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Zusammenfassung

Eiswolken und insbesondere hohe Zirruswolken bedecken im globalen jahrlichen Mittel
bis zu 30 % der Erde und haben deshalb einen signifikanten Einflufl auf das Klima. Eine
Besonderheit hoher Eiswolken ist, dass sie einen warmenden Effekt auf das System Erde
und Atmosphére besitzen konnen. Dieser warmende Effekt wird u. a. durch tégliche
und saisonale Variationen der optischen Eigenschaften beeinflufit. Um genaue Messun-
gen der optischen Eigenschaften von Aerosolen und Zirruswolken zu erhalten, wurde 2006
die ,,Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations“ (CALIPSO)
Mission in einen polaren Orbit gestartet. Mit Hilfe des Hauptinstrumentes, des ,,Cloud-
Aerosol Lidar with Orthogonal Polarization® (CALIOP), kénnen nun optische Eigen-
schaften von Aerosol- und diinnen Wolkenschichten mit bisher unerreichter Genauigkeit
und Sensitivitat bestimmt werden. Allerdings erlaubt dieser Orbit mit einer Wiederkehr-
dauer von mehr als zwei Wochen keine Ableitung von Tagesgéangen der optischen Eigen-
schaften und des Bedeckungsgrades von Zirruswolken, weshalb in dieser Arbeit der Wol-
kensensor ,,Spinning Enhanced Visible and Infrared Imager” (SEVIRI) auf dem geosta-
tiondren ,METEOSAT Second Generation“ (MSG) Satelliten benutzt wird. SEVIRI
deckt mit seinen Messungen fast ein Drittel der Erde ab und reicht von 80° N bis 80° S
und von 80° W bis 80° E bei einer raumlichen Auflésung von bis zu 3 km x 3 km im Nadir
und einer zeitlichen Auflosung von 15 Minuten.

Im Rahmen dieser Arbeit wurde ein ganzlich neuer Ansatz verfolgt, um die Vorteile beider
Instrumente (die hohe Sensitivitdt und Genauigkeit von CALIOP und die hohe zeitliche
und rédumliche Auflésung von SEVIRI) miteinander zu verbinden: Der ,Cirrus Optical
properties derived from CALIOP and SEVIRI during day and night* (COCS) Algorithmus
basiert auf dem Prinzip kiinstlicher Neuronaler Netze und leitet die optischen Dicken von
Zirruswolken und deren Oberkantenhohen aus Messungen der Infrarotkanile des Instru-
mentes SEVIRI ab, was Beobachtungen sowohl in der Nacht als auch am Tage ermoglicht.
Dieses Neuronale Netz wurde mit gleichzeitigen Messungen der optischen Dicken und
Hohen der Wolkenoberkante von CALIOP trainiert. In dieser Arbeit wird die Entwicklung
von COCS und die Validierung mit zwei unterschiedlichen Lidar-Messungen beschrieben,
mit denen von CALIOP und mit denen des flugzeuggetragenen , High Spectral Resolu-
tion Lidar® (HSRL). Die Validierungen zeigen die hohe Genauigkeit des hier entwickel-
ten Algorithmus in der Ableitung der optischen Dicken und Héhen der Wolkenoberkante
von Zirruswolken. Zusatzlich wurden auch Vergleiche der COCS-Ergebnisse mit zwei
weiteren auf SEVIRI basierenden Algorithmen durchgefiihrt: Zum einen mit dem ,, ME-
TEOSAT Cirrus Detection Algorithm 2 (MECiDA-2), welcher ebenfalls die thermischen
Infrarotkanéle benutzt, zum anderen mit dem ,,Algorithm for the Physical Investigation
of Clouds with SEVIRI“ (APICS), welcher zur Ableitung der optischen Eigenschaften

von Wolken sowohl auf den Infrarotkanélen als auch auf Kanélen im sichtbaren Spektral-
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bereich basiert.

Die Validierung zeigt hervorragende Ergebnisse fiir die Erkennung von Zirruswolken mit
einer Fehldetektionsrate von unter 5 % und einer Detektionseffizienz von bis zu 99 % ab
einer optischen Dicke von 7 = 0.1. Ebenfalls wird eine Standardabweichung von o, = 0.25
fiir die optische Dicke und o, = 0.75 km fiir die Hohe der Wolkenoberkante nachgewiesen.
Basierend auf fiinf Jahren prozessierter COCS-Daten werden die Tagesgange von Zir-
ruswolken in verschiedenen Regionen der Erde analysiert und diskutiert. Die Ergeb-
nisse zeigen ausgepragte Tagesgange des Zirrusbedeckungsgrades und der optischen Dicke,
welche sich von den Vorhersagen des ,,European Centre for Medium-range Weather Fore-
casts“ (ECMWF) unterscheiden. Eine Betrachtung des Bedeckungsgrades hoher Wolken,
vorhergesagt durch das ECMWEF, und der Ergebnisse des COCS Algorithmus zeigt gut
iibereinstimmende Tagesgange in konvektiven Regionen, wahrend Unterschiede in nicht-
konvektiven Regionen iiber dem Nord- (NAR) und Siidatlantik (SAR) sichtbar werden.
Generell wird vor allem in diesen Regionen ein hoherer Bedeckungsgrad mit Unterschieden
von 3 — 10 % durch COCS errechnet.

Abschliefend werden die Unterschiede der NAR und SAR diskutiert, da im Nordat-
lantik einer der meist frequentierten ozeanischen Flugkorridore liegt. Hier mischen sich
die heiflen Flugzeugabgase mit kalten Luftmassen und fiihren zur Bildung von Kon-
densstreifen. Diese Kondensstreifen verlieren mit der Zeit ihre lineare Form und konnen
anschliefend nicht mehr von natiirlich entstandenen Zirruswolken unterschieden werden.
Grundsatzlich zeigt sich hier eine starke Korrelation des Tagesganges von Bedeckungsgrad
und optischer Dicke der Zirruswolken mit der Luftverkehrsdichte. Es werden Unterschiede
von bis zu 3 % im Bedeckungsgrad zwischen NAR und SAR detektiert.
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Summary

Aim of this thesis is the retrieval of diurnal variations of cirrus cloud optical properties.
Ice clouds and especially cirrus clouds cover on average up to 30 % of the Earth and are
therefore important for climate. High ice clouds hold an exceptional position within the
large variety of clouds, since they generate positive net forcing and therefore make a con-
tribution to warming of Earth’s atmosphere. This heating effect is strongly modified by
the diurnal and seasonal variations of the optical properties of cirrus clouds. In order to
determine optical properties of aerosols and clouds, the Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observations (CALIPSO) mission was launched into a polar orbit
in 2006. Equipped with its main instrument, the Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP), this satellite is able to retrieve optical properties of aerosol layers
and thin clouds with unprecedented accuracy and sensitivity from space. With a repeat
cycle of more than two weeks it does not provide diurnal variations in cirrus cloud prop-
erties and cirrus coverage, therefore the most advanced geostationary cloud sensor, the
Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard METEOSAT Second
Generation (MSG) is used in this work. SEVIRI covers almost one third of Earth (from
80° N to 80° S and from 80° W to 80° E) with a high temporal resolution of 15 min and
a spatial resolution of 3 km x 3 km at subsatellite point.

Within the framework of this thesis a completely new approach was followed to combine
the advantages of both instruments (high sensitivity and accuracy of CALIOP with the
high temporal resolution and spatial coverage of SEVIRI): The Cirrus Optical properties
derived from CALIOP and SEVIRI during day and night (COCS) algorithm is based on
an artificial neural network, which retrieves cirrus ice optical thickness (IOT) and top
altitude (TOP) from the thermal infrared channels of SEVIRI making day and night ob-
servations possible. It is trained by coincident CALIPSO cirrus ice optical thickness and
top altitude. This work describes the development of COCS and compares the results
of the algorithm with two different lidar measurements, CALIOP and an airborne High
Spectral Resolution Lidar (HSRL).

The validation with CALIOP and the HSRL proves the accuracy of the retrieved cirrus
ice optical thickness and top altitude. Beside this validation the results of the COCS
algorithm are further compared with the METEOSAT Cirrus Detection Algorithm 2
(MeCiDA-2), using the thermal infrared channels of SEVIRI to detect cirrus clouds, and
the Algorithm for the Physical Investigation of Clouds with SEVIRI (APICS), using a
combination of visible and infrared channels to derive optical properties of clouds.

The validation shows excellent results for the detection of thin cirrus clouds with false
alarm rates lower than 5 % and detection efficiencies up to 99 % at a cirrus ice optical
thickness greater or equal than 0.1. Low standard deviations of o, = 0.25 for cirrus ice

optical thickness and o, = 756 m for cirrus top altitude are reached.
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Based on five years of processed COCS data, diurnal cycles of cirrus clouds in different
regions of the Earth are analysed and discussed. The results show distinct features in cov-
erage and ice optical thickness, which slightly disagree with the forecasts of the European
Center for Medium-range Weather Forecasts (ECMWF). While the ECMWF high cloud
coverage shows a diurnal cycle comparable to COCS in convective regions, the diurnal
cycle in non-convective regions over the North and South Atlantic disagrees. Furthermore
the COCS derives higher cirrus cloud coverage compared to the high cloud coverage of
the ECMWF of 3 — 10 % for the analysed regions. Finally differences in the North and
South Atlantic region, NAR and SAR, are discussed, since the NAR is chosen to cover an
area with one of the most frequented air corridors, where hot exhausts of aeroplanes mix
with cold air leading to contrail formation. These contrails loose their linear shape with
time and then fail to be discriminated from natural formed cirrus clouds. A strong corre-
lation between air traffic density (ATD) and the diurnal cycle of cirrus coverage and ice
optical thickness was found over the North Atlantic. Furthermore the differences in cirrus
coverage between NAR and SAR follow the diurnal cycle of ATD, with an amplitude of
up to 3 %.
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Chapter 1
Preface

“Burning of fossil fuels increases the concentration of CO, within the Earth’s atmosphere,
increasing the atmospheric greenhouse effect and thus leading to global warming.” |Arrhe-
nius [1896] was the first to quantify the contribution of carbon dioxide to the greenhouse
effect with this statement. More recently in 2007, the Intergovernmental Panel on Climate
Change (IPCC) declared in its “Fourth Assessment Report”, [[PCC| 2007], that changes
in the atmospheric abundance of greenhouse gases and aerosols, in solar radiation, and
in land surface properties alter the energy balance of the climate system. In order to
compare how a range of anthropogenic and natural factors drives warming or cooling of
global climate the Radiative Forcing (RF) metric was established. Each agent causes a
different RF. Especially long-living greenhouse gases lead to a positive RF (warming),
while other mechanisms, such as the direct aerosol effect, result in negative RF (cooling).
Furthermore, total aerosol radiative forcing can be split in the direct effect and the in-
direct, so-called “cloud albedo” effect. Especially this indirect effect is listed with low
scientific understanding.

Not only these aerosol effects are still found to have a low scientific understanding, but
also the understanding of feedback mechanisms of clouds on the radiation budget of the
Earth’s atmosphere remains highly uncertain, which makes clouds to the biggest uncer-
tainty factor in climate models and their predictions [Forster et al., 2007, TPCC, [2007].
High ice clouds hold an exceptional position within the large variety of clouds since they
generate net forcing and therefore contribute to warming of the Earth’s atmosphere. An-
thropogenic cirrus clouds are produced by air traffic when the hot exhausts of aeroplanes
mix with cold air leading to contrail formation. These contrails loose their linear shape
with time and then fail to be discriminated from natural cirrus clouds. The influence
of cirrus clouds in general on the Earth’s radiation budget is mainly dominated by their
optical properties (i.e. coverage and optical thickness) as well as by sun zenith angle and
surface albedo [Meerkotter et al., 1999]. Concerning heating rates or radiative forcing the

optical thickness of cirrus clouds is the key factor |[Ackerman et al., [1988].
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Since 1983 the infrared and visible radiances of imaging radiometers carried on the in-
ternational constellation of geostationary weather satellites have been collected in the
International Satellite Cloud Climatology Project (ISCCP) |Rossow and Schiffer] |1999].
This project was started to provide the climate modelling community with a definitive
cloud climatology. The ISCCP data set of cloud amounts and other products is an archive
of global observations covering almost 30 years with a nominal spatial resolution of up
to 30 km and a temporal resolution of three hours. [Rossow and Schiffer, [1999] analysed
the dataset of the ISCCP and found for cirrus clouds a global amount of roughly 20 %
for the period from July 1983 to June 1994, which is split up into different domains. In
the tropics a cirrus coverage of up to 21.1 % is retrieved, while the Northern and South-
ern mid-latitudes are covered by 20.7 % and 16.8 %. But they also mentioned, that the
accuracy of the ISCCP cloud amount is determined by three factors: The accuracy and
the sensitivity of the cloud detection, and the accuracy of the areal cover fraction esti-
mated by counting cloudy pixels with a finite resolution. The first two factors depend
on detection thresholds, which vary with scene type in the ISCCP analysis. Especially
the upper-level cloudiness is underestimated, which is caused by missed detections of very
thin cirrus clouds [Wielicki and Parker, [1992], which is valid for every detection algorithm
utilizing passive remote sensors. Higher amounts of cirrus coverage were found by other
polar-orbiting satellites. For example, the multispectral High Resolution Infrared Radi-
ation Sounder (HIRS) aboard the NOAA polar-orbiting satellites, detects up to 34 % as
an averaged global cirrus coverage, Wylie and Menzel [1998]. The tropics are covered
with cirrus clouds by more than 90 %, high clouds are less dominant in higher latitudes
with values of less than 40 % . In [Stubenrauch et all 2006|, eight year of could proper-
ties retrieved from Television Infrared Observation Satellite-N (TIROS-N) Observational
Vertical Sounder (TOVS) observations aboard the NOAA polar orbiting satellites are pre-
sented. In case of cirrus clouds, a global averaged cirrus coverage of 27.3 %, again with
regional variations. In the Northern midlatitudes an averaged cirrus coverage of 24.7 %
are found, while a lower coverage of 21.8 % is present in the Southern mid-latitudes. These
completely different numbers are mainly caused by the different detection sensitivities of
the different sensors.

Coverage and optical properties of high ice clouds can also be derived by measurements
of passive geostationary satellites, for example METEOSAT Second Generation (MSG)
carrying the Spinning Enhanced Visible and Infrared Imager (SEVIRI). SEVIRI covers
about one third of the Earth area from 80° N to 80° S and from 80° W to 80° E with a
sampling distance of 3 km x 3 km at the subsatellite point repeating its measurements ev-
ery 15 minutes. In order to detect cirrus clouds the Meteosat Cirrus Detection Algorithm
2 (MeCiDA-2) uses the thermal infrared channels of the SEVIRI instrument combining
morphological and multi-spectral threshold tests [Krebs et al., 2007, [Ewald et al. 2012].

Krebs et al. [2007] showed an average cirrus coverage of 29.3 % for a northern hemispheric



region in the year 2004. Nevertheless, this algorithm is found to have low detection sen-
sitivity to cirrus clouds with low optical thickness (7 < 0.5) and therefore underestimates
cirrus coverage |Ostler| 2011].

In order to characterize the properties of the detected cirrus clouds, MeCiDA-2 is com-
bined with a well-known method to retrieve the optical thickness of a cloud with passive
remote sensing, developed by [Nakajima and King, [1990], which uses the properties of re-
flected sunlight and near infrared radiation in the Algorithm for the Physical Investigation
of Clouds with SEVIRI (APICS) [Bugliaro et al. [2011]. For this reason APICS cannot
retrieve optical properties during night time. An overview of the different approaches
on the detection of cirrus clouds and the retrieval of their properties by passive remote
sensing is given in Section

Nowadays active spaceborne remote sensing, like radio detection and ranging (radar) and
light detection and ranging (lidar), provides the capability to obtain vertical profiles of
the Earth’s atmosphere with high vertical resolution, the global determination of cloud
top height, cloud bottom height, multilayer cloud structure, and planetary boundary layer
height in combination with different optical properties of aerosols and clouds [Palm, 2005|.
While radar is able to penetrate thick clouds and precipitation, the lidar technology is
able to detect and measure thin aerosol and cloud layers down to an optical depth of
7 ~ 0.01 Until now spaceborne active remote sensing in atmospheric science has not yet
become operational providing only low spatial coverage with repeat cycles of more than
two weeks.

In April 2006 the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
(CALIPSO) misson was launched carrying the Cloud-Aerosol Lidar with Orthogonal Po-
larization (CALIOP) [Winker et al., 2002]. Based on different scene classifications and
retrieval algorithms in combination with auxiliary datasets, CALIOP provides highly ac-
curate measurements of different optical and physical properties of e.g. cirrus clouds from
a polar orbit with a footprint of about 100 m along and 90 m cross track and a vertical
resolution of up to 30 m [Vaughan et al., 2004]. Different approaches on the validation of
CALIOP measurements showed its high accuracy (Section . But due to this high
spatial and vertical resolution together with a repeat cycle of 16 days, the CALIOP in-
strument is unable to retrieve information on life cycles and diurnal cycles of atmospheric
features such as cirrus clouds.

The work described in this thesis focusses on the diurnal cycle of cirrus clouds. As men-
tioned, it is crucial for e.g. radiative transfer calculations and climate models to have
accurate and detailed knowledge of the diurnal cycle of cirrus coverage as well as infor-
mation on their optical properties in order to calculate their radiative effect and their
climate impact, since cirrus clouds can have both, a cooling effect during daytime and a
warming effect at night. Therefore a new approach on a synergistic use of geostationary

passive and polar-orbiting active remote sensing is presented in this work, which aims to
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combine the advantages of both. While SEVIRI offers a good spatial and high temporal
resolution, CALIOP is known to retrieve e.g cirrus ice optical thickness and top altitude
with high accuracy, high sensitivity, and high vertical resolution. The aim of this new
algorithm based on a backpropagation neural network (Section is on the one hand
to retrieve cirrus optical thickness and cirrus top altitude by using the brightness tem-
peratures of the thermal infrared channels of SEVIRI aboard MSG (Section in order
to provide a daytime and nighttime detection of cirrus clouds. On the other hand, this
new algorithm is aimed to have higher sensitivity to especially thin cirrus clouds, which
are underestimates by passive remote sensing until now. The neural network used in this
work was coded in the Interactive Data Language (IDL) by H. Mannstein and was ear-
lier used for tasks like the determination of reflected short-wave radiation from SEVIRI
based on model calculations [Vazquez-Navarro et al., 2012]. For the training of the neural
network three years of cirrus ice optical thickness and top altitude derived from CALIOP
aboard CALIPSO (Section are collocated with the infrared brightness temperature
measurements of SEVIRI. Therefore the primary setup and especially the hidden layer
of the neural network had to be extended. This new algorithm, the Cirrus Optical prop-
erties derived from CALIOP and SEVIRI during day and night time (COCS) algorithm
(Section , is now able to detect even thin cirrus clouds with ice optical thickness down
to 7 > 0.1. Beside high detection efficiencies, it is also important to derive accurate
values of cirrus optical properties and top altitudes, which is proven by comparisons and
validations with CALIOP itself, an airborne HSRL during the “PAZI” project in 2008,
the MeCiDA-2, and the APICS algorithm (Chapter |4)).

