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Abstract

This thesis is concerned with open quantum systems, and more specifically, quantum impu-
rity models. By this we mean a small local quantum system in contact with a macroscopic
non-interacting environment. This can be used to model individual impurities in metals
and quantum information systems where the influence from the surrounding environment
is not negligible. The numerical renormalization group (NRG) is the traditional method
to study quantum impurity models. However its application is limited when dealing with
real-time dynamics and bosonic systems. In recent years some of NRG’s techniques have
been introduced to the density matrix renormalization group method (DMRG), which itself
is the most powerful numerical method to study one-dimensional quantum systems. The
resulting method shows great potential, and this thesis explores and extends the power of
the NRG+DMRG combination in treating open quantum systems.

We focus mainly on two types of problem. The first is an open quantum system with
a time-dependent Hamiltonian, which for example could be the theoretical description of
various problems encountered in qubit manipulation. We combine NRG discretization
and adaptive time-dependent DMRG (t-DMRG) to study the dissipative Landau-Zener
problem. We also use this method to study the quantum decoherence process and the
dynamical properties of the telegraph noise model. The results show that the NRG and t-
DMRG combination is a fast, accurate and versatile method for such problems. The second
type of problem we study involves the quantum critical properties of one- and two-bath
spin-boson models. Unlike fermion and spin models, models with bosons are difficult to
treat numerically as each boson basis has an infinite number of dimensions. By introducing
the optimal boson basis into the variational matrix product state method (VMPS), which
is a variant of DMRG, we can deal with an effective local boson basis as large as 1010. This
is the crucial improvement over NRG which can only deal with at most a few dozen local
basis states. With this powerful tool we have settled a controversy about the nature of the
quantum phase transition in a sub-Ohmic spin-boson model regarding quantum to classical
mapping. There, NRG fails to yield the right result due to the highly truncated local boson
basis. We also explore the phase diagram of the two-bath spin-boson model and find a new
critical phase. We demonstrate that NRG+VMPS with optimal boson basis represents a
powerful setting to study quantum impurity models with a bosonic environment.
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Zusammenfassung

Diese Dissertation handelt von offenen Quantensystemen, mit Spezialisierung auf Quan-
tenstörstellenmodelle. Diese sind kleine lokale Quantensysteme, die im Kontakt mit einer
makroskopischen nichtwechselwirkenden Umgebung stehen. Sie sind nützlich, um einzelne
Störstellen in Metallen und Quanteninformationssystemen zu untersuchen, bei denen der
Einfluss der Umgebung nicht vernachlässigbar ist, und deren Beschreibung im Falle einer
starken Ankopplung über eine einfache perturbative Beschreibung hinausgeht. Die nu-
merische Renormierungsgruppe (NRG) ist eine Standardmethode für die Untersuchung
von Quantenstörstellenmodellen. Allerdings kann sie nur begrenzt auf dynamische Systeme
und Systeme von Bosonen angewendet werden. In den letzten Jahren wurden einige NRG
Methoden auf die Dichtematrix Renormierungsgruppe (DMRG) übertragen – eine mächtige
quasi-exakte numerische Methode für die Untersuchung eindimensionaler Systeme. Die
Kombination beider Methoden (NRG+DMRG) bietet daher einen breiten starken Rah-
men, der in dieser Dissertation auf offene Quantensysteme angewendet wird.

Der Schwerpunkt liegt dabei auf zwei Arten von Problemen. Der erste Schwerpunkt
bezieht sich auf offene Quantensysteme. Dies spielt eine wichtige Rolle in der theoretis-
chen Beschreibung von Problemen in Bezug auf qubit Manipulation. Wir kombinieren die
NRG Diskretisierung und die adaptive zeitabhängige DMRG (t-DMRG), um das dissipa-
tive Landau-Zener Problem zu untersuchen. Wir nutzen diese Methode ebenfalls, um die
Quantendekohärenz und dynamische Eigenschaften von Telegraphrauschmodellen zu unter-
suchen. Die Ergebnisse belegen, dass die NRG und t-DMRG Kombination eine schnelle,
genaue und vielseitige Methode für solche Probleme darstellt. Der Zweite Schwerpunkt
handelt von kritischen Quanteneigenschaften von Spin-Boson Modellen mit einem, bzw.
zwei Bädern. Anders als bei fermionischen und Spinmodellen ist es schwierig, Modelle
mit Bosonen numerisch zu beschreiben, da jedes Boson bereits eine unendliche Anzahl
an Zuständen hat. Indem wir die optimale Bosonenbasis in eine Art von DMRG, die
variationelle Matrixproduktzustandmethode (VMPS), einführen, können wir eine effektive
lokale Bosonenbasis der Größenordnung 1010 erreichen. Dies ist eine enorme Verbesserung
gegenüber der NRG, die höchstens einige Dutzend lokale Basiszustände beschreiben kann.
Mit diesem mächtigen Werkzeug konnten wir die Kontroverse über die Art des Quanten-
phasenübergangs in einem sub-ohmschen Spin-Boson Modell auflösen. NRG kann in diesem
Fall wegen der stark reduzierten lokalen Bosonenbasis keine korrekten Vorhersagen liefern.
Wir untersuchen ebenfalls das Phasendiagramm des Spin-Boson Modells mit zwei Bädern
und finden eine neue kritische Phase. Wir zeigen, dass NRG+VMPS mit der optimalen
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Bosonenbasis eine mächtige Methode für die Untersuchung von Quantenstörstellenmodellen
in einer bosonischen Umgebung darstellt.



Chapter 1

Introduction

An open quantum system is a general term that describes a quantum system interacting
with an effective non-interacting macroscopic environment. If the quantum system com-
prises only a small number of degrees of freedom, it is also called a quantum impurity
system or dissipative quantum system depending on the nature of the system or the per-
spective of the study. Fig. 1.1 shows two scenarios of open quantum systems: the magnetic
impurity inside a metal which causes the Kondo effect [5, 47] and the experimental setup
of a quantum bit which suffers from environmental noises [17]. Many theoretical models
have been proposed to describe open quantum systems, such as the Kondo model, the
Anderson impurity model [5] and some models we will study in this thesis, namely the res-
onant level model [33, 52], the spin-boson model [52] and the telegraph noise model [67].
These open quantum models play an important role in many branches of modern physics
like condensed matter physics, quantum information theory, quantum optics, quantum
measurement theory, etc.

There are numerous theoretical techniques to study these open quantum models such
as perturbation theory, density matrix theory, Green’s functions etc. However due to the
many-particle nature of the full system, except for a few of the simplest models, analytical
methods often involve approximations which either restrict their usage to some special
cases or may make it difficult to differentiate features from the model itself or from the
approximations made during the analytical study. Therefore a generally applicable, first
principle numerical method is desirable as an alternative to the analytical approach to
understand the diverse problems commonly encountered in the research area of nano-
technology and quantum information. This is the direction I will try to explore in my
thesis.

The earliest and still one of the most important numerical methods to study open
quantum systems is the numerical renormalization group method (NRG) [110, 48]. It was
originally invented in the 1970s by Kenneth Wilson to solve the Kondo problem which
could not be achieved by any analytical methods such as perturbation theory at that time.
After its initial success on the Kondo problem, NRG has been extended to solve other
open quantum models and problems other than thermal dynamic properties [19, 43, 101,
63, 28, 18, 48, 9, 37, 4, 10, 59] and has been a standard tool for many decades in this field.
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Figure 1.1: Two scenarios of open quantum systems. (a) The coupling between the
magnetic impurity with the conduction electrons inside a metal causes the Kondo effect
which appears macroscopically as a logarithmic increase of resistivity at very low temper-
ature. The figure is from Ref. [22]. (b) Scanning micrography of a superconducting flux
qubit. Similar experimental realizations of qubits all suffer from the destructive noise of
the surrounding environment. The image is from Ref. [17].

In addition to its numerical nature, NRG also provides an extremely systematic approach
to quantum impurity models through its innovative approach based on renormalization.
Finite-size spectra as well as fixed-point spectra can be used to drive effective models which
are again amenable to analytical work.

Even though NRG has been successfully extended to study many other open quantum
systems it is not applicable to one-dimensional real-space lattices. Twenty years after the
invention of NRG Steven R. White, who was a PhD student of Wilson, proposed a new
numerical method – the density matrix renormalization group method (DMRG), to solve
one-dimensional lattice systems [105, 103]. Though inspired by NRG, the idea behind the
new method was very different. In fact as was only made clear later, unlike NRG it is not
a true renormalization group method, but a variational one instead.

DMRG quickly became popular because of its unprecedented accuracy to study the
ground state and low lying states of 1D quantum lattice systems [109, 84, 71, 8, 68, 41, 58].
It has also been extended in two directions: one is to dynamical properties [34, 72, 49, 40]
and thermodynamical properties [13, 99]; the other is to generalize DMRG to other systems
such as 2D or 3D systems [62, 106, 36, 114], to momentum space [113, 61], or quantum
chemistry systems [26, 104, 21]. The performance of DMRG in these systems is not as
good as on simple real space 1D lattice systems. However, it serves as an inspiring starting
point of a new generation of algorithms to deal with more complicated systems, collectively
know as tensor network methods [56, 94, 92, 93, 53, 32, 88, 44, 78, 25, 54, 42, 115]. The
field it has opened is one of the most exciting areas in condensed matter physics, quantum
information and even high energy physics [73, 86].

During the development of DMRG people also got a deeper understanding of why
DMRG works so well with some systems (1D nearest neighbor lattice system) but becomes
expensive when dealing with other systems (2D/3D system). The breakthrough was the
realization that the wave function DMRG generates has the representation of a matrix
product state, and that DMRG can be reformulated as a variational matrix product state
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method (VMPS) [66, 89, 91, 69].
VMPS has a clear mathematical structure. While DMRG experts use VMPS language

to understand some theoretical aspects of DMRG, physicist in the field of quantum in-
formation also started using MPS framework to study problems related to the classical
simulation of quantum systems. There “classical simulation” means to use a classical
computer to simulate, or in the language of computational complexity theory, to use a
deterministic Turing machine to simulate. By studying the classical simulation of quan-
tum systems, one can understand better the advantage of quantum computers [27, 23]. If
there exist algorithms for classical computers to simulate any quantum systems efficiently
(in polynomial time), then the advantage of quantum computers over classical computers
would vanish and the computational complexity class BQP (bounded error quantum poly-
nomial time) would be equal to P (polynomial time). Otherwise, those quantum systems
turn out to be difficult to simulate on classical computers, and would be good candidates
to harness the power of quantum computing.

In 2003, Vidal proposed the time-evolving block decimation algorithm (TEBD) [94], and
proved that any quantum system with a limited amount of entanglement could be simulated
with TEBD. Therefore, one should choose those highly entangled quantum systems to build
a quantum computer. Interestingly on the other hand, lots of systems in condensed matter
physics are only weakly entangled according to TEBD’s standard, which means TEBD
could be used to simulate the dynamics of such systems. Daley et al. and White et al.
incorporated TEBD into DMRG, and proposed the adaptive time-dependent DMRG (t-
DMRG) [20, 108] to simulate the real-time dynamics of quantum 1D system with nearest
neighbor interactions.

MPS is not only a bridge between quantum information and condensed matter physics,
it also connects two powerful numerical methods mentioned above: NRG and DMRG.
In 2005, Weichselbaum et al. showed that NRG can also be formulated in the MPS
representation and it shares lots in common with DMRG in this language [100]. This is a
key argument why we could use DMRG/VMPS to study quantum impurity models.

A key benefit to use DMRG to study open quantum systems is that we can directly
apply t-DMRG and other existing DMRG techniques. NRG has also been extended to
study the dynamics of open quantum systems (TD-NRG) [3], but it is only restricted
to the quenched type time-dependence of the Hamiltonian while t-DMRG can treat the
Hamiltonian with arbitrary time-dependence. The second benefit is that DMRG/VMPS
uses a variational approach to calculate the ground state, which makes it more flexible to
explore new ideas. More specifically, in this thesis only the use of DMRG/VMPS allowed us
to employ non-logarithmic discretization and the optimal boson basis, which were crucial
to the success of the projects presented in this thesis.

Overall, this thesis is organized as follows. In chapter 2 I will review the numerical
methods used in this thesis: NRG, DMRG, t-DMRG and VMPS. As a benchmark, we
then first study an exactly solvable time-dependent open quantum system problem with
DMRG in Chap. 3. It is a resonant level model with a Landau-Zener type time-dependent
external potential. In Chap. 4, we introduce an optimal boson basis to VMPS, which allows
us to effectively handle up to 1010 local boson states, and use VMPS to study the phase
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diagram and critical behavior of one- and two-bath spin-boson models. In Chap. 5, we study
several dynamical properties of the quantum telegraph noise model. In the appendices, I
will briefly introduce two open source programs we developed for the projects in this thesis.



Chapter 2

DMRG, NRG and VMPS

In this chapter I will review the numerical methods used in this thesis. As there are already
extensive reviews for each of these methods, the main purpose of this chapter is not to
cover every aspect of these methods, but rather to concentrate on the most essential and
relevant parts to make the thesis self-contained. I will first introduce NRG, DMRG and
t-DMRG separately and then introduce the matrix product state representation to connect
NRG and DMRG within the framework of VMPS.

2.1 NRG

The Numerical Renormalization Group (NRG) [110, 48, 9] is a very general method to
study open quantum systems. There is no restriction on the nature of the impurity (sys-
tem). Regarding the bath (environment), it can be fermions, bosons or both; it can be
one-, two- or three-dimensional. NRG does have one restriction on the bath: it should
consist of effective noninteracting particles. For a noninteracting bath, the real dimension
is irrelevant because its degree of freedom can be integrated out and all the relevant bath
properties to the impurity are captured in the spectral function of the bath ∆(ω), with the
energy ω its only remaining parameter. NRG coarse-grains the continuous bath spectral
function logarithmically, maps this onto a semi-infinite chain of sites with exponentially
decaying coupling, then diagonalizes the Hamiltonian of the whole system iteratively. In
the following I will explain these steps in detail.

2.1.1 Logarithmic discretization

To calculate the influence of the bath on the impurity in a numerical setting, the continu-
ous bath spectral function is first discretized logarithmically. There are two main reasons
for using logarithmic discretization in NRG. First, the relevant energy scale can be ex-
ponentially low, and logarithmic discretization makes sure that small energy scales can
be reached within a small number of energy intervals. If one uses linear discretization,
one would need an impractically long chain. The second reason is that logarithmic dis-
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cretization (with large enough logarithmic discretization parameter Λ defined in Eq. 2.1)
separates consecutive energy scales, so that discarded high-energy states of a given NRG
iteration have limited effect on the following iterations.

Suppose the band-width of the bath is [−1, 1], in other words the bath spectral function
is defined in the interval [−1, 1] and all energies are taken in units of the bandwidth. Ac-
cording to logarithmic discretization, we discretize the band in energy space by consecutive
intervals determined by the following positions

ωn = ±Λ−n, n = 1, 2, · · · , (2.1)

where Λ > 1 is a dimensionless parameter, called the logarithmic discretization parameter.
The width of each energy level θn = |ωn+1−ωn| is 1/Λ of the previous level, so we get finer
and finer energy resolution when we approach ω = 0. The spectral function of a bosonic
bath is defined in [0, ωc]. Usually the cut-off frequency ωc is set to 1 as the unit of energy.
For the bosonic bath we only use the positive part of Eq. (2.1).

After cutting the continuous spectral function into slices we calculate the effect of
each of them on the impurity. Clearly, using a single energy level to represent a whole
energy slice, is a crude approximation for high energy slices as they cover a wide range
of energies. Nevertheless it is still used because NRG is traditionally a tool to study the
low temperature properties where the most important part of the bath spectral function
lies at small energies around ω = 0. When one does need to represent the high energy
part of the band properly, one can resort to the “z-averaging” technique to improve this
approximation [98]. The basic idea behind this is a shift in the discretization of Eq. (2.1),
with an additional parameter z,

ωn = ±Λ−n+z, n = 1, 2, · · · , z ∈ [0, 1). (2.2)

For each choice of z we cut the band at different positions, and when z = 0 it is equivalent
to Eq. (2.1). One can chose several equality spaced z values and calculate the problem
separately, after which an averaging of the independent results is performed to reduce the
artifacts caused by the inaccurate representation of the band especially at the high energy
part. Thus the method got the name “z-averaging”.

As the most important part of this thesis refers to the spin-boson model, I will use it
as an example in the following. The original continuous Hamiltonian is

H = Hloc +

∫ 1

0

ωa†ωaωdω +
σz
2

∫ 1

0

[ρ(ω)]1/2λ(ω)(aω + a†ω)dω, (2.3)

where
Hloc = −∆

σx
2

+ ε
σz
2

(2.4)

describes the local Hamiltonian. ε(∆) stands for the Zeeman splitting in an actual magnetic
field in the z- (x-) direction. ρ(ω) is the density of states, and λ(ω) describes the coupling
strength between the spin and the bath. By definition, its relation to the bath spectral
function is

J(ω) = πρ(ω)[λ(ω)]2. (2.5)
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The boson operators a†ω and aω satisfies commutation relation

[aω, a
†
ω′ ] = δ(ω − ω′). (2.6)

The effect of the bath on the impurity is fully determined by the spectral function J(ω).
Therefore, we are free to choose an arbitrary form of density of states ρ(ω) and the cor-
responding λ(ω) as long as Eq. (2.5) is satisfied. The integrals in the Hamiltonian. (2.3)
can be carried out in each energy intervals. With this, we transform the Hamiltonian (2.3)
into the discretized form

H = Hloc +
∞∑

n=0

ξna
†
nan +

σz
2
√
π

∞∑

n=0

γn(an + a†n), (2.7)

with

γ2
n =

∫ Λ−n

Λ−(n+1)

J(ω)dω, (2.8)

ξn = γ−2
n

∫ Λ−n

Λ−(n+1)

J(ω)ωdω. (2.9)

The standard parametrization of the bosonic bath spectral function is

J(ω) = 2παω1−s
c ωs. (2.10)

The cut-off frequency is set as the unit of energy ωc = 1. Substituting Eq. (2.10) into
Eq. (2.8) and Eq. (2.9) we get:

ξn =
s+ 1

s+ 2

1− Λ−(s+2)

1− Λ−(s+1)
Λ−n, (2.11)

γ2
n =

2πα

s+ 1
(1− Λ−(s+1))Λ−n(s+1). (2.12)

2.1.2 Iterative diagonalization of the Wilson chain

The discretized Hamiltonian Eq. (2.7) is of a “star structure”: the spin couples to boson
modes of all energy scales. To adapt to later renormalization step, it is necessary to
transform this star structure into a half-infinite chain form with only nearest neighbor
interaction. This form is called the “Wilson chain” in NRG.

The star Hamiltonian is in a bilinear form. Therefore we can express the bath and
coupling part as a matrix with ~a = (σz, a0, a1, a2, · · · )T as the base vector. Then the star
Hamiltonian is

H = Hloc + ~aTA~a, (2.13)



8 2. DMRG, NRG and VMPS

where the matrix A is

A =




0 γ0
2
√
π

γ1
2
√
π

γ2
2
√
π
· · ·

γ0
2
√
π

ξ0 0 0
γ1

2
√
π

0 ξ1 0
γ2

2
√
π

0 0 ξ2

...
. . .



. (2.14)

In its matrix form, transforming the Hamiltonian to the Wilson chain mathematically
means to tri-diagonalize A. We can use standard numerical routines like Lanczos for tri-
diagonalizing a Hermitian matrix. Suppose the resulting tri-diagonal matrix is B, with the
corresponding unitary transformation matrix U , then with

A = U †BU, (2.15)

we can define a new set of boson operators

~b ≡ (σz, b0, b1, b2, · · · ) = U~a, (2.16)

and express the Hamiltonian with the new boson sites as

H = Hloc + ~aTA~a

= Hloc + ~aTU †BU~a

= Hloc +~bTB~b, (2.17)

or explicitly as

H = Hloc +

√
η0

π

σz
2

(b0 + b†0) +
∞∑

n=0

εnb
†
nbn +

∞∑

n=0

tn(b†nbn+1 + b†n+1bn), (2.18)

where η0 =
∫
J(ω)dω encodes the overall coupling between impurity and bath. The boson

energies εn and the hopping amplitudes tn decay exponentially as Λ−n. This is characteristic
of the bosonic bath. For a fermionic bath, the decay rate is Λ−n/2. Eq. (2.18) is the Wilson
chain Hamiltonian. It is a semi-infinite 1D lattice with the impurity at one end. The
energy scale decays exponentially as one proceeds along the chain. The Wilson chain is
consistent with the fundamental idea behind the renormalization group that the various
energy scales are only locally coupled. More specifically, a physical process happening at
a certain energy scale only directly couples to its nearby energy scales which also implies
that the process at any energy scales may or may not have effect on a process at an energy
scale far away from it (relevant and irrelevant operators are related with this phenomenon)
[110]. Also note that the transformation from the star geometry to the Wilson chain is
numerically exact.
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The basic process of NRG is as follows: we can view the Wilson chain Hamiltonian
Eq. (2.18) as the limit of a series of Hamiltonians with better and better description of
smaller and smaller energy scales

H = lim
N→∞

Λ−NHN . (2.19)

Λ−N is the renormalization rescaling factor, and it makes the energy spectrum of successive
Hamiltonians comparable. The recurrence relation of the Hamiltonian series is

HN+1 = ΛHN + ΛN+1[εN+1b
†
N+1bN+1 + tN(b†NbN+1 + b†N+1bN)]. (2.20)

The first Hamiltonian includes the impurity and the first site of the Wilson chain

H0 = Hloc +

√
η0

π

σz
2

(b0 + b†0) + ε0b
†
0b0. (2.21)

Fig. 2.1 illustrates the iterative diagonalization of NRG. Starting from N = 0, we add one
site to form the Hamiltonian HN+1 according to Eq. (2.20). It includes rescaling HN by
a factor of Λ (for fermionic bath Λ1/2) and the coupling term to the new added site by a
factor of ΛN+1 (for fermionic bath Λ(N+1)/2). Then we diagonalize the Hamiltonian HN+1

and find all eigenstates. The lowest D states are used as the new combined basis. When
the original dimension of HN+1 is smaller than D, all eigenstates will be used as the new
basis of the new block. Given the basis of HN , and the basis of the added site are |s̃〉 and
|n〉 respectively, then the new combined states |s〉 are given by

|s〉 =
∑

s̃n

As,(s̃n)|s̃〉|n〉. (2.22)

(s̃n) is the combined column index. Each row of As,(s̃n) represents a kept eigenstate.
Afterwards, we express all the operators of HN+1 in the new basis |s〉. If we do not use
the truncated new basis, the dimension of the basis will increase exponentially as one adds
more and more sites, thus restricting the calculation to very short Wilson chains. The
above process is shown in Fig. (2.2).

Connecting the energy levels of each iteration we will obtain the renormalization flow
of energy levels. This kind of diagram is called the flow diagram. The pattern of the flow
diagram is normally changing through iterations before it finally settles at a fixed pattern
which is called the stable fixed point. There can be some iteration regimes in which the
pattern of the spectrum in the flow diagram is not changing, and such regimes are called
fixed points. The iterative diagonalization of NRG normally stops at the fixed point with
the lowest energy scale, that is the stable fixed point. Analyzing the flow diagram and
fixed point spectra can reveal much of the underlying physics of the system. As such, it
constitutes an important NRG technique.

The truncation scheme used by NRG is the essential reason why the logarithmic dis-
cretization should be used. If we want the discarded states to have little effect on later
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impurity bath

H0

H1

H2

H3

Figure 2.1: Illustration of NRG iterative diagonalization. The new Hamiltonian HN+1 is
formed by adding another site at the end of the previous Wilson chain. The dimension of
the effective basis needs to be truncated given a finite amount of numerical resources.

iterations, we would want the energy scale of those discarded states to be separated far
away enough from the energy scales of later iterations. For this reason the logarithmic
discretization parameter Λ should not be too small, and usually one should use Λ ≥ 2 in
NRG. I will also discuss in detail later that when we replace the NRG truncation scheme
by DMRG truncation scheme the logarithmic discretization is no longer required.

2.2 Traditional DMRG

In this section I present the basic procedure of DMRG in its original form described by
White [105, 103]. It is a very accurate numerical method to study the ground state of 1D
quantum lattice systems. I use it to calculate the ground state of an engineered Hamiltonian
as the starting state for time-evolution when I study the dissipative Landau-Zener problem
(Chap. 3) and the quantum telegraph noise model (Chap. 5). When I study the spin-boson
model in Chap. 4 I use its modern formulation – variational matrix product state method
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HN+1!rs,r!s!" = N+1#r ;s$HN+1$r!;s!%N+1. !41"

For the calculation of these matrix elements it is useful
to decompose HN+1 into three parts:

HN+1 = &!HN + X̂N,N+1 + ŶN+1 !42"

'see, for example, Eq. !36"(, where the operator ŶN+1
contains only the degrees of freedom of the added site,
while X̂N,N+1 mixes these with the ones contained in HN.
The structure of the operators X̂ and Ŷ, as well as the
equations for the calculation of their matrix elements,
depend on the model under consideration.

The following steps are illustrated in Fig. 3. In Fig.
3!a" we show the many-particle spectrum of HN, that is,
the sequence of many-particle energies EN!r". Note that,
for convenience, the ground-state energy has been set to
zero. Figure 3!b" shows the overall scaling of the ener-
gies by the factor &!; see the first term in Eq. !36".

