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Abstract

In plants, long distance transport of sugars from photosynthetic source leaves to sink organs comprises
different crucial steps depending on the species and organ types. Sucrose, the main carbohydrate for long
distance transport is synthesized in the mesophyll and then loaded into the phloem. After long distance
transport through the phloem vessels, sucrose is finally unloaded towards sink organs. Alternatively, sugar
can also be transferred to non-plant sinks and plant colonization by heterotrophic organisms increases the
sink strength and creates an additional sugar demand for the host plant. These sugar fluxes are coordinated
by transport systems. Main sugar transporters in plants comprise sucrose (SUTs) and monosaccharide
(MSTs) transporters which constitute key components for carbon partitioning at the whole plant level and
in interactions with fungi. Although complete SUTs and MSTs gene families have been identified from the
reference Dicot Arabidopsis thaliana and Monocot rice (Oriza sativa), sugar transporter families of the
leguminous plant Medicago truncatula, which represents a widely used model for studying plant-fungal
interactions in arbuscular mycorrhiza (AM), have not yet been investigated.

With the recent completion of the M. truncatula genome sequencing as well as the release of
transcriptomic databases, monosaccharide and sucrose transporter families of M. truncatula were identified
and now comprise 62 MtMSTs and 6 MtSUTs. I focused on the study of the newly identified MtSUTs at a
full family scale; phylogenetic analyses showed that the 6 members of the MtSUT family distributed in all
three Dicotyledonous SUT clades; they were named upon phylogenetic grouping into particular clades:
MtSUTI1-1, MtSUT1-2, MtSUT1-3, MtSUT2, MtSUT4-1 and MtSUT4-2. Functional analyses by yeast
complementation and expression profiles obtained by quantitative RT-PCR revealed that MtSUT1-1 and
MtSUT4-1 are H'/sucrose symporters and represent key members of the MtSUT family. Conservation of
transport capacity between orthologous leguminous proteins, expression profiles and subcellular
localization compared to previously characterized plant SUTs indicate that MtSUT1-1 is the main protein
involved in phloem loading in source leaves whilst MtSUT4-1 mediates vacuolar sucrose export for
remobilization of intracellular reserve.

The AM symbiosis between plants and fungi from the phylum Glomeromycota is characterized by trophic
exchanges between the two partners. The fungus supplies the autotrophic host with nutrients and thereby
promotes plant growth. In return, the host plant provides photosynthate (sugars) to the heterotrophic
symbiont. Here, sugar fluxes from plant source leaves towards colonized sink roots in the association
between the model leguminous plant M. truncatula and the arbuscular mycorrhizal fungus (AMF) Glomus
intraradices were investigated. Sugar transporter candidates from both the plant and fungal partners
presenting differential expression profiles using available transcriptomic tools were pinpointed. Gene
expression profiles of MtSUTs and sugar quantification analyses upon high and low phosphorus nutrient
supply and inoculation by the AMF suggest a mycorrhiza-driven stronger sink in AM roots with a fine-
tuning regulation of MtSUT gene expression. Conserved regulation patterns were observed for orthologous
SUTs in response to colonization by glomeromycotan fungi.

In parallel, a non-targeted strategy consisting in the development of a M. truncatula - G. intraradices
expression library suitable for yeast functional complementation and screening of symbiotic marker genes,
similar to the approach that led to the identification of the first glomeromycotan hexose transporter
(GpMSTT1), has been developed in this study.

Taken together, with the identification, functional characterization and gene expression pattern of sugar
transporter families, a more complete picture of sugar fluxes in the AM symbiosis has begun to emerge.
This study opens new perspectives by identifying interesting candidate genes involved in sugar partitioning
at both the plant and fungal levels and at the symbiotic interface in the widely used AM symbiosis model
between M. truncatula and G. intraradices.

Key words: sugar transport; sucrose transporter, SUT, monosaccharide transporter, MST, sugar
partitioning, Medicago truncatula, Glomus intraradices, arbuscular mycorrhizal symbiosis.
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Preamble

The arbuscular mycorrhizal fungus used in the present study is Glomus intraradices BEG 141
which represents a study model in our laboratory and has been widely mentioned in the
literature (Rivera-Becerril et al. 2005; Seddas et al. 2009b; Tollot et al. 2009; Kuznetsova et
al. 2010; Seddas-Dozolme et al. 2010; Hao et al. 2012). In 2009, the isolate Glomus
intraradices DAOM 197198 was reassigned to Glomus irregulare (Stockinger et al. 2009).
More recently the taxonomy of Glomeromyceta was deeply redefined (SchuRler and Walker
2010) and Glomus irregulare was renamed Rhizophagus irregularis. The BEG141 isolate was
not included in these studies but should now be reassigned to Rhizophagus sp. according to its
phylogenetic position (D. Redecker, unpublished data). Nevertheless in the present thesis
manuscript we decided to keep using the name Glomus intraradices BEG141 for the
following reasons:

- BEG 141 from the IBG database was not yet phylogenetically studied in depth, so it
cannot yet be claimed whether it is R. irregularis or potentially another Rhizophagus
species.

- Papers published by our group (including those present in the annexes) have used the
name Glomus intraradices and keeping the same name will avoid confusion.
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1  Sugars as energy rich and signaling metabolites

Life on earth relies on photosynthesis, which provides atmospheric oxygen vital to respiration
and fixes gaseous CO, into sugar molecules. Indeed, plants are photoautotrophic organisms
producing soluble sugars that are centrally embedded in primary metabolism and serve as the
primary energy source. Sugars are taken up by all cells for transient or long-term storage, as
structural components, as carbon skeletons for biosynthesis of most other metabolites, and as
molecules involved in signal transduction. In animals, glucose is the most important energy
source and transport form. In plant metabolism, main soluble sugars are sucrose, glucose and

fructose (Fig 1).

Sugar production through photosynthesis occurs in two stages and takes place in the
chloroplast of plant leaf cells. In the first stage (light-dependent reactions), photons are
captured by chlorophyll pigments resulting in an electron transport chain and a proton
gradient across the chloroplast membrane leading to the production of chemical energy
molecules (NADPH and ATP). Then, light-independent reactions use these products to
capture and reduce CO, through the Calvin cycle that generates photosynthates, which are
exported mainly as triose-phosphates. Finally, conversion to glucose-6-phosphate precedes
the production of glucose units that are linked together to form starch or are joined with a

fructose unit to form sucrose (Fig 2).

1.1 Sucrose, a plant specific disaccharide

Sucrose (Wind et al. 2010) is a disaccharide composed of a fructosyl and a glucosyl moiety
bound by an a-p glycosidic linkage between the reducing end C2 of the fructose and C1 of the
glucose (Fig 1; B-D-fructofuranosyl-(2,1)-a-D-glucopyranoside). Sucrose is a non-reducing
disaccharide that can only be cleaved by two enzymes and therefore is very stable; such
properties enable both its long distance transport and vacuolar storage. Sucrose is by far the
most abundant sugar in almost all plant tissues, but industrially, there are only two major
sucrose accumulating crops, the temperate dicotyledonous sugar beet (Beta vulgaris) and the
tropical monocotyledonous sugar cane (Saccharum spp). Both provide 35 and 135 million
tons, respectively, of sucrose per year, representing approximately 25% and 75% of global

sucrose production (Halford et al. 2011).



Fig 2. Simplified scheme of photosynthate production in mesophyl cell
with a highlight on sucrose metabolism
For full name designation, please refer to the abbreviation list.
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1.1.1 Sucrose synthesis

Sucrose is found solely in plants and other photoautotrophic organisms. The origin of sucrose
synthesis comes from proteobacteria or cyanobacteria (Lunn 2002). Indeed, chloroplast
evolved from these bacteria and this explains how the first plant cells gained the capacity of
sucrose synthesis (Salerno and Curatti 2003). In higher plants, sucrose is mainly synthesized
in the cytosol from photosynthetically fixed carbon and to a minor extent from the breakdown
of starch and lipid reserves. Sucrose is produced by a two-step enzymatic reaction that
catalyzes the substrates (fructose 6-phosphate and UDP glucose) involving sucrose-phosphate
synthase (SPS) and sucrose-phosphate phosphatase (SPP; Fig 2). Sucrose synthesis is highly
regulated with main control on the first metabolic step operated by SPS (Lunn and MacRae
2003). Indeed, a “fine” regulation by allosteric effectors glucose6-phosphate (activator) and
phosphate (inhibitor) as well as a “coarse” control through protein phosphorylation coexist
(Huber and Huber 1992). This tight regulation of sucrose synthesis responds to sugar
production related to plant photosynthesis rate, sugar demand at the whole plant level, light

conditions and diurnal changes.

1.1.2 Sucrose catabolism

Sucrose catabolism involves two types of sucrose cleaving enzymes (Fig 2 and 3; Koch
2004). Firstly, the cytosolic sucrose synthase (SuS) catalyzes a reversible reaction and
therefore is involved in both sucrose synthesis and catabolism. Nevertheless, SuS role is
principally assigned to sucrose cleavage under most physiological conditions. Secondly, key
enzymes for sucrose catabolism are invertases which can be classified into 3 groups based on
their subcellular localization, solubility and optimal pH (Fig 3; Roitsch and Gonzalez 2004).
Alkaline (also called neutral) soluble cytosolic invertases (CINs) are minimally active in most
systems. Indeed, cytoplasmic sucrose is frequently transported into vacuoles where acidic
soluble vacuolar invertases (VINs) regulate vacuolar sucrose storage and produce
considerable hexose flux across the tonoplast of expanding tissues (Koch 2004). Acidic cell
wall-bound invertase (CWIN) is involved in apoplasmic sucrose cleavage for subsequent
transport via monosaccharide transporters. In contrast to SuS, which produces UDP-glucose,
invertases directly split sucrose into glucose and fructose (Fig 3). Consequently, two-fold
more hexoses are produced and thus, hexose sensing mechanism and resulting signal is
enhanced. Sugar splitting enzymes are regulated at numerous levels (Koch 2004) and are
involved in carbohydrate partitioning, developmental processes, hormone responses as well as

biotic and abiotic interactions (Roitsch and Gonzélez 2004).
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Fig 3. Sucrose cleaving enzymes in a plant cell
Sucrose reaches sink tissues where it is stored in vacuoles or cleaved by sucrose splitting
enzymes (blue circles) for subsequent usage. Sucrose transporters are represented in red and

monosaccharide transporters in blue.
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1.2  Glucose and fructose

Glucose (or D-glucose, dextrose) is a simple sugar that is by far the preferred energy source of
organisms ranging from unicellular microbes to plants and animals. Indeed, this
monosaccharide is embedded in primary metabolism as an energy source of glycolysis and
cellular respiration and as substrate for trehalose and starch synthesis as well as the pentose
phosphate pathway. The key enzyme for glucose utilization and sensing is the hexokinase
(HXXK), which catalyzes its phosphorylation into glucose-6-phosphate. In plant, glucose is one
of the main products of photosynthesis (Fig 2) but also represents a major signaling
metabolite. Fructose (or levulose) is also a simple monosaccharide and its name originates
from fruit sugar where it is most abundant. A key enzyme for fructose-6-phosphate
production is the fructose-1,6-bisphosphatase, which is regulated by fructose-2,6-
bisphosphate to coordinate a key junction in the highways of carbon flux into sucrose and
starch biosynthesis (Nielsen et al. 2004). In addition, after starch, fructose polymers known as
fructan represent a major storage polysaccharide. The fructose moiety from sucrose is
assembled to fructan chains by fructosyl transferases which are related to invertase (Ritsema
and Smeekens 2003).

Glucose possesses a free aldehyde group (aldohexose) whereas fructose has a keto group.
These carbonyl groups make them reducing sugars. Therefore, their presence can be detected
by a Benedict’s test, which relies on the reduction of cupric ions (Cu*") to cuprous ions (Cu")

and the formation of a brick red precipitate of cuprous oxide (Cu,0).

1.3  Sugars act as signaling molecules

In unicellular model organism like yeast, sugar sensing and signaling pathways are well
elucidated; however, sugar regulation is necessarily far more complex in plants (Rolland et al.
2006). Indeed, plants are multicellular organisms that need both long distance and cell
specific signaling events and are made up of sugar exporting (source) and sugar importing
(sink) organs with signals generated from both locations. In general, source activities like
photosynthesis, nutrient mobilization, and sugar export are upregulated under low sugar
conditions, whereas sink activities like growth and storage are upregulated when carbon
sources are abundant. Moreover, sugar signaling pathways are intimately connected to plant
hormones such as abscisic acid (ABA), auxin, cytokinin and ethylene (Le6n and Sheen 2003;
Ramon et al. 2008).

In Arabidopsis thaliana, mutant characterization showed that hexokinase isoenzyme 1

(HXKT) is the central component for glucose sensing in the cytoplasm and can be targeted to



TN

v
Mesophy! cell Parenchyma @ ompanion Sieve
cell cell element
Plasmodesmata & & £
(@]
<
(o}
=
0
©
i)
©
(@)

Transport phloem

Apoplastic sink cell

>

Q

c

o

(0]
phloem

Release

Fig 4. Long distance transport of sugars from source to sink organs

In plants, sucrose (Suc) is synthesized in source leaves and constitutes the main carbohydrate
form for long-distance transport; the first step consisting in sucrose export from mesophyll
cells is still under debate, however recent findings suggest that SWEET (in purple) are key
components for sucrose export likely from parenchyma cells ©. Following export, sucrose is
either passively loaded in the companion cell sieve element complex via plasmodesmata in
symplastic species @ or actively loaded by a single SUT1 (e.g. AtSUC2 in Arabidopsis)
phloem loading protein in apoplastic species @ where trafficking of SUT1 is proposed
between companion cell and enucleate sieve elements. Once in the phloem sap, sucrose
follows the flow of transport phloem where it can be unloaded and retrieved to supply
flanking tissues @. Upon release from the phloem, sucrose is either unloaded to symplasticly
connected sink organs, such as unloading domains (ULD) through plasmodesmata ® or via
SUTs (in red) to apoplasticly connected sink cells ® and cleaved by sucrose-cleaving
enzymes (blue circles) to yield glucose (Glu) and fructose (Fru) that are taken up by MSTs (in
blue). Alternatively, sugar can also be transferred to fungal sinks and plant colonization by
heterotrophic fungi increases sugar demand (Doidy et al. 2012).
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the nucleus for transcription regulation (Jang et al. 1997). Another key regulating pathway
rises from G-protein coupled receptor signaling (GPCRs, Grigston et al. 2008). In addition,
SUT2 sucrose transporters resemble the yeast sugar sensors SNF3 and RGT2 (Barker et al.
2000), and the monosaccharide transporter AtSTP13 complemented yeast snf mutants
(Kleinow et al. 2000). Such transporters might have putative sugar sensing function (see
3.2.2.4).

Sugars act as core modulators from gene expression to enzyme activity. Several global gene
expression studies revealed large number of plant genes to be transcriptionally regulated by
sugars (Price et al. 2004; Rolland et al. 2006). Consistent with this, sucrose-responsive Cis-
elements such as SURE were found to interact with WRKY sugar-induced transcription
factors (Sun et al. 2003). In addition, sugars can have effect on 3° UTR regions and on polyA
tail length and thereby influence mRNA stability (Chan and Yu 1998; Prieto et al. 2000). At a
translational level, sucrose inhibits mRNA translation of the transcription factor
AtB2/bZIP11; this specific sucrose-induced repression of translation (SIRT) is due to
AtB2/bZIP11 long 5’UTR (Rook et al. 1998). At a metabolic level, sugars can modulate
enzyme activity via kinase proteins like SnRK1 (SNF1-Related Kinase, Toroser et al. 2000)
and target of rapamycin (TOR) involved in highly conserved signaling network that regulates

cell growth in response to nutrients (Soulard et al. 2009).

In conclusion, sugars possess metabolic pathways tightly regulated to meet physiological
plant demands but are not just energy rich metabolites considered as fuel for cellular
machinery; they also constitute key signaling molecules for coordination of developmental,

physiological and environmental changes.

2 Long distance transport of sugar: from source to sinks

Higher plants have developed specialized organs presenting distinct functions. Indeed, aerial
parts absorb light and fix CO; into sugar photosynthates, while root organs take up water and
nutrients from the soil. An essential prerequisite for such specialization is the long distance
sap fluxes that occur through xylem and phloem conducting tissues. Xylem sap consists
primarily of water and mineral nutrients transported towards aerial parts, whereas phloem sap
contains carbohydrates exported from photosynthetic source organs towards demanding sink
organs including roots, seeds, flowers, fruits, and newly emerging leaves. Sucrose constitutes
the main carbohydrate for this long distance transport through phloem tissues. Sucrose

synthesized in the mesophyll is first loaded into the collection phloem, then, long distance
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Fig 5. Scheme representing different phloem loading strategies

In symplasmic loading species, sucrose is loaded passively to the CC-SE (companion cell -
sieve element) complex via plasmodesmata according to the concentration gradient. Some
species use a polymer trapping mechanism to load sucrose. In such species, the
polymerization of sucrose into RFOs maintains a concentration gradient suitable for passive
loading of sucrose through plasmodesmata. Therefore, they can also be considered as
symplasmic loaders (Zhang and Turgeon 2009). In apolplasmic loading species, sucrose is
loaded actively to the CC-SE complex by SUT proteins against the concentration gradient.
Adapted from Rennie and Turgeon 2009.
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transport occurs in the transport phloem and finally sucrose is unloaded in the release phloem
(Fig 4).

2.1 Sugar export from mesophyll cells, a black box

The first step consisting in the sucrose export from the mesophyll cell is still under debate
(Fig 4; Lalonde et al. 2004). Indeed, this initial step is the least understood and so far no
sucrose transporters presented efflux of sucrose in vivo. Nevertheless, Carpaneto et al. 2005
showed a sucrose transporter that was able to mediate both influx and efflux of sucrose in
vitro but this transporter rather seem to be involved in the phloem unloading mechanism
(Geiger 2011). Another hypothesis emerged from a vesicular efflux pathway and that vesicles
could mediate solute transport by exocytosis to the apoplastic space (Echeverria 2000). Very
recently, Chen et al. 2012 identified a novel category of SWEET transporters (see 3.3.3) that
catalyze both glucose and sucrose effluxes and mutant phenotypes are consistent with a role
in sucrose efflux from parenchymatic cells adjacent to mesophyll source cells (Fig 4.1; Chen
etal. 2012).

2.2 Phloem loading

Phloem vessels are composed of companion cell-sieve element complex (CC-SE). Sieve tube
is an elongated rank of individual cells arranged end to end to form a conducting vessel. Since
sieve elements lack nucleus, vacuoles, ribosomes and Golgi apparatus, their survival depends
on a close association with the companion cells. Thereby most cellular functions of a sieve-
tube element are carried out by companion cells, which are largely connected by
plasmodesmata. In contrast to the sugar export from mesophyll cells, the step consisting in

sucrose loading into the phloem vessels is well characterized.

2.2.1 Plants employ different phloem loading strategies

The classification of sugar loading strategies is currently made according to anatomical
features and hydrostatic pressure gradients (Pollock et al. 1992). On one hand, there is the
“apoplasmic loaders” which transport sucrose actively from cell to cell across the apoplast via
sucrose transporter proteins (Fig 4.3 and Fig 5). Plant species using this strategy present a
closed minor vein configuration with few plasmodesmata and a high concentration gradient
between sucrose production sites and phloem saps. The plant model species A. thaliana and
Medicago truncatula use this apoplasmic pathway. In apoplasmic species, the disruption of
the phloem loading protein, for instance the knockout of AtSUC2 led to sugar accumulation in
source leaves and a blockage of sugar export towards sink organs resulting in a stunted

growth (Gottwald et al. 2000). On the other hand, “symplasmic loaders” such as Fragaria sp.
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and Quercus rubrum (Rennie and Turgeon 2009) load sugar passively thanks to abundant
plasmodesmata (Fig 4.2) in their open minor vein configuration and a high sucrose
concentration in the mesophyll cell (Fig 5). Thereby, symplasmic species do not rely on
transport protein for sucrose loading and the downregulation of VpSUT1 had minor effect on
sugar partitioning (Zhang and Turgeon 2009; see also Fig 9g).

2.2.2 Plants use different sugar for phloem loading

Recently, van Bel and Hess 2008) showed that plants from the Ranunculaceae and
Papaveracea families contained substantial amount of glucose in their phloem sap. With the
presence of reducing hexoses in phloem sap, van Bel and Hess 2008) announced the end of
the sucrose “dogma”. However, mechanisms of hexose loading and transport strategies in

such species have not yet been studied.

Nevertheless and as previously stated, sucrose is by far the major form for long distance
transport in plants. Some plant species also transport sugar from the raffinose family
oligosaccharides (RFOs; Knop et al. 2001) or sugar alcohol (Reidel et al. 2009) in addition to
sucrose. In such species, RFOs (raffinose and stachyose) are synthesized from sucrose
polymerization in companion cells and accumulate in the phloem. RFOs are larger than
sucrose and cannot diffuse back to the mesophyll through plasmodesmata. This accumulation
of RFOs maintains a low sucrose content in the CC-SE complex and a concentration gradient
favorable for passive loading through plasmodesmata. In this case, sucrose loading into the
phloem vessels occurs by a process known as “polymer trapping” (Fig 5; Turgeon 1991;

Rennie and Turgeon 2009).

2.3 Long distance phloem flow

Once sucrose is loaded into the phloem sap, the disaccharide follows its route through the
transport phloem where solutes are translocated by mass flux in accordance with Miinch’s
pressure flow hypothesis (Miinch 1930). This reviewed hypothesis states that high turgor
values resulting from massive photosynthate accumulation in collection phloem at the source
ends propel the sieve sap toward sites of low turgor values caused by the escape of
photosynthates at the sink ends (van Bel 1995; Knoblauch and Peters 2010). Moreover in the
transport phloem conduct, sucrose can be unloaded and retrieved to supply flanking tissues
and mobilize sugar to and from short- and long-term storage reserves (Fig 4.3; van Bel 2003;
Thompson 2006).
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Fig 6. Kinetics mechanisms of major facilitator superfamily transporters

Uniporters transport a substrate according to the substrate gradient; symporters translocate
substrates in the same direction; antiporters transport substrates in opposite directions.
Coupled symporters and antiporters use the electrochemical gradient of one substrate; for
example the secondary active transport uses the driving force generated by the H" ATPase
pump. Adapted from Afoufa-Bastien 2010.
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2.4 Phloem unloading

Finally sucrose reaches the release phloem and is exported to supply sink organs. In contrast
to phloem loading, unloading strategies can consist of both apoplasmic and symplasmic
pathways in the same individuals (Patrick 1997). Indeed, it seems that unloading pathway
rather depends on the type of sink organ (Turgeon and Wolf 2009). For instance, pollen grains
are suggested as apoplasmic sink that use active SUT (Fig 4.6) whereas root tips transport
their sucrose symplasmically via plasmodesmata in unloading domains (Fig 4.5; Stadler et al.
2005; Sauer 2007). In addition, phloem unloading strategies also depend on the stage of
development of sink organs. Indeed, a shift of phloem unloading from symplasmic to

apoplasmic pathway occurs during ripening of grape berries (Zhang et al. 2006).

Alternatively, sugar can also be transferred to non-plant sinks. Indeed, plant colonization by
heterotrophic organisms represents an increased sugar demand (Fig 4; Doidy et al. 2012a).
However, mechanisms of transport and transporter proteins involved in carbon partitioning
between symbiotic organisms are still poorly understood (Pollock et al. 1992). The role and
regulation of transporters in such interaction will be discussed in 4.3.3.3 and in the third

chapter of this thesis.

3 Sugar transporters: state of the art

With the completion of the genome of A. thaliana (The Arabidopsis Genome Initiative 2000),
we learned that hexose and sucrose transport proteins belong to large multigenic families.
Indeed, main sugar transporters comprising disaccharide (Williams et al. 2000) and
monosaccharide (Buttner 2007) transporters are members of the major facilitator superfamily
(MFS, Marger and Saier 1993). More recently and differing from previously identified MFS
transporters: SWEETSs (Chen et al. 2010), a new sugar transporter family, was defined. Sugar
transport system are necessary for coordination of carbon partitioning, plant development, cell
to cell communication, environmental adaptation and thereby play pivotal roles upon optimal

plant growth and crop yield.

3.1 The major facilitator superfamily

MEFS present over 15000 gene members (Law et al. 2008;
http://www.membranetransport.org/) and are found in all kingdoms of life with functions
ranging from accumulating nutrients in bacteria to the cycling of neurotransmitters in human.
Consequently the MFS is one of the largest classes of channel and transport proteins (Hirai et
al. 2003b). MFS members show binding capacity for a broad substrate spectrum: sugars,

polyols, drugs, phosphorylated glycolytic intermediates, amino acids, peptides, osmolites,


http://www.membranetransport.org/�
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Apoplasm
Fig 7. Three-dimensional structure of major facilitator superfamily transporters
a) Ribbon representation of the LAcY with substrate (in black) at the binding site. For clarity,
loop regions have been omitted (Abramson et al. 2003).
b) Prediction of the tridimensional arrangement of SUTs drawn in analogy to the LacY crystal
structure. Adapted from Sauer 2007.
c) The inward-facing conformation of the LacY turns into the outward-facing conformation

by a rocker-switch mechanism. TM symetry between the N- and C-terminal helices is
highlighted as blue and red cylinders respectively. Adapted from Abramson et al. 2003.
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siderophores, nucleosides, organic anions and inorganic anions (http://www.tcdb.org/).

Mechanistically, MFS transporters display three kinetic systems (Fig 6).

Most MFS proteins are composed of 400-600 amino acids and possess 12 transmembrane
domains (TMs) originating from the duplication and fusion event of an ancestral 6 TMs motif
(Fig 7 and 10; Henderson and Maiden 1990; Rubin et al. 1990; Saier 1994). The tri-
dimensional structural analysis of Escherichia coli lactose permease (LacY; Abramson et al.
2003) and the glycerol-3-phosphate transporter (GlpT; Huang et al. 2003) confirmed the dual
symmetry of TM I-VI and TM VII-XII. However, structural resolution of the bacterial oxalate
transporter (OxIT; Heymann et al. 2001) indicated a four-fold symmetry configuration
evolving from a 3 TMs element by two successive duplication and fusion events (Hirai et al.
2003a). These structural studies led to the observation of molecular processes involved in
substrate translocation, MFS transporters possess a single substrate binding site that operates
upon an alternating access comparable to a rocker-switch mechanism (Fig 7c; Abramson et al.
2003; Law et al. 2007).

Up to now, no plant MFS structure has been resolved. However, valuable information
obtained from crystal structure of bacterial MFS proteins allowed tridimensional prediction of
SUT structure. Comparative studies predicted that TM helices I, IV, VII and X form the
central part of the substrate pore surrounded by the other eight TMs (Fig 7b).

3.2 Sucrose transporters

SUcrose Transporters (SUT), also called SUC (for SUcrose Carriers) are members of the
glycoside-pentoside-hexuronide (GPH) family within the MFS. All described SUTs have a
common structure, with 12 TM domains connected by hydrophilic loops and are assumed to
form a single pore for sucrose, N- and C-termini extremities in the cytosolic side (Fig 7b and
Fig 10). SUTs have been reviewed extensively over the last decade (Lemoine 2000; Lalonde
et al. 2004; Lim et al. 2006; Sauer 2007; Shiratake 2007; Kiihn and Grof 2010; Ayre 2011;
Geiger 2011).

3.2.1 History

Buchel et al. 1980 sequenced the bacterial LacY permease, the first gene coding for a
transport protein. In the 90’s, first SUTs were identified from cDNA library of spinach and
potato leaves (SoSUTI, Spinacia oleracea and StSUTI, Solanum tuberosum) using
suppression cloning by the mean of a Saccharomyces cerevisiae mutant (Riesmeier et al.
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1992; Riesmeier et al. 1993). This yeast mutant strain (SUSY7) is impaired for sucrose
utilization and therefore is suitable for sucrose uptake characterization (Fig 27); by this mean,
SoSUTI was first determined as a H'/sucrose importer (Riesmeier et al. 1992). Thereafter,
SUT orthologs were identified by sequence homology in A. thaliana using radiolabeled
SoSUT1 probes (AtSUC1 and AtSUC2; Sauer and Stolz 1994) and in Plantago major using
AtSUC1 probes (PmSUC?2; Gahrtz et al. 1994) or for Oriza sativa with a degenerated primer
approach (OsSUT1, Hirose et al. 1997). More recently, plant genome sequencing projects led
to the identification of SUTs in numerous plant species (OsSUTs, Aoki et al. 2003; AtSUTs,
Sauer et al. 2004; PtaSUTs of Populus tremula x alba, Payyavula et al. 2011) and it is now
well recognized that all plants have a small-sized family of SUT genes. For instance, the SUT
family comprises 9 AtSUTs in A. thaliana, 6 ZmSUTs in maize (Zea mays) and 5 OsSUTs in

rice.

Together with the increasing number of newly isolated sequences, the SUT classification
evolved over the last decade. Indeed, first phylogenetic analysis separated SUTs among 3
types or clades with a highlight on central cytosolic loop (Fig 8a; Aoki et al. 2003; Lalonde et
al. 2004). Later, Sauer 2007 separated the third clade assembling SUT classification into 4
groups (Fig 8b). Recently, the monocotyledonous specific group 1 was split to build the latest
classification composed of 5 distinct clades (Fig 8c; Braun and Slewinski 2009; Kiihn and
Grof 2010). Despite the classification evolution which led to distinct numbered clades,
inconsistency in nomenclature remains with transporters named using different conventions
(SUT/SUC). To avoid gene confusion and synonymy, the latest and consistent classification

from Kiihn and Grof 2010 will be used in this manuscript.

3.2.2 SUTs by clade

3.2.2.1 The SUT1 clade
Initially named SUT1/SUC2 clade (Lalonde et al. 2004) according to A. thaliana AtSUC2

gene synonymy, which is also called AtSUT1 in some publications (Feuerstein et al. 2010),
the SUT1 clade is the largest and most studied clade and is dicotyledonous specific (Fig 8). It
seems that this clade is composed of paralogs that have evolved through gene duplication and
that each gene variant acquired different functions (Lynch and Force 2000; Ibraheem et al.
2010). H'/sucrose importers (Fig 12) from the SUT1 clade show high affinity for sucrose with
Km values ranging from 0.07 to 2.0 mM.
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Fig 9. A single SUT protein is necessary for phloem loading in apoplasmic loader plants

a) Phenotype of wild type and NtSUT1 antisense tobacco plants (Burkle et al. 1998). b) Starch
accumulation in leaves of wild type and NtSUT1 antisense tobacco plants shown by Lugol's iodine
staining. c¢) Reduction of tuber yield in potato tubers in StSUT1 antisense line aSUT43 and aSUT13
(Riesmeier et al. 1994). d) Phenotype of wild type and ZmSUT1 insertional mutant maize plants
(Slewinski et al. 2009). e) Starch accumulation in leaves of wild type and ZmSUT1 mutant plants
shown by Lugol's iodine staining. f) Autoradiographs showing the blockage of [*C]sucrose export
from ZmSUT1 mutant leaves. g) No phenotype differences were observed in the symplasmic loader
(Verbascum phoeniceum) between wild type and VpSUT1 antisense lines (Zhang and Turgeon 2009).
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3.2.2.1.1 A single SUT1 member necessary for phloem loading

A single member of the SUT1 clade is responsible for sucrose phloem loading for apoplasmic
loaders (Fig 4.3, see 2.2.1, Zhang and Turgeon 2009); for instance AtSUC2 in A. thaliana,
StSUTT in potato, SISUT1 in tomato or NtSUT1 in tobacco. The downregulation (Riesmeier
et al. 1994; Kiihn et al. 1996, Biirkle et al. 1998; Schulz et al. 1998; Hackel et al. 2006b) or
total gene disruption (Gottwald et al. 2000) of the phloem loading protein caused sugar
accumulation, reduced photosynthesis and caused chlorotic lesions in source leaves as well as
reduced growth of sink organs and thereby an overall stunted plant growth (Fig 9a-c).
However, contradictive results were published about the fertility of AtSUC2 KO plants upon
their ability to complete a life cycle and produce viable seeds (Gottwald et al. 2000;
Srivastava et al. 2009b). In symplasmic loader species (Fig 4.2) such as Verbascum
phoeniceum, the disruption of VpSUT1 the phloem loader orthologs only had minor effect on
sugar partitioning and plant morphology was not affected (Fig 9g).

Consistent with their loading functions, all loading proteins are high affinity sucrose importers
and were tagged at the plasma membrane of SE (Kiihn et al. 1997; Reinders et al. 2002a;
Kiihn et al. 2003; Hackel et al. 2006a; Weise et al. 2008) or of both CC and SE (Knop et al.
2004; Scofield et al. 2007b). As the expression of antisense StSUT1 under the control of a
CC-specific promoter prevented phloem loading (Lemoine et al. 1996) and as enucleate SE
mostly depend on CC’s molecular machinery, transcription and translation of the SUTI
loading member are likely to occur in CC. Moreover, various GFP fusion proteins were
shown to traffic towards SE with a large exclusion limit (>67kDa) between plasmodesmata
connecting SEs and CCs (Stadler et al. 2005; Thompson and Wolniak 2008). However, the
presence of StSUT1 mRNAs in SE (Kiihn et al. 1997) together with the discovery of a
translational machinery in angiosperm SE (Lin et al. 2009) led to an alternative model for

protein synthesis in phloem (Kiihn and Grof 2010).

In addition to this source localization, several phloem loader transporter orthologs were also
shown to be expressed in sink tissues where their roles remain obscure. Indeed, AtSUC2
expression was detected in roots and pods (Truernit and Sauer 1995), StSUT1 in potato tubers
(Kiihn et al. 2003), NtSUT1 in roots, buds, sink leaves and flowers (Biirkle et al. 1998) and
SISUTL in roots, fruits and flowers (Hackel et al. 2006a; Boldt et al. 2011). Although
Srivastava et al. 2008 pointed a major role for AtSUC2 in sugar retrieval but not in sucrose
unloading other authors suggest a dual role of such members in both loading and unloading
mechanisms (Kiihn 2003; Carpaneto et al. 2005; Doidy et al. 2012a).
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3.2.2.1.2 The other SUT1 clade members

In addition to the single phloem loading orthologs, the SUT1 clade is also represented by
numerous multicopy SUT1 paralogs in all dicotyledonous species. For instance, in addition to
AtSUC2, the genome of A. thaliana possesses 6 other SUT1 members originating from gene
duplication including 2 pseudogenes (AtSUC6 and AtSUC7, Sauer et al. 2004).

These other SUT1 clade members are not as well characterized as the single loading member
but are thought to have a role in carbon partitioning of sink organs, namely in flowers and
seeds where they are mostly expressed. Indeed, AtSUC1 expression was shown in anther
connective tissue, in funiculi, in fully developed pollen grains and in female gametophyte
(Stadler et al. 1999; Feuerstein et al. 2010), AtSUCS8 along the transmitting tissue and at the
funiculi (Sauer et al. 2004), AtSUCD9 in sepals, in style and in the filament vasculature (Sivitz
et al. 2007), PmSUCL1 in pollen grains, inside the anthers and in pollen tubes (Lauterbach et
al. 2007) and NtSUT3 is pollen specific (Lemoine et al. 1999). Consequently, plant containing
a mutation of AtSUC1 showed impaired pollen germination (Sivitz et al. 2008) and AtSUC9
mutant showed an early flowering phenotype (Sivitz et al. 2007). In addition to its floral
localization, PmSUC1 was shown to be expressed in the innermost layer of the inner
integument (Lauterbach et al. 2007) and AtSUC1 in vascular tissues of siliques (Sivitz et al.
2007). AtSUCS5 expression is endosperm specific and antisense lines showed reduction in fatty

acid composition of their seeds (Baud et al. 2005).

Moreover, members of the SUT1 clade were also present in other sink organs. RnSUC2 is
expressed in young bursting rose buds (Henry et al. 2011). AtSUCL is expressed in trichomes
(Sivitz et al. 2007), in roots and in hypocotyls of young seedling (Sivitz et al. 2008; Hoth et
al. 2010) and mutation of an AtSUC1 key promoter motif revealed an important role for
seedling development (Hoth et al. 2010).

In conclusion, SUT1 Dicot clade is large and well studied, with a well characterized SUT1
protein that function as the main phloem loader in apoplasmic loading species. Numerous
other SUT1 members are mostly present in sink organs but their exact physiological roles are
still not deciphered.

3.2.2.2 SUTS3 clade

Initially grouped with the SUTS5 clade to form the large Monocot specific groupl (Sauer
2007), it was recently split into 2 distinct monocotyledonous clades (Fig 8; Braun and
Slewinski 2009). Despite the phylogenetic distance with the previously described SUT1 clade,
both clades present similar characteristics. Indeed, both clades are strictly Dicot (SUTTI) or
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Monocot (SUT3) specific and possess paralogs originating from gene duplication. However,
TaSUTI1A, TaSUT1B and TaSUT1D rather seem to originate from respective A, B, and D
progenitor genomes of the hexaploid wheat cultivar (Aoki et al. 2002). In addition, it seems
that the SUT3 clade also includes the single SUT protein necessary for sucrose phloem
loading of monocotyledonous apoplastic loaders (Fig 9d). Indeed, transposable element
insertional mutant of ZmSUT1 showed impaired loading phenotype similar to the one
observed in Dicot SUT1 mutants (Fig 9d-f). Applied ['*C]sucrose stood literally blocked in
the tip of source leaves of the ZmSUT1 mutant affected in sugar export (Fig 9f ; Slewinski et
al. 2009). This raises questions about the phylogenetic origins of SUTs and the use of
different Monocot and Dicot SUTs for essential aspects of carbon partitioning (Ayre 2011).

Although the downregulation of OsSUT1 (closely related to ZmSUT1) had no effect on plant
morphology (Ishimaru et al. 2001), Hirose et al. 2010 pointed out that they did not succeed in
recovering a double homozygous OsSUT1 mutant which could suggest a major role for this
putative phloem loading protein. Consistent with this function, many SUT3 clade proteins
were found in source leaves. OsSUT1 as well as the 3 TaSUT1 proteins were tagged in SE
(Aoki et al. 2004; Scofield et al. 2007a) and HvSUT1 is likely to be expressed in CC-SE since
it was amplified from the sap of aphid stylectomy (Doering-Saad et al. 2002). Moreover,
those proteins are also present in sink organs, especially in grains of Poaceae. Indeed,
HvSUT1 is strongly expressed in developing seeds for the allocation of sucrose required for
starch synthesis in the endosperm (Weschke et al. 2000). Subsequently, TaSUTs also seem to
be involved in sucrose utilization from previously stored starch in the endosperm when the
seeds germinate (Aoki et al. 2006). OsSUT1 is also expressed in developing grain (Aoki et al.
2003) and germinating seeds where it may play a role in sucrose allocation towards
developing shoots and roots of seedlings (Matsukura et al. 2000; Scofield et al. 2007a).

Biochemically, all characterized proteins show a high affinity for sucrose with Km values
ranging between 2 and 8 mM and a common trait of the SUT3 clade is their narrow substrate
spectrum with the highest specificity for sucrose among all plant SUTs (see 3.2.3.3; Sivitz et
al. 2005; Reinders et al. 2006; Sun et al. 2010).

3.2.2.3 SUTS clade

Newly separated into a distinct clade (Braun and Slewinski 2009), this monocotyledonous
specific SUTS clade is the least studied so far with only a single protein which has yet been
characterized. OsSUTS5 1is a sucrose importer with a Km for sucrose of 2.3 mM and its

transport capacity shows a low dependence upon pH condition (Sun et al. 2010).
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SUT2 clade

Fig 10. Two-dimensional structure of plant SUTs

Identical colors were used to highlight intra-molecular sequence conservations between the
first and the second halves of the protein. Particular features (discussed in the text) of SUT2
and SUT4 clades are highlighted in red. Adapted from Sauer 2007.
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In conclusion, the cleavage of the Monocot specific SUT group into 2 different clades (SUT3
and SUTS5 clades) has not yet been accepted by all authors (Payyavula et al. 2011) and more
research is needed on Monocot SUTs to establish the exact function of this growing family.
Indeed, numerous sequences have been identified from newly sequenced species such as
Brachypodium distachyon and Sorghum bicolor and have not yet been studied (Braun and
Slewinski 2009).

3.2.2.4 SUT?2 clade

Also called SUT2/SUC3 clade according to A. thaliana AtSUT2/AtSUC3 gene synonymy
(Barker et al. 2000; Meyer et al. 2000), the SUT2 clade was originally attached to the
Monocot clades (Fig 8a; Lalonde et al. 2004). The SUT2 clade comprises a single gene copy
in the higher plant genome studied, except in Hevea brasiliensis, Populus tremula x alba and
Glycine max. Proteins from the SUT2 clade show special features (Fig 10); they are larger
(around 600 amino acids) than other SUTs because they have additional amino acids at the N-
terminal domains (about 30 amino acids) and an extended central cytoplasmic loop (about 50
amino acids). The chimeric addition of the N-terminal domains of AtSUT?2 to the high affinity
transporter StSUT1 (Km=1.7 mM) led to lower affinity for sucrose (Km==8.1 mM) while the
addition of the central loop of AtSUT2 had no effect (Km=1.5 mM). This suggests an
important role of the N-terminal regions of SUTs for substrate affinity (Schulze et al. 2000;
Reinders et al. 2002b). As SISUT2 and StSUT2 were not able to complement SUSY7
deficiency (Barker et al. 2000; Hackel et al. 2006a) and as SUT2 clade members possess a
long conserved central loop comparable to the structure of the yeast sensors SNF3 and RGT2
(Ozcan et al. 1996), SUT2 clade members were initially described as sucrose sensors
(Lalonde et al. 1999; Barker et al. 2000). Subsequently, AtSUT2 (Km= 11.7 mM; Schulze et
al. 2000) and PmSUC3 (Km=5.5 mM; Barth et al. 2003) were shown as active sucrose
transporter but such functional SUT2 clade members show a low affinity for sucrose. Proteins
were detected in sieve element and in sink organs (Barker et al. 2000; Barth et al. 2003;
Meyer et al. 2004). To decipher their physiological role, antisense SISUT2 lines have been
constructed. Those lines showed impaired tomato fruit and seed development and the authors
suggested a role in pollination and/or apoplastic phloem unloading mechanisms (Hackel et al.
2006a). Although the exact functions of SUT2 members remain unknown, their putative sugar

sensing function does not seem to be likely any longer.

3.2.2.5 SUT4 clade

Initially called SUT4/SUC4 clade (Lalonde et al. 2004) according to A. thaliana gene
synonymy (Weise et al. 2000; Endler et al. 2006), as the previously described clade, the SUT4
clade possesses a single gene copy (except in Hevea brasiliensis and Glycine max) among

13



)fx

10 pm

' StSuT4 e Ahdigsha
% RNAI 5 g

StsuT4
RN* 2/5
-~

Fig 11. SUT4 clade proteins

a) Subcellular localization of NtSUT4 in BY2 cells. NtSUT4 was fused to GFP while red
marker corresponds to FM4-64 which primarily stains the plasma membrane (Okubo-
Kurihara et al. 2011).

b) Subcellular localization of a PtaSUT4-GFP fusion in Nicotiana benthamiana mesophyll
protoplasts. Red chloroplast autofluorescence is localized outside of the PtaSUT4-GFP fusion
targeted at the tonoplast (Payyavula et al. 2011). ¢) Early flowering phenotype and tuber
morphology of the StSUT4 antisense line compared to the Andigena wild type variety
(Chincinska et al. 2008).
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Monocots and Dicots (Fig 8, Payyavula et al. 2011). SUT4 proteins are characterized as the
lowest affinity SUTs with Km around 10 mM and a high capacity for sucrose; however the
only characterized SUT4 protein in Monocots shows a high affinity (OsSUC4 Km=1.86 mM;
Eom et al. 2011). All SUT4 proteins present particular features comprising a short C-terminal
and a small linker sequence between TMs VII and VIII (Fig 10). Consequently, they possess
the shortest amino acid sequences among SUTs.

In contrast with all plant SUTs previously cited, SUT4 clade proteins are not solely found at
the plasma membrane. Although AtSUT4 and StSUT4 proteins were first characterized to
mediate active uptake at the yeast plasma membrane (Weise et al. 2000), a tonoplast
proteomic approach screened AtSUT4 and HvSUC2 in vacuolar fractions (Endler et al. 2006)
and another proteomics study purified AtSUT4 in chloroplast fractions (Ferro et al. 2003).
Now, numerous studies showed that SUT4-GFP protein fusions are targeted to the tonoplast
(Fig 11a,b; Endler et al. 2006; Reinders et al. 2008; Eom et al. 2011; Okubo-Kurihara et al.
2011; Schneider et al. 2011). It has been postulated that their initial localization to the plasma
membrane was due to mistargeting in heterologous yeast and Xenopus laevis systems (Sauer
2007). Since the uptake kinetics of characterized SUT4 transporters were curbed upon the
addition of protonophores and H'-ATPase inhibitors, SUT4 H' co-transporters are likely to be
involved in sucrose efflux from acidic vacuoles (Fig 12; Neuhaus 2007; Reinders et al. 2008).
The study of sucrose induced proton currents in vacuoles overexpressing AtSUT4 confirmed
that AtSUT4 releases sucrose from A. thaliana vacuoles (Schneider et al. 2011). However,
using specific antibodies, StSUT4 showed a preferential localization in plasma membrane
fractions while a lower weight fragment was detected in endosomal fractions (Chincinska et
al. 2008). Therefore, the hypothesis of a dual targeting to the vacuolar and plasma membranes
already encountered for A. thaliana TIP aquaporins (Gattolin et al. 2011) can also be
postulated for SUT4 proteins (Doidy et al. 2012a).

SUT4 proteins were detected in sieve elements (Weise et al. 2000) and genes are expressed in
numerous source tissues: in the mesophyll, in minor veins, in phloem and also in sink organs:
roots, seeds and young flowers (Weise et al. 2000; Chincinska et al. 2008; Eom et al. 2011;
Payyavula et al. 2011). In tobacco bright yellow cells, the overexpression of NtSUT4 led to
spherical cell shape and a role in sucrose homeostasis was suggested (Okubo-Kurihara et al.
2011). SUT4 RNAI approaches in rice and poplar led to increase level of soluble sugars,
especially sucrose in leaves compared to wild type plant, suggesting a role in intracellular
sucrose partitioning (Eom et al. 2011; Payyavula et al. 2011). Moreover, the growth
retardation phenotype of 0ssut2 mutant indicates the potential role of SUT4 proteins in

sucrose efflux from source parts (Eom et al. 2011) and could represent the low-affinity/high-

14



SUT1/SUT2 SUF1?  SWEET
ZmSUT1 SUT3/SUT4/SUT5

Suc Suc
SucgmH* Suc +
H+™ Suc ‘a’
Suc Suc
SUT4 TMT1/2 SUF4?
AtSUT4? Suc
iuc
Suc® + Suc H* H*
Suc
Plastid Vacuole
Starch
Glu
Glu H* Int H* H+
pGIcT? Fru
INT1 VGT/TMT ESL
Géj/
GIU H+ PolyolsﬁHJr Inﬁ'ﬁ
Fru Fru Glu
STP PMT INT2/4 SWEET

Fig 12. Subcellular distribution of sugar transporters supported by biochemical analysis
Three families of transporters are implicated in the distribution of sugars within the plant cell;
sucrose transporters (in red), monosaccharide transporters (in blue) and SWEETs (in purple).
At the plasma membrane, most SUTs and MSTs have been characterized as H'/sugar
importers, although recently ZmSUT1 was shown to also mediate active efflux of sucrose
(Carpaneto et al. 2005). In contrast, SWEETs and SUFs function as energy-independent
uniporters that mediate sugar influx and/or efflux (Zhou et al. 2007; Chen et al. 2010).
Localization of SUF1 and SUF4 has not been studied and their membrane localization in this
figure is based upon phylogenetic grouping into particular clades.
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capacity system encountered in leaves (Delrot and Bonnemain 1981; Weise et al. 2000; Ayre
2011). Nevertheless, anti sense lines in potato gave different phenotypes. Indeed, the
downregulation of StSUT4 led to early flowering and higher tuber yields (Chincinska et al.
2008). Surprisingly, such phenotype is opposite to the StSUT1 (phloem loader) mutant
phenotype (Fig 11¢).

3.2.3 SUT transport properties

Most SUTs have been characterized as H'/sucrose co-importers with a 1:1 proton/sucrose
stoichiometry (Bush 1990) and uptake mechanism composed of two different systems with a
saturable high-affinity/low-capacity (HALC) and a linear low-affinity/high capacity (LAHC)
types (Delrot and Bonnemain 1981; Ayre 2011). The biochemical properties of SUTs were
studied using different heterologous systems, often in mutant yeast cells or in Xenopus
oocytes and sometimes in plant protoplast or isolated vacuoles. So far, SUT characteristics

demonstrated that they are able to function properly in different lipid environment.

3.2.3.1 SUTs as efflux carriers

So far all SUTs were characterized to mediate the import of sucrose but recently the study of
sucrose induced proton currents of ZmSUT1 in the giant inside-out patch of X. laevis oocytes
revealed an alternative transport mode for SUT proteins (Carpaneto et al. 2005). Indeed, in
physiological condition ZmSUT1 was able to mediate sucrose import with a Km of 2 mM at
pH 5.6. However, a rise of cytosolic sucrose concentration above 300 mM with variation of
pH conditions inverted the transport mode of ZmSUTI1 that was able to mediate sucrose
efflux with a 100-fold lower affinity (Km for efflux of 278 mM). Therefore, ZmSUT]I
transport mode is reversible (Fig 12) in oocytes and dependent on the direction of the sucrose
and pH gradient as well as the membrane potential. In planta, the anti sense inhibition of
StSUT1 under the control of the class I patatin promoter B33 primarily active in developing
tuber led to lower tuber yield when phloem unloading towards tuber is apoplasmic (Viola et
al. 2001; Kiihn et al. 2003) indicating a major role for StSUT1 in sugar efflux towards sink
organs. Very recently Geiger 2011 reviewed the role of the major SUT1 protein necessary for
phloem loading. In the release phloem, apoplastic concentrations of sucrose are reduced by
the cleavage of sucrose due to the activity of CWIN and the membrane potential mainly
depends on the potassium conductance therefore the proton motive force is decreased. Such
condition directs SUT1 into the inverse transport mode and sucrose is released from the
phloem. Thereby, the SUT1 candidate seems to mediate both the influx of sucrose for phloem
loading and the efflux of sucrose for unloading of apoplasmic sink (Fig 4 and 12, Doidy et al.
2012a).
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Treatment PsSUT1 PsSUF1 PsSUF4 PvSUT1 PvSUF1

Estimated C,/C, ratio® 1.81 1.03 0.73 8.28 1.18
Inhibitor (% control)®

10 um Antimycin A 40% 110 110 66* 94

50 um CCCP 69* 105 92 39* 102

1.5 mm DEPC 29* 106 92 59* 100
Sucrose remaining 92 52*% 39*% 90 42*%

(% of preloaded *C)°
Competing sugar (% control)®

10 mm glucose 127% 103 95 124*% 59%
10 mm fructose 128* 98 86 137% 66*
10 mm maltose 72% 102 90 58* 94
10 mm mannitol 96 111 97 95 90
10 mm raffinose 101 104 104 93 91
10 mm palatinose 99 100 88 98 70*

Table 1. Biochemical uptake characterization of P. sativum and P. vulgaris SUT and SUF
proteins in the SUSY7/ura3- yeast strain Zhou et al. 2007

Green rectangles indicate unimpaired transport properties of SUFs upon inhibitor treatment.
Red rectangles highlight efflux capacity of preoladed yeast expressing SUFs.
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Fig 13. Substrate specificity of AtSUC9
Mean substrate dependent currents recorded from Xenopus oocytes expressing AtSUCY9
(Sivitz et al. 2007).



Introduction and literature review

3.2.3.2 Sucrose facilitators

Unlike previously cited SUTs which mediate secondary active transport of sucrose, three
leguminous proteins in pea (Fig 8; PsSUF1 and PsSUF4) and in common bean (PvSUF1)
were shown to be sucrose facilitators (SUF; Zhou et al. 2007). When expressed in yeast, such
facilitators supported bidirectional diffusion of sucrose. Indeed, the addition of respiratory
chain inhibitor (antimycin A), protonophore (CCCP, carbonyl cyanide 3-
chlorophenylhydrazone) or H' flux inhibitor (DEPC, diethylpyrocarbonate) had no effect on
SUF transport capacity while the addition of the same agents curbed transport property of the
H/sucrose co-transporters PsSUT1 and PvSUT]1 (Table 1; Zhou et al. 2007). Moreover, when
yeast cells expressing respective SUFs and SUTs were preloaded with ["*C]sucrose,
significant sucrose efflux could only be observed for SUF candidates whereas yeast
expressing strict importers kept the radiolabeled sucrose within cells (Table 1; Zhou et al.
2007). Thereby, leguminous SUFs mediate passive sucrose efflux and influx according to the
concentration gradient but so far, no other published work has reported the identification of

additional SUF proteins.

3.2.3.3 SUTs have a broad substrate spectrum

In addition to sucrose transport capacity, SUTs are also able to bind a large range of other
naturally occurring or synthetic sugars. In general, a-glucosides and B-glucosides are well
accepted as substrates of SUTs (Fig 13). For instance, the ability to transport maltose seems to
be a common trait of all plant SUTs (Sauer 2007). Nevertheless, the uptake of sucrose for
leguminous SUFs was not inhibited by the addition of maltose (Table 1; Zhou et al. 2007).
Moreover, A. thaliana SUT1 clade proteins (AtSUC2 and AtSUC9) mediate the transport of
both a- and B-linked glucosides with a higher affinity than the original sucrose substrate (Fig
13; Chandran et al. 2003; Sivitz et al. 2007). In contrast, HvSUT1, ShSUTI1 as well as
OsSUT1 and OsSUTS could only transport a-phenylglucose and a-pnp-glucose (Sivitz et al.
2005; Reinders et al. 2006; Sun et al. 2010). These results highlight the importance of
characterizing additional transporters from various species rather than relying only on data
from the model species A. thaliana. In addition, most SUTs are also able to transport salicin
and arbutin which are naturally occurring glucosides (Sauer 2007). Protein from the SUT3
clade have the narrowest substrate spectrum and OsSUT1 showed low salicin and helicin

transport rate and no arbutin transport capacity (Sun et al. 2010).

Despite the broad spectrum of SUTs, sucralose, a chlorinated analog of sucrose was not
transported by ShSUT1. However, sucralose bound to ShSUT1 binding site since the addition
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Fig 14. Map of the 5’ cis-regulatory sequences of the rice OsSUT family
The 1.5 kb of 5° cis-regulatory region was analyzed using PLACE, PlantCARE and
Genomatix Matinspector professional databases. Adapted from Ibraheem et. al., 2010. For
schematic representation of 5’ cis-regulatory elements, see the legend below:

¢ Salt/drought responsive element; &4 Abscisic acid responsive element; @ Sugar repression;

I Antioxidant responsive element;  Element involved in early response to drought and abscisic
acid induction; @ Gibberellin responsive element; ﬂElement involved in regulation of drought
inducible gene expression; IElement involved in salicylic acid responsiveness, @Module
involved in light responsiveness; A Element involved in direct fungal elicitor stimulated
transcription of defense genes and activation of genes involved in response to wounding;

’Element involved in methyl jasmonates responsiveness; (O Element involved in light
responsiveness; #Part of light responsive element; wwElement involved in seed-specific
regulation; Element required for early response to dehydration; # Elicitor responsive
element; !Core of GCC-box found in many pathogen-responsive and in ethylene responsive
genes; ’Element required for rapid response to pathogen attack, salinity and salicylic acid
inducible gene expression; M Light box Element; EElemen‘[ required for high level light
regulated and tissue specific expression; AElement related to meristem expression;@Ethylene
responsive element; wwCopper responsive element, also involved in oxygen response;

@ Pyrimidine box partially involved in sugar repression (requires Gibberellin); I Sulphur
responsive element; ULight responsive element; IElement required for sugar responsive gene
expression; Heat stress element; <>Element involved in light responsiveness; wrLow
temperature response element; Y Element involved in auxin responsiveness; WrElement
involved in endosperm expression.
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of this analog clearly inhibits ShSUT1 affinity for sucrose (Reinders et al. 2006). In addition,
several disaccharides (such as trehalose, cellobiose and melibiose) and all tested
trisaccharides (raffinose and melezitose) were not accepted as potential SUT substrates (Fig
13; Sivitz et al. 2005; Reinders et al. 2006; Sivitz et al. 2007; Reinders et al. 2008; Sun et al.
2010). Such results suggest that binding specificity and transport ability of SUTs are tightly

modulated among oligosaccharides.

Interestingly, in addition to sugar and sugar-linked substrates, SUT are also able to mediate
the transport of a broader spectrum of molecules. Indeed, AtSUCS5 was screened from a yeast
complementation assay using a biotin uptake deficient strain (Ludwig et al. 2000). The
transport of biotin (also called vitamin H) may be a general property of all SUTs as PmSUC2
was also able to transport this vitamin (Ludwig et al. 2000).

3.2.4 Regulation of SUTs
3.2.4.1 Transcriptional control of SUT expression

Organisms have devoted a significant fraction of their DNA to encrypt Cis-acting regulatory
elements to control and coordinate gene expression and much of these regulatory regions
consist of transcription factor binding sites generally present in the 5’ gene promoter.
Recently, Ibraheem et al. 2010 analyzed the 5’°cis-acting regulatory elements in the promoter
region of the 9 AtSUTs of A. thaliana and the 5 OsSUTS of rice. Interestingly, this in silico
approach screened numerous Cis-elements in all analyzed SUTs including A-box, RY, CAT,
Pyrimidine-box, Sucrose-box, ABRE, ARF, ERE, GARE, Me-JA, ARE, DRE, GA-motif,
GATA, GT-1, MYC, MYB, W-box, and I-box (Fig 14; Ibraheem et al. 2010). In addition to
similar promoter patterns screened in the SUT genes of tomato, SISUTS also contain
regulatory elements located in intronic sequences (He et al. 2008). Indeed, auxin responsive
elements (ARE) were tagged in the 3rd intron of SISUTL1 and in the 10th intron of SISUT2.
These intronic regions were found to be involved in the specific expression of SISUT1 in
trichomes, guard cells and phloem cells (Weise et al. 2008). In A. thaliana plants transformed
with the promoter of AtSUC9 fused to the GUS, no expression was detected (Sauer et al.
2004) but GUS activity could be observed when the full gene locus of AtSUC9 was inserted
(Sivitz et al. 2007). In parallel, AtSUT1 expression is also dependent on intronic sequence but
not AtSUC2 (Stadler et al. 1999; Sivitz et al. 2007). Thus, SUTs contain numerous intergenic
and intronic motifs and each locus shows a unique combination of these regulatory sequences

that determine the temporal and spatial expression of the gene.

These patterns are mostly associated with plant hormonal and developmental regulation as
well as stress response processes (Fig 14; Ibraheem et al. 2010; Kiihn 2011; Liesche et al.
2011). Numerous studies confirm the transcriptional regulation of these crucial processes in

regard to the cis-element pattern. Indeed; SISUTland StSUT1 promoter activity are auxin
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responsive (Harms et al. 1994; He et al. 2008). In addition, SISUT1 which contain an
imperfect evening element of circadian genes is preferentially expressed at the end of the light
period (Harmer and Kay 2005; He et al. 2008) while the regulation of SUT genes upon
sucrose addition suggests a transcriptional control via the sugar repressive A-box (Osuna et al.
2007; Kiihn 2011). In A. thaliana, a 126-bp promoter fragment was sufficient to drive
AtSUC2-typical expression in source leaves (Schneidereit et al. 2008) and wounding
increased the expression of AtSUC3 which contains several W-boxes in its promoter region
(Meyer et al. 2004; Ibraheem et al. 2008; Ibraheem et al. 2010).

3.2.4.2 Post-transcriptional regulation of SUTs

Messenger RNAs (mRNAs) of transporters are often short lived and SUT show a high turn-
over rate with an half life for mRNAs estimated between 60 and 130 min (Vaughn et al. 2002;
He et al. 2008). In addition, experimental approaches on mRNA stability using transcriptional
and translational inhibitors revealed a StSUT2 and StSUT4 mRNAs protective mechanism but
it was not the case for StSUT1 mRNAs (He et al. 2008). Indeed, SUT2 and SUT4 mRNAs
stability seems to be regulated by RNA interacting proteins to ensure steady-state mRNA
levels in plant cell. This is ensured either by degradation of ribonucleases or by protection via
RNA-binding proteins in a phytochrome B dependent manner in response to reduced-red:far-
red light ratio (Fig 15; Liesche et al. 2011).

3.2.4.3 Post-translational control of SUT expression

SUT proteins were also shown to be short lived. Indeed, the half life of BvSUT1 was
estimated around 2.7 hours upon the addition of cycloheximide which inhibits de novo protein
synthesis (Vaughn et al. 2002). At the protein level, SUTs are regulated through several post-
translational control steps ranging from phosphorylation of protein residues to preferential

association with membrane microdomain (Kiihn 2011).

3.2.4.3.1 Phosphorylation

The first evidence of regulatory control via protein phosphorylation came from infiltration
with okadaic acid (a toxin affecting protein phosphatases) which inhibited proton-motive
force-driven uptake of sucrose into plasma membrane vesicles (Roblin et al. 1998). Thus, it
was postulated that when SUTs are in a phosphorylated form, their sucrose import activity is
decreased. A supplemental study confirmed the inhibitory effect when phosphatase are
inhibited but contradictive results were obtained upon the addition of kinase inhibitors that
could increase sucrose transport (Ransom-Hodgkins et al. 2003). Thereafter, investigation of

protein residues representing putative phosphorylation site was carried out and
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Fig 16. SUT oligomerization

a) Homodimerization of SISUTL1 visualized via split YFP; SISUT1 constructs with the N-
terminal or C-terminal part of YFP was used to transform tobacco leaves (A) and protoplast
(B) with Agrobacterium; as a negative control, the potassium channel AtTPK4 in SPYCE was
coinfiltrated with LeSUT1-SPYNE (C). YFP fluorescence is visible as green and chlorophyll
autofluorescence as red (Kriigel et al. 2008).

b) StSUT1 specific immunodetection in soluble proteins fraction (SP), in detergent-resistant
fraction (DRM) and in solubilized plasma membrane (PM) treated with o-Phtalaldehyde
0.5%. Adapted from Krigel et al. 2008.

¢) Hypothetical model of the intra- and intermolecular interactions between two transporters
forming a homo- or heterodimer. SUTs can form their own pore via intramolecular
interactions of the first and second halves of the protein or transport pores can be formed by
contributions of two different transporters through intermolecular interactions. Substrate are
represented at the transporting pore by yellow dots (Reinders et al. 2002).
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phosphoproteomics approaches screened a conserved serine in the N-terminal extremities of
AtSUCI1 and AtSUTS (Niihse et al. 2004; Niittyld et al. 2007). Furthermore, bionformatics
tools predicted threonine 393 as a second phosphorylation site in AtSUC1 (Kiihn 2011).

However, this later residue seems to be located in an extracellular loop between TM 9 and 10.

3.2.4.3.2 Redox environment

Regarding protein regulation on the redox status, first experiments showed that SUTs were
not regulated by cysteine reduction/oxidation as the application of oxidized (GGSG) and
reduced glutathione (GSH) did not affect Monocot SUT activity (Sun et al. 2010). However,
another analysis showed that the application of GGSG increased the dimeric targeting to the
plasma membrane in yeast as well as the transport activity of StSUT1 in oocytes (Kriigel et al.
2008). This sucrose transport activity is directly dependent on the redox environment and not
due to secondary effect of either the delta pH nor the membrane potential (Kriigel et al. 2008).
In conclusion, oxidation is thought to have an effect on plasma membrane targeting, activity
and dimerization of SUT proteins (Fig 17; Liesche et al. 2008).

