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Zusammenfassung

Die Quantilregression erweitert klassische Regressionsmodelle dahingehend, dass nicht nur
der bedingte Erwartungswert, sondern die gesamte bedingte Verteilung einer Zielvariablen –
ausgedrückt durch Quantile – in Abhängigkeit von Kovariablen modelliert werden kann.

Die vorliegende Arbeit führt die Modellklasse der strukturiert additiven Quantilregression ein.
Diese Modellklasse kombiniert die Quantilregression mit einem strukturiert additiven Prädiktor,
der die flexible Modellierung von zahlreichen Kovariableneffekten ermöglicht. Dieser Prädiktor
enthält unter anderem glatte, nicht-lineare Effekte von stetigen Kovariablen und individuen-
spezifische Effekte, die insbesondere für longitudinale Daten wichtig sind.

Weiterhin gibt die Arbeit einen umfassenden Überblick über existierende Verfahren zur
Parameterschätzung in strukturiert additiven Quantilregressionsmodellen, die eingeteilt werden
in verteilungsfreie und verteilungsbasierte Schätzverfahren sowie in verwandte Modellklassen.
Jedes Verfahren wird systematisch in Bezug auf die vier vorab definierten Kriterien diskutiert,
(i) welche Komponenten eines flexiblen Prädiktors geschätzt werden können, (ii) welche
Eigenschaften die Schätzer haben, (iii) ob Variablenselektion möglich ist, und (iv) ob es Software
für die praktische Umsetzung gibt.

Die hauptsächliche methodische Neuentwicklung der Arbeit ist ein Boosting-Algorithmus, der
als alternativer Schätzansatz für strukturiert additive Quantilregression vorgestellt wird. Beim
Vergleich dieses innovativen Ansatzes im Hinblick auf die vier Kriterien zeigt sich, dass Quantil-
Boosting große Vorteile in Bezug auf fast alle Kriterien – insbesondere auf Variablenselektion
– mit sich bringt. Einen praktischen Vergleich von Quantil-Boosting mit den existierenden
Schätzverfahren liefern anschließend die Ergebnisse mehrerer Simulationsstudien.

Motiviert wird die Entwicklung der strukturiert additiven Quantilregression durch zwei aktuell
relevante Anwendungen aus dem Bereich der Epidemiologie: die Untersuchung von
Risikofaktoren für Unterernährung bei Kindern in Indien (in einer Querschnittsstudie) sowie
für Übergewicht und Adipositas bei Kindern in Deutschland (in einer Geburtskohortenstudie).
In beiden Anwendungen werden extreme Quantile der Zielvariablen mit strukturiert additiver
Quantilregression modelliert und mit Quantil-Boosting geschätzt. Die Ergebnisse werden
ausführlich dargestellt und diskutiert.





Summary

Quantile regression allows to model the complete conditional distribution of a response variable
– expressed by its quantiles – depending on covariates, and thereby extends classical regression
models which mainly address the conditional mean of a response variable.

The present thesis introduces the generic model class of structured additive quantile regression.
This model class combines quantile regression with a structured additive predictor and thereby
enables a variety of covariate effects to be flexibly modelled. Among other components, the
structured additive predictor comprises smooth non-linear effects of continuous covariates and
individual-specific effects which are particularly important in longitudinal data settings.

Furthermore, this thesis gives an extensive overview of existing approaches for parameter
estimation in structured additive quantile regression models. These approaches are structured
into distribution-free and distribution-based approaches as well as related model classes. Each
approach is systematically discussed with regard to the four previously defined criteria, (i) which
different components of the generic predictor can be estimated, (ii) which properties can be
attributed to the estimators, (iii) if variable selection is possible, and, finally, (iv) if software is
available for practical applications.

The main methodological development of this thesis is a boosting algorithm which is presented as
an alternative estimation approach for structured additive quantile regression. The discussion of
this innovative approach with respect to the four criteria points out that quantile boosting involves
great advantages regarding almost all criteria – in particular regarding variable selection. In
addition, the results of several simulation studies provide a practical comparison of boosting with
alternative estimation approaches.

From the beginning of this thesis, the development of structured additive quantile regression is
motivated by two relevant applications from the field of epidemiology: the investigation of risk
factors for child undernutrition in India (by a cross-sectional study) and for child overweight and
obesity in Germany (by a birth cohort study). In both applications, extreme quantiles of the
response variables are modelled by structured additive quantile regression and estimated by
quantile boosting. The results are described and discussed in detail.
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Chapter 0: Outline

Chapter 0: Outline

This thesis originated from interdisciplinary work within the Munich Center of Health Sciences
(MC-Health). With the aim of state-of-the-art quantitative empirical research in health and health
sciences, this project brings together scientists from a wide range of research disciplines, such as
epidemiology, medicine, economics, social sciences and statistics, and from different departments
at the Ludwigs-Maximilians-Universität München and at the Helmholtz Zentrum München.

From the beginning of this thesis, two applications from the field of biostatistics motivated our
research: the analysis of determinants of child undernutrition in developing countries and the
analysis of risk factors for overweight and obesity in childhood in western countries. The statistical
goal consisted in developing adequate statistical modelling approaches for these applications –
we thereby focussed on quantile regression with a flexible predictor – and to explore the relative
merits of these approaches regarding both applications.

Therefore, subordinate methodological questions were derived and investigated, resulting in
several published manuscripts and manuscripts which are currently under review. These
manuscripts build the base for this thesis. However, since they are closely related to each other,
their contents are not disjoint. In search of an appropriate structure for this thesis, we aggregated
the manuscripts to minimize redundancies and to maximize comprehension. In the following, we
give an outline of the resulting structure and summarize the content of the manuscripts.

The index of contents on the previous pages i–ii provides a linear view on the structure, whereas
the diagram in Figure 0.1 displays a more content-oriented view on the relationship between
chapters. The content is roughly grouped into three grey boxes (model classes, estimation
approaches and applications) and shortly described in the following.
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Figure 0.1 Content-oriented overview of the relationships between chapters of this thesis.

Page 2



Chapter 0: Outline

Model classes

As can be seen in the upper box of the diagram, we begin with a description of the conventional
linear quantile regression model in Chapter 1. Thereby, some of the mathematical notation is
introduced, an overview of typical application areas is given and the extension of linear quantile
regression to more flexible modelling is motivated.

Structured additive quantile regression is the main model class of this thesis. In Chapter 3.1, we
formulate the generic model class in analogy to (Gaussian) structured additive regression models
(STAR, Fahrmeir, Kneib, and Lang, 2004) and thereby put quantile regression into the context
and notation of modern flexible regression modelling.

Estimation approaches

The middle box of the diagram contains possible estimation approaches for structured additive
quantile regression. Apart from the definition of the generic model class in Chapter 3.1, Chapter 3
gives an extensive overview of possible estimation approaches for the presented model class. We
properly define criteria for method assessment and comparison in advance (Chapter 3.2).

In Chapter 3.3, we consider distribution-free approaches which do not rely on distributional
assumptions for the error terms and aim at direct minimization of the quantile loss criterion.
We distinguish between the classical framework of quantile regression, mainly consisting of
linear programming algorithms, and computer-intensive statistical learning and machine learning
algorithms, such as quantile regression forests or quantile neural networks.

In Chapter 3.4, we describe distribution-based approaches which assume an explicit error
distribution, mainly the asymmetric Laplace distribution. We also sketch flexible Bayesian
approaches where the error distribution consists of a mixture of Gaussian or other densities and
which therefore can be regarded as distribution-based.

Chapter 3.5 treats related model classes to quantile regression which are placed in the upper
box of Figure 0.1. These model classes can be applied in similar practice situations in which
structured additive quantile regression would be appropriate. We again distinguish between one
distribution-free model class (expectile regression) and two distribution-based model classes,
that is, Gaussian STAR models and generalized additive models for location, scale and shape
(GAMLSS).

Chapter 4 contains the main methodological contribution of this thesis. It presents a component-
wise functional gradient descent boosting algorithm as innovative distribution-free estimation
approach for structured additive quantile regression. In addition to a detailed description of the
estimation of a large variety of effects from the structured additive predictor, properties of the
quantile boosting algorithm are discussed with regard to the method assessment criteria from
Chapter 3. This discussion points out that quantile boosting involves great advantages regarding
almost all criteria – in particular regarding variable selection.

Applications

In Chapter 5, several simulation studies empirically evaluate the correctness of the proposed
quantile boosting algorithm and compare it to the majority of distribution-free estimation
approaches.
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Chapter 0: Outline

The motivating applications are introduced in Chapter 2 to illustrate application context and
appropriateness of quantile regression from the beginning of this thesis. Chapter 6 contains
the results of applying structured additive quantile regression to investigate determinants of child
undernutrition in developing countries by means of a large cross-sectional dataset from India.
Finally, Chapter 7 shows the results of a longitudinal quantile regression analysis of risk factors
for child overweight and obesity in western countries based on a German birth cohort study called
LISA.

Contributing Manuscripts

The present work is mainly based on the following manuscripts:

• Fenske N, Kneib T, Hothorn T (2011): Identifying risk factors for severe childhood
malnutrition by boosting additive quantile regression. Journal of the American Statistical
Association, 106(494): 494-510.

This manuscript introduces quantile boosting, i.e. the model class of structured additive
quantile regression combined with a component-wise functional gradient descent boosting
algorithm. Quantile boosting is applied and compared to further distribution-free estimation
approaches in a simulation study. The approach is illustrated by a first investigation of child
undernutrition in India.

Chapters 3.1, 4, and 5 are mainly based on contents of this manuscript.

• Fenske N, Burns J, Hothorn T, Rehfuess EA (2012): Understanding child stunting in India:
a comprehensive analysis of socio-economic, nutritional and environmental determinants
using quantile boosting. American Journal of Clinical Nutrition, to be submitted.

This manuscript contains an evidence-based, comprehensive analysis of the various
determinants of child undernutrition in India by boosting structured additive quantile
regression.

Chapters 2 and 6 are mainly based on contents of this manuscript.

• Fenske N, Fahrmeir L, Hothorn T, Rzehak P, Höhle M (2012): Boosting structured
additive quantile regression for longitudinal childhood obesity data. International Journal
of Biostatistics, submitted.

This manuscript investigates boosting estimation for longitudinal quantile regression by
focussing on individual-specific effects in the structured additive predictor. The approach
is compared to Gaussian STAR models in an analysis of risk factors for overweight and
obesity for a German birth cohort study called LISA.

Chapter 7 and parts of Chapters 4 and 5 are based on contents of this manuscript.
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The following manuscripts also contribute to parts of this thesis:

• Mayr A, Hothorn T, Fenske N (2012): Prediction intervals for future BMI values of individual
children – a non-parametric approach by quantile boosting. BMC Medical Research
Methodology, 12(6).

This manuscript applies quantile boosting to construct prediction intervals for individual BMI
values by means of the German LISA birth cohort study.

Parts of Chapters 1, 2 and 7 are related to contents of this manuscript.

• Mayr A, Fenske N, Hofner B, Kneib T, Schmid M (2012): Generalized additive models for
location, scale and shape for high-dimensional data - a flexible approach based on boosting.
Journal of the Royal Statistical Society, Series C (Applied Statistics), 61(3):403–427.

This manuscript introduces a boosting algorithm for the estimation of GAMLSS called
gamboostLSS. The gamboostLSS approach is explored in a simulation study and applied to
an analysis of data from the Munich rental guide.

Parts of Chapters 3.5 and 4 are related to contents of this manuscript.
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Chapter 1: Motivation and research goals

Chapter 1: Motivation and research goals

This chapter gives an introduction of the basic concepts of quantile regression and some of the
mathematical notation that will be used throughout the thesis. It also presents typical application
areas of quantile regression. Furthermore, the extension of standard linear quantile regression to
structured additive quantile regression is motivated and, thereby, the underlying research goals of
this thesis are sketched.

1.1 Basics of linear quantile regression

The most popular example for a quantile is probably the median. Empirically, it is defined as the
value where 50% of a random sample have smaller values and 50% of the sample have greater
values. The extension of this definition to other quantiles is straightforward. The 30% quantile,
for example, is the value where 30% of the sample have smaller and 70% have greater values.
Regarding several empirical quantiles at the same time can give an impression not only of the
location or median of a random sample, but also of further distributional characteristics, such
as variance, skewness, and kurtosis. Thus, quantiles go “beyond the mean” and can provide a
complete picture of a sample distribution. This is also the basic idea of the boxplot, one of the
most common tools to visualize a sample from a continuous variable.

In theory, quantiles are defined based on the cumulative distribution function (cdf) FY of a
continuous random variable Y . The τ · 100% quantile of Y can be written as a value yτ where

FY (yτ ) = P (Y ≤ yτ ) =

∫ yτ

−∞
f(u) du = τ for τ ∈ (0, 1) .

It is only unique if FY is strictly monotonic increasing. The boundaries 0 and 1 are not included
in the range of τ for reasons of uniqueness. In case that information on an additional random
variable X is given, the quantile can similarly be expressed conditional on X = x:

FY (yτ (x) |X = x) = P (Y ≤ yτ (x) |X = x) = τ .

The quantile function QY (τ | X = x) is defined as the smallest y where the quantile property is
fulfilled if FY is not strictly monotonic, i.e.,

QY (τ |X = x) = inf{y : FY (y |X = x) ≥ τ} ,

and is set to the inverse of the cdf of Y , i.e., QY (τ | X = x) = F−1Y (τ | X = x), if FY is strictly
increasing.

Thus, the relationship between quantile function and cdf (for strictly increasing FY ) can be
expressed as

FY (yτ (x) |X = x) = τ ⇔ QY (τ |X = x) = yτ (x) ,

which emphasizes that the quantile function describes τ · 100% quantiles of Y depending on
covariates x and a quantile parameter τ ∈ (0, 1).

Note that throughout this thesis, the term quantile will be used synonymous with percentile.
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Chapter 1: Motivation and research goals

Quantile regression carries over the idea of going beyond the mean to regression modelling. It
is an approach to model the conditional quantile function of a continuous variable of interest Y ,
denoted as response variable in the following, depending on further variables or covariates X.
In accordance with linear mean regression models, the linear quantile regression model can be
written as

yi = x>i βτ + ετi , (1.1)

see, for example, Buchinsky (1998). The index i = 1, . . . , n, denotes the observation, yi is the
response value and xi = (1, xi1, . . . , xip)

> the given covariate vector for observation i. The
quantile-specific linear effects are denoted by βτ = (βτ0, βτ1, . . . , βτp)

>, and τ ∈ (0, 1) indicates
a quantile parameter which has to be fixed in advance. The random variable ετi is assumed to
be an unknown error term with cdf Fετi and density fετi depending on quantile parameter τ and
observation i.

At first glance, model (1.1) looks like a standard linear regression model which aims at modelling
the response’s mean depending on covariates. However, the crucial difference between a
standard linear regression model with Gaussian errors and quantile regression is the distributional
assumption for the error terms. For quantile regression, no specific assumptions are made apart
from ετi and ετj being independent for i 6= j, and∫ 0

−∞
fετi(ετi) d ετi = Fετi(0) = τ . (1.2)

Due to this assumption, model (1.1) aims at describing the quantile function QYi(τ |xi) of the
response variable Yi conditional on covariate vector xi at a given quantile parameter τ . This can
be seen after the following steps. First, the cdf of Yi can be expressed in terms of the cdf of ετi:

FYi(yτ | xi) = P (Yi ≤ yτ | xi)

= P (x>i βτ + ετi ≤ yτ | xi)

= P (ετi ≤ yτ − x>i βτ | xi) = Fετi(yτ − x>i βτ | xi) .

Then, the τ · 100% quantile of Y can be derived as:

FYi(yτ | xi) = τ

⇔ Fετi(yτ − x>i βτ | xi) = τ

⇔ yτ − x>i βτ = F−1ετi (τ)

⇔ yτ = x>i βτ + F−1ετi (τ) .

With the assumption in (1.2), it follows that F−1ετi (τ) = 0, and thus:

QYi(τ |xi) = x>i βτ =: ητi . (1.3)

Therefore, the regression parameters βτ quantify linear relationships between covariates and
the quantile function of the response. More specifically, the parameter βτ1, for example, can be
interpreted as the change of the conditional quantile function when xi1 changes to xi1+1, given all
other covariates remain constant. The quantile regression predictor, which is linear in the simplest
case here, is abbreviated with ητi.
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Chapter 1: Motivation and research goals

The index τ for βτ points out that the regression parameters can differ for different values of
τ . An example for this situation is given by Figure 1.1. Panel (a) shows simulated data from
a heteroscedastic data setup as well as true underlying quantile functions for a grid of quantile
parameters. It can be observed that x has different linear relationships with the median and other
quantiles of the response and that the slope parameters βτ1 depend on τ , see also panel (b).
This is a typical data situation where quantile regression would be more appropriate than mean
regression.
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Figure 1.1 Simulation example of a heteroscedastic data setup. Panel (a): Grey points stand for n = 300

observations simulated from the model yi = xi + (0.5xi)εi with xi ∼ U [−3, 3] and
εi ∼ N (0, 4). Black lines show the true underlying quantile curves for an equidistant grid of
quantile parameters. Panel (b): Functional relationship between τ and true slope parameters
βτ1 for simulation setup from panel (a).

However, the parameters βτ have to be interpreted with care. In general, they cannot be
interpreted on an individual-specific level. A person who happens to be at the τ · 100% quantile
of the response conditional on his/her specific covariate vector would not be at the same quantile
any more when his/her covariate vector changes. When knowing βτ , the only conclusion that can
be drawn is how the τ · 100% quantile of a population with a specific covariate combination differs
from the τ · 100% quantile of a population with a different covariate combination.

Three additional remarks should be made here. In model (1.1), we directly started from
formulating the linear quantile regression model in analogy to standard mean regression models.
Originally, the concept of quantile regression traces back to Koenker and Bassett (1978), where
regression quantiles were defined by minimizing a weighted sum of absolute deviances:

n∑
i=1

ρτ (yi − ητi) with check function ρτ (u) =

uτ u ≥ 0

u(τ − 1) u < 0 .
(1.4)

This definition of quantile regression paves the way for distribution-free estimation approaches
which only ask for the specification of a loss function. These approaches will be thoroughly
treated in Section 3.3.
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Chapter 1: Motivation and research goals

Note also that our formulation of quantile regression in (1.1) should emphasize our view that
Gaussian mean regression can be regarded as a special case of quantile regression. Every
regression model with a specific distributional assumption describes the full conditional distribution
– and therefore all quantiles – of the response variable depending on covariates. In case that the
covariates are associated with the response’s quantiles in a linear way, the resulting quantile
regression model is linear as introduced above. However, the relationship between predictor
and quantile function is not linear in the general case of regression models with distributional
assumptions. This view on quantile regression will be further worked out in Section 3.5.

Regarding introductory literature on quantile regression, the book of Koenker (2005) has
established as standard reference since it gives an extensive overview of the status quo of
research in the classical framework of quantile regression. A more applied introduction is given by
Hao and Naiman (2007) based on various examples from the social sciences. The master’s thesis
of Fenske (2008) provides a brief and application-oriented introduction to quantile regression in
German.

1.2 Usage and typical applications of quantile regression

Over the last years, quantile regression has become a popular statistical method for addressing
various research questions. Apart from epidemiological applications treated in this thesis,
quantile regression has recently been applied to a large number of different areas, ranging
from social and educational sciences (e.g., Hao and Naiman, 2007; Arulampalam et al., 2011)
to environmental and ecological sciences (e.g., Cade et al., 2008; Mehtätalo et al., 2008) and
problems in economics (e.g., Franck and Nüsch, 2012; Matano and Naticchioni, 2012; Pendakur
and Woodcock, 2010).

In general, quantile regression is useful when the shape of the response’s distribution depends
on covariates, i.e., when the error terms are not iid, or when the response does not follow a
well-known distribution, e.g., when it is not symmetric or when heavy tails or outliers are present.

The specific usage of quantile regression depends on the goal of the respective analysis. The
decisive question that has to be answered prior to each quantile regression analysis is which
quantile parameters τ should be considered; and the answer to this question determines the
specific usage. In our view, there are two alternative usages: quantile regression for a small
number of quantile parameters vs. quantile regression for a large number or a grid of quantile
parameters.

In the following, we shortly describe both alternatives with regard to underlying aims and typical
corresponding applications.

Alternative 1: Quantile regression for a small number of quantile parameters

• When the area of interest is not the mean of the response but a particular quantile interval,
quantile regression can simply be conducted for a small number of quantile parameters from
this interval.

This will be the case for the two motivating applications of this thesis, dealing with
undernutrition of children in developing countries and with overweight and obesity of
children in western countries. Both datasets will be investigated by quantile regression
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Chapter 1: Motivation and research goals

for anthropometric measurements depending on child-specific covariates. In case of
undernutrition, the area of interest are lower quantiles of height-for-age values rather than
the mean, whereas for overweight and obesity, upper quantiles of the body mass index (BMI)
are in the focus of the analysis.

The value at risk (VAR) is a typical application from financial and economics research where
the interest is directed towards particular quantiles. It is an important measure for quantifying
daily risks. Since its definition is directly based on extreme quantiles of risk measures, it
seems obvious to use quantile regression for VAR modelling (see Yu et al., 2003, for further
references).

• In case that the area of interest is the response’s mean but heavy tails or large outliers are
present in the sample, median regression can be applied as a special case of this usage
alternative. Since the robustness property of the median carries over to median regression
(see Koenker, 2005, Chap. 2.3), it is to be preferred to mean regression in the presence of
outliers.

• Another situation in which quantile regression just has to be performed for two particular
quantile parameters is the construction of prediction intervals, as proposed by Meinshausen
(2006).

To obtain a (1−α)·100% prediction interval for a future response value, quantile regression is
first performed for the two particular quantile parameters τ1 = α/2 and τ2 = 1− α/2. Then,
the new covariate observation xnew is plugged into the estimated predictor. The resulting
estimated quantiles of ynew directly denote the borders of a (1−α) · 100% prediction interval
PI for ynew as follows:

P̂I1−α(xnew) =
[
Q̂Y

(α
2
| X = xnew

)
, Q̂Y

(
1− α

2
| X = xnew

) ]
.

In Mayr et al. (2012c), we applied this usage of quantile regression to construct prediction
intervals for future BMI values of individual children based on the German birth cohort
study which will be introduced in Section 2.2. Since the BMI distribution in childhood is
typically skewed depending on age (see Figures 1.2 and 1.3), quantile regression was
more adequate to construct prediction intervals than standard approaches based on mean
regression.

Alternative 2: Quantile regression for a large number or a grid of quantile parameters

• The objective of many applications consists of investigating the complete conditional
distribution of the response variable depending on covariates. In these situations, it is not
sufficient to look at a small number of particular quantile parameters only.

For example, Gilchrist (2008, p.2) stress that “[...] when modelling regression the whole
model should be considered, both deterministic and stochastic terms, and a balanced
consideration should be given to the forms of both.” He regards the model predictor as
deterministic and the error distribution as stochastic component. When quantile regression
is conducted for a grid of several quantile parameters τ ∈ (0, 1) at the same time, it
provides a complete picture of the error distribution and, therefore, addresses the stochastic
component in the analysis.
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Chapter 1: Motivation and research goals

A typical application of this usage of quantile regression is the construction of child growth
standards. Figures 1.2 and 1.3 exemplarily show the World Health Organization (WHO)
growth charts for boys aged 0-5 years and 5-19 years, respectively. Displayed are five
quantile curves of the BMI by age. The shape of the quantile curves suggests that the BMI
distribution becomes right-skewed beginning somewhere after the age of 6 years. Also, the
BMI quantile curves are not linear. For this reason, flexible regression methods are needed
to obtain the smooth nonlinear BMI quantile curves shown in Figures 1.2 and 1.3. Borghi
et al. (2006) presents an extensive review of possible regression methods to obtain such
growth charts – including also quantile regression for a large number of quantile parameters.

• The usage of quantile regression for a grid of quantile parameters can also be helpful to
detect deviations from an iid error distribution. In this context, Koenker (2005) proposes
to visualize the regression results by a plot of τ versus βτ . As an example, Figure 1.1(b)
displays the relationship between τ and the true slope parameter βτ1 for the simulation
setup from Figure 1.1(a). The shape of the resulting function is not constant and suggests
heteroscedasticity in the data. Koenker (2005, p.29) explains how to match further typical
patterns of τ versus βτ with underlying distributional shapes of Y given X.

However, one should be aware that distribution-free estimation of quantile regression is usually
performed separately for different quantile parameters. This runs the risk of quantile crossing
which would, for example, be present when the estimated median is greater than the estimated
60% quantile given the same specific covariate combination. The danger of quantile crossing is in
particular given at the boundaries of the covariate space when quantile parameters close to each
other are investigated. Quantile crossing at any point of the covariate space can for example be
avoided by using distribution-based estimation approaches for quantile regression which directly
assume a specific distribution for the stochastic component. High research efforts are also made
to develop distribution-free estimation approaches that respect the monotonicity of the quantile
function.
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1.3 Research goals of this thesis

In practice, the linear quantile regression model (1.1) does not always suffice to adequately
express the relationship between covariates and quantile functions of the response variable. For
example, Figure 1.4 shows simulated data where the shapes of the quantile curves are nonlinear
and even depend on the quantile parameter.

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l l
ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l l l

l

l

l

ll

ll

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

ll

l

l

l l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

ll

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l
l

l

l

l

l l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

−3 −2 −1 0 1 2 3

−10

0

10

20

z

y

Figure 1.4 Simulation example of a heteroscedastic and nonlinear data setup. Grey points stand for
n = 300 observations simulated from the model yi = 2 + 3 sin( 2

3
xi) + x2i εi with xi ∼ U [−3, 3]

and εi ∼ N (0, 0.25). Black lines show the true underlying quantile curves for an equidistant
grid of quantile parameters.

We were faced with a similar data situation in our motivating applications since the relationships
between age and anthropometric measurements of children are typically nonlinear, as for example
shown for the BMI quantile curves in Figures 1.2 and 1.3.

At the same time, we had to deal with a longitudinal data setup, since our obesity analysis was
based on a German birth cohort study with repeated observations per child. Consequently, the
statistical task was to account for the unobserved heterogeneity, i.e., correlation between intra-
individual observations that is not covered by covariates, which is typically present in longitudinal
data.

Two additional challenges were given by the analysis of undernutrition of children in India:
First, regional differences were expressed by a spatial covariate with 29 different states of
India. Therefore the method also had to consider the unobserved heterogenity arising from the
spatial setup since one can assume that observations of children from the same state or from
neighbouring states are more similar than observations of non-neighbouring states. Second,
our modelling had to reflect that the meaning of feeding variables, such as breastfeeding and
complementary feeding, varies with age.
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Chapter 1: Motivation and research goals

These methodical issues motivated us to define the research goals for this thesis as follows:

• The main research goal was to extend quantile regression to a structured additive predictor
comprising a large variety of different effects, such as smooth nonlinear effects to model
nonlinear relationships between quantiles of the response and continuous covariates;
smooth varying coefficient terms to model (potentially nonlinear) time-varying effects of
further covariates; individual-specific effects to account for the longitudinal data structure;
and spatial effects to account for potential spatial correlation.

• Consequently the first goal was a comprehensive review of existing estimation approaches
for flexible quantile regression in order to explore their potential for estimating structured
additive quantile regression models.

• More importantly, we set the goal to develop new approaches for the estimation of structured
additive quantile regression. We introduced and investigated boosting as innovative
distribution-free estimation algorithm.

• Our final goal was to investigate if applying structured additive quantile regression to our two
health applications could lead to new substantive insights.
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Chapter 2: Applications in this thesis

In this chapter, we give an overview of data and objectives of our two main applications. In
addition, we motivate the appropriateness of structured additive quantile regression for them.
Section 2.1 is mainly based on Fenske, Burns, Hothorn, and Rehfuess (2012a), whereas details
on Section 2.2 can be found in Fenske, Fahrmeir, Hothorn, Rzehak, and Höhle (2012b).

2.1 Undernutrition in developing countries

Background and epidemiological aim

Child undernutrition is the cause of one third of deaths in children under five and produces
serious consequences throughout the life course, including intellectual disability and metabolic
and cardiovascular disease (Black et al., 2008; Caulfield et al., 2006; UNICEF et al., 2011). Low
height-for-age or stunting reflects a failure to reach linear growth potential, and is a key indicator
of chronic undernutrition. Globally, 171 million children under five were classified as stunted in
2010 (WHO, 2012), with 90% of this burden occurring in 36 African and Asian countries.

Stunting is the result of a complex interplay of factors. Gaining a better understanding of
these factors is critical for identifying entry-points for effective intervention. Thus, the overall
epidemiological aim of our study was to undertake a comprehensive, systematic and evidence-
based analysis of the multiple determinants of child stunting.
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Schematic diagram of determinants

We used the UNICEF childhood undernutrition framework (UNICEF, 1998) as a starting point,
since it provides a theoretical basis for system thinking in the area of child undernutrition. Based
on extensive literature searches we structured potential risk factors in a schematic diagram of
immediate, intermediate and underlying determinants of child stunting, shown by Figure 2.1.

According to the UNICEF framework, we defined sixteen main groups of determinants for stunting
and grouped them into non-modifiable factors (child age and sex) and three layers standing for
immediate, intermediate and underlying determinants. The top layer of the diagram contains the
most important modifiable immediate determinants of stunting, comprising intrauterine growth
restriction (IUGR) and inadequate caloric and nutrient intake and uptake. The majority of
groups of determinants is located in the middle layer of intermediate determinants, for example
household food competition; water, sanitation and hygiene; breastfeeding and complementary
feeding practices; indoor air pollution; etc. The bottom layer consists of three groups of underlying
determinants, that is maternal, household and regional characteristics. Detailed information on all
determinants and corresponding literature can be found in Fenske, Burns, Hothorn, and Rehfuess
(2012a).

The complex interplay of determinants is also emphasized by arrows between layers. We assume
direct effects of all groups of determinants on stunting, but also indirect effects of determinants
through superordinate layers.

Dataset

With an estimated stunting prevalence of 51% and 61 million stunted children, India is the most
affected country in the world and, therefore, was chosen as the focus of this study. We used data
from the Indian National Family Health Survey (NFHS) for the years 2005/2006 (International
Institute for Population Sciences and Macro International, 2007) which corresponds to the Indian
version of the well-known Demographic and Health Surveys (DHS). NFHS/ DHS are large-scale,
well-established, nationally representative surveys based on a multi-stage cluster sample design
that provide high-quality information on the health and nutrition of women and children.
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Figure 2.1 Schematic diagram of the multiple determinants of child stunting structured by layer and
groups of determinants.
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Quantification of stunting

According to the WHO child growth standards (WHO Multicentre Growth Reference Study
Group, 2006), we quantified stunting as inadequate height-for-age. More precisely, stunting was
measured by a Z-score obtained from a standardization of children’s height. The Z-score for child i
was computed as

Zi =
heighti −M(agei, sexi)

S(agei, sexi)
, (2.1)

with M and S being median and standard deviation of height in the reference group stratified
with respect to age and sex. Stunting was quantified as low height-for-age values in our analysis.
Figures 2.2 and 2.3 show the corresponding WHO height-for-age reference charts from birth
to 5 years for boys and girls, respectively. The reference population consists of exclusively
breastfed healthy children born between 1997 and 2003 from comparable affluent backgrounds in
different countries. The lowest black curves stand for a Z-score of−3 (obtained from M−3·S) and
exactly correspond to the 0.1% age- and sex-specific quantile curves of height, whereas the lower
red curves for a Z-score of −2 exactly display the 2.3% quantile curves of height in the reference
population. The jump discontinuities at the age of two years result from the fact that the growth
charts were constructed by means of two separate datasets with children older and younger than
two years.

By using Z-scores instead of raw height values, the degree of undernutrition of a child can
be assessed without regarding its age and sex. Therefore, Z-scores and binarized versions
of them are commonly used in the analysis of child undernutrition. In addition to the Z-score
as continuous response variable, we constructed binary variables for being stunted or severely
stunted. According to these variables, children with an age- and sex-specific Z-score less than −2

or −3 (i.e., below the lower red or black Z-score curves) were classified as stunted or severely
stunted, respectively.

Note that the WHO growth reference curves as shown by Figures 2.2 and 2.3 were obtained by
various regression approaches closely related to quantile regression (see Borghi et al., 2006; Cole
et al., 2000; Wei et al., 2006, for details), and Z-scores for further anthropometric measures, such
as BMI or weight, can be calculated similarly as for height. However, in case of height no age-
specific skewness parameter is necessary and the distributional shape reduces to a Gaussian
distribution with age- and sex-specific parameters for mean and standard deviation. In case of
the BMI, the transformation between BMI values and corresponding Z-scores becomes more
involved than in equation (2.1) due to an emerging BMI skewness at the age of 6 (see Section 2.2
and Figure 1.3).

Figure 2.4 displays the observations of children’s height depending on age and sex in our final
dataset, superimposed by the height-for-age Z-score curves from Figures 2.2 and 2.3. The
distributional shape of height is in accordance with the reference distribution. However, beginning
around the age of six months, the height distribution of Indian children is clearly below the
reference distribution.

Furthermore, Figure 2.5 shows the Z-score values for height-for-age in the final dataset resulting
from the transformation described above. One can see that the shape of the Z-score distribution
is symmetric and remains stable with age and sex. The Z-score curves from Figure 2.4 are not
drawn since they just correspond to constant lines at −3,−2, 0, 2 and 3. Instead, the Z-score
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Figure 2.2 Length/Height-for-age Z-score curves for boys aged 0-
5 years from the WHO child growth standards. Source:
http://www.who.int/childgrowth/standards/chts lhfa boys z/en/index.html
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Figure 2.3 Length/Height-for-age Z-score curves for girls aged 0-
5 years from the WHO child growth standards. Source:
http://www.who.int/childgrowth/standards/chts lhfa girls z/en/index.html
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observations are superimposed by empirical lower quantile curves (which were estimated by
local linear quantile regression; Yu and Jones, 1998). The quantile parameters are chosen in
accordance with the later quantile regression analysis.

Thus, Figure 2.5 suggests a negative linear age effect for all Z-score quantiles. The parallel shift
of the curves indicate that quantile regression coefficients for age would probably be similar for
different quantile parameters. Beginning around the age of 12 months, a huge part of the Indian
children have Z-score values smaller than −2 and are therefore classified as stunted.

Figure 2.4 Height values (grey points) by age and sex in our final dataset, superimposed by Z-score
curves from Figures 2.2 and 2.3.

Figure 2.5 Z-score values (grey points) for height-for-age by age and sex in the final dataset,
superimposed by empirical lower quantile curves which were estimated by local linear quantile
regression (Yu and Jones, 1998).
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Covariates

The diagram in Figure 2.1 served as a basis for identifying relevant variables within each group of
determinants. Table 2.1 shows all variables and their empirical distributions contained in the final
dataset and is arranged by groups of determinants from Figure 2.1.