Diagonalization of the matrix Eq. !41" gives the new
eigenvalues EN+1!w" and eigenstates $w%N+1 which are
related to the basis $r ;s%N+1 via the unitary matrix U:

$w%N+1 = )
rs

U!w,rs"$r ;s%N+1. !43"

The set of eigenvalues EN+1!w" of HN+1 is displayed in
Fig. 3!c" !the label w can now be replaced by r". The
number of states increases on adding the new degree of
freedom 'when no symmetries are taken into account,
the factor is the dimension of the basis $s!N+1"%(. The
ground-state energy is negative, but will be set to zero in
the following step.

The increasing number of states is, of course, a prob-
lem for numerical diagonalization; the dimension of
HN+1 grows exponentially with N, even when we con-
sider symmetries of the model so that the full matrix
takes a block-diagonal form with smaller submatrices.
This problem can be solved by a simple truncation
scheme: after diagonalization of the various submatrices
of HN+1 one keeps only the Ns eigenstates with the low-
est many-particle energies. In this way, the dimension of
the Hilbert space is fixed to Ns and the computation

time increases linearly with the length of the chain. Suit-
able values for the parameter Ns depend on the model;
for the single-impurity Anderson model, Ns of the order
of a few hundred is sufficient to get converged results for
many-particle spectra, but the accurate calculation of
static and dynamic quantities usually requires larger val-
ues of Ns. The truncation of high-energy states is illus-
trated in Fig. 3!d".

Such an ad hoc truncation scheme needs further ex-
planation. First of all, there is no guarantee that this
scheme will work in practical applications, and its qual-
ity should be checked for each individual application.
An important criterion for the validity of this approach
is whether the neglect of high-energy states spoils the
low-energy spectrum in subsequent iterations—this can
be easily seen numerically by varying Ns. The influence
of the high-energy on the low-energy states turns out to
be small since the addition of a new site to the chain can
be viewed as a perturbation of relative strength !−1/2

"1. This perturbation is small for large values of !, but
for !→1 it is obvious that one has to keep more and
more states to get reliable results. This also means that
the accuracy of the NRG results decreases when Ns is
kept fixed and ! is reduced !vice versa, it is sometimes
possible to improve the accuracy by increasing ! for
fixed Ns".

From this discussion, we see that the success of the
truncation scheme is intimately connected to the special
structure of the chain Hamiltonian !that is, tn#!−n/2"
which in turn is due to the logarithmic discretization of
the original model. Note that a mapping to a one-
dimensional chain can also be performed directly for a
continuous conduction band, via a tridiagonalization
scheme as described in detail by Hewson !1993a". The
resulting chain Hamiltonian takes the same form as Eq.
!26", but with tn→const. For this Hamiltonian, the trun-
cation scheme clearly fails. A similar observation is
made when such a truncation is applied to the one-
dimensional Hubbard model !see the discussion in Sec.
V".

E
N+1

(r)E
N

(r) E
N

(r)
1/2

Λ
a)

after truncation
b) c) d)

0

FIG. 3. !a" Many-particle spectrum EN!r" of
the Hamiltonian HN with the ground-state en-
ergy set to zero. !b" The relation between suc-
cessive Hamiltonians, Eq. !36", includes a
scaling factor &!. !c" Many-particle spectrum
EN+1!r" of HN+1, calculated by diagonalizing
the Hamiltonian matrix Eq. !41". !d" The
same spectrum after truncation where only
the Ns lowest-lying states are retained.
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Figure 2.2: The spectrum of the NRG Hamiltonians during rescaling, shifting and trun-
cating. (Figure taken from Ref. [9]). (a) The energy spectrum of HN , EN (r), with ground
state energy set to 0. r labels the energy levels. (b) For a fermionic bath, HN is rescaled
by a factor of Λ1/2 (for boson by the factor Λ) before adding a new site. (c) The added
site causes splitting of the original energy levels. The new ground state is below 0 after the
splitting of levels. (d) Truncate the high energy states and keep the lowest D eigenstates
only. We use the new ground state as the energy reference and shift all levels up which
concludes one iteration.

(VMPS), which I will introduce in the last section of this chapter.

The traditional DMRG method includes two parts: the infinite DMRG (iDMRG) which
is used to grow a 1D lattice and finite DMRG (fDMRG) which is used to variationally
optimize the ground state of the resulting lattice from iDMRG. iDMRG can be used alone
to study an infinite system by analyzing its asymptotic properties when approaching infinite
system size. fDMRG is used to study a finite 1D system. fDMRG in its original formulation
requires iDMRG to build a chain with certain length L for subsequent optimization.

2.2.1 Infinite DMRG

From a retrospective view one can clearly see the influence of NRG on DMRG. NRG
starts from one system site and adds environmental sites one by one until convergence
is reached. Similarly iDMRG starts with two sites: one called the “system” block and
another called the “environment” block as shown in the first row of Fig. 2.3. The two-
blocks are equivalent as they are just two normal sites in a homogeneous 1D quantum
chain, for which DMRG is usually used. The 1D chain is not an open quantum system
where there is distinction between system and environment. Here, the name “system” and
“environment” are assigned arbitrarily. Neither block is more special than the other.
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system environment

starting point:

add 2 sites:

add the last 2 site:

continue adding site:

Figure 2.3: Illustration of the basic steps of infinite DMRG. Red sites are newly added
sites at the current step. After adding a new site, the block basis is truncated according
the DMRG criteria to prevent the dimension from increasing exponentially.

Similar to NRG, two new sites (shown in red in Fig. 2.3) are added to the two-blocks
respectively. The blocks with added sites are called new system block and new environment
block. If the basis of the old blocks are |s̃〉 and |ẽ〉 and the basis of a free site is |n〉 the
basis of the new blocks are:

|s〉 =
∑

n,s̃

Is,(s̃n)|s̃〉|n〉,

|e〉 =
∑

n,ẽ

Ie,(nẽ)|n〉|ẽ〉. (2.23)

Here the symbol I means the identity matrix. (s̃n) and (nẽ) are combined indices. If the
dimension of the old blocks is D and the dimension of the free site basis is d, then the
dimension of the new blocks’ basis will be expanded to Dd. Adding more and more sites in
this way would result in an exponential increase of the dimension of the basis. Therefore
a truncation scheme is again necessary to make the method practical.

The truncation criteria, telling which states or linear combination of states in Eqs. (2.23)
should be kept, is one big difference between DMRG and NRG. If we use NRG’s criteria,
that is we keep the D lowest lying eigenstates of the Hamiltonian of the new block, we
will not get the desired ground state. The reason is that unlike the Wilson chain in NRG
the eigenstates of the subsystem in real space have weak connection with the eigenstates
of the whole system. With this in mind it becomes natural that the states to keep should
be the “important” states of the subsystem with respect to the overall ground state when
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it is embedded in the whole system. In other words, targeting the overall ground state of
the system and thus a single state, we should keep the eigenstates of the reduced density
matrix of the subsystem corresponding to the biggest eigenvalues. This criteria applies
both to the system and the environment block.

The representation of the ground state wave function of whole system (or by the DMRG
nomenclature the super block) in terms of of the system and environment block is given
by

|ψG〉 =
∑

s,e

ψGse|s〉|e〉, (2.24)

where ψse is a matrix of the size Dd×Dd. Here D is the dimension of the old system and
environment, and d is the dimension of newly added sites. The reduced density matrices
of the two subsystems would be (I use capital letters to indicate the subsystem and lower
case letters to label the basis of the subsystems)

ρS = TrE|ψ〉〈ψ| =
∑

e

ψ∗seψs′e|s〉〈s′|,

ρE = TrS|ψ〉〈ψ| =
∑

s

ψ∗seψse′ |e〉〈e′|. (2.25)

Therefore after the new blocks are formed, one should first calculate the ground state
of the super block. The Hamiltonian of the super block is of the form

Hsup = HS ⊗ IE + IS ⊗HE +OS ⊗OE. (2.26)

where HS is the Hamiltonian of the system block, IS is the identity matrix , OS is an
operator of the system block. The last term in Eq. (2.26) usually is a sum of several pairs
of operators (e. g. c†ici+1 + H.C.), but for simplicity here only one pair is assumed. The
dimension of the super block Hamiltonian is D2d2.

In DMRG we do not expand the super block Hamiltonian explicitly in full because this
would be very expensive if all we want is just the ground state (and a few low lying states)
of this Hamiltonian. Luckily there are a few sparse matrix diagonalization algorithms
such as Lanczos, conjugate gradient or Arnold algorithm which only require a function
~y = f(~x) = A~x to be able to calculate the ground state of the matrix A. Therefore all we
need is to provide the algorithm the function

|φ〉 = Hsup|ψ〉
=

∑

s,e

(
∑

s′

HS
ss′ψs′e +

∑

e′

ψse′H
E
e′e +

∑

s′,e′

OS
ss′ψs′e′O

E
e′e)|s〉|e〉 (2.27)

=
∑

s,e

φse|s〉|e〉.

HS
ss′ is the matrix element of the system block Hamiltonian in the |s〉 basis

HS =
∑

s,s′

HS
ss′ |s〉〈s′|, (2.28)
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and other matrices are defined similarly.
After we obtain the ground state wave function, we can calculate the reduced den-

sity matrices according to Eqs. (2.25). Then we find D eigenvectors with the greatest
eigenvalues for both ρS and ρE and use these vectors for the following renormalization
transformation

|s〉 =
∑

n,s

ASs,(s̃n)|s̃〉|n〉,

|e〉 =
∑

n,e

AEe,(nẽ)|n〉|ẽ〉. (2.29)

This transformation then replaces Eq. (2.23), and thus truncates the full state space di-
mension Dd back down to D. All operators shall be represented in the new system and
environment basis. This finishes one iDMRG step and we can add another two sites until
we reach the targeted chain length.

When we use DMRG to study a finite chain of length L, the ground state from iDMRG
is usually not accurate enough. fDMRG can be used to further minimize the ground state’s
energy variationally.

2.2.2 Finite DMRG

As illustrated in Fig. 2.4, we start fDMRG based on the final step of iDMRG. The old block
information was stored during the previous iDMRG steps and is now read by fDMRG before
the first step, which is the same as the last step of iDMRG–we add two site, diagonalize
the super block Hamiltonian except we only renormalize the environment block. In the
second step we use the new environment block we got from step one and read the stored
system block with chain length L/2− 2 as the old blocks and then add two sites to them
respectively and the rest is just like the previous step until we reach the left most site
of the chain. Then we change the sweeping direction while the role of the system and
environment are switched. We can sweep back and forth a few times until the results
converged. Normally a few sweeps (< 10) are sufficient.

2.2.3 Calculation of physical quantities

The ground state energy can be obtained directly from super block diagonalization. Other
physical quantities can be calculated as the expectation values of their operator with respect
to the ground state. In the DMRG calculation the operator of the desired physical quantity
will be renormalized together with other operators like the block Hamiltonian and it is
represented in the same basis as the wave function. For example, if the site lies in the
system block the operator of the physical quantity A will be represented as

A =
∑

s,s′

Ass′ |s〉〈s′|. (2.30)
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system environment

starting point:

sweep to left:

sweep to right:

sweep back and forth:

Figure 2.4: Illustration of the sweep of finite fDMRG. Unlike iDMRG where we add one
site to each block, in fDMRG we increase the length of one block at the expense of the
other thus keeping the total length fixed. One can sweep back and forth a few times to
achieve better precision.

The physical quantity can be simply calculated as

〈A〉 = 〈ψG|A|ψG〉
=

∑

s,s′,e,e′

ψ∗s′e′Ass′ψse〈s′, e′|s′〉〈s|s, e〉

=
∑

s,s′,e

ψ∗s′eAss′ψse. (2.31)

Operators acting one two sites should be treated differently depending whether the two
sites lie on the same block or on different blocks. I will not elaborate this in detail as we
only use physical quantities associated with a single site in this thesis.
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2.3 Time-dependent DMRG

Several different approaches using DMRG to study the dynamics of 1D quantum systems
have been proposed. One of the earliest method is static time-dependent DMRG [15, 55,
79]. The method I use is called the adaptive time-dependent DMRG (t-DMRG) invented in
2004 by two separate groups [20, 108] based on TEBD [94]. Compared with previous time-
dependent DMRG, it is much faster and also able to handle Hamiltonians with arbitrary
time dependence while the previous methods can only treat quench type time-dependent
Hamiltonians.

The basic procedure of t-DMRG is to apply the time-evolution operator on the wave
function

|ψ(t+ τ)〉 = e−iH(t)τ |ψ(t)〉. (2.32)

τ is a small time interval, and H(t) is the time dependent super block Hamiltonian. As
explained in the previous section, H(t) is never explicitly calculated for efficiency reasons
in iDMRG and fDMRG. In t-DMRG similarly we do not calculate e−iH(t)τ explicitly.

To apply the time-evolution operator we first use the Suzuki-Trotter decomposition to
break e−iH(t)τ into a product of local operators. The first order Suzuki-Trotter decompo-
sition is

e−iHτ = e−iHoddτe−iHevenτ +O(τ 2)

= e−i(H1+H3+··· )τe−i(H2+H4+··· )τ +O(τ 2) (2.33)

where H1, H2, · · · are the local Hamiltonians acting on the 1st-2nd sites, 2nd-3rd sites, ...,
as shown in Fig. 2.5. If there are one-site terms in the Hamiltonian, they can be grouped
to either side of the two local Hamiltonians as long as the choice is consistent throughout
the whole chain. As the local Hamiltonians with the same parity index commute with each
other (H1 commutes with H3, H2 commutes with H4, etc. ) Eq. (2.33) can be further
written as

e−iHτ = e−iH1τe−iH3τ · · · e−iH2τe−iH4τ · · ·+O(τ 2)

≡ U1U3 · · ·U2U4 · · ·+O(τ 2) (2.34)

The local time-evolution operators Uk can be easily evaluated. To apply them on the
wave function we need to transform the wave function from the “two-block” setup as in
Eq. (2.24) to a “four-block” setup as illustrated in Fig. 2.6, combining the relations of
Eq. (2.23) into the new basis the wave function is

|ψ〉 =
∑

s,n1,n2,e

ψs,n1,n2,e|s〉|n1〉|n2〉|e〉. (2.35)

H1 H2 H3 H4 H5 H6 H7

Figure 2.5: Local Hamiltonians in the definition of Trotter decomposition.



2.3 Time-dependent DMRG 17

system environment

1

n1 n2

1

n1 n2

Figure 2.6: Illustration of the four-block setup of the super block basis. The super
block wave function is transformed from the original two-block setup used in iDMRG and
fDMRG into this four-block setup so that one can apply local operators easily. White’s
original version of DMRG [105, 103] also adopted the four-block setup to save memory
usage.

Indeed in White’s original version of DMRG [105, 103] he used the four-block setup for
iDMRG and fDMRG too because it is more memory efficient than the two-block setup I
used. Nowadays the PC memory is several orders of magnitude larger than those when
DMRG was first invented in the early 90s, and the bottle neck is no longer the memory
but how fast one can compute H|ψ〉. In the two-block setup the wave function is always
stored as a matrix which make it much easier to use some highly optimized linear algebra
libraries (MKL, ATLAS) to speed up the H|ψ〉 calculation.

The local time-evolution operator is represented in the local basis |n1〉|n2〉. Therefore
after we transformed the wave function into the four-block setup, U is applied on the wave
function as

|ψ′〉 = U |ψ〉
=

∑

n′1n
′
2n1n1,s,e

Un1n2,n′1n
′
2
ψs,n′1,n′2,e|s〉|n1〉|n2〉|e〉 (2.36)

Next we need to shift the basis two sites to the left (right). The procedure is similar to
fDMRG except we do not need to calculate the ground state of the super block Hamiltonian.
Instead we base on |ψ′〉 to evaluate the reduced density matrix of the left (right) block and
find the renormalization transformation matrices AS (AE) as in Eq. (2.29). This basis
shifting technique is called “wave function prediction” by Steven White [106] because it
was first used as a guess of the next step wave function in fDMRG to speed up convergence
(the speed up is significant therefore should always be used). In this way one can apply
all the even bond U during a sweep from left to right, and then all the odd bond U when
sweeping back to the left side as illustrated in Fig. 2.7(a). This finishes one time step
τ . Unlike previous time-dependent DMRG where a basis to incorporate wave functions
of all time steps is required, t-DMRG always updates the basis to adapt to the current
wave function. This saves lots of resources and is the reason behind the name “adaptive
time-dependent DMRG”.

In my program I used second order Trotter-Suzuki decomposition, as it is a simple
modification to the first order decomposition but has a smaller decomposition error [85,
108].

e−iτ(A+B) = e−iτ/2Ae−iτBe−iτ/2A (2.37)
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U1

U2

U3

U4

U5

U6

U7

U1 U2 U3 U4 U5 U6 U7

U7U6U5U4U3U2U1

Figure 2.7: Illustration of the application of time-evolution operator decomposed on the
wave function. Local time-evolution operators closer to the lattice are applied first. (a)
The first order Trotter-Suzuki decomposition; (b) the second order Trotter-Suzuki decom-
position. Note that definition of the local time-evolution operators are different in (a) and
(b).

where A and B are non-commute operators. If we let A = H1 and B = H2 +H3 + · · · and
use Eq. 2.37 iteratively in this manner we will have

e−iHτ = e−i
τ
2
H1e−i

τ
2
H2 · · · e−i τ2HLe−i τ2HL · · · e−i τ2H2e−i

τ
2
H1 +O(τ 3)

≡ U1U2 · · ·ULUL · · ·U2U1 +O(τ 3) (2.38)

Note here the local time-evolving operators are defined differently as in the second order.
They are half time-step operators because one needs to apply them twice to evolve one
time step. The application of one time-step τ evolution operator with the second order
decomposition on the wave function is illustrated in Fig. 2.7(b). That is when we sweep
from left to right we apply U1 to UL one by one, then we sweep back and apply all the
local U operators in the opposite order.

2.4 VMPS

In 1995, Östlund and Rommer first pointed out that DMRG is a variational method based
on a matrix product state [66]. Variational matrix product state method (VMPS) is the
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reformulation of density matrix renormalization group method in matrix product state
representation [57, 38, 69]. VMPS and DMRG are mathematically equivalent, however
VMPS is more concise and easier to deal with both theoretically and numerically. In this
thesis, I use VMPS instead of the original DMRG method to study the spin-boson model
in Chap. 4.

2.4.1 Matrix product state

The basis transformation of NRG (Eq. (2.22)) and DMRG (Eq. (2.25)) are of the same
form, except that we form the transformation A matrix with different criteria. It is straight-
forward to verify that by iteratively using Eq. (2.22) or Eq. (2.25) we can write the wave
function in the following form

|ψ〉 =
∑

{nk}

∑

α,β,γ,··· ,µ,ν

A1
αn1

A2
αβn2

A3
βγn3
· · ·AL−1

µνnL−1
ALνnL|n1, n2, n3, · · · , nL−1, nL〉. (2.39)

The coefficients of the wave function are products of matrices, therefore this is called a
matrix product state (MPS). MPS is the common mathematical structure underlying NRG
and DMRG, therefore it connects the seemingly quite independent methods. MPS enables
us to bring some NRG techniques to DMRG and to use DMRG to study open quantum
systems [100, 74]. This will be explained in detail in later chapters. In this section, I will
only review some general properties of MPS.

If the dimension of the A matrices D is large enough, we can represent any state in
MPS form. However, in practice the reason why we want to represent a quantum wave
function in the MPS form is that MPS can represent certain kinds of quantum states either
exactly or to a very good approximation with relatively small D (D . 100 for example
in this thesis). The criteria for such kind of quantum states is that the entanglement of
the state is relatively small. Fortunately, this is the case for ground states of 1D quantum
lattices due to the area law [69, 24]. However, for excited states when dealing with real-
time evolution in true out-of equilibrium, entanglement also can grow, such that t-DMRG
is sometimes limited to relatively short time windows.

We can use von Neumann entropy as a measure of the entanglement between two blocks
of the whole system. The von Neumann entropy is defined as

S = −Trρ ln ρ = −
∑

r

ηr ln ηr, (2.40)

with ρ the reduced density matrix and ηr its eigenvalues satisfying
∑

r ηr = 1. Therefore
von Neumann entropy will reach its maximum value when all ηr are equal. If we calculate
the reduced density matrix from MPS, the dimension of ρ is the same as for the A matrices.
The upper bound for the block entropy is thus

Smax = −
D∑

r=1

1

D
ln

1

D
= lnD. (2.41)
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Eq. (2.41) implies that the amount of entanglement along the MPS can increase only
logarithmically with the matrix dimension D.

An MPS as in Eq. (2.39) contains lots of indices, and thus is a complex representation of
a simple many-body wave function. Therefore, it is sometimes more convenient to illustrate
the underlying structure pictorially with a diagram like the one shown in Fig. 2.8.

α β γ δ

n1 n2 n3 n4 n5

A1 A2 A3 A4 A5

Figure 2.8: Schematic diagram of a MPS wave function with 5 sites. Squares represent
the A-tensors of the MPS, and lines represent their indices. Lines connecting two squares
are contracted indices (that is they are summed over). Open lines connect to the basis,
and in this diagram they connect to the local basis nk.

Now I will use the 5 sites MPS to show how to calculate (1) an overlap, (2) the action
of an operator, and (3) the expectation value with MPS with the help of the schematic
diagram. The overlap of two wave functions is calculated by contracting the corresponding
local indices of the two wave functions

〈ψB|ψA〉 =
∑

{n′k}

∑

α′,β′,γ′,δ′

(B1
α′n′1

B2
α′β′n′2

B3
β′γ′n′3

B4
γ′δ′n′4

B5
δ′n′5

)∗〈n′1, n′2, n′3, n′4, n′5|

×
∑

{nk}

∑

α,β,γ,δ

A1
αn1

A2
αβn2

A3
βγn3

A4
γδn4

A5
δn5
|n1, n2, n3, n4, n5〉

=
∑

{nk}

∑

α,β,γ,δ

∑

α′,β′,γ′,δ′

(B1
α′n1

B2
α′β′n2

B3
β′γ′n3

B4
γ′δ′n4

B5
δ′n5

)∗A1
αn1

A2
αβn2

A3
βγn3

A4
γδn4

A5
δn5
.

The corresponding diagram for overlap is shown in Fig. 2.9

α β γ δ

n1 n2 n3 n4 n5

A1 A2 A3 A4 A5

B∗
1 B∗

2 B∗
3 B∗

4 B∗
5α′ β′ γ′ δ′

Figure 2.9: Schematic diagram of the overlap of two MPS wave functions |ψA〉 and |ψB〉.
Complex conjugate tensors will be used when the local indices are pointing up like the B
tensors in this diagram. Overlap is calculated by contracting all local indices of two wave
functions.
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In DMRG if one wants to apply a local operator on a wave function, one typically
needs to perform a partial DMRG sweep to the location where the operator acts. In MPS
representation the application of the operator is straight forward since the wave function
is expressed in the native local basis. For example the application of a two site operator

U23 ≡
∑

(n′2n
′
3),(n2n3)

U(n′2n
′
3),(n2n3)|n′2, n′3〉〈n2, n3| (2.42)

is

U23|ψ〉 =
∑

{nk}

∑

α,β,γ,δ

A1
αn1

A2
αβn2

A3
βγn3

A4
γδn4

A5
δn5
|n1, n2, n3, n4, n5〉

=
∑

{nk}

∑

α,β,δ

A1
αn1

∑

n′2,n
′
3,γ,

(U(n2n3),(n′2n
′
3)A

2
αβn′2

A3
βγn′3

)A4
γδn4

A5
δn5
|n1, n2, n3, n4, n5〉

=
∑

{nk}

∑

α,β,δ

A1
αn1

C23
αγn2n3

A4
γδn4

A5
δn5
|n1, n2, n3, n4, n5〉.

Immediately after the operation, this results in the enlarged tensor C23
αγn2n3

. To restore the
original MPS form, we need to perform singular value decomposition (SVD) on the tensor
C23
αγn2n3

C23
αγn2n3

= C23
(αn2),(γn3)

=
∑

β

˜̃A2
(αn2)βλβÃ

3
β(γn3)

=
∑

β

Ã2
(αn2)βÃ

3
β(γn3)

=
∑

β

Ã2
αβn2

Ã3
βγn3

. (2.43)

In the first line of Eq. (2.43) we reorder and combine the indices of tensor C23 and transform
it to a matrix. λβ in the second line is the singular value vector and it is absorbed into
Ã2

(αn2)β in the third line. In the last line indices are resorted to their MPS order. Fig. 2.10
illustrates this process with a schematic diagram.

The calculation of an expectation value can be reduced to the combination of the
previous two operations. However an alternative way is to directly contract all indices.
This way also enables us to easily calculate the expectation value of a operator acting
simultaneously on any number of sites like the example shown in Fig. 2.11.

2.4.2 Variational matrix product state

Variational matrix product state (VMPS) can be considered as a generalization of finite
DMRG. The finite DMRG introduced in the previous section is equivalent to two-site
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α β γ δ

n1 n4 n5

A1 A2 A3 A4 A5

U23

α γ δ

n1 n2 n3 n4 n5

A1 A4 A5C23

n2 n3

α β γ δ

n1 n4 n5

A1 A4 A5Ã2 Ã3

apply local operator

SVD

Figure 2.10: Schematic diagram of applying a local operator U23 on a MPS. First contract
the local indices on site 2 and 3 with the indices of U23. This will result a big tensor C23.
Then a singular value decomposition is performed to restore the original MPS structure.
[See Eq. (2.43)]

VMPS, which means we optimize two sites each time of the optimization. Here we introduce
the single site VMPS, which only optimizes one site at each optimization step. Compared
with two-site VMPS, it converges slower but the dimension of the optimization problem is
smaller than two site VMPS. This is a big advantage when dealing with bosonic systems.