3.2.4.3.3 SUT oligomerization and interaction with other proteins

Numerous studies rely on bioinformatics tools that predict number, position and the
orientation of putative moieties of SUTs but only few experimental analyses were carried on
intra- and intermolecular interactions and therefore such structural information are valuable.
As the yeast two-hybrid approach is not suitable for the study of integral membrane protein
interactions, first studies of SUT oligomerization were performed using the split-ubiquitin
system. By this mean, it was shown that SUT1, SUT2 and SUT4 clade members, which co-
localized in CC-SE complexes, have the potential to interact with each other (Reinders et al.
2002a; Schulze et al. 2003). StSUT1, SISUT1 and SISUT?2 could also form homooligomers in
the heterologous yeast system (Reinders et al. 2002a; Kriigel et al. 2008). Recently, the first
evidence of SUTs interacting in planta came from a split-YFP approach of SISUT1in tobacco
cells and supplemental proof of StSUT1 dimerization was shown by immunodetection in
potatoes membrane fractions (Fig 16a-b; Kriigel et al. 2008). These SUT1 dimers mediate the
uptake of sucrose in yeast (Reinders et al. 2002a) and in plasma membrane vesicles
(Leggewie et al. 2003; Liesche et al. 2008). In addition, when the 6 first TMs of the low
affinity SISUT?2 interacts with the 6 terminal TMs of the high affinity StSUT1 (Km=0.9 mM),
the resulting functional transporter showed lower affinity (Km=7.4 mM; Reinders et al.
2002b). In conclusion, SUTs can form functional homo- and heterodimers, their transport

capacity and affinity being regulated by intra- and inter-protein oligomerization (Fig 16c¢).
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Fig 17. Association to membrane raft and cycling of SUTs

a) Sucrose uptake deficient yeast (SUSY7) transformed with a LeSUT1-GFP construct and
treated with oxidized glutathione (GGSG) (Krtigel et al. 2008).

b) Ergosterol mutant yeast (Aerg6) transformed with a LeSUT1-GFP construct (Krtgel et al.
2008).

¢) Immunohistochemical detection of StSUT1 on samples treated with brefeldin A. Arrows
represent vesicle formation in SE (Liesche et al. 2010).

d) Hypothetical model of cycling of solanaceous SUT1. Green arrows represent the recycling
and red arrow represents degradation of SUTs. Adapted from Liesche et al. 2010.
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Recent findings reveal that SUT regulation is also dependent on their association with other
protein and complex. Using a combination of the split-ubiquitin yeast two hybrid, immuno-
coprecipitation and bimolecular fluorescence complementation assays, MASUT1 from apple
was shown to interact physically with an apple ER-anchored cytochrome b5 in vitro and in
vivo (Fan et al. 2009). In addition, when this transporter is coexpressed with the cytochrome
in a sucrose uptake deficient yeast, the affinity of MdSUT1 for sucrose clearly increased.
Furthermore, StSUT1 seems to interact with numerous proteins in raft domains of the plasma
membrane and more precisely with a protein disulfide isomerase (PDI), which also interacts
with StSUT4 and SISUT2. PDI is proposed to function as an escort protein for the correct

oligomerization and targeting of SUTs to membrane microdomains (Kriigel et al. 2011)

3.2.4.3.4 Association to membrane rafts and cycling of SUTs

Plasma membranes contain particular domains (rafts) that exhibit a specific molecular
composition. Indeed, membrane rafts are defined as “small (10-200 nm), heterogeneous,
highly dynamic, sterol- and sphingolipid-enriched domains that compartmentalize cellular
processes” (Pike 2006). Proteomic analyses have indicated that a high proportion of proteins
associated with detergent-resistant membranes (DRMs) considered as the biochemical
counterpart of membrane raft might be involved in signaling, protein activity, endocytosis,
dimerization, degradation and transport pathways (Mongrand et al. 2010).

First evidences of the presence of SUTs in membrane raft came from the isolation of StSUT1
from DRM fractions of plant plasma membrane mostly in its monomeric form but also as
homodimers (Fig 16b; Kriigel et al. 2008; Kriigel et al. 2011). It was also observed in raft-like
membrane microdomains when SISUT1-GFP construct was expressed in yeast upon treatment
with oxidizing agent (H,O, and GSSG; Fig 17a; Kriigel et al. 2008). In contrast, in the Aerg6
yeast strain deficient in ergosterol synthesis (sterol enrichment being a key characteristic of
membrane raft), SISUT1 was homogenously distributed at the plasma membrane (Fig 17b;
Kriigel et al. 2008).

This association to raft-like domains seems to be essential to the endocytic cycling and the
polar distribution of transporters and was previously well described for the A. thaliana auxin
transporter AUX1 (Kleine-Vehn et al. 2006). Recently, the internalization of solanaceous
SUT]1 proteins was investigated by the mean of Brefeldin A which inhibit exocytosis and led
to the formation of cytosolic vesicles containing StSUT1-GFP protein suggesting a constant
recycling of SUTs (Fig 17c; Liesche et al. 2010). In addition, the use of cytoskeleton
inhibitors revealed that internalization of SUTs via vesicles progress along actin strands but is

independent of the tubulin cytoskeleton (Liesche et al. 2010). Thereby, the constant turnover
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Fig 18. Three-dimensional model of the human glucose transport protein (HsGLUT3)
Peptide backbone of HsGLUTS3 is represented as a ribbon structure (left). View of the pore
with D-glucose (in black) in the center of the pore (right). Intracellular segments have been
omitted from this view. Dwyer 2001.
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of SUTs via recycling or degradation in lytic vacuoles is dependent on association with

membrane microdomains and cytoskeleton in plant cell (Fig 17d).

3.3 Monosaccharide Transporters

Upon release from the phloem, sucrose is either directly transported via SUT importers in
apoplasmic connected sink cells or cleaved by CWIN to yield the hexoses glucose and
fructose that are taken up by monosaccharide transporters (MSTs; Fig 3). While sucrose is the
main long distance transport sugar, glucose and fructose are mostly transferred from cell to
cell and between organelles at a single cell level; thereby most MSTs do not directly
participate in long-distance transport, still their indirect roles greatly impact on carbon
allocation and transport flux at the whole plant level. Monosaccharides are either transported
by passive diffusion or by active pathways via MSTs. Unlike the small-sized SUT family
which has been intensively reviewed, the current knowledge of the MST family is not so well
acknowledged in the literature (Buttner and Sauer 2000; Williams et al. 2000; Buttner 2007;
Slewinski 2011).

3.3.1 Alarge sized family with a “vague” nomenclature

MSTs belong to the sugar porter (SP) family which is the largest family within the MFS. A
three dimensional model of the human glucose transporter GLUT3 was designed from the
MscL protein (mechanosensitive ion channel) and general insights of aquaporins (Schulz et al.
1998; Dwyer 2001). From the proposed structure of GLUT3, MSTs seem to present 12 TMs
helices connected by loops with intracellular N- and C-termini: a similar structure with SUTs
(Fig 7 and 18). In contrast with SUT, plant species comprise a large-sized family of MSTs
genes; indeed, A. thaliana possesses 53 AtMSTs (Fig 19), grape has 59 VVMSTs and
monocotyledonous genome seems to present a larger family with 65 rice OSMSTs (Buttner
2007; Johnson and Thomas 2007; Afoufa-Bastien et al. 2010). MSTs are currently distributed
among 7 subfamilies including gene homologs already present in land plants at least 400
million years ago (Johnson et al. 2006). In addition, numerous MST homologs are found in
bacterial (e.g., EcXylE), yeast (e.g., ScCHXTs) and mammal (e.g., HsGLUTs) genomes.
However, the current phylogenetic classification of plant MSTs and especially the clade
nomenclature remains ambiguous (Fig 19). Indeed, clades are either named according to
substrate specificity (sugar transport protein [STP], polyol/monosaccharide transporter
[PMT], inositol transporter [INT]), subcellular localization (vacuolar glucose transporter
[VGT], tonoplast membrane transporter [TMT], plastidic glucose transporter [pGlcT]),
mutant-recovering phenotype (suppressor of G Protein Betal [SGBI1]) or even to a stress

condition that induces gene expression (early-responsive to dehydration six-like [ESL]). For
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Fig 19. Phylogenetic tree of the MST family from A. thaliana
The genome of A. thaliana contains 53 AtMSTSs that fall into 7 subfamilies: Sugar Transport

Protein (STP), Vacuolar Glucose Transporter (VGT), Tonoplast Monosaccharide Transporter
(TMT), Plastidic Glucose Transporter/Suppressor of G Protein Betal (pGIcT /SGB1), Polyol /
Monosaccharide Transporter (PMT or PLT), Inositol Transporter (INT), Early-responsive to

dehydration Six-Like (ESL or ERDG6-like). Buttner 2007.
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instance, the best described clade is still assigned as STP which stands for the general

designation “sugar transporter proteins’.

3.3.2 MSTs by clade

3.3.2.1 The STP subfamily

The STP subfamily (Sugar Transport Protein, originally cladel from Lalonde et al. 2004) is
the largest MSTs clade in monocotyledonous species with rice possessing 29 OsSTPs and the
second largest clade in A. thaliana with 14 AtSTPs, primarily resulting from multiple tandem
gene duplications (Fig 19; Johnson and Thomas 2007). To date, most characterized STPs are
plasma-membrane localized H'/hexose symporters identified in the model species A. thaliana
and have been recently presented in a comprehensive review (Fig 12; Biittner 2010). Many of
the transporters show broad substrate specificity; AtSTP1 (Sherson et al. 2000), AtSTP2
(Truernit et al. 1999), AtSTP3 (Buttner et al. 2000b), AtSTP4 (Truernit et al. 1996), AtSTP11
(Schneidereit et al. 2005) and OsMST6 (Wang et al. 2008) transport to differing degrees
glucose, xylose, mannose, and galactose but not fructose. In contrast, AtSTP6 (Scholz-Starke
et al. 2003), AtSTP13 (Norholm et al. 2006) and OsMST4 (Wang et al. 2007) transport
hexoses including fructose but do not transport the pentose sugars, xylose and ribose. Two
transporters show high substrate specificity; AtSTP9 is a glucose-specific transporter
(Schneidereit et al. 2003) while AtSTP14 is a galactose-specific transporter (Poschet et al.
2010). In most cases, substrate affinity are at the uM ranges except for AtSTP3 which is a
low-affinity transporter with a Km for D-glucose of 2 mM (Buttner et al. 2000b).

In general, members of the STP subfamily localize to symplastically isolated sink tissues
where they are involved in loading of hexose derived from apoplastic sucrose hydrolysis.
However the individual spatial, developmental and environmental expression patterns vary
considerably. AtSTP1 expression is reported in germinating seed and young seedlings as well
as guard cells (Sherson et al. 2000; Stadler et al. 2003), AtSTP4 is expressed in roots and
pollen (Truernit et al. 1996) while four transporters, AtSTP2, AtSTP6, AtSTP9 and AtSTP11
are expressed exclusively in pollen at different developmental stages. Three AtSTPs are
expressed in source tissues; AtSTP14 promoter activity was detected both in the seed
endosperm and in source leaves (Poschet et al. 2010), AtSTP13 localized to the vasculature
and leaf mesophyll cells while the low-affinity AtSTP3 gene is also expressed in source
leaves. It is postulated that AtSTP14 plays a role in the recycling of galactose derived from
cell wall degradation while AtSTP3 and AtSTP13 may be involved in the retrieval of sugars
leaked from the cytoplasm. In rice, OSMST2 and OsMST3 are strongly expressed in roots and
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callus, weakly expressed in source leaf blades and leaf sheaths, but not expressed in sink leaf
blades (Toyofuku et al. 2000), while OSMST5 and OsSMST8 are only specifically expressed in
panicles before heading and in anthers, respectively (Ngampanya et al. 2003, Wang et al.
2008), and OsMST1 is not expressed in any tested organs (Toyofuku et al. 2000). OSMST3 is
mostly expressed in the root xylem and is suggested to be involved in the accumulation of
monosaccharides required for cell wall synthesis at the stage of cell thickening (Toyofuku et
al. 2000) while OsMST6 is strongly expressed in various seed tissues, suggested it participates
in unloading and sugar supply during grain filling (Wang et al. 2008). AtSTPs have also been
shown to respond to wounding (Truernit et al. 1996; Buttner et al. 2000b) and are induced
during nematode infection (Hofmann et al. 2009), programmed cell death and pathogen attack
(Truernit et al. 1996; Fotopoulos et al. 2003; Norholm et al. 2006). The large numbers of
STPs together with their diverse and overlapping expression profiles enable flexible response

to developmental and environmental cues.

3.3.2.2 The VGT subfamily

The VGT subfamily (Vacuolar Glucose Transporter, originally clade7 human GLUT 10/12-
Like Transporters from Lalonde et al. 2004) comprises 3 members in A. thaliana (Fig 19) and
2 in grape and rice. This clade was also designated as “Xylose TP homologs” in regard to
their relation with a bacterial D-xylose/H" transporter from Lactobacillus brevis (Johnson and
Thomas 2007). However, AtVGT1 the only characterized VGT was shown to function in the
ATP-dependent uptake of glucose (Km= 3.7 mM) and fructose but not xylose when expressed
in yeast. Both AtVGT1 and AtVGT2 localize to tonoplast where they are suggested to
function as H'/glucose antiporters to collect monosaccharide storage within the vacuole (Fig
12; Aluri and Buttner 2007; Buttner 2007). The downregulation of AtVGT1 by T-DNA
insertion led to delayed flowering and reduced seed viability indicating an important role in
plant developmental processes. In addition to AtVGT1 and AtVGT?2, the third member from
A. thaliana (product of the gene At5g5925) possesses a N-terminal extension carrying a
potential plastid targeting signal (Fig 19; Buttner 2007), however the function and localization

of this protein have to be confirmed experimentally.

3.3.2.3 The TMT subfamily

The TMT subfamily (Tonoplast Monosaccharide Transporter, originally named clade3
MSSP-Like for Monosacharide Sensing Protein in Lalonde et al. 2004 and also AZT for
Allgemeine Zucker Transporter, Johnson and Thomas 2007 and N. Sauer personal
communication) comprises 3 members in A. thaliana and grape, 6 in rice with all
characterized proteins localized to the vacuolar membrane (Wormit et al. 2006; Cho et al.

2010). A unique feature of all TMTs proteins is their extended cytoplasmic central loop
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between TM 6 and 7 comparable to the one observed in the SUT2 clade (see 3.2.2.4). This
huge loop measures around 170 amino acids and contains several phosphorylation sites
(Whiteman et al. 2008; Endler et al. 2009; Schulze et al. 2011). Transport assays using
isolated vacuoles from AtTMTI1, 2 and 3 triple knockout mutants showed reduced glucose
uptake activity (Wormit et al. 2006) and OsTMT1 complemented the KO vacuole deficiency
and was characterized as a functional glucose importer (Cho et al. 2010). Therefore, TMTs
are likely to function as H' glucose antiporters that load vacuolar glucose storage (Fig 12).
Interestingly, electrophysiological characterization of sucrose transport in vacuoles isolated
from Attmt1l/tmt2 knockout mutants indicate that sucrose is also transported by AtTMT1 and
AtTMT2 (Schulz et al. 2011); therefore TMTs are suggested as sucrose/H' antiporters
involved in sucrose loading of vacuolar sucrose storage (Fig 12) AtTMTs seem to be
expressed preferentially in aerial parts with both AtTMT1 and AtTMT2 exhibiting a tissue- and
cell type—specific expression pattern while AtTMT3 is only weakly expressed. In contrast,
expression profile of OSTMT1 and OSTMT2 overlapped and was higher in bundle sheath cells,
and in vascular parenchyma and companion cells of leaves respectively. Overexpression lines
of AtTMT1 demonstrated increased early seedling growth rates and increased seed biomass
and it is hypothesized that these physiological changes are the result of down-stream
responses to altered sugar sensing and assimilate partitioning (Wingenter et al. 2010). In
addition, cold treatment induces changes in protein abundance and activity of numerous
vacuolar related proteins and altered the phosphorylation of AtTMT1 and AtTMT2 (Wormit
et al. 2006; Schulze et al. 2011). These findings indicate that during cold acclimation, some of

the compatible solutes (glucose and fructose) are mainly stored in the vacuole.

3.3.2.4 The pGlcT / SGB1 subfamily

The pGIcT / SGB1 subfamily (Plastidic Glucose Transporter / Suppressor of G Protein Betal,
originally clade 6 GlcT-like transporters in Lalonde et al. 2004) includes 4 homologues in
both A. thaliana and rice (Fig 19). Phylogenetic analysis separates these homologues into

three groups, two of which have putative functions.

One subgroup shows homology to a low affinity glucose transporter (Km=20 mM) from
spinach, SopGIcT, which is located at the chloroplast inner envelope membrane (Weber et al.
2000). Although the single KO mutant of AtPGIcT did not present visible growth phenotype,
the double mutant Atpglct together with the maltose transporter mex1 increased the severe
growth retardation phenotype of the single mex1l mutant. In addition, pglctmex mutant line
exhibited reduced photosynthetic activities as well as extreme chloroplast abnormalities (Cho
et al. 2011). It has been proposed that these chloroplast localized pGlcTs will function in the
efflux of glucose derived from the amylolytic breakdown of transitory starch (Fig 12).
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The second subgroup include AtSGB1 which restored to wild type an aghl mutant (G protein
betal) and was characterized as a functional hexose transporter (Wang et al. 2006).
Furthermore, AtSGB was demonstrated as a Golgi-localized hexose transporter by the mean
of Brefeldin A which disrupt the integrity of Golgi stacks (Wang et al. 2006). Nevertheless,
these results may not be a direct evidence of a function in glucose transport in the Golgi
apparatus; in regard to solanaceous SUTI (see 3.2.4.3.4), this could be the first insight into a
cycling mechanism for MST proteins.

3.3.2.5 The PMT subfamily

The PMT subfamily (Polyol / Monosaccharide Transporter, initially named clade2 Sugar
Alcohol Transporters in Lalonde et al. 2004) was still recently called PLT (Fig 19; Polyol
Transporter) but was renamed PMT (Klepek et al. 2010) in regard to the substrate specificity
of these MSTs that do not only transport polyols but also diverse monosaccharides. PMTs
were first identified in plants which transport polyols (mannitol or sorbitol) as well as sucrose
in their phloem (Noiraud et al. 2001b; Rennie and Turgeon 2009). In celery, AgMaTl was
characterized as a high affinity H'/mannitol transporter (Km=275 uM) and its expression in
mature leaves is consistent with a role in apoplastic phloem loading of mannitol (Noiraud et
al. 2001ab). A. thaliana has six PMT family members but does not transport polyols in its
phloem and as such a physiological function has been more difficult to assign to the PMTs in
this species. To date three AtPMTs have been investigated. All characterized AtPMTs
localize to the plasma membrane (Fig 12; Klepek et al. 2005; Klepek et al. 2010). AtPMT]1,
AtPMT2 and AtPMTS5 present low substrate specificity and mediate the transport of a range
of substrates including polyols (sorbitol, xylitol, glycerol) as well as monosaccharides
(hexoses and pentoses) (Klepek et al. 2005; Klepek et al. 2010). Expression of AtPMT5 was
detected in sink tissues being highest in the root elongation zone and was induced in leaves in
response to wounding. In the latter case, it may play a role in re-assimilation of sugars from
ruptured cells. Truncation of AtPMT5 in a T-DNA insertion mutant did not reveal a
phenotype in response to salt or drought stress or in the presence of a range of transported
solutes (Klepek et al. 2005). In addition, AtPMT1 and AtPMT2 were expressed in immature or
germinating pollen as well as pollen tubes (Klepek et al. 2010). This expression profile
together with the high fructose transport capacity raise possibility that PMTs may be involved
in loading of fructose resulting from CWIN activity in pollen grains. Indeed, the only
AtMSTs characterized up to date that are able to mediate the transport of fructose (AtSTP6
and AtSTP13) are only weakly expressed in pollen tissues (Biittner 2010).
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3.3.2.6 The INT subfamily

The INT subfamily (Inositol Transporter, initially called clade5 HMITs H'-Myo-Inositol
Transporters in Lalonde et al. 2004) comprises four members in A. thaliana and three in rice
and grape. Of the four A. thaliana AtINT genes only three encode functional transporters;
AtINTS3 is incorrectly spliced and encodes a truncated protein (Schneider et al., 2007). Both
AtINT4 and AtINT2 have been localized to the plasma membrane and function as H'/myo-
inositol symporters (Fig 12; Schneider et al. 2006; Schneider et al. 2007). They show a high
specificity for transport of myo-inositol and a limited number of epimeric forms (Schneider et
al. 2007). AtINT4 expression localizes to pollen grains and phloem companion cells of source
leaves whilst the AtINT2 promoter drives weak expression in the anther tapetum and leaf
vasculature. Uptake studies in yeast suggest that AtINT1 also functions as a myo-inositol
transporter, however AtINT1 localizes to the tonoplast and the AtINT1 promoter drives a low
and ubiquitous expression in all tissues and organs, therefore Schneider et al. 2008 postulated
that AtINT]1 is a vacuolar exporter involved in general metabolism of myoinositol (Fig 12). In
addition, only AtINT2 and AtINT4 possess a long extracellular loop between TM 9 and 10
which contains a novel PSI (plexins / semaphoring / integrin) domain. The deletion of the
extended loop of AtINT2 did not alter the plasma membrane targeting but increased the Vmax
of inositol uptake (Dotzauer et al. 2010). This loop region is suggested to be a target for the
binding of Ni*" ions which regulates transport function. Due to the absence of a phenotypic
difference between single atint2.1 or double atint2.1/atint4.2 mutants and wild-type plants;
the physiological role of AtINT2 and AtINT4 remains to be elucidated (Schneider et al. 2006;
Schneider et al. 2007).

3.3.2.7 The ESL subfamily

The ESL gene subfamily (Early-responsive to dehydration Six-Like, initially called clade4
Human GLUT6/8-Like Transporters in regard to their homology with HsGLUT6 and 8;
Lalonde et al. 2004) is the largest clade of MSTs for dicotyledonous species with 19 members
in A. thaliana (Fig 19) and 22 in grape; however, in the monocotyledonous rice species the
ESL clade is limited to 6 members. The first identified members (AtERD6) gave its name to
the subfamily in relation to the high gene expression observed in response to dehydratation
(and also low temperature) condition (Kiyosue et al. 1998). Thereafter, two SFPs (Sugar-
porter Family Protein) duplicates were identified; AtSFP1 and AtSFP2 are differentially
regulated both temporally and spatially (Quirino et al. 2001). It is only recently that the first
member of the large ESL clade was characterized by Yamada et al. 2010. ESL1 (ERD six-like
1) is a low affinity glucose transporter (Km=102.2 mM) targeted to the vacuolar membrane
via a N-terminal LXXXLL motifs conserved amongst most members of the A. thaliana ESL
clade. In addition, ESL1 was characterized as a monosaccharide facilitator since the addition
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Fig 20. SWEETS, a novel sugar transporter superfamily

a) Phylogenetic tree of the SWEET superfamily of A. thaliana, rice, M. truncatula, C.
reinhardtii and P. patens.

b) Glucose transport uptake for AtSWEET1 by co-expression with cytosolic FRET glucose
nanosensor in HEK293T cells. Orange line indicates cells expressing sensor alone; blue line
indicates cells co-expressing sensor and AtSWEET1.

c) Structural model of SWEETSs based on hydrophobicity plots. Identical colors were used to
highlight intra-molecular sequence conservations between TM 1-3 and 5-7. Adapted from
Chen et al., 2010.
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of CCCP did not curb the uptake capacity and Aterdl6 mutant showed elevated vacuolar
glucose levels (Yamada et al. 2010; Poschet et al. 2011). Taken together, these results indicate
that ESL. members mediate an energy independent efflux of glucose for remobilization of

vacuolar carbohydrate storage (Fig 12).

Expression profiles of ESL clade members of A. thaliana have been identified in response to a
number of stresses. Indeed, AtERDG expression decreased in response to salinity or treatment
with ABA and showed a 3.7 fold change of expression in response to chitin, a plant-defense
elicitor (Kiyosue et al. 1998; Libault et al. 2007). In contrast, ESL1 expression was induced by
drought, salinity and ABA treatment (Yamada et al. 2010) and AtSFP1 expression localized to
leaves and increased in parallel with progression of leaf senescence (Quirino et al. 2001). In
addition, a tomato homologue of the ESL clade, LeST3, was shown to be inducible in tomato
leaves during infection with either arbuscular mycorrhizal fungi (see 4.3.3) or the root
pathogen Phytopthora parasitica (Garcia-Rodriguez et al. 2005). Taken together these data
suggest a role for ESL genes in the remobilization of stored sugars from the vacuole in

response to environmental and biotic stresses.

3.3.3 SWEETsS, a novel sugar transporter superfamily

Unlike MSTs and SUTs, SWEETs belong to a distinct superfamily (previously named
MtN3/saliva) detached from the MFS superfamily and presenting a different structural model
(Fig 20a,c). Indeed, SWEETSs are smaller than other sugar carriers (<300AA) since they only
possess 7 TMs resulting from an ancient duplication of a 3-transmembrane-helix-domain
polypeptide fused via a central TM helix. The N- and C-termini are located in the extracellular
and cytosolic side, respectively (Fig 20c). The SWEET superfamily splits into four subclades
and comprises 17 members in A. thaliana and 21 in rice (Fig 20a; Chen et al. 2010).
AtSWEET1 was characterized in yeasts, oocytes as well as in low glucose uptake human cells
by the mean of high-sensitivity fluorescence resonance energy transfer (FRET) nanosensors
which represent the latest technique to pinpoint intra- and intercellular sugar fluxes (Fig 20b;
Takanaga et al. 2008; Chen et al. 2010; Takanaga and Frommer 2010). Thus, AtSWEET1 was
characterized as a low affinity uniporter (Km=9 mM), which functions as a facilitator that
mediates both influx and efflux of glucose at the plasma membrane (Fig 12). Five additional
candidates, AtSWEET4, AtSWEETS, AtSWEET7, AtSWEETS and AtSWEET13 were also
described as functional glucose transporters whereas AtSWEET2 and AtSWEET12 failed to
complement the glucose uptake yeast mutant. Interestingly, SWEET homologs are also found
in numerous organisms ranging from Chlamydomonas reinhardtii to Caenorhabditis elegans
and even a single copy in the human genome (HsSWEET1).
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In addition to hexose transport, AtSWEET10 to 15 and OsSWEETI11 and 14 members
belonging to the subgroup III (Fig 20a) were shown to transport sucrose by means of FRET
nanosensors and oocytes (Chen et al. 2012). This study focused on AtSWEETI11 and 12,
which present a high expression profile in source leaves of A. thaliana, and AtSWEET12 was
characterized as a low affinity sucrose uniporter (Figl2; Km for efflux >10 mM). The double
atsweet11;12 KO mutant was affected in respect to photosynthetic capacity, leaf size, reduced
root length compared to the wild type and accumulated higher amount of sugars (glucose,
sucrose and starch) in rosettes; this mutant is reminiscent of the SUT1 phloem loading mutant
phenotype (Fig 9). Indeed, ['*CO,]-labeling experiments indicated that under low light
conditions, the double mutant only exported half of the fixed '“C relative to wild type
controls. In addition AtSWEET11 and AtSWEET12 GFP fusions were tagged at the plasma
membrane in A. thaliana with localization in cell files along the leaf veins; most likely, these
cells correspond to phloem parenchyma. Taken together, Chen et al. 2012 suggested that both
SWEETs are involved in a two-step mechanism of SWEET-mediated export from
parenchyma cells feeding H'-SUT1 import into the SE-CC complex (Fig 4.1 and 4.2). The
efflux of sucrose to the apoplasm could theoretically occur directly at the site of production in

mesophyll cells, from bundle sheath cells, or from phloem parenchyma cells.

Furthermore, it seems that SWEET paralogs play diverse roles in plant. Indeed, the high
expression in gametophytes together with the male sterility observed for numerous mutants
revealed that AtSWEET1, AtSWEETS, AtSWEETS, OsSWEETI11 and the NEC1 homolog
from petunia are involved in sugar efflux for pollen nutrition (Ge et al. 2001; Engel et al.
2005; Yang et al. 2006; Guan et al. 2008; Song et al. 2009). In addition, it seems that SWEET
play a pivotal role for the competition of sugar fluxes between plant and numerous pathogens,
which acquire glucose from their hosts. Indeed, several AASWEETS are induced upon infection
by the fungal powdery mildew Golovinomyces cichoracearum and the grey mould agent
Botrytis cinerea (Ferrari et al. 2007; Chen et al. 2010) while OsSWEET11 is involved in
bacterial pathogen and its disruption confers resistance to the rice blast agent Xanthomonas
oryzae (Chu et al. 2006; Yang et al. 2006). The first known plant SWEET (MtN3, nodulin3)
was identified in M. truncatula from a cDNA library of root nodules and was postulated as a
new marker of the symbiotic Rhizobium-plant interaction (Gamas et al. 1996). In conclusion,
SWEETs represent a novel and widespread type of uniporters, which are able to mediate
import and efflux of sugars from cells and are specifically involved in diverting nutritional

resources from plant in their interaction with microorganisms.

4  Arbuscular mycorrhiza, an ubiquitous symbiosis

Arbuscular mycorrhizal fungi (AMF) are ubiquitous soil microorganisms living in symbiotic

association with plant roots and arbuscular mycorrhiza (AM) is probably the most widespread
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Fig 21. Photograph of a M. truncatula plant harvested at 4 weeks old.
For culture conditions, see Materials and methods 2.



Introduction and literature review

beneficial interaction between plants and microorganisms (Parniske 2008; Smith and Read
2008). This association between plant and fungi from the phylum Glomeromycota is ancient
(SchiiBler et al. 2001), dating back to the first appearance of land plants (oldest fossil record
around 400 million years ago; Remy et al. 1994). AMF are thus considered as having
co-evolved with land plants and to have played a key role as symbiotic component of plant
evolution. Today, the AM symbiosis affects the vast majority (80%) of plant species, living in
a wide range of terrestrial environments (Wang and Qiu 2006). This mutualistic interaction is
based on biotrophic nutrient exchanges between the plant and the fungal partners. Indeed, the
fungus supplies the autotrophic host with water and nutrients, mainly phosphate and thereby
enhances plant growth. In return, the plant provides sugar photosynthates to the heterotrophic
symbiont. The importance of sugar transfer as the sole carbon source for AMF is emphasized
by the fact that the fungus is unable to grow and complete its life cycle in absence of the host
plant (obligate biotrophy).

AMEF also contribute to plant fitness and resistance against diverse biotic (pathogens)
and abiotic (water deficiency, polluted soil) stresses. The agronomic and ecological
importance of this unique beneficial plant fungal association is largely recognized (Gianinazzi
et al. 2010; Fitter et al. 2011).

4.1 The Medicago truncatula — Glomus intraradices symbiosis model

4.1.1 Medicago truncatula, the leguminous plant model

The Fabaceae or leguminous family represents the third largest family of flowering plants
and the second in importance to humans as a source of food, feed for livestock, and raw
materials for industry. Key agronomical and industrial leguminous species include common
bean (Phaseolus vulgaris), soybean (Glycine max), pea (Pisum sativum), chickpea (Cicer
arietinum), broad bean (Vicia faba) and important forage species include alfalfa (Medicago
sativa), clover (Trifolium sp.) as well as Lotus species. Among the nearly 18000 leguminous
species, barrel medic (Fig 21; M. truncatula), because of its small size, self-fertility, prolific
seed production, rapid generation time and its close relation to the majority of crop and
pasture legumes, has been adopted internationally as the primary model and reference legume
species (http://www.noble.org/medicago/; Cook 1999). Moreover, M. truncatula possesses a
small diploid genome and a broad range of available molecular tools. Indeed, the M.
truncatula genome has a total size of 314 Mb, contain eight chromosomes (2n=16) and
46,016 predicted proteins (Young et al. 2011). The current annotation is the publicly available
version 3.5 (Mt3.5; http://medicagohapmap.org/index.php). In addition, a detailed

transcriptomic microarray "atlas" of gene expression profiles has been carried out for the
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majority of genes covering all plant organs in various conditions (Benedito et al. 2008;

http://mtgea.noble.org/v2/).

In contrast with the plant reference species A. thaliana, legumes offer a unique model in the
area of plant-microbe interactions. Indeed, legumes are unique in their ability to acquire
nitrogen thanks to their mutual beneficial association with bacteria mostly from the
Rhizobium genus. Within root nodules in which these symbiotic bacteria are housed,
atmospheric nitrogen is fixed to a free and renewable source of usable nitrogen. Around 40 to
60 million tonnes of nitrogen are fixed annually by legumes, which is equivalent to about 10
billion dollars of chemical fertilizers (Graham and Vance 2003). In addition, legumes also
have the capability to establish endomycorrhiza with AMF (Smith and Read 2008). This
mutualistic interaction is characterized by biotrophic exchanges between the two partners and
is important to plant mineral nutrition. The symbiotic model between M. truncatula and the
AMF Glomus intraradices is widely used in the scientific community and represent a valuable
tool to study beneficial plant-fungal interactions.

4.1.2 Glomus intraradices, the AMF model

Rhizophagus irregularis, here used under the species name Glomus intraradices (see Preamble)
is a widespread AMF species present in various ecosystems throughout the world. Indeed, it
readily colonizes many plant species as it is known to be efficient in mobilizing, taking up and
transferring mineral nutrients toward a wide range of host plants. In addition, G. intraradices
has been widely used in fundamental and applied research and is a key component of several
commercial inocula (e.g., INOCULUMplus; http://www.inoculumplus.eu/). Therefore, among
the 230 described species in the glomeromycotan phylum, G. intraradices was selected as the
model species and chosen to be the first AMF to be sequenced by the international Glomus
Genome Consortium (Martin et al. 2008). However, the G. intraradices isolate
DAOM197198 which was selected for the genome initiative was shown to fall into a different
clade (Stockinger et al. 2009) and to be conspecific with Glomus irregulare and was recently
reassigned to Rhizophagus irregularis (Schiiller and Walker 2010). Besides DAOM197198
isolate, several G. intraradices cultures have been used by the scientific community and the
G. intraradices BEG141 isolate, representing the model of study in our laboratory, is well
described in the literature (Rivera-Becerril et al. 2005; Seddas et al. 2009; Tollot et al. 2009;
Kuznetsova et al. 2010; Seddas-Dozolme et al. 2010; Hao et al. 2012). Despite a first
estimated genome size of 14-16.5 Mb (Hijri and Sanders 2004), a 4 time coverage (52.5 Mb)
obtained mainly by whole-shotgun sequencing was not sufficient to largely assemble the
genome probably due to the occurrence of multiple polymorphic nuclei. Hower, in addition

the genome size was recently reevaluated to 154.8 Mb by the mean of flow cytometry
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Fig 22. Structural features of arbuscular mycorrhizal fungi

a) Spores of glomeromycotan species including G. intraradices, G. mosseae, G. caledonium,
Gigaspora candida, G. margarita, Acaulospora laevis, Scutellospora calospora, S. pellucida,
S. heterogama (photo by L. Mercy, IPM, Dijon). b) Apressorium (ap) and intercellular hyphae
(ih) of G. mosseae (Gianinazzi-Pearson 1996). ¢) Close up of an apressorium in M. truncatula
roots colonized by G. intraradices BEG141. d) Arbuscule (photo by A. SchiRler, LMU,
Munich). e) M. truncatula root fragment colonized by G. intraradices BEG141. f) Vesicles
(Peterson et al. 2004). g) Cross-section of a mycorrhizal M. truncatula root; arbuscules (AR),
intraradical hyphae (IH; Helber et al. 2011).
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(Sedzielewska et al. 2011) and exhaustive transcriptomics data have just been released
(Tisserant et al. 2011). Sequencing of G. intraradices will have a tremendous impact on the
scientific community as it will give first access to so far intractable information about
processes driving the biology and life cycle of AM fungal symbionts; however, it is still a
long hard road to complete the full assembly of the first glomeromycotan genome (Martin et
al. 2008; Fitter 2010).

4.2 Structural features of the AM and life cycle of AMF

Spores represent important propagules of AMF, their size ranges from 22 to 1050 um and
they contain abundant storage lipids and carbohydrates (Fig 22a). The root colonization
process starts from mutual signal exchanges between host and symbiont. Indeed, root
exudates excreted from the plant host act as an initial factor of spore germination; this
exudation induces physiological activity stimulating spore germination, hyphal growth and
branching (Gomez-Roldan et al. 2008). In response, AMF produce mycorrhizal signals (called
“myc factor”) that induce calcium oscillations in root epidermal cells, thus activating plant
symbiosis-related genes (Fig 23; Maillet et al. 2011). It is important to note that mycorrhizal
and rhizobial symbioses use conserved components through a common signaling pathway
(Gianinazzi-Pearson 1996; Oldroyd and Downie 2006).

In the second step of the interaction, the developing hyphae enter into physical contact with
the root epidermis. With this contact, the fungal hyphae differentiate a special type of
apressoria (called hyphopodia) to enter the epidermis (Fig 22b-c and 23). Thereafter, the
fungal hyphae penetrate the epidermal cell; the contents of the plant cell undergo important
reorganization and form a specialized “transcellular channel: the prepenetration
apparatus (PPA; Genre et al. 2005). Once the fungus has entered and fully traversed the
epidermal cell, a second PPA forms across the adjacent outer cortical cell in advance of the

progressing hyphal tip.

The subsequent colonization of the inner cortical tissues by AMF is dependent on the identity
of the host plant. In the case of the M. truncatula - G. intraradices association (Arum AM
type), the intra-radicular mycelium (IRM) quickly colonizes the intercellular apoplastic space
of the cortical parenchyma and continues their growth until they differentiate into specialized
intracellular structures named arbuscules (Fig 22d-e and 23). The term AM comes from the
name of these tree-shaped structures. Arbuscules are formed by branching hyphae, which
invaginate during penetration of the cortical cell. They are completely surrounded by a
periarbuscular membrane (PAM) which is formed de novo from the plant plasma membrane
(Gianinazzi-Pearson 1996). Arbuscules are key structures of the symbiosis as they are the site
of reciprocal nutrient exchanges between the two partners (see 4.3; Fig 24, 25a and 26d) and

represent the main symbiotic interface. In addition, vesicles represent a further characteristic
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structure of AMF (Fig 22f). When the plant is well colonized, vesicles are formed inside or
between the cortical cells; they are mainly filled with lipids and represent major storage
organs of AMF.

AMF grow within plant root tissues and simultaneously develop an extra-radicular mycelium
(ERM) in the soil. The ERM form a hyphal network that considerably increases the
exploration zone of the soil by plant roots in search of supplemental nutrients (Smith and
Read 2008). In addition, the ERM can also serve to the invasion of other roots via the
formation of apressoria. Finally, the life cycle of AMF is completed by the formation of new
spores by the ERM.

4.3 Biotrophic nutrient exchanges in AM symbiosis

The extra- and intra-radical mycelia of the fungus form a continuum between soil components
and root cells (Fig 23 and 24). The ERM recruits mineral nutrients (mainly phosphate and
nitrogen) for the plant, greatly improving plant nutrition. In return, the plant supplies AMF
with sugar photosynthates. These reciprocal and beneficial exchanges are the basis of the AM

symbiosis.

4.3.1 Phosphate

In many ecosystems, phosphate represents a limiting factor and as the plant root system takes
up and uses available nutrients, depletion zones of phosphate appear around developing roots.
In AMF colonized plants, the ERM network increases the potential exploration surface and
the small diameter of fungal mycelia can reach soil pores that are inaccessible to roots.
Therefore, the most relevant contribution of AMF to plant growth and nutrition is probably
the mobilization of phosphate. ERM are able to take up inorganic phosphate (Pi) from the
soil; this prerequisites the presence of fungal phosphate transporters at the membrane of
ERM. Indeed, the first glomeromycotan transporter characterized in detail encoded a Pi
transporter from G. versiforme (GvPT,; Harrison and Buuren 1995) followed by homologous
genes from G. intraradices (GiPT; Maldonado-Mendoza et al. 2001) and G. mosseae
(GmosPT; Benedetto et al. 2005). These transporters were shown to be expressed in the ERM
suggesting a role in initial uptake of Pi from the soil (Fig 24). Thereafter, Pi accumulates in
the form of vacuolar polyphosphate and is transferred along hyphae by means of a motile
tubular vacuolar network to the IRM (Rasmussen et al. 2000; Perotto et al. 2007). At the
symbiotic interface, polyphosphate is hydrolyzed to release Pi ions and subsequent uptake of
Pi released at the periarbuscular space is mediated by two types of plant transporters at the
PAM (Fig 24). The first type include Pi transporters from potato (StPT3; Rausch et al. 2001),
maize (ZEAma; Nagy et al. 2006) and L. japonicus (LjPT3; Maeda et al. 2006 ) which show
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increased expression in AM condition, while the second type of transporters are exclusively
expressed in response to AM. Therefore, the latter type is AM specific and include Pi
transporters from M. truncatula (MtPT4; Harrison et al. 2002), rice (OsPT11; Paszkowski et
al. 2002) and tomato (LePT4; Nagy et al. 2005). AM specific Pi transporters are thought to be
indispensable for the establishment of AM symbiosis as the loss of MtPT4 resulted in
premature death of the arbuscules and arrest of the symbiosis (Javot et al. 2007). In addition
to transcripts of plant Pi transporters, Balestrini et al. 2007 also detected the fungal transporter
GmosPT exclusively in arbusculated cells; these findings suggest that the fungus may regulate
nutrient exchange at the symbiotic interface through a phosphate retrieval mechanism (Fig
24).

4.3.2 Nitrogen

In addition to Pi, nitrogen is another nutrient commonly supplied through chemical fertilizers
and whose availability most commonly limits plant growth. AMF increase access to nitrogen
sources from the soil by the transfer of significant amounts to the host plants. Amino acid
transporter from G. mosseae (GmosAAP1, Cappellazzo et al. 2008), as well as ammonium
(NH4") transporters (GintAMT1, Lopez-Pedrosa et al. 2006; GintAMT2,Pérez-Tienda et al.
2011) and a nitrate transporter (GINT, Tian et al. 2010) from G. intraradices have been
identified in the ERM. Therefore, it seems that AMF are able to take up various sources of
nitrogen from the soil (Fig 24). In the ERM, nitrate is reduced by nitrate reductase to
ammonium and finally converted into the amino acid arginine, which represents the transport
form of nitrogen from the ERM to the IRM (Fig 24). Then, arginine is broken down releasing
urea and further catalyzed by urease into NH;" and seems to be the preferential transferred
nitrogen source assimilated by the host. However fungal transporters involved in the release
of NH," at the periarbuscular space have not yet been identified. Indeed, GintAMT1 and
GIntAMT2 were detected in arbuscules but they rather seem to be involved in the retrieval of
NH,". On the plant side, a single high affinity AMT from L. japonicus (LjAMT2;2) is
preferentially expressed in arbusculated cells where it is postulated to bind charged NH," in
the periarbuscular space and release uncharged NHj; into the plant cytoplasm (Fig 24; Guether
et al. 2009).

4.3.3 Sugar transport in AM symbiosis

In return to this nutrient flow, the plant provides sugar photosynthates to the fungal symbiont.
Since AMF are heterotrophic obligate symbionts, they must receive fixed carbon from the
autotrophic plant. Therefore, the transfer of carbohydrates is thought to be the main benefit
for the fungal partner, as such the root colonization by AMF increase the global sugar sink

demand at the whole plant level. Indeed, fungal growth, reproduction and respiration as well
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as increased metabolism in several plant tissues (€.g., arbusculated cortical cells) augment the
carbon demand in colonized plant roots (Fig 4; Douds et al. 2000). This increased sink
strength is balanced by greater CO, assimilation and higher photosynthesis rate in source
leaves (Wright et al. 1998a; Wright et al. 1998b). However it is still not clear whether this
increased photosynthesis is related to the phosphate supply or directly by the increased sink
strength caused by AMF colonization (Johnson 1984; Nemec and Vu 1990). Recently, a
comprehensive study demonstrated that AMF colonized tomato plants showed increased
opening of stomata, assimilated significantly more CO; and increased efficiency and yield of
the photosystem II as well as higher photochemistry electron transport rate (Boldt et al. 2011).
This led to higher sugar production entirely directed toward sink roots independent of the
phosphate supply (Boldt et al. 2011). It has been estimated that between 4% to 20% of total
photoassimilates are redirected towards AMF colonized roots (Douds et al. 2000; Graham
2000) and transported to the fungus. This represents worldwide, about 5 billion tonnes of
transferred carbon from plants to AMF each year (Bago et al. 2000). This high carbon cost
can sometimes result in negative effects and may cause plant growth depletion especially in
early stages of symbiosis or under high Pi supply (Peng et al. 1993; Dickson et al. 1999;
Douds et al. 2000). Even under such conditions, one must not discount the other beneficial

effects AMF may have upon the health of their host and upon the environment.

4.3.3.1 Source of transferred sugars

At the cellular level, NMR spectrometry experiments revealed that the IRM can take up
hexoses mainly glucose and to a smaller extent fructose, but not sucrose (Shachar-Hill et al.
1995; Solaiman and Saito 1997; Pfeffer et al. 1999). Therefore, before its apoplastic transfer
as hexose at the exchange site, sucrose is either cleaved by sucrose invertase or sucrose
synthase (see 1.1.2 and Fig 3) then, glucose is mainly transferred to the AMF. Consistent with
this, tomato roots colonized by G. mosseae showed a higher accumulation of sucrose and
fructose (Boldt et al. 2011). Initial experiments showed that ERM was unable to perform this
glucose uptake (Pfeffer et al. 1999) which is coherent with the obligate biotrophy and to an
exchange site of sugars located in the IRM. Indeed, the scientific community suggests that as
for phosphate transport, the exchange site is located at the arbuscular interface (Pumplin and
Harrison 2009) and other authors also have pointed intercellular hyphae as the carbon
acquisition site (Smith and Smith 1990; Smith et al. 2001). In addition, Helber et al. 2011
recently demonstrated that the ERM was also able to actively take up both glucose and
xylose. These recent findings suggest that cell wall monosaccharides may also be a carbon
source for AMF; this may give new insights to the axenic culture of the fungus (without the
host plant).
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Fig 25. Sucrose partitioning towards AMF

a) Scheme representing a possible direct symplasmic unloading of sugars towards AMF.
Modified from Blee and Anderson 1998.

b) The promotor of MtSutl was fused to the GUS coding sequence and promotor activity is
visualized in blue. Fungal structures are visualized in green by staining with WGA Alexa
Fluor 488. The expression of MtSutl is induced and located in cortical cells adjacent to fungal
structure in mycorrhizal roots (A) whereas the expression is restricted to the central cylinder
and pericycle in non-mycorrhizal roots (B). Gaude et al. 2011
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On the fungal side, once hexoses are transferred to the IRM, two routes exist for carbon
transport to the ERM (Bago et al. 2003). Hexoses are either converted to glycogen (via
gluconeogenesis) or to tri-acylglycerol (via lipogenesis); both carbohydrates and lipids are the
major transport forms of carbon (Bago et al. 2002a; Bago et al. 2003). Then in the ERM,
glycogen and trehalose are the main carbon storage forms whereas chitin is the structural
carbohydrate of the fungal cell wall (Fig 60).

4.3.3.2 Role of sucrose cleaving enzymes in sugar transfer

Initial works suggested that both vacuolar invertase and sucrose synthase of cortical cells
containing arbuscules maintain a gradient for symplasmic diffusion of sucrose through
plasmodesmata and consequently showed an increased accumulation of transcripts in cell
containing arbuscules by mRNA hybridization (Blee and Anderson 1998; Blee and Anderson
2002). Consistent with this, Hohnjec et al. 2003 detected the promoter activity of the M.
truncatula sucrose synthase gene (MtSucS1) in root colonized segments especially around
arbuscules and internal hyphae by GUS staining. However, recent works also focused on cell
wall bound invertase; LIN6, a tomato excreted invertase, showed specific increased
expression in colonized plants with a promoter activity specifically localized in colonized
cells and to the central cylinder (Schaarschmidt et al. 2006). Furthermore, expression and
activity of all types of sucrose cleaving enzymes appeared to be up-regulated in presence of
AMF (Wright et al. 1998a; Ravnskov et al. 2003; Garcia-Rodriguez et al. 2007; Tejeda-
Sartorius et al. 2008). Taken together, these results suggest that sugars can be loaded to
arbusculated cells both symplastically and through intercellular pathway via transporters. This
may depend on the position of the colonized cortical cells (Fig 25; Blee and Anderson 1998).
Indeed, cortical cells near the endodermis surrounded by the Casparian strip would provide
the most direct symplastic access from the phloem while the following cortical layers may be

connected apoplastically.

The role of sugar cleaving enzymes was then studied using numerous mutant lines upon AM
inoculation. In M. truncatula, MtSucS1 antisense lines showed an overall downregulation of
several carbon related genes and were affected during AM colonization, more particularly in
the establishment and maintenance of arbuscules (Baier et al. 2010). In parallel, studies using
mycorrhized plants transformed to overexpress apoplastic, cytosolic, and vacuolar located
yeast invertases did not show an increase in fungal growth, colonization rate nor fungal sugar
content, whereas plant with decreased acid invertase activity showed diminished
mycorrhization (Schaarschmidt et al. 2007). So far, no sucrose cleaving enzymes have been
identified in glomeromycotan genomes and it seems that respective plant invertases and

sucrose synthases show a fine modulation upon mychorrhizal conditions.
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4.3.3.3 Role of transporters in sugar transfer

As previously stated, the root colonization by AMF greatly improves the sink strength and
sugar demand; consequently a greater amount of sucrose is exported from source organs
(Wright et al. 1998a; Boldt et al. 2011). In apoplastic loading species, a single protein member
of the SUT1 subfamily is principally responsible for the sucrose loading in the phloem (see
3.2.2.1.1; Zhang and Turgeon 2009) and the phloem loading SISUT1 gene together with
SISUT4 showed higher transcript accumulation in leaves of AMF colonized tomato by G.
mosseae (Boldt et al. 2011). The upregulation of these candidates was also observed in AM
sink roots suggesting a role of SUTI and SUT4 members in sugar allocation towards
colonized parts (Boldt et al. 2011). However, studying the same genes by semi-quantitative
PCR, Ge et al. 2008 obtained contradictive results showing that only SISUT1 was
downregulated in roots and leaves of plants mycorrhized by G. intraradices, SISUT2 and
SISUT4 expression being stable. Moreover a differential expression pattern was also observed
for SISUT1 when using G. caledonium, suggesting that SUT expression is regulated
differently in response to AMF species (Ge et al. 2008). In addition, the antisense inhibition
of mRNA coding for the phloem loading protein StSUTI1 in potato resulted in sugar
accumulation in source leaves and reduced growth of sink organs (Fig 9a-c; Riesmeier et al.
1994) but no differences in AMF colonization were observed for this mutant at low or high
phosphate concentration (Gabriel-Neumann et al. 2011). However, potato lines
overexpressing SOSUT1 had a two times higher colonization rate but only in high phosphate
conditions (Gabriel-Neumann et al. 2011). Very recently, using laser capture microdissection
combined with microarray hybridization, MtSutl a M. truncatula SUT was shown to be
induced in non arbusculated cortical cells of mycorrhized roots (Gaude et al. 2011). In
addition, a strong promoter activity was confirmed in cortex cells adjacent to extracellular
fungal hyphae (Fig 25b; Gaude et al. 2011). This candidate belong to the SUT4 clade
members located at the tonoplast; a role for MtSut1 in the export of sucrose from the vacuole
and thus the mobilization of carbohydrate resources in cells adjacent to fungal structures in
mycorrhizal roots has been postulated. In addition to MtSutl, Gaude et al. 2011 also detected
a second gene induced in arbusculated neighboring cells as a SUT; however, this latter
candidate (mtr.28814.1.s1) seems to correspond to mtr.28814.1.s1 at which is rather

annotated as a nucleobase ascorbate transporter (http://mtgea.noble.org/v2/).

As transferred carbon seems to be mainly taken up by the fungus under the form of glucose,
most studies focused on the expression of plant MSTs to pinpoint specifically upregulated
glucose transporter candidates involved in this exchange. Although LeST3 (ESL subfamily)

was not able to function in the yeast deficient strain, this gene shows a similar upregulation in
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Fig 26. Glomeromycotan sugar transporters (Schii3ler et al. 2006; Helber et al. 2011)

a) GpMST1 shows a charcteristic putative topology of MSTs with 12 TMs.

b) Localization of GiMST?2 transcripts in arbucules (AR) and intercellular hyphae (IH) in M.
truncatula root segments.

¢) Reduced expression of GiMST2 by HIGS results in impaired arbuscules and symbiosis
compared with roots transformed with an empty vector control.

d) Model of the sugar transfer for G. intraradices at the plant-fungal symbiotic interface.
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leaves but not in roots of tomato plants colonized either by G. intraradices (BEG121) or G.
mosseae (Garcia-Rodriguez et al. 2005). In another study, Ge et al. 2008 showed that this
gene was differentially regulated (positively or negatively) depending on the AMF species.
Indeed, LeST3 was overexpressed in leaves and roots of tomato plants colonized by G.
intraradices (unknown isolate) but was downregulated in roots when using G. caledonium as
inoculum (Ge et al. 2008). In addition, a maize candidate (ZmMST1) was shown to be
upregulated at submicromolar P concentrations in an African low nutrient adapted cultivar but
not in the European cultivar (Wright et al. 2005). Surprisingly, the most promising candidate
gene for hexose transfer towards colonized cells is also the first studied, Mtstl transcript level
increased in AM colonized roots but not in the myc- M. truncatula mutant; this gene also
showed the highest downregulation over all candidates in AM impaired MtSucS1 antisense
lines (Harrison 1996; Baier et al. 2010). In addition, mRNA hybridization of Mtstl showed a
specific localization to the cortical arbuscule containing cells and in adjacent cells which are
frequently in contact with IRM (Harrison 1996).

On the fungal side, the first glomeromycotan glucose transporter was identified in Geosiphon
pyriformis which forms a symbiosis with Nostoc punctiforme and belongs to an ancestral
branch within the Glomeromycota (Kluge et al. 1991; Schiiller et al. 2001; Schii}ler and
Wolf 2005; SchiiBller et al. 2006). This unique symbiotic model allowed the isolation of pure
fungal mRNA from symbiotic stages to establish a cDNA library (see Chapter 1V), which
then served to isolate GpMST1 (Fig 26a; Schiiler et al. 2006; Schiiller et al. 2007). GpMST1
was characterized as a H'/glucose transporter with a Km of 1.2 mM and highest affinities for
glucose and mannose, followed by galactose and fructose; a role for GpMST1 at the
Geosiphon - Nostoc symbiotic interface was postulated (SchiiBler et al. 2006). The
information obtained from this unique model together with the available glomeromycotan
genomic data recently led to the isolation of three MSTs (MST2, MST3 and MST4) and a
putative SUT (SUCI) from G. intraradices (Eckardt 2011; Helber et al. 2011). These
candidates will be further referred as GiMST2, GiMST3 GiMST4 and GiSUCI to keep
constancy in gene denomination in the manuscript. GiMST2 and GiMST3 fall in a different
clade closely related to fungal xylose transporters whereas GiMST4 is the closest homologs of
GpMST1. As GIMST2 is almost only expressed in symbiotic intraradical structures (Fig 26b),
Helber et al. 2011 focused on this candidate which was characterized as a high affinity
functional H'/glucose transporter. The active transport system is consistent with H' gradient
generated by plasma membrane-located H'-ATPases, which were found to be induced upon
mycorrhization (Gianinazzi-Pearson et al. 1991; Ferrol et al. 2000; Krajinski et al. 2002) and
the high affinity of GiIMST2 favorably position the fungus to efficiently compete with plant
MSTs at the plant-fungal interface. Interestingly, glucose uptake of GiMST2 was shown to be

outcompeted by xylose, mannose and galactose suggesting that AMF also uses plant cell wall
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monosaccharides present at the symbiotic interface (Gianinazzi-Pearson 1996) and the
addition of xylose was able to specifically induce the expression of GiMST2 in the ERM
(Helber et al. 2011). In addition, mRNA hybridization localized the transcripts of GIMST2 in
arbuscules as well as in intercellular hyphae (Fig 26b) suggesting that sugar transfer from
plant to AMF occurs in both structures (Helber et al. 2011). The RNAI silencing of GiIMST2
by Host-Induced Gene Silencing (HIGS) resulted in impaired mycorrhizal formation,
malformed arbuscules, and reduced MtPT4 expression (Fig 26¢; Helber et al. 2011).
Therefore, it seems that GiMST2 is the major component for sugar uptake by G. intraradices
and 1s indispensable for a functional AM symbiosis (Fig 26d).

To sum up, nutrient transport and partitioning between plant hosts and their AM fungal
partners is a key question for scientific, economical and environmental matters as this
reciprocal transfer is the mainstay of what is arguably the world’s most important symbiosis.
Regarding sugar fluxes, the form of transferred sugar (glucose) and the sole source (sucrose)
are well characterized, but different mechanisms, enzymes and sugar transport proteins
involved at both the whole plant level and at the symbiotic interface are still a matter of
debate.

S5 Research postulate

At the start of my project (November 2008), only a single monosaccharide transporter of M.
truncatula (MtMST) was published (Harrison 1996), when AtMSTs and OsMSTs comprise
53 and 65 members respectively (Johnson et al. 2006; Buttner 2007) and no genes coding for
SUT proteins in M. truncatula (MtSUTSs) were identified. On the fungal side, the first fungal
MST belonging to a species from the Glomeromycota had just been characterized in G.
pyriformis (GpMST1; Schii3ler et al. 2006). However, sucrose cleaving enzyme genes of M.
truncatula were being studied and their role in AM symbiosis was proposed (Hohnjec et al.
2003; Schaarschmidt et al. 2007; Baier et al. 2010). Sugar transport proteins in M. truncatula
as well as mechanisms controlling nutrient exchanges in AM symbiosis were not deciphered;
this constituted the initial statement of my research postulate. The identification and
functional analysis of such transporters would provide key information on mechanisms that
underlie nutrient partitioning at both plant and fungal levels for a better comprehension of the

cellular and molecular mechanisms in plant-microorganism interactions.

As a consequence, in the first chapter of my PhD, I performed an in silico search of M.
truncatula and G. intraradices genomic and expression databases to identify putative SUTs
and MSTs from this widely used symbiotic association, the primary model of study of the
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host laboratory in Dijon. Detailed phylogenetic analyses of the identified transporters were
performed to place candidates in the current classification in order to assign a putative role in
regard to previously characterized homologs. In addition, a similar database mining of
available transcriptomics tools was carried out to screen candidates that are regulated

differentially in response to AM inoculation.

In the second and third chapters, I focused on the study of the newly identified sucrose
transporter family from M. truncatula (MtSUT). 1 performed their biochemical
characterization in the yeast heterologous system and analyzed their expression profiles in
plants cultivated under different phosphorus conditions and in response to arbuscular

mycorrhization.

Finally, the fourth chapter consists in a non-targeted approach in regard to the strategy jointly
developed by D. Wipf and A. SchiiB8ler that led to the identification of GpMST1 (Schiiler et
al. 2006). In that way, a PhD cotutelle has been signed between the Université de Bourgogne
and the Ludwig Maximilians Universitit of Munich where I screened the G. pyriformis
expression library for a putative glomeromycotan SUT by functional complementation of
deficient yeast strains. In addition, a similar cDNA library was constructed from M.
truncatula roots mycorrhized with G. intraradices for a further screen of plant and fungal

genes expressed at symbiotic stages.

The aim of my PhD thesis was to study biotrophic nutritional exchanges and more specifically
the transfer of sugar from plant source leaves towards sink roots colonized by the
heterotrophic fungal symbiont. In that way, my project focuses on a comprehensive study of
the MtSUT family, their identification, characterization and expression of key members from
respective clade in response to AMF inoculation to better understand carbon partitioning

within and between organisms.
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Bacterial strain

Genotype

One shot®
Topl0

OmniMAX™ 2-
T1R

XL10-Gold®

F" mcrA A(mrr-hsdRMS-mcrBC) ¢80lacZAM15 AlacX74 recAl araD139
A(araleu)7697 galU galK rpsL (StrR) endAl nupG

F' [proAB+ laclq lacZAM15 Tn10(TetR) A(ccdAB)] mcrA A(mrr-hsdRMS”
mcrBC) ¢80(lacZ)AM15 A(lacZYA-argF) U169 endAl recAl supE44 thit
1 gyrA96 relAl tonA panD

Tet" D(mcrA)183 D(mcrCB-hsdSMR-mrr)173 endAl supE44 thi-1 recAl
gyrA96 relAl lac Hte [F¢ proAB lacl 9ZDM15 Tn10 (Tet") Amy Cam']

Table 2. Genotype of bacterial strains mentioned in this study

Yeast strain

Genotype

EBY.VW4000

SUSY7/ura3

YSL2-1

Mata leu2-3 112 ura3-52 his3-Al trp1-289 MAL2-8c SUC2 Ahxt1-17
gal2A sti1A::loxP agtlA::loxP Amph2 Amph

Mata leu2-3 112 ura3-52 trp1 malO suc2::URAS3 ura3 LEU2::PADH1-
StSUSY1

Mata ura3-52 leu2-3 112 his3- Al trp1-289 mal2-8c hxt1-18::loxP
Gal2::loxP Agtl m2-3::loxP Psuc2::PHXT7

Table 3. Genotype of yeast strains mentioned in this study



Materials and methods

Materials and methods

1 Biological materials

1.1 Plant material

The leguminous model plant for studying plant-microbe interactions Medicago truncatula
(Barrel Medic) belongs to the Fabaceae family, the Faboideae subfamily and the Trifolieae
tribe. The M. truncatula cultivar Jemalong 5 (J5) was used in this study and seeds were
provided by A. Colombet (UMR Agroécologie, Dijon) and came from the 2005 harvest made
at the Epoisses INRA domaine.

1.2 Fungal material

The arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith BEG 141
(synonym Rhizophagus sp.; D. Redecker, unpublished data) was supplied by the International
Bank for Glomeromycota (IBG, http://www kent.ac.uk/bio/beg/); it was produced on leek
(Allium porrum) in pot cultures in neutral y-irradiated Epoisses clay-loam soil by A.
Colombet and V. Monfort (UMR Agroécologie, Dijon).

1.3 Bacterial strains

Escherichia coli strain One shot® Top10 and OmniMAX™ 2-T1R (Invitrogen) were used for
bacterial transformation and multiplication of plasmids and the ultracompetent strain XL10-
Gold® (Stratagene) was used for high efficiency transformation of bacteria with plasmids
containing the cDNA of the M. truncatula - G. intraradices expression library (see 9.5).

Respective genotypes of bacterial strains are indicated in Table 2.

E. coli was grown at 37°C on Luria-Bertani (LB, Annex II) or on LB Agar using appropriate

antibiotics for selection of resistance conferred by plasmid integration.

1.4 Yeast strains

The glucose deficient yeast (Saccharomyces cerevisiae) strain EBY.VW4000 (Fig 27) lacks
all 20 transporter genes (HXT1-17, GAL2, AGT1l, MPHSs) required for hexose uptake
(Wieczorke et al. 1999).

