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Summary

’Gain-field-like’ tuning behavior is characterized by a modulation of the neuronal response

depending on a certain variable, without changing the actual receptive field characteristics

in relation to another variable. Eye position gain fields were first observed in area 7a of

the posterior parietal cortex (PPC), where visually responsive neurons are modulated by

ocular position. Analysis of artificial neural networks has shown that this type of tuning

function might comprise the neuronal substrate for coordinate transformations.

In this work, neuronal activity in the dorsal medial superior temporal area (MSTd) has

been analyzed with an focus on it’s involvement in oculomotor control. MSTd is part of

the extrastriate visual cortex and located in the PPC. Lesion studies suggested a partici-

pation of this cortical area in the control of eye movements. Inactivation of MSTd severely

impairs the optokinetic response (OKR), which is an reflex-like kind of eye movement that

compensates for motion of the whole visual scene.

Using a novel, information-theory based approach for neuronal data analysis, we were able

to identify those visual and eye movement related signals which were most correlated to

the mean rate of spiking activity in MSTd neurons during optokinetic stimulation. In a

majority of neurons firing rate was non-linearly related to a combination of retinal image

velocity and eye velocity. The observed neuronal latency relative to these signals is in

line with a system-level model of OKR, where an efference copy of the motor command

signal is used to generate an internal estimate of the head-centered stimulus velocity signal.

Tuning functions were obtained by using a probabilistic approach. In most MSTd neurons

these functions exhibited gain-field-like shapes, with eye velocity modulating the visual

response in a multiplicative manner. Population analysis revealed a large diversity of

tuning forms including asymmetric and non-separable functions. The distribution of gain

fields was almost identical to the predictions from a neural network model trained to per-

form the summation of image and eye velocity. These findings therefore strongly support

the hypothesis of MSTd’s participation in the OKR control system by implementing the

transformation from retinal image velocity to an estimate of stimulus velocity. In this

sense, eye velocity gain fields constitute an intermediate step in transforming the eye-

centered to a head-centered visual motion signal.
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Another aspect that was addressed in this work was the comparison of the irregularity of

MSTd spiking activity during optokinetic response with the behavior during pure visual

stimulation. The goal of this study was an evaluation of potential neuronal mechanisms

underlying the observed gain field behavior. We found that both inter- and intra-trial

variability were decreased with increasing retinal image velocity, but increased with eye

velocity. This observation argues against a symmetrical integration of driving and modu-

lating inputs. Instead, we propose an architecture where multiplicative gain modulation

is achieved by simultaneous increase of excitatory and inhibitory background synaptic

input. A conductance-based single-compartment model neuron was able to reproduce

realistic gain modulation and the observed stimulus-dependence of neural variability, at

the same time.

In summary, this work leads to improved knowledge about MSTd’s role in visuomotor

transformation by analyzing various functional and mechanistic aspects of eye velocity

gain fields on a systems-, network-, and neuronal level.
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1 Introduction

Vision is the sense humans most rely on. Seeing enables us to sense and perceive the world

around us. By identifying the color, shape and movement of countless objects, our visual

sense allows us to distinguish important from irrelevant things, as well as their position

and velocity relative to us.

In humans, like in all primates and a number of other mammals and birds, eyes have

developed in such a way that a relatively small part of the retina is populated by a com-

paratively high density of photoreceptor cells. This area is called fovea. Due to that, only

a small part of our visual field is perceived in full sharpness and color. For compensation

we perform frequent eye movements, capturing all interesting details of the visual scene.

The composition of the full picture of the perceived environment from all these ’snapp-

shots’ happens subconsciously.

While enabling us to see the world in high detail, foveal vision also poses a number of

challenges for the visual system. To prevent loss of small moving objects from our sight

they need to be tracked by our eyes. On the other hand, we often see objects in motion not

because they move in front of us, but because we move our eyes. Therefore, compensation

of eye-movement induced visual motion is crucial for proper perception. Furthermore, to

avoid blurred vision during self-motion through space, the visual image needs to be stabi-

lized on the fovea. This task is accomplished by compensating optokinetic eye movements

into the opposite direction of self-movement.

These examples demonstrate that both physiological systems for vision and the generation

of eye movements need to be coupled. Today, there is strong evidence for the existence

of specialized brain regions where this coupling might occur. This doctoral thesis focuses

on the Medial Superior Temporal Cortex, a region assumed to perform such function.

In the following sections an introduction to the current state of scientific knowledge about

the visual system, processing of visual motion, smooth pursuit, and optokinetic eye move-

ments is given. Hereafter, the aim of this thesis is presented.
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1.1 The Visual System

The visual system begins with the eyes, where photoreceptor cells in the retina trans-

form light into electric signals. The density of photoreceptor cells is not uniform, but

concentrated around the fovea, wich is an area of about one square millimeter diameter.

Being much more than just a simple organ for sensing light, the eye already extracts an

enormous amount of information about different facets of the visual image by it’s retinal

neural networks. Important parts of signal processing for visual motion detection, for in-

stance, are realized by the network of retinal ganglion cells already (Gollisch and Meister,

2010).

The neuronal pathway that leaves the eye is called retinofugal projection (Fig. 1.1). Most

of the optic nerve neurons innervate the lateral geniculate nucleus (LGN) of the dorsal

thalamus. Neurons in the LGN give rise to axons that project to the primary visual cortex

(V1) in the occipital lobe, which is also called striate cortex. V1 is organized retinotopi-

cally, meaning that neighboring cells in the retina feed information to neighboring places

in the primary visual cortex (Hubel and Wiesel, 1962). Many neurons in V1 respond best

to an elongated bar of light moving across their receptive fields. The greatest response is

given to a bar with a particular orientation.

Signals from the striate cortex are projected to more than two dozens of different extra-

striate cortical areas in the temporal and parietal lobes (Felleman and Van Essen, 1991).

The extrastriate areas are functionally and anatomically subdivided into two major path-

ways. The ventral pathway is assumed to be involved in the perception of the visual

world and the recognition of objects (Mishkin et al., 1983). It runs from the primary

visual cortex into the infratemporal cortex. Neurons in area V4 have larger receptive

fields than cells in the striate cortex and are selective for orientation and color. The infe-

rior temporal lobe (IT) lies behind V4 and has complex spatial receptive fields. Neurons

in this area respond to a variaty of colors and abstract shapes. A percentage of neu-

rons responds even strongly to stimuli as complex as pictures of faces (Desimone, 1991).

Therefore, this area is presumed to be important for visual perception and visual memory.

The dorsal pathway, on the other hand, projects from the primary visual cortex into the

posterior parietal cortex. This pathway is assumed to carry information regarding the

movement of visual objects and self-motion and will be reviewed in the following section.
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Figure 1.1: The visual system. The retinofugal projection innervates the lateral geniculate
nucleus (LGN) and then projects to primary visual cortex (V1). From there
the ventral pathway goes to V4 and the inferior temporal lobe (IT). The dorsal
pathway projects to the middle temporal (MT) and medial superior temporal
(MST) areas. (According to Mishkin et al. (1983))

1.2 Processing of Visual Motion

Two areas in the dorsal pathway are assumed to be crucial for visual motion processing:

the middle temporal (MT) and medial superior temporal (MST) areas in the parietal

cortex.

1.2.1 The Middle Temporal Cortex

MT is located in the posterior bank of the superior temporal sulcus and is one of the most

studied areas in macaque cortex. MT is also known as visual area 5 (V5) and receives

retinotopically organized input from a number of other cortical areas such as V2 and V3,

and is also directly innervated by cells in the striate cortex. Cells in this area have larger

receptive fields than V1.

Visual responses of MT neurons are determined principally by several properties of the

stimulus: retinal position, direction and speed of motion (Maunsell and Van Essen, 1983a),

stimulus size (Born and Tootell, 1992), and binocular disparity (Maunsell and Van Essen,

1983b). Whether or not MT receives other than retinal input, is still disputed (Newsome

et al., 1988). A recent work suggests that MT neurons use eye movement signals to code

depth-sign from motion parallax (Nadler et al., 2009).
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Lesions in macaque cortical area MT produce motion-perceptual (Newsome and Pare,

1988) and oculomotor (Dürsteler and Wurtz, 1988) deficits. Electrical microstimulation

of MT neurons influences perceptuel judgements of motion direction (Salzman et al.,

1990). Further support for the idea of MT’s involvement in the processing of visual mo-

tion comes from the finding that in a motion direction discrimination task the trial-to-trial

variability in MT neuronal signals is correlated with the choices the monkey makes (Brit-

ten et al., 1996).

MT’s key output target stuctures are implicated in the analysis of optic flow and the

generation of eye movements (Mishkin et al., 1983). Further along the dorsal pathway

lies a region with more specialized types of movement selectivity: area MST, which is

reviewed in the following paragraph.

1.2.2 The Medial Superior Temporal Cortex

The medial superior temporal cortex (MST) is part of the posterior parietal lobe and

receives direct projections from adjacent area MT. MST is usually divided into two sub-

regions with different functional properties: the dorsal (MSTd), and the ventrolateral

region (MSTl).

Many MST neurons respond to visual stimuli and have large, often bilateral, receptive

fields exceeding 15 degree of the visual field (Komatsu and Wurtz, 1988). The neuronal

latency to visual stimulation is about 50 ms (Kawano et al., 1994). MSTd neurons re-

spond to rotating, expanding and planar large field motion. The neuronal response is

invariant of the position, form and size of these optic patterns (Duffy and Wurtz, 1991).

MST neurons modulate their visual response when the field of expansion is shifted (Duffy

and Wurtz, 1995) or when the rate of expansion changes (Duffy and Wurtz, 1997). As in

area MT, neurons in MST are selective for binocular disparity (Roy et al., 1992).

There is strong evidence that, aside from retinal input, MST receives extraretinal input

as well. Many MSTd and some MSTl cells show strong modulation during smooth pur-

suit eye movements and continue firing during blinking of the target. In MSTl neuronal

response starts before the onset of eye movements (Ilg et al., 2004). On the contrary,

in most of the MSTd neurons the pursuit response begins after the onset of eye move-

ments (Newsome et al., 1988). Many neurons also respond to an imaginary target (Ilg

and Thier, 2003). During fixation as well as smooth pursuit eye movements, the response

of most MST neurons to a visual stimulus is modulated by eye position (Bremmer et al.,
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1997). Another extraretinal input is provided by the vestibular system. Two thirds of

MSTd neurons that are sensitive to optic flow also show spatial tuning for inertial motion

without optic flow, pointing out to vestibular input (Gu et al., 2007).

Due to these characteristics, three functional roles have been proposed for this area. First,

MST is probably involved in the perception of motion. Lesions in MST produce similar

motion-perceptual deficits as in area MT (Rudolph and Pasternak, 1999). Second, MST

might be involved in the generation of smooth pursuit and optokinetic eye movements.

This assumption is also supported by lesion studies (Dürsteler and Wurtz, 1988). Third,

MST is probably involved in the integration of visual and vestibular motion cues for the

perception of heading direction during self-motion. This was shown by studies, where the

behavioral estimates of direction of self-motion were affected after electrical stimulation

of MST neurons (Britten and van Wezel, 1998). In regard of this view, it is supposed

that MSTd might compensate for self generated eye movements in heading perception

(Bradley et al., 1996).

1.3 Tracking Eye Movements

A distinction is made between the voluntary tracking or pursuit of small moving objects

and the involuntary tracking of a moving large-field visual scene.

1.3.1 Smooth Pursuit Eye Movements

Developed in mammals with frontal eyes only, the smooth pursuit eye movement (SPEM)

system is an evolutionary young feature. SPEMs are used for tracking small moving

objects within the high-acuity region near the fovea. Pursuit usually only occurs in re-

sponse to a moving visual stimulus. Pursuit eye movements are most effective when the

target speed is relatively slow. Like saccades, SPEMs are voluntary eye movements. The

movement initiation latency is usually about 100–150 ms, which is generally shorter than

for saccades. Both humans and monkeys can reach maximum pursuit velocities of about

80− 100 ◦/s (Lisberger et al., 1981).

SPEMs are already present in 4-week-old infants and are fully developed at about 3

months of age (Phillips et al., 1997). Even at higher ages, the SPEM system stays adap-

tive. When patients with ocular muscle weakness are forced to view monocularly with

their weak eye for several days, the pursuit system shows changes in the movements of the

normal eye consistent with an increased central innervation designed to decrease the time
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it takes to bring the target’s image onto the fovea of the weak eye and to keep it there

(Optican et al., 1985). Another form of adaptation in the pursuit system is the so called

smooth pursuit gain modulation. When a stimulus is presented with brief perturbations

superimposed on the target movement, pursuit of these perturbations gets better with

increasing eye velocity (Churchland and Lisberger, 2001, 2002). Furthermore, the SPEM

system is highly predictive. When subjects follow a target moving on a periodically re-

peating trajectory, they are able to anticipate changes in target motion after one period

only and follow them without further delay (Barnes and Asselman, 1991).

In the view of control system theory, the tracking eye movement system can be seen as

a negative feedback servo control (Fig. 1.2) whose function is to pursue the image of a

small moving object on the fovea. The difference between stimulus and eye velocity is

called retinal slip or image velocity. It is sensed by the retina and then further processed

by the dorsal pathway of the visual system. In a simple negative feedback system, this

image velocity signal could serve already as control command to the eye plant. However,

to replicate the actual temporal characteristics observed in humans and monkeys, the

implemantation of an additional internal feedback has been proposed (Robinson et al.,

1986). The addition of an efference copy of the oculomotor command allows the estima-

tion of the stimulus velocity signal, which then serves as the central control command.

The efferent pathways project this signal to motoneurons, and the eyeball, including the

retina, is moved in an effort to match eye and stimulus motion.

The neuronal basis of the pursuit control circuit is shown in Fig. 1.3. It is assumed that

two parallel pathways are involved in the generation of SPEMs (Büttner and Büttner-

Ennever, 2006; Nuding et al., 2008). One path includes the dorsal visual stream, pons and

cerebellum. As described in the previous sections, areas MT and MST are the sources of

visual motion information. Lesion studies (Dürsteler and Wurtz, 1988) and microstimu-

lation (Komatsu and Wurtz, 1989) give strong evidence for the involvement of areas MT

and MSTl in the generation of SPEMs. It is assumed that the dorsal subpart MSTd plays

a minor role in pursuit (Newsome et al., 1988). Area MST projects to the dorsolateral

pontine nuclei (DLPN) (Distler et al., 2002). Lesions in this area produce mainly ipsi-

lateral SPEM deficits (May et al., 1988). DLPN projects to the flocculus (FL) in the

cerebellum, where lesions also impair the pursuit system (Zee et al., 1981). From the FL

originate projections to the vestibular nuclei (VN) in the brainstem, from where SPEM

signals can reach the oculomotor nuclei (OMN).

The second pathway in the SPEM system includes the frontal cortex, brainstem and
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Figure 1.2: (A) Computational model of the tracking eye movement control system. Image
velocity is the difference between stimulus and eye velocity. The internal eye
plant model provides an efference copy, which is used to estimate stimulus velo-
city. This signal serves as control signal for the eye plant. This simple model
does not account for any latencies, nor adaptive and predictive mechanisms.
Latencies were chosen to fit OKR charakteristics. (B) The step function re-
sponse of the model (blue) for a sudden increase in stimulus velocity (brown).
The light blue trace shows example eye velocity data. (see section 2.5)

cerebellum. Areas MT and MST have reciprocal connections with the frontal eye fields

(FEF). Lesions in the FEF in monkeys (Shi et al., 1998) and humans (Morrow and Sharpe,

1995) cause severe ipsidirectional deficits particularly in predictive aspects of SPEM. FEF

projects mainly to the nucleus reticularis tegmenti pontis (NRTP) (Ono et al., 2005).

NRTP has neuronal connections to the ocular vermis (OV) and the paraflocculus (Glick-

stein et al., 1994) in the cerebellum. Lesions in OV lead to SPEM deficits (Takagi et al.,

2000). OV projects to the caudal part of the fastigial nucleus in the vermis, where lesions

also impair SPEM (Robinson et al., 1997). In addition to the two pathways mentioned,

it is known that the basal ganglia (Basso et al., 2005) and thalamus (Tanaka, 2005) are

involved in the SPEM system.

1.3.2 Optokinetic Response

The optokinetic response (OKR) describes reflex driven eye movements that compensate

for motion of the entire visual scene as occurs with self-motion through space. OKR eye

movements move in the direction of visual motion, thus improving image stabilization on

the retina. The combination of OKR and fast resetting saccades during unidirectional

stimulation is called optokinetic nystagmus (OKN), which plays an important role in

maintaining maximal periods of clear vision during continuous uni-directional movement

of the visual scene (Leigh and Zee, 2006).
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Figure 1.3: The two cortical pathways of the tracking eye movement system. The first
pathway is shared by both SPEM and OKR. It originates from areas MT/MST
and projects to the dorsolateral pontine nuclei (DLPN). From there go con-
nections to the flocculus (FL), which projects to the vestibular nuclei (VN)
and oculomotor nuclei (OMN). The second pathway is assumed to be part
of the SPEM system only. It originates in the frontal eye fields (FEF) and
goes to the nucleus reticularis tegmenti pontis (NRTP). From there go connec-
tions to the ocular vermis (OV), which projects to the fastigial nucleus in the
vermis. Areas MT/MST and the FEF are connected reciprocally. (According
to Büttner and Büttner-Ennever (2006))

In the generation of OKR two components can be distinguished. The direct component

occurs shortly after the onset of the optokinetic stimulus and is also known as ocular fol-

lowing response (OFR). The term OFR generally refers to the immediate OKR response

after the motion onset of a large visual stimulus (Miles, 1998). The indirect component

leads to a more gradual increase in slow-phase eye velocity during continuous stimulation.

OFR has a short latency of about 50 ms in monkeys (Miles et al., 1986) and 70 ms in hu-

mans (Gellman et al., 1990), which is shorter than the 100-150 ms for SP eye movements.

This in addition to the size of the visual stimulus and the involuntary character of the eye

movements are major features to differentiate between OKR and SPEM. For extended

stimulation, OKN can reach velocities of about 180 deg/s in monkeys, and about 120

deg/s in humans (Cohen et al., 1977). These velocities are the sum of the direct and

indirect components of OKN.

The major neuronal pathways for generation of the indirect component of OKR seem to

lie in the brainstem. Fibers from the retina terminate in the nuclei of the accessory optic

tract and the nucleus of the optic tract (Büttner and Büttner-Ennever, 2006). During
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OKN also the vestibular nuclei are activated (Waespe and Henn, 1987). The cerebellum

is not thought to be involved in the indirect component of OKR (Büttner and Waespe,

1984). Although the indirect component is basically transmitted via brainstem pathways,

these pathways are under cerebral cortical control, particularly in humans and monkeys.

Accordingly, bilateral occipital lesions impair the indirect OKR component (Zee et al.,

1981).

For the direct component of OKR, there is strong evidence for involvement of similar

neuronal areas as used for the generation of SPEM (Fig. 1.3). Both, pursuit and optoki-

netic eye movements are severely impaired following lesions of areas MT/MST (Dürsteler

and Wurtz, 1988; Takemura et al., 2007), DLPN (May et al., 1988), flocculus (Zee et al.,

1981) or Vermis (Takagi et al., 2000). The involvement of MST in the direct component

of OKR has also been shown in a number of other studies. The response latencies of MST

neurons change in parallel with the response latencies of the simultaneously observed eye

movements when different visual stimuli are used to elicit OKR (Kawano et al., 1994).

Moreover, many MSTd neurons reflect the post-saccadic enhancement of the OKR/OFR

in their neuronal response (Takemura and Kawano, 2006). The fronto-cortical SPEM

pathway, however, seems to be less involved in the generation of OKR. Bilateral lesions

of the FEF slowed SPEM but did not affect the OKR (Keating et al., 1996).

1.4 Neuronal Data Analysis

This section provides a brief introduction to selected techniques in neuronal data analysis.

The objective of all these methods is a characterization and identification of the underlying

neural information processing system.

1.4.1 Regression Analysis

Regression analysis is the estimation of the dependency of a dependent variable on some

other independent variables. In the most commonly used form of linear regression analysis,

the maximum likelihood estimate of parameters β from observations x is determined using

a linear model C according to

x = C · β + r, (1.1)

with r denoting normally distributed residual error. The solution is given by the ’pseudo

inverse’ of C

β = (CT ·C)−1 ·CT . (1.2)
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In neural data analysis, the observations x are typically given by the neuronal firing

rate (FR), whereas the linear model is composed of n stimulus- and/or behavior-related

variables (var):

FR = β0 + var1 · β1 + . . .+ varn · βn. (1.3)

The dependency of the firing rate on the different independent variables is then expressed

by parameters β.

1.4.2 Information-theoretic Approaches

Information-theory based methods offer an alternative to model-based approaches of sys-

tem identification. This technique allows the estimation of dependency of neuronal acti-

vity on certain independent variables without further assumptions on the exact form of

this dependency.

Entropy H(X) is a measure for the uncertainty of a single random variable X . The

reduction in uncertainty due to another random variable is called ’mutual information’

(Shannon and Weaver, 1949; Cover and Thomas, 1991). For two random variables X and

Y with probability distributions p(x) and p(y) the mutual information is

I(X; Y ) = H(Y )−H(Y |X). (1.4)

The entropy of Y and the conditional entropy of Y given X are defined as

H(Y ) = −
∑

Y

p(y) log p(y) (1.5)

H(Y |X) = −
∑

X

p(x)
∑

Y

p(y|x) log p(y|x), (1.6)

with p(y|x) being the conditional probability distribution of Y given X. The mutual

information is a measure for the dependence between the two random variables. It is

symmetric in X and Y , always non-negative, and equal to zero only if X and Y are mu-

tually independent.

In analysis of neuronal data, mutual information is usually used to determine how much

information spiking activity carries about some stimulus- or behavior-related variable.

One means of estimating the information contained in the neuronal response is comparing

the occurence of specific spiking patterns over a large number of trials where the same

stimulus was presented and the same behavior was consistently observed (Rieke et al.,

1997; Borst and Theunissen, 1999). Alternatively, the information of the spiking rate can
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be determined, ignoring certain patterns of spiking activity. The latter approach will be

further elaborated in sections 2.2 and 2.3.

1.4.3 Neuronal Variability

The term ’neuronal variability’ usually refers to the regularity of spiking activity. Investi-

gating the temporal structure of the neuronal response allows a characterization of the

spiking process and puts certain constraints on the amount of transmitted information

and the underlying neuronal structure. Analysis of neuronal variability is therefore one

of the elementary system identification techniques in neuroscience.

Neuronal variability can be measured in various ways. The two most commonly used

measures are the Fano factor (FF ) and the coefficient of variation (CV ). The FF (Fano,

1947) measures the variability of the spike count across trials which were recorded during

identical conditions according to

FF =
V ar[SC]

E[SC]
, (1.7)

with E and V ar symbolizing mean and variance, respectively, and SC denoting the spike

counts of the trials. The FF is usually determined for time intervals of 50 or 100 ms

length and analyzed over time.

The CV (Cox and Lewis, 1966), on the other hand, determines the variability of the

inter-spike intervals within a single trial:

CV =

√
V ar[ISI]

E[ISI]
, (1.8)

with ISI = [isi1, isi2, . . . , isin] denoting the inter-spike intervals of each analyzed spike

train.

For a stationary renewal process, in which inter-spike intervals are assumed to be inde-

pendent and identically distributed, it holds that

FF = CV 2 (1.9)

for the limit of long observations (Cox and Lewis, 1966).
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The special case where the number of spikes in non-overlapping intervals is independent

for all intervals, and the probability to obtain an event in the interval [t, t + Δt] equals

λ·Δt, is called ’Poisson process’. The inter-spike interval distribution of this homogeneous

point process has the exponential form

P (ISI) = λ · e−λ·ISI . (1.10)

For the Poisson process, it holds that

FF = CV = 1 (1.11)

for the limit of long observations (Cox and Lewis, 1966).

1.5 Aim of this Thesis

During the recent decades a lot of knowledge about eye movements has been gained. The

psychophysical properties of smooth pursuit and optokinetic eye movements have been

thoroughly investigated. Based on these findings and control system theory, computa-

tional models were developed to simulate the different oculomotor systems. From these

models we can learn which signals need to be provided to the oculomotor system to pro-

duce the observed behaviour. Furthermore, computational models propose architectures

for the processing of signals and give an idea which mathematical operations could be

performed by the neuronal structures.

From the anatomical and physiological point of view, a variety of brain regions is as-

sumed to be involved in visual processing and control of eye movements. Focal lesion and

electrical microstimulation studies not only determine whether some area is involved in a

specific task or not. Often the observed deficits allow conclusions about the function of

the analyzed area. Recording the neuronal activity in a specific brain area allows further

analysis. Electrophysiological studies enable us to determine constraints on the kind and

amount of information coded by a neuronal population. The onset latency of neuronal

activity allows conclusions about the signal flow.

Today much is known about the early parts of the visual system and the first steps in

processing of visual inputs. There is strong evidence that areas MT and MST are involved

in the perception of visual motion. Yet, their exact function in participation and control

of tracking eye movements is still not known.
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The aim of this doctoral thesis is analyzing monkey neuronal recordings from area MSTd

during optokinetic eye movements. Using system identification techniques and informa-

tion theory, the goal is to better understand the information coded by MSTd neurons in

the context of eye movements. MSTd’s functional role will be evaluated and a link between

MSTd and the optokinetic system established. A substantial part of this work focuses

on the question of how information might be encoded in general by MSTd neurons, as

the analysis of electrophysiological data requires understanding of neuronal coding mech-

anisms. Trying to understand neuronal processes in a deeper level, we will not only be

focusing on the analysis of neuronal firing rates, but further will investigate aspects like

the intra- and inter-trial variability of the spiking activity. The following section presents

all studies that were performed within the scope of this doctoral thesis.
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2 Cumulative Thesis

This cumulative thesis consists of four studies that were peer-reviewed and accepted

for publication in scientific journals. Furthermore, one submitted manuscript, and an

additional results section were included. In the following, the abstracts of the papers

are presented. The contribution of the author of this doctoral thesis to the respective

publications is indicated. The full published papers and the submitted manuscript are

enclosed in the appendix of this thesis.
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2.1 The Response of MSTd Neurons to Perturbations in Target

Motion During Ongoing Smooth-Pursuit Eye Movements

Ono S, Brostek L, Nuding U, Glasauer S, Büttner U, Mustari MJ (2010). The Response

of MSTd Neurons to Perturbations in Target Motion During Ongoing Smooth-Pursuit

Eye Movements. J Neurophysiol 103: 519-530.

Several regions of the brain are involved in smooth-pursuit eye movement (SPEM) con-

trol, including the cortical areas MST (medial superior temporal) and FEF (frontal eye

field). It has been shown that the eye-movement responses to a brief perturbation of the

visual target during ongoing pursuit increases with higher pursuit velocities. To further

investigate the underlying neuronal mechanism of this nonlinear dynamic gain control

and the contributions of different cortical areas to it, we recorded from MSTd (dorsal

division of the MST area) neurons in behaving monkeys (Macaca mulatta) during step-

ramp SPEM (5 − 20 ◦/s) with and without superimposed target perturbation (one cycle,

5 Hz, 10 ◦/s). Smoothpursuit related MSTd neurons started to increase their activity

on average 127 ms after eye-movement onset. Target perturbation consistently led to

larger eye-movement responses and decreasing latencies with increasing ramp velocities,

as predicted by dynamic gain control. For 36% of the smooth-pursuitrelated MSTd neu-

rons the eye-movement perturbation was accompanied by detectable changes in neuronal

activity with a latency of 102 ms, with respect to the eye-movement response. The re-

maining smooth-pursuitrelated MSTd neurons (64%) did not reflect the eye-movement

perturbation. For the large majority of cases this finding could be predicted by the dy-

namic properties of the step-ramp responses. Almost all these MSTd neurons had large

visual receptive fields responding to motion in preferred directions opposite to the optimal

SPEM stimulus. Based on these findings it is unlikely that MSTd plays a major role for

dynamic gain control and initiation of the perturbation response. However, neurons in

MSTd could still participate in SPEM maintenance. Due to their visual field properties

they could also play a role in other functions such as self-motion perception.