The dataset contains variables to populate most groups of determinants, but variables from the
layer of immediate determinants (intrauterine growth restriction, nutrient intake and uptake) were
not available. In the layer of intermediate determinants, we could not assess measures or suitable
proxies of the groups of chronic diseases and recurrent infections, since information on infections
was only available on disease symptoms two weeks prior to the survey (which were considered
unsuitable). For some groups, we could not cover all characteristics of interest, for example
in relation to maternal psychosocial health, food production and distribution, hygiene practices,
environmental tobacco smoke and zinc.

With regard to the non-modifiable determinant age, our analysis focussed on living children aged
0-24 months, as stunting prevalence progressively increases until it reaches a plateau at around
24 months, see Black et al. (2008).

The wealth variable from the group of household characteristics is an established index for
economic status and commonly used in DHS surveys. To construct this variable, 33 housing
characteristics were aggregated, such as type of toilet facility; type of windows and roofing;
presence of electricity, television and radio; possession of a car; etc. The grouping into five
categories is done on national level and based on quintiles of an underlying continuous variable
(for more details see International Institute for Population Sciences and Macro International,
2007).

Concerning water and sanitation, we prepared the variables according to the guidelines
of the WHO/UNICEF joint monitoring programme for water supply and sanitation (see
http://www.wssinfo.org/definitions-methods/watsan-categories).

Regarding the group of curative and preventative healthcare, we examined various measures
(e.g., possession of health card, health facility visit in past three months) but ultimately settled
for the number of antenatal visits as a proxy for care during pregnancy and childbirth, and
constructed a vaccination index based on vaccinations against measles, polio, tuberculosis (BCG)
and diphtheria, pertussis and tetanus (DPT) as a proxy for care during childhood.

We constructed a three-level variable for breastfeeding and two variables for complementary
feeding practices. Thereby, food diversity was measured as the number of food groups a child
had consumed in the previous 24 hours apart from breast milk, with the eight food groups defined
as in the NFHS report comprising food made from grains; food made from roots; food made from
beans, peas, lentils, nuts; fruits and vegetables rich in vitamin A; other fruits and vegetables;
meat, fish, poultry, eggs; cheese, yoghurt, other milk products. Food quantity was assessed as
meal frequency, i.e., the number of times a child received anything to eat other than breast milk
in the previous 24 hours. Grouping of both variables was based on empirical frequencies in our
dataset in order to obtain sufficiently large group sizes.

Page 23



Chapter 2: Applications in this thesis

Table 2.1 Overview of variables and their empirical distributions contained in the final dataset with
N = 12 176 observations, arranged by groups of determinants from Figure 2.1.

Variable Values / Description Number Percentage 

    

Stunting    

Z-score for height-for-age  Mean: -1.37, Median: -1.44, Sd: 1.79, Range: [-6, 6] 

Child is stunted No 7699 63.2% 

 Yes 4477 36.8% 

Child is severely stunted No 10089 82.9% 

 Yes 2087 17.1% 

    

Non-modifiable factors    

Child age [months] Mean: 12.46, Median: 13, Sd: 6.62, Range: [0, 24] 

Child sex Male 6317 51.9% 

 Female 5859 48.1% 

    

Maternal characteristics    

Maternal age [years] Mean: 25.66, Median: 25, Sd: 5.21, Range: [15, 49] 

Maternal BMI [kg/m
2
] Mean: 20.10, Median: 19.52, Sd: 3.26, Range: [12.04, 40.34] 

    

Household characteristics    

Household wealth Poorest 2180 17.9% 

 Poorer 2226 18.3% 

 Middle 2463 20.2% 

 Richer 2726 22.4% 

 Richest 2581 21.2% 

Religion of household head Hindu 8683 71.3% 

 Muslim 1714 14.1% 

 Christian 1232 10.1% 

 Sikh 224 1.8% 

 (Neo-)Buddhist 137 1.1% 

 Other 186 1.5% 

Caste/tribe of household head Scheduled caste 2222 18.2% 

 Scheduled tribe 2098 17.2% 

 Other backward class 4188 34.4% 

 None of them 3668 30.1% 

Maternal education [years] Mean: 5.40, Median: 5, Sd: 5.16, Range: [0, 20] 

Partner’s education [years] Mean: 7.21, Median: 8, Sd: 5.07, Range: [0, 22] 

Partner’s occupation Services 4933 40.5% 

 Household & domestic 697 5.7% 

 Agriculture 3361 27.6% 

 Clerical 1752 14.4% 

 Prof./ Tech./ Manag. 497 4.1% 

 Did not work  936 7.7% 

Mother is currently working No 9045 74.3% 

 Yes 3131 25.7% 

Sex of household head Male 10958 89.8% 

 Female 1247 10.2% 

    

Regional characteristics    

State of residence 29 states of India, see Figure 2.6 

Urban/rural location Urban 4429 36.4% 

 Rural 7747 63.6% 
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Variable Values / Description Number Percentage 

    

Household food competition    

Number of household members  Mean: 6.68, Median: 6, Sd: 3.16, Range: [2, 35] 

Birth order Mean: 2.64, Median: 2, Sd: 1.82, Range: [1, 14] 

Preceding birth interval [months] Mean: 26.53, Median: 25, Sd: 25.39, Range: [0, 250] 

Child is twin or multiple birth No 12037 98.9% 

 Yes 139 1.1% 

    

Water, sanitation and hygiene    

Drinking water in household Unimproved 2164 17.8% 

 Improved 6879 56.5% 

 Piped 3133 25.7% 

Sanitation facility in household Unimproved 8345 68.5% 

 Improved 3831 31.5% 

    

Indoor air pollution    

Type of cooking fuel Straw/ crop /animal dung  1969 16.2% 

 Coal/ charcoal/ wood 6598 54.2% 

 Kerosene 388 3.2% 

 Gas/ electricity 3221 26.4% 

    

Curative and preventive healthcare    

Vaccination index None (0) 1093 9.0% 

 Low (1-3) 2106 17.3% 

 Medium (4-6) 2364 19.4% 

 High (7-9) 6613 54.3% 

Number of antenatal visits 
during pregnancy 

Mean: 3.91, Median: 3, Sd: 3.44, Range: [0, 26] 

    

Breastfeeding practices    

Breastfeeding No breastfeeding 1578 13.0% 

 Breastfeeding + 
complementary feeding 

9450 77.6% 

 Exclusive breastfeeding 1148 9.4% 

    

Complementary feeding practices    

Food diversity  Low (0-2) 7166 58.9% 

(Number of food groups  Medium (3-4) 3466 28.5% 

consumed during last 24 hours  High (5-8) 1544 12.7% 

other than breast milk)    

Meal frequency Low (0-1) 4145 34.0% 

(Number of meals consumed  Medium (2-3) 5822 47.8% 

during last 24 hours  High (4-9) 2209 18.1% 

aside from breast milk)    

    

Micronutrient deficiencies    

Child received iron No 11464 94.2% 

 Yes 712 5.8% 

Child received vitamin A No 7724 63.4% 

 Yes 4452 36.6% 

Iodine-in-salt test result No iodine 2447 20.1% 

 Less than 15 parts per million 2775 22.8% 

 15 parts per million or more 6954 57.1% 
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In our later regression analyses, we had to deal with the fact that meaning and effect of the
feeding variables vary with increasing age (Habicht, 2004). For example, exclusive breastfeeding
is recommended during the first 6 months and complementary feeding should be gradually
introduced afterwards. Figure 2.6 shows the empirical relative frequencies of stunted children
in our dataset depending on age and breastfeeding. It can be observed that in the first six months
of age, non-breastfed children are the group with greatest stunting proportions, whereas after
14 months breastfed children have greater stunting proportions than non-breastfed children. (The
peaks of exclusively breastfed children at the ages of 17, 20, and 23 months are due to very small
group sizes.)

Figure 2.6 Empirical relative frequencies of stunted children depending on age and breastfeeding status.

With respect to the 29 different states of India, Figure 2.7 shows the empirical 35% Z-score
quantile by region. Red areas show regions with lowest Z-score quantiles and therefore high
stunting prevalences. The aim of our later regression analysis was to explain the spatial
differences by other covariates included in the analysis. However, even after adjustment for
these covariates, additional spatial correlation might remain which cannot be explained by the
covariates. Therefore, it makes sense to assume that observations of children from the same
state and from neighbouring states are more similar than observations of children from non-
neighbouring states.
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Figure 2.7 Empirical 35% Z-score quantile for height-for-age by 29 states of India.

Missing data handling

With regard to observation numbers and missing data, we pursued a complete case approach
and proceeded as follows. Starting from a total of 19 868 living children aged 0-24 months,
we excluded 1776 non-de jure residents (as several determinants relate to the household
environment), 1053 children that were not the last birth (as detailed nutritional information is
only available for the last birth) and another 2779 children due to missing outcome, resulting
in a provisional total of 14 260 observations. Further reductions were mainly attributable to seven
covariates with 50 or more missing values: caste (640 missing values), partner’s occupation (212),
partner’s education (165), drinking water (50), vaccination index (280), number of antenatal visits
(153), vitamin A (450), and iodine (118). Our final dataset comprised 12 176 observations.
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Questions of the analysis

As already sketched, the overall epidemiological aim was a comprehensive analysis of the multiple
determinants of child stunting. With the data at hand, we formulated more precise questions of
the analysis as follows:

• Which variables can be identified as important determinants of child stunting?

• Is it possible to give a range of importance of the determinants?

• Which continuous variables exert their effect in a nonlinear way?

• How can the age-varying meaning of feeding variables (Figure 2.6) be adequately modelled?

• How can be accounted for the correlation between observations of children from the same
state within India or from neighbouring states (Figure 2.7)?

Appropriateness of quantile regression

Most analyses of the determinants of undernutrition have used a binary outcome (e.g., stunted
vs. not stunted), followed by a binary regression (see, e.g., Kyu et al., 2009; Mishra and
Retherford, 2007; Semba et al., 2010). We believe that quantile regression for lower quantiles of
the height-for-age Z-score is also a suitable and promising approach to analyze the determinants
of stunting and to answer the questions above.

As described in Chapter 1, quantile regression aims at modelling conditional quantiles of the
outcome depending on covariates. The underlying dichotomization of the continuous response
at a pre-specified quantile parameter corresponds to defining a cut point in binary regression.
However, by using quantile regression the coarsening of the outcome – and therefore discard of
information – is avoided. Quantile regression is also more flexible than binary regression since no
specific distribution for the outcome is assumed.

When undernutrition is the subject-matter of the analysis, lower quantiles of the height-for-age
Z-score can be regarded as outcome instead of binary versions. This corresponds to the first type
of usage from Chapter 1, where quantile regression is conducted for a small number of quantile
parameters. In our analysis, we chose four different values for τ , namely 0.05, 0.15, 0.35, and
0.50. The values 0.35 and 0.15 were derived from the empirical relative frequencies for being
stunted (approx. 37%) or severely stunted (approx. 17%) in our dataset, see Table 2.1. The other
values were chosen for reasons of model comparison.

In Kandala et al. (2001) and Kandala et al. (2009), undernutrition was modelled by mean
regression with Gaussian errors and a structured additive predictor. Since we are interested in the
determinants of undernutrition and not in the average nutritional status, we believe that quantile
regression might be more adequate for our purposes. However, since we will also employ our
quantile regression models for the median, we can investigate if the association of risk factors on
the lower tail of the Z-score distribution differs from their association on the population mean.

Statistical challenges for the quantile regression analysis were the combination of linear,
nonlinear, spatial and age-varying effects in the same quantile-specific predictor. In addition,
a large number of covariates was present in the dataset, emphasizing the need for variable
selection. Altogether, this made the use of advanced quantile regression methods promising.

Page 28



Chapter 2: Applications in this thesis

2.2 Overweight and obesity in western countries

Background and epidemiological aim

Obesity is currently considered almost an epidemic and has spread to children during the last
decade (Kosti and Panagiotakos, 2006; Lobstein et al., 2004). Childhood obesity is particularly
worrying because once a child has become obese, it will likely remain obese in adulthood (e.g.,
Freedman et al., 2005). Therefore, obese children are at high risk for severe long-term sequelae
of obesity, such as hypertension, heart diseases, and diabetes mellitus. With the objective of
developing effective methods of prevention, enormous public health research efforts have been
made to investigate determinants of childhood overweight and obesity (Sassi et al., 2009).

Apart from the non-modifiable determinants child age and sex, potential determinants of obesity
that have previously been investigated (e.g., Agras and Mascola, 2005; Reilly et al., 2005) include
the following (non-exhaustive list):

• Socioeconomic factors: social class and education of parents
• Maternal characteristics: age at birth, BMI
• Intrauterine and perinatal factors: birth weight, maternal smoking during pregnancy,

maternal weight gain in pregnancy, gestational age
• Infant feeding and dietary intake: breastfeeding, complementary feeding, food composition,

parental control of feeding
• Child characteristics and lifestyle: physical activity, temperament, television viewing,

computer activity, sleep
• Genetical disposition of child: ethnicity, parental obesity
• Rapid catch up growth: early adiposity rebound, weight difference in the first years

Based on this prior knowledge of potential determinants and data from a German birth cohort
study, the epidemiological aim of our analysis was to investigate the impact of early childhood
determinants on obesity throughout life-course. More specifically, we wanted to investigate if the
effects of risk factors that were found in the literature are age-constant or age-varying, i.e., if
critical age periods can be identified at which these effects emerge.

Dataset

Our analysis was based on data from the recent German birth cohort study called LISA (LISA–
plus study group, 1998–2008; Rzehak et al., 2009). The LISA study is a large prospective
longitudinal birth cohort study in four German cities (Bad Honnef, Leipzig, München, Wesel),
in which 3097 healthy neonates born between 11/1997 and 01/1999 were included. The follow-
up time was until the age of ten years, and data was collected through questionnaires at ten time
points covering the nine mandatory well-child check-up examinations by a pediatrician at birth and
the age of around 2 weeks and 1, 3, 6, 12, 24, 48, and 60 months. For the 10-year (120 months)
follow-up, anthropometric measurements were taken by physical examination at the study centres.
Thus the maximum number of observations per child was ten.

Originally the LISA study was designed to determine the influence of Life-style factors,
environmental exposures and health-related behaviour on the development of the Immune
System and the incidence of Allergic diseases in children. However, since information on
anthropometric measurements were available, the LISA study was at the same time suited to
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investigate overweight and obesity, even though not all potential determinants of interest were
included.

Quantification of overweight and obesity

The body mass index (BMI) is a measure of weight-for-height and has established as the most
commonly used anthropometric measure of obesity (WHO Consultation on Obesity, 1999). It is
defined as follows:

BMIi =
weighti [kg]

height2i [m]

The WHO recommends to classify adults as overweight and obese according to the following
scheme:

BMI < 18.5 Underweight
18.5 ≤ BMI < 25 Normal weight

25 ≤ BMI < 30 Overweight / Pre-obesity
BMI > 30 Obesity

Yet, this scheme cannot be applied for children and adolescents, since height and body
composition are substantially changing with child age and sex. Therefore, the classification of
children as obese is usually based on reference growth charts for BMI-for-age. Contrary to
child stunting, however, to date there is no a widely accepted classification scheme for obesity
in childhood.

An example for BMI-for-age reference curves was shown by the cross-national WHO child growth
standards in Figures 1.2 and 1.3 on page 13. Due to ethnical differences in body build and
body proportions – and thus in the BMI distribution – various growth references have also been
developed on national level. In Germany, the curves of Kromeyer-Hauschild et al. (2001) are
currently the most commonly used reference curves, but come along with certain limitations which
were discussed in Schaffrath Rosario et al. (2010).

Once the decision on a specific reference chart has been made, it is still not decided which
exact cut-off values should be used for the classification of overweight and obesity. There exist
different approaches which are all based on age- and sex-specific upper quantile curves of the
BMI distribution. Similarly to height, these quantile curves can again be translated to Z-scores
not depending on age and sex any more. However, the transformation of raw BMI values to
corresponding Z-scores becomes more involved than for height due to an age-specific skewness
of the BMI distribution which makes age- and sex-specific skewness parameters necessary.

In order to avoid the decision on a specific reference chart, we decided to directly analyze upper
quantile curves of the BMI and chose the 90% quantile for overweight and the 97% quantile for
obesity. The adjustment for age and sex was done by including these variables as covariates in
the regression model.

To give a first impression of the response in our dataset, Figure 2.8 shows a traceplot for 20
randomly chosen children. It can be observed that the BMI of the majority of children increases
until the age of 1 year, decreases afterwards until 6 years and then steadily increases again until
the last time point at the age of 10 years.
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Figure 2.8 Individual BMI patterns by age of 20 randomly chosen children. Every dot denotes a single
observation.
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Figure 2.9 Empirical BMI distribution by age in our dataset. Relative frequencies in the histograms were
calculated based on all observations within an age interval. The six age intervals are shown
on the x-axis, each n denotes the total number of observations in the interval. Vertical lines
are drawn at the midpoints of the intervals. Also shown are lines connecting the age-specific
empirical 10%, 50%, 90%, and 97% quantiles of the BMI distribution.
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In addition, Figure 2.9 displays scale and skewness of the empirical BMI distribution by age. It
suggests an age-specific skewness of the BMI distribution in our dataset, beginning after the age
of 6 years.

Covariates

Table 2.2 and Table 2.3 give an overview of the continuous and categorical variables, respectively,
included in the analysis. Apart from child age and sex, the covariates cover various early
childhood risk factors that have been discussed in the literature, such as socio-economic factors
(urban/rural location, maternal education), parental overweight (maternal BMI), infant feeding
(breastfeeding), and intrauterine and perinatal factors (maternal BMI gain and maternal smoking
during pregnancy), which are believed to be associated with rapid postnatal growth of the
offspring. All variables except for age and BMI are time-constant.

Table 2.2 Description of continuous variables for complete cases.

Variable Abbreviation Unit Median Mean SD N

Time-varying variables
BMI cBMI kg/m2 15.36 15.28 2.08 19 819
Age cAge Years 0.54 1.86 2.64 19 819

Time-constant variables
Maternal BMI at pregnancy begin mBMI kg/m2 21.72 22.59 3.76 2226

Maternal BMI gain during pregnancy mDiffBMI kg/m2 4.95 5.12 1.67 2226

Table 2.3 Description of categorical variables. Absolute frequencies N relate to 2226 complete cases.

Covariate Abbreviation Categories Frequency N

Sex cSex 0 = Female 47.8% 1064
1 = Male 52.2% 1162

Study location cLocation 0 = Rural (Bad Honnef, Wesel) 21.5% 478
1 = Urban (Leipzig, Munich) 78.5% 1748

Nutrition until the cBreast 0 = Bottle fed and/or breast fed 41.2% 917
age of 4 months 1 = Breast fed only 58.8% 1309

Maternal smoking mSmoke 0 = No 85.0% 1899
during pregnancy 1 = Yes 15.0% 327

Maternal highest mEdu 1 = Certificate of secondary education (CSE) or 7.0% 157
level of education Hauptschule (lower-level secondary school)

2 = Realschule (secondary school) 35.8% 798
3 = Abitur / Fachabitur (high school diploma) 57.1% 1271
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To give a first impression of potential age-varying effects of categorical risk factors, Figure 2.10
shows empirical quantile curves by age and maternal smoking during pregnancy. The differences
between quantile curves with and without maternal smoking are almost zero until the age of two
years for all three quantile parameters. Then the difference between respective quantile curves
with and without maternal smoking continuously increases until the age of ten. At this age, the
differences are clearly greater for upper quantiles than for the median.
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Figure 2.10 Scatterplot of all observations in our LISA dataset (grey points), superimposed by empirical
50%, 90% and 97% BMI quantiles by age and maternal smoking during pregnancy. Black
lines represent children of non-smoking mothers, whereas red lines correspond to children
of smoking mothers. Quantiles were calculated based on all observations at a specific time
point and were connected at age medians of each time point.

Missing data handling

In our analysis, we followed a complete case approach. When an observation of a time-constant
covariate was missing, we excluded all observations of the respective child from the analysis.
When, on the other hand, a single observation of age or BMI was missing, only this particular
observation of the respective child was excluded from the analysis. Altogether, a total of 19 819
observations from 2 226 children were included in the statistical modelling.

The decision for the complete case approach resulted from several analyses with respect to
missing data and dropout, suggesting the missing data mechanism to be “missing at random”
(see eSupplement of Fenske et al., 2012b).
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Questions of the analysis

The main objective of our obesity analysis was to flexibly model nonlinear population age curves
of upper BMI quantiles that adequately reflect the shape of the BMI distribution sketched in
Figure 2.9, while adjusting for individual-specific age effects and early childhood risk factors that
have been discussed in the literature. At the same time, individual-specific life-course patterns of
the BMI, as shown by Figure 2.8, should be reflected best as possible.

Furthermore, we wanted to investigate if potential effects of categorical risk factors are constant or
varying with age. More precisely, the question was if the age-varying shape of the BMI distribution
changes for different levels of the categorical covariates, as suggested by Figure 2.10 for maternal
smoking.

Appropriateness of quantile regression

As for the analysis of child undernutrition, a typical statistical approach for analyzing childhood
overweight and obesity would be to classify children as obese using reference charts, followed by
logistic regression for the resulting binary response (e.g., Reilly et al., 2005; Lamerz et al., 2005).
In our investigation, in contrast, we directly model upper BMI quantiles of the study population and
thereby avoid possible loss of information implied by reducing the original continuous response
BMI to the binary response obesity. Furthermore, binary regression models can be formulated
by a threshold approach for a latent continuous variable with a specific (and often symmetric)
distributional assumption (see, e.g., Fahrmeir and Tutz, 2001). For example, logit models assume
a logistic distribution and probit models assume a standard Gaussian distribution for the latent
variable, which are both symmetric. Consequently, age-specific skewness of BMI distributions
makes the use of conventional logit and probit models questionable.

For cross-sectional BMI data, quantile regression methods have been used to model a Z-score
of the BMI-for-age depending on covariates (Beyerlein et al., 2008, 2010), which was obtained by
transforming raw BMI values based on age- and sex-specific reference charts. Here, we directly
model raw BMI quantiles and include age and sex as covariates and thereby avoid the decision
for a specific reference chart.

The particular statistical challenge of the present analysis was to apply quantile regression with
a flexible predictor (which was also the task in the analysis of undernutrition in Section 2.1) and,
at the same time, to account for the longitudinal data structure by modelling the intra-individual
correlation between repeated observations of the same child.
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Chapter 3: Structured additive quantile regression
– model class and estimation

In this chapter, we define the model class of structured additive quantile regression – which
we abbreviate with STAQ in the following – and give an overview of different distribution-free
and distribution-based estimation approaches for this model class. We also treat three model
classes that are closely related to STAQ models. Currently, none of the estimation approaches
outperform another in all respects. Therefore, we discuss the advantages and shortcomings
of each approach regarding selected criteria of method assessment. Altogether, this overview
chapter should motivate the need to develop further estimation approaches for STAQ models.

3.1 Generic model class

We formulate the model of structured additive quantile regression (STAQ) in accordance with
Fahrmeir et al. (2004); Kneib et al. (2009) and Fenske et al. (2011).

Assume that we have data (ys, zs) where ys denotes the continuous response and zs the vector
containing all covariate information for observation s (with generic observation index s). Then, the
relationship between quantile function of the true underlying Ys and a quantile-specific predictor
ητs can be written as:

QYs(τ |ητs) = ητs(zs) . (3.1)

This notation is similar to the linear quantile regression model (1.3) on page 8 but the predictor
ητs is extended to more flexible model terms here (see below). The underlying assumption on
the error terms remains the same as in equation (1.2) on page 8, i.e., F−1ετs(τ) = 0. To ease
notation, we suppress the quantile parameter τ in the following but keep in mind that parameters
may be quantile-specific. This might also be the case for the design of the predictor and the
set of covariates, in particular when the estimation is performed separately for different quantile
parameters.

Letting the quantile parameter τ apart, the generic structured additive predictor can be expressed
as

ηs = β0 +

D∑
d=1

hd(zs) , (3.2)

where β0 is an intercept and hd, d = 1, . . . , D, are generic functions that allow for the inclusion
of a large variety of different model components. Each of these functions depend on (usually
small) subsets of covariates from zs. In the following description of hd, let zsk and zsl denote any
two univariate elements of the covariate vector, i.e., zs = (. . . , zsk, . . . , zsl, . . . )

> for observation s.
Depending on the domain of hd, these univariate covariates zk and zl may be continuous or
categorical and may include (continuous or categorical) spatial or cluster information.
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The following model terms are possible for the generic functions hd:

• Linear components: hd(zs) = βdzsk

with linear regression parameter βd for a categorical or continuous covariate zk

• Smooth nonlinear components: hd(zs) = fd(zsk)

with continuous covariate zk and smooth, potentially nonlinear function fd that is not
specified in advance

• Varying coefficient terms: hd(zs) = zsk · fd(zsl)

with categorical or continuous covariate zk and smooth function fd of a continuous
covariate zl. Thus, the effect of covariate zl varies smoothly over the domain of zk
according to the function fd.

• Bivariate surfaces: hd(zs) = fd(zsk, zsl)

with smooth bivariate function fd of two continuous covariates zk and zl. In case that zk
and zl denote longitude and latitude of spatially oriented data, the surface corresponds
to a spatial effect.

• Discrete spatial components: hd(zs) = fd(zsk)

with a categorical covariate zk containing discrete spatial information, e.g., the region
within a country, and a function fd with spatial effects accounting for the neighbourhood
structure

• Cluster-specific components: hd(zs) = zsl ·
(
[I(zsk ∈ G1), . . . , I(zsk ∈ GK)]>γd

)
with indicator function I(·), categorical or continuous covariate zl, categorical covariate
zk with K different groups or clusters G1, . . . , GK and a (K × 1)-vector γd containing
cluster-specific parameters. Thus, the effect of zl differs across groups G1, . . . , GK

defined by the grouping factor zk. An example would be an individual-specific intercept
in longitudinal data, where zl would correspond to the unit vector, zk to the ID-variable
and γd to the vector of individual-specific (random) intercepts.
Instead of the above notation with γd, an alternative would be to define a vector γ̃d
containing the cluster-specific parameters per observation. Then the generic function
could for example be written as hd(zs) = zsl · γ̃sd, where the observation index s for γ̃sd
underlines the special concept of observation- or individual-specific parameters.

A few remarks regarding our generic notation should be given here. First, the same covariate
can of course be included in more than one model component. For a categorical covariate, for
example, a linear effect (= main effect) can be estimated together with a varying coefficient term
(= interaction effect) according to another continuous covariate.

Second, the generic model notation in Kneib et al. (2009) without indices s and d might look
simpler at first glance. Here, we explicitly keep the index s to emphasize which covariate values
(and parameters) are observation-specific, and we use the generic index d for component-specific
unknown parameters and functions that have to be estimated.
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Furthermore, except for the cluster-specific components which might contain individual-specific
effects, all other components model population effects. Individual-specific effects are only
addressed when the cluster variable defines individuals. In classical mixed models for longitudinal
data, they are typically assumed to be Gaussian and are therefore called random effects.

Finally one should keep in mind that similar to the predictor being quantile-specific, the
interpretation of the various population effects described above is related to the population
quantiles of the response, as was illustrated in Chapter 1.

In our applications, we will consider the following two instances of the generic model class:

1. For cross-sectional data, as will be the case in our investigation of child stunting in India,
the observation index corresponds to s = i with i = 1, . . . , n, denoting the individual. The
structured additive predictor simplifies to

ηi = β0 + β1xi1 + . . .+ βpxip

+ f0(ti) + f1(zi1) + . . .+ fq(ziq)

+ vi1 · fint,1(ti) + . . .+ vir · fint,r(ti)

+ fspat(wi) ,

and comprises linear components for p covariates x1, . . . , xp, smooth nonlinear components
for the time variable t and q continuous covariates z1, . . . , zq, varying coefficient terms for r
covariates v1, . . . , vr whose effects vary smoothly over time according to a continuous time
variable t, and a smooth spatial effect of a spatial categorical covariate w.

In comparison to the generic model notation above, the different labelling of the covariates
here makes it easier to distinguish different types of covariates and components. Note that
the same covariate can again be included in more than one component.

2. In case of longitudinal data, as present in our investigation of obesity of children in Germany,
the observation index corresponds to s = (i, j) with i = 1, . . . , N, denoting the individual
and j = 1, . . . , ni, standing for the j-th observation of individual i with individual-specific
observation numbers ni. The structured additive predictor can be written as

ηij = β0 + β1xij1 + . . .+ βpxijp

+ f0(tij) + f1(zij1) + . . .+ fq(zijq)

+ vi1 · fint,1(tij) + . . .+ vir · fint,r(tij)

+ γi1 + γi2 · tij ,

and again contains linear components for p time-constant or time-varying covariates
x1, . . . , xp, smooth nonlinear components for the time scale t and q continuous covariates
z1, . . . , zq, time-varying effects of r time-constant covariates v1, . . . , vr with covariate t

denoting the time scale, an individual-specific intercept γi1 and an individual-specific slope
γi2 for the time scale.
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3.2 Estimation approaches – outline and assessment

Due to the growing popularity of quantile regression, a large variety of estimation approaches
for this model class have been developed over the last years. Most of them concentrate on
specific models and data structures and consider only a few components of the generic predictor
introduced in Section 3.1. Thus, it is almost impossible to give an exhaustive overview of all
existing estimation approaches and to find a proper and unambiguous classification for them.

Nevertheless, in the remaining chapter we try to give an overview of the most important and
frequently used approaches with potential relevance for our work. We gathered recent literature on
quantile regression and arrived at the classification into distribution-free estimation approaches,
distribution-based approaches and related model classes. Of course this classification is not the
only reasonable structure.

Distribution-free approaches on the one hand include all approaches which aim at direct
minimization of the quantile loss criterion by linear programming methods; we denote them with
classical framework of quantile regression. On the other hand, distribution-free approaches
comprise recent machine learning and statistical learning procedures that only ask for the
specification of a loss function and have been used for quantile regression recently, such as
quantile regression forests, quantile neural networks and kernel-based quantile regression with
support vector machines. Our own approach of quantile boosting belongs to this category and
will be described in detail in Chapter 4.

Distribution-based approaches rely on a specific distributional assumption on the error terms
and thereby allow for likelihood-based or Bayesian estimation. We describe typical approaches
based on the asymmetric Laplace distribution as well as approaches based on flexible mixture
distributions which are well-suited for Bayesian estimation.

Regarding related model classes, we consider expectile regression as distribution-free related
model class. As distribution-based related model classes, we describe Gaussian STAR and
GAMLSS models with respect to quantile regression.

Currently, none of the estimation approaches outperforms another in all respects. To allow for a
comparison with regard to the respective application potential, we define the following criteria for
assessment of the estimation approaches:

• Flexible predictor: How flexible is the structured additive predictor? Which different
components of the generic predictor in (3.2) can be included?

• Estimator properties and inference: What can be said about the properties of the
estimated parameters, e.g., about bias, consistency and asymptotic distribution? In
particular, can (asymptotic) standard errors be obtained and therefore uncertainty about the
estimated parameters be quantified? Can quantile crossing occur or is it implicitly prevented
by the estimation procedure?

• Variable selection: Is variable and model selection possible, i.e., can variables be excluded
from the model in order to avoid overfitting of the data and to produce sparse models which
contain the most relevant covariates only? Can a range for variable importance be given?

• Software: Is software available, preferably as package for the statistical software R (R
Development Core Team, 2012)?

Page 38



Chapter 3: Structured additive quantile regression – model class and estimation

For some approaches we state further specific advantages and shortcomings in addition to these
criteria, which for example relate to the flexibility of the distributional assumption or longitudinal
data.

Note also that we prefer the term distribution-free approach to nonparametric approach since
the latter is frequently used ambiguously. We only use the term nonparametric for concepts
with parameter estimators that are not of primary interest, for example in the context of flexible
Bayesian quantile regression.

3.3 Distribution-free estimation

3.3.1 Classical framework of quantile regression

The classical framework of quantile regression is inextricably linked to Roger Koenker. This can on
the one hand be attributed to his recent book (Koenker, 2005) which gives a thorough introduction
to quantile regression, and on the other hand to his invaluable contributions on the field of quantile
regression since its very beginnings in 1978. In Koenker and Bassett (1978), the τ -th regression
quantile was introduced as any solution to the following minimization problem:

min
βτ∈Rp+1

n∑
i=1

ρτ (yi − x>i βτ ) . (3.3)

In this criterion, all elements are defined as in the linear quantile regression model (1.3) on page 8
and ρτ (u) denotes the check function

ρτ (u) =

u · τ u ≥ 0

u · (τ − 1) u < 0 ,
(3.4)

which is the suitable loss function for quantile regression displayed by Figure 3.1. For τ = 0.5, the
check function is proportional to the absolute value function, i.e., ρ0.5(u) = 0.5 · |u|, which is well
known for being the suitable loss function for median regression. In case that no covariates are
present besides an intercept, minimization of (3.3) leads to the empirical τ · 100% quantile of the
response as estimator for β̂τ0.

The criterion in (3.3) corresponds to the empirical version of an expected loss criterion. It can be
formulated as a set of linear constraints, and therefore its minimization can be conducted by linear
programming methods, see Koenker (2005) for an explicit formulation of the problem as linear
programs and further references on suitable algorithms. Even though no closed-form solution for
β̂τ can be derived, the resulting quantile regression estimators β̂τ provide useful properties with
regard to equivariance, robustness and asymptotics (see Koenker, 2005, Chap. 2).

In this thesis, we perceive the classical quantile regression framework as consisting of all
estimation approaches which aim at direct minimization of the quantile regression loss criterion
(also addressing more flexible predictors ητi instead of the linear predictor x>i βτ ) by linear
programming methods. We consider these approaches from the classical framework with respect
to our pre-defined criteria in the following.
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Figure 3.1 Check function: Suitable loss function for quantile regression.

Flexible predictor

Since its original introduction in 1978, various extensions of the linear quantile regression model
in (3.3) have been made towards a more flexible predictor. However, to date there has not been a
classical estimation approach for the generic predictor presented in (3.2) in Section 3.1, and it is in
particular not yet possible to combine smooth nonlinear population effects and individual-specific
effects in the same predictor with estimation based on linear programming.

Extensive consideration has been given to additive quantile regression models with nonlinear
effects of continuous covariates, resulting in three main concepts based on linear programming:
quantile smoothing splines, quantile regression using P-splines and local polynomial quantile
regression.

