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Summary 

Summary 

Natural plasma levels of testosterone in male temperate zone vertebrates vary 

markedly between individuals even when sampled during the same breeding 

stage. Social interactions between males are thought to be one major factor 

influencing short and long-term fluctuations in testosterone levels within 

individuals in most vertebrate classes. Furthermore, it is thought that territorial 

behaviour of temperate-zone vertebrates is regulated by testosterone, because 

seasonal testosterone profiles often closely match the occurrence of territorial 

behaviour in males. However, some species also defend territories outside the 

breeding season when testosterone levels are low. The degree to which 

testosterone facilitates territorial behaviour in these species is not well 

understood. 

Black redstarts (Phoenicurus ochruros) are temperate zone songbirds that 

defend territories and sing during breeding when testosterone levels are elevated 

and during non-breeding when testosterone levels are low (chapter 1). High-

altitude populations have a short breeding season with typically one brood, 

whereas low-altitude populations have a long breeding season and raise two or 

more broods. Thus, black redstarts are an ideal study species to explore (1) if 

and how tightly territorial behaviour is facilitated by testosterone across seasons 

(2) if testosterone levels are socially modulated and (3) if social modulation of 

androgen levels depends on the ecology of the population (high- versus low-

altitude). 
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Summary 

High- and low-altitude male black redstarts reacted aggressively to 

simulated territorial intrusions (STI), but they did not increase testosterone in 

response to this behavioural challenge. However, males of both populations 

would have had the physiological capacity to raise testosterone: males that did 

not show an increase in testosterone during STIs showed a pronounced increase 

in testosterone when injected with gonadotropin releasing hormone (GnRH). 

GnRH is released by the hypothalamus and via several steps stimulates the 

testes to produce testosterone. So far it was unknown, if species that show no 

androgen response to aggressive interactions have already maximally elevated 

testosterone levels. My data demonstrate that at least in black redstarts this is 

not the case. Furthermore, my data show that the length of the breeding season 

or the number of broods cannot universally explain between-species differences 

in androgen responsiveness to territorial challenges as males from the high- and 

the low-altitude population responded to simulated territorial intrusions and 

GnRH in a similar way (chapter 2). 

The function of short-term increases in testosterone in other species is still 

barely understood. Testosterone may enhance persistence of aggression during 

a fight or it may facilitate the winner effect. California mice (Peromyscus 

californicus), for example, show a short-term increase in testosterone only after 

winning several territorial encounters. Studies testing this “winner-challenge”-

hypothesis are, however, still rare and have been conducted under laboratory 

conditions only. However, in free-living black redstarts even repeated STIs did 

not result in an increase in androgens, although males enhanced their 
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Summary 

behavioural response (chapter 3). Taken together, in this species, aggressive 

behaviour does not seem to influence plasma androgen levels. Thus, although 

the winner effect is a very general phenomenon among vertebrates, its regulation 

may differ between species and may be independent of sex steroids in some 

species. 

However, territorial behaviour may still be facilitated by testosterone 

during breeding and during non-breeding. In both seasons brain areas involved 

in the production of song and neural areas associated with sexual arousal and 

aggression expressed receptors for androgens and oestrogens as well as the 

enzyme aromatase, which converts testosterone into oestradiol (chapter 1). In a 

further experiment, we therefore implanted male black redstarts during breeding 

and non-breeding with an androgen receptor blocker and an aromatase inhibitor 

to block both potential direct and indirect effects of testosterone on territorial 

behaviour. These experiments suggest that in black redstarts territorial behaviour 

as such may be decoupled from testosterone or its metabolites. Rather, 

testosterone or oestradiol seem to regulate components of the territorial 

repertoire that are specifically relevant in a breeding context and shift the 

emphasis of the territorial response to these components. In male black redstarts 

testosterone and oestradiol emphasize vocalizations relative to non-vocal 

behaviours in the territorial response (chapter 5). Furthermore, black redstarts 

increased their vocal performance in response to simulated territorial intrusions 

(chapters 4 and 6). This change in song structure seems to depend partly on 

testosterone or oestradiol, because both males that were implanted with the 
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Summary 

blockers and males that were challenged during non-breeding did not show the 

full structural change of their song (chapter 4 and 6). Vocal performance is 

thought to be an honest indicator of male quality. My experiments suggest that 

testosterone and its metabolites may be the underlying mechanism. 

In summary, the experiments demonstrate that androgen levels in male 

black redstarts are not socially modulated and interactions between males over 

territories cannot account for the high inter-individual variability in plasma 

testosterone levels between males. However, differences in testosterone levels 

may reflect male quality by influencing vocal performance during agonistic 

contexts. Further, the data show that in male black redstarts territorial behaviour 

per se is probably not facilitated by testosterone and its metabolites. Instead sex 

steroids seem to activate only one component of territorial behaviour during the 

breeding season, namely context-dependent changes in song structure. Our 

findings challenge the general believe of a strong link between testosterone and 

territorial behaviour. Furthermore, they suggest that species differ fundamentally 

to which degree territorial behaviour is regulated by testosterone or its 

metabolites on a seasonal basis. These differences may be directly related to 

variation in androgen responsiveness to male-male interactions. 
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Zusammenfassung 

Zusammenfassung 

Wirbeltiermännchen der gemäßigten Zone unterscheiden sich stark in ihren 

Bluttitern für das Sexualhormon Testosteron; auch dann wenn alle Proben 

während des gleichen Brutstadiums entnommen wurden. Man geht davon aus, 

dass soziale Interaktionen zwischen Männchen zu Schwankungen im 

Testosteronspiegel führen. Außerdem vermutet man, dass das 

Territorialverhalten von Wirbeltieren durch Testosteron gesteuert wird, da 

Phasen ausgeprägten Territorialverhaltens oft mit erhöhten Testosterontitern 

einhergehen. Allerdings verteidigen einige Arten auch ausserhalb der Brutzeit 

ihre Territorien, wenn ihr Testosteronspiegel niedrig ist. Inwieweit Testosteron bei 

diesen Arten das Territorialverhalten steuert ist noch unklar. 

Hausrotschwänze (Phoenicurus ochruros) sind Singvögel der gemäßigten 

Breiten, die sowohl während als auch ausserhalb der Brutzeit ein Territorium 

verteidigen (Kapitel 1). Hochgebirgspopulationen dieser Art sind auf eine sehr 

kurze Brutzeit beschränkt und können deshalb meist nur eine Brut großziehen. 

Populationen in niedriger gelegenen Lagen schaffen dagegen manchmal bis zu 

drei Bruten pro Saison. Hausrotschwänze sind daher eine ideale Modellart um 

den Zusammenhang zwischen Territorialverhalten und Testosteron zu 

erforschen. In meiner Doktorarbeit habe ich versucht folgende Fragen zu 

beantworten: Beeinflusst Testosteron das Territorialverhalten von 

Hausrotschwänzen sowohl während als auch ausserhalb der Brutzeit? 

Beeinflussen Revierkämpfe zwischen Männchen ihren Testosteronspiegel? Ist 

der Einfluß des Territorialverhaltens auf den Testosteronspiegel abhängig von 
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Zusammenfassung 

der Brutökologie der jeweiligen Population? Die Ergebnisse meiner Studien 

möchte ich im Folgenden kurz zusammenfassen. 

Obwohl sowohl die Männchen der Hochgebirgs- als auch die Männchen 

der Flachlandpopulation aggressiv auf einen experimentellen Eindringling in ihr 

Territorium reagierten, kam es in beiden Fällen zu keiner erhöhten 

Hormonausschüttung. Physiologisch gesehen wären sie aber dazu in der Lage 

gewesen: nach Injektion des Neurohormons Gonadotropin-Releasing-Hormon 

(GnRH) hatten die Männchen deutlich höhere Testosteronspiegel als direkt nach 

der territorialen Interaktion. Normalerweise wird GnRH vom Hypothalamus (einer 

Gehirnregion) ausgeschüttet und führt über mehrere Zwischenschritte zur 

Produktion von Testosteron durch die Hoden. Bisher war unklar, ob bei Arten, die 

nach territorialen Auseinandersetzungen keinen Testosteronanstieg im Blut 

aufwiesen, der Testosteronspiegel bereits maximal erhöht war. Wie meine Daten 

zeigen, ist das zumindest bei Hausrotschwänzen nicht der Fall. Ferner legen 

meine Ergebnisse nahe, dass Unterschiede in der Brutökologie nicht generell 

Unterschiede in der Androgenantwort auf aggressive Interaktionen erklären 

können, da die getesteten Hochgebirgs- und Flachlandpopulationen hormonell 

sehr ähnlich auf einen experimentiellen Eindringling und GnRH reagierten 

(Kapitel 2). 

Weshalb bei manchen Arten territoriale Auseinandersetzungen zu einem 

erhöhten Testosteronspiegel führen ist immer noch nicht vollständig geklärt. Es 

gibt Hinweise, dass Testosteron, die Ausdauer mit der ein Territorium verteidigt 

wird erhöht und den sogenannten “winner effect” steuert. Der „winner effect“ 
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Zusammenfassung 

steht für eine höhere Wahrscheinlichkeit eine aggressive Interaktion zu 

gewinnen, wenn man bereits eine vorangegangene gewonnen hat. In 

Kalifornischen Mäuse (Peromyscus californicus), zum Beispiel, ist der 

Testosteronspiegel erst nach mehreren gewonnen Revierkämpfen erhöht. Bisher 

gibt es allerdings nur sehr wenige Studien, die einen Zusammenhang zwischen 

dem “winner effect” und Testosteron gezeigt haben. Zudem wurden alle 

bisherigen Studien im Labor durchgeführt. Die von mir untersuchten freilebenden 

Hausrotschwänze erhöhten ihren Testosteronspiegel auch nach mehrfacher 

Konfrontation mit einem experimentellen Eindringling in ihr Territorium nicht, 

obwohl sie ihre Verhaltensantwort deutlich verstärkten (Kapitel 3). Aggressives 

Territorialverhalten hat bei dieser Art also keinen Einfluß auf den 

Testosteronspiegel. Auch wenn der „winner effect“ unter Wirbeltieren sehr weit 

verbreitet ist, scheint seine Steuerung zwischen verschiedenen Arten stark zu 

variieren und ist bei manchen Arten wahrscheinlich unabhängig von Testosteron. 

Diese Befunden schließen dennoch eine Testosteron-abhängige Steuerung des 

Territorialverhaltens nicht aus. Sowohl während als auch außerhalb der Brutzeit 

finden sich Rezeptoren für Testosteron und Östrogen sowie das Enzym 

Aromatase (wandelt Testosteron in Östrogen um) in Gehirngebieten, die für die 

Produktion von Gesang und für Sexual- und Aggressionverhalten entscheidend 

sind (Kapitel 1). In einem weiteren Versuch habe ich deshalb bei 

Hausrotschwanzmännchen in beiden Jahresabschnitten die Bindung von 

Testosteron an dessen Rezeptoren im Gehirn und dessen Umwandlung zu 

Östrogen inhibiert. Diese Versuche legen nahe, dass bei Hausrotschwänzen 
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Zusammenfassung 

Territorialverhalten an sich nicht an Testosteron oder seine 

Umwandlungsprodukte gekoppelt ist. Vielmehr scheint Testosteron nur jene 

Elemente des Territorialverhalten zu regulieren und hervorzuheben, die 

besonders während der Brutzeit von Bedeutung sind. Bei Hausrotschwänzen 

verstärken Testosteron oder seine Umwandlungsprodukte Vokalisationen 

gegenüber nicht-vokalen Verhaltensweisen (Kapitel 5). Hausrotschwänze 

erhöhten ihre Gesangsleistung als Antwort auf einen experimentellen 

Eindringling in ihr Territorium (Kapitel 4 und 6). Diese Veränderung in der 

Struktur ihres Gesangs scheint auf der Wirkung von Testosteron zu beruhen: 

Männchen, bei denen die Bindung von Testosteron an seine Rezeptoren 

blockiert wurde sowie Männchen während der Nichtbrutzeit im Herbst, wenn ihr 

Testosteronspiegel natürlicherweise niedrig ist, veränderten ihren Gesang nur 

teilweise als Antwort auf einen experimentellen Eindringling in ihr Territorium 

(Kapitel 4 und 6). Die Gesangsleistung eines Männchens gibt vermutlich 

Aufschluss über seine Qualität als Reproduktionspartner. Testosteron ist also 

wahrscheinlich der zugrundeliegende Mechanismus, der die Qualität eines 

Männchens in ein „ehrliches“ Gesangssignal übersetzt. 

Abschliessend lässt sich sagen, dass der Testosteronspiegel von 

Hausrotschwanzmännchen nicht durch Interaktionen mit anderen Männchen 

beeinflusst wird. Territoriale Auseinandersetzungen können daher auch nicht 

erklären weshalb sich Hausrotschwanzmännchen so stark in ihren 

Testosterontitern unterscheiden. Wahrscheinlicher spiegelt diese Varianz aber 

unterschiedliche Qualitäten der Männchen wieder, die in den unterschiedlichen 
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Gesangsleistungen bei territorialen Auseinandersetzungen zum Ausdruck 

kommen. Außerdem läßt sich aus meinen Daten folgern, dass bei 

Hausrotschwänzen nicht die gesamte Territorialantwort von Testosteron und 

seinen Umwandlungsprodukten gesteuert wird, sondern nur eine Komponente 

davon, nämlich Kontext – abhängige Veränderungen in der Gesangsstruktur. 

Damit stellen meine Ergebnisse den generell angenommenen starken 

Zusammenhang zwischen Territorialverhalten und Testosteron in Frage. Es 

scheint jedoch fundamentale Unterschiede zwischen den Arten zu geben 

inwieweit Territorialverhalten von Testosteron gesteuert wird und davon scheint 

auch abzuhängen, ob Interaktionen zwischen Männchen deren 

Testosteronspiegel beeinflussen oder nicht. 
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General Introduction 

General introduction 

The role of sex steroids in a seasonally changing environment 

Most longer lived animal species - regardless whether they breed in the arctic, 

the temperate-zones or in the tropics - have to cope with a seasonally changing 

environment. Therefore, in most of these species energetically costly life-history 

stages are restricted to times when weather conditions are favourable. Northern 

temperate songbirds, for example, typically breed from spring to early summer 

and moult their feathers in late summer when food is still plenty. To avoid the 

winter period many songbirds migrate to southern regions with more benign 

weather and food conditions. In response to these seasonal changes animals, 

therefore, go through different life-history stages that are accompanied by 

changes in behaviour and physiology and allow them to maximize their 

reproductive success in a largely predictable changing environment. For 

example, sexual behaviours are most advantageous during the breeding season. 

Therefore, the physiology and behaviour of individuals need to be matched with 

environmental conditions and social context. This is the major role of sex steroids 

like testosterone. Testosterone integrates environmental and social cues to 

prepare male vertebrates for reproduction: it stimulates the production of sperm 

by the testes, promotes the expression of secondary sex characteristics and 

facilitates the expression of relevant behaviours like territoriality, courtship and 

copulation (Adkins and Pniewski 1978; Nelson 2005). Thus, testosterone induces 

the simultaneous expression of different traits that are relevant for breeding. 

Accordingly, in many male vertebrates testosterone levels are elevated during 
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General Introduction 

the breeding season and are low during non-breeding. At the beginning of the 

breeding season, the increasing day length stimulates gonadotropin-releasing 

hormone (GnRH) neurons in the hypothalamus to secrete GnRH into the pituitary 

(Dawson, King et al. 2001). The pituitary in turn releases luteinizing hormone 

(LH) into the blood stream and stimulates the regressed testes to grow and 

produce testosterone. As testosterone is distributed by the blood stream it can 

exert its effects on virtually every organ provided its cells express receptors for 

this hormone. Sex steroids are small lipophilic molecules and can, therefore, 

pass through the membrane of cells, bind to receptors inside the cell and are 

then transported into the nucleus where they can activate the transcription of 

respective genes (Nelson 2005). Many effects of testosterone on behaviour are 

not accomplished by testosterone itself, but by its conversion product oestradiol. 

Testosterone is then locally aromatized into oestrogens in brain areas that have 

been shown to be especially relevant for sexual and aggressive behaviours 

(Schlinger and Callard 1990). It is now known that some cells also express 

membrane-bound receptors for sex steroids. These activate signal transduction 

pathways and lead to effects of testosterone on behaviour that are faster than 

those achieved by the classic activation of genes (Remage-Healey and Bass 

2006). 
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General Introduction 

Territorial behaviour and testosterone 

 

Territorial behaviour and testosterone during the breeding season 

Males of many vertebrate species are highly territorial or aggressive against 

other males during the breeding season when they compete for access to fertile 

females. During the non-breeding season, these males often readily accept the 

proximity of conspecific males (e.g. Feare 1984, Lincoln, Guinness et al. 1972). 

Thus, besides seasonal changes in sexual behaviours, seasonal changes in 

territorial behaviour and aggression occur in many vertebrates. Accordingly, it 

has been shown in a variety of species that territorial behaviour is facilitated by 

testosterone (Lincoln, Guinness et al. 1972; Wingfield, Moore et al. 2006). The 

role of sex steroids like androgens and oestrogens in the activation of sexual 

behaviours is fairly established and seems to be pretty conserved across 

vertebrates (Adkins and Pniewski 1978; Adkins-Regan 1981; Nelson 2005; 

Fusani 2008). In contrast, - and despite many years of research - the relationship 

between testosterone and territorial behaviour and aggression is far less clear 

and seems to be more subject to variation between species (Wingfield, Moore et 

al. 2006). There may be several reasons for this. First, aggression can be 

expressed in different contexts and situations. It may, therefore, serve different 

purposes that require the expression of distinct agonistic behaviours. Further, 

aggression may be intra- and intersexual, it may be over food, territories and 

mating partners and it may be directed against conspecifics or against individuals 

of other species, e.g. predators (Wingfield, Moore et al. 2006). Focussing on 
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territorial behaviour as a special case of aggression reveals that even then 

differences in context may be present. For example, territorial behaviour in 

songbirds is expressed most prominently during the breeding season. During 

breeding males compete over territories and access to mates. In species that 

only defend a territory during the breeding season a close correlation between 

the intensity of territorial behaviour and testosterone is found (Wingfield, Hegner 

et al. 1990). However, some songbirds even defend territories outside the 

breeding season when testosterone levels are low (Schwabl and Kriner 1991; 

Wingfield 1994; Hau and Beebe 2011; Marasco, Fusani et al. 2011). 

During the breeding season testosterone is thought to shift the time and 

energy budget of an individual from self-maintenance and long-term survival 

towards mating effort and reproduction (Hau 2007). Accordingly, it has been 

shown, that in some species males implanted with testosterone during the 

breeding season increase the size of their territories (Chandler, Ketterson et al. 

1994), territorial behaviour (Wingfield 1984) and song rate (Hau, Wikelski et al. 

2000; Van Duyse, Pinxten et al. 2002; Sartor, Balthazart et al. 2005). 

Consequently, prolonged high levels of testosterone may also entail behavioural 

and physiological costs (Marler and Moore 1988; Dufty 1989; Wingfield, Lynn et 

al. 2001). However, individual correlations between testosterone and territorial 

behaviour are rarely found (Johnsen 1998; McGlothlin, Jawor et al. 2007). 

Furthermore, testosterone levels do not only vary on a seasonal basis, but also 

within the breeding season and depending on the mating system (Wingfield, 

Hegner et al. 1990; Hirschenhauser and Oliveira 2006). For example, in socially 
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monogamous species with biparental care testosterone levels are highest (and 

show the largest differences between individuals) at the very beginning of the 

breeding season, when conflicts between males over territories and mates are 

most intense (Wingfield, Hegner et al. 1990). Thus, because of experimental and 

correlational evidence and the potential costs of high prolonged levels of 

testosterone, it has been suggested that individuals only increase testosterone 

levels above breeding baseline levels when necessary (Wingfield, Hegner et al. 

1990) - that is during periods of social instability when dominance hierarchies or 

territories have to be established (Ramenofsky 1984). These ideas are the basis 

of the “challenge hypothesis” (Wingfield, Hegner et al. 1990). Evidence for this 

hypothesis came from studies on temperate-zone songbirds. For example, song 

sparrows show a rise in testosterone levels above breeding season baseline 

levels when they are challenged with a simulated territorial intrusion (STI) 

experiment creating a situation of social instability (Wingfield 1985; Wingfield and 

Wada 1989). The challenge hypothesis found broad resonance and has been 

tested in a variety of vertebrate species. Most of these studies confirm the 

seasonal predictions of the challenge hypothesis that depending on the mating 

system high levels of testosterone should correlate with times when interactions 

between males are most intense during the breeding season (Hirschenhauser, 

Winkler et al. 2003; Hirschenhauser, Taborsky et al. 2004; Hirschenhauser and 

Oliveira 2006). Socially monogamous species with biparental care should only 

show a peak in testosterone levels at the beginning of the breeding season. In 

contrast, individuals of polygynous species that compete for females during the 
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whole breeding season and do not provide paternal care should have elevated 

testosterone levels during the entire breeding season. However, the assumption 

that variations in testosterone levels above breeding season levels are caused by 

aggressive interactions between males was only confirmed in some species, 

many others do not behave in the way predicted by the challenge hypothesis (for 

a review see Goymann, Landys et al. 2007). So far three ecological hypotheses, 

the essential paternal care, the short breeding season and the number of broods 

hypothesis, have been put forward to explain between-species differences in the 

androgen responsiveness to male-male interactions (see Goymann 2009). These 

hypotheses are not mutually exclusive and are based on the general idea that 

biparental species living in environments with strong time or resource limits for 

breeding should not increase testosterone during territorial intrusions, because 

high levels of testosterone may interfere with paternal care (Hunt, Hahn et al. 

1999; Goymann, Landys et al. 2007; Landys, Goymann et al. 2007; Lynn 2008; 

Goymann 2009). 

Furthermore, the challenge hypothesis goes beyond the classical idea of 

hormones facilitating behaviour: behaviour can also feedback on hormone levels 

(Harding and Follett 1979; Adkins-Regan 2005). Although the influence of 

behaviour on hormones is now well accepted and found in all vertebrate species 

from humans to fish (e.g. Hirschenhauser, Taborsky et al. 2004; Archer 2006), 

the actual function of short-term increases of sex steroids in response to sexual 

activity or territorial fights is still unclear. It has been suggested that testosterone 

may increase aggression during an on-going fight, ensures the persistence of 
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aggression after a fight and mediates the winner effect (Wingfield 1994; Oliveira, 

Silva et al. 2009). 

 

Territorial behaviour and testosterone across seasons 

As mentioned above, in some species the correlation between testosterone and 

territorial behaviour is disrupted as they also defend territories in the non-

breeding season when testosterone levels are low (Schwabl and Kriner 1991; 

Wingfield 1994; Canoine and Gwinner 2002). Only few studies so far have 

investigated the relationship between testosterone and territorial behaviour in 

species that also defend territories in a non-reproductive context and these 

studies have yielded conflicting results. There is good evidence that in song 

sparrows (Melospiza melodia morphna) sex steroids facilitate territorial behaviour 

in the non-breeding season although androgens are undetectable in the blood 

plasma (Soma, Sullivan et al. 1999). In that case territorial behaviour seems to 

be regulated by local production of androgens and oestrogens in relevant brain 

areas (Soma, Sullivan et al. 2000; Soma, Tramontin et al. 2000; Soma, Schlinger 

et al. 2003) derived from steroid precursor molecules of non-gonadal origin 

(Soma and Wingfield 2001). However, studies on other songbirds suggest that in 

these species testosterone only plays a role in the regulation of territorial 

behaviour during the breeding season (Schwabl and Kriner 1991; Canoine and 

Gwinner 2002; Hau and Beebe 2011; Marasco, Fusani et al. 2011). Furthermore, 

although testosterone correlates with territorial behaviour during the breeding 

season, experimental evidence actually suggests that territorial behaviour as a 
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whole is not facilitated by testosterone in most species even during the breeding 

season (see chapter 5, Table 1). Similar to courtship, territorial behaviour 

comprises a whole suite of different components that may be regulated by 

different hormonal mechanisms (Fusani, Gahr et al. 2001; Van Duyse, Pinxten et 

al. 2002; Fusani 2008; Sperry, Wacker et al. 2010). 

One major component of territorial behaviour is song which is often 

studied separately from non-vocal territorial behaviours. Studies on song 

behaviour indicate that although several species sing also outside the breeding 

season, nonbreeding song may be quantitatively and/or qualitatively different 

from breeding season song. For example, some species produce more repetitive 

elements (DeWolfe, Kaska et al. 1974; Smith, Brenowitz et al. 1997; Leitner, 

Voigt et al. 2001; Voigt and Leitner 2008), longer songs (Riters, Eens et al. 2000) 

and more stereotyped song (Smith, Brenowitz et al. 1997) in spring than in 

autumn. In some species these changes are correlated with HVC size (Smith, 

Brenowitz et al. 1997), but in others not (Fusani, Van't Hof et al. 2000; Smulders, 

Lisi et al. 2006). HVC is a brain nucleus and part of the song control system in 

songbirds. It is androgen sensitive (Gahr and Metzdorf 1997) and thought to 

control motor output during singing (Brenowitz, Margoliash et al. 1997). It is 

argued that a larger HVC during spring is related to a larger song repertoire, a 

higher song rate and that it facilitates the production of more complex song 

(Brenowitz 1997; Smith, Brenowitz et al. 1997). This view is currently debated 

though, as some of the reported seasonal changes in HVC size may depend on 

the delineation method used (Gahr 1997). However, there is evidence that 
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androgen and oestrogen sensitivity within the HVC changes seasonally (Gahr 

and Metzdorf 1997; Soma, Hartman et al. 1999). Furthermore, testosterone may 

facilitate the production of song in a reproductive context by activation of song 

areas outside the song control system. Especially aromatization of testosterone 

to oestrogens in the pre-optic area seems to be important in this respect (Foidart, 

Silverin et al. 1998; Riters, Eens et al. 2000; Soma, Schlinger et al. 2003). 

Thus, although it is accepted that testosterone plays a role in the 

organization and activation of song (Bolhuis and Gahr 2006) and territorial 

behaviour in general, it is still unclear to what extent testosterone facilitates these 

behaviours in species that sing and defend territories also outside the breeding 

season. 

 

Aims of the study 

Although it is clear that there is a general relationship between testosterone and 

territorial aggression, the extent to which testosterone plays a role is not well 

understood (Wingfield, Hegner et al. 1990; Adkins-Regan 2005; Nelson 2005; 

Wingfield 2005; Wingfield, Moore et al. 2006). We therefore aimed at elucidating 

the role of testosterone in regulating territorial behaviour across seasons and if 

territorial behaviour can explain variation in testosterone levels between 

individuals during breeding in a temperate-zone songbird. We studied the 

interrelationship between testosterone and territorial behaviour at all levels by 

collecting correlational and experimental data and by including all components of 

territorial behaviour from overt aggression, approach behaviour and song (song 
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rate and song structure). Thus, although this work was restricted to one particular 

species, the black redstart (Phoenicurus ochruros, Fig. 1), we are confident that 

our results apply to a broader range of songbirds and vertebrates with similar life 

histories. 

 

Figure 1. Adult male black redstart bringing food to its nestlings. 

 

The black redstart has a largely predictable and well known life-history 

cycle (Menzel 1995; Landmann 1996) and is a highly territorial, socially 

monogamous songbird with bi-parental care. It covers a large breeding range 

from high to low altitudes within Europe (Landmann 1996; Weggler 2006, Fig. 2). 

High-altitude populations have a short breeding season with typically one brood, 

whereas low-altitude populations have a long breeding season and raise two or 

more broods (Landmann 1996). Furthermore, black redstarts show a resurgence 

of territorial behaviour in autumn after moult before they leave their breeding 

grounds (Weggler 2000; Nicolai 2005). 
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Figure 2. Typical breeding habitats of black redstarts. Left side: breeding habitat of the low-

altitude population in Bavaria. Right side: breeding habitat of the high-altitude population in 

Southern Tyrol. 

 

In chapter 1 we assessed the correlational basis between territorial 

behaviour and testosterone in male black redstarts collecting data from March, 

when they arrive on their breeding grounds until October when they leave for 

their wintering grounds. We collected behavioural data in different contexts 

(spontaneous, in response to a simulated territorial intrusion) and physiological 

data (circulating sex steroid levels, sex steroid receptor expression in relevant 

brain areas). If there is a tight link between territorial behaviour and testosterone, 

the response of males to a simulated territorial intrusion should be strongest at 

the beginning of the breeding season when testosterone levels are elevated and 
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lowest during the non-breeding season in autumn when testosterone levels are 

presumably very low. Similarly, song output should be highest at the beginning of 

the breeding season and lowest during non-breeding in autumn. Furthermore, if 

these seasonal differences in behaviour are driven by the effects of testosterone 

in the relevant brain areas, androgen sensitivity or sensitivity for its metabolites 

should be lower in these brain areas and the song control nucleus HVC should 

be smaller in autumn than in spring. 

In chapters 2 and 3 we explored factors that may explain variation within 

and between species in their androgen responsiveness to simulated territorial 

intrusions ranging from life history differences to physiological and social factors. 

In chapter 2 we tested the short breeding season / number of broods 

hypothesis by comparing two populations of black redstarts that breed at different 

altitudes and therefore have different life histories: a high altitude population with 

typically one brood per breeding season and a low altitude population with up to 

three broods per breeding season. Following the predictions of the two 

hypotheses we expected that the population with a short breeding season would 

not show an increase in testosterone during simulated territorial intrusions to 

avoid the negative effects of testosterone on male parental care. The population 

with the long breeding season, in contrast, should show an increase in 

testosterone as the value of a brood is not as high as in the single-brooded 

population and, therefore, the boost in territorial behaviour gained by the 

increase in testosterone may outweigh its negative effects. This was the first 

study to test these hypotheses in populations of the same species. Furthermore, 
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we tested if differences in hypothalamic-pituitary-gonadal axis physiology may 

explain differences in androgen responsiveness between species: species that 

lack an increase in androgen levels in response to simulated territorial intrusions 

may already have maximally elevated androgen levels. Male black redstarts were 

caught in a control situation or during a simulated territorial intrusion and injected 

with GnRH to stimulate the testes to produce a maximum amount of 

testosterone. This idea had not yet been tested so far. 

In chapter 3 we tested three hypotheses that may explain the lack of a 

hormonal response of various species to single simulated territorial intrusions: (1) 

Multiple (winning) territorial encounters may be needed to increase testosterone 

(Oyegbile and Marler 2005) or (2) simulated territorial intrusions may create a 

losing experience for territory holders, during which territorial birds do not 

increase testosterone (Kempenaers, Peters et al. 2008). Finally, (3) the hormonal 

response may depend on intrusion intensity. We evaluated these hypotheses 

based on patterns of aggressive behavior that are indicative of winning and 

losing in other species (e.g. (Hsu, Earley et al. 2006)) and differences in 

androgens and corticosterone to single versus repeated simulated territorial 

intrusions with low- or high-level intensity encounters. If male black redstarts 

should require multiple territorial interactions before they show a rise in 

testosterone, we predicted that redstarts caught after experiencing and "winning" 

three consecutive simulated territorial intrusions before capture should express 

higher levels of testosterone than individuals caught after just one simulated 

territorial intrusion. With respect to behavior, challenged territorial males should 
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intensify their behavioural response over days and should react stronger towards 

the more threatening high-level intruders than towards the less threatening low-

level intruders. 

The experiments presented in chapters 2 and 3 also aimed at answering 

if testosterone levels are highest and most variable at the beginning of the 

breeding season due to interactions between males; hence, behaviour may feed 

back on hormone levels. 

In chapters 4 and 5 we assessed the effect of testosterone on territorial 

behaviour (including song rate and song structure) during the breeding season 

by blocking the action of testosterone on receptors in the brain and its conversion 

to oestrogens. We hypothesized that testosterone may not change territorial 

behaviour per se, but only some aspects of territoriality that are especially 

relevant in a reproductive context, e.g. that may be attractive to females. 

In chapter 4 we studied a particular component of the territorial response, 

namely song. We asked if male black redstarts change their song (song output 

and structure) in response to a simulated territorial intrusion and if this is 

dependent on testosterone and/or its metabolite oestradiol. If song in black 

redstarts is regulated by testosterone, blocker-treated males should show a 

reduced vocal response compared to control males. 

In chapter 5 we compared the whole repertoire of territorial behaviours in 

response to simulated territorial intrusions of control males with that of blocker 

implanted males. If testosterone is playing a key role in the resource allocation 
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for competitive behaviour, we would expect blocker-treated males to invest less 

in those behaviours than control males. 