The author of this doctoral thesis contributed to this work by performing the data analy-

sis, writing parts of the manuscript and designing the figures.
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2.2 An Information-theoretic Approach for Evaluating Probabilistic

Tuning Functions of Single Neurons

Brostek L, Eggert T, Ono S, Mustari MJ, Büttner U, Glasauer S (2011). An Information-

Theoretic Approach for Evaluating Probabilistic Tuning Functions of Single Neurons.

Front Comput Neurosci 5: 15.

Neuronal tuning functions can be expressed by the conditional probability of observing a

spike given any combination of explanatory variables. However, accurately determining

such probabilistic tuning functions from experimental data poses several challenges such

as finding the right combination of explanatory variables and determining their proper

neuronal latencies. Here we present a novel approach of estimating and evaluating such

probabilistic tuning functions, which offers a solution for these problems. By maximizing

the mutual information between the probability distributions of spike occurrence and the

variables, their neuronal latency can be estimated and the dependence of neuronal acti-

vity on different combinations of variables can be measured. This method was used to

analyze neuronal activity in cortical area MSTd in terms of dependence on signals related

to eye and retinal image movement. Comparison with conventional feature detection and

regression analysis techniques shows that our method offers distinct advantages, if the

dependence does not match the regression model.

The author of this doctoral thesis contributed to this work by developing the novel data

analysis approach, performing the data analysis, writing the manuscript and designing

the figures.
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2.3 A Method for Evaluating Tuning Functions of Single Neurons

based on Mutual Information Maximization

Brostek L, Eggert T, Ono S, Mustari MJ, Büttner U, Glasauer S (2011). A Method for

Evaluating Tuning Functions of Single Neurons based on Mutual Information Maximiza-

tion. AIP Conf Proc 1305: 423–429.

We introduce a novel approach for evaluation of neuronal tuning functions, which can be

expressed by the conditional probability of observing a spike given any combination of

independent variables. This probability can be estimated out of experimentally available

data. By maximizing the mutual information between the probability distribution of the

spike occurrence and that of the variables, the dependence of the spike on the input vari-

ables is maximized as well. We used this method to analyze the dependence of neuronal

activity in cortical area MSTd on signals related to movement of the eye and retinal image

movement.

The author of this doctoral thesis contributed to this work by developing the data analysis

approach, performing the data analysis, writing the manuscript and designing the figures.
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2.4 Neuronal Variability of MSTd Neurons Changes Differentially

With Eye Movement and Visually Related Variables

Brostek L, Büttner U, Mustari MJ, Glasauer S (2012). Neuronal Variability of MSTd Neu-

rons Changes Differentially With Eye Movement and Visually Related Variables. Cereb

Cortex in press.

Neurons in macaque cortical area MSTd are driven by visual motion and eye movement

related signals. This multimodal characteristic makes MSTd an ideal system for studying

the dependence of neuronal activity on different variables. Here we analyzed the tempo-

ral structure of spiking patterns during visual motion stimulation using two distinct be-

havioural paradigms: fixation and optokinetic response. For the fixation condition inter-

and intra-trial variability of spiking activity decreased with increasing stimulus strength,

complying with a recent neurophysiological study reporting stimulus-related decline of

neuronal variability. In contrast, for the optokinetic condition variability increased to-

gether with increasing eye velocity while retinal image velocity remained low. Analysis

of stimulus signal variability revealed a correlation between the normalized variance of

image velocity and neuronal variability, but no correlation with normalized eye velocity

variance. We further show that the observed difference in neuronal variability allows clas-

sifying spike trains according to the paradigm used, even when mean firing rates were

similar. The stimulus-dependence of neuronal variability may result from the local net-

work structure and/or the variability characteristics of the input signals, but may also

reflect additional timing-based mechanisms independent of the neuron’s mean firing rate

and related to the modality driving the neuron.

The author of this doctoral thesis contributed to this work by designing the experiment,

performing the data analysis, writing the manuscript and creating the figures.
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2.5 Eye Velocity Gain Fields in MSTd for Visuomotor Coordinate

Transformations

Brostek L, Büttner U, Mustari MJ, Glasauer S. Eye Velocity Gain Fields in MSTd for

Visuomotor Coordinate Transformations. Submitted.

Lesion studies argue for an involvement of cortical area MSTd in the control of optoki-

netic response (OKR) eye movements. Neurons in this area respond to visual motion and

eye movement related signals. However, MSTd’s function in visuomotor transformation is

still unclear. Using a novel approach for characterizing neural tuning with high resolution,

we show that during optokinetic stimulation the majority of MSTd neurons exhibits gain

field-like tuning functions. Rather than coding one variable, neural responses showed a

large diversity of tuning to combinations of retinal and extra-retinal input. Eye velocity

related activity was observed prior to the actual eye movements, reflecting an efference

copy. The observed tuning functions resembled those emerging in a network model trained

to perform summation of two population-coded signals. Together, our findings support

the hypothesis that MSTd implements the transformation from retinal to head-centered

stimulus velocity signals for the control of OKR.

The author of this doctoral thesis contributed to this work by designing the experi-

ment, performing the data analysis, developing the computational models, writing the

manuscript and creating the figures.
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2.6 Gain Modulation from Balanced Excitatory-Inhibitory Synaptic

Input

In this section additional results are presented which have not been published or submit-

ted for publication yet.

Cortical neurons in vivo continuously receive input from thousands of excitatory and in-

hibitory synapses (Kandel et al., 2000). Given a ’spontaneous’ average firing rate of 5-20

Hz in neocortical neurons, the resulting synaptic currents present a significant influence

on the integrative properties of the target neuron. Here, we investigated whether this

synaptic background activity may explain the gain-field-like tuning behavior we observed

in MSTd neurons. First, we present a point-conductance neural model proposed by Des-

texhe et al. (2001) to analyze the influence of balanced excitatory and inhibitory input

on neuronal gain. After this, we compare the predictions from this model with our MSTd

data shown in Brostek et al. (2012).

To represent the currents generated by thousands of stochastically releasing synapses a

point-conductance model was used. Synaptic activity was represented by two independent

fast glutamatergic and GABA-ergic conductances described by stochastic random-walk

processes (Destexhe et al., 2001).

The total synaptic current Isyn was decomposed into a sum of two independent conduc-

tances:

Isyn = ge(t)(V − Ee) + gi(t)(V − Ei) (2.1)

where ge(t) and gi(t) are time-dependent excitatory and inhibitory conductances, and

Ee and Ei their reversal potentials, respectively. The conductances ge(t) and gi(t) were

described by a one-variable stochastic process similar to the Ornstein-Uhlenbeck process

(Uhlenbeck and Ornstein, 1930):

dge(t)

dt
= − 1

τe
[ge(t)− ge0] +

√
2σe√
τe

χ1(t) (2.2)

dgi(t)

dt
= − 1

τi
[gi(t)− gi0] +

√
2σi√
τi

χ2(t) (2.3)

where ge0 and gi0 are average conductances, τe and τi are time constants, σe and σi are

’diffusion’ standard deviations, and χ1(t) and χ2(t) are Gaussian white noise of zero mean

and unit standard deviation. The parameters for this random-walk process were adapted

from Destexhe et al. (2001) and are shown in table 2.1.
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The stochastic point-conductance model of background synaptic input activity was in-

serted into a single compartment Hodgkin-Huxley-type model (Hodgkin and Huxley,

1952), shown in Fig. 2.1A:

Cm
dV

dt
= −gL(V −EL)− INa − IK − IM − 1

a
Isyn − Iinj (2.4)

INa = gNam
3h(V −ENa) (2.5)

IK = gKn
4(V − EK) (2.6)

IM = gMp(V − EK) (2.7)

where Cm is the specific membrane capacitance, gL is the leak conductance density, and

EL ist the leak reversal potential. INa is the voltage-dependent Na+ current and IK is the

’delayed-rectifier’ K+ current responsible for action potentials. IM is a non-inactivating

K+ current responsible for slow afterhyperpolarization and spike frequency adaptation.

The parameters of the gating variables m, h, n, and p were the same as in Destexhe et

al. (2001). All other parameters were also adapted for the originally modeled layer VI

pyramidal cell from cat parietal cortex and are shown in table 2.2. a = 34636 μm2 is the

total membrane area of the modeled neuron, and Iinj is an additionally injected input

current.

To analyze in what way the level of background synaptic input is modulating the gain of a

neuronal response to an excitatory ’driving’ signal, we determined firing rate and trial-to-

trial variability of the model neuron for different values of Iinj and Isyn (Fig. 2.1B). In the

latter case, excitatory and inhibitory currents were scaled with the same factor, denoted

at the ordinate of the figure. The scaling of Isyn affects both mean and standard devia-

tion of synaptic input currents, which corresponds to increases of overall synaptic activity

and higher correlation of synaptic inputs, respectively (Fellous et al., 2003). For each

condition 100 trials of 1000 ms length were simulated. The Fano factor was determined

for a window length of 100 ms and averaged over the whole trial. As the figure shows,

the firing rate increased with an increase of Iinj, which was enhanced for higher values

of Isyn. This tuning strongly resembles the gain-field-like behavior we have observed in

MSTd neurons. In this sense, Iinj would correspond to the ’driving’ image velocity input,

Table 2.1: Parameters of the two random-walk processes

Ee 0 mV Ei −75 mV
ge0 0.0121 μS gi0 0.0573 μS
σe 0.003 μS σi 0.0066 μS
τe 2.728 ms τi 10.49 ms
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Table 2.2: Parameters of the Hodgkin-Huxley-type model

ENa 45 mV gNa 120 mS
cm2

EK −82 mV gK 100 mS
cm2

EL −80 mV gL 0.045 mS
cm2

gM 1 mS
cm2

whereas different levels of Isyn could be interpreted as changes of the ’modulatory’ eye

velocity signal.

In contrast to the firing rate, trial-to-trial variability of spiking activity showed differen-

tial behavior for increasing values of Iinj and Isyn (Fig. 2.1B2). An increase of synaptic

background activity caused a strong increase of the Fano factor, whereas neural vari-

ability exhibited little dependency or even a small decline for increasing values of Iinj.

This finding is in good accordance with our data. In Brostek et al. (2012) we analyzed

neuronal variability of MSTd neurons during two different conditions: fixation with vi-

sual stimulation (FIX) and optokinetic response (OKR). For FIX, the monkey’s task was

to fixate a a small target spot located at the center of the screen. After some random

time the LF stimulus started to move with constant velocity in the neurons preferred

direction for a period between 1000 and 1800 ms. During OKR, the spot was turned

off and the monkey’s eye movements followed the visual motion. As shown in Fig. 2.2,

the Hodgking-Huxley-type neural model exhibits very similar behavior in firing rate and

trial-to-trial variability of spiking activity like MSTd neurons when either the ’driving’

signal, or ’modulatory’ signal is increased, while the other signal is held close to zero.

In the following section we will discuss the implications of this finding on a potentially

underlying neuronal structure that exhibits gain-field-like tuning behavior.
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Figure 2.1: (A) Hodgking-Huxley-type neural model. Isyn describes the background
synaptic input consisting of excitatory and inhibitory stochastic currents. Iinj
is an additionally injected input current. (B) Firing rate and Fano factor of
the Hodgking-Huxley-type neural model depending on Iinj and Isyn. Dark
blue areas mark conditions in which no spiking activity occured.
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Figure 2.2: Firing rate (A) and Fano factor (B) of the Hodgking-Huxley-type neural
model (black) and MSTd neurons (grey) during fixation with visual stimu-
lation (FIX) and optokinetic response (OKR). For the model data, Iinj was
increased from 6.3 to 9 μA during FIX. During OKR, the scaling factor of Isyn
was increased from 0.5 to 1.2. The MSTd data is from Brostek et al. (2012).
Vertical lines mark standard errors.
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3 Discussion

Within the framework of this doctoral thesis several aspects of neuronal activity in cortical

area MSTd have been investigated. Focusing on the neuronal responses during optokinetic

response (OKR) and smooth pursuit (SP), we were able to improve scientific knowledge

regarding the involvement of MSTd in these kinds of tracking eye movements. We ana-

lyzed the function of eye velocity gain fields in the context of tracking eye movements on

both systems and network level. Furthermore, we explored potential underlying mecha-

nisms of gain modulation on the neuronal level.

To allow a model-free analysis of neuronal tuning behavior, we developed a novel mutual-

information-based approach for the evaluation of multi-dimensional probabilistic tuning

functions (Brostek et al., 2011a,b). Traditional model-based approaches like regression

analysis critically depend on the validity of their assumptions. Simple linear models often

are not sufficient for analyzing neuronal data. Our information-theoretic approach over-

comes these difficulties by maximizing the mutual information between stimulus variables

and neuronal response. It allows us to estimate the neuronal latency and to compare the

correlations between spiking activity and certain explanatory variables. This technique

can be applied in unbalanced designs and allows quantification of any possible dependence

of neuronal activity on selected explanatory variables. However, the length of the neu-

ronal recording sets limiting constraints on the dimension of the analyzed tuning function.

We applied this novel approach to analyze MSTd neuronal activity during visual stim-

ulation using a so called ’white noise motion’ paradigm. In this experimental setting a

large-field random-dot pattern moves continuously and randomly in the axis of each neu-

ron’s preferred direction. The monkey’s task is to follow the stimulus as well as possible,

performing OKR eye movements. However, using stimulus velocities above maximal eye

velocity allowed us to cover wide ranges of both eye velocity and retinal image velocity

values at the same time. We found that neuronal responses showed a large diversity of

tuning to combinations of retinal and extra-retinal input instead of coding one of these

variables explicitely. The majority of MSTd neurons exhibited rather gain-field-like tuning

functions. Analysis of neuronal latency revealed a leading of eye velocity related activity

relative to the actual eye movements. This signal can therefore not be of sensory origin

and reflects an efference copy.
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The distribution of eye velocity gain fields we found closely resembled the predictions

from a neural network model trained to perform the summation of image and eye velo-

city. The diversity of MSTd gain field shapes including asymmetric and non-separable

tuning functions was almost identical to the model results after completion of the learn-

ing process. Some neurons exhibited sharp, vertical tuning functions, whereas other units

showed rather horizontal, image velocity related tuning. Together with the measured

neuronal latencies, these results provide strong evidence for MSTd participating in the

OKR control system by implementing the transformation from retinal image velocity to

a head-centered stimulus velocity signal.

Beside the mean rate, there are more features of neuronal responses that may depend

systematically on certain stimuli. One of these is the regularity or variabitity of spik-

ing activity. In Brostek et al. (2012) we analyzed the variability of neuronal activity

in MSTd neurons during fixation with large-field visual stimulation and optokinetic eye

movements. Our analysis revealed two major features: first, in MSTd neurons the trial-

to-trial variability of neuronal activity, expressed by the Fano factor, is quenched by the

onset of visual stimulation. This change in variability is not necessarily directly related

to stimulation, as proposed earlier (Churchland et al., 2010). During visual stimulation

and fixating eye movements we found a sustained low level of variability. For optokinetic

response, however, only a transient decline of the Fano factor was observable. Second, and

more remarkable, the relationship between spiking irregularity and the two stimulation

variables, image and eye velocity, was opposite. Both variables, which were uncoupled by

using two orthogonal paradigms, affected the intra- and inter-trial variability of neuronal

activity, meaning that the change in variability did not dependent on the task. All three

measures of neuronal variability we analyzed, Fano factor, squared coefficient of variation,

and ’Varience of the Conditional Expectation’ (Churchland et al., 2011), were negatively

correlated with retinal image velocity and positively correlated with eye velocity.

Our finding of decreasing spiking variability with an increasing ’driving’ signal image

velocity and increasing variability with an increase of the ’modulatory’ signal eye velo-

city puts certain constraints on the underlying neuronal structure. A conductance-based

single-compartment model neuron where multiplicative gain modulation is achieved by

a simultaneous increase of excitatory and inhibitory background synaptic input yields

realistic increases of firing rate and can reproduce the observed stimulus-dependence of

neural variability.
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Figure 3.2 provides a summary of our main results, illustrating the three different levels

that were analyzed within the scope of this doctoral thesis. In the following sections

certain aspects of our results will be discussed in more detail and compared with previous

findings. This chapter ends with an outlook on potential further investigations.

3.1 Comparison with previous MSTd studies

Most MSTd neurons show different behavior during smooth pursuit and OKR (Kawano

et al., 1994), as well as for radial and planar visual stimulation (Duffy and Wurtz, 1991),

respectively. Prior studies in area MSTd, which were focusing on its role in perception of

self-motion and heading direction, generally used radial visual stimulation in combination

with small target pursuit eye movements. Our OKR results, which were recorded dur-

ing planar visual stimulation, may therefore not be directly comparable to these previous

studies. Nevertheless, those studies that were using smooth pursuit and radial stimulation

also found that visual responses of MSTd neurons are modulated during eye movements

(Bradley et al., 1996; Ben Hamed et al., 2003; Bremmer et al., 2010). In this sense, our

results are in compliance with these earlier studies.

A number of other prior studies investigated neuronal tuning in MSTd during planar

visual stimulation with combined small target pursuit and yielded diverging conclusions.

Kawano and colleagues, for instance, suggested that MSTd neurons might directly encode

the velocity of a large-field visual stimulus in head or world-centered coordinates (Inaba et

al., 2007). A similar study by Chukoskie and Movshon 2009 could only partially confirm

this hypothesis. They found some neurons in MSTd that encoded stimulus velocity. Most

of the neurons, however, exhibited a variety of different other tuning behaviors ranging

from pure retinal to head-centered stimulus velocity coding. This finding has remarkable

similarity to our results, considering the difference of paradigms. We found only few neu-

rons with a transformation index close to zero, which could also be interpreted as coding

stimulus velocity in a restricted range of stimulus space. Nevertheless, instead of smooth

pursuit, we were using an OKR paradigm and could therefore assume an involvement of

the analyzed neurons in oculomotor control (Dürsteler and Wurtz, 1988). This allowed

us to shift the focus from the question ’which signals are coded?’ to ’what functions are

implemented?’. Our coordinate transformation hypothesis offers a straightforward expla-

nation for the diversity in tuning behaviors found in MSTd.
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3.2 Gain Fields for Sensorimotor Coordinate Transformations

Numerous other studies in the posterior parietal cortex (PPC) have found gain-fields-like

tuning behavior before. For instance, visual responses of neurons in the lateral intra-

parietal area (LIP) and cortical area 7A are gain-modulated by eye and head position

signals (Snyder et al., 1998). The activity of neurons in the parietal reach region (PRR)

is modulated by eye and limb position (Chang et al., 2009). Zipser and Andersen 1988

were the first to show that eye position gain fields might be used to transform the reference

frame of eye-centered visual responses into head-centered responses. Beyond sensorimo-

tor transformations, the computational function of gain fields might be a general method

for neural computation when transformations between different brain representations are

required (Salinas and Thier, 2000).

Yet, all previous studies were limited in a certain sense: the characterization of neuronal

responses was incomplete as only very few and specific combinations of visual input and

motor output could be tested. Our novel approach overcomes these limitations and al-

lows us to characterize neural tuning with high resolution and over a large input-output

range by dissociating visual motion and eye movements without additional task require-

ments. This enabled us to analyze novel aspects as for instance the distribution of gain

field types, which could not have been investigated using any of the traditional approaches.

It is common practice to correlate neuronal activity with certain variables, assuming a

direct encoding of sensory or motor signals by different neuronal populations. This ap-

proach may be appropriate for the early input or output stages of neuronal processing.

It poses, however, serious difficulties when intermediate processing steps of sensorimo-

tor transformation are analyzed. Theoretical studies have shown that a neural coding

scheme where each object in each reference frame is represented by a different set of

neurons quickly will reach limitations due to the combinatorial explosion in the number

of required cells (Poggio, 1990). It was therefore suggested that a much more efficient

scheme for neuronal representation might be used: instead of representing each variable

by a certain pool of neurons, one set of basis functions can represent a number of differ-

ent variables simultaneously. Arbitrary variables are then represented by a simple linear

combination of these basis functions (Girosi et al., 1995; Pouget and Sejnowski, 1997).

Gain fields, as demonstrated by Pouget and Sejnowksi 1997, exhibit all characteristics

necessary to form a set of basis functions. The diversity of tuning functions we observed

in our data is consistent with this theory. Hence, eye velocity gain fields in MSTd could be

used to generate a number of other visual motion related variables, as for instance an es-
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timate of heading direction (Ben Hamed et al., 2003) or perceived self-motion velocity. In

our case of planar visual stimulation, perceived self-motion velocity is simply the stimulus

velocity signal directed towards the opposite side. Such inversion can be easily obtained

by changing the weights of the connections to the output layer in our neural network

model. The self-motion signal might be generalized for head- and body-motion by the

inclusion of vestibular information (Gu et al., 2007). Our results are therefore compatible

with the idea of area MSTd serving various functions in self-motion perception, as well

as in oculomotor control.

3.3 Underlying Neuronal Structure

It is generally assumed that neuronal activity arises from an interaction between ongoing

spiking generated spontaneously by neuronal circuits and responses driven by external

stimuli (Dayan and Abbott, 2001). In this view the observed variability in neuronal

activity is generally interpreted as noise, interfering with the actual signal coded by the

neurons (Shadlen and Newsome, 1998). Recurrent networks are a kind of topological

structure that is presumed to be found in many cortical areas. A general feature of this

type of networks is the stimulus-driven suppression of chaotic, spontaneous activity. The

decline in variability depends on stimulus frequency and amplitude (Rajan et al., 2010).

The decline of spiking irregularity with visual stimulation we observed in MSTd (Brostek

et al., 2012) may be explained by the presence of recurrent circuitry. However, the increase

in neuronal variability with higher eye velocity remains unexplained by the recurrent net-

work hypothesis. The change in neuronal variability in our data is not just related to the

presence of stimulation. A network topology that could explain the observed behavior is

therefore probably asymmetrical and processes both input signals, image velocity and eye

velocity, differently.

Anatomical observations led Sherman and Guillery (1998) propose that neurons might

have two classes of inputs, one responsible for driving neural responses and the other for

modulating those responses. Based on this idea, Chance et al. (2002) suggested a gain

field mechansism where the gain of a neuronal response to excitatory drive can be mod-

ulated by varying the level of balanced excitatory and inhibitory synaptic input. Using

both, an in vitro neuron model, and an analytic firing rate model, they could show that

simultaneously increasing the background firing rates in a balanced manner results in a

gain modulation of the neuronal response. In contrast to our work, however, they were



38 3. Discussion

analyzing divisive gain modulation, where the gain decreases with an increase of the mod-

ulatory signal. Interestingly, the authors did not observe changes of neuronal variability

with gain modulation in their in vitro model.

Using a far more detailed Hodgking-Huxley-type model with inserted stochastic conduc-

tances mimicking balanced excitatory and inhibitory synaptic input, we could show that

an increase of backgound activity can actually result in multiplicative gain modulation,

as well. Furthermore, our model is able to reproduce the differential behavior in neu-

ral variability we have observed in MSTd neurons. A comparatively simple feedforward

mechanism allowed us to explain both, a decrease of spiking irregularity with increase of

image velocity, and an increase with eye velocity, without the inclusion of recurrent or

feedback circuitry.

3.4 Temporal Coding in MSTd?

A great amount of knowledge about neuronal information processing has been gained by

relating the mean neuronal firing rate to any variables supposed to be coded in the an-

alyzed area. Beside the mean rate, however, there are more features of neural responses

that may depend systematically on certain stimuli. Theoretical and experimental stud-

ies in numerous cortical and sub-cortical regions indicated that the temporal pattern of

spiking activity carries important information as well (Buracas and Albright, 1999; Rieke

et al., 1997). For instance in auditory neurons the mean firing rate represents some com-

bination of amplitude and frequency of a tone. At the same time there is the tendency

for inter-spike intervals (ISIs) to cluster around integer multiples of the stimulus period,

allowing the separation of frequency and amplitude information. Also in cortical areas

spiking irregularity has been used as an evidence to support the temporal coding hypothe-

ses (Softky and Koch, 1993).

As we have shown, in MSTd neurons the mean firing rate, which is the reciprocal of

the mean inter-spike interval, codes some non-linear combination of visual and eye move-

ment related signals (Brostek et al., 2011a). At the same time the variance of the ISI

decreases with visual and increases with oculomotor stimulation (Brostek et al., 2012).

This independent temporal code may allow the separation of the two signals, similar to

phase-locking in auditory neurons.

In a renewal process ISIs are assumed to be independent and identically distributed (Cox,
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1962). The approximate one-to-one relation between FF and CV 2 observed in our data

argues for the renewal assumption. Both across-trial and within-trial variability are de-

termined by the distribution of ISIs of the corresponding renewal process. The gamma

distribution is an appropriate approximation for the distribution of ISIs in most neuronal

systems (Stein, 1965). A change in spiking irregularity is associated with a modification

of the ISI distribution. This again may result from changing membrane properties in

single neurons, circuit properties of networks of neurons, or a combination of both. Miura

et al. 2007 for instance proposed a network architecture, where the firing rate could be

decoupled from the ISI distribution by proper balance of excitatory and inhibitory inputs.

However, the questions whether the change of the ISI distribution in dependence of visual

and oculomotor input has a functional meaning, and whether the additional information,

embodied in changing spiking irregularity, is actually used by MSTd and subsequent ar-

eas, or reflects just an epiphenomenon, remain to be solved by future investigations.

3.5 Is MSTd Involved in Smooth Pursuit Control?

There is strong evidence from lesion studies that the dorsal visual pathway, which is re-

sponsible for motion processing, is involved in the generation of SPEMs (Dürsteler and

Wurtz, 1988). Microlesions in areas MT and MSTl lead to two kinds of pursuit deficits:

the retinotopic deficit, which describes problems of matching eye speed to target speed

when the target is moving in any direction in the visual field contralateral to the side of

the brain with the lesion, and the directional deficit, which is the inability to match eye

speed to target speed when the target is moving towards the side of the lesion. Lesions

in MSTd, however, only lead to retinotopic deficits, indicating a minor role of this area

in pursuit control. This view is supported by electrical microstimulation studies, as in

MSTd only few neurons were found, where stimulation produced an acceleration of pur-

suit (Komatsu and Wurtz, 1989).

Nevertheless, many neurons in MSTd show significantly increased activity during SPEMs

in the abscence of other visual stimulation (Komatsu and Wurtz, 1988). In Ono et al.

(2010) we found that about one third of MSTd neurons belong to the subpopulation of

the so called ’smooth pursuit neurons’. These neurons continue to respond during pursuit

despite a blink (Newsome et al., 1988) or even complete disappearance (Ilg and Thier,

2003) of the pursuit target. Furthermore, the pursuit related activity in MSTd has been

reported to be higher than the visually induced activity in many neurons (Churchland

and Lisberger, 2005).
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∆

∆

Figure 3.1: A dual pathway model for smooth pursuit, extend with temporal delays (Δ)
to match the onset latency measured in psycho-physical experiments. The
upper branch represents the signal pathway from cortical structure MST via
pontine structures (DLPN) to the cerebellum (vPF), while the lower branch
stands for signal processing in FEF via pontine NRTP and cerebellar vermis
(DV). The MST-branch receives an efference copy of the eye velocity signal,
which is delayed by about the same amount as the eye lags behind target
motion. (Adapted from (Nuding et al., 2008))

Previous studies reported that the onset of the SPEM component in MSTd neurons usu-

ally starts about 100 ms after onset of eye movement (Newsome et al., 1988). We found

in our data an average neuronal delay of 127 ms for pursuit neurons. Similarly, the per-

turbation response occurred on average 102 ms after the eye movement (Ono et al., 2010).