Within the framework of this thesis, five years of data were processed (2006 - 2010) for
the analysis of the diurnal cirrus cycle in five different regions (Chapter . Two regions
are dominated by convective cloud formation, and two regions are located over the South
Atlantic, where only little or no influence of convection is present. Additionally a region
over the North Atlantic was analysed in order to provide indications of the possible influ-
ence of air traffic on cirrus cloud coverage and microphysical properties as found in [Graf
et al., |2009]. This North Atlantic region covers an area with one of the most frequented
oceanic air corridors, the North Atlantic flight corridor. Additionally, a comparison of
one year of high cloud coverage derived from the Integrated Forecast System (IFS) of the
European Centre for Medium-range Weather Forecasts (ECMWF) and the cirrus cover-
age derived by COCS is presented, where differences are found in most of the analysed
regions. The highest discrepancies are detected in the North Atlantic region. Thus the
diurnal changes in cirrus coverage and ice optical thickness of two different regions, one
influenced by the North Atlantic flight corridor and one “air traffic free” region over the
South Atlantic, are compared to the air traffic density over the North Atlantic and the
disparities are analysed and discussed, Section [5.4]



Chapter 2
Remote sensing of cirrus clouds

This chapter provides a brief overview of cirrus clouds and their formation processes (Sec-
tion followed by an introduction of radiative transfer (Section and its utilization
for spaceborne remote sensing on Meteosat Second Generation (MSG) (Section [2.2.2)).
Secondly, the light detection and ranging (lidar) principle is introduced focussing on
the Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP) instrument aboard the
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission
and its different algorithms for the retrieval of cirrus optical properties. Finally the theory

of artificial neural networks and especially backpropagation neural networks is explained.

2.1 Cirrus clouds

Historically the family of cirrus clouds has been defined on the basis of visual observa-
tions by trained observers [Lynch et al., 2002]. They appear at great altitudes in the
upper troposphere and can visually be identified by their texture, color, and associated
phenomena such as parhelia and halos. Cirrus clouds solely consist of ice particles and
are often optically thin. The ice particles show various nonspherical shapes (see |Hallett
et al. [2002], [Heymsfield and McFarquhar| [2002], Dowling and Radke| [1990]). The basic
microphysical conditions, in addition to their dissimilar temperatures and altitudes in the
troposphere, have fundamental implications in terms of radiative transfer |Liou, [2002].
According to the World Meteorological Organisation (WMO)[WMO and World Meteoro-

logical Organisation, 1987, |1995] cirrus clouds are defined as:

“Cirrus: Detached clouds in the form of white, delicate filaments or white or mostly
white patches or narrow bands. These clouds have a fibrous (hair-like) appearance, or a
silky sheen, or both.”

“Cirrocumulus: Thin, white patch, sheet or layer of cloud without shading, composed

of very small elements in the form of rains, ripples etc., merged or separate, and more
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Category Mechanism

Synoptic (jet stream, frontal, etc.) | Top-down generation

Injection cirrus Thunderstorm anvil-derived
Mountain-wave updraft Orographic, terrain-induced

Cold trap Tropopause-topped thin layer
Contrail cirrus Rapid cooling of aircraft exhausts

Table 2.1: Breakdown of cirrus clouds by generating mechanisms, adapted from [Sassen
and Mace [2002].

or less regularly arranged; most of the elements have an apparent width of less than one
degree.”
“Cirrostratus: Transparent, whitish cloud veil of fibrous (hair-like) or smooth appear-

ance, totally or partly covering the sky, and generally halo phenomena.”

These definitions are split in different species and varieties [Lynch et al., 2002], but are
entirely based on visual observation. For example, a well recognized cirrus clouds class,
the so-called subvisible cirrus, is missing as well as contrails and contrail cirrus formed
by aviation. Later lidar studies |[Sassen and Cho, 1992] estimated a typical optical depth
of 7 < 0.03 for subvisible cirrus, 0.03 < 7 < 0.3 for thin (i.e. bluish coloured), and
0.3 < 7 < 3.0 (white or grayish) for opaque colours.

Table summarizs the generating mechanisms responsible for cirrus cloud formation,
according to [Sassen and Mace [2002]. These mechanisms demonstrate the connections
between cirrus cloud generation and weather processes [Wylie, 2002]. A common feature
over mid-latitude land and ocean are synoptic cirrus like cirrus clouds formed in connec-
tion with jet streams, and frontal and low-pressure systems. These clouds tend to form
from cloud top ice nucleating zones where ice supersaturations are relatively high from
the homogeneous nucleating of haze particles [De Mott, 2002, Khvorostyanov and Sassen,
2002|. The temperature for this homogeneous nucleation was found to be around 236 K
[Wood et al., 2002].

Cumulonimbus clouds generally cover regions over land and ocean. Most frequently they
occur in the Innertropical Convergence Zone (ITCZ) and other tropical regions. Deep
convection generates large amounts of spreading anvils associated with long-lived cirrus.
According to Mace et al. [2006] other cirrus formation mechanisms play an additional role
in the tropics. Over land long persisting mountain-wave cirrus are formed orographically
in local updrafts downwind of the responsible terrain [Wylie, [2002]. Only recently recog-
nized, the so-called cold trap cirrus occur primarily in the tropics at very high altitudes
and the coldest encountered tropospheric temperatures. The moisture supply of these

optically very thin cirrus clouds seems related to thunderstorm activity, although their
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extended lifetimes suggest long-lived maintenance processes involving radiative or tropical
wave processes [Sassen et al., [2008].

Finally, an anthropogenic class of cirrus clouds has to be recognized. Exhausts of aero-
planes can induce contrails, if the surrounding air is cold and humid. The Schmidt-
Applemann criteria quantifies such atmospheric conditions. If the surrounding atmo-
sphere is ice supersaturated, ice crystals grow by absorbing the surrounding humidity,
while contrails expand by turbulent mixing and wind shear, [Schmidt, |1941} |Appleman,
1953, |[Schumann|, 2002]. With growing lifetime these contrails loose their shape and form

contrail cirrus clouds [Schumann, [2005].

2.2 Passive remote sensing

Passive remote sensing is based on the theory of electromagnetic radiation and its transfer
through the atmosphere. In order to retrieve information about the actual atmospheric
condition from a measured radiative quantity good knowledge of the theory of radiative
transfer is necessary. This section introduces the basics of radiative transfer in the atmo-
sphere, which are used in this work, followed by a presentation of the Spinning Enhanced
Visible and Infrared Imager (SEVIRI) aboard the geostationary METEOSAT Second
Generation (MSG) satellites and its operating principle, which is based on collecting ra-
diation from a target area and focussing it on detectors sensitive to different bands of the

electromagnetic spectrum.

2.2.1 Radiative quantities

The propagation of radiance through a medium is quantitatively described by the theory
of radiative transfer, which is dominated by the wave-particle duality, since one part of its
phenomena is explained by wave mechanics (e.g. Rayleigh and Mie scattering), another
part is completely described by quantum mechanics (e.g. absorption, Planckfunction).
Electromagnetic waves are characterized by their wavelength A, [ﬁ, or their frequency

v, [s71:

)\:C

y .

(2.1)
The velocity of light ¢ is measured to be 299,792,458 % in vacuum. For Earth’s at-
mosphere the ratio of light speed in a medium to its speed in vacuum is given by the
refractive index n with n > 1, since light is propagating slower in the atmosphere than in
1

space due to interaction with molecules. The wave number k = 1 is also used to describe
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electromagnetic waves [m™'] (or not SI conform as [cm ™).
Radiation is usually quantified by the energy it transports. The amount of energy E

transported per unit time is defined as the radiation power ®:

dE
o= —. 2.2
The flux through an unit area dA with given orientation describes the irradiance F":
do
F=—. 2.3
T (2.3)

The most important quantity in spaceborne remote sensing is the radiance L = L(7, Q, t),
which is defined as the radiation energy d® through the area element dA with the surface
normal 7 at a location 7 during the time dt through the solid angle element df) along
the direction  with the unit [ W ] The angle between the direction Q) and the surface

mZ2sr

normal 77 is denoted as © (Fig. [2.1)):

d*®

L= 0dAcos0

(2.4)

with cos® = 7Q multiplied by dA is the projection of the surface element onto the
plane normal to €. The infinitesimal element d€ is expressed in Steradiant, [sr], and is
calculated in polar coordinates (Fig. [2.2)):

dQ = sin©dOds. (2.5)

By combining Eq. [2.3]and [2.4] the irradiance over a hemisphere is related to the radiance
by:

2 27 7T/2

F:/Lcos@dQ://Lcos@sin@d@dgb. (2.6)
00

0

In case of isotropic radiation, i.e. L(T, Q, t) = L(7,t), the integration of Eq. over the

upper hemisphere leads to:
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L,(r, {2 t)

-~

Figure 2.1: Radiant energy transmitted through the infinitesimal area element dA with
the surface normal 77 located at 7 into the solid angle element df) along the direction €2
of the photons, adapted from |[Zdunkowski et al., [2007].

F=nL. (2.7)

The solid angle of a unity sphere has a value of 47 sr, the half of the unity sphere is
therefore calculated as 27wsr. For the radiance L at a specific wavelength A\ (frequency v,
or wave number k), Ly (or L, or L) is called the spectral or monochromatic radiance

and is computed as:

dL
d\’

Thermal emission

Any matter emits electromagnetic radiation depending on its temperature. An idealized
physical body that absorbs all incoming electromagnetic radiation is called “blackbody”.
A blackbody at a constant temperature emits electromagnetic radiation at all wavelengths
and into all directions. The amount of electromagnetic radiation emitted by a blackbody
has a spectrum that is determined by the temperature alone according to Planck’s law,
[Planck, 1901]. The spectral radiance B,(T') is called Planck function relates the spectral
radiance to the temperature T of the emitting body:
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¥

Figure 2.2: Definition of the local, spheric (7, ¢, ¥) coordinate system and the direction
Q |[Zdunkowski et al., [2007].

2hc? 1
5 )
W (ear (i) —1)

with the Boltzmann constant kg = 1.381 - 1072® JK~! and the Planck constant h =
6.62606957 - 10734 Js.

An important quantity concerning the measurements of spaceborne radiometers is the

BA(T) = (2.9)

brightness temperature 73, which is the temperature a blackbody should have to produce
the measured spectral radiance L,, at a wavelength \. Therefore the inversion of the

Planck function gives the monochromatic brightness temperature T:

2hc 2hc

In general, this fundamental equation allows to translate the radiances measured by space-

borne radiometers into brightness temperatures, but the spectral band of wavelengths of

each channel has to be concerned (Eq. [2.46]).

By assuming that the Sun is blackbody with a temperature 7" = 5700 K and taking into
account the distance from the Sun, the solar spectrum can be calculated. The irradiance
Fs is emitted by the Sun at distance R to the Earth through an area of A = 4R’r.
Therefore, the values of the Planck function are multiplied with the ratio %22, where Rg
is the radius of the Sun.

By integrating the Planck function (Eq. over all wavelengths the integrated blackbody

irradiance can be derived:
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r [ 2heA
— /BA(T)dA - / L\, (2.11)
) / eﬁp(kBAT)—l
With z = ToaT /\T, Eq. [2.11| can be written as:
kATt T
B(T)==2 2.12
h3c? / (exp(x da. ( )
0
The integral term in Eq. 2.12]is equal to {¢. Therefore, defining b = -, the result is:
B(T) = bT*. (2.13)

The irradiance F emitted by a blackbody (Eq[2.7)), since B, (T') is isotropic, can be written
as:

F =7By\(T) = oT" (2.14)

This equation is known as the “Stefan-Boltzmann-Law” with the Stefan-Boltzmann con-

stant o = b = 5.678-1078 ‘2}}7{4 [Stefan| [1879| [Boltzmann) [1884]. The emission capability

of a real body compared to the idealized blackbody with similar temperature can be

quantified by the emissivity €y:

Ly
B\(T)”’

e = (2.15)

with the real emitted spectral radiance L) at a wavelength A and the idealized blackbody
radiance By(T') calculated with the Planck function.

The relationship between absorptivity a, and emissivity €, can be expressed according to
Kirchhoft’s law:

€\ = Q). (216)
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2L
> W
T

0-4;— 6000 K

AB, {normalised)

0.1 1.0 10.0 100.0
Wavelength, gm

Figure 2.3: Solar (7" = 6000 K) and terrestrial (7" = 255 K) normalized spectra [Tjemkes
and Schmetz, [1998].

Kirchhoft’s law is only valid for systems in a local thermodynamical equilibrium. This
thermodynamical balance is found in Earth’s atmosphere up to an altitude of 100 km,
where air molecules exchange their energy very fast by hitting each other, and therefore
generate a specific temperature. According to Kidder and von der Haar [1995], this
thermodynamical balance of the atmosphere can be assumed for most applications in

spaceborne meteorology.

Wien displacement law

In order to obtain the wavelength of the maximum emission of a blackbody at a temper-
ature T, the Planck function (Eq. is differentiated with respect to wavelength. By

setting the result equal zero the Wien displacement law is obtained:

AT = 2897 ym K. (2.17)

This equation enables the determination of the temperature of a radiation source from its
emission spectrum.
Based on Planck’s law two different spectra are depicted in Fig. 2.3l On the left, the
spectrum with a temperature close to the temperature of the Sun is shown (7" = 6000 K),
while on the right the emission spectrum of a body with a temperature of 255 K repre-
senting the effective temperature of the Earth is depicted. This second spectrum is also
known as the terrestrial spectrum. Solar and terrestrial spectrum can be separated be-
cause of their virtual absence of overlap. Solar emission of radiation is mainly produced
in the visible and near-infrared parts of the spectrum, while terrestrial emission is limited
to the infrared wavelengths. The maximum emission takes place at around 0.5um and
around 11.0pm.

The most important sources of electromagnetic radiation in Earth’s atmosphere are
the Sun and the Earth itself. In Fig. the solar spectrum is calculated with a radiative
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Figure 2.4: Solar spectrum at TOA and at sea level and comparison to the black body
spectrum calculated with the Planckfunction By(T') for T'= 5900 K [Wallace and Hobbs,

1977)

transfer model at Earth’s surface (sea level) after passing through the atmosphere and at
the top of atmosphere (TOA) representing the solar spectrum before absorption in the
atmosphere takes place. Both curves are compared to the idealized emission spectrum of
a blackbody with the temperature of the Sun 7' = 5900 K, calculated with the Planck-
function (Eq. . The structure of both calculated spectra is caused by atmospheric
absorption as well as absorption lines in the solar spectrum, the so called “Fraunhofer
lines”, and differs from the idealized blackbody. Radiation is absorbed by air molecules
and particles and is transformed into heat or chemical energy on the one hand. On the

other hand radiation is scattered into/away from its direction of propagation.

Atmospheric absorption

Absorption is the process by which incoming radiant energy is retained by i.e. the atmo-
sphere. When Earth’s atmosphere absorbs energy, the result is an irreversible transfor-
mation of radiation into another form of energy. For this work especially the absorption
coefficient o, is important. The absorption cross-section o, is the effective area which
governs the probability of absorption taking place. It is calculated by the absorption
efficiency of the particle @), is calculated with the absorption cross-section and the area

cross-section A:

Q
IS

Qu = 2. (2.18)
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Thus, the absorption coefficient o, describes a medium containing particle with absorption

cross-section o, at a concentration described as volume density p,:

Qg = Pala. (2.19)

Scattering

As explained above, the intensity of radiation travelling through a medium is weakened by
its interaction with matter. Beside absorption scattering is the second main contributor
to the change of radiation in Earth’s atmosphere. Its direction is changed to the direction
of propagation after being scattered by air molecules and particles. Since scattering
depends on the ratio of particle radius r and wavelength A, it is necessary to choose the
right scattering mechanism due to both properties. The size of particles in the atmosphere
varies from ~ 10™* um for gas molecules to ~ 10— 10? pm for ice crystals up to rain drops

and hail up with sizes of ~ cm. Thus, the scale parameter z is defined as:

2rr

B

x (2.20)

with r is the radius of a spheric particle. In case of non-spheric particles, r can be
estimated from the radius of spheric particles with similar volume or surface.
For the description of the angular distribution of the scattered radiation (e.g. in Earth’s

atmosphere) the phase function P is essential, [Liou, |2002]:

1

47
4

P(Q Q)dQ = 1. (2.21)

This function P is a measure for the scattering probability of electromagnetic radiation
with the incident direction € being scattered into the direction €2 [Zdunkowski et al.
2007] and is normalised according to Eq. m

The scattering at spheric or randomly orientated, non-spheric particles (such as ice crys-

tals) can be expressed as a function of the scattering angle alone:

P(Y,Q) = P(©). (2.22)

The scattering angle © is the angle between incoming and scattered radiation.
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Rayleigh scattering

For scale parameters = < 1 the theory of Rayleigh scattering is used |[Rayleigh) |1871]. In
this case, the size of the particle is very small compared to the wavelength of the incoming
radiation.

Thus, the electric field Ej of the incoming radiation induces a dipole moment py = XEO to
a particle, where y is the polarization of the particle. In turn this dipole emits polarized
electromagnetic waves, the scattered radiation.