In chapter 6 we tested if territorial behaviour in different seasons and thus 

in different contexts (reproductive or not) is regulated by the same endocrine 

mechanism as during the breeding season. To assess the role of sex steroids in 

the regulation of non-breeding territorial behaviour we compared behavioural 

responses towards a simulated territorial intrusion in spring and autumn (see 

chapters 4 and 5 for methods). If territorial behaviour is facilitated by testosterone 

also in autumn when testosterone levels are low, blocker treated males should 

respond less to a simulated territorial intrusion and show a weaker vocal 

response than control males. If testosterone does not regulate autumn 

territoriality in black redstarts, the two treatment groups should not behave 

significantly different in response to a simulated territorial intrusion. 
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Abstract 

It is thought that territorial behaviour is regulated by testosterone in male 

vertebrates because in many species seasonal peaks in testosterone closely 

match with periods of intense competition between males for territories and 

mating partners. However, in some species territorial behaviour is also 

expressed outside a breeding context and the degree to which testosterone 

facilitates territorial behaviour in these species is not well understood. We, 

therefore, studied territorial behaviour and its hormonal basis in male black 

redstarts – a temperate-zone songbird that defends territories during breeding 

and in autumn after feather moult and just before migrating to its wintering 

grounds. We compared the response to simulated territorial intrusions between 

breeding and non-breeding. Furthermore, we assessed seasonal differences in 

song output and structure. To determine if testosterone influences song structure 

we implanted males with an anti-androgen and an aromatase inhibitor to block 
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both direct and indirect effects of testosterone. In addition, we determined the 

expression patterns of androgen- and oestrogen receptor as well as aromatase 

mRNA in the forebrain song control nuclei and in the diencephalon during 

breeding and non-breeding. The results suggest that the relationship between 

testosterone and territorial behaviour in male black redstarts is complex: 

testosterone does not seem to regulate non-vocal territorial behaviours, but the 

hormone may be involved in the regulation of song. Testosterone may influence 

song output and it may stimulate males to produce more repetitive elements in 

their song during breeding compared to non-breeding. However, in male black 

redstarts the seasonal decrease in repetitive elements does not seem to depend 

on testosterone or its conversion to oestrogens: treatment with blockers had no 

significant effect on the number of elements produced. The seasonal changes in 

the role of song in the territorial response of black redstarts may be regulated by 

conversion of testosterone to oestradiol in the pre-optic area. 

 

Introduction 

Most animals face seasonal environments that vary in environmental conditions 

such as temperature and precipitation and the availability of resources such as 

food and shelter. In the temperate zones, for example, winter is associated with 

lower temperatures and a sharp decline in plant productivity, resulting in low 

availability of food. To persist in such environments and maximize reproductive 

success animals need to cope with these largely predictable changes and time 
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their life-cycle accordingly. Different stages of the life-cycle require distinct 

physiological and behavioural adaptations which are often regulated by 

hormones. Especially the sex-steroid testosterone facilitates physiological 

requirements and behaviours that are important for breeding in male vertebrates: 

this hormone is required for spermatogenesis, the development of secondary sex 

characteristics and it facilitates sexual and territorial behaviours (Adkins-Regan 

2005; Nelson 2005). Accordingly, seasonal testosterone profiles often correlate 

with sexual and territorial behaviours (Wingfield, Hegner et al. 1990) and 

testosterone levels are highest at the beginning of the breeding season when 

interactions among males are most intense (Dawson 1983; Silverin, Viebke et al. 

1986; Ball and Wingfield 1987; Morton, Peterson et al. 1990; Silverin 1993; Van 

Duyse, Pinxten et al. 2003). Competition for territories and mating partners may 

increase circulating levels of testosterone (Wingfield, Hegner et al. 1990), but see 

(Goymann, Landys et al. 2007; Goymann 2009; Apfelbeck and Goymann 2011). 

In general, testosterone levels then decline to breeding baseline levels, but in 

some species peak once more when females are fertile (Goymann and Landys, J 

Avian Biol, in press; Wingfield 1984). While testosterone orchestrates these 

physiological and behavioural requirements for breeding in males, prolonged 

elevated levels of this hormone may have costs (Dufty 1989; Wingfield, Lynn et 

al. 2001; Roberts, Buchanan et al. 2004). For example, testosterone shifts the 

time budget of males towards activities associated with territory defence and 

mating away from parental duties (Wingfield, Moore et al. 2006; McGlothlin, 

Jawor et al. 2007). Thus, periods with high levels of testosterone should be 
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restricted to times when they are most advantageous, such as at the beginning of 

the breeding season and should be avoided during times when offspring requires 

parental care. 

However, the correlation between behaviours expressed in a reproductive 

context and testosterone is not always that clear: many songbird species also 

defend territories outside the breeding season when testosterone levels are low 

(Schwabl and Kriner 1991; Wingfield 1994; Canoine and Gwinner 2002; Landys, 

Goymann et al. 2010; Apfelbeck and Goymann 2011; Hau and Beebe 2011). 

However, territoriality may still be facilitated by testosterone in these species. For 

example, blocking the aromatization of testosterone to oestrogens, leads to a 

reduced response to a simulated territorial intruder in song sparrows (Melospiza 

melodia morphna, (Soma, Tramontin et al. 2000) although testes are regressed 

and circulating testosterone is low. In such instances, testosterone may be 

produced either directly in the brain or it may be derived from non-gonadal 

sources, e.g. dehydroepiandrosterone (DHEA) that is produced by the adrenals 

(Soma and Wingfield 2001). Alternatively, brain sensitivity for low levels of sex 

steroids may be increased during the non-breeding season (Canoine, Fusani et 

al. 2007). Yet in the few other species studied so far, there is no indication that 

testosterone facilitates territorial behaviour also during the non-breeding season 

(Schwabl and Kriner 1991; Canoine and Gwinner 2002; Hau and Beebe 2011; 

Marasco, Fusani et al. 2011). 

 One major component of territorial behaviour is song, which is often 

studied separately from non-vocal territorial behaviours. Studies on song 
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behaviour indicate that although several species sing also outside the breeding 

season, non-breeding song may differ in quantity and quality from breeding 

season song. For example, some species produce more repetitive elements 

(DeWolfe, Kaska et al. 1974; Smith, Brenowitz et al. 1997; Leitner, Voigt et al. 

2001; Voigt and Leitner 2008), longer songs (Riters, Eens et al. 2000) and more 

stereotyped song (Smith, Brenowitz et al. 1997) in spring than in autumn. 

In some species these changes are correlated with the size of the HVC, 

which is a brain nucleus and part of the song control system in songbirds (Smith, 

Brenowitz et al. 1997). But in other species changes in song are not related to 

HVC size (Fusani, Van't Hof et al. 2000; Smulders, Lisi et al. 2006). The HVC is 

androgen sensitive (Gahr and Metzdorf 1997) and thought to control motor 

output during singing (Brenowitz, Margoliash et al. 1997). It has been argued that 

a larger HVC during spring is related to a larger song repertoire, a higher song 

rate and that it facilitates the production of more complex song (Brenowitz 1997; 

Smith, Brenowitz et al. 1997). But this view is debated because some of the 

reported seasonal changes in HVC size may depend on the delineation method 

used (Gahr 1997). There is evidence that androgen and oestrogen sensitivity 

within the HVC changes seasonally (Gahr and Metzdorf 1997; Soma, Hartman et 

al. 1999). Furthermore, testosterone may facilitate the production of song in a 

reproductive context by activation of song areas outside the song control system. 

Especially aromatization of testosterone to oestrogens in the pre-optic area 

seems to be important in this respect (Foidart, Silverin et al. 1998; Riters, Eens et 

al. 2000; Soma, Schlinger et al. 2003). 
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 Thus, although it is accepted that testosterone plays a role in the 

organization and activation of song (Bolhuis and Gahr 2006) and territorial 

behaviour in general, it is still unclear to what extent testosterone facilitates these 

behaviours in species that sing and defend territories also outside the breeding 

season. 

The first aim of this study was to describe the seasonal testosterone 

profile in a temperate zone songbird species, the black redstart (Phoenicurus 

ochruros), and correlate it with territorial behaviour, song rate and structure, and 

changes in brain structure. We describe the expression pattern of androgen-, 

oestrogen receptor and aromatase mRNA in the forebrain song control nuclei 

and in diencephalic areas of male black redstarts, which are known only for a 

small number of songbird species so far (Metzdorf, Gahr et al. 1999). If there are 

seasonal differences in song output and structure, we expected males to have a 

larger HVC in spring than in autumn. As aromatase expression in the pre-optic 

area has been shown to play an important role in the expression of reproductive 

behaviours, we expected a higher expression of aromatase mRNA in that area 

during spring compared to the autumn territorial phase. 

The second aim of this study was to test if seasonal changes in 

spontaneous song output and structure are facilitated by testosterone or its 

metabolites. To do so we implanted males with an androgen receptor blocker 

and an aromatase inhibitor in spring and in autumn and compared the song 

output and structure before and after implantation. 
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If testosterone activates song during the breeding season we expected 

that males produce more spontaneous song during spring than during non-

breeding in autumn. Further, we then expected that blocking the actions of 

testosterone should reduce song output in spring, but not in autumn. If 

testosterone (of non-gonadal origin) activates song also during autumn we 

expect no seasonal difference in spontaneous song output and blocking the 

actions of testosterone should reduce the song output during both seasons. If 

testosterone does not activate song we expect no seasonal difference in the 

production of spontaneous song and no influence of blocking the actions of 

testosterone during spring and autumn. 

Similar to other species, parts of the song of black redstarts contain 

repetitive elements and we have previously shown that males increase the 

number of these elements in an agonistic context (Apfelbeck et al., submitted). If 

testosterone changes the structure of song during the breeding season, we 

expected to find significant differences in song structure between spring and 

autumn. For example, males may sing a higher number of repetitive elements in 

spring compared to autumn. Blocking the actions of testosterone should then 

affect song structure during spring, but not in autumn. If testosterone changes 

the song structure only in spring applying these blockers should specifically 

reduce the number of repetitive elements in spring, but not in autumn. However, 

if testosterone (of non-gonadal origin) activates song structure also during 

autumn we expect no seasonal difference in song structure and blocking the 

actions of testosterone in both seasons should have an effect on song structure. 
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If testosterone does not regulate song structure we expect no seasonal 

difference in song structure and no influence of blocking the actions of 

testosterone during both seasons. 

 

Methods 

Male black redstarts defend a territory and sing during the breeding season. 

During late summer, when they moult, singing activity is very low but increases 

again in autumn just before migration (Weggler 2000; Nicolai 2005). Redstarts 

are socially monogamous and both males and females feed nestlings and 

fledged young (Landmann 1996; Draganoiu, Nagle et al. 2005). 

Male black redstarts were caught and their territorial behaviour recorded 

between April 1 and June 12 and between September 19 and October 6, 2008, 

between July 3 and August 13, 2009 and between June 28 and July 31, 2010 in 

Upper Bavaria, Germany (N 47º, E 11º, 500-600 m above sea level). Some of the 

hormone samples and the behaviour in response to the simulated territorial 

intrusions were collected as part of a different study and are also published 

elsewhere (Apfelbeck and Goymann 2011, chapter 2). We have previously 

shown that male black redstarts have high testosterone levels at the beginning of 

the breeding season and very low levels outside the breeding season in autumn 

(Apfelbeck and Goymann 2011, chapter 2). In this study we complemented the 

profile by adding measurements from the whole breeding season. In this 

previous study we have also shown that although testosterone levels were low in 
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autumn, territorial behaviour was not significantly different from territorial 

behaviour in spring (Apfelbeck and Goymann 2011, chapter 2). 

Simulated territorial intrusion 

To elicit a territorial response we placed a stuffed decoy into the centre of a 

territory and played back black redstart song using five different playbacks in 

random order (see Apfelbeck and Goymann 2011, chapter 2). We recorded the 

following behaviours of the territory owner for 10 min: (1) latency to respond to 

the STI either by singing or approaching the decoy, (2) the first time the male 

was within 5 m of the decoy, (3) the time the male spent within 5 m of the decoy, 

and (4) the time the territory owner had its feathers fluffed, which is a typical 

threat posture of male black redstarts (Landmann and Kollinsky 1995). 

Furthermore, we noted whether the male attacked the decoy or sang at any time 

during the STI. 

Capture and blood sampling 

Males were caught either after the simulated territorial intrusion experiments or 

passively while searching for food with mealworm-baited ground traps. We have 

shown previously that simulated territorial intrusions do not increase plasma 

testosterone levels in male black redstarts (Apfelbeck and Goymann 2011, 

chapter 2). Immediately upon capture, a blood sample (~120 μl) was taken after 

venipuncture from the wing vein (178 ± 112 s), and collected into heparinised 

capillaries. In addition, each male was banded with a numbered aluminium ring 

(Vogelwarte Radolfzell) and a combination of two colour rings. All experimental 

procedures were approved by the governmental authorities of Upper Bavaria. 
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Recording and analysis of spontaneous song 

Adult (≥ 2 years) territorial male black redstarts were recorded with a Sennheiser 

directional microphone (ME66/K6) connected to a Marantz solid state recorder 

PMD 660 (sampling frequency: 44.1 kHz; resolution: 16 bit) in spring 2009 (April 

9 - 27) and a different set of individuals in autumn 2009 (September 22 – October 

7). 

After obtaining samples of spontaneous song, the individuals (spring n = 

20, autumn: n = 12) were caught and implanted either with a placebo pellet or 

two time-release pellets (Innovative Research of America, Sarasota, FL) 

containing flutamide (an androgen receptor blocker) and letrozole (an aromatase 

inhibitor) blocking thus both direct and indirect effects of testosterone on 

behaviour (for details see Apfelbeck et al., in prep., chapter 5). Three days after 

implantation spontaneous song was recorded again. 

The song was analysed using Avisoft-SASLab Pro software, version 4.51. 

Recordings were visualized in spectrograms (settings: sample rate 22,050 Hz, 

FFT = 256 points, Hamming-Window, Overlap: 50 %). We determined the 

number of songs by visual inspection and selected songs of sufficient quality (low 

background noise) for further sound analysis. Each song of black redstarts can 

be divided into three distinct parts (part A, B and C, e.g. Cucco and Malacarne 

1999, chapter 4 and 5) with a pause of varying length between part A and B. We 

measured the duration of part A, B, C, the total song and the duration of pauses 

between A and B (see Apfelbeck et al., submitted, chapter 4). We counted the 

number of elements of part A and C (mean of max. 20 songs). We also 
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determined the frequency bandwidth and the maximum frequency of part A, B 

and C using the automatic parameter measurement function (threshold -20 dB) in 

Avisoft (mean of max. 10 renditions of high-quality songs). 

Plasma separation and hormone analysis 

Plasma was immediately separated by centrifugation with a Compur 

Minicentrifuge (Bayer Diagnostics). The amount of plasma was measured with a 

Hamilton syringe and stored in 500 μl ethanol (Goymann, Schwabl et al. 2007). 

After returning from the field samples were stored at -80 °C. Testosterone 

concentration was determined by direct radioimmunoassay (RIA, following 

Goymann, Geue et al. 2006; Apfelbeck and Goymann 2011). Samples were 

measured in duplicates in four assays. Mean  SD efficiency of the extraction 

with dichloromethane was 99  0.01 %, 92 %  0.1 %, 91 %  0.1 %, 88 %  0.1 

% respectively. The lower limit of detection of the assay was determined as the 

first value outside the 95 % confidence intervals for the zero standard (Bmax) and 

was 6.7, 6.6, 6.9 and 8.0 pg/tube respectively. The intra-assay coefficients of 

variation were 4.7 %, 4.2 %, 2.9 % and 7.9 % respectively. The inter-assay 

variation was 3.9 %. As the testosterone antibody shows significant cross-

reactions with 5a-dihydrotestosterone (44 %) our measurements may include a 

fraction of this additional androgen. 

Tissue collection 

Brains were collected between April 14 and 28 in 2008 (n = 8) and between 

September 21 and 24 in 2009 (n = 8). Upon capture, birds were immediately 

killed by decapitation and brains dissected out of the skull, frozen on dry ice and 
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stored at -80 °C until further processed. We also recorded the length and width of 

the left and right testis and calculated testis volume as the volume of an oval 

body (4/3*π*(width/2)2*(length/2)). Frozen brains were cut into 20 µm sagittal 

sections on a cryostat microtome (Leica Microsystems GmbH, Wetzlar, 

Germany) and collected on Superfrost object slides (Menzel GmbH, 

Braunschweig, Germany) in five parallel series. One series of brain sections was 

selected for Nissl staining and used to provide anatomical landmarks for later 

interpretation of in-situ hybridization results. The remaining series were used for 

in situ hybridization of adjacent sections for androgen receptor (AR), oestrogen 

receptor α (ERα) and aromatase. 

In-situ hybridization 

Riboprobes were synthesized from cDNA previously cloned from zebra finch AR 

and ERα mRNA (Gahr and Metzdorf 1997) and canary aromatase mRNA 

(Metzdorf, Gahr et al. 1999). Antisense and sense 
35

S-CTP-labelled probes were 

transcribed from the T7 and SP6 promoter region of a pGEM7Zf+ vector using 

the Riboprobe System (Promega, Madison, WI). 

Brain sections  were fixed in a 4 % formaldehyde solution in phosphate-buffered 

saline (PBS; 0.01M; pH 7.4) for 5 min, washed in DEPC-treated PBS , and 

incubated in 0.25% acetic anhydride in ethanolamine (TEA; 0.1M; pH 8.0) for 10 

min to reduce non-specific binding. After a washing step in 2x standard saline 

citrate (SSC), sections were dehydrated in serially increasing percentages of 

ethanol, and left to dry at room temperature. Sections were hybridized under a 

cover slide with 35S-CTP-labeled sense or antisense riboprobes (0.4 x 106 cpm / 
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slide) in hybridization buffer with 50 % formamide and 10 % dextran sulfate 

overnight at 55 °C. After hybridization, slides were immersed in 2X SSC at room 

temperature to remove the cover slides and incubated in RNase A (20 ug/ml) for 

30 min at room temperature. Sections were then consecutively washed for 30 

min in 2x SSC at 50 °C, 0.2x SSC at 55 °C, and 0.2x SSC at 60 °C, dehydrated 

in ethanol containing 0.3 M ammonium acetate, and dried for 1 hour at room 

temperature. Finally, slides were exposed to Kodak BioMax MR film (Sigma-

Aldrich Co., St. Louis, MO) in lightproof boxes for 3 weeks at room temperature, 

developed in Kodak D-19 developer, washed in tap water, and fixed with Kodak 

fixer. 

Brain data analysis 

Data analysis was carried out similarly as described in (Voigt, Ball et al. 2009). 

Autoradiograms were scanned with an Epson scanner using SilverFast Ai 

software as 16 bit grey values and with a resolution of 2400 dpi for later analysis 

in ImageJ. The system was calibrated by scanning a calibrated optical density 

step tablet (part #T2115, Stouffer Graphic Arts Equipment Co., Mishawaka, USA) 

and a calibration curve was calculated based on the Rodbard function in ImageJ. 

All autoradiogram images were saved in ImageJ with this calibration. HVC 

volumes were estimated based on AR expression (see also Gahr and Metzdorf 

1997; Fusani, Van't Hof et al. 2000). For each AR-labelled brain section we 

delineated HVC, summed the area measurements and multiplied them with 100 

µm (interval between sections). To quantify AR, ERα and aromatase mRNA 

expression levels in the pre-optic area we measured the optical density. The 
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location of the pre-optic area was determined manually by overlapping adjacent 

sections labelled for AR, ERα, aromatase and Nissl. The pre-optic area can be 

found in medial sections of the brain and lies ventral from the anterior 

commissure. Optical density was measured in two different ways, using an 

ellipsoid with fixed dimensions for all sections and individuals, and again using an 

ellipsoid covering most of the stained area (therefore with changing size between 

individuals). To control for background staining the optical density in a control 

area just adjacent to the pre-optic area was subtracted from the value for 

receptor expression. Optical density measures were averaged across all sections 

that were labelled for the respective mRNA. All measurements were carried out 

blind to the seasonal group of the bird. 

Statistical analysis 

Data were analysed in R (Development Core Team 2009) using linear models 

and were transformed, if necessary, to meet assumptions of equality and 

normality of variances. Brain data did not meet these assumptions and were 

therefore tested for seasonal differences using Mann-Whitney-U-tests for non-

parametric independent samples. 
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Results 

Seasonal testosterone profile 

 

Figure 1: Post-capture testosterone levels (ng/ml) of male black redstarts caught 

during different times of the year during breeding season and in autumn (autumn 

territorial phase). Testosterone levels in autumn were below 80 pg/ml. Each 

individual is represented only once. 

Testosterone levels of males caught during various times of the year differed 

significantly (F5,133 = 21, p < 0.0001, Fig. 1). A priori set contrasts revealed that 

levels during the incubation phase of the first brood were not significantly 
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different from testosterone levels during territory establishment (t = 0.4, p = 0.7). 

During all other phases of the life-cycle testosterone levels were significantly 

lower than during territory establishment (nestlings (first and second brood 

combined): t = -3.4, p = 0.001; fledglings (first and second brood combined): t = -

6.0, p < 0.0001; moult: t = -2.5, p = 0.01; autumn: t = -9.4, p < 0.0001). 

Comparing only breeding stages, testosterone levels also significantly differed 

(F2,118 = 69, p < 0.0001). Males caught during their second brood had 

significantly lower testosterone levels than males caught during territory 

establishment (t = -9.1, p < 0.0001), but not males caught during their first brood 

(t = 0.8, p = 0.4). Testes in autumn were completely regressed (e.g. volume left 

testis (mean +/- 95 % CI): spring: 76.1 +/- 14.0 mm3, n = 8, autumn: 0.5 +/- 0.5 

mm3, n = 8, U = 0, p = 0.0002). 

Behavioural response to STI 

The response of territorial males to simulated territorial intrusions differed only 

slightly between breeding stages and seasons. Time spent within 5 m of the 

decoy and time spent with their feathers fluffed neither differed between territory 

establishment and the parental phase nor between territory establishment and 

autumn (time in 5 m: F2, 56 = 0.4, p = 0.6; fluffing (%): F2, 56 = 0.7, p = 0.5; Fig. 2). 

However, males approached the decoy faster during territory establishment than 

when they were feeding young of their first brood (t = 3.1, p = 0.003, Fig. 2). In 

contrast, they approached the dummy as fast in autumn as during territory 

establishment (t = 1.4, p = 0.2; overall model: F2, 56 = 5.0, p = 0.01, Fig. 2). Also, 

the number of individuals that sat on the cage of the decoy and tried to attack the 
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decoy did not differ between breeding stages and seasons (Table 1). However, 

fewer individuals sang during the simulated territorial intrusion in autumn than 

during the breeding stages (Table 1). 

 

Figure 2: Latency to approach (within 5 m, A), time spent within 5 m (as % of 

time seen, B) and time spent feather fluffing (as % of time seen, C) in response 

to a simulated territorial intruder. Early breeding season: n = 31; feeding of 

nestlings or fledglings of the first brood (parental): n = 11; autumn territorial 

phase: n = 17. Bars represent means +/- 95 % CI. Asterisks indicate significant 

differences between breeding stages (*: p < 0.05). 
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Table 1. Number of individuals that sang and sat on the cage around the decoy 

at any time during the STI experiment until capture. P-values in brackets refer to 

a priori set contrasts: territory establishment versus parental phase / territory 

establishment versus autumn. 

 early parental 
phase 

autumn Fisher test 

song yes 26 9 7 p = 0.007; (p = 1 / p = 0.004) 
song no 5 2 10 
song yes * 19 4 1 p < 0.003; (p = 0.18 / p < 0.001) 
song no * 12 7 16 
cage yes 10 3 7 p = 0.8 
cage no 21 8 10 
cage yes * 6 2 5 p = 0.7 
cage no * 25 9 12 

*Number of individuals during the first 10 min of the STI before traps were 

opened. 

 

Expression patterns of androgen receptor (AR), oestrogen receptor (ERα) and 

aromatase 

AR-, ERα- and aromatase mRNA expression patterns were very similar to 

expression patterns found in other songbird species and were similar in spring 

and in autumn. 

Telencephalon: Song control system 

The expression pattern of AR-, ERα- and aromatase mRNA in the song control 

nuclei was similar to that found in other songbirds (Gahr and Metzdorf 1997; 

Metzdorf, Gahr et al. 1999) and did not differ between seasons (Table 2). Dense 

52



Seasonality, brain, hormones and behaviour 

androgen receptor mRNA staining was found in the song control nuclei HVC, 

lMAN, mMAN and in the arcopallium (for an example see Fig. 3). ERα mRNA 

expression was only found in HVC and was much weaker than AR expression in 

HVC. Furthermore, expression of ERα mRNA was restricted to the so called 

paraHVC (Gahr and Metzdorf 1997). Thus, ERα mRNA expression was only 

found in medial sections when HVC was blending into the caudomedial 

neostriatum (NCM) and in most individuals overlapped with AR expression in a 

few sections. Aromatase expression was not found in any of the song control 

nuclei. However, dense staining for aromatase mRNA occurred in the NCM 

(Shen, Schlinger et al. 1995). Similar to canaries, aromatase and ERα 

expression in the NCM did not overlap (Metzdorf, Gahr et al. 1999), but 

aromatase and AR expression did. ERα in the NCM was especially expressed 

around the lateral ventricle.
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Figure 3. Example for androgen receptor mRNA expression in two song control 

nuclei in spring. HVC…proper name, lMAN…lateral nucleus magnocellularis. 

Diencephalon: pre-optic and hypothalamic areas 

During both seasons co-expression of AR, ERα and aromatase was found in the 

pre-optic area. AR, ERα and aromatase were also co-expressed in the nucleus 

lateralis hypothalami posterioris (PLH, for an example see Fig. 4), but similar to 

other species no ERα expression was found in the nucleus medialis hypothalami 

posterioris (PMH, e.g. Fig. 4B, Metzdorf, Gahr et al. 1999; Fusani, Van't Hof et al. 

2000). The tuberal region contained especially dense staining for ERα mRNA 

(e.g. Fig. 4B), to a lesser degree for AR mRNA (e.g. Fig. 4A) and weak staining 

for aromatase mRNA (e.g. Fig. 4C). Further staining for AR-, ERα and aromatase 

mRNA was found in the bed nucleus of the stria terminalis (BNST, Table 2). 
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Figure 4. Example for androgen receptor (A), estrogen receptor (B) and 

aromatase (C) mRNA expression in spring. mMAN… medial nucleus 

magnocellularis, NCM…caudo-medial neostriatum, POA… pre-optic area, 

PMH…nucleus posterioris hypothalami medialis, PLH… nucleus posterioris 

hypothalami lateralis. 
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Table 2. Brain areas in the telencephalon and diencephalon expressing 

androgen receptor (AR), estrogen receptor (ERα) and or aromatase (ARO) 

depending on season. lMAN… lateral nucleus magnocellularis, mMAN… medial 

nucleus magnocellularis, NCM…caudo-medial neostriatum, POA… pre-optic 

area, PMH…nucleus posterioris hypothalami medialis, PLH… nucleus posterioris 

hypothalami lateralis, BNST…bed nucleus of the stria terminalis. 

Brain area AR 
spring 

AR 
autumn 

ARO 
spring 

ARO 
autumn 

ERα 
spring 

ERα 
autumn 

telencephalon       

HVC yes yes no no yes yes 

lMAN yes yes no no no no 

mMAN yes yes no no no no 

arcopallium yes yes no no no no 

NCM yes yes yes yes yes yes 

diencephalon       

POA yes yes yes yes yes yes 

PMH yes yes yes yes no no 

PLH yes yes yes yes yes yes 

Tuberal 
region 

yes yes yes, but 
weak 

yes, but 
weak 

yes yes 

BNST yes yes yes yes yes yes 
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HVC volume 

HVC volume determined by androgen receptor expression tended to be higher in 

autumn than in spring (mean +/- 95 % CI: spring: 0.6 +/- 0.1 mm3, n = 8, autumn: 

0.8 +/- 0.08 mm3, n = 8; t = 2.0, df = 12, p = 0.07). 

Optical density in pre-optic area 

As both methods used to measure optical density produced similar results, we 

only present results for the second one of the methods (see methods; ellipsoid 

fitted to area with staining). Aromatase mRNA expression in the pre-optic area 

was significantly higher spring than in autumn (U = 45; p = 0.007, n = 8 per 

season, Fig. 3). Expression of estrogen receptor mRNA (U = 12, p = 0.1) and 

androgen receptor mRNA (U = 26.5, p = 0.9) did not differ significantly between 

seasons. 
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Figure 3. Box plots comparing the optical density of aromatase expression in the 

pre-optic area between spring and autumn. Data are presented as medians and 

95 % CIs. 

Spontaneous song: seasonal differences 

Territorial male black redstarts were singing significantly more songs with shorter 

pauses between songs during bouts of spontaneous song in autumn than in 
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spring (Table 3). However, songs sang spontaneously during spring had more 

elements in part A and C than those sang in autumn (Table 3, Fig. 4). All other 

structural song parameters did not differ significantly between seasons (Table 3). 

Spontaneous song: treatment effects 

Implantation of blockers did not significantly change any of the song parameters 

in spring or in autumn (Table 4 and 5). However in spring, blocker-implanted 

males tended to sing fewer songs and longer pauses between songs during 

bouts of spontaneous song three days after than before implantation (Table 4). 

There was no significant change in control males after implantation of a placebo 

(Table 4). In autumn, implantation of blockers or a placebo had no effect on song 

rate or the duration of pauses between songs (Table 5). 
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Table 3. Comparison of song parameters during bouts of spontaneous song 

between spring and autumn. 

song parameter t-statistic (df=30) p-value 

song rate -3.9 0.0005 

pauses in bouts 3.2 0.004 

duration A -0.7 0.5 

duration B -0.6 0.6 

duration C 1.8 0.09 

pause A - B 0.4 0.7 

nr of elements in A -2.0 0.05 

nr of elements in C -2.8 0.009 

max frequency A 0.6 0.6 

freq bandwidth A -0.5 0.6 

max frequency B -0.1 0.9 

freq bandwidth B -0.4 0.7 

max frequency C -1.7 0.09 

bandwidth C -1.9 0.07 
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Figure 4: Number of elements sang in part A (A) and C (B) spontaneously 

depending on season. Spring: n = 20; autumn territorial phase: n = 12. Bars 

represent means +/- 95 % CI. Asterisks indicate significant differences between 

seasons (*: p=0.05; **: p<0.01). 
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Table 4. Comparison of song parameters during bouts of spontaneous song 

before and after implantation (implant) of a placebo or blockers (treatment) in 

spring. 

song parameter treatment implant interaction 
song rate F1,18=2.8, 

p=0.1 
F1,18=7.8, 
p=0.01 

F1,18=1.9, 
p=0.2 

pauses in bouts F1,18=0.2, 
p=0.7 

F1,18=10.0, 
p=0.005 

F1,18=15.6, 
p=0.0009 

song duration F1,18=0.06, 
p=0.8 

F1,18=2.1, 
p=0.2 

F1,18=0.9, 
p=0.3 

duration pause 
A-B 

F1,18=0.009, 
p=0.9 

F1,18=0.008, 
p=0.9 

F1,18=1.0, 
p=0.3 

duration A F1,18=2.9, 
p=0.1 

F1,18=1.5, 
p=0.2 

F1,18=0.09, 
p=0.8 

duration B F1,18=0.004, 
p=1.0 

F1,18=1.0, 
p=0.3 

F1,18=0.09, 
p=0.8 

duration C F1,18=0.2, 
p=0.7 

F1,18=1.4, 
p=0.2 

F1,18=2.1, 
p=0.2 

no of elements in 
A 

F1,18=1.5, 
p=0.2 

F1,18=3.1, 
p=0.09 

F1,18=1.9, 
p=0.2 

no of elements in 
C 

F1,18=0.5, 
p=0.5 

F1,18=0.3, 
p=0.6 

F1,18=2.2, 
p=0.2 

freq bandwidth A F1,18=0.8, 
p=0.4 

F1,18=0.01, 
p=0.9 

F1,18=2.5, 
p=0.1 

max frequency A F1,18=0.09, 
p=0.8 

F1,18=0.7, 
p=0.4 

F1,18=3.4, 
p=0.08 

freq bandwidth B F1,18=0.005, 
p=0.9 

F1,18=1.1, 
p=0.3 

F1,18=3.3, 
p=0.09 

max frequency B F1,18=1.1, 
p=0.3 

F1,18=0.0, 
p=0.9 

F1,18=0.1, 
p=0.8 

bandwidth C F1,18=0.1, 
p=0.7 

F1,18=1.9, 
p=0.2 

F1,18=0.06, 
p=0.8 

max frequency C F1,18=0.2, 
p=0.6 

F1,18=0.0, 
p=1.0 

F1,18=0.2, 
p=0.7 
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Table 5. Comparison of song parameters during bouts of spontaneous song 

before and after implantation (implant) of a placebo or blockers (treatment) in 

autumn. 

 treatment implant interaction 
song rate F1,10=4.9, 

p=0.05 
F1,10=0.8, 
p=0.4 

F1,10=0.3, 
p=0.6 

pauses in bouts F1,10=0.2, 
p=0.6 

F1,10=1.0, 
p=0.3 

F1,10=0.06, 
p=0.8 

song duration F1,10=0.2, 
p=0.7 

F1,10=0.2, 
p=0.7 

F1,10=0.7, 
p=0.4 

pause A - B F1,10=0.8, 
p=0.4 

F1,10=0.002, 
p=1.0 

F1,10=0.3, 
p=0.6 

duration A F1,10=0.3, 
p=0.6 

F1,10=0.1, 
p=0.7 

F1,10=0.02, 
p=0.9 

duration B F1,10=0.5, 
p=0.5 

F1,10=0.7, 
p=0.4 

F1,10=0.4, 
p=0.5 

duration C F1,10=0.02, 
p=0.9 

F1,10=0.4, 
p=0.6 

F1,10=0.1, 
p=0.7 

no of elements in 
A 

F1,10=0.5, 
p=0.5 

F1,10=0.4, 
p=0.6 

F1,10=0.1, 
p=0.8 

no of elements in 
C 

F1,10=0.1, 
p=0.7 

F1,10=2.3, 
p=0.2 

F1,10=0.4, 
p=0.5 

bandwidth A F1,10=0.2, 
p=0.6 

F1,10=0.05, 
p=0.8 

F1,10=0.2, 
p=0.7 

max frequency A F1,10=0.0, 
p=1.0 

F1,10=1.0, 
p=0.4 

F1,10=0.2, 
p=0.6 

freq bandwidth B F1,10=2.2, 
p=0.2 

F1,9=2.5, 
p=0.1 

F1,9=2.1, 
p=0.2 

max frequency B F1,10=3.5, 
p=0.09 

F1,9=4.1, 
p=0.07 

F1,9=3.1, 
p=0.1 

freq bandwidth C F1,10=0.1, 
p=0.8 

F1,10=0.0, 
p=1.0 

F1,10=0.01, 
p=0.9 

max frequency C F1,10=0.0, 
p=0.9 

F1,10=0.1, 
p=0.7 

F1,10=0.1, 
p=0.7 
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Table 6. Summary of physiological, morphological and behavioral results 

comparing breeding and non-breeding territoriality of male black redstarts. 

 breeding non-breeding 

testosterone high low 

testes large regressed 

response to STI   

non-vocal strong strong 

song rate high low 

spontaneous song   

song rate high high 

song structure more elements in A and 
C 

fewer elements in A and 
C 

brain anatomy   

HVC large large 

aromatase in pre-optic 
area 

strong weak 

 

Discussion 

Male black redstarts defend territories during breeding and in autumn, i.e. after 

having finished moult and before migrating south and in general breed on these 

territories in the following spring (Weggler 2000; Apfelbeck and Goymann 2011). 

