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Summary 
 
Multicellular organisms protect themselves against invading pathogens via 

sophisticated effector mechanisms of their immune system. In particular, B and T 

lymphocytes of the adaptive branch of immunity, generate a huge repertoire of 

receptor specificities against foreign antigens through random recombination of 

antigen receptor encoding gene segments. A key function of adaptive immunity is 

attributed to B cells, which provide high-affinity antibodies and long-term memory. 

However, the large pool of B cells harboring diverse antigen specificities also bears 

autoreactive B cells recognizing self-antigens. Recognition of self, also termed 

autoimmunity, can be of deleterious outcome for its host. Over the last decade, 

genome-wide association studies contributed significantly to the identification of a 

growing number of genetic risk variants associated with an increased susceptibility to 

human autoimmune diseases.  

Recently, polymorphisms in the A20 (TNFAIP3) gene were linked with several 

human autoimmune diseases such as systemic lupus erythematosus, rheumatoid 

arthritis, Crohn’s disease, coeliac disease and psoriasis. Moreover, A20 is frequently 

inactivated in multiple human B cell lymphomas. A20 is an ubiquitin-editing enzyme 

that functions as a central negative regulator of signaling pathways leading to the 

activation of NF-κB transcription factors. The family of NF-κB transcription factors 

drives the expression of genes that are involved in a wide variety of physiological 

functions and inflammatory responses. In particular, NF-κB plays an important and 

evolutionarily conserved role in the immune system. NF-κB activation is critically 

regulated through ubiquitination of key signaling molecules. Failure to control these 

posttranslational events by negative regulators such as A20 contributes significantly 

to chronic inflammation, autoimmunity and cancer.  

Therefore, to uncover the role of A20 during immune responses and its contribution 

to prevent autoimmunity in vivo, we studied effects of cell-type specific ablation of 

A20 in mice. Given the critical role of B cells in autoimmune pathology and the 

strong implication of A20 in human B cell lymphomas, we focused on studying the 

role of A20 in B cell development, function and autoimmunity (Paper II). A20 

deficiency in B cells impairs the development, function and possibly localization of 

several mature B cell subsets. Importantly, loss of A20 in B cells lowers their 

activation threshold in a gene-dose-dependent manner, resulting in the spontaneous 
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secretion of pro-inflammatory cytokines, most notably IL-6. Through their 

spontaneous activation, A20-deficient B cells initiate expansion of myeloid and T 

cells in naïve mice, which progresses to chronic inflammation and autoimmune 

manifestations in old age. 

In addition to A20, NF-κB activation is also controlled by other deubiquitinases such 

as CYLD. It is remarkable that A20 and CYLD share similar mechanisms and 

molecular targets in the negative regulation of NF-κB signaling, suggesting potential 

overlapping functions. Therefore, we generated and characterized a mouse model for 

A20/CYLD double-deficiency in B cells (Paper IV). Interestingly, the combined loss 

of A20 and CYLD did not exacerbate the developmental defects and hyperresponsive 

activity of A20-deficient B cells.  

Finally, in the context of Crohn’s disease and rheumatoid arthritis, we also 

contributed to studies on the cell-type-specific function of A20 in intestinal epithelial 

(Paper I) and myeloid cells (Paper III) to contain inflammation and autoimmunity. 

A20 deficiency in intestinal epithelial cells sensitized mice to experimental colitis and 

TNF-induced lethality (Paper I). TNF induces apoptosis in A20-deficient intestinal 

epithelial cells, resulting in disruption of the intestinal epithelial barrier and 

infiltration of commensal bacteria that trigger a systemic inflammatory response.  

Mice lacking A20 specifically in myeloid cells develop spontaneous severe 

destructive polyarthritis, which is similar to human rheumatoid arthritis (Paper III). 

Moreover, myeloid-specific A20-deficient mice have high levels of pro-inflammatory 

cytokines including TNF, IL-1β and IL-6 systemically and in local joint tissue. Given 

the strong association of TNF with the pathogenesis of rheumatoid arthritis, it is of 

clinical interest that the polyarthritis in myeloid-specific A20-deficient mice does not 

depend on TNF, but is mediated by the TLR4/MyD88 signalling axis and IL-6.  

Taken together, we defined the important role of A20 in maintaining B cell 

homeostasis and in preventing B cell-mediated chronic inflammation and 

autoimmunity. Interestingly, A20 does not have overlapping functions with the 

deubiquitinase CYLD in B cells. In the intestinal epithelium, A20 acts as a critical 

anti-apoptotic protein to maintain the epithelial barrier function. In addition, A20 also 

plays a crucial role in myeloid cells to prevent autoimmune diseases such as 

rheumatoid arthritis. 	
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Introduction 

1 B cell biology and B cell-mediated diseases  
 

1.1 Overview of immune cells  
 

The immune system protects us against the constant threat of hostile invasion by 

foreign pathogens, such as bacteria, viruses or parasites. This system consists of many 

different cell types, which can roughly be subdivided into the innate or inborn and 

adaptive or acquired branch of immunity. B lymphocytes, which can differentiate into 

antibody producing plasma cells, belong to the adaptive immune system. 

In mammals, all immune cells including B cells are derived from pluripotent 

hematopoietic stem cells (HSCs) in the fetal liver before birth and in the bone marrow 

after birth1. In sequential steps, these HSCs differentiate through multipotent 

progenitors into more committed common myeloid progenitor (CMP) cells or 

common lymphoid progenitor (CLP) cells. CMPs give rise to the myeloid lineage, 

consisting of granulocytes (neutrophils, eosinophils and basophils), mast cells and 

macrophages2,3. Myeloid cells represent cellular components of the innate immunity 

and have phagocytic properties in common4. However, myeloid cells not only 

contribute to the clearance of pathogens, dead cells and cell debris but are also critical 

sentinel cells to induce inflammation by secreting cytokines and chemokines to 

activate and recruit additional immune cells4.  

CLPs are the precursors of B and T lymphocytes, natural killer (NK) cells and 

dendritic cells (DC)2,3. In particular, B and T cells are the key players of the adaptive 

immune response. Both types of lymphocyte have the high variability of their antigen 

receptors in common: the B cell receptor (BCR) and the T cell receptor (TCR). 

Through recombination of a large pool of different gene segments encoding the 

antigen receptors, each lymphocyte expresses a unique variant of the antigen receptor, 

which is specific for a certain antigen. A special immune function is also attributed to 

dendritic cells, which do not solely act as phagocytic cells but are essential to initiate 

the adaptive immune response by functioning as antigen-presenting cells (APCs) for 

B and T cells5. 
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1.2 B cell development  
 

1.2.1 Early B cell development in the bone marrow 
 

During their development, B cells randomly assemble a functional B cell receptor 

(BCR) from different gene segment families. Therefore, each B cell carries a unique 

BCR, which endows them with specificity for a unique antigen. Adult B cell 

development in the bone marrow occurs in several steps to generate immature B cells 

harboring a productive BCR. These early developmental stages also encompass 

essential processes to eliminate B cells expressing self-reactive BCR. The BCR 

consists of pairs of immunoglobulin heavy (IgH) and light (IgL) chains6. The IgH 

chain is encoded by one locus, whereas the IgL chain is encoded by two loci: λ and 

κ6. The antigen specificity of an immunoglobulin is determined by the variable (V) 

region of Ig heavy and light chain6. Through a process, termed V(D)J recombination, 

which is initiated by the lymphoid-specific enzymes recombination-activating genes 1 

and 2 (RAG1 and RAG2), gene segments encoding the variable region are 

rearranged7. The V region of the IgH chain is assembled by joining a variable (VH), 

diversity (DH) and joining (JH) gene segment6. In contrast, the V region of the IgL 

chain does not contain D segments, but only rearranged VL and JL gene segments6.  

During early B cell development, the rearrangement of the IgH chain occurs in pro B 

cells (Fig. 1). Pro B cells harboring a productive IgH rearrangement further proceed to 

the pre B cell stage. In pre B cells, the IgH chain is associated with a surrogate light 

chain, consisting of the λ5 and VpreB molecules, to form the pre-BCR8. During this 

developmental stage, pre B cells rearrange their IgL chain on the κ locus first, 

followed by Igλ rearrangement in case the Igκ rearrangement does not result in a 

productive IgL chain9. Immature B cells with successfully rearranged IgH and IgL 

chain further undergo negative selection for the recognition of self-antigens9. 

Autoreactive immature B cells either rearrange the V region of their IgL chain, a 

process termed receptor editing, or are eliminated by apoptosis9. Non-autoreactive 

immature B cells exit the bone marrow as transitional B cells10. The transitional stage 

consists of three developmental phases: T1, T2 and T3. Transitional type 1 (T1) B 

cells migrate from the bone marrow to the splenic B cell follicles where they 

differentiate into non-circulatory T2 B cells10. T3 B cells, originally proposed as late 

transitional B cells, have been identified as anergic B cells11. Anergic B cells are 
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autoreactive, but persist in an antigen-unresponsive state in the periphery12. Thus, 

besides clonal deletion and receptor editing in the bone marrow, anergy represents a 

third mechanism by which autoreactive B cells are tolerized12. 

 

1.2.2 Peripheral B cell maturation  
 

B cells can mature into several subtypes, which are characterized by different effector 

functions and distinct localization in the organism.  

Mature B cells are generated both in the bone marrow and secondary lymphoid organs 

with the majority of B cells mature in the periphery13. Mature B cells in the periphery 

can be divided into three subsets: follicular (FO) B cells, marginal zone (MZ) B cells 

and B1 cells. During transition from immature to mature B cells, the response to BCR 

crosslinking changes from an apoptotic to a proliferative signal14. In addition, BCR-

mediated signal strength critically determines lineage commitment in peripheral B 

cells14.  

T2 B cells either differentiate into FO B cells or via MZ precursors into MZ B cells 

(Fig. 1). FO B cells represent the major subset of mature B cells14. In addition, they 

are recirculating and the major source of T cell-dependent (TD) immune response (in 

detail under 1.2.3) and B cell memory14.  

In contrast, in the mouse, MZ B cells are non-recirculating and localized at the border 

of the splenic marginal sinus where they can rapidly respond to blood-borne 

pathogens in a T cell-independent manner14,15. This response does not involve 

germinal center formation (in detail under 1.2.3), but is still accompanied by somatic 

hypermutation and Ig class switching14,15. In addition, MZ B cells also contribute to T 

cell-dependent (TD) immunity by shuttling antigens in immune complexes into 

splenic follicles16.  

B1 cells represent the third mature B cell subset in the periphery. They populate the 

peritoneal and pleural cavities and represent the main source of natural IgM 

antibodies, thereby contributing to innate immunity17. B1 cells are mainly derived 

from fetal precursors and maintained by self-renewal throughout life17. However, they 

can also be generated from less abundant precursors in adult bone marrow18.  
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Figure 1: Simplified scheme of B cell differentiation in bone marrow and 
periphery. 
Postnatally, early B cell differentiation takes place in the bone marrow. This phase is 
characterized by the generation of functional B cell receptors through V(D)J 
recombination and the negative selection of autoreactive B cells. Successfully 
selected B cells mature to follicular or marginal zone B cells in the spleen. Upon 
antigen encounter, activated B cells can undergo the germinal center reaction where 
somatic hypermutation and class switch recombination of the BCR occur. Finally, 
germinal center B cells differentiate either into antibody-secreting plasma cells or 
long-lived memory B cells. Abbreviations: FO B = Follicular B cell; MZ B = 
Marginal zone B cell; GC B = Germinal center B cell. 
 

1.2.3 Germinal center reaction  
 

The huge repertoire of B cells recognizing a specific antigen is generated by V(D)J 

recombination in the bone marrow. However, additional somatic mutations in the 

variable region of the B cell receptor, determining antigen recognition, contribute 

significantly to increased antigen affinity of the generated antibodies. This process 

occurs in a lymphoid structure termed germinal center and requires help from 

specialized immune cells, in particular T cells.  

The germinal center (GC) reaction is the basis of T cell-dependent (TD) immune 

response (Fig. 1)19. It provides a cellular environment for the affinity maturation of 
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antibody responses and generates long-term B cell memory19. Recirculating follicular 

B cells encountering an antigen through their BCR in secondary lymphoid organs 

such as lymph node and spleen can undergo two routes of TD-B cell activation: 

extrafollicular response or follicular germinal center reaction20,21. First, upon 

activation, most B cells differentiate into short-lived plasma cells at the outer T cell 

zone, where they secrete low-affinity antibodies20,22,23. Second, only B cells 

presenting high-affinity peptide-MHCII molecules (pMHCII) to a limited number of 

antigen-primed T cells at the T:B cell border can compete to seed the follicles and 

give rise to germinal centers22,23. With ongoing immune reaction, the germinal center 

acquires a polarized structure, which is divided into the dark and light zone24. In the 

dark zone, adjacent to the T cell zone, B cells – at this stage, they are termed 

centroblasts - undergo extensive proliferation and somatic hypermutation (SHM)22-24. 

The last process requires the enzymes Activation-induced cytidine deaminase (AID)25 

and Polymerase η26,27, which introduce mutations into the variable region of the 

rearranged immunoglobulin to generate antibodies of higher affinities. Centroblasts 

further migrate to the light zone where they turn into non-proliferating centrocytes to 

undergo affinity selection and Ig class switching22-24.  

Selection and class switching of GC B cells require the presence of two additional cell 

types in the light zone: follicular dendritic cells (FDC) and T follicular helper (TFH) 

cells28. First, only GC B cells expressing high-affinity BCR are positively selected by 

FDCs, which present unprocessed antigen deposited as immune complexes on Fc 

receptors28. GC B cells with no or low antigen affinity will die due to lack of BCR 

signals28. Second, GC B cells are further selected by TFH cells. The BCR affinity 

defines the level of pMHCII molecules on the B cell surface. In a competitive 

manner, centrocytes expressing high level of pMHCII molecules preferentially 

interact with a limited number of TFH cells29. Importantly, T cell help initiates through 

CD40L and cytokines class switch recombination, the modification of IgM to other Ig 

isotypes, and terminal differentiation to plasma cells28. Positively selected GC B cells 

can either reenter the dark zone and undergo additional rounds of proliferation, 

hypermutation and selection (“cyclic re-entry” model)30 or exit the germinal center as 

long-lived plasma cells31 or memory B cells32. The correct positioning of B cells 

during the two routes of extrafollicular and follicular GC reaction is guided by 

chemokine gradients and the regulated expression of chemokine receptors including 
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EBI233,34, S1P2
35, CXCR4 and CXCR536. Chemokines also guide long-lived plasma 

cells to the bone marrow37, whereas memory B cells are retained in secondary 

lymphoid organs where they can be rapidly recruited into a secondary immune 

response38. 

 

1.3 The role of B cells in autoimmunity 
 

Autoimmunity is the aberrant immune response directed against self-antigens and can 

result in a pathological condition of tissue destruction termed autoimmune disease. 

Autoimmune diseases can manifest either in a systemic or organ-specific manner. 

Examples of systemic autoimmune diseases are systemic lupus erythematosus (SLE), 

rheumatoid arthritis (RA) and Sjögren’s syndrome (SS). SLE and RA are 

characterized by the production of several auto-antibodies targeting widely distributed 

auto-antigens in multiple organs such as skin, joints, kidney, brain, blood vessels, 

lung and heart. In SS, exocrine glands are attacked and destroyed by the autoimmune 

reaction. In contrast, in organ-specific autoimmune diseases such as type 1 diabetes, 

psoriasis, multiple sclerosis and inflammatory bowel disease (including Crohn’s 

disease and coelic disease), the autoimmune response is directed against tissue-

specific auto-antigens.  

The etiology of autoimmune diseases is highly complex and involves both 

environmental and genetic components39. Environmental factors such as diet and 

infections can trigger autoimmunity in genetically susceptible patients. Since the last 

decade, genome-wide association studies (GWAS) have identified a growing number 

of genetic variants such as single nucleotide polymorphisms (SNPs), which are 

associated with an increased risk to develop autoimmune diseases39,40.  

Immune factors contributing to autoimmunity include both humoral and cellular 

components, in particular B and T cells, macrophages and dendritic cells. In fact, 

auto-antibodies produced by autoreactive B cells directly mediate some of the tissue 

pathology observed in autoimmune diseases such as SLE41. Moreover, the therapeutic 

benefit of B cell depletions with monoclonal antibodies directed against the B cell 

specific surface antigen CD20 in human trials implies that B cells play an integral role 

in autoimmune diseases42.  
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The huge repertoire of B cell specificities against foreign antigens is shaped by V(D)J 

recombination in the bone marrow and somatic hypermutation in the germinal center. 

However, these mechanisms to increase BCR diversity and affinity simultaneously 

also lead to the generation of self-reactive B cells. Despite different mechanisms of 

tolerance at several checkpoints during B cell development including clonal deletion, 

receptor editing and anergy, autoreactive B cells can escape tolerance and contribute 

to autoimmunity12.  

B cells contribute to autoimmunity through five major mechanisms (Fig. 2)43,44: (1) 

generation of auto-antibodies; (2) antigen-presentation; (3) co-stimulation of T cells; 

(4) production of pro-inflammatory cytokines; (5) formation of ectopic lymphoid 

structures. 

(1) Auto-antibodies, which can also be found in healthy individuals, are not 

necessarily pathogenic. In particular, low-affinity IgM auto-antibodies, constituting 

the majority of natural auto-antibodies, are crossreactive and serve a protective role in 

autoimmunity by neutralizing auto-antigens45. In contrast, pathological functions are 

mediated by high-affinity and class-switched auto-antibodies of the IgG isotype. They 

are generated from GC-derived plasma cells, which underwent somatic hypermutation 

and class switch recombination. High-affinity IgG auto-antibodies cause disease 

pathology through three major effects (Fig. 2)43,44. First, they can mediate direct 

cytopathic effects in autoimmune diseases such as myasthenia gravis and Graves 

disease43,44. In myasthenia gravis, the acetylcholine receptors are targeted by auto-

antibodies, resulting in receptor endocytosis and neuromuscular dysfunction43,44. 

Auto-antibodies against thyroid stimulating hormone (TSH) receptor in Graves 

disease constantly activate the TSH-receptor, thereby causing hyperthyroidism43,44. 

Second, auto-antibodies can cause cytotoxicity through complement activation. In 

hemolytic anemia, erythrocytes are lysed in a complement-dependent manner by auto-

antibodies recognizing erythrocyte-specific antigens43,44. Third, auto-antibodies can 

form immune complexes with soluble antigens and deposition of immune complexes 

in organs is a common feature of several autoimmune diseases including SLE43,44. 

Immune complexes deposited in renal glomeruli can cause complement-induced 

inflammation, resulting in glomerulonephritis43,44.  

(2) Besides the production of pathogenic auto-antibodies, autoreactive B cells can 

activate CD4+ T cells by functioning as antigen-presenting cells (Fig. 2)43,44.  



Introduction 

	
  

8	
  

(3) Simultaneously, through the expression of co-stimulatory molecules including B7, 

CD40 and OX40L, B cells can enhance T cell priming (Fig. 2)43,44. 

(4) Less studied is the contribution of B cells to autoimmunity as cytokine producing 

cells (Fig. 2). In fact, B cells can modulate immune homeostasis through the secretion 

of pro-inflammatory cytokines such as IL-6, IFNγ and LTα43,44. In particular, IL-6 

production by B cells was recently proposed as the key mechanism of autoimmune 

pathogenesis in a murine EAE-model for human multiple sclerosis46.  

(5) Uniquely, B cells can initiate the formation of lymphoid follicles in non-lymphoid 

organs (Fig. 2). Ectopic lymphoid structures or germinal centers have been found in 

the synovium of RA patients, in the salivary glands of SS patients and in the kidney of 

SLE patients43,44. Local initiation of the immune response in the diseased organ 

significantly amplifies the inflammatory response and disease pathology43,44.  

The molecular mechanisms underlying aberrant B cell function in autoimmunity is 

complex. However, studies using mouse models for autoimmune diseases revealed 

two major molecular factors driving altered B cell function: increased B cell survival 

and altered B cell activation.  

First, intrinsic survival signals generated e.g. by overexpression of Bcl-247 or deletion 

of Fas48 help autoreactive B cells to overcome apoptosis during negative selection. In 

addition, extrinsic survival signals are provided by the cytokine BAFF, which is also 

essential for normal B cell maturation49,50. BAFF protects autoreactive B cells from 

negative selection by upregulating Bcl-2 through alternative NF-κB signaling49,50. 

Second, the generation and maintenance of autoreactive B cells depend on signaling 

through the BCR51. Altered intrinsic signal tranduction can decrease the threshold of 

signal strength for cellular activation, resulting in hyperactivity and spontaneous 

production of pro-inflammatory cytokines51.  
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Figure 2: B cells are the central players in autoimmune diseases. 
B cells contribute to autoimmunity through the production of auto-antibodies, by 
antigen presentation and co-stimulation of T cells, through the secretion of pro-
inflammatory cytokines and the formation of ectopic lymphoid structures. 
Abbreviations: B = B cells; PC = Plasma cell; T = T cells.  
 

2 NF-κB coordinates immune cell function and inflammation  
 

2.1 The family of NF-κB transcription factors  
 

The family of nuclear factor-κB (NF-κB) transcription factors controls the expression 

of genes that are involved in various physiological contexts such as cell survival and 

proliferation, immune and inflammatory responses52-54. In mammals, the NF-κB 

family consists of five related transcription factors: NF-κB1 (p105/p50), NF-κB2 

(p100/p52), RelA (p65), RelB and c-Rel (Fig. 3)54. All are characterized by the 

presence of a N-terminal Rel homology domain (RHD) responsible for both homo- 

and heterodimerization and sequence-specific DNA binding54. Dimers of NF-κB bind 
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to κB sites in promoters and enhancers of target genes and regulate transcription 

through the recruitment of co-activators and co-repressors52. Positive gene regulation 

requires the transcription activation domain (TAD) that is only present in RelA, RelB 

and c-Rel52. Since the p50 and p52 subunits lack the TAD, they may repress 

transcription as homodimers or activate transcription when associated with a TAD-

containing NF-κB member or other proteins capable of co-activator recruitment52. 

RelA and c-Rel heterodimerize in particular with p50, whereas RelB preferentially 

heterodimerizes with p100 or its processed form p5252-54. 

In unstimulated cells, NF-κB is sequestered in the cytoplasm as inactive precursors, 

p100 and p105 or by association with one of three typical inhibitors of NF-κB (IκB) 

proteins, IκBα, IκBβ and IκBε (Fig. 3)53,55. The NF-κB inhibiting function of these 

proteins is mediated by the presence of multiple ankyrin repeats that interfere with the 

nuclear localization signals (NLS) of NF-κB to retain it in the cytoplasm53. Upon 

stimulation, the three major IκBs undergo signal-induced proteosomal degradation 

and NF-κB-dependant resynthesis with distinct kinetics53. The prototypical and most 

studied member of IκBs, IκBα, is rapidly degraded in response to NF-κB activating 

stimuli leading to the release of NF-κB dimers into the nucleus53. The current model 

suggests that IκBα and its preferred target, RelA:p50, constantly shuttle between the 

cytoplasm and the nucleus56. Signal-induced degradation of IκBα alters the dynamic 

balance between cytosolic and nuclear localization, thereby favoring nuclear 

localization of NF-κB56. Finally, NF-κB-induced resynthesis of IκBα constitutes a 

negative feedback mechanism to terminate NF-κB activation.  

Since p105 and p100 contain ankyrin repeats in their C-terminus, they can function as 

IκB-like proteins52. In unstimulated cells, p105 is constitutively processed to p50 and 

the interaction of p105 with p50, RelA or c-Rel sequester the NF-κB dimers in the 

cytoplasm52. In contrast, p100 preferentially forms a complex with RelB to retain it in 

the cytosol and is only processed to p52 upon stimulation52.  

In addition, a novel family of inducibly expressed IκBs, also termed atypical IκB 

proteins, including BCL-3 (B cell CLL/ lymphoma 3)57 and IκBζ58, may function both 

as transcriptional co-activators and inhibitors of NF-κB in a context-specific manner 

(Fig. 3). BCL-3, which contain a TAD, can form transcriptionally active complexes 

with p50 or p52 homodimers59,60 and thereby transactivate Cyclin D1 expression61. 

Cyclin D1 as a BCL-3 target gene is of particular interest due to its association with 

cell proliferation and tumorigenesis62. Similar to BCL-3, IκBζ can act as a 
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transcriptional co-activator for p50 dimers in an IL-1 or LPS-dependant manner63. 

However, its transactivation ability is blocked when associated with RelA-containing 

NF-κB dimers64. 

 

 
Figure 3: Members of the NF-κB, IκB and IKK protein family.  
ANK, ankyrin repeat; BCL-3, B cell lymphoma 3; DD, death domain; GRR, glycine-
rich region; HLH, helix–loop–helix; IKK, IκB kinase; KBD, Kinase- binding domain; 
LZ, leucine zipper; NBD, NEMO- binding domain; PEST, proline-, glutamic acid-, 
serine- and threonine-rich; RHD, REL homology domain; TAD, transactivation 
domain; UBD, ubiquitin-binding domain; ZF, zinc-finger (scheme modified from53). 
 

2.2 Canonical and non-canonical NF-κB signaling 
 

Activation of NF-κB occurs through two distinct mechanisms. Canonical NF-κB 

activation depends on the phosphorylation and subsequent proteosomal degradation of 

IκB proteins53,54. The phosphorylation is catalyzed by the IκB kinase (IKK) complex 

consisting of three main subunits: IKK1 (IKKα), IKK2 (IKKβ), and NEMO (NF-κB 

essential modulator) (IKKγ)65,66. IKK1 and IKK2 are highly similar in structure and 

contain a N-terminal kinase domain mediating their catalytic function53,54. Both 

KBD UBD
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kinases interact with NEMO through their C-terminal NEMO-binding domain66. 

NEMO represents the regulatory core of the IKK complex and consists of a kinase-

binding domain and an ubiquitin-binding domain53,54. The three components form a 

hexameric complex consisting of four catalytic subunits and two NEMO molecules52. 

NEMO is essential for canonical NF-κB signaling since it recruits through ubiquitin-

binding upstream regulators that are required for IKK activation67. Canonical NF-κB 

signaling mediates diverse biological functions and can be activated by engagement 

of TNFR1, antigen receptors such as B cell receptor (BCR) and T cell receptor 

(TCR), Toll-like receptors (TLR) and other pattern recognition receptors (PRR) (Fig. 

4)52.  

In addition, an alternative pathway of NF-κB activation exists to mediate more 

specific functions including lymphoid organogenesis, bone metabolism, B cell 

survival and maturation68-70. These specific biological functions of alternative NF-κB 

signaling are mediated through few members of the TNFR superfamily such as CD40, 

B cell-activating factor belonging to TNF family receptor (BAFFR), lymphotoxin β-

receptor (LTβR) and receptor activator for NF-κB (RANK) (Fig. 4)69,70. Engagement 

of these receptors results in the stabilization of the NF-κB inducing kinase (NIK), 

which activates IKK1 by phosphorylation71,72. Active IKK1 triggers phosphorylation-

induced processing of p100 to p5272 that results in the nuclear translocation of 

transcriptionally active p52/RelB complexes. In contrast to the canonical pathway, 

alternative NF-κB activation is independant of the trimeric IKK complex but relies on 

NIK and IKK173. However, both mechanisms do not exist in isolation, but activated 

p65 induces p100 production and thereby feeds the alternative NF-κB pathway74. 
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Figure 4: Canonical and non-canonical NF-κB signaling pathways.  
Canonical NF-κB signaling is triggered by diverse signals such as TLR ligands, TNF 
and antigens. It depends on IKK-mediated IκBα phosphorylation and subsequent 
proteosomal degradation, resulting in the release and nuclear translocation of NF-κB 
dimers such as RelA/p50. Non-canonical NF-κB signaling is activated by cell type- 
specific signals such as BAFF, Lymphotoxin and RANK ligand. This alternative 
pathway requires NIK and IKK1 for p100 phosphorylation and processing to p52. p52 
preferentially forms a complex with RelB (scheme from70).  
 

2.3 The role of NF-κB in B cell differentiation and function  
 

NF-κB plays a pivotal role in the development and function of immune cells since 

most of the receptors that either activate the canonical or the alternative pathway are 

expressed on hematopoietic cells52. Many of the insights about the role of NF-κB in 

physiology arise from studies where NF-κB family members, IKK members, IκBs or 

signal intermediates are lacking or overexpressed. Deletion of different NF-κB family 

members results in severe defects of immune cells, ranging from impaired 

myelopoiesis and erythrocyte differentiation to blockage of B and T cells at different 

developmental stages75. Deficiency of IKK members does not have a direct effect on 

myeloid cells but strongly affects B and T cell survival resulting in partial till 

complete absence of mature B and T cell subtypes76,77. The primary role of NF-κB 

signaling in lymphocytes, in particular B cells is to transmit survival signals.  

Canonical NF-κB signaling through the pre-BCR contributes to the survival of early 

B cell progenitors in the bone marrow78. NF-κB was originally identified as a 
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regulator of κ immunoglobulin light chain  (IgL) expression in B cells79. Interestingly, 

IKK-mediated activation of NF-κB is dispensable for the generation of immature B 

cells that express the κ Ig light chain but is required for the survival of λ IgL 

expressing immature B cells80. In accordance, the anti-apoptotic protein Pim2 is 

downregulated in NF-κB-deficient small pre B cells but the missing NF-κB signals 

can be replaced by the transgenic expression of the pro-survival protein Bcl-280. 

However, the receptor that mediates NF-κB survival signals in λ positive immature B 

cells is not elucidated yet. Immature B cells that receive strong autoreactive signals 

through the BCR are subject to negative selection in the bone marrow9. To impede 

immediate apoptosis, autoreactive B cells can undergo receptor editing, a tolerance 

mechanism through which they rearrange their immunoglobulin light chain to 

generate a non-autoreactive BCR9. NF-κB was suggested to play a role during this 

process of negative selection by regulating the reactivation of RAG recombinase that 

is involved in the rearrangement of the Ig light chain81. In contrast, Derudder et al. did 

not find evidence for a role of IKK-mediated NF-κB activation during receptor 

editing, whereas another group82 reported a correlation between elevated autoreactive 

BCR-induced NF-κB activation and receptor editing. However, several studies point 

to a possible contribution of NF-κB to the survival of immature B cells during 

negative selection in the bone marrow83.  