The sucrose deficient yeast strain SUSY7/ura3” (Fig 27) provided by S. Lalonde (Carnegie
Institution for Science, Stanford, USA) originate from the mutant strain SUSY7 lacking the
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Fig 27. Schematic representation of sugar transport in wild type and mutant yeasts
mentioned in this study

Wild type yeasts (€.9. S288C and CEN.PK2-1C) cleave extracellular sucrose by the mean of
an excreted sucrose invertase (SUC2) and import resulting hexoses via ScHXTs (hexose
transporters). The glucose deficient yeast EBY VW4000 (Wieczorke et al. 1999) lacks the 20
sugar transporter genes required for hexose uptake and therefore this strain is suitable to
characterize MSTs. The sucrose deficient yeast YSL2-1 (S. Lalonde, unpublished) lacks the 20
sugar transporter genes required for hexose uptake as well as the signal peptide encoded from
the 1 initiation start codon of SUC2 for the excreted invertase form and therefore is not able
to use extracellular sucrose in the medium. The sucrose deficient yeast SUSY7/ura3
(Riesmeier et al. 1992; Barker et al. 2000) lacks the full SUC2 locus encoded both excreted
and cytosolic invertases, but a plant sucrose synthase gene from potato (SSUSY1) was
incorporated in the yeast genome. Both YSL2-1 and SUSY7/ura3 are suitable to characterize
sucrose importers and functional complementation by SUTs targeted at the yeast plasma
membrane allow import of extracellular sucrose into yeast cells which is then cleaved by
cytosolic invertase (YSL2-1) or potato sucrose synthase (SUSY7/ura3).
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entire SUC2 locus coding for excreted and cytosolic invertases; the gene coding for a
cytosolic invertase of potato (StSUSY1) was stably integrated in the yeast genome (Riesmeier
et al. 1992). The URA3 gene of the mutant SUSY7 was then deleted to obtain the
SUSY7/ura3” strain (Barker et al. 2000) for auxotrophic selection on minimun medium
without uracil. The sucrose deficient yeast YSL2-1 (unpublished) was provided by S. Lalonde
(Fig 27); the original promoter of the yeast invertase SUC2 locus has been substituted with
the promoter of the yeast HXT7 (Psuc2::PHXT7) resulting in the deletion of the first initiation
codon of the excreted invertase. Respective genotypes of mutant yeast strains are indicated in
Table 3.

Yeasts were grown at 30°C using yeast culture medium (Annex I): YPD (yeast extract
peptone dextrose for SUSY7/ura3’), YPM (yeast extract peptone maltose for YSL2-1) or
using minimal synthetic medium with dextrose (SD) or maltose (SM), without uracil for
SUSY7/ura3 and YSL2-1 yeast respectively, when they were transformed with pDR plasmids
(Fig 30).

2 Growth conditions and sampling of plant material

Seeds of M. truncatula were surface sterilized 6 min in sulfuric acid 98%, 10 min in sodium
hypochlorite 3%, washed in sterile water and germinated on 0.7% bactoagar in darkness at
25°C. Then, plantlets were transferred in 75mL pots of sterile mix (2:1, v:v) of Terragreen
(O1lDri-US special, Mettman) and Epoisses soil (non-mycorrhized plants) or in mix (2:1, v:v)
of Terragreen and Epoisses soil base of G. intraradices BEG141 inoculum (mycorrhized
plants). Plants were grown under controlled conditions (420 pE m™ s™ for 16 h of light; 24
and 19°C day and night temperature, 70% humidity), watered daily with sterile water and
supplemented twice a week with 5 mL modified Long Ashton solution (double quantity of
nitrate KNOs, and 1/10 quantity of phosphate NaH,PO, = 0.13 mM phosphate) for low
phosphate (LP) control plants and mycorrhized plants (AM) and with SmL modified Long
Ashton solution (double quantity of nitrate and 1.3 mM phosphate) for high phosphate (HP)
control plants (Table 4; Hewitt 1966). Plants were harvested every week from first to fourth
week post inoculation (wpi); source leaves and root materials were rinsed with distilled water
and dried on paper. Materials for RNA extraction and sugar content quantification were
frozen in liquid nitrogen upon harvest and stored at -80°C. Plant roots were also stained by
the mean of the ink/acid acetic method (see 2.1.4) to determine AM fungal developmental

stage on randomly sampled root pieces.
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High phosphate (HP) Low phosphate (LP)

Components solution mg.L™ solution mg.L™
Potassium nitrate KNO4 808 808
Calcium nitrate Ca(NOs),, 4H,0 1888 1888
ﬁlgﬂglzr’nocjnygzggen phosphate 209 20.9
Magnesium sulphate MgSQ,, 7H,0 368 368
FeNa-EDTA 22 22
Manganese sulfate MNSQ,, 4H,0 2.23 2.23
Copper sulphate CuSQ,, 5H,0 0.25 0.25
Zinc sulfate ZnS0O,4,7H,0 0.29 0.29
Boric acid H3BO; 3.10 3.10
Sodium chloride NaCl 5.90 5.90
Ammonium molybdate (NH4)sM07O4, 0.088 0.088

4H,0

Table 4. Modified Long Ashton solution (Hewitt 1966) for high and low phosphate
conditions
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2.1 Plant growth parameter measurements
2.1.1 Fresh and dry weight

At harvest, five plants of each condition (LP, HP, and AM) were separated into shoots and
roots and fresh weight was directly monitored. Dry weight of shoots and roots was measured
after drying the material in paper bags at 55°C for 3 days.

2.1.2 Total leaf surface

At harvest, digitalized images of the plants have been taken and total leaf surface was
measured on 5 individuals for each condition (LP, HP, and AM). The total leaf surface of
entire plants was assessed using the ImagelJ software (http://rsbweb.nih.gov/ij/) and the image
analyses package of Visilog® v6.8 software (Noesis) combined to algorithm script developed

by C. Schneider (URLEG, Dijon) allowing analyses of leaf surface.

2.1.3 Chlorophyll content estimation

The chlorophyll content of source leaves can be estimated by the mean of a non-destructive
method (Dwyer et al. 1991) with a SPAD chlorophyll meter SPAD-502 (Konica Minolta,
Japan); independent measurements were performed on 10 individual trefoils for each
condition (LP, HP, AM).

2.1.4 Estimation of mycorrhizal root colonization

To estimate total root colonization, staining with black ink (noir de jais of Shaeffer, Shaeffer
Manufacturing Co., USA) was performed. Roots were cleared in 10% potassium hydroxide at
90°C for 80 min, rinsed several times with distilled water, stained for 8 min in 5% ink
solution in 8% acetic acid and destained in 0.8% acetic acid for 25 min (Vierheilig et al.
1998). For light microscopy, 30 times 1 cm-long root pieces were mounted on glass slides,
observed according to Trouvelot et al. 1986, and colonization estimated using the Mycocalc
program (http://www2.dijon.inra.fr/mychintec/Mycocalc-prg/download.html). The parameters
used were F% (frequency of mycorrhizal colonization in the root system), M% (intensity of
mycorrhizal colonization), m% (intensity of mycorrhizal colonization in mycorrhizal root
fragments), A% (arbuscule abundance in the root system), a% (percentage of arbuscules

within colonized areas).
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3 Standard methods of molecular biology

3.1 Nucleic acid preparation methods
3.1.1 Total RNA extraction

Total RNA from root system and source leaves of M. truncatula was extracted with the LiCl
method (Franken and Gnadinger 1994). Plant materials stored in liquid nitrogen (see 2) were
ground into a fine powder in ceramic mortars using liquid nitrogen and transferred into plastic
50 mL Falcon tubes containing NTES extraction buffer (50 mM Tris/HCl, pH 9; 150 mM
NaCl; 5 mM EDTA; 5 % SDS; 1 % B-mercaptoethanol; 1.6 buffer volume (ml) per mg
sample). An equal volume of phenol:chloroform:isoamyl alcohol solution (25:24:1, pH 4.5)
was added to remove proteins. Tubes were inverted several times to mix, then centrifuged 15
min at 14500 g at room temperature, and the upper aqueous phase transferred into new 1.5
mL Eppendorf tubes. This procedure was repeated twice with the phenol:chloroform:isoamyl
alcohol solution and once with pure chloroform. To precipitate RNA and eliminate
polysaccharides, 0.7 volume of 96% ethanol (from -20°C) and 0.05 volume of 1 M acetic acid
were added to the aqueous phase and left overnight at - 20°C. The next day, tubes were
centrifuged for 35 min at 10000 g at 4°C and the liquid phase was discarded. The pellet was
resuspended in DEPC water and RNA was specifically precipitated from the solution by 4 M
LiCI (1 volume) treatment for 4 hours at 4°C. Tubes were centrifuged for 35 min at 10000 g
at 4°C, the aqueous phase was discarded, the pellet was resuspended in DEPC water and
another RNA precipitation was performed overnight with 3 M NaAc (0.1 vol) and 96 %
ethanol (3 vol) at -20°C. The final pellet was air-dried at room temperature and dissolved in
40 uL RNase-free water. Quantity and quality of RNA were checked with a Nanodrop 1000
(Thermo Scientific) and RNA integrity was checked by electrophoresis in a denaturing
agarose gel (see 3.3.2). Finally, a DNase treatment using 2U of RNasin (Promega) and 1U of
DNase RQ1 (Promega) per pug of total RNA was performed and RNA quantity, quality and
integrity were checked again.

3.1.2 Plasmid DNA mini-preparation from bacteria

Plasmid DNA extraction from bacterial culture was performed from a modified rapid alkaline
extraction method (BD, Bimboim and Doly 1979). A 2 mL of LB medium with appropriate
antibiotics was inoculated with a single bacterial colony and incubated overnight at 37°C with
shaking (180 rpm). Bacterial culture is harvested by centrifugation 5 min, 6000 rpm at 4°C
and bacterial pellets is resuspended in BD1 buffer (50 mM glucose, 25 mM Tris-HCI pH 8.0,
10 mM EDTA pH 8.0) with 1uL of RNAse at 10 pg.ul” and incubated 20 min at room
temperature. During this time, BD2 buffer (0.2 N NaOH and 1% de SDS) is prepared

extemporaneously and 200uL is added to the reaction, incubated 5 min at room temperature.
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Then, 150uL of BD3 buffer (3 M KAc, pH 5.5) is added to the reaction and incubated 15 min
on ice and centrifuged 15 min, 14500 rpm at 4°C. Supernatant is recovered in a new
Eppendorf tube with 0.7 volume of isopropanol and incubated 5 min at room temperature,
then centrifuged 5 min at 14500 rpm at 4°C. Supernatant is discarded and plasmid DNA pellet
is washed with 200uL ethanol (70%), centrifuge 5 min at 14500 rpm at 4°C. Finally, pellet is
vacuum-dried and plasmid DNA is eluted in 50 pL sterile water. Plasmid integrity and
concentration was checked by appropriate restriction enzyme digestion (New England
Biolabs) and water dilutions of the digestion reaction were run on 0.8% Agarose gel along
with DNA leader molecular weight (Kalys) marker suitable for DNA quantification.

3.1.3 Yeast plasmid and genomic DNA preparation

Total DNA including both gDNA and plasmid can be extracted by the quick DNA preparation
from yeast method (Amberg et al. 2005). Yeasts are cultivated overnight in complete (S288C,
CEN.PK2-1C, YSL2 -1) or minimal ura” medium (yeast containing pDRs vectors) and 2mL
are transferred in an Eppendorf and centrifuged 2500 rpm, 5 min. Yeast pellet is resuspended
in 400 pL yeast lysis buffer (100 mM Tris, 50 mM Na,EDTA, 1% SDS) with an equal
volume of phenol:chloroform:isoamyl alcohol solution (25:24:1, pH 8) and acid wash glass
beads and beat into Mixer Mill MM200 (Fischer, Germany) for 30 sec at maximum speed.
The total lysate is centrifuged at 14500 rpm, 10 min and supernatant was recovered and
transferred into a new Eppendorf mixed with 40uL of 3 M NaAc and 1 mL 96 % ethanol and
centrifuged 14000 rpm, 5 min. Supernatant was discarded and pellet was washed with 200 puL
80 % ethanol, vacuum-dried and resuspended in S0uL TE.

3.2 Nucleic acid amplification methods
3.2.1 DNA amplification by PCR

Polymerase chain reaction (PCR) is characterized by the ability to generate identical high
copy number of dsDNA and was used to amplify sequence of interest from DNA matrix
(genomic DNA or plasmid) using the Taq Core kits 25 (Qbiogen MP Biomedicals) with 1X
PCR buffer with MgCl, (1,5mM), dNTPs (125uM each, Invitrogen), forward and reverse
specific primers (IuM each, Eurofins MWG) and Taq DNA polymerase 15 U/uL (1U,
Qbiogen MP Biomedicals) adjusted to a final volume of 20uL with sterile water. PCRs were
performed in a T3 Thermocycler (Biometra) with the following protocol parameters: an initial
denaturation step at 95°C for 2 min followed by a 30x cycling program each composed of a
denaturation step at 95°C for 30 sec, a second step of primer annealing to template DNA for

30 sec with a temperature (53-55°C) adapted to primer pair melting temperatures (Tm) and a
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third step of elongation at 72°C with a duration depending of the target size (1 min/kb). PCR

reaction is completed by a final elongation step at 72°C for 5 min.

3.2.2 Bacterial colony PCR

Bacterial transformants grown on antibiotic selective LB plates were checked by classic direct
colony PCR (Zon et al. 1989). Bacterial colonies were directly recovered in 50 pL sterile
water from LB plates with a sterile toothpick. Then, 5 uL of this colony/water dilution was
used as the DNA matrix for PCR reactions as described in 3.2.1, with an extended initial
denaturation step of 5 min to disrupt bacterial cells and PCR products were run on an

electrophoresis gel (see 3.3.1).

3.2.3 Reverse transcription of RNA

Total RNA (1 pg) was mixed with ANTPs (500 uM each, Invitrogen), oligo d(T);s (500 ng,
Promega) adjusted to a final volume of 13 pL with sterile DEPC water and heated up at 65°C
and immediately placed on ice for 3 min to relax RNA secondary structure. First-strand buffer
(1X) and DTT (5 uM), RNaseOut™ (40U) and SuperScript™ III reverse transcriptase (200U,
Invitrogen) are mixed to the previous solution in a final volume of 20 pL. RNA are reverse
transcribed into cDNA by a performing a cycling program in a T3 Thermocycler (Biometra)
at 25°C 5 min, 50°C 60 min, 70°C 15 min, placed immediately on ice for 2 min and stored at -
20°C.

3.3 Nucleic acid separation by gel electrophoresis
3.3.1 DNA electrophoresis in native agarose gel

Agarose gel was prepared in 0.5%TAE buffer (Annex III). DNA samples were mixed with 0.1
volume loading buffer (0.25% bromophenol blue, 0.25% xylene cyanol FF, 30% glycerol)
(Sambrook et al. 1989), loaded into agarose gel and separated at 100V in 0.5XTAE buffer for
15-60 min (depending on agarose gel concentration and DNA fragment size). After gel
staining with ethidium bromide (0.1 pg/ul), DNA was visualized under UV light using a
Molecular Imager® Gel Doc XR (Bio-Rad).

3.3.2 RNA separation in denaturing agarose gel

1 pg RNA diluted in 5 pl RNase-free water was denatured in 5 pl denaturing buffer (50%
deionized formamide, 20% formaldehyde [37%], 1xMOPS buffer [10xMOPS buffer: 200
mM MOPS pH 7.0, 50 mM sodium acetate, 10 mM EDTA]) and 1 pl loading buffer (50%
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Fig 28. Transformation efficiency and incubation time of the YSL2-1 strain using the
high-efficiency yeast transformation method (Gietz and Schiestl 2007)
A 10?2 dilution of YSL2-1 yeast transformed with pDR196Sfil (1pg) using different

incubation time (42°C) was spread on SM ura- medium.
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sucrose, | mM EDTA, 0.25% bromophenol blue, 0.25% xylene cyanol FF, 1% ethidium
bromide [10 pg/ul]) (Sambrook et al. 1989) for 10 minutes at 70°C. RNA was separated for
60 min at 50V in a 1.4% denaturing agarose gel prepared with 20% formaldehyde (37%) and
IXMOPS buffer. RNA integrity was visualized under UV light using a Molecular Imager®
Gel Doc XR (Bio-Rad).

3.4 Transformation
3.4.1 Bacterial transformation with plasmids

Chemical competent One shot® Topl0 and OmniMAX™ 2-T1R (50 uL, Invitrogen) E. coli
cells were thawn on ice in presence of plasmids (1-100 ng in 4 puL) for 30 min and a heat-
shock is performed at 42°C for 30 sec and cells are immediately incubated on ice for 2 min
prior the addition of 1 mL of SOC medium, cells are grown for 1 hour at 37°C and shaken
horizontally (200 rpm). After this time, 100 uL of cells are spread on LB plates using
appropriate antibiotics for selection of resistance and incubated at 37°C overnight. The next
day, clones are checked by colony PCR (see 3.2.2) and positive clones are cultivated in liquid
LB with antibiotics and glycerol (50%) stocks are stored at -80°C.

3.4.2 Yeast transformation

Saccharomyces cerevisiae were transformed according to Gietz and Schiestl 2007 method
suitable to generate sufficient transformants with an efficiency estimated around 3x10’
transformants/ pug plasmid/ 10® cells (Fig 28), for screening expression libraries but was also
used to integrate single plasmid into mutant yeast strains. For this transformation method, a
single yeast colony was picked from a fresh culture and cultivated overnight in 5 mL of liquid
YPD or YPM depending on the yeast strains (Table 3). The next day, 2.5x10% cells are
transferred into 50 mL YPD/YPM in a pre-warmed (30°C) sterile Erlenmeyer flask to give a
final OD of 0.5 and yeast is cultivated for 2 generation times when the cell titer reaches at
least an OD of 2 (3-5 hours); yeast cells are harvested in a 50 mL Falcon by a 6 min
centrifugation 3000g. Yeast pellet is washed with 50 mL sterile water and a second centrifuge
step is performed; yeast pellet is resuspended in 1.5 mL sterile water and transferred to an
Eppendorf tube and a third centrifugation step is performed. Yeasts are then resuspended in a
final volume of 1 mL with sterile water. This yeast suspension is sufficient to perform 10
independent transformations and is divided in 100 pL aliquots per single reaction (for
screening library) or per plasmid to be integrated. Each aliquot is centrifuged for 6 min at
3000g and pellet is resuspended in transformation mix (per reaction: 240 uL PEG 3500 50%
w/v; 36 uL LiAC 1M, 50uL boiled DNA single-stranded carrier made from salmon testis
DNA) and plasmid DNA adjusted to a final volume of 360 pL with sterile water. The
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transformation reaction is incubated at 42°C in a water bath during an optimized time of 50
min (Fig 28). After this time, yeasts are harvested by a 6 min centrifugation 3000g and
resuspended in 1 mL sterile water. Appropriate dilutions of the cell suspension are spread on
synthetic minimal medium plates and incubated at 30°C (5-21 days, Fig 41 and 42). Correct
integration of the plasmid DNA is checked by yeast total DNA preparation (see 3.1.3)
followed by PCR (see 3.2.1) with PMA forward and ADH close reverse primers.

3.5 Software used for molecular biology analyses

Specific primers were designed (Annex IV) using AmplifX 1.5.4 (http:/ifrjr.nord.univ-
mrs.fi/AmplifX) and Oligo Analyzer 1.0.2 (Teemu Kuulasmaa) software and analyses of
DNA sequences retrieved from sequencing of PCR products and plasmids were performed
using BioEdit 7.0.9.0 (Hall 1999) and DNAbaser (http://www.dnabaser.com/index.html)
software.

3.6 Statistical analyses

All data represent means + standard deviation of data obtained from biological material of
several independently grown plants (the sample number n is indicated in the table and figure
legends). The data were statistically checked by the adequate Student t-test upon
accomplishing the Fischer F-test.

4 Insilico search for sugar transporters in M. truncatula and G.

intraradices

Putative M. truncatula sugar transporter sequences (MtSUT and MtMST) were retrieved from
the Medicago truncatula genome version 2.0, 3.0 and 3.5
(http://www.medicagohapmap.org/index.php; Young et al. 2011), from the Dana-Farber
cancer institute (DFCI) Medicago Gene Index (http://compbio.dfci.harvard.edu/cgi-
bin/tgi/gimain.pl?gudb=medicago) and from Medicago EST navigation system (MENS,
INRA, Toulouse, http://medicago.toulouse.inra.fr/Mt/EST/) using key word searches and
BLAST programs of previously published plant sugar transporter sequences. Expression
profiles of all available MtSUT were retrieved from the MtGEA (M. truncatula gene atlas,
http://mtgea.noble.org/v2/) database which archives all publically available gene expression
data derived from the use of the M. truncatula Affymetrix GeneChip (Benedito et al. 2008)

and MtMSTs gene expression profile with a gene expression differentially regulated in
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Fig 29. Rapid amplification of cDNA ends of MtSUT1-2, MtSUT2 and MtSUT4-2

a) Flow chart of the GeneRacer™ (Invitrogen) procedures used to obtain 5’ and 3’ cDNA ends
of MtSUT1-2, MtSUT2 and MtSUT4-2

b) Schematic representation of coding sequences of the MtSUT family. ¢cDNA ends of
NF102F08, META878TF, EST332714 were amplified by 5’ and 3° RACEs (dark blue) to obtain
full length CDS of MtSUT1-2, MtSUT2 and MtSUT4-2.
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response to fungal colonization by G. intraradices were also retrieved from MtGEA (Gomez
et al. 2009).

Putative fungal transporter sequences from G. intraradices DAOM197198 (synonym
Rhizophagus irregularis) were retrieved from the available preliminary genomic data
(http://mycor.nancy.inra.fr/IMGC/GlomusGenome/index.html) using key word searches and
BLAST programs with sequences from the Geosiphon pyriformis hexose transporter
(GpMST1), the 15 sugar transporter family members of Laccaria bicolor (Fajardo Lopez et
al. 2008), the fructose transporter BCFRT1 (Botrytis cinerea; Dochlemann et al. 2005) and the
sucrose transporter SpSUTL (Schizosaccharomyces pombe; Reinders and Ward 2001).
Expression profile of G. intraradices monosaccharide transporter candidates were obtained
from the G. intraradices expression microarray NimbleGen chip developed by Tisserant et al.
2011.

4.1 Phylogenetic analyses

Alignment of amino acid sequences of sugar transporters was performed with Mafft version 6
(Katoh and Toh 2008) and maximum parsimony analyses were done using PAUP 4.0b10
(Swofford 1998). Heuristic tree searches were executed using 1000 random sequence
additions and the tree bisection-reconnection branch-swapping algorithm with random
sequence analysis. Unrooted trees (plant and fungal SUT tree, Fig 39 and 55) and consensus
unrooted tree (plant MST tree, Fig 36) was displayed on Dendroscope 2.7.4 (Huson et al.
2007).

5 Rapid amplification of cDNA ends (RACE): 5’ and 3’ RACE of
MtSUT1-2, MtSUT2 and MtSUT4-2

For partial identified MtSUT sequences (Fig 29b; TC124224, METAR878TF, EST332714),
full-length cDNA was obtained with the 5’ and 3’ GeneRacer™ Kit (Invitrogen). Whilst total
RNA can be directly reverse transcribed with modified poly(T) oligomers to perform 3’
RACE, mRNA must be dephosphorylated and decapped to yield accessible 5° cDNA ends to
a RNA oligomer (Fig 29a).
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Both the pDRf1-GW (Loque et al. 2007) and pDR196Sfil (Martin 2005; Schiifller et al. 2006)
were constructed from the original pDR196 vector (Rentsch et al. 1995). attRs recombination
sequences and a lethal toxin ccdB cassette were integrated in the pDRf1-GW for recombination
with entry plasmids and negative selection after the BP cloning step (Fig 31). The pDR196Sfl
contains a Sfil Clontech “stuffer” which can be excised by a Sfil restriction digestion resulting in
SfilA and SfiIB sites for directional cloning of cDNA.
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5.1 5 RACE: mRNA dephosphorylation, decapping and oligomer ligation

For 5 RACE, starting from roots and leaves total RNA (75ug), mRNA was purified by the
mean of the Dynabeads® mRNA Purification Kit (see 9.1). Then mRNA dephosphorylation
was performed with 5 pL (250 ng) of the mRNA with provided reagents from the
GeneRacer™ Kit: calf intestinal phosphatase (10U), calf intestinal phosphatase buffer (1X)
and RNaseOut™ (40U) with DEPC water (qsp 10 pL); this reaction is vortexed briefly,
incubated at 50°C for 1 hour, then placed on ice. Then, RNA is precipitated with 90uL
phenol:chloroform:isoamyl alcohol (25:24:1, pH 4.5), vortexed 30 sec and centrifuge at
14500 rpm for 30 sec. Top aqueous was transferred in a new Eppendorf with 2 pL mussel
glycogen (10 mg/mL), 10 puL NaAc (3M, pH 5,2) and 220 pL ethanol 96%. This reaction is
mixed and stored at -20°C for overnight precipitation. The day after, dephosphorylated
mRNA is centrifuge 14500 rpm for 20 min at 4°C and the pellet is washed with 500 pL 70%
ethanol and recovered by centrifugation 14500 rpm for 2 min at 4°C and resuspended in 7 pLL
DEPC water. Thereafter mRNA is decapped using tobacco acid pyrophosphatase (0.5U),
tobacco acid pyrophosphatase buffer (1X), RNaseOut™ (40U) in a total volume of 10 pL;
this reaction is vortexed briefly, incubated at 37°C for 1 hour, then placed on ice. The
overnight precipitation step and recovery of RNA was repeated as described in the

dephosphorylation step.

After dephosphorylation and decapping the mRNA, a RNA oligomer (0.25 pg) of known
sequence provided in the GeneRacer™ Kit is mixed with the decapped RNA heated up at
65°C for 5 min and ligated by the mean of T4 RNA Ligase (5U), Ligase Buffer (1X), ATP
(1mM) and RNaseOut™ (40U) in a total volume of 10 pL and incubated at 37°C for 1 hour.

5.2 5’ and 3’ RACE PCR amplification

Reverse transcription for 5’ and 3° RACE was performed using the SuperScript™ III reverse
transcriptase (Invitrogen) and a poly(T) adapter oligomer. 1pL of this oligomer and dNTPs
(2.5 mM each) are mixed to the 10 pL decapped, dephosphorylated and ligated mRNA (from
5.1) for 5> RACE or directly to pooled total RNA (1ug) from M. truncatula roots and leaves
for 3 RACE (gsp 13uL). Reaction are heated up to 65°C, 5 min and placed on ice 2 min; then
First Strand Buffer (1X), DTT (Dithiothreitol, 10uM), SuperScript™ III reverse transcriptase
(200U) and RNaseOut™ (40U) are mixed to the previous solution in a final volume of 20 uL
and reverse transcription was performed T3 Thermocycler (Biometra) 25°C 5 min, 50°C 60
min, 70°C 15 min and placed immediately on ice for 2 min. The resulting cDNA are “ready”
for 5’ and 3° RACE experiments (Fig 29a).
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5> RACE experiment was performed to obtain 5’ sequences upstream partial MtSUT
sequences by PCR amplification using forward primers complementary to the 5’oligomer
adaptor and EST specific reverse primers whilst 3’RACE was performed to obtain 3’
sequences downstream partial MtSUT with reverse primers complementary to the 3’ modified
poly(T) oligomers and EST specific forward primers (Annex IV.1; Fig 29b). For both 5’ and
3’ RACEs, a first touch down PCR of 35 cycles followed by a second nested PCR of 30
cycles was performed using Platinum® Taq DNA Polymerase High Fidelity (Invitrogen)
according to the GeneRacer manufacturers’ instruction. PCR products were run on 1%
agarose gel by electrophoresis and cloned with TOPO TA cloning® kit in the pCR®2.1-
TOPO vectors (Invitrogen, Annex V), correct insertion of PCR products was checked by
bacterial colony PCR (see 3.2.2) and positive plasmids were sent to sequence with M13

reverse and forward primers to Eurofins MWG (Ebersberg, Germany).

6 Cloning of MtSUTs by Gateway® technology

Specific primers were designed to the full-length coding sequence of the 6 MtSUTs adding
attB1 and attB2 linkers to the 5° ends of forward and reverse primers (Annex 1V.2, Fig 31)
and MtSUTs were amplified form M. truncatula root and leaf cDNA (see 3.2.3) by PCR using
Platinum® Pfx DNA Polymerase (Invitrogen). Full-length amplification products were run by
electrophoresis and gel-cut purified using the Qiaquick® gel purification kit (Qiagen)
according to the manufacturers’ instruction. Purified PCR products flanked with attB
sequences (75 ng) were cloned in the donor vector by recombination with attP sequences of
the pPDONR221 (75 ng; Invitrogen) by the mean of the Gateway® technology (Fig 31) using
BP Clonase™ II enzyme (1U) adjusting the final volume to 4 pL with TE (pH 8). 2 pL of
each reaction was used to transform OmniMAX™ 2-T1R competent E. coli cells (see 3.4.1)
and bacteria containing entry clones were selected on LB kanamycin medium and checked by
bacterial colony PCR (see 3.2.2), positive plasmids were extracted by plasmid preparation
(see 3.1.2) and sent to sequence with M13 reverse and forward primers by Eurofins MWG

(Ebersberg, Germany).

After having checked the correct integration of MtSUTSs flanked by attL. sequences in entry
plasmid (75 ng), recombination with the destination pDRf1-GW vectors (Fig 30; Loqué et al.
2007) containing attR sequences was performed using 1U LR Clonase™ II enzyme (Fig 31)
adjusting the final volume to 4 pL with TE (pH 8). 2 uL of each reaction was used to
transform OmniMAX™ 2-T1R (see 3.4.1) competent E. coli cells and bacteria containing
expression clones were selected on LB ampicillin medium and checked by bacterial colony

PCR, positive plasmids were extracted by plasmid preparation (see 3.1.2) and sent to
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sequence with PMA forward and ADH close reverse primers to Eurofins MWG (Ebersberg,

Germany).

7 Functional analysis of MtSUT's

7.1.1 Yeast drop test complementation assays

Respective MtSUTs cloned in the pDRf1-GW vector (see 6) and empty vector control pDRf1
were transformed into S. cerevisiae strains SUSY7/ura3” or YSL2-1 (see 3.4.2); single
transformant colonies were picked on SDura” plates and resuspended in 1 mL sterile water.
Drop test complementation assays were performed on minimal selective sucrose (2%)
medium without wuracil by pipetting a 3 pL drop dilutions containing respectively
10°,10*,10°,10% and 10 yeast cells per drop which was deposit synthetic on minimal sucrose
medium without uracil. A 3uL drop containing 10° yeast cells per drop was deposit on SDura’

as a loading control. Plates were incubated at 30°C.

7.1.2  Yeast sucrose uptake experiments

For uptake assays, single yeast colonies were grown in liquid SDura” to logarithmic phase.
Cells were harvested at an ODggo of 0.5, washed twice in sterile water, and resuspended in
NaP1i buffer (0.6 M sorbitol, 50 mM potassium phosphate, pH 5) to a final ODgq of 5. Prior to
the uptake measurements, cells were energized with 5 uL 10 mM glucose and incubated for 5
min at 30°C. To start the reaction, 100 uL of this cell suspension was added to 100 pL of
NaPi buffer containing 7.5 kBq of ["*C]sucrose (specific activity 498 mCi/mmol, Perkin
Elmer), and unlabeled sucrose to the concentrations used in the experiments. 50 pL aliquots
were removed over 3 minutes (at 30 sec, 1, 2 and 3 min) and transferred in 4 mL of ice-cold
NaPi buffer. Cells were vacuum-collected onto GF/C microfibre filters (Whatman) and
washed twice with 5 mL of NaPi buffer. Inhibitor assays were performed with the addition of
inhibitors 30 sec prior the incubation time. Inhibition of 500 uM ['“C]sucrose uptake (control)
by the addition of 50 uM respective inhibitors: protonophores carbonyl cyanide m-
chlorophenylhydrazone (CCCP), 2.4-dinitrophenol (DNP) and the plasma membrane H'-
ATPase inhibitors diethylstilbestrol (DES) and vanadate were tested. For sugar specificity,
competition for 500 uM ['“C]sucrose uptake (control) was assessed by adding a ten-fold
molar excess of respective competing sugars: glucose, fructose, trehalose or maltose. For all
uptake experiments, ['*C]sucrose uptake was radioassayed by vortexing microfibre filters in
vials for 30 sec with 6 mL Emulsifier Scintillator Plus™ (Perkin Elmer) and monitored on a
Tri-Carb 2100TR Liquid Scintillation Analyzer (Packard) counting 3 biological replicates.

51



sajepipued Jayiodsued) Jebns 10} Buluaalds
pue Aueuaqi] uolssaidxe sadlpelesjul ‘9 - ejnN1eIUNJ] |\ PazIyJa0dAW 8yl JO UOIIdNAISUOD Byl JO uolreluasaldal arewsyds 'z b4

S931epIpued JO uolleziialoele)
uollejuswsa|dwod [euoizdund UOI1JBJIXD plwse|d Aseuq| Atepuooas
7 40 uoneoyljdwy

/ i

Y, )
GJ <« - O U < .‘l".
o pa—= 5 —
) W) S

32015 |0492A|D

yueq Atewid uonsasip |yS
1/02 *3 ul uollew.Jojsued | uoljeuoloeuy azis
A A Y¥O0d-d1
| | 7, , 5 , uonesn uonesi| Joidepy uone|os! yNyWw uoI3deIIX3 YNY
f | f |
‘ - ‘ G ‘ ) IESTEETEr ]
" _‘ ) m m 11111114y :
~— s Vius

s viIl4s

W, C 12HMS 1S

/\
N co_y G G Iys96TYad

43S G




Materials and methods

8 Gene expression analysis

Total RNA was extracted from roots and source leaves (see 2) using SV total RNA isolation
system (Promega) according to the manufacturers’ instructions. cDNA was produced with
SuperScript®III Reverse Transcriptase (see 3.2.3) and cDNA template was diluted 40 times
for expression analyses of MtSUT1-1, MtSUT2 and MtSUT4-1 or 10 times for MtSUT1-2,
MtSUT1-3 and MtSUT4-2.

Quantitative real-time PCR reactions were performed in a final volume of 15 pL using
Absolute SYBR green ROX Mix (Thermo Scientific), 70 nM of gene specific primers (Annex
IV.4) and 2 pL of cDNA template in an ABI Prism 7900HT Sequence Detection System
(Applied Biosystems). Reaction condition were set as 95°C for 15 min and 40 cycles of 95°C
for 15 sec, 60°C for 30 sec, and 72°C for 30 sec. Three biological and three technical
repetitions were performed. To check the absence of nonspecific amplicons, dissociation
curves were generated at the end of the PCR cycles by heating PCR products from 70 to 95°C
and amplicons were cloned in pCR®2.1-TOPO® (Annex V) according to the manufacturers
instruction and sequenced (Eurofins MWG, Ebersberg, Germany) to confirm the identity of
the amplicon. Primer pair efficiency (90-110%) was estimated for all primer pairs by serial
dilutions of the cDNA. Standard PCR (see 3.2.1) was performed on RNA samples to exclude

genomic DNA contamination and no-template control (water) were used for each primer pair.

All data were analyzed using the SDS 2.3 software (Applied Biosystems) with a threshold of
0.25 to obtain cycle threshold values. Values were normaliza€’t) to the constitutively
expressed translation elongation factor (MtTef1a, Baier et al. 2010) and expression coefficient

were calculated (274¢Y).

9 Construction of a cDNA expression library from M. truncatula - G.

intraradices symbiotic roots

9.1 Isolation of mRNA

Total RNA extracted (for expression analyses in 8) was used to isolate mRNA using the
Dynabeads® mRNA Purification Kit (Invitrogen) by the mean of an oligo (dT),s beads that
bind polyA tail of mRNA (Fig 32). Bead buffer (400 pL, 2 mg) provided in the kit was placed
in an Eppendorf tube and isolated by migration using a MagnaRack™ (Invitrogen, USA).
Isolated beads were washed with 200 uL of binding buffer and recovered with the magnet
rack. Beads were resuspended in 308 pL of binding Buffer with an equal volume of total
RNA (162 pg) coming from 3 biological repetitions for each time of harvest (2, 3 and 4 wpi)

and mixed on a roller mixer for 5 min. After this time, beads were recovered by magnet
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Materials and methods

migration and washed twice with 400 puL of washing buffer. mRNA was then eluted in 30 uL
DEPC (50°C) water from the beads bulk on the magnet rack and eluent is transferred to a new
Eppendorf tube. mRNA concentration and quality was assessed using a 107 dilution on a
DU® 640 spectrophotometer (Beckman).

9.2 c¢DNA synthesis by SMART™ technology

cDNA were synthesized from mRNA of mycorrhized roots (see 2) using the creator™
SMART™ cDNA library construction kit (Clontech) which allows production of full-length
cDNA ready for directional cloning by the use of SMART primer technology (Fig 33).

First-strand cDNA synthesis was produced starting with the 3uL maximum amount of mRNA
(120ng) and 1 pl SMART 1V oligonucleotide and 1 pl CDS III/3' PCR primer incubated at
72°C, 2 min and immediately placed on ice. Then, 1X First-Strand Buffer, DTT (2 mM) and
dNTP Mix (I mM) were added and cDNA synthesis was made using SMARTScribe™
reverse transcriptase (100 U, Clontech) at 42°C for 1 hour in a T3 Thermocycler (Biometra).
3 pL of the first-strand cDNA synthesis reaction is transferred to a new Eppendorf tube and
cDNA amplification by long distance PCR (LD-PCR) was performed with 1X Advantage 2
PCR Buffer, 1X dNTP Mix, 3 pl 5'PCR Primer, 3 pl CDS III/3' PCR pimer and 1 X
Advantage 2 Polymerase Mix and adjusted to a final volume at 150 pL with water. The LD-
PCR cycling program were carried in a T3 Thermocycler (Biometra) with an initial
denaturation step at 95°C, 1 min followed by 24 cycles at 95°C, 15 and 68°C, 6 min. First
strand synthesis and LD-PCR (18 cycles) was also carried out with a positive polyA mRNA
control from human placenta (1 pg) and was run on an electrophoresis gel alongside the

cDNA produced from mycorrhized roots (Fig 53).

The total cDNA reaction (150 pL) is treated by a proteinase K digestion (6 puL, 120 pg) and
incubated at 45°C for 20 min. DNA is precipitated with an equal volume of
phenol:chloroform:isoamyl alcohol (25:24:1) mixed for 2 min, centrifuged at 14000 rpm for 5
min and top aqueous phase is transferred to a new tube and mixed with 100 pL
chloroform:isoamyl alcohol (24:1), centrifuged at 14000 rpm for 5 min. Top aqueous phase is
transferred to a new tube and mixed with 10 uL of 3 M sodium acetate, 1.3 uL of glycogen
(20 pg/pL) and 260 pL of room-temperature 95% ethanol and centrifuged at 14000 rpm for 20
min; pellet was washed with 100 pL of 80% ethanol prior to a final elution in 50 pL water.

9.3 Digestion and ligation of cDNA into pDR196Sfil vector

In this step, cDNA produced by SMART technology (from 9.2) and the pDR196Sfil vector
(Fig 30) are digested by Sfil restriction digestion to release SfilA and SfilB sites for

directional cloning of cDNA in the yeast expression vector (Fig 32).
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The total cDNA reaction produced by SMART technology was digested with 4 pL Sfil (80U,
New England Biolabs), 1X NEB buffer 4 and 1X bovine serum albumin in a final volume of
60 uL during 4,5 hours at 50°C. The complete reaction was run on an electrophoresis agarose
gel (1%) prepared with Crystal Violet (2 mg/mL) from the S.N.A.P. UV-Free Gel Purification
Kit (Invitrogen) alongside 1 KB Plus DNA Ladder (Invitrogen) and cDNA was size
fractionated by cutting 5 parallel gel bands between 700 bp to 5000 bp. Gel slices were
purified using the Qiaquick® gel purification kit (Qiagen) according to the manufacturers’
instruction and eluted in 70 pL water per purification reaction. The total size fractionated
cDNA (350 pL) was precipitated with 970 pL ethanol 95% and 35 pL NaAc (3M, pH 5,2),
centrifuged at 14000 rpm for 20 min, washed in 150 pL ethanol 80% and pellet was
resuspended in 10 pL water. cDNA concentration was estimated on a Nanodrop 1000
(Thermo Scientific) to 196 ng/uL; size and integrity was checked on an Agilent DNAchip
7500 (Agilent) according to the manufacturer instruction (Fig 53b-c).

In parallel, pDR196Sfil plasmid (80 pg) was digested with 12 uL (240 U, New England
Biolabs) 1X NEB buffer 4 and 1X bovine serum albumin in a final volume of 500 pL during
3,5 hours at 50°C. Three gel slices corresponding to the linearized vector (6419 bp) were
excluded from the Sfil Clontech stuffer (1433 bp, Fig 30) and purified using the Qiaquick®
gel purification kit (Qiagen) according to the manufacturers’ instruction. The digestion
restriction by Sfil restriction was repeated to ensure complete digestion of the plasmid. The
digested plasmid (210 pL, 70 pg) was mixed with 8 uL (160 U, New England Biolabs) 1X
NEB buffer 4 and 1X bovine serum albumin in a final volume of 250 puL during 3,5 hours at
50°C and gel purification was also repeated to recover linearized plasmid in 50 pL water.
Complete linearization of the plasmid was checked on an Agilent DNAchip 7500 (Agilent)
according to the manufacturer instruction (Fig 53b) and by transformation of 140ng in One
shot® Top10 bacteria.

9.4 Ligation of cDNA into pDR196Sfil vector

After Sfil digestion and having checked cDNA and linearized plasmid integrity (see 9.3). The
SMART technology allows directional insertion of full-length cDNA from symbiotic roots
into the yeast expression pDR196Sfil vector thanks to SfilA and SfiIB sites (Fig 32 and 33).
Linearized pDR196Sfil (250 ng) was mixed with Sfil digested cDNA (196 ng), 1X T4 ligase
buffer, ATP (ImM) and T4 DNA ligase (400U, Clontech) adjusted to a final volume of 10pL

with water and incubated at 16°C overnight.
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Fig 34. Titration of the primary library
200 pL of a 5x10-° dilution of the primary library stock was spread on large LB ampicillin plates
and incubated at 37°C, 18 hours to obtain adjacent colonies with 5000-10000 clones/plate.

a) b) —
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50 300 700 | | 10380 [bp]
1000 2000

Fig 35. Size fractionation of the expression library inserts for pyrosequencing preparation

a) Chromatogram profile of cDNA inserts after exclusion of the pDR196Sfil vector backbone.
No residual presence of the vector backbone (6419 bp) could be detected.

b) Gel profile of cDNA inserts digested (by Haelll, Hpall, Hinfl, Mbol, Msel, Rsal and Taql),
pooled and size fractionated between 200-700 bp.
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9.5 Generation of the primary library

The resulting ligation reaction was transformed in ultracompetent E. coli XL10-Gold® (Fig
32; Stratagene). Three independent transformations containing each 2uL of the ligation is
thawed on ice with 100uL aliquots of bacterial cells and 4uL of B-mercaptoethanol mix
(provided in the kit), incubated on ice for 30 min. Cells are heat-shocked 30 sec at 42°C and
immediately placed on ice for 2 min. The reaction is transferred in 0.9 mL of preheated
(42°C) NZY+ broth in 12 mL Falcon and incubated at 37°C for 1 hour with shaking at 225
rpm. 200 pL of transformation reaction was spread on 20 LB ampicillin plates and incubated
at 37°C, 18 hours to obtain 5000-10000 clones per large Petri dishes (145 mm). All bacterial
clones were harvested with a glass hockey stick in a mix of 50% liquid LB and 50% glycerol

to obtain the primary library in 100 tubes of glycerol stock stored at -80°C (Fig 32).

10 Screening of the Geosiphon pyriformis cDNA expression library

10.1 Amplification of a secondary library

Primary library constructed from G. pyriformis bladder (Martin 2005; Schii3ler et al. 2006)
was titered to an appropriate dilution (200pL of a 5x107; Fig 34) of the primary library stock
which was spread on 20 LB ampicillin plates and incubated at 37°C, 18 hours to obtain 5000-
10000 clones per large Petri dishes (145 mm) in order to ensure complete representation of
the primary library. This secondary library was harvested with a glass hockey stick in 50 mL
of liquid LB and bacterial cells were harvested by centrifugation at 6000 rpm for 5 min. Total
plasmid were extracted using HiSpeed Plasmid Maxi Kit (Qiagen) according to the
manufacturer’s instruction and concentration was estimated on a Nanodrop 1000 (Thermo

Scientific)

10.2 Screening of the G. pyriformis library for glomeromycotan sucrose transporter

Plasmid extracted from the G. pyriformis cDNA expression library (see 10.1) were used to
transform the YSL2-1 yeast strain deficient for sucrose uptake according to the high
efficiency plasmid transformation described in 3.4.2 with a 20-fold scaled up protocol
adapted to transform 20ug of plasmid library. Resulting transformation (150 pL) were spread
on 40 plates containing synthetic minimal sucrose without uracil. Transformants isolated from
this screen were replated on synthetic minimal sucrose (2%) medium without uracil to
confirm the complementation deficiency alongside the YSL2-1 clone transformed with
pDRf1-GW harboring MtSUT4-1 as positive control. Plasmid from yeast transformants
complementing the sucrose deficiency, were extracted (see 3.1.3) followed by PCR (see 3.2.1)
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and sequencing (LMU sequencing service, Munich) with PMA forward and ADH close

reverse primers.

10.3 Preparation of G. pyriformis library cDNA samples for pyrosequencing

Total plasmid extraction (200 pg) containing cDNA of G. pyriformis library (see 10.1) was
digested by Sfil digestion, with 20 puL Sfil (400U, New England Biolabs), 1X NEB buffer 4
and 1X bovine serum albumin in a final volume of 750 pL during 3,5 hours at 50°C. The
digestion reaction was concentrated using YM-30 Microcon® (Millipore) by centrifugation
15 min at 1000g and microcon reservoir was placed upside-down in a new Eppendorf tube
centrifuge 3 min at 1000g to elute DNA in 200 pL water. In order to recover cDNA, the
concentrated digestion reaction was run on an electrophoresis agarose gel (1%) prepared with
Crystal Violet (2 mg/ml) from the S.N.A.P. UV-Free Gel Purification Kit (Invitrogen) and
cDNA were excluded from the digested vector backbone (6419 bp) by gel-cutting 8 parallel
gel slices, purified with the Qiaquick® gel purification kit (Qiagen) according to the
manufacturers’ instruction and eluted in 40 pL water per purification reaction. Resulting
eluents (320 puL) were concentrated using YM-30 Microcon® (Millipore) by centrifugation 10
min at 1000g and eluted in 200 pL water. cDNA concentration was estimated on a Nanodrop
1000 (Thermo Scientific) to 97 ng/uL; size and integrity was checked on an Agilent
DNAchip 7500 (Agilent) according to the manufacturer instruction (Fig 35a).

To obtain an optimal reading length of 400 to 600 bp recommended for 454 pyrosequencing
(Roche), digestion of cDNA samples was carried out using restriction enzymes (2U). Each 4
cutters enzyme (Haelll, Hpall, Hinfl, Mbol, Msel, Rsal and Taql, New England Biolabs) was
used in independent digestion reaction with 16 pL library cDNA (1,6 pg), using appropriate
NEB buffer (1X) to a final volume of 20 pL and digested during 1 hour with respective
enzyme incubation temperature. The digestion was immediately stopped by heating the
reaction 10 min at 80°C and digestion was checked on an Agilent DNAchip 7500 (Agilent)
according to the manufacturer instruction. Digestion reactions were pooled and run on an
electrophoresis agarose gel (1%) prepared with Crystal Violet (2 mg/ml) from the S.N.A.P.
UV-Free Gel Purification Kit (Invitrogen) and size fractionated between 200-700 bp by
cutting 2 parallel gel slices. Gel slices were purified using the Qiaquick® gel purification kit
(Qiagen) according to the manufacturers’ instruction and eluted in 15 pL water per
purification reaction. Samples were pooled (30 uL), DNA concentration was estimated on a
Nanodrop 1000 (Thermo Scientific) to 33 ng/uL and correct size fractionation was checked
on an Agilent DNAchip 7500 (Fig 35b, Agilent).
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11 Methods for sugar analyses

11.1 HPAE-PAD analysis of soluble sugars

Soluble sugar composition of plant material (see 2) was determined as part of a collaboration
with G. Alcaraz (UMR Agroécologie, Dijon). After freezing and grinding M. truncatula
source leaves, petioles and roots in liquid nitrogen followed by one day of lyophilisation,
samples were conserved in a dry cabinet in sealed glass tubes. The lyophilized powder (60
mg) was treated during 30 min by liquid extraction with 1 mL 80% (v/v) ethanolic solution in
an ultrasonic bath at 80°C. After centrifugation (10 min at 15000 g), 10 uL of supernatant
were injected on an ICS 3000 Dionex instrument (Dionex Corp., Sunnyvale, CA, USA). The
elution was made by a gradient of NaAc 100 mM in NaOH 75 mM eluent and soluble sugars
contents were determined by high-performance anion exchange-pulsed amperometric
detection (HPAE-PAD) using a guard and analytical column CarboPac PA100 (Dionex
P/N043055), according to the Dionex instructions [Dionex Application Note 122 (2004)].

Five biological repetitions were performed for each condition.

11.2 Benedict’s test

To test the presence of reducing sugars, 3 mL of Benedict’s reagent (Na,CO3 940mM, sodium
citrate 733mM and CuSO4 80 mM) is placed in a glass test tube with the respective solution
(1 mL): sucrose stock solution (50%), synthetic minimal sucrose medium without uracil
(Annex I) as solution to be tested and glucose stock solution (40%) and sucrose with the
addition of a drop of HCI 0.1M as positive controls. The Benedict’s reaction is performed by
placing test tube in a boiling water bath for 5 min and positive tests are visualized by the
presence of a brick red precipitate of copper oxide while negative test keep the original blue
copper color of the Benedict’s solution (Fig 52b).
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Chapter I

Chapter 1

In silico search for putative sugar transporters from both
partners of the arbuscular mycorrhizal model association
between Medicago truncatula and Glomus intraradices

In plant, sugar fluxes are coordinated by different transport systems with gene expression
differentially regulated according to the type of plant organs, the developmental stage and the
environmental conditions (see Introduction 3.; Lalonde et al. 2004; Kiihn and Grof 2010).
With the release of the complete genomes of the A. thaliana ecotype Columbia (The
Arabidopsis Genome Initiative 2000), the rice japonica subspecies cultivar Nipponbare
(Ouyang et al. 2007) and the grape Pinot Noir variety (Jaillon et al. 2007); complete families
of transport proteins have been identified from these model species. Indeed, exhaustive
surveys led to the identification of 53 monosaccharide transporters in A. thaliana (AtMSTs),
65 in rice (OsMSTs) and 59 in grapevine (VvVMSTs) as well as 9 sucrose transporters in A.
thaliana (AtSUTs), 5 in rice (OsSUTs) and 4 in grapevine (VvSUTSs) (Aoki et al. 2003;
Buttner 2007; Johnson and Thomas 2007; Sauer 2007; Afoufa-Bastien et al. 2010). Although
the soybean and Lotus japonicus genomes have been released (Sato et al. 2008; Schmutz et al.
2010) and also, very recently, the version Mt3.5 of the genome of M. truncatula cultivar
Jemalong A17 (Young et al. 2011), complete sugar transporter families have not yet been
identified from any leguminous species. Indeed, at the beginning of my PhD project, a single
monosaccharide transporter from M. truncatula was published (Mtstl; Harrison 1996).
Thereafter, an additional MtMST (MtHext1) and a single MtSUT (Mtsutl) have been reported
(Gaude et al. 2011). Therefore, the first part of my research project was to search for sugar
transport proteins through available in silico databases containing sequences of M. truncatula
using BLAST program with available transporter accessions from A. thaliana
(http://aramemnon.botanik.uni-koeln.de/). By this mean, we identified the monosaccharide
and sucrose transporter families from the model legume M. truncatula. Indeed, phylogenetic
analyses revealed that identified candidates fall into 2 distinct groups: the MST and SUT
families; respective MtMSTs and MtSUTs have been studied in detail.
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Figure 36. Phylogenetic tree of the MST family in A4.

accessions, 53 AtMSTs from A. thaliana (black), 62 MtMSTs from M. truncatula
human and yeast transporters (grey). Alignment of amino acid sequences of MSTs
done with heuristic tree searches were executed using 1000 random sequence additi

proteins which have not yet been assigned.

53 AtMSTs were identified in the genome of A. thaliana accession Columbia (Buttner 2007); AtSTP1 (Atlgl1260), AtSTP2 (At1g07340),
AtSTP3 (At5g61520), AtSTP4 (At3g19930), AtSTP5 (At1g34580), AtSTP6 (At3g05960), AtSTP7 (At4g02050), AtSTP8 (At5g26250),
AtSTP9 (Atl1g50310), AtSTP10 (At3g19940), AtSTP11 (At5g23270), AtSTP12 (At4g21480), AtSTPI3 (At5g26340), AtSTP14
(At1g77210),TMT1 (At1g20840), TMT2 (At4g35300), TMT3 (At3g51490), AtPMTI (At2g16120),
(At2g18480), AtPMT4 (At2g20780), AtPMT5 (At3g18830), AtPMT6 (At4g36670), VGT1 (At3g03090), VGT2 (At5g17010), pGlcT
(At5g16150), SGB1 (Atlg79820), ERD6 (At1g08930), AtERDL6 (Atlg75220), ESL1 (Atl1g08920), ESL3 (Atlg08890), ESL2
(At1g08900), SFP1 (At5g27350), SFP2 (At5g27360), INT1 (At2g43330), INT2 (At1230220), INT3 (At2g35740), INT4 (Atdg16480).

7; MtHextl (Medtr1g104780). An additional accession,
Mtstl (AAB06594) was identified from a different subpopulation (2828) of M. truncatula Jemalong (Harrison 1996). 3 additional accessions

was retrieved from genbank; MtC20248 and MtC00740

58 MtMSTs were identified in the genome of M. truncatula cultivar Jemalong Al

from the A17 line were not found on the current version of the genome; CAD31121
were retrieved from MENS.

65 OsMSTs were identified in the genome of rice japonica subspecies cultivar Nipponbare (Johnson and Thomas 2007); OsTMT1

(Os11g40540), OsMST2 (0s03g39710), OsMST3
(0s07g01560), OsMSTS (0s08g08070), OsMST8 (0s01g38670), OsGMST1 (0s09g23110), OspGlcT (Os01g04190). An additional

accession, OsMST1 (BAB19862) was identified from the cultivar Nipponbare but was not found on the current version of the genome. 2

(0s10g39440), OsTMT2 (Os02g13560),

OsTMT3 (0s03g03680), OsTMT4

thaliana, M. truncatula and rice

Maximum parsimony consensus tree separates the MST family into 7 sub-families (highlighted in colors) and comprises 183 plant
(blue) and 68 OsMSTs from Oriza sativa (red) and the
was performed and maximum parsimony analyses were

ons and the tree bisection-reconnection branch-swapping
algorithm with random sequence analysis. The complete alignment was based on 1638 sites; 869 were phylogenetically informative.

Characterized and published proteins are named according to their latest denomination; genomic locus or accession number was used for

AtPMT2 (At2g16130),

additional accessions, OsMST4 (AAQ24871) and OsMST6 (AAQ24872) were identified from the rice indica subspecies.

Outgroups: HsGLUT1 (NP_006507), SCHXT7 (NP_010629).



Chapter I

1 Database mining for sugar transporter candidates in M. truncatula

1.1 Identification of the MST family of M. truncatula: MtMST

A total of 62 sequences coding for putative full-length MtMSTs were identified in the model
leguminous M. truncatula. Forty-six accessions were initially identified from BACs of the
version Mt2.0 of the genome and the final search performed on last version (Mt3.5) led to the
identification of 12 additional MtMSTs. Therefore, 58 MtMSTs are present in the current
annotation version of the genome of M. truncatula. Further 4 accessions were identified from
other databases (NCBI, MENS) and are absent from the current genome annotation (Mt3.5).
This is the case for accessions: Mstl (Harrison 1996), CAD31121, MtC20248 and MtC00740
(Doidy et al. 2012a). In this study, only sequences with a full-length coding DNA sequence
(CDS) have been kept for correct alignment. Indeed, ESTs and partial contigs retrieved from
this in silico search were not retained. The 62 full-length, sequences were aligned using
MAFFT. The protein sequence of Mtstl (Harrison 1996) showed a 99,8% identity with
Medtr4g091370 and a single AA difference; however when nucleic acid sequences were
aligned both CDS differed from 4 distant base pairs 3 of which being silent mutations. Since
Mtstl was identified from a different subpopulation (2828 instead of A17) of M. truncatula
Jemalong (Harrison and Dixon 1993; Harrison 1996), it seems that Mtstl is an ortholog of
Medtr4g091370. For this reason, Mtstl will not be included from discussion regarding
MtMSTs of the sequenced M. truncatula cv Jemalong Al7. In conclusion, at least 61
MtMSTs are present in the genome of M. truncatula cv Jemalong A17.

Including all retrieved full-length MtMSTs, a subsequent alignment with available MST
protein sequences from the model species A. thaliana and rice was performed and a consensus
maximum parsimony tree was constructed from these 183 plant MSTs (Fig 36). As previously
shown, MtMSTs fall into 7 clades within the plant MST family and therefore it seems that all
plant species possess a large family of MST genes (see Introduction 3.3.1). Out of the 61
identified MtMSTs, 22 belong to the STP family, 2 to the VGT subfamily, 5 to the TMT
subfamily, 3 to the pGlcT / SGB1 subfamily, 11 to the PMT subfamily, 10 to the INT
subfamily and 8 to the ESL subfamily (Fig 36). In contrast with previous findings from
Dycotyledonous species (Buttner 2007; Afoufa-Bastien et al. 2010), the ESL clade is not the
largest one in M. truncatula. Here, the largest subfamily of MtMST is the STP clade as
previously observed for monocotyledonous species (Johnson and Thomas 2007). In this
study, we report for the first time an exhaustive search for MSTs from the newly released M.
truncatula genome, which also represent the first overview of a MST family from a
leguminous species. In the near future, identification of sugar transporters from related

sequenced leguminous species such as soybean and L. japonicus as well as complete
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contig and 3 ESTs in light blue and the 2 pseudogenes in grey. Pseudogene2 (Medtr4g102190)
presents an aberrant sequence in its first half (dash). All sequences are in scale and numbered (bp) to
highlight alignment .
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characterization of MSTs already identified from model species will help to decipher the role

and implication of respective MtMSTs.

1.2 Identification of the SUT family of M. truncatula: MtSUT

A similar in silico search was performed for putative MtSUTs in databases containing
accessions from M. truncatula using BLAST program with identified AtSUTs and published
leguminous SUTs from soybean (GmSUT1), L. japonicus (LjSUT4), pea (PsSUT1, PsSUF1
and PsSUF4), common bean (PvSUF1 and PvSUT3) and broad bean (VfSUTI1). By this
mean, two genomic loci have been identified from Mt3.5 (Medtrdgl31920 and
Medtr5g067470); both loci were already annotated in the annotation version 2.0 (Table 7).
Two additional tandem genomic loci (Medtr4gl02110, Medtr4g102190) have also been
identified (Table 7); however, both open reading frames are interrupted by a stop codon and
therefore encode for truncated proteins of 358 and 336 respectively (Fig 37). In addition, the
second pseudogene seems to present an aberrant pattern when analyzed (blastp) against
previously characterized SUTs. Interestingly, A thaliana also possesses two pseudogenes
(AtSUC6, AtSUCT) encoding for truncated proteins in its genome (Sauer et al. 2004). In
addition, a full-length contig TC124224 as well as 3 partial ESTs (META878TF, EST332714
and NF102FO08DT1F1073) were identified in the general database DFCI (Fig 37). In
conclusion, 6 non contiguous putative MtSUTs were identified; however, only two of them
are being annotated as full-length loci in the current genome annotation (Fig 37). The full
MtSUT family will be analyzed in detail and discussed in the second chapter of this

manuscript.

2 Database mining for sugar transporter candidates in G. intraradices

As the UMR Agroécologie laboratory (Dijon) is member of the international Glomus genome
consortium, an access to preliminary genomic data was available and a search for sugar
transporter candidates was performed by blastn and the use of selected key words. BLAST
program was based on gene similarity using the only available glomeromycotan sugar
transporter at the time (GpMSTI; see Introduction 4.3.3.3) and other fungal sugar
transporters: the 15 sugar porter family members of Laccaria bicolor (Fajardo Lopez et al.
2008), the fructose transporter BCFRT1 (Botrytis cinerea; Doehlemann et al. 2005) and
SpSUT1 (Schizosaccharomyces pombe; Reinders and Ward 2001). By this mean, we
identified in total, 12 accessions corresponding to putative sugar transporters from G.
intraradices (Table 5); consistent with this, all candidates (excepted Gi.7648 C1) present the
conserved domains of the MFS superfamily (pfam0083, sugar and other transporter). All
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Chapter I

accessions present a short nucleic sequence (<900bp) and seem to correspond to partial
nucleic CDS of transporters since BLAST result indicate incomplete coverage compared to
characterized full-length transporters. In addition, we identified numerous sequences closely
related to sugar transporters from the phylum Ascomycota. After verification, these sequences
seem to originate from an Aspergillus sp. contamination present in the initial samples which
have been used to generate the DNA sequences (Table 5). As the G. intraradices genome
presents a very low GC content (~30%), candidates showing a high GC% as well as a BLAST
result coherent with bacterial transporters were considered to originate from the Aspergillus
sp. contamination and were withdrawn from this analysis (Tisserant et al. 2011). Thereby, in
the genome of G. intraradices, 6 partial sequences coding for new putative GiMSTs were
retained for further study (Table 5).

3 Database mining for candidate differentially expressed in response to

mycorrhiza

3.1 MtMSTs differentially expressed in AM symbiosis

Once putative sugar transporter sequences were retrieved, I searched for candidates
differentially expressed in response to AMF inoculation through microarray database. For M.
truncatula candidates, this search was performed on the MtGEA web server that archives all
publically available gene expression data derived from the use of the Affymetrix GeneChip
comprising 61278 probe sets of which 32167 designed on sequences from the M. truncatula
EST database and 18733 were based on gene predictions from the genome version Mt2.0
(Benedito et al. 2008). M. truncatula transcript profiles associated with AM symbiosis were
studied using this GeneChip hybridized with RNA from non mycorrhizal roots or
mycorrhizal ones, with G. intraradices (Gomez et al. 2009). By this mean, 3 MtMST
candidates were identified as differentially expressed in response to AM inoculation; 2 of
which are downregulated (Medtr3g116060; CAD31121). Medtr3g116060 is a homolog of
TMT2 while CAD31121 belongs to the STP subfamily and is homologous to AtSTP5 (Fig 36
and 38). A single candidate belonging to the STP subfamily and ortholog of Mitstl
(Medtr4g091370) is upregulated in response to AM (Fig 38). In addition Medtr4g091370 also
showed a high expression level in the M. truncatula rhizobial symbiotic samples. However,
no transcription profile corresponding to MtMST in the MtGEA showed a mycorrhizal
specific expression. A similar search was performed for MtSUT differentially expressed in
response to AM and is presented in the third chapter of this manuscript (Fig 49; see Chapter II
2.3 and Chapter I1I 4.2).
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Chapter I

3.2 GIMSTs differentially expressed in AM symbiosis

The G. intraradices expression microarray (4 x 72K) was designed on the basis of 25 906
non-redundant virtual transcripts using NimbleGen chip with samples from extraradical
mycelium, symbiotic roots, germinated and exudates spores (Tisserant et al. 2011). On these
data, the 6 accessions considered as contaminants show very low expression signals in
analyzed samples confirming their extrinsic origin. However, significant expression signals
could be monitored from laser microdissected arbusculated cell samples of M. truncatula;
therefore, this dataset should be further interpreted with precaution (Table 5 and 6). Regarding
the 6 remaining accessions, I searched for GiIMST candidates presenting significant
differential expression profiles (0.5 < ratio > 2) between available conditions (Table 6). Two
candidates showed interesting expression patterns in arbusculated cells. Indeed,
Glomus_c4574 shows a high expression level in both M. truncatula and rice arbusculated
cells and is not expressed in extraradical structures (Table 6). Therefore, Glomus_c4574 is
only expressed in symbiotic structures that are directly in contact with plant tissues and
especially at the arbuscular interface. In contrast, the second candidate
(11118 0_CCHU9778.g1_CACE) presents a low expression profile in both arbusculated cell
types but still shows its highest expression level in intraradical structures (Table 6). In
conclusion, both accessions seem to be the most promising candidates likely to be involved in

the regulation of sugar transfer at the plant-fungal interface.

