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2  Introduction 

2.1 Brief History of Macromolecular Therapy 

Most of the therapeutic drugs on market today are small molecules. But the advent of 

recombinant DNA technology1-3 and an increasing molecular knowledge of 

metabolism and cause of many diseases slowly shifted the focus of development 

towards macromolecular therapy options. 

Insulin was the first clinically used macromolecular therapeutic and was 

commercialized as extract of bovine pancreas in the early 1930s by Lilly. It’s role in 

diabetes was well known from 19224 and the successful application as therapeutic 

drug laid the foundations for a slow paradigm shift in drug development. As a 

consequence of the successful elucidation of its molecular mechanism medical 

research focused on the molecular basis of human metabolism and its connection to 

diseases. The focused work of the 1940–1960s resulted in the identification of many 

endogenous proteins with therapeutic potential5-6. But only the rapid advances in 

biotechnological production7 and protein design technologies8-9 allowed the explosion 

of the biopharmaceutical market we see today. 

Macromolecules differ from the classical small drug therapeutics in various ways. 

Small molecules are generally produced by direct chemical synthesis and obey to 

Lipinski’s “rule of five”10 stating that most of the therapeutically used drugs possess a 

Mw <500 Da, contain only a small number of hydrogen bond donors/acceptors, and a 

partition coefficient which allows diffusion through lipid bilayers. Biogenic 

macromolecules on the other hand are large (>1000 Da), often multiple charged and 

in most cases do not enter cells readily. These properties render most intracellular 

targets inaccessible therefore the majority of the used macromolecular drugs are 

either surface receptor ligands11-12 or antibodies targeting extracellular targets13 and 

surface proteins14. With the growing knowledge of genetics and protein expression 

the idea of treating diseases at their molecular root got more and more attention. The 

original concept of gene therapy15 is straightforward and elegant: genetic disorders 

are the result of a loss of genetic function either by a mutation in the protein-encoding 

gene (examples include Duchenne muscle dystrophy and cystic fibrosis) or by a 

mutation-impaired regulatory sequence. Stable replacement of the deficient gene  
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therapy has to reach the nucleus to express a therapeutic gene or achieve stable 

integration into the genome without causing mutagenesis23 the majority of antisense 

nucleic acids attack different sites of the mRNA metabolism in the cytosol (Figure 

2.1). One of the first reported approaches was the use of 13-25 bases long, 

complementary antisense oligodeoxynucleotides (asODN) to inhibit the translation of 

a mRNA transcript resulting in a target protein knockdown24. The expected 

mechanism was hypothesized as steric block through complementary Watson-Crick 

base pairing thereby inhibiting access of the translational machinery to the mRNA25-

26. The discovery of the RNAse H pathway27 as a DNA-RNA duplex dependent 

protein translation inhibiting mechanism led to a detailed examination of the 

molecular basis of antisense activity.  RNAse H is able to recognize DNA-RNA 

duplexes and specifically cleaves the RNA thereby freeing the asODN resulting in a 

repetitive, catalytic process of duplex formation and degradation. This mechanism 

was exploited in the majority of the first generation antisense therapeutics28. A 

related mechanism is the dsRNA induced gene-silencing mechanism. In 1998 Fire 

and Mello reported that introduction of exogenous dsRNA into cells of Caenorhabditis 

elegans inhibited cellular protein expression29 but additional experiments with human 

cells using synthetic dsRNAs (78 bp) only showed an interferon-induced non-specific 

response30. Three years later Tuschl et al. could demonstrate that use of small 21 – 

23 bp long dsRNAs (siRNAs) causes effective, sequence specific RNA interference 

in mammalian cells without significant side effects31-32.  The siRNAs are incorporated 

into a multi-protein complex known as RNA-induced silencing complex (RISC). 

During assembly of the complex the siRNA is further processed, resulting in release 

of the passenger strand and binding of the guide strand to the Ago2 protein33. This 

strand is used by the RISC as template to destroy complementary target RNA via an 

embedded RNAse activity of the Ago2 protein34. These discoveries led to a surge in 

interest to harness RNAi for biomedical research and drug development. 

While most of the used, antisense based therapeutic approaches aim at inhibiting 

protein expression they can also be used to correct splicing errors in the pre-mRNA35  

or to increase gene activity by degradation of regulatory RNA36. But despite the 

assumed advantages of antisense technology over gene therapy or their mechanistic 

differences they share one trait; without effective delivery their therapeutic use is 

limited. 
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2.2 Barriers in Macromolecular Drug Delivery 

Successful application of nucleic acids (NAs) in a therapeutic setting is strongly 

dependent on successful delivery of the nucleic acid payload into the target cell. The 

rather low efficiency of non-viral vectors stems from the numerous extracellular and 

intracellular barriers (Figure 2.2 ) entrapping or destroying significant amounts of the 

payload before entering the cell. In contrast to peptides and proteins, which show 

reasonable stability in circulation, nucleic acids are characterized by a rather short 

half-life due to rapid degradation by nucleases37 making efficient protection of the 

nucleic acid mandatory. Most non-viral delivery systems, including cationic lipids, 

polymers such as polyethyleneimine (PEI) or dendrimers,  achieve this by 

compacting the nucleic acid payload through electrostatic interactions of the cationic 

carriers with the negatively charged nucleic acid. But the resulting positive net charge 

of many non-viral delivery systems is partly responsible for additional deleterious 

effects of the extracellular environment. Positive net charge of polyplexes increases 

unspecific, electrostatically induced interactions with negatively charged components 

of the biological environment like cell membranes and proteins. These interactions 

result in a number of side effects with reduction of effective therapeutic dose being 

the most prominent, followed by cytotoxic effects38 and stimulation of the immune 

system.  

To overcome these problems strategies like dextran modification of the polycation39, 

hydrophobic backbone modifications40-41 or conversion of the polymeric backbone 

into a polyanion42 were reported. The most common and versatile solution is 

PEGylation of the carrier systems. Polyethylene glycol (PEG), a hydrophilic, 

uncharged polymer with excellent solvatization properties was described for the 

generation of less immunogenic proteins, characterized by extended circulation 

times43. PEGylation of liposomes is a long known strategy to reduce unspecific 

interactions during circulation and was transferred to PEI-based carrier systems by 

Ogris et al.44. The PEGylation of PEI results in reduced interactions with blood 

components and the innate immune system. Recently the beneficial role of 

PEGylation for polymeric oligonucleotide (ON) delivery systems in siRNA/PEI 

delivery was examined in more detail by using radioactively labeled compounds for a 

detailed study of the pharmacokinetics45.  



Introduction 
 

 

Figure 2.2 : Bottlenecks in macromolecular delivery
system. After docking to the cell by ligand
endosomal vesicle which can be actively transported to
acidic pH-shift in the maturating endosome unmasks a domain which disrupts the endosomal 
membrane releasing the particles into the cytoplasm. Vector unpacking by degradation of the 
polymeric backbone (disulfide, ester bonds) may occur in a time
either in the cytosol or in the nucleus. Depending on the form of nucleic acid, the payload is processed 
in the cytosol (siRNA and asODN) or has to enter the nucleus (pDNA).  

 

Bottlenecks in macromolecular delivery  exemplified for a bioresponsive NA delivery 
After docking to the cell by ligand–receptor interaction, the vector is internalized into an 

endosomal vesicle which can be actively transported to the perinuclear region by microtubules. The 
shift in the maturating endosome unmasks a domain which disrupts the endosomal 

membrane releasing the particles into the cytoplasm. Vector unpacking by degradation of the 
ester bonds) may occur in a time- and environment

either in the cytosol or in the nucleus. Depending on the form of nucleic acid, the payload is processed 
in the cytosol (siRNA and asODN) or has to enter the nucleus (pDNA).   

  

13 

 
exemplified for a bioresponsive NA delivery 

receptor interaction, the vector is internalized into an 
the perinuclear region by microtubules. The 

shift in the maturating endosome unmasks a domain which disrupts the endosomal 
membrane releasing the particles into the cytoplasm. Vector unpacking by degradation of the 

and environment-dependent fashion 
either in the cytosol or in the nucleus. Depending on the form of nucleic acid, the payload is processed 



Introduction   
 

14 
 

After successful passage through the circulation the polyplex has to extravasate in 

the vicinity of the target cell and cross the extra-cellular matrix (ECM) to deliver its 

payload to the cell surface and into the cytosol. The ECM is a network of different, 

charged macromolecular species and able to disrupt electrostatically stabilized 

polymer-NA formulations46-47 resulting in a profound impact on delivery efficiency. 

Apart from being a physical barrier for successful delivery to cells the composition of 

the ECM can influence the gene expression itself48. 

Incorporation of targeting into a delivery platform improves the specificity of the 

carrier for certain tissues or organs and supports the uptake of the delivery systems 

resulting in improved delivery efficiency. To achieve this goal different passive and 

active targeting concepts were developed. Due to the abnormal neovascularization 

and an inadequate lymphatic drainage tumor vasculature generally is characterized 

by an increased leakiness resulting in enhanced permeability and retention (EPR) for 

macromolecular drug entities49. This effect can be exploited to enrich nucleic acid 

formulations in tumor tissue. The EPR-targeting effect is mostly dependent on the 

molecular weight (>50 kDa) of the used polymer or the size of the resulting 

nanoparticles and can be improved by increasing Mw and hydrophilicity of the carrier 

via PEGylation. By covalently attaching ligands to the carrier it is possible to improve 

uptake into cells specifically expressing or over-expressing the target receptor. Active 

targeting for nucleic acid formulations was introduced in 1987 by Wu et al.50 for 

hepatocyte targeting and has been used extensively for the generation of carrier 

systems with an increased specificity for certain cell types. Prominent examples for 

this ligand-driven strategy are the use of transferrin51, EGF51, folate52 and peptides 

like RGD, GE1153 or B654. Active targeting is also used to improve the cellular uptake 

of PEGylated formulations and was combined with reversible PEGylation to escape 

the PEG-dilemma55. 

After successful internalization several intracellular bottlenecks such as endosomal 

escape, cytosolic transport and successful vector unpacking have to be resolved by a 

pDNA delivery system. In contrast to pDNA-delivery systems, nuclear localization is 

irrelevant for most of the antisense therapeutics. However, in either case the 

formulation has to escape the endosomal compartment which will otherwise degrade 

the payload over time. While certain polymeric carriers like PEI or PAMAM- 

dendrimers can utilize their high, intrinsic buffer capacity to cause an osmotic burst of 

the endosome56 their efficiency of escaping the endosomal entrapment is still low. 
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Lipid-based formulations are not able to induce an osmotic burst but can escape the 

endosomal pathway by destabilizing the endosomal membrane57. This process is 

enhanced by the inclusion of helper lipids in cationic polymer formulations or lipid 

modification of cationic polymers. 

Another frequently used strategy is the modification of polymeric carriers with 

membrane disrupting agents. One of the most prominent examples is melittin, the 

major component of the bee venom. This pH-independent, strongly lytic peptide 

inserts into biological membranes and induces pore formation causing effective 

vesicle rupture. Modification of polymeric vectors with melittin increases their delivery 

efficiency but also increases cytotoxicity58. To circumvent the problem of unspecific 

lytic activity various peptide-based membrane active agents were developed, 

mimicking the endosomal escape strategies of viruses or certain bacteria. Peptides 

like the influenza peptide respond to the acidification of the endosome by an 

conformational shift which results in increased membrane destabilization. This 

concept was adapted for the design of membrane active synthetic peptides like 

GALA/KALA59. These amphipathic peptides change their conformation in acidic 

environment from random coil to an alpha-helical structure able to interact with lipid 

membranes, leading to membrane rupture and subsequent release of vesicle 

contents into the cytosol. 

Following the successful escape out of the endosomal pathway pDNA-based 

formulations have to be efficiently trafficked to the nucleus, followed by release from 

the carrier for successful gene expression. In case of non-dividing cells the pDNA 

payload has to pass the nuclear pore complex (NPC). These pores possess an inner 

diameter of ~ 9 nm making free diffusion of the carrier-NA complex into the nucleus a 

unlikely process. Proteins containing an exposed nuclear localization sequence 

(NLS) are recognized by importin, a cytosolic heterodimer carrier protein, dock to the 

NPC and are actively transported into the nucleus60. Most of the known NLS are 

characterized by clusters of basic amino acids that are recognized by the importins. 

By attaching the M9 sequence to a peptidic scaffold Subramanian et al.61 could 

demonstrate an increase nuclear import of pDNA resulting in a tenfold increase of 

expression. Zanta and coworkers62 demonstrated that covalent attachment of a 

single NLS to a plasmid  was sufficient for increased nuclear entry while attachment 

of several NLS inhibited the transport. 
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In conclusion, polymeric carriers have to cope with apparently contradictory 

demands: to stabilize the nucleic acid against degradation, but release it at its 

biological site of action; to shield the polyplex during circulation in the blood stream, 

but to deshield it upon cell entry; to leave the cell membranes intact, but to rapidly 

destabilize the endosomal membrane. It is unlikely that a simple homopolymer is up 

to these tasks. Dynamic, multi-domain delivery systems may be a more promising 

answer to this challenge. 

 

2.3 Delivery Systems for Nucleic Acids 

 

A major aim for any nucleic acid delivery strategy is efficient payload delivery into the 

target cell resulting in a therapeutic effect. This is a challenging task because of the 

unfavorable properties of the nucleic acid payload and the numerous extracellular 

and intracellular barriers preventing easy delivery. Administration of naked pDNA or 

RNAs did only in a few exceptional and not generally useful cases63-65 result in 

effective in vivo delivery. The limitation is due to the fast degradation of either DNA or 

RNA in in vivo settings by nucleases37 and limited extravasation66. Although gene 

expression/silencing can be achieved by either intramuscular/intratumoral67-68 

injection or physically assisted methods like electroporation69 or hydrodynamic 

delivery70 these methods miss general applicability or are characterized by a rather 

low efficiency. 

Viral vectors are considered to be the most efficient vector systems and are used in 

the majority of clinical gene therapy studies71. Due to their long evolution they are 

exceptionally suited to transport nucleic acids into foreign cells. By replacing viral 

genetic information with therapeutic nucleic acids viral systems can be used for 

effective delivery into target cells. But despite their advantageous properties it was a 

long way from the first, failed study in 1973 using shope papilloma virus to treat 

hyper-arginaemia by an ex vivo approach72 to the successful delivery of genetic 

material into humans in 199073. Despite their advantages in terms of efficiency viral 

delivery systems have disadvantages originating from their parent wild-type viruses. 

Major parts of the properties of a viral delivery system are defined by the wild-type 

they originate from, including loading capacity, tropism, maintenance of transgene 

expression, immunogenicity and inflammatory potential74. This results in difficulties  
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Schematic representations of the four major deliver y system classes.  A: adeno virus; 
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vitro efficiency the susceptibility towards serum proteins restricts extensive use in 

vivo. Nevertheless cationic lipids are considered to be one of the best non-viral 

delivery systems and have already been tested in clinical trials71. 

Similar to liposomes, polymers offer some practical advantages over viral delivery 

systems. Polymeric delivery vehicles are cheap in production, easy to modify, not 

recognized by the immune system and show no size limitations for their payload. 

Over the last 15 years polyethylenimine advanced to the most used member of this 

class80. PEI polymers contain primary, secondary and, in case of branched PEI, 

tertiary amines which are only partially protonated under physiological conditions. 

This structural feature results in a high intrinsic buffer capacity and allows the 

compaction of nucleic acids into small nanoparticles (50-500 nm). These properties 

result in an exceptionally high in vitro efficiency compared to other polymeric vectors 

and also some in vivo efficacy. But despite its efficiency PEI has some 

disadvantages. Its transfection efficiency is only moderate compared to viral delivery 

systems. Major drawback of PEI-based delivery vehicles is a pronounced in vitro and 

in vivo toxicity81-84, mainly caused by the positive net charge of PEI polyplexes 

resulting in unspecific interactions44,85 with the biological environment. In contrast to 

peptide based delivery systems or polyarginine/-lysine polymers, PEI is not 

biodegradable resulting in inefficient metabolization and elimination. This property 

can lead to PEI accumulation in cells and organs, limiting its usefulness for repeated 

application. 

The limitations of homopolymers like PEI and the resulting problems led to the 

development of increasingly complex polymeric systems which are able to react to 

external stimuli. Modifications include improved biodegradability resulting in reduced 

toxicity86-87, targeted delivery using shielded formulations88 and carriers with 

covalently attached payload which is only released in the cytosol75-76. These systems 

are the first versions of the so called programmable polymeric delivery systems 

(PPDS), dealing with the contradicting requirements of successful delivery. 
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2.4 Design and Synthesis of Programmable Polymeric Carrier Systems by 

Solid-Phase Synthesis and CombiChem  

 

Polymer design for nucleic acid delivery suffers from the vast potential combinations 

of variables and the complex biological environment in which the carriers are 

employed. Furthermore, recent studies emphasize the need for specialized systems, 

as not every carrier is appropriate for every task and there is an increasing need for 

adaptive polymers which can deal with changing biochemical environments.46,75,89  

Combinatorial chemistry can drastically shorten the development cycles by producing 

a large set of system descriptors (chemical structures, physical properties and 

biological characteristics associated with these structures) which can be used for 

rational vector design. The concept of high throughput combinatorial chemistry was 

introduced to the gene therapy field by the Robert Langer lab, synthesizing a library 

of 2350 single entity poly(ß-amino esters)90 (PAEs). The information derived from this 

library was subsequently used in several applications, for example by Green et al.91 

to construct optimized PAEs for human endothelial cell transfections in high serum 

conditions. Starting with low-molecular weight 0.42 kDa and 1.8 kDa PEI and 24 bi- 

and oligo-acrylate esters, Thomas et al.92 developed a 144-member library. In vitro 

and in vivo screening identified nine effective polymers, of which two showed 

systemic in vivo gene delivery to the lung with reduced toxicity compared to PEI. To 

take full advantage of the potential of such encouraging combinatorial approaches, 

further optimization of polymer chemistry and purification, resulting in libraries of 

monodisperse polymers with defined size and topology, better models to correlate in 

vitro and in vivo efficacy, as well as computational assistance for elucidating 

structure-activity relations will be necessary. One has to emphasize that any high-

throughput screening which only uses standard in vitro test systems would not 

necessarily select candidate vectors with highest in vivo efficacy. 
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2.5 Sequence Defined Polymers Allow Detailed Structure

Relationship Studies

  

For better defined copolymer structures and libraries with defined molecular weight 

and topology,92-95 meaningful structure/transfection correlations are possible. 

However, more detailed studies are not possible, even with such systems, due to the 

limited design space and/or their polydispersity. This limitation may be circumvented 

by alternative chemistry methodologies, including for example dendrimer

synthesis and/or solid-phase synthesis

monodisperse products by control 

Hartmann et al.99-100 adopted standard solid phase chemistry to build up a small 

library of monodisperse, sequence
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Defined incorporation of PEG or oligopeptide blocks was possible. Different PEG-

PAA copolymers were synthesized, where the cationic nature of the PAA segments 

was systematically varied. This modulated the structure of the resulting polyplexes, 

ranging from extended ring-like structures to highly compact toroidal structures. 

Importantly, stable single-polynucleotide complexes could be generated, as 

described similarly for sequence-defined synthetic peptide-based block copolymers 

by DeRouchey et al.47 or previous published work for synthetic poly(lysine)-PEG 

conjugates.  

These reports demonstrate the slow shift of the field of polymeric delivery towards 

the increasingly complex systems of bio-responsive, programmable polymers and to 

the application of increasingly sophisticated chemical methods and strategies in the 

development of new carrier systems. 
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2.6 Aims of the Thesis 

 

The innovation speed of small molecule therapeutics decreased in the last years but 

the number of EMEA approved biologicals is on a steady rise for the last 15 years. It 

is only a question of time until the first intracellular targeted therapeutic options will 

arrive on the market. But the success of these concepts is closely connected to the 

development of efficient, reliable, non-toxic carrier systems - without an efficient 

mode of intracellular entry no effective therapeutic can enter the market. A major 

drawback of the established polymeric delivery systems is their heterogeneity in 

terms of molecular weight, the limited freedom in their molecular design and the 

resulting problems for synthesis of defined batches for clinical testing and controlled 

modification of the systems. The sometimes ambiguous results in biological assay 

systems and the lack of information for precise structure-activity relationships 

imposes further restrictions on the development of new carrier systems.  

While numerous literature examples show improvements of polymeric delivery 

efficacy101 most of these approaches rely on chemical modification of polydisperse 

polymer precursors. But due to the heterogenic nature of the starting material every 

modification results in an even more complex product. Aim of the first part of this 

thesis was the simplification and subsequent optimization of an already described 

efficient, modular, brPEI-based delivery system102. This previous delivery system was 

a tetraconjugate, composed of compaction (brPEI 25 kDa), targeting/shielding (EGF 

coupled to 3.2 kDa PEG) and lytic domains (all-D-Melittin). Despite its nucleic acid 

delivery efficiency, synthesis was too complex for further refinement and the overall 

yield was low. By development of a new synthetic strategy and a simplified modular 

setup in the current work we aimed at a better control over the production process 

and increased flexibility for ligand attachment.  

The second aim of the thesis was the development of a solid-phase synthesis 

platform for the rapid synthesis of sequence-defined, polyamine-based cationic 

carrier systems. Novel protected building blocks had to be synthesized and the solid-

phase assembly process to be optimized. Polymers derived with this method by 

nature of the synthetic approach should be monodisperse. The molecular precision of 

the assembly should allow the introduction of multiple chemical modifications which 

are compatible with the specific reaction conditions of the used solid-phase 
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chemistry. These polymers should allow the study of structure-activity relationships 

(SAR) in more detail and offer increased control over the polymer and thereby the 

possibility of fine-tuning their properties.  

The third aim of the thesis was the application of the novel solid-phase assisted 

method in the design and synthesis of precise polymers with nucleic acid carrier 

activity. The synthesized polymers had to be evaluated in biophysical assays (NA 

binding and lytic activty) and in vitro systems (pDNA and siRNA delivery) to construct 

SARs which can be used for further optimization of the polymers. 

Aim of the fourth part of the thesis was the more detailed design and analysis of the 

precise polymers as pDNA transfection agents. By screening them for in vitro 

transfection capabilities and correlating these to their biophysical parameters, first 

useful SARs and promising lead candidates should be identified.  
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3 Materials and Methods 

 

3.1 Chemicals and Reagents 

Fmoc-amino acids and resins (base resins and preloaded resins) were bought from 

IRIS Biotech, Marktredwitz and Novabiochem GmbH, Darmstadt. Pybop® was 

bought from Multisyntech GmbH, Witten. DCM, MeOH, THF were bought from Merck 

and distilled before use. DMSO, EtOH, ACN were bought in the highest quality 

available from Sigma and used without further purification. ACN for RP-

chromatography was HPLC quality and bought from Merck. Water was used as 

purified, deionized water.  

Branched polyethylenimine (PEI; average MW = 25 kDa) and poly(2-ethyl-2-

oxazoline) (PEOZ) 50 kDa, DTT, deuterated solvents and MTT bromide were 

obtained from Sigma-Aldrich (Munich, Germany). All small molecule reagents were 

bought from Sigma-Aldrich unless stated otherwise. PEG derivatives were custom 

synthesized by Rapp Polymere, Tübingen.  

Recombinant murine epidermal growth factor (mEGF) was obtained from Peprotech 

Germany (Hamburg, Germany). Cysteine-modified melittin (Mel) was obtained from 

IRIS Biotech GmbH (Marktredwitz, Germany). Mel had the sequence CIGA VLKV 

LTTG LPAL ISWI KRKR QQ (all-D-configuration), the C-terminal amino acid was 

introduced as carboxylic acid, the N-terminal amino acid as amine.  

Plasmid pEGFPLuc (encoding a fusion of enhanced green fluorescent protein 

(EGFP) and Photinus pyralis luciferase under control of the CMV promoter) was 

produced with the Qiagen Plasmid Giga Kit (Qiagen, Hilden, Germany) according to 

the manufacturer recommendations. 

Ready to use siRNA duplexes were synthesized by Dharmacon(Layafette, USA), 

namely GL3 luciferase duplex: 5′-CUUACGCUGAGUACUUCGAdTdT-3′ (sense), 5'-

UCGAAGUACUCAGCGUAAGdTdT-3' (antisense) and control-siRNA: siCONTROL 3 

5′-AUGUAUUGGCCUGUAUUAGUU-3′(sense),  5′-CUAAUACAGGCCAAUACAUUU-

3' (antisense). 

Cell culture media, antibiotics, and fetal calf serum were purchased from Invitrogen 

(Karlsruhe, Germany). Luciferase cell culture lysis buffer and D-luciferin sodium salt 

were obtained from Promega (Mannheim, Germany). 
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3.2 DMF Purification 

DMF was further purified due to the slow decomposition on storage. To entrap amine 

impurities and residual water 100 g of freshly activated molecular sieve (4 Å pore 

diameter) were added to 1 L of DMF p.a. and the bottle stored in the cold room for 7 

days before use. 

To check for amine impurities a bromophenol assay was performed. 1 mL DMF was 

pipetted into an eppendorf tube and 6 µL of a freshly prepared bromophenol blue 

solution (5 mg/mL) were added. If the color of the solution was not yellow the DMF 

was additionally purified by distillation. 

 

3.3 Quantification Assays 

 

Ellman’s Assay 103 

The DTNB working solution contained 60 µl DTNB stock solution and 2440 µl of 

Ellman’s buffer. For a calibration curve cysteine solution with concentrations from 0.0 

to 0.5 µmol/ ml were prepared freshly for each measurement. The cysteine solutions 

were diluted in Ellman’s buffer. A solution with 0.25 µmol/ml of the test substance in 

HBG (pH 7.1), Tris (10 mM, pH 8.0) or acetic acid (10 mM, pH 2) was prepared. For 

the measurement 30 µl of the test substance or of the cysteine solutions were diluted 

in 170 µl DTNB-working solution. After incubating for 15 min at room temperature the 

content of free thiol groups was determined at A412 via calibration curve. 

 

Quantitative Analysis of brPEI 104  

The concentration of PEI was measured by TNBS assay. Standard brPEI solutions 

and brPEI containing test solutions were serially diluted in 0.1 M sodium tetraborate 

buffer to a final volume of 100 µl using a 96 well plate, resulting in e.g. brPEI 

concentrations of 10 to 60 µg/ml. To each well 2.5 µl of TNBS (75 nmol, 22 µg; 

diluted in water) were added. After 5 - 20 minutes incubation time at RT (depending 

on the strength of the developed colour) the absorption was measured at 405 nm 

using a microplate reader (Spectrafluor Plus, Tecan Austria GmbH). 

 



Materials and Methods   
 

26 
 

Quantitative Analysis of LPEI 105  

Content of linear PEI in the conjugates after size exclusion chromatography was 

measured performing a copper assay. PEI was mixed with copper (II) ions for 

formation of dark blue cuprammonium complexes. These complexes were detected 

by UV-VIS spectrometry measuring absorption at 285 nm. For this purpose first a 

calibration curve was established. Linear PEI22 was diluted in water to a final volume 

of 100 µl and added to 100 µl of a 2.25 M copper solution, 0.1 M sodium acetate pH 

7.4. Finally the conjugates were diluted, mixed with CuSO4 solution and A285 nm was 

measured. 

 

3.4 Chromatography 

 

3.4.1 Analytical RP-HPLC 

Analytical HPLC runs were done using a Waters HPLC System consisting of a P-900 

gradient pump system and a 996 Photodiode array detector under the control of the 

Millenium software. Analytical columns were either a C18-RP-Phase (Waters 

Symmetry C18, 3.9 x 150 mm) or a C4-RP-Phase (YMC C4, 4.0 x 150 mm). All 

peptides were analyzed using an exploratory Water/ACN (buffered with 0.1% TFA) 

gradient starting at 95:5 reaching 0:100 in 45 min. 

 

3.4.2 Analytical IEX-HPLC 

Analytical IEX-HPLC runs were done on a GE Healthcare ÄKTA Basic system 

consisting of a P-900 dual-pump, a UV-900 three-channel UV-detector and F-950 

fraction collector under the control of the UNICORN software version 4.11. All 

analytical runs were done on a Resource S 1 mL column using a salt gradient 

starting at 5 mM reaching 3 M over 30 min in a 10 mM HCl buffer (pH 1.9) 30% ACN. 

 



Materials and Methods   
 

27 
 

3.4.3  Desalting  

Desalting was done using a 10/30 G-10 column connected to an Äkta Basic System. 

Procedure for a typical desalting run: 10-30 mg of compound were dissolved in 1 mL 

of a 10 mM HCl buffer (pH 1.9) containing 30% ACN. The sample was applied to the 

column and the major peak (A214,280) collected. 

 

3.4.4 Thin Layer Chromatography (TLC) 

Silica gel coated glass (Merck, silica gel 60 F254) were used for thin layer 

chromatography. Detection methods were UV-detection at 254 nm or different 

staining baths. 

 

Cerium Stain (All Purpose Stain) 

15.0 g of ammonium cerium nitrate ((NH4)2Ce(NO3)6) and 15.0 g of ammonium 

heptamolybdate ((NH4)6Mo7O24) were covered with 270 mL distilled water. After the 

addition of 30 mL concentrated sulfuric acid (98 %) the resulting suspension was 

stirred at 50 °C for 30 min and filtered. 

 

Potassium Permanganate Stain (Oxidative Stain) 

3.0 g KMnO4 and 20.0 g K2CO3 were dissolved in 400 mL of MilliQ Water under 

addition of 2.5 mL of 10 % (w/v) NaOH. 

 

Ninhydrin Stain (Primary Amine Stain) 

0.8 g Ninhydrin p.a were dissolved in 400 mL of a mixture of n-butanol/water/acetic 

acid (100:4.5:0.5). 

 

Iodine Vapor Stain (Oxidative Stain/PEG Stain) 

A sufficient amount of iodine was loaded onto silica gel and stored in a stoppered 

flask. 
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3.4.5 Flash Column Chromatography (FCC) 

Flash chromatography was used like described by Still et al.106. Stationary phase was 

silica gel with a mean diameter of 0.035 – 0.073 mm unless otherwise stated. 

Column height and diameter were chosen in accordance to the general guidelines of 

the published method. 

 

3.4.6 Dry Column Vacuum Chromatography (DCVC) 

Dry column vacuum chromatography was performed like described by Pedersen et 

al.107. A sintered glass funnel (porosity of sinter filter: P3) of appropriate size was 

filled with about 6-7 cm of loose silica (Silica gel 60®, mean diameter 15-40 µm) and 

tapped to give a level surface. Vacuum was applied and the surface was pressed 

firmly to form a well compacted bed. The column was checked for voids and 

channels by pouring n-heptane onto the silica bed while vacuum was applied. The 

bed was covered with a filter paper of appropriate size to prevent disruption of the 

silica bed when charging it.  

The raw product mixture was dissolved in an appropriate amount of a low boiling 

solvent like DCM, methanol or ethyl acetate, and preabsorbed on Celite® 500 fine, 

followed by removal of solvent by evaporation. The loaded Celite® was grinded to a 

fine powder in a mortar and added as a thin, uniform layer on top of the column and 

vacuum was applied to compact the column. The column was then gradient-eluted 

with a suitable solvent system. Mixtures of n-heptane, chloroform, ethyl acetate and 

methanol were used, starting with the least polar solvent mixture, followed by solvent 

fractions typically with 1-10 % increments in the polar component. The fractions with 

a volume of 5-100 ml were monitored by TLC and product containing fractions were 

pooled and concentrated. 
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3.5 Spectroscopy and Spectrometry 

 

3.5.1 NMR Spectroscopy Instrumentation 

The 1H-NMR spectra were recorded using a JNMR-GX 400 (400 MHz) or a JNMR-

GX 500 (500 MHz) unit manufactured by Jeol. The coupling constant had an 

accuracy of 0.3 Hz. Deuterated chloroform or water were used as solvents as well as 

internal standards. The spectra were analyzed using the NMR-software packages 

NUTS (2 D professional version 20020107 by Acron NMR, 2002), MestreNova (Ver. 

5.2.5-4119 by Mestrelab Research) or Delta NMR processing and control software 

(version 4.3.1 by Jeol).  