Immature B cells leaving the bone marrow become transitional B cells in the spleen 

before they progress further to mature follicular or marginal zone B cells. The 

transitional phase consists of at least two stages, T1 and T2. With ongoing maturation, 

NF-κB becomes absolutely essential for the long-term survival of B cells78,83. 

Compound loss of p105 and p100 or cRel and RelA result in the developmental 

blockage at the T1 to T2 transitional stage and the absence of mature B cells78,83. 

Canonical NF-κB signaling is absolutely required during all stages of B cell 

maturation, whereas BAFFR-mediated alternative NF-κB signaling strongly 

contributes to the survival of T2 and mature B cells78,83. In accordance, loss of the 

canonical pathway through deficiency of NEMO in B cells strongly reduces the 

number of T2 and mature B cells80. Ablation of the canonical and alternative pathway 

in mice with IKK1/IKK2-double deficient B lineage completely blocks B cell 

development at the T1 stage80. The absence of BAFFR-mediated alternative signaling 

can be compensated by the presence of a constitutive active form of IKK2 (IKK2ca), 

suggesting that canonical NF-κB signaling is sufficient to promote the maturation of 
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B cells in the absence of alternative signals84.  

Besides providing survival, canonical NF-κB signaling also contributes to mitogen-

induced B cell proliferation by regulating the expression of Cyclin D185. Resting B 

cells enter the G1 phase following stimulation through BCR, TLR4/9 or52,83. 

However, NF-κB is only required for entry into the S phase. The transition to the 

G2/S phase occurs in a NF-κB-independent manner83. In vivo, antigen activated B 

cells undergo extensive proliferation in the germinal center (GC) that is characterized 

by clonal expansion and BCR affinity maturation86. Remarkably, the gene expression 

profile of GC B cells lacks NF-κB signature genes but is dominated by G2/M phase 

regulators, indicating that NF-κB signaling is dispensable in GC B cells87. These 

findings are consistent with the shortened G1 phase of rapidly dividing GC B cells86. 

NF-κB is therefore important to initiate the proliferation of resting B cells by 

controlling the G0/G1 phase of the cell cycle but is potentially not involved in the 

division of GC B cells.  

 

2.4 The role of NF-κB in inflammatory responses 
 

NF-κB is not only essential for immune cell survival and function, but is clearly also 

the key regulator of inflammatory responses. Inflammation is defined as the 

manifestation of innate immunity to microbial infection or local injury in vascularized 

tissues88. Inflammation can be triggered by invading pathogens, which are sensed by 

innate immune receptors such as Toll-like receptors (TLRs) on tissue-resident 

dendritic cells, macrophages or mast cells88,89. These activated innate immune cells 

induce the production of pro-inflammatory cytokines (e.g., TNFα, IL-1β, IL-6), 

chemokines (e.g., CCL2 and CXCL8), prostaglandins and the upregulation of cell 

adhesion molecules (E-Selectin, VCAM-1, ICAM-1), thereby promoting infiltration 

of neutrophils and other leucocytes, vasodilatation of blood vessels and leakage of 

plasma into the tissue88,89. In addition, the pro-inflammatory cytokines TNFα, IL-1β 

and IL-6, if present in high amounts, also induce systemic effects, i.e. the hepatic 

acute phase response such as fever89. 

Inflammation can also be initiated by sterile tissue injury in the absence of infectious 

agents, thereby promoting tissue repair89. At the molecular level, factors triggering 

sterile inflammation include products from dying cells and breakdown components of 
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the extracellular matrix89. These triggering factors are sensed by tissue-resident 

macrophages, which induce inflammatory and reparative responses, and nociceptors 

mediating pain sensation89. 

Acute inflammation is resolved once the triggering stimulus has been removed90,91. 

The termination process is initiated through the switch from pro-inflammatory 

prostaglandins to anti-inflammatory lipoxins90,91. Lipoxins impede neutrophil 

infiltration and stimulate the clearance of apoptotic cells by macrophages90,91. In 

addition, stimulated macrophages secrete the anti-inflammatory cytokine 

transforming growth factor-β1 (TGF-β1), which counteracts pro-inflammatory TLR-

signaling90-92.  

However, failure to terminate an acute inflammation can establish a chronic 

inflammatory state89,92. Chronic inflammation is classically caused by persistent 

infections, but also include conditions where neither infections nor tissue damage are 

involved89,92. An increasing number of human chronic inflammatory diseases have the 

loss of cellular homeostasis in common89,92. Chronic inflammation is not necessary 

the primary cause but contributes significantly to the pathogenesis of these diseases 

including atherosclerosis, obesity, cancer, neurodegenerative diseases, allergy and 

autoimmune diseases such as multiple sclerosis and rheumatoid arthritis89,92.  

NF-κB is critically involved both in the onset and resolution of acute inflammation. 

Tissue-resident sentinel cells such as macrophages are activated by pathogen-

associated molecular patterns (PAMPs) through TLRs to trigger a signal cascade 

resulting in canonical NF-κB activation93,94. NF-κB regulates the expression of all key 

factors orchestrating inflammation including cytokines (e.g. TNFα, IL-1β, IL-6), 

chemokines (e.g. CCL2 and CXCL8), cell adhesion molecules (E-Selectin, VCAM-1, 

ICAM-1) and inflammatory enzymes (e.g. COX-2)93,94.  

NF-κB contributes also to the termination of inflammatory responses through several 

mechanisms. Infiltrating neutrophils are cleared from the inflamed tissue by NF-κB- 

mediated apoptosis95. In addition, NF-κB favors the differentiation of M2 

macrophages secreting anti-inflammatory IL-1095,96. Finally, NF-κB attenuates the 

inflammatory gene expression by inducing the expression of several negative 

regulators such as IκBα and the deubiquitinase A2096.  

Increased NF-κB activation has been found in many chronic inflammatory diseases 

including inflammatory bowel disease97, rheumatoid arthritis94 and psoriasis98. 

However, besides its pro-inflammatory role, NF-κB also exerts anti-inflammatory 
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functions in non-immune cells to maintain tissue homeostasis. Loss of NF-κB activity 

in epithelial cells causes the development of severe chronic inflammation. In 

intestinal epithelial cells (IECs), deletion of IKK299 or NEMO100 in the mouse results 

in higher susceptibility to chemical-induced colitis and spontaneous intestinal 

inflammation. Similarly, inhibition of NF-κB in mouse keratinocytes disturbs skin 

homeostasis and induces TNF-dependent inflammation and epidermal hyperplasia, 

which are reminiscent of a psoriasis-like disease101,102.  

3 Regulation of NF-κB signaling by ubiquitination 
 

3.1 The ubiquitin system 
 

The posttranslational modification of signaling molecules with polyubiquitin chains 

plays a pivotal role in signal transduction pathways such as NF-κB signaling. 

Ubiquitin (Ub) is a highly conserved eukaryotic protein, consisting of 76 amino 

acids103. In addition to its role in signal transduction, conjugation of ubiquitin to target 

proteins controls diverse cellular processes, ranging from protein degradation, cell 

cycle control, DNA repair, immune response, transcriptional regulation to endocytosis 

and vesicle trafficking103,104.  

Ubiquitin is covalently conjugated to target proteins through an isopeptide bond 

between its C-terminal glycine and the ε-amino group of lysine of the target 

protein103,104. Ubiquitination of target proteins is orchestrated by three classes of 

enzymes: Ub-activating enzyme E1, Ub-conjugating enzyme E2 and Ub ligase E3 

(Fig. 5)103,104. First, E1 activates ubiquitin in an ATP-dependent manner by forming a 

thioester linkage between the catalytic cysteine of E1 and the C-terminal glycine of 

ubiquitin103,104. Second, activated ubiquitin is transferred and linked to E2 through a 

thioester bond (Fig. 5)103,104. In the final step, E3 conjugates ubiquitin to a lysine 

residue of the target protein (Fig. 5)103,104. In humans, two E1s, around 50 E2s and 

more than 700 E3s exist105. The high number of E3s is required for the temporal and 

spatial regulation of ubiquitination of a plethora of different substrates. There are two 

main groups of E3 Ub ligases: E3 ligases containing the really interesting new gene 

(RING) and the homologous to E6-associated protein C-terminus (HECT) domains, 

respectively106. The RING family of E3 ligases function as adapters and bind 
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simultaneously to the substrate and E2106. In addition, E3 binding induces 

conformational changes in E2, thereby stimulating ubiquitin transfer to the target 

protein107. In contrast, HECT E3 ligases directly catalyze substrate conjugation in two 

steps. First, ubiquitin is transferred from E2 to HECT E3. In a second step, the E3-Ub 

thioester complex conjugates Ub to the target protein106.  

The biological function of mono- or polyubiquitination of substrates depends on the 

type of linkage between ubiquitin proteins within an ubiquitin chain and its length. 

Proteins can be conjugated with a single ubiquitin on one (monoubiquitin) or several 

lysine residues (multi-monoubiquitin) or with a polymeric chain of ubiquitin 

(polyubiquitin)108. Monoubiquitin plays a role in endocytosis of plasma membrane 

proteins, in protein sorting and subnuclear trafficking109. In contrast, significant 

complexity adds up in the case of polyubiquitin chains. Ubiquitin contains seven 

internal lysine residues (K6, K11, K27, K29, K33, K48 and K63) and a N-terminal 

methionine residue108. Each of these residues can contribute to linkage formation with 

the C-terminal glycine of another ubiquitin molecule108. Linkage assembly involving 

the N-terminal methionine and the C-terminal glycine results in linear polyubiquitin 

chains (Fig. 5)110. 

Whereas substrate specificity is mediated by E3 ligases, both E2 and E3 determine 

ubiquitin chain assembly linked through a specific lysine residue of ubiquitin. 

Although most E2s such as UbcH5 do not show preference for a specific lysine 

residue in ubiquitin chain assembly, some E2s control chain formation linked through 

a specific lysine108,111,112. For example, the E2s Ubc13 and Uev1a specifically 

synthesize K63-linked polyubiquitin chains113.  

Among the different linkage options, K63-linked and K48-linked polyubiquitin chains 

have been most extensively studied and both chain types are critically involved in NF-

κB signaling. Proteins conjugated with K48-linked polyubiquitin chains are targeted 

for 26S proteosomal degradation (Fig.5)103. In contrast, K63-linked polyubiquitin 

chains participate in non-proteolytic functions including signal transduction, kinase 

activation, receptor endocytosis and DNA repair (Fig. 5)114. Additional chain types 

such as K11, K27 and K29-linked polyubiquitin chains may serve as degradation 

signals (Fig. 5)115-119. However, K11-linked polyubiquitin chains are also suggested to 

exert non-degradative functions during NF-κB activation (Fig. 5)120. Recently, linear 

polyubiquitination of signaling molecules has emerged as critical regulator of NF-κB 

signaling in inflammatory pathways110,121. Linear polyubiquitin chains are assembled 
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by an E3 ligase complex termed LUBAC (linear ubiquitin chain assembly complex), 

which consists of three components, HOIL-1L, HOIP and SHARPIN110,121. K63-

linked and linear polyubiquitin chains are thought to influence signal transduction 

events by providing assembly platforms for protein complexes. These chains attached 

to proteins serve as docking anchors to which other proteins can bind via their 

ubiquitin-binding motifs. 

Ubiquitination is a reversible process and is counterregulated by deubiquitinating 

enzymes (DUBs). The human genome encodes nearly 100 DUBs, which are 

subdivided into six families: ubiquitin-specific proteases (USPs), ubiquitin C-terminal 

hydrolases (USHs), ovarian tumor proteases (OTUs), Machado–Joseph disease 

protein domain proteases, JAB1/MPN/MOV34 metalloenzymes (JAMMs) and the 

recently discovered monocyte chemotactic protein-induced protein (MCPIP) 

family122,123. DUBs contribute to the regulation of ubiquitination by exerting three 

major functions: ubiquitin precursor processing, ubiquitin editing and ubiquitin 

deconjugation122,123. First, ubiquitin proteins are encoded in the genome at four loci. 

Two of them code for polyubiquitin precursors containing several Ubs in an exact 

head to tail array. These Ub precursors are processed by DUBs to generate free 

ubiquitin monomers. Second, some DUBs are involved in editing of polyubiquitin 

chains and thereby change the type of ubiquitin chain attached to a particular 

substrate. Third, DUBs deconjugate polyubiquitin chains from modified proteins, 

thereby blocking signal transduction or preventing proteosomal degradation. In 

parallel, DUBs rescue the removed ubiquitin from 26S proteosomal degradation and 

recycle it to the free ubiquitin pool. Thus, DUBs also play an important role in the 

maintenance of ubiquitin homeostasis122,123. 	
  

Deubiquitination can occur in a linkage- or substrate-specific manner, coordinated by 

distinct ubiquitin-binding motifs. Ub chain type-specific DUBs hydrolyse 

polyubiquitin chains either from the ends (exo) or within a chain (endo)122. In 

contrast, substrate-specific DUBs cleave the entire polyubiquitin chain in a single step 

from its target protein122.  
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Figure 5: The ubiquitin system and the cellular functions of diverse ubiquitin 
chain linkages.  
Ubiquitin conjugation of target proteins is orchestrated by E1 (ubiquitin-activating 
enzyme), E2 (ubiquitin-conjugating enzyme) and E3 (ubiquitin ligase). Depending on 
the linkage type and the number of conjugated ubiquitins, ubiquitination exerts 
different cellular functions (scheme from124). 
 

3.2 The role of ubiquitination in NF-κB signal transduction pathways 
 

NF-κB signal transduction pathways are highly regulated through ubiquitination of 

signaling molecules. In TNFR-mediated NF-κB signaling, TNF binding to its receptor 

initiates trimerization of the TNF receptor and recruitment of several signaling 

molecules including the adapter protein TRADD, the protein kinase RIP1 and the E3 

ligases TRAF2 and cIAP1/267,125. TRAF2 and cIAP1/2 catalyze K63-linked 

polyubiquitination of RIP1, which serves as a scaffold molecule to bring TAK1 via 

TAB2 and the IKK complex via NEMO into close proximity67,125. Ubiquitin-binding 

of TAB2 and NEMO allows proximity-mediated phosphorylation of IKK2 by 

TAK167,125. Finally, the activated IKK complex phosphorylates IκBα, which induces 

its K48-linked polyubiquitination, resulting in proteosomal degradation of IκBα and 

release of NF-κB into the nucleus (Fig. 6)67,125.  

In a similar manner, K63-linked polyubiquitin chains play also a central role in IL-1 

receptor/TLR-mediated NF-κB signaling. Upon TLR engagement, the adaptor 

molecule MyD88 is recruited to the receptor and further recruits the kinases IRAK1 

and IRAK467,125. IRAK1 induces TRAF6 K63-linked autoubiquitination involving the 
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E2 complex Ubc13/Uev1A67,125. Recently, it was suggested that TRAF6 and 

Ubc13/Uev1A also catalyze the formation of unanchored K63-linked polyubiquitin 

chains126. Both K63-polyubiquitin chains on TRAF6 as well as free K63-linked 

polyubiquitin chains can serve as a scaffold to recruit TAK1 via TAB2 and IKK via 

NEMO, thereby facilitating IKK2 phosphorylation by TAK1 (Fig. 6)67,125. 

Antigen receptor-mediated NF-κB signaling such as signaling through the B cell 

receptor is initiated through recruitment and activation of proximal tyrosine kinases 

such as Syk127. Following several cascade steps, the phospholipase PLCγ2 activates 

the protein kinase PKCβ, which phosphorylates the scaffold protein CARMA1 

(CARD11)127,128. CARMA1 phosphorylation facilitates its association with Bcl-10 

and the paracaspase MALT1 to form the CBM complex, which plays a critical role in 

IKK complex activation during both BCR and TCR-induced NF-κB signaling67,127,128. 

In T cells, the CBM complex activates IKK by recruiting TRAF6 and 

Ubc13/Uev1A67. TRAF6 K63-linked autoubiquitination further recruits TAK1 and 

IKK67. In contrast, it is not clear whether TRAF6 is also involved in IKK activation in 

B cells. However, it has been suggested that both TAK1 and IKK are recruited to 

CARMA1 through Bcl-10 and MALT1, thereby enabling IKK activation by TAK1 

(Fig. 6)127,128. 

Ubiquitination events also control the activation of the alternative NF-κB signaling 

pathway downstream of BAFFR- or CD40-mediated signaling125,129. Under resting 

conditions, NIK is bound to TRAF3, which exist in a dimeric complex with 

TRAF2129. cIAP1 and cIAP2 are recruited to TRAF2 and constantly ubiquitinate NIK 

with K48-linked polyubiquitin chains to induce its proteosomal degradation129. Upon 

ligation by BAFF or CD40 ligand (CD40L), the complex consisting of TRAF2, 

TRAF3 and cIAP1/2 is recruited to the receptor129. Binding of the complex to BAFFR 

or CD40 stimulate the E3 ligase activity of TRAF2 and TRAF3, which add K63-

linked polyubiquitin chains to cIAP1/2129. The addition of these chains alters the 

substrate specificity of cIAP1/2, and they now target TRAF3 and, to a lesser extent, 

TRAF2, for degradation via K48-linked polyubiquitination130. Proteosomal 

degradation of TRAF2 and TRAF3 finally allows NIK release, stabilization and 

autophosphorylation. Activated NIK phosphorylates IKK1, thereby enabling p100 

processing to p52 and release of p52/RelB into the nucleus (Fig. 6)125,129. 

The role of additional polyubiquitin linkage types in the regulation of NF-κB 

signaling has been elucidated recently, adding further complexity to this process. In 
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particular, linear polyubiquitin chains emerged as critical regulator of canonical NF-

κB signaling via the linear polyubiquitination of RIP1 and NEMO by the LUBAC 

complex (Fig. 6)131,132. Interestingly, NEMO recognizes ubiquitin through its 

ubiquitin-binding domain, termed UBAN domain and the binding affinity of this 

domain is 100-fold higher for linear than for K63-linked diubiquitin133. Therefore, it 

is hypothesized that both IKK complex binding via NEMO to linear ubiquitin chains 

on RIP1 as well as linear ubiquination of NEMO induce trans-autophosphorylation of 

IKK2131,132. The significance of linear ubiquitin chains in canonical NF-κB signaling 

manifests both in human genetics and mouse studies. Human mutations in the UBAN 

domain of NEMO are the cause for an inherited disease termed anhidrotic ectodermal 

dysplasia with immunodeficiency (EDA-ID)134,135. In addition, ablation of the 

LUBAC component SHARPIN in mice results in severe skin lesions, inflammation 

and defects in secondary lymphoid organs136. 
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Figure 6: A simplified scheme of the regulation of NF-κB signaling pathways 
through ubiquitylation.  
Upon receptor stimulation in canonical NF-κB pathways, proximal signaling events 
results in the non-proteolytic ubiquitination of signaling adaptor proteins including 
RIP1 and the family of TRAF E3 ligases. K63-linked (blue) or linear polyubiquitin 
chains (green) may serve as a scaffold for IKK activation by TAK1. In contrast, 
activation of the alternative NF-κB pathway requires cIAP1/2-mediated proteolytic 
K48-linked polyubiquitination (black) of TRAF2 and TRAF3, thereby allowing NIK 
stabilization and IKK1 activation.  
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4 A20, a central negative regulator of NF-κB activation 
 

4.1 Cellular functions of the ubiquitin-editing enzyme A20 
 

A20, also termed TNFα-induced protein 3 (TNFAIP3), is an inducible and 

cytoplasmic protein of 90 kDa, consisting of a N-terminal ovarian tumor (OTU) 

domain137 and seven zinc finger (ZnF) motifs in the C-terminus (Fig. 7)138. A20 was 

proposed to act as an ubiquitin-editing enzyme with dual catalytic functions139. Due to 

its DUB function mediated by the OTU domain, A20 removes K63-linked 

polyubiquitin chains from specific substrates. In parallel, A20 can catalyze the 

conjugation of substrate proteins with K48-linked polyubiquitin chains. This E3 ligase 

function is mediated by its ZnF4 (Fig. 7)140. However, whether A20 directly or 

indirectly mediates these functions remains incompletely understood. 

Via NF-κB sites in the A20 promoter, A20 expression is induced in a negative 

feedback loop by multiple inflammatory stimuli including TNFα, IL-1β, TLR ligands, 

NLR (nucleotide-binding oligomerization domain-like receptor) ligands and viral 

proteins such as human T lymphotropic virus (HTLV) 1 Tax and Epstein-Barr virus 

latent membrane protein 1 (LMP1)141-145.  

To date, four major cellular functions have been attributed to A20’s ability to inhibit 

ubiquitin-dependent signal transduction: NF-κB-mediated inflammation; the antiviral 

response; programmed cell death and autophagy.  

First, A20 functions as the key negative regulator of NF-κB activation in response to 

multiple NF-κB-activating stimuli (in detail under 4.2).  

Second, A20 also controls TLR146 and retinoic acid inducible gene 1 (RIG1)-mediated 

interferon signaling147. Antiviral type I interferons are essentially induced by two 

members of the interferon regulatory factor (IRF) family of transcription factors: 

IRF3 and IRF7. IRF3 activation requires the proximal adaptor TRIF- and TRAF3-

mediated K63-linked polyubiquitination of the IKK-related kinases TBK1 and IKKε. 

These kinases then phosphorylate IRF3, thereby allowing IRF3 dimerization, nuclear 

translocation and binding to the IFNβ promoter148. Recently, it was reported that A20 

and Tax1bp1 associate with TBK1/IKKε to block their K63-linked 

polyubiquitination, thereby terminating IRF3 signaling149. Interestingly, A20 does not 

require its DUB activity but rather its zinc finger motifs to disrupt K63-linked 

polyubiquitination of TBK1/IKKε149. In addition, A20 also negatively regulates IRF7-
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mediated antiviral signaling. In contrast to IRF3 signaling, LMP1-induced IRF7 

activation depends on TRAF6-mediated K63-linked polyubiquitination of IRF7, 

which is required for its phosphorylation150. A20 controls IRF7 activation by 

inhibiting TRAF6-dependent polyubiquitination of IRF7 through its DUB domain151.  

Third, in addition to its NF-κB and IRF3/IRF7 inhibitory functions, A20 blocks death 

receptor-mediated apoptosis152,153. Apoptotic cell death can be induced by the binding 

of members of the TNF superfamily to their cognate receptors such as Fas/CD95 or 

TNFR1154. Ligand binding triggers receptor trimerization and recruitment of the 

adaptor protein Fas-associated death domain protein (FADD) in Fas-mediated 

apoptosis and TRADD in TNFR1-induced cell death154. Subsequently, the initiator 

protease caspase 8 is recruited to the death receptor complex and activated through 

proximity-induced dimerization154. Activated caspase 8 cleaves and activates the 

downstream effector caspase 3 and 7, leading to apoptotic cell death154. Importantly, 

caspase 8 activation depends on Cullin 3 E3 ligase-mediated K63-linked 

polyubiquitination, which allows caspase 8 to interact with the ubiquitin-binding 

protein p62 (also known as sequestome-1)155. p62 further promotes caspase 8 

aggregation and processing, leading to its full activation155. A20 prevents death 

receptor-induced apoptosis by blocking K63-linked polyubiquitination of caspase 

8155. In the case of TNFα-induced signaling, recruitment of TRADD, TRAF2 and 

RIP1 to the TNFR1 can trigger both NF-κB-mediated survival and apoptotic cell 

death154. Normally, in the presence of pro-survival NF-κB signaling, apoptosis is 

repressed by NF-κB-induced anti-apoptotic proteins. In particular, the NF-κB target 

protein A20 disrupts the recruitment of TRADD and RIP1 to the receptor complex, 

thereby preventing cell death156.  

Fourth, A20 function is also involved in autophagy, a lysosome-dependent form of 

intracellular degradation, which plays a critical role in cellular processes such as 

starvation or immune responses against invading microbes157. In macrophages, 

autophagy can be triggered by LPS through TLR4 signaling158,159. TLR4 engagement 

recruits Beclin1, which is the mammalian homolog of yeast Atg6160. Beclin1 

contributes to autophagosome formation, a process depending on TRAF6-mediated 

K63-linked polyubiquitination of Beclin1. To control TLR4-mediated autophagy, 

A20 counterregulates K63-linked polyubiquitination of Beclin1161.  
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Figure 7: Structural domains of A20 and theirs catalytic and non-catalytic 
functions. 
A20 consists of an ovarian tumor (OTU) domain and seven zinc finger motifs, 
mediating its ubiquitin-editing and non-catalytic functions.  
 

4.2 Mechanisms of NF-κB inhibition by A20 
 

Distinct molecular mechanisms have been put forward to explain the termination of 

NF-κB signaling by A20, which are both pathway- and most probably cell type-

dependent. In particular, these different mechanisms largely rely on the dual 

ubiquitin-editing function of A20139. On the one hand, due to its DUB activity, which 

is mediated by its OTU domain, A20 removes K63-linked polyubiquitin chains from 

critical signaling molecules including RIP1, RIP2, TRAF6 and MALT1139,143,162,163. 

However, several studies have shown that in vitro the DUB domain of A20 does not 

have specificity for K63-linked polyubiquitin chains but hydrolyses K48-linked 

polyubiquitin chains164-166. Instead, A20 does not function as a processive DUB for 

K63-linked polyubiquitin chains but effectively cleaves entire K63-linked 

polyubiquitin chains from substrates such as TRAF6 (Fig. 6), thereby demonstrating 

specificity for particular polyubiquitinated subtrates165. The substrate specificity of 

A20 is most probably mediated through interaction with additional adaptor proteins. 

Indeed, Tax1-binding protein 1 (Tax1bp1) functions as an ubiquitin sensor and 

adaptor molecule to recruit A20 to K63-linked polyubiquitinated RIP1 and 

TRAF6167,168. In the absence of Tax1bp1, A20-mediated deubiquitination of RIP1 and 

TRAF6 and consequently inhibition of NF-κB activation is impaired167,168.  

On the other hand, A20 catalyzes the conjugation of K48-linked polyubiquitin chains 

onto RIP1 and the E2 enzymes Ubc13 and UbcH5c, resulting in the proteosomal 

degradation of RIP1, Ubc13 and UbcH5c139,169. This E3 ligase function of A20 is 

attributed to its ZnF4140. Similar to the substrate specificity for deubiquitination by 

A20, it was proposed that Tax1bp1, the E3 ligase Itch and the scaffold protein RNF11 
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are required for K48-linked polyubiquitination by A20169-171. Thus, together, they 

form a complex, termed A20 ubiquitin-editing complex.  

Specifically in TNFR-mediated NF-κB signaling, A20 targets RIP1 in a sequential 

manner (Fig. 6). First, A20 is recruited via Tax1bp1 to K63-linked polyubiquitinated 

RIP1 and promotes RIP1 deubiquitination139,167. The deubiquitination then induces a 

conformational change of RIP1, thereby allowing K48-linked polyubiquitination of 

RIP1 by the A20 ubiquitin-editing complex followed by proteosomal degradation of 

RIP1139,169. In addition, A20 counteracts K63-linked polyubiquitination of RIP1 by 

inhibiting the E2-E3 complex formation between TRAF2, cIAP1/2 and Ubc13169. 

Disruption of E2-E3 association depends on ZnF4 and Cys103 in the OTU domain of 

A20169. Finally, the E2 enzyme Ubc13 is a target of K48-linked polyubiquination by 

the A20 ubiquitin-editing complex, resulting in complete termination of NF-κB 

signaling169.  

In a similar manner, A20 and Tax1bp1 deubiquitinate K63-linked polyubiquitinated 

TRAF6 during TLR-mediated NF-κB signaling (Fig. 6)143,167. However, A20 does not 

trigger TRAF6 proteosomal degradation, but disrupts TRAF6 binding to the E2 

enzymes Ubc13 and UbcH5c169. Sequential proteosomal degradation of Ubc13 and 

UbcH5c, mediated by the A20 ubiquitin-editing complex, then effectively shuts down 

NF-κB signaling169.  

In contrast to other cell types, A20 is constitutively expressed in T cells, where A20 

possibly functions both as a steady-state inhibitor and as a feedback regulator during 

T cell receptor (TCR)-mediated NF-κB signaling172. Similar to BCR-mediated NF-κB 

signaling, the CARMA1-Bcl10-MALT1 (CBM) complex plays a critical role during 

TCR-mediated NF-κB signaling. Upon CARMA1 phosphorylation, TRAF6 is 

recruited to the CBM complex to assemble K63-linked polyubiquitin chains onto 

MALT1 and Bcl10 (Fig. 6)173-175. Polyubiquitinated MALT1 functions as a scaffold 

molecule to bring the IKK complex and TAK1 into close proximity, thereby allowing 

IKK2 phosphorylation by TAK1174. A20, whose expression is enhanced upon TCR 

signaling, inhibits the scaffold function of MALT1 by removing K63-linked 

polyubiquitin chains from MALT1 in a negative feedback loop163. Interestingly, 

MALT1 does not only serve as a scaffold, but acts also as a paracaspase to cleave 

human A20 protein between its ZnF1 and ZnF2176,177. Proteolytic cleavage of A20 is 

required to allow optimal TCR-mediated NF-κB signaling. This suggests that the 

signal strength of TCR-mediated NF-κB activation is modulated by the opposing 
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mechanisms of induced expression of A20 and its cleavage by MALT1.  

Due to the high similarity between TCR- and BCR-induced signal transduction 

mechanisms it is conceivable that A20 may also regulate BCR-mediated NF-κB 

signaling in this fashion. 

Besides its ubiquitin-editing function, A20 can inhibit NF-κB signaling also through 

non-catalytic mechanisms. First, it was reported that A20 targets TRAF2 for 

lysosomal degradation, a mechanism that is mediated by ZnF6 and ZnF7178. Second, 

recently, it was shown that unanchored K63-linked polyubiquitin chains mediate A20 

interaction with NEMO through its ZnF4 and ZnF7179. Therefore, A20 hinders 

structurally the formation of the IKK and TAK1 kinase complex and prevents IKK2 

phosphorylation by TAK1179. Third, two recent studies demonstrated that in vitro A20 

ZnF7 preferentially binds linear polyubiquitin chains226,227, synthesized by the E3 

ligase complex LUBAC. Thus, the A20 ZnF7 motif represents a novel linear 

ubiquitin-binding domain (LUBID)226. Upon stimulation with TNFα, A20 interacts 

with LUBAC and NEMO through linear polyubiquitin binding (Fig. 6)226,227. This 

interaction disrupts LUBAC binding to NEMO, thereby inhibiting TNF-induced NF-

κB activation (Fig. 6)226,227. Interestingly, crystallization of A20 ZnF7 with linear 

diubiquitin identified the critical residues for the linear polyubiquitin interaction227 

and these residues were found mutated in human primary mediastinal B cell 

lymphoma190. Additional studies revealed that A20 containing these mutations in 

ZnF7 failed to bind linear di- and tetraubiquitin and was impaired in preventing 

LUBAC-mediated NF-κB activation227. 

