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Summary	

The	present	study	investigates	the	influence	of	two	severe	ophthalmologic	diseases	

on	 the	 activity	 of	 retinal	 ganglion	 cells	 (RGCs).	 Action	 potentials	 were	 recorded	

extracellular,	using	a	high	density	Multi‐Transistor‐Array	with	16384	sensors	on	a		

1mm²	array	surface.	Using	spike	triggered	average	analysis	single	RGC	axonal	action	

potentials	propagating	were	visualized	for	the	first	time	in	rodent	retinas.	

In	 the	 first	 series	 of	 experiments	 the	 spontaneous	 RGC	 activity	 in	 rd1	 mice	 was	

analyzed.	 In	 rd1,	 a	 nonsense	 mutation	 of	 the	 phosphodiesterase	 6	 β	 gene	 causes	

rapid	 photoreceptor	 degeneration.	 The	 majority	 of	 rd1	 RGCs	 exhibited	 rhythmic	

bursting	at	a	fundamental	frequency	of	7‐10	Hz.	In	the	present	work	is	shown,	that	

large	 proportions	 of	 the	 cells	 were	 correlated	 and	 additionally	 a	 Local	 Field	

Potential	was	detected,	that	oscillates	with	the	same	frequency.	RGC	spiking	and	the	

LFP	were	separated	applying	TTX.	RGC	spiking	was	locked	to	the	LFP	minimum	and	

the	LFP	depolarized	or	hyperpolarized	large	areas	of	the	retinal	tissue	recorded.		

The	LFPs	propagated	over	the	recorded	tissue	with	velocity	rates	faster	than	known	

from	retinal	waves	which	rely	on	transmission	of	chemical	synapses.	

Cells	that	were	located	in	areas	of	the	same	LFP	phase,	fired	in	synchrony	and	block	

of	 inhibitory	 synapses	 increased	 the	LFP’s	 spatial	 extension,	but	did	not	 affect	 the	

activity	 otherwise.	 The	 LFP	 signal	 depended	 on	 glutamatergic	 transmission,	 what	

makes	 it	 likely	 to	 be	 produced	 by	 bipolar	 cells.	 Blocking	 glutamatergic	 synapses	

inhibited	the	LFP	and	most	of	the	spiking.	This	revealed	that	a	larger	proportion	of	

RGCs	 in	 rd1	 is	 electrically	 coupled	 than	 in	wt.	 Gap	 junction	 blockers	 were	 most	

effective	in	blocking	the	complete	retinal	activity.			

It	 can	be	 concluded	 that	 increased	bipolar	 cell	 activity	 and	enhanced	 gap	 junction	

coupling	 between	 amacrine	 cells	 and	 bipolar	 cells	 are	 the	 cause	 of	 the	 rd1	

phenotype.	

Based	 on	 these	 results,	 further	 experiments	 were	 designed	 to	 test	 if	 loss	 of	 the	

photoreceptor	dark	current	 leads	to	an	imbalance	of	excitation	and	inhibition,	 that	

causes	rhythmic	activity.			

The	 dark	 current	 generated	 by	 photoreceptors	 was	 blocked	 in	 C57BL/6	 mouse	

retinas	 by	 constant	 bleaching,	 that	 induced	 elevated	 firing	 rates	 in	 ON‐	 and	 OFF‐

RGCs.	After	 long	bleaching	intervals	half	of	the	cells	showed	a	spontaneous	~	5	Hz	
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bursting	pattern.	Most	cells	did	not	fire	in	synchrony.	When	a	mixture	of	blockers	for	

inhibitory	 synapses	 was	 applied	 during	 bleaching,	 the	 majority	 of	 cells	 initiated	

rhythmic	bursting,	that	was	accompanied	by	a	static	Local	Field	potential.	The	same	

experiments	 conducted	with	 rats	 revealed	 that	 firing	 rates	were	 increased	 during	

bleaching,	 but	 the	 OFF‐RGC	 initiated	 a	 ~3	 Hz	 oscillation	 only	 after	 blockage	 of	

inhibitory	synapses.		A	LFP	was	not	detected.	

RGC	activity	in	rd1	mouse	retinas	reflects	presynaptic	degeneration.	In	other	forms	

of	rd	and	in	glaucoma,	the	RGCs	themselves	degenerate.	

I	established	a	surgical	model	of	rapid	RGC	degeneration,	injuring	the	optic	nerve	in	

wistar	 rats.	 The	 rats	 were	 then	 examined	 4,	 8	 and	 14	 days	 postoperative	 to	

investigate	 axon	 and	RGC	 function.	 The	 axonal	 conduction	 velocity	was	 reduced	4	

days	 postoperative	 to	 70%	 of	 the	 control	 level	 and	 did	 not	 change	 significantly	

further.	 Changes	 in	OFF‐RGC	 function	were	 concomitant,	 as	maintained	OFF‐RGCs	

activity	was	diminished	at	day	4	and	responses	latency	increased.	ON‐cell	response	

latency	 and	maintained	 activity	was	unaffected	until	 eight	 days	 after	 surgery.	 The	

average	 firing	 rate	 of	 the	 light	 response	 decreased	 at	 day	 4	 for	 both	 cell	 types.	

Operated	RGCs	had	diminished	responses	to	grating	stimuli	with	increasing	spatial	

frequency,	indicating	changes	in	dendritic	structure.		

After	optic	nerve	injury	in	rats,	axonal	malfunction	and	functional	RGC	degeneration	

are	in	close	temporal	proximity.	

It	is	shown	here	that	RGCs	suffering	from	rd1	display	rhythmic	population	activity,	

while	 RGCs	 that	 are	 directly	 injured	 maintain	 reduced	 function	 probably	 until	

apoptosis.	
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1. Introduction		

Perception	 of	 the	 external	 environment	 is	 a	 prerequisite	 of	 guided	 motion	 and	

behavior.	 Receptor	 molecules	 for	 electromagnetic	 or	 mechanical	 cues	 developed	

early	 in	 evolution.	 As	 mobility	 and	 perception	 are	 interdependent,	 in	 all	 species	

coordination	 of	 movement	 in	 space	 depends	 on	 one	 or	 two	 cardinal	 senses	 that	

represent	the	outside	world	and	are	related	to	self‐perception.		

Which	senses	are	used	depend	on	the	environmental	requirements	but	in	primates	

the	ear	and	mainly	the	eye	are	the	source	of	information	about	the	outside	world.		

Vision	is	realized	by	the	reception	of	scattered	photons	that	trigger	a	change	in	the	

membrane	potential	of	the	receptor	cell.	Adjacent	cells	layers	read	this	information	

out,	minimize	noise,	analyze	features	of	the	percept	and	transmit	the	information	to	

the	brain.		

Losing	this	source	of	information	is	a	handicap	for	normal	participation	in	life.	

In	general	two	defects	are	the	cause	of	blindness:	the	inability	to	detect	photons	or	

the	impossibility	to	transmit	the	information	to	the	brain.		

The	 present	 work	 wants	 to	 shed	 light	 on	 the	 physiologic	 consequences	 of	 both	

defects.	 As	 this	 work	 aims	 to	 contribute	 to	 the	 understanding	 of	 degenerative	

diseases	of	the	human	retina,	the	eye	(section	1.1)	and	the	cellular	assembly	of	the	

retina	(sect.	1.2),	will	be	introduced.	

In	 the	 present	 work	 action	 potentials	 of	 retinal	 ganglion	 cells	 are	 recorded	

extracellular	to	analyze	retinal	functions.	The	generation	of	action	potentials	in	RGCs	

is	 caused	 and	 regulated	 by	 presynaptic	 input.	 Function	 and	 physiology	 of	 retinal	

circuits	and	cell	types	will	be	characterized	(sect.	1.3),	before	I	focus	on	the	retinal	

diseases	 studied	 and	 the	 animal	 models	 used	 (sect.	 1.4).	 At	 last,	 extracellular	

recording	with	a	Multi‐Transistor‐Array	is	introduced	(	sect.	1.5).		

	

.	
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1.1 The	mammalian	eye		

The	 architecture	 of	 the	 mammalian	 eye	 (Fig.	 1.1)	 is	 a	 variation	 of	 the	 eye	 plan	

common	 to	 all	 vertebrates.	 In	 contrast	 to	 cephalopods	where	 all	 parts	 of	 the	 eye	

develop	from	dermal	ectoderm,	the	sensory	tissue	of	the	vertebrate	retina	is	derived	

from	 the	 neural	 tube.	 An	 optic	 vesicle	 is	 formed	 that	 later	 invaginates,	 the	 inner	

layer	becomes	the	retina	and	the	outer	layer	the	retinal	pigment	epithelium.	

Both	eyes	are	located	in	orbits,	i.e.	cavities	in	the	skull	lateral	to	the	nasal	bone.	The	

eye	is	connected	to	the	orbit	by	six	muscles	that	control	its	movements.	The	sclera	

(Fig.1.1,	grey)	encloses	the	eyeball	and	the	RGC	axons	that	leave	towards	the	LGN	

and	 form	 the	 Optic	 nerve.	 Light	 enters	 the	 eye	 through	 the	 transparent	 cornea	

(Fig.1.1,	white)	 that	 is	 adjacent	 to	 the	 sclera.	 At	 the	 transition	 zone	 sclera	 and	

cornea	are	connected	to	the	conjunctiva	that	shelters	the	orbit	from	outside.	

	

Figure	1.1:		Horizontal	sagittal	section	of	the	eye.	(Kolb	et	al.	1995)	see	text	for	details	

Behind	 the	 cornea	 is	 (Fig.	1.1,	white	ellipsoid)	 the	 first	 eye	 chamber,	 filled	with	

aqueous	 humor	 and	 then	 the	 lens.	 Cornea,	 aqueous	 humor	 and	 lens	 are	 the	

refractive	 elements	 of	 the	 eye	 that	 focus	 the	 light	 onto	 the	 retina.	 While	 the	

refractive	effect	of	cornea	and	aqueous	humor	is	fixed,	lens	refraction	is	adjustable.		
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The	refraction	of	the	lens	increases	with	its	diameter.	Connected	by	the	zonule	fibers	

(Fig.1.1,	purple)	with	the	ciliary	muscle	(Fig.	1.1,	red),	its	contraction	or	relaxation	

leads	to	a	round	or	flat	shape	of	the	lens	allowing	focusing	on	nearby	or	far	objects.	

The	amount	of	light	that	can	pass	through	the	lens	is	controlled	by	the	iris	(Fig.	1.1,	

blue),	 consisting	 of	 the	 Iris	 pigment	 epithelium	 and	 muscles.	 The	 iris	 pigment	

epithelium	passes	over	to	the	retinal	pigment	epithelium	inside	the	eye.	

Beneath	 the	outer	 layer	 of	 the	 sclera	 are	 two	more	 layers,	 the	 choroidea	 (Fig.1.1,	

red)	 and	 the	 retina	 (Fig.1.1,	yellow).	 The	 choroid	 contains	 the	blood	vessels	 that	

originate	at	 the	ophthalmic	artery	and	enters	the	eye	via	the	optic	disc.	The	retina	

has	a	high	metabolic	rate	and	changes	in	vascularization	are	involved	in	a	variety	of	

degenerative	 disorders.	 In	 the	 rostral	 region	 the	 choroid	 forms	 the	 ciliary	 body,	

which	secrets	the	aequeous	humor.	

The	 retina	 is	 the	most	 inner	 layer	of	 the	eye	and	 the	 retinal	 ganglion	cells	project	

with	 their	axon	to	 the	Central	nervous	system	and	 form	the	optic	nerve.	The	optic	

disc	contains	no	photoreceptors	and	marks	the	entrance	of	the	blood	vessels	and	the	

exit	of	the	Optic	Nerve.	

Both	pass	the	bony	structure	of	the	lamina	cribrosa	an	opening	of	the	neurocranium.	

From	the	choroid	the	retina	is	isolated	by	Bruchs	membrane	and	from	the	vitreous	

body	by	 the	 inner	 limiting	membrane.	The	vitreous	body	 fills	 the	eyeball	between	

retina	and	 lens	and	maintains	the	 intra	ocular	pressure	 together	with	the	aqueous	

humor	(IOP)	that	gives	the	eye	its	round	shape.	

In	 rodents	 the	 lens	 is	 much	 larger	 than	 indicated	 in	 Fig.1.1	 and	 fills	 nearly	 the	

complete	eye	ball.	

	

	

	

	

	

	

	

	

	

	

	

	



Introduction	

15	

1.2	The	retina	

	

So	far,	about	50	distinct	cell	types	are	identified	within	the	retina	(Masland,	2001),	

that	 belong	 to	 the	 cell	 classes	 of	 photoreceptors,	 horizontal	 cells,	 bipolar	 cells,	

amacrine	cells	and	ganglion	cells.		

The	retina	is	adjacent	to	the	Retinal	pigment	epithelium	(Fig.	1.2,	on	the	top	of	the	

photoreceptors)	that	recycles	the	chromophores,	maintains	the	photoreceptor	(PR)	

metabolism	and	constitutes	the	retina‐blood	barrier.	Below	are	the	outer	segments	

of	 the	 PRs,	 whose	 cell	 bodies	 are	 located	 in	 the	 outer	 nuclear	 layer	 (ONL).	 PRs	

synapse	with	horizontal	 cells	 (HCs)	 and	bipolar	 cells	 (BCs)	 in	 the	 outer	 plexiform	

layer	(OPL).	

	

	

Figure	1.2:	Scheme	of	cell	types	and	layers	in	the	retina.	(from	Dyer	&	Cepko,	2001).	

	

The	 somas	 of	 BCs	 and	 HCs	 are	 also	 apart	 from	 the	 synaptic	 contacts	 and	 form	

together	 with	 the	 amacrine	 cells	 the	 inner	 nuclear	 layer	 (INL).	 The	 synapses	 of	

bipolar	cells	with	amacrine	cells	(ACs)	and	with	retinal	ganglion	cells	constitute	the	

inner	 plexiform	 layer	 (IPL).	 The	 last	 layer	 is	 the	 ganglion	 cell	 layer	 (GCL)	 that	 is	
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separated	 from	 the	 vitreous	 by	 the	 inner	 limiting	membrane.	 In	 the	 GCL	 also	 cell	

bodies	of	ACs	are	located,	the	so	called	‘displaced’	ACs.	

The	RGC	axon	form	the	Optic	nerve	which	is	not	myelinated	intra‐retinal	in	rodents.	

In	between	the	other	cells	the	glia	cells	are	located.	In	the	retina,	three	types	of	glia	

cells	 exist,	 the	 Müller	 cells,	 the	 astrocytes	 and	 the	 microglia.	 The	 Müller	 cells	

especially	 maintain	 ion	 homeostasis,	 support	 cell	 metabolism	 and	 recycle	 and	

synthesize	the	neurotransmitter	precursors.	Müller	cells	are	transparent	and	play	a	

role	in	guiding	photons	to	the	photoreceptors		(Franze	et	al.	2007).	
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1.3	Physiology	and	pathways	of	the	retina	

The	photoreceptors	 in	 the	 retina	 generate	a	 continuous	dark	 current.	 In	 the	outer	

segment	cGMP	gated	cation	channels	are	open	and	sodium	and	calcium	ions	flux	in	

during	the	absence	of	photons.	The	membrane	potential	is	thereby	depolarized	and	

causes	a	sustained	release	of	glutamate	at	the	ribbon	synapse	of	the	photoreceptors	

(Fig.	 1.3	A).	 Excess	 sodium	 and	 calcium	 ions	 are	 removed	 at	 the	 base	 (ellipsoid	

region)	 of	 the	 outer	 segment	 by	 a	 sodium	 potassium	 antiporter,	 that	 hydrolyzed	

ATP.	

	

	

Figure	1.3:		Photoreceptor	dark	current	(from	Tasman	&	Jaeger,	2006)	
(A) illustrates	the	ion	flux	in	a	photoreceptor	when	photons	are	absent.	High	levels	von	

cGMP	keep	cation	channels	 in	 the	outer	segment	open.	Sodium	accumulates	 in	the	
outer	segment	and	diffuses	in	the	ellipsoid	region,	where	an	ATP	driven	antiporter	
extrudes	 excess	 sodium.	 The	 depolarization	 of	 the	 membrane	 potential	 causes	
sustained	glutamate	release.	

(B) When	photons	change	the	conformation	of	the	rhodopsin	chromophore	retinal	from	
11‐cis	 to	 all‐trans,	 G‐proteins	 activate	 the	 Phosphodiesterases	 (PDE).	 The	 PDEs	
hydrolyse	 cGMP	 and	 its	 decrease	 in	 concentration	 closes	 the	 cation	 channels.	
Sodium	 is	 still	 extruded,	 the	 membrane	 potential	 hyperpolarizes	 and	 glutamate	
release	stops.	

	
Activation	 of	 the	 rod	 rhodopsine	 or	 cone	 photopsine	 photopigment	 leads	 to	 the	

hydrolysis	of	cGMP	by	the	G‐protein	activated	phosphodiesterase	(PDE).	 	Decrease	

of	 cGMP	 closes	 the	 cation	 channels	 and	 hyperpolarizes	 the	 cell	 (Fig.	1.3	B).	 This	

stops	 the	 glutamate	 release	 on	 bipolar‐	 and	 horizontal	 cells	 (Fain,	 2001)	
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Photoreceptors	 are	 homo‐	 and	 heterotypic	 interconnected	 by	 gap	 junctions	 and	

their	 synaptic	 glutamate	 release	 is	 regulated	 by	 horicontal	 cells	 (HCs)	 that	 are	

excited	 by	 glutamate	 and	 provide	 inhibitory	 feedback	 to	 large	 clusters	 of	

photoreceptors.	Glutamate	is	the	cardinal	excitatory	neurotransmitter	in	the	retina.	

Two	classes	of	glutamate	receptors	(GluR)	are	known:	the	ionotrophic	GluR	to	which	

belong	AMPA,	Kainate	and	NMDA	receptors	and	the	metabotrophic	GluRs.	

Which	 class	 of	 glutamate	 receptors	 a	 cone	 bipolar	 cell	 (CBC)	 expresses	 at	 the	

photoreceptor	 synapse	 defines	 its	 light	 response	 polarity	 as	 ON‐	 or	 OFF‐cell.	 OFF	

CBCs	 are	 equipped	with	 ionotropic	AMPA	and	kainate	 glutamate	 receptors	 (GluR)	

and	 directly	 depolarized	 by	 glutamate	 release	 (sign	 conserving	 synapse,	 see	 Fig.	

1.4).	ON	type	CBCs	express	metabotropic,	L‐AP4	sensitive	glutamate	receptors	and	

depolarize	 when	 the	 dark	 current	 stops.	 The	 family	 of	 L‐AP4	 sensitive	 mGluRs	

regulates	 the	 intracellular	 cGMP	 level,	 but	 the	 exact	 mechanism	 of	 membrane	

depolarization	 is	still	unknown.	CBCs	synapse	directly	onto	RGCs.	Beside	encoding	

the	 contrast	 quality	 (ON,	 OFF	 or	 ON‐OFF),	 CBCs	 mediate	 information	 about	 the	

wavelength	or	colour	of	a	stimulus	and	so	far	nine	types	of	cone	BCs	are	known	in	

mammals	(Gosh	et	al.,	2004	).	

ON	and	OFF	CBC	cells	have	a	distinct	morphologic	feature:	the	stratification	of	their	

axons	within	the	IPL	(Nelson	et	al.,	1978;	Fig.	1.4),	which	is	complemented	by	the	

stratification	of	 the	RGCs	dendritic	 tree	 in	 this	 layer.	The	CBC	axons	meet	 the	RGC	

dendrites	 in	 the	 IPL,	 which	 is	 divided	 in	 two	 major	 sublaminae:	 in	 the	 caudal	

sublamina	a,	where	the	axons	of	OFF‐CBCs	terminate	while	in	the	rostral	part	of	the	

IPL,	 the	 sublamina	 b,	 the	 ON‐CBCs	 synapse	 (cf.	 Fig.	 1.4).	 ON‐OFF	 CBCs	 make	

synapses	in	both	sublaminae.	

In	 contrast	 to	 the	 variety	 of	 CBCs,	 only	 one	 type	 of	 rod	 bipolar	 cell	 (RBC)	 exists	

(Sharpe	&	Stockmann,	1999;	Wässle,	2004).	 It	expresses	a	metabotropic	glutamate	

receptor	(mGluR	6)	and	is	therefore	of	ON‐type.	Separate	ON	and	OFF	channels	for	

this	pathway	are	generated	by	the	AII	amacrine	cell	(AC),	which	is	the	postsynaptic	

target	 of	 the	 RBC	 (Daw	 et	 al.	 2003).	 The	 AII	 AC	 depolarizes	 upon	 RBC	 glutamate	

release	and	 is	 also	of	ON‐polarity.	Via	 a	 gap	 junction	 the	 excitation	 is	mediated	 to	

ON‐CBCs,	 concomitantly	 they	 release	 glycine	 onto	 OFF‐CBCs	 and	 OFF‐RGCs	 (Fig.	

1.4).	
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Figure	1.4:	ON‐	and	OFF‐pathways	in	the	retina.	(Sharpe	&	Stockmann,	1999)	
Cones	 release	 glutamate	 onto	 two	 types	 of	 Cone	Bipolar	 cells	 (CBCs):	ON‐CBCs	depolarize	
when	 glutamate	 release	 decreases	 due	 to	 metabotropic	 glutamate	 receptors.	 OFF‐CBCs	
hyperpolarize	 when	 glutamate	 release	 decreases.	 OFF‐CBCs	 synapse	 on	 OFF‐type	 retinal	
ganglion	cells	(RGCs)	and	ON‐CBCs	on	ON‐RGCs.	OFF‐RGCs	make	their	synapses	more	distal	
to	 the	 ganglion	 cells	 than	 ON‐cells.	 RGC	 axons	 transmit	 the	 information	 to	 the	 Lateral	
Geniculate	 Nucleus.	 Rod	 photoreceptors	 release	 glutamate	 on	 rod	 bipolar	 cells	 which	
depolarize	when	 less	 glutamate	 is	 present.	 Split	 of	 the	 information	 into	 an	 ON‐	 and	 OFF‐
channel	 is	 done	 by	 the	 AII‐amacrine	 cell.	 This	 cell	 is	 electrically	 coupled	 to	 On‐CBCs	 and	
releases	glycine	on	the	OFF‐CBC	synapse	with	OFF‐RGCs.		
	

Mice	and	rats	are	nocturnal	animals.	Mice	have	27x	more	rods	than	cones,	while	in	

rats	 about	 100	 times	more	 rods	 exist	 than	 cones	 (Tsukamoto	 et	 al,	 2001;	 Euler	&	

Wässle,	2004).	This	 is	not	reflected	by	the	organization	of	the	bipolar	cell	 layer:	 In	

rats	as	well	as	in	mice,	CBC	constitute	about	the	half	of	the	bipolar	cell	population.	

The	information	processed	by	ACs	and	BCs	converges	onto	retinal	ganglion	cells.		

The	 degree	 of	 convergence	 varies	 between	 species	 and	within	 a	 species.	 Ecologic	

needs	 promoted	 the	 evolution	 of	 different	 retinal	 organization	 types,	 e.g.	 a	 foveal	

organization	of	cones,	BCs	and	RGCs,	which	demands	less	convergence.	
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RGCs	 sum	 the	 presynaptic	 information	 up	 and	 generate	 action	 potentials	 that	 are	

transmitted	 to	 the	 brain.	 As	 recent	 studies	 show,	 RGCs	 are	 not	 the	 only	 cell	 class	

capable	of	generating	action	potentials	(amacrine	cells:	Heflin	&	Cook,	2007;	

bipolar	 cells:	 Dreosti	 et	 al.,	 2011)	 	 However,	 the	 RGC	 action	 potential	 is	 the	most	

pronounced	signal	in	the	retina.	

RGCs	 display	 two	 types	 of	 activity.	 When	 a	 visual	 stimulus	 activates	 the	

photoreceptors,	 RGCs	 generate	 action	 potentials	 that	 signal	 the	presence	 of	 visual	

features.	The	most	 simple	 response	 types	 to	 light	 increment	or	decrement	are	 the	

ON‐,	 OFF‐	 and	 ON‐OFF	 response,	 which	 are	 used	 for	 functional	 classification	 and	

correspond	to	a	distinct	stratification	pattern	in	the	IPL.	

Additional	 to	 this	 quite	 simple	 responses	a	 variety	of	 specialized	RGCs	 are	known	

that	 perform	 together	 with	 the	 BCs	 and	 ACs	 within	 their	 receptive	 field	 complex	

feature	detection	(Gollisch	&	Meister,	2010;	Borst	&	Euler,	2011).	

Besides	stimulus	evoked	spiking,	it	was	early	recognized	that	RGCs	fire	spontaneous	

in	the	absence	of	visual	stimuli	(Kuffler	1957,	Rodieck	1967).	

One	 of	 the	 interesting	 features	 of	 spontaneous	 activity	 is	 that	 some	 cells	 fire	

correlated.	

RGCs	 fire	 correlated	upon	visual	 stimulation.	A	 light	ON	stimulus	 leads	 to	positive	

correlations	 within	 the	 ON‐	 or	 OFF‐cell	 groups	 and	 to	 a	 negative	 correlation	

between	ON	and	OFF‐cells	(Fig.	1.5	a).	In	the	absence	of	a	visual	stimulus,	cells	tend	

to	 fire	 randomly,	 but	 a	 subset	 of	 cells	may	 correlate	 because	 they	 share	 synaptic	

input	 from	 the	 same	 presynaptic	 cells	 or	 have	 a	 direct	 synaptic	 connection.	 The	

shape	of	the	cross	correlogram	(CC)	of	two	cells	is	an	indicator	for	the	synaptic	input	

they	 share	 (Mastronarde,	 1989).	 Combining	 cross‐correlation	 analysis	 with	

pharmacology	the	type	of	the	synaptic	connection	can	be	revealed	(Brivanlou	et	al.,	

1998).	In	Fig.	1.5	b	three	types	of	CCs	and	the	synaptic	connection	causing	them	are	

depicted.	
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Figure	1.5:	Cross	correlation	patterns	found	in	the	rat	and	mouse	retina.	

In	(a)	the	cross	correlation	(CC)	of	the	responses	to	a	light	flash	of	two	ON‐	and	one	OFF‐cell	
are	shown.	While	ON‐cells	display	a	positive	correlation,	ON‐	and	OFF‐cell	correlations	are	
negative.	 The	 synchronous	 firing	 is	 triggered	 by	 the	 light	 stimulus	 and	 the	 cells	 may	 not	
correlate	without	stimulation	(CCs	with	5	ms	bin	size)	
In	 (b)	 correlation	 patterns	 occurring	 during	 spontaneous	 activity	 in	 darkness	 are	 shown	
(bottom)	 and	 above	 the	 hypothetical	 circuit	 causing	 this	 correlation	 (after	 Mastronarde	
1989).	 Two	 cells	 fire	 in	 synchrony	when	 they	 share	 synaptic	 input	 from	 one	 cell.	 The	 CC	
pattern	has	 a	positive	peak	 at	 zero	 (left	 panel,	 bin	 size	5ms).	 If	 both	 cells	 are	 additionally	
connected	 via	 gap	 junctions	 (middle	 panel)	 a	 double	 peak	 will	 appear	 on	 the	 top	 of	 the	
correlation	peak.	To	detect	such	double	peaks	binning	has	to	be	refined	(bin	size	0.5ms).	If	
two	cells	are	connected	only	by	a	gap	junction	only	a	double	peak	will	appear	(right	panel).	
The	x‐axis	indicates	milliseconds,	the	y‐axis	percent	of	correlated	spikes.	
		

Cells	that	share	input	from	the	same	presynaptic	cell,	from	a	bipolar	cell	as	depicted	

in	 Fig.	 1.5b	 or	 an	 amacrine	 cell,	 show	 a	 central	 peak	 at	 zero	 time	 lag	 in	 the	

correlogram.	The	width	of	the	central	peak	can	vary	depending	on	the	precision	of	

the	 presynaptic	 input.	 If	 two	 RGCs	 are	 connected	 via	 an	 electrical	 synapse	

additionally	 to	 presynaptic	 input,	 a	 double	 peak	 will	 be	 visible	 on	 the	 top	 of	 a	

broader	 peak	 (Fig.	 1.5	 b,	 second	 panel).	 If	 there	 is	 only	 an	 electrical	 connection	

between	the	RGCs.,	a	sharp	double	peak	will	appear	 in	the	correlogram	(Fig.	1.5b,	

third	panel).	
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CC	 pattern	 help	 to	 identify	 types	 of	 synaptic	 inputs	 cells	 receive	 and	 thereby	 to	

clarify	features	of	the	underlying	circuit.	

	

	

1.4 Diseases	of	the	retina	

In	the	present	work,	animal	models	of	two	major	retinal	diseases	will	be	studied.	

The	 first	 part	 of	 the	 work	 focuses	 on	 retinitis	 pigmentosa,	 an	 inherited	 loss	 of	

photorecetors	and	the	second	part	on	glaucoma,	an	age	related	loss	of	RGCs.		Loss	of	

RGCs	(or	neurons	in	general)	is	also	characteristic	for	other	degenerative	diseases.	

	

1.4.1		Retinitis	pigmentosa	and	retinal	degeneration		

Retinitis	 pigmentosa	 (RP)	 in	 human	 patients	 is	 characterized	 by	 progressive	

photoreceptor	loss	(Jones	&	Marc	2005).	Starting	with	rod	degeneration	from	retinal	

periphery,	patients	first	loose	night	vision	and	due	to	subsequent	cone	loss	patients	

become	 complete	 blind.	 Depending	 on	 the	 gene	 defect,	 retinal	 degeneration	 takes	

place	 during	 adolescence	 or	 in	 the	 fourth	 life	 decade.	 About	 34	 gene	 defects	 are	

known	to	cause	RP	and	are	inherited	autosomal	dominant	(7	genes),	recessive	(25	

genes)	or	X	chromosome	linked	(2	genes).	The	variety	of	genetic	defects	complicates	

a	proper	treatment	of	the	disease	but	the	resulting	phenotype	is	similar	in	all	cases	

(Bird	 1995).	 In	 general,	 the	 known	 mutations	 affect	 the	 visual	 cycle	 or	 the	

phototransduction	pathway	in	rods.	The	defects	in	signal	transduction	subsequently	

lead	 to	 rod	 photoreceptor	 death	 (Cottet	&	 Schorderet	 2009).	 The	mechanism	 that	

links	 cone	 photoreceptor	 degeneration	 with	 rod	 photoreceptors	 apoptosis	 needs	

further	investigation,	but	nutritional	defects	and	insulin	signaling	seem	to	play	a	key	

role	(Punzo	et	al.	2009).	

The	 first	 mouse	 retina	 lacking	 photoreceptors	 was	 discovered	 1924	 by	 Keeler	

(Keeler,	1924)	and	initially	used	for	genetic	studies.	From	his	stock	the	C3H	mouse	

strain	was	derived	that	is	still	widely	used	to	investigate	the	consequences	of	RP	in	

animals	(Keeler,	1966).	In	Fig.	1.6	an	original	drawing	from	Keeler	1924	is	shown,	

that	 illustrates	 the	 key	 feature	 of	 all	 animal	 models	 of	 retinitis	 pigmentosa:	 the	

complete	loss	of	photoreceptor	outer	segments	and	their	nuclei	(Fig.	1.6,	right).	 In	

rd1	 mice,	 opposite	 to	 human	 patients,	 photoreceptor	 degeneration	 starts	 in	 the	

central	retina	and	progresses	to	the	periphery	(Jimenez	et	al.	1996).	
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The	 mentioned	 C3H	 mice	 as	 well	 as	 the	 FVB	 mice	 belong	 to	 the	 rd1	 type	 (Both	

strains	were	used	here).	Beside	the	rd1	mouse	a	variety	of	other	animal	models	for	

inherited	retinal	degeneration	is	known	(for	review	see	Jones	&	Marc	2005).	

