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SUMMARY 

Chapter I: Synthetic Studies Toward A-74528 

A-74528 (I.1) is an unusual natural product which has recently been isolated from 

Streptomyces sp. SANK 61196 by Ogita and co-workers (Scheme A).[1] Although I.1 was found 

to activate the interferon system via inhibition of 2',5'-oligoadenylate phosphodiesterase (2'-

PDE),[1] no synthetic approaches to A-74528 (I.1) have been reported. With its 30 carbon atoms, 

A-74528 (I.1) is one of the most complex and largest aromatic polyketides known to date. 

Structurally, A-74528 (I.1) consists of a hexacyclic core with an appended -pyrone moiety. Its 

unprecedented carbon skeleton contains two acyl resorcinol motifs typical of type II 

polyketides, which flank the perhydropyrene core. This heptacyclic system also features six 

contiguous stereocenters, one of which is quaternary.  

Scheme A. Type II polyketide A-74528 (I.1) and its possible precursor I.2. 

This research project is centerd on the development of a biomimetic synthesis of I.1 and its 

precursors. We found it fascinating to test the limits of biomimetic synthesis and to explore 

whether a complex polyketide pathway could be emulated in the laboratory.[2] As a key step of 

our synthesis an intramolecular Michael-Michael cascade of intermediate I.1 was envisioned, 

the synthesis of which demanded advanced biaryl chemistry techniques (Scheme A). These 

investigations initially focused on challenging transition-metal catalyzed cross-coupling 

reactions and, eventually, led to a synthetic strategy based on potentially biomimetic 

condensation chemistry, thus providing the key intermediates epoxide I.2 and enone I.3 

(Scheme B). At this point, extensive experimentations towards a Michael-Michael cyclization of 

the model system I.3 were undertaken. Although, the desired system could not be isolated thus 

far, other interesting reactions of I.3 have been observed, leading to, for example, the 

dearomatized compound I.4 in a cascade reaction (Scheme B).[3] This biomimetic approach 

could serve to unveil more interesting facets of polyketide type II chemistry. 
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Scheme B. Synthetic progress toward A-74528 (I.1). 

Chapter II: Synthetic Studies Toward Ansalactam A, 
Divergolides C and D 

Ansalactam A (II.1) and divergolides C and D (II.2 and II.3) are macrolactam natural 

products which belong to the ansamycin polyketide family. The intruiging structures of these 

three ansa macrolides attracted our interest. Thus, as a part of this PhD thesis, we envisaged to 

test biomimetic steps, which are involved in the biogeneses of all three natural products. 

Ansalactam A (II.1) was isolated by Moore and co-workers in 2011 from Streptomycies 

sp., derived from marine sediments.[4] As we suppose, its fascinating biosynthesis presumably 

involves a radical cyclization of an open ring radical system II.4, forming the 5-membered 

lactam ring (Scheme C). On the other hand, divergolides C and D (II.2 and II.3) were isolated 

by Hertweck and co-workers in 2011 from an endophyte (Streptomyces sp. HKI0576) of the 

mangrove tree Bruguiera gymnorrhiza.[5] Hertweck and co-workers discovered, that 

divergolides C and D (II.2 and II.3) originate from a similar bioprecursor. We believe, that the 

biomimetic total synthesis of both divergolides could be achieved starting from the 

intermediates II.5 and II.6, which may interconvert into each other by an transesterification and 

double bond isomerisation process, providing swift access to both natural products (Scheme C).  
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Scheme C. Type I polyketides ansalactam A (II.1) and divergolides C and D (II.2 and II.3), 

as well as their possible precursor II.4, II.5 and II.6. 

In the case of ansalactam A (II.1), our synthetic strategy involves the aforementioned 

biomimetic radical 5-exo-trig ring closure at an early stage of the synthesis. So far, as a part of 

this PhD thesis, an efficient synthesis of the naphthoquinone system II.7 was successfully 

achieved (Scheme D). Suitable reaction conditions for the proposed radical ring closure have 

been investigated.  

In the envisioned synthesis of the divergolides II.2 and II.3 we also aimed to prove our 

biomimetic hypothesis. It was planned to access both compounds II.2 and II.3 from a common 

intermediate, structurally similar to the isomers II.5 and II.6, by means of a base mediated 

Michael addition (for II.2), an aldol reaction (for II.3) and, finally, a transesterification. This 

dissertation includes the development of the syntheses of the eastern side chain II.8 and the 

western side chain II.9 (Scheme D). 
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Scheme D. Synthetic progress towards ansalactam A (II.1) and divergolides C and D (II.2 
and II.3). 

Chapter III: Synthetic Studies Toward Stephadiamine 

The hasubanan alkaloids are a subgroup of the famous natural product class of morphine 

alkaloids, which have historically been an inspiration and challenge for synthetic chemists. 

Many natural products of the morphine family show strong biological activities. One of the 

members of the hasubanan subgroup is stephadiamine (III.1). Stephadiamine was isolated from 

Stephania japonica as a minor component in 1984 by Ibuka and co-workers.[6] With its 15 

carbon atom skeleton stephadiamine (III.1) is so far the only isolated representative of the nor-

C-hasubanan alkaloids. Structurally, stephadiamine (III.1) consists of a pentacyclic core, 

bearing one benzene ring, two amine portions and a lactone functionality. This pentacyclic 

structure features four stereocenters, one of which is a benzylic all-carbon quarternary center 

and two are nitrogen containing tetrasubstituted carbon (NTC) centers (Scheme E).  

 
Scheme E. Envisioned total synthesis of stephadiamine (III.1). 

Inspired by the beautiful structure of III.1 and the challenge to introduce two NTC centers, 

one of the projects of this PhD thesis was the development of a synthetic entry to III.1 and its 

precursors. The precursor tetralone system III.2 has been synthesized in just six synthetic steps, 
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including a C H activation step.[7] First attempts toward the assemnbly of enamine system III.3 

have been made (Scheme E). 
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CHAPTER I: SYNTHETIC STUDIES 
TOWARD A-74528 

1. Introduction  

1.1. Type II Polyketide Natural Products 

Polyketides are a large and structurally diverse class of natural products, which are grouped 

together based on their biosynthetic relationship, strongly connected to classical fatty acid 

synthesis. Among them, many aromatic natural products formed by type II polyketide synthase 

(PKS) are known to posses pharmacologically important activities and some of them have been 

proven as clinically useful drugs.[8] Thus, anthracyclines, such as doxorubicin (I.5) and 

daunorubicin (I.6), are effective chemotherapeutics used in the treatment of certain cancer 

types.[9] Whereas tetracyclines and their derivatives, among them most prominent tetracycline 

(I.7) itself, form one of the most important classes of antibiotics (Figure I.1).[10] 

Figure I.1. Prominent type II polyketides: doxorubicin (I.5), daunorubicin (I.6) and 
tetracycline (I.7). 

Polyketides of this type are derived from poly- -keto chains formed by type II PKS. 

Similar to type II bacterial and plant fatty acid synthases, type II PKS is a complex of individual 

monofunctional proteins of iterative type. The 'minimal' iterative PKS consists of two 

ketosynthase units (KS  and KS ) and an acyl carrier protein (ACP) (Scheme I.1).[8] In analogy 

to classic fatty acid synthesis, the key step in the formation of poly- -keto chain is the 

decarboxylative Claisen condensation of malonyl-CoA extender units with an acyl starter, 

which is catalyzed by PKS. In this process, carbon dioxide attached to the malonyl-CoA unit 

activates the -position and facilitates the decarboxylative Claisen condensation without the 

need for a strong base. In this transformation, the KS  subunit of the 'minimal' type II PKS 

system catalyzes the Claisen condensation, whereas the KS subunit, lacking the active site 

cysteine residue, is believed to be responsible for the loading and decarboxylation steps, and 
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plays a major role in the control of the chain length of the synthesized polyketide chain.[11] The 

third unit in the 'minimal' PKS system, ACP, serves as an anchor for the poly- -keto chain. In 

contrast to fatty acid synthesis, the reductive enzymes, such as ketoreductases (KR), 

dehydrogenases (DH) and enoylreductases (ER) do not have to be present in the type II PKS. 

Unlike fatty acid synthesis, in which each elongation step is followed by a sequence of 

reductive transformations, the assembly of the reduction sequence for aromatic compounds is 

largely or even completely omitted. In the course of this transformation, a highly reactive -

carbonyl chain is provided, which is stabilized on the enzyme surface until the appropriate chain 

length is achieved. In some cases, distinct carbonyl functions can be reduced by a KR of type II 

PKS system, which is believed to control the first cyclization process of the -carbonyl-chain. 

These very reactive intermediates possess various possibilities for intramolecular Claisen or 

aldol reactions. Therefore, the folding mode of the -carbonyl-chain is crucial for the 

regioselectivity of post-PKS cyclizations promoted by various cyclases and aromatases, 

providing structurally diverse aromatic compounds (Scheme I.1). Interestingly, although the 

starter units in type II polyketide biosynthesis can vary, no report exists of an aromatic PKS 

employing chain extender unit other than malonyl CoA.[11-12] 

Scheme I.1. Basic mechanism for the biosynthesis of aromatic polyketides by 'minimal' PKS 
synthase. 

This process, with its broad variety of folding modes of the -carbonyl chains, enables the 

specific formation of diverse aromatic structures. Due to the reactivity of the proposed poly- -

keto intermediates, as well as the involvement of a multi-enzyme complex rather than of a 

single enzyme in the polyketide biosynthesis, the investigation of this biosynthetic machinery is 

a challenging task. Since the reactive intermediates are difficult to isolate and characterize, in 

most cases one can only speculate about their origin. Nevertheless, on certain occasions, 

biomimetic total synthesis of type II polyketides can serve as a powerful tool to analyze 

proposed biosynthetic intermediates and to gain deeper insights into the steps involved in the 

biosynthesis of these natural products. 
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1.2. Structure, Isolation and Biological Properties  

A-74528 (I.1) is an unusual type II polyketide, isolated in 2005 by Ogita and co-workers 

from Streptomyces sp. SANK 61196 during a screening for 2'-PDE inhibitors in microbal 

extracts (Figure I.2).[1] It is described as a pale yellow solid, which is soluble in methanol and 

dimethylsulfoxide (DMSO). Despite several efforts, A-74528 could not be crystallized due to its 

instability. Thus, structural elucidation of the molecule was performed using 1H- and 13C-NMR 

spectroscopy as well as 2D-NMR experiments, among them the 2D-INADIQUATE 

technique.[1]  

Figure I.2. Structures and relative stereochemistry of fredericamycin (I.8) and A-74528 
(I.1), as well as the MM3 force field model of A-74528.a 

Structurally, A-74528 (I.1) is one of the most complex and largest aromatic polyketides 

known. It consists of a hexacyclic core with an appendent -pyrone moiety. Its unprecedented 

carbon skeleton contains two acyl resorcinol motifs, which are typical of type II polyketides, 

flanking a perhydropyrene core. Unusual for a type II polyketide natural product is the fact that 

the tetracyclic core features six contiguous stereocenters, one of which is quaternary. In 

addition, the C1-secondary alcohol on ring A is present in a position not typical for a 

polyketide, a fact that needs to be accounted for in any proposed biosynthetic pathway. With the 

exception of fredericamycin A (I.8), A-74528 is the only isolated C-30 type II polyketide so far 

(Figure I.2).  

In terms of its biological profile, A-74528 (I.1) was found to activate the 2-5A interferon 

system, which is considered to be one of the major pathways involved in anti-tumor and anti-

viral response in human cells.[13] The enzyme RNaseL, which degrades viral and cellular RNA 

upon activation and thus shuts down the protein biosynthesis in viral cells, is mobilized by 

binding 2',5'-oligoadenylates (2-5A). Since the action of 2-5A can be deactivated by 2',5'-

specific phosphodiesterase (2'-PDE), overabundance of 2'-PDE in tumor and viral cells prevents 

                                                      
aThe nomenclature of the A-74528 ring system was adopted from Ogita and co-workers. The MM3 force 
field calculations were performed using MacroModel (Version 9.0): MM3* FF/gas phase/PRCG/500 
steps.  
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their apoptosis. A-74528 (I.1) showed an inhibitory effect on human 2'-PDE with an IC50 value 

of 34 g/ml, possessing dose-dependent reduction of viral replication without any cytotoxic 

effects in the absence of a viral infection. This is very promising, since the ability of viruses to 

take control over host cells by incorporating their own RNA into the genome of the host is one 

of the challenges in the design of selective antiviral drugs, as they should be able to specifically 

remold virus replication with no or minimal effect on host cells. Thus, especially in the case of 

multidrug resistance, new drugs with novel mechanisms of action are required. Hence, the 

capacity of A-74528 to interrupt the action of 2'-PDE provides a potential therapy against 

cancer and viral infections.[1,13] 

1.3. Project Aims 

As highlighted above, the biomimetic synthesis of type II polyketide natural products can 

provide useful information about key steps in the actual biosynthetic pathway of a particular 

natural product. Inspired by the intriguing and complex structure of A-74528 (I.1), the 

speculations about its biosynthesis, and the fact that no synthetic approach toward A-74528 (I.1) 

has been reported to date, we found this molecule a perfect target to test the limits of 

biomimetic synthesis. It was our aim to explore whether a complex polyketide pathway of a C-

30 polyketide like I.1 could be emulated in the laboratory. Thus, the goal of this project was to 

devise and execute a biomimetic synthesis of A-74528. To establish this synthesis, a 

development of new chemistry including a, as we suppose biomimetic, Michael-Michael 

cascade was essential. In addition, we planned to contribute to the elucidation of the 

biosynthetic pathway of the natural product by isolating, characterizing and analyzing our 

synthetic intermediates during the synthesis of A-74528 and using them for the identification of 

biosynthetic precursors. 

The synthetic studies toward A-74528 as well as the discoveries and challenges of the 

envisioned synthetic pathway are discussed in detail in the next section.
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2. Background  

2.1. Proposed Biogenesis of A-74528 

The described unique biological profile as well as its structural novelty aroused interest in 

the biosynthesis of A-74528 (I.1).[2] Its highly oxidized polyphenolic structure suggests its 

formation by a type II PKS system, incorporating a C-30 carbon chain and unique oxidation and 

cyclization processes. In 2010, Khosla and co-workers published their extensive work on the 

mechanistic analysis of the biosynthesis of A-74528 (I.1).[2] Using biosynthetic engineering 

techniques, such as cloning and sequencing of the complete A-74528 gene cluster as well as 

functional expression in a heterologous Streptomyces host, they were able to characterize the 

type II PKS genes responsible for A-74528 biosynthesis. Interestingly, the A-74528 PKS genes 

possessed high end-to-end sequence similarity to their fredericamycin A analogues, suggesting 

that A-74528 is a pentadecaketide. Thus far, fredericamycin A (I.8) and A-74528 (I.1) are the 

only known natural products incorporating a C-30 carbon chain in their biosynthesis, which is 

the longest polyketide chain length known to be constructed by a type II PKS system. Although 

fredericamycin A is structurally unrelated to A-74528, Khosla and co-workers were able to 

show that the A-74528 gene cluster can produce either of the two natural products I.1 or I.8, 

rectifying the generally accepted 'one cluster one antibiotic' paradigm.[2] 

Based on their results, the Khosla group was able to propose a biosynthetic pathway 

responsible for the formation of A-74528 (I.1) (Scheme I.2). Specifically, they suggest that the 

unusual oxygenation pattern in A-74528 results from an epoxide-opening reaction. Assuming 

that the epoxide had been installed at the C28-C29 bond of the C-30 chain at the earliest stages 

of the biosynthesis, the enzyme bound intermediate I.9 is believed to serve two purposes. On 

one hand, presence of an epoxide in I.9 can be responsible for the regio- and stereocontrol of the 

first cyclization process in the biosynthesis. On the other hand, the epoxide could act as a 

recognition element to distinguish between the two metabolic pathways to fredericamycin A 

and A-74528. Khosla supposes that, following epoxidation, the carbon chain undergoes six 

sequential cyclization reactions, first forming the B ring of the natural product in the enzyme 

bound intermediate I.10. After the formation of the -pyrone moiety in I.11, a closure to a 16-

membered macrocycle I.12 via a Michael reaction occurs, at which point the ring D in I.13 is 

assembled via an aldol condensation process. Thereafter, aldol condensation provides biaryl 

system I.14, which finally undergoes an epoxide-opening process to intermediate I.15. In the 

final step of the proposed biosynthesis, a Michael addition affords the natural product (Scheme 

I.2).[2] 
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Scheme I.2. Mechanism of the biosynthesis of A-74528 proposed by Khosla and co-
workers.b[2] 

Although Khosla's group was able to characterize individual enzymes involved in the 

biosynthesis of I.1, it is still not clear which precise enzymes of the multi-enzyme complex are 

involved in the specific tailoring and cyclization steps. This leaves room for speculation on 

both, the exact biosynthetic mechanism and the sequence of the cyclization processes of the C-

30 epoxy polyketide I.9. We believe that it is also conceivable that A-74528 (I.1) stems directly 

from a strained enone I.16, which engages in a transannular Michael addition and epoxide 

opening (Scheme I.3). Compound I.16 could in turn arise from a dearomatizing intramolecular 

Michael addition involving aryl naphthalene I.17. Alternatively, A-74528 (I.1) could also arise 

from a disrotatory 6 -electrocyclization of intermediate I.18, followed by conjugate addition 

and attack on the epoxide. Naphthalene I.17 as well as triene I.18 could both be formed by 

intramolecular condensation from the partially aromatized polyketide I.19, which we consider 

to be a key intermediate in both pathways. However, as intermediate I.19 has the potential to 

engage in a number of cyclization modes, proposed by Khosla and us, the exact sequence of 

                                                      
bScheme I.2 was assembled based on the publication of Zaleta-Rivera et al.: K. Zaleta-Rivera, L. K. 
Charkoudian, C. P. Ridley, C. Khosla, J. Am. Chem. Soc. 2010, 132, 9122 9128. 
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cyclization events remains to be delineated. The question is whether this intermediate first 

forms a 6-, 10-, 12-, or 14-membered ring. Finally, compound I.19 itself could originate from 

epoxy polyketide I.9, assembled by the type II PKS from acetyl and malonyl coenzyme A 

(Scheme I.3).c 

Scheme I.3. Alternative biosynthetic analysis of A-74528. 

The enormous chain length of the biosynthetic polyketide precursor I.9, its flexibility, as 

well as the variety of potential folding modes of the C-30 carbon chain and, thus, cyclization 

possibilities of this highly reactive intermediate, pave the way for further speculations on the 

exact formation of this natural product. This could potentially involve myriad of stepwise and/or 

concerted cyclization processes, which will not be discussed herein. The focus of our synthetic 

approach was centered on the biosynthetic considerations involving the double Michael reaction 

strategy, as the described dearomatizing reaction cascade was fascinating to us due to its 

challenging nature (Scheme I.3). 

                                                      
cPart of this discussion was already published in: A. Hager, D. Mazunin, P. Mayer, D. Trauner, Org. Lett. 
2011, 13, 1386 1389. 
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2.2. Strategy and Retrosynthetic Analysisd
 

Based on the biosynthetic considerations discussed before (vide supra, Chapter 2, Section 

2.1), the synthetic strategy we have chosen involves an intramolecular Michael-Michael 

addition step of biaryl intermediate I.20, which we consider to be a key intermediate in the 

biosynthesis of A-74528 (I.1) (Scheme I.4). Due to the atropisomerism in biaryl I.20, two 

diastereomeric transition states are possible in the first dearomatizing Michael addition step of 

the electron-rich naphthol system. The corresponding transition state I.21 (here chosen 

arbitrary) should result in the formation of only one diastereomer I.22. The completion of the 

double Michael sequence would provide the partially dearomatized pentacyclic compound I.24, 

which upon epoxide opening will furnish the skeleton of the natural product (Scheme I.4).  

Scheme I.4. Envisioned key steps in the synthesis of A-74528 (I.1). 

This synthetic approach toward A-74528 (I.1) is both novel and challenging in nature. Not 

only does it involve a dearomatizing Michael addition step, which is scarcely represented in 

literature and, to the best of our knowledge, has not been applied in total synthesis so far. In 

addition, it also comprises the epoxy-diketo structure I.20 as one of the key intermediates, the 

reactivity and conformation of which is difficult to estimate. 

One of the major challenges posed by this synthetic strategy is the assembly of the biaryl 

system I.2, analogous to I.20, or its less complex analog I.3 (Scheme I.5). Both systems can be 

retrosynthetically traced back to lactone I.25 and the corresponding side chains I.26 and I.27. 

                                                      
dPart of this discussion was already published in: A. Hager, D. Mazunin, P. Mayer, D. Trauner, Org. Lett. 
2011, 13, 1386 1389. 
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At this stage, we envisaged two synthetic strategies toward lactone I.25. In the first approach we 

planned to address the lactone assembly using advanced metal-mediated biaryl coupling 

strategy, wherein lactone I.25 could be derived from bromonaphthalene system I.28 and the 

requisite aromatic coupling partner I.29. Alternatively, in our second approach, we envisaged to 

construct lactone I.25 using a biomimetic sequence, which involves several condensation 

reactions. In this context, lactone I.25 can arise from linear diketone I.30, which in turn can be 

traced back to the orsellinic acid derivative I.31 (Scheme I.5). 

Scheme I.5. Retrosynthetic strategy. 

Both strategies conceal their own perils. Firstly, the envisioned Suzuki-Miyaura cross 

coupling between naphthalene I.28 and boronic ester I.29 could pose a challenge due to the 

steric demand of the coupling partners providing an o,o,o'-substituted biaryl system as the 

coupled product. In addition, the electron-rich nature of both substrates I.28 and I.29 could 

complicate oxidative addition, the critical initial step in palladium-catalyzed coupling reactions. 

In the case of the biomimetic strategy based on condensation chemistry, problems can arise as a 

result of the highly reactive nature of polyketide intermediates such as diketone I.30, demanding 

sophisticated control of the selectivity in the envisioned cyclization reaction.  

The detailed results of both synthetic approaches are described in the following chapter.
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3. Results and Discussione 

3.1. Cross-Coupling Strategy 

Initially, we focused our research on the proposed transition-metal-catalyzed cross-

coupling strategy. This approach calls for the independent construction of the two Suzuki-

Miyaura coupling partners, naphthalene I.28 and boronic ester I.29 (Figure I.3).  

Figure I.3. Building blocks involved in the cross coupling strategy. 

3.1.1. Assembly of the Aromatic Coupling Partners 

The synthesis of coupling partners I.28 and I.29, as outlined in the retrosynthetic analysis 

(vide supra, Scheme I.5) utilizes well-established protocols in the first instance. Thus, the 

synthesis of the naphthalene I.28 started with maleic anhydride I.32, which underwent a 

Michael addition reaction with triphenylphosphine and, following deprotonation, provided the 

ylen I.33 (Scheme I.6).[14] Regioselective opening of anhydride I.33 with methanol afforded 

monomethyl ester I.34. It is likely, that the electron-withdrawing effect of the phosphorous 

substituent increases the electrophilicity of the adjacent carbonyl group and results in the 

observed regiochemical outcome. The ylen I.34 was subjected to Wittig conditions with 3,5-

dimethoxybenzaldehyde as the reaction partner, providing the unsaturated acid I.35 as a single 

E-isomer.[15]  

Next, acid I.35 underwent a smooth intramolecular Friedel-Crafts acylation to naphthalene 

I.36. At this stage, ester hydrolysis furnished naphthol I.37, which was then protected as methyl 

ether, giving permethylated naphthalene I.38. Following reduction of the methyl ester and 

acetylation of the resultant bezylic alcohol I.39, naphthyl intermediate I.40 was dibrominated, 

providing a highly substituted naphthalene system I.41. It is plausible that the first bromination 

occurs at the more electron-rich ring, bearing two methoxy substituents, and that bromination at 

the kinetically favored position next to the benzylic acetate unit then follows.[16] At this point, in 

                                                      
ePart of this work was already published in: A. Hager, D. Mazunin, P. Mayer, D. Trauner, Org. Lett. 
2011, 13, 1386 1389. 
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order to gain entry to the required anchor for the envisioned Suzuki-Miyaura coupling, a 

regioselective debromination reaction had to be performed. This was achieved using the more 

electron-rich 1,2,4-trimethoxybenzene as the reagent, which under acidic conditions undergoes 

a bromine transfer reaction with dibromide I.41 via an electrophilic aromatic substitution 

process, also known as a variant of the halogen dance reaction.[16] Under these conditions, an 

inseparable mixture of monobrominated I.42 and 1-bromo-2,4,5-trimethoxybenzene was 

obtained, the separation of which was easily achieved after the removal of the acetate portion, 

providing literature known benzylic alcohol I.43 (Scheme I.6).[17] Overall, the synthetic 

sequence was performed on gram scale according to the procedures published by Greene and 

coworkers in 2010, providing the desired naphthalene portion in a high 19% overall yield in 11 

lengthy, yet practical steps.[17-18] 

Scheme I.6. Synthesis of the naphthalene system I.43. 

With I.43 in hand, the synthesis of the naphthalene coupling partner I.28 was completed in 

two steps (Scheme I.7). In this context, benzylic alcohol I.43 was converted under Appel 

conditions to dibromide I.44 in excellent yield. This intermediate was then transformed to the 

corresponding nitrile I.28, which could serve as a handle for the construction of the -pyrone 

system present in the A-74528 structure. In addition to extensive NMR analysis, the structure of 

nitrile I.28 was conclusively confirmed by means of X-ray crystallography. 
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Scheme I.7. Completion of the synthesis of naphthalene coupling portion I.28 and its X-ray 

structure. 

In order to be able to perform more extensive and rigorous Suzuki-Miyaura cross-coupling 

studies, we prepared analogs of naphthalene I.28, which are also suitable precursors for A-

74528 synthesis (Scheme I.8). Towards this goal, benzylic alcohol I.43 was converted to the 

corresponding aldehyde I.45 via a Dess-Martin oxidation. Wittig olefination of I.45 furnished 

alkene I.46, which was hydroborated to alcohol I.47. TBS-ether I.48 was finally obtained in 

excellent yield by means of a simple silyl protection. 

Scheme I.8. Synthesis of naphthalene derivatives I.47 and I.48. 

The second coupling partner, boronic ester I.29, was obtained from trihydroxybenzoic acid 

I.49 following a known protocol (Scheme I.9).[19] After formation of acetal I.50, the less 

sterically hindered alcohol was protected as a methyl ether under Mitsunobu conditions, 

providing hydroxybenzene I.51. Treatment of I.51 with triflic anhydride in the presence of 

pyridine then afforded aryl triflate I.52 in excellent yield.[19c,19d] With the ortho-substituted, and 

thus sterically demanding, triflate I.52 in hand, the synthesis of boronate I.29
f was 

accomplished using a Masuda coupling protocol[19a,19b] with pinacolborane as the coupling 

partner. In spite of its high instability, boronic ester I.29 could be crystallized and resolved by 

                                                      
fAlthough the Suzuki-Miyaura coupling was performed several times, the obtained yields were always 
lower than those reported in the literature: M. Altenmöller, J. Podlech, D. Fenske, Eur. J. Org. Chem. 
2006, 1278 1284. One explanation for this observation could be the high instability of boronate I.29 
under column chromatography conditions. 
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X-ray crystallographic analysis. The performed X-ray crystallography confirmed the supposed 

structure of I.29, which was proposed based on NMR (Scheme I.9). 

Scheme I.9. Synthesis of boronic ester I.29 and its X-ray structure. 

As pointed out in several publications by Molander and co-workers,[20] the stability of a 

boron-containing coupling partner can be increased by converting it to the corresponding 

trifluoroborate, a protected equivalent of the appropriate boronic acid. The use of 

trifluoroborates simplifies the purification process, as they can be easily crystallized in the most 

cases. In addition, trifluoroborates can tolerate harsher conditions than the corresponding 

boronic acids. In the presence of water, reaction intermediates similar to those generated by 

boronic acid precursors are formed. With this in mind, boronic ester I.29 was treated with 

potassium bifluoride and, pleasingly potassium trifluoroborate I.53 was obtained in high yield 

(Scheme I.10). 

Scheme I.10. Synthesis of trifluoroborate I.53. 

With both coupling partners in hand, studies of the projected Suzuki-Miyaura biaryl 

coupling could be performed, which is described in the next section. 
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3.1.2. Suzuki-Miyaura Coupling 

One of the most powerful methods in organic chemistry for C-C bond formation is the 

Suzuki-Miyaura coupling reaction. It possesses a broad substrate scope and wide tolerance for 

functional groups. Thus, we envisioned to achieve the synthesis of the desired biaryl system via 

a Suzuki-Miyaura coupling of boronic ester I.29, or the corresponding trifluoroborate I.53 with 

bromide I.28 or its derivatives I.43, I.47 or I.48 (Scheme I.11). 

Scheme I.11. Envisioned Suzuki-Miyaura coupling. 

The mechanism of this coupling reaction is well established and consists of three main 

steps: 1. Oxidative addition of an organo-halide or triflate to a palladium(0) species; 2. 

Transmetallation step between the organo-boron compound and the palladium II intermediate; 

and finally 3. Reductive elimination, delivering the desired product and regenerating the 

palladium(0) catalyst (Scheme I.12).[21] Several criteria can have a huge impact on the kinetics 

of each individual step in the mechanism, which need to be accounted for in the envisioned aryl-

aryl Suzuki-Miyaura coupling process. 

Oxidative addition is considered to be the rate determining step in the catalytic cycle. In 

this step, palladium is oxidized and the substrate reduced. Therefore, organohalides with 

electron-donating substituents undergo oxidative addition more slowly than those with electron-

withdrawing groups.[21a] As bromide I.28 and its derivatives I.43, I.47 and I.48 are electron-rich 

coupling partners, steps had to be taken to enhance the rate of the oxidative addition. This is 

possible, for example, by employing palladium complexes with sterically demanding ligands, 

such as DPEphos[22], RuPhos[23], SPhos[23-24], Pt-Bu3
[21e], PEPPSI[25]-ligands and 

others[21d,21e,24,26], which were shown to be highly reactive towards the oxidative addition due to 

the faster formation of the coordinatively unsaturated reactive palladium(0) species.[21d] Due to 

the aromatic nature of the coupling partner I.28, competing -hydride elimination following 

oxidative addition did not pose any danger.  

Bulky ligands also have favorable effect on metal-metal exchange and reductive 

elimination step kinetics.[21d,21e] Although much is known about the mechanistic details of 
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oxidative addition, less information is available about the transmetallation step. This may be 

caused by the high dependence of the rate of this step on the organometallic reagent used and 

the reaction conditions employed. In general, organic groups located on boron are weakly 

nucleophilic and undergo the transmetallation step only slowly. The rate of transmetallation 

reaction can be enhanced by addition of bases, such as Na2CO3, NEt3, NHCO3, Cs2CO3, Tl2CO3 

and other, which increase the nucleophilicity of the organic group via coordination to boronic 

esters and/or deprotonation of boronic acids.[21a] Hence, the choice of an appropriate base is 

essential for the success of the desired coupling.  

Scheme I.12. Simplified mechanism of aryl-aryl Suzuki-Miyaura reaction with possible side 
reactions A and B. 

Furthermore, steric hindrance of both coupling partners can have an enormous decelerating 

impact on transmetallation, resulting in low yields of the product.[21a,21d] This is especially true 

for o-substituted arylboronic species, such as boronic ester I.29 and trifluoroborate I.53. Having 

sterically hindered coupling partners I.28 and I.29 and anticipating the formation of sterically 

hindered o,o,o'-biaryl system, we had to reckon with the formation of byproducts, such as 

homocoupled biaryls. In many cases undesired homocoupling of either two aryl halides or two 

aryl boronic species may compete with the formation of the desired cross-couplig product. In 

particular, electron-donating substituents on the aryl boronic species, as in boronic ester I.29, 

enhance the aryl-aryl exchange between the palladium(II) species and its phosphine ligands. 

This process results in the formation of phosphine-substituted aryl species, which in turn can 

undergo an oxidative addition and lead to homocoupling reaction (Scheme I.12, side reaction 

A).[21a,21e] The formation of biaryls by homocoupling of aryl boronic species can also be induced 

by concentration effects. In the case of low concentration of aryl halide, the reactive palladium 
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species may undergo oxidative addition with aryl boronic species, also leading to homocoupling 

as the side reaction (Scheme I.12, side reaction B).[27] 

We were less concerned about the reductive elimination step of the coupling, which is 

known to be fast in the case of biaryl synthesis due to presumed -orbital participation during 

the bond-forming process. Finally, we anticipated that aqueous reaction, typical in a Suzuki-

Miyaura coupling, could also promote the competitive hydrolytic deboronation process 

potentially necessitating anhydrous conditions. 

As explained, linkage of the two components through Suzuki-Miyaura coupling required 

careful optimization. In spite of a wide screening of reaction conditions, different ligands (e.g. 

PPh3, DPEPhos, RuPhos, PEPPSI-i-Pr, dba, dppf) and bases (e.g. K3PO4. CsCO3, KOt-Bu, 

Ba(OH)2, NEt3, K2CO3; see Table IV.1, experimental section) and altering of the coupling 

partners, we were not able to achieve the formation of the desired o,o,o'-biaryl product. In most 

cases, due to the reasons described above, only the homocoupled product I.54 of aryl boronic 

species I.29 and protodeboronated benzene I.55 were isolated. The isolation of the 

protodeboronated species led to assumption that the transmetallation step had indeed taken 

place however, no product could be detected. Eventually, we settled on a protocol that involved 

microwave irradiation and tetrakis(triphenylphosphine) palladium(0) as catalyst. To our delight, 

despite the aqueous nature of these conditions, I.28 could be coupled with I.29 to afford biaryl 

I.56 as a racemic mixture of atropisomers in good yield (Scheme I.13). In addition to the main 

product, a small amount of homocoupled product I.54 and deboronated benzene I.55 was 

formed during the reaction.  

Scheme I.13. Successful Suzuki-Miyaura coupling under -wave conditions. 

The use of trifluoroborate I.53 instead of the boronic ester I.29 as the coupling partner did 

not decrease the yield of the undesired protodeboronation product and, in fact, resulted in 

diminished isolated yields of biaryl I.56 (not shown).[3] This successful coupling is one of the 
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few examples of the formation of a triply o,o,o'-substituted biaryl bond in acceptable yield 

through microwave forced transition-metal catalyzed cross coupling.[28]  

It is widely known that microwave irradiation can be superior to conventional heating 

protocols.[29] As a result of shorter reaction times, application of microwave irradiation 

conditions limits the decomposition of reaction partners and/or products. It is likely that the 

dissociation of a phosphine ligand from the palladium center is accelerated under microwave 

irradiation. This results in faster formation of the unsaturated reactive palladium(0) species, thus 

favoring the oxidative addition step and facilitating the catalytic cycle. Water as a reaction 

medium is often an excellent solvent for microwave-induced transformations, and we also found 

that a mixture of water and toluene as solvent, together with catalytic amounts of tetra-N-

butylammonium bromide (TBAB) as phase transfer catalyst were efficient reaction conditions. 

All attempts with other naphthalene derivatives, such as alcohols I.43 and I.47 as well as TBS-

ether I.48, provided only trace amounts of the corresponding biaryl systems. 

Although we were able to find a satisfactory solution for the cross coupling, we 

nevertheless realized that this synthetic approach was too long and unpractical to support a total 

synthesis of A-74528 (I.1), particularly in light of the subsequent functionalization necessary to 

complete the synthesis. Therefore, we explored an alternative pathway, which relied on the 

proposed biosynthesis and involved sophisticated condensation chemistry. 

3.2. Condensation Strategy 

The second approach to the desired biaryl system commenced with the application of well-

established condensation chemistry of methyl acetoacetate (I.57) (Scheme I.14).[30] Upon double 

deprotonation of methyl acetoacetate with sodium hydroxide and n-butyl lithium, the 

corresponding anion underwent a condensation reaction with a second equivalent of methyl 

acetoacetate forming, under strongly acidic conditions, exclusively methyl ester I.58, despite of 

the possibility of numerous alternative condensation pathways. Methyl ester I.58 thus obtained 

was treated with excess of dimethyl sulfate, giving rise to dimethylether I.31 in good yield.[30c] 

Condensation of the corresponding benzyl anion of I.31 with Weinreb amide I.59, prepared in 

one step from acid chloride I.60 according to a literature known protocol,[31] gave ketone I.61 

upon quenching the reaction at 78 °C. Interestingly, when the reaction was performed at 

78 °C and allowed to slowly warm to room temperature prior to the aqueous quench, no 

product was formed. Instead, formation of ester I.62 was observed, in which the elimination of 

the Weinreb amide portion had not taken place.  
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Treatment of ketone I.61 with strong bases, such as sodium hydroxide, yielded the highly 

substituted but, unfortunately, undesired naphthalene structure I.63 via an intramolecular 

Claisen condensation. However, when milder conditions were applied, ketone I.61 underwent 

enolization of the benzylic position and intramolecular O-condensation, providing the desired 

isocumarin I.64, in which the carbonyl group is activated towards nucleophilic addition 

(Scheme I.14). 

Scheme I.14. Synthesis of active ester I.64 via condensation reactions. 

In order to have a longer handle in the benzylic position of the active ester I.64, suitable for 

the formation of the pyrone ring in A-74528, we envisioned to use literature known Weinreb 

amide I.65.[32]. Starting from monoprotected alcohol I.66, Weinreb amide I.65 was synthesized 

in two steps according to a known protocol involving Jones oxidation to acid I.67 and its 

conversion to I.65 in a 1,1'-carbonyldiimidazole-mediated coupling (Scheme I.15).  

Scheme I.15. Synthesis of Weinreb amide I.65 and attempts for its conversion to ketone I.68. 
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Unfortunately, all attempts to condense the resulting Weinreb amide I.65 with the lithium 

anion of the permethylated orsellinic acid I.31 did not lead to the formation of the desired 

ketone I.68. The likely cause of this result is the elimination of a benzoate anion in both 

Weinreb amide I.65 as well as the desired product I.68 via an E1cb mechanism. 

Scheme I.16. Synthesis of the biaryl acid I.71 and lactone I.25. 

Nevertheless, with gram quantities of active ester I.64 in hand, we commenced with the 

assembly of the desired biaryl skeleton (Scheme I.16). As such, the Claisen condensation of 

isocumarin I.64 with orsellinic acid derivative I.31 had to be carefully optimized. For instance, 

if the reaction of lithium anion of I.31 with active ester I.64 was quenched with acetic acid at 

78 °C, undesired double enol ether I.69 was obtained, in which the envisioned condensation 

had not proceeded to completion. However, by quenching the reaction under neutral conditions 

with an aqueous ammonium chloride solution and precooling the solution of active ester I.64 to 

78 °C prior to the reaction, the condensation process was successfully driven to completion 

and afforded the desired system. Mechanistically, I.64 engaged in a Claisen-type condensation 

with an anion of I.31 providing intermediate diketone I.30. This material underwent cyclization 

upon work-up to yield in addition to biaryl methyl ester I.70, the desired acid I.71 as well as a 

complex mixture of oligomers and polymers. Direct saponification of this mixture prompted the 

transformation of the undesired products to the envisioned biaryl acid I.71, which was isolated 
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as a mixture of atropisomers in good yield. The structure of biaryl I.71 was established using 
1H-, 13C- and 2D-NMR techniques and confirmed by its X-ray crystal structure. Treatment of 

the acid I.71 with oxalyl chloride in the presence of base then gave achiral phenolic -lactone 

I.25, our key intermediate for A-74528 synthesis. 

The synthesis of acid I.71 could be reliably performed on gram scale, providing the desired 

biaryl building block in only six steps. In comparison, the synthesis of the corresponding 

intermediate I.56 using the Suzuki-Miyaura approach (vide supra, section 3.1.) required a 16-

step protocol and was limited in its scale due to the reduced capacity of the microwave reactor 

used in the last step. Hence, with the condensation approach to lactone I.25 firmly established, a 

solid foundation was set for the synthesis of A-74528 (I.1).  

With this developed approach to I.25, the intended installation of a side-chain 

corresponding to C24-C30 of the natural product could be explored (Scheme I.17). We thought, 

that the biaryl system I.3, which could be derived from lactone I.25 and the commercially 

available enone I.26, would represent a useful model system for the desired Michael-Michael 

reaction. In the case of the real system I.2, the unknown epoxy side chain I.27 had to be 

connected to lactone I.25. As a result, a scalable and reliable synthesis of side chain I.27 had to 

be achieved first. 

Scheme I.17. Planned installation of side chains I.26 and I.27. 
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The enone side-chain I.27 was synthesized in cooperation with D. Mazunin in the course of 

his Masters research project and will be only briefly discussed herein (Scheme I.18).g The 

synthesis commenced with a known sequence of transformations.[33] Specifically, sorbic acid 

I.72 was reduced to alcohol I.73, which, after protection as benzoyl ester I.74, was subjected to 

Sharpless asymmetric dihydroxylation, providing diol I.75 in good yield and high enantiomeric 

excess. The formation of the trans-epoxide I.76 was achieved using conditions established by 

Stephenson and co-workers, wherein sequential inter- and intramolecular SN2 processes led to 

the formation of the known product I.76.[34]  

Scheme I.18. Synthesis of the epoxy side chain I.27.[34] 

Finally, we were able to establish a synthetic route to epoxide I.27, which was 

accomplished in three steps from epoxyalcohol I.76. Thus, a Dess-Martin periodinane mediated 

oxidation of alcohol I.76 provided aldehyde I.77, which was converted to secondary alcohol 

I.78 by means of a direct methyl lithium addition. Although alcohol I.78 was isolated as a 

mixture of diastereoisomers, simple oxidation provided the desired enantiomerically-enriched 

side chain I.27 in excellent yield (Scheme I.18).[34] Unfortunately, during the previous steps, a 

racemization process as a side reaction must have taken place resulting in a drop in the ee value 

from 90% in side chain I.27 to 75% in the final product as indicated by chiral HPLC analysis. 

Presumably, the observed racemization occurred via an intramolecular epoxide opening in a 

conjugate fashion with the free alcohol in I.78 as the nucleophile.  

At this stage, with sufficient quantities of side chain I.27, fragment coupling toward double 

Michael precursors I.3 and I.2 could be attempted. However, before these results are discussed, 

some stereochemical considerations concerning the axial chirality of the substrates involved 

have to be accounted for.  

                                                      
gThe synthesis of the epoxy side chain I.27 was carried out by D. Mazunin as a part of his Masters project 
under the supervision of A. Hager. The experimental procedures of this sequence are not included in the 
presented work. For detailed experimental information and mechanistic discussion, see: A. Hager, D. 
Mazunin, P. Mayer, D. Trauner, Org. Lett. 2011, 13, 1386 1389 and D. Mazunin, Masters Thesis, 
Ludwig-Maximilians-Universität, München, 2010. 
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The phenomenon of axial chirality is caused by the hindered rotation around an aryl-aryl 

bond. This rotational ability is in turn governed by the steric demand of the substituents on the 

aromatic rings, and is temperature-dependent. An essential premise for axial chirality is the fact 

that these substituents have to be different on the two sides of the axis.[35] Ortho-substituents, in 

particular, increase the rotation barrier as a result of their sterical clash, although cases of axial 

chirality induced by metha-substituents are also known. Among ortho-substituted compounds, 

mono-ortho-substituted non-bridged biaryl systems are not able to form rotationally stable 

isomers at room temperature. Biaryls possessing two ortho-substituents are more hindered in 

their rotation at room temperature, though in most cases rotation can still take place within a 

few hours, depending on the size of the substituents. In contrast, tri-ortho-substituted biaryls, 

such as biaryl acid I.71, possess a rotationally stable axis at room temperature, as two of these 

substituents have to pass each other in the transition state of the rotation.  

Scheme I.19. Stereochemical considerations concerning the desired lactone opening process. 

In contrast to open biaryl systems, bridged biaryls represent a special case. If bearing a 5-

membered ortho-bridge, the corresponding axis is not rotationally hindered. In the case of a 6-

membered ortho-bridge, the rotational barrier is higher, yet, rotation is still possible and thus the 

axis is stereochemically labile.[35c] In the context of the intermediates in our synthesis, this has 

the following consequences (Scheme I.19): 1. the biaryl axis in acid I.71 is rotationally hindered 

at room temperature, and, therefore, exists as two atropisomers, M-I.71 and P-I.71; 2. The 

conversion of acid I.71 to lactone I.25 bearing an o,o'-6-membered biaryl bridge provides an 

achiral molecule, in which the rotation of the biaryl axis occurs rapidly. However, following the 

desired lactone-opening reaction with, for instance, epoxy side-chain I.27, the compound 
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obtained will once again be chiral and exists in its two atropisomeric forms M-I.2 and P-I.2 at 

room temperature (Scheme I.19). 

These stereochemical properties of biaryl compounds can serve as a useful tool in 

stereoselective biaryl synthesis, which is known as atroposelective lactone cleavage.[35c] The key 

intermediates of this method are stereochemically labile lactone-bridged biaryls, such as I.25. 

The atropoenantio- or atorpodiastereoselective cleavage of the lactone bridge can be achieved 

via a nucleophilic lactone opening reaction involving different chiral nucleophiles. In most 

cases, the use of chiral O-, N- or H-based nucleophiles has been reported.[35c]  

The transformation of stereochemically unstable lactones into chiral biaryls can be 

regarded as an example of a dynamic kinetic resolution (Scheme I.20). As has been shown by 

quantum chemical calculations, axial attack of the nucleophile on the lactone system is strongly 

favored over the equatorial one.[35c] Thus, due to steric reasons, the chiral nucleophile is only 

able to react with one of the atropisomers of lactone I.79, for example M-I.79, discriminating 

between the two possible diastereomeric transition states of the lactone opening. The reactive 

atropisomer M-I.79 is constantly delivered by the rapid equilibrium of the atropoisomerization 

process. In this manner, a complete conversion of 'racemic' lactone I.79 to the chiral open ring 

system I.80 is possible, allowing for an almost complete control of the stereochemistry of the 

biaryl axis. 

Scheme I.20. Proposed mechanism of the lactone cleavage with chiral nucleophiles.h[35c] 

We envisioned to apply the described lactone-opening concept for the synthesis of A-

74528 precursor I.2 using the epoxy side-chain I.27 as the chiral C-based nucleophile. To the 

best of our knowledge, there is no literature report on lactone cleavage with chiral C-

nucleophiles. Towards this end, we were able to show that the achiral tetracyclic lactone I.25 

could be linked with the potassium enolate of achiral methyl-1-propenyl ketone I.26, a C-based 

nucleophile (Scheme I.21). This transformation furnished the 1,3-diketone model system I.3 in 

good yield, which exists mostly in its enolized form, and, due to the achiral nature of the applied 

                                                      
hThis scheme was adopted from: G. Bringmann, A. J. Price Mortimer, P. A. Keller, M. J. Gresser, J. 
Garner, M. Breuning, Angew. Chem. Int. Ed. 2005, 44, 5384 5327. 
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nucleophile, as a racemic mixture of two atropisomers. We were now intrigued to test whether 

the analogous transformation could be carried out with the enolate of the enantiomerically 

enriched epoxy ketone I.27. Unfortunately, the condensation of the chiral potassium enolate of 

ketone I.27 with I.25 gave aryl naphthol I.2 as an inseparable mixture of diastereomers with 

respect to the biaryl axis. It is likely that the stereogenic centers in the epoxide moiety in I.27 

are to far away to effect dynamic kinetic resolution and induce diastereoselectivity in the ring-

opening reaction. The low yield of this transformation is presumably caused by the instability of 

the epoxy side chain I.27 towards bases and nucleophiles. 

Scheme I.21. Assembly of diketones I.2 and I.3 via lactone opening. 

Even though the chiral lactone cleavage was unsuccessful, some interesting spectroscopic 

results were observed in the course of this study. The described chirality switch from chiral acid 

I.71 to achiral lactone I.25 and back to chiral compound I.3 could be clearly appreciated by 

means of 1H-NMR spectroscopy (Figure I.4). Featuring a chiral rotational-hindered axis, acid 

I.71 possesses diastereotopic protons in both of its benzylic methylene groups. These protons 

exhibit a typical diastereotopic coupling characteristics in the 1H-NMR spectrum, i.e. the 

protons of each methylene group couple to each other producing in each case two doublets with 

a roof effect. When converted to rotationally unstable lactone I.25, the biaryl no longer contains 

chiral elements in its structure. As a result the four formerly diastereotopic methylene protons 

are now enantiotopic and appear in the 1H-NMR spectrum as two distinct singlets. Finally, 

following lactone cleavage, the resulting biaryl axis in I.3 is rotationally stable at room 

temperature, making the methylene group protons diastereotopic. Consequently, the 

corresponding 1H-NMR spectrum shows a complex coupling pattern of these four protons HA, 

HB, HC and HD, which appears as a multiplet. This comparison of spectroscopic data provides a 

good evidence for axial chirality of biaryl compounds. 

With the Michael systems I.2 and I.3 in hand, required for the construction of the A-74528 

core, investigation into their capacity to engage in the desired double Michael addition cascade 

could now be undertaken. 
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Figure I.4. Chemical shifts and comparison of coupling behavior of biaryl compounds I.71, 
I.25 and I.3 in 1H-NMR spectra (400 MHz, CDCl3). 

3.3. Toward the Michael-Michael Cascade 

Inspired by the proposed biogenesis of A-74528 (I.1) and driven by the question how far 

we can push the boundaries of biomimetic synthesis of complex type II polyketide natural 

products, the key step we have chosen for the assembly of the A-74528 core is a double Michael 

addition cascade of epoxy intermediate I.2 providing the desired polycyclic system I.81 via 

enone I.82 (Scheme I.22).  

Scheme I.22. Intended biomimetic Michael-Michael cascade reaction. 

Michael addition reactions, along with aldol condensation processes, belong to the most 

powerful C-C bond forming transformations in organic chemistry. The history of Michael 

reactions dates back to 1880s and is strongly connected to the research of the American chemist 

Arthur Michael, the eponym to this reaction.[36] Since its discovery, this transformation has been 
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used in numerous syntheses of natural products. One of the most distinguished applications of 

this nucleophilic attack on , -unsaturated systems is its utilization in cascade processes, 

enabling the formation of several C-C bonds in a single operation.[37] These cascade reactions 

can be either inter- or intramolecular, may be initiated by other reactions, can involve more than 

two Michael reactions and may be reflexive, in which both reactants serve as acceptor and 

donor.[38]  

One of the recent examples of an intramolecular Michael cascade reaction employed in a 

total synthesis of a natural product is the synthesis of  opioid receptor agonist salvinorin A 

(I.83), published by D. Evans and co-workers in 2007.[39] For their featured key transannular 

cyclization process, they synthesized Michael system I.84, which upon treatment with TBAF at 

78 °C underwent a reflexive double Michael cascade. Under these conditions enolate I.85 was 

first formed, which underwent the first Michael addition. This resulted in the generation of 

enolate I.86, which in turn was able to cyclize intramolecularly forming the core structure I.87 

of salvinorin A (I.83) (Scheme I.23). 

Scheme I.23. Intramolecular double-Michael-addition as a key step in Evans' salvinorin A 
synthesis.[39] 

One interesting aspect that needs to be accounted for in our proposed key step is that during 

the projected reflexive intramolecular Michael-Michael cascade the naphthalene portion in I.2 

will require undergoing a partial dearomatization process. This leads us to the following 

question: To which extend the electron rich naphthol system of I.2 can be described as an 

aromatic structure or considered to be an enol: i.e. how nucleophilic is it? It was our aim to 

answer this question as part of our studies. To the best of our knowledge, so far there are no 

reports of a dearomatizing Michael addition, involved in the total synthesis of a natural product. 

However, some examples of dearomatization during a Michael reaction[40] and aldol addition[41] 



3. RESULTS AND DISCUSSION 

29 
 

have been published. Thus, the desired key step would represent the first case of a 

dearomatizing Michael addition reaction applied in the total synthesis of a natural product. 

In general, nucleophilic attack on the C-C double bond of the Michael system can be 

triggered by both acids and bases. In the first instance, we intended to explore the desired 

double Michael cascade on the model system I.3, lacking the delicate epoxide function in the 

side-chain (Scheme I.24). Towards this end, more than 50 diverse reaction conditions were 

tested, including various weak and soft Brønsted bases and acids, Lewis acids, organocatalysts, 

heating and microwave conditions, transition metal catalysts and radical initiators.i The most 

interesting results which have been obtained over the course of these investigations are 

discussed next. 

Scheme I.24. Model system for the proposed double-Michael addition. 

3.3.1. Acidic Conditions 

Over the course of the screening of acidic conditions, Lewis acids, such as phenylboronic 

acid, aluminum chloride and boron trifluoride etherate complex, as well as protic acids, such as 

PPTS, acetic acid, hydrochloric acid and trifluoroacetic acid, all which are known to promote 

Michael additions, have been used in a variety of solvent systems. In almost all cases only 

partial or full decomposition of the starting material took place and no identifiable products 

could be obtained. Nevertheless, when diketone I.3 was treated with boron triflouride diethyl 

ether complex at 0 °C, the corresponding difluoroborate complex I.89 was formed in 26% yield 

(Scheme I.25). 

Intrigued by this observation, the structure of the complex I.89 was fully elucidated using 

conventional 1H-, 13C- and 19F-NMR spectroscopy as well as 2D-NMR methods, and mass 

spectrometry. Surprisingly, unlike the 1H- and 13C- spectra, the 19F-NMR spectrum of 

difluoroborate I.89 indicated the existence of two stereoisomers of I.89 showing two separate 

sets of signals. Each of these isomers possesses a typical AB quartet coupling pattern of two 

                                                      
iFor detailed information on the screened conditions, see Table A in the appendix of this work. 
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diastereotopic fluorines. This fact is likely to be caused by the keto-enol tautomerism between 

the two keto groups in the side chain. 

Scheme I.25. Formation of the difluoroborate I.89. 

As the desired Michael-Michael reactivity could not be induced by means of acid 

promoters, we were prompted to explore other conditions with the hope of triggering the desired 

cyclization. Specifically, bases and radical reagents were investigated in great detail.  

3.3.2. Basic, Radical and Miscellaneous Conditions 

We speculated that deprotonation of the naphthol hydroxyl group in I.3 with a base 

would increase the nucleophilicity of the para-carbon atom, forcing the desired nucleophilic 

attack (Scheme I.26).  

Scheme I.26. Mechanistic considerations regarding the desired double Michael addition. 

Unfortunately, the pKa values of both the naphthol hydroxyl group and the benzylic enol 

fall in the similar region of around 10. As the diketone usually exists in its enolized form, as 

confirmed by NMR, we assumed that the desired deprotonation would be difficult to control, 

ultimately resulting in an equilibrium between the two deprotonated forms. However, 
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concerning the desired transformation this could also be an advantage since the first Michael 

attack in I.3 would produce enolate I.90 (or the corresponding enol), which would need to 

tautomerize to the enolate I.91 before it could undergo the second Michael addition. Thus, 

equilibrium conditions such as weak bases and protic solvents might be beneficial in this 

context. 

Our base screen started with weak bases, such as cesium fluoride, lithium perchlorate, 

potassium carbonate, lithium hydroxide, and TBAF, as well as amine bases, such as piperidine, 

triethylamine, DABCO and DBU, in addition to strong bases, such as LDA. In a similar fashion 

to reactions carried out under acidic conditions, in most cases either decomposition of diketone 

I.3 was observed or the starting material was re-isolated. In some reactions using a weak base, a 

retro-Claisen condensation occurred, resulting in elimination of the side-chain and providing the 

lactone I.25 as the main product (Scheme I.27). For example, treatment of diketone I.3 with 

cesium fluoride in acetonitrile at elevated temperatures afforded lactone I.25 in a high 65% 

yield (Scheme I.27), wherein the original lactone intermediate I.25 had been obtained. 

Scheme I.27. Unexpected formation of the lactone I.25 via a retro-Claisen reaction of diketone 
I.3. 

Interestingly, the use of TBAF as base led to another interesting observation. Upon stirring 

diketone I.3 over several days in a DMF/THF mixture in the presence of TBAF and air, two 

new complex structures were isolated. Despite all attempts, the isolated material could not be 

crystallized and X-ray structural analysis could not be performed. Nevertheless, the structure of 

the isolated products could be elucidated by extensive NMR analysis, suggesting that one of the 

products is a complex dearomatized polycyclic system I.4, whereas the other is a simpler spiro-

cyclic system I.92 (Scheme I.28). 
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Scheme I.28. Formation of unexpected products I.4 and I.92. 

The 1H-NMR spectrum of the newly isolated compound I.4 suggested that an addition to 

the Michael system of the side chain in I.3 had taken place. The rational behind this assumption 

was the absence of the signals for the unsaturated Michael system of the side chain, in addition 

to an up-field shift of the terminal methyl group with a changed coupling pattern. A closer look 

at the 13C-NMR spectrum of the compound indicated a remarkable up-field shift of several 

carbons, which had previously appeared in the spectrum of the starting material in the aromatic 

or unsaturated region. For example, C-A in the newly formed spiro center of I.4 was shifted to 

69.2 ppm, whereas in the starting material I.3 the corresponding signal appeared at 119.8 ppm 

(Figure I.5). This fact suggested to us that a dearomatization of one or more rings had indeed 

taken place. Encouraged by this observation and, assuming that the desired Michael-Michael 

addition had occurred, further spectroscopic analysis was performed. Unfortunately, it was clear 

from the high resolution ESI spectrometry data that the compound isolated was not the desired 

product. Indeed, the obtained mass of 585.2117 g/mol implied the incorporation of an additional 

oxygen atom in the new structure. Finally, the identification of the complex structure was 

accomplished using 2D-NMR spectroscopy (COSY, NOESY, HMBC, HSQC). Through the 

detailed analysis of the NOESY signals, we were able to assign the relative configuration of all 

stereogenic centers in I.4 (Figure I.5).j 

Figure I.5. Proposed structures of isolated compounds I.4 and I.92; Important NOESY 
correlations in I.4 leading to the assumption of the relative stereochemistry (red), as well as 

comparison of chemical shifts of carbon A in starting material and products (grey). 
                                                      
jDetailed spectroscopic analysis as well as 2D-NMR-spectra are summarized in the experimental section 
of this work. 
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In the case of the second isolated product, the changes in the 1H- and 13C-NMR spectra 

were more subtle. It was easy to realize that the Michael system was still intact and that two of 

the aromatic rings were unchanged. However, a thorough inspection of the 2D-NMR spectra led 

us to the assumption that the isolated compound had the partially dearomatized structure I.92. 

The change of the NMR shift of the former biaryl carbon atom C-A was particularly 

conspicuous (Figure I.5). Whereas in the starting material it appears at 119.8 ppm in the 13C-

spectrum, the dearomatization causes an up-field shift to 61.2 ppm in I.92, making the 

dearomatization obvious. 

Initially, in order to explain the formation of these unexpected compounds, we assumed the 

involvement of an air oxidation of biaryl I.3, leading to the corresponding naphthoquinone I.93 

(Scheme I.29). At this point, naphthoquinone I.93 could serve as an electrophile for the Michael 

addition of the diketone, producing the spiro-compound I.94. The enol moiety in I.94 could 

then in turn attack the side chain in a Michael fashion, thus forming the pentacycle I.95 which 

possesses a further nucleophilic enol functionality. Finally, an aldol addition of this enol unit to 

the ketone of the former quinone portion would furnish the isolated structure I.4. Although we 

attempted to prove this hypothesis by selective synthesis of naphthoquinone I.93 under various 

oxidative conditions, we were not able to successfully achieve its selective formation. 

Scheme I.29. Proposed mechanism for the formation of I.93. 

Based on the isolated structure I.92 and assuming that this might be a precursor to structure 

I.4, it is plausible that the entire process is of radical nature (Scheme I.30). Thus, it is 

conceivable that diketone I.3 could form a stabilized diketo radical I.96 in the presence of 

oxygen, which then could undergo a radical cyclization process with the more electron-rich 

naphthalene ring, forming the tertiary radical I.97. This radical could be reduced with a source 

of hydrogen, possibly the starting material itself, delivering the spiro-cyclic compound I.92. On 



CHAPTER I: SYNTHETIC STUDIES TOWARD A-74528 

34 
 

the other hand, radical I.97 could also be involved in further cyclization reactions. More 

specifically, attacking the C-C double bond of the Michael system in the side chain, it would 

produce a stabilized radical I.98. Subsequent radical cyclization on the enol and oxidation of the 

para-position with oxygen will furnish the complex structure I.4. In order to prove the radical 

nature of the mechanism, a radical inhibitor could be added to the reaction mixture to prevent 

the reaction taking place. This will form part of future work and help to elucidate the proposed 

mechanism in detail. 

Scheme I.30. A radical pathway for the formation of I.4 and its putative precursor I.92. 

In addition to the described reactions, treatment of Michael system I.3 with bases, e.g. 

triethylamine at elevated temperatures led to the isolation of another interesting structure. After 

extensive NMR analysis, this product was identified as -pyrone I.99, which had been formed 

as a 1:1 mixture of diastereomers (Scheme I.31). To our delight, the proposed structure was 

eventually conclusively verified by X-ray crystallography analysis. This structure is presumably 

formed via an intramolecular O-addition of the enolate of -diketone I.3 to the Michael system 

of the side chain. In addition, high temperature experiments that were performed in the hope of 

achieving the synthesis of pentacyclic system I.88 also resulted in the isolation of I.99 as the 

major product. More specifically, when enone I.3 was heated in 1,2-dichlorobenzene at 160 °C 

for several hours, both diastereoisomers of -pyrone I.99 were isolated in 50% yield. The same 

observation was made when enone I.3 was heated at 120 °C in a microwave reactor, affording 

traces of the diastereomeric -pyrone mixture. The reaction of I.3 in other solvents such as 

benzene, DMSO, dichlorobenzene at different temperatures was performed. However, in the 

most cases, only partial decomposition of the starting material occurred and no other reaction 

took place. 
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Scheme I.31. Formation of the diastereomeric -pyrons I.99a and I.99b. 