 

4.3 CYLD: tumor suppressor and negative regulator of NF-κB signaling 
 

In addition to A20, NF-κB signaling is also controlled by other DUBs such as CYLD, 

Cezanne and USP21180-184. In particular, several studies demonstrated that CYLD 

negatively regulates NF-κB signaling via its K63-linkage-specific DUB activity. 

CYLD, encoded by the cylindromatosis (CYLD) gene, is a 107 kDa ubiquitously 

expressed deubiquitinase of the USP family185. Originally, CYLD was identified as a 

tumor suppressor gene and mutations in this gene predispose patients to the 

development of benign tumors of hair follicle keratinocytes186. In mice, CYLD-

deficiency causes the development of TPA-induced skin papillomas due to increased 
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tumor cell proliferation187. CYLD interacts with Bcl-3 and hydrolyses K63-linked 

polyubiquitin chains from Bcl-3 in TPA- or UV-treated keratinocytes187. 

Deubiquitination of Bcl-3 by CYLD prevents its nuclear translocation, where it 

interacts with p50 or p52 to drive the expression of cyclin D1187. Beside its critical 

role in cylindromatosis, CYLD also functions as a tumor suppressor in several other 

tumor types such as melanoma, lung cancer, prostate cancer, renal carcinoma and 

multiple myeloma188,189.  

Interestingly, over 60% of EBV-negative classical Hodgkin lymphoma (HL) cases 

contain mono- or bi-allelic losses of A20 function and 35% of classical HL cases 

display decreased CYLD copy numbers190. Strikingly, the HL cell line KM-H2 has 

completely lost both A20 and CYLD expression due to bi-allelic mutations in both 

genes190, suggesting potential overlapping functions of both DUBs. Indeed, A20 and 

CYLD target the same set of signaling factors such as TRAF2, TRAF6, RIP1 and 

NEMO during the regulation of NF-κB signaling191. However, a key difference 

between A20 and CYLD is the specificity of CYLD to function as a processive DUB 

for K63-linked polyubiquitin chains192, whereas A20 solely acts as a substrate-

specific DUB for K63-linked polyubiquitin chains165.  

 

4.4 Physiological functions of A20 
 

The NF-κB inhibitory and anti-apoptotic function of A20 was confirmed in vivo by 

the generation of constitutive A20-deficient mice. A20-/- mice display premature 

lethality due to severe multi-organ inflammation, tissue damage and cachexia193. In 

addition, A20-/- mice are hypersensitive to sublethal doses of TNFα and LPS193. In 

line with these data, A20-deficient thymocytes and murine embryonic fibroblasts 

(MEFs) are sensitized to TNF-mediated cell death193. Furthermore, A20-deficient 

MEFs show prolonged TNFα- and IL1β-mediated NF-κB signaling193. Subsequent 

studies revealed that the multi-organ inflammation is not mediated by lymphocytes193 

but myeloid cells and also occurs in a TNFR-independent manner143. However, 

disruption of TLR signals by ablation of the essential adaptor MyD88 rescued the 

spontaneous inflammation in A20/MyD88 double-deficient mice194. Similarly, the 

systemic inflammation and cachexia of A20-deficient mice were rescued by the 

eradication of commensal intestinal bacteria through treatment with broad-spectrum 
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antibiotics194. Thus, the spontaneous inflammation in A20-deficient mice is driven by 

myeloid cells exhibiting uncontrolled TLR-mediated NF-κB signaling in response to 

commensal flora.  

 

4.5 Association of A20 with human diseases 
 

Notably, the role of A20 as the central negative regulator of NF-κB activation is also 

reflected in the genetics of human diseases. Over the last few years, A20 has been 

strongly associated with both human inflammatory diseases and tumorigenesis.  

 

4.5.1 Association of A20 polymorphisms with human autoimmune diseases 
 

Genome-wide association studies (GWAS) and next-generation sequencing have 

provided valuable insights into the role of A20 polymorphisms in several human 

autoimmune diseases including systemic lupus erythematosus (SLE)195-198, 

rheumatoid arthritis (RA)197,199,200, psoriasis197,201, coelic disease202,203, Crohn’s 

disease197, multiple sclerosis204, Sjögren’s syndrome197,205 and type 1 diabetes206 

(Table 1).  

Most of the disease-related A20 single nucleotide polymorphisms (SNPs) are located 

outside of the A20 gene locus or in intronic sequences (summarized in 207). However, 

human A20 is encoded by nine exons and two non-synonymous SNPs in exon 3 of the 

OTU domain functionally affect the DUB domain of A20: rs5029941/A125V and 

rs2230926/F127C196,208. Structural predictions using computer models suggest that 

SNP rs5029941/A125V may affect the conformation and thereby the catalytic activity 

of the DUB domain, whereas SNP rs2230926/F127C may influence the binding to 

A20 target proteins208. In addition, functional studies revealed that SNP 

rs5029941/A125V impairs A20-mediated deubiquitination208, whereas the coding 

variant rs2230926/F127C causes reduced inhibition of TNF-mediated NF-κB 

activation196. Notably, SNP rs2230926/F127C, originally associated with SLE, was 

also identified as a genetic risk variant for Sjögren’s syndrome, Crohn’s disease, 

psoriasis and RA197. A recent sequencing effort to characterize A20 polymorphisms in 

the coding region identified in total 7 novel non-synonymous variants in exon 2, 3, 7, 

8 and 9197. It is conceivable that these coding variants may cause reduced expression 
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or activity of A20 in the negative regulation of NF-κB activation.  

Furthermore, a novel dinucleotide variant (TT>A) in the conserved regulatory region, 

42kb downstream of the A20 promoter, was associated with SLE. This polymorphic 

dinucleotide reduced A20 mRNA and protein expression, possibly through altering 

NF-κB DNA binding to the A20 promoter198.  

 
Human autoimmune disease Functionally impaired genetic variants of A20 

Crohn’s disease197 rs2230926/F127C 

Coeliac disease202,203  

Multiple sclerosis204  

Rheumatoid arthritis197,199,200 rs2230926/F127C 

Sjögren’s syndrome197,205 rs2230926/F127C 

Systemic lupus erythematosus195-198 rs5029941/A125V 
rs2230926/F127C 

Polymorphic dinucleotide/TT>A 
Type 1 diabetes206  

Psoriasis197,201 rs2230926/F127C 

Table 1: Association of the A20 genomic locus with human autoimmune diseases 

 

4.5.2 Loss of A20 function in human lymphomas 
 

Constitutive activation of NF-κB can promote proliferation and survival. Therefore, 

aberrant NF-κB activation is a hallmark of several human B cell lymphoma subtypes 

such as classical Hodgkin’s lymphoma (cHL), diffuse large B cell lymphoma 

(DLBCL) and marginal zone lymphomas of mucosa-associated lymphoid tissue 

(MALT lymphoma)209,210. Over the last few years, genetic inactivation of A20 has 

been strongly associated with several human B cell lymphomas (in total about 40%) 

including cHL190,211, DLBCL211-213, follicular lymphoma (FL)211, lymphoplasmacytic 

lymphoma214, mantle cell lymphoma (MCL)211,213, marginal zone B cell lymphoma 

(MZL)211,213,215-220, primary mediastinal lymphoma (PMBL)190 and Waldenström 

Macroglobulinemia (WM)221 (see Table 2). Notably, A20 is the most commonly 

affected gene in DLBCL of the ABC subtype and lymphoplasmacytic 

lymphoma212,214. These findings indicate that A20 plays a role as a tumor suppressor 

in human B cell lymphoma.  

In particular, A20 is inactivated by chromosomal deletion, promoter methylation and 
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mutations such as frame shift deletions/insertions or nonsense mutations, resulting in 

truncated A20 proteins that are functionally impaired or instable211,212. In line with 

these findings, reconstitution of wild-type but not mutant A20 in A20-deficient 

lymphoma cell lines induced apoptosis, growth arrest and suppressed NF-κB 

activation190,211,213.  

However, it remains controversial whether A20 acts as a classical tumor suppressor 

according to the Knudson’s two-hit hypothesis222. Notably, besides homozygous loss 

of A20, mono-allelic inactivation was observed in a substantial proportion of ABC 

DLBCL patients (46% according to213; 23% according to212). These findings may 

suggest rather a haploinsufficient model of tumor suppression. In contrast, 

homozygous inactivation of A20 may be associated with a shorter survival rate in 

MALT lymphoma217.  

Recently, the role of A20 in tumor suppression was extended to Sézary syndrome 

(SS), a disseminated variant of primar cutaneous T cell lymphoma223. Mono- and bi-

allelic deletions of A20 were found in 46% (6/13) of blood samples in SS-patients223. 

In addition, reconstitution of A20 in a SS cell line lacking A20 on both alleles 

suppresses cell proliferation223. 

Interestingly, the role of A20 in tumor suppression may be cell type-specific. In solid, 

non-lymphoid tumors, A20 is overexpressed in human breast carcinoma and glioma 

where A20 may function as an oncogene due to its anti-apoptotic function in these 

cell types224,225.  

 
Human B cell lymphoma Frequency of A20 inactivation 

Classical Hodgkin’s lymphoma (cHL)190,211 33-44% 

Diffuse large B cell lymphoma (DLBCL)211-213 38% 

Follicular lymphoma (FL)211 26% 

Lymphoplasmacytic lymphoma (w/o WM)214 46% 

Mantle cell lymphoma (MCL)211,213 31% 

Marginal zone B cell lymphoma 

(MZL)211,213,215-220 

20% 

Primary mediastinal B cell lymphoma (PMBL)190 36% 

Waldenström Macroglobulinemia (WM)221 38% 

Table 2: Association of A20 with human B cell lymphoma 
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Aim of the thesis 
 
Over the last years, polymorphisms in the TNFAIP3 gene locus, encoding the 

ubiquitin-editing enzyme A20, has been strongly associated with several human 

autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis and 

Crohn’s disease. In addition, loss of A20 function is a frequent event in human B cell 

lymphomas. Initial mouse studies revealed A20 as the central negative regulator of 

NF-κB signaling and NF-κB-mediated inflammation in vivo. However, the precise 

role of A20 in different cell types and its contribution to human autoimmune diseases 

was not known. In particular, given the critical role of B cells in autoimmune 

pathology and the strong implication of A20 inactivation in human B cell lymphomas, 

the role of A20 in B cells and in the prevention of B cell-mediated diseases awaited 

urgent clarification. In addition to A20, NF-κB activation is also controlled by other 

deubiquitinases such as CYLD. It is remarkable that A20 and CYLD share similar 

mechanisms and molecular targets in the negative regulation of NF-κB signaling, 

suggesting potential overlapping functions.  

Therefore, we employed mouse genetics to address the following critical questions:  

 

1. the role of A20 in B cell development, B cell immune responses and the 

prevention of autoimmunity (Paper II),  

2. potential overlapping physiological functions of A20 and CYLD in B cell 

development and function (Paper IV),  

3. the role of A20 in intestinal epithelial cells and its contribution to intestinal 

inflammation (Paper I), 

4. the role of A20 in myeloid cells and its contribution to autoimmunity (Paper 

III).  
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Brief summaries of the publications 
 
Paper I:  

Vereecke et al., 2010. Enterocyte-specific A20 deficiency sensitizes to tumor necrosis 
factor-induced toxicity and experimental colitis. Journal of Experimental Medicine 
207: 1513–1523. 
 

Inflammatory bowel disease (IBD) encompasses a group of chronic inflammatory 

conditions of the gastrointestinal tract, such as Crohn’s disease. IBD is thought to 

result from a dysregulated immune response directed against the commensal flora, 

leading to breakdown of the intestinal epithelial barrier. Recently, polymorphisms in 

the A20 gene locus have been associated with Crohn’s disease. In line with human 

genetics, A20-deficient mice die prematurely due to severe inflammation in multiple 

organs including the intestine. A20, whose expression is regulated by NF-κB 

transcription factors, has been established as the key negative regulator of signaling 

leading to NF-κB activation. In parallel, A20 acts as an anti-apoptotic protein by 

preventing TNF-induced apoptosis. In contrast to many other cell types, NF-κB plays 

an anti-inflammatory role in intestinal epithelial cells (IECs). Since A20 blocks both 

TNF-induced apoptosis and NF-κB activation, it was not clear whether A20 

deficiency in IECs would exacerbate or ameliorate intestinal inflammation. Therefore, 

to study whether A20 contribute to IBD, mice lacking A20 specifically in IECs were 

generated and evaluated in a model of dextran sodium sulphate (DSS)-induced colitis. 

A20 deficiency in IECs increased the susceptibility of mice to DSS-induced colitis 

and prevented the recovery from acute DSS-induced inflammation. In addition, mice 

lacking A20 in IECs are sensitized to TNF-induced apoptosis of A20-deficient IECs, 

leading to disruption of the intestinal epithelial barrier and infiltration of commensal 

bacteria that trigger a systemic inflammatory response. Taken together, A20 acts as a 

critical anti-apoptotic protein in the intestinal epithelium, thereby mediating the 

protective effect of NF-κB in intestinal epithelial cells. Thus, defects in A20 

expression might contribute to inflammatory bowel disease in humans.  

I contributed to this study by generating the antibody specifically recognizing mouse 

A20 protein. I also established the staining protocol to detect A20 protein by 

immunoblotting. In addition, I generated murine embryonic fibroblasts (MEFs) 

harboring conditional A20 alleles and A20-deficient MEFs by Cre protein 

transduction. 
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Paper II:  

Chu et al., 2011. B cells lacking the tumor suppressor TNFAIP3/A20 display 
impaired differentiation and hyperactivation and cause inflammation and 
autoimmunity in aged mice. Blood 117: 2227–2236.  
 

B cell homeostasis depends on B cell receptor (BCR) and BAFF receptor signaling 

during development and maintenance resulting in the activation of transcription 

factors such as NF-κB. The ubiquitin-editing enzyme A20 is essential to prevent 

prolonged NF-κB activation in response to different stimuli by controlling the 

ubiquitylation status of key signaling molecules such as TRAF6. Polymorphisms and 

mutations in the A20 gene are linked to various human autoimmune conditions 

including type 1 diabetes, systemic lupus erythematosus, coeliac disease, Crohn’s 

disease, psoriasis, multiple sclerosis and rheumatoid arthritis. Moreover, inactivation 

of A20 is a frequent event in human B cell lymphomas characterized by constitutive 

NF-κB activity. Therefore, we generated B cell-specific A20-deficient mice to study 

the role of A20 in B cell development and function and its contribution to prevent B 

cell-mediated autoimmunity. A20-deficient B cells accumulate during the transitional 

stage and show impaired development, function and/or localization of mature B cell 

subsets including marginal zone B cells, peritoneal B1 cells and bone marrow 

recirculating B cells. Moreover, loss of A20 in B cells lowers their activation 

threshold and enhances proliferation and survival in a gene-dose-dependent manner. 

The hyper-reactivity of A20-deficient B cells is also reflected in the enhanced 

formation of spontaneous germinal center in the gut-associated lymphoid tissue 

(GALT). Through the expression of pro-inflammatory cytokines, most notably IL-6, 

A20-deficient B cells trigger a progressive inflammatory reaction in naïve mice 

characterized by the expansion of myeloid cells, effector-type T and regulatory T 

cells. The chronic inflammation culminates in aged mice in an autoimmune syndrome 

defined by splenomegaly, plasma cell hyperplasia and the presence of class-switched, 

tissue-specific autoantibodies. Taken together, A20 is required for B cell homeostasis 

and to prevent B cell-mediated chronic inflammation and autoimmunity.  

In this study, I performed the majority of the experiments and coordinated the work 

flow of all experiments. I received help from Christoph Vahl with T and myeloid cell 

analysis, Dilip Kumar with RT-PCR, Klaus Heger with IL-6 ELISA and Western 

blotting, Arianna Bertossi with cell cycle analysis, Miriam Reutelshöfer with kidney 



Brief summaries of the publications 

	
  

36	
  

and liver pathology and Brigitte Mack with immunohistochemical staining of the 

splenic marginal zone. Moreover, I wrote the paper.  

 

 

Paper III:  

Matmati et al., 2011. A20 (TNFAIP3) deficiency in myeloid cells triggers erosive 
polyarthritis resembling rheumatoid arthritis. Nature Genetics 43: 908–912. 
 

Rheumatoid arthritis is an inflammatory autoimmune disease, which is characterized 

by chronic inflammation of the joints and progressive destruction of cartilage and 

bone. Increased NF-κB activation plays a key role in many autoimmune diseases 

including rheumatoid arthritis. Recently, polymorphisms in the A20 gene were 

associated with several human autoimmune diseases such as systemic lupus 

erythematosus, coeliac disease, psoriasis and rheumatoid arthritis. A20 is involved in 

the negative feedback control of NF-κB signaling in response to multiple stimuli. In 

mice, constitutive A20 deficiency results in lethal multi-organ inflammation, which is 

driven by myeloid cells exhibiting uncontrolled TLR-mediated NF-κB signaling in 

response to commensal flora. Therefore, to address the myeloid cell-specific role of 

A20 in the etiology of autoimmune diseases, myeloid cell-specific A20-deficient mice 

were generated. Remarkably, A20 deficiency in myeloid cells results in spontaneous 

development of severe destructive polyarthritis with many hallmarks of human 

rheumatoid arthritis. Moreover, myeloid cell-specific A20-deficient mice have high 

levels of pro-inflammatory cytokines including TNF, IL-1β and IL-6 systemically and 

in local joint tissue. Although TNF plays a dominant role in the pathogenesis of 

rheumatoid arthritis, the polyarthritis in myeloid cell-specific A20-deficient mice does 

not depend on TNF, but is mediated by signaling via the TLR4/MyD88 axis and IL-6. 

In addition, systemic bone loss due to increased osteoclast differentiation is another 

feature of experimental and rheumatoid arthritis. In fact, A20 deficiency in myeloid 

cells is also associated with enhanced osteoclastogenesis, possibly driving the severe 

osteoporosis observed in these mice. In conclusion, these data support a critical, 

myeloid-specific role of A20 in the pathogenesis of rheumatoid arthritis.  

I contributed to this study by demonstrating that A20 deficiency in B cells does not 

cause arthritis in mice and by generating control samples for Southern blotting.  
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Paper IV:  

Chu et al., 2012. A20 and CYLD do not share significant overlapping functions 
during B cell development and activation. Journal of Immunology. Epub 2012 Sep 21.  
 
The deubiquitinases A20 and CYLD are critical negative regulators of signaling 

events leading to the activation of NF-κB transcription factors. They share similar 

mechanisms by removing non-degradative K63-linked polyubiquitin chains from an 

overlapping set of substrates. In B cells, A20 deficiency results in hyperactivity, loss 

of immune homeostasis, inflammation, and autoimmunity. In contrast, the reported 

consequences of CYLD deficiency are controversial, ranging from an absence of 

effects to dramatic B cell hyperplasia. These differences could be due to varying 

compensation by A20. The aim of this study is to address potential overlapping 

physiological functions between A20 and CYLD in B cells. Therefore, we generated 

and characterized A20/CYLD double-deficient B cells. Interestingly, the combined 

loss of A20 and CYLD did not exacerbate the developmental defects and 

hyperresponsive activity of A20-deficient B cells. In addition, the extent of B cell 

activation after in vitro stimulation with anti-CD40, LPS, and CpG was comparable in 

B cells lacking A20/CYLD and A20 alone. However, in response to BCR cross-

linking-induced proliferation, IL-6 production and NF-κB activation, we observed 

small but reproducible additive effects of the lack of A20 and CYLD. In conclusion, 

the lack of phenotypic effects in CYLD-deficient B cells is not due to compensation 

by A20. Therefore A20 and CYLD do not share significant functions during B cell 

development and activation. 

In this study, I performed all in vivo and in vitro experiments, except for the CFSE 

labeling assay and the electrophoretic mobility shift assay, where I received help from 

Valeria Soberon and Laura Glockner. In addition, I analyzed all data presented in this 

study and wrote the paper. 	
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In!ammatory bowel disease (IBD) and, in partic-
ular, Crohn’s disease (CD), is thought to result 
from a dysregulated interaction between the host 
immune system and normal luminal micro!ora 
(Rako"-Nahoum et al., 2006; Artis, 2008; 
Round and Mazmanian, 2009). Furthermore, 
epidemiological and linkage studies suggest a ge-
netic predisposition and the involvement of envi-
ronmental factors (Podolsky, 2002). The aberrant 
immune response in IBD is most likely facilitated 
by defects in both the barrier function of the in-
testinal epithelium and the mucosal immune  
system. Recognition of commensal bacterial 
products by toll-like receptors (TLRs) and NOD-
like receptors (NLRs) leads to the production of 
a mix of in!ammatory cytokines and chemokines 
by immune cells and surface epithelial cells  
(Rako"-Nahoum et al., 2004; Baumgart and 
Carding, 2007). In this context, the transcription 
factor NF- B, which is activated by TLRs, 
NLRs, and cytokine receptors, such as TNF and 

IL-1, plays a critical role. On the one hand, NF-
B regulates the expression of various cytokines 

and other modulators of the in!ammatory pro-
cesses in IBD. On the other hand, NF- B en-
hances the survival of cells through the regulation 
of antiapoptotic genes. A tight regulation of the 
NF- B signaling pathway and the genes induced 
is thus an absolute requirement. Recently, signi#-
cant progress has been made in our understanding 
of the mechanisms that control the dynamics of 
NF- B activation, and several autoregulatory 
feedback loops terminating the NF- B response 
have been described (Renner and Schmitz, 2009). 
In this context, the NF- B–responsive and 
ubiquitin-editing protein A20 (also referred to as 
TNF- –induced protein 3 or TNFAIP3) has 
been described as a central gatekeeper in in!am-
mation and immunity (Coornaert et al., 2009). 
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Enterocyte-speci!c A20 de!ciency sensitizes 
to tumor necrosis factor–induced toxicity 
and experimental colitis
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A20 is a nuclear factor B (NF- B) target gene that encodes a ubiquitin-editing enzyme that 
is essential for the termination of NF- B activation after tumor necrosis factor (TNF) or 
microbial product stimulation and for the prevention of TNF-induced apoptosis. Mice lacking 
A20 succumb to in!ammation in several organs, including the intestine, and A20 mutations 
have been associated with Crohn’s disease. However, ablation of NF- B activity, speci"cally in 
intestinal epithelial cells (IECs), promotes intestinal in!ammation. As A20 de"ciency sensitizes 
cells to TNF-induced apoptosis yet also promotes NF- B activity, it is not clear if A20  
de"ciency in IECs would exacerbate or ameliorate intestinal in!ammation. We generated mice 
lacking A20 speci"cally in IECs. These mice did not show spontaneous intestinal in!ammation 
but exhibited increased susceptibility to experimental colitis, and their IECs were hypersensitive 
to TNF-induced apoptosis. The resulting TNF-driven breakdown of the intestinal barrier  
permitted commensal bacterial in"ltration and led to systemic in!ammation. These studies 
de"ne A20 as a major antiapoptotic protein in the intestinal epithelium and further indicate 
that defects in A20 might contribute to in!ammatory bowel disease in humans.

© 2010 Vereecke et al. This article is distributed under the terms of an Attribu-
tion–Noncommercial–Share Alike–No Mirror Sites license for the !rst six months 
after the publication date (see http://www.rupress.org/terms). After six months 
it is available under a Creative Commons License (Attribution–Noncommercial– 
Share Alike 3.0 Unported license, as described at http://creativecommons.org/ 
licenses/by-nc-sa/3.0/).
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which may hamper their ability to regulate pathologi-
cal NF- B activation induced by acute in!ammatory 
responses (Arsenescu et al., 2008). Interestingly, single 
nucleotide polymorphisms in the A20 region on 
6q23.3 were recently also identi#ed as a disease risk 
factor in celiac disease (Trynka et al., 2009). These 
studies, as well as the fact that mice genetically de#-
cient in A20 develop multiorgan in!ammation includ-
ing severe intestinal in!ammation (Lee et al., 2000), 
indicate that defective A20 expression or activity could 
be a risk factor for IBD. Previous studies showed that 
transfer of A20-de#cient myeloid cells in WT irradi-
ated mice elicits the spontaneous in!ammatory pheno-
type as seen in full A20 knockout mice (Turer et al., 

2008). These data indicate that A20 expression in myeloid cells 
plays a key role in restricting proin!ammatory signaling. How-
ever, whether A20 also has a role in stromal cells such as the 
intestinal epithelium remains unknown. There is multiple 
evidence that epithelial NF- B preserves the integrity of the 
gut epithelial barrier and maintains immune homeostasis in 
the gut (Ben-Neriah and Schmidt-Supprian, 2007; Artis, 2008;  
Pasparakis, 2008). Epithelial-speci#c NF- B de#ciency in mice 
through conditional ablation of NF- B essential modulator 
(NEMO) or both I B kinase (IKK) 1 and IKK2 spontaneously 
led to enterocyte apoptosis and massive intestinal in!ammation 
(Nenci et al., 2007). Similarly, mice with speci#c deletion of 
RelA in intestinal epithelial cells (IECs) exhibit increased suscep-
tibility to chemically induced colitis (Steinbrecher et al., 2008). 
An important step in the in!ammatory process in these NF- B–
de#cient mice involves the sensitization of NF- B–de#cient 
epithelial cells to TNF-induced apoptosis, compromising epi-
thelial integrity and allowing bacterial translocation into the mu-
cosa, thus leading to recruitment of in!ammatory immune cells 
and chronic in!ammation (Nenci et al., 2007). The identity of 

A20 is essential for the termination of NF- B signaling in re-
sponse to TNF and microbial products such as LPS and mur-
amyl dipeptide (Boone et al., 2004; Hitotsumatsu et al., 2008), 
which trigger TLR4 and NOD2 (nucleotide-binding oligomer-
ization domain-containing 2) receptors, respectively. Moreover, 
A20 also negatively regulates TNF-induced apoptosis (Opipari 
et al., 1992; Lee et al., 2000). Mice de#cient for A20 are hyper-
sensitive to TNF and die prematurely as a result of severe multi-
organ in!ammation and cachexia (Lee et al., 2000). Interestingly, 
A20 has recently been identi#ed as a susceptibility locus for mul-
tiple immunopathologies (Vereecke et al., 2009). More speci#-
cally related to IBD, a recent genome-wide association study for 
seven major common diseases, undertaken in the British popu-
lation by the Wellcome Trust Case Control Consortium (2007), 
identi#ed A20 as a CD susceptibility gene. An earlier indepen-
dent study on IBD-a"ected pairs of multiple families also associ-
ated mutations in a region of human chromosome 6q, containing 
the A20 locus, with the IBD phenotype (Barmada et al., 2004). 
Finally, mucosal biopsies from CD patients con#rmed a consis-
tent down-regulation of mucosal A20 expression in CD patients, 

Figure 1. Generation and molecular analysis of A20IEC-KO 
mice. (A) Targeting scheme. The diagram shows the loxP-
"anked ("oxed) and deleted A20 alleles. The boxes indicate 
exons 1–9 (E1–E9). Restriction enzyme sites and the location 
of the probe used for Southern blot analysis are depicted.  
B, BamH1; V, EcoRV. LoxP and Frt sites are indicated by arrow-
heads. (B) Southern blot analysis on DNA from WT (+/+) and 
homologous recombinant (NFL/+) ES cells. (C) Western blot 
analysis for A20 expression in WT (+/+), heterozygous (+/ ), 
and A20 knockout ( / ) primary MEFs either stimulated or 
not for 5 h with recombinant mouse TNF. (D) DNA isolated 
from various tissues of a A20FL/FL/Villin-Cre+ mouse and a con-
trol littermate (A20FL/FL/Villin-Cre ) was subjected to Southern 
blot analysis. , deleted allele; FL, "oxed allele; SI, small intes-
tine. (E) Quantitative PCR measurement of A20 mRNA expres-
sion in puri!ed IECs from A20IEC-KO (n = 2) and control WT 
littermate mice (n = 2) 0 or 30 min after mouse TNF injection. 
Error bars represent SEM. (F) Western blot analysis for A20 
expression in colonic epithelial cells from two individual 
A20IEC-KO and control WT littermate mice. *, unspeci!c. Data are 
representative of two independent experiments.
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activation in A20-de#cient enterocytes 
can be expected to be protective.

To study the role of A20 expres-
sion in IECs in intestinal immunity 
under normal and proinflamma-
tory conditions, we generated A20 
conditional knockout mice that 
are speci#cally de#cient for A20 in 
IECs. IEC-speci#c A20 knockout 
(A20IEC-KO) mice show increased sus-
ceptibility to dextran sodium sulphate 
(DSS)–induced colitis associated with 
increased sensitivity of IECs to apop-
tosis. A20IEC-KO mice are also hyper-
sensitive to normally sublethal doses 
of TNF, leading to enterocyte apop-
tosis and disintegration of the intes-
tinal barrier. As a result, in#ltrating 

commensal bacteria initiate a systemic in!ammatory response 
leading to death. These data indicate that A20 expression in 
the intestinal epithelium is a crucial antiapoptotic factor that 
mediates the protective e"ect of NF- B in IEC and deter-
mines susceptibility to IBD.