	

	

Figure	1.6:	The	PDE6b	missense	mutation	causes	 loss	of	 the	outer	segments	and	 the	
outer	nuclear	layer		(from	Keeler	1924)	
On	the	left	a	normal	retina	is	sketched	with	Outer	segments	(B&C),Outer	nuclear	layer	(D)		
and	 outer	 plexiform	 layer	 (F)	 visible.	 The	 schematic	 sketch	 on	 the	 left	 illustrates	 the	
consequences	of	retinal	degeneration,	only	the	inner	nuclear,	inner	plexiform	and	RGC	layer	
are	left	(F‐J).	
	

The	rd1	animals	carry	a	nonsense	mutation	of	the	phosophodiesterase	6	β	subunit,	

that	causes	high	cGMP	levels	in	rod	outer	segments	and	leads	to	the	apoptosis	of	all	

rod	 photoreceptors	 around	 postnatal	 day	 (PND)	 17	 (Carter‐Dawson	 et	 al.,	 1978).	

Mutations	in	the	PDE6B	gene	occur	also	in	human	patients	and	are	responsible	for	

up	to	4	%	of	all	cases	of	Retinitis	pigmentosa	(Dryja	et	al.,	1999).	

The	rod	degeneration	includes	the	loss	of	rod	outer	segments	and	rod	nuclei.	

Different	 to	 this	complete	 loss	of	 rod	photoreceptors	 is	 the	degeneration	of	 cones,	

which	 are	 not	 primarily	 affected.	 Cone	 outer	 segments	 degenerate	 prior	 to	 cone	

somata	and	are	undetectable	around	PND	28.	Remaining	cone	nuclei	are	still	found	

around	PND	100	(Lin	et	al.	2010).	
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So	 far	 the	 functionality	 of	 the	 residual	 cone	 somata	 is	 unknown.	 Recent	 findings	

indicate	that	the	remaining	cone	somata	are	still	able	to	generate	a	dark	current	and	

can	 be	 reactivated	 using	 vector	 based	 expression	 of	 light	 sensitive	 ion	 channels	

(Busskamp	et	al.	2010).	

Loss	 of	 the	 presynaptic	 photoreceptors	 affects	 the	 cells	 in	 the	 inner	 retina.	

Concomitant	with	the	onset	of	degeneration	mGluR6	expression	in	rod	bipolar	cells	

is	 down	 regulated	 and	 residual	 proteins	 are	 mislocalized,	 as	 a	 consequence	

glutamate	sensitivity	in	bipolar	cells	decreases	(Puthussery	et	al.	2010).	In	rd1	mice	

horizontal	 cells	 start	 sprouting	 upon	 photoreceptor	 degeneration	 to	 regain	 new	

synaptic	contact,	while	rod	bipolar	cells	retract	their	dendrites	(Strettoi	et	al.	2002).	

Within	the	first	100	postnatal	days	around	20%	of	HCs	and	rod	BCs	die	in	rd1	mice	

(Strettoi,	2000).	

In	later	stages	of	RP	a	general	remodeling	of	the	cellular	organization	in	the	retina	is	

reported,	but	this	is	not	seen	in	rd1	mice	earlier	than	PND	600	(Marc	et	al.	2005).	

Other	 models	 of	 retinal	 degeneration	 show	 additionally	 to	 photoreceptor	 loss	

secondary	 degeneration	 of	 RGCs	 leading	 to	 complete	 RGC	 loss	 at	 late	 stages	

(Villegas‐Perez	et	al.	1998;	Kolomiets	et	al.,	2010)	

The	 first	 investigation	of	visual	activity	 in	 rd1	mice	was	undertaken	by	Hubel	and	

Dräger	(Hubel	&	Dräger,	1978),	who	recorded	rhythmic	bursting	cells	 in	the	visual	

cortex	of	anesthetized	animals.		

After	 a	 long	 period	 of	 silence,	 in	 recent	 times	 three	 studies	were	published	 about	

electrophysiological	changes	in	the	retina	of	rd1	mice.		

The	first	study	(Stasheff,	2008)	recorded	C3H	mice	RGCs	during	development	and	in	

maturity	with	a	MEA	and	found	an	increase	of	spontaneous	activity	that	he	termed	

‘hyperactivity’.	In	this	exciting	study	the	idea,	that	the	cells	are	rhythmic	is	indicated,	

but	not	further	investigated.	

In	the	same	year	a	patch‐clamp	study	on	rd1	mouse	RGCs	was	published	(Margolis	&	

Detwiler	2008).	ON	and	OFF	cells	were	identified	by	morphological	 features	and	it	

was	shown	that	this	cells	spike	 in	a	stable	10	Hz	rhythm.	As	the	sample	was	much	

smaller	than	in	Stasheffs	MEA	study	it	remained	unclear	in	which	proportion	of	cells	

this	may	take	place	and	which	role	the	different	neurotransmitter	systems	play.	

The	 third	 study	on	C3H	mice	also	used	a	MEA	but	 analyzed	only	 low‐pass	 filtered	

data	 (Ye	&	Goo,	2007)	of	C3H	mice	younger	 than	PND	30.	 In	 the	 low	pass	 filtered	

data	they	found	a	“slow	wave”	component	which	had	a	frequency	of	10	Hz.		
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From	 these	 studies	 only	 one	 indicates	 that	 RGCs	 in	 rd1	 exhibit	 rhythmic	 spiking	

(Margolis	et	al.	2008),	but	confirms	this	only	for	a	small	sample	of	cells.		

In	 the	 present	 study	 will	 be	 analyzed	 which	 proportion	 of	 rd1	 cells	 is	 indeed	

rhythmic	 and	 how	 this	 affects	 their	 correlation	 pattern.	 Additionally	 low	 frequent	

voltage	deflections	were	analyzed	to	understand	their	temporal	and	spatial	pattern	

and	 their	 relation	 to	RGC	activity.	The	aberrant	activity	 seen	 in	rd1	mice	 relies	on	

presynaptic	 input	 (Margolis	 et	 al.,	 2008).	 Therefore	 the	 effects	 of	 a	 variety	 of	

neurotransmitter	 antagonists	 and	 synaptic	 blockers	 will	 be	 investigated.	 The	

analysis	 will	 reveal	 the	 major	 components	 that	 generate	 the	 aberrant	 electrical	

phenotype	seen	in	rd1.	

	

Based	 on	 the	data	 available	 so	 far	 it	was	 recently	 proposed	 (Margolis	&	Detwiler,	

2011)	 that	 loss	 of	 inhibition	may	 be	 the	 trigger	 of	 rhythmic	 hyperactivity	 in	 rd1	

mice.	 	It	 was	 also	 claimed	 claimed	 that	 it	 should	 be	 possible	 to	 induce	 the	 rd1	

phenotype	 in	 wt	 mice	 using	 appropriate	 blocking	 substances	 that	 create	 an	

imbalance	between	excitation	and	inhibition.		

However,	 blocking	 inhibition	 in	wt	 retina	 induces	 regular	 bursting	 in	 RGCs	 at	 a	

fundamental	frequency	less	than	1	Hz	and	leaves	firing	rates	unaffected	(Margolis	&	

Detwiler,	2011).		This	result	was	confirmed	in	recordings	of	bipolar	cells	under	the	

same	condition	(Borowska	et	al.,	2011)	It	can	therefore	be	concluded	that	blocking	

inhibitory	synapse	alone	is	not	sufficient	to	generate	a	rd1	like	phenotype.		

My	study	focuses	on	the	critical	role	of	the	dark	current	 in	spontaneous	activity	of	

RGCs	 in	 rd1	 and	 wt	 mice.	 Absence	 of	 light	 causes	 the	 dark	 current	 and	 the	

permanent	 release	 of	 glutamate	 onto	 bipolar	 cells.	 ON‐bipolar	 cells	 interpret	 the	

presence	 of	 glutamate	 as	 “darkness”.	 After	 photoreceptor	 loss,	 no	 glutamate	 is	

released	and	this	may	trigger	hyperactivity	of	bipolar	cells.		

Considering	 the	 role	 of	 light	 and	 light	 activation	 in	 the	 retina	 gave	 rise	 to	 the	

“equivalent	light”	hypothesis	(Fain	&	Lismann,	1993).	In	many	forms	of	rd,	but	not	in	

rd1,	the	mutation	in	rod	photoreceptors	closes	the	cGMP	gated	channels	constantly,	

which	 is	 also	 the	 case	when	 photons	 activate	 the	 opsines/rhodopsines.	 Therefore	

Fain	 &	 Lissmann	 related	 the	 loss	 of	 photoreceptors	 to	 known	 effects	 of	 light	

damages,	which	also	trigger	photoreceptor	degeneration	(Marc	et	al.,	2008).	In	rd1,	

the	loss	of	photoreceptors	may	also	be	an	“equivalent	light”.	
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In	 the	 present	 study	 the	 role	 of	 the	 dark	 current	 in	 maintaining	 normal	 retinal	

activity	will	be	studied	and	it	will	be	shown	that	loss	of	the	dark	current	is	sufficient	

to	induce	rhythmic	spiking	in	RGCs	of	wt	mice.	

	

1.4.2	RGC	degeneration	and	glaucoma		

In	 the	 rd1	 mouse	 used	 here,	 the	 RGCs	 only	 receive	 altered	 synaptic	 input	 due	 to	

photoreceptor	degeneration.		

But	in	other	rd	mice	(Wang	et	al.,	2000)	a	progressive	loss	of	RGCs	was	shown.	More	

obviously	 is	RGC	degeneration	 in	different	rat	models	of	rd	 (Sekirnjak	et	al.,	2011;	

Kolomiets	et	al,	2010;	Villegaz‐Perez	et	al.,	1998).	

Loss	 of	 RGCs	 progresses	 very	 slow	 in	 these	 animals	 and	 for	 the	 analysis	 of	 RGC	

activity	it	is	critical	to	differentiate	between	the	effects	of	presynaptic	degeneration	

and	degenerative	changes	of	the	RGC	itself.	

Therefore	 RGC	 degeneration	 can	 be	 better	 studied	 in	 animals	 suffering	 from	

glaucomatous	diseases.	

Like	RP,	glaucoma	is	a	leading	cause	of	blindness	in	the	world.	It	is	characterized	by	

progressive	 loss	 of	 RGCs	 and	 degeneration	 of	 the	 optic	 nerve.	 Similar	 to	 RP,	

glaucoma	affects	initially	the	peripheral	retina.	The	pathophysiology	of	glaucoma	is	

not	 yet	 fully	 understood.	 Glaucoma	 is	 clinically	 related	 to	 elevate	 Intra‐Ocular‐

Pressure	 (IOP)	 that	 crushes	 the	 RGC	 axons	 behind	 the	 optic	 disc	 and	 thereby	

initiates	RGC	degeneration.	Responsible	for	high	IOP	is	often	the	decreased	drainage	

of	 aqueous	 humor,	 which	 fills	 the	 posterior	 and	 anterior	 eye	 chambers	 and	 is	

secreted	by	processes	of	the	ciliary	body	(Quigley	2011).		But	cases	of	glaucoma	are	

known	 that	 are	not	 related	 to	 elevated	 IOP	or	hypertension	 and	 therefore	 termed	

Normal	tension	glaucoma	(NTG)	(Sowka	2005).	Glaucoma	is	divided	into	Open	angle	

glaucoma	that	progresses	slowly	and	closed	angle	glaucoma	with	sudden	onset.	

Suffering	 from	 glaucoma	 is	 related	 to	 ageing	 and	 has	 no	 clear	 genetic	 basis	 and	

known	risk	factors	for	glaucoma	are	of	more	general	kind	(Quigley	2011).	

By	 now	 glaucoma	 treatment	 depends	 on	 early	 detection	 of	 the	 disease	 which	 is	

followed	by	surgical	intervention,	which	slows	the	progression.	Lost	visual	function	

cannot	be	restored.	

Curing	later	stages	of	glaucoma	faces	the	same	general	problems	that	are	related	to	

axonal	 regeneration	 in	 neuronal	 tissues	 (Luo	 &	 Leary	 2005,	 Raff	 et	 al.	 2002).	
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Therefore	glaucoma	research	is	intermingled	with	research	for	axonal	regeneration	

strategies	(Heiduschka	&	Thanos	2000).	

Investigating	 glaucoma,	 a	 variety	 of	 animal	models	 is	 available	 (Levkovich‐Verbin	

2003).	 As	 mentioned,	 glaucoma	 lacks	 a	 clear	 genetic	 cause	 and	 therefore	 most	

animal	models	rely	on	physical	intervention.		

Just	recently	a	mouse	strain	was	 identified	 that	carries	a	gene	mutation	 leading	to	

elevated	IOP,	the	DBA/2J	mice	strain	(Moon	et	al.	2005).		

In	this	study	the	role	of	the	IOP	is	neglectable	and	to	study	RGC	loss	I	established	a	

surgical	 model	 of	 glaucoma,	 where	 the	 optic	 nerve	 of	 rats	 is	 either	 crushed	 or	

sectioned	within	the	orbit.	

By	 the	 lesion	 the	 axon	 contact	 with	 its	 target	 is	 weakened	 (crush)	 or	 disrupted	

(section).	 Neurons	 receive	 neurotrophic	 factors	 from	 their	 target	 synapses	 which	

are	 retrograde	 transported	 (Thoenen	 1987,	 Krishnamoorty	 et	 al.	 2001).	

Additionally,	 axons	 lack	 a	 metabolic	 system	 and	 are	 maintained	 by	 anterograde	

transport	(Colemann	2011)	

These	 transport	 mechanism	 collapse	 upon	 injury	 and	 in	 case	 of	 complete	 axon	

disruption	 transport	 vesicles	 accumulate	 at	 the	 end	 of	 the	 axon	 stump	 (Moore	 &	

Thanos,	1996;	Griffin	et	al.	1995).	

Axonal	 section	 causes	 a	 type	 of	 degeneration	 termed	 “Wallerian”,	 where	 after	 a	

short	 period	 the	 somatic	 and	 axonal	 cytoskeleton	 break	 down	 and	 the	 cells	 are	

degraded	 (Thanos	 &	 Thiel	 1991,	 Luo	 &	 O’Leary,	 2005).	 In	 contrast	 to	 this	 rapid	

apoptosis,	a	slow	and	cell	compartment	specific	degeneration	occurs	when	the	axon	

is	 intact	but	under	physical	stress	or	affected	by	a	chronic	disease.	 In	this	case	the	

axon	 is	 “dying	 back”	 over	 a	 longer	 period	 while	 the	 cell	 soma	 is	 left	 intact.	 This	

compartment	 specific	 degeneration	 resembles	 developmental	 events	 of	 synapse	

reduction	where	specific	axon	branches	are	degraded	(Raff	et	al.,	2002)	

A	variety	of	 studies	 investigated	 the	 time	course	of	RGc	degeneration	 for	different	

species	 after	 surgical	 treatments	 (Berkelaar	 et	 al.	 1997,	 Germain	 2007,	 Kanamori	

2010,	Watanabe	2002).	For	rats	and	rabbits	a	relatively	slow	rate	of	RGC	apoptosis	

within	 the	 first	 week	 was	 shown,	 which	 accelerated	 in	 the	 second	 week	 after	

treatment	(Berkelaar	1997,	Germain	2007).	It	was	mentioned	that	RGCs	with	larger	

somata	survive	longest	after	optic	Nerve	injury	(Mey	&	Thanos	1993).	

RGC	 whose	 axons	 were	 left	 intact	 undergo	 secondary	 degeneration	 and	 initiate	

apoptosis	upon	the	loss	of	their	neighboring	cells	(Levkovich‐Verbin	et	al.	2010).	
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In	animals	suffering	from	experimental	glaucoma,	it	was	shown	that	the	shrinkage	of	

the	 dendritic	 tree	 is	 the	 first	 sign	 of	 glaucomatous	 degeneration	 in	 monkey	 and	

mouse	(Weber	et	al.	1998,	Leung	et	al.	2011).		

While	 degenerative	 processes	 are	 well	 studied	 on	 the	 levels	 of	 morphology	 and	

molecular	biology	only	one	study	 investigated	 the	 impact	of	Optic	nerve	 lesion	on	

single	RGC	functionality	(Takao	et	al.	2002).			

Furthermore	it	is	not	known,	how	the	loss	of	RGCs	is	related	to	axonal	function.		

Functional	studies	at	the	single	cell	level	are	necessary	to	investigate	if	the	surviving	

RGCs	after	optic	nerve	lesion	remain	intact	or	change	their	response	properties.	As	

the	 surviving	 neurons	 are	 the	 primary	 target	 of	 any	 treatment	 for	 glaucoma	 and	

optic	nerve	neuropathies,	 the	 functional	state	of	 these	cells	and	the	 time	course	of	

their	degeneration	are	of	special	interest.	

Most	experiments	aiming	to	prevent	RGC	loss	apply	the	promoting	substances		

before	or	during	the	optic	nerve	lesion	(Hellstrom	et	al.,	2011;	Almasieh	et	al.	2010;	

Heiduschka	et	al.	2005).	 In	clinical	cases	a	treatment	will	be	applied	after	a	severe	

damage	was	diagnosed,	 therefore	treatment	strategies	 rely	on	 the	condition	of	 the	

surviving	neurons.	
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1.5 Extracellular	recording	of	retinal	Ganglion	cells	

	

In	this	study	the	electrical	Retinal	Ganglion	cell	activity	was	recorded	extracellular	

using	a	Multi‐Transistor‐Array	(MTA).		

Here	 the	 Complementary	 Metal	 Oxide	 Semiconductor	 (CMOS)‐based	 Neurochip	

G1183	(Lambacher	et	al.,	2010)	was	used	(Fig.	1.7	A),	which	has	an	active	sensor	

area	 of	 1	mm²	 comprising	 16384	 recording	 transistors	 (Fig.	1.7	B).	 The	 distance	

between	two	neighboring	sensors	is	7.4	µm.	In	Fig.	1.7	C	 the	major	compartments	

are	 illustrated.	 The	 cell	 (depicted	 as	 RC	 element)	 is	 capacitive	 coupled	 to	 the	

capacitive	 surface	 of	 the	 transistor.	 Coupling	 depends	 on	 the	 resistivity	 of	 the	

medium	and	the	“gap”	between	tissue	and	the	insulating	oxide	of	the	chip.	Changes	

in	 the	 extracellular	 potential	 caused	 by	 action	 potentials	modulate	 voltage	 across	

the	oxide	and	thereby	the	source‐drain	current	in	the	transistor.	

	

	
Figure	1.7:	The	G1183	Neurochip	

(a) The	 G1183	 Neurochip	with	 a	 Perspex	 chamber	mounted	 on	 a	 ceramic	 socket.	 The	
chamber	allows	perfusion	of	the	tissue.	On	the	chip	a	piece	of	mouse	retina	is	adhered.	

(b) Picture	of	the	Chip	with	Sensor	array	and	Stimulation	array	indicated	
(c) Major	components	of	the	capacitive		retina‐chip	coupling	can	be	simplified	by	electronic	parts.			

Recording	principle	of	the	G1183	chip:	Changes	in	extracellular	ion	concentration	due	to	RGC	
activity	modulate	the	Source‐Drain	current	of	the	underlying	recording	transistor.	

	

.	
Each	neuron	has	a	negative	membrane	potential	 ‐	 or	 resting	potential	 ‐	 caused	by	

asymmetric	 distribution	 of	 ions	 as	 expressed	 in	 the	 Nernst	 equation.	 These	

gradients	are	actively	maintained	by	specific	ion	pumps.	
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Neurotransmitter	 receptors,	 mainly	 located	 at	 the	 dendrites,	 open	 specific	 ion	

channels	 and	 due	 to	 the	 initial	 gradient	 and	 the	 electric	 charge	 of	 the	 ions	 the	

membrane	potential	will	be	altered.		

Influx	of	chloride	ions	due	to	GABA	or	Glycin	receptor	activation	will	hyperpolarize	

the	cell,	while	sodium	and	calcium	influx	after	glutamate	or	acetylcholine	receptor	

activation	depolarizes	the	cell.		

Given	 the	 activation	 of	 depolarizing	 ion	 channels,	 the	membrane	 potential	will	 be	

elevated	to	the	threshold	of	voltage	gated	sodium	channels.	These	channels	enable	

massive	 sodium	 influx	 and	 depolarize	 the	membrane	 potential	 to	 positive	 values.	

Voltage	 gated	 potassium	 channels	 open	 during	 depolarization	 and	 an	 increasing	

potassium	efflux	 leads	 to	a	hyperpolarization	of	 the	cell.	This	picture	of	a	neurons	

action	 potential	 is	 based	 on	 the	 intracellular	 recordings	 of	 Hodgkin	 and	 Huxley	

(Hodgkin	&	Huxley	1952;	Fig.	1.8).	

Extracellular	recordings	depend	on	the	electric	 field	produced	by	the	 ionic	current	

crossing	the	cell	membrane	during	an	action	potential.	Changes	in	the	extracellular	

electric	field	can	be	measured	when	an	electrode	is	placed	nearby.	

According	 to	 Ohm’s	 law	 the	 electric	 field	 (E)	 is	 the	 product	 of	 resistivity	 (ρ)	 and	

current	density	(j):	

	

(1) 																																E	=	ρ	*	j	

	

For	 recording	 the	 distance	 between	 the	 electrode	 and	 the	 neuron	 is	 a	 critical	

parameter.	The	voltage	V	recorded	by	an	electrode	depends	on	its	distance	r	to	the	

point	 source	 of	 the	 circular	 electric	 field,	 the	 total	 current	 I	 and	 the	 resistivity	 ρ,	

which	is	a	matter	constant.		

	

(2) 																														V	=		ρI/4πr	

	

For	the	retina	on	a	MTA	Chip	the	tissue	resistivity	was	estimated	to	be	ρ	=	1000	Ωcm	

(Zeitler,	Fromherz,	Zeck	to	submit).	 	The	total	current	 I	 	 for	a	model	cell	of	100	pF	

capacitance	that	changes	its	membrane	potential	for	100	mV	is:	

	

(3) 																									I	=	100	pF	*		100	mV/	1	ms	=	10	‐8	A	
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Therefore,	 for	 an	 extracellular	 electrode,	 20	 µm	 apart	 from	 the	 cell	 body,	 the	

recorded	voltage	is:	

	

(4) 																							V	=10	‐8	A*1000	Ωcm/(4	π	*20*10‐6m)	=	400	µV	

The	action	potential	amplitudes	recorded	in	mouse	and	rat	retina	(compare	Fig.	1.9)	

are	in	the	range	of	100	–	500	µV.		

The	series	of	events	during	an	action	potential	sketched	above	determine	the	form	

of	 the	 recorded	 signal.	 Somatic	 APs	 are	 biphasic	 with	 a	 negative	 peak	 indicating	

sodium	influx	and	a	small	positive	overshoot	produced	by	potassium	currents.		

	

	

Figure	1.8:	 	The	action	potential	is	shaped	by	the	kinetic	of	voltage	gated	sodium	and	
potassium	channels		(Hodgkin	&	Huxley	1952).	
The	graph	shows	the	changes	in	sodium	(gNa)	and	potassium	conductance	(gK)	when	a	cell	
is	depolarized	 to	 spike	 threshold.	Changes	of	 the	membrane	potential	 (V)	are	 indicated	by	
the	dashed	line,	after	a	strong	depolarization,	the	voltage	decreases	exponentially	to	values	
below	 the	 initial	 resting	 potential.	 In	 extracellular	 recordings	 algebraic	 signs	 are	 inverted	
compared	to	intracellular	recordings,	e.g.		depolarization	has	negative	voltage.	
	

In	extracellular	recordings	not	only	somatic	APs	are	obtained	but	also	axonal	APs.	

Action	 potentials	 in	 axons	 have	 to	 propagate	 over	 long	 distances	 and	 signal	

decrement	 has	 to	 be	minimized.	 Axonal	 action	 potentials	 are	 triphasic	 (Plonsey	&	

Barr,	2007),	with	 two	hyperpolarizing	phases	 in	 front	 and	behind	 the	depolarized	

region.	 Nevertheless,	 axonal	 APs	 recorded	 here	 were	 biphasic	 and	 only	 near	 the	

axon	hillock	a	stationary	third	phase	was	seen	(Fig.	1.9	c).	As	intra‐retinal	axons	are	
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not	myelinated,	the	depolarization	propagates	continuously	along	the	axons	at	a	cell	

specific	propagation	velocity.		

In	 rabbit	 single	 axonal	 action	 potentials	 can	 be	 recorded,	while	 in	 rat	 and	mouse	

retina	 the	 signal	 is	 hidden	 in	 the	 transistor	 noise.	 The	 ratio	 of	 somatic	 to	 axonal	

spike	 amplitude	 was	 estimated	 1:10	 in	 the	 rabbit.	 Comparing	 the	 average	 spike	

amplitudes	of	rabbits	with	mouse	and	rats	(Fig.	1.9	a),	this	makes	the	detection	of	a	

single	 axonal	 action	 potential	 unlikely	 (Fig.	1.9	b;	 voltage	map	 of	 1	ms	 raw	 data	

activity).	

	

	
Figure	1.9:	Detection	of	axonal	action	potentials	by	spike	triggered	average	

(a) The	average	spike	amplitude	of	rabbits	 is	 five	 times	higher	 than	 in	rat	and	mouse.	
Given	a	ratio	of	somatic	to	axonal	spikes	of	~	1:10	detection	of	single	axonal	APs	is	
unlikely	in	rat	and	mouse	

(b) Colour	coded	voltage	map	of	the	spiking	of	a	cell	(red	circle)	and	the	activity	during	
the	next	millisecond.	No	axonal	AP	is	visible,	but	other	spiking	cells	(blue)	

(c) Averaging	the	voltage	maps	of	the	first	millisecond	after	each	somatic	spike	of	one	
cell	 (red	 circle	 in	 (b))	 enhances	 the	 axonal	 AP	 and	 visualizes	 the	 path	 of	 its	
propagation.	Each	square	represents	1mm²	retinal	surface.	

	

	

Averaging	 the	 voltage	 values	 of	 every	 transistor	 after	 a	 somatic	 action	 potential	

using	 a	 spike‐triggered‐average	 algorithm	 enhances	 the	 signal	 and	 enables	 the	

visualization	of	axons	in	rat	and	mouse	(Fig.	1.9c).	

In	 summary,	 extracellular	 electrodes	 detect	 voltage	 changes	 in	 single	 axons	 and	

single	cells	if	they	can	be	placed	in	close	proximity.		
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Additionally,	extracellular	electrodes	can	record	cell	population	signals.	When	large	

cell	populations	are	active	at	once,	e.g.	during	heart	muscle	activity,	epilepsy	or	 in	

the	 retina	 perceiving	 a	 light	 flash,	 the	 single	 signals	 sum	 up	 and	 constitute	 a	

population	signal	(Buzsaki,	2006).	

Such	 signals	 can	 be	 recorded	 even	 at	 extra	 corporal	 sites	 as	 in	 EEG	 (Electro‐

encephalogram,	 ERG	 (Electro‐retinogram)	 and	 similar	 methods	 (Plonsey	 &	 Barr,	

2007).	

	

	

Figure	1.10:		Extracellular	recorded	Local	Field	Potential	in	the	mouse	retina	
In	(a)	the	low	pass	filtered	voltage	traces	of	two	sensors	are	shown.	The	location	
of	the	sensors	is	indicated	by	white	dots	in	(b),	where	the	spatial	properties	of	the	LFP	are	
illustrated.	The	dots	have	the	size	of	the	average	area	on	which	the	activity	of	a	single	cell	is	
seen	(Fig.	1.22	b)	
	

Population	 signals	 restricted	 to	 smaller	 cell	 populations	 can	 be	 recorded	 by	 an	

ectracellular	electrode	in	the	tissue.	These	signals	are	termed	Local	Field	potentials	

as	 the	 cell	 population	 act	 as	 a	 single	 point	 source	 generating	 a	 large	 electric	 field	

change.	(Fig.	1.10,	compare	to	single	cell	activity	in	Fig.	1.19	b)	

The	 physical	 explanation	 of	 LFPs	 is	 still	 under	 discussion,	 but	 the	 phenomenon	

relies	on	the	fact	that	low	frequent	waves	(<	150	Hz)	can	travel	over	large	distances	

in	tissues	and	sum	up,	while	high	frequent	waves	like	action	potentials	(>	1	kHz)	do	

not	(Bedard	et	al.,	2008,	Mitzdorf	,	1985)	as	tissues	act	as	low‐pass	filters.		

In	 this	 study	 local	 field	 potentials	 of	 the	 retina	 were	 recorded	 extracellular	 (Fig.	

1.10).	
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LFPs	cannot	be	assigned	to	single	cells,	while	Action	potentials	have	to.	

The	extracellular	 recording	of	APs	 constitutes	 a	 challenge	of	proper	detection	and	

spike	assignment.		

In	intracellular	recordings	each	spike	of	a	cell	can	be	interpreted	as	response	to	its	

condition.	In	this	configuration	each	spike	is	a	more	or	less	meaningful	signal	of	the	

known	cell.	

In	extracellular	recordings	the	set	of	action	potentials	recorded	has	to	be	assigned	to	

one	 or	 more	 cells.	 In	 the	 following	 some	 fundamental	 outlines	 of	 a	 spike	 sorting	

process	will	be	discussed.	

Using	a	single	electrode	two	fundamental	facts	facilitate	spike	sorting:	

	

a) Each	 AP	 is	 followed	 by	 a	 refractory	 period	 of	 1	 ms	 where	 no	 AP	 can	 be	

elicited	

b) Due	to	the	decrease	of	 the	recorded	voltage	over	distance,	APs	of	 two	cells	

that	are	not	equidistant	differ	in	amplitude	

	

Application	of	both	principles	is	limited	by	the	fact	that	spike	trains	of	two	cells	may	

be	time	shifted	so	that	the	majority	of	spikes	does	not	violate	the	refractory	period	

of	the	other	cell.	

Furthermore	 even	 cells	 that	 are	 not	 equidistant	 may	 have	 spikes	 of	 similar	

amplitude.		A	step	further	is	to	consider	the	shape	of	the	signal,	i.e.	the	slope	of	the	

recorded	action	potential	 (Gerstein	and	Clarck	1964)	what	requires	high	 temporal	

resolution	 (	 >	 20	 kHz).	 	 A	 variety	 of	 other	 features	 of	 the	 spike	 shape	 can	 be	

extracted	 and	 used	 by	 Principal	 component	 analysis	 to	 build	 clusters	 of	 spikes	

(Glaser	&	Marks	1968).	All	these	algorithms	rely	on	arbitrarily	chosen	spike	features	

and	need	supervision.	

These	 approaches	 work	 on	 data	 from	 a	 single	 electrode	 and	 spike	 sorting	 was	

enhanced	 using	 Multi‐Electrodes.	 In	 the	 classic	 case,	 spikes	 were	 recorded	 by	 a	

tetrode	(Gray	et	al.	1995)	and	depending	on	the	distance	to	the	electrodes	the	spike	

shape	varies	and	facilitates	cluster	analysis.		

In	this	study,	spikes	were	sorted	in	three	steps	(A	more	detailed	analysis	is	

presented	in:	Lambacher	et	al.	2010):	

First,	threshold	crossings	were	detected	using	custom	software	(Labview)	in	

the	voltage	trace	of	each	transistor.	A	threshold	crossing	was	defined	as	events	that	
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exceed	 the	 root	mean	 square	 of	 the	 transistor	 noise	 at	 least	 three	 times.	This	 is	 a	

minimum	requirement	and	as	even	arbitrary	events	may	be	of	that	size	additionally	

every	threshold	crossing	has	to	be	detected	by	three	sensors.	

(1) A	multitude	of	 sensors	due	 to	 the	high	 sensor	density	will	 record	each	

threshold	 crossing.	 From	 this	 results	 a	 list	 of	 {x1…xn}	 threshold	

crossings	 for	 each	 sensor,	 each	 threshold	 crossing	 has	 a	 temporal	

identity:	sensor	xy	=	{	t1,	t2….tn}.	

(2) 	The	 threshold	 crossings	 which	 occur	 a)	 simultaneously	 and	 b)	 on	

adjacent	sensors	are	merged	into	an	action	potential.	In	other	words,	the	

list	 is	 reorganized	 to	 a	 sequences	 of	 temporal	 events	 which	 are	

enumerated	 in	 the	order	of	 their	appearance	 (AP#1,	AP#2…AP#n)	and		

to	each	AP	a	set	of	sensors	is	assigned	(AP#1	=	sensor	2,3,4,5).		