The so called oxa-Michael reactions possess a lot of synthetic potential as their products, 

such as -hydroxyketones or -pyrones are common motifs in polyketide natural products, 

making them valuable building blocks in total synthesis. Even though the first conjugate 

addition of an alcohol to an acceptor system was published already in 1878 by Loydl,[42] this 

transformation did not get a lot of attention in the synthetic community until recent years.[43] 

Typical pitfalls related to the oxa-Michael additions are the reversibility of the addition step and 

the poor nucleophilicity of the employed alcohols, resulting in low yields of the product and 

poor enantioselectivity. However, in recent years, especially in the field of organocatalysis,[44] 

some interesting developments have been achieved. It was shown that proline-based catalysts[45] 

can provide the desired -oxy-compounds in high enantiomeric purity[45-46] when employed in 

cascade reactions.[47] In addition, List and co-workers were able to achieve enantioselective 

addition of hydrogen peroxide to Michael systems, promoted by cinchona alkaloid 

derivatives.[48] 

These recent developments persuaded us to look into the intramolecular -pyrone formation 

in more detail (Scheme I.31). We were hoping to achieve an organocatalytic, diastereoselective 

synthesis of I.99. Based on the concept of activating the Michael system in I.3 in form of the 

corresponding chiral imminium ion I.100, we envisioned to apply typical imminium ion 

catalysts (Scheme I.32).[49] 
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Scheme I.32. Mechanistic considerations and chiral catalysts for the diastereoselective oxa-
Michael addition. 

In this context, well established literature known catalysts such as L-proline (I.101),[50] 

lithium prolinate (I.102),[49b,51] Jørgensen catalyst (I.103),[52] MacMillan's catalyst (I.104)[49b,53] 

and mixtures of them were employed (Scheme I.32). The results of this screening are 

summarized in Table I.1.  

Table I.1. Screening conditions applied for diastereoselective synthesis of -pyrone I.99. 

 

Entry Catalyst Solvent Yield dr I.99a : I.99b
a 

1 DMSO 

2 NEt DMSO 1:1 

3 I.101 i-PrOH traces ndb 

4 I.101 DMSO 1.3:1 

5 I.102 DMSO 1.2:1 

6 I.103 DMSO 2:1 

7 I.104 DMSO 2.2:1 

8 I.104/I.101 DMSO 1.3:1 
aThe diatereomeric ratio (dr) was measured on semi-preparative reversed phase HPLC (VARIAN 
Dynamax, 250 x 21.4 mm, gradient elution, water (A)/methanol (B), 0 min 30% A, 40 min 23% A, 15.8 
mL/min, tR(I.99a) = 41.01 min, tR(I.99b) = 46.67 min). 
bnd = not detected 
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When the reaction was performed in DMSO without additives, diketone I.3 did not 

undergo any transformation (Table I.1, entry 1). Addition of a base, such as triethylamine to the 

reaction mixture, provided the -pyrone I.99 in 35% yield as a 1:1 mixture of diastereoisomers, 

which was used as a control experiment. When L-proline I.101 was used as catalyst, the yield of 

the reaction increased to 80% in DMSO as the solvent. In contrast, protic solvents, such as 

i-propanol resulted in the formation of only trace amounts of the product (entries 3 and 4, Table 

I.1). The use of L-proline (I.101) or lithium prolinate (I.102) did not lead to any improvement 

of the diastereocontrol of the reaction. However, when Jørgensen's catalyst (I.103) was 

employed, a 2:1 mixture of diastereomers I.99a and I.99b was isolated, however the isolated 

yield dropped to 20%. Finally, slightly better results could be achieved using MacMillan's 

catalyst (I.104) in DMSO giving a 2.2:1 ratio of diastereomeric -pyrones I.99 (entry 7, Table 

I.1). Unfortunately, the yield of the transformation decreased under these conditions providing 

only 35% of the product. Interestingly, both the diastereoselectivity and the yield of the reaction 

were reduced when the conditions of mixed catalysis of L-proline (I.101) and MacMillan's 

catalyst (I.104) were applied, providing only 20% yield of -pyrone as a 1.3:1 mixture of 

diastereomers (Table I.1). In summary, the best yield of the transformation could be achieved 

with L-proline (I.101) as the catalyst in DMSO as the reaction medium. The best 

diastereoselectivity of the reaction was observed using MacMillan's catalyst (I.104), albeit the 

yield of the product was lower (grey lines, Table I.1). 

In order to gain a better insight of the factors that affect this transformation, we decided to 

explore this reaction on a simpler and, thus, more easily available system. We presumed that the 

observed low diastereoselectivity could be partially caused by the biaryl axis of I.3. To exclude 

this effect, we planned to test this reaction on an achiral system. Towards this end, diketone 

I.105 was synthesized starting from commercially available dimethoxybenzoic acid I.106 in 

only one step via the corresponding acid chloride (Scheme I.33). With the enone I.105 in hand 

we could explore its potential in the enantioselective organocatalytic oxa-Michael addition 

reaction. 

Scheme I.33. Synthesis of the diketone I.105, a simpler system for stereoselective oxa-

Michael addition. 
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As in the case of biaryl system I.3, several organocatalysts were explored in the formation 

of -pyrone I.107 (Table I.2). As before, the best yield of the transformation was achieved using 

L-proline (I.101) as catalyst. In general, the yields of the intramolecular oxa-Michael reaction of 

the simpler system I.105 were lower than those with biaryl system I.3 as the starting material. 

Table I.2. Screening conditions applied for envisioned enantioselective synthesis of -
pyrone I.107. 

 

Entry Catalyst Solvent Yield er I.107a : I.107b
a 

1 DMSO 

2 I.101 DMSO 55% 1:1 

3 I.102 DMSO 1:1 

4 I.103 DMSO 1:1 

5 I.104 DMSO 1:1 

6 I.104/I.101 DMSO 1:1 
aThe enantiomeric ratio (er) was measured on chiral normal phase HPLC (Nucleocel DELTA S, 250 x 4.6 
mm, isocratic elution, hexanes (A)/i-propanol (B), 96% A, flow rate: 0.5 mL/min, detection at 300 nm, 
tR(I.107a) = 52.9 min, tR(I.107b) = 57.5 min). 

As mentioned above, List and co-workers have shown that cinchona alkaloid derived 

organocatalysts, such as R-I.108 and S-I.108 can be used to achieve enantioselective addition of 

oxygen-based nucleophiles to Michael acceptors (Figure I.6).[48] In combination with chiral 

binol derived phosphoric acids, such as I.109, even better yields and enantiomeric excess could 

be observed. Based on these results, we explored the implementation of these catalysts in the 

synthesis of -pyrone I.107. Unfortunately, even with these catalytic systems no reliable and 

conclusive results were achieved, as in the most cases decomposition of starting material was 

observed. 
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Figure I.6. Additional catalysts used for the enantioselective oxa-Michael reaction. 

One potential explanation for the lack of enantio- and diastereomeric induction in the 

described oxa-Michael additions can be the reversibility of the reaction, a common drawback of 

these transformations. Although the initial attack of the oxygen atom could in principle be 

stereoselective in the presence of a chiral catalyst, the thermodynamic equilibrium between 

product and starting material eventually leads to racemic product in poor yield. On the other 

hand, due to the intramolecular nature of the -pyrone formation, this uncatalyzed cyclization 

might proceed faster than the implementation of the starting material into the catalytic cycle, 

essential for a stereocontrolled process. 

Going back to the desired intramolecular Michael-Michael addition reaction of I.3 

envisioned to form the basic core of A-74528 (I.1) other methods for this cyclization were 

tested. Among them, well explored radical-inducing agents such as Mn(OAc)3,
[54] K3Fe(CN)6,

[55] 

Pb(OAc)4,
[56] [Fe(DMF)3Cl2][FeCl4]

[57] were employed. Unfortunately, in most cases only 

complex mixtures were obtained and no formation of the desired product could be observed. 

These unsuccessful attempts are not described in detail in this chapter; further information can 

be found in the Table A in the appendix of this thesis. 

In conclusion, although many interesting results have been achieved towards to the 

envisioned Michael-Michael addition cascade for the synthesis of the core structure of A-74528 

(I.1), all attempts to force the formation of the desired system were unsuccessful. Based on the 

obtained results, there are several options for the explanation for the failed Michael-Michael 

cascade. The first is related to the electronics of the starting material. It is therefore possible that 

the naphthol portion in the model system I.3 is not nucleophilic enough to undergo the desired 

dearomatizing attack. On the other hand, the electrophilicity of the acceptor side chain might be 

impaired by the fact that the compound exists in its enol form in the solution, as indicated by 
1H-NMR spectroscopy. Nonetheless, we believe, that the main reason for these disappointing 

results lies in the conformation of the starting material (Figure I.7). A close inspection of the 

structure of enone I.3 as well as isolated byproducts indicates that, due to the enol form of the 

starting material, the system is significantly less flexible than originally anticipated. 



CHAPTER I: SYNTHETIC STUDIES TOWARD A-74528 

40 
 

Specifically, the X-ray structure of -pyrone I.99 shows that the desired reaction centers, the 

carbon atom in the para-position to the aromatic hydroxy group and the former unsaturated 

carbon atom on the side chain, are pointing away from each other. In analogy, this might be also 

the case in the open system I.3, suggesting, that both reaction centers are too far away to 

undergo the desired Michael addition as the inducing step of the envisioned cascade. Overall, 

we believe that these illustrated conformational aspects of the system I.3 inhibit the Michael-

Michael cascade even under applied reaction conditions, which are typically efficient at 

inducing keto-enol tautomerism and changing the conformation of the molecule. 

Figure I.7. Conformational considerations relating to the envisioned Michael-Michael 
cascade of enone I.3. The involved carbons are pointing away from each other in both drawn 

conformers of I.3 (grey dots) embedding an angle of 90°, as suggested by the X-ray structure of 

-pyrone I.99. 

Consequently, based on these results, any other strategy for the total synthesis of A-74528 

(I.1) will have to account for this fact and less strained intermediates will have to be used. This 

could be achieved using systems, in which, for example one of the aromatic rings in I.3 is open, 

thus allowing for more flexibility in the system. 

The results achieved with the model system I.3 as well as the conformational analysis of 

the structures I.99 and I.3 suggesting an inopportune situation for the desired Michael-Michael 

addition forced us to abandon the studies with the real system I.2 containing the epoxy side-

chain. We figured that a new strategy is required to achieve a total synthesis of A-74528. 
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4. Summary, Conclusions and Future 
Work 

In summary, several synthetic strategies toward a total synthesis of the complex C-30 

polyketide A-74528 (I.1) involving biomimetic steps have been developed and executed. 

Focusing on a dearomatizing intramolecular Michael-Michael addition as the key step for the 

synthesis, a range of highly substituted biaryl compounds have been synthesized, which might 

serve as valuable intermediates in the total synthesis of A-74528 (I.1). Initially, the biaryl 

compounds were successfully prepared using a sterically and electronically challenging Suzuki-

Miyaura coupling strategy that needed for careful and extensive optimization. In addition, a 

successful strategy toward biomimetic synthesis of biaryl compounds based on condensation 

chemistry was developed. As a result, the desired Michael-Michael biaryl precursor I.2, 

incorporating the epoxy side-chain I.27 as well as the model system I.1 bearing a shorter side-

chain were synthesized using a novel, scalable and robust synthetic route. 

The application of biomimetic condensation chemistry in the biaryl synthesis showed that 

biomimetic laboratory synthesis of type II polyketides without any enzymatic control is possible 

to some extent. However, all efforts to convert the biaryl intermediates to our target molecule 

via a more complicated biomimetic Michael-Michael cyclization cascade were unsuccessful, 

forcing us to change our biosynthetic hypothesis. The reason for these unexpected results might 

lie in the strained nature of biaryls I.2 and I.3 caused by the dominant rigid enol form of the 

molecules. Nevertheless, we believe that incorporation of the intramolecular Michael-Michael 

cyclization in the biosynthesis of A-74528 (I.1) is still possible, although the corresponding 

precursor may have to be forced to adopt the correct conformation with the help of an enzyme. 

Presumably, this could be simulated in the laboratory by using capsule techniques, in which the 

Michael system I.3 would be pushed into the required conformation.  

Although the envisioned Michael-Michael cascade was unsuccessful, some interesting 

results have been achieved along the way. Among them, highly complex fused structure I.4 and 

its proposed precursor I.92 have been isolated. Mechanistic considerations led to the assumption 

that both molecules were formed involving a radical mechanism. In addition, an interesting 

intramolecular oxa-Michael addition leading to the formation of -pyrone I.99 was observed. In 

this context, studies for the stereoselective synthesis of I.99, as well as the synthesis of a simpler 

model -pyrone I.107 have been performed. Thus, a screen of organocatalysts was conducted in 

order to achieve diastereo- and enantioselectivity in this transformation. Unfortunately, this 

process could not be successfully optimized due to the possibly reversible nature of the oxa-

Michael addition. 



CHAPTER I: SYNTHETIC STUDIES TOWARD A-74528 

 

42 
 

In terms of future work, it is important to account for the aforementioned identified 

disadvantages of the proposed biomimetic Michael-Michael cyclization reaction. Based on these 

considerations a more flexible system as a precursor for the A-74528 core has to be designed. 

Such a system could be, for instance, tetraketone I.110, in which the ring C of the former 

naphthalene system in the model structure I.3 is disconnected, thus importing more flexibility to 

the precursor (Scheme I.34). This tetraketo system I.110 could undergo a series of Michael and 

aldol reactions, during the course of which the residual three rings of the model core I.88 would 

be formed. Due to the reactive nature of the precursor, it is difficult to speculate which 

cyclization process would occur first. In general, this approach would bring several advantages, 

one of them being the increased flexibility of the system and, the other, the avoidance of the 

interesting, albeit challenging, dearomatization process. We believe that the polyketone I.110 

can be made starting from 'protected' diketone I.69, the synthesis of which had already been 

achieved in the course of biaryl synthesis studies (vide supra). It is likely that, tetraketone I.69 

will be highly reactive and difficult to handle, suggesting the need for its generation in situ. The 

similarity of tetraketone I.110 to the biomimetic polyketone precursors, its high reactivity and 

the diversity of reaction modes it could undergo, makes the described alternative route both 

challenging and fascinating from the biomimetic point of view.  

Scheme I.34. Alternative retrosynthetic considerations toward the basic core of A-74528. 

In this context, a reduction of the ester portion in I.69 was performed providing cyclic 

acetal I.111, which, dissolved in deuterated chloroform, rapidly transforms into the alcohol 

I.112 (Scheme I.35). Unfortunately, due to the chemical instability of I.111 and I.112, they 

were only characterized by 1H-NMR. However, both compounds could be implemented in the 

new synthetic route to A-74528 (I.1), since both of them could presumably be converted to the 

triketone I.110 in additional steps. 
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Scheme I.35. Synthesis of reduced structures I.111 and I.112, possible intermediates toward 

the synthesis of triketone I.110. 

Regarding the observed oxa-Michael reaction resulting in the formation of -pyrone I.99, 

there are alternatives that could be attempted to improve the stereoselectivity of this reaction. 

For example, one could consider a trapping of the product I.107 or I.99 with an additional 

reagent, e.g. by means of reduction or protection of the ketone, thus stabilizing the newly 

formed carbon-oxygen bond and suppressing the retro-oxa-Michael addition process. 

As summarized above, exciting opportunities are still available for both the synthesis of A-

74528 (I.1), employing an alternative and more flexible biomimetic route, as well as novel 

methodology studies for the formation of the -pyrone formation I.99 and I.107. 
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CHAPTER II: SYNTHETIC STUDIES 
TOWARD ANSALACTAM A, 
DIVERGOLIDES C AND D 

5. Introduction and Background 

5.1. Type I Polyketide Natural Products 

Much more structural diversity than encountered with fatty acids and type II polyketides 

can be found within the type I polyketide natural products. Typically, type I polyketides are 

characterized by their partially reduced structures possessing several stereocenters. One of the 

most famous polyketide groups are the macrolides, which usually are made by type I polyketide 

synthase (PKS). Macrolides are macrocyclic lactones or lactams featuring in the majority of 

cases 12-, 14-, and 16-memebered ring systems and are known to show clinically important 

activities with distinguished modes of action.[8] Some of the macrolide structures have been 

proven as clinical useful antibiotics, for instance erythromycin A (II.10),[58] rapamycin 

(II.11)[59] and avermectines[60] (Figure II.1). 

Figure II.1. Prominent type I polyketide natural products: erythromycin A (II.10), rapamycin 
(II.11) and avermectines B1a and A1a (II.12 and II.13).[8] 

More than 40% of the known antibiotics target protein synthesis of the pathogens. Among 

them, the most prominent macrolide antibiotic, erythromycin A (II.10), isolated from 

actinomycete Saccharopolyspora Erythraea, inhibits the growth of bacteria by binding to their 

ribosome and thus blocking their protein biosynthesis (Figure II.1).[61] The immunosuppressant 

rapamycin (II.11) was initially extracted from Streptomyces Hygroscopicus and is broadly used 

to prevent rejection after organ transplantation. Rapamycin (II.11) forms a complex with 

mammalian target of rapamycin (mTOR) inhibiting protein synthesis required for T-cell 



CHAPTER II: SYNTHETIC STUDIES TOWARD ANSALACTAM A, DIVERGOLIDES C AND D 

48 
 

activation, thus inhibiting the immune response.[62] One of the recent examples for clinically 

used macrolide structures are avermectines, represented here by avermectin B1a (II.12) and A1a 

(II.13). Ivermectin, a synthetic derivative of avermectines, is an extremely potent agent used at 

low dosages against worm parasites in humans, e.g. Onchocerca volvulus, pathogen of river 

blindness. The biological target of avermectines and its derivatives are the glutamate gated 

chloride channels unique to nematodes, resulting in blocking of electrical activity in nerve and 

muscle cells and death (Figure II.1).[8]  

In contrast to fatty acids, type I polyketides are characterized by partial, complete or no 

reduction of the corresponding polyketide chain. They display a mixture of hydroxyl groups, 

carbonyl groups, double bonds and other residues in their structures, meaning that the three 

stage reductive process involving alcohol formation by keto reductase (KR), dehydration by 

dehydrase (DH) and reduction of the double bond by enoyl reductase (ER) is not always taking 

place during the chain assembly.[8] Type I PKS systems are, in contrast to type II PKS 

complexes, large multifunctional proteins with individual functional domains, which are mostly 

non-iterative. They operate as a biological assembly line of multifunctional proteins organized 

as discrete modules. Each module possesses special enzyme activities, which are necessary in 

that particular extension cycle. The polyketide chain, which is attached to an ACP unit, is 

modified according to the enzyme activities of the corresponding unit and then passed to 

another ACP of the next module.[63] Although the enzymatic background in fatty acid and type 

II polyketide as well as in the type I polyketide syntheses differs, the chemical key step in the 

formation of the corresponding poly- -keto chains is always the same being the decarboxylative 

Claisen condensation of mostly malonyl-CoA extender units with an acyl starter catalyzed by 

ketoacyl synthase (KS). In contrast to this, as mentioned above the modifying processes 

catalyzed by KR, DH or ER are not all active during the particular cycle in type I polyketide 

synthesis and are highly controlled by the corresponding module, leading to partial or no 

reduction of the polyketide chain. Typically, the linear sequence of modules in the PKS type I 

enzymes corresponds to the structural sequence in the produced polyketide chain.[12b] 

One classical example for a typical type I polyketide biosynthesis is the enzymatic 

assembly of erythromycin A (II.10) (Scheme II.1).[8] Erythromycin A is a 14-membered lactone 

which is composed by propionate units delivered by propionyl-CoA as a starter unit and 6 

methylmalonyl-CoA molecules as extenders. Scheme II.1 shows the particular sequence of the 

chain formation corresponding to II.10. All reduction modes of the newly formed carbonyl 

group can be found in this type I PKS system. Thus, module 1 possesses only KR activity 

delivering a -hydroxy chain after the accomplished cycle. On the contrary, module 3 of the 

assembly line does not reduce the carbonyl group at all, whereas module 4 functions similarly to 

fatty acid synthase and possesses KR, ER and DH activities reducing the complete newly 
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formed carbonyl system to a methylene group. After completion of the chain synthesis, the 

polyketide is released by thioesterase (TE) forming in this case a lactone bond. Following post 

PKS processes, such as oxidations and glycosylations afford finally the antibiotic erythromycin 

A (II.10).[8] 

Scheme II.1. Type I PKS system involved in the biosynthesis of erythromycin A (II.10) and its 

modules as well as the essential enzyme activities.k 

Not only the versatile reductive properties of the type I PKS systems but also their ability 

to incorporate various starter acyl units as well as, in contrast to type II PKS, extender units,[64] 

results in the formation of intriguing and synthetically inspiring polyketide structures.[65] 

5.2. Ansa Macrolides  

Over the years our group got interested in the total synthesis of type I polyketide natural 

products. In particular recently, our work was focused on the synthesis of ansa macrolide 

natural products, a subgroup of macrolide polyketides.[66] Ansa macrolides are a complex group 

of mostly bioactive natural products, which are predominantly isolated from actinomycetes.[8] 

The name ansa macrolides, as introduced by Lüttringhaus[67] and further utilized by Prelog and 

Oppolzer,[68] is inspired by the 'basket' like shape of these molecules possessing a 'handle' 

                                                      
kThis scheme is adopted from P. M. Dewick, Medicinal Natural Products; A Biosynthetic Approach, third 
ed., Wiley-VCH, Weinheim, 2009. 
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(Latin: ansa = handle). As the name already implies, the 'handle' of these 'basket like' structures 

is a polyketide chain. The 'basket' itself can be formed by different rigid building blocks, such as 

highly substituted benzene and quinone rings in benzenic macrolides, e.g. geldanamycin (II.14), 

or alternatively, as represented in naphthalenic ansamycines, substituted naphthalene and 

naphthoquinone moieties, e.g. rifamycin SV (II.15) (Scheme II.2).[69] The macrocycle in ansa 

macrolides is typically connected via an amide bond, meaning that, in contrast to other 

macrolides, ansa macrolides are lactams. 

Scheme II.2. Classification of ansa macrolides according to their 'basket' moiety and the most 
prominent representatives of this macrolactam group: geldanamycin (II.14) and rifamycin SV 
(II.15) 

Following the description of biological properties of macrolides one already might assume 

that also the ansalactams show diverse biological activities. Indeed, rifamycins are an important 

group of therapeutically used antibiotics applied in the treatment of tuberculosis and leprosy. 

Rifamycins bind to bacterial RNA polymerase thus sterically blocking the RNA synthesis in the 

bacteria.[70] Geldanamycin (II.14) is a famous anti-cancer drug candidate. It inhibits heat shock 

proteins 90 (HSP90) preferentially in cancer cells, thus interfering with protein biosynthesis and 

leading to their apoptosis.[71] 

Inspired by the outstanding biological activities of ansalactams and by their intriguing 

structural properties, we were prompted to develop synthetic pathways to novel ansa 

macrolides, which will be described in the next section. 
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5.3. Structure, Isolation and Biological Properties  

In 2011, the groups of R. Moore[4] and C. Hertweck[5] isolated independently from each 

other several new ansa macrolide natural products from different Streptomyces strains. Moore 

and co-workers were investigating a Streptomyces sp. strain CNH-189 isolated from marine 

sediments collected in California. LC/MS analysis of the crude culture extract showed several 

absorption bands typical for highly conjugated aromatic compounds. After an extensive HPLC 

separation of initially 60 L culture extract, they were able to enrich 70 mg of a novel ansa 

macrolide, which they called according to its structural properties ansalactam A (II.1) (Figure 

II.2). The structural elucidation of the molecule was performed using detailed 1H-, 13C- and 2D-

NMR analysis and finally confirmed via X-ray structure of the natural product. In addition to 

this, Moore and co-workers were also able to assign the absolute stereochemistry of macrolide 

II.1 applying Mosher's method to several hydroxyl derivatives of the natural product.[4] 

Figure II.2. Structure assigned to ansalactam A (II.1)l and the corresponding X-ray structure 

illustrating the 'basket' like shape of the molecule.[4] 

Almost simultaneously, Hertweck and co-workers published their results on the 

investigations of mangrove trees.[5] Mangrove trees are tropic und subtropic trees growing in 

saline coastal sediments. Among them, Bruguiera gymnorrhia is the dominant mangrove 

species found along the Chinese coast. The bark and roots of this species are known to have 

been used in Chinese folk medicine to treat diarrhea, throat inflammation and hemostasis.[72] 

While the bioactive chemical components from the tree itself have been extensively studied, 

less information is available on the biosynthetic potential of the entophytes of the tree. Thus, 

Hertweck's group was investigating the Streptomyces sp. stem HKI0576 from the stem of the 

tree. The first HPLC-MS analysis showed a complex metabolom of the entophyte. After 

fermentation of 200 L culture extract they were able to isolate several ansa macrolides in 

amounts adequate for structural elucidation. According to the proposed diverse biogenesis of 

these natural products, which will be discussed later, they were called divergolides A-D (II.16, 

                                                      
lThe structure numbering is according to the one introduced by Moore and co-workers in: M. C. Wilson, 
S.-J. Nam, T. A. M. Gulder, C. A. Kauffman, P. R. Jensen, W. Fenical, B. S. Moore, J. Am. Chem. Soc. 

2011, 133, 1971 1977. 
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II.17, II.2 and II.3). The structural elucidation of the compounds was carried out using 

extensive 1H-, 13C- and 2D-NMR techniques. In addition, the structural assignment of 

divergolide A (II.16) was confirmed by X-ray crystallography (Figure II.3).[5] 

Figure II.3. Structures assigned to divergolides A-D by Hertweck and co-workers, as well as                
the X-ray structure of divergolide A (II.16) confirming the initial assignment.[5] 

Biologically, Hertweck and co-workers could show that all four divergolides display 

interesting biological activities. Among them, divergolide A (II.16) exhibits the strongest 

activity against Mycobacterium vaccae, and divergolide D (II.3) is strongly active against 

Bacillus subtilis and Staphylococcus aureus, whereas divergolide C (II.2) is the only 

divergolide found to be active against Enterococcus faecalis. In addition, a cytotoxicity screen 

against 40 tumor cell lines revealed that among all isolated divergolides, only divergolide D 

(II.3) showed promising activities against several of them. Thus, it was toxic to lung (LXFA 

629L), pancreatic (PANC-1), renal (RXF 486L) and sarcoma (Saoc-2) cancer cell lines with 

IC50 values ranging from 1.0 to 2.0 M. Owing to their biological activities, divergolides could 

contribute to further development of anti-tumor and anti-infective drugs.[5] In the case of 

ansalactam A (II.1), no biological evaluation was reported, so far. 

Along the lines of the work established in our group, we focused our interest on the 

synthesis of ansalactam A (II.1) and divergolides C and D (II.2 and II.3).[66] All three 

compounds belong to the group of naphthalenic ansalactams and show similar naphthalene 
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building blocks in their 'basket' moiety, which are biosynthetically in all three cases derived 

from 3-amino-5-hydroxy-benzoic acid (AHBA). 

Structurally, ansalactam A (II.1) possesses a spiro -lactam functionality, which is connected 

to a highly substituted reduced naphthoquinone portion and bridged, typically for type I 

macrolides, by a polyketide chain forming a 16-membered ring (Figure II.2). The 'handle' of the 

molecule features in addition to two carbonyl groups three trisubstituted double bonds. Two of 

these double bonds in the C12 and C17 positions are E-configured, while the one in C14 

position shows a Z-configuration as was verified by the corresponding ROESY correlations. 

The tetracyclic core of this type I polyketide possesses five stereogenic centers, four of them are 

contiguous. Interestingly, the spiro-system shows an isobutyryl side-chain at C22 position, 

which is unusual for this type of polyketides.[4] 

In analogy to ansalactam A (II.1), both divergolides C and D (II.2 and II.3) feature 

tetracyclic scaffolds (Figure II.3). The basket building block in all three molecules is similar. In 

contrast to ansalactam A (II.1), the corresponding naphthalenic portion of divergolide C (II.2) 

is at the oxidation state of a hydroquinone, whereas divergolide D (II.3) possesses a highly 

substituted naphthoquinone derivative in its 'basket' like structure. Divergolide C (II.2) features 

adjacent to the naphthalene portion a 7-membered lactam ring, which is bridged by a polyketide 

chain forming a 15-membered cyclic lactone. The molecule bears three double bonds, one of 

which is trisubstituted. In addition to this, divergolide C (II.2) has four stereogenic centers one 

being benzylic and quaternary. The stereocenter attached to the oxygen atom of the lactone 

portion features an isobutenyl side-chain, which is unusual as an extender unit in type I 

polyketide synthesis. On the contrary to divergolide C (II.2), the scaffold of divergolide D (II.3) 

shows a 5-membered lactam ring attached to the naphthoquinone carbonyl group forming a 

tertiary alcohol. The tricyclic 'basket' portion is linked by a polyketide chain, which forms a 19-

membered acyclic lactone. As being the case for divergolide C (II.2), the molecule features 

three double bonds, one of which is Z-configured. Additionally, five stereogenic centers can be 

found in divergolide D, two of which being secondary alcohol derivatives placed in allylic 

positions and one, as pointed out earlier, is benzylic and quaternary.[5] 

5.4. Proposed Biogenesis 

As the structural similarities might already suggest, the biosynthesis of the newly isolated 

ansa macrolides is somewhat related. Both research groups suspected the incorporation of 

AHBA (II.18) in the biosynthesis of the naphthalene cores. This assumption could be confirmed 

by the Moore group using high throughput identification of AHBA synthases. 3-amino-5-

hydroxybenzoic acid (AHBA), a naturally occurring amino acid, serves as a starter unit in many 
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ansa macrolide biosyntheses.[4,73] It was shown, that AHBA is biosynthetically made by a 

variant of the shikimate pathway, the aminoshikimate way.[74] In the case of ansalactam A 

(II.1), based on 13C-labeling studies and comparison to rifamycin and naphthomycin 

biosyntheses, Moore and co-workers suggested that the carbon backbone II.19 of ansalactam A 

is made biosynthetically incorporating one malonate, six methylmalonate and one 2-

isobutyrylmalonate extender units consecutively attached to the AHBA acyl starter by a type I 

PKS system (Scheme II.3).[4]  

Scheme II.3. Biosynthesis of the carbon skeleton II.19, the precursor of ansalactam A (II.1), 

according to Moore and co-workers.[4] 

Unfortunately, Moore and co-workers did not provide an explanation for the formation of the 

spiro -lactam functionality in the structure of ansalactam A (II.1). The bond formed between 

C2 and C21 is in the -position to the amide functionality of the lactam ring. We believe that 

there are two possibilities how this bond might be installed in the course of the biosynthesis 

(Scheme II.4). On one hand, it is possible that a nucleophilic enol-like attack of the 

naphthohydroquinone into the Michael system of the side chain in the possible precursor 

molecule similar to II.20 causes the formation of the aforesaid bond. On the other hand, it 

appears to be conceivable that the C2-C21 bond could be installed in a radical fashion involving 

a stabilized radical intermediate similar to II.21 (Scheme II.4). Though, it remains unclear how 

this radical intermediate might be formed and whether the lactam bond is already closed or the 

reaction takes place in the corresponding open ring system. 
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Scheme II.4. Postulated formation of the C2-C21 bond in the spiro -lactam functionality of 

II.1 involving Michael addition and radical cyclization as possible key steps. 

In the case of divergolides A-D (II.16, II.17, II.2 and II.3), Hertweck and co-workers were 

not able to perform isotope labeling experiments due to the small amounts of natural products 

available from the parent organisms. However, they proposed a possible scenario for the 

formation of these natural products (Scheme II.5).[5] 

Scheme II.5. Suggested biogenesis of divergolides A-D (II.16, II17, II.2 and II.3).[5]m 

                                                      
mThis scheme was adopted from: L. Ding, A. Maier, H.-H. Fiebig, H. Görls, W.-H. Lin, G. Peschel, C. 
Hertweck, Angew. Chem. Int. Ed. 2011, 50, 1630 1634. 
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As they suggest, the carbon skeleton II.22 of all four divergolides is formed by the same 

polyketide chain. In analogy to the biosynthesis of ansalactam A (II.1), AHBA (II.18) is used as 

the acyl starter unit, which is then condensed by type I PKS with two methylmalonyl-CoA, 

three malonyl-CoA, one ethylmalonyl-CoA and one isobutyryl-CoA extender units. A Baeyer-

Villigerase oxidizes this carbon backbone giving corresponding ester II.23. As they suppose, 

possible acyl migration enables the formation of the different ester functionalities in all four 

divergolides. The high degree of flexibility of the highly reactive polyketide precursor enables 

three different types of cyclization reactions, which give rise to three different 'basket' moieties 

found in divergolides A-C. Specifically, cyclizations involving oxygen attack of the phenolic 

hydroxyl group form the exomethylene-2H-benzopyran of II.17 (path a, Scheme II.5) and the 

ring system of II.16 (path b, Scheme II.5), respectively. The naphthoquinone portion II.24 

found in divergolides C and D might be formed after an oxidation process by a Michael addition 

of the side chain into the accordant benzoquinone II.25 (path c, Scheme II.5).[5] 

After the formation of the naphthoquinone II.24 the stage is set for the installation of the 7- 

and 5-membered lactam rings corresponding to divergolide C and D systems (Scheme II.6). 

Accordingly, an aldol attack of the aliphatic side chain onto one of the carbonyl portions in the 

naphthoquinone system II.24 forms the 5-membered lactam system of divergolide D II.3 (path 

a, Scheme II.6). Whereas a vinylogous attack, proceeding after a conjugated deprotonation, 

gives rise to the 7-membered lactam system of divergolide C (II.2) (path b, Scheme II.6).[5]  

Scheme II.6. Formation of divergolides C and D (II.2 and II.3) via two different cyclization 

modes.[5]n 

Most fascinating fact in Hertweck's proposed biosynthesis of divergolides is the assumption 

that all four natural products fit into one biosynthetic scheme starting from one shared precursor 

II.23. The flexible and diverse cyclization modes of this precursor finally lead to divergolides, 

named after the proposed biosynthetic pathway. Yet, it is still not clear, whether the proposed 

acyl migration in II.23 takes place prior to or during the cyclization processes, leaving room for 

further speculations. 

                                                      
nThis scheme was adopted from: L. Ding, A. Maier, H.-H. Fiebig, H. Görls, W.-H. Lin, G. Peschel, C. 
Hertweck, Angew. Chem. Int. Ed. 2011, 50, 1630 1634. 



5. INTRODUCTION AND BACKGROUND 

57 
 

A comparison of biosynthetic pathways of all five natural shows interesting analogies. For 

instance, an AHBA derived acyl starter unit is involved in the synthesis of ansalactam A (II.1) 

as well as in the biogenesis of divergolides A-D (II.16, II.17, II.2 and II.3).[4-5,74] All natural 

products biogeneses involve interesting and diverse cyclization modes leading to the formation 

of the rigid 'basket' structures. Remarkably, these newly isolated ansa macrolides all share a 

novel branched PKS extender unit. This isobutyryl malonyl-CoA unit was observed for the first 

time in this class of natural products.[4-5] Based on [D7]-isobutyrate and [D8]-valine feeding 

experiments as well as on extensive genome analysis, Hertweck and co-workers concluded that 

the isobutyryl based extender unit II.26 is derived from valine II.27, which is processed in the 

first steps to isobutyryl-CoA (II.28) (Scheme II.7). Next, isobutyryl-CoA is elongated to II.29 

by the action of KS III. Further transformation to hydroxyl-CoA ester II.30 catalyzed by 3-

hydroxybutyryl-CoA dehydrogenase (HBDH) give after elimination of water dimethylcrotonyl-

CoA (II.31). The newly identified crotonyl-CoA reductase/carboxylase promotes a reductive 

carboxylation to provide the novel isobutyryl malonyl-CoA extender unit (II.26).[75] 

Scheme II.7. Formation of the unusual isobutyryl malonyl-CoA extender unit II.26 proposed 

by Hertweck's group.[75] 

The enormous flexibility of the described biosynthetic pathways leading to the ansa 

macrolides II.1-II.3, II.16 and II.17 as well as the variety of potential cyclization possibilities, 

especially in the case of formation of divergolides C and D (II.2 and II.3) sparked our interest. 

Specifically, the naphthalene based ansamycines, ansalactam A (II.1), divergolide C (II.2) and 

divergolide D (II.3) drew our attention. Thus, we intended to develop synthetic ways based on 

the described biomimetic steps leading to the formation of these natural products using similar 

precursors. 

5.5. Project Aims 

The first goal of this project was to develop a biomimetic pathway to a model precursor of 

ansalactam A (II.1) and to test the proposed radical cyclization reaction forming the spiro -

lactam functionality. Secondly, we envisioned to develop a synthetic entry to divergolides C and 

D (II.2 and II.3) starting from the same advanced intermediate. As key steps of the projected 



CHAPTER II: SYNTHETIC STUDIES TOWARD ANSALACTAM A, DIVERGOLIDES C AND D 

58 
 

route we planned to apply the supposed biomimetic conjugate and aldol additions forming the 

5-membered and 7-membered lactam rings of the natural products.  

The synthetic progress toward ansalactam A and divergolides C and D, as well as the 

discoveries and challenges of the envisioned synthetic pathways are discussed in detail in the 

next sections. 
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6. Results and Discussion  Ansalactam A 

Along the lines of the proposed biosynthetic spiro -lactam formation described above, we 

intended to incorporate this biomimetic ring closure into our synthetic studies toward ansalactam 

A (II.1). Since we considered the radical mechanism to be more likely involved in the 

biosynthesis our attempts were focused on the synthesis of the appropriate precursor capable of 

radical formation. To be able to approve the envisaged biomimetic step, we decided to perform 

the screening for this reaction on an easier accessible model system II.7, which lacks the 

macrocycle of the possible natural product precursor II.32. As a handle for the intended radical 

formation, we have chosen to install a xanthate functionality in the -position to the amide bond 

in II.7. Xanthates have been extensively used for directed radical formations (Scheme II.8).[76] 

Scheme II.8. Retrosynthetic considerations regarding the model precursor II.7 for the spiro -

lactam formation in ansalactam A (II.1). 

A suitable strategy had to be developed for the synthesis of the model system II.7, which 

account for the highly substituted anti-syn-pattern of the aliphatic side chain attached to the 

aromatic portion. The acquisition of the naphthoquinone system is discussed in the following 

section.  

6.1. Synthesis of the Model Precursor 

In our retrosynthetic considerations we envisioned the assembly of the model system II.7 

through an amide bond formation between the corresponding aminonaphthalene portion II.33 and 

the appropriated -hydroxy-acid II.34.o This side chain in turn, can be traced back to the (S)-

Roche ester derived aldehyde II.35 and acylated Evans auxiliary II.36. The desired anti-syn-

substitution relationship was planned to be installed in a Heathcock-anti-aldol reaction (Scheme 

II.9). 

                                                      
oThis work was performed in cooperation with C. Kuttruff, a PhD student in the Trauner group. The 
assembly of the naphthalenic portion II.33 and its derivatives was a part of the PhD thesis of C. K. and will 
not be discussed herein.  
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Scheme II.9. Retrosynthetic analysis of the model naphthoquinone system II.7. 

The first steps of the synthesis of the -hydroxy acid II.34 follow well-established literature 

known protocols (Scheme II.10). The acylated L-valine based Evans auxiliary II.36 was could be 

obtained according to a procedure by Joullié et al.[77] A nucleophilic addition of lithium anion of 

Evans auxiliary II.37
[78] to 4-methylvaleric acid, which was activated in-situ by pivaloyl chloride 

forming the corresponding mixed anhydride, gave the desired product in 89% yield on gram scale.  

 
Scheme II.10. Synthesis of the aldol reaction partners imide II.36 and aldehydes II.35, II.38 and 

II.39. 

As electrophilic reaction partners for the envisioned aldol reaction, three aldehydes II.35, 

II.38 and II.39 containing different protecting groups at the terminal alcohol position were 

synthesized (Scheme II.10). This variation of protecting groups should allow for more flexibility 

in the investigation of the appropriate Heathcock-anti-aldol conditions. Thus, in the first case, the 

(S)-Roche ester (II.40) was protected as its PMB ether II.41 and, following literature known 
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procedures,[79] converted to the aldehyde II.35 via the corresponding alcohol II.42, which was 

oxidized with Dess-Martin periodinane. A similar literature protocol was used for the synthesis of 

the analogous silyl protected aldehyde derivatives.[80] Hence, the protection of (S)-Roche ester 

(II.40) as TBS- and TBDPS-ethers II.43 and II.44 was followed by the reduction of the ester 

functionality with DIBAL-H affording the corresponding alcohols II.45 and II.46 in high yields. 

The TBS- and TBDPS-protected aldehydes II.38 and II.39 were obtained using Dess-Martin 

periodinane promoted oxidation of the primary alcohol in II.45 and II.46, respectively, and were 

used without further purification in the Heathcock-anti-aldol screening. 

With both reaction partners in hand, attempts toward the projected synthesis of -hydroxy 

acid II.34 were performed. One of the major challenges in the following aldol reaction is the 

selective installation of the three contiguous stereocenters showing an anti-syn-relationship. 

Specifically, we figured it might cause some problems due to the sterically demanding iso-butyl 

substituent in the -position to the carboxy group in II.34. In this context, we decided that the 

best method to face this problem would be the well established Heathcock-anti-aldol reaction 

(Scheme II.11).[81]  

 
Scheme II.11. Mechanistic rational behind the Evans and non-Evans aldol reactions. 

The Heathcock-anti aldol reaction is a variation of the Evans aldol[82] reaction. Both methods 

have been used extensively for stereospecific formation of -hydroxy carbonyl compounds 

containing an -substituent.[83] The stereospecificity of these reactions is controlled by a chirality 

transfer from the Evans auxiliary, in our case L-valine derived auxiliary, attached to the 

nucleophilic reaction partner.[84] In most cases, the auxiliary based stereochemistry control 

overrides the substrate selectivity. The syn-/anti- relationship in the product of both reactions can 

be controlled by the amount of the Lewis acid involved in the transformation.[85] Thus, a 

deprotonation of the most stable conformer of oxazolidinone II.36, in the Newman projection of 

which the sterical hindrance between the alkyl chain and the auxiliary is minimized, leads to the 

exclusive formation of Z-enolate (Scheme II.11). In the case of the classical syn-Evans aldol 
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reaction, which proceeds in the presence of only one equivalent of di-n-butylboron triflate, this 

enolate is believed to react with any aldehyde II.47 in a closed transition state TS-I according to 

the Zimmerman-Traxler[86] model.[83] Dipole minimization leads to a transition state, in which 

both carbonyl groups point in opposite directions. This 6-membered transition state is preferred 

over other possible and leads to high enolate face selectivity of the reaction providing 

preferentially syn-product II.48 (Scheme II.11).  

In the case of the non-Evans-Heathcock-anti-aldol reaction, which was first reported in 1991, 

the addition of two equivalents of di-n-butylboron triflate is assumed to furnish the formation of 

an open transition state TS-II most stable in the antiperiplanar conformation leading to the 

formation of the anti-product II.49 (Scheme II.11).[81] 

Following the Heathcock-anti-aldol reaction, the linkage of the two reaction partners was 

performed. Using the TBS- and TBDPS-protected aldehydes II.38 and II.39, no or only traces of 

the corresponding -hydroxy compounds II.50 and II.51 were observed. However, when the 

reaction was performed using the PMB-protected electrophile II.35, aldol product II.52 was 

formed in moderate 46% yield (Scheme II.12). In this case, the auxiliary controlled 

stereochemical outcome of the reaction matches the expected substrate controlled stereochemical 

outcome, which can be predicted by the Felkin-Anh model.  

 
Scheme II.12. Screening of substrates best suitable for anti-aldol reaction. 

The described transformation required careful optimization. The resulting product II.52 could 

only be obtained, when excess reagent was quenched with pH 7 phosphate buffer. Other work up 

procedures led to the re-isolation of starting materials. The moderate yield as well as the need for 

neutral work up conditions is presumably caused by a competing retro-aldol process. Supposedly, 

the retro-aldol reaction of substrate II.52 is preferred specifically in this case caused by the 

sterically demanding -iso-propyl substituent leading to sterically adverse situation in the final 

product. 
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In order to prove the stereochemical relationship between the three contiguous substituents in 

the -hydroxy chain, the corresponding cyclic PMP-acetal II.53 was synthesized. Thus, treatment 

of the aldol product II.52 with DDQ under strictly anhydrous conditions in the presence of 

molecular sieves provided the corresponding unstable PMP-ether II.53 as a single diastereomer in 

58% yield (Scheme II.13).  

 
Scheme II.13. Synthesis of the PMP-acetal II.53. 

Using 1H-, 13C- and 2D-NMR methods an extensive analysis of compound II.53 was 

performed. However, caused by the overlap of several signals in the proton NMR spectrum, only 

limited conclusions could be made. Specifically significant was one signal in the NOESY 

spectrum showing a clear correlation between the methyl substituent in C4 position and the 

protons of the PMP group (Figure II.4).  

Assuming that the most stable diastereomer of II.53 would be the one with a configuration at 

the newly formed benzylic stereocenter leading to the structure with the most sterically 

demanding substituents in the equatorial position, led to the following assumptions: Knowing that 

the stereocenter at C4 is S-configured, four possible diastereomers can be formed during the 

described aldol reaction. Two of them possess a 2,3-anti-3,4-syn and 2,3-syn-3,4-syn relationship 

between the substituents at C2, C3 and C4 and R-configuration at the benzylic stereocenter, as 

shown in II.53-A, II.53-B (Figure II.4). The other show a 2,3-syn-3,4-anti and 2,3-anti-3,4-anti 

relationships between the substituents at C2, C3 and C4 and S-configuration at the benzylic 

stereocenter, as shown in II.53-C and II.53-D, respectively (Figure II.4). The most stable chair 

conformations of these diastereomers indicate that the observation of the detected C4-methyl-

PMP NOESY-correlation could only be made with the diastereomers II.53-A and II.53-B 

possessing a syn relationship between the C3 and C4 substituents. In the case of 3,4-anti 

configured diastereomers II.53-C and II.53-D the corresponding protons are too far away from 

each other to be able to cause the observed NOESY signal (Figure II.4). From this logic, we were 

able to conclude that the stereocenter at C3 was R-configured. However, at this stage of the 

project we were not able to proof the stereochemistry of the C2 position, which according to the 

mechanistic model of the Heathcock-anti-aldol should be R-configured as shown in II.53-A. 
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Figure II.4. Stereochemical analysis of the four possible isomers of PMP-ether II.53 based on 

the observed NOESY-correlation (red). 

In order to obtain the free -hydroxy acid II.34, the hydrolysis of the Evans auxiliary in II.52 

was approached (Scheme II.14). Based on our earlier observations, which showed that II.52 is 

prone to undergo a retro-aldol reaction, it was not surprising that the desired hydrolysis turned out 

to be problematic. All applied conditions (among them NaOH, LiOH, LiOH/H2O2, HCl/H2O, 

MeO , Me3SnOH, EtS  and others)[87] led to decomposition of the starting material. 

 
Scheme II.14. Approached cleavage of Evans auxiliary in oxazolidinone II.52. 

Based on these results, we decided to protect the free hydroxy group of oxazolidinone II.52, 

which would help to avoid the retro-aldol pathway. Among screened conditions, only the 

subjection of the starting material II.52 to tributylsilyl triflate in the presence of 2,6-lutidine led to 

the formation of isolable amounts of TBS-ether II.54 (Scheme II.15). Unfortunately, the yield of 

the reaction could not be improved and we had to reconsider our choice of the protecting group. 

Finally, we found appropriate conditions for 'protection' of the secondary alcohol in II.52 as a 

xanthate in II.55. 
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Scheme II.15. Protection of oxazolidinone II.52 as TBS-ether II.54 and xanthate II.55. 

We were hoping that the xanthate group in II.55 would stay intact or at least help to promote 

the hydrolytical cleavage of the Evans auxiliary preventing retro-aldol reaction. Fortunately, 

treatment of xanthate II.55 in basic hydrogen peroxide solution provided the highly temperature 

sensitive -hydroxy acid II.34 in 95% yield. We think that an intramolecular acyl transfer 

mechanism is the key to overcome the undesired retro-aldol reaction (Scheme II.16). Thus, we 

suppose that the peroxy anion first attacks the xanthate group in II.55 forming the anionic 

intermediate II.56, which allows for an intramolecular auxiliary cleavage via the formation of a 6-

membered ring in II.57 giving finally after additional hydrolysis the desired product II.34. 

 
Scheme II.16. Cleavage of the Evans auxiliary promoted by the xanthate group of II.55 and the 

proposed mechanism. 

The hydrolytical cleavage of the Evans auxiliary in substrates with sterically demanding 

substituents in the -position is known to be problematic. There are some literature examples of 

intramolecularly promoted auxiliary hydrolyses, for instance with the assistance of an appendent 

hydroxyl group.[88] So far, no general cleavage method for sterically challenging substrates has 
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been reported. The detour via described xanthate formation leading to intramolecular effect in the 

hydrolytical cleavage of the Evans auxiliary might represent a suitable general method of choice 

also for other sterically hindered substrates. 

As we intended to have a xanthate functionality also in the model system for the radical 

cyclization, the acid II.34 was converted to the corresponding xanthate derivative II.58 using the 

same protocol as for the formation of II.55. Treatment of acid II.34 with carbon disulfide as a 

solvent in the presence of NaHMDS followed by methylation with methyl iodide provided the 

acid II.58 in 84% yield (Scheme II.17). 

 
Scheme II.17. Synthesis of the xanthate II.58. 

With the acids II.34 and II.58 in hand, the synthesis of the model system was completed 

(Scheme II.18). As a coupling partner the naphthalenic amines II.33 and II.59
p core were chosen. 

Accordingly, first attempts aiming for the construction of amides II.7 and II.60 were made. 

 
Scheme II.18. Envisioned assembly of the model system II.7 a precursor for the proposed 

biomimetic radical cyclization step. 

Initially, we focused on classical amide coupling conditions to achieve the desired 

transformation. However, all attempts in this direction, standard protocols such as EDCI/HOBt, 

EDCI/HOBt/DIPEA, EDCI/DMAP, PyBOP/DIPEA and T3P (propylphosphoric 

anhydride)/pyridine together with a variation of coupling partners and solvents, did not lead to the 

formation of the desired amides. In most cases, especially in the presence of a base in the reaction 

                                                      
pBoth naphthalenic systems II.33 and II.59 were kindly provided by C. Kuttruff. For experimental 
procedures for the preparation of both compounds see: C. A. Kuttruff, PhD Thesis, Ludwig-Maximilians-
Universität, München, 2012. 
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mixture, decomposition of the acid coupling partners II.34 and II.58 was observed whereas the 

naphthalenic coupling partners remained intact. Apparently, the amide coupling was slower than 

the base mediated retro aldol reaction leading to xanthate removal in II.58 and decomposition of 

both acid coupling partners II.34 and II.58. Interestingly, when a solution of naphthalene II.59 

and xanthate II.58 in dry DMF was subjected to EDCI/HOBt coupling conditions, formation of 

the HOBt-ester II.61 in low yields was observed (Scheme II.19). In further attempts, even if the 

more reactive HOBt-ester II.61 was used as a potential coupling partner, the desired amide 

products could not be obtained. Over prolonged reaction times and at elevated temperatures only 

decomposition of the aliphatic coupling partners II.34 and II.58 was observed. Based on these 

results, a new strategy was developed. 

 
Scheme II.19. Synthesis of the reactive HOBt-ester II.61. 

In order to have a more reactive derivative of acids II.34 and II.58, synthesis of the 

corresponding acid chlorides was approached. Unfortunately, classical reagents used for acid 

chloride formation such as thionyl chloride or benzenesulfonyl chloride did not give any product. 

Treatment of acid II.34 with Ghosez's reagent led to the cleavage of the PMB-group forming a 6-

membered lactone II.62 in 51% yield. As a byproduct the -lactone II.63 was isolated (Scheme 

II.20). The formation of both cyclic lactones via an intramolecular ring closure implied that the 

corresponding acid chloride was formed in the course of the process, but then trapped 

intramolecularly. A similar PMB-deprotection process was also observed, when xanthate II.58 

was subjected to the same reaction conditions providing the 6-membered lactone II.64 in 65% 

yield. Both 6-membered lactones II.62 and II.64 were used to verify the proposed 

stereochemistry of acid II.34. Indeed, the observed NOESY correlations in the presumably most 

stable chair conformations of II.62 and II.64 confirmed the stereochemical assumptions of the 

anti-syn relationship in II.34 (Scheme II.20). 
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Scheme II.20. Synthesis of the lactones II.62, II.63 and II.64 and stereochemical analysis based 
on the observed NOESY correlations in the spectra of II.62 and II.64 (red). 

The synthesis of -lactone II.63 turned out to be of great importance. On the basis of this 

result, we decided to use this lactone as electrophile in our synthetic approach. We believed that 

the deprotonated aminonaphthalene II.33 could open the -lactone II.63 providing the entry to 

the desired amide. For this purpose, the protocol for the formation of II.63 was improved. 

Intramolecular EDCI/HOBt coupling involving a late addition (after 12 hours) of DIPEA 

furnished -lactone II.63 in 73% yield (Scheme II.21). The missing NOESY-correlation of 

protons Ha and Hb indicated also in this structure the anti relationship between the iso-propyl and 

the oxygen substituents. With the lactone II.63 in hand, different bases to achieve the formation 

of the amides II.65 and II.66 were tested.  

The best results giving 62% of the desired amide I.65 were achieved using LDA as a base for 

the deprotonation of amine II.33 (Scheme II.21). The use of 2 equivalents of LDA turned out to 

be crucial for the yield of the reaction. Presumably, the second equivalent of the base 

deprotonates the newly formed amide, preventing possible retro aldol process. Interestingly, when 

KHMDS was used as a base, a diastereomeric mixture of II.65 was isolated. Treating the starting 

materials with n-BuLi at low temperatures led to a nucleophilic attack of the base into the -

lactone system, providing ketone II.67 and the amide II.65 as a byproduct. The optimized LDA 

conditions were also used for the reaction of the cyano naphthalene II.59 with II.63. Under these 

conditions, the corresponding amide II.66 could be isolated in satisfying 69% yield. 
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Scheme II.21. Synthesis of the -lactone II.63 and its application in the syntheses of amides 

II.65 and II.66.  

With the developed strategy for the synthesis of the amide II.65 the envisioned formation of 

naphthoquinone II.7 was accomplished in only two additional steps (Scheme II.22). Xanthate 

formation, using carbon disulfide as solvent, provided xanthate II.68 in moderate yields. Finally, 

a high yielding cautious CAN-promoted deprotection and oxidation of the hydroquinone moiety 

completed the synthesis of the model system II.7. 

Scheme II.22. Last steps in the synthesis of the precursor for the proposed biomimetic radical 
cyclization. 
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With the requisite xanthate precursor II.7 in hand, suitable for the envisioned directed radical 

formation, investigations of ability of II.7 to engage in the radical cyclization process were made. 

6.2. Toward the Radical Cyclization 

Radical mediated transformations represent a powerful method for C-C bond formation and 

have been broadly used in organic synthesis.[89] Among them, radical cyclization reactions were 

extensively studied for the construction especially of 5- and 6-membered ring systems. Based on 

experimentally obtained results, rules for the cyclization modes were postulated, known as 

Baldwin's rules. According to this assumptions, the cyclizations can be classified into two main 

groups: endo and exo cyclizations.[89b] Caused by the high reactivity of radical intermediates, 

radical reactions are mostly kinetically controlled. In general, 5-exo cyclizations are faster than 

the 6-endo cyclizations within the same system, and represent the main pathway. The success of a 

particular cyclization mode in a defined ring system depends on the hybridization of the bond, 

which is attacked by a radical. The preferable approach angle for the cyclization on a sp2-

hybridized system, as is in our case, is 109°. Although the regiochemistry of radical cyclizations 

was subject of intense investigations, still there are many open questions. For instance, it was 

shown, that not only the kinetic control is crucial for the regiochemical outcome of these 

reactions. In some cases the thermodynamic stability of the resultant radical intermediates can 

lead to kinetically unfavored yet thermodynamically preferred 6-endo cyclizations.[90] In addition, 

introduction of heteroatoms such as oxygen, sulfur or nitrogen, changes the flexibility and bond 

length in the corresponding systems as well as the rate constant for the ring closure, eventually 

leading to unexpected cyclization modes.[90] 

Although radical cyclizations can face regioselectivity problems described above, they have 

been successfully utilized as key steps in several natural product syntheses.[37,91] Our envisioned 

biomimetic approach toward the synthesis of ansalactam A (II.1) is based on a radical 5-exo-trig 

cyclization of the radical induced in the side chain onto a naphthoquinone in II.7 providing spiro-

-lactone II.69 (Scheme II.23). 

Scheme II.23.  Envisioned radical key step: formation of the spiro- -lactam portion of ansalactam 
A (II.1). 
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Several examples for radical cyclizations onto quinone derivatives have been reported in the 

literature.[92] To our knowledge, formation of spiro systems involving amino-naphthoquinones 

have not been described, so far. Hoping for a kinetically controlled pathway and adequate 

flexibility of the aliphatic chain in II.7, we envisioned to cause the spiro- -lactone formation 

promoted by an appropriate radical starter. Nevertheless, thermodynamic aspects of this reaction 

had to be considered. This raises the question of determining the most stable radical intermediate. 

For our system, there are two possibilities: is it the secondary radical II.70 formed by the desired 

5-exo cyclization, which is additionally stabilized by the adjacent carbonyl functionality or is it 

the tertiary radical II.71, which is highly stabilized by amino and carbonyl groups, resulting from 

the undesired 6-endo cyclization process? (Scheme II.24). 

Scheme II.24. Two possible cyclization pathways of model system II.7. 

From the thermodynamic point of view, the formation of the more substituted radical II.71 

additionally stabilized by its carbonyl and amino substituents will be preferred in the approached 

reaction. However, does this thermodynamic argument have the ability to outbalance the kinetic 

control observed in the most radical cyclization processes? We figured that the envisioned 

reaction would be an example for a fine balance between the two possible pathways and thus 

difficult to predict. 

In order to find out which ring closure is preferred, xanthate II.7 was subjected to radical 

forming conditions. Addition of AIBN and tributyltin hydride solution to a solution of xanthate in 

benzene or toluene at elevated temperatures, only led to decomposition of starting material. 

However, when the order of the addition was reversed, and a solution of xanthate was added to 

AIBN and tributyltin hydride solution at elevated temperatures, an exclusive formation of the 

Barton-McCombie product II.72 was observed (Scheme II.25). The formation of this product can 

be reasoned by a high concentration of tributyltin hydride in the course of the reaction. 
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Scheme II.25. Observed Barton-McCombie reaction resulting in the formation of the 
deoxygenated naphthoquinone II.72. 

The desired formation of the spiro -lactam II.69 could not be achieved, so far. Several 

protocols still have to be tested to effect the desired transformation. Subtle optimization of radical 

reaction conditions is needed. For instance, variation of solvents, temperature, order of addition 

and concentrations can have a great influence on the reaction outcome[90] and might assist in the 

formation of the spiro compound II.69. Additionally, other radical starters and hydride sources, 

such as silicon based hydrides[93] can be used and might change the course of the reaction. 

One additional aspect of the aimed radical cyclization needs to be considered. The starting 

material II.7 is an amide that can theoretically exist as four isomers with respect to the orientation 

of the amide substituents and quinone moiety (Figure II.5). The isomers II.7-A and II.7-D show a 

sterically adverse situation, as in the case of II.7-A both amide residues clash into each other and 

in the structure II.7-D the lone pairs of both carbonyl groups would electronically repel each 

other. This considerations based on a simple conformational analysis suggest that it is unlikely 

that these two isomers significantly participate in the main population of the molecule. The 

situation in the isomers II.7-B and II.7-C is less obvious. The anti-isomer II.7-C, with respect to 

the alkyl substituents, is considered to be more stable for the most amide systems in comparison 

to the corresponding syn-isomer II.7-C. Transferred to the desired reaction, this would mean that 

in the presumably more stable anti-isomer II.7-C the induced radical center in the -position to 

the amide functionality, would be turned away from the double bond that needs to be attacked in 

order for the cyclization to occur. In that case, the desired radical cyclization would be unfavored 

by the geometrical properties of the starting material. Based on these considerations, we intended 

to find out which of these two isomers is the most populated in the reaction mixture. For this 

purpose, a conformational search for both isomers II.7-B and II.7-C followed by DFT 

optimization (B3LYP/6-31G(d) basis set) were performed.q 

First a conformational search on both isomers using MMFF force field with MacroModel 

(Version 9.0; MMFF/gas phase/PRCG/500 steps) was made.[47] Then, in both cases significant 

conformers were picked and redundant isomers were discarded. Using this approach, 20 

                                                      
qThe DFT optimizations were performed with the help of E. Herero-Gómez, a postdoctoral researcher in the 
Trauner laboratories. 
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conformers for anti-isomer II.7-C were selected for further calculations. In the case of syn-isomer 

II.7-B, 30 conformers were subjected to further investigations. For syn-isomer II.7-B, the rotation 

around the C-N-CO bond had to be fixed during the conformational search, in order to avoid its 

rotation to the anti-isomer II.7-C. 

 
Figure II.5. Structure of four possible isomers of II.7 and DFT structures of II.7-B and II.7-C 

with corresponding differences of the free energy. 

Selected structures were optimized using DFT calculations at B3LYP/6-31G(d) level. This 

level of theory has proven to posses the best cost-output benefit for sulfur containing structures 

and has been widely applied to organic molecules.[94] One major conformer for anti-isomer II.7-C 

was found with an additional conformer close in energy within a range of 1 kcal/mol (difference 

of free energy of 1kcal/mol at 25 °C corresponds to 85% of the lower energy conformer in the 

mixture). In the case of syn-isomer II.7-B, one major conformer and three other, which are close 

in energy within a range of 1 kcal/mol were identified. The difference of free energy of the two 

most stable conformers of anti-isomer II.7-C and syn-isomer II.7-B was calculated showing that 

the syn-isomer II.7-B is 10.4 kcal/mol higher in its relative free energy than the lowest energy 

anti-isomer II.7-C. According to the Boltzmann distribution consideration, this means that most 

likely no significant percentage of the syn-isomer will be present in the reaction mixture at 25 °C 

(difference of free energy of 3 kcal/mol at 25 °C corresponds to ~1% of the relative contribution 

of the higher energy conformer). This calculations imply, that for the reaction to occur the anti-
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isomer II.7-C need first to rotate to the higher energy syn-isomer II.7-B, which would probably 

need more than 10.4 kcal/mol. Still, the overall process might be thermodynamically favored 

depending on the stability of the formed product. 
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7. Summary, Conclusions and Future 
Work  Ansalactam A. 