RESULTS
Generation and phenotypic analysis of A20IEC-KO mice
We generated mice carrying a conditional A20 allele in 
which exons IV and V of the mouse A20 gene are !anked by 
LoxP sites (Fig. 1 A). This conditional A20 allele allows the 
tissue-speci#c inactivation of A20 through expression of 
Cre recombinase, as removal of exons IV and V results in an 
out-of-frame transcript. Correctly targeted homologous re-
combinant embryonic stem (ES) cell clones were identi#ed 
by Southern blotting and used to generate chimeric mice that 
transmitted the targeted allele to their o"spring (Fig. 1 B). Mice 
homozygous for the LoxP-!anked A20 allele (A20FL/FL) 

the NF- B–regulated genes that control enterocyte survival in 
intestinal immune homeostasis or in a proin!ammatory envi-
ronment remains unknown. A20 is an NF- B–dependent gene 
that is naturally expressed in mouse enterocytes as soon as the gut 
gets colonized by bacteria, a process which is initiated right after 
birth (Wang et al., 2009). We might, therefore, expect an im-
portant role for A20 in establishing NF- B–mediated tolerance 
and epithelial protection against environmental and proin!am-
matory signals. However, the dual antiapoptotic and NF- B– 
inhibitory function of A20 imposes a real conundrum. On the 
one hand, A20 de#ciency in the gut would increase the suscep-
tibility of enterocytes to apoptosis, leading to the translocation of 
commensal bacteria and intestinal in!ammation. On the other 
hand, and consistent with the previously reported key role  
of NF- B in maintaining immune homeostasis in the gut  
(Ben-Neriah and Schmidt-Supprian, 2007; Nenci et al., 2007; 
Pasparakis, 2008; Steinbrecher et al., 2008), excessive NF- B 

Figure 2. Enterocyte expression of  
A20 is required for recovery of mice  
from acute DSS-induced in!ammation.  
(A) Clinical score of A20IEC-KO mice (n = 18) 
and control littermates (WT, n = 20) treated 
with 1.5% DSS. (B) Colon length of A20IEC-KO 
mice (n = 18) and control littermates (WT,  
n = 20) after 10 d of 1.5% DSS treatment.  
(C) Hematoxylin and eosin (H E) histology 
on DSS-treated A20IEC-KO mice and control 
littermates (WT). Bars: (days 2 and 4) 100 µm; 
(day 10) 250 µm. (D) Serum IL-6 levels after 
1.5% DSS treatment for 4 d. (E and F) Clinical 
score and body weight of A20IEC-KO mice (n = 
6) and control littermates (WT, n = 5) treated 
for 6 d with 1.5% DSS followed by normal 
drinking water. Data in A–D are representa-
tive of three independent experiments. Ex-
periments in E and F were performed two 
times. Error bars represent SEM. *, P < 0.05.
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from colon and small intestine (Fig. 1 D). Recombination was 
not detected in any other tested tissues. In addition, quantita-
tive real-time PCR on IEC mRNA and immunoblot analysis 
of IEC protein extracts revealed ablation of A20 in A20IEC-KO 
cells (Fig. 1, E and F).

A20 expression in IEC determines the susceptibility  
to experimental colitis
A20IEC-KO mice look healthy, and phenotypic analysis of 
A20IEC-KO mice up to the age of 12 mo revealed no pathological 
signs in the intestine. To further investigate whether A20 ex-
pression determines the susceptibility to IBD, A20IEC-KO mice 
and control littermates were evaluated in an established model 
of DSS-induced colitis. Mice were subjected to 1.5% DSS in 
drinking water for 9 d and monitored daily for clinical pathol-
ogy based on loss in body weight, stool consistency, and pres-
ence of fecal blood. Compared with control mice, A20IEC-KO 
mice show increased susceptibility to DSS-induced colitis and 
develop more severe colitis symptoms, like gross rectal bleed-
ing and diarrhea (Fig. 2 A). Colon shortening, a typical clini-
cal feature of colonic in!ammation, is much more pronounced 

in A20IEC-KO mice 10 d after DSS 
treatment (Fig. 2 B). Histological ex-
amination of the distal colon reveals 
increased mucosal damage, crypt loss, 
and immune cell in#ltration in DSS-
treated A20IEC-KO mice compared 
with control littermates (Fig. 2 C). 
In!ammation was further assessed by 
quantifying the presence of IL-6 in 
serum. In contrast to untreated mice, 
which do not show in!ammatory 
cytokine expression (not depicted), 
IL-6 was found to be signi#cantly 

express normal levels of A20 and develop normally (Fig. S1). 
Deletion of the LoxP-!anked A20 alleles through expression 
of the Cre recombinase leads to a loss of A20 protein, as 
shown in mouse embryonic #broblasts (MEFs; Fig. 1 C). 
Moreover, no alternative or shorter A20 protein can be de-
tected in A20 /  MEFs. To study the role of A20 in physio-
logical maintenance of the IEC layer as well as its response to 
intestinal in!ammation, we crossed the A20FL/FL mice with a 
transgenic mouse line that expresses Cre under the control of 
the IEC-speci#c villin gene regulatory sequences (villin-Cre). 
The villin-Cre transgenic line targets all epithelial cell lin-
eages of the distal small intestine, cecum, and colon, and ex-
pression mediates e$cient Cre-mediated recombination in 
IECs starting before birth (Madison et al., 2002). A20IEC-KO 
(A20FL/FL/villin-Cre, A20IEC-KO) mice were born showing nor-
mal Mendelian segregation and reached adulthood without 
any evidence of intestinal defects. To verify the tissue speci-
#city of the A20IEC-KO, we performed Southern blot analysis 
of DNA isolated from various tissues of a A20IEC-KO mouse, 
showing e$cient Cre-mediated recombination in intestinal 
tissue (colon and small intestine) and in puri#ed IECs isolated 

Figure 3. A20 de"ciency sensitizes 
IECs to DSS-induced apoptosis. (A) TUNEL 
staining on distal colon sections of A20IEC-KO 
mice and control littermates (WT) after 2 
and 6 d of 1.5% DSS treatment, and after  
9 d during recovery (6 d of 1.5% DSS fol-
lowed by normal drinking water). Bars,  
150 µm. (B) Quanti!cation of the number of 
TUNEL-positive cells/!eld from untreated 
and DSS-treated mice. Error bars represent 
SEM. *, P < 0.05. (C) Detection of BrdU in-
corporation on distal colon sections of 
A20IEC-KO mice and control littermates (WT) 
after 6 d of 1.5% DSS treatment, and after 
9 d during recovery (6 d of 1.5% DSS fol-
lowed by normal drinking water). Bars:  
(day 4) 50 µm; (day 9) 250 µm. (D) Quanti-
!cation of the number of BrdU-positive cells/
!eld from untreated and DSS-treated mice. 
Error bars represent SEM. Data are repre-
sentative of three independent experiments.

http://www.jem.org/cgi/content/full/jem.20092474/DC1
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drinking water (day 9; Fig. 3, A and B). Although IECs from 
A20IEC-KO mice are highly sensitive to apoptosis when ex-
posed to DSS, the expression of di"erent pro- or antiapop-
totic genes (Bax, PUMA, Bcl2, BclXL, and XIAP) was not 
signi#cantly changed in A20-de#cient IECs compared with 
DSS-challenged control IECs (unpublished data).

Next to increased apoptosis, A20-de#cient IECs may have 
an impaired capacity to restore the epithelial barrier after DSS-
induced epithelial erosion as the result of a decreased prolifera-
tive response. However, similar numbers of BrdU-labeled cells 
were found in A20IEC-KO and control epithelial cell layers of 
DSS-treated animals during acute DSS treatment (Fig. 3, 
C and D), excluding a di"erence in proliferation in the absence 
of A20. During recovery (after putting mice back on regular 
drinking water, day 9), however, a slight di"erence in the 
numbers of BrdU-labeled cells between both groups is ob-
served (Fig. 3, C and D). This di"erence most probably results 
from the excessive mucosal damage and the signi#cant loss of 
IECs in A20IEC-KO mice. Indeed, mucosal areas with modest 
damage display similar numbers of BrdU-labeled cells com-
pared with control areas.

MyD88 de"ciency exacerbates, whereas TNF receptor (TNFR) 1 
de"ciency reduces experimental colitis in A20IEC-KO mice
Because TLRs expressed on IECs are essential as sensors  
of commensal bacteria establishing intestinal homeostasis  
(Rakoff-Nahoum et al., 2004), A20 could be involved in 
this regulation in addition to its role as a protective factor 
against IEC apoptosis. To explore this possibility, we also 
analyzed the sensitivity of A20IEC-KO mice to DSS-induced 
colitis in a MyD88-deficient background. As expected, 
double A20IEC-KOMyD88-de#cient mice are much more 
sensitive to DSS-induced colitis compared with control 
A20IEC-KOMyD88 heterozygous mice (Fig. 4 A). These re-

sults suggest that, in addition to enhanced 
IEC apoptosis in the absence of A20, a de-
fective TLR-mediated bacterial recognition 
in the absence of MyD88 contributes to 
DSS-induced intestinal in!ammation and 
that both signals are happening in concert 
in conditions of A20 de#ciency in IECs. 

higher in A20IEC-KO mice then in controls after DSS treat-
ment (Fig. 2 D).

To evaluate the ability of A20IEC-KO mice to recover from 
DSS-induced epithelial damage, mice were put on 1.5% DSS 
for 6 d and were then put back on regular drinking water. Con-
trol mice display maximal clinical colitis on day 7, after which 
they recover and gain up to 90% of their original body weight 
(Fig. 2, E and F). A20IEC-KO mice, however, are unable to cope 
with the initial DSS challenge and do not recover. All A20IEC-KO 
mice continue to display severe signs of clinical colitis, they do 
not gain weight, and many of them (66%) die around day 12–13 
after treatment (Fig. 2, E and F). The increased and sustained 
pathological response in A20IEC-KO mice indicates an essential 
role for A20 in the termination of intestinal in!ammation and 
the recovery from intestinal epithelial damage.

A20 protects IECs from apoptosis in experimental colitis
A20 has a dual NF- B inhibitory and antiapoptotic e"ect 
(Coornaert et al., 2009). The increased susceptibility of 
A20IEC-KO mice to DSS-induced colitis may therefore be ex-
plained by increased IEC apoptosis, allowing in#ltration of 
commensal bacteria into the submucosa and the activation of 
several immune cells that built up a proin!ammatory environ-
ment, leading to a further breakdown of the epithelial barrier. 
Therefore, we determined apoptosis in the intestinal epithe-
lium of A20IEC-KO and control littermate mice after DSS chal-
lenge by TUNEL staining. Compared with controls, A20IEC-KO 
epithelium already showed much more TUNEL-positive cells 
after the start of DSS treatment (days 2–6) (Fig. 3, A and B), 
which is likely an underestimation because of the signi#cant 
loss of IECs in A20IEC-KO mice as a result of excessive mucosal 
damage. This di"erence in epithelial cell apoptosis between 
A20IEC-KO and control littermate mice is even more pronounced 
during the recovery phase after putting mice back on regular 

Figure 4. MyD88 de"ciency sensitizes and TNFR1 
de"ciency reduces experimental colitis in A20IEC-KO 
mice. (A) Clinical score of A20IEC-KOMyD88-de!cient 
mice (n = 4) and control A20IEC-KOMyD88 heterozygous 
mice (n = 4) treated with 1.5% DSS. (B) Clinical score of 
double A20IEC-KOMyD88-de!cient mice (n = 4) and sin-
gle MyD88 knockout mice (n = 4) treated with 1.5% 
DSS. (C) Clinical score of A20IEC-KOTNFR1-de!cient mice 
(n = 10) and control A20IEC-KOTNFR1 heterozygous mice 
(n = 5) treated with 1.5% DSS. (D) Clinical score of 
double A20IEC-KOTNFR1-de!cient mice (n = 10) and 
single TNFR1 knockout mice (n = 7) treated with 1.5% 
DSS. Error bars represent SEM. *, P < 0.05. Data are 
representative of two independent experiments.
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To investigate the TNF-induced tissue damage in A20IEC-KO 
mice, parts of the intestine from control and A20IEC-KO mice 
were removed and stained with hematoxylin/eosin for histo-
logical examination. Treatment with TNF resulted in severe 
damage of the jejunum and ileum of A20IEC-KO mice, showing 
extensive epithelial destruction and a nearly complete loss of 
crypt-villus structure, which is in contrast to control litter-
mates which maintain tissue integrity (Fig. 6 A). To investi-
gate TNF-induced apoptosis at the cellular level, intestinal 
tissue sections were analyzed by TUNEL assay. In control mice 

This is also strengthened by the fact that double A20IEC-KO-

MyD88-de#cient mice are much more sensitive to DSS-
induced in!ammation than single MyD88-de#cient mice 
(Fig. 4 B). Overall, it can be concluded from these results 
that both MyD88 and A20 play a nonredundant protective 
role in intestinal immune homeostasis.

TNF is one of the major proin!ammatory cytokines con-
tributing to the pathogenesis of CD in humans and experi-
mental colitis in mice, and TNF-blocking agents have shown 
clinical e$ciency in both patients and mice (Neurath et al., 
1997; Targan et al., 1997). To investigate whether TNF signal-
ing contributes to the development of colitis in DSS-treated 
A20IEC-KO mice, we crossed them onto a TNFR1-de#cient 
background. Double A20IEC-KOTNFR1-de#cient mice and 
control A20IEC-KOTNFR1 heterozygous mice were subjected 
to DSS and monitored for clinical pathology. Compared with 
control mice, A20IEC-KOTNFR1-de#cient mice develop less 
severe colitis symptoms (Fig. 4 C), demonstrating that A20 re-
stricts harmful TNFR1 signaling which contributes to disease 
pathogenesis in this model. Compared with TNFRI-de#cient 
mice, double A20IEC-KOTNFRI-de#cient mice are more sen-
sitive to DSS-induced colitis (Fig. 4 D), further suggesting that 
A20 also restricts the role of other receptors than TNFRI, such 
as TLRs and NLRs, in DSS-induced colitis. We can conclude 
that A20 acts as a major protective NF- B response gene in the 
intestinal epithelium by restricting both proin!ammatory and 
proapoptotic signaling pathways induced by TLR-MyD88 and 
TNFRI, respectively.

A20 de"ciency in IEC increases TNF-induced damage  
of the intestinal epithelium and lethality
TNF may contribute to disease pathology by activating NF- B 
and in!ammation, as well as by inducing apoptosis of IECs, 
which causes loss of epithelial barrier integrity. Besides its 
well documented NF- B inhibitory function, A20 also inhibits 
TNF-induced apoptosis (Opipari et al., 1992; Lee et al., 2000; 
Coornaert et al., 2009). We therefore evaluated the e"ect of 
A20 de#ciency in IECs on TNF-induced pathology. For this, 
we injected A20IEC-KO mice and control littermates with a nor-
mally sublethal dose of mouse TNF. In contrast to control 
mice, which all resist such a sublethal dose of TNF and only 
show a modest drop in body temperature 6–8 h after injection, 
A20IEC-KO mice display typical symptoms associated with TNF 
toxicity, including hypothermia and severe diarrhea, already 
starting 2 h after injection. 5 h after TNF administration, all 
A20IEC-KO mice showed a severe drop in body temperature 
(Fig. 5 A), and they died between 5 and 9 h after injection, 
whereas all control mice survived (Fig. 5 B). We further as-
sessed in!ammation in A20IEC-KO mice by quantifying pro-
in!ammatory cytokine and chemokine production after TNF 
injection. A20IEC-KO mice had higher levels of IL-6 and MCP-1 
in circulation after TNF challenge than control littermate mice 
(Fig. 5 C). TNF toxicity in A20IEC-KO mice involves TNFR1 
signaling, as injecting human TNF, which only binds mouse 
TNFR1 and not mouse TNFR2 (Lewis et al., 1991), similarly 
induced lethality in A20IEC-KO mice (Fig. 5 D).

Figure 5. A20 de"ciency in IECs sensitizes mice to TNF-induced 
toxicity. (A and B) Mice were injected i.p. with 5 µg of recombinant 
mouse TNF. Body temperature (A) and survival (B) of A20IEC-KO mice (n = 8) 
and littermate control mice (WT; n = 6). (C) Serum IL-6 and MCP-1 levels 
4 h after mouse TNF injection. (D) Body temperature of A20IEC-KO mice  
(n = 6) and control littermate mice (n = 6) after injection with 50 µg of 
recombinant human TNF. Data are representative of three independent 
experiments. Error bars represent SEM. *, P < 0.05.
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in the intestine can also a"ect the systemic e"ects of TNF on 
other tissues.

Commensal intestinal microbes contribute to TNF-induced 
lethality in A20IEC-KO mice
As TNF induces massive epithelial destruction in A20IEC-KO 
mice, in#ltration of commensal bacteria may contribute to 
the lethal in!ammatory shock observed in these mice. To 
determine to what extent commensal intestinal microbes 
contribute to epithelial damage and lethality in A20IEC-KO 
mice, we treated these mice for 2 wk with a mix of broad-
spectrum antibiotics (cipro!oxacin, ampicillin, metronida-
zole, and vancomycin), which has been shown to substantially 
reduce the numbers of commensal bacteria in the intestine 
(unpublished data). Interestingly, antibiotics treatment com-
pletely protected A20IEC-KO mice against the lethal e"ect of 
TNF up to 8 h after TNF injection (Fig. 7 A). A20IEC-KO mice 
that are rescued from TNF-induced lethality by antibiotics 
still show massive epithelial destruction in the small intestine 
(Fig. 7 B), although epithelial damage is less severe than in 
TNF-treated mice that did not receive antibiotics (not de-
picted). This suggests that a mucosal cytokine burst initiated 
by bacterial in#ltration contributes to further epithelial damage 

treated with TNF, TUNEL staining was completely absent. 
In contrast, TNF-challenged A20IEC-KO mice showed mas-
sive positive TUNEL staining, mainly at the epithelial cells 
lining the villi (Fig. 6 B; Fig. S2 A). Moreover, numerous 
apoptotic cells could be detected in the intestinal lumen. In 
contrast to the enhanced sensitivity of A20-de#cient IECs to 
apoptosis, no di"erences in epithelial cell proliferation could  
be observed between A20IEC-KO and control littermate mice 
(Fig. S2 B). To confirm IEC apoptosis in TNF-treated 
A20IEC-KO mice, intestinal tissue homogenates were made and 
the extent of apoptosis was assessed by measuring caspase ac-
tivity. PBS-injected A20IEC-KO mice already show higher cas-
pase activity then control littermates (Fig. 6 C). Moreover, the 
e"ect of TNF was much more pronounced in A20IEC-KO mice, 
which is in agreement with the increase in apoptosis as 
observed in the TUNEL assay. Finally, to analyze whether A20 
de#ciency in the intestinal epithelium also induced histo-
pathological changes in other tissues, we examined the liver of  
TNF-treated control and A20IEC-KO mice. Interestingly, TNF-
treated A20IEC-KO mice not only show increased damage of 
the intestinal tissue but also of the liver (Fig. 6 D and Fig. S3), 
although A20IEC-KO mice express normal A20 levels in this 
tissue (Fig. S4). This demonstrates that speci#c A20 de#ciency 

Figure 6. A20 de"ciency in IECs sensitizes to TNF-induced damage of the small intestine and liver. (A) H E histology on a section of the small 
intestine from A20IEC-KO mice and control littermates (WT) 0 and 6 h after mouse TNF injection. Bars, 100 µm. (B) TUNEL staining on sections from small 
intestine 0 and 6 h after mouse TNF injection, staining apoptotic cells in red. Bars, 50 µm. (C) Caspase activity assayed on tissue homogenates of terminal 
ileum of A20IEC-KO mice and WT littermates at 0 (control) and 90 min after mouse TNF injection. Error bars represent SEM. (D) H E histology on liver sam-
ples from control (WT) and A20IEC-KO mice 0 and 6 h after mouse TNF injection. Bars, 50 µm. Data are representative of two independent experiments.

http://www.jem.org/cgi/content/full/jem.20092474/DC1
http://www.jem.org/cgi/content/full/jem.20092474/DC1
http://www.jem.org/cgi/content/full/jem.20092474/DC1
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signaling (Coornaert et al., 2009). However, A20 is also recog-
nized as a strong antiapoptotic factor (Opipari et al., 1992; Lee 
et al., 2000). This may seem contradictory, as NF- B is impor-
tant for cytoprotection by inducing the expression of antiapop-
totic genes and cell cycle regulators (Luo et al., 2005). NF- B 
inhibition is therefore often sensitizing toward cell death. Be-
cause enterocytes from A20IEC-KO mice are highly sensitive to 
TNF-induced apoptosis, the antiapoptotic e"ect of A20 seems 
to be dominant to the cell death–sensitizing e"ect of NF- B 
inhibition. Moreover, this would suggest that the antiapoptotic 
function of A20 is su$cient for its protective e"ect against 
sublethal TNF doses. We cannot exclude, however, that an 
additional antiin!ammatory e"ect of NF- B inhibition by 
A20 also contributes to its protective function. The hyper-
sensitivity of A20IEC-KO mice to DSS-induced acute colitis is 
consistent with the important role of NF- B in IBD. It was 
previously reported that defective NF- B activity in intestinal 
epithelium as a result of enterocyte-speci#c ablation of the 
regulatory subunit of the IKK complex NEMO, as well as of 
enterocyte-speci#c RelA de#ciency, causes spontaneous colitis 
(Nenci et al., 2007; Steinbrecher et al., 2008). It can be hy-
pothesized that this phenotype is partly caused by the defective 
NF- B–dependent expression of A20. However, in contrast 
to NEMO- or RelA-de#cient mice, A20IEC-KO mice do not 

in the absence of A20. However, although intestinal epithe-
lial damage in A20IEC-KO mice is only slightly reduced by an-
tibiotics treatment, TNF-induced liver damage is completely 
prevented (Fig. 7 C). Collectively, these data suggest that in-
#ltration of commensal bacteria as a result of the TNF-
mediated destruction of the epithelial barrier in A20IEC-KO 
mice initiates a systemic in!ammatory response, causing dra-
matic body temperature loss, severe liver damage, and cardio-
vascular collapse causing lethality.

DISCUSSION
In this paper, we have shown that the NF- B–regulated gene 
A20 is a major protective factor in the intestinal epithelium. 
Speci#c deletion of A20 in enterocytes increased the suscep-
tibility of mice to DSS-induced colitis and prevented the 
recovery from acute DSS-induced in!ammation. We also 
demonstrated that A20 de#ciency in enterocytes renders mice 
sensitive to TNF-induced lethal in!ammation. TNF-induced 
lethality was mediated by an apoptotic e"ect of TNF on A20-
de#cient cells, leading to disruption of the epithelial barrier 
and in#ltration of commensal bacteria that initiate a systemic 
in!ammatory response.

A20 is well documented as an NF- B–responsive gene that 
plays a key role in the negative feedback regulation of NF- B 

Figure 7. Commensal intestinal microbes contribute to TNF-induced toxicity in A20IEC-KO mice. (A) Body temperature after mouse TNF challenge 
of A20IEC-KO mice and control littermate mice (WT) either untreated (IEC-KO, n = 6; WT, n = 5) or treated (IEC-KO, n = 6; WT, n = 8) with broad-spectrum 
antibiotics. (B) H E histology on sections from distal ileum 0 and 7 h after i.p. injection of mouse TNF in control (WT) and A20IEC-KO mice treated with 
antibiotics. Bottom images are magni!cations of rectangles in top images. Bars: (top) 100 µm; (bottom) 75 µm. (C) H E histology on liver samples 0 and 
7 h after TNF injection in control (WT) and A20IEC-KO mice either untreated or treated with antibiotics. Bars, 75 µm. Data are representative of two inde-
pendent experiments. Error bars represent SEM.
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lium. However, A20’s primary function here is not to restrict 
MyD88-dependent proin!ammatory signaling because these 
mice do not develop spontaneous in!ammation in response  
to commensal bacteria but, rather, to control a cellular protec-
tion system once local intestinal in!ammation is initiated. In 
such in!ammatory conditions, A20 ensures maintenance of  
the epithelial barrier integrity by protecting cells from TNF- 
induced apoptosis.

In conclusion, because unrestrained activation of the im-
mune system directed against the intestinal commensal micro-
flora resulting in uncontrolled proinflammatory cytokine 
production is believed to play a key role in the development 
and progression of IBD (Round and Mazmanian, 2009),  
the present study further demonstrates that defects in the NF-
B–dependent expression and function of A20 might play an 

important role in the development and progression of IBD. 
Although A20 expression in enterocytes is largely dispensable 
for normal intestinal tissue homeostasis, A20 has an essential 
protective role in conditions of intestinal injury and in!amma-
tion. These data also further support recent genome-wide as-
sociation studies that identi#ed A20 as a susceptibility locus 
for CD (Wellcome Trust Case Control Consortium, 2007; 
Arsenescu et al., 2008; Trynka et al., 2009) and other autoim-
mune diseases (Vereecke et al., 2009), implicating A20 as an 
interesting therapeutic target.

MATERIALS AND METHODS
Generation of IEC-speci!c knockout mice. To generate a conditional 
A20 allele, we prepared a targeting vector to !ank exons IV and V of A20 with 
two LoxP sites. An Frt site-!anked cassette, containing a neo gene, was placed 
into the third intron of the A20 gene. A 4.0-kb fragment was used as 5  ho-
mology region, a 2-kb fragment was placed between the two LoxP sites, and 
a 4.0-kb fragment was used as 3  homology region. The targeting vector was 
linearized and transfected into Bruce-4 ES cells derived from C57BL/6 mice 
(Köntgen and Stewart, 1993) as previously described (Schmidt-Supprian et al., 
2000). The targeted ES cell clone was injected into 3.5-d blastocysts and trans-
ferred to the uteri of pseudopregnant foster mothers. Male chimeras were 
mated with C57BL/6 females to obtain germline transmission of the A20 
!oxed allele (still containing the neomycine selection cassette; A20NFL). The 
Frt-!anked neomycin cassette was removed by crossing A20NFL mice with an 
Flp-deleter strain (Rodríguez et al., 2000) generating an A20 !oxed allele 
(A20FL). A20+/  mice were generated by crossing chimeras transmitting the 
A20NFL genotype with Cre-deleter mice. MEFs were prepared from embry-
onic day 13.5 A20+/+, A20+/ , and A20 /  embryos. A20FL/FL mice were 
crossed to Villin-Cre transgenic mice (Madison et al., 2002; gift from  
D. Gumucio and B. Madison, University of Michigan Medical School, Ann 
Arbor, MI) to generate A20IEC-KO. All experiments were performed on mice 
backcrossed into the C57BL/6 genetic background for at least #ve genera-
tions. Mice were housed in individually ventilated cages at the VIB Depart-
ment of Molecular Biomedical Research in either speci#c pathogen-free or 
conventional animal facilities. All experiments on mice were conducted ac-
cording to institutional, national, and European animal regulations. Animal 
protocols were approved by the ethics committee of Ghent University.

Southern and Western blot analysis. For ES cell selection, 10 µg of ge-
nomic DNA was digested with BamHI to di"erentiate between 15.0- and 
6.5-kb fragments for the WT and A20NFL alleles, respectively. To di"erenti-
ate between A20FL and A20IEC-KO alleles, genomic DNA was digested with 
BamHI yielding 6.5- and 13.5-kb fragments, respectively. DNA was sepa-
rated on agarose gels and transferred to nitrocellulose. Hybridization was per-
formed with 32P-labeled probe. Protein lysates were prepared from MEF, 

develop spontaneous intestinal in!ammation, at least at young 
age, indicating that enterocyte A20 expression is dispensable for 
normal intestinal immune homeostasis.

TNF is one of the major proin!ammatory cytokines con-
tributing to the malignancy of IBD, and TNF blockade is an 
e"ective therapy for IBD patients (Targan et al., 1997). By in-
ducing enterocyte apoptosis, aberrant TNF production may 
cause loss of epithelial barrier integrity, which is considered an 
early step in the pathogenesis of IBD. Our data show that in 
the absence of A20, enterocytes become hypersensitive to 
TNF-induced apoptosis, compromising epithelial integrity. 
Interestingly, A20 de#ciency not only sensitizes mice to mouse 
TNF but also to human TNF, which is hardly toxic in WT 
mice (Ameloot et al., 2002). Therefore, our A20IEC-KO mice 
may be a useful tool to study human TNF-targeting thera-
peutic strategies. Moreover, although mouse TNF binds both 
TNFR1 and TNFR2, human TNF only binds TNFR1 (Lewis 
et al., 1991), demonstrating that intestinal damage in A20IEC-KO 
mice is mediated by TNFR1. The exact molecular mechanism 
by which A20 prevents TNF-induced apoptosis is still unclear. 
The ubiquitin-editing function of A20 has been shown to be 
responsible for its NF- B inhibitory properties (Wertz et al., 
2004; Heyninck and Beyaert, 2005), and several NF- B signal-
ing proteins can be deubiquitinated by A20 (Coornaert et al., 
2009). Death receptor ligation was recently shown to induce 
polyubiquitination of the apoptosis signaling protein caspase-8, 
which led to the binding of the ubiquitin-binding protein 
p62/sequestosome-1, caspase-8 aggregation, and commitment 
to cell death (Jin et al., 2009). Interestingly, caspase-8 polyubiq-
uitination could be reversed by A20, suggesting a possible anti-
apoptotic mechanism.

TNF-induced disruption of the intestinal epithelial barrier 
can be expected to allow mucosal in#ltration of commensal 
bacteria, resulting in immune cell recruitment and activation. 
This would then result in the expression of several proin!am-
matory mediators, including TNF, which imposes further epi-
thelial damage and complete epithelial barrier destruction. 
Ultimately, this allows bacteria to get in circulation and induce 
a systemic in!ammatory response syndrome that is character-
ized by liver damage, severe hypotension, and death. The fact 
that we could inhibit TNF-induced lethality and liver damage 
in A20IEC-KO mice with antibiotics con#rms a key role for 
commensal bacteria in TNF toxicity. It should be mentioned 
that treatment with antibiotics only slightly decreased TNF-
induced intestinal epithelial damage in A20IEC-KO mice, dem-
onstrating that bacteria themselves are not responsible for 
enterocyte apoptosis. Previous studies showed that transfer of 
A20-de#cient myeloid cells in irradiated WT mice induces 
multiorgan in!ammation, as seen in full A20 knockout mice 
(Turer et al., 2008). These myeloid cell–transplanted mice are 
also completely protected with antibiotics or when bred onto 
a MyD88-negative background, demonstrating that A20  
expression in myeloid cells is critical in restricting homeostatic 
TLR-mediated immune responses to intestinal commensal 
bacteria (Turer et al., 2008). Our data show that A20 also has 
a prominent role in stromal cells such as the intestinal epithe-
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tents. The intestinal segments were ligated, #lled with PBS, and incubated in 
PBS at 37°C. After 15 min, PBS was substituted with PBS supplemented 
with 1.5 mM EDTA and 0.5 mM DTT. After 30 min at 37°C, one ligature 
was removed and contents were collected. These recovered cells were 
washed twice in PBS by centrifugation at 1,300 rpm for 5 min and were used 
for preparation of RNA or protein extracts.

