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1 INTRODUCTION 

1.1 Epigenetics 

An epigenetic trait is a stable inheritable phenotype resulting from a changing of 

chromosome structure without alterations in the DNA sequence [1]. Main epigenetic 

mechanisms include DNA methylation and various histone modifications, such as e.g. 

methylation, acetylation or phosphorylation (Figure 1).  

Epigenetic regulation of gene activity is a fundamental mechanism that occurs in all 

eukaryotic cells – in animals, humans, plants – and is important for development, tissue 

regeneration, and maintaining of cell phenotype. Defects in epigenetic modulation of gene 

activity have already been connected to cancer and other serious diseases [2-5]. Thus, 

understanding of epigenetics may lead to new diagnostic methods and discovery of novel 

therapeutic targets. This knowledge can be also useful in regenerative medicine by e.g. 

targeted cell reprogramming.  

 

Figure 1. Schematic overview of epigenetic mechanisms according to Rodenhiser et al. [6]. Condensation of the 
chromatin plays an important role in regulation of gene transcription. Open chromatin together with unmethylation 
of the cytosine leads to “switching on” the gene transcription; the “switching off” of the transcription is therefore 
associated with a condensed/folded chromatin and methylated cytosines.  

1.1.1 DNA methylation and DNMTs 

DNA methylation consists of the addition of a methyl group to the 5th position of the 

cytosine pyrimidine ring by DNA methyltransferase (DNMT) enzymes (Figure 2) [7]. This 
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unique pyrimidine “5-methylcytosine” continues to pair with guanine. In humans and other 

mammals, DNA methylation is exclusively restricted to CpG dinucleotides. It is catalyzed by 

three different DNMTs encoded by different genes on distinct chromosomes: DNMT1, 

DNMT3A, and DNMT3B. DNMT1 maintains DNA methylation and is responsible for the 

propagation of DNA methylation pattern during replication (mitotic cell division). It is present 

at the replication fork and is very specific for the hemi-methylated DNA. DNMT1 guides the 

methylation of CpG dinucleotides on the new DNA strand according to the methylation status 

of the complementary template strand. DNMT3A and DNMT3B are catalyzing de novo 

methylation and are important in the establishment of the methylation patterns in the early 

embryo state and also during development. 

DNMT3A and DNMT3B were shown not only to correlate with changes in histone 

modifications [8], but also, more importantly, to play essential roles in de novo methylation. In 

mice, deletion of DNMT3B reduces the methylation of CpG islands on repetitive sequences 

such as LINE1 and Satα and activates gene expression on inactive X chromosome [8, 9]. 

 

Figure 2. Mechanism of DNA methylation [10]. DNA methylation has a specific pattern for cells in different stages 
of development and differentiation. This process is supported by three main enzymes: DNMT1, DNMT3A, and 
DNMT3B. Maintenance of the established methylation is provided in part by DNMT1 and DNMT3B. De novo 
methylation is supported by DNMT3A and DNMT3B.  

Approximately 70% to 90% of CpG dinucleotides, representing 3% to 6% of all 

cytosine, are methylated in healthy somatic cells [11]. Regarding gene regulation, DNA 

methylation is a repressive mark associated with transcriptional silencing. It has been shown 

to be involved in different cellular functions, including repetitive sequences, X chromosome 

inactivation, mammalian embryonic development, and lineage specification. It is also linked 

to a number of human diseases, mostly cancer [12]. More and more studies are emphasizing 

the importance of DNA methylation in other diseases such as atherosclerosis or diabetes 

[13, 14]. 
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DNA methylation can affect gene expression in two general ways. First, DNA 

methylation itself can inhibit the binding of transcription factors to the methylated DNA 

sequence. This mechanism is relevant for many transcription regulators, for example MYC 

[15], activator protein-2 [16], or HIF-1α (hypoxia-inducible factor-1α) [17]. The second 

mechanism involves a family of methyl-CpG-binding proteins that have been described as 

being able to recognize methyl residues in the DNA of mammals. This family includes four 

proteins containing a homologous methyl-binding domain (MBD1, MBD2, MBD3, MBD4, and 

MeCP2) and a non-homologous methyl binding protein named KAISO [18]. These proteins 

can directly repress transcription, prevent the binding of activating transfactors, or recruit 

enzymes that catalyze histone posttranslational modifications and chromatin remodeling 

complexes, which in turn alter the structure of chromatin and promote transcriptional 

repression [11, 12]. The study of Chan et al. [19] demonstrated an important role in DNA 

methylation during transcriptional silencing of the human iNOS promoter in non-responsive 

human endothelial cells. In addition, another study showed that DNA methylation is not only 

responsible for iNOS transcription silencing, but also for posttranslational modifications of 

histones [20] Thus, DNA and histone methylation were found to be important in the 

transcriptional silencing of iNOS in cultured human endothelial cells. Hence, deregulation of 

these epigenetic modifications may lead to aberrant iNOS expression and consequently to 

atherosclerosis. 

1.1.2 Hydroxymethylation, TET1  

Recently, TET1 was found to be involved in the oxidation process of 5-azacytidine 

into 5-hidroxymethylcytosine (5hmC) [21]. Other studies have detected 5hmc in embryonic 

stem cells (ESCs) and in mouse cerebellum. This led to the hypothesis that 5hmc is a short-

lived intermediate in the removal of 5-methylcytosine (5mC) [21, 22] and is involved in the 

epigenetic network with an important role in epigenetic reprogramming and regulation of 

tissue specific gene expression [23]. Moreover it has been suggested that high levels of Tet1 

are associated with a pluripotent state of the cells [24]. 

The further steps leading to demethylation include oxidation of 5mC to 5-

formylcytosine and 5-carboxylcytosine.The ten-eleven translocation (TET) enzyme family 

was shown to have three members: TET1, TET2, and TET3. All three have been shown in 

vitro and in vivo to oxidize 5mC to 5hmC [25, 26] and also that the presence of 5hmC is 

depending on the presence of 5mC (Figure 3). This suggests that this is the only way for the 

synthesis of genomic 5hmC [27, 28]. TET1 depletion in mouse ESCs e.g. led to the 

accumulation of 5mC both globally [29] and at specific genomic regions, such as LINE1 

retrotransposons and transcription factor binding sites [19].  
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Figure 3. Cytosine methylation and demethylation. Methylation is catalyzed by DNMT enzymes. The recently 
discovered TET1 protein is a 2-oxoglutarate and Fe II – dependent- dioxigenase that catalyzes the formation of 
5hmC, which may represent a critical step in active oxidative DNA demethylation or may itself comprise a new 
epigenetic mark. 

Regarding the binding domain and the exact mechanism of TETs, there are couple of 

contradictory studies, and it is not yet clear whether they share the same binding domain with 

DNMT1 [29-31] or whether this mechanism is preventing the DNMT1 activity during 

replication. 

1.1.3 Histone modifications – methylation and acetylation 

Nucleosomes, the main components of chromatin, consist of histones. These proteins 

have positively charged amino-terminal tails that are exposed on the outside of 

nucleosomes. Histones are modified at many sites, with more than 60 different residues 

detected by mass spectrometry or with the help of specific antibodies [32]. Modifications of 

the histone tails include methylation, acetylation, phosphorylation, ubiquitination, 

SUMOylation, citrullination, and ADP-ribosylation. Acethylation of the lysine at the N terminal 

end of the histone H3 (like K9, K14, K18, and K23) and H4 (such as K5, K8, K12, and K16) 

as well as  methylation of lysine residues in H3 (K4, K9, K27, K36, and K79) and H4 (K20) 

are the most relevant epigenetic modifications that have been identified until now (Table 1) 

[33]. They are carried out by specific enzymes, methyltransferases and acetyltransferases. 

The adding of an acetyl group has a major effect on lysine as it neutralizes the positive 

charge. This reduces electrostatic attraction between the histone and the negatively charged 

DNA backbone, loosening the chromatin structure; highly acetylated histones form more 

accessible chromatin and tend to be associated with active transcription. Histones that are 

methylated at certain residues can act epigenetically to repress or activate gene expression. 

Methylation of histones is catalyzed by histone methyltransferases (HMTs), which use S-

adenosylmethionine (SAM) as a cofactor in nearly the same way as histone acethylases 

(HATs) utilize acetyl-coenzyme A as their cofactor [34]. Eukaryotic genomes are 

conveniently described as transcriptionally active (euchromatin) or transcriptionally silent 

(heterochromatin). Due to the fact that only very few demethylases were identified so far, it is 

believed that methylation is a process that is more stable than acetylation. Furthermore, 

Succinate 
 CO2 

2 oxo 
 glutarate 

Fe(II) 

DNMTs 

SAM SAH 

TET1 

 

 H3C  H2C

 OH
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lysine residues in H3 and H4 tails appear to be targets for either acetylation or methylation, 

but not both at the same time [34]. 

An additional complexity of the histone modification processes comes from the fact 

that methylation at lysine or arginine may be mono-, di-, or tri-methyl for lysine and mono-, or 

di- (symmetric or asymmetric) for arginine [32].  

It is to mention that the plethora of histone modifications cannot happen at the same 

time and on the same histone. The exact timing depends on the signaling conditions within 

the cell. Furthermore, acethylation of histones is associated with euchromatin, in contrast 

histone methylation can have opposite roles depending on the site and degree of 

methylation. As an example, H3K4 methylation was shown to be responsible for active 

transcription, while the methylation of H3K9 is involved in gene silencing.  

Table 1. Relevant methylation of the histone H3, their corresponding methyltransferases and proposed functions.. 

 
Histone-modifying 

Enzymes 
Proposed Function Reference 

H3Lys4 

Set1 (S. cerevisiae) permissive euchromatin (di-Me) [35] 

Set7/9 (vertebrates) transcriptional activation (tri-Me) [36] 

MLL transcriptional activation [37] 

H3Lys9 

Suv39h,Clr4 transcriptional silencing (tri-Me) [38, 39] 

G9a transcriptional repression genomic imprinting [40] 

SETDB1 transcriptional repression (tri-Me) [41] 

H3Lys27 
Ezh2 

transcriptional silencing 
X inactivation (tri-Me) 

[42] 

G9a transcriptional silencing [40] 

H3Lys36 Set2 transcriptional activation (elongation) [43] 

H3Lys79 Dot1 
euchromatin 

transcriptional activation (elongation) checkpoint response 
[44-46] 

In summary, gene function and cell phenotype can be influenced not only by variation 

in the gene sequence but also by the epigenetic programming of gene expression. 

Epigenetic changes can be modified by pharmacological factors [47]. Several epigenetic 

drugs are already in different stages of clinical trials for cancer treatment [48, 49] and 

psychiatric disease [50]. 

1.1.4 Histone methyltransferases and their role 

Histone methyltransferases are enzymes that are facilitating the transfer of the methyl 

group (–CH3) to a specific site of proteins or nucleic acids. Theses enzymes catalyze the 

transfer of the methyl group from SAM on the side-chain nitrogen of lysine or arginine to 

histones, resulting in a methylated biomolecule and S-adenosyl-L-homocysteine (SAH) – as 

a byproduct. 
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Protein methyltransferases (PMTs) can be classified into two families – protein lysine 

methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs). Mono-, di- or 

tri - methylation of the lysine can occur (Figure 4). They are distinguished by the amino acid 

that accepts the methyl group and by the conserved sequences of their respective catalytic 

domains. Among the many PKMTs that have been identified so far, some of them have been 

validated for their methyltransferase activity [51]. 

 

Figure 4. Schematic view of methylation at lysine residue by protein lysine methyltransferases (PKMTs). 

Some PKMTs add just a single methyl group, resulting in a mono-methylated product, whereas some others 
produce di- or tri-methylated lysine modifications.  

Several proteins responsible for methylation have been characterized and all but one 

of these enzymes contains a SET domain. The exception is the DOT1 family of 

methyltransferases, members of which methylate K79 in the globular region of histone H3 

[52]. The SET domain was first recognized as a conserved sequence in three Drosophila 

melanogaster proteins: a modifier of position-effect variegation, suppressor of variegation 3-9 

(Su(var)3-9), the polycomb-group (Pc-G) gene enhancer of zeste [E(z)], and the trithorax-

group chromatin regulator trithorax (Trx). The SET domain, which is approximately 130 

amino acids long, was characterized in 1998 and SET-domain proteins have been found in 

all eukaryotic organisms studied so far [52]. Seven main families of the SET-domain proteins 

are known: SUV39, SET1, SET2, EZ, RIZ, SMYD, and SUV4-20 families. Table 2 

summarizes the most relevant histone methyltransferases of the SET domain PKMTs. 

The SUV39 family has been characterized very thoroughly. Members of this family, 

human SUV39H1, were the first SET-domain protein lysine methyltransferases identified. 

These proteins are specifically involved in the methylation of H3K9 [38]. SUV39H1 is similar 

to SUV39H2 with up to 55%, depending on species [52]. The members of the SUV39 family 

discussed above (H1 and H2) are involved in the methylation of histone residues within both, 

euchromatin and heterochromatin. In contrast, another member of the same family, G9a, is 

the predominant histone H3K9 methyltransferase in mammalian euchromatin [52, 53]. G9a 

and SUV39H1 belong to the same family of SET-domain proteins and both have pre-SET 

and post-SET domains surrounding the SET domain.  

PKMT 

SAM SAH 

PKMT 

SAM SAH 

PKMT 

SAM SAH 

CH3 

 H3C

 CH3  CH3

 CH3 H3C
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Table 2. Selected histone methyltransferases and their targets according to Albert et al. [54]. 

Name Histone target Transcriptional activity Transcriptional repression 

MLL 
H3K4me1/2/3 H3K4me2/3 

- 

MLL2 - 

SETD1A 
H3K4me1/2/3 H3K4me2/3 

- 

SETD1B - 

SUV39H1 
H3K9me2/3 

- 
H3K9me2/3 

SUV39H2 - 

EHMT2 (G9a) H3K9me1/2 H3K9me1 H3K9me2 

EZH1 
H3K27me2/3 

- 
H3K27me2/3 

EZH2 - 

DOT1L H3K79me1/2 H3K79me1/2 - 

SET2[55] H3K36me2 H3K36me2 - 

ESET (also called SETDB1), which predominantly methylates H3K9 in 

transcriptionally silent euchromatin [56], has been also found to play a crucial role in post-

implantation development and in methylation of H3K36 and H4K20 [57]. This protein was 

also found to be structurally similar with SETD1A [52].  

MLL1, also member of the SET1 family, is often implicated in leukemia as a result of 

aberrant Hox gene activation mediated by histone H3K4 methylation [58]. EZH2 acts mainly 

as a gene silencer; it performs this role by the addition of three methyl groups to Lysine 27 of 

histone 3, a modification leading to chromatin condensation [42]. EZH2 is frequently 

overexpressed in a wide variety of tumors and its up-regulation correlates with advanced 

stages of disease and poor prognosis. Knockdown of EZH2 inhibits growth of myeloma and 

prostate cancer cells [59, 60], whereas EZH2 overexpression promotes colony formation, 

anchorage-independent growth and cell invasion [60-62] as well as xenograft tumor growth. 

This methyltransferase interacts also with HDAC1 and HDAC2 in order to repress 

transcription during embryonic ectodermal development [63]. Taken together, these results 

suggest that EZH2 could be a driving oncogene. Important is to underline that the H3K27 

methyltransferase EZH2 is essential for normal embryonic development [64] It has been 

found highly expressed in a large number of primary tumors and several data suggest that 

tumors invasion is dependent on its expression, as reviewed by Albert et al. [54].  

Histone acetylation was first reported in 1964 by Allfrey et al. [65]. Since then it was 

shown that acetylation of lysine is reversible and highly dynamic through the opposing 

actions of two families of enzymes, histone acetyltransferases (HAT) and histone 

deacethylases (HDACs) [66]. The HATs utilize acetyl CoA as cofactor and catalyse the 

transfer of an acetyl group to the ε-amino group of lysine side chains. The result is 

neutralization of the positive charge of the lysine, action that has the potential of weakening 

the interactions between histones and DNA. These enzymes modify multiple sites within the 

histone N-terminal tails [66]. HDAC enzymes have opposite effects of HATs and reverse 
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lysine acetylation, an action that restores the positive charge of the lysine. This process 

potentially stabilizes the local chromatin architecture and is consistent with HDACs being 

mainly transcriptional repressors. There are four classes of HDAC [67] and the following are 

the most representative for each class: class I (HDAC 1, 2, 3, 8), class II (HDAC 4, 5, 6, 7, 

9), class III (Sirtuins, SIRT1, 2, 3, 4, 5, 6, 7), and class IV (HDAC 11). Class III requires a 

specific cofactor for its activity, NAD+. Generally, HDACs have relatively low substrate 

specificity by themselves, a single enzyme being capable of deacetylating multiple sites 

within histones. The problem of enzyme recruitment and specificity is further complicated by 

the fact that the enzymes are typically present in multiple distinct complexes, often with other 

HDAC family members. For examples, HDAC1 is found together with HDAC2 within the 

NuRD, Sin3a, and Co-REST complexes [68]. Therefore, it is difficult to determine which 

activity (specific HDAC and/or combined) is responsible for a specific effect. Nevertheless, in 

certain cases it is possible to determine, which enzyme is required for a given process, as it 

has been shown that HDAC1, but not HDAC2, controls embryonic stem cell differentiation 

[69]. 
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1.2 Epigenetic changes in vascular disease  

Non-communicable diseases (NCDs), classified by World Health Organization (WHO) 

into heart disease, stroke, cancer, chronic respiratory diseases, and diabetes, are the leading 

cause of mortality in the world. Common, risk factors that underlie the major NCDs, include 

tobacco, harmful use of alcohol, unhealthy diet, insufficient physical activity, 

overweight/obesity, raised blood pressure, raised blood sugar, and raised cholesterol. Of the 

57 million global deaths in 2008, 36 million (63%) were due to NCDs [70]. In 2011, a report 

published by WHO states that cardiovascular diseases (CVDs) are the primary cause of 

death globally; more people die annually from CVDs than from any other cause. An 

estimated 17.3 million people died from CVDs in 2008, representing 30% of all global deaths. 

Of these, an estimated 7.3 million were due to coronary heart disease and 6.2 million were 

due to stroke. In the year 2010, CVDs were estimated to have become the leading cause of 

death all countries [71]. According to WHO, by 2030 almost 23.6 million people will die from 

CVDs annually, mainly from heart disease or stroke, both having as common cause the 

atherosclerotic plaque, diseases that are supposed to remain the single leading causes of 

death [70]. 

1.2.1 Atherosclerosis is the leading cause of stroke and heart attack 

Atherosclerosis (AS, also known as 

arteriosclerotic vascular disease, ASVD) is 

characterized by a gradual thickening and 

hardening of the vessel wall as a result of the 

accumulation of fatty acids and cholesterol 

(Figure 5). Inflammation, together with 

endothelial dysfunction, is a key event in the 

formation of lipid-laden foam cells, the 

initiation and development of AS.  

Sudden arterial plaque rupture causes the formation of a thrombus that rapidly slow 

or stop blood flow, thus leading to death of the tissues supplied by the artery (infarction) in 

approximately 5 min. One of the usual infarctions is the heart attack and it involves the 

occlusion of the coronary artery by plaque, leading to infarction of the myocardium (Figure 6).  

 

Figure 5. Occlusion of the artery due to atherosclerotic 
plaque building up. 
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Figure 6. Heart attack. Insufficient blood flow to the heart muscle from narrowing of coronary artery due to 
atherosclerotic plaque leads to heart attack. 

Atherosclerosis changes within the vessel wall of the carotid artery can lead to plaque 

vulnerability, which constitutes the main reason for carotid-related ischemic events [72]. If 

this process is happening in an artery supplying the brain, the consequence is an ischemic 

stroke, frequently followed by decease or permanent disabilities. Due to the lack of blood 

flow in certain regions of the brain responsible for sensitive or motor functions, certain 

activities, such as walking or speaking, may be impaired (Figure 7). 

 

Figure 7. Stroke. Arterial plaque rupture leads to thrombus formation that stops the blood flow. As a result the 
tissue supplied by a blocked artery will suffer death within minutes. 

1.2.2 Stages of atherosclerosis – histological classification 

Atherosclerosis is commonly described as a chronic inflammatory disease of the 

vessel wall, characterized by lipid accumulation, inflammation, and extensive degradation of 

extracellular matrix (ECM) components [73]. 

The initiation step for atherosclerosis is thought to be endothelium dysfunction, 

possibly triggered by the oxidized low-density lipoprotein (ox-LDL) (Figure 8). Ox-LDL is 
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often associated with proteoglycans in sub-endothelium. Activation of endothelial cells 

triggers an increased expression of cytokines and chemokines, enhancement of the 

permeability of endothelial cell layer, and increased expression of adhesion molecules. 

Monocytes and T-lymphocytes are attracted by chemokines and connected to endothelial 

cells.  

 

Figure 8. Schematic view of processes leading to atherosclerosis. Inflammation together with endothelial 
dysfunction are key events in the formation of lipid-laden foam cells and the initiation and development of 
atherosclerosis. 

Subsequently, the inflammatory cells are infiltrating the sub-endothelium of the 

vascular wall and initiate the inflammatory reaction leading to “fatty streak” – the type I 

lesion. At this stage, there are minimal histological changes consisting in small groups 

(double in number compared with the normal intima) of macrophages and macrophage foam 

cells (macrophages containing lipid droplets).  

The foam cells are cholesterol engorged monocyte-derived macrophages, and are 

dominant type of immune cells found within the lesions. Macrophages are taking up the ox-

LDL, but are not able to digest it sufficiently, resulting in the formation of foam cells. It is still 

uncertain, whether the fatty streaks are the precursors of more advanced lesions [74, 75]. If 

the inflammatory factors are not removed, the endothelial dysfunction continues and within 

the type II lesion there are visible more lipid-laden cells than in the initial lesion; within n the 

smooth muscle cells (SMCs) appear lipid droplets but their number is smaller than the 

number of macrophage-derived foam cells. The number of intimal SMCs in fatty streaks is 

similar to the number of SMCs in normal intima, but an enhanced number of proliferating 

SMCs is observed. 
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Figure 9. Early stages of atherosclerosis. 

Intimal macrophage foam cells accumulate in the deep part of the proteoglycan layer 

and fill the space up to the level of the endothelial cells (ECs). Extracellular space contains 

small quantities of thinly dispersed lipid droplets and vesicular particles that vary in size and 

are visible only by electron microscopy. The inflammation at this level is characterized by the 

presence of few T-lymphocytes and numerous macrophages. Regarding the ECs, it has 

been observed their loss of orientation according to blood flow, a rounding of the cells, an 

increase in stigmata and stomata, an increase in stress fiber content, the formation of 

multinuclear cells. Activated ECs have an increased permeability of endothelium layer. With 

the progression to type III lesion (preatheroma) the lipid droplets accumulate massively in 

the extracellular matrix and SMCs start to become involved in intima thickening. Cholesterol 

starts to be rarely present in the lesion and there is a higher amount of fatty acid and fatty 

streaks than in the previous stages [76]. The first types are often described as early stage of 

atherosclerosis (Figure 9). 

Within the advanced stages of atherosclerosis other cell types become involved. The 

first three types of lesions are not being considered clinically relevant. However, once 

started, the reaction tends to amplify itself. The first advanced lesion with a potential clinical 

importance is the type IV lesion (atheroma) (Figure 10) [76].  

 

Figure 10. Atherosclerotic lesion type IV. 
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This type is characterized by a massive aggregate of extracellular lipid (a lipid core) 

that occupies an extensive but well defined region of intima. Smooth muscle cells (SMCs) 

within the lipid core are dispersed, have elongated shape and unusually thick basement 

membrane. Calcified areas are often found within the lipid cores. The part of the adaptive 

thickening between the lipid core and EC surface contains macrophages and SMCs with or 

without lipid droplets, T-lymphocytes and mast cells. In addition to the components of 

atheroma, a thick layer composed of newly formed layer of proliferating SMCs and collagen 

(a fibrotic cap) is located in the region between the lipid core and the endothelial cell layer at 

the arterial lumen, this process being specific for type V lesion (fibro-atheroma) [75]. 

Advanced stages of atherosclerosis are summarized in Figure 11. 

 

 

Figure 11. Advanced stage of atherosclerosis. Type V-VIII. 

Within this lesion type, the primary proteoglycan-rich layer between lipid core and 

endothelial surface contains substantial more fibrotic collagenous material. Granulation 

tissue and capillaries at the lateral and luminal margins (shoulders) of the lipid core may be 

larger than in the atheroma stage. Reparative connective tissue forms in and around regions 

of intima with large accumulation of extracellular lipid (lipid core); new tissue consists of 

substantial increase of collagen and synthetic SMCs; lymphocytes, macrophages, and 

plasma cells are frequently associated with the capillaries, and micro-hemorrhages may be 

present around them. Several cores separated by fibrous connective tissue may start to form 

together with additional lipid cores, varying in localization, size and shape. Further 

progression in the atheroma will lead to the type VI lesion (complicated atheroma). In the 

type of lesion V, thrombotic deposits and/or marked hemorrhage that accelerate growth and 

complexity of the lesions are visible. Erosion or ulceration of the lesion surface due to 

shearing fissures are main cause of the hemorrhage into lesions, thrombotic deposits, 

therefore this stage is perhaps the most clinically relevant. Type VII (calcified atheroma) of 

the lesion is similar with the type V but with calcium deposits that replace the accumulated 

remnants of dead cells and extracellular lipid. Type VIII lesions (fibrotic lesion) are the 
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lesions consisting almost entirely of scar collagen. Within this type of lesion the lipid 

components are no longer present [75].  

1.2.3 Role of epigenetics in vascular disease 

The major causes of cardiovascular disease are tobacco use, physical inactivity, an 

unhealthy diet, and harmful use of alcohol. Current recommendations for treatment of CVD 

aim to reduce risk factors [72]. 

The role of epigenetics in chronic diseases, such as atherosclerosis, consists in more 

than just acute reaction to the environmental insult (exposure) – it represents a long term 

change of the gene expression in the cells of the vascular wall. This means that cells are 

responsive and they are changed epigenetically during lifetime, suggesting that diet – gene 

and environment–gene interactions are among the key processes in the disease history. This 

hypothesis is supported by many studies that are connecting nutrition [77-79], smoking [80, 

81] and environmental changes [82] with alternations in epigenetics. An interesting study of 

Baccarelli et al. showed that pollution from traffic, an environmental challenge associated 

with increased risk of CVD, affected DNA methylation in a study group in USA [83, 84]. The 

focus of these studies was on repetitive sequences LINE-1 and Alu1. A correlation has been 

found between the exposure to carbon dioxide and hypomethylation and a significant 

demethylation effect was observed for LINE-1. These data suggest that DNA might reveal a 

link between exposure to pollutants and the development of CVD. LINE-1 demethylation has 

been also detected in vascular smooth muscle cells exposed to homocysteine – a very well 

characterized molecule with a role in epigenetics [85].  

Hyperhomocysteinemia is an accepted risk factor for CVD, supported by a large 

amount of studies [86, 87]. High levels of homocysteine promote the development of 

atherosclerotic lesions by inducing aberrant DNA methylation in both vascular smooth 

muscle and monocytes [85, 88]. There are several of other findings that have confounded the 

issue. It can be assumed that homocysteine inhibition of DNMTs would promote an overall 

hypomethylation. However some data suggest that hypermethylation predominates at 

specific loci, including extracellular superoxide dismutase, estrogen receptor α, and 

endothelial NO synthase [87]. Other reports, utilizing peripheral blood lymphocytes from 

patients with coronary artery disease, have produced conflicting results, suggesting that 

global methylation may be increased or decreased in different individuals [89, 90]. 