In summary, a model system II.7 suitable for the biomimetic radical cyclization process 

forming the spiro- -lactam portion of ansalactam A (II.1) was synthesized. A scalable and 

reliable synthetic sequence for naphthoquinone II.7 was established, in which problems caused 

by sterically unfavorable i-propyl substituent in the -position, present in all synthesized 

intermediates leading to undesired retro-aldol processes, were successfully overcome. 

Additionally, first attempts toward the envisioned radical cyclization were made. The desired 

cyclization was not achieved so far, but several reaction conditions remain to be tested, which 

might lead to the desired 5-exo-trig cyclization.  

To gain more insight on the proposed cyclization process, DFT calculations of II.7 were 

performed. The results of these calculations showed that the desired SYN-conformation II.7-B 

of the amide II.7 is rather unfavored in comparison to the ANTI-system II.7-A, which might 

complicate the envisioned process. For the future work it is important to account for the 

described configurational disadvantages. Based on the calculations, it might be necessary to fix 

the undesired amide SYN-conformation in naphthoquinone II.7. This could be achieved via two 

different approaches. On one hand, an additional amide substituent in II.7 could be introduced, 

which would favor the SYN conformation in the system. For instance, an allyl or a bulky alkyl 

substituent on the nitrogen forming compound analogous to II.73 can be used for this purposes 

(Scheme II.26). 

Scheme II.26. Possible strategy toward the radical ring closure based on the synthesis of 
postulated SYN-stable substituted amide II.73. 

On the other hand, prior to the radical key step it might also be helpful to close the 

macrocycle of the natural product, in which the SYN-amide would be favored, for example, 

represented by a system similar to II.74 depicted in scheme II.27. Based on these 

considerations, the corresponding macrolactam system II.74 needs to be synthesized. Along this 

lines, we could show that the PMB-protected -lactone II.63 can be easily deprotected using 
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DDQ in the presence of water. This primary alcohol II.75 can serve as a handle for the 

installation of the remaining side chain (Scheme II.27). 

Scheme II.27. Revised strategy for the key radical ring closure based on the macrocycle II.74 
as key intermediate, as well as the synthesis of the possible intermediate II.75 with a free 

handle for further chain assembly 

To overcome the observed Barton-McCombie side reaction, hydrogen atom donors, which 

are milder than tributyltin hydride, can be used. For instance, bulky silanes, e. g. 

tris(trimethylsilyl)silane ((TMS)3SiH),[95] were shown to be less reactive in radical chain 

reactions avoiding a quick trapping of the newly formed radicals. In addition, it might be helpful 

to apply a xanthate transfer reaction in the envisioned cyclization step (Scheme II.28). Zard and 

co-workers could show that the radical reaction of 'reversed' xanthates can be performed 

without any hydrogen radical source avoiding the formation of Barton-McCombie products.[76] 

For this purpose, a system similar to II.76 needs to be synthesized (Scheme II.28). Reaction of 

this system with a suitable radical starter would lead to an easy rupture of the carbon-sulfur 

bond. In this case, the cleavage of the carbon-oxygen bond in the xanthate is unfavored caused 

by the instability of the newly formed methyl radical. In the absence of a hydrogen radical 

source, the radical II.77 cannot be quenched irreversibly. On the contrary, a reaction with a 

sulfur based xanthate radical is reversible and would provide equilibrium dependent amounts of 

radical II.77 prolonging its lifetime in the reaction mixture. This radical will then have enough 

time to be captured by the less reactive double bond of the naphthoquinone system forming 

II.70. The newly formed, more stable radical II.70 in turn, can react with the xanthate radical 

generating II.78, which then can be reduced to the desired system II.69. The described process 

is similar to the Kharash halogen transfer reaction,[96] in the course of which a halogen atom 

traps the newly formed radical. Intramolecular processes are known to proceed even more easily 

than the intermolecular xanthate transfer reactions. This reaction can give access to scaffolds, 

which can be made only with difficulties or not at all using reductive radical conditions. One 
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limitation of the described alternative might be the reversibility of this thermodynamically 

controlled process. Thus, a mixture of 5-exo and 6-endo products might be obtained, depending 

on the stability of involved radicals.[76]  

Scheme II.28. Xanthate transfer reaction for the formation of II.69. 

As summarized above, for the biomimetic synthesis of ansalactam A (II.1) still exciting 

opportunities are open. However, in all described approaches the sterically adverse situation 

employing an iso-butyl substituent needs to be considered. 
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8. Results and Discussion  Divergolides 
C and D.r 

As described earlier, Hertweck and co-workers suggested a biosynthetic pathway for the 

formation of divergolides C and D (II.2 and II.3), which is based on a common precursor for 

both molecules.[5] Inspired by this hypothesis, we decided to develop a biomimetic synthesis of 

the two natural products, which is based on the macrolactam II.5 as the common key precursor 

(Scheme II.29). Along these lines, the macrolactam II.5 could undergo an intramolecular 

Michael addition onto the naphthoquinone system forming the 7-membered ring of divergolide 

C (II.2, pathway a in Scheme II.29). Alternatively, an intramolecular aldol addition onto the 

naphthoquinone portion of II.5 combined with an acyl shift could produce divergolide D (II.3, 

pathway b in Scheme II.29). 

Scheme II.29. Two possible cyclization modes of the macrolactam II.5 leading to the formation 

of divergolides C and D. 

Based on these considerations, we decided to synthesize a protected analog of macrolactam 

II.5 and test its ability to undergo the described cyclization processes. Thus, we have chosen 

system II.79 as our key target, which incorporates MOM protected alcohol groups and a Boc-

protected amide portion (Scheme II.30). The envisioned cyclization could then be performed as 

two discrete reactions. The acyl transfer could be controlled by selective protection or 

deprotection of the allylic alcohol groups, respectively. Or, more biomimetically, the 

intermediate II.79 could be globally deprotected and exposed to the appropriate reaction 

conditions, e.g. treatment with a weak base could lead to the synthesis of both natural products 

in a one pot process. 

Retrosynthetically, the intermediate II.79 can be traced back to three major building blocks. 

A naphthalene building block II.80, similar to the one used in the ansalactam A (II.1) approach, 

could be connected to the two aliphatic side chains II.81 and II.82 by means of an alkylation 

                                                      
rThis project was carried out in cooperation with D. Hager and C. Kuttruff, both PhD students in the 
Trauner group. 



8. RESULTS AND DISCUSSION  DIVERGOLIDES C AND D 

79 
 

reaction and an amide bond formation, respectively. The macrocycle could be finally closed 

using ring closing Grubbs metathesis (RCM) of the two least hindered double bonds setting the 

stage for the desired key step (Scheme II.30). The described sequence is flexible and could also 

be changed in its order. 

Scheme II.30. Retrosynthesis of the macrolactam precursor II.79. 

The aim of this project was the development of a suitable synthetic strategy leading to the 

required aliphatic side chains II.81 and II.8.s 

8.1. Synthesis of the Eastern Side-Chain 

In our retrosynthetic considerations we envisioned to assemble the eastern side chain by an 

intermolecular esterification of , -unsaturated TBS-protected acid II.82 and MOM-protected 

allylic alcohol II.83 (Scheme II.31). 

Scheme II.31. Retrosynthetic analysis of the acid side chain II.8. 

Following this retrosynthetic plan, the synthesis of the TBS-protected acid II.82 commences 

with the literature known oxidative desymmetrizing Wittig olefination of 1,3-propanediol II.84 

(Scheme II.32).[97] Treatment of II.84 with excess of manganese dioxide in the presence of 

                                                      
sThe synthesis of the naphthalene portion II.80 was part of the theses of D. Hager and C. Kuttruff. The 
assembly of all three building blocks was investigated by D. Hager. For detailed discussion and 
experimental procedures see: D. Hager, PhD Thesis, Ludwig-Maximilians-Universität, München, 2012; 
C. A. Kuttruff, PhD Thesis, Ludwig-Maximilians-Universität, München, 2012. 
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(carbethoxyethylidene)triphenylphosphorane provided exclusively the E-isomer of unsaturated 

ethyl ester II.85 in 66% yield. Basic hydrolysis of the ethyl ester II.85 gave the corresponding 

hydroxyl acid II.86 in high yields, which was then exposed to a protection-deprotection 

sequence necessary for the formation of the desired side chain. Thus, treatment of acid II.86 

with tributyldimethylsilyl triflate provided the rather unstable double silylated TBS-ester II.87, 

which was isolated and used without further purification. Selective, potassium carbonate 

promoted deprotection provided quantitatively the TBS-protected unsaturated acid II.82 over 

two steps.  

Scheme II.32. Synthesis of acid II.82 and allylic alcohol II.83.  

The synthesis of the corresponding coupling partner II.83 was accomplished in two steps. In 

the first step, allyl alcohol II.88 was protected as MOM-ether II.89 using a literature reported 

protocol.[98] Purification of the product turned out to be problematic, as the reaction mixture had 

to be carefully fractionally distilled several times over a vigreux column to obtain MOM-ether 

II.89, pure enough to be used in the next step. Next, diastereo- and enantioselective Brown 

allylation of 3-methylcroton aldehyde (II.90) was performed using a procedure adopted from 

literature known protocols for similar compounds.[98a] This transformation provided the desired 

alcohol coupling partner II.83 in 68% yield as a single diastereomer with an enantiomeric ratio 

of 92:8 (Scheme II.32).t  

The two stereocenters generated during the new C-C bond formation are set with a high 

degree of stereoselectivity. This observed stereoselectivity results from several stereochemical 

                                                      
tThe enantiomeric ratio (er) was determined on chiral normal phase HPLC (Nucleocel DELTA S, 
250 x 4.6 mm, isocratic elution, hexanes (A)/i-propanol (B), 95% A, flow rate: 1 mL/min, detection at 
210 nm, tR(II.83-A) = 5.65 min, tR(II.83-B) = 6.48 min). 
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properties of the intermediates involved in the transformation, which are depicted in scheme 

II.33.[99]  

Scheme II.33. Stereochemical considerations leading to the formation of mostly syn-S,S-allyl 
alcohol II.83 in the course of Brown allyl addition reaction. 

The syn selectivity, which represents the simple diastereoselectivity of this addition process, 

can be explained taking two considerations into account. First, the lithiated species II.91 

generated from MOM allyl ether II.89 exists in the configurationally stable Z-form. This is 

stabilized by coordination of lithium by the appendent MOM group forming a five membered 

ring system.[98a] Consequently, the configurational stability of II.91 enables the stereoselective 

formation of the Z-allyl borane II.92, which is essential for the successful formation of the syn 

product. Secondly, the allyl borane species II.92 is believed to react with aldehydes via a chair-

like transition state similar to the Zimmerman-Traxler[86] model used for aldol reactions. The 

allyl borane II.92 can be engaged into syn- and anti- transition states giving rise to two 

diastereoisomeric allylic alcohols. However, the syn-TS is favored over the anti-TS, in which 

the arrangement of the aldehyde substituent in the pseudo-equatorial position is not possible.[99] 

The corresponding pseudo-axial substituent causes adverse interaction with the axial 

isocampheyl (Ipc) ligand in anti-TS making this thermodynamically unfavored.[100] In addition 

to the adverse thermodynamic situation of the anti-TS, it should be emphasized, that the 

pathway leading to the formation of the anti-TS is also kinetically disfavored. Prior to the 

formation of both transition states a precoordination of the aldehyde to the boron allyl species 

takes place forming intermediates II.93 and II.94. Whereas the more advantageous species 

II.93 showing an E-configuration with respect to the CO double bond leads to the formation of 

the syn-TS, the correspondent Z-species II.94 is more sterically congested due to the location of 

the metal center syn to the aldehyde substituent. In consequence of the described 

thermodynamic and kinetic criteria, the formation of the syn diastereomer II.83 is favored over 

the formation of the anti-product II.95. On the other hand, the described transformation is also 

enantioselective owing this fact to the chiral diisocampheyl ligands. Thus, only the depicted 
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syn-TS is believed to be dominant in this reaction. This is caused by pandered sterical situation 

of the Ipc ligands. Both equatorial methyl substituents of the ligands are occupying the least 

hindered positions pointing away from the methylene protons of the allyl species (not 

shown).[100-101] This leads to the favored Si-face addition to the aldehyde giving rise to the S,S-

allyl alcohol II.83 shown in Scheme II.33. As a result, the described stereochemical 

considerations lead to the formation of the desired syn-S,S-allyl alcohol as a single diastereomer 

with an enantiomeric excess of 84%. 

The verification of the diastereo- and enantioselectivity of this reaction was performed using 

Mosher's ester analysis for the determination of the absolute configuration of the allylic alcohol 

II.83.[102] On this purpose, corresponding R- and S-Mosher esters R-II.96 and S-II.96 were 

synthesized, which differ in the chemical shifts in their 1H-NMR spectra because of their 

diastereomeric nature (Scheme II.34).  

Scheme II.34. Mosher ester analysis used for the determination of absolute configuration of 
the allylic alcohol stereocenter in II.83. 

The common accepted considerations regarding the NMR-properties of both Mosher ester 

diastereomers are empirically based.[102] It is assumed that the most important conformations of 

the esters dominating the spectroscopic features of the molecules are those shown in scheme 

II.34, in which the ester usually adopts the s-trans arrangement about the OCO bond and the 

CF3 portion, as well as the methane protons are both syn-coplanar with the CO bond. The 

shielding effect of the aryl group present in the Mosher ester moiety affects the protons residing 

above or below the plane of the aromatic system in these particular conformations. 

Consequently, assuming that the allylic alcohol portion is S-configured, as suggested by the 

described transition state, the R-Mosher ester R-II.96 would show a higher chemical shift of the 

Ha proton, which is not shielded in the R-II.96. In contrast, S-II.96, in which the mentioned Ha 
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is shielded by the aryl ring, would show an up-field shift of Ha signal in the 1H-NMR spectrum. 

In fact, this effect could be observed in the spectra of the synthesized compounds: R-II.96 

showed a chemical shift of 5.1831 ppm for Ha and S-II.96 showed an up-field effect shifting the 

same proton to 5.0167 ppm verifying the assumed S-configuration of the allylic alcohol center. 

In addition, the methine proton Hb showed a similar trend in the NMR spectra. Being shielded 

by the aryl group in R-II.96 it is chemically shifted to 4.0962 ppm, whereas in S-II.96 Hb points 

away from the aryl portion possessing a higher chemical shift of 4.1489 ppm (Scheme II.34). 

Although the observed effects are subtle, they support the assumption of the S-configuration of 

the allylic alcohol stereocenter in II.83. 

With both esterification partners, acid II.82 and allylic alcohol II.83 in hand, the aliphatic 

eastern side chain of divergolides C and D (II.2 and II.3) was assembled in three steps (Scheme 

II.35). Application of the Yamaguchi esterification conditions gave the ester II.97 in 78% yield. 

The following TBS-deprotection using TBAF at 0 °C provided reliable access to the free 

alcohol II.98, which was oxidized to the free acid II.8 under Jones conditions. It should be 

noted, that the employed Jones oxidation was the only oxidative protocol which was found to be 

successful on this particular system. Other oxidative reagents such as DMP, TPAP/NMO/H2O, 

TPAP/BAIB/H2O lead to complete decomposition of the starting material II.98 (Scheme II.35). 

The 1H-NMR spectrum showed that the obtained acid II.8 exists in solution as two isomers, 

presumably caused by the migration of the double bond of the , -unsaturated ester system to 

the 2,4-position next to the free acid moiety. 

Scheme II.35. Completion of the assembly of the aliphatic eastern side chain II.8. 

After the synthesis of the eastern side chain II.8 was successfully accomplished, 

investigations toward the assembly of the western aliphatic side chain II.81 were made. 
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8.2. Synthesis of the Western Side-Chainu 

We envisioned to access the bromide II.81 from the corresponding alcohol II.9, which, as 

we figured, could be easily converted into the desired compound II.81 using for instance Appel 

conditions (Scheme II.36). 

Scheme II.36. Envisioned synthesis of bromide II.81 from alcohol II.9. 

Although a few procedures leading to the alcohol II.9 or its enantiomer are reported in the 

literature, its synthesis turned out to be more challenging than initially believed. Negishi and co-

workers reported a five step procedure for the synthesis of II.9. The final transformation in their 

sequence included a lipase catalyzed acetylation as an additional purification step.[103] Thus, this 

procedure did not seem practical to us. Searching for alternatives, we looked closer onto the 

zirconium catalyzed asymmetric carbomagnesation procedure developed by Hoveyda and his 

group.[104] After initial investigations, Hoveyda's procedure turned out to be not suitable in a 

practical way as the expensive zirconium catalyst had to be used in high loading quantities and 

the enantioselectivity was not reliable.v 

Finally, aiming for a reliable and scalable protocol for the formation of alcohol II.9, we 

focused on a procedure, which involved auxiliary controlled diastereoselective 1,4-addition of a 

monoorganocopper reagent. This protocol was briefly sketched by Hoveyda group and used to 

approve the proposed absolute stereochemistry of the zirconium mediated transformation.[104a] 

Unfortunately, they did not report a detailed procedure for the auxiliary promoted route. Since it 

is known that conjugate additions can be reliably controlled by Koga's auxiliary,[105] we have 

chosen this amide as source of chiral information.[106] Acylation of the amide II.99
w
 with 

activated trans-2-pentenoic acid, which was prepared in-situ using pivaloyl chloride, provided 

the unsaturated imide II.100 in high yields. The subsequent conjugate addition of the vinyl 

cuprate onto imide II.100 proceeded smoothly giving the correspondent alkene on gram scale in 

90% yield (Scheme II.37). 

                                                      
uThis work was performed together with D. Hager, a PhD student in the Trauner group. 
vThe initial investigations of the Hoveyda route were performed by D. Hager and C. Kuttruff. For further 
information, see: D. Hager, PhD Thesis, Ludwig-Maximilians-Universität, München, 2012; C. A. 
Kuttruff, PhD Thesis, Ludwig-Maximilians-Universität, München, 2012. 
wKoga's auxiliary was kindly provided by D. Hager and C. Kuttruff. 
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Scheme II.37. Synthesis of the alcohol II.9, a precursor for the western side-chain of 
divergolides C and D as well as the X-ray structures of intermediates II.100, II.101 and II.102 

verifying the absolute stereochemistry. 

The stereochemical control of this transformation is not understood. For instance, the facial 

selectivity of the addition can be completely switched using different Lewis acids and copper 

reagents. Presumably, under the described conditions in the presence of dimethylsulfate, the 

oxygen of the large trityl group may precoordinate the vinyl copper reagent leading to the Si-

face attack, hence providing exclusively the diastereomer II.101 with the R-configuration on the 

newly formed stereocenter. Other explanations for the reported stereochemical outcome induced 

by the chiral amide II.99 are also available.[105-106] The absolute stereochemistry of II.101 was 

established using X-ray crystallography technique knowing the configuration of the stereocenter 

in the appendent auxiliary moiety. 

Not many literature reports exist on the cleavage of Koga's auxiliary. In the most cases, 

harsh conditions such as boiling HCl or strong basic conditions were used.[105-106] Based on this 

fact the liberation of the synthesized chain needed for careful optimization. Using lithium 

methanolate, the auxiliary was only partially cleaved providing the open amide II.102 as the 

main product (Scheme II.37). However, careful optimization showed that a combination of 

methanolate addition followed by LAH reduction of the complex reaction mixture gave the 

volatile alcohol II.9 in 70% yield over the described two steps. Due to the volatile nature of the 

product the yields reported are only approximate, since the reactions were only performed on 

small scale and some material was lost during the removal of the solvent. 
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With the alcohol II.9 in hands, further investigations toward the formation of the western 

side chain II.81 and its attachment to the naphthalene system II.80 can be performed. Both 

directions are further examined by D. Hager. 
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9. Summary, Conclusions and Future 
Work  Divergolides C and D 

In summary, the eastern side chain II.8 for the synthesis of divergolides C and D has been 

synthesized. The developed reliable and scalable route incorporates an asymmetric Brown 

allylation, as well as oxidative desymmetrizing Wittig reaction and a Yamaguchi esterification 

as key steps. 

In addition, the asymmetric synthesis of alcohol II.9 was accomplished delivering a direct 

precursor for the formation of the western side chain II.81 of divergolides C and D. This 

synthetic route involves a diastereoselective conjugate addition of monoorganocopper reagent to 

the chiral imide II.100 derived from Koga's auxiliary. The stereochemistry of the product could 

be confirmed by X-ray crystallography of several intermediates.  

Scheme II.38. Further directions in the biomimetic total synthesis of divergolides C and D (II.2 

and II.3) 
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Continuing the proposed biomimetic total synthesis of divergolides C and D (II.2 and II.3), 

we will have to target the transformation of the alcohol II.9 into bromide II.81, which then 

could be attached to aldehyde II.80 (Scheme II.38). Next, the resultant ketone II.103 should be 

able to undergo an amide bond formation with the western side chain II.8 to provide the RCM 

precursor II.104. This intermediate will presumably exist as a mixture of isomers regarding to 

the syn-anti-amide bond isomerism and to the sterically and thus rotationally hindered ketone 

portion attached to the naphthalene system. These facts could complicate the envisioned Grubbs 

ring closing metathesis, which should deliver after following oxidation the protected precursor 

II.79. Global deprotection would then provide access to the proposed biomimetic precursor of 

divergolides C and D, which would be able to undergo earlier discussed cyclization reactions 

leading to the formation of both natural products (Scheme II.38). 

The described synthetic studies involving the formation of bromide II.81 and the attachment 

of both side chains to the naphthalenic coupling partner as well as the assembly of the 

macrocycle II.79 are currently being investigated in our laboratories by D. Hager.x 

  

                                                      
xFor further information, see: D. Hager, PhD Thesis, Ludwig-Maximilians-Universität, München, 2012 
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yThis project was performed in cooperation with D. Hager, a PhD student in the Trauner Group. This 
chapter was written together and can be found also in his PhD thesis.[107] Both authors contributed equally 
to this work. 
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CHAPTER III: SYNTHETIC STUDIES 
TOWARD STEPHADIAMINE 

10. Introduction  

10.1. Alkaloid Natural Products 

The history of alkaloid natural products and their connection to humankind is long and 

ambivalent. Mostly isolated from plant sources,[108] these natural products and their parent 

organisms have been and are still used as food spices, currency, ritual tools, hallucinogenic 

drugs and poison.[109] One of the most prominent and early applications of an alkaloidal poison 

is reported in the context of the execution of Socrates in 399 BC by means of drinking an 

extract of poison hemlock (Conium maculatum), the main biologically active compound of 

which is coniine (III.4).[110] Other poisonous alkaloid containing plants and the corresponding 

natural products have also been misused. Curare for example, with its main neurotoxic 

ingredient tubocurarine (III.5), was used as an arrow poison by South American indigenous 

people.[8] Strychnine (III.6), gained from Strychnos nux-vomica, was applied as doping agent, 

analgesic and poison.[111] Furthermore, the addictive effect of tobacco and the hallucinogenic 

nature of Atropa belladonna are based on the biologically active alkaloids being nicotine 

(III.7)[112] and atropine (III.8)[8] respectively (Figure III.1). 

Figure III.1. Famous alkaloid structures: coniine (III.4), tubocurarine (III.5), strychnine (III.6), 
nicotine (III.7), and atropine (III.8), as well as their natural sources: Conium maculatum,[113]

 

Chondrodendron tomentosum,[114]
 Strychnos nux-vomica,[113]

 Nicotiana rustica,[113]
 Atropa 

belladonna
[113]. 
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Although a limited number of simple amino acid derived building blocks are involved in 

the biogenesis of alkaloids, the incorporation of other, polyketide and terpenoid structures allow 

for a broad structural diversity and complexity within these natural products.[8,108] As a result, a 

variety of biological activities are known among alkaloids. For example, as such, they can 

activate, block or deactivate ion channels, or alternatively bind to DNA, thus affecting protein 

biosynthesis.[115]  

One of the most famous and historically important alkaloids is ( )-morphine (III.9), the 

main component of opium (Figure III.2).[116] Its ambiguous biological activities are both, 

blessing and curse to humankind: on one hand III.9 acts as a painkiller, whereas on the other, it 

causes sincere addiction. Most likely, opium poppy (Papaver somniferum), the main source of 

( )-morphine, was cultivated and used by Sumerians as medicine and hallucinogenic drug 

already more than 4000 years ago.[117] In the following centuries, the use of opium, the dry 

milky juice of the opium poppy fruit, became widely common in China and the Arabian 

countries and later throughout the whole world. The addiction to ( )-morphine (III.9) provoked 

wars and is still one of the major problems worldwide. However, ( )-morphine is used as one of 

the most potent analgesic drugs up to date.[116]  

Although Papaver somniferum has been cultivated for centuries, it was only in 1804 that 

( )-morphine was isolated and identified as the main biologically active ingredient of opium 

poppy by Sertürner (Figure III.2).[118] Since then, several biological studies and chemical 

syntheses of morphine and its analogs have been performed.[119] In fact, this natural product and 

its intriguing structure is still an inspiration for synthetic chemists even today. 

Figure III.2. Papaver somniferum,[113] the natural source of ( )-morphine (III.9) (left), the 

structure of III.9 (middle) and a portrait of F. Sertürner[120] (right). 

During the last centuries, many other alkaloids with the common morphinan skeleton have 

been isolated and characterized (Figure III.3).[108,121] The backbone of morphinans features a 

benzylic all carbon quaternary center in C13 and a nitrogen containing stereocenter at C9 

position, which is always R-configured. In 1964, Inubushi and co-workers were able to isolate a 

new alkaloid showing a modified morphinan skeleton.[122] Hasubanonine (III.10) eventually 
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turned out to be the parent compound of the new class of hasubanan natural products, all 

possessing the typical hasubanan skeleton, isomeric to the morphinans. Mostly isolated from 

various Stephania species, which were also used in traditional Chinese medicine, more than 40 

compounds have been identified to date.[121] In contrast to the morphinans, in the hasubanan 

skeleton the nitrogen substituent is moved from C9 to the C14 position, forming a 5-membered 

ring, which now possesses a nitrogen containing tetrasubstituted carbon center (NTC). The 

resulting aza-propellane skeleton can vary in its oxidation states. In addition, the hasubanans 

differ from morphinans in their absolute stereochemistry as they represent the opposite 

enantiomeric series of the skeleton.[123] Although the biological activities of hasubanan alkaloids 

are not as remarkable as those of the morphine derived structures, they have been the subject of 

extensive chemical research since the 1970s, culminating in various total syntheses of these 

natural products.[124] 

Figure III.3. The structures of morphinan, hasubanan and norhasubanan skeletons, as well 
as the corresponding parent compounds morphine (III.9), hasubanonine (III.10) and 
stephadiamine (III.1). 

Along with the investigations of the Stephania species, another new alkaloid type, related 

to the morphinans, was discovered. Thus far, the only identified representative of these 

norhasubanan alkaloids is stephadiamine (III.1).[6] As in the case of hasubanans, the 

norhasubanan core possesses the opposite configuration to the morphinan skeleton and an NTC 

center at C14 position. Additionally, one of the rings is rearranged forming a pentacyclic system 

with a second NTC center, featuring a primary amine (Figure III.3). 

Many synthetic routes to morphinan and hasubanan structures have been developed in the 

last century and still a huge synthetic interest in this type of compounds exists. Thus, it is 

surprising that no synthetic approach to the norhasubanan stephadiamine (III.1) has yet been 
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published. Therefore, the goal of this work was the development of the first and efficient total 

synthesis of stephadiamine (III.1) with the potential of an enantioselective NTC installation. 

10.2. Stephadiamine  Isolation and Structure  

The common scrambler Stephania japonica, often found in south-east Asia and the Pacific 

region, is known to possess various medicinal properties. Parts of this plant and its extracts are 

used in the Chinese and Taiwanese folk medicine as anti-diarrheal, anti-febrile drugs and as a 

remedy against malaria and cholera.[6,125] Biological investigations of alcoholic extracts of this 

species have shown that S. japonica is a rich source of hasubanan alkaloids.[126] In the course of 

metabolom investigations of S. japonica in 1984, Ibuka and co-workers were able to isolate and 

characterize a minor component of the ethanolic plant extract representing a novel type of 

alkaloidal structure, the pentacyclic stephadiamine (III.1), which was isolated as a colorless 

solid (Figure III.4).[6] 

Figure III.4. Leaves of Stephania japonica
[127] (left) and the structure of stephadiamine (III.1) 

(right). 

The quantity of the obtained novel natural product was not adequate for detailed chemical 

degradation studies. Nevertheless, Ibuka and co-workers were able to elucidate the structure of 

the molecule using IR and 1H-NMR spectroscopic analysis, as well as mass spectrometry. 

Eventually, they were able to obtain X-ray structures of stephadiamine (III.1) and its derivative 

N-p-bromobenzoyl stephadiamine (III.11), clarifying the connectivity and the absolute 

stereochemistry of the compound (Figure III.5).[6] Structurally, the lactonic C-norhasubanan 

III.1 is not a member of the hasubanan alkaloid family in the strict sense. This type of skeleton 

has not been previously found in nature and to our knowledge, III.1 is the only representative of 

norhasubanan alkaloids identified thus far. 
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Figure III.5. Structure (left) and X-ray analysis (right) of stephadiamine (III.1) and N-p-
bromobenzoylstephadiamine (III.11).z 

The basic pentacyclic core of the natural product III.1 features a tetralin system, which is 

connected to a 6-membered lactone moiety and a pyrrolidine ring bridged by two methylene 

groups forming a propellane structure (Figure III.6). Stephadiamine (III.1) possesses four 

stereogenic centers, two of which are benzylic. An all-carbon quaternary stereocenter at C13 

and an oxygen containing chiral center at C10 positions are joined by two NTC stereocenters at 

the C7 and C14 position. One of the latter includes a tertiary amine portion, whereas the second 

bears a primary amine as the nitrogen substituent. In contrast to hasubanan alkaloids, the former 

ring C is rearranged to a 5-membered system and the 6-memebered lactone moiety forms the 

new ring E (Figure III.6). In addition, hasubanan alkaloids show only one nitrogen atom, 

whereas stephadiamine (III.1) possesses two nitrogen functionalities. 

Figure III.6. Skeletons of hasubanonine (III.10) and stephadiamine (III.1). 

The synthetic challenge presented by the complex structure of III.1 and specifically its two 

contiguous NTC centers as well as the fact that stephadiamine (III.1) has not been synthesized 

thus far, prompted us to develop a total synthesis of this natural product.  

                                                      
zUnfortunately, the 3D coordinates for both structures have not been disposed in the CCDC data base. 
Thus, only qualitative pictures from the corresponding publication can be shown here. 
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10.3. Stephadiamine  Biosynthetic Considerations 

The structural resemblance of the morphinan, hasubanan and norhasubanan skeletons 

discloses a connection of the biogenesis of the natural products belonging to these three classes 

of alkaloids. The broad interest in morphine (III.9) culminated in extensive studies on the 

biosyntheses of several benzyltetrahydroisoquinoline alkaloids.[128] It was shown that in nature, 

III.9 is derived from dopamine (III.12) and 4-hydroxyphenylacetaldehyde (III.13), two simple 

building blocks originating from the amino acid tyrosine (Scheme III.1).[8]  

Scheme III.1. Biosynthesis of ( )-morphine (III.9). 

It was suggested that both building blocks combine in an enzyme promoted Pictet-

Spengler-type reaction to the benzyltetrahydroisoquinoline core of (S)-norcoclaurine (III.14), 

which is then oxidized and methylated to yield (S)-reticuline (III.15). An enzyme catalyzed 

oxidation/reduction process forms its enantiomer (R)-reticuline (III.16), a key compound in all 

morphinan alkaloid biosyntheses. Compound III.16 is cyclized via an enzymatically formed 

diradical III.17 to salutaridine (III.18) by a selective intramolecular o,p-phenoloxidative 

coupling, which is one of the most important reactions in morphinan biosyntheses. In III.18, the 

major framework of ( )-morphine (III.9) is already established.[129] Further enzyme catalyzed 

transformations afford III.9.[8] 
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In the case of the parent hasubanan alkaloid hasubanonine (III.10), the biogenesis is less 

investigated. Feeding experiments of 14C-labelled isoquinolines to S. japonica performed by 

Battersby in the early 1980s led to the proposal that, in analogy to morphine biogenesis, 

phenoloxidative coupling of tyrosine derived isoquinoline III.19, an oxidizes version of (R)-

reticuline (III.16), is involved in the formation of hasubanonine (III.10) (Scheme III.2). 

However, the detailed sequence of the transformations involved in the biosynthesis of 

hasubanonine (III.10), especially the installation of the 5-membered pyrrolidine moiety, is yet 

to be explained.[130] In the case of cepharatine A (III.20), another hasubanan alkaloid, Zhang 

and co-workers suggested the incorporation of sinoacutine (III.21), the enantiomer of 

salutaridine (III.18), which is involved in the morphine synthesis (Scheme III.2).[125]  

Scheme III.2. Proposed biosyntheses of hasubanan alkaloids hasubanonine (III.10) and 
cepharatine A (III.20). 

Unfortunately, the biogenesis of our target compound stephadiamine (III.1) was not 

investigated. However, its resemblance to the morphinan and hasubanan structures again 

suggests an incorporation of L-tyrosine. Further speculations along these lines would result in 

the assumption that a Pictet-Spengler-type reaction and a phenoloxidative coupling are also 

involved in the stephadiamine biogenesis. In addition, a skeletal rearrangement leading to 

dearomatization and ring contraction to form rings C and E would have to take place.  

10.4. Strategy and Retrosynthetic Analysis 

One of the major challenges posed by the envisioned total synthesis of stephadiamine 

(III.1) is the assembly of the two contiguous NTC centers. Among many methods for the 

synthesis of NTC centers, Curtius rearrangement is a powerful tool for NTC formation and has 

been applied successfully in total syntheses of various alkaloids, even in sterically hindered 
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cases.[131] The retrosynthetic strategy we have chosen involves a Curtius rearrangement, which 

would introduce the NTC center in C7 position comprising a primary amine as substituent. 

Thus, stephadiamine (III.1) could be traced back to carboxylic acid III.22 (Scheme III.3). At 

this stage, we envisaged to introduce the lactone moiety in III.22 by means of an intramolecular 

bromine replacement leading to diester III.23 as a logical precursor. The propellane skeleton of 

bromide III.23 could be assembled by means of a benzylic bromination and a homoconjugated 

addition/Mannich cascade, involving dimethyl cyclopropane-1,1-dicarboxylate and enamine 

III.3 as reaction partners. In turn, enamine III.3 could be derived from -tetralone III.24 

through a stepwise enamine formation/alkylation sequence. The tetralone system III.24 is 

known to be accessible from the simple commercially available building block 2-(2,3-

dimethoxyphenyl)acetic acid (III.25) in several steps involving a C-H activation process and a 

cyclization reaction.[7] 

Scheme III.3. Retrosynthetic analysis of stephadiamine (III.1). 

The synthetic approach toward stephadiamine (III.1) is both novel and challenging in its 

nature. Not only does it involve a cyclopropane opening/Mannich cascade, which is scarcely 

represented in literature and, to our knowledge, has never been used in total synthesis thus far. 

The strategy also requires the formation of enamine III.3 as one of the intermediates, which is 

known to be oxygen and temperature sensitive.[132] In addition, the assembly of tetralone III.24 

relies on a novel type of chemistry involving a C-H activation process. 

Despite its challenging nature, the envisioned approach offers a high flexibility. For 

example, the cyclopropane opening reaction requires an activation of dimethyl cyclopropane-

1,1-dicarboxylate with a Lewis acid.[133] At this stage, the use of a chiral Lewis acid holds 

promise to even access III.1 in enantiopure form. Furthermore, the assembly of enamine III.3 

starting from -tetralone III.24 can proceed via several different approaches by interchanging 
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alkylation and enamine formation processes. Hence, -tetralone III.24 represents a key 

intermediate, which could function as a branching point for various synthetic approaches toward 

the total synthesis of stephadiamine III.1. 
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11. Results and Discussionaa 

11.1. Assembly of -tetralone 

Along the lines of the proposed retrosynthetic strategy (vide supra, scheme III.3), our first 

goal in the total synthesis of stephadiamine III.1 was to access dimethoxy -tetralone III.24. 

Several syntheses of this compound are described in the literature, which will be shortly 

discussed herein (Scheme III.4). 

Scheme III.4. Literature known syntheses of -tetralone III.24. 

The earliest synthesis was published in 1950/1952 by Soffer and his group during their 

work toward morphine synthesis. It was focused on the dearomatization of 

trimethoxynaphthalene III.26 under Birch conditions as a key step.[134] Unfortunately, they 

needed five steps to synthesize III.26 starting from dihydroxynaphthalene III.27 and the final 

dearomatization step provided the desired tetralone III.24 in an unsatisfactory yield of only 

31%. More than 30 years later, McKervey and co-workers published a rhodium(II) catalyzed C-

H insertion of diazoketone III.28 providing the desired 5,6-dimethoxytetralone (III.24) only as 

a minor regioisomer and mostly the undesired para-cyclized product III.29.[135] In 2005, Gorka 
                                                      
aaThe experimental work of this chapter was performed together with N. Vrielink, an undergraduate 
researcher in the Trauner laboratories.  



11. RESULTS AND DISCUSSION 

101 
 

and co-workers synthesized III.24 starting from benzaldehyde III.30.[136] First, they assembled 

the diester III.31 in six steps and then cyclized it in a low yielding two step protocol to III.24. 

A shorter route to -tetralone III.24 was developed by Cabrera and co-workers in 2011, who 

converted the commercially available 7-methoxy-1-tetralone (III.32) to epoxide III.33 in four 

steps. In the final step, under strongly acidic conditions, the epoxide III.33 was opened to -

tetralone III.24.[137] 

All of the routes described thus far, include low yielding steps, and/or employ expensive 

catalysts. In addition, the starting materials are not easily available and the key intermediates 

have to be prepared in several steps. Eventually, it seemed that the best, shortest and most 

elegant way to assemble III.24 would be a synthesis based on a procedure published by Yu and 

co-workers in 2010.[7] Thus, we were able to synthesized -tetralone III.24 along an optimized 

route in only four steps (Scheme III.5).  

Scheme III.5. Synthesis of -tetralone III.24
[7] and the assembly of the corresponding 

cyclopropane III.2. 

The synthesis commences with a palladium catalyzed aryl C-H olefination of 

dimethoxyphenylacetic acid III.25 with tert-butyl acrylate as a coupling partner. This step 

needed for careful optimization as procedure reported by Yu and co-workers led only to 

mixtures of starting material and traces of product. However, application of oxygen 

overpressure of 3 bar in an autoclave apparatus furnished the corresponding unsaturated ester 

III.34 exclusively. Without further purification, a reduction/esterification sequence was 

performed providing the diester III.35 in 84% over three steps. The synthesis of -tetralone 

III.24 was accomplished by means of a cyclization/decarboxylation process, which gave III.24 

in 70% yield. This short protocol provided the desired -tetralone III.24 in only four steps, 
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three of which were carried out without column chromatography, in an overall yield of 59% on 

multigram scale.  

Next, -tetralone III.24 was converted to the corresponding cyclopropane III.2 in 88% 

yield, which could serve as an alternative precursor for the assembly of enamine III.3 (vide 

supra, Scheme III.3). The structure of III.2 was confirmed by X-ray crystallographic analysis 

(Scheme III.5). 

With -tetralone III.24 and cyclopropane III.2 in hands first attempts toward the synthesis 

of enamine structure III.3 were undertaken. 

11.2. Toward Tricyclic Enamine 

As outlined in the retrosynthetic analysis, the preparation of enamine III.3, a key 

intermediate in the total synthesis of stephadiamine III.1, could start directly from tetralone 

III.24 following an amination/alkylation sequence (Scheme III.6). Alternatively, it is also 

reasonable that the formation of III.3 could be achieved by means of a cyclopropane-opening 

reaction of III.2, followed by a cyclization with methylamine as nucleophile. 

Scheme III.6. Envisioned assembly of the tricyclic enamine structure III.3. 

11.2.1. Previous Work on the Formation of the Key Enamine 

The enamine III.3 shows a methoxy substitution pattern typical of morphinan and 

hasubanan alkaloids (vide supra, Section 10.1). Thus, the synthesis of this portion was of great 

interest to synthetic chemists. It is therefore surprising that the compound III.3 was synthesized 

only once by Tahk and co-workers in 1970 in the context of their work on cepharamine 

(Scheme III.7).[132b] The enamine III.3, which was described as air sensitive, was made from 

cyclopropane III.2 by a homoconjugated addition of methylamine followed by cyclization. To 

achieve this transformation, Tahk and co-workers had to apply harsh conditions including 

heating as well as high pressure and long reaction times. Unfortunately, only analytical amounts 
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of the product III.3 could be isolated and characterized despite the fact that 1 g of starting 

material was employed in this reaction. 

Scheme III.7. Literature known syntheses of enamine III.3 and its derivatives. 

In the same year, Evans and co-workers published their work on the synthesis of the 

hasubanan carbocyclic system.[132a,138] One of the key intermediates used in this approach was 

enamine III.36, which lacks the two methoxy groups present in III.3 (Scheme III.7). Starting 

from tetralone III.37, Evans et al. achieved the assembly of enamine III.36 via enamine III.38 

by a two step protocol involving amination of III.37 and alkylation of III.38 with 

bromochloroethane. This procedure is high yielding and could be performed on gram scale. 

In addition to the described protocols, the formation of enamines of type III.3 was the 

subject of two other publications.[139] Both are based on the sequence established by Evans and 

co-workers. Yet, the synthesis of a system containing two methoxy groups as present in III.3 

using the Evans protocol has not been reported to date. 

Whith this information in hand, the synthesis of enamine III.3 was attempted. 

11.2.2. Studies Toward Enamine System 

Initially, attempts in the synthesis of enamine III.3 focused on the homoconjugated 

addition of amine nucleophiles to cyclopropane III.2 as described by Tahk and co-workers (vide 

supra, Scheme III.7). In order to improve the yields of the transformation, a variety of different 

reactions was performed. Thus, cyclopropane III.2 was subjected to several conditions 

involving the nucleophiles methylamine or benzylamine with the expectation that enamines 

III.3 and III.39 or the corresponding imines III.40 and III.41 would be formed (Table III.1). 

First, focusing on methylamine as nucleophilic reaction partner, conditions with methylamine 

solutions and methyl amine hydrochloride salt were investigated (entries 1-7, Table III.1). As it 
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is known that acids such as ytterbium triflate or p-toluenesulfonic acid can activate 

cyclopropane substituted ketones and force the cyclopropane opening, they were used as 

additives in some cases of the screening.[133] Despite different temperatures and solvents applied 

in the attempts, only starting material could be re-isolated in the most cases without observing 

the formation of the desired products. In the presence of acidic additives (entries 1 and 2, Table 

III.1), decomposition and formation of complex mixtures occurred.  

Table III.1. Screening conditions applied for synthesis of enamine III.3 and III.39 and 
corresponding imines III.40 and III.41. 

 

Entry Amine Solvent Additive T Observation 

1 MeNH2/THF MeCN Yb(OTf)3 80 °C complex mixture 

2 MeNH2/THF toluene p-TosOH 80 °C decomposition 

3 MeNH2/THF THF rt sma 

4 MeNH2/THF THF w/100 °C sm 

5 MeNH2·HCl benzene w/100 °C sm 

6 MeNH2/THF xylene 140 °C sm 

7 MeNH2·HCl benzene 150 °C sm 

8 MeNH2(g) toluene Yb(OTf)3 80 °C complex mixture 

9 MeNH2(g) 100 °C III.40:III.2 (1.5:1)b 

10 PhCH2NH2 Et2O rt sm 

11 PhCH2NH2 xylene 140 °C decomposition 

12 PhCH2NH2 benzene 4Å msc 90 °C complex mixture 

13 PhCH2NH2 Et2O TiCl4 15 °C sm 
asm = starting material 
bAs determined by 1H-NMR spectroscopy.  
cms = molecular sieves 

As Tahk and co-workers used freshly condensed methylamine gas, a closer examination of 

these conditions was undertaken (entries 8 and 9, Table III.1). Methylamine gas was condensed 

at 78 °C in a high pressure vessel and cyclopropane III.2 was dissolved therein. Heating in the 

presence of ytterbium triflate with toluene as solvent lead to the formation of complex mixtures 

(entry 8, Table III.1). But when methylamine was used as solvent without any additives at 
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100 °C, over several days, a 1.5:1 mixture of a new compound and starting material III.2 was 

obtained (entry 9, Table III.1). 1H-NMR spectroscopy suggested the formation of imine III.40. 

Unfortunately, we were not able to fully characterize the new component as all separation 

attempts lead to decomposition of the material. Figure III.7 shows 1H-NMR spectrum of the 

crude mixture of III.40 and III.2. 

 

Figure III.7. 1H-NMR spectrum (CDCl3) of the crude mixture of III.40 and III.2. 

At this point, the suitability of benzylamine as nucleophilic reaction partner was 

investigated, since we figured that the corresponding products might be more stable than the 

methylated derivatives (entries 10-13, Table III.1). Similar conditions as used in the 

methylamine screen were applied. In most cases, decomposition and recovery of starting 

material was observed.  

As mentioned above, Tahk and co-workers were able to obtain only analytical amounts of 

the desired enamine III.3 even though they performed the reaction with large quantities of III.2. 

In our case, the isolation of the desired enamine III.3 following the same strategy was not met 

with success. Supposedly, the envisioned cyclopropane opening might be hindered due to the 

presence of two adjacent methoxy substituents, which cause III.2 to be sterically hindered and 

also a more electron rich system unfavoring nucleophilic attack. 

Although these first attempts were unsuccessful, one interesting and promising result was 

obtained when cyclopropane III.2 was treated with methylamine in the presence of titanium 
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tetrachloride at room temperature (Scheme III.8). Under these conditions, the cyclopropane ring 

was opened by a chloride anion, presumably after the activation of the keto group by titanium 

chloride. Methyl amine is most likely not involved in the formation of III.42. Further 

development and optimization of this reaction could prove III.42 as a building block for the 

synthesis of enamine III.3. Accordingly, treatment of III.42 with methyl amine could force an 

intramolecular ring closure and provide an elegant synthetic entry to enamine III.3 (Scheme 

III.8).  

Scheme III.8. Cyclopropane opening reaction leading to the formation of chloride III.42 and 
envisioned formation of enamine III.3. 

At this stage of the synthesis, we decided to test the conditions for the enamine formation 

published by Evans and-coworkers.[132a] We first aimed for the formation of the enamine III.43 

starting form -tetralon III.24, which should then be alkylated, thus forming the desired 

compound III.3 (Scheme III.9). 

Scheme III.9. Envisioned stepwise formation of III.3 via enamine III.43 as possible precursor. 

Following this strategy, we tried to reproduce the reaction of unsubstituted -tetralone 

III.37 to enamine III.38 as described by Evans et al. (vide supra, Scheme III.7). Unfortunately, 

treatment of commercially available III.37 with methylamine solution in the presence of 

titanium tetrachloride at room temperature did not lead to the formation of the desired enamine 

III.38. In addition, conditions such as MeNH2/amberlite-12/toluene/ T,[140] 

MeNH2/TiCl4/NEt3/DCM,[141] and MeNH2·HCl/p-TosOH/toluene/ T[142] proved unsuccessful as 

only starting material was recovered. Eventually, we found that heating of -tetralone (III.37) 

with neat methylamine at 100 °C in an autoclave apparatus (7 bar) furnished the desired 

enamine III.38 in quantitative yields (Scheme III.10). 
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Scheme III.10. Formation of the enamine structure III.38. 

This reaction of III.37 was monitored by 1H-NMR spectroscopy of the crude reaction 

mixture (Figure III.8). A comparison of the crude spectrum with the spectrum of the starting 

material III.37 indicated the formation of a new compound. Thus, the newly formed compound 

lacks the benzylic methylene protons H2 present in the starting material III.37. Instead, a new 

peak for H2 at 5.25 ppm indicates the formation of the unsaturated enamine system III.38. 

Furthermore, the new methyl group (H11) attached to a nitrogen atom was detected in the 1H-

NMR spectrum at 2.80 ppm. All of these new signals suggest the quantitative formation of the 

desired enamine III.38. Due to the instability of the compound further characterization attempts 

were not performed.  

 
Figure III.8. 1H-NMR spectra (in CDCl3) of -tetralone III.37 and the desired product 

enamine III.38.bb 

Having successfully established conditions for the enamine formation, the same procedure 

was applied to the dimethoxytetralone system III.24. Treatment of dimethoxytetralone III.24 

                                                      
bbIn the case of enamine III.38, the assignment of the protons is speculative, since it is based on chemical 
shifts of the signals and comparison to the starting material. 
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with freshly condensed methylamine at high temperatures in an autoclave apparatus led to the 

quantitative formation of the desired dimethoxyenamine III.43 (Scheme III.11).  

Scheme III.11. Formation of dimethoxytetralone III.43. 

Again, successful conversion could be followed by 1H-NMR spectroscopy (Figure III.9). In 

analogy to the spectrum of enamine III.38, the 1H-spectrum of III.43 shows a new peak at 

5.47  ppm corresponding to the enamine proton H2 and lacks a methylene group, which is 

present in the starting material (peak H2 in the spectrum of III.24). In addition, another new 

peak suggesting the presence of a methyl group attached to a nitrogen atom appears (peak H13 

in III.43 spectrum). Hence, the crude proton spectrum of the performed reaction indicates the 

formation of the desired compound III.43. Also in this case, no further characterization could be 

performed due to the instability of the obtained product.  

 
Figure III.9. 1H-NMR spectra (in CDCl3) of tetralone III.24 and crude enamine III.43.cc 

                                                      
ccThe assignment of the protons present in III.24 was performed using 2D-NMR spectroscopic 
experiments. In the case of enamine III.43, the assignment is speculative, since it is based on chemical 
shifts of the signals and comparison to the starting material. 
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At this point, we envisioned the alkylation of enamine III.43 to access the tricyclic 

enamine III.3, a key intermediate in the total synthesis of stephadiamine III.1 (Scheme III.12). 

Several conditions, among them the alkylation condition developed by Evans, were investigated 

using the crude enamine III.43. Thus far, no conclusive results were obtained. This topic is 

currently being investigated by N. Vrielink as a part of her Master's project in the Trauner 

laboratories. 

Scheme III.12. Envisioned installation of the ethylene bridge forming enamine III.3. 
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12. Summary, Conclusions and Future 
Work  Stephadiamine 

In summary, first attempts toward the total synthesis of the norhasubanan stephadiamine 

III.1 have been made. The literature known synthetic route to -tetralone III.24, one of the key-

intermediates in the envisioned synthesis, was optimized. Following these high yielding and 

reliable procedures, III.24 could be synthesized in multigram quantities in 59% yield over four 

steps. In addition, the cyclopropane system III.2 was prepared, which could possibly serve as a 

valuable precursor for the formation of enamine III.3. 

Furthermore, first experiments aiming for the formation of the tricyclic enamine system 

III.3 were performed. Although these attempts remained unsuccessful, some promising results 

were obtained implying the formation of imine structure III.40. Additionally, the cyclopropane 

III.2 could be opened with titanium tetrachloride presumably forming the primary chloride 

III.42, which in future could open alternative routes for the synthesis of enamine III.3. Finally, 

we were able to accomplish the syntheses of rather unstable bicyclic enamine structures III.38 

and III.43, precursors for the formation of the desired tricyclic enamine systems III.3 and 

III.36. Alkylation reactions of III.43 were performed to install the ethylene bridge, 

unfortunately with no success so far.  

In the future, with this molecule in hand, first attempts toward the cyclopropane 

opening/Mannich cascade could be made (Scheme III.13). This key step of the synthesis would 

provide access to the propellane skeleton III.44 featuring the first NTC center of III.1. 

Intermolecular cyclopropane opening reactions are enhanced by activation of the adjacent 

carbonyl group with Lewis acids, such as ytterbium or scandium triflates.[133] This fact would 

also provide the potential to apply chiral Lewis acid catalysis to form the correspondent 

quaternary benzylic stereocenter in enantioselective manner, eventually leading to an 

asymmetric synthesis of stephadiamine III.1. Following, selective bromination of III.44 in the 

benzylic position should lead to bromide III.23, which in turn can be converted to lactone 

III.22 by means of hydrolysis and lactone formation. The final step in the total synthesis of 

III.1 is envisioned to be a Curtius rearrangement forming the second NTC center of III.1. This 

route is currently under investigation by N. Vrielink as a part of a Master's thesis in the Trauner 

laboratories. 
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Scheme III.13. Envisioned synthetic route to Stephadiamine III.1 via cyclopropane 

opening/aminoalkylation strategy. 

Alternatively, as the pursued synthetic route proved to be more challenging than originally 

anticipated, a second synthetic strategy for the synthesis of III.1 starting from -tetralone III.24 

was developed (Scheme III.14). The new route would start with an alkylation of III.24 forming 

nitrile III.45. Alkylations of this type on similar systems are known in the literature and can be 

performed using enamine catalysis to avoid double alkylation processes.[143] Next, nitrile III.45 

could be converted to enol ether III.46, which in turn should smoothly undergo Tsuji allylation 

forming the benzylic quaternary stereocenter in III.47 even in an asymmetric way.[144] 

Enantioselective Tsuji allylation is a powerful method for installation of hindered 

stereocenters[145] and was applied successfully in total synthesis.[146] The diester moiety present 

in III.48 could then be introduced using either Grubbs metathesis or an ozonolysis/Wittig 

olefination sequence. The propellane motif of III.44 is likely to be incorporated into III.48 by 

means of a reduction of the Michael system and the nitrile portion,[143b] followed by an 

intramolecular imine formation to give III.49, which would then cyclize in a Mannich fashion 

to propellane III.44. Most likely, these transformations could take place as a cascade reaction in 

a one pot process providing III.44 directly from nitrile III.48. Finally, after N-methylation, the 

same sequence as described in the first synthetic strategy toward stephadiamine III.1 could be 

employed to accomplish the synthesis of the natural product. This sequence involves benzylic 

bromination of III.44, hydrolysis and intramolecular lactone formation of III.23) as well as 

a Curtius rearrangement of acid III.22.[131c,147] 
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Scheme III.14. Alternative possible synthetic route to stephadiamine III.1. 

The second strategy includes the powerful enantioselective Tsuji allylation and the cascade 

reduction/double cyclization reaction as key steps, which form the first NTC-center of 

stephadiamine. Thus, this strategy is a short and efficient alternative way representing a modern 

and interesting route for the first asymmetric synthesis of III.1. Overall, the versatile -tetralone 

III.24 turned out to be a flexible key building block and could serve as starting material in 

alternative entries to III.1 leaving room for further investigations. 
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CHAPTER IV: EXPERIMENTAL 
PROCEDURES 
General Experimental Procedures 

Unless otherwise specified, all reactions were carried out under an atmosphere of nitrogen in 

oven-dried glassware (180 °C oven temperature). Tetrahydrofuran (THF) and diethyl ether 

(Et2O) were distilled prior to use from sodium benzophenone ketyl. Triethylamine (NEt3) and 

diiosopropylamine (i-Pr2NH) were distilled from and stored over CaH2. n-Butyllithium (n-

BuLi) was titrated using iodine prior to use. All other solvents as well as starting materials and 

reagents were obtained from commercial sources and used without further purification. Hexanes 

refers to fractions of isohexanes which boil between 40 and 80 °C. 

Organic extracts were dried over Na2SO4 unless otherwise noted. Flash column 

chromatography was performed using the analytical grade solvents indicated and Merck silica 

gel (40-63 m, 60 Å) as the stationary phase. Reactions and chromatography fractions were 

monitored with Merck silica gel 60 F254 glass plates and visualized using a 254 nm UV lamp 

and/or by treatment with a suitable dip (potassium permanganate, ceric ammonium molybdate, 

and anisaldehyde) followed by heating.  

All microwave irradiation experiments were carried out in a CEM ExplorerTM microwave 

apparatus, operating at a frequency of 2.45 GHz with continuous irradiation power from 0 to 

300 W utilizing the standard absorbance level of 300 W maximum power. The reactions were 

carried out in 10 mL Pyrex vessels sealed with CEM plastic crimp tops equipped with magnetic 

stirrers. The temperature was measured with an infrared sensor on the outer surface of the 

process vial. After the irradiation period, the reaction vessel was cooled rapidly (1 2 min) to 

ambient temperature using nitrogen jet. 

Unless otherwise specified, proton (1H) and carbon (13C) spectra were recorded at 18 °C in 

base filtered CDCl3 on Varian Mercury spectrometers operating at 300 MHz, 400 MHz and 

600 MHz for proton nuclei (75 MHz, 100 MHz and 150 MHz for carbon nuclei). 1H NMR data 

are recorded as follows: chemicals shift ( ) [multiplicity, coupling constant(s) J (Hz), relative 

integral, functional group] where multiplicity is defined as: s = singlet; d = doublet; t = triplet; 

q = quartet; m = multiplet br = broad or combinations of the above. The residual CHCl3 peak 

(  7.26), residual DMSO peak (  2.50) or the residual CD2Cl2 peak (  5.32) were used as 

references for 1H NMR spectra. The central peak (  77.16) of the CDCl3 'triplet', the central 

peak (  39.52) of the DMSO-d6 'heptet' and the central peak (  53.84) of CD2Cl2 peak 'pentet' 
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were used as references for proton-decoupled 13C NMR spectra. The assignment of the proton 

and carbon atoms in the molecules is based on a range of performed 2D-NMR experiments 

(COSY, HMBC, HSQC, NOESY). The numbering of the proton and carbon atoms does not 

correspond to the IUPAC nomenclature. 

Infrared spectra (IR, ) were recorded on a Perkin-Elmer BXII-FTIR spectrometer equipped 

with an attenuated total reflection (ATR) measuring unit. Samples were analyzed as neat 

materials. IR data is reported in frequency of absorption (cm 1). The corresponding IR bands are 

characterized as follows: w = weak, m = medium, s = strong, br = broad or combinations 

thereof. 

A Thermo Finnigan MAT 95 mass spectrometer was used to obtain low- and high-resolution 

electron impact (EI) mass spectra. Low- and high-resolution electrospray (ESI) mass spectra 

were obtained on a Thermo Finnigan LTQ FT instrument operating in either positive or 

negative ionization modes.  

Melting points (mp) were measured on a Büchi melting point B-540 or SRS MPA120 EZ-

Melt systems and are uncorrected. 

Optical rotations were measured at the given temperature (T in °C) on a Perkin Elmer 241 

or Krüss P8000-T polarimeter at the sodium-D line (589 nm) and the concentrations (c) 

(g/100 mL) indicated using spectroscopic grade solvents. The measurements were carried out in 

a cell with a path length (l) of 0.5 dm. D were calculated using the equation 

[ ]D = 100· /(c·l) and are given in 10 1·deg·cm2·g 1.  

High performance liquid chromatography (HPLC) was performed with HPLC grade solvents 

and deionized water that was purified on a TKA MicroPure water purification system. All 

solvents were degassed with helium gas prior to use. Unless noticed otherwise, all experiments 

were carried out at room temperature; the column used is specified as appropriate. Analytical 

HPLC spectra were recorded on a ultra high performance liquid chromatography (UHPLC) 

system from the Agilent 1260 Infinity series (1260 degasser, 1260 Binary Pump VL, 1260 ALS 

auto sampler, 1260 TCC thermostatted column compartment, 1260 DAD diode array detector), 

which was computer-controlled through Agilent ChemStation software. Preparative HPLC was 

performed on a computer-operated Varian system (Galaxie Chromatography Software, two 

PrepStar pumps Model SD-1, manual injection, ProStar 335 Photo Diode Array Detector, 380-

LC Evaporative Light Scattering Detector).  
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Specific Experimental Procedures and Product Characterization 

Preparation of the Wittig reagent I.33
[14,15b,15c]

 

 

 

3-(Triphenylphosphoranylidene)dihydrofuran-2,5-dione (I.33). To a magnetically stirred 

solution of triphenylphosphine (78.7 g, 300 mmol) in dry acetone (290 mL) was added dropwise 

at room temperature a solution of maleic anhydride I.32 (29.4 g, 300 mmol) in dry acetone 

(150 mL). After complete addition, the reaction mixture was stirred for 10 min. The newly 

formed solid product was filtered off and washed with cold acetone (600 mL) providing 82.8 g 

(230 mmol, 77%) of the Wittig reagent I.33 as a white solid.  

Rf = 0.76, 85:10:5 CHCl3/MeOH/AcOH. 

mp: 166 168 °C (acetone). 

1H NMR (600 MHz, CDCl3): ppm = 7.70 7.63 (m, 3H), 7.63 7.58 (m, 6H), 7.57 7.51 (m, 

6H), 3.21 (s, 2H). 

13C NMR (150 MHz, CDCl3): ppm = 174.8 (d, 3PJ = 19.7 Hz), 167.5 (d, 2PJ = 18.0 Hz), 

133.4(4) (d, 2PJ = 10.6 Hz, 6 x C), 133.3(8) (d, 4PJ = 3.0 Hz, 3 x C), 129.5 (d, 3PJ = 12.7 Hz, 

6 x C), 124.2 (d, 1PJ = 93.1 Hz, 3 x C), 37.2 (d, 2PJ = 11.7 Hz), 33.8 (d, 1PJ = 135.5 Hz). 

IR: /cm 1 = 3000 (w), 1790 (m), 1701 (s), 1482 (w), 1436 (m), 1320 (s) 1250 (w), 1162 (m), 

1107 (s).  

HRMS (ESI) calculated for C22H18O3P [M+H]+ 361.0988, found 361.0989. 

Preparation of phosphorane I.34
[14,15b,15c]

 

 

 

4-Methoxy-4-oxo-3-(triphenylphosphoranylidene)butanoic acid (I.34). The ylene I.33 

(30.0 g, 83.3 mmol) was suspended in dry methanol (150 mL) and stirred at room temperature 
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for 24 h. Removal of the solvent in vacuo provided 32.6 g (83.0 mmol, 99%) of the product I.34 

as a beige solid.  

Rf = 0.32, 85:10:5 CHCl3/MeOH/AcOH. 

mp: 70 71 °C (MeOH). 

1H NMR (300 MHz, CDCl3): ppm = 7.69 7.60 (m, 10H), 7.57 7.42 (m, 5H), 3.35 (s, 3H), 

2.90 (d, 3PJ = 14.9 Hz, 2H). 

