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1 Introduction 

1.1 Mitochondria 

 

Mitochondria are cell organelles which are found in virtually all eukaryotic cells (1). The 

number of mitochondria in a cell varies widely by organism and tissue type, from only a 

single mitochondrion to several thousand mitochondria (2, 3).  These organelles have many 

features in common with prokaryotes. As a result, they are believed to be originally derived 

from endosymbiotic prokaryotes (4-7). 

Mitochondria are bounded by two membranes, the outer and the inner membrane, which are 

separating the organelle into two aqueous subcompartments. There are the intermembrane 

space (IMS) and the innermost mitochondrial matrix (Figure 1) (8). In the matrix, 

mitochondria have their own independent genome. One mitochondrion contains around two to 

ten copies of its desoxyribonucleic acid (DNA) (9). In animals, the mitochondrial genome is 

typically a single circular chromosome of about 16 kDa coding for protein subunits of 

respiratory complexes I, III, IV and V, as well as for some ribonucleic acids (RNAs) of 

mitochondrial ribosomes and the 22 transfer ribonucleic acids (tRNAs) necessary for the 

translation of mitochondrial desoxyribnucleic acid (mtDNA) transcripts (10, 11). A circular 

DNA structure is also found in prokaryotes and the similarity to the prokaryotic genome is 

extended by the fact that mtDNA is organized with a variant genetic code similar to that of 

proteobacteria (11). Interestingly, mitochondria have far fewer genes than the bacteria from 

which they are thought to be descended. While most of the genes have been transferred to the 

host nucleus, for example genes encoding the protein subunits of the respiratory complex II, 

others have been lost entirely (10). However, not all nuclear genes encoding mitochondrial 

proteins are of eubacterial origin. Some were already present in the ancestral eukaryotic host 

(12).  

In contrast to the inheritance of nuclear genes, where the egg and sperm nuclei each 

contribute equally to the genetic makeup of the zygote nucleus, mitochondria, and thereby the 

mtDNA, are transmitted almost exclusively from the ovum. Mitochondria are therefore in 

most cases inherited down the female line, known as maternal inheritance (10). Due to this 

maternal inheritance, diseases caused by mitochondrial dysfunction, are, in general, passed on 

by a female to her children (13). 
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Mitochondria are not synthesized de novo but derived from binary fission of pre-existing 

organelles similar to bacterial cell division. Mitochondrial inheritance therefore depends on 

mitochondrial fission during cytokinesis (14). Unlike bacteria however, mitochondria can also 

fuse with other mitochondria (10). Fusion of several mitochondria results in extended 

interconnected mitochondrial networks and serves to mix and unify the mitochondrial 

compartment. In case of an accumulation of different somatic mutations in the mtDNA of 

individual mitochondria this fusion can, for example, counteract the manifestation of 

respiratory deficiencies by allowing the complementation of mtDNA gene products in the 

heteroplasmic cells. Furthermore, the connectivity of the mitochondrial network is an 

important factor in the cell´s calcium signaling response, embryonic development and 

spermatogenesis (14).  

The most prominent role of mitochondria is the production of adenosine triphosphate (ATP), 

a source of chemical energy (15), through respiration. This is also reflected by the large 

number of proteins involved in ATP synthesis in the inner membrane (3). The central set of 

reactions involved in ATP production is collectively known as the citric acid cycle, or Krebs 

Cycle, followed by the electron transport chain in the mitochondrial inner membrane. The 

electrochemical gradient established across the inner mitochondrial membrane by the electron 

transport chain is used by ATP-synthase to synthesize ATP from adenosine diphosphate 

(ADP) and inorganic phosphate (Pi). This process is known as oxidative phosphorylation (3). 

As mentioned above, mitochondria have many others functions in addition to the production 

of ATP. They play a central role in calcium signaling (16), apoptosis (17), regulations of 

membrane potential (3), cellular proliferation (18), and heme synthesis or the formation and 

export of iron-sulfur (Fe/S) clusters (12).   

Given the critical role mitochondria play in cell metabolism, damage and the resultant 

dysfunction of these organelles are key components in a wide range of human diseases. 

Classic mitochondrial disorders typically appear to affect brain and skeletal muscle functions, 

often referred to as mitochondrial encephalomyophaties, but can also result in diabetes, 

multiple endocrinopathy or a variety of other systemic manifestations (10, 13). 

Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) 

syndrome, Kearns-Sayre syndrome, cardiomyophathy, and Leber´s hereditary opticus 

neuropathy (LHON) are diseases caused by mutations in the mtDNA (12, 19). Additionally, 

in early tumors of the bladder, prostate, liver or head and neck, mtDNA alterations could be 

observed (12). Dysfunctions of mitochondrial proteins caused by defects in nuclear genes 

evoke clinical observations such as Friedreich‟s ataxia, hereditary spastic paraplegia and 
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Wilson´s disease (20). Moreover, cardiovascular disease, stroke, dementia, Alzheimer‟s 

disease, epilepsy, Parkinson‟s disease and diabetes mellitus are examples of diseases 

associated with defective mitochondrial functionality (21, 22). How exactly mitochondrial 

dysfunction fits into the etiology of these pathologies has yet to be elucidated.  

Taken together, mitochondria are associated with a variety of essential functions in the cell, 

which, in the vast majority of the cases, are only poorly understood and whose disturbance 

leads again to a variety of diseases. Therefore, the investigation of these organelles presents 

an important field in cell biology. 

 

 

Figure 1 

The general organisation of a mitochondrion 

OM: outer mitochondrial membrane, IMS: intermembrane space, IM: inner mitochondrial 

membrane, M: matrix 

(N. crassa, courtesy of F. Miller, LMU München, GER) 
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1.2 Protein translocation into mitochondria 

 

As already mentioned, the mitochondrial genome encodes only a rather small number of 

proteins. Therefore, about 99% of the mitochondrial proteins are encoded in the nucleus of the 

host (8) and synthesized in the cytosol as precursor proteins. These preproteins have to be 

transported into the mitochondria and be targeted to their final submitochondrial destination, 

the outer or inner mitochondrial membrane, the IMS or the matrix. The process of protein 

sorting and export or transport to intracellular membranes or compartments is termed “protein 

topogenesis” (23). 

In contrast to the inner mitochondrial membrane, the outer mitochondrial membrane contains 

porin protein channels. These channels allow the passage of molecules smaller than 5000 

Daltons (2), whereas the inner membrane is impermeable to virtually all molecules (24). 

Consequently, transport of larger proteins into the mitochondrial subcompartments is a 

selective and controlled process, performed by a variety of complex molecular machineries 

known collectively as mitochondrial protein translocases (Figure 2). Mitochondrial protein 

translocases are able to recognize so called targeting signals or topogenic sequences (23) of 

the precursor proteins. These targeting signals are present either as amino-terminal extensions, 

which are usually proteolytically removed after import into mitochondria, or they are non-

cleavable internal elements which remain part of the mature protein. Targeting signals 

facilitate recognition of the precursor proteins by receptors on the mitochondrial surface. 

Thereafter, they are sorted to their appropriate destination within the mitochondria (8, 25). 
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Figure 2 

Protein translocases in the outer and inner mitochondrial membrane 

Precursor proteins are imported into mitochondria via the TOM complex, some are further 

transported into the matrix, or integrated into the inner membrane by the TIM23 complex (1), 

directed to the IMS (2), inserted into the inner membrane by the TIM22 complex (3) or 

embedded into the outer membrane via the TOB complex (4). The Oxa1 complex facilitates 

the insertion into the inner mitochondrial membrane of a subset of preproteins approaching it 

from the matrix (5). 

IM: inner mitochondrial membrane, IMS: intermembrane space, OM: outer mitochondrial 

membrane 

The figure was adapted from Mokranjac et al., 2008 (26). 

 



Introduction 

6 

 

1.2.1 The TOM complex 

 

The first transport machinery that mitochondrial preproteins are encountering in the outer 

mitochondrial membrane is the translocase of the outer membrane (TOM) complex (Figure 

2). This major entry gate of the mitochondria is used by all preproteins analyzed to date for 

transport across the outer membrane. The TOM complex consists of the general insertion pore 

(GIP), made up by Tom40, Tom22, Tom5, Tom6 and Tom7. The receptors Tom20 and 

Tom70 are loosely attached to the GIP (8, 27). Tom40 is the major and only essential subunit 

of the GIP. It presumably forms a membrane-embedded ß-barrel. Tom5, Tom6 and Tom7 are 

small subunits with a length ranging from 50 – 70 amino acids and seem to be involved in the 

stability of the complex. Since isolated Tom40 forms pores in artificial membranes and 

demonstrates characteristics comparable to those of the entire TOM complex (28-31), Tom40 

is believed to be the central, pore forming subunit of the complex. However, it is still unclear 

whether this translocation channel comprises a single or multiple Tom40 molecules.  

Receptors of the TOM complex are the proteins Tom20, Tom70 and Tom22. Tom20 and 

Tom70 are signal-anchored proteins which are integrated with an N-terminal α-helix into the 

outer membrane exposing their C-terminus to the cytosol. Tom22 is bearing a predicted α-

helical transmembrane domain in the middle of its sequence and exposes its C-terminus to the 

IMS. The preproteins interact with the receptors at the so-called cis-binding site of the TOM 

complex, made up by the cytosolic components of Tom20, Tom22 and Tom70. Tom20 and 

Tom70 are the major recognition sites for the precursor proteins, while Tom22 mainly 

contributes to the integrity of the TOM complex (32, 33). After the interaction of targeting 

sequences with receptors, the preproteins are relayed to the GIP and pass the outer 

mitochondrial membrane. Arriving in the IMS, the precursor proteins interact with the trans-

binding site, formed by domains of Tom22, Tom40 and Tom7 (34-36). An increased affinity 

at the trans-binding side presumably fuels the vectorial translocation of the targeting signals to 

the IMS side of the TOM complex (37). 

Then, the precursor proteins use different pathways to reach the mitochondrial 

subcompartments - a topogenetic process which is coordinated by the cooperation between 

the TOM complex and other mitochondrial translocases in accordance to the type of targeting 

signal of the preproteins (8, 27). 
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1.2.2 Import of proteins into the matrix 

 

Mitochondrial matrix proteins make up the majority of all mitochondrial proteins. Their 

precursor forms are transported across both mitochondrial membranes by the concerted 

interaction of two protein translocases, the aforementioned TOM complex in the outer 

mitochondrial membrane and the TIM23 (translocase of the inner membrane) complex in the 

inner mitochondrial membrane (27).  

The TIM23 complex can be subdivided into the membrane component, comprising those 

proteins which are forming the protein-conducting channel, and the import motor, which 

drives the translocation of the precursor proteins into the matrix. The membrane component 

consists of three essential proteins namely Tim23, Tim17 and Tim50. They, together with the 

non-essential Tim21, are highly conserved throughout the eukaryotic kingdom. Tim50 forms 

the receptor subunit of the membrane component, exposing a large C-terminal domain to the 

IMS. The N-terminus is anchored to the inner membrane with a single transmembrane 

domain. Tim50 is the first component of the inner membrane interacting with incoming 

precursor proteins as they emerge from the trans-binding site at the TOM complex (38, 39). 

Afterwards, the precursor proteins are presumably transferred to Tim23 (25, 27). Tim50 has 

been proposed to block the protein-conducting channel of the TIM23 complex in the absence 

of any precursor protein and thereby prevent the collapse of the membrane potential (Δψ) by 

ion leakage (25, 40). Tim23 and its associated Tim17 form the translocation channel of the 

TIM23 complex. The C-terminus of Tim23 is embedded by four transmembrane helices into 

the inner mitochondrial membrane. Surprisingly, Tim23 can span the IMS and the outer 

mitochondrial membrane, indicated by the accessibility of the N-terminus to proteases added 

to intact mitochondria (41). It has been suggested that the N-terminus of Tim23 brings the 

TIM23 translocase in proximity to the outer mitochondrial membrane to facilitate its interplay 

with the TOM complex (41). Interestingly, a comparable function has been suggested for 

Tim21, bringing together the TOM and the TIM23 complex due to its binding to the IMS-

exposed part of Tom22 (27, 42, 43). The segment of Tim23 spanning the IMS interacts with 

Tim50 and serves as an additional presequence receptor of the TIM23 complex (44). 

Comparable to Tim23, Tim17 has four C-terminal transmembrane helices anchoring it in the 

inner mitochondrial membrane. Although these helices have sequence similarity to those of 

Tim23, they seem to have diverse functions, as they are not interchangeable (8). The N-

terminal segment of Tim17 exposed to the IMS is rather short and contains several conserved 
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negatively charged residues which play a crucial role in preprotein import and gating of the 

translocation channel (45, 46). 

The import motor is also called presequence translocase-associated motor (PAM) and sits at 

the matrix site of the inner mitochondrial membrane. It is made up of the proteins Tim44, 

Tim14 (Pam18), Tim16 (Pam16), mtHsp70 (matrix 70 kDa heat shock protein), and Mge1. 

Tim44 is a peripherally attached membrane protein forming the interface of the membrane 

component with the import motor unit of the TIM23 complex. The C-terminus of Tim44 is 

embedded in the inner mitochondrial membrane. On the one side, Tim44 binds to the Tim23-

Tim17 core of the membrane embedded translocation channel, while the other side interacts 

with mtHsp70 and its associated DnaJ-like proteins, Tim14 and Tim16 (8, 27). Tim14 is 

anchored with its N-terminus in the inner membrane and forms a tight complex with Tim16 

which is lacking a transmembrane segment (47). mtHsp70 is an exchangeable subunit of the 

import motor, fluctuating between a bound and a released state. As found in all Hsp70 (heat 

shock protein) chaperones, mtHsp70 contains an N-terminal nucleotide (ATP) binding 

domain (NBD) and a C-terminal substrate or peptide binding domain (PBD) (48, 49). ATP 

bound mtHsp70 is recruited by Tim44 and thereby enables the interaction of the incoming 

polypeptide with the mtHsp70. The alternation between the binding to and release of the 

translocating polypeptide by mtHsp70 is an ATP-dependent process which results in the 

vectorial movement of the unfolded polypeptide chain into the matrix. The hydrolysis of ATP 

to ADP as well as substrate binding to the mtHsp70 is regulated by the DnaJ-like proteins. 

Upon binding of the polypeptide to mtHsp70, Tim14 stimulates ATP hydrolysis and thereby 

triggers the release of the mtHsp70-precursor protein complex from Tim44. The mtHsp70-

precursor protein complex dissociates from the membrane and enables the binding of the next 

ATP bound mtHsp70. After ATP hydrolysis, ADP is exchanged for ATP by the nucleotide 

exchange factor Mge1. This leads to a release of the substrate (8, 27, 50, 51). Tim16 is not a 

functional DnaJ-like protein, as it is missing the HPD (His-Pro-Asp) motif which is crucial for 

the stimulation of mtHsp70. Rather it functions as a negative regulator of the import motor by 

blocking the contact between Tim14 and mtHsp70 (52-54).  

Roughly half of the mitochondrial proteins are synthesized with an N-terminal extension as a 

targeting signal. This signal is also called the presequence, prepeptide or matrix targeting 

sequence (MTS), since it directs the N-terminus across the inner mitochondrial membrane. To 

date the DNA helicase Hmi1 is the only exception known, where the MTS is positioned at the 

C-terminus (55). The MTSs do not share a conserved primary sequence but they all have the 

propensity to form an amphipathic helix presenting one hydrophobic and one positively 
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charged face. Tom20 possesses a binding groove for the hydrophobic site of those N-terminal 

presequences (MTSs), where Tom22 recognizes the positively charged surface (8, 25). After 

passing the TOM complex, the precursor proteins are transferred to the TIM23 complex. The 

membrane component of the TIM23 complex only transports the MTS through the inner 

mitochondrial membrane, a process driven by the membrane potential Δψ. The translocation 

into the mitochondrial matrix of the polypeptide chain C-terminal to the MTS is performed by 

the import motor unit of the TIM23 complex and fuelled by a second energy source, ATP. As 

already mentioned above, this ATP is used by mtHsp70 to pull the polypeptide in a stepwise 

manner into the matrix. In the absence of further sorting information, MTS-containing 

precursor proteins are fully transferred into the matrix. The MTS is sufficient to direct a 

preprotein into the matrix and is therefore referred to as the default mode of the TIM23 

complex (56, 57). Currently this is under debate (8, 25). Once the precursor proteins have 

reached the mitochondrial matrix, the MTS is removed by the matrix processing peptidase 

(MPP). 

 

1.2.3 Import of proteins into the inner mitochondrial membrane 

 

For those nuclear encoded mitochondrial proteins which have the inner mitochondrial 

membrane as their final destination there are three different pathways for their translocation 

from the cytosol into the mitochondria: (1) the stop-transfer pathway, (2) the TIM22 pathway, 

and (3) the conservative sorting pathway. 

The stop-transfer pathway includes the already described protein translocases TOM and 

TIM23. TIM23 is not only capable of transporting precursor proteins into the matrix 

(translocation mode), but can also switch to a second mode, for the stop-transfer pathway, in 

which the preproteins are stopped during the translocation and are laterally inserted into the 

inner mitochondrial membrane (lateral insertion mode). In contrast to the preproteins directed 

to the matrix, which only possess an MTS at the N-terminus, preproteins designated for lateral 

insertion have an additional signal, a stop-transfer signal, in some distance C-terminal to the 

MTS. This stop-transfer signal is a transmembrane domain which causes the arrest of the 

precursor protein inside the TIM23 complex (27). 

Depending on the type of targeting signal the TIM23 complex encounters, the complex 

changes its internal conformation to set up either for the translocation mode or the lateral 

insertion mode (58, 59). 
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Another pathway for proteins to be transported from the cytosol to the inner mitochondrial 

membrane is the TIM22 pathway. This pathway requires the concerted action of three 

different consecutive mitochondrial protein translocases: (1) the TOM complex in the outer 

membrane, (2) the complexes of the small Tim proteins in the IMS, and (3) the TIM22 

translocase in the inner mitochondrial membrane. 

The small Tim protein complexes Tim9-Tim10 and Tim8-Tim13 reside in the IMS and are 

composed of polypeptides with a molecular weight between 8 and 12 kDa. They are 

characterized by twin Cx3C motifs. The cysteine residues of these motifs form pairs of 

intramolecular disulfide bridges which are crucial for the structure of the small Tim proteins. 