Collectively, the data support a role for altered DNA methylation secondary to homocysteine 

overload, but to date it has been difficult to specify how these alterations may correlate with 

disease pathogenesis. 
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DNA methylation is a major epigenetic modification regulating gene expression, 

silencing repetitive DNA elements, and maintaining chromosomal structure. Animal model 

experiments on mice proved the principle that DNA hypomethylation is a pre-step in the 

onset of atherosclerosis [91]. A recent study of Castillo-Diaz et al. [92] on human 

atherosclerotic arteries sustains the hypothesis that aberrant DNA methylation plays a role in 

the critical regulatory genes for induction of pro-atherogenic cellular phenotype. One of the 

theories that describe possible mechanisms for some cancers seem to be facilitated by so 

called epimutations - changes not in the DNA itself, but in the pattern of methylation, with 

inactivation of genes that play a role in organism defense against cancer [93]. This approach 

is supported by the study of Hiltunen et al. [13], who describes that hypomethylation in 

atherosclerotic lesions is present at the same level as in malignant tumors, process which 

affects the smooth muscle cell proliferation and gene expression in arthrosclerosis. Portions 

of DNA can be inactivated by covalently attaching methyl groups, which can interfere with the 

binding of transcriptional enzymes, and can also be signals to recruit enzymes that modify 

associated histones. DNA methylation is not maintained during replication, but methyl groups 

are added after each cycle of cell replication [94, 95].  

The methylation of DNA is sustained by a family of methyltransferases (DNMT1, 

DNMT3A, and DNMT3B). A study on mouse embryonic fibroblasts deficient in DNMT1 were 

reported to have a decrease in the global DNA methylation status correlated with cell type-

specific changes in gene expression that disturb several pathways, including expression of 

imprinted genes, cell-cycle control, growth factor/receptor signal transduction, and 

mobilization of retro elements [96]. The role of DNA methylation and DNMTs in cancer and 

developmental studies has been extensively examined. However the functions of DNMTs in 

cardiovascular diseases and atherosclerosis are not yet understood. 

It is currently recognized that the epigenetic modifications of the genome play a major 

role in disease development, linking the environmental insults with gene regulation. Recent 

research has focused on how modification of DNA by methylation, and histone modification 

by acetylation, methylation, phosphorylation and/or SUMOylation may be targeted 

therapeutically [97]. Mouse models of hypercholesterolemia have demonstrated that HDAC7 

plays a role in disease progression through repression of the cholesterol-metabolizing 

enzyme CYP27A1. Importantly, treatment of these animals with HDAC inhibitors significantly 

lowered serum cholesterol through enhanced expression of CYP27A1 and subsequently 

increased production of bile acids [98]. Statins, which are commonly employed as anti-

cholesterol pharmaceuticals, have also been implicated in HDAC regulation, though there is 

doubt about how they interact with gene expression. In order to prove the complex 

relationship between HDAC regulation and atherosclerosis, Dje N'Guessan et al. [99] 
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demonstrated that ox-LDL reduces HDAC levels and modulates signaling pathways that are 

partially rescued with statin treatment. This result brings forward the utility of HDAC inhibition 

in CVD and highlights a portion of complex communication between metabolic and 

epigenetic pathways that takes place in CVD. 

There is significant evidence supporting complex regulatory networks spanning 

metabolic and epigenetic processes in CVD. While many of the specific interactions remain 

to be identified, the data are so far promising. Continued research in this field is critically 

important given the large number of patients who are affected by CVD. Epigenetic - based 

therapies to target the underlying mechanisms of CVD will hopefully prove to be valuable 

treatments in the future [100]. 

1.2.4 Aim of the study – epigenetic changes in vascular disease 

Chromatin is a flexible structure experiencing dynamic epigenetic changes through 

the whole life. The most interesting feature of epigenetics is that it can be affected by 

environmental interactions, giving the organism a feedback from surrounding conditions. 

Emerging evidences implicate a spectrum of epigenetic changes in the pathophysiology of 

atherosclerosis [13, 87, 94]. Genetic and epigenetic studies must be integrated to find new 

targets for atherosclerosis therapy and to completely understand the cause of this vascular 

disease. Since epigenetic modifications are potentially reversible, there is a possibility 

directed therapies targeted at specific modifications of the epigenome may have favorable 

effects on cardiovascular system of the patients suffering from atherosclerosis.  

The aim of the current study was to evaluate possible alterations in DNA and histone 

modifications in carotid artery in concordance with the progression of atherosclerosis. In the 

present work several points should be addressed with regard to the above mention topic in 

an attempt to answer following questions: 

1. Are there any changes in global DNA methylation in concordance with the 

progression of atherosclerosis in carotid artery? 

2. Are there any changes in the genome wide methylation in DNA found in serum 

between patients with high grade carotid artery stenosis and healthy subjects?  

3. What molecular mechanism is involved in the changes of DNA methylation? In this 

context, the expression of DNA-methyltransferases is examined. 

4. Are there any changes in histone methylation in carotid atherosclerotic lesions 

compared to healthy individuals? In this case the study concentrate on two 

methylations in histone H3 and H4 at lysine K4 and K9, which possess opposite effect 

on gene activity. Methylation of H3K4 increases gene activity, in contrast methylation 

of H3K9 leads to gene silencing. 
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5. What molecular mechanisms are responsible for changes in histone H3K4 and H3K9 

in atherosclerotic plaques? In this context, the expression of histone 

methyltransferases is evaluated. 

6. Can the modification of H3K4 and H3K9 be associated with certain type of cells, 

important in AS, such as SMCs or inflammatory cells?  
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1.3 Epigenetic changes in regenerative medicine 

One of the main efforts in medical treatment is the regeneration of organ function 

caused by injuries or diseases. Nowadays, this medical field has become a separate entity 

and it carries the name of “regenerative medicine”. Regenerative medicine is formed of more 

subdomains, all having the same purpose, namely the repair of dysfunctional cells, tissues or 

organs. These subdomains of regenerative medicine are reconstructive surgery, 

transplantation surgery, tissue engineering, and gene and cell therapy. 

The 20th century has brought notable medical developments such as blood 

transfusion and organ transplantation. Organs were at first transplanted only between twins 

thanks to the immunological compatibility. Later, due to the discovery of immunosuppressive 

medication, allogeneic organ transplantation became a widespread surgical technique. 

Beginning with the 1990s, triggered by the pressing need for transplant organs, research has 

taken a great interest in tissue engineering. By using biocompatible materials with or without 

biological component, tissue engineered constructs can be used to repair and accelerate the 

healing of various injuries. Tissue engineering uses mostly biodegradable scaffolds that are 

slowly resorbed after implantation and replaced by the extracellular matrix (ECM) of the body 

for the purpose of building tissue grafts. The biological parts of the construct are generally 

cells. They contribute to the biocompatibility and integration into the host. The ideal cells 

applicable to the clinical setting are likely to possess the following characteristics: 

1. Unlimited ability to renew symmetrically to provide abundant numbers of cells; 

2. Ability to form all functional tissue of the body; 

3. Compatibility with patient’s immune system. 

Embryonic stem cells appear to have the characteristics 1 and 2 but not 3. Somatic 

stem cells can be harvested from the patient (satisfying the 3rd characteristic), but are 

developmentally restricted and therefore do not possess the characteristics 1 and 2 [101]. 

Different strategies have been developed to reprogram somatic cells. The most 

remarkable studies are from Takahashi et al. [102] and Yu et al. [103].  These research 

groups were able to reprogram fibroblasts into cells with the characteristics of embryonic 

stem cells through viral transfection of a combination defined factors, which have been 

acknowledged to be key “stemness” factors for achieving pluripotency: OCT4, KLF4, CMYC, 

NANOG, and SOX2. In this way, all three characteristics for an ideal regenerative cell, called 

induced pluripotent stem cells (iPSCs), as described above, can be fulfilled: the compatibility 

with the patient.  
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Induced pluripotent stem cells have, however, a major limitation for their use in 

clinical applications due to their oncogenic potential. The OCT4, KLF4, CMYC, NANOG, and 

SOX2 markers have been intensely studied and are known to be critically involved in self-

renewal of undifferentiated embryonic stem cells. OCT4, also known as POU5F, is a 

transcription factor (TF) used for identification of stem cells, as well as cancer stem cells. 

KLF4, Kruppel-like factor 4, is a part of the KLF family that has been mainly studied for its 

involvement in cell proliferation, differentiation and survival, both in cancer and iPSCs. KLF4 

is known to act as a transcriptional activator or repressor depending on the promoter and/or 

cooperation with other TFs. CMYC, whose persistent overexpression is associated with 

cancer, is also a TF. It has been suggested that the expression of CMYC regulated the 

expression of 15% of all genes [104]. It acts also by recruitment of HATs, proving its role in 

regulation of chromatin structure [105]. NANOG is believed to be a key TF in maintaining 

pluripotency, although Yamanaka et al. [106] proved that it is also possible to induce 

embryonic stem cells without this marker, making NANOG dispensable. NANOG expression 

is also associated with tumors and is used for diagnostic of germinoma (a type of germ cell 

tumor). SOX2, a TF that promotes the differentiation of ECs into neuronal ectoderm germ 

layer, has been shown to inhibit the differentiation into mesoderm and to have a key role in 

development of mammalian embryos [107]. However, its overexpression in lung carcinoma 

classified this TF as a key oncogene in lung squamous cell carcinoma with a role epithelial 

differentiation in tumor progression [108].  

Adult mesenchymal stem cells have been used in many tissue engineering studies 

involving repair of various tissues, such as blood vessels, bone, cartilage, or skin [109-111] . 

These cells can be isolated from different organs of the patient himself and grown in vitro 

until a sufficient number of cells is obtain, after which they can be seeded onto the scaffold 

and implanted in vivo. In this way, the immune reactions to the construct are minimal and 

there are no ethical issues like those caused by the use of embryonic stem cells. Inside the 

body, the cells will proliferate and produce ECM that would lead to the incorporation of the 

construct into the host. 

1.3.1 Reprogramming of mesenchymal stem cells (MSCs) through 

epigenetics 

There have been studies concerning the differentiation of adult stem cells into cells of 

other phenotypes, e.g. endothelial features, mostly using mesenchymal stem cells (MSCs) 

[111, 112]. Bone marrow-derived MSCs (BM-MSCs) are able to differentiate into various cell 

lineages of bone, cartilage, adipose, myocardial, and even neuronal tissue [113-115] and into 

endothelial cells [115]. The disadvantages of BM-MSCs are, however, the invasive 
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harvesting procedure, which carries a high risk for the donor and the differentiation process 

lasts a long period of time. Therefore, other possible sources of such cells with less 

traumatizing intervention are necessary.  

Adipose tissue represents an abundant and accessible source of adult stem cells, the 

adipose-derived mesenchymal stem cells (adMSCs). These cells can differentiate into a 

number of mesodermal lineages of ostogenic, chondrogenic, or adipogenic origin [116]. They 

have already been shown to have many characteristics in common with the BM-MSCs, 

including their proliferation potential and their capacity of differentiation.  

Recently, Colazzo et al. studied the ability of adMSCs to differentiate into ECs [111]. 

Furthermore, Fischer and colleagues have shown that autologous adMSCs are able to 

support a vascular graft in vivo and that further work should be done to improve the 

differentiation process [117]. So, finding a possibility to increase the differentiation capacity of 

this type of cells is desired. 

During development of the human body a process of differentiation of the embryonic 

stem cells occurs [118]. During differentiation adult cells arise, which constitute the tissues 

and organs of the adult organism, through a gradual inhibition of genes, until those only 

specific for a certain type of tissue are being expressed and transcribed. Consequently, all 

cells in one organism have the same genotype, but different phenotypes, according to which 

genes are active in each tissue. Phenotype differences are given by distinct epigenetic 

patterns, which involve the degree of chromatin folding and DNA methylation [119, 120]. 

Thus, targeted epigenetic changes, can make silenced genes available for transcription and 

facilitate desired reprogramming of the cell [121]. 

1.3.2 Epigenetic modifying drugs and cell reprogramming 

During the last decades, studies of chromatin modifications have revealed their 

essential role in regulation of gene expression [122-124]. Epigenetic reprogramming may 

also allow re-establishment of the pluripotency state in already differentiated cells. Some 

studies have already shown that it is possible to use endogenously expressed pluripotency 

genes to generate stem-cell-like phenotype [125]. However, to achieve a successful 

reprogramming, DNA methylation status, histone modification, and chromatin structure need 

to be transferred into a state similar to that of the embryonic state (Figure 12) [126]. 

Expression of specific genes such as POU5F1a, KLF4, NANOG, and CMYC induces a 

sequence of epigenetic events, which trigger chromatin modifications and changes in the 

DNA methylation. If a somatic cell is induced with all these factors, its phenotype transforms 

to a partially reprogrammed state [127]. Thus, appropriate changes in the chromatin of 



INTRODUCTION 21 

somatic cells may consequently lead to the induction of pluripotency or, better said, to the 

de-differentiation state of the cells. At this point, a proper protocol is necessary to increase 

gene expression specific for the desired cell type. 

 

Figure 12. A schematic diagram of epigenetic modifications affecting cell reprogramming. The degree of DNA 
methylation inversely correlates with the ability of cells to regain their potential to differentiate. An appropriate 
alteration of epigenetics in somatic cells consequently leads to the increase in the expression of pluripotency 
related genes. Expression of these genes correlates with a higher reprogramming capability. 

Genes normally expressed during embryogenesis (e.g. pluripotency related genes) 

are silent in somatic donor cells. For gaining the reprogramming capacity, these genes must 

be turned on again. A possible approach might be the use of chemical modifying drugs that 

are able to interfere with epigenetic pattern of the treated cells, to inhibit either DNA 

methylation or different histone methyltransferases or deacethylases. For this purpose, DNA 

methylation pattern and chromatin structure must be reorganized accordingly, to resemble 

that of undifferentiated nuclei [128]. 

Several drugs such as 5-azacytidine (AZA), BIX-01294(BIX), and valproic acid (VPA) 

are known to have an effect on DNA methylation and/or histone modification. 

1.3.2.1 5-azacytidine, inhibitor of global DNA methylation 

Global inhibitors of DNA methylation are already used as research tools. Among 

these are demethylating agents as procainamide [129], zebularine [130], tea polyphenol (-)-

epigallocatechin-3-gallate [131], and RG108 [130]. One of the most potent demethylating 

agents is 5-azacytidine (Figure 13) [132].  
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Azacitidine or 5-azacytidine, commercially also known as Vidaza, is a chemical 

analogue of cytosine, used in the treatment of myelodysplastic syndrome. It is known as a 

strong demethylating agent, an effect that has an important role in cellular reprogramming. 5-

azacytidine-5-monophosphate inhibits orotidine-5-phosphate decarboxylase, thus blocking 

the de novo pyrimidine synthesis [133]. Azacytidine appears to restore normal growth and 

differentiation of bone marrow cells by causing hypomethylation of DNA and directing 

cytotoxicity on abnormal hematopoietic cells in the bone marrow. Hypomethylation may 

trigger the normal function of genes that regulate differentiation and proliferation [134].  

 

Figure 13. Chemical structure of 5-azacytidine - (4-amino-1-beta-d-ribofuranosyl-1,3,5-triazin-2(1h)-one).The 
DNA methyltransferase inhibitor 5–azacytidine impedes the DNA methylation and may therefore confer gene 
activation [122, 123]. 

The incorporation of AZA into DNA in vitro prevents DNA methylation [135]. Due to its 

inhibition effects on the DNA methylation, it has already been used in differentiation protocols 

of adMSCs or embryonic stem cells into hepatic lineage [136-138]. Furthermore, it has been 

reported that exposure of bone marrow-derived MSCs to AZA induced a myocyte-resembling 

phenotype with enhanced response of calcium channels, which has potential applications in 

ameliorating muscle loss after myocardial ischemia [139]. AZA is unstable in aqueous 

solutions, with a 10% loss of the product in 2-3 h at RT in lactated Ringer's solution [140]. In 

addition, in the presence of AZA the cytosine methylation is reduced already after one 

replication cycle and a part of DNA becomes only hemi-methylated. Full double stranded 

demethylation requires two replication cycles and occurs in 50% of the dividing cells [141]. 

Therefore, the use of this substance must be adapted to the intended type of cell population.  

1.3.2.2 BIX-01294, a small molecule able to inhibit the G9a methyltransferase 

Acetylation of lysine at the N-tail of histone H3 (K9, K14, K18, and K23) and H4 (K5, 

K8, K12, and K16) and methylation of lysine residue in H3 (as K4, K9, K27, K36, and K79) 

and H4 (K2) are the most relevant histone modifications that have been identified until now 

[33]. 
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Many studies have been performed in order to understand the involvement of H3K4 

and H4K9 methylation in cancer, embryogenesis, and cell reprogramming. One of the best 

described modifications is the methylation of lysine 9 of histone H3 (H3K9) [142]. 

After Jackson et al. showed that H3K9me2 histone modification is most likely the sign 

of gene silencing in Arabidopsis thaliana [143], it has been proposed and later confirmed that 

there is a crosstalk between DNA methylation, absence of H3K4 methylation, and the 

presence of H3K9 methylation, although the exact mechanism is still unclear [144, 145]. This 

correlation may be caused in part by DNA methyltransferases specifically recognizing 

histone modifications. For instance, the de novo DNA methyltransferase, Dnmt3A and its 

cofactor Dnmt3L recognize unmethylated H3K4 via an ADD domain [146, 147]. Moreover, 

G9a Suv39h1/2 and Setdb1 (all H3K9 methyltransferases), Ezh2 (H3K27 methyltransferase), 

and heterochromatin protein 1 (HP1), have been implicated to recruit DNA 

methyltransferases in cancer cells and therefore to modify the DNA methylation pattern 

[148].  

Recently, Kubicek et al. showed that BIX-01294 is a specific inhibitor of histone 

methyltransferase G9a, which is responsible for methylation of H3K9 (Figure 14) [124]. By 

using this chemical compound the epigenetic repression status of several genes could be 

altered. Furthermore, BIX-01294 seems to compensate the lack of Oct4a expression in 

mouse cells, which are not able to express it natively [125]. 

 

Figure 14. Chemical structure of BIX-1294 - (N-(1-benzylpiperidin-4-yl)-6, 7-dimethoxy-2-(4-methyl-1, 4-diazepan-
1-yl) quinazolin-4-amine) [149]. BIX is a small molecule with the capacity to specifically inhibit the G9a 

methyltransferase. 

BIX modulates H3K9me2 levels in mammalian cells and potentiates induction of 

pluripotent stem cells from somatic cells in vitro [125]. BIX-01294 occupies the histone 

peptide binding site and in this way inhibiting the action of G9a [150]. The study of Feldman 
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et al. [151] confirmed that H3K9 methylation promotes by the SET-containing protein G9a is 

inhibiting the Oct3/4 re-expression, preventing the reprogramming of the mouse cells. 

Therefore, using this chemical compound, the epigenetic repression status of several genes, 

including POU5F1, could be altered and cellular reprogramming might be achieved. 

1.3.2.3 Valproic acid as a histone deacethylase inhibitor 

Acetyltrasferases (HATs) are enzymes responsible for the transfer of acetyl group to 

lysine residues and histone deacetylases (HDACs) coordinate their removal. Acetylation 

neutralizes the positive amino acid charge decreasing the affinity for DNA. The histone tail 

dislodges from the nucleosome increasing accessibility of transcription factors, which leads 

to gene expression [152]. 

 

Figure 15. Chemical structure of valproic acid (2-propylpentanoic acid). 

Valproic acid (VPA) is a simple fatty acid (2-propylpentanoic acid) that has a clinical 

use as anti-convulsive and mood stabilizing drug used in epilepsy and bipolar disorders 

(Figure 15). The mechanism of VPA includes the neurotransmitter GABA. By inhibiting the 

GABA-transaminase, it is increasing GABA concentration, therefore enhancing 

neurotransmission of GABA [153]. In addition, VPA has an inhibiting effect on voltage-gated 

Na+ channels. The mechanisms of action of VPA in neuropsychiatric disorders are far from 

fully understood. Moreover, it has been shown that VPA (and its metabolites) can bind 

covalently and irreversibly to various tissue proteins [13], resulting in alternation of their 

conformation [154]. VPA also induced changes in the expression of multiple genes, mediated 

at least partially through the direct inhibition of HDAC [155-157].  

Valproic acid, in addition to selectively inhibiting the catalytic activity of class I 

HDACs, induces proteasomal degradation of HDAC2, in contrast to other inhibitors such as 

trichostatin A (TSA) [158]. As an inhibitor of histone deacetylases, VPA plays also an 

important role in the regulation of gene expression [124] and might be thus a promising 

effector molecule for epigenetic reprogramming. 

1.3.3 Adipose tissue more than a fat storage 

Adipose tissue is a loose connective tissue located in different places of the body. It is 

found beneath the skin (subcutaneous fat), around internal organs (visceral fat), in bone 

marrow (yellow bone marrow), and in breast tissue. The majority of the adipose tissue is 
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found directly underneath the dermis, but is also found intra-abdominally, as omental fat 

pads and surrounding several organs of the body.  

Humans and other mammals have two main adipose tissue types: white adipose 

tissue (WAT) and brown adipose tissue (BAT) [159]. The distinction between them is given 

by the color and the appearance of the adipose cells. The cells from the WAT contains only 

one fat vacuole, whereas the BAT adipose cells contain multiple vacuoles of fat and many 

mitochondria [160], with its brown color presumably coming from the relatively high 

cytochrome c content and better vascularization [159]. 

WAT is mainly considered to be storage for excess energy acquired from food intake 

[161]. It makes up as much as 20% of the body weight in men and 30% in women [162]. It is 

mostly found subcutaneously and intra-abdominally between the abdominal muscles and the 

visceral organs, where it is forming fat deposits, such as the Omentum majus. Recently, 

research has shown that WAT has also important endocrine functions and is releasing the 

so-called “adipokines”, which regulate the immune response, blood pressure, angiogenesis, 

hemostasis, bone metabolism, and thyroid function [163].  

1.3.4 Cellular components of adipose tissue and relevant CD markers 

expression pattern 

Adipocytes are found in both types of adipose tissues, brown and white, but they 

have different functions and even different phenotypes (Figure 16). The cells originating from 

BAT have the main function in thermogenesis and present several smaller adipose droplets 

together with multiple mitochondria. By contrast, WAT cells are mainly regulating the energy 

balance and possess one large lipid vacuole [164]. These cells belong to a completely 

independent cell lineage and recent reports suggest that at least some precursors for white 

fat cells are derived from mural cells associated with blood vessels [165, 166]. White adipose 

tissue also contains progenitors of multiple mesodermal cell lineages and is an attractive 

source of autologous cells for transplantation [116]. An MSC population was found in human 

WAT, which can be driven to differentiate into adipocytes, osteoblasts, and chondrocytes. 

Whether all mesenchymal stem cells found in adipose tissue are adult mesenchymal stem 

cells or only a subpopulation, it is a matter of further investigation. There have been studies 

that are showing differences in the cell population with a regard not only to the tissue type – 

brown or white, but also to age, gender or body mass index (BMI) of the patients [167-172]. 

Similarities were shown between human WAT stroma vascular cells and bone marrow 

stromal cells [173]. There are studies that define, confirm, establish, and validate both the in 
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situ and in vitro links between adult human mesenchymal stem cells (MSCs) and 

perivascular cells, referred to as pericytes [174, 175]. 

 

Figure 16. Different origins and properties of brown and white adipose tissue adipocytes. (A) Brown adipose 
tissue originating from myoblasts positive precursors; (B) White adipose tissue with origins from pericytes. 
Modified from Seale et al. [166]. 

Overall yield of cells from adipose tissue is influenced by donor age, obesity and/or 

anatomical site of the sampling [169-171]. Although intensive research work has been 

performed on progenitor cells from adipose tissue, the mesenchymal stem cells population 

remains a cell population difficult to characterize. Mostly, this cell population mixture is 

named “adipose-derived mesenchymal stem cells” [176], but are often called adipose tissue 

mesenchymal stem cells [177], multi-lineage cells from adipose tissue [178], or adipose 

tissue derived stromal cells [179]. 

There are two main procedures to harvest adipose tissue, namely liposuction and 

plain excision during procedures like abdominoplasty or breast reduction. It is still 

controversial, which of these cell sources provide a better cell population. Some studies state 

that liposuction aspirates represent a better source compared with the excised one [180] and 

others claim the contrary [181].  

It also has been shown that, in vitro, markers of MSCs are progressively decreased in 

their expression at higher passages and in this context also their osteogenic potential [182]. 

For reliable experiments it is recommendable to characterize the cell population, to establish 

a standard isolation procedure and to work with a homogenous cell population.  

Tissue regeneration and recovery in the adult body depend on self-renewal and 

differentiation of stem and progenitor cells. MSCs have the ability to differentiate into various 
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cell types and have already been isolated from the stromal fraction of bone marrow, dental 

tissue or adipose tissue [183]. Studies that are comparing the different types of cell 

populations have found many similarities regarding their differentiation repertoire, their 

adherence on the plastic property, or cell phenotype and morphology. Further similarities 

have been found concerning growth kinetics, expansion capacity, and expression of surface 

proteins. A basic characterization of mesenchymal stem cell populations points out the 

presence of CD105, CD90, CD73 [184], and absence of C14, CD34 or CD45 [185].  

1.3.5 Source of mesenchymal stem cells and their differentiation 

potential 

Adipose tissue is considered an alternative source of MSCs compared to bone, BM-

MSCs, since it can be obtained by a less invasive method and in larger quantities. Isolation 

of MSCs from adipose tissue has a high success rate with a considerably high yield via a 

quick and simple liposuction procedure with minimal down time and without the need for 

prolonged cell culturing. 

Adipose tissue is derived from the mesoderm and is one of the tissues that contain 

high fraction of mesenchymal stem cells [186]. AdMSCs are being increasingly considered 

as a readily available source of adult stem cells. It has been suggested that from 5 g of 

adipose tissue up to 35 million cells can be generated [136]. Therefore, this tissue can be 

regarded as a suitable source of potential stem cells for autologous cell therapies and 

regenerative medicine. It was recently shown that adMSC can undergo a process of 

differentiation towards the endothelial cell lineage [117]. 

1.3.6 Regenerative medicine and vascular disease 

The surgical treatment of CVD often requires interventions, such as coronary artery or 

peripheral bypass, procedures that involve placement of vascular grafts usually originating 

from the patient’s own blood vessels. These grafts are currently the most successful types of 

implants [187], but their availability is limited due to  their utilization in other procedures or 

because they are often diseased.  

For replacement of blood vessels over 6 mm in diameter, synthetic grafts can be 

used, produced for example from polytetrafluoroethylene (PTFE) [188]. This synthetic 

implant is able to replace vessel function and to improve the life expectancy of the patient but 

has also plenty of drawbacks. There is a high risk of infection, stenosis of the anastomosis, 

propensity for occlusion due to thrombosis, and calcification [189]. The artificial vascular 
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grafts cannot fully reproduce the biologically sophisticated functions of native vessels. 

Additionally, they require anticoagulants to control the risk of thromboembolism, while the 

allograft and bio-prosthetics undergo calcification, and structure deterioration [190]. The 

undeniable advantages of natural vessels are the capability of growth and adaptation to 

various physiologic conditions [191]. The ideal properties of a tissue engineered vascular 

graft would be, among others, resistance to infections, cellular components that would allow 

the vessel to grow and renew, and non-trombogenicity. In the case of smaller diameter 

conduits (<6 mm), the use of the PTFE grafts is highly limited due to the currently very low 

patency rates of less than 25% after 3 years and the obligatory anticoagulant medication 

[192].  

Given the high and increasing number of surgical interventions that require prosthetic 

transplants and the limited availability of autologous vessels to which there can be added, 

the poor performance of the synthetic alternatives, it is a big challenge for vascular surgeons 

and scientists to develop a new generation of biocompatible blood vessel substitutes [193]. 

1.3.7 Biological grafts 

Biological vascular grafts can originate from different sources. The most successful 

vascular grafts are the ones harvested from the patient himself, named autografts, because 

risks of incompatibility are eliminated. Because of the very little availability of autografting 

material, alternatives have been investigated, and these efforts were materialized by the 

introduction of allografts (grafts from human donors) or xenografts (grafts from other 

species). Nevertheless, these methods present the great disadvantage of triggering the 

immune response of the host and the patient has to stay under immunosuppressive 

medication the whole life. 

The concept of tissue engineering has been successfully applied in the production of 

vascular grafts. The aim is to create fully biocompatible grafts by completely eliminating the 

synthetic component of the constructs, combined with their repopulation with cells, either in 

vivo or in vitro. Strategies to achieve this goal include the use of biodegradable scaffolds or 

of naturally-derived scaffolds. The biodegradable scaffolds are based on cells seeded on 

polymers that can be resorbed by the body after implantation [194]. The idea behind this 

approach is to provide support for cells until the scaffold is replaced by newly-formed tissue. 