The phase function P for the Rayleigh scattering is then computed as:

P(cos0) = 2(1 + c0s*0). (2.23)

According to Liou| [2002] the scattered radiance L(©) depending on the incoming radiance

Ly can be written as:

Lo ,1287° P(©)
LO) = X 5y

(2.24)

Thus, the scattered intensity is direct proportional to the phase function and A~

Mie scattering

For scale parameters x > 1 scattering can be described according to the Mie theory. The
Mie theory describes the scattering of light at homogeneous, spheric particles and is based
on the Maxwell equations. This section will just point out the essentials of the theory,
more details can be found in |Liou [2002] and Zdunkowski et al.| [2007].

According to the Mie theory, the scattered radiance L(0) is given by:

05) P(0©)

L(@):L()(ﬁ ral (2.25)

where L is the incoming radiance. The scattering cross section og, which describes the
likelihood of radiation being scattered by a particle, can be expressed by the following

series expansion:

% = Qg = 12t (1 + c2® + sz + ... (2.26)
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This relation of the scattering cross section to the surface of the particle is also defined
as the scattering efficiency Qs.

In case of non-absorbing particles, the first two coefficients are defined as:

2_1 2
Cl:g(m ) (2.27)

6 /m?—1)\"
= = 2.28
“2=5 (m2+2) ’ (2.28)

with the refractive index m of the particle, which is the number that describes how light, or

any other radiation, propagates through that particle or medium. For scattering processes
with a scale parameter z < 1 all terms are negligible apart from the first term, which
represents the contribution of the dipole. Therefore, Rayleigh scattering is found to be a
special case of the Mie theory.

Similar to the absorption coefficient a,, the scattering coefficient ay is calculated as:

Oy = PsOs. (2.29)

Atmospheric extinction

In order to quantify the degree of attenuation of radiation the extinction coefficient « is

used. It is defined as the sum of absorption «a, and scattering coefficient as:

a=q,+as, (2.30)

with units of <.
Another important parameter in the theory of radiative transfer is the single scattering

albedo, which describes the ratio of scattering to absorption in a medium:

aS
Wy = —. 2.31
o= (231)
The attenuation of electromagnetic radiation through a medium with the extinction co-

efficient « after a path length As = s, — s; is calculated by the Lambert-Beer law:
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Ly(s2) = L)\(sl)e{ “1 : (2.32)

where the term in the exponent is denoted as the optical thickness 7:

52

7(81,89) = /a(s)ds. (2.33)

S1

The transmission t, along this path is defined as:

ts(s1,82) = e~ T(51:52) , (2.34)

with values between 0 (for 7 — o0) and 1 (for 7 = 0).
Since many parameters of the Earth’s atmosphere, like air pressure, density, temperature,
and its chemical composition show a larger vertical variability than a horizontal variability,

it is often assumed that:

alz,y, z) ~ az). (2.35)

With this so-called plane parallel approximation, the optical thickness of an atmospheric
layer just depends on the zenith angle 6 of the incoming radiation and the vertical distance

z. The path length s of radiation travelling through the atmosphere can be calculated as

(Fig. 2.5)):

s=2 , with u = cos#. (2.36)
o

Thus the optical thickness 7 of the atmospheric layer between z; and z, where z, < z;

can be calculated as:

z2

7(z1,29) = /a(z)dz =T7(22) — 7(21) , (2.37)

21
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dz| /e

z=0

Figure 2.5: Relationship between slant path and vertical path of a plan parallel atmo-

sphere , 2006].

and the transmission ¢, for the layer

ts
ts(z1,22) =€ “uTen) o ts(z1) . (2.38)

Radiative transfer equation

The transfer of electromagnetic radiation through a defined volume is described by the

radiative transfer equation [Chandrasekhar, |1950]. The radiance is reduced by absorption

and scattering, while scattering and thermal emission have a positive contribution. In

polar coordinates, the radiative transfer equation reads as:

T 27
= _:LLL)\ Z_O / p)\(elv 90/7 97 SO)L(elv @I)Sineldeld@/—i_
v
0

l dL)\(97 QO)

«Q dz

(2.39)

p(1 = wo) BA(T).

The first term on the right hand side describes the attenuation of radiation according to
the Lambert-Beer law, while the second term characterises the scattering in the optical
path. The third term represents the emission within the optical path. €, ¢’ and 6, ¢
denote the direction of the photons before and after being scattered. By(T'(p)) is the
emitted radiance of a black body at the atmospheric temperature 7. The emissivity is
calculated as a(l —wp) = ag.

The monochromatic radiance L) at a wavelength \ emitted along a vertical path at the
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top of the atmosphere and incident at a spaceborne instrument is given as the solution of
Eq. by neglecting atmospheric scattering:

o0

Ly = (Lo), ton(20) + / By (T(2)) Wy(2)dz, (2.40)

20

where Ly is the emission from the Earth’s surface at height 2y, ¢ » is the vertical trans-
mittance at height z to space, T'(z) is the vertical temperature profile, and By (T'(z)) is

the corresponding Planck function profile. The so called weighting function

. dtS,A(Z>

Wi(2) dz

(2.41)

defines the change of the total transmittance with respect to altitude. It specifies the
vertical location of the atmosphere from which the radiation measured by the satellite
channel was emitted, and, therefore determines the region of the atmosphere which can
be sensed from space at this wavelength. Since it is the derivative of the transmittance,
the weighting function has its maximum values in those regions where the absorption of
radiation at specific wavelengths is strongest. Of course, it depends on viewing angle and

atmospheric composition.

Cloud properties

Clouds consist of water drops and/or ice particles. The particle size of ice crystals and
water droplets in a cloud is characterized by the effective radius r.ss, which is a funda-
mental size to describe scattered radiation [Foot|, [1988|. For particles with arbitrary shape

and known size distribution, the volume effective radius is defined as:

3V
Teff = 34 (2.42)

Ap
with the mean volume V' of the particle ensemble and its mean projected cross-section

area A,. For spherical particles r.zs is calculated as:

o0

[ wr3n(r)dr

Teff = = | (2.43)
[ wr2n(r)dr
0
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where the number of particles per unit volume with radius between r and r + dr is defined
as n(r)dr. In combination with the optical thickness 7 (Eq.[2.37), the effective radius r.sy
is essential for an estimate of the ice water content /W' of an ice cloud as parametrized
by Key et al.| [2002]:

o' 1
Iwca — Ty

with the fitting coefficient of a non-linear regression a,. Therefore, the relationship be-

tween /W C and 7 can be written with o = fl—; as:
i 1
T=AzIWC Cpy——. 2.45
nz:% Terf (245

2.2.2 SEVIRI - Meteosat Second Generation

The METEOSAT Second Generation (MSG) program consists of four equal satellites
(MSG-1, MSG-2, MSG-3, MSG-4), which are developed for meteorological observations of
the Earth’s atmosphere until at least 2018. Each satellite has an expected lifetime of seven
years. The MSG program is established as a cooperation of the European Space Ageny
(ESA) and the European Organisation for the Exploitation of Meteorological Satellites
(EUMETSAT). The satellites are operated in a geostationary orbit at an altitude of
around 36.000 km and at geographical longitudes around 0°.

The main instrument aboard MSG, the Spinning Enhanced Visible and Infrared Imager
(SEVIRI) covers one third of the Earth’s surface with its 12 spectral channels listed in
Table 2.2 The satellite itself spins with 100 rpm while SEVIRI measures the Earth’s
radiation as shown in Fig.[2.6] It combines the East-West scan generated by the satellite
spin motion and the South to North micro-step scan of the mirror.

The 11 low resolution (LR) channels cover the whole “disc” from around 80° N to 80° S
latitude and 80° W to 80° E longitude every 15 minutes with a sampling distance of 3 km
at subsatellite point. This resolution decreases for growing viewing zenith angle due to
the curvature of Earth’s surface. At each spin of the satellite, SEVIRI’s LR channels
scan three lines. This procedure lasts approximately 12 minutes, while three additional
minutes are required e.g. for resetting the scan mirror to the start position and for data
handling. Channel 12 is the so-called High Resolution Visible (HRV) channel, which
covers half of the MSG disc in the East-West direction and the complete disc in the
North-South direction [Schmetz et al., [2002]. The HRV channel follows the LR scanning
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Channel | Channel | Central wavelength | Spectral band | Subsatellite point

number | name /pm /pm resolution
1 VIS06 0.635 0.56 - 0.71 3 km x 3 km
2 VIS08 0.81 0.74 - 0.88 3 km x 3 km
3 NIR16 1.64 1.50 - 1.78 3 km x 3 km
4 IR039 3.92 3.48 - 4.36 3 km x 3 km
5 WV062 6.25 5.35-7.15 3 km x 3 km
6 WVO073 7.35 6.85 - 7.85 3 km x 3 km
7 IRO87 8.70 8.30 - 9.10 3 km x 3 km
8 IR097 9.66 9.38 - 9.94 3 km x 3 km
9 IR108 10.8 9.80 - 11.80 3 km x 3 km
10 IR120 12.0 11.00 - 13.00 3 km x 3 km
11 IR134 13.4 12.40 - 14.40 3 km x 3 km
12 HRV - 0.40 - 1.10 1 km x 1 km

Table 2.2: SEVIRI channels [Schmetz et al., |2002].

procedure, but scans nine lines at each satellite spin. The Rapid Scan Service (RSS) from
MSG-2 started mid-2008, which provides data every 5 instead of 15 minutes. It covers the
northern part of the MSG disc from approximately 15° N to 70° N. To provide accurate
measurements, SEVIRI uses the deep space as a cold source and an internal blackbody
as a warm source for the calibration of the infrared channels, [Pili, 2000].

In order to make a day and night time observation of atmospheric processes possible
SEVIRI is suited with seven channels in the thermal infrared (channels 5 to 11 with
wavelengths from around 6 to 14 pum). The interpretation of these observations is easier
when using equivalent brightness temperatures. However, Eq. cannot be applied
directly, because SEVIRI channels extend over a finite spectral interval. To consider this

effect, [Tjemkes [2005] derived an approximated analytical relationship:

T ohe2u3 N
log(m}ﬁ—kl)
Tb = A Y

(2.46)
with C; = 2hc¢? and Cy = ]f—;, where ¢ = 299,792,458 is the speed of light, h =
6.625 - 103 Js the Planck constant, and kg = 1.3806503 - 10_23% is the Boltzmann con-
stant. v¢ is the central wave number, A and B are non-linear regression coefficients of the

thermal channels of SEVIRI (Table [2.3). The coefficients A and B are chosen with the
boundary condition that the minimum square deviation of the equivalent brightness tem-
perature 7T, from the exact value between 150 and 350 K is smaller than 0.05 K. The re-
sult of a high spectral resolution radiative transfer model (line-by-line) for a “mid-latitude

summer” atmosphere is shown in Fig. [Tjemkes and Schmetzl [1998]. Radiances are
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Figure 2.6: Earth imaging principle of SEVIRI [EUMETSAT] 2010].

Channel | vo/cm™! A B
WV062 | 1598.566 | 0.9963 | 2.219
WVO073 | 1362.142 | 0.9991 | 0.485
IRO87 | 1149.083 | 0.9996 | 0.181
IR097 | 1034.345 | 0.9999 | 0.060
IR108 | 930.659 | 0.9983 | 0.627
IR120 839.661 | 0.9988 | 0.397
IR134 752.381 | 0.9981 | 0.576

Table 2.3: Central wavenumber v¢ in [=], coefficients A and B for the analytical rela-
tionship (Eq. [2.46) between temperature and radiance, [Tjemkes, [2005].
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Figure 2.7: Upwards directed radiances at the upper limit of the “mid-latitude summer”
atmosphere, transformed to the equivalent brightness temperature and plotted as a func-
tion of the wave number. Depicted are also the spectral region of the main influencing
atmospheric constituents [Tjemkes and Schmetz, [199§].

transformed to equivalent brightness temperatures, Eq.[2.46, and are plotted as a function
of wave number. Fig. points out that the so-called window channels TR087, TR108,
and TR120 are in a spectral region with low gas absorption. In the IR134 channel, water
vapour as well as carbon dioxide absorb radiation. In the so-called water vapour channels
WV062 and WV073 high absorption due to water vapour is present. In the spectrum
of the TR097 absorption by ozone is dominant along with methane and carbon dioxide.
Methane absorption can also be observed in the WV(073 channel. Since atmospheric ab-
sorption is not uniform with altitude, each SEVIRI channel has a varying sensitivity to
different atmospheric layers. Fig. shows the weighting function |[Tjemkes, 2005 for
the thermal infrared channels of SEVIRI for a satellite viewing angle of 55° for a “mid-
latitude summer” atmosphere.

The weighting functions of channels IR087, IR108, and IR120 reach down to the Earth’s
surface, while the water vapour channels WV062, WV073 have lower or no contribution
from the lower atmospheric layers, so the measured brightness temperatures are almost in-
dependent from the surface temperature. Although in very dry areas the WV073 channel
is still influenced by surface temperature, in more moist regions the weighting function
is altered so that the ground is not detected any more. In particular, in regions with
optical thick water or ice clouds the WV073 observations only contains information from
the cloud top and above due to the strong absorption of clouds.

The absorption of water and ice particles forming clouds in the Earth’s atmosphere is
depicted in Fig. 2.9, where one should focus on the thermal infrared channels marked as

columns with wavelengths greater than 6.2 ym. The red line represents the absorption



24 2. Remote sensing of cirrus clouds

MEAN WEIGHTING FUNCTIONS OF SEVIRI CHANNELS AT MIDDLE LATITUDES
T T T T I

LOCAL ZENITH ANGLE =55 deg

6.2 mic

) 73 mic

Pregsure

. T

~ —
8.7 mic ™ ” . 12.0 mi
| /| NG

{
1000 | | 1 |
0.00 Weighting function 2.00

Figure 2.8: Weighting functions of the infrared channels of SEVIRI for a “mid-lat summer”
atmosphere and a viewing angle of 55° typical for Europe [Tjemkes, [2005].

of ice, the blue line is valid for water. Different absorption characteristics are found for
the single channels: While ice and water particles absorb radiation in the whole thermal
spectrum, differences in the absorption makes the discrimination of ice and water clouds
possible. Especially the two water vapour (WV062 and WV073) and the split window
channels (IR108 and TR120) show larger imaginary refraction indices for ice particles than
for water.

In case of optically thin cirrus clouds, the window channels still receive information from
the ground. In this case, only a combination of the different infrared channels can provide
quantitative information about the cloud temperature, its optical properties, or height

(see Section [3).

2.2.3 Derivation of cirrus cloud properties from passive remote

sensing

Several passive remote sensing instrument aboard numerous geostationary and polar or-
biting satellites have already been used in the past decades to detect cirrus clouds and
to retrieve their properties. These remote sensing applications aim to extract param-
eters of the medium (i.e. cirrus clouds) from a set of radiative measurements, namely
the radiances or brightness temperatures sampled in several illumination and observation
conditions and spectral bands. |Liou [1977] presented a hypothetical retrieval to determine
the surface temperature, the thickness and the transmissivity of cirrus clouds based on
four different infrared channels (8.7, 9.0, 10.5, and 11.0 pum) located in the 10 gm window

region. Justified by radiative transfer calculations, two assumptions were made for these
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Figure 2.9: The absorption (Imaginary Refrective Index) of ice (red) and water (blue) de-
picted as a function of wavelength. Green and yellow columns mark the spectral bands of
the infrared channels of the SEVIRI instrument, adapted from D. Rosenfeld, EUMETSAT
MSG Interpretation Guide.

theoretical analysis: Water vapour effects above cirrus clouds are negligible and the ratios
of transmissivities are linear functions of the cloud thickness. |Szejwach [1982] developed
a technique using the water vapour absorption channel (5.7 — 7.1 ym and the so-called
window channel 10.5 — 12.5 pym of the Meteosat geostationary satellites to derive cirrus
cloud temperature, emissivity, and height (known as the HyO-intercept method).

Both utilized the existence of different emissivities of cirrus clouds in the different infrared
channels due to scattering and absorption of ice crystals in the cloud. Based on radiative
transfer calculation with calculated vertical profiles of e.g. temperature and moisture
the cirrus top altitude can be derived from the measured radiances |Menzel et al., 1983,
Wylie and Menzel, [1989]. This last method is also called COs-slicing, since one specific
wavelength (around 13 — 14 pm) sensitive to the absorption of COs is used.

In case of non-opaque thin cirrus clouds, measured radiances or brightness temperatures
include contributions from the cirrus cloud as well as from the surface and atmosphere
below. Thus, the detection of cirrus clouds and especially thin cirrus clouds is supported
by several multi-spectral techniques. E.g. the semi-transparency or “split-window” test
based on two infrared channels, 10.8, and 12.0 pm, is often used [Inoue, |1985]. Again the
physical basis of this algorithm is the difference in the single scattering properties of ice
clouds at these two wavelengths. Additionally, Krebs et al. [2007] exploits the morpho-
logical properties of cirrus in the water vapor channels like 6.2, and 7.3 ym on SEVIRI.

Water vapor channels are ideally suited for cirrus detection, as absorption and emission
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by atmospheric water vapor effectively shields surface and lower clouds.

In order to retrieve the microphysical properties of cirrus clouds two kinds of approaches
emerged: empirical parameterizations derived from in situ measurements, and physical
methods using optimization techniques and/or look-up tables. [Liou| [1977] already stated,
that once the geometrical thickness and transmissivity at a given wavelength of a cirrus
cloud have been derived, the vertical ice content of that cloud may be estimated. In Liou
et al|[1990] a dual-channel technique was developed using 6.5 and 10.5 um wavelengths
for the retrieval of the temperature and optical thickness of tropical cirrus clouds. This
technique is based on a theoretical parametrisation of the cloud emissivity as a function
of the optical depth.