(3) In	 the	 last	 step	 the	 sensor	 sets	of	 all	 action	potentials	 are	analyzed	 for	

overlap	respectively	identical	transistors.	For	example	AP#1	is	recorded	

by	2,3,4,5,	AP#2	by	3,4,6,7.	Each	cell's	APs	are	assumed	to	be	recorded	

by	 a	 specific	 set	 of	 transistors.	 This	 feature	 is	 mainly	 used	 to	 assign	

action	 potentials	 to	 the	 corresponding	 cell.	 In	 addition	 inter	 spike	

intervals	are	used	with	regard	to	the	refractory	period	violation.	

	At	 the	 end	 all	 these	 APs	 are	 assigned	 to	 one	 cell.	 This	 is	 of	 course	 a	mechanistic	

process	afterwards	all	created	cells	have	to	be	supervised	manually.		
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Aim	of	this	study	

The	 present	 study	 is	 aimed	 to	 understand	 the	 electric	 activity	 in	 two	 models	 of	

degenerating	 retina.	 Degeneration	 of	 the	 retina	 leads	 to	 blindness	 that	 actually	

cannot	be	cured.	

First,	 a	 mouse	 model	 of	 rd1	 will	 be	 analyzed.	 In	 rd1	 photoreceptors	 largely	

disappear	 but	 the	 other	 layers	 are	 left	 intact	 and	 continue	 to	 signal.	 Their	

spontaneous	activity	and	the	effect	of	different	synaptic	blockers	will	be	investigated	

to	reveal	the	underlying	circuitry	(sect.	3.1).	

Based	on	this	results,	the	rd1	phenotype	will	be	induced	in	normal	C57Bl6	mice	to	

produce	a	“fast”	rd1	model	that	sheds	light	on	the	origin	of	the	aberrant	activity	seen	

in	rd1	(sect.	3.2).	The	same	protocol	will	be	applied	to	wistar	rat	retinas	(sect.	3.3).	

Loss	of	RGCs	is	a	feature	of	 late	rd	but	also	of	other	retinal	diseases	like	glaucoma.	

Glaucoma	is	an	age	related	degeneration	of	RGCs	that	can	be	mimicked	by	surgical	

injuries	 of	 the	 optic	 nerve.	 The	 consequences	 of	 axonal	 lesion	 on	 the	 propagation	

velocity	 of	 axonal	 APs	 will	 be	 studied	 in	 rat	 retinas	 as	 well	 as	 alterations	 in	

spontaneous	and	 light	evoked	activity.	 (sect.	3.4)	At	 least	 the	effect	of	optic	nerve	

lesion	on	the	correlated	firing	of	rat	RGCs	will	be	shown	(sect.	3.5).		
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2 Materials	&	Methods	

2.1	Materials	

The	following	table	lists	all	chemicals	used	in	this	study.	Chemicals	were	dissolved	in	

aqua	bidest	or	in	acetate	buffer	(TTX)	to	obtain	stock	solutions.	Stock	solutions	were	

dissolved	in	AMES	Medium	to	get	the	final	concentrations	used.	

Substance	 Supplier	

Ames	Medium	 Sigma	

D‐(‐)‐2‐Amino‐7‐phosphonoheptanoic	acid	(AP‐7) Tocris	

DL‐2‐Amino‐4‐phosphonobutyric	acid	sodium	salt	(AP‐4) Tocris	

(3β,20β)‐3‐(3‐Carboxy‐1‐oxopropoxy)‐11‐oxoolean‐12‐en‐29‐oic	
acid	disodium	

(Carbenoxolone)	

Tocris	

6,7‐Dinitroquinoxaline‐2,3(1H,4H)‐dione	(DNQX) Sigma	

Ketamine	hydrochlorid	 WDT	

2‐[(2,6‐Dichloro‐3‐methylphenyl)amino]benzoic	 acid	 sodium	 salt	
(MFA)	

Sigma	

Rhodamine	B	isothiocyanate–Dextran	
Sigma	

(S)‐1‐Aminopropane‐1,3‐dicarboxylic	acid		(glutamate) Sigma	

2‐(3‐Carboxypropyl)‐3‐amino‐6‐(4	 methoxyphenyl)pyridazinium	
bromide	(Gabazine	or	SR	95531)	

Sigma	

Sodium	bicarbonate	 Sigma	

Strychnidin‐10‐one	hydrochloride Tocris	

Tetrodotoxin	 Sigma	

Xylazine	hydrochloride	 Bayer	

Table	1:	Chemicals	used	in	the	experiments	
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2.2	 Animals	

a) Mice	

All	experiments	were	performed	in	accordance	to	the	animal	use	committee	of	the	

Max	Planck	 Institutes.	 In	 this	 study	 retinas	 from	male	 rd1	mice	were	 investigated	

between	postnatal	days	P	35	–P	300,	when	their	retinas	are	no	longer	responsive	to	

light.	All	experiments	on	rd1	retinas	were	first	performed	using	the	local	colony	of	

the	FVB/NCrlMPI	strain	that	is	homozygous	for	the	Pde6brd1	mutation	(Taketo	et	al.,	

1991).	After	 the	pharmacological	 protocols	had	been	established,	 the	 experiments	

were	 repeated	 with	 rd1	 retinas	 from	 C3H/HeNCrl	 mice	 (Charles	 River,	 Sulzfeld,	

Germany)	that	are	homozygous	for	the	Pde6brd1	mutation.	Control	experiments	were	

performed	on	wt	 retinas	from	the	 local	colony	of	C57/Bl6NMPI	male	mice.	To	rule	

out	possible	interference	from	different	genetic	backgrounds,	I	additionally	obtained	

C3H	 wt	 male	 mice	 from	F.	 Paquet‐Durand	 (Tübingen).	 This	 mouse	 strain	 was	

initially	 created	 in	 the	 lab	 of	 S.	 Sanyal	 (Sanyal	 and	 Bal,	 1973)	 by	 substituting	 the	

mutated	Pde6b	gene	with	the	normal	allele,	and	 is	maintained	in	various	 labs	ever	

since.	 All	 animals	 were	 housed	 in	 temperature‐regulated	 facilities	 on	 a	 12	 h	

light/dark	cycle	and	fed	ad	libitum.	All	animals	were	dark	adapted	(1h)	prior	to	the	

retina	preparation.		

b) Wistar	rats	

All	 experimental	 procedures	were	 carried	out	 in	 compliance	with	 the	 institutional	

guidelines	 of	 the	 Max	 Planck	 Society	 and	 the	 local	 government	 (Regierung	 von	

Oberbayern;	Statement	of	Compliance	#A5132‐01	Tierversuchsnummer:	55.2‐1‐54‐

2531‐95‐08).	All	animals	are	sacrificed	prior	to	the	removal	of	organs	in	accordance	

with	 the	 European	 Commission	 Recommendations	 for	 the	 euthanasia	 of	

experimental	animals	(Part1	and	Part	2).			

Female	wistar	 rats	 (WR,	 local	 colony	at	 the	Max	Planck	 Institute	of	Neurobiology)	

weighting	 80‐100	 g	 were	 used	 for	 this	 study.	 Efforts	 were	made	 to	minimize	 the	

number	of	animals	used	as	well	as	their	suffering.	
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2.3	 Surgical	procedure	for	rats	

Animals	 were	 anesthetized	 by	 i.p	 injection	 of	 0.85	 ml/kg	 of	 5%	 ketamine	

hydrochloride	 solution	 (WDT,	 Garbsen,	 Germany)	 and	 0.35	ml/kg	 of	 2%	 xylazine	

hydrochloride	solution	(Rompun,	Bayer,	Germany).	

All	surgical	procedures	were	performed	unilateral.	The	eye	lid	was	retracted	using	

tweezers,	 and	 then	 a	 short	 incision	was	made	 in	 the	 conjunctiva.	 The	 conjunctiva	

was	retracted	and	fixated	with	threads.	This	procedure	exposed	a	5	mm	section	of	

the	optic	nerve.		

Optic	nerve	crush	(ONC):	The	optic	nerve	was	crushed	behind	the	ophthalmic	artery	

pressing	with	forceps	for	10	sec.	

Optic	 nerve	 section	 (ONS):	 A	 5	 µl	Hamilton	 (Hamilton,	Reno	Nevada)	 syringe	was	

used	 to	 puncture	 the	 optic	 nerve	 behind	 the	 ophthalmic	 artery.	 The	 enveloping	

nerve	sheet	was	left	intact.	In	some	animals	3	µl	Rhodamine	dextrane	was	injected	

to	monitor	RGC	loss.		

Retinas	of	WR	were	used	4,	8	and	14	days	after	surgery.	As	controls	animals	of	same	

sex,	weight	and	age	were	used.	Rodent	retinas	showed	diminished	 light	 responses	

when	 stored	 in	 Ames	 solution	 longer	 than	 1	 hr	 prior	 to	 recording.	 Therefore	 the	

other	eye	could	not	be	used	as	control.	

	

2.4		 Staining	and	cell	count	in	rat	retinas	

	

After	MTA‐chip	recordings	the	Ames	medium	was	carefully	removed	from	the	chip	

and	the	retina	was	briefly	dried	to	allow	imaging	through	the	inner	retinal	layers.	

Rhodamine‐dextrane	labeled	cells	were	imaged	using	fluorescence	light	microscopy	

with	an	excitation	and	an	emission	frequency	of	535	nm	and	571	nm,	respectively.	

Once	the	retinal	layers	became	translucent	the	retina	was	imaged	using	a	20x	

objective.		All	stained	cells	within	the	recording	array	were	photographed.		

The	resulting	images	were	combined	to	create	an	overview	of	the	whole	recording	

area.		

The	position	of	electrically	recorded	cells	was	determined	plotting	the	number	of	

spikes	recorded	by	each	transistor.	The	resulting	image	was	used	to	create	outlines	

of	the	different	areas	of	maximal	spike	count	and	these	outlines	were	merged	with	

the	fluorescent	microscope	pictures.	Thereby	I	was	able	to	assign	areas	of	high	spike	

counts	to	cells.	
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Stained	cells	on	the	micrographs	were	counted	using	the	image	software	Fiji.	The	

threshold	of	the	images	was	manually	set	to	minimize	background.	The	image	was	

then	transformed	into	a	binary	image.	The	particles	on	the	image	were	counted	

using	the	“analyze	particles”	function,	if	their	size	was	between	20‐2000	pixels	in	

case	of	20x	magnification.	The	counted	particles	were	drawn	as	ellipses.	Original	

picture	and	counted	particles	picture	were	combined,	to	allow	manual	supervision	

of	the	count.	

	

2.5	 Preparation	of	the	retina	and	mounting	on	the	multi‐transistor‐array	

The	 preparation	 of	 the	 retina	 was	 performed	 under	 dim	 red	 illumination	

(640	 nm	 LED,	 Roithner	 Lasertechnik),	 that	 also	 illuminated	 the	 room	 during	 the	

experiment.	 Mice	 were	 anesthetized	 with	 isoflurane	 (CP	 Pharma,	 Burgdorf,	

Germany)	 and	 killed	 by	 cervical	 dislocation.	 Their	 eyes	 were	 removed,	 bathed	 in	

room	 temperature‐oxygenated	 Ames’	medium	 (pH	 7.4)	 and	 hemisected.	 Next,	 the	

lens	and	vitreous	were	removed	from	the	eyecup	and	finally	the	retina	gently	peeled	

off	 the	pigment	 epithelium.	The	 retina	was	mounted	 ganglion	 cell	 side	down	on	 a	

poly‐L‐lysine	(150	kDa	MW,	Sigma)	coated	multi‐transistor	array	(MTA).	The	MTA	

itself	 was	 glued	 on	 a	 ceramic	 package	 (CPGA,	 Spectrum,	 San	 Jose,	 CA).	 The	 bond	

wires	are	shielded	with	a	custom	made	Perspex	chamber	with	an	 inner	area	of	12	

mm2.	 During	 the	 recording,	 retinal	 tissue	 on	 the	 MTA	was	 continuously	 perfused	

with	oxygenated	Ames’	medium	(33‐36°C)	at	a	rate	of	7	ml/min.	For	all	experiments	

only	freshly	prepared	retinas	were	used.	

	

2.6	 Electrical	recording	with	multi‐transistor	arrays	

The	 electrical	 response	 of	 the	 retina	 was	 measured	 using	 an	 array	 of	 128	 x	 128	

equally	 spaced	 sensor	 transistors	 covering	 an	 area	 of	 1	 mm2.	 For	 the	 default	

configuration	I	measured	every	second	column	(128	x	64	sensors)	with	a	sampling	

frequency	 of	 12	 kHz	 for	 each	 sensor.	 In	 each	 experiment	 sensor	 transistors	were	

calibrated	by	applying	an	AC	voltage	 (frequency:	70	Hz;	amplitude:	3	mV	peak‐to‐

peak)	 to	 the	bath	 electrode	 (Eversmann	 et	 al.,	 2003;	 Lambacher	 et	 al.,	 2004).	 The	

calibration	 voltage	 changes	 the	 electrical	 potential	 at	 the	 surface	 of	 the	 chip.	 The	

local	change	of	electrical	potential	couples	through	the	insulating	chip	oxide	to	the	
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gate	of	the	sensor	transistor	and	proportionally	modulates	the	source‐drain	current	

therein.	 During	 the	 experiment,	 ion	 currents	 through	 excited	 retinal	 ganglion	

membranes	change	the	local	extracellular	voltage	with	respect	to	the	bath	electrode.	

The	response	of	each	sensor	transistor	is	solely	determined	by	the	potential	above	

the	insulating	TiZrO2	layer,	averaged	over	the	diameter	(6.3	µm)	of	the	top	contact.	

The	 insulating	TiZrO2	 layer	had	a	 thickness	of	~	30	nm.	The	chip	read‐out	pattern	

was	optimized	to	avoid	cross‐talk	of	transistor	signals	on	the	chip	(Eversmann	et	al.,	

2003;	 Lambacher	 et	 al.,	 2004)	 .	 During	 the	 recording,	 the	 columns	 of	 the	 sensor	

array	were	sequentially	connected	to	128	line	amplifiers.	After	a	settling	time	of	720	

nanoseconds,	the	output	of	these	line	amplifiers	was	multiplexed	over	another	640	

ns	 into	 16‐output	 channels.	 The	 read‐out	 time	 of	 128	 x	 64	 sensor	 array	 was	

therefore	~	(1.36	x	64)	µs.	Within	each	sensor	column,	an	8:1	multiplexer	selects	16	

sensors	(sensor	spacing	125	µm)	that	are	read	out	within	~	640/8	ns.		
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2.7	 Identification	of	action	potentials	and	assignment	to	the	corresponding		
ganglion	cell	
	

The	 method	 for	 identifying	 action	 potentials	 and	 assignment	 to	

corresponding	 neurons	 has	 been	 described	 in	 a	 recent	 report	 (Lambacher	 et	 al.	

2011).	 Briefly,	 the	 analysis	 is	 done	 in	 three	 steps:	 (a)	 Identification	 of	 threshold	

crossings	 of	 a	 signal	 vector	V	 calculated	 from	neighbouring	 extracellular	 voltages,	

(b)	Assignment	of	threshold	crossings	to	one	action	potential	and	(c)	Assignment	of	

action	potentials	to	corresponding	neurons.		

For	the	identification	of	threshold	crossings,	I	first	apply	a	band‐pass	filter	to	

the	calibrated	data	(0.1	–	3	kHz).		As	the	sensor	distance	(7.4µm)	is	smaller	than	the	

ganglion	 cell	 soma	 size,	 each	 extracellular	 signal	 is	 picked	 up	 by	 more	 than	 one	

sensor.	 The	 duration	 of	 the	 somatic	 extracellular	 signal	 is	 longer	 than	 the	 time	

interval	 between	 consecutive	 data	 points.	 Therefore,	 for	 each	 recorded	 data	 point	

the	length	of	a	signal	vector	V	is	calculated:	
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
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with	 iV representing	the	signal	amplitude	of	data	point	i	in	neighbourhood,	 i :	root	

mean	square	(rms)	noise	of	transistor	in	neighbourhood.	The	sum	runs	over	a	3x3x3	

neighbourhood	 (3	 sensor	 rows,	 3	 sensor	 columns,	 3	 time	points)	 surrounding	 the	

data	point	under	consideration.	The	data	point	itself	is	part	of	the	neighbourhood.	If	

V 	 exceeds	 a	 threshold	 of	 15	 the	 data	 point	 is	 saved	 and	 considered	 part	 of	 the	

extracellular	waveform	 that	 represents	 the	 action	potential.	Assuming	 equal	 noise	

on	 each	 of	 the	 nine	 neighbouring	 sensors	 and	 homogenous	 coupling	 on	 these	

sensors	the	threshold	value	of	15	means	that	those	extracellular	voltages	exceeding	

15/ 27 	 x	 rms	 of	 the	 corresponding	 sensor	 are	 detected.	 This	 threshold	 value	 is	

close	 to	 that	 of	 previous	 studies	 using	metal	 electrode	 arrays	 (Zeck	 and	Masland,	

2007;	Stasheff,	2008)	but	slightly	higher	than	the	value	of	11.7/ 27 	x	rms	used	in	

the	study	of	Lambacher	et	al.	(2010).	

	In	a	second	step	threshold	crossings	are	combined	to	action	potentials.	All	

threshold	 crossings	 that	 are	 spatially	 adjacent	 at	 the	 same	 time	 point	 are	merged	

into	 a	 ‘cluster’.	 Next,	 I	 consider	 the	 spatial	 overlap	 of	 time‐consecutive	 ‘clusters’.	
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Two	 such	 clusters	 are	 part	 of	 the	 same	 action	 potential	 if	 they	 share	 at	 least	 one	

sensor.	All	 ‘clusters’	 that	 belong	 to	 an	 action	potential	 are	 combined	 and	 the	data	

point	 (time	 stamp	 and	 sensor	 location)	with	 the	 highest	 amplitude	 is	 chosen	 as	 a	

representative	for	the	action	potential.		

Finally,	 action	 potentials	 are	 assigned	 to	 the	 corresponding	 ganglion	 cells.	

Action	potentials	recorded	on	one	sensor	may	belong	to	different	cells.	I	again	take	

advantage	of	the	high	spatial	sampling	and	align	the	centres	of	gravity	of	two	action	

potentials	 in	 time.	 For	 each	 action	 potential	 I	 consider	 the	 extracellular	 voltages	

surrounding	 the	 centre	 of	 gravity.	 The	 cross	 correlation	 between	 the	

neighbourhoods	of	action	potentials	i	and	j	is	calculated	as:		
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k
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 	 as	 the	 normalization	 factor	 for	 action	 potential	 i.	 The	 index	 k	

ranges	 over	 all	 peaks	 that	 are	 common	 to	 both	 action	potentials	 i	 and	 j	while	 the	

index	 l	 ranges	 over	 all	 voltages	 that	 constitute	 the	 action	 potential.	 The	 following	

analysis	 separates	 action	 potentials	 that	 originate	 from	 different	 neurons.	 For	 a	

number	of	M	overlapping	action	potentials	a	symmetric	matrix	of	cross	correlation	

values	 ijc (i,j	 =	 1:M)	 is	 obtained.	 This	 matrix	 is	 rearranged	 to	 minimize	 the	 cij	

differences	 between	 adjacent	 rows.	 If	 all	 action	 potentials	 under	 consideration	

belong	to	one	neuron	I	obtain	little	variation	within	the	correlation	matrix.	If	action	

potentials	 from	 several	 neurons	 are	 compared	 separate	 clusters	 are	 visible	 in	 the	

crosscorrelation	matrix.	 This	matrix	 is	 then	 split	 and	 the	 action	 potentials	 within	

each	 cluster	 are	 assigned	 to	 a	 different	neuron.	 The	 sorting	 of	 action	potentials	 is	

comparable	to	the	supervised	algorithm	used	in	a	previous	study,	although	there	a	

different	 algorithm	 (k‐means	 clustering)	was	 used	 (Zeck	 and	Masland,	 2007).	 The	

spike	sorting	and	splitting	is	done	offline	and	semi‐	automated.	The	final	spike	trains	

are	tested	to	obey	a	refractory	period	of	at	least	1	millisecond.	No	action	potentials	

with	 interspike	 intervals	 shorter	 1	 ms	 were	 assigned	 to	 one	 neuron	 using	 the	

described	method.	Results	were	supervised	by	the	experimentator.	
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2.8	 Spike	train	analysis	

	

Data	 were	 analyzed	 using	 custom	 software	 written	 in	 Matlab	 (Mathworks,	

Natick,WA).	 The	 average	 firing	 rate	 for	 each	 spontaneously	 active	 RGC	 was	

computed	 as	 the	 total	 number	 of	 spikes	 divided	 by	 the	 length	 of	 the	 recording	

period.	The	recording	consists	of	1‐10	second	concatenated	segments	of	continuous	

voltage	 traces	 (0.1‐	 12	 kHz	 sampling	 frequency).	 The	 fundamental	 spiking	

frequencies	were	estimated	from	the	autocorrelation	functions.		

Cross‐correlation	 (CC)	 functions	 were	 computed	 for	 cell	 pairs	 after	 spike	

trains	had	been	assigned	 to	particular	cells.	Normalized	CCs	were	calculated	using	

the	Matlab	routine	xcorr.	This	routine	calculates	the	dot	product	of	two	normalized	

vectors	representing	the	RGCs	spike	trains.	The	spike	trains	were	binned	with	either	

4	 or	 0.4	 ms	 time	 resolution.	 The	 correlation	 coefficient	 (Pearson's	 correlation)	

presented	here	 represents	 the	 zeroth	 lag	of	 the	 correlation	 function.	 It	 represents	

the	percentage	of	spikes	from	one	spike	train	that	occurs	in	the	same	time	bin	in	the	

correlated	spike	train,	and	therefore	represents	an	estimate	of	the	coupling	strength	

between	two	RGCs.	The	length	of	correlated	spike	trains	(~	5	minutes	in	4	ms	time	

bins)	sets	the	statistical	significance	of	the	correlation	coefficient	below	0.01.	

	

2.9	 Local	field	potentials	and	propagation	velocity	

Extracellular	voltage	changes	characterized	by	negative	deflections	(~20	ms	

long)	followed	by	slower	repolarization	(~	100	ms),	have	been	reported	as	a	slow‐

wave	 component	 in	 a	 recent	 rd1	 study	 using	 multielectrode	 arrays	 with	 large	

electrode	distances	(Ye	and	Goo,	2007;	Ryu	et	al.,	2010).	 	Voltage	modulations	that	

occur	in	phase	across	neighbouring	sensors	‐	but	not	across	the	whole	sensor	array	

(1mm2)	‐	reflect	spatially	confined	local	field	potentials.	Negative	deflections	in	the	

extracellular	 potential	 are	 caused	 by	 the	 depletion	 of	 positive	 ions	 or	 by	 the	

accumulation	 of	 negative	 ions	 in	 the	 extracellular	 space,	 and	 reflect	 membrane	

depolarisations	of	neurons	in	the	ganglion	cell	layer.		

The	 LFP	 fundamental	 frequency	 was	 estimated	 from	 the	 power	 spectral	

density	 functions	 computed	 from	 long	 (10	 seconds)	 calibrated	 voltage	 traces.	 The	
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fundamental	 frequency	was	measured	as	 the	 first	 peak	power	 in	 the	 range	3–100	

Hz.		

The	 calculation	of	 LFP	propagation	velocity	 is	performed	 in	 analogy	 to	 the	

velocity	calculation	of	developmental	calcium	waves	(Blankenship	et	al.,	2009).	The	

method	 requires	 accurate	 definition	 of	 the	 LFP	 boundary.	 Therefore,	 each	 voltage	

map	 (1mm2)	 recorded	 by	 the	 sensor	 array	 at	 one	 time‐point	 was	 first	 spatially	

filtered	(Gaussian	filter,	σ	=	10	µm).	Time‐consecutive	voltage	maps	were	averaged	

within	a	window	of	2	ms.	 In	 each	 such	averaged	voltage	map,	we	 identified	 those	

sensor	areas	that	measured	voltages	smaller	 than	–	100	µV	as	a	 ‘region	of	 interest	

(ROI)’.	Contiguous	regions	were	considered	to	be	part	of	one	LFP.	The	next	ROI	was	

calculated	 after	 a	 delay	 of	 10	 ms.	 LFP	 propagation	 velocity	 was	 computed	 if	

consecutive	ROIs	covered	at	least	half	of	the	sensor	array	(1mm2)	and	lasted	longer	

than	50	milliseconds.	The	border	of	each	ROI	represents	an	isotemporal	continuous	

line	 of	 the	 LFP	 wavefront.	 The	 furthest	 distance	 traveled	 during	 the	 last	 time	

interval	 was	 used	 as	 an	 ending	 point	 of	 the	 propagation	 path.	 Points	 along	 the	

propagation	path	were	selected	by	finding	the	shortest	distance	between	the	point	

at	 time	 t	 (in	ms)	and	 the	 isotemporal	 line	 at	 time	 t‐Δt.	 Velocity	was	 calculated	 by	

averaging	 the	 distance	 between	 consecutive	 time	 points	 Δt.	 To	 clarify	 that	 the	

velocity	values	did	not	depend	on	the	threshold	(‐100	µV)	or	the	time	steps	Δt	 	we	

calculated	velocities	for	a	subset	of	waves	using	a	threshold	of	‐50	µV	and	time	steps	

between	7	and	15	ms	respectively.	We	obtained	qualitative	similar	results.	

	

2.10	 Identification	of	axonal	signals	

	

In	rat	and	mouse	retinas,	extracellular	recorded	single	axonal	action	potentials	are	

not	detected	in	the	raw	data	as	it	is	possible	in	recordings	of	rabbit	RGCs	(Zeck	et	al.,	

2011.)	Somatic	action	potentials	 recorded	with	 the	MTA	chip	are	 typically	 smaller	

than	1	mV	in	mouse	and	rat	retina	(see		Fig.	1.11)	and	probably	hidden	in	the	sensor	

noise	 	(rms:	70	µV).	Therefore	a	methodology	recently	described	by	Petrusca	et	al.	

(2007)	who	identified	axons	in	primate	retinas,	was	adapted.		
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Therefore	 the	 spike	 triggered	 average	 )( kij tv 	 is	 defined	 for	 any	 sensor	 (row:	 i;	

column:	 j)	 determined	 by	 the	 spiketrain	 ntt ,...,1 	 of	 a	 RGC	 soma	 (located	 at	 a	

specific	row	i’	and	column	j’)	as	 		

	





n

l
klijkij tv

n
tv

1

)(
1

)( ,	 kji ,, 	

	

with:	

n	:		the	total	number	of	spikes	in	the	spike	train;	

:lt time	of	occurrence	of	spike	l;	

)( klij tv  :	voltage	at	sensor	row	i,	column	j	and	time	 klt  .	

Note	that	the	above	expression	is	valid	for	all	i,	j	and	k.	If	all	i	and	j	at	a	given	k	are	

evaluated,	a	 two‐dimensional	voltage	map	at	 the	 temporal	offset	 kt 	 to	 the	somatic	

spike	is	obtained.	Negative	k	values	allow	to	view	into	the	(average)	history	of	the	

spikes,	 positive	 k	 values	 into	 the	 (average)	 future	 which	 may	 contain	 an	 axonal	

signal.	With	a	constant	propagation	velocity	and	a	 fixed	spatial	path,	axonal	action	

potentials	 become	 visible	 as	 the	 (spatiotemporally)	 uncorrelated	 noise	 is	

suppressed	by	the	averaging	procedure.			

I	used	about	1000	spikes	to	construct	the	spike	triggered	average	for	a	single	cell.	An	

example	is	given	in	Fig.	1.9	b	&	c.	With	this	approach	only	axons	originating	from	a	

cell	 body	 within	 the	 recording	 area	 are	 detected.	 Axonal	 signals	 from	 axons	 of	

passage	 are	 not	 identified	 as	 no	 temporal	 reference	 signal	 (somatic	 spike)	 is	

available.		

	

2.11	 Evaluation	of	the	intra‐retinal	conduction	velocity	

	

Voltage	 maps	 of	 consecutive	 time	 frames	 containing	 the	 average	 axonal	 activity	

were	 exported.	 In	 order	 to	 calculate	 the	 velocity	 of	 a	 single	 propagating	 action	

potential,	 spatial	 locations	 of	 its	 biphasic	 peak	 were	 determined	 by	 respective	

extremum	values	within	each	time	frame.	The	axon's	path	was	assumed	to	be	linear	

(intra‐retinal	axons	 run	nearly	parallel)	between	 consecutive	 time	 frames.	For	 the	

entire	axon	path	covering	the	array,	linear	pieces	were	concatenated.	We	corrected	

(3)
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for	 temporal	 gradients	 introduced	 by	 the	 readout	 scheme	 of	 the	 chip	 across	

different	 sensor	 columns	 (typical	 value:	 skHz 4.1)645.11( 1   	 per	 column).	

Gradients	across	different	sensor	rows	can	be	neglected.	

	

2.12	 Statistical	Analysis	

I	 could	 not	 rigorously	 test	 if	 the	 distributions	 of	 the	 various	 parameters	

(firing	 rate;	 correlation	 coefficients;	 LFP	 velocity;	 maxima	 of	 the	 power	 spectral	

density)	follow	a	normal	distribution.	To	test	for	statistical	significance,	I	therefore	

compared	median	 values	 using	 the	Wilcoxon‐Mann‐Whitney	U	 test.	 For	 the	 firing	

rate	and	correlation	coefficient	I	present	mean	values,	as	they	are	not	different	from	

the	median.		

	

	

2.13		 Visual	stimulation		

Visual	 stimuli	 were	 presented	 on	 a	 monochrome	 OLED	 (organic	 light	 emitting	

diode)	microdisplay	(eMagin,	Bellevue,	Washington;	800	x	600	pixels;	60	Hz	refresh	

rate)	and	designed	using	Visionworks	Software	(Vision	Research	Graphics,	Durham,	

NH).	

The	display	was	connected	to	the	photo	output	of	an	upright	microscope	(BXW50;	

Olympus	Optical,	 Tokyo,	 Japan)	 in	order	 to	 illuminate	 the	back	 focal	plane	of	 a	5x	

objective	(LMPlan	Fl;	Olympus	Optical,	Tokyo,	Japan).	

Stimulus	 presentation	 was	 triggered	 by	 the	 measurement	 system	 and	 temporally	

related	to	the	timescale	of	recorded	transients	with	millisecond	precision.	This	was	

realized	by	comparing	the	timing	of	TTL‐pulses	of	stimulus	and	measurement	onsets	

respectively.	 Luminance	 values	 were	 determined	 at	 the	 focus	 plane	 of	 the	 retina	

(Optical	Meter	1835‐C,	Newport	Spectra‐Physics,	Darmstadt,	Germany).	

To	characterize	the	RGC	population	responsiveness,	full	field	flashes	(spot	diameter	

>	 1mm	 at	 the	 retina,	 400	 ms	 length)	 were	 focused	 onto	 the	 retina.	 In	 order	 to	

selectively	stimulate	ON‐cells	I	presented	a	bright	spot	(66.82	mW/m 2 ,	 StimI )	on	a	

dark	 background	 (1.38	mW/m 2 ,	 BGI )	 and	 vice	 versa	 for	 OFF‐cells.	 The	 stimulus	

contrast	was	calculated	as	 the	 ratio	 )/(|| BGStimBGStim IIII  	 (Michelson	 contrast)	

and	hence	is	the	same	(96%)	for	both	protocols.	
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Spike	 trains	 of	 responding	RGCs	were	 convoluted	with	 a	 Gaussian	 kernel	 of	 5	ms	

standard	deviation	(Bolz	et	al.,	1982)	in	order	to	classify	cells	into	ON	and	OFF	cells.		

To	determine	the	response	 latency,	 the	delay	between	stimulus	onset	and	the	 first	

spike	of	the	burst	response	was	calculated.	

	

Moving	 grating	 stimuli	 were	 presented	 to	 rat	 retinas	 with	 increasing	 spatial	

frequency	to	asses	visual	acuity.	