4 Conclusion

Sugar is the primary source of energy, sucrose being the main form for plant sugar transport
and monosaccharides (mainly glucose) the transferred carbohydrates to AMF at the symbiotic
interface. Therefore, we perform database mining for sucrose and monosaccharide
transporters (MSTs and SUTs) involved in carbon partitioning from photosynthetic source
leaves of M. truncatula towards G. intraradices, the heterotrophic fungal symbiont which
colonizes sink roots. In total, 6 MtSUTs, 62 MtMSTs from M. truncatula as well as 6
GiMSTs from G. intraradices were identified; candidates presenting differential expression
profiles in this model plant-fungal interaction were pinpointed and their respective role in
sugar partitioning within and between organisms is discussed (see Discussion). In conclusion,
this manuscript presents a first milestone for the study of plant and fungal sugar transporter
families in the widely used AM symbiotic model between M. truncatula and G. intraradices.
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The Medicago truncatula
sucrose transporter family




Proposed Length Genbapk Original name Genomic locus Affymetrix accesion
name (bp) accession (Mt3.5) number (MtGEA)
wsuTiL s wesss(JoRA2 W Meeosiosa
MtSUT1-2 1527 JN255790 NFl?ég?_’SB;gT)lO73 NA Mtr.33446.1.S1_s_at
MtSUT1-3 1536 JN255791 (BAACC;(?éﬁgﬁ,_&tArZ.O) Medtr4g131920.1 NA
MtSUT2 1803  JN255792 'EAEESTTA,%?CTE NA NA
MtSUT4-1 1515 255793 ﬁgtizﬁﬁ)ﬁrle\iigm Medtr5g067470.1 a'\r:lttjrll\eltlr?j(?éggi_ss'i‘;t
MtSUT4-2 1518 IN255794 (I?ESS-[—I'%DZIZéIAf) NA Mtr.3506.1.51_s_at
Pseudogenel 1077 JN255795 Medtr4g102110.1 Medtr4g102110.1 NA
Pseudogene2 1011 JN255796 Medtr4g102190.1 Medtr4g102190.1 NA

Table 7. Information about the MtSUTSs identified in this study.
MtSUT and pseudogene sequences were retrieved from the M. truncatula genome version 2.0
and 3.5 (http://www.medicagohapmap.org/index.php) and DFCI Medicago Gene Index
(http://compbio.dfci.harvard.edu/cgi-bin/tgi/gimain.pl?gudb=medicago). Accession numbers
of the MtSUT sequences reported in this table have been submitted to GenBank
(http://www.ncbi.nlm.nih.gov/). Affymetrix probes accessions are from the Medicago
truncatula gene expression atlas MtGEA (http://bioinfo.noble.org/gene-atlas/v2/).
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Chapter 11

The Medicago truncatula sucrose transporter family

Sucrose transporters (SUTs) represent major components for long distance transport of
photosynthates from source leaves to demanding heterotrophic sinks (see Introduction 3.2).
SUTs are necessary for coordination/regulation of carbon partitioning, plant development, cell
to cell communication, environmental adaptation, and thereby play pivotal roles upon optimal
plant growth and crop yield and most probably in determining the outcome of plant fungal
interactions (Lalonde et al. 2004; Sauer 2007; Kiihn and Grof 2010; Wippel et al. 2010; Boldt
et al. 2011). Despite these primordial roles, complete SUT families have only been
investigated in a limited number of reference plant species, namely in Arabidopsis, grape,
poplar, rice and maize which comprise 9 AtSUTs, 4 VvSUTs, 5 PtaSUTs, 5 OsSUTs and 6
ZmSUTs, respectively (Aoki et al. 2003; Sauer 2007; Afoufa-Bastien et al. 2010; Payyavula
et al. 2011). Regarding Fabaceae species, only few leguminous SUT proteins have been
characterized so far (Table 9; Weber et al. 1997; Aldape et al. 2003; Zhou et al. 2007,
Reinders et al. 2008). Indeed, at the beginning of my PhD, not a single SUT from the
reference leguminous species M. truncatula (MtSUT) was identified although it represents a
key model species for the study of plant-microorganism interactions (see Introduction 4.1.1).
Therefore, in the second part of my work, I chose to focus on MtSUTs in order to investigate
sugar transporters and their role in the AM symbiosis (see Chapter III 2.) at a full family

scale.

1 Phylogenetic analyses and identification of the Medicago truncatula SUT

family

Analysis of database led to the identification of 6 putative MtSUTs. Two genomic loci
(Medtr4g131920.1 and Medtr5g067470.1) being present respectively on chromosomes 4 and
5, one full-length contig and three ESTs corresponding each to putative MtSUTs (Table 7 and
Fig 37; see Chapter I 1.2). For the EST sequences, 5’ and 3’ specific oligomers were designed
in order to obtain the corresponding full-length CDS by RACE experiments (Fig 29b).
Thereby, the MtSUT family comprises at least 6 members, for each of which it was possible
to obtain a full-length CDS. Proteic sequences of the 6 MtSUTs were aligned, and all 6
members showed common SUT features with 12 predicted TMs, and exhibited amino acid
similarities ranging from 35 to 77% (Annex VI). A SUT phylogenetic tree based on the amino
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Fig 39. Phylogenetic tree of the plant SUT family

Maximum parsimony tree including 88 plant SUTs. Alignment of amino acid sequences was performed and maximum parsimony analyses
were done with heuristic tree searches were executed using 1000 random sequence additions and the tree bisection-reconnection branch-
swapping algorithm with random sequence analysis. The complete alignment was based on 730 sites; 513 were phylogenetically informative.
The following 88 SUT sequences are included: Arabidopsis thaliana, 9 AtSUTs: AtSUCI (Atlg71880), AtSUC2
(At1g22710), AtSUC3 (At2g02860), AtSUC4 (Atl1g09960), AtSUCS (Atlg71890), AtSUC6 (At5g43610), AtSUCT
(Atl1g66570), AtSUCS8 (At2g14670), AtSUC9 (At5g06170). Brassica napus: BnSUC2 (ACB47398). Brassica oleracea:
BoSUC1 (AAL58071), BoSUC2 (AAL58072). Daucus carota: DcSUT2 (065803), DcSUT1b (065929). Glycine max,
12GmSUTs:  GmSUT1 (CAD91334), Glymal0g36200, Glyma02g08250, Glyma02g08260, Glyma02g38300,
Glyma04g09460, Glyma08g40980, Glymal6g27320, Glymal6g27330, Glymal6g27340, Glymal6g27350, Glymal8g15950.
Hevea brasiliensis, 6HbSUTs: HbSUT1 (ABJ51933), HbSUT2a (ABJ51934), HbSUT2b (ABJ51932), HbSUT3
(ABK60190), HbSUT4 (ABK60191), HbSUTS (EF067333). Hordeum vulgare: HvSUT1 (Q9M422), HvSUT2 (Q9M423).
Lotus japonicus: LjSUT4 (CAD61275). M. truncatula, 6MtSUTs: MtSUT1-1 (JN255789), MtSUT1-2 (JN255790), MtSUT1-
3 (IN255791), MtSUT2 (JN255792), MtSUT4-1 (JN255793), MtSUT4-2 (JN255794). Nicotiana tabacum: NtSUTI
(Q40583), NtSUT3 (Q9XFM1), NtSUT4 (BAI60050). Oriza sativa, 50sSUTs: OsSUT1 (AAF90181), OsSUC4
(BAC67163), OsSUT3 (BAB68368), OsSUT4 (BAC67164), OsSUTS (BAC67165). Phaseolus vulgaris: PvSUTI
(ABB30164), PvSUF1 (DQ221700), PvSUT3 (ABB30166). Pisum sativum: PsSUT1 (AAD41024), PsSUF1 (DQ221698),
PsSUF4 (DQ221697). Plantago major: PmSUC1 (CAI59556), PmSUC2 (CAA53390), PmSUC3 (CAD58887). Populus
tremula x alba, 5SPtaSUTs: PtaSUT1 (HM749898), PtaSUT3 (HM749899), PtaSUT4 (HM749900), PtaSUTS (HM749901),
PtaSUT6 (HM749902). Solanum lycopersicum: SISUT1 (CAAS57726), SISUT2 (AAGI12987), SISUT4 (AAG09270).
Solanum  tuberosum: StSUT1 (CAA48915), StSUT4 (AAG25923.2). Sorghum bicolor, 6SbSUTs: Sb01g022430,
Sb01g045720, Sb04g023860, Sb04g038030, Sb07g028120, Sb08g023310. Triticum aestivum: TaSUTIA (AAM13408),
TaSUT1B (AAM13409), TaSUT1D (AAM13410). Vicia faba: VESUT1 (CABO07811). Vitis vinifera: VvSUC11 (AF021808),
VvSUC12 (AF021809), VvSUC27 (AF021810), VvSUCy (ADP37124). Zea mays, 6ZmSUTs: ZmSUT1 (BAAS83501),
ZmSUT2 (AAS91375), ZmSUT3 (ACF86653), ZmSUT4 (AATS51689), ZmSUTS (ACF85284), ZmSUT6 (ACF85673).
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acid sequence alignment of 88 plant SUTs (including the 6 MtSUTs identified de novo) was
constructed (Fig 39). The tree confirms the current SUT classification into 5 distinct clades
(Braun and Slewinski 2009; Kiihn and Grof 2010). The 6 MtSUTs distribute in all three
dicotyledonous clades; so, we named each MtSUT upon phylogenetic clustering into
particular clades (Fig 39 and Table 7). As proposed by Braun and Slewinski 2009 for the
nomenclature of monocotyledonous SUTs, we would suggest in future work all SUTs to be
named according to this new annotation version. In that way, upon phylogenetic analysis, we
renamed MtSutl (Gaude et al. 2011) as MtSUT4-1 (Fig 39).

Three MtSUTs belong to the SUT1 clade: MtSUT1-1, MtSUT1-2 and MtSUT1-3. MtSUT1-1
clusters with the leguminous H'/sucrose importers from pea (PsSUT1), common bean
(PvSUT1) and soybean (GmSUT1) whilst MtSUT1-2 and MtSUT1-3 directly cluster with the
sucrose facilitator from pea (PsSUF1) which supports bidirectional diffusion of sucrose in
yeast (Fig 39; Zhou et al. 2007). Despite this putative differential mode of transport all 3
SUT1 members share an amino acid sequence similarity of around 70% (Annex VIb).
MtSUT?2 falls into the SUT2 clade; like most plant species, M. truncatula comprises a single
gene copy in the SUT2 clade (Fig 39). However, 3 species (soybean, rubber tree and poplar)
show a gene duplicate in this clade. In addition, MtSUT2 is the most distant member of the
MtSUT family, showing the lowest amino acid sequence similarity with the other 5 members
of the MtSUT family (around 30%; Annex VIb). Indeed, SUT2 clade proteins are the most
phylogenetically distant due to their long N-terminal region and an extended central loop
between TMs 6 and 7 (Fig 10); MtSUT?2 possesses these characteristic features of SUT2 clade
proteins (Annex VIa). MtSUT4-1 (initially named MtSutl in Gaude et al. 2011) and MtSUT4-
2 belong to the SUT4 clade. MtSUT4-1 clusters with the vacuolar H'/sucrose transporter from
L. japonicus (LjSUT4) whilst MtSUT4-2 clusters with a facilitator from pea (PsSUF4). Like
the SUT2 clade, the SUT4 clade was initially described as comprising a single gene copy in
all species (Sauer 2007). Here, we report in M. truncatula a SUT4 gene duplicates with
protein products sharing a 76% amino acid similarity (Annex VIb). SUT4 gene duplicates are
also encountered in soybean, rubber tree but not in poplar. The occurrence of gene duplicates
in the SUT2 and SUT4 clades may be the consequence of the genome complexity of these
species as for example the partial diploidized tetraploid genome of soybean or the whole-
genome duplication event that occurs in Populus species (Shultz et al. 2006; Tuskan et al.
2006; Young et al. 2011).

1.1 Identification of cis-regulatory elements of MtSUT promoters

Much of the regulatory features of plant genes are primarily located 1 kbp upstream of the

transcriptional start site and this is generally referred to as the gene promoter which contains
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Fig 40. Intron splicing pattern of MtSUTI-2 and of the two genomic loci MtSUTI-3 and
MtSUT4-1

(a) The genomic sequence of MrSUTI-2 was amplified by PCR. Medtr4gi31920.1 and
Medtr5g067470.1 sequences were retrieved from the M. truncatula genome 3.5. All genomic
sequences were analyzed with the est2genome tool from the EMBOSS explorer
(http://emboss.bioinformatics.nl/) and spliced to their respective coding sequences.

(b) Comparison of the exon distribution of MtSUT1-2, MtSUT1-3 and MtSUT4-1. The length
of each exon and of coding sequences is given in base pair.

All schemes in (a) and (b) are in scale.
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cis-regulatory elements. Therefore, the 1.5 kbp upstream of the CDS of the genomic loci
corresponding to promoter regions of MtSUT1-3 and MtSUT4-1 were retrieved and possible
cis-regulatory elements were predicted by in silico scanning. Both promoters of MtSUT1-3
and MtSUT4-1 contain numerous conserved important regulatory elements for spatial,
hormonal and developmental expression pattern as well as elements involved in response to
environmental and biotic stresses (Table 8). So far, only two studies report the analysis of cis-
regulatory elements in plant SUT promoters: an exhaustive and comparative survey of
promoter regions of AtSUTs and OsSUTSs (Fig 14; Ibraheem et al. 2010) while a second one
reports unique and common 5’ regulatory sequences of all sugar transporters from grapevine
(VWMSTs and VvSUTSs; Afoufa-Bastien et al. 2010). In total, 24 cis-regulatory elements are
conserved among MtSUT1-3 and MtSUT4-1, 14 of which were also described in promoter
sequences of AtSUTs, OsSUTs and grapevine sugar transporters (Table 8). This suggests a
broad conservation of cis-regulatory elements present in promoters of sugar transporters in
plant species from monocotyledonous to solanaceous and leguminous Dicots probably due to
the pivotal roles of such transporters to adaptation in developmental, physiological and

environmental changes.

1.2 Intron splicing and exon patterns of MtSUTSs

In addition to genomic loci sequences (MtSUT1-3 and MtSUT4-1) retrieved from the M.
truncatula genome, the full gene sequence of MtSUT1-2 was obtained by PCR amplification
and intron/exon patterns of these 3 members were analyzed and compared (Fig 40). First, a
clear size difference is observed between loci from the SUT1 and SUT4 clades, MtSUT1-2
and MtSUT1-3 being respectively 2945 bp and 2249 bp long whereas MtSUT4-1 presents a
large gene size (8066 bp), which is mainly due to MtSUT4-1 huge first intron (4152 bp).
Despite this difference, intron splicing pattern is well conserved between the SUT1 and SUT4
clade members of M. truncatula with all 3 genes possessing 5 exons interspersed by 4 introns
(Fig 40a). Exonic patterns of MtSUT1-2 and MtSUT1-3 are well conserved whilst MtSUT4-1
presents a shorter first exon and a longer second exon (Fig 40b). Nevertheless, exon patterns
is well conserved between genes from the SUT1 and SUT4 clades in M. truncatula with
MtSUT1-2, MtSUT1-3 and MtSUT4-1 presenting a very well conserved motif for exons 3, 4
and 5 (Fig 40b).

2 Functional characterization of MtSUTs

The full open reading frames of the 6 MtSUTs were inserted into the pDRfl-GW yeast

expression vector (Fig 30 and 31; Loqué et al. 2007) downstream the strong and constitutive
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PMA1 promoter and upstream the ADH terminator for correct expression of respective
MtSUTs in heterologous system. A corresponding empty vector (pDRf1) containing a short
Pvull restriction site inserted downstream the promoter and upstream the terminator was used
as a negative control (Loqué et al. 2007). Thereafter, a heterologous model organism deficient
in sucrose uptake systems but still able to metabolize this sugar is required to perform the
functional and biochemical characterization of each transporters. In that way, the yeast mutant
strains SUSY7/ura3” and YSL2-1 suitable for sucrose uptake characterization (Fig 27) were
transformed with respective MtSUTs cloned in pDRfI-GW and empty vector. After yeast
transformation by the “best method” described by Gietz and Schiestl 2007
(http://home.cc.umanitoba.ca/~gietz/) and plating resulting transformation on minimal media,
only yeast expressing MtSUT1-1 and MtSUT4-1 showed a complementation of sucrose
deficiency when the transformants were directly plated on sucrose minimal synthetic medium
(Fig 41a). In addition, a similar direct complementation could be observed when transforming
independently both deficient yeast strains SUSY7/ura3” and YSL2-1 with MtSUT1-1 and
MtSUT4-1 (Fig 41a). To validate this observation, yeast colonies transformed with respective
MtSUTs were selected on non-selective medium for the sugar source but without uracil
confirming the correct incorporation of plasmids. Such colonies were then further plated by
performing a subsequent drop test complementation, which consist in plating serial dilutions
of yeast cells on sugar selective medium (Fig 41b and 42). Drop test assays confirmed that
MtSUTI1-1 and MtSUT4-1 complement the sucrose uptake deficiency on minimal sucrose
synthetic media; this was true on all tested concentrations (Fig 41b). Similar tendency were
observed for both deficient strain SUSY7/ura3” and YSL2-1. However, a stronger background
growth was reported for YSL2-1, after only 5 days of incubation (Fig 41b). Regarding other
MtSUT members, yeast expressing MtSUT1-2 and to a smaller extent MtSUT1-3 showed
improved growth when compared to the control transformed with the empty vector whilst
yeast expressing MtSUT2 and MtSUT4-2 did not restore the growth of the mutant strain on
any of the tested sucrose concentrations. Overall, the best complementation results were
obtained with the widely published strain SUSY7/ura3™ at 2% sucrose concentration, the
concentration commonly used to show sucrose complementation of plant SUT by this strain
(Fig 42).

2.1 Biochemical characterization of MtSUT1 and MtSUT4-1

Biochemical characterization of MtSUTs was performed through yeast uptake experiments
with radiolabeled ['*C]sucrose. To do so, yeast must be energized by a sugar source,
preferentially glucose, prior to ['*C]sucrose uptake measurements. As the YSL2-1 mutants
lacks the 20 sugar transporter genes required for hexose uptake (Fig 27; Wieczorke et al.
1999), YSL2-1 is not able to take up glucose and therefore cannot be energized by this sugar.
In addition, as a result of mutations in all hexose and sucrose import systems, YSL2-1 can
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Fig 42. Complementation of the sucrose uptake deficiency of the yeast strain
SUSY7/ura3

Serial dilutions of yeast cells were grown on minimum medium without uracil with 2%
sucrose (Suc) or glucose (Glu, control) as sole carbon source.
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only be cultivated on maltose. However, maltose cannot be used as an energizing sugar source
since most plant SUTs are also able to transport this disaccharide. Indeed, the high maltose
concentration would directly compete with radiolabeled [**C]sucrose used to chase sucrose
uptake and to characterize transporter capacities (Fig 43d). In contrast, the second deficient
strain SUSY7/ura3” (Riesmeier et al. 1992; Barker et al. 2000) possesses the cellular
machinery for hexose import and therefore can be energized or grow on glucose (Fig 27 and
42). Despite the mutation of all H'/hexose transport systems and a narrow sugar spectrum, the
YSL2-1 strain shows a higher growth background of yeast expressing MtSUTSs or containing
the empty vector control (Fig 41b). For all these reasons, we chose to retain the widely
published strain SUSY7/ura3" for further biochemical characterization of MtSUTSs.

The biochemical characterization of the strongly complementing members, MtSUT1-1 and
MtSUT4-1 was performed using this model system (SUSY7/ura3’). Both transporters follow
a saturable sucrose uptake typical of the Michaelis-Menten kinetics with a linear Lineweaver-
Burk representation (Fig 43a-b). Using linear regression equation, an apparent Km for sucrose
of 1.7 mM was calculated for MtSUT1-1 whilst MtSUT4-1 showed a Km of 13.7 mM at phb.
Therefore, MtSUT1-1 presents a higher affinity for sucrose whilst MtSUT4-1 shows a higher
transport capacity (Fig 43a-b). However, we were not able to measure significant sucrose
uptake for other MtSUT members expressed in yeast as they only showed a slight improved
growth compared to yeast transformed with the empty vector (Fig 42). Thereby, it was not
possible to biochemically characterize MtSUT1-2, MtSUT1-3, MtSUT2 and MtSUT4-2.

2.2 Transport dependency on membrane potential and substrate specificity of
MtSUT1-1 and MtSUT4-1

Transport dependency on membrane potential of MtSUT1-1 and MtSUT4-1 was tested by
measuring [**C]sucrose uptake upon the addition of the protonophores carbonyl cyanide m-
chlorophenylhydrazone (CCCP) and 2,4-dinitrophenol (DNP) and the plasma membrane H*-
ATPase inhibitors diethylstilbestrol (DES) and vanadate. Inhibitor assays revealed that the
[**C]sucrose uptake is sensitive to the addition of CCCP, DNP, DES and to a smaller extent
vanadate indicating that membrane energization is required for sucrose transport by MtSUT1-
1 and MtSUT4-1 (Fig 43c). The lowest inhibitive response upon addition of vanadate is
probably due to orthovanadate ion stability at acidic pH. Since transport properties of
MtSUT1-1 and MtSUT4-1 are curbed upon addition of protonophores and H*-ATPase
inhibitors, both MtSUT1-1 and MtSUT4-1 are active H*/sucrose co-transporters.
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Fig 43. Biochemical characterization of MtSUT1-1 and MtSUT4-1

(a-b) Uptake kinetics of ["*C]sucrose by the yeast strain SUSY7/ura3 expressing MtSUTI-1
and MtSUT4-1 at the indicated sucrose concentration at phS. Michaelis-Menten and
Lineweaver-Burk representation of the data are illustrated.

(¢) Influence of plasma membrane energization on the uptake rate of ['*C]sucrose in the yeast
mutant expressing MtSUTI-1 or MtSUT4-1.

(d) Substrate specificity of MtSUT1-1 and MtSUT4-1. (c-d) Data are expressed as percentage
of the sucrose control.
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Substrate specificity of both transporters was also tested by the addition of a ten-fold molar
excess of competing sugars. In such experiments, the addition of the hexoses, glucose and
fructose or the disaccharide, trehalose did not compete with ['*C]sucrose uptake by MtSUT]1-
1 and MtSUT4-1 (Fig 43d). However, the addition of 10 fold maltose inhibited the sucrose
uptake to around 50%, indicating that at this concentration half of the sites are bound by the
competing disaccharide. Therefore, substrate competition assays showed that, in addition to
sucrose, only the disaccharide maltose (a-D-glucopyranosyl-(1,4)-a-D-glucopyranose) is
bound by MtSUT1-1 and MtSUT4-1 (Fig 43d). Surprisingly, the other tested disaccharide
trehalose (a-D-glucopyranosyl-(1,1)-a-D-glucopyranoside) also made of 2 glucose units did
not compete with sucrose and therefore seems not to be a possible substrate for both
transporters. The SUT4 clade protein LjSUT4 and the SUT1 clade protein AtSUC9 are also
able to conduct transport current in Xenopus oocytes in presence of sucrose, maltose but not
of trehalose (Sivitz et al. 2007; Reinders et al. 2008). These findings show that substrate
specificity seems to be conserved for plant SUTs and is tightly modulated among

disaccharides.

2.3 Expression of MtSUTs in plant leaves and roots

Transcript accumulation of each member of the MtSUT family was analyzed by quantitative
RT-PCR in plants fertilized with a high phosphate nutrient solution (Table 4). While MtSUT1-
3, MtSUT2, MtSUT4-1 and MtSUT4-2 are expressed at relatively similar levels in leaves and
roots, MtSUT1-1 shows a 20 fold higher transcript accumulation in leaves compared to roots
(Fig 44). This information suggests a major role for MtSUTI1-1 in sucrose fluxes from
photosynthetic source leaves to the phloem. Furthermore, SUTs were detected in both sink
and source parts. Indeed, transcripts of the 6 MtSUT members were present in leaf and root
tissues with the exception of MtSUT1-2 transcripts only detected in leaves. Regarding
different time points, no major differences could be observed between expression levels of
MtSUT members with the exception of MtSUT4-1 presenting a higher transcript accumulation
in roots of plants harvested at 21dold (Fig 44b).

In addition, we performed an in silico search similar to MtMSTs (Fig 38, see Chapter I 3.1)
for expression data of available MtSUT candidates in the Medicago truncatula Gene
Expression Atlas database (Fig 49). The expression pattern obtained by quantitative RT-PCR
(Fig 44) shows differences with available transcriptomic data from the MtGEA, especially for
MtSUT1-1 which shows similar signals in roots and leaves (Fig 49). However, these results
confirm that MtSUT1-1 and MtSUT4-1 have the highest expression profiles. Moreover, in the
microarray database, MtSUT1-2 transcripts were not detected in leaf samples but only seem
present in seed samples and no probes were available for MtSUT1-3 and MtSUT2. Regarding

MtSUT4-2, probes were designed to the anti-sense sequences and therefore are not able to
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Fig 44. Analysis of transcript levels of MtSUT genes

Quantitative reverse transcription polymerase chain reaction (q-RT-PCR) analysis of
MtSUTI-1, MtSUT1-2, MtSUTI1-3, MtSUT2, MtSUT4-1 and MtSUT4-2 in leaves (white bar)
and roots (tinted bar) of plant treated with high phosphate 1.3mM condition (HP) and
harvested at 2 (a), 3 (b) and 4 (c) weeks old. Data are expressed in arbitrary units (a.u.).
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hybridize the target cRNA used in microarrays; as a result, no signal is detected for MtSUT4-2
(Fig 49).

3 Conclusion

Here, we identified and characterized the MtSUT family (Doidy et al. 2012b) which
comprises 6 members; phylogenetic, in silico, functional and expression analyses were
performed to better understand the role of each MtSUT members within particular clades. We
report common cis-regulatory elements present in both promoters of MtSUT1-3 and MtSUT4-
1 and more generally also present in sugar transporters of other plant species. In addition,
conserved intron splicing and exon patterns were observed for MtSUT1-2, MtSUT1-3 and
MtSUT4-1. Functional and biochemical characterization revealed that MtSUTI1-1 and
MtSUT4-1 are active H'/sucrose importers when expressed in yeast. Transport capacities,
affinity for sucrose and specificity to alternative sugar substrates are conserved between
MtSUT1-1, MtSUT4-1 and orthologous leguminous proteins which directly cluster in same
subclades in the SUT phylogenetic classification. Expression pattern and transport kinetics
indicate that MtSUT1-1 is the preferred candidate as the main phloem loading protein whilst
MtSUT4-1 cluster with a vacuolar protein (LjSUT4). Altogether, these features suggests a
common origin and evolution of plant SUTs probably through gene duplications, adaptive
evolution and functional divergence (Johnson and Thomas 2007). The role of respective
MtSUTs in plant and in the arbuscular mycorrhizal interaction with G. intraradices will be

discussed in the next chapter.
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Number of

Cis-element name Sequence Function copies/promoter
MtSUT1-3  MtSUT4-1
-300 element TGHAAARK Endosperm expression 1 2
AACA motifs AACAAAC Endosperm expression 1 1
ABRE* MACGYGB Abscisic acid responsive element 1 4
AGL15 binding site CWWWWWWWWG  Bindin site of AGL15, plant MADS domain 1 2
protein AGL15
CACTFTPPCA1 CACT Mesophyll expression 8 21
CPBCSPOR TATTAG Cytokinin dependent protein binding 1 1
CuRE core* GTAC Core of copper-response element 1 1
Dof core* AAAG Core site required for binding of zinc finger 13 13
proteins in maize
Erd1* ACGT Regulatory element required for early 3 3
ERE* AWTTCAAA Ethylene responsive element 1
GATA-box* GATA Regulatory element required for high level 19 4
light regulated and tissue specific expression
GT-1binding site* GAAAAA; GGTTAA Regulatory element required for rapid 14 18
response to pathogen attack, salinity and
salicylic acid inducible gene expression
GTGA motif* GTGA Motif of the late pollen g10 gene of tobacco 6 2
I-box* GATAA Light box element; regulatory element 8 2
conserved in light-regulated genes
Initiator elements psaDb  YTCANTYY light-responsive transcription elements 4 8
MYB* WAACCA;TAACTG;CN Regulatory element involved in drought
GTTR; inducible gene expression
Nodulin consensus CTCTT; AAAGAT Putative nodulin consensus sequences 4 5
OsBIHD1 binding site TGTCA Bindin site of OsBIHD1, BELL homeodomain 1
transcriptional factor, in disease resistance
responses.
POLLEN1LELAT52* AGAAA Pollen expression 3 2
ROOTMOTIFTAPOX1* ATATT Root expression 11 4
SuURE core* GAGAC Core of sulfur-responsive element 1 1
TAAAGSTKST1 TAAAG Target site for trans-acting StDof1 protein 6 4
controlling guard cell-specific gene expression
T-box ACTTTG Light-activated gene element 1 1
W-box* TTGAC; TGACT; Regulatory element involved in direct fungal 7 1
TGACY; TGAC elicitor stimulated transcription of defense

genes and activation of genesinvolved in
response to wounding

Table 8. Common cis-regulatory elements of MtSUT1-3 and MtSUT4-1 promoter regions
Common cis-regulatory elements of MtSUT1-3 and MtSUT4-1 promoter regions. The 1.5 kbp
upstream of the coding regions of genomic loci was retrieved and cis-regulatory elements in
promoter sequences were scanned using the plant cis-acting regulatory DNA elements
database (PLACE: http://www.dna.affrc.go.jp/PLACE/). * represent regulatory elements also
present in promoters of AtSUTs and OsSUTs and/or sugar transporters of Vitis vinifera
(Afoufa-Bastien et al., 2010; Ibraheem et al., 2010).
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Gene name Km for sucrose Transport properties  Reference
MtSUT1-1 1.7mM (pH 5) active symporter

GmSUT1 5.6mM (pH4) active symporter Aldape et al., 2003
PsSUT1 1.5mM (pH 5.5) active symporter Zhou et al., 2007
VISUT1 ND ND Weber et al., 1997
MtSUT4-1 13.7mM (pH 5) active symporter

LjSUT4 12.9mM (pH 5) active symporter Reinders et al., 2008
PsSUF4 37.8mM (pH 5.5) facilitator Zhou et al., 2007

Table 9. Summary of characterized leguminous SUTs and biochemical properties
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Sucrose transport, from plant
source leaves towards
arbuscular mycorrhizal fungus




Leaves Fresh weight (mg) Dry weight (mg) Leaf area (cm?) SPAD measurement
14 dold
HP 226.8+ 7262 36.2+17.3% 44+14° 50.1+3.9°
LP 238 +83.7° 43.8+185"° 46+11° 50.6 +4.0°
AM 158.6 +41.8°" 256+7.6° 31+10° 486+3.0°
21 dold
HP 444.4 +134.3° 100.8+16.22 6.2+09° 63.2+47°
LP 391.8+104.3° 96.4+18.0° 6.1+1.2° 65.3+43°
AM 422 £ 67.2° 99+10.2° 59+14°% 61.7+35°%
28 dold
HP 4928 +24.6" 1916+7.6"° 91+15% 71.8+49%
LP 450.8 +53.0 ° 166.2 +25.6 2 8.0+09° 67.2+33"
AM 496.6 +12.7" 191.2+8.0° 9.3+1.6° 72.3+33%
Roots Fresh weight (mg) Dry weight (mg)
14 dold
HP 2934+1340% 346+95%
LP 363.2+1427%  382+154°
AM 176.2+62.1" 23.2+53"
21 dold
HP 630.2 +141.9° 99.8+19.7%
LP 671.6 +170.2° 109.6 £17.3%
AM 568.6 £34.0° 93.6 +13.8°
28 dold
HP 966.0+1545° 177.0+39.2°
LP 1075.2+208.0% 193.8+245°%
AM 984.6 +48.2° 176.4+18.2°
AM roots F% M% m% A% a%
14 dold 60.00 £3.33 19.17+0.86 32.05%2.94 17.27+£1.93 89.91+6.19
21 dold 73.33+6.67 41.37+6.68 56.21+5.36 39.92+6.15 96.6+0.88
28 dold 78.89+7.07 4441725 56.88+13.49 46.03+2.26 955443

Table 10. Growth parameters of M. truncatula plants cultivated under differential
phosphate supply and upon inoculation of G. intraradices
Medicago truncatula plants were cultivated for 2, 3 and 4 weeks and supplemented with Long
Ashton nutrient solution (Table 4) modified for low phosphate conditions both in the presence
of G. intraradices BEG141 for AM conditions (AM) or in absence of the fungus for control
conditions (LP). A second group of control plants was cultivated in high phosphate (HP)
conditions, supplemented with a nutrient solution containing 10-fold phosphate. Means +
standard deviations are shown. Significant differences are indicated with a letter (P<0.1; n=5).
Stars* highlight data with a significant differences (P<0.05).
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Sucrose transport, from plant source leaves towards

arbuscular mycorrhizal fungus

Sugar photosynthates produced in plant shoots are loaded into the phloem in the form of
sucrose which constitutes the main carbohydrate for long distance transport through phloem
vessels; finally sucrose is unloaded in the release phloem towards sink organs; alternatively
sugars can also be transferred to non-plant sinks (Fig 4). Root colonization by beneficial
symbionts creates an additional sugar demand for the host plant (Doidy et al. 2012a; see
Introduction 4.3.3). Indeed, heterotrophic fungal growth, spore formation and respiration as
well as increased metabolism in several plant tissues augment the sink strength. The
importance of this sugar transfer as the sole carbon source for AMF is emphasized by the fact
that the fungus is unable to grow and complete its life cycle in the absence of host plant.
Indeed, AMF are obligate biotrophs and rely completely on the host plant for
photosynthetically-fixed carbon supply. Thus, in the AM symbiosis, the mutualistic
interaction is based on biotrophic exchanges between the plant and the fungal partners. The
fungus supplies the autotrophic host with nutrients, mainly phosphate and thereby enhances
plant growth. In return, the plant provides sugar photosynthates to the heterotrophic symbiont;
sucrose, being the main carbon source transported from photosynthetic leaves towards
colonized roots and glucose, the preferred sugar transferred toward the fungus at the
symbiotic interface (see Introduction 4.3.3.1). While the phosphate supply towards the host
plant was characterized as being mediated by MtPT4, a mycorrhizal specific plant phosphate
transporter of M. truncatula (Harrison et al. 2002; Javot et al. 2007), mechanisms of transport
and plant transporters involved in carbon partitioning towards the AMF are still poorly

understood.

Indeed, in M. truncatula, which represents the most important model plant for studying AM
interaction (see Introduction 4.1.1), only a single plant monosaccharide transporter (Mtst1) is
characterized and located in AM colonized root parts; and therefore Mtstl was assumed to
play a critical role for a functional symbiosis (Harrison 1996). Furthermore, just few
additional monosaccharide transporter (MST) genes from a limited number of plant species
were shown to be differentially regulated in response to AM colonization (Garcia-Rodriguez
et al. 2005; Wright et al. 2005). Regarding long distance transport of sucrose and transporter
proteins (SUT) involved in carbon partitioning at the whole plant level; at the start of my
PhD, no plant SUTs had ever been studied in response to AMF inoculation. It is only recently

that a comprehensive study reported a complete analysis of available tomato gene members
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Fig 45. Relative transcript accumulations of MtSUTs in source leaves of M. truncatula
Quantitative reverse transcription polymerase chain reaction (q-RT-PCR) analysis of source
leaves of plants either treated with high phosphate (HP) 1.3mM condition (white bars) or with
low phosphate (LP) 0.13mM condition (light tinted bar) or treated with low phosphate and
inoculated (AM) with G. intraradices (dark tinted bar) and harvested at 2, 3 or 4 weeks time
point. The data were statistically checked by the adequate Student t-test upon accomplishing
the Fischer F-test and stars* indicate significant differences between independent treatments
(P=0.05;n=3).
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SISUTL, SISUT2 and SISUT4 belonging to the known dicotyledonous SUT clades (Fig 39),
which presented a differential regulation in sink roots and source leaves of mycorrhized plants
(Fig 58; Boldt et al. 2011).

Uptake, exchanges and competition for sugar, at biotrophic interfaces, are controlled by
membrane transporters and their regulation patterns are essential in determining the outcome
of plant-fungal interactions and in adapting to changes in soil nutrient quantity and/or quality
(Doidy et al. 2012a). Thereby, in a third part of my PhD thesis; I chose to focus on plant sugar
fluxes from their site of production (leaves) towards AM colonized sink (roots) as well as the
expression pattern of the newly identified sucrose transporter family of M. truncatula to better
understand the cellular and molecular mechanisms controlling nutrient exchanges in AM
symbiosis. In that way, we report a complete study of the MtSUT family and discuss the
implication of sugar transporters in carbon partitioning towards the fungal symbiont during
the AM interaction between M. truncatula and G. intraradices.

1 Analysis of M. truncatula plant development

M. truncatula plants were cultivated for 2, 3 and 4 weeks and supplemented with Long
Ashton nutrient solution modified for low phosphate conditions both in the presence of G.
intraradices BEG141 for AM conditions (AM) or in absence of the fungus for control
conditions (LP). In addition, a second group of control plants was cultivated in high
phosphate (HP) conditions, supplemented with a nutrient solution containing 10-fold
phosphate, to balance the provision of phosphate by AMF plant (Table 4). At each time point,
fresh and dry weights of root and aerial parts were monitored as well as total leaf surface. In

addition, chlorophyll abundance of source leaves was estimated by SPAD measurements.

At early stage (2 weeks post-inoculation, wpi), AM plants presented a high mycorrhizal rate
(Table 10); indeed, the frequency of mycorrhizal colonization in the root system (F%) is of
60% and an arbuscule abundance in the root system close to 20% (A%). In addition, at this
time point, AM root system and aerial part showed a significant delay of development
compared to non-mycorrhizal control plants (Table 10). This may be due to the strong sink
constituted by G. intraradices BEG 141 when associated to M. truncatula J5, which
represents a plant hyper-responsive to mycorrhization with this AMF isolate. However, this
delay of development was caught up from the third wpi; indeed, plants cultivated in HP, LP or
AM conditions presented similar fresh and dry weights, leaf surface and SPAD measurement
for aerial parts; the only significant differences were noticed between dry weight of root
system in AM and LP conditions; LP plants developed larger root systems, probably to
explore the soil in search of supplemental nutrients. Nevertheless, at 4 wpi, the root system of

LP plants was not anymore significantly greater. However, the aerial parts of LP plants
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Fig 46. Relative transcript accumulations of MtSUTs in roots of M. truncatula
Quantitative reverse transcription polymerase chain reaction (q-RT-PCR) analysis of total
root system of plants either treated with high phosphate (HP) 1.3mM condition (white bars) or
with low phosphate (LP) 0.13mM condition (light tinted bar) or treated with low phosphate
and inoculated (AM) with G. intraradices (dark tinted bar) and harvested at 2, 3 or 4 weeks
time point. The data were statistically checked by the adequate Student t-test upon
accomplishing the Fischer F-test and stars* indicate significant differences between
independent treatments (P = 0.05; n = 3).
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showed a reduced growth compared to the one supplied with HP solution or inoculated with
AMEF. In addition, at 4 wpi, SPAD measurements indicate a lower chlorophyll content in

source leaves of LP plants suggesting a lower photosynthetic activity.

At 3 and 4 wpi, AM plants presented a fully established mycorrhization with high frequency
(F%) and intensity (m% and M%) of mycorrhizal colonization. In addition, the arbuscular
development, which represents the key fungal structure for symbiotic nutrient exchanges,
estimated by the arbuscule abundance (a% and A%) indicates a fully functional symbiosis.
Furthermore, at these time points, most differences regarding growth parameters were
observed for plants cultivated under LP conditions (Table 10); plants inoculated by AMF or
supplied with HP solution to balance the provision of phosphate by AMF presented similar
growth parameters. In conclusion, M. truncatula plants inoculated with G. intraradices
presented a delay of development at early stage; but once AM is fully established, beneficial
effects of the mycorrhizal symbiosis led to similar growth parameters when compared to

plants fertilized with higher P solution.

2 Transcript levels of MtSUTs and MtPT4 in M. truncatula leaves and

roots in relation to phosphate level and/or mycorrhization

MtSUT transcript accumulations from source leaves and total root system of M. truncatula
plants harvested at 2, 3 and 4 wpi and cultivated under differential phosphate supply and upon
inoculation of G. intraradices were analyzed by quantitative RT-PCR (Fig 45 and 46).

MtPT4 showed the highest expression levels of all analyzed genes, with a specific expression
in mycorrhizal roots increasing over the time of colonization (Fig 46); this high transcript
accumulation of MtPT4 confirms the functionality of the AM symbiosis (Table 10). However,
no MtSUT showed a mycorrhizal specific expression. Nevertheless, in contrast to microarray
analyses which did not present differential regulation of MtSUT1-1, MtSUT1-2 and MtSUT4-1
in roots samples in response to AM inoculation (Fig 46), transcript quantification by
quantitative RT-PCR shows that MtSUTS present a fine-tuning of their expression profiles in
root and leaf according to the phosphate supply and upon AM inoculation (Fig 45 and46). All
MtSUT genes could be quantified in roots and leaves for all tested conditions (HP, LP, AM)
with the exception of MtSUT1-2 transcripts which were not detected in source leaf samples
(Fig 45 and 46). Furthermore, all MtSUTs showed higher transcript accumulations in root
samples in LP and AM compared to HP treatment at 2 and 4 wpi. Although we used similar
sampling and harvesting conditions, it seems that MtSUT gene expressions monitored at 3 wpi
present a divergent expression pattern from the one recorded at 2 and 4 wpi. Only MtSUT4-1

showed a significant upregulation in LP and AM roots sample at 3 wpi compared to HP. In
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Fig 47. Effect of phosphate nutrition and AMF on transcript level of MtSUT genes
a) Quantitative reverse transcription polymerase chain reaction (q-RT-PCR) analysis of

MtSUT1-1

MtSUT2 MtSUT4-1 MtPT4

MtSUTI-1, MtSUT2 and MtSUT4-1 in leaves.

b) g-RT-PCR analysis of MtSUT1-1, MtSUT2, MtSUT4-1 and MtPT4 in roots.

Four weeks old plants were either treated with high phosphate (HP) 1.3mM condition (white
bars) or with low phosphate (LP) 0,13mM condition (light tinted bar) or treated with low
phosphate and inoculated (AM) with G. intraradices (dark tinted bar). Data are expressed in
arbitrary units (a.u.). Independent statistical analyses were performed for each gene, with

letters indicating a statistically significant difference (P<0.05, n=3).



Chapter 111

addition, the expression profiles of MtSUTs showed a generally lower expression levels in

samples harvested at 3 wpi, especially in source organs (Fig 45).

In that way, we focused the interpretations of the results of mycorrhizal influence on MtSUT
expression for plant samples harvested at 4 wpi, when the AM structure are fully established
creating a higher fungal sink strength (Table 10). In addition, MtSUT1-2, MtSUT1-3 and
MtSUT4-2 transcript levels were close to detection thresholds in all tested conditions (Fig 45
and 46); indeed, for these samples a higher cDNA concentration had to be used to obtain a
detectable cycle threshold (Ct). So, we retained the key members MtSUT1-1 and MtSUT4-1
which were characterized as functional transporters (Fig 43) and MtSUT2 which presents a
substantial expression level in source and root parts of all tested conditions (Fig 47) for
further analysis. Transcript accumulation of MtSUT1-1, MtSUT2 and MtSUT4-1 decreased
significantly in plants fertilized with ten time phosphate (HP; Fig 47). In contrast, all MtSUTs
showed a higher transcript accumulation in leaves of AM plants (Fig 47a) when compared to
plants treated with the same amount of phosphate (LP) or with high phosphate (HP) but in the
absence of AMF. Moreover, when compared to the plants treated with HP, to mimic
phosphate allocation of AMF, all analyzed MtSUTs showed a higher transcript accumulation
in source leaves and sink roots of AM plants (Fig 47). These findings indicate a higher
sucrose export from source leaves and higher sucrose transfer to the roots when the sink
strength is enhanced by the colonization of AMF independently of the phosphate supplied by
the fungus. In addition, MtSUT1-1 the potential candidate for phloem loading (see Chapter 11
3.3) showed the highest transcript upregulation in roots and leaves of AM plants while
MtSUT2 is the only candidates not showing significant differences in AM root samples
compared to non-mycorrhizal controls. A similar tendency was observed for orthologous
genes of tomato when comparing the expression in mycorrhizal and non-mycorrhizal plants
fertilized with the same amount of phosphate (Fig 58; Boldt et al. 2011).

Overall, MtSUTSs generally showed a lower expression in non-mycorrhizal plants treated with
HP conditions (Fig 45 and 46); thus being consistent with lower root sink strength in HP
conditions due to sufficient nutrients in phosphate fertilized soil. In contrast, at 4 wpi, when
the AM fungal sink is fully established, all MtSUTSs are significantly upregulated in source
leaves (Fig 45) suggesting higher long distance transport rates of sucrose towards AM
colonized roots when the root sink strength is enhanced by the sugar demand due to the AMF.
Thereby, it seems that MtSUT expression in source leaves is directly correlated to the root
sink strength in M. truncatula.
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Fig 48. Sugar content of M. truncatula leaves, petioles and roots
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Quantification of soluble sugars by high-performance anion exchange-pulsed amperometric
detection (HPAE-PAD) in plants either treated with high phosphate (HP) 1.3mM condition
(white bars) or with low phosphate (LP) 0.13mM condition (light tinted bar) or treated with
low phosphate and inoculated (AM) with G. intraradices (dark tinted bar) in a) leaves, b)
petioles and c) roots.). Mycorrhization rate of AM plants were estimated to F% 73.3 + 14.5;
M% 51.1 = 14.4; m% 69.0 = 10.4; a% 92.5 £ 1.3; A% 47.4 + 13.9. Independent statistical

analyses were performed for each sugar, with letters indicating a statistically significant
difference (P<0.05, n=5).
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3 Sugar quantification

Soluble sugar content of source leaves, petioles and root compartments was quantified using
high-performance anion exchange-pulsed amperometric detection (HPAE-PAD) for plants
harvested at 4 wpi. Sucrose, glucose and fructose were detected at substantial levels in all
samples; sucrose being the main sugar in leaves and roots of M. truncatula (Fig 48). At a
lower level, stachyose and raffinose were respectively detected in aerial parts (leaves and
petioles) and root compartments. Trehalose, already known to be a major form of sugar
storage for AMF (Bago et al. 2003) was found exclusively in roots of mycorrhizal plants (Fig
48¢).

A significant decrease of total soluble sugars was observed in source leaves in response to
AMF inoculation compared to non-mycorrhizal plants cultivated in LP conditions (Fig 48a),
which is consistent with a higher sucrose loading towards phloem saps of colonized root sink.
However, collecting petioles to have an overview of transporting fluids from source leaves to
sink roots did not confirm this higher sucrose export towards colonized sinks. In addition, all
major soluble sugars (glucose, fructose and sucrose) could be detected in petioles (Fig 48b)
and therefore sugar content of petioles seems not to reflect phloem sap contents mainly
constituted of sucrose as the long distance transport sugar. Moreover, in all tested conditions,
only small variations of sugar content were measured in sink roots. Indeed, only a slight
increase of sucrose could be observed in AM colonized roots compared to the HP fertilized
non-mycorrhizal plants. However, an overall tendency to accumulate supplemental soluble
sugars in AM colonized roots was observed (Fig 48c). In our conditions, we were not able to
confirm the substantial sugar export towards AM colonized sinks roots by HPAE-PAD sugar
quantification.

4 Conclusion

In conclusion, the recent completion of the M. truncatula genome and first genomic data from
G. intraradices as well as the release of transcriptomic database allowed the generation of an
inventory of sugar transporter genes in the leguminous host plant and its model fungal
symbiont (see Chapter I). With the identification and functional characterization (see Chapter
II) and gene expression pattern of sugar transporter families, a more complete picture of sugar

fluxes in the AM symbiosis has begun to emerge (Fig 60).
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Chapter IV

Construction of a cDNA expression
library from Medicago truncatula
symbiotic roots and screening for

sugar transporter candidates




heterocyst
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membrane

b)
Medicago
C

Fig 50. The unique symbiotic model between G. pyriformisand N. punctiforme

a) Scheme of the compartmentation of the Geosiphon symbiosis. Schii3ler and Kluge, 2001.

b) Comparative scheme of the symbiotic bladder structure of the Geosiphon - Nostoc symbiosis
and the arbusculated cell in the AM symbiosis between M. truncatula and G. intraradices.
Carbon exchange is represented with a red arrow. Adapted from Schiiler et al., 2006.
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Chapter 1V

Construction of a cDNA expression library from Medicago
truncatula symbiotic roots and screening for sugar

transporter candidates

In parallel to the targeted approach developed in chapters I-III, I also carried out a non-
targeted approach which consists in the development of cDNA libraries to screen for putative
symbiotic gene candidates by functional complementation of yeast (Saccharomyces
cerevisiae) mutant deficient in uptake capacities. The construction of such an expression
library led to the isolation of the first glomeromycotan sugar transporter from Geosiphon
pyriformis (SchiiBBler et al. 2006; Schiiller et al. 2007). This fungus belongs to an ancestral
branch within the phylum Glomeromycota and forms the only known fungal endocyanosis,
with the cyanobacteria Nostoc punctiforme. In the Geosiphon - Nostoc model, Nostoc contacts
the tip of the fungal hyphae that bulges out and surrounds a part of a cyanobacterial filament,
thus incorporating the Nostoc cells. Then, the unicellular fungus forms a bladder structure that
contains 5 to 15 Nostoc cells (Fig 50a; SchiiBiler and Kluge 2001; Schiiller and Wolf 2005).
Thereby, in contrast to the conventional AM symbiosis between plants and members of the
glomeromycotan, cyanobacteria are incorporated within fungal bladders. Nevertheless, this
symbiotic bladder structure of Geosiphon is the homologous stage to the arbuscules
containing cells in AM and nutrient exchanges take place at the symbiotic interface of
bladders (Fig 50b).

This unique Geosiphon - Nostoc symbiosis model was used as a tool to isolate pure fungal
mRNA from symbiotic bladders. Indeed, as Nostoc is a prokaryotic organism; its mRNA does
not possess poly(A) tail at the 3' end, and therefore pure (eukaryotic) fungal mRNA from
symbiotic stages are easily isolated with poly(T) tails. By the mean of a poly(T) bead
discrimination methods, a cDNA libraries suitable for yeast functional complementation has
been constructed (Fig 32) and random sequencing of >100 cDNA clones did not result in any
Nostoc sequences, indicating that the library is derived from nearly exclusively fungal
transcripts (Schiiller et al. 2007). The screening of this library in EBY.VW4000, a yeast
deficient for glucose uptake which lacks the 20 sugar transporter genes required for hexose
uptake (Fig 27), led to the isolation of GpMST1. At the beginning of my PhD, GpMST1 was
the only sugar transporters identified from a glomeromycotan species. Therefore in a first part
of this work, we focused on the screening of the expression library made from G. pyriformis

bladders in order to screen for glomeromycotan symbiotic genes including additional sugar
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Fig 51. Screening of the G. pyriformisexpression library by functional complementation of Y SL 2-1

a) Transformants which complemented the sucrose deficiency of YSL2-1 were replated on sucrose (2%)
minimal medium and compared to a positive control yeast YSL2-1 transformed with MtSUT4-1 (line 8).
As for example in this plate, we confirm that clones in line 6 and 7 show a functional complementation of
the sucrose deficiency of YSL2-1.

b), ¢) PCR using primers PMAF and ADH closeR flanking the insertional site of plasmids extracted from
positive clones after b) 1 week and c¢) 3 weeks on minimal sucrose medium. Top blastx hits of the

sequencing results are given.
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transporter candidates. In a second part, we benefited from the knowledge acquired from this
unique symbiotic model to develop a similar yeast complementation approach to study the
widely used AM symbiosis model between M. truncatula and G. intraradices.

1 Pyrosequencing of the G. pyriformis library

Pyrosequencing is a high-throughput method for large-scale genetic analysis notably used to
sequence full genome organism from genomic libraries. Thereby, pyrosequencing would be a
valuable tool for the analysis of the expression library from G. pyriformis in order to obtain a
detailed analysis of fungal gene expressed at symbiotic stages when nutrient transfer occurs

between both partners.

Before the pyrosequencing can be performed, fungal cDNA has to be recovered from the
pDR196Sfil expression vector in which they are inserted. cDNA was extracted from
pDR196Sfil vector by Sfil restriction enzyme digestion and separated from the vector
backbone through gel cutting. cDNA inserts extracted from the library showed an average
size between 1000 and 2000 bp (Fig 35a). However, an optimal fragment length of 400 to 600
bp is recommended for 454FLX pyrosequencing, providing approximately 400 bp read
lengths (Roche). According to the Helmholtz Zentrum in Munich which perform sequencing
in collaboration with the Genetics Institute LMU Munich, DNA nebulization is not suitable to
size fractionate such samples. Therefore, the alternative method that we first used was the
enzyme fragmentase that randomly generates DNA breaks in a time dependent manner. Using
this method, we were not able to produce sufficient DNA quantity for the 454 run. We then
chose to generate DNA breaks by digestion with 4 cutter restriction enzymes. Independent
digestions of the cDNA inserts were pooled and size fractionated from gel cutting to obtain a
sample with a size distribution between 200-700 bp suitable for pyrosequencing (Fig 35b).
Results from the 454 sequencing run are currently analyzed by an ongoing project at the
LMU.

2 Screening of the G. pyriformis cDNA expression library for

glomeromycotan sucrose transporters by yeast complementation

In parallel, the G. pyriformis expression library was screened by yeast functional
complementation with a sucrose deficient strain in order to isolate a glomeromycotan sucrose
transporter candidate. Yeast expression vectors from the library containing G. pyriformis
cDNAs were therefore transferred in the YSL2-1 strain lacking all hexose and sucrose import

systems (Fig 27). Resulting transformants were replated on sucrose minimal synthetic
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a) YSL2-1 CEN.PK2-1C S288C
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Fig 52. Genomic amplification of the yeast SUC2 excreted and cytosolic invertases and
Benedict’stest for the presence of reducing sugarsin sucrose medium

a) PCR amplification using a specific forward primers of the excreted invertase form (Excr,
449bp) or the cytosolic form (Cyto, 389bp) or in the S’UTR (531bp) of the SUC2 locus and
with a common reverse primer located in the SUC2 CDS for all three reactions (see Annex
IV.5), on yeast DNA samples extracted from the YSL2-1 sucrose deficient strain, its parental
strain CEN.PK2-1C and the reference yeast strain S288C.

b) Result of the Benedict’s test on water (negative control), on sucrose stock solution, on
minimal medium use to grow yeast, on glucose and sucrose with the addition of a drop of
HCI1 0.1M (positive controls).

Benedict's reagent is used as a test for the presence of reducing sugars. Reducing
carbohydrates (e.9., glucose and fructose) are oxidized by copper ions present in the
Benedict’s reagent resulting in the reduction of blue copper and the precipitation of brick red
copper oxide. Sucrose is a non reducing sugars and therefore does not react under these
conditions. However, the addition of diluted chloric acid to sucrose prior to boiling samples
during the Benedict’s reaction caused sucrose hydrolysis into reducing glucose and fructose
giving a positive Benedict’s test.
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medium without uracil to confirm the complementation of the sucrose deficiency. After one
week of growth, out of the 92 initial transformants, we obtained 18 transformants which
positively complemented the sucrose deficiency of YSL2-1 when compared to the positive
control containing the M. truncatula MtSUT4-1 (Fig 51a) and plasmids of positive yeast
clones were extracted and checked by PCR. Surprisingly, most transformants (11) contained
GpMST1, the gene coding for the hexose transporters previously characterized by Schii3ler et
al. 2006. GpMST1 sequences inserted in the plasmid showed slightly different sizes
corresponding to different sizes of the UTR regions (Fig 51b). In addition, the screen also
resulted in the isolation of 4 unknown sequences which resulted in no hits when blastx against
NCBI non redundant sequence database and 3 fungal sequences corresponding respectively to
a putative RNA binding protein, a protein harboring an RNase HII domain and a cell cycle
control protein (Fig 51b). Retransformation of plasmids containing these genes did not
complement YSL2-1 (data not shown). Therefore, these candidates were considered as false
positives. Furthermore, after 3 weeks of growth, 14 additional yeast transformants were
isolated on sucrose minimal medium included several clones containing histone H3 genes
were identified (Fig 51c); this could be explained by massive rearrangement in the yeast cell

for survival on minimal medium.

The complementation of the sucrose deficiency of the YSL2-1 strain by GpMST1, a hexose
transporter which shows high affinity for glucose but is not able to transport sucrose when
characterized in yeast (Schiiller et al. 2006), was rather unexpected. The genotype of the
sucrose deficiency of the YSL2-1 strain was checked by PCR. The YSL2-1 strain possesses a
mutation in its genotype for the excreted sucrose invertase gene and therefore is not able to
utilize extracellular sucrose from the minimal medium (Fig 27). In wild type yeasts, both
cytosolic and excreted invertases are coded by a single locus (SUC2) but the excreted and the
intracellular invertase coding sequences have different initiation codons (Carlson and Botstein
1982; Taussig and Carlson 1983). Indeed, the start codon of the excreted invertase is located
60 bp upstream the start codon of the cytosolic and the additional 20 amino acids encode a
signal peptide of glycosylation for the extracellular form. Primers flanking the start codons of
the excreted and cytosolic invertase sequences were designed to check the sucrose deficiency
of the YSL2-1. The results confirm the absence of the signal sequence coding for the
extracellular invertase and the presence of the start codon for the cytosolic form in YSL2-1
(Fig 52a), whilst wild type yeasts possess both invertase sequence initiation sites. In addition,
a primer in the 5> UTR of the SUC2 locus was designed to obtain the exact sequence in the
mutated strain. However, primers were designed against the SUC2 locus of the sequenced
reference yeast strain S288C and did not amplify neither the locus of the YSL2-1 strain nor its
parental wild type strain CEN.PK2-1C (Fig 52a; Wieczorke et al. 1999). This may be due to
genetic differences in non-coding regions of wild type strains. Although the absence of the
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Fig 53. Construction of the expression library from M. truncatula symbiotic roots

a) cDNA amplification by “long distance” (LD-PCR) of the mRNA samples from mycorrhized M.
truncatula roots (line 1) and from the control human placenta polyA RNA provided in the
Creator™ SMART™ cDNA library construction kit (line 2). LD-PCR cycling was performed
according to Clontech guidelines, 24 cycles was used for the library sample (120ng) and 18 cycles
when starting with 1pug human mRNA.

b) Gel from DNA chip 7500 (Agilent) of library cDNA after LD-PCR, proteinase K digestion, Sfil
digestion and size fractionation (line 1); pDR196Sfil vector digested with Sfil and gel cut purified
twice from its Sfil inserts “stuffer “ (line 2). Note that no traces of the Sfil stuffer (1433bp) or of
the circular non-cut plasmid (7852bp) could be detected (line 2). Negative water control (line 3)

c) Chromatogram of library ¢cDNA, corresponding to line 1 in b), ready for ligation in the
linearized yeast expression vector (line 2 in b).
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excreted invertase in the YSL2-1 genome was checked, sugars were apparently imported into
the mutant yeast cells containing GpMST1 and subsequent growth on minimal sucrose
medium was observed.

Another explanation of the functional complementation by GpMST1 could be the
presence of monosaccharides resulting from sucrose hydrolysis in the selective medium.
However, we were not able to detect reducing hexoses (glucose and fructose) by performing a
Benedict’s test neither on minimal sucrose medium use to cultivate the complementing clones

nor on the sucrose source solution used to prepare this selective medium (Fig 52b).

In conclusion the screen of the G. pyriformis expression library only led to the identification
of a single transporter sequence corresponding to the previously identified GpMSTI
(SchiiBler et al. 2006), with an aberrant functional complementation of the YSL2-1 sucrose

deficiency by this hexose transporter.

3  Construction of an expression library from M. truncatula roots
colonized by G. intraradices

A non-targeted approach, similar to the one developed for G. pyriformis has been developed
by constructing an expression library from AM symbiotic roots (Fig 32). Medicago truncatula
plants inoculated with G. intraradices BEG141 were cultivated under low phosphate
condition and harvested at different developmental stages: at 2, 3 and 4 wpi. These RNAs
belong to the same samples as the one used for quantitative RT-PCR in AM conditions (see
Chapter II1.2); equal concentrations for each time point were used (54 pg for each time point
resulting from 18 pug of 3 biological repetitions). In order to have large amount of RNA and
maximum diversity of expressed genes, total RNA (162 pg) from symbiotic roots was pooled.
Thereafter, mRNA was isolated by the means of poly(T) beads and we obtained 1.2 pg of
pure mRNA from symbiotic roots. The yield of mRNA extraction by poly(T) bead method
from total RNA of M. truncatula roots was estimated around 0.74%. A maximum of 120 ng
(3 pL) of mRNA can be used for the first strand synthesis and after “long distance”
amplification of cDNA according to the SMART DNA synthesis (Clontech), a similar cDNA
smear was obtained when compared to the positive control made from human polyA RNA
(Fig 53a). Resulting cDNA were size fractionated between 700 bp to 5000 bp (Fig 53b-c) by
gel cutting. This fractionation size is consistent with the size of most transporter coding
sequences and allows the discrimination of partial sequences. cDNA was then inserted in
pDR196Sfil vector modified with Sfil sites to allow directional cloning (Fig 30; SchiiB3ler et
al. 2006) and transformed in ultracompetent E. coli cells to obtain the primary library. Twenty
large Petri dishes containing each 5000-10000 clones were harvested to constitute the primary

library, ensuring a large coverage of gene expressed present in the library.
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Length

Clone n® (bp) Top blastx in NCBI Accession n° CDS

ID-247 1113 Signal peptide peptidase-like protein [Medicago MTR_1g100980 Complete CDS
truncatula]

ID-249 516 Zinc finger A_20 and AN_1 domain-containing MTR_2g098160 Complete CDS
stress-associated [Medicago truncatula]

JD-259 888 Albumin [Medicago truncatula] MTR_3g067430 Complete CDS

JD-261 1433 Sfil “stuffer” Clonetech NA NA

ID-262 606 Alpha-amylase/subtilisin inhibitor [Medicago MTR_3g014820 Complete CDS
truncatula)

JD-264 834 Lectin [Medicago truncatula] MTR_5g031100 Complete CDS

ID-265 1254 Fruc_tose-_blsphosphate aldolase A [Macaca EHH60297.1 Partial CDS
fascicularis]

JD-267 1137 No significant hits NA NA

JD-268 795 Hypothetical protein [Medicago truncatula] MTR_043s0006 Complete CDS

JD-270 739 No significant hits NA NA

JD-273 1288 Nodal modulator [Medicago truncatula] MTR_7g109730 Partial CDS

JD-275 543 Uncharacterized protein [Glycine max] LOC100499863 Complete CDS

Table 11. Sequencing results of cDNA inserts present in the primary library of

M. truncatula - G. intraradices expression library symbiotic roots.

Fig 54. Screening of the secondary library of M. truncatula symbiotic roots by PCR

amplicication of MtBCPs and MtPT4

Specific primers (see Annex IV.3) were designed against the full CDS of MtBCP1a (line 1)
and MtPT4 (line 2). Note that the 2 amplicons present in line 2 correspond to closely
related MtBCP isoforms (Paradi et al. 2010) which were both amplified with the primer

pairs.
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To check quality of the primary library, 32 random clones were picked and cDNA inserts
were analyzed by plasmid preparation. Despite the size fractionation, the average size
distribution of this library was estimated around 615 bp and plasmids harboring an insert over
500 bp were sequenced to verify the incorporation of full-length coding sequences (Table 11).
Out of the 32 randomly picked colonies, a single pDR196Sfil vector without cDNA insert was
isolated. Indeed, it contains the Sfil insert “stuffer” which was added to the original pDR196
vector to allow directional cloning with SfilA and SfiIB sites (Fig 30; Martin 2005). Although
pDR196Sf1il plasmid was digested and gel cut twice to separate the Sfil stuffer (1433 bp) from
the linearized vector (6419 bp; Fig 53b), it seems that pDR196Sfil containing the original
“stuffer” is still present in the expression library. In parallel, seven sequences coding for full-
length CDS could be identified, and these sequences showed a BLAST result to leguminous
sequences coherent with the integration of M. truncatula sequences (Table 11). In addition,
two partial sequences were also identified. Two sequences present a BLAST results with no
significant similarity found when blastx against non redundant protein database of NCBI; it
was thus not possible to give a postulate of their origin (i.e., from G. intraradices or M.
truncatula). Thereby, no fungal sequences could be screened from this first analysis of the

primary library.