When tested with the white noise motion paradigm, most of the neurons with late eye-

velocity-related latency exhibited also significant differences in tuning behavior. In about

one third of neurons spiking activity correlated rather with eye position or eye acceleration

than with image and eye velocity. Another third of units had visual and eye movement

related activity components with opposite preferred directions, which had been described

for MSTd pursuit neurons previously (Newsome et al., 1988; Shenoy et al., 2002; Ono et

al., 2010).

The late onset of the eye-velocity-related component of neuronal response seems to argue

against a participation of MSTd neurons in the generation of SPEMs. Nevertheless, given

the highly direction specific nature and responsiveness to smooth pursuit, the delay in

neuronal response does not exclude a role of MSTd in the SPEM control circuit. Rather,

pursuit neurons in MSTd could provide an efference copy of the eye movement signal

(Holst and Mittelstaedt, 1950) which could be used to reconstruct a target velocity signal

in space, in the same way as we could demonstrate for OKR. For stability reasons, the
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Table 3.1: List of potential further investigations

OKR SP

MSTd done
Eye velocity gain
fields for coordinate
transformations?

MSTl ?
Eye velocity gain
fields for coordinate
transformations?

MT Modulation of visual response by eye movements?

FEF
Visual response in
FEF?

Gain fields for gain
modulation of smooth
pursuit?

efference copy should have a similar delay as the image velocity signal. Given a typical

eye movement onset latency of about 100 ms for SPEM, the observed neuronal delay

fits very well with the efference copy hypothesis, as demonstrated by the computational

model in Fig. 3.1. Nevertheless, further experiments need to be performed to investigate

whether MSTd also contains eye velocity gain fields for transforming the image velocity

signal during SPEM as we have found for OKR eye movements.

3.6 Further Investigations

The studies performed within the framework of this doctoral thesis mainly focused on the

analysis of neuronal activity in MSTd during optokinetic response (OKR) eye movements.

Nevertheless, the information-theoretic data analysis approach we have developed can be

adapted easily to investigate the tuning behavior of other cortical and subcortical regions.

Table 3.1 summarizes some potential further investigations.

As discussed in the previous section, it is still unknown whether MSTd plays a similar role

in sensorimotor coordinate transformations during smooth pursuit (SP), as we propose

for OKR. Preliminary results have shown that the ’white noise motion’ paradigm we have

used for visual large-field stimulation can be adapted to the tracking of small-field targets,

as well. The finding of eye velocity gain fields in MSTd, or adjacent MSTl, during SP

would further strengthen the importance of these areas for the control of tracking eye

movements.
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Visual information is projected to areas MSTd and MSTl through connections with extra-

striate area MT (Tusa and Ungerleider, 1988). Whereas for long time it was assumed that

MT does not receive extra-retinal input (Newsome et al., 1988), a recent work suggested

that MT neurons might use eye movement signals to code depth-sign from motion paral-

lax (Nadler et al., 2009). Our method could be used to solve this controversy by analyzing

whether visual responses in MT are indeed modulated by eye movements, or not.

Another cortical area which is involved in tracking eye movements is the frontal eye field

(FEF). It is assumed that this area participates in the control of SP (Lisberger, 2010).

A recent TMS study suggested that the FEF might be involved in smooth pursuit gain

control (Nuding et al., 2009). The finding of gain-field-like tuning functions in this area

might provide further evidence for this hypothesis.
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Figure 3.2 (facing page): A multi-level analysis of neuronal activity in MSTd.
(A1) Basic system-level model of the optokinetic response
(OKR) control system. Image velocity is the difference between
stimulus and eye velocity. A delay of 60 ms accounts for the
latency of the image velocity signal due to retinal and neural
processing along the visual system. The eye plant is modeled by
a low-pass filter with a time constant of 200 ms and an additional
delay of 20 ms. Image velocity is transformed to an estimated
stimulus velocity signal by adding the estimated eye velocity sig-
nal, provided by an internal model of the eye plant. We assume
that this coordinate transformation involves area MSTd.
(A2) Neural latency of MSTd neurons relative to image and eye
velocity. For each neuron two latency values were estimated: (1)
relative to image velocity (red), and (2) relative to eye velocity
(blue). Neural activity lagged about 60 ms behind the image
velocity signal. In contrast, most neurons fired before the eye
velocity signal, as indicated by negative latency values. This
finding corresponds to the latencies assumed in the OKR model.
(B1) Neural network model of the coordinate transformation.
The network consists of two input layers, one intermediate net-
work unit layer, and an output layer. The image velocity units
are Gaussian tuned with differing preferred image velocity. The
eye velocity units have sigmoid tuning with differing inflection
velocity. The stimulus velocity output layer also consists sig-
moidally tuned units. Each of the intermediate units is con-
nected with each input and output unit. During the back-
propagation learning process the weights of these connections
are modified. Below the model, the tuning functions for image
and eye velocity of 9 example network units after learning are
shown.
(B2) Two-dimensional tuning curves of 9 example MSTd neu-
rons exhibiting gain-field-like behavior. Colors from blue to red
indicate the mean firing rate [Hz] dependent on image velocity
(horizontal axis) and eye velocity (vertical axis). Peak values
and corresponding transformation indices (TI) are denoted in
each colormap. The form and distribution of gain fields is almost
identical to the predictions from the neural network model.
(C1) Top: Hodgking-Huxley-type neural model with inserted
stochastic conductances mimicking excitatory and inhibitory
synaptic input activity (see Additional Results section). Bot-
tom: Firing rate and Fano factor of the Hodgking-Huxley-type
neural model depending on the injected current Iinj and the level
of background synaptic input Isyn.
(C2) Firing rate and Fano factor of the Hodgking-Huxley-type
neural model (black) correspond to our observation in MSTd
neurons (grey) during fixation with visual stimulation (FIX) and
optokinetic response (OKR).
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Ono S, Brostek L, Nuding U, Glasauer S, Büttner U, Mustari
MJ. The response of MSTd neurons to perturbations in target
motion during ongoing smooth-pursuit eye movements. J Neuro-
physiol 103: 519–530, 2010. First published November 18, 2009;
doi:10.1152/jn.00563.2009. Several regions of the brain are involved
in smooth-pursuit eye movement (SPEM) control, including the cor-
tical areas MST (medial superior temporal) and FEF (frontal eye
field). It has been shown that the eye-movement responses to a brief
perturbation of the visual target during ongoing pursuit increases with
higher pursuit velocities. To further investigate the underlying neuro-
nal mechanism of this nonlinear dynamic gain control and the con-
tributions of different cortical areas to it, we recorded from MSTd
(dorsal division of the MST area) neurons in behaving monkeys
(Macaca mulatta) during step-ramp SPEM (5–20°/s) with and without
superimposed target perturbation (one cycle, 5 Hz, �10°/s). Smooth-
pursuit–related MSTd neurons started to increase their activity on
average 127 ms after eye-movement onset. Target perturbation con-
sistently led to larger eye-movement responses and decreasing laten-
cies with increasing ramp velocities, as predicted by dynamic gain
control. For 36% of the smooth-pursuit–related MSTd neurons the
eye-movement perturbation was accompanied by detectable changes
in neuronal activity with a latency of 102 ms, with respect to the
eye-movement response. The remaining smooth-pursuit–related
MSTd neurons (64%) did not reflect the eye-movement perturbation.
For the large majority of cases this finding could be predicted by the
dynamic properties of the step-ramp responses. Almost all these
MSTd neurons had large visual receptive fields responding to motion
in preferred directions opposite to the optimal SPEM stimulus. Based
on these findings it is unlikely that MSTd plays a major role for
dynamic gain control and initiation of the perturbation response.
However, neurons in MSTd could still participate in SPEM mainte-
nance. Due to their visual field properties they could also play a role
in other functions such as self-motion perception.

I N T R O D U C T I O N

Moving visual stimuli can induce slow tracking eye
movements. For small objects these are called smooth-
pursuit eye movements (SPEMs). They are used to keep the
image of the moving object on or near the fovea where
visual acuity is best. SPEMs are produced by volitional
effort and depend on motivation, attention, and target mo-
tion.

SPEMs can reach velocities up to �60°/s (for review see
Krauzlis 2004; Leigh and Zee 2006). In the laboratory, SPEMs
are often investigated with a step-ramp paradigm (Rashbass
1961). In this paradigm, the monkey fixates a stationary target,

which after a delay is replaced by a target located slightly
eccentrically that moves toward the fovea at a constant speed.
It allows SPEMs to be elicited at short latency (100–140 ms)
without contamination by initial saccades.

In recent years it was shown that during ongoing constant-
velocity SPEMs, brief perturbations of target motion exhibit a
velocity-dependent effect on eye velocity. Typically a short-
duration (�200 ms) single cycle (5–10 Hz) of sinusoidal
motion is added to the ongoing target motion, resulting in a
corresponding perturbation of eye motion. The eye motion
response depends on current SPEM speed in both humans
(Churchland and Lisberger 2002) and monkeys (Churchland
and Lisberger 2005b), even when the same perturbing stimulus
motion is applied. While fixating a stationary target, perturba-
tion responses are still produced but at a lower gain (Schwartz
and Lisberger 1994). This nonlinear response is thought to
reveal an underlying dynamic gain control mechanism in
SPEM (Churchland and Lisberger 2005b; Nuding et al. 2008).
Even though the neural mechanisms and regions involved in
dynamic gain control are not completely understood, recent
studies point toward cortical areas as being the main site of
smooth-pursuit gain control (Nuding et al. 2008; Tanaka and
Lisberger 2001).

From single-unit and lesion studies it is known that frontal
lobe and parietal–occipital lobe structures play complementary
roles in SPEM (Krauzlis 2004). These areas include the middle
temporal (MT) and medial superior temporal (MST) areas in
the parietooccipital region and the frontal eye field (FEF)
cortex. These cortical areas are reciprocally connected (Tusa
and Ungerleider 1988) and also send projections to the brain
stem (Distler et al. 2002). Area MT, which has extensive
connections with MST, is well known to play a role in visual
motion processing, including foveal and parafoveal visual
motion appropriate for SPEMs (Maunsell and Van Essen
1983). MST is divided into several subregions, including
dorsal (MSTd), lateral (MSTl), and ventral (MSTv), with
different functional properties. Lesions of MST cause deficits
in SPEM when the subject tracks a target moving toward the
lesioned side (Newsome et al. 1988).

Early single-unit recording studies demonstrated that during
SPEM neurons in MSTd and MSTl show strong modulation
that was often due to an extraretinal signal (Newsome et al.
1988). The extraretinal origin was revealed by briefly (100–
400 ms) extinguishing the target spot during maintained
SPEM. In this target blink condition, well-trained monkeys
maintain most of their smooth-pursuit eye velocity (e.g., Ono
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and Mustari 2006), MSTd and some MSTl neurons continue to
discharge (Newsome et al. 1988), but MT neurons do not.

Neurons in MSTd have large visual receptive fields (�14°)
that can include both contralateral, foveal, and ipsilateral visual
field components (Churchland and Lisberger 2005b). The
large-field visual and smooth-pursuit response components of
MSTd neurons generally have opposing direction preferences
(Komatsu and Wurtz 1988). Based on the interaction of the
visual and extraretinal components it has been argued that
MSTd might be a critical structure for self-motion perception
(Shenoy et al. 2002).

During step-ramp testing a large proportion of MSTd neu-
rons begin firing only 50–100 ms after pursuit onset (New-
some et al. 1988). Only a small subset of MSTd neurons has
short-latency responses starting as much as 100 ms before
smooth-pursuit initiation (Newsome et al. 1988). This early
response component might be due to retinal image motion of
the target (Ilg and Thier 2003).

We have demonstrated in earlier studies that MST projects
to the dorsolateral pontine nuclei (DLPN) (Distler et al. 2002).
Similarly, the FEF projects to the nucleus reticularis tegmenti
pontis (NRTP) (Ono and Mustari 2009). Both DLPN (Mustari
et al. 1988; Thier et al. 1988) and NRTP (Ono et al. 2004;
Suzuki et al. 2003) are known to play a role in SPEM. The
DLPN and NRTP have been shown in anatomical studies to
project to mostly different regions of the cerebellum including
the floccular complex and vermis. In turn, the floccular com-
plex and vermis deliver signals important for SPEM through
the vestibular nuclei and caudal fastigial nuclei, respectively
(Büttner and Büttner-Ennever 2006). Moreover, there is now
strong evidence for a feedback loop via the thalamus back to
the cortex (Tanaka 2005), which might carry an efference copy
of SPEM commands (Nuding et al. 2008).

The goal of our studies was to determine the potential role of
MSTd neurons in the control of visually induced perturbation
responses during SPEM. To accomplish this, we recorded
single-unit activity in MSTd of the alert behaving monkey
during a step-ramp paradigm, which included a target pertur-
bation task. We found that a minority of MSTd neurons was
modulated during the perturbation task, with neuronal response
onsets about 100 ms after the eye movement caused by the
perturbation. To contrast these responses a few neurons were
also tested during eye movements induced by large-field visual
motion. The preferred neuronal response was in the direction
opposite to the optimal SPEM response. Under these condi-
tions virtually all neurons responded before the step-ramp and
perturbation-induced eye movements. The results indicate that
MSTd neurons probably do not play a major role in the
initiation of the perturbation responses during SPEM; however,
they could contribute to SPEM control during maintained
tracking.

M E T H O D S

Three monkeys (Macaca mulatta, 5–7 kg), born in captivity at the
Yerkes National Primate Research Center (Atlanta, GA), were pre-
pared for chronic eye-movement and single-unit recordings. All sur-
gical procedures were performed in compliance with National Insti-
tutes of Health Guide for the Care and Use of Laboratory Animals and
protocols were reviewed and approved by the Institutional Animal
Care and Use Committee at Emory University. Surgical procedures
were performed in a dedicated facility using aseptic techniques under

isoflurane anesthesia (1.25–2.5%). Vital signs including blood pres-
sure, heart rate, blood oxygenation, body temperature, and CO2 in
expired air were monitored with a Surgivet instrument (Waukesha,
WI) and maintained within normal physiological limits. Postsurgical
analgesia (buprenorphine, 0.01 mg/kg, administered intramuscularly
[im]) and antiinflammatory (banamine, 1.0 mg/kg, im) treatment were
delivered every 6 h for several days, as indicated. To permit single-
unit recording, we used stereotaxic methods to implant a titanium
head-stabilization post and a titanium recording chamber (Crist In-
strument, Hagerstown, MD) over MST cortex (posterior, 5 mm;
lateral, 15 mm). In the same surgery, a scleral search coil for
measuring eye movements (Fuchs and Robinson 1966) was implanted
underneath the conjunctiva of one eye using the technique of Judge et
al. (1980).

Behavioral paradigms

During the experiments monkeys were seated in a primate chair
(Crist Instrument) with their head fixed in the horizontal stereotaxic
plane in a completely dark room to which they were customized. The
room was sealed with darkroom tape and light traps to ensure no
ambient light entered the room. This was verified by having a trained
observer sit in the room for 30 min in complete darkness and attempt
to find light leaks. Power to visual stimulus projector bulbs and to the
laser diode, which provides the tracking target, were extinguished
during blink testing. Neurons in MSTd were tested during smooth-
pursuit and visual motion. All visual stimuli were rear-projected onto
a tangent screen (Stewart Film Screen, Torrance, CA) at 57-cm
distance. Stimuli were delivered using computer-controlled two-axis
mirror galvanometers (General Scanning, Watertown, MA) and ap-
propriate optics and hardware. Stimulus motion was controlled with
custom LabVIEW software and National Instruments hardware (Aus-
tin, TX).

Localization of MSTd

We verified that our neurons were located in MSTd by functional
(e.g., SPEM response continues during a target blink and large visual
receptive fields), histological, and magnetic resonance imaging (MRI;
T1-weighted, fast spin-echo; Siemens, 3-T magnet) criteria. Structural
MRI was obtained from both monkeys while they were under surgical
levels of inhalation anesthesia (described earlier). We confirmed the
location of our recording sites histologically in one of the monkeys;
the other monkeys are still being used in other studies. At the
conclusion of our recording experiments, the first monkey was deeply
anesthetized and perfused with physiological saline followed by 4%
paraformaldehyde, as described in detail elsewhere (Mustari et al.
1994). Frozen sections were cut at 50 �m and every section was
mounted on microscope slides and stained for Nissl substance to allow
histological reconstruction of representative electrode tracks.

Visual stimuli

We searched for units in MSTd that were modulated during
smooth-pursuit or visual motion in the frontal plane. We used either
circular motion of a large-field visual stimulus or motion in eight
cardinal directions, separated by 45° to determine neuronal direction
preference. Visual stimuli were either large-field (35 � 35°) random
dot patterns, small-field (5 � 5°) random dot patterns, or small-
diameter (2°) spots. Random-dot patterns had light and dark contours
with a mean luminance of 100 cd/m2. Contrast of the light and dark
contours was set at 50%. Circular motion was produced by driving the
horizontal and vertical galvanometers 90° out of phase (�5–10°;
0.25–1.0 Hz). This circular motion stimulus produces constant-speed
motion of all scene components across the full extent of the pattern.
Smooth-pursuit direction preference was tested as using either circular
motion (�10°; 0.25–0.5 Hz) or motion along eight cardinal directions
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(U, up; D, down; L, left; R, right and the oblique directions: UL, UR,
DL, DR) of a small-diameter (0.2°) target spot. The target was a
rear-projected red spot produced with a light-emitting diode laser
(Melles Griot, Rochester, NY). We maintained the target 1.0 log unit
above the dark background, as measured with calibrated neutral
density filters (Melles Griot). The optimal responses for smooth-
pursuit tracking and large-field visual stimulation during fixation were
usually in opposite directions. Except for the visual stimuli the
monkey was in complete darkness. The following stimulus conditions
were applied.

1) SPEM. The laser spot first stepped away from the center
position and then moved at constant velocities from 5 to 20°/s in the
preferred direction. The initial step was arranged so that the target
crossed the center position after 130 ms. The constant-velocity part
lasted 1,500–1,800 ms.

2) Large-field (LF) visual motion response. The monkey fixated a
small target spot located at the center of gaze. The target was turned
off coincident with the start of LF stimulus motion at constant velocity
(5–20°/s) for 2,000 ms. This stimulus consistently leads to following
eye movements (optokinetic response [OKR]).

3) Perturbation. During both SPEM and LF stimulation a visual
perturbation consisting of one sinusoidal cycle (5 Hz, �10°/s), with
the first half-cycle increasing the stimulus velocity (peak-first pertur-
bation; Churchland and Lisberger 2002), was introduced during the
constant-velocity phase (600–800 ms after stimulus onset).

4) Blinking. Extraretinal modulation of neuronal response during
SPEM was tested by blinking the target during ongoing pursuit for
100–200 ms. Trials with and without blinking were randomly inter-
leaved (Ono and Mustari 2006). During the blink all visual stimuli
were extinguished, leaving the monkey in complete darkness.

Visual receptive fields

Visual receptive fields (RFs) of neurons were mapped by moving a
probe stimulus in the preferred and antipreferred directions at regu-
larly spaced eccentricities across the visual field. The probe stimulus
for RF mapping was a white rectangle (2 � 2°) oscillating at 0.5–3 Hz
(�1°). RF size was taken as the area in which the neuron was
modulated by the oscillating stimulus. Responses of our MSTd neu-
rons were in agreement with known discharge properties of MSTd
neurons (Komatsu and Wurtz 1988). Receptive fields were large and
had their center in the contralateral hemifield. For most neurons RF
size exceeded 30° and for many neurons it was �60°. None of the
neurons had RFs �15° and they were not restricted to the central 15°
around the fovea, as might be expected for other regions of MST (e.g.,
MSTl). Some neurons extended their RF into the ipsilateral hemifield,
but generally not �20°. Larger extensions into the ipsilateral hemi-
field were always combined with increasing RF sizes. For 63% of the
neurons the RF included the fovea. There was no difference in RF
sizes for neighboring visual only and visual-smooth pursuit neurons.

Data collection

Eye movements were detected with standard electromagnetic meth-
ods using scleral search coils (Fuchs and Robinson 1966) and preci-
sion hardware (CNC Electronics, Seattle, WA). For calibration the
monkey was required to fixate stationary targets at known eccentric-
ities. Monkeys were rewarded with juice for maintaining fixation
within a window of �1.5°. Single-unit activity was recorded from
neurons in MSTd using customized epoxy-coated tungsten microelec-
trodes (FHC, Bowdoin, ME) with an impedance of 1–3 M�. Single-
unit action potentials were detected with either a hardware window
discriminator (Bak Electronics, Mount Airy, MD) or template-match-
ing algorithm (Alpha-Omega, Alpharetta, GA) and were registered at
high precision as an event mark in our data-acquisition system (CED
Power 1401, Cambridge Electronic Design, Cambridge, UK). Eye and
target position feedback signals were processed with antialiasing
filters at 200 Hz using six-pole Bessel filters before digitization at 1
kHz with 16-bit precision.

Data analysis

The recorded eye position traces were filtered with a Gaussian
low-pass (cutoff frequency: 10 Hz) and three-point differentiated to
obtain the velocity traces. Saccades were detected and removed with
a slow-phase estimation algorithm as described previously (Ladda et
al. 2007). Briefly, an estimate of the slow-phase component (SPC)
was initialized to zero and iteratively improved in each step. The
difference between the actual eye velocity trace and the current SPC
served as an estimate of the fast-phase component (FPC). When the
FPC exceeded a threshold (100°/s in the first step, 20°/s in the second
step), a saccade was detected. The SPC was then computed by linear
interpolation of the eye velocity across saccades and subsequent
filtering with a Gaussian low-pass (cutoff frequency: 1 Hz in the first
step, 10 Hz in the second step). Neuronal response was represented as
a spike density function that was generated by convolving spike times
with a 15-ms Gaussian function. Eye-movement and spike density
functions corresponding to each trial were extracted and averaged
over corresponding conditions.

To determine the eye-movement onset latency (EMOL) (Fig. 1), the
mean and SD of the eye velocity during the initial fixation period were
calculated. The point in time at which the eye velocity trace crosses
the threshold of this mean � 3SD yields the EMOL, relative to target
step-ramp onset (t � 0). The perturbation response latency (PRL),
which describes the delay of the ocular response to target perturbation,
was determined by the maximum of eye velocity in a time interval
�400 ms after target perturbation. The difference of this maximum to
the subsequent minimum of eye velocity yields the perturbation
response modulation (PRM). For statistical assessment of these pa-
rameters, outliers deviating �3SD from the mean response were
removed.
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FIG. 1. Eye velocity (A) and neuronal pa-
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movement onset latency; PRL, perturbation
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sponse latency; NPRL, neuronal perturba-
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The neuronal response latency (NRL) denominates the delay of the
increase in neural activity after target step-ramp onset. It was deter-
mined by the time when the response exceeds the mean � 3SD of the
initial activity. The neuronal response sensitivity is the ratio of the
mean spike density in a time interval between 500 and 600 ms after
target step-ramp onset minus the mean initial spike density during
fixation divided by the mean eye velocity in that time interval.

In the analysis associated with a blinking target the neuronal
activity was compared with control trials without a blink. The blink
response latency was defined as the point of minimal eye velocity in
a period �400 ms after the start of blink. The time interval for
determination of the response ratio consisted of a 200-ms period
around this latency plus the neuronal latency with respect to the eye
movements.

Data analysis of neuronal perturbation response

To decide whether a neuronal response shows modulation to a
target perturbation, a confidence region was defined as a 3SD value
around the Gaussian low-pass filtered (cutoff frequency: 2 Hz) spike
density function of the control trials. When the spike density during
the perturbation trials exceeded this confidence region in a time
interval �550 ms after start of target perturbation, the neuronal
response was declared to show a perturbation response.

If present, the delay of a neuronal modulation response to the
perturbation of the visual target stimulus is described by the neuronal
perturbation response latency (NPRL) (Fig. 1). It was determined by
the maximum of spike density in a time interval �350 ms after target
perturbation. The neuronal perturbation response sensitivity deter-
mines the ratio of the difference between this maximum and the
subsequent minimum of spike density divided by twice the amplitude
of the target perturbation.

We further analyzed whether a detectable perturbation response
would be expected from the data by predicting the perturbation response
based on the control trials. We first fitted a linear regression model with
the regressor variables eye velocity (v) and eye acceleration (a) to the
spike density function (sdf) of each neuron, according to

sdf � �0 � �1v � �2a

Trial mean values were used for each target velocity from 500 ms
before target onset until target offset. The lag of the neuronal response
with respect to eye movement (NRL � EMOL) was taken into
account by varying the delay in steps of 1 ms and searching for the
best fit (maximal R2). Using this model, we then predicted the
neuronal response of the perturbation trials based on eye velocity and
eye acceleration of these trials. The predicted response was then
entered into the perturbation analysis described in the preceding
paragraph. Thus neurons could fall in four classes (data responsive or
not responsive; prediction responsive or not responsive), depending
on whether a perturbation response was expected from the control
responses.

R E S U L T S

In general, the majority (65%) of neurons encountered in the
MSTd region responded only to visual motion. They will not
be considered in the following text. For the present study, only
SPEM-related MSTd neurons were included (n � 61). They
were recorded in the right hemisphere of three monkeys (HZ,
n � 48; UJ, n � 7; OY, n � 6 neurons) and were optimally
modulated during SPEM in a preferred direction. Fifty-five of
those also responded to visual motion, the remaining six only
during SPEM. Generally, the preferred direction for visual
motion and smooth pursuit was in opposite directions as
reported previously (Newsome et al. 1988). All neurons were
spontaneously active with a low and irregular firing rate.

SPEM perturbation responses

EYE MOVEMENTS. The perturbation (5 Hz, �10°/s) during
ongoing pursuit led in all instances to a change in eye velocity
(Figs. 1, 2, and 3). We interleaved perturbation and normal
step-ramp trials to prevent the monkey from anticipating a
perturbation event. There was a tendency that trials with
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FIG. 2. MSTd (dorsal division of
the medial superior temporal area) neu-
ron during step-ramp smooth-pursuit eye
movement (SPEM) and target perturba-
tion. A: target and eye velocity. B: aver-
aged neuronal activity from the individ-
ual traces shown in C. Continuous lines
and C1 refer to perturbation trials, dotted
lines and C2 to controls. Gray areas in A
and B indicate SD of eye velocity and
neuronal activity, respectively. Step-
ramp stimulation leads to SPEM, fol-
lowed by an increase in neuronal activ-
ity. The initial neuronal acceleration in-
crease is followed by a constant velocity
component. The perturbation (one cycle
5 Hz, �10°/s) during the step-ramp
stimulation leads to eye velocity changes
and is also followed by a modulation of
neuronal activity. Maximum and mini-
mum of the eye and the neuronal pertur-
bation response are marked by the anal-
ysis algorithm (METHODS), onset of
SPEM (EMOL), and neuronal activity
increase (NRL) (gray vertical line) as
well. Time refers to stimulus onset.
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perturbation were contaminated by saccades that led to the
elimination of these trials. The underlying constant eye veloc-
ity during ramp stimulation had a clear effect on the perturba-
tion response in terms of both latency and response modulation
(Fig. 4, A and B).

The mean latency (PRL; see Fig. 1) monotonically de-
creased from 121 ms at 5°/s ramp velocity to 94 ms at 20°/s
ramp velocity. This decrease was highly significant [one-way
ANOVA, four levels corresponding to four target velocities:
F(3,158) � 14.99; P � 0.0001] and different from the latency
pattern seen in response to the standard step-ramp stimulation.
Here stimulus velocity had little effect on latency (see follow-
ing text; Fig. 4C).