Simply speaking VMPS minimizes the energy by variationally optimizing the Amatrices
sequentially at a time. At the center of the VMPS calculation is the optimization problem
at one site. All the subsystem operators and Hamiltonians are transformed into the effective
basis of the current site. The wave function in the local basis is just the A matrix

|ψ〉 =
∑

αβnk

Akαβnk |α, β, nk〉. (2.44)

The local optimization problem is to find the Akαβnk (|ψ〉) which minimizes the quantity
〈ψ|H|ψ〉/〈ψ|ψ〉. This |ψ〉 is by definition the ground state of H. Therefore, the variational
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global operator

Figure 2.11: Schematic diagram of calculating the expectation value of a global operator
by simply contracting all local indices with the corresponding indices of the global operator.
I omit all the labels for simplicity.

problem is transformed into an eigenvalue problem. Similar to DMRG, H is a big sparse
matrix, and we cannot and do not have to explicitly expand it into full matrix form. To
solve the eigenvalue problem, all we need is to provide the sparse diagonalization algorithm
the function |φ〉 = H|ψ〉. In the |α, β, nk〉 basis the Hamiltonian reads

H = HL ⊗ Ik ⊗ IR + IL ⊗ Ik ⊗HR + IL ⊗Hk ⊗ IR
+OL ⊗Ok ⊗ IR + IL ⊗Ok ⊗OR, (2.45)

with HL and HR the Hamiltonian of the block on the left and right side of the current site
k respectively. IL, IR, Ik are identity matrices in their respective spaces. In Eq. (2.45),
Hk is the single site term in the Hamiltonian that acts on site k. For example, in the
Hamiltonian Eq. (2.18), this is the onsite potential εkb

†
kbk. OL and OR are operators on

site k − 1 and k + 1 in left and right block basis. Ok is site operator on site k. The last
two terms in the Hamiltonian (2.45) normally consist of several such terms summed over.
For simplicity, only a single term is shown. Furthermore, it is assumed throughout that
the Hamiltonian is short ranged in that it only contains local and nearest-neighbor terms.
Take the Hamiltonian (2.18) for example, with the current site the last two terms in the
Hamiltonian (2.45) account for the following four terms: tk−1b

†
k−1bk, tk−1b

†
kbk−1, tkb

†
kbk+1

and tkb
†
k+1bk. Therefore H|ψ〉 can be split into five parts which are illustrated using the

schematic diagram in Fig. (2.12).
Ok and Hk are local operators that act within the Fock space of site k. Their matrix

representations thus are elementary and known from the setup. However the calculation
of the block operators and Hamiltonians OL, HL, etc. requires more effort. Let us first
take a close look of the operator OR for example. In the |α, β, nk〉 basis it is

OR =
∑

β,β′

OR
ββ′|β〉〈β′|. (2.46)

Actually OR is just the local operator of site k + 1

Ok+1 =
∑

nk+1,n
′
k+1

Ok+1
nk+1,n

′
k+1
|nk+1〉〈n′k+1|, (2.47)
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β′
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ψ
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β′

+

+ +

=H|ψ〉

Figure 2.12: Schematic diagram of the five terms in Eq. (2.45) required to compute H|ψ〉.

and is transformed into the |β〉 basis according to the basis transformation

|β〉 =
∑

γ,nk+1

Ak+1
βγnk+1

|γ, nk+1〉. (2.48)

The Ak+1
βγnk+1

in this formula is in its “right orthogonal” form which means
∑

γ,nk+1

(Ak+1
β′γnk+1

)∗Ak+1
βγnk+1

= δβ′β (2.49)

Any matrix Ak in MPS (except the leftmost one) can be right-orthonormalized by a singular
value decomposition. The resulting right matrix from SVD is used as the new Ak and the
left matrix and singular values are absorbed into Ak−1. “Left-orthonormalized” Ak can be
calculated in the same way.

Successively applying such basis transformation as Eq. (2.48) we can represent |β〉 with
the only local basis and the transformation of Ok+1 to OR is illustrated in Fig. 2.13(a). If
the MPS is in its canonical form, that is all matrices have been right-orthonormalized, then
(a) reduces to (b). Therefore the calculation of the matrix elements Ok+1 simply requires

OR
ββ′ =

∑

γ,n′k+1,nk+1

(Ak+1
βγn′k+1

)∗Ok+1
nk+1n

′
k+1
Ak+1
β′γnk+1

. (2.50)

The block Hamiltonians HL and HR are calculated iteratively. I take HR (at site k) for
example, and the iterative relation is

HR = Ik+1 ⊗H ′R +Hk+1 ⊗ I ′R +Ok+1 ⊗O′R (2.51)

where H ′R is the HR at site k + 1, same for I ′R and O′R. The formula is illustrated in
Fig. 2.14. O′R is obtained in the same way as shown in Fig. 2.13. HR is evaluated using
Eq. (2.51) iteratively from the rightmost site, where H ′R and O′R are both 0. All the HR

and OR at each site are stored for later use.
The procedure of VMPS I used can be summarized as follows
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β

β′

Ok+1

OR

β

β′

Ok+1

OR(a) (b)

Figure 2.13: Transforming the local operator into the right block basis. The whole
structure inside the dashed line is OR. Because all matrices shown in this plot are assumed
to be right-orthonormalized (a) can be reduced to (b).

β

β′

β

β′

β

β′

Hk+1H ′
R

O′
ROk+1

Figure 2.14: The three terms in HR.

1. Generate a random MPS as the starting point.

2. From the right side calculate HR and OR at each site and store them for later steps.
At the same time the MPS is right-orthonormalized.

3. Optimize the A matrices sequentially at a time from the left side. At the same time
calculate and store HL and OL at each site.

4. Repeat step 2 and 3 until convergence is reached. Note that I do not optimize the A
matrices while sweeping from right to left because I only study the Wilson chain in
this thesis. Considering the energy scale decreases from left to right, in the spirit of
NRG the optimization should start from the high energy end.

5. Calculate physical quantities or flow diagram.

With this I finished introducing the basic methods I used in this thesis. In the remainder
of this thesis, we will adapt and specialize these methods to the models under consideration.
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Chapter 3

Landau-Zener problem

3.1 The standard Landau-Zener problem

The standard Landau-Zener problem [50, 117] is a simple time-dependent problem of a two
level system. As a highly idealized model it can be used to describe numerous dynamical
processes in different contexts like molecular collisions [16], nano-systems [87, 102, 77],
Bose-Einstein condensates [112] and quantum information processing [6, 39, 65, 82]. The
time-dependent Hamiltonian is

H(t) =

(
vt
2

∆
∆ −vt

2

)
, (3.1)

with t the time, v the speed of level crossing and ∆ is the coupling matrix element. For
convenience I assume that the two level system consists of a spin. Using Pauli matrices,
the Hamiltonian (3.1) becomes

H(t) =
vt

2
σz +

∆

2
σx. (3.2)

At t = −∞ the system is assumed to be in spin up state | ↑〉. If v is slow enough so that
we can consider the LZ process as an adiabatic process then at t = +∞ the system will
still be in the | ↑〉 state. Beyond the adiabatic limit, there will be some probability for
the spin to flip especially around t = 0 when the energy splitting is small. Therefore, at
t = +∞ the spin state will be a superposition of | ↓〉 and | ↑〉. The exact calculation of the
transition probability is not trivial, but the result is very simple:

P = exp(−π∆2

2v
). (3.3)

In a more realistic scenario the two level system will be in contact with an environment.
The large number of degrees of freedom in the environment makes the Landau-Zener process
difficult to study analytically. In our paper included as the next section, we show how
to combine NRG and tDMRG to study such a typical time-dependent problem of open
quantum system from a numerical point of view.
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3.2 Publication: DMRG study of a quantum impurity

model with Landau-Zener time-dependent Hamil-

tonian
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We use the adaptive time-dependent density matrix renormalization group method �t-DMRG� to study the
nonequilibrium dynamics of a benchmark quantum impurity system which has a time-dependent Hamiltonian.
This model is a resonant-level model, obtained by a mapping from a certain Ohmic spin-boson model describ-
ing the dissipative Landau-Zener transition. We map the resonant-level model onto a Wilson chain, then
calculate the time-dependent occupation nd�t� of the resonant level. We compare t-DMRG results with exact
results at zero temperature and find very good agreement. We also give a physical interpretation of the
numerical results.
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I. INTRODUCTION

Quantum impurity models, describing a discrete degree of
freedom coupled to a continuous bath of excitations, arise in
many different contexts in condensed-matter physics. In par-
ticular, they are relevant for the description of transport
through quantum dots and of qubits coupled to a dissipative
environment.1,2 In recent years, there has been increasing
interest in studying the real-time dynamics of such models
for Hamiltonians H�t� that are explicitly time dependent, as
relevant, for example, to describe external manipulations be-
ing performed on a qubit. It is thus important to develop
reliable numerical tools that are able to deal with such prob-
lems under very general conditions.

The most widely used numerical method to study quan-
tum impurity systems is Wilson’s numerical renormalization
group �NRG�.3 With the recently proposed time-dependent
NRG �TD-NRG� �Ref. 4� one can now calculate certain class
of time-dependent problems where a sudden perturbation is
applied to the impurity at time t=0. TD-NRG may very well
be accurate for arbitrary long time. However, up to now,
TD-NRG is not capable of dealing with a Hamiltonian H�t�
with a time dependence more general than a single abrupt
change in model parameters at t=0. We will show in this
paper that the adaptive time-dependent density matrix renor-
malization group method �t-DMRG� is a promising candidate
for treating a general time-dependent Hamiltonian H�t�.

The density matrix renormalization group �DMRG�
method is traditionally a numerical method to study the low
lying states of one-dimensional quantum systems.5 The re-
cent extension of this method, the adaptive t-DMRG,6,7 can
simulate real-time dynamics of one-dimensional models with
time-dependent Hamiltonians as well. t-DMRG has already
been used to study problems involving real-time dynamics of
one-dimensional quantum systems, for example the far-from-
equilibrium states in spin-1/2 chains,8 dynamics of ultracold
bosons in an optical lattice,9,10 transport through quantum
dots,11 dynamics of quantum phase transition,12 and demon-
stration of spin charge separation.13 These works showed that

t-DMRG is a versatile and powerful method to study the
real-time dynamics of one-dimensional quantum systems.

The underlying mathematical structures of DMRG and
NRG are similar in the matrix product state representation
language.14 Indeed, once a quantum impurity model has been
transformed into the form of a Wilson-chain model, it can be
treated by DMRG instead of NRG.14–17 This possibility
opens the door toward studying time-dependent quantum im-
purity models using t-DMRG. In this paper, we take a first
step in this direction by using t-DMRG to study a simple,
exactly solvable quantum impurity model whose Hamil-
tonian is a function of time. This model allows us to bench-
mark the performance of t-DMRG by comparing its results
to those of the exact solution.

II. MODEL AND DMRG METHOD

We study the resonant-level model with a time-dependent
potential applied to the level. The Hamiltonian is

Ĥ�t� = �d�t�d†d + �
k

�kck
†ck + V�

k

�d†ck + ck
†d� . �1�

d† creates a spinless fermion on the level �impurity� and ck
†

creates a spinless fermion with momentum k in a conduction
band whose density of states is constant between −D and D
and zero otherwise, with Fermi energy set equal to 0. The
energy of the local band is swept linearly with time,
�d�t�=Dvt, where v is the sweeping rate in units of the half
band width D. This model is equivalent to the dissipative
Landau-Zener model with a Ohmic boson bath whose spec-
tral function is J���=2���, for ���c, where �c is the high
energy cutoff,18 and the dimensionless strength of dissipation
parameter � is henceforth set equal to 1

2 . When � is close but
not equal to 1

2 , Hamiltonian �1� contains an additional inter-
action term proportional to U�d†d− 1

2 ���k,k�ck
†ck�− 1

2 �,19 but
this case will not be considered here.

At time t0→−� the local level contains a spinless fermion
and the band is half filled. Then, we lift the energy of the
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level linearly with time. As the level approaches the band,
the probability that the fermion jumps to and from the band
will increase, and decrease after the level has passed the
band. In this paper we study this problem in detail. In par-
ticular, we are interested in the expectation value of the oc-
cupation number on the level nd�t� at time t.

Before using t-DMRG to solve this problem, we need to
transform the Hamiltonian to a DMRG-friendly form. This
can be realized by using a standard Wilson mapping �origi-
nally invented in the context of NRG�, which include two
steps: logarithmic discretization of the band and converting
the Hamiltonian to a hopping form.20,21 Here, we just give
the final result: Hamiltonian �1� is mapped to a semi-infinite
Wilson chain

Ĥ�t� = �d�t�d†d + �2�D

�
�1/2

�f0
†d + d†f0�

+
D

2
�1 + 	−1��

n=0

�

	−n/2
n�fn
†fn+1 + fn+1

† fn� , �2�

where 
n= �1−	−n−1��1−	−2n−1�−1/2�1−	−2n−3�−1/2. �
���V2 is the hybridization parameter and � is the density of
states at the Fermi level. 	�1 is a logarithmic discretization
parameter, which means we divide the band into discrete
energy intervals determined by 	−1, 	−2, 	−3 , . . .. In
the limit 	→1, the discretized spectrum becomes dense
throughout the band. The hopping factors in Hamiltonian �2�
decrease exponentially so it is sufficient to keep the first L
sites to achieve an energy resolution of 	−L/2.

The dimensionless parameter r�2� /v can be used to de-
fine three typical regimes of this problem. They are:

�i� fast sweep: r�1,
�ii� intermediate sweep: r�1, and
�iii� slow sweep: r�1.
We will examine the performance of DMRG in all these

regimes.
The Wilson-chain form of Hamiltonian �2� can now be

treated using DMRG. We first use infinite and finite DMRG
�Ref. 5� to calculate the ground state of the initial Hamil-

tonian Ĥ�t0� at t0. This ground state is a very good approxi-
mation to the true initial state in the ideal case in which the
level would start from t0→−� as long as �d�t0��−���. In the
fast and intermediate sweep regimes, we can choose t0 so
that the �d�t0�=Dvt0 is far below the Fermi surface to satisfy
�d�t0��−���. In slow sweep regime we can do the same if we
use a very large �t0�. However, a more efficient way we adopt
is to use a moderate t0, but set �d�t0� as a very low value
�e.g., −10000D�. After we get the starting state we apply the

evolution operator Te−i	t0
t Ĥ�s�ds on the starting state ���t0�
 to

get the state ���t�
 at time t using t-DMRG,

���t�
 = Te−i	t0
t Ĥ�s�ds���t0�
 . �3�

Here T is the time-ordering operator and we set �=1 in this
paper.

More specifically, we first divide the time interval t into a
series of tiny time steps of the length �. The Hamiltonian is a

function of time, but in each tiny time step it can be approxi-
mated by a constant, so we have

Te−i	t0
t Ĥ�s�ds � e−i�Ĥ�t−�/2�

¯ e−i�Ĥ�3/2��e−i�Ĥ��/2�. �4�

We chose the value of Hamiltonian in the middle of each
interval to represent the Hamiltonian of that interval. At ev-

ery time step we decompose e−iĤ�s�� into local operators us-
ing second-order Suzuki-Trotter decomposition, and we get

e−iĤ�s�� = e−i��Ĥd,0�s�+Ĥ0,1+Ĥ1,2+¯+ĤL−1,L�

= e−i��/2�Ĥd,0�s�e−i��/2�Ĥ0,1e−i��/2�Ĥ1,2
¯ e−i��/2�ĤL−1,L

�e−i��/2�ĤL−1,L
¯ e−i��/2�Ĥ1,2e−i��/2�Ĥ0,1e−i��/2�Ĥd,0

+ O��3� , �5�

where

Ĥd,0�s� = �d�s�d†d + �2�D

�
�1/2

�f0
†d + d†f0� , �6�

and Hn,n+1 is the hopping term involving site n and n+1. The
only time-dependent part of the Hamiltonian is the impurity
so we only need to update the Suzuki-Trotter term of the

impurity and the first site of the Wilson chain e−i��/2�Ĥd,0�s� at
every time step.

We can also easily extend this method to study finite-
temperature dynamics. Instead of using infinite and finite
DMRG to find the starting state, we use finite-temperature
DMRG �Ref. 22� to get the starting state. Then, one can
evolve this purified state using t-DMRG to simulate the real-
time dynamics at finite temperature.23 In this paper, however,
we only focus on the zero temperature and noninteracting
case.

III. EXACT METHOD

Hamiltonian �2� is of quadratic form so we can write it as

Ĥ�t� = �a0
†,a1

†, . . . ,aL−1
† �H�t��a0,a1, . . . ,aL−1�T, �7�

where a0�d and ai� f i−1. H�t� is a L�L Hermitian matrix
with L being the length of the Wilson chain.

By diagonalizing H�t0� we get

Ĥ�t0� = �
k

Ekãk
†ãk. �8�

The kth single-particle state is

�k
 = ãk
†�0
 = �

i

uikai
†�0
 , �9�

where uik are the eigenvectors of H�t0�, in the sense that
� jH�t0�ijujk=Ekuik.

At t0 the system is in its ground state, characterized by the
single-particle distribution function

f�k� = 0, Ek � 0

1, Ek � 0.
� �10�

The initial density matrix of the whole system is
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�̂�t0� = �
k

f�k��k
�k� . �11�

The density matrix evolves according to the von Neumann
equation

i
� �̂�t�

�t
= �Ĥ�t�, �̂�t�� . �12�

This equation can easily be solved with an ordinary differ-
ential equation solver such as ode45 of MATLAB. Then we
can calculate the expectation value of operators, such as
n̂d�t�, as

nd�t� = Tr�n̂d�̂�t�� = Tr�a0
†a0�̂�t�� . �13�

IV. RESULTS AND PHYSICAL INTERPRETATION

In Fig. 1 we plot both the exact and DMRG results in the
three typical parameter regimes at zero temperature, respec-
tively. We use Wilson-chain length L=160 and logarithmic
discretization parameter 	=1.08 for all the three figures. We
will discuss the discretization method in more detail in Sec.
V. Note that we set D=1 in our calculation.

For all three regimes, the DMRG error �shown in Fig. 2
for fast regime� is at worst of order 1�10−4 when keeping
�=100 states during DMRG calculation. This error can be
further reduced by increasing �.

Let us now try to understand the results physically. In the
fast sweep regime the spinless fermion on the impurity does
not have enough time to totally jump into the band, so the
occupation on the impurity nd�t� converges to a finite value
as the level is swept through and out of the band. In contrast,
in the slow sweep regime the fermion ends up in the band
with a very high probability. For comparison we also show
the results of an adiabatic sweep in the slow sweep regime in
Fig. 1. The adiabatic results are obtained from the thermody-
namic average Tr��̂�d�t�n̂d�, where �̂�d�t� is calculated using
Eq. �11� with single-particle states �k�d�t�
 of the Hamiltonian
H�d�t�. Evidently, the DMRG and exact results agree very
well with the adiabatic results.

Another important feature of the results is the oscillation
of nd�t�. To understand it, we first study a simplified model,
in which we only consider one level in the band and disre-
gard the rest levels for the moment. When there is one spin-
less fermion in this system the Hamiltonian is

H�t� = �E0�t� �

� E1
� , �14�

This is just the Hamiltonian of the original Landau-Zener
problem. We denote the instantaneous two eigenstates as
�+ 
t and �−
t with the corresponding eigenenergies
E�t�= 1

2 �E0�t�+E1��t��, where

��t� = �4�2 + �E1 − E0�t��2. �15�

The probability that a state of the form ���t�

=a�−
t+b�+ 
t at time t will still be found in the same state at
time t+�t is given by

P̃�t� � ����t����t + �t�
�2, �16a�

= �a�4 + �b�4 + 2�ab�2 cos���t��t� . �16b�

In each time interval, the instantaneous oscillation fre-

quency ��t� of P̃�t� is equal to the instantaneous oscillation
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FIG. 1. �Color online� The local occupation number nd�t� as a
function of time, calculated with both exact and DMRG method in
the three parameter regimes. At the top, we give the choices made
for the following parameters: sweeping speed v, Suzuki-Trotter step
�, logarithmic discretization parameter 	, Wilson-chain length L,
and the number of states kept in DMRG calculation �. The value of
hybridization parameter � and the corresponding dimensionless pa-
rameter r�2� /v are given in each figure, respectively. The insets
zoom in on fine details of the curves. �a� The markers in the inset
indicate the periods of the oscillations and beats obtained from the
simple physical picture discussed in the text �see Eq. �19��. �c� The
dashed lines are the reference results of the adiabatic sweep calcu-
lation, and the dash-dotted line is the adiabatic sweep result in

infinite band limit, which is simply nd�
�d

� �= 1
2 − 1

�arctan
�d

� .
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frequency of ����t0� ���t�
�2 to the zeroth order in �t. There-
fore, the probability for the system initially in a state ���t0�

to still be found in this state at a later time t,

P�t� � ����t0����t�
�2, �17�

will have an oscillating component proportional to
cos�	t0

t ��s�ds�.
We now return to the original problem and use the picture

described above to roughly estimate the period of the oscil-
lations in the fast sweep regime. In the fast sweep regime
according to Pauli exclusion principle the influence of the
unoccupied levels of the upper half of the band is dominant.
We can neglect the lower half of the band, and add up the
contributions of all levels E1 in the upper half band to the
oscillations by integrating the above mentioned cosine term

over the energies E1. Therefore the occupation on the reso-
nant level

nd�t� � �
0

D

P�t�dE1 �18�

will contain an oscillating contribution proportional to

sin�D

2
�t − t0��cos�1

2
�vt2 − Dt + Dt0 − vt0

2�� . �19�

To get the above result, we approximated ��t� by E1−vt,
neglecting the term 4�2=4�D /� ����D� /� is the prefac-
tor of the hybridization term in the energy representation of
Hamiltonian �1� �Ref. 20��. This is a good approximation,
except around t=0, when the local level is near the middle of
the band, and �E0−E1� is not significantly larger than �.

The resulting Eq. �19� can be used to understand the na-
ture of the oscillations and beats observed in the fast sweep
regime in Fig. 1. The factor sin�D�t− t0� /2� is the beat, and
the period of the beats is Tbeats=4� /D. We plot two markers
with a separation of 4� /D under the curve in the inset of
Fig. 1�a�; they fit the period of the beats very well. The
markers above the curve in the insets of Fig. 1�a� are ob-
tained by solving

1

2
�vt2 − Dt + Dt0 − vt0

2� = 2m� + const., �20�

where m is an integer such that the markers are best aligned
with the maxima of the oscillations shown. We can see that
the final agreement in position is excellent.

Last but not the least, we examined the dependence of the
final local level occupation number nd�+�� on r �shown in
Fig. 3, Table I�, and find it has the typical Landau-Zener
exponential relation,

nd�+ �� = e−r. �21�

This agrees with previous analytical results.24,25 Note that
though nd�+�� only depends on r, the detailed structure of
the nd�t� curve is determined by v and � respectively �see
Eq. �20� for example�.

V. ROLE OF DISCRETIZATION PARAMETER

As in NRG, the value chosen for the discretization param-
eter can affect the real-time dynamics, if it does not lie suf-

TABLE I. The nd�+�� data used in Fig. 3

v
� 0.1D 0.3D 0.9D 2.7D 8.1D 24.3D

0.05D 0.36516 0.71499 0.98419 0.96345 0.98766 0.99587

0.2D 0.01831 0.26199 0.63925 0.86164 0.95155 0.98358

0.8D 0.00480 0.16758 0.55114 0.81984 0.93593

3.2D 0.00081 0.09221 0.45177 0.76732

6.4D 0.00850 0.20404 0.58877

12.8D 0.00009 0.04162 0.34660
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FIG. 3. �Color online� Exact results checking the relation be-
tween the final local occupation number nd�+�� and r. Numerically,
we approximate nd�+�� by averaging nd�t� of the last four time
steps. The time span we use here is t� �−200 /D ,200 /D�. To get
nd�+�� at different r, we choose six different � from a wide param-
eter regime, and with each � six different sweeping speed:
v=0.1D, 0.3D, 0.9D, 2.7D, 8.1D, and 24.3D are used to calculate
nd�+��. We only plot the data for r�10 because the accumulated
numerical error becomes significant compared to nd�+�� for
r�10. The dashed line is a reference line of ln�nd�+���=−r. The
inset zooms in on small r.
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ficiently close to 1. Figure 4�a� compares the exact results of
	=1.08 and 	=2 in fast sweep regime. Note that for 	=2,
big oscillations in nd�t� remain long after the transition.
These are artificial consequences of the rather coarse dis-
cretization scheme, which diminish strongly as 	 is reduced
toward 1. Indeed, for 	=1.08, most of these oscillations
have disappeared. Further reduction in 	 does not change the
results significantly anymore. Note that, incidentally, the
ability of allowing a logarithmic discretization parameter
very close to 1 is a big advantage of DMRG over NRG.

With the physical picture described in Sec. IV, we can
also understand why there are artificial oscillations if 	 is
big. If we use a big logarithmic discretization parameter, the
part of the band far away from the Fermi level is poorly
represented by only a few levels, which means that the os-
cillations from different levels do not average out as well as
would have been the case for a true continuum of levels.