Quantitative real-time PCR. Total RNA was isolated from puri#ed IECs 
using the Aurum Total RNA Mini kit (Bio-Rad Laboratories) before cDNA 
synthesis using the iScript cDNA synthesis kit (Bio-Rad Laboratories) accord-
ing to the manufacturer’s instructions. 10 ng cDNA was used for quantitative 
PCR in a total volume of 10 µl with LightCycler 480 SYBR Green I Master 
Mix (Roche) and speci#c primers on a LightCycler 480 (Roche). Real-time 
PCR reactions were performed in triplicates. The following mouse-speci#c 
primers were used: A20 forward, 5 -AAACCAATGGTGATGGAAACTG-3 ; 
A20 reverse, 5 -GTTGTCCCATTCGTCATTCC-3 ; ubiquitin forward, 
5 -AGGTCAAACAGGAAGACAGACGTA-3 ; and ubiquitin reverse, 
5 -TCACACCCAAGAACAAGCACA-3 .

Statistics. Results are expressed as the mean ± SEM. Statistical signi#cance 
between experimental groups was assessed using an unpaired two-sample 
Student’s t test.

Online supplemental material. Fig. S1 shows normal A20 expression in 
A20FL mice. Fig. S2 shows the number of apoptotic IECs and the number of 
proliferating IECs after TNF treatment. Fig. S3 shows AST and ALT levels 
in serum after TNF treatment. Fig. S4 shows normal A20 expression in liver 
from A20IEC-KO mice.
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and TNF-treated mice. Error bars represent SEM. *, P < 0.05. (B) Quanti!cation of the number of BrdU-positive cells/!eld from untreated and TNF-treated 
mice. Data are representative of three independent experiments. Error bars represent SEM.

 on June 7, 2010
jem

.rupress.org
D

ow
nloaded from

 
Published June 7, 2010

http://jem.rupress.org/


A20 deletion in IECs sensitizes to apoptosis | Vereecke et al.S2

Figure S3. A20 de!ciency in IECs sensitizes to TNF-induced liver damage. Serum from A20IEC-KO (n = 9) and control WT littermate mice (n = 7) 
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B cells lacking the tumor suppressor TNFAIP3/A20 display impaired
differentiation and hyperactivation and cause inflammation and
autoimmunity in aged mice
Yuanyuan Chu,1 J. Christoph Vahl,1 Dilip Kumar,1 Klaus Heger,1 Arianna Bertossi,1 Edyta Wójtowicz,1 Valeria Soberon,1

Dominik Schenten,2 Brigitte Mack,3 Miriam Reutelshöfer,4 Rudi Beyaert,5 Kerstin Amann,4 Geert van Loo,5 and
Marc Schmidt-Supprian1

1Max Planck Institute of Biochemistry, Martinsried, Germany; 2Yale University School of Medicine, New Haven, CT; 3Department of Otorhinolaryngology, Head
and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University of Munich, Munich, Germany; 4Universitätsklinikum Erlangen, Pathologisches
Institut, Abt Nephropathologie, Erlangen, Germany; and 5Department for Molecular Biomedical Research, VIB and Department of Biomedical Molecular Biology,
Ghent University, Ghent, Belgium

The ubiquitin-editing enzyme A20/TN-
FAIP3 is essential for controlling signals
inducing the activation of nuclear fac-
tor-!B transcription factors. Polymor-
phisms and mutations in the TNFAIP3
gene are linked to various human autoim-
mune conditions, and inactivation of A20
is a frequent event in human B-cell lym-
phomas characterized by constitutive
nuclear factor-!B activity. Through B cell-

specific ablation in the mouse, we show
here that A20 is required for the normal
differentiation of the marginal zone B and
B1 cell subsets. However, loss of A20 in
B cells lowers their activation threshold
and enhances proliferation and survival
in a gene-dose–dependent fashion.
Through the expression of proinflamma-
tory cytokines, most notably interleu-
kin-6, A20-deficient B cells trigger a pro-

gressive inflammatory reaction in naive
mice characterized by the expansion of
myeloid cells, effector-type T cells, and
regulatory T cells. This culminates in old
mice in an autoimmune syndrome charac-
terized by splenomegaly, plasma cell hy-
perplasia, and the presence of class-
switched, tissue-specific autoantibodies.
(Blood. 2011;117(7):2227-2236)

Introduction

B cells play essential roles during protective immune responses to
invading pathogens. On encounter of foreign antigen and with
cognate T-cell help, B lymphocytes proliferate and form distinct
histologic structures, termed germinal center (GC). In the GC, they
undergo somatic hypermutation and class-switch recombination.
During somatic hypermutation, they introduce random mutations
into their immunoglobulin variable regions while they exchange
the heavy chain constant region during class-switch recombination
to allow for different effector functions. After a selection process
by antigen, B cells differentiate into memory B cells and plasma
cells (PCs), which secrete antibodies.1 The deregulation of this
process is heavily implicated in human disease. Production of
class-switched antibodies against self-antigens causes or contrib-
utes to various autoimmune syndromes and unrestrained B-cell
proliferation and survival can result in lymphomas.1,2 It is thought
that the majority of human lymphomas derive from the GC,
probably because the DNA damage inherent to the GC reaction
facilitates mutations and chromosomal translocations.1,3

Recently, the ubiquitin-editing enzyme A20, encoded by the
tumor necrosis factor-!-inducible gene 3 (TNFAIP3), has been
associated with both autoimmunity and lymphomagenesis. Polymor-
phisms and mutations in or near the TNFAIP3 genomic locus have
been linked with various human autoimmune syndromes with a
strong humoral component, such as systemic lupus erythematosus
(SLE),4,5 rheumatoid arthritis,6,7 and celiac disease.8 Loss of A20

function through mutations, chromosomal deletions, and/or pro-
moter methylation is a frequent event in several human lympho-
mas,9-12 all of which are characterized by constitutive activation of
nuclear factor-"B (NF-"B).13 These factors regulate a plethora of
genes encoding for proinflammatory mediators, antiapoptotic pro-
teins, cell adhesion molecules and, for negative feedback control,
inhibitory proteins, such as p100, I"B!, and A20.14,15

During the transmission of NF-"B activating signals from
cell-surface receptors such as the B-cell receptor (BCR), CD40, or
Toll-like receptors (TLRs), signal transduction occurs via the
attachment of polyubiquitin chains to key proteins, including
MALT1 or TRAF6. Polyubiquitin chains, linked via K63 or linear
assembly, serve to recruit different kinase complexes. In the case of
canonical NF-"B, induced proximity allows the upstream kinase
TAK1 to phosphorylate its target IKK2, which then effects NF-"B
activation. A20, whose transcription is induced by NF-"B, damp-
ens signaling through 2 main activities. First, as deubiquitinase
A20 removes K63-linked polyubiquitin chains from essential
signaling intermediates, such as TRAF6. Second, A20 induces, in
concert with other proteins, degradation of some of its molecular
targets, through addition of K48-linked ubiquitin chains.14,16 Degra-
dation of RIP1 limits TNF-induced signaling,14 whereas degrada-
tion of the K63-chain-specific E2 ligases Ubc13/UbcH5c generally
affects the assembly of K63-linked polyubiquitin chains.17
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To date, the main molecular action of A20 is to prevent
prolonged NF-"B activation in response to stimulation of TNF-R,
TLR-, or NOD-like receptors and the TCR.14,16 Signal con-
tainment by A20 is crucial for immune homeostasis because
A20-deficient mice die early on due to an uncontrolled inflamma-
tory disease. The inflammation is triggered via MyD88-dependent
TLRs by the commensal intestinal flora.18 To study the cell-type-
specific and cell-intrinsic roles of A20 in the mouse, we recently
generated a conditional Tnfaip3 allele (A20F).19 Given the implica-
tion of A20/TNFAIP3 in B-cell lymphomas and autoimmune
diseases, we used B lineage-specific ablation of A20 to study its
role in B-cell development, function, and disease.

Methods

Genetically modified mice

All mice described in this study are published and were originally generated
using C57BL/6 ES cells, or backcrossed to C57BL/6 at least 6 times. Mice
were housed in the specific pathogen-free animal facility of the Max Planck
Institute. All animal procedures were approved by the Regierung of
Oberbayern.

Flow cytometry

Single-cell suspensions were prepared20 and stained with monoclonal
antibodies: AA4.1(AA4.1), B220(RA3-6B2), CD1d(1B1), CD19(eBio1D3),
CD22(2D6), CD23(B3B4), CD25(PC61.5), CD3(17A2), CD38(90)
CD4(RM4-5), CD44(IM7), CD5(53-7.3), CD62L(MEL-14), CD69(H1.2F3),
CD8(53-6.7), FoxP3(FJK-16s), GR-1(RB6-8C5), IgD(11-26), IgM(II/41),
IL-10(JES5-16E3), IL-17A(eBio17B7), IL-4(11B11), IL-6(MP5-20F3),
INF-#(XMG1.2), Mac-1(M1/70), TCR-$(H57-597), TNF-!(MP6-XT22),
CD95(15A7), CD21(7G6), CD86(GL-1), CD80(16-10A1), c-kit(2B8)
(eBioscience), Ly-6G(1A8), Siglec-F(E50-2440), CD138(281-2) (BD Bio-
sciences), and PNA (Vector Laboratories).

For intranuclear FoxP3 stainings (eBioscience) according to the manu-
facturer’s instructions, dead cells were excluded with ethidium monoazide
bromide. Samples were acquired on FACSCalibur and FACSCantoII (BD Bio-
sciences) machines and analyzed with FlowJo software (TreeStar). For intracellu-
lar cytokine stainings, cells were stimulated for 5 hours at 37°C with 10nM
phorbol myristate acetate (Calbiochem), 1mM ionomycin (Calbiochem), and
10nM brefeldin-A (Applichem). Cells were treated with Fc-block (eBioscience),
and washed and surface-stained before fixation with 2% paraformaldehyde and
permeabilization with 0.5% saponin. For in vitro culture, cells were purified by
MACS (Miltenyi Biotec; % 85%-90% pure). Final concentrations of the activat-
ing stimuli: 2.5 &g/mL !CD40 (HM40–3, eBioscience), 10 &g/mL !IgM
(Jackson ImmunoResearch Laboratories), 0.1&M CpG (InvivoGen), 20 &g/mL
lipopolysaccharide (LPS; Sigma-Aldrich), and 4 ng/mL IL-4 (R&D Systems).
Enzyme-linked immunosorbent assays were conducted using antibody pairs to
IL-6 (BD Biosciences) and TNF (BD Biosciences). Cell-cycle analyses by pro-
pidium iodide (PI) and carboxyfluorescin diacetate succimidyl ester (CFDASE)
were conducted as described.20

Real-time PCR

RNA was isolated (QIAGEN RNeasy Mini Kit) and reverse transcribed
(Promega) for quantitative real-time polymerase chain reaction (PCR)
using probes and primers from the Universal Probe Library (Roche
Diagnostics) according to the manufacturer’s instructions.

Biochemistry

B-cell whole-cell, cytoplasmic, and nuclear lysates were essentially pre-
pared as published.20 PVDF membranes were blotted with the following
antibodies: p-I"B!, p-ERK, ERK, p-JNK, JNK, p-Akt, Akt, p-p38, p38,
p100/p52 (Cell Signaling); I"B!, PLC#2, RelB, RelA, c-Rel, Lamin
B (Santa Cruz Biotechnology); tubulin (Upstate Biotechnology); p105/50
(Abcam); and A20.19

Immunofluorescence and immunohistochemistry

For immunofluorescence stainings, frozen 10-&m sections were thawed,
air-dried, methanol-fixed, and stained for 1 hour at room temperature in a
humidified chamber with B220-fluorescein isothiocyanate (eBioscience),
biotinylated rat anti-CD3 (BD Biosciences), biotinylated rat anti-CD138
(BD Biosciences), and rabbit anti–laminin (gift from Michael Sixt)
followed by Cy3-streptavidin and Cy5-conjugated anti–rabbit antibodies
(Jackson ImmunoResearch). Immunohistochemically, MZB cells were
identified by anti-CD1d (eBioscience) and metallophilic macrophages
by anti-MOMA1 (Serotec). Detection of IgG immune complexes in
paraformaldehyde-fixed kidney sections was performed using peroxidase-
labeled anti–mouse IgG antibodies and 3-amino-9-ethylcarbazole staining
(Vector Laboratories). For the detection of tissue-specific autoantibodies,
frozen sections from organs of Rag2'/' mice were incubated with sera of
aged and control mice and an anti–mouse IgG-Cy3 conjugate (Jackson
ImmunoResearch Laboratories).

Images were acquired on a Zeiss Axiophot microscope (10(/0.3 or
20(/0.75 objectives; Carl Zeiss) using a Zeiss AxioCamMRm camera (Carl
Zeiss) for monochromatic pictures and a Zeiss AxioCamMRC5 for RGB
pictures. The following software programs were employed: Axiovision release
4.8 (Carl Zeiss), Photoshop CS4 and Illustrator CS4 (Adobe Systems).

Immunizations, ELISA

Mice were immunized intraperitoneally with 10 &g NP-Ficoll (Biosearch
Technologies) and bled by the tail vein. Serum immunoglobulin concentra-
tions and NP-specific antibodies were determined by ELISA.21 The
detection of antinuclear and anticardiolipin autoantibodies was performed
using ELISA kits (Varelisa). Rheumatoid factor: ELISA plates were coated
with rabbit IgG (Jackson ImmunoResearch Laboratories).

Results

Loss of A20 leads to defects in the generation and/or
localization of mature B-cell subsets

To inactivate A20 specifically in B lineage cells at different
developmental time points and to distinguish the specific effects of
A20 ablation from potential artifacts inherent to individual cre-
transgenic strains,22 we initially investigated the consequences of
CD19cre- and Mb1cre-mediated ablation of A20 in parallel (supple-
mental Figure 1A, available on the Blood Web site; see the
Supplemental Materials link at the top of the online article).
Because we did not observe any significant differences between
CD19cre/A20F/F and Mb1cre/A20F/F mice in our experiments, we
refer to them collectively as BA20'/' mice (BA20)/' for heterozy-
gous deletion). Most of the experiments presented here were
conducted using CD19cre. Efficient loss of the NF-"B–inducible
A20 protein in B cells of these mice was confirmed by Western
blot in both resting conditions and after treatment with LPS
(Figure 1A).

Loss of A20 does not affect early B-cell development in the
bone marrow, except for a minor increase in immature B cells. In
contrast, the number of mature recirculating B cells is significantly
reduced (supplemental Figure 1C-E). BA20'/' mice have enlarged
spleens, coinciding with a minor increase in total B-cell numbers
(supplemental Figure 1B; Figure 1B), suggesting that other cell
types are also expanded. Mature follicular B-cell numbers are
unaffected by A20 deficiency, but immature transitional B cells
accumulate (Figure 1C-D) without any apparent block within the
transitional compartment (supplemental Figure 2A). The numbers
of marginal zone B (MZB) cells, defined by CD1d and CD21
expression (Figure 1C), are elevated because of an expansion of
CD23) MZB precursor cells (Figure 1E; supplemental Figure 2B).
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Inspection of the splenic follicular organization by immunofluores-
cence revealed normal B- and T-cell compartments in BA20'/'

spleens (Figure 1F). However, in BA20'/' spleen sections, CD1d-
expressing MZB cells are mostly located inside the follicle, whose
border is defined by MOMA-1-expressing metallophilic macro-
phages located adjacent to the marginal sinus. In contrast, on
BA20)/' and control spleen sections, CD1d-expressing cells are
properly located in the marginal zone (Figure 1F). Immunofluores-
cent detection of laminin and B cells indicates that the BA20'/'

splenic marginal zone is essentially devoid of B cells (supplemental
Figure 2B), further demonstrating that A20-deficient MZB cells are
not at their proper location. To test MZB cell function, we treated
splenocyte cultures with LPS for 3 days and monitored the
differentiation of short-lived plasma cells. At early times after
activation of splenic B cells by LPS MZB cells, and to much lesser
extent follicular B cells, differentiate into short-lived plasma
cells.23 As opposed to control B cells, A20-deficient splenic B cells
show a profound defect in their ability to differentiate into
Blimp1-expressing plasmablasts after LPS stimulation in vitro
(Figure 1G-H), indicating the absence or paucity of functional
MZB cells. Further underscoring this notion, BA20'/' mice display
a significant reduction in the production of class-switched, antigen-
specific IgG3 after immunizations with the TI-II antigen NP-Ficoll
(Figure 1I), a response exquisitely dependent on the presence of
MZB cells.24 These results are in line with a significant reduction of
total IgG3 serum levels in naive BA20'/' mice. IgG1 levels are also
lower in these mice, whereas IgG2c and IgG2b levels are un-
changed and IgM and IgA serum levels are strongly elevated (Figure
2A; supplemental Table 1). Supporting a role for A20 in B-cell
differentiation and/or proper localization, peritoneal B1, especially B1a

cells, are reduced in BA20'/' mice (Figure 2B; supplemental Figure 2E).
In addition, thymic B cells are reduced in BA20'/' mice, although they
appear elevated in BA20)/' mice (supplemental Figure 2D). Together,
our results uncover several surprising deficiencies in the gen-
eration, differentiation, and/or maintenance of mature B-cell subsets in
absence of A20. The affected subsets include MZB and B1 cells, which
are thought to mediate the innate functions of the B lineage.25

A20-deficiency enhances GC B-cell formation in gut-associated
lymphoid tissues

Given A20’s role as negative regulator of NF-"B signaling, we
expected A20-deficient B cells to be hyper-reactive to stimulation.
We did not observe significant spontaneous GC formation in the
spleens of the mice analyzed, indicating that spontaneous B-cell
activation, if present in these mice, is not strong enough to induce
GCs. In naive mice, gut-associated lymphoid tissue (GALT) is the
place where B cells are constantly triggered by bacterial antigens to
enter the GC.26 The percentages and, to a lesser extent, absolute cell
numbers of GC B cells in mesenteric lymph nodes and Peyer
patches are increased in BA20'/' and BA20)/' mice (Figure 2C; and
data not shown). This shows that, during B-cell activation by
bacterial antigens in the GALT, strong hemizygous effects of
A20 deficiency become apparent.

B cell–specific lack of A20 induces the spontaneous expansion
of regulatory T, effector-type T, and myeloid cells

The increase in transitional and MZB precursor cell numbers is not
sufficient to explain the higher splenocyte numbers in young
BA20'/' mice (Figure 1B). Further detailed analyses showed that

Figure 1. Conditional knockout of A20 in B cells
induces severe defects in B-cell development and
differentiation. (A) A20 protein expression in CD43-
depleted B cells after 4-hour culture with or without
10 &g/mL LPS. (B-E) Absolute cell numbers were calcu-
lated from 5 to 7 age-matched mice per genotype.
Data are mean * SD. (B) Absolute splenocyte and B-cell
numbers of the indicated genotypes. (C) Absolute cell num-
bers of splenic mature (B220)AA4.1'), marginal zone/
marginal zone precursor (MZ; MZ-P: B220)CD1dhighCD21high),
follicular (B220)AA4.1'CD1d'CD23)), and transitional
(B220)AA4.1)) B cells. (D) Representative proportions
of transitional (Trans: B220)AA4.1)) and mature
(B220)AA4.1') B cells of total lymphocytes (top panels)
and of follicular (FO: CD1dintCD21int) and marginal
zone/marginal zone precursor (MZ: CD1dhighCD21high)
B cells of CD19) B cells (bottom panels) in the spleen.
(E) CD23 expression on B220)CD1dhiCD21hi B cells
(left panel). Absolute cell numbers of marginal zone
(B220)CD1dhiCD21hiCD23lo) and marginal zone precursor
(B220)CD1dhiCD21hiCD23hi) B cells (right panel). (F) Top
panels: Immunofluorescence of spleen sections: green
represents !B220, B cells; red, !CD3, T cells; and blue,
laminin. Bottom panels: Immunohistochemistry of spleen
sections: blue represents MOMA-1, metallophilic macro-
phages; and brown, CD1d-expressing cells. Bar repre-
sents 100 &m. (G) Proportions of B220loCD138hi plasma
blasts in splenic B cells 3 days after LPS treatment.
(H) Blimp1 mRNA expression relative to porphobilinogen
deaminase was determined by real-time PCR in splenic
B cells 3 days after LPS treatment. (I) Antigen-specific IgM
and IgG3 serum titers in response to T-independent im-
munizations with 10 &g NP-Ficoll determined by ELISA.
Lines represent geometric means for 5 mice per experimen-
tal group. *P + .05 (1-way analysis of variance). **P + .001
(1-way analysis of variance).
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homozygous and heterozygous ablation of A20 in B cells
induces elevated numbers of T and myeloid cells. The sizes of
many splenic T-cell compartments are increased in BA20'/'

mice, especially the regulatory (Figure 3A-B), memory-type and
effector-type CD4 (Figure 3B), and effector-type CD8 T cells
(Figure 3C). Similar effects on T cells were observed in the
lymph nodes (data not shown). The analysis of ex vivo T-cell
cytokine production by intracellular staining revealed compa-
rable proportions of IL-17–, interferon-#– and TNF-producing
cells between BA20'/' and control mice (Figure 3E). We were
unable to detect any IL-4-producing cells (not shown). These
analyses suggest the absence of detectable T-cell differentiation
into specific T-helper lineages. The cell numbers of all splenic
myeloid subsets analyzed were higher in BA20'/' compared
with control mice, with significant increases in dendritic cells
and eosinophils (Figure 3D). Importantly, heterozygous loss of
A20 in B cells induces an intermediate phenotype (Figures
3A-D) in most aspects of this immune deregulation. BA20)/'

mice contain even higher proportions of splenic regulatory and
effector T cells than BA20'/' mice (Figure 3A). However, the
higher absolute cell numbers of total CD4 T cells in BA20'/'

mice leads to the greatest absolute cell numbers also in these
subsets (Figure 3B). BA20'/' and BA20)/' mice contain elevated
proportions of IL-10–producing B cells (supplemental Figure
2C), excluding the possibility that absence of this immune-
regulatory B-cell subset27 causes the perturbation in immune
homeostasis. To validate that CD19cre mediates inactivation
of A20 alleles only in B cells, we performed PCR on DNA
purified from splenic cell subsets of BA20'/' mice. The purified
T cells, dendritic cells, macrophages, and granulocytes contain
less than 0.2% A20-knockout cells, which could be contami-
nating B cells (supplemental Figure 3). Our findings therefore
indicate that the absence or gene-dose reduction of A20, spe-
cifically in B cells, induces an immune deregulation reminiscent
of sterile inflammation, possibly held in check by regulatory
lymphocyte subsets.

Figure 2. A20-deficiency impairs B1 cell generation
but enhances GC formation in the GALT. (A) Titers of
immunoglobulin isotypes were determined by ELISA;
n , 6 to 12 per genotype. (B) Absolute cell numbers of
B-cell subsets in the peritoneal cavity: B2 (CD19)B220)),
B1 (CD19highB220low), B1a (CD19highB220lowCD5)), and
B1b (CD19highB220lowCD5') cell numbers were calcu-
lated from 5 to 7 age-matched mice per genotype. Data
are mean * SD. (C) Left panel: Proportions of GC
(CD19)PNAhiFashiCD38lo) of total B cells in Peyer patches.
Data are mean * SD of 8 mice per genotype. Right panel:
Proportions of GC B cells depicted as individual data
points (left chart), absolute cell numbers for naive B cells
(mantle zone B cells: CD19)PNA' Fas'CD38hi; middle
chart), and GC B cells (right chart). Bars represent medi-
ans of 8 mice per group (same as in the left panel).
*P + .05 (1-way analysis of variance). **P + .001 (1-way
analysis of variance).

Figure 3. Ablation of A20 in the B-lineage has
B cell-extrinsic effects on immune homeostasis.
(A) Dot-plots showing percentages of CD4)Foxp3) regula-
tory T cells and CD4)CD25' T cells (naïve indicates
CD44intCD62Lhi; memory, CD44hiCD62Lhi; and effector,
CD44hiCD62Llo) in the spleen. Numbers indicate the mean
of 4 to 6 mice for each genotype. (B-D) Absolute cell
numbers of CD4 T (B), CD8 T (C), and myeloid cell
(D) subsets in BA20'/', BA20)/', and CD19cre mice (n , 6
per group; 8-12 weeks old). Data are mean * SD. Treg
indicates Foxp3); naive, CD44intCD62Lhi; memory,
CD44hiCD62Lhi; effector/memory, CD44hiCD62Llo; DC, den-
dritic cell (CD11c)); Eos, eosinophils (Gr1intSiglecF)); Mac,
macrophages (Mac1)Gr1lo); and Neu, neutrophils
(Gr1hiLy6G)). (E) Intracellular cytokine staining of ex vivo
isolated splenocytes (gated on T cells). Numbers represent
mean plus or minus SD of 3 mice per genotype. *P + .05
(1-way analysis of variance). **P + .001 (1-way analysis of
variance).
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A20 regulates B-cell responses in vitro in a
gene-dose–dependent fashion

Our observations of enhanced GC B-cell formation in the GALT in
BA20'/' and BA20)/' mice suggested the possibility that their
B cells are more easily activated in this context. To analyze this in
more detail, we first quantified the relative A20 mRNA expression
at different time points after activation with !IgM, !CD40, LPS,
CpG DNA, and TNF. All these stimuli induced a strong increase in
A20 mRNA, peaking at approximately 1 hour (supplemental
Figure 4A), prompting us to test the in vitro responses of purified
A20-deficient and A20)/' B cells to these mitogens. B cells
up-regulate certain cell surface molecules (activation markers)
upon activation, among them B7.1/CD80, B7.2/CD86, MHC II,
CD25, and Fas. The expression of these markers was already
slightly higher in unstimulated B cells purified from BA20'/' and
BA20)/' mice compared with control B cells (Figure 4A; supplemen-
tal 4B). This is probably because of the latent immune activation
we observed in these mice. Upon activation with the indicated
mitogens, A20-deficient B cells produced higher surface levels of
many activation markers (Figure 4A; supplemental Figure 3B).
B cells carrying one functional A20 allele showed an intermediate

phenotype regarding expression of these activation markers (Figure
4A). We then monitored !IgM-, !CD40-, LPS-, and CpG DNA-
induced proliferation by 3 assays: Both [3H]thymidine incorpora-
tion (Figure 4B) and cell cycle analysis (Figure 4C) showed increased
proliferative activity in the A20-deficient B-cell cultures in response to
all stimuli, and quantification of live cells revealed increased survival
after all stimuli, except for CpG DNA (Figure 4C). By CFSE dilution
assay (Figure 4D), we determined that the absence of A20 increased the
proportion of B cells that initially start to divide (% divided) in response
to !CD40 and LPS. Only CpG DNA and BCR crosslinking
enhanced the proliferation of dividing A20-deficient B cells
(Proliferation Index; Figure 4D). Combination of stimuli, such as
LPS and !IgM, or the addition of IL-4, did not yield additive
effects (supplemental Figure 4C). In all stimulations, the magni-
tude of the A20)/' B-cell response was in between A20'/' and
control B cells (Figure 4B-D). Taken together, our studies show
that reduction of A20 function magnifies B-cell responses through
3 mechanisms, depending on the activating stimulus: lowering the
threshold for initial activation (!CD40, LPS), protecting activated
B cells against apoptosis (!IgM, !CD40, LPS), and enhancing the
proliferation of cells that were activated to divide (!IgM, CpG).

Figure 4. A20-deficiency amplifies B-cell responses.
(A) Expression levels of the respective B-cell activation
marker after overnight stimulation with LPS or !CD40. The
dot-plots are representative of 3 to 6 independent experi-
ments. (B) [3H]Thymidine incorporation during a 10-hour
pulse 48 hours after stimulation of B-cell cultures with
!IgM, !CD40, LPS, or CpG. Data are mean * SD of
triplicate measurements. The experiment was repeated
with similar results. (C) Cell cycle profile analysis by
propidium iodide staining of B cells 2 days after stimulation
with the indicated mitogens. Percentages of dead (sub G0)
and live cells are indicated at the top of each histogram.
The distribution within the cell cycle was calculated with
the FlowJo software Version 8.7.3 using the Watson model
(values do not add up to 100%). Data are means of
2 independent experiments. (D) Assessment of prolifera-
tion by the carboxyfluorescein succinimidyl ester dilution
assay: histograms represent carboxyfluorescein succinimi-
dyl ester intensities 3 days after stimulation. The tables
under each histogram show the proliferation index (Prol.
Index: average number of divisions of the proliferating
cells), the percentage of dividing cells (% Divided: the
proportion of cells that initially started to divide), and the
division index (Div. Index: average number of divisions of
all cells); values were calculated with the FlowJo software.
Data represent the means of 5 independent experiments,
and bold values are significantly different (P + .05) from
wild-type according to 1-way analysis of variance analysis.
(E) Evaluation of IL-6 production in overnight activated B
cells by ELISA (top panels), intracellular FACS (middle
panels), and real-time PCR (bottom panels). For intracellu-
lar FACS, B cells were stimulated for 3 days. cDNA was
quantified relative to porphobilinogen deaminase. Data
are mean * SD of 3 independent experiments. (F) Quanti-
fication of TNF production by overnight-stimulated B cells
via ELISA. Data are mean * SD of 3 independent
experiments.
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A20-deficient B cells exhibit spontaneous IL-6 secretion and
highly elevated IL-6 secretion on activation

In light of the T effector and myeloid cell expansion, we wondered
whether the higher excitability of A20-deficient B cells leads to
secretion of proinflammatory cytokines, which in turn affect the
differentiation and expansion of immune cells. IL-6 is a pleiotropic
cytokine with inflammatory activity, and its levels are up-regulated
in various autoimmune diseases, such as rheumatoid arthritis and
SLE.28 Activated A20-deficient B cells produced dramatically more
IL-6 mRNA and protein than control B cells in response to all
mitogens (Figure 4E). We could again detect an intermediate
phenotype in A20)/' B cells (supplemental Figure 4D). Indeed,
A20-deficient B cells spontaneously produced and released IL-6
into the cell culture medium in the absence of stimulation in
comparable amounts to the IL-6 secretion in !IgM-stimulated
control B cells (Figure 4E). A20-deficient B cells also produced
slightly more TNF in response to all stimuli (Figure 4F). In accord
with these findings, we detected more IL-6 and TNF-producing
cells in ex vivo isolated A20-deficient compared with control
B cells (supplemental Figure 4E). The evaluation of IL-6 produc-
tion in immune cell subsets of 3- to 4-month-old BA20'/' mice by
intracellular flow cytometry and real-time PCR revealed that, in
addition to B cells, dendritic cells and, to a lesser extent,
macrophages also produce IL-6 (supplemental Figure 5). This
suggests that secondary activation of myeloid cells by A20-
deficient B cells exacerbates the immune deregulation in
BA20'/' mice.