Grating	 cycles	 had	 the	 following	 dimensions:	 1000	µm,	 500	µm,	 300	µm,	 250	µm,	

200	µm	and	150	µm.	Based	on	the	rat	eye	dimensions	(Hughes	&	Wässle,	1979)	this	

is	converted	to	cycle/degree	(c/d)	units:	0.05	c/d,	0.1	c/d,	0.2	c/d,	0.22	c/d,	0.3	c/d	

and	0.38	c/d	respectively.		The	temporal	frequency	of	the	grating	was	held	constant	

at	2	Hz.	

The	 same	 contrast	 as	 for	 full	 field	 flashes	 was	 used	 (96%).	 The	 stimulus	 was	

presented	2	min	for	each	parameter	configuration.	

To	quantify	the	grating	response,	a	Fast	Fourier	Transformation	was	calculated	for	

the	 spike	 trains	 of	 all	 cells	 for	 the	 presented	 spatial	 frequencies.	 The	 relevant	

measure	of	 the	 response	was	 the	 spectral	 amplitude	 at	 the	 temporal	 frequency	 of	

the	 stimulus	 presented.	 Only	 cells	 that	 responded	 to	 the	 lowest	 spatial	 frequency	

were	 taken	 into	 account.	 Spectral	 peak	 amplitudes	 for	 the	 presented	 frequencies	

were	averaged	over	all	cells	 in	 the	respective	group	and	normalized	to	the	control	

response	(Pu	et	al.,	2006).	

In	 the	 experiments	with	 constant	 illumination	 a	 light	 spot	 of	 2	mm	diameter	was	

projected	onto	the	retina	with	intensities	between	40	and	80	mW/m 2 .	

	

2.14		Application	of	pharmacologic	agents	

	

In	all	experiments,	stock	solutions	of	the	blockers	were	dissolved	in	Ames	Medium	

to	 obtain	 the	 concentration	 indicated	 in	 the	 text.	 Variable	 volumes	 were	 then	

constantly	 washed	 in	 the	 recording	 chamber	 for	 approximately	 10	 minutes.	 The	

solutions	were	warmed	(35‐37°C	)and	bubbled	with	oxygen	as	the	normal	Ames.	

Only	 in	 the	 experiments	 with	 constant	 illumination	 the	 Ames	 &	

Strychnine/Gabazine	 solution	 was	 not	 constantly	 washed	 in,	 as	 C57Bl/6	 become	

inactive	 when	 higher	 strychnine	 concentrations	 last	 for	 longer	 than	 1	minute.	 As	
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Strychnine/Gabazine	 solutions	 act	 fast	 and	 need	 long	 time	 to	 be	 washed	 out,	 the	

warmed	and	bubbled	solution	was	pipetted	into	the	recording	chamber	and	after	30	

sec,	 the	 normal	 perfusion	 (Ames)	 was	 started.	 When	 the	 effects	 of	

Strychnine/Gabazine	became	weaker	the	procedure	was	repeated.	

This	 way	 of	 pharmacologic	 administration	 was	 tested	 in	 rd1	 mice,	 were	 no	

difference	 in	 the	effect	was	seen.	Chemicals	were	 typically	washed	 in	 for	about	10	

minutes.	
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3.		Results	

3.1		Characterization	of	the	electrical	RGC	phenotype	in	rd1	mice	

The	results	of	this	chapter	were	published	in	Menzler,	J.,	&	Zeck,	G.	(2011).	Network	
Oscillations	in	Rod‐Degenerated	Mouse	Retinas.	J.Neurosci.,	31	(6),	2280‐2291.	
	
	

3.1.1		 Retinal	ganglion	cells	in	rd1	retinas	exhibit	rhythmic	activity		

I	 recorded	 spontaneous	 activity	 from	 two	 rd1	 mouse	 strains	 (C3H	 and	 FVB,	 aged	

P40‐70)	and	obtained	spike	trains	of	~1400	RGCs	in	32	retinas.	The	majority	(85	%)	

of	 the	 recorded	 cells	 spiked	 rhythmic	 at	 a	 fundamental	 frequency	 of	 9.2	 ±	 1.8	Hz	

(mean	±	 std)	with	an	average	 firing	 rate	of	26	±	13	Hz	 (mean	±	std).	The	average	

firing	rate	was	significantly	higher	(p	<	0.01)	than	that	of	wt	RGCs	of	the	same	age	,	

which	 spiked	 at	 12	 ±6	 Hz	 (n=	 456	 RGCs,	 n=	 13	 retinas,	 age	 P	 35	 –	 P	 60).	 The	

frequency	of	the	rhythmic	bursting	seems	to	depend	on	the	mouse	strain,	FVB	mice	

show	7‐8	Hz	oscillations	while	C3H	mice	burst	in	the	range	of	~	10	Hz.		

The	rhythmic	activity	is	not	a	transient	period	during	degeneration.	

RGCs	in	older	retinas	(C3H/HeNCrl,	P	160	‐	P200,	n=110	RGCs	in	3	retinas)	display	

rhythmic	 activity	 with	 an	 average	 fundamental	 frequency	 that	 is	 not	 significantly	

different	from	the	values	calculated	for	the	younger	retinas	(8.8	±	1.3	Hz,	mean	±	std,	

p=	0.22).	The	percentage	of	rhythmic	RGCs	declined	slightly	in	older	retinas	(75	%	of	

RGCs	in	P160‐P200).	

The	spontaneous	activity	of	twenty	selected	RGCs,	recorded	simultaneously	

in	one	retinal	portion,	is	shown	in	Fig	3.1	a.	The	presented	RGCs	display	a	rhythmic	

bursting	activity	visible	in	the	autocorrelation	function	(Fig	3.1	b).	 In	contrast,	 the	

20	wt	RGCs	shown	 in	Fig.	3.1	c,	display	 lower	 firing	rates	and	 the	autocorrelation	

(Fig.	3.1d)	reveals	no	specific	firing	pattern.		
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Figure	 3.1:	 The	majority	 of	 retinal	 ganglion	 cells	 (RGCs)	 in	 the	 rd1	mouse	 retina	
exhibit	rhythmic	spiking		
(a	&b)	Spike	train	properties	of	retinal	ganglion	cells	(RGCs)	recorded	in	a	1	mm2	portion	of	
an	rd1	retina.	
(a)	Spiking	activity	from	20	selected	RGCs.	Each	tick	represents	the	occurrence	of	one	action	
potential.	The	three	RGC	spike	trains	in	the	upper	row	are	further	evaluated.	
(b)	Autocorrelation	functions	of	the	three	selected	rd1	RGCs	reveal	rhythmic	activity	with	an	
average	interval	of	~	150	milliseconds.	The	peak	at	zero	time	lag	is	omitted.		
(c	&d)	RGC	spike	train	properties	in	wt	retinas.	
(c)Raster	plot	of	spontaneous	activity.	(d)	Autocorrelation	function	of	three	selected	RGCs.	
(adapted	from	Menzler	&	Zeck,	2011)	
	

High‐pass	 filtered	 (0.1	 –	 3	 kHz)	 calibrated	 voltage	 traces	 of	 selected	 RGCs	

(Fig.	3.1	a)	show	the	firing	pattern	of	cells	with	a	stable	rhythm	(Fig.	3.2b).	In	each	

retina	 some	 of	 the	 RGCs	 do	 not	 burst	 continuously	 (Fig.	 3.2c),	 but	 their	

autocorrelation	functions	remain	rhythmic	(not	shown).	Their	 firing	pattern	is	still	

locked	to	an	underlying	7	‐	10Hz	rhythm.		
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Figure	3.2:		Stability	of	the	rhythmic	firing	pattern	in	rd1	RGCs	
In	(a)	a	schematic	sensor	array	is	shown.	Grey	dots	indicate	recorded	RGCs	(of	which	20	are	
shown	in	Fig.	3.1a).	For	the	cells	 labelled	with	numbers	0‐4	a	raw	trace	of	1	s	 is	shown	in	
(b).	 These	 cells	 displayed	 a	 stable	 rhythmic	 firing	 pattern.	 For	 the	 cells	 labelled	 i‐iii	
corresponding	 traces	 are	 shown	 in	 (c).	 All	 three	 cells	 exhibited	 instable	 rhythmic	 firing	
pattern	 and	 missed	 bursts.	 However	 the	 burst	 of	 these	 cells	 were	 still	 locked	 to	 the	
fundamental	spiking	frequency.	(adapted	from	Menzler	&	Zeck,	2011)	
		
	

The	 cross‐	 correlograms	 (CCs)	 between	 pairs	 of	 rd1	 RGC	 spike	 trains	 display	

multiple	peaks	 (Fig.	3.1	b)	 separated	by	100	 ‐150	msecs.	 	About	24	%	of	 the	CCs	

showed	a	peak	at	zero	lag	indicating	synchronous	firing	of	two	cells	(Fig.	3.4	b).		

	

When	cells	pairs	correlating	with	zero	lag	are	correlated	with	smaller	time	bins	(0.4	

ms),	several	‘peaked’	CCs	displayed	two	sub‐peaks	around	zero	time	lag	(Fig	3.3	b).	

The	 two	 maxima	 were	 located	 on	 average	 at	 ‐1.4	 ±	 0.2	 ms	 and	 1.3	 ±	 0.3	 ms	

respectively	 (n=40	 pairs	 in	 3	 retinas).	 These	 peaks	 are	 a	 strong	 indicator	 of	

reciprocal	electrical	coupling	between	RGCs,	where	the	spike	in	one	cell	depolarizes	

the	coupled	cell	above	spiking	threshold.		
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Figure	3.3:		Correlated	spiking	in	rd1	and	wt	RGCs	

(a)	The	spike	 train	cross‐correlations	(CC)	between	three	selected	rd1	RGCs	(3.1	a)	reveal	
strong	 oscillations.	 For	 two	 cell	 pair	 the	 activity	 is	 phase‐shifted.	 One	 RGC	 pair	 fires	 in	
synchrony	revealed	by	the	central	peak	at	zero	time	lag.	Bin	size	4	ms.		
(b)	 The	 same	 CCs	 as	 shown	 in	 (a),	 computed	 at	 higher	 resolution	 (Bin	 size	 0.4	 ms).	 	 A	
double‐peak	in	one	CC	at	zero	time	lag	indicates	electrical	coupling	between	the	two	RGCs.		
	(c)	 Spike	 train	 cross	 correlations	 between	 the	 three	 selected	wt	 RGCs	 shown	 in	 (3.1	 c).	
Synchronous	activity	is	detected	in	one	cell	pair.	Bin	size	4	ms.		(d)	The	same	CCs	shown	in	
(c),	computed	at	higher	resolution	reveal	a	double‐peak	in	one	CC	around	origin,	similar	to	
the	result	in	the	rd1	retina	(panel	b).	Bin	size	0.4	ms.	(adapted	from	Menzler	&	Zeck,	2011)	
	
 
Comparable	 double‐peaked	 synchronization	 patterns	 have	 been	 described	 in	

electrically	coupled	RGCs	in	healthy	mammalian	retinas	(Mastronarde,	1989;	Hu	and	

Bloomfield,	 2003).	 The	 average	 distance	 between	 electrically	 coupled	 rd1	 RGCs	 is	

120	 ±	 30	 µm.	 This	 indicates	 that	 only	 nearby	 RGCs	 are	 electrically	 coupled.	 The	

average	correlation	strength	of	these	pairs	is:	0.20	±	0.05	(mean	±	std,	bin	width:	4	

ms).	The	correlation	strength	does	not	vary	over	the	distance	mentioned	above.		

In	the	average	25	%	of	the	CCs	between	simultaneously	recorded	rd1	peak	at	zero	

lag,	while	in	wt	mice	rarely	5	%	of	the	CCs	have	a	peak	at	all.	The	CCs	of	two	wt	cell	
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pairs	are	shown	in	Fig.	3.3	c,	where	one	cell	pair	fires	correlated.	In	CCs	calculated	

from	wt	RGC	spike	 trains	also	 ‘peaked’	CCs	(n=15	 in	7	retinas)	were	detected	 that	

display	 two	 sub‐peaks	 around	 zero	 time	 lag	 (Fig	 3.3	 d).	 The	 CC	 maxima	 were	

located	on	average	at	‐1.8	±	0.4	ms	and	1.7	±	0.3	ms	respectively	while	the	spacing	

between	 cells	 was	 133	 ±	 40	 µm	 (range	 66	 –	 224	 µm).	 The	 average	 correlation	

strength	of	these	pairs	is:	0.10	±	0.04	(mean	±	std,	bin	width:	4	ms).	The	correlation	

coefficients	in	wt	RGCs	are	statistically	different	(p<0.001)	from	those	measured	for	

rd1	RGCs.		I	conclude	that	the	subpopulation	of	electrically	coupled	RGCs	in	rd1	and	

wt	 retinas	 have	 similar	 properties,	 except	 for	 the	 stronger	 electrical	 coupling	

strength	between	rd1	RGCs.		

	

3.1.2 The	majority	of	rhythmic	rd1	RGCs	display	phase‐shifted	activity		

The	majority	 of	 spike	 train	 CCs	 (range	 60	 –	 86%,	 n	 =	 5	 retinas)	 have	 their	most	

central	peak	shifted	with	respect	to	zero	time	lag	(Fig.3.3a).	We	therefore	tested	if	

there	 was	 any	 preferred	 phase	 shift	 between	 RGC	 spiking	 and	 if	 the	 phase	 shift	

depends	on	 the	RGC	separation.	As	 the	 fundamental	RGC	spiking	 frequency	differs	

among	retinas	(range:	7	‐10	Hz),	we	calculate	for	each	retina	an	average	rhythm.	We	

then	normalize	each	CC	time	 lag	 to	 the	retina	specific	rhythm.	A	time	 lag	of	50	ms	

between	 two	RGCs	 spiking	 at	 a	 fundamental	 frequency	 of	 10	Hz	 corresponds	 to	 a	

relative	 shift	 of	 period/2,	 whereas	 the	 same	 absolute	 time	 shift	 gives	 a	 smaller	

relative	shift	for	RGCs	spiking	at	7	Hz.	First,	the	probability	to	measure	a	shifted	CC	

peak	is	close	to	chance	level	for	any	value	within	one	period,	with	the	exception	of	

zero	time	lag	(Fig.3.4	a,b;	n	=	5	retinas).The	average	probability	varies	little	if	either	

half	of	 the	recording	session	is	evaluated	(Fig.3.4	a),	although	for	 individual	CCs	a	

small	 shift	 of	 the	 central	 peak	 is	 observed	 (data	not	 shown).	 Second,	 for	 all	 RGCs	

separated	by	 less	 than	500	µm	the	median	value	of	 the	central	CC	peaks	 increases	

from	8	ms	(RGC	separation	<	50		µm)	to	25	ms	(RGC	separation	500	µm,	Fig.	3.4	c).	

For	separation	distances	 larger	500	µm	the	peak	time	lags	occur	at	any	value	with	

nearly	 equal	 probability	 (Fig.3.4	 d).	 These	 findings	 point	 toward	 a	 local	 driving	

force	 of	 the	 rhythmic	 spiking	 of	 rd1	 RGCs.	 In	 the	 next	 paragraph	 we	 therefore	

investigate	 whether	 this	 driving	 force	 is	 caused	 by	 independent,	 ‘pacemaker‐like’	

cells,	 as	 might	 be	 inferred	 from	 Figure	 3.4	 a,	 b	 or	 whether	 spatial	 interactions	

(suggested	by	Fig	3.4	c,	d)	shape	the	oscillatory	behaviour.		
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Figure	3.4:	Nearby	RGCs	in	rd1	retinas	oscillate	with	little	time	lag.		

(a)	Histogram	of	the	time	lags	of	the	central	CC	peaks	of	RGC	spike	trains	calculated	within	
one	rd1	 retina	 (two	CCs	were	presented	 in	Fig	3.1c).	The	dashed	 line	marks	chance	 level.	
Dark	gray	bars	mark	the	result	obtained	if	the	first	half	of	recording	is	considered,	light	gray	
bars	the	results	obtained	from	the	second	half	of	recorded	data.	Bin	size:	10	ms.	Each	CC	time	
lag	is	normalized	to	the	average	rhythm	period.	
(b)	Average	of	 five	CC	histograms	calculated	as	 in	(a).	With	the	exception	of	zero	time	lag,	
there	is	no	preference	for	any	phase	shift	of	the	central	CC	peak.	Each	gray	line	represents	
the	result	from	one	retina.	Thick	gray	line	represents	the	data	shown	in	(a).	Black	symbols	
mark	the	mean	values	for	a	given	time	lag.	Dashed	line	represents	uniform	distribution.	
(c)	 Dependence	 of	 the	 peak	 CC	 time	 lag	 on	 the	 distance	 between	RGCs.	 The	 analysis	was	
performed	on	 the	 same	dataset	 shown	 in	 (a).	Up	 to	 separation	distance	 of	~	300	µm,	 the	
median	 time	 lag	 increases	with	 increasing	 distance.	 Black	 bars	 denote	 the	median	 values	
obtained	for	the	whole	recording	session.	Dark	gray	bars	mark	the	result	obtained	if	the	first	
half	of	recording	is	considered,	 light	gray	bars	the	results	obtained	from	the	second	half	of	
recorded	data.	No	significant	changes	are	measured.	Bin	size:	50	µm.	
(d)	Average	of	five	histograms	of	median	time	lags	calculated	as	in	(c).	The	same	dataset	of	
the	five	retinas	evaluated	in	(b)	was	used.	Thick	gray	line	represents	the	data	shown	in	(c).	
Black	symbols	mark	the	median	time	lag	for	a	given	RGC	distance.	The	tendency	of	short	time	
lags	for	RGC	separations	smaller	500	µm	is	preserved	across	retinas.	(adapted	from	Menzler	
&	Zeck,	2011)	
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3.1.3	 	The	rhythmic	spiking	of	rd1	RGCs	correlates	with	local	field	potential	

minima		

All	sensors	recording	rhythmic	rd1	RGC	spiking	display	a	modulation	of	the	

extracellular	 voltage	 in	 the	 low	 frequency	 (1‐60	 Hz)	 range	 (Fig.	 3.5	 a).	 Voltage	

modulations	 that	 occur	 in	 phase	 across	 nearby	 sensors	 reflect	 spatially	 confined	

local	field	potentials	(Fig.	3.5	b).	Negative	deflections	in	the	extracellular	potential	

are	caused	by	the	depletion	of	positive	ions	or	the	accumulation	of	negative	ions	in	

the	extracellular	space,	 as	reported	 in	other	neural	 tissues	 (Mitzdorf,	1985)	 .	LFPs	

were	 never	 found	 in	 wt	 retinas	 under	 the	 same	 recording	 conditions.	 LFPs	 are	

initiated	at	several	 locations	across	the	rd1	 retina.	During	the	recording	time	(1	‐3	

hours)	 the	 entire	 portion	 of	 the	 imaged	 ganglion	 cell	 layer	 was	 part	 of	 a	 LFP.	

Continuous	 (10sec)	 readout	 of	 the	 sensors	 was	 used	 for	 power	 spectral	 density	

(PSD)	analysis	indicating	a	fundamental	LFP	frequency	of	7	–	10	Hz	(Table	2).	 	To	

investigate	whether	LFPs	are	 responsible	 for	 rhythmic	RGC	spiking,	we	 correlated	

the	spike	 trains	of	 individual	RGCs	with	 the	 timing	of	LFP	minima	recorded	 in	 the	

vicinity	of	 the	ganglion	cells.	Different	 temporal	 filters	 for	action	potential	 (0.1	–	3	

kHz)	and	LFP	(0	–	60	Hz)	identification,	and	a	distance	of	32	µm	between	the	RGC	

recording	sensor	and	the	LFP	recording	sensor	guarantees	 that	RGC	spikes	do	not	

influence	 the	 LFP	 minima.	 The	 cross‐correlation	 of	 three	 selected	 LFP‐RGC	 pairs	

revealed	an	oscillatory	function	peaked	around	zero	lag	(Fig.	3.5	c).	The	analysis	of	

188	 LFP‐RGC	 pairings	 in	 three	 retinas	 reflects	 that	 most	 CC	 peaks	 occur	 in	 the	

interval	 around	 zero	 lag.	The	majority	 (75	%)	of	 the	CC	peaks	 occur	 at	 a	 time	 lag	

between	‐12	and	2	ms	(Fig.	3.5	d).		
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Figure	3.5:		RGC	spiking	and	local	field	potential	minima	coincide	in	rd1	retinas.	
	
(a)	Extracellular	voltage	recordings	from	two	sensor	electrodes	separated	by	~	300	µm.	
The	 filter	 settings	of	1	Hz	–	3	kHz	 reveal	 single	 spikes	and	a	 slow	oscillatory	extracellular	
potential.	The	sensor	locations	are	marked	in	subplot	(b1).	
Red	 trace:	 Low‐pass	 filtered	 (1‐60Hz)	 signals	 reveal	 rhythmic	 local	 field	potentials	 (LFPs).	
The	horizontal	arrow	marks	zero	extracellular	potential.	Open	green	arrows	mark	the	start	
point	and	end	point	of	a	six	frame	series	of	extracellular	voltage	maps,	shown	in	(b).	
(b)	Extracellular	voltage	maps	(‘electrical	images’)	recorded	at	a	spatial	resolution	of	8	x	16	
µm.	Each	image	represents	the	average	extracellular	voltage	over	2	ms.	Separation	between	
images	is	10	ms.	Scale	bar:	200	µm.	
(c)	 Cross	 correlation	 of	 three	 spike	 trains	 with	 LFP	minima	 revealing	 central	 peaks	 with	
minimal	time	lag	(gray).	The	average	of	the	three	traces	is	shown	as	a	thick	black	line.	LFP	
minima	were	evaluated	for	sensors	separated	by	32	µm	from	the	RGC	recoding	sensor.		
(d)	Distribution	of	peak	CC	time	lags	for	RGCs	and	nearby	recorded	LFPs	in	two	retinas.	
The	recordings	presented	here	were	from	a	different	rd1	retina	as	shown	in	Fig	3.1.	
(adapted	from	Menzler	&	Zeck,	2011)	
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3.1.4	 	Propagation	of	local	field	potentials	

	

Local	 field	 potentials	 are	 dynamic:	 they	 expand	 (Fig.3.7	 c)	 or	 propagate	

across	the	retinal	surface	(Fig.3.5	b	&	Fig.3.6	a)	but	never	collapsed.	Occasionally	

we	observed	the	initiation	of	two	LFPs	within	the	imaged	piece	of	retina.	Within	one	

retina	 consecutive	 wave‐like	 LFPs	 propagated	 in	 the	 same	 direction	 (Fig.3.5	 b).	

Because	 the	 propagation	 of	 LFPs	 resembled	 activity	 patterns	 seen	 in	 immature	

retinas,	we	adopted	methodology	used	to	assay	the	speed	of	developmental	waves	

(Blankenship	 et	 al.,	 2009.).	 We	 consider	 LFPs	 averaged	 over	 2	 milliseconds	 of	

electrical	 activity.	 In	 each	 such	 averaged	 voltage	 map	 we	 identified	 those	 sensor	

areas	 that	measured	 voltages	 smaller	 ‐	 100	µV	 as	 a	 ‘region	 of	 interest	 (ROI)’.	 The	

next	 ROI	 was	 calculated	 after	 a	 fixed	 delay	 Δt	 (Fig.3.6	 b).	 The	 identified	 ROIs	

propagated	across	the	retina	with	a	median	velocity	of	8	mm/sec	(	Fig.	3.6	c;	n=292	

waves	 in	 5	 retinas;	 for	 details	 of	 velocity	 calculation	 see	 see	 sect.	 2.8).	 The	

propagation	 of	 electrical	 activity	 could,	 in	 principle,	 be	 assessed	 using	 the	 RGC	

spiking.	However,	because	RGCs	started	a	burst	(3	–	10	action	potentials)	every	100	

–	 150	 ms	 methodology	 used	 in	 extracellular	 recordings	 of	 developing	 retinas	

(Demas	et	al.,	2003),	that	display	much	longer	inter‐burst	intervals,	failed	here.	

The	 analysis	 of	 RGC	 spiking	 and	 LFP	 propagation	 suggests	 that	 RGC	

depolarisations	 occur	 through	 a	 local	mechanism	 that	 spreads	 laterally	 across	 the	

retina.	To	identify	circuitry	involved	in	the	generation	and	propagation	of	LFPs	and	

concomitant	RGC	spiking,	we	applied	pharmacological	agents	that	disrupted	either	

RGC	spiking	and/or	LFPs.	
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Fig.	3.6:	Local	field	potentials	propagate	across	the	retina	
	
(a)	Extracellular	voltage	maps	recorded	at	time	intervals	of	15	msec.	Each	image	represents	
the	average	activity	over	2	ms.	The	activity	was	recorded	 in	the	same	retina	shown	in	Fig.	
3b,	but	recorded	at	a	later	time.	
(b)	For	the	estimation	of	the	wave‐like	LFP	propagation	velocities	(Methods),	we	identified	
region	of	interest	with	voltages	more	negative	than	‐	100	µV.	Each	binary	image	represents	
the	region	of	interest	calculated	for	each	voltage	map	shown	in	(a).		
Right	 frame:	 Spatial	 extension	of	LFP	propagation.	Each	grayscale	represents	 the	 region	of	
interest	at	one	of	the	five	time	points.	Two	arbitrary	points	are	shown	that	were	selected	to	
trace	back	the	propagation	paths	(red).		
(c)	 Histogram	 of	 LFP	 propagation	 velocities.	 A	 total	 of	 292	 LFPs	 within	 5	 retinas	 were	
evaluated.	Bin	size	is	2.5	mm/sec.	Median	value:	8	mm/sec.	
Local	field	potentials	persist	when	voltage	gated	sodium	channels	or	inhibitory	receptors	are	
blocked.	(adapted	from	Menzler	&	Zeck,	2011)	
		

	

We	 first	 excluded	 the	 hypothesis	 that	 spontaneous	 sodium‐spikes	 are	

responsible	 for	 the	 extracellular	 LFPs	 by	 adding	 the	 sodium	 channel	 blocker	 TTX	

(0.2	µM)	to	the	perfusion	solution.	Under	these	conditions	we	measured	LFPs	but	no	

RGC	spikes	(Fig.	3.7	a).	The	sodium	channel	blocker	abolished	the	RGC	firing	in	all	

but	seven	RGCs	 from	a	total	of	138	 identified	cells	 in	 three	retinas.	The	RGC	firing	

rate	dropped	to	0.3	Hz	(n=	7	RGCs	in	3	retinas).		
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Figure	3.7:	Application	of	 the	sodium	channel	blocker	TTX	abolishes	RGC	spikes	but	
does	not	inhibit	the	initiation	and	propagation	of	LFPs.	
	
(a)	Extracellular	voltage	recording	on	one	sensor,	showing	the	RGC	spikes	and	LFPs	under	
control	conditions	(top	trace)	and	after	the	application	of	0.2	µM	TTX	(red	trace,	bottom).		
(b)	 Power	 spectral	 density	 of	 the	 traces	 shown	 in	 (a)	 demonstrate	 that	 TTX	 reduces	 the	
fundamental	 LFP	 frequency.	 The	 amplitude	 of	 the	 LFPs,	 reflected	 in	 the	 power	 spectral	
density	(PSD),	does	not	change	significantly	after	the	application	of	TTX.		
Inset:	 Average	 peak	 power	 measured	 on	 30	 sensors	 before	 (black)	 and	 after	 (red)	 the	
application	of	TTX.		
(c)	Representative	electrical	images	of	TTX	treated	rd1	retina	indicating	the	LFP	expansion.	
Each	 frame	 represents	 the	 electrical	 activity	 averaged	 over	 2	 msec.	 The	 time	 interval	
between	 frames	 is	 15	msec.	 The	 traces	 shown	 in	 (a)	 were	 selected	 from	 a	 sensor	 in	 the	
center	of	the	array.	(adapted	from	Menzler	&	Zeck,	2011)	
	

	
The	LFP	amplitude	measured	as	the	peak	of	the	voltage	power	spectrum	(Fig.3.7	b)	

did	 not	 change	 after	 application	 of	 TTX.	We	 quantified	 LFP	 amplitudes	 on	 twenty	

sensors	that	recorded	from	the	same	retina	before	and	after	the	application	of	TTX.		

The	 average	 of	 the	 maximum	 power	 spectral	 densities	 was	 not	 different	

(p=0.1)	in	the	two	conditions	(inset,	Fig.	3.7	b).	Similarly,	no	visible	changes	occur	

in	the	overall	LFP	shape	(Fig.3.7	c).	However,	the	LFP	propagation	velocity	(Table	

2)	decreased	to	6.6	±	2.6	mm/sec	(mean	±	std,	n=	55	waves,	statistical	significance	

p<0.05).		The	LFP	fundamental	frequency	decreased	from	an	average	of	9	Hz	to	6.2	

Hz	 calculated	on	16	 sensors	 in	 the	3	 retinas	 (one	 trace	 shown	 in	Fig	3.7	a).	After	

washout	the	rhythmic	sodium	spikes	appeared	again	in	all	three	retinas	tested.		
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This	 experiment	 proves	 that	 although	 sodium‐channels	 shape	 certain	 LFP	

properties,	 the	 RGC	 action	 potentials	 do	 not	 contribute	 to	 LFPs.	 Thus	

neurotransmitters	 acting	 on	 nonspecific	 ion	 channels	 may	 be	 responsible	 for	 the	

LFP	generation.		

In	a	second	experiment	we	investigated	the	contribution	of	inhibitory	circuits	on	the	

generation	of	LFPs	and	rhythmic	RGC	activity.	 In	 the	rd1	 retina	 the	 two	 inhibitory	

cell	classes	are	preserved	to	a	very	different	degree	–	horizontal	cells	retract	axonal	

and	 dendritic	 processes	 whereas	 amacrine	 cells	 appear	 morphologically	 well	

preserved	 (Strettoi	 and	 Pignatelli,	 2000;	 Park	 et	 al.,	 2001;	 Strettoi	 et	 al.,	 2002).	

Amacrine	cells	inhibit	synaptically	connected	bipolar	cells	or	RGCs	by	the	release	of	

either	 GABA	 or	 glycine	 (Wässle,	 2004).	 Horizontal	 cells	 modulate	 photoreceptor	

output	through	feedback	mechanisms	that	are	still	debated	(Wässle,	2004).	

The	 application	 of	 the	 combination	 of	 glycinergic	 receptor	 blocker	 Strychnine	 (20	

µM)	and	GABAA	receptor	blocker	gabazine	(40	µM)	had	the	following	effects	on	RGC	

spiking	 and	 LFPs.	 The	 average	 firing	 rate	 (Table	2)	 of	 RGCs	 cells	 did	 not	 change	

significantly	 (p=0.09)	 in	 the	 presence	 of	 inhibitory	 receptor	 blockers.	 Blocking	

inhibitory	 receptors	 led	 to	 the	 synchronization	 of	more	RGCs	 (Fig.	3.8	a,b,c).	 The	

central	peak	in	the	spike	CCs	occurred	with	a	time	lag	of	less	than	5	ms	in	43%	of	the	

CCs	(average	over	RGCs	in	5	retinas)	as	compared	to	23%	in	untreated	retinas	(Fig.	

3.4	b).	Within	each	retina	the	probability	of	synchronous	RGC	activity	increased	on	

average	two‐fold.	RGC	spike	trains	and	LFP	minima	correlated	with	low	time	lag	in	

the	presence	of	 inhibitory	receptor	blockers,	as	was	observed	 for	 the	unperturbed	

state	(compare	Fig.	3.8	d,	e	and	Fig.	3.5	c,	d).	The	spatial	extent	and	extracellular	

amplitude	of	LFP	increased	after	disinhibition	of	the	retina	(Fig.		3.8	f).	However,	we	

never	measured	simultaneous	low‐frequency	oscillations	covering	the	whole	sensor	

array	 (1mm2)	 –	 both,	 in	 disinhibited	 and	 also	 in	 unperturbed	 rd1	 retinas.The	

fundamental	 RGC	 spiking	 frequency	 (Table	 2),	 the	 LFP	 frequency	 and	 the	 LFP	

conduction	velocities	decreased	compared	to	the	unperturbed	state	significantly		(6	

±	2	mm/sec,	mean	±	std,	n=	110	waves,	p<0.05).	The	application	of	each	inhibitory	

blocker	alone	revealed	that	strychnine	(2	µM,	n=2	retinas)	had	a	stronger	effect	on	

the	LFPs	than	gabazine	(40	µM,	n=2	retinas)	(Fig.	3.8	a,	d).	
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Figure	3.8:	 Inhibition	of	glycinergic	and	GABAergic	receptors	 increases	 the	LFPs	and	
the	synchronization	among	rd1	RGCs.	
	
