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1 SUMMARY 

 Embryonic development is characterized by a series of morphological and 

molecular processes caused by and resulting in the spatio-temporal activation and 

repression of pools of genes. The pluripotent trait, key feature of embryonic stem 

(ES) cells, is progressively restricted and finally lost as soon as embryonic cells 

become specified. Cellular differentiation therefore reflects a series of molecular 

signatures, established by a properly orchestrated network of transcription factors 

and epigenetic mechanisms. Recent studies have indeed revealed that dynamic 

changes in chromatin structure and composition represent fundamental processes, 

which define the “epigenetic landscape” and contribute to fix the identity of cells. 

 Methylation of histone proteins, and the consequent activation or repression 

of gene expression, is increasingly considered as an important regulatory layer in 

development. In particular, repressive histone trimethylation marks are found on 

conserved lysine residues in position 9 and 27 of histone H3 and in position 20 of 

histone H4. While H3K9me3 and H3K27me3, as well as the functions of many 

histone methytransferases (HMTases) associated with these marks, have been 

characterized, our knowledge of the function of Suv4-20h1 and Suv4-20h2 enzyme 

during development is rather limited. 

 My Ph.D. project was aimed to investigate the function of H4K20 di- and 

trimethylation during Xenopus development by gain and loss of function analysis for 

the corresponding HMTases xSuv4-20h1 and xSuv4-20h2. Three main insights 

arose from this work: 

1. H4K20me2 and me3 depleted embryos show a specific block in 

neuroectoderm differentiation and ciliogenesis, with no dramatic effect on 

formation of the mesoderm and endoderm germ layers. 

2. The expression of the pluripotency-associated gene Oct-25 persists in the 

ectodermal sensorial cell layer of xSuv4-20h depleted embryos, interfering 

with the transcriptional activation or activities of key regulators of 

neurogenesis and probably ciliogenesis. 

3. Murine Suv4-20h double knockout (DKO) ES cells have higher levels of the 

POU-V pluripotent gene Oct4 while undifferentiated, and maintain higher 

levels during differentiation, compared to the wild-type cells. This result 
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suggests that repression of the POU-V genes through Suv4-20h enzymes 

might be an evolutionary conserved mechanism.   

 These results indentify Suv4-20h enzymes as novel regulators of ectoderm 

differentiation and pluripotency associated POU-V gene expression.
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2 INTRODUCTION 

2.1 Xenopus as a model organism 

 In the last century the South Africa clawed frog Xenopus laevis has been 

widely used in the field of experimental biology. The ease of maintaining Xenopus in 

captivity, the external fertilization coupled to the high number of eggs produced and 

the large size of the embryos, which allows easy manipulations and microdissections, 

represent the main features of this organism. At the same time well-established 

molecular techniques like RNA in situ hybridization, antisense technology and protein 

overexpression, make it possible to address many questions about how the 

vertebrate body is patterned and structured. On the other hand, the pseudotetraploid 

genome and the long generation time, pose a disadvantage for genetic studies. 

These obstacles may be overcome by the use of Xenopus tropicalis, which while 

retaining many advantages of laevis, has a diploid genome (recently sequenced 

(Hellsten, Harland et al. 2010)), and a considerably shorter generation time. The two 

closely related species represent amphibian model organisms that are exceptionally 

useful to combine embryological, cell biological and genetics experiments. 

 Xenopus eggs are characterized by the pigmented upper surface (animal 

pole) and the non-pigmented lower surface (vegetal pole) enriched in yolk. After 

fertilization, twelve successive mitotic divisions without G- phases shape the embryo 

in a ball-like structure known as blastula, consisting of many small cells surrounding 

the fluid-filled cavity blastocoel, placed above larger yolky cells. Already at this 

developmental stage, inductive events have occurred and the cells, although still 

pluripotent (Heasman, Wylie et al. 1984), interacting with each other, become 

partially specified. A blastula stage the embryo can be divided in three broad regions: 

the animal pole, which forms the roof of the blastocoel and will give rise to the 

ectoderm, the marginal zone, which is the equatorial region of the embryo that will 

differentiate in to mesoderm, and the vegetal pole, which will give rise to the future 

endoderm (Heasman 2006). A key step in the embryonic development is represented 

by the activation of the zygotic transcription, known in frogs as mid-blastula transition 

(MBT). This event, characterized by changes in the chromatin state (active 

transcription of zygotic genes) as well as in the cell cycle regulation, is a pivotal 

precondition for the following step, gastrulation. At gastrula stage dramatic 

rearrangements of embryonic structures occur: the involution of the marginal zone 

cells, coupled to the convergent extension of the mesoderm and the concomitant 
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epiboly of the prospective ectoderm, pattern the embryo in a three-dimensional 

multilayered body plan. The three germ layers (outer ectoderm, inner endoderm and 

interstitial mesoderm) are thus established. Starting at late blastula and proceeding 

during early gastrulation, a portion of the dorsal ectoderm is specified to become 

neural ectoderm. During this process, called neurulation, the neural tube is formed: 

its anterior-most portion will give rise to the brain, while the posterior region will 

originate the spinal cord. Neurulation represents one of the first events that 

characterized the process of organogenesis, during which the number of specialized 

cells increase to accommodate formation of the different organs. Embryogenesis is 

completed when the tadpole hatches at an age of three days (NF48) and takes up 

feeding to prepare to metamorphosis, prior to becoming a sexually mature frog. 

 

2.1.1 Inductive events during Xenopus development 

As mentioned above, the Xenopus egg is polarized along the animal-vegetal axis. 

The original asymmetry refers to the localization of maternally provided mRNAs and 

proteins. The polarity influences the pattern of the cleavage division. While mRNAs 

and proteins from housekeeping genes are equally present in the unfertilized egg, 

the product of some specific developmental regulatory genes are differentially 

distributed within the egg (Heasman 2006). In particular, the vegetal pole is enriched 

in factors that exert a pivotal function in the early stages:  Veg-T, Vg-1, and Xwnt-11 

mRNAs represent crucial transcripts components for the initial inductive events. 

Among these factors, the T-box protein Veg-T, inherited equally by all vegetal cells, 

is essential for the correct spatial organization of endoderm and mesoderm. Veg-T 

activates the expression of pro-endodermal genes like Sox17, GATA factors and 

Mixer (Heasman 2006), which in turn regulate downstream targets implicated in 

endoderm formation. Mixer, for example, induces Sox17 while represses the 

mesodermal genes eomesodermin and fgf8, exerting a key role in the separation of 

mesoderm and endoderm fates (Heasman 2006). Veg-T also activates the 

transcription of Nodal related proteins (Xnr1, Xnr2, Xnr4) and Derrière (Kimelman 

and Griffin 2000). The synergistic interaction with the Wnt pathway effector β-catenin, 

stabilized in the future dorsal side of the embryo at mid-blastula, induces a higher 

expression of Xnr genes dorsally than ventrally.  

 This gradient is critical for mesoderm induction. In the vegetal dorsal most 

portion of the gradient, where β-catenin, Vg-1 and Veg-T are present and Xnr 
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proteins concentration is highest, the Nieuwkoop center is formed (Wolpert et al., 

1998; (De Robertis and Kuroda 2004) (Fig. 1). One of the main roles of the 

Nieuwkoop center is to specify the key dorsal signalling center, called Spemann 

organizer, which is essential for the antero-posterior and dorso-ventral patterning of 

the embryo. Mesoderm is induced in the marginal zone of the embryo at blastula. 

Inductive experiments using recombinants of endodermal and ectodermal blastula 

explants showed that ventral and dorsal endoderm induce ventral (lateral plate, 

mesenchyme and blood) and dorsal (Spemann organizer) mesoderm tissues, 

respectively. Mesoderm induction is finally accomplished during gastrulation, when 

the inductive horizontal signal form the organizer triggers the differentiation of dorsal 

mesodermal cell types (notochord, somites).  

 Concomitant to the Nieuwkoop center formation, the dorsal animal pole and 

marginal zone cells express the Bone Morphogenetic Proteins (BMP) antagonists 

Chordin and Noggin, under the induction of β-catenin, defining the so called blastula 

Chordin and Noggin expression center (BCNE) (Kuroda, Wessely et al. 2004). The 

same factors (Chordin and Noggin), transiently expressed in the prospective 

neuroectoderm at blastula stage, will be expressed at gastrula in the Spemann 

organizer mesoderm (Kuroda, Wessely et al. 2004). These two signalling centers 

formed at blastula stage (Nieuwkoop center and BCNE) under β-catenin control, 

guarantee the proper establishment of the organizer, which exerts its roles during 

gastrulation. 

  

Fig. 1: Early inductive events in Xenopus laevis embryo. At blastula stage the 
BCNE center in the animal region and the Nieuwkoop center in the vegetal pole pattern the 
embryo. β-catenin localization is essential for the centers formation. BNCE center is involved 
in the establishment of anterior neural tissue, while the Nieuwkoop center induces the 
Spemann organizer via nodal-related signalling. (From De Robertis and Kuroda 2004). 
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2.1.2 Xenopus epidermis and ciliated cells differentiation 

 Maternal determinants play fundamental role also for specification of the 

ectodermal layer. Coupling a screening strategy to loss of function experiments, 

Dupont and colleagues identified and characterized Ectodermin as an essential 

player for the specification of the ectoderm (Dupont, Zacchigna et al. 2005). This 

factor, promotes Smad4 degradation via direct binding and ubiquitination, and by this 

mechanism restricts the mesoderm-inducing activity of TGF-β signals, ensuring that 

ectodermal cells do not adopt a mesodermal fate (Dupont, Zacchigna et al. 2005). 

Morphologically, during gastrulation the animal cap and the non-involuting marginal 

zone cells expand by epiboly and cover the entire embryo, forming the surface 

ectoderm. Vertebrate ectoderm gives rise to three major derivatives: primary 

epidermis, characterized by the presence of high levels of BMPs; central nervous 

system (brain and spinal cord), induced by inhibition of BMP signalling by BMP-

antagonist (e.g. Noggin, Chordin) and neural crests (which differentiate into 

peripheral neurons, pigment, facial cartilage, etc.), originating in the border between 

epidermis and neural plate (Gibert, 2006). 

 Two types of cells characterize the skin of Xenopus embryos. Non-ciliated 

cells (Fig. 2a), fall in two categories, known as the large secretory goblet cells and 

the smaller scattered cells, responsible for secretion of mucus and containing 

electron-dense granules, respectively. The second type of epidermal cells in formed 

by the multiciliated cells (Fig. 2b) which function in propelling the mucus with 

coordinated effective and return strokes (Hayes, Kim et al. 2007). Deblandre et al. 

described a two-step mechanism that governs the differentiation and the generation 

of the spacing pattern of the ciliated cells (Deblandre, Wettstein et al. 1999). 

According to this model, at late gastrula stage in the inner ectodermal layer, a subset 

of cell expresses high levels of Delta-like 1. These cells, through the lateral inhibition 

mechanism, both generate ciliated-cell precursors, which express the marker alpha 

tubulin, and prevent neighbour cells to undertake the same differentiation process. At 

neurula stage, the alpha-tubulin positive cells move and intercalate from the inner 

into the outer ectodermal layer. Finally, at tadpole stage, ciliated cells differentiate 

and reach their definitive position in the epithelium (Fig. 2c) (Deblandre, Wettstein et 

al. 1999). 
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 Fig. 2: Xenopus epidermis and ciliated cells generation. (a) Scan electron 
microscopy (SEM) picture of mucociliary epithelium including a ciliated cell, small secretory 
cell (marked by the asterisk) and several large goblet cells. (b) SEM lateral view of a ciliated 
cell, showing the apical cilia. (c) Schematic representation of the two-step mechanism 
spacing the ciliated cells (modified after Hayes, Kim et al. 2007 and Deblandre, Wettstein et 
al. 1999). 

  

 It has been shown that the planar cell polarity (PCP) pathway exerts a pivotal 

role in a variety of vertebrate developmental events (Gray, Abitua et al. 2009; 

Mitchell, Stubbs et al. 2009; Wallingford 2010). Core PCP components, like 

Dishevelled, govern a wide range of polarized cellular behaviours, including cell 

interaction, migration and ciliogenesis (Gray, Abitua et al. 2009). Moreover, studies in 

mice and frogs, underline the key role of the PCP effectors proteins, which ensure 

that the proper pattern of ciliated cells is established during development (Park, 

Haigo et al. 2006; Gray, Abitua et al. 2009). These studies have highlighted the 

interconnection between cell polarity, morphology, signal transduction and embryonic 

development, and describe the fundamental role of PCP signalling in cilia 

development.  
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2.1.3 Neural induction and neurogenesis 

Neural induction represents the initial step in the formation of the vertebrate 

nervous system. In Xenopus, neural tissue derives from the dorsal side of the 

embryonic ectoderm, whereas the ventral side gives rise to epidermis. The first 

insight into the mechanism of neural induction came form a pioneering experiment of 

Spemann and Mangold in 1924, in which they showed that the transplantation of the 

dorsal blastoporal lip of early gastrula embryo (the so called organizer) into the 

ventral region of a host embryo at same age induced a complete second nervous 

system in the host (Spemann and Mangold 2001), suggesting a mechanism by which 

the organizer region acts as a source of inductive signals for neural fate. Five main 

neural-inductive molecules were identified later: Noggin, Follistatin, Chordin, Xnr3 

and Cerberus (for review see (Hemmati-Brivanlou and Melton 1997; Harland 2000)). 

Following experiments using whole embryos as well as explants of prospective 

ectoderm, led to the idea that neural fate-inducing molecules act as inhibitors rather 

than as inducers, antagonizing the epidermal-inducing factors BMPs (Fig. 3a). 

Important evidence supporting this model came from the result that transient 

dissociation of ectodermal explants results in a shift from epidermal default 

differentiation to a neural state, consistent with the presence of inhibitors of 

neurogenesis – BMPs – in the explants (Grunz and Tacke 1989). All together, these 

observations, as well as other experiments, led to define the so called “default 

model”, according to which inhibition of BMP signalling is sufficient to induce neural 

differentiation: embryonic ectoderm has a natural “default” tendency to differentiate 

as neural tissue, unless instructed by BMPs to become epidermis (Munoz-Sanjuan 

and Brivanlou 2002). More recently, experiments in Xenopus and in other model 

systems highlighted the role of FGF signalling in patterning the antero-posterior axis 

of neural tissues and in reinforcing the antagonism of the BMP pathway (Rogers, 

Moody et al. 2009). Moreover, additional lines of evidence support the idea that 

inhibition of Wnt signalling is required for neural induction, describing a complex 

mechanism for neural fate, involving multiple intercrossing pathways (for review see 

(Wilson and Edlund 2001)). 

Once the presumptive neural ectoderm is established via inductive 

interactions, a consistent set of transcription factors are expressed in overlapping 

domains (Fig. 3b). Transcripts of several of these genes (Geminin, Sox3, Sox11 and 

SoxD) are found in the dorsal ectoderm at the onset of gastrulation (Rogers, Moody 

et al. 2009). Other mRNAs (FoxD5, Sox2, Zic1, Zic2, Zic3) are expressed in a region 

close to the blastoporal lip, while Xenopus Iroquois homologs (Xiro1, Xiro2, Xiro3) 
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are detected in two dorso-lateral bands close to the blastoporal lip. Although most of 

these factors, when overexpressed, do not trigger ectopic neural tissue, nevertheless 

they all expand the neural plate. FoxD5 and Geminin contribute to maintain an 

undifferentiated neuroectoderm during the early steps of neural plate formation (Kroll, 

Salic et al. 1998; Yan, Neilson et al. 2009).  

Sox genes are Sry-related transcription factors characterized by a high-

mobility group (HMG) domain that confers sequence-specific DNA binding activity. 

Sox2 and Sox3 are pan-neural markers important for neural progenitor maintenance; 

Sox2, in particular, is induced by dissociation of ectodermal explants in Xenopus, 

(Sasai 1998).  

Another important class of neural genes encode Zic-related zinc finger 

transcription factors. Zic1 and Zic3 have been shown to induce neural and neuronal 

differentiation in animal cap (AC) experiments in Xenopus (Sasai 1998), suggesting 

an active role in promoting the transition to neural differentiation. On the other hand, 

Zic2 can counteract the formation of ectopic neurons produced by neurogenin 

(Xngnr1) mRNA injection, indicating a possible involvement of this factor in 

maintaining cells in an immature state via neural differentiation repression (Rogers, 

Moody et al. 2009).  

Iroquois genes encode homeodomain proteins involved in the activation of 

proneural basic helix-loop-helix (bHLH) genes. It was shown that Wnt-dependent 

activation of Xiro1 mediates the downregulation of BMP4, suggesting a key role of 

this factor in defining the neural territory and in promoting the expression of bHLH 

neural differentiation genes (Gomez-Skarmeta, de La Calle-Mustienes et al. 2001). 

These observations indicate that the early transcription factors expressed in 

the newly induced neuroectoderm can be divided into two groups: Geminin, Sox2, 

Sox3, FoxD5 and Zic2 keep cells of the neuroectoderm in an undifferentiated neural 

state, while Sox11, Zic1, Zic3 and the Iroquois genes promote the onset of neural 

differentiation (Rogers, Moody et al. 2009). Gain and loss of function experiments 

suggested that all these factors define a complex regulatory network (Fig. 4) (for 

review see (Rogers, Moody et al. 2009)). It is important to note that concomitantly to 

the stablization of the nerual induction promoted by the aforementioned factors, 

ventral specific homeobox genes (e.g. Gata1 and Msx1) act as negative regulator of 

neural differentiation, promoting epidermal differentiation in non-neural ectoderm 

(Sasai 1998). 
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Fig. 3: Early neural inductive events. (a) The organizer proteins such as Chordin, 
Noggin, Follistatin and Xnr3 block the action of the ventralizing factor BMP4. (b) Overlapping 
expression pattern of neural genes at NF10. At the onset of gastrulation a first class of genes 
are expressed throughout the dorsal ectoderm (orange domain), a second class of 
transcription factors is expressed in a broad dorsal band adjacent to the blastoporal lip (blue 
area), while the Xiro genes are expressed in two posterior-lateral domains (yellow areas). 
(Pictures modified from Gilbert, 2006 and Rogers, Moody et al. 2009). 

 

Once the neural plate has been extablished, the next step in neural 

development aims to define the precise spatio-temporal formation of neurons in the 

neuroepithelium. Two distinct waves of neuronal differentiation have been described 

in Xenopus: primary neurogenesis occurs at about 13 hours post fertilization (hpf, NF 

12) and serves to enable swimming and escape reflexes in the early tadpole. 

Secondary neurogenesis (NF46) generates the full complements of neurons and it is 

involved in mediating the more complex behaviour of the late tadpole (Sasai 1998). 

In Xenopus the early step of primary neurogenesis is characterized by the expression 

of proneural/neurogenic genes. Many of these genes are homologs of the achaete-

scute genes of Drosophila, and are required for the determination of neural 

precursors. For example, the bHLH factor Neurogenin related 1a (Ngnr-1a) is present 

in all the presumptive regions of primary neurogenesis at gastrula stage. Its 

expression precedes that of Delta-like 1, a cell surface molecule which mediates 

lateral inhibition. This mechanism represents a cell-cell interaction that acts within the 

proneural cluster to limit the number of cells that gives rise to neuroblasts (Chitnis 

1995): prospective neuroblasts express the Notch ligands Delta or Serrate which, 

interacting with Notch, trigger the expression of repressors of neuronal differentiation 

(enhancer of split-hairy family transcription factors) in neighbouring cells. This 

signalling retricts the expression of Ngnr 1a, Delta-like 1 and finally N-tubulin 

(differentiated primary neurons marker) to three bilateral longitudinal stripes in the 

neuroectoderm (medial, intermediate and lateral stripes) (Chitnis 1995; Sasai 1998; 

(Diez del Corral and Storey 2001). Finally, when the neural tube is formed the three 
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stripes differentiate into motor-, inter- and sensory-neurons. The neuronal subtype 

specification is then defined according to a precise expression of a combination of 

transcription factors along the prospective dorso-ventral axis of the forming neural 

tube (Diez del Corral and Storey 2001). 

 

 Fig. 4: Proposed model for early neural differentiation. According to loss-of-
function and gain-of-function experiments, FoxD5 acts at the top of the cascade and regulates 
Geminin, Sox11 and Zic2. These genes regulate each other and together with Sox2 and Sox3 
are thought to maintain neural ectodermal cells in an immature state affecting the expression 
of the downstream genes. Xiro genes, Zic1, Zic3 and SoxD on the other hand promote the 
onset of neural differentiation via upregulation of bHLH genes like Ngnr-1, which, in turn, 
through the lateral inhibition mechanism stimulate Delta-1 expression in future neuron, 
positive for N-tubulin expression. (Picture modified from Rogers, Moody et al. 2009). 
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2.1.4 Embryonic cell fate specification: from pluripotency to differentiation 

 The process leading naïve embryonic cells to a specific cell type is 

characterized by a series of steps, which restrict the cell behaviour from pluripotent, 

to committed, to differentiated. Classical transplantation experiments (Spemann and 

Mangold 2001) higlighted important properties of cell-cell interactions: inductive 

events rely on the presence of the inducer (the tissue that produces a signal) and of 

the responder (the tissue which is induced). In this context, the ability of a group of 

cells to respond to a specific inductive signal is defined as competence, and 

describes a feature which allows a cell to undertake a particular differentiation 

pathway if exposed to proper stimuli. This step represents the first important 

prerequisite for the commitment to a certain fate. A cell is then defined specified, if it 

is able to differentiate into a particular cell type when placed in a neutral enviroment. 

At this stage repressive signals can still compromise cell differentiation. The next 

step, determination, describes the ability of the cell to differentate according to its 

original fate, even when transplanted into a different region of the embryo, and 

becoming exposed to inhibitory signals. At this stage the cell is irreverisbly committed 

and will eventually express the gene repertoire characteristic of its fully differentiated 

state (Gilbert, 2006). A series of single-cell transplantation experiments in Xenopus 

laevis showed that when either an animal or a vegetal pole blastomere is 

transplanted into the blastocoel of a late blastula host embryo, it will give rise to 

descendents of all the three germ layers. When transplanted from the early gastrula, 

cells differentiate as they would do if kept in their original position (i.e. ectoderm or 

endoderm if taken form tha animal or vegetal hemisphere respectively), suggesting 

that the pluripotent character of Xenopus embryonic animal and vegetal pole cells is 

lost at the beginning of gastrulation (Snape, Wylie et al. 1987; Wylie, Snape et al. 

1987). 

 Uncommitted blastula-stage cells are characterized by the expression of the 

three transcription factors Oct-25, Oct-60 and Oct-91. These genes contain a DNA 

binding domain referred to as POU domain from the original three members included 

in this family (the Pituitary-specific Pit-1, the Octamer transcription factors Oct-1, Oct-

2 and the Caenorhabditis elegans neural transcription factors Unc-86) (Hinkley, 

Martin et al. 1992). This domain is a 160 aminoacid long bipartite structure, 

consisting of a specilized homeodomain, which weakly binds DNA and participates in 

the formation of protein complexes, preceded by a highly conserved POU-specific 

region, which contributes to the specificity and strength of DNA binding by the POU 

domain (Hinkley, Martin et al. 1992). The three Xenopus genes are expressed during 
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early embryogenesis: Oct-25 and Oct-60 are maternally expressed, while Oct-91 

appears at late blastula. The expression of all the three genes decreases during 

gastrulation, describing a scenario that resembles the loss of pluripotency assessed 

by single cell transplantation experiments (Snape, Wylie et al. 1987; Wylie, Snape et 

al. 1987; Hinkley, Martin et al. 1992). More recently, Morrison and Brickman showed 

that the Xenopus pluripotent genes are functionally homologous to the mammalian 

Oct3/4 (Morrison and Brickman 2006). Moreover, several lines of evidence suport the 

idea that Xenopus POU-V factors are mainly involved in controlling the maintenance 

of pluripotency, preventing cells form entering terminal differentiation pathways (Cao, 

Knochel et al. 2004) and regulating competence transition (Snir, Ofir et al. 2006). All 

these activities allow the three germ layers specification to occur in a proper spatio-

temporal manner (Morrison and Brickman 2006; Cao, Siegel et al. 2007). 

 

2.2 Epigenetics 

 The term “epigenetics” defines a panoply of mechanisms that lead to heritable 

changes in gene function occurring independently of alterations to the DNA 

sequence (Berger, Kouzarides et al. 2009). The word epigenetics is constantly 

submitted to re-definitions, underlining the complexitiy of the processes 

characterizing this field. Nevertheless it is generally accepted that epigenetic signals 

are involved in the establishment, maintenance and reversal of transcriptional states 

in order to provide the cell with a memory of previously experienced stimulation 

without changes in the genetics information (Bonasio, Tu et al. 2010). The 

maintenance of a particular cell identity, set up only once at a specific developmental 

stage, represents a typical example of an inherited cellular memory. All the different 

epigenetic mechanisms rely on the common feature that DNA exists as complex with 

highly evolutionary conserved proteins, histones, which together form the so called 

chromatin (Kornberg 1974). Different lines of evidence in the last decades led to the 

idea that chromatin is a dynamic structure, existing in many configurations, whose 

variation modulates the expression of genomic informations. Alterations in chromatin 

structure include DNA methylation, histone variants, chromatin remodeling (through 

energy-dependent complexes), covalent histone modifications and non-coding RNAs 

(for review see (Allis et al., 2007)). 
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2.2.1 Chromatin structure 

 DNA in chromatin is organized in arrays of nucleosomes (Kornberg 1974). 

Each nucleosome is composed by an octamer containing two copies of each histone 

(H2A, H2B, H3, H4) around which ∼145-150 bp of left-handed DNA superhelix is 

wrapped (Luger, Mader et al. 1997). The small and highly basic core histone 

proteins, forming the octamer, are structured in two main domains: the globular 

domain, characterized by three alpha helices linked by two loops, and a flexible 

histone tail, which protrudes from the surface. Amino acidic sequence alignments 

revealed a high degree of conservation among different species, suggesting critical 

functions for these proteins (Luger, Mader et al. 1997). Histone tails, in particular of 

H3 and H4, are subjected to post-translational modifications (PTMs) at specific 

aminoacid residues. These features underine the pivotal role of the nucleosome in 

gene expression regulation. 

 Adjacent nucleosomes are separated by a linker DNA region, whose length 

varies in different cells and among different species. The “beads on a string” 

chromatin organization, visualized by electron microscopy, describes an 11-nm 

configuration characterized by regularly spaced nucleosomes. Such a configuration 

can be modified and turned into higher-order structures (Fig. 5) (for review see (Allis 

et al., 2007)). The linker histone H1, for example, is known to promote packaging and 

stabilization of chromatin. The globular domain mediates anchoring of linker histones 

to the nucleosomes, while the positively charged C-terminal domain binds the DNA 

between nucleosomes. Recruiting of the linker histone, as well as histone tails 

modifications and chromatin-associated factors binding, lead to a more compact 

chromatin structure, 30-nm fiber, which can further be organized into larger looped 

domains (300-700 nm) as the result of long-range interactions between sequence 

elements that are distant on linear chromosomes or as consequence of interaction of 

the genome with anchoring sites within the nucleus, such as the nuclear lamina (van 

Steensel 2011). This configuration occurs in both interphase and metaphase 

chromatin. Finally, the most condensed DNA structure is observed during metaphase 

of mitosis and meiosis, and results from dramatic rearrangements of DNA achieved 

by hyperphosphorylation of linker H1 and core histone H3 coupled to the concomitant 

action of cohesin, condensin and topoisomerase II (for review see (Allis et al., 2007)). 
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 Fig. 5: Higher-order structures of chromatin – the “historical” textbook view. 
DNA wrapped around nucleosomes creates the 11-nm “beads on a string” configuration. 
Linker histone H1 recruitment leads to the formation of the 30-nm configuration. 300-700-nm 
fiber represents a further level of compaction present both in interphase and metaphase. The 
most compacted chromatin configuration is obtained during the metaphase of mitosis or 
meiosis (From Allis et al., 2007). 

 

 While the 11-nm “beads on a string” configuration is commonly accepted, the 

precise structure of the 30-nm fibre represents an open debate. Recent studies 

addressed the question whether this chromatin conformation really exists 

(Maeshima, Hihara et al. 2010; Fussner, Ching et al. 2011). In vivo evidence for 30 

nm fibres has been collected for certain cell types (i.e. starfish sperm nuclei and 

chicken erythrocyte nuclei). In these cells electron microscopy (EM) experiments 

revealed that the 11-nm fibre folds and twists into a structure of approximately 30 nm 

in width. Nevertheless, interphase nuclei in most higher eukaryote cell type contain 

no regular 30-nm fibre (Maeshima, Hihara et al. 2010). A new study performed in 

mitotic HeLa cells demonstrated, in a quantitative manner, that human mitotic 

chromosomes consist of irregularly folded nucleosome fibres, with no 30-nm 

configuration (Nishino, Eltsov et al. 2012). Together these data indicate that no 

periodic structures beyond the 11-nm configuration exist in human mitotic 

chromosomes. The authors suggest that chromatin condensation is achieved by 

packing the “beads on a string” fibres in a fractal organization (Fussner, Ching et al. 
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2011; Nishino, Eltsov et al. 2012). Although it cannot be excluded that the 30-nm 

structure is present under certain specific conditions, these studies showed that this 

configuration is not required to achieve large-scale condensation of human mitotic 

chromosomal DNA (Hansen 2012). 

 

2.2.2 Principal chromatin types 

 Cytological studies led to the idea that chromatin could be categorized in two 

main types. The first one, called “heterochromatin”, which defines compacted, gene-

poor chromatin domains. This silenced chromatin can exist as permanently silent 

(constitutive) heterochromatin, such as found at centromeric and telomeric regions. 

Alternatively, gene-silencing can be achieved as a transition from an active to an 

inactive state (facultative heterochromatin) (for review see (Allis et al., 2007)). The 

second major type of chromatin is called “euchromatin”, and it identifies relatively 

uncondensed/open and gene-rich portions of chromatin. This configuration usually 

characterizes transcriptionally active domains. The oversimplified distinction between 

euchromatin and heterochromatin reflects a series of features, like nuclease 

accessibility, histone acetylation, replication timing, that in toto indicate opposite roles 

for the two states. The establishment of euchromatin aims for the transcription of 

functional RNAs to occur, through dynamic and elaborate interactions of histone 

modifications, chromatin remodelling complexes and DNA-binding proteins. 

Heterochromatin, instead, serves an important maintenance function for ensure 

genome stability (Henikoff 2000). 

 In a recent study, genome location maps of 53 broadly selected proteins and 

histone modifications were obtained in Drosophila melanogaster and revealed unique 

combinations of proteins, which may define five principal chromatin types (Filion, van 

Bemmel et al. 2010). According to this annotation, transcriptionally active 

euchromatin can be subdivided in RED and YELLOW domains. While the overall 

expression levels are similar between the two groups, a peculiar distinction regards 

the presence of the transcription elongation-linked histone modification H3K36me3, 

whose absence defines RED domains. Moreover RED chromatin marks tissue 

specific genes, while YELLOW chromatin is formed at ubiquitously expressed 

housekeeping genes (Filion, van Bemmel et al. 2010; van Steensel 2011). In 

contrast, BLUE chromatin is defined by the presence of Polycomb group proteins 

(PcG) and the histone mark H3K27me3, mainly detectable on genes involved in 

development. Similarly GREEN chromatin corresponds to classical heterochromatin 
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marked by Suppressor of Variegation 3-9 (Suv39), the histone modification 

H3K9me2/me3, heterochromatic protein 1 (HP1) and several HP1-associated 

proteins. GREEN chromatin is formed mainly at pericentric regions. The 5th category, 

BLACK chromatin, covers ∼50% of the genome, thus representing the most prevalent 

repressing chromatin type. It exhibits extremely low expression levels, is depleted of 

PcG, HP1 and Suv39 and it is the latest chromatin type to replicate; these features, 

together with its location at the nucelar periphery, underscore the different character 

of BLACK chromatin in comparison to other heterochromatic domains (Filion, van 

Bemmel et al. 2010; van Steensel 2011).  

 Although these five chromatin types represent the major combinations of 

proteins among the tested ones, it is still possible that further sub-classifications 

refine the chromatin structure. Moreover, differences can also emerge comparing 

different species (van Steensel 2011). This study nevertheless provided for the first 

time a detailed analysis of chromatin organization, unerlinding the complex network 

of interactions that govern its global architecture. 

 

2.2.3 Chromatin dynamics 

 The different chromatin types reflect a panel of epigenetic mechanisms which 

cooperate to establish stable, inheritable chromatin states, which control the 

transcriptional activity of the genome. 

 Nucleosome remodelers are a class of multiprotein complexes that alter 

histone-DNA interactions in an ATP-dependent manner. These perturbations lead to 

relocation/sliding of the octamers from a particular DNA segment. ATP-dependent 

nucelosome remodeling factors mediate also chromatin loop formation, chromatin 

attachment to nuclear structures (like nuclear envelope), and catalyze the transition 

between relaxed and condensed chromatin fiber (Varga-Weisz and Becker 2006). 

 The incorporation of histone variants endows nucleosomes with specific 

features that affect transcription. For instance, the histone H3 variant H3.1 is 

enriched at inactive genetic elements, whereas the H3.3 variant is present on 

transcriptionally active genes. Also the processes of DNA damage repair are 

modulated by histone varaints, such as H2A.X, and other chromatin-related 

processes (Bonisch, Nieratschker et al. 2008). Finally also the linker histone H1 

exists in different types. The variants can be divided into maternal and somatic ones. 
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In Xenopus, three somatic variants of linker histones are present (H1A, H1B, H1C); 

these proteins are not present in the full-grown oocyte and are expressed only in low 

amount during cleavage stages (Dworkin-Rastl, Kandolf et al. 1994). Until MBT the 

chromatin is characterized by the oocyte-specific linker histone B4 (also called H1M, 

maternal histone H1), which becomes progressively replaced by the somatic variants 

until the end of gastrulation. 

 DNA methylation represents a repressive modification, particularly enriched at 

promoter regions and noncoding DNA sequences, wherein cytosines of CpG 

dinucleotides are converted to 5-methylcytosine by DNA methyltransferases. This 

modification recruits corepressor complexes to form transcriptionally silenced 

chromatin structures (Sasai and Defossez 2009). 

 Increasing lines of evidence asign pivotal roles in transcriptional regulation to 

noncoding RNAs (ncRNAs). Recent findings indicate that ncRNAs, or their 

production, create changes in DNA and nucleosome modification, which repress 

transcription. From an epigenetic point of view, such regulation includes DNA 

methylation, chromatin remodeling, RNA-associated gene silencing, chromosome 

inactivation and genomic imprinting (Zhou, Hu et al. 2010). 

 Covalent post-translational histone modifications, finally, represent another 

layer of epigenetic mechanisms that affect chromatin architecture. These alterations 

exert different functions with regard to the type and the position of the modification. In 

the following chapter this epigenetic mechanism will be further addressed. 

 

2.2.4 Histone post-translational modifications (PTMs) 

 The amino-terminal tails of the core histones are subjected to a variety of 

post-translational modifications occurring at selected amino acidic residues. 

Extensive evidence documents a collection of post-translational modifications, 

including the well-studied acetylation, phosphorylation, methylation, ubiquitination, 

and the less characterized ADP-ribosylation, biotinylation and SUMOylation (Fig. 6). 

These covalent alterations are involved in a wide range of chromatin-based 

processes like replication, repair, transcription and genome integrity (Bhaumik, Smith 

et al. 2007).  
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 Fig. 6: Post-translational modifications of human nucleosomal histones. In this 
panel acetylation (ac), methylation (me), phosphorylation (ph) and ubiquitination (ubi1) are 
shown. Most of the modifications occur in the N-terminal tails of histones. Ubiquitination of 
histone H2A and H2B occur in the C-terminal tail. Moreover histone H3 can be methylated 
and acetylated at specific lysine residues present in the globular domain (here represented as 
coloured ovals for all the histones). ADP-ribosylation, biotinylation and SUMOylation are not 
present in this picture. (Picture from (Bhaumik, Smith et al. 2007)).  

  

 Histone acetylation plays a fundamental role in transcriptional regulation 

(Strahl and Allis 2000). By neutralizing the positive charge of modified lysine side 

chains, histone acetylation is believed to weaken histone-DNA interactions, creating 

a more open chromatin architecture. This modification is catalyzed by histone 

acetyltransferases (HATs) through the transfer of the acetyl moiety from acetyl-

coenzyme A to specific lysine side chains (Bhaumik, Smith et al. 2007). Histone 

deacetylases (HDACs) can reverse the reaction by hydrolysis of the amide-bond, 

establishing a dynamic equilibrium for acetyl groups in the genome. 

 Post-translational phosphorylation occurs on all four core histones. 

Phosphorylation of histone H2A, for example, is induced by DNA-damage signaling. 

Another example concerns the phosphorylation of serine10 on hisone H3 (H3S10P) 

that is associated with gene activation in mammalian cells through a remodeling 

process that is most consistent with chromatin decondensation (Strahl and Allis 

2000). On the other hand, histone H2B phosphorylation correlates with meiotic 

chromosome condensation, and it is linked to apoptosis (Ahn, Henderson et al. 
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2005). These different functions outline a mechanistic complexity linked to this 

modification. 

 All core histones but H4 are known to become ubiquitinated. The formation of 

the isopeptide bond between the ubiquitin moiety and specific lysine residues is 

promoted via the sequential catalytic action of E1-activating, E2-conjugating 

enzymes and E3-ligases. Deubiquitinases can reverse the reaction (Bhaumik, Smith 

et al. 2007). Histone H2A and H2B ubiquitiantion play critical roles in regulating many 

processes within the nucleus, including transcription initiation and elongation, 

silencing and DNA repair (Weake and Workman 2008). It is important to note that the 

link between transcriptional status and histone ubiquitination are context dependent, 

involving interaction of this modification with other covalent histone marks. 

 

2.2.5 Methylation as a key histone PTMs 

 Among the main characterized histone PTMs, methylation represents the 

most complex, for several reasons. First of all this modification occurs both at lysine 

and arginine residues; second, unlike acetylation and phosphorylation, methylation 

mediates both activating and repressing effects on transcription. Finally, the possible 

establishment of different methyl states (mono-, me1; di-, me2; tri-, me3) on the 

same residue as well as the combinatorial occurrence of this alteration with other 

PTMs, provides an enormous coding potential for biological readouts  (for review see 

Allis et al., 2007). 

 Several arginine methyltransferases (PRMTs) have been identified (Zhang 

and Reinberg 2001). These enzymes catalyze the transfer of methyl groups from S-

adenosyl-L-methionine to the arginine residue, which can be either mono- or 

dimethylated, with the latter in symmetric or asymmetric configurations. It is generally 

accepted that histone arginine methylation is involved in transcriptional activation, as 

suggested by the role of PRMT1 in the methylation of histone H4R3, a process that 

facilitates subsequent acetylation of H4 by p300 (Zhang and Reinberg 2001).   

 Lysine methylation can occur at residues 4, 9, 27, 36 and 79 on histone H3 

and at position 20 of histone H4. Almost all of the histone methyltransferases 

(HMTases) characterized so far contain a SET domain, named after the initial 

identification in Drosophila position effect variegation (PEV) suppressor Su(Var)39, 

the Polycomb group protein Enhancer of zeste (Ezh) and the Trithorax group protein 
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Trithorax (Zhang and Reinberg 2001). Histone lysine methylation has been shown to 

function in both transcriptional stimulation and repression (Martin and Zhang 2005). 

Gene activity is mainly linked with methylation at K4, K36 and K79 of histone H3. 

Genomewide profiling of histone marks by ChIP-chip or ChIP-seq techniques in the 

human genome indicates that actively transcribed genes are marked with high level 

of H3K36me3, H3K27me1, H3K9me1, H3K79me1/me2/me3, H4K20me1 and 

H2BK5me1 (Barski, Cuddapah et al. 2007; Lee and Mahadevan 2009). On the other 

hand, H3K9me2/me3, H3K27me3 and H4K20me3 are strongly associated with 

transcriptional repression and heterochromatin (Lee and Mahadevan 2009). 

Silencing can be detected both at genic and non-genic regions, which are 

characterized by distinct types of repressive histone modifications (Dambacher, Hahn 

et al. 2010). H3K27me3 is perhaps the most prominent modification linked to gene 

repression. This histone mark is placed by the two highly related enzymes Ezh1 and 

Ezh2, which associate in a mutually exclusive manner with Eed, Suz12 and 

RbAp46/48 to form polycomb repressive complex 2 (PRC2). The presence of the 

H3K27me3 mark recruits then a second type of polycomb repressive complex, 

namely PRC1, which consists of the Ring1a/b, Bm1, Ph, Cbx subunits. PRC1, in 

turn, establishes H2A ubiquitylation, a gene-silencing related modification (Martin and 

Zhang 2005; Dambacher, Hahn et al. 2010). An interesting mechanism involving 

H3K27me3 concerns embryonic stem (ES) cell, in which this repressive mark 

coexists in an overlapping manner with H3K4me3 (Azuara, Perry et al. 2006). Such 

regions are called “bivalent domains” and are predominantly present at 

developmental regulatory genes. It is believed that the concomitant presence of 

active and repressive marks primes developmentally regulated genes for activation 

or repression during ES cells differentiation: genes that become active or repressed, 

in accordance to their transcriptional activities in different cell type, acquire either 

H3K4me3 or H3K27me3 respectively. This regulatory mechanism suggests a 

transient character of the bivalent configuration (Azuara, Perry et al. 2006). 

 Large regions of the mammalian genome consist of non-coding DNA 

sequences, including major satellite and telomeric repeats, mobile elements and 

interspersed repeats. These regions are marked by H3K9me3 and H4K20me3 

(Dambacher, Hahn et al. 2010). H3K9me3 is established by Suv39h1 and Suv39h2 

enzymes (Rea, Eisenhaber et al. 2000), while Suv4-20h1 and Suv4-20h2 mediate di- 

and tri-methylation of H4K20 (Schotta, Lachner et al. 2004). The two heterochromatic 

signatures are placed at repetitive genomic regions (pericentromeric and telomeric 

heterochromatin) in a sequential coordinated fashion. The prevalent model predicts 
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that Setdb1 in complex with CAF1 and HP1 alpha  induces H3K9me1, which is 

converted to H3K9me3. This later modification constiutes a binding platform for HP1 

proteins, which in turn recruit Suv4-20h enzymes to establish H4K20me3. Although 

not completely characterized, interactions with other proteins, such as members of 

the retinoblatoma (Rb) protein familiy, as well as DNA methyltransferases, could 

contribute to the establishment of these modifications (Schotta, Lachner et al. 2004; 

Dambacher, Hahn et al. 2010). A similar mechanism underlines the formation of 

heterochromatin at telomeric ends. 

 

2.2.6 The “histone code” hypothesis 

 The large number of PTMs occurring mainly at the histone amino-terminal 

tails suggests that specific modifications or combinations of different modifications 

constitute a code that defines actual or potential transcriptional states (Strahl and 

Allis 2000). A further level of complexity is defined by the fact that these modifications 

regulate one another, providing regulatory cross-talks (Latham and Dent 2007). A 

first class of cross-talks is the so-called in situ cross-talk, concerning all those 

residues that can undergo several different form of PTMs: each modification inhibits 

subsequent alteration of the same residues. Arginine and lysine residues, for 

example, are subjected to this kind of cross-talk. Lysine methylation blocks 

subsequent acetylation, and vice versa, in a process that reflects either possible 

opposite roles of the different modifications (H3K9ac versus H3K9me) or different 

steps in the same process (H3K36ac presence at promoter regions of transcribed 

genes and H3K36me occurring within coding regions). The cross-regulation of 

histone modifications also occurs between modifications of different residues on the 

same histone tail (in cis) or between histones (in trans). All these cross-talks define a 

complex network of interactions that differentially regulate chromatin activity in 

distinct biological settings (Strahl and Allis 2000). It is important to consider that the 

histone code represents only one layer of epigenetic information, which involves also 

DNA methylation, interactions with structural and catalytic proteins and RNAs. 

Together these layers ensure functionally stable chromatin states, defining a broader 

and more complex epigenetic code (Turner 2002; Latham and Dent 2007). 
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2.2.7 H4K20 methylation states and Suv4-20h histone methyltransferases 

 In mammals, only one of the 5 lysines present in the N-terminal tail of histone 

H4 is methylated, i.e. K20 (Yang and Mizzen 2009). Ten years ago Nishioka and 

colleagues identified Pr-Set7 (Set8) as a specific H4K20 methyltransferase, which 

catalizes the H4K20me1 state (Nishioka, Rice et al. 2002). Mutations in Drosophila 

Pr-Set7 are lethal, indicating an essential role of this enzyme in development and 

viability. Subsequent studies identified then Suv4-20h1 and Suv4-20h2 as two SET 

domain HMTases responsible for di- and trimethylation of H4K20 (Schotta, Lachner 

et al. 2004; (Schotta, Sengupta et al. 2008). As mentioned before, these two 

enzymes are thought to help establishing pericentric heterochromatin in association 

with Suv39h HMTases (Schotta, Lachner et al. 2004). A detailed analysis of Suv4-

20h mutant mice indicated essential functions of Suv4-20h1 during embryonic and 

postnatal development. Suv4-20h1-/- pups are born at sub-Mendelian ratios, and die 

perinatally a few hours after birth (Schotta, Sengupta et al. 2008). These features are 

not present in Suv4-20h2-/- mice, but characterized Suv4-20h DKO (double knockout) 

mice. Together these aspects underline that Suv4-20h1 HMTase exerts an essential 

function during development. 