Examples of biodegradable polymers are polyglycolic acid (PGA), poly-L-lactic acid (PLLA), 

or poly-ε-caprolactone (PCL). This type of scaffolds can be completely degraded through 

hydrolysis and have a very good resistance to physiologic blood pressure. Scaffolds for 

vascular grafts can be derived from naturally-occurring polymers, with collagen being one of 
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the most abundant structural proteins in the human body [195] and a major component of the 

extracellular matrix of tissues, including that of blood vessels. Tubular constructs can be 

produced from collagen gels, which can be seeded with cells and implanted at the injured 

site [196]. Despite their potential and subsequent improvements, these constructs have low 

mechanical strength [197]. In 1998, L’Heureux introduced the sheet-based tissue 

engineering [198]. This method comprised of rolling sheets of smooth muscle cells grown in 

vitro onto a cylindrical support and culturing them until the sheets combine to each other. The 

construct is then devitalized by dehydration and the remaining ECM secreted by the cells is 

reseeded with endothelial cells. These scaffolds have good mechanical resistance but they 

were shown to be prone to intimal hyperplasia and aneurysm formation [199]. 

Another promising technique of obtaining biological scaffolds is decellularization 

[200]. Cells are being removed from xenogenic or allogenic blood vessels with the use of 

chemical, physical, or enzymatic agents. What remains is the ECM of the vessel, composed 

of collagen, fibronectin and glycoproteins, free of cellular antigens and cannot cause an 

immune response [201]. Onto this scaffold, similar to the above mentioned procedures, 

autologous cells are being seeded in order to coat the inner surface of the vessel [202]. A 

recent study has shown promising results, after this method was applied in vivo in a porcine 

model [189]. BM-MSCs and endothelial-like cells were seeded onto acellular arterial grafts, 

and implanted. The grafts showed lack of immune reaction, synthesis of autologous ECM, 

and in vivo remodeling of the construct. 

1.3.8 Aim of the study - epigenetics in regenerative medicine  

The need for biological tissue grafts is growing all over the world due to the obvious 

shortage of donors and the currently inadequate characteristics and limited applicability of 

the synthetic tissue substitutes. These issues have encouraged the research of autologous 

cells tissue engineering applications that could elude the above mentioned limitations. 

This study focused on the possibility to epigenetically reprogram adult mesenchymal 

stem cells (MSCs), derived from adipose tissue (adMSCs) into cells with endothelial features. 

Autologous endothelial cells would be the best cell type used in coating artificial scaffolds 

prior to implantation, in order to reduce the risk of thrombosis and consequently the risk of 

cardiovascular events. The limitation of using native endothelial cells comes from their very 

limited availability. By contrast, adMSCs can be found in higher numbers in the patient’s own 

adipose tissue, and have already been shown to possess high replication potential and so, to 

be available in a sufficient number to be used in tissue engineering. 
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AdMSCs themselves do not possess any endothelial characteristics. However former 

studies have shown that it is possible to induce non-typical gene expression by means of 

viral transduction. But this approach has been challenged due to ethical reasons and its 

limited success rate. On the other hand, epigenetic reprogramming induces gene expression 

without manipulating of the genome. Therefore, treatment of adMSCs with epigenetic 

modifying drugs such as AZA, BIX or VPA could facilitate de-differentiation towards 

progenitor stem cells by increased expression of pluripotency-related genes. This step would 

be followed by triggering the expression of endothelial-specific genes, which could improve 

the differentiation of adMSCs into endothelial cells that would make them suitable for 

applications in e.g vascular surgery. 

The aim of the current study was therefore to evaluate the ability of adMSCs to 

increase their differentiation potential and consequently to differentiate into cells of 

endothelial characteristics. In this regard following items were to address: 

1.  Isolation and characterization of adMSCs from human adipose tissue to achieve 

homogenous cell population.  

2. Treatment of adMSCs with epigenetic modifying drugs to induce an increase in the 

expression of pluripotency-related genes  

3. To evaluate, whether epigenetic modifications have a positive effect on differentiation 

of adMSCs towards endothelial lineage. 
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2 MATERIALS AND METHODS 

Collection of human tissue for research purposes was conducted according to the 

ethical guidelines of Technische Universität München, Klinikum rechts der Isar. The local 

ethics committee approved the study and written informed consent was given by all donors. 

2.1 Cell culture experiments 

2.1.1 Isolation of primary adipose derived mesenchymal stem cells 

(adMSCs) 

Human adMSCs were isolated from abdominal subcutaneous adipose tissue obtained 

from the Department of Plastic Surgery (n = 68). Cell isolation was performed by modification 

of the method described previously (Figure 17) [203]. Briefly, the adipose tissue was cut into 

small pieces, placed into a 50 ml falcon tube, washed two times with Dulbecco’s phosphate 

buffered saline (PBS, PAA Laboratories GmbH, Cölbe, Germany) and centrifuged at 430 x g 

for 10 min w/o brakes. Then, the tissue was transferred into a new falcon tube and mixed 

with sterile collagenase solution (4 mg collagenase II in 5.5 ml PBS). Subsequently, the 

mixture was shaken at 37°C for 30 min until an emulsion was formed. Warm growth cell 

culture medium (DMEM with high glucose 4.5 g/l (Biochrom AG, Berlin, Germany) with 10% 

fetal bovine serum (FBS, PAA Laboratories GmbH), 1% L-glutamine (PAA Laboratories 

GmbH), 1% penicillin/streptomycin (PAA Laboratories GmbH)) was added to the suspension 

and centrifuged at 600 x g for 10 min. The remaining adipose tissue was removed, the cell 

pellet was re-suspended in culture medium, and the cells were plated in 175 cm2 culture 

flasks. Growth medium was first changed after 24 h and then regularly every 3 days.  
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Figure 17. Isolation of adMSCs from 
adipose tissue. 

After scaling down the adipose surgical 
material, the tissue was washed with 
PBS and digested in collagenase 
solution. Subsequent centrifugation 
separated adMSCs as a pellet at the 
bottom of the tube from the floating lipid 
layer (mature adipocytes) on the top. 
The supernatant was removed; the 
pellet was re-suspended in appropriate 
cell growth medium and subsequently 
seeded into culture flask to allow cells 
to expand. 
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2.1.2 Cell culture 

2.1.2.1 Culture of adipose-derived mesenchymal stem cells 

The cells were cultured in Dulbecco’s modified Eagle’s medium: DMEM with high 

glucose 4.5 g/l (Biochrom AG) supplemented with 10% FBS (PAA Laboratories GmbH), 5 ml 

penicillin/streptomycin (PAA Laboratories GmbH), and 2 mM L-glutamine (PAA Laboratories 

GmbH), and incubated at 37°C in 5% CO2 atmosphere. To maintain the cells in culture, 

medium was changed every three days. AdMSCs were sub-cultured when they reached a 

confluence of 80%. Cell number and viability were determined by trypan blue exclusion 

method. For all experiments adMSCs were used in the third passage, except for the flow 

cytometry (fluorescence activated cell sorter - FACS analysis), where the cells were 

analyzed in each passage until the passage 3. 

2.1.2.2 Osteogenic differentiation 

The osteogenic differentiation was induced by cultivation of adMSCs in osteogenic 

differentiation medium. The medium was changed every 3 days. The potential of adMSCs to 

differentiate in osteoblast-like cells was evaluated at different time points, 7, 14, and 21 days. 

As positive control osteogenic progenitor cells were used. The human osteogenic progenitors 

were isolated from tubercular bone specimen of patients operated for hip joint replacement 

orthopaedic surgery. None of the donors had any disease with effect on the bone 

metabolism. Osteogenic differentiation media content was: 500 ml Alpha Medium (Biochrom 

AG), 50ml FBS (PAA Laboratories GmbH), 10 ml HEPES (Biochrom AG), 5 ml 

penicillin/streptomycin (PAA Laboratories GmbH), 5 ml L-Glutamine, 5 ml MEM Vitamins 

(Biochrom AG), dexamethasone 100 nM (Sigma-Aldrich, Munich, Germany), L-ascorbic acid 

0.25mM (Sigma-Aldrich), Beta-Gliycerophosphate 10 mM (Sigma-Aldrich). 

2.1.2.3 Adipogenic differentiation 

Adipogenic differentiation was induced with appropriate adipogenic differentiation 

medium, as mentioned by Kern [204]. Medium was changed every 3 days. The potential of 

adMSCs to differentiate in adipocytes was evaluated 14 and 21 days after the start of the 

recommended protocol. Adipogenic differentiation medium comprised of 500 ml DMEM High 

Glucose (Biochrom AG), 50 ml  FBS (PAA Laboratories GmbH), 5 ml penicillin/streptomycin 

(PAA Laboratories GmbH), 5 ml L-glutamine (PAA Laboratories GmbH), 5 ml Amphotericin B 

(PAA Laboratories GmbH), 1 mM dexamethasone (Sigma-Aldrich), 0.5 mM 3-isobutyl-1-

methyl-xanthine (Sigma-Aldrich), 10 μg/ml recombinant human insulin (Sigma-Aldrich), and 

100mM indomethacin (Sigma-Aldrich).  
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2.1.2.4 Endothelial differentiation 

Endothelial differentiation medium (EM) was prepared by adding 5 ml 

penicillin/streptomycin (PAA Laboratories GmbH), 5 ml L-glutamine (PAA Laboratories 

GmbH), and 5 ml Amphotericin B (PAA Laboratories GmbH) in 500 ml endothelial medium 

(PAA Laboratories GmbH). The medium was changed every 3 days. The endothelial 

differentiation was evaluated after 7 and 14 days of cell cultivation under these differentiation 

conditions. 

2.1.2.5 Cell line used as positive control 

NTERA-2 (ACC DSMZ no. CRL-527) cell line were purchased from Leibniz-Institut DSMZ-

Deutsche Sammlung von Mikroorganismen und Zellkuturen GmbH (Braunschweig, 

Germany) and cultivated under the recommended conditions [205]. 

HUVEC cells (C12200, Promocell GmbH, Heidelberg, Germany) used endothelial culture 

conditions, mentioned above. 

Osteoblast progenitor cells have been isolated from trabecular bone specimens and 

cultures as previously described [206]. 

2.1.2.6 Cell propagation 

Cells were seeded and cultivated in plastic culture flasks (175 cm2), Petri dishes (10 

cm2), 6 well plates, 96-well plates, or 4-well chamber slides (all purchased from BD 

Bioscience, Heidelberg, Germany) depending on the experiments intended, as shown in 

Table 3. 
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Table 3. Cell cultivation condition used in the current study. 

Type of the 
seeding 
surface 

Cell number at 70% 
confluence/well(flask) 

Cells at full 
confluence/well(flask) 

Trypsin 
/ EDTA 

Volume 
of the 

medium 

Type of 
experiments 

T-175 1.5x10
6
 2.5x10

6 
5 ml 25 ml Cell propagation 

T-75 0.75x10
6
 1.2x10

6
 3 ml 15 ml Cell propagation 

Petri dish 0.75x10
6
 1.2x10

6
 2 ml 10 ml 

RNA, DNA, 
protein 

extraction 

6well plate 0.10x10
6
 0.20x10

6
 - 3 ml 

Von Kossa ALP, 
and Oil RedO 
stain, cells for 

FACS analysis, 
ac-LDL uptake 

assay 

96-well plate 0.005x10
6
 0.01x10

6
 - 0.100 ml 

ALP assay, Oil 
Red O assay, 
MTT assay 

4-well chamber 
slide 

0.015x10
6
 0.020x10

6
 - 1 ml ICC 

 

2.1.2.7 Cell counting  

The cell number was determined by using the Fuchs-Rosenthal counting chamber as 

shown in Figure 18. The Fuchs-Rosenthal consists of a thick glass slide with an H-shaped 

central area that is subdivided in two square counting areas. Each counting area is again 

divided in 16 areas of 1 mm2 each, which are sub-divided into 16 squares. It is generally 

recommended to count 16 areas of 1 mm2 each, preferably 8 in each chamber.  

Procedure: a mixture of 10 µl Trypan Blue solution (Sigma-Aldrich) and 10 µl cell 

suspension was prepared in a 1.5 ml reaction tube. After 5 min of incubation, 10 µl of mixture 

was pipetted into the counting chambers of the haemocytometer and the cells visible in the 1 

mm2 squares were counted in both counting areas after microscopic visualization in phase 

contrast field. 
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Figure 18.  Schematic view of the Fuchs-Rosenthal counting chamber. Each large square has a surface area of 
1.0 mm

2
, and the depth of the chamber is 0.2 mm.  As there are 1000 mm

3
 per ml, each large square represents 

a volume of 0.0002 ml, so that it is equal to 1/ 0.0002 ml = 5000. The volume factor is 5000. 

The cell number was calculated by using the following formula: 

                                                            

2.1.3  Cell culture analysis 

2.1.3.1 Cytochemistry 

2.1.3.1.1 Von Kossa staining 

This method uses a precipitation reaction in which silver ions react with phosphate, a 

component of hydroxyapatite (bone mineral) in the presence of acidic material. 

Photochemical degradation of silver phosphate occurs when exposed to light, and metallic 

silver is visualized as a dark-colored material. This technique is used for demonstrating 

deposits of calcium or calcium salt, so it is not specific for the calcium ions itself. 

Procedure: Cells were fixed for 10 min with 4% formaldehyde (Apotheke des Klinikum 

rechts der Isar der TU München, Germany) at RT, washed for 10 min with distilled water, and 

then incubated with 1% silver nitrate solution (Sigma-Aldrich). The solution was added on the 

chamber slides and incubated under light exposure for 40 min at RT. Cells were then 
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carefully washed with distilled water (B. Braun Melsungen AG, Melsungen, Germany) and 

incubated for 5 min at RT in a solution of 5% sodium thiosulphate (Sigma-Aldrich) to remove 

the unreacted silver nitrate. Once the staining was finished the calcification of the matrix was 

evaluated microscopically and digitalized. 

2.1.3.1.2 Alkaline phosphatase staining 

5-bromo-4-chloro-3-indolyl-phosphate (BCIP) reaction produces a dark blue, precisely 

localized precipitate in the presence of alkaline phosphatase (ALP) and with the help of 

nitroblue tetrazolium (NBT) that is the most commonly used electron-transfer agent and co-

precipitant for this reaction (Figure 19). BCIP is the ALP-substrate that reacts further after the 

dephosphorylating to give a dark-blue indigo-dye as an oxidation product. NBT serves herein 

as the oxidant and gives also a dark-blue dye. It intensifies thereby the color and makes the 

detection more sensitive. 

 

Figure 19. Diagram of the NBT/BCIP reaction. When alkaline phosphatase removes the phosphate group of 
BCIP (5-bromo-4-chloro-3-indolyl-phosphate), the resulting molecules dimerize under oxidation conditions to give 
the blue precipitate (5, 5'-dibromo-4,4'-di dichloro-indigo). During the reaction with BCIP, NBT (nitroblue 
tetrazolium) is reduced to its colored form [207]. 

Procedure: Cells were fixed for 10 min with a fixation buffer (acetone- methanol ratio 

1:1). Each time one tablet of NBT/BCIP (Roche, Mannheim, Germany) was dissolved in 10 

ml distilled water. The cells were then covered with the solution for 5 min until a color 

became visible. Kaiser’s mounting medium (Merck, Darmstadt, Germany) was applied and 

the stain was visualized under microscope.  
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2.1.3.1.3 Oil red O staining 

Oil Red O staining is an assay performed to detect oil droplets produced by 

adipocytes. The mechanism of the staining of lipids is a function of the physical properties of 

the dye being more soluble in the lipid to be demonstrated than in the vehicular solvent. The 

Oil Red O is a polyazo dye (Figure 20). 

 

Figure 20. Oil Red O chemical structure (1-([4-(Xylylazo) xylyl] azo)-2-naphthol 1-[2,5-Dimethyl-4-(2,5-
dimethylphenylazo) phenylazo]-2-naphthol). 

Procedure: After fixing of the cells for 10 min with 4% formaldehyde, they were 

washed with tap water for 10 min and rinsed very briefly in 40% isopropanol (Apotheke MRI). 

On the cells, 0.5% Oil Red O solution in isopropanol was then added and incubated for 15 

min at RT, after which the cells were washed briefly in 40% isopropanol. Following this 

procedure the nuclei were counterstained with haematoxylin (Apotheke MRI) for 2 min. The 

cells were washed with tap water, covered with mounting medium consisting of Kaiser’s 

(hydrophilic mounting medium) (Merck) and glass cover slides. The staining was then 

analyzed under the microscope.  

2.1.3.2 Assays 

2.1.3.2.1 Viability assay 

The viability assay is based on a colorimetric assay that measures cell viability and 

involves the reduction of yellow 3-(4, 5-dimethythiazol-2-yl)-2, 5-diphenyl tetrazolium bromide 

(MTT) by the mitochondrial succinate dehydrogenase. The MTT enters the cells and passes 

into the mitochondria where it is reduced to an insoluble, dark purple formazan salt. This 

product is solubilized and measured spectrophotometrically at a wavelength of 570 nm. 

Since reduction of MTT can only occur in metabolically active cells, this assay is measuring 

the cell viability not their toxicity. 
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Procedure: AdMSCs were harvested by trypsinization, resuspended in culture 

medium, and plated in a 96-well plate. After 24 h, the cells were treated either with 5-

azacytidine (Sigma-Aldrich), BIX-01294 (Sigma-Aldrich), or VPA (Sigma-Aldrich) for 24, 48 or 

72 h. Following treatment, the medium was replaced by 0.5 mg/ml MTT in a water solution 

and the plate was incubated for 2 h at 37°C, in 5% CO2. The MTT solubilization solution was 

prepared from 5 g sodium dodecyl sulphate (SDS) (Sigma-Aldrich), 49.7 ml dimethyl 

sulfoxide (DMSO) (Sigma-Aldrich), and 0.3 ml acetic acid (Merck). Solubilization solution 

(100 µl/well) was used to dissolve the formazan crystals. Absorbance was measured at 570 

nm / 690 nm using a FLUOstar Omega fluorometer (BMG Labtech, Ortenberg, Germany). 

2.1.3.2.2 Alkaline phosphatase activity assay 

Alkaline phosphatase (ALP) is a hydrolytic enzyme acting optimally at alkaline pH. 

The activity of this enzyme can be quantified photometrically by measuring the p-nitrophenol 

amount produced in the reaction of p-nitrophenolphosphate substrate with ALP at alkaline pH 

(Figure 21). 

 

Figure 21. Reaction of p-nitrophenol with alkaline phosphatase in alkaline solution. 

Procedure: AdMSCs were plated in 96-well plates (5000 cells per well) and were 

culture in osteogenic differentiation medium. As a negative control, adMSCs were cultivated 

in normal growth medium. As a positive control, osteoblast progenitor cells were cultivated in 

osteogenic differentiation medium. At selected time points (7, 14, and 21 days), ALP activity 

was measured. A standard curve with different concentration of p-nitrophenol (4-nitrophenol 

solution 10 mM, Sigma-Aldrich) was plotted. A substrate solution was prepared by adding 1.3 

colourless 
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Alkaline phosphatase 

Water 

Alkaline 

solution 
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mg 4-nitrophenyl phosphate disodium salt hexahydrate (Sigma-Aldrich) in an alkaline 

solution. The alkaline solution was prepared from 0.375 g glycine (Sigma-Aldrich), 1.211 

g  2-Amino-2-(hydroxymethyl)-1,3-propanediol (or Trizma base, Sigma-Aldrich), 0.203 mg 

MgCl2 (Sigma-Aldrich)  in distilled water and adjusted to pH=10.5 with NaOH (Merck). After 

discarding and washing the cells with PBS, 100 µl substrate solution were added in each well 

and incubated at 37˚C for 30 min. ASys Expert Plus plate reader (Omnilab, Bremen, 

Germany) was warmed up to 37˚C and the kinetic measurement was performed at 405 nm in 

5-minute intervals for 30 min. 

2.1.3.2.3 Oil Red O quantification assay 

By solubilizing the droplets stained with Oil Red O in isopropanol, this technique 

allows the quantification of adipogenic differentiation [208].  

Procedure: For this assay, cells were seeded in 96-well plates and cultured in 

adipogenic differentiation medium. The cells from two study groups (elderly and young) were 

then stained with Oil Red O without counterstaining with haematoxylin; after washing with 

40% isopropanol and distilled water, into each well was added 100 µl of 60% isopropanol 

and incubated for 15 min at RT on a shaker. The optical density of the solution was then 

measured at 520 nm with the spectrophotometer. In order to normalize the results to the 

protein amount, an additional assay was performed, namely Sulphorhodamine B (SRB 

assay). 

2.1.3.2.4 Sulphorodamine B – protein measurement 

The Sulforhodamine B (SRB) assay system allows the measurement of the total 

biomass of the cells by staining cellular proteins with the SRB [209]. The key component is 

the dye, Sulforhodamine B (or Acid Red 52). The cells are briefly washed, fixed, and stained 

with this dye. The incorporated compound is then liberated from the cells with a TRIS 

solution. An increase or decrease in the number of cells (total biomass) results in a 

concomitant change in the amount of dye incorporated by the cells. 

Procedure: SRB solution was prepared in 1% acetic acid solution by adding 0.2 g 

Sulforhodamine B (Sigma-Aldrich) in 50 ml 1% acetic acid (Merck).  After the Oil red O 

assay, cells were washed and into each well of a 96-well plate 50 µl SRB solution were 

added. After incubation for 30 min at RT on a shaker the SRB solution was removed; cells 

were washed carefully with 1% acetic acid five times, each time for 5 min, again on the 

shaker. Into each well were then added 100 µl of 10 mM TRIS aqueous solution and 
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incubated for 10 min at RT on the shaker. Measurement of the absorbance was performed at 

595 nm (SRB solution) and 690 nm (other impurities or background absorbance) [209]. 

2.1.3.2.5 Ac-LDL uptake  

DiI-Ac-LDL, acetylated low density lipoprotein labeled with 1,1’-Dioctadecyl-3,3,3’,3’-

tetramethylindocarbocyanine perchlorate, labels both vascular endothelial cells and 

macrophages. It can be used to identify and/or isolate these cells from mixed cells 

populations. When cells are labeled with DiI-Ac-LDL, the lipoprotein is degraded by 

lysosomal enzymes and the DiI fluorescent dye accumulates in the intracellular membranes. 

Labeling cell with DiI-Ac-LDL has no effect on cell viability. Non-endothelial cells (fibroblasts, 

smooth muscle cells, pericytes, epithelial cells) are not labeled [210].  

Procedure: DiL labeled Ac-LDL was purchased from Bioquote Limited (York, UK). 

The cells were carefully washed with PBS and incubated with the DiI-Ac-LDL solution (10 

µg/ml endothelial medium) for 4 h, at 37 ºC, in 5% CO2. Cells were carefully washed three 

times with PBS and afterward fixed in 4% formaldehyde for 10 min. The formaldehyde 

solution was removed, cells were washed with PBS, and cell nuclei were stained with 

Sybrgreen I dye (Sigma-Aldrich) for 15 min at RT, protected from light. Sybrgreen I excess 

was removed by washing with PBS three times. Cells were then analyzed by the use of a 

fluorescence microscope. The positive control comprised of HUVEC cells and the negative 

control of adMSCs that have been cultured under normal growth conditions. 

2.2 Immunohistochemistry 

The immunochemical procedures carried out in the present work were performed with 

the LSAB kit (DAKO, Hamburg, Germany) or APAAP kit (DAKO), following the instructions of 

the manufacturer. Each antibody was used at an optimal dilution and with an antigen retrieval 

method shown in Table 4, 5, and 6. Antibodies were diluted in an antibody diluent purchased 

from DAKO. 

2.2.1  LSAB method 

Most of the immunochemical staining methods in use today are based on the high 

affinity that streptavidin (Streptomyces avidinii) and avidin (chicken egg) possess for biotin. 

The LSAB reagents are applied in the following order: primary antibody, biotinylated 

secondary antibody, streptavidin-enzyme conjugate. The color reaction is then developed 

with the appropriate substrate/chromogen. 
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Procedure: Prior to performing this staining method, TRIS buffer (1x) was prepared by 

diluting a stock solution (10x) in a distilled water. Stock of TRIS buffer (10x) was prepared by 

adding 60.5 g Trizma base (Sigma-Aldrich) and 90 g NaCl (Merck) in 1 l distilled water, and 

adjusting the pH to 7.6 with HCl (Apotheke MRI). Cells were fixed with acetone : methanol, 

ratio 1:1 (v/v), for 10 min. The fixation buffer was removed and cells were washed with 1x 

TRIS buffer. All following steps were performed at RT and according to the manufacturer 

instructions. Blocking of the peroxidase was performed with 0.3% hydrogen peroxide 

(Merck), followed by 1 h incubation with the appropriate antibody as presented in Table 4, 5, 

and 6. The samples were incubated with secondary antibody (solution A) for 25 min, followed 

by streptavidin-enzyme conjugate (solution B) for another 25 min. The chromogenic solution 

was prepared from 15 µl DAB+ (solution C) and 750 µl HRP substrate (solution D). Each 

step of the protocol was followed by washing in 1x TRIS buffer. After incubation for 3-5 min 

with the chromogen, samples were counterstained with haematoxylin for 30 seconds. 

Mounting medium used was Pertex (Leica Mikrosysteme Vertrieb GmbH, Wetzlar, Germany). 

2.2.2 APAAP method 

This method is based on an indirect reaction. The staining sequence of this technique 

consists of the use of an unconjugated primary antibody, a secondary antibody, the soluble 

enzyme-anti-enzyme complex, and substrate solution. The primary antibody and the 

antibody of the enzyme immune complex must be from the same species. The secondary 

antibody must be directed against immunoglobulins of the species producing both the 

primary antibody and the enzyme immune complex. Soluble enzyme-anti-enzyme immune 

complex techniques were named after the particular enzyme immune complex they used.  

Procedure: For this procedure TRIS buffer (1x) (see LSAB method) was used for 

washing the samples after each step of the following protocol. Cells have been fixed with a 

fixation buffer (acetone: methanol ratio 1:1) for 10 min. The fixation buffer was removed and 

cells were washed with 1x TRIS buffer. All following steps have been performed at RT and 

according to the manufacturer instructions. First antibody against the target protein was 

incubated with the samples for 1 h using optimized dilution for each antibody as shown in 

Table 4. The incubation with the secondary antibody (sol. A) for 25 min was followed by 

incubation with the APAAP immunocomplex (sol. B) for another 25 min. Meanwhile, the 

chromogen solution was prepared from 30 µl sol. C, 30 µl sol. D, 30 µl sol. E, and 750 µl sol. 

F (substrate solution). The chromogenic mix was incubated for 15 min, until the red color has 

been observed under the microscope. Haematoxylin counterstain followed for the nuclear 

stain, and mounting was done with hydrophobic mounting medium, Pertex (Leica 

Mikrosysteme Vertrieb GmbH). 
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Table 4. Antibodies used for characterization of the adMSC population for ICC. 

Name 
Reacts 

with 
Clone Isotype Brand &Cat. Nr. Dilution 

Detection 
System 

Mouse anti vimentin Human Mouse IgG Dako 1:500 APAAP 

Mouse anti Ki67 Human Mouse IgG 
Chemicon 

International IC 
1:200 APAAP 

CD105 Ab-3, mouse anti-
human 

Human SN6h IgG 
Neomarkers 
MS-1290-P0 

1:500 LSAB 

Monoclonal Mouse Anti-Human 
CD31, Endothelial Cell 

Mouse JC70A IgG DAKO (M0823) 1:50 LSAB 

Table 5. Antibodies used for detection of pluripotency markers. 

Name 
Reacts 

with 
Clone Isotype 

Brand &Cat. 
Nr. 

Dilution 
Detection 
System 

OCT4A(C30A3) Rabbit mAb 
Human, 
Mouse 

Rabbit 
Rabbit 

IgG 
Cell Signaling 

(#2840) 
1:400 LSAB 

Rabbit Polyclonal to OCT4 
Human, 
Mouse 

Polyclonal 
Rabbit, 

IgG 
Abcam  

(ab19857) 
1:500 LSAB 

Rabbit polyclonal to Nanog 
Human, 
Mouse 

Polyclonal 
Rabbit 

IgG 
Abcam 

(ab21624) 
1:500 LSAB 

Negative Control Rabbit 
Immunoglobulin Fraction 

(Normal) 
- - Rabbit 

DAKO 
(X0903) 

1:500 LSAB 

Table 6. Antibodies used for characterization of the adMSCs differentiated into ECs. 