(a)	 Upper	 traces:	 Spike	 trains	 from	 six	 RGCs	 recorded	 after	 the	 application	 of	 inhibitory	
receptor	 blockers.	 Each	 tick	marks	 the	 occurrence	 of	 one	 spike.	 The	 sensor	 locations	 are	
marked	in	subplot	(f).		
Lower	 traces:	 LFPs	measured	near	 the	 spike	 recording	 sensors	 (band‐pass	 of	1	 ‐60	Hz)	 at	
three	positions	(indicated	by	numbers)	on	the	array.	
(b)	An	example	spike‐train	cross‐correlogram	(CC)	before	(orange)	and	after	the	application	
of	inhibitory	receptor	blockers	(black	trace).	The	CC	peak	shifts	to	zero	lag	when	inhibitory	
receptors	are	blocked.	The	CCs	were	calculated	for	the	spike	trains	of	cell	3	and	4.	
(c)	 Average	 probability	 distribution	 of	 minimum	 time	 lag	 of	 the	 central	 CC	 peak	 under	
control	conditions	(orange,	see	Fig	14b),	and	with	inhibitory	receptors	blocked	(black).	The	
distributions	 are	 calculated	 for	 the	 same	 five	 retinas	 (gray)	 that	 were	 evaluated	 in	 the	
untreated	retinas	(Fig	14b).	The	uniform	distribution	is	shown	as	a	dashed	line.	
(d)	 CC	 calculated	between	LFP	minima	and	RGC	 spike	 trains	 for	 the	 three	LFPs	 and	RGCs	
shown	in	(a).		
(e)	Distribution	of	peak	 time	 lags	 for	CCs	calculated	between	RGC	spike	 trains	and	nearby	
LFPs	before	(orange)	and	after	(black)	the	application	of	glycinergic	and	GABAergic	receptor	
blockers.	The	probability	distribution	was	calculated	for	RGC‐LFP	pairs	in	one	retina.	
(f)	 Propagation	 of	 the	 LFPs	 in	 the	 presence	 of	 inhibitory	 receptor	 blockers.	 Each	 frame	
shows	the	electrical	image	averaged	over	2	msec	(see	Methods).	Scale	bar:	200	µm.	
(adapted	from	Menzler	&	Zeck,	2011)	
	
	

These	 results	 indicate	 that	 although	 inhibitory	 neurons	 shape	 the	 physical	 LFP	

properties,	they	do	not	contribute	to	their	generation.	The	results	suggest	that	in	the	

unperturbed	 rd1	 retinas,	 glycinergic	 and	 GABAergic	 inhibition	 prevents	 the	

recruitment	of	additional	excitatory	neurons	that	depolarize	the	RGCs.	The	average	
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LFP	amplitude	 ‐	measured	as	 the	peak	of	 the	voltage	power	 spectrum	–	 increased	

significantly	(p	<	0.001)	when	glycinergic	receptors	were	blocked	(Fig.	3.9	d).	The	

LFP	 amplitude	 did	 not	 increase	 significantly	 when	 only	 GABAA	 receptors	 were	

blocked	(Fig.	3.9	a;	p=0.07).	Strychnine	reduced	the	fundamental	LFP	frequency	to	a	

larger	 extends	 than	 gabazine	 (Fig.	 3.9	 c,	 f).	 	 	 	 Both	 substances	 increased	 the	

proportion	of	positive	correlations	at	zero	lag	(Fig.	3.8	b,	e)	

	

	

Figure	3.9:	Effect	of	either	SR	95531	or	strychnine	on	RGC	spiking	
	
(a) Application	of	the	GABA	receptor	blocker	Gabazine	alone	did	not	alter	the	LFP	or	spiking		
frequency	but	 induced	an	 increase	 in	synchronicity	(b).	The	amplitude	of	 the	LFP	was	not	
affected	(c).	Strychnine	altered	the	fundamental	frequency	of	spiking	and	the	LFP	to	~	5	Hz	
(d)	and	increased	synchronicity	(e).		Also	the	LFP	amplitude	was	increased	(f).	
(adapted	from	Menzler	&	Zeck,	2011)	
	
	
	

3.1.5	 	Local	field	potentials	require	glutamatergic	input	to	RGCs	

The	 excitatory	 neurotransmitter	 glutamate	 is	 used	 at	 several	 types	 of	

synapses	in	the	retina:	in	the	outer	retina	at	the	photoreceptor‐bipolar	cell	synapse	

and	 in	 the	 inner	 retina	 at	 the	 synapses	 between	 bipolar	 cells,	 amacrine	 cells	 and	

ganglion	 cells	 (Thoreson	 and	 Witkovsky,	 1999;	 Wässle,	 2004).	 In	 the	 retina	

glutamate	 is	 sensed	 by	 ionotrophic	 (AMPA/kainate	 and	 NMDA)	 receptors	 and	 by	
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metabotrophic	 receptors.	 We	 therefore	 checked	 if	 glutamate	 induced	

transmembrane	currents	are	responsible	for	rhythmic	RGC	spiking.	The	application	

of	a	ionotrophic	glutamate	receptor	(iGluR)	blocker	cocktail	(100	µM	DNQX/	20	µM	

AP7)	 led	 to	 the	disappearance	of	LFPs	 (compare	Fig.	3.10	a	and	c,	 n	=	4	 retinas).	

This	change	was	accompanied	by	a	significant	decrease	of	the	RGC	firing	rate	(Table	

2)	and	the	disappearance	of	rhythmic	spike	trains.	After	the	washout	of	the	receptor	

blockers,	the	majority	of	RGCs	(80	%	in	the	considered	RGC	population)	recovered	

their	rhythmic	activity.		

	

	

Figure	 3.10:	 Inhibition	 of	 ionotrophic	 glutamate	 receptors	 abolishes	 LFPs	 and	 the	
rhythmic	RGC	spiking.		
(a)	Recording	of	two	rhythmic	RGCs	and	low‐frequency	extracellular	voltage	changes	(band‐
pass	of	1‐60	Hz)	in	the	untreated	rd1	retina.	The	RGC	spikes	(ticks	in	second	and	third	row)	
occur	 at	 the	minimum	of	 the	 extracellular	 voltages	 recorded	 on	 nearby	 sensors	 (first	 and	
forth	row	respectively).	The	RGCs	are	part	of	the	recording	shown	in	Fig	12a‐d.	
(b)	Crosscorrelation	(CC)	of	the	two	rd1	RGC	spike	trains	(shown	in	a)	reveal	the	rhythmic	
activity	centered	near	zero	time	lag.	Left	panel:	CC	calculated	with	a	bin	width	of	4	ms.	Right	
panel:	CC	calculated	with	a	bin	width	of	0.4	ms	
(c)	The	LFPs	and	RGC	spike	trains	at	the	same	positions	as	shown	in	(a)	after	the	application	
of	 ionotrophic	 glutamate	 receptor	 blockers	 (DNQX	 and	 AP‐7).	 The	 low‐frequency	 voltage	
modulation	disappears.	The	RGC	spiking	is	not	rhythmic	any	more	and	occurs	at	a	lower	rate.	
(d)	CC	of	the	RGC	spike	trains	shown	in	(c)	reveal	synchronous	activity	centered	at	zero	time	
lag.	Left	Panel:	CC	calculated	with	a	bin	width	of	4	ms.	Right	panel:	CC	calculated	with	a	bin	
width	of	0.4	ms	reveals	a	double‐peaked	CC	characteristic	of	electrical	coupling.	
(adapted	from	Menzler	&	Zeck,	2011)	
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Why	do	rd1	RGCs	continue	to	spike	after	inhibition	of	their	major	presynaptic	input?		

The	 retinas	 treated	 with	 the	 iGluR	 blocker	 cocktail	 revealed	 electrically	 coupled	

RGCs	that	are	not	seen	in	the	unperturbed	rd1	retina.	The	strong	presynaptic	input	

common	 to	 neighboring	 RGCs	 may	 obscure	 the	 electrical	 coupling	 in	 rd1	 retinas	

(Fig.	3.10	b).	Inhibition	of	the	glutamatergic	input	reveals	a	sharp	peak	in	the	CC	at	

zero	time	lag	(Fig‐	3.10	d),	whereas	in	the	untreated	retina	the	same	CC	displayed	a	

broad	 peak	 (Fig.	 3.10	 b).	 When	 computed	 at	 high	 resolution,	 the	 peaked	 CC	

displayed	two	sub‐peaks	around	zero	 lag	similar	to	those	seen	 in	unperturbed	rd1	

and	wt	retinas	(Fig	3.10	d	and	Fig.	3.3	d).	The	maxima	for	this	pair	and	those	of	39	

others	 in	 3	 retinas	 were	 located	 on	 average	 at	 ‐1.5	 ±	 0.3	 ms	 and	 1.4	 ±	 0.3	 ms	

respectively.	 The	 average	 distance	 between	 electrically	 coupled	 rd1	 RGCs	 in	 the	

presence	of	iGluR	blockers	is	128	±	38	µm.	The	average	strength	of	0.22	±	0.06	(bin	

size	4	ms)	is	similar	to	the	strength	without	iGluR	blockers	(p=0.26).		

	

	 Spontaneous	
firing	 	 rate	 (Hz,	
mean	±std)	

Fundamental	
spiking	 frequency	
(Hz,	mean	±	std)	

LFP	velocity	(mm/sec)

Control	wt	retina		 17	±	10 ‐ ‐

Untreated	rd1	retina		

	

26	±	13 9.2	±	1.8 8

TTX	treated	rd1	 0.2	 5	* 6.6

DNQX	treated	rd1	 15.5	±	4 ‐ 0

Strychnine/	

Gabazine	treated	rd1	

22	±	10 6.7	±	0.8 6

MFA	 0.6	 0 0

CBX	 7	±	3	 0 0

TABLE	2:	Properties	of	retinal	ganglion	cells	and	local	field	potentials	in	rd1	retinas.		
	

These	results	indicate	that	rd1	RGCs	exhibit	non‐rhythmic	spiking	in	the	presence	of	

iGluR	blockers	that	may	be	attributed	to	stronger	electrical	coupling	between	nearby	

RGCs	 (and	 possibly	 retinal	 interneurons)	 as	 compared	 to	 wt	 RGCs	 (coupling	

strength:	0.01).		
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The	application	of	AMPA/kainate	receptor	blockers	alone	(DNQX)	had	qualitatively	

similar	 results	 as	 those	 reported	 above.	 In	 contrast,	 the	 application	 of	 the	 NMDA	

receptor	 blocker	 AP‐7	 (100	 µM)	 alone	 did	 not	 lead	 to	 any	 significant	 changes	 in	

either	RGC	spiking	or	LFP	properties	(n	=	2	retinas),	 indicating	that	AMPA/kainate	

receptors	 are	 sufficient	 to	 mediate	 the	 oscillatory	 behavior.	 Metabotrophic	

glutamate	receptors	of	type	6	(mGluR6)	are	expressed	in	the	wt	retina	at	 the	sign‐

inverting	 synapse	 between	 photoreceptors	 and	 ON	 bipolar	 cells	 (Wässle,	 2004).	

Immunhistochemical	evidence	suggest	a	reduced	expression	of	this	receptor	in	rd1	

retinas	 (Chua	 et	 al.,	 2009)	 whereas	 a	 recent	 functional	 study	 using	 resensitized	

cones	in	rd1	retinas	proves	that	the	ON	pathway	is	still	functional	(Busskamp	et	al.).	

The	mGluR6	 receptor	 antagonist	 AP‐4	 (50	 –	 100	 µM)	 had	 no	 effect	 on	 either	 the	

spontaneous	RGC	activity	(n	=	2	retinas)	or	on	LFPs	(data	not	shown).	In	summary,	

this	 set	 of	 experiments	 indicates	 that	 AMPA/kainate	 receptors	 on	 the	 RGCs	 elicit	

membrane	currents	that	are	reflected	in	our	recordings	as	LFPs.	In	the	following	a	

possible	mechanism	mediating	the	LFP	propagation	will	be	investigated.	
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3.1.6		 Gap	junctional	coupling	is	required	for	the	propagation	of	local	field	

potentials	

The	 median	 LFP	 propagation	 speed	 of	 ~	 8	 mm/sec	 is	 higher	 than	 the	 activity	

propagation	measured	for	developmental	retinal	waves.	Given	that	the	fastest	(stage	

I)	developmental	 retinal	waves	are	 inhibited	by	 gap	 junction	blockers	 (Syed	et	 al.,	

2004)	 we	 tested	 if	 LFP	 propagation	 measured	 here	 also	 relies	 on	 gap	 junction	

coupling.	We	 investigated	 the	effect	 of	 two	gap	 junction	blockers	 –	 carbenoxolone	

(CBX)	and	meclofenamic	acid	(MFA)	‐	on	the	RGC	spiking	activity	and	the	occurrence	

of	 LFPs.	 Application	 of	 CBX	 (n	 =	 3	 rd1	 retinas)	 at	 a	 concentration	 of	 100	 µM	 for	

10minutes	 abolished	 the	 LFPs	 and	 the	 rhythmic	 RGC	 spiking	 in	 rd1	 retinas	 (Fig.	

3.11	a).In	the	presence	of	CBX,	50%	of	the	ganglion	cells	(82	out	of	162)	maintained	

an	average	firing	rate	of	7	Hz,	however	the	spiking	was	no	longer	rhythmic.	Washout	

of	 CBX	 (20	 ‐30	minutes)	 restored	 the	 LFPs	 and	 the	 rhythmic	RGC	 spiking	 activity	

(Fig.3.11	a,	right	panel).	However,	not	all	RGCs	recorded	prior	 to	CBX	application	

were	 identified	 after	 the	 wash‐out.	We	 therefore	 repeated	 experiments	 using	 the	

new	 gap‐junction	 blocker	 MFA	 (100	 µM,	 Veruki	 and	 Hartveit,	 2009).	 	 The	

application	of	MFA	(n	=	3	rd1	 retinas)	minutes	completely	abolished	the	LFPs	and	

the	RGC	spiking	in	rd1	retinas	within	3	minutes	(Fig.3.11	b,	second	panel).	Washout	

of	MFA	(~	15	minutes)	restored	the	LFPs	and	the	rhythmic	RGC	spiking	activity	(Fig.	

3.11	b).	All	RGCs	recorded	before	the	application	of	MFA	were	again	identified	after	

the	wash‐out	of	MFA.	The	percentages	of	rhythmic	RGCs	before	and	after	the	wash‐

out	of	the	two	gap‐junction	blockers	are	summarized	in	Fig	3.10	c.	To	test	 if	RGCs	

are	capable	of	spiking	in	the	presence	of	MFA,	we	added	glutamate	(300	µM,	n=2	rd1	

retinas)	to	the	perfusion	solution.	After	the	application	of	glutamate,	a	large	number	

of	RGCs	(60	out	of	90)	started	to	elicit	action	potentials	at	an	average	firing	rate	of	5	

Hz.	 However,	 bath‐applied	 glutamate	 did	 not	 restore	 LFPs	 and	 did	 not	 elicit	

rhythmic	RGC	spiking	in	the	presence	of	MFA	(Fig.		3.11	b,	third	panel).	
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Figure	3.11:	Application	of	gap	junction	blockers	abolishes	LFPs	and	the	rhythmic	RGC	
spiking.		
	(a)	Effect	of	the	gap‐junction	blocker	Carbenoxolone	(CBX)	on	RGC	spiking	and	LFPs.	
First	panel:	Raster	plot	of	three	rhythmic	rd1	RGCs	and	the	LFPs	measured	32	µm	from	the	
soma	recordings.	Numbers	on	the	left	indicate	the	correspondence	between	RGCs	and	LFPs.		
Second	panel:	The	application	of	100	µM	CBX	reduced	the	firing	rate	in	the	RGCs,	abolished	
rhythmic	spiking	and	the	LFP.		
Third	panel:	wash	out	of	CBX	restored	rhythmic	spiking	and	the	LFP	
(b)	The	gap‐junction	blocker	MFA	has	similar	effects	as	CBX.		
First		panel:	Control	recording	of	three	rd1	RGCs	and	nearby	LFPs.		
Second	panel:	The	application	of	100	µM	MFA	reduced	the	firing	rate	in	the	RGCs,	abolished	
rhythmic	spiking	and	the	LFP.		
Third	panel:	Application	of	glutamate	(300	µM)	in	the	presence	of	MFA	(100	µM)	recovered	
non‐rhythmic	spiking	in	rd1	RGCs	but	not	the	LFPs.	
Fourth	panel:	Rhythmic	RGC	 spiking	and	LFPs	 reappear	after	 the	washout	of	 the	MFA	and	
glutamate.	
(c)	In	the	presence	of	either	CBX	or	MFA	(gray	bar)	the	percentage	of	rhythmic	cells	dropped	
from	~80	%	 to	 zero	but	 recovered	after	wash‐out	of	 the	drug.	After	washout	of	CBX	 (n=3	
retinas)	60	%	of	RGCs	were	rhythmic	again.	After	washout	of	MFA	(n	=	4	retinas)	64%	of	the	
RGCs	were	rhythmic	again.	(adapted	from	Menzler	&	Zeck,	2011)	
		
	
The	spike	train	autocorrelograms	and	pairwise	CCs	did	not	display	any	peaks	(data	

not	shown),	indicating	that	RGCs	spike	independent.	The	application	of	CBX	or	MFA	
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(both	at	100µM)	to	wt	retinas	did	not	change	the	spontaneous	RGC	firing	rate.	We	

conclude	that	glutamate	release	 in	the	presence	of	functional	electrical	synapses	 is	

required	 for	 the	 aberrant	 LFPs	 and	 concomitant	 rhythmic	 RGC	 spiking.	 The	

application	 of	 gap‐junction	 blockers	 carbenoxolone	 or	 meclofenamic	 acid	 for	 10	

minutes	had	no	effect	on	spontaneous	activity	in	wt	mice	(Fig.	3.12).	

	

	

Figure	3.12:	Effect	of	gap	 junction	blocker	carbenoxolone	and	meclofenamic	acid	on	
spontaneous	activity	of	wt	mouse	RGCs	
In	darkness	wt	RGCs	spike	at	a	rate	of	12‐14	Hz	(a	&b,	first	panel).	Perfusion	with	100	µM	
gap	 junction	 blocker	 Carbenoxolone	 does	 not	 change	 the	 average	 firing	 rate	 (a,	 middle	
panel).	After	wash	out	,	firing	rate	is	similar	to	control	(a,	right	panel).	The	effect	of	100	µM	
MFA	is	similar	(b),	whether	during	perfusion	(b,	middle	panel)	nor	after	wash	out	(b,	right	
panel)	a	difference	is	observed.		
The	bar	plots	in	(g)	and	(h)	summarize	the	effect	of	both	blockers	on	spontaneous	activity.	
Sample	size	was	n	=	82	(2	retinas)	for	Carbenoxolone	and	n	=	83	cells	(2	retinas)	for	MFA.	
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3.2 Induction	of	 the	 rd1	phenotype	 in	healthy	mice:	 the	 role	of	 the	dark	

current	and	synaptic	inhibition	

	

The	results	presented	 in	the	 following	section	are	used	 in	a	manuscript	“Bleaching	of	

photoreceptors	 in	C57BL/6	 retinas	 induces	 rhythmic	activity	 that	 resembles	 the	 rd1	

phenotype”	by	Menzler	&	Zeck.	Preparing	to	submission.	

	

The	pharmacological	and	statistical	analysis	of	rd1	RGCs	suggests	that	the	inhibition	

in	 rd1	 retinas	 is	 reduced.	 The	 blockage	 of	 GABAergic	 and	 glycinergic	 synapses	

located	 at	 bipolar‐,	 amacrine‐	 and	 retinal	 ganglion	 cells	 in	 rd1	 did	 not	 abolish	 or	

reduce	the	rhythmic	spiking	or	the	LFP	(Fig.	3.9	a	&	d).	Reduced	inhibition	is	known	

to	 facilitate	 rhythmic	 activity	 in	 the	motor	 cortex	 (Castro‐Alamancos	 et	 al.,	 2007)	

and	in	the	hippocampus	(Traub	et	al.,	2003).	

It	 is	 shown	 in	 the	 rd1	 recordings	 that	 the	 rhythmic	 hyperactivity	 is	 generated	

presynaptic.	 The	 only	 cell	 type	 known	 to	 excite	 cells	 via	 glutamate	 release	 are	

bipolar	 cells.	 The	 findings	 in	 rd1	 here	 suggests,	 that	 bipolar	 cells	 start	 increased	

glutamate	 release	upon	photoreceptor	 loss	and	are	 synchronized	via	AII	amacrine	

cells	(Menzler&Zeck,	2011;	Borowska	et	al.,	2011).	

In	the	normal	retina,	ON‐	and	OFF‐bipolar	cells	receive	constant	glutamate	release	in	

darkness	from	photoreceptors	(see	Introduction).	Bleaching	of	photoreceptors,	i.e.	

the	 constant	 illumination	 of	 the	 photoreceptors,	 activates	 the	 PDE	 and	 closes	 the	

cGMP	 gated	 cation	 channels	 in	 the	 retina.	 Bleaching	 attenuates	 photoreceptor	

activity	 for	 long	 intervals	 even	 when	 the	 actual	 bleaching	 is	 stopped	 (Fain	 et	 al.,	

2001).		

Bleaching	mimics	 the	 loss	of	photoreceptors	 in	nuce.	Decrease	of	 the	dark	 current	

signals	the	presence	of	light	to	all	ON‐Bipolar	cells.	As	all	RBCs	and	half	of	the	CBC	

are	 of	 ON	 polarity,	 the	 majority	 of	 bipolar	 cells	 should	 increase	 their	 glutamate	

release	upon	photoreceptor	bleaching	(Gosh	et	al.,	2003)	

In	 the	 following	 I	will	 investigate	 the	 effect	 of	 bleaching	 on	 C57Bl/6	 spontaneous	

activity	and	the	role	of	inhibitory	synaptic	signaling.	

Multi‐transistor‐arrays	 or	 Multi‐electrode‐arrays	 record	 simultaneously	 signals	

from	large	cell	populations.	In	contrast	to	patch	clamp	experiments,	it	is	not	possible	

to	determine	the	cell	type	by	intracellular	dye	load	

In	 addition	 to	 ganglion	 cells	 those	 displaced	 amacrine	 cells	 that	 generate	 action	

potentials	 will	 be	 recorded	 by	 the	 extracellular	 array	 (Heflin	 &	 Cook,	 2007)	 and	
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afterwards	assigned	to	an	RGC.	Amacrine	cells	display	ON‐	and	OFF‐responses	and	

therefore	the	cell	class	cannot	be	determined	by	light	response.	

We	 therefore	 tried	 to	determine	RGCs	visualizing	 its	axon,	using	a	 Spike	 triggered	

Average	(STA)	method	from	Petrusca	et	al.,	2009	(see	sect.	2.10).	

RGCs	have	only	one	axon	and	all	RGC	axons	run	nearly	parallel	toward	the	optic	disc.	

Other	cell	types,	e.g.	displaced	amacrine	cells	have	no	axons	or	posses	axonal	trees	

of	which	axonal	action	potential	do	not	propagate	to	the	optic	nerve	but	somewhere	

into	the	Inner	plexiform	layer	(Majumdar	et	al.	2009).		

	

	

	

Figure	3.13:		Recorded	cells	were	identified	as	RGCs	upon	their	axon		
In	(a)	the	location	of	12	cells	on	the	array	is	indicated.	Cells	were	only	recorded	in	the	upper	
half	 of	 the	 array.	 All	 cells	 were	 either	 of	 ON	 (red)	 or	 OFF‐type	 (blue).	 Five	 types	 of	 light	
responses	 were	 identified	 in	 mouse	 using	 PSTHs	 (b).	 In	 (c	 1‐12)	 the	 propagation	 of	 an	
axonal	action	potential	for	the	respective	cells	in	(a)	is	shown.	For	each	cell	5	electric	images	
represent	the	average	transistor	signal	during	the	first	0.4	ms	after	a	somatic	spike.	Between	
two	images	is	a	temporal	difference	of	0.08	ms	(at	12	kHz	sampling	frequency).	These	cells	
are	also	shown	in	Fig.	4.	Black	bar	indicates	200	µm.	Voltage	values	are	color	coded.	
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In	 each	 sample	 we	 identified	 cells	 with	 axons	 and	 analyzed	 this	 subset	 of	 cells	

separately	 to	 detect	 differences	 between	 the	 complete	 sample	 and	 this	 sample	 of	

‘identified	RGCs’	 .	 In	Fig.	3.13	a,	a	 schematic	 sensor	 array	 is	 shown	with	RGCs	 of	

which	 an	 axon	 was	 found.	 The	 propagation	 of	 axonal	 action	 potentials	 from	 the	

respective	 cells	 are	 shown	 in	 Fig.	 3.13	 c.	 The	 propagation	 direction	 of	 all	 axons	

found,	was	coherent.	

We	 further	 identified	 5	 types	 of	 light	 responses	 in	 the	 RGC	 sample	 (Fig.	3.13	b)	

using	peri	stimulus	time	histograms	(PSTHs).	While	cells	of	either	ON‐	and	OFF‐type	

were	frequently	found,	ON‐OFF	cells	were	rare.		

	

	

3.2.1	 Constant	 illumination	 leads	 to	 spontaneous	 oscillatory	 activity	 in	

C56BL6	RGCs	

Spontaneous	activity	from	four	C57/Bl6	mouse	retinas	was	recorded	for	up	to	three	

hours	after	the	retina	adhered	to	the	MTA	chip.	For	the	first	forty	minutes	the	retinal	

activity	was	recorded	in	darkness,	then	light	responses	were	measured	for	about	20	

minutes	and	afterwards	 the	retina	constantly	 illuminated	at	 intensities	of	40	to	80	

mW/mm²,	for	up	to	2	hours.	

In	 Fig.	 3.14	 a,	 the	 typical	 maintained	 activity	 of	 C57Bl6	 RGCs	 within	 one	 retina	

recorded	in	darkness	is	illustrated.		

The	average	maintained	activity	in	darkness	of	this	sample	was	with	13	Hz	±		1.3	Hz		

(n	 =	 139	 cells	 in	 3	 retinas,	 mean	 ±	 SEM)	 not	 different	 from	 previously	 recorded	

maintained	activity	in	C57Bl6	retinas		(n	=	430;		p	=	0.4).	

Constant	 illumination	 of	 the	 retina	 increases	 the	 average	 spontaneous	 firing	 rate	

(Fig.	 3.14	 b)	 significantly	 to	 38	 Hz	 ±	 3.6	 (mean	 ±	 SEM;	 p	 <	 0.01).	 This	 induced	

hyperactivity	 and	 concerned	 cells	 in	 both	major	 cell	 types	 recorded	 (ON	 and	OFF	

RGCs).	The	ON	cell	subpopulation	spiked	with	36	Hz	±	4.8		(n=86)	and	OFF	cells	with	

40	Hz	 ±	 4.7	 (n=43)	when	 exposed	 to	 bright	 light	 .	 Both	 cell	 types	 increased	 their	

average	firing	rates.	

After	 a	 long	 interval	 (>	 2	 hr)	 of	 constant	 illumination,	 rhythmic	 spiking	 was	

observed	in	about	50%	(Fig.	3.14	c,	n	=	65	cells)	of	the	RGCs.	The	Autocorrelations	

of	spike	trains	clearly	reveal	multiple	peaks	and	thus	a	rhythmic	firing	of	~	5	Hz.	The	

average	fundamental	frequency	calculated	for	65	rhythmic	cells	was	5.1	±	1	Hz	(Fig.	

3.14	 h).	 	 ON	 and	 OFF	 RGCs	 were	 differently	 affected	 by	 this	 shift	 of	 the	 activity	
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pattern:	 	 32	 %	 of	 ON	 and	 69	%	 of	 OFF	 ganglion	 cells	 in	 three	 retinas	 displayed	

rhythmic	 bursting.	 RGCs	 that	 did	 not	 initiate	 rhythmic	 spiking	 increased	 the	

maintained	firing	rate	upon	illumination.			

A	feature	of	rd1	RGC	spiking	is	the	synchronous	rhythmicity	measured	in	many	but	

not	 all	 cells	 (Menzler	&	 Zeck	 2011).	 	We	 cross	 correlated	 spike	 trains	 of	 ganglion	

cells	 recorded	 in	 darkness,	 during	 the	 first	 half	 hour	 of	 illumination	 and	 after	

rhythmic	activity	appeared.	The	cross	correlogram	(CCs)	of	two	cells	shown	in	the	

raster	plots	(Fig.	3.14a‐b)	are	illustrated	for	the	different	conditions	in	Fig.	3.14	d.	

		

	

Figure	3.14:	Long	exposure	of	 the	retina	 to	white	 light	 induces	oscillatory	spiking	 in	
many	retinal	ganglion	cells	
The	raster	plots	show	spontaneous	activity	of	C57BL/6	RGCs	in	darkness	(a),	after	30	min	of	
illumination	(b)	and	after	2	hrs	of	illumination	(c).	
(d)	Correlating	 two	cells	 from	(a)	 revealed	no	positive	correlation	during	darkness	 (green	
line),	 but	 increasing	 correlation	 strength	 at	 the	 beginning	 of	 the	 light	 stimulation	 (orange	
line).	Start	of	rhythmic	spiking	after	2	hrs	caused	a	strong	correlation	(black	line).		
In	(e)	 two	rhythmic	and	one	not	rhythmic	cell	are	shown	with	respective	 low‐pass	filtered	
voltage	traces.		
(f)	Application	of	50	µM	DNQX	abolishes	rhythmic	spiking	and	decreases	the	firing	rate	in	all	
three	cells.		
(g)	Phase	distribution	of	CCs	between	RGCs	during	rhythmic	activity.	Most	cells	have	a	CC	
maximum	shifted	from	zero.	
(h)	 Distribution	 of	 fundamental	 frequencies	 among	 rhythmic	 cells.	 	 The	 rhythmic	 cells	
showed	an	average	fundamental	frequency	of	5.1	±1	Hz	(Mean	±	SEM)	
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There	was	no	correlated	activity	between	 these	 two	OFF	cell,	which	were	140	µm	

apart,	 cells	 in	 darkness	 (Fig.	3.14	d;	 green	 line).	 	 In	 spike	 trains	 recorded	 during	

initial	 illumination	 about	 10%	 of	 all	 cells	 displayed	 positive	 correlations,	 like	 the	

example	 in	 Fig.	 3.14	 d	 (yellow	 line).	 	 When	 the	 RGCs	 started	 rhythmic	 firing,	

positive	cross	correlations	were	found	between	58	%	of	the	cells,	similar	to	those	in	

Fig.	3.14	d	(black	line).	

To	 test	whether	these	CCs	 indicate	rhythmic	excitatory	 input,	 the	 iGluR	antagonist	

DNQX	was	added	to	the	perfusion.		

As	illustrated	in	Fig.	3.14	f	 	 the	block	of	glutamatergic	 input	stopped	the	rhythmic	

activity	(Fig.	3.14	e)	and	decreased	the	firing	rate	from	averagely	30	±	4	Hz		to	15	±	

1	 Hz	 in	 all	 RGCs	 	 (n	 =	 14	 cells).	 This	 firing	 rate	 is	 similar	 to	 baseline	 activity	 in	

darkness.		

No	local	field	potentials	were	detected	under	these	conditions	(Fig.	3.14	e	&	f,	low	

pass	filtered	voltage	traces).	

The	majority	of	CCs	 (90%)	was	phase‐shifted	 to	other	ganglion	cells.	Cells	 spiking	

out	of	phase	showed	a	CC	maximum	shifted	from	zero	(Fig.	3.14	g).	The	majority	of	

cells	in	C57Bl/6	retinas	seem	to	receive	rhythmic	but	not	synchronous	input	during	

constant	 illumination.	 In	rd1	 retinas,	 the	distribution	of	phase	shifts	had	a	peak	at	

zero.	The	increased	firing	rates	and	the	effect	of	glutamate	antagonists	point	toward	

enhanced	excitatory	input.		