 Mass spectrometry profiles of the H4K20 methylation patterns showed that in 

cells of diverse species origin, H4K20me2 exceeds the global level of H4K20me1, 

while H4K20me3 is present at the lowest abundance (Yang and Mizzen 2009). 

Histone H4K20 methylation appears to be cell-cycle regulated. The majority of newly 

synthesized H4 that is deposited in chromatin during S phase, is monomethylated by 

Pr-Set7 at the G2/M transition. Suv4-20h HMTases then convert H4K20me1 mainly 

in H4K20me2 (whose levels remain high at all the cell cylce stages), while only a 

small fraction is trimethylated (peak levels of H4K20me3 are detected in early G1 

phase) (Yang and Mizzen 2009; Beck, Oda et al. 2012). 

 From a functional point of view it is important to know, where the K20 

methylated histone H4 proteins reside in the genome. Developing Drosophila third 

instar larvae showed H4K20me3 enrichment, together with H3K9me3 and 

H3K27me3, in the Ultrabithorax (Ubx) gene region, when it was repressed (Papp and 

Muller 2006). On the other hand, histone methylation profiling in human genome via 

ChIP sequencing failed to detect H4K20me3 enrichment at the corresponding human 

locus (Barski, Cuddapah et al. 2007). Moreover Mikkelsen et al. showed that 

H4K20me3 colocalized with H3K9me3 at telomeric, satellite and long terminal 

repeates sequences (Mikkelsen, Ku et al. 2007). These evidences suggest a 
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possible involvment of H4K20me3 in the structure and function of constitutive 

heterochromatin and in the maintenance of genome stability (Schotta, Sengupta et 

al. 2008). 

 Similarly, H4K20me2 does not seem to play a direct role in transcriptional 

regulation. Its abundance argues against the possibility that H4K20me2 is selectively 

localized to a significant degree (Yang and Mizzen 2009). Interestingly, in 

Schizosaccharomyces pombe a single methyltransferase, Set9, mediates mono-, di-, 

and trimethylation of H4K20. Loss of Set9 resulted in hypersensitivity to DNA 

damage (Sanders, Portoso et al. 2004), in a process where Crb2 (or its human 

homolog p53 binding protein 1 (53BP1)) is recruited to the site of DNA damage and 

binds H4K20me2, via its tandem tudor domains. The recrutiment of 53BP1 to 

damage-associated foci is reduced in HeLa cells depleted of Suv4-20h1/h2 (Yang 

and Mizzen 2009). 

 Monomethylation of H4K20 has been associated with several aspect of DNA 

metabolism. Immunofluorescence and chromatin immunoprecipitation experiments 

showed that H4K20me1, together with H3K27me3, are associated with Xist, 

suggesting that the enrichment of these two marks represent early events in the 

initiation of X chromosome inactivation (Kohlmaier, Savarese et al. 2004). A more 

direct evidence of the repressive role of H4K20me1 has been described studying the 

human lethal 3 malignant brain tumor 1 (L3MBTL1) protein, which preferentially binds 

to H4K20me1, facilitating chromatin compaction (Trojer, Li et al. 2007). Similarly, 

characterizing the role of the histone demethylase PHF8, Liu et al. have suggested a 

repressive role of H4K20 monomethylation (Liu, Tanasa et al. 2010). On the other 

hand, results from genome-wide ChIP sequencing suggest that H4K20me1 levels are 

elevated in the gene body of many active genes in human lymphocytes (Barski, 

Cuddapah et al. 2007). Consistent to this role, a recent study by Li et al. identifies a 

new function for H4K20me1 in transcriptional activation (Li, Nie et al. 2011). 

Interestingly, the authors demonstrate that under Wnt stimulation, Pr-Set7 is 

recruited into the β-catenin/TCF4 (T-cell factor 4) complex, possibly positively 

regulating the transcription of Wnt-activated genes (Li, Nie et al. 2011). 

 In summary, the different methylation states and the variety of roles linked to 

the distinct H4K20 modifications, indicate a highly dynamic function of these 

modifications in several processes including gene repression and activation, 

chromatin condensation and DNA damage mechanisms. Finally, although not 

described at present, the interplay of the multiple forms of H4K20 methylation with 



Introduction 25 

other PTMs might provide an additional complexity levels in regulating chromatin 

processes.  

 

2.3 Linking epigenetics to development 

 Development, defined as the series of differentiation steps that progressively 

restrict the totipotent zygote into committed somatic cells, requires an accurate 

interplay between genetic and epigenetic mechanisms. Waddington’s epigenetic 

landscape (for review see (Slack 2002) describes the divergent developmental paths 

that a totipotent cell (depichted as a marble at the top of a hill entering a series of 

furrows) might take as it restrics its fate to a specific cell type. Modern interpretations 

hypothesize that the cell’s trajectory through the valley reflects the pattern of 

epigenetic states that characterize each differentiation stage (Mohammad and Baylin 

2010). The epigenetic dynamics of stem cells and cell lineage commitment have 

been best studied in mice, where different stem cells lines have been established 

and derived from the embryo. It is important to note that the epigenetic molecular 

mechanisms achieved using cell cultures should be treated with caution, since it is 

unclear to what extent they really reflect developmental properties of whether the 

culture conditions affect embryonic stem (ES) cells properties (Marks, Kalkan et al. 

2012). 

 The formation of the zygote, and the very early embryonic divisions are 

characterized by an extensive remodelling of the paternal genome aimed at acquiring 

an appropriate epigenetic state for further embryonic development (Surani, Hayashi 

et al. 2007). After fertilization, the sperm nucleus replaces the highly basic non-

histone proteins protamines with histones, and undergoes a paternal specific active 

demethylation of DNA (Hemberger, Dean et al. 2009). Similarly, a genome-wide 

reprogramming of histones PTMs occurs during this period (Surani, Hayashi et al. 

2007). Subsequent rapid cell divisions lead the embryo to the blastocyst stage at 

which the inner cell mass (ICM) is surrounded by the trophectoderm (TE). In late 

blasocyst stage, the ICM separates into epiblast or primitive ectoderm (from which 

embryonic stem – ES –  cells are derived) and hypobalst or primitve endoderm (from 

which extraembryonic endoderm stem –XEN- cells are derived) (Hemberger, Dean et 

al. 2009). Besides being specifically characterized by the expression of key 

transcription factors (Oct4, Nanog, Sox2 in the ES cells; Cdx2, Eomesodermin in the 

TE cells, and Gata4-6, Foxa2 in the XEN cells), the different stem cell lines acquire 
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distinc epigenetic signatures both at the level of histone modifcations and DNA 

methylation (Surani, Hayashi et al. 2007; Hemberger, Dean et al. 2009; (Rugg-Gunn, 

Cox et al. 2010; Santos, Pereira et al. 2010). Chromatin immunoprecipitation studies 

have revealed an unexpected feature of ES cells, not shared by TE and XEN cells: 

the so called “bivalent domains”. This term describes the presence of genes 

repressed in ES cells but required for later development, which are marked by both 

the active H3K4me3 and the inactive H3K27me3 modifications (Azuara, Perry et al. 

2006; (Rugg-Gunn, Cox et al. 2010; Santos, Pereira et al. 2010). Upon development 

the bivalent modification state is resolved into mutual exclusive H3K4me3 or 

H3K27me3 domains, according to the transcriptional gene activities in different cell 

types. This event appears to be controlled with the implantation of the blastocyst, a 

key event during development. Following implantation, epiblast cells start responding 

to signals from the extraembryonic tissues, and transcriptionally differ from 

preimplantation primitive ectoderm in the expression of a series of genes, most 

notably Nanog, whose expression is rapidly downregulated (Surani, Hayashi et al. 

2007). Epigenetic mechanisms now acquire a pivotal, active role in development: 

while preimplantation development relies both on erasure and maintenance of 

epigenetic alterations, postimplantation development requires the establishment of 

epigenetic modifications in patterns, which are compatible with the ongoing cellular 

diverisfication (Surani, Hayashi et al. 2007). In general the epigenetic contribution to 

the further development is represented mainly by repressive mechanims involving 

histone methyltransferases, transcription repressors, miRNA, and DNA methylation, 

creating an “epigenetic enviroment” which, in cooperation with transcription factors 

networks, creates a cellular memory and thereby a stable cell fate (Hemberger, Dean 

et al. 2009). 

 In this regards, model organisms like Xenopus and zebrafish have contributed 

new insights from in vivo analysis of embryos, rather than derived embryonic cell 

lines (Akkers, van Heeringen et al. 2009; Vastenhouw, Zhang et al. 2010; Schneider, 

Arteaga-Salas et al. 2011). Vastenhouw and colleagues showed that genome 

activation is coupled to the acquisition of specific H3 trimethylated marks in Danio 

rerio, suggesting that these modifications exert a regulatory function only from and 

during the maternal-to-zygote transition. Moreover, chromatin immunoprecipitation 

(ChIP) experiments confirmed the bivalent pattern detected at developmental 

regulatory genes in murine embryos (Vastenhouw, Zhang et al. 2010). Interestingly, 

the authors found that many genes are monovalently marked by H3K4me3 but not 

associated with RNA pol II and therby inactive, suggesting a scenario in which 
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H3K4me3 domains poise genes for activation, creating a platfrom for transcriptional 

machinery (Vastenhouw, Zhang et al. 2010).  

 Genome-wide RNA and ChIP sequencing (RNA-Seq and ChIP-Seq 

respecively) technologies were applied to investingate histone modifications profiles 

during Xenopus tropicalis development (Akkers, van Heeringen et al. 2009). Unlike 

zebrafish, frog embryos reveal a hierarchy in epigenetic regulation, with specific 

spatial and temporal aspects. H3K4me3 precedes or coincides with transcriptional 

activation at MBT; only after the deposition of this mark, H3K27me3 becomes 

deposited on many transcription factor genes, repressing or spatially restricting gene 

expression (Akkers, van Heeringen et al. 2009). The epigenetic dynamics of 

X.tropicalis implies that bivalent chromatin domains are largely absent from the 

embryo, and may quickly resolve in monovalent domains, marked either by 

H3K4me3 or H3K27me3 only, according to the transcriptional states of genes in 

different cells and tissues of the embryo. The difference between Xenopus and 

zebrafish may indicate a species-specific difference in gene regulation, although 

different experimental approaches might have contributed to the contradictory results 

(Vastenhouw, Zhang et al. 2010). 

 In an antibody-independent approach, Schneider and colleagues quantified 

59 modification states on the core histones H3 and H4 from blastula to tadpole 

stages in Xenopus laevis (Schneider, Arteaga-Salas et al. 2011). The mass 

spectrometry based histone PTM profiles revealed a stage-specific acquisition of 

epigenetic signatures during development in accordance to the shift from 

pluripotency, via germ layer precursors, to committed and finally differentiated cell 

states (Schneider, Arteaga-Salas et al. 2011). At blastula stage, where the majority of 

embryonic cells are uncommitted and capable to differentiate in any derivatives of the 

three germ layers, the H3K4me3 abundance in frog embryos is comparable to that of 

ES cells; however, H3K27me3 is basically absent from the embryo at this time and 

several hundreds fold lower than in ES cells. This result confirms the observations of 

Akkers and collagues and strengthens the idea that bivalant domains play a much 

smaller role, if any, in frog embryos. Overall, the analysis highlighted a general 

decrease in the abundance of active histone PTMs, coupled to a concomitant 

increase of repressive histone modifications. Although during embryonic 

development H3K9me3 stays constant at a level lower than 1%, H3K27me3 and 

H4K20me3 progressively accumulate from blastula to tadpole stage. This result 

suggests that tri-methylation of K20 on histone H4 behaves as a regulatory 

modification. The epigenetic state of Xenopus embryonic cells changes from an 
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“active” and “derepressed” conformation at blastula, to a transcriptionally repressed 

state at tadpole stage, undergoing a general maturation upon differentiation 

(Schneider, Arteaga-Salas et al. 2011).  

 In toto, the increasing evidences from diverse biological systems highlight the 

close connection of transcription factors networks and epigenetic processes, which 

enforces cell fate specification during development. The dissection of the regulatory 

mechanisms that govern the nature of the epigenomes (i.e. how they are established 

and orchestrated upon differentiation) represents a fundamental step for the 

understanding of cell behaviour, development and diseases.  

 

2.4 Objectives 

 Early embryonic development relies on a tightly orchestrated series of events, 

leading the single-cell zygote to a mature organisms. All these events are 

characterized by an accurate interplay between transcription factor networks and 

epigenetics mechanisms. A recent mass spectrometric study in Xenopus revealed 

that post-translational modifications (PTMs) on core histone H3 and H4 are 

exchanged from transcriptionally active to transcriptionally repressive marks during 

development (Schneider, Arteaga-Salas et al. 2011). Among these PTMs, bulk 

H4K20me3 levels considerably increase from blastula stage on, implying a peculiar 

function of this modification in cell fate establishment. Despite the fact that repressive 

histone methylation represents a well characterized epigenetic mechanism, little is 

known about the developmental function of H4K20me2 and H4K20me3.  

 The main goal of this Ph.D. thesis was to characterize the function of 

Xenopus Suv4-20h histone methyltransferases (HMTases) during development. To 

this end Gain- and Loss-of-Function approaches were applied. The former relies on 

microinjection of mRNAs to transiently upregulate the protein levels; the latter 

employs translation-blocking antisense morpholino oligonucleotides to knock-down 

endogenous protein levels. Several phenotypes were scored and analysed on the 

morphological levels and by RNA in situ hybridization. This approach, together with 

other methods (i.e. Immunocytochemistry, qRT-PCR, ChIP, microarray profiling) 

allowed a comprehensive functional characterization of Xenopus Suv4-20h 

HMTases. 
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3 MATERIALS AND METHODS 

 

3.1 Laboratory Equipment 

 The following laboratory equipment was used. Companies’ name is indicated 

in brackets. 

BioruptorTM: Bioruptor Next Gen (Diagenode). 

Camera: Leica DFC 310FX (Leica). 

Centrifuges: Eppendorf centrifuge 5417C (Eppendorf); Micro 22R (Hettich 

Zentrifugen); Sigma 3-18 (Sigma Laborzentrifugen); PicoFuge (Stratagene). 

Developer: Curix-60 (Agfa). 

Gel documentation System: G:BOX (Syngene). 

Glass needles: Glass 1BBL W/FIL 1.0 mm (World Precision Instrument). 

Homogenizer: Glas-Glas Homogenizer 5 ml (Braun, Melsungen). 

Infrared Imaging System: Li-Cor (Odyssey). 

Incubators: Heraeus (GS); Standard-430 (GS). 

MALDI-TOF: Voyager-DE™STR, BioSpectrometry™ Workstation (Applied 

Biosystems). 

Microneedle Puller P-87 (Sutter Instrument). 

Micromanipulator Mm-33 (Science Products); Oxford micromanipulator (Micro 

Instruments, Oxford, UK). 

Microscopes: Stereomicroscope Stemi SV11 (Zeiss); Stereo-fluorescence System 

M205FA (Leica); Optical microscope DM (Leica). 

Pneumatic Micro-Injector Pli-100 (Digitimer Ltd.). 

Software: Illustrator CS5 (Adobe); Photoshop CS5 (Adobe); MacVector 11.2 (Oxford 

Molecular Group); Office 2008 for Mac (Microsoft); Endnote X4 (Thomson); Leica 

Application Suite V3 3.0 (Leica); Data explorer for MALDI Analysis (Applied 
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Biosystems); Light Cycler 480 Software Release 1.5.0 SP1 (Roche); Odyssey 

Application Software Version 3.0 (Odyssey); Gene Snap Image Acquisition Software 

(Syngene). 

Spectrophotometer: Nanodrop ND-1000 (PeqLab). 

Thermocycler: PCR System 2007 (Applied Biosystems); PCR Express (Hybaid); 

Light Cycler 480 System (Roche). 

Thermo shakers: Multitron (Infors HT); Thermo Shaker TS-100 (PeqLab). 

Water bath: Minitherm 2 (Dinkelberg). 

Vibratome: Vibratome 1000 (Technical Products International, INC.). 

 

3.2 Reagents 

 The subsequent fine- and bio-chemicals were ordered from Fluka, Merck, 

Sigma or USB. 

 Agar (Difco); Agarose (Gibco/BRL); Ampicillin, Streptomycin (Difco); Chicken 

serum, Lamb serum (Gibco/BRL); Human choriongonadotropin Gonasi 5000 (IBSA 

Farmaceutici Italia); Levamisol (Vectro Laboratories); Glycogen (Fermentas); 

Triazol® Reagent (Invitrogen). 

 

3.2.1 Enzymes and Proteins 

 The following fine reagents and enzymes were ordered from the companies 

indicated in brackets: Alkaline phosphatase (Roche); BSA fraction V (Roth); 

Leupeptin, Pepstatin (Sigma); Protease inhibitor cocktail tablets (Roche); Restriction 

endonuclease with 10X restriction buffer system (New England Bio Labs, Roche, 

Fermentas); RNaseA (Sigma); RNasin (Promega); T3, T7, SP6 ploymerases with 5X 

incubation buffer (Promega); Proteinase K (Sigma); RNase free DNase I (Promega); 

PeqGOLD Protein marker V (PeqLab); Taq DNA polymerase with 10X PCR buffer 

(NEB). 
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3.2.2 Kits 

 QIAquick® Gel extraction kit (Qiagen; DNA extraction from agarose gels); 

QIAprep® Spin miniprep Kit (Qiagen; DNA plasmid miniprep); QIAquick® PCR 

purification kit (Qiagen; purification of PCR fragments/products); RNeasy® mini kit 

(Qiagen; RNA cleaning); Expand High fidelity PCR System (Roche; high fidelity PCR 

amplification and mutagenesis PCR); F-470L DyNAmo™ cDNA Synthesis Kit 

(Finnzymes). 

 

3.3 Antibodies 

3.3.1 Primary Antibodies 

Antibody Dilution  Company/Reference 

H4K20me1 WB 1:6000 Schotta et al, 2008 

  Histological sample 1:5000   

H4K20me2 WB 1:1000 Schotta et al, 2008 

  Histological sample 1:2000   

H4K20me3 WB 1:500 Schotta et al, 2008 

  Histological sample 1:5000   

Pan-H3 WB 1:25000 Abcam 

  Histological sample 1:2000   

H3K9me3 WB 1:100 IMP Vienna 

H3K27me3 WB 1:3000 Diagenode 

c-Myc 9E10 WB 1:50 Evan et al, 1985 

H3S10p ICC 1:300 Upstate Biotechnology 

Active Caspase-3 ICC 1:500 Promega 

Acetylated alpha tubulin ICC 1:200 Sigma 

xbeta-catenin PGDS 7D12 ICC 1:100 
Mansperger's thesis 

2007 
Chicken myosin heavy chain 

MF20 ICC 1:100 Bader et al, 1982 
 

WB: western blot; IHC: immunohistochemistry; ICC: immunocytochemistry. 
* Developmental Studies Hybridoma Bank. 
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3.3.2 Secondary Antibodies 

3.3.2.1 Immunocytochemistry (ICC) 

 Sheep anti-mouse IgG conjugated with alkaline phosphatase (1:1000, 

Chemicon); anti-rabbit IgG (Fc) conjugated with alkaline phosphatase (1:1000, 

Promega). 

3.3.2.2 Immunofluorescence (IF) 

 Alexa Fluor® 488 goat anti-rat IgG (1:500, Molecular Probes); donkey anti-

mouse IgG, Cy2 conjugated (1:200, Jackson Immuno Research). 

3.3.2.3 In Situ hybridization 

 Sheep anti-Digoxigenin Fab fragment conjugated with alkaline phosphatase 

(1:2000, Roche). 

3.3.2.4 Western Blot Analysis (WB) 

 Infrared (IR) 800 goat anti-rabbit (1:5000, Li-Cor Odyssey); Horseradish 

peroxidase conjugated rabbit anti-mouse (1:3000, Jackson Immunoresearch). 

 

3.4 Nucleic acids 

3.4.1 Size standard 

 1Kb ladder: GeneRuler™ 1Kb DNA ladder (Fermentas). The DNA ladder 

yields the following 14 discrete fragments (in base pairs): 10000, 8000, 6000, 5000, 

4000, 3500, 3000, 2500, 2000, 1500, 1000, 750, 500, 250. 

 100bp ladder: GeneRuler™ 100bp DNA ladder plus (Fermentas). The DNA 

ladder yields the following 14 discrete fragments (in base pairs): 3000, 2000, 1500, 

1200, 1000, 900, 800, 700, 600, 500, 400, 300, 200, 100. 

 

3.4.2 Oligonucleotides 

 Oligonucleotides were designed with the program Primer3 

(http://frodo.wi.mit.edu/primer3/), and ordered from Metabion 
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(http://www.metabion.com/). All oligonucleotides were dissolved in DEPC-H2O at a 

final concentration of 100pmol/µl. and stored at -20°C. 

3.4.2.1 Oligonucleotides for endpoint RT-PCR 

for= forward/sense; rev= reverse/antisense strand 

Random hexamer 

RR13: 5'-NNNNNN-3' (N=A, T, C or G) 
 

Xenopus: 
odc for 5'-acaaagaaacccaaaccaga-3' 

odc rev 5'-caaacaacatccagtctccaa-3' 

suv4-20h1 for 5'-gttggcatgaagtggttgg-3' 

suv4-20h1 rev 5'-gcagacaatcggtttccatt-3' 

suv4-20h2 for 5'-ccggatgtttcttccagaga-3' 

suv4-20h2 rev 5'-ccaccaggagttcaatcttttc-3' 
 

3.4.2.2 Oligonucleotides for qRT-PCR 

Xenopus: 
geminin for 5'-tgaagtggctgttgatccag-3' 

geminin rev 5'-tcttcgttcctctgcaacct-3' 

h4 for 5'-gaccgcggtcacctacacc-3' 

h4 rev 5'-ctggcgcttcagaacataca-3' 

irx1 for 5'-ccataaccaccaccaccttc-3' 

irx1 rev 5'-tgtctgagtgcttgggactg-3' 

myoD for 5'-aggaaggccgccactatga-3' 

myoD rev 5'-gttgcgcaggatctccactt-3' 

ngnr 1a for 5'-acctgcactctgcgcttgat-3' 

ngnr 1a rev 5'-gcgcaaggtctcatcttgg-3' 

nrp1 for 5'-gccatgctgcaaaacttctt-3' 

nrp1 rev 5'-cccaccttatagccctccat-3' 

n-tubulin for 5'-tgctgatctacgcaaactgg-3' 

n-tubulin rev 5'-ctgtcagggctcggtattgt-3' 

oct-25 for 5'-caggttccagggttgcag-3' 

oct-25 rev 5'-gtccttgaggtgcaggaaag-3' 

oct-91 for 5'-ggacaacagtcgctgtagca-3' 

oct-91 rev 5'-cactgctcagcccatcacta-3' 

sox2 for 5'-tgcgtccaacaaccagaata-3' 

sox2 rev 5'-agttgtgcatcttggggttc-3' 
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sox3 for 5'-atgaacggctggactaatgg-3' 

sox3 rev 5'-tacctgtgctggatctgctg-3' 

sox11 for 5'-cgagaaaatccccttcatca-3' 

sox11 rev 5'-aggatccactttgggctttttc-3' 

sox17 alpha for 5'-tactgcaactaccccagtgc-3' 

sox17 alpha rev 5'-agagcccgtccttctcaata-3' 

xK81 for 5'-ccgttggtgttgaacaagtg-3' 

xK81 rev 5'-gcagctcaatttccaagctc-3' 

zic1 for 5'-acagatgaggctgggcttc-3' 

zic1 rev 5'-cagttggctggaggcataat-3' 

zic2 for 5'-tcggtaggacggagcaatac-3' 

zic2 rev 5'-ttcataggggagtactggttgtg-3' 

zic3 for 5'-ggtggtgcagcctttaactc-3' 

zic3 rev 5'-tggcaaaaagtccatgttga-3' 
 

3.4.2.3 Oligonucleotides for ChIP-PCR 

Xenopus: 
gapdh promoter for 5'-ctgtgctactggtgcttttcc-3' 

gapdh promoter rev 5'-taagcacaggcagcccttac-3' 

oct-25 5'-UTR for 5'-ctccgacttatttgggtgga-3' 

oct-25 5'-UTR rev 5'-tctaacctggatgggaggtg-3' 

oct-25 exon 1 for 5'-agagtccccagaacccaaat-3' 

oct-25 exon 1 rev 5'-aagggctaccagtccatgtg-3' 

oct-25 intron 1 for 5'-aaagctaccggctgattgg-3' 

oct-25 intron 1 rev 5'-agcgtgcaggattaggtcat-3' 

oct-25 exon 4 for 5'-aggggacgctggaaagttac-3' 

oct-25 exon 4 rev 5'-ccttggctatttgcaccatc-3' 

msat 3 for 5'-ccaccgtttgtcgtagacc-3' 

msat 3 rev 5'-tgctggggcaattaactg-3' 

thibz exon 1 for 5'-gctgtcggaactctcactcc-3' 

thibz exon 1 rev 5'-gcgtctcttgtcccagtagc-3' 

thra intron 2 for 5'-atttgctttcatgccttgct-3' 

thra intron 2 rev 5'-tatgaaacggagcgacacaa-3' 
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3.4.2.4 Oligonucleotides for PCR-based mutagenesis 

Mouse: 
suv4-20h1 Y299A for 5'-cctggagaagaaatttcttgttacgcaggagatggcttttttggagaaa-3' 

suv4-20h1 Y299A rev 5'-tttctccaaaaaagccatctcctgcgtaacaagaaatttcttctccagg-3' 

suv4-20h2 Y217A for 5'-ggatgaagtgacttgcttcgcaggtgagggcttcttcgg-3' 

suv4-20h2 Y217A rev 5'-ccgaagaagccctcacctgcgaagcaagtcacttcatcc-3' 

suv4-20h1 N264A for 5'-ggctcggtcctgctgcatttatagcccatgattgcagacctaactg-3' 

suv4-20h1 N264A rev 5'-cagttaggtctgcaatcatgggctataaatgcagcaggaccgagcc-3' 

suv4-20h2 N182A for 5'-ggcccagctgccttcatcgcccatgactgcaaaccc-3' 

suv4-20h2 N182A rev 5'-gggtttgcagtcatgggcgatgaaggcagctgggcc-3' 
  

3.4.2.5 Oligonucleotides for cloning 

Xenopus suv4-20h1 for 5'-ggggacaagtttgtacaaaaaagcaggcttaactatgaagtggttgggcgaat-3' 

Xenopus suv4-20h1 rev 5'-ggggaccactttgtacaagaaagctgggtctgcattgagtcttaaggat-3' 

Xenopus suv4-20h2 for 5'-ggggacaagtttgtacaaaaaagcaggcttaactatgggttcaaatcggttga-3' 

Xenopus suv4-20h2 rev 5'-ggggaccactttgtacaagaaagctgggtcactggtttcttcactcgac-3' 

Mouse suv4-20h1 for 5’-ggggacaagtttgtacaaaaaagcaggctacaacatggtggtgaatggcagga-3’ 

Mouse suv4-20h1 rev 5’-ggggaccactttgtacaagaaagctgggtctgcgttcagtcttagaga-3’ 

Mouse suv4-20h2 for 5'-ggggacaagtttgtacaaaaaagcaggcttaactatggggcctgatcgagtga-3' 

Mouse suv4-20h2 rev 5'-ggggaccactttgtacaagaaagctgggtctggctcaccactattgatg-3' 
  

3.4.2.6 Morpholino oligonucleotides 

xl, xt suv4-20h1 morpholino 5'-ggattcgcccaaccacttcatgcca-3' 

xl suv4-20h2 morpholino  5'-ttgccgtcaaccgatttgaacccat-3' 

xt suv4-20h2 morpholino  5'-ccgtcaagcgatttgaacccatagt-3' 

xl oct-25 morpholino 5'-ttgggaagggctgttggctgtacat-3' 

Control morpholino 5'-cctcttacctcagttacaatttata-3' 
 

Underlined and in bold: sequence complemntary to the AUG start codon.  

 

Morpholino oligonucleotides were ordered from Gene Tools (http://www.gene-

tools.com/). “Xl” and “xt” refer to Xenopus laevis and Xenopus tropicalis. Morpholino 

oligonucleotides were dissolved in milliQ water to a final concentration of 3mM, 

aliquoted in 5µl aliquots and stored at -20°C. xSuv4-20h morpholinos were injected 

from 20 to 40ng/embryo, while standard morpholino was injected from 40 to 

80ng/embryo. In cases in which single blastomere at 32-cell stage were injected, the 
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morpholinos doses were 5ng for Oct-25 morpholino and 1ng for Suv4-20h1 and 

Suv4-20h2 morpholinos. 

 

3.4.3 Plasmids 

3.4.3.1 Plasmids used for transfection 

Plasmid 
pCMV-eGFP  xenopus suv4-20h1a wt 

pCMV-eGFP  xenopus suv4-20h2a wt 

pCMV-eGFP  mouse suv4-20h1 wt 

pCMV-eGFP  mouse suv4-20h2 wt 

pCMV-eGFP  mouse suv4-20h1 N264A, Y299A mutant 

pCMV-eGFP  mouse suv4-20h2 N182A, Y217A mutant 
 

3.4.3.2 Plasmids used for in vitro transcription 

Plasmid Linearization Polymerase 
pCMV-SPORT6  xenopus suv4-20h1a wt HpaI SP6 

pCMV-SPORT6  xenopus suv4-20h2a wt HpaI SP6 

pCMV-myc  mouse suv4-20h1 wt  PvuI SP6 

pCMV-myc  mouse suv4-20h2 wt  PvuI SP6 

pCMV-myc  mouse suv4-20h1 N264A, Y299A mutant PvuI SP6 

pCMV-myc  mouse suv4-20h1 N182A, Y217A mutant PvuI SP6 

pCS2+  noggin NotI T7 

pCS2+  bcl-2 NotI SP6 

pCS2+ myc-VP16-oct-25 NotI SP6 

pCS2+ myc-EnR-oct-25 ScaII SP6 
 

3.4.3.3 cDNA used for dig-labelled RNA in situ hybridization probes  

cDNA Name Linearization Polymerase 
chordin EcoRI T7 

delta-like 1 XhoI T7 

endodermin EcoRI T7 

foxD5 XbaI T7 

geminin EcoRI T3 

goosecoid EcoRI T7 

irx1 EcoRI T7 
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krox20 EcoRI  T7 

myoD EcoRI T7 

n-tubulin BamHI T3 

ncam Asp718 SP6 

ngnr 1a BamHI  T3 

nodal3 EcoRI T7 

nrp1 BamHI T3 

oct-25 EcoRI T7 

oct-60 BamHI T7 

oct-91 RsaI T7 

otx2 EcoRI T3 

pax-6 NotI T7 

rx-1 BamHI T7 

sox2 EcoRI T7 

sox3 EcoRI T7 

sox11 SalI T3 

sox17 alpha SmaI T7 

suv4-20h1a  (∗) EcoRI T3 

suv4-20h2a  (∗) EcoRI T3 

t HindIII T7 

vegT HindIII T3 

xK81 EcoRI SP6 

zic1 HindIII T7 

zic2 EcoRI T7 

zic3 BamHI T3 
 

(∗) For xSuv4-20h1 and h2, fragments of approx. 1675bp and 1600bp, respectively, 
were subcloned into pBlueScript KS vector via XhoI/EcoRI. These fragments contain 
the 3’-UTR of the cDNAs 
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3.5 Molecular methods 

For each method presented in the Material and Methods section, the 

solutions and the reagents have been listed in toto. This leads to redundant listing of 

the most common reagents, but it ensures a better overview of all the materials 

needed for a specific method.  

 

3.5.1 Solutions 

Alkaline Phosphatase (AP) buffer: 100mM trichlorethane Tris/HCl pH 9.5; 100mM 

NaCl; 50mM MgCl2; 0.1% Tween 20. 

Bleaching solution: 1% H2O2; 5% Formamide; 0.5X SSC. 

DEPC-H2O: milliQ water with 0.1% Diethylpyrocarbonate (DEPC), stirred at Room 

Temperature (RT) overnight (o/n) and autoclaved afterwards. 

DIG NTPs mixture (10mM): 10mM CTP, GTP, ATP; 6.5mM UTP; 3.5mM Dig-11-

UTP (Roche). 

Hybridization Solution: 5X SSC; 50% formamide; 1% Boeheringer blocking 

solution; 0.1% Torula RNA; 0.01% Heparin; 0.1% Tween-20; 0.1% CHAPS; 5mM 

EDTA. 

Lamb Serum: heat-inactivated lamb serum (30 min at 56°C), stored at -20°C. 

Maleic Acid Buffer (MAB): 100mM maleic acid; 150mM NaCl, pH 7.5. 

MEMFA: 0.1M 3-(N-Morpholino)-propanesulfonic acid (MOPS); 2mM EGTA; 1mM 

MgSo4; 3.7% formaldehyde pH 7.4. 

NBT/BCIP solution: Nitro blue tetrazolium (NBT) 75mg/ml in 70% 

dimethylformamide; 5-bromo-4-chloro-3-indolyl-phosphate (BCIP) 50mg/ml in 100% 

dimethylformamide. For staining solution: 4.5µl NBT, 3.5µl BCIP in 1ml AP buffer. 

PBS: 137mM NaCl; 2.7mM KCl; 8mM Na2HPO4; 1.7mM KH2PO4; pH 7.2. 

PBSw: 1X PBS; 0.1% Tween-20. 

Paraformaldehyde: 4% paraformaldehyde in PBSw. 

Proteinase K: 10µg/ml Proteinase K in PBSw. 
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SSC (20X): 3M NaCl; 0.3M sodium citrate; pH 7.0; the solution is stored at RT. 

TE buffer: 1mM EDTA; 10mM Tris/HCl pH 8.0; the solution is stored at RT. 

TBE buffer: 100mM Tris/HCl; 83mM borate; 0.1mM EDTA; pH 8.6; the solution is 

stored at RT. 

 

3.5.2 Isolation of nucleic acid 

3.5.2.1 DNA isolation 

 Plasmid DNA preparations were carried out using QIAprep® Spin miniprep 

Kit (Qiagen). PCR products were purified using QIAquick® PCR purification kit 

(Qiagen). DNA fragments were purified from agarose gels using QIAquick® Gel 

extraction kit (Qiagen). 

3.5.2.2 RNA isolation 

 Five embryos or ten dissected tissue explants were collected at the proper 

developmental stage in 1.5ml Eppendorf tubes. As much buffer as possible was 

removed. 300µl of Quiazol (Invitrogen) was added. Samples were vortexed for 1-2 

min and subsequently stored at -80°C. After thawing on ice, the cell debris were 

removed by 10min centrifugation at 14000rpm, 4°C. The supernatant from each 

sample was transferred to a new 1.5ml Eppendorf tube. 60µl chloroform were added. 

Samples were rotated by hands, kept at RT for 2-3min and subsequently centrifuged 

for 10min at 14000rpm, 4°C. The upper colourless phase was again transferred in a 

new 1.5ml tube and the chloroform extraction was repeated. After the second 

extraction, the upper colourless phase was transferred in a new 1.5ml tube. 

4µg/sample of Glycogen (Roche) and 150µl of isopropanol were added in each 

sample. The samples were vortexed for 2-3min, kept at RT for 10min and 

subsequently centrifuged 10min at 14000rpm, 4°C. The supernatant was discarded 

and the pellet was washed with 300µl 75% EtOH by 5min centrifugation at 

14000rpm, 4°C. The supernatant was removed and the pellet was briefly air-dried. 

The RNA was dissolved in RNase free water. RNA was finally cleaned using the 

RNeasy® mini kit (Qiagen), including the on-column DNA digestion step, according 

to the manufacturer’s protocol. The typical yields were approx. 400ng per tissue 

explants (animal caps), and 5ng per embryo. 
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3.5.3 Analysis and manipulation of nucleic acids 

3.5.3.1 Cloning methods and bacterial manipulation 

 Preparations of competent cells and transformation have been performed 

according to standard methods (Sambrook et al., 1989). 

3.5.3.2 Bacterial strains 

The following E.coli strains were used for transformation: 

Stain Genotype Company 

DH5-alpha F´proA+B+ lacIq∆(lacZ)M15 zzf::Tn10 (TetR) / fhuA2∆ NEB (*) 

  (argF-lacZ)U169 phoA glnV44 f80 D(lacZ)M15 gyrA96    

  recA1 relA1 endA1 thi-1 hsdR17   

XL1 Blue endA1 gyrA96(nalR) thi-1 recA1 relA1 lac glnV44 F'[ ::Tn10 Stratagene 

   proAB+ lacIq Δ(lacZ)M15 Amy CmR] hsdR17(rK- mK+)   
 
(*) New England BioLabs. 
 

3.5.3.3 Gel electrophoresis of nucleic acids 

 DNA or in vitro synthesized RNA was electrophorased in horizontal 0.8 – 

1.5% TBE agarose gel, depending on the fragments size. 1Kb or 1000bp DNA ladder 

was used as size standard. Afterwards, the gels were photographed using the Gel 

documentation System G:BOX (Syngene). 

3.5.3.4 Isolation of DNA fragments from agarose gels 

 To isolate DNA fragments after electrophoresis, the appropriate bands were 

cut out under UV light. The DNA was extracted using QIAquick® Gel extraction kit 

(Qiagen), according to the manufacturer’s protocol. 

 

3.5.4 Polymerase chain reaction (PCR) 

3.5.4.1 PCR amplification of fragments for cloning 

 The reactions were performed in 0.2ml thin-walled PCR tubes (Sarstedt), 

using the Expand High fidelity PCR System (Roche), following the manufacturer’s 

protocol. 
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Thermal Cycling 

  Temperature Time Cycles 
    

Initial denaturation 94°C 2min 1X 
        

Denaturation 94°C 15sec  

Annealing 45 - 65°C (∗) 30sec 30 X 

Elongation 72°C  45sec -8 min (∗∗)  

        

Final Elongation 72°C  7min 1X 

        

Cooling  4°C unlimited  
        

 
(∗) Optimal annealing temperature depends on the melting temperature of the 
primers and the system used 
(∗∗) Elongation time depends on the fragment length: 45sec up to 0.75kb, 1min for 
1.5kb, 2min for 3kb, 4min for 6kb, 8min for 10kb. 

 

3.5.4.2 Endpoint RT-PCR assay 

 500ng of isolated total cellular RNA was reverse transcribed using the F-470L 

DyNAmo™ cDNA Synthesis Kit (Finnzymes), according to the manufacturer’s 

protocol. The desired target cDNAs were amplified using specific primers. Ornithine 

decarboxylase (ODC) was used as control cDNA. PCRs were carried out in the 

exponential phase of amplification (estimated by comparing products amount at 

different cycle numbers) using the Phusion High-Fidelity DNA Polymerase 

(Finnzymes). 25µl PCR reactions were prepared as following: 

Component 25µl reaction 
  

cDNA template 1µl  

5X Phusion HF GC Buffer 5µl  

10mM dNTPs 0,5µl  

0,5µM Primers for and rev 1µl  

Phusion DNA Polymerase 0,5µl  

H2O to 25µl  
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Thermal cycling 

  Temperature Time Cycles 
    

Initial denaturation 94°C 30sec 1X 

        

Denaturation 94°C 30sec  

Annealing 55°C 30sec variable 

Elongation 72°C  30sec  

        

Final Elongation 72°C  7min 1X 

        

Cooling  4°C unlimited  
        

  

 PCR samples were loaded side by side in the agarose gel. After 

electrophoresis, the gels were photographed using the Gel documentation System 

G:BOX (Syngene). 

 

3.5.4.3 Quantitative Real-Time PCR (qRT-PCR) 

 For real-time PCRs LightCycler® multi well plates 384/”white” (Roche) were 

used. 10µl PCR reactions were prepared as following: 

Component 10µl reaction 
  

cDNA template 1µl  

Fast SYBR Green Master Mix (∗) 5µl  

3,0µM Primers for and rev 1µl  

H2O 3µl  

    
 
(∗) Applied Biosystem. 
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Thermal cycling: 

  Temperature Time Cycles 
    

Initial denaturation 95°C 5min 1X 

        

Denaturation 95°C 10sec  

Annealing 60°C 20sec 45X 

Elongation 72°C  10sec  

        

 95°C  5sec  

Melting 65°C 1min 1X 

  97°C     

Cooling  40°C 30sec 1X 

        
 

3.5.4.4 Microarray analysis  

The Affymetrix GeneChip® Xenopus laeivs Genome 2.0 Array was used for 

microarray experiments. The array is comprised of more than 32,400 probe sets 

representing more than 29,900 Xenopus laevis transcripts. The Affymetrix 

GeneChip® Xenopus laeivs Genome 2.0 Array annotation file was used to identify 

the different prob-sets. Microarray experiments were performed under the 

supervision of Dr. Dietmar E. Martin at the Gene Center in Munich. Data analysis 

was performed by Dr. Tobias Straub (Molecular Biology Department, Adolf Butenandt 

Institute).  
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3.5.5 In vitro transcription 

3.5.5.1 In vitro transcription for microinjection 

 For the synthesis of capped sense-strand run-off transcripts, plasmid 

templates were linearized as followed: 

Component 40µl reaction 
  

plasmid template 10µg 

Buffer 10X 4µl 

Restriction enzyme 20U/µl 3µl  

H2O to 40 µl 

    
   

The reactions were incubated 60-90min at 37°C. Complete linearization was 

controlled by loading an aliquot of the digested template side by side with the same 

amount of unlinearized plasmid from a mock reaction (no restriction enzyme) on 1% 

agarose gel. Capped mRNAs for microinjection were in vitro transcribed with RNA 

polymerase. Reactions were set up as following: 

Component 50µl reaction 
  

Linearized DNA plasmid 2µg 

5X Transcription buffer (Promega) 10µl  

G(5')pppGcap analog (25mM, BioLabs) 5µl  

100mM NTPs-Mix (Roche) 10µl  

100mM DTT (Promega) 5µl  

RNasin 40U/µl (Promega) 0,5µl 

RNA-Polymerase (Promega) 2µl 

DEPC-H2O to 50 µl 

    
 

 The reactions were incubated 2h at 37°C; afterwards, an additional 1µl of 

RNA polymerase was added. The reactions were incubated o/n at 37°C. The in vitro 

transcribed mRNA was purified using RNeasy® mini kit (Qiagen) according to 

manufacturer’s protocol. An on-column DNA digestion step was included. mRNA 

quality was assessed loading 1µg of transcribed mRNA on 1% agarose gel. A 

successful in vitro transcription was considered when a clear band was detected at 
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the expected molecular size. mRNA concentration was estimated using Nanodrop 

ND-1000 Spectrophotometer. Samples were aliquoted in volume of 3-5µl and stored 

at -80°C. mRNA aliquots were subjected to maximum 5 freeze/thaw cycles before 

being discarded. Synthetic Xenopus and mouse Suv4-20h1 and h2 mRNAs were 

injected in the animal pole of two-cell stage embryos at 2, 3 or 4ng per embryo. 

Rescue experiments with mouse mRNAs were performed with 3ng of a 1:1 mix of wt 

or mutated Suv4-20h1 and h2 mRNAs, injected into the animal pole of a single 

blastomere at two-cell stage. Noggin and xBcl-2 mRNAs were injected at 60pg or 

800pg per embryo, respectively. Oct-25-VP16, -EnR mRNAs were injected in the 

animal pole of two-stage embryos at 100pg per embryo. 

 

3.5.5.2 In vitro transcription of dig-labelled probes 

 Plasmids were linearized as described and antisense RNA was generated by 

in vitro transcription. The reactions were set up as following: 

Component 50µl reaction 
  

Linearized DNA plasmid 2µg 

5X Transcription buffer (Promega) 10µl  

Dig-NTPs mix (10mM) 5µl  

100mM DTT (Promega) 5µl  

RNasin 40U/µl (Promega) 0,5µl 

RNA-Polymerase (Promega) 2µl 

DEPC-H2O to 50µl 

    
 

 The reactions were incubated 2h at 37°C; afterwards, an additional 1µl of 

RNA polymerase was added. The reactions were incubated o/n at 37°C. The in vitro 

transcribed RNA probes were purified using RNeasy® mini kit (Qiagen) according to 

manufacturer’s protocol. An on-column DNA digestion step was included. 