Name 
Reacts 

with 
Clone Isotype Brand &Cat. Nr. Dilution 

Detection 
System 

Flk-1/KDR/VEGFR2 Ab-1 Human Rabbit Rabbit 
Thermo Scientific 

(RB-1526-P0) 
1:200 LSAB 

Monoclonal Mouse Anti-
Human CD31, Endothelial Cell 

Human JC70A IgG1 DAKO (M0823) 1:50 LSAB 

Monoclonal Mouse Anti-
Human Von Willebrand Factor 

Human F8/86 IgG1 DAKO (M0616) 1:400 LSAB 

Mouse anti hVCAM-1 (CD106) Human 
Mouse 

IgG 
IgG R&D Systems 1:500 LSAB 

Negative Control Rabbit 
Immunoglobulin Fraction 

(Normal) 
- - Rabbit DAKO (X0903) 1:500 LSAB 

Mouse IgG1 Negative Control - - - DAKO (X0931 ) 

1:50 
1:200 
1:400 
1:500 

APAAP 
and LSAB 

2.3 Flow cytometry (FACS analysis) 

Flow cytometry analysis allows simultaneous measuring of relative cell size (FSC), 

cell granularity, internal complexity (SSC), and florescence intensity. The major components 

comprise a fluid system, an optical system with laser, reflector, and filter device. According to 

the florescence staining applied, wavelengths differ between 450 and 700 nm. FITC requires 

a laser wavelength of about 488 nm in the green range, APC has its optimum at 633 nm in 

the red spectrum, and PE requires laser with wavelength at 532 nm in the yellow spectrum. 



MATERIALS AND METHODS 44 

For flow cytometry, adMSCs in passages 0, 1, 2, and 3 were used. The cells were 

detached from their culture plates with trypsin/EDTA and labeled by incubation at 4ºC for 60 

min with the following monoclonal antibodies: mouse anti-human FITC-labeled CD14, mouse 

anti-human FITC-labeled CD45 (Biozol Diagnostica Vertrieb GmbH, Eching, Germany), 

mouse anti-human PE-labeled CD105 (Biozol Diagnostica Vertrieb GmbH), and mouse anti-

human APC-labeled CD90 (BioLegend, London, UK). Acquisition and analysis were 

performed on a FACS Canto II, BD Biosciences (San Jose, CA, USA) (Table 7). An isotype 

control was included in each experiment. Data processing and analysis were performed with 

the FlowJo software. All antibodies were used at a concentration of 0.5 µg/106 cells in a total 

volume of 100 µl. 

Table 7. Antibodies used for FACS analysis.  

Name 
Reacts 

with 
Clone Isotype Brand &Cat. Nr. Dilution 

mouse anti-human FITC-labeled 
CD14 

Human, 
Mouse 

mouse mouse Biozol, Germany 
0.5 µg/10

6
 cells in 100 
µl. 

mouse anti-human FITC-labeled 
CD45 

Human, 
Mouse 

mouse mouse Biozol, Germany 
0.5 µg/10

6
 cells in 100 
µl. 

mouse anti-human PE-labeled 
CD105 

Human, 
Mouse 

mouse mouse Biotech, USA 
0.5 µg/10

6
 cells in 100 
µl. 

mouse anti-human APC-labeled 
CD90 

Human, 
Mouse 

mouse mouse BioLegend, USA 
0.5 µg/10

6
 cells in 100 
µl. 

2.4 Tissue sampling, processing, and analysis 

2.4.1 Study group, atherosclerotic plaque processing, and 

characterization 

The study group included atherosclerotic plaque specimens from 26 patients with 

high grade carotid artery stenosis, who underwent carotid endarterectomy (CEA) (Figure 22). 

The specimens were taken from the biobank of the department of Vascular Surgery, 

selecting the entire range of atherosclerotic lesions from type II to VII (according to AHA 

classification [76, 211]). Control samples consisted of 10 healthy carotid vessels and were 

obtained from patients, who underwent trauma surgery. In addition, serum samples from 10 

healthy volunteers were included as a control for blood analysis. All patients underwent 

neurological examination before and after the surgical intervention. The study was conducted 

according to the guidelines of the world medical association declaration of Helsinki [212]. All 

the patients gave their informed consent. 
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Procedure: Carotid plaque was collected during the surgical procedure, segmented in 

blocks of 3-4 mm, fixed in 4% formaldehyde for 24 h, dehydrated, and embedded in paraffin. 

Segmenting was performed in the way to receive different stages of atherosclerosis plaques 

between II and VII. For a proper histological characterization, 3 µm sections were prepared 

from each sample followed by haematoxylin-eosin and elastica van Gieson staining. 

Histological classification was performed under the supervision of Dr. rer. nat. J. Pelisek  and 

the technical assistant experienced in histology Fr. R. Hegenloh. Type II and III lesions were 

defined as an early stage of atherosclerosis, type V, VI, and VII as an advanced stage. 

2.4.2 Decellularisation and recellularization 

One of the processes used for creation of bio-scaffold for autologous vessels is 

decellularization. Through this process, the cells can be removed from tissue by variety of 

treatments (chemical, physic-chemical). What remains is a bio-scaffold consisting of the 

component of extracellular matrix such as collagens and proteoglycans. For this purpose, 

sodium dodecyl sulphate (SDS) is a detergent known to solubilize cell membrane and 

proteins without affecting the integrity of the bio-scaffold [213]. 

Procedure: A sterile 0.66% aqueous solution of SDS (Sigma-Aldrich) was used. 

Human saphenous vein was segmented in pieces of 2 cm; each was placed in a 15 ml tube 

filled with 7 ml SDS solution (decellularization solution). The tubes where then placed on a 

rotational-shaker and the decelllularization solution was changed under sterile conditions 

after 30 min, 1 h, 6 h, 24 h, 48 h, and 96 h. The resulting bio-scaffolds were then washed 

three times under sterile conditions with PBS.  

Cells were harvested with trypsin/EDTA (Biochrom AG), counted, and 0.75x106 were 

suspended in 2 ml endothelial medium. The scaffold was placed in a 10 cm2 Petri dish 

Adventitia 

Media 

Intima 

Biological sample consisted 
in the removal of the intimal 

layer affected by 
atherosclerosis 

Figure 22. Biological samples excised from patients with carotid artery stenosis consist of the following layers: 
Intima – affected by atherosclerosis, and a part of media. The border between these two layers can be 
recognized microscopically by elastica van Gieson staining of the elastin fibers and the presence of smooth 
muscle cells within intima layer.  
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without medium; the cell suspension was placed inside of lumen of the vessel (seeded) and 

incubated for 2.5 h at 37ºC, 5% CO2. As a next, endothelial medium was added and the cells 

were cultivated further on for 2 and 7 days.  

2.4.3 Histochemistry 

In order to use the atherosclerotic plaque material for histological or 

immunohistological staining, fresh tissues have been fixed for 24 h in 4% formaldehyde, 

followed by dehydration, embedding in paraffin, and sectioning in 3 µm thin slides. As an 

additional step in case of calcified tissue (advanced stage atherosclerosis plaque) the 

specimens were incubated in an aqueous solution saturated with EDTA for up to 7 days, 

dependent upon the extent of calcification. Prior the staining procedure all sectioned tissue 

slides were deparaffinised by incubation in xylene for 20 min, followed by isopropanol for 20 

min, 99.8% ethanol for 10 min, 70% ethanol for 10 min, and distilled water for 10 min. All the 

materials used for histochemistry were purchased from Apotheke MRI.  

2.4.3.1 Haematoxylin – Eosin staining  

Following deparaffinization, nuclear staining was performed by incubating the slides 

with Mayer’s haematoxylin for 5 min at RT. The slides were then washed in tap water for 10 

min, incubated with acidified eosin for 5 min, rinsed briefly in tap water and in increasing 

concentrations of alcohol (70% ethanol, 96% ethanol, 100% isopropanol) followed by xylene. 

The samples were mounted in hydrophobic mounting medium and covered with glass cover 

slides.  

2.4.3.2 Elastica van Giesson staining 

The Elastica van Gieson staining is a combination of Weigert’s haematoxylin, van 

Gieson’s picrofuchsin, and the resorcin-fuchsin solution that allows differential analysis of 

nuclei, connective tissue, muscle and elastic fibers. 

Procedure: Weigert’s haematoxylin was prepared fresh by mixing Weigert’s solution A 

and Weigert’s solution B (ratio 1:1). The slides, previously dried at 56ºC and deparaffinized, 

were incubated in Weigert’s haematoxylin for 10 min and washed in warm tap water for 

another 10 min. Next step consisted of staining of the cytoplasm by incubation with van 

Gieson solution for 3 min. This step was followed by washing in distilled water and increasing 

concentrations of alcohol (70% ethanol, 96% ethanol, isopropanol) followed by xylene. The 

samples mounted in hydrophobic mounting medium and covered with glass cover slides. 
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2.4.4 Immunohistochemistry 

All stainings were performed on thin slices of tissue fixed with formaldehyde and 

embedded in paraffin (FFPE tissues). Depending on the target antigen, an antigen epitope 

retrieval step was employed (see Table 8 and 9).  

Procedure: The tissue was sectioned into slices of 3 µm, mounted on glass slides, 

briefly dried at 56ºC, and deparaffinized. The antigen-retrieval methods used were heat 

induced epitope retrieval (HIER) or proteolytic enzyme induced epitope retrieval (PIER). 

HIER consists of incubating the sectioned slides at 100ºC under pressure for 7 min in 10 mM 

aqueous sodium citrate solution (Sigma-Aldrich), at pH 6.0. PIER consists of 20 min 

incubation with a 5 µg/ml proteinkinase (Sigma-Aldrich). After epitope retrieval, the protocol 

followed the manufacturer’s instructions described above.  

Table 8. Antibodies used for characterization of the atherosclerotic plaque. 

Name Clone 
Isotyp

e 
Brand &Cat. Nr. Dilution 

Detection 
System 

Antigen 
Retrieval 
Method 

Monoclonal Mouse 
Anti-Human CD31, 

Endothelial Cell 
JC70A IgG1 DAKO (M0823) 1:50 LSAB HIER 

Monoclonal Mouse 
Anti-Human Muscle 

Actin 
HHF35 IgG1 DAKO (M0635) 1:200 APAAP HIER 

Monoclonal Mouse 
Anti-Human Von 
Willebrand Factor 

F8/86 IgG1 DAKO (M0616) 1:400 APAAP PIER 

Monoclonal Mouse 
Anti-Human CD68 

Kb1 IgG1 DAKO(M0184) 1:2000 LSAB HIER 

Monoclonal Mouse 
Anti-Human CD45, 
leucocyte Common 

Antigen 

2B11+
PD7/26 

IgG1 DAKO(M0701) 1:200 LSAB HIER 

Mouse IgG1 
Negative Control 

- - DAKO (X0931 ) 
1:50; 
1:200; 
1:400 

APAAP and 
LSAB 

PIER and PIER 

Table 9. Antibodies used for detection of epigenetic changes at histone level. 

Name Reacts with Isotype 
Brand & 
Cat. Nr. 

Dilution 
Detection 
System 

Antigen 
Retrieval 
Method 

Di-Methyl-Histone H3 
(Lys4)(C64G9) Rabbit mAb 

Human, Mouse 
, Rat, Monkey 

Rabbit 
IgG 

Cell 
Signaling 
(#9725) 

1:3000 LSAB PIER 

Di-Methyl Histone H3(Lys9) 
Antibody 

Human, Mouse, 
Rat, Monkey 

Rabbit 
IgG 

Cell 
Signaling 
(#9753) 

1:200 LSAB PIER 

Negative Control Rabbit 
Immunoglobulin Fraction 

(Normal) 
- Rabbit 

DAKO 
(X0903) 

1:200 
1:3000 

LSAB PIER 

2.4.5 Microscopy and digitalization 
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Digital micrographs were captured with a Zeiss AxioCam MRc digital camera 

attached to a Zeiss Axio Observer Z1 microscope (Carl Zeiss Microscopy GmbH, Jena, 

Germany), equipped for light and fluorescence microscopy. The microscope was controlled 

by the AxioVision software, version 4.8.2 (Carl Zeiss Microscopy GmbH). 

2.5 Gene expression analysis at mRNA level using PCR 

2.5.1 RNA extraction from cells  

The RNA extraction method used in the present work is based on the reversible 

binding properties of silica-based columns and RNA. Cells are first lysed and RNases are 

inactivated. The cell lysates are then applied onto the columns to which total RNA binds, 

while cellular debris and DNA is digested with the peqGOLD DNase I enzyme and other 

contaminants are effectively washed out.  

Procedure: RNA isolation was performed with peqGOLD Total RNA Kit purchased 

from PEQLAB GmbH (Erlangen, Germany). Cells were lysed with 400 µl lysis buffer and 

scraped off the 10 cm2 culture dishes. Following steps were then performed according to 

manufacturer’s instructions. RNA was finally eluted in RNase-free water, the concentration 

and the quality measured with a Nanodrop 2000c spectrophotometer (PEQLAB GmbH), and 

stored at -80ºC until further use. 

2.5.2 RNA extraction from FFPE tissue samples  

RNA was extracted from FFPE tissue with the High Pure FFPE RNA Micro Kit (Roche 

Applied Science, Mannheim, Germany). Two tissue slices, each of 10 µm thickness, were 

placed into a 1.5 ml reaction tube, deparaffinized by adding 800 µl xylene, vortexed, and 

incubated at RT for 5 min. The xylene was then removed by 400 µl ethanol 98.6%, vortexed 

and centrifuged at 12000 rpm for 4 min at RT. The supernatant was carefully removed and 

1000 µl ethanol 98.6% were added again and mixed through vortexing followed by 

centrifugation at 12000 rpm for 4 min at RT. The supernatant was carefully removed and 

extraction procedure was continued according to manufacturer’s instructions. RNA was 

eluted in RNase-free water, quantified spectrophotometrically, and stored at -80ºC until 

further use.  

 

2.5.3 cDNA synthesis 
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The cDNA synthesis was performed with the RevertAid First Strand cDNA Synthesis 

Kit (Fermentas GmbH, St. Leon-Rot, Germany). The kit is using the M-MuLV Reverse 

Transcriptase that is active in a range between 42-50ºC and oligo (dT)18 primer.  

Procedure: For each reaction up to 1 µg RNA in a total volume of 11 µl was used. To 

each RNA sample 1 µl oligo (dT)18 primer was added, gently mixed, briefly centrifuged, and 

incubated at 65ºC for 5 min. The sample was then chilled on ice for at least 2 min; meanwhile 

a working mix was prepared (4 µl of 5x reaction buffer, 2 µl of 10 mM dNTPs mix, 1 µl RNase 

inhibitor, and 1 µl M-MuLV Reverse transcriptase). The mix was added on the sample and 

incubated for 1 h at 43ºC followed by 5 min at 70ºC. At the end of the reaction the samples 

were diluted to a final concentration of 10 ng/µl. For real time PCR, 20 ng cDNA were used 

for each reaction.  

2.5.4 SYBR Green-based real-time PCR 

In conventional PCR, the amplified product, also named amplicon, is detected by an 

end-point analysis, running DNA on an agarose gel after the reaction is finished. In contrast, 

real-time PCR allows the accumulation of amplified product to be detected and measured as 

the reaction progresses in “real time” after each cycle. For this purpose, data are collected 

throughout the PCR process rather than at the end of the PCR. Real-time detection of PCR 

products is possible by including in the reaction a fluorescent molecule that reports an 

increase in the amount of DNA with a proportional increase in fluorescent signal. For this 

purpose, fluorescent DNA-binding dyes or labeled sequence specific primers or probes are 

employed. Specialized thermal cycling devices equipped with fluorescence detection 

modules are used to monitor the fluorescence as amplification occurs. The measured 

fluorescence reflects the amount of amplified product in each cycle. The biggest advantage 

of real-time PCR over conventional PCR is that it allows determining the starting template 

copy number with high sensitivity and accuracy. The quantitative RT-PCR reaction in this 

work was performed by two methods: the DNA-binding dye SYBR Green I or TaqMan 

hydrolysis probes.  

SYBR Green I dye is a highly specific, double-stranded DNA (dsDNA) binding dye 

used to detect PCR product as it accumulates during PCR cycles. The melt-curve analysis 

should be used each time to distinguish specific PCR products from the nonspecific ones. 

The major drawback of DNA-binding dyes is that it binds non-specifically to every dsDNA in 

the reaction tube. A melt-curve is generated by increasing the temperature in small 

increments and monitoring the fluorescent signal at each step. As the dsDNA in the reaction 

denatures or melts, the fluorescence decreases. A characteristic peak at the amplicon’s 
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melting temperature (Tm, the temperature at which 50% of the base pairs of a DNA duplex 

are separated) distinguishes it from other products such as primer-dimers, which melt at 

different temperatures than the desired amplicon; two different peaks of the same samples 

with two different melting points thus mean two different amplicons, one of them unspecific 

(Figure 23). If the product is transferred onto an electrophoresis gel, two different bands are 

observed, corresponding to the two peaks in the melt-curve graph. In general to ensure 

reliable results, all primers have to be optimized and proved by the melting curve and gel 

electrophoresis. 

 

Figure 23. Examples of melt curves. (A) Melt curve presents two peaks corresponding with the electrophorese 
gel with two bands; (B) one melt peak corresponds with one band on the electrophorese gel. 

Data analysis of the quantitative PCR (qPCR) consists in comparing the amplification 

curve in the exponential phase of different targets with the amplification curve of a 

housekeeping gene, which serves as internal control (Figure 24). The calculation method 

used in the present work was ΔCT using a reference gene, which is widely used and easy to 

understand. To compare target gene expression in two different samples, one was set as 

control-sample (e.g. the non-treated cells, or healthy tissue) and the following formula was 

used: 

Relative expression = 2 CT (GAPDH) – CT (target gene) 

A B 
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Figure 24. Amplification plot for two different target genes; green and blue arrows indicate the CT value in the exponential 
phase for both targets. 

Procedure: Transcript levels of pluripotency, endothelial, and angiogenic related 

genes were determined using the ready to use polymerase Sybr Fast qPCR Master Mix 

(PEQLAB GmbH). The cDNA template was equivalent to 20 ng of total RNA for each PCR 

reaction. Measurements were performed in triplicates; a non-template blank served as a 

negative control. Amplification curves and gene expression were normalized to the 

housekeeping gene GAPDH. Primers for the genes OCT4A, NANOG, KLF4, CMYC, VEGF, 

PDGF, VEGFR-2, ANG-1, and ANG-2 were designed by Primer3 software (version 0.4.0, 

Whitehead Institute for Biomedical Research, Cambridge. MA, USA), purchased from MWG 

Operon Eurofins (Ebersberg, Germany) and are summarized in Table 10. Primers for the 

genes SOX2, VCAM-1, Factor VIII, and PECAM-1 were purchased from Qiagen GmbH 

(Hilden, Germany) as ready-to-use primer mix as shown in the Table 10. PCR amplicons 

were confirmed to be specific by size (gel electrophoresis) and melt-curve analysis. The PCR 

program was set as follows: denaturation for 5 min at 95°C, amplification for 40 cycles. Each 

cycle comprised of 10 seconds at 95°C, 30 seconds at 60°C, and 10 seconds at 72°C. The 

device used was StepOnePlus (Life Technologies GmbH, Darmstadt, Germany). 

 

 

 

 

 

Exponential phase 

Threshold 
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Table 10. Primers used for the real time PCR. 

Gene 
Sequence forward 

(5'->3') 
Sequence reverse 

(5'->3') 
Amplicon 

(bp) 
Gene bank 

Locus 

OCT4a 
TGGAGAAGGAGAAGCTGGAGC

AAAA 
TATTCACCCAAACGACCATCT

GCC 
185 NM_002701 

NANOG ACCTTGGCTGCCGTCTCTGGCT 
GCAAAGCCTCCCAATCCCAAA

CA 
150 NM_024865 

KLF4 
AGTGCTGAGCAGCAGGGACTG

T 
GGTAATGGAGCGGCGGGACT

TG 
128 NM_004235 

C-MYC TGCGGTCACACCCTTCTCCCTT 
TGAAGGTCTCGTCGTCCGGGT

C 
149 NM_002467 

VEGF ATGAGGACACCGGCTCTGACCA 
AGGCTCCTGAATCTTCCAGGC

A 
126 

NM_001025
366 

VEGFR-2 
AGTGTGGAGGACTTCCAGGGA

G 
AGCTGACACATTTGCCGCTTG

G 
120 NM_002253 

PDGF TCAGGTGGGTTAGAGATGGAGT 
GAAAGGAACCAGAGGAAGAG

GT 
126 NM_002607 

ANG-1 
GAGGCACGGAAGGAGTGTGCT

G 
CGGCGCTGATTGCTGCACCCT

A 
101 NM_139290 

ANG-2 AAAAGCTGACACAGCCCTCCCA 
ACTGCTGTGTTCTCTCCAGGC

A 
90 NM_001147 

GapdH QuiantiTect Primer Assay Hs_GAPDH_2SG 119 NM_002046 

VCAM-1 QuantiTect Primer Assay Hs_VCAM1_1_SG 106 NM_001078 

Factor 
VIII 

QuantiTect Primer Assay Hs_F8_1_SG 120 NM_000132 

PECAM-1 QuantiTect Primer Assay Hs_PCAM1_1_SG 144 NM_000442 

SOX2 QuantiTect Primer Assay Hs_SOX2_1_SG 64 NM_003106 

DNMT1 QuantiTect Primer Assay Hs_DNMT1_1_SG 93 
NM_001130

823 

DNMT3A QuantiTect Primer Assay Hs_DNMT3A_1_SG 144 NM_022552 

DNMT3B QuantiTect Primer Assay Hs_DNMT3B_1_SG 128 
NM_001207

055 

MLL1 QuantiTect Primer Assay Hs_C17orf49_1_SG 99 
NM_001142

798 

SETD1A QuantiTect Primer Assay Hs_KIAA0339_1_SG 74 NM_014712 

SETD1B QuantiTect Primer Assay Hs_SETD1B_1_SG 110 
NM_001145

415 

SUV39H1 QuantiTect Primer Assay Hs_ SUV39H1_1_SG 108 NM_003173 

EHMT2 QuantiTect Primer Assay Hs_ EHMT2_1_SG 97 NM_006709 

 

2.6 Epigenetic analysis of methylated DNA using PCR 

In the present work, DNA methylation status of three repetitive elements (LINE1, 

Satα, and Alu1) was analyzed by MethyLight, TaqMan-based real-time PCR assay. DNA 

isolated from cells was bisulfite converted, and then the amplification of LINE1, Satα, and 

Alu1 was performed by real time PCR as described previously [214], using the methylated 

Alu1 sequence for normalization and the set of primers and probes from Table 11. 

 

Table 11. Sequences of the primers for Methylight assay according to Weisenberger et al. [214]. 

Reaction 
ID 

Sequence forward 
(5' to 3') 

Sequence reverse 
(5' to 3') 

Probe 
(5' to 3'

a
) 

Amplico
n (bp) 

Gene 
bank 

Locus 

LINE- M1 GGACGTATTTGGAAAA AATCTCGCGATACG FAM- 80 X52235 
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TCGGG CCGTT TCGAATATTGCGTTT
TCGGATCGGTTT-

BHQ1 
BHQ1  = Black Hole 

Quencher 1 

Alu1 
GGTTAGGTATAGTGGT
TTATATTTGTAATTTTA

GTA 

ATTAACTAAACTAAT
CTTAAACTCCTAACC

TCA 

VIC-
CCTACCTTAACCTCC

C-MGB 
MGB = Minor Groove 

Binding 

97 
Consens
us seq. 
[214] 

Satα-M1 
TGATGGAGTATTTTTA
AAATATACGTTTTGTA

GT 

AATTCTAAAAATATT
CCCTTCAATTACGTA

A 
SybrGreen I chemistry 121 M38468 

2.6.1 DNA isolation from cells 

PeqGOLD Tissue DNA Mini Kit (PEQLAB GmbH), QIAamp DNA FFPE Tissue Kit 

(Qiagen GmbH), and QIAamp DNA Blood Mini Kit (Qiagen GmbH,) were used to extract the 

genomic DNA from cells, from FFPE tissue, and from serum, respectively.  These kits take 

advantage of the reversible binding properties of a silica-based material, combined with the 

speed of mini-column spin technology. The buffers provided with the columns allow genomic 

DNA to bind to the matrix. Samples were first homogenized, lysed under denaturing 

conditions, and then applied to the DNA Columns, where the DNA is effectively bound to the 

silica membrane. Cellular debris, proteins, and other contaminants were washed away by 

specific buffers. The high quality DNA was finally eluted in Elution Buffer.  

Procedure: DNA from cultured cells was isolated with PeqGOLD Tissue DNA Mini Kit. 

The cells were lysed with 400 µl lysis buffer and scraped from the 10 cm2 dishes. The lysate 

was placed in 1.5 ml reaction tubes and the procedure was followed according to 

manufacturer’s instructions. The final concentration of the isolated genomic DNA was 

measured with a Nanodrop 2000c spectrophotometer (PEQLAB GmbH) and the DNA 

solution was stored at -20ºC until bisulfite conversion was performed.  

2.6.2 DNA isolation from FFPE tissue and serum  

DNA was isolated with the QIAamp DNA FFPE Tissue Kit. First, 4 slices of 10 µm 

thickness were cut from the carotid tissue samples and placed in a 1.5 ml tubes. The 

protocol was followed as described in the manufacturer’s instructions. DNA concentration 

was measured with the spectrophotometer and stored at -20ºC until bisulfite conversion was 

performed.  

Fresh blood was collected, centrifuged and serum was stored at -80ºC until DNA was 

further used. DNA was isolated with the QIAamp DNA Blood Mini Kit, according to 

manufacturer’s instructions using 200 µl of serum for each extraction procedure.  
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2.6.3 Bisulfite conversion 

Incubation of the target DNA with sodium bisulfite results in conversion of 

unmethylated cytosine residues into uracil, leaving the methylated cytosines unchanged. 

Therefore, bisulfite treatment leads to changes in DNA sequence for methylated in contrast 

to unmethylated DNA as shown in Table 12.  

Table 12. Example of the effect of bisulfite conversion on unmethylated cytosines. 

 Original sequence After bisulfite treatment 

Unmethylated DNA T-CG-T-CG-A-CG-T T-UG-T-UG-A-UG-T 

Methylated DNA T-CG-T-CG-A-CG-T T-CG-T-CG-A-CG-T 

The critical step for correct determination of a methylation pattern is the complete 

conversion of unmethylated cytosines. For this purpose, commercially available kits were 

used. Sodium bisulfite conversion of DNA from cells, FFPE material, or serum was in all 

cases performed by using EpiTect Bisulfite Kit (48) (Qiagen GmbH). 

The EpiTect Bisulfite procedure comprises of the following steps: bisulfite mediated 

conversion of unmethylated cytosines; binding of the converted single-stranded DNA to the 

membrane of an EpiTect spin column; desulfonation of membrane-bound DNA; removal of 

desulfonation agent; elution of the converted DNA from the spin column. The eluted DNA 

was used for the analysis of DNA methylation by MethyLight assay, a Taqman based real 

time PCR. 

Procedure: DNA was diluted to 500 ng DNA in 20 µl of elution buffer for each bisulfite 

conversion reaction. According to the manufacturer, bisulfite mix was added to the DNA 

solution. To this mixture, DNA protect buffer was added, well mixed, and placed in the 

thermal cycler with a program shown in Table 13. 

 

 

 

Table 13. Thermal cycler conditions for bisulfite conversion reaction. 

Step Temperature Time 

Denaturation 95°C 5 min 

Incubation 60°C 25 min 

Denaturation 95°C 5 min 
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Incubation 60°C 85 min (1 h 25 min) 

Denaturation 95°C 5 min 

Incubation 60°C 175 min (2 h 55 min) 

Hold 20°C Indefinite 

After bisulfite conversion was completed, the tubes were briefly centrifuged, and the 

content transferred into a new 1.5 ml reaction tube. The next steps were performed 

according to instructions provided with the kit. Finally, bisulfite converted DNA was diluted to 

10 ng/µl and aliquots were stored at -80ºC until the Methylight assay was performed. For 

each PCR reaction 20 ng bisulfite converted DNA was used.  