In	this	sample	we	identified	27	cells	with	axon,	14	were	OFF‐cells	and	10	ON‐cells.	

They	had	an	average	firing	rate	of	8	±	1	Hz	in	darkness	and	the	firing	rate	increased	

upon	illumination	to	24	±	1	Hz.		Of	these	cells	24	initiated	rhythmic	5	Hz	oscillations.		

Of	the	14	cells	perfused	with	DNQX,	eight	were	found	to	have	an	axon.	Their	average	

firing	rate	was	reduced	from	22	±	2	Hz	to	6	±	2	Hz	by	iGluR	block..		

	

That	not	all	 cells	 showed	rhythmic	 spiking	and	 that	 the	CCs	maxima	were	shifted,	

reveals	 the	 possibility,	 that	 inhibitory	 synapses	 suppress	 rhythmic	 activity	 and	

broad	 range	 synchronization.	 Therefore,	 additionally	 to	 bleaching	 we	 applied	

blockers	for	GABA	and	glycin	receptors.	

	

	

	

	



Results:	Bleaching	induces	the	rd1	phenotype	in	C57BL/6	

75	

3.2.3	 Combined	 antagonization	 of	 Glycine	 and	 GABA	 Receptors	 induces	

oscillations	in	C56Bl6	RGCs	

	

In	 a	 new	 set	 of	 experiments	 spontaneous	 activity	 was	 recorded	 similar	 to	 the	

previous	experiments.	The	 retina	was	constantly	 illuminated	and	30	minutes	after	

start	of	illumination	shortly	perfused	with	a	mixture	of	5	µM	Strychnine	and	30	µM	

SR	95531	to	block	inhibitory	transmission	within	the	retinal	patch	(see	sect.	2.14).	

The	 raster	 plots	 in	Fig.	3.15	a	 illustrate	maintained	 activity	 in	 darkness	 (14	Hz	±	

2.6)	and	under	constant	illumination	(	Fig.	3.15	b)	Constant	illumination	increased	

the	mean	 firing	rate	of	RGCs	 in	 this	retinal	patch	 to	39Hz	±	2.5	(n	=	246	cells	 in	7	

retinas	).		No	rhythmic	activity	was	detected	at	this	early	time	point.		

	

	

Figure	3.15:		Disinhibition	of	bleached	retina	initiates	synchronous	rhythmic	activity		
Raster	plots	illustrate	spontaneous	activity	in	darkness	(a),	at	beginning	illumination	(b)	and	
during	 perfusion	with	 strychnine	 and	 SR95531	 (c)	 of	 selected	 retinal	 ganglion	 cells.	 After	
washout	of	the	inhibitory	blockers,	the	rhythmic	activity	disappeared	(d).	In	(e)	Distribution	
of	 the	CC	maximum	lag	reveals	 that	a	 large	proportion	of	 the	cells	 is	 in	phase.	Dashed	 line	
indicates	 chance	 level.	 	 The	 fundamental	 frequency	 between	 different	 retinal	 samples	 (f)	
varied	from	5	to10	Hz.	
	
	
Perfusion	 with	 the	 blocker	 mixture	 Strychnine	 and	 SR	 95531	 led	 to	 oscillatory	

spiking	in	83	%	of	all	cells	(Fig.	3.15	c).		About	53	%	of	the	ON	cell	population	(n	=	

79	 ON	 cells)	 and	 93%	 of	 OFF	 cells	 (n	 =	 74	 cells)	 exhibited	 rhythmic	 spiking.		

Inhibitory	 blockers	 changed	 only	 the	 spiking	 pattern	 and	 not	 the	 firing	 rate	

compared	to	the	illumination	condition.		

Application	of	either	Strychnine	or	SR	95531	alone	did	not	lead	to	rhythmic	firing.		
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After	 wash	 out	 of	 the	 blocker	 mixture	 for	 more	 than	 10	 minutes	 the	 rhythmic	

spiking	disappeared	(Fig.	3.15	d).	After	wash	out,	average	firing	rates	were	similar	

to	the	values	before	blocker	wash	in	(34±5	Hz).	

The	fundamental	frequency	of	the	spike	trains	varied	between	5	and	10	Hz	between	

retinas	 (Fig.	 3.15	 f).	 Cross	 correlation	 of	 spike	 trains	 recorded	 in	 darkness	 and	

during	 initial	 bright	 light	 illumination	 revealed	 no	 positive	 correlations,	 while	

during	perfusion	with	the	blocker	mixture	strong	correlations	appeared	between	85	

%	of	all	cells.	

In	contrast	to	spontaneous	oscillations	the	distribution	of	phase	shifts	was	narrow	

and	70	%	of	the	CC	displayed	phase	shifts	with	less	than	10	milliseconds	(Fig.	3.15	

e).	 	This	 indicates	synchronous	 rhythmic	 input	 for	 the	majority	of	 the	cells,	as	has	

been	demonstrated	for	rd1	RGCs	after	Strychnine	and	SR95531	wash	in	(Fig.	3.8	c).		

Indeed,	 in	 addition	 to	 the	 fast	 extracellular	 voltage	 deflections	 caused	 by	 action	

potentials	an	additional	slow	voltage	signal	was	recorded,	similar	to	the	LFPs	found	

in	rd1	retinas.	
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3.2.4	 Oscillatory	spiking	in	the	disinhibited	retina	is	accompanied	by	a	static	

LFP		

The	 rhythmic	 bursting	 of	 RGCs	 during	 perfusion	with	 inhibition	 blocker	mix	 was	

accompanied	by	oscillatory	extracellular	voltage	changes	similar	 to	 the	Local	Field	

potentials	(LFPs)	detected	in	rd1	mice.	

	

	

Figure	3.16:	Static	LFPs	emerge	during	application	of	strychnine	&	SR	95531	during	
illumination	
Spiking	pattern	and	corresponding	voltage	trace	of	three	cells	during	illumination	(a),	during	
application	of	strychnine	&	SR	95531	(b)	and	during	application	of	inhibitory	blocker	mix		&	
50	 µM	 DNQX	 (c).	 In	 (d)	 voltage	 maps	 show	 two	 LFP	 cycles	 (	 total	 250	 ms).	 The	 LFP	 is	
initiated	 at	 the	 same	 position	 and	 not	 propagating.	 Voltage	 values	 are	 color	 coded.	 The	
rhythmic	bursting	of	the	cells	and	the	LFP	minima	are	correlated	with	little	time	lag	(e).	
CCs	of	recorded	RGCs	show	little	time	lag,	as	all	cells	participated	in	the	same	LFP	phase.	

Spike	pattern	of	 three	RGCs	before	and	during	blocker	perfusion	are	 illustrated	 in	

Fig.	3.16	a	&	b.		The	three	voltage	traces	below	the	raster	plots	are	low	pass	filtered	

and	 show	 the	 emergence	 of	 a	 slow	 voltage	 deflection	 concomitant	 with	 rhythmic	

spiking.	 	The	RGC	spiking	 is	 in	synchrony	to	the	LFP	minimum	as	 indicated	by	 the	

cross	correlation	of	spikes	and	LFP	minima	(Fig.	3.16	e).	

Spatially,	the	LFPs	covered	large	areas	of	the	recording	array	and	did	not	propagate.	

In	Fig.	3.16	d	 the	 voltage	maps	 illustrate	 the	 spatial	 LFP	 properties.	 The	 cells	 of	

panel	A‐C	are	indicated	by	black	dots	on	the	voltage	map.	The	voltage	map	is	taken	

from	the	retina	in	Fig.	3.13	and	the	three	cells	correspond	to	cell	2,	4	and	12..	
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Though	 LFPs	 were	 static,	 the	 location	 of	 their	 origin	 was	 variable	 in	 time.	 All	

rhythmic	spiking	cells	and	the	LFP	were	sensitive	to	glutamate	receptor	antagonist	

DNQX	(Fig.	3.16	c).		

DNQX	in	combination	with	Strychnine	and	Gabazine	blocked	rhythmic	activity	and	

LFP	generation,	the	average	firing	rate	was	significantly	decreased	from	36	±	5	Hz	to	

12±3	Hz	(n=	113	cells,	mean	±	SEM;	p	<	0.01)	to	12±	3	Hz.	The	average	firing	rate	

remained	on	this	level	after	drug	wash	out.	

	

We	 identified	 52	 cells	with	 axons	 of	which	 44	 became	 rhythmic	 during	 bleaching	

and	blocker	treatment.		These	cells	spiked	with	14	±	1	Hz	in	darkness	and	the	firing	

rate	increased	to	36	±	3	Hz	during	illumination.	 	Of	the	44	cells	 initiating	rhythmic	

bursts	 28	 had	 a	 fundamental	 frequency	 of	 5	 Hz	 while	 the	 others	 obtained	

frequencies	 around	 10	 Hz.	 	 Application	 of	 DNQX	 reduced	 the	 firing	 rate	 in	 this	

sample	 from	 36	 ±	 3	 Hz	 to	 13	 ±	 1	 Hz.	 We	 found	 no	 significant	 difference	 in	 the	

analysis	performed	for	cells	with	or	without	identified	axon.	

These	experiments	show	 that	deprivation	of	 the	dark	current	 increases	RGC	 firing	

rates	in	C57BL/6.	

The	increased	activity	results	in	spontaneous	rhythmic	spiking	and	upon	blockage	of	

inhibitory	synapses,	LFP	driven,	synchronous	oscillations	appear.		
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3.3	 Pharmacology	of	wistar	RGC	spontaneous	activity	

In	addition	 to	mouse	models	of	rd1,	a	variety	of	rat	rd	models	are	known	(Marc	&	

Jones,	2005).	 In	rat	rd	models,	e.g.	 the	P23H‐1	rat	and	the	RCS	rat,	photoreceptors	

degenerate	slow	and	rhythmic	activity	was	recorded	in	a	subset	of	RGCs	(Kolomiets	

et	al.,	2010).	But	as	made	evident	by	recent	studies,	 the	electrical	phenotype	 in	rd	

rats	 may	 not	 be	 similar	 to	 what	 was	 recorded	 in	 rd	 mice	 (Sekirnjak	 et	 al.,	 2011;	

Kolomiets	et	al.,	2010;	Margolis	&	Detwiler,	2008;	Menzler	&	Zeck,	2011).		

Mice	and	rats	investigated	in	this	study	displayed	differences	in	maintained	activity.	In	

dark	adapted	rats	a	higher	firing	rate	for	OFF‐cells	than	for	ON‐cells	is	observed,		that	

is	not	detected	in	mice	(Fig.	3.17).	

Averaged	spontaneous	activity	 in	mouse	ON‐cells	 (n=	256)	and	OFF‐cells	 (n	=	144)	

was	12	±	2	Hz	(mean	±	SEM),	which	is	consistent	with	published	values	(Margolis	&	

Detwiler,	2007).	In	rat	RGCs	OFF‐cells	(n	=	90)	spiked	with	16	±	1	Hz	(mean	±	SEM)	

significantly	more	than	ON‐cells	(n	=	130)	that	showed	5	±	1	Hz	spontaneous	activity.	

The	 firing	 rates	 obtained	 for	 dark	 adapted	 rats	 here	 are	 similar	 to	 a	 recently	

published	study	(Sekirnjak	et	al.,	2011).	

	

	

Figure	3.17:	ON‐	and	OFF‐cell	spontaneous	activity	in	mouse	and	rat	RGCs	
Bars	indicate	mean	±	SEM,	recordings	performed	in	darkness.	
	

To	 investigate	 the	 effect	 of	 constant	 photoreceptor	 bleaching	 and	 the	 impact	 of	

pharmacologic	blockers,	similar	experiments	as	conducted	in	mouse,	were	repeated	

in	rat	retina.	

I	applied	constant	illumination	to	wistar	retinas,	which	showed	an	increase	of	firing	

rate	(Fig.	3.18	a).	In	two	retinas	ON‐cells	increased	their	firing	rates	from	2.4	±1.6	

Hz	(n=	16	cells;	mean±SEM)	to	9	±4	Hz	,	while	OFF‐cells	had	an	elevated	firing	rate	

at	17	±	2	Hz	(n=24	cells)	compared	10	±	4	Hz	in	darkness.	The	average	firing	rate	for	
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all	cells	in	the	sample	(n=	58)	changed	from	6	±	2	Hz	to	11	±	1	Hz.	The	increase	was	

significant	(p	<	0.05)	for	all	groups.	The	cells	did	not	initiate	spontaneous	rhythmic	

activity.	

	

	
Figure	3.18:	The	effect	of	illumination	and	pharmacologic	agents	on	rat	RGC	activity	

(a) Constant	bleaching	of	 two	 retinas	 for	~	2	hrs	 changed	 the	 average	 firing	 rate	of	ON‐	 (red),	

OFF‐cells	(blue)	and	of	all	cells	(white)	in	the	sample	significantly	(p<0.05).		

(b) The	GluR	blocker	only	slightly	affected	the	average	firing	rates.	The	increase	in	firing	rate	for	

OFF‐cells	was	not	significant.		

(c) Perfusion	 of	 rat	 RGCs	 during	 illumination	 with	 a	 mixture	 of	 GluR	 blockers,	 Gabazine	 (SR	

95531)	and	Strychnine	significantly	 increased	the	firing	rate	of	OFF‐cells,	but	decreased	the	

firing	rate	of	ON‐cells.	Bars	indicate	mean	±	SEM.	

	

To	test	if	this	elevated	activity	is	due	to	glutamate	release	I	applied	a	mixture	of		

50	 µM	 DNQX,	 20	 µM	 AP‐4	 and	 20	 µM	 AP‐7	 to	 two	 retinas	 under	 constant	

illumination.	In	Fig.	3.18	b	is	shown	that	glutamate	receptor	blockers	decreased	the	

very	low	spontaneous	activity	of	ON‐cells	(4.3	Hz	±	1.5	Hz;	n=	27;	2	retinas)	in	the	

sample	to	2.75	±	0.25	Hz,	while	OFF	cell	maintained	activity	(15.3	±	3.2	Hz,	n	=	20	

cells)	was	increased	(20.4	±	5.2	Hz,	p	=	0.06),	but	not	significantly.	

The	 GluR	 blockers	 had	 only	 a	 small	 effect,	 different	 to	what	was	 seen	 in	 C57Bl/6	

mice.		
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Figure	3.19:	Effect	of	synaptic	blockers	on	wistar	RGC	maintained	activity	
	
(a) During	 application	 of	 10	 µM	Strychnine	&	30	µM	Gabazine	one	ON‐cells	 (red)	 and	 all	

OFF‐cells	(blue)	initiate	a	3	Hz	oscillation.	
(b) During	 illumination,	 the	 application	 of	 a	 blocker	 cocktail	 of	 50	 µM	 DNQX,	 10	 µM	

Strychnine,	 30	 µM	 Gabazine,	 20	 µM	 AP‐7	 and	 20	 µM	 AP‐4	 increased	 OFF‐cells	
spontaneous	firing	rate	and	all	OFF‐cells	initiated	a	3	Hz	oscillation.	ON‐cells	showed	
reduced	firing	rates.	

	
An	increase	in	OFF‐cell	spontaneous	firing	was	achived	by	the	application	of	50	µM	

DNQX,	10	µM	Strychnine,	30	µM	Gabazine,	20	µM	AP‐4	and	20	µM	AP‐7.	The	OFF‐

RGC	baseline	activity	(20.4	±	5.2	Hz,	n	=	25	cells,	3	retinas)	was	increased	to	29.7	±	5	

Hz.	 The	 effect	 on	 OFF‐RGCs	 indicates	 that	 the	 presynaptic	 input	 of	 these	 cells	 is	

inhibitory	 and	 its	 removal	 increases	 the	 spontaneous	 firing	 rate.	 The	 inhibitor	

cocktail	also	affected	ON‐cells	spontaneous	firing	rate	and	decreased	it	from	4.5	±1.3	

Hz	(n	=	42;	3	retinas)		to		2.2	±	0.4	Hz.		

During	 application	 of	 the	 blocker	 cocktail,	 all	 recorded	OFF‐cells	 started	 rhythmic	

spiking	(Fig.	3.19	b)	at	a	fundamental	frequency	of	3	Hz	(n=25).	ON‐cells	showed	no	

patterned	activity.	

To	 test	 if	 this	 oscillations	 appear	 by	 loss	 of	 inhibition	 analogue	 to	 the	 findings	 in	

mouse	 (see	 sect.	 3.2.1)	 we	 applied	 only	 Strychnine	 and	 Gabazine	 during	

illumination	to	one	retina	(Fig.	3.19	a,	n	=	28	cells).		

Gabazine	and	Strychnine	did	not	change	the	initial	firing	rates	of	OFF‐RGCs	(from	20	

±4	Hz	to	20	±	7	Hz)	and	ON	RGCs	(	from	5.7	±	1.8	Hz	to		5.8	±	2.2	Hz),	but	induced	

rhythmic	spiking	in	all	OFF‐RGCs	(n	=	9)	and	in	three	ON	cells	(n	=	11).		

We	found	no	hints	for	the	emergence	of	a	local	field	potential	under	this	conditions	

in	 wistar	 rats.	 Bleaching	 alone	 had	 no	 significant	 effect	 on	 rat	 RGC	 spontaneous	

activity.		



Results:	Pharmacology	of	wistar	RGC	spontaneous	activity	

82	

Comparing	 this	 results	 with	 those	 of	 the	 bleaching	 experiment	 in	 mouse	 is	

interesting	 as	 the	 rd	 phenotype	 in	 rats	 and	 mice	 are	 different.	 In	 rd	 rats	 only	 a	

subtype	 of	 cells	 show	 slow	 oscillations	 while	 in	 rd1	 mice	 the	 majority	 of	 the	

population	initiates	rhythmic	spiking.		
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3.4 			Ganglion	cell	activity	after	optic	nerve	lesion		

	

Some	 results	 presented	 in	 this	 section	 are	 used	 for	 a	 manuscript	 “Impairment	 of	
axonal	transmission	and	RGC	degeneration	in	rat	and	rabbit	after	optic	nerve	injury”	
by	Menzler,	Leibig,	Zeitler,	Lambacher	and	Zeck.	Preparing	to	submission.	

	

In	 traumatic	 injuries,	 glaucoma,	 cancer	 or	 some	 forms	 of	 retinitis	 pigmentosa,	

degeneration	 of	 RGCs	 occurs,	 that	 first	 affects	 the	 morphology	 of	 the	 cells	 and	

subsequently	 leads	 to	 apoptosis.	 Cell	 degeneration	 is	 triggered	 by	 direct	 injury	 or	

due	 to	 secondary	 degeneration.	 In	 the	 secondary	 degeneration,	 cells	 degenerate	

because	of	 changes	 in	 their	microenvironment,	 e.g.	 cones	 in	rd	 degenerate	 though	

there	is	no	gene	mutation	(Levkovich‐Verbin	et	al.,	2010;	Punzo	et	al.,	2009).	

In	the	following	experiments	I	used	rats	suffering	from	direct	RGC	degeneration	due	

to	 a	 surgical	 lesion	 of	 the	 optic	 nerve.	 This	 animal	 model	 is	 used	 in	 glaucoma	

research,	 as	 it	 resembles	 the	 clinical	 phenotype	 and	 shows	 fast	 degeneration	

(Levkovich‐Verbin,	2001)	

Because	of	direct	lesion	of	the	RGC	axons,	axonal	function	should	attenuate	first.		

To	asses	changes	in	axonal	function	I	determined	the	axonal	conduction	velocity	of	

intra‐retinal,	 not	 myelinated	 axons	 in	 rats.	 I	 take	 advantage	 of	 the	 STA‐analysis	

presented	 in	 prior	 sections	 (see	 sect.	 2.10)	 and	 for	 the	 first	 time	 visualize	 the	

propagation	 of	 axonal	 action	 potentials	 in	 rat	 retinas.	 STA	 analysis	 enables	 the	

detection	of	the	propagating	action	potential	over	the	whole	sensor	array	(1	mm²)	

and	 facilitates	 the	 determination	 of	 the	 conduction	 velocity.	 This	 was	 described	

previously	 for	 rabbits	(Zeck	et	al.,	2011),	where	single	axonal	APs	can	be	detected	

without	further	analysis.	

To	confirm	that	changes	in	axonal	conduction	velocity	are	due	to	axonal	injury,	

I	used	two	types	of	surgical	lesion:	optic	nerve	crush	(ONC)	and	optic	nerve	section	

(ONS).	 	In	rats	receiving	ONS	the	axon	are	physically	disrupted	and	axonal	endings	

are	open.	Therefore	these	cells	can	be	labeled	retrograde	to	estimate	RGC	density.		

In	stained	retinas	the	induced	cell	loss	was	confirmed	by	cell	count.	Furthermore,	in	

retinas	 were	 stained	 RGCs	 become	 sparse	 I	 could	 match	 the	 electrical	 image	 of	

spiking	cells	with	the	micrographs	to	identify	the	cells	recorded.	If	in	a	region	where	

spikes	were	recorded	a	stained	cell	was	detectable,	the	staining	of	the	cell	indicated	

axonal	injury	otherwise	the	dye	(Rhodamine‐dextrane)	couldn’t	enter	the	cell.	



Results:	RGC	degeneration	and	function	

84	

The	 retinas	 with	 sectioned	 optic	 nerve	 were	 used	 as	 control	 for	 the	 retinas	 with	

crushed	 axons,	 where	 I	 expect	 to	 see	 a	 similar	 but	 maybe	 slower	 change	 of	 the	

axonal	conduction	velocity.	

An	additional	 I	 recorded	somatic	action	potentials.	Following	a	study	 investigating	

the	effect	of	axotomy	on	single	RGCs	in	cats	(Takao	et	al.,	2002),	one	should	expect	

slight	 changes	 in	 the	maintained	 firing	 rate	 after	 two	 weeks	 and	 a	 change	 of	 the	

average	 firing	 rate	 of	 the	 light	 response.	 I	 expected	 to	 see	 differences	 in	 the	 RGC	

response	if	a	prior	change	in	axonal	propagation	velocity	was	detected.	

	

	

3.4.1	 Decrease	of	RGC	density	after	optic	nerve	injury		

To	supervise	the	effect	of	optic	nerve	 injury	on	RGC	density	eight	rat	retinas	were	

retrograde	stained	during	eye	surgery	using	Rhodamine‐dextrane.	This	was	possible	

only	in	rats	receiving	ONS	where	the	axons	were	accessible	for	dyes.	

One	days	after	the	Rhodamine	injection	averagely	1208	±	131	cells	per	mm²	(n	=	2	

retinas)	were	counted	(Fig.	3.20	a	&	g),	 four	days	after	 the	cell	density	decreased	

slightly	to	1090	±	127	(n	=	2	retinas)	cells	per	mm².		A	strong	cell	density	decrease	

was	found	in	retinal	patches	prepared	eight	days	after	surgery,	where	the	mean	cell	

density	was	499	±	33	cells	per	mm²	(Fig.	3.20	b	&	e;	n	=	3	retinas).	In	one	rat	retina	

analyzed	two	weeks	after	staining,	we	found	only	3	cells	per	mm²	(Fig.	3.20	c	&	f;			

	n	=	1	retina).		

Rhodamine	dextrane	staining	does	not	indicate	viability	and	is	also	incorporated	by	

glial	 cells	and	 lysosomes	after	RGC	apoptosis.	The	cells	 counted	are	chosen	by	 the	

criterion	of	size	and	may	not	reflect	the	number	of	functional	cells.	In	Fig.	3.20	a,	the	

5	x	magnification	of	stained	cells	on	an	MTA	chip	illustrates	the	cell	density	one	day	

after	dye	injection.	Cells	are	of	round	shape	and	thick	axon	bundles	are	visible	(Fig.	

3.20	d).	

One	week	 after	 surgery	 cell	 labeling	 becomes	 sparse	 (Fig.	20	b)	 and	 axon	bundle	

labeling	 appears	 thinner.	 In	 the	 20x	 magnification	 (Fig.	 3.20	 e)	 deformed	 and	

apoptotic	cells	are	observed	(blue	arrows).	The	RGC	degeneration	comes	to	an	end	

after	two	weeks	where	only	apoptotic	bodies	are	visible	(Fig.	3.20	c	&	f).		

	



Results:	RGC	degeneration	and	function	

85	

	

Figure	3.20:	Staining	of	RGCs	after	ONS	indicates	cell	loss	
(a	–	b)	shows	retinal	patches	with	stained	RGCs	on	the	Neurochip	(5x	magnification).	On	this	
patches	1014	cells	(a),	379	(b)	and	3	(c)	cells	were	counted.	Green	bars	indicate	100	µm.	
(d	 ‐	 f)	 pictures	 are	 taken	 from	 the	 corresponding	 patches	 above	 with	 20x	magnification.	
Green	bars	indicate	20	µm.	In	(d)	axon	bundles	and	normal	RGC	somas	are	visible	one	day	
after	surgery.	Through	the	cell	layer	the	transistor	grid	is	visible.	In	(e)	8	days	after	surgery	
apoptotic	 and	 deformed	 cells	 appear	 (blue	 arrows),	 cell	 density	 is	 decreased	 and	 axon	
bundles	are	thinned.	(f)	After	14	days	only	apoptotic	bodies	are	visible	(green	arrow).	
In	 (g)	 the	 average	 cell	 number	 counted	 per	 mm²	 is	 plotted	 against	 post	 operative	 time	
intervals.	Staining	was	done	with	ONS	animals.	Symbols	 indicate	mean	±	SEM.	Analogue	to	
(g)	the	number	of	cells	recorded	per	retinal	proportion	is	plotted	in	(h).	ONS	is	indicates	by	a	
square	and	ONC	by	a	triangle	symbol.	Colors	correspond	to	ON‐	(red),	OFF‐	(blue)	cells	and	
all	cells	(black).	Symbols	indicate	mean	values.		
	

The	time	course	of	degeneration	revealed	here	is	consistent	with	previous	findings	

(Berkelaar	et	al.,	1994)	for	ONS	degeneration	though	absolute	cell	numbers	found	in	

the	literature	are	higher.		
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No	 co‐staining	 was	 performed	 to	 assure	 retrograde	 dye	 load	 of	 all	 cells	 and	 the	

presence	of	unstained	cells	can	not	be	excluded.	Cells	that	were	not	injured	and	not	

stained	are	subject	to	secondary	degeneration	(Levkovitch‐Verbin	et	al.,	2010)	and	

should	not	influence	the	result	of	this	study.		

Retinas	 that	 underwent	 optic	 nerve	 crush	 were	 not	 stained.	 Therefore	 the	 ONS	

retinas	 served	 as	 control	 to	monitor	 effects	 of	 axon	 damage.	Quantifying	 the	 cells	

recorded	per	retinal	patch,	a	decline	in	cell	number	is	seen	in	animals	receiving	ONC	

that	is	analogue	to	ONS	(Fig.	3.19	h).	The	relation	of	recorded	cells	and	de	facto	cells	

in	 a	 retinal	 proportion	 depends	 on	 various	 factors	 (Lambacher	 et	 al.,	 2011)	 and	

therefore	 this	 statistic	 only	 indicates	 a	 trend.	 For	 ONS	 and	 ONC	 the	 number	 of	

recorded	 cells	 declines	 in	 time	 and	 gives	 an	 important	 hint,	 that	 the	 optic	 nerve	

injuries	performed	here	lead	to	RGC	loss.	

	

	

3.4.2	 Axonal	conduction	velocity	in	rat	retinas	following	optic	nerve	injury	

	

Electrical	 activity	propagates	along	 the	 axon	of	 the	 retinal	 ganglion	 cell.	 To	assess	

functional	 changes	 in	 retinal	 axons,	 we	 measured	 intra‐retinal	 propagation	

velocities	at	different	 time	intervals	 following	optic	nerve	injury	 in	rats:	after	 four,	

eight	and	fourteen	days.		In	rat	retinas	only	proximal	axons	and	no	axons	of	passage	

were	detected.	Fig.	3.21	a	 illustrates	 the	action	potential	propagation	of	a	 control	

rat	RGC	 that	 is	 qualitatively	 similar	 to	 those	 seen	 in	 the	 rabbit	 retina	 (Zeck	 et	 al.,	

2011).	 In	 control	 rat	 retinas	 (Fig.	 3.21	 b)	 we	 measured	 an	 average	 conduction	

velocity	of	1155	±	101	µm/ms	(n	=	24	axons;	mean±	std).		

A	significant	decrease	in	propagation	velocity	was	detected	as	early	as	the	first	

recording	 interval,	 at	 day	 four.	 At	 this	 time	 point	 RGC	 density	 is	 still	 similar	 to	

control	 (Berkelaar	et	al.,	1994;	Kanamori	et	al,	2009;	Fig.	3.20	g).	Four	days	after	

ONS	only	a	few	axons	(n=	5)	were	detected,	that	had	a	propagation	velocity	of	892	±	

151	µm/ms	(mean	±	std).	In	retinas	eight	days	after	ONS	more	axons	were	detected	

(n	=31)	 that	had	an	average	conduction	velocity	of	815	±	97	µm/ms	(n	=	31).	The	

decay	in	axonal	conduction	is	significant	for	day	eight	in	retinas	with	sectioned	optic	

nerve	(p	<	0.01)	compared	to	control,	but	not	compared	to	day	four	after	ONS.	After	

fourteen	days,	neither	cells	nor	axons	were	detected	in	ONS	rats.	
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RGCs	 that	 received	ONC	 showed	 a	 similar	 decrease	 in	 axonal	 conduction	 velocity.	

Within	 four	 days	 it	 decreased	 to	 918	 ±	 136	 µm/s	 (n	 =	 17),	 which	 is	 significantly	

lower	 than	control	velocity	 (p	<	0.05).	At	day	eight	 the	velocity	decreased	slightly	

further	and	was	829	±	151	µm/ms	(n	=	10,	after	ONC).	Fourteen	days	after	ONC	still	

four	axons	were	detected	that	propagated	at	an	average	velocity	of	754	±	68	µm/ms.	

Across	the	operated	groups,	differences	were	not	significant	(p	>	0.08).		

	

	

	

Figure	3.21:	Intraretinal	axonal	velocity	in	rat	retinas	after	optic	nerve	injury.	
(a)	 	A	sequence	of	six	consecutive	electrical	images	illustrates	the	propagation	of	an	axonal	
action	potential	across	the	sensor	array.	The	electrical	images	constitute	the	‘spike	triggered	
averages’	(see	Materials	and	Methods).	The	bar	indicates	300	µm.	
(b)	Average	conduction	velocities	of	intraretinal	axons	in	rat	following	optic	nerve	crush	or	
optic	nerve	section.	Symbols	indicate	values	of	single	averaged	action	potentials,	horizontal	
bar	indicates	the	mean	value.	
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Figure	3.22:		Match	of	electrical	and	fluorescence	image	of	cells	with	identified	axon	
In	(a)	a	retina	eight	days	after	surgery	is	shown,	that	was	stained	with	rhodamine	dextrane.	
The	picture	 shows	 the	 array	 surface.	 	Red	 circles	 indicate	 the	areas	where	 somatic	 spikes	
were	recorded,	in	most	of	the	circles	only	one	stained	cell	is	present.	We	suppose	this	cells	to	
be	 those	 recorded	 from.	 The	 dotted	 red	 line	 indicates	 the	 path	 of	 the	 axonal	 AP	 over	 the	
array.	The	direction	of	the	optic	disc	is	indicated	by	a	blue	arrow.	For	the	cells	labeled	with	
and	C	the	electrical	 image	of	 the	propagation	of	an	axonal	action	potential	 is	shown	in	(b)	
and	(c).	The	axonal	APs	travel	towards	the	optic	disk.	The	white	bar	indicates	300	µm.	
	

The	 decline	 in	 axonal	 propagation	 velocity	 at	 day	 four	 prior	 to	 massive	 cell	 loss	

suggests	that	it	is	among	the	first	events	after	optic	nerve	injury.	We	further	tested	if	

it	precedes	degenerative	changes	of	RGC	electrical	activity.	