 

3.5.6 RNA In situ hybridization 

 Embryos were fixed in freshly made MEMFA for 1.5-2h at room temperature 

in 5ml storage vials (Roland Vetter Laborbedarf OHG) on a rotating wheel and then 
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washed in 1X PBS 3X5min. Explants were fixed in MEMFA for 30min and the 

processed like embryos. PBS was replaced with absolute ethanol to dehydrate the 

embryos; vials were kept on the rotator for few minutes and then ethanol was 

replaced with fresh ethanol. Samples were stored at -20°C at least o/n. Rehydration 

of the embryos was achieved by serial washes with decreasing ethanol 

concentrations (75%, 50%, 25%, in 1X PBSw) followed by 3X5min washes in PBSw. 

To permeabilize the embryos, the solution was then exchanged with PBSw + 

10µg/ml Proteinase K for 15min (5min for explants) at room temperature on a rocking 

table. Embryos were washed twice in PBSw and then refixed for 20min in PBSw 

containing 4% paraformaldehyde. Embryos were washed 5X5min in PBSw at room 

temperature. PBSw was replaced with hybridization solution (first wash: 50% PBSw 

+ 50% hybridization solution; second wash: 100% wash with hybridization solution, 

3min each step at room temperature). 0.5ml of fresh hybridization solution was 

added to each vials; samples were then incubated 1h at 65-70°C, in a water-bath, to 

inactivate endogenous phosphatases. Embryos were subsequently prehybridized for 

2-6h at 60°C, to reduce the background staining. 30-50ng of digoxigenein-labelled 

RNA probe were added to 100µl of hybridization solution, heated at 95°C for 2-5min, 

cooled down and then added to the 500µl prehybridized solution. Probe hybridization 

was performed o/n at 60°C in the waterbath. The solution containing the probe was 

transferred to a new 1.5ml eppendorf tube and stored at -20°C for further 

experiments (probes were re-used for 3-4 experiments). Embryos were rinsed for 

10min at 60°C in fresh hybridization solution and then washed three times in 2X SSC 

buffer for 20min at 60°C. Embryos were subsequently washed twice for 30min at 

60°C in 0.2X SSC, followed by 10min wash in MAB solution. MAB solution was 

replaced with 1ml of MAB containing 2% BMB blocking solution (Boehringher 

Mannheim). The vials were placed vertically on a rocking table and agitated 1h at 

room temperature. MAB + 2% BMB blocking solution was replaced with fresh MAB 

containing 2% BMB blocking solution and 1/2000 dilution of the affinity-purified 

antidigoxigenin antibody coupled to alkaline phosphatase. Embryos were rocked 

vertically for 4h at room temperature. Excess of antibody was removed by washing 6-

7 times for 1h the samples in MAB. One wash was performed o/n at 4°C. For the 

chromogenic reaction embryos were first washed twice for 5min at room temperature 

in alkaline phosphatase buffer. The solution was then replaced with 0.5ml of fresh 

alkaline phosphatase buffer containing 4.5µl/ml NBT and 3.5µl/ml BCIP. Samples 

were incubated in the dark, and the colour reaction was stopped when staining 

becomes apparent and intense (this process can take 5min to 24h) by washing the 
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embryos twice for 10min in 1X PBS at room temperature on a rotator. MEMFA 

fixation was performed at room temperature for at least 90min on a rotator. Embryos 

were then washed two to three times in 1X PBS containing 75% ethanol for 20-30min 

to remove chromogenic components and afterwards bleached in bleaching solution 

on a light box for at least 4h. Samples were finally washed in 1X PBS for three times 

at room temperature on a rotator and photographedwithin few days under bright light 

with Leica DFC 310FX (Leica).  
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3.6 Embryological methods 

3.6.1 Solutions 

Cysteine (Sigma): 2% LCysteine in 0.1X MBS (X. laevis) or in 1/9 MR (X. tropicalis); 

pH 7.8 (X. laevis) or 7.5 (X. tropicalis); the solution is kept at RT. 

Human Chorionic Gonadotropin (HCG): 2000 UI/ml HCG in milliQ water. 

MEMFA: 0.1M 3-(N-Morpholino)-propanesulfonic acid (MOPS); 2mM EGTA; 1mM 

MgSo4; 3.7% formaldehyde (freshly set up for the use), pH 7.4. 

Modified Barth’s saline (MBS, 1X): 880mM NaCl, 10mM KCl, 24mM NaHCO3, 

8.2mM MgSO4, 3.3mM Ca(NO3)2, 4.1mM CaCl2, 100mM Hepes; pH 7.6. The solution 

is kept at RT. 

Modified Barth’s saline (MBS) high salt (1X): 1X MBS supplemented with 50mM 

NaCl. 

0.1X MBS/Gentamycin: 0.1X MBS supplemented with 10µg/ml Gentamycin. 

0.8X MBS/CS: 0.8X MBS high salt with 20% chicken serum, 200U Penicillin/ml, 200 

µg/ml streptomycin; the solution was stored at -20°C until use. 

1X Modified Ringer Solution (MR): 0.1M NaCl, 1.8M KCl, 2mM CaCl2, 1mM MgCl2, 

5mM Hepes-NaOH. 1/9 and 1/18 MR solutions were prepared with proper dilution of 

1X MR. The solutions are kept at RT. 

1X Ringer’s solution: 116mM NaCl, 2.9mM KCl, 1.8 CaCl2, 5mM Hepes. The 

solution was kept at RT. 

10X Steinberg’s Solution (SS): 580mM NaCl, 6.7mM KCl, 3.4mM CaNO3, 8.3mM 

MgSO4, 50mM Tris, 0.1g Kanamycin; pH 7.4; the solution is filtered, autoclaved and 

kept at RT. 

1X SS/Gentamycin: 1X SS supplemented with 10µg/ml Gentamycin. 

1X SS/PIF: 1X SS supplemented with activin supernatant diluted 1:10 (Sokol et al., 

1990). 
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3.6.2 Experimental animals 

 Adult wild type Xenopus laevis and Xenopus tropicalis frogs were purchased 

from commercial breeding farms (Xenopus Express, Nasco). Animal work has been 

conducted in accordance with Deutsches Tierschutzgesetz; experimental use of 

Xenopus embryos has been licensed by the Government of Oberbayern (Projekt/AK 

ROB: 55.2.1.54-2532.6-3-11). Animal husbandry and use for the work presented 

here complies to the Directive 2010/63/EU. Xenopus frogs were kept in 17-19°C (X. 

laevis) or 21°C (X. tropicalis) tap water. The animals were fed three times per week 

with Pondsticks Premium brittle (Interquell GmbH, Wehringen). 

 

3.6.3 Superovulation of female frogs  

 Ovulation of Xenopus laevis females was stimulated by injection of 800 units 

of HCG into the dorsal lymph sac. In animals maintained at 18-20°C water 

temperature, egg lying started about 12-16h later. 

 Xenopus tropicalis females were stimulated to lay eggs following a two-step 

protocol: 12-20h before the main stimulation the females were primed with 10 units of 

HCG into the dorsal lymph sac. The second stimulation was performed by injecting 

200 units of HCG in the dorsal lymph sac. 

 

3.6.4 Testis preparation 

 A male frog was anaesthetized in 0.1% 3-Aminobenzoeacid-ethyl-ester in 

milliQ water for 30min, cooled down in ice-cold water and killed by decapitation. The 

two testes were taken from the abdominal cavity by pulling out the fat body through 

an incision of the skin, to which they are connected. Unless used, the testes from X. 

laevis were kept in MBS/CS at 4°C for a maximum of 6 days. For X. tropicalis, the 

testes were kept in 1X Ringer solution at 4°C for a maximum of 2 days. 

 

3.6.5 In vitro fertilization of eggs and embryos culture 

 For in vitro fertilization of X. laevis eggs a small piece of testis was minced in 

1X MBS and subsequently mixed with freshly laid eggs. After 3-4min the eggs were 

incubated in 0.1X MBS at 16-23°C in 110 mm Petri dish. For in vitro fertilization of X. 
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tropicalis eggs half a testis was minced in 300µl 1X Ringer solution, and 

subsequently mixed with freshly laid eggs. After 3-4min eggs were covered with 0.1X 

MBS and put at 23°C in 110mm Petri dish. 

 

3.6.6 Removal of egg jelly coat 

 Amphibian eggs are encapsulated in a multi-layered protein networks, the 

jelly coat. Due to its elastic properties, it needs to be removed prior to microinjection.  

 For X. laevis embryos, the jelly coat was routinely removed approx. 60min 

post-fertilization in order not to interfere with fertilization-associated developmental 

events, such as cortical rotation. The egg jelly coat was removed by incubating the 

embryos in 0.1X MBS plus 2% Cysteine solution, pH 7.8 for about 5min with gentle 

agitation in a glass flask. Embryos were then washed three times with 0.1X MBS and 

finally cultured in 0.1X MBS/Gentamycin at 16-23°C.  

 For X. tropicalis the egg jelly coat was removed, after 20min post fertilization, 

by incubating the embryos in 1/9 MR plus 2% Cysteine solution, pH 7.5 for about 10-

15min. While in Cysteine solution, embryos were gently mixed. Embryos were then 

washed 3 times with 0.1X Barth solution and twice with 1/9 MR and subsequently 

incubated in 1/9 MR at 23°C. 

 

3.6.7 Injection of embryos 

 Injection needles were created from capillaries with the Microneedle Puller 

(settings: heat: 800; pull: 35; vel: 140; time: 139; Sutter Instrument, model P-87). The 

needles were placed into the needle holder of the injection equipment (Medical 

System, model Pi-100). The tip of the needle was broken back carefully with a 

forceps in order to create an appropriate opening. The injection volume was adjusted 

by choosing the proper injection pressure (15-30psi) and/or the injection duration 

(30ms -1s). 2.5 or 5nl drops were injected during the experiments. Embryos were 

injected at two to eight cell stages into specific animal or vegetal blastomeres. After 

injection, not more than 50 embryos per dish were incubated in 0.1X 

MBS/Gentamycin at 16-23°C until the desired developmental stages in a 60mm Petri 

dish, covered with 1% agarose in 0.1X MBS (for X. laevis injections) or in 1/9 MR (for 

X. tropicalis injections). After injections X. tropicalis embryos were incubated in 2% 
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Ficoll in 1/9 MR solution for 1h, then transferred in 1/9 MR solution for 30min; finally 

embryos were put in 1/18 MR solution and incubated at 23°C. The saline was 

exchanged every day to increase the survival rates of the embryos. For each 

experiment uninjected/untreated embryos were cultured in parallel with the 

injected/treated ones. 

 

3.6.8 Animal cap explants preparation and culturing 

 Animal cap explants were manually dissected from embryos in 60mm Petri 

dish covered with 1% agarose in 1X SS and containing 1X SS/Gentamycin.  Animal 

caps were explanted with a pair of forceps and singly transferred into wells of a 96-

well plate covered with 90µl of 1% agarose in 1X SS and filled with 150µl of 1X 

SS/Gentamycin. For neural induction, embryos were injected into the animal pole 

with Noggin mRNA (60pg per embryo) alone or together with xSuv4-20h1 and h2 

morpholinos (40ng each per embryo) at two- to four-cell stage. For mesoderm 

induction, embryos were injected animally 4 times with 2.5nl of control morpholino 

(80ng per embryo) or a mix of xSuv4-20h1 and h2 morpholinos (40ng each) at two or 

four cell stage. Subsequently, animal cap explants were incubated in 1X 

SS/Gentamycin buffer containing the P388D1-derived inducing factor (PIF) from the 

mouse macrophage cell line P388D1, previously described as a strong inducers of 

mesodermal tissues (Sokol, Wong et al. 1990). For Oct-25-VP16 and –EnR 

overexpression experiments, embryos were injected animally 4 times with 2.5nl of 

each mRNAs (100pg per embryo). For epistasis experiments on animal caps, 

embryos were injected 4 times with 2.5nl of xSuv4-20h1 and h2 Morpholinos (40ng 

each per embryo) and Oct-25 Morpholino (30ng per embryo) at two or four cell stage. 
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3.7 Histological Methods 

3.7.1 Solutions 

Albumin: Albumin Fraktion V (Roth). 

Alkaline Phosphatase (AP) buffer: 100mM trichlorethane Tris/HCl pH 9.5; 100mM 

NaCl; 50mM MgCl2; 0.1% Tween 20; 2mM levamisol was added freshly. 

Bleaching solution: 1% H2O2; 5% Formamide; 0.5X SSC. 

Blocking Buffer: PBT plus 10% heat inactive serum. 

Citrate buffer: solution A: 0.1M Citric acid mono-hydrate; solution B: 0.1M Tri-

sodium citrate di-hydrate; Working solution: 9ml solution A mixed with 41ml solution 

B, 450ml milliQ water. pH 6.0. 

DAB substrate-chromogen (Zytomed System). 

Dent’s Fixative: 80% Methanol, 20% dimethyl sulfoxide (DMSO). 

Haemalaun (Roth). 

Hydrogen Peroxidase 35% (Roth): working solution: 3% hydrogen peroxidase in 1X 

PBS and 1/10 methanol. 

MEMFA: 0.1M 3-(N-Morpholino)-propanesulfonic acid (MOPS); 2mM EGTA; 1mM 

MgSo4; 3.7% formaldehyde (freshly set up for the use), pH 7.4. 

NBT/BCIP solution: Nitro blue tetrazolium (NBT) 75mg/ml in 70% 

dimethylformamide; 5-bromo-4-chloro-3-indolyl-phosphate (BCIP) 50mg/ml in 100% 

dimethylformamide. For staining solution: 4.5µl NBT, 3.5µl BCIP in 1ml AP buffer. 

PBS: 137mM NaCl; 2.7mM KCl; 8mM Na2HPO4; 1.7 mM KH2PO4; the pH 7.2. 

PBSw: 1X PBS; 0.1% Tween-20. 

PBT: PBS, 2mg/ml BSA, 0.1% TritonX-100. 

Streptavidin-HRP solution: (Pierce High Sensitivity Streptavidin-HRP, Thermo 

Scientific, diluted in blocking solution). 

X-Gal staining solution: 5mM K3Fe(CN)6; 5mM K4Fe(CN)6; 2mM MgCl2; 1mg/ml 

Xgal in 1X PBS. 
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X-Gal (5-bromo-4-chloro-3-indolyl-D-Galactosidase): 40mg/ml X-Gal in 25ml 

dimethylsulfoxide. 

X-Tra Solv (Medite). 

X-Tra Kit mounting medium (Medite). 

 

3.7.2 Immunocytochemistry 

 For immunocytochemical staining of embryos, the vitelline membrane was 

manually removed from the embryos before MEMFA fixation (see “RNA in situ 

hybridization” chapter 3.5.6). Embryos were rinsed in 1X PBS and then incubated in 

100% methanol and left o/n at -20°C. After rehydration  (75%, 50%, 25% methanol in 

1X PBS) embryos were rinsed in PBT for 15min at room temperature and then 

incubated for 1h with PBT containing 10% heat inactivated goat serum on an orbital 

shaker, to reduce non-specific hydrophobic binding of the antibody. Embryos were 

then incubated o/n at 4°C with PBT containing the primary antibody. Embryos were 

then washed 5-6 times at room temperature in PBT for 1h each wash. Anti mouse or 

anti rabbit alkaline phosphatase conjugated antibody were used at 1:1000 dilution 

(incubation o/n at 4°C). Embryos were again washed 5-6 times at room temperature 

in PBT for 1h each wash and subsequently incubated in alkaline phosphatase buffer 

containing Levamisol (0.25mg/ml, Sigma) twice for 30min, to inhibit endogenous 

alkaline phosphatases. For chromogenic reaction BCIP/NBT (biomol) solution was 

used. The staining reaction was stopped by rinsing the embryos in PBS. Embryos 

were fixed in MEMFA and their superficially located pigment granules were bleached 

to increase stain detection on a light box for at least 4h. 

 

3.7.3 Immunohistochemistry of paraffin embedded sections 

 Embryos were fixed in MEMFA for 1h at room temperature and then 

transferred into ice-cold Dent’s Fixative over night at -20°C. Prior to embedding, 

embryos were rehydrated for 30min in 100mM NaCl, 100mM Tris/HCl pH 7.4. After 

secondary dehydration with increasing ethanol concentrations, embryos were 

incubated for 2h in Xylene. Subsequently embryos were soaked in paraffin at 55°C 

twice for 2h, followed by proper orientation in moulds, while the paraffin was 

hardened on cooling plates. Embryos were sectioned to slices of 10µm, which were 
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dried for 2h at 37°C. Paraffin was removed washing the samples twice with X-tra 

Solv, decreasing ethanol concentration, and finally 1X PBS. Heat-induced epitope 

retrieval was performed incubating the slides citrate buffers solutions for 1h at 90°C 

followed by cooling down to room temperature. Endogenous peroxidase inactivation 

was inactivats by 10min incubation with 3% peroxidase inactivating solution. 

Unspecific antibody binding sites were blocked by incubation for 1h with 2% biotin-

free albumin in PBS. Primary antibodies, diluted in blocking-solution, were incubated 

o/n at 4°C. Secondary antibody incubation was preceded by washes in PBSw; 

subsequently, slices were incubated 1h at room temperature with biotinylated anti-

Rabbit secondary. After washes in PBSw slices were incubated 1h in the dark at 

room temperature in Streptavidin-HRP solution. Detection was achieved incubating 

the slices for 10min at room temperature in DAB substrate chromogen solution. The 

reaction was stopped by washing the samples in double distilled water. Haemalaun 

was used for counterstaining (6min at room temperature in 1:3 haemalaun-solution); 

slices were then blued with 10min under running tap water. Increasing ethanol 

concentrations and X-tra Solv were used for dehydration. Finally slides were 

embedded using X-TRA Kit mounting medium. The immunohistochemical 

experiments were kindly performed by Alexander Nuber (Laboratory of Professor 

Schotta, Department of Molecular Biology, Adolf Butenandt Institute, LMU, Munich). 

 

3.7.4 Vibratome sections of Xenopus embryos 

 Embryos were subjected to whole mount RNA in situ hybridization as 

described above (chapter 3.5.6). After bleaching, embryos were rinsed in 

gelatine/albumin mixture (2.2g of gelatine dissolved in 500ml 1X PBS subsequently 

supplemented with 135g of albumin (Roth) and 90g of Sucrose). 100-200µl of 25% 

glutaraldehyde (Sigma-Aldrich) were added to 2ml of albumin/gelatine mixture. The 

solution was quickly vortexed and poured in a small plastic tray to create a bottom 

layer. Embryos were placed and properly oriented on the solidifying layer. A second 

layer of albumin/gelatine mixture plus 25% glutaraldehyde was prepared and poured 

onto the embryos. The sample was led to solidify at least for 30min. The gelatinized 

block with the embryo was cut out under a dissecting microscope. Embedded 

embryos were properly oriented and glued onto a metal support. 30-50µm sections 

were created using a Vibratome 1000 (Technical Products International, INC.) 

according to manufacturer’s protocol. Sections were transferred on slides, slightly 
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dried, covered with X-TRA Kit mounting medium (Medite) and analysed with Leica 

M205FA Fluorescence Stereomicroscope. 

 

3.7.5 X-Gal staining 

 For lineage tracing of LacZ injected embryos, samples were fixed 30min in 

MEMFA at RT, and subsequently washed three times in PBS. 1ml of X-Gal staining 

solution was added to each sample. The vials were kept in the dark and periodically 

checked for the appearance of the staining, which usually occurred after 30-40min. 

The reaction was stopped, at the desired staining intensity, by washing the embryos 

three times in 1X PBS. The embryos were fixed for 30min in MEMFA at RT and 

subsequently stored in 100% ethanol at -20°C, until used for RNA in situ 

hybridization. 
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3.8 Protein analysis 

3.8.1 Solutions 

Loading buffer: Roti®-Load, stock solution 4X concentrated (Roth). 

Chemiluminescence reagents: Amersham ECL™ Western Blotting Detection 

Reagents (GE Healthcare); Amersham ECL Plus™ Western Blotting Detection 

Reagents (GE Healthcare). 

Coomassie solution: 0.4g Coomassie brilliant blue G250 dissolved in 200ml of 40% 

(v/v) methanol in water. 

Destaining solution (v/v ratio): 10% acidic acid, 30% methanol, 60% milliQ water. 

E1 solution: 90mM KCl, 50mM Tris, 5mM MgCl, 0.1mM EDTA, 10mM Na-Butyrat, 

0.4mM PMSF, 0.025mM Leupeptin, 2mM DTT; pH 7.4; the solution is filtered, 

aliquoted in 50ml aliquots and stored at -20°C. 

E1 solution/0.25M Sucrose: E1 solution supplemented with 0.25M Sucrose. 

E1 solution/0.25M Sucrose/0.5% Triton-X/ 0.5% NP-40: E1 solution supplemented 

with 0.25M Sucrose, 0.5% Triton-X and NP-40. 

E1 solution/1.25M Sucrose: E1 solution supplemented with 1.25M Sucrose. 

IP buffer: 100mM NaCl; 10mM Tris; 0.5% NP-40. The pH was adjusted at 7.5; the 

solution was stored at 4 °C. Complete IP buffer contains also 1mM NaF, 20mM beta-

glycerol, 0.1mM NaV, 1mM PMSF and 1 tablete/25ml solution of complete EDTA free 

protease inhibitor cocktail tablets (Roche). 

 

3.8.2 Preparation of Xenopus laevis whole embryo lysates for SDS-PAGE 

25 embryos per condition were collected in 15ml Eppendorf tubes. The embryos 

were lysed in 100µl of complete IP-Buffer (0.25 embryo equivalent/µl). Samples were 

centrifuged 15min at 14000rpm at 4°C. 90µl of the supernatant (22.5 embryo 

equivalent) were transferred to a new 1.5ml eppendorf tube and 18µl of loading dye 

were added to each sample (the solution contained now 0.21 embryo equivalent/µl). 

Samples were boiled at 95°C for 5min before loading the gels with 20µl (ca. 4.2 
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embryo equivalent) from each sample. The rest of samples were snap-frozen in liquid 

nitrogen and stored at -80°C for repeated use. 

 

3.8.3 Histone extraction from nuclei of Xenopus embryos on sucrose cushion 
for SDS-PAGE 

Sixty embryos at NF30 (Morpholino injection) or at NF11.5 (protein overexpression) 

were harvested and washed with E1 solution/0.25M Sucrose via centrifugation at 

600rpm for 1min. Embryos were incubated for 15-20min at room temperature in the 

same solution and subsequently lysed after homogenization with 20 strokes using a 

5ml glass-glass douncer (Braun, Melsungen). Nuclei were prepared by centrifugation 

at 1000rpm for 10min at 4°C. The supernatant containing the cytoplasmatic fraction 

was discarded and the nuclear pellets were resuspended in 3ml of E1 solution/0.25M 

Sucrose/0.5% Triton-X/ 0.5% NP-40. Nuclei were incubated on ice for 20min. The 

solution was carefully layered on top of a 50ml falcon containing 5ml of E1 

solution/1.25M Sucrose, in order to create two separate phases. Samples were 

centrifuged for 30min at 2000rpm (NF30 embryos) or 1000rpm (NF11.5 embryos) at 

4°C; the solution was discarded and the nuclei were resuspended in 1ml of E1 

solution and transferred in 1.5ml Eppendorf tube. Nuclei were centrifuged at 5000rpm 

for 2min and the pellets were resuspended in the appropriate SDS-loading dye 

volume (2.5µl loading dye/embryo). Unless used, the samples were kept at -20°C. 

Before loading the gels, the samples were boiled at 95°C for 5min. Samples obtained 

from NF30 embryos were diluted 1:10 with loading dye in a new 1.5ml eppendorf 

tube. The samples were boiled again at 95°C for 5min and finally 15µl of each 

sample (corresponding approx. to 0.6 (NF30) or 6 (NF11.5) embryo equivalents, 

respectively) were loaded onto the gels. 

 

3.8.4 Myc-tagged fusion protein extraction from embryos 

25 embryos per condition were lysed in 100µl of 100mM NaCl, 10mM Tris pH 7.5 

buffer supplemented with 1mM NaF, 20mM beta-glycerol, 0.1mM Sodium Vanadate, 

10mM Na Butyrate, 0,5% NP-40 and EDTA-free protease inhibitor cocktail tablets 

(Roche). Embryos were centrifuged 15min at 14,000g at 4°C; the supernatant was 

collected and 2X Loading buffer (Roti-Load1; Roth) was added. Samples were 

subsequently analysed by western blot. 
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3.8.5 SDS-PAGE and Western Blot Analysis 

SDS-PAGE (SDS-polyacrylamide gel electrophoresis) and Western Blot analysis 

were carried out according to standard protocols (Sambrook et al., 1989), with 10% 

and 15% PAA gels, using Roti PVDF membrane (Roth). The signals were detected 

with Amersham ECL™, ECL Plus™ Western Blotting Detection Reagents (GE 

Healthcare) and with the Infrared Imaging System Li-Cor (Odyssey). When ECL 

detection reagents were used, the membranes were exposed to several Super-RX 

Fuji medical X-ray films at different exposure times. When the Infrared Imaging 

System was used, wet membranes were scanned; several scans were recorded, with 

different sensitivities. Odyssey Application Software Version 3.0 (Odyssey) was used 

to quantify the western blot bands intensities. 

 

3.8.6 Sample preparation for Mass Spectrometry  

After SDS-PAGE separation, the gels were incubated o/n at 4 °C with Coomassie 

solution and destained the following day for 4h with frequent exchange of destaining 

solution every 30-40min. H3 and H4 bands were excised and cut in small pieces. 

These samples were washed twice with 200µl of H2O on a shaker at 37°C for 5min; 

neutralization was achieved by incubating the gel pieces with Ammoniumbicarbonate 

(Ambic) and afterwards a destaining step was performed by incubating the samples 

with 0.1M Ambic and HPLC-grade Acetonitrile (ACN) on a shaker at 37°C for 30-

90min, followed by additional washes with H2O. Gel pieces were dehydrated by a 

further ACN incubation. To convert free amino groups to propionic amides of lysine 

residues, histones were chemically modified by treatment with propionic anhydride 

before trypsin digestion (0.2µg/µl in 0.1M Ambic). To purify the samples from salts 

and acrylamide contaminations, the peptide solution was passed over a tip 

containing small amounts of C18 reversed phased material (ZipTip, Millipore). The 

peptides were subsequently eluted in a buffer containing 0.1% trifluoracetic acid 

(TFA), 50% ACN (elution buffer) and spotted on a target plate. The target plate was 

loaded into a Voyager DE STR spectrometer and spectra were analysed using the 

Data Explorer software and an in-house-developed software Manuelito. Spectra were 

de-isotoped and calibrated internally using the autoproteolytic peptides of trypsin. For 

quantification of the different post-translational modifications (PTMs) of the various 

peptides obtained after digestion, the relative intensities of each PTM were taken into 

account. The area under the peak, representing relative intensities of the 
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modification, was used for quantification. The area of all the modifications for each 

peptide were summarized and the percentage of each modification was then 

calculated. Sample preparation and PTM quantifications were performed in 

collaboration with Tobias Schneider (Laboratory of Professor R. Rupp, Department of 

Molecular Biology, Adolf Butenandt Institute, LMU, Munich).  
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3.9 Chromatin analysis 

3.9.1 Solutions 

Blocking solution for Protein-G and -A Sepharose Beads Fast Flow 4 (GE 

Healthcare): 50µl of beads (25µl ProteinG plus 25µl ProteinA) per sample, blocked 

in 15ml 5% BSA in PBS at 4°C for at least 1h. 

BSA (fraction V, Roth): 5% BSA in PBS; the solution was aliquoted in 50ml falcon 

tubes and stored frozen at -20°C. 

Formaldehyde: 37% stock (Merck); 1% Formaldehyde in PBS working solution: 

676µl formaldehyde in 25ml PBS. 

Glycine (Merck); 0.125M glycine in PBS (235mg glycine in 25ml 1XPBS). 

PBS: 137mM NaCl; 2.7mM KCl; 8mM Na2HPO4; 1.7 mM KH2PO4; pH 7.2. 

RIPA buffer: 50mM Tris-HCl, pH 7.4, 1% NP-40, 0.25% Na-Deoxycholate, 150mM 

NaCl, 1mM EDTA, 0.1% SDS, 0.5mM DTT (to be add freshly), 5mM Na-Butyrate (to 

be add freshly), Protease inhibitor cocktail (Roche; 1 tablet per 100ml RIPA solution); 

the solution was kept at 4°C. 

TES buffer: 50mM Tris-HCl pH 8.0, 10mM EDTA, 1% SDS, 50mM NaHCO3 (to be 

added freshly); the solution was kept at RT. 

Wash buffer I: 20mM Tris-HCl pH 8.0, 0.1% SDS, 1% Triton X-100, 2mM EDTA, 

150mM NaCl. 

Wash buffer II: 20mM Tris-HCl pH 8.0, 0.1% SDS, 1% Triton X-100, 2mM EDTA, 

500mM NaCl. 

Wash buffer III: 10mM Tris-HCl pH 8.0, 0.25M LiCl, 1% NP-40, 1% Na-

Deoxycholate, 1mM EDTA. 

Wash buffer IV: 10mM Tris HCl pH 8.0, 1mM EDTA. 

Proteinase K/Glycogen solution: 10mg/ml Proteinase K, 20mg/ml Glycogen 

(Fermentas); mix 10 parts of proteinase K with 2 parts of glycogen. 
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3.9.2 Chromatin Immunoprecipitation (ChIP) 

 The ChIP protocol was established for Xenopus based on a published 

protocol, with the following modifications (Blythe, Reid et al. 2009). Aliquots of 50 

Xenopus tropicalis embryos per condition (wildtype or injected) were fixed at NF 14-

15 in 5ml 1% formaldehyde in PBS for 5min at 20°C on a rolling wheel. Crosslinking 

was stopped by a 10min wash with 0.125M glycine/PBS, followed by three washes in 

PBS. Fixed embryos were transferred in 1.5ml eppendorf tubes, frozen in liquid 

nitrogen and stocked at -80°C. At experimental day1, embryos were cautiously 

thawned over 15min on ice.   

 Two 15ml conical tubes of blocked protein-G and -A beads were prepared by 

incubating the proper amount of beads with 15ml of 5% BSA in PBS. The tubes were 

incubated at 4 °C while mixing for at least 1h.  

 600µl of 4°C RIPA buffer was added to each 50 embryos aliquot. Samples 

were homogenized with a pellet pestle by gently disrupting the embryos until no large 

embryo fragments are visible. Embryos were incubated on ice at least 10min and 

subsequently centrifuged at 14,000rpm for 10min at 4°C. The supernatant was 

discarded and the wall of the tubes was carefully wiped with a kimwipe to remove 

any lipid contaminant. 650µl of 4°C RIPA buffer was added to each sample; the pellet 

was re-homogenized vigorously. Samples were subsequently sonicated using the 

Bioruptor (Diagenode) for 25 cycles, each composed of a 30sec pulse and 30sec 

rest. Samples were centrifuged at 14,000rpm for 10min at 4°C. 600µl sheared 

chromatin from two samples were pooled together (in order to obtain 1.2ml sheared 

chromatin from 100 fixed embryos) and transferred into a pre-chilled, clean 1.5 

microcentrifuge tube. Input samples were prepared as followed: in a clean 1.5ml 

microcentrifuge 195µl TES buffer were combined with 5µl sheared chromatin. Input 

samples were snap-frozen in liquid nitrogen and stored at -80°C and processed 

together with the IP-samples, once they were completed. 

 One of the two 15ml conical tubes containing the blocked protein-G and -A 

beads was centrifuged at 1000rpm for 5min at 4°C. Excess of 5% BSA/PBS was 

removed and the beads were gently resuspended by pipetting. A pre-clearing step 

was achieved by dispensing 50µl blocked beads to each sample of sheared 

chromatin and incubating each sample at 4°C with mixing for 1-1.5h. Samples were 

subsequently centrifuged at 1000rpm for 1min at 4°C. Each 1.2ml sheared chromatin 

sample was separated into two samples by transferring 580µl of pre-cleared, 
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sheared chromatin in two new 1.5ml pre-chilled, clean microcentrifuge tubes. Each 

new tube was filled with RIPA buffer and the immunoprecipitation was begun by 

adding 5µg of antibody to only one of the two tubes, keeping the second one as 

negative control. Samples were incubated overnight at 4°C with mixing. 

 At experimental day 2 the second 15ml conical tube containing the blocked 

protein-G and –A beads was centrifuged at 1000rpm for 5min at 4°C. Excess 5% 

BSA/PBS was removed, and the beads were gently resuspended by pipetting. 50µl 

blocked beads was added to each sample. Samples were incubated at 4°C with 

mixing for 1.5 hour and afterwards centrifuged at 100rpm for 1min at 4°C. Beads 

were subsequently washed: each wash consisted of a 1-minute centrifugation at 

1000rpm at 4°C to pellet the immunocomplexes; removal of supernatant with a 20-

gauge needle; addition of 1ml wash buffer, and final incubation at 4°C on a rotating 

wheel for 5min. Samples were washed 8 times in total, using 2 washes each with 

buffers I through IV. Following the washes, the supernatant was aspirated with a 26-

gauge needle inserted into the beads to completely removed any residual wash 

buffer. 200µl TES buffer was added to the beads. Elution was achieved by incubating 

the samples at 65°C for 1h in a table shaker (1000rpm). During this time the frozen 

input samples were thawned and vortexed to resuspend any precipitated SDS. All 

the different samples (input, IP and negative control) were processed in the same 

manner for the rest of the procedure.  

 Samples eluted from the beads were centrifuged at 14,000rpm at RT for 

1min. 200µl of the eluted supernatant was transferred to a new 1.5ml microcentrifuge 

tube. RNase treatment was achieved by adding 2µl of 10mg/ml stock RNase A 

(Quiagen) to each sample and incubation for 45min at 37°C. Subsequently, 12µl of 

Proteinase K/Glycogen solution was added to each sample. Samples were incubated 

at 68°C for 4h while shaking (1300rpm) to reverse crosslinks and digest proteins. 

DNA was purified on column using the QIAquick® PCR purification kit (Qiagen) 

following the manufacturer’s protocol. DNA was eluted in 33µl of EB buffer. qRT-PCR 

was performed using the Light Cycler 480 System (Roche). Data were analysed 

using the Light Cycler 480 Software Release 1.5.0 SP1 (Roche). 
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4 RESULTS 

4.1 Testing pluripotency by single cell transplantation 

 One of the most interesting aspects of developmental biology regards the 

mechanism of cell fate specification. The timing of commitment for naïve embryonic 

cells can be tested in Xenopus by single cell transplantation. Single animal pole 

blastomeres, marked by Alexa448, were transplanted into a late blastula host 

embryos blastocoel (stage NF 9). At stage NF 41-42 normally developed embryos 

were first examined with a fluorescence stereomicroscope. Embryos containing 

green cells were than embedded in low melting agarose and analyzed by confocal 

microscope. This assay allows the analysis of whole-mount transplanted embryos 

and can be used to test the state of commitment of cells taken from embryos at 

different stages. Two types of transplantation were performed: 1) homochronic 

transplantation, i.e. cell donor and host embryos were of the same age; 2) 

heterochronic transplantation, i.e. transplanted cells differed in their developmental 

age from the host recipients (Fig. 7). Although the transplanted animal pole cells 

contribute predominantly to ectoderm during normal embryonic development, upon 

transplantation, they give rise to progeny detectable in all the three germ layers (Fig. 

8, Table 1). 
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 Fig. 7: Strategy for single cell transplantation in NF9 embryos. 4-cell stage 
embryos were injected with green alexa fluor dextran. For homochronic transplantation, NF9 
animal cap cells were dissociated in Ca2+, Mg2+ free medium (CMFM) and injected in the 
blastocoel of an embryo at the same stage. For heterochronic transplantation NF 7-8 animal 
pole cells were dissociated in CMFM and transplanted in NF9 embryos. Alternatively, 
dissociated cells from NF9 embryos were cultured until siblings reached NF10.5, and 
subsequently injected in NF9 embryos. Analysis of cell derivatives was performed with NF 41-
42 transplanted embryos. 
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 Figure 8 displays examples of fluorescent cell progeny, whose differentiated 

cell type can be identified based on location and morphological features. 

 

 Fig. 8: Cell progeny detected upon transplantation of single cells. The figure 
shows a selection of cell derivatives in the three germ layers. Epidermal cells (a), head neural 
like structures (b) and dorsal fin sensorial neurons (c) could be detected as ectoderm 
derivatives. Transplanted cells gave rise also to mesodermal progeny, visible as skeletal 
myocytes (d) or blood cells (shown a series of sequential frames in e). Endodermal 
contribution of the transplanted cells could not be visualized at confocal microscope. Panel f 
shows fluorescence stereomicroscope pictures of cells located in the gut wall of NF46 
transplanted embryo.    
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 Table 1 summarizes the statistical analysis of the transplantation 

experiments. 

 

 Table 1: Statistical analysis of cell progeny upon homochronic and 
heterochronic single cell transplantation. The table shows the number and percentage of 
host embryos containing cells in different combinations of germ layers. With the exception of 
NF10.5 heterochronic transplantation, which relies only on one experiment, the analysis is 
based on three independent experiments per condition. 

 

 The statistical analysis showed that when younger donor cells (NF 7-8) were 

transplanted into host embryos, most of the blastomeres (56%) showed pluripotent 

behaviour, defined as the presence of labelled cells in tissues from at least two, and 

frequently all three, germ layers within a single embryo. Their cell progeny was found 

in ectoderm, mesoderm and endoderm. None of the transplanted cell was 

ectodermally committed. Upon homochronic transplantation, late blastula (NF 9) 

donor cells already showed less pluripotency compared to mid-blastula cells; 

moreover some of the transplanted blastomeres gave rise to daughter cells restricted 

to ectoderm only, suggesting that at this stage donor cells start to become 

committed. Donor cells from stage NF 10.5 were transplanted in a series of 

heterochronic transplantation experiments into the blastocoel of embryos at stage NF 

9; unfortunately the problems of injecting such small cells, and their lower 

proliferative capacity at this stage, made the transplanted blastomeres difficult to 

analyze. The result of the single experiment nevertheless highlighted the absence of 

pluripotency in NF 10.5 transplanted cells. These cells gave rise mainly to derivatives 

of a single germ layer, showing a higher percentage of ectodermal cells, compared to 

late blastula donor cells. 
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4.2 Identification of Xenopus laevis Suv4-20h enzymes 

 An increase body of data clearly supports the idea that epigenetic 

mechanisms play pivotal roles during development (Surani, Hayashi et al. 2007; 

Akkers, van Heeringen et al. 2009; Vastenhouw, Zhang et al. 2010; Schneider, 

Arteaga-Salas et al. 2011). In this context, histone post-translational modifications 

exert a key function during the transition form the pluripotent to the fully differentiated 

cell states (Azuara, Perry et al. 2006; Rugg-Gunn, Cox et al. 2010; Santos, Pereira et 

al. 2010). This shift is coupled to the progressive increase in heterochromatin 

formation, characterized, in addition to several other features, by the presence of the 

repressive histone methyl marks H3K27me3, H3K9me3 and H4K20me3. While the 

role of the PRC2, responsible for the deposition of H3K27me3, and of the diverse 

H3K9-specific HMTases have been characterized in significant depth, little is known 

about the functions of Suv4-20h1 and Suv4-20h2 enzymes with regard to gene 

regulation. Because H4K20me3 abundance rises continuously from blastula to 

tadpole stage (Schneider, Arteaga-Salas et al. 2011), we suspected a regulatory 

function for this modification, possibly in developmental gene regulation. We 

therefore decided to characterize the biological functions of the two HMTases during 

Xenopus development. 

 

 Xenopus laevis Suv4-20h1 and h2 ESTs were initially classified via database 

mining (Table 2). Because Xenopus laevis is an allotetraploid organism, two non-

allelic isoforms of each of the two HMTases were identified. Although only partially 

annotated, the two non-allelic isoforms of each gene could be clearly identified, and 

nucleotide alignment revealed high sequence similarity identity for each enzymes 

(data not shown). Mouse and Xenopus Suv4-20h1 and h2 protein sequences are 

well conserved, particularly within the SET domain (≥88% identity) (Table 3 and Fig. 

9). Interestingly, Xenopus Suv4-20h2 amino acid sequence appears remarkably 

longer than the mouse homolog, due to C-terminal insertion. 
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 Table 2. NCBI EST numbers of Xenopus laevis Suv4-20h enzymes. 

 

 

 Table 3. Percentage of amino acid identity of the SET domain between mouse and 
Xenopus proteins. 
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 Fig. 9: Xenopus laevis versus Mus musculus Suv4-20h protein sequences 
alignments. Amino acid sequence alignment for Mus musculus (Refseq. NM_001167885.1) 
versus Xenopus laevis Suv4-20h1 (Refseq. NM_001092308) (a) and Mus musculus (Refseq. 
NM_146177.2) (Schotta, Sengupta et al. 2008) versus Xenopus laevis Suv4-20h2 (Refseq 
NM_001097050) proteins (b). 
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 RNA in situ hybridization experiments on Xenopus embryos revealed a broad 

distribution of the two genes during different stages of development: both enzymes 

were maternally expressed, broadly distributed during gastrula and present in the 

neural tube at neurula stage. Tailbud stage embryos showed a strong staining in the 

head, e.g. eye and gills, but also in the trunk, where myocytes and neural tube 

appear distinctly stained (Fig. 10). 

 

 Fig. 10: Xenopus laevis Suv4-20h gene expression during early development. 
XSuv4-20h1 (a) and xSuv4-20h2 (b) mRNA expression was detected by RNA in situ 
hybridization at the indicated developmental stages. Both the enzymes were maternally 
expressed and showed a homogeneous distribution during blastula and gastrula stage. The 
neural tube is clearly stained at neurula and tailbud stage. Later stages showed a peculiar 
staining in the head, eye, gills, myocytes and neural tube. The high yolk distribution in the 
ventro-lateral portion of tadpole embryos partially masked the positive staining of cells present 
in that area. 
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 Semiquantitative RT-PCR on animal pole (AP), marginal zone (MZ) and 

vegetal pole (VP) explants at blastula stage showed similar and comparable 

abundance of Suv4-20h1 and h2 mRNAs (Fig. 11), suggesting a rather 

homogeneous presence of the mRNAs in the embryo. Since Suv4-20h mRNAs are 

not known to be subject to post-translational regulation, it may be that also Suv4-20h 

enzymes are present in most cells. 

 

 Fig. 11: xSuv4-20h enzymes mRNA distribution at blastula stage in prospective 
ectoderm, mesoderm and endoderm. Total RNA was extracted from animal pole (AP), 
marginal zone (MZ) and vegetal pole (VP) explants of NF9 embryos; semiquantitative PCR 
showed levels of xSuv4-20h1 and xSuv4-20h2 transcripts in the three explants. ODC was 
used as loading control, -RT PCR, performed for ODC, as negative. 

  

 On the other hand quantitative RT-PCR analysis showed a different 

distribution of the two mRNAs during development: while xSuv4-20h1 mRNA 

abundance decreases throughout the initial stages of development and subsequently 

rises from mid-gastrula on, at least in part reflecting the maternal-to-zygotic mRNA 

transition, xSuv4-20h2 mRNA profile is characterized by a constant decrease during 

development (Fig. 12). 

 

 Fig. 12: xSuv4-20h mRNA profiles during different stages of development. qRT-
PCR profiles of xSuv4-20h enzymes. The chart shows the relative expression of the two 
enzymes related to ODC at the indicated developmental stages. The shown temporal profiles 
were confirmed in a second independent experiment. 
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 In order to test whether the presumed Xenopus Suv4-20h HMTases were 

functionally active, we first analyzed their ability to rescue H4K20me3 state in Suv4-

20h double knockout (DKO) MEFs (Schotta et al., 2004), lacking the modification. 

Upon transfection both Xenopus enzymes clearly re-established the characteristic 

H4K20me3 punctuate pattern colocalizing with the chromocenters (DAPI dense foci) 

in the nuclei (Fig. 13) (Schotta et al., 2004). These results confirm the enzymatic 

activity of the prospective xSuv4-20h homologs.  

 

 Fig. 13: Wildtype Xenopus and mouse Suv4-20h HMTases re-establish 
H4K20me3 signals at chromocenters in Suv4-20h1/h2 DKO MEFs. Transiently transfected 
eGFP-tagged Suv4-20h1 and h2 enzymes from frog or mouse re-establish H4K20me3 marks 
in heterochromatic foci of Suv4-20h1/h2 DKO MEFs. (Transfections were performed by 
Matthias Hahn, Laboratory of Professor Schotta, Department of Molecular Biology, Adolf 
Butenandt Institute, LMU, Munich). 
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4.3 Functional characterization of xSuv4-20h enzymes 

 To address the role of the two enzymes during Xenopus development we 

designed specific translation blocking morpholino oligonucleotides against the two 

paralogues of each gene (Fig. 14 a and b). Since antibodies against the frog 

enzymes are unavailable, we performed in vitro TNT assay to test the ability of the 

different morpholinos to block translation of the corresponding mRNA. The in vitro 

reaction showed a clear specificity of each morpholino for their cognate templates: 

incubation of xSuv4-20h1 or h2 morpholinos prevented the synthesis of xSuv4-20h1 

or h2 proteins, respectively, while the presence of the control morpholino (ctrl-MO) 

did not inhibit the reaction (Fig. 14 c). 