We use logarithmic discretization instead of linear dis-
cretization because in the problem we studied, the levels near
Fermi surface contribute more than levels far away from it,
and logarithmic discretization represents the part of band
around Fermi surface more efficiently.27 This is reflected in
the convergence of the results with respect to the Wilson-
chain length L shown in Fig. 4. As other parameters are the
same, the two discretization methods will both converge to
the same result when L→�. Therefore the faster the result
converges the better the method is. We can see from Fig. 4�b�
that the difference of nd�t� between L=120 and L=160
chains is already negligible for the case of logarithmic dis-
cretization while still significant if using linear discretization,
which means the results converge more quickly if we use
logarithmic discretization. This is even more obvious by
comparing the convergence speed of nd�+�� shown in Fig.
4�c�.

VI. CONCLUSIONS AND OUTLOOK

By studying a benchmark model we demonstrated that the
t-DMRG is a very accurate method to calculate real-time
dynamics of quantum impurity system with a time-dependent
Hamiltonian. To compare with the exact results, the model
we studied here is a noninteracting model, but DMRG can
also treat interacting problems similarly.

Though t-DMRG cannot calculate arbitrary long times �in
contrast to TD-NRG� it can give reliable results in a rela-
tively long time which we expect to be long enough for
numerous practical purposes. For example, in quantum infor-
mation, where fast quantum processes are more useful, the
relevant physics happens in a relatively short time scale,
which can be simulated by t-DMRG with a high precision.
We thus expect t-DMRG to be a powerful tool to study the
real-time dynamics of quantum impurity systems, in particu-
lar in the context of modeling the dynamics of damped,
driven qubits.
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FIG. 4. �Color online� Comparison of the exact results of differ-
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Chapter 4

One- and Two-Bath Spin-Boson
Models

In this chapter we use the NRG+VMPS scheme to explore the quantum phase diagram
and critical properties of two specific quantum dissipative systems, namely the one- and
two-bath spin boson models. In contrast to fermionic models, an individual bosonic degree
of freedom already contains an infinite-dimensional state space, which posts a challenge to
the conventional VMPS method. We introduce a shifted optimal boson basis into VMPS,
and thereby extend the occupation of the local bosonic mode, which in the original basis
is of order 101, to the order of 1010. This is a crucial improvement for VMPS to be able to
calculate the correct critical exponents of the quantum phase transition of SBM1; thus it
enables us to settled a controversy regarding the quantum-to-classical mapping.

According to the quantum-to-classical mapping, a quantum phase transition in d-
dimensional systems can be described as an equivalent classical phase transition in d + z
dimensional systems, where z is the dynamical exponent of the QPT [75]. However, there
are also quantum phase transitions without such classical counter parts [81, 80, 76], and
this specialty has intrigued people’s interests in recent years.

The quantum-to-classical mapping relates the standard spin-boson model (called SBM1
below) to a one-dimension Ising model with a long range interaction of the form 1/r1+s.
More specifically, this means that the quantum phase transition of SBM1 and the ther-
mal phase transition of the 1D Ising model with long range interaction belong to the same
universality class, which in turns predicts mean-field exponents for s < 1/2. However, a de-
tailed NRG calculation gave a different picture: The critical exponents of SBM1 differ from
the mean field exponents and satisfy hyperscaling [96, 51, 30] not only for s > 1/2 but also
for s < 1/2, in contrast to the predictions from a quantum-to-classical mapping. However,
when SBM1 was later studied with other numerical methods like Quantum Monte Carlo
[111] and sparse polynomial space [2], they confirms mean-field prediction. Subsequent
NRG calculations also favored the quantum-to-classical mapping [97, 95]. Nevertheless,
there are still arguments [45] supporting the NRG result of non-mean-field exponents sat-
isfying hyperscaling, which makes the controversy around the nature of this phase transition
even more puzzling.



36 4. One- and Two-Bath Spin-Boson Models

If one uses VMPS with a local dimension as small as those used in the previous NRG
calculation, VMPS will generate the same critical exponents as NRG. However by in-
troducing an optimal boson basis, we enlarge the local dimension that can be handled
numerically by many orders of magnitude. This enables us to see the influence of the
restricted local dimension to the results of critical exponents. Indeed, we confirm that the
quantum-to-classical mapping holds if one use large enough local dimension in SBM1.

Having settled the controversy, we used the new developed method to study the more
complicated two-bath spin boson model (SBM2). We find an interesting new critical phase
in SBM2. We also do some preliminary study of its critical behavior, and there are also
lots of open question left for further investigation.

In the following I will present our publication, complimented by additional studies
which we have not included in the paper, while also pointing out further improvements of
the algorithm.

4.1 Publication: Critical and Strong-Coupling Phases

in One- and Two-Bath Spin-Boson Models
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For phase transitions in dissipative quantum impurity models, the existence of a quantum-to-classical

correspondence has been discussed extensively. We introduce a variational matrix product state approach

involving an optimized boson basis, rendering possible high-accuracy numerical studies across the entire

phase diagram. For the sub-Ohmic spin-boson model with a power-law bath spectrum / !s, we confirm

classical mean-field behavior for s < 1=2, correcting earlier numerical renormalization-group results. We

also provide the first results for an XY-symmetric model of a spin coupled to two competing bosonic

baths, where we find a rich phase diagram, including both critical and strong-coupling phases for s < 1,

different from that of classical spin chains. This illustrates that symmetries are decisive for whether or not

a quantum-to-classical correspondence exists.

DOI: 10.1103/PhysRevLett.108.160401 PACS numbers: 05.30.Jp, 05.10.Cc

Quantum spins in a bosonic environment are model
systems in diverse areas of physics, ranging from dissipa-
tive quantum mechanics to impurities in magnets and
biological systems [1]. In this Letter we consider the
spin-boson model and a generalization thereof to two

baths, described by H sb ¼ � ~h � ~�=2þH bath, with

H bath ¼
X
i¼x;y

X
q

�
!qB̂

y
qiB̂qi þ �qi

�i

2
ðB̂qi þ B̂y

qiÞ
�
: (1)

The two-level system (or quantum spin, with �x;y;z being

the vector of Pauli matrices) is coupled both to an external

field ~h and, via �x and �y, to two independent bosonic

baths, whose spectral densities Jið!Þ¼�
P

q�
2
qi�ð!�!qÞ

are assumed to be of power-law form:

Jið!Þ ¼ 2��i!
1�s
c !s; 0<!<!c ¼ 1: (2)

Such models are governed by the competition between the

local field, which tends to point the spin in the ~h direction,
and the dissipative effects of the bosonic baths.

Indeed, the standard one-bath spin-boson model (SBM1),
obtained for�y ¼ hy ¼ 0, exhibits an interesting andmuch-

studied [1–7] quantum phase transition (QPT) from a
delocalized to a localized phase, with h�xi ¼ 0 or � 0,
respectively, as �x is increased past a critical coupling
�x;c. According to statistical-mechanics arguments, this

transition is in the same universality class as the thermal
phase transition of the one-dimensional (1D) Ising model
with 1=r1þs interactions. This quantum-to-classical corre-
spondence (QCC) predicts mean-field exponents for
s < 1=2, where the Ising model is above its upper-critical
dimension [8,9].

Checking this prediction numerically turned out to be
challenging. Numerical renormalization-group (NRG)
studies of SBM1 yielded non-mean-field exponents for
s < 1=2 [4], thereby seemingly negating the validity of

the QCC. However, the authors of Ref. [4] subsequently
concluded [10] that those results were not reliable, due to
two inherent limitations of the NRG method, which they
termed (i) Hilbert-space truncation and (ii) mass flow.
Problem (i) causes errors for critical exponents that char-
acterize the flow into the localized phase at zero tempera-
ture, since h�xi � 0 induces shifts in the bosonic

displacements X̂q ¼ ðB̂q þ B̂y
q Þ=

ffiffiffi
2

p
of the bath oscillators

which diverge in the low-energy limit for s < 1 and hence
cannot be adequately described in the truncated boson
Hilbert space used by the NRG method [11]. Problem (ii)
arises for nonzero temperatures, due to the NRG’s neglect
of low-lying bath modes with energy smaller than tem-
perature [12]. In contrast to the NRG results, two recent
numerical studies of SBM1, using Monte Carlo methods
[6] or a sparse polynomial basis [5], found mean-field
exponents in agreement with the QCC. Nevertheless,
other recent works continue to advocate the failure of the
QCC [13].
The purpose of this Letter is twofold. First, we show how

the problem (i) of Hilbert-space truncation can be con-
trolled systematically by using a variational matrix-
product state (VMPS) approach formulated on a Wilson
chain. The key idea is to variationally construct an opti-
mized boson basis (OBB) that captures the bosonic shifts
induced by h�xi � 0. The VMPS results confirm the pre-
dictions of the QCC for the QPT of SBM1 at T ¼ 0.
(Problem (ii) is beyond the scope of this work.) Second,
we use the VMPS approach to study an XY-symmetric
version of the two-bath spin-boson model (SBM2), with
�x ¼ �y. This model arises, e.g., in the contexts of impu-

rities in quantum magnets [14,15] and of noisy qubits
[14,16], and displays the phenomenon of ‘‘frustration of
decoherence’’ [14]: the two baths compete (rather than
cooperate), each tending to localize a different component
of the spin. As a result, a nontrivial intermediate-coupling
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(i.e., critical) phase has been proposed to emerge for s < 1
[15], which has no classical analogue. To date, the exis-
tence of this phase could only be established in an expan-
sion in (1� s), and no numerical results are available.
Here we numerically investigate the phase diagram, and,
surprisingly, find that the perturbative predictions are valid
for a small range of s and � only. We conclusively dem-
onstrate the absence of a QCC for this model.

Wilson chain.—Following Refs. [3,11], which adapted
Wilson’s NRG to a bosonic bath, we discretize the latter
using a logarithmic grid of frequencies !ki / ��k (with
�> 1 and k a positive integer) and map H bath onto a so-
called Wilson chain of (L� 1) bosonic sites:

H ðL�1Þ
bath ¼ X

i¼x;y

� ffiffiffiffiffi
�i

�

r
�i

2
ðb̂1i þ b̂y1iÞ

þ XL�2

k¼1

tkiðb̂ykib̂kþ1;i þ H:c:Þ þ �kin̂ki

�
: (3)

Here n̂ki ¼ b̂ykib̂ki, with eigenvalue nki, counts the bosons

of type i on chain site k; the detailed form of the hopping
parameters tki, on-site energies �ki (both / ��k), and the
coupling �i between spin component �i and site 1, are
obtained following Refs. [17,18]. To render a numerical
treatment feasible, the infinite-dimensional bosonic Hilbert
space at each site k is truncated by restricting the boson
number to 0 � nki < dk (dk � 14 in Refs. [3,11]).

The standard NRG strategy for finding the ground state

of H ðLÞ
sb ¼ � ~h � ~�=2þH ðL�1Þ

bath is to iteratively diagonal-

ize it one site at a time, keeping only the lowest-lying D
energy eigenstates at each iteration. This yields an L-site
matrix-product state (MPS) [19–21] of the following form
(depicted in Fig. 1, dashed boxes):

jGi ¼ X
�¼";#

X
f ~ng

A0½��A1½n1� � � �AL�1½nL�1�j�ij ~ni: (4)

Here j�i ¼ j "i, j #i are eigenstates of �x; the states j ~ni ¼
jn1; . . . ; nL�1i form a basis of boson-number eigenstates
within the truncated Fock space, with n̂kij ~ni ¼ nkij ~ni and
0 � nki < dk. For SBM2, nk ¼ ðnkx; nkyÞ labels the states

of supersite k representing both chains. Each Ak½nk� is a
matrix (not necessarily square, but of maximal dimension
D�D, with A0 a row matrix and AL�1 a column matrix),
with matrix elements ðAk½nk�Þ��.

The need for Hilbert-space truncation with small dk
prevents the NRG method from accurately representing

the shifts in the displacements x̂ki ¼ ðb̂ki þ b̂ykiÞ=
ffiffiffi
2

p
that

occur in the localized phase. This problem can be avoided,
in principle, by using an OBB, chosen such that it opti-
mally represents the quantum fluctuations of shifted oscil-
lators, x̂0ki ¼ x̂ki � hx̂kii. While attempts to accommodate

this strategy within the standard NRG approach were un-
successful [11], it was shown to work well [5] using an
alternative representation of SBM1 using a sparse poly-
nomial basis.
VMPS method.—We now show that an OBB can also be

constructed on a Wilson chain. To this end, view the state
jGi of Eq. (4) as a MPS ansatz for the ground state of

H ðLÞ
sb , that is to be optimized variationally using standard

MPS methods [19–21]. To allow the possibility of
large bosonic shifts, we represent the A-matrix elements
as [22–24] (Fig. 1, solid lines)

ðAk½nk�Þ�� ¼ Xdopt�1

~nk¼0

ð ~Ak½~nk�Þ��Vk
~nknk

ðk � 1Þ: (5)

Here Vk in effect implements a transformation to a new

boson basis on site k, the OBB, of the form j~nki ¼Pdk�1
nk¼0 V

k
~nknk

jnki with 0 � ~nk < dopt. (For SBM2, Vk is a

rank-3 tensor.) This ansatz has the advantage that the
size of the OBB, dopt, can be chosen to be much smaller

(dopt & 50) than dk. Following standard VMPS strategy,

we optimize the ~Ak and Vk matrices one site at a time
through a series of variational sweeps through the Wilson
chain. As further possible improvement before optimizing
a given site, the requisite boson shift can be implemented
by hand in the Hamiltonian itself: we first determine the
‘‘current’’ value of the bosonic shift hx̂kii using the current
variational state jGi, then use it as a starting point to
variationally optimize a new jG0iwith respect to the shifted
Hamiltonian H 0ðLÞ

sb ðb̂ki; b̂ykiÞ ¼ H ðLÞ
sb ðb̂0ki; b̂0yki Þ, with b̂0ki ¼

b̂ki � hx̂kii=
ffiffiffi
2

p
. The shifted OBB protocol, described in

detail in Ref. [18], allows shifts that would have required
deffk � 1010 states in the original boson basis to be treated

using rather small dk (we used dk ¼ 100).
Spin-boson model.—We applied the VMPS method to

SBM1 (�y ¼ hy ¼ 0), with dissipation strength � � �x

and fixed transverse field hz ¼ 0:1, at T ¼ 0. We focussed
on the QPT between the delocalized and localized
phases in the sub-Ohmic case, s < 1. Here, the controversy
[4–6,10,13] concerns the order-parameter exponents � and

�, defined via h�xi / ð�� �cÞ� at hx ¼ 0 and h�xi / h1=�x

at � ¼ �c, respectively. QCC predicts mean-field values
�MF ¼ 1=2, �MF ¼ 3 for s < 1=2 [8], whereas initial NRG
results [4] showed s-dependent non-mean-field exponents.
In Fig. 2(a), we show sample VMPS results for h�xi vs

(�� �c) for s ¼ 0:3 at hx ¼ 0, where �c was tuned to
yield the best straight line on a log-log plot. The results

FIG. 1. Depiction of the MPS Eq. (4), with each A-matrix
expressed in an optimal boson basis via A ¼ ~AV [Eq. (5)].
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display power-law behavior over more than 3 decades,
with an exponent � ¼ 0:50	 0:03. Deviations at small
(�� �c) can be attributed to a combination of finite
chain length and numerical errors of the VMPS method.
Figure 2(b) shows h�xi vs hx at � ¼ �c, and a power-law
fit over 6 decades results in � ¼ 2:9	 0:2. Power laws
of similar quality can be obtained for all s * 0:2 [18,25]
(see [18], Fig. S7).

The exponents � and � obtained from such fits are
summarized in Figs. 2(c) and 2(d). For s < 1=2 they are
consistent with the mean-field values predicted by QCC,
also found in Monte Carlo [6] and exact-diagonalization
studies [5], but are at variance with the NRG data of
Ref. [4]. Since both the NRG and VMPS methods handle

the same microscopic model H ðLÞ
sb defined on the Wilson

chain, but the VMPSmethod can deal with much larger deffk

values (& 1010 in Fig. 2) than the NRG method, the in-
correct NRG results must originate from Hilbert-space
truncation, as anticipated in Ref. [10]. Indeed,
artificially restricting dk to small values in the VMPS
approach reproduces the incorrect NRG exponents (see
[18], Fig. S6).

Two-bath model.—We now turn to SBM2, a general-
ization of the spin-boson model. Here, the two baths may
represent distinct noise sources [14,16] or XY-symmetric
magnetic fluctuations [14,15,26]. Perturbation theory
shows that the two baths compete: A straightforward ex-
pansion around the free-spin fixed point (� ¼ h ¼ 0) re-
sults in the following one-loop renormalization-group

(RG) equations at ~h ¼ 0:

�ð�xÞ ¼ ð1� sÞ�x � �x�y;

�ð�yÞ ¼ ð1� sÞ�y � �x�y:
(6)

For � � �x ¼ �y, these equations predict a stable

intermediate-coupling fixed point at �
 ¼ 1� s, describ-
ing a critical phase. It is characterized by h ~�i ¼ 0, a non-

linear response of h ~�i to an applied field ~h, and a finite
ground-state entropy smaller than ln2, all corresponding to
a fluctuating fractional spin [15,27]. This phase is unstable
with respect to finite bath asymmetry (�x � �y) and finite

field. It had been assumed [15] that this critical phase exists
for all 0< s < 1 and is reached for any �.
We have extensively studied SBM2 using the VMPS

method; the results are summarized in the ~h ¼ 0 phase
diagram in Fig. 3(a) and the flow diagrams in Fig. 4. Most
importantly, we find that the critical phase (CR) indeed
exists, but only for s
 < s < 1, with a universal s
 ¼
0:75	 0:01. Even in this s range, the critical phase is
left once � is increased beyond a critical value �cðsÞ,
which marks the location of a continuous QPT into a
localized phase (L) with spontaneously broken XY sym-
metry and finite h�x;yi. This localized phase exists down to
s ¼ 0, Fig. 3(a). It can be destabilized by applying a
transverse field hz beyond a critical value hczð�Þ, marking
the location of a continuous QPT into a delocalized phase
(D) with a unique ground state (see Ref. [18], Fig. S9).
Finally, for s � 1 we only find weak-coupling behavior;
i.e., the impurity behaves as a free (F) spin .
In Fig. 3(b) (and Ref. [18], Fig. S10) we show results for

the transverse-field response, h�zi / h1=�
0

z , which can be
used to characterize the different zero-field phases. h�zi is
linear in hz in L (�0 ¼ 1), sublinear in CR (�0 > 1), and
extrapolates to a finite value in F. For CR, a perturbative
calculation gives 1=�0 ¼ ð1� sÞ þOð½1� s�2Þ [15] (con-
firmed numerically in Ref. [18], Fig. S11b), while the

FIG. 2 (color online). VMPS results for the order parameter of
SBM1 near criticality. (a) h�xi vs (�� �c) at hx ¼ 0, and
(b) h�xi vs hx at � ¼ �c, on linear plots (insets) or log-log plots
(main panels). Dashed lines are power-law fits in the ranges
between the vertical marks. (c),(d) Comparison of the exponents
� and � for different s obtained from the VMPS method, NRG
studies [4], mean-field theory, and, in (d), the exact hyperscaling
result � ¼ ð1þ sÞ=ð1� sÞ which applies for s > 1=2. (See also
[18], Fig. S7).

FIG. 3 (color online). (a) Phase diagram of SBM2 in the s-�

plane for ~h ¼ 0, with dissipation strength � � �x ¼ �y. The

critical phase only exists for s
 < s < 1, and its boundary
�c ! 1 for s ! 1�. (Ref. [18] describes the determination of
the phase boundary and gives a 3D sketch of the s-�-hz phase
diagram, see Fig. S8.) (b) Tranverse-field response of SBM2,

h�zi / h1=�
0

z , for four choices of s and �, showing free (dia-
monds), critical (squares) and localized (triangles, circles) be-
havior.
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linear response in L corresponds to that of an ordered XY
magnet to a field perpendicular to the easy plane.

From the VMPS results, we can schematically construct
the RG flow, Fig. 4. There are three stable RG fixed points
for s
 < s < 1, corresponding to the L, D, and CR phases.
From this we deduce the existence of two unstable
critical fixed points, QC1 and QC2, controlling the QPTs
[Fig. 4(a)]. Equation (6) predicts that, as s ! 1�, CR
merges with F; this is consistent with our results for �0
which indicate �0 ! 1 as s ! 1� (Ref. [18], Fig. S11b).
The behavior of the phase boundary �c in Fig. 3(a) sug-
gests that QC1 moves towards � ¼ 1 for s ! 1�. Thus,
for s � 1 only F is stable on the ~h ¼ 0 axis. Conversely,
from Eq. (6) and Fig. 3(a) we extract that, upon lowering
s, CR (QC1) moves to larger (smaller) �. From the
absence of CR for small s we then conclude that
CR and QC1 merge and disappear as s ! s
þ.
Consequently, for s < s
 we have only D and L as stable
phases, separated by a transition controlled by QC2,
Fig. 4(b). The merger of CR and QC1 at s ¼ s
 also
implies that the phase boundary between CR and L in
Fig. 3(b) at s
 is vertical at small � (Ref. [18], Sec. V.C),
because the merging point on the � axis defines the finite
value of �c at s ! s
þ.

Taken together, the physics of SBM2 is much richer than
that of a classical XY-symmetric spin chain with long-
range interactions, which only shows a single thermal
phase transition [28]. Given this apparent failure of the
QCC for SBM2, it is useful to recall the arguments for
QCC for SBM1: A Feynman path-integral representation
of Eq. (1), with nonzero hz, can be written down using
eigenstates of both �x and �z. Integrating out the bath
generates a long-range (in time) interaction for �x.
Subsequently, the �z degrees of freedom can be integrated
out as well, leaving a model formulated in �x only.
Reinterpreting the �x values for the individual time slices

in terms of Ising spins, one arrives at a 1D Ising chain with
both short-range and 1=r1þs interactions, with the thermo-
dynamic limit corresponding to the T ! 0 limit of the
quantum model. Repeating this procedure for SBM2 with
~h ¼ 0, one obtains a Feynman path integral in terms of
eigenstates of �x and �y. Importantly, both experience

long-range interactions and hence neither can be integrated
out. This leads to a representation in terms of two coupled
Ising chains. However, upon reexponentiating the matrix
elements, the coupling between the two chains turns out to
be imaginary, such that a classical interpretation is not
possible [29]. In other words, a Feynman path-integral
representation of SBM2 leads to negative Boltzmann
weights, i.e., a sign problem.
Conclusion.—Our implementation of the OBB-VMPS

method on the Wilson chain brings the Hilbert-space trun-
cation problem of the bosonic NRG method under control
and allows for efficient ground-state computations of bo-
sonic impurity models. We have used this to verify the
QCC in SBM1 and to determine the phase diagram of
SBM2, which is shown to violate QCC. This underlines
that symmetries are decisive for whether or not a QCC
exists. A detailed study of the QPTs of SBM2 is left for
future work.
The results for SBM2 also show that the predictions

from a weak-coupling RG calculation are not valid for all
parameters and bath exponents, in contrast to expectations.
This implies that studying a three-bath version of the spin-
boson model, which is related to the physics of a magnetic
impurity in a quantum-critical magnet [15,27], is an inter-
esting future subject.
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I. DISCRETIZATION AND MAPPING TO THE
WILSON CHAIN

The spin-boson model represents a prototypical
quantum-impurity setup, with the bath consisting of non-
interacting particles. As such it is amenable to the con-
cept of energy scale separation present in the NRG1–3.
For this, the quantum impurity Hamiltonian of the spin-
boson model is mapped onto a so-called Wilson chain,
which includes two steps: (i) coarse graining of the bath
(logarithmic discretization), followed (ii) by a mapping
onto a semi-infinite bosonic chain with the spin-impurity
connected to its starting point.

The bath spectral function Ji(ω) of each bosonic bath
i is assumed to be non-zero in the interval ω ∈ [0, ωc],
with ωc an upper cutoff frequency. The bath spectral
function Ji(ω) is discretized then in energy-space into
intervals [ωm+1, ωm], marked by the decreasing sequence
ωm (m = 0, 1, . . .) with ω0 = ωc and limm→∞ ωm = 0.
Assuming two identical baths i ∈ {x, y} that couple to
the Pauli matrices σi of the impurity, respectively, the
discretized Hamiltonian has the form

Hbath =
∑

i=x,y

∞∑

m=0

[
ξmB̂

†
miB̂mi +

σi
2
√
π
γm(B̂mi + B̂†mi)

]
,

(S1)

Here B̂†mi (B̂mi) is the creation (annihilation) operator,
respectively, of a free boson with energy ξm, that is cou-
pled to the impurity spin with strength γm. Moreover,

ξm =

∫ ωm

ωm+1
J(x)dx

∫ ωm

ωm+1

(
J(x)/x

)
dx

γm =

(∫ ωm

ωm+1

J(x)dx

)1/2

. (S2)

We prefer a logarithmic discretization scheme over a lin-
ear or power-law discretization, since the study of critical
behavior requires very small energy scales to be resolved.
This would require too many chain sites for linear and
even power-law discretization schemes. Moreover, loga-
rithmic discretization is ideally suited to represent scale-
invariant physics near a quantum phase transition, and it
has the advantage that characteristic NRG information,
such as the energy flow diagram used to analyze the fixed
points of the system, can be extracted from our VMPS
results, if desired. (This will be elaborated upon in a
separate publication4.)