Small Tim proteins oligomerize as tightly bound hexamers with a “jellyfish-like structure”. 

The tentacles of this jellyfish-like structure might be able to bind to the hydrophobic regions 

of incoming proteins from the TOM complex (60) and therefore are supposed to fulfill a 

chaperone like function while transferring the precursor proteins in the IMS from the TOM to 

the TIM22 complex (61, 62), although this is still hypothetical. 

The TIM22 complex is made up of the membrane proteins Tim22, Tim54 and Tim18 and has 

a combined molecular weight of around 300 kDa. Tim22 is the core subunit of the complex 

and is embedded in the inner mitochondrial membrane with four transmembrane helices 

which presumably form the translocation pore of the complex (63). Tim54 and Tim18 are 

associated with Tim22 and seem to be important but non-essential components of the TIM22 

complex, since preproteins are inserted even in the absence of Tim54 and Tim18, although at 

strongly reduced levels (63). Tim54 exposes a large domain in the IMS and might serve as a 

docking site for a small Tim protein complex consisting of Tim9, Tim10, and Tim12, which is 

permanently bound to the TIM22 complex (63, 64). The essential small Tim protein Tim12 is 

exclusively found in the TIM22 associated complex but not in the soluble chaperone 

complexes of the IMS and might be involved in substrate recognition at the TIM22 complex. 

Tim18 is supposed to play a role in the assembly of the TIM22 complex (25, 27). 

The TIM22 pathway is responsible for the insertion of members of the solute carrier family, 

such as the ATP/ADP or the phosphate carrier as well as the membrane embedded subunits of 

TIM complexes such as Tim17, Tim22 and Tim23. All these proteins are lacking cleavable 

presequences but contain internal non-cleavable targeting signals (8, 27). After their synthesis 

in the cytosol, the carrier precursor proteins are bound by the chaperones Hsp70 and Hsp90 

and guided to the Tom70 receptor at the TOM complex. Here, the chaperones dock to the 

tetratricopeptide repeat (TPR) domain of the receptor (65). Following the ATP-dependent 

release and transfer from the chaperones to the TOM complex, the precursor proteins are 
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transferred through the Tom40 translocation channel. In contrast to the MTS bearing 

precursor proteins, carrier precursor proteins are not transported as linear polypeptide chains 

through the TOM complex but pass it in a loop structure (66). Subsequently, with the help of 

the small Tim protein complex Tim9-Tim10, the preproteins are transferred to the Tim9-

Tim10-Tim12 chaperone complex at the surface of the TIM22 translocase. Finally, substrates 

of the TIM22 complex are laterally inserted into the membrane in a membrane potential-

dependent process and result in an even-numbered transmembrane segment in the inner 

mitochondrial membrane exposing both their N- and C-termini into the IMS. The import 

process of the TIM subunits Tim17, Tim22, and Tim23 is comparable to that of the carrier 

proteins, however, not well characterized. Instead of utilizing the Tim9-Tim10 complex, the 

precursor proteins of the TIM subunits are interacting with an alternative Tim complex made 

up by Tim8 and Tim13 (8, 27).  

In the conservative sorting pathway, proteins destined for the inner mitochondrial membrane 

are first transported from the cytosol into the matrix and from there inserted into the inner 

membrane. Due to the resemblance of the export-like transport of the proteins from the matrix 

side into the inner membrane to that of protein transport in prokaryotes, this pathway is 

termed the „conservative sorting pathway‟. Precursor proteins following this pathway are for 

example Oxa1 (67) and subunit 9 of the F0F1-ATPase of Neurospora crassa (N. crassa, N.c.), 

(68). They are synthesized with an N-terminal cleavable presequence and consist of more than 

one transmembrane domain. As they reach the matrix, they are bound by mtHsp70 to prevent 

them from aggregating. Thereafter, the MTS is removed by the MPP. The molecular 

mechanism by which these precursor proteins are integrated into the inner mitochondrial 

membrane is still ill defined. In general, protein segments which are transported from the 

matrix across the inner membrane are enriched in negatively charged amino acid residues. 

Since the membrane insertion from the matrix strongly depends on the membrane potential, it 

is likely that the negative charged regions are pulled to the IMS in an electrophoretic manner 

(67-69). The Oxa1 (oxidase assembly) complex of the inner membrane facilitates the insertion 

of at least some of these inner membrane proteins (69, 70). Oxa1 is also involved in the co-

translational insertion of proteins encoded in the mtDNA (70-72). 
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1.2.4 Import of proteins into the intermembrane space 

 

The biogenesis of proteins which reside in the IMS is diverse. Three different import 

mechanisms are known: (1) the bipartite presequence coordinated pathway, (2) the folding 

trap mechanism, and (3) the localization of proteins in the IMS due to affinity interactions.  

Some of the proteins which are directed to the IMS have bipartite presequences or sorting 

signals, consisting of an N-terminal MTS as well as a hydrophobic sorting sequence. The 

precursor proteins follow the translocation path provided by the TOM and the TIM23 

complex. In general, following the arrest of the incoming proteins in the inner mitochondrial 

membrane, peptidases remove those targeting signals by proteolytic cleavage and thereby 

release the proteins into the IMS. Proteins located in the IMS which are using this pathway 

are for example the cytochrome c peroxidase (CCPO) or cytochrome b2 (27). 

Another import pathway by which proteins are directed into the IMS is the folding trap 

mechanism. Here, after passing the outer mitochondrial membrane, the proteins are stabilized 

by cofactors or disulfide bridges in their folded state and are thereby trapped in the IMS. 

Prominent examples are the folding of small Tim proteins mediated by the MIA 

(mitochondrial intermembrane space import and assembly) machinery (73-76) or the covalent 

addition of heme to apocytochrome c catalyzed by the cytochrome c heme lyase (CCHL) in 

the IMS (77). The MIA machinery comprises the disulfide carrier Mia40, which is anchored 

in the inner mitochondrial membrane, and the soluble sulfhydryl oxidase Erv1 (essential for 

respiration and viability), and promotes the formation of intramolecular disulfide bonds in, for 

example, the imported small Tim proteins.  

Finally, the import of proteins such as cytochrome c heme lyase or the creatine kinase seems 

to be driven by their high affinity to certain components in the IMS to which they are 

permanently associated after they have reached the IMS (27). The mechanism of this import 

pathway is largely obscure. 

 

1.2.5 Import of proteins into the outer mitochondrial membrane 

 

All proteins of the outer mitochondrial membrane known to date are nuclear encoded. They 

are missing canonical cleavable N-terminal prepeptides, but contain non-cleavable targeting 

and sorting signals within the protein sequence itself. The membrane-integrated proteins of 

the outer mitochondrial membrane can be subdivided into two groups: α-helical proteins and 

ß-barrel proteins. ß-barrel proteins can only be found in the outer membranes of Gram-
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negative bacteria, chloroplasts and mitochondria while all other membranes harbour α-helical 

membrane proteins (78). 

 

1.2.5.1 Insertion of α-helical proteins into the outer mitochondrial membrane 

According to their topology, different classes of α-helical proteins can be distinguished in the 

outer mitochondrial membrane. Characteristically, these proteins are anchored with one or 

more α-helical transmembrane segments into the membrane. Signal anchored proteins carry 

one α-helical transmembrane domain at the N-terminus. This group includes the primary 

import receptors of the TOM complex, Tom20 and Tom70. When the transmembrane 

segment is located at the C-terminus, such as in Tom5, Tom6, Tom7 or Fis1, the proteins are 

referred to as tail-anchored proteins. Proteins of both categories expose their main part into 

the cytosol and only a short segment into the IMS. Tom22 and mitochondrial import protein 1 

(Mim1) have one central embedded transmembrane domain and are orientated with the 

N-terminus to the cytosol and the C-terminus to the IMS. The peripheral benzodiazepine 

receptor (PBR), Fzo1 and Ugo1 are examples of proteins which contain multiple α-helices in 

the membrane, spanning the outer mitochondrial membrane five, two and three times, 

respectively (79-82). 

In all these proteins, the hydrophobic segments do not only serve as anchors within the 

membrane, but also typically function as targeting signals of the proteins. However, no 

sequence similarities could be found among those targeting sequences. The targeting 

information is apparently encoded in structural elements such as the hydrophobicity and 

charge of the transmembrane α-helix and its flanking regions (83). The mechanism by which 

the different α-helical membrane proteins are inserted into the outer mitochondrial membrane 

seems to differ between the individual members and is still ill defined. The insertion of the 

signal-anchored proteins Tom20, Tom70 or Mcr1, for example, was shown to be independent 

of the presence of import receptors while unaffected by the blocking of the translocation pore 

of the TOM complex (84-87). However, in contrast to Mcr1, Tom20 seems to be dependent 

on Tom40 for acquiring its correct topology. It has been suggested that the TOM translocase 

can facilitate protein insertion at its protein-lipid interface (86-88). Moreover, both Tom20 

and Tom70 were described to use a further outer membrane protein for membrane insertion, 

namely the mitochondrial import protein 1 (Mim1) (89-91). Mim1 was also found to be 

important for the insertion of the small TOM proteins (92). Other tail-anchored proteins do 

not require any of the known outer membrane machineries and seem to be dependent on the 

lipid composition of the membrane for their insertion (93, 94). The precursor of Tom22 needs 
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the TOM receptors to be directed to the mitochondrial surface and seems to use the TOB 

complex for its insertion into the outer mitochondrial membrane (95). Multiple spanning 

membrane proteins were reported to use components of the IMS, Tom70, but no other TOM 

complex proteins for efficient insertion into the outer mitochondrial membrane (96). 

Taken together, the TOM complex was found to have two distinct functions: (1) the 

aforementioned translocation of virtually all preproteins from the cytosol across the outer 

mitochondrial membrane and (2) the direct integration of α-helical outer membrane proteins. 

Our knowledge of how those α-helical transmembrane proteins are inserted into the outer 

envelope of mitochondria is still elusive. Since the pore of the TOM complex seems not to be 

needed for that process, at least in some cases, those proteins may not follow the canonical 

route through the import channel, but are following a second pathway which awaits further 

analysis.  

 

1.2.5.2  Insertion of ß-barrel proteins into the outer mitochondrial membrane 

ß-barrel proteins are embedded in the outer mitochondrial membrane by multiple antiparallel 

ß-strands. The topogenesis of the mitochondrial outer membrane ß-barrel proteins (TOB) 

complex (97), also termed the sorting and assembly machinery (SAM) (98), is specialized in 

the insertion of the ß-barrel precursor proteins into the outer membrane and requires a 

coordinated interaction with the TOM complex and small Tim protein complexes to fulfill its 

task. Composition and function of the TOB complex are discussed in detail below. 
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1.3 The TOB complex 

1.3.1 Introduction  

 

In eukaryotes, ß-barrel proteins are exclusively found in the outer membrane of organelles of 

endosymbiotic origin, namely chloroplast and mitochondria (99, 100). Furthermore, ß-barrel 

proteins can only be found in the outer membrane of Gram-negative bacteria (101), which 

supports the idea that these organelles are derived from a bacterial ancestor (5, 102). 

Membrane-embedded ß-barrel proteins are referred to as outer membrane proteins (OMPs) 

(103).  The TOB complex in the outer mitochondrial membrane is responsible for the correct 

insertion of ß-barrel proteins and cooperates with the TOM complex, which is also sitting in 

the outer mitochondrial membrane and with the small Tim protein complexes in the IMS.  

1.3.2 Composition of the TOB complex 

 

TOB is a hetero-oligomeric protein complex which comprises the proteins Tob55 (Sam50, 

Tom50), Tob38 (Sam35, Tom38) and Tob37 (Mas37, Sam37, Tom37) (97, 98, 104-108). 

Tob55 is the main component of this complex and was found in a proteomic screening of 

outer mitochondrial membrane proteins from N. crassa by mass spectrometry analysis (97). It 

was also found in copurification experiments with Tob37 (98), a known subunit of the TOB 

complex (104). Sequence analysis revealed homologues of Tob55 not only in the genomes of 

virtually all eukaryotes, but significant sequence similarity was also detected with the outer 

membrane protein 85 (Omp85) from Gram-negative bacteria (97, 109). Omp85 (YaeT, 

BamA) is the main subunit of the bacterial ß-barrel assembly machinery (BAM) and was 

determined to be a ß-barrel protein itself (25, 110-113).  

It is assumed that Tob55 is also a ß-barrel protein. This is mainly based on sequence analysis 

and secondary structure prediction, since, to date, no high resolution structure of Tob55 and 

its homologues could be solved (97, 98, 109, 113-116). Therefore, Tob55 is supposedly both a 

substrate and subunit of the TOB complex. Besides Tob55, porin (also termed as voltage-

dependent anion-selective channel (VDAC)), Tom40, Mdm10 and Mmm2 are assigned to the 

family of outer mitochondrial ß-barrel membrane proteins and thereby putative substrates of 

the TOB complex (27). The membrane-embedded ß-barrel of Tob55 is predicted to be formed 

by the C-terminus, whereas the hydrophilic amino acids at the N-terminus are facing the IMS 

and fold into a characteristic structure, the polypeptide transport associated (POTRA) domain 

(112, 113, 117). These POTRA domains were described to have receptor functions and were 

not only found in Tob55 but also in other OMPs such as Omp85/YaeT (114, 118), although 
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the amount of POTRA domains could vary between one (Tob55), two (FhaC (filamentous 

haemagglutinin adhesin)), and even up to five (Omp85) (103, 117, 118). 

Several experiments indicated a specific role of the TOB complex in the biogenesis of ß-

barrel precursor proteins in the outer membrane. The Tob55 gene was found to be essential 

for cell viability (109, 119, 120) and downregulation of Tob55 (Tob55↓) resulted in low 

levels of ß-barrel proteins such as Tom40, porin and Mdm10 in the outer mitochondrial 

membrane. In contrast, the levels of α-helical proteins in the outer mitochondrial membrane, 

the IMS, the inner mitochondrial membrane and the matrix remained unaffected (97, 120). 

There is only one exception, the α-helical protein Tom22, which was decreased in Tob55↓ 

mitochondria in N. crassa (120). In accordance with that, import of the pre-proteins Tom40 

and Tob55 itself in Tob55↓ mitochondria was also strongly reduced, whereas α-helical outer 

mitochondrial membrane proteins or proteins designated to the IMS, the inner mitochondrial 

membrane or the matrix were imported at roughly wild-type levels (97, 120). Studies on the 

assembly process of the ß-barrel proteins Tom40 and porin also revealed that the biogenesis 

of these proteins is severely impaired by the depletion of Tob55. Antibody supershift assays 

presented direct evidence for the interaction of the TOB complex with ß-barrel precursor 

proteins (98, 109, 120). 

Consisting of a POTRA domain and a ß-barrel, having a high sequence similarity to Omp85, 

and functioning as a transporter of ß-barrel precursor proteins makes it tempting  to assign the 

TOB complex to the Omp85-TpsB transporter superfamily (Tps – Two-Partner Secretion), 

and there to the Omp85 subfamily (109, 115, 121-124).  

The Omp85 family is a conserved family of protein transporters and includes Toc75 

(translocon at the outer envelope membrane of chloroplasts) of chloroplasts, D15 of 

Haemophilus influenza, Omp85 from Neisseria meningitides and YaeT from Escherichia coli. 

So far, Tob55 is the only known mitochondrial ß-barrel protein with clear homologues outside 

the kingdom of eukaryotes (78). 

To date only one member of the Omp85-TpsB transporter superfamily could be crystallized, 

FhaC (115, 121). FhaC belongs to the second subfamily of the Omp85-TpsB transporter 

superfamily, the TpsB-transporter family. TpsB transporter can be found in a subset of Gram-

negative bacteria and are responsible for the secretion of their dedicated TpsA substrates 

(124). Whereas Tob55 was primarily predicted to have 12 ß-strands (112, 113), recent 

alignments with the FhaC sequence in combination with the resolved ß-barrel structure of 

FhaC suggest a 16-stranded ß-barrel for members of the Omp85 transporter family (115, 121).  
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Despite these similarities between Tob55 and the prokaryotic members of this transporter 

family, the insertion mechanism of ß-barrel precursor proteins in prokaryotes and 

mitochondria are expected to diverge due to the different additional components of the 

transporter complexes (8). 

The additional components to Tob55 of the TOB complex, Tob38 and Tob37, are located at 

the cytosolic surface of the outer mitochondrial membrane (104-107). So far, a high 

homology of both proteins could only be found among fungi (27). Only a moderate sequence 

homology to the mammalian metaxin-1 was reported for Tob37 (125-127). Furthermore, 

Tob38 was proposed to be a homologue of the mammalian metaxin-2. Convincing evidence 

for homology of metaxin proteins with Tob38 and Tob37 is still lacking (105, 107, 126). 

Tob38 is an essential component of the TOB complex in yeast and depletion of Tob38 results 

in impaired ß-barrel import comparable to a loss of Tob55 (105-107). In contrast to Tob55 

and Tob38, yeast Tob37 is not an essential protein, but the deletion of Tob37 compromises 

the insertion of ß-barrel precursor proteins and results in growth defects (104). Similarly, 

metaxin-1 and metaxin-2 were also indicated to play important roles in ß-barrel biogenesis 

(126). Electron microscopy images of negative stained native and recombinant Tob55 

revealed ring-shaped structures with a fivefold symmetry which displayed an inner pore size 

of 4-5 nm and an outer diameter of 15 nm (97). To date, high resolution structures for Tob38 

as well as Tob37 are still elusive. 

 

1.3.3 Topogenesis of mitochondrial ß-barrel proteins 

 

After their synthesis in the cytosol, ß-barrel precursor proteins interact with the receptors of 

the TOM complex (83, 128) and subsequently pass through the TOM pore into the IMS (97, 

104). There, they are transferred from the TOM pore to the TOB complex with the help of the 

small Tim protein complexes Tim8-Tim13 and Tim9-Tim10. These complexes presumably 

prevent backsliding of the ß-barrel precursor proteins and have a chaperone-like function 

analogous to the bacterial chaperone Skp (129-131). As the ß-barrel precursors reach the TOB 

complex, they are supposedly bound by the POTRA domain of Tob55 (114, 118) and inserted 

into the outer mitochondrial membrane from the IMS side (97, 104). Interestingly, the 

translocation across the TOM pore seems to be coupled to the membrane insertion of the ß-

barrel precursor proteins by the TOB complex, as a depletion of Tob55 leads to an 

accumulation of preproteins within the TOM complex and prevents them from reaching the 

IMS (27, 97). Interaction of the ß-barrel precursor proteins with the POTRA domain and their 
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membrane insertion from the IMS side are corresponding to the insertion mechanism in 

prokaryotes, where the preproteins are inserted into the outer envelope from the periplasm. 