 

3.5.2 Mass Spectrometry Instrumentation 

 

ESI-MS were measured on a ThermoScientific LTQ-FT Mass Spectrometer or on a 

Bruker Maxis ESI. MALDI-MS analysis was performed on a Bruker Autoflex MALDI-

TOF system. 
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3.6 LPEI-Conjugate Synthesis 

 
3.6.1 Synthesis of LPEI 22 kDa x HCl/Free Base 

Synthesis of LPEI was performed analogous to published procedures108 with 

modifications. Poly(2-ethyl-2-oxazoline) 50 kDa (5 g) were suspended in 50 ml of 

30% hydrochloric acid. The mixture was refluxed for 48 h yielding a fine white 

precipitate. The solid was isolated by filtration and washed four times using 30% HCl 

to remove traces of propionic acid. The resulting LPEI hydrochloride was air-dried 

over night, dissolved in 200 ml distilled water and freeze-dried. Yield: 3.5 g, 85% (1H-

NMR, D2O, 400 MHz: broad singlett 3.5 ppm)  

LPEI hydrochloride (2.5 g) were dissolved in 75 ml of 1 M NaOH at 100 °C. The 

solution was cooled to room temperature and the resulting LPEI precipitate isolated. 

The gel-like precipitate was washed 3 times with 75 ml 1 M NaOH and 5 times with 

75 ml distilled water. The resulting viscous gel was transferred into a round bottom 

flask, shock frosted using liquid nitrogen and lyophilized yielding 1 g (76%) of a white, 

fluffy lyophilizate. 

 

3.6.2 Removal of Low M w Impurities From LPEI and brPEI 

50 mg of LPEI (hydrochloride) or brPEI (free base) were dissolved in 1 ml water and 

the pH was adjusted to 7.0 using NaOH or HCl respectively. Small molecular weight 

fractions of the polymer were removed by SEC chromatography using a G-25 

preparative grade Sephadex column and a 20 mM HEPES (pH 7.4) buffer for elution. 

The PEI containing fractions were pooled and concentrated. PEI concentrations were 

determined using photometric copper assay (see 3.3) for LPEI, or TNBS-assay (see 

3.3) for brPEI, respectively. 
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3.6.3 Synthesis of 3- (Pyridin

 

Dithiopyridine (3.770 g, 17.11 mmol

0.4% (v/v) acetic acid. A solution of 3

737 µL, 1 eq) in 20 mL EtOH abs. and

course of 1 h. After 2 h of stirring the solve

yellowish oil was purified by DCVC using basic 
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3.04 (t, J = 6.9 Hz, 2 H, CH

Harom.), 8.40 (ddd, J = 4.9/1.8/0.9 Hz, 1H, H
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Dithiopyridine (3.770 g, 17.11 mmol, 2 eq) was dissolved in 30 mL EtOH abs. 

acetic acid. A solution of 3-mercaptopropionic acid (0.900 g, 8.48 mmol, 

, 1 eq) in 20 mL EtOH abs. and 0.4% acetic acid was added dropwise over the 

course of 1 h. After 2 h of stirring the solvent was evaporated and the resulting 

yellowish oil was purified by DCVC using basic aluminia as stationary phase 

(diameter 4 cm, h = 7 cm). Column was conditioned with CHCl3, the oil was loaded 

/MeOH 8:2 and eluted until the collected fractions w

including 4% acetic acid in the solvent. Product containing 

fractions were pooled and solvent remnants removed by HV treatment for 48 h. 
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3.6.4 Synthesis of N- Succinimidyl

 

 

3-(Pyridin-2-ylsulfanyl)-propionic acid (1.643 g, 7.634 mmol

dry DCM under nitrogen atmosphere. N

1.1 eq) was added and after complete dissolution DCC (1.7505 g, 8.688 mmol

eq) was added. After 4 h the resulting DCU was filtered off and the solution 

concentrated, yielding a yellowish waxy solid. The solid was 

(ø = 4.5 cm, h = 5 cm, CH

steps), followed by recrystallization from EtOH (50 °C to  

isolated by filtration and the recrystallization solution was concentrate

recrystallized again. 

 

 C12H12N2O4S2: 1.3355 g (56%).

 

TLC: Rf = 0.75 (CH2Cl2/MeOH

 
1H NMR (500 MHz, CDCl3, 22.9°C): 

2 H, SCH2CH2CO), 3.09 –
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propionic acid (1.643 g, 7.634 mmol, 1 eq) was dissolved in 

dry DCM under nitrogen atmosphere. N-Hydroxysuccinimide (1.000 

) was added and after complete dissolution DCC (1.7505 g, 8.688 mmol

) was added. After 4 h the resulting DCU was filtered off and the solution 

concentrated, yielding a yellowish waxy solid. The solid was further purified by DCVC 

(ø = 4.5 cm, h = 5 cm, CH3Cl/MeOH gradient, 50 mL fractions, MeOH 0

, followed by recrystallization from EtOH (50 °C to  -20 °C). The product was 
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1.3355 g (56%). White solid.  
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3.6.5 Synthesis of mEGF-SH 

Mercapto-modified EGF was synthesized analogously as described by Blessing et 

al.109. A solution of 10 mg of EGF (1.65 µmol, recombinant, murine) in 1.0 ml of 20 

mM HEPES buffer pH 7.1 was mixed with a solution of SPDP (5.2 mg, 16.5 µmol) in 

0.5 ml EtOH, resulting in a final concentration of 30% EtOH. After 2 h reaction time 

the resulting EGF-PDP was purified by SEC using a Sephadex G-25 superfine 

column and pH 7.1 HEPES/30% EtOH buffer for elution. The product containing 

fractions were collected and concentrated in a speedvac. Five mg of the resulting 

EGF-PDP in 2.5 ml of 20 mM HEPES pH 7.1 were treated with a 50-fold molar 

excess of DTT for 15 min under argon atmosphere. EGF-SH was purified by SEC on 

a Sephadex G-10 column using 20 mM HEPES pH 7.1 for elution yielding 3.5 mg 

EGF-SH (determined by A280). 

 

3.6.6 Synthesis of LPEI-PEG-OPSS Conjugates 

20 mg of LPEI (free base form, 0.9 µmol) were dissolved in 1 mL of EtOH by shaking 

for 30 min at 30 °C. The use of ethanol as solvent was superior over aqueous buffers 

and various other organic solvents in terms of reproducibility and yield. After 

complete dissolution 2.25 µmol of the appropriate NHS-PEG-OPSS or NHS-PEG in 

DMSO were added and agitated for 3 h. The resulting conjugate was purified using 

ion-exchange chromatography (20 mM HEPES pH 7.1, Elution with 20 mM HEPES 

containing 3 M NaCl) followed by dialysis (MWCO: 10 kDa) against 20 mM HEPES 

pH 7.1. Substitution grade was calculated by A343 after DTT induced 2-Pyridinethione 

release and/or 1H-NMR Analysis. 

 

3.6.7 Attachment of mEGF-SH to LPEI-PEG-OPSS Conjug ates 

5 mg of LPEI-PEG-OPSS (corresponding to 0.2 µMol of OPSS) in 20 mM HEPES pH 

7.1 were mixed with a 1.5 molar surplus of mEGF-SH and incubated until A343 

indicated complete turnover. The resulting conjugate was purified using SEC on a 

Sephadex G-25 column and concentrated using a speedvac. Concentration was 

determined by photometric copper assay (see 3.3). 
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3.6.8 Synthesis of brPEI Tetraconjugate (Mel-brPEI- PEG-mEGF) 

EGF-PEG-brPEI-Mel was synthesized like described before102. Briefly, EGF-SH is 

anchored to NHS-PEG3.4k-maleinimide, the resulting EGF-PEG3.4k-NHS-Linker is 

conjugated to brPEI and the resulting conjugate purified by SEC. The construct is 

subsequently modified with  SPDP, purified by SEC and in the last step modified with 

melittin-SH, followed by SEC purification. This resulted in a conjugate with the 

nominal composition of EGF: PEG: brPEI: Mel = 2.5 : 2.5 : 1 : 5 . 
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3.7 Solid-Phase Synthesis

Synthesis of Bis-tfa -

bis( trifluoroacetylaminoethyl

ethylenepentamine P enta

10 g (26.9 mmol, 1 eq) tetraethylenepentamine pentahydrochloride were weighed in 

a 1 L round bottom flask and dissolved in 250

(134.5 mmol, 5 eq) TEA w

cooled down to 0 °C. 6.72 mL (56.3

in DCM (40 mL) and added dropwise over 2 h at 0°C.  The RBF wa s allowed to warm 

to RT after 2 h and was stirred for another hour. Di

107.6 mmol, 4 eq) was dissolved in 40

Afterwards 15 ml of triethylamine

stirred over night.  The organic phase was reduced to approximately 150

washed three times with saturated sodium bicarbonate, 

sodium citrate solution and finally three times with water. The organic phase was 

dried over sodium sulfate and the solvent was evaporated to a yellowish viscous, 

waxy solid. The residue was recrystallised: for this purpose

minimal amount of DCM (37

(65 mL) was added to the boiling DCM till clouding could be observed at the drop

point. The crystallisation solution was stored over night in a refrigerator at 4

crystalline residue was filtered, washed with cooled 

 

C27H45F6N5O8: 15.23 g (83.0

 
1
H NMR (500 MHz, CDCl

3
, 24.1 °C): 

(m, 16 H, CH
2
), 7.93 (d, J = 46.5, 0.15 H, NH), 8.21 (d, 

MS (ESI); m/z (%) = 699.3527 [M+NH

Synthesis  Building blocks 

-Tp(boc 3) [Di- tert-butyl 5- tert-butoxycarbonyl

trifluoroacetylaminoethyl )-2,5,8-triazanonan-1,9-dioate ] using 

enta-hydrochloride  

 

) tetraethylenepentamine pentahydrochloride were weighed in 

L round bottom flask and dissolved in 250 ml DCM/MeOH (2:1). 18.75

) TEA were added and after stirring for 2 - 12 h the

°C. 6.72 mL (56.3  mmol, 2.1 eq) ethyl trifluoroacetate 

mL) and added dropwise over 2 h at 0°C.  The RBF wa s allowed to warm 

d was stirred for another hour. Di-tert-butyl dicarbonate

eq) was dissolved in 40 ml DCM and added dropwise over one hour. 

ml of triethylamine (107 mmol, 4 eq ) were added and the mixture was 

stirred over night.  The organic phase was reduced to approximately 150

hree times with saturated sodium bicarbonate, followed by 

sodium citrate solution and finally three times with water. The organic phase was 

dried over sodium sulfate and the solvent was evaporated to a yellowish viscous, 

idue was recrystallised: for this purpose it was dissolved in the 

minimal amount of DCM (37 mL) which was heated to reflux. Then slowly 

mL) was added to the boiling DCM till clouding could be observed at the drop

solution was stored over night in a refrigerator at 4

crystalline residue was filtered, washed with cooled n-hexane and dried.

83.0 %)  

, 24.1 °C): δ = 1.39–1.48 (m, 27 H, OC(CH

), 7.93 (d, J = 46.5, 0.15 H, NH), 8.21 (d, J = 41.3, 0.35 H, NH) ppm. 

(%) = 699.3527 [M+NH
4
]
+
, 682.3268 [M+H]

+ 
 

  

35 

butoxycarbonyl -2,8-

] using Tetra-

) tetraethylenepentamine pentahydrochloride were weighed in 

ml DCM/MeOH (2:1). 18.75 mL 

h the mixture was 

l, 2.1 eq) ethyl trifluoroacetate were diluted 

mL) and added dropwise over 2 h at 0°C.  The RBF wa s allowed to warm 

butyl dicarbonate (23.4 g, 

ml DCM and added dropwise over one hour. 

were added and the mixture was 

stirred over night.  The organic phase was reduced to approximately 150 mL and 

followed by three times 5 % 

sodium citrate solution and finally three times with water. The organic phase was 

dried over sodium sulfate and the solvent was evaporated to a yellowish viscous, 

it was dissolved in the 

mL) which was heated to reflux. Then slowly n-hexane 

mL) was added to the boiling DCM till clouding could be observed at the drop-in 

solution was stored over night in a refrigerator at 4 °C. The 

hexane and dried.  

1.48 (m, 27 H, OC(CH
3
)
3
), 3.20–3.55 

= 41.3, 0.35 H, NH) ppm.  
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Synthesis of Bis-tfa -

bis(trifluoroacetylaminoethyl)

Grade (85%) Tetraethylenepentamine

 

12 g (53,8 mmol, 1 eq) of tetraethylenepentamine (TEPA) were weighed in a 1

round bottom flask and dissolved in 500

0 °C. Trifluoroacetic ethyl ester (

in 220 ml DCM and transferred into a dropping funnel. It was added dropwise to the 

cooled mixture in the round bottom flask over 2.5

trifluoroacetic ethyl ester the react

Di-tert-butyl dicarbonate (47

added dropwise over one hour. Afterwards 30

mmol, 4 eq) were added and the mixture was stirr

The organic phase was reduced to approximately 150

with saturated sodium bicarbonate, 

solution and finally three times with water. The organic phase was dried over sodium 

sulfate and the solvent was evaporated to a yellowish viscous, waxy solid. The oily 

residue was re-crystallised: 

boiling DCM (60 ml). Then 

clouding was observed at the drop

over night in a refrigerator at 4

with cooled n-hexane and dried. Yield = 

 

C27H45F6N5O8: 23.1 g (63%)

 
1
H NMR (500 MHz, CDCl

3
, 24.

(m, 16 H, CH
2
), 7.93 (d, J = 46.5, 0.15 H, NH), 8.21 (d, 

MS (ESI); m/z (%) = 699.3527 [M+NH

-Tp(boc 3) [Di- tert-butyl 5- tert-butoxycarbonyl

bis(trifluoroacetylaminoethyl) -2,5,8-triazanonan-1,9-dioate ] Using Technical 

etraethylenepentamine  

 

eq) of tetraethylenepentamine (TEPA) were weighed in a 1

round bottom flask and dissolved in 500 mL DCM. The mixture was cooled down to 

°C. Trifluoroacetic ethyl ester ( 13.45 ml, 16.05 g, 112.6 mmol, 2.1

ml DCM and transferred into a dropping funnel. It was added dropwise to the 

cooled mixture in the round bottom flask over 2.5 h. After complete addition of the 

trifluoroacetic ethyl ester the reaction was stirred for an additional hour at RT.

(47 g, 215.3 mmol, 4 eq.) was dissolved in 80

added dropwise over one hour. Afterwards 30 ml of triethylamine

were added and the mixture was stirred over night.  

The organic phase was reduced to approximately 150 mL and washed three times 

with saturated sodium bicarbonate, followed by three times 5 % sodium citrate 

solution and finally three times with water. The organic phase was dried over sodium 

sulfate and the solvent was evaporated to a yellowish viscous, waxy solid. The oily 

crystallised: for this purpose it was dissolved in the minimal amou

ml). Then n-hexane (~ 140 ml) was added to the boiling DCM till 

ding was observed at the drop-in site. The crystallisation solution was stored 

over night in a refrigerator at 4 °C. The microcrystalline residue was filtered, wash ed 

hexane and dried. Yield = 23.1 g (63%) 

%) 

, 24.0 °C): δ = 1.39–1.48 (m, 27 H, OC(CH

), 7.93 (d, J = 46.5, 0.15 H, NH), 8.21 (d, J = 41.3, 0.35 H, NH) ppm. 

(%) = 699.3527 [M+NH
4
]
+
, 682.3268 [M+H]

+ 
 

  

36 

butoxycarbonyl -2,8-

] Using Technical 

eq) of tetraethylenepentamine (TEPA) were weighed in a 1 L 

mL DCM. The mixture was cooled down to 

mmol, 2.1 eq.) was diluted 

ml DCM and transferred into a dropping funnel. It was added dropwise to the 

h. After complete addition of the 

ion was stirred for an additional hour at RT. 

eq.) was dissolved in 80 ml DCM and 

ml of triethylamine (21.8 g, 215.2 

mL and washed three times 

% sodium citrate 

solution and finally three times with water. The organic phase was dried over sodium 

sulfate and the solvent was evaporated to a yellowish viscous, waxy solid. The oily 

solved in the minimal amount of 

ml) was added to the boiling DCM till 

in site. The crystallisation solution was stored 

°C. The microcrystalline residue was filtered, wash ed 

1.48 (m, 27 H, OC(CH
3
)
3
), 3.20–3.55 

= 41.3, 0.35 H, NH) ppm.  
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Synthesis of Tp(boc 3) [Di

2,5,8-triazanonan-1,9-di oate]

 

10 g bis-tfa-Tp(boc3) (14.7 mmol, 1 eq) 

3 M aqueous sodium hydroxide

funnel under stirring. After a reaction time

and the aqueous phase was extracted with 3 x 100

phases were dried over sodium sulfate. After evaporation of the solvent and 6

treatment Tp(boc3) was isolated as viscous oil which so

crytallization seeds and storage at 4 °C.

 

C23H47N5O6: 7.201 g (99.8%)

 
1
H NMR (400 MHz, CDCl

3
, 50.0 °C): 

(bs, 4 H, NH
2
), 2.79-2.96 (bt, J = 5.1, 4 H, CH

MS (ESI); m/z (%) = 245.6837 [M+2H]

 

[Di -tert-butyl 5- tert-butoxycarbonyl-2,8 -

oate]  

 

(14.7 mmol, 1 eq) were suspended in 75 ml ethanol. 100

M aqueous sodium hydroxide (300 mmol, 20 eq) were slowly added via a dropping 

funnel under stirring. After a reaction time of 6-20 hours the ethanol

and the aqueous phase was extracted with 3 x 100 ml DCM. The pooled organic 

phases were dried over sodium sulfate. After evaporation of the solvent and 6

was isolated as viscous oil which solidified after addition of 

crytallization seeds and storage at 4 °C.  

: 7.201 g (99.8%) 

, 50.0 °C): δ = 1.40–1.50 (m, 27 H, OC(CH

2.96 (bt, J = 5.1, 4 H, CH2), 3.21 – 3.41 (m, 12 H, CH

(%) = 245.6837 [M+2H]
+
, 490.3610 [M+H]

+
  

  

37 

-bis(aminoethyl)-

ml ethanol. 100 ml of 

) were slowly added via a dropping 

ethanol was evaporated 

ml DCM. The pooled organic 

phases were dried over sodium sulfate. After evaporation of the solvent and 6 h HV-

lidified after addition of 

1.50 (m, 27 H, OC(CH
3
)
3
), 2.36–2.58 

3.41 (m, 12 H, CH2) ppm.  
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Synthesis of Bis-tfa- Tt(boc

2,5-diazahexan-1,6- dioate

 

 

Triethylentetramine (2.0 g, 13.7 mmol, 2.05 ml, 1 eq) w

A solution of trifluoroacetic ethyl ester (4.09 g, 28.

CH2Cl2 was added dropwise at 0

28.8 mmol, 4.00 ml, 2.1 eq) was added and the reaction was brought to RT, follow

by dropwise addition of a solution of

eq) in 21 ml CH2Cl2. The reaction was stirred overnight and washed 3 x 5% NaHCO3 

solution, 3 x 5% citric acid solution and 3 x water dried over Na2SO4, filtered and 

concentrated. The resulting white solid was recrystallized from DCM/hexanes, 

yielding bis-tfa-Tt(boc2) as a white solid.

 

C20H32F6N4O6: 4.829 g (65%)

 
1H NMR (400 MHz, CDCl3, 50 °C): 

CH2), 7.70 (sbr, 0.66 H, NH), 8.84 (s

MS (ESI); m/z = 556.2572 [M+NH

 

Tt(boc 2) [Di- tert-butyl 2,5- bis(trifluoroacetylaminoe

dioate ] 

 

(2.0 g, 13.7 mmol, 2.05 ml, 1 eq) was dissolved in 27 ml CH

rifluoroacetic ethyl ester (4.09 g, 28.9 mmol, 3.43 ml, 2.1 eq) in 57 ml 

was added dropwise at 0 °C and stirred for 1 h at 0°C. Triethylamine

28.8 mmol, 4.00 ml, 2.1 eq) was added and the reaction was brought to RT, follow

by dropwise addition of a solution of di-tert-butyl dicarbonate (8.9838 g, 41.2 mmol, 3 

. The reaction was stirred overnight and washed 3 x 5% NaHCO3 

solution, 3 x 5% citric acid solution and 3 x water dried over Na2SO4, filtered and 

concentrated. The resulting white solid was recrystallized from DCM/hexanes, 

as a white solid. 

%) 

, 50 °C): δ = 1.46 (s, 18 H, OC(CH3)3), 3.26

, 0.66 H, NH), 8.84 (sbr, 0.67 H, NH) ppm.  

= 556.2572 [M+NH4]
+, 539.2312 [M+H]+ 

  

38 

bis(trifluoroacetylaminoe thyl)-

dissolved in 27 ml CH2Cl2. 

mmol, 3.43 ml, 2.1 eq) in 57 ml 

°C and stirred for 1 h at 0°C. Triethylamine  (2.91 g, 

28.8 mmol, 4.00 ml, 2.1 eq) was added and the reaction was brought to RT, followed 

(8.9838 g, 41.2 mmol, 3 

. The reaction was stirred overnight and washed 3 x 5% NaHCO3 

solution, 3 x 5% citric acid solution and 3 x water dried over Na2SO4, filtered and 

concentrated. The resulting white solid was recrystallized from DCM/hexanes, 

), 3.26–3.65 (m, 12 H, 
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Synthesis of Tt(Boc 2) [

dioate] 

 

4 g (7.4 mmol, 1 eq) bis-tfa

aqueous sodium hydroxide (

funnel under stirring. After a reaction time of 6

and the aqueous phase was extracted with 3 x 

phases were dried over sodium sulfate. After evaporation of the solvent and 6

treatment Tt(boc2) was isolated as 

 

C16H34N4O4: 1.72 g (66%) 

 

TLC: Rf = 0.23 (CH2Cl2/MeOH

 
1H NMR (400 MHz, CDCl

OC(CH3)3), 2.812 (t, J = 6.2 Hz, 4 H, CH

7.5 Hz, 4 H, CH2) ppm. 

 
13C NMR (125 MHz, CDCl3

41.3 (t, 1 C, CH2), 45.9 (t, 1 C, CH

C, CH2), 80.1 (q, 1 C, C(CH

 

) [Di-tert-butyl 2,5-bis(aminoethyl)- 2,5

 

tfa-Tt(boc2) were suspended in 47 ml EtOH. 

aqueous sodium hydroxide (15 mmol, 20 eq) were slowly added via a dropping 

After a reaction time of 6-20 hours the ethanol

eous phase was extracted with 3 x 50 ml DCM. The pooled organic 

phases were dried over sodium sulfate. After evaporation of the solvent and 6

was isolated as white solid.  

/MeOH = 7:3 + 5% Triethylamin). 

H NMR (400 MHz, CDCl3, 19.1 °C): δ = 1.24 (sbr, 4 H, NH2), 1.45 (s, 18 H, 

= 6.2 Hz, 4 H, CH2), 3.25 (t, J = 6.2 Hz, 4 H, CH

3, 21.3 °C): δ = 28.8 (q, 6 C, C(CH3)3), 40.9 (t, 1 C, CH

), 45.9 (t, 1 C, CH2), 46.2 (t, 1 C, CH2), 51.0 (t, 1 C, CH

(CH3)3), 80.2 (q, 1 C, C(CH3)3), 156.0 (s, 2 C, C=O) ppm.

  

39 

2,5-diazahexan-1,6-

ml EtOH. 50 ml of 3 M 

eq) were slowly added via a dropping 

ethanol was evaporated 

The pooled organic 

phases were dried over sodium sulfate. After evaporation of the solvent and 6 h HV-

), 1.45 (s, 18 H, 

= 6.2 Hz, 4 H, CH2), 3.32 (t, J = 

), 40.9 (t, 1 C, CH2), 

), 51.0 (t, 1 C, CH2), 51.6 (t, 1 

), 156.0 (s, 2 C, C=O) ppm. 
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Synthesis of Fmoc-Stp- OH [8,11,14

4,18-dioxo-5,8,11,14,17- pentaza

 

 

4.0 g of Tp(boc3) (8.2 mmol, 1 eq)

75 °C. 0.91 g ( 9 mmol, 1.1 eq

and added dropwise over the course of 2

hour at -75 °C and then for 1 h at RT. 4.19 mL DIPEA (

added to the RBF and the reaction mixture

mmol, 1.5 eq) were dissolved in a mixture of 

was added dropwise to the reaction mixture and stirred over night. The solution was 

concentrated to approximately 100 mL, mixed with 100 mL of DCM and was washed 

5 x with 0.1 M sodium citrate buffer (pH 5.2). The organic phase was dried

NaHCO3, concentrated and purifi

elute fmoc-byproducts, followed by a EtOAc/MeOH gradient.

 

C42H61N5O11: 2.65 g (40%), foamy, off

 

TLC: Rf = 0.63 (CHCl3/MeOH

 
1H-NMR (400 MHz, CDCl3, 19.1 °C): 

7.37 (t, 2H, J=8Hz), 7.27 (t, 2H, J=8Hz)

(m, 16H), 2.57-2.70 (m, 2H)

 
13C-NMR (100 MHz, CDCl

141, 128, 127, 125, 119 (Ar

Tepa), 35 (CH2-Suc), 33 (C

 

MS (ESI); m/z  = 812.4419 [M+H]

OH [8,11,14-tert-Butoxycarbonyl-20- fluoren

pentaza icosanoic acid] 

) (8.2 mmol, 1 eq) were dissolved in 16.5 mL of THF and cooled to 

9 mmol, 1.1 eq) of succinic anhydride were dissolved in 22

ed dropwise over the course of 2 h. The reaction was stirred for an additional 

75 °C and then for 1 h at RT. 4.19 mL DIPEA ( 3.1 g, 24.1 

added to the RBF and the reaction mixture cooled to 0 °C. 4.128 g Fmoc

were dissolved in a mixture of ACN/THF (25 mL/ 12 mL). This solution 

was added dropwise to the reaction mixture and stirred over night. The solution was 

concentrated to approximately 100 mL, mixed with 100 mL of DCM and was washed 

trate buffer (pH 5.2). The organic phase was dried

, concentrated and purified by DCVC using a n-Heptane/EtO

, followed by a EtOAc/MeOH gradient. 

g (40%), foamy, off-white solid. 

/MeOH = 7:3) 

, 19.1 °C): δ = 7.74 (d, 2H, J=8Hz), 7.56 (d, 2H, J=8Hz)

(t, 2H, J=8Hz), 4.40 (m, 2H), 4.20 (t, 1H, J=7Hz

(m, 2H), 2.37-2.56 (m, 2H), 1.45 (s, 27H) ppm. 

(100 MHz, CDCl3, 19.1 °C): δ =  172 (C=O, Suc), 171 (

141, 128, 127, 125, 119 (Ar-C-Fmoc), 80 (CH-Fmoc), 60 (OCH2-Fmoc), 47, 45 (

CH2-Tepa), 28 (CH3-tert-But) ppm. 

812.4419 [M+H]+, 829.4682 [M+NH4]
+, 834.4237 [M+Na]

  

40 

fluoren -9-yl-19-oxa-

 

were dissolved in 16.5 mL of THF and cooled to -

ic anhydride were dissolved in 220 mL THF 

The reaction was stirred for an additional 

3.1 g, 24.1 mmol, 3 eq) were 

cooled to 0 °C. 4.128 g Fmoc -OSu (12.2 

/THF (25 mL/ 12 mL). This solution 

was added dropwise to the reaction mixture and stirred over night. The solution was 

concentrated to approximately 100 mL, mixed with 100 mL of DCM and was washed 

trate buffer (pH 5.2). The organic phase was dried over 

Heptane/EtOAc gradient to 

7.56 (d, 2H, J=8Hz), 

, J=7Hz), 3.18-3.44 

 

=O, Suc), 171 (C=O, Suc), 144, 

Fmoc), 47, 45 (CH2-

, 834.4237 [M+Na]+ 
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3.8 Solid-Phase Protocols 

3.8.1 Analytical Procedures 

Fmoc Quantification 

 

Accurately weighed samples of vacuum-dried resin (10 mg, ~ 1 µMol of fmoc) were 

placed in Eppendorf tubes. 1.0 mL 20 % piperidine in DMF was added to each tube. 

The tubes were vortexed briefly and agitated at RT for 1.25 h. At the end of this 

period, the tubes were vortexed and the resin was allowed to settle for approximately 

2 min. Aliquots of 50 µl of the supernatant of each samples, of a positive control 

(fmoc-Lys(boc)-Wang resin) and of a blank (consisting of 20 % piperidine in DMF) 

were diluted to 2 ml with DMF (dilution factor 40; see below). A301 of each UV sample 

(duplicates) was determined against the blank solution. The fmoc substitution 

(mmol/g) was calculated using the following equation: 

 

Substitution grade (mmol/ g) = 
1000 × A301

m�mg� × 7800 × D
 

 

A301 is absorbance at 301 nm, m is the mass of the resin, 7800 is the molar extinction 

coefficient in L mol−1 cm−1, D is the dilution factor mentioned above. 

 

Kaiser Test 110 

 

Solution A: 5% ninhydrin in EtOH (w/v) 

Solution B: 80% phenol in EtOH (w/v) 

Solution C: KCN in pyridine: 2 mL 0.001 M KCN in 98 mL pyridine 

 

Some beads are transferred into an Eppendorf tube and washed three times with 

DMF and three times with MeOH. 1-2 drops of each solution are added and the tube 

placed into a heating block at 100 °C for 4 min. Fr ee amine residues are indicated by 

intense blue color. 

 



Materials and Methods   
 

42 
 

Malachite Green Test 111 

 

Solution A: 0.025% Malachite Green (w/v) in EtOH abs. 

Solution B: Triethylamine  

 

A couple of beads were transferred from the reaction vessel into an eppendorf tube. 

The beads were washed twice with methanol. 1 ml of Solution A and one drop of 

Solution B were added. After 2 min the beads were washed with ethanol until the 

supernatant was clear. Free carboxylic acid residues are indicated by green colored 

beads. 

 

TNBS Test 112 

 

Solution A: 10 % DIPEA in DMF (v/v)  

Solution B: 1% 2,4,6-trinitrobenzenesulfonic acid in MilliQ water (w/v)  

 

A couple of beads were transferred from the reaction vessel into an eppendorf tube. 

The beads were washed thrice with DMF. Three drops of Solution A and B were 

added and the tube incubated for 10 min at RT. Orange color of the beads indicated 

free amines. 

 

3.8.2 General Procedure for 2-Chlorotrityl-Resin Lo ading 

 

1 g of 2-chlorotrityl chloride resin (Cl-load: 1.6 mmol/g) was weighed into a 50 ml 

peptide reactor. After adding 10 ml dry DCM and swelling for 10 min 1.25 eq (relative 

to desired load) fmoc-AA-OH and 2.4 eq DIPEA were added and the reactor was 

agitated for 1.5 h. The resin was washed four times with DCM and treated with a 

mixture of DCM/MeOH/DIPEA (10 ml/g, 80/15/5, v/v/v) to cap unreacted 2-chlorotrityl 

moieties. This step was repeated once. The resin was washed five times with DCM 

and twice with DMF and was treated twice with 20 % piperidine in DMF for 10/20 min 

to remove the terminal fmoc-protection group. The resin was washed five times with 

DMF, twice with DCM and once with n-hexane and dried over KOH in vacuo.  
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3.8.3 Downsizing of Resin Load for MAP-System Synth esis 

 

0.5 g of Fmoc-Ala-Wang-resin (load = 0.3 to 0.5 mmol/g) were placed in a manual 

reaction vessel and preswelled in DMF for 1 h. The resin was washed once with DMF 

and was covered with 4 mL of DMF. 0.065 mmol (38 mg) Fmoc-Lys(Fmoc)-OH, 

0.065 mmol (34 mg) PyBOP® and 0.065 mmol HOBt (10 mg) were dissolved in 1 mL 

DMF, 0.13 mmol DIPEA (23 µL) were added and the solution transferred into the 

reactor. After 2 h the reactor was drained, washed three times with DMF and 3 times 

with DCM. The resin was resuspended in 10 mL DCM, followed by the addition of 

0.75 mL acetic anhydride and agitated for 1h. Completeness of capping was checked 

by Kaiser test and the resin washed with DCM (4x), DFM (4x), DCM (4x) followed by 

hexanes (2x). The low-load resin was transferred into a glass container and dried 

over night under vacuum. 