During the autumn territorial phase, testes were regressed and circulating 

testosterone levels were very low. Further, during autumn testosterone did not 

increase in response to territorial or physiological (GnRH) challenges (Apfelbeck 
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and Goymann 2011). Despite these low levels of testosterone, males 

aggressively defended their territories just as vigorously as they did during 

territory establishment in spring. Furthermore, although the likelihood of song in 

response to a simulated territorial intrusion was lower in autumn than in spring, 

the spontaneous song rate was even higher in autumn. However, males sang 

more elements in the trill-like parts of their song during breeding. HVC size as 

delimited by androgen receptor mRNA expression did not differ between 

seasons, but aromatase expression in the pre-optic area was higher during 

spring than in autumn. Thus, the relationship between testosterone and territorial 

behaviour in male black redstarts is complex: testosterone does not seem to 

regulate non-vocal territorial behaviours, but the hormone may be involved in the 

regulation of song (Table 6). Testosterone may influence song output and it may 

stimulate males to produce more repetitive elements in their song during 

breeding compared to non-breeding. 

 In previous studies we have shown that it is very unlikely that testosterone 

facilitates the overall territorial response of male black redstarts. Instead, it 

seems to emphasize vocal- over non-vocal territorial behaviours during the 

breeding season in this species (Apfelbeck et al., in prep., chapter 5). The 

correlational evidence from this study confirms this view: males responded to a 

simulated territorial intruder with an equally high intensity and were as likely to 

attack the intruder during non-breeding as during breeding. However, the 

likelihood to respond with song to the experimental intrusion was significantly 

reduced during non-breeding compared to breeding. Our data corroborate similar 
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findings in other bird species that defend territories outside the breeding season: 

males can respond to intruders and defend a territory even with low circulating 

testosterone levels (Burger and Millar 1980; Logan and Wingfield 1990; Schwabl 

and Kriner 1991; Wingfield 1994; Soma, Sullivan et al. 1999; Canoine and 

Gwinner 2002; Landys, Goymann et al. 2010; Hau and Beebe 2011) and sing at 

a high rate also in autumn (Riters, Eens et al. 2000). 

Further evidence that testosterone may shift the focus of the territorial 

response to song related parameters during breeding (Apfelbeck et al., in prep., 

chapter 5) comes from our experimental study on spontaneous song behaviour: 

treatment with an anti-androgen and an aromatase inhibitor increased the 

duration of pauses between songs during bouts of spontaneous song during 

breeding but not during non-breeding. Similarly, studies that experimentally 

increased testosterone during the breeding season could induce males to sing 

more (Ketterson, Nolan et al. 1992; Van Duyse, Pinxten et al. 2002; Ritschard, 

Laucht et al. 2011, but see Kunc, Foerster et al. 2006). In most songbirds, song 

is not only important for territory defence, but also for the attraction and 

stimulation of mates. For example, in European starlings (Sturnus vulgaris), the 

presence of a female induces an increase in song rate in males during breeding 

but not outside the breeding season (Riters, Eens et al. 2000). Furthermore, in 

many species song rate is highest when females are fertile (Mace 1987; Gil and 

Gahr 2002). Experimentally administered testosterone stimulates males to 

maintain a high song rate also later during the breeding season (Silverin 1980; 

Ketterson, Nolan et al. 1992; Van Duyse, Pinxten et al. 2002). Furthermore, 
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testosterone is not only thought to activate territorial behaviour and song, but has 

also been suggested to balance the trade-off between mating effort and parental 

care. Accordingly, experimentally elevated testosterone decreases feeding effort 

in some species (Hegner and Wingfield 1987; Ketterson, Nolan et al. 1992). Male 

black redstarts that were implanted with blockers were caught during the first four 

weeks of the breeding season. Unfortunately, we were not able to assess the 

exact breeding stage of these males, however, their females were most likely 

starting to build nests and also lay eggs. Similar to others species, song output in 

black redstarts is highest around the time of mating (Landmann 1996). Thus, the 

increase in pause duration between songs after blocker implantation may 

indicate that males invested less into behaviours associated with mating. Also 

the seasonal testosterone data indicate that testosterone may facilitate mating 

behaviours in male black redstarts. Testosterone levels during territory 

establishment at the beginning of the breeding season and during the parental 

stages of the first brood were not significantly different. In redstarts broods 

overlap to a large degree and couples start a second clutch already while still 

feeding their first brood. However, during the nestling and fledgling stages of the 

last brood, when no more matings occurred, testosterone levels were 

significantly lower than during the first brood. 

These changes in the relative importance of mating behaviours, such as 

song output, may be facilitated by the conversion of testosterone to oestradiol in 

the pre-optic area: aromatase mRNA in that area was expressed more at the 

beginning of the breeding season than in autumn. For example, in European 
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starlings the increase in song rate in response to females and other courtship 

behaviours correlate with a high activity of aromatase in that region (Riters, Eens 

et al. 2000; Pintér, Péczely et al. 2011). 

The correlational data suggest that the number of elements in parts of the 

song of male black redstarts may be regulated by testosterone, because the 

number of repetitive elements in their song was higher during breeding compared 

to non-breeding. The number of repetitive elements in parts of the song or the 

length of trills has been shown to change seasonally in other species as well 

(Smith, Brenowitz et al. 1997; Leitner, Voigt et al. 2001; Voigt and Leitner 2008). 

Furthermore, these repetitive elements seem to be a relevant cue for females to 

assess male quality (Vallet, Kreutzer et al. 1997; Draganoiu, Nagle et al. 2002; 

Ballentine, Hyman et al. 2004; Ballentine 2009). Seasonal changes in syllable 

repetition rates may be facilitated by changes in the sensitivity for androgens and 

oestrogens in the song control nucleus HVC (Gahr and Metzdorf 1997). 

However, in male black redstarts the seasonal decrease in repetitive elements in 

some parts of the song does not seem to depend on testosterone or its 

conversion to oestrogens: the treatment with blockers had no significant effect on 

the number of elements produced. In addition, previous studies in male black 

redstarts have shown that males increased the number of elements in the 

respective parts of their song in an agonistic context both in the breeding and in 

the non-breeding season and independent of treatment with blockers (Apfelbeck 

et al., submitted, chapters 4 and 6). Thus, seasonal changes in element numbers 

during bouts of spontaneous song are probably independent of seasonal 
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changes in circulating testosterone levels or seasonal changes in brain sensitivity 

for sex steroids in male black redstarts. In other species seasonal changes in trill 

rate were correlated with changes in testosterone levels and HVC size (Smith, 

Brenowitz et al. 1997). Furthermore, HVC size is thought to depend at least 

partly on circulating testosterone levels (Sartor, Balthazart et al. 2005). Thus, it 

has been suggested that the production of fast trills may depend on testosterone-

dependent seasonal changes in HVC size (Smith, Brenowitz et al. 1997). 

However, the correlational and experimental evidence from male black redstarts 

does not support this view as HVC size did not vary with season in this species. 

 

Conclusions 

In male black redstarts correlational evidence for a relationship between 

testosterone and territorial behaviour is rather weak, as males responded to a 

simulated territorial intrusion with a high intensity and sang at a high song rate 

also in autumn when testosterone levels were low. However, this and our 

previous studies suggest that the function of testosterone in male black redstarts 

may be two-fold. First, testosterone may shift the emphasis of the territorial 

response towards behaviours potentially associated with mating. In black 

redstarts song seems to be important in that respect. Second, some components 

of the vocal territorial response may be directly activated by testosterone or 

oestrogens during the breeding season, because frequency-related changes in 

song structure in response to a simulated territorial intruder were inhibited in 

males implanted with an anti-androgen and an aromatase inhibitor (Apfelbeck et 
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al., submitted). These seasonal changes in the role of song in the territorial 

response of black redstarts may be regulated by conversion of testosterone to 

oestradiol in the pre-optic area. 
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Ignoring the challenge? Male black redstarts
(Phoenicurus ochruros) do not increase

testosterone levels during territorial
conflicts but they do so in response to

gonadotropin-releasing hormone
Beate Apfelbeck* and Wolfgang Goymann

Abteilung für Verhaltensneurobiologie, Max-Planck-Institut für Ornithologie, Eberhard-Gwinner-Straße 6a,

82319 Seewiesen, Germany

Competition elevates plasma testosterone in a wide variety of vertebrates, including humans. The ‘chal-

lenge hypothesis’ proposes that seasonal peaks in testosterone during breeding are caused by social

challenges from other males. However, during experimentally induced male–male conflicts, testosterone

increases only in a minority of songbird species tested so far. Why is this so? Comparative evidence

suggests that species with a short breeding season may not elevate testosterone levels during territory

defence. These species may even be limited in their physiological capability to increase testosterone

levels, which can be tested by injecting birds with gonadotropin-releasing hormone (GnRH). We studied

two populations of black redstarts that differ in breeding altitude, morphology and the length of their

breeding season. Unexpectedly, males of neither population increased testosterone in response to a simu-

lated territorial intrusion, but injections with GnRH resulted in a major elevation of testosterone. Thus,

black redstarts would have been capable of mounting a testosterone response during the male–male chal-

lenge. Our data show, for the first time, that the absence of an androgen response to male–male

challenges is not owing to physiological limitations to increase testosterone. Furthermore, in contrast

to comparative evidence between species, populations of black redstarts with a long breeding season

do not show the expected elevation in testosterone during male–male challenges.

Keywords: GnRH; challenge hypothesis; number of broods hypothesis; breeding season length; terri-

torial aggression; androgen responsiveness
1. INTRODUCTION
The steroid hormone testosterone is one of the main hor-

mones involved in the modulation of social and sexual

behaviour. For example, studies in a variety of taxa have

shown that castration reduces sexual behaviour in males

and that subsequent administration of testosterone gener-

ally restores it [1,2]. Likewise, testosterone levels are often

elevated during periods of intense competition for mates

and/or territories (e.g. [3–5]), suggesting that this hor-

mone promotes male–male competition. However, this

is only one side of the coin, as behaviour can also feed

back on hormone levels on a short-term and a long-

term basis [6]. Androgens are, for example, elevated

after competition in humans [7] and after territorial

fights in cichlid fish [8] or Siberian hamsters (Phodopus

sungorus) [9] (for a review on vertebrates see [10]).

Whereas many of these studies were done in captivity,

the relationship between competitive behaviour and tes-

tosterone has also been studied extensively in the field,

mostly by testing territorial male songbirds with a simu-

lated intruder into their territories—so-called simulated

territorial intrusion (STI) experiments. These studies
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were based on the ‘challenge hypothesis’ [5], which

argues that males of monogamous biparental bird species

should show an elevation in testosterone only during

male–male conflicts, but maintain lower breeding base-

line levels of testosterone during other times. These

brief elevations in testosterone may promote a male’s

reproductive success by enhancing territorial and sexual

behaviours, but prolonged high levels of testosterone

should be avoided as they may interfere with paternal be-

haviour [11,12] and may incur other costs [13]. Thus,

testosterone is thought to balance the trade-off between

investment in territory defence and paternal care, and

should only increase during times of social instability

(i.e. when challenged by other males). As competitive

interactions between males usually occur during territory

establishment in early spring, these surges in testosterone

have been considered to result in breeding season testos-

terone profiles typical for many temperate zone species;

namely high testosterone levels (close to the physiological

maximum, referred to as ‘level C’) at the beginning of the

breeding season and lower testosterone levels during

incubation and feeding of young. However, the exper-

imental evidence for the challenge hypothesis has been

mixed. While males of some songbird species respond

with an increase in testosterone above breeding baseline

levels after an STI (e.g. [14–16]), many others do not

(e.g. [17–20]; reviewed in [21,22]). This difference
This journal is q 2011 The Royal Society
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between species may be related to differences in their life

history. So far, three ecological hypotheses—the essential

paternal care hypothesis, the short season hypothesis

and the number of broods hypothesis—have been put for-

ward to explain between-species differences in androgen

responsiveness to male–male interactions [22]. These

hypotheses are not mutually exclusive and are all based

on the general idea that biparental species living in

environments with strong time or resource limits for

breeding should not increase testosterone during STIs,

because high levels of testosterone may interfere with

paternal care. In general, populations with short breeding

seasons breed relatively synchronously. As a consequence,

mating opportunities after egg-laying are rare, and males

may maximize fitness by allocating most of their time

and energy to paternal care of their current clutch

rather than investing in male competition or extra-pair

matings. This framework emerged from studies in arctic

birds that have a very short and highly synchronized

breeding season, and that do not modulate testosterone

during STIs [23] (‘short season hypothesis’). Building

upon this short season hypothesis for arctic birds,

Landys et al. [18] and Goymann et al. [21] observed in

a comparative study that males of temperate zone species

that raise only one brood per season also did not increase

testosterone during STIs, whereas males of multiple-

brooded species did (‘number of broods hypothesis’).

Goymann [22] generalized the short season hypothesis

(originally proposed for arctic birds) and showed that

the likelihood that males show a rise in testosterone

during STIs increases with the length of the breeding

season (i.e. males of species with a short breeding

season do not increase testosterone during STIs, whereas

males of species with a long breeding season show this

androgen responsiveness to male–male interactions).

Life-history differences between species may not only

translate into distinct hormonal responses to STIs, but

may be related to further endocrinological differences in

how individuals deal with social cues. Of particular

importance is the idea that males of some species may

not show an increase in testosterone during STIs because

their levels of testosterone are already maximal [21,22].

This may be either because they are frequently challenged

by other males or because they are physiologically con-

strained to further increase testosterone. This can be

tested by injecting birds with gonadotropin-releasing

hormone (GnRH). GnRH induces the pituitary to release

luteinizing hormone (LH), which then stimulates the

testes to secrete testosterone. Not many studies have

tested the androgen response to GnRH in songbirds,

but it is already evident that there are differences between

species [24–29]. To the best of our knowledge, no study

has yet tested the androgen response to STIs and GnRH

in the same individual. This is, however, of paramount

importance to find out whether individuals who do not

mount an androgen response to male–male interactions

would be capable of mounting such a response at all. If

not, their testosterone levels may have been already maxi-

mal and they would not be able to respond to any social

cues, including interactions between males or with

receptive females.

Accordingly, in this study, we first tested the short

season and the number of broods hypotheses by compar-

ing populations of the same species that differ in the
Proc. R. Soc. B (2011) 7
length of their breeding season and in the number of

clutches. Following the predictions of the two hypotheses,

we expected that the population with a short breeding

season would not show an increase in testosterone

during STIs, whereas the population with the long breed-

ing season should do so. Second, by injecting GnRH

after the STI, we tested whether testosterone does not

increase during STIs because testosterone levels were

already maximally elevated. We conducted STI exper-

iments and GnRH challenges during territory

establishment (when male–male interactions occur fre-

quently and testosterone levels are expected to be high)

and during the parental phase of the first clutch (when

interactions between males are less frequent and testoster-

one levels are expected to be lower). This approach

allowed us to differentiate whether the hypothalamic-

pituitary-gonadal (HPG) axis of the tested males is not

sensitive to territorial challenges at all and whether they

therefore do not increase testosterone during any breeding

stage or sensitivity changes during the breeding season.

Our study species was the black redstart (Phoenicurus

ochruros), a highly territorial, socially monogamous song-

bird that covers a large breeding range from high to low

altitudes within Europe [30]. High-altitude populations

have a short breeding season with typically one brood,

whereas low-altitude populations have a long breeding

season and raise two or more broods [30]. To test whether

different life histories led to distinct androgen responses

to male–male interactions and to differences in HPG

axis physiology in general, we challenged males of a

low- and a high-altitude population with STIs and injec-

tions with GnRH during two breeding stages.

Black redstarts show a resurgence of territorial behav-

iour in autumn after moult, before they leave their

breeding grounds. This behaviour offered an additional

opportunity to assess seasonal changes in androgen

responsiveness to STIs and GnRH. Therefore, we also

collected data in autumn for the low-altitude popula-

tion and compared the intensity of territorial behaviour

and androgen responsiveness between the breeding

season and autumn.
2. METHODS

Low-altitude male black redstarts were caught in 2008

between 1 and 30 April (territory establishment), between

19 May and 12 June (feeding 1st clutch) and between 19

September and 6 October (autumn territoriality) in Upper

Barbaria (478 N, 118 E; 500–600 m above sea level). High-

altitude male black redstarts were caught in the Southern

Tyrolean Alps (468 N, 118 E; 1800–2500 m above sea

level) between 5 and 15 May (territory establishment) and

again between 18 June and 4 July (feeding young). Overall,

we collected samples from 107 birds that were subjected to

different experimental treatments.

(a) Simulated territorial intrusion

To elicit a territorial response, we placed a stuffed decoy into

the centre of a territory and played back black redstart song

using five different playbacks in random order (wav files, each

repeated at a rate of eight strophes per minute). This pro-

cedure has been successfully used to elicit a territorial

response in male black redstarts in another study [31]. As

decoys, we used three different stuffed males in full adult
7
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plumage that were protected by an inconspicuous cage made

of a wire frame and a mist net. We recorded the following beha-

viours of the territory owner for 10 min: (i) latency to respond

to the STI either by singing or approaching the decoy; (ii) the

first time the male was in a 5 m radius around the decoy;

(iii) the time the male spent in this 5 m radius; (iv) the time

the territory owner was fluffed; and (v) the number of head

noddings, which are typical threat postures of male black

redstarts [31]. Furthermore, we noted whether the male

attacked the decoy or sang at any time during the STI. After

10 min, mealworm-baited ground traps and spring traps

were opened and the playback continued until the bird was

caught (mean+ s.d.: 35+20 min, range: 13.5–94 min).

Control males were caught either passively while searching

for food or similar to STI males, with playback and pre-

sentation of a decoy within 10 min of the onset of the

STI, and with the traps open from the beginning (mean+
s.d.: 246+129 s, range: 60–480 s), following Wingfield &

Wada [14], who demonstrated that an increase in testosterone

during an STI can be observed only after 10 min of stimulation.

Immediately upon capture, a blood sample (approx.

120 ml) was taken after venipuncture from the wing vein

(178+112 s) and collected into heparinized capillaries.

The bird was then injected with 50 ml chicken GnRH-I

(Bachem H 3106; 1.25 mg dissolved in 50 ml isotonic saline;

see [26]) into the pectoralis major muscle and kept in a holding

bag. Another blood sample (approx. 120 ml) was taken after

30 min following procedures described by Moore et al. [27]

and Wingfield et al. [29]. Control and experimental groups

did not differ significantly in body mass (t ¼ 1.1, d.f. ¼ 67,

p ¼ 0.3), length of the right tarsus (t ¼ 1.2, d.f. ¼ 67,

p ¼ 0.2), length of the right wing (t ¼ 1.5, d.f. ¼ 68, p ¼ 0.1)

and cloacal protuberance (CP) volume (estimated by expres-

sing it as a cylindrical shape: V ¼ p � (CP width/2)2 � CP

height; t ¼ 21.8, d.f. ¼ 67, p ¼ 0.08; see electronic sup-

plementary material for detailed results on morphological

measurements). In addition, each male was banded with a

numbered aluminium ring (Vogelwarte Radolfzell) and a

combination of two colour rings.

(b) Plasma separation and hormone analysis

Plasma was immediately separated by centrifugation with a

Compur Minicentrifuge (Bayer Diagnostics). The amount

of plasma was measured with a Hamilton syringe and

stored in 500 ml ethanol [32]. After returning from the

field, samples were stored at 2808C. Testosterone concen-

tration was determined by direct radioimmunoassay (RIA)

following Goymann et al. [33]. For details of the extraction,

see the electronic supplementary material. Mean+ s.d. effi-

ciency of the extraction with dichloromethane was 96+
9 per cent. The lower limit of detection of the assay was

determined as the first value outside the 95 per cent confi-

dence interval (CI) for the zero standard (Bmax) and was

6.7 pg tube21. Samples were measured in duplicates in two

assays, each containing samples from both populations. The

intra-assay coefficients of variation were 4.7 and 4.2 per cent,

respectively. The inter-assay variation was 5.5 per cent. As

the testosterone antibody shows significant cross-reactions

with 5a-dihydrotestosterone (44%), our measurements may

include a minor fraction of this additional androgen.

(c) Statistical analysis

Data analysis was done with R v. 2.9.1 [34]. We used general

linear models to analyse the influence of altitude and age
Proc. R. Soc. B (2011) 78
(yearling or adult) on body mass, wing length, tarsus

length and CP (electronic supplementary material).

Behavioural data were first analysed including data from

the low- and high-altitude populations without data from

autumn. Second, we analysed behavioural data including

only the low-altitude population to compare breeding

season with autumn data. Behavioural data also include

data from individuals that we were not able to catch within

2 h. We analysed whether the latency to first approach

within 5 m (seconds), the time spent within 5 m (seconds)

and agitation-related behaviours (head nodding, feather

fluffing) differed between altitudes and life-cycle stages. We

set territory establishment a priori as reference level in all

models. Head nodding (factor loading: 0.70) and feather

fluffing (factor loading: 0.70) were combined to one variable

by using principle component analysis. The first principle

component factor explained 60 per cent of the total variance

and we used it as a score for agitation (agitation score).

Log-transformed post-capture testosterone levels, log-

transformed GnRH-induced testosterone levels, and the absol-

ute and relative (electronic supplementary material) increase

from post-capture to GnRH-induced testosterone levels were

analysed with general linear models for effects of treatment,

altitude, breeding stage and age. We calculated combined

models for the low- and high-altitude populations excluding

low-altitude autumn data. In addition, we calculated models

with data from the low-altitude population only, including tes-

tosterone data from the breeding season and autumn period.

Furthermore, we used general linear models to check whether

post-capture testosterone levels, GnRH-induced testosterone

levels and the absolute increase in testosterone of STI males

after GnRH injection were correlated with any of the beha-

viours shown during the STI. Not all males captured during

an STI were injected with GnRH, resulting in different

sample sizes for the various analyses.

To estimate androgen responsiveness to the STI and

GnRH, we calculated effect sizes (Cohen’s d; see [21,22])

using the program ESCI [35]. Significance was accep-

ted at a , 0.05 (two-tailed) and data are presented as

(back-transformed) means and 95 per cent CIs.
3. RESULTS
(a) Behaviour

The STIs elicited similar behavioural responses as intru-

sions by real males or territorial conflicts with neighbours

([36]; B. Apfelbeck 2008–2010, personal observations).

(b) Low-altitude population in Upper Bavaria

Males responded to an STI similarly across life-cycle

stages. Only the first approach within 5 m differed signifi-

cantly between stages (F2,56 ¼ 5.0, p ¼ 0.01; table 1);

males approached the decoy faster during territory estab-

lishment than when they were feeding the young of their

first brood (t ¼ 2.61, d.f. ¼ 56, p ¼ 0.012; table 1). But

they approached the decoy as fast in autumn as during

territory establishment (t ¼ 20.396, d.f. ¼ 56, p ¼ 0.69;

table 1). They spent similar amounts of time within 5 m

of the decoy during all life-cycle stages (F2,56 ¼ 0.8,

p ¼ 0.4; table 2). Likewise, the agitation score did not

differ between territory establishment and the parental

phase (t ¼ 20.54, d.f. ¼ 39, p ¼ 0.6; table 1; because of

differences in recording techniques, autumn agitation-

related behaviours were not included). Also, the number

http://rspb.royalsocietypublishing.org/


Table 1. Mean (+95% CI) intensity of behaviours measured during the STIs in relation to altitude, breeding stage and

season.

low altitude high altitude

territory establishment
n ¼ 31

parental
phase n ¼ 11

autumn
n ¼ 17

territory establishment
n ¼ 13

parental
phase n ¼ 25

approach (s) 186+45 335+77 241+75 263+104 262+74
time within 5 m (s) 317+54 251+80 285+78 212+89 207+65
fluffing (%) 70+10 76+14 81+14 60+13

head nods per
minute

2.9+0.6 3.2+1.7 3.7+1.1 2.7+1

Table 2. Results of the general linear models for post-capture and GnRH-induced testosterone levels, and the increase in
testosterone caused by GnRH with respect to behavioural measurements during the STIs. Significant effects are printed in bold.

post-capture testosterone

GnRH-induced

testosterone testosterone increase

test statistic p-value test statistic p-value test statistic p-value

approach F1,37 ¼ 1.3 0.3 F1,25 ¼ 0.3 0.6 F1,24 ¼ 2.18 0.1
time within 5 m F1,37 ¼ 0.7 0.4 F1,25 ¼ 0.7 0.4 F1,24 ¼ 1.6 0.2
agitation F1,37 ¼ 0.3 0.6 F1,25 ¼ 0.7 0.4 F1,24 ¼ 0.2 0.6
attacks (yes, no) F1,37 ¼ 0.04 0.9 F1,25 ¼ 0.4 0.5 F1,24 ¼ 0.3 0.6

song (yes, no) F1,37 ¼ 2.2 0.1 F1,25 ¼ 0.05 0.8 F1,24 ¼ 0.01 0.9
STI duration F1,39 5 9.7 0.003 F1,27 ¼ 0.6 0.4 F1,26 ¼ 0.2 0.7
attacks (yes, no) F1,39 ¼ 0.8 0.4 F1,27 ¼ 1.4 0.24 F1,26 ¼ 0.02 0.9
STI duration � attacks F1,39 5 5.5 0.01 F1,27 ¼ 1.5 0.23 F1,26 5 5.6 0.02
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of individuals that attacked the decoy did not differ

between life-cycle stages (first 10 min of STI: Fisher’s

test, p ¼ 0.7; STI until capture: Fisher’s test, p ¼ 0.9).

However, fewer individuals sang during the STI in

autumn than during the STIs during breeding (first

10 min of STI: Fisher’s test, p ¼ 0.0003; STI until

capture: Fisher’s test, p ¼ 0.007).
(c) High-altitude population in Southern Tyrol

Males approached the decoy as fast and stayed as long

within 5 m of the decoy during the parental phase as

during territory establishment (approach: F1,36¼ 0.004,

p ¼ 0.9; time within 5 m: Mann–Whitney U-test, U ¼

159.5, p ¼ 0.9; table 1). However, maleswere more agitated

during the STI in the territory establishment phase than

during the parental phase (F1,36¼ 6.3, p ¼ 0.02; table 1).
(d) Comparison of the low-altitude

and high-altitude populations

The latency to approach within 5 m of the decoy did not

differ between breeding stages (F1,76 ¼ 3.1, p ¼ 0.08)

and altitude (F1,76 ¼ 0.5, p ¼ 0.5; stage � altitude:

F1,76 ¼ 3.5, p ¼ 0.07). Males of the high-altitude popu-

lation spent slightly less time within 5 m than males of

the low-altitude population (F1,77 ¼ 4.1, p ¼ 0.05). But

there was no difference between breeding stages

(F1,77 ¼ 3.5, p ¼ 0.07). Males from the high-altitude

population were less agitated during the STIs in the par-

ental phase than in the territory establishment phase

(stage � altitude: F1,76 ¼ 4.2, p ¼ 0.04; breeding stage:

F1,76 ¼ 2.2, p ¼ 0.1; altitude: F1,76, p ¼ 0.8).
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(e) Hormones

(i) Hormonal response to simulated territorial intrusions and

gonadotropin-releasing hormone with respect to altitude

Male black redstarts did not increase plasma testosterone

in response to an STI (F1,65 ¼ 0.04, p ¼ 0.84; figure 1)

regardless of altitude (F1,65 ¼ 0.14, p ¼ 0.71; figure 1)

and breeding stage (F1,65 ¼ 0.09, p ¼ 0.76). This

means their androgen responsiveness to male–male inter-

actions was very low (mean (+95% CI) effect sizes:

overall: d ¼ 20.07 (20.54; 0.4); low-altitude population:

d ¼ 20.18 (20.79; 0.43); high-altitude population:

d ¼ 0.03 (20.7; 0.75)). In a small subset of the STI

experiments, the STIs induced real intrusions by neigh-

bouring or other males. Post-capture testosterone levels

of males facing a real intruder also did not significantly

differ from those of controls or STI-only males (F2,73 ¼

0.03, p ¼ 0.9; figure 2). GnRH-induced testosterone

levels were significantly higher than testosterone levels

before the injection (paired t-test: t ¼ 29.72, p ,

0.0001, d ¼ 1.1 (0.8; 1.4); figures 1 and 3). Furthermore,

testosterone levels before and after the GnRH injection

were significantly positively correlated (r ¼ 0.61, p ,

0.0001; figure 4). The GnRH-induced increase in testos-

terone did not differ between control and STI-challenged

males (F1,66 ¼ 1.6, p ¼ 0.2, d ¼ 0.36 (20.11; 0.83)).

Thus, despite the fact that male black redstarts did not

increase testosterone during STIs, they would have had

the potential to do so because they were not physiologi-

cally limited. Post-capture testosterone levels did not

differ between breeding stages (F1,65 ¼ 0.7, p ¼ 0.41,

d ¼ 0.23 (20.24; 0.7); figure 3) nor between altitudes

(F1,65 ¼ 0.2, p ¼ 0.66, d ¼ 20.14 (20.62; 0.33);
9
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figure 3). However, the physiological potential to release

androgens was significantly higher during the territory

establishment phase than during the parental phase

(F1,68 ¼ 9.7, p ¼ 0.003, d ¼ 0.74 (0.25; 1.22); figure 3).

Correspondingly, the increase in testosterone was higher

during territory establishment than during the parental

phase (F1,66 ¼ 6.4, p ¼ 0.01, d ¼ 0.58 (0.1; 1.05)).

Furthermore, GnRH-induced testosterone levels were

significantly lower in males from the low-altitude than

from the high-altitude population (F1,68 ¼ 9.9, p ¼

0.002, d ¼ 20.78 (21.7; 20.28); figures 1 and 3).

Thus, the increase in testosterone was also significantly

lower in males of the low-altitude than of the high-alti-

tude population (F1,66 ¼ 6.7, p ¼ 0.01, d ¼ 20.71

(21.2; 20.22)). Between age classes there was no signifi-

cant difference in post-capture testosterone levels (F1,65 ¼

3.0, p ¼ 0.08), GnRH-induced testosterone levels

(F1,68 ¼ 3.0, p ¼ 0.088) nor the increase in testosterone

(F1,66 ¼ 0.63, p ¼ 0.4).
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(ii) Hormonal response to simulated territorial intrusions

and gonadotropin-releasing hormone for the low-altitude

population in relation to life-cycle stages

Post-capture testosterone levels significantly differed with

life-cycle stage (F2,49 ¼ 73.3, p , 0.0001). A priori contrasts

revealed that they did not differ between territory establish-

ment and the parental phase (t ¼ 0.005, d.f. ¼ 49, p ¼ 0.99,

d ¼ 0.06 (20.56; 0.68)), but were significantly higher

during territory establishment than in autumn (mean

+95% CI: 40+8 pg ml21; t ¼ 26.73, d.f. ¼ 49,

p , 0.0001, d ¼ 1.4 (0.6; 2.2)). Testosterone levels did not

increase during the STIs (F1,49 ¼ 1.6, p ¼ 0.2), and this

was consistent between life-cycle stages (non-significant

interaction: F2,49¼ 0.07, p ¼ 0.9).

GnRH-induced testosterone levels also differed with

life-cycle stage (F2,52 ¼ 482, p , 0.0001). They were
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significantly higher during territory establishment than

during the parental phase (t ¼ 22.2, d.f. ¼ 52, p ¼

0.03, d ¼ 0.85 (0.4; 1.29); figure 3) and autumn (mean

+95% CI: 41+7 pg ml21; t ¼ 227.5, d.f. ¼ 52, p ,

0.0001, d ¼ 3.7 (2.4; 4.9)).