This reflects the evolutionary origin of mitochondria from bacteria. 

The mechanism by which the ß-barrels are inserted into the outer-mitochondrial membrane by 

the TOB complex is still ill defined. Tob38 and Tob37 are both contributing to the stability of 

the TOB complex (105, 129, 132). Recently, Tob38 was reported to have a receptor-like 

function for ß-barrel precursor proteins by binding to a conserved ß-signal peptide at the most 

C-terminal ß-strand and thereby initiating their membrane-insertion (132, 133). Tob37 was 

described to be responsible for the release of precursors into the lipid phase of the membrane 

and thereby act downstream of Tob38 in ß-barrel assembly (129, 132). Moreover, recent 

findings assigned diverse proteins a role in the membrane insertion of ß-barrel precursor 

proteins. Mdm10, Mdm12 and Mmm1, constituents of the MDM (mitochondrial distribution 

and morphology) complex, were determined to act downstream of the TOB complex in the 

assembly pathway. Depletion of these proteins reduced the assembly of Tom40 and porin in 

the outer mitochondrial membrane (108, 134, 135). Mdm10 was also suggested to be a 

constituent of the TOB complex (134, 136, 137).  Mim1 was found to associate with Tob55 

and is essential in the late steps of the assembly pathway of Tom40 (91, 106, 138). In addition 

to its role in the topogenesis of mitochondrial outer membrane ß-barrel proteins, TOB was 

shown to participate in the insertion of α-helical subunits of the TOM complex such as Tom6 

and Tom22 (92, 95).  
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1.4 Aim of the present study 

 

The TOB complex was proven to be responsible for the insertion of ß-barrel precursor 

proteins into the outer membrane of mitochondria, a process which is crucial for the 

functionality of these organelles and consequently the host cell. During the last years, 

remarkable progress was made in the identification of proteins involved in the biogenesis of 

ß-barrel proteins. However, our knowledge about their structures, mechanism of membrane 

insertion and interplay is still fragmentary. The filamentous fungi N. crassa turned out to be 

an excellent organism for studying the biogenesis of mitochondrial proteins, due to its simple 

cultivation conditions and genetic manipulation procedures, and the fact that relatively large 

amounts of functionally and structurally intact mitochondria can be easily obtained (139). The 

aim of this study was to establish an isolation procedure of the TOB complex from N. crassa, 

with a view to carefully identify its composition and biochemical characteristics and thereby 

elucidating its functional mechanism. 
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2 Results 

2.1 Tob55 is expressed in three different isoforms due to 
alternative splicing 

 

For the isolation of the TOB complex of N. crassa, it was planned to start with a Ni-NTA 

(nickel-nitriloacetic acid) affinity purification from a strain expressing a His-tagged form 

(bearing a stretch of attached histidinyl residues) of the Tob55 protein. Surprisingly, Tob55 

appeared in two bands upon sodiumdodecylsulfate polyacrylamide gel electrophoresis (SDS-

PAGE) and Western blotting using antibodies directed against Tob55. Both bands were absent 

when the mitochondria were isolated from a strain in which Tob55 was downregulated 

(Tob55↓, Tob55KO-3) indicating two forms of Tob55 (Figure 3A).  

 

Figure 3 

N. crassa Tob55 appears in two bands upon SDS-PAGE 

A: The control strain HP1 and the Tob55KO-3 strain were cultivated on non-selective 

medium (-) or selective medium (+) with 400 mM fpa and histidine. Tob55KO-3 is a tob55 

knockout sheltered heterokaryon strain. Its growth on selective medium forces the tob55-

knockout-bearing nucleus to predominate in the heterokaryon, leading to a severe reduction 

of Tob55-levels in comparison to controls. Following SDS-PAGE, the separated proteins 

were analyzed by immunodecoration against Tob55. 

B: As in “A” except mitochondria were isolated from the control strain (HP1) and two 

strains, T55his6-1 and T55his6-3, expressing Tob55 with an N-terminal hexahistidinyl tag. 

Immunodecoration was performed with Tob55 antiserum or penta-His antiserum.  

(Nargang group, University of Edmonton, Alberta, CA) 
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To find out whether the translation of diverse messenger ribonucleic acids (mRNAs) causes 

the double band of Tob55 in N. crassa, complementary desoxyribonuclic acid (cDNA) clones 

of tob55 were sequenced in cooperation with the group of F. Nargang (University of 

Edmonton, Alberta, CA). Three different tob55 cDNAs were obtained encoding Tob55 

proteins of 483, 516 and 521 amino acids in length, termed long, intermediate and short 

Tob55, respectively (Figure 4B). Only two bands were observed by Western blot analysis. 

Therefore, it was assumed that the intermediate and long isoform cannot be distinguished by 

the electrophoretic procedure used. The variation between the cDNA clones was caused by 

the absence or presence of the exons 2 and 2a due to alternative splicing at three possible 5´- 

and two possible 3´-splice sites (Figure 4A). Sequence analysis of 20 randomly selected 

cloned cDNAs showed that the short form represents 50%, the intermediate form 35% and the 

long form 15% of total Tob55 cDNA. 

Immunodecoration with a Tob55 antibody suggested that the short Tob55 isoform is more 

abundant than the intermediate and the long isoform together (Figure 4A). On the other hand, 

immunodecoration with penta-His antibody yielded roughly equal signal intensities of the two 

Tob55 bands (Figure 4B). This can be explained by the fact that the Tob55 antibody was 

produced against the N-terminal 108 residues of the short form. Therefore, the short Tob55 

isoform presumably has a stronger interaction with the Tob55 antibody compared to the long 

and intermediate form due to more available epitopes. 

To obtain evidence for the existence of the different Tob55 forms at the protein level, outer 

mitochondrial membrane vesicles (OMVs) were purified from the strain T55His6-1. 

T55His6-1 contains an N-terminal hexahistidinyl-tagged genomic tob55 gene. Following 

SDS-PAGE, the separated proteins from the OMVs were stained with Coomassie Brilliant 

Blue and bands of the size predicted for the Tob55 isoforms were excised. They were then 

analyzed by matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass 

spectrometry. Signature peptides unique for the long and intermediate Tob55 isoform could 

be detected in the higher molecular weight Tob55 band, while the signature peptide 

identifying the short Tob55 isoform was found in the lower molecular weight Tob55 band 

(Figure 4C). Taken together, these data demonstrate that in N. crassa Tob55 is expressed in 

three different isoforms due to alternative splicing, as there are the long form with 521 amino 

acids (54.7 kDa), the intermediate form with 516 amino acids (54.1 kDa) and the short form 

with 483 amino acids (50.7 kDa).  
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Figure 4 

Three isoforms of Tob55 arise from alternative splicing 

A: Overview of the intron/exon structure of the tob55 gene  

Exons are sketched as rectangular boxes, introns as solid lines. The amount of codons 

comprised by each exon is given in parentheses. Possible 5´- and 3´-splice sites are indicated 

by numbered arrows above and below the line, respectively.  

B: The three different Tob55 isoforms resulting from alternative splicing  

The exons are shaded as in “A”. Predicted tryptic peptide fragments which are unique for 

each isoform (signature peptides) are underlined by solid bars.  

C: The signature peptides that are predicted to arise from the tryptic digestion  

The initial methionine is followed by six histidinyl residues, since the analysis was performed 

with the short Tob55 isoform bearing an N-terminal hexahistidinyl tag. Splice points between 

exon 1 and 3 for the short form, between exon 2 and 3 for the intermediate (“interm”) form, 

and between exon 2a and 3 for the long form of Tob55 are marked by arrows below the 

peptide sequence. The underlined residues in the long Tob55 isoform represent exon 2a.  

Coomassie blue-stained Tob55 bands were excised from a gel and analyzed by MALDI-TOF. 

For each signature peptide the predicted („„P‟‟) mass and the mass that was determined 

experimentally („„E‟‟) by mass spectrometry is given. The experimentally determined mass of 

the signature peptide of the short Tob55 isoform indicates an oxidation, which presumably 

took place at the N-terminal Met residue. For each signature peptide the tracings from the 

appropriate region of the mass spectra are shown. 
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2.2 Isolation of the TOB complex 

 

An isolation procedure of the TOB complex from the filamentous fungus N. crassa was 

established using His-tagged variants of components of the TOB complex. The first step was 

the purification of OMVs to enrich the amount of TOB complex in the starting material for 

Ni-NTA affinity. The TOB complex is present at very low levels in mitochondria and 

separation of the outer membrane leads to a strong enrichment as well as removal of potential 

contaminating proteins.  

A strain expressing the short Tob55 isoform with an N-terminal hexahistidinyl tag was chosen 

to be used for Ni-NTA affinity purification. The tag had to be extended from six to nine 

histidinyl residues to obtain efficient purification. Lysis of the OMVs was performed with the 

detergents TX-100 (Figure 5) or digitonin (Figure 6). The lysates were passed over Ni-NTA 

columns for affinity purification. The specifically bound proteins were eluted and subjected to 

SDS-PAGE. They were identified by Western blotting and immunodecoration (Figure 5B, 

Figure 6B) or Coomassie blue staining (Figure 5C, Figure 6C). Coomassie blue-stained bands 

were excised and proteins identified by LS-MS/MS. With both detergents, Tob55, Tob38 

(37.3 kDa) and Tob37 (48.6 kDa) were the only proteins, which were detectable in the eluate 

(Figure 5, B and C, Figure 6, B and C). Very minor amounts of Mdm10 (52.7 kDa) were 

detected by immunodecoration (Figure 5B, Figure 6B). The amounts of this protein were not 

high enough to show up upon LC-MS/MS. In the preparations obtained with digitonin 

sometimes traces of the very abundant outer membrane protein porin were present. 

The same isolation procedure was carried out with OMVs from the strains His9-Tob38 and 

His9-Tob37. These strains express Tob38 or Tob37 with an N-terminal ninefold His-tag and 

all three untagged Tob55 isoforms. These preparations were performed to exclude loss of 

TOB complex subunits caused by the absence of the intermediate and long Tob55 isoform. 

The only proteins recovered in the eluate were Tob55, Tob37 and Tob38, and again, very 

small amounts of Mdm10 (Figure 5, Figure 6). Thus, these results suggest that Tob55, Tob38 

and Tob37 are the subunits of the TOB complex. 
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Figure 5 

Tob38, Tob37 and Tob55 copurify in the presence of TX-100 

A: Schematic representation of TOB complexes with N-terminal ninefold His-tags at Tob55, 

Tob38 or Tob37.  

OM: outer mitochondrial membrane, IMS: intermembrane space 

B and C: Outer mitochondrial membrane vesicles (OMVs) from N.c. strains with the His-

tagged TOB-subunit, 9His-Tob55, 9His-Tob38 or 9His-Tob37 were solubilized with TX-100; 

proteins were isolated by Ni-NTA affinity purification and analyzed by SDS-PAGE followed 

by immunodecoration (B) or Coomassie blue staining (C). 

Solubilized outer mitochondrial membrane vesicles (OMVs) before (S) or after (L) clarifying 

spin. FT: flowthrough with unbound proteins of the Ni-NTA column, E: eluate of bound 

proteins, 55 lg and int: Tob55-intermediate and long isoform, 55sh: Tob55-short isoform, 37: 

Tob37, 38: Tob38.  

The strain with His-tagged Tob55 is only expressing the short isoform; hence only one band 

can be seen in the immunodecorations. Note that only traces of Mdm10 can be copurified in 

all three approaches.  
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Figure 6 

Tob38, Tob37 and Tob55 copurify in the presence of digitonin  

A: Schematic representation of TOB complexes with N-terminal ninefold His-tags at Tob55, 

Tob38 or Tob37. OM: outer mitochondrial membrane, IMS: intermembrane space 

B and C: Outer mitochondrial membrane vesicles (OMVs) from N.c. strains with the His-

tagged TOB-subunit, 9His-Tob55, 9His-Tob38 or 9His-Tob37, were solubilized with 

digitonin; proteins were isolated by Ni-NTA affinity purification and analyzed by SDS-PAGE 

followed by immunodecoration (B) or  Coomassie blue staining (C). 

Solubilized outer mitochondrial membrane vesicles (OMVs) before (S) or after (L) clarifying 

spin. FT: flowthrough with unbound proteins of the Ni-NTA column; E: eluate of bound 

proteins, 55 lg and int: Tob55-intermediate and long isoform, 55sh: Tob55-short isoform, 37: 

Tob37, 38: Tob38, Arrow head in “B” indicates a nonspecific interaction of a standard 

protein in the immunodecoration. 

The strain with His-tagged Tob55 is only expressing the short isoform; hence only one band 

can be seen after immunodecoration. Note that only traces of Mdm10 can be copurified in all 

three approaches.  
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2.3 Composition of the TOB complex  

 

To ascertain that no subunit of the TOB complex got lost during the isolation procedure of 

OMVs from mitochondria, proteins from mitochondria and OMVs were separated by blue 

native gel electrophoresis (BNGE). The TOB complex was detected by immunodecoration. In 

wild type Neurospora and strains bearing a His-tagged TOB subunit, the electrophoretic 

mobility of the TOB complex from OMVs and from mitochondria was comparable. Size 

differences which would indicate a loss of additional proteins were not observed (Figure 7).  

 

 

Figure 7 

The TOB complex remains intact during the isolation of OMVs from mitochondria 

Mitochondria (M) and outer mitochondrial membrane vesicles (O) from different N.c. strains, 

either wild type (wt) or strains bearing His-tagged Tob55 (55), Tob38 (38) or Tob37 (37), 

were solubilized with digitonin. They were then analyzed by BNGE and immunodecorated 

with Tob38 antiserum. Membrane protein complexes from bovine heart mitochondria were 

used as marker proteins. 

 

The TOB complex is a membrane protein complex and therefore the use of membrane 

proteins as a standard seemed appropriate. To this end, membrane protein complexes from 

bovine heart mitochondria with defined molecular masses served as markers upon by BNGE 

analysis (140). The TOB complex of mitochondria and OMVs solubilized with digitonin was 

running correspondingly to an estimated molecular mass of 130-160 kDa (Figure 7). 

Coomassie blue staining of the TOB complex isolated by using TX-100 revealed the same 

electrophoretic migration behavior as when digitonin was used (Figure 8). When the TOB 

complex was isolated from strains expressing 9His-Tob38 and 9His-Tob37, a minor amount 

of the isolated protein migrated in a lower fraction. This might be due to a partial decay of the 

TOB complex after solubilization with the comparatively harsher detergent TX-100 (Figure 

8). A small fraction of the isolated complexes seems to represent TOB complex oligomers of 

around 400 kDa and 1000 kDa. The preparations from OMVs bearing a His-tagged short 

isoform of Tob55 looked different from the former preparations. In this case, two strong 

bands were observed in addition to that of the TOB complex, running below the 123 kDa 

marker band (Figure 8).  
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Figure 8 

TOB complex purification by affinity chromatography after lysis of OMVs with TX-100  

Bovine heart mitochondria (BHM) were solubilized with TX-100. The TOB complex was 

isolated from N.c. strains bearing His-tagged Tob55, Tob38 or Tob37 using TX-100. The 

samples were subjected to BNGE and Coomassie blue staining. Membrane protein complexes 

from bovine heart mitochondria were used as markers.  

Asterisks indicate possible oligomeric forms of the TOB complex. 

 

 

The isolated complexes were further analyzed by immunodecoration after BNGE. The 

dominant band of the TOB complex isolated from strains harboring 9His-Tob38 or 9His-

Tob37 showed the same electrophoretic mobility as the complex from solubilized OMVs 

without further affinity purification (Figure 9, B and C). This form of the TOB complex 

contains Tob55, Tob38 and Tob37 and is therefore representing the TOB complex. 

Decoration with antibodies against Mdm10 identified traces of copurified Mdm10 as part of 

an apparent molecular mass species of around 200 kDa (Figure 9, B and C), and not as a 

constituent of the TOB complex. In this 200 kDa complex, Tob55, Tob38 and Tob37 were 

also detected. Considering the molecular weight of Mdm10 of 52.7 kDa, this complex most 

likely represents one Mdm10 bound to the TOB complex. It was termed TOB-Mdm10 

complex.  
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Figure 9 

Tob55, Tob38 and Tob37 constitute the TOB complex isolated using TX-100 as detergent 

A-C: Outer mitochondrial membrane vesicles (OMVs) and bovine heart mitochondria were 

solubilized with TX-100. The TOB complex was isolated from N.c. strains bearing His-tagged 

Tob55, Tob38 or Tob37. The samples were separated by BNGE and analyzed by 

immunodecoration. Membrane protein complexes from bovine heart mitochondria were used 

as marker proteins.  
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The protein complex running faster than the TOB complex (apparent molecular mass around 

90 kDa) contained Tob55 and Tob38 (Figure 9). Tob37 was missing and therefore seems to 

be a subunit which can be lost from the TOB complex during isolation. The 90 kDa complex 

is referred to as Tob55-Tob38 complex in the following. The Tob55-Tob38 complex makes 

up just a very minor species as judged by its intensity upon staining with Coomassie blue 

(Figure 8, panel 2 and 3).    

Upon comparing immunodecorations of the TOB complex isolated with 9His-Tob55 with 

those in which 9His-Tob37 or 9His-Tob38 were present, most Tob55 was found at a complex 

running at around 100 kDa, roughly the size of Tob55-Tob38 (Figure 9A). Hence, tagging 

Tob55 could possibly have a destabilizing effect on the TOB complex causing a decay of the 

complex. Nevertheless, the amount of Tob38 was higher in the TOB complex than in the 

Tob55-Tob38 complex. This is inconsistent with the possibility that this 100 kDa species 

might have arisen from the loss of Tob37 from the TOB complex. 

 

In addition to the preparations performed with TX-100, the TOB complex was isolated using 

digitonin as detergent for the solubilization of the OMVs. With strains expressing 9His-Tob38 

or 9His-Tob37, the dominant TOB complex was running somewhat faster than that isolated 

with TX-100 (Figure 10). A second, weaker band was present above the main complex, 

presumably representing the TOB-Mdm10 complex. The Tob55-Tob38 complex is missing. 