Quantile smoothing splines introduced in Koenker et al. (1994) were one of the first attempts
to estimate smooth nonlinear functions in additive models. In this approach, the minimization
problem in (3.3) is extended by a total variation regularization penalty on the potentially nonlinear
functions. For a univariate situation (q = 1) with only one continuous covariate z and a smooth
functional effect fz(·) to be estimated, the minimization problem in (3.3) is written as

min
fτ

[
n∑
i=1

ρτ (yi − fτ (zi)) + λV (f ′τ )

]
, (3.5)

where V (f ′τ ) denotes the total variation of the derivative f ′τ : [a, b] → R defined as
V (f ′τ ) = sup

∑n−1
i=1 |f ′τ (zi+1)− f ′τ (zi)| with the sup taken over all partitions a ≤ z1 < . . . < zn < b.

The tuning parameter λ > 0 controls the smoothness of the estimated function. Small values of λ
lead to wiggly functions, whereas large values of λ lead to smooth functions, with λ → ∞ being
the most extreme yielding a linear function for f̂τ (·). Koenker et al. (1994) showed that the solution
can still be obtained by linear programming and that the resulting estimated function is a piecewise
linear spline function with knots at the observations. The total variation regularization approach
was also applied for bivariate smoothing with penalized triograms in Koenker and Mizera (2004).
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Another approach that is closer related to the further work in this thesis is additive quantile
regression based on P-splines introduced by Bollaerts et al. (2006). In analogy to P-spline
estimation for mean regression described in Eilers and Marx (1996), a L1-norm smoothness
penalty based on differences in the coefficients of adjacent B-spline basis functions is added
to the quantile minimization criterion, which can in the univariate case be formulated as:

min
β1,...,βJ

 n∑
i=1

ρτ (yi −
J∑
j=1

βjBj(zi)) + λ

J∑
j=d+1

|∆dβj |

 .

Here, Bj(·) denote B-spline basis functions of a fixed degree, βj are the coefficients, λ is again
a smoothness parameter and ∆d are the d-th order differences, that is, ∆dβj = ∆1(∆d−1βj)

and ∆1βj = βj − βj−1. Bollaerts et al. (2006) described a linear programming algorithm for the
above minimization problem. B-spline basis functions without penalization were also suggested
for the estimation of (partially linear) varying coefficient models in Kim (2007) and Wang et al.
(2009). However, without smoothness penalty term one always has to deal with the question how
to determine the number and positions of knots adequately.

The third alternative for estimating nonlinear effects are local polynomial methods, with local linear
quantile regression being the simplest case (Yu and Jones, 1998). Thereby, the minimization
criterion is multiplied by kernel-based weights:

min
βτ0,βτ1

n∑
i=1

ρτ (yi − βτ0 − βτ1(zi − z)) ·K
(
zi − z
h

)
,

where K(·) is a kernel function with bandwidth h and z is a fixed covariate value for which an
estimator fτ (z) is sought by estimating βτ0 and βτ1 for a grid of values for z. This problem
can be solved by weighted linear quantile regression based on linear programming methods.
Since the origins in 1998, a lot of research has been made to extend this approach to more
than one continuous covariate in the predictor, with the typical challenges of these nonparametric
approaches to avoid the curse of dimensionality and to answer questions on the choice of kernel
function and optimal bandwidth. As a result, additive quantile regression models with local kernel-
based estimation have been suggested in De Gooijer and Zerom (2003), Yu and Lu (2004),
Horowitz and Lee (2005), and Cheng et al. (2011). Closely related to our application, a local
polynomial kernel-based estimator was recently studied for the construction of reference charts
in Li et al. (2010).

With regard to individual-specific effects, the first attempt of a quantile regression model for
longitudinal data traces back to Koenker (2004), who modelled an individual-specific location shift
by adding individual-specific fixed intercepts γi for i = 1, ..., N to the linear predictor:

QYij (τ |xij , γi) = γi + x>ijβτ .

The corresponding minimization problem was extended by a L1-norm penalty term on the
individual-specific intercepts (which was justified by the analogy between random effects and
L2-norm penalization in linear mixed models) and minimized for a grid of quantile parameters
τk, k = 1, ...,K, simultaneously:

K∑
k=1

N∑
i=1

ni∑
j=1

wkρτk(yi − γi − x>ijβτk) + λ

n∑
i=1

|γi| . (3.6)
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This led to shrunken individual-specific (fixed) effects γi with the amount of shrinkage controlled by
λ > 0. Because of the L1-norm penalty term, the minimization problem could still be formulated
as a set of linear constraints and solved by linear programming. Since this first model a lot of
work has been done to develop suitable concepts for quantile regression with longitudinal data,
see, e.g., Karlsson (2007); Galvao and Montes-Rojas (2010). Various approaches for longitudinal
quantile regression also rely on the assumption of asymmetric Laplace distributed errors and will
be sketched in Section 3.4.1.

Estimator properties and inference

For the linear quantile regression model, Koenker (2005) showed that the parameter estimators
are asymptotically unbiased and Gaussian distributed (in addition to the already mentioned results
regarding equivariance and robustness). Similar asymptotic results were obtained for models with
more flexible predictors, e.g., in Koenker (2004). The asymptotic covariance matrix of the quantile
regression estimator β̂τ can be written as a sandwich matrix which depends on the true error
density (see Koenker, 2005, Theorem 4.1, p.120). Therefore, to obtain standard errors for β̂τ
one is faced with the problem of estimating the true error density which somehow erodes the
distribution-free character of quantile regression. Kocherginsky et al. (2005) compared various
different approaches that have been developed for the estimation of the asymptotic covariance
matrix, including resampling methods such as the bootstrap, and give recommendations on which
estimation method to use in practical situations. It turns out that bootstrap methods give most
reliable estimations in almost all situations.

Since the estimation is performed separately for different quantile parameters (except for the
longitudinal quantile regression model in (3.6)), quantile crossing is not prevented by the above
approaches.

Variable selection

With the aim of variable selection in the quantile regression model, Koenker (2005) proposed
to modify the Akaike information criterion (AIC) and the Schwarz information criterion (SIC) by
replacing the usual log-likelihood term by the empirical risk. For example, with pmodel parameters
the adapted AIC is

AIC(τ) = −2 log

(
1

n

n∑
i=1

ρτ (yi − x>i β̂τ )

)
+ 2 p . (3.7)

With a redefined version of the degrees of freedom in the second model term, the adapted SIC can
also be used for the choice of the smoothing parameter λ in additive quantile regression models.
Variable selection with these criteria is certainly a challenge when the number of parameters is
large.

Li and Zhu (2008) paved the way for bringing Lasso-like concepts into quantile regression. They
imposed a L1-norm penalty term on the linear quantile regression coefficients and presented a
linear programming algorithm for the modified minimization problem which is closely related to
the approach for the linear quantile regression problem. This approach can be regarded as an
important contribution to variable selection in quantile regression since the L1-norm penalty not
only causes shrinkage of the fitted coefficients towards zero but also forces some of the fitted
coefficients to be exactly zero (given sufficiently large smoothness parameters). This variable
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exclusion property is for example not given for the L2-norm penalty typically used in mean
regression. Note that the L1-norm penalty for the linear coefficients can easily be combined
with total variation regularization for the nonlinear effects, as has recently been done in Koenker
(2011).

Software

The classical framework of quantile regression is implemented in the package quantreg (Koenker,
2012) in R (R Development Core Team, 2012). Linear quantile regression can be conducted with
the function rq(), which amongst others provides various options for estimating the asymptotic
covariance matrix. For additive quantile regression with nonlinear effects, an implementation
of total variation regularization is available in the function rqss(). For quantile regression with
longitudinal data, the package rqpd (Koenker and Bache, 2012) is currently under development
but already available on the central platform for the development of R packages called R-Forge
(Theußl and Zeileis, 2009).

3.3.2 Statistical learning and machine learning approaches

Over the last years various computer-intensive estimation procedures which originate from
machine learning and statistical learning algorithms have been utilized for quantile regression.
These approaches are completely distribution-free but do not always address a particular
covariate structure as considered by the STAQ predictor in (3.2) on page 35.

In the following, we shortly describe three approaches that have been suggested to model the
quantile function of a response variable depending on a (potentially large) number of covariates,
that is quantile regression forests, quantile regression neural networks and kernel-based quantile
regression using support vector machines. Since a detailed description of these highly complex
and very different concepts would go beyond the scope of this thesis, we here just touch on them
and refer to the corresponding literature for further reading.

Note that boosting, which will be treated in detail in Chapter 4, also belongs to the present class
of distribution-free, computer-intensive estimation approaches and even allows for a structured
additive predictor to be modelled. Boosting can be rated as a statistical learning algorithm since it
incorporates two competing goals of learning from data: prediction (which is the main goal in the
machine learning community) and interpretation (which is an additional main goal in the statistical
community).

Quantile regression forests

Chaudhuri and Loh (2002) made one of the first attempts to use tree-based methods for estimating
conditional quantile functions. Few years later quantile regression forests were introduced by
Meinshausen (2006) as an extension of random forests (Breiman, 2001) to quantile regression.
The aim of quantile regression forests is to estimate the cumulative distribution function (cdf) of a
response variable conditional on covariates without imposing any structure on their relationship.
To achieve this aim, an ensemble of regression trees is grown similar to random forests as follows.
First, a large number of bootstrap samples of the training data is drawn. Then, for every single
bootstrap sample a random subset of the covariates is drawn and a regression tree is grown.
The size of this random subset mtry is the only tuning parameter of the algorithm and is typically
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selected based on a test dataset. The conditional cdf for a new observation (vector) X = x is
estimated by:

F̂ (y|X = x) =

n∑
i=1

wi(x)I(yi ≤ y) ,

where yi denotes the response, I(·) an indicator function and wi(x) stand for weights of the
original observations i = 1, . . . , n, which are calculated by dropping x down all trees. More
specifically, for each single tree the observations which share the leaf with the new x get non-
zero, uniformly distributed weights. The resulting weights wi(x) are the averages over these
observation-specific weights from all trees. The quantile function is finally obtained by inverting
the cdf. The main difference of quantile regression forests to the original random forests algorithm
is that one takes note of all observations in each leaf and not only of the mean, which allows
to estimate the whole conditional cdf for a new observation (vector) X = x as described above.
In addition, Meinshausen (2006) gives a proof for the consistency of the cdf estimated in this
manner.

It is difficult to rate quantile regression forests regarding our criteria for model assessment since
they do not address a flexible predictor and can rather be seen as black box estimators.
Therefore, it is not possible to explicitly quantify the relationships between covariates and
response and to obtain inference results for single estimators. In random forests variable
selection is possible by applying variable importance measures, see for example Strobl et al.
(2008), and it could be a matter of future research how these measures can be adapted
for quantile regression forests. The main advantages of quantile regression forests are their
applicability for high-dimensional data and their implicit prevention of quantile crossing by
estimating the full conditional cdf in one step. Since random forests typically perform well in
prediction settings, Meinshausen (2006) suggested to apply quantile regression forests for the
construction of prediction intervals for new observations, as was already sketched in alternative 1
for the usage of quantile regression in Section 1.2. Software for fitting quantile regression forests
is available in the R package quantregForest (Meinshausen, 2012).

Quantile regression neural networks

Taylor (2000) introduced quantile regression neural networks as another computer-intensive
algorithm which is well suited for prediction and forecasting. The standard approach of artificial
neural networks provides a general concept for fitting nonlinear high-dimensional regression
models based on the minimization of a loss criterion. Quantile regression is performed when
the check function is inserted as a special loss function in the standard algorithm.

Since neural networks rely on gradient-based nonlinear optimization, they theoretically require a
loss function which is differentiable everywhere. Due to its kink point at zero this is not fulfilled
for the check function, however, and it is not clear if convergence problems might occur when
applying the standard optimization algorithm for neural networks (Taylor, 2000). As a solution
Cannon (2011) replaced the check function by a differentiable loss function – an approximation
which had first been suggested by Chen (2007) – and adapted the quantile regression neural
network algorithm of Taylor (2000) accordingly.

Assessing quantile regression neural networks regarding our criteria is as difficult as assessing
quantile regression forests since neural networks just provide black box estimators without giving
a detailed structure of the effects of single covariates. Therefore neither is a flexible predictor
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addressed nor can results on inference of single parameters and variable selection be obtained.
The use of quantile neural networks makes sense when predictions or predictive densities are of
interest, as demonstrated in the example of Cannon (2011), where daily precipitation amounts
were forecasted. However, the danger of quantile crossing is incurred. Concerning software,
quantile regression neural networks are implemented in the R package qrnn (Cannon, 2011).

Kernel-based quantile regression

Another class of completely distribution-free estimation approaches for quantile regression
originates from the powerful framework of support vector machines (SVMs). The generic structure
of empirical SVMs was described in Christmann and Hable (2012): the aim is to minimize
an empirical loss criterion based on a convex loss function between response variable and an
unspecified regression function of the covariates. This regression function is assumed to belong
to a reproducing kernel Hilbert space (RKHS) and is penalized by a suitable RKHS norm penalty
to avoid overfitting and ensure existence.

Takeuchi et al. (2006) directly started from the check function as loss function (which is called
pinball loss function in the machine learning community), whereas Christmann and Hable (2012)
formulated the minimization problem of empirical SVMs in a general way and considered the
check function as one special instance which leads to quantile regression.

Regarding a flexible predictor, no structure is assumed for the covariate predictor and therefore
for the relationship between covariates and response in the general formulation of empirical
SVMs. However, it is possible to impose a structure by choosing suitable kernel functions for
different covariates. For example, Christmann and Hable (2012) considered an additive model
with smooth nonlinear functions of continuous covariates. This model covers some components of
the generic predictor in (3.2). A crucial tuning parameter of these algorithms is the regularization
parameter λ which can for example be chosen by cross-validation. Results on estimator
properties and inference have recently been obtained by Christmann and Hable (2012) showing
consistency of the SVM estimators. In addition, asymptotic confidence sets for the estimators,
which can deliver pointwise asymptotical confidence intervals, were derived by Hable (2012).
Quantile crossing can occur due to the separate regression fits for different quantile parameters.
With regard to software, kernel-based quantile regression with SVMs can be fitted by the function
kqr() from the R package kernlab (Karatzoglou et al., 2004).
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3.4 Distribution-based estimation

3.4.1 Asymmetric Laplace distribution approaches

The majority of approaches for distribution-based estimation of quantile regression rely on the
asymmetric Laplace (ASL) distribution. According to Yu and Zhang (2005), a random variable
Y ∈ R follows an asymmetric Laplace distribution, i.e., Y ∼ ASL(µ, σ, τ), if the corresponding
density function can be expressed as

fY (y|µ, σ, τ) =
τ(1− τ)

σ
exp

{
−ρτ

(
y − µ
σ

)}
,

where µ ∈ R is a location parameter, σ > 0 is a scale parameter, and τ ∈ (0, 1) is a parameter
responsible for skewness (and kurtosis) of the density. Figure 3.2 shows the asymmetric Laplace
density for different parameter combinations. One can observe that the density becomes left-
skewed for τ > 0.5 and right-skewed for τ < 0.5, while it corresponds to the special case of
a double-exponentially distributed random variable for τ = 0.5. For increasing values of σ, the
variation of Y increases and the tails of the density become heavier.
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Figure 3.2 Density function of Y ∼ ASL(µ, σ, τ) depending on skewness parameter τ (left plot) and scale
parameter σ (right plot).

Furthermore, the probability mass to the left of µ is exactly τ , i.e., FY (µ) = P (Y ≤ µ) = τ , which
means that the location parameter µ corresponds to the τ · 100% quantile of Y . This important
property of the ASL distribution makes it suitable for quantile regression. Remember that the only
assumption that was made for the error distribution in quantile regression models is Fετi(0) = τ ,
see equation (1.2) on page 8, which is directly fulfilled for the ASL distribution with µ = 0 and
τ ∈ (0, 1) being the fixed quantile parameter. Under the assumption of iid ASL distributed errors,
the likelihood function of the linear quantile regression model can be written as

L(βτ , σ|y,x, τ) ∝ 1

σn
exp

{
− 1

σ

n∑
i=1

ρτ
(
yi − x>i βτ

)}
.

When setting σ = 1, one can see that maximizing the likelihood function with respect to βτ is
equivalent to minimizing the loss criterion of the classical quantile regression approach in (3.3) on
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page 39. Thus, the classical estimator β̂τ obtained by linear programming can also be regarded
as a likelihood-based quantile regression estimator. This corresponds to the analogy of the least
squares and the maximum likelihood estimator based on Gaussian error terms in classical linear
models.

At first glance this explicit distributional assumption seems to contradict the distribution-free
character of quantile regression. Yet, assuming an ASL distribution for the error terms offers
several advantages. Most importantly the presence of a likelihood function paves the way for
likelihood-based and Bayesian estimation approaches.

Note, however, that the assumption of an ASL distribution should rather be rated as a quasi-
likelihood than as a proper likelihood approach since the choice of the distribution is based on the
aim of employing quantile regression and not on the specific data character. When assuming an
ASL density, the true error density is misspecified in most cases since the distributional shape of
the data does not resemble the specific shape of the ASL density (and does not fundamentally
change its shape for different quantile parameters τ as is the case for the ASL density).

We discuss the existing approaches based on the ASL distribution regarding our criteria in the
following.

Flexible predictor

Bayesian quantile regression using the ASL distribution was suggested for the first time in Yu
and Moyeed (2001). This approach addresses the linear quantile regression model and relies
on a Metropolis-Hastings algorithm with independent improper uniform priors for the regression
parameters βτ . With the similar aim of developing a Bayesian algorithm for the linear quantile
regression model, Tsionas (2003) used an alternative representation of the ASL density as a
scale mixture of Gaussian densities and proposed an efficient Gibbs sampling algorithm for the
estimation. By also estimating the scale parameter σ (through suitable reparametrization), the
shape of the underlying ASL density is more flexible compared to the original approach by Yu and
Moyeed (2001) with σ = 1 being fixed.

One of the first extensions towards a more flexible predictor was suggested in the framework of
local linear methods. In order to estimate a nonlinear effect, Jones and Yu (2007) applied the ASL
likelihood instead of the empirical loss function to improve the original double kernel local linear
quantile regression from Yu and Jones (1998).

For longitudinal quantile regression, various models have been proposed with likelihood functions
based on the ASL density. Geraci and Bottai (2007) added individual-specific random intercepts
to the linear predictor and thereby induced an individual-specific location-shift. For the parameter
estimation, they proposed a Monte Carlo EM algorithm based on ASL distributed error terms. Liu
and Bottai (2009) further extended this model to individual-specific random slopes and called
it quantile mixed effects model to point out the analogy to the classical linear mixed model
for longitudinal data. The random effects of this model were assumed to follow a symmetric
multivariate Laplace distribution (corresponding to multivariate Gaussian random effects in the
linear mixed model). Estimation was again based on a Monte Carlo EM algorithm. Farcomeni
(2012) considered a linear mixed quantile regression model with time-varying individual-specific
intercepts and assumed them to follow a first-order latent Markov chain. Again, the estimation
relied on an EM algorithm with ASL distribution. Also in the context of longitudinal modelling,
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Yuan and Yin (2010) considered the linear quantile regression model with individual- and quantile-
specific intercepts and slopes and particularly focussed on missing data and dropout. With the
assumptions of ASL distributed errors and Gaussian distributed random effects (corresponding
to a Gaussian prior or a L2-norm penalty term), a Gibbs sampler was presented for posterior
estimation.

The model which most resembles the STAQ model presented in equation (3.2) on page 35
was suggested in Yue and Rue (2011). The only difference to our predictor is that their
predictor contains individual-specific intercepts only – but no slopes – to account for unobserved
heterogeneity. The error terms are assumed to follow an ASL distribution for which the
representation as scale mixture of Gaussian densities is used to put quantile regression into a
well-studied, fully Bayesian framework. Two possible algorithms based on Markov Chain Monte
Carlo and on integrated nested Laplace approximation (INLA) are presented. Compared to other
algorithms, the INLA algorithm is faster but relies on an approximation of the check function
by a loss function with second-order derivatives. The large variety of effects is addressed by
appropriate Gaussian-type priors with different forms and degrees of smoothness. The estimation
can therefore be embedded in the classical L2-norm framework.

Estimator properties and inference

From standard likelihood theory it follows that the maximum likelihood estimator is unbiased
and follows an asymptotic Gaussian distribution. However, due to the non-differentiability of the
likelihood with respect to the parameters, it is not possible to explicitly derive the asymptotic
covariance matrix of β̂τ through the inverse Fisher information.

For approaches relying on frequentist estimation methods, as the EM algorithms for the
longitudinal quantile regression models in Geraci and Bottai (2007), Liu and Bottai (2009) and
Farcomeni (2012), bootstrap estimation for the standard errors is mainly used. All observations
from the same individual build the basic re-sampling units for the block-wise bootstrap estimation.

For Bayesian methods, one obtains a sample from the posterior distribution and thereby can take
the standard deviation of the sample as estimator for the standard error. However, the above
mentioned quasi-likelihood character of the ASL distribution calls this proceeding into question.
In Yu and Moyeed (2001), Figure 1, one can see that the skewness of the posterior distribution
of β̂τ is different for different values of τ , and is most likely influenced by the skewness of the
ASL distribution. Furthermore, Reich et al. (2010) showed in a simulation study that confidence
intervals obtained by the ASL approach of Yu and Moyeed (2001) achieve only poor coverage
rates, in particular for extreme quantile parameters. These results were also confirmed by own
simulation studies in the context of a master’s thesis (Cieczynski, 2009). Consequently, one
should be careful when using Bayesian standard errors for further inference, e.g., for Wald tests
on single quantile regression parameters.

Since the estimation is again conducted separately for different quantile parameters, the danger
of quantile crossing is not averted.

Variable selection

So far only little has been said about variable selection in connection with ASL distributed errors in
literature. In the presence of a likelihood, variable selection can be based on information criteria,
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as for example described in Farcomeni (2012). When the scale parameter σ of the ASL distribution
is set to one, the AIC is similar to the pseudo-AIC of the classical quantile regression theory in
equation (3.7). Additionally, likelihood ratio tests have been proposed (Geraci and Bottai, 2007;
Farcomeni, 2012) to test if a single parameter is not equal to zero.

A L1-norm shrinkage prior, e.g., based on the ASL distribution, has not yet been proposed for
the fixed effects based on an ASL likelihood but would probably be a good option for Lasso-type
variable selection.

Software

The R package bayesQR (Benoit et al., 2011) provides an implementation of the original Bayesian
approach by Yu and Moyeed (2001) for linear quantile regression. The linear quantile mixed
model introduced in Geraci and Bottai (2007) can be fitted with the package lqmm (Geraci,
2012). The flexible quantile regression model from Yue and Rue (2011) can be estimated by
the function inla from the R package INLA (Rue et al., 2009) (not yet available on CRAN, but
under http://www.r-inla.org/).

3.4.2 Flexible Bayesian approaches

This section shortly describes flexible Bayesian estimation approaches for quantile regression
which have increasingly been suggested in literature over the last years, see Taddy and Kottas
(2010) for an overview.

These approaches are often referred to as nonparametric Bayesian approaches because no
explicit distribution is assumed for the error terms but only an infinite or finite mixture of
weighted density components. Due to the explicit distributional assumptions on the mixture
components, Bayesian estimation can be applied. However, the distribution-free character of
quantile regression is conserved since the resulting error density can flexibly adapt to the
underlying true shape. The term nonparametric can also be justified because the estimated
parameters of the flexible error density are not of primary interest. Thus, we also could have
placed this section in the chapter of distribution-free estimation approaches.

Note that the term flexible Bayesian approach refers to the flexibility of the error density and not
to the flexibility of the covariate predictor.

In the following, we sketch two early approaches for Bayesian mixture modelling and shortly
discuss them regarding our criteria. In the first approach, Kottas and Krnjajić (2009) started
from the usual linear quantile regression model

yi = x>i βτ + ετi with ετi
iid∼ fετ ,

and assumed the error terms to be identically distributed across observations while fulfilling the
usual quantile constraint Fετ (0) = τ . They proposed two alternative mixture densities for the
errors which were both constructed from a Dirichlet Process (DP) mixture model. The error density
resulting from this process can in general be expressed as an infinite mixture density:

fετ (ετi|θ) =

∞∑
k=1

πkfmix,τ (yi − x>i βτ |θk) . (3.8)
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The vector θ contains all unknown parameters from the mixture density, i.e., the weights πk and
the parameters θk of the k-th density component fmix,τ (·|θk). The exact hierarchical notation
of the present DP mixture model can be found in Kottas and Krnjajić (2009). In short, a
realization from a DP prior is a random discrete distribution with an infinite number of point
masses. In the stick-breaking representation of DPs, the weights πk for the point masses arise
from a stick-breaking mechanism while the locations of the point masses are drawn from a base
distribution G0. In the present model, the drawn locations correspond to the component-specific
parameters θk.

Kottas and Krnjajić (2009) considered two different alternatives for the component-specific
densities fmix,τ (·|θk), namely an asymmetric Laplace density and a mixture of two uniform
densities. The related MCMC algorithms for the estimation of βτ and further density parameters
were based on well-established posterior simulation algorithms for DP mixtures.

In the first alternative, the k-th density component is an asymmetric Laplace density

fmix,τ (yi − x>i βτ |σk) = fASL,τ (yi − x>i βτ |σk) =
τ(1− τ)

σk
exp

{
−ρτ

(
yi − x>i βτ

σk

)}
,

where the parameter τ is set to the fixed quantile parameter of interest. Thus the skewness of
each density component is fixed and the above quantile constraint is not only fulfilled for each
single mixture component but also for the final error density. Since the only parameter which can
differ between components is σk, the shape of the resulting ASL mixture density does however
not provide the desired flexibility.

In the second alternative, Kottas and Krnjajić (2009) proposed the k-th density component to be
a mixture of two uniform densities:

fmix,τ (yi − x>i βτ |ak, bk) =
τ

ak
· I(−ak < yi − x>i βτ < 0) +

1− τ
bk
· I(0 ≤ yi − x>i βτ < bk) .

The parameters ak and bk determine the domain of the density. Similar to the first alternative, by
definition each density component – and therefore the final error density – fulfills the quantile
constraint. Even though the shape of this density is more flexible than with ASL density
components, the flexibility of this approach still remains limited since the assumption of iid error
terms does not contribute to flexibility across individuals. For this reason, Kottas and Krnjajić
(2009) additionally developed an error model which is associated with the covariate information.

A related approach was suggested in Reich et al. (2010), who considered the general location-
scale model:

yi = x>i βτ + (x>i γτ )ετi with ετi
iid∼ fετ . (3.9)

In this model, the term x>i γτ is constrained to be positive for all xi and the parameter vector γτ
allows the scale of the response to vary with the covariates xi. Again, the error density fετ is
assumed to fulfill the quantile constraint and to follow an infinite mixture as in (3.8). Reich et al.
(2010) modelled each of the base mixture components by a two-component Gaussian mixture
density

fmix,τ (yi − x>i βτ |µ1k, µ2k, σ
2
1k, σ

2
2k, qk) = qkφ(µ1k, σ

2
1k) + (1− qk)φ(µ2k, σ

2
2k) ,

where φ(µ, σ2) denotes the Gaussian density with mean µ and variance σ2, and qk ∈ (0, 1) are
fixed mixture proportions which ensure the quantile constraint to be fulfilled for each mixture
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component. The component-specific parameters are not explicitly drawn from a DP prior, but the
weights πk arise from a stick-breaking mechanism. Reich et al. (2010) further extended the model
to individual-specific random effects with a Gaussian assumption in a conditional and marginal
way.

With respect to nonparametric Bayesian quantile regression with a flexible predictor, most of
the approaches concentrate on the linear quantile regression model and put the focus on flexible
modelling of the error assumption instead of the predictor. For some of the estimation approaches,
one can imagine that the extension to a more flexible predictor would be straightforward. In
particular, individual-specific random effects for longitudinal data could directly be embedded in
the Bayesian framework since all effects are treated as random and one does not have to differ
between fixed and random effects.

Note also that all the above models are fitted separately for different quantile parameters and
therefore incur the danger of quantile crossing. Various recent Bayesian approaches, as for
example Reich et al. (2011) or Reich (2012), considered the quantile process as a whole with the
aim of simultaneous inference for all quantiles. In this context, Taddy and Kottas (2010) assumed
that the observed data itself (response variable y and covariates x) follow an infinite DP mixture
density, not only the error distribution. Since the high-dimensional data density is modelled as
a whole, quantile crossing is avoided but the predictor does not provide a particular (additive or
flexible) interpretable structure.

As usual in a Bayesian estimation framework, exact and full inference of the parameters is
straightforward, even with small sample sizes. However, in the first alternative of Kottas and
Krnjajić (2009) with the ASL mixture, one should still be careful since the density most likely does
not represent the true shape of the errors and one has to assume the quasi-likelihood framework
again. Bayesian variable selection methods for these approaches have not yet been discussed
in literature. Software or R packages of the Bayesian approaches are not yet available, but for
some of the approaches, e.g., the approach of Reich et al. (2010), some code is available on
request.

3.5 Related model classes

In this section, we describe three model classes which we perceive as being closely related to
quantile regression. They are related to quantile regression since the full response distribution
can be derived depending on covariates and therefore also the response’s quantile function.
As a consequence, these model classes can be applied in similar practice situations in which
quantile regression would be appropriate. However, since their original regression target is not
the response’s quantile function, the latter can (in most cases) not directly be expressed by an
additive function of the covariates.

We consider one distribution-free related model class (expectile regression) and two distribution-
based model classes (Gaussian STAR models and GAMLSS). Note that quantile modelling is
always implied when an explicit distribution is assumed for response or error terms, for example
in the case of conventional generalized linear regression models. We demonstrate this fact for the
special case of Gaussian error terms in Section 3.5.2.

Similar to the estimation of quantile regression models, various different estimation approaches
have been developed for each of the related model classes.
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3.5.1 Expectile regression

Expectiles allow to describe the complete distribution of a random variable in a similar way to
quantiles. Both, expectiles and quantiles can be regarded as a special case of M-quantiles
(Breckling and Chambers, 1988). Therefore, expectile regression can be seen as an important
distribution-free pendant to quantile regression. We motivate expectiles by the analogy between
expectile and quantile regression in the following and refer to Schnabel and Eilers (2009) for the
exact definition of theoretical expectiles of a distribution.

First of all, recall that for a given quantile parameter τ ∈ (0, 1) the basic aim of quantile regression
is to minimize a weighted sum of absolute deviations between response and predictor

min
ητ

n∑
i=1

wiτ |yi − ηiτ | with weights wiτ =

τ yi ≥ ηiτ
1− τ yi < ηiτ

, (3.10)

which is a slightly modified formulation of the classical quantile regression problem in
equation (3.3) on page 39. By minimizing the above sum of asymmetrically weighted absolute
deviations with respect to the parameters contained in the predictor ητ , the conditional τ · 100%

quantile of the response variable Y is modelled depending on covariates.

Following the work of Aigner et al. (1976), Newey and Powell (1987) introduced expectile
regression in analogy to quantile regression by replacing the weighted absolute deviations by
weighted quadratic deviations, as follows:

min
ητ

n∑
i=1

wiτ (yi − ηiτ )2

with the same weights as defined in (3.10) and the fixed asymmetry parameter τ ∈ (0, 1). Here,
minimizing this asymmetric least squares criterion leads to the τ · 100% expectile of the response
variable conditional on covariates. Setting τ = 0.5 obviously corresponds to the special case of
usual least squares estimation and implies mean modelling.

Regarding the relationship between expectiles and quantiles, Jones (1994) pointed out that there
is a one-to-one relationship between the expectiles of one distribution and the quantiles of another.
For some particular distributions expectiles and quantiles even coincide (see, e.g., Koenker,
2005). However, in the general case it is not straightforward to obtain the τ · 100% quantiles from
a distribution when its θ · 100% expectiles with θ ∈ (0, 1) are known. Efron (1991) suggested to
estimate the conditional τ · 100% quantile as the proportion of data which lies below the estimated
θ · 100% expectile.

One of the main advantages of expectile regression is that its quadratic loss function is
continuously differentiable (contrary to the check function). Therefore the parameters can be
estimated by an iteratively weighted least squares algorithm, which is for example described in
Schnabel and Eilers (2009) or Efron (1991), and the minimization does not rely on complex linear
programming algorithms. This is in particular beneficial for extensions to penalized estimation of
covariate effects, since well established penalty methods from the L2-norm framework can easily
be applied to expectile regression.

However, the main shortcoming of expectile regression is that the interpretation of expectiles is
not as intuitive and straightforward as the interpretation of quantiles. The estimated parameters

Page 52



Chapter 3: Structured additive quantile regression – model class and estimation

of the predictor are interpreted with regard to the response expectiles and apart from the rather
heuristic approach in Efron (1991), the transformation of expectiles to the quantile function is not
obvious. This interpretability problem might be an unsatisfying issue for practitioners.

All the same, expectile regression also has high potential for becoming a supporting model class
for quantile regression. For example, expectile regression can be seen as a good alternative to
quantile regression when the complete conditional distribution of a response variable should be
modelled. In this case one is rather interested in the comparison of the estimated coefficients for
different asymmetry parameters than in the exact interpretation of single parameters.

Flexible predictor

Schnabel and Eilers (2009) combined asymmetrically weighted least squares with P-splines
and therefore allowed for the estimation of nonlinear covariate effects in expectile regression
models. They proposed several possibilities for choosing the smoothing parameter, for example
asymmetric (generalized) cross validation. Sobotka and Kneib (2012) extended the model to a
generic structured (geo-)additive predictor and compared asymmetrically weighted least squares
estimation with boosting estimation based on the expectile loss function. For longitudinal data
Schnabel and Eilers (2009) raised some ideas how to extend the algorithm for the estimation of
individual-specific random effects.

Estimator properties and inference

Sobotka et al. (2011) studied properties of expectile regression estimators obtained by
asymmetrically weighted least squares. These estimators are asymptotically unbiased and
Gaussian distributed. Their asymptotic covariance matrix does not depend on the true error
density. This result can be seen as another important advantage of expectile regression over
quantile regression since the estimation of the covariance matrix does not require the estimation
of the true error density and can therefore be made in a consistent way. Consequently, standard
errors and asymptotic confidence intervals of the estimators can be obtained, even for nonlinear
effects (Sobotka et al., 2011).

Efficiency comparisons in Newey and Powell (1987) furthermore indicate that expectile regression
estimators are asymptotically more efficient than quantile regression estimators since they make
use of the full information on the difference between response and predictor (and not only of the
sign). On the other hand, one should be aware that expectile regression estimators are of course
more sensitive to outliers than quantile regression estimators.

Due to the separate estimation for different asymmetry parameters, expectile and quantile
crossing are not prevented.

Variable selection

To the best of our knowledge, the issue of variable selection has not yet been studied in literature
in the context of expectile regression.
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Software

Expectile regression is implemented in the R package expectreg (Sobotka et al., 2012). This
package not only provides functionality to employ structured additive expectile regression with a
large variety of different covariate effects but also allows to calculate the expectiles for common
distributions.