As primary libraries can be unstable, amplification of secondary libraries is recommended
immediately (Fig 32). After amplification of the primary library, total plasmid preparation
from the secondary library was checked by PCR to confirm the presence of symbiotic
expressed genes. In that way, we were able to amplify the full-length sequences of MtPT4 and
two blue copper-binding protein isoforms (MtBCP1la and TC132480) which are M. truncatula
genes specifically expressed in mycorrhizal roots and both represent valuable markers of the
symbiosis functionality (Fig 54; Harrison et al. 2002; Paradi et al. 2010). The M. truncatula -
G. intraradices cDNA library shows relatively high diversity of full-length genes (Table 11)
and contains gene markers specifically expressed at symbiotic stages (Fig 54). The screening
of this M. truncatula - G. intraradices expression library notably for sugar transporters genes

and further fungal candidates is currently being carried out by an ongoing PhD project.

4 Conclusion

Numerous genes from species belonging to the phylum Glomeromycota involved in nutrient
transport and metabolism have been identified from cDNA libraries (Gianinazzi-Pearson et al.

2012) but no library containing Glomus sp. sequences and suitable for functional
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complementation of yeast has yet been constructed. The construction of such libraries enabled
the rapid identification of functional nutrient transporters expressed in symbiotic structures of
ectomycorrhizal fungi (Wipf et al. 2002; Wipf et al. 2003; Lambilliotte et al. 2004; Benjdia et
al. 2006) and led to the identification of the first glomeromycotan sugar transporter (Schiiler
et al. 2006). Besides transport related genes, the identification and characterization of
numerous candidates is also possible using appropriate yeast mutants. The screening of the
mycorrhized M. truncatula - G. intraradices expression library developed in this study by
complementation of the ade2” mutant yeast (red colored) did not result in the isolation of
positive clones with wild type restored phenotypes (white colored) containing the ADE2 gene
coding for phosphoribosylaminoimidazole carboxylase (N. Ait Lahmidi personal
communication). Additional screens by yeast functional complementation of various nutrient
transporters expressed in symbiotic roots are currently carried out as part of N. Ait Lahmidi
PhD project. In addition, no fungal sequences could be detected by non-targeted analysis of
the mycorrhized M. truncatula - G. intraradices expression library (Table 11); the detection
of fungal markers such as GIMST2 which is mostly expressed in symbiotic structures (Helber
et al. 2011) and the quantification of the fungal representation as for example by quantitative
PCR of the ratio of plant and fungal reference genes such as MtTEF/GITEF (Seddas et al.
2009; Baier et al. 2010) will also be envisaged.

The screen of the G. pyriformis expression library by functional complementation of the
sucrose deficient yeast strain YSL2-1 led to the identification of the monosaccharide
transporter GpMST1 which was not able to mediate the transport of sucrose when
characterized in the glucose deficient yeast strain EBY.VW4000 (Schiiller et al. 2006). It is
very unlikely that GpMST1 mediate sucrose transport in the YSL2-1 strains, since both the
YSL2-1 and EBY.VW4000 strains originate from the same parental wild type yeast
CEN.PK2-1C (Wieczorke et al. 1999). Although sucrose source solution was filter-sterilized
and prepared extemporaneously with no residual presence of monosaccharides in the minimal
sucrose medium and that the mutation of the excreted invertase of YSL2-1 strain essential for
the cleavage of sucrose in the medium was confirmed (Fig 52), no sucrose transporter
candidate could be isolated from the G. pyriformis expression library. Recently, a putative
SUT (GiSUC1) was identified in the model glomeromycotan species G. intraradices which
belongs to the same phylum as G. pyriformis (Schii3ler et al. 2001; Helber et al. 2011). Up to
now, GiSUCI is the only identified SUT candidate from mycorrhizal fungi and its role in the
AM symbiosis has still to be deciphered (Fig 60). Among the so-called biocontrol fungi which
reduce or prevent plant-pathogens occurrence and promote plant growth and stress resistance,
two novel fungal sucrose transporters (MRT and TvSUT) have been characterized from
Metarhizium robertsii and Trichoderma virens and shown to be involved in sugar uptake from
root exudates (Fang and St. Leger 2010; Vargas et al. 2011). The role of fungal SUTs was
also pointed out in the pathogenic relation between maize and Ustilago maydis. In this plant-
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Fig 55. Phylogenetic tree of the plant and fungal SUT family

Alignment of amino acid sequences of 18 fungal and 26 plant SUTs was performed with Mafft version
6 (Katoh and Toh, 2008) and maximum parsimony analyses were done using PAUP 4.0b10
(Swofford, 1998). Heuristic tree searches were executed using 1000 random sequence additions and
the tree bisection-reconnection branch-swapping algorithm with random sequence analysis. The
complete alignment was based on 947 sites; 689 were phylogenetically informative. Unrooted tree was
displayed on Dendroscope2.7.4 (Huson et al., 2007). Characterized and published proteins are named
according to their latest denomination; accession number was used for proteins which have not yet
been assigned.

SpSUT1p-like: Aspergillus oryzae (XP_001817063), Aspergillus terreus (XP_001218032), Botrytis
cinerea (XP _001557374), Glomus intraradices (GiSUCI: AEKS82125), Schizosaccharomyces
japonicas (XP_002175083), Schizosaccharomyces pombe (SpSUTlp: NP 594387), Trichoderma
virens (TvSUT: CBH19584; TvSUC: CBK33777).

MRT-like: Metarhizium robertsii (MRT: ACS83541), Nectria haematococca (EEU41157),
Penicillium marneffei (XP_002152585), Saccharomyces cerevisae (SCMAL2: P15685), Ustilago
maydis (XP_762119.1)

Srt-like: Aspergillus niger (XP_001396570), Aspergillus terreus (XP_001214858), Sporisorium
reilianum (ACN74540), Ustilago hordei (ACN74541), Ustilago maydis (UmSrtl: XP_758521).
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pathogenic interaction model, the very high affinity fungal sucrose transporter UmSrtl was
shown to directly compete with sucrose retrieval of the maize transporter ZmSUT1 at the
plant-fungal interface (Wahl et al. 2010, Wippel et al. 2010). As this field opens up, a novel
SUT family from fungi is emerging (Fig 55); the study of the evolution of sugar transport
genes from mutualistic to pathogenic fungi and their role in carbon partitioning within and
between organisms represents a major challenge to better understand the outcome of plant-
fungal interactions (Doidy et al. 2012a).

In this study, we screened the expression library constructed from the unique Geosiphon -
Nostoc symbiotic model and developed a similar strategy for the reference AM model
between M. truncatula and G. intraradices. The transfer of knowledge between these two
glomeromycotan models led to the construction of an expression library from AM plant root
which represents an interesting tool to isolate candidates by yeast heterologous expression and
identify functional transporters involved in biotrophic exchanges from both the plant and
fungal partners. Besides a large number of putative transporters (around 500) recently
identified in the sequenced G. intraradices transcriptome (Tisserant et al. 2011), the current
knowledge on the transportome in the whole glomeromycotan phylum is still in its infancy
with only fifteen transporter genes characterized (Gianinazzi-Pearson et al. 2012). In addition,
as the complete assembly of the first glomeromycotan genome is not yet achieved, the
construction of expression libraries and sequencing of such libraries as well as the release of
post-genomic databases constitute valuable tools for the scientific community working on AM
symbiosis.
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Discussion

1 Insilico search of sugar transporters in M. truncatula and G.

intraradices

Database mining for sugar transporters from the model legume M. truncatula led to the
identification of 6 sucrose transporters (MtSUTs) and 61 monosaccharide transporters
(MtMSTs). These findings are relatively consistent with previously published families from
the plant model species A. thaliana, V. vinifera and O. sativa (Aoki et al. 2003; Buttner 2007,
Johnson and Thomas 2007; Sauer 2007; Afoufa-Bastien et al. 2010). Therefore, all plant
species seem to possess a small SUT and a large MST family. Out of the 6 MtSUT
candidates, only 2 loci are present and annotated in the genome (Table 7) despite a current
capture of 94% of all genes in the M. truncatula genome (Young et al. 2011). In addition, we
also identified 61 MtMSTs including 58 genomic loci. For the consistency of phylogenetic
classification study (Fig 36), only sequences presenting full-length coding DNA sequences
(CDS) have been kept. Therefore, additional partial contigs and ESTs retrieved from DFCI
and MENS databases were not included. Regarding the low percentage of available genomic
loci for MtSUTs retrieved from Mt3.5 annotation and that partial accessions of MtMSTs were
not retained for this study. In addition, 3 MtMSTs were not retrieved from the genome
database (CAD31121, MtC20248 and MtC00740) despite all accessions were identified from
the sequenced M. truncatula line A17 (Journet et al. 2002; Lefebvre et al. 2007). Taken
together, we can postulate that the 61 MtMSTs identified in this project does not constitute
the full MtMST family and that supplemental MtMST loci remain to be identified in the
genome of M. truncatula. Partial sequences coding for putative MtMSTs could be further
studied in full-length by RACE or library screening (Fig 29a and 32).

The in silico search for MtMSTs candidates differentially regulated in response to AM
inoculation led to the identification of 3 MtMST candidates. Medtr4g091370 is the only sugar
transporter candidate to present a higher transcript accumulation from the MtGEA data (Fig
38). This candidate is closely related to Mtstl (Fig 36) which was reported to present an
increase of at least 2 fold transcript levels using northern blot in roots of M. truncatula
mycorrhized with G. intraradices or G. versiforme (Harrison 1996). However, according to
the MtGEA microarray (Gomez et al. 2009), Medtr4g091370 only present a faint upregulation
in roots colonized by G. intraradices (Fig 38). In addition, the STP MtHextl
(Medtr1gl104780) and the INT (Medtr2g049020) candidates previously reported to be AM
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upregulated in microarray on characteristic cell-types obtained via laser microdissection
(Gaude et al. 2011; Hogekamp et al. 2011) did not show a differential regulation in available
data from the MtGEA obtained from mycorrhized whole root samples (Fig 38; Gomez et al.
2009). Furthermore, Hogekamp et al. 2011 identified two additional candidates
(Medtr5g044220 and Medtr4g131800) annotated as “carbohydrate transporters” that were
coactivated in both the symbiotic interaction with G. intraradices or G. mosseae; however,
they do not belong to the MST family and are rather related to triose phosphate/phosphate and
glucose-6-phosphate/phosphate translocators, respectively. In addition, the mycorrhizal
specific phosphate transporter MtPT4 clearly shows a specific “switch” signal in mycorrhized
root samples (Harrison et al. 2002; Gomez et al. 2009); in contrast, no sugar transporters
(MtMSTs and MtSUTs) present a mycorrhizal specific induction of its gene expression (Fig
38 and 49).

On the fungal side, 6 candidates were retained as putative sugar transporters of G.
intraradices (Table 5). Out of the 3 GiMSTs recently identified by Helber et al. 2011, only
partial sequences correspond to GiMST4 but the sequences corresponding to GiMST2 and
GiMST3 were not retrieved in this in silico search as they rather seem related to putative
xylose transporters. Furthermore, an additional candidate (Glomus c8992) was annotated as
MFS glucose transporter (Tisserant et al. 2011) but according to BLAST searches,
corresponds to lipopolysaccharide-induced tumor necrosis factor-alpha. The fact that all
candidates withdrawn according to high GC% and bacterial relation could not be detected in

microarray data, confirm that they originate from extrinsic contamination (Table 5 and 6).

Although Glomus_c6242 and Glomus_c1670 are synonymous accessions corresponding to
GiMST4 gene (Table 5; Helber et al. 2011), dissimilar gene expression profiles were obtained
according to microarray and quantitative RT-PCR experiments (Helber et al. 2011; Tisserant
et al. 2011). Indeed, Glomus_c6242 seems highly expressed in spore, ERM and IRM but no
significant difference of expression could be observed between these different fungal
structures whilst Glomus_c1670 is weakly expressed in all structures but present a significant
higher expression ratio in IRM/spore (2.9) and IRM/ERM (3.7) (Tisserant et al. 2011)
indicating a potential role in sugar transfer towards the fungus in intraradical structures.
Furthermore, GIMST4 expression assessed by quantitative RT-PCR present its highest
expression in ERM but is also expressed at lower level in spores and arbuscule-enriched
material (Helber et al. 2011). Therefore, contradictory expression patterns remain for GiMST4
which is closely related to the functional transporter GpMST1 suggested to play a critical role
for sugar transfer at the cyanobacterial-fungal interface (Fig 50; Schiiller et al. 2006;
Schiiller et al. 2007). Concerning the 6 retained GiMSTs (Table 5), Glomus c4574 and
11118 0 CCHU9778.g1 CACE showed the most promising expression profile for

candidates to be involved in sugar partitioning towards intraradical structures when AM
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symbiosis is well established (Table 6). However, it would also be interesting to study
expression patterns of all identified GiMST at different time point of the symbiosis (i.e., at
early symbiotic stage) in order to determine if alternative candidates take turns at different
stages of the AM symbiosis. To date, only a single glucose transporters from G. intraradices
(GIMST2) was clearly proved to be essential for sugar transfer towards arbuscules and
intercellular hyphae (Helber et al. 2011); more work is needed to identify the complete
GIMST family and to decipher the role of all sugar transporter candidates in AM symbiosis.

2 Characterization of the first leguminous SUT family: the MtSUT
family

In a second part, I focused on the sucrose transporters of M. truncatula (MtSUTS) retrieved
from the in silico analysis (see Chapter II) and we report, for the first time, the identification
of the MtSUT family that comprises at least 6 members in the genome of M. truncatula
(Doidy et al. 2012b). MtSUTs were annotated, according to the latest classification (i.e.,
MtSUT?2 when belonging to SUT2 clade; Kiihn and Grof 2010). As the SUT1 and SUT4 are
multigenic copy clades in M. truncatula, we named the corresponding genes upon
phylogenetic grouping into particular clades (Fig 39) adding an hyphen for each gene
duplicates (i.e., MtSUT1-1, MtSUT1-2 and MtSUT1-3 as well as MtSUT4-1 and MtSUT4-2)
and as Braun and Slewinski 2009 proposed for the nomenclature of monocotyledonous SUTs,

we suggest in future work that all SUTs to be named according to this new annotation.

2.1 Intron/exon pattern of plant SUTs

Promoter region and gene locus patterns of MtSUTs were studied, in particular for available
gene members from the SUT1 and SUT4 clades (Table 8 and Fig 40). In Arabidopsis, rice and
grape, a similar number of 5 exons interspersed by 4 introns is also reported for the SUT4
clade members AtSUC4, OsSUC4 (Fig 56a; Aoki et al. 2003) and VvSUC11 (Afoufa-Bastien
et al. 2010). However, it seems that SUT1 clade members present a slightly lower number of
exon/intron in these species (Fig 56a; Aoki et al. 2003; Baud et al. 2005; Afoufa-Bastien et al.
2010; Payyavula et al. 2011). In M. truncatula, we report a conserved exon/intron patterns for
SUT1 and SUT4 clade members MtSUT1-2, MtSUT1-3 and MtSUT4-1 (Fig 40). Genes from
the SUT2 clade seem to present a different gene pattern with a significant higher number of
intron/exon (Fig 56b); this gene structure comprises 14 exons interspersed by 13 introns
which is very well conserved among species (SISUT2 and AtSUT2, Barker et al. 2000;
PtaSUT5 and PtaSUTG6, Payyavula et al. 2011; OsSUT4, Aoki et al. 2003; VvSUC12, Afoufa-
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Adapted from Aoki et al. 2003
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Bastien et al. 2010). However, we were not able to obtain genomic sequence of the MtSUT2
locus by PCR amplification (data not shown). monocotyledonous specific SUT3 and SUT5
clades (Fig 39) which were initially attached to the SUT2 clade (Fig 8) also seem to present a
high number of exon/intron comparable to the SUT2 gene structure (Fig 56b). In conclusion,
it seems that gene structure is relatively well conserved between the SUT1 and SUT4 clades
and between the SUT2, SUT3, SUTS5 clades, respectively (Fig 56).

2.2 Functional and biochemical characterization of MtSUTs

Functional characterization using two different deficient yeast strains for sucrose led to
similar results: MtSUT1-1 and MtSUT4-1 expressing yeast cells show a clear
complementation phenotype. Best complementation results were obtained with a 2% sucrose
concentration, which is the usual and preferred concentration used to show sucrose
complementation of plant SUTs in SUSY7/ura3” (Weise et al. 2000; Aoki et al. 2006; Zhou et
al. 2007; Berthier et al. 2009; Okubo-Kurihara et al. 2011) and YSL2-1 (S. Lalonde personal
communication). At this concentration, SUSY7/ura3" yeast expressing MtSUT1-2 and to a
smaller extent MtSUT1-3 showed improved growth when compared to the control
transformed with the empty vector (Fig 42). In the SUT phylogeny, MtSUT1-2 and MtSUT1-
3 as well as MtSUT4-2 cluster with the recently characterized SUFs (Fig 39) which present a
complementation of the SUSY7/ura3” mutant only when grown on minimal medium
containing 4% sucrose (Fig 57; Zhou et al., 2007). However in our conditions, the weak
growth of strains expressing MtSUT1-2 and MtSUT1-3 was not increased when grown on 4%
sucrose and MtSUT4-2 showed no transport capacity.

In addition, performing biochemical characterization, I encountered several problems
regarding uptake measurements with yeast expressing MtSUT1-2, MtSUT1-3, MtSUT2 and
MtSUT4-2, which showed a weak or no complementation of the sucrose deficiency but
resulted in aberrant uptake measurements. These limitations could be the result of the growth
background observed for all yeast strains on sucrose minimal medium (Fig 41b). A growth
background for yeast containing pDRs empty vector was also observed in previous studies
(Fig 57; Barker et al. 2000; Weise et al. 2000; Zhou et al. 2007; Henry 2011) but was not
always reported (Aoki et al. 2006). Increasing the amount of radiolabeled ['*C]sucrose (up to
120 kBq) in experiments or harvesting cells at longer time points (up to 10 min) did not result
in higher uptake rates of yeasts expressing MtSUT1-2, MtSUT1-3, MtSUT2 and MtSUT4-2
compared to the yeast transformed with the empty vector. Another explanation could be the
overnight liquid culture in 2% glucose medium lacking uracil prior to uptake experiments.
Indeed, such cultures do not present a sugar restriction due to the presence of glucose and

sugar reserve may occur in such conditions limiting the sucrose uptake in subsequent uptake
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Fig 57. Functional complementation by SUT/SUF from pea and common bean

(a) PsSUT1 and P vSUT1 complemented the de ficient yeasts train SUSY7/ura3 on 2%
sucrose medium without uracile (b) whilst SUFs showed a complementation at 4% sucrose
concentration. Note that a high growth background is reported for yeast containing the empty
vector pDR196 (Zhou et al. 2007).
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experiment. However, successful biochemical characterization of MtSUT1-1 and MtSUT4-1
are not consistent with this assumption and trying different sugar substrates (fructose and
galactose) for initial culture did not result in sufficient growth of yeasts to perform uptake
experiments. As a result, uptake experiments of MtSUTI1-2, MtSUT1-3, MtSUT2 and
MtSUT4-2 resulted in measurements of aberrant uptake values and therefore, linear kinetics
of sucrose uptake and biochemical characterization by expression in the yeast model could not
be completed for these members. Although SUFs (Zhou et al. 2007) and the orthologous
protein PmSUC3 from the SUT2 clades (Barth et al. 2003) were characterized in the yeast
model SUSY7/ura3’, the heterologous expression in X. laevis oocytes system (Reinders et al.
2008) or the use of high-sensitivity FRET nanosensors in human cells (Takanaga et al. 2008;
Chen et al. 2010) could be an alternative approach to characterize biochemically MtSUT1-2,
MtSUTI1-3, MtSUT2 and MtSUT4-2.

Nevertheless, key members MtSUT1-1 and MtSUT4-1, which strongly complement both
deficient yeast strains, are functional transporters and present sucrose uptake kinetics similar
to previously characterized plant SUTs (see Introduction 3.2.3). MtSUT1-1 presents a Km for
sucrose of 1.7 mM consistent with the saturable high-affinity/low-capacity (HALC) system
while MtSUT4-1 with a Km of 13.7 mM may represent the low-affinity/high capacity
(LAHC) component as already reported for SUT4 clade proteins AtSUT4, StSUT4 (Delrot
and Bonnemain 1981; Weise et al. 2000). These transport kinetics are consistent with
previously characterized leguminous SUTs (Table 9) relatively to their phylogenetic position
(Fig 39).

2.3 Putative function of MtSUT1-1, MtSUT2 and MTSUT4-1

Interestingly, the gene coding for functional H'/sucrose co-transporters MtSUT1-1 and
MtSUT4-1 were also shown to have the highest expression profile among MtSUTs (Fig 43
and 44) with MtSUT1-1 showing a 20 fold transcript accumulation in source leaves of all
conditions (Fig 45). The high affinity active transport system of MtSUT1-1 together with its
expression profile in leaves and its phylogenetic position in the SUT1 clade close to the
principal phloem loading orthologs of potato (see Introduction 3.2.2.1.1; StSUT1, Riesmeier
et al. 1994), tobacco (NtSUTI, Biirkle et al. 1998) and A. thaliana (AtSUC2, Gottwald et al.
2000), strongly suggest a potential role for MtSUT1-1 as the main phloem loader in M.
truncatula. Two independent mutant Tntl insertion lines are available including one with a
tntl transposon inserted in the CDS of MtSUT1-1 (Annex VIL1); these plantlets seem to
present a retarded phenotype with stunted growth of root organs reminiscent of the phenotype
observed in mutants of the gene coding for the SUT1 loading proteins (Fig 9; Riesmeier et al.
1994; Biirkle et al. 1998; Srivastava et al. 2009a). In addition, MtSUT1-1 and MtSUT4-1
show conserved biochemical kinetics with their leguminous orthologs PsSUT1 and LjSUT4
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respectively (Table 9; Zhou et al. 2007; Reinders et al. 2008). MtSUT4-1 and LjSUT4 are
both H'/sucrose co-transporters and cluster to a separated branch encompassing MtSUT4-2
and the facilitator protein PsSUF4 (Fig 39; Zhou et al. 2007). Numerous proteins of the SUT4
clade localize at the tonoplast in several species (see Introduction 3.2.2.5 ; AtSUC4 and
HvSUT?2 Endler et al. 2006; NtSUT4, Okubo-Kurihara et al. 2011; PtaSUT4, Payyavula et al.
2011) where they are involved in vacuolar sucrose efflux to the cytosol (Fig 12; Schneider et
al. 2011). The closest related orthologs of MtSUT4-1, LjSUT4 was also detected at the
vacuolar membrane (Reinders et al. 2008). No tntl mutant lines could be screened for
MtSUT4-1; however, a protein-GFP fusion could validate the localization of MtSUT4-1.

In contrast, MtSUT2 allowed no sucrose transport in yeast but was substantially expressed in
root and leave tissues (Fig 42 and 44). SUT2 clade members are in general not able to
complement mutant yeast strain (Barker et al. 2000; Hackel et al. 2006a) and were first
described as sugar sensors (Lalonde et al. 1999). However, AtSUC3 (Meyer et al. 2000) and
PmSUC3 (Barth et al. 2003) are characterized as functional low affinity sucrose importers and
GFP fusion experiment showed a SUT2 protein localization notably to sieve elements of
source leaves and in sink root tips. The exact role of SUT2 clade proteins is still not
deciphered.

3 Sugar fluxes and sugar transporters in AM

In a third part (see Chapter III), I focused on biotrophic exchanges in arbuscular mycorrhiza
and more particularly on sugar exchanges from the host model plant M. truncatula and the
fungal symbiont G. intraradices. The role of respective plant and fungal sugar transporters is

discussed in this chapter.

3.1 Fluxes of soluble sugars towards AMF colonized roots

The quantification of sugar content in M. truncatula highlighted the importance of sucrose as
the predominant carbohydrate. AM plants showed lower levels of sucrose, glucose and
fructose in source leaves, consistent with a higher sugar transfer to sink roots. These results
are significantly different from the control plants treated with LP (Fig 48a). However, only
small variations of sugar content were measured in sink roots. These results, are in relation
with the study of Schliemann et al. 2008 showing similar accumulation of sucrose, glucose
and fructose in M. truncatula roots colonized by G. intraradices and in control plants
fertilized with differential amount of phosphate. Consistent with this, in soybean, soluble
sugars also accumulated at similar levels in roots of non-mycorrhizal and mycorrhizal plants

inoculated with G. mosseae (Schubert et al. 2004). In clover, another leguminous species,
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sucrose, glucose and fructose accumulated at higher levels in mycorrhizal roots especially at
late colonization stage (Wright et al. 1998a). However, in this latter study a fungal inoculum
containing unknown isolates as well as rhizobial inoculants has been used to cultivate their
plants and therefore sugar content monitored from those plants may not be directly related to
the mere presence of the AMF. Also in tomato, contradictory results subsist; similar levels or
even a decrease of all main sugars (sucrose, glucose and fructose) was reported in AM roots
(Garcia-Rodriguez et al. 2007; Tejeda-Sartorius et al. 2008) while a recent study showed an
increase of root sucrose and fructose consistent with a preferential glucose uptake by the
AMF (Boldt et al. 2011). In mycorrhizal melon (Cucumis melo) and strawberry (Fragaria sp.)
plants, fruits present a higher fructose content compared to non-mycorrhizal controls,
suggesting that the excess of fructose can be redirected towards different sink organs (G.
Lingua personal communication; Fig 60). The differences observed in these studies could be
explained by different model plants and AMF species combinations as well as different
culture conditions, highlighting the complexity of the mechanisms involved in the

mycorrhizal association.

3.1.1 Higher sugar export from source leaves of AM plants

The root colonization by AMF augment the carbon demand at the whole plant level (Fig 4;
Douds et al. 2000). This increased sink strength is balanced by greater CO; assimilation and
higher photosynthesis rate in source leaves of clover (Wright et al. 1998a; Wright et al.
1998b). In tomato, it was clearly shown that mycorrhizal plants showed increased opening of
stomata and assimilated significant more CO, with increased efficiency and yield of
photosystem II as well as higher electron transport rate. This excess of photosynthates was
entirely directed towards mycorrhizal roots likely by the mean of tomato SUTs (SISUTs)
which showed increased transcript accumulation in AM conditions (Fig 58). In M. truncatula,
we observed similar chlorophyll content in AM and HP plants, as well as lower soluble sugar
content together with a higher transcript levels of MtSUTS in source leaves of AM plants;
including MtSUT1-1, the gene likely to code for the protein responsible of phloem loading in
M. truncatula. Altogether, these findings suggest a higher sucrose export from source leaves

of mycorrhizal plants.

In addition, petioles of M. truncatula were collected and sugar content of the samples was
analyzed (Fig 48b). In our conditions, collecting full petioles did not reflect the actual sugar
fluxes in phloem saps but rather represented the sugar content of tissues which composed the
petioles. The collection of phloem sap exuding from freshly cut peduncles was sufficient to
quantify soluble sugar and estimate sucrose fluxes from source parts to sink seeds in peas

(Munier-Jolain and Salon 2003); however in M. truncatula plants, the removal of source
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leaves to collect phloem fluids exuding from petioles did not result in sufficient amount of
saps. In addition, even in cucurbit species which exude large amount of saps upon cutting,
resulting exudates contained high amount of hexose contamination from the contents of other
cell types (Zhang et al. 2012; Fig 48b). Thereby, other methods such as the collection of
phloem saps by the use of aphid stylectomy, which allowed the isolation of HYSUT1 in barley
(Doering-Saad et al. 2002), may be an interesting tool for the detection and quantification of

nutrients (e.g., soluble sugars) exported from source leaves towards AM colonized sink roots.

3.1.2 Higher sugar fluxes towards AMF colonized roots

It has been estimated between 4% to 20% of total photoassimilates to be redirected towards
AMT colonized roots (Douds et al. 2000; Graham 2000); as such, a higher sucrose export
towards colonized roots compared to non-mycorrhizal controls is suggested for several plant
species (Wright et al. 1998a; Boldt et al. 2011). However, in M. truncatula, it was not yet
possible to confirm that exported photosynthates are redirected towards AM colonized roots
upon sugar quantification analysis of the whole root system (Fig 48c; Schliemann et al. 2008).
It has been shown that part of carbon transferred through the form of sugar is then converted
to lipids, mostly in the form of triacylglycerols, and structural components such as chitin in
the intraradical mycelium (IRM) and in external fungal structures (ERM, Pfeffer et al. 1999;
Bago et al. 2000; Bago et al. 2002b; Bago et al. 2003; Délano-Frier and Tejeda-Sartorius
2008; Fig 60). This biochemical conversion of sugar would explain that it was not possible to
monitor higher sugar content in AM root samples (Fig 48c). In addition, significant amount of
fungal sugar reserve, such as trehalose and glycogen are also mainly allocated to the ERM;
indeed we were able to detect the fungus derived metabolite trehalose synthesized from plant
hexoses in AM roots (Fig 48c; Bécard et al. 1991; Bago et al. 2000; Schliemann et al. 2008).
Large amount of ERM containing those fungal carbohydrate reserves may be lost during
washing steps at harvest. The combination of techniques of pure ERM harvest prior to
labeling of plant photosynthates may enable to chase carbon transferred from plant tissues

towards extraradical fungal structures.

3.2 SUT expression profile in response to inoculation with AMF

From the in silico data available in the MtGEA database (Fig 49), no MtSUTs showed a
differential regulation in roots sample in response to AMF inoculation. Medicago truncatula
plants used for transcriptomic microarray analyses were harvested 30 days post inoculation of
G. intraradices and supplemented with a low phosphate nutrient solution containing 20uM
phosphate (Liu et al. 2007; Gomez et al. 2009). This represents around 10 times lower
phosphate concentration than the conditions used in our study for quantitative RT-PCR

analyses where plants were harvested at similar time points (4 wpi) and supplemented with
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low phosphate solutions (LP: 0,13mM). In both microarray and quantitative RT-PCR, MtPT4
showed a mycorrhizal specific gene expression (Fig 47 and 49; Harrison et al. 2002). Indeed,
MtPT4 is considered to be one of the best indicators reflecting the functionality of the AM
symbiosis and presents a gene expression level increasing with AM colonization (Fig 46;
Harrison et al. 2002; Helber et al. 2011). In contrast, the upregulation of MtSUT1-1 and
MtSUT4-1 shown by quantitative RT-PCR in roots was not reported from microarray data
(Fig 47 and 49). In addition, the upregulation of the orthologous SISUT1 and SISUT4 genes of
tomato in response to AM was also described in roots supplemented with LP solution and
harvested at 6 wpi (Fig 58; Boldt et al. 2011). Using laser capture microdissection combined
with microarray hybridization on root samples harvested at 3 wpi and supplied with a nutrient
solution containing 20uM phosphate, MtSUT4-1 was shown to be upregulated in non-
arbusculated cortical cells adjacent to arbusculated cells (Fig 25b; Gaude et al. 2011). In our
conditions, MtSUT4-1 was differentially regulated at all time points in AM roots but only
compared to the non-mycorrhizal roots sample of plants supplemented with HP (Fig 46).
Different expression patterns are obtained for SUTs when using microarray and quantitative

PCR approaches on whole root systems and/or microdissected cells.

In this study, we report for the first time the expression profile of the whole MtSUT family by
quantitative RT-PCR, and we focused on the plant gene expression upon differential
phosphate concentrations and inoculation of G. intraradices (Doidy et al. 2012b). MtSUT
expression was tightly regulated according to the plant nutritional status. Indeed, in HP plants
harvested at 4 wpi, all MtSUT transcripts in roots and leaves accumulated at lower levels (Fig
45 and 46). In tomato, SISUT expression was not modified after fertilization with a 10 fold
higher phosphate concentration (Ge et al. 2008). Despite similar growth parameters observed
for HP and AM plants at 3 and 4 wpi indicating that mycorrhizal-enhanced phosphate
delivery was used by the plant for biomass production (Boldt et al. 2011); MtSUT expression
patterns between these 2 conditions were the most divergent observed in our experiment.
Indeed, the expression profile in AM conditions and the addition of 10 fold phosphate in HP
conditions suggest that MtSUT expression patterns are not related to the phosphorus supply by
the fungus, but are rather related to the increased sink strength upon AM colonization. It is
worthwhile to note that Ge et al. 2008 showed by semi-quantitative PCR assays that the
expression of numerous sugar transporters is differentially regulated depending on the Glomus
species used for inoculation. However, Boldt et al. 2011 reported that all SISUT genes are
upregulated in source leaves of tomato plants; while in roots only SISUT1 and SISUT4
accumulated transcripts at higher levels in roots colonized by G. mosseae compared to non
mycorrhized control in LP conditions (Fig 58). In our study, AM colonization led to an
overall upregulation of orthologous MtSUTS in source leaves; in roots, only MtSUT2 did not

present a higher transcript accumulation upon inoculation with G. intraradices (Fig 47).
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Fig 58. Comparative transcript accumulations a) in leaves and b) roots of respective
SUT orthologs from M. truncatula and tomato

Medicago truncatula and tomato plants were respectively harvested at 4 and 6 weeks and
fertilized with comparable amount of phosphate (0.13mM). Medicago truncatula AM plants
were inoculated with G. intraradices BEG141 and tomato AM plants with G. mosseae
BEG12. Data represent means + standard deviation of data obtained from biological material
of several independently grown plants. The data were statistically checked by the adequate
Student t-test upon accomplishing the Fischer F-test and stars* indicate significant differences
between treatments AM versus LP (P = 0.05; n = 4 for SISUTs; n = 3 for MtSUTs). Colors
and font of SISUTs graphs were modified from Boldt et al. 2011 to allow a better comparison
with MtSUT transcript profiles.
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Thereby, we confirm a comparable expression profile for M. truncatula orthologous genes in
agreement with the observation from Boldt et al. 2011 indicating a conserved regulation
pattern for respective solanaceous and leguminous SUTs in response to colonization by fungi

from the phylum Glomeromycota (Fig 58).

4  Cellular and molecular mechanisms driving sugar fluxes in the

symbiotic model association between M. truncatula and G. intraradices

4.1 Cellular and molecular mechanisms of sucrose fluxes in source leaves

In leguminous leaves, sucrose is actively loaded by SUTs to the companion cell sieve element
complex via the apoplast (Fig 4.3; Zhou et al. 2007; Rennie and Turgeon 2009). In such
“apoplastic loading species”, a single protein member of the SUT1 clade is responsible for the
sucrose loading in the phloem (see Introduction 3.2.2.1.1; Zhang and Turgeon 2009). As
phloem loading capacity is directly proportional to the rate of transcription of symporter genes
in source leaves (Ainsworth and Bush 2010); MtSUT1-1, the gene likely to code for the high
affinity phloem loading protein of M. truncatula (see Chapter II 3.3), which showed the
highest upregulation in source leaves of AM plants may constitute the key component for
sucrose export from source leaves towards AM colonized sinks. The antisense inhibition of
StSUT1, coding for the phloem loading protein in potato, led to limiting sugar export toward
sink organs (Riesmeier et al. 1994) but did not result in the decrease of AM fungal
colonization by G. intraradices (Gabriel-Neumann et al. 2011). In parallel, potato lines
overexpressing SOSUT1 had a 2 times higher colonization rate but only when cultivated in HP
conditions (Gabriel-Neumann et al. 2011). Thereby, phloem loading proteins may not be the
only components responsible of the sugar allocation from source leaves towards AM
colonized roots. Indeed, in plants inoculated with G. intraradices and G. mosseae; both plant
SUT4 orthologs, MtSUT4-1 and SISUT4, showed a high upregulation in source leaves (Fig
58; Boldt et al. 2011) and recently, SUT4 clade proteins were assumed to play a role in the
orchestration of the intracellular sucrose partitioning affecting the sucrose efflux from source
leaves (Eom et al. 2011; Payyavula et al. 2011). In addition, SWEETs (AtSWEET11 and 12)
are suggested to be key sucrose effluxers responsible of sucrose export from photosynthetic
mesophyll cells (Fig 4.1); this first step is critical for sugar partitioning towards sink roots
(Chen et al. 2012). Although MtSWEETs ortholog genes (Fig 20a; Medtr3g150940 and
TC115479) show a strong activation of their gene expression in flowers according to
microarray data (Fig 59), their role in sugar partitioning in source leaves has not yet been
investigated in M. truncatula. In conclusion, sugar export from plant source leaves and
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subsequent allocation towards mycorrhized roots may be coordinated by all three main
sucrose transport systems of source leaves: MtSWEETSs exporting sucrose from production
sites, MtSUT1-1 loading sucrose in the phloem vessels and MtSUT4-1 mobilizing

intracellular vacuolar reserve.

4.2 Cellular and molecular mechanisms of sucrose fluxes in sink roots

Once sucrose is loaded into the phloem sap, the disaccharide follows its route through the
transport phloem and reaches sink organs (Fig 4.3). In contrast to loading mechanism in
source leaves, strategies of sucrose unloading in sinks can consist of both apoplasmic
unloading via SUTs or symplasmic pathways through plasmodesmata (see Introduction 2.4).
Therefore, upon release of sucrose in AM colonized roots both apoplastic and symplasmic
unloading can be postulated (Fig 4); this may depend on the position of the arbusculated
cortical cells (Fig 25a; Blee and Anderson 1998). Indeed, cortical cells near the endodermis
surrounded by the Casparian strip would provide the most direct symplastic access from the
phloem while the following cortical layers may be connected apoplastically. Very recently,
SUT]1 proteins necessary for phloem loading were suggested to also play a role in unloading
mechanisms (Geiger 2011; Doidy et al. 2012a). The antisense inhibition of StSUT1 in potato
led to lower tuber yield when phloem unloading towards tuber is apoplastic (Viola et al. 2001;
Kiihn et al. 2003), indicating a major role for StSUT1 in efflux towards sink organs. In the
release phloem of maize, apoplastic sucrose concentration, membrane potential and proton
motive force are in favor of sucrose export from the phloem by ZmSUT]1 (Carpaneto et al.
2005; Geiger 2011). Thereby, in planta ZmSUTI1 seems to mediate efflux of sucrose for
unloading towards apoplastic sinks. In our study, MtSUT1-1 showed a higher transcript
accumulation in AM roots, this information could indicate a further role for MtSUT1-1 in
phloem unloading towards AM colonized sink tissues (Fig 60). Furthermore, SWEETs
effluxers are not only expressed in source parts, indeed, in M. truncatula the MtSWEET
(MtN3, TC129646) orthologs of AtSWEET15 characterized as a sucrose transporters (Chen et
al. 2012) was identified from a ¢cDNA library of root nodules (Fig 59; Gamas et al. 1996);
such effluxers may also be involved in sucrose partitioning towards symbiotic organisms (Fig
60). In addition, transport mechanism of sucrose retrieval from apoplastic space can also be
postulated for a control of photosynthates export towards AMF as for example by
conventional MtSUT symporters system or through a similar reversible transport mode as
described for ZmSUTI1(Fig 60).

4.3 Cellular and molecular mechanisms of hexose fluxes towards the AMF

Before the transfer of sugar under the form of hexoses (mainly glucose and to a smaller extent

fructose) at the plant-fungal interface (Solaiman and Saito 1997; Pfeffer et al. 2001; Bago et
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al. 2003), sucrose has to be cleaved by plant enzymes, either by sucrose synthase and/or
invertases (Fig 3). Most postulates place the site of sucrose cleavage by plant invertase
directly at the interfacial arbuscular apoplast located between the periarbuscular membrane of
arbusculated plant cells and the fungal arbuscular membrane (Schiif8ler et al. 2006; Guether et
al. 2009; Fellbaum et al. 2012). Nevertheless, sucrose cleavage can also occur within the plant
cells (Fig 60); in M. truncatula, a study showed promoter activity of the cytosolic sucrose
synthase gene (MtSucS1) in cells around internal hyphae and arbuscules (Hohnjec et al. 2003).
In addition, MtSucS1 antisense lines showed an overall down regulation of several carbon
related genes and were affected during AM colonization, more particularly in the
establishment and maintenance of arbuscules (Baier et al. 2010). Cytosolic invertase also
presents an increased enzymatic activity in mycorrhizal roots (Wright et al. 1998a; Schubert
et al. 2004). In addition, cleavage of sucrose may also take place at intercellular apoplastic
space of plant cells. Indeed, the localization of the fungal hexose transporter GIMST2 mRNA
in arbuscules and IRM is consistent with both a glucose uptake by the fungus at arbuscular
and intercellular apoplasts (Helber et al. 2011). Thereby, in contrast to phosphate and nitrogen
exchange towards the plant which mainly occurs at the arbuscular interface (Fig 24); both
arbuscular and intercellular apoplastic spaces constitute the symbiotic interface for sugar
exchanges from the host plant towards the AMF (Fig 60; Douds et al. 2000; Hause and Fester
2005; Helber et al. 2011).

In conclusion, increases of photosynthesis and invertase activity coupled with higher SUT
transcript levels, as well as accumulation of sucrose and monosaccharides in source and sink
organs indicate a mycorrhizal-driven stronger sink and sugar allocation toward roots for
fungal symbiont development (Wright et al. 1998a; Boldt et al. 2011). However, the
inhibition of sucrose export from leaves by a knock down of StSUT1, the gene coding for the
phloem loading protein in potato, (Gabriel-Neumann et al. 2011), or the increase of hexose
levels in tobacco roots through overexpression of yeast-derived invertases did not affect the
fungal colonization by G. intraradices (Schaarschmidt et al. 2007). These findings suggest
that carbon supply through sucrose breakdown is not the only bottleneck for a functional

symbiosis.

4.4 Sugar fluxes in arbusculated cells

Hexoses resulting from the sucrose cleavage are transported by MST transporters (see
Introduction 3.3). In M. truncatula, Medtr2g049020 was exclusively expressed in cells
containing arbuscules (Hogekamp et al. 2011). However, Medtr2g049020 clusters within the
INT subfamily (Fig 36) and therefore is likely to transport inositol rather than hexoses.
Another MtMST (Mtstl) belonging to the STP subfamily which include plasma membrane
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hexose transporters with highest affinity for glucose (Biittner 2010) showed increased
transcript level in M. truncatula AM colonized roots; and mRNA located in cortical arbuscule
containing cells (Harrison 1996). However, the exact intracellular location of such MST
transporters in arbusculated cells is not yet known. As no MSTs, up to date, were shown to be
exporters, and considering that proton gradient created by plant and fungal ATPase pump at
the arbuscular interface are in favor of an import system of MSTs (Gianinazzi-Pearson et al.
1991; Krajinski et al. 2002), it is tempting to speculate that Mtstl in arbusculated cells is
preferentially situated at the plant plasma membrane to recruit hexoses towards arbusculated
cells; indeed, if located at the periarbuscular membrane, this hexose importer would mediate
glucose and fructose retrieval towards plant cell (Fig 60). In addition, the export of sugar at
the periarbuscular membrane may also be mediated by the newly identified glucose and
sucrose effluxers of the SWEET family (Fig 60; Chen et al. 2010; Chen et al. 2012).
However, the role of SWEETs in sugar partitioning in AM symbiosis has not yet been

investigated.

In addition, numerous MSTs of M. truncatula present a differential regulation of their
transcript levels in response to mycorrhiza (see Chapter I 3.1). One of which (CAD31121)
presents decreased transcript levels in response to AM inoculation (Fig 38) and its protein
product was detected in DRM fraction of M. truncatula roots (Lefebvre et al. 2007). The AM
differential expression of a nutrient transport gene which product is targeted to raft domains
gives new insights that raft associated proteins may be involved in the regulation of trophic
exchanges in mycorrhizal symbiosis (Fig 60). However, the exact location of this STP

member has not yet been shown in planta (e.g., in arbusculated or adjacent cortical cells).

4.5 Sugar fluxes in non-arbusculated cortical cells

Interestingly, sugar transporters were also shown to be differentially regulated in non-
arbusculated cortical cells. Indeed, in addition to localization in arbusculated cortical cells,
Mtstlgene expression is also activated in adjacent cortical cells which are frequently in
contact with IRM. Furthermore, MtHext1 is solely induced in non-arbusculated neighboring
cells. Both STP members are likely to mediate hexose uptake at the plasma membrane of non-
arbusculated cortical cells (Fig 60). In parallel, sucrose transport components are also
activated in AM roots (see 5.2). MtSUT4-1 promoter-GUS fusion combined to staining of AM
fungal structures showed that this gene is activated in cortical cells adjacent to arbusculated
cells (Fig 25b; Gaude et al. 2011). The closest related ortholog of MtSUT4-1, LjSUT4 was
detected at the vacuolar membrane and is suggested to play a role in vacuolar sucrose release
towards nodules in plant-rhizobial symbioses (Reinders et al. 2008). In addition,
Medtr3g116060, an homolog of TMT2 which is involved in sucrose export in Arabidopsis

vacuole (Schulz et al. 2011), is downregulated in mycorrhizal roots (Fig 38). However, the
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exact location of this latter candidate has not yet been reported in M. truncatula. Such sucrose
transporters (SUT4 and TMTs) could be responsible for carbon reallocation of vacuolar

sucrose storage towards colonized parts during plant symbioses (Fig 60).

The activation of monosaccharide import pathway at the plasma membrane of non-
arbusculated cells together with the reallocation of vacuolar sugar reserve, result in cytosolic
sugar enrichment in non-arbusculated cells. This sugar flow in adjacent cortical cells may be
directed to feed arbusculated cells through symplasmic pathways via plasmodesmata. It is also
tempting to speculate that this sugar enrichment in non-arbusculated cells is part of a
signaling cascade resulting in arbuscular development and colonization of adjacent cortical
cells (Fig 60).

4.6 Fungal sugar uptake

On the fungal side, 2 hexose transporters have been characterized up to date from G.
pyriformis and G. intraradices (GpMST1 and GiMST2; see Introduction 4.3.3.3), both
transporters show their highest affinity in yeast for glucose and fructose only weakly compete
with glucose uptake which is consistent with the preferred glucose uptake by the fungus
(SchiiBler et al. 2006; Helber et al. 2011). In addition, both transporters also take up xylose
indicating that the AMF is also able to import monosaccharides from cell wall degradation
(Fig 60). The capacity to take up cell wall monosaccharides may be especially important at
early symbiotic stages when arbuscules are not yet formed. In addition, GiMST2 the only
characterized sugar transporter from the model AMF G. intraradices, is a major component
for sugar uptake at the symbiotic interfaces since RNAI silencing of GIMST2 by HIGS led to
lower mycorrhization levels and abnormal arbuscular morphology (Fig 26). However the
silencing of GIMST2 did not completely prevent a functional symbiosis. Therefore, other
sugar transporters may also be involved in sugar partitioning towards the fungus. Indeed, a
supplemental transporter GiMST3 is also expressed in arbuscules-enriched samples (Helber et
al. 2011), and we identified Glomus_c4574a (see Chapter I 3.2), a putative fungal glucose
transporters which shows high expression in IRM and arbuscules, the major fungal structures
for sugar transfer. Such candidates may also take part in sugar uptake in intraradical structures
together with GiMST2 (Fig 60). In contrast to NMR spectrometry and radiorespirometry
experiments which revealed carbon uptake by the IRM only (Shachar-Hill et al. 1995;
Solaiman and Saito 1997; Pfeffer et al. 1999); very recently, a transfer of glucose and xylose
has been suggested to occur in ERM (Helber et al. 2011). Indeed, a putative monosaccharide
transporters of G. intraradices GiMST4 shows its highest expression in ERM samples
(Helber et al. 2011) but microarray experiments did not confirm the preferential ERM
expression of this latter candidate (see Glomus c¢6242 in Table 6). In addition, GIMST4 does
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not seem to be functional in yeast as it failed to complement the glucose deficient yeast

mutant (A. SchiiBler personal communication).

Finally, a putative sucrose transporter (GiSUC1) has also been identified in the genome of G.
intraradices. Although GiMST2 was transformed into a sucrose deficient yeast strain and was
not able to mediate sucrose uptake, Helber et al. 2011 did not report the functional
characterization of GiSUC1. GiSUCI1 seems constitutively expressed in all fungal structures
(arbuscule, ERM and spores). As restricted absorption of sucrose in intraradical structures has
only been suggested once (Pfeffer et al. 1999), the role of this sucrose transporters remains to
be deciphered.

4.7 Conclusion

In conclusion, the recent completion of the M. truncatula genome and first genomic data from
G. intraradices as well as the release of transcriptomic database allowed the generation of an
inventory of sugar transporter genes in the leguminous host plant and its model fungal
symbiont (see Chapter I). The identification and functional characterization (see Chapter II
and IV) and gene expression pattern of sugar transporter families (see Chapter III) led to a
comprehensive model of sugar fluxes in the AM symbiosis (Fig 60).
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Concluding remarks and perspectives

The aim of my PhD thesis was the study of biotrophic nutritional exchanges and more
specifically the transfer of sugars from plant source leaves towards sink roots in the
arbuscular mycorrhiza (AM) association between the model leguminous plant M. truncatula
and the reference arbuscular mycorrhizal fungus (AMF) G. intraradices. Here, I conclude on
a comprehensive study of sugar transport components involved in carbon partitioning at the
whole plant level, with a special interest on the M. truncatula sucrose transporter (MtSUT)
family. The identification, characterization and analysis of the expression of key members of
this family in response to AMF inoculation was carried out to better understand the role of the
sugar transportome involved in sugar partitioning within plant and the cellular and molecular

mechanisms of carbon exchanges between symbiotic organisms during the AM interaction.

First, a targeted approach has been developed to search for putative monosaccharide and
sucrose transporters (MST and SUT) by in silico mining of M. truncatula databases; this
leguminous species being a widely used model plant for AM interaction. The sugar
transporter families of M. truncatula were identified, for the first time, in the frame of this
study; they respectively comprise 6 MtSUTs and 62 MtMSTs. A similar in silico search was
performed for sugar transporters from the reference fungal symbiont G. intraradices. Gene
candidates presenting differential expression profiles using available transcriptomic tools

from both the plant and fungal partners were pinpointed in this model plant-fungal interaction.

As plant SUTs represent major components of the long distance transport of photosynthates
from source leaves to sink organs, I focused, in a second part, on the study of the newly
identified MtSUTs at a full family scale. The 6 members of the MtSUT family distributed in
all three dicotyledonous SUT clades and were named according to their phylogenetic position:
MtSUTI1-1, MtSUTI1-2, MtSUTI-3, MtSUT2, MtSUT4-1 and MtSUT4-2. Functional
analyses by yeast complementation and expression profiles by quantitative RT-PCR revealed
that MtSUT1-1 and MtSUT4-1 are H'/sucrose symporters and represent key members of the
MtSUT family. Indeed, conservation of transport capacity between orthologous leguminous
protein, expression profiles and subcellular localization compared to plant SUTs from
respective SUT1 and SUT4 clades suggest that MtSUT1-1 is the main protein involved in
phloem loading in source leaves whilst MtSUT4-1 mediate vacuolar sucrose export for

remobilization of intracellular reserve.
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Thirdly, sugar fluxes from M. truncatula source leaves towards AM colonized sink roots were
investigated. Gene expression profiles of MtSUTs and sugar quantification analyses upon
high and low phosphorus supply and inoculation by the AMF suggest a mycorrhizal-driven
stronger sink in AM roots with a fine-tuning regulation of MtSUT gene expression and
conserved regulation pattern in leaves and roots for orthologous plant SUTs in response to
colonization by glomeromycotan fungi. Along with these new findings, we reviewed the
regulation of sugar fluxes in AM plants: sucrose loading in source leaves, with subsequent
unloading and cleavage towards colonized roots, and finally hexoses uptake at the plant-
fungal interface. We discuss the implication of corresponding transport proteins including
SUTs, MSTs and the recently identified SWEETSs as well as plant sucrose cleaving enzymes
and fungal transporters in the model AM interaction between M. truncatula and G.
intraradices (Fig 60).

In parallel, a non-targeted approach consisting in the development of expression libraries
suitable for yeast functional screening has been developed. Such libraries represent valuable
tools for the isolation of functional candidates from both the plant and fungal partners
involved in biotrophic exchanges. The expression library constructed from symbiotic roots
will be analyzed within an ongoing PhD project (N. Ait Lahmidi) supervised by D. Wipf
which follows the work that has been performed during my PhD. Besides this detailed work
on sugar transporter families and their role in sugar fluxes from source to sink organs, timely
perspectives can be addressed regarding the current advances in the field of sucrose transport
protein in plants (e.g., interaction with raft domains) and increasing application developed for

the study of AM symbiosis (€.9., host-induced gene silencing).

In this study, the characterization of the MtSUT family was performed and MtSUT1-1 and
MtSUT4-1 were shown to act as H'/sucrose importers at the plasma membrane in S.
cerevisiae. The biochemical characterization of remaining MtSUT members, which exhibited
a weak or even no complementation when expressed in this heterologous model, could be
envisaged in the Xenopus laevis oocyte model, especially for MtSUT1-3, MtSUT1-2 and
MtSUT4-2 candidates which cluster with leguminous sucrose facilitators (SUFs) and may be
involved in facilitated influx and efflux of sucrose in planta. In addition, the analysis of
MtSUT1-1 in oocytes would enable to study whether this transporter is able to elicit both
inward and outward proton currents through a reversible transport mode for import/export of
sucrose, as previously and only shown for ZmSUT1 (Fig 12; Carpaneto et al. 2005). In
contrast to most SUTs and all MSTs characterized up to date which are shown to mediate
either sucrose or hexose uptake in plant cells, the recently identified SWEETSs are uniporters
and mediate both glucose and sucrose export in A. thaliana (Chen et al. 2010; Chen et al.
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2012). Thereby, it would be very interesting to investigate the role of those newly identified
SWEETs in the genome of M. truncatula and their role in sugar efflux in source
(mesophyll/parenchymatous cells) and sink organs.

MtSUT1-1 and MtSUT4-1 have been demonstrated to be key sucrose transporters and seem to
be targeted to two different cellular compartments: plasma membrane and tonoplast
respectively. However, SUT4 proteins were also shown to be localized at the plasma
membrane in planta (Weise et al. 2000) and a dual targeting of SUT4 proteins to both plasma
and vacuolar membranes was postulated (Doidy et al. 2012a). Plant SUTs have been shown to
interact with each other family member; indeed, SUTs can form functional homodimers as
well as heterodimers (see Introduction 3.2.4.3.3). The interaction of SUT4 with SUT1 may
redirect the vacuolar SUT4 transporter to the plasma membrane. In addition, the mutation of
the SUT1 members coding for phloem loading proteins blocks the sucrose export, thus
resulting in reduced growth of sink organs (Fig 9), whereas potato SUT4 mutant plants show
opposite phenotypes with early flowering and higher tuber yields indicating a higher sucrose
export toward sink organs (Fig 11c; Chincinska et al. 2008). Therefore, it can be postulated
that SUT4 proteins may act as negative regulator of the SUT1 phloem loading protein at the
plasma membrane. One could hypothesize that when the high affinity SUT1 protein interacts
with the low affinity SUT4 transporter, resulting heteromers show a lower affinity for sucrose
than the SUT1 homomers. Key members of the SUT family of M. truncatula may also form
MtSUT1-1/MtSUT4-1 heteromers regulating the amount of sucrose loaded in the phloem and
the subsequent transport of sucrose towards sinks organs. A fine tuning regulation of the
SUT1 and SUT4 gene expression would balance the amount of SUT1/SUT4 homo/heteromers
and adjust the rate of sucrose exported from source organs. Considering that the localization
and oligomerization of SUTs is dependent on transporter cycling and membrane dynamics,
the recent identification of sugar transporters in raft domains open a new field of research
(Lefebvre et al. 2007; Liesche et al. 2008; Kriigel et al. 2011). The role of SUT protein
oligomerization and interaction with specialized microdomains in regulating sugar uptake has
not yet been investigated in planta and may play crucial roles in sugar exchanges towards

heterotrophic organisms (Doidy et al. 2012a).

Furthermore, the use of M. truncatula mutant lines could also be envisaged. Indeed, we
identified 6 mutant lines, from large scale Tntl transposon insertional mutagenesis database
(Tadege et al. 2008), including 2 independent mutant lines for MtSUT1-1 and MtSUT1-3 as
well as a single mutant line for MtSUT4-2 (Annex VII Table). Apart from nf311217 line that
contain the Tntl insertion in the promoter of MtSUT1-1, all other insertions were tagged in
the CDS of MtSUT candidate (Annex VII) and are likely to show knock out phenotype since
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Tntl insertions are 3500 bp long. Backcrosses with wild type plants to clear out additional
Tntl insertions and ensure a single insertion in MtSUT loci with subsequent cross would
allow the isolation of heterozygous and homozygous individuals. Such plants will be
interesting to confirm that MtSUT -1 is the main phloem loading protein in M. truncatula and
to see if leguminous plants with mutation of this SUT1 locus present similar phenotypes to
previously described mutants in Arabidopsis, potato and maize (Fig 9; Riesmeier et al. 1994;
Gottwald et al. 2000; Slewinski et al. 2009). In addition, the study of MtSUT1-3 and MtSUT4-
2 mutant lines would give new insights for the role of these proteins which may act as sucrose
facilitators (Zhou et al. 2007). It would also be interesting to follow AMF colonization in such
mutant lines. Up to now, a single mutant plant for the SUT1 gene has been investigated in
potato, the antisense inhibition of StSUT1 coding for the phloem loading protein, had no
effect on mycorrhization rate (Gabriel-Neumann et al. 2011). On the fungal side, the
development of host-induced gene silencing (HIGS) in obligate biotrophic fungi made
possible for the first time the gene antisense silencing in AMF species (Nowara et al. 2010;
Helber et al. 2011). The analysis of putative fungal hexose transporters identified in this study
(Table 5) or of the glomeromycotan sucrose transporter recently identified (GiSUCI1, Helber
et al. 2011) by HIGS will allow a better comprehension of molecular and cellular mechanisms

involved in sugar uptake by AMF.

The regulatory system for delivering photosynthates towards heterotrophic organisms must be
under tight control to ensure functional interactions with symbiotic partners and avoid
diversion of such mechanisms by pathogens; a reward strategy by symbiotic fungal and plant
partners must guarantee a “fair trade” of nutrients. Consistent with this, Fitter 2006 postulated
that first plant detect the increased phosphate supply, resulting in a transfer of sugars to the
fungus to a spatially defined location in the root. This C-P exchange model would prevent
“cheat fungi”, which are unable to provide phosphate, to feed from plant photosynthates.
However, a contradictory model postulates that it is carbon which is invested by plants to
acquire phosphate from the fungus (Landis and Fraser 2008). In addition to phosphate, recent
studies on C-N exchanges report that nitrogen transport to the host plant is stimulated only
when carbon is delivered to the fungus (Fellbaum et al. 2012). Altogether, these models
highlight that “plant detect, discriminate, and reward the best fungal partners with more
carbohydrates; in turn, their fungal partners enforce cooperation by increasing nutrient

transfer only to those roots providing more carbohydrates” (Kiers et al. 2011).

Here, we report that MtSUT expression is regulated by different phosphate conditions in soil
and upon mycorrhizal inoculation. A similar gene induction in mycorrhizal plants could be

observed for solanaceous and leguminous SUTs and common cis-regulatory elements were
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identified in gene promoters of plant sugar transporters as for example the presence of W-box
which is activated in response to biotic and abiotic stresses (Table 8). It would therefore be
interesting to investigate if regulation of sugar transporter gene expression is the result of a
common signal cascade in plants induced by mycorrhizal-driven sink. Several WRKY
transcription factors which bind specifically to the W-box were shown to be induced during
AM symbiosis (Gallou et al. 2011). WRKY proteins often act as repressors as well as
activators regulating several seemingly disparate processes and most reports on WRKY
transcription factors have focused on transcriptional reprogramming particularly associated
with the activation of plant defense in response to microbe associated molecular pattern
(MAMP; Rushton et al. 2010). In addition, it is suggested that expression of sucrose transport
and hydrolysis proteins, including SUTs, is regulated by phytohormones, and that jasmonic
acid may be part of the signal cascade regulating sugar partitioning towards the AMF (Tejeda-
Sartorius et al. 2008). Phytohormones also contribute to the modulation of plant defense gene
expression in bioprotection against pathogens conferred by AM symbiosis (Garcia-Garrido
and Ocampo 2002). Finally, it is also suggested that a sensor system based on the flux of
sugars regulates plant defense gene expression in plant-fungal interactions (Blee and
Anderson 2000; Garcia-Garrido and Ocampo 2002; Doidy et al. 2012a). Whilst pathogenic
fungi efficiently divert plant nutrients causing, eventually, host damage and/or death; AMF
promote plant growth, contribute to general plant fitness and resistance against diverse biotic
stresses. In the actual context, deciphering evolution and regulation of molecular patterns
involved in nutrient balance and plant immune response at the frontiers between pathogenic
and symbiotic organisms is a major challenge for a sustainable agricultural model for optimal

crop production associated to responsible pest management.