This supports the suggestion that the complex is more prone to the loss of Tob37 when the 

solubilization is performed with TX-100 (Figure 10). Again, the elution pattern was very 

different when the complex was isolated via His-tagged Tob55 in comparison to preparations 

from the His9-Tob38 or His9-Tob37 strain (Figure 10, panel 1). Similar to the affinity 

purifications performed with TX-100, monomeric Tob55 was found in addition to the TOB 

and the TOB-Mdm10 complex. Moreover an enriched complex at around 100 kDa was 

observed.  
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Figure 10 

TOB complex purification by affinity chromatography after lysis of OMVs with digitonin  

Bovine heart mitochondria (BHM) were solubilized with digitonin. The TOB complex was 

isolated from N.c. strains bearing His-tagged Tob55, Tob38 or Tob37 by the use of digitonin. 

The samples were subjected to BNGE and Coomassie blue staining. Membrane protein 

complexes from bovine heart mitochondria were used as markers.  
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Figure 11 

Tob55, Tob38 and Tob37 constitute the TOB complex isolated using digitonin as detergent 

A-C: Outer mitochondrial membrane vesicles (OMVs) and bovine heart mitochondria were 

solubilized with digitonin. The TOB complex was isolated from N.c. strains bearing a His-

tagged Tob55, Tob38 or Tob37. The samples were separated by BNGE and analyzed by 

immunodecoration. Membrane protein complexes from bovine heart mitochondria were used 

as markers. 
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The TOB complex isolated from OMVs solubilized with digitonin was found to be made up 

by the proteins Tob55, Tob38 and Tob37, only (Figure 11). No Tob55-Tob38 complex was 

present in the eluate. Therefore, no Tob37 is lost from the TOB complex in course of the Ni-

NTA affinity purification. By the use of the strain, which expresses 9His-Tob55, an 

enrichment of Tob55 in a complex with an apparent molecular mass of 100 kDa was observed 

and in addition monomeric Tob55 (Figure 11A). This 100 kDa complex was not detected 

when antibodies against Tob38, Tob37 or Mdm10 were used. Therefore, Tob55 exists as a 

dimer. Interestingly, this Tob55 dimer was also present in solubilized OMVs from all various 

strains without any further isolation. This demonstrates that the Tob55 dimer is not an artefact 

caused in the course of the Ni-NTA purification. Mdm10 again was running in a complex 

with a slightly higher apparent molecular mass than the TOB complex. Thereby it most likely 

represents the TOB-Mdm10 complex. Taken together, the use of digitonin and TX-100 for the 

solubilization of OMVs resulted in the isolation of complexes of very similar composition. 

The only species which was only present in preparations using TX-100 was the Tob55-Tob38 

complex. However, only very minor amounts of this complex were found. Therefore, both 

detergents are suitable for the purification of the TOB complex. 

 

Antibody supershift assays were performed to further analyze the diverse complexes observed 

by BNGE after preparation of the TOB complex by affinity purification. To this end, OMVs 

differing in the His-tagged TOB complex subunit were solubilized with digitonin. 

Subsequently, penta-His antibody was added and BNGE was performed. Tob38, Tob37 and 

Tob55 were present in the TOB complex as well as in the far less abundant TOB-Mdm10 

complex running directly above the TOB complex at around 200 kDa. Both complexes could 

be shifted with the penta-his antibody directed against Tob55, Tob38 or Tob37 (Figure 12). 

Tob55 was further detected in a second abundant complex of around 100 kDa. This band 

could only be shifted when the His-tag was attached to the Tob55, but not with His-tagged 

Tob38 and Tob37 (Figure 12). Decoration with Tob38 and Tob37 antibody showed the 

absence of these proteins in the 100 kDa complex. The 100 kDa complex was not the result of 

a decay of the TOB complex due to the modification of Tob55 by the attachment of the His-

tag, since it was also present in the His9-Tob38 and His9-Tob37 strains and even in the wild 

type strain (Figure 12A). In addition, a control with penta-his antibody alone excluded an 

unspecific interaction with the Tob55 antibody during immunodecoration. When affinity 

purification experiments were performed with His-tagged Tob55 and digitonin, only traces of 

porin and Mdm10 could be found in addition to the subunits Tob55, Tob38 and Tob37 
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(Figure 6B). Mdm10 and porin, as well as Tom40 are ß-barrels themselves. Therefore, they 

are substrates of the TOB complex. The distribution of these proteins was determined by 

immunodecoration following BNGE and Western blotting. An interaction of porin or Tom40 

with the TOB complex was not detected in the antibody supershift assays (Figure 12, D and 

F). Mdm10 was not detected together with Tob55 in the complex of around 100 kDa, but it 

was present in the complex of 200 kDa which could be shifted with His-tagged Tob55, Tob38 

or Tob37 (Figure 12B).  

The 100 kDa complex most likely represents a Tob55 dimer, since none of the co-isolated 

proteins was found to be part of it. 
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Figure 12 

Tob55 is not only present in the TOB complex but in addition forms a dimer and Mdm10 is 

present in a 200 kDa complex. 

A-F: Outer mitochondrial membrane vesicles from different N.c. strains, either wild type (wt) 

or strains bearing a His-tagged Tob55 (55), Tob38 (38), or Tob37 (37), were solubilized with 

digitonin. Where indicated, monoclonal His-antibody was added to the solubilized proteins or 

loaded as controls (c) before the samples were separated by BNGE. Immunodecoration was 

performed with antibodies as indicated. Membrane protein complexes from bovine heart 

mitochondria were used as markers.  
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When TX-100 was used only a very faint band representing a putative Tob55 dimer was 

observed (Figure 13A). This is in contrast to the result of solubilisation of the OMVs with 

digitonin (Figure 12A). Nonetheless, upon isolation of the TOB complex with His-tagged 

Tob55 using TX-100, a substantial amount of the very same band at around 100 kDa was 

present in the eluate (Figure 8, Figure 9A). This finding is comparable to preparations 

performed with digitonin (Figure 10, Figure 11A). The unexpected appearance of the Tob55 

dimer in the eluate of TOB complex preparations performed with TX-100 suggests that TX-

100 leads to disintegration of the Tob55 dimers. Ni-NTA affinity isolation of the TOB 

complex includes loading of solubilized OMVs in presence of high detergent concentrations. 

Upon elution the detergent concentration is reduced. Therefore, isolated Tob55 monomers 

might reform dimers upon decrease of the detergent concentration or when their concentration 

is increased. 

The origin of the Tob55 dimers was to be analyzed in more detail. To this end, affinity 

purification was performed with a strain expressing the short isoform of Tob55 with a 

ninefold His-tag as well as the intermediate Tob55 isoform bearing a Flag-tag. Pulldowns 

directed against one or the other tag only eluted one kind of tag. This indicates that Tob55 is 

not present in dimers under the given conditions (Figure 14). However, with this result one 

can only exclude the presence of Tob55 dimers formed by the short and intermediate Tob55 

isoform. Tob55 dimers constituted by different Tob55 isoform combinations might still exist.  

Monomeric Tob55 was found in addition to Tob55 dimers preparations performed with TX-

100 as well as with digitonin (Figure 8, Figure 10). It remains to be elucidated where these 

Tob55 monomers originated from. In case of a decay of the TOB complex, there should also 

be an equivalent amount of monomeric Tob38 and Tob37 which should also be enriched 

when the TOB isolation is performed with 9His-Tob38 or 9His-Tob37. Such an enrichment of 

Tob38 and Tob37 in the eluate was not observed (Figure 5, Figure 6). In conclusion, the 

enriched Tob55 originates from an excess of Tob55 over Tob38 and Tob37 in mitochondria 

rather than from a decay of the TOB complex.  
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Figure 13 

Analysis of the isolated TOB complex by Blue native shift experiments 

Outer mitochondrial membrane vesicles from different N.c. strains, either wild type (wt) or 

strains bearing His-tagged Tob55 (55), Tob38 (38), or Tob37 (37), were solubilized with TX-

100. Where indicated, His-antibody was added to the solubilized proteins or loaded alone as 

a control (c). Samples were then analyzed by BNGE. Immunodecoration was performed with 

diverse antibodies as indicated.  

Membrane protein complexes from bovine heart mitochondria were used as marker proteins. 

 

 

 

 
Figure 14 

The TOB complex contains only one Tob55 subunit 

Outer mitochondrial membrane vesicles bearing a His-tagged short isoform and a Flag-

tagged intermediate isoform of Tob55 were solubilized with TX-100. Proteins were isolated 

by Ni-NTA or anti-Flag-tag affinity purification and analyzed by SDS-PAGE followed by 

immunodecoration.  

OMVs before (S) or after (L) clarifying spin. FT: flowthrough with unbound proteins of the 

Ni-NTA column; E: eluate of bound proteins 
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The antibody supershift assays demonstrated the presence of Mdm10 in a complex of around 

200 kDa together with Tob55, Tob38 and Tob37. This 200 kDa complex therefore reflects the 

association of Mdm10 with the TOB complex. Since porin and Tom40 were not observed to 

bind to the TOB complex, unspecific co-purification of ß-barrel precursor proteins can be 

excluded.  

Taken together, Tob55, Tob38 and Tob37 exclusively constitute the TOB complex with an 

estimated molecular mass of ca 150 kDa. Mdm10 is not part of the TOB complex. Very small 

amounts of Mdm10 are recovered with Tob55, Tob38 and Tob37 in a complex of around 200 

kDa, forming the TOB-Mdm10 complex. Furthermore, a substantial amount of Tob55 in the 

outer mitochondrial membrane occurs in a form that is not associated with Tob38 and Tob37. 
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2.4 Tob55, Tob38 and Tob37 are present in the TOB complex in a 
1:1:1 stoichiometry 

 

In order to further analyze the structure of the TOB complex it was necessary to determine the 

stoichiometry of the three different subunits. This could not be achieved by determination of 

the molecular mass of the complex since reliable methods for measuring the precise molecular 

mass of membrane inserted complexes do not exist. Therefore, quantitative mass spectrometry 

was employed to determine the stoichiometry of the subunits Tob55, Tob38 and Tob37 in the 

TOB complex. TOB complexes were excised from gels after BNGE (Figure 8, Figure 10). 

They were analyzed by isotope diluted mass spectrometry (IDMS) with quantified stable 

isotope (
13

C/
15

N) labeled internal peptide standards of all three subunits (Figure 15G; see also: 

Material and Methods, 6.1.7, “Peptides”). Figure 15 depicts representative measurements of 

technical replicates of the different isolated complexes to illustrate the reproducibility of the 

quantification by IDMS. A total of six biological replicates of the TOB complex, and four 

biological replicates of the Tob55-Tob38 complex, isolated using TX-100 or digitonin, from 

both strains, His9-Tob38 and His9-Tob37, were analyzed. The various analyses yielded the 

same results, as described in the following: TOB complexes isolated via 9His-Tob38 or 9His-

Tob37, with either TX-100 or digitonin, had a 1:1:1 ratio between the subunits Tob55, Tob38 

and Tob37 (Figure 15). Therefore, the slight difference in the electrophoretic mobility 

between the TOB complex isolated with TX-100 and digitonin (Figure 8, Figure 10) was 

caused by the use of the different detergents but not by different stoichiometries of the 

subunits of the complex. The absence of Tob37 in the Tob55-Tob38 complex, found in 

preparations performed with TX-100, could be confirmed by the IDMS measurements, 

resulting in a 1:1:0 ratio (Figure 15, C and D). Moreover, protein identification by LC-

MS/MS could not detect any other proteins than Tob55, Tob38 and Tob37 in the TOB or 

Tob55-Tob38 complex. A 1:1:1 ratio of Tob55, Tob38 and Tob37 monomers results in a 

molecular weight of about 140 kDa. This is in accordance with the electrophoretic mobility of 

the complex in relation to the protein complexes from bovine heart mitochondria that served 

as standards (Figure 7 - Figure 13). Thus it is concluded that one Tob55 protein assembles 

with one Tob38 and Tob37 molecule each.  
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Figure 15 

Tob55, Tob38 and Tob37 are present in the TOB complex in a 1:1:1 stoichiometry 

A, C and E: TOB complex was isolated from N.c. strains bearing a His-tagged Tob38 using 

TX-100 (A and C) or digitonin (E). It was subjected to BNGE and cut out after Coomassie 

blue staining of the native gel. The complexes were analyzed by IDMS. By comparing the two 

peak areas of the heavy and light peptides, the amount of each TOB complex subunit could be 

determined. The relative amounts of the native peptides and thereby the native proteins are 

depicted; Tob55 was set to 1. Representative experiments for each measured protein complex 

are shown. The error bars depict the standard deviation of the measurements of several 

diverse samples (n) originating from the very same isolated complex and illustrate the 

reproducibility of the quantification by IDMS.  

B, D and F: Same as in “A”, “C” and “E” with N.c. strains bearing a His-tagged Tob37. TX-

100 (B and D) or digitonin (F), was used for solubilization.  

G: Quantified stable isotope (
13

C/
15

N) labeled internal peptide standards, AQUA 

(AbsoluteQUAntification) peptides, for the proteins Tob55 (55), Tob38 (38) and Tob37 (37) 

are shown; the amino acid substituted with a stable isotopic amino acid is written in gray. 

 

 



Results 

40 

 

IDMS was also performed with the other complexes present as higher apparent molecular 

mass species in the BNGE than the TOB complex (Figure 8, Figure 10). However, due to the 

tailing of the protein bands in the upper part of the gels reproducible and therefore reliable 

results could not be obtained. 

In addition, the TOB complex which was isolated by affinity purification using His-tagged 

Tob55 was mass-spectrometrically analyzed. The TOB complex was determined to have a 

1:1:1 stoichiometry. Due to the high amounts of Tob55 in the isolate and the tailing of Tob55 

in many replicates, the relative amounts of Tob55 were slightly higher (Figure 16, A and C). 

The presence of more than one Tob55 in the TOB complex isolated with His-tagged Tob55 

can be excluded, since this complex has the very same running behavior as the complexes 

isolated via a His-tagged Tob37 or Tob38. Furthermore, the TOB complex did not show an 

increased Tob55 upon immunodecoration with Tob55 antiserum (Figure 9, A-C, Figure 11, 

A-C). The majority of Tob55 was detected in the complexes with an apparent molecular mass 

of ca. 100 kDa (Figure 16, B and D). Only traces of Tob38 were found in this band when TX-

100 was used for the TOB complex preparation (Figure 16B). The excess of Tob55 over 

Tob38 in preparations of the TOB complex obtained with TX-100 indicates that Tob55 

dimers apparently overlay smaller amounts of the Tob55-Tob38 complex in the native gel. 

When digitonin was used, no Tob55-Tob38 complex was observed and accordingly no Tob38 

was detected in the 100 kDa band. The distinct bands on the BN-gels with an apparent 

molecular mass of ca. 60 kDa (Figure 8, Figure 10) were identified as Tob55 monomers, since 

only Tob55 was detected.  

In summary, these studies support our findings that there is a large amount of Tob55 which is 

not associated with Tob38 and Tob37. 
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Figure 16 

Dimer-formation of Tob55 

A and B: TOB complex was isolated from N.c. strains bearing a His-tagged Tob55 using TX-

100 and was subjected to BNGE and then cut out after Coomassie blue staining of the native 

gel. The complexes were analyzed by IDMS. By comparing the two peak areas of the heavy 

and light peptides, the amount of each TOB complex subunit could be determined. The 

relative amounts of the native peptides and thereby the native proteins are depicted; Tob55 

was set to 1. Representative experiments for each protein complex analyzed are shown. The 

error bars depict the standard deviation of the measurements of diverse samples originating 

from the very same isolated complex and illustrate the reproducibility of the quantification by 

IDMS. 

C and D: Same as in “A” and “B”, but solubilization was performed with digitonin.  
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2.5 Reconstruction of the isolated TOB complex by cryo-electron 
microscopy 

 

In order to obtain further insights into the structure of the TOB complex cryo-electron 

microscopy (cryo-EM) analysis was performed. This analysis was carried out by single 

particle analysis in collaboration with Dennis Thomas (Baumeister group, MPI Martinsried, 

GER). A 2D structure prediction of Tob55 was made since no crystal structure of a TOB 

complex subunit was available. The Research Collaboratory for Structural Bioinformatics 

Protein Data Bank (RCSB PDB) was searched for known structures with sequence homology 

and similar predicted secondary structure. The secondary structure prediction for Tob55 

showed remarkable similarity to the known structure of the FhaC ß-barrel protein. Tob55 was 

suggested to have 16 ß-strands that form a transmembrane ß-barrel like FhaC and an N-

terminal region harbouring one POTRA domain, whereas FhaC has two.  

Using MODELLER, a 3D model for Tob55 was constructed by essentially mapping the 

predicted Tob55 secondary structure onto the FhaC 3D structure (PDB I.D. 2QDZ) (121). The 

resulting model follows the 2D structure prediction well. The ß-strands are connected by short 

turns or longer loops sticking out on both sides of the membrane (Figure 17A). Two long 

defined loops (red and blue loops) are present at the cytoplasmic side in the model predicted 

for Tob55 (Figure 17, Figure 18, Figure 19). Superposition of both protein structures revealed 

that these two loops, comprising amino acid residues 267 to 291 (blue loop) and amino acid 

residues 412 to 439 (red loop) of Tob55 correspond to loop 5 (L5) and loop 8 (L8), 

respectively, in the FhaC structure (Figure 18, Figure 19). The loops at the cytoplasmic face 

of the predicted Tob55 ß-barrel structure are longer and more exposed than those of FhaC. 

However, the blue loop of FhaC in fact must be longer in reality since the published structure 

lacks amino acid residues 384 to 398 (Figure 19A, red boxed residues in loop 5) (121). 