2.6.4 TaqMan-based real time PCR 

TaqMan procedure specifically detects the target gene sequence, so nonspecific 

products do not affect the accuracy of quantification this being the main advantage over DNA 

binding dyes. TaqMan assays employ a sequence-specific, fluorescently labeled 

oligonucleotide probe called the TaqMan probe, in addition to the sequence-specific primers. 

The probe contains a fluorescent reporter at the 5' end and a quencher at the 3' end. When 

intact, the fluorescence of the reporter is quenched due to its proximity to the quencher. 

During the combined annealing/extension step of the amplification reaction, the probe 

hybridizes to the target and the dsDNA-specific 5'3' exonuclease activity of nuclease 

(thermostable polymerases) cleaves off the reporter. As a result, the reporter is separated 

from the quencher, and the resulting fluorescence signal is proportional to the amount of 

amplified product in the sample. 

Procedure: For the determination of global DNA methylation a TaqMan-based 

methylation specific real-time PCR (Methylight) system was used. Methylation of LINE1 

(Metabion International AG, Germany) and Satα (MWG Operon Eurofins) was determined 

using the TaqMan Universal PCR Master Mix, No Amp Erase UNG (Roche). As reference for 

input of bisulfite converted DNA a methylation independent ALU1 (Metabion International 

AG, Martinsried, Germany) TaqMan system was used. For each real time PCR amplification 

the template was equivalent to 10 ng of bisulfite converted DNA and measurements were 

performed in triplicates. Fully methylated bisulfite converted DNA from the EpiTect PCR 

Control DNA Set (Qiagen GmbH) was used as 100% methylated control. Primers were 

optimized for StepOnePlus thermocycler. Quantification was normalized to the ALU1 gene 

within the log-linear phase of the amplification curve obtained for each probe/primer set using 

the ΔCT method using a reference gene. 

2.7 Expression analysis on protein level using Western blot 
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Western Blot, also known as immunoblotting or protein blotting, is a method used to 

detect specific proteins in a complex mixture extracted from cells or tissue. The Western 

blotting procedure relies upon three key elements (Figure 25): 1. sample preparation and 

separation of the protein mixture by size using gel electrophoresis; 2. transfer of separated 

proteins to a membrane; and 3. detection of a target protein by appropriate antibodies. Once 

detected, the target protein is visualized as a band on a blotting membrane, X-Ray film, or an 

imaging system. 

 

Figure 25. Schematic overview of the Western Blot method. 

2.7.1 Sample preparation from cells  

All chemical substances for this assay were purchased from Sigma-Aldrich, if not 

otherwise mentioned. Protein isolation from cells was made with RIPA (Radio Immuno 

Precipitation Assay) buffer. The content of the buffer was: 50 mM TRIS-HCl (Merk) (pH=7.5); 

150 mM NaCl; 1% TRITON X-100; 0.1% SDS (w/v); 0.5% Natriumdeoxdesoxycholat (w/v) in 

distilled water. For optimal reproducibility all steps were carried out on ice. For protein 

isolation from the cells, they were cultivated in 10 cm2 dish (0.5x106 cells). The procedure 

was as follows: medium was removed, cells were washed once with sterile PBS (PAA 

Laboratories GmbH), 1 ml of RIPA buffer was added, and incubated 10 min at -20˚C. The 

cell debris was collected with a cell scraper and the lysate was transferred into a 1.5 ml 

reaction tube, followed by centrifugation for 20 min at +4°C. After centrifugation the 

supernatant containing the proteins was collected in a new tube, the protein concentration 

was measured; aliquots were made and stored at -20˚C until further use. 

2.7.2 Sample preparation from tissue  
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Histone isolation from fresh carotid tissue was performed with EpiSeeker Histone 

Extraction kit (Abcam, Cambridge, UK), according to its instructions. Briefly, samples were 

homogenized with a pre-lysis buffer, and centrifuged at +4°C at 10000 rpm 1 min. The 

supernatant was removed and the tissue pellet was resuspended in lysis buffer, incubated on 

ice for 30 min, followed by a centrifugation step by 12000 rpm at +4°C for 5 min. The 

supernatant was collected in a new tube and supplemented with Balance-DTT buffer. The 

protein concentration was measured with BCA assay and stored at -20˚C until further use. 

Samples were diluted in RIPA buffer to a final concentration of 1 µg/µl. From each 

sample 20 µl were added into 1.5 ml reaction tubes, together with 5 µl Laemmli buffer 5x (6 

ml 1M TRIS-HCl pH=6,8; 10 ml 99% Glycerol; 200 µl 500 mM EDTA; 2 g SDS; 10 mg 

Bromphenol Blue). Samples were heated for 5 min at 99ºC for denaturation of proteins and 

incubated on ice.  

2.7.3 Protein separation by polyacrylamide gel electrophoresis (PAGE) 

The electrophoresis gel is composed of 2 gel types with a different concentration in 

acrylamide: the stacking gel and the separation gel (Figure 26). 

 

Figure 26. Arrangement of the electrophoresis gel. 

Depending on the target protein, different acrylamide concentrations for the 

separation gel were used as described in Table 14. For the stacking gel the composition is 

described in Table 15.  

 

 

Table 14. Separation gel recipes. 

Solution 

Volume (ml) for 1 gel 

15% used for 
H3K4me2 and 

H3K9me2 

10% used for 
OCT4A 

6% used for 
VCAM-1 and 

VEGFR-2 

TRIS-HCl 1.5M(pH=6.8) 2.5 2.5 2.5 

Distilled water 2.3 4 5.3 

http://www.abcam.com/EpiSeeker-Histone-Extraction-Kit-ab113476.html
http://www.abcam.com/EpiSeeker-Histone-Extraction-Kit-ab113476.html
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Acrylamide (29:1) 5 3.3 2 

SDS10% 0.1 0.1 0.1 

Ammonium persulphate (APS)10% 0.1 0.1 0.1 

N,N,N′,N′-Tetramethylethylenediamine 
(TEMED) 

0.005 0.005 0.005 

Table 15. Stacking gel recipe. 

Solution Volume (ml) for 4ml (1 gel) 

TRIS-HCl 0.5M(pH=6.8) 1.25 

Distilled water 2.7 

Acrylamide (29:1) 0.7 

SDS 10% 0.05 

APS 10% 0.05 

TEMED 0.005 

2.7.4 Protein transfer to PVDF membrane 

After the electrophoresis was finished, the procedure was continued by protein 

transfer onto a PVDF membrane using semi-dry system. The scheme of this procedure is 

shown in Figure 27. 

 

Figure 27. Assembling of the transfer sandwich. 

An aqueous solution of the transfer buffer was prepared by adding following 

substances/solutions to 900 ml distilled water (B. Braun Melsungen AG): 3.03 g Trizma base, 

14.4 g glycine, and 100 ml methanol (Merck). The filter papers and acrylamide gel were 

soaked in transfer buffer; the PVDF membrane was shortly activated in methanol and 

incubated in transfer buffer for 30 min. The assembling of the system was made as 

described in Figure 27. The semi-dry transfer device was set to 10V for 30 min followed by 

other 5 min at 15V.  

2.7.5 Protein detection 



MATERIALS AND METHODS 59 

The PVDF membrane containing the proteins was then incubated in blocking buffer 

(5% non-fat skimmed milk powder (Biomol GmbH, Hamburg, Germany) in TBS-T) for 1 h at 

RT on a shaker. TBS-T was prepared from 900 ml distilled water to which following solution 

were added: 100 ml TBS buffer, and 1 ml Tween 20. TBS buffer was prepared by adding 

24.2 g Trizma base and 80 g NaCl (Merck) to 1000 ml distilled water and adjusting the pH 

value to 7.6 with HCl 2N (Apotheke MRI). Each antibody was diluted in a blocking buffer and 

incubated over night at +4˚C as described in Table 16, 17 and 18. 

The next day the membrane was washed in TBS-T solution for 30 min to remove the 

excess of the first antibody. The secondary antibody solution was made in the same blocking 

buffer and added to the PVDF membrane, which was then incubated for 1 h at RT. 

Table 16. Antibodies used for characterization of the angiogenesis in adMSCs. 

Name Reacts with 
Clone/Made 

in 
Brand &Cat. 

Nr. 
Dilution 

Size 
(kDa) 

Mouse anti hVACM-1(CD106) Human Mouse IgG R&D Systems 1:100 110 

Flk-1 antibody(VEGFR-2) Human 
Mouse 
IgG1 

R&D Systems 1:100 170 

Anti-GAPDH antibody [6C5] 
Rat, Rabbit, 

Chicken, 
Human, 

6C5 
Abcam 

(ab8245) 
1:1000 36 

Peroxidase-Labeled Affinity 
Purified Antibody to Mouse IgG 

(H+L)(Human Adsorbed) 
Mouse Goat 

KLP 
(074-1806) 

1:5000 -  

Peroxidase-Labeled Affinity 
Purified Antibody to Rabbit IgG 

(H+L)(Human Adsorbed) 
Rabbit Goat 

KLP 
(074-1516) 

1:5000 -  

Table 17. Antibodies used for detection of pluripotency markers. 

Name Reacts with 
Clone/Made 

in 
Brand &Cat. 

Nr. 
Dilution 

Size 
(kDa) 

OCT4A(C30A3) Rabbit mAb Human, Mouse C30A3 
Cell Signaling 

(#2840) 
1:500 48 

Rabbit polyclonal to Nanog Human, Mouse rabbit 
Abcam 

(ab21624) 
1:500 - 

1:50 
38 

Anti-GAPDH antibody [6C5] 
Rat, Rabbit, 

Chicken, 
Human, 

6C5 
Abcam 

(ab8245) 
1:1000 36 

Peroxidase-Labeled Affinity 
Purified Antibody to Rabbit IgG 

(H+L)(Human Adsorbed) 
Rabbit Goat 

KLP 
(074-1516) 

1:5000 - 

 

 

Table 18. Antibodies used for detection of di-methylation at K4 and K9 sites of histone H3. 

Name Reacts with 
Clone/Made 

in 
Brand & 
Cat. Nr. 

Dilution Size(kDa) 
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Di-Methyl-Histone H3 
(Lys4)(C64G9) Rabbit mAb 

Human, Mouse , 
Rat, Monkey 

Rabbit IgG 
Cell 

Signaling 
(#9725) 

1:3000 17 

Di-Methyl Histone H3(Lys9) 
Antibody 

Human, Mouse, 
Rat, Monkey 

Rabbit IgG 
Cell 

Signaling 
(#9753) 

1:200 17 

Peroxidase-Labeled Affinity 
Purified Antibody to Rabbit IgG 

(H+L)(Human Adsorbed) 
Rabbit Goat 

KLP 
(074-
1516) 

1:5000 - 

The PVDF membrane was treated for 30 min with TBS-T then submersed in a 

working solution (Solution A/Solution B, ratio 1/1) of SuperSignal® West Pico 

Chemiluminescent Substrate (Thermo Scientific, Bonn, Germany) for 5 min. The excess 

reagent was drained and the blot was covered with clear plastic wrap. The membrane was 

placed in a film cassette with the protein side facing up. In the dark, a FUJI Medical X-Ray 

Film (FUJIFILM Europe GmbH, Düsseldorf, Germany) was placed on top of the membrane 

and various exposure times were used to achieve optimal results. The film was then 

developed with Medical Film Processor (Konica Minolta model, SRX-101A, Konica Minolta 

Medical and Graphic Imaging Europe GmbH, Munich, Germany) 

2.7.6 Protein quantification 

In order to quantify the amount of each targeted protein, developed films were 

digitized using a color image scanner (HP Scanjet 3800). The bands on the films with the 

same exposure time were compared to each other after a previous normalization to a 

housekeeping gene for GAPDH. The intensity quantification was made with ImageJ software 

(National Institutes of Health, Bethesda, USA).   

2.8 Statistical analysis 

Data are presented as mean ± SEM. Statistical analysis was performed with 

GraphPad Prism (GraphPad Software Inc, San Diego, USA). For single comparison Mann-

Whitney U test was used. The significance of differences with more than two samples was 

evaluated using Kruskal-Wallis test, followed by Dunns post-test for multiple comparisons: * 

for p<0.05; ** for p<0.01; *** for p<0.001 were considered statistically significant. 
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3 RESULTS  

3.1  Epigenetic changes in vascular disease 

3.1.1 Histological characterization of specimens 

The stage of atherosclerosis (AS) was classified as described in the section Materials 

and Methods. Tissue specimens were divided into the following groups: control (healthy 

carotid artery - Figure 28), early stage of AS (II-III, AHA classification - Figure 29), and 

advanced stage of AS (V-VII, AHA classification - Figure 30).  

  

Figure 28. Example of a control vessel. (A) H&E representative staining and (B) elastica von Gieson 
representative staining. Bar on the overview pictures represents 1 mm. 

The early stage of AS type II and III was recognized by markedly enlarged intima 

compared with control vessels, with scattered yellow-colored fatty streaks, enhanced 

intracellular lipid accumulation, and increased number of macrophages and macrophage-

derived foam cells. Furthermore, an increased amount of collagen fibers was observed 

(Figure 29). 

A B 

100µm 100µm 
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Figure 29. Example of histopathology of the group with early stage atherosclerosis showing initial stage of 
atherosclerosis with enlarged fibrocellular intimal thickness. (A) H&E staining, (B) Elastica von Gieson staining. 
Bar on the overview pictures represents 1 mm.  

Type V lesion was characterized by massive aggregates of extracellular lipids forming 

necrotic or lipid core with a fibrous cap that was either thick (stable plaque) or thin (<200 µm, 

unstable plaque) [215]. Moreover, increased inflammation and a higher amount of 

leukocytes, macrophages, and thrombotic deposits and/or marked hemorrhage were visible. 

Type VII lesion had calcium deposits that partially replaced the Type VI lipid/necrotic core. 

(Figure 30 and Figure 31) 

In this manner 20 early and 20 advanced stage lesions were chosen, in each case 

early and advanced stages of atherosclerosis from the same patient and same 

atherosclerotic plaque. 

A B 

100µm 100µm 
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Figure 30. Example images of advanced stage of atherosclerosis. (A) H&E staining, (B) Elastica von Gieson 
staining. Bar represents 1 mm. 

 

 

Figure 31. Elastica van Gieson staining of advanced atherosclerosis with typical histopathologic 
characteristics. (A) Overview image of the whole atheroma plaque (bar represents 1 mm), (B) cholesterol 
crystals (asterisks) and inflammatory foam cells (arrows), (C) lipid core containing cholesterol crystals, (D) 
accumulation of erythrocytes within the atheroma (intraplaque bleeding), (E) calcification (F) fibrous cap of 
the atherosclerotic plaque. 

3.1.2 Global DNA methylation 

3.1.2.1  Global DNA methylation in carotid tissue samples 

The results of global DNA methylation from carotid specimens adjacent to different 

types of atherosclerotic lesions, determined by histology, are summarized in Figure 32. The 

extent of global DNA methylation correlated negatively with the degree of atherosclerosis. In 

early AS, the methylation of LINE1 decreased to 62.3% (p<0.01) compared with the DNA 

A 

A 

B 

B 
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C 

* * 

* 
100µm 
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methylation in healthy control vessels. Further decrease in DNA methylation to 32.4% 

(p<0.001) was observed in advanced stage of atherosclerosis, again compared with the 

healthy controls. Similar results were found also for the repetitive sequence Satα, with 

significant reduction in DNA methylation to 73.2% (p<0.01) in early stage and to 39.3% 

(p<0.001) in advanced stage of AS, compared with healthy vessels (Figure 32). 
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Figure 32. Global DNA methylation status is decreased with the progression of atherosclerosis. The graphs 
represent the quantitative evaluation after setting the methylation in the control group as 100%. 

3.1.2.2 Global DNA methylation in serum 

Interesting results were also observed following the analysis of blood serum samples. 

For both repetitive DNA sequences LINE1 and SATα, significant reduction in DNA 

methylation was found in patients with high grade carotid artery stenosis compared with 

healthy individuals. The global DNA methylation was reduced to 36.9% (p<0.001) for LINE1 

and to 67.5% (p<0.001) for SATα, normalized to the DNA methylation in healthy volunteers 

(Figure 33).  
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Figure 33. Global DNA methylation of free DNA extracted from blood serum. DNA methylation is significantly 
decreased in patients with advanced atherosclerosis. The graphs represent the quantitative evaluation after 
setting the methylation in the control group as 100%. 
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3.1.2.3 Expression of DNA methyltransferases and demethylase at mRNA level 

At mRNA level the expression of DNA methyltransferases DNMT1, DNMT3a, 

DNMT3b, and demethylase TET1 were determined by quantitative SYBR-Green based real 

time PCR. In all cases, normalization to the expression of housekeeping gene GAPDH was 

performed. DMNT1, a methyltransferase responsible for the maintenance of DNA 

methylation, showed a significant decrease in expression in AS (Figure 34). The differences 

between early and advanced stage of AS were not statistically significant (p=0.4701). 

DNMT1 expression in early stage was decreased to 53.2% (p=0.0393), and in advanced 

stage to 27.2% (p=0.0393), in comparison with the control healthy tissue.  

DNMT1

H
ea

lth
y

Ear
ly

 s
ta

ge

A
dva

nce
d s

ta
ge

0

50

100

150 * *

R
e

la
ti

v
e

 g
e

n
e

 e
x
p

re
s
s
io

n

 

Figure 34. Expression of DNMT1 decreased with the severity of atherosclerosis. The graphs represent the 
quantitative evaluation after setting the control group as 100%. 

TET1, an enzyme involved in the demethylation process, responsible for the 

intermediate form 5-hidroxymethylation, showed an increased expression level that 

corresponded with the progression of AS (Figure 35). An increased by 13.2-fold, (p=0.7441) 

was observed in the early stage of AS, and by 44.1-fold (p=0.4350) in the advanced stage. 

However, due to broad distribution of the values the postulated significance was not 

achieved, compared with the expression of TET1 in control tissue samples. 
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Figure 35. Expression of TET1 at mRNA level in different stages of atherosclerosis compared to healthy tissue 
samples. The graphs represent the quantitative evaluation after setting the control group as 100%. 

De novo methylation process is supported by two enzymes, DNMT3A and DNMT3B, 

the latter having also a role in maintaining the DNA methylation pattern (Figure 36). The 

expression of DNMT3A was detected neither in control tissue nor in atherosclerotic lesions. 

In contrast, DNMT3B expression was found in both healthy and atherosclerotic samples. 

Decrease in expression of DNMT3B was observed in  AS, compared to healthy tissue, both 

in early and advanced stage, with the tendency of further reduction in DNMT3B expression 

with the progression of AS. In early stage the expression decreased to 46.0% (p=0.9048), 

and in advanced stage to 31.0% (p=0.6095), in comparison with the healthy control tissue 

(Figure 36).  
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Figure 36. Quantitative expression analysis of DNMT3A and DNMT3B in carotid tissue samples. No expression 
was observed for DNMT3A. Expression of DNMT3B decreased with the progression of atherosclerosis. The 
graphs represent the quantitative evaluation after setting the control group as 100%. 

3.1.3  Immunohistochemical analysis of histone methylation 

One of the objectives of the present study was to analyze the histone, methylation, 

especially di-methylation on histone H3 at lysine 4 and at lysine 9 (H3K4 and H3K9), and to 
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evaluate, whether any changes in this epigenetic modification are associated with certain 

type of cells within atherosclerotic plaques in comparison with healthy vessel tissue. 

3.1.3.1 Histone methylation in smooth muscle cells 

The first staining was performed for smooth muscle cells (SMCs) (Figure 37.). 

Smooth muscle (SM) actin clearly identified SMCs within the control tissue as well in early 

and advanced atherosclerosis. Consecutive slides stained for SM-actin were used for 

detection of H3K4 di-methylation. In the control tissue, not all SMCs were positive for 

H3K4me2 staining. In contrast, both early and advanced stage of atherosclerosis showed an 

increase in the number of positive cells. No further differences were observed between early 

and advanced atherosclerosis (Figure 37). 
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Figure 37. Representative stainings of consecutive slides for smooth muscle cells and H3K4me2. Red color 
represents the positive cells for smooth muscle, whereas brown color represents cells positive for H3K4me2. 
Samples were counterstained with haematoxylin (blue color). The bar in the overview image represents 1 mm.  

Similar consecutive staining as described before was performed for SMCs and 

H3K9me2. The results revealed that only a small fraction of cells was positive for H3K9me2 

and SM-actin (Figure 38). No differences were observed between the control vessels, early, 

or advanced stage of atherosclerosis.  
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Figure 38. Representative stainings of consecutive slides for smooth muscle cells and H3K9me2. Red color 
represents the positive cells for smooth muscle, whereas brown color represents the cells positive for H3K9me2. 
Samples were counterstained with haematoxylin (blue color). The bar in the overview image represents 1 mm. 

3.1.3.2 Histone methylation in inflammatory cells 

Consecutive slices of FFPE tissue samples from each study group were stained for 

the inflammatory marker CD45 and for H3K4me2 (Figure 39). CD45 is a leucocyte common 

antigen present on all blood cells except erythrocytes. It is expressed especially in B- and T- 

lymphocytes. 
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In general, in a healthy vessel, no significant amount of inflammatory cells, 

comprising CD45 or CD68 antigens, is present. In agreement, no CD45 positive cells were 

found in the control tissue of the selected study group. For this reason, images of the stained 

control healthy vessels were omitted in Figures 39-42. In contrary to the control vessel, in 

early and especially advanced stage of atherosclerosis marked accumulation of inflammatory 

cells, positive for CD45, was observed. Interestingly, all these cells were negative for 

H3K4me2 (Figure 39).  

 

Figure 39. Examples of consecutive staining for CD45 positive inflammatory cells and for histone H3 di-
methylation of lysine K4 in early (first row) and advanced (second row) stage of atherosclerosis. Brown color 
represents the positive cells for different markers: CD45 – first column, H3K4me2 – second column. Blue color 
shows the nuclear counterstain by haematoxylin. The bar in the overview image represents 1 mm. 

The same staining procedure as for H3K4 was performed also for H3K9 (Figure 40). 

In contrast to the negative staining for H3K4me2 in inflammatory cells, CD45 positive cells 

were found to be positive for H3K9me2. No differences were observed between early and 

advanced stage of AS. Albeit, increased intensity and more cells were seen in advanced 

atherosclerotic plaques. 
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Figure 40. Examples of consecutive staining for CD45 positive inflammatory cells and for histone H3 di-
methylation of lysine K9 in early (first row) and advanced (second row) stage of atherosclerosis. Brown color 
represents the positive cells for different markers: CD45 – first column, H3K9me2 – second column. Blue color 
shows the nuclear counterstain by haematoxilin. The bar in the overview image represents 1 mm. 

Another group of inflammatory cells that markedly contribute to plaque progression 

are CD68 positive cells, comprising monocytes, macrophages, and macrophage-derived 

foam cells. Therefore, consecutive staining for CD68 and histone di-methylation of H3K4 or 

H3K9 was performed (Figure 41 and 42). Only few CD68 positive cells were observed in 

early stage of atherosclerosis, according to their morphology, mainly monocytes and 

macrophages. In contrast, advanced stage of atherosclerosis comprised predominantly lipid-

laden macrophages and macrophage-derived foam cells. 

After examination of the corresponding regions for CD68 and H3K4, only a small 

fraction of CD68 positive cells was found to be also positive for H3K4me2 in both early and 

advanced stage (Figure 41). Furthermore, no differences were observed between early and 

advanced atherosclerosis. 
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Figure 41. Examples of consecutive staining for CD68-positive inflammatory cells (monocytes, macrophages, and 
macrophage-derived foam cells) and di-methylation of histone H3 at lysine K4 in early (first row) and advanced 
(second row) of atherosclerosis. Brown color represents positive cells for CD68 – first column, and for H3K4me2 
– second column. Blue color shows the nuclear counterstain by haematoxylin. The bar in the overview image 
represents 1 mm. 

In contrast to the staining for H3K4me2, markedly more CD68 positive cells in 

atherosclerotic lesions were positive also for H3K9me2 staining (Figure 42). In both, early 

and advanced stage of atherosclerosis, almost all monocytes, macrophages, and 

macrophage-derived foam cells were methylated on histone H3 at the lysine K9.  
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Figure 42. Examples of consecutive staining for CD68-positive inflammatory cells (monocytes, macrophages, and 
macrophage-derived foam cells) and di-methylation of histone H3 at lysine K9 in early (first row) and advanced 
(second row) of atherosclerosis. Brown color represents positive cells for CD68 – first column, and for H3K9me2 
– second column. Blue color shows the nuclear counterstain by haematoxylin. The bar in the overview image 
represents 1 mm. 

3.1.4 Analysis of histone methylation at protein level 

For possible quantification of histone methylation at the protein level, western blot 

analysis was performed in a similar way as for the immunohistochemistry as desribed above. 

The extraction of histones was made from fresh tissue of carotid arteries, including again 

three study groups: healthy tissue, early, and advanced stage of AS. Each group consisted 

of 9 samples. For quantification, the ImageJ software was used and samples were 

normalized to the amount of histone H3. Furthermore, the state of methylation in a healthy 

tissue was set as 100%. The extent of H3K4 and H3K9 di-methylation (H3K4me2 and 

H3K9me2) is shown in Figure 43. Significant reduction of histone H3 methylation at K4 and 

K9 was observed in both early and advanced stages of AS. In carotid plaque from early 

stage of AS, a decrease to 28.5% (p<0.01) was found compared with healthy control tissue. 

In advanced AS, a significant reduction of H3K4 di-methylation to 39.3% (p<0.05) was seen. 

With regard to H3K9me2, a significant decrease to 12.0% (p<0.05) and to 25.2% (p<0.01) 

was observed for early stage and advanced stage of AS, respectively. In both cases, for 

H3K9me2 CD68  

Early stage 

Advanced stage 

100µm 100µm 
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H3K4 and H3K9, no significant differences in histone di-methylation were observed between 

early and advanced of AS. 

 

Figure 43. Western blot analysis for di-methylation of histone H3 at lysine 4 (H3K4) and lysine 9 (H3K9). A 
statistically significant decrease for both H3K4me2 and H3K9me2 was observed with the progression of the AS. 
The expression of each modification in the control group was set as 100%. 

3.1.5 Analysis of histone methyltransferases (HMTs) 

3.1.5.1 HMTs responsible for H3K4 methylation 

Finally, to constitute the changes in histone methylation pattern in atherosclerotic 

lesions, the expression of methyltransferases, responsible for the transfer of methyl group to 

H3K4, was analyzed by quantitative SYBR-Green based RT-PCR (Figure 44). The analyzed 

methyltransferases were MLL1, SET1A, and SET1B. Their expression was evaluated at the 

mRNA level on tissue samples extracted from FFPE tissues. From all three HMTs, only the 

expression of MLL1 could be detected. Interestingly, MLL1 expression increased 

continuously with the progression of atherosclerosis, in early stage lesions by 2.63-fold 

(p=0.7658) and in advanced stage by 2.09-fold (p=0.5800), however without the postulated 

significance. For SETD1A as well as for SETD1B no expression was observed (Figure 44).  
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Figure 44. Quantification of the expression of methyltransferase MLL1, SETD1a, and SETD1b responsible for 
H3K4 methylation. In contrast to the expression of MLL1, which continuously increased with the progression of 
atherosclerosis, no expression was observed for SETD1A and SETD1B. Expression of the control group was set 
as 100%. 

3.1.5.2 HMTs responsible for H3K9 methylation 

Similar to results described before, the expression of methyltransferases responsible 

for the transfer of methyl group to H3K9 was evaluated (Figure 45). The expression of 

SUV39H1 and EHMT2 (G9a), responsible for the corresponding methylation, was analyzed 

at mRNA level from FFPE tissue samples as for H3K4. No expression was detected for both 

enzymes.  
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Figure 45. Quantification of the expression of methyltransferase SUV39H1 and EHMT2 responsible for H3K9 
methylation. No detectable expression was observed for both enzymes. 
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3.2 RESULTS - Epigenetic changes in regenerative medicine 

3.2.1 Isolation and characterization of the adipose derived mesenchymal 

stem cells (adMSCs) 

Mesenchyme is a type of undifferentiated loose connective tissue derived mostly from 

mesoderm. Mesenchyme is characterized morphologically by a prominent ground substance 

matrix containing a loose aggregate of reticular fibrils and unspecialized cells. The cells are 

capable of developing into connective tissue, such as bone, cartilage, and adipose tissue. 