3.5.2 Gaussian STAR models

Our definition of the structured additive quantile regression model in equations (3.1) and (3.2)
is mainly based on the structured additive (mean) regression model defined in Fahrmeir et al.
(2004). In the special case of assuming a Gaussian distribution for the error terms, the model
equation can be formulated by:

ys = ηs(zs) + εs where εs
iid∼ N (0, σ2

ε) .

This notation is similar to the notation in Section 3.1: ys denotes the response with observation
index s and ηs(zs) is a structured additive predictor of covariates zs as defined in equation (3.2),
but is not quantile-specific here. The error terms εs are assumed to be iid for the sake of simplicity.
Of course, it would also be possible to induce an additional correlation structure, for example
temporal correlation in the case of longitudinal data.

From the Gaussian assumption it follows that the main regression aim is the response’s conditional
mean

E(ys|ηs) = ηs(zs)

and that the conditional quantile function can be derived as

QYs(τ |ηs) = ηs(zs) + qτσε ,

where qτ denotes the τ · 100% quantile of a standard Gaussian distribution. Thus the quantile
function is obtained by shifting the structured additive predictor ηs(zs) by a quantile-specific
constant qτσε. Gaussian STAR models can therefore be seen as a special case of quantile
regression where only the intercept differs for different quantile parameters in order to fulfill the
usual constraint for the error density. Consequently, the interpretations of the various linear and
nonlinear effects of covariates with respect to the response’s mean directly apply to the quantiles.

An important special case of Gaussian STAR models are additive mixed models for longitudinal
data, see for example Ruppert et al. (2003), which will also used in our application of obesity in
Chapter 7. An additive mixed model with linear and nonlinear population effects can be written as

yij = x>ijβ + f1(zij1) + . . .+ fq(zijq) + v>ijγi + εij = η
(µ)
ij + v>ijγi + εij , (3.11)

with iid errors εij ∼ N (0, σ2
ε) and observation index s = (i, j) for i = 1, . . . , N and j = 1, . . . , ni.

The population part of the predictor is denoted as η
(µ)
ij and the individual-specific effects are

assumed to be Gaussian distributed γi ∼ N (0,Σγ) and independent for different individuals i. By
including time-varying covariates such as age in the design vector vij , model (3.11) allows for the
estimation of individual-specific random slopes or curves. When only a random intercept γi0 is
included in the model equation, an equicorrelation between intra-individual response observations
is induced.
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Due to the Gaussian error assumption the quantile function of the response can again be derived,
but in the additive mixed model we have to distinguish between

the conditional quantile function QYij (τ |η
(µ)
ij ,γi) = η

(µ)
ij + v>ijγi + qτσε (3.12)

and the marginal quantile function QYij (τ |η
(µ)
ij ) = η

(µ)
ij + qτ

√
v>ijΣγvij + σ2

ε .

Thus, for covariates that are just contained in the predictor η(µ)ij , the interpretation of covariate
effects with respect to the quantile functions remains the same as for the mean. In the case of
time-varying covariates included in vij , however, the relationship between covariate and quantile
functions becomes more involved since both quantile functions depend on the design of vij . When
only a random intercept is included in the model equation, both quantile functions reduce to a
simple time-constant shift of the population predictor η(µ)ij as stated above.

Regarding estimation, Gaussian STAR models are a well-studied and established framework for
mean regression, and estimation algorithms and software are highly developed; an overview of
recent developments in semiparametric regression is given by Ruppert et al. (2009). Common
approaches for estimating Gaussian STAR models rely on penalized likelihood concepts, full
Bayesian inference or a mixed model representation, see Fahrmeir et al. (2007) and Ruppert
et al. (2003) for details. In case of likelihood estimation, smooth functional covariate effects are
estimated based on penalized spline functions corresponding to suitable prior densities on the
regression parameters from a Bayesian point of view. An overview of the various effect types
together with the corresponding penalty matrices is given in Fahrmeir et al. (2007).

Flexible predictor

Due to their generic definition, Gaussian STAR models of course allow to model the full variety of
different effects of the flexible structured additive predictor. However, one should be aware that
they are not adequate for quantile regression if higher moments (variance, skewness, or kurtosis)
of the conditional response’s distribution depend on covariates, meaning that the iid Gaussian
error assumption is violated.

Estimator properties and inference

Inference for the estimators is well studied in structured additive mean regression. For Bayesian
estimation, exact and full inference for the estimators is straightforward. When penalized likelihood
estimation is applied, standard errors for the usual linear coefficients can be derived. However,
the asymptotic properties of penalized splines remain one of the main challenges which have
been investigated in depth during the last decade (Ruppert et al., 2009). Hypothesis testing on the
parameters can be based on likelihood-based tests. Furthermore, Ruppert et al. (2003) discussed
inference for estimated nonlinear functional effects, and in particular how to obtain pointwise and
simultaneous confidence bands for them.

Since the full conditional distribution of the response variable is implicitly modelled by the
Gaussian error assumption, all response quantiles are estimated at the same time and, therefore,
quantile crossing cannot occur.

Page 55



Chapter 3: Structured additive quantile regression – model class and estimation

Variable selection

According to Fahrmeir et al. (2007), there is not much literature and software for model and
variable selection in the STAR framework yet. Competing models can be compared based on the
Akaike information criterion (with adapted degrees of freedom due to the penalized estimation) or
the generalized cross validation criterion. These criteria are also used for smoothing parameter
selection. When estimation is based on a mixed model representation of a STAR model, a special
likelihood ratio test on the variance parameter can be applied to test if a smooth functional effect
of a continuous covariate should be included in a linear or nonlinear way. In case of Bayesian
inference, the deviance information criterion (DIC) can be used for model comparison.

Software

Penalized likelihood estimation of STAR models is implemented in the R package mgcv (Wood,
2012) providing the functions gam to fit generalized additive models and gamm to fit generalized
additive mixed models for longitudinal data. The selection of smoothing parameters is based on
generalized cross validation.

Estimation based on the mixed model representation of STAR models can be done with the R
package amer (Scheipl, 2011) which we also used for our analysis of the obesity data in Chapter 7.
In this approach the smoothing parameter is determined as the ratio between estimated variances
of errors and random effects.

Full Bayesian estimation of STAR models can be employed using the software BayesX (Belitz
et al., 2012). An R interface to this software has recently been made available in the R package
R2BayesX (Umlauf et al., 2012). Functionality for exploring and visualizing estimation results
obtained from BayesX is furthermore provided in the R package BayesX (Kneib et al., 2011).

3.5.3 GAMLSS

Generalized additive models for location, scale and shape (GAMLSS, Rigby and Stasinopoulos,
2005) aim at modelling each of the parameters of a conditional response’s distribution based
on structured additive covariate predictors. Two main assumptions are made: (i) The response
observations ys are mutually independent, and (ii) they follow a known distribution with density
fdens(ys|θs) conditional on the observation-specific parameter vector θs = (θs1, θs2, θs3, θs4)>

which contains up to four parameters. Even though θ may include any kind of distribution
parameter, its components usually stand for location (θ1 = µ), scale (θ2 = σ), skewness (θ3 = ν)
and kurtosis (θ4 = ϕ). Each of these distribution parameters θk with k = 1, ..., 4, is modelled by a
separate structured additive predictor

g1(µs) = η(µ)s g2(σs) = η(σ)s g3(νs) = η(ν)s g4(ϕs) = η(ϕ)s ,

where g1(·), . . . , g4(·) denote suitable monotonic link functions. The structured additive predictors
η(µ), η(σ), η(ν) and η(ϕ) can include different sets of covariates and can (theoretically) each be
designed as flexible as the STAQ predictor in (3.2).

Regarding the conditional density, it is not restricted to the exponential family. For analyzing BMI
data, for example, very flexible distributions based on Box-Cox transformations have proven to
be suitable in the past, such as the Box-Cox t distribution (Rigby and Stasinopoulos, 2004), or
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the Box-Cox power exponential distribution (BCPE, Rigby and Stasinopoulos, 2006) which has for
example been used for the construction of reference charts (see, e.g., Borghi et al., 2006).

With a specific distributional assumption at hand, the quantile function can be derived by inverting
the cdf. For example, when a BCPE distribution is assumed for the response variable, the
conditional quantile function can be expressed as

QYs(τ |η(µ)s , η(σ)s , η(ν)s , η(ϕ)s ) =

 µs (1 + σsνsq̃τ )1/νs if νs 6= 0

µs exp(σsq̃τ ) if νs = 0
, (3.13)

where the quantile-specific parameter q̃τ depends on the quantile function of a gamma distributed
random variable, see Rigby and Stasinopoulos (2004) for details. To estimate the quantile
function, the theoretical parameters can be replaced by their estimates. From this example one
can see that the parameters estimated from a GAMLSS cannot be directly interpreted with respect
to the response quantile function, as was the case for Gaussian STAR models. On the contrary,
the interpretation of parameters for one covariate with respect to the quantile function can be
involved since it may be associated with different predictors in different ways. However, one can
directly assess the association between covariates and shape parameters of the response.

To sum up, even though GAMLSS implicitly model the quantile function of the response, they
cannot be rated as quantile regression models as defined in Chapter 1, since the relationship
between predictors and quantile function is not linear.

In the presence of longitudinal data, random individual-specific effects can be included in the
predictors similar to the additive mixed model in equation (3.11). However, the quantile function
derived from a GAMLSS can only be regarded as being conditional on given realizations of the
random effects to conserve the independence assumption between observations ys; a marginal
view on the quantile function is in general not possible.

To estimate the unknown parameters included in the predictors η(θk), Rigby and Stasinopoulos
(2005) proposed a penalized log-likelihood approach based on two modified versions of the back-
fitting algorithm for conventional generalized additive model estimation. Furthermore, a boosting
algorithm for GAMLSS estimation has recently been introduced in Mayr et al. (2012a).

Flexible predictor

With regard to our first assessment criterion, it can be directly seen that a flexible predictor is
inherent to the definition of GAMLSS. Due to their great flexibility in the distributional assumption
and in the flexible modelling of each of the different predictors, GAMLSS are of course more
flexible than Gaussian STAR models.

In theory, the longitudinal data structure can be modelled by individual-specific random effects,
but at present the estimation of GAMLSS with random effects is limited since no software that
can estimate individual-specific effects for a large number of clusters or individuals is currently
available.
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Estimator properties and inference

To the best of our knowledge the asymptotic properties of GAMLSS estimators have not yet been
explicitly considered in literature. Standard errors for the estimators can be obtained based on
the asymptotics of penalized likelihood inference. Hypothesis testing can be made with likelihood-
based tests.

A great advantage of using GAMLSS for quantile modelling is their implicit prevention of quantile
crossing due to the direct estimation of the full conditional response distribution.

Variable selection

Variable selection is a key issue of the GAMLSS framework, since up to four parameters of
the response distribution (and not only the mean or location) are each associated with a set
of covariates. This high degree of flexibility of GAMLSS requires efficient strategies for variable
selection in order to select only the most relevant covariates for each distribution parameter. Rigby
and Stasinopoulos (2005) proposed to use the Generalized Akaike Information Criteria (GAIC)
for variable selection in GAMLSS, which corresponds to the AIC with a general penalty for the
degrees of freedom. This approach comes along with several shortcomings – in particular with
respect to high-dimensional data – which were discussed in Mayr et al. (2012a). As will be worked
out in Section 4.4, boosting estimation is provided with an inherent variable selection property; this
can be seen as a main advantage of boosting regarding GAMLSS estimation.

Software

The main software for fitting GAMLSS is available in the R package gamlss (Stasinopoulos
and Rigby, 2007). Moreover, there is a number of additional R packages available providing
supplementary functionality, see www.gamlss.org for an overview.

For fitting GAMLSS with individual-specific random effects in case of longitudinal data, the function
rc() from package gamlss is currently available but is experimental and not recommended for
serious practical usage. The function gamlssNP() from package gamlssMX allows for a random
intercept in the predictor for µ but the random effects distribution is approximated by a Gaussian
quadrature with a maximum of ten different values. Since it relies on EM maximization, the
estimation is computationally challenging.

Boosting estimation for GAMLSS is implemented in the R package gamboostLSS (Hofner, Mayr,
Fenske, and Schmid, 2011b).
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Chapter 4: Boosting for structured additive
quantile regression

This chapter presents a boosting algorithm for estimating structured additive quantile regression
models which will often be referred to as quantile boosting in the following. In combination
with quantile regression this innovative distribution-free estimation approach was first introduced
in Fenske, Kneib, and Hothorn (2011) and can be classified among distribution-free statistical
learning algorithms sketched in Section 3.3.2.

Sections 4.1, 4.2 and 4.3 describe different aspects of the boosting approach and are mainly
based on the above mentioned manuscript (Fenske et al., 2011), on the Ph.D. thesis of Hofner
(2011) and on Kneib et al. (2009). In Section 4.4, we discuss the boosting algorithm with respect
to the method assessment criteria from Section 3.2 and thereby compare it to the other estimation
approaches for STAQ models.

4.1 Algorithm

Boosting was first introduced in the machine learning community as a classification algorithm for
binary response variables (AdaBoost, see Freund and Schapire, 1996, 1997). Soon afterwards a
statistical view of boosting was developed (Friedman et al., 2000) and it was shown that boosting
can be interpreted as a gradient descent algorithm in function space (gradient boosting, Friedman,
2001). Thereby functional gradient descent boosting was recognized as being suitable for fitting
generalized additive regression models; and this was probably one of the key starting points
for the growing popularity of boosting as a statistical learning algorithm. Bühlmann and Yu
(2003) later introduced component-wise functional gradient descent boosting which only selects
one component (i.e., covariate) per step and consequently is provided with an inherent variable
selection property – note that quantile boosting described in this chapter also belongs to this type
of algorithm. Further details on the history of boosting and on the relationship between different
boosting algorithms can be found in Hofner (2011), and an excellent overview of state-of-the-art
boosting algorithms is given by Bühlmann and Hothorn (2007).

In brief, the main goal of boosting algorithms is to predict a response variable based on a set
of covariates. This goal is achieved by combining an ensemble of different “weak” statistical
models, called base learners, to finally get an overall prediction for the response that yields
greater prediction accuracy than the results of one single base learner only. A base learner
can be any kind of statistical regression tool where the response variable is modelled by one or
more covariates, i.e.,

covariate(s) base learner−−−−−−−→ prediction of the response

and typical examples for base learners are (univariate) linear regression models, classification
and regression trees, or penalized regression splines.
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Written very generally, the goal of boosting is to find a solution to the expected loss optimization
problem

η∗ = argmin
η

E[L(y, η)] , (4.1)

where y is the response and η is the predictor of a regression model, while L(·, ·) corresponds
to the convex loss function that depends on the estimation problem. In practice one only has a
sample of observations (yi, zi), with i = 1, . . . , n, and the expected loss in (4.1) has to be replaced
by the empirical risk

1

n

n∑
i=1

L(yi, ηi(zi)) .

In the case of structured additive quantile regression, the appropriate loss function is the check
function given by equation (3.4) on page 39, i.e., L(yi, ητi) = ρτ (yi − ητi), and η is the generic
structured additive predictor in equation (3.2) on page 35.

Before describing the algorithm in detail, recall the generic notation of the structured additive
predictor:

ηi = β0 +

D∑
d=1

hd(zi) . (4.2)

Here, we use the observation index i = 1, . . . , n instead of s used in (3.2) to ease readability. The
unknown functions are denoted with hd(zi) for d = 1, . . . , D, and zi is the complete covariate
vector for observation i. For some univariate covariate zl being an element of z, two main
examples were linear effects hd(zi) = βdzil with coefficient βd to estimate, or nonlinear effects
hd(zi) = fd(zil) with smooth functions fd to estimate.

Algorithm 1 on page 61 contains the component-wise functional gradient descent boosting
algorithm for estimating the unknown parameters of the functions hd(·) for d = 1, . . . , D. The
algorithmic notation is used in accordance with Hofner (2011).

In this algorithm hd = (hd(z1), . . . , hd(zn))> denotes the vector of function evaluations for
component d = 1, . . . , D, and a corresponding base learner gd = (gd(z1), . . . , gd(zn))> is specified
for each component. So far the total number of base learners D is equal to the number of
components in the structured additive predictor in (4.2).

The index of the quantile parameter τ is suppressed for ease of notation. All the same one should
keep in mind that the unknown functions and their parameters depend on a fixed and pre-specified
quantile parameter τ ∈ (0, 1). Boosting estimation is performed separately for different quantile
parameters.
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Algorithm 1: Component-wise functional gradient descent boosting algorithm
for structured additive quantile regression

Initialize Set the iteration index m := 0 and initialize the additive predictor and the function
estimates with suitable starting values, typically the empirical median of the response values
y1, . . . , yn as offset, i.e., η̂[0]i = argmin

c

∑n
i=1 ρ0.5(yi − c), and ĥ[0]

d = 0 for d = 1, . . . , D.

Iterate

i. Negative gradient Increase m by 1. Compute the negative gradient residuals of the loss
function evaluated at the predictor values η̂[m−1]i of the previous iteration

u
[m]
i = − ∂

∂η
L(yi, η)

∣∣∣∣
η=η̂

[m−1]
i

i = 1, . . . , n .

In case of quantile boosting, insert the check function for the loss function and get the following
negative gradient residuals:

u
[m]
i = −ρ′τ (yi − η̂[m−1]i ) =

τ yi − η̂[m−1]i ≥ 0

τ − 1 yi − η̂[m−1]i < 0 .

ii. Estimation Fit all base learners separately to the negative gradient residuals (see Section
4.2 for details) and obtain estimators ĝ[m]

d for each base learner d = 1, . . . , D. Find the best-
fitting base learner gd∗ that minimizes the L2 loss

d∗ = argmin
d

[(
u[m] − ĝ[m]

d

)> (
u[m] − ĝ[m]

d

)]
with u[m] = (u

[m]
1 , . . . , u

[m]
n )> being the vector of gradient residuals of the current iteration.

iii. Update Compute the update for the best-fitting base learner

ĥ
[m]
d∗ = ĥ

[m−1]
d∗ + ν · ĝ[m]

d∗

where ν ∈ (0, 1] is a given step length.

Keep all other effects constant, i.e., set ĥ[m]
d = ĥ

[m−1]
d for d 6= d∗, and compute the update

for the predictor η̂[m]
i for i = 1, . . . , n.

Stop Stop if m = mstop for a given, pre-fixed stopping iteration mstop.

It can be observed that the boosting algorithm has a stepwise and component-wise character.
Instead of directly fitting the original observations, the boosting algorithm iteratively fits the
gradient of the loss function to the covariates. Due to multiplication of the current estimators
ĝ[m] with a step length ν ∈ (0, 1] in each update, the stepwise increments of the final estimators
ĥ[m] are small and thus the overall minimum is only slowly approximated. At the same time the
additive structure for the resulting model fit is conserved since the final aggregation of the additive
predictor and its single components is strictly additive.
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The component-wise character of the boosting algorithm arises from the separate fit of the base
learners to the gradient residuals. In one step, only the best-fitting base learner is updated.
Since a base learner is typically based on only one (or a few) covariates, it is possible that some
base learners are never updated during the boosting process and therefore the corresponding
covariates are excluded from the model. This builds the basis for the inherent variable selection
property of component-wise boosting.

As mentioned above, a base learner can generally be any kind of statistical regression tool that
relates covariates to a response variable. In our algorithm here, the response are the negative
gradient residuals and the base learners correspond to (penalized) least squares estimators of
one covariate. The particular form of a base learner depends on the type of covariate effect that
should be estimated. Details are given in Section 4.2.

Quantile regression results from inserting the check function as loss function. The generic
boosting algorithm can however be used for a large number of different loss functions and
therefore different types of regression models. Typical examples are the L2-loss function leading
to mean regression, or the negative Binomial log-likelihood leading to binary regression. Of course
the choice of the loss function should depend on the specific data or estimation problem.

Note that for quantile regression there is some ambiguity in defining the gradient since the check
function is not differentiable in zero. In practice, this case will only occur with zero probability (for
continuous responses) – therefore, there is no conceptual difficulty. We decided to choose the
gradient as ρ′τ (0) = τ (as in Meinshausen, 2006), but could similarly have chosen ρ′τ (0) = τ − 1.

In conclusion, for completely specifying the boosting algorithm, the starting values, the base
learners and their degrees of freedom, the step length ν, and the stopping iteration mstop have to
be specified. Further details on these parameters will be described in the following sections.

4.2 Base learners

All base learners which are considered in our boosting algorithm are estimated by (penalized)
least squares. For each base learner gd with d = 1, . . . , D, from Algorithm 1, the penalized least
squares criterion can be expressed as:

γ̂d = argmin
γd

[
(u−Zdγd)>(u−Zdγd) + λd γ

>
d Kdγd

]
, (4.3)

where u = (u1, . . . , un)> is the vector of gradient residuals (with iteration index m dropped),
Zd is the design matrix suitable for base learner d, and γd denotes the vector with all unknown
parameters to estimate. The quadratic penalty term additionally contains a suitable penalty matrix
Kd and a smoothing parameter λd > 0 which controls the amount of regularization. The special
case of unpenalized least squares base learners results from setting λd = 0.

When solving criterion (4.3) with respect to γd, the resulting estimator for the base learner gd is a
penalized least squares estimator:

ĝd = Zd(Z
>
d Zd + λdKd)

−1Z>d u

= Zd γ̂d . (4.4)

The resulting hat matrix Sd which links the estimated to the observed gradient residuals û = Sdu

is consequently given as Sd = Zd(Z
>
d Zd + λdKd)

−1Z>d .
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One can see that all parameters in (4.3) and (4.4) except for u depend on d, i.e., on the particular
form of the base learner which is in turn determined by the type of covariate effect that should be
estimated.

From the update step in Algorithm 1 it follows that the final boosting estimator for the d-th
component can be expressed as

ĥ
[mstop]
d =

mstop∑
m=1

ν · ĝ[m]
d ,

with ĝ
[m]
d = 0 if the d-th base learner was not selected in iteration m. Again ĥd =

(ĥd(z1), . . . , ĥd(zn))> and ĝd = (ĝd(z1), . . . , ĝd(zn))> denote the estimated vectors of unknown
function and base learner d, respectively, evaluated at the observations. Thus, the final boosting
estimator of component d is just a weighted sum of the fitted base learners for all iterations
when the d-th base learner was selected, and the additive structure of the resulting model fit
is conserved. From equation (4.4) one can additionally see that the final vector of parameter
estimators is also a weighted sum of the parameter estimators of single iterations, i.e.,

γ̂
[mstop]
d =

mstop∑
m=1

ν · γ̂[m]
d ,

with γ̂[m]
d = (Z>d Zd+λdKd)

−1Z>d u
[m] and again γ̂[m]

d = 0 if the d-th base learner was not selected
in iteration m.

In the following, we describe the particular form of the base learners for those components from
the structured additive predictor that will be used in our applications: Linear, smooth nonlinear,
discrete spatial, and cluster-specific components as well as varying coefficient terms. We refer
to Kneib et al. (2009) and Hofner (2011) for further alternatives that could similarly be used in
connection with STAQ regression, such as bivariate base learners for smooth surfaces, base
learners with radial basis functions for smooth spatial effects, or constrained base learners for
monotonic effects.

Base learners for linear components

First, we consider the simplest case of base learners with unpenalized linear effects. In the
generic model notation, a linear predictor component can be written as hd(zi) = β>d xi with
coefficient vector βd and covariate vector x being a (p × 1) subvector of the complete vector
of covariates z. With an intercept in the linear predictor, the covariate vector for observation i is
xi = (1, xi1, . . . , xi,p−1)> and at the same time constitutes the i-th row of the (n×p) design matrix
Zd = X being the usual design matrix of a linear model.

In typical usage examples this linear base learner represents one covariate and the covariate
vector x contains: (i) an intercept and one continuous covariate; (ii) an intercept and one dummy
variable for a binary covariate; (iii) an intercept and p − 1 dummy variables for a categorical
covariate with p > 2 categories.
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Instead of the generic notation with γd, let bd denote the base learner coefficients corresponding
to βd. Without penalty, i.e., with λd = 0 in the penalized least squares criterion (4.3), the resulting
estimator is just the ordinary least squares estimator

b̂
[m]
d = (X>X)−1X>u[m] ,

and if this base learner is selected in iteration m of the boosting algorithm, the stepwise update is

β̂
[m]
d = β̂

[m−1]
d + ν · b̂[m]

d .

The inclusion of an intercept in the base learner might at first glance look inconsistent with the
generic structured additive predictor in (4.2). There, the generic predictor just contains one global
intercept and its single components are written without intercepts. However, in the boosting
algorithm an intercept can be included in each base learner, since the final (global) intercept
β0 is calculated as the sum of all intercepts from all base learners.

In some cases it makes sense to omit the intercept in a linear base learner. Then the continuous
covariates should be mean-centered before estimation in order to ensure correct estimators (see
Hofner, 2011, p.19, for an illustration).

Note that penalization of the linear effects is of course also possible. For example, a ridge penalty
is applied when setting Kd = I where I is the identity matrix with suitable dimensions. Ridge
penalization causes all estimated coefficients to be uniformly shrunken towards zero. This penalty
makes sense for a covariate with a large number of categories or a group of several variables in
order to make the complexity comparable among different base learners and to equalize selection
probabilities. Ridge-type penalization will also be mentioned in the context of base learners for
cluster-specific components.

Illustration of quantile boosting with linear base learners

In the following we illustrate the proceeding of the boosting algorithm for the simple case of
univariate linear quantile regression by Figure 4.1. First, we drew 400 observations from the
following model

yi = 3 + 2xi + (4xi) · εi with εi
iid∼ N (0, 4) and xi

iid∼ U [0, 5] for i = 1, . . . , 400 .

Based on the resulting sample shown in the right column of Figure 4.1, we estimated a linear
quantile regression model with τ = 0.7 by boosting. We specified only one linear base learner
containing an intercept and the continuous covariate x.

Figure 4.1 illustrates the stepwise approximation of the boosting algorithm to the final estimator
β̂[mstop]. The two plots in each row refer to the same iteration m ∈ {1, 500, 1000}.

The plots in the left column show the current fit of the base learner on gradient level. One can see
that the gradient residuals (grey points) can only take two values, namely 0.7 and −0.3. The solid
line is the corresponding least squares regression line with parameters b̂[m] while the dashed
line displays the linear function with parameters ν · b̂[m] (with ν = 0.1). Thus, the dashed line
corresponds to the current increment added to β̂[m−1] in order to obtain β̂[m].

The plots in the right column display the situation on response level. Shown are the original
observations (grey points), the final quantile regression fit for τ = 0.7 (dashed line) with
parameters β̂[mstop] and the current fit (solid line) with parameters β̂[m] = β̂[m−1] + ν · b̂[m].
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Figure 4.1 Illustration of the boosting algorithm for univariate linear quantile regression with τ = 0.7.
Left column: Gradient residuals (grey points) together with least squares regression fit with
parameters b̂[m] (solid line) and linear function with parameters ν · b̂[m] (dashed line).
Right column: Original observations (grey points) together with final quantile regression fit for
τ = 0.7 with parameters β̂[mstop] (dashed line) and current regression fit with parameters β̂[m]

(solid line).
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Altogether, one can observe that the stepwise increments of the estimators are very small and
almost zero. This can be attributed to the binary character of the gradient residuals and to the
small value of ν = 0.1. By using 5-fold cross validation the optimal number of boosting iterations
was determined to be mstop = 1222. This demonstrates that even in the simple case of univariate
linear quantile regression, a large number of boosting iterations can be necessary to approximate
the final quantile regression fit.

One can also observe that with increasing number of iterations roughly 30% of the gradient
residuals are equal to 0.7, and the remaining 70% are equal to 0.3. These proportions are
determined by the quantile parameter τ , which was chosen to be 0.7 in the present example.

Base learners for smooth nonlinear components

In the generic notation of the structured additive predictor, smooth nonlinear components of a
continuous covariate zl are written as hd(zi) = fd(zil) and the task is to estimate the nonlinear
function fd(zl) in a smooth way. In our boosting algorithm, we use penalized B-splines, i.e., P-
splines, that were introduced by Eilers and Marx (1996) and first studied in the boosting framework
by Schmid and Hothorn (2008).

For simplicity, we drop the indices d and l in the following and denote the base learner
corresponding to f(z) with g(z). A nonlinear function g(·) of a continuous covariate z can be
approximated in terms of a moderately sized B-spline basis as follows:

g(z) =

K∑
k=1

γkBk(z;α) = B(z)>γ ,

where Bk(z;α) is the k-th B-spline basis function of degree α. In vector notation, the above sum
can be written as product between design vectorB(z) = (B1(z;α), . . . , BK(z;α))> and coefficient
vector γ = (γ1, . . . , γK)>. The basis functions are defined on a grid of equidistant knots and their
degree δ can be chosen according to subject-matter knowledge to obtain a function estimate with
the desired overall smoothness properties (since a spline of degree δ is δ − 1 times continuously
differentiable).

Thus, with observations z = (z1, . . . , zn)> the unpenalized estimator can be obtained as
ĝ = (ĝ(z1), . . . , ĝ(zn))> = B γ̂, with (n × K) design matrix B = (B(z1), . . . ,B(zn))>. Without
penalty the coefficients γ̂ can be estimated by usual least squares, i.e., with a simple linear base
learner in the boosting context.

However, for a small number of knots, the question arises how to determine their number and
positions adequately, and for a large number of knots one runs the risk of overfitting. Therefore,
estimation of the coefficient vector γ is based on minimizing a penalized least squares criterion.

In the notation of (4.3) on page 62, the design matrix Zd is simply the B-spline design matrix B
described above and γd are the spline coefficients. In order to restrict the variability of the function
estimate, the squared differences between coefficients of adjacent basis functions are penalized
by using the penalty matrix Kd = D>D with difference matrices D of order δ (see, e.g., Hofner,
2011, for its exact form). Usually a second order penalty, i.e., δ = 2, is applied which leads to
penalization of deviations of the coefficients from a linear function. Altogether this leads to the
following particular penalized least squares criterion

(u−Bγd)>(u−Bγd) + λd γ
>
d D

>Dγd ,
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where the smoothing parameter λd controls the trade-off between smoothness and overfitting
of the nonlinear function. Large values for λd come along with smoother functions, while the
functions are more wiggly for small values of λd. However, with boosting estimation λd is not
treated as a hyperparameter that needs to be optimized (see Section 4.3 for details).

To sum up, for fitting nonlinear functional effects fd(zl) with the boosting algorithm, a P-spline
base learner gd(zl) is used. The B-spline basis for gd(zl) carries over to fd(zl) and the coefficients
γd of the basis functions are stepwise updated during the boosting algorithm.

Decomposition of smooth nonlinear components into several base learners

Note that it is also possible to allow the boosting algorithm to differentiate between linear and
nonlinear effect of a continuous covariate z, as was proposed in Kneib et al. (2009). For this
purpose, the complete effect of zl is decomposed into

fd(zl) = β0d + β1dzl + f center
d (zl) , (4.5)

where β0d + β1dzl represents the linear effect of zl, whereas f center
d (zl) stands for the nonlinear

deviation of fd(zl) from the linear effect. On base learner level, this decomposition can be
realized by assigning separate base learners to the linear effect and the nonlinear deviation. With
component-wise selection of base learners, the boosting algorithm then decides in a data-driven
way whether the linear part in (4.5) is sufficient to describe the effect of z or whether the nonlinear
extension should be additionally included in the model.

Technically, for estimating the coefficient vector γd, a reparameterization of γd is required which
can be obtained based on the spectral decomposition of the penalty matrix Kd, see Kneib et al.
(2009) and Fahrmeir et al. (2004) for details. It is also possible to consider centering around
higher-order polynomials, although the decision between linear and nonlinear effects seems to be
most relevant in practice.

When this decomposition is used, the estimation of one component in the additive predictor
corresponds to several base learners, and the smoothing parameter λd should be chosen so
that the complexity of the nonlinear part is comparable to the one of the linear part. This issue
was discussed in Kneib et al. (2009) and will again be raised in Section 4.3.

Base learners for varying coefficient terms

In the generic notation varying coefficient terms are denoted with hd(zi) = zik · fd(zil) with
categorical or continuous covariate zk and a second continuous covariate zl, both being elements
of z. To smoothly estimate the nonlinear function fd(zl) only a slight modification of the penalized
least squares base learner for nonlinear components is required. To achieve the multiplication of
the function evaluations fd(zl) with the interaction variable zk, the design matrix has to be altered
to Zd = diag(z1k, . . . , znk)·Bl, whereBl is the B-spline design matrix of the covariate zl described
above. Inserting Zd into the penalized least squares base learner (4.4) in combination with a
difference penalty yields a suitable base-learning procedure for estimating varying coefficients.
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Base learners for discrete spatial components

An effect of a covariate zl with discrete spatial information, for example the region within a country,
is denoted by hd(zi) = fd(zil) in the generic predictor notation. We describe this discrete spatial
effect according to Sobotka and Kneib (2012). In fact, zl ∈ {1, . . . , R} is simply a categorical
covariate with R possible values and its corresponding (n × R) design matrix Zd = (zd,ir)

just contains binary dummy vectors for each region, more specifically it contains the following
elements:

zd,ir =

1 zil = r

0 zil 6= r
for i = 1, . . . , n and r = 1, . . . , R .

The aim is to estimate the coefficient vector γd = (γd1, . . . , γdR)> with region-specific effects γdr
for r = 1, . . . , R, so that the spatial function simplifies to fd(zil) = γdr · I(zil = r) with indicator
function I(·).

Penalized estimation of this effect makes sense to account for spatial autocorrelation. Thereby
the effects of neighbouring regions should be more similar to each other than effects of non-
neighbouring regions. This can be realized by using the (R×R) penalty matrix Kd = (kd,rs) with
the following elements

kd,rs =


wr r = s

−1 r 6= s, r ∼ s

0 r 6= s, r � s

for r = 1, . . . , R and s = 1, . . . , R ,

where wr is the total number of neighbours for region r and r ∼ s means that regions r and s are
neighbours. As remarked by Sobotka and Kneib (2012), a stochastic interpretation of this penalty
is that γd follows a Gaussian Markov random field.

Base learners for cluster-specific components

Recall that in the generic predictor notation, cluster-specific components were denoted by
hd(zi) = zil ·

(
[I(zik ∈ G1), . . . , I(zik ∈ GK)]>γd

)
with indicator function I(·), a categorical or

continuous covariate zl and a categorical covariate zk defining K different groups or clusters
G1, . . . , GK . Accordingly, the (K × 1)-vector γd contains the cluster-specific parameters for each
level of zk. To estimate the coefficient vector γd, the general structure of the suitable design matrix
is:

Zd
n×K

= diag(zil)
n×n

· Zk
n×K

,

with Zk being the standard design matrix of the categorical covariate zk (consisting of dummy
variables for each of the K categories), and the diagonal matrix diag(zil) containing the observed
values of zl on the diagonal. This structure of the design matrix is a combination of the one of
varying coefficient terms and of the design matrix of a categorical covariate.