Therefore, this loop might show higher similarity to the corresponding loop in the Tob55 

structure. Another significant feature in the FhaC structure is a large loop between the extra-

cellular ends of strands 11 and 12. This loop is folded back into the lumen of the barrel (L6, 

green loop) joining an N-terminal α-helix (pink helix) to occlude the ß-barrel (Figure 17, 

Figure 18, Figure 19). The sequence corresponding to the N-terminal α-helix of FhaC was 

missing in the predicted structure of Tob55 (Figure 17A). However, a long loop stretching 

through the interior of the ß-barrel was predicted between the Tob55 strands 11 and 12, 

containing amino acids 318 to 376 (green loop) (Figure 17, Figure 18, Figure 19). At the tip 

of the loop the VRGY/F tetrad was localized (Figure 19B, grey framing). The VRGY/F tetrad 
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is a highly conserved motif among members of the Omp85-TpsB transporter superfamily, 

including FhaC. In FhaC, it is also found at the tip of the loop which is spanning the interior 

of ß-barrel (141) (Figure 19A, grey framing). Additionally, sequence analysis of other 

members of this transporter superfamily suggests that this motif is always positioned in a 

predicted loop between two ß-strands close to the C-terminus. The localization of the 

VRGY/F tetrad in our predicted Tob55 structure is therefore consistent with data from other 

family members. Taken together, structural prediction analysis suggests a high degree of 

similarity between FhaC and Tob55 and results in a reasonable 3D model of Tob55. 

 

 

 
 
Figure 17 

Modelling of the 3D structure of Tob55 suggests high similarity to the structure of FhaC 

A:  Ribbon representation of the predicted structure of Tob55 

B: Ribbon representation of the crystal structure of FhaC  

The view corresponds to the one of Tob55 in “A”. The amino acid stretch between helix 1 and 

the first POTRA domain had no well-defined electron density and is therefore shown as a 

dashed line. 

The red and blue loops are located at similar sites in both structures. The C-terminus of both 

proteins is colored in light blue. The loops spanning the interior of the ß-barrels are depicted 

in green. The N-terminal helix in the interior of the FhaC ß-barrel is shown in pink. 
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Figure 18 

Superposition of Tob55 and FhaC illustrates corresponding elements in the architecture of 

both transporters 

A and B: Ribbon representation of two corresponding views of the predicted structure of 

Tob55 (row 1, yellow) and the crystal structure of FhaC (row 2, grey) are illustrated. Row 3 

depicts an overlay of both structures. 

C: Insight into cutaway views of Tob55 and FhaC is given.  

The red and blue loops are located on similar sites in both structures. The C-terminus of both 

proteins is colored in light blue. The loops spanning the interior of the ß-barrels are depicted 

in green. The N-terminal helix in the interior of the FhaC ß-barrel is shown in pink. 
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Figure 19 

Analysis of the secondary structural elements of FhaC and Tob55 

A: Secondary structural elements of the FhaC structure  

Helices and ß-strands of the POTRA domains are presented in yellow and grey, respectively. 

ß-strands which are forming the ß-barrel are coloured in light blue. The FhaC model does not 

include the first two N-terminal residues, the loop after helix 1 as well as the residues 384 – 

398 of loop 5 (red framing). The VRGY/F tetrad in the green loop is framed in grey.  

B: The predicted structure of the short isoform of Tob55 is illustrated in the same way as in 

“A”. Amino acid residues which were not part of ß-strands in the 2D structure prediction of 

Tob55 but turned out to contribute to the ß-strands in the 3D modelling are underlined.  

 

 

 

 

 



Results 

46 

 

TOB complexes bearing a His-tag either at the Tob37 or Tob38 subunit were placed on grids 

with a “lacey” carbon film. Lacey meaning the surface is mostly irregular holes in the film. 

The samples form a thin layer of liquid in the holes during blotting. These complexes are 

more homogenous than those isolated using His-tagged Tob55, as described earlier (chapter: 

2.3, Figure 8, Figure 10). 

Images of TOB complexes in vitreous ice were obtained (Figure 20). Particles visible in the 

images were boxed from the images in an automated manner.  

 

 

Figure 20 

A typical micrograph of TOB complex particles obtained by cryo-electron microscopy 

A micrograph of vitrified TOB complex, imaged at 20-25 e
-
 per Å, -2.2 µm ΔF is depicted.  

 

Since there were no models available to begin alignment and reconstruction with, the first step 

of the image analysis was to perform a reference free alignment on the particles. Reference 

free alignment potentially can produce classified images representing closely related views of 

the particle whose orientations can be determined. At best, these views might be used to 

generate a starting model. At a minimum, it gives some insight into the basic architecture of 

the particle and non-particle images, such as carbon edges, can be identified (Figure 21C). 

Reference free alignment averages were determined from three different subsets of particle 

images collected in one session from one grid with TOB complex prepared from the His9-

Tob37 N. crassa strain (Figure 21A). These averages are essentially the same although they 

appear shifted and rotated relative to one another. This shift and rotation is a result of each set 

of images starting from a different randomly determined starting point. These averages have 

one prominent globular protein mass.  
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After classification of reference free aligned particle images, the individual class averages 

show one or two additional masses occurring in different positions relative to the main mass 

(Figure 21, B and C). These appear much like different projections of a three dimensional 

complex containing three subunits. None of these class averages appear symmetric nor do 

they have a visible channel.  

 

 

 

Figure 21 

Reference free alignment of single particle images suggests that the TOB complex 

comprises three subunits 

A: Particle images of the TOB complex collected in one session from one grid were divided 

into three subsets and subjected to reference free alignment.  

B: Classification of reference free aligned particle images  

C: Class averages out of “B” are enlarged. Images 1, 3 and 4 depict class averages of TOB 

complex particles; image 2 illustrates a class average of non-particle images, such as carbon 

edges. 
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A 3D model could not be obtained from the class averages of the reference free alignment. 

Therefore, a starting model needed to be generated to be able to begin alignment and 

reconstruction of the complexes. Since the reference free alignment classes strongly suggested 

that there were three discrete domains or subunits, a reference with three subunits was an 

obvious starting point. The reference was centered on a density map calculated from the 

Tob55 model. Two subunits were expected to be found on the cytoplasmic surface of Tob55. 

Thus it seemed reasonable to place two spheres in the model that are associated with Tob55. 

However, there was no information to guide the placement of such spheres. Therefore, to 

avoid any bias in the reconstruction by a defined prepositioning of spheres for the subunits 

Tob38 and Tob37, an amorphous ring was placed above the cytoplasmic face of the Tob55 ß-

barrel.  

With successive rounds of reconstruction, the ring shape converted into two defined spherical 

structures that are facing each other, presumably presenting the subunits Tob38 and Tob37 

(Figure 22). The bulky central part of the structure retained the original overall appearance of 

the model of the ß-barrel protein Tob55. However, after the formation of the two peripheral 

subunits and a progressing improvement of the reconstruction, conformational flexibility in 

the structure started to increasingly influence the alignment, thereby blurring the structure 

again (Figure 22, compare 5 and 6). A maximum-likelihood-analysis might be a good 

approach in the future for the separation of complexes with slight internal conformational 

differences. 

In addition, the reconstruction is limited by the small molecular mass of the TOB complex. 

The analysis of the TOB complex in this study revealed that the complex has an apparent 

molecular mass of 140 kDa, which is much smaller than expected from previous results. The 

small size of the protein complex presents severe difficulties in the cryo-EM analysis due to a 

low signal-to-noise ratio in the image. The low signal-to-noise ratio is reflected in the minimal 

difference between cross-correlation intensities resulting from images of the TOB complex 

and those calculated from images of buffer background aligned against the same reference 

data projections (Figure 23). The cross correlations of data containing images are consistently 

above the background but by a much smaller margin than might be expected for larger 

complexes. This low signal-to-noise ratio results in errors in alignment and therefore errors in 

assignment of correct angles to images. 

 

 

 



 Results  
 

49 

 

 

 
 

Figure 22 

Reconstruction of the isolated TOB complex 

TOB complex was isolated from the His9-Tob37 N.c. strain and subjected to cryo-electron 

microscopy single particle analysis. Progress with increasing rounds of alignment and 

reconstruction is illustrated from the left to the right. A superposition of the predicted 

structure of Tob55 and the reconstruction is shown (1, 4 and 6).  
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Figure 23 

The small molecular mass of the TOB complex results in low signal-to-noise ratios 

The cross-correlation intensities of classified particle images are depicted. The green line 

reveals the number of particle images assigned to a certain class number.  The x-axis depicts 

the class number, the y-axis the intensity of cross correlation. Cross-correlation intensities 

originating from vitrified buffer are coloured in red, signals emerging from TOB complex 

particles in blue. The average cross-correlation intensities of the TOB complex particles are 

illustrated in pink. 

 

 

Interestingly, fitting of the predicted structure of Tob55 into the reconstruction suggests that 

the extended loops at the cytoplasmic face of Tob55 are sticking out into the spheres of the 

subunits Tob37 and Tob38. They presumably form the connection sites between the latter 

proteins and Tob55 (Figure 24, A and B).  

Samples of isolated TOB complex were incubated with Ni-NTA-Nanogold. This was done in 

order to identify and localize the His-tagged subunits and thereby determine the organization 

of the complex. Reconstructions of the TOB complex containing labelled or unlabelled 9His-

Tob37 were obtained. After density difference calculations, extra mass could mainly be 

detected in one of the two spheres, identifying it as Tob37 (Figure 24, A and B). Furthermore, 

a mass strand between Tob37 and Tob55 or the membrane was observed. Such a structure 

was not recognized with Tob38 (Figure 24). In conclusion, the results obtained in this study, 

including analysis of stoichiometries, molecular masses, cryo-electron microscopy and 

molecular modeling allow a preliminary organization of structure of the TOB complex to be 

proposed (Figure 24C).  
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Figure 24 

Two extracellular loops of the Tob55 ß-barrel are likely to present sites of interaction with 

the peripheral subunits Tob38 and Tob37. 

A and B: Superposition of the predicted structure (ribbon representation) and the next to last 

reconstruction of Tob55 (light green)  

A density difference calculation of reconstructions of TOB complexes with 9His-Tob37, 

labelled or unlabelled with Ni-NTA-Nanogold, was performed (red areas).  

C: Localization of Tob38, Tob37, Tob55 as well as the POTRA domain of Tob55  

OM: outer mitochondrial membrane 
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2.6 The subunits of the TOB complex are tightly associated with 
the outer mitochondrial membrane 

 

Cryo-electron microscopy analysis revealed a mass strand for Tob37 which might function as 

a membrane anchor. To get some further insight into the interaction of Tob37 and the other 

TOB subunits with the membrane, alkaline extraction was performed. By this, it should be 

determined whether the subunits of the TOB complex are only loosely attached or tightly 

anchored to the outer mitochondrial membrane. Tob37 turned out to be very resistant to 

alkaline extraction. It could not be removed from the membrane at pH values up to 12.5. The 

extra mass strand observed for Tob37 in the reconstruction of the TOB complex might 

represent a membrane anchor. Thus, Tob37 can be classified as a membrane anchored protein. 

Tob38 is slightly more sensitive to alkaline treatment than the signal-anchored protein Tom70 

and roughly half of Tob38 is extracted at pH 12.5. Thus, Tob38 rather has the characteristics 

of a peripheral membrane protein. 

Tob55 is predicted to be a ß-barrel protein and thus is expected to have a tight interaction with 

the membrane. In agreement with this, even under very basic conditions no extraction of 

Tob55 could be observed (Figure 25). Mdm10 has also been assigned to the family of ß-barrel 

membrane proteins and its membrane integration has been demonstrated (108). Taken 

together, all subunits of the TOB complex reveal a tight interaction with the membrane.  
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Figure 25 

Tob55, Tob38 and Tob37 are tightly associated with the outer mitochondrial membrane 

OMVs were subjected to alkali extraction with 0.1 M sodium carbonate adjusted to different 

pH values of 10.8, 11.5 and 12.5. As a control, proteins were treated with HEPES buffer at 

pH 7.4 (control). Membrane bound proteins were sedimented by centrifugation (P). Soluble 

proteins in the supernatant were precipitated with trichloroacetic acid (S). 
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2.7 The isolated TOB complex shows specific substrate binding 
behavior 

 

In order to study the functionality of the isolated TOB complex, its ability to bind substrates 

was analyzed. To this end, the TOB complex was immobilized on a Ni-NTA matrix, 

thoroughly washed and incubated with radioactive mitochondrial precursor proteins. Tom40 

precursor showed a weak binding, slightly above background level. In constrast, a distinct 

binding to the TOB complex was observed for Tom22. No significant binding of porin was 

found (Figure 26).  

 

Figure 26 

The immobilized TOB complex shows specific binding of certain substrates 

TOB was affinity-purified from OMVs bearing a 9His-Tob37 on a Ni-NTA matrix by using 

TX-100. The isolated complex was incubated with different radioactive precursor proteins 

(TOB) before being eluted from the column. As a control, a mock isolation without OMVs was 

performed and the matrix was treated the same way with radioactive precursor proteins 

(mock). After washing, the bound precursor proteins were eluted and visualized by 

autoradiography.  

Radioactive precursor proteins: Tom40, Porin, Su9-DHFR, Tom22; mock, no plasmid was 

added to the transcription/translation-reaction 

 

 

The immobilization of the TOB complex on the matrix might have hindered the interaction 

with its substrates. Therefore, a pepspot binding assay was performed, which allows the 

isolated TOB to interact with peptide libraries of its substrates Tom40 and porin in a soluble 

state. The peptide libraries used in the assay consisted of amino acid residues covering the 

complete sequence of the respective substrates. The assay allowsThis enables the localization 
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of specific binding sites on the substrates. With both peptide libraries, TOB presented a 

distinct and reproducible binding pattern (Figure 27, Figure 28). Interestingly, binding to the 

“ß-signal” of the ß-barrel substrate proteins could not be detected.  

 

 

Figure 27 

The isolated TOB complex interacts with distinct peptides of a porin peptide library 

A: The TOB complex was isolated by Ni-NTA affinity purification from N. crassa by the use of 

TX-100. The porin peptide library was incubated with the isolated TOB complex. Bound TOB 

complex was blotted from the pepspot-membrane to a PVDF-membrane and 

immunodecorated with penta-His antibodies.  

B and C: Schematic view of the binding sites on the peptide library  

Strong binding of the TOB complex is indicated by black pepspot dots (B) and black peptide 

fragments in the peptide library overview (C). Weak interactions are in dark grey. The “ß-

signal” is underlined (# 68).  
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Figure 28 

The isolated TOB complex interacts with with distinct peptides of a Tom40 peptide library 

A: As in Figure 27, except for the use of the Tom40 peptide library 

B and C: Schematic view of the binding sites on the peptide library  

Interactions are indicated as in Figure 27. The ß-signal is underlined (# 80).  

 

 

 

As a control, the peptide libraries were incubated with isolated TOM core complex and the 

BCS1 complex isolated from mitochondria from N. crassa and yeast, respectively. The TOM 

complex exhibited a different binding pattern than the TOB complex, although several 

peptides in both libraries were recognized by both complexes, as highlighted in the figures 

(Figure 29, Figure 30). This indicates that some regions of the ß-barrel precursor proteins 

might interact first with the TOM complex during their translocation and afterwards function 

as binding sites of the TOB complex. The peptide libraries of porin and Tom40 were 

incubated with His-tagged BCS1 complex which is not involved in the biogenesis of ß-barrel 

precursor proteins. This was done to exclude that the binding of the protein complexes to the 
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peptide libraries resulted from unspecific hydrophobic protein interactions or was caused by 

the presence of the His-tag attached to the membrane protein complexes. There was a 

considerable overlap of the binding pattern of the BCS1 complex with that observed for the 

TOB complex (Figure 31, Figure 32). Therefore, the specificity of the binding of the TOB 

complex to the substrate peptides has to be further verified. 

 

 

 

Figure 29 

The isolated TOM core complex interacts with distinct peptides of a porin peptide library 

A: The TOM core complex was isolated by Ni-NTA affinity purification from N. crassa by the 

use of DDM. The porin peptide library was incubated with the isolated TOB complex. Bound 

TOM core complex was blotted from the pepspot-membrane to a PVDF-membrane and 

immunodecorated with penta-His antibodies.  

B and C: Schematic view of the binding sites on the peptide library  

Strong binding of the TOM complex is depicted by black pepspot dots (B) and black peptide 

fragments in the peptide library overview (C). Weak interactions are colored in dark grey. 

Binding sites which are also recognized by the TOB complex are illustrated by open cyles (B) 

and underlined peptide fragments (C). The “ß-signal” is underlined (# 68).  
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Figure 30 

The isolated TOM core complex interacts with distinct peptides of a Tom40 peptide library 

A: As in Figure 29, except for the use of the Tom40 peptide library 

B and C: Schematic view of the binding sites on the peptide library  

Interactions are indicated as in Figure 29. The ß-signal is underlined (# 80).  
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Figure 31 

The isolated BCS1 complex interacts with distinct peptides of a porin peptide library 

A: The BCS1 complex was isolated by Ni-NTA affinity purification from yeast by the use of 

digitonin. The porin peptide library was incubated with the isolated TOB complex. Bound 

BCS1 complex was blotted from the pepspot-membrane to a PVDF-membrane and 

immunodecorated with penta-His antiserum.  

B and C: Schematic view of the binding sites on the peptide library 

Strong binding of the BCS1 complex is depicted by black pepspot dots (B) and black peptide 

fragments in the peptide library overview (C). Weak interactions are colored in dark grey. 

Binding sites which are also recognized by the TOB complex, are illustrated by open cyles (B) 

and underlined, bold peptide fragments (C). The ß-signal is underlined (# 68).  
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Figure 32 

The isolated BCS1 complex interacts with distinct peptides of a Tom40 peptide library 

A: As in Figure 31, except for the use of the Tom40 peptide library 

B and C: Schematic view of the binding sites on the peptide library  

Interactions are indicated as in Figure 31. The ß-signal is underlined (# 80).  
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3 Discussion 
 

3.1 Composition of the TOB complex 

 

The aim of the present study was to enhance our knowledge about the composition and 

biochemical as well as functional characteristics of the TOB complex in the outer 

mitochondrial membrane. Such an analysis necessitated the isolation of the complex in a pure 

form. Up to now, the TOB complex has not been purified. So far, only small scale 

preparations resulting from affinity columns were reported that could be analyzed by 

decoration with antibodies. In a first step Neurospora strains were generated that had a His-

tag on one of its subunits. His-tagged Tob55 was used because it was predicted to form the 

main component of the TOB complex as a membrane inserted ß-barrel protein (97, 105, 113, 

114).  

The TOB complex was isolated by Ni-NTA affinity purification from OMVs which were 

solubilized either with the mild detergent digitonin or with TX-100. With both detergents 

Tob55, Tob38 and Tob37 were the only proteins which were considerably enriched in the 

eluate and only traces of Mdm10 were present. Therefore the loss of subunits due to the use of 

the comparatively harsher detergent TX-100 could be excluded. 