Likewise, the increase in testosterone caused by GnRH

depended on life-cycle stage (F2,49 ¼ 7.0, p ¼ 0.002).

The increase was higher during territory establishment

than in autumn (t ¼ 22.4, d.f. ¼ 49, p ¼ 0.02, d ¼ 1.4

(0.6; 2.3)), but did not differ between territory establish-

ment and the parental phase (t ¼ 21.5, d.f. ¼ 49, p ¼

0.1). The increase did not differ between control and

STI males (F1,49 ¼ 0.54, p ¼ 0.47), and this was indepen-

dent of life-cycle stage (F2,49 ¼ 0.15, p ¼ 0.9).
(iii) Testosterone and behaviour

Post-capture and GnRH-induced testosterone levels and

the increase in testosterone caused by GnRH did not

covary with the behaviours measured during the STIs

(table 2). A linear model fitted for testosterone in relation

to the duration of the territorial intrusion and to whether

the territory owner attacked the decoy revealed that post-

capture testosterone declined with the duration of the

intrusion but remained high if males attacked the decoy

(table 2 and figure 5). This result remains robust even

when removing the ‘outlier’ in the upper right corner of

figure 5 (STI duration: F1,38 ¼ 9.7, p ¼ 0.003; attacks:

F1,38 ¼ 0.7, p ¼ 0.4; interaction: F1,38 ¼ 5.5, p ¼ 0.02).

GnRH-induced testosterone levels did not show a signi-

ficant relationship with STI duration, attacks nor the

interaction between the two (table 2). In accordance

with this, STI duration was positively correlated with

the GnRH-induced testosterone increase in non-attacking

males but not in males that attacked the decoy (table 2).
4. DISCUSSION
In contrast to our prediction, the androgen responsive-

ness of male black redstarts to an STI (Rmale–male sensu

[21]) did not depend on the number of broods or the

length of the breeding season: both populations studied

did not increase testosterone when challenged with
Proc. R. Soc. B (2011) 8
STIs, neither during the early breeding season nor when

they were feeding the young of their first brood. However,

in both populations injection of GnRH led to an increase

in testosterone levels in control and STI males, demon-

strating that all males would have had the physiological

potential (Rpotential sensu [21]) to further increase testos-

terone during STIs. To our knowledge, this is the first

study that measured the androgen responsiveness to an

STI and the physiological potential to release androgens

in the same individuals. Thus, the black redstart is the

first species for which it has been shown that a lacking

increase in testosterone during STIs is not caused by a

restriction in the potential to increase testosterone.

Furthermore, males facing a real intruder showed beha-

viours similar to those of males experiencing a

simulated intrusion (see also [36]) and also lacked the

expected increase in testosterone, suggesting that the

simulated intrusion mimicked a real territorial threat.
(a) Testosterone in relation to simulated territorial

intrusions and gonadotropin-releasing hormone

Interspecific comparisons of the challenge hypothesis

confirm the influence of mating system on seasonal tes-

tosterone profiles (Rseason sensu [21]) in birds [21,37],

and of sexual and parental behaviour on testosterone

levels in vertebrates in general [10]. However, in a situa-

tional rather than a seasonal context, the predictions

of the challenge hypothesis often do not hold [21]. A cen-

tral prediction is that in socially monogamous bird species

with biparental care, aggressive interactions between

males lead to short-term increases in testosterone above

breeding baseline levels. These surges in testosterone

are expected to cause a seasonal peak in testosterone at

the beginning of the breeding season, when competition

between males is particularly high [5]. On this seasonal

basis, our data are in line with the challenge hypothesis as

testosterone levels in black redstarts were highest during

territory establishment and before a second clutch was

initiated. During incubation, testosterone levels were

low (B. Apfelbeck & W. Goymann 2008–2009, unpub-

lished data). However, in a situational rather than a

seasonal context, the predictions of the challenge hypoth-

esis do not hold in black redstarts. Aggressive encounters

between males do not seem to be the direct cause of sea-

sonal peaks in testosterone, because black redstarts did

not elevate testosterone levels during simulated or real

territorial intrusions. Thus, in this species, the seasonal

androgen response (Rseason) is no proxy for, and does

not predict the androgen responsiveness to, male–male

interactions (Rmale–male) [21,22]. Because this was also

the case in various other species, several hypotheses

have been proposed to relate the lack of testosterone

response following male–male interactions to life-history

differences between species (see §1). We tested one set

of these hypotheses: the short breeding season and

number of broods hypotheses [22,23] in two populations

of black redstarts. But we found no evidence for a differ-

ential testosterone response to STIs depending on the

length of the breeding season and number of broods:

males of both populations did not increase testosterone

when challenged with an STI. For the high-altitude popu-

lation, this conforms to the idea that species breeding in

severe environments should not elevate testosterone
1
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during male–male interactions in order to minimize

interference with parental care. However, males of the

low-altitude population would have been expected to

elevate testosterone during male–male interactions,

because their breeding season is long and they raise mul-

tiple clutches. Thus, the comparison of two populations

of black redstarts is not consistent with the pattern

predicted by the short season or number of broods

hypotheses. Hence, other (so far unconsidered) factors

may influence whether some species increase testosterone

during territorial challenges, while others do not. In this

context, the actual function of short-term modulations

of testosterone after territorial conflicts may be impor-

tant. Especially, studies in mammals and fish suggest

that the androgen release after defence of the home terri-

tory may be crucial for the formation of the winner effect,

and thus may promote territoriality [38,39]. Black red-

starts of the low-altitude population defend territories

with low testosterone levels in autumn (i.e. after having

finished moult and before they migrate). When they

return the following spring, they typically breed on

these territories [40]. In autumn, they show no androgen

response to territorial or GnRH challenges. Thus, in

black redstarts residency effects might be decoupled

from androgen release after territorial conflicts. This

may be in contrast to some other temperate zone song-

birds, such as the song sparrow, in which testosterone

increases during male–male interactions during the breed-

ing season [14]. However, the relationship between the

winner effect, territoriality and short-term testosterone

release has not been studied in songbirds yet.

Until now, it was unknown whether any of the bird

species that did not increase testosterone during STIs

had the capacity to further increase testosterone: if testos-

terone levels were already maximal, the lack of a

testosterone response to the challenge would not be too

surprising [22]. The black redstart is the first species for

which we can now exclude this explanation: although

males of both populations did not increase testosterone

during STIs, both populations responded with a substan-

tial increase in testosterone after injections with GnRH.

Hence, males did not have maximum testosterone levels

during any breeding stage and would have had the

capacity to modulate circulating testosterone during a

social challenge. Similarly, male rufous-collared sparrows

(Zonotrichia capensis) and Gambel’s white-crowned

sparrows (Zonotricha leucophrys gambelii ) also increase

testosterone after a GnRH challenge [27], but do not

modulate testosterone levels after a territorial dispute

[41,42]. STI and GnRH challenges were, however, per-

formed on different sets of individuals in these studies

and thus could not exclude the possibility that testoster-

one levels were already maximal in STI-challenged

individuals. These and our data indicate that, with respect

to the effects of GnRH, species that do not increase testo-

sterone when challenged with an intruder are similar to

species that increase testosterone during STIs: the latter

also respond to GnRH with an increase in testosterone

[15,16,26,27].

In species that are responsive to GnRH, but not to

male–male interactions, other social cues, such as

sexual interactions with females [43,44], may modulate

plasma testosterone levels [21,22]. Often it is difficult to

distinguish whether the seasonal peak in testosterone
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coincides with the time period of frequent male–male

interactions or the time period when females are most

fertile, or both. Accordingly, in the low-altitude black red-

start population, we observed a peak in testosterone

during the parental phase of the first brood when many

females had already started a second clutch (B. Apfelbeck

2008–2010, personal observations). During this time,

overt male–male competition does not seem to be particu-

larly strong, and any socially induced peak in testosterone

may be more probably related to male–female interactions.

In contrast to black redstarts, both male–male and male–

female interactions may shape seasonal testosterone patterns

in males of species that mount an androgen response both

to STIs and GnRH. Song sparrows (Melospiza melodia),

for example, show a peak in testosterone upon arrival at

their breeding grounds when they establish territories and

again when their mates start egg-laying [45].

If the amount of testosterone produced is relevant for

the processing of social cues from other males or females,

then the capability to do so probably changes during

the life cycle. Similar to dark-eyed juncos [26], the capacity

of male black redstarts to mount a testosterone response

after a GnRH injection differed between life-cycle stages:

GnRH-induced testosterone levels were significantly

higher during the early breeding season than when they

were feeding nestlings or fledglings (and during autumn,

GnRH did not induce higher testosterone at all). In combi-

nation with studies that also measured LH release after

GnRH injection [26,29], our data also suggest that the sea-

sonal differences in testosterone release are, at least to some

extent, regulated at the level of the testes. Possibly, the

lower capacity to raise testosterone during the parental

phase might be an adaptation to avoid interference of

high testosterone levels with paternal care [5]. These data

also demonstrate that seasonal peaks in testosterone do

not necessarily reflect maximum physiological levels

(‘level C’) as postulated by the challenge hypothesis [5],

and that ‘level C’ is not fixed throughout the breeding

season but changes depending on the breeding sub-stage.

Although testosterone levels before the GnRH injec-

tion were similar in black redstarts of the high- and the

low-altitude populations, the increase after a GnRH injec-

tion was higher in males of the high-altitude population.

Thus, the morphological differences between the two

populations (electronic supplementary material) corre-

spond with physiological differences in the regulation of

the HPG axis. Similarly, Moore and colleagues [27]

found the highest increase in testosterone after a GnRH

injection in a high-altitude tropical species when com-

paring closely related Zonotrichia species in their

physiological response to GnRH. Furthermore, this is in

line with a comparative study in tropical birds demon-

strating that seasonal androgen maxima are highest in

species with short breeding seasons and at high altitudes

[46]. Our study on black redstarts suggests that such pat-

terns may also exist in temperate zone species and that

such relationships may not only exist between species,

but also within populations of the same species breeding

at different altitudes.
(b) Testosterone and behaviour

GnRH-induced maximum testosterone levels were highly

positively correlated with post-capture testosterone levels
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and showed large inter-individual differences. Jawor et al.

[26] found that in dark-eyed juncos, the androgen

response to GnRH was repeatable within individuals

and While et al. [47] found repeatable baseline testoster-

one levels in individuals of the Australian lizard (Egernia

whitii ). These findings raise the possibility that differences

in baseline and/or maximum testosterone levels are

related to individual differences in behaviour. However,

individual correlations between testosterone and behav-

iour are rarely found (e.g. [48,49]). In our study,

differences in post-capture and GnRH-induced testos-

terone levels were not related to differences in the

behavioural response to a simulated intruder. Unexpect-

edly, post-capture testosterone levels declined with STI

duration so that males that were caught at a later time

point during the intrusion had lower testosterone levels

than males caught earlier. However, this was not true

for males that attacked the decoy: in these males, testos-

terone levels remained high. During STIs, territory

owners cannot evict the intruder and, therefore, testoster-

one levels might start to decline during long-lasting

intrusions [50] (but see [51]). Alternatively, during

STIs, males are likely to be more active than during

other periods, resulting in an increase in their meta-

bolism: If the secretion of testosterone from the testes

remains constant, but clearance increases owing to a

higher blood flow through the liver, this may result in

declining testosterone concentrations. But why did

males that attacked the decoy maintain higher testoster-

one concentrations? Although there is little evidence for a

relationship between coping style or personality and testos-

terone [52], a recent study of European stonechats by

C. Muck & W. Goymann [53] showed that individuals

that attacked their mirror image had higher baseline testos-

terone levels than individuals that did not attack the

mirror. Thus, our observation in black redstarts is consist-

ent with a situation in which individuals with a bold

personality express higher levels of testosterone than

individuals with a more shy personality, regardless of

the situation.
5. CONCLUSIONS
Although differences in the androgen physiology of two

black redstart populations exist, the fact that males of

both populations do not mount an androgen response

to STIs but to GnRH indicates that the regulation of ter-

ritorial defence is similar in both populations. Thus, the

length of the breeding season or the number of broods

cannot universally explain between-species differences in

androgen responsiveness to territorial challenges. Because

black redstarts increased testosterone after injections with

GnRH, they would have had the physiological capacity

(Rpotential) to increase testosterone during STIs. In other

vertebrate taxa, short-term testosterone increases after

male–male conflicts have been suggested to be respon-

sible for the winner effect, and thereby reinforce

territoriality. However, in species like the black redstart,

which defend breeding territories in autumn, territory

defence may be decoupled from short-term testosterone

modulations. We suggest that the extent to which the

winner effect and territoriality are coupled to short-term

testosterone release might be a promising factor to explain
Proc. R. Soc. B (2011) 8
the existing variation in androgen responsiveness to

male–male interactions.
All experimental procedures were approved by the
governmental authorities of Upper Bavaria and Southern
Tyrol.

We thank Dieter Schmidl, Felix Pustal, Johanna Stegherr,
Matthias Schneider and Agnes Türk for their tireless
assistance in the field, Ingrid Schwabl and Monika
Trappschuh for their experienced help in the laboratory,
and the Max Planck Gesellschaft and Manfred Gahr for
funding. Barbara Helm, Manfred Gahr, Redouan Bshary
and two anonymous referees gave valuable comments on
previous versions of the article.
REFERENCES
1 Valenstein, E. S. & Young, W. C. 1955 An experiential

factor influencing the effectiveness of testosterone propio-
nate in eliciting sexual behavior in male guinea-pigs.
Endocrinology 56, 173–177. (doi:10.1210/endo-56-2-173)

2 Balthazart, J., Reid, J., Absil, P., Foidart, A. & Ball, G. F.
1995 Appetitive as well as consummatory aspects of male
sexual behavior in quail are activated by androgens and
estrogens. Behav. Neurosci. 109, 485–501. (doi:10.1037/
0735-7044.109.3.485)

3 Lincoln, G. A., Guinness, F. & Short, R. V. 1972 The way
in which testosterone controls the social and sexual behav-
ior of the red deer stag (Cervus elaphus). Horm. Behav. 3,
375–396. (doi:10.1016/0018-506X(72)90027-X)

4 Moore, M. C. & Marler, C. A. 1987 Effects of testoster-

one manipulations on nonbreeding season territorial
aggression in free-living male lizards, Sceloporus jarrovi.
Gen. Comp. Endocrinol. 65, 225–232. (doi:10.1016/
0016-6480(87)90170-5)

5 Wingfield, J. C., Hegner, R. E., Dufty Jr, A. M. & Ball,
G. F. 1990 The ‘challenge hypothesis’: theoretical
implications for patterns of testosterone secretion,
mating systems, and breeding strategies. Am. Nat. 136,
829–846. (doi:10.1086/285134)

6 Harding, C. F. 1981 Social modulation of circulating
hormone levels in the male. Am. Zool. 21, 223–231.

7 Archer, J. 2006 Testosterone and human aggression:
an evaluation of the challenge hypothesis. Neurosci.
Biobehav. Rev. 30, 319–345. (doi:10.1016/j.neubiorev.

2004.12.007)
8 Hirschenhauser, K., Taborsky, M., Oliveira, T., Canario,

A. V. M. & Oliveira, R. F. 2004 A test of the ‘challenge
hypothesis’ in cichlid fish: simulated partner and territory
intruder experiments. Anim. Behav. 68, 741–750.

(doi:10.1016/j.anbehav.2003.12.015)
9 Scotti, M.-A. L., Schmidt, K. L., Newman, A. E. M.,

Bonu, T., Soma, K. K. & Demas, G. E. 2009 Aggressive
encounters differentially affect serum dehydroepi-
androsterone and testosterone concentrations in male

Siberian hamsters (Phodopus sungorus). Horm. Behav.
56, 376–381. (doi:10.1016/j.yhbeh.2009.07.004)

10 Hirschenhauser, K. & Oliveira, R. F. 2006 Social modu-
lation of androgens in male vertebrates: meta-analyses of

the challenge hypothesis. Anim. Behav. 71, 265–277.
(doi:10.1016/j.anbehav.2005.04.014)

11 Ketterson, E. D., Val Nolan, J., Wolf, L. & Ziegenfus, C.
1992 Testosterone and avian life histories: effects of
experimentally elevated testosterone on behavior and cor-

relates of fitness in the dark-eyed junco ( Junco hyemalis).
Am. Nat. 140, 980–999. (doi:10.1086/285451)

12 De Ridder, E., Pinxten, R. & Eens, M. 2000 Experimen-
tal evidence of a testosterone-induced shift from paternal
to mating behaviour in a facultatively polygynous
3

http://dx.doi.org/10.1210/endo-56-2-173
http://dx.doi.org/10.1037/0735-7044.109.3.485
http://dx.doi.org/10.1037/0735-7044.109.3.485
http://dx.doi.org/10.1016/0018-506X(72)90027-X
http://dx.doi.org/10.1016/0016-6480(87)90170-5
http://dx.doi.org/10.1016/0016-6480(87)90170-5
http://dx.doi.org/10.1086/285134
http://dx.doi.org/10.1016/j.neubiorev.2004.12.007
http://dx.doi.org/10.1016/j.neubiorev.2004.12.007
http://dx.doi.org/10.1016/j.anbehav.2003.12.015
http://dx.doi.org/10.1016/j.yhbeh.2009.07.004
http://dx.doi.org/10.1016/j.anbehav.2005.04.014
http://dx.doi.org/10.1086/285451
http://rspb.royalsocietypublishing.org/


Ignoring the challenge? B. Apfelbeck & W. Goymann 3241

 on December 2, 2011rspb.royalsocietypublishing.orgDownloaded from 
songbird. Behav. Ecol. Sociobiol. 49, 24–30. (doi:10.
1007/s002650000266)

13 Wingfield, J. C., Lynn, S. E. & Soma, K. K. 2001 Avoid-

ing the costs of testosterone: ecological bases of
hormone-behavior interactions. Brain Behav. Evol. 57,
239. (doi:10.1159/000047243)

14 Wingfield, J. C. & Wada, M. 1989 Changes in plasma levels
of testosterone during male–male interactions in the song

sparrow, Melospiza melodia: time course and specificity of
response. J. Comp. Physiol. A 166, 189–194. (doi:10.
1007/BF00193463)

15 Wingfield, J. C. & Hahn, T. P. 1994 Testosterone and ter-

ritorial behaviour in sedentary and migratory sparrows.
Anim. Behav. 47, 77–89. (doi:10.1006/anbe.1994.1009)

16 McGlothlin, J. W., Jawor, J. M., Greives, T. J., Casto,
J. M., Philips, J. L. & Ketterson, E. D. 2008 Hormones
and honest signals: males with larger ornaments elevate

testosterone more when challenged. J. Evol. Biol. 21,
39–48. (doi:10.1111/j.1420-9101.2007.01471.x)

17 Van Duyse, E., Pinxten, R., Darras, V. M., Arckens, L. &
Eens, M. 2004 Opposite changes in plasma testosterone
and corticosterone levels following a simulated territorial

challenge in male great tits. Behaviour 141, 451–467.
(doi:10.1163/156853904323066739)

18 Landys, M. M., Goymann, W., Raess, M. & Slagsvold, T.
2007 Hormonal responses to male–male social challenge
in the blue tit, Cyanistes caeruleus: single-broodedness as

an explanatory variable. Physiol. Biochem. Zool. 80,
228–240. (doi:10.1086/510564)

19 Landys, M. M., Goymann, W., Schwabl, I., Trapschuh,
M. & Slagsvold, T. 2010 Impact of season and social

challenge on testosterone and corticosterone levels in a
year-round territorial bird. Horm. Behav. 58, 317–325.
(doi:10.1016/j.yhbeh.2010.02.013)

20 Lynn, S. E., Hahn, T. P. & Breuner, C. W. 2007 Free-
living male mountain white-crowned sparrows exhibit

territorial aggression without modulating total or free
plasma testosterone. Condor 109, 173–180. (doi:10.
1650/0010-5422(2007)109[173:FMMWSE]2.0.CO;2)

21 Goymann, W., Landys, M. M. & Wingfield, J. C. 2007
Distinguishing seasonal androgen responses from male–

male androgen responsiveness: revisiting the challenge
hypothesis. Horm. Behav. 51, 463–476. (doi:10.1016/
j.yhbeh.2007.01.007)

22 Goymann, W. 2009 Social modulation of androgens in
male birds. Gen. Comp. Endocrinol. 163, 149–157.

(doi:10.1016/j.ygcen.2008.11.027)
23 Wingfield, J. C. & Hunt, K. E. 2002 Arctic spring:

hormone–behavior interactions in a severe environment.
Comp. Biochem. Physiol. B Biochem. Mol. Biol. 132, 275–

286. (doi:10.1016/S1096-4959(01)00540-1)
24 Busch, D. S., Robinson, T. R., Hahn, T. P. & Wingfield,

J. C. 2008 Sex hormones in the song wren: variation with
time of year, molt, gonadotropin releasing hormone, and
social challenge. Condor 110, 125–133. (doi:10.1525/

cond.2008.110.1.125)
25 Goymann, W. & Wingfield, J. C. 2004 Competing

females and caring males. Sex steroids in African black
coucals, Centropus grillii. Anim. Behav. 68, 733–740.
(doi:10.1016/j.anbehav.2003.12.012)

26 Jawor, J. M., McGlothlin, J. W., Casto, J. M., Greives,
T. J., Snajdr, E. A., Bentley, G. E. & Ketterson, E. D.
2006 Seasonal and individual variation in response to
GnRH challenge in male dark-eyed juncos ( Junco hyema-
lis). Gen. Comp. Endocrinol. 149, 182–189.

27 Moore, I. T., Perfito, N., Wada, H., Sperry, T. S. &
Wingfield, J. C. 2002 Latitudinal variation in plasma
testosterone levels in birds of the genus Zonotrichia.
Gen. Comp. Endocrinol. 129, 13–19. (doi:10.1016/
S0016-6480(02)00563-4)
Proc. R. Soc. B (2011) 84
28 Spinney, L. H., Bentley, G. E. & Hau, M. 2006
Endocrine correlates of alternative phenotypes in the
white-throated sparrow (Zonotrichia albicollis). Horm.
Behav. 50, 762–771. (doi:10.1016/j.yhbeh.2006.06.034)

29 Wingfield, J. C., Hegner, R. E. & Lewis, D. M. 1991
Circulating levels of luteinizing hormone and steroid hor-
mones in relation to social status in the cooperatively
breeding white-browed sparrow weaver, Plocepasser
mahali. J. Zool. 225, 43–58. (doi:10.1111/j.1469-7998.
1991.tb03800.x)

30 Landmann, A. 1996 Der Hausrotschwanz: vom Fels zum
Wolkenkratzer: Evolutionsbiologie eines Gebirgsvogels.
Wiesbaden, Germany: AULA-Verlag.

31 Landmann, A. & Kollinsky, C. 1995 Territory defence in
black redstarts, Phoenicurus ochruros: effects of intruder
and owner age? Ethology 101, 121–129. (doi:10.1111/j.
1439-0310.1995.tb00351.x)

32 Goymann, W., Schwabl, I., Trappschuh, M. & Hau, M.
2007 Use of ethanol for preserving steroid and indolea-
mine hormones in bird plasma. Gen. Comp. Endocrinol.
150, 191–195. (doi:10.1016/j.ygcen.2006.09.014)

33 Goymann, W., Geue, D., Schwabl, I., Flinks, H.,

Schmidl, D., Schwabl, H. & Gwinner, E. 2006 Testoster-
one and corticosterone during the breeding cycle of
equatorial and European stonechats (Saxicola torquata
axillaris and S. t. rubicola). Horm. Behav. 50, 779–785.
(doi:10.1016/j.yhbeh.2006.07.002)

34 R Development Core Team. 2009 R: A language and
environment for statistical computing. Vienna, Austria: R
Foundation for Statistical Computing.

35 Cumming, G. & Finch, S. 2001 A primer on the under-

standing, use, and calculation of confidence intervals
that are based on central and noncentral distributions.
Educ. Psychol. Meas. 61, 532–574. (doi:10.1177/
0013164401614002)

36 Nesenhoener, H. 1956 Beobachtungen, insbesondere

brutbiologischer Art, am Hausrotschwanz (Phoenicurus
ochruros). Ber. naturw. Ver. Bielefeld 14, 128–156.

37 Hirschenhauser, K., Winkler, H. & Oliveira, R. F. 2003
Comparative analysis of male androgen responsiveness
to social environment in birds: the effects of mating

system and paternal incubation. Horm. Behav. 43, 508–
519. (doi:10.1016/S0018-506X(03)00027-8)

38 Oliveira, R. F., Silva, A. & Canario, A. V. M. 2009 Why
do winners keep winning? Androgen mediation of winner
but not loser effects in cichlid fish. Proc. R. Soc. B 276,

2249–2256. (doi:10.1098/rspb.2009.0132)
39 Fuxjager, M. J. & Marler, C. A. 2010 How and why the

winner effect forms: influences of contest environment
and species differences. Behav. Ecol. 21, 37–45.

(doi:10.1093/beheco/arp148)
40 Weggler, M. 2000 Reproductive consequences of autum-

nal singing in black redstarts (Phoenicurus ochruros). Auk
117, 65–73. (doi:10.1642/0004-8038(2000)117[0065:
RCOASI]2.0.CO;2)

41 Meddle, S. L., Romero, L. M., Astheimer, L. B., Butte-
mer, W. A., Moore, I. T. & Wingfield, J. C. 2002 Steroid
hormone interrelationships with territorial aggression in
an Arctic-breeding songbird, Gambel’s white-crowned
sparrow (Zonotrichia leucophrys gambelii ). Horm. Behav.
42, 212–221. (doi:10.1006/hbeh.2002.1813)

42 Moore, I. T., Wada, H., Perfito, N., Busch, D. S., Hahn,
T. P. & Wingfield, J. C. 2004 Territoriality and testo-
sterone in an equatorial population of rufous-collared
sparrows, Zonotrichia capensis. Anim. Behav. 67, 411–

420. (doi:10.1016/j.anbehav.2003.03.021)
43 Moore, M. C. 1982 Hormonal response of free-living

male white-crowned sparrows to experimental manipu-
lation of female sexual behavior. Horm. Behav. 16,
323–329. (doi:10.1016/0018-506X(82)90030-7)

http://dx.doi.org/10.1007/s002650000266
http://dx.doi.org/10.1007/s002650000266
http://dx.doi.org/10.1159/000047243
http://dx.doi.org/10.1007/BF00193463
http://dx.doi.org/10.1007/BF00193463
http://dx.doi.org/10.1006/anbe.1994.1009
http://dx.doi.org/10.1111/j.1420-9101.2007.01471.x
http://dx.doi.org/10.1163/156853904323066739
http://dx.doi.org/10.1086/510564
http://dx.doi.org/10.1016/j.yhbeh.2010.02.013
http://dx.doi.org/10.1650/0010-5422(2007)109[173:FMMWSE]2.0.CO;2
http://dx.doi.org/10.1650/0010-5422(2007)109[173:FMMWSE]2.0.CO;2
http://dx.doi.org/10.1016/j.yhbeh.2007.01.007
http://dx.doi.org/10.1016/j.yhbeh.2007.01.007
http://dx.doi.org/10.1016/j.ygcen.2008.11.027
http://dx.doi.org/10.1016/S1096-4959(01)00540-1
http://dx.doi.org/10.1525/cond.2008.110.1.125
http://dx.doi.org/10.1525/cond.2008.110.1.125
http://dx.doi.org/10.1016/j.anbehav.2003.12.012
http://dx.doi.org/10.1016/S0016-6480(02)00563-4
http://dx.doi.org/10.1016/S0016-6480(02)00563-4
http://dx.doi.org/10.1016/j.yhbeh.2006.06.034
http://dx.doi.org/10.1111/j.1469-7998.1991.tb03800.x
http://dx.doi.org/10.1111/j.1469-7998.1991.tb03800.x
http://dx.doi.org/10.1111/j.1439-0310.1995.tb00351.x
http://dx.doi.org/10.1111/j.1439-0310.1995.tb00351.x
http://dx.doi.org/10.1016/j.ygcen.2006.09.014
http://dx.doi.org/10.1016/j.yhbeh.2006.07.002
http://dx.doi.org/10.1177/0013164401614002
http://dx.doi.org/10.1177/0013164401614002
http://dx.doi.org/10.1016/S0018-506X(03)00027-8
http://dx.doi.org/10.1098/rspb.2009.0132
http://dx.doi.org/10.1093/beheco/arp148
http://dx.doi.org/10.1642/0004-8038(2000)117[0065:RCOASI]2.0.CO;2
http://dx.doi.org/10.1642/0004-8038(2000)117[0065:RCOASI]2.0.CO;2
http://dx.doi.org/10.1006/hbeh.2002.1813
http://dx.doi.org/10.1016/j.anbehav.2003.03.021
http://dx.doi.org/10.1016/0018-506X(82)90030-7
http://rspb.royalsocietypublishing.org/


3242 B. Apfelbeck & W. Goymann Ignoring the challenge?

 on December 2, 2011rspb.royalsocietypublishing.orgDownloaded from 
44 Moore, M. 1983 Effect of female sexual displays on the
endocrine physiology and behaviour of male white-crowned
sparrows, Zonotrichia leucophrys. J. Zool. Lond. 199,

137–148. (doi:10.1111/j.1469-7998.1983.tb02085.x)
45 Wingfield, J. C. 1984 Environmental and endocrine con-

trol of reproduction in the song sparrow, Melospiza
melodia: I. Temporal organization of the breeding cycle.
Gen. Comp. Endocrinol. 56, 406–416. (doi:10.1016/

0016-6480(84)90083-2)
46 Goymann, W., Moore, I. T., Scheuerlein, A.,

Hirschenhauser, K., Grafen, A. & Wingfield, J. C. 2004
Testosterone in tropical birds: effects of environmental

and social factors. Am. Nat. 164, 327–334. (doi:10.
1086/422856)

47 While, G. M., Isaksson, C., McEvoy, J., Sinn, D. L.,
Komdeur, J., Wapstra, E. & Groothuis, T. G. G. 2010
Repeatable intra-individual variation in plasma testoster-

one concentration and its sex-specific link to aggression
in a social lizard. Horm. Behav. 58, 208–213. (doi:10.
1016/j.yhbeh.2010.03.016)

48 Johnsen, T. S. 1998 Behavioural correlates of testoster-
one and seasonal changes of steroids in red-winged
Proc. R. Soc. B (2011) 8
blackbirds. Anim. Behav. 55, 957–965. (doi:10.1006/
anbe.1997.0642)

49 McGlothlin, J., Jawor, J. & Ketterson, E. 2007 Natural

variation in a testosterone mediated trade-off between
mating effort and parental effort. Am. Nat. 170, 864–
875. (doi:10.1086/522838)

50 Kempenaers, B., Peters, A. & Foerster, K. 2008 Sources
of individual variation in plasma testosterone levels. Phil.
Trans. R. Soc. B 363, 1711–1723. (doi:10.1098/rstb.
2007.0001)

51 Wikelski, M., Hau, M. & Wingfield, J. C. 1999 Social
instability increases plasma testosterone in a year-round

territorial neotropical bird. Proc. R. Soc. Lond. B 266,
551–556. (doi:10.1098/rspb.1999.0671)

52 Koolhaas, J. M., de Boer, S. F., Coppens, C. M. &
Buwalda, B. 2010 Neuroendocrinology of coping styles:
towards understanding the biology of individual variation.