13C NMR (75 MHz, CDCl3): ppm = 173.2 (d, 2PJ = 6.4 Hz), 171.7 (d, 3PJ = 6.9 Hz), 133.8 (d, 
2PJ = 9.8 Hz, 6 x C), 133.5 (d, 4PJ = 2.8 Hz, 3 x C), 129.5 (d, 3PJ = 12.6 Hz, 6 x C), 123.4 (d, 
1PJ = 89.8 Hz, 3 x C), 51.8 (s), 39.5 (d, 1PJ = 90.6 Hz), 35.2 (d, 2PJ = 5.0 Hz). 

IR: /cm 1 = 2906 (w), 1729 (m), 1603 (m), 1483 (w), 1435 (m), 1318 (m) 1150 (m), 1100 (s). 

HRMS (ESI) calculated for C23H22O4P [M+H]+ 393.1250, found 393.1249. 

Preparation of acid I.35
[15a,17]

 

 

 

(E)-4-(3,5-Dimethoxyphenyl)-3-(methoxycarbonyl)but-3-enoic acid (I.35). To a 

magnetically stirred solution of phosphorane I.34 (57.8 g, 147 mmol) in dry benzene (100 mL) 

was added 3,5-dimethoxybenzaldehyde (11.9 g, 71.6 mmol). After the reaction was stirred for 

4 d at room temperature, the solvent was removed in vacuo and the resulting crude solid was 

purified by flash column chromatography (50:1 CH2Cl2/FA). In order to remove residual formic 

acid the combined collected fractions were extracted with aqueous half saturated NaHCO3 

solution (3 x 150 mL). The obtained aqueous layer was washed with CH2Cl2 (1 x 200 mL) and 

acidified with concentrated HCl solution (to pH = 4). After back extraction of the product with 

CH2Cl2 (3 x 100 mL) the combined organic layer was dried over Na2SO4, filtered and 

concentrated in vacuo to afford 16.3 g (58.2 mmol, 81%) of the acid I.35 as a white solid. 

Rf = 0.19, 50:1 CH2Cl2/FA. 

mp: 103 °C (CH2Cl2). 
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1H NMR (600 MHz, CDCl3): ppm = 7.86 (s, 1H), 6.51 6.50 (m, 2H), 6.47 (d, 4
J = 2.4 Hz, 

1H), 3.85 (s, 3H), 3.79 (s, 6H), 3.59 (s, 2H). 

13C NMR (100 MHz, DMSO-d6): ppm = 172.1, 167.3, 160.5 (2 x C), 140.7, 136.4, 126.7, 

107.0 (2 x C), 101.0, 55.3 (2 x C), 52.2, 33.7. 

IR: /cm 1 = 3084 (w), 2945 (w), 2841 (w), 1700 (s), 1590 (s), 1429 (m), 1279 (s), 1205 (s), 

1154 (s). 

HRMS (ESI) calculated for C14H16O6 [M]+ 280.0947, found 280.0931. 

Preparation of naphthalene I.37
[17]

 

 

 

Methyl 4-acetoxy-5,7-dimethoxy-2-naphthoate (I.36). A solution of acid I.35 (5.00 g, 

17.8 mmol) and potassium acetate (1.79 g, 18.2 mmol) in acetic anhydride (180 mL) was stirred 

at 130 °C for 1 h. The reaction mixture was cooled to room temperature, diluted with water 

(500 mL) and stirred for an additional 30 min. Then, the mixture was extracted with EtOAc 

(3 x 250 mL). The combined organic layers were washed with saturated aqueous NaHCO3 

solution (2 x 200 mL) and brine (250 mL), dried over Na2SO4, filtered and concentrated in 

vacuo. The crude naphthalene I.36 was used in the next step without further purification. 

For full characterization of naphthalene I.36, an analytic sample was purified by flash column 

 

Rf = 0.44, 1:2 EtOAc/hexanes. 

mp: 153 154 °C (EtOAc). 

1H NMR (600 MHz, CDCl3): ppm = 8.31 (d, 4J = 1.3 Hz, 1H), 7.48 (d, 4J = 1.7 Hz, 1H), 6.84 

(d, 4J = 2.2 Hz, 1H), 6.59 (d, 4J = 2.2 Hz, 1H), 3.94 (s, 3H), 3.89 (s, 6H), 2.36 (s, 3H). 

13C NMR (150 MHz, CDCl3): ppm = 170.1, 166.5, 158.9, 156.3, 147.0, 137.1, 128.5, 128.1, 

117.3, 116.7, 101.7, 100.2, 56.3, 55.5, 52.4, 21.0. 

IR: /cm 1 = 3064 (w), 2993 (w), 2950 (w), 2847 (w), 1771(m), 1719 (s), 1610 (m), 1447 (m), 

1393 (w), 1271 (s), 1210 (s), 1129 (s). 
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HRMS (ESI) calculated for C16H20O6N [M+NH4]
+ 322.1285, found 322.1286. 

Methyl 4-hydroxy-5,7-dimethoxy-2-naphthoate (I.37). To a suspension of the crude 

naphthalene I.36 in MeOH (45 mL) and acetone (45 mL) was added K2CO3 (7.01 g, 50.7 mmol) 

in one portion and the reaction mixture was stirred for 1 h at room temperature before being 

quenched by slow addition of water (100 mL) and aqueous HCl solution (5%, 50 mL). The 

aqueous layer was extracted with CH2Cl2 (3 x 150 mL), the combined organic fractions were 

dried over Na2SO4, filtered and concentrated in vacuo. Thus obtained yellow solid was washed 

with cold acetone (100 mL) to give 3.19 g (12.2 mmol, 67% over two steps) of naphthol I.37 as 

a white solid. 

Rf = 0.45, 1:2 EtOAc/hexanes. 

mp: 162 °C (acetone). 

1H NMR (600 MHz, CDCl3): ppm = 9.12 (s, 1H), 7.90 (d, 4J = 1.5 Hz, 1H), 7.28 (d, 
4J = 1.6 Hz, 1H), 6.78 (d, 4J = 2.2 Hz, 1H), 6.52 (d, 4J = 2.1 Hz, 1H), 4.01 (s, 3H), 3.93 (s, 3H), 

3.88 (s, 3H). 

13C NMR (150 MHz, CDCl3): ppm = 167.2, 158.2, 157.0, 154.9, 136.8, 129.7, 120.6, 113.1, 

108.0, 100.7, 100.0, 56.4, 55.5, 52.3. 

IR: /cm 1 = 3377 (m), 2941 (w), 1711 (s), 1614 (m), 1587 (m), 1429 (m), 1370 (s), 1285 (m), 

1200 (s), 1160 (s), 1128 (s). 

HRMS (ESI) calculated for C14H13O5 [M H]  261.0768, found 261.0766. 

Preparation of naphthalene I.38
[17-18]

 

 

 

Methyl 4,5,7-trimethoxy-2-naphthoate (I.38). A magnetically stirred mixture of naphthol I.37 

(15.0 g, 57.2 mmol), K2CO3 (23.3 g, 172 mmol) and dimethylsulfate (36.1 g, 27.1 mL, 

126 mmol) in dry acetone (500 mL) was heated at 60 °C for 48 h. The solvent was removed in 

vacuo and the residue dissolved in CH2Cl2 (250 mL). The organic layer was washed with water 

(200 mL) and the water phase was extracted with CH2Cl2 (2 x 250 mL). The combined organic 

layers were washed with water (200 mL), aqueous NH3 solution (10wt%, 200 mL) and aqueous 
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NaOH solution (5%, 200 mL), then dried over Na2SO4, filtered and concentrated in vacuo to 

provide 14.4 g (52.3 mmol, 91%) of trimethoxynaphthalene I.38 as a white solid. 

Rf = 0.56, 1:2 EtOAc/hexanes. 

mp: 144 145 °C (CH2Cl2). 

1H NMR (600 MHz, CDCl3): ppm = 8.02 (dd, 4J = 1.5 Hz, 4J = 0.4 Hz, 1H), 7.25 (d, 
4J = 1.5 Hz, 1H), 6.79 (d, 4J = 2.3 Hz, 1H), 6.59 (d, 4J = 2.3 Hz, 1H), 4.00 (s, 3H), 3.95 (s, 3H), 

3.94 (s, 3H), 3.89 (s, 3H). 

13C NMR (100 MHz, CDCl3): ppm = 167.4, 158.7, 158.3, 157.6, 137.4, 128.4, 122.9, 115.3, 

103.0, 101.0, 100.1, 56.4(2), 56.4(1), 55.4, 52.3. 

IR: /cm 1 = 2997 (w), 2955 (w), 2843 (w), 1717 (m), 1704 (m), 1622 (m), 1589 (s), 1433 (m), 

1378 (s), 1355 (m), 1267 (s), 1194 (s), 1100 (s). 

HRMS (ESI) calculated for C15H17O5 [M+H]+ 277.1071, found 277.1070. 

Preparation of alcohol I.39
[17-18]

 

 

 

4,5,7-Trimethoxy-2-hydroxymethyl-naphthalene (I.39). To a magnetically stirred suspension 

of lithium aluminum hydride (3.97 g, 105 mmol) in dry THF (130 mL) was added dropwise a 

solution of ester I.38 (14.4 g, 52.3 mmol) in THF (400 mL) at room temperature. The reaction 

was stirred at room temperature for 1 h before being quenched at 0 °C by addition of saturated 

aqueous NH4Cl solution (100 mL) and water (100 mL). After stirring at room temperature for 

20 min, the layers were separated and the aqueous layer was extracted with EtOAc 

(3 x 350 mL). The combined organic fractions were dried over Na2SO4 and concentrated in 

vacuo providing the crude product. Purification of the crude material by recrystallazation from 

EtOAc/hexanes gave 11.2 g (45.1 mmol, 86%) of alcohol I.39 as a white solid. 

Rf = 0.11, 1:2 EtOAc/hexanes. 

mp: 117 118 °C (EtOAc/hexanes). 
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1H NMR (600 MHz, CDCl3): ppm = 7.19 (s, 1H), 6.68 (s, 1H), 6.65 (d, 4
J = 2.3 Hz, 1H), 6.48 

(d, 4J = 2.3 Hz, 1H), 4.74 (s, 2H), 3.94 (s, 3H), 3.93 (s, 3H), 3.88 (s, 3H). 

13C NMR (150 MHz, CDCl3): ppm = 158.5, 158.4, 157.7, 139.8, 138.2, 117.5, 112.6, 103.1, 

99.1, 98.8, 65.6, 56.3(6), 56.3(5), 55.4. 

IR: /cm 1 = 3302 (m), 2921 (w), 2850 (w), 1610 (m), 1582 (s), 1446 (m), 1374 (m), 1343 (m), 

1256 (m), 1200 (s), 1127 (s), 1150 (s), 1035 (s). 

HRMS (ESI) calculated for C14H17O4 [M+H]+ 249.1121, found 249.1122. 

Preparation of acetate I.40
[17-18]

 

 

 

(4,5,7-Trimethoxynaphthalen-2-yl)methyl acetate (I.40). A solution of alcohol I.39 (8.10 g, 

32.7 mmol) and acetic anhydride (6.67 g, 6.17 mL, 65.3 mmol) in dry pyridine (57 mL) was 

stirred at 50 °C for 3 h. After addition of water (150 mL), the mixture was extracted with diethyl 

ether (3 x 250 mL). The combined organic layers were washed with saturated aqueous NaHCO3 

solution (200 mL), water (200 mL) and aqueous HCl solution (0.1M, 200 mL), followed by an 

additional wash with water (200 mL). The organic layer was dried over Na2SO4 and 

concentrated in vacuo providind 9.45 g (32.5 mmol, 99%) of acetate I.40 as a beige solid. 

Rf = 0.45, 1:2 EtOAc/hexanes. 

mp: 88 91 °C (diethyl ether). 

1H NMR (600 MHz, CDCl3): ppm = 7.25 (d, 4J = 0.9 Hz, 1H), 6.70 (d, 4J = 2.3 Hz, 1H), 6.66 

(d, 4J = 1.4 Hz, 1H), 6.50 (d, 4J = 2.3 Hz, 1H), 5.18 (s, 2H), 3.96 (s, 3H), 3.93 (s, 3H), 3.89 (s, 

3H), 2.14 (s, 3H). 

13C NMR (150 MHz, CDCl3): ppm = 171.1, 158.6, 158.4, 157.8, 138.1, 134.7, 119.4, 113.0, 

104.0, 99.3, 99.1, 66.6, 56.4(3), 56.4(2), 55.4, 21.2. 

IR: /cm 1 = 2938 (w), 2361 (w), 1738 (m), 1591 (s), 1451 (m), 1386 (m), 1272 (m), 1238 (s), 

1198 (s), 1161 (s), 1120 (s), 1048 (s). 

HRMS (ESI) calculated for C16H18O5 [M]+ 290.1154, found 290.1149. 
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Preparation of dibromide I.41
[17-18]

 

 

 

(3,8-Dibromo-4,5,7-trimethoxynaphthalen-2-yl)methyl acetate (I.41). To a magnetically 

stirred solution of acetate I.40 (5.60 g, 19.3 mmol) and sodium acetate (3.96 g, 48.3 mL, 

65.3 mmol) in acetic acid (53 mL) was added dropwise a solution of bromine (7.10 g, 2.28 mL, 

44.4 mmol) in acetic acid (83 mL) at room temperature. The reaction was stirred for 15 min, 

then diluted with CH2Cl2 (300 mL) and the mixture was washed with water (180 mL), saturated 

aqueous NaHCO3 solution (3 x 150 mL) and water (180 mL), dried over Na2SO4, filtered and 

concentrated in vacuo. Thus obtained yellow solid was recrystallized from EtOAc providing 

6.53 g (14.6 mmol, 76%) of the dibromide I.41 as a yellow solid. 

Rf = 0.30, 1:2 EtOAc/hexanes. 

mp: 179 °C (EtOAc). 

1H NMR (600 MHz, CDCl3): ppm = 8.06 (s, 1H), 6.71 (s, 1H), 5.32 (d, 4J = 0.7 Hz, 2H), 4.03 

(s, 3H), 4.03 (s, 3H), 3.87 (s, 3H), 2.21 (s, 3H). 

13C NMR (150 MHz, CDCl3): ppm = 171.7, 156.7, 154.8, 153.9, 135.6, 134.1, 122.7, 117.2, 

114.4, 100.2, 96.2, 66.3, 61.9, 57.1, 56.8, 21.1. 

IR: /cm 1 = 2926 (w), 2844 (w), 1741 (s), 1605 (m), 1589 (m), 1460 (w), 1353 (s), 1342 (m), 

1220 (s), 1212 (s), 1125 (s), 1028 (m). 

HRMS (ESI) calculated for C16H16
79Br2O5Na [M+Na]+ 468.9257, found 468.9258. 

Preparation of alcohol I.43
[16-18]

 

 

 

(3-Bromo-4,5,7-trimethoxynaphthalen-2-yl)methyl acetate (I.42). A solution of dibromide 

I.41 (9.32 g, 20.8 mmol), 1,2,4-trimethoxybenzene (3.85 g, 3.41 mL, 22.9 mmol) and 

trifluoroacetic acid (11.9 g, 8.01 mL, 104 mmol) in dry CH2Cl2 (225 mL) was stirred at room 
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temperature for 28 h. CH2Cl2 (200 mL) was added and the mixture was washed with saturated 

aqueous NaHCO3 solution (2 x 200 mL), followed by water (200 mL). The organic layer was 

dried over Na2SO4, filtered and concentrated in vacuo. Purification by flash column 

chromatography (1:4 EtOAc/hexanes) provided an inseparable mixture of the debrominated 

acetate I.42 and 1-bromo-2,4,5-trimethoxybenzene, which was used in the next step without 

further purification. 

(3-Bromo-4,5,7-trimethoxynaphthalen-2-yl)methanol (I.43). A solution of the above 

prepared acetate I.42 and KOH (4.7 g, 83.8 mmol) in methanol (145 mL) was stirred at room 

temperature for 15 min. After the addition of aqueous diluted HCl solution (150 mL) the 

aqueous layer was extracted with EtOAc (2 x 150 mL), and the combined organic layers were 

dried over Na2SO4, filtered and concentrated in vacuo. The obtained crude product was purified 

by flash column chromatography (1:5 EtOAc/hexanes) to give 5.13 g (15.7 mmol, 75% over 

two steps) of the alcohol I.43 as a white solid.  

Rf = 0.46, 1:2 EtOAc/hexanes. 

mp: 99 °C (EtOAc/hexanes). 

1H NMR (600 MHz, CDCl3): ppm = 7.53 (s, 1H), 6.69 (d, 4J = 2.3 Hz, 1H), 6.53 (d, 
4J = 2.3 Hz, 1H), 4.83 (s, 2H), 3.97 (s, 3H), 3.89 (s, 3H), 3.87 (s, 3H). 

13C NMR (150 MHz, CDCl3): ppm = 158.7, 156.7, 153.5, 138.9, 136.9, 122.4, 116.2, 113.0, 

99.7, 99.0, 65.6, 61.8, 56.3, 55.4. 

IR: /cm 1 = 3510 (w), 3248 (w), 2925 (w), 2841 (w), 1621 (m), 1582 (s), 1443 (m), 1387 (m), 

1339 (s), 1255 (m), 1208 (s), 1163 (s), 1123 (s). 

HRMS (ESI) calculated for C14H16
79BrO4 [M+H]+ 327.0226, found 327.0228. 

Preparation of bromide I.44 

 

 

2-Bromo-3-(bromomethyl)-1,6,8-trimethoxynaphthalene (I.44). A magnetically stirred 

solution of alcohol I.43
 (583 mg, 1.78 mmol) and tetrabromomethane (650 mg, 1.96 mmol) in 

dry CH2Cl2 (18 mL) was cooled to 0 °C, and then, triphenylphosphine (514 mg, 1.96 mmol) was 
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added in two portions. The reaction was immediately allowed to warm to room temperature and 

stirred for 2 h. Then, the mixture was concentrated in vacuo and the resulting crude oil was 

purified by flash column chromatography (1:4 EtOAc/hexanes) to give 615 mg (1.58 mmol, 

89%) of bromide I.44 as a beige solid. 

Rf = 0.69, 1:2 EtOAc/hexanes. 

mp: 178 179 °C (EtOAc/hexanes). 

1H NMR (600 MHz, CDCl3): ppm = 7.58 (s, 1H), 6.68 (d, 4J = 2.2 Hz, 1H), 6.55 (d, 4J = 2.1 

Hz, 1H), 4.73 (s, 2H), 3.97 (s, 3H), 3.89 (s, 3H), 3.88 (s, 3H).  

13C NMR (150 MHz, CDCl3): ppm = 158.9, 156.7, 154.3, 136.7, 136.0, 125.4, 116.9, 114.5, 

100.4, 98.9, 61.8, 56.4, 55.5, 34.6.  

IR: /cm 1 = 2940 (w), 2843 (w), 1622 (m), 1578 (s), 1446 (m), 1389 (m), 1336 (s), 1260 (s), 

1207 (s), 1163 (s), 1120 (s), 956 (s).  

HRMS (EI) calculated for C14H14O3
79Br2 [M]+ 387.9315, found 387.9303. 

Preparation of cyanide I.28 

 

 

2-(3-Bromo-4,5,7-trimethoxynaphthalen-2-yl)acetonitrile (I.28). To a magnetically stirred 

solution of bromide I.44 (465 mg, 1.19 mmol) in EtOH (20 mL) and water (6 mL) was added 

KCN (116 mg, 1.79 mmol) at room temperature. The reaction mixture was heated to 75 °C and 

stirred at this temperature for 1 h. After the reaction was cooled to room temperature, saturated 

aqueous NaHCO3 solution (30 mL) was added and the resulting biphasic mixture was extracted 

with EtOAc (2 x 50 mL). The combined organic layers were dried over Na2SO4, filtered and 

concentrated in vacuo to give 400 mg (1.18 mmol, 99%) of cyanide I.28 as a white solid that 

was used without further purification.  

Rf = 0.59, 1:2 EtOAc/hexanes.  

mp: 44 45 °C (EtOAc). 
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1H NMR (600 MHz, CDCl3): ppm = 7.66 (s, 1H), 6.74 (d, 4
J = 2.3 Hz, 1H), 6.57 (d, 4

J = 2.3 

Hz, 1H), 3.98 (s, 3H), 3.96 (d, 4J = 0.9 Hz, 2H), 3.91 (s, 3H), 3.87 (s, 3H).  

13C NMR (150 MHz, CDCl3): ppm = 159.2, 156.7, 154.4, 136.8, 128.9, 123.4, 117.4, 116.5, 

113.6, 100.3, 98.9, 61.9, 56.4, 55.6, 25.7.  

IR: /cm 1 = 3016 (w), 2926 (w), 2839 (w), 1618 (m), 1599 (m), 1574 (s), 1446 (m), 1387 (m), 

1335 (s), 1258 (m), 1162 (s), 1098 (s).  

HRMS (ESI) calculated for C15H15NO3
79Br [M+H]+ 336.0230, found 336.0234. 

Preparation of aldehyde I.45
[148]

 

 

 

3-Bromo-4,5,7-trimethoxy-2-naphthaldehyde (I.45). To a magnetically stirred solution of 

alcohol I.43 (200 mg, 1.53 mmol) in wet CH2Cl2 (90 mL) was added Dess-Martin periodinane 

(2.00 g, 4.74 mmol) at room temperature. The reaction was stirred at room temperature for 

10 min before it was quenched with water (65 mL), aqueous saturated NaHCO3 solution 

(65 mL) and aqueous saturated Na2S2O3 solution (65 mL). The biphasic mixture was stirred 

15 min, until both layers became colorless. The phases were separated and the aqueous layer 

was extracted with CH2Cl2 (3 x 80 mL). The combined organic fractions were dried over 

Na2SO4, filtered and concentrated in vacuo. Thus obtained crude product was subjected to flash 

column chromatography (1:4 EtOAc/hexanes) to provide 432 mg (1.33 mmol, 87%) of 

aldehyde I.45 as a yellow solid.  

Rf = 0.48, 1:4 EtOAc/hexanes.  

mp: 162 °C (EtOAc/hexanes). 

1H NMR (300 MHz, CDCl3): ppm = 10.49 (s, 1H), 8.05 (s, 1H), 6.83 (d, 4J = 2.3 Hz, 1H), 

6.67 (d, 4J = 2.3 Hz, 1H), 3.99 (s, 3H), 3.91 (s, 3H), 3.91 (s, 3H). 

13C NMR (75 MHz, CDCl3): ppm = 192.6, 159.2, 156.7, 154.4, 136.1, 132.0, 126.0, 120.1, 

113.9, 102.6, 100.6, 62.1, 56.5, 55.6. 

IR: /cm 1 = 2985 (w), 1737 (s), 1447 (w), 1273 (m), 1250 (s), 1098 (w), 1044 (s). 
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HRMS (ESI) calculated for C14H13O4
79Br [M]+ 323.9992, found 323.9984. 

Preparation of alkene I.46
[148]

 

 

 

2-Bromo-1,6,8-trimethoxy-3-vinylnaphthalene (I.46). To a magnetically stirred suspension of 

methyltriphenylphosphonium bromide (414 mg, 1.15 mmol) in dry THF (21 mL) was added 

NaHMDS solution (1M in toluene, 1.15 mL, 1.15 mmol) at room temperature and the mixture 

was stirred for 1 h. Thereafter, a solution of aldehyde I.45 (250 mg, 770 mol) in dry THF 

(10 mL) was added and the reaction was stirred for an additional 1 h before it was diluted with 

diethyl ether (30 mL). The organic layer was washed with water (3 x 30 mL) and brine 

(3 x 30 mL), dried over Na2SO4, filtered and concentrated in vacuo. The crude product was 

subjected to flash column chromatography (1:5 EtOAc/hexanes) providing 234 mg (730 mol, 

97%) of the aldehyde I.46 as colorless solid. 

Rf = 0.75, 1:4 EtOAc/hexanes.  

mp: 71 72 °C (EtOAc/hexanes). 

1H NMR (400 MHz, CDCl3): ppm = 7.63 (s, 1H), 7.17 (ddd, 3transJ = 17.3 Hz, 3cisJ = 10.9 Hz, 
4J = 0.5 Hz, 1H), 6.71 (d, 4J = 2.3 Hz, 1H), 6.52 (d, 4J = 2.3 Hz, 1H), 5.76 (dd, 3transJ = 17.3 Hz, 
2J = 1.3 Hz, 1H), 5.39 (dd, 3cisJ = 10.9 Hz, 2J = 1.3 Hz, 1H), 3.97 (s, 3H), 3.90 (s, 3H), 3.87 (s, 

3H). 

13C NMR (150 MHz, CDCl3): ppm = 158.6, 156.7, 153.6, 137.4, 136.8, 136.7, 120.9, 116.9, 

116.5, 114.6, 99.8, 98.9, 61.7, 56.4, 55.5. 

IR: /cm 1 = 2980 (w), 2932 (w), 2827 (w), 1615 (s), 1574 (s), 1398 (m), 1349 (m), 1335 (s), 

1260 (m), 1209 (s), 1163 (s), 1127 (s), 1097 (m), 1049 (s). 

HRMS (ESI) calculated for C15H15O3
79Br [M]+ 322.0199, found 322.0202. 
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Preparation of alcohol I.47
[148]

 

 

 

2-(3-Bromo-4,5,7-trimethoxynaphthalen-2-yl)ethanol (I.47). A solution of alkene I.46 

(100 mg, 310 mol) and 9-Borabicyclo[3.3.1]nonane (0.5M in THF, 740 L, 370 mol) in dry 

THF (0.4 mL) was stirred at room temperature for 2 h before it was diluted with aqueous NaOH 

solution (6M, 0.1 mL) and water (0.12 mL). The mixture was cooled to 0 °C and aqueous H2O2 

solution (30wt%, 0.12 mL) was added dropwise. After being stirred at room temperature for 1 h, 

water (10 mL) was added and the phases were separated. The aqueous layer was extracted with 

CH2Cl2 (2 x 10 mL) and the combined organic phase was dried over Na2SO4, filtered and 

concentrated in vacuo. Thus obtained crude product was subjected to flash column 

chromatography (1:2 EtOAc/hexanes) to afford 76.0 mg (220 mol, 71%) of alcohol I.47 as a 

colorless oil. 

Rf = 0.35, 1:2 EtOAc/hexanes.  

1H NMR (400 MHz, CDCl3): ppm = 7.38 (d, 4J = 0.4 Hz, 1H), 6.66 (d, 4J = 2.3 Hz, 1H), 6.51 

(d, 4J = 2.2 Hz, 1H), 3.97 (s, 3H), 3.96 (t, 3J = 6.5 Hz, 2H), 3.89 (s, 3H), 3.87 (s, 3H), 3.15 (td, 
3J = 6.5 Hz, 4J = 0.4 Hz, 2H). 

13C NMR (100 MHz, CDCl3): ppm = 158.7, 156.8, 153.9, 137.0, 136.7, 124.7, 115.9(2), 

115.9(3), 99.4(2), 99.4(4), 62.1, 61.8, 56.3, 55.5, 40.0. 

IR: /cm 1 = 3350 (w), 2934 (w), 2838 (w), 1619 (s), 1593 (m), 1575 (s), 1450 (m), 1389 (m), 

1337 (s), 1259 (m), 1208 (m), 1150 (s), 1119 (s), 1056 (s). 

HRMS (ESI) calculated for C15H18O4
79Br [M+H]+ 341.0383, found 341.0384. 

Preparation of TBS-ether I.48
[148]
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(2-(3-Bromo-4,5,7-trimethoxynaphthalen-2-yl)ethoxy)(tert-butyl)dimethylsilane (I.48). A 

solution of alcohol I.47 (29.0 mg, 80.0 mol), tert-butyldimethylsilyl chloride (15.0 mg, 

100 mol) and imidazole (13.0 mg, 200 mol) in dry CH2Cl2 (0.1 mL) was stirred at room 

temperature for 24 h. During this time a white precipitate was formed, which was removed by a 

filtration. After the filter cake was washed with CH2Cl2 (10 mL), the organic layer was 

concentrated in vacuo to provide crude product. Subjection of this material to flash column 

chromatography (1:6 EtOAc/hexanes) gave 36.1 mg (79.4 mol, 99%) of the TBS ether I.48 as 

a yellow solid.  

Rf = 0.80, 1:5 EtOAc/hexanes.  

mp: 46 47 °C (EtOAc/hexanes). 

1H NMR (400 MHz, CDCl3): ppm = 7.36 (s, 1H), 6.63 (d, 4J = 2.3 Hz, 1H), 6.50 (d, 
4J = 2.2 Hz, 1H), 3.96 (s, 3H), 3. 90 (t, 3J = 6.9 Hz, 2H), 3.89 (s, 3H), 3.86 (s, 3H), 3.09 (t, 
3J = 6.9 Hz, 2H), 0.86 (s, 9H), 0.04 (s, 6H). 

13C NMR (100 MHz, CDCl3): ppm = 158.5, 156.7, 153.5, 137.6, 136.6, 125.1, 116.1, 115.7, 

99.2, 98.4, 62.8, 61.7, 56.3, 55.5, 40.3, 26.1 (3 x C), 18.5, 5.2 (2 x C). 

IR: /cm 1 = 2928 (m), 1620 (m), 1577 (m), 1464 (m), 1296 (m), 1337 (m), 1258 (m), 1209 (m), 

1162 (m), 1124 (m), 1088 (s), 1062 (m), 1045 (s). 

HRMS (ESI) calculated for C21H32O4
79Br28Si [M+H]+ 455.1248, found 455.1250. 

Preparation of acetonide I.50
[19c,19d]

 

 

 

5,7-Dihydroxy-2,2-dimethyl-4H-benzo[d][1,3]dioxin-4-one (I.50). To a magnetically stirred 

solution of 2,4,6-trihydroxybenzoic acid (I.49) (10.0 g, 53.2 mmol) in trifluoroacetic acid 

(80 mL) were slowly added dry acetone (7.90 g, 10.0 mL, 136 mmol) and trifluoroacetic acid 

anhydride (50 mL) at 0 °C. After being warmed to room temperature, the reaction was stirred 

for 24 h. Then, the mixture was concentrated in vacuo and the residual crude oil was re-

dissolved in saturated aqueous NaHCO3 solution (300 mL). The aqueous solution was extracted 

with EtOAc (3 x 200 mL) and the combined organic layers were dried over Na2SO4, filtered and 

concentrated in vacuo to afford a dark yellow oil. Subjection of this material to flash column 
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chromatography (1:2 EtOAc/hexanes) provided 3.82 g (18.2 mmol, 34%) of the acetonide I.50 

as a white solid. 

Rf = 0.13, 1:2 EtOAc/hexanes.  

mp: 199 °C (EtOAc/hexanes). 

1H NMR (600 MHz, CDCl3): ppm = 10.45 (s, 1H), 6.08 (d, 4J = 2.2 Hz, 1H), 5.96 (d, 
4J = 2.2 Hz, 1H), 2.18 (s, 6H). 

13C NMR (150 MHz, CDCl3): ppm = 165.3, 164.1, 163.4, 157.4, 107.2, 97.8, 95.7, 93.4, 25.8 

(2 x C). 

IR: /cm 1 = 3178 (m), 2595 (w), 1627 (s), 1601 (s), 1503 (m), 1478 (m), 1430 (m), 1316 (m), 

1267 (s), 1159 (s), 1160 (s), 1056 (m).  

HRMS (ESI) calculated for C10H10O5 [M]+ 210.0523, found 210.0522. 

Preparation of hydroxybenzene I.51
[19c]

 

 

 

5-Hydroxy-7-methoxy-2,2-dimethyl-4H-benzo[d][1,3]dioxin-4-one (I.51). To a magnetically 

stirred solution of acetonide I.50 (3.82 g, 18.1 mmol), triphenylphosphine (5.10 g, 19.4 mmol) 

and methanol (622 mg, 790 L, 19.4 mmol) in dry THF (60 mL) was slowly added diisopropyl 

azodicarboxylate (3.92 g, 19.4 mmol) at 0 °C. The reaction was allowed to warm to room 

temperature and was then stirred for 2 h before EtOAc (300 mL) was added. The organic layer 

was washed with water (200 mL) and brine (200 mL), dried over Na2SO4, filtered and 

concentrated in vacuo to afford the crude product. Subjection of this material to flash column 

chromatography (1:9 EtOAc/hexanes) provided 3.47 g (15.5 mmol, 86%) of phenol I.51 as a 

white solid. 

Rf = 0.30, 1:3 EtOAc/hexanes.  

mp: 107 108 °C (EtOAc/hexanes). 

1H NMR (600 MHz, CDCl3): ppm = 10.45 (s, 1H), 6.15 (d, 4
J = 2.3 Hz, 1H), 6.00 (d, 

4J = 2.3 Hz, 1H), 3.82 (s, 3H), 1.73 (s, 6H). 



CHAPTER IV: EXPERIMENTAL PROCEDURES 

131 
 

13C NMR (150 MHz, CDCl3): ppm = 167.8, 165.3, 163.3, 157.0, 107.0, 95.9, 94.8, 93.2, 55.9, 

25.8 (2 x C). 

IR: /cm 1 = 3854 (w), 3182 (w), 2362 (w), 2340 (w), 1700 (s), 1642 (s), 1585 (m), 1506 (m), 

1357 (m), 1273 (m), 1168 (s). 

HRMS (ESI) calculated for C11H12O5 [M]+ 224.0679, found 224.0676. 

Preparation of triflate I.52
[19c]

 

 

 

7-Methoxy-2,2-dimethyl-4-oxo-4H-benzo[d][1,3]dioxin-5-yl trifluoromethanesulfonate 

(I.52). A magnetically stirred solution of phenol I.51 (3.47 g, 15.5 mmol) in dry pyridine 

(50 mL) was cooled to at  10 °C and trifluorosulfonic anhydride (4.80 g, 2.86 mL, 17.0 mmol) 

was added slowly. The reaction was stirred at 0 °C for 2 h before being quenched with ice water 

(100 mL). The aqueous layer was extracted with diethyl ether (3 x 100 mL) and the combined 

organic fractions were washed with aqueous HCl solution (0.1M, 150 mL), saturated aqueous 

NaHCO3 solution (150 mL), water (150 mL) and brine (150 mL), dried over Na2SO4, filtered 

and concentrated in vacuo. Thus obtained crude product was subjected to flash column 

chromatography (1:6 EtOAc/hexanes) to provide 5.09 g (14.3 mmol, 92%) of the triflate I.52 as 

a yellow solid. 

Rf = 0.60, 1:3 EtOAc/hexanes.  

mp: 69 70 °C (EtOAc/hexanes). 

1H NMR (600 MHz, CDCl3): ppm = 6.53 (d, 4J = 2.3 Hz, 1H), 6.48 (d, 4J = 2.4 Hz, 1H), 3.88 

(s, 3H), 1.74 (s, 6H). 

13C NMR (150 MHz, CDCl3): ppm = 165.7, 159.0, 157.2, 150.1, 118.9 (q, 1FJ = 321.1 Hz, 

CF3), 106.7, 105.5, 101.3, 101.1, 56.4, 25.7 (2 x C). 

IR: /cm 1 = 2993 (w), 1730 (m), 1627 (m), 1578 (m), 1424 (m), 1378 (w), 1286 (m), 1220 (s), 

1154 (m), 1238 (m), 1058 (s), 1038 (s). 

HRMS (ESI) calculated for C12H11F3O7SNa [M+Na]+ 379.0070, found 379.0069. 
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Preparation of boronic ester I.29
[19a,19b]

 

 

 

7-Methoxy-2,2-dimethyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4H-benzo[d] 

[1,3]dioxin-4-one (I.29). A magnetically stirred solution of triflate I.52 (663 mg, 1.86 mmol), 

freshly distilled triethylamine (560 mg, 770 L, 5.58 mmol) and tetrakis(triphenylphosphine) 

palladium(0) (107 mg, 93.0 mol) in dry dioxane (112 mL) was degassed with argon for 10 min 

at room temperature and then, pinacolborane (2.62 g, 2.97 mL, 20.5 mmol) was added 

dropwise. After being stirred at 75 °C for 1.5 h, the mixture was concentrated in vacuo and the 

obtained dark brown oil was purified by a quick flash column chromatography (1:10 

EtOAc/hexanes, silica gel was deactivated prior to use with 0.1:1:10 NEt3/EtOAc/hexanes) to 

provide 304 mg (910 mol, 49%) of the boronic ester I.29 as a yellow crystalline solid. 

Rf = 0.67, 1:2 EtOAc/hexanes.  

1H NMR (600 MHz, CDCl3): ppm = 6.66 (d, 4J = 2.4 Hz, 1H), 6.39 (d, 4J = 2.4 Hz, 1H), 3.83 

(s, 3H), 1.71 (s, 6H), 1.42 (s, 12H). 

13C NMR (150 MHz, CDCl3): ppm = 165.7, 162.0, 157.3, 113.8, 108.8, 106.3, 101.7, 84.6 

(2 x C), 55.8, 26.0 (2 x C), 24.9 (4 x C). (C-B signal is obscured or overlapping). 

HRMS (ESI) calculated for C17H23O6
11BNa [M+Na]+ 357.1480, found 357.1480. 

As a byproduct, traces of protodeborylated benzene I.55 were isolated:  

7-Methoxy-2,2-dimethyl-4H-benzo[d][1,3]dioxin-4-one (I.55). 

Colorless oil. 

Rf = 0.71, 1:2 EtOAc/hexanes.  

1H NMR (600 MHz, CDCl3): ppm = 7.86 (d, 3J = 8.7 Hz, 1H), 6.64 (dd, 
3J = 8.8 Hz, 4J = 2.4 Hz, 1H), 6.42 (d, 4J = 2.3 Hz, 1H), 3.84 (s, 3H), 1.72 (s, 6H). 

13C NMR (150 MHz, CDCl3): ppm = 166.4, 161.1, 158.1, 131.3, 110.4, 106.4(3), 106.3(8), 

101.2, 55.9, 25.9 (2 x C). 
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IR: /cm 1 = 3084 (w), 3002 (w), 2946 (w), 2850 (w), 1716 (s), 1613 (s), 1585 (s), 1505 (m), 

1446 (s), 1375 (m), 1298 (s), 1250 (s), 1208 (s), 1152 (s), 1108 (s), 1047 (s). 

HRMS (ESI) calculated for C11H12O4 [M]+ 208.0736, found 208.0727. 

Preparation of trifluoroborate I.53 

 

 

Potassium trifluoro(7-methoxy-2,2-dimethyl-4-oxo-4H-benzo[d][1,3]dioxin-5-yl)borate 

(I.53). A solution of boronic ester I.29 (110 mg, 330 mol) and potassium bifluoride (64.0 mg, 

820 mol) in MeOH (0.11 mL) and water (0.22 mL) was stirred at room temperature for 2 h. 

The mixture was cooled to 0 °C and kept at this temperature for 20 min before the freshly 

formed precipitate was collected. The obtained white solid was washed with cold MeOH to 

provide 97.0 mg (310 mol, 94%) of trifluoroborate I.53 as a white powder. 

Rf = 0.05, 1:2 EtOAc/hexanes.  

mp: 224 °C (MeOH). 

1H NMR (400 MHz, DMSO-d6): ppm = 6.87 (d, 4J = 2.7 Hz, 1H, Ar-H, H4), 

6.30 (d, 4J = 2.7 Hz, 1H, Ar-H, H6), 3.75 (s, 3H, OCH3, H10), 1.58 (s, 6H, CH3, 

H8). 

13C NMR (100 MHz, DMSO-d6): ppm = 163.6 (CO, C9), 157.8 (Ar-Cq-B, C1), 114.6 (Ar-C, 

C4), 109.3 (Ar-Cq, C5), 103.7 (Ar-Cq, C2), 103.4 (Cq, C7) 99.0 (Ar-C, C6), 98.3 (Ar-Cq, C3), 

55.1 (OCH3, C10), 25.3 (CH3, 2 x C8). 

IR: /cm 1 = 2999 (w), 2942 (w), 1733 (m), 1601 (m), 1567 (m), 1408 (w), 1339 (w), 1250 (s), 

1199 (s), 1252 (s), 1058 (s). 

HRMS (ESI) calculated for C11H11O4
11BF3 [M]  275.0708, found 275.0706. 
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Preparation of biaryl I.56 

 

 

To effect the formation of biaryl I.56 several Suzuki-coupling conditions were screened. 

Selected screening conditions are summarized in table IV.1. It was found that microwave 

conditions were required in order for the reaction to proceed. 

Table IV.1. Selected conditions used for the Suzuki coupling of bromide I.28 with boronate 

I.29 

Entry Catalyst  Base  Ligand  Solvent  Additive  T [°C]  Product  

1 Pd2(dba)3  Cs2CO3  DPEPhos  toluene  msa  50  n. p.b  

2  Pd2(dba)3  K3PO4  RuPhos  dioxane  msa  50  n. p.b  

3  PEPPSI-IPr  KOtBu  iPrOH  -  rt  n. p.b  

4  PEPPSI-IPr  Ba(OH)2  iPrOH  -  65  n. p.b  

5  PEPPSI-IPr  K2CO3  MeOH  -  65  n. p.b  

6  PEPPSI-IPr  KOtBu  tBuOH  msa  65  n. p.b  

7 Pd(PPh3)4 K2CO3 water/toluene TBAB 120, w 68% 

ams = molecular sieves (4Å). bn. p. = no product formation. 

2-(4,5,7-Trimethoxy-3-(7-methoxy-2,2-dimethyl-4-oxo-4H-benzo[d][1,3]dioxin-5-yl) 

naphthalen-2-yl)acetonitrile (I.56). To a magnetically stirred solution of cyanide I.28 

(50.0 mg, 150 mol) in toluene (1 mL) and water (1 mL) was added boronate ester I.29 

(160 mg, 480 mol) followed by K2CO3 (62.0 mg, 450 mol), tetra-N-butylammonium bromide 

(13.0 mg, 40.0 mol), and tetrakis(triphenylphosphine)palladium(0) (35.0 mg, 30.0 mol). The 

ensuing mixture was stirred at 120 °C in a CEM microwave reactor operating at 200 W 

(maximum power) for 2 h. After this, the reaction mixture was cooled to room temperature, 

then, diluted with CH2Cl2 (10 mL) and washed with water (7 mL) followed by aqueous HCl 

solution (10wt%, 7 mL). The organic layer was dried over Na2SO4, filtered and concentrated in 

vacuo to afford a dark brown oil. Subjection of this material to flash column chromatography 
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 elution) provided 47.0 mg (101 mol, 68%) of 

biaryl I.56 as a white solid.  

Rf = 0.39, 1:2 EtOAc/hexanes.  

mp 76 79 °C.  

1H NMR (600 MHz, CDCl3): ppm = 7.66 (br s, 1H, Ar-H, H19), 

6.80 (d, 4J = 2.3 Hz, 1H, Ar-H, H17), 6.55 6.53 (m, 3H, Ar-H, H2, 

H4, H15), 3.95 (s, 3H, OCH3, H24 or H25), 3.93 (s, 3H, OCH3, 

H24 or H25), 3.86 (s, 3H, OCH3, H10), 3.56 (dd, 2
J = 18.8 Hz, 

4J = 1.1 Hz, 1H, CH2, H21), 3.53 (s, 3H, OCH3, H23), 3.39 (dd, 2J = 18.8 Hz, 4J = 0.7 Hz, 1H, 

CH2, H21), 1.76 (s, 3H, CH3, H9), 1.73 (s, 3H, CH3, H9). 

13C NMR (150 MHz, CDCl3): /ppm = 165.1 (Ar-Cq, C3), 159.5 (CO, C7), 158.8 (Ar-Cq, C1 or 

C5 or C6 or C11 or C13 or C14 or C16 or C18 or C20), 157.3 (Ar-Cq, C1 or C5 or C6 or C11 or 

C13 or C14 or C16 or C18 or C20), 153.1 (Ar-Cq, C12), 141.2 (Ar-Cq, C1 or C5 or C6 or C11 

or C13 or C14 or C16 or C18 or C20), 137.7 (Ar-Cq, C1 or C5 or C6 or C11 or C13 or C14 or 

C16 or C18 or C20), 128.8 (Ar-Cq, C1 or C5 or C6 or C11 or C13 or C14 or C16 or C18 or 

C20), 128.0 (Ar-Cq, C1 or C5 or C6 or C11 or C13 or C14 or C16 or C18 or C20), 122.5 (Ar-C, 

C19), 118.0 (CN, C22), 115.5 (Ar-Cq, C1 or C5 or C6 or C11 or C13 or C14 or C16 or C18 or 

C20), 114.0 (Ar-C, C2 or C4), 106.3 (Ar-Cq, C1 or C5 or C6 or C11 or C13 or C14 or C16 or 

C18 or C20), 105.7 (Cq, C8), 101.9 (Ar-C, C2 or C4), 99.7 (Ar-C, C15), 99.2 (Ar-C, C17), 62.3 

(Ar-C-OMe, C23), 56.2 (Ar-C-OMe, C24 or C25), 56.0 (Ar-C-OMe, C10), 55.6 (Ar-C-OMe, 

C24 or C25), 26.8 (CH3, C9a or C9b), 25.1 (CH3, C9a or C9b), 22.3 (CH2, C21) (one signal 

obscured or overlapping). 

IR: /cm 1 = 2936 (w), 2362 (w), 1730 (m), 1605 (s), 1575 (s), 1454 (m), 1391 (s), 1339 (s), 

1278 (s), 1204 (s), 1130 (s), 1053 (s). 

HRMS (ESI) calculated for C26H26NO7 [M+H]+ 464.1704, found 464.1705. 

As byproducts, 26.0 mg (62.7 mol, 26%) of homocoupling product I.54 and 16.0 mg 

(76.8 mmol, 16%) of protodeborylated benzene I.55 were isolated: 

7,7'-Dimethoxy-2,2,2',2'-tetramethyl-4H,4'H-[5,5'-bibenzo[d][1,3]dioxine]-4,4'-dione (I.54). 

Yellow oil.  
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Rf = 0.49, 1:2 EtOAc/hexanes.  

1H NMR (600 MHz, CDCl3): ppm = 6.48 (d, 4J = 2.5 Hz, 2H, Ar-H, 

H4), 6.46 (d, 4J = 2.5 Hz, 2H, Ar-H, H2), 3.86 (s, 6H, OCH3, H10), 1.76 

(s, 6H, CH3, H9), 1.73 (s, 6H, CH3, H9). 

13C NMR (150 MHz, CDCl3): /ppm = 165.0 (2 x Ar-Cq, C3), 160.1 

(2 x CO, C7), 158.4 (2 x Ar-Cq, C6), 145.3 (2 x Ar-Cq, C5), 112.5 

(2 x Ar-C, C4), 105.9 (2 x Ar-Cq, C1), 105.9 (2 x Cq, C8), 100.8 (2 x Ar-

C, C2), 55.8 (2 x OCH3, C10), 27.3 (2 x CH3, C9), 24.2 (2 x CH3, C9). 

IR: /cm 1 = 3588 (w), 1005 (w), 2361 (w), 2340 (w), 1700 (s), 1419 (m), 1359 (s), 1221 (s). 

HRMS (ESI) calculated for C22H23O8 [M+H]+ 415.1387, found 415.1387. 

7-Methoxy-2,2-dimethyl-4H-benzo[d][1,3]dioxin-4-one (I.55). 

Colorless oil. 

Rf = 0.71, 1:2 EtOAc/hexanes.  

1H NMR (600 MHz, CDCl3): ppm = 7.86 (d, 3J = 8.7 Hz, 1H), 6.64 (dd, 
3J = 8.8 Hz, 4J = 2.4 Hz, 1H), 6.42 (d, 4J = 2.3 Hz, 1H), 3.84 (s, 3H), 1.72 (s, 

6H). 

13C NMR (150 MHz, CDCl3): ppm = 166.4, 161.1, 158.1, 131.3, 110.4, 106.4(3), 106.3(8), 

101.2, 55.9, 25.9 (2 x C). 

IR: /cm 1 = 3084 (w), 3002 (w), 2946 (w), 2850 (w), 1716 (s), 1613 (s), 1585 (s), 1505 (m), 

1446 (s), 1375 (m), 1298 (s), 1250 (s), 1208 (s), 1152 (s), 1108 (s), 1047 (s). 

HRMS (ESI) calculated for C11H12O4 [M]+ 208.0736, found 208.0727. 

Preparation of orsellinic ester I.58
[30d]

 

 

 

Methyl 2,4-dihydroxy-6-methylbenzoate (I.58). After NaH (60wt% suspension in mineral oil, 

25.8 g, 650 mmol) was washed with n-pentane (3 x 100 mL), it was suspended in dry THF 
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(250 mL) and methylacetoacetate (I.57) (50.0 g, 46.5 mL, 430 mmol) was added dropwise at 

0 °C (Caution! Gas evolution!). The mixture was cooled to 78 °C and n-BuLi solution (2.5M 

in hexanes, 160 mL, 400 mmol) was added dropwise. The reaction was warmed to room 

temperature and stirred overnight before being warmed to 60 °C and stirred for an additional 

24 h at this temperature. After the mixture was cooled to 0 °C, aqueous concentrated HCl 

solution was added dropwise, until the pH of the solution was adjusted to 2. Then, the mixture 

was stirred for an additional 12 h at room temperature before the layers were separated and the 

aqueous layer was extracted with EtOAc (2 x 250 mL). The combined organic layers were dried 

over Na2SO4, filtered and concentrated in vacuo to provide the crude product, which was 

giving 19.8 g (109 mmol, 51%) of the methyl ester I.58 as a white solid. 

Rf = 0.38, 1:2 EtOAc/hexanes.  

mp: 136 °C (EtOAc/hexanes).  

1H NMR (600 MHz, CDCl3): ppm = 11.75 (s, 1H), 6.28 (d, 4J =2.6 Hz, 1H), 6.23 (d, 
4J = 2.6 Hz, 1H), 5.35 (br s, 1H), 3.92 (s, 3H), 2.49 (s, 3H). 

13C NMR (150 MHz, CDCl3): ppm = 172.3, 165.4, 160.4, 144.1, 111.5, 105.8, 101.4, 52.0, 

24.4. 

IR: /cm 1 = 3365 (w), 3308 (w), 2958 (w), 1599 (s), 1581 (s), 1443 (m), 1379 (w), 1310 (s), 

1242 (s), 1198 (m), 1120 (s).  

HRMS (ESI) calculated for C9H10O4 [M]+ 182.0574, found 182.0577. 

As a minor byproduct the free orsellinic acid (I.113) was isolated: 

2,4-Dihydroxy-6-methylbenzoic acid (I.113). 

White solid. 

Rf = 0.06, 1:2 EtOAc/hexanes.  

Mp: 184 185 °C (EtOAc/hexanes).  

1H NMR (400 MHz, DMSO-d6): ppm = 10.13 (s, 1H), 6.17 (dd, 
4J = 2.5 Hz, 4J = 0.8 Hz, 1H), 6.12 (dd, 4J = 2.5 Hz, 4J = 0.4 Hz, 1H), 2.39 

(s, 3H). 

13C NMR (100 MHz, DMSO-d6): ppm = 173.3, 164.5, 162.0, 142.9, 111.0, 104.8, 100.5, 23.5. 
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IR: /cm 1 = 3371 (w), 2939 (w), 1619 (s), 1454 (s), 1359 (m), 1250 (s), 1207 (s), 1166 (s), 

1062 (m). 

HRMS (ESI) calculated for C8H8O4 [M]+ 168.0417, found 168.0425. 

Preparation of dimethyl ether I.31
[30c]

 

 

 

Methyl 2,4-dimethoxy-6-methylbenzoate (I.31). A magnetically stirred solution of phenol 

I.58 (19.8 g, 109 mmol), dimethylsulfate (35.7 g, 26.8 mL, 283 mmol) and K2CO3 (90.0 g, 

653 mmol) in dry acetone (400 mL) was refluxed for 12 h. After filtration of the solid, residual 

acetone was removed in vacuo and the obtained oil was re-dissolved in diethyl ether (500 mL). 

The ether phase was washed with aqueous NaOH solution (1M, 2 x 250 mL), dried over Na2SO4 

and filtered. Evaporation of the solvent provided 22.6 g (108 mmol, 99%) of dimethyl ether I.31 

as a light yellow solid. 

Rf = 0.63, 1:3 EtOAc/hexanes.  

mp: 41 °C (EtOAc/hexanes).  

1H NMR (300 MHz, CDCl3): ppm = 6.31 (s, 2H), 3.88 (s, 3H), 3.80 (s, 3H), 3.79 (s, 3H), 2.28 

(s, 3H). 

13C NMR (75 MHz, CDCl3): ppm = 168.9, 161.5, 158.6, 138.4, 116.6, 106.8, 96.3, 56.0, 55.5, 

52.1, 20.0. 

IR: /cm 1 = 2950 (w), 2841 (w), 1723 (m), 1604 (m), 1586 (m), 1456 (m), 1326 (m), 1264 (s), 

1201 (s), 1099 (s), 1092 (s), 1050 (s). 

HRMS (ESI) calculated for C11H14O4 [M]+ 210.0887, found 210.0871. 

Preparation of Weinreb amide I.59
[31]
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2-(Benzyloxy)-N-methoxy-N-methylacetamide (I.59). To a magnetically stirred solution of 

acid chloride I.60 (25.0 g, 135 mmol) and methoxy(methyl)amine hydrochloride (14.5 g, 

149 mmol) in dry chloroform (1300 mL) was added dropwise dry pyridine (12.8 g, 13.1 mL, 

163 mmol) at 0 °C. After the reaction was stirred at room temperature for 24 h, the solution was 

concentrated in vacuo and the obtained crude material was re-dissolved in diethyl ether/CH2Cl2 

mixture (1:1, 700 mL). The organic layer was washed with brine (500 mL), dried over Na2SO4, 

filtered and concentrated in vacuo. Subjection of thus obtained crude material to flash column 

t elution) provided 27.4 g (131 mmol, 97%) 

of amide I.59 as a colorless oil. 

Rf = 0.29, 1:2 EtOAc/hexanes.  

1H NMR (300 MHz, CDCl3): ppm = 7.43 7.27 (m, 5H), 4.67 (s, 2H), 4.28 (s, 2H), 3.63 (s, 

3H), 3.19 (s, 3H). 

13C NMR (75 MHz, CDCl3): ppm = 171.2, 137.7, 128.5 (2 x C), 128.2 (2 x C), 128.0, 73.4, 

67.2, 61.5, 32.5. 

IR: /cm 1 = 2938 (w), 1675 (s), 1453 (m), 1391 (m), 1328 (m), 1268 (w), 1178 (m), 1136 (m), 

1086 (s), 990 (s). 

HRMS (ESI) calculated for C11H16O3N [M+H]+ 210.1125, found 210.1113. 

Preparation of amine I.62 

 

 

3-((Benzyloxy)methyl)-6,8-dimethoxy-3-((methoxy(methyl)amino)methyl)-3,4-dihydro 

naphthalen-1(2H)-one (I.62). To a magnetically stirred solution of freshly distilled 

diisopropylamine (97.0 mg, 0.135 mL, 960 mol) in dry THF (2.5 mL) was added n-BuLi 

(2.4M in hexanes, 400 L, 960 mol), and the mixture was stirred for 10 min at room 

temperature. After the LDA solution was cooled to 78 °C, a solution of benzoate I.31 (100 mg, 

480 mol) in dry THF (1.3 mL) was added slowly through a thin cannula and the resulting 

orange mixture was stirred at 78 °C for 5 min. Then, a solution of Weinreb amide I.59 

(100 mg, 480 mol) in dry THF (1.25 mL) was added slowly and the reaction was stirred at 78 
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°C for an additional 10 min before being warmed to 0 °C. After 30 min at 0 °C, the mixture was 

warmed to room temperature and stirred for an additional 30 min, before a saturated aqueous 

NH4Cl solution (5 mL) was added. The layers were separated, and the aqueous layer was 

extracted with EtOAc (3 x 7 mL). The combined organic phases were washed with brine 

(15 mL), dried over Na2SO4, filtered and concentrated in vacuo. Thus obtained crude mixture 

was purified by flash column chromatography (1:1 EtOAc/hexanes) to give 26.0 mg 

(65.0 mol, 14%) of amine I.62 as yellow oil. 

Rf = 0.43, 1:2 EtOAc/hexanes.  

1H NMR (300 MHz, CDCl3): ppm = 7.39 7.22 (m, 5H, Ar-H, H3', 

H4', H5'), 6.36 (d, 4J = 2.3 Hz, 1H, Ar-H, H4), 6.28 (d, 4J = 2.3 Hz, 

1H, Ar-H, H6), 4.53 (s, 2H, CH2, H1'), 3.90 (s, 3H, OCH3, H12), 3.85 

(s, 3H, OCH3, H11), 3.75 (d, 2J = 10.2 Hz, 1H, CH2, H10), 3.56 (d, 
2J = 10.3 Hz, 1H, CH2, H10), 3.44 (s, 3H, OCH3, H13), 3.37 (d, 
2J = 16.7 Hz, 1H, CH2, H8), 3.26 (d, 2J = 16.7 Hz, 1H, CH2, H8), 2.70 

(s, 3H, NCH3, H14). 

13C NMR (75 MHz, CDCl3): ppm = 164.6 (Ar-Cq, C5), 163.1 (Ar-Cq, C3), 161.3 (CO, C1), 

142.54 (Ar-Cq, C2), 137.7 (Ar-Cq, C2'), 128.5 (Ar-C, 2 x C3' or 2 x C4'), 127.9(4) (Ar-C, 

2 x C3' or 2 x C4') 127.9(1) (Ar-Cq, C5'), 106.6 (Ar-Cq, C7), 104.5 (Ar-C, C6), 97.4 (Ar-C, C4), 

96.4 (Cq, C9), 73.7 (CH2, C1'), 69.5 (CH2, C10), 61.0 (OCH3, C13), 56.3 (OCH3, C12), 55.6 

(OCH3, C11), 36.6 (NCH3, C14), 32.8 (CH2, C8) 

IR: /cm 1 = 2985 (w), 2256 (w), 1736 (s), 1606 (w), 1447 (w), 1372 (m), 1230 (s), 1162 (w), 

1098 (w), 1044 (s).  

HRMS (ESI) calculated for C21H26O6N [M+H]+ 388.1755, found 388.1757. 

Preparation of ketone I.61 

 

 

Methyl 2-(3-(benzyloxy)-2-oxopropyl)-4,6-dimethoxybenzoate (I.61). To a magnetically 

stirred solution of diisopropylamine (545 mg, 0.760 mL, 5.39 mmol) in dry THF (10 mL) was 

added n-BuLi (1.5M in hexanes, 3.59 mL, 5.39 mmol), and the resulting mixture was stirred for 

10 min at room temperature. After the LDA solution was cooled to 78 °C, a solution of 
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methylbenzoate I.31 (1.03 g, 4.90 mmol) in dry THF (5 mL) was added slowly through a thin 

cannula and the orange mixture was stirred at 78 °C for 30 min. Weinreb amide I.31 (1.54 g, 

7.35 mmol) was dissolved in dry THF (5 mL) and was then added dropwise to the solution of 

the anion. Stirring at 78 °C was continued for 2 h before the yellow reaction mixture was 

quenched by adding aqueous HCl solution (2M, 20 mL), and then warmed to room temperature. 

The biphasic mixture was diluted with water (50 mL) and extracted with CH2Cl2 (3 X 50 mL). 

The combined organic layers were dried over Na2SO4, filtered and concentrated in vacuo to 

afford a 

EtOAc/hexanes, gradient elution) provided 1.28 g (3.57 mmol, 73%) of ketone I.61 as a white 

solid. 

Rf = 0.35, 1:2 EtOAc/hexanes.  

mp: 49 50 °C (EtOAc/hexanes).  

1H NMR (300 MHz, CDCl3): ppm = 7.36 7.26 (m, 5H, Ar-H, H3', 

H4' and H5'), 6.41 (d, 4J = 2.3 Hz, 1H, Ar-H, H4), 6.32 (d, 
4J = 2.3 Hz, 1H, Ar-H, H6), 4.59 (s, 2H, CH2, H1'), 4.16 (s, 2H, CH2, 

H10), 3.81 (s, 3H, OCH3, H12), 3.80 (s, 3H, OCH3, H11 or H13), 3.80 

(s, 3H, OCH3, H11 or H13), 3.78 (s, 2H, CH2, H8).  

13C NMR (75 MHz, CDCl3): ppm = 205.0 (CO, C9), 168.1 (CO, C1), 162.0 (Ar-Cq, C5), 

159.4 (Ar-Cq, C3), 137.5 (Ar-Cq, C2'), 135.4 (Ar-Cq, C7), 128.6 (2 x Ar-CH, C3' or C4'), 128.1 

(3 x Ar-CH, C3' or C4' and C5') 115.9 (Ar-CH, C2), 107.9 (Ar-CH, C6), 98.1 (Ar-CH, C4), 74.7 

(CH2, C10), 73.5 (CH2, C1'), 56.2 (OCH3, C11 or C12 or C13), 55.6 (OCH3, C11 or C12 or 

C13), 52.2 (OCH3, C11 or C12 or C13), 45.0 (CH2, C8).  

IR: /cm 1 = 2948 (w), 2840 (w), 1723 (m), 1602 (s), 1585 (m), 1455 (m), 1427 (m), 1314 (m), 

1272 (s), 1203 (s), 1090 (s), 1047 (s).  

HRMS (ESI) calculated for C20H22O6Na [M+Na]+ 381.1309, found 381.1306. 

Preparation of naphthalene I.63 
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2-(Benzyloxy)-6,8-dimethoxynaphthalene-1,3-diol (I.63). To a magnetically stirred solution 

of ketone I.61 (100 mg, 280 mol) in dry THF (4 mL) was added NaH (60wt% suspension in 

mineral oil, 22.4 mg, 560 mol) at 0 °C. The resulting reaction mixture was stirred at room 

temperature for 2 h before a saturated aqueous NH4Cl solution (2 mL) and water (2 mL) were 

added. The layers were separated, and the aqueous layer was extracted with EtOAc (3 x 7 mL). 

The combined organic phases were dried over Na2SO4, filtered and concentrated in vacuo. Thus 

obtained yellow oil was purified by flash column chromatography (1:1 EtOAc/hexanes) to give 

24.0 mg (73.5 mol, 26%) of naphthalene I.63 as a beige solid. 

Rf = 0.44, 1:2 EtOAc/hexanes.  

mp: 130 °C (EtOAc/hexanes).  