 

3.8.4 Solid-Phase Synthesis Cycles 

General synthesis protocol A: Coupling Protocol Har tmann Synthesis 99 

Reaction  Descripti on V [mL/g res]  Repetitions/ Time 

0a DCM swell 10 1 x 30 min 
(1)b DMF wash 10 3 x 1 min 
2c 20% Pip/DMF prewash 10 1 x 5 min 
3c 20% Pip/DMF deprotection 10 1 x 20 min 
4c DMF wash 10 5 x 1 min 
5 Anhydride coupling (10 eq) in DMF 10 1 x 30 min 
6d Kaiser/Malachit Green test   
7 20% DIPEA wash 10 2 x 3 min 
8 DMF wash 10 5 x 1 min 

9 
Diamine/PyBOP®/HOBt (10 eq) in 
DMF 

10 1 x 30 min 

10d Kaiser/Malachit Green test   
 

aPreswelling of trityl based resins before synthesis start 
bPreswelling of wang based resins before synthesis start 
cOptional, only if fmoc-protected residue on resin 
dIf Malachit Green/Kaiser test does not show completion of coupling reaction 
(>99.5), repeat coupling steps  
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General synthesis protocol B: Coupling Protocol Pol yamidoamine/Peptides  

Reaction  Description  V [mL/g res]  Repetitions/ Time 

0a DCM swell 10 1 x 30 min 

(1)b DMF wash 10 3 x 1 min 

2 20% Pip/DMF prewash 10 1 x 5 min 

3 20% Pip/DMF deprotection 10 1 x 20 min 

4 DMF wash 10 5 x 1 min 

5 Preactivated Fmoc-AA (4 eq) in DMF 10 1 x 30 min 

6 DMF wash 10 5 x 1 min 

7c Kaiser/TNBS test   

 
aPreswelling of trityl based resins before synthesis start 

bPreswelling of wang based resins before synthesis start 
cIf Kaiser test does not show completion of coupling reaction (>99.5), repeat 4-7 

 

Shrinking Protocol for Long Term Resin Storage 

Reaction  Description  V [mL/g res]  Repetitions/ Time 

1 DMF wash 10 5 x 1 min 

2 DCM wash 10 3 x 1 min 

3 n-hexane wash 10 3 x 1 min 

After the last n-hexane wash the resin is predried by suction for 1 min. The damp 

resin is transferred into an container and dried in vacuo over KOH for 24 h. 

 

3.9 General Cleavage Procedures 

 

General Cleavage Procedure A:  Peptides and Non-Ole ic Acid Containing PAAs 

The resin was transferred into a syringe reactor of appropriate size and treated with 

10 mL/g(resin) of a TFA/Water/TIS (95:2.5:2.5) mixture for 1-3 h. The resin was filtered 

and washed twice using pure TFA followed by two DCM washes. The combined 

filtrates were concentrated using a rotovap and either precipitated by dropwise 

addition into ice-cold MTBE (50 mL MTBE/1 mL TFA) or other suitable mixtures. If 

precipitation was not possible the TFA was further concentrated to a glassy film and 
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washed 3x with ice-cold MTBE. The precipitate/film was dissolved in 2.5% acetic 

acid, snap-frozen and lyophilized to obtain the crude peptide. 

Cleavage Procedure for Oleic Acid Containing PAAs 

The resin was transferred into a syringe reactor of appropriate size and treated with 

10 mL/g(resin) of a TFA/Water/EDT (95:2.5:2.5) mixture for 1-2 h. The resin was 

filtered off and washed twice using pure TFA followed by two DCM washes. The 

combined filtrates were concentrated in a rotovap and either precipitated by dropwise 

addition into ice-cold MTBE (50 mL MTBE/1 mL TFA) or other suitable mixtures. The 

precipitate was collected by centrifugation. If precipitation was not possible the TFA 

was further concentrated to a glassy film and washed 3x with ice-cold MTBE. The 

precipitate/film was dissolved in 5% acetic acid, snap-frozen and lyophilized to obtain 

the crude peptide. 

 

3.10  General Procedures Solid-Phase Synthesis 

3.10.1  Synthesis of N-Terminal Stp-Modified Peptid es 

Peptides were assembled in a fully automatic fashion using fmoc/tBu chemistry on an 

Applied Biosystems 431A Peptide Synthesizer employing the Applied Biosystems 

Small Scale FastMoc® protocols. After successful synthesis the resin was 

transferred to a syringe reactor and was manually modified with Stp-units according 

to general method 3.8.4.B 

 

3.10.2  General Procedure: Synthesis of Stp-Chains 

An amount of resin corresponding to 25-50 µmole of loaded amino acid was weighed 

into a syringe reactor and swelled for 30 min in an appropriate solvent. Briefly, each 

cycle began with fmoc-removal by treatment with 20% piperidine in DMF followed by 

DMF washing steps. Coupling was normally done using a mixture of fmoc-AA-OH/ 

PyBOP®/HOBt/DIPEA (4/4/4/8 eq) for 30 min or until complete conversion was 

indicated by Kaiser test. For a general scheme see Table 3.8.4.B. 
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3.10.3  General Procedure: Synthesis of i-Shapes wi th one FA: HO-K-Stp 1-FA1 

After swelling of fmoc-Lys(boc)-Wang resin (0.05-0.20 mmol) in DMF and cleavage 

of the fmoc protecting group, four equivalents of a solution of fmoc-Stp(boc3)-OH in 

DMF, DIPEA (8 eq) and PyBOP®/HOBt (4 eq) were added to the resin and the 

vessel was agitated until Kaiser test indicated complete conversion (30 min). The 

reaction solvent was drained and the resin was washed five times with DMF. To cap 

residual, unreacted primary amino groups before introduction of the fatty acid the 

resin was acetylated using 5 equivalents of acetic anhydride and 10 equivalents of 

DIPEA, before the subsequent removal of the fmoc protecting group.  

After removal of the fmoc protecting group, the resin was washed three times with 

DMF followed by three DCM washes. Five equivalents of fatty acid were dissolved in 

DCM (as concentrated as possible) while 5 equivalents of PyBOP®/HOBt and 10 

equivalents of DIPEA dissolved in the smallest possible volume of DMF were added 

to the resin and the mixture was agitated until Kaiser test did indicate complete 

conversion (normally 30 min). After completion of the reaction the resin was washed 

and dried for 12 h over KOH in vacuo. For cleavage conditions see section 3.9. 

 

3.10.4  General Procedure:  Synthesis of i-Shapes w ith two FAs: HO-K-Stp 1-K-

FA2 

After swelling of fmoc-Lys(boc)-Wang resin (0.05-0.20 mmol) in DMF and cleavage 

of the fmoc protecting group, four equivalents of a solution of fmoc-Stp(boc3)-OH in 

DMF, DIPEA (8 eq) and PyBOP®/HOBt (4 eq) were added to the resin and the 

vessel was agitated until Kaiser test indicated complete conversion (30 min). The 

reaction solvent was drained and the resin was washed five times with DMF. To 

couple two fatty acids to the N-terminus of the PAA, fmoc-Lys(fmoc)-OH was 

incorporated before the coupling of the fatty acid. To cap residual, unreacted primary 

amino groups before introduction of the fatty acid the resin was acetylated using 5 

equivalents of acetic anhydride and 10 equivalents of DIPEA, before subsequent 

removal of the fmoc protecting group. 

The resin was washed three times with DMF followed by three DCM washes after 

removal of the fmoc protecting group. Ten equivalents of the fatty acid were 

dissolved in DCM while 10 equivalents of PyBOP®/HOBt and 20 equivalents of 

DIPEA in the smallest possible amount of DMF were added to the resin and the 
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mixture was agitated until Kaiser test did indicate complete conversion (normally 

30 min). After completion of the reaction the resin was washed and dried for 12 h 

over KOH in vacuo. For cleavage conditions see section 3.9. 

 

3.10.5 General Procedure: Synthesis of i-Shapes wit h a Single Coupling 

Domain: HO-C-Stp 1-K-FA2 

For PAAs containing a C-terminal cysteine fmoc-Cys(trt)-Wang resin was used. All 

other steps of the synthesis were performed as described in General Procedure 

3.10.3.  For cleavage conditions see section 3.9. 

 

3.10.6 General Procedure:  Synthesis of i-Shapes wi th Two Coupling Domains: 

HO-C-Stp3-C-K-FA2 

After swelling 0.035 mmol of a fmoc-Cys(trt)-Wang resin in DMF and cleavage of the 

fmoc protecting group, four equivalents of a solution of fmoc-Stp(boc3)-OH in DMF, 

DIPEA (8 eq) and PyBOP®/HOBt (4 eq) were added to the resin and the vessel was 

agitated until Kaiser test indicated complete conversion (normally 30 min). The 

reaction solvent was drained and the resin was washed five times with DMF. This 

cycle was repeated twice. Afterwards the amino acid fmoc-Cys(trt)-OH was coupled. 

Then, in order to couple two fatty acids to the linear PAA, fmoc-Lys(fmoc)-OH was 

incorporated N-terminal before the coupling of the fatty acid. To cap unreacted 

primary amino groups, the resin was acetylated using 5 equivalents of acetic 

anhydride and 10 equivalents of DIPEA, before the subsequent removal of the fmoc 

protecting group. To couple the fatty acid, the solvent was changed to DCM after 

fmoc cleavage. Therefore, after removal of the fmoc protecting group, the resin was 

washed three times with DMF and DCM. 10 equivalents of the fatty acid were 

dissolved in DCM, 20 equivalents of DIPEA and 20 equivalents of PyBOP®/HOBt in 

DMF were added to the resin and the mixture was agitated for 30 min. After 

completion of the reaction the resin was washed and dried over KOH in vacuo. For 

cleavage conditions see section 3.9. 
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3.10.7 Synthesis of t-Shapes with One FA: HO-C-Stp 1-K(FA)-Stp 1-C-H 

After swelling 0.05-0.20 mmol of fmoc-Cys(trt)-Wang resin in DMF for 30 min the 

fmoc-protection group was cleaved by double treatment with 20% piperidine in DMF. 

After washing the resin, four equivalents (related to resin loading) of fmoc-Stp(boc3)-

OH, DIPEA (8 eq) and PyBOP®/ HOBt (4 eq) were added for 30 min. The reaction 

solvent was drained and the resin was washed five times with DMF. Reaction 

progress was monitored by Kaiser test. To introduce a branching point dde-

Lys(fmoc)-OH was used in the next coupling step. Dde-Lys(fmoc)-OH (4 eq) solved 

in DMF, DIPEA (8 eq) and PyBOP®/HOBt (4 eq) solved in DMF were added and the 

synthesis vessel was agitated for 30 min. After a negative Kaiser test, the resin was 

washed with DMF. To cap unreacted primary amino groups, the resin was acetylated 

using 5 equivalents of acetic anhydride and 10 equivalents of DIPEA, before the 

subsequent removal of the fmoc protecting group. To couple the fatty acid, the 

solvent was changed to DCM after fmoc-cleavage. Therefore the resin was washed 

three times with DMF and DCM after removal of the fmoc-protecting group. 5 

equivalents of the fatty acid solved in DCM, 10 equivalents of DIPEA and 5 

equivalents of PyBOP®/HOBt were added to the resin for 30 min. After completion of 

the reaction the resin was washed five times with DCM and three times with DMF.  

The dde-protecting group was cleaved with 2% hydrazine monohydrate in DMF (v/v) 

(5-10 times for 5 min) till no significant A300 was measurable in the deprotection 

mixture. In-between the deprotection-steps the resin was washed twice with DMF. 

fmoc-Stp(boc3)-OH solved in DMF, DIPEA (8 eq) and PyBOP®/HOBt (4 eq) were 

added for 30 min. After a successful reaction the resin was treated twice with 20% 

piperidine in DMF. After washing the resin, boc-Cys(trt)-OH (4 eq) solved in DMF, 

DIPEA (8 eq) and PyBOP®/HOBt (4 eq) were added and the vessel agitated for 

30 min. Afterwards the resin was washed and dried over KOH in vacuo. For cleavage 

conditions see section 3.9. 
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3.10.8 Synthesis of t-Shapes with Two FAs: HO-C-Stp 1-K(K-FA 2)-Stp1-C-H 

After swelling 0.05-0.20 mmol of fmoc-Cys(trt)-Wang resin in DMF for 30 min the 

fmoc-protection group was cleaved by double treatment with 20 % piperidine in DMF. 

After washing the resin, four equivalents (related to resin loading) of fmoc-Stp(boc3)-

OH, DIPEA (8 eq) and PyBOP®/HOBt (4 eq) were added for 30 min. The reaction 

solvent was drained and the resin was washed five times with DMF. Reaction 

progress was monitored by Kaiser test. To introduce a branching point dde-

Lys(fmoc)-OH was used in the next coupling step. Dde-Lys(fmoc)-OH (4 eq) solved 

in DMF, DIPEA (8 eq) and PyBOP®/HOBt (4 eq) solved in DMF were added and the 

synthesis vessel was agitated for 30 min. After a negative Kaiser test, the resin was 

washed with DMF. After treatment with 20 % piperidine in DMF and washing the 

resin with DMF, fmoc-Lys(fmoc)-OH (4 eq), DIPEA (8 eq) and PyBOP®)/HOBt (4 eq) 

was added. In order to cap unreacted primary amino groups, the resin was 

acetylated using 5 equivalents of acetic anhydride and 10 equivalents of DIPEA, 

before the subsequent removal of the fmoc protecting group. To couple the fatty acid, 

the solvent was changed to DCM after fmoc-cleavage. Therefore the resin was 

washed three times with DMF and DCM after removal of the fmoc-protecting group. 

10 equivalents of the fatty acid solved in the minimal amount of DCM, 20 equivalents 

of DIPEA and 10 equivalents of PyBOP®/HOBt were added to the resin for 30 min. 

After completion of the reaction the resin was washed five times with DCM and three 

times with DMF.  

The dde-protecting group was cleaved with 2% hydrazine monohydrate in DMF (v/v) 

(5-10 times for 5 min) till no significant A300 was measurable in the deprotection 

mixture. In-between the deprotection-steps the resin was washed twice with DMF. 

fmoc-Stp(boc3)-OH solved in DMF, DIPEA (8 eq) and PyBOP®/HOBt (4 eq) were 

added for 30 min. After successful reaction the resin was treated twice with 20 % 

piperidine in DMF. After washing the resin, boc-Cys(trt)-OH (4 eq) solved in DMF, 

DIPEA (8 eq) and PyBOP(R)/ HOBt (4 eq) were added for 30 min. Afterwards the 

resin was washed and dried over KOH in vacuo. For cleavage conditions see section 

3.9. 
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3.11  Biophysical and Biological Methods 

3.11.1 Polyplex Formation 

DNA Polyplex Formation Using PEI-based Carriers 

Polyplex formulations for DNA delivery were prepared as follows: 200 ng of DNA/well 

and the calculated amount of polymer were diluted in the same volume of HBG (pH 

7.1) using separate tubes. The DNA solution was added to the polymer, rapidly 

mixed by pipetting and incubated for 30-40 min at RT to form the polyplexes 

necessary for transfection and gel-shift experiments. 

 

poly(I:C)/poly(I) Polyplex Formation Using PEI-base d Carriers 

Polyplex formulations for p(I:C)/p(I) delivery were prepared as follows: the indicated 

amount of p(I:C)/p(I) and the calculated amount of polymer were diluted in the same 

volume of HBG (pH 7.1) using separate tubes. The RNA solution was added to the 

polymer, rapidly mixed by pipetting up and down and incubated for 30-40 min at RT 

to form the polyplexes necessary for transfection and gel-shift experiments. 

 

siRNA Polyplex Formation Using PAA-based Carriers 

Polyplex formulations for siRNA delivery were prepared as follows: 500 ng of 

siRNA/well and the calculated amount of PAA were diluted in separate tubes in HBG 

pH 8.3. The RNA solution was added to the polycations solution, mixed by pipetting 

and incubated for 30-40 min at RT in order to form the polyplexes necessary for 

transfection and gel-shift experiments. 

 

DNA Polyplex Formation Using PAA-based Carriers  

Polyplex formulations for DNA delivery were prepared as follows: 200 ng of DNA/well 

and the calculated amount of PAA were diluted in separate tubes in HBG pH 8.3. The 

DNA solution was added to the polycations solution, mixed by pipetting and 

incubated for 30-40 min at RT in order to form the polyplexes necessary for 

transfection and gel-shift experiments. 
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3.11.2 Size and Zetapotential Measurements 

Particle size of siRNA and DNA formulations was measured by laser-light scattering 

using a Zetasizer Nano ZS (Malvern Instruments, Worcestershire, U.K.). Polyplexes 

were formed for 30-40 min at RT, containing 10 µg nucleic acid and the 

corresponding amount of polymer. For measurement of zetapotential polyplexes 

were diluted with 1 mM NaCl to give a final volume of 1 ml and a nucleic acid 

concentration of 10 µg/ml. The polyplexes were diluted to 500 µl with HBG or H2O 

before measurement. 

 

3.11.3 Gel-Shift Assays 

DNA Gel-shift Assay 

A 1% agarose gel was prepared by dissolving 1.2 g agarose in 120 ml TBE buffer 

and heating the mixture to 100 °C. After cooling do wn to approximately 50 °C, 120 µl 

Gel-Red (1 mg/mL) were added and the gel was poured in the casting unit. Polyplex-

samples containing 100 ng DNA, polymer, HBG-buffer and loading buffer were 

placed into the pockets after an incubation time of 30 min at RT. Electrophoresis was 

performed at 120 V for 80 min. 

 

siRNA Gel-shift Assay 

A 2.5% agarose gel was prepared by dissolving 3.0 g agarose in 120 ml TBE buffer 

and heating the mixture to 100 °C. After cooling do wn to approximately 50 °C, 120 µL 

Gel-Red (1 mg/mL) were added and the gel was poured in the casting unit. Polyplex-

samples containing 500 ng siRNA, polymer, HBG-buffer and loading buffer were 

placed into the pockets after an incubation time of 30 min at RT. Electrophoresis was 

performed at 120 V for 40 min. 

 

Polyplex Dissociation Assay 

The agarose gels were prepared as described above. The polyplexes contained 

either 100 ng DNA or 500 ng siRNA and polymer in HBG-buffer. To inhibit 

electrostatic interactions between the nucleic acid and the polycation, the polyplex 

samples were incubated with heparin (0.01-0.5 I.U./ 0.5 µg siRNA or 0.1 µg DNA) for 
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5 min. After adding loading buffer the samples were placed into the gel-pockets. 

Electrophoresis was performed at 120 V for 40 min (siRNA)/ 80 min (DNA). 

 

3.11.4 Erythrocyte Leakage Assay 

Freshly collected, citrate buffered murine blood was washed by four centrifugation 

cycles, each in phosphate-buffered saline (PBS) at 2000 rpm (600-800 g) at 4 °C for 

10 min. The erythrocytes in the pellet were counted. The pellet was then diluted with 

different PBS buffers (pH 7.4, 6.5 and 5.5) to 5 x 107 erythrocytes/mL. The 

suspension was always freshly prepared and used within 24 h. 75 µl of the PAA 

solutions prepared at different concentration and different pH-values were mixed with 

75 µl erythrocyte suspension in a 96-well plate (NUNC, V-bottom, Denmark). After 

incubating the plates under constant shaking at 37 °C for 60 min, intact blood cells 

and cell debris was removed by centrifugation (4 °C , 600-800 g (2000 rpm), 10 min). 

80 µl of the supernatant was transferred to a new 96-well plate (TPP 96F, 

Trasadingen, Switzerland). Hemoglobin absorption was determined at 405 nm using 

a microplate reader (Spectrafluor Plus, Tecan Austria GmbH, Grödig, Austria). PBS-

buffers with pH-values of 7.4, 6.5 and 5.5 were used as negative control, 1 % 

TritonX-100 in PBS as positive control. Relative hemolysis was defined as   

%[haemolysis]= 
A405(PAA)-A405(Buffer)

A405(TritonX-100)-A405(Buffer)
× 100 

 

3.11.5 Cell Viability Assay (MTT Assay)  

The metabolic activity of the cells was determined using a methylthiazole tetrazolium 

(MTT)113 assay as follows: 10 µL per 100 µL of medium of a 5 mg/mL solution of MTT 

in sterile PBS-buffer was added to each well of the 96-well plate. After incubation for 

1-2 h at 37 °C the medium was removed and the cells  were frozen at -80 °C for at 

least 1 h. 200 µl DMSO were added and the samples were incubated under constant 

shaking at 37 °C for 30 min to dissolve the crystal s completely. The optical 

absorbance was measured at 590 nm with a reference wavelength of 630 nm using a 

microplate reader (Spectrafluor Plus,Tecan Autstria GmbH, Grödig, Austria). The cell 

viability was defined as percent:  

%[viability]= 
A590(treated)

A590(untreated control)
× 100 

 



Materials and Methods   
 

53 
 

3.11.6 Luciferase Gene Silencing 

All experiments were performed in stably transfected Neuro2A-eGFPLuc cells. Cells 

were seeded in 96-well plates (TPP, Trasadingen, Switzerland) using 5000 cells/well 

24 h prior to transfection. Transfection complexes containing siRNA were then added 

to cells in 100 µl culture medium containing 10% serum, 100 U/ml penicillin and 100 

µg/ml streptomycin (final siRNA-concentration 367 nM). 48 h after initial transfection 

medium was removed and cells were lysed in 50 µl 0.5X Promega cell lysis solution 

to measure the gene expression as described below. Transfections were performed 

in parallel using a non-specific control siRNA to distinguish between specific gene 

silencing and unspecific knockdown of protein expression due to carrier toxicity. 

Qualitative information on the toxicity of the conjugates was obtained by diminution in 

luciferase expression upon delivery of the non-specific control siRNA compared to 

the luciferase expression from the same number of untreated control cells. 

 

3.11.7 Luciferase Reporter Gene Expression 

Cells were plated in 96 well plates at a density of 10.000 cells per well 24 h prior to 

transfection. The polyplexes formed using 200 ng of pDNA/well were added to the 

cells in 100 µl culture medium containing 10% serum, 100 U/ml penicillin and 100 

µg/ml streptomycin. 24 h after initial transfection medium was removed and cells 

were lysed in 50 µl 0.5X Promega cell lysis solution to measure the gene expression. 

Luciferase activity was measured using a Lumat LB9507 instrument (Berthold, Bad 

Wildbad, Germany). Luciferase light units were recorded from an 20 µl aliquot of the 

cell lysate with 10 s integration time after automatic injection of freshly prepared 

luciferin using the luciferase assay system (LAR, Promega, Mannheim, Germany). 

Transfection efficiency was evaluated as relative light units (RLU) per number of 

seeded cells. Two ng of recombinant luciferase (Promega, Mannheim, Germany) 

corresponded to 107 light units. 
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3.11.8 poly(I:C) Cell Culture and Cell Killing Assay  in vitro 

U87MG and U87MGwtEGFR human glioblastoma cells were cultured on collagen 

coated flasks in DMEM (1 g of glucose/L) supplemented with 10% fetal calf serum 

(v/v) and 1% penicillin/streptomycin (v/v). U87MGwtEGFR were maintained under 

constant G-418 selection pressure. Always two parallel polyplex series were carried 

out in separate 96-well plates (TPP, Transadingen, Switzerland), one for the 

determination of cell killing efficacy of poly(I:C) polyplex formulations, and one for the 

determination of cytotoxicity using analogous polyplexes of poly(I) as control. Cells 

were seeded 24 h prior to transfection with a density of 1 × 104 cells in 200 µl of 

culture medium per well. Immediately before transfection, medium was removed and 

100 µl of a dilution of transfection complexes in serum-containing culture medium 

were added to the cells. After 4 h of incubation at 37 °C, polyplex containing medium 

was replaced by 200 µl of fresh serum-containing medium. All experiments were 

performed in triplicates. Cell killing was evaluated 48 h after treatment by 

methylthiazole tetrazolium (MTT)/thiazolyl blue assay as described113. Optical 

absorbance was measured at 590 nm (reference wavelength 630 nm) using a micro 

plate reader (Spectrafluor Plus, Tecan Austria GmbH, Grödig, Austria). Metabolic 

activity was expressed relative to the metabolic activity of untreated control cells, 

defined as 100%. 

A431 cells were cultured on collagen coated flasks in DMEM (1 g of glucose/L) 

supplemented with 10% fetal calf serum (v/v) and 1% penicillin/streptomycin (v/v). 

Two parallel polyplex series were carried out, one for the determination of cell killing 

efficacy of poly(I:C) polyplex formulations, and one for the determination of 

cytotoxicity using analogous polyplexes of polyglutamate (poly(Glu)) as control. Cells 

were seeded 24 h prior to transfection with a density of 4 × 103 cells in 200 µl of 

culture medium per well. Immediately before transfection, medium was removed and 

100 µl of a dilution of transfection complexes in serum-containing culture medium 

were added to the cells. After 4 h of incubation at 37 °C, 100 µl of fresh serum-

containing medium were added. All experiments were performed in duplicates. Cell 

killing was evaluated by methylthiazole tetrazolium (MTT)/thiazolyl blue assay as 

described above. 
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3.11.9 poly(I:C) in vivo Study 

In vivo anti-tumor activity of EGFR targeted poly(I:C) PEI polyplexes was measured 

using subcutaneous A431 mouse xenografts. Before the experiment, human 

epidermoid carcinoma A431 cells were cultured in DMEM supplemented with 10% 

fetal calf serum (v/v) and 1% penicillin/streptomycin. Two million A431 cells were 

dissolved in 200 µl PBS and injected subcutaneously into the right flank of immune 

compromised female athymic nude mice (Nude-Hsd, 5 weeks old). Volume of the 

growing tumors was calculated as follows: V=LW2/2 (L=length, W=width). When the 

tumors reached average volume of 100 mm3, mice were randomly divided into five 

groups (5 mice per group), and treatment was initiated. The complexes were 

delivered by intravenous injection every 48 hrs for 2 weeks. The first group received 

poly(I:C)/Melittin-PEI25-PEG-EGF (p(I:C)/MPPE) polyplexes in HBG buffer at 0.1 µg 

poly(I:C)/µl buffer (the total dose of poly(I:C) was 10 µg/injection). The second group 

received poly(I:C)/LPEI-PEG-EGF (poly(I:C)/PPE) polyplexes in HBG at the same 

dose and concentration. The control groups (poly(Glu)/MPPE and poly(Glu)/PPE) 

were treated with the same doses of polymer conjugates but replacing poly(I:C) by 

polyglutamate poly(Glu). The fifth group did not receive any treatment. Tumor volume 

was measured twice a week until day 14. 

 

3.12  Statistical Analysis 

Results were expressed as a mean ±standard deviation (SD). One-way analysis of 

variance (ANOVA) was used for evaluating statistical significance. Statistical analysis 

was performed with GraphPad Prism 5.0. Statistical significance was set when P< 

0.05. 
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4.1 Poly(I:C) Mediated Tumor Growth Suppression in EGF-receptor 

Overexpressing Tumors Using EGF-Polyethylene Glycol  - Linear 

Polyethylenimine as Carrier 

 

4.1.1 Introduction 

The rapid progress in cancer therapy over the last years led to the identification of 

new therapeutic targets, the introduction of new therapeutic technologies like 

antibody or siRNA treatment and the implementation of personalized treatment 

regimes in therapy. But despite the effort invested in these new approaches, classical 

chemotherapeutic agents such as doxorubicin or cisplatin are still widely employed in 

clinics. The inherent drawbacks of these therapeutic approaches are the sometimes 

severe side effects and the intrinsic or acquired resistance of cancer cells towards 

the therapeutic drug. In an ideal therapeutic regime the cancer cells are effectively 

destroyed by the drug without harming the surrounding cells. This can be achieved 

by drug-targeting or by targeting cancer-specific cellular pathways.  

Hence new, promising nucleic acid based therapeutic concepts like antisense 

therapy or the application of siRNA have moved into the focus of scientific interest. 

But the application of gene or oligonucleotide based approaches has its own pitfalls, 

namely the identification of therapeutic target proteins and the specific delivery of the 

appropriate nucleic acid into the cancer cells. Especially the delivery is challenging 

as nucleic acids need lipid-based or polymer-based carrier systems114-121 which 

protect them in the extracellular environment, effectively transport them to the 

effector site and facilitate their release into the cytosol. 

To circumvent acquired chemoresistance of tumor cells and to increase the 

therapeutic efficacy, a triple effector strategy has been developed, combining 

targeted delivery, apoptosis induction and the immunostimulatory properties of the 

artificial dsRNA poly(I:C)102. By targeting the EGF receptor which is overexpressed in 

a variety of tumors a better uptake of poly(I:C) into target cells is possible, followed 

by interferon induction and apoptosis. Intratumoral application of poly(I:C)/cationic 

polymer complexes (polyplexes) in an orthotopic glioblastoma model or two other 

EGF receptor overexpressing tumor models caused complete tumor regression in 
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nude mice. These very promising therapeutic results were based on poly(I:C) 

polyplexes with a tetra-component conjugate, consisting of 25kDa branched 

polyethyleneimine (brPEI), EGF as targeting ligand and polyethylene glycol (PEG) for 

shielding109,122, and a synthetic derivative of the lytic peptide melittin123-124. The latter 

was found to be strictly required for cytosolic delivery of poly(I:C) and therapeutic 

efficacy. Though effective, the tetraconjugate is not practical for further development 

due to its complexity. In the current communication we report the synthesis of an 

improved EGF/PEI based carrier with reduced complexity. The chemically poorly 

defined brPEI was replaced by the analogous linear 22 kDa polymer (LPEI). LPEI 

can be synthesized in GMP compatible form125, has already been tested in human 

clinical trials as DNA formulation, and was found to be more effective as brPEI in 

several applications126-128. The generation of a melittin-free conjugate was possible 

by selecting an optimized PEG/PEI ratio (equimolar amounts using 2 kDa PEG). The 

newly developed LPEI based poly(I:C)-carrier system exhibits the key features of the 

old tetraconjugate, namely EGF receptor targeting and effective payload release into 

the cytosol of tumor cells. The new conjugate shows an improved therapeutic 

efficiency combined with a simpler synthesis route, allowing the convenient synthesis 

of larger amounts of the carrier. 

 

4.1.2 Synthesis of LPEI-PEG Conjugates 

A comparison of the chemical syntheses of the LPEI triconjugate and the brPEI 

tetraconjugate is presented in Figure 4.1 . LPEI-PEG-EGF conjugates were 

synthesized by a two step procedure. In the first step NHS-PEG-OPSS is anchored 

to LPEI via its amine reactive NHS function using EtOH as solvent. The resulting 

PEGylated carrier can now be modified using any thiol containing ligand using an 

orthogonal disulfide exchange reaction which can be spectroscopically monitored. 

The brPEI tetraconjugate (EGF-PEG-brPEI-Mel) synthesis (performed by Wolfgang 

Rödl, Wagner lab) consists of four consecutive reaction steps with intermediate 

purification. In the first step EGF-SH is conjugated to NHS-PEG3.4 kDa-maleimide, 

which is subsequently grafted to brPEI. This conjugate is subsequently modified with 

SPDP, purified and in the last step modified with melittin-SH. 
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Figure 4.1:  Overview of the synthetic strategies for A) EGF-PEG -LPEI triconjugates B) EGF-

PEG-brPEI-Mel tetraconjugates . 
 

Conjugate PEG/PEI 
ratio 

EGF/PEI 
ratio 

Mel/PEI 
ratio Linker  

brPEI  - - - - 
LPEI - - - - 
LPEI-PEG10kDa 1.4 0 - - 
LPEI-PEG5kDa 1.2 0 - - 
LPEI-PEG2kDa 0.9 0 - - 
LPEI-PEG10kDa-EGF 1.4 1.4 - S-S 
LPEI-PEG5kDa-EGF 1.2 1.2 - S-S 
LPEI-PEG2kDa-EGF 0.9 0.9 - S-S 
Mel-brPEI-PEG 3kDa-EGF 2.5 2.5 5 Maleimide 

Table 4.1: Comparison of the composition of the con jugates.  

 

4.1.3 Polyplex Formation and Biophysical Characteri zation 

The biophysical characteristics of the different conjugates were determined by zeta 

potential and particle size analysis (Table 4.2 ). Polyplexes prepared by complexation 

of unmodified PEIs result in well compacted particles (size ~ 120 nm) characterized 

by relatively high zeta potentials of ≥ +30 mV. The introduction of a PEG shielding 

domain leads to significant drop of zeta potential. This was more pronounced for the 

modification with 10 kDa PEG than for 2 kDa PEG (+11 vs. +24 mV) or 5 kDa PEG 

(+14 mV). The attachment of EGF leads to a slight increase in zeta potential for 

polyplexes with all PEGylated PEIs (+17 mV vs. +27 mV vs. +20 mV). 
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The brPEI tetraconjugate shows a very low zeta potential (+4 mV) and a larger, less 

uniform diameter (233 ± 122 nm), most probably resulting from the massive 

modifications of the brPEI backbone (Table 4.2 ). The results are also consistent with 

the fact that the brPEI conjugate was modified with approximately 2.5 molar 

equivalents of PEG3.4kDa-EGF chains, as opposed to about one PEG-EGF for the 

other three conjugates.  