Nowadays the retrieval of microphysical properties of cirrus clouds is often based on a
method developed by [Nakajima and King| [1990]. In order to derive these microphysical
properties like ice optical thickness and particular effective radius, look-up tables are cal-
culated with radiative transfer models. In these look-up tables reflectivities are calculated
and stored as a function of several parameters such as sun zenith angle, sensor zenith an-
gle, relative azimuth angle, surface albedo, cloud optical thickness, and effective particle
radius |[Bugliaro et al., 2011]. These methods are based on the fact that the reflection
function of clouds in the visible is primarily a function of cloud optical thickness, whereas
the reflection function in the near-infrared depends primarily on the cloud particle size
[Arking and Childs, 1985, [Han et al., 1994, [1995], which limits their applicability to day-
light measurements. During nighttime, the retrieval of microphysical properties is more
complex, because the radiances retrieved in the infrared bands depend on every cloud
parameter. In these cases, applied methods are based on the fact that the optical prop-
erties of clouds are different at each infrared wavelength [Baum et al.| |1994] 2003]. Thus,
the different thermal infrared channels of SEVIRI covering wavelengths from 6.2, and
13.4 pm (Section are well suited to detect cirrus clouds and to retrieve their optical
thickness and top altitude during day and night. The functional relationship of brightness
temperatures and brightness temperature differences to the retrieved properties of cirrus

clouds is shown in Section [3.5]
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2.3 Active remote sensing

The influence of active remote sensing on atmospheric science has grown in the last decade.
Especially active remote sensing like light detection and ranging (lidar) and radio detec-
tion and ranging (radar) has become fairly common. Like radar, lidar is mainly used
for profiling the Earth’s atmosphere. High spatial resolution of the measurements, the
potential of covering the height range from the ground to high altitudes, observations
during night, including the high flexibility like measurements from an aircraft or even
from space make this kind of observations even more attractive (for an overview of lidar

and its atmospheric applications see Weitkamp) [2005]).

2.3.1 Lidar principle

In general, a lidar consists of three subsystems: the transmitter, the receiver, and the
detection system. The light amplification by stimulated emission of radiation (laser)
transmitter is the light source, which emits photons in a pulsed beam. As already men-
tioned, those photons are scattered by atmospheric molecules (oxygen, nitrogen, etc.) and
particles (clouds and aerosols). Rayleigh scattering occurs when the wavelength of the
propagating light is much larger than the diameter of the particles. Due to the wavelength
dependency of the intensity of Rayleigh scattering with A=*, shorter wavelengths are scat-
tered far more than larger wavelengths. Aerosols and clouds, which are atmospheric
particles with a diameter close to, or even larger than the wavelength of the radiated
light scatter radiation according to Mie theory. Here, the intensity of the backscattered
light depends on the particle concentration and not or only slightly on the wavelength.
It increases simultaneously with air pollution, clouds, fog, and haze. Fig. shows a
schematic overview of a spaceborne lidar, such as the instrument CALIOP aboard the
CALIPSO satellite (see Section [2.3.2). The receiver collects the light backscattered by
the atmosphere with a telescope. The transmitter emits laser pulses (red) in direction of
the lidar line-of-sight (yellow). These pulses are backscattered by atmospheric molecules,
aerosols, cloud particles, and the surface. The collected signal is time-dependent. Using
the equation R = %t, the time ¢ between the transmission of the laser pulse and the
reception of the backscattered signal can be directly related to the range R, where the
scattering occurs. The typical signal of a spaceborne lidar is shown at the right top of
Fig. [2.10] where the first and second peak are caused by aerosols and clouds respectively,
whereas the strongest peak is the ground return signal. The number of photons received
by the lidar at a range z from a range-bin depends on the one hand on the lidar system
itself, e.g. the number of photons emitted by the laser and the length of the so-called

sampling interval, described by the lidar constant K. On the other hand, as mentioned
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Figure 2.10: Schematic description of a spaceborne lidar [Endemann, 2006].

above, the received umber of photons strongly depends on atmospheric conditions, such
as the efficiency of the backscattering of particles and air molecules at range z to the lidar,
and on the probability that emitted photons are backscattered to the receiver from range
z without being absorbed or scattered in arbitrary directions. The number of photons
received by a lidar can be calculated with the lidar equation in terms of the received

energy E(z, \) from a range-bin at range z at a wavelength \:

Bn(2,A) + Bp(2, M)

B(20) = K . exp {—2 /0 T (#, A) + oy (4, )] dz’} C (247)

where K is the above mentioned lidar constant, and backscatter and extinction coefficents
are denoted as [ in units of [kmflsr_l} and « in units of [km’l}, respectively. The
subscripts p and m are added to distinguish between the contributions of particles and
molecules. The two-way transmission between the lidar and the range z is written as the
exponential term on the right hand side to describe the loss of photons due to atmospheric

extinction by particles and molecules.

2.3.2 CALIOP - CALIPSO

Spacecraft

Launched in April 2006, the CALIPSO mission provides global observations of aerosols
and clouds with its onboard lidar Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIOP), the Imaging Infrared Radiometer (IIR), and the Wide Field Camera (WFC).
CALIPSO flies as a part of the National Aeronautic and Space Administration (NASA)



2.3 Active remote sensing 29

Figure 2.11: NASA afternoon train [http://atrain.nasa.gov/images.php].

afternoon constellation (A-Train) together with Aqua, CloudSat, PARASOL, and Aura
(Fig.[2.11]). The Global Change Observation Mission - Water (GCOM-W1) and the Orbit-
ing Carbon Observatory (OCO-2) are going to be launched in 2012 and 2013 respectively.
Unfortunately the GLORY spacecraft failed to reach its orbit after liftoff in March 2011.
CALIPSO was injected into a polar orbit of 705 km with a repeat cycle of 16 days. All

satellites together provide simultaneous measurements of aerosols, clouds, relative humid-

ity, temperature, and radiative fluxes for the first time [Winker et al., |2002].

CALIOP

For this purpose CALIOP uses a Nd:YAG laser emitting simultaneous, co-aligned pulses
at wavelengths of 1064 nm and 532 nm with a repetition rate of 20.16 Hz equal to a dis-
tance of 333 m between two profiles each with a footprint of 100 m along and 90 m cross
track, a 1 m-diameter telescope, and three receiver channels, which collect the backscat-
tered signals. One channel measures the 1064 nm backscatter intensity and two channels
measure orthogonally polarized components of the 532 nm backscatter signal. Hence, it
is possible to derive the backscatter coefficients (532 nm and 1064 nm), the color ratio
of the backscatter coefficients ( 1556241“;), and the depolarization ratio of the 532 nm chan-
nels [Winker et al., 2007]. As with ground-based depolarization lidars, CALIOP relies on

polarization information to determine cloud phase, based on the assumption that water

cloud particles are spheres and ice clouds are composed of nonspherical particles
[2009]. Beside vertical profiles of aerosols, CALIPSO delivers vertical profiles of clouds,
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primarily from the 532 nm channel. The vertical resolution of the 532 nm channel is alti-
tude dependent from 30 m (up to 8.2 km) to 300 m (30 — 40 km), which is similar to the

resolution of the 1064 nm channel.

Algorithms

For each profile of CALIOP, cloud and aerosol layers are detected by a threshold detection
technique [Vaughan et al., 2004, [2005, 2008, Winker et al., 2009].

Before the retrieval of extinction coefficients can be performed, clouds must be located
and discriminated from aerosol, and water clouds must be discriminated from ice clouds.
Therefore the Selective Iterated Boundary Locator (SIBYL) detects layers, the Scene
Classification Algorithm (SCA) classifies these layers, and the Hybrid Extinction Retrieval
Algorithms (HERA) perform extinction retrievals. The location of cloud and aerosol layers
and the determination of cloud ice/water phase are necessary precursors to extinction
retrieval. Assuming, that the CALIOP profile data has been properly geolocated and
calibrated during the first step of data processing, the primary measurement quantity
used in the Level 2 data processing here will be range-resolved profiles of attenuated
backscatter coefficients, 5'(A,7):

/ r’P(\,r) 2 2 2

FAr) = = [BulA ) + B (A )] T (A )T (A, )15, (A ). (2.48)
Again, K represents the system constant similar to Eq. and P(\,r) is the received
lidar signal at range r from the satellite. The single backscatter coefficients are given by
B(A, r) with the subscript m for molecules and p for particles. The two-way transmittance
due to any scattering or absorbing species is given by T? with the subscript Os for ozone
additional to particulate and molecular contributions. The task of this feature finding
algorithm is to separate features in the retrieved signal from the noise. The fundamental
algorithm to locate any layer within a profile measured by CALIOP is the SIBYL algo-
rithm, which is driven by a profile-scanning engine originally developed for application
to ground-based observations [Winker and Vaughan| 1994] and later adapted to the Li-
dar In-space Technology Experiment (LITE) [Platt et al., 1999]. The scanning for the
feature begins at the top of the profile and data points are examined sequentially, with
features being identified at those regions where the profile data exceed their correspond-
ing threshold values over an altitude range greater than some predetermined minimum
feature thickness. The scanning procedure is applied to the 532 nm attenuated scattering

ratios R’:
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These attenuated scattering ratio profiles are analysed in order to exploit a very specific
geometric structure. In case of a noise-free profile, the slope of R’ with respect to altitude
would be exactly zero, which is essentially the case for high altitudes in the measured data.
This fact is shown in Fig.[2.12] where R’ derived from LITE data is depicted as a function
of altitude. On the left hand side “clear air regions” show values of R’ ~ 0 at altitudes
from 22 to 17.5 km and from 12 to 3 km. The adaptive thresholding scheme incorporated
into the CALIOP profile scanner uses local topographical information to identify regions
of clear air at feature base, and to adjust the threshold array to compensate for the
signal attenuation imparted by the newly located feature. In the center of Fig. [2.12] the
initial threshold (in red) calculated at the beginning of the scan is depicted. There the
cirrus cloud at an altitude between 17.4 and 13.2 km lies above this threshold and thus is
detected. But the aerosol layer between 1.6 km an the surface would be dismissed since
its scattering ratio lies below the initial threshold. Therefore, the revised threshold (in
red), depicted in Fig. right, is automatically computed upon exiting the base of the
cirrus layer. The regions identified as features are now plotted in green, while regions
not exceeding the revised threshold are drawn in grey. This automated scaling of the
threshold array for every profile to account for signal attenuation due to detected features
makes the subsequent detection of underlying features possible, which would be missed
otherwise. Finally the integrated attenuated backscatter of the feature 7gatuwe can be

calculated as:

base

Vfeature = Bp('f’) : t?,p(R)dR’ (250)

top

where f3,(R) is the particular backscatter and T,(R) is the particulate two-way transmit-
tance.

Once all the features are identified by SIBYL, another set of algorithms is applied in
the second step, the so-called the Scene Classification Algorithm (SCA). The SCA clas-
sifies the features found by SIBYL by type. The SCA decides whether the detected layer
is a feature or a non-feature by using the flag derived by SIBYL. Atmospheric features
first have to be distinguished in clouds and aerosols. In a second step these features
are then classified in sub-types. Non-features are regions of clear air, surface, subsur-
face, or total attenuation, where no underlying layers or surface can be detected. If the

region is labelled as surface, subsurface, or totally attenuated, the SCA records this in
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Figure 2.12: Adaptive threshold technique applied to attenuated scattering ratios mea-
sured during LITE [Vaughan et al., [2004].

the Vertical Feature Mask (VEM). In case of clear-air the SCA records the appropriate
clear-air lidar ratio for the region in the VFM. Is the detected region a feature the SCA
checks, if the feature is elevated (molecular scattering signal has to be available above and
below the feature). For an elevated feature the SCA calculates the lidar ratio by using
the transmittance-constraint method. As mentioned above, the transmittance method
requires clear air (molecular scattering) above and below the detected layer, from which
the layer transmittance and therefore the optical depth can be determined, ,
1972, [Young, [1995]. The extinction-to-backscatter ratio or the lidar-ratio S is generally
defined as:

S=—, (2.51)

g
where « is the extinction and 5 and is backscatter coefficient. The lidar ratio depends pri-
marily on properties such as size distribution, particle shape, and composition. Concern-
ing aerosols these factors are the source of the aerosols, mixing, transport, and hydration.

This method is based on the relationship between optical thickness 7 and integrated at-
tenuated backscatter, Equation which is described by the following equation, |[Platt,

1973]:

;1= eap(~207)
2nS

v . (2.52)
Here 7/ is the integrated attenuated backscatter from layer top to layer base, Eq. [2.50]
T is the optical thickness and 7 is a layer-effective multiple scattering parameter. It
is important to mention, that Eq. is only valid for the single component layers

where molecular scattering is negligibly small compared to particular scattering (e.g.
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in clouds). In aerosol layers the molecular scattering can be significant and must be
taken into account in using Eq. to compute the lidar ratio. To use Eq. [2.52] a
technique has been developed to correct for the molecular scattering. The molecular
scattering correction technique approximates the molecular scattering contribution to the
total integrated attenuated backscatter, [Liu et al., [2005].

Furthermore, Liu et al. [2005] defines an effective lidar ratio, S* = n - S and substitutes
the effective two-way transmittance, 2 = exp(—2 - n - 7), therefore Equation can be

rewritten as:

1 —¢2
§* — 27/8. (2.53)

The effective two-way transmittance is obtained by fitting the return above and below
a feature to a reference profile, [Young) [1995]. The uncertainties in the observationally
approximated value of S are estimated and the SCA then sets a flag indicating whether
the extinction retrieval should perform a retrieval using the observational value or the
model value. If the feature is non-elevated the transmittance method fails to be applied
and a lidar ratio is selected based on different models corresponding to the identified
feature type. In case of aerosols the underlying paradigm of the type classification is that
the variety of emission sources and atmospheric processes will act to produce air masses
with a typical identifiable aerosol type, |[Liu et al.; 2005]. The aerosol lidar ratio S, is
based on several studies, [Ansmann et al., 2001} [Masonis et al., 2002, Liu et al., 2002,
Voss et al., [2001]. A detailed overview is given in |Liu et al. [2005] with the single lidar
ratios for the different aerosol types such as marine aerosol, polluted dust, and biomass
burning. For clouds the Cloud Model Algorithm (CMA) determines consistent values of
the cloud lidar ratio S. and the multiple scattering function 7.(z) for all cloud layers. For
water clouds the SCA chooses a constant value of the lidar ratio S. = 18 sr, based on
theoretical studies, [Pinnick et al.l |1983]. For cirrus clouds an empirical relation between

temperature and the lidar ratio S, is selected according to the simple rule:

S, =—1.2591-T — 6.698 , (2.54)

where T is the mid-cloud temperature in °C derived from the observed cloud layer heights
using the ancillary data product of the Global Modelling and Assimilation Office (GMAO).
As a last algorithm the Hybrid Extinction Retrieval Algorithm (HERA) is applied. It
calculates and corrects for the attenuation within all features in order to produce profiles of

extinction and backscatter at both wavelengths, 532 nm and 1064 nm. The fundamental
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algorithms in HERA take as inputs a collection of integrated quantities derived from some
segments of a profile in case of the SCA (e.g. ice/water phase). The outputs are either a
derived profile of optical parameters (e.g. particulate extinction coefficients), the integral
of such profiles (e.g. optical thickness), or some additional information about the content
or structure of the input profile (e.g. base and top altitude). The detailed formulas and
error estimations can be found in [Young et al.|[2008], but finally the solution of HERA is

the extinction coefficient a,(r):

a,(r) =8, - By(r). (2.55)

With the calculated extinction coefficient HERA finally derives the optical thickness 7,
for each detected layer:

1

T, = / a,(r) dr. (2.56)

0

In version 2.01 and version 2.02 the HERA retrieval only calculates cloud extinction coef-
ficients of the 532 nm channel in contrast to the aerosol extinction coefficient, which are
derived for both wavelengths, 532 nm and 1064 nm. Therefore, the ice optical thickness
of the 532 nm channel is used in this work.

Several attempts to validate the retrieved cirrus cloud properties of CALIOP were ac-
complished in the past few years. Rogers et al.| [2011] used measurements of the airborne
High Sepctral Resolution Lidar (HSRL) of the NASA Langley Research Center in June
2006 to validate the 532 nm total attenuated backscatter. The CALIOP measurements
were found to agree to the backscatter coefficients derived by HSRL with a slight under-
estimation of 2.7 % + 2.1 % during nighttime and 2.9 % + 3.9 % during daytime.
During the CIRCLE-2 experiment in May 2007 the extinction coefficients for thin cirrus
clouds derived by CALIOP were compared to in situ measurments of a Polar Nephelome-
ter aboard the research aircraft Falcon of the DLR [Mioche et al., 2010]. On the one
hand both extinction coefficients were found to agree (slope parameters of the linear fits
greater than 0.9) with a very good correlation for thin cirrus clouds and extinction co-
efficients between 0.6 to 1.2 km™1 for irregular-shaped ice crystals. On the other hand
an overestimation of the CALIOP extinction coefficients was found due to pristine-plate
crystals with sizes up to 300 um. In order to avoid subsequent biases in CALIPSO
retrieval products, the CALIOP laser beam has been tilted 3° ahead of the nadir di-
rection since November 2007. Most recently Hlavka et al. [2012] published validation
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results on cirrus cloud optical properties derived from CALIOP measurements during the
CALIPSO-CloudSat Validation Experiment (CC-VEX). Compared to the airborne Cloud
Physics Lidar (CPL) differences in the resulting optical thickness of only ~ 7 % for the
values derived by CALIOP was found in case of agreeing lidar ratios. However in case of
disagreeing lidar ratios of both systems, the resulting optical depth differenc is significant

(31 %).
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Figure 2.13: Scheme of a biological archetype of a neuron.

2.4 Neural Networks

This section explains the theory of artificial neural networks with the main focus on back-
propagation neural networks on which the algorithm developed in this thesis is based.
Artificial Neural Networks try to emulate the human brain. As millions of our intercon-
nected brain cells are trainable and then take over control task, we would like to empower

computer programs to handle new situations with learned informations in a similar way.