In conclusion, this work constitutes a pioneer study of the M. truncatula sugar transporter
families and a milestone for the study of the transportome in the widely used AM symbiotic
model between M. truncatula and G. intraradices. With the identification, functional
characterization and gene expression pattern analysis of sugar transporters, a more complete
picture of sugar fluxes in the AM symbiosis has begun to emerge (Fig 60). Nevertheless, the
sugar transportome puzzle in AM is still far from complete and major pieces such as the
system of cellular efflux and localization of proteins at biotrophic interfaces, proteins
oligomerization and interaction with raft microdomains are still missing. Increasing
application of molecular (e.g., HIGS) and post-genomic methodologies (e.g., cDNA
expression libraries) as well as technological improvements with higher spatial resolution
(e.g., laser capture microdissection technology) are now available for the detection of
nutrients, transcripts and proteins present at plant-fungal interfaces. There is no doubt that the
recent development of such techniques will allow a better comprehension of sugar

partitioning within and between organisms.
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Annex |
Yeast culture medium

YPD

Yeast extract 10 g
Peptone 209
Glucose 20g
(Agar Oxoid) (20 9)
H,O qgsp 1L
YPM

Yeast extract 109
Peptone 209
Maltose 209
(Agar Oxoid) (20 g)
H,O qgsp 1L

Synthethic medium

Yeast Nitrogen Base with ammonium 6,79
sulfate w/o amino acids

10X Drop out 100 mL
(Agar Oxoid) (20 g)
H,O gsp 1L

10X drop-out supplement (DO, Clonetech)

Nutriment concentration
L-Adenine (hémisulfate) 200 mg/L
L-Arginine HCI 200 mg/L
L-histidine HCI monohydrate 200 mg/L
L-Isoleucine 300 mg/L
L-Leucine 1000 mg/L
L-Lysine HCI 300 mg/L
L-Methionine 200 mg/L
L-Phenylalanine 500 mg/L
L-Threonine 2000 mg/L
L-Tryptophane 200 mg/L
L-Tyrosine 300 mg/L
L-Uracil 200 mg/L
L-Valine 1500 mg/L

Synthethic medium is adjusted to ph 5.8, autoclaved and cooled down to 50°C prior the
addition of filtered-sterilized drop out without uracil (Clonetech, 630416) and the addition of
20 g/L dextrose (Sigma-aldrich G7528), maltose (M5895) or sucrose (S0389) filtered-
sterilized and prepared extemporaneously.



Annex 11

Bacterial culture medium

LB

Yeast extract 59
Tryptone 10 g
NaCl 10g
(Agar) (209)
H,O qgsp 1L

LB medium is autoclaved and cool down to 50°C prior the addition of appropriate antibiotics

(ampicillin 200pg/mL or kanamycin 50pg/mL).

SOC

Yeast extract 59
Tryptone 209
NaCl 5M 2mL
KCl 1M 2.5mL
MgCl21M 10 mL
MgSO4 1M 10 mL
Glucose 1M 20 mL
H,O gsp 1L
NZY+ Broth

Yeast extract 50
NZ amine (casein hydrolysate) 10g
NacCl 59
H,O gsp 1L

Adjust ph to 7.5, autoclave the NZY+ solution and add the following filter-sterilized

supplements prior to use:

12.5 ml of 1 M MgCl,

12.5 ml of 1 M MgSO,

20 ml of 20% (w/v) glucose (or 10 ml of 2 M glucose)
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Annex 1

Standard solutions for molecular biology

TAE 10X

Tris 484499
Acetic acid 11.42 ml
EDTA0.5M 20 ml
H,O qgsp 1L
TE 10X

Tris 1M 100mL
EDTAO5M 20mL
H,O gsp 1L




Annex IV

Primers used in this study

Primer name Sequence Tm
RACE experiments

EST332714 3'F1 CAAGAATCATCGCCATTCTGCTGTCG 65°C
EST332714 3'F2 CATTGCTTGGTGATCTCACTGGTAAGG 65°C
EST332714 5'R1 GGTGGTGATGATAATGAAACCAATGTCC 65°C
EST332714 5'R2 GCAGGGGTAAGTGTGAAAGGAAAGAC 65°C
META878 3'F1 CGTCTTTGTTTGCATGGCTGGCAC 65°C
META878 3'F2 CCACTTGCGATTACCTACAGTGTTCC 65°C
META878 5'R1 CAGGAATATTGCCACCACCAAAAGAGAGC 65°C
META878 5'R2 CGTGAGAGCCATTACAACCAGC 65°C
NF102FO8DT1F1073 3'F1 CGTGCAGTGGTGATCTTTGTTTTCG 65°C
NF102F08DT1F1073 3'F2 CTTCATTGGTGACCTCGCTGGTG 65°C
NF102F08 5'R1 CCATCATATTCCCAAAGCACGAAACC 65°C
NF102F08 5'R2 GATTCCGATTCTGATTGTGATTCCGAC 65°C
GeneRacer™ 5'F1 CGACTGGAGCACGAGGACACTGA 65°C
GeneRacer™ 5'F2 GGACACTGACATGGACTGAAGGAGTA 65°C
GeneRacer™ 3'R1 GCTGTCAACGATACGCTACGTAACG 65°C
GeneRacer™ 3'R2 CGCTACGTAACGGCATGACAGTG 65°C

Table IV.1. Primers used for 5’ and 3° RACE experiments
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Primer name

Sequence

Tm

Cloning esperiments

MtSUT1-1 F

MtSUT1-1 R

MtSUT1-2 F

MtSUT1-2 R

MtSUT1-3 F

MtSUT1-3 R

MtSUT2

MtSUT2

F GW

R GW

MtSUT4-1 F

MtSUT4-1 R

MtSUT4-2 F

MtSUT4-2 R
(=29)

M13Rev

M13 F

PMA F (PDRs)

ADH close R(PDRs)

GW

GW

GW

GW

GW

GW

GW

GW

GW

GW

GGGGACAAGTTTGTACAAAAAAGCAGGCTATGGAGCCTTTCTCTTCC
GGGGACCACTTTGTACAAGAAAGCTGGGTTTAATGAAAGCCTCCTCCTG
GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATAATGGATAATGCTGCCACC
GGGGACCACTTTGTACAAGAAAGCTGGGTCTATGTTAATTAATGGAAACCACC
GGGGACAAGTTTGTACAAAAAAGCAGGCTCACTCTTGCACATAAACTTCTCC
GGGGACCACTTTGTACAAGAAAGCTGGGTGAGATTTAGTGGGACGTAATATGCC
GGGGACAAGTTTGTACAAAAAAGCAGGCTCGTAATGGCGGGTAAGTCTGACTC
GGGGACCACTTTGTACAAGAAAGCTGGGTACGGATTAGATCTCCCAACAGC
GGGGACAAGTTTGTACAAAAAAGCAGGCTATGCCGAATCCCACTACAACAAACC
GGGGACCACTTTGTACAAGAAAGCTGGGTTCATATGCGGACTCGAGGCTTTTGTG
GGGGACAAGTTTGTACAAAAAAGCAGGCTCACAATACAATCTTCCAAGCCAC

GGGGACCACTTTGTACAAGAAAGCTGGGTCCCTCTTCAAAAGAAATCTGTGC
CAGGAAACAGCTATGACC

GTAAAACGACGGCCAG
CTCTCTTTTATACACACATTC

CGTAATACGACTCACTATAGG

55°C
55°C
55°C
55°C
55°C
55°C
55°C
55°C
55°C
55°C
55°C
55°C
53°C
53°C
53°C
53°C

Table IVV.2. Primers used for cloning experiments

Primer name

Sequence Tm

Symbiotic markers

MtPT4_ATG_F
MtPT4_Stop_R

MtBcpla ATG F
MtBcpla_Stop R

ATGGGATTAGAAGTCCTTGAG 55°C
TCACATCTTCTCAGTTCTTG 55°C
ATGGTTTTACTTTCATCAGTTGC 55°C
CTCTCATGCAAAGATGACTGC 55°C

Table 1V.3. Primers used for screnning symbiotic markers in the M. truncatula - G.

intraradices expression library



Primer name Sequence Tm
gPCR experiments
MtSUT1-1 F gPCR AGTGGCATATTATCCGTAGTC 60°C
MtSUT1-1 R gPCR TGAAGAAAATGTTCCACACTG 60°C
MtSUT1-2 F gPCR TTGTTGTACCACAAATGATCG 60°C
MtSUT1-2 R gPCR TAATTAATGGAAACCACCTCCA 60°C
MtSUT1-3 F gPCR CCTACTCCAAAGTCTGTTGAT 60°C
MtSUT1-3 R gPCR TTAGTGGGACGTAATATGCC 60°C
MtSUT2 F gPCR AACTGCCAAACCTTTCTAGC 60°C
MtSUT2 R gPCR CACAATCAACGTGCCTACTC 60°C
MtSUT4-1 F gPCR GCAGATTGTGGTATCACTG 60°C
MtSUT4-1 R gPCR TAAGTGCCAAAAGAAAACAGC 60°C
MtSUT4-2 F gPCR CAGTGGACTCATAGCTGTC 60°C
MtSUT4-2 R gPCR AGAAATCTGTGCCAAAGCAG 60°C
MtPT4-F qPCR GACACGAGGCGCTTTCATAGCAGC 60°C
MtPT4-R gPCR GTCATCGCAGCTGGAACAGCACCG 60°C
MtTefla F gPCR ACTGTGCAGTAGTACTTGGTG 60°C
MtTefla R gPCR AAGCTAGGAGGTATTGACAAG 60°C
Table IVV.4. Primers used for gPCR experiments

Primer name Sequence Tm

Yeast SUC2 invertase

ScSUC2 excreted INV F ATGCTTTTGCAAGCTTTCC 55°C

ScSUC2 cytosolic INV F ATGACAAACGAAACTAGCG 55°C

ScSUC2 5'UTR F ACATTCTCTTGTTCTTGTGC 55°C

ScSUC2 R CCACCATCAAGAGAATAGC 55°C

Table IV.5 . Primers used for amplification the yeast SUC2 locus
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Annex V

Map of the pCR®2.1-TOPO® vector

lacZa ATG

M13 Reverse Primer

CAG GAA ACA GCT
GTC CTT TGT CGA

ATG ACC ATG
TAC TGG TAC

GTA ACG GCC GCC
CAT TGC CGG CGG

EcoR V
|
AGA TAT CCA TCA
TCT ATA GGT AGT

T7 Promoter

Bs‘tXI
AGT GTG CTG

TCA CAC GAC

Bs‘tXI Nc‘)tl
CAC TGG CGG
GTG ACC GCC

AGT GAG TCG TAT

TAC AAT TCA
ATG TTA AGT

\ TCA CTC AGC ATA

Hind 111 Kp‘n | Sa(‘: | B‘amHI S[‘Je |

ATT ACG CCA AGC TTG GTA CCG AGC TCG GAT CCA CTA

TAA TGC GGT TCG AAC CAT GGC TCG AGC CTA GGT

EcoR | EcoR |

Xr‘10 | Nsi‘l )‘(ba | Ap‘a |
CCG CTC GAG CAT GCA TCT AGA GGG CCC AAT TCG
GGC GAG CTC GTA CGT AGA TCT CCC GGG TTA AGC

M13 Forward (-20) Primer

GAT

GAA TTC GCC CTT FAG GGC GAA TTC TGC
CTT ARG CGG CATNMMMMMMM TTC CCG CTT AAG ACG

CCC TAT
GGG ATA

4

CTG GCC GTC GTT TTA CAA CGT CGT GAC TGG GAA AAC

GAC CGG CAG CAA AAT GTT GCA GCA CTG ACC CTT

TTG




Annex VI Amino acid alignment of the MtSUT family

(b)

MtSUT1-3 | MtSUT1-2 | MtSUT1-1 | MtSUT4-1 | MtSUT4-2
MtSUT2 36,7 35,0 38,5 39,4 40,5
MtSUT1-3 77,2 65,6 48,9 48,1
MtSUT1-2 64,5 48,2 48,1
MtSUT1-1 50,7 52,6
MtSUT4-1 76,4

(&) Amino acid alignment of the MtSUT family; sequences were aligned using Mafft (Katoh and Toh 2008). The 12 characteristic TM domains
of SUTs are highlighted in yellow with roman numbers and were predicted using the TMHMM Server v.2.0
(http://www.cbs.dtu.dk/servicess TMHMMY/). The extended N-Terminal and central loop of MtSUT2 are highlighted in red.

(b) Percentage of identity calculated from the amino acid alignment.


http://www.cbs.dtu.dk/services/TMHMM/

Annex VIl
Medicago truncatula mutant Tntl lines

. o Insertion in
Gene Linen FST MtSUT locus
MtSUT1-1 nf0500 (119) 18 CDS
nf3112 (17) 25 promoter
MtSUT1-3 nf0018 (I1) 12 exon 1
nf4703 (18) 15 exon 2
MtSUT4-2 nf4354 (19) 19 CDS

TableVIIl. Available Tntl mutant insertional lines
Flanking sequence tags (FST) represent the total number of Tnt1 transposon

inserted in each line

PE6Z ‘Qidxg
01-40r800Z ‘g0q
v881 :Qidx3
§1-10-500Z 'd0OQ

nf3112 nf0500

MtSUT1-1 CDS

300bp upstream 595bp
the CDS nf0500
nf3112

Fig VII.1. Photo and schematic representation of the Tntlinsertion linesin the MtSUT1-1 locus



ZLLG gpdx;
1806008 g

Sib5 Qudx3
T41-80°800Z 'd0Q

nf4703 nf4354

MtSUT1-3 CDS

690 bp 930 bp
nf0018 nf4703

MtSUT4-2 CDS

168 bp
nf4354

Fig VI1.2. Photo and schematic representation of the Tntl insertion lines in the MtSUT1-3
and MtSUT4-2 CDS. Note that photograph for the nf0018 line is not available.
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® Background and Aims Nitrogen (N) availability in the forest soil is extremely low and N economy has a special
importance in woody plants that are able to cope with seasonal periods of growth and development over many
years. Here we report on the analysis of amino acid pools and expression of key genes in the perennial species

Populus trichocarpa during autumn senescence.

® Methods Amino acid pools were measured throughout senescence. Expression analysis of arginine synthesis
genes and cationic amino acid transporter (CAT) genes during senescence was performed. Heterologous
expression in yeast mutants was performed to study Pt-CAT11 function in detail.

® Key Results Analysis of amino acid pools showed an increase of glutamine in leaves and an accumulation of
arginine in stems during senescence. Expression of arginine biosynthesis genes suggests that arginine was pre-
ferentially synthesized from glutamine in perennial tissues. P-CAT11 expression increased in senescing leaves
and functional characterization demonstrated that Pt-CAT11 transports glutamine.

e Conclusions The present study established a relationship between glutamine synthesized in leaves and arginine
synthesized in stems during senescence, arginine being accumulated as an N storage compound in perennial
tissues such as stems. In this context, Pt-CAT11 may have a key role in N remobilization during senescence
in poplar, by facilitating glutamine loading into phloem vessels.

Key words: Nitrogen metabolism, senescence, glutamine, arginine, cationic amino acid transporters, storage

protein, Populus trichocarpa.

INTRODUCTION

Seasonal nitrogen (N) cycling is an adaptation of plants to
winter cold seasonal climates in which nutrients (mostly N)
are often considered to be the major growth-limiting factor
(Cooke and Weih, 2005). Nitrogen translocation from senes-
cing leaves to over-winter storage sites is a common feature
of temperate deciduous trees (Ryan and Bormann, 1982).
Poplar is extremely efficient at N conservation since >80 %
of the whole-tree nitrogen content is conserved during dor-
mancy (Pregitzer et al., 1990). During autumnal leaf senes-
cence, there is a functional shift in leaf metabolism from
resource assimilation to resource remobilization and export.
N-rich amino acids and other mobile nutrients are transported
via the phloem from senescing leaves to perennial tissues
where they are used to synthesize proteins (Sauter et al.,
1989; Hortensteiner and Feller, 2002). Proteins represent the
major fraction of the stored N, and vegetative storage proteins
(VSPs) represent the major form of reduced N storage in vege-
tative tissues of both annual and perennial plants (Staswick,
1994; Stepien et al., 1994). The bark storage protein (BSP)
family comprises the major VSPs in Populus. During
autumn, BSPs accumulate in the bark parenchyma and
xylem cells of the main stem, branches and roots of the tree
(Sauter et al., 1989).

Amino acids are the currency of N exchange between source
and sink tissues in plants (Bush, 1999). Glutamine is the pre-
dominant translocated form for organic N in poplar (Dickson,
1979; Sauter and van Cleve, 1992) and is preferentially trans-
ported through the stem to developing leaves via a xylem to
phloem transfer facilitated by ray cells (Dickson et al.,
1985). Nevertheless, the amino acid composition of xylem
sap exhibits seasonal variations. During the wintering phase,
arginine is the major amino acid in bark and xylem of
poplar, whereas at the time of budding and growing, glutamine
and glutamate become dominant (Sagisaka, 1974). These vari-
ations in amino acid pools could be associated with variations
in expression of amino acid transporter genes not only in
storage tissues but also in sieve elements which allow amino
acid distribution in the whole plant.

In plants, the majority of genes encoding putative amino
acid transporters can be classified into two major groups: the
amino acid transporter family (ATF) and the amino acid poly-
amine choline (APC) superfamily (Wipf et al., 2002). Most of
the amino acid transporters from plants that have been charac-
terized functionally belong to the ATF superfamily, with the
amino acid permease (AAP) family being the best studied sub-
family (Boorer et al., 1995; Fischer et al., 1995, 2002; Boorer
and Fischer, 1997; Okumoto et al., 2002, 2004). In plants,
APC amino acid transporters are poorly understood and have

© The Author 2010. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved.
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been described only in Arabidopsis thaliana. APC transporters
of the L-type amino acid transporter (LAT) sub-family (five
members) have not been characterized and only a few
members of the cationic amino acid transporters (CAT)
family have been studied (Frommer et al., 1995; Su et al.,
2004; Hammes et al., 2006). They contain between 11 and
14 putative transmembrane (TM) domains and they are high-
affinity basic amino acid transporters. They are located in
the plasma membrane or in the vacuolar membrane
(Frommer et al., 1995; Su et al., 2004, Hammes et al.,
2006). It has been demonstrated that At-CAT! is expressed in
leaves, flowers and developing siliques, and transcripts were
specifically localized in major veins of leaves and roots
(Frommer et al., 1995). It has been suggested that At-CAT1
might play multiple roles in phloem physiology, from
phloem loading to providing amino acids for developing
embryos. Moreover, At-CAT1 is likely to be a proton-driven
high-affinity transporter that transports mainly cationic
amino acids (Frommer et al., 1995). At-CAT2 is probably
localized to the tonoplast and may be the long-sought vacuolar
amino acid transporter (Su et al., 2004). At-CATS functions as
a high-affinity, basic amino acid transporter at the plasma
membrane. Expression profiles suggest that At-CATS may
function in the re-uptake of leaked amino acids at the leaf
margin (Su et al., 2004). At-CATS is expressed in young and
rapidly dividing tissues such as young leaves and root apical
meristem. At-CATS is also localized to the plasma membrane
(Su et al., 2004). At-CAT6 has a high affinity for cationic
amino acids and is also likely to be energized by protons
(Hammes et al., 2006). At-CAT6 transports large, neutral
and cationic amino acids in preference to other amino acids
and plays a role in supplying amino acids to sink tissues of
plants and nematode-induced feeding structures.

As exemplified above, N storage and cycling have tra-
ditionally been investigated at the molecular physiology and
ecophysiology scales. Taking advantage of the annotated
Populus trichocarpa (Nisqually 1) genome (Tuskan et al.,
2006), we present here the analysis of amino acid pools in
different organs of poplar during autumn and winter, com-
bined with the expression analysis of genes encoding
enzymes of arginine biosynthesis and genes encoding CAT
members. Finally, we also characterize Pt-CAT11 by heter-
ologous expression in yeast and show that it preferentially
transports glutamine.

MATERIALS AND METHODS
Plant material

Leaves from 1- and 2-year-old stems were sampled from free-
growing Populus trichocarpa trees at the University of Nancy
campus. About 20 leaves and four stems were sampled at 14 h
for every time point, frozen in liquid nitrogen and stored
at —80°C. Leaves were sampled on 27 October, 23
November, 5 December and 12 December. This latter point
corresponds to a period just before leaf fall. Stems were also
sampled on 8 January and 2 February. These two dates
correspond to the wintering phase.
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Semi-quantitative RT—-PCR

Total RNA extraction was performed with the RNeasy
Plant Mini kit (Qiagen, Darmstadt, Germany) from approx.
100 mg of frozen tissues of poplar. To remove contaminating
genomic DNA, the samples were treated with DNase I
(Qiagen), as recommended by the manufacturer. To obtain
cDNA, 500 ng of total RNA were annealed to oligo(dT)
primers (Promega, Madison, WI, USA) and reverse tran-
scribed using reverse transcriptase (Eppendorf, Hamburg,
Germany) at 42 °C for 90 min. Each reaction was set up in
three biological replicates. For each Pt-CAT, the PCR
program was as follows: 94 °C for 3 min and 35 cycles of
94 °C for 30s, 58°C for 45s and 72°C for 1 min. The
whole set of Pt-CAT genes (12 genes) was tested by reverse
transcription—PCR (RT-PCR) in every experiment per-
formed, but only Pz-CAT genes detected and well expressed
are retained in figures for greater clarity. To study the
expression of genes involved in the pathway of arginine bio-
synthesis, cDNA corresponding to argininosuccinate lyase
(AL), argininosuccinate synthase (AS), ornithine transcarba-
moylase (OTC) and carbamoyl-phosphate synthase (CPS)
were also amplified using the same PCR program as
described above. The numbers of genes coding for AL, AS,
OTC and CPS were one, two, one and two, respectively.
When two genes were coding for an enzyme, primers were
designed for the gene with the highest expressed sequence
tag (EST) numbers in poplar databases. Control PCRs were
sequenced to ensure that only one gene was amplified.

A cDNA fragment corresponding to the constitutively
expressed ubiquitin gene was amplified simultaneously (28
cycles) and used as a control. Cysteine protease (CP) was
amplified (28 cycles) and used as control of the senescence
state of leaves. The sequences of the gene-specific oligonu-
cleotides, designed in the non-conserved regions of the
genes and used for RT—PCR, are listed in Table 1. The ethi-
dium bromide-stained agarose gels were imaged on a
Bio-Rad GelDoc 2000 transilluminator, and quantitative data
were determined using Quantity One software (Bio-Rad,
Hercules, CA, USA). Signal intensities were normalized to
the constitutively expressed poplar ubiquitin gene.

Amino acid extraction and analysis

Amino acids were extracted twice from 10—20 mg of freeze-
dried plant tissues with 300 wL of 70 % (v/v) cold ethanol.
The samples were dried under N, using a Reacti-Therm
Heating Module (Pierce, Rockford, IL, USA) and resuspended
in 400 pL of 0-1 N HCI. Extracts and standards were loaded
onto a Dowex 50WX-8 cation ion exchange column
(Sigma-Aldrich, St Louis, MO, USA). After two successive
washing steps with sterile water, amino acids were eluted
with 4-5 N ammonia. Aliquots of purified samples were then
transferred to microvials, dried in a Reacti-Therm Heating
Module (Pierce) and derivatized according to Javelle et al.
(2003). Gas chromatography and mass spectrometry
(GC-MS) analysis was performed as described previously
(Javelle et al., 2003).
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TaBLE 1. Primers used for RT—PCR analysis

Name Sequence

CATI f ACCATTTATGCCATATGATGTCCG
CATI r GGTTCAACTTGTGATGACACAAC
CAT2 TTCCTCTGCATTCGCTGCATAT
CAT2 r TAGTGACATCTGGGCTACCTGTA
CAT3 GTCCTCTTCGTTTTACAACG

CAT3 r TTTCTCCAGAGCTCCGATAA

CAT4 f TTTGCATAGGAGAAGGTGCAGCAT
CAT4 r GACAAAGCAACGCCTATACCT
CATS ACAGCACTGAATACTGCTGTA
CAT5 r GCTAGCTTCAAGAGGTTTGTT
CAT6 TACATGTGTGTTATCGGACGGTC
CAT6 r TTACACTTTGAAAGAATTAATATGGTCCTCGC
CAT7 £ CTGTCTTTGCCATAGCACAAAG
CAT7 r CTGGCCTTTAGTGTGGTCATG
CATS GCCTCTATTGCTACTGCTTTTATC
CATS r TCCAAGTGATCCAACCATTAAGCT
CAT9 f CAGCTTTCAATGAGCTTACTGCTT
CAT9 r ACAAGACTTCCAATGATGCCT
CATIO ACAGCTTCAATTGCACTCTTTACC
CATIO r TCATAGCAGCTGAATATCTAGC
CATII f TCATCAAGAAGGTGGAGACCAAGA
CATII r GGCAGCACAAACAAAAACAGAT
CATI2 f TGATCATCAAGAAGAAGGGCTG
CATI2 r CACAACACCAACAAGAACAGCA
Ubgq f GCACCTCTGGCAGACTACAA

Ubg r TAACAGCCGCTCCAAACAGT

CPf AGTCACTGAGAAAGGCTGTGG
CPr CCAAATGGATTGTTCTTGCTC

AS f AGCGGAAATACTTATTGGGGACGT
ASrt ACAAGTTCCTGTCCCTGCTATA

AL f GTTCCTGGTTACACACATTTGCAA
ALt ACAGGTTCCTTGTCTTCCTGCAAA
o1C f ATGGCCTGAACTATAACCATCC
OTCr CTCGATCTTGCTGATTCCAGC

CPS CGGTGTCCTAACCACAGAAGAATT
CPSr CCTCAGGATGGTATTGTAGAGA

Statistical analysis

The effects of the senescence state on tissue amino acid con-
centrations, soluble protein concentrations and gene expression
were tested with a one-way analysis of variance (ANOVA)
using the SYSTAT statistical package (SYSTAT Inc.,
Evanston, IL, USA). The Tukey test was used for all pairwise
comparisons of the mean responses to the different treatment
groups.

Protein extraction and analysis

Small pieces (about 50—100 mg) of stems were ground with
a mortar and pestle cooled in liquid nitrogen in 2 mL of 50 mm
Tris—HCI pH 8-0, 1 mm PMSF (phenylmethylsulfonyl fluor-
ide) and 50 mm mercaptoethanol. Samples were then mixed
by vortexing, and held at 4 °C for 30 min. Samples were cen-
trifuged at 13 000 rpm for 15 min and the supernatants col-
lected. Proteins were precipitated with acetone at —20 °C for
2 h. Aliquots of 100 pL were centrifuged at 13 000 rpm for
15 min and proteins were resuspended with 50 pL. of 0-2 %
SDS. Protein concentration was determined by the bicinchoni-
nic acid (BCA) colorimetric assay kit (Interchim, Montlugon,
France; Brown et al., 1989). The BCA procedure followed the
manufacturer’s recommendations, with bovine serum albumin
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as a standard and absorbance measured at 562 nm. Protein
concentrations were determined for duplicate sub-samples
for each replicate.

DNA constructs

The predicted coding sequence corresponding to Pt-CAT11
(1767 bp) was amplified by PCR using cDNA generated for
RT-PCR studies (see above) and the following primers:
Pt-CAT11fow (5-CCCGAATTCATGAGGAGGAGGAGGG
GATGT-3') and Pt-CATll1rev (5-CCCCTCGAGTCATGAA
CCATTCCGGGAAGG-3). The amplification product was
cloned into the EcoRI/Xhol sites of the yeast expression
vector pYES2 and sequenced to confirm that no modifications
occurred.

Yeast transformation

The yeast strains 22A8AA (MATa«, ura3-1, gapl-1, putd-1,
uga4-1, canl::HisG, lypl/alpl::HisG, hipl::HisG, dip5::HisG,
ura3-1) (Fischer et al., 2002) and JA248 (MATa ura3A gaplA
gnplA agplA) (Velasco et al., 2004) were transformed with
pYES2 harbouring the cDNA sequence of Pt-CAT1 1. Yeast trans-
formants were selected on synthetic dextrose minimal medium.
Yeast strain 22A8AA complementation tests were performed on
N-free medium supplemented with 20 g L' Gal and either 1, 3
or 6 mMm L-proline, L-citrulline, L-aspartate or L-glutamate as
sole N source, whereas yeast strain JA248 complementation
tests were }i)erformed on N-free medium supplemented
with 20 g L™ " Gal and either 0-5, 1, 2 or 5 mM L-glutamine as
sole N source.

Transport measurements

For Saccharomyces cerevisiae uptake studies, yeast cells
were grown to logarithmic phase. Cells were harvested at an
ODggp of 0-5, washed twice in water, and resuspended in
buffer A (0-6 M sorbitol, 50 mMm potassium phosphate, at the
desired pH) to a final ODg of 5. Prior to the uptake measure-
ments, the cells (100 wL) were supplemented with 5 wL of 1 M
galactose and incubated for 5 min at 30 °C. To start the reac-
tion, 100 wL of this cell suspension was added to 100 wL of
the same buffer containing at least 185 kBq of
[H]glutamine, and unlabelled glutamine to the concentrations
used in the experiments. Sample aliquots of 50 pL were
removed after 30, 60 and 120s, transferred to 4 mL of
ice-cold buffer A, filtered on glass fibre filters and washed
twice with 4 mL of buffer A. The uptake of tritium was deter-
mined by liquid scintillation spectrometry.

Phylogenetic analyses

CAT sequences were retrieved by text and Blast searches
from the P. trichocarpa whole genome database (version
1-1) at the US Department of Energy Joint Genome Institute
(JGI) (http://genome.jgi-psf.org/Poptrl_1/Poptrl_1.home.
html). The curated poplar amino acid sequences were used
to search against five other genomes from photosynthetic
organisms using BLASTP or TBLASTN. The genomes
are available at the following websites, for A. thaliana
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(http:/www.arabidopsis.org/), Oryza sativa (http://rice.
plantbiology.msu.edu/), Vitis vinifera (http:/www.genoscope.
cns.fr/spip/Vitis-vinifera-whole-genome.html) and Sorghum
bicolor (http://genome.jgi-psf.org/Sorbil/Sorbil.home.html).
Amino acid sequences were aligned by CLUSTALW and
imported into the Molecular Evolutionary Genetics Analysis
(MEGA) package version 4-1 (Tamura et al., 2007).
Phylogenetic analyses were conducted using the neighbor—
joining (NJ) method implemented in MEGA, with the pairwise
deletion option for handling alignment gaps, and with the
Poisson correction model for distance computation.
Bootstrap tests were conducted using 1000 replicates. Branch
lengths are proportional to phylogenetic distances. All
protein sequences and corresponding accession numbers can
be found in the databases mentioned above and as
Supplementary Data (available online).

RESULTS
Glutamine—arginine relationships during senescence

Amino acid concentrations were investigated in the lamina
(Fig. 1A), central vein (Fig. 1B) and petiole (Fig. 1C) of
poplar leaves. In the lamina, the total amino acid concentration
did not change much during senescence, varying between 5
and 8 nmol mg~ ' d. wt. Amino acid profiling indicated that
the glutamate (and aspartate; not shown) concentration
decreased whereas that of glutamine (and asparagine; not
shown) increased during leaf senescence (Fig. 1A). In the
central vein and petiole, the total amino acid concentration
increased by approx. 6-fold from 27 October to 5 December,
thereafter decreasing at the latest sampling date (Fig. 1B, C).
Glutamine was the predominant amino acid before leaf fall,
representing 23 and 34 % of the total amino acid pool in the
central vein and petiole, respectively, followed by leucine, iso-
leucine and valine.

Amino acid pools were investigated in 1-year-old (Fig. 2A)
and 2-year-old (Fig. 2B) stems. In October, total amino acid
concentrations were <15 nmol mg~' d. wt and arginine was
almost undetectable in 2-year-old stems. During autumnal
senescence, total amino acid pools increased by 20- and
37-fold in 1- and 2-year-old stems, respectively, when
measured at their maximal level. Noticeably, arginine rapidly
became the predominant amino acid accumulated in stems,
accounting for 91 and 92% in 1- and 2-year-old stems,
respectively, on 8 January. Arginine accumulation was slightly
delayed in 2-year-old stems, peaking on 5 December in
1-year-old stems and on 12 December in 2-year-old stems
(Fig. 2).

The amount of total soluble protein was investigated in 1-
and 2-year-old stems (Fig. 3). During autumnal senescence,
soluble protein content of 2-year-old stems increased by
>3-fold between 27 October and 8 January. In contrast,
there were no statistically significant changes in soluble
protein content of I-year-old stems during senescence
(Fig. 3A). Soluble proteins from 2-year-old stems were ana-
lysed by SDS—PAGE (Fig. 3B). Analysis revealed the pres-
ence of two major proteins with relative molecular masses of
between 30 and 37 kDa. Interestingly, the content of these
two proteins increased during autumn and winter. These
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Fi1G. 1. Quantification of amino acids by gas chromatography—mass spec-
trometry in (A) laminae, (B) central veins (C) and petioles of poplar during
senescence. Values are expressed as the mean + s.e. of three replicate exper-
iments. For a given tissue, amino acid concentration values with the same
letter are not significantly different, according to ANOVA at P < 0-05.

accumulating proteins correspond to the well-characterized
BSPs of poplar.

The metabolic route to arginine synthesis in plants involves
two distinct processes: synthesis of ornithine from glutamate
and synthesis of arginine from the ornithine intermediate
(Slocum, 2005). Considering the striking accumulation of argi-
nine during senescence, some of the genes involved in its bio-
synthesis were investigated: CPS, OTC, AS and AL genes. In
order to investigate their expression during senescence in
poplar, total RNAs were extracted from laminae, petioles
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Fi1G. 2. Quantification of amino acids by gas chromatography—mass spectrometry in (A) 1-year-old and (B) 2-year-old stems of poplar during senescence.
Values are expressed as the mean + s.e. of three replicate experiments. For a given tissue, amino acid concentration values with the same letter are not signifi-
cantly different, according to ANOVA at P < 0-05.

and 2-year-old stems sampled at different times during autumn
and winter. AL transcripts were undetectable under conditions
used in these experiments (not shown). In laminae, AS, CPS
and OTC transcripts decreased at the end of the senescence
period (Fig. 4A). The senescence state of leaves was confirmed
by the parallel amplification of a CP transcript (Bhalerao et al.,
2003; Andersson et al., 2004), which was highly expressed on
5 December. In petioles, CPS and OTC transcripts were less
abundant than AS transcripts during autumnal senescence
(Fig. 4B). Moreover, AS and OTC were maximal on 23
November. In 2-year-old stems, as observed in laminae and
petioles, OTC was weakly expressed and, as observed for
AS, its expression decreased after 23 November (Fig. 4C). In
contrast, CPS expression increased by 11-fold during leaf
senescence and was maximal on 5 December (Fig. 4C).

Pt-CAT11 is a glutamine transporter upregulated during
senescence

The JGI P. trichocarpa gene search mode revealed the exist-
ence of 12 CAT gene models. As described for the Arabidopsis
CAT family, plant CAT members can be phylogenetically
grouped into four small sub-groups (Fig. 5). Sub-group 1 con-
tains the members CAT1, CATS, CAT8, CAT11 and CAT12,
whereas sub-group 2 includes the members CAT6, CAT7
and CAT10. Interestingly sub-group 3 only includes CAT9
whereas sub-group 4 contains CAT2, CAT3 and CATA4.
Analysis of the assembled genome revealed relatively recent

whole-genome duplication shared among all modern taxa in
Salicaceae. A second, older duplication appears to be shared
with the Arabidopsis lineage (Tuskan er al., 2006). These
duplicated genes originated through very recent small-scale
gene duplications and one relatively recent large-scale gene
duplication event (Sterck et al., 2005). A detailed analysis of
duplication events for the Pt-CAT members revealed that
poplar CAT6, CAT7 and CAT9 derived from a common
ancestor through an ancient and a recent duplication
event, and that poplar CAT2 and CAT3 derived from a
common ancestor through a recent duplication event. The
same analysis also revealed that poplar CATI] and CATI2
derived from a common ancestor through a recent duplication
event.

In Arabidopsis, members of the CAT family have been
characterized as high affinity basic amino acid transporters.
For instance, At-CAT1 and At-CAT5 mediate high-affinity
transport of arginine, lysine and histidine (Frommer et al.,
1995; Su et al., 2004). To complement previous expression
studies, we extracted GENEVESTIGATOR (Zimmermann
et al., 2004; www.genevestigator.ethz.ch) data for the
Arabidopsis CAT gene family, which indicated that Az-CAT2
and Ar-CAT5 were mostly upregulated during leaf senescence.

To investigate the potential role of Pt-CAT members during
senescence, transcript levels were estimated in laminae,
petioles and 2-year-old stems sampled at different times
during autumn and winter. Pt-CAT3 and Pt-CAT4 transcripts
remained high throughout the season and were not affected
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Fic. 3. Quantification of soluble proteins in 1- and 2-year-old stems of poplar
during autumnal senescence and winter. Protein concentration (A) was deter-
mined for duplicate sub-samples from each replicate. Values are expressed as
the mean + s.e. of three replicate experiments. For a given tissue, protein con-
centration values with the same letter are not significantly different, according
to ANOVA at P < 0-05. Soluble proteins from 2-year-old (B) stems of poplar
were separated by SDS—PAGE. The presence of two major proteins with a
relative molecular mass of between 30 and 37 kDa is indicated by arrows.

by leaf senescence (Fig. 6A). Similarly, Pr-CATS was weakly
expressed and poorly affected by senescence in these exper-
iments (Fig. 6A). Pt-CATI, Pt-CAT2 and Pt-CATI2 were
expressed in leaves in October and November but not
expressed at the end of the senescing period (Fig. 6A).
Conversely, Pt-CATI0 and Pt-CATI1 showed increased
expression levels in senescing leaves in December compared
with leaves collected in October (Fig. 6A). These expression
patterns could be related to amino acid concentration and
more particularly to glutamine. Indeed, the amino acid concen-
tration of laminae displayed the same variations during autumn
(Fig. 2A), and regression analysis between glutamine concen-
tration and Pt-CAT1] expresssion in laminae revealed a good
correlation (R? = 0-994). All other poplar CAT members
were also analysed but were not detected in these samples.

As observed in laminae, Pt-CAT3 and Pt-CAT4 were
strongly expressed in petioles but transcript levels of these
genes were poorly affected by leaf senescence (Fig. 6B).
Pt-CAT1, Pt-CAT9 and Pt-CAT12 showed a similar expression
pattern with more transcripts detected on 23 November
(Fig. 6B). Pt-CAT2 showed increased expression levels in
petioles in December compared with petioles collected in
October (Fig. 6B).
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Fic. 4. Expression of arginine biosynthetic genes in various poplar tissues
during or after senescence. (A) Expression of AS, OTC, CPS and CP genes in
laminae. Cysteine protease (CP) was used as a marker of the senescence state
(Bhalerao et al., 2003). (B) Expression of AS, OTC and CPS genes in petioles.
(C) Expression of AS, OTC and CPS in 2-year-old stems. Total RNAs were
extracted at different time periods during autumn and winter and 300 ng of
total RNAs were reverse transcribed into cDNA. The ubiquitin (Ubq) gene
was amplified and used as internal control. Analyses were performed by
RT-PCR in triplicate. Signal intensities were normalized to the constitutively
expressed poplar ubiquitin gene. Values are expressed as the mean + s.e. of
three replicate experiments. For a given gene, values with the same letter are
not significantly different, according to ANOVA at P < 0-05.

Interestingly, although not expressed in laminae and only
poorly expressed in petioles, Pr-CAT9 was highly expressed
in 2-year-old stems, just before leaf fall. In contrast,
Pt-CAT2 was very weakly expressed in 2-year-old stems in
autumn and in winter (Fig. 6C). Pt-CATI2 presented the
same expression pattern in 2-year-old stems, in laminae and
in petioles (Fig. 6C). As observed in laminae and petioles,
Pt-CAT3 transcript levels were high and barely affected by
senescence in 2-year-old stems (Fig. 6C). Interestingly,
Pt-CAT4 and Pt-CAT9 transcript levels were high during
autumn senescence and decreased in 2-year-old stems after
leaf fall (Fig. 6C). More surprising, Pt-CATII expression
was subjected to quite high variations (Fig. 6C) which could
be related to amino acid concentration. Indeed, the amino
acid concentration of 2-year-old stems displayed the same
variations as Pt-CATI11 expression during autumn and winter
(Fig. 2B). Regression analysis between total amino acid
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Fic. 5. An unrooted, neighbor—joining (NJ)-based tree of the cationic amino acid transporter (CAT) family. The analysis was performed as described in the
Materials and Methods. Branch lengths (drawn in the horizontal dimension only) are proportional to phylogenetic distances. Corresponding gene loci or
protein IDs are given in the Supplementary Data (available online).

concentration and Pt-CAT11 expresssion did not reveal a cor-
relation between these two parameters (R? = 0-295).
Regression analysis between glutamine concentration and
Pt-CAT11 expression, however, reveals a better correlation
(R? = 0-730). As observed in laminae, Pt-CATI] expression
in stems seems to be related to glutamine concentration. All
other poplar CAT genes were also analysed but were not
detected in these experiments.

In order to determine the function of Pt-CAT11, yeast com-
plementation experiments were performed with the yeast
mutants 22A8AA and JA248. The 22A8AA strain is unable
to use arginine, aspartate, citrulline, ~y-aminobutyric acid
(GABA), glutamate and proline efficiently as sole N sources
(Fischer et al., 2002) and the JA248 strain is unable to use glu-
tamine efficiently as sole N source (Velasco et al., 2004). As
controls, strains 22A8AA and JA248 were transformed with
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Fic. 6. Expression of CAT transporter genes in various poplar tissues during
or after senescence. (A) Expression of poplar CATI, CAT2, CAT3, CATH4,
CATS, CATI0, CATI11 and CATI2 genes in laminae. (B) Expression of
poplar CATI, CAT2, CAT3, CAT4, CAT9 and CATI2 genes in petioles. (C)
Expression of poplar CAT2, CAT3, CAT4, CAT6, CATI11 and CATI2 genes in
in 2-year-old stems. Total RNAs were extracted at different time periods
during autumn and winter and 300 ng of total RNAs were reverse transcribed
into cDNA. The ubiquitin (Ubq) gene was amplified and used as internal
control. Analyses were performed by RT—PCR in triplicate. Signal intensities
were normalized to the constitutively expressed poplar ubiquitin gene. Values
are expressed as the mean + s.e. of three replicate experiments. For a given
gene, values with the same letter are not significantly different, according to
ANOVA at P < 0-05.

the expression vector pYES2. Transformation with the yeast
expression vector pYES2 bearing the Pt-CATII coding
sequence under the control of the GALI promoter conferred
the ability of JA248 to grow in the presence of 0-5 mm gluta-
mine (Fig. 7A). The transport of glutamine by Pt-CAT11 was
further confirmed by uptake experiments, which demonstrated
that Pt-CAT11-mediated [3H]glutamine uptake was concen-
tration dependent and showed saturable kinetics with an
apparent K, value of 690 um (Fig. 7B, C). Transformation
with the yeast expression vector pYES2 bearing the
Pt-CAT11 coding sequence under the control of the GALI pro-
moter conferred the ability of 22A8AA to grow when supplied
3 and 6 mm proline, GABA or citrulline as the sole N source
but not when supplied aspartate or glutamate (not shown).
Yeast transformed with Pt-CAT11 showed no growth on
medium containing 1 mM arginine as sole N source (data not
shown).
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Fic. 7. Functional characterization of poplar CATI11 by heterologus
expression in a yeast mutant strain. (A) Yeast strain JA248 was transformed
with the yeast expression vector pYES2 or pYES2 harbouring the coding
sequence of Pt-CATII. Growth was assayed on N-free medium containing
20¢g L~' Gal and either 0-5, 1, 2 or 5mMm L-glutamine as sole N source.
Pictures were taken after 2 d of growth at 30 °C and are representative of
three replicates. (B) Concentration-dependent kinetics of [*H]glutamine
uptake by yeast strain JA248 expressing Pt-CAT11. The Michaelis—Menten
constant for glutamine is 690 wM. Values are expressed as the mean + s.e.
of three replicate experiments. (C) Lineweaver—Burk representation of
[PH]glutamine uptake by yeast strain JA248 expressing Pt-CAT11. Values
are expressed as the mean =+ s.e. of three replicate experiments.

DISCUSSION

Glutamine is the key metabolite to transfer N from senescing
leaf to perennial tissues

Nitrogen economy has a special importance in woody plants
that are able to cope with seasonal periods of growth and
development over many years. As N availability in the forest
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soil is extremely low, efficient mechanisms are required for the
assimilation, storage, mobilization and recycling of inorganic
and organic forms of N. Seasonal N cycling is an adaptation
of plants to winter cold seasonal climates in which nutrients
(mostly N) are often considered to be the major growth-
limiting factor (Cooke and Weih, 2005). In the N metabolism
of conifers, the cyclic interconversion of arginine and the
amides glutamine and asparagine plays a central role, and its
regulation is critical to maintain the N economy of these long-
living plants (Canovas et al., 2007).

At the beginning of autumn, the major amino acids found in
laminae were glutamate and glutamine. During senescence the
glutamate concentration decreased whereas that of glutamine
increased. The same variations were observed for aspartate
and asparagine but to a smaller extent (Fig. 1A). It has been
demonstrated that N content decreased in autumn leaves of
aspen and about 80 % of total leaf N was withdrawn during
autumn senescence (Keskitalo et al., 2005). Amino-N pools
may contribute only slightly to this decrease, while other
N-containing compounds (chlorophyll for instance) may be
of more importance in this process.

On the other hand, qualitative changes in amino acid con-
centration also revealed this N remobilization process. In
senescing leaves, a large amount of ammonium is produced
as a result of protein hydrolysis (Horteinsteiner and Feller,
2002). Ammonium is assimilated into the glutamine amide
group, and the specific expression of the glutamine synthetase
gene NtGLN1;3 was observed in senescing leaves of Nicotiana
tabacum (Brugiere et al., 2000). Moreover, it has been demon-
strated recently that expression of several ammonium transpor-
ter genes in poplar (PtAMTI;5, PtAMTI;6 and PtAMT3;1)
increased with leaf maturation, suggesting that they are
specifically recruited to ensure ammonium assimilation
during the process of leaf senescence (Couturier et al.,
2007). Whereas glutamate decreased with ageing, the gluta-
mine pool increased, suggesting that glutamine biosynthesis
had exhausted the glutamate pool.

In the central vein and petiole, amino acid concentrations
increased during senescence until 5 December, before leaf
fall (Fig. 1B, C). Glutamine was the major amino acid
found in the central vein and petiole, whereas glutamate rep-
resented <3 % and 6 %, respectively in these tissues. The
increase in glutamine concentration in the central vein and
petiole suggests an export from leaves to perennial organs
during autumn (Fig. 1). It can be also noted that leucine, iso-
leucine and valine concentrations increased strongly in the
central vein and petiole during senescence, which was not
observed in the lamina. Interestingly, pools of leucine and
isoleucine also increased with ageing in Arabidopsis leaves
(Diaz et al., 2005). It has been suggested that isoleucine
and leucine biosynthesis exhausted the aspartate pool. The
same processes could occur in poplar leaves during
senescence.

During autumn leaf senescence, there is a functional shift in
leaf metabolism from resource allocation to resource remobili-
zation and export. Rubisco breakdown during autumn leaf
senescence in poplar (Brendley and Pell, 1998) accounts for
a notable proportion of the N exported from leaves (Titus
and Kang, 1982; Millard and Thompson, 1989). N-rich
amino acids are transported via the phloem from senescing
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leaves to perennial tissues, where they are used to synthesize
proteins (Sauter et al., 1989). During autumn, BSPs accumu-
late in perennating tissues such as bark, wood and roots
(Sauter and van Cleve, 1990; Langheinrich and Tischner,
1991). Interestingly, arginine and soluble protein contents
increased during autumn and were higher after leaf fall
(Figs 2 and 3). This was mostly evidenced for arginine,
which increased from undetectable levels in October to
>200 nmol mg~ ' d. wt on 12 December in 2-year-old stems
(Fig. 2). Arginine concentration decreased after leaf fall.
Furthermore, as observed in several Populus species
(Langheinrich and Tischner, 1991), two major polypeptides
accumulated in 1- and 2-year-old stems during autumn and
winter (Fig. 3B). Previous studies have demonstrated that
during the wintering phase, arginine was the major amino
acid in both bark and xylem (Sagisaka, 1974). It can be
noted that storage proteins are particularly rich in arginine
and in amide-containing amino acids (Miintz, 1998).
Arginine accumulation in poplar stems during autumn and
winter could therefore be considered as a temporary N
storage form that could be used thereafter for storage protein
synthesis.

Arginine is preferentially synthesized in perennial tissues

The fact that arginine was not detected in laminae, central
veins and petioles during senescence suggests that arginine
synthesis may occur in perennial tissues such as stems. The
metabolic route to arginine synthesis in plants involves two
distinct processes: synthesis of ornithine from glutamate and
synthesis of arginine from the ornithine intermediates
(Slocum, 2005). The second process requires the carbamoyl-
phosphate intermediate, which is generated from glutamine
via CPS which also contributes to nucleotide metabolism.
The CPS protein is made up of a small and a large subunit
(Slocum, 2005). Three others enzymes are involved in arginine
synthesis: OTC, AS and AL. A detailed expression analysis of
AS and OTC revealed that these genes were expressed in leaves
and petioles during autumn (Fig. 4A, B). However none of
these gene expression patterns followed the CP marker gene.
AS transcript levels were preferentially higher in autumn
than in winter (Fig. 4). OTC transcripts did not show variations
during senescence in leaves, petioles and stems (Fig. 4). In
contrast, the CPS gene expression level strongly increased in
stems during senescence (Fig. 4C), whereas it was weakly
detected in leaves and petioles (Fig. 4A, B). It also clearly
matched the expression of CP in leaves. Interestingly, stem
glutamine concentration increased from November to
January (data not shown) and carbamoyl-phosphate is gener-
ated from glutamine via CPS. In stems, glutamine could be
used for carbamoyl-phosphate synthesis and consequently for
arginine synthesis. In leaves, glutamine could be preferentially
used as a transport component from senescing leaves to
perennial poplar tissues. Nevertheless, it cannot be ruled out
that arginine could also be synthesized in leaf but to a
smaller extent. Indeed, in Arabidopsis senescing leaves, it
has been demonstrated that arginine content increased and
represented around 1% of total amino acid content
(Diaz et al., 2005).

0T0Z ‘ST YdJe uo Ag 6io°sjeusnolpiojxo-gqoe//:dny wolj papeojumod


http://aob.oxfordjournals.org

Page 10 of 11

Pt-CAT11 is a candidate for glutamine transfer
during the senescing process

In senescing leaves, production of glutamine increases and
glutamine is further loaded into central veins and petioles to
reach perennial tissues where it may be used for arginine syn-
thesis. We therefore looked at the genetic potential for loading
glutamine into the phloem, and more specifically we looked at
the expression levels of AAP and CAT amino acid transporters.
The AAP members were either not expressed in senescing
tissues or even not expressed in leaves at all. We therefore
did not focus much attention on this family.

Expression data for the Arabidopsis CAT gene family indi-
cated that At-CAT2 and At-CATS were upregulated during leaf
senescence. At-CAT?2 is probably located in the tonoplast and
may be the long-sought vacuolar amino acid transporter (Su
et al., 2004). At-CATS functions as a high-affinity, basic
amino acid transporter in the plasma membrane and
At-CATS5 may function in reuptake of leaking amino acids at
the leaf margin (Su et al, 2004). In contrast to their
Arabidopsis orthologues (Fig. 5), Pt-CAT5 transcripts were
not detected and Pt-CAT2 was only expressed at the beginning
of senescence (Fig. 6A). However, Pt-CAT2 was strongly upre-
gulated in the petiole during senescence and very weakly
expressed in stems (Fig. 6B, C). Nevertheless, expression of
the orthologous genes of amino acid transporters may not be
similar because the pool of amino acids available for phloem
transport is differentially regulated in different species
(Delrot et al., 2001). A detailed analysis of each amino acid
transporter gene must be made before conclusions can be
drawn about the role of the different orthologues. Pt-CAT3
was highly expressed in laminae, petioles and stems and was
only slightly affected by senescence in leaves (Fig. 6).
Pt-CAT4 was also highly expressed in laminae, petioles and
stems but, in contrast to Pt-CAT3, it was downregulated in
stems during winter (Fig. 6). Pt-CAT9 transcripts were
weakly detected in petioles and strongly in stems (Fig. 6B,
C). Pt-CAT9 seems to be preferentially expressed in organs
containing sieve elements. In poplar senescing leaves,
Pt-CAT10 and Pt-CAT11 were upregulated during senescence
(Fig. 6A). Pt-CATI11 was not expressed in petioles but was
expressed in laminae and stems (Fig. 6). Pt-CAT11 expression
was upregulated in senescing leaves (Fig. 6A) and subject to
quite high variations in stems (Fig. 6C). Interestingly,
regression analyses have shown that in the lamina and stem,
Pt-CAT11 expression and glutamine concentration are related
and displayed variations of the same order (Figs 1A and 2B).

Functional analysis demonstrated that Pt-CAT11 restored
growth of the yeast mutant JA248 on low glutamine medium
(Fig. 7A). Additionally, Pt-CAT11 allowed growth of the
yeast mutant 22A8AA on medium containing neutral amino
acids (proline, citrulline and GABA) but not medium contain-
ing acid (aspartate and glutamate) amino acids or arginine.
Determination of kinetic parameters for [*H]glutamine
uptake by Pt-CAT11 in yeast revealed that it can transport glu-
tamine efficiently, with an apparent K, value of 690 um
(Fig. 7B, C).

Most importantly, recent analysis of expression data showed
that Pt-CATI1 was highly and preferentially expressed in
phloem tissues (Courtois-Moreau et al., 2009). Taken together,
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these data suggest that the major function of Pt-CATI11 is
related to the transport of amino acids, and notably glutamine,
from senescing leaves to sink tissues such as stems, thus facil-
itating N remobilization during senescence in poplar.

Conclusions

The analysis of amino acid pools in different organs showed
that N remobilization from leaves to perennial organs occurs in
poplar during autumn senescence. N-rich amino acids, such as
glutamine, are transported via the phloem from senescing
leaves to perennial organs, such as stems, where they are
used to synthesize storage proteins. The glutamine pools in
late autumn correlate with increased Pt-CATI1 expression,
which may function as a glutamine transporter for amino
acid transfer between source and sink tissues during senes-
cence processes in poplar. Arginine was being accumulated,
probably as an N storage compound, and would be preferen-
tially synthesized in stems, as indicated by the strong arginine
accumulation in stems during autumn and at the beginning of
winter and the large increases in CPS transcript levels during
autumn. Whether arginine would be further metabolized to
provide N for protein biosynthesis remains to be demonstrated.

The elucidation of amino acid concentrations and profiles
together with the characterization of a new amino acid trans-
porter (Pt-CAT11) may present a comprehensive foundation
for future studies on amino acid transport and metabolism
during autumn N remobilization in perennial plants.

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxford-
journals.org and provide all protein sequences and correspond-
ing accession numbers that were used for the phylogenetic
analyses.
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Abstract

The Glomeromycota form a complex but extremely successful group of root symbionts that
have accompanied land plants through evolution and survived across periods of important
environmental change. They form a distinct, heterogeneous and unusual ensemble within the
fungal kingdom which is characterized by obligate biotrophy, multinucleate nature, large
genomes and asexuality, features which have been obstacles to the analysis of the
glomeromycotan genome and its functions. Recent targeted and high throughput sequencing
programmes have given access to a better understanding of nuclear and mitochondrial
genome complexity, diversity and function in these organisms, but the lack of a stable
transformation system remains a major drawback to their manipulation. This review updates
on progress during the past decade in knowledge about structural, evolutionary and functional
aspects of genomes in the Glomeromycota, and points to avenues of research to more widely
explore diversity and symbiotic attributes in this fascinating and unique phylum.



l. Introduction

All fungi forming the mutualistic symbiosis with plant roots called arbuscular mycorrhiza
were formerly grouped together in one order, the Glomales, placed in the Zygomycota
(Morton 1993). Based on molecular analyses suggesting that arbuscular mycorrhizal fungi
should be separated from other fungal taxa, they were transferred a decade ago to the
Glomeromycota, a new phylum created specifically for them (Schissler et al. 2001). Whilst
members of this monophyletic group originated from the same common ancestor as the
Ascomycota and Basidiomycota, they have no obvious affinity to other major extant
phylogenetic groups in the kingdom Fungi (James et al. 2006) and they probably diverged
from the other fungal lineages several hundred million years before plants colonized
terrestrial habitats 400-500 mya (Heckman et al. 2001). Glomeromycotan fungi are complex
but extremely successful organisms. They establish a compatible interaction with plants by
either avoiding or suppressing plant defence reactions whilst redirecting host metabolic flow
to their benefit without being detrimental to their host. The mechanisms by which this
biotrophy is achieved are largely unknown but the Glomeromycota have accompanied land
plants through evolution and survived across periods of important environmental change to
become ecologically and agriculturally important symbionts which improve overall fitness of
very different plant taxa in terrestrial ecosystems world-wide (Smith and Read 2008).
Substantial evidence has accumulated about how rational use of the microsymbiont properties
should significantly contribute to decreasing fertilizer and pesticide use in agriculture
(Gianinazzi et al. 2010).

Although the Glomeromycota show considerable diversity between or within
morphologically recognizable species (Rosendahl 2008), they share some singular biological
traits which limit experimental approaches that can be exploited to characterize their
complexity. One particularity is their reproduction through large asexual spores, each of
which is a single cell harbouring several hundreds or thousands of nuclei. The main
mechanism for filling a spore with so many nuclei appears to be a massive influx of nuclei
from subtending mycelium into the developing spore (Jany and Pawlowska 2010). No sexual
stage is known for these fungi and although they are assumed to only reproduce asexually,
recent transcriptome analyses indicate that they do possess genetic information essential for
sexual reproduction and meiosis (Tisserant et al. submitted). Absence of a sexual cycle raises
questions about how Glomeromycota deal with deleterious mutations usually eliminated
through meiosis and how they have adapted to new hosts or habitats during evolution. High
polyploidy, with multiple gene copies in the same genome, has been speculated as a possible
mechanism to buffer against mutational events (Pawlowska and Taylor 2004), whilst nuclear
exchange through hyphal anastomosis between different individuals of a same species
(Casana and Bonfante-Fasolo 1988; Giovannetti et al. 2001) provides the possibility for



genetic flux and recombination events (Croll et al. 2009; Angelard and Sanders 2011).
However, basic information concerning ploidy, karyosis, number of chromosomes or whether
meiosis does occur in the Glomeromycota is still lacking, and evidence for genetic exchange,
recombination or segregation is very limited.

Another particularity is that all glomeromycotan fungi are obligate symbionts which
have so far proved to be incalcitrant to pure culture in the absence of a host root on which
they depend as a carbon source. This introduces inherent limitations in the application of
standard techniques like genetic transformation, mutant generation/characterization,
and greatly hinders advances in the knowledge about gene function in these organisms. As
previously pointed out (Gianinazzi-Pearson et al. 2001), there is converging evidence that the
Glomeromycota are an unusual group of fungi and information about their genome structure,
complexity and function is essential to understanding the processes regulating their symbiotic
attributes, their reproductive biology and their apparent stability during coevolution in
symbiosis with many different plant taxa. Despite the fact that the biology of glomeromycotan
fungi makes them extremely difficult to manipulate experimentally, the advent of powerful
molecular techniques has considerably furthered research during the past decade. The present
chapter updates on the state of the art on Glomeromycota genomics within the last decade
(Gianinazzi-Pearson et al. 2001), as well as on progress made through targeted and high
throughput sequencing programmes into understanding of their basic biology.

I1. Glomeromycota Genome Organization
A. Nuclear genome characteristics

Values for DNA contents of Glomeromycota fungi vary depending on the analytical method
and the genome of reference used (see Gianinazzi-Pearson et al. 2001). The haploid genome
size was previously estimated to range from 128 to 1065 Mb, depending on the fungal species
studied which further underlines the high diversity within this phylum (Hosny et al. 1998a).
Important differences also exist within a same genus; the genome size of Glomus species was
estimated by similar methods to be, for example, 177 Mb for G. geosporum and 375 Mb for
G. caledonium (Hosny et al. 1998a), and more recently to be 14-16.5 Mb for G. intraradices
DAOM 197198 (syn. G. irregulare) (Hijri and Sanders 2004). The apparently small genome
of the latter, together with its cultivability in vitro on root organ cultures has made it an
appropriate candidate for first sequencing attempts of a glomeromycotan genome (Lammers
et al. 2004). Up to date several genome sequencing programmes, based mainly on extensive
whole-shotgun (WGS) sequencing, have generated altogether 345 Mbp that have been
assembled in 163,968 contigs in a total of 52.5 Mb (Martin et al. 2008b) which corresponds to
about four-fold the expected genome size of G. intraradices DAOM 197198. With these data,
a sequence depth of coverage of just over 3 has been obtained for an estimated genome space



of >150 Mb. However, correct genome assembly is hindered by the fact that critical genetic
information, such as a genetic map, is not available for the Glomeromycota. The discrepancy
between the estimated genome size and the sequencing data could be due to technical reasons
or biological issues. For example, multiple gene copies in the same genome (Pawlowska
and Taylor 2004) would lead to different assemblies with the same set of scaffold data, and
these alternative assemblies (haplotypes) would increase the genome space. High
polymorphism, which appears to be characteristic of glomeromycotan fungi (see Sanders
and Croll 2010) and which has also been indicated from genome sequencing (Martin et al.
2008b), also raises the question of functional genes versus pseudogenes, which are difficult to
separate for most software packages used for whole genome assemblies. Recent information
about functional genes is discussed below in the section transcriptomics.

The very low GC content (~30%) observed from genome sequencing of G.
intraradices DAOM 197198 is in agreement with values of 30-35% obtained by other
methods for a range of Glomeromycota, and which are relatively low as compared to most
other fungal taxa (Hosny et al 1998b). The latter authors proposed that a mutational pressure
from GC to AT may exist in the Glomeromycota and that, since these fungi proliferate under
light-deprived conditions in soil and roots, their environment has not exerted any significant
counter selection against AT-rich sequences so that GC contents have become low. The
relatively high proportion of methylated cytosine residues, which are frequent in repeated
sequences, is another particularity of the glomeromycotan genome (Hosny et al. 1998b). A
number of repetitive non-coding DNA sequences have been characterized in several species
in the Glomeromycota (Gollotte et al. 2006), and genome sequencing of G. intraradices
DAOM 197198 has revealed that this fungus is also rich in small repeats. Interestingly,
variable tandem repeats are considered to affect the rate of evolution of coding and regulatory
sequences in other organisms (Gemayel et al. 2010).

B. Nuclear ribosomal genes

The number of nuclear ribosomal gene copies has been estimated to be 71-88 in
representative glomeromycotan genomes (Gollotte et al. 2006), which is considerably less
than in fungi with smaller genomes like yeast or Cochliobolus heterostrophus (see
Gianinazzi-Pearson et al. 2001). The polymorphic characteristics of ribosomal genes have
made them a choice target for phylogenetic and taxonomic studies over a wide range of
eukaryotic organisms. The three coding regions of ribosomal genes, the small sub-unit
(SSU) or 18S, the 5.8S unit and the large sub-unit (LSU) or 25S, are separated by two
internal transcribed spacers (ITS1 and 1TS2) (Mitchell et al. 1995). The two non coding
regions (ITS), being less under functional pressure, are more variable and mutate more
frequently (Sanders et al. 1995) than the three conserved coding regions. A comprehensive
description of nuclear ribosomal genes in the Glomeromycota and their exploitation in



phylogeny prior to 2001 is given by Gianinazzi-Pearson et al. (2001). SSU, LSU and ITS
regions are used for molecular phylogeny and taxonomy of fungi in this phylum. The
highly conserved SSU was the first region to be selected for phylogenetic analysis of the
Glomeromycota, mainly because of the large number of eukaryotic sequences present in
public databases (Simon et al. 1992). It enabled the initial dating back of this taxon to an
ancestral Glomus-like fungus 353-462 mya (Simon et al. 1993). SSU sequences remain the
most numerous available for glomeromycotan fungi and they are mainly at the origin of more
recent taxonomic reorganisations (Schussler et al. 2001; Schissler and Walker 2010).