In contrast to perturbation latency, the magnitude of the
perturbation response (PRM; see Fig. 1) continuously in-
creased from 6.3°/s at 5°/s ramp velocity to 9.3°/s at 20°/s ramp
velocity (Fig. 4B). This increase was also highly significant
[one-way ANOVA, four levels corresponding to four target
velocities: F(3,158) � 12.29; P � � 0.0001]. Both latency and

magnitude reflect dynamic gain control with values similar to
those described previously (Churchland and Lisberger 2005a).

NEURONAL RESPONSE. Based on the criteria described earlier
(METHODS) 22 of 61 neurons (36%) showed some modulation
during perturbation, whereas most neurons (64%; HZ, n � 31;
UJ, n � 6; OY, n � 2) were not modulated.

A modulated neuron is shown in Fig. 2. Neuronal activity
during SPEM started 150 ms after eye movement onset (260
ms after stimulus onset). After a modest phasic response
associated with eye acceleration the remaining response was
related to eye velocity. The perturbation during pursuit led to
an eye-movement response after 121 ms, which was followed
100 ms later by a modulation in neuronal activity (Fig. 2). This
sequence of events was the case in virtually all instances. The
neuronal activity followed the eye-movement perturbation re-
sponse on average by 101.6 ms (SD � �46.1 ms) (Fig. 5A).
This latency was slightly shorter than the onset of neuronal
activity for step-ramp stimulation of the same trials (average
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127.3; SD � �55.5 ms) (Fig. 5B). The mean perturbation
latency (NPRL � PRL) decreased with target velocity from
118 ms at 5°/s to 67 ms at 20°/s (Fig. 6B). However, this
decrease was not significant [one-way ANOVA, four levels
corresponding to four target velocities: F(3,27) � 1.06; P �
0.381]. In general neurons were tested at more than one
stimulus velocity, yielding 61 data sets for these 22 neurons.
(The term “data set” refers to the neuronal response at one
stimulus velocity.) Whereas 6 neurons (HZ, n � 6; UJ, n � 0;
OY, n � 0) were modulated under all conditions (n � 9), the
remaining 16 neurons (HZ, n � 11; UJ, n � 1; OY, n � 4)
were not modulated at all stimulus velocities (modulation in 22
of 55 conditions).

As mentioned earlier, most neurons (n � 39) did not respond
to perturbation at any stimulus velocity (131 conditions). For
the example shown in Fig. 3, target perturbation leads to a clear
eye-movement modulation (Fig. 3A), but not to a modulation
of neuronal activity (Fig. 3B). Thus although the perturbation
led consistently to an eye-movement modulation, most MSTd
neurons were not affected.

SPEM step-ramp responses

EYE MOVEMENTS. After the step the eyes started to move
with a latency of 120 –140 ms with little effect of stimulus
velocity (Fig. 4C). The timing of the step-ramp prevented in
nearly all cases an initial catch-up saccade. The final con-
stant velocity was reached after another 200 ms (Figs. 1–3).
Constant eye velocity increased with stimulus velocity, with
gain values ranging from 0.85 to 0.95, which reflects normal
behavior.

NEURONAL RESPONSES. Preferred directions were equally dis-
tributed across the tested directions. Neuronal activity started
to increase in nearly all instances after the beginning of smooth
pursuit. There was only one neuron that started to discharge 28
ms before eye-movement onset. The average latency (NRL �
EMOL; see Fig. 1) for all MSTd neurons ranged from 151 ms
at 10°/s to 135 ms at 20°/s target velocity (Fig. 6A). Thus there
was a small, but not significant effect of stimulus velocity on
neuronal latency [one-way ANOVA, four levels correspond-
ing to four target velocities: F(3,158) � 2.55; P � 0.058].
We found that 75% of the neurons had activity increases,
which started �120 ms after stimulus onset. The distribu-
tion of latencies for those neurons, in which the perturbation
led to neuronal activity changes (Fig. 5B), was not different
from the nonresponding neurons. During the constant-
velocity period activity increased with eye velocity. How-
ever, the average sensitivity in relation to eye velocity
remained nearly constant.

Relationship between neuronal step-ramp and
perturbation responses

With respect to neuronal response latency (NRL), there was no
difference between modulated and unmodulated MSTd neurons
during perturbation. Responding neurons did not appear to be
clustered in certain regions of MSTd. The ratio of phasic (initial)
to tonic (constant-velocity) activity was on average slightly higher
for the responsive (1.96) than that for the unresponsive (1.71)
neurons. Also the constant-velocity sensitivity was slightly higher
(3.11 impulses �s�1 �deg�1 �s�1) for responsive neurons compared
with 2.46 impulses �s�1 �deg�1 �s�1 for unresponsive neurons (av-
erage). Both differences did not become significant (relation
phasic vs. tonic: P � 0.090, constant-velocity sensitivity: P �
0.081; Student’s t-test). However, although the difference in
neuronal sensitivity was modest, it turned out to be critical for
understanding why only some neurons had clear responses to the
perturbation (see following text).

As shown earlier, the eye-movement perturbation response
modulation (PRM) increased with higher constant velocities
(Fig. 4B). This modulation, however, was not reflected in more
responsive data sets at higher stimulus velocities. In contrast,
the percentage of responsive data sets decreased with stimulus
velocity. Whereas 33% of the data sets were responsive at 5°/s,
this number decreased to 23% (10°/s), 21% (15°/s), and 9% (3
of 32) at 20°/s stimulus velocity. This initially surprising
finding was also seen with our regression analysis (see follow-
ing text).

To further investigate why neurons did not show detectable
modulation in response to target perturbation, we predicted the
neuronal responses in perturbation trials based on the averaged
control trials using a linear regression approach (see METHODS). We
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first fitted the neuronal responses in control trials using a combi-
nation of eye velocity and eye acceleration. In general, this
regression approach provided a good fit of the neural re-
sponse during control trials, with an average R2 value of
0.61 � 0.20 (see Fig. 7 for examples of a responsive and a
nonresponsive neuron). Furthermore, the fit of the neuronal
control data confirmed that the MSTd neurons basically

encode eye velocity with a small eye acceleration compo-
nent (velocity factor: 2.4 � 1.6 impulses � s�1 �deg�1 � s�1;
acceleration factor: 0.06 � 0.16 impulse � s�1 �deg�1 � s�2).
For 64% of the data sets the acceleration component was
negligible (�0.001 impulse � s�1 �deg�1 � s�2). Adding a
mixed term (velocity � acceleration) improved the average
R2 to only 0.63 and was therefore not used.

The perturbation analysis of the predicted neuronal re-
sponse, using the same confidence region as that for the
measured perturbation data, revealed that for the majority of
data sets (68%), prediction and data were in accordance
(20% responsive, 48% nonresponsive). For the remaining
data, prediction and measurement did not match (prediction:
response � measured: no response: 19%; prediction: no
response � measured: response: 13%). In other words, our
analysis showed that, based on the response properties of the
neurons during step-ramp control trials and the eye move-
ment during perturbation trials, for most nonresponsive
neurons a detectable perturbation response was not ex-
pected, since the noise level in relation to the velocity
weight was too high.

The regression analysis also showed that the predicted
neuronal responses were related to target velocity. Whereas
at 5°/s 63% of the data sets were predicted as responsive,
this percentage decreased to 38% at 10°/s, 32% at 15°/s, and
19% at 20°/s. Thus both the measured (see earlier text) and
the predicted responsive data sets decreased with target
velocity. This result was not due to an increase of the
confidence region (noise) in relation to target velocity (5°/s:
45.5 impulses/s; 10°/s: 56.7 impulses/s; 15°/s: 56.3 impuls-
es/s; 20°/s: 49.5 impulses/s). There was also no difference
between responsive and nonresponsive data sets. However,
the neuronal sensitivity decreased with target velocity,
which can be seen for both the neuronal data and the
regression analysis (Fig. 8). In both measures the decrease
amounts to a factor of 2 and is significant [neuronal re-
sponse sensitivity: one-way ANOVA, four levels corre-
sponding to four target velocities, F(3,158) � 5.5636; P �
0.0012; velocity weight: one-way ANOVA, four levels cor-
responding to four target velocities, F(3,158) � 3.7794; P �
0.0121]. The decrease was similar for responsive and non-
responsive data sets. On the other hand, the eye movement
perturbation response modulation (PRM) increased with a
factor of about 1.5 (see Fig. 4B). Thus the effect of decreas-
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ing neuronal perturbation response with higher target veloc-
ity prevails over the effect of increasing ocular perturbation
response, which can explain the lower number of responsive
data sets with increasing target velocity.

LF motion responses

The main emphasis of this study is on the neuronal
responses during smooth-pursuit perturbation. Since virtu-
ally all MSTd neurons responding during SPEM also re-
sponded during LF visual motion (in the opposite direction),
some examples (n � 15) were taken to underline the dif-
ference in the response characteristics. Values were taken
from neurons tested at 15°/s stimulus velocity (n � 12). The
remaining neurons were tested at 20°/s (n � 2) and 5°/s (n �
1) with similar results.

LF perturbation responses

EYE MOVEMENTS ASSOCIATED WITH LF MOTION. The LF stimu-
lus consistently led to changes in eye velocity following the
perturbation (Fig. 9). For an underlying stimulus velocity of
15°/s, the perturbation (5 Hz, �10°/s) response latency (PRL)
was 88 � 7.4 ms, slightly shorter than that during SPEM. The
eye-movement response modulation (PRM) with 10.5 � 2.1°/s
(corresponding to a gain of 0.53) was also comparable to the
value during SPEM.

NEURONAL RESPONSE. All neurons (n � 15), except for one,
were clearly modulated by the LF perturbation. The sensitivity
ranged from 1.01 to 4.77 impulses �s�1 �deg�1 �s�1 and was on
average 2.25 impulses �s�1 �deg�1 �s�1. In contrast to the late
onset of smooth-pursuit perturbation responses, neuronal ac-
tivity following LF motion led the eye-movement response
(NPRL, Fig. 9) by 34.1 ms for most neurons (12 of 15). For
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two neurons activity lagged both for ramp (see following text)
and for perturbation. The remaining neuron lagged only during
perturbation.

LF ramp responses

EYE MOVEMENTS. The LF stimulus induced eye movements
with a latency (EMOL) of 76 � 20.1 ms, which was much
shorter than the 120 ms obtained during SPEM stimulation.
Eye velocity at 200 ms poststimulus onset reached 12.3°/s
(average) with a 15°/s stimulus.

NEURONAL RESPONSES. In general the neuronal response la-
tency during ramp stimulation (NRL) was short (Fig. 9) except
for two neurons with a latency of 209 and 241 ms after
stimulus onset. All other neurons (including those tested at 5
and 20°/s) had short latencies (average 42 � 14 ms) with
respect to stimulus onset and started on average 34 ms before
the eye movement. This is in sharp contrast to the SPEM
situation, during which the neurons responded on average 135
ms following the eye-movement onset.

The sensitivity of the neurons tested with LF stimulation was
variable. Some neurons (n � 4 of 12) had small steady-state
responses (�0.5°/s) but a large initial response, which might
reflect the different amount of retinal slip during stimulation.
The remaining neurons (n � 8) had an average sensitivity of
3.19 impulses �s�1 �deg�1 �s�1.

Responses during target blinking

To confirm the dependence of the smooth-pursuit–related
response on extraretinal signals, 22 of the SPEM-related neu-
rons were additionally tested during step-ramp stimulation,
with the target blinked for 100 ms during ongoing pursuit (Ono
and Mustari 2006). For the tested neurons the neuronal activity
started 131 ms (average) after pursuit onset (see earlier text).
During the target blink the eye movement continued as smooth
pursuit with only a small transient decline in velocity. The
minimum in eye velocity was reached 215 ms (average) after
blink onset. The gain decreased on average to 0.69 compared
with the control gain of 0.90 for the population of tested
neurons. The neuronal activity was not significantly affected
by the blink. The relation of neuronal activity to eye velocity
during the blink analysis period was 109% compared with the
100% for the controls—thus even slightly higher than that
under control conditions. It is known that neuronal responses
related to visual motion (e.g., in area MT) show a pronounced
activity decrease during the target blink (Newsome et al. 1988).
Thus the continuous response during the target blink supports
the nonretinal origin of the responses during SPEM.

D I S C U S S I O N

Our study shows that the characteristic changes in eye
movement due to dynamic gain control can be easily demon-
strated in accordance with earlier studies (Churchland and
Lisberger 2005a,b). With higher ongoing SPEM velocities the
perturbation response increases and the latency decreases (Fig.
4). In general the perturbation response latency (PRL) appeared
shorter than the SPEM onset latency (EMOL) during step-ramp
stimulation, although it has to be kept in mind that the methods for

determining SPEM (onset) and perturbation (peak-to-peak) laten-
cies were different (see Fig. 1 and METHODS).

Despite prominent eye-movement changes with perturba-
tion, this was only poorly reflected in the SPEM response of
MSTd neurons. Our MSTd neurons had a good sensitivity
during pursuit, but a perturbation-related response could be
detected for only a minority (36%). Even for the modulated
neurons, the perturbation response was not detectable at all
stimulus velocities. Interestingly the percentage of responsive
data sets decreased with higher stimulus velocities (see
RESULTS). This most likely seems to be related to the decrease
of neuronal sensitivity with increasing stimulus velocity (Fig.
8), which appears to be higher than the increase of the eye-
movement perturbation response (PRM, Fig. 4B).

For the classification of neurons, the noise level plays an
important role. We chose 3SDs to judge whether a neuronal
response shows responsiveness. A higher criterion tends to miss
weak responses; a lower one might classify noise as a perturbation
response. Our subsequent regression analysis showed that for
68% of our data sets the presence or absence of a neuronal
perturbation response was a direct consequence of the dynamic
properties of the neurons. The large proportion of nonresponsive
neurons is thus explained by the fact that the neuronal discharge
is mainly determined by eye velocity and, in these neurons, the
expected perturbation modulation was too small compared with
the noise level. The remaining 32% fall into two categories: for
13% the measured perturbation response was even larger than
predicted, which could be explained by the observation that phasic
responses were usually underestimated by our regression model.
The remaining 19% of the data sets were expected to show a
detectable modulation based on the control data, but the measure-
ment failed to reveal the expected perturbation response.

The relatively late onset of the perturbation-related response
seems to argue against participation of MSTd neurons in
generation of the perturbation response. However, MSTd neu-
rons could provide a signal that carries a delayed efference
copy of eye movements (also see the following text), which is
needed to reconstruct a signal representing target velocity in
space from a similarly delayed retinal slip signal. From earlier
studies it is known that onset of the SPEM component of
MSTd neurons often starts �100 ms after eye-movement onset
(Newsome et al. 1988). In our sample the average delay was
127 ms. Similarly, the perturbation response occurred 102 ms
after the eye movement. MSTd could thus monitor the state of
the SP system. The highly direction specific nature and SPEM
dependence of responses suggest that MSTd neurons could
play a role in maintenance of pursuit (Ono and Mustari 2006).
A direct involvement of MSTd in dynamic gain control,
however, seems unlikely.

Origin of the nonretinal component

Maintenance of SPEM critically depends on feedback mech-
anisms providing information about eye velocity (Krauzlis and
Lisberger 1994; Nuding et al. 2008; Robinson et al. 1988). One
possible source could be the thalamus, where SPEM-related
activity has recently been encountered (Tanaka 2005). Here,
neuronal activity lags SPEM initiation on average by 30 ms,
which is still considerably shorter than the 100–130 ms en-
countered for our MSTd neurons and found in earlier studies
(Newsome et al. 1988). MSTd also receives an input from FEF
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(Tusa and Ungerleider 1988), where SPEM-related activity is
present as well. Neuronal activity in FEF typically leads SPEM
(Tanaka and Fukushima 1998), but there are late-responding
neurons, which could account for the delay seen in MSTd.

Recently eye-position–related activity has been discovered
in the somatosensory cortex, probably reflecting propriocep-
tion (Wang et al. 2007). Although these signals have an
average delay of 80 ms after saccade onset (Zhang et al. 2008),
they are not appropriate, since MSTd neurons encode gaze
rather than eye velocity (Ono and Mustari 2006). Thus the
thalamic signal seems adequate, although an explanation is
missing as to how the long delay seen in MSTd neurons is
generated.

Where does the dynamic gain control take place?

Current studies show that at least two cortical structures are
involved in the generation and control of SPEM. Evidence
exists to show that the FEF participates more in SPEM initia-
tion and MST more in SPEM maintenance (Nuding et al.
2008), but the roles of these areas and their pontine target areas
are not completely separated. Several studies point toward a
prominent role of FEF in dynamic gain control. For example,
electrical stimulation in FEF enhances a perturbation response
(Tanaka and Lisberger 2001). Recently it was shown using
transcranial magnetic stimulation (TMS) in humans that the
FEF is directly involved in dynamic gain control during SPEM
(Nuding et al. 2008). Potentially, dynamic gain control could
be the result of some interaction between FEF and MST.
However, our data do not support a role for MSTd in such
interaction. The MSTd smooth-pursuit signals are too late to
allow a substantial contribution to the very reliable eye-move-
ment signals as a result of dynamic gain control. Similar
conclusions were drawn in an earlier study (Churchland and
Lisberger 2005b) that did not directly investigate neuronal
activity during perturbation. Currently, it cannot be excluded
that the dynamic gain control results from interaction with
other parietooccipital areas, such as MT or MSTl, which so far
have not been thoroughly investigated with this question in
mind. However, it also seems quite possible that the dynamic
gain control results from some local interactions within FEF,
where not only SPEM-related but also visual responses are
encountered (Fukushima et al. 2002). Alternatively, short-
latency visual and eye motion signals in cortical-ponto-cere-
bellar circuits might all contribute to dynamic gain control.

What is the functional meaning of the extraretinal
component of MSTd neurons?

Before considering this question, it has to be emphasized
that virtually all MSTd neurons possess large visual-motion–
sensitive receptive fields. Importantly, the large majority of
neurons has opposite preferred directions for visual and non-
retinal components, as described previously (Newsome et al.
1988; Shenoy et al. 2002). In our study LF visual motion
induced an OKR response with a short latency (average 76 ms)
and the perturbation response during OKR showed a similar
latency (average 88 ms). For virtually all neurons LF visual
motion and perturbation were accompanied by neuronal activ-
ity changes. In contrast to the extraretinal pursuit component,
these activity changes occurred much earlier before the eye

movement for both ramp and perturbation stimulation (average
lead: 34 ms). This general pattern leads to a number of
interpretations.

Several studies have put forward the suggestion that ex-
traretinal signals play an important role in pursuit maintenance
(Newsome et al. 1988; Nuding et al. 2008; Ono et al. 2009).
This is quite plausible despite the large delay of the extraretinal
component in MSTd neurons. Interestingly, this neuronal delay
(127 ms) and the delay of pursuit onset with respect to target
motion (120–140 ms) exhibit similar values. The similarity of
temporal delays together with simulations of our nonlinear
pursuit model incorporating delays (Brostek et al. 2009) sug-
gest that the extraretinal pursuit signal of MSTd neurons may
serve to reconstruct target velocity in space, which then could
be represented in MSTl, as suggested previously (Ilg and Thier
2003). The representation of the perturbation response in our
MSTd neurons is compatible with this idea, since it reflects
what was predicted from our modeling of the step-ramp re-
sponses.

One important argument against this hypothesis is that
MSTd responses found during LF visual motion do not reflect
delayed eye velocity. Thus other roles for the extraretinal
signals have to be considered. For example, MST has been
shown to be involved in decoding movement through the
environment (Duffy and Wurtz 1991). It is thus possible that
late-responding MSTd pursuit neurons might be involved in
spatial orientation and navigation (Chen et al. 2008). Based on
these ideas, a possible hypothesis for the signal coded by our
MSTd neurons is that they represent gaze velocity in a spatial
reference frame, given that large-field visual motion may be
interpreted as self-motion at the processing stage of MSTd.

Ocular following

There have been a number of studies relating MSTd activity
to the generation of ocular following. With LF visual motion
ocular following occurs 55–60 ms after stimulus onset (Miles
et al. 1986). Visual MSTd activity recorded under these con-
ditions started before the eye movements (Kawano et al. 1994).
It has been concluded that this visual signal is transferred to the
brain stem and the cerebellum to generate the eye-movement
response (Kawano 1999). In our study LF visual motion led to
comparable results. However, since most MSTd neurons with
an extraretinal signal have a preferred direction opposite to the
visual response, it appears unlikely that the response of these
neurons is used only to drive the ocular following response.
Although parietooccipital lesions including MSTd affect the
ocular following response (Takemura et al. 2007), specific
regions of MST may serve different functions.

Optic flow

Recent reports focus on the responses of MSTd neurons to
optic flow (Britten 2008; Shenoy et al. 2002). Furthermore, at
least some MSTd neurons compensate for pursuit speed during
optic flow, which provides critical information for the compu-
tation of self-motion (Shenoy et al. 2002). The authors in this
study also determined the smooth-pursuit response of the
MSTd neurons, which—as it is known from previous studies—
had a preferred direction opposite to the optimal laminar flow
direction.
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Interestingly, Inaba et al. (2007) found that the visual
motion response of MSTd neurons is affected by smooth
pursuit even if the neurons do not respond during smooth
pursuit per se. This applied to �70% of the MSTd neurons
tested. These results also support a role of MSTd in self-
motion perception.

Conclusions

Only a minority of smooth-pursuit–related MSTd neurons
show detectable modulation in response to short perturbations
of the visual stimulus. The responding neurons were modulated
on average �100 ms after the eye movement. The small
number of responsive neurons can be explained by the dis-
charge properties of MSTd neurons derived from step-ramp
responses. Based on these findings it is unlikely that MSTd
neurons play a significant role in dynamic gain control. How-
ever, the SPEM and perturbation results are still compatible
with models, in which MSTd is involved in smooth-pursuit
maintenance (Dicke and Thier 1999; Nuding et al. 2008).

If one takes into account that virtually all MSTd neurons
with extraretinal signals encode gaze velocity, have large-field
motion-sensitive receptive fields, and show visual responses
with opposite preferred directions, other functional interpreta-
tions have to be considered. In accordance with earlier studies
(Shenoy et al. 1999) LF motion could be interpreted as being
caused by self-motion in space. Accordingly, SPEM-respon-
sive MSTd neurons could then represent gaze velocity in a
spatial reference frame.
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Here, we present a novel approach for evaluating neuronal tun-
ing functions. Using a probabilistic tuning function description, we 
propose a model-free alternative to regression analysis. By maxi-
mizing the mutual information between the neuronal activity and 
any combination of explanatory variables, the presented method 
allows the estimation of neuronal latency and gives a measure for 
the dependence of neuronal activity on different combinations of 
the explanatory variables. This stands in contrast with typical appli-
cations of information-theoretic techniques in neural data analysis 
(see, e.g., Rieke et  al., 1997), which investigate the relevance of 
spike timing or the influence of correlations in neural populations.

In the following, we demonstrate the application of this novel 
method on data from MSTd and show that neuronal activity in this 
cortical area is determined by combinations of retinal (e.g., image 
velocity) and extraretinal variables (e.g., eye velocity and position).

2 Methods
2.1 Evaluating probabilistic tuning functions
The method proposed here consists of two components: first, a 
Bayesian approach for the determination of probabilistic tuning 
functions, and second, an information-theoretic technique for 
evaluating these tuning functions by estimating neuronal laten-
cies and selecting those variables that show the greatest dependence 
on the neuronal activity.

2.1.1 Bayesian approach for tuning function determination
Let S be a binary random variable for the observation of a spike 
or non-spike, with p

S
(s) denoting the probability mass function 

of spike occurrence. The discrete random variable V denotes the 
observation of a specific combination of explanatory variables with 

1 Introduction
Defining the dependence of neuronal activity on certain variables, 
e.g., presented stimuli, is often the major aim of studies attempting 
to define neural mechanisms supporting sensory-motor behavior. 
A neuronal tuning function defines the functional relation between 
the spiking activity and uni- or multivariate explanatory variables. 
Virtually every sensory system, from the vertebrate visual cortex to 
wind-detecting neurons in the cricket cercal system, has been char-
acterized in this way (Rieke et al., 1997; Dayan and Abbott, 2001).

One common approach to determine the dependence of neu-
rons on these variables is regression analysis, in which the spike 
density function is approximated by one or multiple explanatory 
variables using linear or other models (Ilg et al., 2004; Ono et al., 
2004; Wu et  al., 2006). It remains questionable, however, what 
model assumptions can be made when analyzing neuronal data.

Another difficulty in the analysis of neuronal data is the accu-
rate estimation of latencies between any given variable and associ-
ated neuronal activity (Seal et al., 1983; Friedman and Priebe, 1998; 
Bollimunta et al., 2007). For example, when visual information 
arrives in cortical area MSTd, which is the dorsal part of the medial 
superior temporal cortex, it has passed a number of processing 
stages resulting in a considerable delay with respect to the stimu-
lus. Depending on the properties of the visual input, retinal delay 
alone accounts for a latency of up to 50 ms (Schmolesky et al., 
1998). On the way through thalamus and primary visual areas, 
the signal propagates with a velocity on the order of 10–100 m/s. 
Additionally, synaptic transmission produces delays of several mil-
liseconds. Therefore, a proper model of this system has to account 
for the fact that neuronal activity is a delayed function of the 
input variables.
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associated probability mass function p
V
(v). Then, p

S|V
 (s|v) expresses 

the conditional probability of observing a spike given any combina-
tion of variable values. By multiplying with the sampling rate, this 
probability translates directly into an expectation value of the rate 
of spiking activity, and therefore describes a neuronal tuning func-
tion. Using Bayes’ theorem, p

S|V
 (s|v) can be expressed as the quotient 

of the joint probability mass function p
V,S

 (v,s) divided by p
V
(v):

p s v
p v s

p vS V
V S

V

|
,( | )

( , )

( )
.=

The normalization on p
V
(v) allows the estimation of the tuning 

function in unbalanced designs (i.e., unequal number of obser-
vations across explanatory variables). Figure 1 demonstrates this 
principle for the two-dimensional case.

Estimates of p
V
 (v) and p

V,S
 (v,s) can be attained by generating 

histograms of the experimental data. Note that the joint probability 
mass function p

V,S
 (v,s) critically depends on the assumed neuronal 

latency. For estimating the optimal number of bins, with which 
each variable is discretized, we adapted an algorithm proposed by 
Knuth (2006). According to this, the optimal bin width is defined 
by the Bayesian estimate of the number of segments of a piecewise 
constant probability function that is limited to a fixed interval. 
The most probable solution is determined by a balance between 
the likelihood function, which describes the probability that a data 
point can be assigned to a specific bin, and the prior probability 
that decreases with an increasing number of bins. For smoothing 
the resulting histograms, we used a symmetrical Gaussian low-pass 
filter with a SD of two bin widths.

The amount of data needed for generating reasonably fine-
grained histograms increases exponentially with the number of 
dimensions. However, the duration one single neuron can be 
recorded is restricted due to experimental and physiological con-
straints. Hence, there is a practical limitation on the number of 
variables that can be modeled or included in this Bayesian approach 
for tuning function determination.

2.1.2 Mutual information maximization
Entropy H is a measure of the uncertainty of a single random vari-
able. The reduction in uncertainty due to another random variable 
is called mutual information I (Cover and Thomas, 1991). Mutual 
information is a measure of the dependence between two random 
variables. It is symmetric, non-negative, and equal to zero only if 
both random variables are mutually independent. Mutual infor-
mation captures all dependencies between random variables, not 
just second order dependencies which are indicated, for example, 
by the covariance.

When applied to the two random variables V and S from the 
previous section, the mutual information I(V;S) can be stated as

I V S H S H S V( ; ) ( ) ( | )  = −

with H(S) being the entropy of S and H(S|V) the conditional 
entropy of S given V, also referred to as noise entropy. These are 
defined by

H S p s log p s
s

S S( ) ( ) ( )= −∑

H S V p v p s v log p s v
v

V
s

S V S V( | ) ( ) ( | ) ( | ),| |= −∑ ∑

where p
S
(s) denotes the probability mass function of spike occur-

rence. The conditional probability p
S|V

 (s|v) denotes the tuning 
function, determined by the Bayesian approach mentioned in the 
previous section. This probability and thus H(S|V) as well depend 
on both the choice of variables analyzed and the choice of latencies 
between these variables and the neuronal activity.