The coefficients are then estimated by ridge penalization, i.e., with setting the penalty matrix
Kd = IK equal to the identity matrix IK of dimension K ×K. This penalty causes all effects to
be evenly shrunken towards zero.
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Example: Individual-specific effects for longitudinal data

We give an example for cluster-specific components in the particular case of individual-specific
effects for longitudinal data in accordance with Fenske et al. (2012b). Given longitudinal data with
i = 1, . . . , N individuals and j = 1, . . . , ni observations per individual, we consider the following
STAQ model

QYij (τ |·) = η
(τ)
ij + bτi0 + bτi1tij .

Here, η(τ)ij denotes a structured additive predictor with population effects while bτi0 is an individual-
specific intercept and bτi1 is an individual-specific slope for the time-varying covariate t.

Translated to the generic predictor notation from above, the model contains two cluster-specific
components – one for the individual-specific intercepts bi0 and one for the slopes bi1 (with quantile
parameter τ dropped). For both components, zk is the ID variable defining the individuals
i = 1, . . . , N . For the individual-specific intercepts zl simply corresponds to the unit vector
whereas for the slopes, zl is defined by the time-varying variable t.

With boosting estimation the two cluster-specific components bi0 and bi1tij are separated
into two different base learners. This allows the algorithm to decide in a data-driven way
whether the individual-specific effects should enter the model in order to account for unobserved
heterogeneity.

The design matrix Zb0 for fitting individual-specific intercepts is just the design matrix of the
categorical ID variable while the design matrix Zb1 for fitting individual-specific slopes links the ID
variable to the corresponding observations of the time-varying covariate t, leading to the following
structure (with observations ordered by ij):

Zb0 =



1 0 · · · · · · 0
...

...
...

1 0 · · · · · · 0

0 1 0 · · · 0
...

...
...

...
0 1 0 · · · 0
...

...
. . .

...


Zb1 =



t11 0 · · · · · · 0
...

...
...

t1n1
0 · · · · · · 0

0 t21 0 · · · 0
...

...
...

...
0 t2n2

0 · · · 0
...

...
. . .

...


.

In order to make the estimation of a potentially large number of parameters possible, a ridge
penalization is imposed on the estimated effects bi0 and bi1. Thereby the penalty matrix is again
the (N ×N) identity matrix IN as described above. Denoting the base learner for the individual-
specific intercept bi0 with ai0 for i = 1, . . . , N , the general penalized least squares criterion from
(4.3) for fitting this base learner in iteration m simplifies to

N∑
i=1

ni∑
j=1

(u
[m]
ij − ai0)2 + λ

N∑
i=1

a2i0 ,

where the smoothing parameter λ controls the degree of shrinkage of the individual-specific
effects.
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Note that the estimation of individual-specific effects with ridge-penalized least squares base
learners is a natural concept in analogy to Gaussian random effects in additive mixed models.
The quadratic form of the penalty corresponds to the log-density of Gaussian random effects
priors from a Bayesian perspective. (This is for example clarified in Appendix A.2 of Hofner,
2011). As will be further pointed out in Section 5.3, the individual-specific effects of a STAQ
model can be interpreted in analogy to the conditional view of random effects in additive mixed
models.

4.3 Boosting parameters

For a complete specification of the boosting algorithm, the choice of the following parameters is
necessary: the starting values for the intercept and function estimates, the base learners and their
degrees of freedom df(λd), the step length ν, and the optimal stopping iteration mstop. While base
learners were treated in the preceding section, we discuss the other parameters in the present
section.

Note that the only hyperparameter that needs to be tuned within the fitting process is the optimal
number of boosting iterations. All other parameters – including the degrees of freedom of smooth
nonlinear effects – are fixed in advance.

Starting values ĥ[0]
d and η̂[0]

While it is natural to initialize all function estimates at zero, i.e., ĥ[0]
d = 0, faster convergence and

more reliable results are obtained by defining a fixed offset as a starting value for the additive
predictor η̂[0]. In the context of quantile regression an obvious choice may be the τ · 100% sample
quantile of the response variable, but our empirical experience suggests that the median is more
suitable in general.

This empirical experience can be illustrated by a small simulation example in a heteroscedastic
data setup with one covariate, see Figure 4.2 (and Section 5.1 for details on the data structure).
For quantile parameters smaller than τ = 0.5, we explored hardly any differences between the
resulting optimal mstop and linear quantile regression estimators βτ depending on the starting
values. However, for quantile parameters larger than τ = 0.5 the optimal mstop was considerably
increased when taking the τ · 100% sample quantile as starting value.

As an example, Figure 4.2 illustrates the stepwise approach of the boosting estimation to the true
conditional 90% quantile curves depending on the starting value. One can observe that it takes
more iterations until the estimation approximates the true quantile curve when beginning at the
90% sample quantile shown in the left plot of Figure 4.2. On the contrary, the right plot of Figure
4.2 displays that the estimation converges much faster when beginning at the median.

This effect is caused by asymmetric weighting of the observations by the check function during
the estimation procedure. When the slope was negative, it would be the other way around and it
would take more iterations to approach the quantile regression line for smaller values of τ . Without
additional prior knowledge, it makes therefore sense to fix the starting value at the median.
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Figure 4.2 Heteroscedastic data example with n = 200. Dashed black lines show the true conditional

quantile curves for τ = 0.9, grey solid lines illustrate the stepwise boosting fit after each 300
iterations beginning at the horizontal line. Left plot: Starting value = 90% quantile (horizontal
line); Right plot: Starting value = median (horizontal line).

Step length ν

Originally, the step-length factor ν ∈ (0, 1] was regarded as an additional tuning parameter of the
boosting algorithm and optimized in every step of the boosting algorithm (see, e.g., Friedman,
2001). Later it was established that this parameter is only of minor importance for predictive
accuracy of the estimators as long as ν is chosen “sufficiently small” (Bühlmann and Hothorn,
2007).

The step length and the optimal number of boosting iterations mstop trade off each other, with
smaller step lengths resulting in more boosting iterations and vice versa. Thus, when one of
these two parameters is fixed, an optimal choice only has to be derived for the remaining one.
Since mstop is easier to vary in practice, the step length ν is fixed at a small value, e.g., ν = 0.1, to
ensure small steps and therefore weak base learners.

As was illustrated by Figure 4.1, the stepwise increments of the estimators can be very small in
case of quantile regression when ν is set to be 0.1 due to the binary character of the gradient
residuals. This potentially results in a large number of boosting iterations. To avoid excessive
computational effort it can make sense to fix ν at a greater value than 0.1 in the context of quantile
regression, e.g., ν = 0.2 or ν = 0.4, as was done in our applications.

Note that multiplying ν with a constant c > 0 has the same impact on the estimation result as
multiplying the original loss function (and its gradient) with c. For example, the standard loss
function for median regression is the absolute value loss, i.e., L(y, η) = |y − η|, while the check
function for τ = 0.5 is exactly half of this quantity, i.e., ρ0.5(y − η) = 0.5 |y − η|. Thus, quantile
boosting with ν = 0.2 and τ = 0.5 is equivalent to boosting with the absolute value loss function
and ν = 0.1.
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Degrees of freedom df(λd)

It is important to note that in the boosting algorithm the smoothing parameters λd > 0 of the
penalized least squares base learners d = 1, . . . , D, are not treated as hyperparameters to be
optimized. This is one of the main differences of boosting to other penalized model approaches
where λ is often the major tuning parameter.

However, when specifying different degrees of freedom for different base learners one would
run the risk for a biased selection of base learners. A base learner with greater degrees of
freedom, i.e., less penalization, offers greater flexibility than a base learner with smaller degrees
of freedom, i.e., more penalization, and therefore has a greater chance to be selected by the
boosting algorithm.

To avoid this bias in the base learner selection, Kneib et al. (2009) and Hofner et al. (2011a)
suggested to fix the initial degrees of freedom df(λd) at the same (small) value for all penalized
base learners, for example at df(λd) = 1 for d = 1, . . . , D. This should ensure that the complexity
of each base learner is comparable. Since there is a direct relationship between smoothing
parameters λd and degrees of freedom df(λd) of a base learner (Bühlmann and Yu, 2003), the
smoothing parameters λd can be derived by solving the initial equation df(λd) = 1 for λd and
d = 1, . . . , D (see Hofner et al., 2011a, Lemma 1 for technical details).

Regarding the degrees of freedom of a base learner, Kneib et al. (2009) proposed to use the
standard definition from the smoothing literature. According to that, the degrees of freedom of a
penalized least squares estimator are defined as the trace of the hat matrix, i.e., df(λd) = tr(Sd),
with the hat matrix of a base learner resulting from (4.4) on page 62. Soon afterwards Hofner
et al. (2011a) deduced the alternative df(λd) = tr(2Sd − S>d Sd) and demonstrated why applying
this definition in the boosting algorithm makes more sense than using the classical one when the
aim is an unbiased selection of base learners.

Note that due to the repeated selection of a base learner, in the final model the degree of
smoothness of a penalized effect can be of higher order than the one imposed by the initial
degrees of freedom (Bühlmann and Hothorn, 2007). In addition, different degrees of smoothness
can be obtained for different functional effects as a result of different selection rates of the
corresponding base learners.

Regarding nonlinear effects based on P-splines, the degrees of freedom of a smooth nonlinear
effect cannot be made arbitrarily small – even for large smoothing parameters λd. With a
difference penalty of order δ, a δ − 1 polynomial of the nonlinear function always remains
unpenalized. For this reason, Kneib et al. (2009) suggested to decompose the nonlinear effect
into linear part and nonlinear deviation, as was described in (4.5) on page 67. By splitting the
complete effect into three base learners for intercept, linear part and nonlinear deviation, the
corresponding degrees of freedom of each part can be set to one. In this context, Hofner et al.
(2011a) advocated that the base learner of a categorical covariate should also be penalized to
one degree of freedom.
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Number of boosting iterations mstop

The number of boosting iterations mstop is the most important parameter of the boosting algorithm
since it controls variable selection and overfitting behaviour of the algorithm, including the amount
of shrinkage and smoothness of the estimators.

However, in general the danger of overfitting is relatively small for boosting algorithms when weak
base learners with small degrees of freedom and small step lengths are used (Bühlmann and
Hothorn, 2007). Stopping the boosting algorithm early enough (early stopping) is all the same
crucial to induce shrinkage of the estimators towards zero. Shrinkage is desirable since shrunken
estimates yield more accurate and stable predictions due to their reduced variance (see, e.g.,
Hastie et al., 2009). In addition, early stopping is important to employ the inherent variable
selection and model choice abilities of boosting (which we will further discuss in Section 4.4).

The optimal number of boosting iterations mstop for STAQ models can be determined by cross-
validation techniques, such as k-fold cross-validation, bootstrap or subsampling. With each of
these techniques, the data is split into two parts: a training and a test sample. Boosting estimation
is then carried out on the training sample with a very large initial number of iterations while the
empirical risk is evaluated on the test sample (out-of-bag risk ) for each boosting iteration. The
optimal mstop finally arises as the point of minimal risk of the aggregated empirical out-of-bag
risks.

To save computational effort, Mayr et al. (2012b) recently proposed a sequential and fully data-
driven approach for the search of the optimal mstop. This approach also avoids that the initial
number of boosting iterations has to be specified by the user.

4.4 Method assessment

In this section, we discuss properties of quantile boosting with respect to the method assessment
criteria from Section 3.2 and thereby compare boosting estimation for STAQ models with the other
estimation approaches presented in Chapter 3.

Flexible predictor

With boosting, a particular type of covariate effect is estimated by a particular form of the
corresponding base learner. As was shown in Section 4.2, penalized and unpenalized estimation
of a variety of different effect types is already possible, and even more possible effect types
and their corresponding base learners are described in Hofner (2011) and Kneib et al. (2009).
Altogether, all components from the STAQ predictor in (3.2) from Chapter 3.1 are completely
covered by boosting. Moreover, due to the modular structure of the boosting algorithm with base
learners addressing only one or a few covariates, it is straightforward to extend the algorithm to
further effect types, as was for example done in Hofner et al. (2011c) for effects with monotonicity
constraints.

In comparison with other estimation approaches, the combination of smooth nonlinear and
individual-specific effects in the STAQ predictor provided by quantile boosting has so far not
been possible for other distribution-free estimation approaches. In addition, standard estimation
of nonlinear effects (implemented in the R package quantreg) is usually conducted by linear
programming algorithms and yields piecewise linear functions as estimators (see Section 3.3.1).
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By using quantile boosting, the flexibility in estimating the nonlinear effects is considerably
increased since the specification of differentiability of the nonlinear effects remains part of the
model specification and is not determined by the estimation method itself.

Estimator properties and inference

Boosting with early stopping is a shrinkage method with implicit penalty. As a result, boosting
estimators will be biased for finite samples but typically the bias vanishes for increasing sample
sizes (Bühlmann and Hothorn, 2007). The number of iterations mstop can be regarded as a
smoothing parameter that controls the bias-variance trade-off (Bühlmann and Yu, 2003), and
the resulting shrinkage property of boosting estimators is beneficial with respect to prediction
accuracy.

Regarding consistency of boosting estimators, Bühlmann and Yu (2003) showed that for a L2

loss function the optimal minimax rate is achieved by component-wise boosting with smoothing
splines as base learners. Zhang and Yu (2005) studied consistency and convergence of boosting
with early stopping in general. They showed that models fitted by boosting with early stopping
attain the Bayes risk. Unfortunately, their results are not directly applicable for quantile regression
since the check function is not twice continuously differentiable with respect to η. Thus, an
approximation by means of a continuously differentiable function, as for example given by the
expectile loss function (see Section 3.5.1), would have to be applied.

Since boosting just yields point estimators, subsampling strategies, such as the bootstrap, have to
be applied to obtain standard errors of the estimators. However, this is no fundamental drawback
compared to other estimation approaches for STAQ models since most of the approaches also
rely on bootstrap to obtain standard errors.

Similar to the majority of the other estimation approaches, quantile boosting does not prevent
quantile crossing since the estimation is performed separately for different quantile parameters.

Variable selection

Boosting with early stopping is accompanied with an inherent and data-driven mechanism for
variable selection since only the best-performing covariate is updated in each boosting step.
By stopping the algorithm early, less important covariates are not updated and are therefore
effectively excluded from the final model.

For example, suppose that a large number of covariates is available in a particular application.
Then the boosting algorithm will start by picking the most influential ones first as those will allow
for a better fit to the negative gradient residuals. When the boosting algorithm is stopped after an
appropriate number of iterations, spurious non-informative covariates are likely to be not selected.

Thus, boosting combines parameter estimation and variable selection into one single model
estimation procedure. When the estimation is additionally conducted on bootstrap samples,
not only the variability of the effect estimates is assessed but also the variability of the variable
selection process itself.
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Boosting also allows for model choice when considering competing modelling possibilities. In this
context, the decomposition of a nonlinear functional effect into base learners for linear part and
nonlinear deviation is particularly important since the decision on linearity vs. nonlinearity of an
effect can be made in a fully data-driven way.

Furthermore, component-wise boosting can be applied in p >> n cases, i.e., for high-dimensional
data with more covariates than observations, since a single base learner typically relies on one
covariate only and is fitted separately from other base learners. Moreover, problems with multi-
collinearity, which in particular arise in high-dimensional data, do not have a negative effect on
the estimation accuracy.

Regarding consistency of the variable selection procedure, Bühlmann (2006) studied boosting
for linear models with simple linear models as base learners. They pointed out connections to
the Lasso and showed that boosting yields consistent estimates for high-dimensional problems.
However, there are no similar results available for additive models to the best of our knowledge.
For additive models an alternative for a formal variable selection procedure is offered by stability
selection (Meinshausen and Bühlmann, 2010) which leads to consistent variable selection and
controls of the family-wise error rate.

To sum up, boosting provides a unique framework for variable selection in STAQ models. This
can be seen as a major advantage of quantile boosting over other estimation approaches, which
in the majority of cases only poorly address variable selection issues.

Software

The R package mboost (Hothorn et al., 2010, 2012) provides an excellent implementation of the
generic functional gradient descent boosting algorithm presented in Section 4.1, and one can
choose between a large variety of different loss functions and base learners.

Quantile regression is applied when specifying the argument family=QuantReg() with the two
arguments tau for the quantile parameter and qoffset for the offset quantile. Code examples for
estimating STAQ models with mboost will be given in Chapters 6.1 and 7.1.

To our knowledge, mboost is currently the only software that allows to fit the full variety of different
effect types from the structured additive predictor. In comparison to the R package quantreg,
which has established as a standard tool for fitting linear quantile regression models, more
complex models with individual-specific and spatial effects, varying coefficient terms and a larger
number of smooth nonlinear effects can be fitted by mboost.
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4.5 Further remarks

Boosting estimation for related model classes

The generic boosting algorithm from Section 4.1 can also be used for the estimation of related
model classes that were treated in Section 3.5 of this thesis, such as Gaussian STAR models,
expectile regression and GAMLSS.

Gaussian STAR models can be fitted when inserting the L2 loss function instead of the check
function in the boosting algorithm, leading to the well-studied class of L2 boosting (Bühlmann
and Yu, 2003). Structured additive expectile regression models can be estimated by using
the expectile loss function based on weighted quadratic deviations (Sobotka and Kneib, 2012).
Both options are implemented in the R package mboost and can be realized by specifying
family=GaussReg() or family=ExpectReg(), respectively. Of course, most of the descriptions
regarding boosting parameters and properties in this chapter also apply to these alternative loss
functions.

For GAMLSS models, a boosting algorithm called gamboostLSS has recently been developed in
Mayr, Fenske, Hofner, Kneib, and Schmid (2012a) and was accompanied by an implementation in
the R package gamboostLSS (Hofner, Mayr, Fenske, and Schmid, 2011b). Boosting estimation is
in particular appealing for GAMLSS models because of its inherent variable selection properties.
Due to the potentially very large number of parameters and covariate combinations in a GAMLSS,
variable selection is of major importance in the GAMLSS framework.

GAMLSS models cannot be fitted by simply inserting an appropriate loss function in the standard
boosting algorithm since more than one distributional parameter is modelled by a structured
additive predictor. Therefore, an extension of the boosting algorithm (and the package mboost) to
the gamboostLSS algorithm (and the package gamboostLSS) was necessary.

In each iteration of the gamboostLSS algorithm, all distributional parameters are successively
updated. More precisely, for each distributional parameter the negative gradient residuals with
respect to this parameter (based on the partial derivatives) are computed while the current
estimators for the other distributional parameters are inserted as offset values. As for the standard
boosting algorithm, base learners are then fitted to the negative gradient residuals and only the
best-fitting base learner is updated for each distributional parameter. Regarding the optimal
number of stopping iterations, in some cases it makes sense to apply multi-dimensional stopping
with different stopping iterations for different distributional parameters instead of using the same
mstop for all distributional parameters (see Mayr et al., 2012a, for further details).

Finally, note that boosting can also be applied to binary regression models by using the negative
Binomial log-likelihood as loss function, corresponding to the argument family=Binomial() in the
R package mboost. Binary regression can also be regarded as a model class related to quantile
regression since it is often applied in similar practice situations in which quantile regression would
be appropriate. For example, in the context of our applications the standard approach in literature
for analyzing overweight or undernutrition is to dichotomize the continuous response variable
(BMI or Z-score, respectively) and to employ a logistic regression for this binary response. In
Chapter 6, we therefore compare our STAQ approach with structured additive logistic regression
for analyzing undernutrition of children in India.
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Simultaneous developments of boosting algorithms for quantile regression

Simultaneously to the component-wise boosting algorithm for quantile regression introduced in
Fenske et al. (2011), two more boosting procedures were published with the similar aim of
employing quantile regression.

Kriegler and Berk (2010) also combined boosting with the check function but they used regression
trees as base learners and included an additional subsampling step in each iteration of the
boosting algorithm – leading to stochastic gradient boosting. This procedure was applied
to estimate the number of homeless people in small areas in and around Los Angeles.
Since underestimation of the number of homeless was considered to be much worse than
overestimation, the quantile parameter τ was interestingly used and interpreted as the cost-ratio
between under- and overestimation of the response variable.

When large trees are used as base learners, the final model can only be described as a black
box and does not allow to quantify the partial influence of single covariates on the response, as
provided by component-wise boosting. Even though stumps as base learners, i.e., trees with
one split and two terminal nodes, would provide an interpretation on covariate level, the resulting
covariate effects are non-smooth step functions only.

Zheng (2012) also put quantile regression into the framework of component-wise boosting but
considered the algorithm rather from a machine learning point of view. Base learners were not
specified in more detail and simple linear models were taken as base learners in all applications.
Moreover, a focus was put on binary response variables and a binary classification scheme was
proposed and investigated based on quantile boosting.
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Chapter 5: Empirical evaluation of quantile
boosting

To evaluate the performance of the quantile boosting algorithm introduced in Chapter 4, we
conducted several simulation studies. The main goals of these empirical investigations were

(i) to evaluate the correctness of both the boosting algorithm and its specific implementation in
situations in which quantile regression would be appropriate,

(ii) to evaluate the variable selection and model choice properties of quantile boosting in higher-
dimensional settings,

(iii) to judge the quality of estimated quantile functions, and

(iv) to get an understanding of individual-specific effects estimated by quantile boosting with
ridge-penalized base learners.

For the first goal, we considered linear models (Section 5.1) as well as typical additive model
structures with a moderate number of nonlinear effects (Section 5.2). For the second goal we
added several nuisance covariates in the additive model settings that do not impact the response
but were still considered as candidate covariates during estimation (Section 5.2). For the third
goal, we considered a simple univariate setup and compared the estimated quantile functions
with the true underlying quantile function directly (Section 5.3). Finally, we simulated longitudinal
data settings and estimated quantile boosting with individual-specific effects (Section 5.4).

5.1 Simulation study for linear quantile regression

With the linear simulation setup we wanted to check how quantile boosting works in situations
with linear effects on the response’s quantile function. In particular, our aim was to compare
the performance of quantile boosting with the well-established estimation approach based on
linear programming (implemented in the function rq() from the R package quantreg) that can be
regarded as a “gold standard” for linear quantile regression.

Data generating process

We considered the following location-scale-model:

yi = x>i β + (x>i α) εi where εi
iid∼ Fε for i = 1, . . . , n . (5.1)

Here, the location as well as the scale of the response yi depend in linear form on a covariate
vector xi = (1, xi1, . . . , xip)

> and an error term εi with distribution function Fε not depending
on covariates. The coefficient vector β = (β1, . . . , βp)

> affects the response’s location while
α = (α1, . . . , αp)

> affects its scale. The resulting quantile function has a linear predictor structure
and can be written as

QYi(τ |xi) = x>i β + (x>i α) F−1ε (τ) = x>i (β +αF−1ε (τ)) = x>i βτ .

Hence, quantile-specific coefficients can be determined as βτ = β +αF−1ε (τ).
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Based on the linear model in (5.1), we draw 100 datasets with the following parameter
combinations:

• Homoscedastic setup: n = 200,β = (3, 1)>,α = (4, 0)>

• Heteroscedastic setup: n = 200,β = (4, 2)>,α = (4, 1)>

• Multivariable setup: n = 500,β = (5, 8,−5, 2,−2, 0, 0)>,α = (1, 0, 2, 0, 1, 0, 0)>

All required covariates were independently drawn from a continuously uniform distribution U [0, 10].
We repeated all setups for three different distributions of the error terms: a standard Gaussian
distribution N (0, 1), a t-distribution with 2 degrees of freedom t(2), and a gamma distribution
G(1, 2), where E(εi) = V(εi) = 2. Figure 5.1 visualizes data examples from the first two setups
with one covariate for Gaussian or gamma distributed error terms. Note that α = (4, 1)> leads
to a heteroscedastic data structure where the quantile curves are no longer parallel shifted as for
α = (4, 0)>.
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(a) β = (3, 1)>,α = (4, 0)>, ε ∼ N (0, 1)

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l
l

l

l

l

l

l

l

l

l

0 2 4 6 8 10

−10

0

10

20

30

40

x1

y

(b) β = (4, 2)>,α = (4, 1)>, ε ∼ N (0, 1)
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(c) β = (3, 1)>,α = (4, 0)>, ε ∼ G(1, 2)
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(d) β = (4, 2)>,α(4, 1)>, ε ∼ G(1, 2)

Figure 5.1 Data examples for linear simulation setups with n = 200 observations and one covariate
in a homoscedastic (left) or heteroscedastic (right) data structure with Gaussian (top) or
gamma (bottom) distributed error terms. Lines designate true underlying quantile curves for
τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
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Estimation

For each of the generated datasets, we estimated the parameter vector βτ for a fixed quantile grid
on τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} by quantile boosting (function glmboost() from package mboost) and
by linear programming (function rq() from package quantreg). For quantile boosting, we fixed
the step length at ν = 0.1. The optimal number of iterations mstop was determined by evaluating
the empirical risk on a test dataset with 1000 observations drawn from the respective simulation
setup and by choosing the point of minimal risk on the test data. Contrary to the additive simulation
settings in Section 5.2, we did not consider boosting trees, boosting stumps or quantile regression
forests as competitors since these do not assume a linear model and would therefore naturally
lead to a degraded fit when being compared to approaches that assume a linear model a priori.

Performance measures

In order to evaluate and to compare estimation results of the two considered algorithms, we
estimated Bias and MSE for each quantile-specific parameter (βτ0, βτ1, . . . , βτp)

> by the following
formulae:

Bias(β̂τj) =
1

100

100∑
k=1

(β̂τjk − βτj) MSE(β̂τj) =
1

100

100∑
k=1

(β̂τjk − βτj)2 , (5.2)

where k = 1, . . . , 100 indexes the simulation replication and j = 0, . . . , p the number of covariates.
Note that when the mean bias and MSE over all 100 iterations are calculated, those values can
be interpreted as Monte Carlo estimators of the true bias and MSE of the nonlinear functions. In
case of boosting, we also considered the empirical distribution of mstop.

Performance results

In the following, we will focus on a short summary of the results by just showing some
typical examples. Figure 5.2 displays boxplots for the estimated parameters (β̂τ0, β̂τ1)> in the
heteroscedastic setup with Gaussian distributed error terms. Note that estimators resulting
from linear programming (rq) are less biased but have a larger variance than those resulting
from boosting (boost). This is consistent with previously reported results and with the fact that
boosting estimators are usually shrunken towards zero. This can be traced back to the implicit
regularization property of boosting estimation as discussed in Section 4.4.
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Figure 5.2 Simulation results for heteroscedastic linear setup with one covariate and Gaussian distributed
error terms. Boxplots display the empirical distribution of the estimated parameters (β̂τ0, β̂τ1)

>

from 100 replications, depending on quantile τ and estimation algorithm (rq for linear
programming and boost for boosting). Horizontal lines designate true underlying parameters
(βτ0, βτ1)

>.
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Regarding the MSE, Table 5.1 shows estimators for setups with one covariate and gamma
distributed error terms, obtained according to (5.2). For the slope estimator β̂τ1, boosting achieves
smaller MSE estimators on almost the whole quantile grid. Concerning the intercept estimator
β̂τ0, boosting performs better in the homoscedastic setup while linear programming obtains better
results in the heteroscedastic setup.

Table 5.1 Estimated MSE criteria from 100 replications of linear simulation setups with one covariate and
gamma distributed error terms. Quantile- and parameter-specific smaller estimators are shown
in bold.

Homoscedastic setup Heteroscedastic setup
MSE(βτ0) MSE(βτ1) MSE(βτ0) MSE(βτ1)

τ rq boost rq boost rq boost rq boost

0.1 0.328 0.350 0.010 0.008 0.762 1.007 0.050 0.038
0.3 0.676 0.582 0.016 0.012 1.417 1.475 0.063 0.052
0.5 0.732 0.685 0.020 0.015 1.627 1.962 0.099 0.074
0.7 1.751 1.595 0.048 0.040 4.168 4.165 0.229 0.157
0.9 4.983 2.992 0.129 0.066 10.404 17.971 0.618 0.657

In addition, Table 5.2 shows mean mstop criteria for all setups with t-distributed error terms. The
optimal number of boosting iterations, determined by means of test data, ranges roughly between
3000 and 10000 in cases with one covariate and is considerably increased (30 000 – 70 000) for
the multivariable model with six covariates. This again shows that with small step lengths, a large
number of boosting iterations may be necessary to approximate the final quantile fit (as discussed
in Section 4.3).

Table 5.2 Mean mstop criteria from 100 replications of linear simulation setups with t-distributed error
terms.

Setup τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9

Homoscedastic 10 886 6 415 7 372 4 762 3 589
Heteroscedastic 4 183 8 935 9 133 10 039 6 387

Multivariable 68 055 43 883 40 541 42 317 30 255

We observed similar results for all other simulation setups, i.e., with more covariates or alternative
error distributions. Therefore, we conclude that quantile boosting works correctly for linear quantile
regression.
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Variable selection results

Concerning model and variable selection, we wanted to explore whether the algorithms are able
to extract the right covariates in the multivariable setup. In case of linear programming, models
for all different covariate combinations were estimated followed by a calculation of AIC values as
given in equation (3.7) on page 42. Then, the covariate combination with the smallest AIC value
was chosen. In case of boosting, we answered the following three questions: Which covariate
was not chosen at all during the boosting estimation? When was a covariate chosen for the first
time? In how many iterations was a covariate chosen?

Regarding these questions, we observed the following results: The more important a covariate
was (measured in terms of |βτ |), the earlier it was chosen for the first time and the more often it
was chosen during the estimation process, and this independent of τ . In the majority of cases,
only covariates with βτ = 0 were not chosen at all. Some problems occurred at upper quantiles
in the setup with gamma distributed error terms, but in these cases also the AIC-driven model
selection did not yield the correct model. To exemplify these results, Table 5.3 gives a summary
for Gaussian distributed error terms and quantile τ = 0.7. It can be observed that the covariates
x5 and x6 with both no influence on the response, i.e., β0.7,5 = β0.7,6 = 0, are chosen less
frequent and later than all other covariates. However, variable selection by AIC strictly excludes
non-significant covariates more often than boosting.

Table 5.3 Summary of variable selection results for τ = 0.7 from linear multivariable simulation setup with
Gaussian distributed error terms. β coefficients are quantile-specific for τ = 0.7.
MPI: Mean proportion of iterations (relating to mstop) where covariate was chosen
MFI: Mean first iteration (relating to mstop) where covariate was chosen
PEB: Proportion of simulations (relating to 100) where covariate was excluded by boosting
PEA: Proportion of simulations (relating to 100) where covariate was excluded in model with
smallest AIC (based on linear programming estimation).

Int. x1 x2 x3 x4 x5 x6

β0 = 5.5 β1 = 8.0 β2 = −4.0 β3 = 2.0 β4 = −1.5 β5 = 0 β6 = 0

boost MPI 0.284 0.266 0.134 0.170 0.084 0.036 0.035
MFI 0.323 0.000 0.027 0.191 0.129 0.430 0.428
PEB 0 0 0 0 0 0.11 0.16

rq PEA 0 0 0 0 0 0.67 0.79

To sum up, boosting provides useful support in the variable selection process even though there
are currently no explicit “hard” criteria available to assess variable importance. Particularly in
cases with numerous covariates, boosting has the advantage that it yields information on variable
selection within the estimation process, whereas the use of AIC requires multiple model fits.
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5.2 Simulation study for additive quantile regression

The contents of this section are mainly based on the empirical evaluation results presented in
Section 3 of Fenske, Kneib, and Hothorn (2011).

Data generating process

For the additive simulation settings, we considered the following model:

yi = β0 + f1(zi1) + . . .+ fq(ziq) + [α0 + g1(zi1) + . . .+ gq(ziq)] εi where εi
iid∼ Fε . (5.3)

Here, the location and the scale of the response yi can depend in nonlinear form on covariates
zi1, . . . , ziq and an error term εi with distribution function Fε not depending on covariates.
Choosing all fj and gj as linear functions yields the linear model which was addressed in
Section 5.1. If functions fj and gj are zero, the associated covariates have no influence on the
response. The resulting quantile function has a nonlinear predictor structure and can be written
as

QYi(τ |zi) = β0 + f1(zi1) + . . .+ fq(ziq) + F−1ε (τ)[α0 + g1(zi1) + . . .+ gq(ziq)] . (5.4)

Based on the additive model in (5.3), we considered two univariable setups

q = 1 β0 f1(zi1) α0 g1(zi1)

sin-setup: 2 1.5 sin(2
3zi1) 0.5 1.5z2i1

log-setup: 2 1.5 log(zi1 + 1.05) 1.0 0.7zi1

and a multivariable setup with q = 6:

β0 f1(zi1) f2(zi2) f3(zi3) f4(zi4) f5(zi5) f6(zi6)

2 1.5 sin(2
3zi1) 1.5 log(zi2 + 1.05) 2zi3 −2zi4 0 0

α0 g1(zi1) g2(zi2) g3(zi3) g4(zi4) g5(zi5) g6(zi6)

0.5 0.5z2i1 0.5zi2 0.5zi3 0 0 0

In the multivariable setup, two covariates (z1 and z2) relate nonlinearly to the response, two
covariates (z3 and z4) have a linear influence on it, and the last two (z5 and z6) have no influence
at all.

For generating datasets based on these variable setups, covariates zi were drawn from a uniform
distribution U [0, 1] with a Toeplitz-structured covariance matrix, leading to Cov(zik, zil) = ρ|k−l| for
possible correlation coefficients ρ ∈ {0, 0.2, 0.5, 0.8}. Similar to the linear model simulations, we
repeated each setup for different distributions of the error term: a standard Gaussian N (0, 1),
a t distribution with two degrees of freedom t(2), and a gamma distribution G(1, 2), where
E(εi) = V(εi) = 2. Figure 5.3 shows data examples from sin- and log-setups for Gaussian
and gamma distributed error terms.
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Figure 5.3 Data examples for nonlinear simulation setups with n = 400 observations (grey points) and
one covariate in the sin-setup (left) or log-setup (right) with standard Gaussian distributed (top)
or gamma distributed (bottom) error terms. Lines designate true underlying quantile curves for
τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

For each parameter combination consisting of a specific variable setup, correlation coefficient,
and error distribution, we generated three independent datasets: A validation dataset consisting
of 200 observations to select optimal tuning parameters, a training dataset with 400 observations
for model estimation, and a test dataset with 1000 observations to evaluate the performance of
each algorithm.