 

 Fig. 14: Morpholino specificity. (a) and (b) show sequence alignments of the 
xSuv4-20h1 and h2 morpholino-targeted regions to the 5’-UTR of the respective ORFs. AUG 
start codon is boxed in red. (c) In vitro TNT assay performed as described in Materials and 
Methods section. XSuv4-20h1 and h2 MOs specifically inhibited translation of their cognate 
templates. 
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 To test whether the downregulation of the two enzymes leads to a reduction 

of H4K20me2 and me3 marks in vivo, western blot analysis was performed using 

specific antibodies against the different modifications on lysine 20 on the histone H4 

tail. To avoid possible functional complementation between the xSuv4-20h enzymes 

in vivo, the embryos were injected with a mix of the two morpholinos (double 

morphants). Compared to uninjected embryos or ctrl-MO injected embryos, the 

double morphants contained significantly less H4K20me2 (p=0.0011) and 

H4K20me3 (p=0.0164). The decrease of the two marks was coupled to an increase 

in H4K20me1 (p=0.0034) (Fig. 15 a and b), suggesting that monomethylation of K20 

cannot be converted to the higher methyl states in embryos depleted for xSuv4-20h 

enzymes. 

 

 Fig. 15: xSuv4-20h1, h2 morpholino-mediated downregulation leads to a strong 
reduction in H4K20me2 and H4K20me3 levels coupled to a concomitant increase in 
H4K20me1 abundance. Bulk histones from NF30-33 embryos were isolated and analyzed as 
described in Materials and Methods section. (a) Western Blot analysis of uninjected, control 
morpholino (ctrl-MO) and xSuv4-20h1, h2 morpholinos (double morphants) injected embryos 
using antibodies against H4K20 mono-, di- and trimethylation. PanH3 antibody was used as 
loading control. (b) Western Blot quantification of three independent biological experiments 
described in (a). Data represent mean values, error bars indicate SEM. 

  

 This result was confirmed by MALDI-TOF mass spectrometric analysis of the 

modification states of the tryptic peptide 20-23 from histone H4 (Fig. 16a). MALDI-

TOF profiles of peptides 9-17 and 27-40 on histone H3 were considered as control 

(Fig. 16b and c). Although H4K20me3 identification was not detected in a 

reproducible manner due to technical problems (Schneider, Arteaga-Salas et al. 

2011), nevertheless in double-morphant embryos H4K20me2 levels were 2.5-fold 

reduced (p=0.0153), and H4K20me1 mark was increased 3-fold (p=0.0185), while 

the unmodified peptide abundance remained constant. Notably, the abundance of K9 

and K27 methylation was unaffected by the downregulation of xSuv4-20h HMTases 
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(Fig. 16b and c, compare double morphants with uninjected and Ctrl-MO injected 

embryos), suggesting that on bulk chromatin these morpholinos trigger a specific 

alteration of H4K20 marks, without a general effect on other repressive H3 PTMs. 

 

 Fig. 16: Quantification of histone methylation states in xSuv4-20h morphants by 
MALDI-TOF mass spectrometry. Bulk histones from NF30-33 embryos were isolated and 
analysed as described in Materials and Methods. (a) H4 peptide 20-23, (b) H3 peptide 9-17 
and (c) H3 peptide 27-40 in uninjected, ctrl-MO and double-morphant embryos. The values 
represent the relative abundance of the individual modifications states as the mean of three 
independent experiments; error bars indicate SEM. Star - for technical reasons H4K20me3 
mark was quantitated only in some samples.  
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 Furthermore, western blot analysis with antibodies against trimethylated 

H3K9 and H3K27 showed no difference in the abundance of these two marks 

between control and xSuv4-20h double-morphant embryos (Fig. 17). 

 

 

 Fig. 17: xSuv4-20h1, h2 morpholino-mediated downregulation has no effect on 
H3K9me3 and H3K27me3. (a) Western Blot analysis of uninjected, control morpholino (ctrl-
MO) and xSuv4-20h1, h2 morpholino injected embryos using antibodies against H3K27me3 
and H3K9me3. PanH3 antibody was used as loading control. (b) Western Blot quantification 
of two independent biological experiments described in (a); data represent mean values, error 
bars indicate SEM. 

 

 To further characterize the effects of xSuv4-20h depletion, we performed 

immunohistochemistry on serial sections from late tailbud embryo injected unilaterally 

at 2-cell stage with ctrl-MO or xSuv4-20h MOs. Figure 18 details the results for the 

neural tube, because of its high density of proliferating cells, the clear presence of 

cells positive for the different H4K20 modifications, and because it represents a 

tissue where the injected side can be easily distinguished from the uninjected one. 

While H3 staining was unaffected by Ctrl- and xSuv4-20h morpholinos injections, 

H4K20me2 and H4K20me3 positive nuclei were reduced on the injected double 

morphant side of the neural tube. Once again, the reduction in the abundance of di- 

and tri-methylation was coupled to a compensatory increase in H4K20me1.  

 Together these results indicate that xSuv4-20h1 and h2 downregulation leads 

to a specific decrease of H4K20 di- and trimethyl marks in the embryo. 
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 Fig. 18: Immunohistochemistry on NF 30-33 ctrl-MO and double-morphant 
embryos. Immunohistochemistry on ctrl-MO and xSuv4-20h double-morphant tadpoles. 
Panels show representative cross-sections of neural tubes stained with antibodies against the 
histone epitopes indicated on top. Dashed lines indicate embryonic mid-line. Squares on 
double-morphant sections represent the cropped pictures shown in the bottom row. Inj – 
injected side. 

 

 RNA-based overexpression of xSuv4-20h HMTases had the opposite effect in 

bulk chromatin. Compared to the loss-of-function experiments, western blot analysis 

showed that, when injected singly, Xenopus Suv4-20h1 and h2 mRNAs caused, in a 

dose-dependent manner, a significant upregulation of H4K20me2 and H4K20me3, 

while H4K20me1 levels were slightly reduced (Fig. 19a). Interestingly, 

overexpression of mouse h1 or h2 mRNA altered the H4K20 methyl states to an 

extent comparable with the Xenopus h1 or h2 mRNA injections (Fig. 19b). Individual 

knockout of murine Suv4-20h HMTases suggest a functional sub-specialization, with 

Suv4-20h1 being responsible of H4K20me2 and Suv4-20h2 for H4K20me3 (Schotta, 

Lachner et al. 2004). Remarkably, when injected in Xenopus embryos, mouse Suv4-

20h HMTases do no show any specificity for either H4K20me2 or H4K20me3, 

suggesting that the preferential involvement of h1 in directing the di-methylation and 

h2 in establishing the tri-methylation of K20 can be possibly due to interactions of the 

enzymes with other factors in the mouse, or to protein domains, that are not 

conserved in Xenopus. 
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 Fig. 19: Suv4-20h enzymes gain-of-function experiments lead to a dose 
dependent upregulation of H4K20me2 and H4K20me3 in Xenopus embryos. Western 
Blot analysis of uninjected embryos or embryos injected with Xenopus laevis (a) or Mus 
musculus (b) Suv4-20h1 or h2 mRNAs at different concentrations. Bulk histones from NF11.5 
embryos were isolated and analyzed as described in Materials and Methods section. PanH3 
staining was used as loading control. 

  

 The functional characterization of Xenopus Suv4-20h HMTases, by loss and 

gain of function experiments, showed that alterations in the amount of proteins in the 

embryo leads to opposite effects, with clear and specific modifications of the 

methylation profiles at H4K20. Moreover these experiments indicate that the bulk 

abundance of di- and trimethylated H4K20 can be manipulated over a wide range 

without compromising embryonic viability. Together these results identify the frog 

cDNAs as orthologs of mammalian Suv4-20h enzymes.  

 

4.4 Developmental functions of xSuv4-20h enzymes 

 We next tested whether alterations in xSuv4-20h HMTase expression affect 

embryonic development. In a first series of experiments, the phenotypic 

consequences, arising from depletion of xSuv4-20h enzymes, were investigated. For 

this purpose, we injected xSuv4-20h1 and h2 morpholinos in one of the two 

blastomeres in embryos at two-cell stage and scored any phenotypic alteration, 

comparing injected with uninjected side. In a second series of experiments we 

assessed the consequences of xSuv4-20h enzymes overexpression.  
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4.4.1 Loss-of-function analysis 

   Upon morpholino injection, the process of patterning and morphogenesis of 

double-morphant embryos appeared largely normal. Gastrulation occurred properly 

and embryos showed regular antero-posterior and dorso-ventral axes. At the 

molecular level, the expression of Spemann’s organizers genes, such as Chordin, 

Goosecoid and Xnr-3, appeared unaffected in control and double-morphant embryos 

(Fig. 20). 

 

 Fig. 20: xSuv4-20h enzymes depletion have no effects on the expression of 
organizer genes. RNA in situ hybridization analysis on NF10.5 ctrl-MO and double-morphant 
embryos using probes against Chordin, Xnr-3 and Goosecoid. The pictures show Spemann’s 
organizer region stained with the three probes; animal pole is on the top, vegetal pole is on 
the bottom. For each condition, numbers refer to embryos showing the displayed staining, in 
comparison to the total number of analysed embryos (n= two independent experiments). 

 

 Similarly, the anteroposterior pattering of the central nervous system (CNS) 

appeared also to be normally established, as suggested by the wildtype-like 

expression patterns of Otx2 and Krox20, which demarcate the prospective forebrain 

or rhombomeres 3 and 5, respectively (Fig. 21). 

 

 

 



Results  80 

 

 Fig. 21: Krox20 and Otx2 expression is unaffected upon xSuv4-20h1, h2 
morpholinos injection. RNA in situ hybridization analysis on NF20 embryos using probes 
against Krox20 and Otx2. Krox20 expression: dorsal view of stained embryos with the anterior 
on the left. Otx2 expression: anterior view of stained embryos; dorsal is on the top, ventral is 
on the bottom. For each condition, numbers refer to embryos showing the displayed staining, 
in comparison to the total number of analysed embryos (n= two independent experiments). 

 

 Morphologically, from tailbud (NF30) stage on, two main phenotypes could be 

scored upon xSuv4-20h enzymes knockdown. First, as shown in Fig. 22, eye 

development was severely compromised in the injected side of double-morphant 

embryos. At NF33, control morpholino injected embryos showed the characteristic 

eye structure, with the lens placode surrounded by the pigmented retinal epithelium, 

partially open in its ventral-most portion (the so called choroid fissure, Fig. 22a). In 

the injected side of xSuv4-20h double morphants eye formation was strongly 

reduced: the eye rudiments contained no or little retinal pigment and most of them 

had no lens. Moreover the typical pattern of melanophores spread out over the dorsal 

part of the head and the lateral portion of the trunk was severely perturbed. The 

melanocyte number was reduced and in most of the cases completely lost from the 

injected side of double morphants (compare Fig. 22a, b and c). Both phenotypes 

were scored at high penetrance (80-90%; p<0.0001, Fisher’s exact test) in more than 

three independent experiments (Fig. 22). To test whether these phenotypes were 

specifically due to the downregulation of Xenopus Suv4-20h HMTases, rescue 

experiments were performed. Murine Suv4-20h1 and h2 mRNAs were coinjected, at 

increasing concentrations, together with Xenopus Suv4-20h1 and h2 morpholinos. In 

the rescue condition, the choroid pigmented layer appeared normally organized 

around the lens (Fig. 22c) and the typical pigmentation was properly re-established in 

number and sites in the injected embryos. 1ng of each mRNA was sufficient to 

rescue 2/3 of the embryos with eye and melanophores defects (p<0.0001, Fisher’s 
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exact test). The rescue efficiency did not increase upon injection of higher 

concentration of mouse mRNAs (Fig. 22). 

 

  

 Fig. 22: xSuv4-20h enzymes depletion represses eye and melanophores 
differentiation. Morphological phenotypes of NF30-33 ctrl-MO (a), double morphants (b) and 
rescued embryos (c). Embryos were injected in one cell at two cells stage with morpholino 
(a,b) or morpholino and Mus musculus mRNAs (c) plus Alexa Fluor 488 Dextran as lineage 
tracer (green channel) to identify the injected side. (d) Penetrance of the eye and 
melanophores phenotypes in uninjected, ctrl-MO, double morphants and double-morphant 
embryos rescued with increasing concentration of Mus musculus Suv4-20h1 and h2 mRNAs. 
n= numbers of embryos analysed. The results from three to five independent experiments are 
presented. 
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 The prominent eye defect and the high percentage of embryos affected by 

this phenotype encouraged us to further investigate this morphological alteration. On 

the genetic level, the expression patterns of the homeobox transcription factor Rx-1 

and the paired box transcription factor Pax-6, two main genes involved in the 

cascade leading to eye development, were frequently reduced and sometimes even 

completely missing in double-morphant embryos. The missing expression of the eye 

regulatory genes was again restored to normal levels by mouse Suv4-20h mRNAs. 

Thus, knock-down of xSuv4-20h enzymes blocks eye development at the level of 

master regulatory genes Pax-6 and Rx-1.  

 

 Fig. 23: xSuv4-20h enzymes depletion compromises the normal eye 
development. RNA in situ hybridization analysis of NF30-33 ctrl-MO, double morphants and 
rescued embryos using probes against Rx-1 and Pax-6. The pictures show the head of 
stained embryos. Upon xSuv4-20h enzymes depletion, the normal pattern of both the probes 
is deeply compromised (red arrows). mSuv4-20h enzymes mRNAs coinjection re-established 
the proper Rx-1 and Pax-6 expression. For each condition, numbers refer to embryos 
showing the displayed staining, in comparison to the total number of analysed embryos (n= 
three independent experiments). 

 

4.4.2 A functional SET domain is required for proper Suv4-20h enzymes 
function 

 To test whether this phenotypic rescue requires normal levels of Suv4-20h 

proteins or their enzymatic activities, mSuv4-20h HMTases carrying composite 

aminoacidic point mutations within the catalytic domain were created (Fig. 24). 

Protein sequence alignment of the SET domains (Dillon, Zhang et al. 2005), as well 

as crystal structures of SET-domain-containing HMTases (Kwon, Chang et al. 2003), 

highlighted conserved residues among several members of this superfamily, which 
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are important for S-adenosylmethionine (SAM) binding and catalytic activity. Two 

single mutations were introduced simultaneously in each enzyme, in the SAM binding 

pocket (Asp264Ala and Asp182Ala in mSuv4-20h1 and h2 respectively), and in the 

conserved catalytic Tyrosine residue (Tyr299Ala and Tyr217Ala in mSuv4-20 h1 and 

h2 respectively) (Fig. 24). 

 

 

 Fig. 24: Schematic of Mus musculus Suv4-20h1 and h2 SET domain mutations. 
The two single mutations Asp to Ala (N264A and N182A in mSuv4-20h1 and h2, 
respectively), and Tyr to Ala (Y299A and Y217A in mSuv4-20h1 and h2, respectively) are 
highlighted in red. 

 

 We tested the ability of the two mutated enzymes to rescue H4K20me3 state 

in Suv4-20h-double null primary MEFs. Both the variants were expressed and 

localized in the nuclei of transfected cells, as indicated by the eGFP signals. 

Nevertheless, unlike the wildtype proteins, neither variant restores the H4K20me3 

mark at heterochromatic foci in Suv4-20h DKO MEFs (Fig. 25). 
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 Fig. 25: Mouse Suv4-20h double mutated enzymes are inactive. 
Immunofluorescence of wildtype and Suv4-20h DKO MEFs transfected with eGFP-tagged 
indicated constructs. Untransfected Suv4-20h DKO MEFs show no H4K20me3 staining. The 
proper trimethylation pattern is re-established when wildtype, but not the double mutated, 
mouse HMTases are transfected. (Transfections were performed by Matthias Hahn, 
Laboratory of Professor Schotta, Department of Molecular Biology, Adolf Butenandt Institute, 
LMU, Munich). 

 

 To investigate whether the two variants possess dominant negative 

interference activity, we injected them into wt Xenopus embryos. As the western blot 

in figure 26a shows, forced expression of the mutated proteins triggered no changes 

in the methylation pattern of lysine 20 (compare lanes 1 and 5). Moreover, although 

the mutated variants accumulate to comparable levels as overexpressed wild-type 

proteins (Fig. 26b), they failed to re-established proper levels of H4K20me2 and 

H4K20me3 in xSuv4-20h double morphant embryos (compare lanes 2 and 6 with 

lane 4). 
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 Fig. 26: Functional SET domains are required for proper Suv4-20h HMTases 
activity. (a) Western Blot analysis with antibodies against H4K20 mono-, di-, trimethylation 
and PanH3 (used as loading control) of uninjected embryos (lane 1), double-morphant 
embryos (lane 2), wt and mutant mSuv4-20h1, h2 mRNAs injected embryos (lane 3, 5 
respectively), and double morphants coinjected either with wt or mutant mSuv4-20h1, h2 
mRNAs (lane 4, 6 respectively). (b) Anti-myc western blot with the same samples used in a. 
Asterisks indicate unspecific bands. Comparable results were obtained in two additional 
independent experiments. 

 

 Morphologically, the proper eye structure, re-established upon coinjection of 

xSuv4-20h1 and h2 morpholinos plus wild type (active rescue) mSuv4-20h1, h2 

mRNAs, was not developed when the mutated variants were expressed (inactive 

rescue; compare panels b and c of Fig. 27). The inability of the inactive mouse Suv4-

20h enzymes to rescue the eye phenotype was detected in two independent 

experiments (Fig. 27d). 
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 Fig. 27: A functional SET domain is required for morphological rescue of 
double-morphant phenotypes.  (a-c) Morphological phenotypes of NF 30-33 double 
morphants (a), embryos injected with xSuv4-20h1, h2 morpholinos and active (active rescue, 
b), or inactive (inactive rescue, c) mSuv4-20h1, h2 mRNAs. Embryos were coinjected in one 
half at two-cell stage with Alexa Fluor 488 Dextran as lineage tracer (green channel) to 
identify the injected side and sort embryos. (d) Penetrance of the eye phenotype in the 
indicated samples. n= numbers of embryos analysed. The results from two independent 
experiments are presented. 

 

 These results clearly prove that single point mutations in key residues within 

the SET domain compromise the enzymatic activity of the two HMTases. The two 

variants failed to rescue the major developmental phenotypes in xSuv4-20h 

morphants. Therefore, the described phenotypes represent a direct consequence of 

the absence of normal H4K20me2 and me3 levels, rather than the absence of the 

enzymes themselves. It is remarkable that the two inactive enzymes do not exert any 

dominant interference activity when overexpressed alone in wild-type embryos, as it 

has been observed for other chromatin modifying enzymes, in particular ATP-

dependent chromatin remodelling machine (Seo, Richardson et al. 2005). The 

implications of these findings will be discussed later. 
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4.4.3 Gain-of-function analysis 

 To complement the Loss-of-Function analysis we next overexpressed Suv4-

20h HMTases. Considering the comparable alteration of H4K20 methylation profile 

upon injection of single mRNAs (Fig. 19), Suv4-20h enzymes were overexpressed 

independently. Neither Xenopus nor mouse Suv4-20h mRNA injected embryos 

developed any morphological aberrations (Fig. 28a, b, d, e). Specifically, the size and 

the structure of the eye, as well as the number and the position of the melanocytes, 

which were strongly reduced upon protein knockdown, were indistinguishable 

between injected and uninjected sides. On the molecular level, Rx-1 and Pax-6 

expression was also unaffected (Fig. 28c and f). 

 Taken together, these results demonstrate that an increase in 

H4K20me2/me3 levels is not sufficient to cause developmental defects in the 

embryo. This finding is in contrast to embryos in which Suv4-20h enzymes have 

been knocked down. The difference between loss- and gain-of-function analyses 

suggests that a certain minimal amount of H4K20me2 and me3 is required for proper 

eye and melanocyte formation, but experimentally increased levels of these 

modifications can either be tolerated or compensated.  
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 Fig. 28: Xenopus laevis and Mus musculus Suv4-20h1 or h2 mRNA 
overexpression. Morphological phenotypes of NF 30-33 embryos injected with xSuv4-20h1 
(a) or h2 (b) and mSuv4-20h1 (d) or h2 (e) mRNAs as described in Material and Methods 
section. (c) Penetrance of the eye and melanophores phenotypes in embryos overexpressing 
Xenopus or mouse Suv4-20h1 or h2. n= numbers of embryos analysed. (f, g) In situ 
hybridization of NF30-33 uninjected embryos (top row) and embryos injected with Suv4-20h1 
(middle row) or h2 (bottom row) mRNA using probes against Rx-1. The results from two to 
three independent experiments are presented. 
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4.4.4 XSuv4-20h depletion misregulates a small group of genes 

 The morpholino-mediated morphological and molecular phenotypes 

described so far relate to ectodermal genes and tissues. To obtain a broader 

overview of the molecular deregulation caused by xSuv4-20h depletion, the 

transcriptomes of ctrl-MO and xSuv4-20h double-morphant embryos were compared. 

It is frequently observed that embryo cohorts develop in slight asynchrony as a non-

specific consequence of morpholino injection, possibly obscuring transcriptional 

responses. Moreover, weakly and strongly affected embryos are mixed within the 

same injected population, potentially averaging out some gene deregulation. Finally, 

embryos injected radially with xSuv4-20h morpholinos show gastrulation problems, 

which prevents a proper analysis at neurula stage (data not shown). To bypass these 

complications, the microarray analysis was performed on half-injected embryos, 

which were dissected (based on Alexa448 fluorescence) into pairs of injected and 

uninjected sides. This approach allowed to minimize the non-specific developmental 

asynchrony that characterizes embryos cohorts injected with different morpholino, 

and to correlate injected versus uninjected sides within one morphant population. 

Control and xSuv4-20h morpholinos injected embryos were collected at NF15 and 

subsequently cut in two halves along the midline. The extracted mRNA was then 

used to perform the microarray analysis (Fig. 29) using the Affymetrix GeneChip® 

Xenopus laeivs Genome 2.0 Array. Only 6% of the annotated 11639 probe sets 

present in the microarray were significantly altered in their expression, about equally 

split into up- (n=319) and downregulated (n=404) (Fig. 29b; for a complete list of the 

responding probesets see Appendix 2). On main caveat of this analysis is 

represented by incomplete gene annotation of the Xenopus laevis genome. This 

problem precludes a global and accurate analysis of the overall effects coupled to 

xSuv4-20h HMTases depletion. As a consequence, no clear developmental pathway 

or gene cohorts could be deduced from the data. Nevertheless analysis of gene 

ontology (GO) groups revealed that xSuv4-20h deletion leads to preferential 

downregulation of genes involved in DNA replication (data not shown). This very 

likely represents an indirect effect, given that H4K20me3 is considered a repressive 

histone mark. In general, the described results suggest that the observed phenotypes 

in double-morphant embryos originate from the misregulation of a small number of 

genes, rather than from global, pleiotropic effects.  
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Fig. 29: Microarray analysis. (a) Schematic representing mRNA purification from 
NF14-15 embryos for global profiling experiments. (b) Pie chart showing the number of up- 
(green) and down- (red) regulated genes among the annotated probe sets. (c) Histogram 
summarizing the fold expression change of the analysed 9752 active genes. Indicated in red 
are responder genes (153 up, 169 down). Lfdr, local fold discovery rate. 

 

4.4.5 XSuv4-20h enzymes are required for ectoderm formation 

 The broad expression of the two enzymes in the embryo (Fig. 10 and 11) and 

their apparent functional selectivity (Fig. 16) encouraged us to test, whether xSuv4-

20h HMTases downregulation would affect the expression of genes involved in the 

specification of the three embryonic layers. Unfortunately microarray data were not 

strongly informative to detail the cause of the phenotypic perturbations in xSuv4-20h 

morphants. Therefore an extended analysis of candidate marker genes were carried 

out. We performed whole-mount RNA in situ hybridization with germ layer specific 

markers, comparing their expression in uni-laterally injected control morphants 

versus xSuv4-20h double morphants. Considering the clear downregulation of the 

anterior neural markers Rx-1 and Pax-6 in tailbud embryos we first examined several 

neuroectodermal genes at early stages of development. Injection of xSuv4-20h1 and 

h2 morpholinos suppressed the expression of the neural specific basic helix-loop-

helix (bHLH) gene neurogenin (Ngnr 1a), Delta-like 1 and the neural differentiation 
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marker N-tubulin (Fig. 30): the lateral, intermediate and medial stripes of primary 

neurons, normally detected in a symmetric pattern on either side of the dorsal midline 

and positive for all the three genes during early to mid neurulation, were strongly 

reduced or completely absent from the injected side of double-morphant embryos. 

Coinjection of wt mSuv4-20h1 and h2 mRNAs effectively rescued the expression of 

the affected neuro-ectodermal markers while inactive mSuv4-20h HMTases were 

unable to re-establish the proper expression (Fig. 30, N-tubulin staining). Control 

morpholino injected embryos showed no effect on the expression of these marks. 

These phenotypes suggest that neurogenesis is inhibited from a very early stage on, 

i.e. determination of neuroblasts within the neuroectoderm. 

 

 Fig. 30: Neuroectodermal bHLH genes expression is compromised upon xSuv4-
20h enzyme depletion. RNA in situ hybridization analysis of ctrl-MO, double morphants and 
rescued embryos using probes against Ngnr 1a (NF 12.5), Delta-like 1 (NF 13) and N-tubulin 
(NF 15). Active/inactive rescue – embryos injected with xSuv4-20h1, h2 morpholinos and 
active or inactive mSuv4-20h1, h2 mRNAs, respectively. The pictures show dorsal view of 
stained embryos, anterior on the left. For N-tubulin, a representative picture of the rescue 
experiments performed with inactive mouse mRNAs is shown. The red arrowhead indicate 
unperturbed staining of the periblastoporal region for Delta-like 1, in double-morphant 
embryos For each condition, numbers refer to embryos showing the displayed staining, in 
comparison to the total number of analysed embryos (n= three to six independent 
experiments). 
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4.4.6 XSuv4-20h enzyme depletion affects epidermal ciliogenesis 

 The detailed observation of Delta-like 1 expression in late gastrula/early 

neurula morphant embryos revealed two important features: first, the typical 

mesodermal expression of this gene around the blastoporous was unaffected; 

second, and even more interesting, while Delta-like 1 expression in the neurogenic 

stripes of the forming brain was downregulated, its mRNA level in the epidermis was 

upregulated. Coinjection of xSuv4-20h enzymes morpholinos and wt mSuv4-20h 

enzymes mRNAs efficiently restored Delta-like 1 expression both in the neural plate 

(Fig.30) and in the non-neural ectoderm (Fig. 31). 

 

 Fig. 31: Non-neural Delta-like 1 expression is affected in morphants embryos. 
Expression pattern of Delta-like 1 in the ventral side of ctrl-MO, double-morphant embryos 
and embryos rescued with wt mSuv4-20h mRNAs. Pictures show ventral views of NF 12.5 
embryos. Anterior is on the top, posterior on the bottom. For each condition, numbers refer to 
embryos showing the displayed type of staining, in comparison to the total number of 
analysed embryos (n= two independent experiments). 

 

 Delta-like 1 expression in the non-neural ectoderm has been linked to the 

formation of ciliated cells in Xenopus embryonic skin (Deblandre, Wettstein et al. 

1999), which can be recognize by the presence of acetylated alpha-tubulin on the 

extracellular cilia tuft. To further characterize the morphant embryos phenotype, 

immunocytochemistry was performed. As shown in figure 32, acetylated alpha-

tubulin staining was less intense upon xSuv4-20h enzymes depletion; moreover, 

each spot, identifying a single ciliated cell, appeared smaller in morphant embryos 

compared to the control ones. Upon rescue, both these features were properly re-

established (Fig. 32). 
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 Fig. 32: Acetylated alpha tubulin staining appeared reduced upon xSuv4-20h 
enzymes depletion. Immunocytochemistry using an antibody against acetylated alpha 
tubulin in NF 30-33 embryos. The pictures show uninjected (top row, head on the left) and 
injected (middle row, head on the right) side of ctrl-MO, double morphants and rescued 
embryos. The bottom row represents a zoom of the areas indicated by the red square. For 
each condition, numbers refer to embryos showing the displayed staining, in comparison to 
the total number of analysed embryos (n= three to four independent experiments) . 

 

 To confirm the ICC results, and to better visualize the ciliated cells in NF 30-

33 embryos, confocal microscope analysis was performed (Fig. 33). Cilia in double-

morphant embryos appeared less and shorter than on the control side. Moreover, 

upon rescue, although the number of cilia per cell increases and was comparable 

with that of control morpholino injected embryos, nevertheless the length of the cilia 

appeared not properly re-established, suggesting a partial rescue (Fig. 33). 
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 Fig. 33: Confocal analysis of ciliated cells. Confocal fluorescent microscope 
pictures of NF 30-33 ctrl-MO, double morphants and rescued embryos, using antibodies 
against acetylated alpha tubulin (red, for cilia identification) and beta catenin (green, to mark 
cells boundaries). For each condition, three to five embryos were analysed (n= one 
independent experiment).  

 

 Finally we used scanning electro-microscopy (SEM) to visualize ciliated cells 

on tadpole embryos (Fig. 34). 

 

 Fig. 34: SEM analysis of ciliated cells. Scanning electro-microscopy analysis 
pictures of NF 30-33 ctrl-MO and double-morphant embryos. For each condition, three to five 
embryos were analysed (n= one independent experiment). .  
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 Once again the analysis confirmed the previous results. The clear pictures 

obtained with SEM highlights that cilia formation was compromised both with regard 

to length and number, upon xSuv4-20h enzymes depletion. Taken together, these 

preliminary results suggest a molecular link between the H4K20me2/me3 marks and 

ciliogenesis in Xenopus development. 

  

4.4.7 XSuv4-20h enzymes are required for neurogenesis  

 The downregulation of key components of the proneural/neurogenic gene 

cascade (Fig. 30) clearly indicates an involvement of xSuv4-20h HMTases in 

neurogenesis. Therefore we analysed the expression of two neuronal markers 

implicated in the formation of the neural tube: Nrp1, ubiquitously expressed 

throughout the neural plate, and the neural cell adhesion molecule, N-CAM, 

associated with the central nervous system histogenesis (Kintner 1992). In double-

morphant embryos both the genes were strongly reduced (Fig. 35). The proper 

expression pattern was re-established coinjecting xSuv4-20h morpholinos plus 

murine Suv4-20h wt mRNAs (active rescue). 

  

 Fig. 35: Nrp1 and N-CAM expression is reduced upon xSuv4-20h morpholinos 
injection. RNA in situ hybridization analysis of ctrl-MO, double morphants and rescued 
embryos using probes against Nrp1 and N-CAM (NF 19-20). The pictures show dorsal view of 
stained embryos, anterior on the left. For each condition, numbers refer to embryos showing 
the displayed staining, in comparison to the total number of analysed embryos (n= two 
independent experiments). 

  



Results  96 

 At the same developmental stage, in which Ngnr 1a, Delta-like 1 and N-

tubulin were downregulated, the expression of the pan-neural transcription factors 

Sox2, Sox3 and Sox11 was unperturbed in the double morphants (Fig. 36). 

Moreover, the RNA in situ pattern of the epidermal keratin gene XK81, a non-neural 

ectodermal marker, was only mildly perturbated at the ectoderm-neuroectoderm 

border, which appeared fuzzy and not properly established upon xSuv4-20h 

depletion (Fig. 36).  Interestingly, staining for both XK81 as well as Sox2 and Sox3, 

revealed that the closure of the neural tube was delayed on the injected side. This 

suggests an involvement of the two enzymes in the regulation of morphogenetic 

processes during neurulation. As a consequence of this effect, the Sox2 and Sox3 

domains appear slightly broadened in the injected half. Nevertheless, the similar 

staining intensity of the two markers in injected versus uninjected side indicated 

rather normal expression levels for the two genes. 

 

 

 Fig. 36: XK81 and Sox genes expression are unaffected upon xSuv4-20h 
enzymes depletion. Expression patterns of XK81 and neuroectodermal Sox2, Sox3 and 
Sox11 genes in ctrl-MO and double-morphant embryos. Pictures show dorsal view of NF15-
16 injected embryos, with the anterior on the left. Additional anterior views of embryos, with 
dorsal side on the top and ventral side on the bottom are shown for XK81. For each condition, 
numbers refer to embryos showing the displayed staining, in comparison to the total number 
of analysed embryos (n= two independent experiments). 

 Additionally, we tested the expression the mesodermal markers Xbra, VegT, 

MyoD, and the endodermal genes Sox17 α and Endodermin. Although the xSuv4-

20h HMTases are expressed very broadly, including the prospective mesodermal 

germ layer (see Fig. 10 and 11), none of these genes was misregulated in double-

morphant embryos (Fig. 37). 
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 Fig. 37: Mesodermal and endodermal markers are expressed normally in 
double-morphant embryos RNA in situ hybridization analysis showing expression patterns 
of mesodermal (Xbra, Veg-T, MyoD) and endodermal  (Sox-17 α, Endodermin) genes in ctrl-
MO and double-morphant embryos. Xbra pictures show vegetal view of NF 11 embryos. 
MyoD pictures show dorsal view of NF 15 stained embryos, with the anterior on the left. For 
Veg-T and Sox-17 α expression, pictures show internal stain of NF11.5 embryos bisected 
along the animal-vegetal axis. For Endodermin detection, saggital sections of NF 15 embryos 
were created. Pictures show internal stain of the injected half of ctrl-MO and double-morphant 
embryos. The head is on the left. The closing blastopore is visible on the posterior most part 
of the embryos. For each condition, numbers refer to embryos showing the displayed staining, 
in comparison to the total number of analysed embryos (n= three independent experiments). 

  

 The loss of function analysis, which revealed a germ-layer specific 

requirement for xSuv4-20h activity in the ectoderm, was complemented by 

experiments in which either mouse or frog Suv4-20h mRNAs were microinjected. As 

we have shown before, this leads to a significant increase in H4K20me2 and –me3 

levels (Fig. 19). Surprisingly, expression of the tested neuroectodermal, mesodermal 

and endodermal genes was completely normal (Fig. 38). 
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 Fig. 38: Overexpression of either Xenopus or mouse Suv4-20h mRNAs does not 
perturbed germ layer-specific gene expression patterns. RNA in situ hybridization 
analysis of uninjected embryos and embryos injected with Xenopus or mouse Suv4-20h1 or 
h2 mRNA, using probes against Ngnr 1a, Delta-like 1, N-tubulin, Xbra, MyoD, Sox17 α, 
Endodermin. Pictures show dorsal view of stained embryos, anterior is on the left; Xbra 
pictures show vegetal view of NF11 embryos; MyoD pictures show dorsal view of NF 15 
embryos, with the head on the left. For Sox-17 α and Endodermin sagittal sections of NF 15 
embryos were created; pictures show internal view of the injected halves, with anterior on the 
left. For each condition, numbers refer to embryos showing the displayed staining, in 
comparison to the total number of analysed embryos (n= two independent experiments). 
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 Considering the prominent absence of markers expressed in late stages of 

neuronal commitment from double-morphant embryos, we decided to investigate the 

neurogenic program in a broader manner, specifically in form of genes which act 

upstream of Ngnr 1a. At midgastrula FoxD5, Geminin, Zic1, Zic2, Zic3 and irx1 

(Xiro1) transcripts are expressed in the prospective neuroectoderm. These genes – 

expressed in overlapping domains – exert pivotal role in the early neural plate 

establishment. While FoxD5, Geminin and Zic2 maintain an undifferentiated 

neuroectoderm state, Zic1, Zic3 and Xiro1 have been shown promote the transition 

to neural differentiation (Rogers, Moody et al. 2009). At NF11, FoxD5 and Geminin 

expression appeared unaffected upon morpholinos injections, while Xiro1, Zic1, Zic2 

and Zic3 patterns were strongly reduced in the injected side of double-morphant 

embryos (Fig. 39). 

 

 Fig. 39: Early neuroectodermal genes expression in xSuv4-20h depleted 
embryos. RNA in situ hybridization analysis showing expression patterns of the 
neuroectodermal genes FoxD5, Geminin, Xiro1, Zic1, Zic2, Zic3, at NF 11 in ctrl-MO and 
xSuv4-20h double-morphant embryos. Embryos were injected in one blastomere at two cells 
stage with morpholino (ctrl or xSuv4-20h1/h2) plus LacZ mRNA to detect the injected side 
(light blue stain). Pictures show dorsal views of representative embryos; the animal pole is on 
the top, the vegetal pole is on the bottom. For each condition, numbers refer to embryos 
showing the displayed staining, in comparison to the total number of analysed embryos (n= 
two to three independent experiments). 

  

 Taken together these results demonstrate that xSuv4-20h HMTases are 

critical for neural development, but dispensable for mesoderm and endoderm 

formation in X. laevis. 

 To further confirm the specific role of Xenopus Suv4-20h enzymes in neural 

development, we considered two different approaches. In a first series of 

experiments we performed injections at 8-cell stage in the animal or vegetal pole 

blastomeres, selectively depleting cells from xSuv4-20h activity that belong either to 

mesendoderm (vegetal injections Fig. 40) or ectoderm (animal injections Fig. 40). 
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Vegetal pole blastomere injections had no evident morphological and molecular 

phenotype (Fig. 40b and c), although differentiation of the proctodeum was delayed 

in double morphants (Fig. 40b dashed circle). Conversely, animal injections 

resembled the global injections at two-cell stage, with the eye and melanophores 

missing in double-morphant embryos, while mesodermal and endodermal structures 

normally developed (Fig. 40e). Consistent with these morphological results, Delta-like 

1 expression was suppressed, while MyoD and Sox17 α appeared unaffected (Fig. 

40f). 

 

 Fig. 40: xSuv4-20h1/h2 enzymatic activity is required in the ectodermal germ 
layer. (a) and (d) Schematic illustrations of targeting microinjections into mesendodermal or 
ectodermal territories at 8-cell stage, respectively. (b) Injecting xSuv4-20h MOs into the 
mesendoderm causes no apparent morphological phenotype in the embryo; the white dashed 
circle indicate proctodeum in double-morphant embryos; (c) neural, mesodermal and 
endodermal marker genes are expressed normally. (e) XSuv4-20h MOs reduce eyes, cranial 
and trunk melanophores, when injected into the ectoderm; (f) expression of all tested markers 
in mesoderm and endoderm is normal, except for Delta-like 1, whose expression specifically 
in the open neural plate is strongly reduced on the injected side. Global morphology was 
assessed at hatching stage (NF 36), molecular markers at indicated stages during 
neurulation. Top row images in b and e depict whole embryos for overview. For each 
condition, numbers refer to embryos showing the displayed staining, in comparison to the 
total number of analysed embryos (n= two to three independent experiments).  
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 These results unambiguously demonstrate, therefore, that  the phenotypes in 

xSuv4-20h morphants arise in the ectoderm, and are not indirect consequence of 

perturbed mesoderm formation. Thus, accumulation of H4K20me3 is a prerequisite 

for differentiation of both regions of the ectoderm, i.e. epidermis and neuroectoderm.  

 To demonstrate the critical role of xSuv4-20h enzymes in ectodermal 

differentiation in complete absence of mesendoderm, we took advantage of the 

animal cap (AC) assay (Green 1999). In this technique, small animal pole explants 

are dissected from the embryos and cultured in isolation. These explants differentiate 

into epidermis by default, but can be forced to become neural by inducers such as 

Noggin (Lamb, Knecht et al. 1993). We exploited this effect to test, whether neural 

induction by Noggin occurs in the absence of xSuv4-20h enzymes.  

 Default differentiation was undistinguishable between control and double-

morphant explants (Fig. 41): XK81 was expressed, while Nrp1 and Xbra expression 

(indicating absence of contaminating mesoderm) was not detected. Upon Noggin 

injection, control caps clearly upregulated Nrp1, while suppressing XK81, consistent 

with neural induction. Coinjection of Noggin mRNA plus xSuv4-20h HMTases 

morpholinos reduced Nrp1 induction, while XK81 expression was kept 

downregulated. Thus, double-morphant caps are both refractory to neural induction 

and restrained in epidermal differentiation.  

 

 Fig. 41: In vitro induction of xSuv4-20h double-morphant animal cap explants. 
Noggin-dependent neuralisation. XK81, Nrp1 and Xbra expression is monitored in uninjected 
control caps and double-morphant caps with or without Noggin mRNA. Note that explants 
coinjected with xSuv4-20h MOs together with Noggin mRNA show reduced Nrp1 expression, 
but normal downregulation of XK81 mRNA. The figure shows one representative experiment 
(n= three independent experiments).  



Results  102 

 Notably, double-morphant animal caps responded normally to mesoderm 

induction. Caps cultured in medium containing the TGF-beta ligand Activin 

differentiated into skeletal muscle (Sokol, Wong et al. 1990), as shown by 

immunocytochemistry (ICC) against myosin heavy chain protein (MHC-α). Both 

control and xSuv4-20h1 and h2 morpholino injected caps showed no difference as to 

MHC-α staining in presence of Activin (Fig. 42). 

 

 Fig. 42: xSuv4-20h enzymes depletion has no effect on Activin-mediated 
mesoderm induction. Muscle induction by Activin A in uninjected, ctrl-MO injected, and 
xSuv4-20h double-morphant animal caps. Top row demonstrates staining intensity of 
endogenous myosin heavy chain (MHC-α) expression, in non-dissected sibling embryos, for 
comparison. The figure shows one representative experiment (n= two independent 
experiments). 

  

 These results confirm the crucial role of xSuv4-20h enzymes in coordinating 

the proper expression of neural markers genes, and show that in the absence of 

these two enzymes normal neural development is prevented. At the same time, 

mesoderm induction does not require xSuv4-20h activity, indicating a requirement for 

the function of the two enzymes that is restricted to the neuroectoderm. Considering 

the defects in ciliogenesis, previously described, this conclusion may be extended to 

the ectoderm. 
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4.4.8 XSuv4-20h HMTases affect apoptosis and cell proliferation 
independently from the loss of primary neurons 

 The main characters of the double-morphant phenotypes described so far 

could be rooted in different scenarios. For instance, the loss of neurons could be due 

to a block in differentiation. Alternatively, prospective neuronal cells could be 

eliminated by apoptosis, or fail to be born due to an arrest in cell proliferation. We 

checked whether xSuv4-20h depletion activated apoptosis in embryos. 

Immunocytochemistry with an antibody against the active form of Caspase3 revealed 

a broad increase in the number of cells with activated Caspase3 on the injected side 

of double morphants. These embryos showed the described molecular phenotypes, 

as shown by Delta-like 1 and N-tubulin repression (Fig. 43). To clarify, whether the 

increase in apoptotic cells was responsible for the loss of the neuroblasts, we 

coinjected the potent anti-apoptotic factor xBcl-2 together with xSuv4-20h 

morpholinos. Under these conditions, the number of active Caspase3-positive cells 

was reduced to normal levels of control embryos; however, this did not restore the 

Delta-like 1 and N-tubulin positive neuronal cell population. This excludes selective 

death of neuronal cells as possible explanation for the xSuv4-20h morphants 

phenotype. Overexpression of xBcl-2 mRNA alone slightly reduced Caspase3 

staining on the injected side of treated embryos, but had no effect on the expression 

of the tested probes by in situ hybridization (Fig. 43). 

 

 Fig. 43: xSuv4-20h double-morphant embryos show increased apoptosis. 
Double morphants show increased number of apoptotic cells during neurulation. Top row – 
immunocytochemistry for active Caspase3 in unilaterally injected embryos (NF15). Middle 
and bottom rows - RNA in situ hybridisation for Delta-like 1 (NF13) and N-tubulin mRNAs 
(NF15). Pictures show dorsal views, with anterior to the left. For each condition, numbers 
refer to embryos showing the displayed staining, in comparison to the total number of 
analysed embryos (n= two independent experiments).  
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 These results suggest that although the depletion of xSuv4-20h enzymes 

triggered an upregulation of apoptosis in the embryos, nevertheless neurogenesis 

appeared to be compromised by a cause other than cell death. 

 Suv4-20h double null murine embryonic fibroblasts, which lack H4K20me2 

and me3 are known to be compromised at the G1/S phase transition, showing 

reduced cell proliferation capacity (Schotta et al. 2008). Therefore we decided to test, 

via immunocytocemistry, whether morpholinos injections reduced the number of 

H3S10P positive cells (Fig. 44). Proliferation was not affected upon control 

morpholino injection, while double-morphant embryos showed a two-fold reduction in 

the number of proliferating cells  (p=0.0058) (Fig. 44b).  

 

 Fig. 44: xSuv4-20h double-morphant embryos show reduced cell proliferation. 
(a) Proliferation assay – immunocytochemistry for the mitotic histone modification H3S10P in 
ctrl-MO versus double-morphant embryos. (b) The chart shows a two-fold difference in the 
number of H3S10P positive cells on the injected side of double morphants. Data represent 
mean values of four embryos per condition from two independent experiments; error bars 
indicate SEM. 