Maximizing the mutual information between V and S provides 
an unbiased estimator for the neuronal latency. A proof based on the 
data-processing inequality theorem in information theory (Cover 
and Thomas, 1991) is given in the Section “Appendix.” The proof 
requires only the moderate assumption that a constant delay exists 
between stimulus and neuronal activity.
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Figure 1 | Bayesian approach for tuning function determination 
demonstrated for simulated two-dimensional data. The synthetic dataset is 
10K samples long and includes 264 spikes. (A) illustrates the probability mass 
function pV(v) of the occurrence of combinations of mutual independent 

variables v1 and v2. The joint probability mass function pV,S (v,s) of coincident 
variable and spike occurrence is shown in (B). Dividing pV,S (v,s) by pV(v) yields 
the conditional probability pS|V (s|v) of observing a spike given any combination of 
the variables (C).
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For the simulation of neuronal activity, we used a Poisson proc-
ess model as described in Rieke et al. (1997). The Poisson model is 
characterized by the statistical independence of events in disjoint 
time intervals. The probability distribution for k events in the time 
interval ∆ is

P k
t

k
e

k
t

l

ll
( )

( ( ))

!
,( ( ))= −∆ ∆

where l(t) denotes the time-dependent firing rate. To simulate 
a neuron that resembles the two-dimensional tuning function 
p

S|V
(s|v), l(t) was set to

l t t( ) ( | ( ), ( )) ,| ,t p s v t v t fS V V s= − − ⋅
1 2 1 1 2 2

with sampling rate f
s
, and v

1
(t) and v

2
(t) being time shifted by the 

estimated neuronal latencies t
1
 and t

2
.

2.3 Application
The data reported in this paper were recorded in cortical area MSTd 
from two behaving monkeys (Macaca mulatta, 5–7 kg). The experi-
ments were performed at the Yerkes National Primate Research 
Center (Atlanta, GA, USA) in compliance with National Institutes 
of Health Guide for the Care and Use of Laboratory Animals and 
protocols were reviewed and approved by the Institutional Animal 
Care and Use Committee at Emory University. For verifying MSTd 
location we used functional, histological, and MRI criteria. During 
the experiments monkeys were seated in a primate chair with their 
head fixed in the horizontal stereotaxic plane in a completely dark 
room. Only those neurons that showed significant response to 
moving visual stimuli were analyzed. Visual receptive fields of 
neurons were mapped by moving a probe stimulus at regularly 
spaced eccentricities across the visual field. Most receptive fields 
were large (>30°) and had their center in the contralateral hemi-
field in accordance with known MSTd properties. Experimental 
procedures are explained in detail in Ono et al. (2010).

2.3.1 Visual stimuli
Visual large field (LF) stimuli (35° × 35° random dot patterns) were 
rear projected on a tangent screen. Data were acquired only for those 
movement directions that were previously identified to be the pre-
ferred direction of the neuron, i.e., the direction which elicits maxi-
mal spiking activity for a moving LF stimulus in the analyzed neuron.

For each neuron two kinds of paradigms were tested:

(1)	 Fixation during moving LF stimulus: The monkey fixated 
a small target spot located at the center of gaze. After some 
random time the LF stimulus started to move with constant 
velocity (5–20°/s) in the neuron’s preferred direction for a 
period between 1000 and 1800 ms. During presentation of 
the visual motion the monkey still fixated the laser spot, 
though LF stimulation always produces a slight optokinetic 
nystagmus (<2°/s; see Figure 2A).

(2)	 Optokinetic response: As (1) with the difference that the laser 
spot was turned off when the LF stimulus began to move. In 
this case, the monkey’s eye movements followed the motion 
(see Figure 2B).

As H(S) is defined by the neuronal activity alone, the maximiza-
tion of I(V;S) is achieved by minimizing the noise entropy H(S|V). 
In the limit case of H(S|V) = 0, S and V are one-to-one related 
and the probability of spike occurrence is uniquely defined by the 
explanatory variables.

Due to the limitation mentioned in the previous section, the 
dimension of the tuning function is constrained by the amount 
of data recorded. Estimating the entropy from a finite number of 
samples is prone to systematic errors. This so called sampling bias 
problem is described in Panzeri et al. (2007). Put shortly, the noise 
entropy tends to be underestimated, as finite sampling makes the 
neuronal response seem less variable than it really is. In our case, 
the length of each dataset was around 500K samples. The typical 
number of bins per dimension was less than 20. Hence, the average 
amount was more than 1250 samples per stimulus condition for the 
case of two-dimensional tuning functions. To avoid errors due to an 
insufficient amount of samples, we limited the analysis to this case. 
Bins containing less than 32 samples were omitted in the analysis.

To investigate the dependence of a spike on more than two 
explanatory variables, we determined the tuning functions of a 
single neuron for any pairwise selection V

k
 of those variables. For 

each of these pairs neuronal latencies of both variables were esti-
mated by maximizing the mutual information I(V

k
;S). As I(V

k
;S) 

quantifies the dependence of the spike on the selected pair of vari-
ables, those two variables that are most related to the spiking activity 
can be determined by comparing the maximal mutual information 
of the two-dimensional tuning functions.

The mutual information depends on the number of bins used to 
discretize the variables. Using the algorithm of Knuth (2006; see pre-
vious section) an optimal number of bins was estimated for each pair 
of variables. The average of these optimal numbers of bins was deter-
mined and used for comparing the different pairs of variables. For 
each neuron, this average number of bins was determined separately.

2.2 Other methods
2.2.1 Regression analysis
Regression analysis is a common approach to estimate both the 
latency and the dependence of neuronal activity on explanatory 
variables. Spiking activity was represented as a spike density func-
tion (sdf), generated by convolving the spike pulses with a Gaussian 
window function (s = 100 ms). To allow a comparison with the 
two-dimensional analysis in previous section, the linear regression 
model consisted of the two regressor variables v

1
 and v

2
 according to

sdf v v r= + ⋅ + ⋅ +b b b0 1 1 2 2 ,

where r represents the Gaussian noise term. The model was fit to 
the whole dataset. Neuronal latencies were estimated by shifting the 
variables in steps of 10 ms and searching for the best fit (maximal 
R2). Furthermore, maximal R2 values were compared for all pairs 
of variables.

2.2.2 Simulation of synthetic datasets
For each dataset the two explanatory variables image velocity (v

1
(t)) 

and eye velocity (v
2
(t)) were generated as 10 s long band-limited 

(<20 Hz) white noise random signal, sampled at 1 kHz. The mean 
was zero and the SD was the same as in the example MSTd neuron 
dataset. Both variables were perfectly uncorrelated.
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datasets using both the information-based method and regression 
analysis. Finally, we end this section with the population results for 
49 MSTd neurons.

3.1 Analysis of an example MSTd neuron
We begin with the detailed analysis of an example neuron. The 
763 s long dataset contained 19452 detected spikes. The explanatory 
variables were slightly correlated, with a maximal Pearson corre-
lation coefficient of 0.23 for the pair of variables (image velocity 
and eye position).

3.1.1 Feature detection technique
Detecting certain features of averaged data from multiple trials 
associated with a given stimulus is an often used approach for esti-
mating the latency between some signal, e.g., a stimulus variable, 
and the neuronal activity. Figure 3 shows the mean eye movement 
traces and spike density function of an example MSTd neuron 
during optokinetic response to a moving LF stimulus. Signal onset 
was defined as the time when the trace increased above the 99% 
confidence limit during the preceding fixation period. Latency of 
the neuronal activity with respect to any explanatory variable was 
defined as time interval between adjacent onsets of that signal and 
neuronal activity. Retinal image velocity is the difference between 
target and eye velocity. As can be seen in Figure 3, neuronal latency 
in regard to target, as well as image velocity, was 45 ms. Regarding 
the eye velocity signal, neuronal activity was leading (in the fol-
lowing denoted as negative latency) by 20 ms.

3.1.2 Mutual information maximization method
Next we analyze data from the same neuron using our information-
based approach. Due to the practical limit of number of variables 
mentioned in Section 2, we determined the tuning functions for 
pairwise selections of explanatory variables. Neuronal latencies 
were also estimated for each pair separately. Figure 4 demonstrates 
this for the pair [image velocity & eye velocity] in more detail. The 
noise entropy H(S|V) is plotted against different latencies for both 
variables. As can be seen in Figure 4, minimal noise entropy (0.1577 
bits) is achieved by delaying image velocity by 50 ms and eye velocity 
by −80 ms relative to spiking activity. With H(S) = 0.1712 bits, the 
mutual information I(V;S) = H(S) − H(S|V) accounted for 0.0136 
bits. This information contained in the spiking activity was the 
maximum that could be explained by the information of that pair 
of variables. Note that this value depends on the number of bins 
used to discretize the variables. Here, each explanatory variable 
was discretized in 22 bins of equal width. The dependence of the 
estimated latencies on the number of bins is shown in Figure 5. 
For both image and eye velocity the latency estimate is robust for 
a wide range of chosen number of bins.

In the same way the neuronal tuning functions were determined 
for all variable pairs (Figure 6). Comparing all pairwise selections 
of considered variables, the mutual information I(V;S) for the pair 
[image velocity & eye velocity] was maximal. Hence, this pair was 
most related to spiking activity. As can be seen, the expected rate 
of spiking activity increased primarily with higher image velocity 
values. Within a certain range of image velocity, the rate addition-
ally increased with eye velocity, yielding a non-linear dependence 
of spiking activity on both variables. Estimated latencies of image 

During both (1) and (2) the constant velocity phase of LF 
motion was interrupted (600–800 ms after stimulus onset) in some 
trials by a perturbation of target speed consisting of one sinusoidal 
cycle (5 Hz, ±10°/s), which increased the range of image and eye 
velocity (as in Ono et al., 2010).

This combination of two different paradigms has the advantage 
of yielding a large range of values for both retinal image veloc-
ity during fixation trials, as well as eye velocity in the optokinetic 
response trials.

2.3.2 Data collection and preparation
Single unit activity was analyzed from 49 neurons. Action potentials 
were detected with both a hardware window discriminator and 
template matching algorithm.

Eye movements were detected with standard electro-magnetic 
methods using scleral search coils (Fuchs and Robinson, 1966). 
Eye and target position feedback signals were processed with anti-
aliasing filters at 200 Hz using 6-pole Bessel filters (latency 5 ms) 
before digitization at 1 kHz with 16-bit precision. The recorded eye 
position traces were filtered with an acausal zero phase Gaussian 
low-pass (cutoff frequency 30 Hz) and three-point differentiated 
to obtain the velocity traces. Saccades were detected and removed 
with a slow-phase estimation algorithm as described in Ladda et al. 
(2007).

We related the neuronal activity to variables supposed to be 
coded in MSTd during moving LF stimulation (Newsome et al., 
1988; Bremmer et al., 1997; Hamed et al., 2003). Retinal variables 
were image velocity and acceleration, whereas extraretinal variables 
were eye position, velocity, and acceleration.

3 Results
In this section we demonstrate the analysis of neuronal recordings 
from MSTd using different methods. Neuronal latency is estimated 
first using a feature detection technique. We then apply the previ-
ously described information-theoretic method on the same data 
to determine both neuronal latency and dependence of neuronal 
activity on certain variables. Furthermore we analyze the example 
MSTd neuron using linear regression analysis. To compare the 
performance in latency estimation, we simulated 100 neuronal 
recordings of the example MSTd neuron and analyzed this synthetic 

A B

Figure 2 | The two different paradigms used: (A) Fixation during moving 
large field (LF) stimulus. The monkey fixated a centered target spot while 
the LF stimulus started to move with constant velocity in the neuron’s 
preferred direction. (B) Optokinetic response. When the LF stimulus began to 
move, the monkey’s eye movements followed the motion.
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paired with. This is primarily due to the low dependence of spiking 
activity on eye and image acceleration in this specific neuron, as 
can be seen in Figure 6.

velocity, eye velocity, and eye position depended little on which pair 
was analyzed. In contrast, estimated latencies of eye acceleration 
and image acceleration depended strongly on the variable they were 
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Figure 3 | Mean eye movement traces and spike density function (sdf) of 
an example MSTd neuron during optokinetic response to a moving large 
field stimulus. In (A) the mean traces for target, eye, and retinal image position 
are plotted. Target and eye position refer to world coordinates, image position to 
retina based coordinates. The (desaccaded) velocities of target, eye, and retinal 

image are shown in (B). (C) Shows the mean sdf, generated by convolving each 
spike event trace with a Gaussian window function (s = 15 ms) and averaging 
over the 105 trials. Light colored bands around the traces indicate SE. For this 
condition, feature detection indicated a neuronal latency regarding image 
velocity of ti = 45 ms, and regarding eye velocity of te = −20 ms.
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was minimal for an image velocity latency of +50 ms and eye velocity latency of 
−80 ms. At this point (marked by thick lines) the mutual information I(V,S) between 
the probability distributions of input variables and spike occurrence was maximized.
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20 (41%), 15 (30%), 13 (27%), and 1 (2%) neurons, respectively. 
The tuning functions of those 20 neurons in which [image velocity 
& eye velocity] showed maximum I(V;S) are illustrated in Figure 8. 
The tuning to these variables was highly non-linear and differed 
across the neurons.

Figure 9 shows the estimated latencies of the variables image 
velocity and eye velocity. To ensure that for each variable only those 
neurons were selected, in which this variable was actually related 
to the activity of that neuron, only those cells were considered that 
belonged to the pair that showed maximum I(V;S). Each histogram 
contains the latencies of the neurons for which the corresponding 
variable belonged to this optimal combination. For instance, image 
velocity was one of the optimal pair in 20 + 15 + 13 = 48 neurons. 
Average estimated latencies for image velocity, and eye velocity 
were 52.5, and −37.1 ms, respectively. For image velocity the SD 
within the population was very small (11.2 ms). For eye velocity 
it was larger (50.6 ms).

3.3.2 Regression analysis
For comparison with our previous results we show the results for 
linear regression analysis of the same MSTd population data.

The pairs of variables [image velocity & eye velocity], [image 
velocity & eye position], [image velocity & eye acceleration], and 
[eye velocity & eye position] showed maximal R2 in 23 (47%), 14 
(29%), 9 (18%), and 3 (6%) neurons, respectively. Therefore, both 
approaches, information maximization, and linear regression, 
agreed in concluding that a combination of an image velocity and an 
eye movement variable is most related to spiking activity in MSTd.

Figure 9 shows the results of latency estimation, using an analo-
gous selection criterion as previous section. Instead of maximal 
I(V;S), those combinations were selected that showed maximum 
R2 of all combinations. For both variables image and eye velocity 
the SD was much larger in the regression estimates than with the 
information-based approach.

4 Discussion
We showed that our novel information-theoretic approach is 
capable of estimating and evaluating probabilistic neuronal tun-
ing functions. By maximizing the mutual information between the 
probability distributions of spike occurrence and the variables, their 
neuronal latency can be estimated and the dependence of neuronal 
activity on different combinations of variables can be measured. 
In the following we discuss the various techniques for neuronal 
latency estimation. Finally, we compare our method with other 
information-theoretic approaches for analyzing neuronal data.

4.1 Estimation of neuronal latency
Numerous methods for estimating the latency of spiking activity 
relative to some variable on a trial-by-trial basis have been pub-
lished (e.g., Seal et al., 1983; Friedman and Priebe, 1998; Bollimunta 
et al., 2007). Because the latency can vary for each trial, such detailed 
analysis is often necessary and might yield better results than the 
feature detection technique based on averaging as used here. 
Nonetheless, averaging techniques are widely used in the neuro-
physiological literature, and many applications, for instance tuning 
function determination as presented here, require the estimation 
of a distinct latency for each neuron.

3.1.3 Regression analysis
Analogous to the result of the information-based approach, lin-
ear regression analysis determined the pair [image velocity & eye 
velocity] as being most related to spiking activity (R2=0.40). The 
estimated neuronal latencies, however, differed from the previous 
results. The best fit was obtained for delaying image velocity by 
70 ms and eye velocity by 170 ms.

3.2 Analysis of synthetic datasets
To further compare the performances of latency estimation for both 
the information-based and the regression approach, we simulated 
100 neuronal recordings based on the non-linear tuning function 
for [image velocity & eye velocity] of the example MSTd neuron 
(details are explained in Section 2.2.2). This allowed the a priori 
definition of the neuronal latency, which was set to the previously 
estimated values of 50 and −80 ms, respectively.

Results for both approaches are shown in Figure 7. Linear regres-
sion analysis was not able to correctly estimate the latencies of 50 and 
−80 ms. The broad distributions of estimates around 67 (±68) and 
−61 (±110) ms for image and eye velocity, respectively, demonstrate 
that a linear model is insufficient for analyzing this example neuron. 
The information-based approach, on the other hand, was capable 
of estimating the proper latencies for both variables in all datasets.

3.3 MSTd population results
We applied our information-theoretic approach to 49 cells recorded 
in area MSTd. The mean recording length per neuron was about 
500  s, with an average spike count of approximately 18K. The 
explanatory variables were slightly correlated. The combination 
[image velocity & eye velocity] for instance exhibited an average 
Pearson correlation coefficient of −0.23 ± 0.11.

3.3.1 Mutual information maximization method
The pairs of variables [image velocity & eye velocity], [image veloc-
ity & eye position], [image velocity & eye acceleration], and [eye 
velocity & eye position] showed maximal mutual information in 
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the optimal number of 22 bins. Especially for eye velocity, the latency estimate 
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While our information-based method considers temporal mean 
values, a method like feature detection might be better suited, when 
the primary goal is estimating the actual onset time of a signal. Such 
an approach requires temporal matching between distinct features 
in stimulus and response, as for example given by the sudden onset 
of acceleration in a ramp stimulus. Whenever this is not achievable, 
this method cannot be applied and temporal averaging methods 
such as regression analysis or our information-based technique 
are more appropriate.

Feature detection is an intuitive approach for estimating a 
distinct neuronal latency. Using this technique, the estimated 
latency for image velocity was about the same as with our 
information-theoretic approach in the example neuron. For 
eye velocity there was a discrepancy of 60 ms between feature 
detection (−20 ms latency) and our method (−80 ms latency). 
However, a shift that maximizes the mutual information between 
two random variables does not necessarily align the on- and 
offsets of these signals.
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Panzeri, 2009). Several of these studies examined the mutual infor-
mation between stimulus variables and the neuronal response (e.g., 
Eckhorn and Pöpel, 1974; Optican and Richmond, 1987; Kjaer et al., 
1994; Panzeri and Treves, 1996; Golomb et al., 1997; Rolls et al., 1997; 
Strong et al., 1998; Butts, 2003; Nirenberg and Latham, 2003; Osborne 
et al., 2004). Sharpee et al. (2004, 2006) maximized the mutual infor-
mation between neuronal responses and certain subspaces of the 
high-dimensional stimulus. Similarly, our approach maximizes the 
mutual information between pairwise selected variables.

However, these studies analyze the neuronal response, single 
or multi-unit recordings, to quantify either the information due 
to spike patterns or the information due to correlations between 
neurons. Those methods estimate the probabilities of certain spik-
ing patterns in the neuronal response given specific stimuli. These 
probabilities are usually determined by pooling over a large number 
of trials, where the same stimulus was presented many times.

Our method, on the other hand, estimates for each sample the prob-
ability of spike occurrence given certain stimuli, not caring for certain 
spiking patterns. This probability is determined by pooling the whole 
dataset over time. Therefore, our method does not depend on record-
ing a large number of similar trials. In this sense, it rather presents a 
model-free alternative to the model-based regression analysis.

Previous approaches that were determining the mutual informa-
tion between stimulus and response were, to our knowledge, less con-
cerned about neuronal latency estimation. When using static stimuli 
(Optican and Richmond, 1987; Kjaer et al., 1994; Rolls et al., 1997), 
there is no need for exact knowledge of the neuronal latency. Also, 
it might be negligible if latencies are relatively short, for instance in 
data from peripheral neurons in insects (Rieke et al., 1997). When, in 
contrast, large latencies have to be considered, determining neuronal 
tuning functions depends critically on estimating these latencies. In 
such cases, an approach as presented here is required.

Our approach for evaluating neuronal tuning functions is analo-
gous to a method used for the alignment or registration of medical 
images: the relative position and orientation of two different images 
is adjusted by transforming one of the images until the mutual 
information between both intensity distributions is maximized 
(Collignon et al., 1995; Wells and Viola, 1996). Similar techniques 
have been used for instance for object detection in computer vision 
(Shams et al., 2000). Analogous to the spatial alignment used in 
these approaches, our method performs temporal alignment of two 
random variables by maximizing the mutual information.

5 Conclusion
We present a novel method for determining and evaluating multi-
dimensional probabilistic tuning functions. Our Bayesian approach 
allows the identification of arbitrary neuronal tuning functions. It 
can be applied in unbalanced designs and allows quantification of 
any possible dependence of the neuronal activity on the explana-
tory variables. However, the dimension of the tuning function is 
limited by the length of the neuronal recording.

Maximizing the mutual information allows estimation of neu-
ronal latency and comparison of the coherence between spiking 
activity and different variable combinations. This information-
based approach does not require parametric modeling of the tun-
ing function and is an appropriate tool for evaluating probabilistic 
tuning functions defined in the Bayesian framework.

Regression analysis can be applied on a virtually arbitrary number of 
variables. However, the results strongly depend on the model assump-
tions. The results shown here demonstrated that a simple linear model 
is insufficient when analyzing neuronal data. As Figure 6 illustrates, 
the versatility and non-linear character of neuronal tuning functions 
means that it can be difficult to find adequate general models.

For image velocity, estimated latencies of the population averaged 20 
(±101) ms using linear regression. In contrast, our information-based 
method yielded a much sharper distribution of latencies averaging 53 
(±11) ms. This result equals previous studies that were using feature 
detection techniques to estimate latencies in MSTd neurons: Kawano 
et al. (1994) found a latency of 47 (±7) ms to moving LF stimuli; Ono 
et al. (2010) determined a similar value of 42 (±14) ms.

A signal such as eye velocity is the output of a non-linear dynamic 
system with a large number of different input signals and recurrent 
connections. Neuronal activity in MSTd resembles some interme-
diate stage embedded in this network. Hence, assuming that the 
activity in MSTd can be explained using a single non-linearity with 
fixed delayed input variables may oversimplify conditions extant in 
a complex system. Nevertheless, our method yields consistent and 
plausible latency estimation under these conditions.

4.2 Comparison with other information-theoretic approaches
In recent years various information-theoretic approaches have 
been used to analyze neuronal data (for reviews see, e.g., Rieke 
et al., 1997; Borst and Theunissen, 1999; Victor, 2006; Quiroga and 
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Figure 9 | Estimated latencies of image and eye velocity for a 
population of 49 MSTd neurons using the mutual information 
maximization method (blue) and linear regression analysis (green). Only 
those neurons were considered where the variable was actually related to the 
activity of that neuron. Compared to the results of our information-based 
approach, the distribution of estimated latencies is much wider when using 
regression analysis.
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individual response properties to the same variables. For this reason, 
the model-free approach proposed here is particularly suitable for 
this analysis.
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Model-based approaches like regression analysis critically 
depend on the validity of model assumptions. As demonstrated 
here, simple approaches, such as the linear model evaluated above, 
are often insufficient for analyzing neuronal data.

By applying this novel technique to data from MSTd neurons, 
we show that they are tuned for non-linear combinations of reti-
nal image and eye movement signals. Though latencies are quite 
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6 Appendix
Here it is shown that maximizing the mutual information between 
V and S, as defined in Section 2, provides an unbiased estimator 
for the neuronal latency. Our proof is based on the data-processing 
inequality theorem in information theory (Cover and Thomas, 
1991): If three random variables X, Y, and Z form a Markov chain, 
so that X and Z are conditionally independent given Y

p x z y p x y p z yX Z Y X Y Z Y, | | |( , | ) ( | ) ( | ),= ⋅

then

I X Y I X Z( ; ) ( ; )≥ .

The mutual information between neighboring states is larger or 
equal to the mutual information of non-neighboring states.

Next we show that this theorem can be applied to our case under 
certain conditions concerning the properties of these random vari-
ables. Let V

t
 be the random variable with a distinct latency t for 

which the relation between the spiking activity S and V
t
 is given by

s t f v t r( ) ( ( )) ,= + +t t

where r represents some unknown noise. V
l
 denotes the random 

variable with a differing latency l ≠ t. Herefrom follows that the 
tuning function p s vS V| ( | )

t t  is independent of V
l
, and we have

p s v v p s vS V V S V| , |( | , ) ( | ).
t l tt l t=

With this, the joint probability of s and v
l
 given v

t
 can be trans-

formed as follows

p s v v
p s p v s p v v s

p vS V V

S V S V V S

V

, |

| | ,( , | )
( ) ( | ) ( | , )

(l t

t l t

t
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⋅ ⋅

tt

t l t

t

t

t l t

t

t l

)

( ) ( | ) ( | )
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|

=
⋅ ⋅
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p s p v s p v v

p v

p s v p

S V S V V

V

S V V || ( | )V v v
t l t

This shows that the spiking activity S and the shifted variable V
l
 

are conditionally independent, given the variable with the proper 
latency V

t
, which is the condition for applying the data-processing 

inequality theorem. The conditional independence yields

I S V V( ; | ) .l t = 0

On the other hand, we have

I S V V H S V H S V V

H S V H S V

( ; | ) ( | ) ( | , )

( | ) ( | ) ,
t l l t l

l t

= −
= − > 0

for p s v p s vS V S V| |( | ) ( | ).
t lt l≠

By the chain rule for information, we can expand mutual infor-
mation in two different ways:

I S V V I S V I S V V

I S V I S V V

( ; , ) ( ; ) ( ; | )

( ; ) ( ; | ).
l t l t l

t l t

= +
= +

With I(S;V
l
|V
t
) = 0 and I(S;V

t
|V
l
) > 0 we get

I S V I S V( ; ) ( ; ).t l>

Thus, the mutual information between the spiking activity S and 
the variable V is maximal for the variable V

t
 with proper latency.
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Abstract. We introduce a novel approach for evaluation of neuronal tuning functions, which can be
expressed by the conditional probability of observing a spike given any combination of independent
variables. This probability can be estimated out of experimentally available data. By maximizing
the mutual information between the probability distribution of the spike occurrence and that of the
variables, the dependence of the spike on the input variables is maximized as well. We used this
method to analyze the dependence of neuronal activity in cortical area MSTd on signals related to
movement of the eye and retinal image movement.
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INTRODUCTION

Neurons code the information they transmit using a binary code. The so called action
potentials, or spikes, are the only form of neuronal membrane potential fluctuation that
can propagate over long distances. It is usually assumed that the information is conveyed
in the rate of spiking activity [1, 2].

Neuronal tuning functions are typically defined by the functional relation between the
rate of spiking activity and uni- or multivariate independent variables. Tuning functions
have provided a first-order description of virtually every sensory system, from orienta-
tion colums in the vertebrate visual cortex up to wind-detecting neurons in the cricket
cercal system [2, 3, 4].

A difficulty in the analysis of neuronal data is the estimation of proper latency
values between any of the variables and the neuronal activity. Appropriate estimation
of neuronal latencies is important, since the choice of these latency values has great
influence on the tuning function [5, 6].

A common approach to the problem of latency estimation is minimizing the residual
error in regression analysis using a linear, quadratic, or any other model [7, 8, 9].
To overcome the limitations of model-based system identification we developed an
information based approach for evaluating the dependence of neuronal activity of single
cells on combinations of one or multiple independent variables.