The poly(I:C) binding capabilities of the conjugates were comparable as determined 

in an agarose gel-shift assay (Appendix 8.4 ). A heparin displacement assay 

(Appendix 8.4 ) revealed small differences between the different polymers. Most 

significant, a slightly weaker binding of poly(I:C) was found with LPEI (and LPEI 

conjugates) as opposed to branched brPEI (and the brPEI tetraconjugate). This 

might have a positive impact on poly(I:C) delivery and intracellular release (see 

below, next section). PEGylation of LPEI with 2 kDa PEG did not alter poly(I:C) 

binding, but modification with 10kDa PEG further weakened poly(I:C) binding. The 

effect of PEGylation however was far less pronounced than the influence of the 

cationic polymer carrier (LPEI vs. brPEI). 

 

# Conjugate Zeta potential [mV] Size [nm] 

1 brPEI  30.0 ± 1.6 120.1 ± 1.1 

2 LPEI 31.8 ± 0.8 122.9 ± 2.1 

3 LPEI-PEG10kDa 11.1 ± 0.5 114 ± 3.0 

4 LPEI-PEG5kDa 14.2 ± 1.3 137.8 ± 2.1 

5 LPEI-PEG2kDa 23.9 ± 2.7 121.6 ± 1.9 

6 LPEI-PEG10kDa-EGF 16.9 ± 1.4 143.9 ± 33.4 

7 LPEI-PEG5kDa-EGF 19.5 ± 0.6 210.5 ± 2.9 

8 LPEI-PEG2kDa-EGF 27.3 ± 2.3 210.4 ± 4.1 

9 Mel-brPEI-PEG3.4K-EGF  3.5 ± 0.9 233.0 ± 122.0 
Table 4.2: Biophysical characterization of the poly (I:C) polyplexes.  
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4.1.4 In vitro Antitumoral Activity of poly(I:C) Polyplexes 

Poly(I:C) delivery properties were determined by a cytotoxicity assay using the 

poly(I:C) sensitive EGF-R overexpressing glioblastoma cell line U87MGwtEGFR. To 

differentiate between poly(I:C) induced cell death and a potential carrier toxicity, 

single stranded poly(I) was used as control, as it is reported that the single-strand 

RNA does not induce apoptosis129-130. 

 

Plain PEI/poly(I:C) polyplexes 

To evaluate the suitability of LPEI as a better defined carrier backbone in poly(I:C) 

delivery, plain LPEI was compared to brPEI without any further modification of the 

polymers. In the tested poly(I:C) concentration range of 0.25 – 2.5 µg/ml, brPEI/ 

poly(I:C) polyplexes showed no effect on the viability of U87MGwtEGFR cells 

(Figure 4.2  top right panel). LPEI demonstrates a superior delivery efficiency at 

concentrations as low as 0.25 µg/ml, but this is accompanied by a fast shift into 

unspecific cytotoxicity beginning at 1 µg/ml (Figure 4.2  top left panel). For DNA 

transfections routinely a concentration of 0.8 µg/ml is well tolerated with only 

moderate toxicity, indicating a LPEI independent toxicity mechanism. This effect 

severely limits the use of unmodified LPEI because of unspecific uptake and a small 

therapeutic window. 

The extent of the far higher potency of LPEI compared to brPEI is surprising, but 

consistent with previous findings for DNA delivery, for example127,131. A better 

reversibility of nucleic acid complexation (see also section above) is hypothesized as 

key issue. Itaka et al.131 reported on an enhanced intracellular disassembly of LPEI 

as compared to brPEI DNA polyplexes by intracellular FRET experiments. 

Intracellular cytosolic release appears to be a critical requirement also for 

accessibility of poly(I:C). 
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Figure 4.2: In vitro antitumoral activity of poly(I:C) polyplexes agains t U87MGwtEGFR glioma 
cells.  Comparison of brPEI versus LPEI (top panels), LPEI
PEG2kDa (left panels), and receptor
PEG5kDa-EGF and LPEI-PEG
ineffective conjugates and effective conjugates. For each dosage the same dose of poly(I) polyplexes 
served as negative control. 

antitumoral activity of poly(I:C) polyplexes agains t U87MGwtEGFR glioma 
Comparison of brPEI versus LPEI (top panels), LPEI-PEG10kDa versus LPEI

panels), and receptor-targeted conjugates LPEI-PEG10kDa
PEG2kDa-EGF (right panels). Please note the different dosages for 

ineffective conjugates and effective conjugates. For each dosage the same dose of poly(I) polyplexes 
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antitumoral activity of poly(I:C) polyplexes agains t U87MGwtEGFR glioma 

PEG10kDa versus LPEI-PEG5kDa and 
PEG10kDa-EGF versus LPEI-

panels). Please note the different dosages for 
ineffective conjugates and effective conjugates. For each dosage the same dose of poly(I) polyplexes 
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PEGylated PEI/ poly(I:C) polyplexes 

Various groups described the beneficial role of PEGylation on cytotoxicity of PEI 

polyplexes, but the grafting of PEG chains onto PEI may also be accompanied by a 

drop in delivery performance. This has been demonstrated for plasmid DNA 

delivery46,132-137, the situation may however be different in case of siRNA delivery138. 

Therefore, to evaluate the optimal PEG molecular weight for poly(I:C) delivery, 

PEG10kDa, PEG5kDa and PEG2kDa were grafted onto the brPEI or LPEI backbone. 

Figure 4.2  left panels show a huge impact of PEGylation of LPEI on the delivery 

efficiency. The attachment of a single PEG10kDa chain to LPEI renders the 

conjugate inactive. At concentration of 2.5 µg/ml of poly(I:C) or even higher (5 - 10 

µg/ml, Appendix 8.4 ) no significant cell killing is observed. Modification with 

PEG2kDa or PEG5kDa reduces the efficacy and cytotoxicity profile of the 

corresponding poly(I:C) polyplexes (Figure 4.2  left panels) considerably. 

 

Targeted EGF-containing PEGylated PEI/poly(I:C) pol yplexes 

To evaluate the influence of a targeting ligand onto the delivery efficiency of the 

LPEI-PEG-conjugates, murine EGF was attached at the distal end of the 2 kDa, 5 

kDa or 10 kDa PEG spacer. The conjugates were tested as poly(I:C) polyplexes for 

their cell killing activity (Figure 4.2  right panels). As expected, introduction of the 

targeting ligand improved the activity of the PEG2kDa - LPEI conjugate, leading to an 

increased activity at lower concentrations with more than 60% cell killing at 1 µg/ml 

(Figure 4.2  bottom right panel). Cell killing was even more pronounced at 2.5 µg/ml, 

but poly(I) control polyplexes also triggered some killing. Interestingly, the 

incorporation of EGF into the PEG10kDa - LPEI conjugate did not recover any 

significant cytotoxic activity of the LPEI-PEG10kDa-EGF polyplexes (Figure 4.2  right 

upper panel), even at a higher dose of 5 µg/ml (Appendix 8.4 ). The LPEI-PEG5kDa-

EGF conjugate mediated specific poly(I:C) cell killing, but only at the higher 2.5 µg/ml 

dose (Figure 4.2  middle panel, right). 
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Figure 4.3: In vitro antitumoral activity of poly(I :C) polyplexes.
conjugates (old tetraconjugate versus new triconjugate LPEI
cells with low (‘U87MG’) or high (‘U87MGwtEGFR’) levels of EGF receptor. The same doses of poly(I) 
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pronounced with the new triconjugate, resulting in a 60% reduction of cellular viability 

by treatment at a concentration of 1 µg/ml poly(I:C). On both cell lines, a 2.5

higher concentration of the old tetraconjugate had to be applied to obtain a similar 

cell killing effect. Effects of the poly(I:C) treatment on cell morphology at 48 hours 

after treatment are shown in 
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Figure 4.3: In vitro antitumoral activity of poly(I :C) polyplexes.  Comparison of the two EGF
conjugates (old tetraconjugate versus new triconjugate LPEI-PEG2kDa-EGF) using U87MG glio
cells with low (‘U87MG’) or high (‘U87MGwtEGFR’) levels of EGF receptor. The same doses of poly(I) 
polyplexes served as negative controls. 

The two conjugates, tetraconjugate EGF-PEG-brPEI3.4kDa-Mel and triconjugate 

EGF were compared by testing on U87MG (moderate levels of 

expressing U87MGwtEGFR cells (receptor levels see 

4.3 shows an only limited efficacy on U87MG cells, with 

marked activity only at higher concentrations of 2.5 µg/ml (data not shown

expressing U87MGwtEGFR cells (Figure 4.3 ) bioactivity was more 

pronounced with the new triconjugate, resulting in a 60% reduction of cellular viability 

by treatment at a concentration of 1 µg/ml poly(I:C). On both cell lines, a 2.5

higher concentration of the old tetraconjugate had to be applied to obtain a similar 

cell killing effect. Effects of the poly(I:C) treatment on cell morphology at 48 hours 

after treatment are shown in Figure 4.4 . 
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Mel and triconjugate 

ting on U87MG (moderate levels of 

expressing U87MGwtEGFR cells (receptor levels see 

shows an only limited efficacy on U87MG cells, with 

marked activity only at higher concentrations of 2.5 µg/ml (data not shown). Testing 

) bioactivity was more 

pronounced with the new triconjugate, resulting in a 60% reduction of cellular viability 

by treatment at a concentration of 1 µg/ml poly(I:C). On both cell lines, a 2.5-folds 

higher concentration of the old tetraconjugate had to be applied to obtain a similar 

cell killing effect. Effects of the poly(I:C) treatment on cell morphology at 48 hours 
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Figure 4.4: Cell morphology of LPEI-PEG2kDa-EGF pol yplex treated U87MGwtEGFR cells 48 h 
after transfection.  A: poly(I:C) treated cells;  B: poly(I) treated cells (control). 

 

The two conjugates were also compared using the EGFR-overexpressing epidermoid 

carcinoma cell line A431 (Figure 4.5 ). In these and the following experiments, 

polyplexes of the nontoxic polyanion polyglutamic acid served as negative control. 

Efficient and poly(I:C)-specific cell killing was obtained at the lowest tested 1 µg/ml 

poly(I:C) dose in case of the LPEI-PEG2kDa-EGF conjugate, whereas high doses 

were required in case of the tetraconjugate.  

 

4.1.5 In vivo Anti-Tumor Activity  

In vivo anti-tumor activity of EGFR-targeted poly(I:C)/PEI polyplexes was examined 

using nu/nu mice bearing subcutaneous A431 tumors (performed by Alexei Shir, HU 

Jerusalem). Conjugate delivery activity was determined by tumor volume analysis 

after systemic application of tetra- and triconjugate and the control formulations. 

Intravenous administration of 0.5 mg/kg poly(I:C) started at day 0 and was repeated 

every second day, for a total of 7 times. Measurement of the average body mass of 

the mice showed that the mice tolerated the treatment well. 

As shown in Figure 4.6  the tumor volume of control/untreated groups was about 12 

times larger than the average tumor volume at day 0, indicating rapid tumor growth  



Results   
 

65 
 

 
Figure 4.5:  In vitro antitumoral activity of poly(I:C) polyplexes again st A431 cells.  Comparison of 
the two EGF-conjugates (old tetraconjugate versus new triconjugate LPEI-PEG2kDa-EGF). The same 
doses of poly(Glu) polyplexes served as negative controls (Experiment by A. Shir, HU Jerusalem).  

 

and no tumor growth inhibition by the polyglutamate control polyplexes. Treatment 

with either EGF triconjugate (EPPlin) or EGF tetraconjugate (MPPEbrMel) resulted in 

significantly decreased tumor growth speed and tumor end volume. After 14 days of 

treatment (7 injections) the mean tumor volume of the tetraconjugate group was 

fourfold increased, while treatment with the triconjugate led to an only doubled tumor 

volume. The antitumoral effect was only observed in the poly(I:C) groups, showing 

significantly decreased tumor growth progression compared to the control group.  
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Figure 4.6:  In vivo anti-tumor activity of EGFR targeted poly(I:C) PEI  polyplexes.  In vivo anti-
tumor activity of EGFR targeted poly(I:C) PEI polyplexes was measured using s.c. A431 bearing nude 
mice. Tumor volume analysis after i.v. injection of the two different formulations of poly(I:C) was done. 
Each group included 5 mice. Administration of 10 µg pI:C started on day 0 and was repeated on days 
2, 4, 6, 8, 10, 12, for a total of 7 times (indicated by arrows). Tumor volume was measured twice a 
week until day 14 (Experiment by A. Shir, HU Jerusalem). 
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4.2 Protocols and Building Blocks for the Solid-Pha se Assisted Synthesis of 

Defined Polyamidoamines 

 

4.2.1 Introduction 

Despite the continuous progress in polymeric carrier development there still are 

inherent limitations which need to be addressed, namely low efficiency and poor 

definition of currently used polymeric delivery systems. Primary aim of this thesis was 

the development of solid-phase synthesis protocols to allow the synthesis of 

sequence-defined polyamidoamines for the delivery of nucleic acids. 

Solid-phase synthesis has a long history in the synthesis of peptides, a complex 

class of macromolecules. Peptides are comparatively short polymers (5-100 units) 

composed of different amino acids linked by amide bonds. Due to synthetic 

difficulties caused by their polarity, solubility properties and complex protection 

strategies the classical solution phase synthesis of peptides is laborious, time 

consuming and error prone139. In 1963 Merrifield98 published a landmark article, 

introducing the concept of peptide synthesis on a solid support. By anchoring the C-

terminal amino acid to an adequately functionalized, swellable microgel support it is 

possible to force amino acid coupling reactions to completion by using large excess 

of reagents and optimized synthetic protocols. Contaminants, reagents and reaction 

by-products are removed by a simple filtration step reducing overall synthesis time 

considerably. Since this breakthrough the field of macromolecular synthesis 

progressed at high speed, extending from peptides to oligonucleotides and other 

classes of oligomers. The method found wide acceptance in commercial and 

academic research and was further improved by the introduction of concepts like 

combinatorial chemistry140 and high-throughput screening.  

The first reports of application of the methodology to the design of transfection 

reagents appeared in the early nineties of the last century141-145, but despite apparent 

advantages the use and development of solid-phase derived polymers was never 

popular. Apart from precise dendrimer structures generated by solution chemistry146, 

ill defined, random polymerized cationic macromolecules continue to be the cutting 

edge of polymeric transfection reagents. This imbalance is probably the result of the 

few examples of polyamine and polyamidoamine synthesis in the literature and the 
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lack of commercial available building blocks. In fact, references to solid-phase 

derived polyamines are scarce before 1996147-148.  

In 2006 Hartmann et al.99 published a solid-phase based method to synthesize linear 

polyamidoamine (PAA) chains on a PS-PEG-support by a protocol employing 

alternating condensation steps using cyclic anhydrides and diamines (Figure 4.7 ). 

The first condensation generates a free carboxylic function on the resin via ring-

opening of the cyclic anhydride. The carboxylic function is subsequently activated on 

solid-phase and the diamine is condensed into the growing PAA chain. 3,3’-diamino-

N-methyldipropylamine and protected spermine were used as diamine building 

blocks. By repetition of this cycle linear PAAs are assembled.  As acceptable product 

purity can only be guaranteed if a conversion ≥ 98% is achieved in every step, 

constant reaction monitoring is necessary. The procedure allows the synthesis of 

linear PAAs in a high purity and with absolute control over every monomer unit.  

 

 

Figure 4.7:  PAA solid-phase synthesis concept described by Hart mann et al. 99  

 

Our initial aim was to adapt the strategy to generate a new polymer library for nucleic 

acid delivery based on ethylenimine units. Short linear oligoethylenimines instead of 

propylenimine or spermine should be used as amine building blocks, because 

oligoethylenimines were previously found to possess superior gene transfer 

properties149-150. By using the already published alternating condensation protocols99 

the problems of developing a new synthetic strategy might have been avoided.  
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4.2.2 Application of an Alternating Condensation Ap proach to Ethylenimine-

based PAAs  

 

 

Figure 4.8:  Reaction conditions described by Hartman et al. 99. i: 10 eq succininc anhydride, DMF, 
30 min; ii:10/10/10/20 eq diamine/PyBOP(R)/HOBt/DIPEA, DMF, 30 min; iii: TFA + scavengers, 1 - 2 h 

 

As depicted in Figure 4.8  the synthetic strategy is based on alternating condensation 

reactions of cyclic anhydrides and diamines. Variations in the number of repeating 

units in the oligoethylenimine building blocks (Figure 4.9 ) should have been used to 

analyze the impact of charge density and buffering capacity on NA delivery. 

By employing acid-labile boc-protection to the secondary amines of the 

oligoethyleneimine building blocks they are rendered inaccessible during the PAA 

synthesis, and possible side reactions are suppressed. Deprotection is achieved by 

the strongly acidic conditions necessary for the release of the PAA chain from the 

resin. 

 
Figure 4.9:  Comparison of the used building blocks (R=Boc/H).  left: propylenimine based building 
blocks: 1 3,3’-diamino-N-methyldipropylamin, 2 spermine (used by Hartman et al), right: ethylenimine 
based building blocks: 3 diethylenetriamine (Dt), 4 triethylenetetramine (Tt), 5 tetraethylenepentamine 
(Tp) 
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Figure 4.10:  General synthetic route for diamine building blocks   

 

The boc-protected diamines were synthesized in a one-pot reaction according to a 

published method151. The primary amines of the linear oligoethylenimines were 

selectively152 protected by acylation using ethyl trifluoroacetate followed by protection 

of the secondary amines via di-tert-butyl dicarbonate. The resulting fully protected 

amines are readily purified by recrystallization. The trifluoroacetyl groups were 

removed by alkaline hydrolysis, yielding the pure corresponding diamine in moderate 

to high overall yields (Table 4.3 ). 

 

ID backbone  Bistfa xboc derivative  diamine yield  Overall yield  

Dt(boc) DETA 73 % 63% a 46% 
Tt(boc 2) TETA 65 % 66% a 43% 
Tp(boc 3) TEPA (x 5 HCl) 83 % quantitative 83% 
Tp(boc 3) TEPA tech. grade 68 % quantitative 68% 
Table: 4.3  Yields of the boc-protected amine building blocks; a not optimized  

 

By this simple three step procedure the diamine building blocks can be produced in 

large amounts (standard batch size 20 – 40 g) without the need for time-consuming 

chromatographic purification steps. 

 

Solid-Phase Synthesis: 

To establish the solid-phase procedures, the sequence HO-K-Succ-Tp-Succ-Tp-H 

was chosen as simple model PAA. In-synthesis reaction monitoring showed 

inconsistent results for the colorimetric assays in every step, accompanied by a lower 

resin mass gain than calculated. MS-analysis of the cleavage solution revealed the 

formation of the crosslinked product HO-K-Succ-Tp-Succ-K-OH (Figure 4.11 ). 

The incubation of the activated carboxylic acid function with the diamine building 

block results in crosslinking of a large degree of the adjacent reaction sites, 
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preventing further chain elongation. Using a Wang-Lys resin with a moderate loading 

(0.52 mmol/g) a product mixture of crosslinked and desired product could be 

identified by ESI-MS after the second coupling  step, however accompanied by very 

low yields.  

 

 
Figure 4.11: Left:  Exemplary ESI-MS-spectrum of an alternating condensation reaction using a PS-
Wang-K resin. Upper Right: Proposed mechanism for on resin crosslinking Lower right:  Formation of 
crosslinking product in dependency to various reaction conditions 

 

To evaluate the influence of experimental conditions on the formation of crosslinked 

products, different reaction conditions were tested. In each case the mass increase 

of the resin was less than predicted and colorimetric assays used for reaction 

monitoring showed unexpected behavior. The crosslinked product was always 

present in the different sequences. These results are consistent with reports in 

literature for on-resin carboxy activation followed by coupling of unprotected 

diamines. Jørgensen et al.153 describe crosslinking up to 60% (per step) of adjacent, 

activated carboxy sites on solid-phase using a related approach. 

Thus, in contrast to the successful application by Hartmann et al. the synthetic 

strategy yielded no reliable results in our case. Possible explanations include the 

increased steric requirements of the Tp(boc3) building block compared to the building 

blocks used in the original synthesis, changed reaction kinetics by using a Wang-PS 

resin opposed to Trityl-PEG-PS resin which generally shows faster reaction 

kinetics154 and the higher load of most of the used resins. 

In addition to the synthetic problems the versatility is limited by technical factors like 

building block solubility, possible side reactions when using new combinations of 
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diamines and diacids and the need for complex in situ analytics to ensure clean 

reaction progress. As robust and reliable reactions are a prerequisite to solid-phase 

assisted library synthesis, the first synthetic route was not further investigated. By 

adapting the synthetic concept to standard fmoc/tBu peptide synthesis conditions 

(Figure 4.12 ) it should be possible to use well-established peptide coupling 

protocols. This would be accompanied by the additional advantage of a decreased 

error rate resulting from transferring the critical condensation step into the building 

block synthesis. 

 

4.2.3 PAA Synthesis Using  Polyamino Acid Building Blocks 

 

 
Figure 4.12:  Comparison of the two solid-phase PAA synthesis str ategies.  Left:  classical solid-
phase peptide synthesis characterized by alternating coupling and deprotection cycles. Right:  
Hartmann PAA synthesis characterized by alternating condensation reactions. 

 

Fmoc/tBu peptide synthesis is characterized by alternating deprotection and 

elongation cycles. To adapt the PAA synthesis to fmoc/tBu conditions a building 

block like depicted in Figure 4.13  was needed. The protection strategy was adapted 

from fmoc/tBu-amino acids resulting in an orthogonal protected oligoamino acid 

constructed from diacid component, N-terminal fmoc protection and boc-protected 

amines. As large scale synthesis was already optimized for Tp(boc3) we chose that 

building block as model for the development of the fmoc/tBu building blocks.  
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Synthesis of the fmoc amino acid building blocks: 

 

 
Figure 4.13:  fmoc-Stp(Boc3)-OH (n=3, m=2, R=H) 

 

# Reaction conditions Yield Comments 

1 
1) 1.1 eq Fmoc-Cl, 2 eq DIPEA, DCM -20 °C 12 h 

2) 3.0 eq Succinic anhydride, DCM, RT 3 h 
30% two-step synthesis 

2 
1) 1.1 eq Fmoc-Cl, 2 eq DIPEA, DCM -20 °C 12 h 

2) 3.0 eq Succinic anhydride, DCM, RT 3 h 
16% one-pot reaction 

3 
1) 1.1 eq 9-BBN, Fmoc-Cl, 2 eq DIPEA, DCM -20 °C 12 h 

2) 3.0 eq Succinic anhydride, DCM, RT 3 h 
20% 

in situ complexation 

 (9-BBN)  

4 
1) 1.1 Succinic anhydride, THF - 20 °C 4h 

2) 1.5 eq Fmoc-Cl, 3 eq DIPEA, THF, 0 °C to RT 12 h 
40% one pot-reaction 

5 
1) 1.1 Succinic anhydride, THF - 70 °C 4h 

2) 1.5 eq Fmoc-OSu, 3 eq DIPEA, THF, 0 °C to RT 12 h 
46% less side products 

Table 4.4 : optimization of product yield/different reaction conditions for fmoc-Stp-OH 

 

The synthetic strategy to convert Tp(boc3) into the fmoc-Stp(Boc3)-OH building block 

required a mono-acylation in the first step, thereby differentiating the two amino 

functions. Initially that was achieved in a 2-step synthesis by using Fmoc-chloride 

followed by acylation via succinic anhydride obtaining fmoc-Stp(Boc3)-OH in an 

overall yield of 30%.  

As the purification of the intermediate fmoc-tp(Boc3)-NH2 was quite laborious and 

time-consuming, the two reaction steps were transferred into a one-pot reaction to 

ease synthesis and purification. This change was accompanied by a drop of yield to 

16%, unacceptable for further use. The yield limiting step was the first mono-

acylation, so different conditions were tested for an effective mono-acylation. The 

most common solution, using a large excess of the diamine155 was not an option as 

the protected diamine is the product of a 3 step synthesis and too valuable. The use 

of temporary protection strategies to selectively shield one amine via protonation156 

or complexation (Table 4.2, entry 3) via 9-BBN157 did not result in increased yields.  

In the end, succinic anhyride acylation at -70 °C i n THF followed by fmoc introduction 

using Fmoc-OSu was able to increase the yield to acceptable 40%. Furthermore the 

use of Fmoc-OSu gave rise to a cleaner raw product as use of Fmoc-Cl is often 

accompanied by dipeptide formation158 complicating the purification.  

See Table 4.4 
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The applicability of the optimized procedure to the synthesis of other oligoamino 

acids was in the meantime demonstrated by the synthesis of building blocks with 

close relationship to Stp using educts with varying n/m (unpublished results, Naresh 

Badgujar). These building blocks offer interesting opportunities to investigate the 

influence of the polyamine building block on NA complexation and delivery. By using 

these building blocks it is possible optimize the resulting PAAs by changing charge 

density, hydrophobicity or introducing structural strain. 

The developed synthetic route thereby provides convenient access to fully protected 

polyamino building blocks for use in fmoc/tBu solid-phase synthesis. 

 

 
Figure 4.14:  Synthetic route to fmoc/tBu-polyamino acids.  Optimized synthetic route to fmoc/tBu-
polyaminoamido acids, illustrating the general applicability of the synthetic route (Dr. Naresh Badgujar, 
Wagner lab) 
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4.2.4 Application of Fmoc

Synthesis of the model PAA HO

To evaluate the usefulness of solid

Stp(boc3)-OH building block th

charges) using standard PyBOP

analysis. RP-HPLC proved altogether to be unsuccessful due to the massive charge 

and the unpredictable buffering capacity of the PAAs

results. These problems are known from literature
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IEX-HPLC trace of crude material after cleavage from the resin. 

example for one of the longer, unmodified PAAs of the library and shows that the 

developed coupling protocols work well, resulting in crude product purities > 85%.

 

Figure 4.15: IEX-HPLC/UV 214

Resource S (6 mL) column was used for analysis. Elution by linear gradient over 40 min
to 60% B (A: 20 mM NaCl in 10 mM HCl; B: 3 M NaCl in 10 mM HCl), flow rate 4.0 mL/min 
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evaluate the usefulness of solid-supported PAA-synthesis using the new fmoc

OH building block the sequence HO-K-Stp4-K-H was synthesized (15 

charges) using standard PyBOP® coupling protocols159 and subjected to further 

HPLC proved altogether to be unsuccessful due to the massive charge 

and the unpredictable buffering capacity of the PAAs resulting in irreproducible 

results. These problems are known from literature99 and were circumvented by using 

Exchange HPLC (IEX-HPLC) for analysis. Figure 4.

HPLC trace of crude material after cleavage from the resin. The sequence is an 

example for one of the longer, unmodified PAAs of the library and shows that the 

developed coupling protocols work well, resulting in crude product purities > 85%.

214-trace of crude HO-K-Stp 4-K-H(#18). A catio
Resource S (6 mL) column was used for analysis. Elution by linear gradient over 40 min
to 60% B (A: 20 mM NaCl in 10 mM HCl; B: 3 M NaCl in 10 mM HCl), flow rate 4.0 mL/min 

Synthesis of the model Peptide HO-IVNQPTYGYWH-Stp2-H 

trate the general compatibility of the fmoc-polyamino acid building block to 

standard fmoc/tBu peptide synthesis the GE11 peptide sequence53

units (Sequence: HO-IVNQPTYGYWH-Stp-Stp

GRAVY= -0.700) EGF-R targeting peptide, possessing no 

charged residues. The initial peptide sequence allows easy purity assessment by 

HPLC before coupling of the Stp units. N-terminal modification by two Stp units 

introduces 6 additional positive charges into the peptide, resulting in a drastic change 
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of chromatographic behavior under IEX conditions.  HR-IEX Analytical IEX 

chromatography of a mini cleavage (Figure 4.16 ) shows a purity > 90 % being 

consistent to the RP-HPLC run (insert Figure 4.16 ) of the peptide precursor.  

 

 
Figure 4.16:  IEX-HPLC/UV280 trace of crude HO-IVNQPTYGYWH-Stp-Stp-H.  A cation-
exchange Resource S (1 mL) column was used for analysis. Elution by linear gradient over 40 
min from 0 to 100% B (A: 20 mM NaCl in 10 mM HCl; B: 3 M NaCl in 10 mM HCl), flow rate 1.0 
mL/min Insert: RP18-HPLC/UV280 trace of crude HO-IVNQPTYGYWH-H. Elution by linear 
gradient over 20 min from 5% A  to 100% B (A: Water + 0.1% TFA; B: ACN + 0.1% TFA), flow 
rate 1.0 mL/min 
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4.3 Design and Evaluation of a Library of Precise, Sequence-defined 

Oligoamidoamines for Nucleic Acid Delivery 

4.3.1 Introduction 

Nucleic acid (NA) delivery systems hold great promise as research tool and in terms 

of therapeutic application. Nevertheless the development has been slowed down by 

various problems associated to the effective delivery of NAs into the target cells. Viral 

delivery, the far most efficient delivery platform, only slowly recovers from a series of 

serious setbacks associated with inherent safety problems160-161 (immunogenicity, 

insertional mutagenesis) and will not be applicable for all types of NAs and disease 

indications. The use of polymeric vectors is impaired by a different set of problems: 

low efficiency compared to viral systems, ill–defined structures, resulting in problems 

in structure-activity prediction and evaluation, and synthetic difficulties during the 

development of increasingly complex multi-domain polymers. 

It is questionable if the modification of polymeric macromolecules in a more or less 

random manner will allow these systems to compete successfully with their viral 

counterparts. Furthermore the structure activity relationships of polymers modified by 

these grafting approaches are difficult to analyze due to the large impact of the 

polymer backbone and their polydispersity. By stripping the used systems down to 

their essential parts and reassembling them as relatively small, precise polymers one 

can envision a construction set of functional domains for delivery system 

development. The different combinations can be screened for synergistic effects 

resulting in potent delivery vehicles characterized by defined structure and possibility 

of further extension. It is obvious that traditional polymerization strategies are not 

suited for this approach, as they cannot deliver the molecular precision necessary for 

these types of polymers. Reviews101 on the design of polymeric delivery systems 

agree on a minimal set of necessary structural properties with NA 

binding/compaction, cell entry, buffering capacity or lytic activity towards cell 

membranes, and intracellular release of the cargo being the most prominent. An 

ideal, smart polymeric system would encode these properties in its monomer 

sequence allowing the programming of properties and behavior during synthesis.  

Solid-phase synthesis is an ideal tool for the synthesis of precise, sequence defined 

polymers and can with the right set of protocols be used for macromolecular 

synthesis to reach Mw > 10 kDa162. Aim of this study was the design and evaluation 



Results   
 

78 
 

of a small solid-phase based polymer library to evaluate the influence of different 

modules in a polymeric NA delivery system. The library is still constrained by its 

limited design space, but the first results demonstrate the feasibility of the approach.  

Further development towards more complex modular structures may be able to cope 

with unsolved bottlenecks in polymeric delivery. 

 

4.3.2 Structural Overview and Rationale 

 

 

Figure 4.17:  Structural overview over the different polymer clas ses.  PAA chain (1), PAA chain 
with crosslinking cysteines (2); PAA with acylation at N-terminus (i-shape type) without (3), with one 
dimerizing (5), or with two crosslinking (4) cysteines; PAA with acylation in center (t-shape type) and 
crosslinking cysteines (6). 

The initial library design was governed by the fact that there is only little information 

on structure-activity relationships in the literature due to the lack of defined polymeric 

carriers. The few published examples are almost exclusively dendritic structures163, 

small peptides143 and PEG-PAAs100. Even by taking these defined structures into 

account the design motifs are dominated by Mw (> 10 kDa), variations in charge 

density and buffering properties. For the first evaluation of the modular solid-phase 

synthesis platform a big design space had to be covered using a minimal set of 

building blocks. To evaluate the potential of small PAAs in terms of NA delivery the 

design parameters were limited to four easily controllable structural parameters:  
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Building block  ID Introduced Function  

 

Stp Nucleic acid binding & buffering 

 

Lys(K) 
Nucleic acid binding & branching 

point 

 
Cys(C) 

Dimerization/polymerization & 
possible anchoring point 

 Fatty acids (FA) 
 Polyplex stability & membrane 

interaction 

Table 4.5: Overview over the used building blocks a nd their function in PAA design. 

length of buffering/compaction domain, hydrophilic/lipophilic balance, branching and 

dimerizing/crosslinking capability (Table 4.5 ). 

