300 (referred to as case ‘B’).

We first compare activation detection results on fMRI subsets to the analysis of all 303
fMRI scans with predictor 3 algorithms, which do not use additional EEG information.
Pairwise difference maps of each algorithm and subset can be found in Figure D.1. The
difference between the fCAR3, gCAR3 and iMRF3 algorithms are small and in line with
tindings described in Section 7.3.1. However, the discrepancy between cases ‘A" and ‘B’
are striking: A strong time-varying activation effect emerges overall brain regions. This
might be traced back to the specific experimental design and/or characteristics of the
observed test person. Activation changes occur in both directions with the majority of
voxels (subject to change) changing from being non-active to active. Case ‘B’ contains more
activation information compared to both case ‘A" and the entire fMRI dataset. The latter
can be explained by the fact that estimates derived from the entire dataset are an average

of activated and non-activated contents of the time series. Hence, case ‘B’ contains more
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activation for only averaging over activated time sections. In the central part of layer 21,
we observe an activation change to the other direction: An clear activation focus vanishes

over time.

To test whether external EEG information can increase the sensitivity of runs on fMRI sub-
sets, we use the extended fMRI activation map from the test case described in Section 7.3.2.
With this map, we do not expect any complications with non-congruent informational
content of EEG and fMRI and can directly assess whether beneficial external information
can be used to increase sensitivity. The results of the runs with the reduced fMRI dataset
‘A’ (scans 1-200) are presented in Figures D.2, D.3 and D.4. The results of the runs with
the reduced fMRI dataset "B” (scans 101-300) are presented in Figures D.5, D.6 and D.7. A
detailed figure description can be found in Section 7.3.2.

As noted above, subsetting the fMRI dataset to scans 1-200 leads to an enormous loss in
sensitivity: The number of activation foci as well as the size of remaining activation foci is
strongly decresed. Neither of the six EEG-enhanced algorithms can be used to compensate
this loss. Though EEG information identifies more active voxels at few further locations,
e.g. gCARD enlarges the central activation foci in layer 27, the algorithms are not capable
of finding the large activation structures identified with the complete 7' = 303 fMRI series.
For the fCAR2 and gCAR2 models not recovering an influential EEG effect in case “A’, it
seems that external prior information and fMRI activation is fairly non-congruent. That
is, much of the total activation information is either not contained in scans 1-200 or it is
not strong enough to effect results. At large, fCAR algorithms are more sensitive than
the gCAR and iMRF models in most parts of the brain, which might be traced back to
relatively small activation region sizes of this data example. Here smoothness properties,

i.e. generally an advantage of the algorithms with global updates, does not have an effect.

Subsetting the fMRI dataset to scans 101-300 leads to the large activation foci found overall
the brain as described above. Now all predictor type 2 models recover non-negligible
global EEG effects leading to similar activation changes than the predictor type 5 models.
Though sensitivity is high without using external information, some additional voxels can
be found to be active on region boundaries, only a few become non-active. The gain in
sensitivity is, however, limited. There is one region, the central part of layer 21, where
activation algorithms exhibit an unequal ability to detect activation: Whereas gCAR2/5
and iMRF2/5 are only able to increase local posterior activation probabilities to some
extent, {CAR2/5 probability estimates are large enough, so that central voxels are classified
as active (supporting and intensifying the results of f{CAR3). These are the voxel found

to become non-active over the time of the experiment. Hence, compared to case ‘A’,



250 D. Supplementary results: Results of shortened fMRI data trajectories

corresponding activation information is far less pronounced in scans 101-300. Comparing
fCAR results to the algorithms with global updates, we notice again (cf. Section 7.3.1) that
fCAR is better when the underlying activation structure is coarse (inter activation region
spaces), but is outperformed when intensifying large activation structures (activation

region boundaries).

Generally, when examining fMRI subsets of the auditory oddball experiment at hand,
we come to the following conclusions. The observation of activation changes over time
imply that the assumption of time-constant activation effects—a standard assumption in
most fMRI analyses—may be strongly violated. If checks (e.g. the analysis of different
fMRI subsets) indicate deviations from this assumption, time-varying activation effects
should be incorporated in the fMRI activation detection model. The interested reader
is referred to Bothmann (2012) for an excellent description of a time-dependent resp.
vigilance dependent fMRI activation effect.

With both fMRI subsets, we found that the benefit of using additional EEG information is
limited—though some increase in sensitivity can be observed. Essentially, this might be
traced back to the following reason: If the fMRI trajectory contains no or insufficient activa-
tion information, the additional prior information hardly manages to increase sensitivity
substantially. The interval of suitable signal-to-noise ratios—in which EEG enhancement
is possible—seems to be too narrow to be of substantial practical use. Hence, only a few
additional activated voxels can be found by EEG. Nevertheless, the {CAR2/5 performance
in case ‘B” appears promising for supporting the central activation foci in layer 21, which

become non-active over time.

For a more detailed discussion of reasons why EEG-enhancement might fail in this subset

analysis, see Chapter 8.
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