1H NMR (600 MHz, CDCl3): ppm = 9.34 (s, 1H), 7.49 7.42 (m, 2H), 7.41 7.33 (m, 3H), 6.66 

(s, 1H), 6.54 (d, 4J = 1.9 Hz, 1H), 6.33 (d, 4J = 1.9 Hz, 1H), 5.83 (s, 1H), 5.19 (s, 2H), 4.03 (s, 

3H), 3.86 (s, 3H). 

13C NMR (150 MHz, CDCl3): ppm = 157.6, 157.3, 150.2, 146.4, 137.5, 134.0, 130.0, 128.9 

(2 x C), 128.8 (2 x C), 128.7, 106.5, 100.5, 98.7, 95.9, 75.4, 56.3, 55.4.  

IR: /cm 1 = 3477 (m), 3309 (w), 3020 (w), 2938 (w), 1626 (m), 1600 (m), 1517 (w), 1446 (m), 

1388 (m), 1370 (m), 1314 (m), 1279 (m), 1202 (s), 1150 (s), 1118 (m), 1050 (s).  

HRMS (ESI) calculated for C19H18O5 [M]+ 326.1154, found 326.1147. 

As a byproduct 18.0 mg (55.2 mol, 20%) of isocumarin I.64 were isolated: 

3-((Benzyloxy)methyl)-6,8-dimethoxy-1H-isochromen-1-one (I.64). 

White solid. 

Rf = 0.28, 1:1 EtOAc/hexanes.  

mp: 112 113 °C (EtOAc/hexanes).  

1H NMR (300 MHz, CDCl3): ppm = 7.38 7.26 (m, 5H), 6.46 (d, 4J = 2.1 

Hz, 1H), 6.41 (br s, 1H), 6.37 (d, 4J = 2.2 Hz, 1H), 4.65 (s, 2H), 4.32 (s, 2H), 

3.96 (s, 3H), 3.89 (s, 3H). 

13C NMR (75 MHz, CDCl3): ppm = 165.6, 163.5, 158.9, 154.9, 141.8, 137.5, 128.6, 128.6, 

128.1, 128.0, 128.0, 103.6, 103.5, 100.4, 98.9, 73.3, 68.0, 56.4, 55.8.  
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IR: /cm 1 = 2847 (w), 2362 (w), 1715 (s), 1676 (m), 1596 (s), 1574 (m), 1454 (m), 1426 (m), 

1367 (m), 1346 (m), 1290 (m), 1238 (m), 1213 (s), 1162 (s), 1101 (s), 1055 (m).  

HRMS (ESI) calculated for C19H18O5Na+ [M+Na]+ 349.1046, found 349.1045. 

Preparation of isocumarin I.64 

 

 

3-((Benzyloxy)methyl)-6,8-dimethoxy-1H-isochromen-1-one (I.64). To a magnetically stirred 

solution of ketone I.61 (1.25 g, 3.49 mmol) in dry CH2Cl2 (24 mL) was added 

diazabicycloundecen (1.86 g, 1.82 mL, 12.2 mmol) at room temperature. The resulting reaction 

mixture was stirred for 12 h before a saturated aqueous NH4Cl solution (25 mL) was added. The 

layers were separated, and the aqueous layer was extracted with CH2Cl2 (3 x 20 mL). The 

combined organic phases were dried over Na2SO4, filtered and concentrated in vacuo. Thus 

obtained yellow oil was purified by flash column chromatography (1:2 EtOAc/hexanes) to give 

1.08 g (3.31 mmol, 95%) of isocumarin I.64 as white solid. 

Rf = 0.28, 1:1 EtOAc/hexanes.  

mp: 112 113 °C (EtOAc/hexanes).  

1H NMR (300 MHz, CDCl3): ppm = 7.38 7.26 (m, 5H), 6.46 (d, 4J = 2.1 Hz, 1H), 6.41 (br s, 

1H), 6.37 (d, 4J = 2.2 Hz, 1H), 4.65 (s, 2H), 4.32 (s, 2H), 3.96 (s, 3H), 3.89 (s, 3H). 

13C NMR (75 MHz, CDCl3): ppm = 165.6, 163.5, 158.9, 155.0, 141.8, 137.5, 128.7 (2 x C), 

128.1, 128.0 (2 x C), 103.6, 103.6, 100.4, 98.9, 73.4, 68.0, 56.5, 55.8.  

IR: /cm 1 = 2847 (w), 2362 (w), 1715 (s), 1676 (m), 1596 (s), 1574 (m), 1454 (m), 1426 (m), 

1367 (m), 1346 (m), 1290 (m), 1238 (m), 1213 (s), 1162 (s), 1101 (s), 1055 (m).  

HRMS (ESI) calculated for C19H18O5Na [M+Na]+ 349.1046, found 349.1045. 

Preparation of acid I.67
[32]
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3-(Benzyloxy)propanoic acid (I.67). To a magnetically stirred solution of benzyloxypropanol 

I.66 (2.50 g, 15.0 mmol) in acetone (75 mL) was added dropwise freshly prepared Jones reagent 

(8N) at 0 °C until the reaction mixture remained orange. After being stirred at 0 °C for 3 h, the 

reaction was filtered over Celite and the organic phase was washed with water (50 mL) and 

brine (50 mL), dried over Na2SO4, filtered and concentrated in vacuo. The obtained crude 

material was subjected to flash column chromatography (1:1 EtOAc/hexanes) providing 2.25 g 

(12.5 mmol, 83%) of free acid I.67 as a white solid. 

Rf = 0.14, 1:1 EtOAc/hexanes.  

mp: 33 34 °C (EtOAc/hexanes).  

1H NMR (400 MHz, CDCl3): ppm = 7.38 7.27 (m, 5H), 4.56 (s, 2H), 3.76 (t, 3J = 6.3 Hz, 

2H), 2.68 (t, 3J = 6.3 Hz, 2H). 

13C NMR (100 MHz, CDCl3): ppm = 177.1, 137.9, 128.6 (2 x C), 127.9(0), 127.8(7) (2 x C), 

73.4, 65.3, 35.0. 

IR: /cm 1 = 3032 (w), 2906 (m), 2871 (m), 2634 (w), 1695 (s), 1499 (w), 1421 (m), 1336 (m), 

1230 (m), 1119 (s). 

HRMS (ESI) calculated for C10H11O3 [M]  179.0714, found 179.0713. 

Preparation of Weinreb amide I.65
[149]

 

 

 

3-(Benzyloxy)-N-methoxy-N-methylpropanamide (I.65). A solution of acid I.67 (2.11 g, 

11.7 mmol), 1,1'-carbonyldiimidazole (2.28 g, 14.1 mmol) and methoxy(methyl)amine 

hydrochloride (1.37 g, 14.1 mmol) in dry CH2Cl2 (31 mL) was stirred at room temperature for 

3 h. After the mixture was washed with water (20 mL) and brine (20 mL), the combined 

aqueous phases were re-extracted with CH2Cl2 (2 x 30 mL). The combined organic layers were 

dried over Na2SO4, filtered and concentrated in vacuo. Thus obtained crude material was 

subjected to flash column chromatography (1:1 EtOAc/hexanes) providing 1.77 g (7.93 mmol, 

68%) of amide I.65 as a colorless oil. 

Rf = 0.28, 1:1 EtOAc/hexanes.  
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1H NMR (600 MHz, CDCl3): ppm = 7.36 7.31 (m, 4H), 7.30 7.26 (m, 1H), 4.55 (s, 2H), 3.81 

(t, 3J = 6.6 Hz, 2H), 3.68 (s, 3H), 3.19 (s, 3H), 2.77 (t, 3J=5.7, 2H). 

13C NMR (150 MHz, CDCl3): ppm = 172.5, 138.5, 128.5 (2 x C), 127.8 (2 x C), 127.7, 73.4, 

66.1, 61.4, 32.6, 32.2. 

IR: /cm 1 = 3030 (w), 2937 (w), 2868 (w), 2362 (w), 1680 (s), 1453 (m), 1420 (m), 1383 (m), 

1178 (m), 1096 (s), 1028 (m), 992 (s). 

HRMS (ESI) calculated for C12H18O3N [M+H]+ 224.1281, found 224.1280. 

Preparation of dienole ether I.69 

 

 

(Z)-3-((Benzyloxy)methyl)-1-(3,5-dimethoxy-2-methylbenzylidene)-6,8-dimethoxy-1H-

isochromene (I.69). To a magnetically stirred solution of diisopropylamine (71.3 mg, 93.8 L, 

552 mol) in dry THF (4 mL) was added n-BuLi (1.6M in hexanes, 320 L, 506 mol), and the 

mixture was stirred for 10 min at room temperature. After the LDA solution was cooled to 

78 °C a solution of benzoate I.31 (97.0 mg, 460 mol) in dry THF (2 mL) was added slowly 

through a thin cannula. The resulting orange mixture was stirred at 78 °C for 20 min before a 

solution of isocumarine I.64 (150 mg, 460 mol) in dry THF (27 mL) was added fastly through 

a thick cannula. The purple mixture was stirred for 1 h, then acetic acid (6 mL) was added and 

the reaction was warmed to room temperature. After stirring was continued for 4 h, the reaction 

was concentrated in vacuo and the resulting yellow oil was re-dissolved in diethyl ether/EtOAc 

mixture (1:1, 100 mL). Then, the organic layer was washed with water (100 mL) and brine 

(100 mL), dried over Na2SO4, filtered and concentrated in vacuo providing the crude product. 

Subje

gradient elution) gave 117 mg (226 mol, 49%) of dienol ether I.69 as a yellow solid. 

Rf = 0.49, 1:2 EtOAc/hexanes.  

mp: 67 68 °C (EtOAc/hexanes). 
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1H NMR (600 MHz, CDCl3): ppm = 7.37 (d, 4
J = 2.1 Hz, 1H, Ar-

H, H5), 7.33 7.30 (m, 4H, Ar-H, H20 and H21), 7.30 7.27 (m, 1H, 

Ar-H, H22) 6.79 (s, 1H, CH, H7), 6.39 (d, 4J = 2.3 Hz, 1H, Ar-H, 

H11), 6.29 (d, 4J = 2.1 Hz, 1H, Ar-H, H3), 6.18 (d, 4J = 2.4 Hz, 1H, 

Ar-H, H13), 5.89 (s, 1H, Ar-H, H15), 4.58 (s, 2H, CH2, H18), 4.19 (s, 

2H, CH2, H17), 3.90 (s, 3H, OCH3, H24), 3.89 (s, 3H, OCH3, H27), 

3.82 (s, 3H, OCH3, H23), 3.79 (s, 3H, OCH3, H26), 3.70 (s, 3H, 

OCH3, H25). 

13C NMR (100 MHz, CDCl3): ppm = 169.6 (CO or Ar-Cq, C10), 161.1(2) (Ar-Cq, C4), 

161.0(7) (Ar-Cq, C12), 158.1 (CO or Ar-Cq, C28), 157.4 (Ar-Cq, C2), 151.6 (Cq, C16), 147.6 

(Cq, C8), 137.7 (Ar-Cq, C19), 136.3 (Ar-Cq, C6 or C14), 133.9 (Ar-Cq, C6 or C14), 128.6 

(2 x Ar-C, C20 or C21), 128.1 (2 x Ar-C, C20 or C21), 128.0 (Ar-C, C22), 110.2 (Ar-Cq, C1), 

108.9 (Ar-Cq, C9), 104.8 (Ar-C, C5), 103.6 (CH, C15), 102.9 (CH, C7), 101.5 (Ar-H, C13), 

99.0 (Ar-H, C11), 96.7 (Ar-H, C3), 72.4 (CH2, C18), 68.5 (CH2, C17), 56.0 (OCH3, C26), 55.8 

(OCH3, C24), 55.5 (OCH3, C23), 55.4 (OCH3, C25), 52.3 (OCH3, C27). 

IR: /cm 1 = 2926 (w), 2842 (w), 2360 (w), 1723 (m), 1585 (s), 1453 (m), 1424 (m), 1349 (m), 

1261 (m), 1201 (s), 1150 (s), 1095 (s). 

HRMS (ESI) calculated for C30H31O8 [M+H]+ 519.2013, found 519.2015. 

Preparation of ketone I.30 biaryl I.71 

 

 

2-(3-((Benzyloxy)methyl)-1-hydroxy-6,8-dimethoxynaphthalen-2-yl)-4,6-dimethoxy-

benzoic acid (I.71). To a magnetically stirred solution of freshly distilled diisopropylamine 

(807 mg, 1.10 mL, 7.97 mmol) in dry THF (32 mL) was added n-BuLi (2.5M in hexanes, 

2.94 mL, 7.35 mmol), and the mixture was stirred for 10 min at room temperature. After the 

LDA solution was cooled to 78 °C, a solution of benzoate I.31 (1.29 g, 6.13 mmol) in dry THF 

(30 mL) was added slowly through a thin cannula and the resulting orange mixture was stirred 

at 78 °C for 30 min. In the meantime, isocumarin I.64 was dissolved in dry THF (290 mL) and 

precooled to 78 °C. The cold isocumarin solution was poured quickly in one portion to the 
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solution of the lithium anion. Stirring at 78 °C was continued for 2 h before the yellow 

reaction mixture was quenched by adding a saturated aqueous NH4Cl solution (200 mL) and 

then warmed to room temperature. The biphasic mixture was diluted with water (200 mL) and 

extracted with CH2Cl2 (3 x 200 mL). The combined organic layers were dried over Na2SO4, 

filtered and concentrated in vacuo to afford crude yellow oil. Subjection of this material to flash 

elution) provided I.30 in trace quantities in addition to two fractions, A and B (A: Rf = 0.1 1:1 

EtOAc/hexanes, 1.18 g, mixture of carboxylic acid I.71 and methyl ester I.70; B: Rf = 0.02 1:1 

EtOAc/hexanes, 1.59 g, mixture of oligomers). All of these mixtures were converted into acid 

I.71 as follows: After concentration in vacuo, the fractions were separately dissolved in 

MeOH/water/CH2Cl2 mixtures (A: 9 mL:3 mL:1 mL; B: 12 mL:4 mL:1 mL) and LiOH·H2O (A: 

134 mg, 3.19 mmol; B: 180 mg, 4.30 mmol) was added. The two reaction mixtures were stirred 

overnight at room temperature and then aqueous HCl solution (2M) was added until the pH was 

adjusted to 3. The aqueous layers were extracted with CH2Cl2 (each reaction 3 x 70 mL), dried 

over Na2SO4, filtered and concentrated in vacuo to afford acid I.71 (combined yield: 2.18 g, 

4.32 mmol, 70% over two steps) as a beige solid. 

Rf = 0.10, 1:1 EtOAc/hexanes. 

mp: 157 °C (CH2Cl2).  

1H NMR (600 MHz, CDCl3): ppm = 9.38 (s, 1H, OH, H11), 

7.29 7.24 (m, 3H, Ar-H, H4" and H5''), 7.25 (s, 1H, Ar-H, H8), 

7.10 7.08 (m, 2H, Ar-H, H3''), 6.70 (d, 4J = 2.2 Hz, 1 H, Ar-H, 

H6), 6.57 (d, 4J = 2.2 Hz, 1H, Ar-H, H4'), 6.47 (d, 4J = 2.2 Hz, 

1H, Ar-H, H4), 6.34 (d, 4J = 2.2 Hz, 1H, Ar-H, H2'), 4.55 (d, 
2J = 10.3 Hz, 1H, CH2, H14), 4.42 (d, 2J = 11.6 Hz, 1H, CH2, 

H1''), 4.32 (d, 2J = 11.7 Hz, 1H, CH2, H1''), 4.30 (d, 2J = 10.2 Hz, 1H, CH2, H14), 3.95 (s, 3H, 

OCH3, H12), 3.94 (s, 3H, OCH3, H8'), 3.89 (s, 3H, OCH3, H13), 3.78 (s, 3H, OCH3, H9'). 

13C NMR (150 MHz, CDCl3): ppm = 166.5 (CO, C7'), 161.9 (Ar-Cq, C3'), 158.5 (Ar-Cq, C5'), 

158.4 (Ar-Cq, C5), 157.4 (Ar-Cq, C3), 151.6 (Ar-Cq, C1), 138.0 (Ar-Cq, C7 or C6'), 136.8 (Ar-

Cq, C7 or C6'), 136.6 (Ar-Cq, C2''), 134.9 (Ar-Cq, C9), 128.6 (2 x Ar-CH, C3'' or C4''), 128.4 

(2 x Ar-CH, C3'' or C4''), 128.2 (Ar-CH, C5''), 119.6 (Ar-Cq, C10), 119.0 (Ar-CH, C8), 118.3 

(Ar-Cq, C1'), 110.8 (Ar-Cq, C2), 106.8 (Ar-CH, C2'), 99.8 (Ar-CH, C6), 98.6 (Ar-CH, C4), 98.4 

(Ar-CH, C4'), 73.6 (CH2, C1''), 71.9 (CH2, C14), 56.3 (OCH3, C8' or C12), 56.2 (OCH3, C8' or 

C12), 55.6(0) (OCH3, C9' or C13), 55.5(7) (OCH3, C9' or C13). 
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IR: /cm 1 = 3382 (w), 2936 (w), 2362 (w), 2338 (w), 1735 (w), 1596 (m), 1453 (m), 1363 (m), 

1340 (m), 1250 (m), 1204 (s), 1109 (s), 1044 (s). 

HRMS (ESI) calculated for C29H28O8Na [M+Na]+ 527.1676, found 527.1675. 

1-(benzyloxy)-3-{2-[2-(3,5-dimethoxy-2-methylphenyl)acetyl]-3,5-dimethoxyphenyl} 

propan-2-one-methanedione (I.30). 

Colorless oil. 

Rf = 0.18, 1:2 EtOAc/hexanes.  

1H NMR (400 MHz, CDCl3): ppm = 7.35 7.27 (m, 5H, Ar-H, 

H3'' and H4'' and H5''), 6.41 (d, 3J = 2.3 Hz, 1H, Ar-H, H11), 6.36 

(s, 2H, Ar-H, H3 and H5), 6.29 (d, 3J = 2.3 Hz, 1H, Ar-H, H13), 

4.55 (s, 2H, CH2, H1''), 4.22 (s, 2H, CH2, H7), 4.17 (s, 2H, CH2, 

H17), 3.86 (s, 3H, OCH3, H22), 3.81 (s, 3H, OCH3, H23), 3.78 (s, 

3H, OCH3, CH20 or H21), 3.76 (s, 3H, OCH3, H20 or H21), 3.70 

(s, 3H, OCH3, H19), 3.70 (s, 2H, CH2, H15). 

13C NMR (100 MHz, CDCl3): ppm = 205.5 (CO, C16), 201.2 (CO, C8), 168.2 (CO, C18), 

162.0 (Ar-Cq, C12), 161.6 (Ar-Cq, C2 or C4), 159.8 (Ar-Cq, C10), 158.7 (Ar-Cq, C2 or C4), 

137.7 (Ar-Cq, C2''), 136.5 (Ar-Cq, C6 or C14), 136.3 (Ar-Cq, C6 or C14), 128.5 (2 x Ar-CH, C3'' 

or C4''), 128.1 (2 x Ar-CH, C3'' or C4''), 127.9 (Ar-CH, C5''), 122.5 (Ar-Cq, C9), 116.6 (Ar-Cq, 

C1), 109.0 (Ar-CH, C13), 107.8 (Ar-CH, C3 or C5), 97.6(4) (Ar-CH, C3 or C5 or C11), 97.6(0) 

(Ar-CH, C3 or C5 or C11), 74.9 (CH2, C17), 73.4 (CH2, C1''), 56.1 (OCH3, C20 or C21 or C22 

or C23), 55.8 (OCH3, C20 or C21 or C22 or C23), 55.6 (OCH3, C20 or C21 or C22 or C23), 

55.5 (OCH3, C20 or C21 or C22 or C23), 52.0 (OCH3, C19), 49.2 (CH2, C7), 44.7 (CH2, C15). 

IR: /cm 1 = 2944 (w), 2841 (w), 2362 (w), 2338 (w), 1727 (s), 1599 (s), 1454 (m), 1425 (m), 

1313 (m), 1240 (m), 1203 (s), 1086 (s), 1046 (s). 

HRMS (ESI) calculated for C30H32O9Na+ [M+Na]+ 559.1939, found 559.1942. 

The methyl ester 1.70 was isolated as a minor byproduct in traces and characterized: 

3-[(benzyloxy)methyl]-2-(3,5-dimethoxy-2-methylphenyl)-6,8-dimethoxynaphthalen-1-ol-

methanedione (I.70). 

White solid. 
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Rf = 0.13, 1:1 EtOAc/hexanes.  

mp: 90 91 °C (EtOAc/hexanes). 

1H NMR (400 MHz, CDCl3): ppm = 9.32 (s, 1H), 7.41 (s, 

1H), 7.38 7.26 (m, 5H), 6.74 (d, 3J = 2.2 Hz, 1H), 6.51 (d, 
3J = 2.3 Hz, 1H), 6.44 (d, 3J = 2.2 Hz, 1H), 6.39 (d, 
3J = 2.3 Hz, 1H), 4.53 (d, 2J = 11.7 Hz, 1H), 4.46 (m, 3H), 3.97 

(s, 3H), 3.90 (s, 3H), 3.87 (s, 3H), 3.75 (s, 3H), 3.42 (s, 3H). 

13C NMR (100 MHz, CDCl3): ppm = 168.0, 161.6, 158.3, 158.0, 157.3, 151.1, 138.7, 138.0, 

137.6, 136.8, 128.4 (2 x C), 127.8 (2 x C), 127.6, 119.0, 117.3, 116.0, 109.7, 107.1, 99.7, 98.2, 

97.8, 72.7, 70.5, 56.2, 56.0, 55.6, 55.5, 51.9. 

IR: /cm 1 = 2944 (w), 2363 (w), 1675 (m), 1599 (s), 1454 (m), 1424 (m), 1264 (m), 1201 (m), 

1100 (s), 1095 (s). 

HRMS (ESI) calculated for C30H30O8Na [M+Na]+ 541.1833, found 541.1836. 

Preparation of lactone I.25 

 

 

11-((Benzyloxy)methyl)-2,4,7,9-tetramethoxy-6H-dibenzo[c,h]chromen-6-one (I.25). To a 

magnetically stirred solution of acid I.71 (60.0 mg, 120 mol) in dry CH2Cl2 (0.6 mL) was 

added at room temperature oxalyl chloride (2M solution in CH2Cl2, 60.0 L, 120 mol). The 

resulting dark brown mixture was stirred at room temperature for 10 min before triethylamine 

(24.0 L, 180 mol) and dimethylaminopyridine (700 g, 6.00 mol) were added. After stirring 

was continued for 1 h, the ensuing mixture was concentrated in vacuo and subjected to column 

 mg (96.6 mol, 

81%) of lactone I.25 as a pale yellow solid. 

Rf = 0.18, 1:1 EtOAc/hexanes.  

mp: 182 °C (EtOAc/hexanes). 
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1H NMR (600 MHz, CDCl3): /ppm = 7.74 (d, 4
J = 2.2 Hz, 1H), 7.57 (s, 1H), 7.42 7.29 (m, 

5H), 6.72 (d, 4J = 2.3 Hz, 1H), 6.60 (d, 4J = 2.3 Hz, 1H), 6.57 (d, 4J = 2.2 Hz, 1H), 4.93 (s, 2H), 

4.75 (s, 2H), 4.02 (s, 3H), 4.00 (s, 3H), 3.93 (s, 3H), 3.85 (s, 3H). 

13C NMR (100 MHz, CDCl3): /ppm = 165.2, 163.3, 160.1, 158.9, 157.7, 150.5, 140.3, 138.0, 

136.7, 131.6, 128.6 (2 x C), 128.0, 127.9(6) (2 x C), 127.7, 113.3, 111.0, 104.3, 102.9, 100.4, 

98.7, 98.5, 72.5, 72.2, 56.6 (2 x C), 55.8, 55.6. 

IR: /cm 1 = 3371 (w), 2933 (w), 2339 (w), 1720 (m), 1623 (m), 1595 (s), 1582 (s), 1453 (m), 

1390 (m), 1348 (m), 1246 (m), 1206 (s), 1126 (m), 1050 (s), 1012 (s). 

HRMS (ESI) calculated for C29H27O7
+ [M+H]+ 487.1751, found 487.1751. 

Preparation of diketone I.3 

 

 

(1Z,4E)-1-(2-(3-((benzyloxy)methyl)-1-hydroxy-6,8-dimethoxynaphthalen-2-yl)-4,6-

dimethoxy phenyl)-1-hydroxyhexa-1,4-dien-3-one (I.3). To a magnetically stirred solution of 

KHMDS (0.5M in toluene, 2.26 mL, 1.13 mmol) in dry THF (1.5 mL) was added dropwise a 

solution of (E)-3-penten-2-one (I.26) (85% pure, 130 L, 120 mg, 1.13 mmol) in dry THF 

(1.5 mL) at 78 °C. The ensuing mixture was stirred at 78 °C for 20 min before a solution of 

lactone I.25 (275 mg, 570 mol) in dry THF (2 mL) was added. After being stirred at 78 °C 

for 2 h, the mixture was quenched by adding a saturated aqueous NH4Cl solution (10 mL), and 

then warmed to room temperature. The ensuing biphasic mixture was diluted with water 

(10 mL) and extracted with CH2Cl2 (3 x 20 mL). The combined organic layers were dried over 

Na2SO4, filtered and concentrated in vacuo to afford a crude yellow oil. Subjection of this 

EtOAc/hexanes, gradient elution) provided 308 mg (540 mol, 

95%) of ketone I.3 as a yellow oil. 

Rf = 0.59, 2:1 EtOAc/hexanes.  

1H NMR (600 MHz, CDCl3): ppm = 9.31 (s, 1H, OH, H12), 

7.37 (s, 1H, Ar-H, H8), 7.31 (m, 4H, Ar-H, H3'' and H4''), 
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7.27 7.24 (m, 1H, Ar-H, H5''), 6.72 (d, 4
J = 2.2 Hz, 1H, Ar-H, H6), 6.60 (dq, 3

J = 15.5 Hz, 
3J = 7.0 Hz, 1H, CH, H11'), 6.52 (d, 4J = 2.3 Hz, 1H, Ar-H, H4'), 6.44 (d, 4J = 2.2 Hz, 1H, Ar-H, 

H4), 6.38 (d, 4J = 2.2 Hz, 1H, Ar-H, H2'), 5.67 (dq, 3J = 15.5 Hz, 4J = 1.7 Hz, 1H, CH, H10'), 

5.67 (s, 1H, CH, H8'), 4.50 (d, 2J = 11.7 Hz, 1H, CH2, H1''), 4.46 (dd, 2J = 12.9 Hz, 3J = 0.8 Hz, 

1H, CH2, H11), 4.43 (d, 2J = 11.7 Hz, 1H, CH2, H1''), 4.39 (d), 2J = 12.9 Hz, 1H, CH2, H11), 

3.98 (s, 3H, OCH3, H13), 3.89 (s, 3H, OCH3, H14), 3.85 (s, 3H, OCH3, H13'), 3.76 (s, 3H, 

OCH3, H14'), 1.77 (dd, 3J = 7.0 Hz, 4J = 1.6 Hz, 3H, CH3, H12'). 

13C NMR (150 MHz, CDCl3): ppm = 192.1 (CO, C7'), 177.2 (CO, C9'), 161.4 (Ar-Cq, C3'), 

158.4 (Ar-Cq, C5'), 157.9 (Ar-Cq, C5), 157.3 (Ar-Cq, C3), 150.8 (Ar-Cq, C1), 138.7 (Ar-Cq, 

C2''), 138.4 (CH, C11'), 137.9 (Ar-Cq, C1'), 137.6 (Ar-Cq, C9), 136.8 (Ar-Cq, C7), 128.4 

(2 x Ar-CH, C3'' or C4''), 128.0 (CH, C10'), 127.9 (2 x Ar-CH, C3'' or C4''), 127.5 (Ar-CH, 

C5''), 122.1 (Ar-Cq, C6'), 119.8 (Ar-Cq, C10), 116.3 (Ar-CH, C8), 109.8 (Ar-Cq, C2), 107.5 (Ar-

CH, C2'), 102.6 (CH, C8'), 99.8 (Ar-CH, C6), 98.4 (Ar-CH, C4'), 97.9 (Ar-CH, C4), 72.8 (CH2, 

C1''), 70.7 (CH2, C11), 56.3 (OCH3, C13), 56.0 (OCH3, C14), 55.6 (OCH3, C14 or C14'), 55.5 

(OCH3, C14 or C14'), 18.5 (CH3, C12'). 

IR: /cm 1 = 2984 (w), 1737 (s), 1588 (w), 1372 (m), 1220 (s), 1159 (m), 1046 (s). 

HRMS (ESI) calculated for C34H35O8 [M+H]+ 571.2326, found 571.2325. 

Preparation of diketone I.2 

 

 

(1Z,4E)-1-(2-(3-((Benzyloxy)methyl)-1-hydroxy-6,8-dimethoxynaphthalen-2-yl)-4,6-

dimethoxy phenyl)-1-hydroxyhexa-1,4-dien-3-one (I.2). To a magnetically stirred solution of 

KHMDS (0.5M in toluene, 160 L, 80.0 mol) in dry THF (100 L) at 78 °C was added 

dropwise a solution of ketone I.27 (10.0 mg, 80.0 mol, ee = 75%) in dry THF (100 L). The 

ensuing mixture was stirred at 78 °C for 20 min before a solution of lactone I.25 (20.0 mg, 

40.0 mol) in dry THF (500 L) was added. After stirring at 78 °C for 2 h, the reaction was 

quenched by adding a saturated aqueous NH4Cl solution (5 mL), and then warmed to room 

temperature. The biphasic mixture was diluted with water (10 mL) and extracted with CH2Cl2 

(3 x 20 mL). The combined organic layers were dried over Na2SO4, filtered and concentrated in 

vacuo to afford a crude yellow oil. Subjection of this material to flash column chromatography 
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 mg (9.79 mol, 25%) of ketone I.2 

as a yellow oil. The compound was characterized as a mixture of diastereoisomers (dr = 1:1). 

Rf = 0.55, 2:1 EtOAc/hexanes.  

1H NMR (600 MHz, CDCl3) (mixture of two diastereomers, both diastereomers quoted): 

ppm = 9.27(3) (s, 1H), 9.27(0) (s, 1H), 7.32 (s, 1H), 7.27 7.26 (m, 3H), 7.21 (m, 2H), 6.68 (d, 
3J = 2.1 Hz, 1H), 6.47 (d, 3J = 1.7 Hz, 1H), 6.39 (m, 1H), 6.33 (m, 1H), 6.30 6.22 (m, 1H), 5.89 

(d, 3J = 15.5 Hz, 1H), 5.68(8) (s, 1H), 5.68(5) (s, 1H), 4.45 4.34 (m, 4H), 3.93 (s, 3H), 3.84 (s, 

3H), 3.80 (s, 3H), 3.71 (s, 3H), 3.01 (d, 3J = 7.02 Hz, 1H), 2.81 (dq, 3J = 5.2 Hz, 3J = 2.0 Hz, 

1H), 1.28 (m, 3H). 

13C NMR (100 MHz, CDCl3) (mixture of two diastereomers, both diastereomers quoted): 

ppm = 194.1, 194.0(8), 173.6, 173.5, 161.6(2), 161.6(0), 158.5, 158.4(6), 157.9(5), 157.9(4), 

157.3(0), 157.2(9), 150.7(4), 150.7(0), 138.7, 138.1, 138.0, 137.7(9), 137.7(8), 137.5, 136.8, 

128.6, 128.4(3), 128.4(0) (2 x C), 127.8 (2 x C), 127.5, 122.2(3), 122.2(0), 119.6(7), 119.6(2), 

116.4(6), 116.4(4), 109.7(4), 109.7(3), 107.6, 107.5(9), 103.9(5), 103.9(0), 99.8(3), 99.8(1), 

98.3(8), 98.3(6), 97.9(4), 97.9(2), 72.7(7), 70.6(8), 58.2, 58.1, 57.8, 57.7, 56.3(3), 56.3(1), 56.0, 

55.6, 55.5, 31.1, 29.9, 17.7(3), 17.7(0). 

IR: /cm 1 = 3391 (w), 2987 (w), 1652 (m), 1633 (m), 1585 (s), 1452 (m), 1364 (m), 1345 (m), 

1206 (m), 1156 (s), 1108 (m), 1044 (m). 

HRMS (ESI) calculated for C36H38O9 [M+H]+ 613.2432, found 613.2429. 

Preparation of difluoroborate complex I.89 

 

 

(1Z,4E)-1-(2-(3-((benzyloxy)methyl)-1-hydroxy-6,8-dimethoxynaphthalen-2-yl)-4,6-

dimethoxy phenyl)-1-((difluoroboryl)oxy)hexa-1,4-dien-3-one (I.89). To a magnetically 

stirred solution of diketone I.3 (20.0 mg, 35.0 mol) in dry THF (1.25 mL) was added slowly 

trifluoroborate diethyl etherate complex (2.70 mg, 2.0 L, 39.0 mol) at 0 °C. The resulting 

mixture was stirred for 1 h before it was warmed to room temperature. Stirring was continued 

for 2 h, then EtOAc (10 mL) was added and the organic phase was washed with brine (10 mL), 



CHAPTER IV: EXPERIMENTAL PROCEDURES 

153 
 

dried over Na2SO4, filtered and concentrated in vacuo providing yellow oil. Subjection of this 

elution) gave 6.00 mg (9.70 mol, 28%) of complex I.89 as a yellow film. 

Rf = 0.79, 2:1 EtOAc/hexanes.  

1H NMR (600 MHz, CDCl3): ppm = 9.31 (s, 1H, OH, H11), 

7.39 (s, 1H, Ar-H, H8), 7.32 7.28 (m, 4H, Ar-H, H3'' and H4''), 

7.26 7.23 (m, 1H, Ar-H, H5''), 7.10 7.04 (m, 1H, CH, H11'), 

6.74 (d, 4J = 2.2 Hz, 1H, Ar-H, H6), 6.53 (d, 4J = 2.3 Hz, 1H, 

Ar-H, H4'), 6.45 (d, 4J = 2.3 Hz, 1H, Ar-H, H4 or H2'), 6.44 (d, 
4J = 2.2 Hz, 1H, Ar-H, H4 or H2'), 6.13 (s, 1H, CH, H8'), 5.86 

(dq, 3J = 15.2 Hz, 4J = 1.6 Hz, 1H, CH, H10'), 4.53 (d, 
2J = 11.8 Hz, 1H, CH2, H1'') 4.47 (dd, 2J = 12.4 Hz, 4J = 0.7 Hz, 

1H, CH2, H14), 4.44 (dd, 2J = 12.4 Hz, 4J = 0.6 Hz, 1H, CH2, H14), 4.43 (d, 2J = 11.8 H, 1H, 

CH2, H1''), 3.96 (s, 3H, OCH3, H12), 3.89 (s, 3H, OCH3, H13 or H13'), 3.89 (s, 3H, OCH3, H13 

or H13'), 3.76 (s, 3H, OCH3, H14'), 1.86 (dd, 3J = 7.0 Hz, 4J = 1.6 Hz, 3H, CH3, H12'), . 

13C NMR (100 MHz, CDCl3): ppm = 185.7 (CO, C7' or C9'), 179.0 (CO, C7' or C9'), 163.3 

(Ar-Cq, C3'), 160.1 (Ar-Cq, C5'), 158.0 (Ar-Cq, C5), 157.3 (Ar-Cq, C3), 150.5 (Ar-Cq, C1), 147.5 

(CH, C11'), 140.8 (Ar-Cq, C7 or C9 or C1' or C6'), 138.7 (Ar-Cq, C2''), 136.9 (Ar-Cq, C7 or C9 

or C1' or C6'), 136.8 (Ar-Cq, C7 or C9 or C1' or C6'), 128.4 (2 x Ar-CH, C3'' or C4''), 127.8 

(2 x Ar-CH, C3'' or C4''), 127.5 (Ar-CH, C5''), 126.4 (CH, C10'), 119.3 (Ar-Cq, C10), 117.5 (Ar-

CH, C8), 117.3 (Ar-Cq, C7 or C9 or C1' or C6'), 109.9 (Ar-Cq, C2), 108.8 (Ar-Cq, C2'), 103.2 

(CH, C8'), 99.9 (Ar-CH, C6), 98.4 (Ar-CH, C4'), 98.2 (Ar-CH, C4), 72.7 (CH2, C1''), 70.9 (CH2, 

C14), 56.4 (OCH3, C12), 56.2 (OCH3, C13 or C13'), 55.7 (OCH3, C14'), 55.5 (OCH3, C13 or 

C13'), 19.1 (CH3, C12'). 

19F NMR (300 MHz, CDCl3): ppm = First set of signals: 140.4(0) (d, 2FFJ = 80.8 Hz, BF2), 

141.0 (d, 2FFJ = 80.9 Hz, BF2); Second set of signals: 140.3(5) (d, 2FFJ = 81.0 Hz, BF2), 

140.9 (d, 2FFJ = 80.6 Hz, BF2). In the fluorine NMR two sets of signals are observed, which 

presumably can be explained by the existence of two isomers of I.89 (keto-enol-tautomers). 

IR: /cm 1 = 2985 (w), 1737 (s), 1447 (w), 1372 (m), 1280 (s), 1098 (w), 1044 (s). 

HRMS (ESI) calculated for C34H33O8BF2Na [M+Na]+ 641.2129, found 641.2128. 
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Preparation of alcohol I.4 

 

 

12-((Benzyloxy)methyl)-4b-hydroxy-2,4,8,10-tetramethoxy-14-methyl-4bH-5,12-

methanobenzo [5,6]pentaleno[1,6a-a]naphthalene-6,7,13(5H,6aH,12H)-trione (I.4). To a 

magnetically stirred solution of tetra-N-butylammonium fluoride (1M in THF, 70.0 L, 

70.0 mol) in dry THF (1.5 mL) at 78 °C was added dropwise a solution of ketone I.3 

(20.0 mg, 35.0 mol) in dry THF (1.2 mL) and DMF (2.5 mL). The ensuing mixture was 

warmed to room temperature and stirred for 6 days. The resulting yellow solution was then 

concentrated in vacuo and directly subjected to flash column chromatography 

 mg 

(5.14 mol, 15%) of alcohol I.4 as a white solid. 

Rf 0.19, 2:1 EtOAc/hexanes.  

1H NMR (600 MHz, CDCl3): ppm = 7.27 (d, 3J = 2.5 Hz, 1H, 

Ar-H, H6), 7.24 7.21 (m, 3H, Ar-H, H31, H32 and H33), 7.08

7.05 (m, 2H, Ar-H, H30, H34), 6.70 (d, 3J = 2.4 Hz, 1H, Ar-H, 

H4), 6.31 (d, 3J = 1.9 Hz, 1H, Ar-H, H14), 6.03 (d, 3J = 1.9 Hz, 

1H, Ar-H, H12), 5.39 (s, 1H, OH), 4.51 (d, 2J = 12.1 Hz, 1H, 

CH2, H28), 4.43 (d, 2J = 12.1 Hz, 1H, CH2, H28), 4.31 (s, 1H, CH, H18), 4.03 (d, 2J = 10.7 Hz, 

1H, CH2, H27), 3.98 (d, 2J = 10.7 Hz, 1H, CH2, H27), 3.90 (s, 3H, OCH3, H24), 3.88 (s, 3H, 

OCH3 H26), 3.82 (s, 3H, OCH3, H23), 3.62 (s, 3H, OCH3, H25) 2.82 (q, 3J = 7.6 Hz, 1H, CH, 

H21), 2.78 (s, 1H, CH, H20), 0.62 (d, 3J = 7.6 Hz, 3H, CH3, H22). 

13C NMR (150 MHz, CDCl3): ppm = 202.1 (CO, C19), 197.3 (CO, C8), 189.9 (CO, C17), 

165.9 (Ar-Cq, C13), 161.1 (Ar-Cq, C5), 159.4 (Ar-Cq, C15), 158.7 (Ar-Cq, C3), 149.7 (Ar-Cq, 

C7 or C11), 137.7 (Ar-Cq, C29), 134.3 (Ar-Cq, C7 or C11), 128.5 (2 x Ar-CH, C31 and C33), 

127.8 (Ar-CH, C32), 127.4 (2 x Ar-CH, C30 and C34), 121.3 (Ar-Cq, C2), 120.9 (Ar-Cq, C16), 

105.9 (Ar-CH, C4), 102.4 (Ar-CH, C12), 100.2 (Ar-CH, C6), 98.3 (Ar-CH, C14), 83.9 (COH, 

C1), 73.7 (CH2, C28), 69.2 (Cq, C10), 68.2(3) (CH or CH2, C20 or C27), 68.2(2) (CH or CH2, 

C20 or C27), 63.0 (CH, C18), 59.6 (Cq, C9), 56.3 (OCH3, C23), 56.0 (OCH3, C24 or C26), 55.9 

(OCH3, C24 or C26), 55.7 (OCH3, C25), 38.4 (CH, C21), 14.0 (CH3, C22). 
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Table IV.2. NMR-data (including COSY, HSQC and HMBS couplings as well as NOESY 

correlations) of alcohol I.4. 

Nr C ppm H ppm COSY HSQC HMBC NOESY 

1 83.9 
2 121.3 
3 158.7 

4 105.9 6.70 H6 C4 
C2, C3, C5, 
C6 H23, H24 

5 161.1 
6 100.2 7.27 H4 C6 C2, C4, C8 H24 
7 149.7 or 134.3 
8 197.3 
9 59.6 
10 69.2 
11 149.7 or 134.3 

12 102.4 6.03 H14 C12 
C10, C13, 
C14, C16 H25 

13 165.9 

14 98.3 6.31 H12 C14 
C12, C13, 
C15, C16 H25, H26 

15 159.4 
16 120.9 
17 189.9 

18 63.0 4.31 - C18 

C20 or C27, 
C30, C34, 
C29 H21, H27 

19 202.1 

20 
68.2(3) or 
68.2(2) 2.78 

C20 or 
C27 

C9, C10, 
C15, C18, 
C19 

H22, OH-
C1 

21 38.4 2.82 H22 C21 

C1, C8, C9, 
C19, C20 or 
C27, C22 H20, H23 

22 14.0 0.62 H21 C22 
C9, C21, C20 
or C27 H20, H21 

23 56.3 3.82 C23 C3 H4, OH-C1 

24 56.0 3.90 
C24 or 
C26 C5 H4, H6 

25 55.7 3.62 C25 C13 H12, H14 

26 56.0 or 55.9 3.88 
C24 or 
C26 C15 H14 

27 
68.2(3) or 
68.2(2) 

4.03 (H27a) 
and 4.98 
(H27b) 

C20 or 
C27 

C8, C9, C10, 
C21, C28 each other 

28 73.7 
4.51 (H28a), 
4.43 (H28b) 

H30, H34 
and to 
each other C28 

C20 or C27, 
C29, C30, 
C34 each other 

29 137.7 

30 127.4 7.08 7.05 
H31, H32, 
H33 C30 C34 

C30-C34, 
C28 H31 H33 

31 128.5 7.24 7.21 H30, H34 C31 C33 C30 C34 H30, H34 
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32 127.7 7.24 7.21 H30, H34 C31 C33 C30 C34 H30, H34 
33 128.5 7.24 7.21 H30, H34 C31 C33 C30 C34 H30, H34 

34 127.4 7.08 7.05 
H31, H32, 
H33 C30, C34 C30 C34, 28 H31 H33 

OH OH-C1 5.39 C1, C2, C10 H20, H23 

IR: /cm 1 = 2926 (w), 2253 (w), 1766 (w), 1696 (m), 1605 (w), 1468 (w), 1334 (w), 1209 (m), 

1161 (m), 903 (s). 

HRMS (ESI) calculated for C34H33O9 [M+H]+ 585.2119, found 585.2117. 

As a second product, 5.00 mg (8.79 mol, 25%) of the spiro compound I.92 were isolated and 

characterized: 

(2Z)-3'-[(benzyloxy)methyl]-2-[(2E)-1-hydroxybut-2-en-1-ylidene]-4,6,6',8'-tetramethoxy-

2,3-dihydro-1'H-spiro[indene-1,2'-naphthalene]-1',3-dione (I.92). 

Beige solid. 

Rf = 0.12, 1:1 EtOAc/hexanes.  

1H NMR (600 MHz, CDCl3): ppm = 7.32 7.23 (m, 3H, Ar-H, 

H31 and H32), 7.21 7.18 (m, 2H, Ar-H, H30), 6.96 (t, 
4J = 1.7 Hz, 1H, CH, H8), 6.76 (dq, 3J = 14.0 Hz, 3J = 7.0 Hz, 

1H, CH, H21), 6.51 (d, 4J = 2.3 Hz, 1H, Ar-H, H6), 6.42 (d, 
4J = 2.3 Hz, 1H, Ar-H, H4), 6.31 (d, 4J = 1.9 Hz, 1H, Ar-H, 

H14), 6.18 (d, 4J = 1.9 Hz, 1H, Ar-H, H12), 5.55 (dq, 
3J = 15.1 Hz, 4J = 1.7 Hz, 1H, CH, H20), 4.38 (d, 2J = 11.8 Hz, 1H, CH2, H28), 4.34 (d, 
2J = 11.8 Hz, 1H, CH2, H28), 3.99 (dd, 2J = 15.2 Hz, 4J = 1.8 Hz, 1H, CH2, H27), 3.95 (s, 3H, 

OCH3, H24), 3.92 (s, 3H, OCH3, H25), 3.84 (s, 3H, OCH3, H23), 3.69 (s, 3H, OCH3, H26), 3.57 

(dd, 2J = 15.2 Hz, 4J = 1.6 Hz, 1H, CH2, H27), 1.70 (dd, 3J = 7.0 Hz, 4J = 1.6 Hz, 3H, CH3, 

H22). 

13C NMR (100 MHz, CDCl3): ppm = 195.5 (CO, C17), 193.4 (CO, C1), 166.5 (Ar-Cq, C13), 

165.9 (Ar-Cq, C5), 164.4 (C-OH, C19), 163.6 (Ar-Cq, C3), 159.6 (Ar-Cq, C15), 154.3 (Ar-Cq, 

C11), 145.5 (Cq, C7 or C9), 142.3 (Cq, C7 or C9), 139.6 (CH, C21), 137.9 (Ar-Cq, C29), 128.5 

(2 x Ar-C, C31), 127.8 (Ar-C, C32), 127.6 (2 x Ar-C, C30), 123.1 (CH, C20), 122.4 (CH, C8), 

119.7 (Ar-Cq, C16), 113.2 (Cq, C18), 110.8 (Ar-Cq, C2), 105.2 (Ar-C, C6), 100.1 (Ar-C, C12), 

98.3(7) (Ar-C, C4), 98.3(6) (Ar-C, C14), 72.9 (CH2, C28), 68.7 (CH2, C27), 61.2 (Cq, C10), 

56.1(4) (OCH3, C23), 56.1(1) (OCH3, C24 or C25), 55.9 (OCH3, C26), 55.8 (OCH3, C24 or 

C25), 19.1 (CH3, C22). 
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IR: /cm 1 = 2985 (w), 2257 (w) 1736 (s), 1447 (w), 1373 (m), 1280 (s), 1098 (w), 1044 (s). 

HRMS (ESI) calculated for C34H33O8 [M+H]+ 569.2170, found 569.2164. 

Preparation of -pyrone I.99a and I.99b 

 

 

6-(2-{3-[(Benzyloxy)methyl]-1-hydroxy-6,8-dimethoxynaphthalen-2-yl}-4,6-

dimethoxyphenyl)-2-methyl-3,4-dihydro-2H-pyran-4-one (I.99). To a magnetically stirred 

solution of ketone I.3 (20.0 mg, 35.0 mol) in dry dichlorobenzene (1.2 mL) was added dry 

NEt3 (10.0 L, 70.0 mol) and the reaction was heated to 130 °C. The ensuing mixture was 

refluxed at this temperature for 48 h, and then, the resulting brown liquid was directly subjected 

providing 7.00 mg (12.3 mol, 35%, 1:1 mixture of two diastereoisomers) of -pyrone I.99 as a 

viscous colorless oil. 

For characterization purposes an analytical amount of diastereomeric mixture of I.99a 

and I.99b was separated on preparative HPLC (VARIAN Dynamax, 250 x 21.4 mm, water 

(A)/methanol (B), 0 min 30% A, 40 min 23% A, 15.8 mL/min, tR(I.99a) = 41.01 min, 

tR(I.99b) = 46.67 min). 

Rf = 0.69, 2:1 EtOAc/hexanes (both diastereoisomers).  

Diastereoisomer I.99a. 

1H NMR (600 MHz, DMSO-d6): ppm = 9.30 (s, 1H, OH, H12), 

7.35 (s, 1H, Ar-H, H8), 7.35 7.30 (m, 2H, Ar-H, H3'' or H4'' and/or 

H5''), 7.28 7.27 (m, 3H, Ar-H, H3'' or H4'' and H5''), 6.90 (d, 
3J = 2.3 Hz, 1H, Ar-H, H6)), 6.64 (d, 3J = 2.3 Hz, 1H, Ar-H, H4'), 

6.58 (d, 3J = 2.2 Hz, 1H, Ar-H, H4), 6.36 (d, 3J = 2.3 Hz, 1H, Ar-H, 

H2'), 5.20 (s, 1H, CH, H8'), 4.43 (d, 2J = 12.0 Hz, 1H, CH2, H1''), 

4.40 (d, 2J = 12.0 Hz, 1H, CH2, H1''), 4.27 (d, 2J = 13.7 Hz, 1H, CH2, H11), 4.23 (d, 
2
J = 13.6 Hz, 1H, CH2, H11), 3.98 (s, 3H, OCH3, H13), 3.85 (s, 3H, OCH3, H14), 3.84 3.81 (m, 

1H, CH, H11'), 3.81 (s, 3H, OCH3, H13'), 3.76 (s, 3H, OCH3, H14'), 2.12 (ddq, 2J = 16.7 Hz, 
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3J = 3.5 Hz, 4J = 0.7 Hz, 1H, CH2, H10'), 1.96 (dd, 2J = 16.9 Hz, 3J = 13.0 Hz, 1H, CH2, H10'), 

0.88 (d, 3J = 6.4 Hz, 3H, CH3, H12'). 

13C NMR (150 MHz, DMSO-d6): ppm = 191.8 (CO, C9'), 169.4 (Cq, C7'), 161.1 (Ar-Cq, C3'), 

158.2 (Ar-Cq, C5'), 157.6 (Ar-Cq, C5), 157.0 (Ar-Cq, C3), 150.7 (Ar-Cq, C1), 138.7 (Ar-Cq, C7 

or C1'), 138.3 (Ar-Cq, C2''), 136.5 (Ar-Cq, C9), 136.0 (Ar-Cq, C7 or C1'), 128.2 (2 x Ar-CH, C3'' 

or C4''), 127.4 (Ar-CH, C5''), 127.3 (2 x Ar-CH, C3'' or C4''), 118.8 (Ar-Cq, C10), 116.4 (Ar-Cq, 

C6'), 115.0 (Ar-CH, C8), 109.0 (Ar-Cq, C2), 107.9 (Ar-CH, C2'), 107.2 (CH, C8'), 99.4 (Ar-CH, 

C6), 97.7(4) (Ar-CH, C4'), 97.6(8) (Ar-CH, C4), 75.1 (CH, C11'), 71.7 (CH2, C1''), 69.5 (CH2, 

C11), 56.4 (OCH3, C13), 55.9 (OCH3, C13'), 55.4 (OCH3, C14'), 55.3 (OCH3, C14), 42.1 (CH2, 

C10'), 19.2 (CH3, C12'). 

IR: /cm 1 = 3392 (m), 1602 (s), 1326 (m), 1205 (m), 1158 (s), 1110 (m), 1026 (m). 

HRMS (ESI) calculated for C34H35O8 [M+H]+ 571.2326, found 571.2325. 

Diastereoisomer I.99b. 

1H NMR (400 MHz, DMSO-d6): ppm = 9.18 (s, 1H, OH, H12), 

7.41 (s, 1H, Ar-H, H8), 7.38 7.24 (m, 5H, Ar-H, H3'', H4'' and 

H5''), 6.93 (d, 3J = 2.2 Hz, 1H, Ar-H, H6), 6.64 (d, 3J = 2.3 Hz, 1H, 

Ar-H, H4'), 6.55 (d, 3J = 2.2 Hz, 1H, H4), 6.36 (d, 3J = 2.3 Hz, 1H, 

Ar-H, H2'), 5.26 (s, 1H, CH, H8'), 4.53 4.46 (m, 2H, CH2, H1''), 

4.40 4.32 (m, 2H, CH2, H11), 3.95 (s, 3H, OCH3, H13), 3.85 (s, 

3H, OCH3, H14), 3.80 (s, 3H, OCH3, H13'), 3.75 (s, 3H, OCH3, H14'), 3.38 (ddd, 3J = 13.4 Hz 
3J = 6.4 Hz, 3J = 3.7 Hz, 1H, CH, H11'), 2.21 2.03 (m, 2H, CH2, H10'), 0.97 (d, 3J = 6.3 Hz, 

3H, CH3, H12'). 

13C NMR (100 MHz, DMSO-d6): ppm = 192.1 (CO, C9'), 169.5 (Cq, C7'), 161.2 (Ar-Cq, C3'), 

158.0 (Ar-Cq, C5'), 157.7 (Ar-Cq, C5), 156.9 (Ar-Cq, C3), 150.0 (Ar-Cq, C1), 138.9 (Ar-Cq, C7 

or C1'), 138.4 (Ar-Cq, C2''), 137.2 (Ar-Cq, C9), 136.0 (Ar-Cq, C7 or C1'), 128.2 (2 x Ar-CH, C3'' 

or C4''), 127.3(9) (Ar-CH, C5''), 127.3(7) (2 x Ar-CH, C3'' or C4''), 118.7 (Ar-Cq, C10), 116.5 

(Ar-Cq, C6'), 114.7 (Ar-CH, C8), 108.8 (Ar-Cq, C2), 107.8 (CH, C2' or C8'), 107.7 (CH, C2' or 

C8'), 99.5 (Ar-CH, C6), 97.6,(2 x Ar-CH, C4 and C4'), 75.6 (CH, C11'), 71.9 (CH2, C1''), 69.8 

(CH2, C11), 56.3 (OCH3, C13), 55.9 (OCH3, C13'), 55.4 (OCH3, C14 or C14'), 55.3 (OCH3, C14 

or C14'), 42.2 (CH2, C10'), 19.4 (CH3, C12'). 

IR: /cm 1 = 3389 (w), 2935 (w), 2065 (w), 1655 (m), 1632 (m), 1595 (s), 1452 (m), 1364 (s), 

1326 (s), 1249 (m), 1205 (s), 1109 (s), 1043 (s). 
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HRMS (ESI) calculated for C34H35O8 [M+H]+ 571.2326, found 571.2325. 

Preparation of dienone I.105 

 

 

(E)-1-(3,5-dimethoxyphenyl)hex-4-ene-1,3-dione (I.105). To a magnetically stirred solution of 

3,5-dimethoxybenzoic acid (I.106) (500 mg, 30.1 mmol) in dry CH2Cl2 (50 mL) was added 

oxalyl chloride solution (2M in CH2Cl2, 29.5 mmol, 6.02 mL) and dry DMF (0.1 mL). The 

mixture was stirred at room temperature for 15 min, concentrated in vacuo and the obtained acid 

chloride was dried under high vacuum. To a solution of KHMDS (0.5M in toluene, 4.51 mmol, 

9.02 mL) in dry THF (7.5 mL) was added dropwise a solution of enone I.26 (85wt%, 380 mg, 

4.51 mmol, 0.44 mL) in dry THF (7.5 mL) at 78 °C. After being stirred for 15 min at this 

temperature, a solution of the above prepared acid chloride in dry THF (17.5 mL) was added 

through a thick cannula at 78 °C. The mixture was stirred for 40 min at 78 °C, before 

aqueous saturated NH4Cl solution (100 mL) was added and the biphasic mixture was warmed to 

room temperature. After the layers were separated, the aqueous layer was extracted with CH2Cl2 

(3 x 50 mL). The combined organic layers were dried over Na2SO4, filtered and concentrated in 

vacuo providing the crude product. Subjection of this material to flash column chromatography 

 mg (1.66 mmol, 55%) of dienone I.105 as 

a yellow oil and 70.0 mg (0.421 mmol, 14%) of the recovered carboxylic acid I.106. 

Rf = 0.82, 1:1 EtOAc/hexanes.  

1H NMR (600 MHz, CDCl3): ppm = 7.05 (d, 4J = 2.3 Hz, 2H), 6.96 (dq, 3J = 15.4 Hz, 
3J = 6.9 Hz, 1H), 6.62 (t, 4J = 2.3 Hz, 1H), 6.10 (s, 1H), 6.03 (dq, 3J = 15.4 Hz, 4J = 1.5 Hz, 1H), 

3.84 (s, 6H), 1.95 (dd, 3J = 7.0 Hz, 4J = 1.7 Hz, 3H). 

13C NMR (150 MHz, CDCl3): ppm = 188.9, 180.3, 161.0 (2 x C), 140.4, 138.5, 127.9, 105.2 

(2 x C), 104.9, 96.4, 55.7 (2 x C), 18.6. 

IR: /cm 1 = 2934 (w), 1652 (m), 1591 (m), 1454 (m), 1427 (m), 1348 (m), 1303 (m), 1203 (s), 

1160 (s), 1045 (m). 

HRMS (ESI) calculated for C14H15O4 [M-H]  247.0976, found 247.0981. 
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Preparation of enone I.107 

 

 

6-(3,5-dimethoxyphenyl)-2-methyl-2H-pyran-4(3H)-one (I.107). A solution of dienone I.105 

(20.0 mg, 81.0 mol) and L-proline (1.90 mg, 16.0 mol) in dry DMF (0.3 mL) was stirred at 

room temperature for 6 d. After being concentrated in vacuo, the crude product was subjected to 

flas  mg 

(44.3 mol, 55%, er = 1:1) of enone I.107 as a yellow oil and 3.00 mg (12.1 mol, 15%) of the 

starting material I.105. 

The enantiomeric ratio (er) was measured on chiral HPLC (Nucleocel DELTA S, 250 x 4.6 mm, 

isocratic elution, hexanes (A)/i-propanol (B), 96% A, flow rate: 0.5 mL/min, detection at 

300 nm, tR(I.107a) = 52.9 min, tR(I.107b) = 57.5 min). 

Rf = 0.5, 1:1 EtOAc/hexanes.  

1H NMR (600 MHz, CDCl3): ppm = 6.87 (d, 4J = 2.3 Hz, 2H, Ar-H, 

H2), 6.58 (t, 4J = 2.3 Hz, 1H, Ar-H, H4), 5.97 (s, 1H, CH, H7), 4.69 

(dqd, 3J = 12.7 Hz, 3J = 6.3 Hz, 3J = 4.2 Hz, 1H, CH, H10), 3.82 (s, 6H, 

OCH3, H5), 2.62 2.49 (m, 2H, CH2, H9), 1.58 (d, 3J = 6.4 Hz, 3H, CH3, H11). 

13C NMR (150 MHz, CDCl3): ppm = 193.6 (CO, C8), 170.3 (Ar-Cq, C1 or C6), 161.0 (2 x Ar-

Cq, C3), 135.0 (Ar-Cq, C1 or C6), 104.8 (2 x Ar-CH, C2), 103.9 (Ar-CH, C4), 102.5 (br s, CH, 

C7), 76.3 (CH, C10), 55.7 (2 x OCH3, C5), 43.2 (br, CH2, C9), 20.6 (CH3, C11). 

IR: /cm 1 = 2985 (w), 2360 (w), 2256 (w), 1732 (s), 1447 (w), 1374 (m), 1239 (s), 1045 (s). 

HRMS (ESI) calculated for C14H17O4 [M+H]+ 249.1121, found 249.1121. 
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Preparation of alcohol I.112 

 

 

(Z)-(2-((3-((benzyloxy)methyl)-6,8-dimethoxy-1H-isochromen-1-ylidene)methyl)-4,6-

dimethoxy phenyl)methanol (I.112). To a magnetically stirred solution of ester I.69 (10.0 mg, 

19.0 mol) in dry toluene (1 mL) was added dropwise a solution of diisobutylaluminum hydride 

(1.2M in toluene, 23.0 mol, 20.0 L) at 78 °C. The ensuing mixture was stirred at 78 °C for 

1 h. Then, aqueous saturated NH4Cl solution (5 mL) was added and the biphasic mixture was 

warmed to room temperature. After addition of EtOAc (7 mL), the layers were separated and 

the organic layer was washed with water (5 mL) and brine (5 mL), dried over Na2SO4, filtered 

and concentrated in vacuo to afford a crude colorless oil. Subjection of this material to flash 

ided 6.00 mg 

(12.0 mol, 64%) acetal I.111 as a colorless oil. When I.111 was dissolved in deuterated 

chloroform, a quantitative conversion to the open alcohol I.112 took place within 24 h. Due to 

the chemical instability of the material, both compounds were characterized only by 1H-NMR 

spectroscopy. 

(R)-3'-((benzyloxy)methyl)-6,6',8,8'-tetramethoxyspiro[isochroman-3,1'-isochromene] 

(I.111). 

Rf = 0.5, 1:2 EtOAc/hexanes.  

1H NMR (600 MHz, CDCl3): ppm = 7.32 7.26 (m, 5H), 6.37 (d, 3J = 2.4 Hz, 1H), 6.32 6.31 

(m, 2H), 6.27 (d, 3J = 2.4 Hz, 1H), 5.96 (s, 1H), 4.83 (d, 2J = 14.7 Hz, 1H), 4.79 (d, 
2J = 14.7 Hz, 1H), 4.57 (d, 2J = 12.0 Hz, 1H), 4.52 (d, 2J = 12.1 Hz, 1H), 4.37 (d, 2J = 16.7 Hz, 

1H), 4.10 (dd, 2J = 13.4 Hz, 4J = 0.8 Hz, 1H), 4.03 (d, 2J = 13.4 Hz, 1H), 3.81 (s, 3H), 3.81 (s, 

3H), 3.76 (s, 3H), 3.75 (s, 3H), 3.05 (d, 2J = 16.7 Hz, 1H). 

(Z)-(2-((3-((benzyloxy)methyl)-6,8-dimethoxy-1H-isochromen-1-ylidene)methyl)-4,6-

dimethoxy phenyl)methanol (I.112). 