However, the SSU region does not allow species level resolution in the
Glomeromycota. Also, the first primer allowing identification of Glomeromycota in host
roots, the SSU-based VANSLI, is not well conserved across the phylum (Clapp et al. 1999).
Consequently, other ribosomal regions, such as the ITS/5.8S region in combination with the
SSU, or the 5’ end of the LSU have been exploited to generate more taxon-specific primers
for monitoring fungal communities in roots (see for example van Tuinen et al. 1998;
Redecker 2000; Pivato et al. 2007). Comparison of the level of polymorphism between the
different ribosomal regions of G. mosseae BEG12, G. mosseae BEG69, G. coronatum BEG22
and G. intraradices AFTOL 1D48, clearly illustrates the potentiality of the 5’ end of the
LSU for diversity studies (Figure 1). Sequence differences between G. mosseae BEG12 and
G. coronatum BEG22 or G. intraradices AFTOL ID 48 are greatest for the 5’ end of the LSU
region and in particular for the variable D2 domain. In spite of this, a general caution applies
to the use of nuclear ribosomal sequences for diversity studies in that they have a potentially
high inter and intra-sporal heterogeneity which implies that several nuclear ribosomal variants
can occur in a same isolate (Sanders et al 1995; Sanders and Croll 2010).

Figure 1

C. The mitochondrial genome

The first mitochondrially-encoded genes from the phylum Glomeromycota were identified
from an amplified and sequenced region of the mitochondrial gene coding for the LSU of
ribosomal RNA (Raab et al. 2005). In contrast to their nuclear-encoded counterparts, these
genes do not show variation within single spores and fungal isolates. This is of particular
importance as it has been proposed that the nuclei in the coenocytic glomeromycotan
mycelium are genetically heterogeneous, resulting in a population of allelic variants with no
fixed overall genotype (Kuhn et al. 2001). The first complete mitochondrial genome of a
glomeromycotan fungus was sequenced from G. intraradices strain 494 by whole genome
amplification and subsequent pyrosequencing (Lee and Young 2009). It has a size of 70.6
Kbp and a GC content of 37.2%, which is higher than the GC content of the nuclear genome.



The genetic code used in the protein-coding genes is the standard code except that UGA is
used for tryptophan, which is typical for many fungal mitochondrial genomes. The
mitochondrial genome of G. intraradices contains a similar set of genes to that of other fungi:
three subunits of ATP synthase (atp6, atp8 and atp9), three of cytochrome ¢ oxidase (cox1,
cox2 and cox3), seven of NADH dehydrogenase, and apocytochrome b (cob). Moreover, it
contains the standard set of 26 tRNAs and ribosomal small subunit (rns) and large subunit
(rnl) genes. Notably, all genes are encoded on the same strand. However, the rps3 gene,
which is found in the mitochondrial genome of other fungi, was apparently transferred to the
nuclear genome in G. intraradices, and there is evidence for the presence of nuclear copies of
other mitochondrial sequences (Lee and Young 2009). The G. intraradices mitochondrial
genome bears little resemblance to that of other fungi, but this comes as little surprise since
gene order in fungal mitochondrial genomes is not conserved among distantly related taxa.

A large part of the G. intraradices mitochondrial genome consists of introns and
other non-coding sequences; only 24.6% are coding sequences. A total of 26 introns were
identified in strain 494, most of them belonging to type 1. As in other fungi, the mitochondrial
genome of this glomeromycotan fungus is rich in homing endonucleases, enzymes that are
often coded in introns and thought to function as mobile elements in the insertion of introns
containing an endonuclease open reading frame (ORF) into intron-free-alleles (Dalgaard et al.
1997). Homing endonucleases of the LAGLIDADG family were first reported in introns of
the rnl gene (Raab et al. 2005). The complete mitochondrial genome sequence shows that four
of these ORFs are within introns and one is attached to the nad3 gene, whilst two GIY-YIG
type homing endonuclease ORFs are in intergenic spacers. As mobile genetic elements,
homing endonucleases are presumably transferred laterally. Comparison of different isolates
and species of Glomus has provided evidence for the existence in glomeromycotan fungi of
horizontal transfer of rnl introns and the “homing cycle” (Chevalier and Stoddard, 2001),
involving insertion, degeneration and loss (Thiéry et al. 2010). Due to this activity, introns
containing homing endonuclease ORFs seem to show higher degrees of polymorphism. This
polymorphism has been used to distinguish between isolates of G. intraradices in field studies
(Borstler et al. 2010) and to track an inoculated isolate over several years in a field site
(Sykorova et al. 2011).

The involvement of fungal mitochondria in spore germination and early signal
exchange with host root colonization (Besserer et al. 2006) highlights the need to study the
coding sequences of mitochondrial genomes. On the other hand, non-coding regions are of
direct importance as molecular markers of these fungi in ecological studies and in
biotechnological applications. In addition, mitochondrial markers to study inheritance of these
organelles could provide important baseline data to help to elucidate the genetics of the
Glomeromycota and possible previously unrecognized sexual processes.



I11. Nuclear Genome Evolution in the Glomeromycota

The Glomeromycota are traditionally thought to be ancient asexuals. This assumption is
based on the fact that no morphological structures conclusively indicative of sexual
reproduction have been observed in the whole phylum; a study reporting zygosporangia in
Gigaspora (Tommerup and Sivasithamparam 1990) has never been confirmed. The lack of
basic knowledge about their genetics leaves the evolutionary biology of the Glomeromycota
open to a lot of speculation. The inability to culture these fungi separately from their host
plants and to obtain stable transformants has contributed to this situation.

Considering the well-known benefits of sexual reproduction in avoiding the
accumulation of deleterious mutations in the genome, which should inevitably lead to
evolutionary meltdown processes such as Mullers's ratchet (Muller 1932), it seems hard to
understand how these fungi could persist as important actors of terrestrial ecology for more
than 400 million years. Morphological stasis resulting in a relatively low number of described
morphospecies and striking similarities of extant Glomeromycota with 400-million-year old
fossils have been cited as other lines of evidence for the lack of diversification caused by long
term clonal propagation in conjunction with the asexual lifestyle (Sanders and Croll 2010).
Ancient asexuals are often considered as "scandalous” exceptions of the rule as they challenge
current theories of sex (Judson and Normark 1996). The bdelloid rotifers, a lineage of
invertebrates solely consisting of parthenogenetically-reproducing females for at least 40
million years, are often cited as a striking example where clonal organisms have evolved into
more than 300 species in a similar way as sexual organisms (Fontaneto et al. 2007).
Alternative mechanisms to purge deleterious mutations from the genome have therefore to
be considered for Glomeromycota as they have been for bdelloid rotifers (Gladyshev and
Arkhipova 2010).

When the nuclear rDNA genes were characterized as the first genetic components in
the Glomeromycota, an unusually high level of intra-organism polymorphism was noted
(see Gianinazzi-Pearson et al. 2001). In sexual organisms, this polymorphism is prevented by
a mechanism known as "concerted evolution™ that is thought to homogenize rDNA copies
(Gandolfi et al. 2001). Intra-organismal polymorphism of nuclear rDNA or other genes has
been demonstrated in many organisms, including fungi (O'Donnell 1992), but it seems to be
exceptionally large in the Glomeromycota (Stockinger et al. 2009). Here, it was postulated
that rDNA variation occurs between different genomes that are present in genetically different
nuclei in the coenocytic mycelium (Hijri and Sanders 2005; Kuhn et al. 2001).
Heterokaryosis was hypothesized to have arisen by hyphal anastomosis and accumulation of
mutations (Bever and Wang 2005) and evoked as a possible mechanism to compensate for the
absence of sexual processes in glomeromycotan species, although other authors have



presented data for homokaryosis (Pawlowska and Taylor 2004). Different likely scenarios in
this context were recently reviewed by Young (2008).

It is helpful to note in this context that numerous fungal lineages, though none as
ancient as the Glomeromycota, were once thought to be asexual based on the absence of the
expected morphological structures. In many cases, analyses of the population biology using
molecular markers revealed evidence for recombination (Burt et al. 1996). Many possibilities
may exist in fungi for cryptic sexuality or non meiotic recombination and low levels of
recombination can be sufficient to prevent the accumulation of deleterious mutations. In
contrast to other fungal groups there does not seem to be a uninucleate stage in the
Glomeromycota, which would give the opportunity to reduce genetic variation to a single
haploid genome but, as mentioned previously, a large number of nuclei are instead migrating
into newly formed spores (Jany and Pawlowska 2010). However, some evidence for
recombination in the genome of G. intraradices has been detected using molecular markers
(Croll and Sanders 2009), whereas the genome of Scutellospora castanea was previously
found to be predominantly clonal (Kuhn et al. 2001) and the life history of the cosmopolitan
G. etunicatum was shown to be dominated by clonality with rare recombination, if at all (den
Bakker et al. 2010).

A parasexual mechanism for the exchange of genetic information in fungi is
through the formation of hyphal networks by anastomoses (hyphal bridges). This
phenomenon has been well documented in the genus Glomus but the extent appears to differ
between isolates. For example, it seems to be limited to within-isolate connections for G.
mosseae originating from different geographic regions (Giovannetti et al. 2003), whilst
genetically distinguishable isolates of G. intraradices from one field site in Switzerland
formed anastomoses at a frequence dependent on their genetic relatedness (Croll et al. 2009).
The G. intraradices isolates exchanged genetic markers, resulting in recombinant genotypes
in offspring strains which showed altered symbiotic capabilities, indicating that this kind of
genetic exchange may have some relevance for host plant fitness (Angelard et al. 2010).

However, basic parameters can differ substantially between members of the
Glomeromycota. Their genome sizes vary greatly (see section 11A), not much is known about
genome structure outside the model species G. intraradices, and retrotransposons have been
suggested to play an important role in the genome of at least one species (S. castanea;
Gollotte et al. 2006). In addition, anastomosis formation has not been observed in the
Gigasporaceae, and other lineages, resulting in a completely different architecture of the
mycelium and ruling out hyphal cross-bridges as a means to redistribute nuclei (Purin and
Morton 2011). Also, in contrast to G. intraradices, G. mosseae was shown to have a rather
uniform worldwide population structure, suggesting a different genetic disposition (Rosendahl
et al. 2009). Due to these apparent differences across the Glomeromycota, it seems difficult to
generalize questions of evolution or genetic exchange from any findings obtained with one or



another fungus. Even though first steps towards understanding genome evolution have been
taken in the model species G. intraradices (Sanders and Croll 2010), there remains much
more to be explored for the rest of the phylum.

IVV. The Symbiotic Genome of Glomeromycota

The symbiotic genome comprises those glomeromycotan genes that are associated with
development and functioning of the fungi in arbuscular mycorrhiza interactions. Initial
steps require genes permitting a switch from asymbiotic spore germination to pre-symbiotic
stages of hyphal branching and appressorium formation at the root surface under the influence
of host plant signals (Gianinazzi-Pearson et al. 2007). Once within roots, morphogenetic
processes in the Glomeromycota lead to differentiation of characteristic intracellular
haustoria-like structures, termed arbuscules, and the establishment of a symbiotic interface
boardered by fungal and plant membranes thought to be the main site of nutrient and signal
flow between the symbionts (Smith and Read 2008). Hyphae subsequently develop out from
the mycorrhizal roots to form the extraradical mycelium (ERM), and provide extensive
pathways for nutrient fluxes through the soil into mycorrhizal roots (Gianinazzi et al. 2010)
which presumably rely on the regulation of fungal genes related to nutrient sensing,
production of specific enzymes and resource partitioning between the fungal symbionts and
host roots (Leake et al. 2004).

A. Transcriptome features

In the absence of a full genome sequence, functional genomic studies of symbiotic traits in the
Glomeromycota have so far primarily relied on gene expression profiling. Initial studies
using targeted approaches, based on the assumption that a gene or gene product plays a role in
developmental or metabolic processes, identified a certain number of genes encoding proteins
with important nutritional and morphogenetic functions, such as phosphate transporters, H*-
ATPases, ammonium and amino acid transporters, carbohydrate metabolism, chitin synthases
and B-tubulin (see Ferrol et al. 2004; Gianinazzi-Pearson et al. 2004). For example, as
discussed below in the transportome section, the characterization of a high-affinity phosphate
transporter in G. versiforme by heterologous screening of a cONA library (Harrison and van
Buuren 1995) provided a breakthrough in the understanding of fungal functioning in
phosphate uptake by mycorrhizal plants.

Identification of a more comprehensive collection of fungal genes became possible
during the last decade with the emergence of transcriptome technologies that allow analysis of
the mMRNA pool of a cell at any one moment. Transcriptome studies of glomeromycotan
fungi initially focused on small collections of expressed sequence tags (ESTs) in cDNA



libraries generated exclusively from activated spores (Stommel et al. 2001), germinated
spores (Lammers at al. 2001; Lanfranco et al. 2002) or extraradical hyphae (Sawaki and Saito
2001; Jun et al. 2002). Clone sequencing revealed several interesting similarities to known
genes which are consistent with postulated fungal activities in the symbiotic state. For
example, evidence that arginine is probably the preferred molecule for long-distance
fungal transport of nitrogen to the host plant was obtained by identifying a glutamine
synthase gene from a G. intraradices cDNA library which is preferentially expressed in
extraradical hyphae and a gene associated with arginine breakdown which is more highly
expressed in the intraradical mycelium (Govindarajulu et al. 2005). Also, expression profiling
of an acyl-CoA-dehydrogenase gene from the same library indicated mechanisms of lipid
utilization in germinating spores and in extraradical mycelium, and expression analysis of
genes coding for a malate synthase and an isocitrate lyase gene containing, motifs responsible
for glyoxisomal targeting, reinforced the hypothesis that substantial carbon fluxes within
symbiotic hyphae involve the glyoxylate cycle (Bago et al. 2002).

With the advent of techniques like differential RNA display (DDRT) and
suppression subtractive hybridization (SSH), snapshots of the glomeromycotan genome
active in fungal structures associated with different stages in the mycorrhizal symbiosis
became more easily accessible. Differential expression of numerous genes was revealed in a
first SSH-based comparison of transcript profiles between germination hyphae and
extraradical mycelium of G. mosseae, with the identification of a gene (GmGinl) probably
involved in signalling during spore germination before symbiosis formation (Requena et al.
2002). Subsequent exploration, using DDRT, SSH and EST screening, of genetic
determinants controlling the developmental switch from asymbiotic spore germination to
presymbiotic hyphal branching of Gigaspora rosea and Gig. gigantea, stimulated by a root
exuded factor, showed activation of genes encoding proteins involved in mitochondrial
function, signal transduction, gene expression, DNA synthesis and cell cycle regulation
(Tamasloukht et al. 2003, 2007). Induction of genes encoding mitochondrial proteins occurred
before increases in respiratory activity, reorganization of the mitochondrial system and
stimulation of fungal ramification, indicating that this branching response is the result of a
metabolic switch (Tamasloukht et al. 2003). Strigolactones were later discovered to be the
root exudate components which induce hyphal branching (Akiyama et al. 2005) and which
provoke the responses of the mitochondrial apparatus in the fungus, leading to the conclusion
that mitochondrial activation is a key event in the switch from asymbiotic to pre-symbiotic
stages (Besserer et al. 2006; 2008).

Analysis of the fungal transcriptome during colonization of host plant tissues has been
hampered by a low abundance of fungal transcripts (Maldonado-Mendoza et al. 2002).
However, using SSH it was possible to detect transcriptome modifications in G. mosseae
sporocarps triggered in synchrony with appressoria formation linked to recognition of a host



root surface by fungal hyphae, and show induction of genes with functions in signalling,
transduction, general cell metabolism, defence or stress responses, or of unknown function
during this early morphogenetic event (Breuninger and Requena, 2004). Several of the
identified genes code for proteins that have a potential role in calcium-based signalling
pathways, indicating that Ca?* could be involved as a second messenger in the perception
and transmission of a plant signal leading to appressorium formation. Transcript
profiling studies undertaken to understand molecular changes that accompany arbuscular
mycorrhiza development have also led to the identification of a few fungal genes in symbiotic
tissues. For example, DDRT analyses of mycorrhizal and non-mycorrhizal tomato gave a
cDNA fragment with similarity to a phosphoglycerate kinase gene from G. mosseae that
accumulates in higher amounts in colonized roots than in germinated spores (Harrier et al.
1998), and the same approach identified three differentially displayed cDNA fragments of G.
intraradices in barley mycorrhiza which code for peptide sequences with similarities to
proteins involved in gene regulation (Delp et al. 2000). A further six ESTs of G. mosseae up-
regulated in mycorrhizal roots were identified in a SSH library of M. truncatula, two of which
showed similarity to a thioredoxin homolog and to a peptidylprolyl cis-trans isomerase
(Brechenmacher et al. 2004).

Studies aimed at understanding the molecular response of the ERM of Glomeromycota
to various growth conditions, including nitrogen starvation (Capellazzo et al. 2007) and heavy
metal stress (Waschke et al. 2006; Ouziad et al. 2005) and interaction with other
microorganisms (Hildebrandt et al. 2006), have given access to more fungal genes. Among
the ESTs of G. intraradices induced by heavy metals, for example, several stress-responsive
genes were identified, particularly genes encoding enzymes involved in oxidative protection,
such as CuzZnSOD, thioredoxins and glutathione-S-transferases, supporting the hypothesis
that a primary strategy of the fungus to survive in heavy metal-polluted soils is to cope with
the heavy metal-induced oxidative stress (Gonzalez-Guerrero et al. 2007; Benabdellah et al.
2009a).

Glomeromycotan genes have also been searched for amongst ESTs in mycorrhizal
root cDNA libraries. In one approach, tblastx analysis of the Affymetrix GeneChip®
Medicago Genome Array identified 49 putative fungal genes, all present exclusively in
Medicago truncatula/G. intraradices root cDNA libraries (Gomez et al. 2009). Further
analysis of 10 of these genes, associated with the urea cycle, amino acid biosynthesis and
cellular autophagy, showed they were expressed in laser-microdissected cortical cells
containing arbuscules. These data confirm previous predictions by Govindarajulu et al. (2005)
that the urea cycle is active in the arbuscules and provide the first molecular hint that
arbuscule turnover might involve autophagy. In another analysis, a blastn search against
3,034 ESTs contigs from a M. truncatula/G. intraradices cONA library (Journet et al. 2002)
was performed and 42 clones putatively corresponding to fungal genes were obtained. On the



basis of their annotation, they were distributed in 12 different functional groups (van Tuinen
et al. unpublished; Figure 2); none of these fungal genes correspond to those reported by
Gomez et al. (2009). The largest functional category, with 30% of the sequences, encodes
proteins involved in protein synthesis and degradation and 14% are related to primary
metabolism, suggesting a high metabolic activity of the mycorrhizal fungus during root
colonization. The high number of orphan genes (19%), with unknown function or no
homology to database sequences, could be an indication of the presence mycorrhiza-specific
genes.

Figure 2

Altogether, these different approaches have generated about 5200 ESTs from
Glomeromycota that are publicly available in databases. In the absence of a full genome
sequence, these ESTs have represented a valuable resource to identify candidate genes for
targeted studies of, for example, glomeromycotan carbon metabolism (Lammers et al. 2001;
Bago et al. 2002, 2003), nitrogen metabolism (Govindarajulu et al. 2005; Tian et al. 2010),
sulfur metabolism (Allen and Shachar-Hill 2009), heavy metal homeostasis (Lanfranco et al.
2002; Gonzalez-Guerrero et al. 2005, 2007) and redox homeostasis (Lanfranco et al. 2005;
Benabdellah et al. 2009a, b; Gonzalez-Guerrero et al. 2010a, b). Genes selected from these
databases have also been exploited to show the impact of symbiosis-related plant genes on
fungal activity during root interactions (Seddas et al. 2009; Kuznetsova et al. 2010).

Recently, the international Glomus consortium has expanded the EST repository of G.
intraradices by generating cDNA libraries from different fungal structures that have been
sequenced using high-throughput technologies. A robust set of non-redundant virtual
transcripts (25906, about 20 Mb) transcribed in quiescent and activated spores, ERM and
symbiotic roots have been generated (Tisserant et al. submitted). This comprehensive G.
intraradices transcriptome has provided evidence that obligate biotrophy in this fungus
cannot be explained by loss of metabolic complexity and, as mentioned previously, genetic
information essential for sexual reproduction and meiosis is present although a known
sexual stage is absent from the glomeromycotan life-cycle. The virtual transcriptome of G.
intraradices (based on >430,000 reads) has served to construct an oligoarray as a basis to
underpinning the peculiar biological traits of these organisms and to examine the functional
responses of G. intraradices genes to symbiosis development. Gene expression profiling in
ERM and symbiotic root tissues has, for example, shown that pathways of amino acid and
polyphosphate biosynthesis are highly expressed in the fungus, which concords with
nutrient fluxes through mycelium during symbiotic interactions. Up-regulation of genes
encoding for membrane transporters, signal transduction pathways and small secreted proteins
in intraradical mycelium and arbuscules, together with the lack of expression of hydrolytic



enzymes acting on plant cell wall polysaccharides, are characteristics of G. intraradices that
are shared with the ectomycorrhizal fungi Laccaria bicolor (Martin et al. 2008a) and Tuber
melanosporum (Martin et al. 2010), and with the biotrophic pathogen Blumeria graminis
(Spanu et al. 2010). In addition, data sets support biological traits identified in previous gene
expression studies; for example, a number of G. intraradices genes encoding proteins
putatively involved in Ca** homeostasis/signalling are upregulated with mycorrhiza
development (Figure 3). Moreover, G. intraradices transcriptome features highlight the
existence of Glomus-specific genes, including those coding for small secreted proteins, which
are amongst the most highly up-regulated in the mycorrhizal association and which could be
specific to the symbiotic state (Tisserant et al. submitted). The recent characterization of a
secreted fungal effector (SP7) from G. intraradices points to a role of secreted proteins in
managing the accommodation process of the fungus within plant roots (Kloppholz et al.
2011).

Figure 3

B. Proteome insights

Much of the early studies of proteins in the Glomeromycota focussed on polypeptides or
enzyme-active gene products, separated by gel electrophoresis, to investigate expressed
functions in the fungal genome during the arbuscular mycorrhizal symbiosis or as
polymorphic genetic markers in diagnostic taxonomy (see Gianinazzi-Pearson et al. 2001).
However, with advances in bioinformatics and the development of mass spectrometry (MS)
(Oeljeklaus et al. 2008; Rohrbough et al. 2007), efficient large-scale profiling of the fungal
proteome has become possible. Although initial proteomic studies conducted on the extra-
and intra-radical stages of the glomeromycotan life cycle experimented difficulties in
revealing the accumulation of fungal gene products (Bestel-Corre et al. 2002; Dumas-Gaudot
et al. 2004), systematic nanoscale capillary liquid chromatography—tandem mass spectrometry
(LC-MS/MS) has since proved successful in enlarging the coverage of the fungal proteins.
Proteomics performed on the ERM from in vitro mycorrhizal root organ cultures,
using large-scale protein-profiling based on two-dimensional electrophoresis (2-DE) and MS-
based identification analyses, gave the first extraradical glomeromycotan 2-DE reference map
(438 spots from G. intraradices DAOM 181602), but only a limited number of fungal
proteins could be identified (Dumas-Gaudot et al. 2004). A subsequent shotgun proteome
analysis of in vitro-grown ERM, involving one-dimensional (1D)-PAGE-nanoscale capillary
liquid chromatography-MS/MS (GeLC-MS/MS), led to the confident identification of 158
phenol-extracted fungal proteins, corresponding to 92 different (distinct or differentiable)
isoforms after parsimony analysis, thus representing the most comprehensive list of
glomeromycotan proteins so far identified (Recorbet et al. 2009). Over half (88) of the



proteins retrieved from G. intraradices ERM were not previously indexed as related to
mycorrhizal fungi in protein databases, and consequently represent new protein candidates
of the glomeromycotan life cycle.

Biological process grouping of the GeLC-MS/MS-identified ERM proteins from G.
intraradices indicates that the majority of identified proteins have putative functions in
sustaining energetic metabolism, protein synthesis, folding, transport and catabolism,
which suggests an important protein turn-over and trafficking in the extra-radical phase
of the symbiotic fungus (Recorbet et al. 2009). Among these proteins are enzymes involved in
dark CO, fixation, glycolysis/gluconeogenesis, pentose phosphate and glutamine
biosynthesis-related pathways. Likewise, several proteins related to vesicular trafficking,
including the GTP-binding protein Yptl, the small GTPase SARL, and three members of the
Rab GTPase subfamily were identified, together with the signal-transducing proteins
calcineurin, Rhol, Cpc2 and Bmh2, for which a role has been demonstrated in fungal
morphogenesis. Bmh proteins are also involved in cell cycle regulation as being necessary for
the initiation of DNA replication. Among proteins playing roles in the cell division cycle, the
DNA damage checkpoint protein rad25, two isoforms of the AAA ATPase Cdc48, and a
putative prohibitin were concomitantly identified in the ERM of G. intraradices. Current
hypotheses on the mechanisms underlying the glomeromycotan cell cycle mostly refer to the
switch from GO0/G1 to S/M during root colonisation and to DNA replication occurring during
the production of mycelium from germinating spores (Bianciotto and Bonfante 1993;
Bianciotto et al. 1995). Additionally, GeLC-MS/MS data have also pointed to two modules of
enzymes related to cell redox homeostasis that accumulate in the ERM of glomeromycotan
fungi, corresponding to the trans-sulphuration pathway/glutamyl cycle and the
glutathione/thioredoxin system. Overall, this strategy has opened the way towards large-scale
analyses of fungal genome responses and metabolic adjustments to environmental cues,
including nutrient supply, host recognition and stress—related stimuli.

Although arbuscules have been microdissected from mycorrrhizal roots for
transcriptome analyses (Balestrini et al. 2007; Gomez et al. 2009; Kuznetsova et al. 2010),
these fungal structures have not been isolated in sufficient amount and purity for proteomic
analysis so that intra-radical fungal gene products have not yet been directly profiled on a
large scale. To enlarge the coverage of intraradical fungal proteins, Recorbet et al. (2010)
compared protein profiles of G. intraradices and G. mosseae in roots of M. truncatula using
LC-MS/MS based on an enlarged pH gradient and two-dimensional gels coupled to
guantitative analysis by Progenesis workstation. Over two thousand protein spots were
detected from mycorrhizal roots, of which confident identifications encompassed 21 fungal
proteins. Homology-inferred functions were found to complement the working models so far
proposed for functioning of the intra-radical mycelium with regards to carbon utilization,
energy generation, redox homeostasis and protein turnover-related processes, thus



representing the largest set of in planta-expressed glomeromycotan proteins so far
identified. The proteins appear to belong to pathways active in other stages of the fungal life
cycle, including the ERM (Recorbet et al. 2009, 2010).

Overall, this comparative 2-DE-based analysis provided evidence for the existence at
the protein level of a conserved set of expressed genome functions associated with the
mycorrhizal state of the symbiotic fungus. In relation to proteolytic processing, for example, a
fungal subtilase was detected among the induced mycorrhiza-related proteins. Subtilisin-like
proteases have been shown to be virulence factors in fungal pathogens of insects, nematodes
and plants, including Magnaporthe poae (Bidochka and Khachatourians 1990; Tunlid et al.
1994; Sreedhar et al. 1999), and a serine proteinase was proposed to be a potential general
feature of leaf infection by the mutalistic fungal plant endophyte Acremonium typhinum
(Reddy et al. 1996). Some of the proteins identified in glomeromycotan symbionts may thus
point to candidate genes required for mycorrhiza formation. In this context, it has been
demonstrated that the Glomeromycota and pathogenic fungi share some genetic
components required for colonisation of plant tissues (Tollot et al. 2009; Heupel et al.
2009).

Because identification of a large majority of proteins from the Glomeromycota has been achieved by homology
searches in databases for non mycorrhizal fungi, they are unlikely to be specialized for the arbuscular mycorrhizal symbiosis.
Nonetheless, high-throughput identification of protein orthologs in other biotrophic fungal species, even lacking complete
genome coverage, remains a pertinent approach for deciphering some conserved key actors of biotrophy in glomeromycotan
fungi. Regarding features and processes supposed to be unique to mycorrhizal fungi, which nowadays cannot be approached
via homology searches in other species, broad insight into the genome and transcriptome of G. intraradices (see sections I1A
and I11A) will undoubtedly boost knowledge on the glomeromycotan proteome. Besides limited available genomic resources
for Glomeromycota, global proteomic approaches also suffer from a restricted dynamic range resolution in that house-
keeping proteins usually hinder the detection of low abundant polypeptides, which are regarded as important effectors in cell
regulation pathways. A wide variety of fractionation tools are now available to cope with this issue in non-model organisms
(Carpentier et al. 2008), and which could be adapted to proteomics of glomeromycotan fungi in mycorrhizal associations.
Furthermore, although laser-capture micro-dissection (LCM)-based techniques require optimization of tissue preparation
prior to LCM and GeLC-MS/MS, they represent a promising approach for broad spectrum profiling of glomeromycotan

proteins and identification of corresponding genes active in mycorrhizal roots.

C. Transportome genes

Current knowledge on the transportome in the Glomeromycota, that is, the complete
repertoire of fungal genes encoding membrane transporters, ion exchangers and ion channels,
is still in its infancy. In fact, only fourteen transporter genes (for 9 different substrates) have
been characterized up to now in the glomeromycotan genome. This number is low compared
to the number of putative transporters (around 500) that have recently been identified in the



sequenced G. intraradices transcriptome (Tisserant et al. submitted; L. Casieri, personal
communication).

1. lon and water transporter genes

In order to gain insight into mechanisms underlying the role of Glomeromycota in
plant nutrient acquisition, studies have focussed on fungal genes encoding transporters
potentially involved in the uptake from soil of solutes by the fungal hyphae, their transport
through the mycelium and their transfer to the plant. Given the central role phosphate (Pi)
transport plays in the arbuscular mycorrhizal symbiosis (Smith and Read 2008), the first
fungal genes to be identified encoded proteins mediating Pi transport across the fungal
membranes. The first gene characterized in detail encoded a Pi transporter of G. versiforme
(GVvPT, Harrison and van Buuren 1995), followed by homologous genes from G. intraradices
(GiPT, Maldonado-Mendoza et al. 2001) and G. mosseae (GmosPT, Benedetto et al. 2005).
GVPT codes for a high-affinity proton-coupled transporter and shares structural as well as
sequence similarity with other plant and fungal high affinity phosphate transporters. The
apparent Km of GVvPT, evaluated in a heterologous system, is in the micromolar range which
is a value comparable to free Pi concentrations generally found in soil solution. GvPT and
GIPT transcripts are in fact predominantly detected in the ERM, thus indicating a role in Pi
acquisition from the soil. Moreover, GiPT expression appears to be regulated by phosphate as
it responds to external Pi concentrations and to overall mycorrhiza Pi content (Maldonado-
Mendoza et al. 2001). In contrast, GmosPT is highly expressed also in intraradical mycelium
and in particular in arbuscules (Balestrini et al. 2007). This finding provides a new scenario
for the plant-fungus nutrient exchanges suggesting that, at least when the plant is actively
growing, the fungus may regulate nutrient exchange at the symbiotic interface (Balestrini
et al. 2007).

Figure 4

Until now four different genes encoding membrane transporters of nitrogen
compounds (Figure 4) have been identified from Glomeromycota genomes: one amino acid
transporter in G. mosseae (GmosAAPL, Cappellazzo et al. 2008), and two ammonium
transporters (GintAMT1, Lopez-Pedrosa et al. 2006; GintAMT2, Pérez-Tienda et al.
submitted) and one nitrate transporter (GIiNT, Tian et al. 2010) in G. intraradices. GmosAAP1
is able to transport proline through a proton-coupled, pH- and energy-dependent process but it
can bind non polar and hydrophobic amino acids, thus indicating a relatively specific
substrate spectrum. GmosAAP1 expression is detected in the ERM developing out from
mycorrhizal roots, where transcript abundance could be increased by exposure to organic
nitrogen, in particular when supplied at 2 mM concentrations (Cappellazzo et al. 2008). These



findings suggest that the GmosAAP1 transporter plays a role in the first steps of amino acid
acquisition by hyphae, allowing direct amino acid uptake from the soil and facilitating
exploitation of soil nitrogen resources. GintAMT1 and GintAMT2 code for the ammonium
transporter/methylamine permease/rhesus (AMT/Mep/Rh) protein family (TC#1.A.11) that
mediate transport of NH," across biological membranes (Lopez-Pedrosa et al. 2006; Pérez-
Tienda et al. submitted). Both genes functionally complement corresponding mutant yeast
strains, and the apparent Km of GIntAMT1 has been evaluated in yeast to be in the
micromolar range characteristic of a high-affinity and low capacity NH," transporter.
GIintAMT1 and GIintAMT2 are differentially expressed during the fungal life cycle and in
response to N, suggesting that the encoded proteins play different roles in the symbiosis.
Whilst transcripts of both genes were detected in arbuscules and spores, GintAMT1 was more
highly expressed than GintAMT2 in the ERM. Gene activity in these extraradical hyphae
indicates an involvement in fungal nutrient uptake from the soil, but their expression in
arbuscules and spores suggests a role for these transporters in processes other than N uptake
for nutrition, such as retrieval of NH," that leaks out during metabolism and, therefore, in
fungal NH," retention. For the nitrate transporter gene GiNT, only a partial cDNA sequence
encoding a putative high-affinity nitrate transporter has so far been obtained (Tian et al.
2010). Nitrate availability stimulates the expression of GINT so that it may play a role in
transporting NO3” into the ERM.

Heavy metal membrane transporter genes have also been identified in the
glomeromycotan genome. In G. intraradices, a member of the cation diffusion facilitator
(CDF) family GinZnT1 was shown to decrease cytosolic Zn levels in yeast, although not to
completely restore the phenotype of a zrclcotl yeast mutant affected in two vacuolar CDF
transporters (Gonzalez-Guerrero et al. 2005). In yeast, CDF family members are involved in
Zn, Fe and Co homeostasis by playing a role in metal efflux from the cytosol, either outside
the cell or into intracellular organelles. The expression pattern of GintZnT1 in response to
short-time exposure to Zn and when G. intraradices is grown in the presence of high Zn
concentrations, reveals a role for GintZnT1 in Zn detoxification and in the protection of the
mycorrhizal fungus against Zn stress. Recently, a gene member of the ATP-binding cassette
(ABC) family of transporters that may also play a role in heavy metal detoxification has been
reported in G. intraradices (GIintABC1; Gonzalez-Guerrero et al. 2010a). The fact that
GIintABCL1 is up-regulated by Cu and Cd, and that it has a high homology to the yeast Cd
factor gene that transports bis-glutathione-Cd complexes across the vacuolar membranes (Li
et al. 1997), suggests a putative role for GintABC1 in heavy metal tolerance by transporting
the excess of metal into vacuoles in G. intraradices.

In addition to these ion transporters, transmembrane water channels or aquaporins
can mediate the flux of small solutes including glycerol or ions, and in the fungal kingdom,
five kinds of aquaporins have been described which are subdivided into orthodox aquaporins



and aquaglyceroporins (Pettersson et al. 2005). Only one putative aquaporin gene has so far
been described from the Glomeromycota (Aroca et al. 2009) although the beneficial effects of
the symbiotic fungi include transport of water from soil to host plant roots (Smith and Read
1998). The function of the fungal gene GintAQP1 (Figure 4), identified in G. intraradices, has
not yet been demonstrated. However, GintAQP1 expression shows a variable response to
different environmental stress and host plant, and it has been inferred that a certain
compensatory mechanism exists between GIintAQP1 and host aquaporin gene expression
pointing to communication mechanisms between mycelium and host root (Aroca et al. 2009).

2. Sugar transporter genes

Although in arbuscular mycorrhiza, potential carbon compounds delivered to the
fungal symbiont by the plant partner are soluble sugars, carboxylic acids, and amino acid,
hexoses are considered to be the main source of carbon for the fungus (Bago et al. 2000).
In spite of this, only one gene encoding a monosaccharide transporter (GpMST1, Figure 4)
has been characterized from a glomeromycotan species (Schussler et al. 2006, 2007). The
gene was isolated from the unusual and culturable glomeromycotan fungus Geosiphon
pyriformis which forms a unique symbiosis with cyanobacteria. The encoded protein,
GpMST1, is a membrane domain transporter, which phylogenetically belongs to a new, not
yet characterized, monosaccharide transporter (MST) clade. It functions as proton co-
transporter (Figure 4) with highest affinity for glucose, followed by mannose, galactose, and
fructose. The GpMST1 gene has a very low GC content (32%), typical of the Glomeromycota
(see Section 1lb) and contains 6 introns with unusual boundaries. G. pyriformis is not able to
take up glucose, as is the case of 'typical' arbuscular mycorrhizal Glomeromycota via the non-
symbiotic plasma membrane (spores, germination hyphae, extraradical hyphae). It is
supposed that GpMST1 may represent the type of MST that is responsible for the uptake of
plant carbohydrates by ‘typical’ glomeromycotan fungi at the symbiotic interface in
mycorrhizal interactions. As such, it should enable the isolation and characterization of
orthologues in mycorrhiza-forming Glomeromycota, and so lead to a much better
understanding symbiotic carbon fluxes.

3. Plasma membrane H*-ATPase encoding genes

The activity of proton-coupled membrane transporters like phosphate or hexose
transporters is dependent on electrochemical gradients which correspond to the H* gradient
created by H'-ATPases in the membranes. Plasma membrane H*-ATPases are generally
found in higher concentrations or activities in cell types that are specialised for intensive
active transport, as is the case of the fungal and plant membranes at the symbiotic interface of
arbuscular mycorrhiza (Gianinazzi-Pearson et al. 1991, 2000; Harrison 2005). In the
Glomeromycota, two H*-ATPase genes, GmPMAL (Requena et al. 2003) and GmHAS (Ferrol
et al. 2000; Requena et al. 2003), have been isolated from the genome of G. mosseae (Figure



4). GmPMAL is highly expressed during asymbiotic development, but its expression is not
modified during symbiotic interactions with host roots, whereas GmHAS is induced upon
plant recognition at the appressorium stage and up-regulated in the arbuscule (Balestrini et al.
2007). Both genes are highly expressed during intraradical development, but their expression
is reduced in the ERM. Phosphate, the key nutrient transferred from fungus to plant in the
symbiosis, induces GmHA5S expression during asymbiotic growth, whereas sucrose has a
negative effect. It has been suggested that different fungal H*-ATPases isoforms might be
recruited at different developmental stages of the mycorrhizal fungus, possibly in response to
the different requirements during its life cycle (Requena et al. 2003).

With wider coverage of the transcriptome of G. intraradices, it is expected that many
more glomeromycotan transporters will be characterized. Deciphering the function of
individual proteins of the entire transportome, as well as understanding how transporters from
intracellular organelles work together with those from the plasma membrane in different
fungal structures and how they are regulated to ensure homeostasis, will give more insight
into the symbiotic life style and physiology of these obligate biotrophs.

V. Concluding Remarks

Although obligate biotrophy, multinucleate nature, large genomes and asexuality of
glomeromycotan fungi forming root symbiosis still remain challenges to understanding
genome complexity, diversity and function in these organisms, the past decade has seen
considerable advances in knowledge about their genomic make-up. Characterisation of
nuclear and mitochondrial genomes in the Glomeromycota has reinforced conclusions that
they form a distinct, heterogeneous (Schussler et al. 2001, James et al. 2006) and unusual
(Gianinazzi-Pearson et al. 2001, 2004; Sanders and Croll 2010) ensemble within the fungal
kingdom. However, much of the information generated by more recent research focuses on G.
intraradices (syn G. irregulare) as a model species and although symbiotic attributes of the
genome may be broadly based across the Glomeromycota, basic parameters need to be more
widely explored in order to draw conclusions for other members of the phylum. Also, whilst
strategies like wide genome sequencing and comparative genomics have become amenable to
research on glomeromycotan fungi, the lack of a stable transformation system remains a
major drawback to manipulating their genome for functional studies of genes (Gianinazzi-
Pearson et al. 2004, Helber and Requena 2008). The magnitude of intraspecific diversity
within the genome still needs to be clearly defined for a large number of glomeromycotan
species. This implies exploring target genes as well as rDNA in a larger spectrum of isolates
and establishing more extensive sequence data sets to evaluate allele frequencies within
individuals.
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Figure Legends

Figure 1. Differences between sequences of Glomus mosseae (BEG12), expressed as a
percentage, and G. mosseae BEG69 (' ), G. coronatum BEG22 (W) and G. intraradices
AFTOL ID 48 (W), for the SSU, 5.8S, and 5’ end of the LSU (including the variable D1 and
D2 domains), and the variable D1 and D2 domains alone.

Figure 2. Functional categories (roman numbers) and numbers of putative fungal genes from
a M. truncatula/G. intraradices cDNA library: Il Cytoskeleton; I1l Membrane transport; 1V
Vesicular trafficking, secretion and protein sorting; V Primary metabolism; VI Secondary and
hormone metabolism; VII Chromatin and DNA metabolism; VIII Gene expression and RNA
metabolism; X Protein synthesis and degradation; X Signal transduction and post-
transcriptional modification; XI Miscellaneous; XII Defense and cell rescue; XIII No
homology

Figure 3. Expression profiling of G. intraradices genes encoding proteins putatively involved
in calcium homeostasis; amplification by RT-PCR of cDNA from activated spores and
mycorrhizal roots of M. truncatula.

Figure 4. Current knowledge of transporter genes from Glomeromycotan fungi and their
putative role in the arbuscular mycorrhiza: GpMST1 (Geosiphon pyriformis monosaccharide
transporter 1, Schussler et al. 2006, 2007), GmPMA1 (Glomus mosseae plasma membrane
ATPase 1, Requena et al. 2003), GmHA5 (G. mosseae H*-ATPase, Ferrol et al. 2000),
GintABC1 (G. intraradices ABC transporter 1, Gonzalez-Guerrero et al. 2010), GintAMT1
(G. intraradices ammonium transporter 1, Lopez-Pedrosa et al. 2006), GintAMT2 (G.
intraradices ammonium transporter 1, Pérez-Tienda et al., submitted), GINT (G. intraradices
nitrate transporter, Tian et al. 2010), GmosAAP1 (G. mosseae amino acid permease 1,
Cappellazzo et al. 2008), GintZnT1 (G. intraradices zinc transporter 1, Gonzalez-Guerrero et
al. 2005), GiPT (G. intraradices phosphate transporter, Maldonado-Mendoza et al. 2001),
GmosPT (G. mosseae phosphate transporter, Benedetto et al. 2005), GVPT (G. versiforme
phosphate transporter, Harrison and van Buuren 1995) and GintAQP1 (G. intraradices
aquaporin 1, Aroca et al. 2009). Question marks refer to transporters that have not been
functionally characterized.
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Sucrose and monosaccharide transporters mediate long
distance transport of sugar from source to sink organs
and constitute key components for carbon partitioning
at the whole plant level and in interactions with fungi.
Even if numerous families of plant sugar transporters are
defined; efflux capacities, subcellular localization and
association to membrane rafts have only been recently
reported. On the fungal side, the investigation of sugar
transport mechanisms in mutualistic and pathogenic
interactions is now emerging. Here, we review the es-
sential role of sugar transporters for distribution of
carbohydrates inside plant cells, as well as for plant-
fungal interaction functioning. Altogether these data
highlight the need for a better comprehension of the
mechanisms underlying sugar exchanges between fungi
and their host plants.

Sugar transport: from source leaves to fungal sinks

With the completion of the genome sequence of the dicot
Arabidopsis (Arabidopsis thaliana) and the monocot rice
(Oryza sativa), we learned that hexose and sucrose trans-
port proteins belong to large multigenic families [1-4].
Main sugar transporters in plants comprising sucrose
(SUTSs) and monosaccharide (MSTs) transporters are mem-
bers of the major facilitator superfamily and are predicted
to share a common structure, with 12 transmembrane
domains connected by hydrophilic loops and to function
as H*/sugar symporters. Sugar transport systems are nec-
essary for coordination of carbon partitioning, plant devel-
opment, cell to cell communication and environmental
adaptation, thereby playing pivotal roles in optimal plant
growth and crop yield. Taken together, sugars are not just
energy rich metabolites providing fuel for cellular machin-
ery, they also constitute key signalling molecules [5].

In plants, long distance transport from photosynthetic
source leaves to sink organs comprises different crucial
steps depending on species and organ types, some still
under debate. Sucrose synthesized in the mesophyll is first
loaded into the collection phloem, then long distance trans-
port occurs in the transport phloem and finally sucrose is
unloaded in the release phloem (Figure 1).

Alternatively, sugar can also be transferred to non-
plant sinks. Indeed, plant colonization by heterotrophic

Corresponding author: Wipf, D. (daniel.wipf@dijon.inra.fr).

organisms (mutualistic or pathogenic) represents increased
sink strength. However, mechanisms of transport and
transporters involved in carbon partitioning between organ-
isms are still poorly understood. Uptake, exchanges and
competition for sugar, at biotrophic interfaces, are con-
trolled by membrane transporters and their regulation
patterns are essential in determining the outcome of
plant—fungal interactions and in adapting to changes in soil
nutrient quantity and quality [6-8]. Recently, sugar trans-
porters from pathogenic or mycorrhizal fungi have been
identified. On the plant side an increasing number of studies
are focusing on sugar transporters and their roles in plant—
microorganism interactions such as the recent identification
of the SWEET family [9].

The data highlight the need for a better comprehension
of cellular and molecular mechanisms involved in sugar
partitioning between fungi and their host plants. Here, we
review the essential role of sugar transporters for the
distribution of carbohydrates inside plant cells and be-
tween different plant organs, as well as for the functioning
of plant—fungal interactions.

Plant sucrose transporters

All plants possess a small-sized family of sucrose trans-
porters (SUT), also called SUC (sucrose carriers), involved
in several crucial steps for long distance transport of
sucrose from source to sink sites where sugars are used
or stored (Figure 1). For detailed information on all SUT
genes cited in this paper see Table S1 in the supplementary
material online. The latest classification of SUTs describes
five distinct clades: SUT1-SUT5 [10,11]. The SUT1 clade
(dicot specific), the largest, comprises a single protein
member responsible for sucrose phloem loading in so-
called ‘apoplastic loaders’ species (® in Figure 1) [12], as
well as numerous paralogs thought to have a role in
sucrose partitioning in sink organs [2]. The SUT3 clade
(monocot specific) and SUT1 members, despite their evo-
lutionary divergence appear to be functionally orthologous
[13,14]. Newly separated from SUTS, the SUT5 clade is so
far the least studied with a single protein characterized in
rice [11,15]. Concerning the SUT2 clade, initially described
as containing sugar sensors, some members have been
reported to be functional transporters [16]. The majority
of characterized SUTs exhibit sucrose affinities in the
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Figure 1. Long distance transport of sugars from source to sink organs in plants. In plants, sucrose (Suc) is synthesized in source leaves and constitutes the main
carbohydrate form for long-distance transport; the first step consisting in sucrose export from mesophyll cells is still under debate; however, recent findings suggest that
SWEET (in purple) are key components for sucrose export likely from parenchyma cells () [23]. Following export, sucrose is either passively loaded in the companion cell
sieve element complex via plasmodesmata in symplastic species (2) or actively loaded by a single SUT1 (e.g. AtSUC2 in Arabidopsis) phloem loading protein in apoplastic
species () [107] where trafficking of SUT1 is proposed between companion cell and enucleate sieve elements [10]. Once in the phloem sap, sucrose follows the flow of
transport phloem where it can be unloaded and retrieved to supply flanking tissues @). Upon release from the phloem, sucrose is either unloaded to symplastically
connected sink organs, such as unloading domains (ULD) through plasmodesmata (5) or via SUTs (in red) to apoplastically connected sink cells ) [21] and cleaved by
sucrose-splitting enzymes (light blue) to yield glucose (Glu) and fructose (Fru) that are taken up by MSTs (in blue). Alternatively, sugar can also be transferred to fungal sinks
and plant colonization by heterotrophic fungi increases sugar demand [85,86]. Sugar-splitting enzymes comprise cell wall-bound (Cwinv), cytosolic (Clnv) and vacuolar
invertases (VInv) whereas sucrose synthase (SuS) catalyzes a reversible reaction and therefore is involved in both sucrose synthesis and catabolism.

millimolar range and also bind a large range of other
naturally occurring or synthetic sugars. It is worthwhile
to note, however, that biochemical properties of plant
sugar transporters have been studied in heterologous sys-
tems rather than in planta.

Major advances concern the recent description of export
capacities for sucrose transporters as well as the intracel-
lular localization of SUT4 clade members. So far all SUTs
have been characterized to mediate sucrose import, but
recently the study of sucrose-induced currents of maize
(Zea mays) ZmSUT1 in oocytes revealed an alternative
transport mode [17,18]. Indeed, a rise in cytosolic sucrose
concentration above 300 mM with variation of pH condi-
tions, inverted the transport mode of ZmSUT1 resulting in
sucrose efflux with a 100-fold lower affinity. In planta, the
antisense inhibition of S¢SUT1 in potato (Solanum tuber-
osum) led to lower tuber yield when phloem unloading
towards tubers is apoplastic [19,20], indicating a major role
for StSUT1 in efflux towards sink organs. In the release
phloem, apoplastic sucrose concentration, membrane po-
tential and proton motive force are in favour of sucrose
export from the phloem by SUT1 [21]. Thereby, ZmSUT1

2

seems to mediate both sucrose influx for phloem loading (®
in Figure 1) and efflux for unloading towards apoplastic
sinks (® in Figure 1). Furthermore, leguminous transpor-
ters (PsSUF1, PsSUF4 and PvSUF1) were characterized
as sucrose facilitators (SUF), supporting bidirectional dif-
fusion of sucrose when expressed in baker’s yeast (Saccha-
romyces cerevisiae) [22]. Leguminous SUFs mediate
passive sucrose efflux and influx (Figure 2), but so far no
other published work has reported the identification of
additional SUF proteins. Recent findings suggest that
besides SUTs, SWEETSs which were initially characterized
as glucose uniporters ([9], see below) are also involved in
sucrose export in planta (Figure 2) [23]. AASWEET11 and
AtSWEET12 are key sucrose effluxers as evidenced by
expression profiles, double mutant phenotypes and GFP
fusions, consistent with a role in sucrose export from
photosynthetic mesophyll cells (@ in Figure 1).

Members of the SUT4 clade from Arabidopsis AtSUT4,
barley (Hordeum vulgare) HvSUT2 [24], Lotus japonicus
LjSUT4 [25] and tobacco (Nicotiana tabacum) NtSUT4
[26], have been localized to the tonoplast by GFP fusion.
All four SUTSs are functional at the plasma membrane of
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Figure 2. Model of intracellular distribution of plant sugar transporters. Three families of transporters are implicated in the distribution of sugars (sucrose in upper half and
hexose in lower half) within the plant cell: SUTs (in red), MSTs (in blue) and SWEETSs (in purple). At the plasma membrane, most transporters have been characterized as H*/
sugar importers, although recently ZmSUT1 was shown to also mediate active efflux of sucrose [17,18]. By contrast, SWEETs and SUFs function as energy-independent
uniporters that mediate sugar influx and/or efflux [9,22]. SWEETs characterized to date localize to the plasma membrane, whereas localization of SUF1 and SUF4 has not
been studied, and their proposed membrane localization in this figure is based upon phylogenetic grouping into particular clades. At the vacuolar membrane the MST
subfamilies, VGT and TMT (vacuolar glucose transporter and tonoplast membrane transporter, respectively) function as sugar/H* antiporters loading sugars into the
vacuole [32,56-58], while proteins of the MST subfamily ESLs (ERD six-like transporters) are likely to be involved in energy-independent sugar efflux from the vacuole
[61,62]. Two families may also play a role in efflux of sugars from plastids, these being SUT4 and the MST subfamily, pGlcTs (plastid glucose transporters). Members of
these families (AtSUT4 and SopGlcT) were isolated in chloroplast fractions [60,108] but their biochemical mechanisms of transport have not yet been shown. Finally, the
MST subfamily transporters, INTs (inositol transporters) localize to both plasma and vacuolar membranes [109-111]; they transport myo-inositol, an important precursor in

a number of metabolic pathways.

yeast cells or Xenopus oocytes [25,27,28], which was
explained by mis-targeting of overexpressed proteins. In-
deed, as revealed by patch-clamp analyses of AtSUC4-
overexpressing vacuoles, AtSUC4 functions as a H*/su-
crose symporter at the tonoplast [29]. Very recently,
SUT4 from poplar (Populus tremula, PtaSUT4) and rice
(OsSUT2) were assumed to play a role in the orchestration
of the intracellular sucrose partitioning, thereby affecting
the sucrose efflux from source leaves and the utilization of
sucrose in lateral and terminal sink organs [30,31].

In a recent publication the vacuolar sucrose import was
described to be mainly performed by two members cluster-
ing in the MST family (TMT1 and TMTZ2, see below)
potentially acting as H'/sucrose antiporters (Figure 2),
whereas AtSUC4 seems to play only a minor role in sucrose
flux via the tonoplast under physiological conditions [32].
This is in agreement with the fact that overexpression of
vacuolar TMT1 in Arabidopsis altered sugar export rates
and increased source capacity. TMT1 overexpression af-
fected assimilate allocation, seed biomass and develop-
ment in Arabidopsis [33], whereas altered AtSUC4

expression did not have any effect on growth and develop-
ment. Very recently, vacuolar specific localization of vari-
ous SUT4 proteins was reported [29]. However, a dual
targeting to the vacuolar and plasma membrane already
encountered for Arabidopsis aquaporins [34] can also be
postulated for SUT4 proteins; this idea is reinforced by the
localization of SUT4 members at the plasma membrane in
planta (e.g. StSUT4) [27,35]. Another explanation for the
vacuolar presence could be degradation of SUT4 protein in
lytic vacuoles. Further investigations are needed to con-
firm whether dual targeting of SUT4 occurs in plants,
considering that the localization and oligomerization of
SUTSs is dependent on transporter cycling and membrane
dynamics [36,37].

Association to membrane raft and cycling of sugar
transporters

The plant plasma membrane contains particular domains
(rafts) that exhibit a specific molecular composition. In-
deed, rafts are defined as ‘small, heterogeneous, highly
dynamic, sterol- and sphingolipid-enriched domains that
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compartmentalize cellular processes’ [38]. Proteomic anal-
yses have indicated that a high proportion of proteins
associated with detergent-resistant membranes, consid-
ered as the biochemical counterpart of rafts might be
involved in signalling, protein activity, endocytosis, oligo-
merisation, degradation and transport pathways [39].
First evidence of the presence of SUTs in rafts came from
the isolation of StSUT1 in detergent-resistant membrane
fractions of the plant plasma membrane, mostly in its
monomeric form, but also as homodimers [36,37]. After
expression of GFP fusions in yeast, the plasma membrane-
associated SISUT1 from tomato (Solanum lycopersicum)
and the hexose transporter (HUP1) of the green alga
Chlorella kessleri are functional and assemble in heteroge-
neously concentrated spots resembling the patchy appear-
ance observed previously for endogenous yeast symporters
in raft-like microdomains [37,40,41]. By contrast, in yeast
mutants, lacking the typical raft lipids (ergosterol and
sphingolipids), both proteins distributed homogenously
at the plasma membrane and the rate of glucose uptake
for HUP1 was reduced to less than one-third of correspond-
ing wild-type cells, indicating a functional impact of trans-
porter association to membrane rafts. This association to
raft-like domains seems to be essential to the endocytic
cycling and polar distribution of transporters. Recently,
internalization of solanaceous SUT1 proteins was investi-
gated by means of Brefeldin A, an inhibitor of exocytosis
that led to the formation of cytosolic vesicles containing
StSUT1-GFP protein, suggesting a constant recycling of
SUTs [41]. In addition, the use of cytoskeleton inhibitors
revealed that internalization of SUTs via vesicles pro-
gresses along actin strands, but is independent of tubulin
[41]. This confirms that the constant turnover of sugar
transporters via recycling or degradation in lytic vacuoles
is dependent on association with membrane microdomains
and cytoskeleton in plant cells. There is no doubt that the
recent advances in plant membrane raft biological signifi-
cance will lead to a considerable development concerning
the regulation of plant transporters, through their dynam-
ic association to specific domains of the membrane, for
plant nutrition and in nutrient exchanges during plant—
fungal interactions.

Plant monosaccharide transporters

Two families of transporters are involved in the loading
and unloading of plant monosaccharides across plasma
membrane and between organelles within a cell. The plant
MST gene family is large, comprising 53 MSTs in Arabi-
dopsis, 58 in barrel medic (Medicago truncatula), 59 in
grapevine (Vitis vinifera) and 65 in rice (Figure 3). For
detailed information on all MST genes cited in this paper
see Table S1in the supplementary material online [3,4,42].
MSTs are distributed among seven subfamilies, but the
current phylogenetic classification, especially clade no-
menclature, remains ambiguous. Indeed, clades are either
named according to substrate specificity [sugar transport
protein (STP), polyol/monosaccharide transporter (PMT),
inositol transporter (INT)], subcellular localization [vacu-
olar glucose transporter (VGT), tonoplast membrane trans-
porter (TMT), plastidic glucose transporter (pGlcT)],
mutant-recovering phenotype [suppressor of G Protein
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Betal (SGB1)] or even to a stress condition that induces
gene expression [early-responsive to dehydration six-like
(ESL)]. By contrast, the recently identified SWEET belong-
ing to a distinct transporter family comprises only 17
transporters in Arabidopsis, 15 in M. truncatula and 21
in rice and presents a novel structural model including
seven transmembrane domains [9]. With the identification
of the SWEETSs a more complete picture of plant sugar
transport has begun to emerge (Figure 2).

In sink tissues hydrolysis of sucrose by invertase
yields glucose and fructose which are taken up via STPs
(Figures 1 and 2). All characterized STPs function as
plasma membrane-localized H*/hexose symporters, many
of which show broad substrate specificity (with highest
affinity for glucose) with the exceptions of AtSTP9 being a
glucose-specific transporter [43] and AtSTP14, a galac-
tose-specific transporter [44]. Although mechanisms con-
trolling expression profiles are to be determined, STPs are
clearly under tight regulatory control, responding to spa-
tial, developmental and environmental cues [45-47], i.e.
AtSTP2, AtSTP6, AtSTP9 and AtSTP11 are specifically
expressed in pollen, but at different developmental
stages [48].

In addition to STPs, members of the PMT subfamily
may also be involved in hexose uptake across the plasma
membrane. PMTs are broad-substrate spectrum proton
symporters capable of transporting to varying degrees,
hexoses and pentoses in addition to polyols. In plants for
which polyols (mannitol or sorbitol) play a major role in
sugar transport, PMTs are involved in phloem loading and
unloading [49-51]. However, in species which do not trans-
port polyols in their phloem, a physiological function is
more difficult to assign. In Arabidopsis, AtPMT1 and
AtPMT?2 are expressed in developing sink tissues and show
highest affinity for xylose and fructose, suggesting a role in
cell-loading of fructose resulting from invertase activity
[52]. Polyols being a major sugar in the metabolism of some
fungi [53], PMTs have also been suggested to play a role in
plant-fungal interactions [54].

Following uptake into the cell cytoplasm, sugars in
excess to metabolic requirements are stored in the vacuole
which functions in both transient and long-term storage.
Vacuolar storage and remobilization involves membrane
transport steps and plays a key role in maintenance of
cellular metabolism, osmo-regulation and adaptation to
environmental conditions [55]. As the names imply, VGTs
and TMTs localize to the tonoplast (Figure 2). Transport
assays in isolated yeast vacuoles expressing AtVGT1 dem-
onstrated an active uptake of glucose and fructose, indi-
cating that AtVGT1 functions as a H*/glucose antiporter
[56]. Transport assays using vacuoles from AtTMT knock-
out mutants showed reduced glucose uptake activity,
which was later shown to be complemented by overexpres-
sion of rice OsTMT'1 [57,58]. Mutant analysis indicates the
key role of carbohydrate vacuolar storage and partitioning
in controlling plant responses to developmental and envi-
ronmental cues [32,33]. Loss of AtVGT1 transcript by
T-DNA insertion led to delayed flowering and reduced seed
viability indicating an important role in plant development
[56], whereas overexpression of AtTMT1 increased glucose
uptake into isolated vacuoles, stimulated source capacity
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Figure 3. Phylogenetic tree of the MST family in Arabidopsis, M. truncatula and rice. Maximum parsimony consensus tree separates the MST family into seven subfamilies
(highlighted in colours) [3] and comprises 183 plant accessions, 53 AtMSTs from Arabidopsis (black), 62 MtMSTs from M. truncatula (blue) and 68 OsMSTs from rice (red);
the human and yeast transporters (grey) were used as outgroups. Characterized and published proteins are named according to their latest denomination; genomic locus or

accession number was used for proteins which have not yet been assigned. For gene li

st and nomenclature see Table S1 in the supplementary material online. 53 AtMSTs

were identified in the genome of Arabidopsis accession Columbia [3]; and 58 MtMSTs were identified in the genome of M. truncatula. Three additional accessions

(CAD31121, MtC20248 and MtC00740) were identified from the A17 line but were not fi

ound on the current version of the genome (Mt3.5). An additional accession, Mtst1

(AAB06594) was identified from a different subpopulation (2828) of M. truncatula Jemalong [99]. 65 OsMSTs were identified in the genome of rice japonica subspecies
cultivar Nipponbare [4]. An additional accession, OsMST1 (BAB19862) was identified from the cultivar Nipponbare but was not found on the current version of the genome.
Two additional accessions, OsMST4 (AAQ24871) and OsMST6 (AAQ24872) were identified from the rice indica subspecies.

Outgroups: HsGLUT1 (NP_006507), ScHXT7 (NP_010629).

and led to increased seed biomass and accelerated early
plant development [33]. Interestingly, electrophysiological
characterization showed sucrose transport in vacuoles
isolated from A#¢tmil/tmt2 knockout mutants [32]. This

discovery highlights the importance of mutant analysis in
assigning physiological function, particularly with respect
to apparently broad-substrate spectrum MST subfamilies
such as STPs and PMTs.
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The ability to remobilize carbohydrates is as important
as their uptake and storage and a number of efflux trans-
porters have been identified (Figure 2). At the chloroplast
membrane, it has been proposed that pGlcTs function in
the efflux of glucose derived from the amylolytic break-
down of transitory starch, and double mutant lines of
Atpglct together with the maltose transporter mex 1 exhib-
ited reduced photosynthetic activities as well as extreme
chloroplast abnormalities [59,60]. At the vacuolar mem-
brane, ESLs are implicated in carbohydrate remobiliza-
tion. Functional and mutant analyses of A¢ESLI and
AtERDLG6 suggest a role in energy-independent glucose
efflux [61,62]. Expression profiling of ESLs in several
plant species indicate a role in remobilization of stored
sugars from the vacuole in response to environmental and
perhaps also biotic stresses [61-65]. Finally, at the plasma
membrane, SWEETSs function as bidirectional sugar uni-
porters, facilitating energy-independent efflux or influx of
sugars [9]. Although the identification of SWEETSs is
relatively recent, phenotypes of a number of sweet
mutants have been previously characterized and SWEETSs
clearly play important roles in pollen development and
senescence, as well as in nutrition of plant-interacting
fungi and in resistance against pathogens [9]. For example
the first identified SWEET, MtN3 from M. truncatula, was
found to be highly upregulated after rhizobial inoculation
suggesting that SWEETSs are also likely to play a role in
biotrophic exchanges during development of plant symbi-
oses [66].