These four parameters were used to generate a PAA library which can be described 

by the 6 different families depicted in Figure 4.17 . The simplest structural family is 

the PAA chain (structure 1 ), constructed by linear elongation using Stp and/or amino 

acid units. These structures closely resemble the prominent oligoethyleneimine motif 

of PEI and were synthesized to support the hypothesis that there is a minimal 

polymer length necessary for successful delivery of NAs164. The crosslinking-PAA 

chain (structure 2 ) is further modified by two cysteine residues and was designed to 

introduce a dynamic stabilization element into the polyplexes by either stabilizing the 

formed particle by crosslinking165 or through increased molecular weight caused by in 

situ polymerization. Both families were hydrophobically modified using fatty acids 

(FA) at the N-terminus, resulting in the i-shape families (structures 3 and 4 ). The 

hydrophobic moieties were introduced for two reasons, namely NA binding and 

membrane interaction40. The dimerizing i-shapes (structure 5 ) were synthesized to 

test polyplex stabilization while the symmetrical t-shapes (structure 6 ) were used to 

examine the influence of a changed polymer topology on transfection efficacy. To 

obtain first structure-function relationships in regard to biophysical properties, 

subsets of the library were tested for NA binding and pH-specificity of lysis. 
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4.3.3 Lytic Activity 

 
Figure 4.18:  Heatmap analysis of the lytic activit y of the different sublibraries at a 
concentration of 5 µM at different pHs . Determined by erythrocyte leakage assay (synthesis and 
leakage assay performed by Christina Troiber, master thesis)  

 

To escape endosomal entrapment, an endosomal pH-specific lytic activity is a 

desired prerequisite for successful delivery of NAs into the cytosol. This is especially 

true for polymeric vectors without a distinctive proton sponge effect124 and has been 

introduced by attachment of lytic peptides166 or introduction of hydrophobic 

residues167-168. The different polymer families were screened in a erythrocyte leakage 

assay system166  to identify structural motifs resulting in a highly pH-specific lytic 

activity. By assaying the polymers at different pH-values comparable to the pH of 

different stages of the endosome169  potent sequences can be identified, which only 

attack cell membranes at a slightly acidic pH. By using pH-specific lytic delivery 

systems potential cytotoxic lytic interactions with cell membranes in the beginning of 
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the transfection process can be reduced, thereby lowering the cytotoxic potential of 

the carrier. 

Lytic activity of the unmodified polymer backbone was analyzed (Figure 4.18 ) using 

K-Stp1-K (#1), K-Stp2-K (#6); K-Stp5-K (#23) as model sequences. The plain PAA 

sequences did not express any lytic activity even at concentrations > 5 µM (data not 

shown). Introduction of a single N-terminal fatty acid into a K-Stp2 sequence (#34 – 

37) showed a slight increase in activity with oleic (#37) and myristic acid (#36) being 

the most effective modifications while polymers modified with fatty acids < C14 (#35, 

#34) were essentially non-lytic. A general advantageous trend of an increased 

activity at lower pH was observed for the fatty acid modified PAAs which is most 

probably caused by the increased protonation state of the polyamine backbone at 

endosomal pH and the resulting interaction with negatively charged domains of the 

cell membranes.  

Lytic potency of the polymers was further increased by using an N-terminal lysine as 

branching point and attaching two fatty acids to the lysine (double fatty acid motif). 

The increased lytic activity can be attributed to the close vicinity of the fatty acids 

resembling the general structure of amphipathic lipids. Acylation of the N-terminal 

lysine using caprylic acid (#8) chains did not result  in a strong lytic activity, probably 

due to the rather short alkyl chain. Incorporation of myristyl residues (#9) results in a 

strong, unspecific lysis causing up to 40% of erythrocyte rupture already at neutral 

pH. Oleic acid modification (#10) shows a moderate, highly specific lytic activity 

rendering this modification the most valuable. 

The chain length of the PAA backbone has only a moderate effect on lytic activity 

(#22 vs. #10, #9 vs. #21 ). Use of a larger backbone normally results in a diminished 

lytic activity. The most plausible explanation is the reduced molar proportion of lipid in 

the polymer indicating that 2 – 3 Stp units may be the optimal chain length for lytic 

activity using i-shape structures.  

The introduction of cysteine into the sequence as dimerization/polymerization anchor 

did not significantly alter the extent and pH-specificity of membrane lysis (#9, #68, 

#45 vs. #10, #69 , #46 ). This finding is especially interesting for the use of the 

polymers as NA delivery systems, as in situ crosslinking polymers may improve 

polyplex stability but would not cause significant change in cytotoxicity and 

endosomal escape potency. 
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4.3.4 Correlation of Cytotoxicity with Unspecific L ysis Activity 

The impact of different hydrophobic modifications of a PAA sequence on the 

cytotoxic potential of the resulting delivery formulation is exemplified in Figure 4.19 . 

Modification of the essentially non-toxic sequence K-Stp2-K (Figure 4.19,  #06) with a 

dual fatty acid motif shows an increased cytotoxicity (for fatty acids > C8) under in 

vitro siRNA-transfection conditions.  

In agreement with the observed lytic activity (Figure 4.19, #08 ) the modification with 

two C8 residues has no pronounced effect on cellular metabolic activity. If the C8 

residues are substituted with C14 residues (Figure 4.19, #09 ) the use of N/P 12 in the 

transfection results in a drop of metabolic activity to 30%. Erythrocyte leakage assay 

(Figure 4.19, #9 ) shows a lytic activity of 20 - 40% already at neutral pH reaching 

100% lysis at pH 6.4. The oleic acid modification (Figure 4.19,  #10) shows a more 

specific lytic profile reaching 80% lysis not until a pH of 5.5. This is reflected in the 

relatively late onset of toxicity under in vitro conditions, a N/P ratio > 20 is needed for 

cytotoxic effects. 

The toxicity data correlates to the lytic activity of the polymers. Myristic acid 

modification showed the most potent but nevertheless mostly unspecific lytic activity 

of all tested polymers. This results in an increased cytotoxic activity when used in a 

carrier system, severely restricting the use of the myristic acid modification in these 

types of systems. 

 
Figure 4.19:  Toxicity of siRNA/PAA polyplexes on Neuro2A Luc cel ls.  Cell viability was assessed 
by measuring luciferase activity after 48 h of incubation with siRNA(scrambled)/PAA complexes and 
normalized using the luciferase expression of untreated control. 
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4.3.5 Structure-Activity Relationships in Nucleic A cid Binding 

A principal criterion for the design of polymeric delivery systems is the ability to 

condense nucleic acids, thereby protecting the payload from degradation and 

allowing the transport to target cells. This interaction has to be sufficiently stable to 

withstand competitive interactions from other anionic species in the environment 

which could result in a premature payload release. The ability of the PAAs to 

condense NA was studied using an agarose gel shift assay with binding strength 

correlating to the amount of polymer needed for NA retardation.  

As the sequences in the library were too short (< 6 Stp units) to show NA 

compaction, without additional refinement we were interested in identifying 

modifications that allow a strong NA compaction using such small backbones. 

Polymers containing only Stp and a C-terminal lysine were not able to bind either 

DNA or siRNA in the tested concentrations (Figure 4.20.1–4, K-Stp 2-K, #6; K-Stp 4-

K, #18). To identify a minimal binding motif for use in nucleic acid delivery systems, a 

short K-Stp2 sequence was modified with a single N-terminal fatty acid of differing 

chain lengths (Figure 4.21.1–6.; K-Stp 2-OleA, #37; K-Stp 2-MyrA, #36; K-Stp 2-

CapA, #35 ). The hydrophobic modification had no influence onto the retardation of 

siRNA, independent of fatty acid chain length. For pDNA compaction the modification 

with an oleoyl residue showed weak compaction at N/P 40 (Figure 4.21.4, #37 ). This 

effect was further improved by the introduction of a second FA in close proximity 

using a N-terminal lysine as branching point. The dual FA motif resulted in strong 

pDNA polymer interactions with almost complete pDNA retardation at N/P 12 (Figure 

4.21.7–8) if the fatty acid was either C14 (#9) or C18 (#10), use of a C8 (#8) 

modification did not show interactions in the tested concentrations. 

For siRNA binding the effect was even more pronounced (Figure 4.21.7–9 ). Single 

fatty acid modified polymers showed no retardation up to a N/P of 40, while dual FA 

modified PAAs were able to compact siRNA at a N/P of 12. Interaction of caprylic 

acid modified PAAs to siRNA was not strong enough to cause retardation. 
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Figure 4.20:  Comparison of unmodified PAAs regarding their DNA/s iRNA binding in a gel shift 
assay.  Lanes 1 + 2: K-Stp2-K (#6), K-Stp4-K (#18) DNA N/P 6/12/20; Lanes 3 + 4: #6, #18 siRNA N/P 
12/20/40 

 
Figure 4.21:  Comparison NA interaction of mono or dual fatty aci d modified PAAs to siRNA 
(Row A,C) and pDNA (Row B, D) by agarose gel-shift assay.  Row A: siRNA N/P 20/40/60; Row B: 
DNA N/P 12/20/40 Row C: siRNA N/P 20/40/60; Row D: DNA N/P 12/20/40; 1+4: K-Stp2-OleA (#37), 
2+5: K-Stp2-MyrA (#36), 3+6: K-Stp2-CapA (#35), 7+10: K-Stp2-K-OleA2 (#10), 8+11: K-Stp2-K-MyrA2 
(#9), 9+12: K-Stp2-K-CapA2 (#8) 
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Figure 4.22:  siRNA binding capabilities of K-Stp4-K-X2.  left column siRNA control, all other 
columns siRNA complexed with polymer N/P 12/20/40, 1: K-Stp4-K-CapA2 (#20); 2: K-Stp4-K-OleA2 
(#22); 3: K-Stp4-K-MyrA2 (#21); 

 

To assess the influence of the PAA backbone length onto NA compaction and to rule 

out possible destabilization of the polyplexes by a changed hydrophilic-lipophilic ratio 

a longer, dual-FA modified PAA backbone was assayed for siRNA binding. Figure 

4.22 shows the influence of a longer Stp-sequence on the ability of the K-FA2 motif to 

complex siRNA. Oleoyl (Figure 4.22.2 ) and myristyl (Figure 4.22.3 ) modifications 

result in strong siRNA binding at N/P 12, while the use of caprylic acid (Figure 

4.22.1) did not result in a better compaction. The introduction of additional Stp units 

did not improve the binding of the caprylic acid modified PAA, supporting the 

hypothesis that siRNA binding using PAA systems is mostly governed by 

hydrophobic interactions. 
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4.3.6 Impact of the Different Domains on Nucleic Acid

Figure 4.23: Evaluation of different polymers in DNA and siRNA tran
delivery in Neuro2A cells (1 µg/mL DNA/well at w/w 10; 
Stp2-K-(K-OleA2)-Stp2-C) Lower panel:
siRNA/well at N/P 12 (~ 10 w/w); #10: K
(performed by Thomas Fröhlich, Wagner lab)
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activity of the transfected cells and can be further optimized by changes to their 

structural domains.  

The lower panel of Figure 4.23 shows a comparison of gene silencing and cytotoxic 

potential of different polymer/siRNA formulations. By comparison of three different 

classes of polymers (chain (#6), i-shape (#10), crosslinking t-shape (#49)) the 

synergistic influence of the different domains can be investigated. As already 

demonstrated for pDNA delivery the use of short unmodified Stp-chains (#6) did not 

result in any significant luciferase knockdown. Use of a dioleoyl modified chain (#10) 

likewise did not result in a significantly increased luciferase knockdown. These 

results are in line with the data derived from lysis/binding assays. Polymer #6 shows 

low lytic activity and forms no stable complexes with siRNA. Polymer #10 on the 

other hand has specific lytic activity (80-100% lysis at pH 5.5), forms reasonably 

stable complexes but fails in delivery. Polymer #49, an oleoyl modified t-shape which 

is further modified by the incorporation of two cysteines demonstrates a potent 

luciferase knockdown.  
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# Sequence Formula Mw protonable 
amines Type 

1 K-Stp1-K C24H51N9O5 545,72 6 chain 
3 K-Stp1-K-CapA2 C40H79N9O7 798,11 4 i-shape 
4 K-Stp1-K-MyrA2 C52H103N9O7 966,43 4 i-shape 
5 K-Stp1-K-OleA2 C60H115N9O7 1074,61 4 i-shape 
6 K-Stp2-K C36H76N14O7 817,08 9 chain 
8 K-Stp2-K-CapA2 C52H104N14O9 1069,47 7 i-shape 
9 K-Stp2-K-MyrA2 C64H128N14O9 1237,79 7 i-shape 

10 K-Stp2-K-OleA2 C72H140N14O9 1345,97 7 i-shape 
18 K-Stp4-K C60H126N24O11 1359,80 15 chain 
20 K-Stp4-K-CapA2 C76H154N24O13 1612,19 13 i-shape 
21 K-Stp4-K-MyrA2 C88H178N24O13 1780,51 13 i-shape 
22 K-Stp4-K-OleA2 C96H190N24O13 1888,69 13 i-shape 
23 K-Stp5-K C72H151N29O13 1631,16 18 chain 
25 K-Stp5-K-AraA2 C112H227N29O15 2220,19 16 i-shape 
26 K-Stp5-K-MyrA2 C100H203N29O15 2051,87 16 i-shape 
27 K-Stp5-K-OleA2 C108H215N29O15 2160,05 16 i-shape 
30 C-Stp1-K-CapA2 C37H72N8O7S 773,08 3 i-shape 
31 C-Stp1-K-SteA2 C57H112N8O7S 1053,61 3 i-shape 
34 K-Stp2-ButA1 C34H70N12O7 759,00 7 i-shape 
35 K-Stp2-CapA1 C38H78N12O7 815,10 7 i-shape 
36 K-Stp2-MyrA1 C44H90N12O7 899,26 7 i-shape 
37 K-Stp2-OleA1 C48H96N12O7 953,35 7 i-shape 
38 K-Stp1-ButA1 C22H45N7O5 487,64 4 i-shape 
39 K-Stp1-CapA1 C26H53N7O5 543,74 4 i-shape 
40 K-Stp1-MyrA1 C32H65N7O5 627,90 4 i-shape 
41 K-Stp1-OleA1 C36H71N7O5 681,99 4 i-shape 
45 C-Stp3-C-K-MyrA2 C76H151N19O12S2 1587,26 9 i-shape 
46 C-Stp3-C-K-OleA2 C84H163N19O12S2 1695,44 9 i-shape 
48 C-Stp2-K-(K-MyrA2)-Stp2-C C94H188N26O15S2 1986,79 13 t-shape 
49 C-Stp2-K-(K-OleA2)-Stp2-C C102H200N26O15S2 2094,98 13 t-shape 
50 K-Stp4-K-ArA2 C100H202N24O13 1948,83 13 i-shape 
51 C-Stp3-C-K C48H99N19O10S2 1166,55 11 chain 
56 C-Stp2-K(CapA)-Stp2-C C68H138N24O13S2 1564,11 13 t-shape 
57 C-Stp2-K(MyrA)-Stp2-C C74H150N24O13S2 1648,27 13 t-shape 
58 C-Stp2-K(OleA)-Stp2-C C78H156N24O13S2 1702,36 13 t-shape 
59 C-Stp2-K(ArA)-Stp2-C C80H162N24O13S2 1732,43 13 t-shape 
62 C-Stp2-K(K-ArA2)-Stp2-C C106H212N26O15S2 2155,11 13 t-shape 
66 C-Stp2-K(K-CapA2)Stp2-C C82H164N26O15S2 1818,47 13 t-shape 
67 C-Stp2-K-MyrA2 C61H121N13O9S 1212,76 6 i-shape 
68 C-K-Stp2-K-MyrA2 C67H133N15O10S 1340,93 7 i-shape 
69 C-K-Stp2-K-OleA2 C75H145N15O10S 1449,11 7 i-shape 
70 C-Stp2-K-OleA2 C69H133N13O9S 1320,94 6 i-shape 
71 C-Stp1-K(K-MyrA2)-Stp1-C C70H138N16O11S2 1444,07 7 t-shape 
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72 C-Stp1-K(K)-Stp1-C C42H86N16O9S2 1023,36 9 chain 
73 C-Stp1-K(K-SteA2)-Stp1-C C78H154N16O11S2 1556,29 7 t-shape 
74 C-Stp1-K(K-OleA2)-Stp1-C C78H150N16O11S2 1552,26 7 t-shape 
75 C-Stp3-K(K-MyrA2)-Stp3-C C118H238N36O19S2 2529,51 19 t-shape 
76 C-Stp3-K(K)-Stp3-C C90H186N36O17S2 2108,80 19 chain 
77 C-Stp3-K(K-SteA2)-Stp3-C C126H254N36O19S2 2641,73 17 t-shape 
78 C-Stp3-K(K-OleA2)-Stp3-C C126H250N36O19S2 2637,69 17 t-shape 
79 C-Stp4-K(K-MyrA2)-Stp4-C C142H288N46O23S2 3072,23 25 t-shape 
80 C-Stp4-K(K)-Stp4-C C112H234N48O21S2 2653,50 27 chain 
81 C-Stp4-K(K-SteA2)-Stp4-C C150H304N46O23S2 3184,44 25 t-shape 
82 C-Stp4-K(K-OleA2)-Stp4-C C148H298N48O23S2 3182,39 25 t-shape 

Table 4.6: List of tested polymers 
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4.4  Evaluation of Different PAA Families for  in vitro DNA Delivery 

4.4.1 Introduction 

Development and modification of polymeric systems for NA delivery continues to be 

an attractive field of study as the delivery of genetic information into cells holds great 

therapeutic promise. Despite the significant maturation of polymer-based gene 

vectors over the last 20 years, they are still characterized by a rather low efficiency 

and the potential and the possibilities of modification are far from being fully 

exploited. Over the time certain design concepts101 were substantiated by numerous 

reports, including the use of cationic polymers to complex NAs170-171, modification 

with shielding and targeting domains172-173 and hydrophobic functionalization40,121 to 

promote cellular uptake and endosomal escape. A persisting problem of this classical 

approach to vector design is the limited information on precise structure-activity 

relationships. In most investigations the analyzed polymers have been heterogenic 

systems in terms of molecular weight, grade of polydispersity and sites of 

conjugations and other modifications. In this regard synthesis and screening of 

sequence-defined polymers offers the possibility of a more evidence-driven route to 

the design of polymeric vectors. 

The small library of sequence-defined polymers (as described in Chapter 5) was 

screened for DNA transfection potential. The used luciferase reporter gene system174 

has the advantage of being a positive readout system with a wide detection range, 

allowing the comparison of carrier efficiencies over more than four log scales. Aim of 

this first DNA transfection screening was to explore the elementary properties of this 

new class of sequence-defined polymers, to evaluate their potential as nucleic acid 

delivery agents and to identify promising lead structures for further optimization. The 

obtained results provide valuable information for the design of improved DNA 

transfection polymers, and to some extent also for the delivery of other nucleic acid 

derivatives (e.g. siRNA, PMOs, PNAs).  

 

4.4.2 in vitro DNA Delivery 

 
Following the generic biophysical characterization of the polymers (see Chapter 5) 

the most promising candidates were screened in vitro to identify structural motifs 

responsible for successful DNA delivery. The PAAs were used to complex a plasmid 
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encoding an EGFP-luciferase fusion protein (pEGFPLuc) and were screened on 

cultured Neuro2A murine neuroblastoma cells. Polyplexes were prepared in HBG at 

a pH of 8.3 (for a survey of the influence of pH on transfection efficiency see 

Appendix 8.5 ) using w/w ratios from 5 – 40 at a constant DNA dose of 2 µg/mL for 

transfection and were added to cells in standard serum-containing culture medium. 

After 24 h luciferase expression and metabolic activity were measured and compared 

to a LPEI control formulation.  

Due to the relatively small size (1-3 kDa) of the screened polymers even small 

property changes due to an altered polymer sequence will be reflected in transfection 

efficiency and cytotoxicity, allowing quick assessment of the potential benefit of a 

modification.  

 

4.4.3 DNA Delivery Using Non-thiol Containing Chain s and i-shapes 

To evaluate the delivery properties of PAA delivery systems Stp-chains, optionally 

modified by N-terminal acylation with fatty acids (i-shapes), were screened (see 

Figure 4.25 ). These families are characterized by a number of 2-5 Stp units in a 

polymer and, in the case of i-shapes, by fatty acid modification (myristic, oleic, 

arachidic acid). The influence of the hydrophobic modifications on the NA binding is 

demonstrated in Figure 4.24 . Polyplex stability is increased by the incorporation of 

longer chain fatty acids resulting in stabilization at N/P 6 (Figure 4.24.2+3 + 

4.24.6+7) while unmodified K-Stp5-K (#23) (Figure 4.24.1 ) shows no DNA binding 

even at polymer concentrations of N/P 20 (result not shown). The effect of 

hydrophobic modification on NA compaction is even more pronounced than the 

number of charges in the single molecule as seen by a comparison of K-Stp2-K-

MyrA2 (#9) and K-Stp4-K-MyrA2 (#21) (Figure 4.24.2 and 4.24.5). To assess delivery 

capability and toxicity of PAA chains and i-shapes the fatty acid modified sequences 

were compared to K-Stp5-K (#23) in an in vitro transfection assay. The sequence is 

comparable in Mw and amount of protonable amines to OEI800 a rather weak 

performing member of the PEI family (for a comparison see Table 4.7 ). As shown in 

Figure 4.25  even the use of relatively high polymer concentrations (w/w 20) shows 

no significant increase of luciferase expression compared to untreated cells. This can 

be explained by inferior condensation properties of the plain PAA sequences 

compared to the fatty acid modified polymers. Furthermore this is in agreement with 

results of erythrocyte leakage assays which showed no lytic activity (activity < 10% at 
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all pHs) for unmodified PAAs thereby reducing the probability of successful 

endosomal escape. These findings are additionally supported by the absence of 

toxicity in all tested concentrations (Figure 4.25 ). 

The synergistic effect of polyplex stabilization and lytic activity is reflected in the 

reporter gene expression profiles of the fatty acid modified polymers. Modification of 

a K-Stp2-K sequence with either myristic (#9) or oleic acid (#10) increases the 

transfection compared to K-Stp5-K (#23) (possessing the double amount of charges) 

tenfold at a w/w 10. Elongation of the chain by two additional Stp units results in an 

up to 100-fold increase of reporter gene expression. This is accompanied by an 

increased cytotoxicity for the myristic acid derivatives in all tested concentrations 

resulting in a metabolic activity < 10% at a w/w of 40 (Figure 4.25, #9 + #21 ). Oleic 

acid modification has a comparable effect on the transfection efficiency while the 

toxicity of the polymers in the tested concentration range is negligible (Figure 4.25, 

#10 + #22).  

 

 
Figure 4.24: DNA binding properties of the PAA chai n polymers.  0.1 µg DNA was mixed with 

polymer at N/P ratios of 6 and 12 (corresponds to a average w/w of 5/10) and analyzed by gel 

retardation assay. 1: K-Stp5-K (#23); 2: K-Stp2-K-MyrA2(#9); 3: K-Stp2-K-OleA2(#10); 4: K-Stp4-K-

MyrA2(#21); 5: K-Stp4-K-OleA2(#22); 6: K-Stp4-K-AraA2 (#50) 
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Figure. 4.25:  Reporter gene expression and metabolic activity of cells 24 h after transfection 
using i- shape type PAAs in comparision to a chain type PAA.  
using 200 ng pCMVLuc (2 µg/mL DNA) plasmid. Polyplexes were prepared at different w/w ratios and 
compared to standard LPEI polyplexes. Luciferase reporter gene expression (A) and metabolic activity 
(MTT Assay, B) are presented as mean value + SD of qui
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Reporter gene expression and metabolic activity of cells 24 h after transfection 

Neuro2A cells were transfected 
using 200 ng pCMVLuc (2 µg/mL DNA) plasmid. Polyplexes were prepared at different w/w ratios and 
compared to standard LPEI polyplexes. Luciferase reporter gene expression (A) and metabolic activity 

fold lower activity, rendering 

them useless as gene transfer reagents. Nevertheless, the data demonstrate the 

beneficial influence of hydrophobic modifications on stability and delivery using small 

Influence of a Dimerization Anchor on Transfection Efficiency  

To study the influence of disulfide bridges on polyplex stabilization a C-terminal 

Stpn-K-FA2). These 

es were initially synthesized to introduce a thiol handle for subsequent 

bioconjugation to siRNA or proteins, but attempts to prepare lytic siRNAs by direct 

modified siRNA duplex were 

lytic activity collapsed (unpublished results Christian Dohmen). 

terminal cysteine showed no significant impact on NA 

complexation a w/w of 10 was sufficient for complete retardation (Figure 4.27.1-4 ). 
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Using these dimerizable, fatty acid modified PAAs for DNA delivery had a significant 

effect on reporter gene expression as shown in Figure 4.26 . In comparison to their 

analog sequences K-Stp2-K-MyrA2 (#9) and K-Stp2-K-OleA2 (#10) introduction of a C-

terminal cysteine (#67 + #70) results in a 100-fold increased reporter gene 

expression at a w/w of 10. To evaluate the possible influence of the primary amine of 

the lysine residue on DNA delivery sequences without the additional lysine were 

screened. While the lysine had no significant effect on the oleic acid modified PAAs 

(Figure 4.26 , #70 vs. #69 ) the delivery efficiency of #68 compared to #67 was 

increased 100-fold. Interestingly the toxicity of the myristic acid modified PAAs was 

not affected in the same manner. While the metabolic activity of cells treated with the 

non-thiol containing sequence #9 dropped to 10% (w/w 40), treatment with cysteine 

modified #68 only resulted in a decrease to 50% (w/w 40).  Oleic acid modification 

had no pronounced effect on cell viability regardless of sequence composition. 

C-terminal cysteine modification seems to be a viable option to increase the delivery 

capability of short chain PAAs and has the additional benefit of a reducing cellular 

toxicity in case of myristic acid modified PAAs. Oleic acid modification on the other 

hand shows a comparable increase in gene expression but without an increased 

cytotoxicity in the tested concentrations. Myristic acid modified PAAs induce a bell 

shaped expression profile wherein the reporter gene expression rises with increasing 

concentration until the onset of toxicity impairs reporter gene expression, while oleic 

acid modified PAAs reach a more or less stable expression plateau at a w/w of 10. 

These results support the hypothesis that the PAA polymers without the ability of  

disulfide bridge formation suffer from inadequately stabilization of the resulting 

polyplexes. This problem might be overcome by either synthesizing larger polymers 

or by using other means of stabilization like in situ thiol dimerization or crosslinking.  
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Figure 4.26:  Reporter gene expression and metabolic activity of cells 24 h after transfection 
using dimerizable i- shape type PAAs. 
µg/mL DNA) plasmid. Polyplexes were prepared at different w
LPEI polyplexes. Luciferase reporter gene expression (A) and metabolic activity (MTT Assay, B) are 
presented as mean value + SD of quintuplicates
.  

 

 

Reporter gene expression and metabolic activity of cells 24 h after transfection 
shape type PAAs. Neuro2A cells were transfected using 200 ng pCMVLuc (2 

µg/mL DNA) plasmid. Polyplexes were prepared at different w/w ratios and compared to standard 
LPEI polyplexes. Luciferase reporter gene expression (A) and metabolic activity (MTT Assay, B) are 
presented as mean value + SD of quintuplicates 
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Figure 4.27: Comparison of the gel retardation of D NA of the different PAA families.  All polymers 
were tested at a w/w of 10. Polymers showing no complete retardation at that concentration are shown 
in increasing concentrations. Picture 1 – 4 dimerizing i-shapes (#67, #68, #70, #69); Picture 5 – 7 i-
shape family (#45, #46, #51), w/w 5,10,20; Picture 8 – 11 t-shape family (#74, #49, #78, #82); 12 – 14 
crosslinking chains family (#72, #76, #80), w/w 5, 10  
 

4.4.5 DNA Delivery Using Crosslinking i-Shape Struc tures 

By insertion of a second cysteine into the sequence (HO-C-Stp3-C-K-FA2) the 

polymers gain the ability of in situ polymerization allowing formation of bigger 

polymeric structures. It was hypothesized that the introduction of crosslinking would 

be beneficial for NA binding and could further stabilize an already formed complex by 

crosslinking. Gel retardation assay (Figure 4.27, #5-7 ) shows that in comparison with 

single cysteine modified PAAs (Figure 4.27, #1-4 ) the NA complexation is improved 

but still heavily dependent on hydrophobic modifications (Figure 4.27.7 ). 
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Figure 4.28:  Reporter gene expression and metabolic activity of cells 24 h after transfection 

using crosslinking i- shape type PAAs. 

µg/mL DNA) plasmid. Polyplexes were prepared at different w/w ratios and compa

LPEI polyplexes. Luciferase reporter gene expression (A) and metabolic activity (MTT Assay, B) are 

presented as mean value + SD of quintuplicates. 
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4.4.6 DNA Delivery Using PAAs With t-Shape Topology  

By synthesizing a set of symmetrical i-shape polymers with a central hydrophobic 

domain (t-Shapes) the influence of parameters like the amount of protonable groups 

per molecule, hydrophilic-lipophilic ratio (HLR) of the molecule and influence of the 

hydrophobic modification on larger PAA structures were studied.  

Figure 4.24  compares the binding capabilities of di-oleoyl modified t-shapes (#8-11) 

with non hydrophobically modified linear chains with terminal cysteines (#12-14). The 

oleoyl t-Shape/DNA complexes are strong enough to prevent migration in the gel at a 

w/w of 10 while the interaction of the unmodified chains at the same w/w is not strong 

enough to prevent NA migration. Figure 4.29  shows the transfection efficiency and 

cytotoxic potential of oleoyl t-shapes with differing numbers of Stp building blocks per 

molecule. All tested polymers were synthesized with a dual oleic acid motif at the 

central lysine, as the oleic acid modification was the most effective modification in 

terms of toxicity and efficiency in the previous experiments. The balance between 

hydrophobic and cationic domain has a significant impact on efficacy as seen by 

comparing the transfection efficiency of #74 and #49. While increasing 

concentrations of #74 lead to reporter gene expression almost reaching the LPEI 

control the use of a polymer containing two additional Stp units results in an early, 

only moderate plateau of activity.  The introduction of additional Stp units didn’t 

improve their overall performance, regardless of the tested concentrations the 

reporter gene expression was always tenfold lower than the LPEI control. The results 

indicate a fine balance between hydrophobicity and hydrophilicity as exemplified by 

#74. #74 has the highest HLR in the screen (0.341, Table 4.7 ) and exhibits the 

strongest activity in terms of expression level. All other t-shape derivatives cannot 

compete in terms of expression level and reach their maximum level at lower 

concentrations of w/w 5. 

To study the influence of the hydrophobic domain onto the efficiency of the t-shape 

polymers in more detail, a second set of polymers without hydrophobic modification 

(crosslinking chains) was synthesized and screened (Figure 4.30 ). Here the trend 

was reversed #72, a structural analogue of #74 (2 Stp-units) did not show any 

reporter gene expression while an increase in Stp-building blocks per molecule did 

result in an increasing gene expression (#76, #80). Compared to the gene 

expression levels of the oleoyl t-shapes these polymers have the disadvantage of 

needing rather high polymer concentrations to achieve a comparable transfection 
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efficiency. The dual fatty acid motif can increase the delivery efficiency but the 

influence of the modification diminishes with an increasing number of Stp

backbone. This supports earlier findings that the hydrophobic modification is more 

effective on smaller PAAs and can increase their efficiency dramatically, while an 

increasing amount of Stp units in a fatty acid

improved, but less efficient delivery.

 

 

Figure 4.29:  Reporter gene expression and metabolic activity of cells 24 h after transfection 

using t-shape PAAs. Neuro2A cells were transfected using 200 ng pCMVLuc (2 µg/mL DNA) 

plasmid. Polyplexes were prepared at different w/w ratios and compared to standard LPEI polyplexes. 

Luciferase reporter gene expression (A) and metabolic activity (MTT Assay, B) are presented as mean 

value + SD of quintuplicates.  

efficiency. The dual fatty acid motif can increase the delivery efficiency but the 

influence of the modification diminishes with an increasing number of Stp

backbone. This supports earlier findings that the hydrophobic modification is more 

effective on smaller PAAs and can increase their efficiency dramatically, while an 

increasing amount of Stp units in a fatty acid-free polymer also results in 

improved, but less efficient delivery. 

Reporter gene expression and metabolic activity of cells 24 h after transfection 
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red at different w/w ratios and compared to standard LPEI polyplexes. 