1H NMR (600 MHz, CDCl3): ppm = 7.49 (s, 1H), 7.44 7.42 (m, 2H), 7.37 7.35 (m, 2H), 

7.31 7.29 (m, 2H), 7.11 (d, 3J = 2.1 Hz, 1H), 6.71 (d, 3J = 2.3 Hz, 1H), 6.50 (d, 3J = 2.3 Hz, 
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1H), 6.45 (d, 3J = 2.1 Hz, 1H), 5.09 (s, 2H), 4.87 (s, 2H), 4.73 (s, 2H), 3.94 (s, 3H), 3.91 (s, 3H), 

3.85 (s, 3H), 3.75 (s, 3H). 

HRMS (ESI) calculated for C29H30O7Na [M+Na]+ 513.1884, found 513.1883. 

Preparation of oxazolidinone II.36
[77,150]

 

 

 

(R)-5-isobutyl-3-(4-methylpentanoyl)oxazolidin-2-one (II.36). To a magnetically stirred 

solution of II.37 (6.00 g, 46.5 mmol) in dry THF (200 mL) was added dropwise a solution of n-

BuLi (2.5M in hexanes, 58.1 mmol, 23.2 mL) at 78 °C. The ensuing mixture was stirred at 

78 °C for 30 min. In a separate flask, triethylamine (8.23 g, 81.3 mmol, 11.3 mL) and pivaloyl 

chloride (7.70 g, 63.9 mmol, 7.87 mL) were added subsequently to a solution of 4-methylvaleric 

acid (6.75 g, 58.1 mmol, 7.33 mL) in dry THF (300 mL) at 0 °C. After stirring at 0 °C for 30 

min, the acid anhydride mixture was added slowly to the 78 °C cold lithio-oxazolidionone 

species, which was kept at 78 °C. The reaction mixture was warmed to room temperature over 

a period of 2 h, then, water (500 mL) was added. The layers were separated and the aqueous 

layer was extracted with EtOAc (3 x 150 mL). The combined organic layers were washed with 

saturated aqueous NaHCO3 solution (100 mL), water (100 mL) and brine (100 mL), dried over 

Na2SO4, filtered and concentrated in vacuo to afford crude colorless oil. Subjection of this 

material to flash column chromatography (1:

provided 8.40 g (37.0 mmol, 80%) of acylated oxazolidinone II.36 as a colorless oil. 

Rf = 0.6, 1:4 EtOAc/hexanes.  

= +85.4 (c = 1.0, CHCl3). 

1H NMR (600 MHz, CDCl3): ppm = 4.43 (ddd, 3J = 8.3 Hz, 3J = 3.8 Hz, 3J = 3.1 Hz, 1H), 

4.26 (dd, 3J = 8.8 Hz, 3J = 8.8 Hz, 1H), 4.20 (dd, 3J = 9.1 Hz, 3J = 3.0 Hz, 1H), 3.04 2.94 (m, 

1H), 2.90 2.81 (m, 1H), 2.37 (m, 1H), 1.66 1.58 (m, 1H), 1.59 1.50 (m, 2H), 0.94 0.89 (m, 

9H), 0.87 (d, 3J = 6.9 Hz, 3H). 

13C NMR (150 MHz, CDCl3): ppm = 173.8, 154.2, 63.4, 58.5, 33.8, 33.4, 28.5, 27.9, 22.5(0), 

22.4(6), 18.1, 14.8. 
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IR: /cm 1 = 2958 (m), 2873 (w), 1785 (s), 1699 (s), 1468 (w), 1386 (s), 1301 (m), 1228 (w), 

1199 (s), 1060 (m). 

HRMS (EI) calculated for C12H21O3N
+ [M]+ 227.1521, found 227.1522. 

Preparation of methylpropanoate II.41
[79]

 

 

 

(S)-Methyl-3-(4-methoxybenzyl)oxy-2-methylpropanoate (II.41). To a magnetically stirred 

suspension of NaH (60wt% suspension in mineral oil, 609 mg, 15.2 mmol) in dry diethyl ether 

(80 mL) was slowly added a solution of 4-methoxy-benzyl alcohol (20.7 g, 150 mmol) in 

diethyl ether (50 mL) at 0 °C. The ensuing mixture was warmed to room temperature and stirred 

for 30 min before it was cooled to 0 °C and trichloroacetonitrile (21.6 g, 150 mmol, 15.0 mL) 

was added dropwise over 15 min. After 1 h, the reaction was allowed to warm to room 

temperature and stirred for an additional 3 h. Then, the solution was concentrated in vacuo 

providing crude orange oil, to which a MeOH/hexane mixture (150 mL, 1:275) was added. 

After being stirred for 30 min, the heterogeneous mixture was filtered and the filtrate was 

concentrated to give 4-methoxybenzyl trichloroacetimidate as crude yellow oil, which was used 

without further purification. Thus obtained 4-methoxybenzyl trichloroacetimidate was dissolved 

in dry CH2Cl2 (70 mL) and added to a magnetically stirred solution of (S)-Roche ester II.40 

(10.0 mg, 84.7 mmol, 9.34 mL) in dry CH2Cl2 (70 mL) at 0 °C followed by an addition of PPTS 

(1.06 mg, 4.23 mmol). The reaction was stirred at 0 °C for 1 h and was then allowed to warm to 

room temperature at which it was stirred for an additional 6 d. After filtration, the filtrate was 

extracted with EtOAc/hexanes mixture (50 mL, 2:8) followed by CH2Cl2 (50 mL). The 

combined organic layers were washed with aqueous saturated NaHCO3 solution (150 mL) and 

brine (150 mL), dried over Na2SO4, filtered and concentrated in vacuo to provide a crude yellow 

oil. Subjection of this material to flash column chro

EtOAc/hexanes, gradient elution) provided 19.0 g (79.8 mmol, 94%) of methylpropanoate II.41 

as a colorless oil. 

Rf = 0.57, 1:3 EtOAc/hexanes.  

= +11.4 (c = 1.0, CH2Cl2). 
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1H NMR (600 MHz, CDCl3): ppm = 7.25 7.22 (m, 2H), 6.89 6.86 (m, 2H), 4.46 (d, 
2J = 11.8 Hz, 1H), 4.44 (d, 2J = 11.8 Hz, 1H), 3.80 (s, 3H), 3.69 (s, 3H), 3.63 (dd, 2J = 9.2 Hz, 
3J = 7.3 Hz, 1H), 3.46 (dd, 2J = 9.2 Hz, 3J = 6.0 Hz, 1H), 2.80 2.73 (m, 1H), 1.18 1.16 (d, 
3J = 7.1 Hz, 3H). 

13C NMR (75 MHz, CDCl3): ppm = 175.4, 159.3, 130.4, 129.3 (2 x C), 113.9 (2 x C), 72.9, 

71.8, 55.4, 51.8, 40.3, 14.1. 

IR: /cm 1 = 2950 (w), 1859 (w), 2360 (w), 1735 (s), 1612 (m), 1586 (w), 1512 (s), 1459 (m), 

1362 (w), 1240 (s), 1198 (m), 1173 (s), 1985 (s). 

HRMS (EI) calculated for C13H18O4 [M]+ 238.1205, found 238.1197. 

Preparation of alcohol II.42
[79a]

 

 

 

(R)-3-(4-Methoxybenzyl)oxy-2-methyl-1-propanol (II.42). To a magnetically stirred 

suspension of lithium aluminum hydride (767 mg, 27.7 mmol) in THF (43.0 mL) was added 

dropwise a solution of ester II.41 (6.00 g, 25.2 mmol) in THF (43.0 mL) at 0 °C. The ensuing 

mixture was stirred at 0 °C for 30 min and then allowed to warm to room temperature. The 

reaction was stirred at room temperature for 1 h before it was cooled to 0 °C and quenched by 

sequential addition of water (2 mL), aqueous NaOH solution (1 M, 2 mL) and water (2 mL). 

Then, the biphasic solution was allowed to warm to room temperature and Na2SO4 was added. 

After being stirred for 30 min, the reaction mixture was filtered through a glass frit and the filter 

cake was washed with diethyl ether. The filtrate was concentrated in vacuo to provide crude 

colorless oil. Subjection of this material to flash 

EtOAc/hexanes, gradient elution) gave 4.88 g (23.2 mmol, 92%) of alcohol II.42 as a colorless 

oil. 

Rf = 0.24, 1:3 EtOAc/hexanes. 

= +13.2 (c = 1.0, CH2Cl2). 

1H NMR (600 MHz, CDCl3): ppm = 7.26 7.23 (m, 2H), 6.90 6.87 (m, 2H), 4.46 (d, 
2J = 11.6 Hz, 1H), 4.44 (d, 2J = 11.6 Hz, 1H), 3.81 (s, 3H), 3.62 (ddd, 2J = 10.7 Hz, 3J = 4.3 Hz, 
3J = 0.7 Hz, 1H), 3.58 (dd, 2J = 10.7 Hz, 3J = 7.3 Hz, 1H), 3.53 (ddd, 2J = 9.1 Hz, 3J = 4.6 Hz, 
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3J = 0.7 Hz, 1H), 3.39 (dd, 2J = 9.1 Hz, 3J = 8.2 Hz, 1H), 2.11 2.02 (m, 1H), 0.87 (d, 

3J = 7.0 Hz, 3H). 

13C NMR (75 MHz, CDCl3): ppm = 159.4, 130.2, 129.3 (2 x C), 114.0 (2 x C), 75.3, 73.2, 

68.1, 55.4, 35.7, 13.6. 

IR: /cm 1 = 3396 (w), 2861 (w), 1612 (m), 1586 (w), 1511 (s), 1463 (m), 1362 (m), 1302 (m), 

1244 (s), 1173 (m), 1086 (s), 1040 (s). 

HRMS (EI) calculated for C12H18O3 [M]+ 210.1256, found 210.1254. 

Preparation of aldehyde II.35
[79a]

 

 

 

(S)-3-(4-Methoxybenzyl)oxy-2-methyl-1-propanal (II.35). To a magnetically stirred solution 

of alcohol II.42 (265 mg, 1.26 mmol) in wet CH2Cl2 (5.5 mL) was slowly added Dess-Martin 

periodinane (802 mg, 1.89 mmol) at room temperature. The ensuing mixture was stirred for 30 

min, then, three 0.5 mL portions of CH2Cl2 were added subsequently over the course of 15 min. 

After being stirred for an additional 10 min, the reaction was diluted with diethyl ether (20 mL) 

and aqueous saturated Na2S2O3 solution (15 mL) followed by aqueous saturated NaHCO3 

solution (7 mL) were added. The biphasic mixture was vigorously stirred for an additional 10 

min, the organic layer was separated and the aqueous phase was extracted with diethyl ether 

(2 x 20 mL). The combined organic layers were washed with aqueous saturated NaHCO3 

solution (40 mL), water (40 mL) and brine (40 mL), dried over Na2SO4, filtered and 

concentrated in vacuo to provide the crude aldehyde II.35 (243 mg, 93%) as a pale yellow oil. 

This material was used immediately in a Heathcock anti-aldol reaction without further 

purification. 

Rf = 0.58, 1:3 EtOAc/hexanes.  

= +29.4 (c = 1.0, CH2Cl2). 

1H NMR (600 MHz, CDCl3): ppm = 9.71 (d, 3J = 1.6 Hz, 1H), 7.25 7.21 (m, 2H), 6.88 (m, 

2H), 4.46 (br s, 2H), 3.81 (s, 3H), 3.65 (dd, 2J = 9.4 Hz, 3J = 6.8 Hz, 1H), 3.61 (dd, 2J = 9.4 Hz, 
3J = 5.3 Hz, 1H), 2.70 2.59 (m, 1H), 1.12 (d, 3J = 7.1 Hz, 3H). 
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13C NMR (150 MHz, CDCl3): ppm = 204.1, 159.4, 130.1, 129.4 (2 x C), 113.9 (2 x C), 73.1, 

69.9, 55.4, 46.9, 10.9. 

IR: /cm 1 = 2936 (w), 2837 (w), 2726 (w), 1819 (w), 1721 (m), 1612 (m), 1512 (s), 1457 (w), 

1360 (w), 1302 (w), 1250 (s), 1173 (m), 1091 (s), 1032 (s). 

HRMS (EI) calculated for C12H16O3 [M]+ 208.1099, found 208.1078. 

Preparation of TBS ether II.43
[80a]

 

 

 

(S)-Methyl 3-((tert-butyldimethylsilyl)oxy)-2-methylpropanoate (II.43). A solution of (S)-

Roche ester (II.40) (5.00 g, 42.3 mmol, 4.67 mL), tert-butyldimethylsilyl chloride (7.66 g, 

50.8 mmol) and imidazole (7.20 g, 106 mmol) in dry CH2Cl2 (150 mL) was stirred at room 

temperature overnight. After the white precipitate was filtered off, the reaction was concentrated 

in vacuo providing a crude oil. Subjection of this material to flash column chromatography (1:2 

EtOAc/hexanes) yielded 9.68 g (41.7 mmol, 99%) of TBS ether II.43 as a colorless oil. 

Rf = 0.85, 1:3 EtOAc/hexanes.  

= +21.0 (c = 1.0, CH2Cl2). 

1H NMR (600 MHz, CDCl3): ppm = 3.77 (dd, 2J = 9.7 Hz, 
3J = 6.9 Hz, 1H, CH2, H4), 3.67 (s, 3H, OCH3, H1), 3.65 (dd, 
2J = 9.7 Hz, 3J = 6.0 Hz, 1H, CH2, H4), 2.69 2.61 (m, 1H, CH, H3), 

1.14 (d, 3J = 7.1 Hz, 3H, CH3, H5), 0.87 (s, 9H, CH3, H8), 0.04 (s, 3H, SiCH3, H6 or H7), 0.03 

(s, 3H, SiCH3, H6 or H7). 

13C NMR (150 MHz, CDCl3): ppm = 175.6 (CO, C2), 65.4 (CH2, C4), 51.6 (OCH3, C1), 42.7 

(CH, C3), 25.9 (3 x CH3, C8), 18.9 (Cq, C9), 13.6 (CH3, C5), 5.3(45) (SiCH3, C6 or C7), 

5.3(47) (SiCH3, C6 or C7). 

IR: /cm 1 = 2953 (w), 2930 (w), 2858 (w), 1741 (m), 1463 (w), 1361 (w), 1253 (m), 1198 (m), 

1176 (m), 1092 (m). 

HRMS (EI) calculated for C10H21O3Si [M CH3]
+ 217.1260, found 217.1251. 
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Preparation of alcohol II.45
[80b]

 

 

(R)-3-((Tert-butyldimethylsilyl)oxy)-2-methylpropan-1-ol (II.45). To a magnetically stirred 

solution of ester II.43 (2.00 g, 8.62 mmol) in dry CH2Cl2 (45 mL) was added dropwise a 

solution of diisobutylaluminum hydride (1M in CH2Cl2, 30.0 mL, 30.0 mmol) at 78 °C. The 

ensuing mixture was stirred at 78 °C for 1.5 h, then water (1.2 mL) and diethyl ether (50 mL) 

were added and the mixture was allowed to warm to room temperature. After the reaction was 

stirred for 20 min at room temperature, water (1.2 mL) and aqueous NaOH solution (1M, 

1.2 mL) were added subsequently followed by an addition of diethyl ether (150 mL) and 

Na2SO4. The mixture was stirred for an additional 10 min before being filtered and concentrated 

in vacuo providing crude product. Subjection of this material to flash column chromatography 

(1:8 EtOAc/hexanes) gave 1.51 g (7.39 mmol, 86%) of alcohol II.45 as a colorless oil. 

Rf = 0.13, 1:3 EtOAc/hexanes.  

= +9.8 (c = 1.0, CH2Cl2).  

1H NMR (400 MHz, CDCl3): ppm = 3.74 (ddd, 2J = 9.9 Hz, 3J = 4.4 Hz, 
4J = 0.9 Hz, 1H, CH2, H4), 3.65 (ddd, 2J = 10.7, 3J = 4.2 Hz, 4J = 0.7 Hz, 

1H, CH2, H2), 3.60 (dd, 2J = 10.7 Hz, 3J = 7.3 Hz, 1H, CH2, H2), 3.54 (dd, 
2J = 9.9 Hz, 3J = 8.0 Hz, 1H, CH2, H4), 2.83 (br s, 1H, OH, H1), 2.03 1.85 (m, 1H, CH, H3), 

0.90 (s, 9H, CH3, H9), 0.84 (d, 3J = 7.0 Hz, 3H, CH3, H5), 0.07 (s, 6H, SiCH3, H6 and H7). 

13C NMR (75 MHz, CDCl3): ppm = 68.9 (CH2, C4), 68.5 (CH2, C2), 37.2 (CH, C3), 26.0 

(3 x CH3, C9), 18.3 (Cq, C8), 13.2 (CH3, C5), 5.3(8) (SiCH3, C6 or C7), 5.4(4) (SiCH3, C6 or 

C7). 

IR: /cm 1 = 3350 (w), 2954 (w), 2928 (w), 2856 (w), 1744 (w), 1472 (w), 1389 (w), 1361 (w), 

1250 (m), 1087 (m), 1034 (m). 

HRMS (ESI) calculated for C10H25O2Si [M+H]+ 205.1618, found 205.1620. 
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Preparation of TBDPS ether II.44
[80c]

 

 

 

(S)-Methyl 3-((tert-butyldiphenylsilyl)oxy)-2-methylpropanoate II.44. A solution of (S)-

Roche ester II.40 (1.00 g, 8.47 mmol, 930 L), tert-butyldiphenylsilyl chloride (2.79 g, 

10.2 mmol, 2.60 mL) and imidazole (1.44 g, 21.2 mmol) in dry CH2Cl2 (30 mL) was stirred at 

room temperature overnight. After the white precipitate was filtered off, the reaction was 

concentrated in vacuo providing crude oil. Subjection of this material to flash column 

chromatography (1: EtOAc/hexanes, gradient elution) gave 2.80 g (7.86 mmol, 93%) of 

TBDPS ether II.44 as a colorless oil. 

Rf = 0.78, 1:3 EtOAc/hexanes.  

= +12.6 (c = 1.0, CH2Cl2).  

1H NMR (600 MHz, CDCl3): ppm = 7.69 7.59 (m, 4H, Ar-H, H7 or 

H8 or H13 or H14), 7.44 7.41 (m, 2H, Ar-H, H9 or H15), 7.40 7.37 (m, 

4H, Ar-H, H7 or H8 or H13 or H14), 3.83 (dd, 2J = 9.8 Hz, 3J = 6.9 Hz, 

1H, CH2, H4), 3.72 (dd, 2J = 9.8 Hz, 3J = 5.8 Hz, 1H, CH2, H4), 3.68 (s, 

3H, OCH3, H1), 2.78 2.66 (m, 1H, CH, H3), 1.16 (d, 3J = 7.0 Hz, 3H, CH3, H5), 1.03 (s, 9H, 

CH3, H11). 

13C NMR (75 MHz, CDCl3): ppm = 175.5 (CO, C2), 135.7(22) (2 x Ar-CH, C7 or C8 or C13 

or C14), 135.7(15) (2 x Ar-CH, C7 or C8 or C13 or C14) 133.7 (Ar-Cq, C6 or C12), 133.6 (Ar-

Cq, C6 or C12), 129.8 (Ar-CH, C9 or C15), 127.8 (4 x Ar-CH, C9 or C15 and C7 or C8 or C13 

or C14), 66.1 (CH2, C4), 51.7 (OCH3, C1), 42.6 (CH, C3), 26.9 (3 x CH3, C11), 19.4 (Cq, C10), 

13.6 (CH3, C5). 

IR: /cm 1 = 3071 (w), 2931 (w), 2857 (w), 1738 (m), 1472 (w), 1427 (w), 1388 (w), 1247 (w), 

1198 (w), 1175 (w), 1104 (m), 1084 (m). 

HRMS (ESI) calculated for C21H32NO3Si [M+NH4]
+ 374.2146, found 374.2146. 
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Preparation of alcohol II.46
[80c]

 

 

 

(R)-3-((Tert-butyldiphenylsilyl)oxy)-2-methylpropan-1-ol (II.46). To a magnetically stirred 

solution of ester II.44 (1.00 g, 2.81 mmol) in dry CH2Cl2 (20 mL) was added dropwise a 

solution of diisobutylaluminun hydride (1M in CH2Cl2, 12.1 mL, 12.1 mmol) at 78 °C. The 

ensuing mixture was stirred at 78 °C for 1.5 h, then water (2 mL) and diethyl ether (50 mL) 

were added and the mixture was allowed to warm to room temperature. After the reaction was 

stirred for 10 min, water (2 mL) and aqueous NaOH solution (1M, 2 mL) were added 

subsequently followed by addition Na2SO4. The mixture was stirred for an additional 20 min, 

before being filtered and concentrated in vacuo providing crude product. Subjection of this 

material to flash column chromatography (1:6 EtOAc/hexanes) gave 754 mg (2.30 mmol, 82%) 

of alcohol II.46 as a colorless oil. 

Rf = 0.57, 1:4 EtOAc/hexanes.  

= +4.0 (c = 1.0, CH2Cl2).  

1H NMR (600 MHz, CDCl3): ppm = 7.70 7.65 (m, 4H, Ar-H, H7 or H8), 

7.45 7.43 (m, 2H, Ar-H, H9), 7.41 7.38 (m, 4H, Ar-H, H7 or H8), 3.73 (dd, 
2J = 10.1 Hz, 3J = 4.5 Hz, 1H, CH2, H2 or H4), 3.69 3.66 (m, 2H, CH2, H2 or 

H4), 3.60 (dd, 2J = 10.1 Hz, 3J = 7.7 Hz, 1H, CH2, H2 or H4), 2.04 1.95 (m, 1H, CH, H3), 1.06 

(s, 9H, CH3, H11), 0.83 (d, 3J = 7.0, 3H, CH3, H5). 

13C NMR (150 MHz, CDCl3): ppm = 135.7(4) (2 x Ar-CH, C7 or C8), 135.7(2) (2 x Ar-CH, 

C7 or C8), 133.3 (Ar-Cq, C6), 133.2(9) (Ar-Cq, C6), 129.9 (2 x Ar-CH, C9), 127.9(12) (2 x Ar-

CH, C7 or C8), 127.9(10) (2 x Ar-CH, C7or C8), 68.9 (CH2, C2 or C4), 67.9 (CH2, C2 or C4), 

37.4 (CH, C3), 27.0 (3 x CH3, C11), 19.3 (Cq, C10), 13.3 (CH3, C5). 

IR: /cm 1 = 3365 (w), 2958 (w), 2929 (w), 2857 (w), 1740 (w), 1472 (w), 1427 (w), 1240 (w), 

1105 (m), 1029 (m). 

HRMS (ESI) calculated for C20H29O2Si [M+H]+ 329.1931, found 329.1931. 
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Preparation of alcohol II.52 

 

 

(S)-3-((2R,3R,4S)-3-Hydroxy-2-isobutyl-5-((4-methoxybenzyl)oxy)-4-methylpentanoyl)-4-

isopropyloxazolidin-2-one (II.52). A solution of acyl oxazolidione II.36 (1.07 g, 4.70 mmol) 

in dry diethyl ether (15 mL) was stirred over 3Å molecular sieves for 20 min before it was 

cooled to 0 °C. Subsequently, diisopropylethylamine (717 mg, 5.55 mmol, 0.94 mL) and freshly 

distilled dibutylboron triflate (2.58 g, 9.40 mmol. 3.15 mL) were added dropwise. The mixture 

was stirred for 30 min at 0 °C before it was cooled to 78 °C and a solution of aldehyde II.35 

(990 mg, 4.75 mmol) in diethyl ether (5 mL) was added, which was pre-dried over 3Å 

molecular sieves beforehand. The ensuing mixture was stirred at 78 °C for 2 h, then, aqueous 

pH-7-phosphate buffer (0.1M, 3.5 mL) and methanol (10 mL) were added in one portion. The 

reaction was warmed to room temperature and after being stirred for 10 min, aqueous hydrogen 

peroxide solution (30wt%, 4 mL) and methanol (8 mL) were added in one portion. The reaction 

was stirred for 30 min at 0 °C and 1 h at room temperature. After addition of EtOAc (150 mL), 

the mixture was washed with aqueous saturated NaHCO3 solution (150 mL) and brine 

(150 mL), dried over Na2SO4, filtered and concentrated in vacuo providing crude product. 

Subjection of this material to flash column chromatography (1:

gradient elution) gave 940 mg (2.16 mmol, 46%) of alcohol II.52 as a colorless oil. 

Rf = 0.38, 1:3 EtOAc/hexanes.  

= +29.6 (c = 1.0, CH2Cl2).  

1H NMR (600 MHz, CDCl3): ppm = 7.25 7.20 (m, 2H, Ar-

H, H19), 6.88 6.84 (m, 2H, Ar-H, H20), 4.46 4.40 (m, 3H, 

CH and CH2, H3 and H17), 4.30 4.19 (m, 3H, CH and CH2, 

H2 and H8), 3.86 3.83 (m, 1H, CH, H9), 3.80 (s, 3H, OCH3, 

H22), 3.47 (dd, 2J = 9.1 Hz, 3J = 6.0 Hz, 1H, CH2, H11), 3.42 (dd, 2J = 9.1 Hz, 3J = 5.1 Hz, 1H, 

CH2, H11), 2.83 (d, 3J = 7.9 Hz, 1H, OH), 2.47 2.44 (m 1H, CH, H4), 1.98 1.93 (m, 1H, CH, 

H10), 1.69 (ddd, 2J = 13.4 Hz, 3J = 10.1 Hz, 3J = 5.0 Hz, 1H, CH2, H12), 1.51 1.44 (m, 1H, CH, 

H13), 1.21 (ddd, 2J = 13.3 Hz, 3J = 8.8 Hz, 3J = 4.4 Hz, 1H, CH2, H12), 1.01 (d, 3J = 7.0 Hz, 3H, 

CH3, H16), 0.92 0.87 (m, 12H, CH3, H5, H6, H14 and H15). 
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13C NMR (150 MHz, CDCl3): ppm = 177.0 (CO, C7), 159.3 (Ar-Cq, C21), 154.7 (CO, C1), 

130.5 (Ar-Cq, C18), 129.4 (2 x Ar-CH, C19), 113.9 (2 x Ar-CH, C20), 75.9 (CH, C9), 73.9 

(CH2, C11), 73.1 (CH2, C17), 63.3 (CH2, C2), 59.4 (CH, C3), 55.4 (OCH3, C22), 44.0 (CH, C8), 

38.5 (CH2, C12), 36.2 (CH, C10), 28.5 (CH, C4), 26.4 (CH, C13), 23.4 (CH3, C14 or C15), 22.4 

(CH3, C14 or C15), 18.2 (CH3, C5 or C6), 14.7 (CH3, C5 or C6), 10.3 (CH3, C16). 

IR: /cm 1 = 3500 (w), 2958 (w), 2870 (w), 1776 (s), 1736 (m), 1696 (m), 1611 (w), 1512 (m), 

1384 (s), 1300 (m), 1245 (s), 1200 (s), 1093 (m). 

HRMS (ESI) calculated for C24H37NO6Na [M+Na]+ 458.2513, found 458.2516. 

Preparation of PMP ether II.53  

 

 

(5R)-5-Isobutyl-3-((2R)-2-((2R,5S)-2-(4-methoxyphenyl)-5-methyl-1,3-dioxan-4-yl)-4-

methyl pentanoyl)oxazolidin-2-one (II.53). To a magnetically stirred solution of alcohol II.52 

(100 mg, 230 mol) in dry CH2Cl2 (3.5 mL) were added 4Å molecular sieves and the mixture 

was stirred for 30 min at 0 °C before a solution of pre-dried 2,3-dichloro-5,6-dicyano-1,4-

benzoquinone (77.0 mg, 340 mol) in dry CH2Cl2 (0.75 mL) was added dropwise. The reaction 

was stirred at 0 °C for an additional 2.5 h, then CH2Cl2 (10 mL) was added. The mixture was 

filtered over Celite, washed with aqueous saturated NaHCO3 solution (10 mL) and aqueous 

saturated Na2SO3/NaHSO3 solution, dried over Na2SO4, filtered and concentrated in vacuo 

providing 60.0 mg (134 mol, 58%) of PMP ether II.53 as a colorless oil. Due to the chemical 

instability of the compound, purification using column chromatography could not be performed. 

The obtained NMR-spectra are partially contaminated with traces of other diastereomer, starting 

material and benzaldehyde. 

Rf = 0.5, 1:3 EtOAc/hexanes.  

= +7.7 (c = 0.5, CDCl3).  

1H NMR (600 MHz, CDCl3): ppm = 7.34 7.32 (m, 2H, Ar-H, H19), 

6.83 6.80 (m, 2H, Ar-H, H20), 5.32 (s, 1H, CH, H17), 4.65 4.61 (m, 1H, 

CH, H8), 4.38 (ddd, 3J = 8.3 Hz, 3J = 3.5 Hz, 3J = 2.6 Hz, 1H, CH, H3), 

4.13 (dd, 3J = 8.7 Hz, 3J = 8.7 Hz, 1H, CH2, H2), 4.07 4.02 (m, 3H, CH and CH2, H2 and H9 
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and H11), 4.00 (dd, 2J = 11.3 Hz, 3J = 1.5 Hz, 1H, CH2, H11), 3.78 (s, 3H, OCH3, H22), 2.09

2.04 (m, 1H, CH, H4), 1.73 1.68 (m, 2H, CH and CH2, H10 and H12), 1.45 1.40 (m, 1H, CH, 

H13), 1.31 (d, 3J = 6.9 Hz, 3H, CH3, H16), 1.12 (ddd, 2J = 13.2 Hz, 2J = 10.1 Hz, 3J = 3.0 Hz, 

1H, CH2, H12), 0.94 (d, 3J = 6.5 Hz, 3H, CH3, H14 or H15), 0.90 (d, 3J = 6.6 Hz, 3H, CH3, H14 

or H15), 0.68 (d, 3J = 7.1 Hz, 3H, CH3, H5 or H6), 0.22 (d, 3J = 6.9 Hz, 3H, CH3, H5 or H6). 

13C NMR (150 MHz, CDCl3): ppm = 176.5 (CO, C7), 160.1 (Ar-Cq, C21), 153.7 (CO, C1), 

131.4 (Ar-Cq, C18), 128.1 (2 x Ar-CH, C19), 113.6 (2 x Ar-CH, C20), 102.5 (CH, C17), 83.2 

(CH, C9), 73.8 (CH2, C11), 62.8 (CH2, C2), 59.0 (CH, C3), 55.5 (OCH3, C22), 42.6 (CH, C8), 

37.2 (CH2, C12), 30.0 (CH, C10), 28.3 (CH, C4), 26.6 (CH, C13), 24.2 (CH3, C14 or C15), 22.2 

(CH3, C14 or C15), 17.9 (CH3, C5 or C6), 13.8 (CH3, C5 or C6), 11.3 (CH3, C16). 

IR: /cm 1 = 2958 (m), 2870 (w), 1776 (s), 1736 (m), 1693 (s), 1614 (m), 1518 (m), 1385 (s), 

1370 (s), 1300 (m), 1220 (s), 1199 (s), 1156 (m), 1115 (s), 1028 (s). 

HRMS (ESI) calculated for C24H36NO6 [M+H]+ 434.2537, found 434.2540. 

Preparation of TBS ether II.54 

 

 

(R)-3-((2R,3R,4S)-3-((Tert-butyldimethylsilyl)oxy)-2-isobutyl-5-((4-methoxybenzyl)oxy)-4-

methyl pentanoyl)-5-isobutyloxazolidin-2-one (II.54). To a magnetically stirred solution of 

alcohol II.52 (30.0ß mg, 69.0 mol) and 2,6-lutidine (13.0 mg, 124 mol, 14.0 L) in dry 

CH2Cl2 (0.4 mL) was added dropwise tert-butyldimethylsilyl triflate (26.0 mg, 97.0 mol, 

22.0 L) at 0 °C and the ensuing mixture was warmed to room temperature over 1 h. After 

being stirred at room temperature for an additional 2 h, the reaction was diluted with diethyl 

ether (10 mL) and washed with aqueous HCl solution (2M, 7 mL) and aqueous saturated 

NaHCO3 solution (7 mL). The organic layer was dried over Na2SO4, filtered and concentrated in 

vacuo to obtain a crude mixture. Subjection of this material to flash column chromatography 

(1:6 EtOAc/hexanes) afforded 11.0 mg (20.0 mol, 29%) of the TBS ether II.54 as a colorless 

oil. 

Rf = 0.75, 1:3 EtOAc/hexanes.  

= +2.7 (c = 0.5, CH2Cl2).  
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1H NMR (600 MHz, CDCl3): ppm = 7.21 7.14 (m, 2H, Ar-

H, H19), 6.89 6.81 (m, 2H, Ar-H, H20), 4.45 (dt, 
3J = 8.4 Hz, 3J = 3.1 Hz, 1H, CH, H3), 4.42 (dd, 3J = 5.2 Hz, 
3J = 1.1 Hz, 1H, CH, H9), 4.38 (d, 2J = 11.5 Hz, 1H, CH2, 

H17), 4.29 (d, 2J = 11.5 Hz, 1H, CH2, H17), 4.22 (dd, 
2J = 8.8 Hz, 3J = 8.8 Hz, 1H, CH2, H2), 4.15 (dd, 2J = 9.1 Hz, 3 J = 2.9 Hz, 1H, CH2, H2), 4.10

4.08 (m, 1H, CH, H8), 3.80 (s, 3H, OCH3, H22), 3.21 (dd, 2J = 8.8 Hz, 3J = 8.8 Hz, 1H, CH2, 

H11), 3.10 (dd, 2J = 8.8 Hz, 3J = 5.7 Hz, 1H, CH2, H11), 2.28 2.20 (m, 1H, CH, H4), 1.93 (ddd, 
2J = 13.3 Hz, 3J = 11.5 Hz, 3J = 5.1 Hz, 1H, CH2, H12), 1.86 1.79 (m, 1H, CH, H10), 1.61 1.57 

(m, 1H, CH2, H12), 1.38 1.29 (m, 1H, CH, H13), 0.90 (s, 9H, CH3, H26), 0.89 (d, 3J = 4.0 Hz, 

3H, CH3, H16), 0.87 0.83 (m, 9H, CH3, H14, H15 and H5 or H6), 0.72 (d, 3J = 6.9 Hz, 3H, 

CH3, H5 or H6), 0.16 (s, 3H, SiCH3, H23 or H24), 0.06 (s, 3H, SiCH3, H23 or H24). 

13C NMR (150 MHz, CDCl3): ppm = 173.9 (CO, C7), 159.2 (Ar-Cq, C21), 153.7 (CO, C1), 

130.9 (Ar-Cq, C18), 129.4 (2 x Ar-CH, C19), 113.8 (2 x Ar-CH, C20), 73.7 (CH2, C11), 72.7 

(CH2, C17), 69.6 (CH, C9), 63.1 (CH2, C2), 58.8 (CH, C3), 55.4 (OCH3, C22), 49.4 (CH, C8), 

36.4 (CH, C10), 34.5 (CH2, C12), 28.5 (CH, C4), 27.9 (CH, C13), 26.2 (3 x CH3, C26), 23.8 

(CH3, C14 or C15), 22.2 (CH3, C14 or C15), 18.5 (Cq, C25), 18.2 (CH3, C5 or C6), 14.4 (CH3, 

C5 or C6), 11.7 (CH3, C16), -3.8 (SiCH3, C23 or C24), -5.2 (SiCH3, C23 or C24). 

IR: /cm 1 = 2957 (w), 1856 (w), 1776 (m), 1694 (w), 1612 (w), 1513 (w), 1386 (w), 1263 (m), 

1248 (m), 1204 (m), 1090 (m). 

HRMS (ESI) calculated for C30H51NO6
28SiNa [M+Na]+ 572.3378, found 572.3380. 

Preparation of xanthate II.55 

 

 

O-((2S,3R,4R)-4-((S)-4-Isopropyl-2-oxooxazolidine-3-carbonyl)-1-((4-methoxybenzyl)oxy)-

2,6-dimethylheptan-3-yl) S-methyl carbonodithioate (II.55). To a magnetically stirred 

solution of alcohol II.52 (5.30 g, 12.2 mmol) in carbon disulfide (200 mL) was added dropwise 

a solution of NaHMDS (1M in THF, 17.0 mmol, 17.0 mL) at 78 °C and the ensuing mixture 

was stirred at this temperature for 1 h. After dropwise addition of MeI (25.9 g, 183 mmol, 

11.4 mL) at 78 °C, the reaction mixture was allowed to warm to 0 °C and was stirred for 3 h 
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before the ice bath was removed. Then, the reaction was stirred at room temperature for 1 h 

before carbon disulfide was evaporated in vacuo. The residue was dissolved in diethyl ether 

(1 L) and washed with water (500 mL), aqueous HCl solution (1M, 500 mL) and brine 

(500 mL). The organic layer was dried over Na2SO4, filtered and concentrated in vacuo to afford 

EtOAc/hexanes, gradient elution) provided 3.88 g (7.38 mmol, 60%) xanthate II.55 as a yellow 

oil.  

Rf = 0.61, 1:3 EtOAc/hexanes. 

= +70.1 (c = 1.0, CH2Cl2). 

1H NMR (600 MHz, CDCl3): ppm = 7.27 7.24 (m, 2H), 6.88 6.84 (m, 2H), 6.33 (dd, 
3J = 9.1 Hz, 3J = 2.4 Hz, 1H), 4.71 (m, 1H), 4.43 4.38 (m, 2H), 4.32 (d, 2J = 11.2 Hz, 1H), 

4.22 4.18 (m, 2H), 3.80 (s, 3H), 3.37 (dd, 2J = 9.2 Hz, 3J = 7.1 Hz, 1H), 3.28 (dd, 2J = 9.2 Hz, 
3J = 6.1 Hz, 1H), 2.51 (s, 3H), 2.33 2.21 (m, 2H), 1.83 1.76 (m, 1H), 1.46 1.39 (m, 1H), 1.29

1.22 (m, 1H), 1.08 (d, 3J = 7.0 Hz, 3H), 0.90 0.84 (m, 12H). 

13C NMR (150 MHz, CDCl3): ppm = 192.3, 173.8, 159.3, 153.9, 130.6, 129.6 (2 x C), 113.8 

(2 x C), 84.5, 73.1, 72.4, 63.1, 59.3, 55.4, 42.8, 39.4, 36.8, 28.8, 26.5, 23.8, 22.2, 18.9, 18.5, 

14.7, 11.2. 

IR: /cm 1 = 2960 (w), 2871 (w), 1776 (m), 1735 (m), 1699 (m), 1612 (w), 1512 (m), 1464 (w), 

1385 (m), 1371 (m), 1236 (s), 1200 (s), 1092 (m), 1039 (s). 

HRMS (ESI) calculated for C26H39O6N
32S2Na [M+Na]+ 548.2111, found 548.2119. 

Preparation of acid II.34  

 

 

(2R,3R,4S)-3-Hydroxy-2-isobutyl-5-((4-methoxybenzyl)oxy)-4-methylpentanoic acid 

(II.34). To a magnetically stirred mixture of LiOH (1M in water, 41.4 mmol, 41.4 mL) and 

H2O2 solution (30wt% in water, 82.8 mmol, 9.20 mL) was added dropwise a solution of II.55 

(544 mg, 1.04 mmol) in THF (27.0 mL) at 0 °C and the ensuing mixture was warmed to room 

temperature. After stirring at room temperature for 19 h, the reaction was extracted with CH2Cl2 
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(2 x 50 mL). The combined organic layers were dried over Na2SO4 and concentrated in vacuo. 

Thus obtained mixture of starting material and free Evans-auxiliary was subjected in a second 

cycle to reaction conditions listed above. The residual water layer was acidified to pH = 1 using 

aqueous HCl solution (1M) and extracted with CH2Cl2 (4 x 100 mL). The combined organic 

layers were dried over Na2SO4 and concentrated in vacuo to afford 320 mg (990 mol, 95% 

after 2 reaction cycles) of the free acid II.34 as a white solid.  

Rf = 0.09, 1:3 EtOAc/hexanes.  

mp: 80 82 °C (CH2Cl2). 

= +18.8 (c = 1.0, CH2Cl2).  

1H NMR (600 MHz, CDCl3): ppm = 7.24 7.22 (m, 2H, Ar-H, 

H13), 6.88 6.86 (m, 2H, Ar-H, H14), 4.46 (d, 2J = 11.5 Hz, 1H, 

CH2, H11), 4.42 (d, 2J = 11.5 Hz, 1H, CH2, H11), 3.89 (dd, 
3J = 7.0 Hz, 3J = 3.5 Hz, 1H, CH, H3), 3.80 (s, 3H, CH3, H16), 

3.56 (dd, 2J = 9.2 Hz, 3J = 3.9 Hz, 1H, CH2, H5), 3.49 (dd, 2J = 9.2 Hz, 3J = 5.4 Hz, 1H, CH2, 

H5), 2.66 2.61 (m, 1H, CH, H2), 1.93 1.88 (m, 1H, CH, H4), 1.69 1.58 (m, 2H, CH2 and CH, 

H6 and H7), 1.22 (ddd, 2
J = 13.3 Hz, 3

J = 8.9 Hz, 3
J = 4.4 Hz, 1H, CH2, H6), 1.00 (d, 

3J = 7.0 Hz, 3H, CH3, H10), 0.92 (d, 3J = 6.5 Hz, 3H, CH3, H8 or H9), 0.90 (d, 3J = 6.5 Hz, 3H, 

CH3, H8 or H9). 

13C NMR (150 MHz, CDCl3): ppm = 179.0 (CO, C1), 159.5 (Ar-Cq, C15), 129.9 (Ar-Cq, 

C12), 129.5 (2 x Ar-CH, C13), 114.0 (2 x Ar-CH, C14), 75.3 (CH, C3), 74.6 (CH2, C5), 73.4 

(CH2, C11), 55.4 (OCH3, C16), 47.4 (CH, C2), 38.7 (CH2, C6), 36.2 (CH, C4), 26.2 (CH, C7), 

23.5 (CH3, C8 or C9), 21.8 (CH3, C8 or C9), 10.8 (CH3, C10). 

IR: /cm 1 = 2850 (w), 2390 (w), 1694 (m), 1512 (m), 1246 (s), 1034 (m). 

HRMS (ESI) calculated for C18H28O5Na [M+Na]+ 347.1829, found 347.1832. 

Preparation of acid II.58  
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(2R,3R,4S)-2-Isobutyl-5-((4-methoxybenzyl)oxy)-4-methyl-3-(((methylthio)carbonothioyl) 

oxy)pentanoic acid (II.58). To a magnetically stirred solution of acid II.34 (100 mg, 310 mol) 

in carbon disulfide (5.00 mL) was added dropwise a solution of NaHMDS (1M in THF, 

860 mol, 0.860 mL) at 78 °C and the ensuing mixture was stirred at this temperature for 1 h. 

After dropwise addition of MeI (660 mg, 4.65 mmol) at 78 °C, the reaction was allowed to 

warm to 0 °C and was stirred for 3 h before the ice bath was removed. The reaction was stirred 

at room temperature for an additional 1 h before carbon disulfide was evaporated in vacuo. The 

residue was dissolved in diethyl ether (150 mL) and washed with aqueous HCl solution (1M, 

50.0 mL), water (50.0 mL) and brine (50.0 mL). The organic layer was dried over Na2SO4, 

filtered and concentrated in vacuo to afford crude yellow oil. Subjection of this material to flash 

 mg 

(261 mol, 84%) of a single diastereoisomer of acid II.58 as a colorless oil.  

Rf = 0.2, 1:2 EtOAc/hexanes.  

1H NMR (600 MHz, CDCl3): ppm = 7.27 7.24 (m, 2H, Ar-

H, H13), 6.89 6.87 (m, 2H, Ar-H, H14), 6.13 (dd, 3J = 5.9 Hz, 
3J = 5.9 Hz, 1H, CH, H3), 4.47 4.39 (m, 2H, CH2, H11), 3.81 

(s, 3H, CH3, H16), 3.43 (m, 2H, CH2, H5), 3.01 2.98 (ddd, 
2J = 10.4 Hz, 3J = 5.9 Hz, 3J = 4.6 Hz, 1H, CH2, H2), 2.53 (s, 3H, CH3, H18), 2.32 (ddt, 
3J = 12.9 Hz, 3J = 12.6 Hz, 3J = 6.6 Hz, 1H, CH, H4), 1.70 (ddd, 2J = 13.6 Hz, 3J = 10.2 Hz, 
3J = 5.1 Hz, 1H, CH2, H6), 1.65 1.55 (m, 1H, CH, H7), 1.29 1.21 (m, 1H, CH2, H6), 1.00 (d, 
3J = 6.9 Hz, 3H, CH3, H10), 0.92 0.81 (m, 6H, CH3, H8 and H9). 

13C NMR (150 MHz, CDCl3): ppm = 215.9 (CS, C17), 175.5 (CO, C1), 159.5 (Ar-Cq, C15), 

129.7 (Ar-Cq and 2 x Ar-CH, C12, C13), 114.1 (2 x Ar-CH, C14), 84.2 (CH, C3), 73.3 (CH2, 

C11), 72.4 (CH2, C5), 55.4 (OCH3, C16), 46.4 (CH, C2), 37.7 (CH2, C6), 36.8 (CH, C4), 26.2 

(CH, C7), 23.4 (CH3, C8 or C9), 21.8 (CH3, C8 or C9), 18.8 (SCH3, C18), 13.0 (CH3, C10). 

Preparation of HOBt-ester II.61  
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(2R,4S)-1H-Benzo[d][1,2,3]triazol-1-yl 2-isobutyl-5-((4-methoxybenzyl)oxy)-4-methyl-3-

(((methyl thio)carbonothioyl)oxy)pentanoate (II.61). A solution of naphthalene II.59 

(10.0 mg, 41.0 mol), acid II.58 (25.5 mg, 62.0 mol), 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide hydrochloride salt (12.0 mg, 62.0 mol) and 1-hydroxybenzotriazole (7.00 mg, 

49.0 mol) in dry DMF (0.5 mL) was stirred for 36 h at room temperature before EtOAc 

(10 mL) was added. The organic phase was washed with water (3 x 15 mL), aqueous LiCl 

solution (10wt%, 3 x 15 mL) and brine (2 x 15 mL), dried over Na2SO4, filtered and 

concentrated in vacuo. Subjection of thus obtained crude material to flash column 

chromatograph  mg 

(20.9 mol, 34%) of HOBt-ester II.61 as a colorless oil. 

Rf = 0.73, 1:3 EtOAc/hexanes.  

= +48.6 (c = 0.3, CH2Cl2).  

1H NMR (600 MHz, CDCl3): ppm = 8.06 8.00 (m, 1H, 

Ar-H, H2 or H3 or H4 or H5), 7.53 7.48 (m, 1H, Ar-H, 

H2 or H3 or H4 or H5), 7.44 7.39 (m, 2H, Ar-H, H2 or 

H3 or H4 or H5), 7.29 7.26 (m, 2H, Ar-H, H21), 6.87

6.85 (m, 2H, Ar-H, H22), 6.41 6.39 (m, 1H, CH, H9), 4.46 (d, 2J = 11.4 Hz, 1H, CH2, H19), 

4.42 (d, 2J = 11.4 Hz, 1H, CH2, H19), 3.79 (s, 3H, OCH3, H24), 3.55 3.51 (m, 1H, CH, H8), 

3.50 (dd, 2J = 9.4 Hz, 3J = 4.9 Hz, 1H, CH2, H11), 3.46 (dd, 2J = 9.4 Hz, 3J = 7.1 Hz, 1H, CH2, 

H11), 2.59 (s, 3H, SCH3, H18), 2.48 2.40 (m, 1H, CH, H10), 1.96 1.82 (m, 2H, CH and CH2, 

H13 and H12), 1.55 1.50 (m, 1H, CH2, H12), 1.10 (d, 3J = 7.0 Hz, 3H, CH3, H16), 1.03 (d, 
3J = 6.5 Hz, 3H, CH3, H14 or H15), 1.01 (d, 3J = 6.4 Hz, 3H, CH3, H14 or H15). 

13C NMR (150 MHz, CDCl3): ppm = 216.0 (CS, C17), 169.3 (CO, C7), 159.4 (Ar-Cq, C23), 

143.6 (Ar-Cq, C1 or C6), 130.2 (Ar-Cq, C20), 129.7 (2 x Ar-CH, C21), 128.8 (Ar-CH, C2 or C3 

or C4 or C5), 128.7 (Ar-Cq, C1 or C6), 124.9 (Ar-CH, C2 or C3 or C4 or C5), 120.6 (Ar-CH, 

C2 or C3 or C4 or C5), 113.9 (2 x Ar-CH, C22), 108.6 (Ar-CH, C2 or C3 or C4 or C5), 82.9 

(CH, C9), 73.2 (CH2, C19), 72.1 (CH2, C11), 55.4 (OCH3, C24), 44.9 (CH, C8), 38.2 (CH2, 

C12), 37.1 (CH, C10), 26.4 (CH, C13), 23.3 (CH3, C14 or C15), 21.8 (CH3, C14 or C15), 19.2 

(SCH3, C18), 12.6 (CH3, C16). 

IR: /cm 1 = 2960 (w), 2925 (w), 2855 (w), 1812 (w), 1612 (w), 1513 (m), 1465 (w), 1369 (w), 

1247 (m), 1201 (s), 1173 (w), 1020 (s). 

HRMS (ESI) calculated for C26H33N3S2O5Na [M+Na]+ 554.1754, found 554.1757. 
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Preparation of lactone II.62 

 

 

(3R,4R,5S)-4-hydroxy-3-isobutyl-5-methyltetrahydro-2H-pyran-2-one (II.62). To a 

magnetically stirred solution of hydroxyacid II.34 (34.0 mg, 105 mol) in dry CH2Cl2 (1 mL) 

was added dropwise Ghosez's reagent (34.0 mg, 252 mol, 32.0 L) at 0 °C. The reaction was 

stirred at this temperature for 15 min, then EtOAc (5 mL) was added and the mixture was 

warmed to room temperature. After the solvent was removed in vacuo, the obtained crude 

material was subjected to flash column chromatography (1:8 EtOAc/hexanes) providing 

14.0 mg (53.8 mol, 51%) of lactone II.62 as colorless oil and 5.00 mg (16.3 mol, 16%) of -

lactone II.63 as a yellow oil. 

(3R,4R,5S)-4-hydroxy-3-isobutyl-5-methyltetrahydro-2H-pyran-2-one (II.62).  

Colorless oil. 

Rf = 0.5, 1:2 EtOAc/hexanes.  

= 85.6 (c = 0.25, CHCl3).  

1H NMR (600 MHz, CDCl3): ppm = 4.39 (dd, 2J = 11.6 Hz, 3J = 5.8 Hz, 1H, 

CH2, H5), 3.89 3.84 (m, 2H, CH and CH2, H3 and H5), 2.57 (ddd, 3J = 7.6 Hz, 
3J = 6.4 Hz, 3J = 4.0 Hz, 1H, CH, H2), 2.17 2.13 (m, 1H, CH, H4), 1.85 1.73 

(m, 2H, CH and CH2, H7 and H6), 1.51 1.47 (m, 1H, CH2, H6), 1.10 (d, 
3J = 7.1 Hz, 3H, CH3, H10), 0.96 (d, 3J = 6.5 Hz, 3H, CH3, H8 or H9), 0.93 (d, 3J = 6.4 Hz, 3H, 

CH3, H8 or H9). 

13C NMR (100 MHz, CDCl3): ppm = 173.6 (CO, C1), 73.1 (COH, C3), 70.2 (CH2, C5), 41.5 

(CH, C2), 36.9 (CH, C4), 34.5 (CH2, C6), 25.2 (CH, C7), 23.1 (CH3, C8 or C9), 22.3 (CH3, C8 

or C9), 15.3 (CH3, C10). 

IR: /cm 1 = 3470 (w), 3020 (w), 2960 (w), 1733 (m), 1388 (w), 1214 (m), 1164 (w), 1110 (w). 

HRMS (ESI) calculated for C10H19O3 [M+H]+ 187.1329, found 187.1334. 
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(3R,4R)-4-((S)-1-Hydroxypropan-2-yl)-3-isobutyloxetan-2-one (II.63).  

Yellow oil. 

Rf = 0.61, 1:3 EtOAc/hexanes.  

= +20.5 (c = 1.0, CH2Cl2).  

1H NMR (600 MHz, CDCl3): ppm = 7.24 7.21 (m, 2H, Ar-H, 

H13), 6.90 6.86 (m, 2H, Ar-H, H14), 4.42 4.38 (m, 2H, CH2, 

H11), 4.13 (dd, 3J = 7.4 Hz, 3J = 4.0 Hz, 1H, CH, H3), 3.81 (s, 3H, 

OCH3, H16) 3.46 3.42 (m, 2H, CH and CH2, H2 and H5), 3.32 

(dd, 2J = 9.4 Hz, 3J = 7.6 Hz, 1H, CH2, H5), 2.14 2.07 (m, 1H, CH, H4), 1.71 1.66 (m, 2H, CH 

and CH2, H7 and H6), 1.57 1.52 (m, 1H, CH2, H6), 1.04 (d, 3J = 6.8 Hz, 3H, CH3, H10), 0.88 

(d, 3J = 6.4 Hz, 3H, CH3, H8 or H9), 0.86 (d, 3J = 6.5 Hz, 3H, CH3, H8 or H9). 

13C NMR (150 MHz, CDCl3): ppm = 172.3 (CO, C1), 159.5 (Ar-Cq, C15), 130.1 (Ar-Cq, 

C12), 129.6 (2 x Ar-CH, C13), 114.0 (2 x Ar-CH, C14), 80.9 (CH, C3), 73.3 (CH2, C11), 71.7 

(CH2, C5), 55.4 (OCH3, C16), 53.0 (CH, C2), 37.8 (CH, C4), 37.5 (CH2, C6), 26.2 (CH, C7), 

22.6 (CH3, C8 or C9), 22.4 (CH3, C8 or C9), 12.5 (CH3, C10). 

IR: /cm 1 = 2957 (w), 2932 (w), 2870 (w), 1800 (s), 1611 (m), 1512 (s), 1464 (m), 1360 (w), 

1301 (w), 1246 (s), 1172 (m), 1112 (s), 1086 (s). 

HRMS (ESI) calculated for C18H26O4Na [M+Na]+ 329.1729, found 329.1725. 

Preparation of lactone II.64 

 

 

O-((3R,4R,5S)-3-Isobutyl-5-methyl-2-oxotetrahydro-2H-pyran-4-yl) S-methyl carbono 

dithioate (II.64). To a magnetically stirred solution of xanthate II.58 (25.0 mg, 62.0 mol) in 

dry CH2Cl2 (2 mL) was added dropwise Ghosez's reagent (9.00 mg, 66.0 mol, 9.00 L) at 

0 °C. The mixture was stirred at 0 °C for 10 min, then a solution of naphthalene II.59 (10.0 mg, 

41.0 mol) in dry CH2Cl2 (1 mL) was added and the reaction was warmed to room temperature. 

After the reaction was stirred for 12 h, CH2Cl2 (10 mL) was added and the organic solution was 
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washed with aqueous saturated NH4Cl solution (10 mL) and water (10 mL). The CH2Cl2 phase 

was dried over Na2SO4, filtered and concentrated in vacuo. Thus obtained crude material was 

subjected to flash column chromatography (

elution) providing 11.0 mg (40.0 mol, 65%) of lactone II.64 as a colorless oil. 

Rf = 0.78, 1:2 EtOAc/hexanes.  

= 70.7 (c = 0.5, CHCl3).  

1H NMR (600 MHz, CDCl3): ppm = 5.74 (dd, 3J = 3.3 Hz, 3J = 2.5 Hz, 1H, 

CH, H3), 4.40 (dd, 2
J = 11.8 Hz, 3

J = 6.4 Hz, 1H, CH2, H5), 3.90 (dd, 
2J = 11.8 Hz, 3J = 9.1 Hz, 1H, CH2, H5), 2.77 (ddd, 3J = 8.0 Hz, 3J = 6.0 Hz, 
3J = 3.5 Hz, 1H, CH, H2), 2.53 (s, 3H, SMe, H12), 2.47 2.39 (m, 1H, CH, 

H4), 1.81 (ddd, 2J = 14.3 Hz, 3J = 8.5 Hz, 3J = 6.0 Hz, 1H, CH2, H6), 1.74 1.65 (m, 1H, CH, 

H7), 1.42 (ddd, 2J = 14.0 Hz, 3J = 7.9 Hz, 3J = 5.9 Hz, 1H, CH2, H6), 1.19 (d, 3J = 7.2 Hz, 3H, 

CH3, H10), 0.96 0.88 (m, 6H, CH3, H8 and H9). 

13C NMR (100 MHz, CDCl3): ppm = 215.2 (CS, C11), 172.3 (CO, C1), 83.2 (CH, C3), 70.0 

(CH2, C5), 39.5 (CH, C2), 34.6 (CH2, C6), 33.9 (CH, C4), 25.1 (CH, C7), 23.1 (CH3, C8 or C9), 

22.0 (CH3, C8 or C9), 19.0 (SCH3, C12), 14.8 (CH3, C10). 

IR: /cm 1 = 2958 (w), 1751 (s), 1467 (w), 1382 (w), 1202 (s), 1154 (w), 1093 (w), 1055 (s). 

HRMS (ESI) calculated for C10H17O2 [M OCSSMe]+ 169.1229, found 169.1223. 

Preparation of -lactone II.63 

 

 

(3R,4R)-3-Isobutyl-4-((S)-1-((4-methoxybenzyl)oxy)propan-2-yl)oxetan-2-one (II.63). A 

solution of hydroxyacid II.34 (320 mg, 986 mol), 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide hydrochloride salt (227 mg, 1.18 mmol) and 1-hydroxybenzotriazole (196 mg, 

1.48 mmol) in dry CH2Cl2 (32 mL) was stirred for 12 h at room temperature before 

diisopropylethylamine (141 mg, 1.09 mmol, 190 L) was added dropwise. The mixture was 

stirred for an additional 8 h at room temperature, then EtOAc (100 mL) was added and the 

organic phase was washed with aqueous saturated NH4Cl solution (100 mL) and brine 

(100 mL). After being dried over Na2SO4, filtered and concentrated in vacuo, the obtained crude 
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elution) providing 220 mg (718 mol, 73%) of -lactone II.63 as a yellow oil. 

Rf = 0.61, 1:3 EtOAc/hexanes.  

= +20.5 (c = 1.0, CH2Cl2).  

1H NMR (600 MHz, CDCl3): ppm = 7.24 7.21 (m, 2H, Ar-H, 

H13), 6.90 6.86 (m, 2H, Ar-H, H14), 4.42 4.38 (m, 2H, CH2, H11), 

4.13 (dd, 3J = 7.4 Hz, 3J = 4.0 Hz, 1H, CH, H3), 3.81 (s, 3H, OCH3, 

H16) 3.46 3.42 (m, 2H, CH and CH2, H2 and H5), 3.32 (dd, 
2J = 9.4 Hz, 3J = 7.6 Hz, 1H, CH2, H5), 2.14 2.07 (m, 1H, CH, H4), 1.71 1.66 (m, 2H, CH and 

CH2, H7 and H6), 1.57 1.52 (m, 1H, CH2, H6), 1.04 (d, 3J = 6.8 Hz, 3H, CH3, H10), 0.88 (d, 
3J = 6.4 Hz, 3H, CH3, H8 or H9), 0.86 (d, 3J = 6.5 Hz, 3H, CH3, H8 or H9). 

13C NMR (150 MHz, CDCl3): ppm = 172.3 (CO, C1), 159.5 (Ar-Cq, C15), 130.1 (Ar-Cq, 

C12), 129.6 (2 x Ar-CH, C13), 114.0 (2 x Ar-CH, C14), 80.9 (CH, C3), 73.3 (CH2, C11), 71.7 

(CH2, C5), 55.4 (OCH3, C16), 53.0 (CH, C2), 37.8 (CH, C4), 37.5 (CH2, C6), 26.2 (CH, C7), 

22.6 (CH3, C8 or C9), 22.4 (CH3, C8 or C9), 12.5 (CH3, C10). 

IR: /cm 1 = 2957 (w), 2932 (w), 2870 (w), 1800 (s), 1611 (m), 1512 (s), 1464 (m), 1360 (w), 

1301 (w), 1246 (s), 1172 (m), 1112 (s), 1086 (s). 

HRMS (ESI) calculated for C18H26O4Na [M+Na]+ 329.1729, found 329.1725. 

Preparation of ketone II.67  and amide II.65 

 

 

(2S,3R,4R)-3-Hydroxy-4-isobutyl-1-((4-methoxybenzyl)oxy)-2-methylnonan-5-one (II.67). 

To a magnetically stirred solution of naphthalene II.33 (12.0 mg, 49.0 mol) in dry THF 

(0.5 mL) was added dropwise a solution of n-BuLi (2.4M in hexanes, 35.0 L, 84.0 mol) at 

78 °C. The reaction was stirred for 20 min before a solution of -lactone II.63 (16.0 mg, 

52.0 mol) in dry THF (0.5 mL) was added dropwise. After the mixture was stirred at 78 °C 

for 1 h, then a mixture of aqueous pH-7-phosphate buffer (0.1M, 5 mL) and i-PrOH (5 mL) was 
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added in one portion. The biphasic mixture was warmed to room temperature, the layers were 

separated and the aqueous layer was extracted with EtOAc (1 x 15 mL). The organic layer was 

dried over Na2SO4, filtered and concentrated in vacuo. Thus obtained crude material was 

elution) providing 6.00 mg (16.5 mol, 32%) of ketone II.67 as yellow oil and 8.40 mg 

(15.2 mol, 31%) of amide II.65 as a yellow oil. 

(2S,3R,4R)-3-Hydroxy-4-isobutyl-1-((4-methoxybenzyl)oxy)-2-methylnonan-5-one (II.67). 

Rf = 0.8, 1:3 EtOAc/hexanes.  

= 2.18 (c = 0.28, CH2Cl2).  