In this paper we use the improved logarithmic dis-
cretization recently proposed by Žitko and Pruschke5. As
this achieves a more consistent description of the bath,
it reduces discretization effects and hence allows to de-
termine phase boundaries such as the critical coupling
strength αc more accurately. Thus we choose the dis-
cretization intervals as

ωz0 = ωc,

ωzm = ωcΛ
1−m−z, (m = 1, 2, 3, . . .) (S3)

with Λ > 1 Wilson’s logarithmic discretization
parameter1, and z ∈ ]0, 1] an arbitrary shift6. By solving
the differential equation in App. C of Ref. 5 analyti-
cally, we obtain the following explicit expressions for the
parameters in Eq. (S2):

ξz0 =
[

1−Λ−z(1+s)

(1+s)lnΛ − z + 1
] 1

1+s
,

ξzm =
[

Λ−(1+s)(m+z)(Λ1+s−1)
(1+s)lnΛ

] 1
1+s

, (m = 1, 2, 3, . . .)

(S4)

γz0 =
√

2πα
1+s (1− Λ−z(1+s)),

γzm =
√

2πα
1+s (Λ1+s − 1)Λ−(m+z)(1+s) (m = 1, 2, 3, . . .)

(S5)

Having discretized the Hamiltonian, the mapping onto
the Wilson chain is done numerically using standard
Lanzcos tridiagonalization. For the calculations in this
paper, we use z = 1.

We find that, with the discretization scheme of Žitko
and Pruschke,5 the Λ-dependence of αc is much weaker
than for the traditional discretization scheme1,3, i.e., αc
converges rapidly as Λ is decreased towards 1. Similar to
standard NRG, critical exponents do not dependent on
Λ, as shown in Fig. S1 for the exponent β.

II. OBB-VMPS OPTIMIZATION PROCEDURE

As discussed in the main paper, we use a MPS of the
following general form:

|G〉 =
∑

σ=↑,↓

∑

{~n}
A0[σ]A1[n1] · · ·AL−1[nL−1]|σ〉|~n〉 . (S6)
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FIG. S1: 〈σx〉 as function of (α− αc) for SBM1, using three
different choices of the discretization parameter Λ (and, cor-
respondingly, different chain lengths L). The data illustrate
that the critical exponent β, obtained from power-law fits to
this data, is essentially independent of Λ. The dashed line
represents a power law 〈σx〉 ∝ (α− αc)β with mean-field ex-
ponent βMF = 1/2.

The A-matrix elements are represented as

(Ak[nk])αβ =

dopt−1∑

ñk=0

(Ãk[ñk])αβV
k
ñknk

(k ≥ 1) , (S7)

in order to allow for the construction of an effective op-
timized boson basis (OBB) on each site k, given by

|ñk〉 =

dk−1∑

nk=0

V kñknk
|nk〉 (ñk = 0, . . . , dopt − 1) . (S8)

The VMPS ansatz (S6) for the ground state of the Wil-
son chain is completely analogous to standard finite-
size DMRG7, and the use of an optimized local basis
[Eqs. (S7) and (S8)] was pioneered in Ref. 8, finding sub-
sequent applications in, for example, Refs. 9,10. The
variational optimization of the resulting MPS with re-

spect to the Hamiltonian H(L)
sb given in the main paper,

depicted in Fig. 1 there, proceeds by iteratively updat-
ing the Ã- and V -matrices through a series of sweeps
through the chain. Given the directed structure of the
Wilson chain from large energy scales (left side of the
MPS) to small energy scales (right side of the MPS),
similar to the NRG, variational energy-lowering updates
are performed only when sweeping from left to right. In
contrast, during the reverse sweep from right to left the
physical state (and its energy expectation value) is left
unchanged. Nevertheless, during the reverse sweep the
A-matrices are recast into a right-orthonormalized form,
to ensure that the right low-energy part of the Wilson
chain is described in terms of properly orthonormalized
effective basis sets.
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SVD

SVD

Optimize

Optimize

(a) (b) (c)

(d)(e)(f)

2. Combine the left (labed as α) and right (labeled asβ) bond of the A matrix (the square in Fig. 2) as2. Combine the left (labed as α) and right (labeled asβ) bond of the A matrix (the square in Fig. 2) as2. Combine the left (labed as α) and right (labeled asβ) bond of the A matrix (the square in Fig. 2) as

2. Combine the left (labed as α) and right (labeled asβ) bond of the A matrix (the square in Fig. 2) as2. Combine the left (labed as α) and right (labeled asβ) bond of the A matrix (the square in Fig. 2) as2. Combine the left (labed as α) and right (labeled asβ) bond of the A matrix (the square in Fig. 2) as

p, q, p, q,

p, q,

p, q,

p, q, ñ
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FIG. S2: Update procedure at one site when sweeping from
left to right. The matrices surrounded by the dashed lines
are the outcome of singular value decomposition (SVD). The
filled squares or triangles indicate the “current focus” of each
step. Filled arrows indicate the local update loop (highlighted
by the shaded area), open arrows indicate its entry and exit.

To get started, the MPS is always initialized randomly,
followed by proper orthonormalization. To update the
coefficient spaces related to a given site k of the Wilson
chain, we perform the following steps, depicted schemat-
ically in Fig. S2 (we suppress the index k below):

(a) At a given site, the starting point is a well-defined
local setting in terms of orthonormal basis sets |α〉,
|β〉, and |ñ〉 of the A-tensor for an effective left,
right, and full local state space, respectively, as de-
picted in Fig. S2(a). The current approximation
to the overall ground-state wave function therefore
has its focus on the Ã-tensor of site n, and, setting
Ãαβñ ≡ (Ã[ñ])αβ , can be written as

|ψ〉 ≡
∑

αβñ

Ãαβñ|α〉|β〉|ñ〉. (S9)

(b) Downward-orthonormalization of Ã-tensor to move
the focus to the V -matrix: combine the left state
space α with the right state space β into one index,
and use the effective local state space ñ as another
index. Then singular value decomposition (SVD)
of the resulting matrix,

Ãαβñ = Ã(αβ)ñ =
∑

p

Ã′(αβ)pλpBpñ, (S10)

generates a new orthonormal tensor Ã′ that de-
scribes a combined description of the product space
(α, β), such that

∑

(αβ)

Ã′(αβ)pÃ
′∗
(αβ)p′ = δpp′ . (S11)
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The wave function can now be represented as

|ψ〉 =
∑

pñ

λpBpñ|p〉|ñ〉. (S12)

This description of the rest of the system in terms
of an orthonormal effective basis |p〉 is used to rep-
resent operators that connect the rest of the system
with the current local state space. Being orthonor-
mal, it also makes the numerics simple and stable.

(c) By contracting the remaining box B from the last
step onto the V -matrix, this shifts the focus down
to the Ṽ -matrix

Ṽpn =
∑

ñ

λpBpñVñn, (S13)

which thus has been altered. Having shifted the
focus, the ground state is now represented as

|ψ〉 ≡
∑

p,n

Ṽpn|p〉|n〉, (S14)

where the Ṽ -matrices connect the orthonormal
state spaces p and with the local boson space n. So
far, the transformation of |ψ〉 has been exact with
Eq. (S14) describing the same state as Eq. (S9).
Transform the Hamiltonian and operators into the
basis |p〉|n〉 and solve the eigenvalue problem

∑

(pn)

H(p′n′)(pn)Ṽ(pn) = EgṼ(p′n′), (S15)

for the ground state of the system. Thus the result-
ing Ṽ -matrix represents the updated ground state
via Eq. (S14).

(d) Upward-orthonormalization of the Ṽ -matrix: the

singular value decomposition of Ṽ ,

Ṽnp =
∑

ñ

VnñsñCñp , (S16)

provides a new effective description of the local bo-
son space, such that the transformation matrix V
from the original boson basis to the OBB is orthog-
onal:

∑

n

VnñV
∗
nñ′ = δññ′ . (S17)

Note that the singular values sñ indicate the rel-
ative importance of the optimal boson bases. We
will come back to this point at the end of this sec-
tion. At this step the wave function is

|ψ〉 =
∑

ñp

sñCñp|ñ〉|p〉. (S18)

(e) By contracting the remaining box sñC from the

previous step onto the Ã′-matrix, similar with step
(c), the focus can be shifted to the Ã-matrix again:

Ãαβñ =
∑

p

Ã′αβpsñCñp. (S19)

The wave function is thus reexpressed in the same
form as Eq. (S12). Now transform the local oper-
ators to the OBB |ñ〉 using V , and optimize the

Ãαβñ matrix in the same way as done using the
traditional VMPS method.

(f) Combine the left and local indices and perform a

singular value decomposition of the Ãαβñ matrix:

Ãαβñ = Ã(αñ)β =
∑

q

Ã(αñ)qrqFqβ . (S20)

The resulting tensor Ãαqñ is left orthogonal:

∑

αñ

ÃαqñÃ
∗
αq′ñ = δqq′ . (S21)

Contracting the remaining rqFqβ to the Ã tensor on
the right side completes the update of the current
site.

The OBB method enables us to increase the number dk
of local states that can be kept in the original basis from
a few dozen to dk . 104. (In the next section we shall
show that by implementing explicit oscillator shifts, the
effective number of local boson states that are accounted
for in the unshifted basis can be increased to more than
1010.)

The two adjustable VMPS parameters are the dimen-
sion D of the VMPS matrices (corresponding to the num-
ber of DMRG states kept) and the dimension dopt of the
optimal boson basis. To exemplify the influence of D
and dopt on physical quantities, Fig. S3 plots the magne-
tization 〈σx〉 for SBM1 as a function of α for different D
and dopt. Clearly, αc is already well converged through-
out. In practice, we chose D and dopt large enough to
ensure that all singular values [sñ and rq in Eqs. (S16)
and (S20)] larger than 10−5 were retained throughout the
entire Wilson chain, except possibly at its very end. We
will explain this in more detail in the next section, when
discussing Fig. S7 below.

For SBM2 with two bosonic baths, on the other hand,
the combination of two boson sites into one supersite
requires numerical parameters such as D and dopt to be
set to larger values than for SBM1. Nevertheless, we
find that the number of kept states needed to ensure an
accuracy comparable to that of SBM1 is smaller than
the D2 or d2

opt that might have been naively expected
from the fact that the local state space now has a direct
product structure.
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FIG. S3: Convergence check for the VMPS parameters D (a)
and dopt (b), for SBM1. The panels show 〈σx〉 as function
of αx for different choices of D and dopt, respectively. Since
critical exponents are obtained from fits to the linear parts of
such curves, the resulting exponents are evidently not sensi-
tive to D and dopt. As in Fig. S1, the dashed lines show the
mean-field power law with βMF = 1/2.

III. OBB WITH EXPLICIT SHIFTS

The OBB scheme described in the preceding section al-
lows us to easily perform calculations on a desktop com-
puter using local boson bases of dimension dk . 104.
This can be increased by at least 6 more orders of mag-
nitude by analytically incorporating explicit shifts during
the construction of OBB. The idea is to explicitly shift
the harmonic oscillator coordinates x̂k by their equilib-
rium expectation values 〈x̂k〉 (similar in spirit to the pro-
cedure used in Ref. 11), such that the OBB can be used
to capture the quantum fluctuations of the shifted coor-
dinate

x̂′k = x̂k − 〈x̂k〉 . (S22)

We now describe explicitly how this is done.
We begin by noting that a shift corresponds to a uni-
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FIG. S4: Convergence check for the VMPS parameters D
(a) and dopt (b), for SBM2. The panels show the transverse-
field response, |〈σz〉| vs. hz in the CR phase, with a robust
sublinear power law. The deviations at smallest fields arise
from small symmetry-breaking effects in the numerics which
cause a linear response akin to an ordered state.

tary transformation

Û(δk) = e
δk√

2
(b̂†k−b̂k)

(S23)

such that,

b̂′k = Û†(δk) b̂k Û(δk) = b̂k +
δk√

2
(S24)

on b̂k (similarly for b̂†k). Thus the harmonic oscillator

displacement x̂k ≡ 1√
2
(b̂k+ b̂†k) is shifted to x̂′k = x̂k+δk,

and the local boson number operator to

n̂′k ≡ b̂′†k b̂
′
k = n̂k + δkx̂k +

δ2k
2 . (S25)

The shift can be implemented on the Hamiltonian level,
by replacing the original Wilson-chain Hamiltonian by
the shifted Hamiltonian

H′(L)
sb (b̂ki, b̂

†
ki) = H(L)

sb (b̂′ki, b̂
′†
ki) . (S26)
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FIG. S5: Effective boson occupation number 〈n̂k〉 in the
original, unshifted Wilson-chain boson basis, as function of
site index k along the Wilson chain, calculated for the lo-
calized phase of SBM1. Dashed line indicates the relation
〈n̂k〉 ∝ Λk(1−s) (see text). The finite size effect causes VMPS
result deviate from this exponential relation at the end of the
Wilson chain.

The local states |nk〉 in Eq. (S8) now represent Fock
states of the shifted oscillators.

To incorporate explicit shifts within the OBB sweep-
ing strategy described in the last section, we calculate
the ground state expectation value 〈x̂k〉 of the current
site after step (e). We then set δk = −〈x̂k〉 in Eqs. (S24)
and (S25), thereby ensuring that the shifted coordinate
x̂′k corresponds to Eq. (S22). We subsequently move back
to step (b) and implement the shift in the Hamiltonian.
(In practice, it is convenient to preserve the form of the
Hamiltonian itself, and instead to change the matrix rep-

resentation of the operators b̂k, b̂†k and n̂k to implement
the shift of Eq. (24).) Then we repeat the local update
loop of the sequence (b), (c), (d), (e) (Fig. S2) until the
shift converges. Finally, we move to step (f) and the next
site.

The SBB method allows us to reach boson shifts 〈x̂k〉
so large that their description within the unshifted boson
basis would require local dimensions of order deff

k ' 1010,
while nevertheless keeping the actual number of boson
states in the shifted basis reasonably small, typically
dk . 102. A typical result for the resulting boson oc-
cupation numbers 〈n̂k〉 in the original, unshifted Wilson-
chain boson basis is shown in Fig. S5, calculated in the
localized phase. Since the boson shifts for the bosons in

the original definition of SBM1 scale as3 〈x̂k〉 ' ω(s−1)/2
k ,

with ωk ∝ Λ−k, we expect and indeed find that 〈n̂k〉 in-
creases exponentially with k, as Λk(1−s).

An accurate representation of this exponential rise, as
achieved by our VMPS scheme, is essential for obtaining
correct results for critical exponents. The detrimental
effects of Hilbert space truncation are illustrated vividly
in Fig. S6. It shows 〈σx〉 vs. (α − αc) for SBM1, calcu-
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FIG. S6: The effect of Hilbert space truncation on the calcu-
lation of the SBM1 critical exponents β in (a) and δ in (b).
The calculation labeled “dk = 100, shifted” was performed us-
ing the OBB method with explicit shifts, without setting any
maximum value for the size of the shifts, i.e. without restrict-
ing deff

k . Dashed straight lines correspond to power laws with
exponents βNRG = 1.18 and δNRG = 1.85 obtained by NRG13.
δNRG agrees with the hyperscaling exponent δ = (1+s)/(1−s)
that applies for s > 1/2, see Sec. IV C below.16

lated for several upper limits on the size dk of the local
boson basis. While the exponents obtained by NRG13

(indicated by dashed lines) correspond to dk ≤ 12, the
curves clearly change strongly as dk is increased. Indeed,
fully converged results are obtained only when the local
boson basis can be taken to have “unlimited” size, as is
the case for the explicit shifting strategy discussed above.

With the SBB method, the results for chain length
L = 60 shown in this paper can be obtained within a
few hours on a desktop computer. Note, though, that in
the localized phase the total time needed for the calcula-
tion increases exponentially with L. The reason is that
the converged value for the effective shift 〈x̂k〉 increases
exponentially with k as

〈x̂k〉 ∼ Λk(1−s)/2, (S27)
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as explained above. However, the “sweeping step size”
for 〈x̂k〉, i.e. the change in this quantity from one sweep
to the next, is limited, in effect, by the dimension dk of
the shifted local boson basis. Consequently, the num-
ber of sweeps needed to achieve convergence for 〈x̂k〉 in-
creases exponentially with k (and making an informed
initial guess for the requisite shift 〈x̂k〉 does not really
help in speeding up its accurate determination).

For a given set of convergence criteria, the exponen-
tial growth in the shifts 〈x̂k〉 is accompanied by a similar
growth in the absolute errors in their numerical deter-
mination. The consequences of this for SBM1 can be
seen in Figs. S7(a) and S7(b), which show examples of
the singular values rq [Eq. (S20)] and sñ [Eq. (S16)], re-
spectively, as functions of the Wilson chain k: when k be-
comes large, the the lower end of the singular value shows
an increasing amount of scatter. This implies that these
singular values are not yet properly converged, which
is directly correlated to the uncertainties in the oscilla-
tor shifts. Better convergence can be achieved by using
stricter convergence criteria, as illustrated by Figs. S7(c)
and S7(d), but only at a considerable increase in com-
putation time, essentially using up to several hundreds
of sweeps. We have thus adopted a compromise between
accuracy and computation time: we chose D, dopt and
the shift convergence criteria such that throughout the
entire Wilson chain, all discarded singular values were
smaller than 10−5, except possibly for an increase in this
tolerance at the very end of the chain, of the type seen
in Figs. S7(a) and S7(b). We have checked explicitly
that not-optimally-converged shifts and singular values
towards the end of the Wilson chain do not noticably af-
fect the resulting physical quantities of interest, i.e. that
these are already well converged nevertheless.

Interestingly, we have found that for SBM2 it is easier
to obtain a well-converged shift in the localized phase
than for SBM1, because the competition between the two
chains causes the increase in oscillator shifts near the
end of the Wilson chain to be much smaller for SBM2
than SBM1, as illustrated in Fig. S8. Near the chain’s
beginning, in contrast, the singular values for SBM2 were
found to be bigger than for SBM1, but we nevertheless
ensured throughout that only singular values below the
10−5 tolerance were discarded.

IV. ADDITIONAL RESULTS FOR SBM1

A. Determination of phase boundary

We have explored a number of different methods for de-
termining the phase boundary between the localized and
delocalized phases, all of which yield essentially equiva-
lent results. (Fortunately, no oscillator-shift-related con-
vergence problems occur in this context, since the oscil-
lator shifts are essentially zero at the phase boundary.)

1. “Best power law”. As mentioned in the main pa-
per, our “standard method” for determining αc has been
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FIG. S7: Panels (a,c) and (b,d) show examples of the sin-
gular values rq [Eq. (S20)] and sñ [Eq. (S16)], respectively,
as functions of the Wilson chain k, calculated in the local-
ized phase of SBM1. Panels (c,d) show the same quantities
as (a,b), but calculated using stricter convergence criteria re-
quiring more sweeps, resulting in better-converged singular
values [see discussion after Eq. (S27)]. The maximum value
of 〈n̂k〉 in this example is of order 108, corresponding to a
maximum shift 〈δk〉 is of order 104. The diagonal dashed
lines show the k-dependence of the shifts δ2

k, multiplied by
a constant prefactor that was chosen by hand in such a way
that the dashed lines lie near the onset of noisiness at the
lower end of the singular value spectra. This reveals the di-
rect correlation between the exponential increase of δ2

k, which
directly enters the Hamiltonian, and the noise in the smallest
singular values.
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FIG. S8: Panels (a,b) show examples of the singular values
rq [Eq. (S20)] and sñ [Eq. (S16)], respectively, as functions
of the Wilson chain k, calculated in the localized regime of
SBM2. For all the SBM2 parameters studied in this paper, the
maximum effective boson occupation number 〈n̂k〉 is relatively
much smaller than those we found in SBM1 (〈n̂k〉 < 105),
which results a faster convergence of shift 〈δk〉. In this typical
example for SBM2, we get converged singular values already
with Nsweep = 34.
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to tune it such that 〈σx〉 vs. (αx − αc) yields the best
straight line on a log-log plot. This turned out to be the
most convenient way of getting accurate critical expo-
nents.

2. Energy flow diagrams. In NRG, energy-flow
diagrams1 can be used to accurately determine the phase
boundary of a quantum phase transition, since the de-
generacies of low-lying levels typically differ for the two
phases to be distinguished. It is possible to gener-
ate such energy-flow diagrams also within the VMPS
approach12, by calculating the eigenstates of the left
block’s Hamiltonian at each site when sweeping from left
(large energy scales) to right (small energy scales), and
then appropriately rescaling and shifting the resulting
eigenenergies1. Details of this procedure and explicit ex-
amples of flow diagrams obtained in this manner will be
presented elsewhere4.

Energy-flow diagrams, however, are sensitive to rele-
vant perturbations in terms of small numerical inaccura-
cies at large energies, i.e. early Wilson shells. This can
lead to the artificial breaking of symmetries. For exam-
ple, the Hamiltonian of SBM1 at hx = 0 commutes with
the parity operator

P̂ ≡ σxeiπN̂ , (S28)

where N̂ =
∑
k b̂
†
k b̂k counts the total number of bosons

on the entire Wilson chain. The corresponding parity
symmetry guarantees that the ground state is two-fold
degenerate. However, this degeneracy is typically broken
by numerical inaccuracies, unless the symmetry is explic-
itly implemented in the numerical code. We have done
so, and flow-diagrams resulting from a parity-symmetric
version of our code yield αc values in agreement with the
“standard method” used in the main paper.

3. Diverging boson number. Another procedure for
determining αc is to plot the boson occupation number
for all sites of the Wilson chain: a divergence of 〈n̂k〉 with
Wilson-chain index k, as seen in Fig. S5, is a signature
of the localized phase.

B. Critical exponents

Fig. S9 shows some typical data sets used to extract the
critical exponents β and δ for s < 1 shown in Figs. 1c,d
of the main text. This allows to assess the accuracy of
the VMPS method in the quantum critical regime.

To properly describe the critical behavior, the Wilson
chain must be long enough to resolve energy scales down
to the scale T∗ ∝ |α − αc|ν , which bounds the quan-
tum critical regime2; here ν is the correlation-length ex-
ponent. Now, the lowest energy scale accessible for a
bosonic Wilson chain of length L, i.e. L− 1 boson sites,
is Λ−L. Thus, to determine αc with an accuracy of, say,
10−a, we need Λ−(L−1) . T∗ ∝ 10−aν , implying that the
requisite chain length scales as

L ∼ aν ln(10)

ln Λ
. (S29)

For SBM1, the correlation-length exponent becomes
large for small s, see Fig. 5a of Ref. 2, and hence the
requisite chain length increases with decreasing s, too.
Together with Eq. (S27), according to which the largest
shifts at the end of the chain scale as ΛL(1−s)/2, this im-
plies that in the localized phase, the sweep time needed to
reach convergence increases exponentially as s decreases
below 1/2.

For the above reasons, the data for s = 0.2 is clearly
less accurate than for s ≥ 0.3, as reflected by the er-
ror bars shown in Fig. 2c,d of the main text. The two
extremal values that define the indicated error bars cor-
respond to the two values of the exponent obtained by
using only the upper or lower half of the full fitting inter-
val that is indicated by vertical marks; the uncertainties
from the straight power-law fit are somewhat smaller.

For s = 1/2, the transition is at its upper critical di-
mension and logarithmic corrections to the leading power
laws are expected. As quantifying these corrections from
the VMPS results is difficult, we have restricted ourselves
to fits to effective power laws, which then naturally re-
sult in exponents slightly deviating from the mean-field
values.

C. Hyperscaling

For SBM1, a scaling ansatz for the singular part of the
free energy can be used13 to derive a hyperscaling relation
between the critical exponents δ and x, namely δ = (1 +
x)/(1−x). Here, x describes the divergence of the static
susceptibility as T → 0 at criticality, χ(T ) ∝ T−x where
χ = ∂〈σx〉/∂hx. Hyperscaling also implies x = y, where
y characterizes the divergence of the zero-temperature
dynamic susceptibility, χ(ω) ∝ ω−y. Furthermore, y = s
is an exact result for the critical long-range Ising chain
at all s (Refs. 14,15). This finally yields

δ =
1 + s

1− s (S30)

under the condition that hyperscaling is fulfilled, i.e.,
that no dangerously irrelevant operators spoils the naive
scaling hypothesis. For the Ising chain, this applies be-
low the upper critical dimension, i.e., for s > 1/2, while
a dangerously irrelevant operator appears for s < 1/2.
Consistent with the expectations from QCC, our δ-values
follow the hyperscaling prediction (S30) for s > 1/2 (see
Fig. 2d of main text).

V. ADDITIONAL RESULTS FOR SBM2

A. Determination of phase boundaries

Below we describe several approaches that we have
found useful for determining the various phase bound-
aries of SBM2. For convencience, these boundaries are
illustrated schematically in Fig. S10.
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FIG. S9: The left and right columns show some of the VMPS
results used to determine the SBM1 exponents β and δ that
are shown in Fig. 1c) and 1d) of the main text, respectively.
We used hz = 0.1, Λ = 2, L = 60, D = 40, dopt = 12. The
main text (Eq. (S29)) explains why the range of pure power-
law behavior is smaller for s = 0.2 than for larger s-values.

1. Order parameter. Measurements of the order pa-
rameter 〈σx,y〉 of the localized phase can be used to de-
termine the critical field hαz that defines the location of
the L-D boundary at finite hz. This is demonstrated in
Fig. S11 for s = 0.6 and α = 0.1. The method of “best
power laws” is then suitable to obtain accurate values for
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FIG. S10: Schematic sketch of the SBM2 phase diagram as
function of s, α and hz. The localized phase (L) lies below
the curved surface representing the critical field hc

z(s, α), the
delocalized phase (D) above and to its right. (The curved sur-
face was not calculated, but is an artist’s impression.) The
cross-hatched area in the hz = 0 plane represents the critical
phase (CR). Its phase boundary with the localized phase (L)
is marked by the thick red line in the hz = 0 plane (corre-
sponding to the red line in main text, Fig. 3a), consisting of a
straight line between the points (s∗, 0) and (s∗, αc(s∗)), and
a curved portion representing the line αc(s), for s∗ < s < 1.
The thick blue line at s = 1 is the CR-F phase boundary to
the free phase (F). The thick black line at α = hz = 0 likewise
represents a free spin (F).

hc
z as well as corresponding critical exponents – we leave

this for a future study.
Notably, the inherent instability of the CR phase, com-

bined with numerical errors of VMPS, renders difficult
the accurate determination of the CR-L phase bound-

ary at ~h = 0. In particular, a direct observation of the
order parameter as function of α or s leads to sizeable
uncertainties.