Luciferase reporter gene expression (A) and metabolic activity (MTT Assay, B) are presented as mean 
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Figure 4.30:  Reporter gene expression and metabolic a

using non- hydrophobically modified t

pCMVLuc (2 µg/mL DNA) plasmid. Polyplexes were prepared at different w/w ratios and compared to 

standard LPEI polyplexes. Luciferase reporter gene expression (A) and metabolic activity (MTT Assay, 

B) are presented as mean value + SD of quintuplicates. 
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# Sequence  Mw Prot. 
Amines  

HLR Charge density 
[Da/charge]  

9 K-Stp2-K-MyrA2 1237,8 7 0,340 177 
10 K-Stp2-K-OleA2 1346,0 7 0,393 192 
21 K-Stp4-K-MyrA2 1780,5 13 0,236 137 
22 K-Stp4-K-OleA2 1888,7 13 0,280 145 
23 K-Stp5-K 1631,2 18 - 91 
45 C-Stp3-C-K-MyrA2 1587,3 9 0,265 176 
46 C-Stp3-C-K-OleA2 1695,4 9 0,312 188 
49 C-Stp2-K-(K-OleA2)-Stp2-C 2095,0 13 0,252 161 
51 C-Stp3-C-K 1166,6 11 - 106 
67 C-Stp2-K-MyrA2 1212,8 6 0,347 202 
68 C-K-Stp2-K-MyrA2 1340,9 7 0,314 192 
69 C-K-Stp2-K-OleA2 1449,1 7 0,365 207 
70 C-Stp2-K-OleicA2 1320,9 6 0,400 220 
72 C-Stp1-K(K)-Stp1-C 1023,4 9 - 114 
74 C-Stp1-K(K-OleA2)-Stp1-C 1552,3 7 0,341 222 
76 C-Stp3-K(K)-Stp3-C 2108,8 19 - 111 
78 C-Stp3-K(K-OleA2)-Stp3-C 2637,7 17 0,201 155 
80 C-Stp4-K(K)-Stp4-C 2653,5 27 - 98 
82 C-Stp4-K(K-OleA2)-Stp4-C 3182,4 25 0,166 127 

Literature examples      
OEI800 800 ~ 19  42 

LPEI22 22000 ~ 500  42 

PAMAM G3  6909,0 62  111 
Table 4.7:  PAA Sequences used in DNA transfections (synthesize d by Christina Troiber, master 
thesis, Wagner lab) in comparison to commonly used transfection reagents. 
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5 Discussion 

 

5.1 Poly(I:C) Mediated Tumor Killing by LPEI-PEG-EG F Complexation 

A virally infected host organism reacts with multiple innate and acquired defense 

mechanisms to avoid against further virus spread, including humoral and cellular 

immune responses against proteins and viral particles, and also responses against 

viral nucleic acid intermediates. A series of toll-like receptors (TLRs) at the cell 

surface and in endosomal vesicles and also cytosolic factors recognize viral nucleic 

acids which have different properties as compared to endogenous cellular RNA and 

DNA. This recognition often triggers inflammatory and interferon responses, shut-

down of protein production and suicide of infected cells by apoptosis. 

Synthetic viral nucleic acid analogs have been therapeutically applied as 

immunostimulatory and cytotoxic DNAs and RNAs175-178. poly(I:C) and analogs 

thereof129,179-181  mimic double-stranded RNA of virus-infected cells which via 

endosomal toll-like receptor TLR3 and cytosolic helicase mda-5 stimulation activate 

different pro-apoptotic processes simultaneously. This makes poly(I:C) an interesting 

tool for cancer treatment because the differently triggered host cell killing 

mechanisms reduce the probability of developing acquired chemoresistence; they 

lead to cell death, and the additional expression of anti-proliferative interferons and 

other cytokines and chemokines inhibits growth of neighbouring cancer cells that 

have not been “infected” with poly(I:C)102. 

Untargeted poly(I:C) and analogs have already been applied as adjuvants in cancer-

directed human immunotherapy studies, with some limited success but by far not all 

applications180-182. For example, poly(I:C) stabilized by polylysine and 

carboxymethylcellulose applied intramuscularly 3 times a week for 4 week as a single 

agent therapy did not improve progression-free survival of anaplastic glioma patients 

in a phase II study181. To fully exploit the therapeutic potential of both immune 

stimulation and tumor cell killing, poly(I:C) has to be delivered intracellularly into 

endosomes and also the cytosol, in a tumor-targeted fashion. Obviously, delivery 

presents the major bottleneck. Both liposomal and polymer-based strategies have 

been developed for poly(I:C). These include MHC antibody-targeted or pH-sensitive 

liposomes183-184, lipoplexes129,185, nontargeted polymer formulations180  or, as outlined 

in our previous work, EGF receptor-targeted poly(I:C) polyplexes102. In the latter 

paper Shir et al. demonstrated killing of EGFR overexpressing human tumors 
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including glioblastoma upon local administration. Polyplexes consisted of poly(I:C) 

complexed with either one or two branched polyethylenimine (brPEI) conjugates 

comprising recombinant EGF as targeting ligand and PEG as shielding 

domain109,122,186-187, and synthetic melittin peptide as endosomal release agent. Both 

targeting and endosomal domain was found to be essential for the observed 

biological activity102.  

The current work has been based on the task to develop an improved PEI-based 

carrier for poly(I:C) comprising all the mentioned EGFR targeting, PEG shielding, and 

endosomal release functions, but providing them within a polymer conjugate of 

reduced chemical complexity. This was achieved in the following way. At first, the 

chemically poorly defined brPEI was replaced by the analogous linear 22 kDa 

polymer LPEI122,188 which can be synthesized in GMP compatible form125 and has 

already been tested in human clinical trials for DNA delivery. Due to its higher 

inherent potency over brPEI127,131, plain LPEI actually mediated in vitro cell killing 

independent of receptor targeting or endosomolytic melittin (Figure 4.2 ). This effect 

however was accompanied by an unspecific, non-poly(I:C) related cytotoxicity at 

higher polyplex doses, as demonstrated with poly(I) control polyplexes.  

Secondly, LPEI was conjugated with PEG molecules of different molecular weight (2, 

5 kDa and 10 kDa). PEGylation strongly reduced the cytotoxicity but also poly(I:C) 

based cell killing. For 10 kDa PEG and 5 kDa PEG the activity was lost, for 2 kDa 

PEG only a hint of activity was obtained (Figure 4.2 ). Finally, incorporation of EGF 

as receptor targeting ligand restored activity for the LPEI-PEG2kDa conjugate but not 

LPEI-PEG10kDa conjugate (Figure 4.2 ). The LPEI-PEG5kDa mediated moderate 

activity at a higher dose. Such a “PEG dilemma” (indirect correlation of shielding and 

efficacy) is consistent with many previous observations by several 

laboratories132,135,189-191 and might be explained by the fact that for endosomal 

membrane disruption stable PEG-shielding is counter-productive55,137,192. Apparently 

the window between shielding / targeting specificity and efficient intracellular delivery 

is narrow. 

The newly developed LPEI-PEG2kDa-EGF conjugate exhibits the key features of the 

old tetraconjugate, namely higher potency on EGFR overexpressing U87MGwtEGFR 

gliomas as compared to low-expressing U87MG cells (Figure 4.3 ). An approximately 

2.5-fold improved therapeutic efficiency was observed in vitro in comparison to the 

old conjugate on U87MGwtEGFR gliomas (Figure 4.3 ). An efficient and specific 
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poly(I:C) mediated cell killing was also obtained with A431 cells (Figure 4.5 ). These 

epidermoid carcinoma cells express particularly high levels of EGF receptor. EGFR 

density is described with 2x106/cell, higher than U87MGwtEGFR (1x106/cell) and 

much higher than U87MG (1x105/cell)193-194. Most encouraging, systemic intravenous 

administration of poly(I:C) polyplexes were able to strongly retard growth of distant 

subcutaneous A431 tumors in vivo. The treatment was well tolerated by the mice. 

Once again, the effect was dependent on poly(I:C) as key component of the 

formulation. Polyplexes made from the novel conjugates showed the best therapeutic 

effect (Figure 4.6 ). 

 

5.2 Development of a Synthesis Platform for the Pro duction of Defined 

Polyamidoamines  

 

The development of new strategies for polymer synthesis is a key issue in the field of 

polymeric delivery. The maturation of the already established systems over the last 

years resulted in the synthesis of dynamic and increasingly complex systems. But, 

despite the progress in the development of carrier systems, most of the used 

polymers continue to be ill-defined due to their synthesis by classical random 

polymerization methods. Precise incorporation of additional functional domains is not 

possible, thereby limiting further development of polymeric carriers. 

Aim of this study was the development of a solid-phase synthesis platform allowing 

the synthesis of precise oligoethylenimine-based polymers and integration of the 

platform into a parallel synthesis setting. In an attempt to use an already published 

alternating condensation strategy100 to generate an oligoethylenimine based 

polyamidoamine library, the corresponding boc-protected oligoethylenimine building 

blocks were synthesized.  But use of these protected oligoethylenimine building 

blocks together with the published synthesis protocols led to extensive crosslinking of 

PAA fragments on the resin, severely impeding the use of the synthetic strategy. The 

alternating condensation strategy is also limited by the need for complex in-reaction 

monitoring and the extensive MS analysis which has to be performed for every new 

monomer combination. These findings and concerns regarding limitations of the 

synthetic versatility of the strategy led us to an adaption of the fmoc/tBu strategy195-

196 for the generation of oligoethylenimine-based libraries. 
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Use of a polyamino acid for chain elongation circumvents the critical on-resin 

activation step and through utilization of fmoc-protection for the terminal amine the 

formation of crosslinking products during the solid-phase synthesis is effectively 

omitted. 16-Amino-4-oxo-5,8,11,14-tetraazahexadecanoic acid (Stp) was chosen as 

model building block due to the convenient access to large amounts of the boc-

protected precursor and its advantageous properties regarding buffering capabilities 

and charge density. The synthesized fmoc-Stp(boc3)-OH building block is fully 

compatible to standard automated fmoc solid-phase synthesis. The synthesis of pure 

PAAs and PAA-Peptide chimeras by standard SPS protocols showed acceptable 

purity of raw product and full compatibility to normal peptide synthesis. 

To conclude, a versatile synthetic route for the fast synthesis of defined 

oligoethylenimine-based PAAs was developed. By using the well established 

fmoc/tBu SPPS methodology control over every monomer is possible, thereby 

introducing molecular programmability into the design of delivery vectors. The full 

compatibility to standard fmoc/tBu peptide synthesis gives access to the vast number 

of building blocks originally developed for peptide synthesis, allowing introduction of 

targeting moieties, lytic domains or PEGylation. By combining the synthetic 

possibilities of the platform with already described dynamic modules the generation 

of new classes of bio-responsive, dynamic vectors is possible. 

 

5.3 Design and Biophysical Evaluation of a PAA-Libr ary for Nucleic Acid 

Delivery 

 

Since the formulation of the gene therapy concept in the seventies of the last 

century15 the polymeric nucleic acid delivery field maturated considerably. But 

despite the progress in carrier development most of the presently established 

polymeric carriers are only used in diagnostic settings or for target validation. So far 

viral vector systems dominate the clinical field of gene therapy71 but a series of 

setbacks shed light on inherent safety problems of viral vectors, rendering polymer-

based vectors a viable, but until now less efficient alternative. In spite of manifold 

opportunities for new, effective carrier systems the development of polymeric 

transfection systems is still characterized by rather low throughput and molecular 

precision. 
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The definition of a minimal domain construction set can be achieved by stripping the 

polymeric delivery system down to its essential parts and using it as template for 

solid-phase assisted library generation, followed by evaluation in biophysical assays. 

These domains can subsequently be optimized and used to build new carriers with 

programmed properties. For a first proof of concept a simple domain model was used 

to restrict the design space. By limiting the polymer domains to 4 easily controllable 

structural domains (Table 4.5 ) and incorporation of dynamic stabilization we aimed at 

a simple, flexible system that allows further optimization of these rather primitive 

vectors. To construct useful structure-function relationships we defined two key 

properties (lytic activity, NA binding) as essential biophysical screening parameters 

for a systematical evaluation of the library. 

Poor endosomal escape significantly limits the efficiency of polymeric carriers. 

Incorporation of either lytic peptides197 or lipophilic modifications40 for increased 

membrane interactions  are often employed to increase the endosomal escape. Initial 

screens of unmodified PAAs showed that the Stp-backbone has no intrinsic lytic 

potential and is probably too small for a distinct proton sponge effect. Modification of 

the Stp backbones with hydrophobic domains resulted in an increased, controllable 

lytic activity (Figure 4.18) .  In contrast to the only minimal lytic activity of single fatty 

acid modified PAAs the introduction of a second fatty acid led to a significantly 

increased lytic activity which can be controlled by type of fatty acid, length of PAA 

molecule and thiol content. The pH-specificity of the lytic activity can be controlled by 

careful selection of the hydrophobic modification. The impact of specific lytic activity 

on the in vitro performance of an NA formulation is exemplified in Figure 4.19  

demonstrating that unspecific lytic activity contributes to in vitro toxicity.  

The second essential property for a nucleic acid delivery system is the ability to bind 

to the NA payload and to protect it during the transport to the target cell. As the 

accessible design space of the solid-phase synthesis platform is too big for an 

exhaustive evaluation we aimed on the fast identification of minimal binding motifs for 

pDNA and siRNA. The best hits should then serve as lead structures for further 

delivery system development. As expected, unmodified PAAs (Stpn < 6) were not 

able to bind effectively enough to either pDNA or siRNA to prevent migration of NA in 

a gel-shift assay. To identify a minimal binding motif for hydrophobically modified 

PAAs a K-Stp2-K-FA2 template was systematically acylated with different fatty acids. 

While introduction of one FA into the template already enabled pDNA binding at high 
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N/Ps siRNA complexation was not influenced significantly. Use of two FA acids 

resulted in complete retardation at low N/Ps of siRNA and pDNA if FAs with a chain 

length > 8 were used. An exemplary comparison of different classes of the polymers 

in siRNA/DNA delivery (Figure 4.23 ) shows the synergistic effects of the different 

domains. The most effective polymers are characterized by a hydrophobic domain 

containing fatty acids with a chain length > C8, at least two Stp units and thiol 

anchors for stabilization of the resulting polyplexes.  

To conclude, parallel synthesis of a modular PAA library followed by biophysical 

characterization allowed the construction of first PAA SAR models beneficial for the 

rational development of Stp-based NA delivery vectors. By restricting the library to 

small polymers with only little variance in their modules it was possible to identify 

efficient delivery vectors out of the different families. Thus useful domains for further 

development of programmed polymeric delivery systems could be identified. 

 

5.4 Evaluation of Different Stp-based PAA Families for  in vitro DNA Delivery 

Better defined, modular polymer systems with a diverse and easily accessible design 

space can open new possibilities for the future development of carrier systems for 

NA delivery. We used a solid-phase assisted, parallel synthesis approach to 

generate a small library of defined Stp-Polymers, modified with fatty acids and amino 

acids. By screening of the library for desirable biophysical characteristics and 

subsequent in vitro evaluation of their DNA delivery capabilities we wanted to 

demonstrate the potential of modular designed polymers for DNA delivery. 

Comparison of four structural different families (cysteine free polymers, chains, i-

shapes and t-shapes) regarding DNA binding and transfection efficiency resulted in 

first SARs for Stp-polymers. Figures 4.24 and 4.27 show the influence of 

hydrophobic modifications on the NA binding properties of the PAA systems. Plain 

Stp-sequences did not condense DNA while polymers containing a dual fatty acid 

motif (chain length > C8) strongly bound DNA at N/Ps as low as 6. Introduction of two 

cysteines into linear Stp-sequences for lateral polyplex stabilization via disulfide 

bridges did not show a comparable impact on NA binding in the gel-shift assay. Even 

at N/Ps as high as 18, cysteine modified Stp-chains were not able to condense the 

pDNA completely. Comparison of both stabilization concepts under in vitro conditions 

showed that incorporation of the dual fatty acid motif results in an up to 100-fold 
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increase of luciferase signal while the cysteine modification results in a 1000-fold 

increase. The results demonstrate that hydrophobic modification of the polymers 

using different FAs has a significant impact on NA complexation. Good binding alone, 

however, does not result in effective transfection. Cysteine containing polymers did 

not condense DNA as good as the hydrophobically modified polymers, but were able 

to cause effective pDNA-delivery under in vitro conditions.  

Combination of hydrophobic and cysteine modification led to the most effective 

polymer families in terms of binding and in vitro performance. Systematic variation of 

HLR, type of incorporated fatty acid and Mw of the polymers showed that hydrophobic 

modification is most beneficial for small polymers (Figure 4.29 ) and is the most 

important contributor to cytotoxicity. While the overall toxicity of the polymers is quite 

low modification with myristyl residues resulted in significant in vitro toxicity, severely 

limiting the use of this modification in the design of transfection polymers. An 

increasing number of Stp units in the fatty acid modified polymers leads to no further 

improvement of transfection efficiency. The transfection efficiency of polymers 

without fatty acid modification is strongly dependent on the number of Stp-units per 

molecule. Approximately 6 Stp-units per molecule are required for an activity 

approaching the LPEI control. Nevertheless, their activity never reaches the level of 

the best performing i-shapes and t-shapes.    

To sum up, we demonstrated that modular design and solid-phase assisted synthesis 

of Stp-based polymers allows the synthesis of effective delivery systems. We 

identified two classes of Stp-polymers which were effective in DNA delivery and can 

serve as template for further development. Due to the variable, modular composition 

and the already effective delivery, additional domains like targeting ligands or 

shielding domains can be incorporated for further optimization of the systems. 
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6 Summary 

 

Polymeric nucleic acid delivery systems have great relevance in the therapeutic 

delivery of nucleic acids. But despite enormous advances over the last 20 years 

nucleic acid therapies are far from being a standard option in treatment. One of the 

biggest obstacles to development of polymeric carriers is the lack of precise design 

rules and rational design platforms. The almost exclusive use of polydisperse 

backbones that are modified with additional functional domains, led to increasingly 

complex, multi-domain polymers requiring complex synthesis routes and 

characterization efforts.  

By the redesign of an efficient, but complex, modular polymeric carrier for the 

poly(I:C) treatment of glioblastoma we were able to show that decreased complexity 

can be beneficial in terms of synthesis and efficacy. The new, LPEI-based 

triconjugate consisting of targeting ligand, PEG-spacer and LPEI-backbone allows 

the use of GMP grade materials for a more controlled production process amenable 

to scale-up and shows a significantly improved performance in an in vivo setting. 

Nevertheless, this approach is still biased by the inherent heterogeneity of the used 

polymeric reactants. This complicates rational conjugate design and exact structure-

activity-relationship studies. 

As a first step towards the synthesis of programmable polymeric delivery systems, 

novel polyamino acid building blocks and protocols for the solid-phase synthesis of 

Stp-polymers were developed. By applying solid-phase synthesis to the production of 

oligoethylenimine based delivery systems, well defined polymers with programmable 

properties were synthesized. The solid-phase methodology enables rapid parallel 

synthesis of PAAs for nucleic acid delivery, allowing library construction for a quick 

survey of their delivery potential. 

The new synthesis platform was used to construct a small library of Stp-based 

polymers comprising domains with differing properties regarding hydrophobicity, 

charge density or disulfide formation. The library was restricted to a small Mw range 

to evaluate the influence of the different domains on core parameters like nucleic 

acid compaction or lytic activity towards cell membranes. The biophysical screening 

identified 2 different families (i-shape, t-shape) with interesting properties and siRNA 

/DNA delivery potential demonstrating the synergistic effect of the different domains 
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on delivery efficiency. Screening of the library for in vitro DNA delivery identified a set 

of lead structures able to compete with LPEI.  

The presented carrier systems are still limited in terms of efficiency and application in 

therapeutic settings. The polymers developed in this work, however, can be seen as 

first model systems to increase the knowledge about the rational design of non-viral 

vectors. The platform itself is a tool allowing the design of cationic polymers with 

molecular precision. Future development will focus on new building blocks, functional 

domains and further screening to identify potent sequences. Introduction of other 

functional domains like targeting ligands, shielding or nuclear localization sequences 

could allow the design of true PPDS, leading to the elucidation of new delivery 

bottlenecks and potential therapeutic applications. 
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8 Appendix 

 

8.1 List of Used Polymers 

# Sequence Formula Mw protonable 
amines Type 

1 K-Stp1-K C24H51N9O5 545,72 6 chain 
3 K-Stp1-K-CapA2 C40H79N9O7 798,11 4 i-shape 
4 K-Stp1-K-MyrA2 C52H103N9O7 966,43 4 i-shape 
5 K-Stp1-K-OleA2 C60H115N9O7 1074,61 4 i-shape 
6 K-Stp2-K C36H76N14O7 817,08 9 chain 
8 K-Stp2-K-CapA2 C52H104N14O9 1069,47 7 i-shape 
9 K-Stp2-K-MyrA2 C64H128N14O9 1237,79 7 i-shape 

10 K-Stp2-K-OleA2 C72H140N14O9 1345,97 7 i-shape 
18 K-Stp4-K C60H126N24O11 1359,80 15 chain 
20 K-Stp4-K-CapA2 C76H154N24O13 1612,19 13 i-shape 
21 K-Stp4-K-MyrA2 C88H178N24O13 1780,51 13 i-shape 
22 K-Stp4-K-OleA2 C96H190N24O13 1888,69 13 i-shape 
23 K-Stp5-K C72H151N29O13 1631,16 18 chain 
25 K-Stp5-K-AraA2 C112H227N29O15 2220,19 16 i-shape 
26 K-Stp5-K-MyrA2 C100H203N29O15 2051,87 16 i-shape 
27 K-Stp5-K-OleA2 C108H215N29O15 2160,05 16 i-shape 
30 C-Stp1-K-CapA2 C37H72N8O7S 773,08 3 i-shape 
31 C-Stp1-K-SteA2 C57H112N8O7S 1053,61 3 i-shape 
34 K-Stp2-ButA1 C34H70N12O7 759,00 7 i-shape 
35 K-Stp2-CapA1 C38H78N12O7 815,10 7 i-shape 
36 K-Stp2-MyrA1 C44H90N12O7 899,26 7 i-shape 
37 K-Stp2-OleA1 C48H96N12O7 953,35 7 i-shape 
38 K-Stp1-ButA1 C22H45N7O5 487,64 4 i-shape 
39 K-Stp1-CapA1 C26H53N7O5 543,74 4 i-shape 
40 K-Stp1-MyrA1 C32H65N7O5 627,90 4 i-shape 
41 K-Stp1-OleA1 C36H71N7O5 681,99 4 i-shape 
45 C-Stp3-C-K-MyrA2 C76H151N19O12S2 1587,26 9 i-shape 
46 C-Stp3-C-K-OleA2 C84H163N19O12S2 1695,44 9 i-shape 
48 C-Stp2-K-(K-MyrA2)-Stp2-C C94H188N26O15S2 1986,79 13 t-shape 
49 C-Stp2-K-(K-OleA2)-Stp2-C C102H200N26O15S2 2094,98 13 t-shape 
50 K-Stp4-K-ArA2 C100H202N24O13 1948,83 13 i-shape 
51 C-Stp3-C-K C48H99N19O10S2 1166,55 11 chain 
56 C-Stp2-K(CapA)-Stp2-C C68H138N24O13S2 1564,11 13 t-shape 
57 C-Stp2-K(MyrA)-Stp2-C C74H150N24O13S2 1648,27 13 t-shape 
58 C-Stp2-K(OleA)-Stp2-C C78H156N24O13S2 1702,36 13 t-shape 
59 C-Stp2-K(ArA)-Stp2-C C80H162N24O13S2 1732,43 13 t-shape 
62 C-Stp2-K(K-ArA2)-Stp2-C C106H212N26O15S2 2155,11 13 t-shape 
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66 C-Stp2-K(K-CapA2)Stp2-C C82H164N26O15S2 1818,47 13 t-shape 
67 C-Stp2-K-MyrA2 C61H121N13O9S 1212,76 6 i-shape 
68 C-K-Stp2-K-MyrA2 C67H133N15O10S 1340,93 7 i-shape 
69 C-K-Stp2-K-OleA2 C75H145N15O10S 1449,11 7 i-shape 
70 C-Stp2-K-OleA2 C69H133N13O9S 1320,94 6 i-shape 
71 C-Stp1-K(K-MyrA2)-Stp1-C C70H138N16O11S2 1444,07 7 t-shape 
72 C-Stp1-K(K)-Stp1-C C42H86N16O9S2 1023,36 9 chain 
73 C-Stp1-K(K-SteA2)-Stp1-C C78H154N16O11S2 1556,29 7 t-shape 
74 C-Stp1-K(K-OleA2)-Stp1-C C78H150N16O11S2 1552,26 7 t-shape 
75 C-Stp3-K(K-MyrA2)-Stp3-C C118H238N36O19S2 2529,51 19 t-shape 
76 C-Stp3-K(K)-Stp3-C C90H186N36O17S2 2108,80 19 chain 
77 C-Stp3-K(K-SteA2)-Stp3-C C126H254N36O19S2 2641,73 17 t-shape 
78 C-Stp3-K(K-OleA2)-Stp3-C C126H250N36O19S2 2637,69 17 t-shape 
79 C-Stp4-K(K-MyrA2)-Stp4-C C142H288N46O23S2 3072,23 25 t-shape 
80 C-Stp4-K(K)-Stp4-C C112H234N48O21S2 2653,50 27 chain 
81 C-Stp4-K(K-SteA2)-Stp4-C C150H304N46O23S2 3184,44 25 t-shape 
82 C-Stp4-K(K-OleA2)-Stp4-C C148H298N48O23S2 3182,39 25 t-shape 
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8.2 Abbreviations 

 

Abbreviation  Meaning 
  
2-ClTrt 2-Chlorotrityl 
9-BBN 9-Borabicyclo[3.3.1]nonane 
AA Amino acid 
ACN Acetonitrile 
asODN Antisense oligodeoxynucleotide 
boc tert-Butyloxycarbonyl 
brPEI Branched polyethylenimine 
CMV Cytomegalovirus 
Da Dalton 
DCM Dichloromethane 
DCU Dicyclohexylurea 
DCVC Dry column vacuum chromatography 
Dde N-(1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl) 
DIPEA Diisopropylethylamine 
DMEM Dulbecco’s modified eagle’s medium 
DMF Dimethylformamide 
DMSO Dimethyl sulfoxide 
DNA Deoxyribonucleic acid 
DOPE Dioleoyl-phosphatidylethanolamine 
DOTAP N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium 
dsRNA Double-stranded ribonucleic acid 
DTNB Dithionitrobenzoic acid 
DTT DL-Dithiothreitol 
ECM Extracellular matrix 
EDT Ethanedithiol 
EDTA Ethylenediamine tetraacetic acid 
EGF Epithelial growth factor 
eGFP Enhanced green fluorescent protein 
EMEA European medicines agency 
EPR Enhanced permeability and retention 
ESI-MS Electrospray ionization mass spectrometry 
EtOH Ethanol 
FAB-MS Fast atom bombardment mass spectrometry 
FCS Fetal calf serum 
fmoc/tBu 9-Fluorenylmethyloxycarbonyl/tert-Butyl 
fmoc-AA-OH Fmoc-amino acid 
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FRET Foerster resonance energy transfer 
GMP Good manufacturing practice 
HBG HEPES buffered glucose 
HEPES N-(2-hydroethyl) piperazine-N‘-(2-ethansulfonic acid) 
HLR Hydrophilic-hydrophobic ratio 
HOBt 1-Hydroxybenzotriazole 
HPLC High-performance liquid chromatography 
HV High vacuum 
IEX Ion-exchange 
LPEI Linear polyethylenimine 
Luc Luciferase 
MALDI Matrix assisted laser desorption ionization mass 

spectrometry 
Mel Melittin 
MeOH Methanol 
mRNA Messenger RNA 
MS Mass spectrometry 
MTBE tert-Butyl methylether 
MTT Methylthiazolyldiphenyl-tetrazolium bromide 
Mw Molecular weight 
N/P ratio Number of protonable nitrogens to phosphates 
NA Nucleic acid 
NHS N-Hydroxysuccinimide 
NLS Nuclear localization sequence 
NMR Nuclear magnetic resonance 
NPC Nuclear pore complex 
OEI Oligoethylenimine 
ON Oligonucleotide 
OPSS ortho-Pyridyldisulfide 
PAA Polyamidoamine 
PAE Poly(ß-amino ester) 
PAMAM Polyamidoamine (in dendrimers nomenclature) 
pDNA Plasmid DNA 
PDP (2-pyridyldithio)-propionoyl modified 
PEG Polyethylene glycol 
pEGFPLuc Plasmid encoding a EGFP-Luciferase fusion 
PEI Polyethylenimine 
PEOZ Poly(2-ethyl-2-oxazoline) 
Pip Piperidine 
PMO Phosphorodiamidate morpholino oligo 
Poly(I) Polyinosinic acid 
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poly(I:C) Polyinosinic:polycytidylic acid duplex 

PPDS Programmable polymeric delivery system 
PS Polystyrole 
PyBOP® Benzotriazol-1-yl-oxytripyrrolidinophosphonium 

hexafluorophosphate 
RBF Round-bottom flask 
RISC RNA-induced silencing complex 
RLU Relative light units 
RNA Ribonucleic acid 
RNAi RNA interference 
RP-HPLC Reversed-Phase High-performance liquid chromatography 
RT Room temperature 
SAR Structure-activity relationship 
SEC Size-exclusion chromatography 
siRNA Small inhibitory RNA 
SPDP N-Succinimidyl-3-(2-pyridyldithio)propionate 
Stp 16-Amino-4-oxo-5,8,11,14-tetraazahexadecanoic acid 
Succ Succinyl 
TBE Tris-Boric acid-EDTA Buffer 
TEA Triethylamine 
TFA Trifluoroacetic acid 
TfaEt Ethyl trifluoroacetate 
THF Tetrahydrofuran 
TIS Triisopropylsilane 
TLC Thin layer chromatography 
TLR Toll-like receptor 
TNBS Trinitrobenzenesulfonic acid 
UV-VIS Ultraviolett-Visible spectroscopy 
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8.3 Buffer List 

Buffer Ingredient  

DMEM LG 

Biochrom DMEM medium powder 

NaHCO3 

FCS 

Glucose monohydrate 

Penicillin 

Streptomycin 

Stable glutamine  

Adjusted to pH 7.4 

10.15 g/L 

3.7 g/L 

10% 

10 g 

1% 

1% 

1% 

 

DNA Loading Buffer 

0.5 M EDTA (pH 8.0) solution 

Glycerine 

MilliQ water 

Bromophenol blue 

2.4 mL 

12.0 mL 

5.6 mL 

40 mg 

DTNB-Stock Solution 
DTNB 

MilliQ water 

4 mg 

1 mL 

Ellman’s Buffer 

Na2HPO4 (0.2 M) 

EDTA disodium salt dihydrate 

Adjusted to pH 8.0 

28.4 g/L 

372 mg/L 

 

HBG 

HEPES (20 mM) 

Glucose monohydrate 

MilliQ 

pH adjusted to 7.1 

4.76 g/L 

50 g/L 

ad 1000 mL 

 

LAR 

1 M glycylglycine solution (pH 8.0) 

100 mM MgCl2 solution 

0.5 M EDTA solution (pH 8.0) 

DTT 

ATP 

Coenzyme A 

MilliQ water 

pH adjusted to 8.0 

Luciferine-Solution 

2 mL (20 mM) 

1 mL (1 mM) 

20 µL (0.1 mM) 

50.8 mg (3.2 mM) 

27.8 mg (0.55 mM) 

21.3 mg (0.27 mM) 

Ad 100 mL 

 

Ad 0.5 mM 

PBS 

KCl 

KH2PO4 

NaCl 

Anhydrous Na2PO4 

MilliQ water 

Adjusted to pH 7.4 

0.2 g 

0.24 g 

8.0 g 

1.15 g 

Ad 1000 mL 

 

RNA Loading Buffer 

0.5 M EDTA (pH 8.0) 

Glycerine 

MilliQ water 

Xylene cyanol 

2.4 mL 

12.0 mL 

5.6 mL 

40 mg 

TBE Buffer 

Trizma base 

Boric acid 

EDTA disodium salt dehydrate 

MilliQ water 

10.8 g 

5.5 g 

0.75 g 

Ad 1000 mL 
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8.4 Supporting Information Chapter 4.1

PEI/poly(I:C) binding 

Figure S1 . Binding of poly(I:C) to PEI as analyzed by agarose gel shift assay.
poly(I:C) were complexed using either LPEI or brPEI and analyzed by gel shift assay. Both polymer 
backbones were able to efficiently complex poly(I:C) at a minimal N/

 

Heparin Dissociation Assay

Figure S2:  Binding of poly(I:C) to PEI conjugates as analyzed by heparin dissociation and 
agarose gel shift assay.  800 ng poly(I:C) were complexed using indicated polymers at N/P ratio of 8 
and treated with indicated amounts of the polyanion heparin, resulting in partial release of poly(I:C) at 
higher concentrations. 

 

Supporting Information Chapter 4.1  

Binding of poly(I:C) to PEI as analyzed by agarose gel shift assay.
poly(I:C) were complexed using either LPEI or brPEI and analyzed by gel shift assay. Both polymer 
backbones were able to efficiently complex poly(I:C) at a minimal N/P ratio of 6. 