Adipose tissue contains a high amount of mesenchymal stem cells that can be easily 

isolated. These cells have been described to have high proliferative capacity and also a 

potential to differentiate into osteoblast, chondrocytes or adipocytes, if they are cultivated 

under appropriate conditions.  

3.2.1.1 Analysis of cell morphology and phenotype 

Mesenchymal stem cells (MSCs) have been classified as a heterogeneous population 

in terms of morphology, proliferation capacity, and differentiation potential. They display 

different phenotypes: large flattened cells, thin star-shaped cells, and fibroblast-like cells 

(spindle shape) as already described by Muraglia et al. [216] (Figure 46). By examining the 

cell isolated from adipose tissue, it was observed that MCSs are characterized 

morphologically by small cell body with few long and thin cell processes. The cell body 

contains round nucleus with large nucleolous, which is surrounded by finely scattered 

chromatin particles. Cells isolated from human adipose tissue in this study displayed the 

typical features of MSCs, as shown in Figure 46. 

 

Figure 46. Phenotype of cultured human adMSCs. Three phenotypes were observed in adMSC colonies: (A) 
spindle  shape, (B )large flattened cells, and (C) star shaped cells as described by Muraglia et al [216]. 

The population of freshly isolated adMSCs is in general heterogeneous. Therefore, to 

assure reproducibility of the following experiments, it was necessary to further characterize 

the cell population over the passages. Following cell isolation and their cultivation until 
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passage 3, flow cytometry analysis revealed mainly homogenous cell population with a 

characteristic expression pattern of the known MSCs markers CD90 and CD105, while being 

negative for hematopoietic marker CD14 and CD45 (Figure 47). This assay was performed in 

every passage up to the passage 3 for all CD markers mentioned. Based on the cell 

characterization, passage 3 was selected for all further experiments due to the best 

proliferation/homogeny ratio. The expression of MSC markers in passage three was as 

follows: CD90 and CD105 - 86% and 96%, respectively, CD14 and CD45 - 1.88% and 

1.06%, respectively. The markers CD14 and CD45 showed a decrease to less than 2%, 

while CD90 and CD105 showed an increase for up to 96% in the third passage (for detailed 

results see Table 19 and Figure 48) 

 

Figure 47. FACS histograms for CD14, CD45, CD90, and CD105 used for characterization of adMSCs 
population. Cells were screened for (A) CD14, (B) CD45, (C) CD105, and (D) CD90 and their corresponding 
isotype controls. Each representative antibody is represented by the blue histograms, and the isotype control is 
red colored. 

Table 19. Summary of adMSC characterization by FACS analysis. 

Passage 
number 

CD14 positive 
cells 

CD45 positive 
cells 

CD 90 positive 
cells 

CD 105 
positive cells 

Passage 0 8.4% 5.7% 73.72% 44.3% 

Passage 1 3.4% 1.5% 77.7% 47% 

Passage 2 3.12% 1.26% 81% 50% 

Passage 3 1.88% 1.06% 86% 96.17% 
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Figure 48. FACS analysis of adMSCs for CD14, CD45, CD90, and CD105 during passages 0, 1, 2, and 3. The 
markers CD14 and CD45 showed a decrease while CD90 and CD105 showed an increase with the passage. The 
graphs represent the quantitative evaluation after setting the entire cell population as 100%. 

3.2.1.2 Immunocytological characterization  

Cells isolated from adipose tissue were first cultivated under normal growth 

conditions. In the third passage they were screened for the known mesenchymal markers 

vimentin and endoglin (Figure 49). Vimentin is the cytoskeletal component responsible for 

maintaining cell integrity, and endoglin, also known as CD105, is a glycoprotein part of the 

transforming growth factor receptor complex that binds several members of the TGFbeta 

superfamily. The cells were proven to be homogenous with regard to these markers, with all 

cells positive for both antigens. 

 

Figure 49. AdMSC characterisation – vimentin and endoglin - ICC. (A) Red cells positive for the mesenchymal 
marker – vimentin (red); (B) CD105 - endoglin, is present on the membrane of all cells (brown); counter stain with 
Meyer's haematoxylin (nuclei are stained in blue). 

3.2.2 Analysis of cell proliferation 

Ki-67, a marker of actively dividing cells, was used to determine the fraction of 

proliferating cells within the given population. Proliferating adMSCs in passage 3 were 

visualized by ICC staining. Cells were in average positive for Ki-67 at a rate of 52%, as 

shown in Figure 50 (quantification was performed with ImageJ software). 
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Figure 50. Immunocytochemistry for the Ki-67 antigen on adipose-derived mesenchymal stem cells (A) adMSCs. 
in third passage, red stain represents the proliferating cells, positive for Ki-67; (B) Negative control IgG. 

3.2.3 Osteogenic and adipogenic differentiation 

Since adMSCs are mesenchymal stem cells, they should have the capacity to 

undergo osteogenic, adipogenic, and chondrogenic differentiation. To prove their 

differentiation potential and their multipotent characteristics, the cells were seeded and 

cultivated in appropriate differentiation media.  

3.2.3.1 Osteogenic differentiation 

Osteogenic differentiation was assessed after 7, 14, and 21 days of cultivation in 

osteogenic differentiation medium by analyzing the presence of the alkaline phosphatase 

(ALP) enzyme, deposits of collagen III, and mineralized matrix.  

ALP is a marker known to be necessary for mineralization of bone tissue, present in 

cells of the osteoblastic linage. The majority of isolated adMSCs cultivated under osteogenic 

conditions were positive for ALP and the results were similar to that of human osteoblast 

progenitor cells, compared with normal growth media (Figure 51). 
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Type-III collagen is a protein that is found in bone, cartilage, tendon and some other 

connective tissues. Therefore, adMSCs, cultivated in osteogenic medium, were tested also 

for their ability to synthesize collagen type III. Staining of differentiated adMSCs against 

collagen III revealed an increase in the production of the protein over the differentiation 

period, whereas under normal growth conditions the cells were not producing collagen type 

III (Figure 52). 

 

Beside ALP activity and the production of extracellular matrix (ECM) during 

osteogenic differentiation, osteoblasts also produce mineralized matrix. For this reason, the 

matrix mineralization was tested using von Kossa staining after 7, 14, and 21 days, in order 

to prove the capacity of adMSCs to differentiate into osteogenic lineage (Figure 53). The 
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Figure 52. Immunocytochemical 
staining of collagen type III (red 
color) after osteogenic 
differentiation of adMSC for (A) 7 
days, (B) 14 days, and (C) 21 
days; (D) undifferentiated 
adMSCs; (E) human osteoblast 
progenitor cells after 7 days in 
osteogenic medium. Nuclei are 
blue counterstained. 

B 

 

B 

A 

 

A 

C 

 

C 

B 

 

B 

D 

 

D 

C 

 

C 

E 

 

E 

D 

 

D 

Figure 51. Staining of alkaline 
phosphatase (blue color) on 
adMSCs cultivated for 7 days 
(A), 14 days (B), and 21 days 
(C) in osteogenic differentiation 
medium; (D) undifferentiated 
adMSCs; (E) human osteoblast 
progenitor cells after 7 days in 
osteogenic differentiation 
medium. Violet color represents 
the positive cells for ALP. 
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staining confirmed the ability of adMSCs to deposit calcium phosphate within the cell. The 

deposition was observed in direct progression with the differentiation time. 

 

3.2.3.2 Adipogenic differentiation 

As mentioned above, adMSCs also possess the ability to differentiate into the 

adipogenic lineage. The differentiation potential of the cells was tested by Oil Red O staining. 

The lipid droplets appeared after 2-3 days in adipogenic medium and their accumulation was 

equivalent to an adipocyte phenotype. Furthermore, the staining revealed large lipid vacuoles 

after 14 days of culture (Figure 54). 

 

Figure 54. Adipogenic differentiation of adMSCs. Morphological analysis of adMSCs cells under (A) adipogenic 
conditions for 14 days in comparison with (B) normal growth conditions; bar represents 100 µm. 

 

 

 

 

Figure 53. Von Kossa stain of 
mineralized deposits (black color) 
in cultures of adMSCs that 
underwent osteogenic 
differentiation for (A) 7 days, (B) 14 
days, and (C) 21 days; (D) 
undifferentiated adMSCs; (E) 
human osteoblast progenitor cells 
cultivated for 7 days in osteogenic 
medium. 
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3.2.4 Effect of the epigenetic modifying drugs on adMSCs 

3.2.4.1 Detection of the optimal concentration of epigenetic modifying drugs 

for adMSCs 

To find the optimal non-toxic concentration of the epigenetic modifying drugs used in 

this study, different amount of 5-azacytidine (AZA), BIX-01294 (BIX), and valproic acid (VPA) 

were used and cell viability assay (MTT) was applied. 

3.2.4.2 Effect of AZA on viability of adMSCs 

The viability of cells treated with five different concentrations of AZA (2.5, 5, 10, 20, 

and 40 µM) and compared with non-treated cells. Cell viability was not significantly affected 

by the tested concentrations independent of the different time point used (24, 48, and 72 h 

(Figure 55). For this reason the two lowest AZA concentrations, 2.5 and 5 µM, were selected 

for further experiments. 

 

Figure 55. Viability of adMSCs treated with five different concentrations of 5-azacytidine (AZA) for different time 
points: (A) 24 h, (B) 48 h, and (C) 72 h. Viability of the non-treated cells was set as 100%. 

3.2.4.3 Effect of BIX on viability of adMSCs 

The tested concentrations of BIX were 0.625, 1.25, 2.5, 5, and 10 µM. As for AZA, the 

viability of the cells was measured 24, 48, and 72 h following treatment (Figure 56). In 

comparison with non-treated cells, a statistically significant decrease in cell viability was 

observed after exposing the cells to concentrations of 5µM and 10 µM BIX for all three time 

points. Following decrease in cell viability was observed using BIX: After 24 h and at the 

concentration of 5 µM to 44% (p<0.001), at 10 µM to 5% (p<0.0001); after 48 h at 5 µM to 

8.5% (p<0.0001), and at 10 µM to 0.5% (p<0.0001); after 72 h at 2.5 µM to 52% (p<0.05), at 

5 µM to 6% (p<0.0001), and at 10 µM to 3% (p<0.0001). Thus, for the next experiments BIX 

concentration of 0.625 and 1.25 µM were selected. 
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Figure 56. MTT assay for BIX-01294 at different points of time: (A) 24 h, (B) 48 h, and (C) 72 h with five different 
concentrations. Viability of the non-treated cells is set as 100%. 

3.2.4.4 Effect of VPA on viability of adMSCs 

Valproic acid was tested on adMSCs at concentrations of 100, 200, 400 and 800 µM, 

and 1.2 mM at three different time points, 24, 48, and 72 h (Figure 57). Compared with non-

treated cells, significant decrease in cell viability was observed after 48 h at 100 µM to 

53.8%, at 400µM to 56.5%, at 800µM to 50.66%, and at 1.2 mM to 54.1% (for all p<0.05); 

after 72 h significant decrease in viability was observed only for 1.2 mM to 43.21% (p<0.05). 

Consequently, for all future experiments the concentrations of 100 and 200 µM were chosen. 

 

Figure 57. MTT assay for VPA at different points of time: (A) 24 h, (B) 48 h, and (C) 72 h with five different 
concentrations. Viability of the non-treated cells is set as 100%. 

Finally, also combination of these chemical compounds was tested and compared 

with the non-treated cells for the above mentioned time points (24, 48, and 72 h). Based on 

the previous results for each of the compound, following concentrations were chosen: AZA 5 

µM, BIX 1.25 µM, and VPA 200 µM). In addition several of these compounds and their 

selected concentration were tested. Various combinations were tested to verify the viability of 

the cells as follow: AZA and BIX; AZA and VPA, BIX and VPA, AZA, BIX, and VPA. No 

significant differences were observed after the treatment independent of the combination or 

time point used (Figure 58). 

non tr
ea

te
d c

el
ls

10
0µ

M

20
0µ

M

40
0µ

M

80
0µ

M

1.
2m

M

0

50

100

150

200

V
ia

b
il
it

y 
v

s
 .
 c

o
n

tr
o

l

non tr
ea

te
d c

el
ls

10
0µ

M

20
0µ

M

40
0µ

M

80
0µ

M

1.
2m

M

0

50

100

150

* * *
*

V
ia

b
il
it

y 
v

s
 .
 c

o
n

tr
o

l

non tr
ea

te
d c

el
ls

10
0µ

M

20
0µ

M

40
0µ

M

80
0µ

M

1.
2m

M

0

50

100

150

*

V
ia

b
il
it

y 
v

s
 .
 c

o
n

tr
o

l

A 

 

A 

B 

 

B 

C 

 

C 

non
 tr

ea
te

d c
el

ls

0.
62

5µ
M

1.
25

µM

2.
5µ

M
5µ

M

10
µM

0

50

100

150

200

***

**

V
ia

b
il
it

y
 v

s
 .
 c

o
n

tr
o

l

non
 tr

ea
te

d c
el

ls

0.
62

5µ
M

1.
25

µM

2.
5µ

M
5µ

M

10
µM

0

50

100

150

200

***
***

V
ia

b
il
it

y
 v

s
 .
 c

o
n

tr
o

l

non
 tr

ea
te

d c
el

ls

0.
62

5µ
M

1.
25

µM

2.
5µ

M
5µ

M

10
µM

0

50

100

150

200

*

*** ***

V
ia

b
il
it

y
 v

s
 .
 c

o
n

tr
o

l



RESULTS 84 

 

Figure 58. MTT assay after treatment with a combination of AZA, BIX, and VPA for a time period of (A) 24 h, (B) 
48 h, and (C) 72 h. Viability of the non-treated cells is set as 100%. 

3.2.5 Effect of epigenetic modifying drugs on global DNA methylation 

Global DNA methylation was assessed as described in section Materials and 

methods. All three chemical compounds described above are known for their ability to modify 

epigenetic pattern; However, only AZA has been shown to have a direct effect on DNA 

methylation [136]. Changes in DNA methylation pattern have been already associated with 

the reprogramming capacity of the cells. Consequently, epigenetic drugs might also improve 

the reprogramming capacity of adMSCs used in this study. Optimized non-toxic 

concentrations of AZA (2.5µM and 5µM), BIX (0.625µM and 1.25µM), and VPA (100µM and 

200µM) were used for cell treatment at three different time points (24, 48, and 72 h) as 

already tested before to determine the optimal concentration of these chemical compounds 

on global DNA methylation. The results are summarized in Figure 59.  

 

Figure 59. Global DNA methylation after treatment with the epigenetic modifying drugs (A) 5-azacytididine; (B) 
BIX-01294; (C) valproic acid. The graphs represent the quantitative evaluation after setting the methylation in the 
non-treated cells as 100%. 

Following treatment of adMSCs with AZA for 24 hours no significant changes in DNA 

methylation pattern were observed. In contrast, global DNA methylation was decreased to 

40.3% (p<0.001) using 5 µM AZA for 48 h, whereas 2.5 µM AZA for 72 h led to a decrease to 
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71.6% (p<0.05), compared with non-treated cells. In similar way, BIX treatment 

demonstrated significant changes in DNA methylation first after 48 hours of treatment. Using 

the higher non-toxic concentration of 1.25 µM, global DNA methylation was reduced to 

49.80% (p<0.0001). Treatment of adMSCs with BIX for 72 hours led to a significant decrease 

in global DNA methylation for both concentrations applied. Using 0.625 µM the reduction 

went to 68.30% (p<0.05), by 1.25 µM to 68.35% (p<0.05), respectively. Treatment with 

valproic acid did not lead to any decrease in the global DNA methylation, but interestingly to 

a slight increase, even though not statistically significant (Figure 59). 

3.2.6 Effect of epigenetic modifying drugs on the expression of 

pluripotency-related genes  

OCT4A, NANOG, SOX2, KLF4, and CMYC were shown to induce pluripotency, if 

they are all expressed at the same time in human and mouse fibroblasts. A link between cell 

reprogramming and epigenetics connects these pluripotency markers with the chromatin 

remodeling. Thus, to analyse a possible effect of epigenetic modifying drugs on the 

differentiation potential of adMSCs, expression levels of the above mentioned genes were 

analyzed following treatment. The expression of the pluripotency-related markers was 

measured by real time PCR and quantified with the ΔCT method after normalization of each 

sample to housekeeping gene GAPDH. AdMSCs were treated again with 5µM AZA, 1.25 µM 

BIX, or 200 µM VPA for 48 h and non-treated cells were used as a control; their gene 

expression was set as 100%.  

AZA and VPA had the tendency to increase the expression of OCT4A for up to 

143.54% and 133.15%, respectively (p=0.0705 for both), statistical analysis showed however 

no significant differences. Only BIX treatment was able to significantly increase the 

expression of OCT4A up to 233.77% (p=0.0112) (Figure 60A). SOX2 expression significantly 

increased to 263.36% (p=0.0195) after BIX treatment, while AZA or VPA did not have any 

significant effects (Figure 60B). For NANOG expression only BIX led to a significant increase 

to 152.93% (p=0.0357). Both AZA and VPA had a tendency to increase the expression of 

this marker to 147% and 142%, respectively (p=0.09 for both), but without significance 

(Figure 60C). 
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Figure 60. Relative expression of pluripotency related genes: (A) OCT4A, (B) SOX2, (C) NANOG. 

Expression of the other pluripotency markers KLF4 and CMYC did not significantly 

change after the treatment of adMSCs with none of these epigenetic modifying drugs (Figure 

61 A and B). 

 

Figure 61. Relative gene expression of (A) KLF4 and (B) CMYC after treatment with AZA, BIX, or VPA. 

In addition, a combination AZA, BIX, and VPA was tested to verify, whether the 

expression of pluripotency-related genes could be further increased. Combinations of each of 

the two substances and even all three did not lead to any significant increase in the 

expression of these genes compared to single treatment and was therefore not considered 

for further experiments. 

3.2.7 Differentiation of adMSCs into endothelial cells 

After proving the hypothesis that epigenetic modifying drugs, namely BIX and AZA, 

are able to modify the global DNA methylation, and also that BIX was able to significantly 

increase the expression of pluripotency related genes at mRNA level, the next step was to 

evaluate, whether the reprogramming capacity was increased as well. Therefore, adMSCs 

were pre-treated with AZA, BIX, and VPA for 48 h at the optimal non-toxic concentrations as 

described above and then the cells were cultured in endothelial medium for up to 14 days 

(Figure 62). Cells were microscopically analyzed after being stained for VCAM-1, von 

Willebrand Factor, VEGFR-2, and PECAM-1. In order to quantify the expression of the 

relevant endothelial cell markers (VEGFR-2, VCAM-1, PECAM-1, F8) and angiogenesis 

markers (VEGF, PDGF, ANG-1, and ANG-2), qPCR analysis was performed.  
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Figure 62. Schematic view of the endothelial differentiation protocol using ICC. 

3.2.7.1 Evaluation of endothelial and angiogenenic markers by 

immunocytochemistry 

During cultivation of adMSCs under endothelial conditions, the morphology of 

adMSCs changed with the time towards that of endothelial cells, showing the characteristical 

cobblestone-like shape. These changes were observed mostly in the group of epigenetic 

treated cells (Figure 63). 

 

    

To further characterize the differentiation process, ICC was performed after 7 days 

under endothelial cultivation conditions. The cells were stained against VCAM-1 (Figure 64), 

vWF (Figure 65), VEGFR-2 (Figure 66), and PECAM-1 (Figure 67). The increased number of 

positive cells in the group that received BIX treatment confirmed that BIX had the highest 

potential to increase the reprogramming capacity of adMSCs to differentiate into cells with 

endothelial characteristics for all endothelial markers used. 
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Figure 63. Phenotype changes 
during endothelial cultivation. (A) 
AZA, (B) BIX, (C) VPA for 48 h 
treatment. (D) normal growth 
conditions – DMEM, and (E) 
endothelial conditions. 
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Figure 64. VCAM-1 staining of adMSCs after 7 days under endothelial conditions. (A) AZA, (B) BIX, (C) VPA for 
48 h treatment; (D) non-differentiating growth conditions (DMEM) and (E) adMSCs in endothelial medium without 
any epigenetic drug treatment. 

 

 

Figure 65. Staining for von Willebrand Factor antigen after 7 days under endothelial conditions. (A) AZA, (B) BIX, 
(C) VPA for 48 h treatment; (D) non-differentiating growth conditions (DMEM) and (E) adMSCs in endothelial 
medium without any epigenetic drug treatment. 
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Figure 66. Staining for the antigen VEGFR-2 after 7 days under endothelial conditions. (A) AZA, (B) BIX, (C) VPA 
for 48 h treatment; (D) non-differentiating growth conditions (DMEM) and (E) adMSCs in endothelial medium 
without any epigenetic drug treatment. 

 

 

Figure 67. Staining for the PECAM-1 antigen after 7 days under endothelial conditions. (A) AZA, (B) BIX, (C) VPA 
for 48 h treatment; (D) non-differentiating growth conditions (DMEM) and (E) adMSCs in endothelial medium 
without any epigenetic drug treatment. 
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3.2.7.2 Evaluation of endothelial and angiogenesis markers at mRNA level 

Since the most changes were observed in the group adMSCs that received a 

treatment with BIX before endothelial differentiation, the next experiments were performed 

only on these cells. Figure 68 shows the protocol followed for the endothelial differentiation. 

 

Figure 68. Endothelial differentiation protocol for further characterization of the differentiation process at mRNA 

and protein level. 

The effect of BIX on the differentiation capacity of adMSCs into endothelial cells was 

determined analyzing the expression of genes activated in an endothelial lineage or involved 

in neovascularisation: PECAM-1, VCAM-1, F8, VEGFR-2, VEGF, PDGF, ANG-1 and ANG-2. 

Two experimental groups of cells were compared: one group was cultured only in endothelial 

medium (EM), the other group was treated with BIX for 48 h before the endothelial medium 

was added (BIX plus EM). Gene expression was analyzed in adMSCs cultured for 7 and 14 

days under endothelial conditions, and was normalized to GAPDH, with the EM group set as 

100%. The results are presented in Figure 69, 70, 71, and 72. 

PECAM-1 expression was increased by 2.91-fold (p=0.0500) after 7 days, and by 

2.11-fold (p=0.0008) after 14 days of differentiation. As for VCAM-1, the increase was by 

2.22-fold (p=0.0500) after 7 days and by 4.86-fold (p=0.0185) after 14 days of differentiation 

(Figure 69). Each of the increase was statistically significant.  

 

Figure 69. Relative expression of PECAM-1 and VCAM-1 in the "BIX plus EM" group of cells after 7 and 14 days 
of endothelial medium; red line represents the expression of the same genes in the “EM” group of cells that was 
set as 100%. 

Von Willebrand factor gene expression was increased by 4.02-fold (p=0.0104) after 7 

days and by 36-fold (p=0.0382) after 14 days in the “BIX plus EM” group. In the same group 

the expression of VEGFR-2 was increased by 2.17-fold (p=0.0844) and by 4.53-fold 

(p=0.0235) after 7 and 14 days, respectively (Figure 70).  
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Figure 70. Von Willebrand factor (vWF) and VEGFR-2 gene expression in the "BIX plus EM" group of cells after 7 
and 14 days in endothelial medium; red line represents the expression of the same genes in the “EM” group of 
cells that was set as 100%. 

Expression of VEGF and PDGF was also analyzed. After 7 days under endothelial 

conditions, an increase of VEGF expression by 4.68-fold (p=0.0851) and by 2.34-fold 

(p=0.0131) after 14 days was observed. As for PDGF, similar increases were found by 2.78-

fold (p=0.3655) after 7 days and by 5.21-fold (p=0.0017) after 14 days. 

 

Figure 71. VEGF and PDGF gene expression in the "BIX plus EM" group of cells after 7, and respectively 14 
days in endothelial medium (EM). Red line represents the expression of the same genes in the "EM" group of 
cells that was set as 100%. 

In the “BIX plus EM” group significant changes in the expression of ANG-1 and -2 

after 7 and 14 days were observed. Ang-1 expression was increased by 4.2-fold (p=0.0498) 

after 7 days and by 6.52-fold (p=0.0080) after 14 days, respectively. In contrast, expression 

of Ang-2 after 7 days under endothelial differentiation conditions presented a decrease by 

0.40-fold (p=0.0498) and after 14 days by 0.64-fold (p=0.0498) in comparison with the EM 

group (Figure 72). 
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Figure 72. Ang-1 and Ang-2 gene expression in the "BIX plus EM" group of cells after 7 and respectively 14 days 
in endothelial medium; red line represents the expression of the same genes in the “EM” group of cells that was 
set as 100%. 

3.2.7.3 Evaluation of endothelial and angiogenesis markers at protein level 

In addition, to evaluate whether the increase in expression of endothelial and 

angiogenic factors take place also at protein level, selected markers specific for ECs showing 

significant differences in gene expression as shown above, VCAM-1 and VEGFR-2, were 

verified by western blot.  

After quantification, results were normalized to the expression of GAPDH from the 

same samples. The amount of VCAM-1 protein was increased by 1.15-fold (p=0.0271) and 

by 2.04-fold (p=0.0286) after 7 and 14 days, respectively, compared with cells without BIX 

pre-treatment. The total amount of VEGFR-2 protein was increased after 7 days by 2.95-fold 

(p=0.0937) and after 14 days by 1.94-fold (p<0.0001) (Figure 73). 

 

Figure 73. Western blot for VCAM-1 and VEGFR-2 in “BIX plus EM”. (A) VCAM-1 and (B) VEGFR-2 
expression at protein level in the "BIX plus EM" group of cells after 7 and respectively 14 days of endothelial 
medium; red line represents the expression of the same genes in the “EM” group of cells that was set as 100% 
(C) representative blot for VCAM-1 and related GAPDH; (D) representative blot for VEGFR-2 and related 
GAPDH. 
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3.2.7.4 Analysis of endothelial cell functionality 

One of the typical tests for verifying the functionality of endothelial cells is the acLDL 

uptake assay. AcLDL is labeled with a carbocynine salt that emits fluorescent light at 488 nm 

(red). Since only endothelial cells and macrophages are able to metabolize acLDL, the red 

color will be observed only after metabolization of acLDL in this type of cells.  

After adMSCs were cultivated in normal growth medium no cellular uptake was 

observed. In “EM”group of cells, low metabolization of labeled acLDL was observed (Figure 

49). In contrast, cells it the group “BIX pus EM” presented the highest capacity to take up 

acLDL, (Figure 74). 

 

Figure 74. AcLDL uptake into AdMSCs after 7 days under different cultivation conditions: DMEM (normal growth 
medium); EM (endothelial medium); EM plus BIX (AdMSCs have received BIX pre-treatment followed by 
cultivation in endothelial medium). Fluorescence staining for AcLDL labeled with DiI (red color), nuclear 
counterstaining with SybrGreen I Dye (green color).  

3.2.8 Autologous vessel for tissue engineering 

3.2.8.1 Preparation of collagen based scaffold by decellularization of blood 

vessel 

Decellularization of a collagen based scaffold can be done with several methods 

(physically, chemically, or enzymatic methods or these combined). In the present work, to 

obtain the acellular vessel scaffold, the chemical decellularization method was used. The 

acellular scaffold was obtained after optimization of the decellularization process with 0.66% 

SDS. Four time points were considered in order to establish the optimal protocol: 1, 24, 48, 

and 96 hours of treatment. Saphenous vein was washed with 0.66% SDS for the established 

time duration. The concentration of 0.66% SDS was previously established to be the lowest 

concentration that removed all the cellular components.  

After treatment of the saphenous vein with 0.66% SDS at the different time points for 

up to 96 h, H&E staining was performed and the vessel was analyzed by light microscopy. 

Treatment of the vessel for 48 hours was considered to be sufficient to achieve complete cell 

removal (Figure 75).  