  

 The mild reduction in cell proliferation is certainly influenced by the increased 

rate of apoptosis in double-morphant embryos. However, it is unlikely that the nearly 

complete loss of N-tubulin positive neurons is brought about by this mild effect, 

because one would expect much more neuronal cells, i.e. cells that are born and 

differentiate into neurons, than observed. In fact, neuronal differentiation is quite 

insensitive to cell cycle inhibition and occurs even in presence of Hydroxyurea and 
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Aphidicolin. (Harris and Hartenstein 1991). Thus, more likely, the described 

phenotype represents a block in neuroectodermal differentiation. 

 

4.4.9 XSuv4-20h enzyme depletion triggers the upregulation of the pluripotent 
gene Oct-25 

 We finally considered the possibility that xSuv4-20h depleted cells from the 

animal hemisphere could be specifically impaired in their ability to undertake the 

neurogenic pathway. Neural competence requires several genes, including Zic1 and 

Xiro1, which are involved in neural plate formation (Fig. 4 and 39). At the time when 

these genes are induced, embryonic cells in the animal hemisphere are still 

uncommitted and express members of the POU-V gene family (i.e. Oct-25, Oct-60  

and Oct-91) that encode functional paralogs of the mammalian pluripotency regulator 

Oct4 (Hinkley, Martin et al. 1992; Morrison and Brickman 2006). In this line of 

argumentation, neural competence may not fully form in xSuv4-20h double-morphant 

embryos, if the H4K20me3 mark is involved in reducing or repressing pluripotency 

genes during development down to level compatible with germ layer differentiation. 

We therefore checked the expression of these factors (Fig. 45).  At blastula, the three 

Xenopus genes are broadly expressed throughout the animal pole – i.e. in all naïve 

ectodermal cells – (data not shown). During gastrulation, Oct-25 and Oct-91 

expression becomes restricted to the presumptive floor plate (notoplate) of the 

neuroectoderm, and in cells associated with the ventricular cavity in the anterior 

neural plate. Oct-60 expression, predominantly expressed during oogenesis, could 

not be detected at the same stage (NF 14-15). XSuv4-20h1 and h2 morpholinos 

injections caused a reproducible and readily detectable upregulation of Oct-25 on the 

injected side. Oct-91 mRNA was expressed normally in the majority of the embryos, 

although some showed a mild upregulation in the same domain as Oct-25 (Fig. 45). 

Interestingly, Oct-25 ectopic expression was detected exclusively in the 

deep/sensorial ectodermal layer, extending from the dorsal midline down to the 

ventral midline of the injected side. Cells in this layer are known to be precursor cells. 

Depending from their position along the dorso-ventral axis, they contribute to the 

formation of the different cells of the nervous system, from the neural plate, and to 

the differentiation of several epidermal cell types, originating from the non-neural 

ectoderm (Hartenstein 1989; Deblandre, Wettstein et al. 1999). It is possible that the 

described phenotypes in neuroectoderm and ectoderm share a common mechanism, 

i.e. the deregulation of Oct-25. Control morpholino injected embryos showed no 
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effect on the expression of the described markers. Interestingly, only wt mSuv4-20h 

enzymes restored the normal Oct-25 expression pattern (i.e. they repressed Oct-25 

transcription in the ectoderm), while the overexpression of inactive mSuv4-20h 

HMTases mRNAs had no effect (Fig. 45, Oct-25 staining). A derepression of the Oct-

25 gene was also observed in double-morphant AC explants, while Oct-60 and Oct-

91 transcription remained normal (Fig. 46). Thus, the explant experiment indicates a 

selective response of the Oct-25 gene that occurs in isolated ectoderm, independent 

from mesendodermal signals. 

  

 Fig. 45: xSuv4-20h double morphants maintain Oct-25 expression in deep-layer 
ectoderm. RNA in situ hybridization analysis for Oct-25, Oct-60 and Oct-91 in embryos 
injected with ctrl or xSuv4-20h1 and h2 morpholinos. Embryos were injected unilaterally at 
two-cell stage and fixed at midneurula stage (NF 15). Injected sides were defined by 
coinjected Alexa-fluorescence prior to in situ hybridisation. The figure shows dorsal views of 
stained embryos with anterior to the left. For Oct-25 Vibratome cross-sections of ctrl-MO and 
double-morphant embryos are shown. For Oct-91 a representative picture of one of the rare 
embryos exhibiting Oct-91 upregulation is shown (affected). For each condition, numbers 
refer to embryos showing the displayed staining, in comparison to the total number of 
analysed embryos (n= four independent experiments).  
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 Fig. 46: xSuv4-20h double morphants derepress Oct-25 expression in double-
morphant animal cap explants. RNA in situ hybridization analysis for Oct-25, Oct-60 and 
Oct-91 in animal cap explants for ctrl-morphants or xSuv4-20h double-morphant samples. 
Embryos were injected radially at two-cell stage; cap were cut at NF 9 and fixed at midneurula 
stage (NF 15). The figure shows one representative experiment (n= two independent 
experiments). 

  

 The selective, derepressed state of Oct-25 was finally confirmed via qRT-

PCR. RNA was extracted from unilaterally injected embryos, using the same strategy 

applied for microarray sample preparation (Fig. 47a). As shown in figure 47b, Oct-25 

mRNA was about three-fold higher in xSuv4-20h double-morphant halves 

(p=0.0123), while being similar between control morphant and uninjected halves. In 

the same samples, Oct-91 was unaffected. The same assay was used to confirm the 

diminished expression of neural plate marker genes. With the exception of Ngnr 1a, 

whose levels appeared unaffected upon suvar depletion, the overall pattern strongly 

recapitulates the gene expression profiles obtained via RNA in situ hybridization. In 

particular, Nrp1 and N-tubulin mRNA levels were clearly reduced in the morphant 

halves (p=0.0122 and 0.0163, respectively). These results confirm the key role of 

xSuv4-20h1 and h2 HMTases during neurogenesis (Fig. 47b). 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 Fig. 47: qRT-PCR experiments on ctrl- or xSuv4-20h double morphants. (a) 
Schematic representing qRT-PCR experiments. (b) qRT-PCR profiles for the indicated genes 
in ctrl-MO and xSuv4-20h double-morphant embryos (NF 14-15). Oct-25 expression was 
three-fold higher in the injected side of double-morphant embryos, while Nrp1 and N-tubulin 
levels were two-fold reduced. Data represent normalized ratios of mRNA levels as means of 
four independent experiments, error bars indicate SEM.  
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4.4.10 H4K20me3 levels are enriched in the 5’-UTR region of the Oct-25 gene 

 Trimethylation of H4K20 is known to be a repressive mark (Schotta, Lachner 

et al. 2004). Therefore, genes that are decorated by the H4K20me3 mark are 

expected to become derepressed in the absence of it. Based on this assumption, 

Oct-25 might be a direct target of xSuv4-20h enzymes, while the other neural 

markers – downregulated in double morphants – would be considered indirect 

targets. To test this assumption, chromatin immunoprecipitation (ChIP) experiments 

with H4K20me3-specific antibodies were performed at the neurula stage (NF 15-16). 

The access to the genomic information provided by the sequenced Xenopus 

tropicalis genome (Hellsten, Harland et al. 2010) allowed us to identify the 

pericentromeric major satellite repeat sequence (MSAT3) as positive control 

amplicon for the experiment. As negative controls we considered three genes: 1) 

GAPDH, a constitutively expressed housekeeping gene; 2) thra, a gene whose 

expression can be detected at neurula and 3) thibz, a gene expressed under thra 

activity, from metamorphosis on. H4K20me3 presence at these genomic regions, set 

as “background enrichment”, was compared to the enrichment at several amplicons 

spread out over the Oct-25 gene (Fig. 48a). In five independent experiments 

H4K20me3 levels were clearly enriched at pericentromeric MSAT3 repeat region, as 

expected from the analysis in murine cells (Schotta, Lachner et al. 2004). 

Interestingly, at the 5’-UTR region of Oct-25 (Fig. 48b), H4K20me3 was significantly 

enriched compared to the control gene GAPDH (p=0.0155), thra (p=0.0103) and 

thibz (p=0.0128). The other Oct-25 amplicons showed no enrichment, when 

compared to the control genes (Fig. 48b). This result suggests a possible direct role 

for H4K20me3 in regulating Oct-25 expression. 
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 Fig. 48: Oct-25 5’-UTR is enriched in H4K20me3 in ChIP-PCR experiments. (a) 
Schematic representing amplicons position (circles) in each of the indicated genes. (b) Fold 
enrichment of H4K20me3 ChIP-PCR for the indicated amplicons. H4K20me3 is enriched at 
Oct-25 5’-UTR. Data represent mean values of five independent experiments, error bars 
indicate SEM. 

  

 Injection of Xenopus tropicalis specific morpholinos against xSuv4-20h 

enzymes revealed a clear reduction in H4K20me3 enrichment on Oct-25 5’-UTR 

(compared to uninjected embryos, p=0.004) as well as on the MSAT3 amplicon (Fig. 

49). Enrichment of the modification was reduced to a level comparable with the 

control gene. Surprisingly, a mild, non-significant (p=0.084), reduction in H4K20me3 

was observed for thibz, reflecting high variability between independent samples. 
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Together, these results strongly suggest that xSuv4-20h enzymes regulate Oct-25 

expression via deposition of H4K20me3 on the first exon. 

 

 Fig. 49: xSuv4-20h double-morphant embryos show reduce enrichment on Oct-
25 5’-UTR in ChIP-PCR experiments. Fold enrichment of H4K20me3 ChIP-PCR for the 
indicated amplicons in uninjected versus double-morphant embryos. H4K20me3 is more than 
2.5-fold reduced at Oct-25 5’-UTR. Data represent mean values of three independent 
experiments, error bars indicate SEM. 

 

4.4.11 Regulation of early neural marker genes by Oct-25 

 Xenopus Oct-25 has been implicated in germ layer formation, by preventing 

cells to prematurely respond to differentiation signals (Takebayashi-Suzuki, Arita et 

al. 2007; Cao, Siegel et al. 2008). We thus decided to test whether the sustained 

expression of Oct-25 in xSuv4-20h morphants could cause the observed 

downregulation of early neural plate and neural differentiation markers. This question 

is difficult to address, since the role of Oct-25 in neural induction is ambiguous – both 

overexpression and morpholino knockdown inhibit neural differentiation 

(Takebayashi-Suzuki, Arita et al. 2007; Cao, Siegel et al. 2008). In a previous report 

(Boyer, Lee et al. 2005), Oct4 was reported to bind to promoters of early neural 

markers, including Zic and Sox genes, in undifferentiated human ES cells. In the 

absence of ChIP-grade Oct-25 antibodies, the epistatic relationships between Oct-25 

and these neural genes were probed by overexpression of dominant activating or 

repressing Oct-25 protein variants in animal caps (Fig. 50a). Zic1, Zic3 and Sox2 

responded to the Oct-25 variants in a manner that supports a direct regulator/target 

gene interaction, i.e. they were hyperactivated by Oct-25-VP16 (p= 0.0143; 0.0456; 
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0.01622, respectively) and suppressed by Oct-25-EnR (p= 0.0236; 0.0167; 0.0231, 

respectively) compared to the uninjected sample. This qualitative combination of 

response is compatible with a direct regulation of the neural markers by Oct-25, or by 

indirect regulation via a positive mechanism. In light of the finding that Oct4 is bound 

to the neural genes in human ES cells, we assume this epistasis to reflect a direct 

interaction. For the two Zic genes, which are misregulated in the forming neural plate 

of morphant embryos (Fig. 39), we confirmed the misregulation by Oct-25 variants 

via RNA in situ hybridisation (Fig. 50b). The remaining genes tested either failed to 

respond to one of the two Oct-25 protein variants (Zic2, Xiro1), or did not respond 

(Ngnr 1a, N-tubulin). 

 

 These responses suggest an indirect effect. While it is possible that additional 

factors that are misregulated in xSuv4-20h morphants contribute to the neural 

phenotype, the combined results from ChIP experiments and Oct-25 variants define 

a pathway, in which xSuv4-20h dependent repression of Oct-25 is needed during 

gastrulation for proper neuroectoderm differentiation. 
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 Fig. 50: Regulation of early neural marker genes by Oct-25-VP16 and Oct-25-
EnR fusion proteins. (a) qRT-PCR on animal cap (AC) explants cut from uninjected 
embryos and embryos overexpressing Oct-25-VP16/EnR mRNAs. The chart shows the 
relative expression of the indicated genes compared to H4 gene levels. Data represent 
normalized ratios of mRNA levels as means of three or four independent experiments; error 
bars indicate SEM.  (b) RNA In situ hybridization on uninjected AC or explants 
overexpressing Oct-25-VP16/EnR for Zic1 (upper row, 20X magnification) and Zic3 genes 
(lower row, 50X magnification).  

 

4.4.12 Downregulation of Oct-25 rescues double-morphant phenotypes 

 To further analyse the mechanistic interaction between xSuv4-20h enzymes 

and Oct-25, we performed epistasis experiments. In a first series of analysis we 

injected A1 blastomere at 32-cell stage, selectively labelling cells that predominantly 

contribute to the retina and brain development in the neuroectoderm. 

Morphologically, the eye of double-morphant embryos appeared strongly affected 

(Fig. 51a). 71% of the injected embryos showed a clear reduction of the retinal 

pigment, which often was found only in the dorsal-most portion of the eyecup. The 
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majority of the eyes contained no lens (Fig. 51b). When the downregulation of xSuv4-

20 enzymes was coupled to the concomitant knockdown of Oct-25 (triple morphants), 

the percentage of embryo affected was reduced to 49% (p=0.0188, Fisher’s exact 

test). Notably, triple-morphant embryos, in which retinal pigment was restored in 

Alexa-positve areas (i.e. progeny of the injecyed blastomere), also regained a lens of 

normal size (Fig. 51b). 
 

  

 Fig. 51: Morphological rescue of double-morphant phenotypes upon Oct-25 
knockdown (a) Schematic illustration of targeting microinjections of tadpoles injected into the 
A1 blastomere at 32-cell stage, and morphological phenotypes of representative embryos (NF 
35-37) from cohorts injected with Alexa, xSuv4-20h MOs (double morphants) and double 
morphants plus Oct-25 MO. The chart shows penetrance of the eye phenotype. The results 
from three independent experiments are presented; n=total number of embryos scored. (b) 
Vibratome cross-sections of representative embryos injected as in panel (a).  

 

  

 This morphological rescue was confirmed molecularly in AC assay. 

Expression of a subset of genes involved in the establishment of the neural plate 

state (Zic1, Zic2, Xiro1, Sox2 and Sox3) was strongly reduced upon downregulation 
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of xSuv4-20 enzymes in NF 14-15 explants, when compared to uninjected animal 

caps (p=0.0068; p=0.0127; p=0.0113; p=0.0321; p=0.0037, respectively). With the 

exception of Sox2, the simultaneous downregulation of xSuv4-20h enzymes and Oct-

25, restored the expression of these genes, actually leading to a 2-to-2.5-fold 

increase in their expression, compared to uninjected samples (Fig, 52).  

 

 This latter finding further supports the notion that some neural genes of the 

Zic/Sox/Xiro group repressed by Oct-25, when they become induced at the gastrula 

stage. 

 

 

 
 
 Fig. 52: Molecular rescue of xSuv4-20h double-morphant phenotypes upon Oct-
25 knockdown. qRT-PCR profiles for the indicated genes in xSuv4-20h MOs (double 
morphants) and double morphants plus Oct-25 MO animal cap explants at NF 14-15. Data 
represent normalized mRNA levels as mean of three to four independent experiments; error 
bars indicate SEM. 
 
 
 The combined results of the morphological and molecular epistasis rescue 

experiments strongly suggest that derepression of Oct-25 is the major cause of the 

neural phenotype in xSuv4-20h double-morphant embryos. Since H4K20me3 

decorates the 5’-UTR of the Oct-25 gene, it is concluded that xSuv4-20h enzymes 

control Oct-25 transcription as a prerequisite for neuronal induction  
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4.4.13 Suv4-20h enzymes regulate murine Oct-4 expression 

 The mammalian Oct4 protein represents a master regulator of pluripotency in 

early embryos and ES cells. Recently, it has been shown that Oct4 antagonizes 

ectodermal differentiation as soon as ES cells exit pluripotency (Teo, Arnold et al. 

2011; Thomson, Liu et al. 2011), reminiscent of the observations in Xenopus. This 

similarity led us to investigate Oct4 expression in wildtype and composite Suv4-

20h1/h2 double- knockout (DKO) ES cells. We tested two independently derived 

DKO cell lines (B4-2 and B7-1) and compared them with two wildtype controls (wt26, 

an isogenic ES cell line, and GSES-1 cell line). All the four cell lines form typical ES 

cell-like colonies in LIF-containing medium. Upon aggregation, the two DKO lines 

formed clearly smaller embryoid bodies than the wild-type lines, both at day 2 and at 

day 6 of differentiation (Appendix 1, Fig. 55). Interestingly, after re-plating the 

embryoid bodies for one day, Suv4-20h DKO lines showed a lower extent of 

differentiation, appreciable by an ES-like morphology of the colonies (Appendix 1, 

Fig. 55, day7).   

 We then decided to quantify the Oct4 protein expression by FACS analysis. 

FACS profiles revealed a similar amount of Oct4 between wt26 and GSES-1 lines, as 

well as between the two DKO lines. Remarkably, both B4-2 and B7-1 signals were 

clearly shifted towards higher values, indicative of increase Oct4 expression in DKO 

ES cells (Appendix 1, Fig. 56a). Based on normalized median fluorescence intensity, 

the two DKO lines contained approximately three-fold higher Oct4 protein than the 

wildtype at day 0 (p=0.00604), and still two-fold more at day 6 (p=0.01266) (Appendix 

1, Fig. 56b). 

 We conclude that Oct4 expression is being reduced during differentiation in 

Suv4-20h DKO cells. However these cells have a higher Oct4 level while 

undifferentiated and maintained higher levels during differentiation in comparison to 

wild-type cells. These findings implicate Suv4-20h HMTases as novel regulators of 

Oct4, even directly, as for Oct-25 in Xenopus, or indirectly. 

 To further characterize the differentiation process in wildtype and Suv4-20h 

DKO cell lines, we stained day 0 and day 6 cells for the chemokine receptor 4 

(CXCR4) protein, whose expression indicates mesendoderm induction. At day 6 of 

differentiation wildtype cell lines showed a robust increase in CXCR4 expression 

(approx. 38% of CXCR4 positve cells) compared to day 0 (Appendix 1, Fig. 57). In 

contrast, both Suv4-20h DKO embryoid bodies contained a clear lower percentage of 

CXCR4 positive cells (approx. 8%) at day 6 when compared to the wildtype cell lines 
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(p=0.03255) (Appendix Fig. 56c). We then tested the ability of wildtype and Suv4-20h 

DKO cell lines for cardiomiocyte differentiation, which is easily detectable by 

autonomous contraction of representing pace-maker cells at differentiation day 14. 

While wt cultures contained multiple foci that beat autonomously at day 14, no 

contraction was observed in DKO cells (data not shown, four independent 

experiments). Finally, qRT-PCR analysis indicate a reproducible and statistically 

significant change in mesoderm gene expression in the DKO ES cells, which showed 

enhanced induction of FoxA2 (p=0.00706) and reduced levels on Gata4 (p=0.00037) 

(Appendix Fig. 57). 

 Together, these results reveal a compromised and biased differentiation 

capacity for Suv4-20h DKO ES cells. Importantly, Oct4 protein levels are enhanced 

in H4K20me3 depleted cells, both under non-differentiating and differentiating 

conditions, which suggests that repression of POU-V genes through Suv4-20h 

enzymes during exit from pluripotency, might be an evolutionary conserved function. 
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5 DISCUSSION 

 Understanding the processes leading the single-cell zygote to a mature 

organism represents the main challenge of developmental biology. Early embryonic 

development involves a tightly regulated series of lineage specification events, which 

progressively restrict cell fate and drive different cells, carrying the same genetic 

information, to acquire their own identity. Therefore, cell fate choice relies, on one 

hand, on the establishment of specific gene expression patterns, and on the other 

hand, on a properly organized cell memory system to precisely transmit the gene 

expression patterns during replication and cell division (Heasman 2006; Bogdanovic, 

van Heeringen et al. 2011). Epigenetic mechanisms play a pivotal role, in close 

connection with transcription factor networks, in the establishment and maintenance 

of cell-type-specific gene expression patterns. 

 In this study, the role of Xenopus Suv4-20h enzymes has been characterized 

during embryonic development. Both the functional and the biological analysis 

produced three main results: first of all, xSuv4-20h enzymes are specifically and 

selectively required for neuroectoderm specification and neurogenesis. H4K20me2 

and me3 depleted morphant embryos are characterized by an intrinsic block in 

neuroectodermal differentiation, caused by the selective deregulation of genes 

required for the establishment of neural plate, and neuronal differentiation. This 

scenario seems to be true also for the epidermis, in particular for ciliogenesis, 

although more experiments have to be performed to properly understand the role of 

the two enzymes in this tissue. In contrast, mesendodermal gene expression was 

remarkably normal in morphant embryos. Secondly, xSuv4-20h enzymes directly 

regulate the pluripotent gene Oct-25 (and possibly also Oct-91, but not Oct-60), via 

H4K20me3 deposition. This epigenetic mark ensures the proper spatio-temporal 

downregulation of Oct-25 (Cao, Knochel et al. 2004). This process, occurring at a 

time when pluripotent embryonic cells of the animal pole region differentiate, 

probably involves the contribution of other factors. Finally, we showed that murine 

Suv4-20h DKO ES cell lines have elevated Oct4 levels both in undifferentiated and 

differentiating conditions, compared to wildtype ES cell line (Appendix 1). This study 

describes a pivotal role of xSuv4-20h enzymes in promoting a proper differentiation 

process. In other words, H4K20me2 and H4K20me3 represent key epigenetic marks, 

that shape regulatory networks which controll cellular differentiation.  
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5.1 Pluripotent features of single animal pole blastomeres 

 The ability of cells to undertake a specific differentiation pathway is restricted 

to early stages. In a series of experiments, Heasman and colleagues transplanted 

single labelled animal pole or vegetal pole derived cells into the blastocoels of host 

embryos (Heasman, Wylie et al. 1984; Snape, Wylie et al. 1987; Wylie, Snape et al. 

1987) and followed their progeny into the three germ layers. These experiments led 

them to conclude that cells become determined by the beginning of gastrulation, 

while morula or blastula transplanted cells could differentiate into all the three germ 

layers. In a similar approach, we investigated whether animal pole cells show 

comparable pluripotent behaviour. Confocal microscopy analysis of host embryos 

allowed a precise evaluation of whole-mount transplanted embryos. The results were 

in agreement with those proposed by Heasman and colleagues: transplanted cells 

from blastula stage were able to differentiate into all the three germ layers; in 

particular early blastula cells (NF 7-8) gave rise to descendants of the three germ 

layers in a higher percentage (56%) compared to the late blastula transplanted 

blastomeres (NF 9; 41%). Moreover, by late blastula, 9% of the transplanted cells 

selectively colonized the ectoderm germ layer, following their “default” differentiation 

pathway and differentiating only into ectodermal cells. Finally, transplanted early 

gastrula (NF 10.5) blastomeres showed no pluripotent behaviour, and mainly 

differentiated as ectodermal cells (23% against 0% of NF 7-8 cells), suggesting that 

determination already took place. These results led us to the following conclusions. 

First, a main difference of the transplanted blastomeres is represented by the cell 

size. NF 7-8 cells were bigger than NF 9, while NF 10.5 cells were the smallest cells 

taken form donor embryos. Moreover the ability of NF 7-8 blastomeres to populate 

the three germ layers at highest percentage reflects the capacity of these cells to 

divide faster than NF 10.5 cells (Newport and Kirschner 1982). Second, the different 

cell fates can be determined in accordance to the cell position into the host 

blastocoel. The inversion experiments performed by Snape et al., whereby host 

embryos were turned upside down after being transplanted (in order to allow contact 

between the transplanted cell and the roof of the blastocoel), suggest a possible 

mechanism by which cells in contact with the blastocoel floor are subjected to a 

vegetalizing effect of the vegetal mass. Cells that attached to the blastocoel roof will 

escape such an influence and become ectoderm (Snape, Wylie et al. 1987). 

Although in our experiments the majority of the transplanted cells ended up on the 

blastocoel floor (data not shown), their close proximity to either dorsal or ventral 

regions of the blastocoel might affect the differentiation process. It would require a 
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much higher number of transplanted embryos to average out the effects and, thus, to 

evaluate differentiation potential independently from these biases. From a techinal 

point of view the imaging of host transplanted embryos by confocal microscopy 

represents just a superficial analysis. The classification of labelled descendents into 

the three germ layers is based on the microscope analysis of the whole embryos, 

and limited by the frequent inability to discriminate particular cell types (e.g. derma 

cells versus epidermal cells) which results into misleading classification and incorrect 

statistical anlaysis. This “first-layer” analysis should be coupled to more detailed 

cofirmatory experiments (e.g. ICC analysis with antibodies against epitopes of cell 

belonging to the different germ layers) in order to better classify the different cells. 

Although all these problems affect the overall output, the assay recapitulated 

previous results and indicated a progressive loss of pluripotency in animal pole 

blastomeres during development, which reflects the molecular changes associated 

with cell determination. 

 

5.2 Xenopus laevis Suv4-20h HMTases 

 The main part of the presented study concerned the characterization of 

Xenopus laevis Suv4-20h HMTases during development. Histone lysine methylation 

represents a complex and dynamic process, that is pivotal for genome stability, 

repair and transcriptional regulation (Dambacher, Hahn et al. 2010; Bogdanovic, van 

Heeringen et al. 2011). In particular, Suv4-20h1 and h2 HMTases are responsible for 

the establishment of the H4K20me2 and H4K20me3 (Schotta, Lachner et al. 2004; 

Schotta, Sengupta et al. 2008). Our experiments, based mainly on morpholino-

mediated knockdown of the two enzymes, identified a specific and selective role of 

xSuv4-20h HMTases in ectoderm differentiation. In particular, we have shown that 

the enzymes are required for neurogenesis to occur, while having little effect on 

overall mesoderm and endoderm differentiation. It is important to note that little is 

known about Suv4-20h involvement in gene regulation. Studies in mouse describe a 

role for H4K20me2 and me3, and thereby for the enzymes responsible for their 

deposition, during development (Biron, McManus et al. 2004; Schotta, Sengupta et 

al. 2008). Nevertheless, both analysis have not addressed any specific function of 

Suv4-20h HMTases in activation or repression of target genes. In order to investigate 

this aspect, we performed gene expression profiling. Unfortunately, our microarray 

analysis provided only partial overview of the gene missregulation in Xenopus 

double-morphant embryos, due mainly to technical limitations (the microarray 
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experiment will be further discussed later in this section). Still, the molecular analysis 

revealed that xSuv4-20h enzymes are required for restricting the expression of the 

pluripotent gene Oct-25 to the floor plate of the neuroectoderm, preventing its ectopic 

expansion in the ectodermal sensorial layer. Consistent with this result, murine Suv4-

20h1 and h2 DKO ES cells exhibit reduced and delayed Oct4 gene silencing upon in 

vitro differentiation (Appendix 1). In summary these results suggest that the 

appropriate function of Suv4-20h HMTases are needed for silencing pluripotency-

associated POU-V genes within the sensorial cell layer of the ectoderm. In Xenopus, 

this role allows Oct-25 positive neuroectodermal cells to exit the undifferentiated 

state and undergo neuronal differentiation. Moreover, Oct-25 upregulation in the 

entire ectodermal sensorial layer (Fig.45, vibratome sections) suggests that the 

missregulation of this gene could be responsible also for the epidermal phenotype. 

 

5.2.1 Functional analysis of xSuv4-20h HMTases 

 The functional analysis of xSuv4-20h enzymes led us to properly identify the 

frog paralogs of the mouse enzymes (as shown by Suv4-20dn MEFs transfection 

with Xenopus wt enzymes). Moreover it allowed us to characterize their function by 

altering the enzymes’ concentration through morpholinos or mRNA injection. 

Xenopus versus mouse protein sequence analysis revealed a high conservation 

throughout the entire length, particularly within the SET domains that display at least 

88% identity between mouse and frogs enzymes. Interestingly, xSuv4-20h2 amino 

acid sequence appears remarkably longer that the mouse homolog. RNA in situ 

hybridization analysis, as well as semiquantitative PCR assay, revealed a ubiquitous 

expression of Xenopus laevis HMTases in the embryo, at different developmental 

stages, and in different embryonic territories. Messenger RNA quantification via qRT-

PCR highlighted the different expression profiles of the two enzymes: the maternal 

xSuv4-20h1 mRNA pool is progressively degraded and replaced by the zygotic 

mRNA. In contrast, xSuv4-20h2 mRNA is progressively reduced during development, 

suggesting a possible involvement of the h2 enzyme activity mainly in early 

developmental processes.   

 Western blot analysis performed with specific antibodies against the three 

H4K20 methyl states and quantitative mass spectrometry analysis allowed to identify 

coherent alterations of H4K20 methylation profiles, triggered by Gain- or Loss-of-

function experiments. These alterations did not affect other repressive – H3K27me 

and H3K9me – methylation profiles, as shown by Mass Spectrometry and Western 
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blot analysis. On one hand overexpression of xSuv4-20h enzymes caused a clear 

upregulation of H4K20me2 and H4K20me3. Bulk chromatin H4K20me1 enrichment 

was mildly altered, probably due to the constant activity of Pr-Set7. On the other 

hand xSuv4-20h depletion led to a strong downregulation of H4K20me2 and 

H4K20me3, coupled to a concomitant increase of H4K20me1 as previously 

described in mouse (Schotta, Sengupta et al. 2008).  

 The conserved aminoacidic sequences of the SET domains between frog and 

mouse Suv4-20h enzymes represent another interesting aspect. Western blot 

analysis of rescue experiments highlighted the importance of functional HMTases to 

properly re-establish H4K20 methylation patterns in embryos injected with xSuv4-20h 

enzymes morpholinos. Overexpression of mSuv4-20h HMTases carrying key 

aminoacidic mutations in the SET domain at particular residues (Kwon, Chang et al. 

2003; Dillon, Zhang et al. 2005) did not affect the levels of H4K20 mono-, di- and tri-

methylation compared to the uninjected situation. This result highlights two key 

points: first, the lack of H4K20me3 deposition prevents normal development, 

suggesting that this modification is crucial for the proper differentiation process. 

Second, the two mutated isoforms were inactive but did not show any dominant 

negative behaviour. As expected, while wt mSuv4-20h HMTases properly rescued 

the methylation profiles triggered by the morpholinos injections, the inactive variants 

were not able to re-established H4K20me2 and H4K20me3 at normal levels. Similar 

results were achieved upon transfection of wt and mutated mSuv4-20h enzymes in 

Suv4-20dn MEFs cells. It is possible that the Asp to Ala mutation in both the 

enzymes compromised the binding of the substrate AdoMet (Dillon, Zhang et al. 

2005), in a manner that prevents the binding of the mutated proteins to the histones. 

This finding suggests that these enzymes operate by a “hit and run” mechanism 

rather than by stable interactions with chromatin. These two features could explain 

the lack of dominant interference activity of the mutated mSuv4-20h variants. 

 Another interesting point concerns the biological alterations associated only 

to the morpholino-mediated knockdown approach: while xSuv4-20h enzymes 

depletion led to highly reproducible morphological and molecular phenotypes, 

mRNA-mediated overexpression of either Xenopus or mouse variants did not overtly 

perturb development, despite significantly increased levels of H4K20me2 and me3 

states. This result might be explained considering in primis the higher stability of the 

knockdown compared to the transient protein upregulation by mRNA injection. 

Another explanation could be that demethylation of the higher methyl states might 

occur rather rapidly through H4K20me2 and me3 demethylases at specific sites, 
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where H4K20me1 is required, e.g. Wnt/β-Catenin inducible genes (Li, Nie et al. 

2011). The observed increase in H4K20me2 and -me3 states may thus occur at non-

functional sites on the genome. This could be investigated in future by ChIP-Seq 

analysis of wild-type and mRNA-injected embryos. In a similar approach, Barski and 

colleagues identified approx. 1800 H3K9me3 sites in ES cells, with the vast majority 

also showing H4K20me3 (Barski, Cuddapah et al. 2007). Since mono- and 

dimethylated H4K20 states are quite abundant modifications in Xenopus embryos 

(Schneider, Arteaga-Salas et al. 2011), most likely it is the loss of H4K20 

trimethylation that interferes with normal development. Provided that in Xenopus 

H4K20me1, me2 and me3 states are interconverted by Suv4-20h enzymes, as 

suggested from knock-out studies in mice, it seems that these HMTases are used 

predominantly to repress genes via H4K20me3 than to antagonize H4K20me1-

dependent transcriptional activation. 

 

5.2.2 Biological analysis of xSuv4-20h HMTases 

 Despite the presence of the two HMTases in the entire embryo, loss-of-

function experiments led to a specific block in differentiation of neuroectoderm. This 

germ-layer selectivity requirement emerges both at morphological and molecular 

levels. Molecularly, xSuv4-20h enzymes knockdown did not interfere with the proper 

establishment of anterior-posterior and dorso-ventral axes, as confirmed by the 

unaffected expression patterns of the organizer genes Chordin, Xnr-3 and Goosecoid 

in double-morphant embryos. From tailbud stage on, two main phenotypes, 

concerning ectodermal structures could be scored upon morpholino injections: about 

90% of double-morphant embryos displayed strongly reduced differentiation of the 

eye cup and a severely compromised melanophore pattern in the dorsal part of the 

head and in the lateral portion of the trunk. Approximately 2/3 of the affected 

populations restored normal eye structure and melanophore pattern upon coinjection 

of xSuv4-20h morpholinos and wt mSuv4-20h mRNAs enzymes. This result suggests 

that the two morphological changes were caused by xSuv4-20h HMTases depletion. 

 

5.2.3 XSuv4-20h enzymes contribution to ciliogenesis 

 The notable Delta-like 1 upregulation in non-neural ectoderm of double-

morphant embryos suggests an involvement of xSuv4-20h enzymes in the formation 
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of motile cilia, as previously described by Deblandre et al. (Deblandre, Wettstein et 

al. 1999). According to this model lateral inhibition takes place in the inner 

ectodermal layer at gastrula stage, driven by a subset of cells that express high 

levels of Delta-like 1. These cells inhibit neighbouring cells from taking on the ciliated 

cell fate. At neurula stage, α-tubulin positive cells intercalate into the outer cell layer 

where they finally differentiate by forming an atypical tuft of motile cilia. 

Immunohistochemistry and SEM analysis confirmed that ciliogenesis is affected in 

double-morphant embryos: upon xSuv4-20h enzyme depletion, the tadpole skin was 

characterized by a higher number of ciliated cells, comprising less and shorter cilia, 

in comparison to control embryos. Rescued embryos showed a comparable number 

of cilia per cell to the one of controls; however, the length of the cilia was apparently 

not fully re-established. Further experiments are required to elucidate the pathway by 

which xSuv4-20h enzymes regulate cilia formation. 

 An important link might be represented by the Oct-25 upregulation, which is 

detectable throughout the sensorial layer of the ectodermal in double-morphant 

embryos. Coinjection of xSuv4-20h and Oct-25 morpholinos presents a possibility to 

test, whether the persistent expression of Oct-25 is responsible for the upregulation 

of Delta-like 1 mRNA in the epidermis and/or for the compromised function of cilia. At 

the same time, we cannot exclude that other key ciliogenesis factors and multiple 

signalling pathways are affected (Stubbs, Davidson et al. 2006; Stubbs, Oishi et al. 

2008; Yu, Ng et al. 2008; Mitchell, Stubbs et al. 2009). Ohnmar Hsam, from our 

laboratory, has found that the expression of Foxj1, a precursor of ciliogenesis, and 

Dnah9, a ciliogenesis marker, is significantly reduced upon xSuv4-20h enzymes 

depletion in AC (personal communication). Moreover, some microRNAs play pivotal 

roles during ciliogenesis: in a recent study, Marcet and colleagues identified miR-449 

as a key repressor of the Delta/Notch pathway (Marcet, Chevalier et al. 2011). In 

particular, blocking of miR-449 function led to an increase number of Delta-like 1 

expressing cells and a consequent expansion of multiciliogenesis, which can be 

rescued by Delta-like 1 morpholino injection (Marcet, Chevalier et al. 2011). In 

collaborations with Laurent Kodjabachian’s laboratory in Marsille, Ohnmar Hsam has 

demonstrated that miR-449 expression is reduced in xSuv4-20h1 and h2 morphant 

embryos. This hypothesis is currently under investigation; nevertheless, if confirmed, 

it would connect a microRNA pathway to the H4K20me3 repressive histone. By 

repressing miR-449, xSuv4-20h enzyme might control whole gene batteries in a 

positive manner. 
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5.2.4 A glimpse on the global role xSuv4-20h HMTases in gene regulation 

 Gene expression profiling has enabled the analysis of thousands of genes 

from a single RNA sample, providing a powerful tool for understanding gene 

regulation at a genomic level (Schena, Shalon et al. 1995). In this study, the 

Affimetrix GeneChip® Xenopus laevis Genome 2.0 Array has been used to study 

genome-wide transcriptional alterations caused by depletion of xSuv4-20h HMTase. 

The strategy described in figure 29 not only allowed us to compare the mRNA 

profiles between ctrl-MO injected embryos and double-morphant embryos, but also 

precisely enabled us to correlate injected versus uninjected sides within the same 

morphant population. This aspect represents a prerequisite to quantify mRNA 

changes in the dynamic and complex Xenopus system. Some important aspects 

have to be considered for this profiling experiment: first of all, the genome of  

Xenopus laevis is only partially annotated; this fact clearly represents an obstacle in 

understanding the global effect triggered by a specific gene alteration. Secondly, due 

to limited funding resources, the experiment included only two independent biological 

samples. Nevertheless, qRT-PCR analysis performed in parallel on key genes 

confirmed the results of the microarray analysis. Finally, the analysis was performed 

on NF 14-15 morphant embryos, because the neural differentiation defect is manifest 

at this stage. The result, in other words, represents only a snapshot of a particular 

developmental stage. It follows that the expression profiles of genes affected in 

stages earlier or later to the one analysed can be different. Although these aspects 

undoubtedly affected the overall result of the microarray, the analysis has pointed out 

some interesting details. First, gene expression profiling revealed a rather selective 

effect on the embryonic transcriptome, with approximate 6% of probe set being either 

up (∼3%) or downregulated (∼3%) in xSuv4-20h enzymes morphants. This is in 

accordance with the in situ experiments, which highlighted a selective impairment of 

genes expressed in the ecotodermal germ layer. Interestingly, many of the 

transcripts present in both the up- and downregulated groups are genes involved in 

metabolic processes. Second, considering the annotated genes that were 

upregulated, Oct-25 is among the top ten affected genes. The significance of Oct-25 

deregulation has been demonstrated by the epistasis rescue experiments at least 

with regard to neurogenesis. Morpholino-mediated knockdown of Oct-25 rescue 

morphological and molecular phenotypes of xSuv4-20h double-morphant embryos. 

Together, these results, observed using a variety of different approaches, establish a 

specific mechanistic link between xSuv4-20h enzymes and Oct-25. 
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5.2.5 A germ-layer specific function for xSuv4-20h HMTases 

 The two phenotypes scored in Loss-of-function experiments (i.e. deficiency in 

eye and cilia tuft differentiation) already showed the selective effects of xSuv4-20h 

enzyme depletion: only ectodermally derived structures were affected, while 

mesodermal and endodermal tissues appeared normal. This selectivity extends to 

the molecular level: the expression analysis of a broad number of markers required 

for the specification of the three germ layers, revealed a specific involvement of 

xSuv4-20h HMTases in ectodermal genes, mostly required for nerogenesis. Figure 

53 shows a summary of all the markers tested via RNA in situ hybridization and ICC, 

upon suvars depletion. 

 

 Fig. 53: Schematic illustration of analysed markers of the different germ layers. 
Genes downregulated and upregulated upon xSuv4-20h HMTase depletion are labelled in red 
and green, respectively. The developmental stages at which the analysis has been carried 
are indicated in brackets. 

 

The neural differentiation pathway appears affected from the prospective 

neuroectoderm specification stage on (NF 10.5-11). While FoxD5 and Geminin, two 

key players in defining the neural ectodermal fate (Kroll, Salic et al. 1998; Yan, 

Neilson et al. 2009), were normally expressed in xSuv4-20h morphants, the neural 

inducing zinc-finger transcription factors Zic1, Zic3 and Xiro1 were strongly 

downregulated. Surprisingly, also Zic2, that has been characterized as an anti-

neurogenic and crest-inducing factor (Brewster, Lee et al. 1998), was downregulated. 

This situation is contrasted by the normal mRNA levels of several neural genes. 

These include Sox11, which is involved in the neuronal maturation (Bergsland, 

Werme et al. 2006), as well as of the other two analysed HMG-box transcription 
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factors, Sox2 and Sox3, which keep neural cells undifferentiated by counteracting the 

activity of pro-neural bHLH proteins (Bylund, Andersson et al. 2003; Graham, 

Khudyakov et al. 2003; Pevny and Placzek 2005; Rogers, Moody et al. 2009). 

FoxD5, Geminin, and Zic2 are thought to create a regulatory network that maintains 

neural ectodermal cells in an immature stem-like state (Rogers, Moody et al. 2009), 

by inhibiting the neural inducing factors, which conversely stimulate bHLH pro-neural 

genes expression. In this context, Sox genes on the one hand prefigure the ability of 

neuroectodermal cells to adopt a neural fate, and on the other hand sustain neural 

cells in a progenitor/stem cell mode, maintaining their ability to proliferate and 

differentiate (Pevny and Placzek 2005). Subsequently, the pro-neural bHLH proteins 

restrict the number of neuronal cells within the neural plate (see Introduction chapter 

2.1.3). Notably, Ngnr 1a expression was strongly reduced in double-morphant 

embryos probably as a consequence of the diminished expression of the upstream 

activators such as Zic1, Zic3 and Xiro1 factors. This in turn would also explain the 

absence of N-tubulin positive cells from the xSuv4-20h1 and h2 deficent neural plate. 

In contrast, Delta-like 1 expression is probably modulated by additional inputs, given 

that it is downregulated in the neural plate, upregulated in the epidermis and normal 

in the mesoderm (Revinski, Paganelli et al. 2010). In this context, it is possible that 

Oct-25 persistence in the neural plate compromises the appearance of the neural 

inducing factor. In other words, neuroectodermal cells initially follow the normal 

neurogenic pathway, but due to the missing silencing of Oct-25 expression, they 

become trapped in an undifferentiated progenitor state, which finally results in a loss 

of neurons.  

 While ectodermal and neuroectodermal structures appeared compromised 

upon xSuv4-20h depletion, mesoderm and endoderm differentiation was overtly 

unaffected. This statement is based on the large panel of marker genes investigated 

by RNA in situ hybridization, as well as on morphological features (i.e. properly 

structured skeletal musculature and externally observed heart beating). In addition, 

the length of the tail in morphants embryos was comparable to controls. Along this 

line, our results showed that morphant animal cap explants were refractory to 

Noggin-dependent neural induction, but were not compromised in mesoderm 

differentiation, as shown by Activin-driven induction of a terminal muscle marker (Fig. 

42). Furthermore, targeted morpholinos injections into animal or vegetal blastomeres 

of 8-cell stage embryos clearly demonstrate that depletion of xSuv4-20h enzymes 

has little, if any, effect on mesoderm and endoderm specification. At the same time 

this confirms the importance of the two enzymes in the early step of neurogenesis. 
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Together these results suggest that a major function of xSuv4-20h HMTases lies in 

the transcriptional control of genes that coordinate and execute neuroectodermal 

differentiation. We can speculate that the observed selectivity might rely on two main 

processes. As discussed below, the first one is linked to a special cell fate 

determination mechanism operating in the neuroectoderm; the second process is 

related to the peculiar Oct-25 overexpression in morphant embryos. 

After fertilization, maternal regulators drive the initial steps of embryonic 

patterning and body axis formation; subsequently, inductive events specify 

endoderm, mesoderm and finally the primitive ectoderm (Heasman 2006), whose 

determination is differentially achieved: while epidermis is specified via BMP 

signalling, neural induction is thought  to occur by default, i.e. without requiring a 

specific TGF-ligand, as needed for mesendoderm. In fact, neural cell fate is 

established by inhibition of BMP signalling, by molecules secreted by the organizer 

(Munoz-Sanjuan and Brivanlou 2002; De Robertis and Kuroda 2004; Heasman 

2006). Moreover, Oct-25 ectopic expression in double-morphant embryos, restricted 

to the sensorial layer of the ectoderm, might contribute to the selectively 

compromised neurogenesis in the neuroectoderm. As mentioned before, it might 

affect also the differentiation of ciliated epidermal cells in the non-neural ectoderm. 