A20 negatively regulates canonical NF-!B, but not MAPK or
AKT activation, in response to engagement of the
BCR, CD40, and TLRs

We established that A20 is a gene-dose–dependent negative
regulator of B-cell activation in response to triggering of the BCR,
CD40, and TLRs. A20 was reported to limit the activation of
canonical NF-"B in response to various stimuli in other cell
types.14,16 Therefore, we wanted to confirm that the hyper-reactivity
of A20-deficient B cells also correlates with enhanced canonical
NF-"B activity in response to the stimuli used in our study. Indeed,
the absence of A20 selectively enhances the activation of the
canonical NF-"B pathway, evidenced by prolonged increased
I"B! phosphorylation and degradation (Figure 5A-C). The activa-
tion of MAPK pathways or AKT phosphorylation was unaltered in
response to !IgM, LPS, and !CD40 (Figure 5A-C). The increased
I"B! phosphorylation correlated well with an increase in nuclear
translocation of p50 and RelA 2 and 4 hours after activation with
!CD40 (Figure 5D). We detected elevated expression of p100 and
RelB, substrates of the alternative NF-"B pathway and transcrip-
tional targets of canonical NF-"B in whole cell extracts of
A20-deficient B cells (data not shown) in accord with the higher
canonical NF-"B activity in these cells. Taken together, although
we do not rule out that A20 has additional functions, we demon-
strate that deficiency for A20 in B cells strongly enhances
activation of the canonical NF-"B pathway in response to BCR
cross-linking (antigen), T-cell costimulation (!CD40), and micro-
bial components (TLRs).

Figure 5. A20 controls canonical NF-!B activation in
response to B-cell mitogens. (A-C) Western blot of whole
cell lysates stimulated for the indicated time points with
(A) 10 &g/mL !IgM, (B) 20 &g/mL LPS, and (C) 10 &g/mL
!CD40. (D) Western blots on cytoplasmic and nuclear
extracts after stimulation with !CD40. Results are represen-
tative of 2 or 3 independent experiments.
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Loss of A20 in B cells leads to autoimmune pathology in
old mice

To assess the impact of the chronic proinflammatory state induced
by B cell-specific loss of A20 in old age, we aged a cohort of
BA20'/' and control mice. Histologic analysis of organs from
20-week-old BA20'/' mice did not yield any signs of inflammation
(not shown). BA20'/' mice, more than one year old, on the contrary,
were characterized by splenomegaly (Figure 6A; supplemental
Figure 6A-B). Although total B-cell numbers were not significantly
elevated in old BA20'/' compared with control mice, all A20'/'

B cells appeared activated, as judged by the larger cell size and
elevated levels of the activation marker CD69 (Figure 6B). In
addition, we observed a marked expansion of PCs in the spleen
(Figure 6C; supplemental Figure 6C), but not in the bone marrow
(data not shown). Immunofluorescence analysis of the enlarged
spleens revealed a diffuse pattern of PCs surrounding altered and
disrupted B-cell follicles (Figure 6D). Analysis of the serum
isotype titers in aged BA20'/' mice revealed higher IgM titers
compared with controls, as seen in young mice. However, in
contrast to the latter, in old BA20'/' mice the levels of the
pathogenic IgG2b isotype29 are elevated (Figure 6E; supplemental
Table 2). The increase of effector and regulatory T cells, already
apparent in young BA20'/' mice, has further expanded in old mice,
at the expense of the respective naive compartments (Figure 6F-G).
In addition, the expansion of myeloid cell subsets was much more
pronounced (Figure 6H). The progressive nature of the inflamma-
tion in the BA20'/' mice is also reflected in elevated levels of serum
IL-6 in aged BA20'/' mice (Figure 6I), which could not be detected

in the 20-week-old BA20'/' mice (not shown). Histologic analysis
of organs from aged mice revealed inflammatory infiltrates in the
liver and kidney of most of the old BA20'/' mice (supplemental
Figure 6D). Examinations of the renal pathology revealed no
extensive glomerular damage but clear IgG immune complex
depositions in aged BA20'/' mice (Figure 6J).

Given this finding, we tested the sera of all old BA20'/' and
control mice for indicators of self-recognition. Class-switched
antibodies against nuclear self-antigens (ANAs) are the most
common autoantibodies observed in autoimmune conditions in
mice and humans.30 Sera from BA20'/' mice did not contain
significantly higher ANA levels than sera from the controls, and we
also did not detect enhanced reactivity to endogenous red blood
cells (Figure 7A). In addition, we observed increased levels of
rheumatoid factor of the IgM isotype in some BA20'/' mice, but not
of the IgG isotype (Figure 7A). However, we detected significantly
elevated amounts of anticardiolipin IgG antibodies in aged BA20'/'

mice (Figure 7A), demonstrating systemic class-switched autoim-
mune reactivity. To evaluate whether antiphospholipid antibodies
are already detectable in younger mice, we screened the sera of
3-month-old mice. We detected elevated anticardiolipin IgG anti-
bodies in sera from BA20'/' mice (and BA20)/' mice) compared
with control sera, but the differences were not statistically signifi-
cant (Figure 7C).

To screen for further autoreactivity against potentially tissue-
specific self-antigens, we incubated organ sections of Rag2'/'

mice with the sera of the aged mice. We detected autoreactive
class-switched IgG antibodies in the sera of BA20'/', but not of

Figure 6. Splenomegaly and plasma cell hyperplasia in old
BA20"/" mice. Cohort description: age range, 60 to 85 weeks;
mean age of experimental group, 68 weeks; mean age of control
group, 66 weeks. (A) Absolute cell numbers of splenocytes
(n(BA20'/') , 10, n(control) , 9). (B) Left panel: Absolute cell
numbers of B cells (CD19); n(BA20'/') , 12, n(control) , 11).
Right panel: Representative size and CD69 expression of splenic
B220) B cells. (C) Absolute cell numbers of splenic plasma cells
(B220loCD138hi; n(BA20'/') , 10, n(control) , 9). (D) Representa-
tive immunofluorescence analysis of plasma cells in the spleen,
plasma cells (red represents !CD138), B cells (green represents
!B220). Bar represents 100 &m. (E) Titers of immunoglobulin
isotypes in aged mice were determined by ELISA; n(BA20'/')
, 12, n(control) , 11. (F-H) Absolute splenic cell numbers for the
following cellular subsets: CD4 T cells. (F) Treg (CD4)CD25)); CD4)

naive (CD25'CD44intCD62Lhi), memory-type (CD25'CD44hiCD62Lhi),
and effector T (CD4)CD44hiCD62Llo); CD8-T cells. (G) Naive
(CD44intCD62Lhi), memory-type (CD44hiCD62Lhi), and effector
T (CD44hiCD62Llo); myeloid cells (H): DC indicates dendritic cell
(CD11c)); Eos, eosinophils (Gr1intSiglecF)); Mac, macrophages
(Mac1)Gr1lo); and Neu, neutrophils (Gr1hiLy6G)). n(BA20'/') , 5,
n(control) , 5. (I) Serum IL-6 (pg/mL) in aged mice was measured by
ELISA; n(BA20'/') , 12, n(control) , 11. (J) Representative stainings
of IgG immune complexes in kidneys of BA20'/' and control mice.
Original magnification ( 20. *P + .05 (1-way analysis of variance).
**P + .001 (1-way analysis of variance).
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control mice, directed predominantly against kidney, harderian
gland, stomach, thyroid gland, eye, liver, and lung (Figure 7B;
supplemental Figure 6E). Pancreas, salivary, lacrimal, and adrenal
glands were also recognized by sera from few BA20'/' mice but
with a lower penetrance compared with the organs mentioned
earlier (Figure 7B). Notably, the kidney was recognized by
autoantibodies in the sera of the majority of BA20'/' mice.
Therefore, we conclude that A20-deficient B cells induce chronic
progressive inflammation, which results in significant autoimmune
manifestations and pathologic alterations in old mice.

Discussion

The prevalent inactivation of the ubiquitin-editing enzyme A20 in
human B-cell lymphoma and the linkage of polymorphisms in the
A20/TNFAIP3 gene to human autoimmune diseases raise the
question of its function in the B-lineage, especially during B-cell
activation.

The major molecular function of A20 uncovered to date is the
negative regulation of canonical NF-"B activation.14 We confirm
that, also in B cells, A20 limits activation of this signaling pathway
by all relevant physiologic inducers. Constitutive activation of
canonical NF-"B in B cells induces B-cell hyperplasia, especially
pronounced in MZB cells.20 In contrast, we uncovered that
A20 activity is required for the correct localization of MZB cells
and for MZB cell function. Therefore, we conclude that proper
differentiation of A20-deficient MZB cells does not take place. In
addition, A20 is needed for the generation or cellular maintenance
of peritoneal B1, bone marrow recirculating and thymic B cells,
either directly or by mediating their correct localization. Reduced
cellular maintenance could be caused by lower sensitivity to
survival signals available in naive mice, but also by increased
terminal differentiation because of their hyperactivatable state. The

elevated IgA serum levels could be a consequence of the enhanced
GC reactivity in the GALT of BA20'/' mice. Another possible
explanation is that the lower levels of B1a cells could, at least in
part, be caused by their enhanced differentiation to IgA-producing
plasma cells in response to inducing signals, such as IL-15,31 a
cytokine known to induce NF-"B activation. This phenomenon
could also contribute to the elevated IgM levels. Because B1 cells
are thought to be the main source of naturally occurring autoanti-
bodies in naive mice,32 this could signify that also natural
autoantibody IgM titers, which are not pathogenic but rather play a
protective role, are enhanced in the BA20'/' mice. The accumula-
tion of A20-deficient precursor populations (transitional B cells and
MZB cell precursors) points to blocks in development, although we
cannot exclude a role for impaired negative selection.

Taken together, our data on B-cell development and in vitro
activation studies suggest the following: A20 activity is required to
limit acute B-cell activation induced by stimuli connected to
invasion by pathogens. Its absence reduces the activation threshold
and enhances survival and proliferation in response to such stimuli.
On the other side, the absence of A20 does not render B cells more
responsive to maintenance signals required for mature resting cells.

Increased B cell–mediated IL-6 secretion resulting from spo-
radic local activation and, at least in the case of A20 deficiency,
spontaneous production and release of IL-6 is a probable underly-
ing cause of the effector T-cell differentiation and myeloid cell
hyperplasia that we observed in BA20'/' and BA20)/' mice.
Subsequent cytokine secretion by activated myeloid cells most
probably amplifies this response. Indeed, Tsantikos et al recently
showed that effector T-cell activation, myeloid cell expansion, and
the development of autoimmune disease in Lyn-deficient mice,
which strikingly resemble BA20'/' and BA20)/' mice in this regard,
are entirely dependent on the secretion of IL-6.33 Interestingly, the
authors also observed expansion of CD4)CD25) T cells but did
not investigate whether they represent activated or regulatory

Figure 7. Autoimmune manifestations in old BA20"/" mice.
(A) Analysis of autoantibodies in aged mice. ANA indicates
that antinuclear IgG antibodies were detected by ELISA,
n(BA20'/') , 12, n(control) , 21; !RBC-IgM, antierythrocyte
IgM was detected by FACS and represented as mean
fluorescence intensity, n(BA20'/') , 8, n(control) , 4. IgG
and IgM rheumatoid factor (RF) was measured by ELISA;
n(BA20'/') , 12, n(control) , 11. !-Cardiolipin IgG antibod-
ies were detected by ELISA; n(BA20'/') , 12, n(control) , 11.
*P + .05 (2-tailed unpaired Student t test). **P + .001
(2-tailed unpaired Student t test). (B) Table depicting the
self-reactivity of sera from individual BA20'/' mice against the
indicated organs from Rag2'/' mice. ), )), and )))
indicate the severity of autoreactivity; and n.s., not screened.
(C) Levels of !-cardiolipin IgG autoantibodies in 3-month-old
mice (left panel; n , 8 per genotype) and in 11-month-old
mice (right panel; n , 5 per genotype) were detected by
ELISA. *P + .05 (1-tailed unpaired Student t test).
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T cells.33 The enhanced numbers of Tregs we observe in the
BA20'/' and BA20)/' mice appear paradoxical in the context of
elevated IL-6 levels.34 We suggest that they expand and/or are
induced in reaction to the IL-6-driven inflammation. However, the
presence of IL-6 increases the resistance of effector T cells to
suppression by regulatory T cells,35 both systemically and locally.
Expansion of Tregs has also been observed in the BWF1 mouse
model for human SLE.36 Whether, and to what extent, an expanded
Treg population serves to keep the sterile inflammation in check is
an intriguing question to be tested in future studies.

While this manuscript was in preparation, a study by Tavares et
al on the same topic was published.37 The authors also found a
convincing gene-dose–dependent effect of A20 ablation on B-cell
activation. They detected elevated levels of antibodies in the serum
of CD19cre/A20F/F mice that recognize self-antigens on a protein
array. However, in their approach, anti–mouse Ig was used to detect
autoantibodies, which also recognizes IgM. Indeed, both studies
find highly elevated titers of IgM in naive BA20'/' mice (in our
case, a 10-fold difference in the geometric mean). Naturally
occurring autoantibodies are mostly of the IgM isotype.38,39

Therefore, the increased recognition of self observed by Tavares et
al37 could reflect, at least to some degree, this increase in natural
autoantibodies. This possibility is substantiated by the fact that
only IgM) dsDNA-recognizing plasma cells were detected and that
IgM immune complex deposits were revealed in naive 6-month-old
mice, in the absence of any sign of pathology.37 Given that the role
of IgM autoantibodies is also discussed as being protective,38,39 it is
unclear whether the autoreactivity observed in younger mice
contributes to the development of, or helps to prevent, disease.

We observed significant autoreactivity of class-switched antibod-
ies only in old mice, together with autoimmune pathology
and inflammation. The chronic inflammation induced by the
A20-deficient B cells perhaps contributes to a progressive break in
B-cell tolerance resulting in the production of class-switched,
autoreactive antibodies. The immune senescence of old age might
also contribute to this break in tolerance.32 The inflammatory
microenvironment in the spleen, and potentially in other affected
organs, together with the elevated presence of the pleiotropic
cytokine IL-6, may serve as a niche for the (autoreactive) plasma
cells. However, we do not detect significant levels of IgG ANAs,
the hallmark of SLE.30 Instead, we observe general IgG autoreactiv-
ity to cardiolipin, a common autoantigen in autoimmune dis-
ease30,40 in old BA20'/' mice. The presence of tissue-specific
class-switched autoantibodies strongly underscores the loss of
tolerance. Some pathologic features of the old BA20'/' mice are
reminiscent of human Castleman disease, namely, massive infiltra-
tions of plasma cells and the elevated presence of IL-6.28,41 It is
indeed possible that the disturbed B-cell development, including
the elevated levels of naturally occurring auto-IgM, are preventing
a more severe syndrome. Heterozygous BA20)/' mice display

inflammation and B-cell hyper-reactivity, but no developmental
defects. Therefore, they might represent a good tool for modeling
the reduced expression or function of A20 that should underlie the
link between mutations and polymorphisms in A20/TNFAIP3 and
human autoimmune disease. Indeed, initial analyses revealed
elevated class-switched antibodies against cardiolipin in a cohort of
11-month-old BA20)/' mice (Figure 7C).

We demonstrate here that selective loss of A20 in B cells is
sufficient to cause an inflammatory syndrome with autoimmune
manifestations in old mice. This condition is characterized by a
progressive chronic inflammation, elevated levels of IL-6, dramatic
plasma cell expansion, and the presence of class-switched systemic
and tissue-specifc autoantibodies. The exquisite dose effects of
monoallelic loss of A20 make it a prime target for deregulation by
proinflammatory miRNAs and oncomirs in disease contexts. Our
results demonstrate that B-cell hyper-reactivity caused by reduced
A20 function can contribute to the observed link between inherited
genetic mutations or polymorphisms in A20/TNFAIP3 and various
human autoimmune diseases.
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Cell purification and flow cytometry 
The purification of lymphocyte and leukocyte subsets was achieved by a two step 
procedure. Splenic cell suspensions were first separated into CD43-expressing and 
CD43-negative fractions by MACS (Miltenyi). The CD43-negative fraction was stained 
with antibodies against B220 (eBioscience) and CD19 (eBioscience) and B220+CD19+ 
B cells were purified using a FACSAria (BD). The CD43-positive fraction was stained 
with antibodies against B220, TCR , CD11c, Gr-1 and Mac1 (all eBioscience). The 
following subsets were purified by FACS: T cells (B220 TCR +), dendritic cells 
(B220 TCR CD11c+), granulocytes (B220 TCR CD11c Gr1+Mac1lo) and 
macrophages (B220 TCR CD11c Gr1loMac1hi). All cell populations were over 99% 
pure. 
 
For intracellular ex vivo IL-6 stainings of lymphocytes and leukocyte subsets, cells were 
stimulated for 5 h at 37°C with 10 nM brefeldin-A (Applichem). 
 
PCR to identify A20 knock-out cells 
PCR was performed using the primers a (CATTTAACCCTTCTGAGTTTCCA), b 
(CCGGGCTTTAACCACTCTC), c (CCACCCCTATTACTACGTGACC) and the following 
touchdown program: (1) 95°C 3min, (2) 95°C 30s, (3) 65°C 45s, (4) 72°C 60s, while 
steps (2)–(4) are repeated 10 times, the annealing temperature is decreased by 
1°C/cycle, until 55°C is reached; (5) 95°C 30s, (6) 55°C 45s, (7) 72°C 60s, (5)–(7) are 
repeated 20 times; (8) 72°C 5min, (9) 4°C 15min. The PCR was conducted with either 
all three primers or only two (b, c) to specifically amplify the A20-knockout allele. PCR 
was performed on DNA isolated from the purified cell subsets. To estimate the 
sensitivity of the PCR for the knockout allele, we diluted DNA from CD19cre/A20F/F B 
cells at different ratios in DNA from A20F/F macrophages. 
 
Immunohistochemistry 
Spleen, kidney, liver were fixed in 4% PFA, processed, and embedded in paraffin. 2- m 
sections for PAS stainings were prepared according to routine protocols. For the 
detection of tissue-specific autoantibodies, frozen sections from organs of Rag2 ⁄  mice 
were incubated with sera of aged and control mice and an anti–mouse IgG–Cy3 
conjugate (Jackson ImmunoResearch). 
 



Table S1. Immunoglobulin titers in young mice 
 

IgM IgG1 IgG2c IgG2b IgG3 IgA 
KO Het WT KO Het WT KO Het WT KO Het WT KO Het WT KO Het WT 
841 150 31 66 81 178 56 71 59 3493 1178 981 2959 10141 9547 480439 1923 3237 
131 70 71 33 72 80 32 47 46 1588 4593 3269 1177 9541 9553 285393 6048 8266 
4220 121 81 97 82 66 42 41 46 2886 4480 2141 5473 10099 8299 124031 1923 5450 
581 71 41 96 94 198 39 49 37 2815 3059 1301 2389 9961 6361 137648 327 3593 
581 50 21 70 61 194 45 45 41 2123 4868 965 3235 2287 9421 351497 753 1733 
201 90 90 53 122 115 52 44 25 544 1874 896 7495 9829 9787 3237 194 2628 
63 75 14 6 66 31    482 479 467       
73 79 12 6 30 60    446 470 469       
172 63 8 10 63 25    483 478 449       
85 49 20 7 28 29    485 455 464       
70 52 54 10 49 54    455 485 414       
69 116 10 8 71 32    494 488 442       
216 77 28 22 63 68 44 49 41 957 1187 796 3214 7762 8734 117737 1012 3655 



Table S2. Immunoglobulin titers in old mice 
 

IgM IgG1 IgG2c IgG2b IgG3 IgA 
KO WT KO WT KO WT KO WT KO WT KO WT
95 36 16 56 17 10 1085 346 7912 9512 26417 24875 
97 40 36 43 10 18 991 552 5752 23912 21417 8208 
116 37 64 73 14 17 956 239 38552 5192 4750 18625 
59 59 69 58 14 7 615 385 2952 16472 24750 16958 
80 28 50 56 9 7 249 506 5432 20952 23083 10708 
57 70 37 41 8 7 403 266 1752 2312 23917 10292 
124 38 48 41 19 19 828 737 312 4632 23917 19875 
122 60 6 46 11 17 920 917 7512 9832 18917 3208 
104 87 16 43 6 16 544 616 4232 19752 28917 26542 
107 53 33 42 6 11 781 196 10472 20232 23917 8208 
82 49 10 39 13 13 928 648 6552 10712 16417  
95  37  9 4 598 54 5192  8083  
92 48 28 48 10 11 689 371 4861 10568 18419 12573 



Figure S1. Loss of A20 B-lineage cells leads to decreased numbers of 
recirculating B cells in the bone marrow 
(A) Scheme of B cell development and developmental time-frame (depicted as arrow), 
during which Mb1cre and CD19cre mouse strains express the cre recombinase. 
CD19cre induces partial recombination in preB and immature B cells: dotted line. (B) 
Representative spleen sizes of 8–12-week-old age-matched mice. (C) Representative 
dotplots showing proportions of pre/pro (B220+IgM ), immature (B220loIgM+) and 
mature/recirculating (B220hiIgM+) B cells of lymphocytes (upper panels) and pro (proB: 
CD25 c-Kit+) and pre (preB: CD25+c-Kit ) B cells of B220+IgM  cells (lower panels) in 
the bone marrow. (D) Absolute cell numbers of lymphocyte subsets in the bone marrow: 
total bone marrow cells, B cells (B220+), proB, preB, immature B and recirculating B 
cells (defined as in C). Values represent means and s.d. calculated from 5–6 mice per 
genotype. (E) Effects of Mb1cre-mediated ablation of A20 on B-lineage cells in the bone 
marrow: upper two sets of panels as in (C), lower panels: percentages of large 
(B220hiIgM+CD25+c-Kit FSChi) preB of total preB cells. * = p < 0.05; ** = p < 0.001; one-
way anova 
 
Figure S2. Loss of A20 B-lineage cells leads to an accumulation of transitional B 
cells in the spleen 
(A) Representative dotplots showing proportions (left) and bar charts with absolute cell 
numbers (right) of B220+AA4.1+ transitional B cell subsets in the spleen: IgMhiCD23  T1, 
IgMhiCD23+ T2 and IgMloCD23+ T3 (anergic). Values represent means and s.d. 
calculated from 5–6 mice per genotype. (B) Upper panels: representative dotplots 
showing proportions of CD19+CD21hiCD1dhi B cells in the spleen: CD23lo MZ and 
CD23hi MZ precursor B cells. Values represent means and s.d. calculated from 5–6 
mice per genotype. Lower panels: immunofluorescence of spleen sections 
demonstrating the marginal sinus (depicted as dotted yellow line) as border between the 
marginal and follicular zone: green = B220, B cells; red = CD3, T cells; blue = 
laminin. Magnification: 20×. (C) Representative dotplots showing proportions of IL-10 
producing B cells (B220+IL10+) after 5h stimulation with PMA/ionomycin/BFA/LPS. 
Values represent means and s.d. of 3 mice per genotype. (D) Representative dotplots 
showing proportions of B cells in the thymus (B220+TCR ). Values represent means 
and s.d. of 3 mice per genotype. (E) Representative dotplots showing proportions of B 
cell subsets in the peritoneal cavity (absolute cell numbers are shown in Fig. 2B): 
B220hiCD19+ B2 and B220loCD19hi B1 cells of total lymphocytes (upper panels) and 
CD43loCD5  B1b and CD43+CD5+ B1a cells of B1 cells (lower panels). * = p < 0.05; ** = 
p < 0.001; one-way anova 
 
Figure S3. Fidelity of CD19cre for specific recombination of conditional A20 
alleles only in B cells 
(A) Scheme of the conditional A20 allele before (upper panel) and after (lower panel) 
cre-mediated recombination. The location of the primers (a–c) employed for the 
genotyping PCR are shown and the length of the respective PCR amplification 
products. Squares indicate exons (E3–E7) and triangles loxP sites. (B) Upper panels: 
representative PCR results for two PCR reactions on DNA from purified splenic cell 
subsets: the three primer PCR (a, b, c) amplifies A20 loxP-flanked and knockout alleles, 



whereas the two primer PCR (a, c) amplifies only DNA from A20-knockout alleles. 
Splenic cell subsets (T cells = B220 TCR +, dendritic cells/DC = B220 TCR CD11c+, 
macrophages/Mac = B220 TCR CD11c Gr1loMac1hi and granulocytes/Gr = 
B220 TCR CD11c Gr1+Mac1lo) were MACS purified followed by cell sorting and were 
over 99% pure. Identical results were obtained for all the cellular subsets sorted from 
three individual CD19cre/A20F/F mice. Lower panels: evaluation of the sensitivity of the 
two PCRs. A20-knockout cells were diluted at different ratios with A20F/F cells. The 
PCRs are able to amplify the knockout allele at a dilution of 1 to 500. The amplification 
product for the knockout allele that could be observed with the DNA from purified T 
cells, DCs, macrophages and granulocyte was weaker than the amplification product 
from the 1:500 A20-knockout to A20F/F dilution in all cases. This band therefore 
represents most likely the presence of less than 0.2% contaminating B cells in the 
respective purified cell-type. However, this analysis does not allow us to rule out the 
presence of less than 0.2% A20-knockout cells within each cell-type. 
 
Figure S4. A20 regulates B cell activation in a dose-dependent fashion 
(A) Realtime PCR quantifying the amount of A20 mRNA relative to PBGD mRNA in 
wild-type B cells stimulated with the indicated mitogens for 1, 4 and 12 h. Means and 
s.d. of triplicate measurements are shown. (B) Expression levels of the B cell activation 
marker after o/n stimulation with IgM, LPS, CpG or CD40. The dotplots are 
representative of 3 independent experiments. (C) Assessment of proliferation by the 
CFSE dilution assay: histograms show CFSE intensities 3 days after stimulation with 
the indicated mitogens. The table depicts the proliferation index (Proliferation index: 
average number of divisions of the proliferating cells), the percentage of dividing cells 
(% Divided: the proportion of cells that initially started to divide) and the division index 
(Div. Index: average number of divisions of all cells). Numbers represent the means of 3 
to 4 ( CD40/IL-4) independent experiments. (D) IL-6 levels were measured in the 
supernatant after o/n stimulation with IgM, LPS, CpG or CD40. (E) Representative 
dotplots showing proportions of TNF - or IL-6–producing B cells (B220+ TNF + or 

220+ IL-6+) after 5h stimulation with PMA/ionomycin/BFA. Values represent means 
nd s.d. of 3 mice per genotype. 

B
a

Figure S5. IL-6 producing cell-types in CD19cre/A20F/F mice 
(A) Realtime PCR analysis of IL-6 expression in FACS-purified splenic cell subsets of 
CD19cre/A20F/F and CD19cre control mice. Splenic cell subsets (T cells = B220 TCR +, 
dendritic cells/DC = B220 TCR CD11c+, macrophages/Mac = 
B220 TCR CD11c Gr1loMac1hi and granulocytes/Gr = 
B220 TCR CD11c Gr1+Mac1lo) were MACS purified followed by cell sorting and were 
over 99% pure. IL6 cDNA was quantified relative to PBGD. Values represent means 
and s.d. of 3 independent experiments. (B) Proportions of IL-6 expressing cells of 
individual immune cell subsets in the spleen of CD19cre/A20F/F and CD19cre control 
mice identified by intracellular FACS. Values represent means and s.d. of 3 
independent experiments. 
 



Figure S6. Chronic inflammation and autoreactivity in aged BA20 ⁄  mice 
(A) Representative spleen size of old CD19cre/A20F/F and age-matched CD19cre 
control mice. (B) Spleen weight (n(BA20 ⁄ ) = 10, n(control) = 9). (C) Representative 
dotplot showing proportions of plasma cells (B220loCD138hi), mean and s.d. for n = 9 
mice per genotype are shown. (D) Representative PAS stainings of liver and kidney 
sections from aged mice. Magnification: 10×. (E) Representative immunofluorescence 
staining of tissue-specific IgG autoantibodies directed against kidney, harderian gland, 
stomach and lacrimal gland. Staining was performed by incubating sera from aged mice 
on sections of tissues isolated from Rag2 ⁄  mice. Magnification: 20×. 
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A20 (TNFAIP3) is a protein that is involved in the negative 
feedback regulation of NF-kB signaling in response to specific 
proinflammatory stimuli in different cell types and has been 
suggested as a susceptibility gene for rheumatoid arthritis. 
To define the contribution of A20 to rheumatoid arthritis 
pathology, we generated myeloid-specific A20-deficient mice 
and show that specific ablation of Tnfaip3 in myeloid cells 
results in spontaneous development of a severe destructive 
polyarthritis with many features of rheumatoid arthritis. 
Myeloid-A20–deficient mice have high levels of inflammatory 
cytokines in their serum, consistent with a sustained NF-kB  
activation and higher TNF production by macrophages. 
Destructive polyarthritis in myeloid A20 knockout mice was 
TLR4-MyD88 and IL-6 dependent but was TNF independent. 
Myeloid A20 deficiency also promoted osteoclastogenesis 
in mice. Together, these observations indicate a critical and 
cell-specific function for A20 in the etiology of rheumatoid 
arthritis, supporting the idea of developing A20 modulatory 
drugs as cell-targeted therapies.