Since the His9-Tob55ST strain was only expressing the short but not the long and 

intermediate Tob55 isoforms, the loss of further subunits due to the absence of these isoforms 

had to be considered. Therefore, strains with His-tagged Tob38 or Tob37 were created which 

are expressing all three Tob55 isoforms. Preparations of the TOB complex from these strains 

yielded the same results as obtained by the use of His-tagged Tob55. Thus, Tob55, Tob38 and 

Tob37 could be identified as the components of the TOB complex in N. crassa. This finding 

is consistent with observations made in yeast (98, 105, 107). Since only minor amounts of 

Mdm10 were detected in the eluate, it was suggested that Mdm10 is not a subunit of the TOB 

complex, but rather functions as an interaction partner of the TOB complex. By being a ß-

barrel protein itself, Mdm10 might also copurify with the complex as a substrate. However, 

no other substrates such as the ß-barrel proteins porin or Tom40 could be coisolated.  

In a next step, the TOB complex isolated from all three different strains with His-tagged 

Tob55, Tob38 or Tob37 was subjected to BNGE analysis. Several protein complexes could be 

identified in the eluate. Indepent of the detergent used, two complexes were found with all 

three strains, the TOB complex and very minor amounts of a TOB-Mdm10 complex. By 

immunodecoration Tob55, Tob38 and Tob37 were identified as constituents of the TOB 
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complex and Mdm10 was additionally found in the TOB-Mdm10 complex. Using membrane 

protein complexes from the respiratory chain of bovine heart mitochondria as a protein 

standard indicated an apparent molecular size between 130 and 160 kDa for the TOB 

complex. Association of Mdm10 with the TOB complex resulted in a complex with an 

apparent molecular mass of 200 kDa. This is in contrast to former publications suggesting a 

molecular mass of 200 - 250 kDa for the TOB complex (97, 135, 136). However, in those 

published studies, hydrophilic, soluble proteins were used as protein standards for the mass 

estimation of the TOB complex in BNGE analysis. Considerable discrepancies between the 

migration behavior of membrane integrated and soluble proteins demonstrate that soluble 

markers are not appropriate for the mass estimation of membrane proteins (140). In contrast to 

soluble proteins, membrane proteins contain substantial amounts of bound lipids, detergent 

and Coomassie-Blue when subjected to BNGE. The latter dye binds preferentially to 

hydrophobic surfaces of proteins and to basic amino acid residues. Therefore, soluble proteins 

bind this anionic dye which enables anodic migration to different degrees and provide these 

proteins with a different number of negative charges (142). Different amounts of protein-

bound lipids additionally bias the running behavior of membrane proteins and thereby 

severely compromise mass estimations of membrane proteins by soluble markers. Thus, 

respiratory chain complexes of bovine heart mitochondria represent a more reliable marker 

for the mass determination of the TOB complex.  

The apparent molecular masses determined by BNGE analysis in combination with membrane 

protein markers are also highly consistent with the stoichiometry of the TOB complex. The 

stoichiometry was measured by isotope diluted mass spectrometry which is a novel and highly 

precise method to analyze the relative amounts of proteins within a mixture (143, 144). A 

1:1:1 ratio between the TOB complex components Tob55, Tob38 and Tob37 was measured, 

resulting in a calculated molecular protein mass for the TOB complex of 140 kDa. BNGE 

analysis and volume estimations of the cryo-EM structure of the TOB complex exclude a 

composition of two or more of each TOB complex subunit (e.g. a 2:2:2 stoichiometry).  

Although the same stoichiometry for the TOB complex isolated either with TX-100 or 

digitonin was measured, a slight difference in their running behavior could be observed in the 

BNGE. This might be attributed to the different properties of the detergents, the relative harsh  

TX-100 as compared to the mild digitonin. Although it was shown that protein-bound 

detergent is replaced by Coomassie-dye during the BNGE (145), the detergent used causes 

differences in the migration behavior of the protein. On the one hand, the proteins are 

solubilized with different efficiencies, leaving different amounts of lipids on the protein (140), 
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on the other hand, differences in the ratios of hydrophilic and hydrophobic, membrane 

embedded parts of membrane complexes might also cause slight variations in the amount of 

protein-bound lipids remaining on membrane proteins of comparable mass, although they 

were solubilized with the same detergent. Thus, moderate differences in the migration 

behavior between sample and standard proteins in various detergents are a common 

observation, especially when proteins are analyzed that were solubilized with a mild detergent 

such as digitonin. 

Association of one Mdm10 molecule with the 140 kDa TOB complex, results in a complex of 

calculated 190 kDa, which is in agreement with the migration behavior of this TOB-Mdm10 

complex in BNGE. BN-shift analysis demonstrated that Mdm10, but no Tom40 or Porin, can 

be shifted with the TOB complex. This suggests that Mdm10 is not a substrate, but rather an 

interaction partner of the TOB complex.  

In accordance with this, a regulatory function of Mdm10 in the biogenesis of ß-barrel 

membrane proteins has been described. Mdm10 was suggested to be responsible for the 

release of Tom40 from the TOB complex and thereby to coordinate its assembly process 

(135-137). Moreover, the TOB-Mdm10 complex in yeast was found to promote the 

membrane integration of Tom22 (92). Differences in the regulatory processes between the 

organisms may exist, since Mdm10 was described to play a crucial role not only for the 

assembly of Tom40, but also for porin in N. crassa (108), which conflicts with findings in 

yeast (135-137).  

Mim1 (91) and Tom40 (92) were also reported to associate with the TOB complex as 

interaction partners in yeast, adjusting them for the specific interplay with different substrates. 

However, even with the use of the mild detergent digitonin, the eluates of our TOB isolation 

from N. crassa were entirely devoid of Tom40 and Mim1 and therefore do not support those 

findings. Analysis from Waizenegger et al. in yeast also provides further evidence that Mim1 

is not a constituent of the TOB complex (105), although the presence of precursor proteins 

might be necessary for the association of Mim1 with the complex (92). Taken together these 

data conclusively show that Tob55, Tob38 and Tob37 are the only stoichiometric subunits of 

the TOB complex in N. crassa. The flexible interplay of this complex with other proteins, as 

for example Mdm10, might provide a regulatory mechanism to facilitate the insertion and 

assembly of different substrates in the outer mitochondrial membrane. 

In preparations of the TOB complex performed with TX-100 a complex was present in 

addition to the TOB and TOB-Mdm10 complex, which is composed by Tob55 and Tob38 

only, the Tob55-Tob38 complex. Since isolation with digitonin did not yield a Tob55-Tob38 
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complex form, it seems likely that by using the detergent TX-100 a small fraction of the TOB 

complex is destabilized and Tob37 dissociates from the complex. In agreement with this, 

Tob55 and Tob38 were described to form a tight complex in yeast, whereas the interaction of 

these proteins with Tob37 was suggested to be more labile (105). Consistent with this, 

complexes between Tob55 and Tob37 or Tob37 with Tob38 could not be detected in the 

absence of Tob38 and Tob55, respectively. This indicates that Tob37 is the only dynamic 

constituent of the TOB complex whose detachment does not lead to a complete disintegration 

of the whole complex. Nevertheless, Tob37 is crucial for the functionality of the TOB 

complex as it is involved in the release of substrate proteins from the complex in yeast (132) 

and essential in N. crassa (F. Nargang, University of Edmonton, Alberta, CA; personal 

communication). Moreover, Tob37 was found to be required and needed for embryonic 

development in mice (146). 

Furthermore, in preparations using the 9His-Tob55ST strain Tob55 dimers and small amounts 

of monomeric Tob55 were present. This was not only observed upon immunodecoration of 

the complexes but also by IDMS measurement. A striking excess of Tob55 over Tob38 and 

Tob37 was measured in the 100 kDa species of preparations from the strain containing His-

tagged Tob55. Thus, Tob55 dimers exist beside small amounts of the Tob55-Tob38 in these 

100 kDa species. BN-shift experiments revealed that Tob55 dimers are not generated in the 

course of the isolation but are already present in the solubilized OMVs. They can be observed 

not only in the strains with a His-tagged TOB subunit but also in the wild type strain. 

Therefore, it is unlikely that they result from a destabilization and disintegration of the TOB 

complex, caused by the modification of the TOB complex by the attachment of a His-tag. 

Furthermore, as described earlier, disintegration of the TOB complex would lead to the 

presence of monomeric Tob38 and Tob37. In preparations from strains carrying 9His-Tob38 

or 9His-Tob37, such species should be observed but are not detectable. Therefore it was 

concluded that mitochondria contain Tob55 which is not assembled in a TOB complex. The 

function of those Tob55 monomers and dimers will be subject of experimental investigations 

in the future.  

Taken together, this study describes for the first time an isolation of a highly purified TOB 

complex. Tob55, Tob38 and Tob37 were identified as the components of the complex. The 

stoichiometry and molecular mass of a highly purified TOB complex were determined. 

Isotope diluted mass spectrometry (IDMS) analysis revealed a ratio between these 

constitutents of 1:1:1. The TOB complex comprises one of each subunit. This resulted in a 

calculated molecular mass of 140 kDa which is in very good agreement with results from 



 Discussion  
 

65 

 

BNGE analysis and which is much smaller than expected before. Mdm10 is suggested to 

function as an interaction partner of the complex. Moreover, a second population of Tob55 

which is not associated with the TOB complex but is present predominantly in form of dimers 

exists in the mitochondrial outer membrane. Its function is not clear so far. 
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3.2 Structure of the TOB complex  

 

Secondary structure prediction analysis demonstrates a striking similarity between the TpsB-

transporter FhaC from Bordetella pertussis and Tob55 from N. crassa. A crystal structure of 

FhaC shows the presence of a 16-stranded ß-barrel (121). The same structure is suggested by 

our prediction for Tob55. Moreover, additional traits, such as the presence of a conserved 

VRGY/F tetrad at the tip of the loops of FhaC and Tob55 as well as the high similarity in the 

arrangement of the loops at the cytosolic face in both proteins, support the predicted Tob55 

model with a 16-stranded ß-barrel. In line with this, sequence alignments of Omp85 from 

Neisseria meningitides and BamA from Escherichia coli also indicate a 16-stranded ß-barrel 

for these proteins (115). This is in contrast to earlier studies, by which 12 antiparallel ß-

strands were predicted (113). However, recent structure prediction analyses of human Tob55 

on the basis of the resolved FhaC structure also show a sufficiently clear similarity between 

both proteins to assign Tob55 to the group of 16-stranded ß-barrel proteins (116).  

Another common characteristic feature of FhaC and Tob55 is the POTRA domain. The 

POTRA domain is a module of approximately 75 amino acid residues found in various 

numbers at the N-terminus of all members of the Omp85-TpsB superfamily. The POTRA 

domain is characterized by a fold including three ß-strands, the first and second strands being 

separated by two α-helices (ß-α-α-ß-ß motive) (103, 117, 147). Slight variations exist, as seen 

for example in the POTRA domains of FhaC, where the first helix of POTRA1 is replaced by 

a loop (121). According to these results, the structure of Tob55 was suggested to be highly 

similar to that described for TpsB transporters, in particular FhaC. 

The cryo-electron microscopy analysis presented in this study together with the quantitative 

mass spectrometry analysis is in agreement with the biochemically determined composition of 

the TOB complex of one Tob55, Tob38 and Tob37 each. The POTRA domain at the N-

terminus of Tob55 is localized at the inner face of the outer membrane whereas Tob38 

together with Tob37 are localized at the outer face of the ß-barrel pointing to the cytosol. As 

indicated by the superposition of the secondary structure of Tob55 and the reconstruction 

obtained from cryo-EM analysis, long loops between the ß-strands of Tob55 are most likely 

representing the connections between the ß-barrel and Tob38 and Tob37. 

The composition of the TOB complex of only three subunits with a resulting mass of 140 kDa 

is perfectly in line with the stoichiometry and BNGE analysis. Nevertheless, these features are 

not in accordance with the preliminary structure of the TOB complex from yeast presented by 

Paschen et al. (97). In that study, cryo-negative staining analysis suggested a contribution of 
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several Tob55 subunits to the TOB complex. Initial image processing steps of our study 

included a reference free alignment of the particle images which can provide some insight 

into the basic architecture of the particle analyzed. Our study suggests a complex of three 

subunits and is therefore not supporting a pentameric structure. Furthermore, in contrast to 

these previous studies of the TOB complex structure, evidence for the presence of the 

subunits Tob55, Tob38 and Tob37 in stoichiometric amounts and high purity could be 

demonstrated for the complex isolated from N. crassa. On the other hand, formation of higher 

order complexes of TOB cannot be excluded. Of note, larger species of the TOB complex 

were consistently observed upon BNGE of preparations gained by the use of TX-100. 

In our final model of the TOB complex the structure was inserted in a 4-nm thick bilayer in a 

way that the Tob55 ß-barrel protein is embedded in the membrane, its N-terminus is reaching 

into the IMS and the subunits Tob38 and Tob37 are located at the cytosolic face of the 

membrane. This orientation is based on several findings presented in the literature. Proteinase 

K (PK) treatment in combination with osmotic shock or solubilization of the mitochondrial 

envelope demonstrated that the POTRA domain at the N-terminus of Tob55 is exposed to the 

IMS (114). The same results were obtained in studies with mitochondria from N. crassa (own 

data, not shown). Furthermore, when Tob55 is embedded in such an orientation in the 

membrane, the VRGF tetrad is at the tip of the loop which is spanning the interior of the ß-

barrel and reaching into the IMS. This is in line with findings for FhaC, where the VRGY 

tetrad is also at the tip of this loop reaching into the periplasm. 

Treatment of mitochondria at alkaline pH characterized Tob37 as well as Tob38 as peripheral 

membrane proteins ((105-107, 148) and this study), while PK treatment additionally revealed 

that they are exposed to the cytosolic side of the outer membrane (105-107) (F. Nargang, 

University of Edmonton, Alberta, CA; personal communication).  

The presence of the Tob55-Tob38 complex in our preparations of TOB demonstrates that 

Tob55 and Tob38 still form a complex when Tob37 is detached, an observation which was 

also made in yeast (105) and which most likely can be attributed to a direct connection 

between these two proteins. Thus, this connection is probably made by a loop of the Tob55 ß-

barrel sticking out into the cytosol.  

Tob37, on the other hand, is not forming a complex with Tob55 when Tob38 is missing (105) 

and a direct interaction between Tob55 and Tob37 has not been demonstrated so far. In 

contrast to Tob37, Tob38 does not include a predicted transmembrane segment (133). 

Moreover, Tob37 is more resistant to alkali extraction than Tob38 suggesting that there is a 

tighter connection to the membrane than in the case of Tob38. Therefore, Tob38 might need a 
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strong bond to Tob55 to stay attached to the membrane, whereas Tob37 might be anchored 

into the outer mitochondrial membrane by an additional transmembrane segment and 

therefore does not depend on its association with Tob55 to stay in a membrane bound state. 

Hence, it seems reasonable to suggest that a transmembrane segment anchors Tob37 in the 

outer mitochondrial membrane and that a further interaction between Tob55 and Tob37 is 

made by an exposed loop of the ß-barrel. An extra mass which might represent the membrane 

anchor of Tob37 but is missing in Tob38 can be seen in our cryo-electron microscopy 

reconstruction of the TOB complex (Figure 24). 

Taken together, our detailed analysis of the TOB complex by cryo-electron microscopy 

yielded a structure of the TOB complex with one Tob55, Tob38 and Tob37 each. It is 

reflecting all the characteristics obtained from further analysis, as there are composition and 

stoichiometry of the subunits, molecular size as well as the relative orientation of the subunits 

towards each other. A superposition of the predicted Tob55 structure demonstrated a nice fit 

into the cryo-electron microscopy reconstruction of the complex and indicated a specific role 

of the loops sticking out from the cytoplasmic ß-barrel side in connecting the peripheral 

subunits Tob38 and Tob37 to the ß-barrel of Tob55. An exemplary embedding of our final 

cryo-electron microscopy structure of the TOB complex is consistent with all topological 

characteristics of its subunits known so far and the dimension of a biological membrane with 

a thickness of 3 – 5 nm. 
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3.3 The functional mechanism of the TOB complex 

 

According to our structural analysis, Tob55 bears a striking resemblance to the X-ray 

structure of FhaC. Both proteins belong to the same Omp85-TpsB superfamily and epitomize 

all the features which seem to be characteristic for this transporter family, as there are one or 

several N-terminal POTRA domains, a C-terminal ß-barrel, and a loop between two ß-strands 

of the barrel harboring a highly conserved and functional important VRGY/F tetrad at its tip 

(109, 115, 121, 122, 124, 141). The similarity of the architecture of both protein transporters 

suggests a comparable functionality of their components.  

The first component which the substrates are encountering in the periplasmic or 

intermembrane space is most likely the POTRA domain. In the TpsB-family, the POTRA 

domain functions as a specific interface between the transporter and its dedicated TpsA 

substrate (115, 149). The function of FhaC absolutely depends on the presence of both 

POTRA domains. Binding of incoming substrates to the POTRA domain was demonstrated 

(121, 149). In agreement with this, the POTRA domains of BamA were described to play a 

key role in the recruitment of lipoproteins and deletion mutants depict severe phenotypes 

(103). A construct encoding BamA without the fifth POTRA domain (ΔPOTRA5) could not 

be introduced into a BamA-deletion strain, even in the presence of the expression of wild type 

BamA. Therefore, Kim et al. suggested that the ΔPOTRA5 construct of BamA “mishandles 

nascent ß-barrel substrates, producing harmful misfolded or aggregated OMPs” (103). A 

similar important role of the most carboxy-terminal POTRA domain was demonstrated for 

Omp85. POTRA5 of Omp85, preceding the ß-barrel, turned out to be essential, whereas 

deletion of POTRA1-4 only had minor effects on the assembly of OMPs (118). Here, the 

membrane integration of large OMPs by Omp85 was more sensitive to the deletions of the 

POTRA domains 1-4 than that of smaller OMPs. 