Estimation

We estimated additive quantile regression models for each parameter setup with potential
nonlinear effects for all covariates on a fixed quantile grid with τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. We
used five different estimation algorithms: additive quantile boosting (gamboost), total variation
regularization (rqss, Koenker et al., 1994), boosting with stump base learners (stumps, Kriegler
and Berk, 2010), boosting with higher-order tree base learners (trees, Kriegler and Berk, 2010),
and quantile regression forests (rqforest, Meinshausen, 2006). In the case of gamboost, we
used cubic-penalized spline base learners with a second-order difference penalty, 20 inner knots,
five degrees of freedom, and fixed the step length at ν = 0.1. The validation dataset was used to
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determine the optimal number of iterations mstop for all boosting algorithms as well as covariate-
specific smoothing parameters λ1, . . . , λq, as given in (3.5) on page 40 in the case of rqss.

Performance measures

To evaluate the performance results, data generation and estimation was repeated 100 times for
each parameter setup and quantile. As performance criteria, we considered empirical risk, bias,
and mean-squared error (MSE). We defined the quantile- and iteration-specific empirical risk as

Risk(τ, k) =
1

1000

1000∑
i=1

ρτ (yi − ŷτki) for k = 1, . . . , 100 ,

where yi stands for the response of observation i on the test dataset and ŷτki denotes the
estimated response value at quantile τ for iteration k and observation i. Analogously, quantile-
and iteration-specific bias and MSE were estimated as

Bias(τ, k) =
1

1000

1000∑
i=1

(ŷτki − yτi) MSE(τ, k) =
1

1000

1000∑
i=1

(ŷτki − yτi)2 ,

with yτi denoting the true underlying τ -th quantile of the response of observation i which can be
calculated according to (5.4).

Performance results

To illustrate the results for univariate setups, Figure 5.4 exemplarily displays estimated quantile
curves for the sin-setup with standard Gaussian distributed error terms. Visual inspection reveals
hardly any differences between the smooth curves obtained by gamboost and the piecewise linear
curves from rqss. This result is also confirmed when the respective performance criteria are
compared.
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Figure 5.4 One example for resulting estimated quantile curves for the sin-setup with standard Gaussian
distributed error terms. Plot (a) displays curves obtained from gamboost whereas plot (b)
displays curves obtained from rqss. True underlying quantile curves are shown in the upper
left plot in Figure 5.3.
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We show representative results for the multivariable setup with gamma-distributed error terms and
a correlation coefficient of ρ = 0.5. Other multivariable setups lead to similar results, which can
be viewed in eSupplement A of Fenske et al. (2011). Figure 5.5 shows quantile- and algorithm-
specific empirical distributions of the resulting performance criteria while Table 5.4 displays the
respective means.
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Figure 5.5 Simulation results for the multivariable setup with gamma distributed error terms and a
correlation coefficient of 0.5. Boxplots display the empirical distribution of the performance
criteria from 100 replications, depending on quantile τ and estimation algorithm.

In comparison with other algorithms, rqss and gamboost show the best performance results. rqss
achieves lowest empirical risk and MSE values whereas gamboost attains the smallest bias for all
quantiles. However, the differences between rqss and gamboost results seem to be rather slight.
The clear superiority of both algorithms in comparison with the others can be explained by the
specific design of our simulation study. The underlying data structure of our setup corresponds
to an additive model without interaction effects which is also assumed for quantile regression
estimation with rqss and gamboost. Therefore, it is hardly surprising that these methods perform
better than stumps, trees, and rqforest which in turn work as black boxes and do not assume
any specific predictor structure.

In summary, our boosting approach performed on par with the well-established total variation
regularization algorithm and clearly outperformed tree-based approaches.
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Table 5.4 Mean estimated performance criteria from 100 replications from the multivariable setup with
gamma distributed error terms and a correlation coefficient of 0.5. Quantile-specific smallest
values are printed in bold.

Quantile
Criterion Algorithm 0.1 0.3 0.5 0.7 0.9

rqss 0.120 0.281 0.366 0.363 0.222
gamboost 0.122 0.283 0.368 0.366 0.228

Risk stumps 0.183 0.360 0.454 0.453 0.311
trees 0.216 0.391 0.477 0.478 0.320
rqforest 0.223 0.422 0.513 0.499 0.303

0.1 0.3 0.5 0.7 0.9

rqss 0.030 0.027 0.040 0.072 0.229
gamboost 0.040 0.039 0.053 0.090 0.306

MSE stumps 0.586 0.330 0.413 0.698 2.707
trees 0.879 0.538 0.552 0.927 2.811
rqforest 1.961 0.720 0.703 1.159 2.782

0.1 0.3 0.5 0.7 0.9

rqss -0.012 0.010 0.012 0.007 0.025
gamboost 0.010 0.009 0.003 -0.003 0.002

Bias stumps -0.355 -0.072 0.000 0.078 0.506
trees -0.275 -0.070 0.013 0.054 0.226
rqforest -1.162 -0.361 0.064 0.429 0.953

Variable selection results

To investigate the performance of the algorithms in higher-dimensional setups, we generated data
from a setup with the first four covariate effects being similar to the multivariable setup, but with
higher numbers of non-informative covariates, i.e., fk(zik) = gk(zik) ≡ 0 for k = 5, . . . ,K. We
considered the three cases K ∈ {6, 16, 20} since the estimation with rqss was not possible with
more than 20 non-informative covariates.

To exemplify the results, Figure 5.6 displays boxplots of the performance criteria for the higher-
dimensional setup with K = 20 non-informative covariates, gamma distributed error terms and a
correlation coefficient of ρ = 0.5. We focus on the three algorithms rqss, gamboost and stumps

since their results can be interpreted with regard to variable selection – contrary to tree-based
approaches just yielding black boxes.

The results show that gamboost outperforms rqss with regard to risk and MSE. The risk difference
between gamboost and rqss is rated as significant at the 5% level by a linear mixed model with risk
as response variable, fixed covariate effects for quantile and algorithm, and a random intercept
for the datasets 1, . . . , 100. Regarding also the results for K = 6 and K = 16 in the same setup,
we could observe that absolute risk and MSE differences increase with an increasing number of
non-informative covariates.
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Figure 5.6 Simulation results for the higher-dimensional setup with K = 20 non-informative covariates,
gamma distributed error terms and a correlation coefficient of 0.5. Boxplots display empirical
distributions of the performance criteria from 100 replications, depending on quantile τ and
three estimation algorithms.

According to previously published results on boosting estimation in high-dimensional setups
(see Bühlmann and Yu, 2003; Bühlmann, 2006; Bühlmann and Hothorn, 2007, among others),
we expect the advantages of gamboost over rqss to be even more pronounced if more non-
informative covariates are included in the data. However, studying this setup further was rendered
impossible since the current implementation of rqss could not be used to fit models with more than
25 covariates.

For boosting based algorithms, i.e., gamboost and stumps, we explored the variable selection
results in more detail. Regarding the same higher-dimensional setup as above, Figure 5.7
shows for each base learner the empirical distribution of the first selection iteration relative to
the optimized mstop from 100 simulation replications. In the same way, Figure 5.8 visualizes
the proportion of iterations in which a base learner was selected. Base learners of non-
informative covariates z5, . . . , z24 are compressed in one category. The figures illustrate that for
both algorithms and independent of τ , non-informative covariates are selected less frequent and
later for the first time during the estimation process than informative covariates z1, . . . , z4. These
results further substantiate the advantages of boosting with regard to variable selection in high-
dimensional setups.
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Figure 5.7 Simulation results for the higher-dimensional setup with K = 20 non-informative covariates,
gamma distributed errors and a correlation coefficient of 0.5. Boxplots display for each base
learner z1, . . . , z24 the empirical distribution of the first selection iteration relative to the
optimized mstop from 100 simulation replications, depending on τ and estimation algorithm.
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Figure 5.8 Simulation results for the higher-dimensional setup with K = 20 non-informative covariates,
gamma distributed errors and a correlation coefficient of 0.5. Boxplots display for each base
learner z1, . . . , z24 the empirical distribution of the proportion of selection iterations relative to
the optimized mstop from 100 simulation replications, depending on τ and estimation algorithm.
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5.3 Comparing estimated quantile functions

As an alternative way to evaluate the performance of quantile boosting, we now focus on
comparing estimated quantile functions with the true quantile function directly, instead of
comparing the out-of-sample empirical risks as in Section 5.2.

Data generating process

For one single covariate Z ∼ U(0, 1) we sampled response values from the conditional distribution

Y |Z = z ∼ BCPE(µ = sin(2πz) + 3, σ = exp(z2 + 0.1), ν = 3z, ϕ = exp(3z + 2)) , (5.5)

where BCPE refers to a Box-Cox power exponential distribution (Rigby and Stasinopoulos, 2004).
In this distribution, µ controls the median, σ the coefficient of variation, ν the skewness, and ϕ the
kurtosis of the response’s distribution. Thus, the first four moments of the response variable vary
with covariate Z in a smooth nonlinear way, and the corresponding conditional density is depicted
in Figure 5.9.

0.2

0.4

0.6

0.8

1

2

3

4

5

6

0.0

0.2

0.4

0.6

0.8

z
y

d

Density Y | Z = z

Figure 5.9 Conditional density of Y |Z = z ∼ BCPE(µ, σ, ν, ϕ) with parameters according to (5.5).

Estimation

Based on a training sample containing n = 200 observations and one additional test sample
with n = 100 observations, we estimated univariate additive quantile regression models with the
covariate z, both based on rqss and gamboost with appropriate hyperparameter tuning.
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Performance measures

For each of 100 simulated datasets, we compared the estimated quantile functions Q̂Y (τ |z) =

f̂τ (z) for gamboost and rqss with the true quantile function QY (τ |z) = fτ (z) obtained from the
BCPE distribution for τ ∈ {0.90, 0.91, . . . , 0.99} and 100 equidistant z values on the grid [0.1, 0.9]

(see (3.13) on page 57 for the exact formula). To compare estimated and true quantile functions
we calculated the sum of the absolute differences∑

τ

∑
z

|f̂τ (z)− fτ (z)| ,

which corresponds to the sum of absolute deviations from the bisecting line in a quantile-quantile
plot.

Performance results

Figure 5.10 shows that the quantile functions estimated by gamboost approximate the true quantile
function better than rqss. Of course, this can be attributed to the ability of gamboost to adapt to
the smoothness of the nonlinear effects. In contrast, rqss has to approximate a smooth curve by
piecewise linear splines. The nature of this phenomenon is illustrated in Figure 5.11 showing the
true and estimated quantile functions.
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Figure 5.10 Empirical distribution of the sum of absolute deviations between estimated (by gamboost and
rqss) and true quantile function obtained from simulation model (5.5) over a grid of quantile
values τ and covariate values z based on 100 simulation replications.
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Figure 5.11 Example of true and estimated quantile functions for grids of τ and z values based on the
simulation model (5.5). gamboost captures the true quantile function better than rqss.
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5.4 Quantile boosting for individual-specific effects

The aim of the present section is to get a basic understanding of cluster-specific effects estimated
by quantile boosting with ridge-penalized base learners (as described in Section 4.2). We are
mainly interested in the interpretation and the shrinkage character of these cluster-specific effects
and do not evaluate the performance in comparison with other estimation approaches here. In
our obesity application with longitudinal data the clusters will correspond to individuals.

Simulation example

We conducted a small simulation example with the simplest case of longitudinal data to illustrate
the interpretation of quantile- and individual-specific effects. We simulated longitudinal data from
the model yij = β0 + bi + εij with i = 1, . . . , 10, individuals and j = 1, . . . , 10, observations
per individual, where bi ∼ N (0, 4) and εij ∼ N (0, 1) were independently drawn from Gaussian
distributions with different variances. Then, we fitted two STAQ models by quantile boosting for
τ = 0.50 and τ = 0.75, containing only one base learner for the individual-specific intercepts bτi.
The estimated population intercept β̂τ0 could then be obtained as sum of the offset and of the
mean of the individual-specific intercepts.

Figure 5.12 shows the results for the median in panel (a) and the results for the 75% quantile in
panel (b). It can be observed that the estimated individual-specific intercepts differ for different
quantiles. Also, the sums of the estimated population effects and individual-specific intercepts are
almost equal to the respective individual-specific empirical quantiles given by the boxplots.
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Figure 5.12 Boxplots display empirical distributions of simulated data for 10 individuals with 10
observations each. (a) Results from an STAQ model for τ = 0.50 containing only a
population intercept and individual-specific intercepts. (b) Results from a similar STAQ model
for τ = 0.75. Dotted horizontal lines correspond to estimated intercepts βτ0, whereas
individual vertical arrows stand for estimated individual-specific intercepts as deviations from
the population intercept.
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Conclusions from Figure 5.12

This simplified example shows that the individual-specific effects of the STAQ model for
longitudinal data can be interpreted in accordance with the conditional view on random effects
in additive mixed models: Similar to individual-specific conditional means scattering around the
population mean in additive mixed models, individual-specific conditional τ ·100% quantiles scatter
symmetrically around the expected individual-specific conditional τ · 100% quantile (which is the
population intercept βτ0) in STAQ models. The Gaussian scattering character of the individual-
specific quantile effects can be attributed to the quadratic form of the penalty term which from a
Bayesian perspective correspond to the log-density of Gaussian random effects priors.

Extensions of the model to covariates and individual-specific slopes would not change this
interpretation of individual-specific effects. Similar to the intercepts, individual-specific slopes
would scatter in a Gaussian way around the quantile-specific population slope for a given quantile
parameter τ . The inclusion of covariates would just change the population part of the predictor
which – in our very simple model – only consists of the population intercept β0.

The illustration in Figure 5.12 additionally points out that the interpretation of population effects
estimated by quantile regression is conditional on individual-specific effects. This corresponds to
the conditional interpretation of additive mixed models with the conditional quantile function (3.12)
presented on page 55 in Section 3.5.2.

Furthermore, we sampled the data with an individual-specific location shift on the response
distribution only. However, Figure 5.12 shows that the individual-specific empirical distributions
slightly differ regarding their variation. Boosting estimation can account for these individual-
specific distributional shapes by estimating different individual-specific effects for different
quantiles. One can imagine that these quantile- and individual-specific effects would make
even more sense in situations with individual-specific scale or skewness shifts of the response
distribution that cannot be explained by further covariates.

Boosting details for individual-specific effects

Even though the above simulation example might seem to oversimplify the situation at first glance,
recall that a base learner to fit individual-specific components is exactly based on such a simple
model. The effects are estimated by ridge-penalized least squares with the binary negative
gradient residuals as response.

If extreme quantile parameters are of interest, one can imagine that a large number of
observations per individual is needed to estimate individual-specific quantiles. With, for example,
five observations per individual, it is hard for the algorithm to differentiate between the 80-100%
quantiles.

With the R package mboost (Hothorn et al., 2012), the model for the 75% quantile can be
estimated by the following call:

model75 <- gamboost(y ~ brandom(id, df = 4), family=QuantReg(tau=0.75),

control=boost_control(nu=0.1, mstop=1000))

The base learner function for the individual-specific effect is called brandom() with the default of
four degrees of freedom df = 4. The name brandom() for this base learner should underline
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the similarities to fitting random effects in classical mixed models for longitudinal data. However,
the name is probably slightly misleading since the estimated effects can rather be interpreted as
individual-specific shrunken fixed effects than as being random.

To illustrate the shrinkage character of the individual-specific effects estimated by boosting, we
carried out the same simulation example as above for the 10% quantile with 10 individuals and
10 observations each. Figure 5.13 shows the resulting paths of estimated individual-specific
quantiles depending on the number of boosting iterations. It can be observed that the estimated
individual-specific quantiles approach the empirical individual-specific quantiles with increasing
number of iterations. Stopping the algorithm somewhere before iteration 200 would lead to
shrunken estimators.
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Figure 5.13 Paths of estimated individual-specific 10% quantiles (black solid lines) over 1000 boosting
iterations. Dashed grey lines show the empirical individual-specific 10% quantiles.

Figure 5.13 also displays that the paths of several individuals are exactly similar during the
first iterations. This clustering is typical for effects estimated by ridge penalization and can be
attributed to the grouping property of the ridge estimator (see, for example, Zou and Hastie, 2005).
We observed more extreme grouping effects in our obesity application with many children and
the quantile parameters 0.90 and 0.97. There, some children had the same individual-specific
intercepts during a large number of successive iterations.
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Chapter 6: Quantile boosting for child undernutri-
tion in India

In this chapter, we describe our quantile boosting analysis to investigate determinants of child
undernutrition in India. Background and dataset of this application were introduced in Section 2.1,
while the following contents are mainly based on the manuscript Fenske, Burns, Hothorn, and
Rehfuess (2012a); we present additional results here.

6.1 Setup of the analysis

As described in Section 2.1, the main objective of our first application was a comprehensive
analysis of the multiple determinants of child stunting based on a large-scale cross-sectional
dataset from India. To capture the multi-factorial nature of child stunting, we developed a
schematic diagram prior to the analysis in which the various potential risk factors were structured
(see Figure 2.1, page 19). This diagram served as a basis for selecting appropriate covariates
from the dataset (shown in Table 2.1, page 24).

To assess the impact of the resulting large number of stunting determinants on quantiles of the
Z-score, we used the following structured additive predictor:

QYi(τ |·) = ητi = βτ0 + βτ1xi1 + . . .+ βτpxip

+ fτ0(agei) + fτ1(zi1) + . . .+ fτq(ziq)

+ vi1 · gτ,1(agei) + . . .+ vir · gτ,r(agei)

+ fτ,spat(ui) .

Thus, for a fixed quantile parameter τ and observation i = 1, . . . , n, the additive predictor ητi
models the conditional quantile function QYi(τ |·) of the response variable Yi, being the height-for-
age Z-score in our analysis. Note that this predictor is written in accordance with example 1 for
the generic structured additive predictor on page 37.

The quantile-specific flexible additive predictor ητi comprises linear effects βτ0, . . . , βτp for
categorical covariates x1, . . . , xp, and smooth (potentially) nonlinear functions fτ0, . . . , fτq for
age and further continuous covariates z1, . . . , zq. Also specified are (potentially) nonlinear age-
varying effects gτ,1, . . . , gτ,r for different levels of the feeding variables v1, . . . , vr, allowing meaning
and effect of breastfeeding and complementary feeding to vary with age (according to WHO
recommendations; Habicht, 2004). For the categorical variable u, corresponding to 29 Indian
states, a discrete spatial effect fτ,spat is estimated to account for spatial autocorrelation and
unobserved heterogeneity.

We specified four different values for the quantile parameter, namely τ ∈ {0.05, 0.15, 0.35, 0.50}.
The two values τ = 0.15 and τ = 0.35 were chosen based on the empirical frequencies for
stunting (37%) and severe stunting (17%) in our dataset (see Table 2.1) since this choice allows
results to be compared across quantile and binary regression models. The value τ = 0.05 was
chosen in order to provide a complete picture of covariate effects on the lower tail of the response
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distribution. Furthermore, the median (τ = 0.50) allows for a comparison of our results to those
from previous mean regression analyses (Kandala et al., 2001, 2009).

Model estimation was undertaken separately for each τ using quantile boosting. More precisely,
the above model was realized by the following (shortened) model call for the estimation in R:

library(mboost)

boostform <- stunting ~ bols(intercept, intercept=FALSE) +

bols(csex, df=1) + bols(ctwin, df=1) +

... +

bols(cagec, intercept=FALSE) + bbs(cagec, center=TRUE, df=1) +

bols(mbmic, intercept=FALSE) + bbs(mbmic, center=TRUE, df=1) +

... +

bmrf(region, bnd=neighbourMat, df=1, center=TRUE) +

... +

bols(cagecbreastcf, intercept=FALSE) +

bbs(cagecbreastcf, center=TRUE, df=1) +

bols(cagecbreastex, intercept=FALSE) +

bbs(cagecbreastex, center=TRUE, df=1) +

...

boostmodel <- gamboost(boostform, data = india, family = QuantReg(tau = 0.35),

control = boost_control(mstop = 10000, nu=0.2, trace = TRUE))

Thus, we used the function gamboost from package mboost (Hothorn et al., 2012) with option
family=QuantReg() to estimate separate quantile regression models for four different quantile
parameters. As can be seen from the above model call, we defined separate base learners for all
covariates as well as a base learner for the intercept. For categorical covariates, such as child sex
and twin, base learners were specified using the function bols(). Continuous covariates, as for
example child age and maternal BMI, were mean-centered before the analysis and split into two
base learners: bols() with the option intercept = FALSE for the linear part and bbs() with the
option center = TRUE for the nonlinear deviation. The smooth spatial effect for the region was
estimated by the base learner bmrf(), which required a suitable matrix for the neighbourhood
structure. The age-varying effects of feeding variables were estimated separately for each level of
the categorical feeding variables. Similar to the smooth nonlinear effects of continuous covariates,
two separate base learners bols() and bbs() were specified for each age-varying effect. This
decomposition allowed for data-driven decision on linearity vs. nonlinearity of the effects. To
make the complexity of the base learners comparable, we set the degrees of freedom of each
base learner to one, i.e., df(λd) = 1.

Regarding further parameters of the boosting algorithm, we determined the optimal number of
iterations by five-fold cross-validation (code not shown) and set the step length to ν = 0.2. Model
estimation was then repeated on 100 bootstrap samples of the dataset to calculate (1 − α)%

bootstrap confidence intervals [q̂j,α/2, q̂j,1−α/2] for the estimators of categorical covariates, where
q̂j,α/2 denotes the estimated α/2 · 100% quantile of β̂τj with j = 1, . . . , p.

We additionally applied a stability selection procedure to allow for formal variable selection
(Meinshausen and Bühlmann, 2010) and to support the inherent variable selection property
provided by boosting. The idea of this procedure is to control the family-wise error rate, which
corresponds to the α or type I error for multiple testing and denotes the probability that at least
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one null hypothesis is classified as false negative. In our analysis, we chose a family-wise error
rate of 5% and an average number of 15 terms to be expected in a model.

As mentioned in Section 2.1, logistic regression for binarized versions of the height-for-age Z-
score is the most commonly used approach in literature to analyze determinants of child stunting.
In order to compare the results of our innovative quantile regression approach with this standard
approach, we additionally conducted two logistic regression analyses for the binary variables
stunting and severe stunting (see Section 2.1 for details on their construction). In these logistic
regression models, we used exactly the same structured additive predictor as in the quantile
regression analyses. Estimation was based on boosting with the negative Binomial log-likelihood
as loss function. In the R package mboost, this could be realized by specifying the argument
family=Binomial() with the logit link as default.

Note that we did not use other estimation approaches for quantile regression than boosting in our
analysis since both our empirical evaluations and preliminary analyses of child stunting in India
(see Fenske et al., 2011) showed that quantile boosting outperforms other estimation approaches
for STAQ regression in the present application context.

6.2 Results

Results for the 35% Z-score quantile

First, we thoroughly describe the results of quantile regression for the 35% Z-score quantile. All
findings on effects of single variables that are described in the following are fully adjusted for other
variables.

Table 6.1 presents the effects for categorical covariates and their 95% bootstrap confidence
intervals, and summarizes the shape of the estimated functions for continuous variables. An
effect of a categorical covariate is rated as ‘significant’ (and therefore printed in bold) if the 95%
bootstrap confidence interval does not contain zero.

Based on this criterion, one can observe that except for indoor air pollution, at least one variable
in each of the assessed groups of determinants shows a statistically significant association with
the 35% Z-score quantile. Furthermore, the following categorical covariates have at least one
significant category compared with the reference category: child sex, household wealth, caste of
household head, mother is currently working, child is twin, sanitation facility, vaccination index,
vitamin A and iodine. Regarding the interpretation of these effects, for example, the 35% Z-score
quantile for children from the richest households is significantly increased by 0.224 compared to
children from the poorest households (given all other covariates are equal). Being a twin has a
very large significant negative effect of -0.866 which is remarkable as only 1.1% (n=139) of the
children in the dataset are twins or multiple births (see Table 2.1). Religion of household head,
partner’s occupation, sex of household head, urban/rural location, drinking water source, type of
cooking fuel, and iron supplementation do not show an effect.
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Table 6.1 Estimated effects and 95% bootstrap confidence intervals of quantile boosting models for
τ = 0.35 (columns in grey) and τ = 0.15; see Figures 6.1 and 6.2 for detailed results of
continuous covariates. Significant effects are shown in bold.

 

Variable 

  

 

Values / Description 

 

Quantile regression for 
35% quantile 

Quantile regression for 
15% quantile 

β0.35 95% CI(β0.35 ) β0.15 95% CI(β0.15 ) 

      

Non-modifiable factors      

Child age [months]  ~ Linear, negative ~ Linear, negative 

Child sex Male - - - - 

 Female 0.166 [0.103, 0.234] 0.209 [0.130, 0.285] 

      

Maternal characteristics      

Maternal age [years]  Nonlinear, inverse U Nonlinear, inverse U 

Maternal BMI [kg/m
2
]  Nonlinear, positive Nonlinear, positive 

      

Household characteristics      

Household wealth Poorest - - - - 

 Poorer 0.025 [-0.077, 0.110] 0.035 [-0.041, 0.129] 

 Middle 0.058 [-0.014, 0.161] 0.001 [-0.067, 0.079] 

 Richer 0.089 [-0.016, 0.205] 0.075 [-0.014, 0.207} 

 Richest 0.224 [0.069, 0.383] 0.214 [0.060, 0.367] 

Religion of household head Hindu - - - - 

 Muslim 0.003 [-0.064, 0.086] 0.003 [-0.075, 0.101] 

 Christian 0.034 [-0.023, 0.139] 0.089 [-0.001, 0.222] 

 Sikh 0.021 [-0.009, 0.116] 0.068 [-0.001, 0.180] 

 (Neo-)Buddhist 0.000 [-0.032, 0.034] -0.006 [-0.085, 0.066] 

 Other -0.006 [-0.064, 0.028] -0.030 [-0.132, 0.028] 

Caste/tribe of household head Scheduled caste - - - - 

 Scheduled tribe 0.088 [0.005, 0.224] 0.037 [-0.060, 0.156] 

 Other backward class 0.112 [0.034, 0.214] 0.115 [0.011, 0.213] 

 None of them 0.165 [0.062, 0.294] 0.167 [0.049, 0.302] 

Maternal education [years]  ~ Linear, positive ~ Linear, positive 

Partner’s education [years]  ~ Linear, positive ~ Linear, positive 

Partner’s occupation Services - - - - 

 Household & domestic 0.035 [-0.021, 0.132] 0.055 [-0.002, 0.179] 

 Agriculture 0.028 [-0.031, 0.104] 0.042 [-0.015, 0.136] 

 Clerical 0.013 [-0.039, 0.079] 0.005 [-0.059, 0.077] 

 Prof./ Tech./ Manag. 0.037 [-0.015, 0.132] -0.011 [-0.105, 0.069] 

 Did not work  0.009 [-0.062, 0.082] -0.009 [-0.092, 0.049] 

Mother is currently working No - - - - 

 Yes -0.078 [-0.152, -0.001] -0.044 [-0.122, 0.018] 

Sex of household head Male - - - - 

 Female 0.029 [-0.033, 0.124] 0.023 [-0.037, 0.113] 

Regional characteristics      

State of residence  Spatial,  
see Figures 6.3 and 6.4 

Spatial 

Urban/rural location Urban - - - - 

 Rural -0.002 [-0.074, 0.071] 0.025 [-0.076, 0.113] 

      

Household food competition      

Number of household members   Nonlinear, inverse U Nonlinear, inverse U 

Birth order  Nonlinear, negative Nonlinear, negative 

Preceding birth interval [months]  Nonlinear, positive Nonlinear, positive 

Child is twin or multiple birth No - - - - 

 Yes -0.866 [-1.107, -0.456] -0.890 [-1.173, -0.497] 
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Variable 

  

 

Values / Description 

 

Quantile regression for 
35% quantile 

Quantile regression for 
15% quantile 

β0.35 95% CI(β0.35 ) β0.15 95% CI(β0.15 ) 

      

Water, sanitation and hygiene      

Drinking water in household Unimproved - - - - 

 Improved -0.026 [-0.093, 0.015] -0.004 [-0.056, 0.051] 

 Piped -0.007 [-0.078, 0.026] 0.003 [-0.036, 0.043] 

Sanitation facility in household Unimproved - - - - 

 Improved 0.092 [0.041, 0.159] 0.114 [0.031, 0.227] 

      

Indoor air pollution      

Type of cooking fuel Straw/ crop /animal dung  - - - - 

 Coal/ charcoal/ wood -0.040 [-0.090, 0.015] -0.031 [-0.105, 0.027] 

 Kerosene -0.020 [-0.081, 0.007] -0.056 [-0.164, -0.001] 

 Gas/ electricity 0.055 [-0.009, 0.170] 0.076 [0.001, 0.179] 

      

Curative and preventive healthcare      

Vaccination index None (0) - - - - 

 Low (1-3) -0.015 [-0.079, 0.033] 0.010 [-0.053, 0.073] 

 Medium (4-6) -0.026 [-0.081, 0.043] -0.031 [-0.100, 0.033] 

 High (7-9) 0.062 [0.004, 0.137] 0.080 [0.007, 0.175] 

Number of antenatal visits 
during pregnancy 

 Nonlinear, inverse U Nonlinear, inverse U 

      

Breastfeeding practices      

Breastfeeding No breastfeeding - - - - 

 Breastfeeding + 
complementary feeding 

Nonlinear,  
negative by age 

Nonlinear, 
negative by age 

 Exclusive breastfeeding Nonlinear,  
negative by age 

Nonlinear,  
negative by age 

      

Complementary feeding practices      

Food diversity  

(Number of food groups  

consumed during last 24 hours  

aside from breast milk) 

Low (0-2) - - - - 

Medium (3-4) Constant, positive by age Constant, positive by age 

High (5-8) ~ Linear, positive by age ~ Linear, positive by age 

     

Meal frequency 

(Number of meals consumed  

during last 24 hours 

aside from breast milk) 

Low (0-1) - - - - 

Medium (2-3) Constant, zero by age Constant, zero by age 

High (4-9) ~ Linear, positive by age ~ Linear, positive by age 

     

      

Micronutrient deficiencies      

Child received iron No - - - - 

 Yes -0.025 [-0.123, 0.045] -0.049 [-0.168, 0.035] 

Child received vitamin A No - - - - 

 Yes 0.076 [0.005, 0.140] 0.046 [0.000, 0.121] 

Iodine-in-salt test result No iodine - - - - 

 Less than 15 parts per 
million 

-0.035 [-0.093, 0.058] -0.063 [-0.134, 0.014] 

 15 parts per million or 
more 

0.097 [0.037, 0.164] 0.095 [0.036, 0.162] 
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Figure 6.1 shows the effects of continuous covariates on the 35% Z-score quantile estimated
from the full model and 100 bootstrap iterations. An effect of a continuous covariate is rated
as “significant” (and printed in bold in Table 6.1) when the effects are non-zero in all bootstrap
samples for at least one interval within the range of the respective covariate. This definition
of “significance” is certainly more conservative than considering pointwise bootstrap confidence
intervals. However, we prefer the direct visual inspection of the bootstrap estimation results since
we think that this best keeps in mind the basis for the decision on significance.

Therefore, with the exception of number of household members, all continuous variables show
non-zero effects in all bootstrap samples. Child age shows the largest absolute effect size: the
35% Z-score quantile decreases by almost two units from birth until the age of 24 months.

Figure 6.1 Linear or smooth nonlinear effects of continuous covariates from quantile boosting with
τ = 0.35 for the full model (black line) and 100 bootstrap iterations (grey lines).
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Nonlinear functions are estimated for maternal age and BMI, birth order, preceding birth interval
and the number of antenatal visits. The effect of maternal age increases linearly until 30 years,
then remains constant and gradually decreases from 45 years. With greater maternal BMI the
35% Z-score quantile increases monotonically, with the slope reducing at 25 kg/m2. Birth order
shows a linearly decreasing effect until the 6th child and then remains approximately constant,
while lengthening the interval between births is associated with increased 35% Z-score quantiles
up until 100 months. The effect of the number of antenatal visits has a slight inverse U-shape,
indicating that low and high numbers of antenatal visits are associated with smaller 35% Z-score
quantiles than medium numbers (8-15 visits).

Figure 6.2 Nonlinear age-varying effects of feeding variables estimated by quantile boosting for τ = 0.35

(full model). The dotted horizontal line at zero represents the respective reference category.
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Figure 6.2 depicts the age-varying effects of the feeding variables. According to the bootstrap
results (not shown) both “exclusive breastfeeding” and “breastfeeding and complementary
feeding” differ significantly from the baseline of “no breastfeeding”, whereas there is no significant
difference between the two breastfeeding categories. The effect of breastfeeding on the 35%
Z-score quantile clearly varies with age: breastfeeding exerts a positive effect until 9 months
followed by a negative effect beginning at 12 months. Note that the increasing effect of exclusive
breastfeeding after 14 months is based on small numbers and shows large variation. Compared to
low food diversity, high diversity exerts a negative effect until the age of 12 months, and a positive
effect thereafter. This effect can be rated as significant by the bootstrap analysis. Medium food
diversity does not differ significantly from the reference category. In relation to meal frequency no
significant differences from the baseline of low meal frequency are observed.

Figure 6.3 displays the estimated spatial effect on the 35% Z-score quantile for 29 Indian states
of residence. Compared to the empirically observed 35% Z-score quantiles shown in Figure 2.7
(page 27), less pronounced differences in the estimated effects compared to empirical values
imply that the further covariates in the model offer a partial explanation for structural differences
between Indian states.

Figure 6.3 Discrete spatial effect on 35% Z-score quantile for 29 Indian states of residence (full model).
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Furthermore, Figure 6.4 displays the significance ratings based on the bootstrap confidence
intervals corresponding to Figure 6.3. One can see that about 40% of the effects are rated as
significant which underlines the importance of including the spatial effect. The effects of three
central regions of India (1, 5, 15) on 35% Z-score quantiles are significantly smaller than in other
regions. These differences cannot be explained by the other covariates in the model.

Figure 6.4 Significance of discrete spatial effects on 35% Z-score quantile shown in Figure 6.3 based on
bootstrap confidence intervals.

Comparison of quantile regression results for different quantile parameters

Table 6.1 contained the results for the 35% and the 15% Z-score quantiles, whereas Table 6.2
additionally shows the results for the 50% and the 5% Z-score quantile regression analyses.
Overall, there are no fundamental differences between the results for the 35% Z-score quantile
presented above and those for other quantile parameters.

Regarding the effect significances first, the following covariates exert significant effects on Z-score
quantiles across all four quantile parameters: child age, maternal education, partner’s education,
state of residence, child is twin, iodine, and both levels of breastfeeding by age compared to no
breastfeeding. On the contrary, there are two covariates which are each only significant for one
quantile parameter: mother is working (τ = 0.35) and cooking fuel (τ = 0.15).
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Table 6.2 Estimated effects and 95% bootstrap confidence intervals of quantile boosting models for
τ = 0.50 and τ = 0.05. Significant effects are shown in bold.