Trends in Plant Science xxx xxxx, Vol. xxx, No. x

Sugar transporters in plant-fungal interactions
Co-evolution of plants and fungi in various environments
through several hundred million years made possible the
emergence of close interactions among species belonging to
these two kingdoms. These interactions can be divided into
mutualistic (e.g. mycorrhiza) and pathogenic (from bio-
trophic to necrotrophic). Both types of interaction are
dependent on the plant for supply of carbon in the form
of photosynthates, but much remains to be understood on
mechanisms of transport and partitioning of sugars toward
the specialized membranes at plant—fungal interfaces. At
the symbiotic and pathogenic interface, transport proteins
specific to the uptake of sucrose and monosaccharides,
have been identified (Figure 4). For detailed information
on all fungal sugar transporter genes cited in this paper see
Table S1 in the supplementary material online.

Sucrose partitioning in plant-fungal interactions

Initially, in 2001 only a single fungal SUT, SpSUT1 from
fission yeast (Schizosaccharomyces pombe), had been char-
acterized [67]. Nine years later, the first fungal SUT
(UmSRT1) involved in plant-microorganism interactions
was isolated from the maize pathogen Ustilago maydis
[68]. The high affinity of UmSRT1 for sucrose and compe-
tition for sucrose with ZmSUT1 from the host plant, sug-
gest direct uptake of sucrose by the pathogen as a strategy
to avoid defence mechanisms induced by glucose utiliza-
tion [68,69]. Indeed, plants have evolved mechanisms
to sense extracellular changes in glucose concentrations

Plant cell

MtMSTs
<
Fru Glu
SISUTs
o< -0
Suc
(& o (&

Glu <
& xy1 O O

Mutualists

ZmSUT1

ZmSUT1

TRENDS in Plant Science

Figure 4. Sugar partitioning in plant-fungal interactions. Plant and fungal SUTs (in red) and MSTs (in blue) are involved in sugars partitioning in plant-fungal interactions.
In some pathogenic interactions both plant and fungus strongly compete for the uptake of sucrose (ZmSUT1 and UmSRT1) at the interface [68,69]. Fungal invertases (fungal
Inv) and monosaccharides uptake [fructose (BcFRT1); glucose (UfHXT1)] allow these fungi to efficiently use plant nutrients causing, eventually, host damage and/or death
[91,92]. By contrast, mutualistic interactions (by BCF, AMF and EMF) are based on beneficial biotrophic exchanges and generally improve plant-nutritional status [8].
Tomato SISUTs and M. truncatula MtMSTs (CAD31121; MtMst1) may support the carbon demand at the symbiotic interface [99,100], where also the activity of plant
invertases (plant Inv) seems to play a role in regulating sugar fluxes to the fungus [80,81]. Mycorrhizal fungi present the machinery in order to efficiently, and preferentially,
uptake glucose from the apoplastic interface (GiMST2; LbMSTs; AmMSTs) or through intercellular hyphae (GiMST2) [73,95,98]; only recently a putative SUT gene was
identified in arbuscular mycorrhizal fungi (GiSUCT) [73] and its role is yet to be established. BCF and ericoid fungi are able to incorporate and hydrolyze sucrose (TvSUT;
MRT; Tvinv), which seems to loosen the plant-mediated control over the sugar exchange [71,72,79].
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(e.g. produced from extracellular sucrose hydrolysis) and
respond to these changes with the induction of defence
responses [68,70].

Among the so-called biocontrol fungi (BCF) which re-
duce or prevent plant-pathogens occurrence and promote
plant growth and stress resistance; two novel SUTs have
been characterized from Metarhizium robertsii (MRT) and
Trichoderma virens (TvSUT) and shown to be involved in
sugar uptake from root exudates [71,72]. Although TvSUT
and UmSRT1 are distantly related and involved in differ-
ent interactions, both show a very high specificity for
sucrose, whereas plant SUT's generally transport a broader
substrate range. In arbuscular mycorrhizal (AM) symbio-
sis, sucrose is not generally considered to be taken up by
the mycobiont, but recently a Glomeromycotan SUT
(GiSUC1) was identified from Glomus intraradices EST
contigs [73]. As this field opens up, a novel SUT family from
fungi is emerging. First results suggest that SUTs are
involved in the functionality of both symbiotic and patho-
genic plant-fungal interactions.

Invertases, a group of functionally similar enzymes
which hydrolyse sucrose, shed further light on the question
of fungal utilization of sucrose. Recently, evolutionary
reconstruction of the invertase gene family in numerous
fungal phyla, including species with different nutritional
strategies, revealed the presence of invertase-encoding
genes in all sequenced pathogens, the majority of endo-
phytes, half of the lichen-forming fungi and only a few
ectomycorrhizal fungi (EMF). This highlights a negative
correlation between invertase gene presence and degree of
mutualism [74].

Generally, increased activities of cell-associated inver-
tases have been observed in several pathogenic interac-
tions. Indeed, increased invertase activity and plant
monosaccharide importer expression (STP4 homologues)
may result in limiting access of sugars to pathogens during
plant infection [45,75,76]. So far it has not been possible to
distinguish whether plant- or fungal-invertases contribute
to this increase, but it seems unlikely that the nutritional
demands of the pathogen can be solely supported by the
host enzymatic machinery [77,78]. In BCF—plant interac-
tions, an upregulation of plant photosynthesis is mediated
by enhanced sink activity due to induction of fungal TvInv
and TvSUT in colonized plant tissues [72,79]. The incor-
poration of an intracellular metabolic pathway that facil-
itates sucrose uptake and its cleavage may represent an
evolutionary advantage over fungi missing this machinery,
and could constitute a considerable divergence from path-
ogenic to mutualistic behaviour.

In the majority of AM fungal species, invertase activities
have not been identified and it is assumed that plant-
encoded enzymes catalyze sucrose breakdown. Expression
and activity of all types of plant sucrose cleaving enzymes
appear to be regulated in the presence of AMF [80-84].
Increases in photosynthetic and invertase activity coupled
with higher SUT transcript levels, as well as accumulation
of sucrose and monosaccharides in sink organs indicate a
mycorrhizal-driven stronger sink and sugar allocation to-
ward roots for fungal symbiont development [85,86]. In-
creasing sucrose export by overexpressing SoSUTI1 in
potato increased AM fungal colonization, although only
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in high phosphate conditions [87]. In parallel, limiting
hexose access by the downregulation of invertase activity
in roots led to reduced mycorrhization levels. However, the
inhibition of sucrose export from leaves by a knockdown of
StSUT1, the gene coding for the phloem loading protein in
potato [87], and the increase of hexose levels in tobacco
roots through overexpression of yeast-derived invertases
did not affect fungal colonization [88]. These contradictory
findings suggest that carbon supply through sucrose break-
down is not alone the bottleneck for a functional interac-
tion. This is in-line with the postulate that plants ‘can
detect, discriminate, and reward the best fungal partners
with more carbohydrates; in turn, their fungal partners
enforce cooperation by increasing nutrient transfer only to
those roots providing more carbohydrates’ [89].

Monosaccharide partitioning in plant-fungal
interactions

Sucrose is hydrolyzed evenly, either by plant- or fungal-
invertases, into glucose and fructose at the plant—fungal
interface, but much evidence indicates glucose is preferen-
tially taken up by the mycobiont [7,90].

Among plant pathogens, the first conclusive proof of an
MST role in nutrient uptake at the plant—fungal interface
came from faba-bean rust (Uromyces fabae). A proton-
dependent hexose transporter (UfHXT1), with high affinity
for glucose was localized specifically to specialized infec-
tion structures (haustoria) [91]. Later, an MST (BcFRT1)
from grey mould (Botrytis cinerea) was characterized as
having high affinity for fructose [92], suggesting that path-
ogenic fungi have varied their transport mechanisms to
take up a broader range of plant photosynthates.

Nutrient exchange during mutualistic interactions, and
understanding of its role at the plant—fungal interface, has
attracted much attention in past decades. However, in
EMF, only three MSTs from Amanita muscaria (AmMST1
and AmMST2) and Tuber borchii (TODHXT1) have been
characterized so far [93-95]. These transporters share high
affinity for glucose, but different regulatory systems and
spatial localization. Indeed, while AmMST1 and AmMST2
were stimulated by extracellular monosaccharide concen-
tration and suggested to be targeted at the plant—fungus
interface, Tbhxt1 expression was stimulated during carbo-
hydrate starvation of fungal hyphae and is possibly re-
sponsible for sugars supply to the soil-growing mycelium.
The preferential glucose uptake by these transporters is
consistent with observations in other EMF [7]. Recently,
understanding the mechanisms of sugar transport in EMF
has benefited from the sequenced fungal genomes [96,97].
The Laccaria bicolor genome contains 15 putative MSTs
(LbMSTSs), and transport properties assessed through com-
petition experiments showed glucose as the preferred
monosaccharide substrate [98]. As observed for A. mus-
caria MSTs, the mycorrhizal developmental stage rather
than apoplastic hexose concentration play a key role in
MST regulation. Moreover, expression patterns confirmed
a strong induction under carbon limitation.

Within the Glomeromycotan phylum (AM fungi) the
first symbiosis-related MST was identified in Geosiphon
pyriformis interacting with Nostoc punctiforme. This
unique symbiotic model allowed the isolation of pure
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fungal mRNA which then served to isolate GpMST1 [90].
Information obtained from this model, together with the
available Glomeromycotan genomic data, recently led to
the isolation of three MSTs from the model species G.
intraradices, one of which GiMSTZ2, is characterized as a
high affinity H*/glucose transporter expressed in arbus-
cules and intercellular mycelium [73]. Xylose binding by
GiMST2 and GpMST1 suggest that cell wall monosacchar-
ides may also be a carbon source for AMF [73,90]. Host-
induced gene silencing (HIGS) of GiMST2 resulted in
impaired mycorrhizal formation, malformed arbuscules
and reduced expression of the AM-specific plant phosphate
transporter, M¢PT4. This suggests GIMST2 is the primary
transporter for sugar uptake by G. intraradices and has an
indispensable role in functional symbiosis. Consistently,
on the plant side, an STP member (Mtstl) shows higher
expression levels in arbusculated cortical cells and in
adjacent cells which are frequently in contact with the
intercellular network [99]. By contrast, a second MtMST
candidate (CAD31121)is downregulated in response to AM
(see: http://mtgea.noble.org/v2/) and its protein product
was detected in detergent-resistant membrane fractions
of M. truncatula roots [100]. This suggests that raft-asso-
ciated proteins also play a role in the regulation of trophic
exchanges in mycorrhizal symbiosis.

Future milestones

Recent release of plant and fungal genomes as well as
transcriptomic databases allowed the generation of an
inventory of sugar transporter genes involved in plant—
fungal interactions [96,97,101,102]. Nevertheless, the
transportome puzzle is still far from complete and major
pieces such as the system of cellular efflux at biotrophic
interfaces are still missing, also the regulation of nutrient
exchanges within and between organisms is still poorly
understood. However, increasing application of molecular
and post-genomic methodologies as well as technological
improvements with higher spatial resolution (e.g. laser
capture microdissection technology) are now available
for the detection of nutrients, transcripts and proteins
present at plant—fungal interfaces [103-106]. These recent
technological achievements in model plants associated to
fungal consortia will facilitate comprehensive identifica-
tion of the key nutrient transporters involved in mutualis-
tic and pathogenic interactions.
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Table S1. Detailed information of all sugar transporter genes mentioned in this article

Plant sucrose transporters (SUTs)

Accession number Gene name Organism Transport mode Mutant phenotype

SUTI1 clade
At1g22710 AtSUC2 A. thaliana H+/sucrose symporter Impaired phloem loading [S1]
DQ221698 PsSUF1 P. sativum Sucrose facilitator NA [S2]
DQ221700 PVSUF1 P. vulgaris Sucrose facilitator NA [S2]
CAA57726 SISUT1 S. lycopersicum H+/sucrose symporter Impaired phloem loading [S3]
Q03411 SoSuUT1 S. oleracea H+/sucrose symporter NA [S4]
CAA48915 StSUT1 S. tuberosum H+/sucrose symporter Impaired phloem loading [S5]
SUT3 clade
BAA83501 ZmSUT1 Z. mays H+/sucrose symporter Impaired phloem loading [S6]
SUT4 clade
At1g09960 AtSUT4 A. thaliana H+/sucrose symporter NA [S7]
Q9IM423 HvSUT2 H. vulgare H+/sucrose symporter NA [S8]
CAD61275 LjSUT4 L. japonicus H+/sucrose symporter NA [S9]
BAI60050 NtSUT4 N. tabacum NA NA [S10]
HQ540307 OsSUT2 O. sativa japonica H+/sucrose symporter Growth retardation [S11]
DQ221697 PsSUF4 P. sativum Sucrose facilitator NA [S2]
Increased leaf-to-stem biomass ratios,
HM749900 PtaSuUT4 P. tremula x alba Sucrose transporter z:fgziz]?;:;zlfgggrg;zﬂﬁ;{gg;:ﬁs [S12]
metabolism
Early flowering, higher tuber yields and
AAG25923.2 StSUT4 S. tuberosum H+/sucrose symporter reduced sensitivity toward light enriched in [S13]

Plant monosaccharide transporters (MSTs)

Accession number

Gene name

Organism

Transport mode

far-red wavelength

Mutant phenotype

STP clade
Impaired extracellular response to sugars
At1g11260 AtSTP1 A. thaliana H+/hexose symporter by the embryo and reduced sugar levels in [S14, 15]
seedlings
At1g07340 AtSTP2 A. thaliana H+/hexose symporter NA [S16]
At5g61520 AtSTP3 A. thaliana H+/hexose symporter NA [S17]
At3g19930 AtSTP4 A. thaliana H+/hexose symporter NA [S18]
At1g34580 AtSTP5 A. thaliana Not functional in yeast NA [S19]
At39g05960 AtSTP6 A. thaliana H+/hexose symporter No differences to WT [S20]
At4g02050 AtSTP7 A. thaliana Not functional in yeast NA [S19]
At5926250 AtSTP8 A. thaliana NA NA
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At1g50310 AtSTP9 A. thaliana H+/glucose symporter NA [S21]
At3g19940 AtSTP10 A. thaliana NA NA
At5g23270 AtSTP11 A. thaliana H+/hexose symporter NA [S22]
At4921480 AtSTP12 A. thaliana NA NA
At5g26340 AtSTP13 A. thaliana H+/hexose symporter NA [S23]
Atlg77210 AtSTP14 A. thaliana H+/galactose symporter No differences to WT [S24]
Medtrlg104780 MtHext1 M. truncatula A17 NA NA
Medtr1g038630 M. truncatula A17 NA NA
Medtrlg104750 M. truncatula A17 NA NA
Medtrlg104770 M. truncatula A17 NA NA
Medtr3g007910 M. truncatula A17 NA NA
Medtr3g008160 M. truncatula A17 NA NA
Medtr3g008170 M. truncatula A17 NA NA
Medtr3g023480 M. truncatula A17 NA NA
Medtr3g093010 M. truncatula A17 NA NA
Medtr3g093060 M. truncatula A17 NA NA
Medtr4g090600 M. truncatula A17 NA NA
Medtr4g091370 M. truncatula A17 NA NA
Medtr4g116770 M. truncatula A17 NA NA
Medtr4g116800 M. truncatula A17 NA NA
Medtr5g006070 M. truncatula A17 NA NA
Medtr5g041550 M. truncatula A17 NA NA
Medtr5g082540 M. truncatula A17 NA NA
Medtr5g094760 M. truncatula A17 NA NA
Medtr6g087040 M. truncatula A17 NA NA
Medtr8g102860 M. truncatula A17 NA NA
Medtr8g103010 M. truncatula A17 NA NA
CAD31121 M. truncatula A17 NA NA [S25]
AAB06594 Mtstl M. truncatula 2828 H+/hexose symporter NA [S26]
BAB19862 OsMST1 O. sativa japonica Not functional in yeast NA [S27]
0s03g39710 OsMST2 O. sativa japonica Hexose transporter NA [S27]
0s07g01560 OsMST3 O. sativa japonica H+/hexose symporter NA [S27]
0s08g08070 OsMST5 O. sativa japonica NA NA [S28]
0s019g38670 OsMST8 O. sativa japonica NA NA [S28]
0s01g38680 O. sativa japonica NA NA
0s02906540 O. sativa japonica NA NA
0s029g36420 O. sativa japonica NA NA
0s029g36440 O. sativa japonica NA NA
0s029g36450 O. sativa japonica NA NA
0s03g01170 O. sativa japonica NA NA
0s03g11900 O. sativa japonica NA NA
0s049g37970 O. sativa japonica NA NA
0s049g37980 O. sativa japonica NA NA
0s049g37990 O. sativa japonica NA NA
0s049g38010 O. sativa japonica NA NA
0s04938020 O. sativa japonica NA NA
0s04938220 O. sativa japonica NA NA
0s06904900 O. sativa japonica NA NA
0s07g03910 O. sativa japonica NA NA
0s07903960 O. sativa japonica NA NA
0s07910590 O. sativa japonica NA NA
0s07g37320 O. sativa japonica NA NA
0s09909520 O. sativa japonica NA NA
0s09g12590 O. sativa japonica NA NA
0s099g15330 O. sativa japonica NA NA
0509924930 O. sativa japonica NA NA
0510941190 O. sativa japonica NA NA
0s119g38160 O. sativa japonica NA NA
0s12904640 O. sativa japonica NA NA
AAQ24871 OsMST4 O. sativa indica Hexose transporter NA [S28]
AAQ24872 OsMST6 O. sativa indica Hexose transporter NA [S28]
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Double tmt1-2: growth retardation, impaired
seed quality
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seed quality
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No differences to WT
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NA
NA

No differences to WT
NA

NA

NA

NA

NA

NA

NA

Hypersensitivity to salt stress
NA

NA

NA

Impaired vacuolar sugar fluxes. Increased
sensitivity against external glucose.
Enhanced levels of seed sugars, proteins,
and lipids

No differences to WT
NA
NA
No differences to WT
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
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NA

Reduced root length
No differences to WT
NA

No differences to WT
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NA
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[S45]

[S46]
[S47]
[S47]
[S48]
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Medtr2g026140 M. truncatula A17 NA NA
Medtr2g026160 M. truncatula A17 NA NA
Medtr2g048720 M. truncatula A17 NA NA
Medtr2g049020 M. truncatula A17 NA NA
Medtr3g084110 M. truncatula A17 NA NA
Medtr5g077580 M. truncatula A17 NA NA
Medtr7g005910 M. truncatula A17 NA NA
0s049g41460 O. sativa japonica NA NA
0s04g43210 O. sativa japonica NA NA
0s07g05640 O. sativa japonica NA NA

Fungal sugar transporters

Accession number Gene name Organism Transport mode Mutant phenotype

Fungal sucrose transporters

NP_594387.1 SpSUT1 S. pombe H+/sucrose symporter No differences to WT [S49]
XP_758521.1 UmSRT1 U. maydis H+/sucrose symporter Loss of fungal virulence [S50]
ACS83541.1 MRT M. robertsii Sucrose symporter ;:Iizfjg dt;rsno growth on sucrose and [S51]
CBH19584.1 TvSUT T. virens H+/sucrose symporter Reduced growth on sucrose [S52]
HQ848966 GiSuC1 G. intraradices NA NA [S53]
Fungal monosaccharide transporters
AJ310209 UfHXT1 U. fabae H+/hexose symporter NA [S54]
AAU87358 BcFRT1 B. cinerea H+/fructose symporter Delay in fructose-induced germination [S55]
013411 AmMST1 A. muscaria Hexose transporter NA [S56]
AmMST2 AmMST2 A. muscaria Hexose transporter NA [S57]
AY956320 TbHXT1 T. borchii H+/hexose symporter NA [S58]
AM231332 GpMST1 G. pyriformis H+/hexose symporter NA [S59]
Lower mycorrhization levels, abnormal
HM143864 GiMST2 G. intraradices H+/hexose symporter arbuscule morphology [S53]
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The Medicago truncatula Sucrose Transporter
Family: Characterization and Implication of
Key Members in Carbon Partitioning towards
Arbuscular Mycorrhizal Fungi

Joan Doidy, Diederik van Tuinen, Olivier Lamotte, Marion Corneillat, Gérard Alcaraz and Daniel Wipf"

UMR INRA 1347, Agrosup, Université de Bourgogne, Agroécologie, Pole Interactions Plantes Microorganismes ERL CNRS 6300, BP 86510, 21065 Dijon
Cedex, France

ABSTRACT We identified de novo sucrose transporter (SUT) genes involved in long-distance transport of sucrose from
photosynthetic source leaves towards sink organs in the model leguminous species Medicago truncatula. The iden-
tification and functional analysis of sugar transporters provide key information on mechanisms that underlie carbon
partitioning in plant-microorganism interactions. In that way, full-length sequences of the M. truncatula SUT (MtSUT)
family were retrieved and biochemical characterization of MtSUT members was performed by heterologous expression
in yeast. The MtSUT family now comprises six genes which distribute among Dicotyledonous clades. MtSUT1-1 and
MtSUT4-1 are key members in regard to their expression profiles in source leaves and sink roots and were characterized
as functional H*/sucrose transporters. Physiological and molecular responses to phosphorus supply and inoculation by
the arbuscular mycorrhizal fungus (AMF) Glomus intraradices was studied by gene expression and sugar quantification
analyses. Sucrose represents the main sugar transport form in M. truncatula and the expression profiles of MtSUT1-1,
MtSUT2, and MtSUT4-1 highlight a fine-tuning regulation for beneficial sugar fluxes towards the fungal symbiont. Taken
together, these results suggest distinct functions for proteins from the SUT1, SUT2, and SUT4 clades in plant and in bio-
trophic interactions.

Key words: sugar transport; sucrose transporter; SUT; sugar partitioning; Medicago truncatula; Glomus intraradices.

Afoufa-Bastien et al., 2010; Payyavula et al., 2011), the SUT
family of the model legume Medicago truncatula had not yet
been identified.

Sugars can also be transferred to non-plant sinks and root
colonization by beneficial symbionts constitutes an additional
sugar demand for the host plant (Doidy et al., 2012). Here,
we focused on the model symbiotic interaction between
the model legume M. truncatula and the arbuscular mycor-
rhizal fungus (AMF) Glomus intraradices. Arbuscular mycor-
rhiza (AM) is a mutualistic interaction based on biotrophic
exchanges between the plant and the fungal partners (Smith
and Read, 2008). The fungus supplies the autotrophic host

INTRODUCTION

In plants, sucrose (fructose p2«<1a glucose) constitutes the
main form of carbohydrate for long-distance transport. This
disaccharide is synthesized in the photosynthetic source
leaves and is then loaded into the phloem sap, where the
disaccharide follows its route through the transport phloem.
Finally, sucrose is unloaded to supply sink tissues. Thereby,
sucrose transporters (SUTs also called SUCs; for review, see
Lalonde et al., 2004; Sauer, 2007; Kiuhn and Grof, 2010;
Slewinski and Braun, 2010; Ayre, 2011; Geiger, 2011; Doidy
et al., 2012) are key components of carbon partitioning
from source to sink organs. SUTs are members of the
major facilitator superfamily (MFS) and present a common

"To whom correspondence should be addressed. E-mail daniel.wipf@dijon.

structure with 12 transmembrane domains that are assumed
to form a single pore for sucrose and most SUTs have been
characterized as H*/sucrose co-transporters. Although plant
genome sequencing projects and library analysis led to the
identification of the sucrose transporter family in numerous
reference plant species (Aoki et al., 2003; Sauer, 2007;
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with water and nutrients, mainly phosphate, and thereby
enhances plant growth. In return, the plant provides sugar
photosynthates to the heterotrophic symbiont. Therefore,
root colonization by AMF increases the global sink strength.
Indeed, heterotrophic fungal growth, spore formation, and
respiration as well as increased metabolism in several plant
tissues augment the sugar demand and it has been estimated
that between 4% and 20% of total photoassimilates are redi-
rected towards colonized parts (Douds et al., 2000; Graham,
2000). This increased sink strength is balanced by greater CO,
assimilation and higher photosynthetic rate in source leaves
(Wright et al., 1998; Boldt et al., 2011).

In leaves, sucrose can be loaded actively by SUTs to the
companion cell sieve element complex via the apoplast (for
review of phloem loading strategies, see Rennie and Turgeon,
2009; Eom et al., 2012). Indeed, in apoplastic loading species,
a single protein member of the SUT1 clade is responsible for
the loading of sucrose into the phloem (Zhang and Turgeon,
2009). The down-regulation (Riesmeier et al., 1994; Kuhn
et al,, 1996; Burkle et al., 1998; Schulz et al., 1998; Hackel
et al., 2006) or total gene disruption (Gottwald et al., 2000) of
the phloem loading protein causes sugar accumulation and
chlorotic lesions in source leaves as well as reduced growth
of sink organs and thereby an overall stunted plant growth.
Up to now, a single SUTT knockdown mutant has been inves-
tigated in mycorrhizal conditions; the StSUTT mutation in
potato with impaired sucrose export from source leaves, had
no effect on fungal colonization rates (Gabriel-Neumann
et al., 2011). These results have to be tempered by the obser-
vation of increased sugar transport towards colonized parts
to feed AMF (Wright et al., 1998; Bago et al., 2000; Douds
et al., 2000; Graham, 2000), likely by means of SUTs, which
present differential transcript accumulation in AM condi-
tions (Ge et al., 2008; Boldt et al., 2011; Gaude et al., 2011). In
that way, potato lines overexpressing an orthologous SUT1
gene had higher colonization rates but only when cultivated
under high phosphate supply (Gabriel-Neumann et al., 2011).

At the cellular level, NMR spectrometry experiments
revealed that the fungal intraradical mycelium can take up
hexoses, mainly glucose and to a smaller extent fructose, but
not sucrose (Solaiman and Saito, 1997; Pfeffer et al., 1999;
Bago et al., 2003). Consistently with this, tomato roots colo-
nized by G. mosseae showed a higher accumulation of sucrose
and fructose (Boldt et al., 2011). Indeed, before the transfer
of hexoses at the plant-fungal interface, sucrose is cleaved
by either plant enzymes, sucrose synthase, and/or invertases.
In M. truncatula, a study showed promoter activity of the
sucrose synthase gene (MtSucS7) around internal hyphae
and arbuscules which represent the major fungal structures
for sugar transfer (Hohnjec et al., 2003; Helber et al., 2011).
Furthermore, expression and activity of all types of sucrose
cleaving enzymes appeared to be up-regulated in the pres-
ence of AMF (Wright et al., 1998; Ravnskov et al., 2003;
Garcia-Rodriguez et al., 2007; Tejeda-Sartorius et al., 2008).
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Although sucrose cleaving enzymes are being studied,
the complete sucrose transporter family of the model legu-
minous species M. truncatula is still not identified and the
mechanisms controlling nutrient exchanges in AM sym-
biosis remain to be deciphered. In this work, we report a
comprehensive study of sucrose transporters in M. trunca-
tula (MtSUTs) and their implication in carbon partitioning
towards the fungal symbiont during the AM interaction
with G. intraradices.

RESULTS
The Medicago truncatula SUT Family

In silico screening led to the identification of two genomic
loci (Medtr4g131920.1 and Medtr59g067470.1), one full-
length contig, and three partial ESTs corresponding to
putative MtSUTs (Supplemental Table 1). Furthermore, two
additional accessions were identified in the version 3.5 of the
M. truncatula genome (Young et al., 2011); however, both
open reading frames of these tandem loci are interrupted by
a stop codon and therefore were considered as pseudogenes
encoding for truncated proteins (Supplemental Table 1).
After rapid amplification of ¢cDNA ends (RACE) to amplify
full-length coding sequences, we cloned the MtSUT family
that now comprises six members. The six MtSUTs share an
amino acid similarity ranging from 35% to 77% and common
SUT features with 12 predicted transmembrane domains
(Supplemental Figure 1).

A SUT phylogenetic tree based on the amino acid sequence
alignment of 88 plant SUTs including the newly found MtSUTs
was constructed (Figure 1). The six MtSUTs are distributed in
all Dicotyledonous SUT clades; we thus named the differ-
ent MtSUTs according to their phylogenetic position. Three
MtSUTs belong to the SUT1 clade (MtSUT1-1, MtSUT1-2, and
MtSUT1-3). MtSUT2 is linked to the SUT2 clade, being the
most distant protein due to the longer N-terminal region and
the extended central loop between transmembrane domains
6 and 7 (Supplemental Figure 1), a common trait of the type
IIA members of the SUT2 clade. MtSUT4-1 and MtSUT4-2
belong to the SUT4 clade. So far, duplicated genes in the SUT4

Table 1. Leguminous SUT Properties.

Gene name Km for sucrose Transport Reference
properties

MtsUT1-1 1.7mM (pH 5) Active symporter

GmSUT1 5.6mM (pH4) Active symporter  Aldape et al., 2003

PsSUT1 1.5mM (pH 5.5) Active symporter  Zhou et al., 2007

VFSUT1 ND ND Weber et al., 1997

MtSUT4-1 13.7mM (pH 5) Active symporter

LjSUT4 12.9mM (pH 5) Active symporter  Reinders et al., 2008

PsSUF4 37.8mM (pH 5.5) Facilitator Zhou et al., 2007
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Figure 1. Phylogenetic Tree of the Plant SUT Family. SUT proteins can be divided into the SUT1, SUT2, and SUT4 clades highlighted in colors.
Within the SUT2 clade, type IIA and Monocotylodenous-specific type II1B subclades were separated. The following 88 SUT sequences are included:
Arabidopsis thaliana, nine AtSUTs: AtSUC1 (At1g71880), AtSUC2 (At1g22710), AtSUC3 (At2g02860), AtSUC4 (At1g09960), AtSUC5 (At1971890),
AtSUC6 (At5g43610), AtSUC7 (At1g66570), AtSUC8 (At2g14670), AtSUC9 (At5g06170). Brassica napus: BnSUC2 (ACB47398). Brassica oleracea:
BoSUC1 (AAL58071), BoSUC2 (AAL58072). Daucus carota: DcSUT2 (065803), DcSUT1b (065929). Glycine max, twelve GmSUTs: GmSUT1 (CAD91334),
Glyma10g36200, Glyma02g08250, Glyma02g08260, Glyma02g38300, Glyma04g09460, Glyma08g40980, Glyma16g27320, Glyma16g27330,
Glyma16927340, Glyma16927350, Glyma18g15950. Hevea brasiliensis, six HoSUTs: HbSUT1 (ABJ51933), HbSUT2a (ABJ51934), HbSUT2b (ABJ51932),
HbSUT3 (ABK60190), HbSUT4 (ABK60191), HbSUT5 (EF067333). Hordeum vulgare: HvSUT1 (Q9M422), HvSUT2 (Q9M423). Lotus japonicus: LjSUT4
(CAD61275). M. truncatula, six MtSUTs: MtSUT1-1 (JN255789), MtSUT1-2 (JN255790), MtSUT1-3 (JN255791), MtSUT2 (JN255792), MtSUT4-1
(JN255793), MtSUT4-2 (JN255794). Nicotiana tabacum: NtSUT1 (Q40583), NtSUT3 (Q9XFM1), NtSUT4 (BAI60050). Oriza sativa, five OsSUTs:
OsSUT1 (AAF90181), OsSUT2 (BAC67163), OsSUT3 (BAB68368), OsSUT4 (BAC67164), OsSUT5 (BAC67165). Phaseolus vulgaris: PvSUT1 (ABB30164),
PvSUF1 (DQ221700), PvSUT3 (ABB30166). Pisum sativum: PsSUT1 (AAD41024), PsSUF1 (DQ221698), PsSUF4 (DQ221697). Plantago major: PmSUC1
(CAI59556), PmSUC2 (CAA53390), PmSUC3 (CAD58887). Populus tremula x alba, five PtaSUTs: PtaSUT1 (HM749898), PtaSUT3 (HM749899), PtaSUT4
(HM749900), PtaSUT5 (HM749901), PtaSUT6 (HM749902). Solanum lycopersicum: SISUT1 (CAA57726), SISUT2 (AAG12987), SISUT4 (AAG09270).
Solanum tuberosum: StSUT1 (CAA48915), StSUT4 (AAG25923.2). Sorghum bicolor, six SbSUTs: Sb01g022430, Sb019g045720, Sb04g023860,
Sb04g038030, Sb07g028120, Sb08g023310. Triticum aestivum: TaSUT1A (AAM13408), TaSUT1B (AAM13409), TaSUT1D (AAM13410). Vicia faba:
VfSUT1 (CABO7811). Vitis vinifera: VvSUC11 (AF021808), VvSUC12 (AF021809), VvSUC27 (AF021810), VvSUCy (ADP37124). Zea mays, six ZmSUTs:
ZmSUT1 (BAA83501), ZmSUT2 (AAS91375), ZmSUT3 (ACF86653), ZmSUT4 (AAT51689), ZmSUT5 (ACF85284), ZmSUT6 (ACF85673).

clade were only reported in rubber tree (Hevea brasiliensis) Afoufa-Bastien et al., 2010; Ibraheem et al., 2010). In addi-
and soybean (Glycine max). tion, the intron splicing pattern is well conserved between

Promoterregionsofthetwogenomiclocishowregulatorycis- the SUT1 and SUT4 clade members of M. truncatula, with
elements conserved with previously described sugar transport- MtSUT1-2, MtSUT1-3, and MtSUT4-1 presenting a very well
ers from Arabidopsis, rice, and grape (Supplemental Table 2; conserved motif for exons 3 and 4 (Supplemental Figure 2).
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These features suggests a common origin and evolution of
MtSUTs through gene duplication (Johnson and Thomas,
2007).

Functional Characterization of MtSUTs

The full open reading frames of the six MtSUTs were cloned
into the yeast expression vector pDRf1-GW and transformed
in the yeast mutant strain SUSY7/ura3- suitable for sucrose
uptake characterization (Figure 2). A clear complementation
was obtained for the yeast strains expressing MtSUT1-1 and
MtSUT4-1 when grown on minimal medium with 2% sucrose
as the sole carbon source. Also, yeast expressing MtSUT1-2
and to a smaller extent MtSUTT1-3 showed improved growth
when compared to the control transformed with the empty
vector. MtSUT2 and MtSUT4-2 did not restore the growth of
the mutant strain. The weak growth of strains expressing
MtSUT1-2 and MtSUT1-3 was not increased by the addition of
4% and 10% sucrose (Supplemental Figure 3).

The biochemical characterization of the strongly comple-
menting members, MtSUT1-1 and MtSUT4-1, was performed
by yeast uptake experimentation using radiolabeled ["C]
sucrose. Both transporters present kinetics similar to the pre-
viously characterized plant SUTs. MtSUT1-1 shows an appar-
ent Km for sucrose of 1.7mM whereas MtSUT4-1 has a Km of
13.7mM at pH5 (Figure 3A and 3B, and Table 1). Transport
dependency on membrane potential revealed that both
transporters are H*/sucrose co-transporters, since their trans-
port properties were curbed upon addition of protonophores

MtSUT1-1

MtSUT1-2

MtSUT1-3

MtSUT2

MtSUT4-1

MtSUT4-2

Empty vector

Suc 2%

Glu 2%

Figure 2. Complementation of the Sucrose Uptake Deficiency of the
Yeast Strain SUSY7/ura3-. Serial dilutions of yeast cells were grown
on minimum medium without uracil with 2% sucrose (Suc) or glucose
(Glu, control) as sole carbon source.

Doidy et al. ® The Medicago truncatula Sucrose Transporter Family

and H*-ATPase inhibitors (Figure 3C). Thereby, we report the
first characterization of two M. truncatula SUTs, MtSUT1-1
and MtSUT4-1, as functional H*/sucrose importers.

Substrate competition assays showed that, in addition to
sucrose, only the disaccharide maltose is bound by MtSUT1-1
and MtSUT4-1 (Figure 3D). However, trehalose did not com-
pete with sucrose uptake and therefore seems not to be a pos-
sible substrate for both transporters. The SUT4 clade protein
LjSUT4 and the SUT1 clade protein AtSUC9 have also been
characterized as sucrose and maltose, but not trehalose trans-
porters by heterologous expression in Xenopus laevis oocytes
(Sivitz et al., 2007; Reinders et al., 2008). These findings show
that SUT specificity is tightly modulated among disaccharides.

Expression Analysis of MtSUTs

Transcript accumulation of each member of the MtSUT fam-
ily was analyzed by quantitative reverse transcription PCR
(g-RT-PCR) in plants fertilized with a high-phosphate nutrient
solution. While MtSUT1-3, MtSUT2, MtSUT4-1, and MtSUT4-2
are expressed at a similar level in leaves and roots, MtSUT1-
1 shows a 20-fold higher transcript accumulation in leaves
compared to roots (Figure 4). This information suggests a
major role for MtSUT1-1 in sucrose fluxes from photosyn-
thetic source leaves to the phloem. Furthermore, SUTs were
detected in both sink and source parts. Indeed, transcripts of
the six MtSUT members were present in leaves and root tis-
sues with the exception of MtSUTT1-2 only present in leaves
(Figure 4).

Analysis of M. truncatula Plant Development and
MtSUT Expression under Differential Phosphate
Conditions and upon AM Symbiosis

Plants were cultivated for 4weeks in low-phosphate (LP) con-
ditions in the absence of fungus for control conditions or
upon fungal inoculation of the AMF G. intraradices for AM
conditions (AM). In addition, a second group of control plants
was cultivated in high-phosphate (HP) conditions to balance
the provision of phosphate by AMF. After 28d, no significant
differences (P<0.05) of the measured growth parameters
(Table 2) could be observed between the different experi-
mental conditions. However, the aerial parts of LP plants
showed a reduced growth (P<0.1) compared to that supplied
with HP solution or inoculated by AMF.

The sugar content of source leaves and root compartments
was quantified (Figure 5). Sucrose represents the main sugar
in leaves and roots of M. truncatula. Stachyose and raffinose
were respectively detected at substantial levels in leaves and
root compartments. Trehalose, already known to be a major
form of sugar storage for AMF (Bago et al., 2003), was found
exclusively in mycorrhized roots. A decrease of total soluble
sugars was observed in source leaves in response to AMF
inoculation (Figure 5A); however, only a slight increase in
sucrose could be observed in AM-colonized roots compared
to the HP-treated plants (Figure 5B).
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Figure 3. Biochemical Characterization of MtSUT1-1 and MtSUT4-1.
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(A, B) Uptake kinetics of ['*C]sucrose by the yeast strain SUSY7/ura3- expressing MtSUTT1-1 and MtSUT4-1 at the indicated sucrose concentration at
pH5. Michaelis-Menten and Lineweaver-Burk representation of the data are illustrated.

(©) Influence of plasma membrane energization on the uptake rate of ["“*C]sucrose in the yeast mutant expressing MtSUT1-1 or MtSUT4-1.

(D) Substrate specificity of MtSUT1-1 and MtSUT4-1. (C, D) Data are expressed as percentage of the sucrose control.

MtSUT transcript accumulation of plants cultivated under
differential phosphate supply and upon inoculation of G.
intraradices was analyzed by g-RT-PCR. As MtSUT1-2, MtSUT1-
3, and MtSUT4-2 transcript levels were close to detection
thresholds in all tested conditions (Figure 4), MtSUTI-1,
MtSUT2, and MtSUT4-1 were the candidates retained for
further expression analyses. The expression pattern of the
analyzed MtSUTs shows a fine-tuning regulation in regard to
plant nutritional status and AM inoculation. Indeed, transcript
accumulation of all MtSUTs decreased significantly (Figure 6)
in plants fertilized with 10-times phosphate (HP). In contrast,
all MtSUTs showed a higher transcript accumulation in leaves
of AM plants (Figure 6A) when compared to plants treated
with the same amount of phosphate (LP) or with HP but in
the absence of AMF. Moreover, when compared to the plants

treated with HP, to mimic phosphate allocation of AMF, all
analyzed MtSUTs showed a higher transcript accumulation
in source leaves and sink roots of AM plants (Figure 6).
These findings indicate a higher sucrose export from source
leaves and higher sucrose transfer to the roots when the
sink strength is enhanced by the colonization of AMF. The
strongly complemented candidate MtSUT1-1 (Figure 2),
which presents a high affinity for sucrose (Figure 3A), also
showed the highest transcript accumulation in roots and
leaves of AM plants (Figure 6). In contrast to the phosphate
supply towards the host plant mediated by MtPT4 which
shows a mycorrhizal specific activation of its gene expression,
long-distance transport of sugar from source leaves towards
colonized roots mediated by MtSUTs present a fine-tuning
regulation of their expression profiles (Figure 6).
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MtSUT1-1
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MtSUT2 MtSUT4-1  MtSUT4-2

Figure 4. Analysis of Transcript Level of MtSUT Genes. Quantitative reverse transcription polymerase chain reaction (g-RT-PCR) analysis of MtSUT1-1,
MtSUT1-2, MtSUT1-3, MtSUT2, MtSUT4-1, and MtSUT4-2 in leaves (white bar) and roots (tinted bar) of plants treated with high-phosphate 1.3 mM

conditions (HP). Data are expressed in arbitrary units (a.u.).

Table 2. Growth Parameters at Harvest.

Fresh weight (mg)  Dry weight (mg) Leaf area (cm?)

Leaves

HP 492.8+24.6" 191.6+7.6 9.1+£1.5°
LP 450.8+53.0° 166.2+£25.6 8.0+£0.9°
AM 496.6+12.7° 191.2+£8.0° 9.3+1.6°
Roots

HP 966.0 + 154.5° 177.0+39.2¢

LP 1075.2 +208.0° 193.8+24.5

AM 984.6+48.2° 176.4+18.2¢

Means + standard deviations are shown. Significant differences are
indicated with a letter (P<0.1; n=5).

DISCUSSION

This study reports for the first time the identification of the
MtSUT family that comprises six members that were anno-
tated according to the latest and consistent classification
(Lalonde and Frommer, 2012; Reinders et al., 2012). As Braun
and Slewinski (2009) proposed for the nomenclature of
Monocotyledonous SUTs, we suggest in future work that all
SUTs be named according to this annotation version to avoid
gene confusion and synonymy. In that way, we renamed
MtSut1 (Gaude et al., 2011) as MtSUT4-1 upon phylogenetic
grouping to this particular clade.

MtSUT1-1 and MtSUT4-1, Key Members of the
MtSUT Family

We performed the functional characterization of MtSUTs in
the yeast heterologous system. The key members, MtSUT1-1

and MtSUT4-1, which strongly complement the deficient yeast
strain, are functional transporters and present sucrose uptake
kinetics similar to previously characterized plant SUTs (Sauer,
2007). MtSUT1-1 presents a Km for sucrose of 1.7mM con-
sistent with the saturable high-affinity/low-capacity (HALC)
system, while MtSUT4-1 with a Km of 13.7mM may represent
the low-affinity/high-capacity (LAHC) component as already
reported for SUT4 clade proteins (Weise et al., 2000). These
transport kinetics are consistent with previously character-
ized leguminous SUTs (Table 1) relatively to their phyloge-
netic position (Figure 1).

In parallel, MtSUT1-2, MtSUT1-3, and MtSUT4-2 clustered
with the recently characterized SUFs. In contrast to related
leguminous facilitators which present a complementation of
the yeast mutant when grown on minimal medium containing
4% sucrose (Zhou et al., 2007), the weak growth of strains
expressing MtSUT1-2 and MtSUT1-3 was not increased when
grown on 4% sucrose and MtSUT4-2 showed no transport
capacity (Supplemental Figure 3).

Interestingly, the gene coding for the H*/sucrose
co-transporters MtSUT1-1 and MtSUT4-1 were also shown to
have the highest expression profile among MtSUTs. MtSUT1-1
showed at least a 20-fold transcript accumulation in source
leaves of all culture conditions. In contrast, MtSUT2 allowed
no sucrose transport in yeast but was substantially expressed
in root and leave tissues (Figures 2 and 4). SUT2 clade mem-
bers are in general not able to complement mutant yeast
strain (Barker et al., 2000; Hackel et al., 2006) and were first
described as sugar sensors (Lalonde et al., 1999). However,
AtSUC3 (Meyer et al., 2000) and PmSUC3 (Barth et al., 2003)
are characterized as low-affinity sucrose importers and GFP
fusion experiments showed a SUT2 protein localization

2702 ‘62 13nbny uo 1s9nb Aq /Bio'sfeuinolp.o)xo-ive|dwy/:dny woly papeojumoq


http://mplant.oxfordjournals.org/

ab

o
o)}

o
n

Doidy et al. ® The Medicago truncatula Sucrose Transporter Family

Page 7 of 13

CIHP

B LP
B AV

o
~

Stachyose (ug mg' DW)
o o
no w

4
-

(=]

A
22 141 16 1
1 ab i 14
. 181 A12 ab s
E 1 §1o- b 2 121
o 141 o 10
g | £ 8- E,
2 10 EaN 28
@ @ 6 Q
@ E » 2 61
g 8 44 ©
S 61 3 S 41
w ] (O] L
) 21 N
0 0 0
B
50- 16 - a 18
14 16 1
S 40 s .. 3 S 141
i a
5 8 12 ‘]‘ =1
2 301 2 10; £
2 2 8 219
3 20 3 o g
g 8 5 61
S = 4] 2
w 104 O] w44
21 24
0 0 0

—_
[\V]
—_
(=]

e o =
o> ™ o
ol

QO
e e
o o

o
e
Trehalose (ug mg' DW)
o
~

o
N

Raffinose (ug mg' DW)

o
o

0- 0-

Figure 5. Sugar Content of M. truncatula Leaves and Roots. Quantification of soluble sugars in plants treated with either high-phosphate (HP)
1.3 mM conditions (white bars) or with low-phosphate (LP) 0.13 mM conditions (light tinted bar) or treated with low phosphate and inoculated
(AM) with G. intraradices (dark tinted bar) in leaves (A) and roots (B). Mycorrhization rates of AM plants were estimated to F% 73.3+14.5; M%
51.1£14.4, m% 69.0+£10.4; a% 92.5+1.3; A% 47.4x+13.9. Independent statistical analyses were performed for each sugar, with letters indicating a
statistically significant difference (Student’s t-test, P<0.05 upon accomplishing a Fischer test).

notably to sieve elements of source leaves and in sink root
tips. AtSUC3 expression is induced by physical wounding
(Meyer et al., 2004) and, here, MtSUT2 shows fine expression
tuning according to the plant phosphate status and under
AM inoculation. The exact role of SUT2 clade proteins is still
not deciphered.

Altogether, the high-affinity active transport system
of MtSUT1-1, its expression profile in leaves, and its
phylogenetic position in the SUT1 clade close to the principal
phloem loading orthologs of potato (StSUT1, Riesmeier
et al.,, 1994), tobacco (NtSUT1, Burkle et al., 1998), and
Arabidopsis (AtSUC2, Gottwald et al., 2000) strongly suggest
a potential role for MtSUT1-1 as the protein responsible for
phloem loading in M. truncatula. In addition, MtSUT4-1 also
shows conserved biochemical kinetics with its leguminous
orthologs (Table 1). MtSUT4-1 and LjSUT4 are both H*/
sucrose co-transporters and cluster to a separated branch
encompassing MtSUT4-2 and the facilitator protein PsSUF4
(Figure 1). Numerous proteins of the SUT4 clade localize
at the tonoplast in several species (AtSUC4 and HvSUT2,
Endler et al.,, 2006; OsSUT2, Eom et al., 2011; NtSUT4,

Okubo-Kurihara et al., 2011; PtaSUT4, Payyavula et al.,
2011). MtSUT1-1 and MtSUT4-1 GFP fusions did not allow
us to confirm the localization of these proteins in tobacco
cells (data not shown). Nevertheless, the hypothesis of a
tonoplast localization for MtSUT4-1 is reinforced by the
presence of a dileucine-based motif in the N-terminal region
(Supplemental Figure 1; Larisch et al., 2012), recently shown
to be necessary and sufficient for tonoplast targeting of
numerous plant transporters (Komarova et al., 2012). This
motif is also present in LjSUT4, which is targeted at the
vacuolar membrane (Reinders et al., 2008, 2012).

Fine-Tuning of Sugar Partitioning from Leaves towards
AM Roots

The quantification of sugar content in M. truncatula plants
highlighted the importance of sucrose as the predominant
carbohydrate. AM plants showed lower levels of sucrose,
glucose, and fructose in source leaves, consistently with the
higher sugar export. In all tested conditions, only small vari-
ations of sugar content were measured in sink roots. These
results are in relation to the study of Schliemann et al. (2008)
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Figure 6. Effect of Phosphate Nutrition and AMF on Transcript Level
of MtSUT Genes.

(A) Quantitative reverse transcription polymerase chain reaction
(g-RT-PCR) analysis of MtSUT1-1, MtSUT2, and MtSUT4-1 in leaves.

(B) g-RT-PCR analysis of MtSUT1-1, MtSUT2, MtSUT4-1, and MtPT4
(phosphate transporter) in roots. Plants were treated with either
high-phosphate (HP) 1.3 mM conditions (white bars) or with
low-phosphate (LP) 0.13 mM conditions (light tinted bar) or treated
with low phosphate and inoculated (AM) with G. intraradices (dark
tinted bar). Mycorrhization rates of AM plants were estimated to F%
78.89+7.07; M% 44.41+7.25; m% 56.88+13,49; a% 95.5+4.43; A%
46.03+2.26. Data are expressed in arbitrary units (a.u.). Independent
statistical analyses were performed for each gene, with letters indicat-
ing a statistically significant difference (Student’s t-test, P<0.05 upon
accomplishing a Fischer test).
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showing similar accumulation of sucrose, glucose, and fruc-
tose in M. truncatula roots colonized by G. intraradices and
in control plants fertilized with differential amounts of phos-
phate. In addition, we were able to detect the fungus-derived
metabolite trehalose synthesized from plant hexoses in AM
roots (Bago et al., 2003; Schliemann et al., 2008). In tomato,
contradictory results subsist. Boldt et al. (2011) showed an
increase in root sucrose and fructose consistently with a pref-
erential glucose uptake by the AMF, while similar levels or
even a decrease in all main sugars (sucrose, glucose, and fruc-
tose) is also reported in AM roots (Garcia-Rodriguez et al.,
2007; Tejeda-Sartorius et al., 2008). However, such differences
observed in studies could be explained by different model
plants and AMF species combinations as well as different cul-
ture conditions.

In this study, we focused on MtSUT expression upon
differential phosphate concentration and inoculation of
G. intraradices. MtSUT expression was tightly regulated
according to the plant nutritional status. Indeed, in
HP plants, all MtSUTs transcripts in roots and leaves
accumulated at lower levels. In tomato, SISUT expression
was not regulated when fertilized with 10-fold higher
phosphate concentration (Ge et al., 2008). Moreover, the
expression profile in AM conditions and the addition of
10-fold phosphate in HP conditions showed that MtSUT
expression pattern is not related to the phosphorus supply
by the fungus, but seems rather related to the increase sink
strength upon AM colonization. Indeed, in our study, AM
colonization led to an overall up-regulation of all MtSUTs
in source leaves; in roots, only MtSUT2 did not present a
higher transcript accumulation upon inoculation with G.
intraradices (Figure 6). In tomato, Boldt et al. (2011) also
reported that all SISUT genes are up-regulated in source
leaves of tomato plants, while, in roots, only SISUT7 and
SISUT4 accumulated at higher levels in roots colonized by G.
mosseae compared to non-mycorrhizal control. Thereby, we
confirm a comparable expression profile for M. truncatula
orthologous genes in agreement with the observation
from Boldt et al. (2011) indicating a conserved regulation
pattern for respective solanaceous and leguminous SUTs
in response to colonization by at least two different
glomeromycotan fungi. Nevertheless, using different
Glomus species, Ge et al. (2008) observed a differential
regulation of genes coding for tomato sugar transporters.
These discrepancies could be explained by fine-tuning at
the transcriptional level of sugar transporters, including
SUTs, and sucrose cleaving enzymes by phytohormones,
jasmonic acid being part of the signal cascade regulating
the strength of the mycorrhizal-driven sink (Hause et al.,
2002; Tejeda-Sartorius et al., 2008). Actually, the expression
of MtSUTI1-1, the putative phloem loader, is up-regulated
in cell suspension treated with exogenous jasmonate (see
http://mtgea.noble.org/v2/).
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Proteins necessary for phloem loading are also suggested
to play a role in unloading mechanisms (Geiger, 2011). Indeed,
the antisense inhibition of StSUTT in potato led to lower
tuber yield when phloem unloading towards the sink tuber is
apoplastic (Viola et al., 2001; Kihn et al., 2003) and ZmSUT1
is likely to mediate both import and export for sucrose load-
ing and unloading (Carpaneto et al., 2005; Slewinski et al.,
2009; Geiger, 2011). In our study, MtSUT1-1 showed a higher
transcript accumulation in AM roots; this information could
indicate a further role for SUT1 proteins in phloem unload-
ing towards AM-colonized sink tissues. Moreover, a higher
transcript accumulation was observed for MtSUT4-1 in leaves
upon AM inoculation (Figure 6A) and, recently, proteins from
the SUT4 clade were also shown to play a role in sucrose
export from source leaves (Eom et al., 2011, 2012). MtSUT4-1
is also expressed in roots and promoter-GUS fusion combined
with staining of AM fungal structures showed that this gene
is activated in cortical cells adjacent to arbusculated cells
(Gaude et al., 2011). The vacuolar transporter LjSUT4 is sug-
gested to play a role in sucrose release towards nodules in
plant-rhizobial symbioses (Reinders et al., 2008). SUT4 trans-
porters may be responsible for carbon reallocation of vacu-
olar sucrose storage towards colonized parts during plant
symbioses.

Impaired sink sucrose utilization simulated with MtSucS7
synthase antisense lines resulted in an overall down-regulation
of several carbon-related genes and plants were affected dur-
ing AM colonization, more particularly in the establishment
and maintenance of arbuscules (Baier et al., 2010). However,
increasing available hexoses in roots with plants transformed
to overexpress apoplastic, cytosolic, and vacuolar-located
invertases did not show an increase in fungal growth, colo-
nization rate, or fungal sugar content, whereas plant with
decreased invertase activity showed diminished mycorrhi-
zation rates (Schaarschmidt et al., 2007). Moreover, mono-
saccharide as well as sucrose transporters show differential
regulation of their gene expression in response to AM inoc-
ulation (Figure 6; Harrison, 1996; Garcia-Rodriguez et al.,
2005; Wright et al., 2005; Ge et al., 2008; Boldt et al., 2011;
Gabriel-Neumann et al., 2011; Gaude et al., 2011; Hogekamp
et al., 2011). In contrast to phosphate transfer generated
by the phosphate transporter MtPT4, which represents a
clear ‘switch’ marker of trophic exchanges in AM symbiosis
(Figure 6B; Harrison et al., 2002; Javot et al., 2007), carbon
partitioning towards AM-colonized roots involves fine modu-
lation of plant sucrose cleaving enzymes and sugar transport
proteins.

In conclusion, the present study shows for the first time
the identification of the SUT family of the model legume M.
truncatula. Biochemical characterization and transcript accu-
mulation analyses revealed that MtSUT1-1 and MtSUT4-1 are
key H*/sucrose symporters. Expression study and sugar quan-
tification under differential nutritional conditions and upon
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mycorrhizal inoculation suggest distinct functions for proteins
from different SUT clades in source leaves and AM-colonized
sink organs. The properties of MtSUTs give new insight into
the conservation of transport kinetics among leguminous
SUTs as well as conservation of expression patterns for respec-
tive orthologs in response to AM symbiosis.

METHODS

Cultivation and Inoculation of Plant Material

Seeds of M. truncatula J5 were surface-sterilized and germi-
nated on 0.7% sterile agar for 3d in darkness at 25°C. Then,
plantlets were transferred in 75ml of a sterile mix (2:1) of
Terragreen (QilDri-US special, Mettman) and Epoisses soil
(non-mycorrhized plants) or a in mix (2:1) of Terragreen and
Epoisses soil base of G. intraradices BEG141 inoculum (syn.
Rhizophagus sp., D. Redecker, personal communication).
Plants were grown under controlled conditions (420 .E m=2s™"
for 16h of light; 24 and 19°C day and night temperature,
70% humidity), watered daily with distilled water, and sup-
plemented twice a week with 5ml modified Long Ashton
solution (double quantity of nitrate KNO; and 1/10 quantity
of phosphate NaH,PO,=0.13mM phosphate) for LP control
plants and mycorrhized plants and with 5ml modified Long
Ashton solution (double quantity of nitrate and 1.3mM
phosphate) for HP control plants (Hewitt, 1966). Plants were
harvested at 28d post inoculation (dpi); mature leaves and
root materials were rinsed with distilled watered and dried
with paper. Materials for molecular analyses and sugar con-
tent quantification were frozen in liquid N, upon harvest and
stored at -80°C.

Growth Parameter Measurements

Before harvest, digital pictures of the plants were taken and
the total leaf surface was estimated using Visilog 6.8 (Noesis).
At harvest, five plants of each treatment were separated into
shoots and roots, and fresh weight was directly monitored.
Dry weight of shoots and roots was measured after drying
the material at 55°C for 3d.

Root staining was performed according to Vierheilig et al.
(1998) and mycorrhizal rates were estimated as described
by Trouvelot et al. (1986) and calculated with the Mycocalc
software (http://www2.dijon.inra.fr/mychintec/Mycocalc-prg/
download.html).

Sequence Identification and Cloning

Putative MtSUT sequences were screened from the M. trunca-
tula genome version 3.5 (www.medicagohapmap.org/index.
php; Youngetal.,2011)andfromthe DFCl Medicago Gene Index
(http://compbio.dfci.harvard.edu/cgi-bin/tgi/gimain.pl?gudb=
medicago) with a blast of previously published plant SUT
sequences. For partial sequences, full-length ¢cDNA was
obtained with the 5’ and 3’ GeneRacer™ Kit (Invitrogen)
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according to the manufacturers’ instructions using EST-specific
primers (Supplemental Table 3) and mRNA (250ng) from M.
truncatula roots and leaves purified by the means of the
Dynabeads® mRNA Purification Kit (Invitrogen). PCR prod-
ucts were cloned into the pCR®2.1-TOPQ® (Invitrogen) and
sequenced. Specific primers (Supplemental Table 3) were
designed for full-length cDNA amplification and were puri-
fied using the Qiaquick® purification kit (Qiagen). Subsequent
cloning steps into the entry pDONR™221 (Invitrogen) and
destination yeast expression pDRf1-GW vectors (Loqué et al.,
2007) were carried out using the Gateway® Technology with
Clonase™ II (Invitrogen).

Functional Analysis of Sucrose Transporters

Respective MtSUTs cloned in the pDRf1-GW vector and
empty vector control pDRf1 (Loqué et al., 2007) were
transformed according to Gietz and Schiestl (2007) into
Saccharomyces cerevisiae strain SUSY7/ura3- (Riesmeier
et al., 1992; Barker et al., 2000) and plated on minimal selec-
tive glucose (2%) medium without uracil (SDura-). Correct
incorporation of the plasmid was checked by sequencing
after yeast colony PCR.

Drop test complementation assays were performed on
minimal selective sucrose (2%) medium without uracil by
pipetting a 3-ul sterile water drop containing respectively 104,
103, and 10? yeast cells per drop. A 3-ul drop containing 103
yeast cells per drop was deposited on SDura- as a loading con-
trol. Plates were incubated at 30°C, 20d on sucrose medium,
5d for the glucose control.

For uptake assays, single yeast colonies were grown in
liquid SDura- to logarithmic phase. Cells were harvested
at an ODg,, of 0.5, washed twice in sterile water, and
re-suspended in 50mM, pH5, NaPi buffer to a final ODg,
of 5. Prior to the uptake measurements, cells were ener-
gized with 10mM glucose and incubated for 5min at 30°C.
To start the reaction, 100pul of this cell suspension was
added to 100 ul of NaPi buffer containing 7.5kBq of ['*C]
sucrose, and unlabelled sucrose to the concentrations used
in the experiments. 50 ul aliquots were removed over 3min
and transferred in 4ml of ice-cold NaPi buffer. Cells were
vacuum-collected onto GF/C microfiber filters (Whatman)
and washed twice with 5ml of NaPi buffer. Inhibitor assays
were performed with the addition of inhibitors 30 s prior the
incubation time. Inhibition of 500 uM ["“C]sucrose uptake
(control) by the addition of 50uM respective inhibitors:
protonophores carbonyl cyanide m-chlorophenylhydrazone
(CCCP), 2,4-dinitrophenol (DNP), and the plasma membrane
H*-ATPase inhibitors diethylstilbestrol (DES) and vanadate
were tested. For sugar specificity, inhibition of 500 uM ["*C]
sucrose uptake (control) by a 10-fold molar excess of com-
peting sugars: glucose, fructose, trehalose, or maltose was
used. For all uptake experiments, [“C]sucrose uptake was
radio-assayed by liquid scintillation counting and three bio-
logical replicates were performed.
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Gene Expression Analysis

Total RNA was extracted from roots and mature leaves har-
vested at 28dpi using the SV Total RNA Isolation System
(Promega) and eluted in RNAse-free water. RNA quality was
checked by gel electrophoresis and quantity measurements
were performed with a NanoDrop (Thermo Scientific). cDNA
was produced with oligo(dT),s and SuperScript®Ill Reverse
Transcriptase (Invitrogen) using 1ug of RNA. Thereafter,
cDNA template was diluted 40 times.

Quantitative real-time PCR reactions were performed
in a finale volume of 15ul using Absolute SYBR green
ROX Mix (Thermo Scientific), 70nM of gene-specific prim-
ers (Supplemental Table 3), and 2ul of ¢cDNA template in
an ABI Prism 7900HT Sequence Detection System (Applied
Biosystems). Reaction conditions were set as 95°C for 15min
and 40 cycles of 95°C for 15s, 60°C for 30s, and 72°C for 30s.
Three biological and three technical repetitions were per-
formed. To check the absence of nonspecific amplicons, dis-
sociation curves were generated at the end of the PCR cycles
by heating the PCR products from 70 to 95°C. Primer pair
efficiency (90%-110%) was estimated for all primer pairs by
serial dilutions of the cDNA. RNA samples were checked to
exclude genomic DNA contamination and no-template con-
trols were used for each primer pair.

All data were analyzed using the SDS 2.3 software (Applied
Biosystems) with a threshold of 0.25 to obtain cycle thresh-
old values. Values were normalized (ACt) to the constitutively
expressed translation initiation factor (MtTef1a, Baier et al.,
2010) and expression coefficients were calculated (2-2<).

Analysis of Soluble Sugars

Samples were ground in liquid nitrogen followed by 1d of
lyophilization. The lyophilized powder (60mg) was treated
for 30min by liquid extraction with 1ml 80% (v/v) ethanolic
solution in an ultrasonic bath at 80°C. After centrifugation
(10min at 150009g), 10ul of supernatant were injected on
an ICS 3000 Dionex instrument (Dionex) and sugar content
was assessed by high-performance anion exchange-pulsed
amperometric detection (HPAE-PAD) using a guard and
analytical column CarboPac PA100 (Dionex) according to
Dionex instructions (Dionex application note 122 [2004]). Five
biological repetitions were performed.

Phylogenetic Analyses

Alignment of amino acid sequences of 88 plant SUTs was
performed with Mafft version 6 (Katoh and Toh, 2008) and
maximum parsimony analyses were performed using PAUP
4.0b10 (Swofford, 1998). Heuristic tree searches were exe-
cuted using 1000 random sequence additions and the tree
bisection-reconnection branch-swapping algorithm with
random sequence analysis. The complete alignment was
based on 730 sites; 513 were phylogenetically informative.
Unrooted tree was displayed on Dendroscope2.7.4 (Huson
et al., 2007).
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Accession Numbers

Accession numbers of the sequences reported in this paper
have been submitted to GenBank (www.ncbi.nlm.nih.gov/):
MtSUT1-1 (JN255789), MtSUT1-2 (JN255790), MtSUT1-3
(JN255791), MtSUT2 (JN255792), MtSUT4-1 (JN255793),
MtSUT4-2  (JN255794), Pseudogenel (JN255795), and
Pseudogene2 (JN255796).
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