2. Transverse-field response. The zero-field phase
boundary CR-L is most accurately extracted via the re-
sponse to a small transverse field, 〈σz〉(hz). The stable L
phase responds linearly, while the CR phase responds
with a non-trivial sublinear power-law, see Eq. (S32)
below – those can be easily distinguished, as shown in
Fig. 3b of the main paper. Indeed, by studying the
transverse-field response for small α and 0.7 ≤ s ≤ 0.8,
we are able to determine the value of the universal critical
“dimension” s∗ to be 0.75± 0.01, as shown in Fig. S12.

The accurate determination of s∗ requires the numeri-
cal results to be reliable down to transverse fields as small
as hz ' 10−14. Such precision is achievable, in principle,
by using sufficiently large D and dopt, as follows from
Fig. S4. However, such a brute force approach is com-
putationally demanding. A more efficient strategy is to
exploit parity symmetry: For hx = hy = 0 the SBM2
Hamiltonian commutes with the parity operator

P̂z ≡ σzeiπN̂ , (S31)

where N̂ =
∑
k b̂
†
kxb̂kx+

∑
k b̂
†
ky b̂ky counts the total num-
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FIG. S11: (a) Order parameter |〈σx,y〉| for the L-D transi-
tion, driven to zero by increasing the transverse field hz past
the critical value hc

z (indicated by black dashed line). (b)
Correspondingly, the transverse-field response of |〈σz〉| shows
a slight kink, indicating the higher-order singularity expected
at the L-D transition. As in Fig. 3 of the main paper, the
linear response of the L phase is clearly visible. We observe a
small breaking of the XY symmetry of SBM2 in the L phase
due to numerical errors, in that the order parameter in panel
(a) prefers configurations with |〈σx〉| = |〈σy〉|, instead of ex-
ploring the full rotational symmetry.

ber of bosons on the entire Wilson chain. Thus, the
ground state has a parity degeneracy. In fact, this de-
generacy is the main source of numerical error for small
hz when using a VMPS code that does not account for
parity symmetry, since then the degeneracy is lifted by
numerical noise (similarly to the SBM1 case). By imple-
menting this parity symmetry explicitly in the code, we
were able to achieve the required precision (much better
than in Fig. S4), while using choices for D and dopt that
were not unreasonably large, as shown in Fig. S12.

3. Diverging boson number and flow diagram. We have
also explored alternative ways for determening the L-CR
phase boundary, based on monitoring the the divergence
of the boson number per site at the end of the chain,
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FIG. S12: Transverse-field response for SBM2, |〈σz〉| vs. hz,
used to determine the L-CR phase boundary. The fitting ex-
ponent δ′ is defined in Eq. (S33), and the fitting range is
hz ∈ [10−12, 10−8]. From the transition between a linear re-
sponse for s < s∗ and a sublinear power law for s > s∗, we
estimate s∗ to lie between 0.74 and 0.76. To reduce numerical
noise, the curves were calculated using a VMPS ground state
that also was an odd eigenstate of the parity operator P̂z of
Eq. (S31).

or analyzing NRG-like flow diagrams (as discussed for
SBM1). We have found these methods to be computa-
tionally much cheaper than studying the transverse-field
response, while yielding results of comparable accuracy
for the L-CR phase boundary.

B. Properties of the critical phase

The CR phase corresponds to a partially screened (or
fractional) spin, with non-trivial power-law autocorrela-
tions of the components of ~σ. In ground-state calcula-
tions, those can be probed by measuring the response
to an applied field: The linear-response susceptibility at
T = 0 is infinite, and the non-linear response is of power-
law character,

〈σx,y〉 ∝ h1/δ
x,y , 〈σz〉 ∝ h1/δ′

z , (S32)

with δ, δ′ > 1. A standard renormalized perturbation
expansion around the free-spin fixed point results in17

1/δ =
1− s

2
+O([1− s]2),

1/δ′ = 1− s+O([1− s]2) . (S33)

In Figs. S13 we show numerical VMPS data for the
non-linear response for several sets of parameters inside
the CR phase. We indeed find the expected power laws
over a sizeable range of fields; the power laws are cut off
at small fields by the influence of numerical errors, like
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FIG. S13: Non-linear response inside the CR phase. We find power law behavior as expected from Eq. (S32). For each s, we
chose an α-value close to the α∗ fixed-point value, to ensure that the asymptotic power law is reached quickly (i.e. without the
need for hx to become extremely small). Using the fitting range between 10−9 and 10−2, we find values for the exponents δfit

and δ′fit in excellent agreement with the values δpert and δ′pert expected from Eq. (S33), as indicated in the legends.

the breaking of the XY symmetry of the model or the
generation of a small transverse field. From the data we
can extract exponents δ and δ′ as function of s. Compar-
ing the resulting exponents to the perturbative prediction
(S33), we find that the agreement is excellent, considering
that (i) for s very close to unity the asymptotic regime is
difficult to reach, due to the slow flow of α, and (ii) for
larger (1 − s) the second-order terms in Eq. (S33) (i.e.
two-loop corrections) will become important.

C. RG flow near s∗

Fig. 4 of the main text shows the RG flow of SBM2
in the two cases (a) s∗ < s < 1 and (b) 0 < s < s∗. In

case (a) the CR phase is stable for small α and ~h = 0,
whereas this phase is absent in case (b). In the following
we briefly discuss the evolution of the RG flow from case
(a) to case (b), as this is related to a discontinuous jump
of the phase boundary upon varying s.

As described in the main text, the fixed points CR
and QC1 of case (a) approach each other upon lowering
s, such that they meet at s = s∗ and both disappear for
s < s∗. This follows from the absence of the CR phase in
case (b) and the fact that both are intermediate-coupling

fixed points for s < 1 (i.e. they have to meet at finite α).
The merger of the two fixed points also implies that the
flow lines to the left and right of CR in Fig. 4a merge. As
a result, the RG flow line which lead from F via CR to
D in case (a) now becomes a flow line from F to QC2 in
case (b). For the phase boundary of the L phase (thick
line in Fig. 4) this means that its starting point on the
hz = 0 axis jumps from a finite value (corresponding to
QC1) in (a) to zero in (b) once s is lowered past s∗.

We note that the merger and disappearance of two
fixed points upon variation of a “dimension” d is not un-
usual. For instance, upon approaching the lower critical
dimension d−c of a magnet from above, the critical fixed
point typically approaches the trivial fixed point describ-
ing the ordered phase, such that both merge at d = d−c
and disappear for d < d−c . Here the evolution of the phase
boundary is continuous. What is unusual about SBM2
is that two intermediate-coupling fixed points merge and
disappear, causing the discontinuous behavior. The only
other example with similar physics we are aware of is in
the two-channel Anderson/Kondo impurity model with
power-law density of states ∝ |ω|r, where a critical fixed
point merges with a stable non-Fermi liquid fixed point
at some critical dimension rmax, with a consequent jump
in the phase diagram.18,19
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4.2 Additional results on determining αc and critical

exponents

As shown in the previous section, using VMPS with an optimal boson basis allows us
to calculate the correct critical exponents of SBM1. A prerequisite to obtain a better
precision of the critical exponents is an accurate phase boundary αc. There the number of
local boson states is not so crucial as compared to the calculation of the critical exponents.
This fact is highlighted in Fig. 4.1 and Fig. 4.2. In these two figures I plot the boson
occupation along the Wilson chain for several parameters approaching the phase boundary
in the localized phase of SBM1. We can see that the closer to the phase boundary the less
local boson states are required. Nevertheless even for α − αc = 10−7, the required local
dimension (of ∼ 103) is still out of the capability of NRG, which only allows for a few
dozen local states.

The parameters which are important when determining αc is the VMPS matrix di-
mension D and the Wilson chain length L. Near the critical point, the entanglement in
the system becomes larger, therefore we need VMPS matrices of a higher dimension to
represent the system accurately. I will discuss this in more detail in Sec. 4.8.
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Figure 4.1: The boson occupation 〈nk〉 for five values of α − αc in the localized regime
(chosen from the ”fitting range” used to extract the exponent β from 〈σx〉 ∝ (α − αc)β),
at ε = 0. For each choice of α − αc, the vertical lines of corresponding color indicates the
Wilson chain length, Lmin, needed to get 〈σx〉 accurate to within 1%. The arrow at each
curve gives T ∗ = (α− αc)1/s. Other parameters used are hz = 0.1, Λ = 2, L = 60, D = 40
and dopt = 12.
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Figure 4.2: Same as Fig. 4.1 except for several different ε at α = αc, which is calculated
at ε = 0.

Fig. 4.1 and Fig. 4.2 also show the importance of L on the accuracy of the phase
boundary. Take Fig. 4.1 for example. The vertical lines indicate the shortest possible
Wilson chain length Lmin that one can use to obtain 〈σx〉 with no more than 1% error for
different α− αc. Lmin is obtained by varying L and comparing the resulting 〈σx〉 with the
converged 〈σx〉 value. The arrows at each curve give the characteristic energy scale [12]

T ∗ = (α− αc)1/s. (4.1)

Fig. 4.1 shows that Lmin is closely related to T ∗ and should be larger than T ∗ to capture the
correct physics. We can also see that for α−αc = 10−7 the chain length L = 60 is not long
enough anymore. To calculate a more accurate αc one needs a longer Wilson chain. Also
note that at L = 60, given Λ = 2 the energy scale of the last Wilson chain site is around
machine precision 10−16. Therefore, an arbitrary precision tri-diagonalization algorithm is
required to generate the Wilson chain Hamiltonian parameters. Table. 4.1 shows values
for αc we calculated with different L for several s.

4.3 Exploration of the power-law discretization

Besides the optimal boson basis, we have also investigated the power-law discretization to
solve the diverging boson problem in the localized phase of sub-Ohmic spin-boson model.
Though this approach was not successful, it sheds some light on the nature of the problem



4.3 Exploration of the power-law discretization 55

s αc (L=100) αc (L=50)
0.2 0.017530557(1) 0.01752(2)
0.3 0.0346138682(1) 0.034611(2)
0.4 0.06055502016(1) 0.0605550(3)
0.5 0.09906260074(1) 0.0990626(1)
0.6 0.15540734375(5) 0.15540735(5)
0.7 0.2376563245(5) 0.2376563(1)
0.8 0.3600551395(1) 0.3600551(1)
0.9 0.5555478304(1) 0.555546(2)

Table 4.1: αc of SBM1 obtained with L = 100 and L = 50 for several different s. Other
parameters used here are hz = 1, Λ = 2, D = 40 and dopt = 12. For some s one can still
get better precision with L=100 than those listed above. I just did not push to the limit.

and eventually led us to the optimal boson basis approach. Therefore I will include some
results here.

The Hamiltonian of SBM1 is:

HSBM1 = H loc +
∑

q

[
ωqB̂

†
qB̂q + λq

σx
2

(B̂†q + B̂q)
]
, (4.2)

where

H loc = −hx
2
σx −

hz
2
σz. (4.3)

The standard power-law spectral function of the bosonic bath is

J(ω) = 2παω1−s
c ωs with s ≥ 0 , (4.4)

where ωc is the energy cutoff. We set ωc = 1 in this thesis. The definition of the spectral
density is:

J(ω) =
∑

j

λ2
jδ(ω − ωj) , (4.5)

=

∫
dω′

∆(ω′)
λ2(ω′)δ(ω − ω′) =

λ2(ω)

∆(ω)
, (4.6)

where ∆(ωj) = ωj −ωj+1 is the spacing between subsequent frequencies. (Following NRG-
convention, ωj decreases with increasing j). We take ∆(ω) ∼ ωβ. When β = 1, it describes
the logarithmic discretization used in NRG, with β > 0 the power-law discretization.

To achieve the standard power-law spectral function Eq. (4.4), we evidently need to
choose λ2(ω) ∼ ωs+β. Now, for a given spin state, an oscillator with frequency ω is shifted
by (e.g. see Eq. (37) of Ref.[11]):

δ(ω) ∼ λ(ω)

ω
〈σz〉 ∼ ω(s+β−2)/2 . (4.7)
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Note here δ is the shift not the δ−function. For the sub-Ohmic SBM1 (s < 1) and
logarithmic discretization (β = 1), this shift diverges as ω → 0 which causes the breakdown
of NRG calculation in the localized regime.

To contain the diverging shift, we may choose

β = 2− s, (4.8)

which results in a constant shift δ even for ω → 0. As we only consider the sub-ohmic/ohmic
regime where 0 < s < 1, this implies β > 1. On the other hand, for Ohmic case, s = 1, we
need β = 1, as in standard NRG.

To find the discretization points {ωi}, we solve the following equations iteratively

ωi − ωi+1 = (
ωi + ωi+1

2
)β (4.9)

with ω0 = ωc. After we get ωi, we use Eq. (S2) in the supplementary information in the
previous section to evaluate the terms in the star Hamiltonian, followed by the numerical
mapping onto the chain Hamiltonian.

Since the characteristic energy scale at iteration j decreases more slowly for power law
discretization than for standard NRG, the NRG truncation scheme will presumably not
be reliable. However, DMRG-truncation can be expected to work as it is a variational
method.
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Figure 4.3: Boson number expectation values for Ohmic SBM1 calculated with power and
logarithmic discretization. The power law discretization with β = 2 − s = 1 is equivalent
to the logarithmic discretization with Λ = 3.
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We first compare the power discretization with logarithmic discretization for the Ohmic
case s = 1. Using Eq. (4.8), β = 1 and Eq. (4.9) becomes

ωi+1 =
1

3
ωi. (4.10)

which is exactly a logarithmic discretization with Λ = 3. Fig. 4.3 confirms this.
Fig. 4.4 shows 〈nk〉 in the localized phase (α > αc) and delocalized phase (α < αc).

Compared to logarithmic discretization, we no longer have the boson number divergence
problem, so we can use a small local boson basis. For the parameter used in Fig. 4.4, with
dk ≡ Db = 10 the data is already converged. Furthermore 〈nk〉 → 0 when k → ∞ for
power discretization which is compatible with the boundary condition 〈nend〉 = 0.
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Figure 4.4: Boson number expectation value nk =
〈
b†kbk

〉
on site k of localized and

delocalized phases using power law discretization using Eq. (4.3). (Note that in this plot
Db is the symbol for the local boson dimension.)

Like Λ for the logarithmic discretization, β in the power discretization is the parameter
that describe how we discretize the band. Any physical results should be stable with
respect to β. Fig. 4.5 analyzes the dependence of the critical coupling αc around β = 2−s.
The plots here show that the phase boundary αc depends on the discretization around
β = 2− s. Also note that αc here is slightly different with NRG results.

More importantly, as the relevant physical energy scales can be extremely small near
the phase boundary, in the case of power-law discretization, one has to use extremely long
chain to resolve these. Therefore power-law discretization does not solve the divergence
of local boson degree of freedom problem, but rather transforms it to the divergence of
chain length problem. This led us to believe that the divergence problem could not be



58 4. One- and Two-Bath Spin-Boson Models

1.2 1.3 1.4 1.5 1.6 1.7
0.1

0.11

0.12

0.13

0.14

0.15

0.16

β

α
c

ε=0, ∆=0.1, s=0.5, L=400, D=30, D
b
=10

Figure 4.5: The dependence of Critical coupling αc on β for s = 0.5 .

circumvented by using some special discretization scheme, and one has to deal with the
divergence directly (for example using the optimal boson basis).

4.4 Dynamical determination of the local dimension

Another scheme we have tried before we use the shift basis scheme is to solve the diverging
boson basis problem with brute force. Diverging boson basis requires larger and larger dk
for sites with lower and lower energy scale. We do not have any prior knowledge about the
relation of the energy scale and the boson occupation of a site. (Indeed for SBM we could
use mean field prediction and obtain the relation like Eq. (4.7). There are two reasons
why we did not use this relation. First, the main aim of the project is that we want to
compare VMPS results with mean field results therefore we should not use any mean field
assumption in our calculation. Second, we want the method to be general and behave like a
black box algorithm. Therefore we should not include any model specific property into the
algorithm.) To find the appropriate dk one could perform several test runs with different
dk, then find the proper dk by checking on convergence. However, a more efficient way is
to adjust the number of local states of each boson site dynamically during the sweep. This
only uses big dk on those sites towards the end of the Wilson chain where it is necessary.
Thus dynamical determination of the local dimensions is much faster than using the same
big dk for all sites.

Even though this brute force approach does not work as efficient as the shift basis
scheme, it still works and can generate good enough results to reach the same conclusion
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Wilson chain site n=20

Wilson chain site n=50

(a)

(b)

Figure 4.6: The wave function of the optimal boson states represented in the original
boson basis |σ̄〉 =

∑50
σ=1 V

σσ̄|σ〉, where |σ〉 and |σ̄〉 are the original and optimal boson basis
respectively. We plot the first three optimal boson states for site: (a) k = 20 , (b) k = 50.
The results is obtained in the localized regime of SBM1.

about the SBM1 critical point as in our paper. On the other hand, sometimes the main
reason to use big local basis is not due to a large oscillator shift (big 〈x〉2) but because the
variance of x (〈x2〉 − 〈x〉2) is big. In this case, the big local basis cannot be significantly
reduced by just using a shifted basis, and one has to represent the basis directly with brute
force as discussed in the following.

The procedure I choose is inspired by observing the wave function of the optimal bo-
son states on different sites as shown in Fig. 4.6. For some sites like the one showed in
Fig. 4.6(a), dk = 50 is already large enough to cover the span of the first three optimal
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orbits. For other sites like the one shown in Fig. 4.6(b), most weight of the optimal wave
functions are distributed on high boson occupation Fock states indicating that we need a
larger dk to cover the whole optimal boson states.

By balancing simplicity and accuracy, I choose the “relative” position of the peak of
the first optimal boson state pk to indicate whether or not dk should be increased. The
definition of pk is

pk ≡
apeak
dk

, (4.11)

where apeak is the position of the peak of the first optimal boson state. If pk is larger than a
certain threshold, say 25%, I will increase dk. The number of states we need to add should
increase with both pk and dk, so we simply add apeak more states to dk. Numerically this
is done by expanding the dimension of V-matrix by adding apeak rows of zeros.

Fig. 4.7 shows the boson occupation and the dynamically determined dk on the boson
sites. We choose a point in the delocalized regime not far from the phase boundary. Still the
maximum of dk is above 10000 in the explicit absence of bosonic shifts, which is impossible
to calculate in NRG. Also note that 104 is about the largest dk I can calculate on a typical
PC. We can increase the effective maximum dk to 1010 if we use the shift boson basis
scheme.

4.5 The folded chain setup of SBM2

One way to represent SBM2 as a one-dimensional chain is to put the two Wilson chains
on the left and right side of the spin respectively, as shown in Fig 4.8.

This setup is not valid in NRG as it is not compatible with energy scale separation. For
VMPS, in principle, this is not a problem. The VMPS sweeping procedure would simply
first start from one tail of one Wilson chain (say from the very left side) and sweep to the
spin, then continue to the tail of the other Wilson chain (the very right side) and sweep
back to the starting tail.

However there is a problem with the setup in Fig 4.8 when we want to calculate the
ground state properties for the symmetrical coupling case ηx = ηy = η. The screening of
the spin is frustrated, and the ground state becomes very sensitive to a small asymmetry
of the couplings. Therefore the symmetry should be perfectly preserved during VMPS
calculation. If we put the two chains on different sides of the spin and sweep from one side
to the other, the sweeping procedure itself will introduce a small numerical asymmetry
which prevents the algorithm to converge to the actual ground state.

In order to perfectly preserve the ηx = ηy = η symmetry, we must follow the NRG
prescription: we fold the two chains to one side and combine two bosons on each chain
into a super site, then we define a new set of local boson operators

Ak = bkx ⊗ I, (4.12)

Bk = I ⊗ bky, (4.13)
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Figure 4.7: The boson occupation (solid lines with symbols) and dynamically determined
dk (dashed lines) of the boson sites. dmax is the upper limit of dk set by hand to show the
effect of limiting dk. Nsweep is the number of VMPS sweeps. The results is obtained in the
localized regime of SBM1.

x-chain y-chainspin

Figure 4.8: Two channel setup for SBM2 with the Wilson chains positioned left and right
of the spin. The symmetry of the two chains cannot be perfectly kept when we sweep from
one side to the other.
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where I is the identity matrix of the same size as ak and bk. Now the Hamiltonian is

Hfolded = H loc +

√
η

π

[σx
2

(A1 + A†1) +
σy
2

(B1 +B†1)
]

+
L−2∑

k=1

εk(A
†
kAk +B†kBk)

+
L−2∑

k=1

tk(A
†
kAk+1 +B†kBk+1 + h.c.). (4.14)

Note that the difference between Eq. (4.14) and Eq. (4.22) below is that Ak and Bk

are defined in the same Hilbert space while bkx and bky are not. The transformation is
illustrated in Fig. 4.9. The price for this transformation is that the local state space
dimension is squared. For example if for one chain the local number of degree is dk then
for the super site it is d2

k. In practice, we found that the number of local states one needs
to keep is still within the control of our method.

x-chain

y-chain
spin

spin
Figure 4.9: Preferred two-channel setup in the presence of channel symmetry: two Wilson
chains lie on the same side of the spin. Each site in the x-chain is combined with the
corresponding site in the y-chain to make a super site. The geometry is the same with
SBM1 after this transformation. The symmetry of the two chains can be preserved with
this folded chain setup.
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4.6 Symmetries

4.6.1 Parity symmetry

Both SBM1 and SBM2 can have parity symmetries with proper aligned external field. This
can be verified with both the original Hamiltonians or the Wilson chain form Hamiltonians.
The Wilson chain form Hamiltonian of SBM1 is

Hc
SBM1 = −hx

2
σx −

hz
2
σz +

√
η

π

σx
2

(b1 + b†1) +
L−2∑

k=1

tk(b
†
kbk+1 + h.c.) + εkn̂k , (4.15)

where n̂k = b†kbk, with eigenvalue nk, counts the number of bosons on site k. The parity
operator is defined as

Pz = σze
iπN̂ , (4.16)

where N̂ =
∑

k b
†
kbk is the total boson number operator of the Wilson chain. It is straight-

forward to verify the following relations:

P †zPz = PzP
†
z = 1, (4.17)

P †zσxPz = −σx, (4.18)

P †z bkPz = −bk, (4.19)

Therefore when hx = 0 we have

P †zH
c
SBM1Pz = Hc

SBM1, (4.20)

This implies that the Hamiltonian in Eq. (4.15) commutes with the parity operator Pz:

[Pz, H
c
SBM1] = 0, (hx = 0). (4.21)

There are two independent parity symmetries in SBM2. The SBM2 Wilson chain
Hamiltonian is

Hc
SBM2 = −hx

2
σx −

hy
2
σy −

hz
2
σz

+

√
ηx
π

σx
2

(b1x + b†1x) +
L−2∑

k=1

tkx(b
†
kxbk+1,x + h.c.) + εkxn̂kx

+

√
ηy
π

σy
2

(b1y + b†1y) +
L−2∑

k=1

tky(b
†
kybk+1,y + h.c.) + εkyn̂ky . (4.22)

We can define the following parity operators:

Pz = σze
iπN̂ = σze

iπN̂x+N̂y , (4.23)
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Px = σxe
iπN̂y , (4.24)

Py = σye
iπN̂x , (4.25)

where N̂x =
∑

k b
†
kxbkx and N̂y =

∑
k b
†
kybky. Note that only two of these three parity

operators are independent as

Pz = −iPxPy. (4.26)

Similar with SBM1 the following commutation relation can be verified:

[Pz, H
c
SBM2] = 0, (hx = hy = 0) (4.27)

[Px, H
c
SBM2] = 0, (hy = hz = 0) (4.28)

[Py, H
c
SBM2] = 0, (hx = hz = 0) (4.29)

4.6.2 Symmetry breaking in VMPS ground state

Even though SBM Hamiltonians have certain symmetries such as parity, the ground state
we obtained from VMPS does not necessarily preserve it. Let’s take the parity symmetry in
SBM1 for example. Pz commuting with HSBM1 means that for any ground state |G〉, Pz|G〉
is also a ground state. Therefore the ground state of HSBM1 will be either a eigenstate of
Pz or it is two-fold degenerate and any linear combination of these two states is a ground
state too.