Conflicting results were reported for the role of the POTRA domain of Tob55. While Habib et 

al. provided evidence for the involvement of the POTRA domain in binding of the precursor 

proteins and their subsequent membrane insertion (114), Kutik et al. later described that the 

POTRA domain can be removed with only a minor effect on the membrane insertion of ß-

barrel precursor proteins (133). However, the POTRA domain in yeast was predicted to 

comprise the amino acids 29-120 (117, 133). Since deletion of the first N-terminal 102 amino 

acids causes severe import defects of precursor proteins (114), but not the deletion of the N-

terminal 120 amino acids (133), it is most likely, that the remaining 18 amino acids (102 – 

120) impair the insertion mechanism of the TOB complex. One explanation might be that the 
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interaction between the POTRA domain of Tob55 and incoming precursor proteins facilitates 

their membrane insertion rather than being essential for it and primes a conformational change 

by which the POTRA domains are rearranged in favor of the following membrane integration 

of the precursor protein. In case of only a partial deletion of the POTRA domain, such a 

conformational rearrangement of the remaining POTRA stretch might not be possible. 

Nevertheless, the strong and specific interaction of the POTRA domain with precursor 

proteins (114) indicates a role of the POTRA domain as an anchor and interaction platform 

for incoming substrate proteins in the IMS and thereby resembles the role of the POTRA 

domains in the periplasmic space of the prokaryotic homologues. 

A second component of the transporters which is conceivable to play an important role in the 

subsequent processing of substrate proteins is a large loop connecting the ß-strands 11 and 12 

of the ß-barrel. This loop is predicted to pass the interior of the ß-barrel and, together with the 

first half of ß12, forms a conserved motif, motif3, in this transporter superfamily (115, 141). 

Alignment analysis in representative members of the TpsB- as well as Omp85 family revealed 

that this loop harbors the highly conserved VRGY/F tetrad. In FhaC and Tob55, this tetrad is 

located at the tip of the loop reaching into the periplasmic or intermembrane space, 

respectively. The arginine residue is invariant in all tetrads. Point mutation analysis in FhaC 

revealed that substitution of this arginine suffices to inhibit secretion of FHA by FhaC and 

thus indicates the importance of this loop and the tetrad for transport activity (141). In view of 

the observation that loop6 of motif3 in FhaC is mobile and changes its conformation in the 

course of the secretion process (121, 150) it has been suggested that the loop might be 

expelled from the barrel after its interaction with the substrate at the periplasmic side (121). 

The removal of the loop from the interior of the barrel is expected to result in considerable 

structural changes, as deletion of the loop has substantial influence on the stability and 

channel activity of the ß-barrel (115, 141). This is in line with the finding of a further 

conserved motif, motif4, which corresponds to the ß-strands 14 and 15 and forms part of the 

inner surface of the barrel covered by the loop of motif3 (121). Interaction between motif3 

and motif4 might have a stabilizing effect on the barrel and removal of the loop of motif3 

therefore might end up in a severe destabilization. Thus the binding of incoming substrates to 

the POTRA domain and most likely subsequently to the tip of the ß-barrel spanning loop 

seems to trigger rearrangement of the ß-barrel and induce transport activity. Considering the 

high resemblance in the structural features, this mechanism might not only be true for FhaC, 

but for all members of this transporter superfamily, including the TOB complex. 
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The further processing of the substrates is thought to be different between those two 

transporter families, since their substrates do not only differ in their final structure but are also 

directed to different destinations. Members of the TpsB-family transport their substrates to the 

membrane surface where they are secreted in form of ß-helical soluble proteins (123). In 

contrast, Omp85 transporters mediate the membrane insertion of ß-barrel precursor proteins 

(122). Furthermore, TpsB transporters consist only of a single ß-barrel protein (123), whereas 

members of the Omp85 transporter family possess further subunits beside the ß-barrel protein 

as the core component of the complex (122). The presence of additional subunits, as for 

example Tob38 and Tob37 for the TOB complex or BamB-E for the BAM complex (147) 

might be attributed to the fact that Omp85 transporters are responsible for membrane insertion 

of a variety of substrates. In contrast to this, each TpsB transporter exclusively secretes its 

dedicated TpsA substrate. 

The model of the TOB complex presented here suggests possible mechanisms of how the 

membrane insertion of ß-barrel proteins might function. On the one hand, the embedding of 

the substrate into the membrane could be facilitated by the concerted action of several TOB 

complexes. An oligomer of TOB complexes might form a cavity whose interior is lined by the 

hydrophobic outer sheaths of the contributing ß-barrels and thereby could have a scaffolding 

function in the formation of a new ß-barrel in the interior of the cavity. This functional 

mechanism is reminiscent to the principle of an “Anfinsen cage”, which was described to 

provide a protective environment for precursor folding (151, 152). A similar model was also 

proposed for the insertion of α-helical transmembrane protein by the TOM complex (88).  The 

presence of a small amount of complexes with an estimated molecular mass of around 400 

and 1000 kDa in our TOB preparations could support this possibility. However, complex 

oligomers could only be seen upon preparations performed with TX-100 but not with 

digitonin and could also result from partial aggregation.  

With this latter model it is difficult to imagine how the hydrophilic inner face of the new 

barrel can be integrated into the hydrophobic surrounding of the lipid bilayer. Nonetheless, an 

instance which argues for such an insertion mechanism is that a lateral opening of the ß-barrel 

is not required. Although channel activity and thereby the presence of a pore in Omp85 

transporter has been described (97, 133, 153), the folding of a new ß-barrel within the pore 

would require lateral opening for the release of the substrate into the membrane. Such a 

scenario was suggested to be highly unlikely in respect to thermodynamics since the opening 

of a ß-barrel requires significant displacement of the ß-strands which are tightly 

interconnected by hydrogen bonds (102, 110, 154).  
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On the other hand, diverse transporters of the Omp85 superfamily such as BamA, FhaC or 

Tob55 exhibit pore activity that is responsive to substrate binding (110, 121, 133). This is 

suggesting an active role of the pore in the transport process. The analysis of the conserved 

motif4 and the loop of motif3 indicate a substantial rearrangement of the ß-barrel induced by 

the binding of a substrate protein. Thus, it cannot be excluded that such a rearrangement of 

the complex leads to a transient opening of the barrel, which may either take place in the 

conserved motif4 or between ß-strands 1 and 16, as they are not connected by a turn within 

the barrel. A new barrel might be generated by a sequence of antiparallel ß-strands from one 

end of the ß-barrel. After the arrangement of all 16 antiparallel ß-strands, both ß-barrels, the 

Tob55 and the client barrel, might close and separate. In this manner, the outer, hydrophobic 

sheath of the old and new barrel would stay in a hydrophobic surrounding. The same would 

be true for the hydrophilic inner sheath facing the hydrophilic interior of the barrel. Such a 

mechanism would allow the TOB complex to act as a monomeric complex.  

During the rearrangement of the ß-barrel after substrate binding, the loop flapping out of the 

interior of the ß-barrel might still be connected to the incoming substrate, thereby pulling it 

through the pore and bringing it in proximity of Tob38 at the outer face of the membrane. 

This would be in line with an interaction of the ß-signal of incoming ß-barrel precursor 

proteins and Tob38 which has been proposed in the recent literature (133). A similar 

interaction might take place at the C-terminal signature sequence of bacterial ß-barrel 

proteins, which presumably corresponds to the eukaryotic ß-signal (133, 155). In agreement 

with this, a high conservation of this interaction mechanism is likely, since the C-terminal 

signature sequence in precursor proteins was reported to be processed by the TOB complex in 

yeast (156). 

To date, our knowledge about what drives the membrane insertion of ß-barrel proteins is still 

elusive. No obvious energy source required for the assembly of ß-barrel proteins could be 

determined so far (26). The protein folding and insertion of ß-barrels into the hydrophobic 

enviroment of a membrane are likely to be energetically favorable reactions, bringing the 

protein into a free energy minimum. The free energy minimum of proteins is determined by 

their surroundings, comprising interactions of the peptide chains with each other, with water, 

the lipid bilayer hydrocarbon core and the bilayer interface (157). Thus, the free energy of 

folding the soluble precursor form into the stable membrane-inserted form was suggested to 

provide the energy needed for the whole process. Increasing affinities of the folding 

intermediates with their binding partners might provide unidirectionality to the transport 

pathway (26). 
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Structural and functional analysis of Tob55 and FhaC shed light on the architecture of these 

transporters and provide further indications of how they interact with and process their 

substrates. However, the elements of the various constituents which are crucial for the 

functionality of the transport process are just about to be determined and further analysis will 

be needed to improve our knowledge about this enigmatic mechanism. 
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3.4 Alternative splicing of tob55 

 

In the course of our studies of the TOB complex N. crassa Tob55 was observed to be 

expressed in three different isoforms due to alternative splicing. This was an observation 

made for the first time for a component of the mitochondrial import machinery (120). 

Expression of isoforms of one protein might serve the purpose of specialization, varying for 

example in different tissues (158) or under certain growth condition, such as upon exposure to 

chemical oxidants or environmental stress (159). Thus it was analyzed whether the different 

Tob55 isoforms might have specialized functions in N. crassa (120). The strain exclusively 

expressing the long Tob55 isoform had growth defects at elevated temperatures (37°C) and in 

the presence of high salt concentrations. Furthermore, assembly of mitochondrial ß-barrel 

proteins of this strain was severely impaired. However, strains expressing only the short or 

intermediate Tob55 isoform showed no differences in growth or import efficiencies compared 

to the wild type strain (120). The substrates of the TOB complex are either essential (120, 

160, 161) or their deletion results in reduced growth rates or import defects of ß-barrel 

proteins (108, 162). Therefore, substrate specific interaction of the different Tob55 isoforms 

with incoming precursor proteins seems unlikely. Since the differences in the Tob55 isoforms 

are at the N-terminus just in front of the POTRA domain, it was proposed that the interaction 

of the TOB complex with incoming precursor proteins might be compromised under stress 

conditions when only the long Tob55 isoform is present (120). An explanation for this might 

lie in divergent affinities of the Tob55 isoforms to incoming substrates, with the long Tob55 

isoform possessing the lowest affinity. The efficiency of membrane insertion of precursor 

proteins by the TOB complex might be regulated in this way, a suggestion which has to be 

verified. Altogether, our knowledge about possible differences in the functionality of the 

different Tob55 isoforms is still elusive and awaits further analysis.  
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3.5 α-Helical substrates of the TOB complex 

 

Functionality of the isolated TOB complex was tested by diverse binding assays. Although 

only a slightly increased binding above background level was observed for ß-barrel precursor 

proteins, an especially strong binding of Tom22 could be detected. This supports the 

surprising finding made by Stojanovski et al. in Saccharomyces cerevisiae that the TOB 

complex is essential for the efficient membrane insertion and assembly of the α-helical outer 

mitochondrial membrane protein Tom22 into the TOM complex (95). The involvement of the 

TOB complex in the biogenesis of Tom22 is also reflected in the observations that a 

downregulation of the essential protein Tob55 in N. crassa not only resulted in decreased 

levels of ß-barrel proteins, but also severely reduced the steady state levels of Tom22 (120). 

To our knowledge this is the first time a direct interaction between the TOB complex and 

Tom22 is reported.  

Additionally to Tom22, the α-helical proteins Tom5, Tom6 and Tom7 were found to depend 

on the TOB complex (92, 95). However, in contrast to Tom22, the TOB complex is only 

needed for the assembly of the small Tom proteins into the TOM complex, but not for their 

membrane insertion (95). Thus, the substrate spectrum of the TOB complex is not only 

restricted to ß-barrel precursor proteins but also includes α-helical proteins of the outer 

mitochondrial membrane.  

Akin to ß-barrel precursor proteins, Tom22 first interacts with the TOM complex (163) and is 

subsequently integrated into the membrane with the help of the TOB complex. However, the 

membrane interaction of Tom22 with the TOM complex is suggested to be “a loose 

association with the mitochondrial surface followed by the SAM (TOB)-stimulated insertion 

into the outer membrane” (95). Therefore, a passage of the TOM complex might not be 

necessary for the assembly of Tom22. This is in contrast to ß-barrel precursor proteins which 

have to be translocated to the IMS by the TOM complex before they interact with the TOB 

complex (114). This indicates some differences in the interaction of α-helical and ß-barrel 

substrates with the TOB complex during the import process. 
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4 Summary 
 

ß-Barrel membrane proteins are exclusively present in the outer membrane of Gram-negative 

bacteria and in the outer envelope of organelles of endosymbiotic origin, mitochondria and 

chloroplasts. The assembly of ß-barrel precursor proteins into the outer mitochondrial 

membrane is mediated by the TOB (topogenesis of mitochondrial outer membrane ß-barrel 

proteins) complex. Tob55 together with Tob38 and Tob37 constitutes the TOB complex. 

Tob55 is a putative ß-barrel protein and represents the core component of the complex. The 

work presented here describes a functional and structural analysis of the TOB complex of 

Neurospora crassa. Tob55 was found to be expressed in three different isoforms. It is the first 

component of the mitochondrial import machinery described to be expressed in different 

isoforms due to alternative splicing.  

The stoichiometry analysis of the TOB complex was performed by isotope dilution mass 

spectrometry (IDMS) and revealed a 1:1:1 ratio between these subunits. This, together with 

the results obtained by electrophoretic analysis of the TOB complex led to the conclusion that 

one Tob55 associates with one Tob38 and one Tob37 to a complex of 140 kDa molecular 

mass. Association of Mdm10 with this complex results in the formation of the TOB-Mdm10 

complex, which only makes up a minority of the isolated complexes. A second population of 

Tob55 was detected which is not contributing to the TOB complex but was present 

predominantly in form of dimers. The physiological role of this Tob55 population still has to 

be determined. 

Molecular modeling based on the X-ray structure of the FhaC transporter and cryo-electron 

microscopy studies of the TOB complex revealed a high similarity between both proteins. 

FhaC and Tob55 expose their N-terminal POTRA domain into the periplasmic or 

intermembrane space, respectively. They are embedded into the membrane by their ß-barrel 

domain. The interior of the ß-barrels of both proteins harbors a large loop with a conserved 

VRGY/F tetrad at its tip, which plays a crucial role in the function of FhaC. Tob38 and Tob37 

are associated with Tob55 at the cytosolic face of the outer membrane. Tob37 interacts firmly 

with the membrane and with Tob55. Based on these results the mechanism of how the TOB 

complex mediates the insertion of ß-barrel proteins into the outer membrane of mitochondria 

is discussed.  

The TOB complex was described not only to participate in the assembly of ß-barrel precursor 

proteins, but also of α-helical proteins such as Tom22 of the TOM complex. Here, a direct 

interaction of the isolated TOM complex with the Tom22 precursor protein is demonstrated. 
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5 Zusammenfassung 
 

ß-Barrel-Proteine kommen ausschließlich in der Außenmembran von Gram-negativen 

Bakterien, Mitochondrien und Chloroplasten vor. Für die Insertion von ß-Barrel Proteinen in 

die mitochondriale Außenmembran ist der TOB- (topogenesis of mitochondrial outer 

membrane ß-barrel proteins) Komplex verantwortlich. Der TOB-Komplex umfaßt die drei 

Untereinheiten Tob55, Tob38 und Tob37. Tob55 bildet die Hauptuntereinheit des TOB- 

Komplexes. Die hier vorliegende Arbeit beschäftigt sich mit der funktionellen sowie 

strukturellen Analyse des TOB-Komplexes von Neurospora crassa. Es konnte 

herausgefunden werden, daß die Tob55-mRNA alternativ gespleißt wird und Tob55 dadurch 

in drei verschiedenen Isoformen exprimiert wird. Tob55 ist damit die erste Komponente der 

mitochondrialen Translokasen, für die eine Expression in verschiedenen Isoformen aufgrund 

alternativen Spleißings bekannt ist.  

Durch Isotopen verdünnte Massenspektrometry (IDMS) konnte ein stoichiometrisches 

Verhältnis von Tob55, Tob38 und Tob37 von 1:1:1 ermittelt werden. Unter Berücksichtigung 

der elektrophoretischen Mobilität des nativen Komplexes ergibt sich, daß jede Untereinheit 

einmal im TOB Komplex vorliegt und dieser demnach ein errechnetes Molekulargewicht von 

140 kDa hat. Ein geringfügiger Anteil des TOB-Komplexes assoziiert mit Mdm10 zum TOB-

Mdm10-Komplex. Zudem wurde gefunden, daß Tob55 nicht nur an der Bildung des TOB- 

Komplexes beteiligt ist, sondern zudem auch in Dimeren vorkommt. Die funktionelle 

Bedeutung dieser Dimere ist derzeit noch offen.  

Mittels Strukturvorhersage und cryo-Elektronenmikroskopie konnte eine starke Ähnlichkeit 

zwischen dem FhaC-Transporter und dem TOB-Komplex ermittelt werden. Beide Proteine 

verfügen über eine N-terminale POTRA-Domäne und sind über ein C-terminales ß-Barrel in 

der Membran verankert. Der Innenraum des ß-Barrels von FhaC als auch von Tob55 wird von 

einer großen Schleife durchspannt, welche an ihrer Spitze das konserviert VRGY/F-Motif 

besitzt. Dies ist essentiell für die Funktion von FhaC. Tob38 und Tob37 sind auf der 

cytosolischen Membranseite mit Tob55 assoziiert, wobei Tob37 eine stärkere Verbindung mit 

der Membran aufweist als Tob38. Anhand der bekannten strukturellen Eigenschaften des 

TOB-Komplexes werden mögliche Funktionsmechanismen zur Insertion der ß-Barrel-

Proteine in die Membran diskutiert.  