The proposed approach is similar to a method used for the registration of medical im-
ages: the relative position and orientation of two different images is adjusted by trans-
forming one of the images until the mutual information between both intensity distribu-
tions is maximized [10, 11]. Analogous to the spatial alignment used in this methods,
our method performs temporal alignment of two random variables by maximizing the
mutual information.

THE MAXIMUM MUTUAL INFORMATION METHOD

Basically, our approach consists of two components: first, a method for the determina-
tion of a neuronal tuning function, and second, an information-theoretic technique for
estimating neuronal latencies and selecting those variables that show the greatest depen-
dence on the neuronal activity.

Tuning function determination

A neuronal tuning function describes the rate of spiking activity in a neuron depending
on one or multiple independent variables. This dependence is ideally expressed by the
conditional probability pS|V (s|v) of observing a spike given any combination of the
variables. By multiplying with the sampling rate, this probability translates directly into
an expectation value of the rate of spiking activity. Using Bayes’ theorem, pS|V (s|v) can
be expressed as the quotient of the joint probability mass function pV,S(v,s) divided by
pV (v):

pS|V (s|v) =
pV,S(v,s)

pV (v)
,

where pV (v) is the marginal probability mass function of observing any combination of
variables. The normalization on pV (v) allows the estimation of the tuning function in
unbalanced designs (unequal number of observations across independent variables).

Estimates of pV (v) and pV,S(v,s) can be attained by histogramming the experimen-
tal data. Note, that the joint probability mass function pV,S(v,s) critically depends on
the assumed neuronal latency. For optimal bin width estimation we adapted an algo-
rithm proposed by Knuth [12]. According to this, the optimal bin width is defined by
the Bayesian estimate of the number of segments of a piecewise constant probability
function that is limited to a fixed interval. For smoothing the histogramms, we used a
symmetrical Gaussian low-pass filter with a standard deviation of two bin widths. Bins
containing a number of values less than 0.5 percent of total spike count were omitted in
the analysis.

The amount of data needed for histogramming increases exponentially with the num-
ber of dimensions. However, the duration one single neuron can be recorded is restricted
due to experimental and physiological constraints. Hence, there is a limitation in the
number of variables this method for tuning function determination can be applied on.



Mutual information maximization

Applied to the two random variables V and S from previous section, the mutual
information I(V ;S) can be stated as

I(V ;S) = H(S)−H(S|V).

with H(S) being the entropy of S and H(S|V ) the conditional entropy of S given V , also
referred to as noise entropy. These are defined by

H(S) = −∑
s

pS(s) log pS(s)

H(S|V) = −∑
v

pV (v)∑
s

pS|V (s|v) log pS|V (s|v),

where pS(s) denotes the probability mass function of spike occurence. The conditional
probability pS|V (s|v) denotes the tuning function, determined by the method mentioned
in the previous section. This probability and herewith H(S|V) depend on both, the
choice of variables analyzed, and the choice of latencies between these variables and
the neuronal activity.

The proposed approach chooses the latency in such a way, that the dependence of the
neuronal activity on the independent variables is maximized by maximizing the mutual
information between V and S. As H(S) is defined by the neuronal activity alone, the
maximization is achieved by minimizing the noise entropy H(S|V).

We define the mutual information rate

IR(V ;S) =
I(V ;S)
H(S)

.

This measure specifies the percentage of information about S that can be gathered by
knowledge of V .

Due to the limitation in the number of variables mentioned in previous section, in
practice the dimension of the tuning function will not exceed values of two or three. To
investigate the dependence of a spike on a higher number of independent variables, we
determined the tuning functions of a single neuron for any pairwise selection Vk of those
variables. For each of these pairs neuronal latencies of both variables were estimated by
maximizing the mutual information I(Vk;S). As I(Vk;S) quantifies the dependence of the
spike on the selected pair of variables, those two variables that are most related to the
spiking activity can be determined by comparing the maximal mutual information rates
of the two-dimensional tuning functions.

APPLICATION

The data presented in this paper consists of a 400 s long extracellular recording in
cortical area MSTd from a behaving monkey (Macaca mulatta, 5-7 kg), born in captivity
at the Yerkes National Primate Research Center (Atlanta, GA). Experimental procedures
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FIGURE 1. Noise entropy H(S|V ) against various latencies of image and eye velocity.

are explained in detail in [13]. During the experiments the monkey was seated in a
primate chair with his head fixed in the horizontal stereotaxic plane in a completely
dark room. Single unit activity was recorded with customized epoxy-coated tungsten
microelectrodes. Using a hardware window discriminator a total number of 26015 action
potentials was detected and sampled at 1 kHz. Eye movements were detected with
standard electro-magnetic methods using scleral search coils [14]. The recorded eye
position traces were filtered with a Gaussian low-pass (cutoff frequency 10 Hz) and
three-point differentiated to obtain the velocity traces. Saccades were detected and
removed with a slow-phase estimation algorithm as described in [15].

The stimulus consisted of a moving large field (35◦ x 35◦) random dot pattern. For
optimal coverage of the value range, we used quasi random motion with a flat frequency
spectrum (white noise) with maximal eccentricity of 25◦ and velocity up to 100◦/s.
During presentation of the visual motion the monkey had to fixate a small target spot at
the center of gaze, though large-field stimulation always produces slight optokinetic eye
movements.

We related the neuronal activity to variables, supposed to be potentially coded in
MSTd during visual stimulation [16, 17, 18]. The retinal variables consisted of image
velocity and acceleration, whereas the group of extraretinal variables contained eye po-
sition, velocity and acceleration. Data were acquired only for those movement directions
that were previously identified to be the preferred direction of the neuron. This means,
the direction which elicits maximal spiking activity for a moving large field stimulus in
the analyzed neuron.



FIGURE 2. Tuning function determination. Dividing pV,S(v,s) (B) by pV (v) (A) yields the conditional
probability pS|V (s|v) of observing a spike given any combination of the variables (C).

RESULTS

Figure 1 shows the noise entropy H(S|V) against various latencies of the variables retinal
image velocity and eye velocity. Both variables were shifted in the range between -
200 and +200 ms relative to spiking activity, with negative and positive delay meaning
backwards and forwards shifts, respectively. For the image velocity latency of +60 ms
and eye velocity latency of 0 ms H(S|V ) had a minimum of 0.3268 bits. With H(S) =
0.3456 bits, the mutual information I(V,S) accounted for 0.0189 bits for these estimates
of neuronal latency. The mutual information rate IR(V,S) was 5.46 %, meaning that this
portion of information contained in the spiking activity was the maximum that could be
explained by the information of that variable pair.

Figure 2 demonstrates the determination of the neuronal tuning function for the vari-
able pair image velocity & eye velocity by application of Bayes’ rule. The estimated
probability mass function pV (v) of the occurrence of combinations of the independent
variables image velocity and eye velocity is plotted in Fig. 2A. Figure 2B shows the
estimated joint probability mass function pV,S(v,s) of coincident variable and spike oc-
currence. Note that both variables were shifted relative to the neuronal activity according
to the estimated neuronal latencies. Dividing pV,S(v,s) by pV (v) yields the conditional
probability pS|V (s|v) of observing a spike given any combination of the variables (Fig.
2C).

In the same way the neuronal tuning functions were determined for all variable combi-
nations (Fig. 3). Neuronal activity in area MSTd is non-linearly related to combinations
of the considered eye movement and retinal image movement variables. In the analyzed



FIGURE 3. Two-dimensional tuning functions for all pairs of analyzed variables. Here, colors indicate
the expected rate of spiking activity, which results by multiplying the conditional probability p SV (s|v)
with the sample rate of 1 kHz. Each axis is labeled by respective variable and the estimated latency in
regard to the neuronal activity.



neuron the mutual information rate IR(V,S) for the variable combination image veloc-
ity & eye velocity was larger then any other combination. Hence, this combination was
most related to spiking activity. The estimated latencies agree well with results based
on other approaches [16, 19]. The latencies of all variables depended only little on the
combination, except that of image acceleration. This is related to the low dependence of
spiking activity on image acceleration, also apparent in the respective tuning functions.

CONCLUSIONS

The proposed method for tuning function determination allows the identification of any
neuronal tuning function. It can be applied in unbalanced designs and allows quantifica-
tion of any possible dependence of the neuronal activity on the independent variables.
However, the dimension of the tuning function is limited by the length of the neuronal
recording.

Analyzing the mutual information is the adequate tool for evaluating tuning func-
tions defined in this probabilistic framework. This method is independent of model as-
sumptions. Maximizing the mutual information allows estimation of neuronal latency
and comparison of the coherence between spiking activity and different variable com-
binations. Since neuronal tuning functions can be versatile and highly non-linear, the
proposed method is especially suitable for analyzing these.
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Neurons in macaque cortical area MSTd are driven by visual motion
and eye movement related signals. This multimodal characteristic
makes MSTd an ideal system for studying the dependence of neur-
onal activity on different variables. Here, we analyzed the temporal
structure of spiking patterns during visual motion stimulation using
2 distinct behavioral paradigms: fixation (FIX) and optokinetic
response. For the FIX condition, inter- and intra-trial variability of
spiking activity decreased with increasing stimulus strength,
complying with a recent neurophysiological study reporting
stimulus-related decline of neuronal variability. In contrast, for the
optokinetic condition variability increased together with increasing
eye velocity while retinal image velocity remained low. Analysis of
stimulus signal variability revealed a correlation between the nor-
malized variance of image velocity and neuronal variability, but no
correlation with normalized eye velocity variance. We further show
that the observed difference in neuronal variability allows classify-
ing spike trains according to the paradigm used, even when mean
firing rates (FRs) were similar. The stimulus-dependence of neuronal
variability may result from the local network structure and/or the
variability characteristics of the input signals, but may also reflect
additional timing-based mechanisms independent of the neuron’s
mean FR and related to the modality driving the neuron.

Keywords: Coefficient of variation, Fano factor, Metric-space approach,
MST, Spiking irregularity

Introduction

A great amount of knowledge about neuronal information
processing has been gained by relating the mean neuronal
firing rate (FR) to any variables supposed to be coded in the
analyzed area. Besides the mean rate, however, there are
more features of neural responses that may depend systemati-
cally on certain stimuli. One of these is the regularity of neur-
onal activity.

Neuronal variability can be measured in various ways. The
Fano factor (FF), for instance, measures the variability of the
spike count across trials that were recorded during identical
conditions (Fano 1947). Other measures such as the coefficient
of variation (CV) analyzes the variability of the inter-spike
interval (ISI) within a single trial, which may be independent
of the across trial variability (Cox and Lewis 1966).

The functional meaning of changing neuronal variability
has been related to a broad range of factors, as, for instance,
attention (Mitchell et al. 2007) or motor-preparation (Stein-
metz and Moore 2010). In a recent meta-study, Churchland
et al. (2010) examined the trial-to-trial variability in various
cortical areas. Since each area needs appropriate stimulation

to increase spiking activity, a variety of paradigms was used.
As a common principle, the authors found that trial-to-trial
variability in general declined during stimulation in compari-
son to pre-stimulus conditions.

Previous studies have analyzed neuronal variability depen-
dence on a single stimulus variable only. However, many
areas of the brain do not just code for a single stimulus vari-
able and neuronal variability may thus depend on the stimu-
lus dimension. The medial superior temporal (MST) cortex is
such a multimodal area: it is involved in processing visual
motion stimuli, but also receives extra-retinal input about eye
movements (Komatsu and Wurtz 1988; Newsome et al. 1988).
Neurons in the dorsal subpart (MSTd) have large receptive
fields and respond to rotating, expanding and planar large-
field (LF) motion (Duffy and Wurtz 1991). Many neurons
show extra-retinal, eye movement related activity during
smooth pursuit eye movements (Newsome et al. 1988; Ono
and Mustari 2006; Ono et al. 2010). Also during LF stimu-
lation, neuronal response in MSTd neurons has been shown
to be modulated by oculomotor signals (Bradley et al. 1996;
Page and Duffy 1999; Ben Hamed et al. 2003; Bremmer et al.
2010; Brostek et al. 2011).

This combination of both visual motion and eye movement
related activity makes MSTd an ideal system for analyzing
neuronal activity in dependence on different stimulus dimen-
sions. In the following, we measured the inter- and intra-trial
variability of the spiking activity in MSTd neurons using 2
different paradigms and related it to the visual and oculomo-
tor signals. We found that both variables, image and eye vel-
ocity, differentially affected neuronal variability. Spiking
irregularity decreased when image velocity increased and eye
velocity was kept low, but increased with increasing eye vel-
ocity and low image velocity.

Methods
Data were recorded in cortical area MSTd from 2 behaving monkeys
(Macaca mulatta, 5–7 kg). The experiments were performed at the
Yerkes National Primate Research Center (Atlanta, GA, United States
of America) in compliance with National Institutes of Health Guide
for the Care and Use of Laboratory Animals. The protocols were re-
viewed and approved by the Institutional Animal Care and Use Com-
mittee at Emory University. For verifying MSTd location we used
functional, histological, and magnetic resonance imaging criteria.
During the experiments, monkeys were seated in a primate chair with
their head fixed in the horizontal stereotaxic plane in a completely
dark room, except during visual stimulation (see below). Only those
neurons that showed significant response to large moving visual
stimuli were analyzed. Visual receptive fields of neurons were
mapped by moving a probe stimulus at regularly spaced eccentricities
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across the visual field while the monkey fixated a stationary target
spot. Most receptive fields were large (>30°) and had their center in
the contralateral hemifield in accordance with known MSTd proper-
ties. Some of the data reported here were also used for other studies
(Ono et al. 2010; Brostek et al. 2011). All experimental procedures are
explained in detail in Ono et al. (2010).

Visual Stimuli
Visual LF stimuli (35° × 35° random dot patterns) were rear projected
on a tangent screen 57 cm distant. Data were acquired only for those
movement directions that were previously identified to be the pre-
ferred direction of the neuron, that is the direction which elicits
maximal spiking activity for a moving LF stimulus in the analyzed
neuron. Two kinds of paradigms were tested:

1. Fixation (FIX) with visual stimulation: The monkey fixated a small
target spot located at the center of the screen. After some random
time the LF stimulus started to move with constant velocity (5, 10,
15, 20, or 30°/s) in the neuron’s preferred direction for a period
between 1000 and 1800 ms. During presentation of the visual
motion the monkey still fixated the laser spot, though this LF
stimulation is known to produce a slight (<2°/s) optokinetic nys-
tagmus (Komatsu and Wurtz 1988).

2. Optokinetic response (OKR): The stimulus for the OKR was the
same as in the FIX task, with the difference that the laser spot was
turned off when the LF stimulus began to move. In this case, the
monkey’s eye movements followed the motion.

Between trials there was a 1200 ms long period during which the
monkey fixated the laser spot with the LF stimulus still visible but not
moving (zero velocity condition).

Each neuron was tested with both paradigms at different velocities.
One dataset comprised all trials tested for 1 specific neuron, para-
digm, and velocity. In total, 325 datasets were recorded (on average
5.8 per neuron). The mean number of trials per dataset was 31 ± 10
(mean ± std. dev.).

FIX datasets with mean eye velocity greater than 5°/s (2.5% of all
FIX datasets) and OKR datasets with retinal image velocity greater
than 5°/s (5.8% of all OKR datasets) were discarded for analysis. In
this way, we could ensure that in FIX datasets eye velocity was close
to zero, and in OKR datasets retinal image velocity was close to zero.
Both variables, which are otherwise coupled by stimulus velocity,
could therefore be compared quasi independently of each other.

In some trials, the constant velocity phase of LF motion was inter-
rupted by a short high-frequency perturbation of stimulus velocity
(Ono et al. 2010) consisting of 1 sinusoidal cycle (5 Hz, 10°/s ampli-
tude). We included these trials to our analysis, as it did not affect the
observed dependence of neuronal variability on image and eye vel-
ocity (Supplementary Fig. S1).

Data Collection and Preparation
Action potentials were detected using both a hardware window discri-
minator (Bak Electronics, MD, United States of America) and template
matching algorithm (Alpha-Omega, Israel). Eye movements were
recorded with standard electro-magnetic methods using scleral search
coils (CNC Engineering, Seattle, WA, United States of America). Eye
and target position feedback signals were processed with anti-aliasing
filters at 200 Hz using 6-pole Bessel filters (latency 5 ms) before digi-
tization at 1 kHz with 16-bit precision using a CED 1401 hardware
interface. The recorded eye position traces were filtered with a Gaus-
sian low-pass (cut-off frequency 30 Hz) and 3-point differentiated to
obtain the velocity traces. Saccades were detected and removed from
the eye movement traces with an algorithm as described in Ladda
et al. (2007). Neuronal response was represented as a FR by convol-
ving spike times with a Gaussian function (σ = 15 ms) and averaging
over corresponding trials.

Measures of Neuronal Variability
We used 3 different measures for determining neuronal discharge
irregularity:

First: The FF was calculated for time windows of 100 ms length
according to

FF ¼ Var½SC�
E½SC� ;

with E and Var symbolizing mean and variance, respectively, and
SC ¼ ksc1; sc2; . . . ; scnl denoting the spike counts of the n trials.

Discharge irregularity tends to decrease with higher FRs due to the
refractory period after each spike. To control for a possible effect of
variable FRs on the FF, we applied in some analysis the mean-
matching algorithm by Churchland et al. (2010) using the Matlab
toolbox provided by the authors (http://www.stanford.edu/~shenoy/
GroupCodePacks.htm) with a window size of 50 ms. The algorithm
computes the mean spike counts for all datasets. For each analyzed
time point the algorithm determines a common distribution of mean
spike counts across all datasets. The analyzed distribution of datasets
for each time is then matched to this common distribution by ran-
domly discarding datasets. The FF is computed for the remaining dis-
tribution of datasets by calculating the slope of the regression relating
the variance to the mean of the spike counts of the analyzed datasets.
This process is repeated 50 times, and the results are averaged to
control for variation due to the randomness of the procedure. As the
size of the analyzed distribution of datasets decreases with greater
number of analyzed time points, we constrained this analysis to 100
ms steps. Due to the great difference in the FR before and during
stimulation, our data had a relatively heterogeneous structure. As a
result, only 13 and 18% of datasets were preserved in the mean-
matched distribution for the FIX and OKR paradigms, respectively.
Nevertheless, the difference between mean matched and raw FF, aver-
aged over all datasets, was marginal (see Results).

Second: The “variance of the conditional expectation” (VarCE) is
another measure of trial-to-trial variability that also intends the sup-
pression of possible effects due to differing mean FRs. This method
has been proposed by Churchland et al. (2011). According to this
method, the total measured variance is divided into 2 components:
the “point process variance”, which is produced by a renewal process
with a given rate, and the residual VarCE. Assuming renewal process
characteristics (see Results), VarCE can be estimated as

VarCE ¼ Var½SC� � fE½SC�;

with f being a quantity characterizing the underlying point process.
For each neuron, f was obtained by the minimum value of the
measured FF, which was typically shortly after stimulus motion onset
(see Fig. 2).

Third: The CV2 was determined as

CV2 ¼ Var½ISI�
E½ISI�2 ;

with ISI ¼ kisi1; isi2; . . . ; isinl denoting the ISIs of each analyzed spike
train.

Metric-Space Analysis
For an information-theoretic analysis of our data, we used the metric-
space approach developed by Victor and Purpura (1996, 1997). This
method determines the extent to which experimentally measured
neural responses cluster in a systematic fashion using an
information-theoretic measure. The measure of clustering indicates
the extent to which this candidate distance is sensitive to features of
spike trains that convey stimulus-specific information. The formal
structure of this approach is an embedding of spike trains into a
‘‘metric space’’. These spaces have well-defined distances but do not
require the assumption of a linear structure. To measure the differ-
ence between 2 spike trains in terms of the arrangement of spikes in
time, we used the so-called Dspike metric here. The analysis is per-
formed for different a priori defined temporal precision values. These
determine the maximal distance of how far the spikes in 1 trial can be
displaced to match the temporal arrangement of spikes in another
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trial. Each displacement of a spike is accounted by a ‘‘cost’’ pro-
portional to the distance. Also the adding or deleting of a spike has a
certain ‘‘cost’’.

We applied the algorithm by using a Matlab toolbox (http
://neuroanalysis.org) provided by the Weill Medical College of the
Cornell University (Ithaca, NY, United States of America). All par-
ameters were set to standard values; the clustering exponent was −2.
For the original data, the standard error of transmitted information
was estimated using the Jackknife method. Classifying the spike
trains into different categories was considered to be feasible, when
the transmitted information of the original data exceeded the range of
the mean plus 2 standard deviations information of the shuffled data.

Simulated Data
To illustrate the dependence of intra-trial and inter-trial variability on
the distribution of ISIs of the underlying spiking process, synthetic
spike trains were generated. This was done by sampling ISIs indepen-
dently and identically distributed from a gamma distribution

f ðx; k; sÞ ¼ xk�1 e�x=s

skGðkÞ ;

with shape parameter k and scale parameter s. Γ denotes the gamma
function. The scale parameter was adjusted to a constant FR of 20 Hz
(Maimon and Assad 2009).

Results

We analyzed single-unit recordings of 56 MSTd neurons from
2 monkeys. They were stimulated with a LF random dot
pattern moving with different velocities in the preferred direc-
tion of each neuron. During this stimulation, the monkeys
had to either fixate a small non-moving target spot (FIX) or
follow the visual movement by OKR.

FF During FIX and OKR
Figure 1 shows visual and oculomotor variables, FR and FF
traces, averaged across all neurons and tested stimulus vel-
ocities for both paradigms. To equalize mean FRs of both con-
ditions during the subsequently used testing interval between

300 and 1000 ms after stimulus onset, some datasets were dis-
carded from this analysis. Retinal image velocity is the differ-
ence between the velocity of the moving stimulus and eye
velocity. In the FIX paradigm, retinal image velocity increased
with the onset of stimulus movement and remained constant
during the whole trial, whereas eye velocity stayed at a
minimal level (A1). For OKR, eye velocity increased gradually
until about 300 ms after stimulus onset, whereas image vel-
ocity showed an initial peak and remained low after eye vel-
ocity reached its constant level (B1). In both paradigms, the
averaged FR traces had transient components right after
stimulus onset and sustained responses of about 40 Hz (A2,
B2). The FF, however, differed remarkably between both
paradigms: Both traces had values between 2.2–3 (FIX) and
1.8–2.4 (OKR) before stimulus motion onset, and a significant
decrease to a value of 0.7 for FIX and 0.9 for OKR right after
stimulus onset. For the FIX paradigm the FF retained this low
level until the end of the trial (A3). For OKR, the FF did not
sustain the low level but increased again to a level around 2
after 300 ms (B3). Thus, despite the ongoing stimulation, the
trial-by-trial variability was comparable to the pre-stimulus
variability.

To compensate for possible effects of temporally changing
FRs, the FF was also determined using the mean-matching
algorithm by Churchland et al. (2010). This procedure com-
putes the mean spike counts for all datasets and determines a
common distribution of mean spike counts across all time
points. The analyzed distribution of datasets is then matched
to this common distribution by randomly discarding datasets
(see Methods). The raw FF, which was not mean matched but
determined from all data, differed only marginally.

FF Dependence on Visual and Oculomotor Variables
Figure 2 shows spike raster plots of an example neuron for 2
different conditions during the testing interval (Fig. 1 light
gray area). In this interval, all analyzed variables were almost
constant for both paradigms. Whereas for FIX spiking was
quite regular, the same neuron showed bursty activity in the

Figure 1. Mean traces of image and eye velocity, firing rate (FR), and Fano factor (FF) of the analyzed MSTd population for fixation (FIX) and optokinetic response (OKR) during
large-field visual stimulation. A fraction of datasets (FIX: 20%; OKR: 15%) was discarded to match the averaged firing rates of both conditions during the testing interval. Data
were aligned to the onset of stimulus movement (0 ms) in the preferred direction of each neuron. (A1) Desaccaded eye and retinal image velocity, averaged across all tested
velocities (5, 10, 15, 20, and 30°/s) and 56 neurons, during FIX. (A2) Averaged firing rate. Dotted gray line marks the average firing rate (40 Hz) during the testing interval. (A3)
Raw and mean-matched FF. Latter is constrained to 100 ms steps (see Methods). (B1–B3) show the corresponding traces for OKR. Flanking traces mark standard errors. The
light gray area marks the testing interval between 300 and 1000 ms after stimulus onset, which was used for subsequent analysis.
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OKR paradigm. For further analysis, we determined Pearson’s
correlation coefficient ρ between retinal image velocity and
FF, and eye velocity and FF, respectively. The FIX paradigm
with visual stimulation at different stimulus velocities yielded
datasets with high image and low eye velocities, whereas the
OKR paradigm yielded datasets with different low image and
high eye velocity. We determined FF and both variables for
each dataset, which comprised all trials, tested for 1 specific
neuron, paradigm and velocity, and averaged all measures
over the testing interval. The comparison of all datasets from
this example neuron indicated negative correlation between
FF and image velocity (ρimage vel, FF =− 0.88, P < 0.01) and
positive correlation between FF and eye velocity (ρeye vel, FF =
0.85, P < 0.01), as shown in Figure 2C.

The results for all 56 MSTd neurons are shown in Figure 3A.
In 48 neurons (86%), the FF correlated negatively with image
velocity and positively with eye velocity. Figure 3B shows the
mean FF dependence on both variables. In the FIX paradigm,
the average FF decreased from 1.5 for small image velocity to
a level of about 0.8 during high velocity. For OKR, the FF in-
creased from 1.5 for small eye velocity to 2.1 during high eye
velocity. Both changes were statistically significant (linear
regression analysis: β =− 0.03, P < 0.01 and β = 0.02, P < 0.01).
Note that the change in FF was not task-dependent, as the FF
had identical levels at small stimulus velocities for both para-
digms. Both findings, decrease of neuronal variability with
the visual variable, and increase of neuronal variability with
the oculomotor variable, however, only apply for cases in

which one of the 2 variables is close to zero. The average FF
for all FIX datasets was 1.05 ± 0.43 (mean ± std. dev.), for
OKR it was 1.78 ± 0.67. The mean FF, averaged across all data-
sets, was 1.47 ± 0.69.

The dependency of the mean FR on image and eye velocity
is shown in Figure 4. In contrast to neuronal variability, mean
FR increased with increasing stimulus velocities for both para-
digms (see also Brostek et al. 2011). Linear correlation analy-
sis between FR and FF revealed slight negative correlation
(ρ =− 0.17, P = 0.04) for FIX, and slight positive correlation
(ρ = 0.16, P = 0.03) for OKR. We will address the apparent un-
expected relationship between FF and FR in the Discussion.

Variance of the Conditional Expectation
Similar to the FF, the VarCE (Churchland et al. 2011)
measures the trial-to-trial variability of spike counts. It reflects
the residual variability after subtracting the component that
would be produced by some point process with given mean
FR. As with the mean-matching algorithm (see Fig. 1), poss-
ible effects due to differing mean FRs are compensated. This
technique, however, does not discard datasets from analysis.
Figure 3C and D shows the dependence between VarCE and
the visual and eye movement variables. In 43 neurons (77%),
VarCE correlated negatively with image velocity and positively
with eye velocity. For FIX, the mean VarCE showed significant
decrease from a level of about 3.9 for small image velocities,
to 1.7 for high image velocities (linear regression analysis: β =
− 0.11, P < 0.05). For OKR, the mean VarCE increased from
3.9 to a value of 7.0 for high eye velocities (β = 0.10, P = 0.08).
The average VarCE for FIX datasets was 2.32 ± 2.91, for OKR
it was 4.75 ± 4.81. The mean VarCE, averaged across all data-
sets, was 3.71 ± 4.27.