Heparin Dissociation Assay  

Binding of poly(I:C) to PEI conjugates as analyzed by heparin dissociation and 
800 ng poly(I:C) were complexed using indicated polymers at N/P ratio of 8 

cated amounts of the polyanion heparin, resulting in partial release of poly(I:C) at 
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Binding of poly(I:C) to PEI as analyzed by agarose gel shift assay.  400 or 800 ng 

poly(I:C) were complexed using either LPEI or brPEI and analyzed by gel shift assay. Both polymer 

 
Binding of poly(I:C) to PEI conjugates as analyzed by heparin dissociation and 

800 ng poly(I:C) were complexed using indicated polymers at N/P ratio of 8 
cated amounts of the polyanion heparin, resulting in partial release of poly(I:C) at 
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Determination of the EGFR Count on U87MG/U87MGwtEGF R

Figure S3:  Relative EGF receptor cell surface level on tumor c ell lines.
U87MGwtEGFR cells (b) were incubated with a mouse anti
an Alexa-488 conjugated secondary polyclonal goat anti
as well as cells, incubated only with secondary antibody (2nd AB on

 

Poly(I:C) Dose Titration Using LPEI

Figure S4:  In vitro antitumoral activity of poly(I:C) at different conc entrations against 
U87MGwtEGFR glioma cells.  Comparison of 
Conditions: 10.000 cells/well, Incubation for 48 h with indicated dose of poly(I:C), poly(I). Metabolic 
activity was measured by MTT test.
 

 

  

Determination of the EGFR Count on U87MG/U87MGwtEGF R 

Relative EGF receptor cell surface level on tumor c ell lines.
EGFR cells (b) were incubated with a mouse anti-EGFR antibody followed by treatment with 
488 conjugated secondary polyclonal goat anti-mouse antibody. Untreated cells (cells only) 

as well as cells, incubated only with secondary antibody (2nd AB only) served as negative control.

Poly(I:C) Dose Titration Using LPEI -PEG10kDa-EGF as Carrier 

 
antitumoral activity of poly(I:C) at different conc entrations against 

Comparison of poly(I:C) [black bars] with poly(I) control [grey bars].
Conditions: 10.000 cells/well, Incubation for 48 h with indicated dose of poly(I:C), poly(I). Metabolic 
activity was measured by MTT test. 
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Relative EGF receptor cell surface level on tumor c ell lines.  U87MG (a), 

EGFR antibody followed by treatment with 
mouse antibody. Untreated cells (cells only) 

ly) served as negative control. 

 
antitumoral activity of poly(I:C) at different conc entrations against 

y(I) control [grey bars]. 
Conditions: 10.000 cells/well, Incubation for 48 h with indicated dose of poly(I:C), poly(I). Metabolic 
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8.5 Supporting Information Chapter 4.4

Figure S4. Influence of polyplex formation
Conditions: Neuro2A, 10.000 cells/well; polyplexes formed with pDNA(EGFPLuc) and polymer in pH 
adjusted buffer (HBG titrated with HCl/NaOH). Polyplexes were formed by mixing equal volumes of 
pDNA/Polymer solution, incubated f
24 h. Experiment shows pH dependency of the transfection protocol. Differences between pH 6.3 and 
pH 8.3 are highly significant.  

 

Supporting Information Chapter 4.4  

Influence of polyplex formation  buffer pH on transfection efficiency
Conditions: Neuro2A, 10.000 cells/well; polyplexes formed with pDNA(EGFPLuc) and polymer in pH 
adjusted buffer (HBG titrated with HCl/NaOH). Polyplexes were formed by mixing equal volumes of 
pDNA/Polymer solution, incubated for 30 min and added to the cells 20 µL on 80 µL and incubated for 
24 h. Experiment shows pH dependency of the transfection protocol. Differences between pH 6.3 and 
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pH on transfection efficiency . 

Conditions: Neuro2A, 10.000 cells/well; polyplexes formed with pDNA(EGFPLuc) and polymer in pH 
adjusted buffer (HBG titrated with HCl/NaOH). Polyplexes were formed by mixing equal volumes of 

or 30 min and added to the cells 20 µL on 80 µL and incubated for 
24 h. Experiment shows pH dependency of the transfection protocol. Differences between pH 6.3 and 
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8.6  Used Protective Groups and Polymer Nomenclatur e 

Amino acid Three letter 
code 

One letter 
code 

Used prot. 
group 

Residue 
weight (-H 2O) 

Charge 

ß-Alanine ßAla - - 71.08 0 
Alanine Ala A - 71.08 0 
Arginine Arg R Pbf 156.19 +1 
Asparagine Asn N Trt 114.11 0 
Aspartic acid Asp D OtBu 115.09 -1 
Cysteine Cys C Trt|StBu 103.15 0 
Glutamic acid Glu E OtBu 129.12 -1 
Glutamine Gln Q Trt 128.13 0 
Glycine Gly G - 57.05 0 
Histidine His H Trt 137.14 0/+1 
Isoleucine Ile I - 113.16 0 
Leucine Leu L - 113.16 0 
Lysine Lys K Boc 128.18 +1 
Methionine Met M - 131.20 0 
Phenylalanine Phe F - 147.18 0 
Proline Pro P - 97.12 0 
Serine Ser S tBu 87.08 0 
Threonine Thr T tBu 101.11 0 
Tryptophan Trp W Boc 186.22 0 
Tyrosine Tyr Y tBu 163.18 0 
Valine Val V - 99.13 0 
      
SuccTEPA Stp - Boc 281.21 +3 
 

Fatty acid Four letter 
code 

Residue 
weight (-H 2O) 

C:D n-x Δ X 

Acetic acid AceA 42.03 2:0 - - 

Butyric acid ButA 70.09 4:0 - - 

Caprylic acid CapA 126.19 8:0 - - 

Myristic acid MyrA 210.35 14:0 - - 

Oleic acid  OleA 264.44 18:1 n-9 cis-Δ
9
 

Arachidic acid AraA 294.51 20:0 - - 
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General Nomenclature of Synthesized PAAs and Peptid es 

• Contrary to IUPAC peptide nomenclature all sequences are written in C→N 

direction, the carboxy terminal residue is indicated by the HO-prefix and N-

terminal residue (if present) is labeled with -H 

• Standard amino acids are always written in single letter code (e.g. A, K, C) 

• Polyaminoacids and all non-natural amino acids are always written using  

three letter code (eg. Stp, Dha )  

• Fatty acids are always written in 4 letters  (eg. LinA, OleA) where the forth 

letter is always an A 

• Polyaminoacid abbreviations are build with the following rules: 

1. Letter: Acid component → succinic acid → S 
2. Letter: Amine component → spacer unit part → tetraethylene → t 
3. Letter: Amine component → number of amines → pentamine → p 

• Branching is indicated by the use of round brackets followed by an index for 

the number of branches 
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8.7 Analytical Data 

Sequence: HO-K-Stp1-K-H #: 01 

Molecular formula: C24H51N9O5 Mw 545.72 

MALDI: 546.9  546.4 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 17.0 °C): δ = 1.29 - 1.48 (m, 4H, γ-CH2-, Lys), 

1.54 - 1.68 (m, 4H, δ-CH2-, Lys),1.69 - 1.93 (m, 4H, β-CH2-, Lys), 2.42 - 

2.52 (m, 2H, O=C-CH2-, Stp), 2.52 - 2.62 (m, 2H, O=C-CH2-, Stp), 2.87 

– 2.94 (t, J=7.6 Hz, 4H, ε−CH2-, Lys), 3.15 – 3.32 (m, 4H, N-CH2-, Stp), 

3.35 – 3.55 (m, 12H, N-CH2-, Stp), 3.89 – 3.99 (t, J=6.64 Hz, 1H, O=C-

C(R)H-NH-, Lys), 4.20 – 4.25 (dd, J=5.3, 8.8, 1H, O=C-C(R)H-NH-, Lys) 

ppm. 

 

Sequence: HO-K-Stp1-K-CapA2 #: 03 

Molecular formula: C40H79N9O7 Mw 798.11 

MALDI: 799.1 798.6 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 17.0 °C): δ = 0.73 – 0.83 (m, 6H, -CH3, CapA), 

1.11 – 1.27 (m, 16H, -CH2-, CapA), 1.28 - 1.90 (m, 16H, δ-CH2/γ-CH2/β-

CH2, Lys; O=C-CH2-CH2-, CapA), 2.10 – 2.32 (m, 4H, O=C-CH2, CapA), 

2.45 - 2.52 (m, 2H, O=C-CH2-, Stp), 2.52 - 2.59 (m, 2H, O=C-CH2-, Stp), 

2.88 – 2.96 (t, J=7.8 Hz, 2H, ε−CH2, Lys), 3.07 – 3.14 (m, 2H, ε−CH2, 

Lys), 3.16 – 3.25 (m, 4H, N-CH2-, Stp), 3.37 – 3.56 (m, 12H, N-CH2-, 

Stp), 4.07 – 4.16 (m, 1H, O=C-C(R)H-NH-, Lys), 4.18 – 4.29 (m, 1H, 

O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-K-Stp1-K-MyrA2 #: 04 

Molecular formula: C52H103N9O7 Mw 966.43 

MALDI: 967.4 967.4 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 17.0 °C): δ = 0.71 – 0.86 (m, 6H, -CH3, MyrA), 

1.02 – 1.31 (bs, 44H, -CH2-, MyrA), 1.31 – 2.05 (m, 16H, δ-CH2/γ-CH2/β-

CH2, Lys; O=C-CH2-CH2-, MyrA), 2.06 – 2.38 (m, 4H, O=C-CH2, MyrA), 

2.41 - 2.52 (m, 2H, O=C-CH2-, Stp), 2.52 - 2.65 (m, 2H, O=C-CH2-, Stp), 

2.88 – 2.97 (t, J=7.8 Hz, 2H, ε−CH2, Lys), 3.15 – 3.29 (m, 2H, ε−CH2, 

Lys), 3.15 – 3.29 (m, 4H, N-CH2-, Stp), 3.36 – 3.62 (m, 12H, N-CH2-, 
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Stp), 4.04 – 4.16 (m, 1H, O=C-C(R)H-NH-, Lys), 4.18 – 4.34 (m, 1H, 

O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-K-Stp1-K-OleA2 #: 05 

Molecular formula: C58H111N9O7 Mw 1074.61 

MALDI: Not determined    

NMR: 1H-NMR (400 MHz, D2O, 16.9 °C): δ = 0.67 – 0.88 (m, 6H, -CH3, OleA), 

0.91 – 1.93 (m, 64H, -CH2-, OleA; β-CH2,/δ-CH2/γ-CH2, Lys; -CH2-

CH=CH-CH2, O=C-CH2-CH2-; OleA), 2.06 – 2.38 (bm, 4H, O=C-CH2, 

OleA), 2.41 - 2.65 (m, 4H, O=C-CH2-, Stp), 2.87 – 2.99 (m, 4H, ε−CH2, 

Lys), 3.14 – 3.27 (m, 4H, N-CH2-, Stp), 3.29 – 3.62 (m, 12H, N-CH2-, 

Stp), 4.02 – 4.09 (m, 1H, O=C-C(R)H-NH-, Lys), 4.24 – 4.34 (m, 1H, 

O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-K-Stp2-K-H #: 06 

Molecular formula: C36H76N14O7 Mw 817.07 

MALDI: Not determined    

NMR: 1H-NMR (400 MHz, D2O, 16.8 °C): δ = 1.29 - 1.46 (m, 4H, γ-CH2-, Lys), 

1.56 - 1.76 (m, 4H, δ-CH2-, Lys),1.76 - 1.92 (m, 4H, β-CH2-, Lys), 2.43 - 

2.51 (m, 6H, O=C-CH2-, Stp), 2.52 - 2.62 (m, 2H, O=C-CH2-, Stp), 2.87 

– 2.95 (t, J=7.6 Hz, 4H, ε−CH2-, Lys), 3.13 – 3.29 (m, 8H, N-CH2-, Stp), 

3.35 – 3.55 (m, 24H, N-CH2-, Stp), 3.89 – 3.99 (t, J=6.64 Hz, 1H, O=C-

C(R)H-NH-, Lys), 4.20 – 4.25 (dd, J=5.2, 8.8, 1H, O=C-C(R)H-NH-, Lys) 

ppm. 

 

Sequence: HO-K-Stp2-K-CapA2 #: 08 

Molecular formula: C52H104N14O9 Mw 1068.81 

MALDI: 1070.5 1069.8 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 16.9 °C): δ = 0.72 – 0.81 (m, 6H, -CH3, CapA), 

1.09 – 1.25 (m, 16H, -CH2-, CapA), 1.26 - 1.90 (m, 16H, δ-CH2/γ-CH2/β-

CH2, Lys; O=C-CH2-CH2-, CapA), 2.08 – 2.32 (m, 4H, O=C-CH2, CapA), 

2.42 - 2.50 (m, 6H, O=C-CH2-, Stp), 2.52 - 2.59 (m, 2H, O=C-CH2-, Stp), 

2.87 – 2.95 (t, J=7.7 Hz, 2H, ε−CH2, Lys), 3.06 – 3.13 (m, 2H, ε−CH2, 
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Lys), 3.14 – 3.25 (m, 8H, N-CH2-, Stp), 3.33 – 3.56 (m, 24H, N-CH2-, 

Stp), 4.06 – 4.16 (m, 1H, O=C-C(R)H-NH-, Lys), 4.17 – 4.24 (m, 1H, 

O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-K-Stp2-K-MyrA2 #: 09 

Molecular formula: C64H128N14O9 Mw 1237.78 

MALDI: Not determined    

NMR: 1H-NMR (400 MHz, D2O, 16.8 °C): δ = 0.72 – 0.85 (m, 6H, -CH3, MyrA), 

1.06 – 1.28 (m, 40H, -CH2-, MyrA), 1.26 - 1.90 (m, 16H, γ-CH2/δ-CH2/β-

CH2, Lys; O=C-CH2-CH2-, MyrA), 2.08 – 2.32 (m, 4H, O=C-CH2, MyrA), 

2.42 - 2.53 (m, 6H, O=C-CH2-, Stp), 2.53 - 2.63 (m, 2H, O=C-CH2-, Stp), 

2.87 – 2.98 (t, J=7.6 Hz, 2H, ε−CH2, Lys), 3.04 – 3.14 (m, 2H, ε−CH2, 

Lys), 3.15 – 3.28 (m, 8H, N-CH2-, Stp), 3.33 – 3.58 (m, 24H, N-CH2-, 

Stp), 4.05 – 4.22 (m, 2H, O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-K-Stp2-K-OleA2 #: 10 

Molecular formula: C72H140N14O9 Mw 1345.97 

MALDI: Not determined    

NMR: 1H-NMR (400 MHz, D2O, 16.9 °C): δ = 0.69 – 0.82 (m, 6H, -CH3, OleA), 

0.99 – 1.30 (m, 40H, -CH2-, OleA), 1.32 – 1.91 (m, 24H, β-CH2,/δ-CH2/γ-

CH2, Lys; -CH2-CH=CH-CH2, O=C-CH2-CH2-; OleA), 1.92 – 1.99 (m, 

4H, O=C-CH2, OleA), 2.42 - 2.51 (m, 6H, O=C-CH2-, Stp), 2.51 - 2.60 

(m, 2H, O=C-CH2-, Stp), 2.87 – 2.99 (m, 4H, ε−CH2, Lys), 3.14 – 3.26 

(m, 8H, N-CH2-, Stp), 3.35 – 3.55 (m, 24H, N-CH2-, Stp), 4.11 – 4.31 (m, 

2H, O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-K-Stp4-K-H #: 18 

Molecular formula: C60H126N24O11 Mw 1359.79 

MALDI: 1360.0 1630.0 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 16.7 °C): δ = 1.30 - 1.45 (m, 4H, γ-CH2-, Lys), 

1.54 - 1.68 (m, 4H, δ-CH2-, Lys),1.69 - 1.93 (m, 4H, β-CH2-, Lys), 2.40 - 

2.51 (m, 14H, O=C-CH2-, Stp), 2.51 - 2.59 (m, 2H, O=C-CH2-, Stp), 2.86 

– 2.95 (t, J=7.6 Hz, 4H, δ−CH2-, Lys), 3.09 – 3.30 (m, 16H, N-CH2-, 
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Stp), 3.30 – 3.53 (m, 48H, N-CH2-, Stp), 3.89 – 3.99 (t, J=6.64 Hz, 1H, 

O=C-C(R)H-NH-, Lys), 4.20 – 4.25 (dd, J=5.2, 8.8, 1H, O=C-C(R)H-NH-

, Lys) ppm. 

 

Sequence: HO-K-Stp4-K-CapA2 #: 20 

Molecular formula: C76H154N24O13 Mw 1612.19 

MALDI: 1611.8 1612.2 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 16.8 °C): δ = 0.72 – 0.83 (m, 6H, -CH3, CapA), 

1.12 – 1.25 (m, 16H, -CH2-, CapA), 1.26 - 1.88 (m, 16H, δ-CH2/γ-CH2/β-

CH2, Lys; O=C-CH2-CH2-, CapA), 2.10 – 2.29 (m, 4H, O=C-CH2, CapA), 

2.42 - 2.52 (m, 14H, O=C-CH2-, Stp), 2.52 - 2.59 (m, 2H, O=C-CH2-, 

Stp), 2.88 – 2.95 (t, J=7.8 Hz, 2H, ε−CH2, Lys), 3.06 – 3.14 (m, 2H, 

ε−CH2, Lys), 3.14 – 3.25 (m, 16H, N-CH2-, Stp), 3.32 – 3.56 (m, 48H, N-

CH2-, Stp), 4.07 – 4.16 (m, 1H, O=C-C(R)H-NH-, Lys), 4.17 – 4.26 (m, 

1H, O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-K-Stp4-K-MyrA2 #: 21 

Molecular formula: C88H178N24O13 Mw 1780.51 

MALDI: 1782.7 1781.5 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 16.8 °C): δ = 0.72 – 0.85 (m, 6H, -CH3, MyrA), 

1.07 – 1.29 (m, 40H, -CH2-, MyrA), 1.26 - 1.88 (m, 16H, δ-CH2/γ-CH2/β-

CH2, Lys; O=C-CH2-CH2-, MyrA), 2.10 – 2.29 (m, 4H, O=C-CH2, MyrA), 

2.40 - 2.52 (m, 14H, O=C-CH2-, Stp), 2.52 - 2.63 (m, 2H, O=C-CH2-, 

Stp), 2.87 – 2.97 (t, J=7.8 Hz, 2H, ε−CH2, Lys), 3.06 – 3.14 (m, 2H, 

ε−CH2, Lys), 3.13 – 3.28 (m, 16H, N-CH2-, Stp), 3.28 – 3.56 (m, 48H, N-

CH2-, Stp), 4.06 – 4.22 (m, 1H, O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-K-Stp4-K-OleA2 #: 22 

Molecular formula: C96H190N24O13 Mw 1888.69 

MALDI: 1888.6 1888.5 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 16.9 °C): δ = 0.67 – 0.83 (m, 6H, -CH3, OleA), 

0.99 – 1.30 (m, 40H, -CH2-, OleA), 1.32 – 1.91 (m, 24H, β-CH2,/δ-CH2/γ-

CH2, Lys; -CH2-CH=CH-CH2, O=C-CH2-CH2-; OleA), 1.92 – 1.99 (m, 
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4H, O=C-CH2, OleA), 2.41 - 2.52 (m, 14H, O=C-CH2-, Stp), 2.52 - 2.60 

(m, 2H, O=C-CH2-, Stp), 2.87 – 2.96 (m, 2H, ε−CH2, Lys), 2.99 – 3.11 

(m, 2H, ε−CH2, Lys), 3.11 – 3.26 (m, 16H, N-CH2-, Stp), 3.30 – 3.55 (m, 

48H, N-CH2-, Stp), 4.07 – 4.24 (m, 2H, O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-K-Stp5-K-H #: 23 

Molecular formula: C72H151N29O13 Mw 1631.15 

MALDI: 1634.1 1631.2 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 17.1 °C): δ = 1.28 - 1.49 (m, 4H, γ-CH2-, Lys), 

1.49 - 1.88 (m, 8H, δ-CH2-/β-CH2-, Lys), 2.40 - 2.52 (m, 18H, O=C-CH2-, 

Stp), 2.52 - 2.60 (m, 2H, O=C-CH2-, Stp), 2.87 – 2.95 (t, J=7.6 Hz, 4H, 

ε−CH2, Lys), 3.13 – 3.26 (m, 20H, N-CH2-, Stp), 3.35 – 3.55 (m, 60H, N-

CH2-, Stp), 3.89 – 3.99 (t, J=6.64 Hz, 1H, O=C-C(R)H-NH-, Lys), 4.20 – 

4.25 (dd, J=5.2, 8.8, 1H, O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-K-Stp5-K-AraA2 #: 25 

Molecular formula: C112H227N29O15 Mw 2220.19 

MALDI: Not determined    

NMR: 1H-NMR (400 MHz, D2O, 17.0 °C): δ = 0.71 – 0.86 (m, 6H, -CH3, AraA), 

1.04 – 1.30 (m, 72H, -CH2-, AraA), 1.31 - 1.98 (m, 16H, δ-CH2/γ-CH2/β-

CH2, Lys; O=C-CH2-CH2-, AraA), 2.10 – 2.29 (m, 4H, O=C-CH2, AraA), 

2.40 - 2.52 (m, 18H, O=C-CH2-, Stp), 2.52 - 2.60 (m, 2H, O=C-CH2-, 

Stp), 2.87 – 2.97 (t, J=7.8 Hz, 2H, ε−CH2, Lys), 3.03 – 3.14 (m, 2H, 

ε−CH2, Lys), 3.13 – 3.28 (m, 20H, N-CH2-, Stp), 3.31 – 3.57 (m, 60H, N-

CH2-, Stp), 4.06 – 4.26 (m, 2H, O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-K-Stp5-K-MyrA2 #: 26 

Molecular formula: C100H203N29O15 Mw 2051.87 

MALDI: Not determined    

NMR: 1H-NMR (400 MHz, D2O, 17.1 °C): δ = 0.72 – 0.83 (m, 6H, -CH3, MyrA), 

1.07 – 1.25 (m, 40H, -CH2-, MyrA), 1.26 - 1.88 (m, 16H, δ-CH2/γ-CH2/β-

CH2, Lys; O=C-CH2-CH2-, MyrA), 2.10 – 2.29 (m, 4H, O=C-CH2, MyrA), 

2.40 - 2.52 (m, 18H, O=C-CH2-, Stp), 2.52 - 2.60 (m, 2H, O=C-CH2-, 
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Stp), 2.88 – 2.97 (t, J=7.8 Hz, 2H, ε−CH2, Lys), 3.04 – 3.14 (m, 2H, 

ε−CH2, Lys), 3.14 – 3.26 (m, 20H, N-CH2-, Stp), 3.27 – 3.56 (m, 60H, N-

CH2-, Stp), 4.06 – 4.26 (m, 2H, O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-K-Stp5-K-OleA2 #: 27 

Molecular formula: C108H215N29O15 Mw 2160.05 

MALDI: Not determined    

NMR: 1H-NMR (400 MHz, D2O, 16.9 °C): δ = 0.65 – 0.83 (m, 6H, -CH3, OleA), 

1.02 – 1.30 (m, 40H, -CH2-, OleA), 1.31 – 1.87 (m, 24H, β-CH2,/δ-CH2/γ-

CH2, Lys; -CH2-CH=CH-CH2, O=C-CH2-CH2-; OleA), 1.92 – 1.99 (m, 

4H, O=C-CH2, OleA), 2.40 - 2.52 (m, 18H, O=C-CH2-, Stp), 2.52 - 2.64 

(m, 2H, O=C-CH2-, Stp), 2.86 – 2.97 (m, 2H, ε−CH2, Lys), 3.04 – 3.12 

(m, 2H, ε−CH2, Lys), 3.13 – 3.27 (m, 20H, N-CH2-, Stp), 3.30 – 3.54 (m, 

60H, N-CH2-, Stp), 4.04 – 4.25 (m, 2H, O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-C-Stp1-K-CapA2 #: 30 

Molecular formula: C37H72N8O7S Mw 773.08 

FAB: 773.4 773.5 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 22.8 °C): δ = 0.78 – 0.92 (m, 6H, -CH3, CapA), 

1.20 – 1.32 (m, 16H, -CH2-, CapA), 1.32 - 1.96 (m, 16H, δ-CH2/γ-CH2/β-

CH2, Lys; O=C-CH2-CH2-, CapA), 2.18 – 2.25 (m, 2H, O=C-CH2, CapA), 

2.25 – 2.40 (m, 2H, O=C-CH2, CapA), 2.51 - 2.59 (m, 2H, O=C-CH2-, 

Stp), 2.60 - 2.73 (m, 2H, O=C-CH2-, Stp), 2.89 - 3.01 (m, 2H, β-CH2-, 

Cys), 3.12 – 3.20 (t, J=5.4 2H, ε−CH2, Lys), 3.24 – 3.34 (m, 4H, N-CH2-, 

Stp), 3.43 – 3.65 (m, 12H, N-CH2-, Stp), 4.14 – 4.25 (m, 1H, O=C-

C(R)H-NH-, Lys), 4.40 – 4.52 (m, 1H, O=C-C(R)H-NH-, Cys) ppm. 

 

Sequence: HO-C-Stp1-K-SteA2 #: 31 

Molecular formula: C57H112N8O7S Mw 1053.61 

MALDI: 1054.0 1053.8 [M+H] calc.   

NMR: 1H-NMR (400 MHz, MeOD, 23.4 °C): δ = 0.85 – 0.94 (m, 6H, -CH3, 

SteA), 1.20 – 1.32 (m, 56H, -CH2-, SteA), 1.39 - 1.85 (m, 10H, δ-CH2/γ-

CH2/β-CH2, Lys; O=C-CH2-CH2-, SteA), 2.11 – 2.20 (m, 2H, O=C-CH2, 
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SteA), 2.21 – 2.32 (m, 2H, O=C-CH2, SteA), 2.45 - 2.55 (m, 2H, O=C-

CH2-, Stp), 2.56 - 2.73 (m, 2H, O=C-CH2-, Stp), 2.84 - 2.93 (m, 2H, β-

CH2-, Cys), 3.05 – 3.34 (m, 18H, ε−CH2, Lys; N-CH2-, Stp ), 4.06 – 4.15 

(m, 1H, O=C-C(R)H-NH-, Lys), 4.42 – 4.55 (m, 1H, O=C-C(R)H-NH-, 

Cys) ppm. 

 

Sequence: HO-K-Stp2-ButA1 #: 34 

Molecular formula: C34H70N12O7 Mw 759.00 

FAB: 759.8 759.6 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 17.3 °C): δ = 0.79 – 0.86 (t, J=7.4 Hz, 3H, -

CH3, ButA), 1.34 - 1.45 (m, 2H, γ-CH2, Lys), 1.46 - 1.56 (m, 2H,-CH2-, 

ButA), 1.56 - 1.87 (m, 4H, δ-CH2/β-CH2, Lys), 2.14 – 2.23 (t, J=7.4 Hz, 

2H, O=C-CH2, ButA), 2.44 - 2.51 (m, 6H, O=C-CH2-, Stp), 2.51 - 2.60 

(m, 2H, O=C-CH2-, Stp), 2.87 – 2.96 (t, J=7.8 Hz, 2H, ε−CH2, Lys), 3.15 

– 3.26 (m, 8H, N-CH2-, Stp), 3.37 – 3.54 (m, 12H, N-CH2-, Stp), 4.18 – 

4.27 (m, 1H, O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-K-Stp2-CapA1 #: 35 

Molecular formula: C38H78N12O7 Mw 815.10 

FAB: 815.6 815.6 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 16.7 °C): δ = 0.73 – 0.82 (m, 3H, -CH3, CapA), 

1.15 – 1.26 (m, 8H, -CH2-, CapA), 1.34 - 1.44 (m, 2H, γ-CH2, Lys), 1.45 - 

1.56 (m, 2H, δ-CH2, Lys) 1.57 - 1.66 (m, 2H,O=C-CH2-CH2-, CapA), 

1.67 - 1.82 (m, 2H, β-CH2, Lys), 2.15 – 2.24 (t, J=7.4 Hz, 2H, O=C-CH2, 

CapA), 2.44 - 2.52 (m, 6H, O=C-CH2-, Stp), 2.52 - 2.60 (m, 2H, O=C-

CH2-, Stp), 2.88 – 2.96 (t, J=7.8 Hz 2H, ε−CH2, Lys), 3.16 – 3.25 (m, 8H, 

N-CH2-, Stp), 3.37 – 3.51 (m, 24H, N-CH2-, Stp), 4.16 – 4.25 (m, 1H, 

O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-K-Stp2-MyrA1 #: 36 

Molecular formula: C44H90N12O7 Mw 899.26 

ESI: 899.7128 899.7128 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 17.6 °C): δ = 0.74 – 0.81 (m, 3H, -CH3, MyrA), 
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1.17 – 1.24 (m, 20H, -CH2-, MyrA), 1.34 - 1.57 (m, 4H, δ-CH2/γ-CH2, 

Lys), 1.56 - 1.66 (m, 2H,O=C-CH2-CH2-, MyrA), 1.67 - 1.83 (m, 2H, β-

CH2, Lys), 2.16 – 2.24 (t, J=7.4 Hz, 2H, O=C-CH2-, MyrA), 2.44 - 2.52 

(m, 6H, O=C-CH2-, Stp), 2.52 - 2.58 (m, 2H, O=C-CH2-, Stp), 2.88 – 

2.96 (t, J=7.8 Hz, 2H, ε−CH2, Lys), 3.15 – 3.25 (m, 8H, N-CH2-, Stp), 

3.37 – 3.52 (m, 24H, N-CH2-, Stp), 4.18 – 4.26 (m, 1H, O=C-C(R)H-NH-, 

Lys) ppm. 

 

Sequence: HO-K-Stp2-OleA1 #: 37 

Molecular formula: C48H96N12O7 Mw 953.35 

ESI: 953.7721 953.7596 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 16.1 °C): δ = 0.71 – 0.83 (m, 3H, -CH3, OleA), 

1.16 – 1.29 (m, 18H, -CH2-, OleA), 1.31 - 1.82 (m, 12H, β-CH2,/δ-CH2/γ-

CH2, Lys; -CH2-CH=CH-CH2-, O=C-CH2-CH2-, OleA), 2.13 – 2.25 (m,  

2H, O=C-CH2-, OleA), 2.41 - 2.52 (m, 6H, O=C-CH2-, Stp), 2.52 - 2.61 

(m, 2H, O=C-CH2-, Stp), 2.86 – 2.97 (m, 2H, ε−CH2-, Lys), 3.12 – 3.25 

(m, 8H, N-CH2-, Stp), 3.36 – 3.53 (m, 24H, N-CH2-, Stp), 4.16 – 4.24 (m, 

1H, O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-K-Stp1-ButA1 #: 38 

Molecular formula: C22H45N7O5 Mw 487.64 

MALDI: 488.5 488.4 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 17.3 °C): δ = 0.79 – 0.86 (t, J=7.4 Hz, 3H, -

CH3, ButA), 1.30 - 1.46 (m, 2H, γ-CH2-, Lys), 1.46 - 1.57 (m, 2H,-CH2-, 

ButA), 1.58 - 1.85 (m, 4H, δ-CH2-/β-CH2-, Lys), 2.14 – 2.21 (t, J=7.4 Hz, 

2H, O=C-CH2-, ButA), 2.42 - 2.51 (m, 2H, O=C-CH2-, Stp), 2.51 - 2.62 

(m, 2H, O=C-CH2-, Stp), 2.88 – 2.97 (t, J=7.8 Hz, 2H, ε−CH2-, Lys), 3.15 

– 3.26 (m, 4H, N-CH2-, Stp), 3.35 – 3.58 (m, 12H, N-CH2-, Stp), 4.10 – 

4.18 (dd, J=5.3, 8.8, 1H, O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-K-Stp1-CapA1 #: 39 

Molecular formula: C26H53N7O5 Mw 543.74 

FAB/ESI: 544.5/544.4174 544.5/544.4172 [M+H] calc.   
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NMR: 1H-NMR (400 MHz, D2O, 16.5 °C): δ = 0.73 – 0.82 (m, 3H, -CH3, CapA), 

1.15 – 1.25 (m, 8H, -CH2-, CapA), 1.32 - 1.56 (m, 4H, δ-CH2/γ-CH2, 

Lys), 1.57 - 1.66 (m, 2H,O=C-CH2-CH2-, CapA), 1.68 - 1.85 (m, 2H, β-

CH2, Lys), 2.15 – 2.25 (t, J=7.4 Hz, 2H, O=C-CH2, CapA), 2.44 - 2.52 

(m, 2H, O=C-CH2-, Stp), 2.52 - 2.62 (m, 2H, O=C-CH2-, Stp), 2.87 – 

2.96 (t, J=7.8 Hz, 2H, ε−CH2, Lys), 3.15 – 3.26 (m, 4H, N-CH2-, Stp), 

3.36 – 3.55 (m, 12H, N-CH2-, Stp), 4.13 – 4.21 (dd, J=5.4, 8.8, 1H, 

O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-K-Stp1-MyrA1 #: 40 

Molecular formula: C32H65N7O5 Mw 627.90 

MALDI: 628.6 628.5 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 17.6 °C): δ = 0.76 – 0.84 (m, 3H, -CH3, MyrA), 

1.15 – 1.28 (m, 20H, -CH2-, MyrA), 1.35 - 1.57 (m, 4H, δ-CH2/γ-CH2, 

Lys), 1.58 - 1.67 (m, 2H,O=C-CH2-CH2-, MyrA), 1.68 - 1.85 (m, 2H, β-

CH2, Lys), 2.18 – 2.25 (t, J=7.4 Hz, 2H, O=C-CH2, MyrA), 2.45 - 2.53 

(m, 2H, O=C-CH2-, Stp), 2.54 - 2.64 (m, 2H, O=C-CH2-, Stp), 2.89 – 

2.99 (t, J=7.8 Hz, 2H, ε−CH2, Lys), 3.18 – 3.27 (m, 4H, N-CH2-, Stp), 

3.39 – 3.59 (m, 12H, N-CH2-, Stp), 4.12 – 4.19 (dd, J=5.4, 8.8, 1H, 

O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-K-Stp1-OleA1 #: 41 

Molecular formula: C36H71N7O5 Mw 681.99 

FAB: 682.5 682.5 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 17.1 °C): δ = 0.9 – 0.85 (m, 3H, -CH3, OleA), 

0.99 – 1.3 (m, 18H, -CH2-, OleA), 1.31 - 1.82 (m, 12H, β-CH2,/δ-CH2/γ-

CH2, Lys; -CH2-CH=CH-CH2, O=C-CH2-CH2-, OleA), 2.04 – 2.25 (m,  

2H, O=C-CH2, OleA), 2.39 - 2.64 (m, 4H, O=C-CH2-, Stp), 2.86 – 2.97 

(m, 2H, ε−CH2, Lys), 3.10 – 3.28 (m, 4H, N-CH2-, Stp), 3.32 – 3.58 (m, 

12H, N-CH2-, Stp), 4.12 – 4.19 (m, 1H, O=C-C(R)H-NH-, Lys), 6.63 – 

6.94 (m, 2H, -CH=CH-) ppm. 