DMEM EM EM plus BIX 
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Figure 75. H&E staining of the saphenous vein after treatment with SDS at different time points. (A) control 
vessel - not decellularized; (B) 1 h washing with 0.66% SDS; (C) 24 h washing with 0.66%SDS; (D) 48 h washing 
with 0.66% SDS; (E) 96 h washing with 0.66% SDS; blue color is representing the nuclear stain; original 
magnification 200x. 

Consequently, these conditions were used for the following experiments. As shown in 

Figure 76, the macroscopic structure and form the biological scaffold was unaffected and 

retained the shape and size of the original vessel. 

 

Figure 76. Macroscopic view of the collagen-based scaffold after decellularization process. The biological 
scaffold maintained the shape and the size of the original vessel. 

3.2.8.2 Attachment of differentiated adMSCs on the decellularized blood vessel 

Following the optimization of the decellularization protocol, the next step was to 

evaluate, whether endothelial cells, differentiated from adMSCs after BIX treatment, were 

able to attach to the previously established biological scaffold.  

Various time points were tested for the optimal seeding time. The majority of cells 

attached already after 2.5 h in a Petri dish, therefore the same incubation time was assumed 

also for the attachment on the biological scaffold. 
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After the differentiated adMSCs were seeded onto the decellularized scaffold, the cell 

behavior was followed for up to 7 days. The scaffold and the cells were prepared as follows: 

cells have been suspended in small volume of growth medium and seeded into the lumen of 

the previously obtained matrix. The vessel segments were incubated in 5%CO2 at 37ºC for 

2.5 h. Thereafter, the EM was added, and after 2 and 7 days of culture the constructs were 

histologically analyzed.  

The staining applied verified the cell attachment. Two days following seeding, cells 

started to form a monolayer at the surface of the scaffold. In addition, some cells migrated 

into the deeper layers. After 7 days, a higher cell density was observed on the surface of the 

scaffold compared with the first time point. However, some cells seemed to detach from the 

scaffold (Figure 77). 

 

Figure 77. Van Gieson’s staining of biological scaffold. - (A) decellularized vessel; (B) 2 days after new cells were 
seeded; (C) 7 days after new cells were seeded. Lower part corresponding pictures are with a higher 
magnification. Black color represents the nuclear staining. 

3.2.9 The influence of donor age on the properties of adMSCs  

By regular examination of the morphology of adMSCs in culture, differences were 

noticed between different cell populations. Since the isolation procedure and cultivation were 

standardized, the differences were assumed to be associated with origin of the adipose 

tissue from which the cells were isolated. The most plausible explanation was the different 

age of the donors, the adipose tissue was isolated. For this purpose, 13 donors were divided 
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into two groups, namely young (less than 50 years old) and elderly (more than 50 years old) 

as described in Table 20. The osteogenic and adipogenic differentiation potential of adMSCs 

were verified again in the third passage. 

Table 20. Study groups for the cells originating from elderly and young donors. 

Mean age (years) Patient gender Group 

69±13.5 
(60-88) 

3 women 
4 men 

elderly 

39±14 
(21-49) 

4 women 
2 men 

young 

3.2.9.1 Osteogenic and adipogenic differentiation 

3.2.9.1.1 Osteogenic differentiation 

Following osteogenic differentiation for 7, 14, and 21 days, the two groups were 

examined for the presence of alkaline phosphatase (ALP). Quantitative assays revealed a 

1.8-, 2.4-, and 2.1-fold (p<0.05) increase in  ALP activity (Figure 78 A) in the groups of cells 

isolated from younger individuals at 7, 14, and 21 days of differentiation, respectively, 

compared to cells from elderly donors. Differences between the groups were observed also 

after staining for ALP (Figure 78 B, C, and D).  
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3.2.9.1.2 Adipogenic differentiation 

Following adipogenic differentiation for 14 and 21 days, adMSCs from the two groups 

of donors were examined by Oil Red O staining (Figure 79) and quantified accordingly 

(Figure 80). Under adipogenic conditions, adMSCs changed their shape to round or squared 

and produced lipid droplets. After the staining of the droplets with Oil Red O and using typical 

light microscopy technique, it was observed that cells originating from younger individuals 

produced droplets larger in diameter than cells from elderly donors. On the other side, there 

were more droplets in the cells from the elderly group than in the young group. Moreover, all 

cells belonging to the elderly group contained lipid droplets. In contrast, in younger 

individuals also cells without droplets were found. 

  

Figure 79. Oil Red O staining in adMSCs under adipogenic differentiation conditions. AdMSCs from elderly (A) 
and young (B) donors, after 14 days under adipogenic conditions; scale bars represent 100 µm, magnification  
200x. 

After solubilizing the lipid droplets in isopropanol, spectrophotometric quantification 

revealed no significant differences between populations from young and elderly donors after 

14 and 21 days under adipogenic conditions. Nevertheless, production of oil droplets was 

increased up to 11-fold (p<0.0001) at day 21 compared to day 14 for both groups. 
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Figure 80. Quantification of the adipogenic differentiation of adMSCs from young and elderly donors - Oil Red O 
quantification assay showed an 11-fold increase in lipid production after 21-days reference point compared to the 
14-days point. No significant differences were observed between the young and elderly donors. 

 

A 

 

A 

B 

 

B 



RESULTS 98 

3.2.9.2 Analysis of cell proliferation 

Ki67 is a nuclear protein marker for cellular proliferation. It can be exclusively 

detected within the cell nucleus during all active phases of the cell cycle (G1, S, G2, and 

mitosis), but is absent in resting cells (G0). Both study groups were stained for Ki67 to 

evaluate possible differences in cell proliferation. 

 

Figure 81. Proliferating cells in the comparison groups – elderly and young. Staining for Ki67 antigen in adMSCs 

from elderly (A) and young (B) donors. Red color represents the positive cells. 

For cell populations originating from elderly donors, 29.04% were positive for Ki67 

antigen (Figure 81). Regarding the cell population originating from younger donors, 66.26% 

were positive for this marker of proliferation Comparing these two study groups, younger 

donors demonstrated significant higher proliferation by 2.28-fold (p=0.0022) than elderly cell 

population (Figure 82). 
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Figure 82. Quantification of proliferation rate in young and elderly donors. Ki-67 staining was analyzed by the 
ImageJ software. 
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3.2.9.3 Analysis of global DNA methylation  

DNA was isolated from both study groups, elderly and young donors and the DNA 

methylation was evaluated by the MethyLight assay. After normalization to the control DNA 

(completely methylated DNA) that was set as 100%, it was observed that in cells from elderly 

donors the global DNA methylation was 32.36% (p<0.05) and that from young donors was 

26.28% (p<0.05) compared to control (Figure 83). In elderly group it was observed an 

increase by 1.23-fold (p=0.0186) in global DNA methylation compared with the group of 

young donors. 
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Figure 83. Global DNA methylation in adMSCs from young and elderly donors. DNA-methylation was significantly 
lower in cells isolated from young patients. 

3.2.9.4 Expression of pluripotency-related genes 

Since the global DNA methylation status was reduced in cells from young donors, the 

next step was to verify expression of pluripotency associated genes at mRNA level. The 

expression of OCT4A, NANOG, SOX2, KLF4, and CMYC was assessed using SybrGreen-

based real time PCR and normalized to the expression for the housekeeping gene GAPDH 

(Figure 84).  

In cells from young donors, expressions of genes NANOG and SOX2 were 

significantly increased by 7.97-fold (p=0.0415) and 20-fold (p=0.0415), respectively, 

compared with the elderly group. OCT4A, KLF4, and CMYC showed a tendency to increase 

their expression in the cells from young donors by up to 11.74-fold (p=0.3992), 2.48-fold 

(p=0.0603), and 1.08-fold, respectively (p=0.1524), again compared to the elderly donors, 

however without statistical significance.  
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Figure 84. Expression of pluripotency related genes in adMSCs originating from elderly and young donors. 
Statistically significant differences were observed for NANOG and SOX2 expression. Both markers had increased 
expression in the cells from young donors. 
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4 DISCUSSION 

4.1 Epigenetics and vascular disease – atherosclerosis 

4.1.1 DNA methylation in early and advanced atherosclerotic plaque and 

serum 

Chromatin is a flexible structure undergoing dynamic changes throughout the whole 

life. These heritable alternations of chromatin - leading to changes in gene expression or 

phenotype without influencing the underlying DNA sequence - are called epigenetics. The 

most interesting feature of epigenetics is that it can be affected by environmental 

interactions, giving the organism a feedback from surrounding conditions. Emerging 

evidences implicate a spectrum of epigenetic changes in the pathophysiology of 

atherosclerosis.  

The results of the present study showed significant changes in the epigenetic pattern 

in advanced atherosclerosis, especially DNA- and histone-methylation, which was the aim of 

the current thesis. Furthermore, epigenetic changes correlated with the severity of 

atherosclerosis in carotid lesions. Thus, results confirmed the important role of epigenetics in 

atherosclerosis. 

Characterization of carotid AS plaques had shown the classical morphology of 

atherosclerosis lesions, as described by Herbert Stary in accordance with AHA [75, 76]. 

Following plaque classification two study groups were built: early and advanced stage of 

atherosclerosis. The early stage comprised lesions type I, II, and III. For these stages, 

histopathology showed typical morphology of the AS plaque with macrophages infiltration 

and intimal thickening [76]. For the advanced stage lesions of type V, VI, and VII were 

chosen. The typical morphology for each lesion type observed was lipid core (type V) 

accompanied by thrombotic deposits (type VI), and necrotic core with calcified lesions (VII) 

[75]. Type IV, the first potential clinical lesion, characterized by a massive aggregate of 

extracellular lipid (a lipid core) without any fibrotic cap, thrombosis or hemorrhage, was 

excluded from the current study because very few patients, who underwent CEA in the 

Department of Vascular Surgery, had this type of lesion. In addition, type VIII, consisting 

entirely or almost entirely of scar collagen with minimal or absent lipid deposition and small 

vessel lumen, was also excluded from the study. As mentioned for type IV, type VIII was also 
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seldom in the biobank of the Department for Vascular end Endovascular Surgery, from which 

the plaques were selected.  

DNA methylation can affect gene expression by preventing the access of transcription 

factors to the CpG nucleotides. A decreased level of methylation especially in the promoter 

region of a gene is usually acknowledged as transcriptional active site, while the 

hypermethylation status is associated with transcriptionally silent state of gene activity. So 

far, very little is known about the changes in DNA methylation in atherosclerotic lesions and 

almost nothing in carotid plaques. Therefore, at first, the global DNA methylation status was 

analyzed. For this purpose three repetitive elements (LINE1, Satα, and Alu1) were selected. 

They are acknowledged as a surrogate marker for estimating global methylation levels [214]. 

Repetitive elements represent a large percentage of the human genome; approximately 45% 

of the genome is represented by interspersed repeats from transposable elements and 

tandem of simple sequences (DNA satellites) or complex sequences [214].  

In the current work, DNA methylation was investigated by the method of 

Weisenberger et al. [214], who validated MethyLight, a Taqman-based real time PCR assay 

based on methylation of DNA repetitive elements. The results showed that the 

hypomethylation of DNA was significantly associated with the severity of atherosclerosis in 

the analyzed carotid plaques. Compared with healthy vessels, global DNA methylation 

diminished to 60% in early stages of atherosclerosis and was further reduced to 30% in 

advanced atherosclerotic lesions. Consequently, the level of DNA methylation in the 

repetitive DNA sequences LINE1 and SATα might also serve as an epigenetic marker of 

progression of atherosclerotic lesions. These results were confirmed by blood analysis, with 

significantly reduced methylation of DNA from serum of patients with advanced carotid artery 

stenosis, compared to healthy individuals. These results confirm the work of Castillo-Diaz 

and colleagues [92], who observed extensive DNA demethylation in human coronary 

samples of atherosclerosis. Interestingly, these data were in discordance with the work of 

Stenvinkel and colleagues [217], who found global DNA hypermethylation in blood samples 

of patients with cardiovascular disease. However, Stenvinkel included patients with chronic 

kidney disease (CKD) and analysed, in contrast to the present study, peripheral blood 

leucocytes. CKD is frequently associated with chronic inflammation, which has been already 

suggested to be associated with with general genome hypomethylation but selective gene 

hypermethylation and silencing [218]. These discrepancies confirm the importance of 

epigenetic changes in various diseases. Mechanistically, loss of DNA methylation may have 

several causes. For example, it could be a consequence of abnormal cellular proliferation, a 

local deficiency of methyl donors, or both. Early studies have suggested that e.g. certain 
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premalignant conditions may lead to decreased tissue folate content and, thus, a local 

deficiency in methyl donors [219].  

 

4.1.2 DNA methyltransferases in atherosclerotic lesions 

Methylation of DNA is provided by adding a methyl group at the nucleotide, mainly at 

the promoter site. The methylation of DNA is directed by a family of DNA methyltransferases 

(DNMTs) with DNMT1, DNMT3A, and DNMT3B as only functional known members. The role 

of DNA methylation and DNMTs in cancer and developmental studies has been extensively 

examined. In contrast, the expression pattern of DNMTs in atherosclerosis is so far unknown. 

The results from the DNA methylation experiments in this study demonstrated significant 

hypomethylation in advanced atherosclerotic lesions. The next logical explanation for these 

changes would be alternations in the expression of DNMTs. 

The results reported in this work showed that the expression of DMNT1 decreases 

with the progression of AS, which was in accordance with the study of Hiltunen et al. [13]. 

DNMT1 is a methyltransferase responsible to maintain methylation of DNA within the cell. 

Thus, a decrease in the expression of DNMT1 might be one of the principal causes in the 

reduction of the level of global DNA methylation found in the carotid tissue and in serum from 

patients with high graded carotid artery stenosis.  DNMT1 is constitutively expressed and 

methylates newly replicated DNA only when the template nucleotides are methylated. 

Consequently, the function of DNMT1 is to maintain global methylation after replication of 

DNA. Our results suggest however the function of DNMT1 also in the maintenance of DNA 

methylation, which would explain the significant demethylation in atherosclerosis. 

In agreement with results obtained for global DNA methylation and decreased 

expression of DNMT1, it was found that the expression of methylcytosine dioxigenase TET1 

(Ten-eleven translocation 1) increases with the progression of atherosclerosis. This protein is 

an enzyme involved in the demethylation process, responsible for the intermediate form      

5-hidroxymethylation. It catalyzes the conversion of the modified genomic base                     

5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC). It initiates a process leading 

to cytosine demethylation through deamination into 5-hydroxymethyluracil (5hmU) and 

subsequent replacement by unmethylated cytosine by the base excision repair system 

playing an important role in transcriptional regulation [220]. By controlling the levels of 5mC 

and 5hmC, it may regulate gene expression [21, 22, 221]. In conclusion, if DNMT1 does not 

function properly, it does not add methyl groups to maintain methylation. In addition, if the 
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demethylase TET1 has an increased function, the results are that the genome wide 

demethylation will be induced. 

De novo methylation process is provided with the help of DNMT3A and DNMT3B. 

Notably, DNMT3A expression was not found in the analyzed samples. DNM3B expression 

level was found to be decreased in the atherosclerotic tissue, again corresponding with AS 

progression. The expression of DNMT3B was however up to 1000-fold lower than the 

expression of DNMT1. These results are in agreement with the study of Spin et al. [222] and 

indicated a significant downregulation of DNMT3A and 3B in e.g. SMCs during de-

differentiation. In contrast, the work of Yiden et al [85] correlated genome wide 

hypomethylation induced in vitro in vascular smooth muscle cells (VSMCs) by homocysteine 

(Hcy) with increased levels of DNMT3A and DNMT3B. Since in the current work the level of 

DNMT3B is decreased, it might be possible that Hcy is not the primary trigger of AS, but an 

intermediary step in the progression of atherosclerosis. Nevertheless, the increased levels of 

Hcy may contribute, together with oxidative stress, apoptosis and inflammation to the 

progression of AS. 

4.1.3 Correlation of methylated K4 and K9 of histone H3 with smooth 

muscle cells, inflammatory cells, and the progress of 

atherosclerosis 

Based on the obtained results it was concluded that global DNA methylation might be 

used as a potential marker for the progression of AS. However, DNA methylation is just a 

part of the vast epigenetic apparatus. Transcription factors can bind more easily the 

hypomethylated promoter region of a gene, but only if this area of genome is accessible. 

Histone modifications play an important role in chromatin remodeling and changes to the 

histone tails control the state of the chromatin. Especially histone methylation is a highly 

interesting modification that, depending on the site of methylation, can lead either to gene 

activation or silencing. Furthermore, there is clear evidence that DNA and histone 

methylations are tightly controlled [223]. The histone H3 with an unmethylated K4 is required 

for DNA methylation [224]. In addition, methylation of histone H3 on K9 participates in DNA 

methylation as well, mediated by DNMT1 [120]. Because de-methylation seems to be the 

most important modification of H3K4 and H3K9 [225], this modification was analyzed in the 

present study in order to find out whether it corresponds with the progression of 

atherosclerosis and whether these changes can be associated with a certain type of cells, 

e.g. smooth muscle cells or inflammatory cells.  
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By staining of consecutive slices it was possible to connect the presence of smooth 

muscle cells in all stages of atherosclerosis and control tissue with the H3K4me2 positive 

cells. Interesting was to observe that with the progression of AS the smooth muscle cells 

were weaker stained in comparison with the control tissue. The reason for this is currently 

unknown and must be further investigated.  

In contrast to skeletal and cardiac myocytes, mature vascular smooth muscle cells 

(VSMC) have the capability to modulate their phenotype towards an earlier state (de-

differentiate) in response to multiple environmental signals, particularly under stimuli 

associated with vascular injury and diseases. These “de-differentiated” VSMCs present 

down-regulated markers and contractile proteins. Under this phenotype the cell may migrate, 

proliferate, produce extracellular matrix (ECM), and remodeling factors [222]. In the current 

study, VSMCs positive for H3K4me2 and their decreasing expression with the progression of 

atherosclerosis correlates with the phenotype changes in a vascular injury that leads to AS. 

Since H3K4 methylation is a reversible modification [226], the de-differentiated VSMCs could 

be, under favorable conditions, induced to re-differentiate into normal contractile state, and 

methylation of H3K4 may be regarded as a potential target for drug therapy in AS. 

Regarding histone H3K9 methylation, VSMCs in control tissue were almost all 

negative. In AS samples these cells were increasingly positive with the progression of the 

disease. H3K9me2 is a marker known to be acting as a suppressor of transcriptional activity, 

by involvement in the suppression of contractile proteins of the normal VSMCs. This 

hypothesis is reinforced by the study of Lockman et al. [227], where the overexpression of 

histone demethylase was associated with decreased expression of H3K9me2 and with 

increased expression of transgelin. The other way around, the increased expression of 

H3K9me2 is associated with down-regulation of transgelin in normal VSMCs. By contrast, 

another study [228] showed that in vitro demethylation of the K9 lysine may trigger 

conversion to the transcriptionally viable euchromatin during SMC differentiation. The exact 
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mechanism is far from being understood due to high complexity of the H3K9me2 modification 

involvement in many different pathways.  

The epigenetic modifications of the inflammatory cells within AS plaque must not be 

ignored. Consecutive tissue sections from the investigated samples were stained for CD45, 

CD68, and H3K4me2, and matching areas were compared. It was observed that almost all 

CD45-positive cells and all CD68-positive cells, both in early and advanced stage, were 

slightly positive for H3K4me2. Additionally, by western bot analysis of the AS samples, a 

significant decrease in the expression of H3K4me2 was observed with the progression of AS. 

Di-methylation of H3K4 has been reported as a boundary marker, preventing the spread of 

“repressive modifications” into the active regions, or directing modifying activities to the locus 

in a developmentally appropriate manner [229]. Histone H3K4 di-methylation has been 

shown to enhance the NF-κB-dependent expression of inflammatory genes in macrophages 

[230]. Correlations between increased H3K4 methylation and induction of transcription are 

also observed at most, but not all, loci where transcription is induced. Thus, H3K4 

methylation may be used  to control chromatin activity [231].  

Nearly all CD45 positive cells were also positive for H3K9me2 in the 

immunohistological analysis of corresponding areas. Additionally, the western blot analysis of 

the tissue samples confirmed these results, amount of H3K9me2 positive cells increased 

with the progression of AS and with accumulation of inflammatory cells. The study of 

Tachibana concludes that H3K9me2 is dispensable in the B-cell lineage and/or other 

differentiated cells and that B cells require minimal levels of H3K9me2 [53]. Therefore, not 

surprisingly, the CD68 positive cells presented same characteristics for these two histone 

markers, as shown in the present work. Tissue- and/or stage-specificity of leucocyte 

development are controlled at many genetic and epigenetic levels beyond the simple 

presence of H3K9me2. More important might be that hypoxia is influencing the H3K9me2 

with a concomitant loss of a specific histone demethylase activity that is followed by 

increased H3K9 methylation [232]. In the context of AS, it is  already well recognized that 

hypoxia plays an important role in the progression of this disease [233].  

In conclusion, methylation of H3K4me2 might be associated with changes in the 

phenotype of VSMCs and the methylation of H3K9me2 seems to be associated with 

inflammatory cells in atherosclerotic lesions. The western blot analysis of fresh samples, in 

controls, early and advanced stage AS, revealed interestingly a decrease in the di-

methylation of both H3K4 and H3K9. A possible explanation for the discrepancy between 

IHC and western blot might be the involvement of other epigenetic mechanisms, such as 

histone acetylation/deacetylation. DNA methylation and histone deacethylation play also an 
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important role in the regulation of the H3K4me2. A recent study on T cells showed that AZA 

or trichostatin A (histone deacetylase inhibitor) were able to also affect di-methylation of K4 

beside their known effects on DNA methylation and histone deacetylation [225]. Such results 

demonstrate that the processes of DNA methylation, histone methylation, and histone 

acetylation are connected and more complex than currently thought.  

4.1.4 Gene expression of histone methyltransferases  

Methylation of histones is accomplished by histone methyltransferases (HMTs). 

HMTs are enzymes, which catalyze the transfer of one to three methyl groups from S-

adenosyl methionine to lysine or arginine residues of histone proteins. Responsible for 

adding a methyl group to the H3K4 site are HMTs containing the human SET1 (hSET1) 

domain. Among them are MLL1, SETD1A and SETD1B. The expression analysis showed 

that only MLL1 increased continuously with the progression of AS. 

The MLL1 gene product is required for control of vertebrate HOX gene expression 

and thus involved in many developmental processes [234]. It is a candidate for establishing 

the patterns of H3K4 methylation. MLL1 has H3K4 methyltransferase activity [58, 235], but is 

unable to generate tri-methylation of H3K4 in vitro [235]. Furthermore, MLL1 has links to B-

cell development, as translocations in the MLL1 gene can cause malignancy in pre-B cells 

suggesting the involvement of H3K4 methylation pattern in malignancy [236, 237]. In 

addition, it has been shown that MLL1 is involved in tumor angiogenesis by recruiting and 

sustaining of the blood vessels, but without a direct connection to H3K4me2 [224]. There is 

so far no data linking MLL1 expression, methylation of H3K4, and atherosclerosis. The 

mutual connection might be the inflammation process. MLL1 was suggested to be recruited 

to its target genes by activated NF-κB and regulates their transcription [238]. In the present 

work, immunohistological analysis of the inflammatory cells and western blot analysis 

showed a decrease in the expression of the H3K4me2 with the progression of AS, but the 

MLL1 expression was increased. This suggests that other processes are involved in AS, and 

that the mechanisms are more complex involving also other methyltransferases. 

The histone methyltransferase hSET1 has been shown to be differentially over-

expressed in the malignant cells [239]. SETD1A and SETD1B are both components of the 

HMT complexes able to mono-, di-, or tri-methylate H3K4, and have non-redundant roles 

[239]. In carotid tissue affected by AS, as well as in control tissue, the expressions of 

SETD1A and SETD1B were undetectable. This would suggest that these two 

methyltransferases are not playing an important role in the vascular wall. SETD1B was 

reported to methylate H3K4 only if H3K9 was not already methylated [240] and so affect the 
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methylation of H3K9. Moreover, SETD1B was shown to be down-regulated at the beginning 

of VSMC de-differentiation [53, 56]. In agreement with the presented results, methylation at 

K9 might occur ahead of the methylation of K4, thus being hindered by the first process.  

HMTs responsible for di-methylation of K9 are SUV39H1 and EHMT2 (also known as 

G9a). Their expression was not detected in this study, independent of the tissue analyzed. 

During the de-differentiation process of the VSMCs, EHMT2 (G9a) was shown to be down-

regulated in the first stages of the differentiation and up-regulated in the late phase. In B 

lymphocytes, G9a serves as the major H3K9 di-methylattransferase, but is not the only HMT 

involved in this process since the global H3K9me2 was reduced in the absence of G9a but 

not absent [53, 241]. 

4.1.5 Conclusion 

In summary, genomic hypomethylation occurs with the progression of atherosclerotic 

lesions. This is in a direct correlation with the failure to function of the methyltransferase 

DNMT1. In agreement with the increased expression of TET1, associated with a 

demethylation at the nucleotide level, the DNA is globally hypomethylated. Thus, the 

synergetic effect of DNMT1 and TET1 might be the main mechanism leading to DNA 

hypomethylation. As for histone modifications, the other component of the epigenetic code, 

di-methylation of H3K4 and H3K9 decreases with the progression of the atherosclerosis. 

Furthermore, H3K4me2 was mainly observed to exist in vascular smooth muscle cells and 

H3K9me2 was associated with inflammatory cells. Since the expression of SETD1A and -B 

was not found in atherosclerotic lesions, it can be concluded that they do not play a major 

role in the methylation of H3K4. MLL1 seems to have a compensatory mechanism to 

methylate H3K4. However, other mechanisms might also have implications in maintaining 

this modification. Methyltransferases SUV39H1 and G9a were not found to be involved in the 

methylation of the H3K9 in atherosclerosis. In conclusion, the presented results have brought 

new insights to understanding the epigenetic changes that occur within vascular disorders, 

especially atherosclerosis. 

4.1.6 Future directions 

The necessity to understand human epigenome has already been well recognized. 

Much effort has been addressed to associate changes in epigenetics with cancer 

progression and malignancy. In contrast, the cardiovascular field has not yet experienced 

such attention. The first results achieved in this field, as also confirmed by data of the current 

study, are promising and can contribute to better understand the mechanisms leading to 
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progression of atherosclerosis and other CVDs [242-245]. A particularly challenging task 

specific to atherosclerosis will be to define the epigenome of every cell type participating in 

the vascular lesion – VSMCs, macrophages, immune cells, and endothelial cells at different 

stages of the disease. A next task would be to incorporate these data into clinical studies, 

addressing the level of CVDs risk associated with specific epigenome. It is likely that 

epigenetic changes imposed by environmental and nutritional factors may contribute to the 

disease progression and could also serve as target to improve future therapeutic strategies.  
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4.2 Epigenetics and regenerative medicine  

Vascular grafts are currently under a continuous development and so far they cannot 

reproduce the biologically sophisticated functions of native vessels. Currently available 

synthetic vascular grafts require a pre-treatment with anticoagulants due to the need to 

control thromboembolism, and the bio-prosthetics undergo structure deterioration and 

calcification [190]. Also for soft and hard tissue there remains the challenge of reconstruction, 

implantation, and plastic surgery. Nowadays, there is a high need for a suitable 

reconstruction of vessels (e.g. carotid artery), soft tissue (e.g. skin, liver, lung), and hard 

tissue (e.g. bone) defects resulting after atherosclerosis plaque removal, deep burns, trauma, 

or tumor resection. The biggest challenge of tissue engineering is to find a suitable cell or 

tissue application that is provided with a vascular network, which has the purpose to sustain 

and support the functions of the tissue. 

4.2.1 AdMSC population characterization 

Mesenchymal stem cells, compared to somatic cells, show attributes like plasticity, 

adherence and have a high proliferation rate, thus being suitable for induction of 

pluripotency. Until now it was considered that the main source of MSCs is the bone marrow, 

from which the cells can be isolated for experimental and clinical use. However, it was 

recently discovered that MSCs can also be obtained successfully from other sources such as 

adipose tissue [246]. In contrast to the bone marrow, the adMSCs are easily available. They 

can be isolated from larger quantities of adipose tissue, thus yielding higher amounts of cells.  