Coefficient of Variation
The CV measures the variability of ISIs within a single trial.
For a stationary renewal process, in which ISIs are assumed to
be independent and identically distributed, it holds that FF =
CV2 for the limit of long observations (Cox 1962; Cox and
Lewis 1966). In the following, we used the CV2 to allow the
evaluation of the renewal process hypothesis. In each dataset,
CV2 was determined for the testing interval and then averaged
over all trials. The dependence between CV2 and both vari-
ables is shown in Figure 3E and F. In 47 neurons (84%) CV2

correlated negatively with image velocity and positively with
eye velocity. As with FF, the mean CV2 decreased significantly
(linear regression analysis: β =− 0.04, P < 0.01) with retinal
image velocity. In the OKR paradigm, CV2 showed increasing
tendency (β = 0.02, P = 0.09) with eye velocity. This means
that spiking irregularity did not only change in dependence
on visual and oculomotor variables across the trials, as indi-
cated by FF. Also within a single trial, ISIs tended to be more
regular with increasing image velocity, and more irregular
with an increase in eye velocity, as indicated by CV2. The
average CV2 for FIX datasets was 1.12 ± 0.49, for OKR it was
1.93 ± 1.05. The mean CV2 across all datasets was 1.58 ± 0.93.

Dependencies between the analyzed measures are shown
in Figure 5. There was positive correlation between all 3
measures. In particular, the correlation between FF and CV2

was quite strong. Regression analysis using a linear, zero
offset model, yielded CV2 = 1.06 FF, which is in good agree-
ment with the assumption of renewal process characteristic.

Figure 2. Fano factor (FF) of an example neuron for different image and eye
velocities. (A) Eye (black) and image (gray) velocity during the testing interval for FIX
with visual stimulation at 20°/s. The corresponding spike raster plot of this dataset
shows quite regular activity (FF = 0.9, CV2 = 1.0) (B) Same neuron for OKR with
stimulus velocity of 20°/s. In this case, spiking activity was much more irregular (FF
= 2.0, CV2 = 1.6) (C) Each dot marks FF and image or eye velocity of one dataset.
The 2 example conditions are indicated by letters. All measures were averaged
across the testing interval (300–1000 ms after stimulus onset). In this example
neuron, FF correlates negatively with image velocity and positively with eye velocity.
Linear regression lines were least squares fitted.
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Influence of Eye Movements
Could the observed dependency of spiking irregularity on
image and eye velocity be explained by differences in the
variability of image and eye velocity? To allow a comparison
with the measures used to evaluate neuronal variability, we
analyzed the ‘‘normalized variance’’ of image and eye velocity,
which is the variance across or within trials divided by the
mean signal. As shown in Figure 6A, the normalized variance
decreased with image velocity during FIX (across/within:
β =− 0.02, P < 0.001), but did not change with eye velocity
during OKR (across: β =− 0.003, P = 0.56; within: β = 0.005,
P = 0.17). Accordingly, the normalized variance was positively
correlated with FF during FIX (Fig. 6B; across: ρ = 0.32,
P < 0.001; within: ρ = 0.39, P < 0.01). For OKR both measures

were unrelated (across: ρ = 0.16, P = 0.12; within: ρ = 0.09,
P = 0.24). Also with CV2 there was positive correlation for FIX
(across: ρ = 0.24, P < 0.001; within: ρ = 0.30, P < 0.01), and
no correlation for OKR (across: ρ =− 0.06, P = 0.25; within:
ρ = 0.02, P = 0.45).

Until now, all measures were averaged across trials and
time. In the following, we analyzed whether there also exists
correlation within the datasets. In Figure 6C, the normalized
variance and CV2 were determined for each trial separately
and then compared within every dataset. For the FIX con-
dition, 25% of the datasets showed significant correlation of
both measures within the datasets (mean ρvar/mean, CV2 = 0.18
± 0.39), corroborating the previous results. For OKR, only
few datasets showed correlation, with an average ρvar/mean,

Figure 3. Spiking irregularity decreases with image velocity and increases with eye velocity. (A) Fano factor (FF) correlates negatively with image velocity and positively with eye
velocity. For each neuron ρimage vel, FF and ρeye vel, FF were determined as in the example shown in Figure 2C. Gray dots mark neurons in which neither of the correlation
coefficients was significant (P>0.05). (B) FF dependence on retinal image and eye velocity. The datasets were grouped according to their corresponding eye or image velocity.
X-axis values denote upper limits, meaning that the value of 10°/s, for instance, comprises all datasets with velocities between 5 and 10°/s. The bin for 25°/s comprises all
datasets with velocities greater than 20°/s. During FIX, mean eye velocity was <5°/s in each dataset. For OKR datasets image velocity was <5°/s. (C) The variance of the
conditional expectation (VarCE) correlates negatively with image velocity and positively with eye velocity. (D) VarCE for both paradigms grouped into ranges of corresponding eye
or retinal image velocities. (E–F) Results for the CV2. FF and VarCE were averaged over the testing interval. CV2, image and eye velocity were averaged across the testing interval
and all trials. Vertical lines mark standard errors across corresponding datasets.
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CV2 = 0.04 ± 0.35. The difference between both conditions was
statistically significant (2-sample T-test: P < 0.01).

Another eye movement related influence could be saccades,
since it has been reported that spiking activity is suppressed
in many medial temporal (MT) and MST neurons during these
rapid eye movements (Thiele et al. 2002). Such induced
periods of silence might increase the regularity of spiking,
similar to the refractory period. To analyze whether our find-
ings might be affected by saccadic suppression of neuronal
firing, we determined the number of saccades per trial for
both paradigms (Fig. 6D). With an average of 1.6 saccades per
trial, it seems unlikely that these rapid eye movements influ-
enced neuronal variability. Furthermore, the difference
between both paradigms was rather small. For FIX, there was
an increase observable with image velocity. In the OKR para-
digm there was only a slight change with eye velocity. Both
changes were statistically not significant (P = 0.69 and 0.53,
1-way ANOVA). Linear correlation analysis between the
number of saccades per trial and FF yielded no correlation for
FIX (ρ = 0.01, P = 0.22) and OKR (ρ =− 0.18, P = 0.60). The
removal of saccade period data from the neuronal recordings
increased neuronal variability slightly but had no influence on
the observed relation to image and eye velocity (Supplemen-
tary Fig. S2).

In summary, the observed decline of spiking irregularity
during the FIX condition may be related to the decline of
image velocity variance. The increase of neuronal variability
during the OKR condition seemed to be unrelated to the eye
movements themselves.

Metric-Space Analysis
The mean FR of MSTd neurons increases with both, retinal
image and eye velocity (see Fig. 4). Hence, the information
contained in the FR alone does not allow distinguishing
between a neuron being driven by image or eye velocity. On
the other hand, we could show that the neuronal variability
decreases with image velocity and increases with eye velocity.
Might this differential behavior in spike timing allow the sep-
aration of the 2 signals?

To further examine this question, we performed a classifi-
cation analysis of our data using the metric-space approach
by Victor and Purpura (1996, 1997). This analysis determines
to what extent pairs of responses to the same stimulus tend to
be closer to each other than pairs of responses to different
stimuli. Spike trains are considered similar if they have
approximately the same number of spikes, and these spikes
occur at approximately the same times, that is within some a
priori defined temporal precision. The extent to which exper-
imentally measured neuronal responses cluster in a systematic
fashion is determined using an information-theoretic
measure. Perfect clustering into, for example, 2 categories
corresponds to a maximal value of 1 bit. For control, trans-
mitted information was also determined for surrogate data-
sets, in which the spike trains were randomly shuffled from
both conditions. This shows whether there is sufficient data
to carry out a valid analysis. If the amount of data is sufficient,
then the “shuffled” curve is well separated from the original
data curve, and the amount of information in the shuffled
curve should be near zero.

Figure 7 shows the results for 2 example neurons, where
the mean FR was similar in both conditions. The neuron
shown in the left column exhibited highly distinctive differ-
ences in spiking irregularity during FIX and OKR. Maximal
transmitted information of 1 bit reflects a perfect distinction
between the responses for both conditions. Perfect classifi-
cation was achieved for values of temporal precision in the
order of 4 ms. In the case of the neuron shown on the right
column, the distinction between FIX and OKR was not as pro-
nounced as for the other example, reaching maximal trans-
mitted information of 0.5 bit. Good clustering was achieved
for a broad range of temporal precision values between 8 and
60 ms. In both examples, the original data curves were well
separated from the shuffled curves. It is important to note
that the estimation of transmitted information from limited
samples introduces several difficulties. The metric-space
method tends to underestimate the total information that is
present, since only a few stereotyped hypotheses for neural

Figure 5. Correlations between FF, VarCE, and CV2, plotted in log–log coordinates. Each dot marks one dataset. All measures were averaged as before. (A) There is a strong
positive correlation between FF and CV2 (ρFF, CV2 = 0.79, P<0.01). (B and C) Also VarCE and FF, and CV2 and VarCE, are positively correlated (ρVarCE, FF = 0.70, P< 0.01;
ρCV2, VarCE = 0.53, P<0.01).

Figure 4. The firing rate (FR) increases with image and eye velocity. For each
condition, FR was averaged over all trials and the testing interval. The datasets were
grouped as in Figure 3. FR, image and eye velocity were averaged across the testing
interval and all trials. Vertical lines mark standard errors.
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codes are considered. On the other hand, the estimated infor-
mation will be spuriously high because of chance proximities
between the few examples of observed responses, if the

number of presentations of each stimulus class is small. The
large error bars in Figure 7B and D reflect these estimation
problems.

For the 56 neurons analyzed here, there were 122 pairs of
FIX and OKR datasets recorded using the same stimulus vel-
ocity. In 120 (98%) dataset pairs it was possible to discrimi-
nate between FIX and OKR spike trains using the

Figure 7. Metric-space analysis. (A) Spike raster plots showing regular activity for
FIX (FR = 89 Hz, FF = 0.69, CV2 = 0.67) and irregular activity for OKR (FR = 79 Hz,
FF = 2.58, CV2 = 2.87) during the testing interval for one example neuron. Stimulus
velocity was 20°/s in both conditions. (B) Transmitted information of the original
clustered data (black) and for shuffled data (gray) for different values of temporal
precision. Vertical lines mark standard error for original data and double standard
deviation for shuffled data. (C and D) Spike raster plots and transmitted information
of a second example neuron showing regular activity for FIX (FR = 92 Hz, FF = 0.59,
CV2 = 0.67) and irregular activity for OKR (FR = 106 Hz, FF = 1.70, CV2 = 1.14)
during the testing interval. Here, stimulus velocity was 10°/s for both conditions. (E)
Transmitted information increases with stimulus velocity. For each dataset pair
maximal transmitted information was determined as in the examples above. Vertical
lines mark standard errors.

Figure 6. Relation between neuronal variability and variance in eye movements. (A)
The normalized variance of image velocity decreases with image velocity, the
normalized variance of eye velocity is independent of eye velocity. For each dataset,
the variance was determined across all trials (black curve) or within each trial (gray
curve), then divided by the mean, and finally averaged over the testing interval. Both
curves were slightly moved for better visual separation. The datasets were grouped
according to the paradigm and the corresponding image or eye velocity. (B)
Correlation between the normalized variance across trials (black dots) or within trials
(gray dots) and FF. Each dot marks one dataset. Some outliers fall outside the shown
range. For FIX, there is a weak correlation, which is not present during OKR. (C)
Distribution of datasets, in which normalized variance of image and eye velocity
correlated with CV2 within the datasets. Normalized variance and CV2 were
determined in every trial; then the correlation coefficient ρvar/mean, CV2 was calculated
for each dataset. Black bars show datasets with significant (P< 0.05) correlation.
(D) Number of saccades per trial. For each dataset the number of saccades during
the testing interval was determined and averaged over all trials. Vertical lines mark
standard errors.
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metric-space criterion. The average transmitted information
for all dataset pairs was 0.61 ± 0.27 bit. Figure 7E shows that
transmitted information increased with stimulus velocity. This
result reflects the increasing differences in neuronal variability
between both conditions with increasing stimulus velocity.
For a stimulus velocity of 5°/s there was almost no difference
in spiking irregularity between both conditions. Hence, classi-
fying the spike trains into both categories was difficult. For
30°/s, on the other hand, the divergence in spiking irregular-
ity was maximal and spike trains could be assigned almost
perfectly to each category by their temporal spiking patterns.

Discussion

Our analysis of spiking irregularity in MSTd neurons revealed
5 major features. First, responses to LF visual stimulation do
not only reflect external visual stimulation but are also modu-
lated by eye movement signals. Second, also in MSTd the
trial-to-trial variability of neuronal activity is quenched by
stimulus onset. However, the change in variability of MSTd
neuronal activity was not just related to stimulation, as pro-
posed by Churchland et al. (2010). There was a sustained low
level of variability during FIX, but for the OKR paradigm only
a transient decline in FF was observable. Third, the relation
between spiking irregularity and the 2 stimulation variables,
image and eye velocity, was opposite. Both variables, which
were uncoupled by using 2 orthogonal paradigms, affected
the intra- and inter-trial variability of neuronal activity. At
small stimulus velocities neuronal variability was similar for
both paradigms, meaning that the change in variability was
not task-dependent. All 3 measures analyzed here, FF, VarCE,
and CV2 were negatively correlated with retinal image velocity
and positively correlated with eye velocity. Fourth, the decline
of neuronal variability during FIX is accompanied by a
decline of the normalized variance of image velocity. The
increase during OKR, however, seems to be independent of
the normalized eye velocity variance. Finally, we could show
that the differential behavior in neuronal variability allows
discriminating which of the 2 variables, image or eye velocity,
has driven neuronal activity.

Previous Measurements of Spiking Irregularity
Prior studies examined spiking irregularity in MST and neigh-
boring MT cortex. It is, nevertheless, difficult to compare their
results, as stimuli and paradigms were very different. Also,
previous studies did not differentiate between changing
stimulus conditions. A number of studies agree in mean FF
values between 1.0 and 1.4 for paradigms as different as
pursuit of a moving dot (MST, Maimon and Assad 2009), FIX
of a target during whole body rotation (MSTd, Takahashi
et al. 2007), FIX during visual stimulation (MT, Buracas et al.
1998), or a depth discrimination task (MT, Uka and DeAngelis
2003). The mean FF of 1.47 in our data is in good agreement
with these previous findings.

Churchland et al. (2010) analyzed FF time traces in MT
neurons during FIX with visual stimulation and found levels
around 1.8 before stimulus onset and a sustained decline to
about 1.4 during visual motion. This complies qualitatively
with the results of our FIX paradigm, although we measured
an even larger decline in FF (2–3 to 0.7) in our MSTd data.
Some previous works found a general tendency for cells in

motor cortex to fire more regularly than in visual areas
(Maimon and Assad 2009; Shinomoto et al. 2009). Our results
seem to contradict this principle, as in our data FF decreased
with visual input and increased with the oculomotor variable.
Further investigation of this aspect, however, will require data
from far more areas.

Werner and Mountcastle (1963) observed in thalamic
neurons a decline in CV2 from 0.9 during spontaneous activity
to 0.3 during peripheral stimulation, confirming the stimulus
dependence of spiking irregularity. In MT neurons CV2 values
of about 1 were found (Softky and Koch 1993; Shadlen and
Newsome 1998). In these studies, the paradigms consisted of
a visual motion coherence discrimination task, during which
the monkeys had to fixate a target spot. The mean CV2 of 1.12
during FIX for our MSTd data is in good agreement with
these previous findings.

Relation Between Spiking Irregularity and FR
Due to refractory periods of up to 5 ms between each spike,
neuronal activity tends to become more regular with higher
FR (Berry and Meister 1998). Our observation of a weak, but
significant, positive correlation between FF and FR in the
OKR paradigm may exemplify an exception to the usually
observed decrease in neuronal variability with increasing FR.
A similar case was reported by Churchland et al. (2011), who
observed parallel increase of variability and FR in LIP
neurons. Also in pyramidal tract neurons spiking irregularity
has been reported to increase during periods of high FR
(Davies et al. 2006). In various other cortical areas, including
MT, neurons were found where the FF changed notably
during stimulation while the mean FR stayed constant
(Churchland et al. 2010). Mochol et al. (2010) analyzed
neurons in the cat’s superior colliculus during visual stimu-
lation. Interestingly, they found that for cells preferring low
velocity, FR and FF were positively correlated, whereas for
cells preferring high velocity the correlation was negative.

Possible Causes for Changing Neuronal Variability
A decline of neuronal variability after stimulus onset, which
has been observed in a number of cortical regions, can be
explained by certain topological structures of the underlying
neuronal network. The stimulus-driven suppression of
chaotic, spontaneous activity is a general feature of recurrent
networks, a kind of structure presumed to be found in
various cortical areas. The decline in variability depends on
stimulus frequency and amplitude (Rajan et al. 2010). Our
finding of decreasing spiking irregularity with increasing
image velocity might be explained by the presence of recur-
rent circuitry in area MSTd.

Nevertheless, our observation may also be explained by
another, probably more obvious, hypothesis. We could show
that the normalized variance of image velocity decreases with
increasing stimulus strength. The increase in regularity of
spiking activity might simply reflect this reduction of the
stimulus signal variability. This, however, requires that neur-
onal activity is able to capture high-frequency fluctuations in
the stimulus signal. Most MSTd neurons fulfill this requirement
during visual LF stimulation (Ono et al. 2010). The observed
relation between the variability of sensory input and neuronal
activity might also be important for the interpretation of
earlier findings, which often were explained by an underlying
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recurrent network structure. Nevertheless, both hypotheses
are not contradicting each other and might also coexist.

Our second finding of an increase in neuronal variability
during the OKR condition remains unexplained by both
hypotheses. The normalized variance of eye velocity was
neither related to stimulus strength, nor neuronal variability.
Also a stimulus-dependent combination of suppression and
enhancement of spontaneous activity cannot be implemented
by a simple recurrent network structure. A network topology
that might explain this finding would need to be asymmetrical
and process both stimuli differently.

Alternatively, the opposite behavior for image and eye vel-
ocity could also result from fundamental differences in the
properties of the 2 signals that form visual and oculomotor
input to MSTd. It is assumed that the retinal image velocity
signal is projected through connections from visual area MT
into MSTd (Tusa and Ungerleider 1988). In MT neurons spiking
irregularity declines with visual motion stimulation (Church-
land et al. 2010), similar to our observations in MSTd. However,
the source of the oculomotor signal is still disputed. Analysis of
neuronal latency has shown that MSTd neurons usually start
firing before the onset of OKR eye movements (Kawano et al.
1994; Brostek et al. 2011). This argues for an internally gener-
ated efference copy, rather than sensory origin of the eye vel-
ocity signal. One possibility is that thalamic projections (Tanaka
2005) directly convey extra-retinal information to MSTd and
that these signals already carry the irregularity. Whereas for a
long time it was assumed that MT does not receive extra-retinal
input (Newsome et al. 1988), a recent work found that neurons
in this area use eye movement signals to code depth-sign from
motion parallax (Nadler et al. 2009). Wherever the oculomotor
input to MSTd originates from, the regularity properties of this
signal remain to be investigated.

Evidence for Temporal Coding?
In many neuronal systems, it could be shown that aside from
mean FR the temporal pattern of spiking activity may also
carry important information (MacKay and McCulloch 1952;
Richmond et al. 1987; Softky 1995; Buracas and Albright
1999; Rieke et al. 1999; Singer 1999). For instance, in auditory
neurons the mean FR represents some combination of ampli-
tude and frequency of a tone. At the same time, there is the
tendency for ISIs to cluster around integer multiples of the
stimulus period, allowing the separation of frequency and am-
plitude information (Evans 1982). Also in cortical areas
spiking irregularity has been used as an evidence to support
the temporal coding hypotheses (Softky and Koch 1993; Stein
et al. 2005).

In MSTd neurons the mean FR, which is the reciprocal of
the mean ISI, codes some non-linear combination of visual
and eye movement related signals (Ben Hamed et al. 2003;
Brostek et al. 2011). At the same time, the variance of the ISI
decreases with visual and increases with oculomotor stimu-
lation. As we could show, this independent temporal code
may allow the separation of the 2 signals, similar to phase
locking in auditory neurons.

In a renewal process ISIs are assumed to be independent
and identically distributed (Cox 1962). The approximate
one-to-one relation between FF and CV2 observed in our data
argues for the renewal assumption. Both across-trial and
within-trial variability are determined by the distribution of

ISIs of the corresponding renewal process, as schematically
illustrated in Figure 8. The gamma distribution is an appropri-
ate approximation for the distribution of ISIs in most neuronal
systems (Stein 1965). A change in spiking irregularity is
associated with a modification of the ISI distribution. This
again may result from changing membrane properties in
single neurons, circuit properties of networks of neurons, or a
combination of both. Miura et al. (2007), for instance, pro-
posed a network architecture, where the FR could be
decoupled from the ISI distribution by proper balance of
excitatory and inhibitory inputs. However, the questions
whether the change of the ISI distribution in dependence of
visual and oculomotor input has a functional meaning, and
whether the additional information, embodied in changing
spiking irregularity, is actually used by MSTd and subsequent
areas, or reflects just an epiphenomenon, remain to be solved
by future investigations.

Supplementary Material
Supplementary material can be found at: http://www.cercor.oxford-
journals.org/.
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Figure 8. Spiking irregularity changes with inter-spike interval (ISI) distribution. (A)
Gamma distributions for 3 different shape parameters k. (B) Simulated spike trains.
ISIs were sampled from the 3 different gamma distributions according to a renewal
process. The firing rate is 20 Hz in all 3 cases. For k= 0.2, spiking activity is bursty
and highly variable from trial to trial (FF = CV2 = 2.3). For k=1, we get a Poisson
process (FF = CV2 = 1). For k= 5 spiking activity is very regular (FF = CV2 = 0.2).
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Abstract  

 

Lesion studies argue for an involvement of cortical area MSTd in the control of optokinetic 

response (OKR) eye movements. Neurons in this area respond to visual motion and eye 

movement related signals. However, MSTd’s function in visuomotor transformation is still 

unclear. Using a novel approach for characterizing neural tuning with high resolution, we 

show that during optokinetic stimulation the majority of MSTd neurons exhibit gain-field-like 

tuning functions. Rather than directly encoding one variable, neural responses showed a large 

diversity of tuning to combinations of retinal and extra-retinal input. Eye velocity related 

activity was observed prior to the actual eye movements, reflecting an efference copy. The 

observed tuning functions resembled those emerging in a network model trained to perform 

summation of two population-coded signals. Together, our findings support the hypothesis 

that MSTd implements the transformation from retinal to head-centered stimulus velocity 

signals for the control of OKR. 

 

    

 2



Introduction 

 

The dorsal medial superior temporal area (MSTd) is located in the posterior parietal cortex 

(PPC) and is part of the visual motion processing system (Andersen, 1989). Besides pure 

retinal signals, neurons in this area are also driven by vestibular and eye movement related 

signals (Newsome et al., 1988; Gu et al., 2006; Ono and Mustari, 2006). This multi-modal 

behavior led to the suggestion that MSTd might compensate for distortions caused by self-

generated eye and head movements in the perception of heading direction (Bradley et al., 

1996; Page and Duffy, 1999; Gu et al., 2007; Bremmer et al., 2010). 

 

Apart from its perceptual function, however, there is also strong evidence for an involvement 

of MSTd in oculomotor control. Lesions in this area lead to severe impairment of the 

optokinetic response (OKR), which is the involuntary eye movement that compensates for 

planar motion of the visual scene (Dürsteler and Wurtz, 1988; Takemura et al., 2007). 

Analysis of neural latencies (Kawano et al., 1994) and post-saccadic response behavior 

(Takemura and Kawano, 2006) gave further evidence for the participation of MSTd in OKR. 

Yet, it is still unknown which exact function this cortical region might serve during 

visuomotor transformation. 

 

The term ‘visuomotor’ refers to the neural mechanisms by which visual stimuli are converted 

into motor commands. One essential processing step is the transformation of retinal or eye-

centered signals to the body-centered coordinates of muscles for movement (Andersen et al., 

1993; Crawford et al., 2011). A number of regions in the PPC are assumed to be involved in 

these coordinate transformations for various kinds of movements. For instance, the parietal 

reach region (PRR) is supposed to be a visuomotor interface for reaching arm movements, 
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whereas the lateral intraparietal area (LIP) might serve such function for saccadic eye 

movements (Buneo and Andersen, 2006).  

 

‘Gain fields’ have been proposed to comprise the neural substrate for visuomotor coordinate 

transformations (Snyder, 2000). Gain-field-like tuning behavior is characterized by a 

modulation of the neuronal response depending on a certain variable, without changing the 

actual receptive field characteristics in relation to another variable (Salinas and Thier, 2000). 

Andersen and Mountcastle (1983) were the first to observe this kind of tuning in area 7a of 

the PPC, where visually responsive neurons are modulated by the eye’s position. Neural 

network models have demonstrated that a gain field mechanism can be used to perform 

coordinate transformations (Zipser and Andersen, 1988; Pouget and Sejnowski, 1997). 

 

In this work we analyzed the function of MSTd during OKR. As we will show, this kind of 

eye movement requires a transformation of the retinal image velocity signal to a head-

centered stimulus velocity signal. The finding of neurons with gain-field-like tuning behavior 

in MSTd would argue for an involvement in coordinate transformation. Alternatively, the 

transformation might occur in an earlier processing stage. In this case, MSTd neurons could 

directly encode the sum of retinal image and eye velocity, i.e. visual motion in head-centered 

coordinates, as suggested for adjacent region MSTl for smooth pursuit eye movements (Ilg et 

al., 2004).  
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Methods: 

 

Electrophysiology 

We recorded extracellular potentials from 81 MSTd neurons in two awake monkeys (Macaca 

mulatta; monkey A: 70 neurons, monkey B: 11 neurons). All procedures were performed at 

the Washington National Primate Research Center at the University of Washington (Seattle, 

WA, USA) in compliance with National Institutes of Health Guide for the Care and Use of 

Laboratory Animals. The protocols were reviewed and approved by the Institutional Animal 

Care and Use Committee at the University of Washington. Surgical procedures were 

performed in a dedicated facility using aseptic techniques under isoflurane anesthesia (1.25-

2.5%). Vital signs including blood pressure, heart rate, blood oxygenation, body temperature 

and CO2 in expired air were monitored with a Surgivet Instrument (Waukesha, WI) and 

maintained in normal physiological limits. To permit single unit recording, we used 

stereotaxic methods to implant a titanium head stabilization post and a titanium recording 

chamber (Crist Instruments, MD) over MST cortex (posterior = 5 mm; lateral = 15 mm). In 

the same surgery, a scleral search coil for measuring eye movements was implanted 

underneath the conjunctiva of one eye. Post-surgical analgesia (Buprenorphine. 0.01 mg/kg, 

I.M.) and anti-inflammatory (Banamine 1.0 mg/kg, I.M.) treatment were delivered every 6 

hours for several days, as indicated. For verifying MSTd location we used functional, 

histological, and magnetic resonance imaging criteria (described in detail in Ono et al., 2010). 

During the experiments monkeys were seated in a primate chair in a dark room with their 

head restrained in the horizontal stereotaxic plane. About 10 % of the isolated neurons in 

MSTd did not respond selectively to large moving visual stimuli and were discarded from our 

analysis. The average recording time per neuron was about 600 s.  
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Stimuli 

The optokinetic response (OKR) is a tracking eye movement to moving large-field scenes. 

The term ‘ocular following response’ (OFR) generally refers to the immediate OKR response 

after the motion onset of a large visual stimulus (Miles 1998). The combination of OKR and 

fast resetting saccades during prolonged unidirectional stimulation is called optokinetic 

nystagmus (OKN). Tracking eye movements to small moving objects are called smooth 

pursuit. In our experiment a visual large-field stimulus (35° × 35° fixed random dot pattern 

with mean luminance of 100 cd/m²) was rear projected on a tangent screen. During the ‘white 

noise motion’ paradigm the stimulus was moving randomly in one direction in a translational, 

planar way (Duffy and Wurtz, 1991) , meaning that the position of the pattern on the screen 

changed continuously, but not the pattern itself. Each neuron was tested in the axis of its 

preferred direction, i.e. the direction which elicits maximal spiking activity. For determination 

of the preferred direction, the large-field pattern moved in a circular (not spiral) trajectory as a 

search stimulus.  This ensures that every contrast element in the pattern moves at the same 

speed, through all directions.  The preferred direction was estimated from the on-line response 

of each neuron.  Further testing was conducted along a cardinal direction (vertical, horizontal 

or oblique, separated by 45°) that most closely matched the estimated preferred direction.  