Front. Neuroendocrinol. 31, 307–321. (doi:10.1016/j.yfrne.
2010.04.001)

53 Muck, C. & Goymann, W. Submitted. Hormones mirror
personalty: a mirror image stimulation test in male
stonechats.
5

http://dx.doi.org/10.1111/j.1469-7998.1983.tb02085.x
http://dx.doi.org/10.1016/0016-6480(84)90083-2
http://dx.doi.org/10.1016/0016-6480(84)90083-2
http://dx.doi.org/10.1086/422856
http://dx.doi.org/10.1086/422856
http://dx.doi.org/10.1016/j.yhbeh.2010.03.016
http://dx.doi.org/10.1016/j.yhbeh.2010.03.016
http://dx.doi.org/10.1006/anbe.1997.0642
http://dx.doi.org/10.1006/anbe.1997.0642
http://dx.doi.org/10.1086/522838
http://dx.doi.org/10.1098/rstb.2007.0001
http://dx.doi.org/10.1098/rstb.2007.0001
http://dx.doi.org/10.1098/rspb.1999.0671
http://dx.doi.org/10.1016/j.yfrne.2010.04.001
http://dx.doi.org/10.1016/j.yfrne.2010.04.001
http://rspb.royalsocietypublishing.org/


Hormones and Behavior 60 (2011) 565–571

Contents lists available at SciVerse ScienceDirect

Hormones and Behavior

j ourna l homepage: www.e lsev ie r.com/ locate /yhbeh
Simulating winning in the wild — The behavioral and hormonal response of black
redstarts to single and repeated territorial challenges of high and low intensity

Beate Apfelbeck ⁎,1, Johanna Stegherr 1, Wolfgang Goymann
Abteilung für Verhaltensneurobiologie, Max-Planck-Institut für Ornithologie, Eberhard-Gwinner-Str. Haus 6a, D-82319 Seewiesen, Germany
⁎ Corresponding author.
E-mail address: apfelbeck@orn.mpg.de (B. Apfelbeck

1 Contributed equally to the manuscript.

0018-506X/$ – see front matter © 2011 Elsevier Inc. Al
doi:10.1016/j.yhbeh.2011.08.005
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 11 April 2011
Revised 11 August 2011
Accepted 12 August 2011
Available online 19 August 2011

Keywords:
Challenge hypothesis
Simulated territorial intrusions
Aggression
Territorial behavior
Testosterone
Corticosterone
Winner–loser effect
In many vertebrates testosterone increases during aggressive interactions and the surges in this hormonemay
be responsible for the winner effect. So far studies on this relationship have been done in captivity only,
because simulating a winning situation for a territory owner in the field is difficult. However, an increasing
number of studies show that territorial aggression is not necessarily accompanied by elevated testosterone
after a single simulated territorial intrusion (STI) and therefore it has been proposed that STIs may even create
a losing experience. We examined whether free-living male black redstarts (Phoenicurus ochruros) show
changes in androgens, corticosterone and behavior following repeated STIs of high or low intensity and in
contrast to being challenged only once. Repeated intrusions had no influence on androgen and corticosterone
levels regardless of intrusion intensity. In contrast, the behavioral response changed over days depending on
the intensity of the intrusion. Only birds challenged with high-level intruders approached the decoy
significantly faster during the third intrusion than during the first one, stayed closer to the decoy, and sang
more songs than males challenged with low-level intruders. Thus, although black redstarts reacted differently
to STIs varying in frequency and intensity, these behavioral differences were not reflected in androgen or
corticosterone levels. Our data show that it is unlikely that STIs induce a losing experience. Furthermore, they
indicate that a hormonal effect of winning an encounter may not be universal in vertebrates and may depend
on the ecological or life-history context.
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Introduction

The sex steroid testosterone plays a critical role in themodulation of
secondary sexual traits, territorial aggression, and courtship of male
vertebrates (reviewed in Wingfield et al., 2006). In many seasonally
reproducing vertebrates, testosterone levels change over the year and
induce morphological, physiological and behavioral changes required
for breeding (Lincoln et al., 1972; Moore, 1986; Wingfield and Farner,
1993). Superimposed on these seasonal changes in testosterone levels
the challenge hypothesis predicts further brief increases in testosterone
during periods of social instability, i.e. during territorial conflicts or
during mate competition (Wingfield et al., 1990). Originally developed
for birds, the predictions of the challenge hypothesis gained large
support from data based on seasonal testosterone profiles in birds and
other vertebrates (Rseason sensu Goymann et al., 2007a, see also
Hirschenhauser et al., 2003; Hirschenhauser and Oliveira, 2006).
However, when actual changes in testosterone concentrations during
social interactions are investigated, the support for the challenge
hypothesis becomes equivocal. On the one hand a large number of
studies demonstrated rapid effects of social interactions on plasma
concentrations of testosterone in a variety of vertebrate taxa (e.g.
Archer, 2006; Hirschenhauser et al., 2004; Oyegbile and Marler, 2005;
Wingfield and Wada, 1989). On the other hand, however, a recent
comparison within birds has revealed that most species studied to date
did not show the expected increase in testosterone after simulated
territorial intrusions (STI, Rmale–male sensu Goymann et al., 2007a;
Goymann, 2009).

Also, the function of short-term increases in testosterone after
aggressive interactions is still barely understood. One idea is that
testosterone mediates the winner effect (reviewed in Oliveira, 2004;
see also Oyegbile and Marler, 2005; Oliveira et al., 2009). According to
the winner effect an individual is more likely to win future aggressive
encounters after winning previous encounters independent of
intrinsic contest skills (Bergman et al., 2010; Chase et al., 1994;
Oliveira et al., 2009; Oyegbile and Marler, 2006; Trainor et al., 2004).
In vertebrates, winning an encounter is typically accompanied by a
short-term increase in testosterone, while losing a contest is followed
by a decrease in this androgen. However, as mentioned above, many
species do not show an increase in testosterone during aggressive
encounters. In some of these species repeated winning may be
required to induce a significant rise in testosterone (Oyegbile and
Marler, 2005).

Also, some authors have suggested that the lack of an increase in
testosterone during some STI studies may be due to the induction of a

http://dx.doi.org/10.1016/j.yhbeh.2011.08.005
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loser effect (losing a contest tends to decrease the probability of
winning in future contests, Hsu and Wolf, 1999): natural territorial
encounters may be brief and typically the territory owner evicts the
intruder within a few minutes. In contrast, during a STI the territory
owner is unable to expel the intruder from the territory for a
prolonged period of time. This may be perceived by the territory
owner as if it was losing the encounter and lead to a decrease in
testosterone levels (Goymann et al., 2007a; Goymann, 2009;
Kempenaers et al., 2008).

A second important group of hormones involved in winning or
losing a fight are glucocorticoids such as corticosterone. Short-term
elevations in corticosterone levels duringmale–male encounters have
been shown to promote aggression (Mikics et al., 2004; Øverli et al.,
2002; Summers et al., 2005;Woodley et al., 2000). But in some species
losers of a fight need longer to return to baseline levels than winners
(Øverli et al., 2000). Prolonged elevated corticosterone levels have
been associated with decreased aggression, submission and losing
male–male interactions (Nock and Leshner, 1976; Øverli et al., 2002;
Sloman et al., 2001; Schuett and Grober, 2000; Summers et al., 2005).
Therefore, these hormones may be used as indicators of how an
individual perceives a social challenge.

From the above follows that the challenge hypothesis and the
winner and loser effect are related phenomena, as short-term
increases in testosterone during or after male–male interactions
(“challenge hypothesis”) may act as physiological mediators for
winning also in future encounters (‘winner effect’; Oliveira, 2004;
Oliveira et al., 2009; Oyegbile and Marler, 2005). Studies testing this
“winner–challenge”-hypothesis are, however, still rare and have been
conducted under laboratory conditions only (Oyegbile and Marler,
2005; Oliveira et al., 2009; Oliveira et al., 2002; Gleason et al., 2009).
The aim of the present study was to investigate two factors related to
the winner effect that may explain the lack of an increase in
testosterone during STIs in male black redstarts (Phoenicurus
ochruros) in the field. Black redstarts, like many other birds (reviewed
in Goymann et al., 2007a; Goymann, 2009), violate predictions of the
challenge hypothesis, i.e. they react aggressively to STIs, but they do
not increase testosterone in response to this challenge (Apfelbeck and
Goymann, 2011). In this previous work we have demonstrated that
despite the lack of a direct testosterone response to STIs black
redstarts would have the physiological capacity to raise testosterone:
males that did not show an increase in testosterone during STIs
showed a pronounced increase in testosterone when injected with
gonadotropin releasing hormone (GnRH; Apfelbeck and Goymann,
2011). Here, we tested if brief and repeated STIs with a vanishing
intruder influence future behavior and hormone levels. We either
confronted free-living male black redstarts with a single STI or with
repeated STIs with intruders that automatically disappeared after
10 min. These intrusions were conducted either with low or high
intensity, thus simulating a weak or a strong intruder. With this
paradigm we attempted to simulate several winning experiences in
the field before capturing the focal male. This experimental setup does
not allow us to directly test the winner effect, i.e. a higher probability
of winning an encounter after prior winning experiences. Also, we
could not directly test for a loser effect, i.e. a higher probability of
losing an encounter after having lost previous encounters. However,
winners or losers of a contest normally show pronounced differences
in behavior (and the winner or loser effect is often accompanied by
distinct changes in behavior). Winners of a fight usually react faster
and more aggressive in subsequent contests, while losers tend to
become more passive (Hsu et al., 2006).

Thus, in this paper, we test three hypotheses that may explain the
lack of a hormonal response of various species to single STIs:
(1) Multiple (winning) territorial encounters may be needed to
increase testosterone or (2) STIs may create a losing experience for
territory holders, during which territorial birds do not increase
testosterone. Finally, (3) the hormonal response may depend on
87
intrusion intensity. We evaluate these hypotheses based on patterns
of aggressive behavior that are indicative of winning and losing in
other species (e.g. Hsu et al., 2006) and differences in androgens and
corticosterone to single versus repeated STIs with low- or high-level
intensity encounters.

If male black redstarts should require multiple territorial interac-
tions before they show a rise in testosterone, we predict that redstarts
caught after experiencing and “winning” three consecutive STIs before
capture (during a final fourth STI) should express higher levels of
testosterone than individuals caught after just one STI. With respect to
behavior challenged territorial males should intensify their behavioral
response over days and should react stronger towards the more
threatening high-level intruders than towards the less threatening low-
level intruders (hypothesis 1).

If, on the other hand, STIs induce a losing experience (hypothesis
2) we predict that redstarts will show a weaker territorial response
(e.g. an increase in the latency to approach the decoy) during
consecutive STIs, a decrease in testosterone levels and an increase in
corticosterone levels.

However, producing a winner or a loser may depend on intrusion
intensity (hypothesis 3). In this case, a low-level intruder should be
less likely to induce a losing experience than a high-level intruder.
Hence, a high-level intruder may be more likely to induce a losing
experience and focal males may show a weak territorial response, no
increase in testosterone and an increase in corticosterone. In contrast,
a low-level intrusion should be less intimidating and more likely to
induce a winning experience — leading to a strong territorial response,
an increase in testosterone and lower levels of corticosterone.

Material and methods

Study species and study sites

We studied European black redstarts between April 9th and June
13th 2008 at two sites in Upper Bavaria: one south of the Ammersee
(N 47°, E 11°) and the other one in the Chiemgau (N 47°, E 12°). Black
redstarts are small socially monogamous songbirds, which are
sexually dimorphic and dichromatic. Redstarts live in mostly open
areas interspersed by one or several elevated structures, which are
frequently used as singing posts (Landmann, 1996). The breeding
season starts about end of April, when territories are fully established
and continues until August, when redstarts begin to molt. During the
study period, we grouped birds into three breeding sub stages:
territory establishment, nest building and incubation, and feeding
young. Plasma testosterone levels in male black redstarts follow a
seasonal profile comparable to other socially monogamous and
biparental songbird species: testosterone levels are highest at the
beginning of the breeding season, slightly lower but still high during
the parental phase of the first brood when they start preparing a
second clutch and decline afterwards to very low levels during molt
and in autumn (Apfelbeck & Goymann, unpublished data).

Experimental procedures

STIs are a commonly used method to investigate the behavioral
and hormonal reaction of a focal territorial individual to an intruder
into its territory (e.g. Goymann et al., 2008; Landys et al., 2007; Moore
et al., 2004; Wingfield, 1985; Wingfield, 1994) and have been
successfully used to induce a territorial response in male black
redstarts previously (Apfelbeck and Goymann, 2011). Typically a live
or stuffed decoy is employed in combination with playback of
territorial songs.

For the experiment we used stuffed decoys protected by an
inconspicuous cagemade of a wire frame and amist net mounted on a
tripod. A string attached to the wire frame allowed to remotely
remove the decoy: by pulling the string from a distance of about 30 m
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the decoy disappeared into a darkgreen plastic cylinder. We put a
remote-controlled loudspeaker (Foxpro Scorpion, digital game caller)
underneath the decoy to play back the territorial song of a potential
rival. To control for pseudoreplicationwe used five different playbacks
and two different decoys in adult male plumage.

We observed the birds from about 20 to 30 m distance and
recorded the following behaviors: (1) time between start of playback
and first reaction (response latency), (2) first time approaching a
range of 5 m to the decoy, (3) time spent within 5 m of the decoy,
(4) number of attacks, (5) number of songs and (6) the frequency of
head noddings which is linked with aggression or agitation. For the
STI trials with repeated challenges we observed and recorded the
behavior within the first 10 min of playback and also for the following
10 min after the decoy and playback had been removed. For the single
trial STIs and the final STI of the repeated challenges we recorded the
behavior for the first 10 min before opening the traps.

In the experiment, we used two kinds of STIs that varied in
intensity (high and low) and frequency, thus resulting in four
experimental groups. The high-level STI was a stuffed decoy that
wasmoving up and down, thus simulating the ‘head nodding’ and ‘tail
flicking’ behaviors that redstarts frequently show during territorial
conflicts. This display was combined with playback of high song
frequency with 8 songs played back per minute for 10 min. The low-
level STI consisted of a static, non-moving decoy and playback of a low
song frequency. Here, we played back 8 songs per minute for the first
2 min of the STI, another 8 songs per minute in the sixth minute of the
10 min interval, and no song for the rest of the 10 min period.

With regard to STI frequency we distinguished between two
groups: the first group (repeated STI challenge) was challenged with
different conspecific STIs three days in a row for 10 min using a
different playback and randomly one of the two decoys (using every
decoy twice with each focal male) every day. On day four we caught
the birds after another 10 min STI using mealworm-baited ground
traps and tree traps placed in the vicinity of the decoy and with
continued playback of high or low intensity. The second group was
caught after a single conspecific STI conducted in the same manner as
in the group caught after repeated STI challenges (for both groups
capture time: mean±95% CI: 30±8 min, range 3–99 min). To
additionally control for a potential disturbance due to setting up the
STI equipment (as done during the repeated STIs) we initially
“challenged” the birds of the single STI group with a heterospecific
mount of a European robin (Erithacus rubecula) and with playback of
robin song during the two consecutive days before the conspecific STI.
However, redstarts completely ignored the heterospecific STIs and are
used to the presence of humans, because they live within human
settlements. We, thus, decided to catch most of the birds of the single
STI group without conducting the heterospecific robin STI (6 redstarts
challenged with a robin, 19 without previous robin challenges).

After capture we obtained two blood samples, one (~60 μl) within
3 min (mean 2.1±0.4 min) to determine circulating corticosterone
levels and a second one (~120 μl) within 5 min (mean 3.3±1.0 min)
to determine testosterone concentrations. For blood sampling, we
punctured the left wing vein and collected the blood with heparinized
capillaries. Blood samples were immediately centrifuged with a
micro-centrifuge (Bayer Diagnostics). The amount of plasma was
measured with a Hamilton syringe for later determination of the
hormone concentration and stored in 500 μl ethanol to preserve
steroid hormones above 0 °C (Goymann et al., 2007b). In five cases we
were not able to collect a sample within 3 min for the corticosterone
determination and thus took only the sample for testosterone. After
returning to the lab (1–6 days) samples were stored at −80 °C until
analysis.

The birds in all experimental groups did not significantly differ in
body mass (F3,31=0.3, p=0.8), tarsus length (F3,31=0.9, p=0.4),
wing length (F3,31=0.7, p=0.5) and cloacal protuberance (CP)
volume (estimated by expressing it as a cylindrical shape (V=π∗
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(CP width/2)2∗CP height; F3,31=1.0, p=0.4). All experimental pro-
cedures were approved by the governmental authorities of Upper
Bavaria.

Hormone assays

Testosterone and corticosterone were measured by radioimmuno-
assay following the procedure described in Apfelbeck and Goymann
(2011) and Goymann et al. (2006). Extraction recovery (mean±STD)
was 95±2% for testosterone and 96±2% for corticosterone, respec-
tively. The concentrations of all samples, including the standard curve,
were calculatedwith Immunofit 3.0 (Beckmann Inc., Fullerton, CA,USA).
The lower detection limit of the assay was 0.78 pg/ml for testosterone
and 6.04 pg/ml for corticosterone. All samples were above the detection
limit of the assays andwere analyzedwithin oneassay per hormone. The
intra-assay coefficient of variationwas 0.3% for testosterone and 3.6% for
corticosterone; the intra-extraction coefficient of variation was 6.2% for
testosterone and 12.0% for corticosterone. Because our testosterone
antibody shows some cross-reaction with 5α-dihydrotestosterone
(44%) our measurement may include a fraction of 5α-DHT, another
potent androgenbinding to the androgen receptor.We, therefore, refer to
androgens instead of testosterone for the remainder of this contribution.

Statistical analysis

Data analysis was done with R version 2.9.1 (R Development Core
Team, 2008).

Post-conflict androgen and corticosterone concentrations
obtained after the single STI or the final STI of the repeatedly
challenged males were log-transformed prior to analysis to ensure
normal distribution and analyzed with general linear models. We
started with a model including the experimental factors and their
interaction (intruder type, number of challenges) and all further
biologically relevant factors (androgens: breeding stage, STI duration;
corticosterone: breeding stage, time between capture and blood
sampling and STI duration). Experimental factors were always
retained in all models. Interactions or other factors were removed
successively if their p-value was greater than 0.1.

To test whether repeated STIs of different intensity influence
future behavior of territorial males we analyzed the behavior of
repeatedly challenged males including also those that we were not
able to catch during the final STI. All behavioral variables except the
number of songs (see below)were analyzedwith linearmixedmodels
including bird ID as a random factor, thereby accounting for repeated
measures of the same individual. If necessary the dependent variables
were log-transformed prior to analysis to account for normal
distribution of the residuals. All initial models included the experi-
mental factors and interactions (decoy present or not, day (1–3),
intrusion type (high- or low-level), day*intruder and decoy*intruder).
Day 4 was not included in the analysis of behavioral data because
during this day the STI was continued until capture of the bird.
Furthermore, we included capture date instead of breeding stage (as
with this finer scale we reached better model fits) and whether the
males were finally caught or not. Experimental factors were always
retained in all models. Interactions or other factors were removed
successively if the p-value was greater than 0.1.

The frequency of head nods (nods per min) was corrected for the
time we did not see the focal male (response latency and time
obscured by vegetation or other cover). The time spent in an area 5 m
around the decoy was analyzed both as absolute time around the
decoy and as percentage of the total time the bird was seen (duration
of STI minus response latency and time when the bird was obscured
by vegetation and we did not know exactly how far from the decoy it
was). Both models produced similar results. However, the model fit
was better when the relative time was used as dependent variable.
Thus, only these results are shown. As the number of songs were



Fig. 2. Back-transformed means (±95% CI) of the relative amount of time that males
spent within 5 m of the decoy. Males challenged with the high-level intruder stayed
significantly longer close to the decoy during the STI than males challenged with the
low-level intruder. Sample sizes are given above bars.
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count data, we used generalized mixed models with Poisson
distribution allowing for a random slope (day) and intercept (bird
ID) and present the data as medians and their interquartile ranges.

Significance was accepted at αb0.05 (two-tailed) and data are
presented as (back-transformed) means and 95% confidence intervals
(CI).

Results

Altogether we tested 54 male black redstarts and were able to
catch 36 (67%) of them. Of these 36 caught birds 8 males experienced
a single high-level STI and 8males a single low-level STI. 10 birdswere
repeatedly challenged with high-level STIs and another 10 birds with
repeated low-level STIs, thus keeping the experimental design
balanced.

Behavior

Approach — first time within 5 m
Males that were confronted with repeated high-level STIs

approached the area within 5 m of the decoy faster during each
consecutive day, while there was no change over subsequent days in
males tested with repeated low-level STIs (intruder type: F1,25=6.5,
p=0.02, day: F2,42=1.3, p=0.3, interaction: F2,42=4.1, p=0.02,
Fig. 1). Thus, only with high-level STIs the approach latency differed
between the initial and the third challenge. Date had no significant
influence on approach latency, but there was a slight trend for
territory owners taking longer to approach the decoy later in the
season (F1,42=3.7, p=0.06).

Time within 5 m
Males spent significantly more time in the area 5 m around the

decoy during the first 10 min of all STIs, when the decoy and the
playback were present, than during the 10 min after we had removed
the decoy and playback (F1,116=11.5, pb0.001, Fig. 2). This was more
pronounced in males challenged with high-level STIs, which
remained longer in the 5 m range than males challenged with low-
level STIs (F1,116=4.9, p=0.03, Fig. 2). The proportion of time spent
within an area of 5 m around the decoy did not significantly change
during subsequent challenges, but showed a tendency for territory
owners spending more time close to the decoy on day three than on
day one (F2,116=2.7, p=0.07). Thus, all males clearly responded to
the stimuli and the response did not change from the initial to the
third challenge.
Fig. 1. Back-transformed means (±95% CI) of the approach latency. Males challenged
with a high-level intruder (n=13) approached the decoy significantly faster during the
third than during the first STI. This was not the case in males challenged with a low-
level intruder (n=13).
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Agitation — head nodding per minute
Males were much more agitated during the STI than in the 10 min

after removal of decoy and playback (F1,115=40.8, pb0.0001).
Neither type of intrusion (F1,24=0.9, p=0.4) nor day of the
experiment (F2,115=0.2, p=0.8) had an effect on the number of
head nods per minute. However, males that were finally caught were
significantly more agitated during all STIs than males that were never
caught (F1,24=6.1, p=0.02).

Songs
Males sang significantlymore songs during the 10 min after the STI

than during the 10 min when the decoy and the playback were
present (z=−14.9, pb0.0001, Fig. 3). In addition, they sang
significantly more songs when confronted with high-level than with
low-level intrusions (z=−2.2, p=0.03, Fig. 3). The number of songs
sang did not differ significantly between consecutive STIs (z=0.6,
p=0.5). Date had no significant effect on the number of songs sang,
during STI after STI during STI after ST
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Fig. 3. Medians, interquartile ranges and 95% CIs of the number of songs males sang
during and after the STI. Males challenged with the high-level intruder (n=13) sang
significantly more songs than males challenged with the low-level intruder (n=14)
during all STIs regardless of STI frequency.



Fig. 5. Back-transformed means (±95% CI) of corticosterone levels did not differ
between males that were challenged only once and males that were sampled after the
final of the repeated challenges independent of intruder type. Samples sizes are given
above bars.

569B. Apfelbeck et al. / Hormones and Behavior 60 (2011) 565–571
but there was a trend that territory owners sang less later in the
breeding season (z=−1.9, p=0.06).

Hormones

Androgens
Post-conflict androgen levels were similar in males challenged

with a single STI and those challenged with repeated STIs over the
course of four days (F1,31=0.2, p=0.6, Fig. 4). Furthermore, low- or
high-level intrusion had no significant influence on post-conflict
androgen levels (F1,31=0.01, p=0.9, Fig. 4). However, androgen
levels significantly varied with breeding stage (F2,31=7.5, p=0.002).
A priori set contrasts revealed that androgen levels of males were
significantly lower when females were incubating eggs than during
territory establishment (t=−3.4, p=0.002). During parental care
androgen levels were similar to levels during territory establishment
(t=−0.28, p=0.8), most likely because the pairs were close to
initiating the second brood.

Corticosterone
Post-conflict corticosterone levels did not differ significantly

between males that were challenged with conspecific STIs once or
repeatedly over the course of four days (F1,26=0.15, p=0.7, Fig. 5).
Post-conflict corticosterone levels also did not differ significantly
between males that were challenged with low- or high-level STIs
(F1,26=2.1, p=0.2, Fig. 5). However, post-conflict corticosterone
concentrations significantly decreased with STI duration during the
single and the final STI in males that were challenged with high-level
STIs, but not in males that were confronted with low-level STIs
(F1,26=8.5, p=0.007, Fig. 6). Overall, post-conflict corticosterone
levels during the single and the final STI were significantly positively
correlated with testosterone levels (r=0.46, N=29, p=0.009).

Neither androgen nor corticosterone levels showed any significant
correlations with any of the behaviors measured (data not shown).

Discussion

We have previously shown that black redstarts violate the
predictions of the challenge hypothesis, i.e. they are socially
monogamous and males provide a substantial amount of parental
care, but they do not increase testosterone levels during simulated
territorial intrusions (Apfelbeck and Goymann, 2011). Here, we
investigated three factors related to the winner effect that may have
had the potential to explain the lack of an increase in androgens
during STIs in this species.
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Fig. 4. Back-transformed means (±95% CI) of androgen levels did not differ between
males that were challenged only once andmales that were sampled after the final of the
repeated challenges independent of intruder type. Samples sizes are given above bars.
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First, in some species a single interaction between males may not
be sufficient to induce a rise in testosterone. Instead, multiple such
interactions may be necessary to affect hormone levels (see Oyegbile
and Marler, 2005). However, in male black redstarts also multiple
consecutive STIs did not lead to a change in androgens.

Second, we tested if STIs induce a losing experience which may
prevent an increase or may even lead to a decline in testosterone
(Goymann et al., 2007a; Kempenaers et al., 2008). The behaviors black
redstarts showed towards single and repeated STIs with self-
retreating low-level and high-level intruders strongly suggest that
this is not a likely explanation for the absence of an androgen
response during STIs in this species.

Third, the hormonal response did not differ between individuals
challenged with a high- and a low-level intruder, suggesting that
intrusion intensity did not influence the likelihood of inducing a
winning or losing experience. In addition, the strong behavioral
response to high-level intrusions does not conform to the expectation
of a reduced behavioral response when losing.

Our results demonstrate that neither single normultiple STIs result
in an increase of androgens or corticosterone in black redstarts. In
contrast to the absence of a hormonal response, repeated STIs induced
clear behavioral responses depending on the intensity of the
Fig. 6. Corticosterone levels of males challenged with the high-level intruder (filled
symbols) were significantly negatively correlated with STI duration. Corticosterone
levels of males challenged with the low-level intruder (open symbols) show no
significant relationship with STI duration.
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intrusion. Males challenged with different high-level intruders during
three consecutive days approached the decoy faster on the third day
than on the first day tested. These behavioral results are similar to
those of others, who found decreased response latencies (Antunes and
Oliveira, 2009) or an increase inaggressive behaviors during subsequent
territorial challenges (e.g. Parmigiani and Brain, 1983; Trainor and
Marler, 2001). Also, in winner-loser tests conducted with males of
socially monogamous California mice (Peromyscus californicus) the
attack latency decreased during subsequent encounters (Oyegbile and
Marler, 2005). However, unlike black redstarts California mice had
higher testosterone levels after the final encounter. In this respect,
polygynous white-footed mice (P. leucopus), which also showed no
change in testosterone after repeated challenges, were more similar to
black redstarts (Oyegbile and Marler, 2006). Thus, in contrast to the
socially monogamous black redstarts, California and white-footed mice
conform to the challenge hypothesis, which predicts that socially
monogamous species with paternal care should respond with an
increase in testosterone during male–male challenges, whereas
polygynous species without paternal care should not do so (Wingfield
et al., 1990).

By using different low and high intensity intruders and by
automatically removing the intruders during three consecutive days
our study attempted to create a winning experience in the focal male
before capturing it during the final STI on the fourth day. By using this
setup we think that we can exclude that the lack of an increase in
androgens during STIs in black redstarts (andmost likely in other bird
species that lack a testosterone response during STIs) is caused by a
losing experience for several reasons.

First, the overall intensity of the behavioral response did not
change over days. If focal males would have perceived the STIs as
losing experience we would have expected a reduced territorial
response during consecutive STIs (Hsu et al., 2006). Furthermore, the
behavioral data suggest that males challenged with a high-level
intruder did not perceive these challenges as a losing experience.
These males approached the decoys faster during subsequent days,
they spent more time very close to the decoy and they sang more
songs compared to black redstarts challenged with low-level in-
truders. Thus, high-level intruders were probably perceived as more
threatening than low-level intruders. But rather than giving up, as
when losing an encounter, the males showed a stronger territorial
response. Some recent studies on other songbirds point into the same
direction. For example, males of the golden whistler (Pachycephala
pectoralis) stayed closer to a decoy during a high-level intrusion than
during a low-level intrusion (VanDongen and Mulder, 2008). De Kort
et al. (2009) found that male bandedwrens (Thryophilus pleurostictus)
reactedmore aggressively and sangmore often when challenged with
a median performance singer than when challenged with a high or
low performance singer. Thus, the behavioral responses of birds
highly depend on the intensity of a STI.

Second, also the corticosterone data of the black redstarts argue
against STIs creating a losing situation. If the STIs would have caused a
losing experience in black redstarts, we would have expected higher
levels of corticosterone inmales that were repeatedly challengedwith
high-level intruders. However, corticosterone levels did not differ
between males that were challenged once and males that were
challenged multiple times before capture. Corticosterone levels of STI
challenged redstarts were similar to those of redstarts caught
passively without any challenge (V. Görlich & W. Goymann,
unpublished data). Furthermore, although high-level intruders
evoked a stronger behavioral response and were obviously perceived
as more menacing than low-level intruders, plasma corticosterone
levels did not differ between intrusion intensities. Inmales challenged
with high-level intruders, plasma corticosterone levels were even
lower the longer the STI lasted. Thus, corticosterone levels either
decreased during the STI or males caught later during the challenge
had lower levels of corticosterone to begin with.
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In summary, because black redstarts showed a stronger behavioral
response towards high-level intruders than towards low-level in-
truders, and because there were no differences in testosterone or
corticosterone levels, neither between birds challenged only once or
multiple times nor between birds challenged with high-or low-level
intruders, we consider it unlikely that single or multiple STIs could
have created a losing experience in these birds.

Conclusions

Male black redstarts seem to be very resistant against social
modulation of androgen levels during STIs. Although they are
physiologically capable to mount an androgen response both during
STIs and during real intrusions, they do not do so (Apfelbeck and
Goymann, 2011). Here, we demonstrated that even repeated STIs did
not result in an increase in androgens and that different STI intensities
had a strong effect on behavior but not on hormone levels. Thus, in
this species, aggressive behavior does not seem to influence plasma
androgen levels and experience alone may be sufficient to induce a
winning experience. Alternatively, territorial conflicts may not affect
plasma androgens, but may lead to local production of neurosteroids
directly in the brain (London et al., 2006) and thereby facilitate
changes in behavior. Furthermore, there was no evidence that the lack
of an androgen response was connected to a losing experience
following STIs. Substantial behavioral evidence and hormonal data
suggest that the opposite is the case, i.e. the larger the threat the more
vigorously they defended their territory and they showed no increase
in corticosterone levels which may have indicated a defeat.
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Abstract 

It has been suggested that testosterone plays an important role in resource 

allocation for competitive behaviour. However, besides this general relationship, 

details of the interplay between testosterone, territorial aggression and signal 

plasticity in a natural context are largely unknown. Therefore, we studied if 

testosterone acts specifically on signals that communicate the motivation or 

ability of individuals to engage in such competitive situations, using the black 

redstart, a territorial songbird species as study organism. During spring, male 

territory holders were implanted with an androgen receptor blocker and an 

aromatase inhibitor to inhibit the action of testosterone or metabolites of this 

hormone. Controls received a placebo treatment. Three days after implantation 

birds were challenged with a simulated territorial intrusion. Song was recorded 

before, during and after the challenge. Both blocker and placebo-implanted 

males increased the number of elements sang in parts of their song. However, 

while placebo-implanted males sang one of these parts with the same maximum 
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frequency as in the unchallenged situation, blocker-implanted males decreased 

the maximum frequency of that part. Furthermore, placebo-, but not blocker-

implanted males, sang shorter songs with shorter pauses between parts and the 

atonal part of their song with a broader frequency bandwidth in the agonistic 

context. To the best of our knowledge this study is the first to show that 

testosterone facilitates context dependent changes in song structures that may 

be honest signals of male quality in a songbird. 

 

 

Introduction 

 

Sexually selected signals often serve both to attract a mate and to advertise 

competitive abilities for example during territorial disputes (reviewed in Searcy 

and Nowicki 2005). Testosterone is thought to be one of the main hormones 

involved in adjusting such signals according to the behavioural context. For 

example, territorial behaviours and associated vocalisations in a wide range of 

male vertebrates during breeding are modulated by testosterone (reviewed in 

Adkins-Regan 2005). It has been suggested that testosterone might play an 

important role in resource allocation for competitive behaviour (reviewed in 

Wingfield, Moore et al. 2006; Botero, Rossman et al. 2009). From that point of 

view, testosterone should act specifically on signals that communicate the 

motivation or ability of individuals to engage in such competitive situations. 

However, besides this general relationship, details of the interplay between 
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hormones, territorial aggression and signal plasticity in a natural context are 

largely unknown. 

 With regard to this, it may be elucidating to study the song behaviour of 

male passerine birds. In many bird species, males modulate their song in an 

aggressive context (e.g. Price, Earnshaw et al. 2006; DuBois, Nowicki et al. 

2009) and male as well as female listeners respond differentially to such 

modulations (Draganoiu, Nagle et al. 2002; Draganoiu, Pasteau et al. 2006; Illes, 

Hall et al. 2006; DuBois, Nowicki et al. 2011). Besides changes in the general 

output of song (e.g. song rate or amplitude), song modulations also occur in 

structural song characteristics. Those structural features describe for example 

song repertoire characteristics (Voigt and Leitner 2008) or song parts that are 

challenging to sing such as rapid broadband trills (reviewed in Podos, Lahti et al. 

2009); specific song trills (Vallet, Kreutzer et al. 1997) or consistent syllables 

(Botero, Rossman et al. 2009). Structural song patterns have been classified as 

„index signals‟ that honestly communicate a physical trait related to male quality 

(Hurd and Enquist 2005). Only very few studies revealed a capability of 

individuals to modulate even such physically constrained signals within narrow 

limits (Bee and Perrill 1996; Price, Earnshaw et al. 2006; DuBois, Nowicki et al. 

2009). Thus, from a functional point of view, index signals such as structural 

song parameters should play an important role in the communication of 

competitive ability. 