Proper isolation of adMSCs is necessary to gain a homogenous cell population for 

reliable experimental data. At present there is still a lack of standardized methods for 

isolation of these cells [246]. Furthermore, there are still no definitive cell surface markers for 

a clear identification of adMSCs. Therefore, prior to treating the adMSCs with epigenetic 

drugs, the cells isolated from adipose tissue in this study were characterized appropriately. 

With regard to the intended experiments, different passages were tested concerning cell 

proliferation, viability, and commonly used negative and positive markers of this cell 

population. AdMSCs possess a non-hematopoietic phenotype and should be therefore 

negative for the hematopoietic markers CD14 and CD45. This cell characteristic was 

confirmed by FACS analysis revealing less than 2% hematopoietic cells in the isolated 

adMSC population. Positive markers for adMSCs include cell-surface molecules CD90 and 

CD105. CD90 (THY-1) is a GPI-anchored cell-surface protein and is used as a marker of 

stem cells [247]. CD105 (ENDOGLIN) is a part of the TGF-beta receptor complex and has 

been found on endothelial cells, activated monocytes/macrophages, fibroblasts, smooth 



DISCUSSION 111 

muscle cells, and also on mesenchymal stem cells [248]. The isolated adMSCs were highly 

homogenous for these markers, with more than 85% positive cells. 

Antigen Ki-67 is a nuclear protein that is associated with cellular proliferation and 

ribosomal RNA transcription [249]. The cell population isolated from adipose tissue 

presented more than 50% proliferating cells. However, it is to note that adMSCs from 

different donors varied markedly in their proliferative state. 

Moreover, the studied adMSCs were positive for the intermediate filament vimentin, 

which is known to be expressed in mesenchymal cells. Vimentin, together with tubuline-

based microtubules and actin microfilaments are forming the cellular cytoskeleton. This 

marker is generally used as developmental marker for cells and tissues [250].  

The best characteristics concerning proliferation, viability, homogeneity, and structural 

composition of adMSCs were found for passage three. Therefore, this passage was used for 

the whole experimental design.  

4.2.2 Differentiation potential as part of cell characterization 

Another feature of MSCs is their differentiation potential. They should be capable to 

achieve adipogenic, osteogenic, and chondrogenic characteristics using proper cultivation 

conditions. In perfect agreement with other studies [251], adMSCs used in the present work 

showed the ability to differentiate towards the adipogenic and osteogenic lineages.  

4.2.3 Epigenetic changes produced by epigenetic modifying drugs led to 

increase in expression of pluripotency related genes 

So far, several approaches have been used to generate stem-like cells from adult 

human somatic cells. In this study a novel strategy was followed to induce pluripotency by 

altering epigenetics pattern using epigenetic-modifying drugs 5-azacytidine (AZA), BIX-

01294 (BIX), and valproic acid (VPA). These chemical compounds have been already used 

on cancer cells in order to modify their epigenetic pattern, with benefits for the clinical 

outcome [252]. 

Human adMSCs were treated with increasing concentrations of all three epigenetic 

drugs to find the optimal sub-toxic dosage. With the exception of AZA, the other epigenetic-

modifying drugs BIX and VPA achieve their best effect on epigenetics using their maximal 

sub-toxic concentrations. Using AZA no significant toxicity was observed up to a 

concentration of 40 µM, independent of the tested treatment time. However, maximal 
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reduction in the global DNA methylation was achieved at 2.5 and 5 µM after 48 hours. 

Therefore, these conditions were also used for the experiments in this study. In contrast to 

BIX and VPA, AZA is unstable in aqueous solution [141], which could explain the low toxic 

effect of AZA on adMSCs in present experiments. 

AZA is a chemical analogue of cytidine and is incorporated into DNA during cell 

replication. The incorporation inhibits methyltransferase activity, thereby causing DNA 

demethylation. AZA concentrations of 5, 10 and 50 µM showed already a significant 

reduction of DNA methylation on mouse embryonic fibroblasts without any changes in the 

relation between cell growth and cell viability [253]. These data confirm the present 

experimental results with no toxic effect of AZA on adMSCs for up to 40 µM [151]. Using 

AZA, the results demonstrated significant reduction in DNA methylation by 50%, compared 

with non-treated controls. However, regarding expression of the pluripotency markers 

analyzed in this study, such as POU5F1, NANOG, KLF4, SOX2 and CMYC, no significant 

changes at mRNA levels were observed for KLF4 and CMYC following treatment of adMSCs 

with AZA. In case of POU5F1, an increase in expression for up to 1.84-fold was found. 

Following BIX treatment significant reduction in global DNA-methylation for up to 70% was 

observed. These were interesting results because BIX-01294 influences especially histone 

methylation at the position H3K9 by inhibiting G9a-histone methyltransferase [5, 31]. BIX was 

already tested on different cells such as mouse embryonic stem cells and HeLa cells with a 

concentration of 4.1 µM, leading to the most efficient demethylation at the histone level [124]. 

One could suppose that G9a-histone methyltransferases also influence the expression of 

DNMTs (dinucleotide methyltransferases) as described [148, 254], and may therefore 

change DNA methylation [255]. Also, the G9a-histonmethyltransferase was reported to 

indirectly mediate the expression of POU5F1 during cell differentiation influencing both global 

DNA methylation and expression of pluripotency genes. The presented results confirmed this 

presumption, observing not only significant reduction in DNA methylation but also a 

significant increase in the expression of pluripotency genes POU5F1, NANOG, and CMYC 

by 5.41-, 3.04-, and 2.39-fold respectively. These data presume that the specific inhibition of 

histone methyl tranferases (HMTs) by BIX is more involved in the activation of the specific 

pluripotency genes than in inhibition of DNMTs (by AZA). However, similar to the effect of 

AZA, the expression profile of the pluripotency genes strongly depended on the individual 

donors.  

In contrast to AZA and BIX, no significant changes in DNA methylation were observed 

following treatment of adMSCs with VPA. The possible explanation is that VPA, although 

inhibiting histone deacetylases (HDAC), does not influence DNMTs or HMTs, which are 

known to positively regulate gene expression. The choice for using VPA was based on the 
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supposition that there is a common regulation mechanism between HDACs and HMTs [252]. 

Histone acetylation plays an important role in the regulation of gene expression. A study in 

mouse models demonstrated that only a subset of genes (7%) is deregulated by HDACs 

[256]. In addition, some studies have shown that VPA can also be used as a differentiating 

agent [157]. The results in the present study led to the assumption that the expression of 

long interspersed nuclear elements LINE1 is not regulated by HDACs and that in adMSCs 

VPA may induce a more undifferentiated state by up-regulation of stemness modulating 

genes. 

Pluripotent embryonal carcinomas are good potential models to study the 

mechanisms that control differentiation during embryogenesis, or even as positive control for 

specific pluripotency related factors [257]. The pluripotent human embryonal carcinoma cell 

line NTERA-2 clone D1, also known as NT2/D1, is a sub clone derived from the parent line 

NTERA-2. These cells have been cited to be positive for all pluripotency related markers 

verified also in the present study: POU5F1, NANOG, SOX2, KLF4, and CMYC [258]. 

Therefore mRNA from these cells was used as positive control for the quantitative 

expression analysis.  

Interestingly, KLF4 and CMYC native expressions in adMSCs were 1000- to 2000-

fold higher than native expressions of POU4F1 and NANOG, and were comparable with the 

expression levels in NTERA-2 cell line used as positive control. This is probably due to the 

feature of adMSCs, which are not yet fully differentiated, to have high proliferative potential 

and therefore possess some properties of stem cells [259]. The CMYC protein is a 

transcription factor that activates expression of a great number of genes involved in the 

control of DNA replication [260]. Thus, CMYC activation may result in cell proliferation and 

growth. KLF4 plays an important role in regulation of cell growth, differentiation and 

embryogenesis [261]. Generally, KLF4 has an inhibitory effect on cell proliferation in adult 

tissue [262]. However, KLF4 has also been shown to cooperate with CMYC to influence stem 

cell self-renewal [262]. In pluripotent cells, however, KLF4 may suppress apoptosis induced 

by CMYC. The CMYC in turn may neutralize the cytostatic effect of KLF4 by suppressing 

P21 [258]. Thus, the balance between KLF4 and CMYC might be essential in the 

establishment of an immortalized state of induced pluripotent stem cells. 

Interesting is the fact that both CMYC and KLF4 expressions were not affected by 

BIX, which led to the hypothesis that G9a does not affect the expression of these two 

oncogenes, or they are regulated by an independent mechanism. 
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Again, as already mentioned above, these results strongly depended on the individual 

donor. Moreover, no correlation was observed between the expression of the pluripotency 

genes and patient characteristics, such as demographic data and known accompanying 

diseases. The only link seemed to be the amount of proliferating cells, which corresponds 

with the age of each donor.  

4.2.4 Epigenetic changes induced by BIX improve the endothelial 

differentiation 

So far, several approaches have been used to generate endothelial cells from 

mesenchymal stem cells. In the present study a novel strategy was followed, by which the 

potential of adMSCs to differentiate into cells with endothelial features was significantly 

improved.  

The hypothesis was based on the assumption that modifying the epigenetic pattern 

with the epigenetic modifying drug BIX, the most effective epigenetic compound found in the 

present study, allows the cells to enter a pre-differentiation state and from this point they 

could be directed to different cell types under appropriate cell culture conditions. To verify 

this theory, cells were divided into two groups: “EM” – cells cultivated in endothelial medium, 

and “EM plus BIX” – cells that received a pre-treatment with BIX, and then were cultivated in 

endothelial medium.  

To evaluate the capacity of adMSCs to differentiate into ECs were analyzed known 

vascular-specific markers. VEGF is a critical regulator of vascular formation that binds to 

VEGFR-2. It initiates the formation of immature vessels by vasculogenesis or angiogenic 

sprouting by cell mitogenesis and migration. In the current study, increased levels of VEGF 

were found both after 7 and 14 days in the BIX plus EM group. 

Other factors necessary for vascular formation are angiopoetins [263]. ANG-1 is 

required for further remodeling and maturation of the initially immature vessels. In the 

present findings this marker was significantly increased after 14 days in “BIX plus EM” group. 

ANG-2 is the antagonist of ANG-1, binding to the same receptor – TIE-2. The results showed 

a significant decrease of ANG-2 in BIX-treated cells, decrease that is naturally occurring 

during endothelial differentiation and new blood vessel formation. 

Active endothelial cells express also VCAM-1 during angiogenesis [264]. This is why 

the cells were further characterized for VCAM-1 expression and localization. As expected, 

following pretreatment of adMSCs with BIX, expression of this endothelial marker was 

significantly increased as well.  
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PDGF is involved in the maturation of nascent vessels and in the recruitment of 

pericytes and smooth-muscle cells that coat the new vessels. It is produced by smooth-

muscle cells, activated macrophages, and endothelial cells [265]. In comparison to the non-

treated cells, the expression of PDGF was increased in the “EM plus BIX” group. 

Von Willebrand factor (vWF) is a glycoprotein present in blood plasma and produced 

constitutively in endothelial cells by the Weibel-Palade bodies [266]. The primary function of 

vWF is to bind other proteins, especially FACTOR VIII (F8), and is important in platelet 

adhesion to injured sites. Factor VIII is bound to vWF while inactive in circulation, and is 

released from vWF by the action of thrombin. F8 and vWF are often used as specific markers 

for endothelial cells. The differentiated adMSCs were positive for vWF, which is usual for all 

endothelial cells, and by quantification of the expression of the F8 gene it has been observed 

that BIX treatment induced a significant increase in expression of this marker. In a previous 

study by Collazo et al. [111] was shown that 7 days of differentiation was enough to increase 

the expression of vWF, but not of VCAM-1. In the present work it is shown an improvement 

of VCAM-1, F8, and also VEGFR-2 expression after 7 and even more after 14 days of 

differentiation, if the cells received BIX as a pre-treatment. Furthermore, the cells treated with 

epigenetic drug BIX were positive also for the CD31 (PECAM-1) marker. In contrast, 

undifferentiated cells showed no specific staining for these markers.  

The functionality of the endothelial cells was investigated with the ac-LDL uptake 

assay. Dil-Ac-LDL is taken up via the “scavenger” cell pathway of LDL metabolism and is 

characteristic for endothelial cells [267, 268]. Results showed that the cells of “BIX plus EM” 

group are able to metabolize the ac-LDL. The assay performed on cells of the “EM” group 

was also positive, but with clearly fewer positive cells. These results are in agreement with 

the above described data regarding the expression of endothelial related genes in both 

groups.  

In summary, BIX treatment led to an overall increase in expression of endothelial and 

angiogenic markers, facilitating the differentiation process of adMSCs into endothelial cells.  

4.2.5  Endothelial cells differentiated from BIX pre-treated adMSCs for 

vascular grafts 

Nowadays there are several vascular grafts used for bypasses. Unfortunately the 

grafts manufactured from synthetic material possess low patency rates, with high risks of 

trombogenicity, occlusion, infection, and lack of self-healing in comparison with the 

autologous grafts. First, decellularization of vessels has been investigated as a promising 
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solution in replacing the synthetic scaffolds [269]. Furthermore, the epigenetically modified 

adMSCs were tested after differentiation towards endothelial cells for their capacity to attach 

to decellularized saphenous vein. Two days after being seeded onto the grafts, cells 

displayed good attachment and adaptation to the new environment at the surface of the 

scaffolds. After 7 days in culture, there were an increased number of cells on the construct 

that were organized in multiple layers. These results were in agreement with previous, where 

autologous cells were seeded onto a similar scaffold [270, 271]. These first results confirmed 

the usefulness of natural decellularized scaffolds and the possibility to seed autologous 

differentiated endothelial cells. Further studies must be performed, to see whether the 

endothelial characteristics are kept under these conditions.  

4.2.6 Cell proliferation, DNA methylation, and pluripotency markers 

related to donor age 

Finally, a special concern was dedicated to the source of the mesenchymal stem 

cells. A high variation in the gene expression and global DNA methylation was observed in 

adMSCs. However, no correlation was found between the demographic data, gender or 

medical history of the donors. Until now, several studies have reported variances in the 

differentiation potential of adult stem cells originating from donors with different ages [272, 

273]. In accordance with these studies an increase in the osteogenic differentiation potential 

was observed also in the adMSCs of the “young donors” group. No differences were found 

for the adipogenic differentiation. Thus, the adult stem cells originating from younger donors 

show an increase in the reprogramming capacity towards osteogenic lineage. Additionally in 

the present study was found an increased number of Ki67 positive adMSCs in the group of 

“young donors”. Currently there are only few studies that have investigated the amount of 

proliferating adMSCs originating from young and elderly donors [171, 274]. The difference in 

the number of the proliferating cells may be partly responsible for the variability in the 

differentiation potential of adMSCs. 

Furthermore, analyzed cells from younger donors had a decreased global DNA 

methylation level compared with cells from elderly donors. DNA methylation is one of the 

main components of epigenetics. An alteration in its pattern is associated with a change in 

the reprogramming capacity of the cells, a decreased level being associated with an 

increased transcription activity. This hypothesis is supported by the study of Hupkes et al. 

[275], where a decreased global DNA methylation, and subsequently a change in the 

epigenetic pattern, directs the differentiation of mouse myoblasts from muscle to bone cells. 

Similarly, in the present work, the decreased level of DNA methylation in adMSCs from 

younger donors presented an increased differentiation potential into osteoblasts.  
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Nevertheless, no studies have found so far any connection between global DNA 

methylation status or expression of pluripotency related genes and the age of the donors in 

adMSCs. Somatic cells have already been reprogrammed into pluripotent stem cells by 

introducing a combination of several transcription factors (TFs), such as Oct3/4, Sox2, Klf4 

and c-Myc [276]. Thus, an increased expression in these TFs is associated with an increased 

reprogramming capacity. In the present study the decreased level of genomic methylation is 

in agreement with the statistically significant increased expression of pluripotency related 

genes NANOG and SOX2, in the cells from the “young donors” group. The promoters of 

pluripotency genes such as nanog and Oct4 have been showed that are stably silenced by 

DNA methylation in somatic cells in mice [277], which likely interferes with transcription factor 

binding and gene activation during reprogramming. Similarly, this process might occur in 

adMSCs from elderly donors, where the reprogramming genes might be silenced through 

DNA methylation, therefore they possess a decreased differentiation potential in comparison 

with the cells from younger donors.  

In summary, proper epigenetic changes might reverse the effect of aging on cells 

from elderly patients. These cells could then be used with a greater success rate in cell 

therapies based on autologous transplantation.  

4.2.7 Conclusion 

For future therapeutic developments of autologous and allogenic pluripotent stem 

cells, adMSCs are a promising cell source that can be easily harvested. Furthermore, a 

chemical approach for targeted epigenetics might be a feasible and safe method to improve 

pluripotency of somatic cells. In the present study, the epigenetic-modifying drugs AZA and 

BIX were able not only to significantly reduce global DNA methylation in adMSCs but also to 

increase the expression of genes for pluripotency such as POU5F1 and NANOG. Thus, 

reactivation of the native pluripotency genes by epigenetic changes using chemical 

compounds might represent a promising approach in future regenerative medicine. 

Furthermore, due to epigenetic changes, BIX was able to enhance the differentiation of 

adMSCs into cells with endothelial features. The treatment with the epigenetic modifying 

drug BIX is also able to decrease global DNA methylation. These epigenetic changes were 

responsible for the increase of the expression of the pluripotency related genes. 

Subsequently, expression of endothelial and angiogenic markers was increased. Further 

studies are necessary to investigate the feasibility of applying these cells in vivo, by e.g. 

producing autologous vascular grafts.  

4.2.8 Future directions  
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In order to better understand and manipulate the epigenetic pattern, the present study 

has to be continued by analysis of other histone modifications, improvements of the 

differentiation capacity of adMSC, examination of other epigenetic processes such as ATP-

dependent chromatin remodeling and DNA methylation at specific promoter regions in 

adMSCs, nuclear packaging and localization of gene loci of specific cell types (e.g. 

endothelial cells) in adMSCs. The inherent plasticity of the adMSC lineage has presented 

remarkable insights and unique challenges regarding the understanding of the control of 

cellular differentiation. This might bring research closer to optimization of differentiation 

towards particular tissues that are required in regenerative medicine. Cells that are 

epigenetically modified to change from one linage to another, without insertion of foreign 

nucleic material, could be a safe and ethically approved way to an almost unlimited choice of 

tissue engineering applications.  
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5 SUMMARY 

The present work evaluated two aspects of epigenetics: involvement in vascular 

disease and applicability in regenerative medicine.   

5.1 Epigenetics and vascular disease 

Epigenetic regulation of gene activity is a fundamental mechanism that occurs in all 

eukaryotic cells and is indispensable for development, tissue regeneration or maintaining of 

cell phenotype. Defects in epigenetics have already been connected to various diseases. 

DNA and histone methylation significantly contribute to the regulation of gene expression. So 

far, no sufficient data are available about epigenetic modifications in atherosclerotic lesions.  

In the current study, carotid plaques of patients with high grade carotid artery stenosis 

in early (type II-III, n=20) and advanced (type V-VII, n=20) stage of atherosclerosis (AS), as 

well as 10 control vessels, and 10 healthy individuals were included. Carotid lesions were 

characterized by histology and immunohistochemistry (IHC). Global DNA methylation was 

analyzed by Methylight assay. Expressions of DNA methyltransferases (DNMT1, DNMT3A, 

and DNMT3B), demethylase TET1, and histone methyltransferases (HMT) MLL1, SED1A, 

and SETD1B for H3K4 and SUV39H1, and G9a for H3K9 were analyzed by quantitative real 

time PCR. Methylation of histone H3 at lysine K4 and K9 in atherosclerotic plaques was 

evaluated by western blot and by IHC in correlation with smooth muscle cells and 

inflammatory cells.  

Global DNA methylation in carotid plaque decreased continuously with the 

progression of AS and correlated significantly with the genome-wide hypomethylation of free 

DNA from blood serum in patients with carotid artery stenosis. Expression of DNMT1 was 

decreased, DNMT3A and DNMT3A exhibited very low expression within AS. In contrast, 

TET1 expression was found to increase with the progression of the disease. Tissue slices 

stained for smooth muscle cells were found also to be positive for H3K4 and the intensity of 

staining decreased with the progression of AS. Smooth muscle cells were found mostly 

negative for H3K9 in all study groups. Inflammatory cells, positive for CD45 and CD68, were 

only slightly stained for H3K4, both in early and advanced stage of AS. The amount of 

inflammatory cells positive for H3K9 increased with the severity of AS. Western blot analysis 

revealed decreased level of methylation for H3K4 and H3K9, negatively corresponding with 

the progression of AS. Regarding HMTs responsible for methylation of lysine K4 analyzed in 
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this study, expression of MLL1 increased in correlation with the severity of AS. SETD1A and 

SETD1B were not expressed in the analyzed samples. HMTs responsible for methylation of 

lysine K9, SUV39H1 and G9a, showed no expression in AS specimens or in controls. 

In conclusion, the level of DNA methylation and histone methylation was found to be 

significantly associated with the severity of atherosclerosis in patients with carotid artery 

stenosis. Thus, epigenetic changes seem to play a substantial role during atherosclerotic 

plaque progression. 

5.2 Epigenetics and regenerative medicine 

Chromatin remodeling plays an essential role in regulation of gene transcription. 

Thus, appropriate changes in the chromatin of somatic cells may lead to the induction of 

pluripotency. The aim of the present study was to evaluate the effect of epigenetic drugs 5-

azacytidine (AZA), BIX-01294 (BIX), and valproic acid (VPA) on DNA methylation and 

expression of pluripotency genes OCT4A, NANOG, KLF4, SOX2, and CMYC in human 

adipose-derived mesenchymal stem cells (adMSCs) and to evaluate their potential to 

differentiate into cells with endothelial characteristics. 

AdMSCs were isolated from human abdominal adipose tissue and characterized 

morphologically, by FACS analysis, and regarding their osteogenic and adipogenic 

differentiation potential. Viability assay (MTT) was used to determine the optimal dosage of 

epigenetic modifying drugs on adMSCs. Global DNA methylation was determined by 

MethyLight assay, and expression of pluripotency and endothelial genes by SYBRgreen-

based real-time PCR. Immunocytochemistry and western blot were used in order to 

characterize the differentiated cells into endothelial lineage analyzing various endothelial and 

angiogenic factors such as vWF, VCAM-1, PECAM, VEGFR-2, Ang-1, and -2.  

The optimal population of adMSCs with the best homogenous properties was found in 

passage three of culture, with 86% of cells positive for CD90, CD105 and 98% negative for 

CD14, CD45. The optimal sub-toxic concentrations of AZA, BIX, and VPA were observed 

after 48 hours of treatment using 2.5, 1.25, and 100 µM, respectively. Global DNA 

methylation status of adMSCs treated with the epigenetic modifying drugs was significantly 

reduced by BIX and AZA but was not affected by VPA. Pluripotency related genes OCT4A, 

SOX2, and NANOG showed significant increased expressions after treatment with BIX. 

AdMSCs cultured under endothelial conditions and pre-treated with BIX were observed to 

undergo changes in the phenotype towards endothelial cells. Up to 20% of cells were 

positive for endothelial and angiogenic markers tested in this study. The functionality of the 
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adMSC-derived endothelial cells was verified by their capacity to take up ac-LDL. 

Experiments concerning autologous grafts showed that decellularized native saphenous 

veins remained stable and adMSCs-derived endothelial cells were able to attach to this 

scaffold.  

In conclusion, epigenetic modifying drugs AZA and BIX were able to significantly 

reduce global DNA methylation. Furthermore, BIX led also to a significant increase in the 

expression of genes for pluripotency and following differentiation the expression of 

endothelial and angiogenic genes. These adMSC-derived endothelial cells showed all 

characteristics of an endothelial lineage. Thus, targeted epigenetic modification using 

appropriate chemical compounds might represent a promising and feasible approach in 

regenerative medicine. 
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7 APPENDIX 

7.1 Abbreviations 

Official gene symbols in this work were mentioned according to the Guidelines for 

Human Gene Nomenclature found at http://www.GeneNames.org/Guidelines.html. 

5hmC 5-hydroxymethylcytosine 

5mC 5-methylcytosine 

acetylCoA acetyl Coenzyme A 

adMSCs adipose derived mesenchymal stem cells 

AHA American Heart Association 

ALP alkaline phosphatase 

Alu1 DNA repetitive sequence 

ANG-1 Angiopoetin 1 

ANG-2 Angiopoetin 2 

APAAP Alkaline Phosphatase-Anti Alkaline Phosphatase 

APC allophycocyanin 

AS atherosclerosis 

ASVD arteriosclerotic vascular disease 

AZA 5-azacytidine 

BAT brown adipose tissue 

BCIP 5,5'-dibromo-4,4'-dichloro-indigo phosphate 

BIX BIX-01294 

BM-MSCs bone marrow mesenchymal stem cells 

CEA carotid endarterectomy 

CMYC transcription factor essential for achieving pluripotency  

CVDs cardiovascular diseases 

Dil 1,1\'-dioctadecyl – 3,3,3\',3\'-tetramethyl-indocarbocyanine perchlorate 

DiL-Ac-LDL acetylated low density protein labeled with DiL 

DMEM Dulbecco's modified Eagle medium 

DMSO dimethyl sulfoxide 

DNMT1 DNA Methyl Transferase 1, maintenance of the DNA methylation 

DNMT3A DNA Methyl Transferase 3A, de novo methylation 

DNMT3B DNA Methyl Transferase 3B, maintenance of the DNA methylation and 

de novo methylation 

DNMTs DNA methyltransferases 
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dsDNS double stranded DNA 

ECM extracellular matrix 

ECs endothelial cells 

EHMT2 methyltransferase able to methylate lysine 9 of the histone H3 

EM endothelial medium 

ESC embryonic stem cells 

F8 Factor VIII, role in blood clotting 

FACS fluorescence-activated cell sorter 

FFPE tissue formaldehyde fixed paraffin embedded tissue 

FITC Fluorescein isothiocyanate 

G9a methyltransferase able to methylate lysine 9 of the histone H3 

GAPDH housekeeping gene, Glyceraldehyde-3-Phosphate Dehydrogenase 

H&E staining Haematoxylin - eosin staining 

HATs histone acetyltransferases 

HDAC histone deacetylases 

HIER heat induced epitope retrieval  

HMTs histone methyltrasferases 

ICC immunocytochemistry 

IHC immunohistochemistry 

iPSCs induced pluripotent stem cells 

KLF4 transcription factor essential for achieving pluripotency  

LINE1 long interspersed nuclear element 1, repetitive sequence 

LSAB Labeled Streptavidin-Biotin 

MLL1 methyltransferase able to methylate lysine 4 of the histone H3 

MSCs mesenchymal stem cells 

NAD+ nicotinamide adenin dinucleotide 

NANOG transcription factor essential for achieving pluripotency  

NBT nitroblue tatrazolinum 

NCDs non communicable diseases 

OCT4A transcription factor essential for achieving pluripotency  

ox-LDL oxidized low-density lipoprotein 

PBS phosphate buffer saline 

PDGF Platelet-Derived Growth Factor 

PE phycoerytrin 

PECAM-1 Platelet Endothelial Cell Adhesion Molecule 1 

PIER proteolytic enzyme induced epitope retrieval  

PKMTs protein lysine methyltransferases 
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PMTs protein methyltransferases 

PRMTs protein arginine methyltransferases 

PTFE polytetrafluoroethylene 

PVDF memrane polyvinylidene difluoride membrane 

qPCR quantitative PCR 

RT room temperature 

RT-PCR reverse transcriptase polymerase chain reaction 

SAH S-adenosyl-L-homocysteine 

SAM S-adenosyl-methionine 

SATα repetitive sequence 

SDS sodium dodecyl sulphate 

SETD1A methyltransferase able to methylate lysine 4 of the histone H3 

SETD1B methyltransferase able to methylate lysine 4, and 9 of the histone H3 

SMCs smooth muscle cells 

SOX2 transcription factor essential for achieving pluripotency  

TET enzyme with demethylating function 

TF transcription factor 

VCAM-1 Vascular Cell Adhesion Molecule 1 

VEGF Vascular Endothelial Growth Factor 

VEGFR-2 Vascular Endothelial Growth Factor Receptor-2 

VPA valproic acid 

VSMCs vascular smooth muscle cells 

WAT white adipose tissue 

WHO World Health Organization 
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