2.4.1 Biological Archetype

In 1943 Warren McCulloch and Walter Pitts tried to understand how the human brain
can carry out highly complex relationships such as reading by using many basic cells that
are connected with each other [McCulloch and Pitts, [1943]. The biological archetype
(Fig. is only described briefly here, since it is not essential to understand the theory
of artificial neurons. For a more detailed disquisition on the biological background, please
see |Zeil [1997]. Dendrites are the branched projection of a neuron that act to conduct the
electrochemical stimulation received from other neural cells to the cell body of the neuron
from which the dendrites project and remits it to the cell nucleus. The axon is a long,
slender projection of a neuron that typically conducts electrical impulses away from the
neuron’s cell body to the dendrites of other cells. A biological neuron has some thousand
connections to other neurons. The connection of the axon of one neuron to the dendrite
of another neuron is called synapse. In computer science, an artificial neural network is a
mathematical or computational model inspired by the structure and functional aspect of

these biological networks.
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2.4.2 History of Artificial Neural Networks

With their publication |McCulloch and Pitts [1943] gave a very simplified mathematical
model of these biological neurons, which highly contributed to the development of artificial
neural networks. Four years later, in 1947, both stated that pattern recognition in general
is possible using artificial neural networks, [Pitts and McCulloch| [1947]. An example of
pattern recognition is classification, which attempts to assign each input value to one
given set of classes (e.g. whether an email is “spam” or “no-spam”). The first to define
learning rules for an artificial neural network was Donald O. Hebb two years later. In the
so-called Hebbian theory or Hebb’s rules he stated [Hebbl [1949]: “Let us assume that the
persistence or repetition of a reverberatory activity (or “trace”) tends to induce lasting
cellular changes that add to its stability. When an axon of cell A is near enough to excite
a cell B and repeatedly or persistently takes part in firing it, some growth process or
metabolic change takes place in one or both cells such that A’s efficiency, as one of the
cells firing B, is increased.”

This statement aims to explain “associative learning” | in which simultaneous activation
of cells leads to pronounced increases in synaptic strength between those cells, or, in other
words, the connection between both neurons becomes more important and is strengthened.

Accordingly, this rule is often generalized as:

Aw; = nxyy (2.57)

where the change in the i-th synaptic weight Aw; is equal to a learning rate n times the
i-th input x; times the postsynaptic response y, which is somewhat the output of the
neuron. In 1950 Karl Lashley found that memories are stored in a decentral process all
over the brain |Lashley, [1950]. During the next 20 years first attempts to match patterns
with neuron computers were successful. Some time later in 1974, Paul Werbos wrote
down the first description of training an artificial neural network by back propagating
errors [Werbos, [1974].

2.4.3 General setup of Artificial Neural Networks

As mentioned above, neural networks consist of several neurons that are used to gather
informations from ambience or other neurons and to send this information back to ambi-
ence in a modified way or again to other neurons. In general, artificial neural networks
consist of three different types of neurons: Input neurons, hidden neurons, and output

neurons:

e Input neurons: Neurons that receive signals (stimuli, pattern, etc.) from ambience
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Figure 2.14: Setup of a simple neural network with input neurons in blue, hidden neurons
in orange, and output neurons in red.

e Hidden neurons: Neurons between input and output Neurons, internal representa-

tion of environment.

e Output neurons: Neurons to transmit signals to ambience. They combine the signals
from the hidden layer(s).

Neurons of the same type are combined to layers (Fig. [2.14). The neurons of the input
layer are connected to the neurons of the hidden layer, which are once again connected to
the output layer neurons. The strength of the connection between two neurons is defined
by a weight. The higher its value the greater is the influence of one neuron on the other.

Those weights represent the memory of an artificial neural network.

2.4.4 Backpropagation Neural Network

An artificial neural network is generally based on a process with three steps.

In the first step the input variables are “received” by the neurons of the input layer.
Thus, if ten input variables n = 10 are used ten corresponding input neurons are selected
for the input layer. Within each input neuron the variable is transformed by a function,
the so-called “activation function”. In biologically-inspired neural networks, the activation
function is usually an abstraction representing the rate of action potential firing in the cell.
The simplest function is the so-called Heaviside / step function, which is a discontinuous
function with values of zero or one deciding whether the neuron is “activated” or “firing”.
A linear activation function with variable slope may also be used to reflect the increase in

firing rate that occurs as input current increases. Neural networks based on this function
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show numerical instabilities because neuron inputs along favoured paths tend to increase
without bound. In case of backpropagation neural networks, the activation function has
to be bounded and continuously differentiable. For that purpose, the sigmoid function
¢(t) is used in most cases, which is defined for the real domain with exactly one inflexion
point. Furthermore, its first derivative is throughout positive or negative. The sigmoid
function is defined for 0 < ¢(t) < 1 as:

1

o) = 1+ exp(—t)

teR. (2.58)
Thus, in case of the input layer, for each of the n = 10 neurons the sigmoid function for
t, = Input, is calculated in the first step and send via the connections to the neurons of
the hidden layer, where again the sigmoid function is applied.

According to the Hebbian theory these connections are weighted by the synaptic strength
Gin- The amount of connections and therefore the number of connections between input
and output neurons is determined by the number of connections between input and hidden
layer neurons. So, assuming that exemplary 100 neurons are used here and since each
neuron of the input layer is connected to every neuron of the hidden layer, 1000 connections
between the n = 10 input neurons and the 7 = 100 hidden neurons have 1000 weights g; .
In the hidden layer neurons the sigmoid function is again applied to the result of each
input neuron ¢(t,). But since the connection between these neurons is weighted by g; ,,

each hidden layer neuron receives the values from the input neurons:

m

wi =3 0t - g (2.59)

n=1

Thus, the value for each of the i = 100 hidden layer neurons is assigned to ¢(u;). Fig.[2.15
gives a schematic overview in which way the neurons of one layer (here: the input layer) are
connected to one neuron of the following layer (here: hidden layer). As mentioned above,
the strength of the connections are weighted with the factors g;,, which are randomly
distributed in the beginning. n is the number of inputs, ¢ is the number of hidden layer
neurons. On the left of Fig. [2.15] the input variables are depicted.

In the second step (Fig. the value of each output layer neuron is determined again
with the sigmoid function (Eq. . The number of output layer neurons depends on
the variables the neural network shall determine. Here, for example, two variables shall
be determined. Therefore, o = 2 output layer neurons are chosen, which are connected

to each of the hidden layer neurons forming 200 connections. Again the strength of the
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Figure 2.15: Schematic overview of connections, weights g;,, and neurons of the input
and hidden layer in an artificial neural network.
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Figure 2.16: Schematic overview of connections, weights, and neurons of the hidden and
output layer in an artificial neural network.

connections are weighted with w; ,. Consequently, the value received by an output neuron

from the hidden layer neurons forms as

m

vo =Y (1) - Wi, (2.60)

i=1

and the sigmoid function ¢(v,) is applied once more to determine the value of the output
neurons. Finally, the third step is the eponym of the backpropagation neural network.
Here, the calculated output values of the neural network are compared to the expected
output values, also called target values z,, by inverting the value of each output neuron

calculated by the sigmoid function ¢(v,). The difference between both values is then
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deemed as error. Thus, the quality of a neural network is given by the error function F:

E= Z ((b(l’o) - ¢(UO))2 : (261)

The factor % is used to alleviate the later used deviation of E. This error now has to
be propagated back from the output layer to the input layer by changing the weights of
the connections between single pairs of neurons depending on their influence on the error.
The error backpropagation is done for each weight in the neural network exemplified in
the following (Fig. [2.17)).

In order to minimise the error the weight w; » has to be changed with:

oFE
Aw; 9 = — . 2.62
Ws,2 n Owis ( )
The partial derivative of the error function % can be calculated according to the chain
rule:
oFE oE 0 0
- (vz) Ovs (2.63)
Ow;z  0P(v2) vy Owiy
Finally this leads to:
Aw;p = —775%2 L2, (2.64)

with the so-called learning rate n, which is chosen to influence the speed and the precision

of the error minimisation and

do(v2)
dUg

Op,, = (@(x2) = P(v2)) = () - (1 = ¢(v2)) - (P(22) — P(v2)). (2.65)

Therefore, the weight w; » in this example is updated by

new

wig" = Wi + 1+ Oguy) - H(v2). (2.66)
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Figure 2.17: Schematic overview of the error backpropagation in an artifical neural net-
work.

Eq. is only valid for the weights between neurons of the hidden and the output layer
(Fig. 2.17)). For changing the weights g¢;, between input and hidden layer, the changes
in these weights have to be calculated indirectly, since the output neuron is not directly
connected to the input layer.

For example the weight g; > is updated similar to Eq. :

new

Gio = Giz2 +n- 5¢(U2) : ¢(u2)7 (267)

with the difference, that d¢(us) reads as

Optuz) = P(uz) - (1= d(u2)) - (Fg(ur) - Wit + Og(un) - Wir2) » (2.68)

with the weights of the connections of the hidden neuron w;; and w;s to the output
neurons Qutput; and Outputs.

As one can imagine, the error minimisation of a backpropagation neural network is an
iterative process. Once the three steps described here are finished, the training can be
repeated generally with different values for the input variables and the target values. This
dataset is the so-called “training dataset”. After the training of the neural network with
this dataset is finished it can be repeated aiming to minimise the error of the calculated
results and the target value with every iteration. Depending on the information and
quality of the training dataset several thousands of such iterations are needed until the
error is as low as possible.

In general an artificial neural network combines an extremely flexible way to describe a
parametric functional dependency of an output vector to an input vector with a method

to determine its parameters (weights).



Chapter 3

COCS - Cirrus optical properties
derived from CALIOP and SEVIRI
during day and night

As described in Section the retrieval of cirrus cloud properties from thermal in-
frared radiances/brightness temperatures is complex. Several brightness temperatures
and brightness temperature differences have to be combined, each containing some infor-
mation on the properties and altitude of the cirrus cloud. The majority of cloud retrieval
algorithms is based on heuristically defined threshold to detect cirrus clouds and to re-
trieve their properties. The neural network approach aims to combine theses information
in a fast and accurate algorithm. This chapter introduces the Cirrus Optical properties
derived from CALIOP and SEVIRI during day and night (COCS) algorithm, which is
based on a backpropagation neural network (Section and is applied on brightness
temperatures derived by SEVIRI. In order to minimise the error between the calculated
output and the expected value, the training dataset of SEVIRI and CALIOP measure-
ments has to be as extensive as possible. The different data of CALIOP and SEVIRI
utilized here as well as some auxiliary data are described, before a first example of the
COCS algorithm is shown. Finally, the functional relationship between cirrus properties

and brightness temperatures is shown.

3.1 Training dataset

The training dataset of COCS consists of three datasets: The first and most important
data are the cirrus optical thickness 7 and the cirrus top height z derived from CALIOP
(Section [B.1.1)). The second set of data are seven different infrared brightness tempera-
tures and brightness temperature differences measured by SEVIRI (Section [3.1.2). The

third set of data are so-called auxiliary data, such as latitude, viewing zenith angle of
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SEVIRI, and a land-sea-mask (Section . In a total, the training dataset consists
of nine million collocated measurements of SEVIRI and CALIOP for the timespan from
July 2006 to June 2009.

Before May 2008 the calibrated radiances of the infrared channels of SEVIRI were pro-
vided as spectral radiances [EUMETSAT], 2007]. Brightness temperatures had therefore
to be calculated by inverting the Planck function at the central wavelength of the channels.
From May 2008 the radiance definition was changed so that it now represents the “ef-
fective radiance” over the instrument spectral response. Equivalent blackbody brightness
temperatures must be computed now according to Eq. [2.46] This change in the radiance
calculation results in differences of the retrieved brightness temperatures of up to 1.5 K
in the single channels. Until now the archive at DLR contains data with both definitions.
Thus, the dataset is divided in two parts and therefore two different neural networks are
trained and applied later. The first covers the period from July 2006 to April 2008. The
second dataset covers the time from May 2008 to June 2009.

Secondly the two datasets of SEVIRI brightness temperatures, auxiliary data, and CALIOP
measurements are split once again. For both periods a total of eight million measurements
are used for training of the two neural networks (COCS period 1 and 2) covering the peri-
ods above. Additionally one million measurements are separated from the training dataset
and used for further validation and testing of COCS, which is again separated in two test

dataset according to the periods defined above.

3.1.1 CALIOP data

According to Section [2.3.2] cirrus ice optical thickness 7 and top altitude z are derived
from the CALIOP 5 km Cloud Layer product. These measurements are used for the
training of the neural network as the so-called target values (Section . During a
preliminary analysis, the Cloud Layer products in versions 2.01 and 2.02 were found to
contain inaccurate classifications, where cirrus free parts of the atmosphere were labelled
as cirrus clouds. In order to remove these false alarms from the training dataset, the
CALIOP data have been filtered according to the following criteria:

First the mid-layer temperature as a part of the CALIOP Cloud Layer product, which is
calculated for each layer by the GMAQO at the geometric midpoint of the layer, is taken
into account. By testing the CALIOP dataset an optimal threshold for the mid-layer
temperature of the detected cirrus layer was found to be 243 K in order achieve a low
frequency of misclassification, since cirrus clouds generally form at high altitudes and
low temperatures when water vapour undergoes deposition and forms ice crystals (Sec-
tion .

Secondly and in order to complete the pre-filtering another threshold, the so-called “cli-
matology dependent threshold” is applied. This threshold function aims to prevent the
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Distribution of Cirrus Top Altitude, CALIOP, January 2008
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Figure 3.1: Cirrus top altitude distribution after applying all filters, January 2008. Red
lines depict the 450hPa-level for different summer and winter U.S. Standard Atmospheres:
subarctic winter /summer, midlatitude winter /summer and tropical standard atmosphere.

classifications of aerosols as cirrus clouds, which was found especially over tropical mar-
itime regions at low altitudes. For absolute values of the latitude |lat| greater than 22°

the minimum top altitude of a cirrus cloud can be calculated as:

0k
limiteop (lat) = 4.5 km + (55?8 Om) (80.0 — |lat]). (3.1)

For latitudes with |lat|] < 22° the threshold altitude is kept constant at a value of
limito,(lat) = 9.5km. The threshold limit,,, is a simple approach based on the at-
mospheric temperature profile of Earth’s atmosphere. In high latitude regions it assumes
that the cirrus cloud temperature of 243 K can be reached at altitudes of 4.5 km, while
this altitude raises up to 9.5 km in tropical regions. This linear function is shown exem-
plarily for the distribution of CALIOP measured top altitudes in January 2008 (Fig. (3.1
over the MSG disc.

Logically, if the initial dataset of CALIOP contains cirrus-free measurments (no cirrus
layer is detected by CALIOP) the cirrus ice optical thickness is set to zero. The same is
valid for measurements of cloud-free scenes. A final filter criterium based on the accuracy
of the retrieved cloud properties takes the extinction derived by HERA into account. The
extinction quality flag is reported for each cloud layer where an extinction coefficient was
calculated by the CALIOP retrieval. This flag is a bit-mapped 16-bit integer and con-
tains information about whether the extinction retrieval is constrained or unconstrained,
and if the lidar ratio was reduced or increased. In Fig. left a histogram of the ice
optical thickness of the 5 km Cloud Layer Product shows a bimodal distribution. The

right peak, at 7 ~ 2.5, appears to be an artefact due to the behaviour of the retrieval
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algorithm, when the initial retrieval diverges and the lidar ratio is reduced in order to
produce a convergent solution. In most cases this happens in totally attenuating, opaque

clouds, and when the true cirrus lidar ratio is significantly smaller than the initial value

assumed by the algorithm |Atmospheric Science Data Center} 2011]. If the lidar ratio is

kept unchanged the extinction quality flag is equal zero representing the highest retrieval
quality and the second peak disappears (Fig. ight). In case of a constrained retrieval,
changed lidar ratios, or any other retrieval issues the quality flag is reported with values
greater equal one. This also illustrates a general limitation of lidar measurements. The
absorption of an aerosol or cloud layer increases until the signal gets totally attenuated

and CALIOP fails to penetrate through the specific layer. This behaviour is observed for

optical thickness 7 greater than 3 — 5, [Winker et al., 2010]. Since the main focus of the

COCS algorithm is on thin cirrus clouds the maximum value of the ice optical thickness

of a cirrus layer is limited to 7 = 2.5.

August 2006: Ice Clouds, Night, Extinction QC = All August 2006: Ice Clouds, Night, Extinction QC = 0
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Figure 3.2: Histogram of ice optical thickness retrieved from CALIOP in August 2006
during night time |Atmospheric Science Data Center}, 2011]. All extinction quality flags
(left), only extinction quality flags equal zero (right).

3.1.2 SEVIRI data

A brief overview on the SEVIRI instrument and the algorithms to retrieve the equivalent
brightness temperatures of the infrared channels is given in Section [2.2.2] Different studies
on cirrus clouds have already proven the possibility to retrieve cirrus cloud coverage and
cloud properties by using the equivalent brightness temperatures of the thermal infrared
channels alone or in combination with the visible and short-wave infrared channels (Sec-
tion [2.2.3] Since COCS shall be able to detect thin cirrus clouds during day and night
time the thermal infrared channels of SEVIRI are used as input of the neural network.
Hence, infrared brightness temperatures (BT) of the channels WV073, IR097, IR120, and
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BT BTD
WVO073 | WV062 - WV073
IR097 IRO87 - IR120
IR120 IR108 - IR120
IR134

Table 3.1: Brightness temperature (BT) and brightness temperature differences (BTD)
utilized by the COCS algorithm.

IR134 are selected as well as the brightness temperature differences (BTD) of the channel
combinations WV062 and WV073, IR087 and IR120, and IR108 and IR120 (Table .
In order to support the error minimisation in the backpropagation neural network three
BTD were chosen beside the four BT, since their sensitivity to cirrus cloud properties has
been already used in several other retrieval algorithms (Section .

Fig. and aim to illustrate the signature of a cirrus cloud over the North Atlantic
and are based on measurements taken by SEVIRI on 01 December 2010 at 12:00 UTC.
This scene covers an area from 8 W to 34° W longitude and 34° N to 53° N latitude.
As mentioned earlier (Section atmospheric absorption is not uniform with altitude.
Therefore each SEVIRI channel has a varying sensitivity to different atmospheric altitude
levels (Fig. . The two water vapour channels, WV062 and WV073, show different
brightness temperatures. WV073 (Fig. [3.3p) registers high temperature differences be-
tween warm water clouds at low altitudes and cold ice clouds at higher altitudes, while
WV062 (Fig. ) shows lower contrasts between those different cloud type, due to its
sensitivity to higher levels of the atmosphere. Both channels are located in the absorp-
tion bands of water vapour, where absorption occurs strongly at mid-tropospheric levels,
so that radiances cannot penetrate through the higher absorbing water vapour. With
the homogeneous water vapour background, the BTD of WV062-WV073 shows cirrus
clouds with low values close to zero and higher values for water clouds reaching up 20 K
(Fig. [3.3p).