The steroid hormone testosterone plays an important role in the regulation 

of adult singing (reviewed in Harding 2004) and manipulating testosterone levels 
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may alter song output (measured e.g. as song rate or duration; e.g. Silverin 

1980; Ketterson, Nolan et al. 1992; Hau, Wikelski et al. 2000; Boseret, Carere et 

al. 2006; Ritschard, Laucht et al. 2011). Whether testosterone also affects 

structural song parameters is less clear. In barn swallows (Hirundo rustica), the 

duration and pulse rate of the harsh „rattle‟ element correlated moderately with 

absolute testosterone levels (Galeotti, Saino et al. 1997). Manipulation studies 

showed that zebra finches (Taeniopygia guttata) treated with testosterone 

decreased the fundamental frequency of harmonic stacks in their song on a long-

term basis (Cynx, Bean et al. 2005). Other correlative studies or studies with 

testosterone treatment failed to find effects on structural song parameters 

(Weatherhead, Metz et al. 1993; Kunc, Foerster et al. 2006; Ritschard, Laucht et 

al. 2011). Studies that implant birds with testosterone may be problematic, 

because right after implantation testosterone is released in pharmacological 

doses (Fusani 2008). It is thus questionable whether manipulations within the 

physiological range of testosterone levels would induce similar effects. The – so 

far - only study in which the androgenic and oestrogenic pathways of 

testosterone action were blocked, failed to find effects on structural song 

parameters in great tits (Parus major, Van Duyse, Pinxten et al. 2005). Thus, to 

the best of our knowledge, an effect of physiological changes in testosterone on 

the structure of song has not been demonstrated so far. 

In this study, we investigated spontaneous song and reactive singing in an 

aggressive context of free-living male black redstarts (Phoenicurus ochruros). 

Testosterone can modulate behaviour by either directly binding to androgen 
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receptors or indirectly by binding to oestrogen receptors (Balthazart 1997). We 

tested the role of testosterone in the modulation of song characteristics by 

blocking androgen receptors with flutamide and by inhibiting the conversion of 

testosterone to oestradiol with letrozole, an aromatase inhibitor (Cheshenko, 

Pakdel et al. 2008). As controls we used birds treated with placebo implants. 

After implantation, we first recorded the spontaneous song of territorial males in 

an undisturbed context and then conducted a playback experiment simulating a 

territorial intrusion (STI) by a foreign male. The aim of our study was twofold. 

First, we wanted to investigate whether black redstarts change structural song 

parameters in an aggressive context. Second, by blocking testosterone in a 

subset of birds, we attempted to determine the role of this hormone in context-

dependent vocal plasticity. If testosterone is playing a key role in the resource 

allocation for competitive behaviour (e.g. Hau 2007), we would expect blocker-

treated males to invest less in those behaviours and song patterns that are 

relevant in such situations. Index signals that honestly communicate a physical 

trait related to male quality (Hurd and Enquist 2005) are good candidates here.  

 

Material and Methods 

Black redstarts are socially monogamous song birds that establish territories 

after returning from their wintering grounds in March (Landmann and Kollinsky 

1995). Adult (≥ 2 years) territorial male black redstarts were caught in 2009 (April 

9th - 27th) in Upper Bavaria, Germany (N 47º, E 11º). Males were implanted with 

either one placebo pellet (n = 10) or two time release pellets (n = 10, Innovative 
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research of America, Sarasota, FL) containing the androgen receptor blocker 

flutamide and the aromatase inhibitor letrozole, respectively. For details on the 

effect of the blockers on plasma testosterone levels see Apfelbeck et al. (in prep., 

chapter 5). In addition, each male was colour-banded for individual recognition. 

All experimental procedures were approved by the governmental authorities of 

Upper Bavaria. 

Simulated territorial intrusions were conducted three days after 

implantation. For the playback we used songs from 20 adult male black redstarts 

recorded in spring 2009 with a Sennheiser directional microphone (ME66/K6) 

connected to a Marantz solid state recorder PMD 660 (sampling frequency: 44.1 

kHz; resolution: 16 bit). For each target male we selected a playback that was 

recorded at least 10 km away from the study area. Playbacks were put together 

using Avisoft-SASLab Pro software, version 4.51 (Raimund Specht, Berlin, 

Germany). Each playback consisted of 20 songs recorded from one male. Songs 

were filtered (1 kHz high-pass filter) and amplitude was normalized to 75 %. A 

playback consisted of each of two different song types (X and Y) played back in a 

XXYYXXYYXX sequence, with X and Y in 10 different versions. Songs were 

divided by pauses of 4.5 s. By repeating each sequence six times the playback 

had a duration of 20 minutes in total. This design resembled the natural song 

organisation of the species. Each playback was used only during one STI of each 

experimental group. 

The simulated territorial intrusion (STI) experiments were performed by 

placing a stuffed decoy (male in full adult plumage protected by an inconspicuous 
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cage, three different decoys used) into the centre of the respective territories. A 

remote-controlled loudspeaker (Foxpro Scorpion, digital game caller, FOXPRO 

Inc. Lewistown, USA) was put underneath the decoy to play back the territorial 

song of a potential rival at a sound pressure level of 65 dB SPL at 1 m (as 

measured with a CEL 573.B1 Sound Level Analyzer). We only started an 

experiment when a male was singing. The song was recorded 10 min prior to the 

start of the STI, during the 20 min STI and 10 min after the STI. 

The song was analysed using Avisoft-SASLab Pro software, version 4.51. 

Recordings were visualized in spectrograms (settings: sample rate 22,050 Hz, 

FFT = 256 points, Hamming-Window, Overlap: 50 %). We determined the 

number of songs by visual inspection and selected songs of sufficient quality (low 

background noise) for further sound analysis. Each song of black redstarts can 

be divided into three distinct parts (part A, B and C, see Fig. 1 and e.g. Cucco 

and Malacarne 1999) with a pause of varying length between part A and B. We 

measured the duration of part A, B, C, the total song and the duration of pauses 

between A and B (Fig. 1). We counted the number of elements of part A and C 

(mean of max. 20 songs). We also determined the frequency bandwidth and the 

maximum frequency of part A, B and C using the automatic parameter 

measurement function (threshold -20 dB) in Avisoft (mean of max. 10 renditions 

of high-quality songs). 
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Figure 1: A song of a black redstart illustrating the acoustic measures analyzed 

(Spectrogram: Avisoft-SASLab Pro, sample rate 22,050 Hz, FFT = 256 points, 

Hamming-Window, Overlap: 50 %).  

 

Data were analysed with R version 2.9.1 (Development Core Team 2009). Song 

before, during, and after the STI was analysed using general linear mixed models 

with bird identity as a random effect to control for repeated measures. We 

analysed whether the dependent variables (number of songs, song duration, 

duration of part A, B, C and the pause between part A and B, the number of 

elements in part A and C and maximum frequency and bandwidth of all parts) 

were influenced by the blocker treatment, part of the STI and their interaction. In 

all cases, dependent variables where transformed if assumptions of normality 

and/or equality of variances were not met. Significance was accepted at α ≤ 0.05. 

 

Results 

Males sang significantly fewer songs during the STI than when singing 

spontaneously before and after the STI (Table 1, Fig. 2). 
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Song duration significantly changed in control males, with songs during the STI 

being shorter than before or after the STI. In blocker-implanted males, song 

duration remained constant before, during and after the STI (Table 1). The 

shortening of the song in control males was mainly due to a significantly shorter 

pause between song part A and B (Table 1), because the durations of the three 

song parts (A, B and C) did not differ significantly before, during and after the STI 

(Table 1). Thus, even though placebo-implanted males sang shorter overall-

songs during the STI than blocker-implanted males, this reflected a higher signal 

density because of shorter pauses. 

 

 

Figure 2: Song rate (mean ± 95 % confidence intervals) before, during and after 

the STI, separated for males treated with flutamide and letrozole („blocker‟, n = 

10) and placebo treated males („control‟, n = 10). For details on song 

measurements and statistics see text. 
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Table 1. Linear mixed model results. Part is a within-subjects factor with three 

levels: before STI (= spontaneously sung songs), during STI (playback and 

decoy present) and after STI (directly after removal of playback and decoy). 

Treatment is a between-subjects factor with two levels: placebo implanted vs. 

blocker implanted males. To control for repeated measures the ID of each 

territory owner was included as random intercept. Significant results are 

highlighted in bold. 

 

 treatment part part*treatment 

song rate F1,18 = 2.3 
p = 0.1 

F2,30 = 23.6 
p < 0.0001 

F2,30 = 1.3 
p = 0.3 

song duration F1,18 = 0.2 
p = 0.6 

F2,30 = 6.7 
p = 0.004 

F2,30 = 3.8 
p = 0.03 

duration A F1,18 = 0.7 
p = 0.4 

F2,30 = 2.3 
p = 0.1 

F2,30 = 1.4 
p = 0.3 

duration B F1,18 = 0.2 
p = 0.6 

F2,30 = 2.0 
p = 0.2 

F2,30 = 0.4 
p = 0.6 

duration C F1,18 = 0.4 
p = 0.6 

F2,30 = 0.9 
p = 0.4 

F2,30 = 0.2 
p = 0.8 

duration pause A-
B 

F1,18 = 1.2 
p = 0.3 

F2,30 = 7.6 
p = 0.002 

F2,30 = 1.0 
p = 0.4 

no of elements in 
A 

F1,18 = 0.6 
p = 0.6 

F2,30 = 23.1 
p < 0.0001 

F2,30 = 1.1 
p = 0.4 

no of elements in 
C 

F1,18 = 0.04 
p = 0.8 

F2,30 = 12.2 
p < 0.0001 

F2,30 = 0.9 
p = 0.4 

freq bandwidth A F1,18 = 1.5 
p = 0.2 

F2,30 = 1.1 
p = 0.4 

F2,30 = 2.1 
p = 0.1 

max frequency A F1,18 = 1.4 
p = 0.3 

F2,30 = 3.9 
p = 0.03 

F2,30 = 5.1 
p = 0.01 

freq bandwidth B F1,18 = 3.7 
p = 0.07 

F2,30 = 4.4 
p = 0.02 

F2,30 = 5.4 
p = 0.009 

Max frequency B F1,18 = 6.6 
p = 0.02 

F2,30 = 3.6 
p = 0.04 

F2,30 = 2.0 
p = 0.2 

freq bandwidth C F1,18 = 0.1 
p = 0.7 

F2,30 = 0.9 
p = 0.4 

F2,30 = 0.09 
p = 0.9 

max frequency C F1,18 = 0.2 
p = 0.7 

F2,30 = 2.1 
p = 0.1 

F2,30 = 0.2 
p = 0.8 
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Both placebo- and blocker-implanted males sang significantly more elements in 

song part A and C during and after the STI than before the STI (Table 1, Figs. 

3a, b). This element increase resulted from an increase in the number of 

elements of the trilled phrases of part A or C, respectively (Fig. 1). By definition, 

part B did not change with respect to this measure because it consisted of one 

element only (Fig. 1). 

 

Figure 3: Structural song measures (mean ± 95 % confidence intervals) before, 

during and after the STI, separated for males treated with flutamide and letrozole 

(„blocker‟, n = 10) and placebo treated males („control‟, n = 10). For details on 

song measurements and statistics see text. 

103



Testosterone affects song modulation 

 

Blocker-implanted males sang part A with a significantly lower maximum 

frequency during and after the STI than before the STI. In contrast, the maximum 

frequency of part A did not change before, during and after the STI in placebo-

implanted males (Table 1, Fig. 3c). As a consequence of theses changes in 

maximum frequencies of part A, blocker implanted males tended to sing this part 

with a lower frequency bandwidth after the STI than placebo-implanted males. 

Both treatment groups sang part B with a significantly higher maximum frequency 

during the STI than before the STI. Furthermore, the maximum frequency of this 

part tended to remain high after the STI in placebo-implanted males but not in 

blocker-implanted males (Table 1). Consequently, placebo-implanted males sang 

part B with a significantly larger frequency bandwidth during and after the STI 

than before the STI, while frequency bandwidth of part B did not change in 

blocker implanted males (Table 1, Fig. 3d). Maximum frequency and the 

frequency bandwidth of part C did not change in response to the STI or blocker 

treatment (Table 1). 

 

Discussion 

In this study, we explored the role of testosterone and its oestrogenic metabolites 

in modulating song characteristics in black redstarts in a spontaneous and a 

reactive context. Territorial males of both blocker and control groups responded 

to the STI with changes in their song: besides decreasing the song rate, they 

also increased the number of elements in part A and C while keeping the length 

of these parts constant. However, while placebo-implanted males maintained the 

maximum frequency of song part A despite the higher element rate at the same 
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level than before the STI, blocker implanted males sang part A with a lower 

maximum frequency. In addition, placebo-implanted males increased the 

frequency bandwidth of part B during the aggressive context, while blocker-

implanted males did not do so. Placebo-implanted males also sang shorter 

overall songs due to a shorter pause between part A and B. 

In summary, territorial males of both groups did change structural song 

parameters in an aggressive context. The increase in the number of elements 

sung in part A and C may indicate that black redstarts increased the performance 

of these parts during the aggressive context. However, in blocker-implanted 

males this increase in the number of elements in part A was associated with a 

decrease in its maximum frequency (and they therefore tended to sing this song 

part with a lower frequency bandwidth than during spontaneous song). This 

suggests that they could not increase the number of elements and maintain the 

frequency at the same time or that they invested less into the production of these 

signals than did control birds. In addition, in contrast to placebo-implanted males 

they did not increase the frequency bandwidth of song part B. Part B consists 

only of a single noisy song element (Fig. 1). There are good reasons to assume 

that such atonal song elements are not produced by the syrinx but by modulating 

the airflow in the vocal tract (reviewed in Riede and Goller 2010). Accordingly, 

placebo-implanted birds may sing with a higher air pressure and thus louder than 

blocker-implanted males. As a consequence, a broader range of frequencies is 

“broadcasted” in control males than in blocker-implanted males. Alternatively, a 

broader frequency range might be achieved by an increase in beak opening (e.g. 
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Hoese, Podos et al. 2000). In barn swallows, the song characteristics of a similar 

harsh or noisy element, the rattle, were correlated with testosterone 

concentration (Galeotti, Saino et al. 1997). Changing the acoustic properties of 

such elements within limits may be interpreted as a way to increase their signal 

value as described in the framework of index signals. 

With regard to trilled parts, it has been suggested previously that the 

production of repeated (trilled) syllables with a high frequency bandwidth is 

challenging (reviewed in Podos, Lahti et al. 2009) and probably an honest signal 

of male quality (Illes, Hall et al. 2006; Ballentine 2009). Females of some species 

prefer songs sung with a high trill rate and broad frequency bandwidth 

(Draganoiu, Nagle et al. 2002; Ballentine, Hyman et al. 2004). Furthermore, 

swamp sparrows (Melospizia georgiana) increase both trill rate and frequency 

bandwidth in response to simulated territorial intruders (DuBois, Nowicki et al. 

2009). The song changes of black redstarts during aggressive encounters fit well 

within this picture: redstarts changed structural song parameters that have been 

suggested to be physically challenging in other species. 

Our experiment suggests that some, though not all song response 

measures in an aggressive context are mediated by testosterone directly or via 

its conversion to oestradiol. Blocking these hormones particularly affected 

structural song measures. This may indicate that testosterone represents an 

underlying mechanism allowing the modification of „index signals‟ such as trill 

rate or frequency measures. Similar results were recently reported for singing 

mice (Pasch, George et al. 2011) and may thus reflect a general mechanism in 
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vertebrates. In birds, such a modification within limits may be achieved for 

example by modifying properties of the syrinx, a testosterone and oestrogen 

sensitive organ (Wade and Buhlman 2000; Veney and Wade 2004; Veney and 

Wade 2005), or the beak muscles (Hoese, Podos et al. 2000). In addition, the 

neuronal coordination of singing might be affected by changes in testosterone 

levels, too (reviewed in Balthazart, Charlier et al. 2010). 

In conclusion, our study demonstrates that manipulating the effects of 

testosterone within a physiological range had effects on both song output and 

structural song measures of black redstarts during competitive situations. We 

conclude that testosterone may affect both the signal parameters indicating the 

motivation and the ability to engage in competitive interactions such as territorial 

disputes. This might be achieved by effects of testosterone on the neuronal and 

physiological capabilities to produce certain song elements depending on the 

behavioral context. This very nicely illustrates that hormones may not generally 

change the likelihood of a behavior, but only does so in a context-dependent 

manner (Monaghan and Glickman 1992). 
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Abstract 

Many studies in behavioural endocrinology attempt to link territorial aggression 

with testosterone, but the exact relationship between testosterone and territorial 

behaviour is still unclear and results for different species seem conflicting. The 

degree to which testosterone facilitates territorial behaviour is particularly little 

understood in species that defend territories during breeding and outside the 

breeding season, when plasma levels of testosterone are low. Here we suggest 

that species that defend territories for extended periods of time and also 

independent of reproduction may have lost the direct regulation of territorial 

behaviour by androgens to avoid the costs of testosterone. Only sexually 

relevant components of this behaviour may be under control of sex steroids 

during breeding. We treated territorial male black redstarts (Phoenicurus 

ochruros) with an antiandrogen and an aromatase inhibitor during the breeding 

season to block both the direct and indirect effects of testosterone. Three and ten 

days after the treatment, implanted males were challenged with a simulated 
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territorial intrusion. The territorial response as a whole was not reduced, but the 

treatment changed the emphasis of territoriality: blocker-implanted males 

invested more in behaviours addressed directly towards the intruder, whereas 

placebo-treated males put most effort into their vocal response, a component of 

territoriality that may be primarily directed towards their mating partner rather 

than the opponent. In combination with previous findings, these data suggest that 

overall territoriality may be decoupled from testosterone in male black redstarts. 

However, high levels of testosterone during breeding may facilitate context 

dependent changes in song structure. 

 

Introduction 

In a reproductive context, testosterone and its metabolite oestradiol are 

considered major hormones facilitating territorial behaviour and the associated 

vocalizations in a wide range of male vertebrates (e.g. Lincoln, Guinness et al. 

1972; Wingfield, Hegner et al. 1990). Particularly in birds, seasonal peaks in 

testosterone closely match with periods of intense male-male competition for 

territories and mates (Wingfield, Hegner et al. 1990). Furthermore in songbirds, 

testosterone and oestradiol play an important role in the activation of song during 

the breeding season (reviewed in Ball and Balthazart 2010). Brain areas involved 

in the production and learning of song and neural areas associated with sexual 

arousal and aggression express receptors for androgens and oestrogens as well 

as the enzyme aromatase, which converts testosterone into oestradiol (Gahr and 

Metzdorf 1997; Metzdorf, Gahr et al. 1999). Hence, testosterone can modulate 
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behaviour either directly or indirectly by conversion to oestradiol (Schlinger and 

Callard 1990; Balthazart 1997). 

 Sex steroids such as testosterone and oestradiol orchestrate 

physiological, morphological and behavioural changes important for reproduction 

(e.g. Lincoln, Guinness et al. 1972). Thus, a close link between the expression of 

territorial behaviour and testosterone ensures that this behaviour is only 

expressed in the appropriate context (Adkins-Regan 2005), as maintaining high 

levels of aggression is energetically costly and may impair survival (Dufty 1989; 

Wingfield, Lynn et al. 2001). However, especially in songbird species it is quite 

common that males also defend territories outside the breeding season, when 

testes are regressed and testosterone levels are low (Schwabl and Kriner 1991; 

Wingfield 1994; Canoine and Gwinner 2002; Hau and Beebe 2011). When a 

behaviour is expressed over a long time period or even throughout the year its 

control may be decoupled from hormones (e.g. Adkins-Regan 2005). Hence, in 

cases when territorial behaviour occurs during most of the year it may be 

independent of testosterone. Although only few species have been studied in this 

regard so far, these studies suggest that - at least during the breeding season - 

testosterone plays a role in the regulation of territorial behaviour also in species 

that defend territories in reproductive and non-reproductive contexts (Schwabl 

and Kriner 1991; Wingfield 1994; Canoine and Gwinner 2002; Hau and Beebe 

2011; Marasco, Fusani et al. 2011). However, the degree to which testosterone 

facilitates territoriality appears to differ between species. Three potential 

mechanisms seem likely. 

113



Testosterone emphasizes vocal behaviors 

 

 First, in some species the degree of territorial aggression differs between 

breeding and non-breeding context with males expressing only low levels of 

territorial aggression outside the breeding season. This low-intensity territorial 

behaviour may be independent of testosterone and testosterone intensifies 

territoriality during reproduction. This has been shown to be the case, for 

example, in male mountain spiny lizards ((Sceloporus jarrovi, Moore 1986; Moore 

1988) and European nuthatches (Sitta europea, Landys, Goymann et al. 2010). 

 Second, testosterone may facilitate territoriality in breeding and non-

breeding contexts, but may be derived from different sources during breeding 

and non-breeding. Song sparrows, Melospiza melodia, show similar levels of 

territorial aggression during the breeding and the non-breeding season (Wingfield 

1994). Here, territorial behaviour was facilitated by conversion of testosterone to 

oestradiol (Soma, Tramontin et al. 2000). In the non-breeding season, when 

circulating levels of testosterone are low, testosterone may be produced directly 

in the brain by conversion of dehydroepiandrosterone (DHEA) to testosterone or 

oestradiol. DHEA is of nongonadal origin and its plasma levels are elevated 

during the non-breeding season in song sparrows (Soma and Wingfield 2001). It 

is surprising though, that several components of territorial behaviour in song 

sparrows seem to be driven by oestradiol during the non-breeding season, but 

not during breeding: the treatment with fadrazole, an aromatase inhibitor, clearly 

affected several measures of territorial behaviour during non-breeding, but had 

little effect during breeding (Soma, Sullivan et al. 2000). 
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 Third, sex steroids may activate exclusively those components of territorial 

behaviour that are relevant in a breeding context only. This may be the case in 

most songbird species studied so far (Table 1) because a strong overall effect of 

testosterone on territorial behaviour is the exception rather than the rule. For 

example, none of the studies applying pharmacological blockers inhibiting the 

(direct and/or indirect) effects of testosterone reported that blocker-implanted 

birds lost their territory (Table 1). Furthermore, in most cases the treatment only 

reduced some aspects of the territorial behaviour (Schwabl and Kriner 1991; 

Hau, Wikelski et al. 2000; Canoine and Gwinner 2002; Sperry, Wacker et al. 

2010). In one case there was even no effect at all on any of the behaviours 

measured (Moore, Walker et al. 2004). In addition, in studies where the blockers 

had an effect on territorial behaviour, the effect was usually found during the 

breeding season, but not during non-breeding (Schwabl and Kriner 1991; 

Canoine and Gwinner 2002; Hau and Beebe 2011). Territoriality consists of a 

variety of behaviours including vocalizations (song, calls), spatial behaviours, 

threat displays and direct aggression. Similar to courtship displays (Fusani, Gahr 

et al. 2001), these different components may be facilitated by distinct (hormonal) 

pathways (Schwabl and Kriner 1991; Van Duyse, Pinxten et al. 2002; Sperry, 

Wacker et al. 2010). During the breeding season, testosterone may specifically 

activate those aspects of the territorial response that are relevant in a 

reproductive context, i.e. involve signalling to females. For example, in the grey 

partridge (Perdix perdix) testosterone manipulations affect the quality of the rusty 
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gate call and its salience for females (Beani and Dessi-Fulgheri 1995; Beani, 

Panzica et al. 1995). 

 The aim of this study was to investigate the role of testosterone and its 

metabolite oestradiol in the regulation of territorial behaviour in male black 

redstarts (Phoenicurus ochruros). Males of this species are highly territorial in 

spring when their testosterone levels are elevated, but also in autumn when 

testosterone is basal (Apfelbeck and Goymann 2011, chapter 2). Similar to other 

songbirds males express androgen receptors in nuclei of the song control 

system, and androgen and estrogen receptors as well as aromatase in pre-optic 

and hypothalamic areas (based on in situ hybridization studies, Apfelbeck et al., 

in prep., chapter 1). However, unlike some other species (reviewed in Goymann 

2009) male black redstarts do not increase testosterone during agonistic 

encounters with other males or during simulated territorial intrusions (STI) with a 

male decoy (Apfelbeck and Goymann 2011; Apfelbeck, Stegherr et al. 2011, 

chapters 2 and 3). 

 In male black redstarts non-vocal territorial behaviours do not differ 

between the breeding and the non-breeding season and thus are not correlated 

with circulating testosterone levels (Apfelbeck and Goymann 2011, chapter 2). 

However, context - dependent structural changes in the song seem to depend on 

testosterone or oestradiol during breeding (Apfelbeck et al., submitted, chapter 

4). We, thus, hypothesized that territorial behaviour as such should be decoupled 

from the control of sex steroids in this species. Instead, only those components 

of territoriality (e.g. song structure) that are particularly relevant in a breeding 
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context should be influenced by sex steroids. We implanted male black redstarts 

with the anti-androgen flutamide and the aromatase inhibitor letrozole and 

challenged them with a simulated territorial intrusion (using a mounted decoy and 

audio-playback of black redstart song), three and ten days after implantation. We 

predicted that the ability of blocker-treated males to defend a territory should not 

differ from that of control males during the breeding season. However, based on 

our previous findings (Apfelbeck et al., submitted, chapter 4), males implanted 

with blockers should invest less into vocal performance than placebo-implanted 

males. 
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Table 1. Effects of blocker treatment in different species. 

species  inhibited days song 
output 

song 
structure 

calls approac
h latency 

closest 
approac
h 

time 
spent 
close 

latency 
attack 

flights, 
chases 

threat 
displays 

loss of 
territory 

references 

breeding 
season 

             

European 
stonechat  

AR/ Aro 7-17     yes  yes   no Canoine&Gwinner, 
2001 
Marasco et al., 
2011 

European 
robin 

AR 8-14 and 
18-25 

no 
no 

  no 
yes 

no 
no 

no 
no 

   no 
no 

Schwabl & Kriner, 
1991 

Song 
sparrow 

AR 
pre-
breeding 

18 no   no no no  yes  no Sperry et al., 2010 

Song 
sparrow 

AR 
breeding 

18 no   no no no  no  no Sperry et al., 2010 

Song 
sparrow 

Aro 24hrs and 
8-10 

no 
no 

  no 
no 

no 
no 

no 
no 

 no 
no 

 no 
no 

Soma et al., 2000 

Red-winged 
blackbird* 
(polygynous) 

AR/Aro 2-5 no (1)  no     no  no (2) Beletsky et al., 
1990

1
 

Red-winged 
blackbird* 

AR 4-12 no  no     no  no Beletsky et al., 
1990

1
 

Great tit AR/Aro 2-5 yes (3) no (4)        no VanDuyse et al., 
2005

1
 

Spotted 
antbird 

AR/Aro 8 yes (5)  Less 
snarls 

     no Lab study Hau et al., 2000 

Rufous-
collared 
sparrow  

AR/Aro 7-13 no   no no no  no  no Moore et al., 2004 

non-
breeding 
season 

inhibited days song 
output 

song 
structure 

calls approac
h latency 

closest 
approac
h 

time 
spent 
close 

latency 
attack 

flights, 
chases 

threat 
displays 

loss of 
territory 

references 

European 
stonechat 

AR/Aro 7-17     no  no   no Canoine&Gwinner, 
2001 

European 
robin 

AR 6 and  
31-39 

no 
no 

  no 
no 

no 
no 

no 
no 

   no 
no 

Schwabl & Kriner, 
1991 

Song 
sparrow 

Aro 24hrs and 
9-12 

no, 
yes 

  no, 
yes 

yes 
yes 

no, 
yes 

 yes 
yes 

 no 
no 

Soma et al., 2000a 
Soma et al., 2000b 

Song 
sparrow 

AR/Aro 7 
and 30 

no, 
yes 

  no, 
yes 

no, 
yes 

no, 
yes 

 no, 
yes 

 no 
no 

Soma et al., 1999 

Spotted 
antbird 

AR/Aro 8 no  no      no lab study Hau and Beebe, 
2011 
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The column “inhibited” indicates the type of blocker treatment. AR: androgen receptors were blocked; Aro: the enzyme 

aromatase and thus the conversion of androgens to oestrogens was blocked. All except the last two species were 

temperate-zone breeding birds. Spotted-antbirds and rufous-collared sparrows breed in the tropics. Most of the studies 

assessed territorial behaviour by challenging implanted territory owners with simulated territorial intrusions, except two 

studies which quantified spontaneous aggression (*). 

1. More vocalizations in general. 

2. Some males lost parts of their territories. 

3. The likelihood of dawn song was reduced. 

4. There was no effect on song duration or repertoire size. 

5. They sang less spontaneous song, less song towards females and during STIs. 

119



Testosterone emphasizes vocal behaviors 

 

Material and Methods 

Adult (≥ 2 years) male black redstarts were caught in 2009 between April 9th and 

27th in Upper Bavaria (N 47º, E 11º, 500-600m above sea level) with mealworm-

baited ground traps. Birds were lured to the traps by broadcasting playbacks with 

the species’ song of short duration (< 2min). We remotely muted the loudspeaker 

as soon as the territory owners approached the traps. Conspecific playback does 

not influence testosterone levels in territorial male black redstarts (Apfelbeck & 

Goymann, 2011, chapter 2). Upon capture we took several biometric 

measurements and implanted males alternately with either one placebo pellet (n 

= 10) or two time release pellets (n = 10) containing the androgen receptor 

blocker flutamide and the aromatase inhibitor letrozole, respectively (21 day 

release: 1.5 mg per pellet; release rate 71 μg/day; Ø = 3.2 mm, Innovative 

Research of America, Sarasota, FL). Letrozole inhibits cytochrome p450 

aromatase (CYP 19). This enzyme is important for the conversion of testosterone 

to estrogen (Cheshenko, Pakdel et al. 2008). Thus, by combining flutamide and 

letrozole, it is possible to block direct and indirect effects of androgens on 

behaviour. Implants were inserted subcutaneously with a pair of tweezers 

through a small incision in the skin on the back between the wings. The incision 

was sealed with tissue glue (Nexaband; World Precision Instruments). 

Control and experimental groups did not differ significantly in body mass (t 

= 1.52, df = 17.9, p = 0.15), length of the right tarsus (t = -0.25, df = 12.5, p = 

0.8), length of the right wing (t = 0.25, df = 14.2, p = 0.8) and cloacal 

protuberance (CP) volume (t = -0.17, df = 13.1, p = 0.9), which was estimated by 
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calculating the volume of a cylinder (V=π*(CP width/2)2*CP height). Each male 

was banded with a numbered aluminum ring (Vogelwarte Radolfzell) and a 

unique combination of three colour rings for individual recognition. Measuring, 

ringing and implanting the birds took no longer than 25 min after which the males 

were released onto their territories. 

To assess if the blocker treatment was effective we caught another set of males 

with the same method as described above in April 2009 and 2010, took a blood 

sample immediately upon capture (within 5 min) and then brought them to the 

laboratory. In 2009 five males were caught, implanted with flutamide and 

letrozole and bled a second time three days after implantation. In 2010 we caught 

another eight males that were bled upon capture, either implanted with flutamide 

and letrozole or flutamide alone and bled again three and ten days after 

implantation. In all cases pellets were still visible when we took the blood 

samples. Males were held in individual cages under simulated natural 

photoperiod and released onto their respective territories after the last blood 

sample. 

Playback stimuli 

Songs used as playbacks were recorded in spring 2009 with a Sennheiser 

directional microphone (ME66/K6) connected to a Marantz solid state recorder 

PMD 660 (sampling frequency: 44.1kHz; resolution: 16 bit) from 20 different 

males that were at least 10 km away from our focal males. Playbacks were 

created using Avisoft Saslab pro software version 4.51 (Raimund Specht, Berlin, 

Germany). Each playback consisted of 20 songs recorded from one male. Songs 
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were filtered (1 kHz high-pass filter) and normalized to the same amplitude 

(75%). A playback consisted of each of two different song types played back in a 

XXYYXXYYXX sequence, with X and Y in 10 different versions. Songs were 

divided by pauses of 4.5 s. By repeating each sequence six times the playback 

had a duration of 20 minutes in total. This design resembled the natural song 

organization of the species. Each playback was used only once in each 

experimental group, but the same playbacks were used during the STIs on day 3 

and 10. Thus, each male was challenged with two different playbacks. 

Simulated territorial intrusion 

To assess the effect of the blocker treatment on territorial behavior we performed 

STI experiments three and ten days after implantation by placing a stuffed decoy 

into the centre of the territory of a focal male and playing back black redstart 

song as described above. As decoys we used three different stuffed males in full 

adult plumage that were protected by an inconspicuous cage made of a wire 

frame and mist net material and mounted on a tripod. A string attached to the 

wire frame allowed to remotely remove the decoy by pulling the string from a 

distance of about 30 m into a plastic cylinder below the wire frame. We put a 

remote-controlled loudspeaker (Foxpro Scorpion, digital game caller, FOXPRO 

Inc. Lewistown, USA) underneath the decoy to play back the territorial song of a 

potential rival at a sound pressure level of 65 dB SPL at 1 m (as measured with a 

CEL 573.B1 Sound Level Analyser). The behavioural response of male black 

redstarts to simulated territorial intrusions varies from moving to an exposed 

singing post and increasing the song output to approaching the decoy and threat 
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posturing, which – in some cases – may cumulate into an attack (Landmann and 

Kollinsky 1995; Apfelbeck and Goymann 2011). Therefore, we recorded the 

following behaviours of the territory owner during the STI for 20 min: (1) latency 

to respond to the STI either by singing or approaching the decoy, (2) the first time 

the male entered the area of 5 m around the decoy, (3) the time the male spent 

within 5 m of the decoy, (4) the time the male spent within 10 m of the decoy (5) 

the time the territory owner spent with its feathers fluffed and (6) the number of 

head nods. The latter two behaviours are typical threat postures of male black 

redstarts (Landmann and Kollinsky 1995). Furthermore, we noted whenever the 

male attacked the decoy. During the whole time we also recorded the song of the 

territory owner using a Sennheiser directional microphone (ME66/K6) connected 

to a Marantz solid state recorder PMD 660. Usually we could determine the 

location of the male during the whole STI, however, sometimes it was hidden 

from view and we could not correctly record head nodding and fluffing behaviour. 