 

Sequence: HO-C-Stp3-C-K-MyrA2 #: 45 
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Molecular formula: C76H151N19O12S2 Mw 1587.26 

FAB: 1587.6 1587.1 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 17.2 °C): δ = 0.71 – 0.85 (m, 6H, -CH3, MyrA), 

1.05 – 1.31 (m, 40H, -CH2-, MyrA), 1.26 - 1.90 (m, 16H, δ-CH2/γ-CH2/β-

CH2, Lys; O=C-CH2-CH2-, MyrA), 2.08 – 2.33 (m, 4H, O=C-CH2, MyrA), 

2.40 - 2.55 (m, 10H, O=C-CH2-, Stp), 2.54 - 2.67 (m, 2H, O=C-CH2-, 

Stp), 2.80 – 3.10 (m, 6H, ε−CH2, Lys + Cys), 3.12 – 3.28 (m, 12H, N-

CH2-, Stp), 3.29 – 3.58 (m, 36H, N-CH2-, Stp), 4.16 – 4.44 (m, 3H, O=C-

C(R)H-NH-, Lys + Cys) ppm. 

 

Sequence: HO-C-Stp3-C-K-OleA2 #: 46 

Molecular formula: C84H163N19O12S2 Mw 1695.44 

FAB: 1809.6 1808.2 [M+TFA] calc.   

NMR: 1H-NMR (400 MHz, D2O, 17.3 °C): δ = 0.63 – 0.82 (m, 6H, -CH3, OleA), 

1.01 – 1.33 (m, 40H, -CH2-, OleA), 1.34 - 1.89 (m, 18H, δ-CH2/γ-CH2/β-

CH2, Lys; -CH2-CH=CH-CH2, O=C-CH2-CH2-; OleA), 1.90 – 1.97 (m, 

4H, O=C-CH2, OleA), 2.40 - 2.55 (m, 10H, O=C-CH2-, Stp), 2.54 - 2.65 

(m, 2H, O=C-CH2-, Stp), 2.80 – 3.10 (m, 6H, ε−CH2, Lys + Cys), 3.12 – 

3.28 (m, 12H, N-CH2-, Stp), 3.29 – 3.61 (m, 36H, N-CH2-, Stp), 4.16 – 

4.45 (m, 3H, O=C-C(R)H-NH-, Lys + Cys) ppm. 

 

Sequence: HO-C-Stp2-K(K-MyrA2)Stp2-C-H #: 48 

Molecular formula: C94H188N26O15S2 Mw 1986.4 

MALDI: 1986.4 1986.4 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 16.7 °C): δ = 0.72 – 0.86 (m, 6H, -CH3, MyrA), 

1.07 – 1.29 (m, 40H, -CH2-, MyrA), 1.29 - 1.95 (m, 16H, δ-CH2/γ-CH2/β-

CH2, Lys; O=C-CH2-CH2-, MyrA), 2.08 – 2.28 (m, 4H, O=C-CH2-, MyrA),  

2.39 - 2.67 (m, 16H, O=C-CH2-, Stp), 2.83 – 3.15 (m, 8H, ε−CH2-, Lys + 

Cys), 3.15 – 3.30 (m, 16H, N-CH2- , Stp), 3.30 – 3.68 (m, 48H, Stp) 4.03 

– 4.19 (m, 2H, O=C-C(R)H-NH-, Cys), 4.28 – 4.40 (m, 2H, O=C-C(R)H-

NH-, Lys) ppm. 

 

Sequence: HO-C-Stp2-K(K-OleA2)-Stp2-C-H #: 49 
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Molecular formula: C102H200N26O15S2 Mw 2094.98 

MALDI: 2094.9 2094.5 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 16.7 °C): δ = 0.71 – 0.88 (m, 6H, -CH3, OleA), 

1.06 – 1.31 (m, 40H, -CH2-, OleA), 1.31 - 1.92 (m, 10H, δ-CH2/γ-CH2/β-

CH2, Lys; -CH2-CH=CH-CH2, O=C-CH2-CH2-; OleA), 2.05 – 2.27 (m, 

2H, O=C-CH2-, OleA),  2.40 - 2.69 (m, 16H, O=C-CH2-, Stp), 2.81 – 

3.14 (m, 8H, ε−CH2, Lys + Cys), 3.14 – 3.30 (m, 16H, N-CH2- , Stp), 

3.30 – 3.68 (m, 48H, N-CH2-Stp), 4.04 – 4.21 (m, 2H, O=C-C(R)H-NH-, 

Cys), 4.25 – 4.38 (m, 2H, O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-K-Stp4-K-AraA2 #: 50 

Molecular formula: C100H202N24O13 Mw 1948.83 

MALDI: Not determined    

NMR: 1H-NMR (400 MHz, D2O, 17.0 °C): δ = 0.73 – 0.86 (m, 6H, -CH3, AraA), 

1.04 – 1.30 (m, 72H, -CH2-, AraA), 1.31 - 1.98 (m, 16H, δ-CH2/γ-CH2/β-

CH2, Lys; O=C-CH2-CH2-, AraA), 2.10 – 2.29 (m, 4H, O=C-CH2, AraA), 

2.38 - 2.52 (m, 14H, O=C-CH2-, Stp), 2.52 - 2.62 (m, 2H, O=C-CH2-, 

Stp), 2.87 – 2.98 (m, 2H, ε−CH2, Lys), 3.03 – 3.14 (m, 2H, ε−CH2, Lys), 

3.09 – 3.30 (m, 16H, N-CH2-, Stp), 3.31 – 3.57 (m, 48H, N-CH2-, Stp), 

4.04 – 4.24 (m, 2H, O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-C-Stp3-C-K-H #: 51 

Molecular formula: C48H99N19O10S2 Mw 1166.55 

MALDI: 1167.3 1167.5 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 17.3 °C): δ = 1.37 - 1.49 (m, 2H, δ-CH2, Lys), 

1.59 - 1.71 (m, 2H, δ-CH2, Lys),1.80 - 1.97 (m, 2H, β-CH2, Lys), 2.44 - 

2.55 (m, 10H, O=C-CH2-, Stp), 2.55 - 2.66 (m, 2H, O=C-CH2-, Stp), 

2.81 – 2.99 (m, 4H, ε−CH2, Lys + Cys), 3.13 – 3.29 (m, 12H, N-CH2- , 

Stp), 3.33 – 3.58 (m, 36H, Stp) 3.96 – 4.05 (m, 1H, O=C-C(R)H-NH-, 

Lys), 4.33 – 4.46 (m, 2H, O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-C-Stp2-K(CapA)-Stp2-C-H #: 56 

Molecular formula: C68H138N24O13S2 Mw 1564.11 
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MALDI: 1564.4 1564.1 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 16.6 °C): δ = 0.73 – 0.83 (m, 3H, -CH3, CapA), 

1.13 – 1.28 (m, 8H, -CH2-, CapA), 1.29 - 1.92 (m, 8H, δ-CH2/γ-CH2/β-

CH2, Lys; O=C-CH2-CH2-, CapA), 2.11 – 2.20 (t, J=7.3 Hz, 2H, O=C-

CH2-, CapA),  2.42 - 2.68 (m, 16H, O=C-CH2-, Stp), 2.84 – 3.14 (m, 6H, 

ε−CH2, Lys + Cys), 3.14 – 3.29 (m, 16H, N-CH2- , Stp), 3.30 – 3.59 (m, 

48H, Stp) 4.09 – 4.18 (m, 2H, O=C-C(R)H-NH-, Cys), 4.28 – 4.39 (m, 

1H, O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-C-Stp2-K(MyrA)-Stp2-C-H #: 57 

Molecular formula: C74H150N24O13S2 Mw 1648.26 

MALDI: 1648.4 1648.1 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 16.6 °C): δ = 0.73 – 0.83 (m, 3H, -CH3, MyrA), 

1.11 – 1.22 (m, 20H, -CH2-, MyrA), 1.23 - 1.92 (m, 8H, δ-CH2/γ-CH2/β-

CH2, Lys; O=C-CH2-CH2-, MyrA), 2.11 – 2.20 (t, J=7.3 Hz, 2H, O=C-

CH2-, MyrA),  2.41 - 2.70 (m, 16H, O=C-CH2-, Stp), 2.84 – 3.13 (m, 6H, 

ε−CH2, Lys + Cys), 3.15 – 3.29 (m, 16H, N-CH2- , Stp), 3.29 – 3.68 (m, 

48H, Stp), 4.09 – 4.20 (m, 2H, O=C-C(R)H-NH-, Cys), 4.26 – 4.39 (m, 

1H, O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-C-Stp2-K(OleA)-Stp2-C-H #: 58 

Molecular formula: C78H156N24O13S2 Mw 1702.35 

MALDI: 1702.6 1702.4 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 16.7 °C): δ = 0.73 – 0.83 (m, 3H, -CH3, OleA), 

1.10 – 1.31 (m, 20H, -CH2-, OleA), 1.32 - 1.99 (m, 10H, δ-CH2/γ-CH2/β-

CH2, Lys; -CH2-CH=CH-CH2, O=C-CH2-CH2-; OleA), 2.10 – 2.20 (t, 

J=7.3 Hz, 2H, O=C-CH2-, OleA),  2.40 - 2.66 (m, 16H, O=C-CH2-, Stp), 

2.84 – 3.13 (m, 6H, ε−CH2, Lys + Cys), 3.14 – 3.30 (m, 16H, N-CH2-, 

Stp), 3.31 – 3.61 (m, 48H, Stp), 4.10 – 4.18 (m, 2H, O=C-C(R)H-NH-, 

Cys), 4.32 – 4.45 (m, 1H, O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-C-Stp2-K(AraA)-Stp2-C-H #: 59 

Molecular formula: C80H162N24O13S2 Mw 1732.43 
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MALDI: 1732.4 1732.2 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 16.6 °C): δ = 0.73 – 0.83 (m, 3H, -CH3, AraA), 

1.12 – 1.31 (m, 36H, -CH2-, AraA), 1.32 - 1.99 (m, 8H, δ-CH2/γ-CH2/β-

CH2, Lys; O=C-CH2-CH2-, AraA), 2.11 – 2.20 (t, J=7.4 Hz, 2H, O=C-

CH2-, AraA),  2.42 - 2.68 (m, 16H, O=C-CH2-, Stp), 2.83 – 3.13 (m, 6H, 

ε−CH2, Lys + Cys), 3.14 – 3.30 (m, 16H, N-CH2-, Stp), 3.31 – 3.64 (m, 

48H, Stp), 4.10 – 4.18 (m, 2H, O=C-C(R)H-NH-, Cys), 4.32 – 4.45 (m, 

1H, O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-C-Stp2-K(K-AraA2)-Stp2-C-H #: 62 

Molecular formula: C106H212N26O15S2 Mw 2155.11 

MALDI: 2152.2 2156.1[M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 16.6 °C): δ = 0.73 – 0.83 (m, 6H, -CH3, AraA), 

1.12 – 1.31 (m, 72H, -CH2-, AraA), 1.32 - 1.99 (m, 16H, δ-CH2/γ-CH2/β-

CH2, Lys; O=C-CH2-CH2-, AraA), 2.11 – 2.20 (m, 4H, O=C-CH2-, AraA),  

2.42 - 2.68 (m, 16H, O=C-CH2-, Stp), 2.83 – 3.13 (m, 6H, ε−CH2, Lys + 

Cys), 3.14 – 3.30 (m, 16H, N-CH2-, Stp), 3.31 – 3.64 (m, 48H, Stp), 4.10 

– 4.18 (m, 2H, O=C-C(R)H-NH-, Cys), 4.32 – 4.45 (m, 1H, O=C-C(R)H-

NH-, Lys) ppm. 

 

Sequence: HO-C-Stp2-K(K-CapA2)Stp2-C-H #: 66 

Molecular formula: C82H164N26O15S2 Mw 1818.48 

MALDI: 1816.6 1818.2 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 16.7 °C): δ = 0.73 – 0.83 (m, 6H, -CH3, CapA), 

1.13 – 1.28 (m, 16H, -CH2-, CapA), 1.29 - 1.92 (m, 16H, δ-CH2/γ-CH2/β-

CH2, Lys; O=C-CH2-CH2-, CapA), 2.11 – 2.20 (t, J=7.4 Hz, 2H, O=C-

CH2-CH2-, CapA), 2.11 – 2.20 (m, 2H, O=C-CH2-CH2-, CapA), 2.42 - 

2.68 (m, 16H, O=C-CH2-, Stp), 2.84 – 3.14 (m, 8H, ε−CH2, Lys + Cys), 

3.14 – 3.29 (m, 16H, N-CH2- , Stp), 3.30 – 3.59 (m, 48H, Stp) 4.09 – 

4.18 (m, 2H, O=C-C(R)H-NH-, Cys), 4.28 – 4.39 (m, 1H, O=C-C(R)H-

NH-, Lys) ppm. 

 

Sequence: HO-C-Stp2-K-MyrA2 #: 67 
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Molecular formula: C61H121N13O9S Mw 1212.76 

MALDI: 1213.4 1213.7 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 16.7 °C): δ = 0.70 – 0.84 (m, 6H, -CH3, MyrA), 

1.08 – 1.32 (m, 40H, -CH2-, MyrA), 1.32 - 1.97 (m, 10H, δ-CH2/γ-CH2/β-

CH2, Lys; O=C-CH2-CH2-, MyrA), 2.11 – 2.32 (m, 4H, O=C-CH2, MyrA), 

2.41 - 2.55 (m, 6H, O=C-CH2-, Stp), 2.55 - 2.67 (m, 2H, O=C-CH2-, Stp), 

2.83 - 2.97 (m, 2H, β-CH2-, Cys), 3.04 – 3.17 (m, 2H, ε−CH2, Lys), 3.14 

– 3.29 (m, 8H, N-CH2-, Stp), 3.29 – 3.60 (m, 24H, N-CH2-, Stp), 4.07 – 

4.24 (m, 1H, O=C-C(R)H-NH-, Lys), 4.24 – 4.40 (m, 1H, O=C-C(R)H-

NH-, Cys) ppm. 

 

Sequence: HO-C-K-Stp2-K-MyrA2 #: 68 

Molecular formula: C67H133N15O10S Mw 1340.93 

MALDI: 1341.3 1341.0 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 16.7 °C): δ = 0.70 – 0.84 (m, 6H, -CH3, MyrA), 

1.08 – 1.32 (m, 40H, -CH2-, MyrA), 1.32 - 1.97 (m, 10H, δ-CH2/γ-CH2/β-

CH2, Lys; O=C-CH2-CH2-, MyrA), 2.11 – 2.32 (m, 4H, O=C-CH2, MyrA), 

2.41 - 2.55 (m, 6H, O=C-CH2-, Stp), 2.55 - 2.67 (m, 2H, O=C-CH2-, Stp), 

2.83 - 2.97 (m, 2H, β-CH2-, Cys), 3.04 – 3.17 (m, 2H, ε−CH2, Lys), 3.14 

– 3.29 (m, 8H, N-CH2-, Stp), 3.29 – 3.60 (m, 24H, N-CH2-, Stp), 4.07 – 

4.24 (m, 1H, O=C-C(R)H-NH-, Lys), 4.24 – 4.40 (m, 1H, O=C-C(R)H-

NH-, Cys) ppm. 

 

Sequence: HO-C-K-Stp2-K-OleA2 #: 69 

Molecular formula: C75H145N15O10S Mw 1449.11 

MALDI: 1449.5 1449.1 [M+H] calc.   

NMR: 1H-NMR (400 MHz, MeOD, 16.8 °C): δ = 0.78 – 0.88 (m, 6H, -CH3, 

OleA), 1.12 – 1.35 (m, 40H, -CH2-, OleA), 1.34 - 1.89 (m, 18H, δ-CH2/γ-

CH2/β-CH2, Lys; -CH2-CH=CH-CH2, O=C-CH2-CH2-; OleA), 1.90 – 1.97 

(m, 4H, O=C-CH2, OleA), 2.40 - 2.55 (m, 10H, O=C-CH2-, Stp), 2.54 - 

2.65 (m, 2H, O=C-CH2-, Stp), 2.80 – 3.10 (m, 6H, ε−CH2, Lys + Cys), 

3.12 – 3.28 (m, 12H, N-CH2-, Stp), 3.29 – 3.61 (m, 36H, N-CH2-, Stp), 

4.16 – 4.45 (m,3H, O=C-C(R)H-NH-, Lys + Cys) ppm. 
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Sequence: HO-C-Stp2-K-OleA2 #: 70 

Molecular formula: C69H133N13O9S Mw 1320.94 

MALDI: 1321.3 1321.0 [M+H] calc.   

NMR: 1H-NMR (400 MHz, MeOD, 16.8 °C): δ = 0.85 – 0.96 (m, 6H, -CH3, 

OleA), 1.21 – 1.40 (m, 40H, -CH2-, OleA), 1.41 - 1.92 (m, 10H, δ-CH2/γ-

CH2/β-CH2, Lys; -CH2-CH=CH-CH2, O=C-CH2-CH2-; OleA), 1.93 – 2.07 

(m, 4H, O=C-CH2, OleA), 2.41 - 2.57 (m, 6H, O=C-CH2-, Stp), 2.57 - 

2.74 (m, 2H, O=C-CH2-, Stp), 2.85 - 3.08 (m, 2H, β-CH2-, Cys), 3.08 – 

3.19 (m, 2H, ε−CH2, Lys), 3.19 – 3.72 (m, 32H, N-CH2-, Stp), 4.04 – 

4.17 (m, 1H, O=C-C(R)H-NH-, Lys), 4.14 – 4.57 (m, 1H, O=C-C(R)H-

NH-, Cys) ppm. 

 

Sequence: C-Stp1-K(K-MyrA2)-Stp1-C-H #: 71 

Molecular formula: C70H138N16O11S2 Mw 1444.07 

MALDI: Not determined    

NMR: 1H-NMR (400 MHz, MeOD, 17.0 °C): δ = 0.86 – 0.95 (m, 6H, -CH3, 

MyrA), 1.22 – 1.38 (m, 40H, -CH2-, MyrA), 1.29 - 1.95 (m, 16H, δ-CH2/γ-

CH2/β-CH2, Lys; O=C-CH2-CH2-, MyrA), 2.13 – 2.20 (m, 2H, O=C-CH2-, 

MyrA), 2.20 – 2.30 (m, 2H, O=C-CH2-, MyrA),  2.43 - 2.71 (m, 8H, O=C-

CH2-, Stp), 2.84 – 3.10 (m, 8H, ε−CH2-, Lys + Cys), 3.11 – 3.64 (m, 

32H, N-CH2- , Stp), 3.94 – 4.25 (m, 2H, O=C-C(R)H-NH-, Cys), 4.44 – 

4.56 (m, 2H, O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-C-Stp1-K(K)-Stp1-C-H #: 72 

Molecular formula: C42H86N16O9S2 Mw 1023.36 

MALDI: 1024.5 1024.4 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 17.0 °C): δ = 1.37 - 1.97 (m, 12H, δ-CH2/γ-

CH2/β-CH2, Lys), 2.41 - 2.64 (m, 8H, O=C-CH2-, Stp), 2.84 – 3.11 (m, 

8H, ε−CH2, Lys + Cys), 3.17 – 3.29 (m, 8H, N-CH2-, Stp), 3.35 – 3.70 

(m, 24H, Stp) 4.10 – 4.17 (m, 2H, O=C-C(R)H-NH-, Cys), 4.38 – 4.48 

(m, 2H, O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-C-Stp1-K(K-SteA2)-Stp1-C-H #: 73 
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Molecular formula: C78H154N16O11S2 Mw 1556.28 

MALDI: 1554.4 1556.1 [M+H] calc.   

NMR: 1H-NMR (400 MHz, MeOD, 17.0 °C): δ = 0.86 – 0.97 (m, 6H, -CH3, 

SteA), 1.20 – 1.43 (m, 56H, -CH2-, SteA), 1.43 - 1.97 (m, 20H, δ-CH2/γ-

CH2/β-CH2, Lys; O=C-CH2-CH2-, SteA), 2.11 – 2.36 (m, 4H, O=C-CH2-, 

SteA),  2.42 - 2.74 (m, 8H, O=C-CH2-, Stp), 2.83 – 3.11 (m, 8H, ε−CH2-, 

Lys + Cys), 3.11 – 3.64 (m, 32H, N-CH2- , Stp), 3.94 – 4.06 (m, 1H, 

O=C-C(R)H-NH-, Cys), 4.08 – 4.25 (m, 1H, O=C-C(R)H-NH-, Cys) 4.42 

– 4.57 (m, 2H, O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-C-Stp1-K(K-OleA2)-Stp1-C-H #: 74 

Molecular formula: C78H150N16O11S2 Mw 1552.25 

MALDI: 1552.5 1552.1 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 16.7 °C): δ = 0.86 – 0.95 (m, 6H, -CH3, OleA), 

1.01 – 1.40 (m, 40H, -CH2-, OleA), 1.41 - 1.92 (m, 24H, δ-CH2/γ-CH2/β-

CH2, Lys; -CH2-CH=CH-CH2, O=C-CH2-CH2-; OleA), 2.12 – 2.32 (m, 

4H, O=C-CH2-, OleA),  2.44 - 2.73 (m, 16H, O=C-CH2-, Stp), 2.81 – 

3.22 (m, 8H, ε−CH2, Lys + Cys), 3.22 – 3.63 (m, 32H, N-CH2- , Stp), 

3.99 – 4.25 (m, 2H, O=C-C(R)H-NH-, Cys), 4.45 – 4.60 (m, 2H, O=C-

C(R)H-NH-, Lys), 7.05 – 7.33 (m, 4H, -CH=CH-, OleA) ppm. 

 

Sequence: HO-C-Stp3-K(K-MyrA2)-Stp3-C-H #: 75 

Molecular formula: C118H238N36O19S2 Mw 2529.51 

MALDI: 2529.3 2528.8 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 17.3 °C): δ = 0.72 – 0.84 (m, 6H, -CH3, MyrA), 

1.10 – 1.30 (m, 40H, -CH2-, MyrA), 1.31 - 1.96 (m, 16H, δ-CH2/γ-CH2/β-

CH2, Lys; O=C-CH2-CH2-, MyrA), 2.12 – 2.27 (m, 4H, O=C-CH2-, MyrA),  

2.41 - 2.66 (m, 24H, O=C-CH2-, Stp), 2.85 – 3.15 (m, 8H, ε−CH2-, Lys + 

Cys), 3.15 – 3.30 (m, 24H, N-CH2-, Stp), 3.30 – 3.63 (m, 72H, N-CH2-, 

Stp) 4.03 – 4.20 (m, 2H, O=C-C(R)H-NH-, Cys), 4.28 – 4.39 (m, 2H, 

O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-C-Stp3-K(K)-Stp3-C-H #: 76 
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Molecular formula: C90H186N36O17S2 Mw 2108.80 

MALDI: 2108.8 2109.8 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 17.0 °C): δ = 1.28 - 1.92 (m, 12H, δ-CH2/γ-

CH2/β-CH2, Lys), 2.41 - 2.66 (m, 24H, O=C-CH2-, Stp), 2.84 – 3.11 (m, 

8H, ε−CH2, Lys + Cys), 3.17 – 3.29 (m, 24H, N-CH2-, Stp), 3.35 – 3.70 

(m, 72H, Stp) 4.10 – 4.20 (m, 2H, O=C-C(R)H-NH-, Cys), 4.38 – 4.48 

(m, 2H, O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-C-Stp3-K(K-SteA2)-Stp3-C-H #: 77 

Molecular formula: C126H254N36O19S2 Mw 2641.72 

MALDI: 2641.4 2640.9 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 17.1 °C): δ = 0.72 – 0.86 (m, 6H, -CH3, SteA), 

1.06 – 1.31 (m, 56H, -CH2-, SteA), 1.31 - 1.94 (m, 16H, δ-CH2/γ-CH2/β-

CH2, Lys; O=C-CH2-CH2-, SteA), 2.09 – 2.27 (m, 4H, O=C-CH2-, SteA),  

2.40 - 2.68 (m, 24H, O=C-CH2-, Stp), 2.80 – 3.13 (m, 8H, ε−CH2-, Lys + 

Cys), 3.31 – 3.29 (m, 24H, N-CH2-, Stp), 3.31 – 3.68 (m, 72H, N-CH2-, 

Stp), 4.06 – 4.20 (m, 2H, O=C-C(R)H-NH-, Cys), 4.30 – 4.44 (m, 2H, 

O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-C-Stp3-K(K-OleA2)-Stp3-C-H #: 78 

Molecular formula: C126H250N36O19S2 Mw 2637.69 

MALDI: 2635.8 2638.7 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 17.3 °C): δ = 0.74 – 0.86 (m, 6H, -CH3, OleA), 

1.06 – 1.33 (m, 40H, -CH2-, OleA), 1.33 - 1.99 (m, 24H, δ-CH2/γ-CH2/β-

CH2, Lys; -CH2-CH=CH-CH2, O=C-CH2-CH2-; OleA), 2.07 – 2.30 (m, 

4H, O=C-CH2-, OleA),  2.40 - 2.66 (m, 24H, O=C-CH2-, Stp), 2.83 – 

3.14 (m, 8H, ε−CH2, Lys + Cys), 3.14 – 3.30 (m, 24H, N-CH2- , Stp), 

3.30 – 3.65 (m, 72H, N-CH2-, Stp) 4.04 – 4.14 (m, 2H, O=C-C(R)H-NH-, 

Cys), 4.29 – 4.41 (m, 2H, O=C-C(R)H-NH-, Lys)  

 

 

Sequence: HO-C-Stp4-K(K-MyrA2)-Stp4-C-H #: 79 

Molecular formula: C142H288N46O23S2 Mw 3072.23 
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MALDI: 3069.9 3071.2 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 17.1 °C): δ = 0.72 – 0.83 (m, 6H, -CH3, MyrA), 

1.11 – 1.29 (m, 40H, -CH2-, MyrA), 1.29 - 1.95 (m, 16H, δ-CH2/γ-CH2/β-

CH2, Lys; O=C-CH2-CH2-, MyrA), 2.10 – 2.28 (m, 4H, O=C-CH2-, MyrA),  

2.42 - 2.65 (m, 32H, O=C-CH2-, Stp), 2.85 – 3.15 (m, 8H, ε−CH2-, Lys + 

Cys), 3.15 – 3.30 (m, 32H, N-CH2-, Stp), 3.30 – 3.60 (m, 96H, N-CH2-, 

Stp) 4.03 – 4.20 (m, 2H, O=C-C(R)H-NH-, Cys), 4.26 – 4.38 (m, 2H, 

O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-C-Stp4-K(K)-Stp4-C-H #: 80 

Molecular formula: C112H234N48O21S2 Mw 2653.50 

MALDI: Not determined    

NMR: 1H-NMR (400 MHz, D2O, 17.0 °C): δ = 1.27 - 1.90 (m, 12H, δ-CH2/γ-

CH2/β-CH2, Lys), 2.40 - 2.67 (m, 24H, O=C-CH2-, Stp), 2.84 – 3.04 (m, 

8H, ε−CH2, Lys + Cys), 3.10 – 3.27 (m, 32H, N-CH2-, Stp), 3.35 – 3.70 

(m, 96H, Stp) 4.07 – 4.19 (m, 2H, O=C-C(R)H-NH-, Cys), 4.28 – 4.38 

(m, 2H, O=C-C(R)H-NH-, Lys) ppm. 

 

Sequence: HO-C-Stp4-K(K-SteA2)-Stp4-C-H #: 81 

Molecular formula: C150H304N46O23S2 Mw 3184.44 

MALDI: 3188.5 3185.4 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 17.1 °C): δ = 0.74 – 0.85 (m, 6H, -CH3, SteA), 

1.08 – 1.30 (m, 56H, -CH2-, SteA), 1.29 - 1.95 (m, 16H, δ-CH2/γ-CH2/β-

CH2, Lys; O=C-CH2-CH2-, SteA), 2.09 – 2.27 (m, 4H, O=C-CH2-, SteA),  

2.39 - 2.66 (m, 32H, O=C-CH2-, Stp), 2.80 – 3.12 (m, 8H, ε−CH2-, Lys + 

Cys), 3.12 – 3.29 (m, 32H, N-CH2-, Stp), 3.29 – 3.62 (m, 96H, Stp) 4.01 

– 4.19 (m, 2H, O=C-C(R)H-NH-, Cys), 4.20 – 4.38 (m, 2H, O=C-C(R)H-

NH-, Lys) ppm. 

 

Sequence: HO-C-Stp4-K(K-OleA2)-Stp4-C-H #: 82 

Molecular formula: C148H298N48O23S2 Mw 3182.39 

MALDI: 3182.4 3182.5 [M+H] calc.   

NMR: 1H-NMR (400 MHz, D2O, 17.3 °C): δ = 0.73 – 0.87 (m, 6H, -CH3, OleA), 
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1.10 – 1.36 (m, 40H, -CH2-, OleA), 1.36 - 1.99 (m, 24H, δ-CH2/γ-CH2/β-

CH2, Lys; -CH2-CH=CH-CH2, O=C-CH2-CH2-; OleA), 2.07 – 2.29 (m, 

4H, O=C-CH2-, OleA),  2.40 - 2.70 (m, 32H, O=C-CH2-, Stp), 2.72 – 

3.13 (m, 8H, ε−CH2, Lys + Cys), 3.14 – 3.30 (m, 32H, N-CH2- , Stp), 

3.30 – 3.65 (m, 96H, N-CH2-, Stp) 4.01 – 4.21 (m, 2H, O=C-C(R)H-NH-, 

Cys), 4.21 – 4.40 (m, 2H, O=C-C(R)H-NH-, Lys) ppm. 

 
Sequence: HO-IVNQPTYGYWHY-Stp2-H #: GE11-Stp2 

Molecular formula: C99H147N27O23 Mw 2083.4 

MALDI: 2084.9  2084.4 [M+H] calc.  tr=24.34 min 

 

Sequence: HO-IVNQPTYGYWHY-H #: GE11 

Molecular formula: C75H97N17O19 Mw 1540.7 

MALDI: 1541.6  1541.6 [M+H] calc.   tr=16.39 min 
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