The discrimination of ice and water clouds is supported by the IR087 and IR120 channels
(Fig. , g) where again a BTD of both channels is used. The IR087 channel shows cirrus
clouds with cold temperatures (lower than 260 K), while warm water clouds occur with
higher temperatures up to 290 K. The IR120 channel detects slightly lower brightness
temperatures for the cirrus cloud up to a difference of 7 K, while the lower water clouds
are detected with similar temperatures. The BTD of the IR087 and the IR120 channel in
Fig. shows this differences, which are especially found for thin cirrus clouds.

The BT of the IR097 channels results in similar contrasts compared for example to the
IR108 channel with a good contrast between high ice and low water clouds (Fig. [3.3p).
With the so-called split window test, the BT of the IR108 and the IR120 channel (Fig. ,
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Figure 3.3: 01 December 2010 at 12:00 UTC covering an area from 8° W to 34° W
longitude and 34° N to 53° N latitude: BT of (a) WV062, (b) WV073, (d) IR087, (e)
IR097, (f) IR108, (g) IR120, (h) IR134, and the BTD of (¢) WV062-WV073.
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Figure 3.4: 01 December 2010 at 12:00 UTC covering an area from 8 W to 34° W
longitude and 34° N to 53° N latitude: BTD of (a) IR087-IR120, and (b) IR108-IR120.

g), are taken into account. The calculated BT of the IR108 and the IR120 channel show
differences for high clouds with higher temperatures of 7 K in case of IR108, whereas the
temperatures for low clouds remain almost constant in both spectral intervals. These
differences become evident in the BTD of both channels (Fig. [3.4b), which is highly sensi-

tive to cirrus clouds with an ice optical thickness between 0.1 and 2.0 [Krebs et al., 2007],

where thin cirrus clouds appear with high BTD signals. Channel IR134 finally supports
the discrimination of ice clouds with low temperatures against the warm background of
Earth’s surface and water clouds in low altitudes (Fig. [3.3h).

Furthermore, the BT and BTD also includes information on the particle size, which can-
not be used in the COCS algorithm as it is not contained in the CALIOP cloud layer
product version 2 [Wang et al., 2011].

3.1.3 Auxiliary data

In addition to CALIOP and SEVIRI data, COCS uses three auxiliary datasets, latitude,
viewing zenith angle of SEVIRI, and a land-sea mask. The latitudes and the viewing
zenith angles are mapped and matched to the SEVIRI-pixels. The viewing zenith angle
gives the algorithm an information on the resolution of SEVIRI, which decreases with
growing viewing zenith angle, while latitudes support COCS to determine the top alti-
tude of cirrus clouds. The land-sea mask is based on a map with a 0.5 resolution in
latitude and longitude (~ 0.2 km) constructed by the Group for High Resolution Sea
Surface Temperature [Kaiser-Weiss| [2011], and covers latitudes from 80° N to 80° S. The

information on whether the surface consists of water or land is important for the infrared

channels in order, since in case of cloud-free atmosphere the thermal infrared channels
of SEVIRI reach down to Earth’s surface and detect different temperatures for example
for warm water and colder land surface. As this map has a much higher resolution than

SEVIRI, the mapped SEVIRI land-sea mask contains values of zero for sea and water,
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Figure 3.5: Illustration of the parallax displacement. High clouds are displaced further

than low clouds [Geerts) [1999).

one for land surface, and fractions for coastal lines, lake shores, and riversides in some

pixels.

3.2 Collocation and Parallax-Correction

For the overpasses of CALIPSO the data of CALIOP and SEVIRI are spatially and
temporally collocated. Collocation in time and space is necessary in order to guarantee
that both satellite instruments observe the same cloud at the same time. The time of
each atmospheric profile in the 5 km Cloud Layer product of CALIOP is compared to
the imaging time of SEVIRI and the closest time slot of SEVIRI is chosen to minimise
the temporal deviation. As SEVIRI has a repeat cycle of 15 min a maximum difference
of approximately 7.5 min remains. For a geostationary satellite such as MSG, it is a
straightforward geometric exercise to calculate sensor resolution, sampling frequencies,
and viewing angles relative to Earth’s surface. As the radiometer scans away from the
subsatellite point, the effective resolution of SEVIRI data is decreased due to the curvature
of the Earth and the increasing distance to the satellite. Therefore the cloud is detected
by SEVIRI with a so-called parallax displacement (Fig. [3.5). Depending on the viewing
zenith angle and on the altitude of the cloud, its displacement compared to its correct
position “over ground” can be calculated by using latitude, longitude, and the top altitude
of the cirrus layer. Latitude and longitude of CALIOP are directly translated to the
SEVIRI-pixel grid, while the cirrus top altitude is directly measured by CALIOP. With
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this information on the position of a cirrus cloud, the parallax displacement is corrected
and the exact SEVIRI pixel is chosen for the cirrus cloud detected by CALIOP. A similar

derivation of the parallax displacement is done in Radova and Seidl [2008].

3.3 Training the neural network

Before the training of the backpropagation neural network is initialized the final setup of
COCS needs to be determined (Section [2.4.4).

According to the schematic setup of a neural network in Fig. [2.14] ten neurons in the
input layer (SEVIRI and auxiliary data) and two neurons in the output layer (cirrus ice
optical thickness and top altitude) are set by the input and output dataset. The number
of hidden neurons was chosen by considering two properties of the neural network. On
the one hand, more hidden layer neurons generate more accurate results. On the other
hand, neural networks with less neurons perform faster. Since the final algorithm shall be
able to perform as fast as possible in combination with sufficient accuracy, 600 neurons
for the hidden layer are found by testing different setups to be good trade-off. This leads
to 6000 connection weights between input and hidden layer and 1200 weights between
hidden and output layer.

The training of COCS follows the same steps described in Section and the training
dataset is presented to the network in random order until no change in the performance
expressed by the sum of the quadratic deviations is observed. This error was minimized
until no further improvement in the results was achieved reaching a standard deviation
of 02 = 0.3 and 02 = 0.8 km for both neural networks, COCS period 1 and COCS period
2. These deviations are further analysed in Section [£.1.1]

3.4 COCS examples

Once the training is finished, COCS is applied to SEVIRI measurements. With the high
temporal resolution of 15 minutes and the good spatial resolution of up to 3 km x 3 km at
subsatellite point, COCS covers almost one third of Earth’s surface from 80° N to 80° S
and from 80° W to 80° E and is now able to detect thin cirrus clouds and to determine their
optical thickness 7 and top altitude z with the heritage of high accuracy and sensitivity of
CALIOP. For each 15 minute timeslot of SEVIRI with 3712 x 3712 pixels the processing
of 7 and z takes around 500 seconds on a common office desktop computer including the
preparation of the input data. The retrieved data are stored as byte arrays in order to
save disc space. In the false colour composite of SEVIRI (Fig. three different channels
(VIS006, VIS008, IR108) are combined to give an overview of several atmospheric features
on the 11 September 2010 at 15:00 UTC. Water clouds are coloured in light yellow and
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Figure 3.6: False colour composite of SEVIRI (VIS006, VIS008, IR108) at 15:00 UTC on
the 11 September 2010.
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grey, while ice clouds appear in white and light blue/violet.
The belt of the Innertropical Convergence Zone (ITCZ) is covered by a relatively high
amount of cirrus clouds, while the northern and southern parts of the African continent
show only small amounts of cirrus clouds. Two tropical cloud clusters, which might be
remains of a tropical cyclone, are detected over the Atlantic west of Africa and in the
Caribbean Sea. Another tropical storm is located north of Madagascar, which is not
clearly visible due to the sunset at the eastern limits of the MSG disc. South west of
Africa maritime stratocumulus clouds cover wide areas. The very south of the Atlantic is
strongly covered with cirrus clouds, while the Atlantic north of the Equator shows water
and ice clouds. Frontal systems over Europe and the North Atlantic are distinguishable.
In Fig. and the results of COCS, Tcocs and zcocs, are shown for the same
time slot with coastlines for a better orientation. The cirrus clouds described above can
all be identified on these images. The ITCZ, the tropical cyclone, and even the frontal
systems show up with varying and inhomogeneous 7cocs and zcocs. It is remarkable
that both variables show no influence of whether the background is sea or land and
succeed in detecting ice clouds, while the algorithm ignores water clouds like the maritime
stratocumulus clouds west of Namibia and Angola. Especially the large cirrus cloud field
south of Greenland in the Northern Atlantic is noteworthy. The North Atlantic Region
and parts of Europe are enlarged in Fig. and for again the same timeslot. A large
cirrus cloud field, mentioned above, reaches from the coast of the United States almost
to the South of Iceland. Obviously fine structures of the cirrus clouds are present with
top altitudes from 8 to 13 km and optical thickness from 0.1 to 2.3. Additionally the
center of a low-pressure area can be found North of England together with small amounts
of cirrus clouds over Morocco. The images in Fig. to [3.10 aim to show an example
of the application of COCS and to give an idea on the resolution it provides. As one
can see different structures of cirrus clouds are found in different regions of the MSG disc

containing clouds with highly variable ice optical thickness and top altitude.
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Figure 3.7: 11 September 2010 at 15:00 UTC: Ice op-
tical thickness 7 of cirrus clouds calculated by COCS.
Coast lines are coloured black.
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Figure 3.8: 11 September 2010 at 15:00 UTC: Top
altitude z of cirrus clouds calculated by COCS. Coast
lines are coloured black.
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Tooes, 11/09/2010, at 15:00 UTC

Figure 3.9: 11 September 2010 at 15:00 UTC: En-
larged view on the North Atlantic Region of ice opti-
cal thickness 7 calculated by COCS. Coast lines are
coloured black.
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Figure 3.10: 11 September 2010 at 15:00 UTC: En-
larged view on the North Atlantic Region of top alti-
tude z calculated by COCS. Coast lines are coloured
black.
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Figure 3.11: False color composite derived from SEVIRI on the 12 May 2010 at 12:00
UTC. The scene is located West of Africa with the Canarian Islands in the upper third.
A cirrus cloud over homogeneous background of the Atlantic Ocean is analysed by COCS,
the derived ice optical thickness is depicted here for an area of 220 x 170 pixels.

3.5 Physical background

After first results of 7cocs and zcocg were shown in Section this section aims at
showing the connection between the derived variables and the different infrared bright-
ness temperatures (BT) and brightness temperature differences (BTD) respectively (Sec-
tion .

A typical cirrus scene is depicted in Fig. [3.11} The false color composite, derived from
SEVIRI on the 12 May 2010 at 12:00 UTC, shows a scene of cirrus and water clouds
located west of Africa with the Canarian Islands in the upper third. Wide areas are
covered with tropical cirrus clouds, coloured in blueish/white colors and some lower lig-
uid water clouds (greyish/yellowish color). The results of Tcocs derived for a limited
amount of ~ 4000 pixels in this scene is plotted with values of 0.1 < 7cocs < 2.3 over the
homogeneous background of the tropical Atlantic Ocean. Fig. left and right depict
the mean values of the four infrared BT and the three infrared BTD used by COCS as
a function of 7cpcg for bins of A7 = 0.05, while Fig. left and right show the de-
pendency on zcocs in bins of Az = 0.1 for the altitude range of these cirrus clouds of
11.9 km < zcocs < 16.5 km. For the intervals of 7cocs and zcocs the mean BT and
BTD is depicted for the analysed part of the cirrus cloud in Fig. |3.11

The error bars in Fig. [3.12| and represent the standard deviations of brightness tem-
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peratures and brightness temperature differences used in order to calculate the interval
mean values. Fig. left shows that the four thermal infrared BT of the channels
IR073, IR097, IR120, and IR134 decrease for growing ice optical thickness, and reach
their minimum temperature for the maximum ice optical thickness of the cloud at around

13

Tcocs = 2.3. In case of semi-transparent cirrus clouds with low optical thickness “warm”
atmospheric layers and the Earth’s surface below the cirrus cloud contribute highly to the
BT measured by SEVIRI. In opposition opaque clouds absorb these parts of the measured
radiances and therefore lead to colder brightness temperatures. For pixels with low 7cocs
the four BT differ by ~ 30 K, but for thick cirrus clouds only small differences of ~ 10 K
are detected within all channels. The standard deviations for all four channels is small
for the whole range of 7cocs with values of only 1 — 2 K. The BTD IR087-IR120 and
IR108-IR120 (Fig. right) are found to form small differences or 2 K and 0.5 K for
thin cirrus clouds. These BTDs increase for cirrus clouds with higher optical thickness,
and decrease for cirrus clouds with 7cocs > 1.5. Especially the split-window test (BTD
IR108-IR120) has been used in the past to detect thin cirrus clouds [Inoue, [1985] due to
the different absorption behaviour of ice particles in the different wavelength, but it is less
sensitive to opaque cirrus clouds, which absorb radiation as mentioned above. A similar
behaviour is seen for the BTD TR087-IR120. The BTD of the two water vapour channels
WV062-WV073 has high negative differences for low optical thickness of up to —22 K.
With growing ice optical thick this BTD increase to values of almost zero. This BTD is
on the one hand sensitive to the optical thickness of cirrus clouds in general, on the other
hand information on the cirrus clouds altitude is contained in this BTD as well |[Krebs
et al. 2007]. Especially for cirrus clouds with 7cocs > 1.0 the standard deviation of
the BTD IR087-IR120 increase up to 2 K, while for the other BTDs only small standard
deviations up to 1 K are calculated.

The relationship of cirrus optical thickness and different brightness temperatures and
brightness temperature differences is once more depicted in Fig. [3.13] where other than
in Fig. the x-axis is linear. Again, each BT shows decreasing values for growing
optical thickness, Fig. left, while the different dependencies of the BTDs are shown
in Fig. right. Especially due to the strong decay in the brightness temperatures for
low cirrus optical thiknesses, Fig. left, even thin cirrus clouds can be detected by
the COCS algorithm. For cirrus clouds with higher optical thickness the plotted curves
are expected to have an asymptotic approach to low brightness temperatures, which is
suggested by the BT-curves for rcocs > 1.9.

Beside their dependency on the optical properties (optical thickness, effective radius, etc.)
of cirrus clouds, the thermal infrared channels contain also information on the top altitude
of the cirrus clouds. Figure left shows the dependency of the BT on the top altitude
of the cirrus cloud. With increasing zcocs the brightness temperatures decrease until

a value of zcocs > 15.5 km is reached. For higher altitudes the temperatures increase
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Figure 3.12: Brightness temperatures (left) and brightness temperature differences (right)
depicted as a function of cirrus optical thickness 7cocs derived by COCS. The errorbars
represent the standard deviation.

again. Hence, the brightness temperatures alone are not sufficient to retrieve the cor-
rect cirrus top altitude as well as it is the case for the cirrus ice optical thickness, which
shows the difficulty in the retrieval of accurate top altitudes of cirrus clouds with passive
remote sensing. While the altitude derivation of opaque cirrus clouds shows an almost
linear decrease in the BTs with growing zcocs depending on e.g. the vertical profile
of temperature and moisture, semi-transparent clouds are detected at zcocs > 15.5 km
with increasing BTs due to the contribution of Earth’s surface and the atmosphere be-
low the clouds. The standard deviations for each brightness temperature used to derive
the cirrus top altitude show variations of up to 10 K in the single channels, while the
standard variations of especially two BTD in Fig. |3.14] right, the BTDs of IR087-IR120
and IR108-TR120, have very small values. This suggests, that especially the two BTDs,
IR087-IR120 and TR108-IR120, are the main contributors to the exact determination for
zcocs in the whole altitude range. These two BTDs show an almost linear increase with
altitude. The BTD of the two water vapour channels shows high standard deviations.
Especially at cirrus top altitudes greater than 15.5 km an increase in the BTD of WV062-
WV073 is observed similar to the BTs (Fig. left).

These different BTs and BTDs (Fig. to enable the COCS algorithm to
separate between cirrus/ice and water clouds and to retrieve their properties even in case
of thin cirrus clouds. Especially in case of the top altitude, but also for the retrieval of
cirrus optical thickness, Fig. to aim to illustrate, that the use of only one BT or
BTD would be ambiguous, since especially in case of the cirrus top altitude single BTs or
BTDs can hardly be assigned to one top altitude. Therefore, the neural network combines
the different dependencies and relationships of all BTs and BTDs with the desired output
during its training to detect cirrus clouds and to retrieve their optical properties in one

step unlikely previous algorithms, which first had to detect a cirrus cloud before retrieving
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Figure 3.13: Similar to Fig. [3.12; Brightness temperatures (left) and brightness tempera-
ture differences (right) depicted as a function of cirrus optical thickness 7cocs derived by
COCS, but here with linear x-axis. The errorbars represent the standard deviation.
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its optical properties. In particular this difference results in a very fast runtime of the
COCS algorithm of around 500 s for each MSG disc.

Another advantage of COCS is mentioned in [Ostler| [2011], when semi-transparent cirrus
clouds are located above water clouds. COCS succeeds in separating those cirrus clouds
and deriving their properties even in those difficult situation. This capability is caused
by the dataset derived by CALIOP, where a general separation of ice and water clouds is
guaranteed by the filter criteria applied to the Cloud Layer products (Section [3.1.1)). Due
to the applied altitude- and temperature-dependent thresholds the neural network can
be trained to only detect cirrus clouds above a specific altitude. Therefore the training
dataset contains four classes of atmospheric situations: Only high cirrus clouds, cirrus
clouds above layer(s) of water clouds, water clouds, and absolutely cloud-free situations.
As described, these measurements are collocated and combined to the BTs and BTDs
measured by SEVIRI, which are dependent on altitude (Fig. . Especially the water
vapour channels WV062 and WV073 have their maximum contribution to the brightness
temperatures at relatively high altitude (roughly above 6 km) with almost no contribution
of low atmospheric layers (Section , since radiation from low atmospheric layers and

Earth’s surface is absorbed by the high concentration of moisture already in low altitudes.