 

Variable 

  

 

Values / Description 

 

Quantile regression for 
50% quantile 

Quantile regression for 
5% quantile 

β0.50 95% CI(β0.50 ) β0.05 95% CI(β0.05 ) 

      

Non-modifiable factors      

Child age [months]  ~ Linear, negative ~ Linear, negative 

Child sex Male - - - - 

 Female 0.121 [0.059, 0.180] 0.123 [0.000, 0.256] 

      

Maternal characteristics      

Maternal age [years]  Nonlinear, inverse U Nonlinear, inverse U 

Maternal BMI [kg/m
2
]  Nonlinear, positive Linear, positive 

      

Household characteristics      

Household wealth Poorest - - - - 

 Poorer -0.012 [-0.090, 0.086] -0.026 [-0.129, 0.027] 

 Middle 0.050 [-0.039, 0.164] 0.002 [-0.072, 0.090] 

 Richer 0.099 [0.012, 0.208] -0.005 [-0.089, 0.056} 

 Richest 0.217 [0.094, 0.372] 0.092 [0.000, 0.252] 

Religion of household head Hindu - - - - 

 Muslim 0.031 [-0.042, 0.116] 0.002 [-0.041, 0.079] 

 Christian 0.047 [-0.013, 0.144] 0.006 [-0.006, 0.055] 

 Sikh 0.010 [-0.022, 0.057] 0.007 [0.000, 0.051] 

 (Neo-)Buddhist -0.010 [-0.067, 0.019] -0.001 [-0.018, 0.018] 

 Other -0.027 [-0.089, 0.007] -0.003 [-0.030, 0.006] 

Caste/tribe of household head Scheduled caste - - - - 

 Scheduled tribe 0.053 [-0.015, 0.145] -0.018 [-0.073, 0.004] 

 Other backward class 0.091 [0.000, 0.190] 0.008 [-0.037, 0.059] 

 None of them 0.183 [0.090, 0.302] 0.028 [-0.003, 0.126] 

Maternal education [years]  Nonlinear, positive Nonlinear, positive 

Partner’s education [years]  ~ Linear, positive ~ Linear, positive 

Partner’s occupation Services - - - - 

 Household & domestic 0.034 [-0.025, 0.121] 0.025 [-0.014, 0.125] 

 Agriculture -0.007 [-0.050, 0.050] 0.052 [-0.002, 0.189] 

 Clerical -0.003 [-0.060, 0.079] 0.009 [-0.068, 0.101] 

 Prof./ Tech./ Manag. 0.038 [-0.008, 0.130] 0.013 [-0.040, 0.063] 

 Did not work  0.006 [-0.058, 0.078] -0.028 [-0.128, 0.023] 

Mother is currently working No - - - - 

 Yes -0.055 [-0.123, 0.000] -0.016 [-0.113, 0.026] 

Sex of household head Male - - - - 

 Female 0.073 [0.000, 0.181] 0.038 [-0.000, 0.173] 

Regional characteristics      

State of residence  Spatial Spatial 

Urban/rural location Urban - - - - 

 Rural 0.009 [-0.018, 0.065] -0.123 [-0.243, 0.118] 

      

Household food competition      

Number of household members   Nonlinear, inverse U Nonlinear 

Birth order  Nonlinear, negative Linear, negative 

Preceding birth interval [months]  Nonlinear, positive ~ Linear, positive 

Child is twin or multiple birth No - - - - 

 Yes -0.642 [-0.963, -0.365] -0.407 [-0.719, -0.120] 

      

Page 108



Chapter 6: Quantile boosting for child undernutrition in India

 
 

Variable 

  

 

Values / Description 

 

Quantile regression for 
50% quantile 

Quantile regression for 
5% quantile 

β0.50 95% CI(β0.50 ) β0.05 95% CI(β0.05 ) 

      

Water, sanitation and hygiene      

Drinking water in household Unimproved - - - - 

 Improved -0.026 [-0.101, 0.008] 0.005 [-0.018, 0.074] 

 Piped -0.013 [-0.095, 0.024] -0.006 [-0.070, 0.006] 

Sanitation facility in household Unimproved - - - - 

 Improved 0.082 [0.016, 0.161] 0.061 [0.000, 0.239] 

      

Indoor air pollution      

Type of cooking fuel Straw/ crop /animal dung  - - - - 

 Coal/ charcoal/ wood -0.022 [-0.068, 0.017] -0.037 [-0.122, 0.000] 

 Kerosene -0.006 [-0.044, 0.012] -0.011 [-0.065, 0.001] 

 Gas/ electricity 0.025 [-0.028, 0.090] 0.016 [-0.006, 0.057] 

      

Curative and preventive healthcare      

Vaccination index None (0) - - - - 

 Low (1-3) -0.015 [-0.070, 0.033] 0.008 [-0.043, 0.060] 

 Medium (4-6) -0.002 [-0.054, 0.056] -0.048 [-0.150, 0.000] 

 High (7-9) 0.049 [0.000, 0.123] 0.053 [0.000, 0.129] 

Number of antenatal visits 
during pregnancy 

 ~ Linear, positive Nonlinear, inverse U 

      

Breastfeeding practices      

Breastfeeding No breastfeeding - - - - 

 Breastfeeding + 
complementary feeding 

Nonlinear,  
negative by age 

~ Linear,  
negative by age 

 Exclusive breastfeeding Linear, negative by age Nonlinear,  
negative by age 

      

Complementary feeding practices      

Food diversity  

(Number of food groups  

consumed during last 24 hours  

aside from breast milk) 

Low (0-2) - - - - 

Medium (3-4) Constant, zero by age Constant, positive by age 

High (5-8) ~ Linear, positive by age ~ Linear, positive by age 

     

Meal frequency 

(Number of meals consumed  

during last 24 hours 

aside from breast milk) 

Low (0-1) - - - - 

Medium (2-3) Constant, zero by age Constant, zero by age 

High (4-9) ~ Linear, positive by age Constant, zero by age 

     

      

Micronutrient deficiencies      

Child received iron No - - - - 

 Yes -0.013 [-0.091, 0.056] -0.054 [-0.317, 0.000] 

Child received vitamin A No - - - - 

 Yes 0.088 [0.004, 0.169] 0.037 [0.000, 0.123] 

Iodine-in-salt test result No iodine - - - - 

 Less than 15 parts per 
million 

-0.015 [-0.075, 0.067] -0.083 [-0.195, -0.009] 

 15 parts per million or 
more 

0.110 [0.038, 0.180] 0.143 [0.055, 0.251] 
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Furthermore, one can observe that several covariates are no longer significant for the 5% quantile
compared to the other quantile parameters. This is a typical phenomenon of quantile regression
since this method requires a large number of observations to be able to detect covariate effects for
extreme quantiles – obviously even more observations than present in our dataset. Therefore, the
following covariates show significant effects for the three quantile parameters except for τ = 0.05:
child sex, wealth, caste, birth order, sanitation, high food diversity by age.

When regarding the signs and sizes of effects in more detail, one can notice that the differences
between quantile parameters are only small, with the signs being similar for all significant effects.
Interestingly, despite the small number of twins in the dataset, being a twin shows large significant
effects for all quantile parameters. Moreover, the positive effect size of being a female increases
from the median to the 15% Z-score quantile.

Likewise, shapes, sizes, and signs of the nonlinear effects are almost similar across all quantile
parameters – even for the 5% Z-score quantile, although the effects are often not rated as
significant at this quantile. The only difference with regard to linearity vs. nonlinearity is detected
for maternal education (linear for τ = 0.15 and τ = 0.35, nonlinear for τ = 0.05 and τ = 0.50).
However, a monotonic increase of the effect until 12 years of maternal education is estimated
for all quantile parameters with the nonlinearity beginning afterwards. Breastfeeding exerts a
significantly nonlinear, age-varying effect with the same shape for all quantile parameters.

Comparison of quantile regression results to those from Kandala et al. (2009) and
Sobotka et al. (2011)

We also compare the results from our quantile regression analyses to the results of two recent
studies (Kandala et al., 2009; Sobotka et al., 2011) which we consider as being closely related to
our analysis. Both studies also investigated determinants of child stunting by structured additive
regression models for the height-for-age Z-score.

In Kandala et al. (2009), a Gaussian structured additive regression model was estimated for the
mean Z-score based on DHS data from three different African countries. Special emphasis was
put on spatial modelling of regional differences between the countries and estimation was realized
by a full Bayesian approach. Compared to our analysis, much less covariates were included, with
most of them being coded in a completely different way. Nevertheless, we shortly compare the
results of this study to the results from our median regression analysis.

Similarities could be found regarding the estimated effects of child sex and age until 24 months
(even though age varied between 0-59 months contrary to 0-24 months in our analysis). Also, the
shapes of the nonlinear effects for maternal BMI were estimated to be exactly similar. The effects
of wealth and birth interval were also significant and positive in both analyses – even though the
underlying variables had different scale levels.

With regard to differences, the effect of study location was significant in Kandala et al. (2009) with
larger Z-score means estimated for urban areas. Also, the household size had a positive and
significant effect. These results are contrary to our analysis, where both variables were not rated
as significant by any of the models. The two remaining covariates cannot be compared to our
results since the variable coding was too different for maternal education, and a variable for single
mothers was not included in our analysis.
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Sobotka et al. (2011) employed structured additive expectile regression with 40 covariates for four
asymmetry parameters (0.05, 0.20, 0.80, 0.95) based on the Indian DHS dataset for the year 2001.
The underlying methodological aim was to investigate confidence intervals for the parameters of
expectile regression. Since the Z-score response ranged between -600 and 600, the estimated
effects had to be divided by 100 to be comparable with our results.

Similarities of both analyses were detected with regard to significance and size of the effects of
twin and child age. Likewise, both analyses did not rate the effects of maternal work and residence
as significant but detected a significant negative effect for birth order, even though this variable
was categorical in Sobotka et al. (2011).

Regarding main differences between the analyses, the effects of child sex, maternal and partner’s
education were estimated to have similar signs but were not rated as significant by the expectile
regression analysis. Furthermore, the shapes for maternal BMI and age were not estimated in
a nonlinear way. Duration of breastfeeding did not show an effect in the expectile regression
analysis. We included breastfeeding as a categorical, three-level variable and observed a
significant association between breastfeeding by age and Z-score quantiles.

Contrary to our analysis, religion had a significant effect. We attribute this difference to the
inclusion of the variable caste in our analysis since we observed in own sensitivity analyses that
religion became significant when caste was excluded from our analysis. In India, caste probably
captures position in the social hierarchy better than religion.

Further results shown in Sobotka et al. (2011) are not really comparable to our analysis since we
aggregated the binary variables for household characteristics (electricity, radio, TV, etc.) in one
overall variable standing for household wealth. The number of dead children was not included in
our analysis.

Comparison of logistic and quantile regression results

When additionally comparing the results of logistic and quantile regression, no fundamental
differences can be detected similar as the comparisons between different quantile parameters.
As can be seen in Table 6.3, the direction of the effect of variables in quantile regression models
is reversed in binary regression models. Also, absolute effect sizes cannot be compared since
the interpretation relates to the log-odds ratio for being stunted or severely stunted (contrary to
the respective quantiles of the Z-score). As an example for the interpretation, the log-odds ratio
for being stunted for girls is estimated to be -0.080 smaller compared to boys, given all other
covariates are similar.

Most of the variables being significant for almost all quantile parameters are also significant in
binary regression analyses. However, compared to the variables which are significant across all
quantile parameters, the age-varying effect of exclusive breastfeeding is no longer significant for
stunting and severe stunting. Likewise, birth order, number of antenatal visits and vitamin A
supplementation show no significant effect in logistic regression models. Cooking fuel is
significant for stunting and severe stunting which was only the case for τ = 0.15. Therefore,
cooking with gas/electricity is protective against stunting, while cooking with kerosene emerges
as a risk factor for severe stunting. Note also that child sex, twin, wealth, caste, and iodine show
larger absolute sizes for severe stunting than for stunting.
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Table 6.3 Estimated effects and 95% bootstrap confidence intervals for structured additive logistic
regression for stunting and severe stunting estimated by boosting. Significant effects are shown
in bold.

 
Variable 

 

Values / Description 

Logistic regression for 
stunting 

Logistic regression for 
severe stunting 

βstunted 95% CI(βstunted) βsevSt 95% CI(βsevSt) 

      

Non-modifiable factors      

Child age [months]  ~ Linear, positive ~ Linear, positive 

Child sex Male - - - - 

 Female -0.080 [-0.123, -0.037] -0.120 [-0.171, -0.068] 

      

Maternal characteristics      

Maternal age [years]  Nonlinear, U-shape Nonlinear, U-shape 

Maternal BMI [kg/m
2
]  Nonlinear, U-shape Nonlinear, negative 

      

Household characteristics      

Household wealth Poorest - - - - 

 Poorer 0.007 [-0.045, 0.063] -0.044 [-0.104, 0.026] 

 Middle -0.011 [-0.058, 0.031] -0.056 [-0.129, -0.002] 

 Richer -0.041 [-0.115, 0.019] -0.119 [-0.235, -0.030] 

 Richest -0.130 [-0.244, -0.027] -0.221 [-0.353, -0.085] 

Religion of household head Hindu - - - - 

 Muslim -0.045 [-0.114, 0.010] -0.004 [-0.058, 0.059] 

 Christian -0.037 [-0.119, 0.038] -0.017 [-0.087, 0.033] 

 Sikh -0.046 [-0.124, 0.004] -0.013 [-0.060, 0.014] 

 (Neo-)Buddhist -0.023 [-0.126, 0.033] -0.016 [-0.093, 0.020] 

 Other 0.041 [-0.002, 0.118] 0.026 [-0.014, 0.103] 

Caste/tribe of household head Scheduled caste - - - - 

 Scheduled tribe -0.030 [-0.100, 0.021] -0.038 [-0.120, 0.026] 

 Other backward class -0.066 [-0.126, -0.009] -0.078 [-0.132, -0.025] 

 None of them -0.112 [-0.188, -0.047] -0.134 [-0.224, -0.064] 

Maternal education [years]  ~ Linear, negative ~ Linear, negative 

Partner’s education [years]  ~ Linear, negative ~ Linear, negative 

Partner’s occupation Services - - - - 

 Household & domestic -0.030 [-0.090, 0.010] -0.056 [-0.152, 0.008] 

 Agriculture -0.006 [-0.042, 0.032] -0.055 [-0.111, -0.012] 

 Clerical -0.011 [-0.047, 0.038] -0.030 [-0.093, 0.026] 

 Prof./ Tech./ Manag. -0.014 [-0.064, 0.032] 0.016 [-0.030, 0.090] 

 Did not work  0.001 [-0.045, 0.049] 0.015 [-0.026, 0.085] 

Mother is currently working No - - - - 

 Yes 0.043 [0.000, 0.086] 0.040 [0.000, 0.093] 

Sex of household head Male - - - - 

 Female -0.023 [-0.081, 0.003] -0.006 [-0.067, 0.036] 

      

Regional characteristics      

State of residence  Spatial Spatial 

Urban/rural location Urban - - - - 

 Rural -0.045 [-0.093, 0.000] -0.021 [-0.071, 0.000] 

Household food competition      

Number of household members   Non-linear, U shape Non-linear, U shape 

Birth order  Non-linear, positive ~ Linear, positive 

Preceding birth interval [months]  Non-linear, negative Non-linear, negative 

Child is twin or multiple birth No - - - - 

 Yes 0.420 [0.251, 0.579] 0.566 [0.385, 0.750] 
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Variable 

 

Values / Description 

Logistic regression for 
stunting 

Logistic regression for 
severe stunting 

βstunted 95% CI(βstunted) βsevSt 95% CI(βsevSt) 

      

Water, sanitation and hygiene      

Drinking water in household Unimproved - - - - 

 Improved 0.019 [-0.005, 0.063] -0.005 [-0.045, 0.029] 

 Piped 0.010 [-0.025, 0.068] -0.006 [-0.053, 0.019] 

Sanitation facility in household Unimproved - - - - 

 Improved -0.057 [-0.111, -0.011] -0.049 [-0.112, -0.001] 

      

Indoor air pollution      

Type of cooking fuel Straw/ crop /animal dung  - - - - 

 Coal/ charcoal/ wood 0.014 [-0.018, 0.044] 0.005 [-0.036, 0.055] 

 Kerosene 0.018 [-0.028, 0.058] 0.124 [0.019, 0.238] 

 Gas/ electricity -0.088 [-0.168, -0.015] -0.065 [-0.145, 0.001] 

      

Curative and preventive healthcare      

Vaccination index None (0) - - - - 

 Low (1-3) -0.005 [-0.074, 0.038] -0.004 [-0.076, 0.037] 

 Medium (4-6) -0.004 [-0.086, 0.044] 0.006 [-0.099, 0.052] 

 High (7-9) -0.072 [-0.151, -0.013] -0.059 [-0.152, -0.005] 

Number of antenatal visits 
during pregnancy 

 ~ Linear, negative Non-linear, U shape 

      

Breastfeeding practices      

Breastfeeding No breastfeeding - - - - 

 Breastfeeding + 
complementary feeding 

Nonlinear,  
positive by age 

Nonlinear,  
positive by age 

 Exclusive breastfeeding ~ Linear, positive by age ~ Linear, positive by age 

      

Complementary feeding practices      

Food diversity  

(Number of food groups  

consumed during last 24 hours 

aside from breast milk) 

Low (0-2) - - - - 

Medium (3-4) Constant, zero by age Constant, negative by age 

High (5-8) ~ Linear, negative by age ~ Linear, negative by age 

     

Meal frequency 

(Number of meals consumed  

during last 24 hours 

aside from breast milk) 

Low (0-1) - - - - 

Medium (2-3) Constant, zero by age Constant, zero by age 

High (4-9) Constant, zero by age Constant, zero by age 

     

      

Micronutrient deficiencies      

Child received iron No - - - - 

 Yes 0.022 [-0.016, 0.089] 0.030 [-0.007, 0.138] 

Child received vitamin A No - - - - 

 Yes -0.036 [-0.077, 0.000] -0.020 [-0.070, 0.000] 

Iodine-in-salt test result No iodine - - - - 

 Less than 15 parts per 
million 

0.011 [-0.043, 0.044] 0.025 [-0.013, 0.058] 

 15 parts per million or 
more 

-0.056 [-0.107, -0.020] -0.066 [-0.118, -0.022] 
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Figure 6.5 exemplarily displays the effects of continuous covariates on stunting estimated from
the full model and 100 bootstrap iterations. Compared to Figure 6.1, one can see that the effect
directions are reversed, but the nonlinear shapes are estimated to be approximately similar. For
example, maternal BMI displays a U-shape for stunting, meaning that children born to mothers
with low and high BMI values are at higher risk.

Figure 6.5 Linear or smooth nonlinear effects of continuous covariates from structured additive logistic
regression for stunting estimated by boosting for the full model (black line) and 100 bootstrap
iterations (grey lines).
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Results from the stability selection procedure

Finally, we consider the results from the formal variable selection procedure by stability selection.
In our analysis, we chose a family-wise error rate of 5% and an average number of 15 terms to
be expected in a model. Table 6.4 contains the results. Selected variables are those which were
included in more than 90% of 100 bootstrap models in the first approx. 200 boosting iterations
(determined as the boosting iteration in which the 15th model term was included in each bootstrap
sample). The underlying rationale for this variable selection is that boosting first selects those
variables which achieve a maximum reduction of the variance of the negative gradient residuals
(see also Chapter 5.2).

Even though we fixed the number of expected model terms at 15, Table 6.4 shows that only about
10 variables (out of 51 base learners) were selected in each model. Except for indoor air pollution
and complementary feeding practices, at least one variable of each of the groups of determinants
were selected by stability selection. Looking at Table 6.4 into more detail, both similarities and
differences can be detected when comparing selected and significant variables.

Regarding similarities, the following variables were rated as significant by almost all models and
were also mostly selected by stability selection: child age, maternal BMI, maternal education,
partner’s education, sanitation, breastfeeding by age, and iodine. Therefore, strong evidence is
provided for an impact of these variables on child stunting. Type of cooking fuel was three times
selected by stability selection and also had three times significant effects (even though not in the
same models).

With regard to differences, there are several significant variables which were never or only once
chosen by stability selection: child sex, wealth, caste, birth order, child is twin, vaccination index,
and food diversity by age. This is in particular surprising for the twin variable which showed a great
significant effect on all stunting quantiles and binary variables. Probably the variance reduction
achieved by this variable during the first boosting iterations is not large enough due to the small
number of twins in the dataset.

Concerning the spatial variables, it is interesting that urban/rural location was selected three times
by stability selection even though this variable was not rated as significant in any of the regression
models. Likewise, a surprising result is that the number of antenatal visits was included in every
model by stability selection but only had significant effects in three models.

The following variables neither had significant effects in any of the models nor were selected by
stability selection: religion, partner’s occupation, sex of household head, number of household
members, drinking water in household, meal frequency by age, and iron.
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Table 6.4 Results from formal variable selection by stability selection for all regression models. Shown are
only selected variables based on a family-wise error rate of 5% and 15 terms to be expected in
a model.

 V
a
ri

a
b

le
 

Q
u

a
n

ti
le

 r
e
g

re
s
s
io

n
 

L
o

g
is

ti
c
 r

e
g

re
s
s
io

n
 

τ
=

 0
.5

0
 

τ
=

 0
.3

5
 

τ
=

 0
.1

5
 

τ
=

 0
.0

5
 

S
tu

n
ti

n
g

 
S

e
v
. 

s
tu

n
ti

n
g

 

 
 

 
 

 
 

 

N
o

n
-m

o
d
if
ia

b
le

 f
a
c
to

rs
 

 
 

 
 

 
 

C
h
ild

 a
g
e

 
N

o
n
lin

e
a
r 

N
o
n
lin

e
a
r 

L
in

e
a
r 

L
in

e
a
r 

N
o

n
lin

e
a
r 

L
in

e
a
r 

M
a
te

rn
a
l 
c
h

a
ra

c
te

ri
s
ti
c
s
 

 
 

 
 

 
 

M
a
te

rn
a
l 
B

M
I 

N
o

n
lin

e
a
r 

L
in

e
a
r 

 
 

L
in

e
a
r 

L
in

e
a
r 

H
o

u
s
e
h
o
ld

 c
h
a
ra

c
te

ri
s
ti
c
s
 

 
 

 
 

 
 

M
a
te

rn
a
l 
e

d
u
c
a
ti
o
n

 
L
in

e
a
r 

L
in

e
a
r 

N
o

n
lin

e
a
r 

N
o
n
lin

e
a
r 

L
in

e
a
r 

L
in

e
a
r 

P
a
rt

n
e
r’

s
 e

d
u
c
a
ti
o
n
  

L
in

e
a
r 

L
in

e
a
r 

L
in

e
a
r 

L
in

e
a
r 

L
in

e
a
r 

L
in

e
a
r 

R
e

g
io

n
a
l 
c
h

a
ra

c
te

ri
s
ti
c
s
 

 
 

 
 

 
 

S
ta

te
 o

f 
re

s
id

e
n
c
e

 
X

 
 

 
 

 
 

U
rb

a
n
/r

u
ra

l 
lo

c
a
ti
o
n

 
 

X
 

X
 

X
 

 
 

H
o

u
s
e
h
o
ld

 f
o

o
d
 c

o
m

p
e
ti
ti
o
n

 
 

 
 

 
 

 

C
h
ild

 i
s
 t

w
in

 
 

 
 

X
 

 
 

W
a
te

r,
 s

a
n
it
a
ti
o
n
 a

n
d
 h

y
g
ie

n
e

 
 

 
 

 
 

 

S
a
n
it
a
ti
o
n
 f
a
c
ili

ty
 i
n
 h

o
u
s
e

h
o
ld

 
X

 
X

 
X

 
 

X
 

 

In
d
o

o
r 

a
ir

 p
o
llu

ti
o
n
  

 
 

 
 

 
 

T
y
p
e
 o

f 
c
o

o
k
in

g
 f

u
e
l 

 
X

 
X

 
 

X
 

 

C
u
ra

ti
v
e
 a

n
d
 p

re
v
e
n
ti
v
e
 h

e
a
lt
h
c
a
re

 
 

 
 

 
 

 

N
u
m

b
e
r 

o
f 

a
n
te

n
a
ta

l 
v
is

it
s
 

L
in

e
a
r 

N
o
n
lin

e
a
r 

N
o

n
lin

e
a
r 

N
o
n
lin

e
a
r 

L
in

e
a
r 

N
o
n
lin

e
a
r 

B
re

a
s
tf
e
e
d
in

g
 p

ra
c
ti
c
e
s
 

 
 

 
 

 
 

B
re

a
s
tf

e
e

d
in

g
 b

y
 a

g
e
 

X
 

X
 

X
 

X
 

X
 

X
 

M
ic

ro
n
u
tr

ie
n
t 
d

e
fi
c
ie

n
c
ie

s
 

 
 

 
 

 
 

Io
d
in

e
-i

n
-s

a
lt
 t

e
s
t 
re

s
u
lt
 

X
 

X
 

 
X

 
X

 
X

 

   

Page 116



Chapter 6: Quantile boosting for child undernutrition in India

6.3 Discussion

Key findings

We employed an evidence-based, systematic approach to identify all likely determinants of
child stunting. This extension in breadth and depth of the UNICEF framework (UNICEF, 1998)
represents an important intermediate outcome and a basis for further research.

In our analysis, we attempted to quantify the effect of these determinants or their proxies with
structured additive quantile and logistic regression models estimated by boosting. The results
of this innovative quantile regression approach and the standard logistic regression analyses
were largely comparable. This is rather surprising since quantile regression can exploit the full
information of the response variable – contrary to logistic regression just relying on a binarized
version of the response. We attribute this result to the symmetric distribution of the Z-score
response, suggesting that binary regression can compete with quantile regression for analyzing
determinants of stunting.

However, our research has demonstrated that several continuous variables (maternal age,
maternal BMI, birth order and number of antenatal visits) exert their effect in a nonlinear way. Our
prior assumption that the effects of breastfeeding and complementary feeding are age-dependent
was realized by including nonlinear age-varying effects in the model.

Regarding further covariates, our research confirms the importance of child age and sex as non-
modifiable determinants and highlights greater parental education and greater maternal BMI as
major protective factors. Our research also draws attention to twins as a potentially overlooked
risk group. The very large significantly negative effect is remarkable, as only 1% of children in the
NFHS dataset are twins or multiple births. Strong evidence is also provided for the importance of
sanitation and iodine, even though the absolute effect sizes of these variables are rather small.

For several variables, none of the models detected statistically significant effects which contrasts
with previous reports. This may be due to the poor quality of the proxy measures we employed
or differences in the population distribution of variables. Most importantly, it may reflect the fact
that in a more comprehensive model, the effects of some variables are captured by other related
variables.

Altogether, for each of the groups of determinants we conceptualized in Figure 2.1, we found at
least one variable with a statistically significant effect in all models – except for indoor air pollution,
which only shows a significant effect in two of six regression models, but was also selected by
stability selection. This emphasizes the broad range of causes of child stunting.

Strengths and limitations

Data quality: Although the NFHS study includes suitable variables for most determinants of
stunting, we could not model the impact of all determinants we conceptualized in Figure 2.1. We
were unable to populate the groups of determinants chronic diseases and recurrent infections
and could only partially assess micronutrient deficiencies, healthcare, maternal or regional
characteristics. Similarly, some of the proxies we used in our analysis may not provide an accurate
estimate of the underlying concept of interest (e.g., type of cooking fuel as a proxy for indoor air
pollution). Consequently, effect sizes for individual variables should be interpreted with caution.
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Even though the NFHS is considered a high-quality dataset, large numbers of missing values in
selected variables, in particular in the outcome of interest, may have introduced selection bias.
Nevertheless, the large-scale, standardized and nationally representative nature of the NFHS, a
response rate of eligible women of 94.5% and its coverage of a broad range of health risks makes
it ideally-suited for a comprehensive analysis of stunting determinants.

Evidence-based approach: Based on earlier work in this field, a priori reasoning and extensive
searches of the literature, we derived a schematic diagram of the multiple determinants of stunting.
We believe that this approach to identifying all potential determinants of stunting and to populating
as many of these as possible using an existing dataset is novel and takes up recent calls to
incorporate systems thinking in epidemiology.

Statistical methods: The innovative approach of structured additive regression models can be
seen as one of the main strengths of our analysis. Since we considered a large number of
covariates with a variety of different effects in the flexible predictor, boosting was particularly well-
suited for the estimation. Boosting combines parameter estimation and variable selection in one
estimation step. Therefore, subsequent steps of variable selection were not necessary – contrary
to classical likelihood-based regression where, for example, AIC-based model comparisons would
have had to be conducted. In addition, we applied stability selection to obtain results from a formal
variable selection procedure which provided further evidence for the presence of several effects.

Implications for future research

We believe that structured additive quantile and logistic regression models are both adequate
approaches for future investigations of the multi-factorial nature of child stunting, as long as the
quantile parameter is not chosen too small. Since we found that several continuous variables
exert their effect in a nonlinear way, we would recommend to explicitly consider such nonlinear
relationships in future analyses. Further investigations of nonlinear age-varying effects could lead
to additional insights.

In our view, it would also be helpful to conduct further (empirical) investigations of the stability
selection procedure in connection with boosting in order to explain the differences between
variable selection and significance results.

To sum up, our research has demonstrated the importance of a comprehensive and systematic
approach to the determinants of child undernutrition. Figure 2.1 may serve as a starting point for
furthering the understanding of this system in future analyses.
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Chapter 7: Quantile boosting for child overweight
and obesity in Germany

This chapter presents the results of a quantile boosting analysis of child overweight and obesity
in western countries by means of the LISA study, a recent large-scale German birth cohort study.
Background and dataset of this analysis were thoroughly described in Section 2.2 of this thesis.
The contents of the present chapter are mainly based on the manuscript Fenske, Fahrmeir,
Hothorn, Rzehak, and Höhle (2012b).

7.1 Setup of the analysis

Recall that the main objective of our obesity analysis was to flexibly model nonlinear population
age curves of upper BMI quantiles, while adjusting for individual-specific age effects and early
childhood risk factors. At the same time, individual-specific BMI life-course patterns should be
reflected as best as possible. An additional aim was to investigate if potential effects of categorical
risk factors are constant or age-varying.

Based on the LISA data described in Section 2.2, we estimated STAQ models for the 90%
and 97% BMI quantiles and – for reasons of model comparison – for the median and the
10% quantile. To answer the above questions, we considered the following predictor for τ ∈
{0.10, 0.50, 0.90, 0.97}:

cBMIij = η
(τ)
ij + bτi0 + bτi1 · cAgeij + ετij , (7.1)

where the population part is given by

η
(τ)
ij = β0 + fτcAge(cAgeij) + fτmBMI(mBMIi) + fτmDiffBMI (mDiffBMIi)

+ βτcSex cSexi + βτcLocation cLocationi + βτcBreast cBreasti + βτmSmoke mSmokei

+ βτmEdu2 mEdu2i + βτmEdu3 mEdu3i

+ cSexi · gτMale(cAgeij) + cLocationi · gτUrban(cAgeij) + cBreasti · gτBreast(cAgeij)

+ mSmokei · gτSmoke(cAgeij) + mEdu2i · gτmEdu2(cAgeij) + mEdu3i · gτmEdu3(cAgeij) .

Our model thus contains main effects for the entire set of covariates given in Tables 2.2 and 2.3
on page 32, and age-varying effects of categorical covariates. To account for the longitudinal data
structure, individual-specific intercepts bτi0 and slopes bτi1 for cAge were included in the model,
describing individual-specific deviations from the nonlinear population effect for cAge. Note that
the above predictor is composed of the same elements as example 2 for a structured additive
predictor on page 37.

For reasons of model comparison, we estimated a Gaussian additive mixed model (AMM) with
the same predictor as in (7.1). In longitudinal data settings, this model class is currently the
only serious competitor for structured additive quantile regression fitted by boosting since no
other estimation approach can handle the full variety of population and individual-specific effects
addressed by the predictor in (7.1). As was pointed out in Section 3.5.2, AMMs not only imply
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conditional mean modelling, but can also be used for quantile regression since the conditional
response distribution is completely determined by the iid Gaussian assumption for the error terms.

For estimation with the quantile boosting algorithm, we defined one common base learner for
all categorical covariates and separate base learners for all smooth effects. All continuous
covariates, including age and age-varying effects, were modelled by separate penalized least
squares base learners with df(λ) = 5. The three-level covariate mEdu was split into two dummy-
coded variables relating to the reference category of low maternal education (mEdu=1), but was
fitted in the same base learner with main effects of all other categorical covariates and df(λ) = 5.
The individual-specific intercept and slope were separated into two base learners and also fitted
by penalized least squares with df(λ) = 5 to equalize the selection probabilities of different
base learners. We did not make use of the decomposition of the smooth effects of continuous
covariates into linear part and nonlinear deviation since this was not the primary interest of our
analysis.

The number of optimal boosting iterationsmstop was chosen by block-wise fivefold cross-validation
which resulted in values of roughly 5 000 iterations. We set the step length ν = 0.4 since this
results in fewer boosting iterations and therefore lower computational effort than for smaller values
of ν, as was illustrated in Section 4.2.

In accordance with the descriptions above, we used the following model calls to estimate STAQ
models on the full LISA dataset in R:

staqFormula <- cBMI ~ bols(cSex, cLocation, cBreast, mSmoke, mEdu, df=5) +

bbs(cAgeC, df=5) + bbs(mDiffBMIC, df=5) +

bbs(mBMIC, df=5) + bbs(ageSexInt, df=5) +

bbs(ageLocationInt, df=5) + bbs(ageBfInt, df=5) +

bbs(ageSmokeInt, df=5) + bbs(ageMedu2Int, df=5) +

bbs(ageMedu3Int, df=5) + brandom(cID, df=5) +

brandom(cID, by=cAgeC, df=5)

staq90 <- gamboost(staqFormula, data=lisaLong,

family=QuantReg(tau = 0.90),

control=boost_control(mstop=5000, nu=0.4))

Similar to the analysis of undernutrition, we used the function gamboost from package mboost

(Hothorn et al., 2012) with option family=QuantReg(). Base learners for estimating individual-
specific effects were specified with brandom(), while smooth nonlinear effects and age-varying
effects of categorical covariates were estimated by using the base learner function bbs(). The
variables cAgeC, mDiffBMIC and mBMIC are mean-centered versions of the cAge, mDiffBMI and
mBMI. All variables ending on Int are mean-centered interaction variables between age and
different levels of the categorical covariates which were defined to model age-varying effects.
For fitting AMMs, we used the function amer from package amer (Scheipl, 2011).

Since boosting does not directly provide standard errors for the estimated effects, we additionally
conducted a block-wise bootstrap analysis. We obtained one single bootstrap sample by randomly
choosing 2226 children with replacement at the first stage. To conserve the longitudinal data
structure, all observations corresponding to the chosen children were included in the bootstrap
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sample at the second stage. In this way, we generated a total of 50 different bootstrap samples
and used each sample to fit STAQ models and AMMs as described above.