Rheumatoid arthritis is an inflammatory autoimmune disease affect-
ing about 1% of the adult population. It is characterized by chronic 
inflammation of the joints associated with progressive destruction 
of cartilage and bone. The etiology of rheumatoid arthritis is still not 
understood, but it is well accepted that activation of nuclear factor- B 
(NF- B)-dependent gene expression plays a key role in the develop-
ment of rheumatoid arthritis and many other autoimmune diseases. 
A20 (also known as TNFAIP3) is a deubiquitinating protein that 
 negatively regulates NF- B–dependent gene expression in response to 
 different immune-activating stimuli, including tumor necrosis factor 
(TNF), interleukin-1 (IL-1) and antigens, and in response to triggering  

of Toll-like receptors (TLRs) and nucleotide-binding oligomerization 
domain containing 2 (NOD2) receptor1. A20 is believed to inhibit  
NF- B function by deubiquitinating specific NF- B signaling mol-
ecules, such as RIP1, RIP2, TRAF6 and MALT1 (refs. 2–5), which 
disrupts specific protein-protein interactions. A20-deficient mice 
spontaneously develop multiorgan inflammation and cachexia and 
die within 2 weeks of birth, illustrating the potent anti-inflammatory 
function of this molecule6. More recently, several SNPs in the human 
TNFAIP3 locus were shown to be associated with increased suscepti-
bility to type 1 diabetes, systemic lupus erythematosus, celiac disease, 
Crohn’s disease, psoriasis, multiple sclerosis and rheumatoid arthritis7, 
suggesting that defects in A20 expression or activity could be involved 
in the development of specific autoimmune diseases. However, the 
relative contribution of A20 expression in different cell types to the 
pathophysiology of disease development is still unknown.

To address the cell-type–specific role of A20 in the etiology of 
autoimmune disease in general and rheumatoid arthritis in particular, 
we generated A20 conditional knockout mice in which exon 4 and 5  
of Tnfaip3 are flanked by LoxP consensus sites8. We crossed mice 
containing a conditional Tnfaip3 allele8 with LysM-Cre9 trans-
genic mice to generate mice deficient in A20 in their myeloid cells 
(Supplementary Fig. 1). In contrast to the previously described 
cachexia and premature death of mice deficient in A20 either com-
pletely6 or in hematopoietic cells 10, mice deficient in A20 in myeloid 
cells did not develop cachexia or die prematurely. However, myeloid-
A20–deficient mice developed swelling and redness of the front and 
hind paws at 8–12 weeks of age, with the incidence reaching 100% in 
all mice at the age of 20 weeks (Fig. 1a–c). Histological analysis of the 
ankle joints of these mice showed marked synovial and periarticular 
inflammation, with infiltration by mononuclear cells, and massive 
cartilage and bone destruction (Fig. 1a and Supplementary Fig. 2). 

A20 (TNFAIP3) deficiency in myeloid cells triggers 
erosive polyarthritis resembling rheumatoid arthritis
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Inflammation started in the posterior part of the ankle and gradually 
spread out to the tibiotalar joint and tarsal joints. Erosions are an early 
manifestation of the disease, eventually leading to a complete destruc-
tion of the joints. The wrists of the mice were also affected. However, 
we could detect only minor inflammatory changes in the fingers and 
toes, and no signs of arthritis were evident in the knees and hips. This 
was confirmed by in vivo positron emission tomography–computed 
tomography (PET-CT) analysis, which showed pronounced inflam-
mation in the paws of myeloid-A20–deficient mice (Fig. 1d,e). These 
mice had elevated levels of serum antibodies against type II colla-
gen, suggesting the development of autoimmunity (Supplementary 
Fig. 3). Similar features characterize rheumatoid arthritis in humans. 
Neither the incidence nor the severity of arthritis was substanially  
different between male and female mice (data not shown). Notably, 
an analysis of skin, liver, intestine and lungs of myeloid-A20–deficient 
mice did not reveal signs of inflammation (Supplementary Fig. 4 and 
data not shown).

Myeloid-A20–deficient mice had high serum levels of the inflam-
matory and rheumatoid arthritis–associated cytokines TNF, IL-1 , 
IL-6 and MCP-1 (Fig. 2a) as well as high levels of TNF, IL-1 , IL-6 and 
IL-23 locally in joint tissue (Fig. 2b). In line with the in vivo observa-
tions, cultured peritoneal macrophages from myeloid-A20–deficient 
mice, in contrast to wild-type macrophages, constitutively produced 
substantial amounts of TNF and IL-6 (Fig. 2c,d). Consistent with 
the essential role of A20 as a negative feedback regulator of inducible  
NF- B–dependent gene expression, cultured A20-deficient macro-
phages showed sustained degradation of the NF- B inhibitory 
molecule I B  (Fig. 2e) and markedly higher TNF production in 
response to lipopolysaccharide (LPS) than wild-type cells (Fig. 2f). 
Myeloid cells of the monocyte and macrophage lineage are considered 

the main producers of cytokines such as TNF, IL-1  and IL-6, and so 
they are probably also responsible for the augmented levels of these 
cytokines in the serum of myeloid-A20–deficient mice. TNF, IL-1  
and IL-6 have all been implicated in the pathophysiology of rheuma-
toid arthritis, and anti-TNF biological agents are presently the anti-
cytokine therapy of choice for rheumatoid arthritis11.

Because of the dominant role of TNF in the pathogenesis of  
rheumatoid arthritis, we crossed the myeloid A20 knockout 
mice (A20myel-KO) into a TNFR1-deficient genetic background 
(TNFR1KO)12. Notably, double homozygous A20myel-KO TNFR1KO 
mice still developed rheumatoid arthritis–like pathology (Fig. 3a), 
indicating that the destructive arthritis seen in myeloid A20 knock-
out mice is not dependent on TNFR1-dependent signaling. Similarly, 
 systemic treatment of myeloid A20 knockout mice with TNF-
 neutralizing antibodies did not suppress the arthritis-like pathology, 
confirming the genetic approach using TNFR1-deficient mice. In 
contrast, significant protection could be obtained upon therapeutic 
treatment with IL-6–neutralizing antibodies (Supplementary Fig. 5),  
indicating an important role of IL-6 in disease progression. Also 
Toll-like receptor 4 (TLR4) has been suggested to be an important 
player in rheumatoid arthritis13,14. We therefore tested the impor-
tance of TLR4-MyD88 for the arthritis phenotype by applying TLR4-
neutralizing Rhodobacter sphaeroides LPS (LPS-Rs) to myeloid A20 
knockout mice or by crossing the myeloid A20 knockout mice into a 
MyD88-deficient genetic background (MyD88KO)15. Systemic admin-
istration of LPS-Rs almost completely neutralized the rheumatoid 
arthritis–like phenotype in myeloid A20 knockout mice (Fig. 3b). 
Moreover, double homozygous A20myel-KO MyD88KO mice developed 
normally, showing no macroscopic and only minor histopathological 
signs of rheumatoid arthritis–like pathology (Fig. 3c). Together, these 
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Figure 1 A20myel-KO mice develop spontaneous destructive arthritis. (a) Pictures of ankles of A20myel-KO and control littermate (WT) mice at the age 
of 13 weeks (top). Histological section of ankle joints stained with haematoxylin and eosin; magnification, 40× (middle). The detail of the ankle joint 
region illustrates the infiltration of mononuclear cells, cartilage destruction and bone erosion in A20myel-KO mice; magnification, 100× (bottom).  
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data suggest a crucial contribution of a TLR4-dependent signaling 
pathway in the development of rheumatoid arthritis–like pathology 
in myeloid A20 knockout mice. As the intestinal flora is thought to 
play an important role in regulating immune responses and because 
LPS from intestinal bacteria may be crucially involved in autoimmune 
joint inflammation16–19, we treated myeloid A20 knockout mice with 
a mix of broad spectrum antibiotics (ciprofloxacin, ampicillin, metro-
nidazole and vancomycin), which has previously been shown to sub-
stantially reduce the numbers of commensal bacteria in the intestine8. 
However, we observed no differences in the clinical manifestation of 
arthritis in myeloid A20 knockout mice either treated or not treated 
with antibiotics, making the involvement of the commensal microbial 
flora in the arthritic phenotype unlikely (Supplementary Fig. 6).

A20 deficiency in myeloid cells could be instrumental in over-
coming immune tolerance to joint-specific antigens and the induction 
of adaptive immune responses against them. Flow cytometric analysis 
of the inguinal lymph nodes and splenocytes of myeloid-A20–deficient  
mice showed a higher percentage of T helper 17 (Th17) cells, memory  
CD4+ cells and CD8+ T cells, all of which are key players in the  
development of rheumatoid arthritis pathology20 (Supplementary 
Fig. 7). Moreover, Th17 cells were identified as an osteoclastogenic 
T-helper–cell subset that links T cell activation and bone resorption21. 
To evaluate whether T and B lymphocytes are involved in the develop-
ment of arthritic pathology in myeloid A20 knockout mice, these 
mice were bred into a RAG2-deficient background (RAG2KO) lacking 
functional T and B cells22. Double homozygous A20myel-KO RAG2KO 
mice still developed rheumatoid arthritis–like pathology (Fig. 3d), 
indicating that T and B cells are not essential for the development of 
the destructive arthritis seen in myeloid A20 knockout mice.

Upon analysis of secondary lymphoid organs, we noticed that the 
spleen and axillary and inguinal lymph nodes were markedly larger in 
myeloid-A20–deficient mice than in littermate controls. Similar to the 
reduced development of arthritis in A20myel-KO mice in the absence of 
MyD88 (A20myel-KO MyD88KO mice), splenomegaly was also markedly 
reduced in A20myel-KO MyD88KO mice compared to A20myel-KO mice 
(Supplementary Fig. 8). As the axillary and inguinal lymph nodes 

are responsible for draining the joints, their enlargement is in line 
with intense inflammation at these sites. The fraction of CD11b+Gr1+ 
myeloid cells in the spleen, which include granulocytes and activated 
monocytes, was sixfold higher in myeloid-A20–deficient animals 
than in littermate controls (Fig. 4a). In line with the extramedul-
lary expansion of myeloid cells and the myeloid origin of osteoclasts, 
CD115+CD117+ osteoclast precursors were also increased in the spleen 
of A20-deficient mice compared to wild-type animals (Fig. 4b).

Differentiation and activation of osteoclasts requires the TNF 
superfamily member RANK ligand (RANKL), which is pivotal to 
systemic bone loss in experimental and human rheumatoid arthri-
tis20,23. Although TNF promotes osteoclastogenesis in mice, its effect 
is RANK dependent24. Incubation of wild-type and A20-deficient 
blood leukocytes with RANKL and macrophage colony-stimulating 
factor (M-CSF) resulted in a substantial increase in the number of 
tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in 
A20-deficient conditions (Fig. 4c). Osteoclasts derived from blood 
leukocyte cultures of A20-deficient mice were also markedly larger 
and contained substantially more nuclei than osteoclasts derived from 
wild-type mice. In vitro osteoclast activity, determined by measuring 
the amount of calcium phosphate resorption in a pit-forming assay, 
was much higher in the absence of A20 (Fig. 4d). In vivo, we detected 
TRAP-positive multinucleated osteoclasts at the bone-erosive front 
between the inflammatory infiltrate and the outer bone surface in 
histological sections of ankle joints of myeloid-A20–deficient ani-
mals but not in sections from control littermates (data not shown). 
The expansion of peripheral osteoclast precursors and the increased 
osteoclast differentiation in the absence of A20 probably contributes 
to the severe osteoporosis in myeloid-A20–deficient mice.

NF- B–dependent gene expression in several cell types is known 
to contribute to the development and progression of autoimmune 
diseases. Understanding the mechanisms that negatively regulate 
NF- B activation is therefore of great importance. We show that 
myeloid-cell–specific deletion of the NF- B inhibitor protein A20 in 
mice results in spontaneous development of an erosive polyarthritis 
with many hallmarks of rheumatoid arthritis, providing a new mouse 
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Figure 2 A20myel-KO mice have high serum 
titers of inflammatory and rheumatoid arthritis–
associated cytokines. (a) Levels of IL-6, IL-1 , 
MCP-1 and TNF in serum of A20myel-KO (n = 8) 
and control littermate (WT, n = 9) mice at the 
age of 12 weeks. Error bars, s.e.m. (b) Relative 
levels of Il-6, Il-1 , Il23a and Tnf mRNA in cells 
isolated from joints from A20myel-KO (n = 6)  
and control littermate (WT, n = 6) mice at the 
age of 12 weeks. (c) TNF secretion by resident peritoneal macrophages after 24 h of rest (n = 4). (d) TNF and IL-6 secretion by thioglycollate-induced 
peritoneal macrophages after 24 h of rest (n = 4). (e) Immunoblot analysis for I B  in extracts of peritoneal macrophages incubated with 100 ng/ml 
LPS for the indicated durations; we used anti-actin as a loading control. (f) Kinetics of TNF secretion by A20myel-KO (n = 4) and control (WT, n = 4) 
peritoneal macrophages after stimulation with LPS for the indicated durations. ND, not detectable. Error bars, s.e.m. *P < 0.05.
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model of human rheumatoid arthritis. Although we detected high 
levels of circulating TNF in serum and in joint tissue, the rheuma-
toid arthritis–like phenotype is not dependent on TNF-dependent 
signaling but does require TLR4-MyD88–induced signaling and  
IL-6. This is therapeutically very important in view of the fact that up 

to 30% of rheumatoid arthritis patients fail to respond to anti-TNF 
treatment, which is a major problem in the clinic25. Together, our 
data show that A20 has a cell-specific anti-inflammatory function 
in the pathophysiology of rheumatoid arthritis, and it also provides 
the new concept that myeloid-specific ablation of an intracellular 
signaling protein may lead to the development of a rheumatoid 
arthritis phenotype. Our findings also fortify previous genome-
wide association studies indicating that TNFAIP3 is a susceptibility 
locus for rheumatoid arthritis in humans26,27. Given the importance 
of proinflammatory gene expression by myeloid cells in innate and 
adaptive immune responses, it is remarkable that the inflammatory 
phenotype of myeloid-A20–deficient mice is restricted to the joints. 
We anticipate that factors other than systemic immune elements 
might contribute to the rheumatoid arthritis phenotype in myeloid-
A20–deficient mice, such as local physical stress and tissue damage 
resulting in, for example, the release of endogenous TLR ligands in 
the joints13. Most importantly, the cell-specific function of A20 and 
the specific development of a rheumatoid arthritis–like pathology 
without any other notable tissue damage in myeloid-A20–deficient 

Figure 3 The development of arthritis  
in A20myel-KO mice crucially depends  
on a TLR4-dependent signaling pathway.  
(a) Histological section of an ankle  
joint of a 25-week-old A20myel-KO  
(TNFR1+/+) mouse and a double  
homozygous A20myel-KO TNFR1−/−  
littermate mouse stained with haematoxylin 
and eosin; magnification, 40× (top).  
Detail of the ankle joint region illustrates  
the infiltration of mononuclear cells,  
cartilage destruction and bone erosion  
in double homozygous A20myel-KO  
TNFR1−/− mice; magnification, 100× 
(bottom). (b) Histological section of  
an ankle joint of a 25-week-old A20myel-KO 
mouse after systemic administration of  
LPS-Rs or phosphate-buffered saline  
(PBS) control; magnification, 40× (top);  
detail magnification, 100× (bottom).  
(c) Histological section of an ankle  
joint of a 25-week-old A20myel-KO  
(MyD88+/+) mouse and a double  
homozygous A20myel-KO MyD88−/−  
littermate mouse; magnification, 40× (top); 
detail magnification, 100× (bottom).  
(d) Histological section of an ankle joint of a 20-week-old A20myel-KO (RAG2+/−) mouse and a double homozygous A20myel-KO RAG2−/− littermate 
mouse; magnification, 40× (top); detail magnification, 100× (bottom). Each picture is representative of at least four mice.
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Figure 4 Increased osteoclastogenesis from blood leukocytes of A20myel-KO  
mice. (a) Percentage of CD11b+Gr1+ splenocytes of A20myel-KO mice (n = 5)  
and control littermates (WT, n = 5) as assessed by flow cytometry 
and gated on living cells. (b) Absolute numbers of CD115+CD117+ 
splenocytes within the CD3−CD45R−CD11b+ cell population of A20myel-KO  
mice (n = 5) and control littermates (WT, n = 4) at the ages of 8 and 
42 weeks. (c,d) We cultured blood leukocytes of A20myel-KO (n = 6) and 
control mice (WT, n = 6) for 6 days in chamber slides (c) or on quartz 
substrates coated with a calcium phosphate film (d) in the presence of 
M-CSF (20 ng/ml) and RANKL (100 ng/ml). (c) After incubation, cultures 
were fixed and stained for TRAP. We counted TRAP+ multinucleated cells 
(three or more nuclei) in each cup. Error bars represent the mean  s.e.m. 
Representative pictures of TRAP-stained blood leukocyte cultures of both 
groups are shown. (d) We removed the cells and assayed resorption of 
the film by light microscopy. Error bars represent the mean of 10 cups  
s.e.m. Representative pictures of resorption pits are shown. *P < 0.05.
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mice indicate that modulation of A20 might become an important 
option for targeted therapy of rheumatoid arthritis.

METHODS
Methods and any associated references are available in the online 
 version of the paper at http://www.nature.com/naturegenetics/.

Note: Supplementary information is available on the Nature Genetics website.
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ONLINE METHODS
Generation of tissue-specific A20-deficient mice. Conditional A20 Tnfaip3 
knockout mice, in which exons 4 and 5 of Tnfaip3 are flanked by two LoxP 
sites, were generated as previously described8. A20NFL mice, still containing the 
neomycin selection cassette, were crossed to a Flp-deleter strain28 to remove 
the Frt-flanked neomycin cassette generating a Tnfaip3 floxed allele (A20FL) 
(Supplementary Fig. 1). A20FL/FL mice were crossed with LysM-Cre trans-
genic mice9 to generate a myeloid-specific A20 knockout mouse (A20myel-KO).  
Experiments were performed on mice backcrossed into the C57BL/6 genetic 
background for at least three generations. Mice were housed in individually 
ventilated cages in the specific pathogen-free animal facility of the Department 
for Molecular Biomedical Research (VIB and Ghent University). All experi-
ments on mice were performed according to institutional, national and 
European animal regulations.

Clinical score. Mice were scored twice a week for development of peripheral 
arthritis. A score ranging from 0 to 3 was assigned to each paw, with 0 being 
normal, 0.5 being swelling of one or more toes, 1 being mild swelling of the 
wrist and/or ankle or carpus and/or tarsus, 2 being moderate swelling of the 
wrist and/or ankle or carpus and/or tarsus or mild swelling of both, and 3 being 
severe swelling of the entire paw.

Antibody treatment. Twenty-week-old A20myel-KO mice showing clear clinical 
rheumatoid arthritis pathology were treated by intraperitoneal injection every 
4 days with neutralizing TNF antibodies29 (MP6-XT22 MAb, 20 mg/kg body 
weight), IL-6 antibodies30 (20F3 MAb, 10 mg/kg body weight) and isotype 
control antibodies, and clinical pathology was scored as described.

Histology. Total ankle joints were dissected, fixed in phosphate-buffered 
formalin (pH 7.4), decalcified in 5% buffered formic acid and embedded in 
paraffin wax. Ankle joint sections were stained with hematoxylin and eosin. 
Except for B220 detection, proteolytic-enzyme–induced epitope retrieval was 
performed on deparaffinized and hydrated sections of decalcified ankles by 
a 15 min incubation at 37 °C 0.05% pepsin (Sigma) in 0.02N HCl, or 0.004% 
proteinase K (Sigma), 0.1% CaCl2 in TE (Tris and EDTA) pH 8 for CD3 and 
F4/80 detection, respectively. After a 20-min block in PBS containing 5% 
BSA and 2% serum of the species of the second antibody, primary antibody 
was applied overnight at 4 °C in the same solution. The primary antibodies 
rat anti-mouse B220 (BD Pharmingen), rabbit anti-human CD3 (Dako) and 
rat anti-mouse F4/80 (eBioscience) were followed by a 30 min incubation 
with the secondary antibodies Alexa Fluor 546 goat anti-rat IgG (Invitrogen), 
DyLight 649 donkey anti-rabbit IgG (Jackson ImmunoResearch) or biotin-SP 
donkey anti-rat IgG (Jackson ImmunoResearch) in PBS, respectively. Alexa 
Fluor 647 conjugated streptavidin (Invitrogen) was applied for 30 min in PBS 
as a third step to detect F4/80. Cell nuclei were counterstained by mounting 
with ProLong Gold anti-fade reagent with DAPI (Invitrogen). Microscopy was 
performed using a TCS SP5 confocal microscope (Leica).

PET-CT. Mice were injected with 0.5 mCi fluorodeoxyglucose (FDG) 1 hour  
before the start of each PET-CT scan. Scans were performed using the  
Gamma Medica Ideas labPET 8 (GMI) microPET device, which consists of 
2 × 2 × 10 mm3 LYSO/LGSO scintillators in an 8-pixel, quad-APD detector 
module arrangement. Twenty-minute scans were performed in two bed posi-
tions and afterwards statically reconstructed on a 0.5 × 0.5 × 1.175 mm voxel 
grid by 60 iterations of maximum likelihood expectation maximization. A CT 
scan of the animal was also acquired with the same multimodal scanner in fly 
mode acquiring 512 projections (2 × 2 rebinning) with the 50- m focal spot 
size tube set to 70 kV and 145 A and the magnification at 1.3 (field of view =  
91.08 mm). A general purpose reconstruction mode was used in a 512 × 512 
matrix of 150- m pixel size. The resultant image was then fused with the PET 
scan. Based on the CT, regions of interest were defined on a slice-by-slice 
basis delineating the hind paws of the animals. The mean voxel value of the 
FDG PET activation in these regions of interest was a posteriori corrected for 
injected activity to deliver a quantitative measure of inflammation.

Depletion of commensal intestinal bacteria. Mice were treated with cipro-
floxacin (200 mg/l; Sigma-Aldrich), ampicillin (1 g/l; Sigma-Aldrich), 

 metronidazole (1 g/l; Sigma-Aldrich) and vancomycin (500 mg/l; Labconsult) 
in drinking water. Every 2 weeks, the presence of colonic microflora was  
determined by culturing fecal samples in both ‘brain heart infusion’ (BD) and 
thioglycollate medium (Sigma-Aldrich).

Protein blot analysis. Peritoneal macrophages were lysed in E1A lysis buffer 
(250 mM NaCl, 50 mM Tris pH 7.4, 0.1% NP-40) containing a complete pro-
tease inhibitor cocktail (1:25) (Roche). Supernatants were separated by sodium 
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), transferred 
to nitrocellulose membranes and immunodetected with I B  (Santa Cruz 
Biotechnology, Inc.), mouse A20 (Santa Cruz Biotechnology, Inc.) and actin 
(MP Biomedicals) antibodies.

Isolation of peritoneal macrophages. Mice were injected intraperitoneally 
with 1 ml of thioglycollate broth. After four days, mice were killed by cervical 
dislocation and macrophages were washed from the peritoneal cavity with  
10 ml of ice-cold sterile PBS and centrifuged at 106g for 5 min. The pellet was 
resuspended in RPMI 1640 medium (Invitrogen) supplemented with 10% 
(v/v) heat-inactivated FCS (FCS), 1% penicillin streptavidin, 2% l-glutamate 
and 2% Na-pyruvate.

Quantification of cytokines. Cytokines in serum and supernatants were quanti-
fied by the Cytometric Bead Array Mouse Inflammation Kit (BD Biosciences) on 
a FACS Calibur cytometer equipped with CellQuest Pro and CBA software (BD 
Biosciences). A Bio-plex Pro kit was used for the mouse cytokines IL-6, IL-1   
and MCP-1 (Bio-Rad) on the Bio-plex 200 system (Bio-Rad). Enzyme-linked 
immunosorbent assay (ELISA) was used for mouse TNF (eBioscience).

Isolation of cells from joint tissue and quantitative real-time PCR. Ankle 
joints were isolated from the hind legs, and joints were cut in two through the 
joint space. Dissected joints were incubated in RPMI 1640 containing 10% 
FCS, 1% Glutamine, 1% peniclin streptavidin and 10mg/ml collagenase D 
(Roche) for 90 min at 37 °C to release synovial cells. Total RNA was purified 
from joint cells using the TRIzol reagent (Invitrogen). RNA samples (1 g) 
were treated with DNase I, Amp Grade (Invitrogen) before complementary 
DNA (cDNA) synthesis using the iScript cDNA synthesis kit (Bio-Rad) accord-
ing to the manufacturer’s instructions. Ten nanograms of cDNA was used for 
quantitative PCR in a total volume of 10 l with LightCycler 480 SYBR Green I 
Master Mix (Roche) and specific primers on a LightCycler 480 (Roche). Real-
time PCR reactions were performed in triplicates. The primer sequences used 
are listed in Supplementary Table 1.

Flow cytometry. All flow cytometric analyses were performed on a FACS 
Calibur (BD Biosciences). Cell suspensions were prepared from total spleens 
and/or inguinal lymph nodes. Red blood cells were lysed by incubation with 
ACK lysis buffer (BioWhittaker). Total cell suspensions were pre-incubated 
with purified rat anti-mouse CD16/CD32 (mouse Fc block; BD Biosciences, 
Pharmingen). Subsequently, cells were incubated with anti–CD11b-PerCp Cy5.5 
and anti–Gr1-FITC (BD Biosciences), anti–CD4-FITC or anti–CD8 -FITC 
(BD biosciences) with anti–CD44-APC and anti–CD62L-PE (eBioscience). To 
assess the amount of osteoclast precursors, splenocytes were incubated with 
anti–CD11b-PerCp Cy5.5 (BD Biosciences), anti–CD3-V500, anti–CD45R-
PECy7, CD117-APC and CD115-PE (all from eBioscience). To analyze Th17 
cells, splenocytes and inguinal lymph node cells were incubated with 10 ng/ml 
phorbol-12-myristate-13-acetate (PMA) and 250 ng/ml ionomycin for 8 hours. 
Four hours before assessment, cells were incubated with 5 g/ml Brefeldin A, 
fixed, permeabilized with a fixation and permeabilization kit (eBioscience) and 
incubated with anti–IL-17-PerCP-Cy5.5 (eBioscience) and anti–CD4-FITC.

In vitro induction of osteoclast formation and TRAP staining. In vitro osteo-
clastogenesis assay of blood cells was performed as described31. Briefly, blood 
cells (2.5 × 104) in a volume of 400 l were seeded in chamber slides (Lab-Tek 
Brand Products, Nalge Nunc International) and incubated for 6 days with  
20 ng/ml M-CSF and 100 ng/ml RANKL (R&D Systems). On day 3, the media 
and stimuli were replaced. On day 6, media were removed and cells were 
stained for the presence of TRAP. Briefly, cells were fixed with 3.7% formalde-
hyde in Ca2+- and Mg2+-free PBS for 10 min and subsequently for 1 min with 
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a 1:1 (v/v) solution of ethanol and acetone. Cells were incubated for 10 min 
with a staining solution (0.01% naphthol AS-MX phosphate (Sigma-Aldrich),  
50 mM tartrate and 0.06% fast red violet LB salt (Sigma-Aldrich) in 0.1 M 
acetate buffer pH 5.0) and washed with distilled water. Staining solutions were 
freshly prepared before use. TRAP+ multinucleated cells (three or more nuclei) 
were defined as osteoclasts.

Pit-forming assay. Suspensions of blood leukocytes were obtained as described 
above, washed twice with ice-cold PBS, and resuspended in -modified mini-
mal essential medium containing 10% FCS (Gibco). Cells (106) were cultured 
for 6 days with M-CSF (20 ng/ml) and RANKL (100 ng/ml) (both from R&D 
Systems) on transparent quartz slides coated with a calcium phosphate film 
(BioCoat Osteologic Discs; BD Biosciences Pharmingen). On day 3, media 
and stimuli were replaced, and on day 6, cells were removed and resorption 
of the film was assessed by light microscopy. In each well, the percentage of 
resorption pits was determined in eight different regions.

Statistical analyses. Values in the graphs indicate group means  s.d. or s.e.m., 
as indicated in the legends. Comparisons between groups were performed by 
two-tailed paired or unpaired Student’s t-test. Multigroup comparisons were 
performed by one-way analysis of variance with post-hoc Bonferroni correc-
tion. P < 0.05 was considered to indicate statistical significance.

28. Rodríguez, C.I. et al. High-efficiency deleter mice show that FLPe is an alternative 
to Cre-loxP. Nat. Genet. 25, 139–140 (2000).

29. Onizawa, M. et al. Signaling pathway via TNF- /NF- B in intestinal epithelial cells 
may be directly involved in colitis-associated carcinogenesis. Am. J. Physiol. 
Gastrointest. Liver Physiol. 296, G850–G859 (2009).

30. Starnes, H.F. et al. Anti-IL-6 monoclonal antibodies protect against lethal 
Escherichia coli infection and lethal tumor necrosis factor-  challenge in mice.  
J. Immunol. 145, 4185–4191 (1990).

31. Geboes, L. et al. Freund’s complete adjuvant induces arthritis in mice lacking a 
functional interferon-  receptor by triggering tumor necrosis factor -driven 
osteoclastogenesis. Arthritis Rheum. 56, 2595–2607 (2007).
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Supplementary Table 1 Primer sequences of mouse-specific cytokines for qPCR 

TNF forward ACCCTGGTATGAGCCCATATAC 

TNF reverse ACACCCATTCCCTTCACAGAG 

IL-1  forward CACCTCACAAGCAGAGCACAAG 

IL-1  reverse GCATTAGAAACAGTCCAGCCCATAC 

IL-6 forward GAGGATACCACTCCCAACAGACC 

IL-6 reverse AAGTGCATCATCGTTGTTCATACA 

IL-23 forward GCACCAGCGGGACATATGA 

IL-23 reverse CCTTGTGGGTCACAACCATCT 
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Supplementary Figures 

Supplementary Figure 1 Generation of myeloid-specific A20 knockout mice. (a) Targeting 

scheme. Diagram showing the wild-type Tnfaip3 genomic locus (WT), the neomycin-

resistance-containing (neo) allele, the LoxP-flanked (Floxed) allele, and the deleted A20 

allele. Boxes indicate exons 1 to 9 (E1–E9). Restriction enzyme sites and the location of the 

probe used for Southern blot analysis are depicted. B, BamH1; V, EcoRV. LoxP and Frt sites 

are indicated by arrowheads. (b) Western blot analysis for A20 expression in BMDMs, 

derived from WT mice and A20myel-KO mice.  
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Supplementary Figure 2 Immune cell infiltration in joints from A20myel-KO mice. 