In	rats	that	received	ONS	and	retrograde	labeling	we	were	able	to	match	the	cells	we	

recorded	with	 fluorescence	micrographs	 at	 day	 eight.	 At	 this	 post‐operative	 time‐

point	RGC	density	significantly	declined.	 In	Fig.	3.22	a,	a	 labeled	 retina	eight	days	
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after	 ONS	 is	 shown.	 The	 red	 circles	 indicate	 areas	 where	 somatic	 spikes	 were	

recorded	and	in	most	areas	only	one	stained	cell	is	visible.	If	an	axon	was	detected,	

the	 propagation	 path	 is	 indicated	 as	 red	 dotted	 line.	 To	my	 knowledge	 this	 is	 the	

first	 time	 a	 fluorescent	 image	 of	 a	 ganglion	 cell	 and	 a	 corresponding	 recording	 of	

axonal	AP	propagation	could	be	matched.	Two	example	axonal	action	potentials	are	

shown	below	(Fig.	3.22	b),	they	propagate	in	the	same	direction,	towards	the	optic	

disc	(blue	arrow).	
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3.4.3 Maintained	ganglion	cell	activity	in	retinas	following	optic	nerve	crush	

or	optic	nerve	section	

	

Axonal	injury	leads	to	degeneration	of	RGCs	in	rat	retina.	To	investigate	if	changes	in	

somatic	activity	are	induced	by	optic	nerve	lesion,	I	evaluated	RGC	activity	recorded	

within	the	same	ex	vivo	retinas	as	reported	above.		

Spontaneous	activity	was	recorded	over	a	period	of	30	min,	beginning	15	min	after	

the	retinal	proportion	was	adhered	to	the	MTA‐chip.	

The	maintained	activity	of	14	rat	RGCs	is	shown	in	Fig.	3.23	a.	ON	and	OFF	rat	RGCs	

differed	with	respect	 to	 their	spontaneous	 firing	rates.	The	 first	seven	rows	depict	

OFF	 RGCs,	 the	 remaining	 seven	 rows	 show	 ON	 cell	 activity	 from	 one	 retina.	 A	

qualitative	 inspection	 of	 the	 raster	 plot	 after	 optic	 nerve	 injury	 suggests	 that	

spontaneous	activity	decreases	especially	in	OFF‐cells	(Fig.	3.	23	b).		

	

	

Figure	3.23:	Changes	in	spontaneous	activity	of	rat	RGCs	due	to	optic	nerve	lesion	
In	 (a)	 three	 seconds	 of	 spontaneous	 activity	 recorded	 in	 a	 control	 retina	 in	 darkness	 are	
shown,	The	 first	 seven	rows	show	OFF‐cells	 (blue),	 the	 last	seven	ON‐cells	 (red).	OFF‐cells	
are	more	 active	 than	 ON‐cells.	 The	 effect	 of	 optic	 nerve	 lesion	 on	 spontaneous	 activity	 is	
illustrated	 in	(b)	where	 the	 first	 seven	rows	 show	OFF‐cell	 activity	 (blue)	while	 the	other	
rows	 ON‐cells	 (red)	 of	 a	 retina	 recorded	 eight	 days	 after	 ONS.	 ON‐cells	 seem	 to	 be	more	
active	than	OFF‐cells.		
The	 change	 in	 spontaneous	 activity	 is	 quantified	 in	 (c)	 for	 ON‐	 and	 OFF‐cells.	 In	 control	
retinas	OFF‐cells	exhibit	a	significantly	higher	firing	rate	than	ON‐cells.	This	difference	is	not	
detectable	after	ONC		or	ONS	at	all	recorded	time	points.	Bars	indicate	mean	±	SEM.		
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Control	RGCs	showed	an	average	spontaneous	discharge	rate	of	14.7	±	1.3	Hz	(n	=	

246	 cells).	 The	 OFF	 (Fig.	 3.23	 c)	 RGC	 firing	 rate	 (16	 .6	 Hz	 ±	 2	 Hz,	 n	 =	 90)	 is	

significantly	(p=	0.002)	higher	than	the	ON	RGC	firing	rate	(5.6	Hz	±	1.1	Hz,	n=	130).	

	

 POD 0 

Firing rate [Hz] 

4 

Firing rate [Hz] 

8

Firing rate [Hz] 

14 

Firing rate [Hz] 

ON-cells control 5.6	±	1.1		(130) - - - 

OFF-cells control 17.6	±	1.0	(90) - - - 

OFF- cells ONS - 3.6	±	0.9	(43)* 5.2	±	0.4	(50)* - 

ON-cells ONS - 4.8	±	0.5	(64) 6.4	±	1.2	(80) - 

OFF-cells ONC - 7.6	±	0.3		(25)* 5.5	±	0.4	(20)* 4.5	±	2.8		(9)* 

ON-cells ONC - 4.7		±	2.7	(21) 7	±	1	(37) 2	±	1	(13)* 

Table	3:	Maintained	firing	rates	in	rat	RGCs	after	optic	nerve	lesion	
Firing	rates	indicate	mean	±	SEM;	number	of	cells	in	brackets,	asterisks	indicate	significant	
(p<	0.05)	change	compared	to	control	
	

Following	 ONC	 or	 ONS	 the	 average	 firing	 rate	 of	 OFF‐cells	 is	 decreased	 at	 all	

recording	 time	points	 (Table	3).	 	At	 the	 first	 recording	 time	point	 the	maintained	

activity	of	OFF‐cells	is	80%	and	60%	reduced	compared	to	control	for	ONS	and	ONC	

respectively.	 	 After	 eight	 days	 the	 level	 of	 OFF‐spontaneous	 activity	 is	 similar	 for	

both	groups	at	around	5	Hz	and	is	not	changed	one	week	later	at	postoperative	day	

14	for	ONC	RGCs.	After	ONS	no	spontaneous	active	cells	were	detected	at	day	14.	

In	 contrast,	 ON‐cell	 activity	 is	 unaffected	 until	 post‐operative	 day	 14,	 when	 after	

ONS	no	spontaneous	active	cells	were	detected	and	after	ONC	 the	average	ON‐cell	

firing	rate	was	significantly	reduced	from	5.6	±	1.1	Hz	in	the	control	to	2	±	1	H.	Only	

OFF‐cell	 maintained	 activity	 is	 decreased	 within	 the	 first	 two	 weeks	 after	 optic	

nerve	lesion,	more	severe	after	ONS.	Interestingly,	changes	in	maintained	activity	of	

rd	rats	were	also	reported	for	OFF‐cells	only	(Sekirnjak	et	al.,	2011).	
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3.4.4	 RGC	response	to	light	flashes	

Light	increment	or	decrement	triggers	responses	of	most	RGCs.		The	concept	of	ON	

and	 OFF	 cells	 is	 well	 established	 and	 aberrations	 from	 normal	 response	 should	

indicate	degenerative	change.	

	

	

Figure	3.24:	Different	types	of	light	responses	found	in	wistar	RGCs	

The	majority	of	RGCs	that	respond	to	light	can	be	assigned	to	five	types	or	classes	based	on	
their	spiking	pattern.	The	Peri‐Stimulus‐Time‐Histogram	(PSTH)	in	(a)	shows	a	cell	with	ON‐
OFF‐response	characteristic.	In	(b)	a	OFF‐sustained	cell	is	shown.	The	PSTHs	in	(c)	and	(d)	
are	typical	for	an	OFF‐transient	and	an	ON‐transient	cell	respectively.	In	(e)	a	ON‐sustained	
cell	 is	depicted.	Relative	proportions	of	 this	 cell	 types	 found	 in	 the	 samples	of	 control	and	
operated	cells	are	listed	in	Table	3.	

	

To	 evoke	 activity	 in	 the	majority	 of	 ON	RGCs	 in	 a	 retinal	 portion,	 I	 flashed	 bright	

stimuli	 (spot	 size	 >	 1	mm	diameter,	 400	ms	 duration,	 96%	 contrast)	 onto	 a	 dark	

background.	OFF	RGCs	were	stimulated	with	 the	 inverse	stimulus	 (see	sect.2.13)	 .	

Before	and	after	each	 light	 flash,	retinas	were	adapted	to	the	stimulus	background	

for	10	sec.	The	experiment	was	repeated	for	each	retina	10	times.		The	types	of	light	

responses	found	in	the	rat	retina	are	summarized	in	Fig.	3.24.	

In	Table	4	the	relative	proportion	of	the	cell	types	found	in	the	respective	samples	

are	listed.	As	the	majority	of	cells	recorded	showed	ON‐sustained	and	OFF‐sustained	

responses,	theses	cells	were	merged	with	the	transient	types	in	the	following	to	one	

sample.	

	



Results:	RGC	degeneration	and	function	

93	

	

	

Cells	

N	=	

ON	
transient	

%	

ON	
sustained	

%	

OFF	
transient	

%	

OFF	
sustained	

%	

ON‐OFF	

%	

Not	
classified	

%	

Control	 256	 1	 53 1 39 3	 4	

ONS	4d	 131	 0	 57	 0	 33	 2	 10	

ONC	4d	 73	 2	 39	 0	 24	 0	 35	

ONS	8d	 129	 0	 48 4 32 0	 16	

ONC	8d	 52	 2	 53 0 23 0	 22	

ONS	14d	 5	 0	 80	 0	 0	 0	 20	

ONC	14	d	 25	 0	 55	 2	 22	 0	 21	

Table	4:	Proportion	of	cell‐types	found	in	the	respective	samples		
	

	 POD	0	

Latency	[ms]	

4		

Latency	[ms]	

8	

Latency	[ms]	

14	

Latency	[ms]	

ON‐cells	control	 66	±	1.8	(138)	 ‐	 ‐	 ‐	

OFF‐cells	control	 56	±	1.4	(90)	 ‐	 ‐	 ‐	

OFF‐	cells	ONS	 ‐	 68	±	1.8	(43)*	 86	±	4.3	(50)*	 ‐	

ON‐cells	ONS	 ‐	 66	±	2	(64) 80	±	1.9	(80)* ‐	

OFF‐cells	ONC	 ‐	 77	±	1.7	(25)*	 82	±	3.1	(20)*	 ‐	

ON‐cells	ONC	 ‐	 70	±	3	(21)	 75	±	1.3	(37)*	 ‐	

Table	5:	Changes	in	response	latency	after	optic	nerve	lesion	
Latency	values	indicate	mean	±	SEM;	number	of	cells	in	brackets,	asterisks	indicate	
significant	(p<	0.05)	difference	compared	to	control	
	

	 POD	0	

Firing	rate	[Hz]	

4		

Firing	rate	[Hz]	

8	

Firing	rate	[Hz]	

14	

Firing	rate	[Hz]	

ON‐cells	control	 45	±	1.2	(138)	 ‐	 ‐	 ‐	

OFF‐cells	control	 38	±	1.3	(90)	 ‐	 ‐	 ‐	

OFF‐	cells	ONS	 ‐	 21	±	1.4	(43)* 17	±	1	(50)* ‐	

ON‐cells	ONS	 ‐	 27	±	2.1	(64)* 20	±	0.7	(80)* ‐	

OFF‐cells	ONC	 ‐	 17	±	1	(25)*	 24	±	2	(20)*	 ‐	

ON‐cells	ONC	 ‐	 21	±	2	(21)*	 20	±	0.7	(37)*	 ‐	

Table	6:	Firing	rates	of	light	response	in	rat	RGCs	after	optic	nerve	lesion	
Firing	rates	indicate	mean	±	SEM;	number	of	cells	in	brackets,	asterisks	indicate	significant	
(p<	0.05)	change	compared	to	control	
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Examples	for	the	light	responses	of	control	and	operated	rat	RGCs	are	shown	in	Fig.	

3.25	 a.	 	 From	 the	 RGC	 response,	 we	 calculated	 the	 response	 latency	 as	 the	 time	

delay	between	stimulus	onset	and	the	first	spike	of	the	light	response.		

After	 four	days	the	OFF‐response	latency	was	significantly	affected	 in	both	treated	

groups	and	increased	for	over	10msec	from	56	±	1.4	msec		to	68	±	1.8msec		(ONS)	

and	77	±	1.7	msec	(ONC).	Eight	days	after	 the	operation	 the	OFF‐response	 latency	

increased	 further	 to	 over	 80	 msec	 (Table	 5).	 For	 ON‐cells	 the	 first	 significant	

increase	was	detected	eight	days	after	surgery	in	both	groups,	where	the	response	

latency	increased	from	66	±	1.8	Hz	in	controls	to	80	±	1.9	msec	(ONS)	and	75	±	1.3	

(ONC)	msec	(Table5).	

	

	

	

Figure	3.25:	Changes	in	latency	and	firing	rate	after	optic	nerve	lesion	
In	(a)	raw	traces	of	light	responses	of	a	control	On‐sustained	cell	(left)	and	an	ON‐sustained	
cell	 eight	 days	 after	 ONS	 are	 shown.	 The	 cell	 from	 the	 operated	 retina	 exhibits	 reduced	
spiking	 intensity.	The	 increase	 in	response	 latency	for	ON‐	and	OFF‐cells	 is	summarized	 in	
(b).	 ON‐cells	 (red	 squares)	 in	 control	 animals	 have	 a	 higher	 latency	 than	 OFF‐cells	 (blue	
circles).	 For	 both	 cell	 types	 the	 latency	 is	 increased	 either	 after	ONC	or	ONS.	Only	 retinas	
recorded	 four	 days	 after	 ONS	 showed	 no	 latency	 increase	 for	 ON‐cells.	 	 Latency	 increase	
seems	to	accumulate	by	time.	
The	decrease	in	firing	rate	is	summarized	in	(c).	After	four	days	the	firing	rate	decrease	for	
about	50	%	in	both	surgical	conditions	and	remain	on	this	level	later	on.		
	
While	the	changes	in	maintained	activity	and	light	response	delay	affected	ON‐cells	

later	than	OFF‐cells,	the	firing	rates	of	the	light	response	decreased	at	the	same	time	
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for	both	cell	 types.	The	average	 firing	 rate	 for	both	cell	 types	decreased	 for	 about	

50%	within	the	first	four	postoperative	days	and	remained	on	this	level	at	day	eight.	

	

	

3.4.5 Rat	RGC	response	to	moving	gratings	

	

Response	latencies	of	ON‐cells	were	unchanged	four	days	after	surgery,	but	OFF‐cell	

latency	 was	 affected	 at	 the	 earliest	 recoding	 time	 point.	 Changes	 in	 latency	 may	

reflect	altered	dendritic	input,	as	shrinkage	of	the	dendritic	tree	is	reported	to	be	an	

early	event	after	optic	nerve	injury	(Leung	et	al.,	2011;	Thanos,	1988).		

Full	field	flashes	may	therefore	not	be	appropriate	stimuli	to	detect	fine	changes	in	

dendritic	structure.		

I	 tested	the	response	of	RGC	to	grating	stimuli	with	varying	spatial	 frequency.	The	

resolution	of	spatial	frequencies	is	closely	related	to	dendritic	tree	diameter	(Wässle	

&	Boycott,	1991).	

The	raster	plot	in	Fig.	3.26	a	illustrates	the	typical	response	of	eight	control	RGCs	(4	

ON‐	and	4	OFF‐cells)	to	gratings	with	0.05	cycles/degree	(top),	0.1	c/d	(middle)	and	

0.2	c/d	(bottom)	spatial	frequencies.	In	Fig.	3.26	b	the	response	of	eight	RGCs	from	

a	retina	after	ONS	is	shown	for	the	same	stimulus	parameters.		

The	 response	 amplitude	 was	 quantified	 as	 the	 first	 harmonic	 of	 the	 Fourier	

transformed	spike	train	(Pu	et	al.,	2006).	Responses	were	normalized	to	the	control	

(Fig.	3.26	c).			

Control	 RGCs	 had	 significantly	 (p	 <	 0.05;	 n	 =	 79)	 higher	 response	 amplitudes	 for	

gratings	 with	 0.05	 c/d,	 0.1	 c/d	 and	 0.2	 c/d	 spatial	 frequency	 than	 all	 operated	

animals	(Fig.	3.26	c).			

In	 animals	 treated	with	 ONS	 (Fig.	3.26	 c,	 red	 lines)	 the	 response	 amplitude	 four	

days	after	surgery	(n	=	28)	was	significantly	(p<	0.01)	decreased	 for	0.05,	0.1	and	

0.02	c/d	compared	to	control	and	to	animals	four	days	after	ONC.		Eight	days	after	

ONS	 (n	 =	 57)	 the	 response	 decreased	 significantly	 further	 (p<0.01)	 compared	 to	

control	and	to	all	other	groups.		

RGCs	from	animals	four	days	after	ONC	(n	=	33)	performed	significantly	(p	<	0.05)		

better	in	grating	discrimination	than	animals	eight	days	after	ONC	(n	=	38,	Fig.	3.25	

c;	blue	lines),	but	both	groups	showed	significantly	reduced	responses	with	respect	

to	control	(p<	0.05).	We	found	no	difference	between	ON‐	and	OFF‐cells	here.	
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Figure	3.26:	Rat	RGC	response	to	moving	gratings	of	varying	spatial	frequency.	
Grating	stimuli	were	presented	to	the	retinas	with	spatial	frequencies	from	0.05	c/d	to	0.38	
c/d	at	a	temporal	Frequency	of	2	Hz.	
(A	&	B)	Raster	plots	illustrate	the	typical	response	to	gratings	with	0.05	c/d,	0.1	c/d	and	0.2	
c/d	spatial	frequency	of	eight	control	RGCs	(A)	and	eight	RGCs	eight	days	after	ONS	(B).	
(C)	Summarizes	the	RGC	response	based	on	the	average	amplitude	of		the	first	harmonic	of	
the	 Fourier	 transformed	 spike	 train:	 While	 control	 RGC	 discriminate	 bars	 up	 to	 0.2	 c/d,	
operated	animals	show	a	depressed	response.	
The	mean	firing	rates	of	operated	animals	are	50	%	of	control	values	as	summarized	in	(D),	
but	 were	 above	 maintained	 activity.	 The	 firing	 rate	 decreased	 with	 increasing	 spatial	
frequency	in	all	groups.	Symbols	indicate	mean	±	SEM.The	change	in	firing	rates	is	similar	to	
the	 experiments	with	 light	 flash	 stimulation.	We	 found	 no	 significant	 differences	 between	
ON‐	and	OFF‐cells.	These	experiments	indicate	that	individual	RGCs	decrease	their	ability	to	
encode	moving	grating	stimuli	after	optic	nerve	injuries.	
	
	
	
Changes	with	 respect	 to	 the	average	 firing	 rate	 (Fig.	3.26	a,	b,	d)	were	 similar	 to	

those	observed	in	full	field	flash	experiments.	.		
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As	illustrated	in	Fig.	3.26	d	control	RGCs	(black	circles)	exhibited	an	initial	average	

firing	rate	of	45	Hz	±7	Hz	(mean	±	SEM)	when	a	grating	of	0.05	c/d	was	presented	at	

constant	 temporal	 frequency.	 	 Firing	 rate	 then	 decreased	 with	 increasing	 spatial	

frequency	but	never	fell	below	25	Hz.	 	Average	firing	rates	of	operated	RGCs	were	

typically	 around	 25	 Hz	 for	 0.05	 c/d	 spatial	 frequency	 and	 below	 for	 increasing	

spatial	 frequencies.	ONS	 treated	rats	after	eight	days	after	surgery	exhibited	 firing	

rates	below	15	Hz	for	all	spatial	frequencies.	We	could	not	detect	differences	for	ON‐	

and	OFF‐cells.	

Cells	 tested	 here,	 were	 a	 subset	 of	 the	 cells	 which	 were	 analyzed	 for	 changes	 in	

latency.	 The	 results	 indicate	 that	RGC	visual	 acuity	 is	 severely	 impaired	 four	days	

after	 optic	 nerve	 lesion	 and	 this	 suggests	 changes	 of	 the	 dendritic	 input.
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3.5	 Correlated	activity	of	rat	RGCs		

	

In	 retinas	after	Optic	nerve	section	and	retrograde	staining	 it	 is	possible	 to	assign	

recorded	activity	 to	 individual	cells.	 	The	micrograph	 in	Fig.	3.27	a	 shows	stained	

RGCs	eight	days	after	ONS.	Red	circles	indicate	the	areas	where	transistors	recorded	

action	potentials	and	the	cells	within	this	area	are	supposed	to	be	their	origin.	The	

two	cells	 in	Fig.	3.27	a	marked	 ‘A’	and	 ‘B’	had	a	positive	correlation	of	 their	spike	

trains	that	is	depicted	in	Fig.	3.27	b.		The	cells	were	spaced	150	µm.	

	

	

Figure	3.2	:	Correlated	firing	of	control	and	operated	rat	RGCs	
In	 (a)	 four	 cells	 from	which	 action	 potentials	 were	 recorded	 are	 indicated	 by	 red	 circles.	
Scale	bar	indicates	100	µm.	For	the	cells	marked	‘A’	and	‘B’	the	CC	is	shown	in	(b).	In	graph	
(c)	the	proportion	of	correlated	cells	is	summarized	for	control	(black)	and	operated	retinas	
(white,	eight	days	after	ONS;	grey,	eight	days	after	ONC).	Bars	indicate	Mean	±	SEM.	
	
In	 wistar	 rats	 correlations	 between	 spontaneously	 firing	 RGCs	 are	 frequently	

detected	and	occur	between	20	%	of	the	RGCs	(Fig.	3.27c).	 Interestingly	we	found	

no	substantial	change	after	optic	nerve	injury.		
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Though	cell	loss	and	decrease	of	spontaneous	firing	rate	still	a	similar	proportion	of	

cells	displays	 correlated	 firing	eight	days	after	 surgery.	The	majority	of	 correlated	

firing	 cells	were	 OFF‐RGCs.	 Double	 peak	 CCs	 indicating	 gap	 junctions	were	 rarely	

found	between	wistar	RGCs.	
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4. Discussion	

4.1		A	small	brain	

The	 retina	 is	 a	 part	 of	 the	 brain.	 Like	 all	 neocortical	 structures,	 the	 retina	 has	 a	

layered	 and	 not	 a	 nuclear	 organization,	 where	 cells	 of	 similar	 function	 cluster.	

Therefore	the	retina	has	been	considered	as	the	best	accessible	part	of	the	brain.	

The	retina	is	not	just	a	detector	of	stimulus	energy	like	the	ear,	where	the	hair		

cells	encode	the	degree	of	deflection	of	their	cilia	and	signal	it	to	the	cochlear	nucleus.		

In	the	retina	even	the	detector	cells,	the	photoreceptors,	do	not	just	encode	stimulus	

energy	but	are	specialized	to	optimize	the	received	information.	Therefore	the	retina	

can	 not	 be	 compared	 to	 a	 camera	 obscura	 that	 transforms	 photon	 energy	 into	

changes	of	chemical	structure	which	then	are	signalled	to	the	brain.	

The	 retina	provides	a	 range	of	 adaption,	 filter	 and	detection	mechanisms	 to	 reduce	

the	amount	of	information	signalled	to	the	brain	and	increase	the	significance	of	the	

information	(Gollisch	&	Meister,	2010,	Wässle,	2004;	Borst	&	Euler,	2011).	

	

4.2 	Spontaneous	activity		

	

Regarding	 to	 a	 simple	 scheme	 of	 telecommunication	 an	 encoder	 and	 a	 decoder	 are	

connected	by	a	channel	 (Shannon,	1954).	To	optimize	 the	 transmitted	 information,	

encoding	and	transmission	should	avoid	noise	that	 increases	 the	ambiguousness	of	

the	information.		

The	spontaneous	activity	of	RGC	constitutes	such	noise.	

The	presence	of	this	activity	increases	sensory	threshold,	because	an	information	has	

to	 exceed	 the	 background	 of	 the	 system	 (Kuffler,	 1957;	 Ala‐Laurila,	 2011).	 Thus,	

spontaneous	activity	at	the	first	sight	is	obstructive	for	signal	detection.	

Therefore	it	was	undertaken	to	identify	the	source	of	spontaneous	discharges	in	the	

retina.	In	principle,	two	concepts	exist	about	the	origin	of	maintained	activity	in	the	

retina:	Stochastic	events	in	photoreceptors	that	modulate	the	dark	current	and	induce	

activity	 in	 the	 postsynaptic	 cells	 (Kuffler	 et	 al.,	 1957;	 Rodieck	 et	 al.	 1965;	 Birge	 &	

Barlow,	 1995;	 Ala‐Laurila	 et	 al.,	 2011)	 or	 the	 existence	 of	 pacemaker	 cells	

(Feigenspan	et	al.,	1998;	Margolis	&	Detwiler	2007;	Petite‐Jaques	et	al.,	2005).	

The	recordings	presented	here	suggest	that	spontaneous	activity	in	the	rd1	retina	is	

generated	 independently	 from	 photoreceptor	 noise,	 but	 in	 the	 healthy	 retina	

photoreceptor	noise	contributes	to	spontaneous	activity	(Ala‐Laurila	et	al.,	2011).	The	
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participation	 of	 pace	maker	 cells	 in	 the	 generation	 of	 retinal	maintained	 activity	 is	

also	 supported	 by	 the	 finding	 that	 the	 spontaneous	 activity	 of	 OFF‐cells	 in	 mouse	

retina	 is	 not	 decreased	 by	 synaptic	 blockers	 (Margolis	 &	 Detwiler,	 2007)	 and	 that	

amacrine	cells	display	spontaneous	oscillations	of	their	membrane	potential	(Petite‐

Jaques).	 That	 RGCs	 themselves	 are	 pace	 makers	 contrasts	 with	 the	 finding,	 that	

spontaneous	 activity	 in	 rd1	mice	 can	 be	 completely	 abolished	 by	 synaptic	 blockers	

(Margolis	&	Detwiler,	2008;	Menzler	&	Zeck,	2011).	Similar	results	were	obtained	in	

rats	(Sekirnjak,	2011),	indicating	that	the	pace	maker	must	be	presynaptic	to	RGCs.	

An	 interesting	 feature	of	 spontaneous	activity	 is	 the	effect	of	 light	 and	darkness	on	

spontaneous	activity.		

	

	

Figure	4.1:	Variation	of	spontaneous	 firing	rates	of	 four	OFF‐	(top)	and	 four	ON‐cells	
(bottom)	 in	 constant	 darkness	 or	 illumination	 (from	 Rodieck,	 1967).	 ON‐	 or	 OFF‐cell	
polarity	of	cat	RGCs	in	vivo	seems	not	to	account	for	the	activity	variation	in	both	conditions.		

	

The	ON‐	 and	OFF‐	pathways	 in	 the	 retina	 are	well	 known,	 but	 allow	no	prediction	

about	the	firing	rate	of	the	respective	cell	in	darkness	or	light	(Rodieck,	1967,	Figure	

4.1).	 This	 observation	 suggests	 that	 the	 generation	 of	 spontaneous	 activity	 may	
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recruit	other	pathways	additional	 to	those	that	create	the	 functional	response	(Ala‐

Laurila,	2011).			

Though	 spontaneous	 activity	 is	 present	 in	 the	 retina,	 the	 significance	 of	 the	

phenomenon	is	not	clear.	

Spontaneous	 activity	 is	 ubiquitously	 found	 in	 the	 CNS	 and	 often	 occurs	 in	 form	 of	

oscillations	 (Singer.,	 1993;	 Timofeev	 &	 Bazhenov	 2005).	 The	 best	 example	 is	

neuronal	activity	in	sleep,	where	the	brain	is	completely	deafferented,	but	not	inactive	

(Steriade,	1993).	In	the	brain,	noise	feed	recurrent	networks	and	depending	on	their	

connectivity,	 oscillations	 of	 a	 variety	 of	 frequencies	 occur	 (Buszaki,	 2006).	 In	 the	

brain,	 spontaneous	 oscillations	 serve	 for	 a	 number	 of	 functions	 in	 the	 adult	 and	

developing	 brain	 and	 support	 especially	 synaptic	 plasticity	 (Steriade	 &	 Timofeev,	

2003)	

In	retinal	development	this	role	of	oscillating	activity	also	comes	into	play.		

Patterned	spontaneous	activity	is	observed	in	retinal	cells	prior	to	eye	opening	and	

propagates	in	a	wave	like	manner	over	the	retina.	

Such	 retinal	 waves	 help	 to	 establish	 and	 eliminate	 synaptic	 contacts,	 form	 topic	

maps	 and	 organize	 synaptic	 target	 areas,	 e.g.	 ocular	 dominance	 columns	 (Wong,	

1999;	Sengpiel	&	Kind,	2002).	

In	the	fetus,	maturing	RGCs	start	concerted	electrical	activity	(stage	I	waves)	that	is	

necessary	 to	 develop	 synaptic	 contact	 to	 the	 LGN	 (Penn	 et	 al.,	 1988;	 Syed	 et	 al.	

2004).	 In	 newborn	 animals	 prior	 to	 eye	 opening	 the	 retinal	 waves	 propagate	 via	

chemical	 synapses	 and	 two	 periods	 can	 be	 characterized	 by	 the	 neurotransmitter	

antagonists	 that	 block	 wave	 generation	 (Firth	 et	 al.,	 2005;	 Blankenship	 &	 Feller	

2010).	 In	 the	 early	 period	 retinal	 waves	 rely	 on	 cholinergic	 synapses	 (stage	 II	

waves).		Acetylcholine	is	an	excitatory	neurotransmitter	released	by	starburst	ACs.	

At	 a	 later	 period	 the	 generation	 of	 retinal	 waves	 switches	 to	 glutamatergic	

transmission	 (stage	 III	 waves),	 probably	 around	 the	 time	 bipolar	 cells	 form	

functional	synapses	with	RGCs	and	ACs.		

The	 correlated	 activity	 exhibited	 in	 retinal	 waves	 during	 development	 is	 not	

restricted	to	the	retina,	but	drives	similar	rhythmic	activity	in	the	visual	cortex	and	

in	the	superior	colliculus	(Hanganu	et	al.,	2006).		

After	 eye	 opening	 the	 rhythmic	 and	 synchronized	 activity	 disappears	 and	 the	

spontaneous	activity	recorded	in	the	mature	retina	is	left	over.	
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In	the	retina	after	eye	opening,	synapses	are	of	course	changed	by	experience.	But	in	

principle,	 synapse	 formation	 in	 the	 retina	 is	 completed	before.	 The	 adult	 retina	 for	

sure	 is	 capable	 of	 local	 plasticity,	 but	 it	 can	 be	 argued	 that	 its	 need	 for	 plasticity	 is	

lower	than	in	higher	brain	areas.	

However,	 the	 retina	 shows	 oscillating	 activity	 during	 development,	 that	 enables	

synapse	 formation.	 The	 recordings	 concerning	 rd1	 retinas	 and	 bleached	 C57Bl/6	

retinas	 presented	 here,	 suggest	 that	 in	 degenerative	 states	 this	 activity	 patterns	

reappear	and	that	furthermore	in	the	adult	retina	this	activity	is	suppressed.	

Comparing	 the	 spontaneous	 activity	 recorded	 here	 with	 retinal	 waves,	 a	 common	

feature	 is	 that	 in	both	cases	the	retinal	circuits	 lack	 input	 from	the	photoreceptors.	

This	 suggests	 not	 only	 that	 the	 rhythmic	 retinal	 activity	 is	 suppressed	 by	 active	

photoreceptors,	but	also	underlines	that	the	rhythmic	activity	is	generated	upstream	

to	RGCs,	as	it	is	in	postnatal	retinal	waves.	

An	interesting	feature	of	retinal	physiology	found	here	is	the	difference	of	maintained	

activity	in	ON‐	and	OFF‐cells	of	the	rat,	which	is	not	lost	under	illumination.	

The	 rat	 OFF‐RGCs	 are	 especially	 sensitive	 to	 retinal	 degeneration	 as	 shown	 for	 rd	

(Sekirnjak	 et	 al.,	 2011)	 and	 for	 glaucomatous	 degeneration	 here.	 In	 the	 case	 that	

photoreceptors	are	intact	and	RGCs	degenerate,	like	in	glaucoma,	no	rhythmic	activity	

was	detected	in	upstream	cells.		

Therefore	 the	 loss	 of	 a	 cell	 class	 is	 not	 the	 trigger	 for	 rhythmic	 activity,	 but	 the	

deprivation	of	sensory	input.		