Therefore, we also noted when we knew the location of the bird but could not see 

it. After 20 min the playback was remotely muted and the decoy removed and the 

behaviour of the territory owner observed for another 10 min. 

Song analysis 

Song was analyzed using Avisoft-SASLab Pro software, version 4.51. 

Recordings were visualized in spectrograms (settings: sample rate 22,050 Hz, 

FFT = 256 points, Hamming-Window, Overlap: 50 %). We determined the 

number of songs by visual inspection and selected songs of sufficient quality (low 

background noise) for further sound analysis. Each song of black redstarts can 
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be divided into three distinct parts (part A, B and C, see Fig. 1 and e.g. Cucco 

and Malacarne 1999) with a pause of varying duration between part A and B. We 

measured the duration of part A, B, C, the total song and the duration of pauses 

between A and B (Fig.1). We counted the number of elements of part A and C 

(mean of max. 20 songs). We also determined the frequency bandwidth and the 

maximum frequency of part A, B and C using the automatic parameter 

measurement function (threshold -20 dB) in Avisoft (mean of max. 10 renditions 

of high-quality songs). 

 

 

Figure 1: A song of a black redstart illustrating the acoustic measures analysed 

(Spectrogram: Avisoft-SASLab Pro, sample rate 22,050 Hz, FFT = 256 points, 

Hamming-Window, Overlap: 50 %). 

 

Plasma separation and hormone analysis 

Blood samples were kept cool until centrifugation at 10000 g/min speed for 10 

min. Plasma was stored in 500 μl ethanol at -80 °C. Testosterone concentration 

was determined by direct radioimmunoassay following the procedure described 
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in Apfelbeck and Goymann 2011 (chapter 2) and Goymann, Geue et al. 2006. 

Mean  SD efficiency of the extraction with dichloromethane was 93  3 % for the 

samples collected in 2009 and 85  5 % for those collected in 2010. Samples 

were measured in duplicates and samples from 2009 and 2010 were measured 

in separate assays. The lower limit of detection of the assay was determined as 

the first value outside the 95 % confidence intervals for the zero standard (Bmax) 

and was 2.6 (2009) and 4.5 (2010) pg/ml. The intra-assay coefficients of variation 

were 1.2 % (2009) and 2.9 % (2010), respectively. The inter-assay variation was 

3.2 %. As the testosterone antibody showed significant cross-reactions with 5a-

dihydrotestosterone (44 %) our measurements may include a fraction of this 

additional androgen. 

Statistical analysis 

Data analysis was done with R version 2.9.1 (Development Core Team 2009). 

Behavioural data and measures of song structure were analysed with linear 

mixed models for the effects of treatment and day after implantation. We 

analysed the behaviour during and after the STI separately. To control for 

repeated measures we included bird ID as random effect. After the STI we 

compared the time spent within 10 m of the decoy instead of 5 m as most males 

left the immediate surroundings of the decoy and went to higher singing posts. 

Also, as most males stopped feather fluffing after the decoy was removed, we 

only analysed the number of head nods after the STI. When analysing the time 

within 5 m during the STI we included response latency as covariate in the 

models. When analysing treatment effects on the number of head nods and time 

spent feather fluffing we controlled for differences in the total amount of time we 
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actually saw the bird. When analysing treatment effects on song structural 

parameters we included the average duration of a song part as covariate in our 

models. 

In all cases we started with full models and removed interactions if they 

were above α > 0.1. Experimental factors were always retained in the models. To 

control for repeated measures we included bird id as random effect. Dependent 

variables were transformed if assumptions of normality and/or equality of 

variances were not met. Significance was accepted at α ≤ 0.05. Sample sizes 

may deviate from 20 males in total as not all males sang during the STI and 

depending on the quality of the recording. 

 

Results 

As expected, the combined implantation of flutamide and letrozole 

significantly increased plasma testosterone levels within three days as compared 

to levels before implantation (paired t-test, n = 9, t = -3.4, p = 0.01, Table 2) and 

testosterone levels were still significantly elevated after ten days (Wilcoxon test, 

U = 0, p = 0.003, Table 2), suggesting that the blocker treatment effectively 

inhibited the aromatization of testosterone to estrogen which in birds negatively 

feeds back on the production of testosterone (Soma, Sullivan et al. 1999). 

Testosterone levels were always well within the range of levels observed in 

unmanipulated birds (Apfelbeck and Goymann 2011), chapter 1). Similar to other 

studies flutamide implants alone did not increase or decrease testosterone levels 

within three and ten days (Sperry, Wacker et al. 2010; Table 2). 
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Table 2. Plasma testosterone levels (ng/ml ± 95 % CI) before implantation, and 

three and ten days after implantation of either flutamide alone or flutamide and 

letrozole combined. 

testosterone 
(ng/ml) 

before 3 days after 10 days after 

flutamide / 
letrozole 

1.02 ± 0.4 
n = 9 

5.02 ± 2.0 
n = 9 

5.9 ± 2.1 
n = 4 

flutamide 2.2 ± 6.6 
n = 4 

2.2 ± 3.4 
n = 4 

1.2 ± 1.5 
n = 4 

 

Territory maintenance 

All control- and blocker-implanted males retained their territories during the 

period when the blocker treatment was effective (~ 3 weeks). In fact, most of the 

males, regardless of treatment, still defended the same territory during autumn, 

i.e. 6 months later, before they migrated to their wintering grounds (placebo: 9 

out of 10, blocker: 8 out of 10). 

 

Behaviour during STI 

There was no overall effect of the blocker treatment on non-vocal territorial 

behaviours. However, some of the non-vocal behaviours shown in response to 

the STIs were reduced in blocker-implanted males during the STI at day 10 

compared to the STI at day 3. In contrast, placebo-implanted males did not show 

such a change in non-vocal territorial behaviours with day after implantation. 

Blocker-implanted males spent more time within 5 m of the decoy during the STI 

at day 3 than during the STI at day 10. In placebo-implanted males time spent 

within 5 m of the decoy did not change from day 3 to day 10 (treatment: F1,18 = 
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0.04, p = 0.8; day: F1,15 = 1.6, p = 0.2; interaction: F1,15 = 5.1, p = 0.04; Fig. 2). 

Also, blocker-implanted males spent more time with their feathers fluffed during 

the STI on day 3 than on day 10. No such change in feather fluffing occurred in 

placebo-implanted males (treatment: F1,18=1.8, p=0.2, day: F1,15=12.9, p = 0.003, 

interaction: F1,15=7.5, p = 0.02, Fig. 2). 

On the other hand, the latency to approach the decoy, the number of head 

nods and the flights over the decoy did not differ between placebo- and blocker-

implanted males and did not change with day after implantation (approach 

latency: treatment: F1,18 = 0.15, p = 0.7, day: F1,16 = 0.14, p = 0.7; interaction: F1,16 

= 0.37, p = 0.6; head nods: treatment: F1,18 = 0.1, p = 0.7, day: F1,15 = 3.0, p = 0.1, 

interaction: F1,15 = 2.0, p = 0.2; flights: treatment: F1,18 = 1.6, p = 0.2; day: F1,16 = 

2.3, p = 0.1; interaction: F1,16 = 1.9, p = 0.2). 

Three males attacked the decoy during the STI on day 3. All of them were 

blocker-implanted males. On day 10 only one of these males attacked the decoy. 

Thus, during the STI on day 3 blocker-implanted males showed a stronger non-

vocal response than on day 10, because they spent more time close to the decoy 

and threat signalling (Table 4) and some of them also attacked the decoy. In 

placebo-implanted males the non-vocal response did not significantly differ 

between the STIs on day 3 and 10. 

Males of both treatment groups sang significantly more songs during the STI on 

day 10 than on day 3 (treatment: F1,18 = 0.04, p = 0.8; day: F1,16 = 13.4, p = 0.002 

interaction: F1,16 = 0.4, p = 0.5; Fig. 2). Placebo-implanted males sang 

significantly shorter songs on day 3 than on day 10 (Table 3, Fig. 3). This was 
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mainly due to a shorter pause duration between part A and B on day 3 than on 

day 10 (Table 3, Fig. 1, and Fig. 3). There was no clear change in blocker 

implanted males for both measures (Table 3, Fig.3). Placebo-implanted males 

sang part B with a broader frequency bandwidth and with a longer duration on 

day 3 than on day 10, while there was no clear change in blocker-implanted 

males (Table 3, Fig. 4). Furthermore, while the relationship between frequency 

bandwidth and duration of part B was positive in placebo-implanted males, it was 

negative in blocker-implanted males (Fig. 4). When controlling for the duration of 

part A, males of both treatment groups tended to sing it with fewer elements on 

day 10 than on day 3 (Table 3). Thus, both treatment groups sang more songs, 

but with a lower performance (longer songs with longer pause durations between 

part A and B, less elements in part A), during the STI at day 10 than at day 3. 

However, the decrease in song performance was much more pronounced in 

placebo- than in blocker-implanted males. 
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Table 3. Linear mixed model results for the effects of treatment (placebo- or 

blocker-implanted) and day (3 or 10) after implantation on vocal behaviours. To 

control for repeated measures the ID of each territory owner was included as 

random intercept. Significant results are highlighted in bold. 

 during STI  after STI  

song duration     
treatment F1,16 = 0.07 p = 0.8 F1,18 = 2.8 p = 0.1 
day of STI F1,12 = 0.2 p = 0.7 F1,17 = 0.3 p = 0.6 
treatment*day F1,12 = 8.4 p = 0.01   
duration pause 
A-B 

    

treatment F1,16 = 0.4 p = 0.6 F1,18 = 1.5 p = 0.2 
day of STI F1,13 = 5.2 p = 0.04 F1,13 = 5.8 p = 0.03 
treatment*day F1,13 = 3.8 p = 0.07   
elements in A     
duration A F1,12=17.8 p = 0.001 F1,12 = 0.2 p = 0.7 
treatment F1,16 = 0.1 p = 0.8 F1,18 = 0.2 p = 0.7 
day of STI F1,12 = 4.2 p = 0.06 F1,12 = 6.7 p = 0.02 
duration 
A*treatment 

F1,12 = 1.6 p = 0.2 F1,12 = 4.0 p = 0.07 

duration A*day   F1,12= 0.4 p = 0.5 
treatment*day   F1,12 = 0.4 p = 0.5 
duration 
A*treatment*day 

  F1,12 = 4.7 p = 0.05 

frequency 
bandwidth A 

    

duration A F1,12 = 2.5 p = 0.1 F 1,16 = 0.09 p = 0.8 
treatment F1,16 = 1.0 p = 0.3 F1,18 = 5.2 p = 0.04 
day of STI F1,12 = 0.004 p = 1.0 F1,16 = 4.4 p = 0.05 
duration 
A*treatment 

F1,12 = 3.4 p = 0.09   

frequency 
bandwidth B 

    

duration B F1,6 = 0.07 p = 0.8 F1,15 = 3.1 0.1 
treatment F1,15 = 0.02 p = 0.9 F1,18 = 6.2 p = 0.02 
day of STI F1,6 = 13.7 p = 0.01 F1,15 = 4.2 p = 0.06 
duration 
B*treatment 

F1,6 = 56.1 p = 0.0003   

duration B*day F1,6 = 23.5 p = 0.003   
treatment*day F1,6 = 31.3 p = 0.001   
duration 
B*treatment*day 

F1,6 = 4.6 p = 0.07   
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elements in C     
duration C F1,11 = 13.7 p = 0.004 F1,15 = 8.1 0.01 
treatment F1,16 = 0.3 p = 0.6 F1,18 = 0.005 p = 1.0 
day of STI F1,11 = 1.2 p = 0.3 F1,15 = 6.3 p = 0.02 
frequency 
bandwidth C 

    

duration C F1,11 = 1.3 p = 0.3 F1,15 = 0.3 p = 0.6 
treatment F1,16 = 0.5 p = 0.5 F1,18 = 0.07 p = 0.8 
day of STI F1,11 = 0.01 p = 1.0 F1,15 = 0.8 p = 0.4 
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Figure 2: Non-vocal territorial behaviours (A-C) and number of songs (D) in 

response to simulated territorial intrusions at day 3 and 10 after implantation with 

an androgen receptor blocker and an aromatase inhibitor. Results for individual 

males are connected by lines. Asterisks indicate differences between days, * p < 

0.05; ** p < 0.01, see text for details. 
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Figure 3: The duration of songs (A) and the duration of the pause between part A 

and B (B) in response to the STI, separated for males treated with placebo (left) 

and flutamide and letrozole (right). Each circle represents one individual male. 

Measurements of the same male are connected by a line. Placebo-implanted 

males sang significantly longer songs on day 10 than on day 3. Both groups 

tended to sing with a longer pause duration between part A and B on day 10 than 

on day 3 after implantation. For details on song measurements and statistics see 

text (* p < 0.05). 
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Figure 4: The frequency bandwidth (kHz) of part B plotted against the duration of 

part B of songs sang in response to the STI, separated for placebo- (left) and 

blocker-treated males (right; filled circles and solid lines: STI on day 3; open 

circles and dashed lines: STI on day 10). Lines indicate regression lines. 

 

Behaviour after STI 

After the decoy was removed and the playback stopped, placebo- and blocker-

implanted males did not differ in the amount of time they spent within 10 m of the 

decoy on day 3 and day 10 (treatment: F1,18 = 0.5; day: F1,18 = 1.7, p = 0.2; 

interaction: F1,18 = 0.2, p = 0.7) and in the number of head nods (treatment: F1,18 = 

0.2, p = 0.7; day: F1,17 = 0.1, p = 0.7; interaction: F1,17 = 0.1, p = 0.8). 

Also, the number of songs after the STI did not differ significantly between 

the STIs on day 3 and on day 10 (treatment: F1,18 = 0.004, p = 1.0; day: F1,18 = 
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3.1, p = 0.1; interaction: F1,18 = 0.4, p = 0.5). When controlling for the duration of 

part A, placebo-implanted males sang more elements in this part on day 10 than 

on day 3 (Table 3, Fig. 5). Also, blocker-implanted males tended to repeat more 

elements in part A on day 10 than on day 3, but they did so with a shorter 

duration of part A compared to control males (Table 3, Fig. 5). Males of both 

treatment groups sang part C with more elements on day 10 than on day 3 

(Table 3). Blocker-implanted males sang part A and B after both STIs with a 

smaller frequency bandwidth than placebo-implanted males (Table 3, Fig. 6). 

Thus, while territorial behaviours (except song rate) during the STI were reduced 

on day 10 compared to day 3, the territorial response after the STI was stronger 

on day 10 than on day 3 (Table 4): males of both treatment groups sang with a 

higher vocal performance after the STI on day 10 than on day 3 (more elements 

in part A and C). This confirms previous findings that the response to STIs is 

modulated by experience (Apfelbeck, Stegherr et al. 2011, chapter 3). However, 

the vocal performance of blocker-implanted males after the STI was overall 

significantly lower than that of placebo-implanted males (smaller frequency 

bandwidth of part A and B). 
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Figure 5: The number of elements in part A plotted against the duration of the 

part A of songs sang after the STI, separated for placebo- (left) and blocker 

treated males (right; filled circles and solid lines: STI on day 3; open circles and 

dashed lines: STI on day 10). Lines indicate regression lines. 
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Figure 6: Frequency bandwidth (kHz) of song part B sang after the STI 

depending on day after implantation, separated for males treated with placebo 

(left) and flutamide and letrozole (right). Each circle represents one individual 

male. Measurements of the same male are connected by a line. Placebo-

implanted males sang with a significantly broader frequency bandwidth than 

blocker-implanted males. Both groups tended to sing with a broader frequency 

bandwidth on day 10 than on day 3 after implantation. For details on song 

measurements and statistics see text. 
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Table 4. Relative change in behaviour from day 3 to day 10 in response to the 

STI and just after the STI. Downward arrows (↓) indicate a quantitative decrease 

of the behaviour from day 3 to day 10; upward arrows (↑) indicate a quantitative 

increase of the behaviour from day 3 to day 10. Shaded areas indicate if a 

response represents a relatively stronger or a weaker territorial response with 

dark grey shading indicating a stronger response on day 3 than on day 10, and 

light grey shading indicating a stronger response on day 10 than on day 3. The 

emerging pattern suggests that both treatment groups reduced their territorial 

response during the STI from day 3 to day 10, but that this change mainly 

concerned non-vocal behaviours in blocker-implanted males, but vocal 

behaviours in placebo-implanted males. 

  during STI after STI 
  placebo blocker placebo blocker 
non-vocal 
response 

time spent within 
5m 

 ↓   

 feather fluffing 
 ↓   

 head nods 
 (↓)   

vocal 
response 

number of songs 
↑ ↑   

 song duration 
↑  ↓ ↓ 

 freq bandwidth B 
(duration part B) 

↓    

 elements in A 
↓ ↓ ↑ ↑ 

 elements in C 
  ↑ ↑ 

 

 

Discussion 

Inhibiting the effects of testosterone and estrogen did not prevent male black 

redstarts from successfully defending a territory. However, blocking androgen 
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and estrogen action changed the emphasis of the territorial response: placebo-

implanted males invested more into song related behaviours, while blocker-

implanted males invested more into direct approach and non-vocal threat 

behaviours (Table 4). Furthermore, especially after the STI, vocal performance 

was generally lower in blocker- than in placebo-implanted males. Thus, black 

redstarts reacted similar to most other songbird species, in which blocker 

treatment did not reduce overall territorial behaviours (Table 1). Furthermore, 

these and results from our previous studies (see below) strengthen the 

hypothesis that in some species in which territorial behaviour is not restricted to 

the breeding season, testosterone and oestradiol facilitate only specific 

components of territorial behaviour that are important in the breeding context. In 

male black redstarts testosterone and oestradiol seem to emphasize 

vocalizations relative to non-vocal behaviours in the territorial response. Although 

males sing spontaneously at a high rate also in autumn, they are less likely to 

respond to a simulated territorial intrusion with song in autumn than in spring 

(Apfelbeck et al., in prep., chapter 1, Apfelbeck and Goymann 2011, chapter 2). 

In contrast, non-vocal territorial behaviours were not reduced in autumn 

compared to spring (Apfelbeck and Goymann 2011, chapters 1 and 2). 

Furthermore, male black redstarts increased their vocal performance in response 

to simulated territorial intrusions compared to spontaneous song before the 

challenge (Apfelbeck et al., submitted, chapter 4). This change in song structure 

seems to depend partly on testosterone and/or oestradiol, because both males 

that were implanted with an anti-androgen and an aromatase inhibitor and males 
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that were challenged in autumn when testosterone levels were naturally low, did 

not show the full structural change of their song (Apfelbeck et al., submitted, 

chapters 4 and 6). 

 In combination, these data suggest that in male black redstarts 

testosterone and/or estrogen shift the focus of the territorial response to vocal 

behaviours and especially facilitate structural changes in the song within an 

agonistic context. 

 Evidence from other species support the view that testosterone influences 

the emphasis of the territorial response. For example, male red-winged 

blackbirds (Agelaius phoeniceus) implanted with an androgen receptor blocker 

and an aromatase inhibitor spent more time on their territories engaging in 

aggressive interactions compared to control males, but still lost parts of their 

territories (Table 1, Beletsky et al., 1990). Also, male European robins (Erithacus 

rubecula) approached intruders more conspicuously during the breeding season 

than during the non-breeding season, even though the quantitative response 

(latency to approach, time spent close to the intruder) did not differ between 

seasons (Schwabl and Kriner, 1991). 

 Further, in most studies, the quantitative effects of blockers on territorial 

behaviour were surprisingly weak. Similar to our study on black redstarts, 

blockers typically reduced only some components of the territorial response 

(Table 1, but see Soma, Sullivan et al. 1999). These testosterone - regulated 

components of the territorial response may be especially relevant in a 

reproductive context, e.g. by acting as a signal to females. Song during territorial 
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contests in the breeding season, for example, may not only be directed towards 

the intruding or neighbouring males, but may also convey information to the own 

mate or other females (e.g. Otter, McGregor et al. 1999). Females pay attention 

to the performance of their mates during territorial challenges, which may 

influence female behaviour, i.e. whether they engage in extra-pair copulations or 

not (Otter, McGregor et al. 1999). Male European starlings only increase their 

song output in the presence of a female during the breeding season, when 

testosterone levels are elevated, but not during the non-breeding season (Riters, 

Eens et al. 2000). Also, male canaries sing more trilled syllables, which are 

attractive to females, during the breeding season than during non-breeding 

(Leitner, Voigt et al. 2001). Thus, testosterone or its metabolites may especially 

activate features of the territorial behaviour that are relevant for females. These 

features may differ between species (e.g. song rate or song structure), may 

signal male quality and may be correlated with variation in testosterone levels 

(Galeotti, Saino et al. 1997). Furthermore, our study demonstrates how important 

it is to measure the full set of vocal and non-vocal territorial behaviours 

quantitatively and qualitatively (e.g. song output and song structure). Otherwise 

subtle effects of the treatment may be missed. 

 Whether testosterone facilitates the whole suite of territorial behaviours or 

induces only sexually relevant components of these behaviours in a breeding 

context, may explain why some songbird species show an increase in androgen 

levels after simulated territorial intrusions, whereas others do not (reviewed in 

Goymann, Landys et al. 2007; Goymann 2009). Short-term increases in 
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testosterone during male-male interactions are thought to enhance the 

persistence of a territorial response (Wingfield 1994) and may induce the winner 

effect (Oyegbile and Marler 2005; Oliveira, Silva et al. 2009). These short-term 

increases in testosterone are a phenomenon found across all vertebrate classes 

(Wingfield, Hegner et al. 1990; Hirschenhauser, Winkler et al. 2003; Archer 2006; 

Hirschenhauser and Oliveira 2006), but in many species of birds, these increases 

in testosterone do not occur (Goymann, Landys et al. 2007; Goymann 2009). 

Bird species, in which territorial behaviour as such is decoupled from the control 

of testosterone (e.g. the black redstart), may also lack the effect of short-term 

increases in testosterone on future territorial interactions. We have previously 

shown that male black redstarts do not increase testosterone during territorial 

encounters with other males (Apfelbeck and Goymann 2011, chapter 2). But 

obviously this does not prevent them from enhancing their territorial response 

during future territorial encounters with other males (Apfelbeck, Stegherr et al. 

2011, chapter 3). Song sparrows, in contrast, increase testosterone during 

simulated territorial intrusions (Wingfield and Wada 1989) and this increase 

seems to enhance the persistence of the territorial response after the stimulus is 

withdrawn (Wingfield 1994). Furthermore, inhibition of aromatase reduces the 

whole suite of territorial behaviours in response to an intruder in song sparrows, 

even though the effect is less obvious during the breeding than during the non-

breeding season (Soma, Sullivan et al. 2000). Why species differ in the hormonal 

control of seasonal and short-term territorial aggression is, however, still unclear 
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(Wingfield and Hunt 2002; Goymann, Landys et al. 2007; Lynn 2008; Goymann 

2009; Apfelbeck and Goymann 2011). 

Conclusions 

In some species – such as black redstarts – that defend a territory during the 

breeding season (when testosterone levels are high) and also outside the 

breeding season (when testosterone levels are low), territorial behaviour as such 

may be decoupled from testosterone or its metabolites. Rather, testosterone or 

oestradiol may change some components of the territorial repertoire that are 

specifically relevant in a breeding context. Testosterone may shift the emphasis 

of the territorial response to these components. Thereby, these behaviours may 

change signal value and may in turn indicate male quality to other males 

(intruders and neighbours), but also to females witnessing the territorial dispute. 

Such context dependent changes in song structure during the breeding season 

may be facilitated by seasonal changes in testosterone levels. Furthermore, 

there seem to be fundamental differences between species to which degree 

territorial behaviour is regulated by testosterone or its metabolites on a seasonal 

basis. These differences may be directly related to variation in androgen 

responsiveness to male-male interactions. 
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Abstract 

Seasonal correlations between high levels of testosterone and high frequencies 

of territorial behaviour and associated song suggest that androgens or its 

metabolites activate theses behaviours during the breeding season. However, 

males of several vertebrate species also defend territories during nonbreeding 

times when testes are regressed and circulating testosterone levels are low. The 

degree to which sex steroids facilitate territorial behaviours in these species is 

still not well understood. We studied territorial behaviour in male black redstarts, 

a temperate-zone songbird, in autumn. Males were implanted both with an 

antiandrogen and an aromatase inhibitor to block direct and indirect effects of 

testosterone or with a placebo. In both groups spontaneous song and territorial 

behaviours including song in response to a simulated territorial intrusion were 

recorded. Both groups changed structural parameters of their song in the 

agonistic context, but did not differ in their territorial response. In combination 

with a previous study in this species in spring, our data show that territorial 

behaviour per se is independent of androgens and its metabolites in male black 
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redstarts, but that context and season dependent changes in song structure are 

facilitated by sex steroids. 

 

Introduction 

In many vertebrate species territorial behaviour during the breeding season is 

correlated with elevated levels of testosterone (Wingfield, Hegner et al. 1990). 

Furthermore, studies elevating or decreasing testosterone levels using 

testosterone implants, castration or pharmacological blockers suggest that there 

may be a causal link between territorial aggression and testosterone at least in 

some species (Schwabl and Kriner 1991; Canoine and Gwinner 2002; Van 

Duyse, Pinxten et al. 2002; Weiss and Moore 2004; Sperry, Wacker et al. 2010). 

However, several species defend territories also outside the breeding season 

when testes are regressed and circulating testosterone levels are low (Schwabl 

and Kriner 1991; Wingfield 1994; Canoine and Gwinner 2002; Wingfield and 

Soma 2002; Scotti, Belén et al. 2008). Studies investigating the role of 

testosterone and its metabolite oestradiol in territorial aggression during the 

nonbreeding season are still rare and results are conflicting. Most studies 

indicate that during that time of the year territorial behaviour may be decoupled 

from the action of sex steroids (Schwabl and Kriner 1991; Canoine and Gwinner 

2002; Scotti, Belén et al. 2008). However, studies on song sparrows (Melospiza 

melodia) found that oestradiol locally produced in relevant brain areas is probably 

involved in nonbreeding aggression in this species (Soma, Sullivan et al. 1999; 

Soma, Sullivan et al. 2000; Soma, Tramontin et al. 2000; Soma, Schlinger et al. 

149



Autumn territoriality and testosterone 

2003). Furthermore, sex steroids may be produced de novo in the brain 

independent of circulating levels (Kazuyoshi and Takeshi 1995; London, Monks 

et al. 2006). 

Song is an important component of territorial behaviour in songbirds and 

expressed in that context during the breeding and the nonbreeding season in 

many species (Logan and Hyatt 1991; Wingfield 1994; Weggler 2000). In those 

species that sing and express territorial behaviour also outside the breeding 

season there seems to be no difference in song rate between seasons (Wingfield 

1994; Van Hout, Eens et al. 2009), although song bout length may be longer in 

spring than in autumn (Van Hout, Eens et al. 2009). Furthermore, it has been 

shown in one species that males respond differently to spring and autumn song 

(Logan and Fulk 1984) indicating that spring and autumn song differ in structure. 

Spring song may be more stereotyped (Smith, Brenowitz et al. 1997) and males 

may sing syllables with a higher repetition rate (Logan and Fulk 1984; Smith, 

Brenowitz et al. 1997; Leitner, Voigt et al. 2001). Trills of fast frequency 

modulated syllables have been shown to be preferred by females in some 

species (Vallet, Kreutzer et al. 1997; Ballentine, Hyman et al. 2004) and thus 

may be more relevant in a reproductive context. Furthermore, breeding season 

song has been shown to change in an agonistic context in several species (Price, 

Earnshaw et al. 2006; DuBois, Nowicki et al. 2009). However, despite general 

comparisons between breeding and nonbreeding song, we are not aware of any 

study investigating if song changes with context in the nonbreeding season. 

150



Autumn territoriality and testosterone 

Changes in song rate and/or structure from the breeding to the 

nonbreeding season have been related to a decrease in HVC size (Smith, 

Brenowitz et al. 1997). HVC is part of the forebrain motor control path that 

innervates the syrinx and nuclei regulating respiration during song and is 

androgen sensitive (Gahr and Metzdorf 1997; Bernard, Bentley et al. 1999). It is 

thought that its size plays a role in the control of complex song. However, not in 

all species that sing also during the nonbreeding season HVC is smaller during 

that time of the year than during breeding. In addition, for some species some 

studies found seasonal differences in HVC size (Nottebohm 1981; Nottebohm, 

Nottebohm et al. 1986), but others did not (Fusani, Van't Hof et al. 2000). These 

differences maybe due to distinct delineation methods and seasonal changes 

seem to be more because of anatomical than of cytochemical changes (Gahr 

1997). However, in some species changes in androgen receptor expression in 

HVC and thus sensitivity to testosterone have been reported (Gahr and Metzdorf 

1997; Fraley, Steiner et al. 2010). Still, the role of testosterone in the control of 

song produced across seasons is unclear. 

In this experiment we studied territorial behaviour including song output 

and structure and its relation to testosterone and its metabolites in male black 

redstarts during autumn. Previous studies in black redstarts have shown that 

males increase their vocal performance during a simulated territorial intrusion 

(STI) in spring, but to a lesser degree when implanted with an antiandrogen and 

an aromatase inhibitor (Apfelbeck et al., submitted). Furthermore, territory 

owners implanted with these blockers did not decrease their territorial response 

151



Autumn territoriality and testosterone 

as a whole but shifted the focus of their territorial response: they invested more 

into direct approach behaviours towards a simulated territorial intruder than 

placebo-implanted males, while the latter invest more into vocal performance 

(Apfelbeck et al., in preparation). As a high vocal performance may be an 

especially relevant signal for females during reproduction and as male black 

redstarts have very low testosterone levels during autumn (Apfelbeck and 

Goymann 2011) we hypothesize that territorial behaviour shown by male black 

redstarts in autumn in a non-reproductive context is independent of testosterone 

or its metabolites. To test this idea, we compared the territorial behaviour 

between males implanted with an antiandrogen and an aromatase inhibitor 

simultaneously and males implanted with a placebo pellet. We also compared 

song structure and output of song sang spontaneously and song produced in 

response to a territorial challenge. We predicted that blocker- and placebo 

implanted males would not differ in their response to a simulated territorial 

intrusion and that changes in song structure and output should not differ between 

the two groups. 

 

Methods 

Adult (≥ 2 years) male black redstarts were caught in 2009 between September 

22 and October 7 in Upper Bavaria (N 47º, E 11º, 500-600m above sea level) 

with mealworm-baited ground traps by luring them to the site of the traps with 

short presentation of playback. We remotely muted the loudspeaker as soon as 

the territory owners approached the traps. Upon capture we took several 
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biometric measurements and implanted males alternately with either one placebo 

pellet (n = 8) or two time release pellets (n = 8, Innovative research of America, 

Sarasota, FL) containing the androgen receptor blocker flutamide and the 

aromatase inhibitor letrozole respectively (21 day release: 1.5 mg per pellet: 71 

μg/day; Ø = 3.2mm). Flutamide blocks the androgen receptor and letrozole 

inhibits cytochrome p450 aromatase (CYP 19). This enzyme converts 

testosterone to estrogen (Cheshenko, Pakdel et al. 2008). Thus, by combining 

flutamide and letrozole direct and indirect effects of androgens were inhibited. 

Implants were inserted with tweezers under the skin into a small incision on the 

back between the wings. The incision was sealed with tissue glue (Nexaband; 

World Precision Instruments). 

Control and experimental groups did not differ significantly in body mass 

(W = 34.5, p = 0.8), length of the right tarsus (W = 44, p = 0.2) and length of the 

right wing (autumn: W = 41, p-value = 0.4). Each male was banded with a 

numbered aluminium ring (Vogelwarte Radolfzell) and a unique combination of 

three colour rings for individual recognition. Measuring and implanting the birds 

took no longer than 25 min after which the males were released onto their 

territories. 

To assess if the blocker treatment had any effect on plasma testosterone 

levels we caught another set of males as described above, but took a blood 

sample immediately upon capture and brought them to the laboratory. In autumn 

2010 (from September 20 to 27) eight males were either implanted with flutamide 

and letrozole (n = 4) or flutamide alone (n = 4) and bled again three and ten days 
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after implantation. Males were held in individual cages under natural light 

conditions. 