1H NMR (600 MHz, CDCl3): ppm = 7.23 7.21 (m, 2H, Ar-

H, H17), 6.88 6.86 (m, 2H, Ar-H, H18), 4.43 (d, 
2J = 11.5 Hz, 1H, CH2, H15), 4.38 (d, 2J = 11.5 Hz, 1H, CH2, 

H15), 3.81 3.78 (m, 4H, CH and CH3, H7 and H20), 3.49 (dd, 2J = 9.2 Hz, 3J = 3.9 Hz, 1H, 

CH2, H9), 3.43 (dd, 2J = 9.2 Hz, 3J = 5.5 Hz, 1H, CH2, H9), 3.04 (d, 3J = 4.9 Hz, 1H, OH), 2.79 

(ddd, 3J = 9.4 Hz, 3J = 7.9 Hz, 3J = 5.0 Hz, 1H, CH, H6), 2.54 2.48 (m, 1H, CH2, H4), 

2.44 2.39 (m, 1H, CH2, H4), 1.87 1.79 (m, 1H, CH, H8), 1.55 1.41 (m, 4H, CH2 and CH, H3, 

H10 and H11), 1.31 1.23 (m, 2H, CH2, H2), 1.18 1.14 (m, 1H, CH2, H10), 0.97 (d, 3J = 7.0 Hz, 

3H, CH3, H14), 0.92 0.83 (m, 9H, CH3, H1, H12 and H13). 

13C NMR (100 MHz, CDCl3): ppm = 216.5 (CO, C5), 159.4 (Ar-Cq, C19), 130.2 (Ar-Cq, 

C16), 129.5 (2 x Ar-CH, C17), 114.0 (2 x Ar-CH, C18), 76.1 (CH, C7), 74.8 (CH2, C9), 73.3 

(CH2, C15), 55.4 (OCH3, C20), 52.4 (CH, C6), 44.5 (CH2, C4), 38.5 (CH2, C10), 36.0 (CH, C8), 

26.1 (CH, C11), 25.3 (CH2, C3), 23.6 (CH3, C12 or C13), 22.4 (CH2, C2), 22.2 (CH3, C12 or 

C13), 14.1 (CH3, C1), 10.9 (CH3, C14). 

IR: /cm 1 = 3482 (w), 2959 (w), 1708 (w), 1612 (w), 1514 (w), 1466 (w), 1368 (w), 1265 (m), 

1248 (m), 1173 (w), 1088 (w). 

HRMS (ESI) calculated for C22H36O4Na [M Na]+ 387.2506, found 387.2508. 

(2R,3R,4S)-3-Hydroxy-2-isobutyl-5-((4-methoxybenzyl)oxy)-4-methyl-N-(1,4,6-trimethoxy-

7-methylnaphthalen-2-yl)pentanamide (II.65). 

Yellow oil. 

Rf = 0.24, 1:3 EtOAc/hexanes.  



CHAPTER IV: EXPERIMENTAL PROCEDURES 

183 
 

= 1.5 (c = 1.0, CHCl3).  

1H NMR (400 MHz, CDCl3): ppm = 8.49 (s, 1H, NH, H15), 

7.93 (s, 1H, Ar-H, H10), 7.67 (q, 4J = 0.7 Hz, 1H, Ar-H, H4), 

7.42 (s, 1H, Ar-H, H7), 7.27 7.19 (m, 2H, Ar-H, H29), 6.88

6.81 (m, 2H, Ar-H, H30), 4.52 (d, 2J = 11.6 Hz, 1H, CH2, 

H27), 4.42 (d, 2J = 11.6 Hz, 1H, CH2, H27), 4.01 (s, 3H, 

OCH3, H13), 3.94 (s, 3H, OCH3, H12), 3.82 (s, 3H, OCH3, 

H14), 3.78 (s, 3H, OCH3, H32), 3.78 3.76 (m, 1H, CH, H18), 

3.53 (dd, 2
J = 9.3 Hz, 3

J = 3.6 Hz, 1H, CH2, H20), 3.47 3.40 

(m, 2H, CH2 and OH, H20 and H25), 2.74 2.69 (m, 1H, CH, H17), 2.39 (s, 3H, CH3, H11), 

2.04 1.85 (m, 2H, CH and CH2, H19 and H21), 1.76 1.64 (m, 1H, CH, H22), 1.37 (ddd, 
2J = 13.6 Hz, 3J = 9.0 Hz, 3J = 4.8 Hz, 1H, CH2, H21), 1.03 (d, 3J = 7.0 Hz, 3H, CH3, H26), 0.97 

(d, 3J = 6.5 Hz, 3H, CH3, H23 or H24), 0.93 (d, 3J = 6.6 Hz, 3H, CH3, H23 or H24). 

13C NMR (100 MHz, CDCl3): ppm = 174.1 (CO, C16), 159.4 (Ar-Cq, C31), 156.1 (Ar-Cq, 

C6), 150.9 (Ar-Cq, C9), 136.9 (Ar-Cq, C2), 129.9 (Ar-Cq, C3 or C5), 129.6 (2 x Ar-CH, C29), 

129.5 (Ar-Cq, 28), 125.7 (Ar-Cq, C1), 122.9 (Ar-Cq, C3 or C5), 122.7 (Ar-Cq, C8), 122.3 (Ar-

CH, C4), 113.9 (2 x Ar-CH, C30), 99.9 (Ar-CH, C7), 98.8 (Ar-CH, C10), 76.6 (CH, C18), 74.7 

(CH2, C20), 73.4 (CH2, C27), 61.8 (OCH3, C14), 55.9 (OCH3, C13), 55.5 (OCH3, C12), 55.4 

(OCH3, C32), 49.6 (CH, C17), 39.7 (CH2, C21), 37.3 (CH, C19), 26.1 (CH, C22), 23.6 (CH3, 

C23 or C24), 22.2 (CH3, C23 or C24), 17.3 (CH3, C11), 12.4 (CH3, C26). 

IR: /cm 1 = 3318 (w), 2956 (w), 1658 (m), 1611 (s), 1502 (s), 1464 (m), 1410 (m), 1373 (m) 

1330 (s), 1246 (s), 1209 (s). 

HRMS (ESI) calculated for C32H44O7N [M H]+ 554.3112, found 554.3113. 

Preparation of amide II.65  

 

 

(2R,3R,4S)-3-Hydroxy-2-isobutyl-5-((4-methoxybenzyl)oxy)-4-methyl-N-(1,4,6-trimethoxy-

7-methylnaphthalen-2-yl)pentanamide (II.65). To a magnetically stirred solution of freshly 



CHAPTER IV: EXPERIMENTAL PROCEDURES 

184 
 

distilled diisopropylamine (516 mg, 550 L, 3.99 mmol) in dry THF (32 mL) was added n-BuLi 

(2.4M in hexanes, 1.47 mL, 3.68 mmol), and the LDA solution (0.2M) was stirred for 10 min at 

room temperature. To a solution of amine II.33 (15.0 mg, 61.0 mol) in dry THF (2 mL) was 

added dropwise the above prepared LDA solution (0.2M, 0.65 mL, 130 mol) at 78 °C. After 

the reaction was stirred for 30 min at 78 °C, a solution of lactone II.63 (28.0 mg, 91.0 mol) in 

dry THF (2 mL) was added and the mixture was stirred for an additional 1 h at the same 

temperature. Then, the reaction was warmed to room temperature and stirred for another 1 h 

before it was quenched by an addition of aqueous pH-7-phosphate buffer (0.1M, 5 mL) and 

brine (5 mL). The layers were separated and the aqueous layer was extracted with EtOAc 

(3 x 15 mL). The combined organic layers were dried over Na2SO4, filtered and concentrated in 

vacuo. Thus obtained crude material was subjected to flash column chromatography 

 mg (37.9 mol, 62%) of 

amide II.65 as a yellow oil. 

Rf = 0.24, 1:3 EtOAc/hexanes.  

= 1.5 (c = 1.0, CHCl3).  

1H NMR (400 MHz, CDCl3): ppm = 8.49 (s, 1H, NH, H15), 

7.93 (s, 1H, Ar-H, H10), 7.67 (q, 4J = 0.7 Hz, 1H, Ar-H, H4), 

7.42 (s, 1H, Ar-H, H7), 7.27 7.19 (m, 2H, Ar-H, H29), 6.88

6.81 (m, 2H, Ar-H, H30), 4.52 (d, 2J = 11.6 Hz, 1H, CH2, 

H27), 4.42 (d, 2J = 11.6 Hz, 1H, CH2, H27), 4.01 (s, 3H, 

OCH3, H13), 3.94 (s, 3H, OCH3, H12), 3.82 (s, 3H, OCH3, 

H14), 3.78 (s, 3H, OCH3, H32), 3.78 3.76 (m, 1H, CH, H18), 

3.53 (dd, 2J = 9.3 Hz, 3J = 3.6 Hz, 1H, CH2, H20), 3.47 3.40 

(m, 2H, CH2 and OH, H20 and H25), 2.74 2.69 (m, 1H, CH, H17), 2.39 (s, 3H, CH3, H11), 

2.04 1.85 (m, 2H, CH and CH2, H19 and H21), 1.76 1.64 (m, 1H, CH, H22), 1.37 (ddd, 
2J = 13.6 Hz, 3J = 9.0 Hz, 3J = 4.8 Hz, 1H, CH2, H21), 1.03 (d, 3J = 7.0 Hz, 3H, CH3, H26), 0.97 

(d, 3J = 6.5 Hz, 3H, CH3, H23 or H24), 0.93 (d, 3J = 6.6 Hz, 3H, CH3, H23 or H24). 

13C NMR (100 MHz, CDCl3): ppm = 174.1 (CO, C16), 159.4 (Ar-Cq, C31), 156.1 (Ar-Cq, 

C6), 150.9 (Ar-Cq, C9), 136.9 (Ar-Cq, C2), 129.9 (Ar-Cq, C3 or C5), 129.6 (2 x Ar-CH, C29), 

129.5 (Ar-Cq, 28), 125.7 (Ar-Cq, C1), 122.9 (Ar-Cq, C3 or C5), 122.7 (Ar-Cq, C8), 122.3 (Ar-

CH, C4), 113.9 (2 x Ar-CH, C30), 99.9 (Ar-CH, C7), 98.8 (Ar-CH, C10), 76.6 (CH, C18), 74.7 

(CH2, C20), 73.4 (CH2, C27), 61.8 (OCH3, C14), 55.9 (OCH3, C13), 55.5 (OCH3, C12), 55.4 

(OCH3, C32), 49.6 (CH, C17), 39.7 (CH2, C21), 37.3 (CH, C19), 26.1 (CH, C22), 23.6 (CH3, 

C23 or C24), 22.2 (CH3, C23 or C24), 17.3 (CH3, C11), 12.4 (CH3, C26). 
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IR: /cm 1 = 3318 (w), 2956 (w), 1658 (m), 1611 (s), 1502 (s), 1464 (m), 1410 (m), 1373 (m) 

1330 (s), 1246 (s), 1209 (s). 

HRMS (ESI) calculated for C32H44O7N [M H]+ 554.3112, found 554.3113. 

Preparation of amide II.66  

 

 

(2R,3R,4S)-3-Hydroxy-2-isobutyl-N-(5-isocyano-1,4,6-trimethoxy-7-methylnaphthalen-2-

yl)-5-((4-methoxybenzyl)oxy)-4-methylpentanamide (II.66). To a magnetically stirred 

solution of freshly distilled diisopropylamine (516 mg, 550 L, 3.99 mmol) in dry THF (32 mL) 

was added n-BuLi (2.4M in hexanes, 1.47 mL, 3.68 mmol), and the LDA solution (0.2M) was 

stirred for 10 min at room temperature. To a solution of amine II.59 (13.0 mg, 47.9 mol) in 

dry THF (1 mL) was added dropwise the above prepared LDA solution (0.2M, 0.5 mL, 

101 mol) at 78 °C. After the reaction was stirred for 30 min at 78 °C, a solution of lactone 

II.63 (22.0 mg, 71.9 mol) in dry THF (1 mL) was added and the mixture was stirred for an 

additional 2 h at the same temperature before being warmed to room temperature and quenched 

by an addition of a mixture of aqueous pH-7-phosphate buffer (0.1M, 2 mL), i-PrOH (2 mL) 

and brine (5 mL). Then, the layers were separated and the aqueous layer was extracted with 

EtOAc (3 x 10 mL). The combined organic layers were dried over Na2SO4, filtered and 

concentrated in vacuo. Thus obtained crude material was subjected to flash column 

elution) providing 19.0 mg (32.9 mol, 69%) of amide II.66 

as a yellow oil. 

Rf = 0.38, 1:2 EtOAc/hexanes.  

= 9.0 (c = 1.0, CH2Cl2).  

1H NMR (400 MHz, CDCl3): ppm = 8.62 (s, 1H, NH, 

H16), 8.13 (s, 1H, Ar-H, H10), 7.92 (q, 4J = 1.0 Hz, 1H, Ar-H, H4), 7.24 7.21 (m, 2H, Ar-H, 

H30), 6.85 6.83 (m, 2H, Ar-H, H31), 4.51 (d, 2J = 11.6 Hz, 1H, CH2, H28), 4.41 (d, 
2J = 11.6 Hz, 1H, CH2, H28), 4.05 (s, 3H, OCH3, H12), 4.03 (s, 3H, OCH3, H14), 3.85 3.80 (m, 
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1H, CH, H19), 3.79 (s, 3H, OCH3, H15 or H333), 3.79 (s, 3H, OCH3, H15 or H33), 3.57 (dd, 
2J = 9.3 Hz, 3J = 3.4 Hz, 1H, CH2, H21), 3.46 (dd, 2J = 9.3 Hz, 3J = 5.9 Hz, 1H, CH2, H21), 3.37 

(d, 3J = 4.6 Hz, 1H, OH, H26), 2.72 2.67 (m, 1H, CH, H18), 2.47 (d, 4J = 0.9 Hz, 3H, CH3, 

H11), 2.00 1.93 (m, 1H, CH, H20), 1.95-1.85 (m, 1H, CH2, H22), 1.74 1.65 (m, 1H, CH, H23), 

1.35 (ddd, 2J = 13.7 Hz, 3J = 9.1 Hz, 3J = 4.9 Hz, 1H, CH2, H22), 1.04 (d, 3J = 7.0 Hz, 3H, CH3, 

H27), 0.97 (d, 3J = 6.5 Hz, 3H, CH3, H24 or H25), 0.93 (d, 3J = 6.6 Hz, 3H, CH3, H24 or H25). 

13C NMR (100 MHz, CDCl3): ppm = 174.3 (CO, C17), 163.1 (Ar-Cq, C6), 159.5 (Ar-Cq, 

C32), 151.1 (Ar-Cq, C9), 136.6 (Ar-Cq, C2), 132.1 (Cq, C3 or C5 or C13), 129.8 (Ar-Cq, C29), 

129.6 (2 x Ar-CH, C30), 128.7 (Ar-Cq, C1), 127.9 (Ar-CH, C4), 125.2 (Cq, C3 or C5 or C13), 

120.6 (Ar-Cq, C8), 116.8 (Cq, C3 or C5 or C13), 114.0 (2 x Ar-CH, C31), 101.5 (Ar-CH, C10), 

99.8 (Ar-Cq, C7), 76.6 (CH, C19), 74.9 (CH2, C21), 73.4 (CH2, C28), 62.0 (OCH3, C15 or C23), 

61.9 (OCH3, C12), 56.1 (OCH3, C14), 55.4 (OCH3, C15 or C23), 49.9 (CH, C18), 39.6 (CH2, 

C22), 37.1 (CH, C20), 26.1 (CH, C23), 23.6 (CH3, C24 or C25), 22.2 (CH3, C24 or C25), 17.0 

(CH3, C11), 12.1 (CH3, C27). 

IR: /cm 1 = 2984 (w), 1737 (s), 1447 (w), 1372 (m), 1230 (s), 1098 (w), 1043 (s). 

HRMS (ESI) calculated for C33H43O7N2 [M H]+ 579.3065, found 579.3070. 

Preparation of xanthate II.68 

 

 

O-((2S,3R,4R)-1-((4-Methoxybenzyl)oxy)-2,6-dimethyl-4-((1,4,6-trimethoxy-7-

methylnaphthalen-2-yl)carbamoyl)heptan-3-yl) S-methyl carbonodithioate (II.68). To a 

magnetically stirred solution of alcohol II.65 (129 mg, 233 mol) in carbon disulfide (5.5 mL) 

was added dropwise a solution of NaHMDS (1M in THF, 956 mol, 0.960 mL) at 78 °C and 

the ensuing mixture was stirred at this temperature for 1 h. After dropwise addition of MeI 

(728 mg, 5.13 mmol, 320 L) at 78 °C, the reaction mixture was allowed to warm to 0 °C and 

was stirred for 3 h before the ice bath was removed. The reaction was stirred at room 

temperature for 30 min before carbon disulfide was evaporated in vacuo. Thus obtained residue 

was dissolved in EtOAc (50 mL) and washed with aqueous HCl solution (1M, 30 mL), water 

(30 mL) and brine (30 mL). The organic layer was dried over Na2SO4, filtered and concentrated 
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in vacuo to afford crude yellow oil. Subjection of this material to flash column chromatography 

 mg (128 mol, 55%) of 

xanthate II.68 as a yellow oil. 

Rf = 0.45, 1:3 EtOAc/hexanes.  

= 1.0 (c = 0.65, CHCl3).  

1H NMR (600 MHz, CDCl3): ppm = 8.52 (s, 1H, NH, 

H15), 7.93 (s, 1H, Ar-H, H10), 7.67 (q, 4J = 0.9 Hz, 1H, 

Ar-H, H4), 7.43 (s, 1H, Ar-H, H7), 7.15 7.13 (m, 2H, Ar-

H, H30), 6.72 6.70 (m, 2H, Ar-H, H31), 6.18 (dd, 
3J = 7.4 Hz, 3J = 4.4 Hz, 1H, CH, H18), 4.42 (d, 
2J = 11.4 Hz, 1H, CH2, H28), 4.37 (d, 2J = 11.4 Hz, 1H, 

CH2, H28), 3.99 (s, 3H, OCH3, H13), 3.95 (s, 3H, OCH3, 

H12), 3.79 (s, 3H, OCH3, H14), 3.70 (s, 3H, OCH3, H33), 

3.55 (dd, 2J = 9.4 Hz, 3J = 4.4 Hz, 1H, CH2, H20), 3.42 (dd, 2J = 9.4 Hz, 3J = 6.0 Hz, 1H, CH2, 

H20), 3.15 3.12 (m, 1H, CH, H17), 2.57 (s, 3H, SCH3, H26), 2.41 2.35 (m, 1H, CH, H19), 

2.39 (d, 4J = 0.6 Hz, 3H, CH3, H11), 1.87 (ddd, 2J = 13.6 Hz, 3J = 10.2 Hz, 3J = 5.0 Hz, 1H, 

CH2, H21), 1.75 1.66 (m, 1H, CH, H22), 1.39 1.33 (m, 1H, CH2, H21), 1.05 (d, 3J = 6.9 Hz, 

3H, CH3, H27), 0.94 0.88 (m, 6H, CH3, H23 and H24). 

13C NMR (150 MHz, CDCl3): ppm = 216.7 (CS, C25), 170.3 (CO, C16), 159.2 (Ar-Cq, C32), 

156.2 (Ar-Cq, C6), 150.9 (Ar-Cq, C9), 136.9 (Ar-Cq, C2), 130.2 (Ar-Cq, C5), 129.5 (2 x Ar-CH, 

C30), 129.4 (Ar-Cq, C29), 125.9 (Ar-Cq, C1), 122.9 (Ar-Cq, C3 or C8), 122.8 (Ar-Cq, C3 or C8), 

122.3 (Ar-Cq, C4), 113.8 (2 x Ar-CH, C31), 99.9 (Ar-CH, C7), 98.9 (Ar-CH, C10), 85.9 (CH, 

C18), 73.1 (CH2, C28), 72.2 (CH2, C20), 61.8 (OCH3, C14), 55.9 (OCH3, C13), 55.5 (OCH3, 

C12), 55.3 (OCH3, C33), 49.1 (CH, C17), 37.5 (CH2, C21), 36.6 (CH, C19), 26.2 (CH, C22), 

23.5 (CH3, C23 or C24), 22.0 (CH3, C23 or C24), 19.3 (SCH3, C26), 17.3 (CH3, C11), 13.9 

(CH3, C27). 

IR: /cm 1 = 3334 (w), 2955 (m), 1699 (m), 1612 (s), 1514 (s), 1502 (s), 1465 (m), 1410 (w), 

1374 (w), 1330 (m), 1247 (s), 1200 (s), 1052 (s). 

HRMS (ESI) calculated for C34H46O7NS2 [M H]+ 644.2710, found 644.2703. 
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Preparation of naphthoquinone II.7  

 

 

(2R,3R,4S)-N-(6-methoxy-7-methyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-5-[(4-methoxy 

phenyl) methoxy]-4-methyl-2-(2-methylpropyl)-3-{[(methylsulfanyl)methanethioyl]oxy 

pentanamide (II.7). To a magnetically stirred solution of hydroquinone II.68 (10.0 mg, 

15.5 mol) in MeCN (0.7 mL) and water (20.0 L) was added dropwise a solution of ceric 

ammonium nitrate (25.0 mg, 44.9 mol) in MeCN/water (1:1, 0.2 mL) at 0 °C. The ensuing 

mixture was stirred at this temperature for 25 min before EtOAc (10 mL) was added and the 

solution was washed with water, 10 mL), saturated aqueous NaHCO3 solution (10 mL) and 

brine (10 mL). The organic layer was dried over Na2SO4, filtered and concentrated in vacuo to 

afford crude yellow oil. Subjection of this material to a quick flash column chromatography 

 mg (15.4 mol, 99%) of 

naphthoquinone II.7 as a yellow oil. 

Rf = 0.36, 1:3 EtOAc/hexanes.  

=  (c = 1.0, CH2Cl2).  

1H NMR (400 MHz, CDCl3): ppm = 9.27 (s, 1H, NH, 

H13), 7.87 (q, 4J = 0.8 Hz, 1H, Ar-H, H4), 7.74 (s, 1H, CH, 

H10), 7.45 (s, 1H, Ar-H, H7), 7.26 7.23 (m, 2H, Ar-H, 

H28), 6.81-6.78 (m, 2H, Ar-H, H29), 6.08 (dd, 3J = 8.0 Hz, 
3J = 4.0 Hz, 1H, CH, H16), 4.56 (d, 2J = 11.7 Hz, 1H, CH2, 

H26), 4.43 (d, 2J = 11.7 Hz, 1H, CH2, H26), 3.99 (s, 3H, 

OCH3, H12), 3.73 (s, 3H, OCH3, H31), 3.48 (dd, 2J = 9.5 Hz, 
3J = 4.1 Hz, 1H, CH2, H18), 3.39 (dd, 2J = 9.5 Hz, 
3J = 6.7 Hz, 1H, CH2, H18), 3.17 (ddd, 3J = 9.2 Hz, 3J = 4.5 Hz, 3J = 4.5 Hz, 1H, CH, H15), 

2.58 (s, 3H, SCH3, H25), 2.31 (d, 4J = 0.5 Hz, 3H, CH3, H11), 2.31 2.26 (m, 1H, CH, H17), 

1.77 (ddd, 2J = 13.6 Hz, 3J = 9.7 Hz, 3J = 5.4 Hz, 1H, CH2, H20), 1.62 1.54 (m, 1H, CH, H21), 

1.34 (ddd, 2J = 13.5 Hz, 3J = 8.5 Hz, 3J = 4.9 Hz, 1H, CH2, H20), 0.99 (d, 3J = 6.9 Hz, 3H, CH3, 

H19), 0.88 0.85 (m, 6H, CH3, H22 and H23). 
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13C NMR (100 MHz, CDCl3): ppm = 216.7 (CS, C24), 186.0 (CO, C9), 180.2 (CO, C2), 171.9 

(CO, C14), 163.2 (Ar-Cq, C6), 159.2 (Ar-Cq, C30), 140.3 (Cq, C1), 132.9 (Ar-Cq, C8), 132.7 

(Ar-Cq, C5), 130.0 (Ar-Cq, C27), 129.4(0) (2 x Ar-CH, C28), 129.3(7) (Ar-CH, C4), 123.2 (Ar-

Cq, C3), 116.7 (CH, C10), 113.9 (2 x Ar-CH, C29), 106.7 (Ar-CH, C7), 85.4 (CH, C16), 73.1 

(CH2, C26), 72.0 (CH2, C18), 56.3 (OCH3, C12), 55.3 (OCH3, C31), 49.1 (CH2, C15), 37.2 

(CH2, C20), 36.8 (CH, C17), 26.2 (CH, C21), 23.2 (CH3, C22 or C23), 22.1 (CH3, C22 or C23), 

19.2 (SCH3, C25), 16.7 (CH3, C11), 14.2 (CH3, C19). 

IR: /cm 1 = 2957 (m), 1662 (m), 1594 (m), 1500 (s), 1350 (s), 1241 (m), 1208 (m), 1053 (s). 

HRMS (ESI) calculated for C32H39O7NS2Na [M Na]+ 636.2060, found 636.2053. 

Preparation of naphthoquinone II.72  

 

 

(2R,4R)-2-isobutyl-N-(6-methoxy-7-methyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-5-((4-

methoxy benzyl)oxy)-4-methylpentanamide (II.72). To a magnetically stirred solution of 

azobisisobutyronitrile (3.00 mg, 16.3 mol) and tributyltin hydride (474 mg, 1.63 mmol, 

0.44 mL) in dry toluene (2 mL) was added a solution of naphthoquinone II.7 (10.0 mg, 

16.3 mol) in dry toluene (2 mL) at 80 °C over a period of 2 h. The ensuing mixture was stirred 

at this temperature for 5 h and after it was cooled to room temperature, MeCN (10 mL) was 

added. Thus obtained solution was washed with hexanes (3 x 10 mL) and concentrated in vacuo 

to afford crude yellow oil. Subjection of this material to flash column chromatography 

 mg (11.8 mol, 72%) of the 

Barton-McCombie product II.72 as a yellow oil, which still showed traces of impurities in the 

NMR spectra. 

Rf = 0.49, 1:3 EtOAc/hexanes.   

1H NMR (600 MHz, CDCl3): ppm = 8.97 (s, 1H NH, H13) 

7.85 (d, 4J = 0.7 Hz, 1H, Ar-H, H4), 7.79 (s, 1H, CH, H10), 

7.46 (s, 1H, Ar-H, H7), 7.31 7.29 (m, 2H, Ar-H, H26), 6.88

6.86 (m, 2H, Ar-H, H27), 4.68 (d, 2
J = 11.9 Hz, 1H, CH2, 

H24), 4.46 (d, 2J = 11.9 Hz, 1H, CH2, H24), 3.99 (s, 3H, 
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OCH3, H12), 3.79 (s, 3H, OCH3, H29), 3.34 (dd, 2J = 9.0 Hz, 3J = 4.0 Hz, 1H, CH2, H18), 3.25 

(dd, 2J = 8.0 Hz, 3J = 8.0 Hz, 1H, CH2, H18), 2.83 2.78 (m, 1H, CH, H15), 2.31 (s, 3H, CH3, 

H11), 1.87 1.79 (m, 1H, CH, H7), 1.71 1.60 (m, 2H, CH2, H16 and H19), 1.54 1.50 (m, 1H, 

CH, H20), 1.45 1.40 (m, 1H, CH2, H16), 1.23 1.18 (m, 1H, CH2, H19), 0.89 0.83 (m, 9H, 

CH3, H21, H22 and H23). 

13C NMR (150 MHz, CDCl3): ppm = 186.0 (CO, C9), 180.4 (CO, C2), 176.9 (CO, C14), 

163.3 (Ar-Cq, C6), 159.4 (Ar-Cq, C28), 140.3 (Ar-Cq, C1), 132.9 (Ar-Cq, C8), 132.7 (Ar-Cq, 

C5), 130.4 (Ar-Cq, C25), 129.8 (2 x Ar-CH, C26), 129.3 (Ar-CH, C4), 123.3 (Ar-Cq, C3), 116.5 

(Ar-CH, C10), 114.0 (2 x Ar-CH, C27), 106.7 (Ar-CH, C7), 76.4 (CH2, C18), 73.2 (CH2, C24), 

56.3 (OCH3, C12), 55.4 (OCH3, C29), 44.6 (CH, C15), 42.6 (CH2, C19), 40.4 (CH2, C16), 31.6 

(CH, C17), 26.2 (CH, C20), 23.2 (CH3, C21 or C22), 22.5 (CH3, C21 or C22), 18.5 (CH3, C23), 

16.6 (CH3, C11). 

IR: /cm 1 = 2956 (s), 2870 (s), 1707 (s), 1662 (m), 1594 (m), 1496 (s), 1323 (s), 1241 (s), 1167 

(s), 1065 (s), 1033 (s). 

HRMS (ESI) calculated for C30H38O6N [M H]+ 508.2694, found 508.2694. 

Preparation of alcohol II.75 

 

 

(3R,4R)-4-((S)-1-Hydroxypropan-2-yl)-3-isobutyloxetan-2-one (II.75). To a magnetically 

stirred biphasic solution of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (326 mg, 1.44 mmol) in 

CH2Cl2 (10 mL) and water (20 mL) was added dropwise a solution of PMB-ether II.63 

(200 mg, 653 mol) in CH2Cl2 (10 mL) at 0 °C. The reaction was stirred at room temperature 

for 3 h before aqueous saturated NaHCO3/Na2SO3 solution (1:1 mixture, 40 mL) was added and 

the mixture was stirred until all solid components completely dissolved. Then, the layers were 

separated and the aqueous phase was extracted with CH2Cl2 (3 x 30 mL). The combined organic 

layers were dried over Na2SO4, filtered and concentrated in vacuo. Thus obtained crude material 

/hexanes, gradient elution) 

providing 85.0 mg (456 mol, 70%) of alcohol II.75 as a yellow oil. 

Rf = 0.67, 1:2 EtOAc/hexanes.  
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= 43.0 (c = 1.0, CHCl3).  

1H NMR (600 MHz, CDCl3): ppm = 4.22 (dd, 3J = 6.7 Hz, 3J = 4.0 Hz, 1H, 

CH, H3), 3.69 (dd, 2J = 10.7 Hz, 3J = 4.9 Hz, 1H, CH2, H5), 3.60 (dd, 
2J = 10.7 Hz, 2J = 7.2 Hz, 1H, CH2, H5), 3.49 (ddd, 3J = 8.3 Hz, 3J = 7.2 Hz, 
3J = 4.0 Hz, 1H, CH, H2), 2.08 2.01 (m, 1H, CH, H4), 1.81 1.73 (m, 2H, CH 

and CH2, H6 and H7), 1.67 1.61 (m, 1H, CH2, H6), 1.50 (s, 1H, OH, H11), 1.05 (d, 3J = 6.9 Hz, 

3H, CH3, H10), 0.95 0.93 (m, 6H, CH3, H8 and H9). 

 13C NMR (150 MHz, CDCl3): ppm = 172.1 (CO, C1), 80.5 (CH, C3), 64.5 (CH2, C5), 52.6 

(CH, C2), 39.2 (CH, C4), 37.6 (CH2, C6), 26.3 (CH, C7), 22.7 (CH3, C8 or C9), 22.5 (CH3, C8 

or C9), 11.7 (CH3, C10). 

IR: /cm 1 = 3464 (w), 2960 (w), 2874 (w), 1807 (s), 1468 (w), 1388 (w), 1216 (w), 1130 (m), 

1080 (w), 1041 (m). 

HRMS (ESI) calculated for C10H17O3 [M H]  185.1173, found 185.1183. 

Preparation of ethyl ester II.85
[97]

 

 

 

(E)-Ethyl 5-hydroxy-2-methylpent-2-enoate (II.85). To a magnetically stirred solution of 1,3-

propanediol II.84 (2.94 g, 38.7 mmol, 280 mL) in dry CH2Cl2 (900 mL) was added 

(carbethoxyethylidene)triphenylphosphorane (25.0 g, 69.0 mmol) followed by manganese 

dioxide (51.7 g, 600 mmol) and the ensuing mixture was stirred at room temperature for 4 d. 

After being filtered over Celite, the solvent was evaporated in vacuo and thus obtained crude 

m

gradient elution) providing 4.04 g (25.5 mmol, 66%) of a single diastereoisomer of ethyl ester 

II.85 as colorless oil. 

Rf = 0.17, 1:3 EtOAc/hexanes.  

1H NMR (600 MHz, CDCl3): ppm = 6.77 (tq, 3J = 7.4 Hz, 4J = 1.5 Hz, 

1H, CH, H3), 4.18 (q, 3J = 7.1 Hz, 2H, CH2, H8), 3.75 (t, 3J = 6.5 Hz, 2H, 

CH2, H5), 2.49 2.41 (m, 2H, CH2, H4), 1.86 (dt, 4J = 1.4 Hz, 5J = 1.0 Hz, 3H, CH3, H7), 1.77 

(br s, 1H, OH, H6), 1.28 (t, 3J = 7.1 Hz, 3H, CH3, H9). 
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13C NMR (150 MHz, CDCl3): ppm = 168.2 (CO, C1), 137.9 (CH, C3), 130.3 (Cq, C2), 61.6 

(CH2, C5 or C8), 60.7 (CH2, C5 or C8), 32.2 (CH2, C4), 14.4 (CH3, C7 or C9), 12.7 (CH3, C7 or 

C9). 

IR: /cm 1 = 3416 (m), 2931 (m), 2361 (w), 1705 (s), 1649 (m), 1445 (w), 1367 (m), 1250 (s), 

1191 (m), 1129 (s), 1039 (s). 

HRMS (EI) calculated for C8H14O3 [M]+ 158.0943, found 158.0940. 

Preparation of acid II.86  

 

 

(E)-5-Hydroxy-2-methylpent-2-enoic acid (II.86). A solution of ethyl ester II.85 (1.47 g, 

9.29 mmol) and KOH (1.09 g, 19.5 mmol) in methanol/water (1:1, 88 mL) was stirred at 80 °C 

for 3h. After being cooled to room temperature, the mixture was washed with EtOAc 

(2 x 100 mL) and the organic phase was discarded. The aqueous phase was acidified with 

aqueous HCl solution (1M) to pH = 1 and extracted with EtOAc (4 x 150 mL). The combined 

organic layers were dried over Na2SO4, filtered and concentrated in vacuo providing 1.19 g 

(9.14 mmol, 98%) of acid II.86 as a white solid. 

Rf = 0.1, 1:1 EtOAc/hexanes.  

mp: 55.3 57.0 °C (EtOAc). 

1H NMR (600 MHz, CDCl3): ppm = 6.92 (tq, 3J = 7.4 Hz, 4J = 1.4 Hz, 1H, 

CH, H3), 3.78 (t, 3J = 6.4 Hz, 2H, CH2, H5), 2.49 (td, 3J = 7.3 Hz, 
3J = 0.8 Hz, 2H, CH2, H4), 1.87 1.86 (m, 3H, CH3, H7). 

13C NMR (150 MHz, CDCl3): ppm = 172.9 (COOH, C1), 140.8 (CH, C3), 129.6 (Cq, C2), 

61.4 (CH2, C5), 32.4 (CH2, C4), 12.4 (CH3, C7). 

IR: /cm 1 = 3450 (m), 2953 (m), 2632 (w), 1680 (s), 1375 (m), 1241 (s), 1139 (m), 1041 (s). 

HRMS (EI) calculated for C6H10O3 [M]+ 130.0630, found 130.0625. 
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Preparation of TBS ether II.82 

 

 

(E)-5-((Tert-butyldimethylsilyl)oxy)-2-methylpent-2-enoic acid (II.82). To a magnetically 

stirred solution of free hydroxyacid II.86 (3.23 g, 24.7 mmol) and 2,6-lutidine (7.42 g, 

69.3 mmol, 8.07 mL) in dry CH2Cl2 (320 mL) was added dropwise tert-butyldimethylsilyl 

triflate (15.7 g, 59.4 mmol, 13.7 mL) at 0 °C. The reaction was stirred for 10 min and then 

warmed to room temperature. Stirring was continued for an additional 10 min. After addition of 

EtOAc (600 mL), the organic phase was washed with aqueous HCl solution (1M, 400 mL) and 

brine (300 mL), dried over Na2SO4, filtered and concentrated in vacuo. Thus obtained crude 

TBS ester II.87 was dissolved in MeOH (100 mL) and after being cooled to 0 °C, K2CO3 

(3.76g, 27.2 mmol) was added in one portion. Then, the mixture was stirred at 0 °C for 10 min 

and warmed to room temperature, and stirring was continued for an additional 1 h. After 

addition of EtOAc, the mixture was washed with aqueous HCl solution (1M, 300 mL) and brine 

(300 mL). The organic layer was dried over Na2SO4, filtered and concentrated in vacuo 

providing 7.86 g (3.22 mmol, 100%) of acid II.82 as a colorless oil. 

(E)-Tert-butyldimethylsilyl 5-((tert-butyldimethylsilyl)oxy)-2-methylpent-2-enoate (II.87). 

Colorless oil. 

Rf = 0.9, 1:1 EtOAc/hexanes.  

1H NMR (300 MHz, CDCl3): ppm = 6.82 (tq, 3J = 7.4 Hz, 
4J = 1.4 Hz, 1H, CH, H3), 3.70 (t, 3J = 6.5 Hz, 2H, CH2, H5), 

2.43 2.36 (m, 2H, CH2, H4), 1.83 (d, 4J = 1.3 Hz, 3H, CH3, H6), 

0.95 (s, 9H, CH3, H12), 0.88 (s, 9H, CH3, H9), 0.28 (s, 6H, SiCH3, H10), 0.05 (s, 6H, SiCH3, 

H7). 

13C NMR (75 MHz, CDCl3): ppm = 168.3 (CO, C1), 139.9 (CH, C3), 130.5 (Cq, C2), 61.8 

(CH2, C5), 32.7 (CH2, C4), 26.0 (3 x CH3, C9), 25.8 (3 x CH3, C12), 18.4 (Cq, C11), 17.9 (Cq, 

C8), 12.8 (CH3, C6), 4.7 (2 x SiCH3, C10), 5.2 (2 x SiCH3, C7). 

IR: /cm 1 = 2956 (w), 2859 (w), 1690 (m), 1472 (w), 1288 (m), 1252 (s), 1099 (s). 

HRMS (EI) calculated for C18H38O2
28Si2 [M O+H]+ 343.2483, found 343.2410. 
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(E)-5-((Tert-butyldimethylsilyl)oxy)-2-methylpent-2-enoic acid (II.82). 

Colorless oil. 

Rf = 0.46, 1:1 EtOAc/hexanes.  

1H NMR (600 MHz, CDCl3): ppm = 6.93 (tq, 3J = 7.4 Hz, 
4J = 1.4 Hz, 1H, CH, H3), 3.72 (t, 3J = 6.6 Hz, 2H, CH2, H5), 

2.43 2.41 (m, 2H, CH2, H4), 1.86 (d, 4J = 1.4 Hz, 3H, CH3, H6), 0.89 (s, 9H, CH3, H9), 0.06 (s, 

6H, CH3, H7). 

13C NMR (75 MHz, CDCl3): ppm = 173.4 (CO, C1), 141.7 (CH, C3), 128.6 (Cq, C2), 61.7 

(CH2, C5), 32.8 (CH2, C4), 26.0 (3 x CH3, C9), 18.5 (Cq, C8), 12.4 (CH3, C6), 5.2 (2 x SiCH3, 

C7). 

IR: /cm 1 = 2956 (w), 2858 (w), 1687 (m), 1421 (w), 1288 (w), 1257 (w), 1100 (m), 905 (s). 

HRMS (ESI) calculated for C12H23O3
28Si [M H]  243.1422, found 243.1422. 

Preparation of MOM ether II.89
[98]

  

 

 

3-(Methoxymethoxy)prop-1-ene (II.89). To a magnetically stirred solution of allyl alcohol 

(14.4 g, 248 mmol, 16.9 mL) in dry diisopropylethylamine (63 mL) was added dropwise 

chloromethyl methyl ether II.88 (25.0 g, 311 mmol, 23.6 mL) at 0 °C. The reaction was warmed 

to room temperature and stirred for 48 h before water (150 mL) was added. The aqueous phase 

was extracted with diethyl ether (3 x 50mL) and the combined organic layers were washed with 

water (3 x 100 mL) and brine (100 mL), dried over Na2SO4 and filtered. Thus obtained solution 

was subjected to several fractional distillations over a 10 cm vacuum isolated Vigreux column, 

providing 10.1 g (98.9 mmol, 40%) of MOM ether II.89 as a colorless liquid, which was still 

contaminated with traces of DIPEA. The product is sensitive to silica and could not be purified 

any further using flash column chromatography. 

bp: 70 75 °C. 

1H NMR (300 MHz, CDCl3): ppm =5.92 5.73 (m, 1H, CH, H2), 5.26 5.14 

(m, 1H, CH, H1), 5.14 5.04 (m, 1H, CH, H1), 4.55 (s, 2H, CH2, H4), 3.97 
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(ddd, 3J = 5.7 Hz, 4J = 1.4 Hz, 4J = 1.4 Hz, 2H, CH2, H3), 3.28 (s, 3H, OCH3, H5). 

13C NMR (75 MHz, CDCl3): ppm = 134.5 (CH, C2), 117.3 (CH, C1), 95.8 (CH2, C4), 68.4 

(CH2, C3), 55.4 (CH3, C5). 

IR: /cm 1 = 2933 (w), 2824 (w), 1649 (w), 1453 (w), 1402 (w), 1213 (w), 1145 (m), 1105 (m), 

1050 (s). 

HRMS (EI) calculated for C5H9O2 [M
+ 101.0597, found 101.0614. 

Preparation of alcohol II.83 

 

 

(3S,4S)-3-(Methoxymethoxy)-6-methylhepta-1,5-dien-4-ol (II.83). To a magnetically stirred 

solution of methoxymethyl allyl ether II.89 (9.00 g, 88.1 mmol) in dry THF (36 mL) was added 

slowly sec-BuLi solution (1.4M in cyclohexane, 62.9 mL, 88.1 mmol) at 78 °C. After the 

resultant orange-yellow mixture was stirred at 78 °C for 1 h, (+)-B-

methoxydiisopinocamphenylborane (23.2 g, 73.4 mmol) solution in dry THF (73 mL) was 

added via a cannula. Then, the mixture was stirred at 78 °C for an additional 1 h and 

subsequently, boron trifluoride etherate (13.6 g, 95.5 mmol, 12.1 mL) followed by 3-

methylcroton aldehyde (6.17 g, 73.4 mmol, 7.10 mL) were added dropwise. The mixture was 

slowly warmed to room temperature over the time course of 12 h, before aqueous saturated 

NaHCO3 solution (160 mL) and aqueous H2O2 solution (30wt%, 100 mL) were added at 0 °C 

and the reaction was stirred for an additional 30 min at room temperature. After addition of 

diethyl ether (160 mL), the layers were separated and the aqueous phase was extracted with 

diethyl ether (2 x 100 mL). The combined organic layers were dried over Na2SO4, filtered and 

concentrated in vacuo. Thus obtained crude material was subjected to flash column 

tion) providing 9.31 g 

(50.0 mmol, 68%, er = 92 : 8; II.83a : II.83b) of alcohol II.83 as a colorless oil. 

The enantiomeric ratio (er) was measured on chiral HPLC (Nucleocel DELTA S, 250 x 4.6 mm, 

isocratic elution, hexanes (A)/i-propanol (B), 95% A, flow rate: 1 mL/min, detection at 210 nm, 

tR(II.83a) = 5.65 min, tR(II.83b) = 6.48 min). 

Rf = 0.31, 1:3 EtOAc/hexanes.  
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=  (c = 1.25, CHCl3).  

1H NMR (300 MHz, CDCl3): ppm = 5.66 (ddd, 3J = 17.6 Hz, 
3J = 10.3 Hz, 3J = 7.3 Hz, 1H, CH, H2), 5.32 5.27 (m, 1H, CH, H1b), 

5.26 5.24 (m, 1H, CH, H1a), 5.18 5.15 (m, 1H, CH, H5), 4.75 (d, 
2J = 6.6 Hz, 1H, CH2, H9), 4.63 (d, 2J = 6.6 Hz, 1H, CH2, H9), 4.31 4.25 

(m, 1H, CH, H4), 3.90 (dd, 3J = 7.4 Hz, 3J = 7.3 Hz, 1H, CH, H3), 3.41 (s, 3H, CH3, H10), 2.62 

(d, 3J = 2.7 Hz, 1H, OH, H11), 1.74 (d, 3J = 1.3 Hz, 3H, CH3, H7), 1.69 (d, 3J = 1.3 Hz, 3H, 

CH3, H8). 

13C NMR (75 MHz, CDCl3): ppm = 138.1 (Cq, C6), 134.6 (CH, C2), 123.1 (CH, C5), 119.3 

(CH2, C1), 94.6 (CH2, C9), 81.7 (CH, C3), 70.8 (CH, C4), 55.9 (CH3, C10), 26.1 (CH3, C7), 

18.9 (CH3, C8). 

IR: /cm 1 = 3432 (w), 2912 (w), 1677 (w), 1443 (w), 1376 (w), 1257 (w), 1214 (w), 1150 (m), 

1098 (m), 1030 (s), 920 (s). 

HRMS (EI) calculated for C10H17O2 [M
+ 169.1229, found 169.1250. 

Proof of stereochemistry: Preparation of the R- and S-MTPA-methyl esters R-II.96 and S-

II.96: 

 

(R)-(3S,4S)-3-(methoxymethoxy)-6-methylhepta-1,5-dien-4-yl 3,3,3-trifluoro-2-methoxy-2-

phenyl propanoate (R-II.96). To a magnetically stirred solution of alcohol II.83 (10.0 mg, 

53.7 mol), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride salt (51.5 mg, 

331 mol) and 4-dimethylaminopyridine (19.7 mg, 161 mol) in dry CH2Cl2 (1 mL) was added 

dropwise a solution of (R)- -methoxy- -trifluoromethylphenylacetic acid (R-MTPA) (25.2 mg, 

108 mol) in dry CH2Cl2 (0.5 mL) and the resulting mixture was stirred at room temperature 

overnight. After addition of water (3 mL) and EtOAc (3 mL), the layers were separated and the 

aqueous layer was extracted with EtOAc (3 x 4 mL). The combined organic fractions were 

washed with brine (6 mL), dried over Na2SO4, filtered and concentrated in vacuo. Thus obtained 

crude material was subjected to flash column chromatography (1:10 EtOAc/hexanes) providing 

6.50 mg (16.2 mmol, 30%) of R-MTPA-ester R-II.96 as a colorless oil. 
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R-II.96: (R)-(3S,4S)-3-(methoxymethoxy)-6-methylhepta-1,5-dien-4-yl 3,3,3-trifluoro-2-

methoxy-2-phenyl propanoate. 

1H NMR (600 MHz, CDCl3): ppm = 7.62 7.48 (m, 2H), 7.41 7.34 (m, 3H), 5.76 5.72 (m, 

1H), 5.65 5.49 (m, 1H), 5.30 5.21 (m, 2H), 5.21 5.13 (m, 1H), 4.49 (d, 2J = 6.7 Hz, 1H), 4.38 

(d, 2J = 6.7 Hz, 1H), 4.15 4.04 (m, 1H), 3.57 (s, 3H), 3.13 (s, 3H), 1.80 (d, 4J = 1.3 Hz, 3H), 

1.76 (d, 4J = 1.3 Hz, 3H). 

In entirely analogous fashion, the S-MTPA-ester S-II.96 was prepared using S-MTPA: 

S-II.96: (S)-(3S,4S)-3-(methoxymethoxy)-6-methylhepta-1,5-dien-4-yl 3,3,3-trifluoro-2-

methoxy-2-phenyl propanoate. 

1H NMR (600 MHz, CDCl3): ppm = 7.56 7.49 (m, 2H), 7.40 7.35 (m, 3H), 5.72 5.67 (m, 

1H), 5.64 (ddd, 3J = 17.6 Hz, 3J = 10.4 Hz, 3J = 7.3 Hz, 1H), 5.36 5.23 (m, 2H), 5.06 5.00 (m, 

1H), 4.67 (d, 2J = 6.7 Hz, 1H), 4.56 (d, 2J = 6.7 Hz, 1H), 4.15 (dd, 3J = 7.4 Hz, 3J = 7.4 Hz, 1H), 

3.53 (s, 3H), 3.29 (s, 3H), 1.80 (d, 4J = 1.2 Hz, 3H), 1.73 (d, 4J = 1.2 Hz, 3H). 

Preparation of ester II.97  

 

 

(E)-(3S,4S)-3-(Methoxymethoxy)-6-methylhepta-1,5-dien-4-yl 5-((tert-butyldimethyl silyl) 

oxy)-2-methylpent-2-enoate (II.97). To a magnetically stirred solution of acid II.82 (100 mg, 

409 mol) in dry toluene (12 mL) were added 2,4,6-trichlorobenzoyl chloride (149 mg, 

614 mol, 96.9 L) and triethylamine (83.0 mg, 818 mol, 120 L). After the resultant mixture 

was stirred at room temperature for 1.5 h, a solution of alcohol II.83 (76.0 mg, 409 mol) in dry 

toluene (17 mL) was added via a cannula. The reaction was stirred for 6 h at room temperature 

before EtOAc (50 mL) and aqueous pH-7-phosphate buffer (0.1M, 30 mL) were added. Then, 

the layers were separated and the aqueous phase was extracted with EtOAc (2 x 30 mL). The 

combined organic layers were washed with brine (100 mL), dried over Na2SO4, filtered and 

concentrated in vacuo. Thus obtained crude material was subjected to flash column 

chromatography (1:20 EtOAc/hexanes) providing 132 mg (320 mol, 78%) of ester II.97 as a 

colorless oil. 
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Rf = 0.65, 1:3 EtOAc/hexanes.  

=  (c = 1.0, CHCl3).  

1H NMR (600 MHz, CDCl3): ppm = 6.79 (ddq, 3J = 7.4 Hz, 
3J = 7.4 Hz, 4J = 1.4 Hz, 1H, CH, H13), 5.70 (ddd, 3J = 17.4 Hz, 
3J = 10.5 Hz, 3J = 7.1 Hz, 1H, CH, H2), 5.64 (dd, 3J = 9.4 Hz, 
3J = 6.5 Hz, 1H, CH, H4), 5.32 5.25 (m, 2H, CH2, H1), 5.17 5.15 

(m, 1H, CH, H5), 4.68 (d, 2J = 6.7 Hz, 1H, CH2, H21), 4.59 (d, 
2J = 6.7 Hz, 1H, CH2, H9), 4.17 (dd, 3J = 6.8 Hz, 3J = 6.8 Hz, 1H, 

CH, H3), 3.70 3.68 (m, 2H, CH2, H15), 3.35 (s, 3H, OCH3, H10), 2.41 2.37 (m, 2H, CH2, 

H14), 1.85 (d, 4J = 1.3 Hz, 3H, CH3, H20), 1.76 (d, 4J = 1.3 Hz, 3H, CH3, H8), 1.73 (d, 
4J = 1.3 Hz, 3H, CH3, H7), 0.89 (s, 9H, CH3, H18), 0.05 (s, 6H, SiCH3, H16 and H17). 

13C NMR (150 MHz, CDCl3): ppm = 167.2 (CO, C11), 139.3 (Cq, C6), 138.8 (CH, C13), 

134.2 (CH, C2), 129.5 (Cq, C12), 120.1 (CH, C5), 119.1 (Cq, C1), 94.3 (CH2, C9), 78.4 (CH, 

C3), 72.6 (CH, C4), 61.9 (CH2, C15), 55.6 (OCH3, C10), 32.6 (CH2, C14), 26.1 (4 x CH3, C7 

and C18), 18.9 (CH3, C8), 18.5 (Cq, C19), 12.8 (CH3, C20), 5.2 (2 x SiCH3, C16 and C17). 

IR: /cm 1 = 2956 (w), 2859 (w), 1740 (s), 1710 (m), 1580 (w), 1446 (w), 1373 (m), 1230 (s), 

1151 (m), 1100 (s), 1044 (s). 

HRMS (ESI) calculated for C22H40O5
28SiNa [M Na]+ 435.2543, found 435.2545. 

Preparation of alcohol II.98 

 

 

(E)-(3S,4S)-3-(Methoxymethoxy)-6-methylhepta-1,5-dien-4-yl 5-hydroxy-2-methylpent-2-

enoate (II.98). To a magnetically stirred solution of TBS ether II.97 (600 mg, 1.45 mmol) in 

dry THF (25 mL) was added tetra-N-butylammonium fluoride solution (1M in THF, 

3.18 mmol, 3.18 mL) at 0 °C. The reaction was stirred for 1 h at room temperature before pH-7-

phosphate buffer (0.1M, 30 mL) was added. Then, the mixture was extracted with EtOAc 

(3 x 30 mL) and the combined organic layers were washed with brine (70 mL), dried over 

Na2SO4, filtered and concentrated in vacuo. Thus obtained crude material was subjected to flash 
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tion) providing 363 mg 

(1.22 mmol, 84%) of alcohol II.98 as a colorless oil. 

Rf = 0.25, 1:3 EtOAc/hexanes.  

=  (c = 0.5, CHCl3).  

1H NMR (600 MHz, CDCl3): ppm = 6.79 (ddq, 3J = 7.4 Hz, 
3J = 7.4 Hz, 4J = 1.3 Hz, 1H, CH, H13), 5.69 (ddd, 3J = 17.5 Hz, 
3J = 10.4 Hz, 3J = 7.2 Hz, 1H, CH, H2), 5.64 (dd, 3J = 9.5 Hz, 
3
J = 6.7 Hz, 1H, CH, H4), 5.32 5.26 (m, 2H, CH2, H1), 5.17 5.15 (m, 

1H, H5), 4.68 (d, 2J = 6.8 Hz, 1H, CH2, H17), 4.59 (d, 2J = 6.7 Hz, 1H, 

CH2, H9), 4.17 (dd, 3J = 6.9 Hz, 3J = 6.9 Hz, 1H, CH, H3), 3.76 3.73 (m, 

2H, CH2, H15), 3.35 (s, 3H, OCH3, H10), 2.47 2.44 (m, 2H, CH2, H14), 1.87 (s, 3H, CH3, 

H16), 1.77 (d, 4J = 1.0 Hz, 3H, CH3, H8), 1.74 (s, 3H, CH3, H7). 

13C NMR (150 MHz, CDCl3): ppm = 167.1 (CO, C11), 139.5 (Cq, C6), 138.0 (CH, C13), 

134.1 (CH, C2), 130.5 (Cq, C12), 120.0 (CH, C5), 119.2 (Cq, C1), 94.2 (CH2, C9), 78.4 (CH, 

C3), 72.8 (CH, C6), 61.6 (CH2, C15), 55.6 (OCH3, C10), 32.4 (CH2, C14), 26.1 (CH3, C7), 18.9 

(CH3, C8), 12.8 (CH3, C16). 

IR: /cm 1 = 3454 (w), 2933 (w), 2888 (w), 1820 (w), 1707 (m), 1649 (w), 1442 (w), 1324 (w), 

1265 (m), 1150 (m), 1099 (m), 1026 (s). 

HRMS (ESI) calculated for C16H26O5Na [M Na]+ 321.1672, found 321.1672. 

Preparation of acid II.8  

 

 

(E)-5-(((3S,4S)-3-(Methoxymethoxy)-6-methylhepta-1,5-dien-4-yl)oxy)-4-methyl-5-

oxopent-3-enoic acid (II.8). To a magnetically stirred solution of alcohol II.98 (105 mg, 

352 mol) in acetone (5 mL) was added dropwise as much of freshly prepared Jones reagent 

(8N) at 0 °C until the reaction mixture maintained orange (ca. 1.4 mL). After the mixture was 

stirred at 0 °C for 30 min, water (20 mL) was added and the solution was extracted with EtOAc 
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(3 x 20 mL). The combined organic layers were washed with water (20 mL) and brine (20 mL), 

dried over Na2SO4, filtered and concentrated in vacuo providing 101 mg (323 mol, 92%) of the 

free acid II.8 as a colorless oil. The product is sensitive to silica and could not be purified any 

further using flash column chromatography. 

Rf = 0.33, 1:1 EtOAc/hexanes.  

= 18.3 (c = 0.5, CHCl3).  

The product exists in CDCl3 solution as a mixture of two double bond isomers. Only the major 

isomer was characterized. 

1H NMR (600 MHz, CDCl3): ppm = 6.90 (dd, 3J = 6.6 Hz, 3J = 6.6 Hz, 

1H, CH, H13), 5.71 5.63 (m, 2H, CH, H2 and H4), 5.33 5.26 (m, 2H, 

CH2, H1), 5.18 5.15 (m, 1H, CH, H5), 4.68 (d, 2J = 6.8 Hz, 1H, CH2, 

H9), 4.57 (d, 2J = 6.8 Hz, 1H, CH2, H9), 4.18 (dd, 3J = 6.9 Hz, 
3J = 6.9 Hz, 1H, CH, H3), 3.35 (s, 3H, OCH3, H10), 3.27 3.26 (m, 2H, 

CH2, H14), 1.86 (s, 3H, CH3, H16), 1.75 (d, 4J = 1.1 Hz, 3H, CH3, H8), 

1.72 (d, 4J = 1.1 Hz, 3H, CH3, H7). 

13C NMR (150 MHz, CDCl3): ppm = 175.7 (CO, C11), 166.6 (COOH, C15), 139.7 (Cq, C6), 

134.0 (CH, C2), 131.9 (CH, C13), 131.6 (Cq, C12), 119.8 (CH, C5), 119.4 (CH2, C1), 94.1 

(CH2, C9), 78.3 (CH, C3), 73.1 (CH, C4), 55.6 (OCH3, C10), 33.9 (CH2, C14), 26.1 (CH3, C7), 

18.9 (CH3, C8), 13.0 (CH3, C16). 

IR: /cm 1 = 2935 (w), 1708 (s), 1441 (w), 1386 (w), 1250 (s), 1118 (s), 1025 (s). 

HRMS (ESI) calculated for C16H23O6 [M H]  311.1500, found 311.1502. 

Preparation of imide II.100
[104a]

  

 

 

(R,E)-1-(Pent-2-enoyl)-5-((trityloxy)methyl)pyrrolidin-2-one (II.100). To a magnetically 

stirred solution of amide II.99 (16.7 g, 46.7 mmol) in dry THF (200 mL) at 78 °C was added 

dropwise a solution of n-BuLi (2.5M in hexanes, 58.4 mmol, 23.4 mL). The ensuing mixture 
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was stirred at 78 °C for 30 min. In the meantime, in a separate flask, to a solution of trans-2-

pentenoic acid (5.85 g, 58.4 mmol, 5.90 mL) in dry THF (300 mL) was added freshly distilled 

NEt3 (8.27 g, 81.8 mmol, 11.3 mL) followed by pivaloyl chloride (7.75 g, 64.2 mmol, 7.90 mL) 

at 0 °C. After this mixture was stirred at 0 °C for 30 min, thus obtained acid anhydride was 

added slowly to the amide anion at 78 °C. The reaction mixture was warmed to room 

temperature over a 2 h period, before aqueous saturated NH4Cl solution (500 mL) was added. 

The layers were separated and the aqueous layer was extracted with EtOAc (2 x 300 mL). The 

combined organic layers were washed with saturated aqueous NaHCO3 solution (400 mL), 

water (400 mL) and brine (400 mL), dried over Na2SO4, filtered and concentrated in vacuo to 

afford crude colorless oil. Subjection of this material to flash column chromatography 

/hexanes, gradient elution) provided 17.6 g (40.0 mmol, 86%) of imide 

II.100 as a white solid. 

Rf = 0.5, 1:3 EtOAc/hexanes.  

mp: 107 108 °C (EtOAc/hexanes). 

= 84.7 (c = 1.0, CH2Cl2).  

1H NMR (300 MHz, CDCl3): ppm = 7.37 7.07 (m, 17H, Ar-H and 

CH, H13, H14, H15, H2 and H3), 4.56 4.50 (m, 1H, CH, H9), 3.55 

(dd, 2J = 9.7 Hz, 3J = 4.0 Hz, 1H, CH2, H10), 3.14 (dd, 2J = 9.7 Hz, 
3J = 2.7 Hz, 1H, CH2, H10), 2.95 (ddd, 2J = 17.9 Hz, 3J = 11.0 Hz, 
3J = 10.0 Hz, 1H, CH2, H7), 2.48 (ddd, 2J = 17.9 Hz, 3J = 9.7 Hz, 
3J = 2.1 Hz, 1H, CH2, H7), 2.39 2.23 (m, 2H, CH2, H4), 2.07 1.97 (m, 2H, CH2, H8), 1.12 (dd, 
3J = 7.4 Hz, 3J = 7.4 Hz, 3H, CH3, H5). 

13C NMR (75 MHz, CDCl3): ppm = 176.5 (CO, C1 or C6), 166.2 (CO, C1 or C6), 152.0 (CH, 

C3), 143.8 (3 x Ar-Cq, C12), 128.7 (6 x Ar-CH, C13 or C14), 128.0 (6 x Ar-CH, C13 or C14), 

127.2 (3 x Ar-CH, C15), 121.9 (CH, C2), 87.2 (Cq, C11), 64.3 (CH2, C10), 56.9 (CH, C9), 33.5 

(CH2, C7), 26.0 (CH2, C4), 21.2 (CH2, C8), 12.6 (CH3, C5). 

IR: /cm 1 = 3100 (w), 2967 (w), 2929 (w), 1728 (s), 1675 (s), 1621 (m), 1490 (m), 1356 (m), 

1291 (m), 1193 (s), 1151 (m), 1080 (m). 

HRMS (ESI) calculated for C29H29NO3Na [M Na]+ 462.2040, found 462.2035. 
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Preparation of imide II.101
[104a]

  

 

 

(R)-1-((R)-3-Ethylpent-4-enoyl)-5-((trityloxy)methyl)pyrrolidin-2-one (II.101). To a 

magnetically stirred solution of copper(I) bromide dimethyl sulfide complex (933 mg, 

4.54 mmol) with 3Å molecular sieves in dry THF (44 mL) was added dropwise dimethyl sulfide 

(11.3 g, 181 mmol, 13.3 mL) at room temperature. The ensuing mixture was cooled to 48 °C 

and vinyl Grignard solution (1M in THF, 9.08 mmol, 9.08 mL) was added dropwise. After the 

reaction was stirred for 20 min, a solution of imide II.100 (1.33 g, 3.03 mmol) in dry THF 

(13 mL) was added and the mixture was stirred for an additional 3 h at 40 °C, before aqueous 

saturated NH4Cl solution (50 mL) was added. The biphasic mixture was warmed to room 

temperature, the layers were separated and the aqueous layer was extracted with EtOAc 

(2 x 200 mL). The combined organic layers were dried over Na2SO4, filtered and concentrated 

in vacuo. Thus afforded crude product was subjected to flash column chromatography (1:8 

EtOAc/hexanes) providing 1.27 g (2.72 mmol, 90%) of imide II.101 as a white solid. 