	

4.3	Phenomenology	of	the	rhythmic	RGC	activity	and	LFPs	in	the	rd1	retina	

In	the	present	study	maintained	activity	was	recorded	in	normal	C57Bl/6	mice	and	

two	mouse	strains	with	photoreceptor	loss	caused	by	a	mutation	in	the	PDE6b	gene	

(C3H	and	FVB	strains).	

In	 this	 study	 rhythmic	 activity	was	 recorded	 in	 the	majority	 of	RGCs	 investigated.	

Rhythmic	RGC	activity	has	been	found	in	three	morphologically	identified	rd1	RGCs	

(Margolis	et	al.,	2008)	and	at	much	longer	time‐scales	in	rod‐degenerated	rat	RGCs	

(Kolomiets	et	al.,2010;	Sauve	et	al.,	2001;	Marc	et	al.,	2003;	Sekirnjak	et	al.,	2009).	It	

is	 therefore	 tempting	 to	 speculate	 that	 photoreceptor	 degeneration	 induces	

pathologic	rhythmic	activity	in	the	human	disease	of	retinitis	pigmentosa.		
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Photoreceptor	 degenerated	 retinas	 retain	 functional	 synaptic	 connections	 with	

higher	visual	 centres	 in	mice	 (Thyagarajan	et	al.,2010;	Bi	et	al.,	2006;	Lagali	et	 al.,	

2008;	Lin	et	al.,	2008)	and	humans	(Chen	et	al.,	2006;	Zrenner	et	al.,	2010).	An	early	

study	in	anaesthetized	rd1	mice	reports	rhythmic	activity	in	neurons	of	the	superior	

colliculus	(Drager	and	Hubel,	1978)	 that	are	postsynaptic	 to	RGCs.	Correlated	RGC	

activity	 in	 restricted	 retinal	 areas	 driven	 by	 extended	 LFPs	 (Fig.	 3.5	 b,	 Fig.	 3.6,	

Fig.3.7)	may	thus	give	rise	to	photopsias	reported	by	RP	patients.	A	high	percentage	

of	 RP	 patients	 describe	 the	 sensation	 of	 phosphenes	 or	 some	 forms	 of	 flashes	

(Heckenlively	et	al.,	1988;	Bittner	et	al.,	2009).	 It’s	hypothesized	 that	 	phosphenes	

occur	from	the	high	percentage	of	synchronous	RGC	spikes	(Fig.	3.4)	that	may	lead	

to	elevated	activity	in	higher	visual	areas	(Drager	and	Hubel,	1978).		

Maturation	 of	 neuronal	 circuits	 is	 characterized	 by	 spontaneous	 synchronized	

activity	 that	propagates	across	extended	neural	circuits	 (Wong,	1999;	Blankenship	

et	al.,	2009).	A	characteristic	feature	of	developing	retinas	is	concerted	RGC	activity,	

reflected	as	calcium	waves	or	RGC	population	bursts	(Wong,	1999;	Blankenship	et	

al.,	 2009).	 In	 developmental	 waves	 and	 in	 rd1	 retinas	 (Fig.	 3.5)	 consecutive	

population	 bursts	 are	 initiated	 in	 close	 proximity.	 However,	 in	 developing	 retinas	

the	 inter‐burst	 intervals	 (seconds	 ‐	minutes)	 are	much	 longer	 as	 compared	 to	 the	

degenerated	rd1	retinas	(~100‐150msec).		

In	rd1	retinas,	LFPs	expanded	and	propagated	across	the	retinal	ganglion	cell	layer,	

depolarizing	 the	 RGCs	 in	 the	 corresponding	 areas.	 The	 propagation	 velocity	 (8	

mm/sec)	 is	 by	 an	 order	 of	magnitude	 higher	 than	 the	 velocities	measured	 across	

developmental	 retinal	 waves	 in	 different	 species	 (0.1	 ‐	 1.5	 mm/sec)	 (Wong,	

1999).The	 fastest	 developmental	 waves	 (stage	 I)	 were	 abolished	 by	 gap	 junction	

blockers	(Syed	et	al.,	2004)	as	were	the	wave‐like	LFPs	in	this	study.	Slower	waves	

(stage	 III)	are	suggested	 to	rely	on	glutamate	spill	over	(Blankenship	et	al.,	2009).	

This	 mechanism	 appears	 unlikely	 here.	 The	 application	 of	 AMPA/kainate	

antagonists	 did	 not	 block	 stage	 III	 waves,	 indicating	 that	 extrasynaptic	 glutamate	

receptors	 are	 involved.	 In	 the	 rd1	 retinas,	 LFPs	 are	 abolished	 by	 AMPA/kainate	

antagonists.		
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4.4 Mechanisms	 underlying	 the	 rhythmic	 RGC	 activity	 and	 the	 propagating			

local	field	potentials	

RGCs	 rhythmic	 activity	 could	 originate	 within	 the	 cells	 themselves	 or	 could	 be	

driven	 by	 presynaptic	 input.	 A	 previous	 patch‐clamp	 study	 established	 that	 three	

identified	RGC	subtypes	are	driven	by	 rhythmic	presynaptic	 input	 (Margolis	et	 al.,	

2008).	 Our	 data	 are	 consistent	with	 this	 result.	 Rhythmic	 spiking	 ceases	 after	 the	

application	of	iGlu	receptors	antagonists	that	suppress	excitatory	presynaptic	input	

to	RGCs	 (Fig.	3.10).	We	 therefore	 infer	 that	RGCs	do	not	act	as	pacemakers	 in	 the	

rd1	 retina.	 In	 the	 adult	 rd1	 retina,	 glutamate	 is	 released	 by	 bipolar	 cells,	 as	 the	

majority	of	photoreceptors	are	lost.	The	pharmacological	experiments	(Fig.	3.8,	Fig.	

3.9	&	Fig	3.10)	demonstrate	that	rd1	RGCs	receive	an	excitatory	rhythmic	driving	

force	that	is	absent	in	wt	retinas.		This	driving	force	is	modulated	but	does	not	rely	

on	inhibitory	neurotransmitters.	

How	 does	 the	 rhythmic	 activity	 propagate	 across	 the	 retina?	 We	 discussed	 that	

glutamate	 spill‐over	 is	 unlikely	 to	mediate	 the	 activity	 propagation	 in	 rd1	 retinas.	

Our	results	suggest	that	gap	junctions	are	involved	(Fig		3.11).	Electrical	coupling	is	

abundant	in	the	retina	(for	review	see	Sohl	et	al.,	2005;	Bloomfield	and	Volgyi,	2009)	

and	 has	 been	 reported	 between	 all	 major	 neuronal	 classes.	 Our	 recordings	

demonstrate	that	the	coupling	strength	between	rd1	RGCs	is	twice	as	large	as	that	in	

wt	retinas	(Fig.	3.3).	Strong	electrical	RGC	coupling	persists	when	iGlu	receptors	and	

thus	 LFPs	 are	 blocked	 (Fig	 3.10).	 However,	 the	 propagation	 of	 membrane	

depolarisations	 through	 strong	 electrical	 RGC	 synapses	 appears	 unlikely.	 The	

majority	of	 rhythmic	RGCs	are	out	of	phase	 (Fig.3.4)	and	do	not	display	electrical	

coupling	(Fig	3.3c).	Photoreceptors	largely	disappeared	in	the	adult	rd1	retina	(Lin	

et	al.,	2009).	Horizontal	cells	are	electrically	coupled	in	wt	retinas	(Hombach	et	al.,	

2004;	 Bloomfield	 and	 Volgyi,	 2009)	 but	 their	 coverage	 diminishes	 during	

degeneration	 (Strettoi	 and	Pignatelli,	 2000).	Among	 the	 amacrine	 cells,	 one	of	 the	

most	 abundant	 cell	 types	 is	 the	 glycinergic	 AII	 cell	 (Wässle,	 2004).	 Strychnine	

strongly	modulates	the	LFPs	in	rd1	retinas	(Suppl.Fig.2)	suggesting	the	contribution	

of	glycinergic	cells.	 	AII	cells	are	electrically	coupled	to	ON	bipolar	cells	(Strettoi	et	

al.,	 1992;	 Feigenspan	 et	 al.,	 2001)	 and	 to	 neighbouring	 AIIs	 (Veruki	 and	Hartveit,	

2002).	 Signal	 transmission	 between	 electrically	 coupled	 neurons	 and	 specifically	

between	 AII	 amacrine	 cells	 exhibit	 low‐pass	 filter	 characteristics	 (Veruki	 and	

Hartveit,	2002).	Lower	coupling	strength	between	AII	 cells	 results	 in	higher	phase	
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shift	 between	 paired	 voltage	 traces	 (Veruki	 et	 al.,	 2008).	 The	 almost	 random	

distribution	of	CC	phase	lags	between	rhythmic	RGCs	(Fig.	3.4)	may	be	attributed	to	

variable	 gap	 junction	 coupling	 between	AII	 cells	 or	 between	AII	 and	 bipolar	 cells.	

Indirect	 evidence	 reporting	 the	 accumulation	 of	 glycine	 in	 bipolar	 cells	 of	 rod	

degenerated	 rat	 retinas	 suggests	 increased	 gap	 junction	 permeability	 between	

bipolar	and	AII	amacrine	cells	(Fletcher,	2000).	Furthermore,	TTX	inhibits	voltage‐

gated	 sodium	 channels	 in	AII	 cells	 and	 slows	down	 the	 output	 of	 the	AII	 network	

(Tian	et	al.,2010).	This	could	explain	the	decreased	LFP	propagation	velocity	in	TTX	

treated	rd1	retinas	(Table	2).		

We	 therefore	 suggest	 the	 transmission	 of	 excitation	 from	 rhythmic	 bipolar	 cells	

through	a	network	of	electrically	coupled	amacrine	cells.		

Consistent	 with	 this	 conclusion,	 a	 recent	 patch‐clamp	 study	 reported	 rhythmic	

activity	 in	 rd	 mouse	 cone	 bipolar	 cells,	 that	 is	 independent	 of	 chemical	 synaptic	

input	 and	 must	 rely	 on	 electrical	 coupling	 with	 amacrine	 cells	 (Borowska	 et	 al.,	

2011).	

	

4.5	Induction	of	the	rd1	mouse	phenotype	in	C57Bl/6	mice	

	

The	recordings	of	rd1	RGCs	and	pharmacologic	experiments	conducted	here	showed	

that	only	glutamate	antagonists	and	gap	junction	blockers	affect	the	spiking	pattern	

in	 rd1	 mice.	 Constant	 wash	 in	 of	 Strychnine	 and	 SR	 95531	 had	 no	 effect	 on	 RGC	

spiking	and	the	LFP	in	rd1.		

It	 is	known,	that	in	the	rd1	mouse	the	process	of	neural	remodeling	is	delayed	and	

not	observed	before	PND	600	(Marc	&	Jones	2005).	From	the	morphologic	changes	

reported	 is	unknown	how	and	 if	 they	affect	 the	physiology	of	cells	downstream	of	

photoreceptors	and	horizontal	cells	(see	Introduction).	The	most	obvious	change	in	

the	rd1	mouse	is	the	loss	of	photoreceptors	and	concomitantly	the	loss	of	the	dark	

current.	The	permanent	release	of	glutamate	in	darkness	silences	ON‐BCs,	while	the	

stop	of	glutamate	release	activates	them.	

As	other	profound	structural	changes	are	absent	in	this	animal	model,	I	suggest	that	

A	prevention	of	dark	current	mediated	glutamate	release	for	a	 long	time	triggers	a	

rd1	activity	in	healthy	mouse	retinas.	

This	 idea,	 that	 rd1	 acts	 similar	 to	 a	 strong	 light	 stimulus,	 was	 first	 formulated	 as	

“equivalent	 light	 hypothesis”	 (Fain	 &	 Lissmann,	 1993),	 which	 was	 aimed	 to	
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understand	 photoreceptor	 degeneration	 itself,	 but	 can	 be	 transferred	 to	 the	

downstream	neurons	also.	

In	 the	present	experiments	 constant	 illumination	or	bleaching	 increased	 the	 firing	

rate	and	initiated	oscillating	spiking	in	about	half	of	the	cells,	mainly	OFF‐cells	(Fig.	

3.14).	 Constant	 illumination	 constantly	 activates	 the	 PDE	 and	 prevents	 glutamate	

release	(Fain	et	al.	2001).		

Long	term	illumination	elevates	the	spontaneous	firing	rate	in	ON‐RGCs	which	must	

be	due	to	elevated	release	of	glutamate	from	ON‐BCs.			

ON‐BCs	 are	 known	 to	 cross	 inhibit	OFF‐BCs	 and	OFF‐RGCs	 (Liang	&	 Freed,	 2010)	

and	 experiments	 using	 L‐AP4	 in	 light	 adapted	 retinas	 show,	 that	 pharmacologic	

“decoupling”	 of	 ON‐BCs	 from	 photoreceptors	 increases	 the	 activity	 of	 OFF‐RGCs	

(Müller	et	al.,	1988)	in	cats.		

The	 rhythmic	 spiking	 in	 RGCs	 here	 relies	 on	 glutamatergic	 input,	 thereby	 the	

oscillation	 have	 to	 be	 generated	 by	 BCs	 or	 ACs.	 How	 could	 the	 loss	 of	 the	 dark	

current	trigger	rhythmic	activity	?	

One	possibility	is	that	ON‐BCs	start	a	rhythmic	release	of	glutamate	as	it	was	found	

in	ON‐CBCs	 in	 rd1	mice	 (Borowska	et	al.,	2011).	 In	our	wt	data	only	a	minority	of	

ON‐RGCs	gathered	rhythmic	spiking	during	illumination.	

This	may	 indicate	that	either	the	ON‐BCs	do	not	rhythmically	release	glutamate	or	

that	 they	 are	 rhythmic,	 but	 lack	 synchrony.	 In	 the	 latter	 case	 the	 single	 rhythmic	

EPSPs	at	the	dendrites	of	RGCs	will	be	averaged	out.	

Rhythmic	 activity	 in	 OFF‐cells	may	 be	 due	 to	 pace	maker	 properties	 in	 OFF‐cells	

(Margolis	 et	 al.,	 2007),	 which	 initiated	 a	 stable	 5	 Hz	 oscillation	 upon	 bleaching.	

However,	 the	 rhythm	may	 also	 originate	 from	 rhythmic	 wide‐field	 amacrine	 cells	

(Petite‐Jaques	et	al.,	2005).		

In	 additional	 experiments	 where	 Strychnine	 and	 SR	 95531	 were	 applied	 during	

illumination,	we	were	able	to	demonstrate,	that	inhibitory	synapses	are	not	involved	

in	 the	 initiation	 of	 rhythmic	 activity	 (Fig.	 3.15).	 Therefore	 a	 participation	 of	

amacrine	 cells,	 which	 release	 only	 inhibitory	 neurotransmitter,	 via	 chemical	

synapses,	 can	 be	 excluded.	 The	 exact	 mechanism	 for	 the	 generation	 of	 rhythmic	

spiking	for	ON‐	and	OFF‐cell	has	to	be	elucidated	in	future	studies.	

During	 blockage	 of	 inhibitory	 synapses,	 the	 emergence	 of	 a	 static	 Local	 Field	

potential	and	the	high	degree	of	synchronization	between	the	cells,	which	was	not	

present	 during	 spontaneous	 illumination,	 demonstrate,	 that	 loss	 of	 dark	 current	

with	 concomitant	 loss	 of	 inhibition	 are	 the	 conditions	 to	 enable	 rhythmic	
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hyperactivity	(Fig.	3.16).	The	variance	of	the	fundamental	 frequencies	observed	in	

the	experiments	using	Strychnine	and	SR	95531	during	illumination	may	be	due	to	

variation	in	local	blocker	concentrations.	I	suggest	that	loss	of	inhibition	trigger	the	

bipolar	cells	and	that	the	LFP	reflects	the	activation	of	large	BC	populations	at	once.		

After	 loss	 of	 inhibitory	 signaling	 the	 source	 of	 rhythmic	 excitation	 must	 be	 the	

membrane	properties	of	bipolar	cells	and	perhaps	gap	junctions	are	involved.	

Bipolar	cells	have	fast	and	slow	transmitter	vesicle	reservoir	at	their	synaptic	knobs		

And	maybe	the	rhythmic	activity	reflects	the	kinetic	of	depletion	and	restoration	of	

the	glutamate	transmitter	reservoir	(Petite‐Jaques	&	Bloomfield,	2008).	

	

	

4.6	Pharmacology	of	rat	RGC	activity	in	during	bleaching	

	

Wistar	rat	RGCs	responded	slightly	different	to	the	procedure	before	tested	in	mice.	

The	 RGCs	 spontaneous	 firing	 rates	 was	 sensitive	 to	 bleaching,	 but	 no	 rhythmic	

activity	appeared.	

Application	 of	 neurotransmitter	 antagonists	 for	 GABAergic,	 glycinergic	 and	

glutamatergic	 synapses	 changed	 the	RGC	maintained	activity,	but	 rather	 increased	

than	abolished	maintained	activity	in	OFF‐cells.	

A	 recent	 study	 (Margolis	 &	 Detwiler,	 2007)	 suggests	 that	 OFF‐RGCs	 display	

pacemaker	properties	and	their	maintained	firing	is	insensitive	to	synaptic	blockers.	

However,	while	 the	blockers	used	here	did	also	not	abolish	OFF‐RGC	activity	 (Fig.	

3.17),	a	study	in	P23H	rats	reported	a	decrease	of	RGC	firing	rates	after	wash	in	of	

synaptic	blockers	(Sekirnjak	et	al.,	2011)	for	a	longer	time	(>	10	minutes),	at	higher	

concentrations	and	additionally	used	a	blocker	for	ACh‐receptors.		

It	is	known	that	starburst	amacrine	cells	release	ACh	and	also	during	this	study		

Curare	was	used	to	block	cholinergic	activity	 in	 the	retina	(not	shown).	But	 it	was	

found	here	that	ACh	receptor	antagonists	work	only	in	high	concentrations	and	not	

reliably.		

That	 the	 blockage	 of	 inhibitory	 synapses	 induces	 oscillatory	 spiking	 is	 consistent	

with	 my	 findings	 in	 mouse,	 though	 wistar	 RGCs	 display	 a	 lower	 fundamental	

frequency	(Fig.	3.18)	at	~	3	Hz.			

The	results	in	rat	and	mouse	demonstrate	that	the	retina	is	capable	of	regaining	of	

rhythmic	 activity,	 by	 simple	 deafferentation	 and	 decrease	 of	 inhibitory	 synapse	

strength.		
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Retinal	 wave	 like	 activity	 is	 therefore	 blocked	 in	 the	 retina	 after	 eye	 opening	 by	

activation	of	the	photoreceptors	and	inhibitory	synaptic	signaling.	

	

4.7		RGC	degeneration	after	axonal	injury	

	

RGCs	 are	 directly	 affected	 in	 a	 variety	 of	 retinal	 diseases	 e.g.	 glaucoma	 and	 some	

forms	of	retinal	degeneration	in	animal	models	(in	P23H	and	RCS	rats;	Sekirnjak	et	

al.	20111)..		

In	the	present	study	changes	in	retinal	ganglion	cell	physiology	were	investigated	in	

rats	after	optic	nerve	injury.		

Significant	 changes	 in	 intra‐retinal	 axonal	 conduction	 velocity	 were	 measured	 at	

postoperative	 day	 four	 in	 rats,	 but	 did	 not	 change	 significantly	 further.	 The	mean	

intra‐retinal	 velocity	 in	 operated	 retinas	 remained	 at	 approximately	 71%	 of	 the	

control	value	(Fig.	3.21).		

Additionally	 OFF‐RGCs	 in	 operated	 rat	 retina	 showed	 significantly	 decreased	

spontaneous	activity	(Fig.	3.23).	

	For	all	five	functional	cell	types	identified	in	rat	retina	(Fig.	3.24	and	Table	3)	the	

average	 firing	 rate	 of	 the	 light	 response	 decreased	 after	 the	 operation	 while	 the	

response	latency	increased	(Tables	4	&	5).	

Evaluation	 of	 the	 spatial	 resolution	 of	 surviving	 RGCs	 using	 grating	 stimuli	 with	

increasing	spatial	 frequency	showed	that	RGCs	of	most	operated	animals	were	not	

longer	 able	 to	 discriminate	 bars	 of	 0.1	 cycles/degree.	 Again,	 operated	 animals	

showed	a	decreased	firing	rate	during	these	experiments	(Fig.	3.26)	

	

4.8		Changes	of	intra‐retinal	axon	function	after	injury	

In	rats	the	mean	axon	density	does	not	decrease	within	the	first	four	days	following	

optic	 nerve	 crush	 but	 a	 reduction	 within	 14	 days	 was	 reported	 (Kanamori	 et	 al.,	

2010,	Mey	 &Thanos,	 1993).	 As	 the	 loss	 of	 single	 intra‐retinal	 axons	 is	 difficult	 to	

determine	the	decrease	of	labeled	retinal	ganglion	cells	has	been	used	to	infer	axon	

loss.		A	variety	of	intra‐axonal	changes	have	been	reported	in	axons	following	optic	

nerve	 injury.	 These	 changes	 include	 axonal	 deformations	 (Allcutt	 et	 al.	 1984,	

Germain	et	al.	2007)	and	various	cytological	alterations	(Barron	et	al.,1986).	In	DBA	

mice,	axonal	atrophy	is	reported	to	precede	RGC	degeneration	(Jakobs	et	al.,	2005).	

However,	 it	 is	 unclear	 if	 the	 axon	 diameter	 decreases	 early	 (within	 two	 weeks)	
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following	ONC	(Misantone	et	al.	1984).	In	axotomized	kitten,	axon	diameter	is	only	

slightly	 changed	 (Watanabe	 &	 Fukuda,	 2002).	 Additionally,	 a	 recent	 study	

demonstrates	 that,	 injured	 axon	 are	 rapidly	 defragmented	 after	 lesion,	 too	 fast	 to	

assume	a	prior	shrinkage	(Knoferle	et	al.,	2010).	

According	 to	 classical	 cable	 theory	 (Hodgkin,	 1954)	 the	 conduction	 velocity	 of	

unmyelinated	axons	depends	on	axon	diameter	and	intra‐retinal	resistivity.		

In	 axotomized	 RGCs,	 it	 was	 shown	 that	 sealing	 of	 the	 axonal	 stump	 by	 internal	

vesicles	is	critical	for	axonal	survival	(Tuck	&	Cavalli,	2010).	The	seal	constituted	by	

the	vesicles	is	important	to	maintain	the	electrical	functions	of	the	axon	(Fishman	&	

Bittner,	2003;	Eddleman	et	al.,	2000;	Zelena	et	al.,	1968;	Godell	et	al.	1997).	

Sealing	maintains	the	electrical	function	of	the	axon,	otherwise	vesicle	traffic	could	

increase	the	axon’s	inner	resistivity.		

Here,	 I	 recorded	 a	 significant	 decrease	 in	 axonal	 propagation	 velocity	 prior	 to	

massive	 cell	 loss	 (Fig.	 3.21).	 This	 suggests	 that	 morphologic	 features	 like	 axon	

diameter	are	not	yet	altered.	

I	suggest,	that	the	significant	but	not	large	reduction	in	axon	conduction	velocity	is	

due	 to	 an	 increase	 of	 the	 inner	 axonal	 resistance	 and	 less	 to	 shrinkage	 of	 axon	

diameter.	 The	 axon	 therefore	 maintains	 much	 of	 its	 electrical	 functionality	 until	

complete	collapse.		

Impairment	 of	 axonal	 conduction	 should	 precede	 loss	 of	 somatic	 function.	

Recordings	with	 rabbits	 in	 our	 lab	 that	 received	 optic	 nerve	 crush,	 demonstrated	

reduced	axonal	propagation	velocity	after	one	week	when	 the	cell	 responses	were	

not	altered	(experiments	done	by	Christian	Leibig).	

In	rat	recordings,	the	earliest	recording	time	point	(d4)	was	either	too	late	to	detect	

differences	 between	 axonal	 and	 somatic	 degeneration	 or	 both	 events	 occur	

concomitant.	 	 I	conclude	that	both	events	are	in	close	temporal	proximity	and	that	

the	 time,	axonal	malfunction	precedes	somatic	degenerative	changes	must	be	very	

short.	
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4.9	Changes	of	retinal	ganglion	cell	function	after	injury	

The	 somata	 and	 dendrites	 of	 retinal	 ganglion	 cells	 are	 affected	 by	 optic	 nerve	

injuries.	The	RGC	density	decreases	(Berkelaar	et	al.,	1994),	soma	and	dendrites	of	

the	surviving	RGCs	shrink	soon	after	injury	(Leung	et	al.,	2011,	Thanos,	1988).		

Shrinking	dendritic	area	should	cause	decreased	synaptic	input	and	leads	to	altered	

light	responses	of	surviving	cells.	Operated	OFF‐cells	showed	a	significant	decrease	

of	 response	 latency	after	 four	days	post‐operative,	while	ON‐cells	were	unaffected	

until	day	eight	(Table	5).		The	average	firing	rate	was	decreased	for	both	cell	types	

at	four	days	post‐operative	(Table	6).	

In	a	study	using	axotomized	cats	(Takao	et	al.,	2002)	was	shown	that	the	surviving	

RGCs	 maintain	 their	 response	 properties	 (X‐	 and	 Y‐cells),	 but	 some	 cells	 show	

decreased	 firing	 rates.	 It	 was	 therefore	 suggested	 that	 RGC	membrane	 properties	

change	and	excitability	is	lowered.		

The	 integrity	of	synaptic	 input	was	tested	here	using	gratings	of	 increasing	spatial	

frequency.	This	stimulus	is	more	sensitive,	as	the	spatial	resolution	of	RGCs	depends	

on	denritic	tree	diameter.	For	both	groups	the	spatial	resolution	is	clearly	decreased	

At	four	days	after	surgery	(Fig.	3.26),	indicating	changes	in	dendrite	structure.	

In	OFF	cells	all	properties	examined	here,	maintained	 firing	 rate,	 response	 latency	

response	 firing	 rate	 are	 decreased	 at	 the	 earliest	 time	 point,	 while	 in	 ON‐cells	

initially	only	the	light	response	showed	a	decreased	firing	rate.	

For	both	cell	types	the	conduction	velocity	as	well	as	the	visual	acuity	was	decreased	

as	early	as	four	days	after	surgery.	

The	 assignment	 of	 the	 observed	 changes	 to	 compartments	 is	 speculative.	 The	

pharmacologic	analysis	of	 rat	RGCs	suggest	 that	OFF‐cells	may	exhibit	pace	maker	

properties	 and	 that	 the	 decrease	 in	 maintained	 firing	 rate	 can	 be	 due	 to	 altered	

membrane	properties	as	suggested	for	axotomized	cats	(Takao	et	al.,	2002).	

But	 response	 latencies	 for	 ON‐cells	 are	 significantly	 changed	 until	 a	 change	 in	

maintained	activity	 is	detected.	Also	 the	average	 light	 evoked	 firing	 rate	 is	altered	

prior	 to	 any	 change	 in	 spontaneous	 spiking.	 Therefor	 spontaneous	 spiking	 in	ON‐

RGCs	may	also	only	partially	rely	on	presynaptic	input.	

Beside	the	difficulties	that	are	related	to	the	unknown	origin	of	maintained	activity,	

changes	in	light	responsiveness	seem	to	be	related	to	changes	in	synaptic	input	for	

both	cell	types.		
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4.10		The	challenge	of	neuronal	degeneration		

	

Like	all	tissues	neuronal	structures	are	subject	to	acquired	and	inherited	diseases	as	

well	as	to	contingent	injuries.	Cells	of	similar	function	exist	in	million	copies	in	each	

tissue	and	the	mass	compensates	the	loss	or	malfunction	of	single	elements	or	small	

populations,	while	the	immune	system	prevents	a	spreading	of	the	disease.	

When	 larger	 proportions	 of	 cells	 are	 affected,	 the	 organ	 or	 tissue	 needs	 medical	

treatment.	 The	 aim	 of	 treatment	 is	 the	 maintenance	 by	 application	 of	 inhibiting	

and/or	 promoting	 substances	 that	 rebalance	 the	 tissues	 condition.	 In	 cases	where	

this	is	unsuccessful,	modern	medicine	tries	to	replace	the	organ	either	by	prosthesis	

or	a	donated	organ.	

These	methods	are	well	established	for	a	lot	of	organs,	heart,	kidney	and	liver	can	be	

replaced	which	is	not	possible	with	the	brain	and	this	not	only	for	surgical	reasons.	

The	brain	has	a	complex	internal	structure	and	surgery	revealed	that	interruption	of	

neuronal	 circuits	 fundamentally	 changes	 personality	 and	 furthermore,	 neuronal	

function.	 Intervention	 into	neuronal	 structures	 in	human	calls	 therefore	 for	caution	

and	attention.	Different	is	the	situation	with	the	PNS,	where	medical	problems	focus	

on	 axonal	 integrity	 and	 growth	 promotion.	 Though	 this	 implies	 less	 structural	 and	

ethical	complexities,	the	regeneration	of	peripheral	nerves	is	still	puzzling.	

Nevertheless	 the	 palette	 of	 neurological	 and	 psychiatric	 diseases	 is	 long	 and	

treatments	are	necessary.	

Manipulation	of	 retinal	 tissue	has	not	 so	many	ethical	 implications	as	 in	 the	brain,	

but	faces	similar	practical	problems.	Therefore	a	lot	of	treatment	strategies	designed	

and	evaluated	in	the	retina	may	later	be	applied	to	cortical	sites.	

In	 principle,	 retinal	 defects	 can	 be	 treated	 by	 the	 application	 of	 neuroprotective	 or	

growth	promoting	 substances,	 surgery,	 stem	cell	 therapy	 (MacLaren	et	al.	2006),	

optogenetics	(Busskamp	et	al.,	2011)	and	prostheses.	

Recent	 studies	 using	 optogenetic	 tools	 showed	 that	 responsiveness	 of	 retinal	

channels	in	rd1	can	be	restored,	but	the	behavioural	experiments	undertaken	do	not	

answer	 the	 question	 if	 complete	 vision	 is	 restored	 (Thyagarajan	 et	 al.,	 2010;	

Busskamp	et	al.	2010).		

It	was	shown	here	by	bleaching	experiments	 that	aberrant	activity	 in	rd1	 retinas	 is	

mainly	due	 to	deafferentation	and	may	be	silenced	as	sensory	 input	enters	 into	 the	

circuit.		
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In	glaucoma,	 the	growth	promoting	effect	of	 cristallins	on	 injured	axons	provides	a	

new	perspective	for	treatments	(Fischer	et	al.,	2008).	Otherwise	in	surgery	the	use	of	

nerve	grafts	becomes	common,	that	allows	axons	to	regenerate	and	grow	into	their	

target	region	(Myoshi	et	al.,	2010),	but	its	use	is	by	now	restricted	to	the	PNS.	

The	most	advanced	treatment	approach	for	injured	sensory	neurons	that	is	currently	

in	 clinical	 trial	 phase,	 are	 neuro‐prostheses,	 in	 the	 case	 of	 the	 retina,	 the	 retina	

prosthesis.	

Prostheses	are	external	devices	that	can	be	removed	easier	than	stem	cells	or	genes	

delivered	to	target	cells.	That	made	them	more	appealing	on	the	ethical	level.	On	the	

other	hand	 it’s	difficult	 to	bring	electronics	 in	 close	contact	with	 the	correct	 targets	

and	tune	the	device	to	either	receive	or	deliver	signals	properly.		

The	development	of	semiconductor	technology	makes	the	devices	smaller	and	as	it	is	

seen	by	the	MTA‐chip	used	here,	transistors	are	small	enough	to	come	in	contact	with	

just	 one	 cell	 that	 they	 can	 stimulate	 or	 read	 out	 (Fromherz,	 2002).	 Actually	 a	

stimulation	 chip,	 implanted	 into	 the	 eye	 of	 patients	with	 retinitis	 pigmentosa,	 is	 in	

clinical	trial	and	so	far	enables	the	patient’s	simple	vision	(Zrenner	et	al.,	2011).		

Such	smart	devices	could	also	bridge	the	gap	between	eye	and	brain	when	the	optic	

nerve	is	degenerated	and	are	useful	to	treat	a	variety	of	neurologic	diseases.	
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