If the ground state |G〉 is not degenerate then it will be parity eigenstate satisfying

Pz|G〉 = pz|G〉 (4.30)

pz = ±1 is the eigenvalue. The expectation value of σx (and σy) with respect to any parity
eigenstates are 0. This can be easily proved as

〈G|σx|G〉 = 〈G| − P †zσxPz|G〉
= −p2〈G|σx|G〉
= −〈G|σx|G〉, (4.31)

therefore

〈G|σx|G〉 = 0. (4.32)

According to definition the system is in the delocalized regime. Consequently, the localized
phase must be double degenerate.
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When the ground state is double degenerate, within the ground state subspace there
are two special sets of states. One set of ground states |G+〉 and |G−〉 are the eigenstates
of the parity operator Pz:

Pz|G±〉 = ±|G±〉 (4.33)

HSBM1|G±〉 = Eg|G±〉 (4.34)

Another set of ground states are

|G↑〉 ≡
√

2

2
(|G+〉+ |G−〉) (4.35)

|G↓〉 ≡
√

2

2
(|G+〉 − |G−〉) (4.36)

The special property about this set of ground states is that they have the largest possible
expectation value of 〈σx〉. This can be verified by VMPS calculations. A rigorous analyti-
cal proof is left for future study. A curious fact about this set of ground states is that the
VMPS code without explicit implementing parity symmetry always yields these ground
states. Based on the nature of VMPS we expect these ground states have the least inter-
nal entanglement. The symmetry breaking is most strongly seen also in the energy flow
diagram, where at some specific energy scale the finite size spectrum changes drastically.
Analytical verification of this fact is still lacking.

It is also intriguing to ask which ground state exists in nature. If we do a measurement
of σx we will always result in |G↑↓〉. However, this does not mean the ground state before
the measurement is |G↑↓〉 because a wave function collapse may have happened during the
measurement. Then the interesting question is why the wave function collapse prefers the
states with least internal entanglement. Even if there is no wave function collapse, it is still
a question why nature prefers the states with least internal entanglement. This should not
be confused with environment-caused decoherence. We treat the spin and the boson bath
as a whole system, and the entanglement in concern include the entanglement between the
spin and the bath and the entanglement between different parts of the bath. Therefore,
the ground state we get in nature is the least entangled state and cannot be explained as
a results of environment-caused decoherence. Understanding this in more detail would be
an interesting topic for further studies.

4.6.3 Implementation of parity symmetry

In the previous section I explained that the ground state obtained from VMPS is not a
parity eigenstate in the localized regime. However one can implement parity symmetry
explicitly in the VMPS algorithm to obtain the ground state which is also the parity
eigenstate in the localized regime. This is useful when one wants to generate a clean flow
diagram.

Parity symmetry is a special case of the Abelian symmetry, so one can use the same
method of implementing Abelian symmetry to implement parity symmetry. Two points
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are worth to mention here. First, the parity for the local boson basis is the parity of its
occupation number. To define the parity for the spin basis one should use the eigenstates
of the spin operator in the parity operator. For example for SBM1, the eigenstates of σz
are used as the basis and the two parities are assigned to the two states respectively. After
having defined the parity of each local state, the states of the same parity are combined,
therefore all operators will be 2×2 block matrices. Second, one can define the right vacuum
state as even parity then the parity of the wave function is defined by the left vacuum state.
The rest of the implementation is along the lines as described for example in the Section
5.1 of Ref. [57].

The expectation value 〈σx〉 of Pz parity eigenstates is always 0. If one wants to recover
the expectation value of the non-parity eigenstates in the localized regime, one can simply
calculate

〈G↑|σx|G↑〉 =
1

2
(〈G+|σx|G+〉+ 〈G−|σx|G−〉+ 〈G+|σx|G−〉+ 〈G−|σx|G+〉)

= Re(〈G+|σx|G−〉) (4.37)

4.6.4 U(1) symmetry in SBM2

For SBM2, besides the parity symmetry, there is also an Abelian U(1) symmetry. The
generator is

S =
1

2
σz + i

∑

k

(b†y,kbx,k − b†x,kby,k) (4.38)

It is straight forward to verify that

[H,S] = 0 (4.39)

At the moment when the thesis was written we were still investigating the influence of U(1)
symmetry to the VMPS numerics. We have indications that the numerics breaks the U(1)
symmetry in the critical regime where the ground states should preserve the U(1) symmetry.
This results in the nonzero 〈σx〉 and 〈σy〉 in the critical regime for both non-parity code
(Fig. 4.10) and parity code (Fig. 4.11) results of SBM2. Explicitly implementing of U(1)
symmetry in the VMPS code appears necessary to get improved results. Work along those
lines is currently in progress.

4.7 Energy flow diagrams

In NRG, the energy flow diagram provides lots of information about an impurity system.
For example, the phase boundary of the quantum phase transition can be fixed accurately
with the flow diagram. This is very important when calculating the critical exponents at
the phase boundary.

We can generate something similar to the flow diagram with VMPS by calculating the
eigenstates of the left block’s Hamiltonian at each site when we sweep from left to right



4.7 Energy flow diagrams 67

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

h
x
=h

y
=h

z
=0, s=0.8, Λ=2, L=60, D=100, d

opt
=36

α

 

 
|<σ

x
>|

|<σ
z
>|

0 0.5 1 1.5 2
0

0.5

1

1.5

2
x 10

−6

α

m
a

xi
m

u
n

 o
f 

th
e

 le
a

st
 s

ig
u

la
r 

va
lu

e
s

0 0.5 1 1.5 2
0

0.01

0.02

0.03

0.04

m
a

xi
m

u
n

 o
f 

b
o

so
n

 o
cc

u
p

a
cy

α

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

h
x
=h

y
=h

z
=0, s=0.8, Λ=2, L=60, D=100, d

opt
=36

α

 

 
|<σ

x
>|

|<σ
z
>|

0 0.5 1 1.5 2
0

0.5

1

1.5

2
x 10

−6

α

m
a

xi
m

u
n

 o
f 

th
e

 le
a

st
 s

ig
u

la
r 

va
lu

e
s

0 0.5 1 1.5 2
0

0.01

0.02

0.03

0.04

m
a

xi
m

u
n

 o
f 

b
o

so
n

 o
cc

u
p

a
cy

α

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

h
x
=h

y
=h

z
=0, s=0.8, Λ=2, L=60, D=100, d

opt
=36

α

 

 
|<σ

x
>|

|<σ
z
>|

0 0.5 1 1.5 2
0

0.5

1

1.5

2
x 10

−6

α

m
a
xi

m
u
n
 o

f 
th

e
 le

a
st

 s
ig

u
la

r 
va

lu
e
s

0 0.5 1 1.5 2
0

0.01

0.02

0.03

0.04

m
a
xi

m
u
n
 o

f 
b
o
so

n
 o

cc
u
p
a
cy

α

64 4. One- and Two-Bath Spin-Boson Models

4.6.3 Implement of the parity symmetry

In the previous section I explained that the ground state obtained from VMPS is not
parity eigenstate in the localized regime. However one could implement parity symmetry
explicitly in the VMPS algorithm to obtain the ground state which is also the parity
eigenstate in the localized regime. This is useful when one want to generate a cleaner flow
diagram.

Parity symmetry is a special case of Abelian symmetry, so one can use the same method
implementing Abelian symmetry to implement parity symmetry. Two points worth to
mention here. First, the parity for the local boson basis is the parity of its occupation
number. To define the parity for the spin basis one should use the eigenstates of the spin
operator in the parity operator. For example for SBM1, the eigenstates of �z are used as
the basis and the two parities are assigned to the two states respectively. After defined the
parity of each base state, the states of the same parity shall be put together therefore all
the operator will be a 2⇥ 2 block matrices. Second, one can define the right vaccum state
as even parity then the parity of the wave function is defined by the left vaccum state. The
rest of the implementation is exactly the same as described for example in the Section 5.1
of Ref. [?].

The �x expectation value of parity eigenstates are always 0. If one wants to recover the
expectation value of the non-parity eigenstates Eqs. (4.34)(4.35) in the delocalized regime
one could simple calculate like

hG+|�x|G+i =
1

2
(hG+|�x|G+i + hG�|�x|G�i + hG+|�x|G�i + hG�|�x|G+i)

= Re(hG+|�x|G�i) (4.36)

4.6.4 U(1) symmetry in SBM2

For SBM2 besides the parity symmetry there is also the U(1) symmetry. The generator is

S =
1

2
�z + i

X

k

(b†y,kbx,k � b†x,kby,k) (4.37)

It is straight to verified that
[H,S] = 0 (4.38)

At the moment when the thesis is written we are still investigating the influence of U(1)
symmetry to the VMPS numerics. h�xi h�yi

4.7 Flow diagrams

In NRG, the flow diagram can provide lots of information about the impurity system. For
example we can fix the phase boundary of the quantum phase transition accurately with
flow diagram. This is very important when calculating the critical exponents at phase
boundary.
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4.7 Flow diagrams

In NRG, the flow diagram can provide lots of information about the impurity system. For
example we can fix the phase boundary of the quantum phase transition accurately with
flow diagram. This is very important when calculating the critical exponents at phase
boundary.

Figure 4.10: 〈σx〉 and 〈σy〉 calculated with the SBM2 non-parity code. The system is in
the critical regime for α < 0.8 however we still see small non-zero values which is probably
caused by the fact that the VMPS code breaks the U(1) symmetry. (Another possible
reason is the finite size effect.)
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implementing Abelian symmetry to implement parity symmetry. Two points worth to
mention here. First, the parity for the local boson basis is the parity of its occupation
number. To define the parity for the spin basis one should use the eigenstates of the spin
operator in the parity operator. For example for SBM1, the eigenstates of �z are used as
the basis and the two parities are assigned to the two states respectively. After defined the
parity of each base state, the states of the same parity shall be put together therefore all
the operator will be a 2⇥ 2 block matrices. Second, one can define the right vaccum state
as even parity then the parity of the wave function is defined by the left vaccum state. The
rest of the implementation is exactly the same as described for example in the Section 5.1
of Ref. [?].

The �x expectation value of parity eigenstates are always 0. If one wants to recover the
expectation value of the non-parity eigenstates Eqs. (4.34)(4.35) in the delocalized regime
one could simple calculate like

hG+|�x|G+i =
1

2
(hG+|�x|G+i + hG�|�x|G�i + hG+|�x|G�i + hG�|�x|G+i)

= Re(hG+|�x|G�i) (4.36)

4.6.4 U(1) symmetry in SBM2

For SBM2 besides the parity symmetry there is also the U(1) symmetry. The generator is

S =
1

2
�z + i

X

k

(b†y,kbx,k � b†x,kby,k) (4.37)

It is straight to verified that
[H,S] = 0 (4.38)

At the moment when the thesis is written we are still investigating the influence of U(1)
symmetry to the VMPS numerics. h�xi h�yi

4.7 Flow diagrams

In NRG, the flow diagram can provide lots of information about the impurity system. For
example we can fix the phase boundary of the quantum phase transition accurately with
flow diagram. This is very important when calculating the critical exponents at phase
boundary.
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Figure 4.11: Same as Fig. 4.10 except using the parity code and a bit larger D and shorter
L. We still see the non-zero 〈σx〉 and 〈σy〉 in the critical regime. This indicates that it is
caused by symmetry breaking other than the parity symmetry.

[74, 70]. I call it “the quasi flow diagram”. By comparison, we find the quasi-flow diagram
is very close to the flow diagram in the delocalized regime and near the phase boundary,
especially at the lower part of the energy spectrum. The larger D we use, the better
the quasi-flow diagram we get before we reach the machine precision. To fix the phase
boundary a few low lying states are already sufficient.

Fig. 4.12 shows the quasi flow diagram in the delocalized regime, on the phase boundary
and in the localized regime. One can compare them with the flow diagram in Ref. [12].
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Figure 4.12: The boson occupation number (a),(c), (e) and flow diagrams (b),(d),(f)
generated after we implemented the parity symmetry in our program. The results are cal-
culated at s = 0.3 for SBM1. (a), (b) In the delocalized regime close to the phase boundary
where α = 0.0346138680; (c), (d) On the phase boundary α = αc = 0.0346138682; (e),(f)
In the localized regime close to the phase boundary where α = 0.0346138683.

With these quasi flow diagrams we can fix the critical αc for a given s with a relative
accuracy better than 10−8. If one wants to improve the accuracy one needs a longer
Wilson chain as explained in Sec.4.2.

There is another very tricky problem to use VMPS to generate flow diagram, due to
the degeneracy from the parity symmetry of the spin-boson model. Unlike NRG, the
variational nature of VMPS does not preserve parity symmetry, and the degeneracy of the
ground states will sometimes cause unstable “jumps” in the flow diagram. To eliminate
this instability, one has to implement parity symmetry explicitly in the VMPS program as
described in the previous section.
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4.8 MPS block entropy

With the singular values defined in Eq. (S16) and Eq. (S20) in Section 4.1 we can define
two von Neumann entropies SA and SV to describe the entanglement in the system:

SA = −
∑

q

r2
q ln r2

q , (4.40)

SV = −
∑

ñ

s2
ñ ln s2

ñ, (4.41)

where rq and sñ are normalized singular values satisfying

∑

ñ

s2
ñ = 1, (4.42)

and ∑

q

r2
q = 1. (4.43)

SA is the block entropy that describes the entanglement between the left and right part of
the chain. SV is the local entropy of the optimal boson basis.

The MPS block entropy can tell us whether the bond dimension D and the dimension
of optimal boson basis dopt are large enough. More specifically, if these dimensions are big
enough to account for the entanglement in the system, SA and SV will change negligibly
with increasing D and dopt as the entropies are already converged. On the other hand, if
we see substantial reduction of the entropies after increasing the dimensions we know that
the number of dimensions used before is not big enough.

Even with fixed matrix dimensions, the MPS block entropies can be used as a local
convergence indicator in addition to global convergence criterion like the variance of the
ground state energies calculated at each site during one sweep.

Fig. 4.13 shows examples of SA of SBM1. As expected, we see the biggest entanglement
entropy with α near the phase boundary. Since only global convergence criterion with
respect to energy was used local convergence on every site cannot be guaranteed. This
accounts for the numerical noise in the localized regime though the influence on the physical
properties of the spin is negligible. In the next section I will describe further improvement
of the algorithm which not only provides a more sensible convergence criterion, but also
runs several times faster.

4.9 Convergence criterion and further improvement

of the algorithm

Like standard VMPS, the VMPS convergence criterion I used to generate results in our
paper were based on the variance of the global ground state energy Ek calculated at each
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Figure 4.13: The MPS block entropy SA of the delocalized regime with α near the phase
boundary. The convergence criterion used here only requires the variance of the ground
state energy calculated at each site during one sweep var(E) is smaller than 10−14 which
corresponds to a Wilson chain length of k ∝ 45. This is why we still see not fully converged
data for k > 45 at the end of the chain for the localized case though its influence on the
calculated physical properties of the spin is negligible.

site k ∈ [0, L] in unrescaled units during one sweep.

var(Ek) =
std(Ek)

| 1
L

∑
k Ek|

. (4.44)

Here L is the Wilson chain length, and std(Ek) is the standard deviation

std(Ek) =

√
1

L− 1

∑

k

(Ek − Ē)2. (4.45)

where Ē is the average of Ek. If var(Ek) is smaller than εE = 10−14 the sweeping will
be stopped. Nevertheless, such a convergence criterion is not exactly compatible with
the Wilson chain setting when the chain length corresponds to an energy scale that is
much smaller than εE (e.g. see Fig 4.13 and Fig 4.14). The following improvement of the
algorithm incorporates local convergence criterion which solves this problem.

From Fig. 4.13 we can see that except near the phase boundary the entanglement varies
a lot along the Wilson chain. Therefore, instead of using fixed D and ddop for all boson
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Figure 4.14: The MPS block entropy SV (same otherwise as Fig. 4.13).

sites, one should adopt Dk and dkopt for each site. For the deep localized and delocalized
case shown in Fig. 4.13, for example, we just need very small matrix dimensions except at
the beginning of the Wilson chain. This indeed speeds up the calculation which becomes
several times faster than the previous implementation as described in Sec. 4.1.

The criterion that one can use to determine what is a proper Dk and dkopt is to check
the converged singular values. If the smallest singular value skmin or rkmin is larger than a
certain maximum threshold (λmax) then one should increase the dimension, on the other
hand if it is smaller than the minimum threshold (λmin) one should reduce the dimension
Dk and dkopt. Also note that there are more systematic and more complicated generic
DMRG procedures for truncation [107], but what is described here turns out sufficient.

For a given set of fixed D and dopt if one sweeps enough times, the converged MPS
block entropy on all sites will be obtained. However this is also time-consuming and not
necessary. The reason is if the dimension at the beginning of the Wilson chain is too small
then the error caused by this insufficient dimension will be large compare to the energy
scale of the remaining sites in the Wilson chain. Therefore I use a scheme which expand
the dimension gradually from the beginning of the Wilson chain to the end.

I call the site after which I stop adjusting the dimensions kl, thus l is the length of the
part of the Wilson chain in which the singular values of the site are converged. Another
related site kl′ is the site after which the energy scale is much smaller than var(Ek) of the
last sweep and therefore the information of these sites should not be used. In other words,
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the Wilson chain sites after l′ does not need to be include in the optimization.
kl is determined by examining the relative change of the MPS block entropy from two

consecutive sweeps for the sites before kl′ . When the relative change is less than 1%, the
singular values of the site is considered as converged, and the furthest such site from the
beginning of the Wilson chain is kl. The dimension Dk and dkopt of all sites k ≤ kl will
be adjusted to adapt to the MPS block entropy SkA and SkV . The improved algorithm is
summarized as follows:

1. At the beginning of the calculation a random starting VMPS with small dimensions
like D = 10 and dopt = 6 for all sites is generated.

2. After each sweep calculate kl and pause sweeping when kl is no longer changing.

3. Check the singular values of each site with k ≤ kl. If the smallest singular value skmin
or rkmin is larger than λmax(e.g. 10−6), the dimension of Dk or dkopt is increased by
20% (or based on the ratio between the smallest singular value and λmax). The states
associated with those singular values smaller than the threshold λmin (e.g. 10−8) are
discarded. Note that when expanding or truncating the matrices, old matrix elements
(or part of, in the case of truncation) are still kept. This will generate a good starting
point for the variational method in the next sweep.

4. Go to step 2 until kl moves to the end of the Wilson chain.

5. Some more sweeps until fully converged based on var(E).

4.10 Follow up study of SBM2

There are still many open questions about the quantum phase transition in SBM2 and its
generalization. Some of which are discussed in the following.

The quantum transition QC1, which is the transition between the localized and critical
phase, is expected to be non-classical. However there is still no solid argument yet. There
are a few critical exponents which can tell the nature of the transition, namely β, δ, δ′ and
ν defined as

〈σx〉 ∝ (α− αc)β, for ~h = 0 and α > αc (4.46)

〈σx〉 ∝ h1/δ
x , for α = αc (4.47)

〈σz〉 ∝ h1/δ′
x , for α = αc (4.48)

ξ ∝ (αc − α)−ν , for α < αc (4.49)

with ξ the correlation length. The current numerics breaks the U(1) symmetry of SBM2 and
prevents us to determine the accurate phase boundary and the critical exponents (Fig. 4.10
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for example). Therefore explicit implementation of the U(1) symmetry is necessary before
further investigating QC1 of SBM2.

The transition QC2, which is between the localized and delocalized phase, is probably
equivalent to the transition of a classical long-range XY model. The predicted exponents
based on this argument are

β = 1/2, δ = 3, 1/ν = s, for s < 1/2 (4.50)

δ = (1 + s)/(1− s) for s > 1/2 (4.51)

1/β = 2 + (12/5)ε, 1/ν = 1/2− (3/5)ε for s = 1/2 + ε, ε� 1 (4.52)

1/β = 2 + o(ε′2), 1/ν = ε′ for s = 1− ε′, ε′ � 1 (4.53)

Exponents are defined the same with those in SBM1 except β is defined as

〈σx〉 ∝ (hcz − hz)β. (4.54)

Compared to SBM1, β and ν behave differently for 1/2 < s < 1. Fig. 4.15 shows first
results of the QC2 phase boundary. I have also calculated the β exponent for s < 0.5
(Table. 4.2) and it agrees with the predicted one.

s α hcz β
0.3 0.1 0.3500 0.52
0.4 0.1 0.14835 0.48

Table 4.2: The phase boundary and fitted β exponent of QC2.
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Figure 4.15: QC2 phase boundary hcz as a function of α for s = 0.4 (a) and s = 0.6
(b). The VMPS results confirm the weak-coupling RG prediction that there is a power law
relation hcz ∝ αk with k = 1/(1 − s). The dashed lines are linear fitting, and the fitted
exponents are shown in the caption and it agrees with the RG prediction.



Chapter 5

Quantum Telegraph Noise Model

The most studied type of bath of quantum dissipative systems is a collection of harmonic
oscillators or electrons in the conduction band. These kinds of baths consist of many
particles and display Gaussian-distributed fluctuations to a good approximation. However
this approximation will break down when the quantum system is coupled to only a few
noise sources. Some nanoscale quantum coherent systems recently proposed as candidates
for quantum information processing [46, 7, 83] belong to this category. One of the simplest
models with non-Gaussian type noise is the quantum telegraph noise model (QTNM)
[67, 31, 1, 35]. In this chapter I explore the feasibility and performance of DMRG and
t-DMRG to study the QTNM.

Figure 5.1: The quantum telegraph noise model.

5.1 Decoherence

The static quantum telegraph noise model describes a single, spin-polarized impurity level,
tunnel-coupled to a non-interacting spinless fermion reservoir as illustrated in Fig. 5.1. The
Hamiltonian is

H =
∆

2
σz +

(vx
2
σx +

vz
2
σz

)
d†d+HB, (5.1)

where HB is the bath Hamiltonian

HB = ε0d
†d+

∑

k

(tkc
†
kd+ h.c.) +

∑

k

εkc
†
kck. (5.2)
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To facilitate the DMRG study of this model, we transform the bath to the 1D Wilson chain
form:

HB = ε0d
†d+

√
γD

π
(f †0d+ d†f0) +

D

2
(1 + Λ−1)

∞∑

n=0

Λ−n/2ξn(f †nfn+1 + f †n+1fn), (5.3)

where γ is the tunneling rate

γ = 2π
∑

k

|tk|2δ(εk − ε0). (5.4)

Note that here the definition of γ has a factor of 2 difference with the “hybridization
parameter” Γ = π

∑
k |tk|2δ(εk − ε0) usually used by the NRG community.

First we study the decoherence of the qubit under telegraph noise. The starting state
is

|ψ(0)〉 =

√
2

2
(| ↑〉+ | ↓〉)|φ(0)〉, (5.5)

where |φ(0)〉 is the state of the bath at t = 0. At zero temperature, we use the ground
state of the bath as |φ(0)〉. |ψ(0)〉 can be generated by calculating the ground state of the
following engineered Hamiltonian

H0 = σx +HB, (5.6)

with ε0 = 0 in HB.
We then use t-DMRG to calculate |ψ(t)〉 with the original Hamiltonian (5.1). The

reduced density matrix of the spin is

ρs(t) = TrB|ψ(t)〉〈ψ(t)|, (5.7)

and the visibility is defined as
|D(t)| ≡ 2|ρs↑↓(t)|. (5.8)

The visibility of the free decoherence process can also be calculated analytically [1], and
it can serve as a benchmark for the performance of t-DMRG to study the QTNM. There
are several sources of error in our t-DMRG treatment: the DMRG truncation dimension
χ, Trotter decomposition error, band discretization. I found that among the three sources
of error the first two are not as important as the third one. With relatively small χ and
typical Trotter step size (Fig. 5.2) the results is already well converged. Therefore I focus
on the influence of different discretization scheme to the visibility result. More specifically
I recalculate Fig. 2 in Ref. [1] at T = 0 with two different types of discretization schemes:
linear and logarithmic discretization.

The energy resolution of linear discretization is the same throughout the band and is
proportional to the inverse of the number of levels representing the band 1/L. Fig. 5.3
shows the visibility with different linear discretization parameter L. We can see that we
need a very long chain length L to reach a converged results if we use linear discretization
which reflects the fact that the relevant energy scale of this problem is smaller than 10−3.
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Figure 5.2: Visibility for different tDMRG time step τ . The result is already converged
at τ = 0.5.
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Figure 5.3: Visibility for different chain lengths L with linear discretization in energy
space. We need a very long chain length to reach a converged result, which reflects the fact
that the relevant energy scale of this problem is smaller than 10−3.
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Next we will try different logarithmic discretization schemes. Fig. 5.4 shows the visibil-
ity calculated with different Wilson chain lengths. The result has converged with L = 160.
Unlike linear discretization the result converges very fast with respect to the Wilson chain
length L. This is simple to understand as the logarithmic discretization reaches small
energy scales much faster. The smallest energy scale with the parameters used in Fig. 5.4
for L = 160 is smaller than 10−5 already which would require L > 100000 if we used linear
discretization. Note the model parameter I used is different with those in Fig. 5.3 but the
numerical behavior in response to discretization is the same.
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Figure 5.4: Visibility for different Wilson chain length L with logarithmic discretization
scheme. The result converges much faster than in the linear discretization case, and it
already converges at L = 160.

Fig. 5.5 shows the influence of different set logarithmic discretization parameter Λ with
a long enough L. The oscillations for bigger Λ is a typical discretization artifact. It is
caused by the insufficient number of levels of the logarithmic discretization to represent
the high energy part of the band. More levels in the high energy part will average out
those oscillations. Based on the same reasoning these oscillations could be suppressed
significantly by using z-averaging [29, 116, 64, 14] as shown in Fig. 5.6. We need to calculate
several different z-values to obtain the averaged curve while we need only one calculation
if we use linear or logarithmic discretization with small Λ. However, the advantage of
z-averaging is that one can use a relatively large Λ and a very short Wilson chain length
therefore each calculation is very fast and it is very straight forward to harness the power
of multiple CPUs.