Specifically, the different processes that characterize the neuroectoderm, could 

explain the absence of markers involved in neural differentiation in double-morphant 

embryos. The data presented in this thesis collectively suggest a model in which 

xSuv4-20h HMTases exert a key role in neurogenesis, by suppressing Oct-25 

expression, through the proper establishment of H4K20me3 (and probably of 

H4K20me2) pattern. Immunofluorescence analysis of H4K20me1 and H4K20me3 

distribution in mouse differentiating neurons and during skeletal and cardiac 

myogenesis suggested a model, in which H4K20me3 contributes to changes in 

chromatin structure that are required for cell differentiation (Biron, McManus et al. 

2004). According to this model, H4K20me3 is needed to stably silence genes during 

development. This scenario is in agreement with the findings that this modification 

progressively accumulates during frog development (Schneider, Arteaga-Salas et al. 

2011). The strong downregulation of neuroectodermal markers, from early 

specification (Zic1, Zic3, Xiro1) to neuronal commitment (N-tubulin), coupled to Oct-

25 upregulation indicates that as soon as H4K20me3 is missing, cells of the 

neuroectoderm do not enter the normal differentiation pathway, and are kept in the 

undifferentiated state. With the exception of a previous study characterizing 

H4K20me3-chromatin-mediated gene silencing mechanism (Magklara, Yen et al. 
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2011), the analysis presented in this Ph.D. thesis describes, for the first time, a gene-

regulatory function for xSuv4-20h enzymes during vertebrate development. It is 

tempting to speculate that RNA Polymerase elongation is impeded by H4K20me3 

deposition to higher extend in older than younger embryos, possibly by a mechanism 

similar to the one suggested by Kapoor-Vazirani and colleagues (Kapoor-Vazirani, 

Kagey et al. 2011). This process might be involved in shutting down transcription of 

certain genes upon development.   

 

5.2.6 Apoptosis and proliferation defects in xSuv4-20h morphant embryos 

 While the molecular results explain the observed morphological phenotypes 

in a consistent manner, it has to be noted that these HMTases are involved in 

additional cellular aspects. Our analysis of the effects triggered by the 

downregulation of xSuv4-20h enzymes showed a significant increase of Caspase3 

positive cells, and a milder reduction of H3P10-positive proliferating cells in double-

morphant embryos. Significantly, the apoptotic phenotype was not responsible for the 

absent neuronal structures. When apoptosis was blocked by expression of xBcl-2, 

morphant embryos still lacked Delta-like 1 and N-tubulin expressing neurons. 

However, whether xSuv4-20h enzymes directly modulate the apoptotic machinery 

remains to be investigated.  

The observed increase in cell death might be partially linked to the 

proliferation defects observed upon Suv4-20h depletion. It is known that H4K20 

methylation is cell cycle regulated (Pesavento, Yang et al. 2008; Yang and Mizzen 

2009), and that modulation of H4K20 methylation levels affect cell cycle-related 

mechanisms. Pr-Set7/Set8 dependent H4K20me1 plays an important role in cell 

proliferation. Downregulation of Pr-Set7/Set8 coupled to the consequent decrease in 

H4K20me1 activates the DNA damage checkpoint and compromise genome 

replication and stability (Sakaguchi and Steward 2007; Tardat, Murr et al. 2007; 

Beck, Oda et al. 2012). At the same time, increased levels of H4K20me1 (as a 

consequence of the downregulation of histone H4K20/H3K9 demethylase PHF8) 

decreased proliferation activity by delaying G1-S transition (Liu, Tanasa et al. 2010; 

Qi, Sarkissian et al. 2010). Unfortunately, many of these studies focused on the 

H4K20me1 state and the corresponding enzyme. It is therefore difficult to define 

whether depletion of xSuv420h HMTases has a direct effect on the cell cycle or 

whether the H4K20me1 increase, resulting from the decrease in H4K20me2 and 

H4K20me3 levels in double-morphant embryos, represents the main cause of cell 
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cycle defects. It is important to note that the described mild proliferation defect is very 

unlikely to explain the loss of neuronal structures. In a series of studies, Hartenstein 

demonstrated that cell division is neither critical for neural induction nor for early 

morphogenetic events in the central nervous system of Xenopus laevis. According to 

his data, neuronal cell determination depends predominantly on inductive cell-cell 

interactions, and not on successive rounds of mitosis (Hartenstein 1989; Harris and 

Hartenstein 1991). 

 The results observed in this study underline a link between apoptosis, cell 

proliferation and deregulation of xSuv4-20h HMTases; however the direct or indirect 

involvement of the two enzymes, as well as the role of H4K20me2 and H4K20me3 in 

these processes, require further investigation. 

 

5.2.7 Neurogenesis is controlled by a Suv4-20h/Oct-25 regulatory module 

 Different approaches identified Oct-25 as a direct target of xSuv4-20h 

enzymes. RNA in situ hybridization, qRT-PCR and microarray analysis consistently 

demonstrated that depletion of Xenopus Suv4-20h HMTases triggers an upregulation 

of this POU-V gene. At late blastula, uncommitted embryonic cells express in 

overlapping domains the three Oct3/4 homologs Oct-25, Oct-60 and Oct-91 (Hinkley, 

Martin et al. 1992). The pleiotropic roles of the Oct factors during vertebrate 

development have been intensely investigated in the last decades. Morrison and 

Brickman reported that the abovementioned POU-V genes from X. laevis can 

substitute for Oct4 to maintain pluripotency in ES cell, although to variable extent 

(Morrison and Brickman 2006). Oct-91 shows the highest activity to maintain murine 

ES cells in the absence of Oct4, while Oct-25, but not Oct-60, has some capacity to 

rescue ES cell self-renewal, suggesting a scenario in which these factors are 

required to maintain the multipotent uncommitted cell population in the embryo. This 

idea is supported by other experiments aimed to link Xenopus POU-V genes to the 

molecular mechanisms governing cell determination: Oct factors inhibit activin/nodal 

signalling (Cao, Siegel et al. 2006; Cao, Siegel et al. 2008) and BMP-mediated 

induction (Takebayashi-Suzuki, Arita et al. 2007), regulate transitions from 

mesoderm to neural cell fates (Snir, Ofir et al. 2006), and prevent cell from entering 

terminal differentiation pathways (Cao, Knochel et al. 2004). All these functions of 

Xenopus POU class V factors during development have been inferred from 

microinjection experiments with Oct-specific morpholinos or mRNAs all at 2-4 cell 

stage (i.e. pre-MBT). Our results differ from these studies: we describe a specific and 
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selective endogenous upregulation of Oct-25 expression, caused by H4K20me3 

reduction, which prevents determination of neuroectodermal cells. Moreover, our 

observations are compatible with a recent model for ES cells differentiation by 

Thomson and colleagues, in which the differential activation of Oct4 and Sox2 

regulate cell fate choices (Thomson, Liu et al. 2011).  Studies in ES cell 

demonstrated that Oct4, Sox2 and Nanog constitute the pluripotency core 

transcriptional regulatory network (Boyer, Lee et al. 2005). These genes form an 

autoregulatory loop to sustain their own expression, and bind to target genes 

activating or repressing their expression. Overall, the pluripotent circuit inhibits germ 

layer differentiation, promoting the uncommitted state. In particular, Oct4 specifically 

represses neuroectoderm lineage, while Sox2 inhibits mesendodermal lineage 

(Thomson, Liu et al. 2011). The selective Oct-25 expression maintenance in the 

ectodermal sensorial layer and the impairment in the expression of neural markers 

suggest that a similar mechanism is present also in Xenopus.  

 ChIP experiments in uninjected and morphant embryos imply that Oct-25 is 

epigenetically regulated during development, by the progressive acquisition of 

H4K20me3 at its 5’-UTR; moreover, the persistent Oct-25 expression is linked with 

the loss of the mark upon xSuv4-20h depletion. Our analysis was restricted only to 

Oct-25 gene, but we cannot exclude that Oct-91, whose expression was upregulated 

in a small fraction of embryos upon suvar depletion, is regulated similarly to Oct-25. 

Xenopus tropicalis Oct genes are chromosomically linked in the genome; it is 

possible that H4K20me3 is assymetrically distributed on Oct-25. Further ChIP-Seq 

analysis would elucidate this aspect and would allow a more complete overview of 

the Oct genes’ epigenetic regulation. 

 As shown in our model (Fig. 54), we consider Oct-25 a major candidate to 

elicit the phenotypic consequences of xSuv4-20h enzyme depletion in frogs. First of 

all, its ectopic expression in the sensorial cell layer of the neuroectoderm in morphant 

embryos is in the right place to interfere with neuroblast determination by bHLH 

genes and lateral inhibition (Chitnis 1995; Lee, Hollenberg et al. 1995; Ma, Kintner et 

al. 1996). Furthermore, overexpression of Oct-25 in Xenopus embryos results in a 

very similar phenotype (i.e. repression of Ngnr 1a, N-tubulin and N-CAM, while 

leaving Chordin and MyoD expression untouched) (Cao, Siegel et al. 2006; 

Takebayashi-Suzuki, Arita et al. 2007). 
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 Fig. 54: Model for Xenopus Suv4-20h enzyme function during neuroectoderm 
formation. A global increase in H4K20me3 reduces widespread of Oct-25 expression in 
uncommitted cells during gastrulation as a prerequisite for neural induction. In H4K20me3 
depleted morphant embryos, Oct-25 expression persists in the ectodermal stem cell 
compartment (sensorial cell layer), interfering with the transcriptional activation or activities of 
key regulators of the neural plate state and neurogenesis. Additional genes, that are like Oct-
25 deregulated in xSuv4-20 morphant embryos, may also contribute to impaired ectoderm 
differentiation. 

  

 Another important aspect of this model concerns the missregulation of groups 

of genes functionally annotated as neural differentiation inducers, proneural genes 

and neuronal markers, respectively. RNA in situ hybridization experiments and qRT-

PCR profiling in animal cap explants indicate that neural inducing markers like Zic1, 

Zic3 and Xiro factors (Xiro1) are suppressed in morphant embryos at gastrula stage. 

Subsequently, at early neurula, the proneural bHLH protein Ngnr 1a expression is 

compromised; this finally affects the normal levels of Delta-like 1 and N-tubulin in the 

neural plate. Genome scale location analysis in undifferentiated embryonic stem (ES) 
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cells identified several genes bound by the core transcriptional regulatory factors 

Oct4, Nanog and Sox2 (Boyer, Lee et al. 2005). Among these genes, Zic1, Zic2, Zic3 

and IRX2 (homolog of Xenopus Xiro2) were described as “bound and expressed 

genes”, possibly indicating a positive regulation of these factors by Oct4 (Boyer, Lee 

et al. 2005). On the other hand, the Neurogenin2 (the homolog of Xenopus Ngnr 1a) 

gene locus is also bound by the pluripotency factors, but is not expressed, 

suggesting a repressive function exerted by the core pluripotency factors to this 

gene. Besides showing both the active and repressive role of Oct4 (and of Nanog 

and Sox2) in regulating gene expression in ES cells, as previously described by Ben-

Shushan and colleagues (Ben-Shushan, Thompson et al. 1998), these results 

indicate a direct role of Oct4 on these neural differentiation inducers. The results 

from misexpression of constitutively active or repressive Oct-25 variants in Xenopus, 

are compatible with Zic1 and Zic3 as direct Oct-25 targets also in Xenopus. This 

result provides an entry point for future work to address the epistasis within this 

pathway and its interaction with the early neural gene network. Interestingly, the 

transcriptional repressor REST (RE1-silencing transcription factor), whose 

expression in ES cells is regulated by the pluripotency factors Oct4, Nanog and Sox2 

(Boyer, Lee et al. 2005), has been shown to play a key role in ES cells and neural 

precursor cells (Hirabayashi and Gotoh 2010). REST abundance in pluripotent cells 

has been suggested to regulate genes involved in the neuronal differentiation, in a 

two-step process. In the transition from pluripotent to neural progenitor cell, REST 

binds to neuronal genes and keeps them in a poised state. As progenitors 

differentiate into neurons, REST dissociates form the RE1 sites of neuronal genes, 

triggering their activation. At the same time, it represses neuronal programmes in 

non-neural cells, by recruiting histone modifiers (e.g. H3K9-histone 

methyltransferases G9a and Suv39h1) and chromatin-binding proteins (Ballas, 

Grunseich et al. 2005; Hirabayashi and Gotoh 2010). The importance of chromatin 

changes upon differentiation (and more in general during development) is not only 

restricted to neurogenesis; it rather represents a complex layer of gene regulation, 

strongly connected to the transcriptional factors network, which is involved in the fate 

choice for cells of the different germ layers (Xu, Cole et al. 2011). These particular 

examples underline the intimate connections between transcription factor networks 

and the epigenetic machinery that regulates cell differentiation during development 

(Gaspar-Maia, Alajem et al. 2011; Young 2011).  

 The work presented here describes a similar scenario. Xenopus Suv4-20h 

HMTases and the modifications they establish exert a fundamental role in 
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determining neuroectodermal fate allocation by controlling Oct-25, a functional 

Oct3/4 homolog. The results form the epistasis experiments, whereby Oct-25 

morpholino injections rescued double-morphant phenotypes, confirm and support the 

connection between the epigenetic machinery and the transcription factor circuitry. 

Moreover, Oct-25 upregulation in the sensorial layer of the epidermis in xSuv4-20h 

double morphants suggests that this POU-V protein exerts an additional role in the 

epidermal differentiation, possibly connected to the ciliogenic phenotype observed in 

xSuv4-20h enzymes depleted embryos. 

 

5.2.8 Suv4-20h enzymes regulate Oct4 expression in murine ES cells 

 The observed derepression of Oct-25 in the sensorial cell layer of the 

ectoderm implies a very intriguing role for Suv4-20h enzymes. This domain contains 

not only the uncommitted precursors of neuronal and epidermal cell types, but with 

regard to the involuting marginal zone also the mesodermal and endodermal 

precursors. Oct-25 deregulation may thus reflect a common mechanism by which 

Suv4-20h HMTases control pluripotency in the embryo. In agreement with this 

hypothesis we found elevated Oct4 protein levels in two independent Suv4-20h DKO 

ES cell lines both before and during differentiation, in comparison with two wildtype 

ES cell lines. Recent reports suggest that the pluripotency regulators Sox2 and Oct4 

drive ES cells towards specific germ layer differentiation programs, as soon as the 

cells leave the pluripotent state (Teo, Arnold et al. 2011; Thomson, Liu et al. 2011). 

Our findings are in agreement with Thomson and colleagues, who describe Oct4 to 

antagonize ectodermal specification and to promote mesendodermal fate. 

 It is known that during ES cells differentiation, the mammalian Oct4 is 

repressed by a series of epigenetic mechanisms including DNA methylation, 

incorporation of somatic linker histones and repressive histone PTMs (e.g. 

H3K9me3, H3K27me3). Our findings that Oct4 protein levels are increased in the 

DKO ES cells both before and during differentiation suggest that Suv4-20h HMTases 

might regulate Oct4 transcription in a way that is at least partially independent from 

other repressive mechanisms targeting this locus. Further experiments are needed to 

extend our observation, e.g. to demonstrate H4K20me3 modification on the Oct4 

gene. It would be interesting to test whether REST expression is different in Suv4-

20h DKO and wildtype ES cells, and whether the missregulation of Oct4 affects the 

differentiation potential of Suv4-20h DKO ES cells along the neural lineage. It is 

important to note that the presented study, although describing in details the direct 
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regulation of Oct-25 in Xenopus, does not rule out contributions from additional 

factors and pathways possibly involved in blocking the exiting from pluripotency of 

murine ES cells. 

 

5.3 Conclusion and future directions 

 Significant new insights have been obtained to further support the key role of 

epigenetic mechanisms during development. Active and repressive marks, as well as 

histone variants and ATP-dependent remodelling complexes, modulate gene 

expression both in pluripotent and terminally differentiated cells. One main challenge 

is to understand how the different epigenetic regulatory processes interact one 

another and cooperate with the transcription factor networks to ensure proper gene 

expression during embryonic development.  

 In this regard, the roles of Xenopus Suv4-20h HMTases have been 

investigated. The data shown here identifies a germ-layer specific function for 

H4K20me2 and -me3 states in the neuroectoderm. This function is achieved via the 

negative regulation of the pluripotency-related gene Oct-25 in frogs. Additionally, 

Suv4-20 DKO ES cells show a enhanced Oct4 expression, suggesting a conserved 

regulatory mechanism in which Suv4-20h enzymes regulate the transition from 

epiblast to ectoderm through transcriptional repression of POU-V genes in mice and 

frogs. 

 In my project, loss- and gain-of-function approaches have been used to 

characterize the functions of Xenopus Suv4-20h HMTases. The analysis, based 

mainly on RNA in situ hybridization and qRT-PCR assays, showed changes in the 

expression pattern of a small set of markers. Microarray analysis, performed in 

Xenopus laevis, confirmed and extended the RNA in situ hybridization results. It 

would be interesting to analyze the global gene expression profiling in Xenopus 

tropicalis, to gain a broader overview of the role of xSuv420h enzymes, during 

neurogenesis. Furthermore performing microarray analysis, or RNA-Seq 

experiments, at different developmental stages would give the chance to evaluate 

gene expression changes during development. 

 The presented ChIP experiments confirmed the presence of H4K20me3 at 

repetitive genomic regions, but at the same time highlighted a reproducible and 

significant enrichment on the Oct-25 gene locus. ChIP-seq analysis for trimethyl 



Discussion 136 

H4K20 and for the two enzymes would help to understand the global enrichment of 

the mark and the proteins on the genome. This could lead to the identification of 

other direct target genes of the studied HMTases, proving that H4K20me3 regulates 

gene expression, besides the assumed role in pericentromeric heterochromatin 

formation (Schotta, Lachner et al. 2004). 

 Another important aspect of future experiments concerns the generation of 

specific antibodies against xSuv4-20h1 and h2. Besides being a fundamental tool for 

a variety of molecular approaches, antibodies would allow to understand possible 

interactions with other proteins. Mass Spectrometry analysis of xSuv4-20h HMTases 

IP samples could be the proper method to detect a complete set of interacting 

partners. In a comparable scenario, antibodies against Oct-25 would allow to carry 

out similar experiments (e.g. Mass Spectrometry and ChIP analysis), aimed to 

understand Oct-25 target genes during development and upon xSuv4-20h enzyme 

depletion. 

 The aforementioned approaches could be applied also to Suv4-20h DKO ES 

cells, in order to identify and elucidate the molecular mechanisms responsible for 

their elevated Oct4 levels.  Moreover, differentiation of wildtype and Suv4-20h DKO 

ES cells into neuroectoderm would help to understand whether mechanisms similar 

to the ones described in Xenopus operate also in murine cells. 
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6 ABBREVIATIONS 

 

5’ or 3’-UTR  5’ or 3’ untranslated region 

53BP1   p53 binding protein 1 

ACN   acetonitrile    

ADP   adenosine diphosphate  

AP   alkaline phosphatase 

Approx.  approximately 

ATP   adenosine triphosphate 

BCIP   5-bromo-4-chloro-3-indolyl-phosphate 

BCNE center  blastula Chordin, Noggin expression center 

bHLH   basic helix-loop-helix 

BMP   bone morphogenetic proteins 

bp   base pairs 

BSA   bovine serum albumin 

CAF1   chromatin assembly factor 1   

cDNA   complementary DNA 

ChIP   chromatin immunoprecipitation 

ChIP-seq  chromatin immunoprecipitation sequencing 

CMFM   calcium and magnesium free medium 

CNS    central nervous system 

CpG   cytosine-phosphate-guanine dinucleotide 

CTP   cytosine triphosphate 

DEPC   diethylpyrocarbonate 

DIG   digoxigenin 

DKO   double knockout 

DNA   deoxyribonucleic acid 

e.g.   exempli gratia, for example 

ESC   embryonic stem cells 

et al.   et alii, and others 



Abbreviations 138 

EtOH   ethanol 

FGF   fibroblast growth factor 

GFP   green fluorescence protein 

GTP   guanine triphosphate 

h   hour 

HAT   histone acetyltransferase 

HCG   human chorionic gonadotropin 

HDAC   histone deacetylase   

HMTase  histone methyltransferase 

HP1   heterochromatin protein 1 

hpf   hour post fertilization 

ICC   immunocytochemistry 

ICM   inner cell mass 

i.e.   id est 

IF   immunofluorescence 

IP   immunoprecipitation 

IR   infrared 

KDa   Kilodaltons 

M   molar 

MAB   maleic acid buffer 

MALDI-TOF  matrix assisted laser desorption ionization-time of flight 

MBS   modified Barth’s saline 

MBT   mid blastula transition 

MEF   mouse embryonic fibroblast  

MeOH   methanol 

miRNA  micro RNA 

min   minutes 

mRNA   messenger RNA 

NBT   nitro blue tetrazolium 

ncRNA  non coding RNA 

NF   Nieuwkoop Faber (Xenopus developmental stages) 
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nm   nanometer    

NTP   nucleotide triphosphate 

o/n   over-night 

PBS   phosphate buffered saline 

PcG   polycomb group 

PCP   planar cell polarity 

PCR   polymerase chain reaction 

PHF8   PHD finger protein 8 

POU-V   Pit-1, Oct1-2, Unc-86 

PRC1   polycomb repressive complex 1 

PRC2   polycomb repressive complex 2 

PRMT   protein arginine N-methyltransferases 

PTM   post translational modification 

qRT-PCR  quantitative real time polymerase chain reaction 

Rb   retinoblastoma 

RNA   ribonucleic acid 

RNA-Seq  RNA sequencing 

rpm   revolutions per minute      

RT   room temperature 

SDS-PAGE  sodium dodecyl sulphate - polyacrylamide gel electrophoresis 

Sec   seconds 

SET domain  Suv39, E(z), Trx protein domain 

SS   Steinberg’s saline 

SUMO   small ubiquitin-like modifier 

TE   trophoectoderm 

TFA   trifluoracetic aid 

TGF beta  transform growth factor beta 

TS cell   trophoblast stem cell 

Ubx   ultrabithorax 

UTP   uridine triphosphate 

UV   ultraviolet 
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WB   western blot 

XEN   extraembryonic endoderm



References 141 

7 REFERENCES 

Ahn,  S.  H.,  K.  A.  Henderson,  et  al.  (2005).  "H2B  (Ser10)  phosphorylation  is 
induced  during  apoptosis  and meiosis  in  S.  cerevisiae."  Cell  Cycle 4(6): 
780‐783. 

Akkers,  R.  C.,  S.  J.  van  Heeringen,  et  al.  (2009).  "A  hierarchy  of  H3K4me3  and 
H3K27me3  acquisition  in  spatial  gene  regulation  in  Xenopus  embryos." 
Dev Cell 17(3): 425‐434. 

Azuara, V., P. Perry, et al. (2006). "Chromatin signatures of pluripotent cell lines." 
Nat Cell Biol 8(5): 532‐538. 

Ballas,  N.,  C.  Grunseich,  et  al.  (2005).  "REST  and  its  corepressors  mediate 
plasticity  of  neuronal  gene  chromatin  throughout  neurogenesis."  Cell 
121(4): 645‐657. 

Barski,  A.,  S.  Cuddapah,  et  al.  (2007).  "High‐resolution  profiling  of  histone 
methylations in the human genome." Cell 129(4): 823‐837. 

Beck, D. B., H. Oda, et al.  (2012). "PR‐Set7 and H4K20me1: at  the crossroads of 
genome  integrity,  cell  cycle,  chromosome  condensation,  and 
transcription." Genes Dev 26(4): 325‐337. 

Ben‐Shushan,  E.,  J.  R.  Thompson,  et  al.  (1998).  "Rex‐1,  a  gene  encoding  a 
transcription  factor expressed  in  the early embryo,  is  regulated via Oct‐
3/4  and  Oct‐6  binding  to  an  octamer  site  and  a  novel  protein,  Rox‐1, 
binding to an adjacent site." Mol Cell Biol 18(4): 1866‐1878. 

Berger,  S.  L.,  T.  Kouzarides,  et  al.  (2009).  "An  operational  definition  of 
epigenetics." Genes Dev 23(7): 781‐783. 

Bergsland,  M.,  M.  Werme,  et  al.  (2006).  "The  establishment  of  neuronal 
properties  is  controlled  by  Sox4  and  Sox11."  Genes  Dev 20(24):  3475‐
3486. 

Bhaumik, S. R., E. Smith, et al. (2007). "Covalent modifications of histones during 
development  and  disease  pathogenesis."  Nat  Struct  Mol  Biol  14(11): 
1008‐1016. 

Biron, V. L., K.  J. McManus, et al.  (2004).  "Distinct dynamics and distribution of 
histone  methyl‐lysine  derivatives  in  mouse  development."  Dev  Biol 
276(2): 337‐351. 

Blythe,  S. A., C. D. Reid,  et  al.  (2009).  "Chromatin  immunoprecipitation  in early 
Xenopus laevis embryos." Dev Dyn 238(6): 1422‐1432. 

Bogdanovic,  O.,  S.  J.  van  Heeringen,  et  al.  (2011).  "The  epigenome  in  early 
vertebrate development." Genesis. 

Bonasio, R., S. Tu, et al. (2010). "Molecular signals of epigenetic states." Science 
330(6004): 612‐616. 

Bonisch,  C.,  S.  M.  Nieratschker,  et  al.  (2008).  "Chromatin  proteomics  and 
epigenetic regulatory circuits." Expert Rev Proteomics 5(1): 105‐119. 

Boyer, L. A., T.  I. Lee, et al.  (2005).  "Core  transcriptional  regulatory circuitry  in 
human embryonic stem cells." Cell 122(6): 947‐956. 

Brewster,  R.,  J.  Lee,  et  al.  (1998).  "Gli/Zic  factors  pattern  the  neural  plate  by 
defining domains of cell differentiation." Nature 393(6685): 579‐583. 

Bylund, M., E. Andersson, et al. (2003). "Vertebrate neurogenesis is counteracted 
by Sox1‐3 activity." Nat Neurosci 6(11): 1162‐1168. 



References 142 

Cao, Y., S. Knochel, et al. (2004). "The POU factor Oct‐25 regulates the Xvent‐2B 
gene and counteracts terminal differentiation in Xenopus embryos." J Biol 
Chem 279(42): 43735‐43743. 

Cao, Y., D. Siegel, et al. (2007). "POU‐V factors antagonize maternal VegT activity 
and beta‐Catenin signaling  in Xenopus embryos." EMBO  J 26(12): 2942‐
2954. 

Cao,  Y.,  D.  Siegel,  et  al.  (2006).  "Xenopus  POU  factors  of  subclass  V  inhibit 
activin/nodal signaling during gastrulation." Mech Dev 123(8): 614‐625. 

Cao,  Y.,  D.  Siegel,  et  al.  (2008).  "Oct25  represses  transcription  of  nodal/activin 
target  genes  by  interaction  with  signal  transducers  during  Xenopus 
gastrulation." J Biol Chem 283(49): 34168‐34177. 

Cao,  Y.,  D.  Siegel,  et  al.  (2008).  "Oct25  represses  transcription  of  nodal/activin 
target  genes  by  interaction  with  signal  transducers  during  Xenopus 
gastrulation." The Journal of biological chemistry 283(49): 34168‐34177. 

Chitnis,  A.  B.  (1995).  "The  role  of  Notch  in  lateral  inhibition  and  cell  fate 
specification." Mol Cell Neurosci 6(4): 311‐321. 

Dambacher, S., M. Hahn, et al. (2010). "Epigenetic regulation of development by 
histone lysine methylation." Heredity 105(1): 24‐37. 

De Robertis, E. M. and H. Kuroda (2004). "Dorsal‐ventral patterning and neural 
induction in Xenopus embryos." Annu Rev Cell Dev Biol 20: 285‐308. 

Deblandre, G. A., D. A. Wettstein, et al. (1999). "A two‐step mechanism generates 
the spacing pattern of the ciliated cells in the skin of Xenopus embryos." 
Development 126(21): 4715‐4728. 

Diez del Corral, R. and K. G. Storey (2001). "Markers in vertebrate neurogenesis." 
Nat Rev Neurosci 2(11): 835‐839. 

Dillon,  S.  C.,  X.  Zhang,  et  al.  (2005).  "The  SET‐domain  protein  superfamily: 
protein lysine methyltransferases." Genome Biol 6(8): 227. 

Dupont,  S.,  L.  Zacchigna,  et  al.  (2005).  "Germ‐layer  specification  and  control  of 
cell growth by Ectodermin, a Smad4 ubiquitin ligase." Cell 121(1): 87‐99. 

Dworkin‐Rastl,  E.,  H.  Kandolf,  et  al.  (1994).  "The maternal  histone  H1  variant, 
H1M (B4 protein), is the predominant H1 histone in Xenopus pregastrula 
embryos." Dev Biol 161(2): 425‐439. 

Filion, G. J., J. G. van Bemmel, et al. (2010). "Systematic protein location mapping 
reveals  five  principal  chromatin  types  in  Drosophila  cells."  Cell 143(2): 
212‐224. 

Fussner, E., R. W. Ching, et al.  (2011).  "Living without 30nm chromatin  fibers." 
Trends Biochem Sci 36(1): 1‐6. 

Gaspar‐Maia,  A.,  A.  Alajem,  et  al.  (2011).  "Open  chromatin  in  pluripotency  and 
reprogramming." Nat Rev Mol Cell Biol 12(1): 36‐47. 

Gomez‐Skarmeta,  J.,  E.  de La Calle‐Mustienes,  et  al.  (2001).  "The Wnt‐activated 
Xiro1 gene encodes a repressor  that  is essential  for neural development 
and downregulates Bmp4." Development 128(4): 551‐560. 

Graham,  V.,  J.  Khudyakov,  et  al.  (2003).  "SOX2  functions  to  maintain  neural 
progenitor identity." Neuron 39(5): 749‐765. 

Gray,  R.  S.,  P.  B.  Abitua,  et  al.  (2009).  "The  planar  cell  polarity  effector  Fuz  is 
essential  for  targeted  membrane  trafficking,  ciliogenesis  and  mouse 
embryonic development." Nat Cell Biol 11(10): 1225‐1232. 

Green, J. (1999). "The animal cap assay." Methods Mol Biol 127: 1‐13. 



References 143 

Grunz,  H.  and  L.  Tacke  (1989).  "Neural  differentiation  of  Xenopus  laevis 
ectoderm  takes  place  after  disaggregation  and  delayed  reaggregation 
without inducer." Cell Differ Dev 28(3): 211‐217. 

Hansen, J. C. (2012). "Human mitotic chromosome structure: what happened to 
the 30‐nm fibre?" EMBO J 31(7): 1621‐1623. 

Harland, R. (2000). "Neural induction." Curr Opin Genet Dev 10(4): 357‐362. 
Harris, W.  A.  and  V.  Hartenstein  (1991).  "Neuronal  determination without  cell 

division in Xenopus embryos." Neuron 6(4): 499‐515. 
Hartenstein,  V.  (1989).  "Early  neurogenesis  in  Xenopus:  the  spatio‐temporal 

pattern  of  proliferation  and  cell  lineages  in  the  embryonic  spinal  cord." 
Neuron 3(4): 399‐411. 

Hayes,  J. M.,  S. K. Kim, et al.  (2007).  "Identification of novel  ciliogenesis  factors 
using  a new  in  vivo model  for mucociliary  epithelial  development." Dev 
Biol 312(1): 115‐130. 

Heasman,  J.  (2006).  "Patterning  the  early  Xenopus  embryo."  Development 
133(7): 1205‐1217. 

Heasman, J., C. C. Wylie, et al. (1984). "Fates and states of determination of single 
vegetal pole blastomeres of X. laevis." Cell 37(1): 185‐194. 

Hellsten, U., R. M. Harland, et al. (2010). "The genome of the Western clawed frog 
Xenopus tropicalis." Science 328(5978): 633‐636. 

Hemberger, M., W. Dean, et al. (2009). "Epigenetic dynamics of stem cells and cell 
lineage commitment: digging Waddington's canal." Nat Rev Mol Cell Biol 
10(8): 526‐537. 

Hemmati‐Brivanlou,  A.  and  D.  Melton  (1997).  "Vertebrate  neural  induction." 
Annu Rev Neurosci 20: 43‐60. 

Henikoff,  S.  (2000).  "Heterochromatin  function  in  complex  genomes."  Biochim 
Biophys Acta 1470(1): O1‐8. 

Hinkley, C. S.,  J. F. Martin, et al.  (1992).  "Sequential expression of multiple POU 
proteins during amphibian early development." Mol Cell Biol 12(2): 638‐
649. 

Hirabayashi, Y. and Y. Gotoh (2010). "Epigenetic control of neural precursor cell 
fate during development." Nat Rev Neurosci 11(6): 377‐388. 

Kapoor‐Vazirani,  P.,  J.  D.  Kagey,  et  al.  (2011).  "SUV420H2‐mediated  H4K20 
trimethylation  enforces  RNA  polymerase  II  promoter‐proximal  pausing 
by  blocking  hMOF‐dependent  H4K16  acetylation."  Mol  Cell  Biol  31(8): 
1594‐1609. 

Kimelman, D.  and K.  J. Griffin  (2000).  "Vertebrate mesendoderm  induction and 
patterning." Curr Opin Genet Dev 10(4): 350‐356. 

Kintner,  C.  (1992).  "Molecular  bases  of  early  neural  development  in  Xenopus 
embryos." Annu Rev Neurosci 15: 251‐284. 

Kohlmaier, A., F. Savarese, et al.  (2004).  "A chromosomal memory  triggered by 
Xist  regulates  histone  methylation  in  X  inactivation."  PLoS  Biol  2(7): 
E171. 

Kornberg, R. D.  (1974).  "Chromatin  structure:  a  repeating unit  of  histones  and 
DNA." Science 184(139): 868‐871. 

Kroll,  K.  L.,  A.  N.  Salic,  et  al.  (1998).  "Geminin,  a  neuralizing  molecule  that 
demarcates  the  future  neural  plate  at  the  onset  of  gastrulation." 
Development 125(16): 3247‐3258. 



References 144 

Kuroda, H., O. Wessely, et al. (2004). "Neural induction in Xenopus: requirement 
for  ectodermal  and  endomesodermal  signals  via  Chordin,  Noggin,  beta‐
Catenin, and Cerberus." PLoS Biol 2(5): E92. 

Kwon, T., J. H. Chang, et al. (2003). "Mechanism of histone lysine methyl transfer 
revealed by the structure of SET7/9‐AdoMet." EMBO J 22(2): 292‐303. 

Lamb,  T.  M.,  A.  K.  Knecht,  et  al.  (1993).  "Neural  induction  by  the  secreted 
polypeptide noggin." Science 262(5134): 713‐718. 

Latham,  J. A. and S. Y. Dent (2007).  "Cross‐regulation of histone modifications." 
Nat Struct Mol Biol 14(11): 1017‐1024. 

Lee, B. M. and L. C. Mahadevan (2009). "Stability of histone modifications across 
mammalian  genomes:  implications  for  'epigenetic'  marking."  J  Cell 
Biochem 108(1): 22‐34. 

Lee,  J. E., S. M. Hollenberg, et al.  (1995). "Conversion of Xenopus ectoderm into 
neurons by NeuroD, a basic helix‐loop‐helix protein." Science 268(5212): 
836‐844. 

Li,  Z.,  F.  Nie,  et  al.  (2011).  "Histone  H4  Lys  20  monomethylation  by  histone 
methylase SET8 mediates Wnt target gene activation." Proc Natl Acad Sci 
U S A 108(8): 3116‐3123. 

Liu,  W.,  B.  Tanasa,  et  al.  (2010).  "PHF8  mediates  histone  H4  lysine  20 
demethylation  events  involved  in  cell  cycle  progression."  Nature 
466(7305): 508‐512. 

Luger, K., A. W. Mader,  et  al.  (1997).  "Crystal  structure of  the nucleosome core 
particle at 2.8 A resolution." Nature 389(6648): 251‐260. 

Ma,  Q.,  C.  Kintner,  et  al.  (1996).  "Identification  of  neurogenin,  a  vertebrate 
neuronal determination gene." Cell 87(1): 43‐52. 

Maeshima, K., S. Hihara, et al. (2010). "Chromatin structure: does the 30‐nm fibre 
exist in vivo?" Curr Opin Cell Biol 22(3): 291‐297. 

Magklara,  A.,  A.  Yen,  et  al.  (2011).  "An  epigenetic  signature  for  monoallelic 
olfactory receptor expression." Cell 145(4): 555‐570. 

Marcet, B., B. Chevalier, et al. (2011). "Control of vertebrate multiciliogenesis by 
miR‐449 through direct repression of the Delta/Notch pathway." Nat Cell 
Biol 13(10): 1280. 

Marks,  H.,  T.  Kalkan,  et  al.  (2012).  "The  transcriptional  and  epigenomic 
foundations of ground state pluripotency." Cell 149(3): 590‐604. 

Martin,  C.  and  Y.  Zhang  (2005).  "The  diverse  functions  of  histone  lysine 
methylation." Nat Rev Mol Cell Biol 6(11): 838‐849. 

Mikkelsen, T. S., M. Ku, et al.  (2007). "Genome‐wide maps of chromatin state  in 
pluripotent and lineage‐committed cells." Nature 448(7153): 553‐560. 

Mitchell,  B.,  J.  L.  Stubbs,  et  al.  (2009).  "The  PCP  pathway  instructs  the  planar 
orientation of ciliated cells in the Xenopus larval skin." Curr Biol 19(11): 
924‐929. 

Mohammad,  H.  P.  and  S.  B.  Baylin  (2010).  "Linking  cell  signaling  and  the 
epigenetic machinery." Nat Biotechnol 28(10): 1033‐1038. 

Morrison,  G.  M.  and  J.  M.  Brickman  (2006).  "Conserved  roles  for  Oct4 
homologues  in  maintaining  multipotency  during  early  vertebrate 
development." Development 133(10): 2011‐2022. 

Munoz‐Sanjuan,  I.  and  A.  H.  Brivanlou  (2002).  "Neural  induction,  the  default 
model and embryonic stem cells." Nat Rev Neurosci 3(4): 271‐280. 



References 145 

Newport, J. and M. Kirschner (1982). "A major developmental transition in early 
Xenopus embryos: I. characterization and timing of cellular changes at the 
midblastula stage." Cell 30(3): 675‐686. 

Nishino,  Y.,  M.  Eltsov,  et  al.  (2012).  "Human  mitotic  chromosomes  consist 
predominantly  of  irregularly  folded nucleosome  fibres without  a  30‐nm 
chromatin structure." EMBO J 31(7): 1644‐1653. 

Nishioka,  K.,  J.  C.  Rice,  et  al.  (2002).  "PR‐Set7  is  a  nucleosome‐specific 
methyltransferase that modifies lysine 20 of histone H4 and is associated 
with silent chromatin." Mol Cell 9(6): 1201‐1213. 

Papp,  B.  and  J. Muller  (2006).  "Histone  trimethylation  and  the maintenance  of 
transcriptional ON and OFF states by trxG and PcG proteins." Genes Dev 
20(15): 2041‐2054. 

Park,  T.  J.,  S.  L.  Haigo,  et  al.  (2006).  "Ciliogenesis  defects  in  embryos  lacking 
inturned  or  fuzzy  function  are  associated  with  failure  of  planar  cell 
polarity and Hedgehog signaling." Nat Genet 38(3): 303‐311. 

Pesavento,  J.  J.,  H.  Yang,  et  al.  (2008).  "Certain  and  progressive methylation  of 
histone H4  at  lysine 20 during  the  cell  cycle." Mol  Cell  Biol 28(1):  468‐
486. 

Pevny,  L.  and  M.  Placzek  (2005).  "SOX  genes  and  neural  progenitor  identity." 
Curr Opin Neurobiol 15(1): 7‐13. 

Qi, H. H., M. Sarkissian, et al.  (2010). "Histone H4K20/H3K9 demethylase PHF8 
regulates  zebrafish  brain  and  craniofacial  development."  Nature 
466(7305): 503‐507. 

Rea, S., F. Eisenhaber, et al.  (2000).  "Regulation of  chromatin structure by site‐
specific histone H3 methyltransferases." Nature 406(6796): 593‐599. 

Revinski, D. R., A. R. Paganelli, et al. (2010). "Delta‐Notch signaling is involved in 
the  segregation  of  the  three  germ  layers  in  Xenopus  laevis."  Dev  Biol 
339(2): 477‐492. 

Rogers,  C.  D.,  S.  A.  Moody,  et  al.  (2009).  "Neural  induction  and  factors  that 
stabilize  a  neural  fate."  Birth  Defects  Res  C  Embryo  Today 87(3):  249‐
262. 

Rugg‐Gunn, P.  J., B.  J. Cox,  et  al.  (2010).  "Distinct histone modifications  in  stem 
cell  lines  and  tissue  lineages  from  the  early  mouse  embryo."  Proc  Natl 
Acad Sci U S A 107(24): 10783‐10790. 

Sakaguchi, A. and R. Steward (2007). "Aberrant monomethylation of histone H4 
lysine  20  activates  the  DNA  damage  checkpoint  in  Drosophila 
melanogaster." J Cell Biol 176(2): 155‐162. 

Sanders,  S.  L.,  M.  Portoso,  et  al.  (2004).  "Methylation  of  histone  H4  lysine  20 
controls recruitment of Crb2 to sites of DNA damage." Cell 119(5): 603‐
614. 

Santos,  J.,  C.  F.  Pereira,  et  al.  (2010).  "Differences  in  the  epigenetic  and 
reprogramming properties of pluripotent and extra‐embryonic stem cells 
implicate  chromatin  remodelling  as  an  important  early  event  in  the 
developing mouse embryo." Epigenetics Chromatin 3: 1. 

Sasai, N. and P. A. Defossez (2009). "Many paths to one goal? The proteins that 
recognize methylated  DNA  in  eukaryotes."  Int  J  Dev  Biol 53(2‐3):  323‐
334. 



References 146 

Sasai,  Y.  (1998).  "Identifying  the  missing  links:  genes  that  connect  neural 
induction  and  primary  neurogenesis  in  vertebrate  embryos."  Neuron 
21(3): 455‐458. 

Schena, M., D. Shalon, et al. (1995). "Quantitative monitoring of gene expression 
patterns  with  a  complementary  DNA  microarray."  Science  270(5235): 
467‐470. 

Schneider,  T.  D.,  J.  M.  Arteaga‐Salas,  et  al.  (2011).  "Stage‐specific  histone 
modification profiles reveal global transitions  in the Xenopus embryonic 
epigenome." PLoS One 6(7): e22548. 

Schotta, G., M. Lachner, et al. (2004). "A silencing pathway to induce H3‐K9 and 
H4‐K20  trimethylation  at  constitutive  heterochromatin."  Genes  Dev 
18(11): 1251‐1262. 

Schotta,  G.,  R.  Sengupta,  et  al.  (2008).  "A  chromatin‐wide  transition  to  H4K20 
monomethylation  impairs  genome  integrity  and  programmed  DNA 
rearrangements in the mouse." Genes Dev 22(15): 2048‐2061. 

Seo,  S.,  G.  A.  Richardson,  et  al.  (2005).  "The  SWI/SNF  chromatin  remodeling 
protein  Brg1  is  required  for  vertebrate  neurogenesis  and  mediates 
transactivation of Ngn and NeuroD." Development 132(1): 105‐115. 

Slack, J. M. (2002). "Conrad Hal Waddington: the last Renaissance biologist?" Nat 
Rev Genet 3(11): 889‐895. 

Snape, A., C. C. Wylie, et al.  (1987).  "Changes  in states of commitment of  single 
animal pole blastomeres of Xenopus laevis." Dev Biol 119(2): 503‐510. 

Snir,  M.,  R.  Ofir,  et  al.  (2006).  "Xenopus  laevis  POU91  protein,  an  Oct3/4 
homologue,  regulates  competence  transitions  from mesoderm  to  neural 
cell fates." EMBO J 25(15): 3664‐3674. 

Sokol,  S.,  G.  G. Wong,  et  al.  (1990).  "A mouse macrophage  factor  induces  head 
structures  and  organizes  a  body  axis  in  Xenopus."  Science  249(4968): 
561‐564. 

Spemann,  H.  and  H.  Mangold  (2001).  "Induction  of  embryonic  primordia  by 
implantation of organizers from a different species. 1923." Int J Dev Biol 
45(1): 13‐38. 

Strahl,  B.  D.  and  C.  D.  Allis  (2000).  "The  language  of  covalent  histone 
modifications." Nature 403(6765): 41‐45. 

Stubbs,  J.  L.,  L.  Davidson,  et  al.  (2006).  "Radial  intercalation  of  ciliated  cells 
during Xenopus skin development." Development 133(13): 2507‐2515. 

Stubbs, J. L., I. Oishi, et al. (2008). "The forkhead protein Foxj1 specifies node‐like 
cilia in Xenopus and zebrafish embryos." Nat Genet 40(12): 1454‐1460. 

Surani,  M.  A.,  K.  Hayashi,  et  al.  (2007).  "Genetic  and  epigenetic  regulators  of 
pluripotency." Cell 128(4): 747‐762. 