Chapter 4
Validation and Comparison

As mentioned, the dataset of collocated CALIOP and SEVIRI measurements was split
into a training and a test dataset for both neural networks, period 1 is used for the time
before April 2008 and period 2 starting with May 2008.

In order to retrieve information about sensitivity and accuracy of the COCS algorithm a
validation with the test dataset of CALIOP is shown in this section as well as a validation
with an airborne High Sepctral Resolution Lidar (HSRL) measuring thin cirrus clouds
during a field campaign in 2008. Additionally, comparisons with the Meteosat Cirrus
Detection Algorithm 2 (MeCiDA-2) and the Algorithm for the Physical Investigation of
Clouds with SEVIRI (APICS), which calculates inter alia optical thickness of ice and water

clouds during day time, are presented. Finally, error and bias of COCS are calculated.

4.1 Validation with Lidar measurements

4.1.1 Spaceborne lidar data

As mentioned in Section [3.1]the dataset of combined CALIOP (cirrus ice optical thickness
7 and top altitude z) and SEVIRI measurements (brightness temperatures and brightness
temperature differences) covers a period from July 2006 to June 2009: COCS period 1
and COCS period 2.

In order to test the good performance of the COCS algorithm, one ninth of the datasets
is separated and has therefore no influence on the training of COCS. This independent
test dataset will be used for the initial validation with CALIOP in the following. Fig.
represents the quality of cirrus optical thickness measurements 7¢pcs compared to the
CALIOP measurements Tcariop shown as a two dimensional histogram with logarithmic
scale. COCS period 1 on the left shows an overall good performance. However, COCS
period 1 tends to underestimate the ice optical thickness for 7capiop > 1.7, while for

Tcocs < 1.0 a slight overestimation of the ice optical thickness measured by CALIOP is
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Figure 4.1: Scatter plot of the ice optical thickness 7 of CALIOP and COCS: period 1
(left) and period 2 (right). Colours show the number of occurrences on a logarithmic
scale.

present. COCS period 2 on the right results in an even higher accuracy, which is caused
by EUMETSAT’s new definition of measured radiances in order to retrieve brightness
temperatures, Section [3.1, For low values a high agreement of Tcariop and Tcocs is
found. For mcariop < 2.0 only low deviations are found. The tendency to underestimate
high values of Tcariop is lower in COCS period 2 compared to period 1.

For both periods, the standard deviation of 7, o, calculated as

N
1
o=l N E (Tcocs — Toaviori): (4.1)
=1

with N is the number of compared observations, results in 0.25 for period 1, and 0.24 for
period 2.

The validation of the second cirrus property retrieved by COCS, the cirrus top altitude
zcocs, is shown in Fig. [1.2] Again, COCS period 1 (left) and COCS period 2 (right) are
compared to the result of CALIOP, zcariop. In COCS period 1 the zcocg is derived in
a good correspondence to zoapiop. For altitudes zoarrop between 10 and 15 km a high
agreement between COCS and CALIOP is detected, while for low altitudes COCS over-
estimates the top altitude. For zgapiop > 15 km a slight underestimation of the cirrus
top altitude is found.

COCS period 2 differs only slightly from COCS period 1. A very good agreement is
observed again for altitude ranges from 10 to 15 km. For zcapiop > 15 km COCS un-
derestimates high cirrus clouds, while low top altitudes are overestimated. The standard
deviation o of the cirrus top altitude for both periods is 0., = 708 m for period 1 and

0.,, = 756 m for period 2.
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One reason for the resulting standard deviation of cirrus optical thickness and top al-
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Figure 4.2: Scatter plot of the cirrus top altitude in km of CALIOP and COCS: Period
1 (left) and period 2 (right). Colours show the number of occurrences on a logarithmic
scale.

titude is caused by the different resolution of both instruments. As already mentioned
in Section [2.3.2] the cloud layer product of CALIOP used in this work has a horizontal
resolution of 5 km, while the cross section of the lidar footprint is narrow with only 90 m.
Each 5 km in this cloud layer product is achieved by averaging 15 single profiles. These
profiles are depicted as yellow circles in Fig. 4.3 As a red parallelogram the size of one
SEVIRI pixel of around 3 km x 3 km is marked. While one SEVIRI pixel covers at least
an area of 9 km? at subsatellite point, CALIOPs 5 km cloud layer product only “cuts”
through a small part of the cloud within one SEVIRI pixel. The sampling area of one
SEVIRI pixel is even greater, depicted in blueish color. In case of broken clouds within
the sampling area (which is used in the processing of SEVIRI data to reduce radiometric
noise) of one SEVIRI pixel it is possible on the one hand, that CALIOP either misses
to retrieve the correct cirrus optical thickness and top altitude, or even misses to detect
the cirrus cloud. On the other hand, inhomogeneous and probably thin cirrus clouds,
which are located within the SEVIRI pixel / sampling area and detected by CALIOP,
might not result in brightness temperatures detected by SEVIRI lower than those of the
atmosphere below. Another reason for the different performance of COCS period 1 and
period 2 is the change in the EUMETSATS retrieval of spectral to effective radiances, as
already mentioned in Section [3] Two further characteristics of the algorithm are investi-
gated for a final assessment of the sensitivity of COCS. The first property is the detection
efficiency, ef faet(7), which is determined for equidistant intervals of ice optical thickness

7, AT = 0.01. Please be aware that 7 = Tcariop:

_ Neocs(T)
ef faet(T) = Nearror(™) 100 % , (4.2)
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Figure 4.3: Schematic intercomparison of CALIOP single profile footprints (yellow circles)
and SEVIRI pixels (red parallelograms). In blueish color the sampling area of one SEVIRI
pixel is sketched. Please note, that this is an exemplary plot to represent the different
scales.

with Neocs(7) is the number of pixels where COCS detects a cirrus cloud, and Nearrop(T)
the number of pixels with a cirrus cloud detected by CALIOP. The second important prop-
erty, the false alarm rate far(7cocs), describes the rate of false detections of COCS again
for the same equidistant intervals of A7 = 0.01. This false alarm rate shows how many

false alarms contribute to each interval of optical thickness. It is calculated as:

far(t) = NH(i\)[TTJEfF(T) -100 % (4.3)

with Ng(7) representing the number of pixels where COCS detects a cirrus cloud, while
CALIOP detects no cirrus cloud. Ng(7) is the number of pixel where both, COCS and
CALIOP detect a cirrus cloud. The subscripts H and F' are the abbreviations for Hits
and Falsealarms respectively.

In Fig. the detection efficiencies (blue) of COCS, COCS period 1 (left) and period 2
(right), are depicted for the equidistant interval of A7 = 0.01. The detection efficiency
is found to show very high efficiencies of ef fqor > 95 % for 7 = 0.01, raising up to
ef faet = 100 %.

The false alarm rates far of COCS period 1 and period 2 show different behaviours.
Both neural networks start with relatively high rates up to ~ 25 % for the false alarms
at 7 < 0.1, but show a rapid decrease in the far in combination with high detection
efficiencies at 7 > 0.1. Therefore, a threshold of 7cpcs > 0.1 is selected to provide a very
high detection efficiency of 97.41 % for period 1 and 99.34 % for period 2 in combination
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Figure 4.4: Detection efficiency ef fqe; (blue) and false alarm rate far (red) for COCS
compared with CALIOP. COCS period 1 (left), COCS period 2 (right).

with a low false alarm rate of 5.05 % and 4.80 % respectively.

period 1 period 2
ef faes(T =0.1) | 97.4071 % | 99.3401 %
far(r =0.1) | 5.05230 % | 4.80072 %

4.1.2 Airborne High Spectral Resolution Lidar data

In addition to the validation with CALIPSO, airborne lidar measurements during a flight
of the DLR-project “PAZI” (Particles and Cirrus Clouds) in autumn 2008 are compared
to the results of COCS. A more detailed validation of different passive remote sensing
algorithms exploiting this dataset including the COCS algorithm is shown in [Ostler,
2011].

4.1.2.1 PAZI Campaign

In this section data, e.g. cirrus ice optical thicknesses, derived from the airborne High
Sepctral Resolution Lidar (HSRL) of the German Aerospace Center (DLR) are used.
These data were measured during a flight within the DLR-project “PAZI” in autumn
2008, where amongst other things optical properties of thin cirrus and contrail cirrus
clouds were measured. The aim of the PAZI project at DLR was to better understand
the formation of the ice phase in cirrus clouds from natural and anthropogenic aerosols
and to improve microphysical and optical parameterizations of cirrus clouds in global
models.

In the following, results of Ostler| [2011] are discussed and used for the validation of COCS,
which focusses on one specific flight on 18 October 2011. The scientific research aircraft
of the DLR, the Dassault Falcon, started at around 13:00 UTC at DLR, Oberpfaffenhofen
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Figure 4.5: Flight route of the FALCON aircraft carrying the HSRL during the DLR-
project “PaZi” on the 18 October 2010. The route sketched on a false colour composite

of SEVIRI measured at 14:50 UTC [Ostler] 2011].

routing along the Alps, turning North along the Rhine valley, and finally heading East
across Germany to Lindenberg. At 16:00 UTC the aircraft returned to Oberpfaffenhofen.
A part of the flight path is shown in Fig. as a false colour composite containing
information from the VIS006, IR108 and the HRV channel. High cirrus clouds are coloured

in light blue / violet, while lower water clouds are coloured in light yellow.

4.1.2.2 High Spectral Resolution Lidar

The HSRL is a lidar (Section [2.3.1)) that works similarly to CALIPSO (Section [2.3.2]) with
one big advantage: It calculates the atmospheric extinction and backscatter coefficients

without assuming the lidar ratio (Section [2.3.2] Eq. [2.54)). The atmospheric backscat-

ter signal, containing molecular and particulate scattering, is separated in two different

receiver channels [Esselborn, 2008]|. In one channel particulate scattering is suppressed

by a iodine vapour filter and therefore measuring almost pure molecular scattering. The
second channel measures both molecular and particulate scattering. Thus, this type of

lidar is able to directly measure the optical thickness of e.g. a cirrus cloud.

4.1.2.3 Validation with HSRL

In order to validate the results of COCS, the different spatial and temporal resolutions
of the HSRL and the SEVIRI data have to be accounted for. The HSRL provides ice
optical thickness at a 1 s temporal resolution, which is equivalent to a distance of 200 m

assuming the speed of the Falcon aircraft of 720 km/h with a very narrow footprint of
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2 m. The SEVIRI pixels cover around 4 km x 5 km at mid-latitudes. Due to the high
temporal and spatial resolution of the HSRL two points are important:

1) The georeferenced position of the Falcon is used to identify the geographic location
of the clouds. The cloud top height is extracted from the HSRL profiles and is used for
parallax correction and collocation (see Section [3.2)).

2) The Rapid Scan Mode of SEVIRI is used by COCS.

Thus, the SEVIRI pixel closest to the Falcon track show a maximum temporal misregis-
tration of 2.5 minutes. The HSRL cirrus ice optical thickness 7y sgy, for the SEVIRI pixels
along the flight path is then calculated as the mean value of all HSRL measurements inside
those pixels. Finally, 394 SEVIRI pixels can be used for the calculation of the detection
efficiency ef fqet and the false alarm rate far of COCS. The detection efficiency of COCS
is depicted as a function of Tgsrz in Fig. 1.7 At 7asrr = 0.2 COCS detects 80 % of the
cirrus clouds and ef fqer increases for higher values of Tgsrr. For tgsgrr = 0.1 already
50 % of the cirrus clouds are detected by both, the HSRL and COCS. The false alarm rate
amounts to 2.6 %. Finally, 7cocs is plotted against mygry, in Fig. . The accordance for
values of 7 < 1.0 is very good. Only for a few pixels with higher values measured by the
HSRL some underestimation by COCS is shown. The slope of the regression line is cal-
culated to be 2 = 0.71 and is influenced by the outliers with 7szz > 1. In combination
with the low false alarm rate, the high sensitivity of COCS makes this algorithm capable

of detecting even thin cirrus clouds.
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Figure 4.7: Detection efficiency of COCS compared
to the values of cirrus optical thickness measured by
HSRL during the FALCON flight, 18 October 2008.
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4.2 Validation with passive remote sensing

After validating the results of COCS with active remote sensing data, the Meteosat Cirrus
Detection Algorithm 2 (MeCiDA-2) and the Algorithm for the Physical Investigation of
Clouds with SEVIRI (APICS) are applied to measurements of SEVIRI and compared to
COCS.

4.2.1 Comparison with MeCiDA-2

The Meteosat Cirrus Detection Algorithm 2 (MeCiDA-2) [Krebs, 2006, Krebs et al., 2007,
Ewald et al., [2012] used for the intercomparison with COCS, is a dedicated cirrus detec-
tion algorithm developed at DLR in the past years.

In general, MeCiDA-2 utilizes threshold and morphological tests on the thermal infrared

Figure 4.8: False color composites taken by SEVIRI on the 22 June 2010 at 12:00 UTC
(left) and at 16:00 UTC (right). Cirrus clouds are depicted in white/blueish color, while
water clouds are grey.

brightness temperatures and their differences of SEVIRI aboard MSG in order to mark
pixels that are covered by cirrus clouds. On the one hand MeCiDA-2 uses well-known
tools like the split-window test, where the brightness temperature difference of two chan-
nels is compared to a threshold. On the other hand MeCiDA-2 uses the morphological
properties of cirrus clouds in the water vapour channels of SEVIRI. Here, cirrus clouds
generate high-frequency disturbances due to their small scale variability, which can be
extracted from the homogeneous water vapour background by a high pass filter. The util-
isation of the thermal infrared channels enables MeCiDA-2 to detect cirrus clouds during
day and night time, similarly to COCS.

In Fig. a typical scene over Western Europe and the North Atlantic is shown as a
false color composite for two different time slots on 22 June 2010. The left picture was
taken at 12:00 UTC, the right one at 16:00 UTC. Ice clouds are depicted in white/blueish

colors, while water clouds are depicted in grey. In wide parts of the scene water clouds
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are covered by high cirrus clouds, which can be hardly distinguished by eye, especially
in the western part of the images, where a large low pressure system is dominating the
weather. To the south some thin cirrus clouds are found west of Spain. France and Eng-
land show some cirrus coverage as well. These scenes have been processed by both cirrus
detecting algorithms, MeCiDA-2 and COCS, to show the difference in detection. There-
fore, Fig. [4.9|depicts the results of MeCiDA-2 (left column) and COCS (right column) for
22 Juni 2010 at 12:00 and 16:00 UTC. MeCiDA-2 on the left detects high cirrus clouds

MeCiDA detection, 22/06/2010 at 1200 UTC COCS detection, 22/06/2010 at 1200 UTC

MeCiDA detection, 22/06/2010 at 1600 UTC COCS detection, 22/06/2010 at 1600 UTC

Figure 4.9: Results of MeCiDA-2 (left panels) and COCS (right panels) on the 22 June
2010 at 12:00 UTC (top) and at 16:00 UTC (bottom).

at both timeslots within the area of the low pressure system west of Ireland around the
twisting center. North of England some cirrus stripes are detected at 12:00 and 16:00
UTC as well as over England. Over the North Sea and the Netherlands another region
with cirrus coverage is detected by MeCiDA-2. South-west of the low pressure system,
single cirrus clusters are retrieved, while the Southern part of the scene remains almost
uncovered by cirrus clouds. In both scenes COCS detects significantly more cirrus clouds
(right panels of Fig. 4.9). Especially cirrus clouds within the frontal systems of the low
pressure system show a much higher coverage, which can be also seen west of the system,
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Figure 4.10: Detection efficiency (blue) and false alarm rate (red) of MeCiDA-2 as a
function of cirrus optical thickness Tcocs detected by COCS.

over England, and the Netherlands. A detailed comparison and validation of COCS and
MeCiDA-2 in |Ostler| [2011] showed that MeCiDA-2 is less sensitive to thin cirrus clouds
with 7 < 0.4, which are detected by COCS with high probability (see Fig. [4.4). The
detection efficiency of MeCiDA-2 as a function of 7cpcs confirms these validation results
(Fig. |4.10)). For this purpose the region depicted in Fig. 4.8 (right) is chosen, 22 June
2010 at 16:00 UTC. While thick cirrus clouds with 7 > 0.4 are detected by MeCiDA-2
with a detection efficiency of 100 %, lower efficiencies (det.g = 73 % at Tcocs = 0.1) are
found for thin cirrus clouds increasing to higher optical thickness. The false alarm rate
of MeCiDA-2 shows values of far = 13 % for cirrus clouds with an optical thickness of
7 = 0.1, which decreases for cirrus clouds with increasing ice optical thickness. Fig.[4.11
aims to illustrate the different sensitivities of both algorithms. Especially cirrus clouds
with 7 > 0.5 are detected by both algorithms, while thin cirrus clouds with 7 < 0.5 are
in some extent not detected by MeCiDA-2. These thin cirrus clouds on the one hand fill
the gaps between parts of i.e. frontal cirrus clouds in both timeslots. On the other hand
wide areas North of Scotland are covered with thin cirrus clouds only detected by COCS.
This is confirmed by a closer look at the cirrus ice optical thickness retrieved by COCS
(Fig. . While thick cirrus clouds are detected by both algorithms, thin cirrus clouds
with low cirrus 7 are only detected by COCS. Thick cirrus clouds are identified over the

frontal systems of the low pressure system and south-west of it. Even the cloud cover-
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COGS Coverage, 22/06/2010 at 1200 UTC COCS Coverage, 22/06/2010 at 1600 UTC
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Figure 4.11: Cirrus coverage derived by COCS on the 22 June 2010 at 12:00 UTC (left)
and at 16:00 UTC (right). The cirrus coverage is split into three classes of cirrus clouds
depending on their cirrus optical thickness: blue for 0.1 < 7 < 0.5, green for 0.5 <7 < 1,
and 1.0 < 7.
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Figure 4.12: Cirrus ice optical thickness 7 derived by COCS on the 22 June 2010 at 12:00
UTC (left) and at 16:00 UTC (right).

age over the Netherlands and the North Sea are found by both algorithms. Thin cirrus
clouds are present in COCS in almost every cirrus covered region, but is most significant
in the North-East of both scenes, where cirrus clouds with very low ice optical thickness
is covering large areas North and North-East of England.