Immunohistological section of ankle joints stained with anti-F4/80 (macrophages), anti-CD3 

(T cells), and anti-B220 (B cells) antibodies. Detail magnification (lower); scale bars = 20µm. 
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Supplementary Figure 3 Antibody production in A20myel-KO mice. Serum levels of IgG 

autoantibodies specific for collagen type II in A20myel-KO mice (n=9) and control littermates 

(WT, n=6). * p < 0.05.  
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Supplementary Figure 4 A20myel-KO mice do not develop multi-organ inflammation. H&E 

staining of histological sections of intestine, liver and lung tissue from A20myel-KO and 

littermate control (WT) mice. 
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Supplementary Figure 5 Systemic anti-IL-6 treatment suppresses disease progression in 

A20myel-KO mice, in contrast to anti-TNF treatment. (a) 20-week-old A20myel-KO mice showing 

arthritis-like pathology were treated with neutralizing anti-TNF antibodies (n=5) or isotype 

control antibodies (n=5) and clinically scored for disease regression. (b) 20-week-old A20myel-

KO mice showing arthritis-like pathology were treated with neutralizing anti-IL-6 antibodies 

(n=5) or isotype control antibodies (n=5) and clinically scored for disease regression. * p < 

0.05 compared to start of therapeutic treatment.  
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Supplementary Figure 6 Antibiotic treatment does not protect A20myel-KO mice from arthritis 

development. Histological section of ankle joint of 25 weeks old A20myel-KO mouse either or 

not treated with broad-spectrum antibiotics; magnification 40x (upper); detail magnification 

100x (lower). Each picture is representative of at least four mice. 
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Supplementary Figure 7 Induction of the adaptive immune system in A20myelo-KO mice. (a) 

Percentages of CD4+ and CD8+ memory cells in the lymphocyte gate of A20myel-KO (n=6) and 

WT littermates (n=5) as assessed by flow cytometry. (b) Percentages of Th17 positive CD4+ T 

cells in the inguinal lymph node and spleen from A20myel-KO mice (n=6) and WT littermates 

(n=5) as assessed by flow cytometry. * p < 0.05.  
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Supplementary Figure 8 A20myel-KO mice have splenomegaly and enlargement of inguinal 

and axillary lymph nodes. (a) Splenomegaly and enlargement of inguinal lymph nodes in 

A20myel-KO mice. (b) Spleen weight of 12-week-old A20myel-KO (n=10) and WT mice (n=10). 

(c) Spleen weight of 20-week-old A20myel-KO/MyD88+/+(n=6), A20myel-KO/MyD88+/-(n=8), 

A20myel-KO/MyD88-/- (n=6) and WT mice (n=6). Bars represent averages ± SEM. * p < 0.05. 
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A20 and CYLD Do Not Share Significant Overlapping
Functions during B Cell Development and Activation

Yuanyuan Chu,* Valeria Soberon,*,1 Laura Glockner,†,1 Rudi Beyaert,‡,x

Ramin Massoumi,{ Geert van Loo,‡,x Daniel Krappmann,† and Marc Schmidt-Supprian*

The ubiquitin-editing enzyme A20 (TNFAIP3) and the deubiquitinase CYLD are central negative regulators of NF-kB signaling.
Both can act by removing nonproteolytic K63-linked polyubiquitin chains from an overlapping set of signaling molecules. In
B cells, A20 deficiency results in hyperactivity, loss of immune homeostasis, inflammation, and autoimmunity. The reported
consequences of CYLD deficiency are controversial, ranging from an absence of effects to dramatic B cell hyperplasia. These
differences could be due to varying compensation for the loss of CYLD function by A20. Therefore, to explore potential over-
lapping physiological functions between A20 and CYLD, we generated and characterized A20/CYLD double-deficient B cells.
Interestingly, the lack of both A20 and CYLD did not exacerbate the developmental defects and hyperresponsive activity of A20-
deficient B cells. In addition, the extent of B cell activation after in vitro stimulation with anti-CD40, LPS, and CpG was
comparable in B cells lacking A20/CYLD and A20 alone. However, in response to BCR cross-linking, we observed small but
reproducible additive effects of the lack of A20 and CYLD. Taken together, our results demonstrate that A20 and CYLD do not
share significant functions during B cell development and activation. The Journal of Immunology, 2012, 189: 000–000.

T he NF-kB pathway plays an important role in many
physiological processes including innate and adaptive
immunity, cell survival, and proliferation. NF-kB–acti-

vating signals can be delivered from immune cell-surface recep-
tors such as TNFR, BCR, CD40, and TLRs. Tight control of these
signals is required to maintain immune cell homeostasis and
prevent persistent activation of NF-kB, which may lead to chronic
inflammation, autoimmunity, and tumorigenesis.
The modification of key signaling molecules such as RIP1,

TNFR-associated factor (TRAF) 6, or MALT1 with polyubiquitin
chains has emerged as an essential regulatory mechanism of NF-
kB activation. Linkage with polyubiquitin chains via lysine 48
(K48) results in proteosomal degradation of the target protein. In
contrast, nondegradative and regulatory functions are mediated
through K63 and linear polyubiquitin chains that serve as scaffold
molecules to recruit different kinase complexes. Ubiquitination is

reversible and counterregulated by deubiquitinating enzymes
(summarized in Refs. 1, 2). Several deubiquitinases (DUBs) have
been reported to negatively regulate NF-kB. Among them are
A20, CYLD, Cezanne, and USP21 (3–6).
A20, encoded by the TNF-a–inducible gene 3 (Tnfaip3), is

a ubiquitin-modifying enzyme that negatively regulates K63-
linked ubiquitination events and induces protein degradation
via K48-linked polyubiquitin chains. Gene inactivation studies in
mice established A20 as the central negative regulator of multiple
NF-kB–activating signaling pathways. Lack of signal containment
in A20-deficient mice results in severe inflammation and lethality
that is triggered by MyD88-dependent TLR signaling initiated by
the commensal flora (7, 8). Cell type-specific deletion of A20 in
immune cells and other tissues like intestinal epithelial cells and
skin further confirmed its crucial role in the maintenance of tissue
homeostasis and to prevent inflammatory diseases including au-
toimmunity (9–15). In B cells, loss of A20 causes hyperreactivity,
general immune activation, and the production of autoantibodies
(10, 11, 16).
In line with these studies, polymorphisms and mutations in the

A20 gene locus are strongly associated with human autoimmune
diseases (17–21). In contrast, CYLD mutations predispose to fa-
milial cylindromatosis, which is characterized by the development
of benign tumors of skin appendages (22).
Using murine knockout (KO) models, the DUB CYLD was

reported to be involved in a wide range of physiological processes
including immune cell function, osteoclastogenesis, spermato-
genesis, and tumorigenesis (23). The consensus mechanism of
these functions is CYLD’s specificity for removing K63-linked
polyubiquitin chains from substrates, thereby controlling differ-
ent pathways like NF-kB, MAPK, and Wnt signaling (24–28).
Most of the known molecular targets of CYLD’s DUB activity are
involved in NF-kB signaling pathways.
Studies using a number of independently generated CYLD-

deficient mice came to different conclusions regarding the cell
type-specific roles of CYLD in the negative regulation of NF-kB.
In particular, the role of CYLD in B cell function is controversial.
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Jin and colleagues (29) found massive hyperplasia and expansion
of marginal zone B cells in CYLD-deficient mice and increased
responses of CYLD-deficient B cells in response to activation.
Similar effects were caused by the expression of a truncated
CYLD lacking exons 7 and 8 (30). However, in another study,
CYLD deficiency did not affect peripheral B cell numbers, but
increased NF-kB activation after stimulation (31). In accordance,
B cells developed normally in CYLD-deficient mice employed in
the current study (32). The lack of a B cell phenotype in our
CYLD-deficient mouse model suggested the possibility of com-
pensatory mechanisms by redundant proteins. It is, for example,
conceivable that dysregulation of B cell homeostasis is caused by
truncated CYLD rather than through the absence of full-length
CYLD. Truncated forms of CYLD could exert dominant-negative
functions by interfering with the action of redundant proteins.
As mentioned above, genetic studies in both human (17, 19, 21,

22) and mice (23, 33) have revealed different consequences of
lack of A20 or CYLD function. Interestingly, however, .60% of
EBV-negative classical Hodgkin lymphoma (HL) cases contain
mono- or biallelic losses of A20 function, and 35% of classical HL
cases display decreased CYLD copy numbers (34). Strikingly, the
HL line KM-H2 has completely lost both A20 and CYLD ex-
pression due to biallelic mutations in both genes (34). In addition,
it is remarkable that both A20 and CYLD share a set of signaling
factors such as TRAF2, TRAF6, RIP1, and NF-kB essential
modulator as molecular targets (4, 5). Therefore, A20 represents
a valid candidate protein that could compensate for the loss of
CYLD function in B cells. To test this hypothesis, we generated
A20/CYLD double-deficient B cells and studied the development
of several B cell subsets in CD19Cre/A20F/FCYLD2/2 mice, their
response to B cell mitogens, and the impact of the combined loss
of both DUBs on NF-kB activation.
In our studies, we did not uncover general functions for CYLD in

B cell differentiation and activation. More importantly, compound
loss of A20 and CYLD did not exacerbate the effects of A20 defi-
ciency, with the possible exception of B cell activation in response to
BCR cross-linking in vitro. Therefore, the discrepancy of the various
reported effects of CYLD deficiency is not functional compensation
by A20, and this issue awaits further experimental clarification.

Materials and Methods
Mice

All mouse strains employed in this study are published and were originally
generated using C57BL/6 embryonic stem cells or backcrossed to C57BL/6
at least six times (11, 32). Mice were housed in a specific pathogen-free
environment in the animal facility of the Max Planck Institute of Bio-
chemistry, Martinsried, Germany, and all animal procedures were ap-
proved by the Regierung of Oberbayern.

Flow cytometry

Single-cell suspensions were prepared and stained as published (35) with
the following mAbs conjugated to FITC, PE, PerCP, allophycocyanin, or
biotin: AA4.1 (AA4.1), B220 (RA3-6B2), CD1d (1B1), CD19 (eBio1D3),
CD21 (2D6), CD23 (B3B4), CD25 (PC61.5), CD38 (90), CD5 (53-7.3),
IgM (II/41), CD95 (15A7), CD86 (GL-1), CD80 (16-10A1), IL-6 (MP5-
20F3) (all from eBioscience), and PNA (Vector Laboratories). Dead cells
were excluded from analysis by 7-aminoactinomycin D or ethidium
monoazide bromide staining. All samples were acquired on an FACSCa-
libur or FACSCanto II (BD Pharmingen), and results were analyzed with
FlowJo software (Tree Star). For intracellular cytokine staining, cells were
treated for 5 h at 37˚C with 10 nM brefeldin A (Applichem), incubated
with Fc-block (eBioscience), washed, and surface-stained prior to fixation
with 2% paraformaldehyde and permeabilization with 0.5% saponin.

In vitro cultures

For in vitro culture, cells were purified by MACS depletion of CD43-
expressing cells (.85–90% pure; Miltenyi Biotec). Final concentrations

of the stimuli for cellular activation were (unless otherwise indicated):
2.5 mg/ml anti-CD40 (HM40-3; eBioscience), 10 mg/ml anti-IgM (Jackson
ImmunoResearch Laboratories), 0.1 mM CpG (Alexis Biochemical), and
20 mg/ml LPS (Sigma-Aldrich). ELISAs were conducted using Ab pairs to
IL-6 (BD Biosciences) according to the manufacturer’s instructions. To
monitor cellular division, B cells were labeled in 1 ml 2.5 mM CFSE
(Molecular Probes) in PBS per 107 cells at 37˚C for 10 min.

EMSAs

Purified B cells were stimulated and lysed in whole-cell lysis buffer (20 mM
HEPES [pH 7.9], 350 mM NaCl, 20% glycerin, 1 mM MgCl2, 0.5 mM
EDTA, 0.1 EGTA, 1% Nonidet P-40, 0.5 M NaF, 1 M DTT, 1 M b-glyc-
erophosphate, 200 mM Na vanadate, and 253 Protease Inhibitor Mixture
[Roche]) according to standard protocols. EMSAs were performed by using
a [32P]-dATP–labeled, dsNF-kB oligonucleotide probe (59-CAGGGCTGGG-
GATTCCCCATCTCCACAGG-39). The samples were separated on native
polyacrylamide gels prior to autoradiography. For EMSA supershift assays,
whole-cell lysates were preincubated for 30 min on ice with anti-p50, anti-
p65, or anti–c-Rel Abs (all from Santa Cruz Biotechnology).

Statistics

For comparisons of three and more groups, one-way ANOVAwas used. The
p values are presented in figure legends when a statistically significant
difference was found.

Results
Loss of CYLD does not exacerbate the defects in A20-deficient
B cell homeostasis

To study the consequences of the loss of both A20 and CYLD
function in B cells, constitutive CYLD2/2 KO mice (32) were
intercrossed with CD19Cre/A20F/F mice (11), allowing B lineage-
specific ablation of A20. In the resulting CD19Cre/A20F/F

CYLD2/2 mice, the CYLD deficiency was not restricted to the B
lineage. However, in CYLD-deficient mice, B cell development
was indistinguishable from wild-type mice, showing that complete
CYLD deficiency does not affect the generation of B cells (Fig.
1A) (30). CYLD-deficient mice were also intercrossed with
CD19cre mice to control for the heterozygous ablation of CD19
and the expression of the Cre recombinase.
We first assessed the impact of the combined deletion of A20 and

CYLD on B cell development. To our surprise, loss of both DUBs
did not exacerbate the defects in B cell subset differentiation caused
by absence of A20 alone (11). The following developmental effects
caused by absence of A20 in B cells were unchanged by additional
absence of CYLD: 1) reduced proportions of mature recirculating
B cells in the bone marrow (Fig. 1A); 2) increased proportions of
transitional and reduced proportion of splenic mature B cells (Fig.
1B, first panel); 3) the expansion of CD23+ marginal zone pre-
cursor (MZP) B cells (Fig. 1B, third panel); and 4) reduced per-
centages of B1, in particular B1a cells, in the peritoneal cavity
(Fig. 1C).
In contrast, we observed that constitutive absence of CYLD

caused a slight reduction in splenocyte numbers, which was not
affected by the additional absence of A20 in B cells (Supplemental
Fig. 1). A20 deficiency in B cells induces the expansion of myeloid
and T cells, resulting in splenomegaly and chronic inflammation
(11). It seems possible that loss of CYLD function in myelomo-
nocytic cells, which impairs their responses to inflammatory stimuli
(36), counteracts the inflammation caused by A20-deficient B cells
to some extent. This could explain the reduction of splenocyte
numbers in CD19Cre/A20F/FCYLD2/2 mice compared with
CD19Cre/A20F/F mice.

A20/CYLD deficiency does not enhance formation of
spontaneous germinal centers compared with loss of A20 alone

In previous studies, we and others (10, 11, 16) reported that A20-
deficient B cells are hyperresponsive to stimulation caused by
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enhanced NF-kB signaling due to lack of negative regulation.
Given that CYLD has been suggested to also negatively regulate
NF-kB in multiple cell types and was shown to restrict B cell
activation (1), we asked whether combined loss of A20 and
CYLD would cause additive effects during B cell activation.
To address this question in vivo, we studied spontaneous ger-

minal center (GC) formation in the spleen and the GALT. Spon-
taneous GC formation was not enhanced in spleen and GALT of
naive CYLD-deficient mice compared with control mice (Fig. 2).
In contrast, naive CD19Cre/A20F/FCYLD2/2 and CD19Cre/A20F/F

mice displayed the same slightly increased proportions of spon-
taneous splenic GC B cells compared with CYLD-deficient and
control mice, although the differences did not reach statistical
significance (Fig. 2). Similarly, the increased activation of A20-
deficient B cells by bacterial Ags to form GCs in the mesenteric
lymph nodes (mLN) and Peyer’s patches was comparable in mice
lacking both A20 and CYLD in B cells (Fig. 2).

A20/CYLD deficiency does not enhance B cell activation and
proliferation significantly more than absence of A20

We further compared B cell responses of A20/CYLD-deficient and
A20-deficient B cells by measuring their activation, proliferation,
and cytokine secretion in response to stimulation with B cell
mitogens (anti-IgM, anti-CD40, LPS, and CpG) in vitro. Upon
stimulation, B cells upregulate activation markers (CD25, CD80,
CD86, MHC class II, and Fas) that were already slightly increased
in resting A20/CYLD-deficient and A20-deficient B cells com-
pared with CYLD-deficient and control B cells. Ex vivo-stimulated
A20/CYLD-deficient and A20-deficient B cells expressed similar
levels of activation markers, and these levels were considerably
higher than in CYLD-deficient and control B cells (Fig. 3A, Table
I). These data are consistent with the finding that the spontaneous
GC formation rate in CD19Cre/A20F/FCYLD2/2 and CD19Cre/
A20F/F mice was comparable with each other but significantly higher
than in CD19Cre/CYLD2/2 and control mice. A20/CYLD-deficient
B cells proliferated in vitro to a similar extent as A20-deficient B cells
in response to CD40 and CpG, judged by the calculation of different
parameters of cellular division using CFSE dilution assays. In con-
trast, BCR cross-linking and LPS stimulation slightly enhanced the
proliferation of A20/CYLD-deficient B cells compared with A20-
deficient B cells. These observations support our previous finding
that CYLD does not majorly contribute to the negative regulation of
B cell response in the presence or absence of A20.

A20/CYLD-deficient B cells produce more IL-6 in response to
BCR cross-linking, but not in response to the engagement of
CD40 and TLRs

We recently demonstrated that A20 negatively controls canonical
NF-kB activation in response to BCR cross-linking and CD40 and

FIGURE 1. A20/CYLD-deficient B cells display similar developmental
defects as A20-deficient B cells. (A) Proportions of pre/pro- (B220+IgM2),
immature (B220loIgM+), and mature/recirculating (B220hiIgM+) B cells of
lymphocytes in the bone marrow. Numbers indicate mean and SD of five to
six mice per genotype. (B) Proportions of transitional (Imm; B220+AA4.1+)
and mature (Mat; B220+AA4.12) B cells of total lymphocytes (top panel)
and of follicular (FO: CD1dintCD21int) and marginal zone (MZ)/MZP
(CD1dhighCD21high) B cells of B220+ B cells (middle panel) in the spleen.
Bottom panels, Proportions of MZ (CD1dhiCD21hiCD23lo) and MZP
(CD1dhiCD21hiCD23hi) B cells of B220+ B cells. Numbers indicate mean
and SD of nine mice per genotype. (C) Proportions of peritoneal B2
(CD19+B220+) and B1 (CD19highB220low) cells of total lymphocytes (top
panel) and of B1a (CD19highB220lowCD5+) and B1b (CD19highB220low

CD52) cells of total B1 cells (bottom panel). Numbers indicate mean and
SD of nine mice per genotype.

FIGURE 2. A20/CYLD deficiency in B cells enhances spontaneous GC
formation to the same extent as A20 deficiency alone. (A) Proportions of
GC B cells (B220+FashiCD38lo) of total B cells in spleen (top panel), mLN
(middle panel), and Peyer’s patches (bottom panel); numbers indicate
mean and SD of 9–10 mice per genotype. (B) Proportions of GC B cells in
spleen, mLN, and Peyer’s patches depicted as individual data points; bars
indicate mean of 9–10 mice per group [same as in (A)]. *p , 0.05,
**p , 0.001, ***p , 0.0001, one-way ANOVA.
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TLR stimulation. In addition, we showed that the expression
of IL-6, which is a direct target of NF-kB, correlates with the
strength of NF-kB signaling in B cells (11).
Therefore, we evaluated the expression of IL-6 by ELISA (Fig.

4A) and intracellular FACS (Fig. 4B) of stimulated A20/CYLD-
deficient and A20-deficient B cells compared with CYLD-deficient
and control B cells. Both A20/CYLD and A20 deficiency alone led

to an equivalent increase in the production of IL-6 after stimulation
with anti-CD40, LPS, or CpG in B cells (Fig. 4A).
In contrast, BCR cross-linking caused elevated amounts of IL-6

(Fig. 4A) in A20/CYLD-deficient B cells compared with A20-
deficient B cells. These results were in agreement with the ob-
servation that A20/CYLD deficiency enhanced the proliferation
of B cells after BCR stimulation. Taking the median fluorescence

FIGURE 3. A20/CYLD-deficient B cells display
similar pattern of hyperresponsiveness as A20-de-
ficient B cells. (A) Expression level of the B cell
activation marker CD25 after overnight stimulation
with anti-IgM, anti-CD40, LPS, or CpG compared
with the resting condition of control B cells (gray-
filled histogram). The histograms are representative
of two to three independent experiments. (B) CFSE
proliferation assay: histograms show CFSE inten-
sities 3 d after stimulation. The tables under each
histogram depict the proliferation index (Prol. In-
dex, average number of divisions of the prolifer-
ating cells), the percentage of dividing cells (%
Divided, the proportion of cells that initially started
to divide), and the division index (Div. Index, av-
erage number of divisions of all cells); values were
calculated with the FlowJo software (Tree Star).
Values represent means of four independent ex-
periments.

Table I. A20/CYLD-deficient and A20-deficient B cells express similar levels of activation markers

Stimuli Genotype CD25 CD80 CD86 MHC Class II Fas

Resting CD19Cre/A20F/FCYLD2/2 25 36 14 1241 51
CD19Cre/A20F/F 25 38 17 965 57

CD19Cre/CYLD2/2 18 27 11 547 36
CD19Cre 18 28 9 573 33

Anti-IgM CD19Cre/A20F/FCYLD2/2 621 63 519 3051 111
CD19Cre/A20F/F 552 63 704 3051 127

CD19Cre/CYLD2/2 340 45 737 2436 72
CD19Cre 292 47 538 2890 63

Anti-CD40 CD19Cre/A20F/FCYLD2/2 396 91 355 3220 396
CD19Cre/A20F/F 487 102 519 2813 403

CD19Cre/CYLD2/2 39 42 130 1999 59
CD19Cre 32 42 60 2227 45

LPS CD19Cre/A20F/FCYLD2/2 1104 165 777 2763 205
CD19Cre/A20F/F 1165 179 791 2525 217

CD19Cre/CYLD2/2 319 56 704 2288 129
CD19Cre 267 56 514 2738 95

CpG CD19Cre/A20F/FCYLD2/2 414 98 328 2571 106
CD19Cre/A20F/F 441 91 368 2414 103

CD19Cre/CYLD2/2 346 57 382 1894 82
CD19Cre 281 55 259 2267 68

Median fluorescence intensities of the B cell activation markers CD25, CD80, CD86, MHC class II, and Fas after overnight
stimulation with anti-IgM, anti-CD40, LPS, or CpG compared with the resting condition of control B cells. Values represent the
means of two to three independent experiments.
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intensity as an estimate for the amount of IL-6 made per IL-6–
producing cell suggests that B cells of all genotypes produce
similar amounts of IL-6 in response to anti-IgM and anti-CD40
(Fig. 4B, bottom panel). Therefore, the differences between the
genotypes most likely relate to the proportion of activated cells,
rather than an increase in IL-6 secretion per cell. In contrast,
stimulation with CpG and more so with LPS increased the IL-6
production per cell and the proportion of IL-6–producing cells
(Fig. 4B) in both A20/CYLD-deficient and A20-deficient com-
pared with CYLD-deficient and control B cells. However, the

differences were entirely due to the lack of A20, whereas the loss
of CYLD had essentially no effect.

Enhanced proliferation and IL-6 production in A20/CYLD-
deficient compared with A20-deficient B cells in response to
BCR cross-linking correlates with enhanced NF-kB activation

With two stimuli, we observed slightly enhanced in vitro responses
in A20/CYLD-deficient compared with A20-deficient B cells: anti-
IgM (proliferation and IL-6 production) and LPS (proliferation).
To determine whether these enhanced responses correspond to
increased NF-kB activation, we performed EMSAs from B cells
stimulated with anti-IgM (Fig. 5A) and LPS (Fig. 5B). NF-kB
DNA-binding complexes were verified by EMSA supershift assays
using anti-p50, anti-p65, or anti–c-Rel Abs. The supershift assays
reveal increased DNA-binding of mostly of p50/c-Rel and to a
lesser extent of p50/p65 subunits following stimulation with anti-
IgM or LPS (Supplemental Fig. 2).
We observed enhanced BCR cross-linking–induced NF-kB

DNA binding in A20/CYLD-deficient and A20-deficient B cells at
all investigated time points (10, 30, and 90 min) (Fig. 5A). In
addition, A20/CYLD-deficient B cells displayed more robust
NF-kB activation compared with A20-deficient B cells, with the
strongest difference noted 10 min following stimulation (Fig. 5A).
These data demonstrate that anti-IgM–induced NF-kB activity is
slightly enhanced in A20/CYLD-deficient B cells compared with
A20-deficient B cells. Possible explanations for this finding could
be increased signal strength in individual B cells, the activation of
a larger proportion of cells, or a combination of both.
In contrast, TLR4-mediated NF-kB signaling (Fig. 5B) yielded

no consistent difference between A20/CYLD-deficient and A20-
deficient B cells. These findings are in line with the comparable
LPS-induced IL-6 production in A20/CYLD and A20-deficient
B cells.

Discussion
In this study, we addressed potential overlapping physiological
functions of the ubiquitin-editing enzyme A20 and the DUB
CYLD in B cells. By ablating A20 and CYLD in B cells, we
demonstrate that loss of both proteins does not exacerbate the
impaired B cell homeostasis and in vivo B cell hyperresponsiveness
that we previously reported for mice lacking A20 specifically in
B cells. Mice with A20/CYLD deficiency or A20 deficiency in
B cells display equally severe B cell developmental defects.
Similarly, A20/CYLD-deficient and A20-deficient B cells ex-
hibit comparable degrees of in vitro responses to B cell mitogens
and NF-kB activation.

FIGURE 4. Proinflammatory IL-6 production is comparable between
A20/CYLD-deficient and A20-deficient B cells. (A) Measurement of IL-6
production in overnight-stimulated B cells by ELISA. Bars represent
means and SD of four independent experiments. (B) IL-6 production in
overnight stimulated and brefeldin A-treated B cells assessed by intra-
cellular FACS. Top panel, Percentage of IL-6–producing B cells. Bottom
panel, Mean fluorescence intensity (MFI) of IL-6–producing B cells rep-
resents IL-6 amount per IL-6–producing cell. Bars depict means and SD of
three independent experiments.

FIGURE 5. NF-kB activation in A20/CYLD-
deficient compared with A20-deficient, CYLD-de-
ficient, and control B cells in response to BCR
cross-linking and LPS treatment. EMSA of anti-
IgM–induced (A) and LPS-induced (B) NF-kB ac-
tivation. The specific bands (asterisk) indicating
NF-kB p50/c-Rel and p50/p65 heterodimer DNA-
binding (left panels) were quantified and normal-
ized to controls at time point 0. The lower bands
(arrow) represent p50 homodimers. Bars depict
means and SD of the relative band intensities, de-
rived from four (A) or three (B) independent ex-
periments (right panels).
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Thus, our work indicates that A20 and CYLD do not functionally
overlap in any significant fashion during B cell development and
activation. The possible exception might be B cell responses and
NF-kB activation after BCR cross-linking. However, we did not
observe any significant consequences of the additive effects of
A20 and CYLD deficiency on signaling downstream of the BCR
in vivo. Because it is unclear to what extent BCR cross-linking
accurately reflects recognition of Ag by the BCR in vivo, we did
not pursue this observation in more detail.
Given that A20 and CYLD both contain DUB functions of K63-

linked polyubiquitin chains and target similar molecular substrates
including TRAF2, TRAF6, NF-kB essential modulator, and RIP1,
it is surprising that both proteins do not functionally overlap. Key
differences that could account for this lack of functional overlap
are their molecular mode of action and CYLD’s specificity to
hydrolyze K63-linked (37) and linear polyubiquitin chains (38). In
contrast, A20 does not act as a processive DUB for K63-linked
polyubiquitin chains but (39) effectively cleaves entire K63-linked
polyubiquitin chains from substrates such as TRAF6, thereby
demonstrating specificity for particular polyubiquitinated sub-
strates (40). In addition, A20 can limit NF-kB activation through
noncatalytic mechanisms including lysosomal targeting of TRAF2
(41) and direct IkB kinase inhibition (42). In vivo, A20 is involved
both in the addition of K48-linked polyubiquitin chains to induce
the proteasomal degradation of various target proteins (43, 44) and
the removal of K63-linked ubiquitin chains to terminate signaling
(8, 43, 45, 46).
Another difference between A20 and CYLD include their dis-

tinct temporal expression and regulation. A20 depends functionally
on its inducible expression upon signal-induced NF-kB activation
(47), whereas CYLD is constitutively expressed. However, in re-
sponse to mitogens and TNF-a, CYLD’s DUB function is tran-
siently inactivated by IkB kinase-mediated phosphorylation (48).
Thus, it has been proposed that A20 and CYLD may regulate
NF-kB activation at different phases (23). A20 function is crucial
to terminate signal-induced NF-kB activation (7, 49). In contrast,
CYLD acts constitutively to prevent spontaneous NF-kB acti-
vation (48).
In addition, different cell type-specific cofactor requirement

and/or substrate-specific molecular mode of action could also
explain the missing functional overlap between A20 and CYLD
during the signal transduction pathways initiated upon B cell
activation.
In contrast to another KO model (29) and the expression of

a truncated CYLD protein (30), we did not observe major effects
in our CYLD-deficient B cells with respect to cell numbers in
mice, differentiation, and activation. Our findings are in agreement
with the analysis of a third independently generated CYLD-KO
mouse strain (31). It is also worth mentioning that our study is the
only one that uses mice exclusively on the C57BL/6 genetic back-
ground. It cannot be excluded that some of the observed differences
to the other studies are in part due to effects of the C57BL/6-129
mixed genetic background employed there (50).
In this study, we clearly demonstrate that the phenotypic dif-

ferences between the mouse models are not due to a compensation
for some of CYLD’s functions by A20 in mice. Collectively, we
conclude that A20 and CYLD do not significantly cooperate in the
regulation of B cell development and activation.
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Supplemental figure 1

Supplemental figure 1. Combined loss of A20 and CYLD in B cells does not 
affect splenic cell numbers. Absolute cell numbers of splenocytes; n = 9 mice 
per genotype. 
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Supplemental figure 2

Supplemental figure 2. Canonical NF- B activation in A20-deficient B cells. 
DNA-binding analysis of NF- B subunits by EMSA supershift. The asterisks highlight
the NF- B subunits supershifted with the respective antibodies. 
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