Takebayashi‐Suzuki,  K.,  N.  Arita,  et  al.  (2007).  "The  Xenopus  POU  class  V 
transcription  factor XOct‐25  inhibits ectodermal competence  to  respond 
to  bone  morphogenetic  protein‐mediated  embryonic  induction." 
Mechanisms of development 124(11‐12): 840‐855. 

Takebayashi‐Suzuki,  K.,  N.  Arita,  et  al.  (2007).  "The  Xenopus  POU  class  V 
transcription  factor XOct‐25  inhibits ectodermal competence  to  respond 
to  bone  morphogenetic  protein‐mediated  embryonic  induction."  Mech 
Dev 124(11‐12): 840‐855. 



References 147 

Tardat, M., R. Murr, et al. (2007). "PR‐Set7‐dependent lysine methylation ensures 
genome  replication  and  stability  through  S  phase."  J  Cell  Biol  179(7): 
1413‐1426. 

Teo,  A.  K.,  S.  J.  Arnold,  et  al.  (2011).  "Pluripotency  factors  regulate  definitive 
endoderm specification  through eomesodermin." Genes Dev 25(3): 238‐
250. 

Thomson, M., S. J. Liu, et al. (2011). "Pluripotency factors in embryonic stem cells 
regulate differentiation into germ layers." Cell 145(6): 875‐889. 

Trojer,  P.,  G.  Li,  et  al.  (2007).  "L3MBTL1,  a  histone‐methylation‐dependent 
chromatin lock." Cell 129(5): 915‐928. 

Turner, B. M. (2002). "Cellular memory and the histone code." Cell 111(3): 285‐
291. 

van  Steensel,  B.  (2011).  "Chromatin:  constructing  the  big  picture."  EMBO  J 
30(10): 1885‐1895. 

Varga‐Weisz,  P.  D.  and  P.  B.  Becker  (2006).  "Regulation  of  higher‐order 
chromatin  structures  by  nucleosome‐remodelling  factors."  Curr  Opin 
Genet Dev 16(2): 151‐156. 

Vastenhouw,  N.  L.,  Y.  Zhang,  et  al.  (2010).  "Chromatin  signature  of  embryonic 
pluripotency  is  established  during  genome  activation."  Nature 
464(7290): 922‐926. 

Wallingford, J. B. (2010). "Planar cell polarity signaling, cilia and polarized ciliary 
beating." Curr Opin Cell Biol 22(5): 597‐604. 

Weake, V. M. and J. L. Workman (2008). "Histone ubiquitination: triggering gene 
activity." Mol Cell 29(6): 653‐663. 

Wilson,  S.  I.  and  T.  Edlund  (2001).  "Neural  induction:  toward  a  unifying 
mechanism." Nat Neurosci 4 Suppl: 1161‐1168. 

Wylie, C. C., A. Snape, et al. (1987). "Vegetal pole cells and commitment to form 
endoderm in Xenopus laevis." Dev Biol 119(2): 496‐502. 

Xu, C. R., P. A. Cole, et al. (2011). "Chromatin "prepattern" and histone modifiers 
in a fate choice for liver and pancreas." Science 332(6032): 963‐966. 

Yan,  B.,  K.  M.  Neilson,  et  al.  (2009).  "foxD5  plays  a  critical  upstream  role  in 
regulating neural ectodermal fate and the onset of neural differentiation." 
Dev Biol 329(1): 80‐95. 

Yang, H.  and C.  A. Mizzen  (2009).  "The multiple  facets  of  histone H4‐lysine  20 
methylation." Biochem Cell Biol 87(1): 151‐161. 

Young, R. A. (2011). "Control of the embryonic stem cell state." Cell 144(6): 940‐
954. 

Yu, X., C. P. Ng, et al. (2008). "Foxj1 transcription factors are master regulators of 
the motile ciliogenic program." Nat Genet 40(12): 1445‐1453. 

Zhang,  Y.  and  D.  Reinberg  (2001).  "Transcription  regulation  by  histone 
methylation:  interplay  between  different  covalent  modifications  of  the 
core histone tails." Genes Dev 15(18): 2343‐2360. 

Zhou, H., H. Hu, et al. (2010). "Non‐coding RNAs and their epigenetic regulatory 
mechanisms." Biol Cell 102(12): 645‐655. 

 



Appendices 148 

8 APPENDICES 

8.1 Suv4-20h enzymes regulate murine Oct-4 expression 

  

 Fig. 55: Morphology of wild-type and Suv4-20h DKO cells lines upon 
differentiation. Wildtype (wt26, GSES) and Suv4-20h DKO (B4, B7) cell lines were 
differentiated in vitro by embryoid bodies formation. Top row: undifferentiated ES cells (day 
0). Middle rows: embryoid bodies at day 2 and day 6, respectively. Note the smaller Suv4-20h 
DKO bodies compared to the wildtype. Bottom row: cells from disaggregated embryoid 
bodies, replated for 24h. Scale bar: 100 µm. 
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 Fig. 56: FACS analysis of wild-type and Suv4-20h DKO cell lines stained for 
Oct4 and CXCR4 protein, before and after differentiation. (a) At day 0 and day 6 cell lines 
were stained for Oct-4 protein and subjected to FACS analysis. Red graph: fluorescence of 
non-specific isotype control; black and green graphs: Oct-4 protein levels in wild-type and 
Suv4-20h DKO ES cell lines. (b) Suv4-20h DKO cells have a higher Oct-4 protein levels 
compared to wild-type ES cells both at day 0 and at day 6. Median fluorescence intensity was 
calculated from data in panel a. Data represent mean values from two to three independent 
experiments, error bars indicate SEM. (c) Suv4-20h DKO cells show a reduction in the 
percentage of CXCR4+ cells at differentiation day 6. Data represent normalized values of 
percentage of CXCR4+ cells as means of three independent experiments, error bars indicate 
SEM 

 

 

 



Appendices 150 

 

 Fig. 57: qRT-PCR profiles in wt and DKO cells at differentiation day 6. qRT-PCR 
profiles for the indicated genes in wildtype (wt) and Suv4-20h DKO cell lines at differentiation 
day 6. FoxA2 and Gata4 expression levels are misregulated in Suv4-20 DKO cells upon 
differentiation. 
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8.2 Microarray gene lists 

 List of upregulated genes upon xSuv4-20h enzymes depletion (microarray 
data ordered by Log2 fold change). 

Set-probes Number Log2 fold change Gene Name 

Xl.56179.1.S1_at 3,51 --- 

Xl.51774.1.S1_at 2,88 --- 

Xl.47853.1.A1_at 2,76 --- 

Xl.25416.1.A1_at 2,69 --- 

Xl.1193.1.S1_at 2,68 gck 

Xl.18439.1.S1_at 2,53 rilp 

Xl.47940.1.A1_at 2,49 --- 

Xl.53476.1.S1_at 2,47 --- 

Xl.1064.1.S1_at 2,42 trim7 

Xl.25774.1.S1_at 2,4 MGC81526 

Xl.40798.1.S1_at 2,39 --- 

Xl.51372.1.S1_a_at 2,39 --- 

Xl.52460.1.S1_at 2,38 --- 

Xl.19172.1.A1_at 2,3 --- 

Xl.34722.1.S1_s_at 2,3 --- 

Xl.19376.1.S1_at 2,29 --- 

Xl.31997.1.S1_at 2,25 --- 

Xl.48728.1.S1_at 2,23 fitm2 

Xl.1289.1.S1_at 2,22 tdgf1 

Xl.53127.1.S1_at 2,22 --- 

Xl.4750.1.S1_at 2,13 cdc42se2-c 

Xl.10927.1.S1_at 2,12 --- 

Xl.2530.1.S1_at 2,1 creb1 

Xl.3179.1.A1_at 2,04 --- 

Xl.23963.3.S1_a_at 2,04 LOC100137667 

Xl.28973.3.A1_at 2,03 --- 

Xl.29712.1.A1_at 2,02 --- 

Xl.42733.1.S1_x_at 1,99 --- 

Xl.48266.2.A1_x_at 1,98 --- 

Xl.4957.1.S1_at 1,97 pou5f1.1 

Xl.11656.1.S1_at 1,96 stk35 

Xl.19397.1.A1_at 1,94 --- 

Xl.46630.2.S1_at 1,94 --- 

Xl.16875.1.S1_at 1,94 LOC100137681 

Xl.373.1.S1_at 1,93 eomes 

Xl.11269.1.A1_at 1,92 --- 
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Xl.16230.1.A1_at 1,92 --- 

Xl.7399.1.S1_at 1,92 amfr 

Xl.11611.1.A1_at 1,89 --- 

Xl.32326.1.S1_at 1,87 etv3 

Xl.51799.1.S1_at 1,83 --- 

Xl.51850.1.A1_at 1,83 --- 

Xl.25849.1.S1_at 1,83 zar1 

Xl.42733.1.S1_at 1,81 --- 

Xl.15360.2.S1_at 1,8 --- 

Xl.16008.1.A1_at 1,79 --- 

Xl.1047.1.S1_a_at 1,78 lhx5 

Xl.56327.1.S1_at 1,78 --- 

Xl.51227.1.S1_at 1,75 peci 

Xl.41032.1.S1_at 1,74 --- 

Xl.54965.1.A1_at 1,74 --- 

Xl.6315.2.S1_at 1,74 c1orf124 

Xl.16322.1.A1_at 1,73 ccnb3-a 

Xl.41974.1.S1_at 1,72 --- 

Xl.55152.1.A1_at 1,71 --- 

Xl.7399.1.S2_at 1,71 amfr 

Xl.15207.1.S1_at 1,71 --- 

Xl.53435.1.S1_at 1,7 ska3 

Xl.7160.1.S1_at 1,69 c3orf64 

Xl.9584.1.A1_at 1,69 --- 

Xl.55449.1.S1_at 1,67 zfyve27 

Xl.32657.2.S1_at 1,66 --- 

Xl.30041.1.S1_at 1,65 --- 

Xl.47766.1.A1_at 1,62 --- 

Xl.54072.1.S1_at 1,62 --- 

Xl.47946.1.A1_at 1,61 --- 

Xl.31059.1.S1_at 1,6 --- 

Xl.23456.1.S1_at 1,6 ncdn 

Xl.34091.1.A1_at 1,6 --- 

Xl.11388.1.A1_at 1,6 --- 

Xl.12020.2.A1_at 1,59 --- 

Xl.50620.1.S1_at 1,59 --- 

Xl.42689.1.S1_at 1,58 --- 

Xl.15360.1.A1_at 1,58 --- 

Xl.32139.2.S1_at 1,57 hsd17b14 

Xl.6244.1.S1_at 1,57 plin3 

Xl.2314.1.S1_at 1,56 ccdc3 

Xl.30112.2.S1_at 1,56 --- 

Xl.28979.1.S1_at 1,55 oraov1 
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Xl.12093.1.S1_at 1,55 tdrd6 

Xl.52566.1.S1_at 1,55 --- 

Xl.25710.1.S1_at 1,54 MGC68595 

Xl.14872.1.A1_at 1,54 --- 

Xl.54908.1.A1_at 1,54 --- 

Xl.4281.1.A1_s_at 1,53 rdh9 

Xl.2922.1.S1_at 1,53 LOC100137665 

Xl.19293.1.S1_at 1,53 kctd5 

Xl.2986.1.S1_at 1,53 --- 

Xl.51384.1.S1_at 1,53 --- 

Xl.34532.1.S1_at 1,53 --- 

Xl.46177.1.S1_at 1,51 --- 

Xl.49986.1.S1_at 1,51 pnpla4 

Xl.5163.1.A1_at 1,5 --- 

Xl.9123.1.A1_at 1,5 --- 

Xl.55112.1.A1_at 1,49 ska3 

Xl.8031.1.S1_at 1,49 hist1h2aj 

Xl.9393.1.S1_at 1,47 --- 

Xl.51398.1.S1_at 1,46 --- 

Xl.1775.1.S1_at 1,46 vegt-a 

Xl.50033.1.S1_at 1,46 dnajc27-b 

Xl.9887.1.S1_at 1,45 cyp4v2 

Xl.12880.1.A1_at 1,45 --- 

Xl.22487.1.S1_at 1,44 tor1b 

Xl.2428.1.S1_at 1,44 LOC733412 

Xl.32657.1.A1_at 1,44 --- 

Xl.2852.1.S1_at 1,44 --- 

Xl.24032.1.S1_at 1,43 jak1 

Xl.14329.1.A1_at 1,43 --- 

Xl.1406.1.S1_a_at 1,43 --- 

Xl.18363.1.A1_at 1,43 --- 

Xl.55247.1.A1_at 1,43 --- 

Xl.17947.1.S1_at 1,42 sort1 

Xl.25413.1.A1_at 1,42 --- 

Xl.44533.1.S1_at 1,41 --- 

Xl.52576.1.S1_at 1,41 LOC733198 

Xl.13021.1.A1_at 1,41 --- 

Xl.21562.1.S1_at 1,41 rasd1 

Xl.21151.1.S1_at 1,41 --- 

Xl.46588.1.S1_at 1,41 atp6v0b 

Xl.13064.1.S1_at 1,41 --- 

Xl.48206.1.S1_at 1,4 oat 
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Xl.7191.1.S1_at 1,39 eif4e3-a 

Xl.25872.1.S1_at 1,39 --- 

Xl.46947.1.S1_at 1,39 --- 

Xl.1765.1.S1_at 1,39 --- 

Xl.30010.1.S1_at 1,39 --- 

Xl.32139.1.S1_at 1,39 hsd17b14 

Xl.52844.1.S1_at 1,39 --- 

Xl.32532.1.A1_at 1,38 --- 

Xl.46054.1.A1_at 1,38 --- 

Xl.21562.2.S1_at 1,38 rasd1 

Xl.6315.1.A1_at 1,38 c1orf124 

Xl.55777.1.A1_at 1,38 --- 

Xl.45598.1.S1_at 1,38 --- 

Xl.31412.1.S1_at 1,37 --- 

Xl.11925.1.A1_at 1,37 --- 

Xl.44851.2.S1_at 1,37 --- 

Xl.13136.1.S1_a_at 1,36 dap 

Xl.51793.1.S1_at 1,36 --- 

Xl.47078.1.S1_at 1,36 ptp4a3 

Xl.32061.1.S1_at 1,35 mfap3l 

Xl.21150.1.S1_at 1,35 hpgdsa 

Xl.17503.3.S1_at 1,34 --- 

Xl.50699.1.S1_at 1,34 --- 

Xl.33175.1.S2_at 1,34 rps6ka3 

Xl.24496.1.S1_at 1,34 --- 

Xl.18858.1.A1_at 1,33 --- 

Xl.53809.1.A1_at 1,33 spop 

Xl.24085.1.S1_at 1,33 st3gal3 

Xl.33937.1.S1_at 1,33 rab11fip2 

Xl.29614.1.S1_a_at 1,32 plin2 

Xl.33403.1.S1_at 1,32 fam83d 

Xl.6470.1.S1_at 1,32 --- 

Xl.34601.1.S1_a_at 1,32 acsl3 

Xl.37859.1.S1_at 1,31 LOC100037047 

Xl.44959.1.S1_at 1,31 --- 

Xl.37539.1.S1_at 1,31 gs17 

Xl.32570.1.S1_s_at 1,31 degs2 /// 
MGC83232 

Xl.10102.1.A1_at 1,31 LOC100174804 

Xl.12973.1.S1_a_at 1,3 --- 

Xl.2522.1.S1_at 1,3 --- 

Xl.54994.1.A1_at 1,3 --- 
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Xl.56049.1.S1_at 1,3 --- 

Xl.33477.2.A1_at 1,29 --- 

Xl.11887.1.S1_at 1,29 MGC115675 

Xl.44851.2.S1_x_at 1,29 --- 

Xl.16251.1.S1_at 1,29 --- 

Xl.53905.1.S1_at 1,28 --- 

Xl.8187.1.S1_at 1,28 dctn2 

Xl.21326.1.S1_at 1,28 klhdc10 

Xl.3735.1.S1_at 1,28 MGC81429 

Xl.14713.1.S1_at 1,27 --- 

Xl.21359.1.S1_at 1,27 --- 

Xl.1697.1.A1_at 1,27 --- 

Xl.16855.1.S1_at 1,27 --- 

Xl.46698.1.S1_at 1,27 wbscr27 

Xl.7479.2.S1_at 1,26 --- 

Xl.45992.1.A1_at 1,26 --- 

Xl.9874.1.A1_at 1,26 --- 

Xl.30468.1.S1_at 1,26 ergic1 

Xl.18727.1.A1_at 1,26 --- 

Xl.4078.1.A1_at 1,25 --- 

Xl.1838.1.S1_at 1,25 afg3l2 

Xl.17281.1.S1_at 1,25 --- 

Xl.48153.1.A1_at 1,25 --- 

Xl.29045.1.A1_at 1,24 --- 

Xl.7812.1.S1_at 1,24 --- 

Xl.47379.1.S1_at 1,24 rnf219 

Xl.34176.1.A1_at 1,24 --- 

Xl.11925.1.A1_x_at 1,24 --- 

Xl.17470.1.S1_at 1,24 dctn1 

Xl.2893.2.A1_a_at 1,24 faf1 

Xl.517.1.S1_at 1,24 rnd1 

Xl.47381.1.S1_at 1,24 gtf2i 

Xl.30271.1.S1_at 1,23 --- 

Xl.48567.3.S1_at 1,23 LOC100127246 

Xl.10226.1.S1_at 1,23 ube3c 

Xl.4601.1.S1_at 1,22 incenp-a 

Xl.10739.1.S1_at 1,22 --- 

Xl.34772.1.S1_at 1,22 p4ha2 

Xl.7722.1.S1_at 1,22 sccpdh.2 

Xl.24771.1.S1_at 1,22 lpin2 

Xl.25957.1.S1_at 1,22 mrpl53 

Xl.49054.1.S1_at 1,22 ing5 
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Xl.512.1.S1_s_at 1,22 kif22 

Xl.44918.1.S1_at 1,21 --- 

Xl.46997.1.S1_at 1,21 kctd2 

Xl.52319.1.S1_at 1,21 --- 

Xl.2519.1.S1_at 1,21 --- 

Xl.14166.1.A1_at 1,21 --- 

Xl.17848.2.S1_at 1,21 --- 

Xl.19520.1.A1_at 1,21 MGC115523 

Xl.806.1.S1_at 1,21 hist1h1t 

Xl.49096.1.S1_at 1,21 LOC100037099 

Xl.4940.1.S1_at 1,2 ivns1abp 

Xl.28973.1.S1_at 1,2 --- 

Xl.13437.1.S1_at 1,2 LOC398263 

Xl.12155.1.S1_at 1,2 --- 

Xl.5394.1.S1_at 1,2 rnf34 

Xl.55930.1.S1_at 1,2 --- 

Xl.46797.1.S1_at 1,2 LOC779088 

Xl.33550.1.S1_at 1,19 LOC443647 

Xl.53201.1.S1_at 1,19 --- 

Xl.23948.1.S1_at 1,19 murc 

Xl.6342.1.S1_at 1,19 pcmt1 

Xl.4195.1.S1_at 1,18 irf5 

Xl.56006.1.S1_at 1,18 --- 

Xl.48349.1.S1_at 1,18 dcaf6 

Xl.53491.1.S1_at 1,18 --- 

Xl.10025.1.A1_at 1,18 LOC414703 

Xl.52581.1.S1_at 1,18 --- 

Xl.31159.1.A1_at 1,18 --- 

Xl.1164.1.S1_at 1,17 d7 

Xl.7714.1.A1_at 1,17 --- 

Xl.54204.1.A1_at 1,17 --- 

Xl.3305.1.S1_s_at 1,17 sip1 

Xl.48196.1.A1_at 1,17 sip1 

Xl.47669.1.S1_at 1,17 MGC80990 

Xl.34601.1.S1_at 1,17 acsl3 

Xl.33707.1.S1_at 1,17 --- 

Xl.9337.1.A1_at 1,17 --- 

Xl.7880.1.A1_at 1,17 --- 

Xl.16058.1.S1_at 1,16 --- 

Xl.17454.1.A1_at 1,16 sec23ip 

Xl.32379.1.S1_at 1,16 LOC443674 

Xl.7045.1.S1_x_at 1,16 --- 
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Xl.53498.2.S1_at 1,16 --- 

Xl.31154.1.S1_at 1,16 --- 

Xl.49719.1.S1_s_at 1,15 LOC494743 

Xl.10630.1.S1_at 1,15 dph1 

Xl.47958.1.A1_at 1,15 --- 

Xl.641.1.S1_at 1,15 bicc1-a 

Xl.11330.1.S1_at 1,15 --- 

Xl.49481.1.S1_at 1,14 LOC495441 

Xl.25688.1.S1_at 1,14 baf-l 

Xl.9218.1.S1_at 1,14 --- 

Xl.49741.1.S1_at 1,14 rwdd2a 

Xl.47366.1.S1_at 1,13 MGC80983 

Xl.13850.2.S1_at 1,13 --- 

Xl.52319.2.A1_x_at 1,13 --- 

Xl.25810.1.S1_at 1,13 LOC443658 

Xl.5697.1.S1_at 1,13 c-raf 

Xl.54870.1.S1_at 1,13 --- 

Xl.34475.1.S1_at 1,13 trappc9 

Xl.41313.1.A1_at 1,13 --- 

Xl.5968.1.S1_at 1,13 ube2j2 

Xl.50438.1.S2_at 1,12 anp32c 

Xl.9002.1.A1_at 1,12 --- 

Xl.33749.1.S1_at 1,12 --- 

Xl.5479.1.S1_at 1,12 --- 

Xl.54080.1.S1_at 1,12 --- 

Xl.11612.1.A1_at 1,12 --- 

Xl.7094.1.S1_a_at 1,12 --- 

Xl.32000.1.A1_at 1,12 --- 

Xl.13567.1.A1_at 1,12 --- 

Xl.51014.1.S1_at 1,11 --- 

Xl.10854.1.S1_at 1,11 c18orf55 

Xl.30614.1.S1_s_at 1,11 acadsb 

Xl.34974.1.S1_at 1,11 MGC68531 

XlAffx.98.1.S1_x_at 1,11 NA 

Xl.25997.1.S1_at 1,11 coq5 

Xl.34650.1.S2_at 1,11 Ufd1l 

Xl.20994.1.S1_at 1,11 --- 

Xl.41265.1.A1_at 1,11 --- 

Xl.56986.1.A1_at 1,11 --- 

Xl.50400.1.S1_a_at 1,11 nipa1 

Xl.21289.1.S1_at 1,1 --- 

Xl.45732.1.S1_at 1,1 --- 

Xl.11330.2.S1_a_at 1,1 --- 
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Xl.5042.3.S1_at 1,1 --- 

Xl.23517.1.S1_a_at 1,09 LOC398493 

Xl.50629.1.S1_at 1,09 --- 

Xl.48605.1.S1_at 1,09 MGC86493 

Xl.23364.1.S1_at 1,09 --- 

Xl.25927.1.A1_at 1,09 --- 

Xl.42146.1.S1_at 1,09 LOC494706 

Xl.15260.1.S1_at 1,09 --- 

Xl.1201.1.S1_at 1,08 nr3c1 

Xl.8253.1.S1_at 1,08 snag1 

Xl.23902.1.S1_at 1,08 MGC82150 

XlAffx.98.1.S1_at 1,08 NA 

Xl.8903.2.S1_at 1,08 --- 

Xl.44533.1.S1_x_at 1,08 --- 

Xl.26083.1.S1_at 1,08 mdh2a 

Xl.25786.1.S1_at 1,08 csnk1g2 

Xl.50087.1.S1_at 1,07 fam96a 

Xl.50891.2.A1_at 1,07 --- 

Xl.7121.1.S2_at 1,07 acp1 

Xl.6339.1.A1_at 1,07 --- 

Xl.32102.1.A1_at 1,07 --- 

Xl.56382.1.S1_at 1,07 tmem45b 

Xl.45559.1.S1_at 1,07 tmod3 

Xl.26460.1.S1_at 1,06 --- 

Xl.14983.2.S1_at 1,06 --- 

Xl.31412.3.S1_at 1,06 --- 

Xl.56301.1.S1_at 1,06 --- 

Xl.14606.1.S1_at 1,06 --- 

Xl.46199.1.S2_at 1,05 hs2st1 

Xl.51975.2.A1_at 1,05 --- 

Xl.31693.1.S1_at 1,05 pex1 

Xl.13891.1.A1_at 1,05 --- 

Xl.54959.1.S1_at 1,05 MGC154476 

Xl.15182.1.S2_at 1,05 dhdds 

Xl.56952.1.S1_at 1,04 --- 

Xl.55197.2.S1_a_at 1,04 bnip3l 

Xl.11706.1.S1_x_at 1,04 pabpn1l-a 

Xl.48567.1.A1_at 1,04 LOC100127246 

Xl.20115.3.A1_a_at 1,04 trmu 

Xl.7706.1.S1_at 1,04 ybx2-b 

Xl.49744.1.S1_at 1,04 tp53inp1 

Xl.54850.1.S1_at 1,04 --- 
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Xl.10050.2.S1_at 1,04 --- 

Xl.15119.2.S1_at 1,03 LOC100158450 

Xl.48515.1.S1_at 1,03 --- 

Xl.53048.1.S1_at 1,03 --- 

Xl.29225.1.S1_at 1,03 --- 

Xl.12033.1.A1_at 1,03 --- 

Xl.6936.1.A1_at 1,03 --- 

Xl.42160.1.S2_at 1,03 otx5-A 

Xl.9389.2.S1_at 1,02 --- 

Xl.28967.1.A1_at 1,02 --- 

Xl.24002.1.S1_at 1,02 papss1 

Xl.13079.1.S1_at 1,02 cdkal1 

Xl.6999.1.S1_at 1,02 timm50 

Xl.50575.1.S1_at 1,02 --- 

Xl.23557.1.S1_at 1,02 epb4.1l3 

Xl.1430.2.S1_at 1,02 pik4ca 

Xl.49882.1.S1_at 1,02 LOC496018 

Xl.11915.1.A1_at 1,02 --- 

Xl.48567.2.S1_at 1,02 LOC100127246 

Xl.5714.1.S1_at 1,01 rpn2 

Xl.52397.1.S1_at 1,01 --- 

Xl.43573.1.S1_at 1,01 lrwd1 

Xl.11078.1.A1_at 1,01 --- 

Xl.18279.1.S1_at 1,01 tbc1d4 

Xl.8543.1.S1_at 1,01 pitpnb.2 

Xl.20422.1.A1_at 1,01 --- 

Xl.9460.1.S1_at 1,01 gtdc1 

Xl.47115.1.S1_at 1,01 LOC432186 

Xl.34771.1.S1_at 1,01 LOC496311 

Xl.24466.1.S1_at 1 --- 

Xl.3594.1.S1_a_at 1 --- 

Xl.29016.2.S1_a_at 1 metap1 

Xl.12099.1.S1_at 1 cla 

Xl.1132.1.S1_at 1 slc7a5b 

Xl.6630.2.S1_a_at 0,99 patl1 

Xl.18171.2.S1_at 0,99 --- 

Xl.47976.1.A1_at 0,99 --- 

Xl.5575.1.S1_at 0,99 gyg 

Xl.1015.1.S1_at 0,99 pole2 

Xl.25352.1.S1_at 0,99 --- 

Xl.24173.1.S1_at 0,99 --- 

Xl.34880.1.S1_at 0,99 --- 



Appendices 160 

Xl.15195.1.A1_at 0,99 --- 

Xl.7574.1.A1_at 0,99 --- 

Xl.15428.1.A1_at 0,99 --- 

Xl.10248.1.S1_at 0,99 atpbd4 

Xl.32258.1.S1_at 0,98 dbt 

Xl.19520.1.A1_s_at 0,98 ubr2 

Xl.30268.1.S1_at 0,98 --- 

Xl.6990.1.S1_at 0,98 ap1g2 

Xl.19972.1.S1_a_at 0,98 --- 

Xl.4568.1.S1_at 0,98 MGC115587 

Xl.14861.1.A1_at 0,98 --- 

Xl.8401.2.S1_a_at 0,98 stx18 

Xl.13268.1.A1_at 0,98 cwc27 

Xl.13017.2.S1_at 0,97 LOC495838 

Xl.24432.1.S1_at 0,97 ubr2 

Xl.16399.1.S1_at 0,97 lmbrd2 

Xl.7199.1.S1_at 0,97 --- 

Xl.55137.1.A1_at 0,97 --- 

Xl.3542.1.A1_at 0,97 --- 

Xl.19223.1.S1_at 0,97 os9 

Xl.50412.1.S1_at 0,97 chst13 

Xl.25597.1.S1_at 0,97 sfxn2 

Xl.46166.1.S1_at 0,97 slc30a2 

Xl.18250.1.S1_at 0,96 abr 

Xl.2704.1.A1_at 0,96 --- 

Xl.9458.2.S1_at 0,96 --- 

Xl.3714.1.A1_at 0,96 --- 

Xl.17590.1.A1_at 0,96 --- 

Xl.12020.1.S1_at 0,95 --- 

Xl.32875.1.A1_at 0,95 --- 

Xl.34699.1.A1_at 0,95 --- 

Xl.14607.1.S1_at 0,95 --- 

Xl.8273.1.A1_at 0,95 --- 

Xl.57086.1.A1_at 0,95 --- 

Xl.1132.1.S2_at 0,94 slc7a5b 

Xl.32522.1.S1_at 0,94 fkbp8 

Xl.52297.1.S1_at 0,94 --- 

Xl.48996.1.S1_at 0,94 iyd 

Xl.43713.1.S1_at 0,94 LOC734170 

Xl.54485.1.S1_at 0,94 cstf3 

Xl.50390.1.S1_at 0,94 zdhhc15 

Xl.51644.1.S1_at 0,94 --- 

Xl.52096.1.A1_at 0,94 --- 
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Xl.53168.1.S1_at 0,93 --- 

Xl.55920.1.S1_at 0,93 --- 

Xl.3104.1.S1_at 0,93 shkbp1 

Xl.6794.2.S1_at 0,93 --- 

Xl.34901.1.S1_s_at 0,93 --- 

Xl.55554.1.A1_at 0,93 --- 

Xl.7563.3.S1_at 0,93 --- 

Xl.50822.1.S1_at 0,93 --- 

Xl.47932.1.S1_at 0,93 --- 

Xl.24767.3.S1_at 0,93 --- 

Xl.49562.1.S1_s_at 0,93 eps8l3 

Xl.46390.1.S1_at 0,92 scyl1 

Xl.24617.1.A1_at 0,92 --- 

Xl.3594.2.S1_a_at 0,92 --- 

Xl.13978.1.S1_at 0,92 arhgdia 

Xl.12701.1.S1_at 0,92 --- 

Xl.19496.1.S1_at 0,92 MGC130950 

Xl.56798.1.S1_at 0,92 --- 

Xl.19657.2.A1_at 0,92 --- 

Xl.8212.1.S2_at 0,92 rtn3 

Xl.54755.1.S1_at 0,92 slc2a10 

Xl.2893.1.S1_at 0,91 faf1 

Xl.7574.2.S1_at 0,91 --- 

Xl.15232.1.S1_at 0,91 --- 

Xl.25888.1.S1_at 0,91 mrpl1 

Xl.54802.2.S1_at 0,9 zic3-A 

Xl.26421.1.S1_at 0,9 --- 

Xl.29436.1.S1_at 0,9 slc25a24-b 

Xl.53513.1.S1_at 0,9 --- 

Xl.41260.1.S1_at 0,9 --- 

Xl.4149.1.A1_at 0,9 --- 

Xl.5877.1.S1_at 0,9 map2k1 

Xl.51830.1.S1_at 0,9 --- 

Xl.4738.2.S1_a_at 0,9 mark2 

Xl.3178.1.S1_at 0,89 psmd10 

Xl.19967.1.S1_at 0,89 --- 

Xl.54363.1.S1_at 0,89 --- 

Xl.57066.1.S1_a_at 0,89 --- 

Xl.29003.1.S1_at 0,89 pnrc2 

Xl.13115.2.S1_a_at 0,89 hpgds 

Xl.33634.1.S1_at 0,89 haus1 

Xl.56824.1.S1_at 0,89 LOC100158303 
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Xl.22321.1.S1_at 0,89 tulp3 

Xl.13803.1.A1_x_at 0,89 --- 

Xl.787.1.S1_at 0,89 frgy2 

Xl.658.1.S1_at 0,89 tpx2-a 

Xl.21944.1.S2_at 0,88 slc35b1 

Xl.16074.1.S1_at 0,88 nup88B 

Xl.25909.1.S1_at 0,88 strn 

Xl.7557.1.S1_at 0,88 --- 

Xl.14036.3.S1_at 0,88 --- 

Xl.47844.1.A1_at 0,88 --- 

Xl.45488.1.S1_at 0,88 --- 

Xl.55167.1.A1_at 0,88 SUI1 

Xl.19769.1.S1_at 0,87 --- 

Xl.14130.1.S1_at 0,87 myo1a 

Xl.1767.1.S2_at 0,87 ranbp9 

Xl.20494.1.S1_at 0,87 --- 

Xl.1474.1.S1_at 0,87 smox 

Xl.51061.1.S1_at 0,87 MGC114992 

Xl.5376.1.S1_at 0,87 inpp5b 

Xl.3006.1.S1_at 0,87 LOC495281 

Xl.52800.1.S1_at 0,87 --- 

Xl.42165.1.A1_at 0,87 --- 

Xl.55528.1.A1_at 0,87 --- 

Xl.47077.1.S1_at 0,87 ibtk 

Xl.46944.1.S1_at 0,87 set-06 

Xl.6415.1.S1_at 0,86 lap3 

Xl.12995.2.S1_at 0,86 c14orf126 

Xl.55199.1.A1_at 0,86 --- 

Xl.612.1.S1_at 0,86 rngtt 

Xl.40.1.A1_at 0,86 X-beta 1-1b 

Xl.2832.1.S1_at 0,86 tk2 

Xl.32558.1.S1_at 0,86 ppapdc1b 

Xl.34435.1.A1_at 0,86 --- 

Xl.51169.1.S1_at 0,86 --- 

Xl.4773.1.S1_s_at 0,86 igl@ /// iglv5-48 

Xl.10234.1.S1_at 0,86 ogdhl 

Xl.151.1.S1_at 0,86 fscn1 

Xl.27918.2.S1_s_at 0,86 --- 

Xl.19693.1.S1_at 0,86 tyrp1 

Xl.2437.1.A1_at 0,85 --- 

Xl.3607.1.S1_at 0,85 coq9 

Xl.20787.1.S1_at 0,85 lrrc58 
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Xl.19282.1.S1_at 0,85 gyg1 

Xl.16857.1.S1_at 0,85 pld6 

Xl.22512.1.S1_at 0,84 --- 

Xl.9075.2.S1_at 0,84 --- 

Xl.52395.1.S1_at 0,84 --- 

Xl.21792.1.A1_at 0,84 --- 

Xl.32418.1.S1_at 0,84 --- 

Xl.14673.1.A1_at 0,84 --- 

Xl.301.1.S1_at 0,84 orc3l 

Xl.4356.1.A1_at 0,84 --- 

Xl.8914.3.S1_at 0,84 LOC100036904 

Xl.10691.1.A1_at 0,84 --- 

Xl.40900.1.S1_at 0,83 --- 

Xl.7156.1.S1_at 0,83 --- 

Xl.14260.1.A1_at 0,83 --- 

Xl.16261.2.S1_at 0,83 --- 

Xl.8302.1.S1_at 0,83 --- 

Xl.47011.1.S1_at 0,83 mccc1 

Xl.50573.1.S1_at 0,83 --- 

Xl.15110.1.S1_at 0,83 ftcd 

Xl.12489.1.A1_s_at 0,83 gphn /// 
MGC83148 

Xl.23834.2.S1_at 0,83 --- 

Xl.46430.1.S1_at 0,82 kiaa1109 

Xl.16220.1.S1_at 0,82 shmt1 

Xl.155.1.S1_at 0,82 irx2 

Xl.47781.1.A1_at 0,82 --- 

Xl.15224.1.S1_at 0,82 pex19 

Xl.50891.1.S1_at 0,81 --- 

Xl.14188.1.A1_x_at 0,81 --- 

Xl.7489.1.A1_at 0,81 --- 

Xl.52386.1.S1_at 0,81 --- 

Xl.18302.1.A1_at 0,81 --- 

Xl.11706.1.S1_at 0,81 pabpn1l-a 

Xl.50655.1.A1_at 0,81 LOC100101301 

Xl.52449.1.S1_at 0,81 --- 

Xl.45623.2.S1_at 0,81 --- 

Xl.52327.1.S1_at 0,81 --- 

Xl.11016.1.S1_at 0,81 --- 

Xl.18588.1.S1_at 0,8 --- 

Xl.23896.1.S1_at 0,8 cox4i2 

Xl.12580.1.S1_at 0,8 sirt4 
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Xl.536.1.S1_a_at 0,8 pam-b 

Xl.52733.1.S1_at 0,8 c17orf37 

Xl.25540.1.S3_at 0,8 khdrbs1 

Xl.4804.1.A1_at 0,8 --- 

Xl.8239.1.S2_at 0,8 chst10 

Xl.10670.1.S1_at 0,79 cno 

Xl.53873.1.S1_s_at 0,79 slc3a1 

Xl.56983.1.S1_at 0,79 --- 

Xl.47648.1.S1_at 0,79 gpr155 

Xl.48475.1.S1_at 0,79 MGC114707 

Xl.3703.1.A1_at 0,79 --- 

Xl.51216.1.S1_at 0,79 --- 

Xl.2414.1.S1_at 0,79 LOC495487 

Xl.28650.1.S2_at 0,79 MGC64541 

Xl.7664.2.A1_a_at 0,79 ggps1 

Xl.13460.2.S1_at 0,79 --- 

Xl.14036.1.A1_at 0,79 --- 

Xl.732.1.S2_at 0,79 gipc1 

Xl.14307.1.S1_at 0,79 --- 

Xl.46827.1.S1_at 0,79 gphn 

Xl.55747.1.S1_at 0,78 --- 

Xl.6097.1.A1_at 0,78 --- 

Xl.10860.1.S1_at 0,78 mgat4b 

Xl.12697.1.S1_at 0,78 ube2f 

Xl.6642.1.A1_at 0,78 --- 

Xl.151.1.S2_at 0,78 fscn1 

Xl.11046.1.S1_at 0,78 --- 

Xl.9914.1.A1_at 0,77 --- 

Xl.25300.1.A1_at 0,77 --- 

Xl.5241.1.A1_at 0,77 --- 

Xl.41650.1.S1_at 0,77 gpr137c 

Xl.9847.1.S1_at 0,77 naaa 

Xl.34677.1.S1_at 0,77 insrr 

Xl.14248.1.A1_at 0,77 --- 

Xl.23969.1.A1_at 0,77 --- 

Xl.14491.1.A1_at 0,76 --- 

Xl.33902.3.S1_at 0,76 --- 

Xl.4001.1.A1_at 0,76 --- 

Xl.53925.1.S1_at 0,76 rbp2 

Xl.28906.1.A1_at 0,76 --- 

Xl.52414.1.S1_at 0,76 --- 

Xl.50656.2.S1_a_at 0,76 --- 

Xl.55572.1.A1_at 0,76 --- 
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Xl.13217.1.A1_at 0,76 --- 

Xl.21636.1.S1_at 0,76 lmnb2 

Xl.12468.1.S1_at 0,76 bub1b 

Xl.83.1.S1_s_at 0,76 rfng 

Xl.23844.1.A1_at 0,75 --- 

Xl.55003.1.A1_at 0,75 --- 

Xl.3996.1.S1_at 0,75 shpk 

Xl.15785.1.A1_at 0,75 --- 

Xl.23075.1.S1_at 0,75 acaa2 

Xl.1919.1.A1_at 0,75 --- 

Xl.48862.1.S1_at 0,75 nup37 

Xl.53905.2.A1_at 0,75 --- 

Xl.44824.1.S1_at 0,75 --- 

Xl.8026.1.A1_at 0,75 --- 

Xl.24045.1.A1_at 0,75 --- 

Xl.18359.1.S1_at 0,74 MGC130928 

Xl.52538.1.S1_at 0,74 --- 

Xl.34236.1.A1_at 0,74 --- 

Xl.13025.1.S1_at 0,74 --- 

Xl.4641.2.A1_x_at 0,74 --- 

Xl.1796.1.S1_at 0,74 zic1 

Xl.29378.1.S1_at 0,74 pdia6 

Xl.1954.1.S1_at 0,74 nol10 

Xl.48847.1.S1_at 0,74 ppp1r14c 

Xl.12830.1.A1_at 0,74 --- 

Xl.55621.1.A1_at 0,74 --- 

Xl.50956.2.S1_at 0,74 --- 

Xl.21229.1.A1_at 0,74 LOC100158361 

Xl.9629.1.A1_at 0,73 --- 

Xl.8988.1.S1_at 0,73 --- 

Xl.24002.1.S2_at 0,73 papss1 

Xl.48343.1.S1_at 0,73 vps13a 

Xl.15575.1.A1_at 0,73 --- 

Xl.10743.1.S1_at 0,73 MGC68653 

Xl.54837.1.S1_at 0,73 smpd3 

Xl.53549.1.S1_at 0,73 --- 

Xl.9136.1.S1_at 0,73 snx2 

Xl.52842.1.S1_at 0,73 --- 

Xl.21718.1.S1_at 0,73 gpt2 

Xl.32039.1.S1_a_at 0,73 --- 

Xl.13178.1.A1_at 0,72 eif2ak2 

Xl.7479.1.A1_at 0,72 --- 
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Xl.18873.1.A1_at 0,72 --- 

Xl.6913.1.S1_at 0,72 gpnmb 

Xl.5942.1.S1_at 0,71 tmem56.2 

Xl.12605.1.S1_at 0,71 lims1a 

Xl.33670.1.A1_at 0,71 LOC495512 

Xl.15678.1.S1_at 0,71 LOC495295 

Xl.19141.1.S1_at 0,71 MGC130860 

Xl.4070.1.S1_s_at 0,71 camkk1 

Xl.40684.1.A1_at 0,71 --- 

XlAffx.133.1.S1_at 0,71 NA 

Xl.488.1.S1_at 0,71 mre11a 

Xl.12355.1.S1_at 0,71 agk 

Xl.624.2.S1_a_at 0,71 tp53bp1 

Xl.18074.1.S1_at 0,71 usp25 

Xl.33329.1.S1_at 0,71 ptgs2 

Xl.25752.1.S1_at 0,71 serpinb1 

Xl.13658.1.S1_at 0,7 snx31 

Xl.735.1.S1_at 0,7 p2rx4 

Xl.56469.1.S1_at 0,7 --- 

Xl.16509.1.A1_x_at 0,7 --- 

Xl.34473.1.S1_s_at 0,7 gnpda2 

Xl.11443.1.S1_a_at 0,7 ap3s1 

Xl.7620.1.S2_at 0,7 cg7197 

Xl.6656.1.A1_at 0,7 --- 

Xl.3649.1.S1_at 0,7 c1orf144 

Xl.19375.1.S1_at 0,7 hacl1 

Xl.48888.1.S1_at 0,7 appl2 

Xl.3366.1.S1_at 0,7 --- 

Xl.45062.1.S1_at 0,7 LOC495462 

Xl.33610.1.S1_at 0,7 hyou1 

Xl.23844.2.S1_at 0,69 --- 

Xl.221.1.S1_a_at 0,69 mier1 

Xl.7322.1.S1_at 0,69 --- 

Xl.53684.1.S1_at 0,69 --- 

Xl.28904.1.S1_at 0,69 cnrip1 

Xl.47370.1.S1_at 0,69 MGC83648 

Xl.53391.1.S1_at 0,69 blcap-a 

Xl.34521.1.A1_at 0,69 --- 

Xl.7373.2.S1_at 0,69 --- 

Xl.7322.1.S1_x_at 0,69 --- 

Xl.13013.1.S1_x_at 0,69 --- 

Xl.34245.1.S1_at 0,69 tbc1d19 

Xl.25238.1.S1_at 0,69 MGC85124 
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Xl.5377.1.S2_at 0,69 p4hb 

Xl.11480.1.S1_at 0,68 nom1 

Xl.12749.1.A1_at 0,68 --- 

Xl.2079.1.S1_at 0,68 b3gnt7 

Xl.5351.1.S1_at 0,68 lpp 

Xl.3567.1.A1_a_at 0,68 --- 

Xl.50551.1.S1_at 0,68 cul5 

Xl.12884.1.S1_at 0,68 --- 

Xl.25187.1.S1_at 0,68 --- 

Xl.21240.1.S1_at 0,68 --- 

Xl.13791.1.A1_at 0,68 --- 

Xl.3946.1.S1_at 0,68 nploc4 

Xl.13319.1.A1_at 0,68 --- 

Xl.20116.1.A1_at 0,67 --- 

Xl.9385.1.A1_at 0,67 --- 

Xl.10922.1.A1_at 0,67 --- 

Xl.6818.1.S1_at 0,67 slc30a9 

Xl.29432.1.A1_at 0,67 dnajc4 

Xl.14922.1.S1_s_at 0,67 coq9 /// coq9-b 

Xl.15877.1.S1_at 0,67 MGC64589 

Xl.12585.1.S1_at 0,67 sec14l5 

Xl.16366.1.A1_at 0,67 --- 

Xl.55990.2.S1_at 0,67 cdc25b 

Xl.23364.2.S1_at 0,66 --- 

Xl.5241.1.A1_a_at 0,66 --- 

Xl.23825.1.A1_x_at 0,66 --- 

Xl.54215.2.A1_at 0,66 --- 

Xl.25826.1.S2_at 0,66 sh3glb1 

Xl.50690.1.S1_at 0,65 nfxl1 

Xl.1009.1.S1_at 0,65 porcn 

Xl.4837.1.S1_at 0,65 nomo3 

Xl.27242.1.S1_at 0,65 snx6 

Xl.24470.1.A1_at 0,65 --- 

Xl.8992.1.A1_at 0,65 --- 

Xl.46801.1.S1_at 0,65 dynll1a 

Xl.728.1.S1_at 0,65 dync1li1 

Xl.56486.2.A1_x_at 0,64 --- 

Xl.50365.1.S1_at 0,64 cyb5b 

Xl.53748.2.S1_at 0,64 cdc5l 

Xl.12059.1.S1_at 0,64 MGC68519 

Xl.56011.1.S1_at 0,64 --- 

Xl.19231.1.S1_at 0,63 clpx 



Appendices 168 

Xl.49160.1.S1_at 0,63 dnajb5 

Xl.15747.1.A1_at 0,63 --- 

Xl.27918.2.S1_at 0,63 --- 

Xl.21175.1.S1_at 0,63 --- 

Xl.13292.1.S1_at 0,63 MGC81394 

Xl.6679.1.S1_at 0,63 ppp1cc 

Xl.34095.1.S1_a_at 0,62 --- 

Xl.16509.1.A1_at 0,62 --- 

Xl.4257.1.A1_at 0,62 --- 

Xl.55621.2.S1_at 0,62 --- 

Xl.14526.1.A1_at 0,62 --- 

Xl.1079.1.S1_at 0,62 fth1a 

Xl.2711.2.S1_at 0,62 --- 

Xl.26172.1.S1_at 0,62 --- 

Xl.52576.1.S1_s_at 0,62 trim33 

Xl.3786.1.S1_at 0,62 gins2 

Xl.52120.1.S1_at 0,62 --- 

Xl.57029.1.S1_at 0,61 --- 

Xl.7582.1.S1_at 0,61 rfc4 

Xl.25335.1.A1_at 0,61 rnf25 

Xl.53524.1.S1_at 0,61 --- 

Xl.51208.1.S1_at 0,61 ccnc 

Xl.2832.2.A1_at 0,61 tk2 

Xl.55905.1.S1_at 0,61 LOC100037040 

Xl.27469.2.S1_s_at 0,6 MGC115288 /// 
stk17a 

Xl.23834.1.A1_at 0,6 --- 

Xl.54321.1.S1_at 0,6 gtpbp2 

Xl.16501.1.S2_at 0,6 LOC495307 

Xl.45032.1.A1_at 0,6 ddt-b 

Xl.14308.1.A1_at 0,6 --- 

Xl.18602.1.S1_at 0,59 kiaa0564 

Xl.7631.2.A2_at 0,59 yrdc 

Xl.22438.1.S1_at 0,59 --- 

Xl.13760.1.S1_at 0,59 mapk11 

Xl.23802.2.S2_at 0,58 rap1a 

Xl.11921.1.S1_at 0,58 MGC64353 

Xl.23782.1.A1_at 0,58 --- 

Xl.6907.1.S1_at 0,58 bre 

Xl.14062.1.A1_at 0,57 --- 

Xl.15490.3.A1_at 0,57 --- 

Xl.24115.1.A1_at 0,56 --- 

Xl.50410.1.S1_at 0,56 MGC85151 
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Xl.7653.1.S1_s_at 0,56 --- 

Xl.24763.1.S1_at 0,56 dhx9 

Xl.20656.1.S1_at 0,56 --- 

Xl.51246.2.S1_a_at 0,56 --- 
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List of downregulated genes upon xSuv4-20h enzymes depletion (microarray data 
ordered by Log2 fold change). 