We use t-DMRG and logarithmic discretization to calculate the visibility result as shown
in Fig. 2 in Ref. [1]. The t-DMRG results agree the analytical results very well as shown
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Figure 5.5: Visibility using different logarithmic discretization parameters Λ. L is chosen
so that the result has already converged. The insufficient number of levels representing the
high energy part of the band will causes “artificial” oscillations like those seen in this plot
for Λ = 1.5.
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Figure 5.6: Using z-averaging to reduce the artificial oscillations caused by imprecise
representation of the high energy part of the band. We used Λ = 1.8 and L = 34 for the
logarithmic discretization. 10 equally spaced z values in (0,1] are used here.
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in Fig. 5.7.
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Figure 5.7: Visibility calculated with t-DMRG for vx = 0 and several different vz as Fig.
2 in [1]. t-DMRG results agree with the analytical results very well.

5.2 Spin echo

Spin echo is originally a technique used in nuclear magnetic resonance to refocus spin
magnetization. Now it is also widely adapted to solid state qubit experiments to reduce
the influence of 1/f noise [60]. Ref. [1] studied the effectiveness of spin echo to reduce the
influence of telegraph noise analytically and found spin-echo has very limited effect.

We simulate the application of spin-echo on QTNM at T = 0 with t-DMRG, and
the result is shown in Fig. 5.8. Unlike the visibility curve without pulse, which serves
as a comparison here, the spin-echo curve is not from one t-DMRG calculation but from
independent calculations for each data point in the curve. For example the data point at
time t is obtained by applying a π pulse eiπσx/2 at t/2 and just take the visibility at t. The
result agrees very well with the results shown in Fig. 5(d) of Ref. [1]. (Note that the curve
without pulse in Ref. [1] is not correct.)

5.3 Spectroscopy of periodic drive

Next we want to study the time-dependent driving spectroscopy under the driving term

Hdri = Ω cos(ωt)σx (5.9)
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Figure 5.8: Visibility with a π pulse applied at t/2 simulated with t-DMRG for T = 0.
This result agrees very well with those in Ref. [1]. The result shows that the effect of
spin-echo to increase the decoherence time is very limited for the telegraph noise model.

Even though the Hamiltonian is now time-dependent it gives no extra difficulty for t-
DMRG to simulate. Fig. 5.9 shows some examples of the magnetization as a function of
time calculated with t-DMRG. The calculation time of each curve takes less than one hour
on a single CPU core.

We can see from Fig. 5.9 that the amplitude of the low frequency oscillations decays
due to the influence of the bath. The high frequency oscillations directly caused by the
periodic drive do not decay over time as shown in Fig. 5.10. The reason is that with just
one level coupled to the spin it is very difficult for the bath to damp the fast oscillations.

With different driving strength Ω and frequency ω the finial σz(t) as t → ∞ will
oscillate around different values. The final average 〈σz〉 (or equivalently the probability for
the spin to be in the up state Pup) as a function of driving frequency ω is referred to as
the spectroscopy.

As we can see from Fig. 5.9 the time scale of the low frequency decay is much longer
than the typical time scale of the telegraph noise (1/γ) for the parameter range we studied.
Therefore one would expect that any prior information of the spin which passed to the
resonant level will dissipated immediately by the fermionic bath and thus has no influence
to the current state of the spin through the resonant level. This justifies the Markovian
approximation, and the spectroscopy can be calculated with the following master equation:

dρ̂(t)

dt
= −i

[
Ĥs(t), ρ̂(t)

]
+ ΓL

[
R̂Γ

]
ρ̂(t) + ΓψL

[
R̂Γψ

]
ρ̂(t), (5.10)

where ρ̂(t) is the density matrix of the spin at time t. Hs(t) is the time-dependent Hamil-
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Figure 5.9: t-DMRG simulation of the quantum telegraph noise model under a periodic
driving for several different model parameters. We keep 50 DMRG states which already
gives converged results.
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5.3 Spectroscopy of periodic drive 83

tonian of the spin

Hs(t) = Ω cos(ωt)σx +
∆

2
σz. (5.11)

L
[
R̂
]

is a Lindblad superoperator that depends on a relaxation operator R̂ and acts, with

a rate Γ (or Γψ), as follows:

L
[
R̂
]
ρ̂ = R̂ρ̂R̂† − 1

2
(R̂†R̂ρ̂+ ρ̂R̂†R̂), (5.12)

with
R̂Γ = | ↓〉〈↑ |, (5.13)

R̂Γψ =
√

2 | ↑〉〈↑ | (5.14)

respectively describes the decay from the spin-up state to the spin-down state and the
fluctuation of the level splitting due to the influence of the environment. Fig. 5.11 shows
the meaning of parameters in the master equation.

Figure 5.11: Illustration of how the master equation deals with the driven dissipative two
level system. ∆ is the level splitting (energy difference), Γ is decay rate from the upper
level to the lower level and Γψ is the fluctuation of the energy splitting.

This master equation can be solved numerically and some well known results are shown
in Fig. 5.12 (left two plots) together with results from t-DMRG simulations of the telegraph
noise model (right two plots). In Fig. 5.12(a) where the driving amplitude is relatively
weak the system is in its linear regime according to master equation. The characteristics
of the linear regime is that the peak height Pmax is proportional to the intensity of the
external driving field Ω2. With the same weak driving field, the t-DMRG results of QTNM
are shown in Fig. 5.12(b). Though the data looks similar, it does not give such a linear
relation, even after we subtract the offset of Pup from 0 seen in these curves. This deviation
from linear behavior may derive from the Markovian approximation which is not always a
good approximation for the whole parameter regime in this plot. The offset itself is simply
due to how the spin is coupled to the bath. As I set vz = 0, the coupling term is

Hcouple =
vx
2
σxd

†d. (5.15)

When the resonant level is not empty this term makes the instantaneous ground state no
longer the spin-down state. This is the reason why we see an offset of Pup. The offset of
ω/∆ (that is the peak is not at ω/∆ = 1) is due to the same reason.
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If the driving field is strong enough we will see multi-photon resonance signaled by
the side peaks shown in Fig. 5.12(d). In this plot the biggest side peak is at the position
ω/∆ = 1/3 caused by the three-phonon resonance. We see some similar multi-phonon
resonance in the t-DMRG result Fig. 5.12(c). Interestingly, the position of the three-
phonon peak is not at ω/∆ = 1/3 as seen in the analytical data but is shifted by three
times the amount the main peak is shifted.
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Figure 5.12: Spectroscopy from master equation (a), (c) and t-DMRG (b), (d). (a) and
(b) is the week driving case; (c) and (d) are the strong driving case. The master equation
uses the Markov approximation and represents the influence of the bath on the spin simply
by two decay rate parameters. The t-DMRG results are numerical simulations of the
quantum telegraph noise model by solving the full Schrödinger equation directly. Even
though the results of t-DMRG look qualitatively similar to the master equation solution,
there are some clear quantitative differences as explained in the main text.



Appendix A

Žitko-Pruschke logarithmic
discretization of boson bath

Rok Žitko and Thomas Pruschke proposed a slightly modified and more accurate scheme of
logarithmic discretization [98] which “removes the band-edge discretization artifacts of the
conventional approach and significantly improves the convergence to the continuum Λ→ 1
limit”. It should always be used instead of the conventional logarithmic discretization. In
this appendix I will describe how to use this new scheme to discretize the bosonic bath.

The discretization mesh of the logarithmic discretization is defined by εzm, where z is
used for the “z-averaging” [14] and

εz0 = ωc (A.1)

εzm = ωcΛ
2−j−z, (m = 1, 2, 3, ...) (A.2)

After we define the mesh, we need to calculate the energy of each slice of the band ξzm
defined in Eq. (S2) in Section 4.1. In the conventional logarithmic discretization scheme it
is calculated as

ξzm =

∫
Im
dε∫

Im
dε/ε

=
εzm − εzm+1

ln(εzm/ε
z
m+1)

(A.3)

with Im = [εzm, ε
z
m+1]. This will result in discretization artifacts especially near the band

edge as explained by Žitko’s paper. In the modified scheme, ξzm are calculated by solving
the differential equation

ξ(0) = ωc (A.4)

dξ(x)

dx
=

∫ ε(x+1)

ε(x)
J(ω)dω

J [ξ(x)]
(A.5)

where x = m+ z and x ∈ [0,+∞). Thus, ε(x) and ξ(x) are the continuous form of εzm and
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ξzm. We need two steps to solve the whole problem. First we need to solve ξz0 with

∫ ε(x+1)

ε(x)

J(ω)dω =

∫ εz2

1

J(ω)dω

=
α

1 + s
[Λ−z(1+s) − 1] (A.6)

and
ξ0

0 = ωc = 1 (A.7)

After we have ξz0 , ξzm is solved by using

∫ ε(x+1)

ε(x)

J(ω)dω =

∫ εzm+1

εzm

J(ω)dω

=
α

1 + s
[Λ(1−m−z)(1+s) − Λ(2−m−z)(1+s)] (A.8)

and
ξ0

1 = ξ1
0 (A.9)

The final results are Eq. (S2) in Section 4.1.



Appendix B

Overlap of two VMPS wave functions
with different shifts

Sometimes we need to calculate the overlap of two different wave functions when verifying
the numerics or when we study the fidelity. Without bosonic shift it is very straight-
forward to calculate the overlap: one just contracts the local dimension of the two wave
functions. When oscillator shifts are used, the local basis is different if the shifts are not
exactly the same. Therefore to calculate the overlap of different VMPS states with shifts
|ψ(δ1, δ2, · · · , δL)〉, |ψ′(δ′1, δ′2, · · · , δ′L)〉 one needs to “unshift” the wave functions first:

〈ψ′(δ′1, δ′2, · · · , δ′L)|ψ(δ1, δ2, · · · , δL)〉 = 〈ψ′(δ′1, δ′2, · · · , δ′L)|U(δ′1)U(δ′2), · · · , U(δ′L)

×U †(δ1)U †(δ2), · · · , U †(δL)|ψ(δ1, δ2, · · · , δL)〉 (B.1)

= 〈ψ′(δ′1, δ′2, · · · , δ′L)|
∏

k

U(δ′k)U
†(δk)|ψ(δ1, δ2, · · · , δL)〉

By definition the local unshift operator S = U(δ′)U †(δ) (for simplicity I omit the subscript
k) is

S = U(δ′)U †(δ)

= e
δ′√
2

(b†−b)
e
− δ√

2
(b†−b)

= e
(δ′−δ)√

2
(b†−b)

= e
(δ′−δ)√

2
(b†−b)

≡ et(b
†−b) (B.2)

S operator is infinitely large if represented in the full, infinite boson basis, so numerically we
need to truncate it. One should be cautious that S should only be truncated after having
been evaluated with infinite large b, b† operators. If one calculates S with truncated b, b†

the results is incorrect. To evaluate S, we first expand it with the Zassenhaus relation

et(X+Y ) = etXetY e−
t2

2
[X,Y ]e

t3

6
(2[Y,[X,Y ]]+[X,[X,Y ]]) · · · (B.3)
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and we have

S = etb
†
e−tbe

t2

2
[b†,b]

= etb
†
e−tbe−

t2

2

= e−
t2

2

∞∑

n=0

(tb†)n

n!

∞∑

m=0

(−tb)m
m!

(B.4)

The matrix elements of S are

〈α|S|β〉 = e−
t2

2

∞∑

n,m=0

(−1)mtn+m

n!m!
〈α|(b†)nbm|β〉

= e−
t2

2

∞∑

n,m=0

(−1)mtn+m

n!m!
〈α| 1√

α!
bα(b†)nbm(b†)β

1√
β!
|0〉

=
e−

t2

2√
α!β!

∞∑

n,m=0

(−1)mtn+m

n!m!
〈α|bα(b†)nbm(b†)β|0〉 (B.5)

inside the summation only terms which satisfy m ≤ β, n ≤ α and α +m = β + n are non
zero. When m ≤ β we have

bm(b†)β|0〉 = βbm−1(b†)β−1|0〉

=
β!

m!
(b†)β−m|0〉, (B.6)

and similar for the conjugate part. It can be easily verified that the finial result is

〈α|S|β〉 = e−
t2

2

√
α!β!

β∑

m=0

(−1)mtα−β+2m

[m!(α− β +m)!]2
(β −m)! (B.7)

This formula can be numerically calculated for

α = 1, 2, · · · , d′k (B.8)

β = 1, 2, · · · , dk (B.9)
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Snake - a DMRG program

Snake is an open-source DMRG program I developed using c++ and Matlab. The choice
of the name is because of the 1D nature of DMRG. It includes infinite DMRG, finite
DMRG, t-DMRG and finite temperature DMRG. The code can be found here: http://

code.google.com/p/snake-dmrg/ The calculations in Chap. 3 and Chap. 5 are calculated
with Snake.

Some key feature of Snake are:

• A simple Matlab file to define the Hamiltonian, and the c++ DMRG code can be
used as a black box.

• Main part of the code is written in c++. It is object oriented and highly optimized.

• Most time consuming operations are reduced to matrix operations, and standard
linear algebra routines like BLAS, LAPACK and ARPACK are called by the c++
code to speed up the calculation.

• Multiple Abelian symmetries.

The following classes are defined in the program:

GQN The good quantum number class. A vector is used to store all good quantum
numbers (multiple Abelian symmetries). Common operators are overloaded for the
good quantum number calculations.

GQNBase The class which describes the basis organized according to good quantum
numbers. It contains information like the number of good quantum numbers and
dimension of each good quantum numbers. Functions used by DMRG like Kronecker
product and basis truncation are implemented here. Comparison operations are
overloaded.

GQNMat Class of a partitioned matrix according to good quantum number with GQN-
Base being the basis of the matrix. Only non-zero blocks are stored to save space.
Common matrix operations are redefined so that the GQNMat can be used like a
normal matrix without caring about internal operations.

http://code.google.com/p/snake-dmrg/
http://code.google.com/p/snake-dmrg/
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Site DMRG site class. Contains DMRG site information and DMRG operations on one
site such as site operator renormalization, adding a site to a block and read/write
site information from/to files etc.

BlocHam Class of the Hamiltonian of a block.

DTMat Class of the reduced density matrix of the system/environment block and the
transformation matrix.

Block Class about all information of a DMRG block such as the number of sites infor-
mation of each site in the block (stored as Site object), block Hamiltonian (stored
as BlocHam object), block basis (stored as GQNBase object) etc. DMRG block
operations like adding a site to a block and renormalize block are defined here.

SupBlock This class contains information related to the super block. High level DMRG
operations like sweeping, calculating the ground state, t-DMRG etc.

DMRG Highest level interface of the program. Defines the problem, reads operators and
writes the finial results to files.

To use Snake, one can simply define the program with a Matlab script called “gen model.m”.
The following is an example for studying the telegraph noise model. It will generate a folder
called “model” containing the information of the problem. Then one can run the Snake
program to read files inside this folder and start the DMRG calculation.

1 function gen model (Omega , omegaratio , Lambda , BathL , z , d i s c r , vx , vz )
2
3 %%%%%%%%%%%%%%%%%%−−−−−−−−−MODEL INFO−−−−−−−%%%%%%%%%%%%%%%%%%%%%%%%%
4
5 %%%%%−−−−−−−Model Parameters
6 FlorianGamma =0.1;
7 D=1;
8 Delta =0.2 ;
9 %vz=0;

10 %vx=0.1;
11 e p s i l o n 0 =0;
12 %Fie l d app l i e d on the f i r s t s i t e o f the chain−−the sp in s i t e
13 ed0 =100;
14 %Driven parameters
15 w=omegaratio ∗Delta ; %dr i v i n g f r equesncy
16
17 %%%%%−−−−−−Di s c r e t i z a t i o n Parameters
18 %Lambda=2;
19 %BathL=20;
20 switch d i s c r
21 case ’ l og ’
22 [ a , b]= r o k l o g d i s c r ( FlorianGamma /2 ,D, Lambda , BathL , z ) ;
23 otherwi s e
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24 i n t e r=D∗2/BathL ;
25 [ a , b]= l i n d i s c r ( FlorianGamma /2 , i n t e r ,D) ;
26 end
27
28 para .TGQN=BathL/2
29 para . L=BathL+2
30
31 f o l d e r=sprintf ( ’ omega%g r a t i o%gLambda%gBathL%gz%g%svx%gvz%g ’ ,Omega , omegaratio

, Lambda , BathL , z , d i s c r , vx , vz ) ;
32 mkdir ( f o l d e r ) ;
33 system ( [ ’ cp . / cppsrc /Snake ’ f o l d e r ] ) ;
34 para . f o l d e r =[ f o l d e r , ’ /model ’ ] ;
35 mkdir ( para . f o l d e r ) ;
36
37
38 %%%%%−−−−−−Time e vo l u t i on Parameters
39 %%Trot ter s t ep o f r e a l time
40 r t t a u =0.5 ;
41 %Sta t i n g time
42 t s t a r t =0;
43 %Ending time
44 t end =2000;
45 %Time span
46 T=t end−t s t a r t ;
47 %Time s t ep number
48 para . t num=T/ r t t a u ;
49
50
51 %%%%%%%%%%%%%%%%%%−−−−−−−−−SITE INFO−−−−−−−−%%%%%%%%%%%%%%%%%%%%%%%%%
52 %The f i r s t type o f s i t e i s sp in
53 para . s i t e {1}= g e n s p i n s i t e ( ’ fermion ’ ) ;
54 %The second type o f s i t e i s s p i n l e s s fermion
55 para . s i t e {2}= g e n s p i n l e s s f e r m i o n s i t e ( ’ fermion ’ ) ;
56
57
58 %%%%%%%%%%%%%%−−−−−−STARTING STATE HAMILTONIAN−−−−−−−%%%%%%%%%%%%%%%%%
59 para . ones i t eE=zeros ( para . L , 1 ) ;
60 para . ones i t eE (1 )=ed0 ;
61 para . twos i tesV=zeros ( para . L−1 ,1) ;
62 para . hopT=zeros ( para . L−1 ,1) ;
63 para . hopT (1) =0;
64 for i =2: para . L−1
65 para . hopT( i )=b( i −1) ;
66 end
67
68 %para . h0{1}=ed0∗ kron ( para . s i t e {1} . sigmax , eye (2) ) ;
69 para . h 0 f i r s t=ed0∗para . s i t e {1} . s igmaz ;
70 para . h0{1}=kron ( para . h 0 f i r s t , eye (2 ) ) ;
71 for i =2: para . L−1
72 para . h0{ i}=para . hopT( i ) ∗(kron ( para . s i t e {2} .cm, para . s i t e {2} . cp )+kron ( para .

s i t e {2} . cp , para . s i t e {2} .cm) ) ;
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73 end
74
75
76 %%%%%%%%%%%%%%−−−−−−TIME EVOLVING HAMILTONIAN−−−−−−−−%%%%%%%%%%%%%%%%%
77
78 %%%%%%−−−−−−−cons ta t Wilson chain par t
79 para . h{1}=eye ( para . s i t e {1} . s i t ed im ∗para . s i t e {2} . s i t ed im ) ; %Use l e s s term
80 para . h{2}= e p s i l o n 0 ∗kron ( para . s i t e {2} . n , eye (2 ) )+para . hopT (2) ∗(kron ( para . s i t e

{2} .cm, para . s i t e {2} . cp )+kron ( para . s i t e {2} . cp , para . s i t e {2} .cm) ) ;
81 for i =3: para . L−1
82 para . h{ i}=para . hopT( i ) ∗(kron ( para . s i t e {2} .cm, para . s i t e {2} . cp )+kron ( para . s i t e

{2} . cp , para . s i t e {2} .cm) ) ;
83 end
84
85 for i =1: para . L−1
86 para .U{ i}=expm(−1 i ∗( r t t a u /2) ∗para . h{ i }) ;
87 end
88
89 %%%%%%−−−−−−−Time−dependent impur i ty term
90 for i =1: para . t num
91 t=( i −0.5)∗ r t t a u+t s t a r t ;
92 %para . h imp t { i }=(Del ta /2)∗ kron ( para . s i t e {1} . sigmaz , eye (2) )+(vz /2)∗ kron (

para . s i t e {1} . sigmaz , para . s i t e {2} . n)+(vx /2)∗ kron ( para . s i t e {1} . sigmax ,
para . s i t e {2} . n) ;

93 para . h imp t { i}=Omega∗cos (w∗ t ) ∗kron ( para . s i t e {1} . sigmax , eye (2 ) )+(Delta
/2) ∗kron ( para . s i t e {1} . sigmaz , eye (2 ) )+(vz /2) ∗kron ( para . s i t e {1} . sigmaz ,
para . s i t e {2} . n )+(vx /2) ∗kron ( para . s i t e {1} . sigmax , para . s i t e {2} . n ) ;

94 para . U imp{ i}=expm(−1 i ∗( r t t a u /2) ∗para . h imp t { i }) ;
95 end
96
97 %Save parameters to f i l e f o r c++ program to read
98 savepara ( para )
99

100 end

Line 5 to 15 define the model parameters. Line 17 to 26 generate Wilson chain Hamil-
tonian parameters. DMRG parameters are stored in the “para” structure. “para.TGQN”
is the targeted good quantum number. For the telegraph noise model we use a half filled
conduction band therefore “para.TGQN=BathL/2”. Line 31 to 35 generate the folder to
store model information and move the complied Snake program to the folder. Line 38 to 48
define t-DMRG parameters. There are two kinds of site in this problem: the spin impurity
site and spinless fermion site. The operators of these site are stored in para.site generated
in Line 51 to 55. Line 58 to 73 is used to define the engineered Hamiltonian whose ground
state is the starting state for t-DMRG calculation. Line 76 to 95 is used to generate the
time-dependent Hamiltonian for the t-DMRG calculation. Line 98 saves the para structure
to files so that the Snake program can read it.
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Bosonic VMPS program

Bosonic VMPS is the Matlab program I developed to study the spin-boson model in
Chap. 4. Its original form is based on the code by Verstraete et al. published on Ref. [90].
However, I have changed the code substantially to adapt it to the spin-boson model and
to optimize the performance. It can be downloaded from http://code.google.com/p/

bosonic-vmps/

In the following I group the scripts according to their functions:
The main program

• VMPS.m (define problem)

Generating operators and Hamiltonian

• bosonop.m (generate single site boson operators)

• spinop.m (generate single site spin operators)

• genh1h2term onesite.m (define the Hamiltonian)

• genh1h2term.m

• SBM genpara.m (generate parameters of Wilson chain Hamiltonian)

• star2tridiag.m

• paritykron.m (this the next two scripts is used for the parity version code)

• parityop.m

• parityorderOP.m

Initialization

• initCstorage.m

• initresults.m

http://code.google.com/p/bosonic-vmps/
http://code.google.com/p/bosonic-vmps/
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• initstorage.m

• gennonzeroindex.m

• createrandomVmat.m

• createrandommps.m

• loadsaved.m

Optimization

• minimizeE.m

• optimizesite.m (optimize the A and V matrices of a certain site)

• minimizeE onesiteA.m

• minimizeE onesiteVmat.m

• HmultA.m (H|ψA〉)

• HmultVmat.m (H|ψV 〉)

Basis update, orthogonalization and truncation during sweeping

• gen sitej h1h2.m (rescaling the local Hamiltonian terms)

• gen sitej op.m (rescaling operators)

• prepare.m (left- and right-orthogonalize the basis before the first sweep starts)

• prepare onesite.m (left- or right-orthogonalize the basis of one site)

• prepare onesiteAmat.m (SVD of A-matrix)

• prepare onesiteVmat.m (SVD of V-matrix)

• prepare onesite truncate.m (Dynamical adjust the dimension of A-matrix D)

• rightnormA.m (right normalize the wave function)

• update sitej h1h2.m (update single site Hamiltonian terms after updated A- and V-
matrix at each site)

• updateop.m (update block operators after updated A- and V-matrix at each site)

• adjustdopt.m (dynamically adjust the dimension of the optimal boson basis dopt)

• maxshift.m
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• trustsite.m

Manipulation of wave function and calculating expectation values

• applyOP.m (apply any operator on a MPS)

• calbosonocc.m (calculate boson occupation)

• calbosonshift.m (calculate boson shift)

• calspin.m (calculate σx, σy, σz)

• expectationvalue.m

• expectation allsites.m

• vonNeumannEntropy.m

• parity.m (calculate the parity of a MPS)

Basic VMPS functions and auxiliary functions

• updateCleft.m

• updateCright.m

• updateHleft.m

• updateHright.m

• contracttensors.m

• svd2.m
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Appendix E

List of Abbreviation and Frequently
Used Symbols

E.1 List of Abbreviation

Abbreviation Full Name
1D/2D/3D one/two/three-dimensional

DMRG Density Matrix Renormalization Group method
fDMRG finite DMRG

H.C. Hermite conjugate term
iDMRG infinite DMRG

LZ Landau-Zener
MPS Matrix Product State
NRG Numerical Renormalization Group method
OBB Optimal Boson Basis
QCC Quantum Classical Correspondence

QTNM Quantum Telegraph Noise Model
QPT Quantum Phase Transition
SBM Spin-Boson Model

SBM1/SBM2 One-/Two- Bath Spin-Boson Model
SVD Singular Value Decomposition

t-DMRG Adaptive time-dependent DMRG
TEBD time-evolving block decimation algorithm
VMPS Variational Matrix Product State method
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E.2 List of Frequently Used Symbols

Symbol Meaning
D matrix dimension of MPS or half band width

dopt dimension of optimal local boson basis
dk dimension of local boson basis of the site k
Λ logarithmic discretization parameter

σx, σy, σz Pauli matrices
J(ω) spectral function
ωc cutoff frequency

〈nk〉, 〈xk〉 the occupation and shift of the k-th oscillator
L chain length
T ∗ characteristic energy scale in NRG

hx, hy, hz components of external field on the spin
|D(t)| Visibility at time t

Ω amplitude of the periodic drive
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