In Fig. (right bottom) the development of the cirrus coverage is depicted at 16:00
UTC. Here, the westerly drift moves the areas covered with cirrus to the East, while the

cirrus cloud over the North Sea and the Netherlands moves further to the South.
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Figure 4.13: Theoretical relationship between the reflectivity function of the VISO06 and
the IR016 SEVIRI channel for different values of cloud optical thickness and effective
radius [adapted from L. Bugliaro].

4.2.2 Comparison with APICS

The Algorithm for the Physical Investigation of Clouds with SEVIRI (APICS) [Bugliaro
et al., 2011] starts with the result of MeCiDA-2 to differentiate between cirrus-free pixels
and those containing cirrus clouds. The retrieval of optical properties of ice clouds in
APICS is based on a method first described by Nakajima and King [1990]. While the
reflection of clouds in the visible spectrum (VIS) is mainly a function of cloud optical
thickness, the reflection in the near infrared (NIR) spectrum highly depends on the parti-
cle size in the cloud. In Fig. reflectivities of the IR016 channel (Refl016) as a funtion
of the reflectivities of the VIS006 channel (Refl006) is plotted as a set of lines form-
ing a net of optical thicknesses and effective radii calculated with the radiative transfer
model libRadtran [Mayer and Kylling, [2005]. A couple of measured reflectivities (Refl006,
Refl016) represent a point in this diagram an optical thickness and effective radius can be
assigned to it. In this example, 7 = 20 and 7.y = 10 pm. In general, these reflectivities
are pre-calculated for fixed atmospheric profiles and stored in so-called look-up tables as a

function of solar and viewing geometry, surface albedo and optical thickness and effective
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radius. While there is little dependency of the reflectivities in these two spectral intervals
on cloud height and geometrical thickness, atmospheric gas and aerosol composition can
affect the measurements as well. Another important aspect in the APICS retrieval is the
parametrisation of the scattering properties of ice particles and their different shapes in
a cirrus clouds, since the reflection of cirrus clouds is strongly influenced by them. In
the present version, APICS is based on the ice model of Baum et al.| [2005], which uses
a mixture of different particle types depending on particle size for the parametrisation of
optical properties.

For the comparison with COCS the 13 June 2008 was chosen (Fig. [4.14)), where a cirrus
outflow of a tropical cyclone is present south-east of the Horn of Africa covering a domain
of 200 x 200 pixels. On the left Taopics shows values of < 2.5 interrupted with areas of no
cirrus clouds. On the right, 7cocs is depicted. Two differences are to mention: On the one
hand MeCiDA-2/APICS detects a much lower coverage than COCS, where no interrup-
tions between the single “cirrus stripes” are present. On the other hand COCS retrieves

lower 7 compared to the results of APICS. A direct intercomparison is shown in Fig. [4.15]

TapiCS

, 13/06/2008, at 12:00 UTC
i i

Tcocs , 13/06/2008, at 12:00 UTC

latitude/®
latitude/®

55 60 65 55 60 65
longitude/® longitude/®

Figure 4.14: Cirrus optical thickness 7 derived by APICS (left) and by COCS (right).
Tapics and Tcocs are derived from the brightness temperatures measured by SEVIRI on
the 13 June 2008 at 12:00 UTC over the eastern limit of the SEVIRI disc, where a cirrus
outflow of a tropical cyclone is present covering a domain of 200 x 200 pixel.

where three time slots 12:00 - 12:30 UTC are depicted in a two dimensional histogram.
This plot confirms the results from Fig. [4.14] with some deviations especially at higher
values of Tapics, where Tcocs slightly underestimates the cirrus optical thickness. Espe-
cially at Tapics = 0, COCS detects more thin cirrus clouds with 0.1 < 7¢ocs < 0.8, where
COCS is more sensitive than the combined method of MeCiDA-2 and APICS. The higher
sensitivity to thin cirrus clouds of COCS can also be seen at very low ice optical thickness.
COCS detects cirrus clouds with 7 < 0.5 more frequently than MeCiDA-2/APICS, which
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Figure 4.15: Scatter plot of the cirrus optical thickness 7 of COCS and APICS on the 13
June 2008 for the three timeslots 12:00, 12:15, and 12:30 UTC covering the same area as

in Fig. £.14]

mainly detects cirrus with 7apics > 0.3 in this case.

To summarize, differences appear due to the use of the less sensitive detection of cirrus
clouds of MeCiDA-2, which uses threshold tests to determine whether an ice cloud is
present or not. Further differences are caused by the general setup of COCS. COCS is
trained with the data of CALIOP and therefore it is able to detect thin cirrus clouds, but
only retrieves low cirrus ice optical thickness up to the limit of spaceborne lidar. This fact
is shown in Fig. [£.16], where a strong convective cell has formed over Central Africa on the
13 June 2008 at 12:00 UTC. In the lower third some other small convective features are
found as well. On the left of Fig. the result for the cirrus optical thickness derived
by APICS shows high values especially in the convective center of the cells reaching up to
Tapics = 100, while the optical thickness of the cirrus outflow and other cirrus clouds are
detected with lower values. Especially for these convective formed cirrus clouds as well
as for frontal cirrus clouds, COCS is likely to underestimate the ice optical thickness due
to the saturation of the lidar backscatter signal of CALIOP penetrating clouds thicker
than 7 = 3—4 (Section [3.1.1]). Therefore, COCS gets saturated and retrieves a maximum
Tcocs = 2.5. Only in cases of very strong convective formed cirrus clouds this value is
exceeded and COCS reaches values of 7cocs &~ 3.0. In contrast, APICS is able to retrieve

higher ice optical thickness, but in case of an underlying water cloud, APICS interprets
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Figure 4.16: Cirrus optical thickness 7 derived by APICS (left) and by COCS (right).
Tapics and Tcocs are derived from the brightness temperatures measured by SEVIRI on
the 13 June 2008 at 12:00 UTC over Central Africa. In this scene a large convective cell
has formed. Some small convective features are visible in the lower third of the scene.
This domain covers 200 x 250 pixel. Please note the different scales.

the whole atmospheric column as an ice cloud and therefore overestimates the real ice
optical thickness.
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4.3 Systematic and statistical uncertainty

Before starting to analyse the different diurnal cycles of cirrus coverage and optical thick-
ness retrieved by COCS, systematic and statistical uncertainties of the retrieved values
are calculated, which are deemed here as bias and errors respectively. Earlier in this
chapter, optical thickness and top altitude of the detected cirrus clouds were already
validated with the airborne HSRL and the spaceborne CALIOP aboard CALIPSO. The
results showed very low standard deviations. Additionally, low false alarm rates and high
detection efficiencies were found. The cirrus coverage derived by COCS is based on the
retrieved cirrus ice optical thickness. If COCS retrieves an optical thickness 7 > 0.1 a
cirrus cloud is detected (Section . Thus, the cirrus coverage can be calculated by
the ratio of pixels, where a cirrus cloud is detected, and the total amount of pixels (where
cirrus clouds are detected and cirrus-free). Usually this ratio is given in percent.

The training of the COCS algorithm was performed on the temporal and spatial collocated
datasets of SEVIRI and CALIOP measurements. Therefore, bias and error calculations
for the retrieved cirrus coverage and ice optical thickness are based on the test dataset
(Section , since CALIOP is the best performing instrument for the detection and

retrieval of cirrus clouds and their properties.

Cirrus coverage

Concerning the retrieved cirrus coverage, a general bias results from the higher sensitivity
of CALIOP with respect to very thin cirrus clouds such as subvisible cirrus. Due to its
false alarm rate and detection efficiency, COCS has a lower detection limit of 7 = 0.1
(Section [4.1.1)). Pixels with a retrieved cirrus optical thickness lower than 7 = 0.1 are
considered as cirrus-free. CALIOP detects cirrus clouds already within the range of
~ 0.01 < 7 < 0.1. Therefore, this class of cirrus clouds can be deemed as the general
bias, which is calculated as 1.81 % of the total cirrus coverage in the test dataset. In
order to derive the bias and the standard deviation of cirrus coverage for the single
values of 7, equidistant intervals with A7 = 0.1 are used up to 7 = 1.0, and for greater
optical thickness intervals of A7 = 0.3 are chosen to have a constant number of ~ 10000
observations in each interval. However, since CALIOP detects less cirrus clouds with
7 > 2.0 than cirrus clouds with lower optical thickness the intervals covering 7 > 2.0
contain only ~ 1000 observations. The bias for each interval is calculated as the number
of cirrus cloud pixels missed by COCS, but detected by CALIOP. This bias is depicted
in Fig. (left). Especially for thin cirrus clouds a bias is found with around 2 %, but
decreases for growing ice optical thickness to almost zero.

In order to estimate the error of COCS against the measurements of CALIOP, the root
mean square error (RMS) is calculated. The RMS works as an estimator to quantify the
difference between the results derived by COCS and the results derived by CALIOP to
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quantity being estimated. First, the ratio of misclassified clouds of COCS compared to
CALIOP, 7; faise, is calculated as:

CALIOP cocCs
AT — NAr

Ti false = CALIOP 3 (44)
Notal
where n{9¢% is the number of pixels where COCS detects a cirrus cloud with an ice opti-

QALIOP is number of

cal thickness within the range of the ice optical thickness bin A7. n
observations by CALIOP with the derived 7carrop with A7. The amount of cirrus detec-
tion of CALIOP is given by n{119P  The RMS, 0%, for the cirrus ice optical thickness
bins is therefore calculated with the ratio of misclassified clouds of COCS compared to

CALIOP, T'; false-

ngOCS
1 T
Oxr = ngoCs 1 D (risse)” (4.5)
T =1

The result of the RMS is shown as black error bars in Fig. (left). The RMS shows
values of around &%’ = 0.5 % for low ice optical thickness and decreases for higher IOTs.
The only outlier is found for 7 > 2.2, where o@¥ = 0.5 %.

For large datasets the arithmetic RMS is often calculated considering a large amount of

observations Obsa, in the adequate ice optical thickness interval:

o
TV 46

AM vV O bs AT ( )

Therefore, the arithmetic RMS has very low values within the order of G4 ~ 107° in

case of this work where a dataset consisting of five years is analysed, and is not part of

the graphics shown in the following chapter.

Ice optical thickness

Similarly to the error and bias calculation for the cirrus coverage a bias is calculated for

the same intervals defined above. The bias is calculated as:

nAr

1
ATpias = — Z(Ti,COCS — T, CALIOP) (4.7)

n
AT i1
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Figure 4.17: Bias of the retrieved cirrus coverage (left) and ice optical thickness (right)
depicted as a blue line. Root mean square errors from CALIOP values depicted as black
error bars for the single intervals of 7cpcs.

where na, is the number of detected cirrus clouds in the interval of cirrus ice optical
thickness, 7; cocs the value of COCS, and 7; cariop the value of CALIOP. This calculated
bias is depicted in Fig. |4.17| (right) again for the IOT intervals and has very low values
up to an ice optical thickness 7cpocs = 1.0. For higher IOTs the bias increases until it
reaches a maximum of up to 0.5. The root mean square error for the retrieved compared
to the CALIPSO measurements is corrected with the bias for the single optical thickness
class, since every measurement is contaminated by this bias, Eq. [£.7] Therefore, the root

mean square error of the retrieved cirrus optical thickness oy, can be calculated as:

1 NAT

Z (Ti.cOCS — Ti.CALIOP — AThias)’. (4.8)

i=1

-
On; = I
T nAT—l

This RMS is plotted in Fig. 4.17| (right) with low values up to a cirrus ice optical thickness
of 7 = 1.0. This RMS increases for higher cirrus ice optical thicknesses to values of up to
0.9. Again, the arithmetic root mean square error for the ice optical thickness calculated
from five years of data is very low and hence is not plotted in the diurnal analysis with

values G4y ~ 1072 %.
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Chapter 5

Cirrus diurnal cycles

Within the framework of this thesis five years of data were processed with the Cirrus
Optical properties derived from CALIOP and SEVIRI during day and night (COCS)
algorithm. The period covers the years 2006 to 2010 at the high temporal resolution of
15 minutes. Based on this dataset of cirrus ice optical thickness (Tcocs) and top altitude
(zcocs) detailed analysis of the diurnal cycle of cirrus cloud coverage and cirrus ice optical
thickness are realised and compared to forecasts of high cloud coverage calculated by the
European Center for Medium-range Weather Forecasts (ECMWF) in this section. Finally,
two regions, one of them strongly influenced by air traffic and one without the influence

of air traffic are analysed and discussed.

5.1 Cirrus cloud coverage

In Sassen et al.| [2008] analysis of total and seasonal cirrus cloud coverage were accom-
plished with combined data from CALIOP aboard CALIPSO (Section and the
Cloud Profiling Radar (CPR) aboard CloudSat. Relying on one year of data global and
seasonal frequencies of cirrus clouds are reported (from 15 June 2006 to 15 June 2007).
The global distribution of average frequency of occurence of cirrus clouds identified by
this CloudSat/CALIPSO algorithm is depicted in Fig.[5.1] The maximum cirrus coverage
of up to 60 % is found in the tropical belt mainly as a result of anvils produced directly
by deep convection in the Innertropical Convergence Zone (ITCZ) and monsoonal circu-
lations. This high coverage is present over Equatorial Central South America, Western
Africa, Indonesia, and the West-Central Pacific Oceanic warm pool. A still high, but
lower coverage is seen at the Northern and Southern mid-latitude stormtracks with val-
ues around 35 %. Less coverage is found over land masses, the deserts and desert-like
regions of Northern Africa, Western China, Central Australia, and the South-Western
United States. Minima in cirrus coverage appear at high polar altitudes and the upper
mid-latitudes bounding the ITCZ. For the period from 01 January 2010 to 31 December
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Figure 5.1: Global distribution of average frequency of occurence of cirrus clouds identified
by the CloudSat/CALIPSO algorithm within 5.0° latitude by 5.0° longitude grid boxes
during daylight and nighttime measurements, [Sassen et al., 2008].

2010, the cirrus coverage derived by the COCS algorithm is depicted in Fig. p.2] at a
resolution of 0.5° x 0.5°. Again we find high cirrus coverage in the ITCZ over Central and
Western Africa and the western part of South America with values of up to 60 %, while
desert-like regions of Northern Africa, the Arabian Peninsula and Southern Africa show
rather low values of only 0 to 20 %. In opposition to the values derived by
12008] in Fig. especially the Northern and Southern Atlantic regions are found to have
higher values in this time period with values around 40 %. Please note, that both plots
use different color tables. Supported by these first results, five different regions of interest
within the area covered by SEVIRI, from 80° N to 80° S and from 80° W to 80° E, were
chosen for further studies and analysis (Fig. [5.2):

e the North Atlantic Region (NAR), 45° N to 55° N and 45° W to 10° W, with a

maximum satellite viewing zenith angle (VZA) of 74.5°,

e the Mediterranean Region (MED), 30° N to 40° N and 0° to 35° E, with a maximum
VZA of 58.3°,

e the South African Region (SAC), 30° S to 20° S and 0° to 35° E,with a maximum
VZA of 51.5°,

e two South Atlantic Regions: SARI1, 55° S to 45° S and 45° W to 10° W, with a
maximum VZA of 74.5°, and SAR2, 60° S to 45° S and 45° W to 45° E, with a
maximum VZA of 77.8°.
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Figure 5.2: Mean cirrus coverage for the year 2010 at a resolution of 0.5° x 0.5° with the
selected regions for further analysis from north to south: NAR (green), MED (red), SAC
(orange), SAR1 (black), and SAR2 (blue).

The NAR, SAR1, and SAR2 regions were chosen due to the homogeneous sea surface,
where orographical and convective influence is mainly absent. Furthermore, the NAR is
influenced by cirrus clouds formed by air traffic due to the North Atlantic air corridor,
which is one of the most frequented oceanic air traffic routes in the world with flights from
the United States of America to Europe and vice versa. In order to analyse the difference
to an undisturbed atmosphere, the SAR1 region was defined, representing a similar area
as the NAR just mirrored to the southern hemisphere. The SAR2 region covers 90° of
longitude over the South Atlantic and represents an undisturbed atmosphere without air
traffic and orographical or convective influence.

Additionally, two regions with stronger landmass and convective influence are chosen.
The MED region covers wide parts of the Mediterranean Sea and the coasts of Northern
Africa, and the SAC region, which is located over the Atlantic and South Africa. Please
note, that both regions are chosen to cover the same longitude, but are not symmetric
in terms of latitude, so that differences in ice optical properties and cirrus coverage are
expected as seen in Fig. |5.1

With the high temporal resolution and the independence from daylight COCS establishes
the possibility to give insights into the diurnal variations of cirrus. For the analysis of

cirrus cloud coverage and ice optical thickness in this chapter, all curves are corrected by
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the general bias and the bias for the single intervals calculated in Section

5.1.1 Total Cirrus Coverage

For a first overview the diurnal cycle of the total cirrus coverage in the five defined regions
is depicted as a function of local time (LT), Figure In the following the so-called total
cirrus coverage designates the mean cirrus coverage for each region and is shown for the
period from 2006 to 2010 at a temporal resolution of 15 minutes. The single pixels are
averaged to a resolution of 0.25° in terms of latitude and longitude and then averaged to
the coverage of the above defined regions.

The conversion from UTC to LT is done by assuming that the 0°-Meridian has the same
time for UTC and LT. By accounting the 0.25° longitude resolution, the LT is then cal-
culated can be calculated by adding 60 s for each 0.25° step in the eastward direction and
subtracting 60 s in the westward direction.

The total cirrus coverage can be differentiated in two different classes due to the location
of the averaged regions:

MED and SAC show a diurnal cycle dominated by a maximum cirrus coverage between
13:00 and 16:00 LT respectively, which indicates the presence of convection, and a mini-
mum in the morning at around 07:00 LT. The coverage in SAC varies from the minimum
with a value of 11 % with a rather sharp increase to a maximum of 16 % followed by a
slow decrease during night. In the MED the morning minimum coverage reaches 22 %
and peaks in the maximum at 26 %. At night a slower decline than in SAC is observed.
On the other hand, the three maritime regions NAR, SAR1, and SAR2 show a different
diurnal cycle. The cirrus coverage follows a semidiurnal curve