Different speeds (typically between 10-60°/s) were used to test each neuron in the preferred 

direction. The maximal eccentricity of the center of the pattern was ±40°. The frequency 

spectrum of the white noise stimulus was flat with stimulus velocities reaching up to 200 °/s, 

which is about threefold maximal eye velocity. The monkey’s task was to perform OKR eye 

movements, following stimulus motion as well as possible (Fig. 1A). Reward was given for 

keeping eye position in the range of ± 5-7° around the center of the stimulus pattern. Rapid 

changes in stimulus direction and velocity, however, impeded perfect OKR and decoupled the 

image velocity and eye velocity signals. Figure 1B shows a sample trace and the 

corresponding recording of an example neuron. Over a range of several days, the monkeys 
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improved in following the stimulus. In order to minimize the dependency between the image 

and eye velocity signals, we increased the stimulus range according to the monkey’s behavior. 

Further, we used an algorithm for de-correlation of image and eye velocity which is described 

in the Data Analysis section. 

 

Data Processing 

Action potentials were detected using a hardware window discriminator (Bak Electronics, 

MD). Eye position signals were processed with anti-aliasing filters at 200 Hz using 6-pole 

Bessel filters (latency 5 ms) before digitization at 1 kHz with 16-bit precision. Subsequently, 

they were filtered with a Gaussian low-pass (cutoff frequency 30 Hz) and 3-point 

differentiated to obtain velocity traces. Saccade periods were detected and removed from the 

data using a previously described algorithm (Ladda et al., 2007). Briefly, an estimate of the 

slow-phase component (SPC) was initialized to zero and iteratively improved in each step. 

The difference between the actual eye velocity trace and the current SPC served as an 

estimate of the fast-phase component (FPC). When the FPC exceeded a threshold (100 °/s in 

the first step, 50 °/s in the second step), a saccade was detected. The new SPC was then 

computed by linear interpolation of the eye velocity across saccades and subsequent filtering 

with a Gaussian low-pass (cutoff frequency: 5 Hz in the first step, 10 Hz in the second step). 

 

Information-theoretic Data Analysis 

Our mutual information based approach for neural data analysis has been described in detail 

previously (Brostek et al., 2011). Briefly: Let S denote a binary random variable for the 

observation of a spike or non-spike, with p(s) denoting the probability mass function of spike 

occurrence. The discrete random variable V denotes the observation of a specific combination 

of explanatory variables with associated probability mass function p(v). Herewith, it is 

possible to define a probabilistic neural tuning function by the conditional probability p(s|v) 
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of observing a spike given any combination of explanatory variable. By multiplication with 

the sampling rate, this probability translates directly into an expectation value of the spiking 

rate. Using Bayes’ theorem, p(s|v) can be expressed as the quotient of the joint probability 

mass function p(s,v) divided by p(v): 

 ( , )( | )
( )

p s vp s v
p v

= . 

Estimates of p (v) and p(s,v) can be attained by histogramming the experimental data (Fig. 

1C). To smoothen the histograms we used a symmetrical Gaussian low-pass filter with a 

standard deviation of two bin widths. This approach of tuning function determination poses 

three major challenges: first, the variable space needs to be fully covered, while ensuring 

statistical independence of all explanatory variables. Second, neural latencies have to be 

considered, as the tuning function p(s|v) critically depends on it. Third, the dependence of 

neural activity on each explanatory variable needs to be estimated. Concerning the former 

issue, we used a ‘white noise motion’ paradigm as described above. Additionally, we used an 

algorithm to remove samples with high linear correlation from the datasets. This algorithm 

randomly selects parts of the original dataset for the analyzed set as long as a maximal level 

of linear correlation between image velocity and eye velocity is not exceeded. We set this 

limit to a Pearson’s correlation coefficient of 0.2. The average percentage of discarded 

samples was 39.7 ±23.3 %. To estimate the neural latency, we analyzed the mutual 

information I between explanatory variables V and spiking activity S:  

 ( ; ) ( ) ( | )I V S H S H S V= − , 

with H(S) being the entropy of S and H(S|V) the conditional entropy of S given V. These are 

given by 

 ( ) ( ) log ( )
S

H S p s p s= −∑  

 ( | ) ( ) ( | ) log ( | )
V S

H S V p v p s v p s v= −∑ ∑ . 
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By maximizing the mutual information I(V;S), our approach estimates neural latency in such a 

way that the dependence of the neural activity on the independent variables is maximized. 

Furthermore, the evaluation of mutual information allows us to compare maximized I(V;S) 

values using different combinations of explanatory variables to determine those variables 

which are most related to spiking activity.  

 

Transformation Index 

The transformation index (TI) quantifies the ‘slope’ of the two-dimensional tuning function 

and was determined as follows: Let x and y denote the two axes of the tuning function, and z 

the activity axis. In this three-dimensional coordinate system a plane  

 z ax by c= + +  

is least-squares fitted to the left flank of the activity hill. The TI-value is then the logarithm of 

the slope of the line of intersection of the fitted plane in the x-y-plane: 

 log aTI
b

= . 

Negative TI-values indicate predominant vertical tuning, corresponding to higher selectivity 

for image velocity, whereas positive values indicate horizontal, eye velocity related tuning. 

We used the function ‘regress’ from the Matlab Statistics Toolbox (The MathWorks Inc., 

Natick, MA) for estimating the TI-values and the 95 % confidence intervals of the estimated 

parameters. Based on these, a 95 % confidence interval was determined for each TI-value. 

 

Modeling 

We used two different models: a system-level model of the OKR control system (Fig. 5A) and 

a neural network model of the coordinate transformation (Fig. 5C). The system-level model 

simulates the interaction and signal-flow between different anatomical regions during OKR 

and was implemented in Simulink 7.1 (The MathWorks Inc., Natick, MA) using standard 
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differential equation solver settings. The transfer functions for the eye plant, which models 

the inertia of the eye-muscle system, and the internal plant model, which estimates eye 

velocity from an efference copy of the motoneuron signal, are given in Fig. 5A. 

The neural network model was adapted from (Pouget and Sejnowski, 1997). The 31 image 

velocity input units were Gaussian-tuned with σ = 32 °/s and equally distributed peaks pi 

between -60 and 60 °/s:  

 
2( )

2 ²
iiv p

ih e σ
−

−
=  

where hi is the activity of unit i and iv is image velocity. The 21 eye velocity input units were 

sigmoid-tuned with slope factors τ =16 °/s and equally distributed inflection points ipi 

between -40 and 40 °/s: 

 1

1
ii ev iph

e τ
−

−
=

+
 

with ev being eye velocity. The 41 stimulus velocity output units were also sigmoid-tuned 

with slope factors τ = 16 °/s and equally distributed inflection points ipi between -100 and 100 

°/s. Each of the 651 intermediate layer units received input from each input layer unit, 

weighted with factors ui and vi for image and eye velocity, respectively. Each output layer unit 

received input from each intermediate layer unit, weighted with factors wi. To avoid negative 

unit output, linear-threshold activation functions were used. During the learning process the 

weights ui, vi, and wi were adjusted using the back-propagation algorithm in online mode 

(Rumelhart et al., 1986). The training set comprised arbitrary, equally distributed input and 

output value combinations. The learning procedure was continued until the error between 

desired and actual output, averaged over the last 10 iterations, showed no more significant 

decrease.
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Results 

 

In the first part we present our electrophysiological findings. Thereafter, we compare these 

data with theoretical predictions from a computational model. 

 

MSTd neural tuning during OKR 

The visual stimulus consisted of a large-field random dot pattern moving randomly in the axis 

of preferred direction, which was separately determined for each neuron. The monkey’s task 

was to follow this planar ‘white noise motion’ stimulus as well as possible, performing 

optokinetic response eye movements (OKR). Maximal stimulus velocities of up to 200 °/s 

allowed us to cover wide ranges of both eye velocity and retinal image velocity values at the 

same time.  

 

For analyzing the data we used a novel approach (Brostek et al., 2011), which estimates the 

latency and dependence of neural activity on different visual and eye movement related 

variables based on maximization of mutual information. Neural activity correlated mainly 

with two variables: image velocity and eye velocity, which accounted on average for 35 % 

and 30 % of mutual information with spiking activity, respectively. The remaining mutual 

information was shared by eye acceleration (13 %), image acceleration (12 %), and eye 

position (10 %), showing that the latter three variables correlated marginally with neural 

activity. 

 

Figure 2 shows the latency of spiking activity relative to the image and eye velocity signals. 

All neurons fired after the image velocity signal, with a mean neural latency of +63 ±27 (s.d.) 

ms. This value for the visual response latency agrees well with previous findings (Kawano et 

al., 1994; Schmolesky et al., 1998). For eye velocity the distribution was bimodal. Most 
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neurons (77 %) fired before the eye velocity signal with a mean latency of -34 ±26 ms. This 

signal therefore cannot be of sensory origin, but indicates a premotor variable, which 

probably reflects an internally generated efference copy of the eye velocity signal. Neurons 

with positive neural latency relative to eye velocity were excluded from further analysis. We 

will refer to these units in the next section. Interestingly, we observed that neurons which 

were recorded in neighboring tracks seemed to share similar latency estimates. The 

subpopulation with positive latency relative to eye velocity also seemed to cluster in one 

specific region. However, anatomical sampling in this study was too sparse for reporting 

significant effects. 

 

Figure 3 provides an overview of two-dimensional tuning functions determined from our 

recordings. Neural latencies were estimated for each neuron and compensated in the 

subsequent analysis. The stimulus range was adapted continuously to the monkey’s behavior 

and therefore varied across datasets. Preferred image velocity differed across the population in 

accordance with previous findings (Churchland and Lisberger, 2005). The flame-like type of 

tuning functions reflects a gain field with an approximately Gaussian-shaped selectivity for 

image velocity, modulated by eye velocity (Fig. 3A+B). In all gain field neurons the visual 

response increased with increasing eye velocity in the neuron’s preferred direction, and 

decreased with eye movement in the opposite direction. The shape of the tuning functions, 

however, differed notably across neurons. Some tuning functions were comparatively ‘broad’, 

with neurons showing less selectivity for image velocity with increasing eye velocity (e.g. 

A97.4 and A100.2). In other units tuning functions exhibited rather ‘sharp’ forms, preserving 

their visual selectivity for high eye velocities (e.g. B28.1). In some cases preferred velocity 

seemed to shift towards lower values with increasing gain (e.g. A94.5). 
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In 29 neurons (36 %) tuning functions expressed clear gain-field-like behavior. Another 33 

units (41 %) showed a modulation of visual response with increasing eye velocity, but had 

open, sigmoid tuning for image velocity resembling part of a gain field (Fig. 3C+D). We 

therefore refer to these units as ‘partial gain fields’. Prior studies in the neighboring middle 

temporal cortex (MT) that tested for wider velocity ranges usually found closed image 

velocity tuning functions (Mikami et al., 1986). As the image velocity signal is assumed to be 

projected via MT to MST (Tusa and Ungerleider, 1988), the open image velocity tuning in 

part of our neurons could have resulted from a limited testing range. In 7 cases (9 %) neurons 

exhibited virtually pure selectivity for image velocity, whereas in 2 neurons (2 %) neural 

activity increased mainly with eye velocity, showing marginal modulation by image velocity.  

 

To quantify the ‘slope’ of the two-dimensional tuning functions we determined the 

transformation index (TI, see Methods) for all neurons (Fig. 3E). A negative TI-value 

indicates stronger dependency of neural activity for image velocity, whereas a positive value 

indicates more eye velocity related tuning. A TI-value of 0 indicates uniform increase of 

neural activity with image and eye velocity. This relation would be expected in neurons that 

directly encode the stimulus velocity, which is the sum of image and eye velocity. However, 

only 3 units (4 %) had TI-values that were not different from zero on a 5 % significance level. 

The distribution of estimated TI-values was Gaussian-shaped (Lilliefors test: P = 0.07; mean 

= 0.05, σ = 0.82). Hence, no specific form of gain field dominated the population. We found a 

variety of different shapes between the two extremes of pure vertical, image velocity related 

and pure horizontal, eye velocity related tuning. Finally, Figure 3F shows the population’s 

mean firing rates for image and eye velocity values of 20 °/s extracted from the tuning 

functions. This Gamma-shaped distribution (Kolmogorov-Smirnov test for Gamma 

distribution with α = 1.65, β = 27.63: P = 0.43) covers a wide range from 10 to 200 Hz.  
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Neurons with late eye movement related responses 

In a subpopulation of 19 neurons (23 %) spiking activity had a mean latency of +105 ±39 ms 

relative to the eye velocity signal (see Fig. 2). Similar latencies after eye movement onset are 

typically observed in ‘smooth pursuit neurons’ (Newsome et al., 1988; Ono et al., 2010), a 

type of MSTd neuron exhibiting increased activity during tracking of small moving targets. 

Most neurons of this subpopulation not only differed in neural latency but also exhibited 

significant differences in tuning behavior. In 6 out of these 19 units (32 %) the tuning 

functions exhibited peak values for positive image velocity and negative eye velocity (Fig. 4). 

Such opposite preferred directions for visual and eye movement related activity were also 

previously reported in MSTd smooth pursuit neurons (Komatsu and Wurtz, 1988; Shenoy et 

al., 2002).  In another 5 out of the 19 neurons (26 %) the mutual information between spiking 

activity and eye position or acceleration exceeded the mutual information values between 

spiking activity and image velocity. This means that neuronal activity in these neurons was 

best correlated with eye movement rather than with image related variables. The 

subpopulation of MSTd neurons with positive neural latency relative to eye velocity is 

probably not participating in OKR. Rather, it might be involved in smooth pursuit control 

(Ono and Mustari, 2006; Ono et al., 2010) or pursuit compensation for the perception of 

heading direction (Bradley et al., 1996).  

 

Modeling results 

Figure 5A shows a system-level model of the OKR control circuit, analogous to well-

established models of the smooth pursuit system (Robinson et al., 1986; Glasauer, 2007). The 

‘eye plant’ is usually modeled by a low pass filter with a time constant of 200 ms and 

simulates the inertia of the eye-muscle system. It receives as input the motoneuron signal and 

yields as output the eye velocity signal. The signal processing time in retina, thalamus, and 

visual cortical areas is modeled by a 60 ms delay, resembling the measurements from our 
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MSTd data.  Due to this delay, a pure negative feedback circuit, with image velocity driving 

the eye plant directly, would not be stable. A straightforward way to prevent instability is the 

introduction of an internal positive feedback to the control signal (Young, 1971). An internal 

model of the eye plant, presumably located in the cerebellum (Wolpert et al., 1998; Glasauer, 

2003; Porrill et al., 2004) or PPC (Mulliken et al., 2008), might receive an efference copy of 

the motor command and use it to estimate eye velocity. The summation of image velocity and 

estimated eye velocity yields the estimated stimulus velocity signal. This processing step can 

also be conceived as transforming a retinal signal to head-centered coordinates. The resulting 

signal can be used to drive the eye plant. To account for the observed neural latency regarding 

the eye movement, we introduced a delay of 20 ms to the eye plant. The resulting model of 

the OKR system is stable and yields realistic step function responses with an eye movement 

onset latency of 80 ms (Fig. 5B). It should be mentioned that leading of the internally 

estimated eye velocity signal relative to the actual eye velocity signal (i.e. negative latency) is 

not critical for stability. The system is also stable for a positive delay of the internal eye 

velocity signal, as would be expected for proprioceptive feedback. In this case, however, the 

model’s step response exhibits slower rising and does not fit the data as well.  

 

To analyze the sensorimotor coordinate transformation at a deeper, more biological level, we 

designed a firing-rate neural network to model the summation of retinal image velocity with 

eye velocity (Fig. 5C). As in the electrophysiological study, we restricted this analysis to one 

(preferred) direction. The velocities of image, eye, and stimulus were coded by three different 

neural populations. Using the back-propagation learning algorithm (Rumelhart et al., 1986), 

the network was trained to estimate the proper stimulus velocity value for any given 

combination of image and eye velocity input values. The shapes of the resulting tuning 

functions of the network’s intermediate layer units had remarkable similarity to our MSTd 

tuning functions. All tuning functions obtained from the simulation exhibited gain-field-like 
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shape. Some neurons had sharp, vertical tuning functions, whereas other units showed rather 

horizontal, image velocity related tuning. The similarity to our electrophysiological results 

was corroborated by the neural network’s distribution of TI-values (Fig. 5D). Before learning 

all weights were randomly sampled from a uniform distribution. The resulting tuning 

functions were quite similar in shape, reflected by a narrow distribution of TI-values. During 

the training process, however, this distribution broadened, demonstrating the network’s 

demand for a certain diversity of broad and sharp gain fields for accomplishing the 

transformation task. After completion of the learning process, the distribution of TI-values 

showed no significant differences to our MSTd data (Two-sample T-test: P = 0.48). In 10 

units (2 %) the TI-value was not significantly different from zero. Figure 5E shows the 

average activity of the trained intermediate units for image and eye velocity values of 20 °/s 

after learning. As in our data, the activity was also not Gaussian distributed (Lilliefors test: P 

= 0.013). However, the neural network’s units exhibited much less variability in their activity 

than MSTd neurons. The distribution of input and output weight values is shown in Figure 5F. 

Input weights for image and eye velocity were distributed almost equally between -0.02 and 

0.07 after learning. Also the distribution of output weights was flat and nearly symmetrical 

between -0.05 and 0.055. 
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Discussion 

 

Our finding of eye velocity gain fields is in line with the hypothesis of MSTd’s participation 

in the OKR control system by implementing the transformation from retinal image velocity to 

an estimate of stimulus velocity. In this sense, eye velocity gain fields constitute an 

intermediate step in transforming the eye-centered to a head-centered visual motion signal. In 

contrast to the neighboring MSTl (Ilg et al., 2004), neurons in MSTd do not to directly encode 

one specific variable. Our analysis rather revealed a large diversity of gain field shapes 

including asymmetric and non-separable tuning functions. The distribution of gain fields was 

almost identical to the predictions from a neural network model trained to perform the 

summation of image and eye velocity. Negative latency of the modulatory activity component 

indicates its premotor character and argues for an estimate of the eye velocity signal, 

generated by an internal model of the eye plant system.  

 

Gain fields have been found before in various other areas of the PPC. For instance, visual 

responses of neurons in LIP and cortical area 7A are gain-modulated by eye and head position 

signals (Snyder et al., 1998). The activity of neurons in PRR is modulated by eye and limb 

position (Chang et al., 2009). Yet, all studies so far have suffered from the problem that 

characterization of the neural responses was incomplete in the sense that only very few and 

specific combinations of visual input and motor output could be tested. Our ‘white noise 

motion’ paradigm overcomes these difficulties and allows us to characterize neural tuning in 

high resolution, thereby enabling us to analyze the distribution of gain field types. The finding 

of a well-defined subpopulation with differing tuning and latency behavior is in agreement 

with previous MSTd studies and further demonstrates the strengths of our approach.  
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Previous electrophysiological studies in area MSTd predominantly focused on its role in 

perception of self-motion and heading direction. In general, radial visual stimulation was used 

in combination with small target pursuit eye movements. Our OKR results are not directly 

comparable to these studies, as most MSTd neurons show different behavior during smooth 

pursuit and OKR (Kawano et al., 1994), as well as for radial and planar visual stimulation 

(Duffy and Wurtz, 1991), respectively. Nevertheless, studies using smooth pursuit and radial 

stimulation found that visual responses of MSTd neurons are modulated during eye 

movements (Bradley et al., 1996; Page and Duffy, 1999; Ben Hamed et al., 2003; Bremmer et 

al., 2010), which is in compliance with our results.  

 

Other studies that investigated neural tuning in MSTd during small target pursuit and planar 

visual stimulation yielded diverging conclusions. Kawano and colleagues suggested that 

MSTd neurons might directly encode the velocity of a large-field visual stimulus in head-

centered coordinates (Inaba et al., 2007, 2011; Inaba and Kawano, 2010). A similar study by 

Chukoskie and Movshon (2009), also using small target pursuit, could confirm this hypothesis 

only in parts. They found some neurons in MSTd that encoded stimulus velocity. Most of the 

neurons, however, exhibited a variety of different other tuning behaviors ranging from pure 

retinal to head-centered stimulus velocity coding. Considering the difference of paradigms 

used, this finding has remarkable similarity to our results. We found only few neurons with a 

TI-value close to zero, which could also be interpreted as coding stimulus velocity in a 

restricted range of stimulus space. However, instead of smooth pursuit, we were using an 

OKR paradigm and could therefore assume an involvement of the analyzed neurons in control 

of these eye movements (Dürsteler and Wurtz, 1988). This allowed us to shift the focus from 

the question ‘which signals are coded?’ to ‘what functions are implemented?’. Our coordinate 

transformation hypothesis offers a straightforward explanation for the diversity in tuning 

behaviors found in MSTd. 
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Traditionally, most researchers attempted to correlate neuronal activity with certain variables, 

assuming direct encoding of sensory or motor signals by different neural populations. This 

approach may be appropriate for early input or output stages of neuronal processing. 

However, it poses difficulties when intermediate processing steps of sensorimotor 

transformation are analyzed. Theoretical work has shown that a neural coding scheme where 

each object in each reference frame is represented by a different set of neurons quickly will 

reach limitations due to the combinatorial explosion in the number of required cells (Poggio, 

1990). It was therefore suggested that a much more efficient scheme for neuronal 

representation might be used: instead of representing each variable by a certain pool of 

neurons, one set of basis functions can represent a number of different variables 

simultaneously. Arbitrary variables are then represented by simple linear combination of these 

basis functions (Girosi et al., 1995; Pouget and Sejnowski, 1997).  

 

Gain fields, as demonstrated by Pouget and Sejnowksi (1997), exhibit all characteristics 

necessary to form a set of basis functions. The diversity of tuning functions we observed in 

our data is consistent with this theory. Hence, eye velocity gain fields in MSTd could be used 

to generate a number of other visual motion related variables, as for instance an estimate of 

heading direction (Ben Hamed et al., 2003) or perceived self-motion velocity. In our case of 

planar visual stimulation, perceived self-motion velocity is the stimulus velocity signal 

directed towards the opposite side. Such inversion can be easily obtained by changing the 

weights of the connections to the output layer in our neural network model. The self-motion 

signal might be generalized for head- and body-motion by the inclusion of vestibular 

information (Gu et al., 2006, 2007). Our results are therefore compatible with the idea of area 

MSTd serving various functions in self-motion perception, as well as in oculomotor control.
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Figure 1: White noise motion paradigm. 
(A) The visual large-field stimulus moved rapidly and randomly along the axis of each 
neuron’s preferred direction. The monkey’s task was to follow this stimulus as well as 
possible, performing optokinetic eye movements (OKR).  
(B) The top plot shows example traces of stimulus (brown) and eye (cyan) position. Retinal 
image position (yellow) is the difference between stimulus and eye position. The velocity 
traces of eye (blue) and retinal image (red) are shown in the middle plot. Saccades were 
removed from both traces. The bottom plot shows a corresponding extra-cellular recording 
from an example MSTd neuron.  
(C) Determination of the probabilistic tuning function demonstrated for the example neuron 
shown in (B): p(v) denotes the probability mass function of the occurrence of a specific 
combination of image velocity and eye velocity for the whole dataset. p(s,v) denotes the joint 
probability mass function of coincident spike and variable occurrence. Dividing p(s,v) by p(v) 
yields the conditional probability p(s|v) of observing a spike given any combination of image 
velocity and eye velocity. Colors from blue to red indicate probability values dependent on 
image velocity (horizontal axis) and eye velocity (vertical axis). Peak values are denoted in 
each colormap. By multiplication with the sampling rate of 1 kHz, p(s|v) translates directly 
into an expectation value of the spiking rate. 
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Figure 2: Neural latency relative to image and eye velocity. 
For each neuron two latency values were estimated: (1) relative to image velocity (red), and 
(2) relative to eye velocity (blue). Our estimation procedure maximized the mutual 
information between neural activity and both signals (see Experimental Procedures). Neural 
activity lagged about 60 ms behind the image velocity signal. In contrast, most neurons fired 
before the eye velocity signal, as indicated by negative latency values. Vertical arrows 
indicate the mean values for both distributions. 
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Figure 3: MSTd tuning functions for image and eye velocity.  
(A) Two-dimensional tuning curves of 9 example neurons exhibiting gain field-like behavior. 
Colors from blue to red indicate the mean firing rate [Hz] dependent on image velocity 
(horizontal axis) and eye velocity (vertical axis). Peak values and corresponding 
transformation indices (TI) are denoted in each colormap. 
(B) Image velocity tuning curves of neuron A102.1 for different eye velocity values. 
Each curve represents a slice through the two-dimensional tuning function in (A). Values 
between centers of the bins were linearly interpolated. 
(C) Other typical tuning functions: 1) Partial gain-field structure, probably resulting from a 
limited stimulus range; 2) ‘Vertical’ tuning, showing almost pure selectivity for image 
velocity; 3) ‘Horizontal’ tuning, exhibiting primarily modulation by eye velocity.  
(D) Distribution of observed types of tuning functions. ‘Other’ includes neurons with positive 
neural latency relative to eye velocity. 
(E) Transformation indices of the analyzed population. The TI value indicates the slope of the 
tuning function. Negative values indicate predominant vertical tuning, corresponding to 
higher selectivity for image velocity. Positive values indicate horizontal, eye velocity related 
tuning. The vertical arrow indicates the mean of the distribution. 
(F) Distribution of mean firing rates for image and eye velocity values of 20 °/s.
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Figure 4: Neurons with opposite visual and eye movement related selectivity. 
Tuning functions of 6 units in which spiking activity increased with image velocity in 
preferred and eye velocity in anti-preferred direction. In all these neurons neural latency 
relative to eye velocity had positive values.    
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Figure 5: Modeling the visuo-motor coordinate transformation. 
(A) Basic system-level model of the OKR. Image velocity is the difference between stimulus 
and eye velocity. A delay of 60 ms accounts for the latency of the image velocity signal due 
to retinal and neural processing along the visual system. The eye plant is modeled by a low-
pass filter with a time constant of 200 ms and an additional delay of 20 ms. Image velocity is 
transformed to an estimated stimulus velocity signal by adding the estimated eye velocity 
signal, provided by an internal model of the eye plant. We assume that this coordinate 
transformation involves area MSTd. 
(B) The step function response of the model (blue) for a sudden increase in stimulus velocity 
to 20 °/s (brown). The light blue trace shows example eye velocity data from (Ono et al. 
2010). 
(C) Neural network model of the coordinate transformation. The network consists of two 
input layers, one intermediate network unit layer, and an output layer. The image velocity 
input layer has 31 units. Each unit is Gaussian tuned with differing preferred image velocity. 
The eye velocity input layer has 21 units. Each unit has a sigmoid tuning with differing 
inflection velocity. The stimulus velocity output layer consists of 41 sigmoidally tuned units. 
Each of the 651 intermediate units is connected with each input and output unit. During the 
back-propagation learning process the weights of these connections are modified. Below the 
model, the tuning functions for image and eye velocity of 9 example network units after 
learning are shown.  
(D) Distribution of transformation indices of all intermediate unit tuning functions before 
(grey) and after (black) learning. The vertical arrow indicates the mean of the distribution 
after learning. 
(E) Output values of the trained network units for image and eye velocity values of 20 °/s. 
(F) Distribution of weight values before (grey) and after learning for image velocity input (U, 
blue), eye velocity input (V, red), and output weights (W, green). 
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