To formally compare the results from AMMs and STAQ models, we additionally constructed 50 out-
of-bag samples with children that were not contained in the respective bootstrap samples. These
out-of-bag samples were used to calculate the empirical risks based on the check function for
the four different quantile parameters and two different model classes. To obtain an estimated
predictor q̂τij for a child in an out-of-bag sample, we set its individual-specific effects to zero in
order to obtain the empirical risk for model comparison.

7.2 Results

The resulting smooth nonlinear population effects of age on BMI quantiles are shown in Figure 7.1.
Overall, the shape of the age effect remains stable over the bootstrap iterations for all models and
confirms the first impression from the descriptive analysis in Figure 2.9 on page 31. In sparse
data regions, i.e., between the ages of 6 and 10 years, the variation of the effects is larger than in
regions with more observations. The effects for the AMM and STAQ median look roughly similar.
For upper quantiles, the age effect strongly increases beginning after the age of 6 years.

Furthermore, Figure 7.2 shows estimated age-specific quantile curves from the two model
classes. To make the effects comparable, we concentrate on the population quantile functions
conditional on individual-specific effects as given in (3.12) on page 55. Thus, AMM curves for
upper quantiles were obtained by a parallel shift of the mean curve, whereas for STAQ models,
all quantile curves were modelled separately. The resulting curves are estimated to be roughly
similar until the age of 6 years. At the age of 10 years, the 90% BMI curve estimated by STAQ
regression is above the 97% curve estimated by AMMs, whereas the 10% STAQ curve is below
the AMM median.

We additionally compared the model fits by block-wise bootstrap and calculated the empirical
quantile-specific risks based on the check function in the 50 out-of-bag bootstrap samples, as
described in Section 7.1. Figure 7.3 shows that there are no fundamental differences between the
empirical risks for the median, but that STAQ models clearly outperform AMMs for other quantiles.
This result is in accordance with Figure 7.2, which together demonstrates that STAQ models are
more appropriate for handling the age-specific skewness of the BMI distribution than AMMs.
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Figure 7.1 Estimated nonlinear BMI quantile curves by age resulting from (a) AMM and from STAQ
models for (b) τ = 0.50, (c) τ = 0.90, and (d) τ = 0.97. Shown are BMI observations (grey
points) with estimated curves (grey lines) for 50 different bootstrap samples; the superimposed
red line represents the estimated nonlinear quantile curve of the respective model on the full
dataset. Quantile curves are adjusted for a fixed combination of time-constant covariates
(mean for continuous covariates, reference category for categorical covariates).

To assess the uncertainty for individual-specific mean predictions, we constructed individual-
specific 90% prediction intervals based on estimated 5% and 95% BMI quantile curves. This
procedure was based on the suggestion in Meinshausen (2006) and was made in analogy to
Mayr et al. (2012c). Figure 7.4 shows individual-specific BMI quantile curves depending on age
for 12 randomly chosen children estimated by AMMs. The dashed quantile curves, corresponding
to the interval limits, are parallel shifts of the mean curves. The symmetric shape and the distance
between the curves remains the same for all children. The offset differences between children can
be attributed to the child-specific intercept and covariate combination; the shape differences can
be attributed to the child-specific slopes. One can see that the mean curve reproduces the true
BMI pattern (in grey) in most cases.

For STAQ models, individual-specific BMI quantile curves are shown in Figure 7.5. Since the
three quantile curves are estimated independently from each other, the quantile curves are no
longer parallel shifts of the mean/median curves, as was the case for AMMs. The interval widths
vary notably between children since the individual-specific intercepts estimated by STAQ models
differ for the different quantiles. The upper quantile curves, in particular, seem to account better
for the increasing skewness of the BMI distribution with increasing age than the ones of AMMs.
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Figure 7.2 Comparison of AMM (solid lines) and STAQ (dashed lines) results for the four quantiles
τ = 0.10, τ = 0.50, τ = 0.90, and τ = 0.97. Shown are BMI observations (grey points)
with estimated nonlinear quantile curves depending on age and a fixed combination of time-
constant covariates (mean for continuous covariates, reference category for categorical
covariates).

Figure 7.3 Risk comparison of STAQ and AMM for the four quantiles τ = 0.10, τ = 0.50, τ = 0.90, and
τ = 0.97. Boxplots show empirical distributions of the empirical risks calculated on 50 out-of-
bag (OOB) bootstrap samples. Results for one out-of-bag sample are connected by grey lines.

However, there are almost no individual-specific slope differences. Note that this is contrary to
AMMs which capture the BMI skewness at the age of 10 years by the individual-specific slopes
(see Figure 7.4). On population level, however, AMMs do not succeed to adequately model the
BMI skewness (see Figure 7.2).
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Figure 7.4 Individual-specific BMI quantile curves estimated by AMMs for 12 randomly chosen children.
Solid black lines show the estimated mean, while the dashed lines show the estimated 5% and
95% quantile curves, respectively. Observed BMI values are displayed by grey line-connected
points.

The results of smooth nonlinear effects for covariates other than age are not shown but briefly
described here. With regard to the effect of maternal BMI, the shape of all BMI quantile curves
looks roughly similar. The effect increases with increasing maternal BMI and remains constant
from maternal BMI values around 30 kg/m2. The slope of the 97% BMI quantile is estimated
to be larger than that of other quantiles. The effect of maternal BMI gain during pregnancy is
estimated to be almost linear and slightly increasing throughout all models, which suggests that
larger maternal BMI gains during pregnancy result in larger BMI values of children.
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Figure 7.5 Individual-specific BMI quantile curves estimated by STAQ models for 12 randomly chosen
children. Solid black lines show the estimated median, while the dashed lines show the
estimated 5% and 95% quantile curves, respectively. Observed BMI values are displayed by
grey line-connected points.

Regarding age-varying effects, Figure 7.6 exemplarily displays estimated age-varying effects for
high compared to low maternal education. The effect of high maternal education is estimated to
be almost zero for the BMI median and the 10% quantile. Yet, estimated upper BMI quantiles are
smaller for children whose mothers have achieved a high school diploma (compared children of
mothers with “CSE or Hauptschule”). These effects are not present at birth and do not emerge
before the age of around 5 years. Then they show a continuing decrease until the age of 10
years. One should be cautious to attribute this effect on maternal education only, since maternal
education is closely related to the socio-economic status and can also be seen as a proxy of
further life style factors.
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Figure 7.6 Estimated age-varying effects for high maternal education (mEdu=3) compared to low
maternal education (mEdu=1) resulting from STAQ models for all four quantile parameters.
Age-varying effects are shown by solid black lines (full model) and grey lines (50 different
bootstrap samples). Dashed line at zero corresponds to the reference category.

The results for further age-varying effects are shown by Figure 7.7. Concerning sex, conditional
BMI quantiles for boys are estimated to be larger than those for girls, and the effect size is clearly
varying with age. The results for study location suggest that upper BMI quantiles of children living
in urban areas are smaller than those of children from rural areas. Yet, this effect is not present
for the median and the 10% quantile and not before the age of 7 years. Both age-varying and
main effects of breastfeeding are estimated to be almost zero for all quantiles. Maternal smoking
during pregnancy exerts a slightly positive effect between three and six years and no clear effect
afterwards, but the effect clearly varies with age. Age-varying effects of maternal education refer
to the reference category of low maternal education (mEdu=1, “CSE or Hauptschule”). The age-
varying effect of high maternal education was already shown and discussed in Figure 7.6. Medium
maternal education (mEdu=2, “secondary school or Realschule”) does not show an age-varying
effect.

To sum up, such age-varying effects as observed for sex, study location, maternal smoking, and
education can only be detected with STAQ models, since they are only present for upper BMI
quantiles.
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Figure 7.7 Estimated age-varying effects for all categorical covariates resulting from STAQ models for
τ = 0.90. Age-varying effects are shown by solid black lines (full model) and grey lines (50
different bootstrap samples). Dashed line at zero corresponds to the respective reference
category.
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Regarding the results for individual-specific effects, Figure 7.8 shows empirical kernel densities
of the estimated child-specific effects from AMM and STAQ model median models. As discussed
in Section 5.4, the shapes of the densities seem to be approximately Gaussian. However, the
effects estimated by STAQ models are considerably shrunken towards zero compared to the
effects estimated by AMM. This can be explained by the inherent shrinkage property of boosting.
In particular, the individual-specific slopes are estimated to be almost zero.

Figure 7.8 Comparison of the empirical densities (obtained by kernel density estimation) of individual-
specific intercepts and slopes from AMM and STAQ median models on the full dataset (black
line) and on 50 bootstrap samples (grey lines).

Furthermore, Table 7.1 contains the empirical correlation coefficients between estimated
individual-specific effects for all models. There are large positive correlations between individual-
specific intercepts and rather large correlations between individual-specific slopes. Intercepts and
slopes show almost no respective correlations.
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Table 7.1 Empirical correlation coefficients between individual-specific intercepts and slopes estimated by
the AMM and STAQ models on the full LISA dataset.

Intercept Slope
AMM STAQ STAQ STAQ STAQ AMM STAQ STAQ STAQ STAQ

10% 50% 90% 97% 10% 50% 90% 97%

In
te

rc
ep

t

AMM 1.00 0.74 0.93 0.83 0.64 0.14 0.02 0.03 0.04 0.02
STAQ 10% 0.74 1.00 0.70 0.41 0.26 0.04 0.01 0.01 -0.01 -0.03
STAQ 50% 0.93 0.70 1.00 0.71 0.48 0.08 0.03 0.02 0.00 -0.02
STAQ 90% 0.83 0.41 0.71 1.00 0.79 0.14 0.02 0.04 0.06 0.01
STAQ 97% 0.64 0.26 0.48 0.79 1.00 0.16 0.02 0.02 0.09 0.05

S
lo

pe

AMM 0.14 0.04 0.08 0.14 0.16 1.00 0.51 0.79 0.75 0.58
STAQ 10% 0.02 0.01 0.03 0.02 0.02 0.51 1.00 0.50 0.18 0.08
STAQ 50% 0.03 0.01 0.02 0.04 0.02 0.79 0.50 1.00 0.50 0.29
STAQ 90% 0.04 -0.01 0.00 0.06 0.09 0.75 0.18 0.50 1.00 0.69
STAQ 97% 0.02 -0.03 -0.02 0.01 0.05 0.58 0.08 0.29 0.69 1.00

To complete the picture, Figure 7.9 shows the boosting paths of estimated individual-specific
intercepts and slopes for 200 randomly selected children based on the full models for three
different quantile parameters. For all quantiles, one can observe the typical grouping effect
of effects estimated by ridge penalization (as described in Section 5.4). The grouping seems
to be most pronounced for the intercepts at non-median quantiles. For the median, the
individual-specific effects scatter symmetrically around zero. For the other quantiles, however,
the distributions of the intercepts are skewed. We attribute this phenomenon to the asymmetric
loss function together with the underlying binary character of the negative gradient residuals.

For the 90% quantile, for example, the negative gradient residuals can only take the two values
0.9 and -0.1. The individual-specific intercepts are estimated by least squares related to zero
(without intercept). Therefore, the absolute size of negative values cannot be as large as the
one of positive values. With additional shrinkage induced by multiplication with the step length
parameter ν, the absolute size of negative increments becomes even smaller. Thus, it would take
a large number of iterations to obtain a symmetric distribution. For the 10% quantile, it is exactly
the other way around and positive increments can only be very small.

Regarding the individual-specific slopes, one can observe that they are not selected before the
2000th iteration in any of the models. With knowledge on the variable selection properties of
boosting in mind, this indicates that individual-specific slopes are not as important as intercepts
and other covariates in the analysis. The slopes probably capture some of the remaining error
variability.

Finally, note that in a simultaneous analysis with respect to missing data, we created an imputed
version of the LISA dataset using several missing data imputation methods. Then, we repeated
all statistical analyses with the imputed data. Overall, we obtained very similar results as from the
complete case approach.
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Figure 7.9 Paths of estimated individual-specific intercepts (left column) and individual-specific slopes
(right column) for 200 randomly selected children, depending on quantile parameter
τ ∈ {0.10, 0.50, 0.90} and 5000 boosting iterations from the respective models on the full
dataset. The degree of grey intensity depends on the number of overlapping paths.
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7.3 Discussion

Key findings

The comparison of STAQ models with classical Gaussian AMMs suggested that STAQ models
can better handle the age-specific BMI skewness and are thus more adequate than AMMs when
the interest is directed towards overweight and obesity.

By using quantile regression, we obtained similar results as Beyerlein et al. (2008, 2010) with
regard to time-constant risk factors: Apart from age, other risk factors also exert their effect in a
different way on upper quantiles of the BMI distribution than on the mean. In our analysis here,
we could additionally assess individual-specific BMI patterns during life course and age-varying
effects.

The results of the smooth age-varying effects of categorical covariates were particularly
interesting. For several variables, quantile curves were estimated to be similar until a certain
age period at which the age-varying effects emerged. For example, the effect of high maternal
education did not become apparent before the age of around 5 years. Then the effect size slowly
increased until it was most pronounced at the age of 10 years. To the best of our knowledge, such
age-varying effects have not yet been investigated in the obesity literature.

Strengths and limitations

By applying STAQ regression for upper quantiles of the BMI distribution, it was possible to
adequately and flexibly model the age-specific skewness of the BMI distribution while adjusting
for other risk factors and individual-specific effects. Since we analyzed raw BMI values directly,
our analysis did not require reference charts to construct a binary or Z-score response which are
modelled in usual regression approaches for overweight and obesity.

We applied boosting estimation which is currently the only approach that can estimate individual-
specific and smooth nonlinear effects as well as varying coefficient terms in the same STAQ
predictor. By including individual-specific effects, the model accounted for the temporal correlation
between repeated measurements. Varying coefficient terms enabled several age-varying effects
of time-constant risk factors to be detected.

In addition, our life-course approach allowed to adequately model individual-specific BMI patterns,
as illustrated by Figure 7.5. The figure shows individual-specific 90% BMI prediction intervals
which were constructed in accordance with the approaches in Meinshausen (2006) and Mayr
et al. (2012a). First, two separate models for the 5% and 95% BMI quantiles were estimated and
then, the individual-specific quantile predictions were taken as interval limits.

An inherent limitation of boosting estimation is that subsampling strategies have to be applied in
order to obtain standard errors. This can be computationally challenging and time-consuming –
in particular when a large dataset with many individuals is analysed, as was the case here.

Furthermore, it is probably not yet satisfying that the distribution of the individual-specific effects
at upper quantiles was skewed at the optimal stopping iteration, and not Gaussian as theoretically
expected. The strong shrinkage and grouping of the individual-specific effects can be attributed
to the small degrees of freedom that are conceded to the corresponding base learner in order to
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equalize selection probabilities. Due to the small number of covariates in our analysis, we did not
pursue to study variable selection results in more detail.

Implications for future research

We believe that quantile boosting for STAQ models is a promising approach for further
investigating risk factors for overweight and obesity, since analyzing upper quantiles of the BMI
distribution is more adequate than analyzing the mean for this purpose. Furthermore, quantile
regression does not incur information coarsening in the same way as usual binary regression
approaches.

From an epidemiological point of view, further investigation of the age-varying effects could lead
to additional insights and could, for example, explain differences between findings on the impact
of risk factors in previous studies relying on different age populations. It would also be interesting
to re-run the analysis with data from an additional time point (which is currently collected) since
the BMI skewness becomes even more pronounced for older children.

Another relevant research question would be to investigate if children with similar BMI life-course
patterns can be clustered into groups. In a previous analysis of the LISA study, Heinzl et al.
(2012) clustered BMI patterns of children until the age of 6 years based on extensions of AMMs.
Analogue statistical methodology would have to be developed for quantile regression.

Regarding the quantile boosting algorithm, the grouping of paths of the individual-specific effects
at extreme quantiles should be further investigated.

Finally, it might have seemed obvious that quantile regression would be more adequate than
Gaussian mean regression in our analysis. However, we would like to stress that the use
of Gaussian AMMs for quantile modelling makes sense when the response distribution is
homoscedastic and approximately Gaussian conditional on covariates. In a previous analysis
of the LISA study (Fenske et al., 2008), for example, observations were only available until the
age of 6 years. AMMs could compete with the more complex quantile regression models since
the age-specific BMI skewness is not present until the age of 6 years (see Figure 2.9). In such
cases, we would recommend to use the well-studied framework of AMMs for longitudinal quantile
regression instead of applying more complex quantile regression strategies.

7.4 Related own work

This section gives a short overview of further work related to the topic of child overweight and
obesity with own contributions.

In a recent master’s thesis, Reulen (2011) conducted a life-course analysis of risk factors for
child overweight and obesity similar to the one presented here. With the particular aim of
investigating age-varying effects of time-constant risk factors, STAQ models were estimated by
quantile boosting. The analysis relied on a pooled dataset with data from four different longitudinal
studies. As in our analysis, age-varying effects were detected for child sex, maternal smoking
during pregnancy, and maternal education, and these effects were even more pronounced than in
our analysis. These greater absolute sizes can be explained by the larger number of observations
in the pooled dataset.
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In another recent master’s thesis, Riedel (2011) investigated nonlinear effects of risk factors for
child overweight and obesity based on a cross-sectional dataset. The analysis setup followed
Beyerlein et al. (2010) where the effects of continuous covariates had simply been included in a
linear way. The main question of the master’s thesis was to investigate whether assuming linear
effects as in Beyerlein et al. (2010) was adequate or too restrictive, i.e., if the effects of continuous
covariates should be modelled in a nonlinear way. Therefore, STAQ models were estimated by
quantile boosting with the decomposition of smooth nonlinear effects into linear part and nonlinear
deviation as described in equation (4.5) on page 67. The results indicated that nonlinear modelling
is only necessary for the effect of maternal BMI on upper BMI quantiles. The other continuous
covariates (weight gain until the age of around 2 years and birth weight) seemed to be adequately
modelled by linear effects for all quantiles.

In Mayr et al. (2012c), we studied the construction of prediction intervals (PIs) with quantile
boosting based on the LISA study. Due to the skewness of the BMI distribution, the construction of
PIs for future BMI values with standard (symmetric) approaches was problematic – in the similar
way as using AMMs for BMI modelling. With quantile boosting, the borders of a PI are directly
estimated based on an interpretable predictor structure. Thereby, distributional assumptions
are avoided and the interval borders are not just parallel shifts of the mean curves (as shown
in Figure 7.5). The analysis in Mayr et al. (2012c) showed interesting results. For example,
estimated PIs for children of mothers who smoked during pregnancy were larger than the PIs
for other children. We additionally pointed out the general concept of conditional coverage –
in contrast to sample coverage which is usually applied – to prove the accuracy of prediction
intervals.

Page 133



Chapter 7: Quantile boosting for child overweight and obesity in Germany

Page 134



Chapter 8: Discussion and outlook

Chapter 8: Discussion and outlook

8.1 Summary and contributions of this thesis

The present thesis introduced the generic model class of structured additive quantile regression
(STAQ). In this model class, quantile regression was combined with a structured additive predictor
and, thereby, flexible modelling of a variety of different covariate effects was made possible.

To estimate the parameters of STAQ models, a broad overview of existing state-of-the-art
estimation approaches was given. Each approach was classified into one of three categories
(distribution-free approaches, distribution-based approaches, or related model classes) and was
systematically discussed with respect to four previously defined criteria.

We believe that this systematic overview is an important contribution to quantile regression
research since we are not aware of any other comparable work. We structured a wide range
of estimation approaches for quantile regression and in particular compared distribution-based
and distribution-free concepts – in contrast to most of the literature which concentrates on
approaches within one of our categories only. For example, the book of Koenker (2005) thoroughly
treats one important group of approaches which we denoted by “classical framework” of quantile
regression. The book of Hao and Naiman (2007) gives an application-oriented introduction to
quantile regression but also focusses on the classical framework. Due to their compact character,
most research papers cite only a few approaches related to their new developments. Hence, we
think that our overview and the suggested structure can be helpful to classify novel estimation
approaches and to spot areas with further research potential.

The main methodological contribution of this thesis is quantile boosting – a boosting algorithm
that was introduced as alternative approach to estimate STAQ models (based on Fenske, Kneib,
and Hothorn, 2011).

We thoroughly discussed quantile boosting with regard to our predefined criteria and evaluated
the algorithm in several simulation studies. We concluded that quantile boosting provides great
advantages over the other existing estimation approaches regarding the flexible predictor, variable
selection in high-dimensional settings and software (see Section 8.2 for details on advantages and
limitations of quantile boosting).

Furthermore, we investigated whether the use of STAQ models – in particular in combination with
quantile boosting – could lead to new substantial insights in two relevant applications from the field
of epidemiology. We conducted a comprehensive analysis of risk factors for child undernutrition in
India as well as a life-course analysis of risk factors for child overweight and obesity in Germany.
Since the distributions of anthropometric measurements in childhood are typically skewed, STAQ
regression was a priori assumed to be well-suited for these applications. We believe that the
results of both analyses contribute to subject-matter knowledge on risk factors for undernutrition
and obesity (see Section 8.3 for a more detailed discussion).
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8.2 Discussion of quantile boosting

This section briefly describes the advantages and limitations of quantile boosting compared to
other estimation approaches for STAQ regression. It is based on Section 4.4, which contains a
thorough discussion of the properties of quantile boosting.

Advantages of quantile boosting

Boosting with early stopping is a shrinkage method that yields sparse models. Component-wise
boosting thus combines two general aims of statistical learning: prediction (by shrinkage of effect
estimates) and interpretation (by splitting the predictor into univariate base learners). For quantile
regression, component-wise boosting is in particular appealing because the minimization problem
relying on a sum of weighted absolute deviations is solved by methods from the well-studied L2-
norm framework.

Quantile boosting offers advantages over the other presented estimation approaches for STAQ
models with respect to almost all four criteria for model assessment. Regarding the flexible
predictor, quantile boosting can estimate a large variety of different effects in the same STAQ
predictor. In particular the combination of smooth nonlinear and individual-specific effects has so
far not been possible for other distribution-free estimation approaches. With respect to nonlinear
effects, quantile boosting allows for the data-driven determination of the amount of smoothness of
nonlinear effects – contrary to estimation by total variation regularization yielding piecewise linear
functions.

One of the major advantages of quantile boosting over the other estimation approaches relate
to the inherent variable selection and model choice properties. Since parameter estimation and
variable selection are performed in one single estimation step, boosting is particularly favourable
for high-dimensional predictors and can even be applied in settings with (much) more covariates
than observations. Furthermore, boosting can decide on linearity vs. nonlinearity of an effect in a
fully data-driven way within the fitting process.

The superiority of boosting in high-dimensional settings was also confirmed by our simulation
studies. In low-dimensional simulation setups, quantile boosting performed on par with estimation
approaches from the classical framework. In higher-dimensional simulation setups, however,
quantile boosting clearly outperformed all other approaches.

Compared to software for other estimation approaches, the R package mboost is currently the
only software that allows to fit the full variety of different effect types from the structured additive
predictor. In comparison with the (standard) R package quantreg, more complex models with a
larger number of smooth nonlinear effects can be fitted.

Limitations of quantile boosting

The probably most problematic limitation of boosting is the lack of standard errors for the
parameter estimators. Since boosting just yields point estimators, subsampling strategies, such
as the bootstrap, have to be applied to obtain standard errors. However, this should not be rated
as a fundamental drawback compared to other estimation approaches. In practice, most of them
also rely on bootstrap to obtain standard errors since the asymptotic covariance matrix of the
estimators depends on the true (unknown) error density.
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Another limitation of quantile boosting is that quantile crossing is not prevented. Similar to the
majority of the other estimation approaches, the estimation is performed separately for different
quantile parameters and, therefore, quantile crossing can occur. From the approaches considered
in this thesis, quantile crossing is only prevented with Gaussian STAR models and GAMLSS due
to their direct modelling of the full conditional response distribution.

Finally, boosting estimation can be computationally expensive and time-consuming for large
datasets. Even though the R package mboost provides a well-equipped and user-friendly
software, some basic understanding of the (relatively complex) boosting algorithm is required to
correctly handle and interpret the estimation results. Therefore, statistical modelling with boosting
might be a challenging task for practitioners.

8.3 Discussion of the application results

In this section, we briefly discuss if applying STAQ models together with quantile boosting led to
new substantial insights regarding our applications. More detailed discussions of the respective
results can be found in Sections 6.3 and 7.3.

Undernutrition of children in India (Section 2.1 and Chapter 6)

The results of our quantile regression and logistic regression models with the same flexible
predictor were largely comparable with respect to the size and significance of estimated effects
and the shape of nonlinear effects. We attribute these findings to the symmetric distribution of
the Z-score response, suggesting that standard logistic regression can compete with quantile
regression for analyzing determinants of child stunting.

However, our analysis showed that several continuous covariates exert their effect on stunting in a
nonlinear way. By additionally including age-varying effects for breastfeeding and complementary
feeding in the model predictor, we could also confirm the age-dependent impact of these
variables on child stunting and thereby investigate the corresponding WHO recommendations. We
conclude that a flexible predictor should be considered in future regression analyses of potential
determinants of child stunting. As demonstrated by our analysis, the estimation of such models
can for example be realized by boosting.

Our analysis was also innovative with respect to the selection of covariates for the analysis.
We developed a schematic diagram of the multiple determinants of stunting and selected the
covariates for our later regression analyses based on this diagram.

As a result, a large number of covariates was included in our analyses. Since boosting combines
parameter estimation and variable selection in one estimation step, subsequent steps of variable
selection were not necessary – contrary to classical likelihood-based regression where, for
example, AIC-based model comparisons would have had to be conducted.

Finally, for all but one of the groups of determinants we conceptualized in our diagram, we found
at least one variable with a significant effect in all quantile and logistic regression analyses. This
emphasizes the broad range of causes of child stunting and suggests many potential entry-points
for intervention.
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Overweight and obesity of children in Germany (Section 2.2 and Chapter 7)

Our analysis showed that STAQ models can better handle the age-specific BMI skewness
beginning at the age of seven than additive mixed models with Gaussian errors. Since we were
interested in analyzing overweight and obesity, quantile regression for upper BMI quantiles was
more adequate than mean regression. Regarding estimation, quantile boosting is currently the
only approach that allows to fit longitudinal STAQ models with many individuals, as present for the
LISA data. Hence, we combined an adequate statistical model with the currently only possible
estimation method in our obesity analysis.

With regard to risk factors for overweight and obesity, we obtained novel results for the smooth
age-varying effects of categorical covariates. To the best of our knowledge, such age-varying
effects have not yet been investigated in the obesity literature. The results for individual-specific
BMI patterns were also interesting and we plan further investigation of these findings.

From a methodological point of view, the comparison of STAQ and GAMLSS models for analyzing
obesity would also have been interesting. However, the currently available software does not allow
to estimate longitudinal GAMLSS models with a large number of individuals. The alternative of
boosting estimation based on the gamboostLSS algorithm (Mayr et al., 2012a) has not yet been
sufficiently investigated for estimating longitudinal GAMLSS models.

In summary, we believe that STAQ models based on quantile boosting are a promising approach
for longitudinal quantile regression, not only for modelling overweight and obesity, but for all
applications where the shape of a response variable changes over time depending on covariates.

8.4 Possible directions for future research

In the following, we sketch several possible entry-points for future research on estimation
approaches for STAQ models and related model classes. We thereby focus on alternatives for the
classical framework (which aims at direct minimization of the quantile regression loss criterion).

Boosting framework

Beginning with boosting algorithms, we think that further empirical investigations to compare
STAQ and GAMLSS models estimated by boosting would be useful since these approaches have
not yet been compared in practice. In our view, GAMLSS has high potential for becoming a
competing model class to quantile regression, in particular in combination with boosting estimation
and its beneficial variable selection properties. Thus, we think that empirical comparisons
between quantile boosting and the gamboostLSS approach (Mayr et al., 2012a) could lead to
additional insights, especially when flexible predictors in longitudinal data settings are considered.

In addition, empirical evaluations of the stability selection procedure of Meinshausen and
Bühlmann (2010) would be interesting since its performance in connection with boosting has
not yet been studied. Stability selection controls the family-wise error rate, i.e., the probability to
falsely include base learners in the model, and offers a formal variable selection procedure that
can simply be applied to the final model after boosting estimation. Moreover, it does not require
the calculation of the final degrees of freedom. Our results from the analysis of child stunting in
India also indicate that stability selection is a promising procedure for formal variable selection
subsequent to boosting.
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Expectile regression

In this thesis, we considered expectile regression as related model class of quantile regression
(see Section 3.5.1). The main advantage of expectile regression over the classical framework of
quantile regression is that its quadratic loss function is continuously differentiable and, therefore,
estimation can be performed within the well-studied L2 framework. This is somehow similar
to boosting which tackles the quantile regression minimization problem of weighted absolute
differences by penalized least squares base learners.

However, expectile regression offers the additional advantage that the asymptotic covariance
matrix of the estimators does not depend on the true error density. For this reason, standard
errors can be easily obtained with expectile regression.

Even though expectiles are not provided with an intuitive interpretation (as given for quantiles), we
believe that expectile regression is very promising for becoming a supporting or even competing
model class for quantile regression. In our view, empirical comparisons of structured additive
expectile and quantile regression, for example in simulation studies and data applications, can
contribute to further figure out similarities and differences of both approaches.

Simultaneous modelling of the complete response distribution

In recent years, several approaches have been developed which aim at simultaneous modelling
of the complete response distribution conditional on covariates. As a distribution-based example
for these approaches, we considered GAMLSS models in this thesis (see Section 3.5.3). Another
example is given by conditional transformation models that are completely distribution-free and
were recently developed by Hothorn et al. (2012). Approaches which aim at simultaneous
inference for all response quantiles have also been developed based on flexible Bayesian
estimation. In Reich et al. (2011) and Reich (2012), for example, the (stochastic) quantile process
was considered and modelled as a whole.

Although most of these models do not provide an interpretable relationship between covariates
and quantile function, the implicit prevention of quantile crossing makes them particularly
appealing for quantile modelling. Therefore, we believe that these approaches can be good
alternatives to quantile regression in appropriate application scenarios, and further investigation
of these models seems to be promising.

Flexible Bayesian quantile regression

Finally, we believe that further developments of flexible Bayesian estimation approaches offer
additional research potential. Embedding quantile regression in a full Bayesian framework would
help to overcome problems regarding the asymptotic covariance matrix of quantile regression
estimators since credibility intervals and standard errors for the parameter estimates are directly
available with Bayesian estimation.

Another great advantage of Bayesian algorithms relates to longitudinal data. From a Bayesian
point of view, all model parameters are treated as random and no difference is made between
“fixed” and “random” effects. Therefore, the extension of a Bayesian algorithm to random
effects for longitudinal data is natural and often straightforward when choosing adequate prior
distributions. This makes Bayesian approaches particularly promising since appropriate methods
for longitudinal quantile regression are urgently needed.
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In our view, existing Bayesian approaches based on the asymmetric Laplace distribution (see,
for example, Yu and Moyeed, 2001; Tsionas, 2003; Yue and Rue, 2011) do not provide a
solution to the problem of parameter inference. Due to the quasi-likelihood character of the error
density, these approaches in most cases lead to misspecified standard errors, as for example
demonstrated in Reich et al. (2010).

The main challenges for developing a suitable Bayesian approach for quantile regression are (i) to
specify a flexible error density that “imitates” the distribution-free character of quantile regression
and at the same time is appropriate for MCMC sampling, and (ii) to handle the stochastic
constraint Fετi(0) = τ on the cdf of the error distribution.

To be more concrete, we shortly sketch our own ideas for a flexible Bayesian approach in the
following. In analogy to the approach in Reich et al. (2010), which was shortly sketched in Section
3.4.2 (see model (3.9)), our idea is to consider the following location-scale model:

yi = x>i β + (x>i γ) εi with εi
iid∼ Fε , (8.1)

where x>i γ is constrained to be positive for all xi. The error terms εi are assumed to be iid with
cdf Fε and density fε. For a given quantile parameter τ ∈ (0, 1), model (8.1) is identical to the
following quantile regression model:

yi = x>i βτ + (x>i γ) ετi with ετi
iid∼ Fετ . (8.2)

Here, βτ = (β + zτγ) denote quantile-specific coefficients and ετi = εi − zτ stand for error terms
corresponding to the original errors εi shifted by the τ · 100% error quantile zτ = F−1ε (τ). Thus,
the quantile-specific errors ετi are also iid distributed with cdf Fετ , which is just a location-shifted
version of Fε and by definition fulfills the quantile constraint Fετ (0) = τ .

We express the error density fε in model (8.1) by a finite mixture of Gaussian densities

fε(ε) =

K∑
k=1

wkφk(ε|µk, σ2
0) ,

with K being the number of mixture components, weights wk with
∑K
k=1 wk = 1 and wk > 0,

and Gaussian mixture densities φk(·|µk, σ2
0) for components k = 1, . . . ,K with mean µk and fixed

variance σ2
0 .

We estimate the error density fε by a penalized Gaussian mixture as described in Komárek and
Lesaffre (2008). The number of density components is chosen very large, e.g., K = 20, and
the corresponding means µk are fixed on a fine equidistant grid so that E(ε) = 0 and V(ε) = 1.
After a suitable transformation of the weights wk to avoid constraints, the weight parameters are
estimated in a penalized way so that weights of neighbouring density components are more similar
than weights of non-neighbouring components. Estimation is then realized by MCMC sampling.

Note that this concept for estimating the error distribution corresponds to estimating nonlinear
effects based on P-splines. As remarked by Komárek and Lesaffre (2008), this model can be
seen as a limiting case of classical B-spline smoothing by Eilers and Marx (1996) since Gaussian
densities result when the degree of B-spline basis functions tends to∞.
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Altogether, this estimation procedure considerably simplifies the approach suggested in Reich
et al. (2010) for the same location-scale model. Since the models (8.1) and (8.2) are equivalent,
we can concentrate on the estimation of the parameters for model (8.1) and afterwards simply
calculate the estimators β̂τ = β̂ + ẑτ γ̂ and their standard errors for model (8.2).

Although this approach might seem to be limited since it only addresses a location-scale model,
we think that it is very promising for flexible quantile regression. The model specifies the complete
conditional response distribution and covers heteroscedastic data settings with non-standard error
densities. Furthermore, the estimation concept is intuitive and much easier than, for example, the
one proposed by Reich et al. (2010) which tries to handle the quantile constraint in a complicated
way. Extensions of the model to a structured additive predictor would be straightforward since the
different types of effects could be realized in a similar way as in the different components of the
Bayesian STAR model in Fahrmeir et al. (2004).

We plan to work out our approach in more detail in the next future and to compare the estimation
results with those from quantile boosting.
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