Set-probes Number Log2 Fold change Gene Name 
Xl.1685.1.S1_at -2,92 LOC398260 
Xl.16272.1.A1_at -2,36 --- 
Xl.22272.1.S1_at -2,32 krt16 
Xl.16668.1.A1_at -2,28 --- 
Xl.533.1.S1_at -2,26 six6 
Xl.23560.1.S1_at -2,21 LOC779073 
Xl.15545.1.A1_at -2,03 --- 
Xl.25847.1.A1_at -1,98 agr2 
Xl.50673.1.S1_at -1,97 --- 
Xl.47492.1.S1_at -1,95 tcf21 
Xl.8908.1.S1_at -1,93 aldh1a2 
Xl.33212.2.A1_at -1,92 --- 
Xl.15929.1.A1_at -1,92 --- 
Xl.29309.1.S1_at -1,91 cxcl12 
Xl.29248.1.S1_at -1,9 gtf2a1 
Xl.9476.1.S1_at -1,88 cybb 
Xl.48053.1.A1_at -1,87 --- 
Xl.53618.1.A1_at -1,86 --- 
Xl.4294.1.S1_at -1,83 --- 
Xl.53156.1.S1_at -1,8 --- 
Xl.34512.1.A1_at -1,76 --- 
Xl.468.1.S1_at -1,76 cdc7 
Xl.15008.1.A1_at -1,75 --- 
Xl.5100.1.A1_a_at -1,74 krt19 
Xl.14730.1.A1_at -1,73 vgll2 
Xl.50479.1.S1_at -1,72 haus4 
Xl.6748.1.S2_at -1,72 gfpt1 
Xl.33895.1.S1_at -1,7 --- 
Xl.8950.4.A1_at -1,68 --- 
Xl.48331.1.S1_at -1,66 scn3b 
Xl.54767.1.A1_at -1,65 --- 
Xl.24839.1.S2_s_at -1,64 mafb 
Xl.886.1.S1_s_at -1,64 smad10 /// 

smad4.2 
Xl.279.2.S1_at -1,63 mab21l2 
Xl.9671.1.S1_at -1,63 capn8-a 
Xl.5100.2.S1_x_at -1,62 krt19 
Xl.54877.1.S1_at -1,62 ankrd10 
Xl.18216.1.S1_at -1,59 pdlim1 
Xl.53716.1.A1_at -1,58 --- 
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Xl.77.1.S1_at -1,56 tmeff1 
Xl.53276.1.S1_at -1,56 --- 
Xl.54876.1.A1_at -1,56 MGC131032 
Xl.10868.1.S1_at -1,55 lgals4 
Xl.14209.1.S1_at -1,55 MGC83762 
Xl.3143.1.A1_at -1,54 --- 
Xl.5100.2.S1_at -1,52 krt19 
Xl.14807.1.A1_at -1,51 --- 
Xl.7195.1.S1_a_at -1,51 zmcm6b 
Xl.24336.1.A1_at -1,49 --- 
Xl.2683.1.A1_at -1,45 --- 
Xl.16320.1.S1_at -1,45 anxa9 
Xl.15182.1.S1_at -1,44 dhdds 
Xl.22817.1.S1_at -1,44 rspry1 
Xl.15545.2.S1_at -1,43 --- 
Xl.40993.1.S1_at -1,42 nfatc1 
Xl.21776.1.S1_at -1,42 --- 
Xl.385.1.S1_at -1,42 mcm4-a 
Xl.6748.1.S1_at -1,42 gfpt1 
Xl.16421.1.A1_at -1,41 --- 
Xl.21707.1.S1_at -1,41 crls1 
Xl.47608.2.S1_a_at -1,41 LOC733330 
Xl.47639.1.S1_at -1,41 MGC80632 
Xl.22601.1.S1_at -1,4 LOC496239 
Xl.8559.1.A1_at -1,4 --- 
Xl.20488.1.S1_at -1,39 --- 
Xl.2424.1.S1_at -1,39 --- 
Xl.26537.2.S1_at -1,39 rpl27a 
Xl.15047.1.S1_at -1,39 MGC52968 
Xl.26342.1.S1_at -1,38 gsr 
Xl.16867.1.A1_at -1,38 --- 
Xl.27093.1.S1_at -1,37 --- 
Xl.53432.1.S1_at -1,37 --- 
Xl.9896.1.S1_at -1,36 --- 
Xl.15669.1.S1_at -1,36 dtx4 
Xl.24839.1.S2_x_at -1,36 mafb 
Xl.56702.1.S1_at -1,35 stim1 
Xl.54898.1.A1_at -1,34 MGC69128 
Xl.16350.1.A1_at -1,34 --- 
Xl.52991.1.A1_at -1,34 --- 
Xl.15485.1.A1_at -1,33 --- 
Xl.16060.1.S1_at -1,33 nubp1 
Xl.5139.1.A1_at -1,32 --- 
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Xl.51705.2.A1_at -1,32 --- 
Xl.32400.1.S1_at -1,31 MGC84091 
Xl.55810.1.S1_at -1,31 ptcd2 
Xl.49002.1.S1_at -1,31 dhrsx 
Xl.279.1.S2_at -1,31 mab21l2 
Xl.33187.1.S1_at -1,31 --- 
Xl.56432.1.S1_x_at -1,31 LOC100036853 

Xl.5100.3.S1_x_at -1,31 krt19 
Xl.1589.1.S2_at -1,31 agr3 
Xl.4916.1.S1_at -1,31 mettl13 
Xl.1360.1.S1_at -1,3 --- 
Xl.33397.1.S1_at -1,3 dnlz 
Xl.34512.2.A1_at -1,3 --- 
Xl.7149.1.S1_at -1,29 mcm6.2 
Xl.12494.1.S1_at -1,29 --- 
Xl.3371.1.S1_at -1,29 gdi2 
Xl.7031.1.S2_at -1,29 ccdc97 
Xl.1501.1.S1_at -1,28 --- 
Xl.16734.2.S1_at -1,28 --- 
Xl.6392.1.S1_a_at -1,28 slc5a8 
Xl.3698.1.A1_at -1,28 --- 
Xl.12659.2.A1_at -1,28 --- 
Xl.322.1.S2_at -1,28 mknk1 
Xl.48778.1.A1_at -1,28 --- 
Xl.13357.1.A1_at -1,28 --- 
Xl.13768.1.A1_at -1,27 --- 
Xl.2465.1.S1_at -1,27 --- 
Xl.10520.1.A1_at -1,27 LOC100036853 

Xl.22853.1.A1_at -1,26 --- 
Xl.34370.1.S1_at -1,26 MGC68807 
Xl.5251.1.S1_at -1,26 prkaa1 
Xl.34945.1.S1_at -1,26 pot1 
Xl.38632.1.A1_at -1,26 --- 
Xl.52008.2.A1_at -1,26 --- 
Xl.51705.1.S1_at -1,26 --- 
Xl.45691.1.A1_at -1,25 --- 
Xl.54961.1.S1_s_at -1,25 --- 
Xl.48224.1.S1_at -1,25 --- 
Xl.9392.1.A1_at -1,24 --- 
Xl.30142.1.A1_at -1,24 --- 
Xl.13724.1.A1_a_at -1,24 --- 
Xl.15345.1.A1_at -1,24 --- 
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Xl.56334.2.S1_at -1,24 --- 
Xl.1589.1.S1_at -1,23 agr3 
Xl.19708.1.A1_at -1,23 --- 
Xl.15137.1.S1_at -1,23 atad3a-b 
Xl.18686.1.A1_at -1,22 --- 
Xl.24336.1.A1_a_at -1,22 --- 
Xl.44870.1.S1_at -1,22 nrm 
Xl.19284.1.S1_at -1,22 gchfr 
Xl.22667.1.S1_at -1,22 --- 
Xl.39449.1.A1_at -1,22 --- 
Xl.19836.1.A1_at -1,21 --- 
Xl.46928.1.A1_a_at -1,21 --- 
Xl.5987.1.S1_at -1,21 cav-3 
Xl.48264.1.A1_at -1,21 --- 
Xl.10172.1.S1_at -1,2 gja3 
Xl.6511.1.S1_at -1,2 armc7 
Xl.21931.1.S1_at -1,2 kcnj16 
Xl.50105.1.S1_at -1,2 nkiras2 
Xl.19210.1.S1_at -1,2 klhdc2 
Xl.27093.3.A1_at -1,2 --- 
Xl.9111.1.A1_at -1,19 --- 
Xl.24195.1.S1_at -1,19 ak1-a 
Xl.11931.1.A1_at -1,19 --- 
Xl.17300.1.A1_at -1,19 --- 
Xl.51521.1.S1_at -1,19 --- 
Xl.11349.1.A1_at -1,19 --- 
Xl.15705.1.S1_at -1,19 --- 
Xl.2439.1.S1_s_at -1,19 hprt1 
Xl.25217.1.S1_at -1,19 prmt5 
Xl.7299.1.S1_at -1,18 odf3 
Xl.55002.1.A1_at -1,18 --- 
Xl.47574.1.S1_at -1,17 MGC84082 
Xl.16330.2.A1_at -1,17 --- 
Xl.21534.1.S1_at -1,17 nr2c1-a 
Xl.4985.2.S1_at -1,17 --- 
Xl.24391.1.A1_at -1,16 LOC100037072 

Xl.3048.1.A1_x_at -1,16 --- 
Xl.10639.1.S1_at -1,16 dpysl4 
Xl.57098.1.A1_at -1,16 --- 
Xl.13496.1.A1_at -1,16 --- 
Xl.19278.1.S1_at -1,16 bcdin3d 
Xl.8500.1.A1_at -1,15 --- 
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Xl.6728.1.S1_at -1,15 cep63 
Xl.6772.1.S1_at -1,15 plxnb2 
Xl.1656.1.A1_at -1,15 --- 
Xl.8033.1.A1_at -1,15 ankrd37 
Xl.23146.1.S1_at -1,15 MGC68557 
Xl.18578.1.A1_at -1,15 --- 
Xl.47419.1.S1_at -1,15 MGC84409 
Xl.1014.1.S1_at -1,14 mcm4-b 
Xl.21349.1.S1_at -1,14 wars 
Xl.13550.1.S1_at -1,13 gnb1 
Xl.20487.1.S1_at -1,13 --- 
Xl.49172.1.S1_at -1,13 rab3d 
Xl.2292.1.S1_at -1,13 pmp22 
Xl.44846.1.S1_at -1,13 add3 
Xl.19064.1.A1_at -1,13 --- 
Xl.15529.2.A1_at -1,13 --- 
Xl.15415.1.S1_at -1,13 cdkn1a 
Xl.15894.2.S1_a_at -1,12 --- 
Xl.14407.1.A1_at -1,12 --- 
Xl.48348.1.S1_at -1,12 hprt1 
Xl.13935.1.A1_x_at -1,12 --- 
Xl.53652.1.S1_a_at -1,12 --- 
Xl.48132.1.A1_at -1,12 --- 
Xl.19394.1.S1_at -1,12 --- 
Xl.51920.1.S1_at -1,11 --- 
Xl.12714.1.A1_at -1,11 LOC100137680 

Xl.32202.1.S1_at -1,11 --- 
Xl.32305.1.S1_at -1,11 --- 
Xl.29104.1.S1_at -1,1 nme3b 
Xl.8779.2.A1_at -1,1 --- 
Xl.11234.1.A1_at -1,1 --- 
Xl.18971.1.S1_at -1,1 ppip5k2 
Xl.11190.1.S1_at -1,09 lgals8 
Xl.16186.1.A1_at -1,09 --- 
Xl.14279.1.A1_at -1,09 --- 
Xl.12945.1.S1_at -1,09 --- 
Xl.29638.1.S1_at -1,09 --- 
Xl.17779.3.S1_at -1,09 --- 
Xl.6915.1.A1_x_at -1,09 --- 
Xl.7293.1.S1_at -1,09 nr2c1 
Xl.53974.1.S1_at -1,09 --- 
Xl.92.1.S1_a_at -1,09 drg1 
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Xl.16508.1.S1_at -1,08 rab3c 
Xl.16259.1.A1_at -1,08 --- 
Xl.19264.1.S1_at -1,08 --- 
Xl.35336.1.S1_at -1,08 mpv17 
Xl.9261.1.A1_at -1,08 --- 
Xl.9694.1.A1_at -1,07 --- 
Xl.48513.1.S1_at -1,07 psmc3ip 
Xl.528.1.S1_at -1,07 nr2f1 
Xl.9023.1.A1_at -1,07 --- 
Xl.46789.1.S1_at -1,07 inf2 
Xl.20029.2.S1_a_at -1,06 pdgfra 
Xl.14868.1.A1_at -1,06 --- 
Xl.14120.2.A1_a_at -1,06 --- 
Xl.55575.1.S1_at -1,06 --- 
Xl.2134.1.S1_a_at -1,06 --- 
Xl.15831.1.S1_at -1,06 c19orf40 
Xl.23540.1.S1_at -1,06 pars2 
Xl.25084.1.A1_at -1,06 --- 
Xl.16379.1.S1_at -1,05 impa1 
Xl.54520.1.S1_at -1,05 --- 
Xl.13414.1.S1_at -1,05 LOC494708 
Xl.23575.1.S1_at -1,04 psip1 
Xl.54876.3.A1_a_at -1,04 MGC131032 
Xl.12351.1.A1_at -1,04 --- 
Xl.24089.1.A1_at -1,04 --- 
Xl.12097.1.S2_a_at -1,04 pcdh1 
Xl.47910.1.A1_s_at -1,04 --- 
Xl.54238.1.S1_at -1,04 --- 
Xl.24005.1.S1_at -1,04 c14orf129 
Xl.8630.1.S1_at -1,04 MGC53542 
Xl.2662.1.A1_at -1,04 --- 
Xl.13659.1.S1_at -1,04 LOC414714 
Xl.53693.1.S1_at -1,03 MGC131091 
Xl.3048.1.A1_at -1,03 --- 
Xl.16891.1.A1_at -1,03 e2f1 
Xl.7153.1.S1_at -1,03 --- 
Xl.5399.1.A1_at -1,03 --- 
Xl.24391.2.A1_at -1,02 LOC100037072 

Xl.2581.1.S1_at -1,02 --- 
Xl.48824.1.S1_at -1,02 fam101b 
Xl.11294.1.A1_at -1,02 --- 
Xl.14090.1.A1_at -1,02 LOC100158420 
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Xl.13160.2.S1_at -1,02 --- 
Xl.371.1.S1_at -1,02 orc1l 
Xl.8236.1.S1_at -1,01 gby 
Xl.11449.1.S1_at -1,01 --- 
Xl.52736.1.A1_at -1,01 --- 
Xl.15793.1.S1_at -1,01 --- 
Xl.9379.1.S1_at -1,01 c3orf17 
Xl.434.1.S1_at -1,01 mycn 
Xl.29333.1.S1_a_at -1,01 MGC114697 
Xl.11445.1.S1_at -1,01 bap1 
Xl.12400.1.A1_at -1,01 fnta 
Xl.19745.1.S1_at -1,01 ccbl2 
Xl.11267.1.A1_at -1,01 --- 
Xl.2885.1.S1_at -1 alg5 
Xl.10215.1.A1_at -1 --- 
Xl.55700.1.A1_x_at -1 --- 
Xl.6261.1.S1_at -1 LOC431836 
Xl.15990.1.S1_at -1 --- 
Xl.33599.1.A1_at -1 --- 
Xl.56407.2.A1_at -1 --- 
Xl.49822.1.S1_at -1 ppap2a 
Xl.32778.2.S1_at -1 --- 
Xl.16777.1.A1_a_at -1 --- 
Xl.18648.1.A1_at -1 --- 
Xl.56796.1.A1_at -1 --- 
Xl.20029.1.S1_at -1 pdgfra 
Xl.6007.1.A1_at -1 --- 
Xl.687.1.S1_at -0,99 MGC131011 
Xl.7347.1.S1_at -0,99 angel2 
Xl.444.1.S1_a_at -0,99 nudt6 
Xl.14211.1.S1_at -0,99 --- 
Xl.6136.2.S1_at -0,99 --- 
Xl.15185.1.S1_at -0,99 c3orf75 
Xl.57023.1.A1_at -0,98 --- 
Xl.17779.1.A1_at -0,98 --- 
Xl.9880.1.A1_at -0,98 --- 
Xl.54333.1.A1_at -0,98 --- 
Xl.28461.1.S1_a_at -0,98 ssr4 
Xl.17880.1.A1_at -0,98 --- 
Xl.46937.1.A1_at -0,98 --- 
Xl.46873.1.S1_at -0,97 ttc18 
Xl.15629.1.A1_at -0,97 --- 
Xl.50004.1.S1_at -0,97 LOC496148 
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Xl.10580.1.A1_at -0,97 --- 
Xl.11454.1.S1_at -0,97 ikbkg 
Xl.13389.1.S1_at -0,97 zdhhc6 
Xl.1475.1.A1_at -0,97 pik3r2 
Xl.16193.1.S1_at -0,97 --- 
Xl.51861.1.S1_at -0,97 --- 
Xl.1881.1.S1_at -0,97 emilin1 
Xl.10173.1.S1_at -0,96 MGC64450 
Xl.53523.1.S1_at -0,96 --- 
Xl.20486.1.A1_at -0,96 --- 
Xl.16148.1.S1_at -0,96 --- 
Xl.52041.1.S1_a_at -0,96 tmem115 
Xl.16060.2.S1_x_at -0,96 nubp1 
Xl.11201.1.A1_at -0,96 --- 
Xl.55574.1.S1_s_at -0,96 MGC68847 /// 

pfkp 
Xl.9381.1.A1_at -0,96 --- 
Xl.3931.1.S1_at -0,95 sept8-b 
Xl.6181.1.S1_at -0,95 tfcp2l1 
Xl.45183.1.A1_at -0,95 --- 
Xl.23457.1.S1_at -0,95 MGC53277 
Xl.28611.1.S2_x_at -0,95 tfiiaa/b-1 
Xl.55558.1.S1_at -0,95 --- 
Xl.11111.1.A1_at -0,95 --- 
Xl.7201.1.S1_at -0,95 mrps12 
Xl.14126.1.A1_at -0,95 LOC100137623 

Xl.16060.1.S1_a_at -0,95 nubp1 
Xl.11199.1.A1_at -0,95 --- 
Xl.18884.1.A1_at -0,94 --- 
Xl.49847.1.S1_at -0,94 LOC495954 
Xl.51624.1.S1_at -0,94 --- 
Xl.11147.2.S1_a_at -0,94 gmps 
Xl.13324.1.A1_at -0,94 --- 
Xl.30004.2.S1_s_at -0,94 --- 
Xl.21558.1.S1_at -0,94 lhx2 
Xl.17257.1.A1_at -0,94 --- 
Xl.56047.1.S1_at -0,94 --- 
Xl.2722.1.S1_at -0,94 --- 
Xl.34205.2.S1_at -0,94 --- 
Xl.1464.1.S2_at -0,94 myh8 
Xl.14569.1.S1_at -0,94 --- 
Xl.57016.1.A1_s_at -0,93 --- 
Xl.21906.1.S1_at -0,93 MGC53997 
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Xl.2669.1.A1_at -0,93 --- 
Xl.23645.1.A1_at -0,93 MGC53182 
Xl.33366.1.S1_at -0,93 ppap2bb 
Xl.12825.1.A1_at -0,93 --- 
Xl.32778.1.A1_at -0,93 --- 
Xl.1399.1.A1_at -0,92 arpc5l 
Xl.19374.1.S1_at -0,92 --- 
Xl.25797.1.S1_at -0,92 --- 
Xl.25662.1.S1_at -0,92 snip1b 
Xl.16402.1.A1_at -0,92 --- 
Xl.33727.1.A1_at -0,92 --- 
Xl.12097.1.S1_a_at -0,92 pcdh1 
Xl.26943.1.S1_at -0,92 bicd2 
Xl.15263.1.A1_at -0,92 --- 
Xl.15070.1.S1_at -0,92 MGC80314 
Xl.2220.1.S1_at -0,91 c5orf44 
Xl.46552.1.S1_at -0,91 tubb 
Xl.29525.1.A1_at -0,91 --- 
Xl.17667.1.A1_at -0,91 --- 
Xl.3957.1.S1_at -0,91 rpa1 
Xl.14170.1.S1_at -0,91 gigyf2 
Xl.11701.1.A1_at -0,91 --- 
Xl.53824.1.S1_at -0,91 styx 
Xl.15560.2.A1_at -0,91 --- 
Xl.34612.1.S1_at -0,91 atp6v1g3 
Xl.46910.1.A1_x_at -0,9 --- 
Xl.40556.1.S1_at -0,9 --- 
Xl.50317.1.A1_s_at -0,9 --- 
Xl.10817.1.S1_at -0,9 zbtb12 
Xl.3515.1.A1_at -0,9 --- 
Xl.23328.1.S1_at -0,9 impdh2 
Xl.32296.1.S1_at -0,89 klhl12 
Xl.153.1.S1_at -0,89 cdh20 
Xl.5636.1.S1_at -0,89 c21orf57 
Xl.2503.1.S2_at -0,89 --- 
Xl.4985.1.S1_a_at -0,89 hells 
Xl.32225.1.S1_at -0,88 med7 
Xl.54474.1.A1_s_at -0,88 gmps 
Xl.9189.1.S1_at -0,88 --- 
Xl.25600.1.S1_at -0,88 c14orf109 
Xl.10908.1.S1_at -0,88 --- 
Xl.10175.2.S1_at -0,88 --- 
Xl.6185.1.A1_at -0,88 LOC733307 
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Xl.23166.1.S1_at -0,88 tmem53-b 
Xl.13469.1.A1_at -0,88 --- 
Xl.50317.1.A1_at -0,88 --- 
Xl.53987.1.S1_at -0,87 dnai2 
Xl.22429.2.A1_at -0,87 --- 
Xl.5325.1.A1_at -0,87 --- 
Xl.23934.1.S1_at -0,87 gins1 
Xl.12400.2.S1_at -0,87 fnta 
Xl.3233.1.S1_at -0,87 tbl3 
Xl.472.1.S1_at -0,87 surf6 
Xl.18772.1.S1_at -0,87 med8 
Xl.29075.1.S1_a_at -0,87 --- 
Xl.11428.1.A1_s_at -0,87 --- 
Xl.4093.1.A1_at -0,87 --- 
Xl.51211.1.S1_at -0,87 trim62 
Xl.16790.2.A1_at -0,86 --- 
Xl.14801.1.A1_at -0,86 --- 
Xl.1099.1.S1_at -0,86 ptprz1 
Xl.7611.1.S1_at -0,86 MGC115443 
Xl.3751.1.A1_at -0,86 --- 
Xl.1030.1.S1_at -0,86 orc2l 
Xl.13057.2.S1_at -0,86 --- 
Xl.32092.1.A1_at -0,86 --- 
Xl.35372.1.S1_at -0,86 MGC99250 
Xl.53541.1.S1_at -0,86 esco2 
Xl.45691.2.S1_at -0,86 --- 
Xl.24296.1.A1_at -0,86 --- 
Xl.43865.1.S1_at -0,86 kif2c 
Xl.8908.3.A1_at -0,86 --- 
Xl.21032.1.S1_at -0,85 LOC398406 
Xl.54741.1.A1_at -0,85 --- 
Xl.12135.1.A1_at -0,85 --- 
Xl.8299.1.A1_at -0,85 --- 
Xl.41105.1.S1_x_at -0,85 rg9mtd1 
Xl.14528.1.S1_at -0,85 MGC81115 
Xl.12248.1.A1_at -0,85 --- 
Xl.7396.1.S1_at -0,85 alg13 
Xl.3508.1.S1_at -0,85 --- 
Xl.12385.1.A1_at -0,85 --- 
Xl.15221.1.S1_at -0,85 slc27a2 
Xl.40191.1.A1_at -0,85 --- 
Xl.24823.2.S1_s_at -0,85 --- 
Xl.50703.1.A1_at -0,84 --- 
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Xl.18558.1.S1_at -0,84 c20orf11 
Xl.16670.1.S1_at -0,84 dnajc17 
Xl.49820.1.S1_at -0,84 ints6 
Xl.6583.1.S1_at -0,84 --- 
Xl.4484.1.A1_at -0,84 --- 
Xl.24755.1.S1_at -0,84 LOC495362 
Xl.46851.1.A1_at -0,84 c9orf21 
Xl.5092.1.A1_at -0,84 eif4a2 
Xl.5880.1.A1_at -0,84 --- 
Xl.2361.1.S1_at -0,84 pik3r5 
Xl.20609.1.S1_at -0,83 tctex1d1-a 
Xl.12622.1.A1_at -0,83 --- 
Xl.2462.1.S1_at -0,83 mrps30 
Xl.10096.1.A1_at -0,83 c7orf25 
Xl.47982.1.A1_at -0,83 --- 
Xl.24390.1.A1_at -0,83 --- 
Xl.14462.1.A1_at -0,83 --- 
XlAffx.81.1.S1_at -0,83 NA 
Xl.6027.1.S1_at -0,83 qars 
Xl.2160.1.A1_at -0,83 --- 
Xl.29087.1.S1_at -0,83 --- 
Xl.47149.1.S1_at -0,83 dmrta1 
Xl.55700.1.A1_at -0,83 --- 
Xl.17890.1.A1_at -0,83 --- 
Xl.41350.3.A1_x_at -0,83 --- 
Xl.3639.1.S1_at -0,83 ssb 
Xl.46699.1.S1_at -0,83 rasgrp1 
Xl.20680.1.S1_at -0,83 farsa-b 
Xl.1527.1.S1_at -0,82 gpr107 
Xl.13646.1.S1_at -0,82 tatdn1 
Xl.16726.2.A1_x_at -0,82 --- 
Xl.29694.1.S1_at -0,82 traf6 
Xl.29532.1.S2_at -0,82 flrt3 
Xl.11117.1.S1_at -0,82 gsto1 
Xl.41102.1.S1_at -0,82 --- 
Xl.15729.1.A1_at -0,81 --- 
Xl.51756.2.S1_at -0,81 --- 
Xl.50709.1.S1_at -0,81 --- 
Xl.25544.1.A1_a_at -0,81 tfdp2 
Xl.18894.2.A1_at -0,81 --- 
Xl.44805.1.S1_at -0,81 --- 
Xl.6945.1.S1_at -0,81 --- 
Xl.25124.1.A1_at -0,81 --- 
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Xl.47925.2.A1_at -0,81 --- 
Xl.1424.1.S1_at -0,81 LOC100127277 

Xl.9795.1.A1_at -0,81 --- 
Xl.34114.3.A1_a_at -0,81 --- 
Xl.1267.1.S1_at -0,81 orc4l 
Xl.13049.1.A1_at -0,81 --- 
Xl.167.1.S1_at -0,81 adar 
Xl.4300.1.S1_at -0,8 brp44lb 
Xl.48190.1.A1_at -0,8 --- 
Xl.52523.2.A1_at -0,8 --- 
Xl.17438.1.S1_at -0,8 rnf103 
Xl.54030.1.S1_at -0,8 c11orf2 
Xl.52561.1.S1_at -0,8 --- 
Xl.18639.1.S1_at -0,8 ccdc9 
Xl.28993.1.S1_at -0,8 phactr4-b 
Xl.6266.1.S1_at -0,8 itln1 
Xl.6468.1.S1_at -0,79 ghitm 
Xl.7236.1.S1_at -0,79 adss 
Xl.54470.1.A1_at -0,79 --- 
Xl.53741.2.A1_at -0,79 hs3st3a1 
Xl.22766.1.A1_s_at -0,79 --- 
Xl.1827.1.S1_at -0,79 ctsa 
Xl.22841.1.A1_at -0,79 --- 
Xl.30323.1.A1_at -0,79 --- 
Xl.40818.1.A1_at -0,79 --- 
Xl.7743.1.A1_at -0,79 --- 
Xl.17190.1.A1_at -0,79 sft2d1 
Xl.25332.1.S1_at -0,78 MGC115057 
Xl.46871.1.A1_at -0,78 --- 
Xl.13270.1.A1_at -0,78 --- 
Xl.48112.1.S1_at -0,78 sdr39u1 
Xl.16517.1.S1_at -0,78 znf830 
Xl.56432.1.S1_s_at -0,78 LOC100036853 

/// rpa2 
Xl.21884.1.S1_at -0,78 LOC398447 
Xl.52535.1.S1_s_at -0,78 usp12 /// usp12-b 

Xl.13378.1.S1_at -0,77 --- 
Xl.18910.1.A1_at -0,77 --- 
Xl.46958.1.S1_at -0,77 --- 
Xl.41763.1.S1_at -0,77 --- 
Xl.13012.1.S1_at -0,77 --- 
Xl.44313.1.A1_at -0,77 --- 
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Xl.55683.1.A1_at -0,77 --- 
Xl.15826.1.A1_a_at -0,77 LOC100037193 

Xl.21993.1.S1_at -0,77 mak16 
Xl.10476.1.A1_at -0,76 --- 
Xl.16332.1.A1_at -0,76 --- 
Xl.28913.1.S1_at -0,76 LOC446975 
Xl.15529.3.S1_at -0,76 --- 
Xl.1776.1.A1_at -0,76 --- 
Xl.22643.1.S1_at -0,76 kiaa0494 
Xl.42753.1.S1_at -0,76 --- 
Xl.28611.2.S1_x_at -0,76 TFIIAa/b-1 
Xl.11336.1.S1_at -0,76 cxcr4-b 
Xl.48265.1.A1_at -0,76 --- 
Xl.1041.1.S1_at -0,76 gli3 
Xl.3289.1.A1_at -0,75 --- 
Xl.10272.1.A1_at -0,75 thg1l 
Xl.5228.1.S1_at -0,75 LOC496082 
Xl.13362.1.A1_at -0,75 --- 
Xl.14664.1.S1_at -0,75 mcm3 
Xl.14970.1.S1_at -0,75 LOC100158385 

Xl.41105.1.S1_at -0,75 rg9mtd1 
Xl.56932.1.S1_at -0,75 junb 
Xl.13539.1.A1_at -0,75 --- 
Xl.16797.1.S1_at -0,75 tmem208 
Xl.53898.1.S1_s_at -0,75 hdac3 
Xl.8104.1.S1_at -0,74 LOC446305 
Xl.12400.1.A1_a_at -0,74 fnta 
Xl.47265.1.S1_a_at -0,74 rrn3 
Xl.53706.1.A1_at -0,74 --- 
Xl.50024.1.S1_at -0,74 hivep1 
Xl.7166.1.S1_at -0,74 --- 
Xl.47272.1.A1_at -0,74 --- 
Xl.56399.1.S1_at -0,74 tmem120a 
Xl.928.1.S1_at -0,74 smc2 
Xl.8873.1.S1_x_at -0,74 mttfa-A 
Xl.24166.1.S2_at -0,73 rarres1 
Xl.8266.1.S1_at -0,73 rrm2.2 
Xl.47919.1.A1_s_at -0,73 --- 
Xl.19139.1.S1_at -0,73 --- 
Xl.16396.1.S1_at -0,73 MGC52622 
Xl.2544.1.S1_at -0,73 LOC495474 
Xl.10801.1.S1_at -0,73 gpaa1 
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Xl.55232.1.A1_at -0,73 --- 
Xl.14197.1.S1_at -0,73 cdca7 
Xl.40756.1.A1_at -0,73 --- 
Xl.32988.1.S1_at -0,73 --- 
Xl.51877.1.S1_at -0,73 --- 
Xl.48672.1.S1_at -0,73 sytl4 
Xl.47777.1.A1_at -0,73 --- 
Xl.12966.1.A1_at -0,73 LOC100049781 

Xl.6937.1.S1_at -0,72 ndufb2 
Xl.4558.1.S1_at -0,72 fmr1-A 
Xl.21744.1.S1_at -0,72 dnajc21 
Xl.17309.1.S1_at -0,72 MGC115064 
Xl.686.1.S2_s_at -0,72 sox4 /// sox4-1 /// 

sox4-2 

Xl.5629.1.S1_at -0,72 rpa2 
Xl.19016.1.A1_at -0,72 --- 
Xl.12755.1.A1_at -0,72 --- 
Xl.48494.1.S1_at -0,72 wdr75 
Xl.16312.1.A1_at -0,72 --- 
Xl.7684.2.A1_at -0,71 --- 
Xl.9757.1.A1_at -0,71 --- 
Xl.53383.1.S1_at -0,71 --- 
Xl.9576.1.S1_at -0,71 ca2 
Xl.55408.1.S1_s_at -0,71 psen1 
Xl.15301.1.S1_at -0,71 lars 
Xl.55493.1.S1_at -0,71 cops7b 
Xl.1811.1.S1_at -0,71 --- 
Xl.13864.1.A1_at -0,71 --- 
Xl.13594.1.S1_a_at -0,71 cyp4b1.2 
Xl.4419.1.S1_at -0,71 atp6v0a1 
Xl.6201.1.S1_at -0,71 phb2 
Xl.6522.1.S1_at -0,71 sephs1 
Xl.14056.1.S1_at -0,71 rangap1 
Xl.52845.1.S1_at -0,71 --- 
Xl.15462.1.S1_at -0,71 --- 
Xl.15843.1.S1_at -0,71 LOC100127337 

Xl.5443.1.S1_at -0,71 --- 
Xl.25993.1.S1_s_at -0,71 MGC132184 /// 

MGC84072 

Xl.47361.1.S1_at -0,7 MGC80203 
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Xl.1241.1.S1_at -0,7 sox7 
Xl.7093.1.S2_at -0,7 aatf 
Xl.9325.1.A1_at -0,7 --- 
Xl.54513.1.S1_at -0,7 sec11c 
Xl.5255.1.S1_at -0,7 n6amt2 
Xl.11050.1.S1_at -0,7 gin1 
Xl.20302.1.S1_at -0,7 c6orf125 
Xl.24409.1.S1_at -0,7 LOC398639 
Xl.7267.1.S1_at -0,69 det1 
Xl.46879.1.A1_at -0,69 --- 
Xl.10468.1.S1_at -0,69 pfdn1 
Xl.22166.1.A1_at -0,69 --- 
Xl.52870.1.S1_at -0,69 c10orf140 
Xl.55806.1.S1_at -0,69 --- 
Xl.23871.1.A1_at -0,69 --- 
Xl.56038.1.S1_at -0,69 --- 
Xl.19781.1.S1_at -0,69 zufsp 
Xl.20552.1.S1_at -0,69 --- 
Xl.18637.1.S2_at -0,69 --- 
Xl.13513.1.A1_at -0,68 --- 
Xl.10336.1.S1_at -0,68 MGC84775 
Xl.6226.1.S1_at -0,68 mrpl24 
Xl.54397.1.A1_s_at -0,68 mpv17 
Xl.11332.1.S1_at -0,68 impdh1 
Xl.18307.1.S1_at -0,68 hmgcl 
Xl.8284.1.S1_at -0,68 --- 
Xl.6438.1.S1_at -0,68 tspan15 
Xl.52656.1.S1_at -0,68 --- 
Xl.7817.1.S2_at -0,68 xcen 
Xl.6956.1.S1_at -0,68 crcp 
Xl.5563.1.S1_at -0,68 --- 
Xl.25873.1.A1_at -0,68 --- 
Xl.46645.1.S1_at -0,68 supt7l 
Xl.26192.1.A1_at -0,68 --- 
Xl.972.1.S1_at -0,68 hes1 
Xl.21745.1.S1_at -0,68 --- 
Xl.32947.1.S1_at -0,68 txnl1 
Xl.516.1.S1_at -0,67 tcp1 
Xl.12115.1.S1_s_at -0,67 MGC53542 /// 

plk2 
Xl.8258.1.S1_at -0,67 isot 
Xl.10574.1.S1_at -0,67 lig4 
Xl.17664.3.A1_at -0,67 --- 
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Xl.24117.1.A1_at -0,67 --- 
Xl.1654.1.A1_a_at -0,66 --- 
Xl.19491.1.S1_at -0,66 nif3l1 
Xl.2758.1.A1_at -0,66 --- 
Xl.14682.1.S1_at -0,66 traf6-a 
Xl.7254.1.S1_at -0,66 c6orf136 
Xl.4175.1.S2_at -0,66 sh3gl1 
Xl.47686.1.S1_at -0,66 MGC80972 
Xl.18997.1.S1_at -0,66 nek4 
Xl.4793.1.A1_at -0,66 --- 
Xl.2590.1.S1_at -0,66 trappc1 
Xl.10803.1.A1_at -0,66 anapc13.2 
Xl.48299.1.A1_at -0,66 --- 
Xl.13032.1.A1_at -0,65 XFO 9-3 
Xl.34159.1.A1_at -0,65 --- 
Xl.27263.2.S1_s_at -0,65 MGC154351 
Xl.2613.1.S1_s_at -0,65 cct5 
Xl.24077.1.S1_at -0,65 --- 
Xl.43211.1.A1_at -0,65 --- 
Xl.30674.1.S1_at -0,65 MGC84185 
Xl.49801.1.S1_s_at -0,65 psma6 
Xl.25664.1.S1_at -0,65 MGC79091 
Xl.5477.3.S1_at -0,65 hnrnpm 
Xl.3013.1.A1_at -0,65 --- 
Xl.15852.1.S1_at -0,65 abcf1 
Xl.17276.1.S1_at -0,65 --- 
Xl.32524.1.A1_a_at -0,64 --- 
Xl.50117.1.S1_at -0,64 --- 
Xl.33551.1.S1_at -0,64 MGC115285 
Xl.53711.1.A1_at -0,64 --- 
Xl.26254.1.S1_x_at -0,64 --- 
Xl.7551.2.S1_a_at -0,64 eef2.1 
Xl.10175.1.A1_at -0,64 --- 
Xl.7698.2.S1_a_at -0,64 grb2-a 
Xl.34799.1.S1_at -0,64 mrpl20 
Xl.48115.1.S1_at -0,64 stk39 
Xl.46818.1.S1_at -0,64 rps15 
Xl.56833.1.S1_at -0,64 chchd10 
Xl.55681.2.A1_at -0,64 --- 
Xl.12494.3.A1_at -0,63 --- 
Xl.11493.1.S1_at -0,63 --- 
Xl.2757.1.S1_at -0,63 --- 
Xl.43094.2.S1_a_at -0,63 --- 
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Xl.7893.1.S1_at -0,63 fam192a 
Xl.16231.1.S1_at -0,62 timm10-a 
Xl.53784.1.S1_at -0,62 ints6-a 
Xl.13330.1.A1_at -0,62 --- 
Xl.25544.1.A1_at -0,62 tfdp2 
Xl.3645.1.S1_at -0,62 uqcrq 
Xl.46847.1.S1_at -0,62 --- 
Xl.17309.1.S1_s_at -0,62 MGC115064 /// 

rad23b 
Xl.5891.2.S1_at -0,62 --- 
Xl.14540.1.A1_x_at -0,62 --- 
Xl.14386.1.A1_x_at -0,61 --- 
Xl.4504.1.A1_at -0,61 --- 
Xl.13195.1.S1_at -0,61 etaa1 
Xl.48450.1.S1_at -0,61 MGC83110 
Xl.55988.2.S1_at -0,6 LOC100036878 

Xl.13720.1.S1_at -0,6 gxylt2 
Xl.41921.1.S1_at -0,6 LOC443600 
Xl.29008.1.S1_at -0,6 ppat 
Xl.50182.1.A1_at -0,6 --- 
Xl.32510.1.A1_x_at -0,6 --- 
Xl.56209.1.A1_at -0,59 --- 
Xl.53948.1.S1_s_at -0,59 klhl24 
Xl.16794.1.S1_at -0,59 eap1-b 
Xl.21915.1.S1_at -0,59 gins3 
Xl.57016.1.A1_at -0,59 --- 
Xl.18553.1.A1_at -0,59 --- 
Xl.16483.1.S1_at -0,59 hiatl1 
Xl.21546.1.S1_at -0,59 xG28K 
Xl.13354.1.A1_at -0,58 --- 
Xl.20087.1.S1_a_at -0,58 --- 
Xl.32324.2.S1_at -0,58 --- 
Xl.13799.1.A1_at -0,57 --- 
Xl.56743.1.A1_at -0,57 --- 
Xl.2.1.S1_at -0,57 rpl18 
Xl.45316.1.S1_at -0,57 ndufa13 
Xl.24716.1.A1_at -0,57 --- 
Xl.20506.1.S1_at -0,57 --- 
Xl.10320.1.A1_at -0,56 --- 
Xl.32732.1.A1_at -0,55 --- 
Xl.6299.1.S1_at -0,55 paics 
Xl.33613.1.A1_at -0,55 --- 
Xl.46193.1.S1_at -0,54 xrcc6bp1 
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Xl.20189.1.S1_at -0,54 lyrm4 
Xl.5614.1.S1_at -0,54 meig1 
Xl.47835.1.A1_at -0,54 --- 
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