Playback stimuli 

Songs used as playbacks were recorded in autumn 2009 with a Sennheiser 

directional microphone (ME66/K6) connected to a Marantz solid state recorder 

PMD 660 (sampling frequency: 44.1 kHz; resolution: 16 bit) from 12 different 

males. Playbacks were created using Avisoft Saslab pro software (Raimund 

Specht, Berlin, Germany). Each playback consisted of 20 songs recorded from 

one male that were filtered (1 kHz high-pass filter) and normalized to the same 

amplitude (75 %). A playback consisted of each of two different song types 

played back in a XXYYXXYYXX sequence, with X and Y in 10 different versions. 

Songs were divided by pauses of 4.5 s. By repeating each sequence six times 

the playback had a duration of 20 minutes in total. This design resembled the 

natural song organisation of the species. Eight playbacks were used during one 

STI only, four playbacks were used twice (once for placebo and once for blocker 

males). 

Simulated territorial intrusion 

To asses the effect of the blocker treatment on territorial behaviour we performed 

simulated territorial intrusion (STI) experiments by placing a stuffed decoy into 

the centre of the respective territories and playing back black redstart song. STIs 

were conducted three days after implantation. As decoys we used three different 

stuffed males in full adult plumage that were protected by an inconspicuous cage 

made of a wire frame and a mist net and mounted on a tripod. A string attached 

154



Autumn territoriality and testosterone 

to the wire frame allowed to remotely remove the decoy by pulling the string from 

a distance of about 30 m into a plastic cylinder below the wire frame. Song was 

played back from a remote-controlled loudspeaker (Foxpro Scorpion, digital 

game caller, FOXPRO Inc. Lewistown, USA) underneath the decoy at a sound 

pressure level of 65 dB SPL at 1 m (as measured with a CEL 573.B1 Sound 

Level Analyser). We recorded the following behaviours of the territory owner for 

20 min: (1) latency to respond to the STI either by singing or approaching the 

decoy, (2) the first time the male was within 5m of the decoy, (3) the time the 

male spent within 5 m of the decoy, (4) the time the territory owner had its 

feathers fluffed and (5) the number of head noddings, which are typical threat 

postures of male black redstarts (Landmann 1996). Furthermore, we noted 

whether the male attacked the decoy and recorded any song produced. After 20 

min the playback was remotely muted and the decoy removed and the behaviour 

of the territory owner observed and its song recorded for another 10 min. Usually 

we could determine the location of the male during the whole STI, however, 

sometimes it was hidden from view and we could not correctly record head 

nodding and fluffing behaviour. Therefore, we also noted when we knew the 

location of the bird but could not see it. 

Song analysis 

Song was analysed using Avisoft-SASLab Pro software, version 4.51. 

Recordings were visualized in spectrograms (settings: sample rate 22,050 Hz, 

FFT = 256 points, Hamming-Window, Overlap: 50 %). We determined the 

number of songs by visual inspection and selected songs of sufficient quality (low 
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background noise) for further sound analysis. Each song of black redstarts can 

be divided into three distinct parts (part A, B and C; e.g. Cucco and Malacarne 

1999) with a pause of varying length between part A and B. We measured the 

duration of part A, B, C, the total song and the duration of pauses between A and 

B (see Apfelbeck et al., submitted, chapter 4). We counted the number of 

elements of part A and C (mean of max. 20 songs). We also determined the 

frequency bandwidth and the maximum frequency of part A, B and C using the 

automatic parameter measurement function (threshold -20dB) in Avisoft (mean of 

max. 10 renditions of high-quality songs). 

Plasma separation and hormone analysis 

Plasma was separated and stored in 500 μl ethanol at -80°C. Testosterone 

concentration was determined by direct radioimmunoassay (RIA, following 

(Goymann, Geue et al. 2006; Apfelbeck and Goymann 2011, chapter 2). Mean  

SD efficiency of the extraction with dichloromethane was 85  5%. Samples were 

measured in duplicates. The lower limit of detection of the assay was determined 

as the first value outside the 95 % confidence intervals for the zero standard 

(Bmax) and was 0.45 pg/tube. The intra-assay coefficient of variation was 2.9 %. 

As the testosterone antibody shows significant cross-reactions with 5a-

dihydrotestosterone (44 %) our measurements may include a minor fraction of 

this additional androgen. 

Statistical analysis 

Treatment groups (placebo, blocker) were compared for differences in their 

response to a simulated territorial intrusion by using Mann-Whitney U tests for 

independent non-parametric samples. We analysed the behaviour during and 

156



Autumn territoriality and testosterone 

after the STI separately. After the STI we compared the time spent within 10 m 

around the decoy instead of 5 m as most males left the immediate surroundings 

of the decoy and went to higher singing posts. We also analyzed only the number 

of head nods after the STI as most males almost immediately stopped feather 

fluffing after the decoy was removed. 

Measures of song output and song structure (Table 2) were analysed with 

linear mixed models for the effects of treatment (placebo, blocker), part of the STI 

(before STI: spontaneously sung songs; during STI: playback and decoy present; 

and after STI: directly after removal of playback and decoy) and their interaction. 

To control for repeated measures the ID of each territory owner was included as 

random intercept. If the interaction had α ≥ 0.1 it was removed. 

In all cases dependent variables were transformed if assumptions of 

normality and/or equality of variances were not met. Significance was accepted 

at α ≤ 0.05. 

 

Results 

Effect of blocker treatment on plasma testosterone levels 

Similar to other studies (Schwabl and Kriner 1991; Soma, Tramontin et al. 2000) 

implantation of flutamide / letrozole combined (n = 4) or flutamide pellets alone (n 

= 4) had no effect on plasma testosterone levels during the nonbreeding season 

(Friedman chi-squared = 0.25, df = 2, p = 0.9, Table 1). 
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Table 1. Plasma testosterone levels before and three and ten days after 

implantation of either flutamide alone or flutamide and letrozole combined. 

Numbers in brackets give the range of testosterone levels. 

testosterone 
(pg/ml) 

before 3 days after 10 days after 

flutamide / 
letrozole 

61.3 
(38.7 – 76.3) 
n = 4 

42.8 
(25.3 – 54.2) 
n = 4 

35.7 
(28.6 – 50.8) 
n = 4 

flutamide 41.8 
(29.5 – 64.5) 
n = 4 

47.4 
(37.2 – 57.6) 
n = 4 

78.5 
(28.8 – 196.4) 
n = 4 

 

Effect of blocker treatment on territorial behaviour 

Non-vocal behaviour during STI 

Overall, there was no strong effect of the treatment on territorial behaviour. All 

implanted males retained their territories. Blocker implanted males nodded 

significantly less often with their heads than placebo implanted males (U = 55, p 

= 0.02, Fig. 1). All other variables did not significantly differ between blocker- and 

placebo-implanted males, i.e. they did not differ in the latency to approach the 

decoy (U = 26, p = 0.6, Fig. 1), in the amount of time they spent within 5m of the 

decoy (U = 48, p = 0.1, Fig. 1), in the amount of time with feathers fluffed (U = 34, 

p = 0.9, Fig. 1) or the number of flights over the decoy (U = 40, p = 0.4). 
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Figure 1: Territorial response to a simulated territorial intruder three days after 

implantation with a placebo pellet (control, n = 8) or a flutamide and a letrozole 

pellet (blocker, n = 8). Time within 5 m (B) and time spent feather fluffing (D) are 

presented as percentage of the time the focal male was seen. Boxplots represent 

medians and interquartile range. Asterisks indicate statistical significance (* p ≤ 

0.05). 
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Non-vocal behaviour after STI 

Placebo and blocker implanted males did not differ in the amount of time they 

spent within 10m of the decoy (W = 47, p = 0.1) and in the number of head nods 

(W = 37, p = 0.6) after the decoy was removed and the playback stopped. 

Comparison of song output and structure between contexts and treatments 

In both treatment groups focal males sang fewer songs during and after the STI 

than before the experimental challenge (Table 2). There was a non-significant 

trend that placebo-implanted males sang more than blocker-implanted males 

(Table 2). Males of both treatment groups increased the number of elements in 

part A and C in response to the experimental challenge (Table 2, Fig. 2) while 

decreasing the maximum frequency of part A and decreasing the frequency 

bandwidth of part C (Table 2). Furthermore, males of both treatment groups sang 

part B with a higher maximum frequency in response to the simulated intruder 

than during spontaneous song (Table 2). However, this latter effect concerning 

part B should be treated with caution especially in case of the blocker-implanted 

males (very low sample sizes because of missing values). Thus, similar to spring 

(Apfelbeck et al., submitted, chapter 4) song changed in the agonistic context, 

but in contrast to the breeding season these changes were not affected by the 

blocker treatment. 
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Figure 2: Number of elements in part A (A) and part C (B) before, during and 

after the STI, separated for males treated with flutamide and letrozole and 

placebo treated males. Each circle represents one individual male. 

Measurements of the same male are connected by a line. Asterisks indicate 

significance (*** p<0.001). For details on song measurements and statistics see 

text. 
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Table 2. Linear mixed model results for the effects of context and blocker 

treatment on song output and structure. Part is a within-subjects factor with three 

levels: before STI (=spontaneously produced songs), during STI (playback and 

decoy present) and after STI (directly after removal of playback and decoy). 

Treatment is a between-subjects factor with two levels: placebo-implanted versus 

blocker-implanted males. Significant results are highlighted in bold. 

 treatment part part*treatment 

song rate F1,10 = 3.0 
p = 0.1 

F2,18 = 43.1 
p < 0.0001 

 

song duration F1,10 = 0.02 
p = 0.9 

F2,18 = 2.1 
p = 0.1 

 

duration A F1,10 = 4.3 
p = 0.06 

F2,18 = 3.2 
p = 0.06 

 

duration B F1,10 = 0.01 
p = 0.9 

F2,18 = 0.7 
p = 0.5 

 

duration C F1,10 = 2.2 
p = 0.2 

F2,18 = 3.4 
p = 0.06 

 

duration pause A - 
B 

F1,10 = 0.4 
p = 0.5 

F2,18 = 0.1 
p = 0.9 

 

nr of elements in A F1,10 = 2.4 
p = 0.2 

F2,14 = 11.9 
p < 0.001 

F2,14 = 3.8 
p = 0.05 

nr of elements in C F1,10 = 0.2 
p = 0.2 

F2,16 = 26.1 
p < 0.0001 

 

freq bandwidth A F1,10 = 0.2 
p = 0.7 

F2,16 = 2.0 
p = 0.2 

 

max frequency A F1,10 = 0.08 
p = 0.8 

F2,16 = 3.9 
p = 0.04 

 

freq bandwidth B F1,10 = 0.7 
p = 0.4 

F2,13 = 3.2 
p = 0.08 

 

max frequency B F1,10 = 1.5 
p = 0.2 

F2,13 = 5.0 
p = 0.02 

 

freq bandwidth C F1,10 = 0.03 
p = 0.9 

F2,16 = 3.6 
p = 0.05 

 

max frequency C F1,10 = 0.1 
p = 0.7 

F2,16 = 2.2 
p = 0.1 
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Discussion 

Despite a weak effect on non-vocal behavioural measures there was no effect of 

the blocker treatment on territorial behaviour in autumn. As predicted, placebo- 

and blocker implanted males did not significantly differ in the way they changed 

their song in response to an experimental intrusion. Both treatment groups 

behaved similarly to blocker-implanted males in spring: they increased the 

number of elements in part A, but decreased its maximum frequency. In addition, 

in contrast to placebo-implanted males in spring, they did not shorten the pause 

between part A and B (Apfelbeck et al., submitted, chapter 4). 

 These findings strengthen our previous hypothesis that territorial 

behaviour per se may be decoupled from testosterone in species – such as the 

black redstart – that defend territories also outside the breeding season, when 

plasma levels of testosterone are low (Apfelbeck et al., in prep., chapter 5). 

During spring testosterone may activate those aspects of territorial behaviour that 

are relevant in a reproductive context and especially important for females. In 

mockingbirds (Mimus polyglottos), for example, testosterone implants during 

autumn did not enhance territorial aggression, but activated behaviours 

associated with mate acquisition: testosterone implanted males sang more, had 

a higher probability of acquiring a mate and showed more nest building 

behaviour than control males (Logan and Carlin 1991). Also in European robins 

(Erithacus rubecula) antiandrogen treatment had only a weak effect on territorial 

behaviour during the breeding season and no effect at all in autumn. Although in 

the latter study song structure was not measured, Schwabl and Kriner also 
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suggested that testosterone may stimulate the incorporation of sexy song 

features during spring (Schwabl and Kriner 1991). In wild and domesticated 

canaries (Serinus canaria) males sing a higher number of fast frequency-

modulated syllables during the breeding season (Leitner, Voigt et al. 2001; Voigt 

and Leitner 2008). Female canaries prefer these fast frequency-modulated 

syllables (Draganoiu, Nagle et al. 2002). Thus, this trait may be under the control 

of testosterone and/or oestradiol. Similarly, when comparing spontaneous song 

across seasons in male black redstarts, males sing more elements in part A and 

C of their song during breeding than in autumn (Apfelbeck et al., in prep., chapter 

1). However, the increase in the number of elements in these parts in response 

to a simulated territorial intrusion was independent of the treatment with blockers 

both in spring (Apfelbeck et al., submitted, chapter 4) as well as in autumn 

(present study) and occurred in both seasons. The effect of the treatment in 

spring was most pronounced for structural frequency components of the song 

(Apfelbeck et al., submitted, chapter 4). Furthermore, the changes in song in 

response to simulated territorial intrusions in autumn were not significantly 

different between treatment groups and were more similar to blocker-implanted 

males in spring than to placebo-implanted males during the same period. This 

indicates that, at least in male black redstarts, the maintenance of a high 

maximum frequency is facilitated by testosterone, but a high repetition rate of 

elements in part A and C is not facilitated by this hormone. Recent studies show 

that maximizing syllable repetition rate and frequency bandwidth simultaneously 

may be an indicator of male quality and is assessed by females (Ballentine, 
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Hyman et al. 2004; Ballentine 2009). Thus, although the number of repetitions 

per song part change seasonally (Apfelbeck et al., in prep., chapter 1), only 

context-dependent changes in song structure seem to be androgen or oestrogen 

dependent. 

 These changes in song may be regulated by aromatase activity in the pre-

optic area (Riters and Ball 1999; Riters, Eens et al. 2000) or changes in 

androgen and oestrogen sensitivity in the song control nucleus HVC (Gahr and 

Metzdorf 1997) as we found a higher expression of aromatase mRNA in the pre-

optic area in spring than in autumn, but no seasonal change in HVC size in 

another study on male black redstarts (Apfelbeck et al., in prep., chapter 1). 

 

Conclusions 

Already in 1988, Moore proposed a model for the regulation of territorial 

behaviour across different seasons with changing levels of testosterone (Moore 

1988). Based on a comprehensive series of experiments in male mountain spiny 

lizards (Sceloporus jarrovi) he suggested that territorial behaviour in such study 

systems may rely on sex steroid dependent and independent pathways which 

may either act additive or synergistically. Our studies on male black redstarts and 

a literature review on blocker and castrations studies in songbirds (Apfelbeck et 

al., in prep., chapter 5) support this view. In the case of black redstarts the effects 

seem rather additive than synergistically. 
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General discussion 

Our studies have shown that in a temperate-zone songbird, the black redstart, 

the link between testosterone and territorial behaviour is much weaker than is 

often assumed in birds and other highly seasonal vertebrates. First, based on 

several experiments it seems very unlikely that territorial interactions modulate 

androgen levels in males (chapters 2 and 3). Second, seasonal comparisons and 

blocking direct and indirect effects of testosterone imply that in male black 

redstarts testosterone does not facilitate territorial behaviour as a whole, but only 

influences some components (chapters 1, 4, 5, 6). 

 

Male-male interactions do not modulate androgen levels in male black 

redstarts (chapters 2 and 3) 

Natural plasma androgen levels in male temperate zone vertebrates vary 

markedly between individuals even when sampled during the same breeding 

stage. This is especially well documented for songbirds and has gained 

considerable attention recently (Ball and Balthazart 2008; Kempenaers, Peters et 

al. 2008; Williams 2008). Social interactions between males are thought to be 

one major factor influencing short and long-term fluctuations in androgen levels 

within individuals in most vertebrates, including humans (Wingfield, Hegner et al. 

1990; Hirschenhauser, Winkler et al. 2003; Hirschenhauser, Taborsky et al. 

2004; Archer 2006; Hirschenhauser and Oliveira 2006). Although in several 

species interactions between males lead to short-term increases in androgen 

levels, comparative studies in songbirds have shown that this is actually the case 
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in only about half of the species tested to date (Goymann, Landys et al. 2007; 

Goymann 2009). The number of broods or the length of the breeding season 

have been suggested to be environmental factors that may explain between 

species differences in androgen responsiveness to male-male interactions 

(Wingfield and Hunt 2002; Goymann, Landys et al. 2007; Landys, Goymann et 

al. 2007). The comparative studies and the number of broods / short breeding 

season hypotheses are based on data from distinct species. We tested the 

number of broods / short breeding season hypotheses for the first time in 

populations of the same species breeding at different altitudes and therefore 

differing in the length of their breeding season (chapter 2). We, therefore, could 

test these hypotheses independent of possible confounding phylogenetic effects. 

Male black redstarts breeding at high altitudes should not increase testosterone 

in response to simulated territorial intrusions. As they have only a very short 

breeding season and often no time for a replacement clutch, the success of this 

one brood is crucial for the reproductive success of a pair. High levels of 

testosterone have been shown to interfere with paternal care (Silverin 1980; 

Hegner and Wingfield 1987) and therefore may jeopardize the success of the 

brood. In contrast, male black redstarts breeding at lower altitudes should 

increase testosterone in response to simulated territorial intrusions. Their 

breeding season is long enough to allow for further and replacement clutches. 

Thus, the boost in territorial aggression because of a surge in testosterone 

should outweigh its potential costs. Our studies in male black redstarts show, 

however, that this hypothesis does not explain the absence of an androgen 
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response in black redstarts. Although high-altitude and low-altitude male black 

redstarts reacted aggressively to simulated territorial intrusions, males of both 

populations did not increase testosterone in response to this behavioural 

challenge (Apfelbeck and Goymann 2011, chapter 2). However, despite the lack 

of a direct androgen response to simulated territorial intrusions, black redstarts of 

both populations would have had the physiological capacity to raise testosterone: 

males that did not show an increase in testosterone during simulated territorial 

intrusions showed a pronounced increase in testosterone when injected with 

gonadotropin releasing hormone (GnRH; Apfelbeck and Goymann 2011). GnRH 

is released by the hypothalamus and via several steps stimulates the testes to 

produce testosterone (Nelson 2005). So far it was unknown, if species that show 

no androgen response to aggressive interactions have already maximally 

elevated testosterone levels. Our data demonstrate for the first time that at least 

in black redstarts this is not the case; they are not physiologically constrained to 

increase testosterone during social challenges. Furthermore, the data show that 

the length of the breeding season or the number of broods cannot universally 

explain between-species differences in androgen responsiveness to territorial 

challenges as males from the high-altitude and the low-altitude population 

responded to simulated territorial intrusions and GnRH in a similar way (chapter 

2). 

The function of short-term increases in testosterone in other species is still 

barely understood. Testosterone may enhance persistence of aggression during 

or after a fight and may facilitate the winner effect (Wingfield 1994; Oliveira, Silva 
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et al. 2009; Dijkstra, Schaafsma et al. 2012). California mice (Peromyscus 

californicus), for example, show a short-term increase in testosterone only after 

experiencing and winning several territorial encounters (Oyegbile and Marler 

2005). Studies testing this “winner-challenge”-hypothesis are, however, still rare 

and have been conducted under laboratory conditions only. As male black 

redstarts have the physiological capacity to further increase testosterone, we 

tested if free-living male black redstarts may need several territorial challenges 

before a significant rise in plasma testosterone would occur (chapter 3). These 

experiments demonstrate that even repeated simulated territorial intrusions did 

not result in an increase in androgens and that different intrusion intensities had 

a strong effect on behaviour but not on hormone levels (Apfelbeck, Stegherr et 

al. 2011, chapter 3). Furthermore, we could show that a lacking increase in 

circulating androgen levels after simulated territorial intrusions is probably not 

due to the induction of a loser effect as had been proposed (Kempenaers, Peters 

et al. 2008). Because the experiments were conducted in the field, we could not 

directly test if a winner effect exists in black redstarts. However, our behavioural 

data strongly suggest that this is the case. Similar to species in which a winner 

effect was demonstrated, males responded faster to the intruder during following 

encounters than during the first encounter (Hsu, Earley et al. 2006). Because no 

increase in testosterone occurred even after multiple intrusions, our data suggest 

that - although the winner effect seems to be a very general phenomenon among 

vertebrates (Hsu, Earley et al. 2006) - its regulation may differ between species 

and may be independent of sex steroids in some species. 
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The role of testosterone in territorial behaviour expressed across different 

seasons (chapters 1, 4, 5 and 6) 

It is thought that territorial behaviour of temperate-zone vertebrates is regulated 

by testosterone, because seasonal testosterone profiles closely match the 

occurrence of territorial behaviour in males (Lincoln, Guinness et al. 1972; 

Wingfield, Hegner et al. 1990; Klukowski and Nelson 1998). However, several 

songbird species, including black redstarts, also maintain territories in the non-

breeding season when testosterone levels are low (Schwabl and Kriner 1991; 

Wingfield 1994; Canoine and Gwinner 2002; Apfelbeck and Goymann 2011; Hau 

and Beebe 2011; Marasco, Fusani et al. 2011). Male black redstarts had 

completely regressed testes and very low plasma testosterone levels in autumn 

and also did not increase testosterone levels in response to GnRH (Apfelbeck 

and Goymann 2011, chapters 1 and 2). Nevertheless, they defended territories 

as vigorously in autumn as during the breeding season: they responded to a 

simulated territorial intrusion with a high intensity and sang spontaneously at a 

high song rate (Apfelbeck and Goymann 2011, chapters 1 and 2). However, the 

likelihood to respond to simulated territorial intrusions with song was significantly 

lower and when singing spontaneously they sang fewer elements in the repetitive 

parts of their song during non-breeding than during breeding (chapter 1). 

Correlational evidence that testosterone facilitates territorial behaviour in male 

black redstarts is, thus, inconclusive: non-vocal territorial behaviours seem to be 

independent from testosterone action, but vocal territorial behaviours may be 

regulated by testosterone. Furthermore, in both seasons neural centres 
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associated with song production and brain regions known to facilitate sexual and 

agonistic behaviours (pre-optic (POA) and hypothalamic areas) express 

androgen and oestrogen receptor mRNA as well as aromatase mRNA and thus 

potential direct and indirect binding sites for testosterone (Gahr and Metzdorf 

1997; Metzdorf, Gahr et al. 1999; Gahr 2001, chapter 1). Furthermore, 

experiments in another species suggest that - despite low levels of circulating 

testosterone - sex steroids still may regulate territorial behaviour in the non-

breeding season by local conversion of androgens into oestradiol directly in the 

brain (Soma, Tramontin et al. 2000) and using substrates from nongonadal origin 

(Soma and Wingfield 2001). We, therefore, implanted male black redstarts in the 

breeding season and in autumn with an androgen receptor blocker and an 

aromatase inhibitor to block both possible direct and indirect effects of 

testosterone on territorial behaviour (chapters 4, 5, 6). Control groups were 

implanted with placebo pellets. Inhibiting the effects of testosterone and 

oestrogen simultaneously did not prevent male black redstarts from successfully 

defending a territory. In both seasons, males did not lose their territories and the 

overall response of focal males to simulated territorial intrusions was not 

significantly lower in blocker- than in placebo-implanted males (although there 

was a weak trend in autumn; chapters 5 and 6). However, while the blocker 

treatment had no strong overall effect on territorial behaviour, blocking androgen 

and oestrogen action changed the emphasis of the territorial response during the 

breeding season: placebo-implanted males invested more into song related 

behaviours, while blocker-implanted males invested more into direct approach 
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and non-vocal threat behaviours (chapter 5). Furthermore, especially after the 

simulated territorial intrusion vocal performance was in general lower in blocker- 

than in placebo-implanted males. In addition, we found that male black redstarts 

increased their vocal performance in response to simulated territorial intrusions: 

they sang parts of their song with a higher number of elements and a broader 

frequency bandwidth compared to spontaneous song just before the simulated 

territorial intrusion (chapters 4 and 6). This change in song structure seems to be 

partly testosterone and/or oestrogen dependent, because both males that were 

implanted with an anti-androgen and an aromatase inhibitor simultaneously and 

males that were challenged in autumn when testosterone levels were naturally 

low, did not show the full structural change of their song (Apfelbeck et al., 

submitted, chapters 4 and 6). The change in emphasis of the territorial response 

and/or the change in song structure in the agonistic context may be facilitated by 

the conversion of testosterone to oestradiol in the pre-optic area as male black 

redstarts expressed more aromatase mRNA in that area at the beginning of the 

breeding season than in autumn (chapter 1). For example, in European starlings 

the increase in song rate in response to females and other courtship behaviours 

correlate with a high activity of aromatase in this brain region (Riters, Eens et al. 

2000; Pintér, Péczely et al. 2011). Also, seasonal changes in androgen 

sensitivity in the song control nucleus HVC, but not variation in HVC size, may 

facilitate changes in song structure as treatment with an androgen receptor 

blocker inhibited these structural changes in song in spring and black redstarts in 

autumn behaved similar to blocker-implanted males in spring. However, 
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testosterone probably does not regulate seasonal changes in element number in 

parts of the spontaneous song (chapter 1). Also other species show seasonal 

changes in the production of repetitive elements (Smith, Brenowitz et al. 1997; 

Leitner, Voigt et al. 2001; Voigt and Leitner 2008). It has been suggested that 

these changes depend on changes in HVC size and androgen sensitivity of HVC 

(Smith, Brenowitz et al. 1997). Our data show, that at least in black redstarts, this 

is not the case because HVC was not significantly smaller during non-breeding 

than during breeding and administration of an androgen receptor blocker had no 

effect on the number of elements produced. 

 In conclusion, these results support the hypothesis that in some species, 

in which territorial behaviour is not restricted to the breeding season, 

testosterone and oestradiol facilitate only some components of the territorial 

behaviour in a breeding context. Our correlational and experimental data suggest 

that in male black redstarts testosterone and oestradiol emphasize vocalizations 

relative to non-vocal behaviours in the territorial response. Furthermore, 

testosterone specifically facilitates structural changes in the song in an agonistic 

context during the breeding season (chapters 4 and 6). Even though other 

studies have indicated and suggested that testosterone may only facilitate some 

components of the territorial response in species that express territorial 

behaviour across seasons (Schwabl and Kriner 1991; Hau, Wikelski et al. 2000; 

Van Duyse, Pinxten et al. 2002; Sperry, Wacker et al. 2010), our studies are the 

first to provide substantial evidence based on a series of experiments and 

seasonal correlations. In addition, even though changes in song in response to 
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territorial challenges are commonly found in other species as well (Price, 

Earnshaw et al. 2006; DuBois, Nowicki et al. 2009), our studies are the first to 

show that these changes may be facilitated by testosterone and its metabolites. 

Furthermore, our studies also indicate how testosterone and its metabolites may 

implement their effects on territorial behaviour on a neuronal basis. 

 

The interrelationship between territorial behaviour and testosterone: are 

there fundamental mechanistic differences between species? 

Whether testosterone facilitates the whole suite of territorial behaviours or just 

sexually relevant components of it during the breeding season, may also explain 

why some songbird species show an increase in androgen levels after 

interactions with other males over territories and others do not. Short-term 

increases in testosterone during male-male interactions are thought to enhance 

persistence of the territorial response (Wingfield 1994), facilitate the winner effect 

(Oyegbile and Marler 2005; Oliveira, Silva et al. 2009) and are a phenomenon 

found across all vertebrate classes (Wingfield, Hegner et al. 1990; 

Hirschenhauser, Winkler et al. 2003; Archer 2006; Hirschenhauser and Oliveira 

2006). However, especially in birds, there are several exceptions (Goymann, 

Landys et al. 2007; Goymann 2009). Bird species such as black redstarts, in 

which territorial behaviour as such is decoupled from control by testosterone, 

also seem to lack short-term androgen modulation during territorial interactions. 

However, further studies that measure both the androgen responsiveness to 

male-male interactions and the role of testosterone in regulating territorial 
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behaviour would be needed to test this idea. Why species differ in the hormonal 

control of seasonal and short-term territorial aggression is, however, still unclear 

(Wingfield and Hunt 2002; Goymann, Landys et al. 2007; Lynn 2008; Apfelbeck 

and Goymann 2011). Apart from the hypotheses that we have tested (chapter 2), 

it has been suggested that tropical species may regulate territorial behaviour 

differently from temperate-zone species (Moore, Walker et al. 2004; Hau and 

Beebe 2011). Yet, northern temperate black redstarts actually seem to be more 

similar to tropical species than to some other temperate-zone species (Wingfield 

and Wada 1989; Soma, Tramontin et al. 2000). Furthermore, there may be 

phylogenetic differences: the relationship between territorial behaviour and 

testosterone may have evolved several times independently in different genera. 

However, within the genus Zonotrichia, an exceptionally well studied taxon, there 

seems to be considerable variation within this group of related birds (Wingfield 

and Wada 1989; Wingfield and Hahn 1994; Soma, Tramontin et al. 2000; 

Meddle, Romero et al. 2002; Moore, Walker et al. 2004). 

 

Future studies 

Our data indicate that in some species that defend territories across seasons 

with changing circulating testosterone levels only some components may be 

activated by testosterone during the breeding season. These components of the 

territorial response may be especially relevant in a reproductive context, e.g. by 

acting as a signal to females. Song during territorial contests in the breeding 

season, for example, may not only be directed towards intruding or neighbouring 
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males, but may also convey information to the own mate or other females (e.g. 

(Otter, McGregor et al. 1999)). It has been shown previously that repeated 

(“trilled”) syllables with a high frequency bandwidth are challenging to produce 

(Podos 1997; Podos 2001). Therefore, such syllables may represent an honest 

signal of male quality (Ballentine 2009) and are a preferred song feature of 

females in some species (Vallet, Kreutzer et al. 1997; Draganoiu, Nagle et al. 

2002; Ballentine, Hyman et al. 2004). Our experiments suggest that testosterone 

and/or oestradiol may be the underlying mechanism ensuring the honesty of 

vocal performance as an indicator of male quality and that especially behaviours 

that are relevant for females in a reproductive context are under control of sex 

steroids in male black redstarts. Thus, although interactions between males have 

no influence on male androgen levels, interactions with females might have 

(Moore 1982; Moore 1983; Gwinner, Van't Hof et al. 2002) and may be one factor 

explaining the large variation in testosterone levels between males at the 

beginning of the breeding season. We have started to test this hypothesis by 

prolonging the receptive phase of female black redstarts by implanting them with 

oestradiol at the end of the breeding season (Apfelbeck et al., unpublished data). 

If the fertility status of their mate influences male testosterone levels, males that 

are paired with oestradiol-implanted females should postpone the drop of 

testosterone levels that normally occurs during the last brood (see chapter 1). In 

addition, differences in testosterone levels may reflect male quality by influencing 

vocal performance during agonistic contexts. If vocal performance during 

agonistic encounters indeed reflects male quality, vocal performance should be 
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correlated with measures of male quality (e.g. body mass (see for example 

Ballentine 2009), immune response, feather quality, etc.). If testosterone 

translates male quality into vocal performance during an agonistic encounter, 

also testosterone should be correlated with vocal performance (Galeotti, Saino et 

al. 1997; Safran, Adelman et al. 2008). Furthermore, future studies on black 

redstarts should investigate the threat value of their song and the response of 

females to variation in vocal performance in playback experiments. If females 

prefer males with a high vocal performance during territorial contexts, these 

males should have a higher within- and extra-pair mating success. Thus, 

variation in testosterone levels and vocal performance should also translate into 

fitness differences. Furthermore, to distinguish if the effects on vocal 

performance are due to direct androgen action or occur because of conversion to 

oestrogens, territorial males should be implanted with flutamide and letrozole 

separately. 

 

Conclusions 

In summary, the experiments demonstrate that androgen levels in male black 

redstarts are not socially modulated and interactions between males over 

territories cannot account for the high inter-individual variability in plasma 

testosterone levels between males. However, as the potential for a further 

increase in testosterone is given during the whole breeding season, other factors, 

like the presence of receptive females, may influence male androgen levels. In 

addition, differences in testosterone levels may reflect male quality by influencing 
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vocal performance during agonistic contexts. Furthermore, the data show that in 

male black redstarts territorial behaviour as such is probably not facilitated by 

testosterone and/or its metabolites. Instead sex steroids seem to activate only 

some components of territorial behaviour during the breeding season and 

emphasize these components in the territorial response. In black redstarts sex 

steroids facilitate context-dependent changes in song structure and strengthen 

vocal behaviour. Maintaining high testosterone levels for a prolonged period of 

time has been shown to have major costs (Wingfield, Lynn et al. 2001) including 

early death (Dufty 1989). Thus, species that defend territories for extended 

periods of time and also independent of reproduction may have lost the direct 

regulation of territorial behaviour by androgens to avoid the costs of testosterone. 

Leaving only sexually relevant components of territorial behaviour under the 

control of sex steroids, but decoupling the rest of the territorial response from it, 

seems to be one potential mechanism. However, other species may have solved 

this problem differently (Moore 1988; Soma, Sullivan et al. 2000) highlighting a 

diversity in physiological mechanisms that is largely unexplored. 
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