Rf = 0.31, 1:5 EtOAc/hexanes.  

mp: 108 109 °C (EtOAc/hexanes). 

= 64.7 (c = 1.0, CH2Cl2).  

1H NMR (300 MHz, CDCl3): ppm = 7.37 7.20 (m, 15H), 5.68 (ddd, 3J = 17.1 Hz, 
3J = 10.2 Hz, 3J = 8.3 Hz, 1H), 5.03 4.95 (m, 2H), 4.53 4.40 (m, 1H), 3.52 (dd, 2J = 9.7 Hz, 
3
J = 4.2 Hz, 1H), 3.17 (dd, 2J = 9.7 Hz, 3

J = 2.6 Hz, 1H), 3.11 2.82 (m, 3H), 2.56 2.38 (m, 2H), 

2.14 1.84 (m, 2H), 1.53 1.23 (m, 2H), 0.87 (t, 3J = 7.4 Hz, 3H). 

13C NMR (75 MHz, CDCl3): ppm = 176.3, 172.9, 143.8 (3 x C), 141.5, 128.7 (6 x C), 128.0 

(6 x C), 127.3 (3 x C), 115.0, 87.2, 64.1, 56.9, 42.1, 41.3, 33.4, 27.5, 21.5, 11.7. 

IR: /cm 1 = 2959 (w), 2876 (w), 1733 (s), 1691 (s), 1489 (m), 1370 (m), 1280 (m), 1219 (m), 

1198 (m), 1074 (m). 

HRMS (ESI) calculated for C31H33NO3Na [M Na]+ 490.2353, found 490.2348. 
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Preparation of ester II.102  

 

 

(R)-Methyl 4-((R)-3-ethylpent-4-enamido)-5-(trityloxy)pentanoate (II.102).  

Preparation of lithium methoxide: To a magnetically stirred solution of dry methanol (174 mg, 

5.43 mmol, 0.22 mL) in dry THF (2.75 mL) was added dropwise a solution of n-BuLi (2.5M in 

hexanes, 3.68 mmol, 1.47 mL) at 0 °C and the mixture was stirred at room temperature for 10 

min. 

The freshly prepared lithium methoxide solution was added to a solution of imide II.101 

(250 mg, 534 mol) in dry THF (2.5 mL) and the mixture was stirred at room temperature for 

36 h before aqueous saturated NH4Cl solution (10 mL) was added. The layers were separated 

and the aqueous layer was extracted with diethyl ether (3 x 10 mL). The combined organic 

layers were dried over Na2SO4, filtered and concentrated in vacuo. Thus afforded crude product 

diethyl ether/pentane, gradient 

elution) providing 120 mg (240 mol, 45%) of ester II.102 as white solid. 

Rf = 0.2, 1:5 EtOAc/hexanes.  

mp: 107 109 °C (EtOAc/hexanes). 

= 84.7 (c = 1.0, CH2Cl2).  

1H NMR (400 MHz, CDCl3): ppm = 7.41 7.38 (m, 6H, Ar-H, H16), 

7.32 7.27 (m, 6H, Ar-H, H17), 7.25 7.21 (m, 3H, Ar-H, H18), 5.68 

(d, 3J = 9.0 Hz, 1H, NH, H5), 5.55 (ddd, 3J = 17.2 Hz, 3J = 10.2 Hz, 
3J = 8.4 Hz, 1H, CH, H11), 4.99 4.91 (m, 2H, CH2, H12), 4.13 4.05 

(m, 1H, CH, H4), 3.66 (s, 3H, OCH3, H19), 3.18 (dd, 2J = 9.3 Hz, 
3J = 3.6 Hz, 1H, CH2, H13), 3.10 (dd, 2J = 9.3 Hz, 3J = 4.2 Hz, 1H, 

CH2, H13), 2.42 2.29 (m, 3H, CH2 and CH, H2 and H8), 2.19 (dd, 2J = 14.2 Hz, 3J = 5.9 Hz, 

1H, CH2, H7), 2.11 2.02 (m, 1H, CH2, H7), 1.97 1.91 (m, 2H, CH2, H3), 1.49 1.36 (m, 1H, 

CH2, H9), 1.35 1.20 (m, 1H, CH2, H9), 0.85 (dd, 3J = 7.4 Hz, 3J = 7.4 Hz, 3H, CH3, H10). 

13C NMR (100 MHz, CDCl3): ppm = 174.1 (CO, C1), 171.5 (CO, C6), 143.8 (3 x Ar-Cq, 

C15), 141.1 (CH, C11), 128.7 (6 x Ar-CH, C16), 128.0 (6 x Ar-CH, C17), 127.3 (3 x Ar-CH, 
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C18), 115.6 (CH2, C12), 86.7 (Ar-Cq, C14), 65.1 (CH2, C13), 51.8 (OCH3, C19), 48.9 (CH, C4), 

42.5 (CH2 or CH, C7 or C8), 42.4 (CH2 or CH, C7 or C8), 31.0 (CH2, C2), 27.6 (CH2, C3 or 

C9), 27.5 (CH2, C3 or C9), 11.6 (CH3, C10). 

IR: /cm 1 = 3275 (w), 2924 (w), 1738 (m), 1643 (s), 1552 (m), 1448 (m), 1344 (s), 1287 (m), 

1169 (m), 1070 (m). 

HRMS (ESI) calculated for C32H37NO4Na [M Na]+ 522.2615, found 522.2608. 

Preparation of alcohol II.9
[104]

  

 

 

(R)-3-Ethylpent-4-en-1-ol (II.9).  

Preparation of lithium methoxide: To a magnetically stirred solution of dry methanol (174 mg, 

5.43 mmol, 0.22 mL) in dry THF (2.75 mL) was added dropwise a solution of n-BuLi (2.5M in 

hexanes, 3.68 mmol, 1.47 mL) at 0 °C and the mixture was stirred at room temperature for 10 

min. 

To the freshly prepared lithium methoxide solution (0.8M in THF, 2.2 mL) was added a 

solution of imide II.101 (200 mg, 428 mol) in dry THF (2 mL) at 0 °C and the mixture was 

stirred at room temperature for 48 h before LAH (47.0 mg, 1.28 mmol) was added in one 

portion. The reaction was stirred for an additional 3 h before it was quenched by slow addition 

of water (10 mL). Then, the layers were separated and the aqueous layer was extracted with 

diethyl ether (3 x 10 mL). The combined organic layers were washed with water (15 mL) and 

brine (15 mL), dried over Na2SO4, filtered and concentrated in vacuo. Thus afforded crude 

gradient elution) to give 34.0 mg (298 mol, 70%) of alcohol II.9 as a colorless oil 

contaminated with solvent residues. 

Rf = 0.7, 1:3 EtOAc/hexanes.  

=  (c = 0.5, diethyl ether).  

1H NMR (400 MHz, CD2Cl2): ppm = 5.62 5.51 (m, 1H, CH, H6), 5.00 4.99 

(m, 1H, CH2, H7), 4.96 (ddd, 3J = 6.0, 2J = 2.1 Hz, 4J = 0.6 Hz, 1H, CH2, H7), 

3.66 3.49 (m, 2H, CH2, H1), 2.05 1.96 (m, 1H, CH, H3), 1.67 1.59 (m, 1H, CH2, H2), 1.50
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1.34 (m, 2H, CH2, H2 and H4), 1.31 1.20 (m, 1H, CH2, H4), 0.86 (dd, 3J = 7.4 Hz, 3J = 7.4 Hz, 

3H, CH3, H5). 

13C NMR (100 MHz, CD2Cl2): ppm = 143.3 (CH, C6), 114.9 (CH2, C7), 61.5 (CH2, C1), 43.2 

(CH, C3), 38.0 (CH2, C2), 28.3 (CH2, C4), 11.7 (CH3, C5). 

IR: /cm 1 = 3319 (m), 2960 (m), 2924 (m), 1640 (w), 1463 (w), 1420 (w), 1379 (w), 1057 (s), 

994 (s). 

HRMS (EI) calculated for C7H14O1 [M]+ 114.1045, found 114.1039. 

Preparation of methyl ester III.35
[7]

  

 

 

Tert-butyl 3-(3,4-dimethoxy-2-(2-methoxy-2-oxoethyl)phenyl)propanoate (III.35). An 

autoclave was charged with a suspension of 2,3-dimethoxyphenylacetic acid (III.25) (10.0 g, 

51.0 mmol), para-benzoquinone (276 mg, 1.28 mmol), dry KHCO3 (10.2 g, 102 mmol), tert-

butyl acrylate (19.8 g, 153 mmol, 22.4 mL) and palladium(II) acetate (1.15 g, 5.10 mmol) in dry 

tert-amylalcohol (100 mL). The apparatus was flushed with oxygen gas five times and the 

reaction mixture was stirred under oxygen atmosphere (3 bar) at 85 °C for 96 h. After the 

reaction was cooled to room temperature, aqueous HCl solution (2M, 150 mL) was added and 

the mixture was extracted with diethyl ether (3 x 200 mL). The combined organic fractions were 

dried over MgSO4 and the suspension was filtered through a pad of Celite to remove all solid 

materials. Then, the Celite plug was washed with diethyl ether (100 mL) and the combined 

filtrates were concentrated in vacuo. The crude acid III.34 was immediately re-dissolved in 

MeOH (300 mL) and palladium on charcoal (10wt%, 2.00 g) was added. The reaction flask was 

purged with hydrogen gas five times and the mixture was then stirred under hydrogen 

atmosphere at room temperature for 16 h before the catalyst was removed by filtration through a 

pad of Celite. The Celite plug was washed with MeOH (200 mL) and the combined filtrates 

were concentrated in vacuo to afford crude saturated ester, which was immediately re-dissolved 

in toluene/MeOH (7:1, 314 mL). This mixture was cooled to 0 °C and a solution of 

(trimethylsilyl)diazomethane in hexanes (2.0M, 30.6 mL, 61.2 mmol) was added dropwise. 

After stirring for 15 min at 0 °C, the reaction mixture was allowed to warm to room temperature 

and stirred for an additional 40 min. Then, the reaction was quenched with acetic acid (15 mL) 
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and diluted with saturated aqueous NaHCO3 solution (600 mL ). The aqueous phase was 

extracted with EtOAc (3 x 400 mL) and the combined organic fractions were washed with brine 

(500 mL), dried over MgSO4, filtered and concentrated in vacuo. Thus obtained crude ester 

III.35 was subjected to flash column chromatography (1:1 EtOAc/hexanes, 

gradient elution) providing 14.5 g (42.8 mmol, 84% over three steps) of methyl ester III.35 as a 

colorless oil. 

Rf = 0.27, 1:9 EtOAc/hexanes.   

1H NMR (300 MHz, CDCl3): ppm = 6.90 (d, 3J = 8.5 Hz, 1H, Ar-H, H7), 

6.80 (d, 3J = 8.5 Hz, 1H, Ar-H, H6), 3.84 (s, 3H, OCH3, H13), 3.81 (s, 3H, 

OCH3, H12), 3.75 (s, 2H, CH2, H2), 3.69 (s, 3H, OCH3, H14), 2.86 2.79 

(m, 2H, CH2, H9), 2.48 2.41 (m, 2H, CH2, H10), 1.43 (s, 9H, CH3, H16). 

13C NMR (75 MHz, CDCl3): ppm = 172.4 (2 x CO, C1 and C11), 151.1 (Ar-Cq, C5), 147.8 

(Ar-Cq, C4), 132.5 (Ar-Cq, C8), 127.2 (Ar-Cq, C3), 124.2 (Ar-CH, C7), 111.6 (Ar-CH, C6), 80.5 

(Cq, C15), 60.6 (OCH3, C12), 55.9 (OCH3, C13), 52.1 (OCH3, C14), 36.6 (CH2, C10), 32.1 

(CH2, C2), 28.3 (3 x CH3, C16), 27.9 (CH2, C9) ppm. 

IR: /cm 1 = 2976 (w), 1726 (s), 1492 (m), 1366 (m), 1275 (s), 1145 (s), 1083 (s). 

HRMS (EI) calcd. for C18H26O6
+ [M]+ 338.1724, found 338.1718. 

To fully characterize carboxylic acid III.34, an analytical sample of the crude mixture, which 

was obtained after palladium-catalyzed C-H activation, was subjected to flash column 

chromatography (1:3 EtOAc/hexanes, 1% AcOH) providing III.34 as a white solid. 

(E)-2-(6-(3-(tert-butoxy)-3-oxoprop-1-en-1-yl)-2,3-dimethoxyphenyl)acetic acid (III.34). 

White solid. 

Rf = 0.20, 1:3 EtOAc/hexanes + 1% AcOH. 

mp: 115 117 °C (EtOAc/hexanes).  

1H NMR (300 MHz, CDCl3): ppm = 7.73 (d, 3J = 15.7 Hz, 1H, CH2, H9), 

7.34 (d, 3J = 8.7 Hz, 1H, Ar-H, H7), 6.87 (d, 3J = 8.7 Hz, 1H, Ar-H, H6), 

6.20 (d, 3J = 15.6 Hz, 1H, CH, H10), 3.90 3.86 (m, 5H, OCH3 and CH2, H2 

and H13), 3.83 (s, 3H, OCH3, H12), 1.51 (s, 9H, CH3, H16). 
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13C NMR (75 MHz, CDCl3): ppm = 176.7 (COOH, C1), 166.5 (COOt-Bu, C11), 153.8 (Ar-

Cq, C5), 147.7 (Ar-Cq, C4), 140.3 (CH, C9), 127.8 (Ar-Cq, C3), 127.6 (Ar-Cq, C8), 122.9 (Ar-

CH, C7), 121.0 (CH, C10), 111.9 (Ar-CH, C6), 80.7 (Cq, C15), 60.8 (OCH3, C13), 55.9 (OCH3, 

C12), 31.8 (CH2, C2), 28.3 (3 x CH3, C16). 

IR: /cm 1 = 2983 (w), 1734 (m), 1700 (s) 1494 (s), 1255 (m), 1145 (s), 1078 (s). 

HRMS (EI) calcd. for C17H22O6
+: [M]+ 322.1411, found 322.1400. 

Preparation of -tetralone III.24
[7]

  

 

 

7,8-Dimethoxy-3,4-dihydronaphthalen-2(1H)-one (III.24). To a magnetically stirred solution 

of ester III.35 (8.07 g, 23.8 mmol) in dry diethyl ether (300 mL) was added potassium tert-

butoxide (3.34 g, 29.8 mmol) and the ensuing mixture was stirred at room temperature for 

35 min. After the reaction mixture was cooled to 0 °C, aqueous HCl solution (1M, 300 mL) was 

added slowly and the resulting mixture was extracted with diethyl ether (3 x 200 mL). The 

combined organic layers were washed with brine (200 mL), dried over MgSO4, filtered and 

concentrated in vacuo. Thus obtained crude product was re-dissolved in acetic acid (190 mL) 

and aqueous HCl (conc. 50 mL). Then, this mixture was heated to 110 °C for 3 h, and was then 

cooled to 0 °C before being quenched by a careful addition of NaHCO3 (280 g). After dilution 

with water (700 mL), the reaction was extracted with diethyl ether (3 x 300 mL) and the 

combined organic layers were washed with aqueous NaHCO3 solution (2 x 500 mL) and brine 

(500 mL), dried over MgSO4, filtered and concentrated in vacuo. Thus obtained crude product 

was subjected to flash column chromatography (1:1 EtOAc/hexanes, gradient 

elution) providing 3.45 g (16.7 mmol, 70%) of -tetralone III.24 as a white solid. 

Rf = 0.43, 1:3 EtOAc/hexanes.   

mp: 75 76 °C (EtOAc/hexanes).  

1H NMR (300 MHz, CDCl3): ppm = 6.93 (d, 3J = 8.3 Hz, 1H, Ar-H, H7), 6.79 

(d, 3J = 8.3 Hz, 1H, Ar-H, H6), 3.86 (s, 3H, OCH3, H12), 3.81 (s, 3H, OCH3, 

H11), 3.60 (s, 2H, CH2, H2), 3.04 2.97 (m, 2H, CH2, H9), 2.58 2.51 (m, 2H, 

CH2, H10). 
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13C NMR (75 MHz, CDCl3): ppm = 210.6 (CO, C1), 151.4 (Ar-Cq, C5), 146.5 (Ar-Cq, C4), 

129.7 (Ar-Cq, C8), 127.5 (Ar-Cq, C3), 123.0 (Ar-CH, C7), 110.9 (Ar-CH, C6), 60.6 (OCH3, 

C11), 56.1 (OCH3, C12), 38.9 (CH2, C10), 38.7 (CH2, C2), 28.3 (CH2, C9). 

IR: /cm 1 = 2998 (w), 2944 (w), 1702 (s), 1492 (s), 1350 (w), 1273 (s), 1155 (w), 1080 (s). 

HRMS (EI) calcd. for C12H14O3
+ [M]+ 206.0937, found 206.0942. 

Preparation of cyclopropane III.2  

 

 

7',8'-Dimethoxy-3',4'-dihydro-2'H-spiro[cyclopropane-1,1'-naphthalen]-2'-one (III.2). To a 

magnetically stirred solution of -tetralone III.24 (500 mg, 2.42 mmol) and dibromoethane 

(682 mg, 3.63 mmol, 310 L) in dry DMF (9 mL) was added sodium hydride (60wt% 

suspension in mineral oil, 240 mg, 6.00 mmol) at 0 °C and the ensuing mixture was stirred for 

90 min before being cooled to 78 °C. After addition of MeOH (15 mL), the reaction was 

allowed to warm to 0 °C and water (50 mL) was added. The mixture was extracted with diethyl 

ether (4 x 50 mL) and the combined organic layers were dried over Na2SO4, filtered and 

concentrated in vacuo. Thus obtained crude product was subjected to flash column 

chromatography (1:4 EtOAc/hexanes) providing 497 mg (2.14 mmol, 88%) of cyclopropane 

III.2 as white solid. 

Rf = 0.57, 1:3 EtOAc/hexanes.   

mp: 59 61 °C (EtOAc/hexanes).  

1H NMR (300 MHz, CDCl3): ppm = 6.90 (ddd, 3J = 8.2 Hz, 4J = 0.8 Hz, 
4J = 0.8 Hz, 1H, Ar-H, H7), 6.73 (d, 3J = 8.2 Hz, 1H, Ar-H, H6), 3.84 (s, 3H, 

OCH3, H13), 3.74 (s, 3H, OCH3, H12), 3.02 2.97 (m, 2H, CH2, H9), 2.65 

 2.60 (m, 2H, CH2, H10), 1.89 1.86 (m, 2H, CH2, H11b), 1.67 1.65 (m, 2H, 

CH2, H11a). 

13C NMR (75 MHz, CDCl3): ppm = 210.4 (CO, C1), 152.2 (Ar-Cq, C5), 146.9 (Ar-Cq, C4), 

131.9 (Ar-Cq, C8), 130.4 (Ar-Cq, C3), 122.9 (Ar-CH, C7), 109.8 (Ar-CH, C6), 61.5 (OCH3, 

C12), 56.0 (OCH3, C13), 39.4 (CH2, C10), 31.3 (Cq, C2), 28.2 (CH2, C9), 21.3 (2 x CH2, C11). 
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IR: /cm 1 = 2936 (m), 1686 (m), 1575 (w), 1478 (m), 1263 (s), 1045 (s). 

HRMS (EI) calcd. for C14H16O3
+ [M]+ 232.1094, found 232.1097. 

Preparation of cyclopropane III.42  

 

 

1-(2-Chloroethyl)-7,8-dimethoxy-3,4-dihydronaphthalen-2(1H)-one (III.42). To a solution 

of cyclopropane III.2 (10.0 mg, 43.0 µmol, 1 eq) in dry THF (0.5 mL) was added a solution of 

methylamine in THF (2M, 177 µL, 0.344 mmol, 8 eq), followed by a solution of titanium 

tetrachloride in toluene (1M, 21.5 µL, 21.5 µmol, 0.5 eq). The reaction mixture was stirred at 

room temperature for 5 d, and was then quenched with aqueous saturated NaHCO3
 solution 

(5 mL). The mixture was extracted with EtOAc (3 x 10 mL) and the combined organic fractions 

were washed with brine (10 mL), then dried over Na2SO4 and concentrated in vacuo. Thus 

provided crude material was subjected to flash column chromatography (1:19 1:9 1:4 

EtOAc/hexanes, gradient elution) to give 3.3 mg (12.3 µmol, 29%) of chloride III.42 as a 

colorless oil. 

Rf = 0.36, 1:3 EtOAc/hexanes.  

1H-NMR (600 MHz, CDCl3):  = 6.92 (br d, 3J = 8.3 Hz, 1H, Ar-H, H7), 

6.81 (d, 3J = 8.3 Hz, 1H, Ar-H, H6), 3.87 (s, 3H, OCH3, H14), 3.87 3.85 

(m, 1H, CH, H2), 3.84 (s, 3H, OCH3, H13), 3.58 (ddd, 2J = 10.9 Hz, 
3J = 8.5 Hz, 3J = 5.7 Hz, 1H, CH2, H12), 3.48 (ddd, 2J = 10.9 Hz, 
3J = 8.4 Hz, 3J = 7.1 Hz, 1H, CH2, H12), 3.18 3.11 (m, 1H, CH2, H9), 2.91 (ddd, 2J = 15.6 Hz, 
3J = 6.4 Hz, 3J = 2.7 Hz, 1H, CH2, H9), 2.74 (ddd, 2J = 17.3 Hz, 3J = 5.0 Hz, 3J = 2.7 Hz, 1H, 

CH2, H10), 2.46 2.41 (m, 1H, CH2, H10), 2.25 2.20 (m, 2H, CH2, H11) ppm. 

13C-NMR (100 MHz, CDCl3):  = 212.3 (CO, C1), 151.5 (Ar-Cq, C5), 146.7 (Ar-Cq, C4), 130.4 

(Ar-Cq, C3), 129.3 (Ar-Cq, C8), 123.4 (Ar-CH, C7), 111.4 (Ar-CH, C6), 60.9 (OCH3, C13), 56.0 

(OCH3, C14), 46.3 (CH, C2), 42.5 (CH2, C12), 38.4 (CH2, C10), 36.5 (CH2, C11), 27.3 (CH2, 

C9) ppm. 

IR: /cm 1 = 2942 (w), 1706 (s), 1606 (w), 1491 (s), 1278 (s), 1087 (s), 807 (m). 

HRMS (ESI) calcd. for C14H16ClO3
+ [M H]+ 267.0782, found: 267.0781. 
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APPENDIX I: NMR SPECTRA 
2-Bromo-3-(bromomethyl)-1,6,8-trimethoxynaphthalene (I.44) (

1
H, 

13
C) 
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2-(3-Bromo-4,5,7-trimethoxynaphthalen-2-yl)acetonitrile (I.28) (
1
H, 

13
C) 
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3-Bromo-4,5,7-trimethoxy-2-naphthaldehyde (I.45) (
1
H, 

13
C) 
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2-Bromo-1,6,8-trimethoxy-3-vinylnaphthalene (I.46) (
1
H, 

13
C) 
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2-(3-Bromo-4,5,7-trimethoxynaphthalen-2-yl)ethanol (I.47) (
1
H, 

13
C) 
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(2-(3-Bromo-4,5,7-trimethoxynaphthalen-2-yl)ethoxy)(tert-butyl)dimethylsilane (I.48) (
1
H, 

13
C) 
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Potassium trifluoro(7-methoxy-2,2-dimethyl-4-oxo-4H-benzo[d][1,3]dioxin-5-yl)borate 

(I.53) (
1
H, 

13
C) 
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2-(4,5,7-Trimethoxy-3-(7-methoxy-2,2-dimethyl-4-oxo-4H-benzo[d][1,3]dioxin-5-

yl)naphthalen-2-yl)acetonitrile (I.56) (
1
H, 

13
C) 
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7,7'-Dimethoxy-2,2,2',2'-tetramethyl-4H,4'H-[5,5'-bibenzo[d][1,3]dioxine]-4,4'-dione (I.54) 

(
1
H, 

13
C) 
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7-Methoxy-2,2-dimethyl-4H-benzo[d][1,3]dioxin-4-one (I.55) (
1
H, 

13
C) 
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3-((Benzyloxy)methyl)-6,8-dimethoxy-3-((methoxy(methyl)amino)methyl)-3,4-dihydro 

naphthalen-1(2H)-one (I.62) (
1
H, 

13
C) 
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Methyl 2-(3-(benzyloxy)-2-oxopropyl)-4,6-dimethoxybenzoate (I.61) (
1
H, 

13
C) 
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2-(Benzyloxy)-6,8-dimethoxynaphthalene-1,3-diol (I.63) (
1
H, 

13
C) 
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3-((Benzyloxy)methyl)-6,8-dimethoxy-1H-isochromen-1-one (I.64) (
1
H, 

13
C) 
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(Z)-3-((Benzyloxy)methyl)-1-(3,5-dimethoxy-2-methylbenzylidene)-6,8-dimethoxy-1H-

isochromene (I.69) (
1
H, 

13
C) 
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2-(3-((Benzyloxy)methyl)-1-hydroxy-6,8-dimethoxynaphthalen-2-yl)-4,6-dimethoxy-

benzoic acid (I.71) (
1
H, 

13
C) 
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1-(benzyloxy)-3-{2-[2-(3,5-dimethoxy-2-methylphenyl)acetyl]-3,5dimethoxyphenyl} 

propan-2-one-methanedione (I.30) (
1
H, 

13
C) 
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3-[(benzyloxy)methyl]-2-(3,5-dimethoxy-2-methylphenyl)-6,8-dimethoxynaphthalen-1-ol-

methanedione (I.70) (
1
H, 

13
C) 

 

 

 

 



APPENDIX I: NMR SPECTRA 

 

231 
 

11-((Benzyloxy)methyl)-2,4,7,9-tetramethoxy-6H-dibenzo[c,h]chromen-6-one (I.25) (
1
H, 

13
C) 
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(1Z,4E)-1-(2-(3-((benzyloxy)methyl)-1-hydroxy-6,8-dimethoxynaphthalen-2-yl)-4,6-

dimethoxy phenyl)-1-hydroxyhexa-1,4-dien-3-one (I.3) (
1
H, 

13
C) 
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(1Z,4E)-1-(2-(3-((Benzyloxy)methyl)-1-hydroxy-6,8-dimethoxynaphthalen-2-yl)-4,6-

dimethoxy phenyl)-1-hydroxyhexa-1,4-dien-3-one (I.2) (
1
H, 

13
C) 
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(1Z,4E)-1-(2-(3-((benzyloxy)methyl)-1-hydroxy-6,8-dimethoxynaphthalen-2-yl)-4,6-

dimethoxy phenyl)-1-((difluoroboryl)oxy)hexa-1,4-dien-3-one (I.89) (
1
H, 

13
C, 

19
F) 
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12-((Benzyloxy)methyl)-4b-hydroxy-2,4,8,10-tetramethoxy-14-methyl-4bH-5,12-

methanobenzo[5,6]pentaleno[1,6a-a]naphthalene-6,7,13(5H,6aH,12H)-trione (I.4) (
1
H, 

13
C, 

COSY, HSQC, HMBC, NOESY)  
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COSY 

 

HSQC 
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HMBC 

 

NOESY 
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(2Z)-3'-[(benzyloxy)methyl]-2-[(2E)-1-hydroxybut-2-en-1-ylidene]-4,6,6',8'-tetramethoxy-

2,3-dihydro-1'H-spiro[indene-1,2'-naphthalene]-1',3-dione (I.92) (
1
H, 

13
C) 
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6-(2-{3-[(Benzyloxy)methyl]-1-hydroxy-6,8-dimethoxynaphthalen-2-yl}-4,6-

dimethoxyphenyl)-2-methyl-3,4-dihydro-2H-pyran-4-one (I.99a) (1
H, 

13
C) 
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6-(2-{3-[(Benzyloxy)methyl]-1-hydroxy-6,8-dimethoxynaphthalen-2-yl}-4,6-dimethoxy 

phenyl)-2-methyl-3,4-dihydro-2H-pyran-4-one (I.99b) (1
H, 

13
C) 
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(E)-1-(3,5-dimethoxyphenyl)hex-4-ene-1,3-dione (I.105) (
1
H, 

13
C) 
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6-(3,5-dimethoxyphenyl)-2-methyl-2H-pyran-4(3H)-one (I.107) (
1
H, 

13
C) 
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(R)-3'-((benzyloxy)methyl)-6,6',8,8'-tetramethoxyspiro[isochroman-3,1'-isochromene] 

(I.111) (
1
H) 

 

(Z)-(2-((3-((benzyloxy)methyl)-6,8-dimethoxy-1H-isochromen-1-ylidene)methyl)-4,6-

dimethoxy phenyl)methanol (I.112) (
1
H) 
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(S)-3-((2R,3R,4S)-3-Hydroxy-2-isobutyl-5-((4-methoxybenzyl)oxy)-4-methylpentanoyl)-4-

isopropyloxazolidin-2-one (II.52) (
1
H, 

13
C) 
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(5R)-5-Isobutyl-3-((2R)-2-((2R,5S)-2-(4-methoxyphenyl)-5-methyl-1,3-dioxan-4-yl)-4-

methyl pentanoyl)oxazolidin-2-one (II.53) (
1
H, 

13
C) 
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(R)-3-((2R,3R,4S)-3-((Tert-butyldimethylsilyl)oxy)-2-isobutyl-5-((4-methoxybenzyl)oxy)-4-

methyl pentanoyl)-5-isobutyloxazolidin-2-one (II.54) (
1
H, 

13
C) 
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O-((2S,3R,4R)-4-((S)-4-Isopropyl-2-oxooxazolidine-3-carbonyl)-1-((4-methoxybenzyl)oxy)-

2,6-dimethylheptan-3-yl)-S-methyl carbonodithioate (II.55) (
1
H, 

13
C) 
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(2R,3R,4S)-3-Hydroxy-2-isobutyl-5-((4-methoxybenzyl)oxy)-4-methylpentanoic acid (II.34) 

(
1
H, 

13
C) 
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(2R,3R,4S)-2-Isobutyl-5-((4-methoxybenzyl)oxy)-4-methyl-3-(((methylthio)carbonothioyl) 

oxy)pentanoic acid (II.58) (
1
H, 

13
C) 
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(2R,4S)-1H-Benzo[d][1,2,3]triazol-1-yl 2-isobutyl-5-((4-methoxybenzyl)oxy)-4-methyl-3-

(((methylthio)carbonothioyl)oxy)pentanoate (II.61) (
1
H, 

13
C) 
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(3R,4R,5S)-4-hydroxy-3-isobutyl-5-methyltetrahydro-2H-pyran-2-one (II.62) (
1
H, 

13
C) 
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O-((3R,4R,5S)-3-Isobutyl-5-methyl-2-oxotetrahydro-2H-pyran-4-yl) S-methyl carbono 

dithioate (II.64) (
1
H, 

13
C) 
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(3R,4R)-3-Isobutyl-4-((S)-1-((4-methoxybenzyl)oxy)propan-2-yl)oxetan-2-one (II.63) (
1
H, 

13
C) 
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(2S,3R,4R)-3-Hydroxy-4-isobutyl-1-((4-methoxybenzyl)oxy)-2-methylnonan-5-one (II.67) 

(
1
H, 

13
C) 
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(2R,3R,4S)-3-Hydroxy-2-isobutyl-5-((4-methoxybenzyl)oxy)-4-methyl-N-(1,4,6-trimethoxy-

7-methylnaphthalen-2-yl)pentanamide (II.65) (
1
H, 

13
C) 

 

 

 

 



APPENDIX I: NMR SPECTRA 

 

257 
 

(2R,3R,4S)-3-Hydroxy-2-isobutyl-N-(5-isocyano-1,4,6-trimethoxy-7-methylnaphthalen-2-

yl)-5-((4-methoxybenzyl)oxy)-4-methylpentanamide (II.66) (
1
H, 

13
C) 
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O-((2S,3R,4R)-1-((4-Methoxybenzyl)oxy)-2,6-dimethyl-4-((1,4,6-trimethoxy-7-methyl 

naphthalen-2-yl)carbamoyl)heptan-3-yl) S-methylcarbonodithioate (II.68) (
1
H, 

13
C) 
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(2R,3R,4S)-N-(6-methoxy-7-methyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-5-[(4-methoxy 

phenyl)methoxy]-4-methyl-2-(2-methylpropyl)-3-{[(methylsulfanyl)methanethioyl]oxy} 

pentanamide (II.7) (
1
H, 

13
C) 
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(2R,4R)-2-isobutyl-N-(6-methoxy-7-methyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-5-((4-

methoxy benzyl)oxy)-4-methylpentanamide (II.72) (
1
H, 

13
C) 
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(3R,4R)-4-((S)-1-Hydroxypropan-2-yl)-3-isobutyloxetan-2-one (II.75) (
1
H, 

13
C) 
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(E)-5-Hydroxy-2-methylpent-2-enoic acid (II.86) (
1
H, 

13
C) 
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(E)-Tert-butyldimethylsilyl 5-((tert-butyldimethylsilyl)oxy)-2-methylpent-2-enoate (II.87) 

(
1
H, 

13
C) 
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(E)-5-((Tert-butyldimethylsilyl)oxy)-2-methylpent-2-enoic acid (II.82) (
1
H, 

13
C) 
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(3S,4S)-3-(Methoxymethoxy)-6-methylhepta-1,5-dien-4-ol (II.83) (
1
H, 

13
C) 
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(E)-(3S,4S)-3-(Methoxymethoxy)-6-methylhepta-1,5-dien-4-yl 5-((tert-butyldimethylsilyl) 

oxy)-2-methylpent-2-enoate (II.97) (
1
H, 

13
C) 
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(E)-(3S,4S)-3-(Methoxymethoxy)-6-methylhepta-1,5-dien-4-yl 5-hydroxy-2-methylpent-2-

enoate (II.98) (
1
H, 

13
C) 
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(E)-5-(((3S,4S)-3-(Methoxymethoxy)-6-methylhepta-1,5-dien-4-yl)oxy)-4-methyl-5-

oxopent-3-enoic acid (II.8) (
1
H, 

13
C) 
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(R,E)-1-(Pent-2-enoyl)-5-((trityloxy)methyl)pyrrolidin-2-one (II.100) (
1
H, 

13
C) 
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(R)-1-((R)-3-Ethylpent-4-enoyl)-5-((trityloxy)methyl)pyrrolidin-2-one (II.101) (
1
H, 

13
C) 
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(R)-Methyl 4-((R)-3-ethylpent-4-enamido)-5-(trityloxy)pentanoate (II.102) (
1
H, 

13
C) 
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(R)-3-Ethylpent-4-en-1-ol (II.9) (
1
H, 

13
C) 
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7',8'-Dimethoxy-3',4'-dihydro-2'H-spiro[cyclopropane-1,1'-naphthalen]-2'-one (III.2) (
1
H, 

13
C) 
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1-(2-Chloroethyl)-7,8-dimethoxy-3,4-dihydronaphthalen-2(1H)-one (III.42) (
1
H, 

13
C) 
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APPENDIX II: TABLE A 
Table A. Condition screened toward the envisioned dearomatizing Michael-Michael 
addition. 

 

 Reagent Additive Solvent T [°C] Observation 

1 AcOH/piperidine toluene rt sma/decomposition 

2 PPTS CH2Cl2 rt sma/decomposition 

3 Phenylboronic acid toluene 100 sma/pyrone I.99 

4 methanolic HCl MeOH rt lactone I.99/pyrone I.99 

5 TFA CH2Cl2 rt sma 

6 BF3·OEt2 THF  sma/unknown 

compound 

7 TiCl4 CH2Cl2  s. m. 

8 AlCl3 CH2Cl2 rt sma/decomposition 

9 AlCl3 CH2Cl2  sma 

10 Sc(OTf)3 MeCN/H2O rt lactone I.25 

11 LiClO4 CH2Cl2 rt lactone I.25 

12 TMSI CH2Cl2  decomposition 

13 - benzene 70 sma 

14 - DMSO 70 sma/decomposition 

15 - dichlorobenzene 150 pyrone I.99 

16  dichlorobenzene 120/ w sma/pyrone I.99 

17  benzene h , rt decomposition 

18 TBAF THF  sma 

19 TBAF THF/DMF  I.4 and I.92 

20 TBAF THF/DMF rt  decomposition 

21 TBAF 3Å msb THF/DMF rt  sma/decomposition 

22 TBAF 3Å msb THF/DMF  sma 

23 DBU CH2Cl2 rt pyrone I.99/lactone I.25 
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24 NEt3 dichlorobenzene 150 pyrone I.99/lactone I.25 

25 DABCO dichlorobenzene 120/ w sma/pyrone I.99 

26 CsF MeCN 60 lactone I.25 

27 K2CO3 MeOH rt decomposition 

28 piperidine EtOH rt sma/lactone I.25 

29 LiOH THF/H2O rt  decomposition 

30 LDA THF  sma 

31 L-proline i-PrOH rt pyrone I.99 

32 L-proline DMF rt pyrone I.99 

33 L-proline DMSO rt pyrone I.99 

34 MacMillan cat. DMSO rt pyrone I.99 

35 MacMillan cat./L-

proline 

DMSO rt pyrone I.99 

36 Li-prolinate DMSO rt pyrone I.99 

37 Jørgensen cat. DMSO rt pyrone I.99 

38 Mn(OAc)3 NaOAc/A

cOH 

AcOH 70 unknown compound 

39 Mn(OAc)3 AcOH 70 decomposition 

40 Mn(OAc)3 AcOH rt decomposition 

41 Mn(OAc)3 EtOH 0 unknown compound 

42 Mn(OAc)3 AcOH 90 decomposition 

43 K3Fe(CN)6 KOH H2O 0 sma 

44 K3Fe(CN)6 K2CO3 toluene/H2O 60 sma/decomposition 

45 Pb(OAc)4 pyridine CH2Cl2 30 spiro I.92 

46 [Fe(DMF)3Cl2][FeCl4

] 

LDA THF 30 sma 

47 [Fe(DMF)3Cl2][FeCl4

] 

EtOH/H2O 0 sma/unknown 

compound 

48 Cu(OAc)2/Mn(OAc)3 Benzene/AcOH 70 decomposition 

49 PIFAI CH2Cl2 0 decomposition 

50 PIFAI CF3OH 0 decomposition 

51 DIB MeOH 0 decomposition 
asm = starting material; bms = molecular sieves  
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APPENDIX III: CRYSTAL 
STRUCTURES OF I.28, I.29, I.71, AND 
I.99 
Single-Crystal X-Ray Analysis for Compounds I.28, I.29, I.71 and I.99 

The data collections were performed on an Oxford Diffraction Xcalibur or KappaCCD 

diffractometers at 173 K (I.71 -

monochromator). The CrysAlisPro software (version 1.171.33.41) [ref. 1] was applied for the 

integration, scaling and multi-scan absorption correction of the data. The structures were solved 

by direct methods with SIR97 [ref. 2] and refined by least-squares methods against F2 with 

SHELXL-97 [ref. 3]. All non-hydrogen atoms were refined anisotropically. The hydrogen 

atoms were placed in ideal geometry riding on their parent atoms. Further details are 

summarized in Table B. The corresponding Cambridge Crystallographic Data Center (CCDC) 

storage numbers for the compounds I.28, I.29, I.71 and I.99 are 795937, 795938, 795939 and 

847091, respectively. 

 

Figure A. Crystal structure of cyanide I.28. 

ref. 1 CrysAlisPro, Oxford Diffraction Ltd.,Version 1.171.33.41 (release 06-05-2009 
CrysAlis171 .NET). 

ref. 2 A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, 
A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 1999, 32, 115-119.  

ref. 3 G. M. Sheldrick, Acta. Crystallogr. Sect. A 2008, 64, 112-122. 
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Figure B. Crystal structure of boronate ester I.29. 

 

Figure C. Crystal structure of biaryl acid I.71. 
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Figure D. Crystal structure of pyrone I.99. 
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Table B. Crystallographic data of cyanide I.28, boronate ester I.29, biaryl acid I.71 and 

pyrone I.99. 

 I.28 I.29 I.71 I.99 

net formula C15H14BrNO3 C17H23BO6 C29H28O8 C35.50H38O8.50 

Mr/g mol 1 336.181 334.172 504.528 600.676 

crystal size/mm 0.29 × 0.18  

× 0.18 

0.27 × 0.18  

× 0.04 

0.24 × 0.22  

× 0.13 

0.37 × 0.14  

× 0.11 

crystal system triclinic orthorombic monoclinic triclinic 

space group P1bar P212121 P21/c P1bar 

a/Å 7.8896(3) 10.3923(8) 18.0088(8) 9.9088(4) 

b/Å 9.0992(3) 10.6376(8) 8.1117(3) 10.1821(4) 

c/Å 9.4428(4) 15.6535(14) 18.6667(9) 17.4815(7) 

 88.983(3) 90 90 78.031(2) 

 84.074(3) 90 113.387(5) 87.621(2) 

 83.609(3) 90 90 64.401(2) 

V/Å3 670.06(4) 1730.5(2) 2502.8(2) 1553.73(11) 

Z 2 4 4 2 

calc. density/g cm 3 1.66627(10) 1.28267(15) 1.33896(10) 1.28396(9) 

1 3.074 0.095 0.098 0.091 

absorption correction 'multi-scan' 'multi-scan' 'multi-scan' none 

transmission factor range 0.78568 1.00000 0.67012 1.00000 0.96203 1.00000 

refls. measured 4733 7133 9844 10413 

Rint 0.0218 0.0553 0.0228 0.0357 

I)/I 0.0398 0.0975 0.0544 0.0509 

 4.34 26.33 4.30 26.37 4.23 26.36 3.14 25.30 

observed refls. 2275 1094 3021 3876 

x, y (weighting scheme) 0.0328, 0 0.0454, 0 0.0810, 0 0.0664, 1.1944 

hydrogen refinement constr constr constr constr 

refls in refinement 2708 2003 5051 5612 

parameters 184 224 340 401 

restraints 0 0 0 3 

R(Fobs) 0.0256 0.0440 0.0490 0.0566 

Rw(F2) 0.0588 0.0922 0.1338 0.1589 

S 0.974 0.803 0.908 1.026 
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shift/errormax 0.001 0.001 0.001 0.001 

max electron density/e Å 3 0.413 0.235 0.691 0.745 

min electron density/e Å 3 0.291 0.181 0.318 0.508 
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APPENDIX IV: CRYSTAL 
STRUCTURES OF II.100, II.101 AND 
II.102 
Single-Crystal X-Ray Analysis for Compounds II.100, II.101 and II.102 

The data collections were performed on an Oxford Diffraction Xcalibur or KappaCCD 

diffractometers at 173 K -

CrysAlisPro software (version 1.171.33.41) [ref. 1] was applied for the integration, scaling and 

multi-scan absorption correction of the data. The structures were solved by direct methods with 

SIR97 [ref. 2] and refined by least-squares methods against F2 with SHELXL-97 [ref. 3]. All 

non-hydrogen atoms were refined anisotropically. The hydrogen atoms were placed in ideal 

geometry riding on their parent atoms. Further details are summarized in Table C. The 

corresponding Cambridge Crystallographic Data Center (CCDC) storage numbers for the 

compounds II.100, II.101, and II.102 are 894000, 894001 and 894002, respectively. 

 

Figure E. Crystal structure of acylated auxiliary II.100. 

ref. 1 CrysAlisPro, Oxford Diffraction Ltd.,Version 1.171.33.41 (release 06-05-2009 
CrysAlis171 .NET). 

ref. 2 A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, 
A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 1999, 32, 115-119.  

ref. 3 G. M. Sheldrick, Acta. Crystallogr. Sect. A 2008, 64, 112-122. 
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Figure F. Crystal structure of alkene II.101. 

 

Figure G. Crystal structure of open auxiliary II.102. 
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Table C. Crystallographic data of auxiliary II.100, amide II.101 and alkene II.102. 

 II.100 II.101a II.102 

net formula C29H29NO3 C32H37NO4 C31H33NO3 

Mr/g mol 1 439.546 499.641 467.599 

crystal size/mm 0.28 × 0.19 × 0.12 0.41 × 0.20 × 0.13 0.23 × 0.07 × 0.04 

T/K 173(2) 173(2) 173(2) 

radiation    

diffractometer 'Oxford XCalibur' 'Oxford XCalibur' 'KappaCCD' 

crystal system triclinic orthorhombic monoclinic 

space group P1 P212121 P21 

a/Å 6.9353(7) 9.6228(10) 9.1381(5) 

b/Å 9.0952(19) 13.9778(16) 14.9979(5) 

c/Å 10.104(2) 21.478(2) 9.6298(4) 

 76.081(18) 90 90 

 77.509(13) 90 106.100(2) 

 71.231(15) 90 90 

V/Å3 579.00(18) 2888.9(5) 1268.02(10) 

Z 1 4 2 

calc. density/g cm 3 1.2606(4) 1.14879(20) 1.22471(10) 

1 0.081 0.075 0.078 

absorption correction 'multi-scan' 'multi-scan' none 

refls. measured 3203 7199 8252 

Rint 0.0369 0.0262 0.0356 

I)/I 0.0433 0.0524 0.0545 

 4.43 26.37 4.24 26.37 3.50 25.37 

observed refls. 2617 4045 3483 

x, y (weighting scheme) 0.0623, 0.0058 0.0446, 0.2676 0.0614, 0.0936 

hydrogen refinement constr mixed constr 

Flack parameterb 1.0(12) 1.9(13) 2.3(14) 

refls in refinement 2792 5019 4486 

parameters 299 350 317 
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restraints 3 1 1 

R(Fobs) 0.0371 0.0473 0.0469 

Rw(F2) 0.1016 0.1111 0.1195 

S 1.062 1.037 1.028 

shift/errormax 0.001 0.001 0.001 

max electron density/e Å 3 0.163 0.207 0.187 

min electron density/e Å 3 0.177 0.189 0.217 

aMethoxy group disordered over three sites, split model applied, sof ratio 0.36/0.40/0.24, 
Split atoms refined isotropically. 
bFlack parameter meaningless, correct structure derived from synthesis. 
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APPENDIX V: CRYSTAL STRUCTURE 
OF III.2 
Single-Crystal X-Ray Analysis for Cyclopropane III.2 

The data collections were performed on an Oxford Diffraction Xcalibur diffractometer at 173 K 

(20: 20 -

software (version 1.171.33.41) [ref. 1] was applied for the integration, scaling and multi-scan 

absorption correction of the data. The structures were solved by direct methods with SIR97 [ref. 

2] and refined by least-squares methods against F2 with SHELXL-97 [ref. 3]. All non-hydrogen 

atoms were refined anisotropically. The hydrogen atoms were placed in ideal geometry riding 

on their parent atoms. Further details are summarized in Table D. The corresponding Cambridge 

Crystallographic Data Center (CCDC) storage number for the compound III.2 is 893995. 

 

Figure H. Crystal structure of cyclopropane III.2. 

 

 

 

 

ref. 1 CrysAlisPro, Oxford Diffraction Ltd.,Version 1.171.33.41 (release 06-05-2009 
CrysAlis171 .NET). 

ref. 2 A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, 
A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 1999, 32, 115-119.  

ref. 3 G. M. Sheldrick, Acta. Crystallogr. Sect. A 2008, 64, 112-122. 
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Table D. Crystallographic data of cyclopropane III.2. 

 III.2 

net formula C14H16O3 

Mr/g mol 1 232.275 

crystal size/mm 0.38 × 0.20 × 0.17 

T/K 173(2) 

radiation  

diffractometer 'Oxford XCalibur' 

crystal system triclinic 

space group P1bar 

a/Å 8.2043(10) 

b/Å 8.9981(11) 

c/Å 9.7491(12) 

 64.913(12) 

 70.609(11) 

 66.139(12) 

V/Å3 584.81(13) 

Z 2 

calc. density/g cm 3 1.3191(3) 

1 0.092 

absorption correction 'multi-scan' 

transmission factor range 0.82941 1.00000 

refls. measured 3141 

Rint 0.0264 

I)/I 0.0429 

 4.34 26.37 

observed refls. 1931 

x, y (weighting scheme) 0.0613, 0.1358 

hydrogen refinement constr 

refls in refinement 2345 

parameters 156 

restraints 0 

R(Fobs) 0.0496 

Rw(F2) 0.1369 
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S 1.062 

shift/errormax 0.001 

max electron density/e Å 3 0.248 

min electron density/e Å 3 0.226 
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APPENDIX VI: COMPUTATIONAL 
DETAILS 
Computational Details 

The conformational search was performed with MacroModel (Version 9.0; MMFF/gas 

phase/PRCG/500 steps).[47] Optimizations of MMFF structures were performed with 

Gaussian03.[151] The method was B3LYP.[152] The 6-31G(d) basis set was used for H, C, N and 

S.[153] The optimized geometries were characterized as energy minima by a nonexistence of 

imaginary frequencies in the diagonalization of the analytically computed Hessian (vibrational 

frequency calculations). No solvation effects were considered. 

anti-isomer II.7-C:  

 

Free energies of optimized conformers. The Cartesian coordinates are given only for the most 

stable identified conformer. 

II.7-1 (E = 2620,008573 a.u.). 

II.7-2 (E = 2620,011841 a.u.). 

II.7-3 (E = 2620,014809 a.u.). 

II.7-4 (E = 2620,007387 a.u.). 

II.7-5 (E = 2620,008324 a.u.). 

II.7-6 (E = 2620,016720 a.u.). 

II.7-7 (E = 2620,010105 a.u.). 

II.7-8 (E = 2620,010528 a.u.). 

II.7-9 (E = 2620,020519 a.u.). 

II.7-10 (E = 2620,017237 a.u.). 

II.7-11 (E = 2620,006949 a.u.). 

II.7-12 (E = 2620,009221 a.u.). 

II.7-13 (E = 2620,012348 a.u.). 

II.7-14 (E = 2620,009176 a.u.). 

II.7-15 (E = 2620,014719 a.u.). 
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II.7-16 (E = 2620,007896 a.u.). 

II.7-17 (E = 2620,010971 a.u.). 

II.7-18 (E = 2620,010250 a.u.). 

II.7-19 (E = 2620,005709 a.u.). 

II.7-20 (E = 2620,004854 a.u.). 

Cartesian coordinates (Å) of II.7-9. 

--------------------------------------------------------------------- 

 Center     Atomic     Atomic              Coordinates (Angstroms) 

 Number     Number      Type              X           Y           Z 

 --------------------------------------------------------------------- 

    1          6             0        4.910731   -0.339788    0.481880 

    2          6             0        4.225954    0.688035   -0.173067 

    3          6             0        4.949279    1.729342   -0.770135 

    4          6             0        6.344586    1.755242   -0.725498 

    5          6             0        7.023309    0.710101   -0.062372 

    6          6             0        6.307259   -0.329191    0.537926 

    7          6             0        2.748782    0.689084   -0.238684 

    8          6             0        4.160163   -1.448679    1.123259 

    9          6             0        2.010171   -0.454253    0.392149 

   10          6             0        2.689693   -1.434017    1.028863 

   11          6             0        7.118121    2.878352   -1.370097 

   12          6             0        9.125991   -0.221086    0.578580 

   13          8             0        2.125159    1.598201   -0.782081 

   14          8             0        4.737617   -2.357364    1.713319 

   15          8             0        8.383488    0.808830   -0.063406 

   16          6             0       -0.316192   -1.244957    0.744272 

   17          6             0       -1.772518   -0.838137    0.453277 

   18          7             0        0.632872   -0.368122    0.254324 

   19          8             0       -0.031104   -2.262575    1.365186 

   20          6             0       -2.258107   -1.415429   -0.903718 

   21          6             0       -2.708002   -1.286154    1.603503 

   22          6             0       -2.757369   -0.331815    2.818104 

   23          6             0       -1.403116   -0.140772    3.513654 

   24          6             0       -3.800677   -0.838820    3.825041 

   25          6             0       -1.501700   -0.971877   -2.181433 

   26          6             0       -3.207111   -3.699705   -0.872224 

   27         16             0       -2.763732   -5.390705   -0.682766 

   28          6             0       -1.171207   -5.285415    0.194252 

   29         16             0       -4.781972   -3.250240   -1.164485 

   30          8             0       -2.154329   -2.861493   -0.827546 

   31          6             0       -1.613560    0.538001   -2.440588 

   32          6             0       -0.861478    2.699238   -1.724557 

   33          8             0       -0.808677    1.279167   -1.521366 

   34          6             0       -4.083628    4.503776    0.542542 

   35          6             0       -2.935167    4.025355    1.187396 

   36          6             0       -1.899498    3.455012    0.453015 

   37          6             0       -1.984284    3.345193   -0.942806 

   38          6             0       -3.132814    3.829146   -1.576691 

   39          6             0       -4.178763    4.406061   -0.847026 

   40          6             0       -2.036310   -1.722531   -3.414219 

   41          6             0       -6.218947    5.538122    0.759885 

   42          8             0       -5.033007    5.042078    1.364837 

   43          1             0        4.411566    2.526427   -1.275401 

   44          1             0        6.802363   -1.143310    1.055152 

   45          1             0        2.196173   -2.271402    1.504114 

   46          1             0        7.800401    2.493546   -2.135995 
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   47          1             0        6.444358    3.595392   -1.848887 

   48          1             0        7.713756    3.419485   -0.626164 

   49          1             0       10.181013    0.038531    0.457111 

   50          1             0        8.899191   -0.267538    1.649533 

   51          1             0        8.949936   -1.194241    0.106330 

   52          1             0        0.294557    0.426921   -0.305585 

   53          1             0       -1.835888    0.249875    0.383396 

   54          1             0       -3.728864   -1.353755    1.206396 

   55          1             0       -2.438761   -2.293572    1.938726 

   56          1             0       -3.094713    0.651238    2.459753 

   57          1             0       -1.516943    0.468468    4.417922 

   58          1             0       -0.968476   -1.101993    3.808767 

   59          1             0       -0.681565    0.375587    2.871701 

   60          1             0       -3.899304   -0.147242    4.669854 

   61          1             0       -4.788623   -0.937158    3.360368 

   62          1             0       -3.518343   -1.819934    4.225318 

   63          1             0       -3.309574   -1.135975   -1.026005 

   64          1             0       -0.855089   -6.305683    0.429653 

   65          1             0       -0.404945   -4.813846   -0.422831 

   66          1             0       -1.280411   -4.726771    1.124783 

   67          1             0       -2.862510    4.106455    2.268364 

   68          1             0       -1.016554    3.091264    0.972644 

   69          1             0       -3.223817    3.762500   -2.658257 

   70          1             0       -5.049946    4.769133   -1.381979 

   71          1             0       -0.441686   -1.232115   -2.076783 

   72          1             0       -1.254352    0.748899   -3.456932 

   73          1             0       -2.661732    0.860829   -2.374132 

   74          1             0        0.106054    3.087862   -1.391041 

   75          1             0       -0.945620    2.920339   -2.796353 

   76          1             0       -1.502095   -1.404979   -4.316879 

   77          1             0       -1.892781   -2.801542   -3.314422 

   78          1             0       -3.104381   -1.534125   -3.569101 

   79          1             0       -6.766045    4.743101    0.239531 

   80          1             0       -6.847172    5.916235    1.570825 

   81          1             0       -6.002714    6.365720    0.073819 

 --------------------------------------------------------------------- 

anti-isomer II.7-B: 

 

Free energies of optimized conformers. The Cartesian coordinates are given only for the most 

stable identified conformer. 

II.7-21 (E = 2619,996745 a.u.). 

II.7-22 (E = 2619,996615 a.u.). 

II.7-23 (E = 2619,996594 a.u.). 

II.7-24 (E = 2619,991466 a.u.). 

II.7-25 (E = 2620,002455 a.u.). 
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II.7-26 (E = 2619,992771 a.u.). 

II.7-27 (E = 2619,991527 a.u.). 

II.7-28 (E = 2620,001064 a.u.). 

II.7-29 (E = 2619,998213 a.u.). 

II.7-30 (E = 2619,990167 a.u.). 

II.7-31 (E = 2619,995270 a.u.). 

II.7-32 (E = 2620,001213 a.u.). 

II.7-33 (E = 2619,996788 a.u.). 

II.7-34 (E = 2619,993970 a.u.). 

II.7-35 (E = 2620,001255 a.u.). 

II.7-36 (E = 2619,997344 a.u.). 

II.7-37 (E = 2619,996518 a.u.). 

II.7-38 (E = 2619,997353 a.u.). 

II.7-39 (E = 2620,002518 a.u.). 

II.7-40 (E = 2619,994347 a.u.). 

II.7-41 (E = 2619,997100 a.u.). 

II.7-42 (E = 2619,994869 a.u.). 

II.7-43 (E = 2619,998249 a.u.). 

II.7-44 (E = 2620,004003 a.u.). 

II.7-45 (E = 2619,99519 a.u.). 

II.7-46 (E = 2619,991771 a.u.). 

II.7-47 (E = 2620,002707 a.u.). 

II.7-48 (E = 2619,996945 a.u.). 

II.7-49 (E = 2619,997098 a.u.). 

II.7-50 (E = 2619,999475 a.u.). 

Cartesian coordinates (Å) of II.7-44. 

--------------------------------------------------------------------- 

 Center     Atomic     Atomic              Coordinates (Angstroms) 

 Number     Number      Type              X           Y           Z 

 --------------------------------------------------------------------- 

    1          6             0        3.305519    0.399774   -0.102851 

    2          6             0        3.491280   -0.061786    1.193656 

    3          6             0        4.742084    0.079099    1.804519 

    4          6             0        5.806687    0.683533    1.116673 

    5          6             0        5.611295    1.150525   -0.196166 

    6          6             0        4.360415    1.005536   -0.801185 

    7          6             0        2.384590   -0.700476    1.928420 

    8          6             0        1.996930    0.246218   -0.754510 

    9          6             0        1.037004   -0.810629    1.269249 

   10          6             0        0.896538   -0.360867    0.019807 
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   11          6             0        7.144870    0.824281    1.793094 

   12          6             0        6.552119    2.221684   -2.113284 

   13          8             0        2.550943   -1.136851    3.064920 

   14          8             0        1.808445    0.597514   -1.913048 

   15          8             0        6.704275    1.726743   -0.788468 

   16          6             0       -1.236228   -1.703016    2.005966 

   17          7             0        0.098160   -1.433317    2.070837 

   18          6             0       -3.199718   -2.154905   -1.387846 

   19          6             0       -2.633894   -1.091586   -2.342341 

   20          6             0       -2.109328    1.191096   -2.605394 

   21          8             0       -2.656879    0.195395   -1.740581 

   22          6             0       -2.018107    4.944093   -0.463660 

   23          6             0       -3.235153    4.328953   -0.754968 

   24          6             0       -3.259867    3.113465   -1.448835 

   25          6             0       -2.071260    2.499011   -1.862031 

   26          6             0       -0.853151    3.124366   -1.572606 

   27          6             0       -0.830707    4.335855   -0.877812 

   28          6             0       -4.696419   -1.954216   -1.148049 

   29          6             0       -3.030500    6.760023    0.686375 

   30          8             0       -1.852744    6.123645    0.209222 

   31          6             0       -2.362064   -2.366009   -0.094461 

   32          6             0       -0.552625   -4.055395   -0.644704 

   33         16             0        1.148698   -4.182245   -1.077898 

   34          6             0        1.096093   -3.316250   -2.660879 

   35         16             0       -1.493502   -5.406200   -0.384613 

   36          8             0       -1.026290   -2.781444   -0.557461 

   37          6             0       -2.142068   -1.181408    0.893576 

   38          8             0       -1.715688   -2.415171    2.898099 

   39          6             0       -3.449486   -0.644423    1.522019 

   40          6             0       -3.277069    0.384622    2.666454 

   41          6             0       -4.653063    0.796520    3.196936 

   42          6             0       -2.502890    1.627260    2.227453 

   43          1             0        4.889491   -0.285715    2.821449 

   44          1             0        4.177599    1.353672   -1.813864 

   45          1             0       -0.007392   -0.436433   -0.560315 

   46          1             0        7.913807    0.289905    1.225278 

   47          1             0        7.417888    1.881051    1.873189 

   48          1             0        7.129081    0.406451    2.804194 

   49          1             0        7.511700    2.646109   -2.423796 

   50          1             0        6.305460    1.413278   -2.809327 

   51          1             0        5.805423    3.021990   -2.152902 

   52          1             0        0.495113   -1.793062    2.941813 

   53          1             0       -4.182588    4.761665   -0.453192 

   54          1             0       -4.215995    2.637962   -1.656474 

   55          1             0        0.087611    2.676988   -1.884937 

   56          1             0        0.121475    4.812557   -0.657406 

   57          1             0       -3.121675   -3.098285   -1.947671 

   58          1             0       -1.605379   -1.347195   -2.620176 

   59          1             0       -3.231888   -1.068979   -3.261189 

   60          1             0       -1.099690    0.895966   -2.916527 

   61          1             0       -2.732142    1.294181   -3.501089 

   62          1             0       -5.253352   -2.210852   -2.057595 

   63          1             0       -5.063013   -2.603805   -0.347217 

   64          1             0       -4.954675   -0.919302   -0.915074 

   65          1             0       -3.561734    6.123128    1.402074 

   66          1             0       -2.728600    7.670851    1.211914 

   67          1             0       -3.682735    7.054703   -0.142096 

   68          1             0        2.086178   -3.348099   -3.122618 

   69          1             0        0.381346   -3.796080   -3.336004 

   70          1             0        0.813770   -2.270254   -2.522074 

   71          1             0       -2.817528   -3.181450    0.478917 
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   72          1             0       -1.664775   -0.339613    0.406401 

   73          1             0       -4.037008   -0.152404    0.743114 

   74          1             0       -4.049293   -1.485469    1.892615 

   75          1             0       -2.735396   -0.077991    3.498766 

   76          1             0       -5.250976    1.284436    2.419121 

   77          1             0       -5.209504   -0.076386    3.554633 

   78          1             0       -4.554575    1.494431    4.035204 

   79          1             0       -2.994786    2.115441    1.382434 

   80          1             0       -2.440041    2.354262    3.044611 

   81          1             0       -1.478908    1.382366    1.932955 

 --------------------------------------------------------------------- 
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