Neben der Insertion von ß-Barrel-Proteinen wurde auch eine Beteiligung des TOB Komplexes 

bei der Assemblierung von α-helicalen Proteinen, wie z.B. Tom22, beschrieben. Eine direkte 

Interaktion von Tom22 mit dem TOB Komplex wird in der vorliegenden Arbeit gezeigt.  
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6 Material and Methods 

6.1 Materials 

 

6.1.1 Equipment 

 

Equipment Prescription 

Autoclave Bioclav Schütt, Göttingen, GER 

Autoclave Varioclav 400E H + P Labortechnik, Oberschleißheim, 

GER 

Autoclave Systec DX-150, D1167 Systec GmbH, Wettenberg, GER 

Cannulaes Braun, Melsungen, GER 

Centrifuge Allegra X-22 R Beckman Instruments, München, GER 

Centrifuge Avanti J-20 XP Beckman Instruments, München, GER 

Centrifuge Avanti J-25 Beckman Instruments, München, GER 

Centrifuge Optima Max-E 

Ultracentrifuge 

Beckman Instruments, München, GER 

Centrifuge Optima LE-80 K 

Ultracentrifuge 

Beckman Instruments, München, GER 

Centrifuge Optima L-90 K 

Ultracentrifuge 

Beckman Instruments, München, GER 

Centrifuge L8-M Ultracentrifuge Beckman Instruments, München, GER 

Centrifuge 5417 R Eppendorf, Hamburg, GER 

Centrifuge 5810 R Eppendorf, Hamburg, GER 

Centrifuge 5415 D Eppendorf, Hamburg, GER 

Centrifuge 3 K 30 Sigma, München, GER 

Centrifuge RC-3B  

Refrigerated Centrifuge 

Sorvall Instruments, Newtown, USA 

Colloid mill Workshop, Institute for Physiological 

Chemistry, LMU Munich 

Developer machine AGFA Gevamatic 

60  

Agfa-Gevaert, Munich, GER 

Erlenmeyer flask for N.c.-cultivation, 

300 ml, wide-necked 

Fisherbrand, Schwerte, GER 

Exicator Duran, Wertheim/Main, GER 

Foam Caps for N.c.-cultivation Schaumstoffe-Mayer, München, GER 

Freezer -20°C Liebherr, Ochsenhausen, GER 

Freezer -80°C GFL, Burgwedel, GER 

Fridge 4°C Liebherr, Ochsenhausen, GER 

Gas burner Fireboy eco 

50/60 Hz, 5 W 

Integra Biosciences AG, Wallisellen, 

CH 

Gelelectrophoresis chamber Workshop, Institute for Physiological 

Chemistry, LMU Munich 

Glass-teflon homogenizer Workshop, Institute for Physiological 

Chemistry, LMU Munich 

Glass ware Schott, Mainz, GER 

Glas ware Duran, Wertheim/Main, GER 



 Material and Methods  
 

79 

 

Heating Cabinet Memmert, Hannover, GER 

HPLC Ultimate 3000 system Dionex, Benelux B.V. 

Incubator B 5042 E Heraeus Christ, Osterode, GER 

Incubator BA3 Heraeus Christ, Osterode, GER 

Magnetic stirrer MR 3001 K Heidolph, Schwabach, GER 

Orbitrap mass spectrometer Thermo Electron, Rockford, USA 

Overhead shaker Workshop, Institute for Physiological 

Chemistry, LMU Munich 

Peristaltic pump P-1 Amersham Biosciences, Freiburg, GER  

pH-Meter Lab 850 Schott, Mainz, GER 

Photometer BioPhotometer  Eppendorf, Hamburg, GER 

Photometer Biochrom Libra S11 Biochrom Ltd., Cambridge, GB 

Pipettes Gilson, Inc., Middleton, WI, USA 

Pipet tips Sarstedt, Bad Homburg, GER 

Poly-Prep Chromatography Columns Bio-Rad Laboratories, Hercules, CA 

Power supply EPS 600 Amersham Biosciences, Freiburg, GER 

Power supply EPS 601 Amersham Biosciences, Freiburg, GER 

PP-Test tubes, 15 and 50 ml (falcons) Greiner bio-one, Frickenhausen, GER 

Pure water plant PURELAB plus 

UV/UF 

USF, Ransbach-Baumbach, GER 

Pure water plant PURELAB classic 

UVF 

ELGA, Bucks, GB 

Quarz precision cuvettes 105.201-QS Hellma GmbH & Co. KG,  Müllheim, 

GER 

Reaction tubes Sarstedt, Bad Homburg, GER 

Rotor HLR6 Sorvall Instruments, Newtown, USA 

Rotor JA 10 Beckman Instruments, München, GER 

Rotor SW28 Beckman Instruments, München, GER  

Rotor Ti70 Beckman Instruments, München, GER 

Semi-dry blotting chamber Workshop, Institute for Physiological 

Chemistry, LMU Munich 

Shaker Multitron II Infors AG, Bottmingen, CH 

SpeedVac vacuum centrifuge ScanSpeed MaxiVac, Scanvac, Lynge 

(DK) 

Steampot Varioklav H + P Labortechnik, Oberschleißheim, 

GER 

Sterile Bench BDK, Genkingen, GER 

Sterile filters Schleicher & Schüll, Kassel, GER 

Table shaker Workshop, Institute for Physiological 

Chemistry, LMU Munich 

Table shaker LS10 Gerhardt, Bonn, GER 

Thermomixer comfort Eppendorf, Hamburg, GER 

Thermostat Julabo ED Julabo Labortechnik GmbH, Seelbach, 

GER 

Universal mixer GT, 

4l, polycarbonate bucket, 500 – 17000 / 

min, 800W 

Carl Roth GmbH, Karlsruhe, GER 

Venting filter Midisart 2000,  

Sterile-EO, non-pyrogenic, PTFE-

membrane, PP-housing, 0.2 µm 

Sartorius Stedim Biotech GmbH, 

Göttingen, GER 
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Vortex Mixer Vortex Genie 2 Bender & Hobein, Zurich, CH 

Vortex Mixer VF2 Janke & Kunkel, IKA Labortechnik, 

Staufen, GER 

Voyager-DE STR Time Of Flight mass 

spectrometer 

Applied Biosystems, Carlsbad, CA, 

USA 

Washbottle without head, 10 l for N.c.-

cultifation 

Duran, Wertheim/Main, GER 

Washbottle-head 60/46 without filter 

disc for 10 l Wash bottle without head 

for N.c.-cultivation  

Stricker, Tutzing, GER 

Weighing machine CP2202 S Sartorius, Mainz, GER 

Weighing machine QS 4000 Sartorius, Mainz, GER 

Weighing machine L610-D Sartorius, Mainz, GER 

Weighing machine A120S Sartorius, Mainz, GER 

Weighing machine 1475A MP8-2 Sartorius, Mainz, GER 

Weighing machine XS205 Dual Range Mettler Toledo, Giessen, GER 

X-Cell SureLock Mini-Cell,  

gelelectrophoresis chamber 

Invitrogen, Carlsbad, CA 
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6.1.2 Chemicals 

 

All chemicals not listed below were obtained from Merck, Darmstadt, GER. 

Chemical Manufacturer 

ACN Rotisolv Ultra LC-MS, Roth, Karlsruhe 

(GER) 

Acrylamid-Bis (37.5 : 1), 30% (w/v) Serva, Heidelberg, GER 

Agar-agar Serva, Heidelberg, GER 

Amicon Ultra 30 k device Millipore, Cork, IRL 

Amino Acids Sigma, München, GER 

Amino acid minus methionine, 

1 mM 

Promega, Madison, USA 

Aminohexanoic acid Sigma, St. Louis, MO, USA 

Ammonium nitrate Grüssing, Filsum, GER 

Ampicillin AppliChem, Darmstadt, GER 

Anti-Guinea Pig IgG 

(whole molecule) Peroxidase, 

Developed in Goat, Affinity isolated 

antigen specific antibody 

Sigma, St. Louis, USA 

APS AppliChem, Darmstadt, GER 

Bacto-pepton DIFCO, Detroit, USA 

Bacto-Trypton DIFCO, Detroit, USA 

ß-DDM Glycon Biochemicals, Luckenwalde, 

GER 

ß-mercaptoethanol Sigma, München, GER 

Bio-Rad Protein Assay (Bradford 

reagent) 

Bio-Rad Laboratories, München, GER 

Bio-Rad Protein Assay Standard I Bio-Rad Laboratories, Hercules, CA 

Bromphenolblue Serva, Heidelberg, GER 

BSA Grade VIII (fatty acid free) Sigma, München, GER 

C18 micro column (75 µm i.d. x 15 cm, 

packed with C18 PepMap, 3 µm, 100 Å) 

Dionex, Benelux B.V. 

Coomassie Brilliant Blue R-250 Serva, Heidelberg, GER 

DH5α E.coli Takara Bio Europe/Clontech, Saint-

Germain-en-Laye, FR 

DMSO  Sigma, St. Louis, MO, USA 

Developer for medical X-ray film 

processing G153 A + B 

Agfa Healthcare NV, Mortsel, BEL 

Digitonin,  

high purity 

Calbiochem, Darmstadt, GER 

DTT Gerbu Biotechnik GmbH, Gaiberg, 

GER 

EDTA-free complete protease inhibitor Roche Mannheim GmbH, Mannheim, 

GER 

Ethanol Serva, Heidelberg, GER 

Fuji medical X-ray film Super RX, 

100 NIF 

FujiFilm Deutschland, Düsseldorf, GER 

Freund´s Adjuvant incomplete Sigma, St. Louis, MO, USA 
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Gel Drying Film Promega Corporation, Madison, WI, 

USA 

Glycerol SIGMA, München, GER 

Goat-Anti-Mouse 

IgG (H + L)-HRP Conjugate 

Bio-Rad Laboratories, Hercules, CA 

Goat-Anti-Rabbit 

IgG (H + L)-HRP Conjugate 

Bio-Rad Laboratories, Hercules, CA 

HEPES Serva, Heidelberg, GER 

Hydrogen peroxide AppliChem, Darmstadt, GER 

Imidazol AppliChem, Darmstadt, GER 

Kodak Bio Max MR film, 

X-ray film 

Carestream Health, Rochester, USA 

Lacey carbon film on molybdenum EM 

grid 

Plano GmbH, Wetzlar, GER 

Luminol (5-Amino-2,3-dihydro-1,4-

phthalazinedione free acid) 

Sigma, St. Louis, MO, USA 

m
7
G(5´)ppp(5´) G RNA Cap Structure 

Analog 
Amersham Biosciences, Freiburg, GER 

Methanol Serva, Heidelberg, GER 

Methionine,  

non-radioactive 

Sigma, St. Louis, MO, USA 

Monoclonal Anti-FLAG, 

antibody produced in mouse,  

Clone M2, purified immunoglobulin 

Sigma, St. Louis, MO, USA 

NativePAGE Sample Buffer Invitrogen, Carlsbad, CA, USA 

NativePAGE 5% G-250 Sample 

Additive 

Invitrogen, Carlsbad, CA, USA 

NativeMark Unstained Protein Standard Invitrogen, Carlsbad, CA, USA 

NativePAGE 4-16% Bis-Tris Gel,  

1.0 mm x 10 well 

Invitrogen, Carlsbad, CA, USA 

NativePAGE Running Buffer (20x) Invitrogen, Carlsbad, CA, USA 

NativePAGE Cathode Buffer Additive 

(20x) 

Invitrogen, Carlsbad, CA, USA 

NHS-activated Sepharose 4 Fast Flow GE Healthcare, Piscataway, NJ, USA 

Ni-NTA agarose QIAGEN, Hilden, GER 

Ni-NTA-Nanogold Nanoprobes, Yaphank, NY, USA 

NuPAGE Transfer Buffer (20x) Invitrogen, Carlsbad, CA 

PageRuler Plus Prestained Protein 

Ladder 

Fermentas, St. Leon-Roth, GER 

Parafilm American National Can, Neenah, WI, 

USA 

PCA  Sigma, St. Louis, MO, USA 

Penta-His Antibody, BSA-free, 

mouse monoclonal IgG1 

QIAGEN, Hilden, GER 

Peptide libraries JPT Peptide Technologies GmbH, 

Berlin, GER 

PMSF Serva, Heidelberg, GER 

Ponceau S Serva, Heidelberg, GER 

Protease arrest Calbiochem, Darmstadt, GER 

Protran nitrocellulose membrane B A83 Schleicher & Schüll, Kassel, GER 



 Material and Methods  
 

83 

 

PVDF membrane Carl Roth GmbH, Karlsruhe, GER 

Rabbit Reticulocyte Lysate,  nuclease 

treated 

Promega, Madison, USA 

Rapit Fixer for medical x-ray film 

processing G354 

Agfa Healthcare NV, Mortsel, BEL 

rNTPs, 

Ribonucleosidtriphosphate set, 

(100 mM lithium salt solution, 4 x 20 

µmol (200 µl)) 

Boehringer Mannheim GmbH, 

Mannheim, GER 

RNasin Rnase inhibitor, 

(ribonuclease inhibitor), 40 u/µl 

Promega, Madison, USA 

SDS Serva, Heidelberg, GER 
35

S-methionine, 

10 mCi/ml 

ICN Pharmaceuticals, Eschwege, GER 

Skimmed milk powder AppliChem, Darmstadt, GER 

SP6-RNA-polymerase, 

25 u/µl 

Epicentre, Madison, WI, USA 

Spermidine, 

(N-[3-aminopropyl]-1,4-butanediamine) 

Sigma, St. Louis, MO, USA 

Sucrose, (Saccharose) Carl Roth GmbH, Karlsruhe, GER 

Sulfo Link Coupling Gel Thermo Scientific, Rockford, USA 

TEMED Serva, Heidelberg, GER 

TFA, 

for peptide synthesis 

Roth, Karlsruhe (GER) 

TiterMax Gold Adjuvant Sigma, St. Louis, MO, USA 

TNT Reaction buffer Promega, Madison, USA 

TNT Rabbit Reticulocyte Lysate Promega, Madison, USA 

TNT SP6 Polymerase Promega, Madison, USA 

Tris AppliChem GmbH, Darmstadt, GER 

Triton X-100 Sigma, München, GER 

Trypsin 

(sequencing grade modified trypsin) 

Promega, Madison, USA 

Tween20 

(Polyoxyethylene-sorbitan 

Monolaurate) 

Sigma, St. Louis, MO, USA 

Unstained Protein Molecular Weight 

Marker 

Fermentas, St. Leon-Roth, GER 

Yeast extract Serva, Heidelberg, GER 

Whatman filter paper  Schleicher & Schüll, Kassel, GER 

Whatman´s #1 filter paper Whatman, Maidstone, GBR 
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6.1.3 Preparation Kits 

 

Preparation Kit Use Manufacturer 

Flag-

Immunoprecipitation Kit 

Affinity purification of 

Flag-tagged proteins 

Sigma-Aldrich, 

Steinheim, GER 

Promega Pure Yield 

Plasmid Midiprep 

System 

Plasmid isolation out of 

bacteria 

Promega, Heidelberg, 

GER 

TNT SP6 Coupled 

Reticulocyte Lysate 

System 

In vitro synthesis of 

radioactive precursor 

protein 

Promega, Madison, 

USA 

 

 

6.1.4 Medias and buffers 

 

In general, all solutions and medium were prepared with bidestillized water (ddH2O, 

Millipore) and were autoclaved or sterile filtered if required. Unless stated otherwise, the pH-

value was adjusted with hydrochloric acid and sodium hydroxide solution.  

NAME  PRESCRIPTION 

Neurospora crassa cultivation 

Biotin solution dissolve 20 g biotin in 100 ml H2O + 100 ml 95% ethanol 

Trace elements 

solution 

(dissolved in H2O) 

50 mg/ml Citric acid, 50 mg/ml ZnSO4, 10 mg/ml Fe[(NH4)2 

SO4], 2.5 mg/ml CuSO4, 0.5 mg/ml MnSO4·H2O, 0.5 mg/ml 

water-free H3BO3, 0.5 mg/ml Na2MoO4 

Vogel´s 50x stock 

solution  

(amounts for 1 l 50x stock solution) 

150 g Na3-citrate·2H2O, 100 g KH2PO4, 10 g MgSO4, 5 g 

CaCl2, 2.5 ml biotin solution and 5 ml stock solution of trace 

elements 

Histidine 100x stock 

solution 

2 mg/ml 

Vogel´s minimal 

liquid medium 

1x Vogel´s, 2% Sucrose, 1x histidine if needed 

Vitamin solution 0.01 mg/ml vitamin B1, 0.005 mg/ml vitamin B2, 0.005 

mg/ml vitamin B6, 0.005 mg/ml, aminobenzoic acid 0.005 

mg/ml nicotinamide, 0.1 mg/ml cholin-hydrochloride, 0.001 

mg/ml folic acid, 0.1 mg/ml inositol, 0.05 mg/ml calcium 

pantothenate 

Vogel´s minimal 

solid medium 

(for 50 ml medium / Erlenmeyer flask) 

1 ml Vogel´s 50x stock solution, 1 ml 50% sucrose solution, 

0.5 ml 100x histidine stock solution if needed, 1 g agar 

powder, autoclave and allow the medium to solify 

Vogel´s full solid 

medium 

(for 50 ml medium / Erlenmeyer flask) 

1 ml Vogel´s 50x stock solution, 1 ml 50% sucrose solution, 

0.5 ml 100% glycerine, 0.25 ml vitamin solution, 0.125 g 

yeast extract, 0.05 g casein hydrolysate, 0.5 ml 100x 

histidine stock solution  1 g agar powder, autoclave and 
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allow the medium to solify 

10 % (w/v) 

Skimmed milk for 

silica stocks 

10 g skimmed milk powder in 100 ml water, autoclave and 

store at 4°C 

Silica gel O2Si, ~ 0.2 – 1 mm Ø granules, aliquots of 1 g were heat 

sterilized at 180°C for 3 hours in glas vials 

Isolation of mitochondria and OMVs from Neurospora crassa 

0.25 M SET-buffer 250 mM Sucrose, 1 mM EDTA, 1 mM PMSF, 20 mM Tris, 

pH 8.5 

0.25 M ST-buffer 250 mM Sucrose, 1 mM PMSF, 20 mM Tris, pH 8.5 

0.7 M SET-buffer 0.7 M Sucrose, 1 mM EDTA, 20 mM Tris, pH 8.5 

0.9 M SET-buffer 0.9 M Sucrose, 1 mM EDTA, 20 mM Tris, pH 8.5 

2 M SET-buffer 2 M Sucrose, 1 mM EDTA, 20 mM Tris, pH 8.5 

Tris/EDTA-buffer 1 mM EDTA, 20 mM Tris, pH 8.5 

OMV-buffer 1mM PMSF,  20 mM Tris, pH 8.5 

Cultivation of Saccharomyces cerevisiae 

Lactate medium, 

liquid 

0.3% (w/v) yeast extract, 0.1% (w/v) KH2PO4, 0.1% (w/v) 

NH4Cl, 0.05% (w/v) CaCl2 · 2 H2O, 0.05% (w/v) NaCl, 

0.11% (w/v) MgSO4 · 6 H2O, 0.0003% (w/v) FeCl3, 2 % 

(v/v) lactic acid, pH 5.5 adjusted with KOH 

Lactate medium, 

solid 

0.3% (w/v) yeast extract, 0.1% (w/v) KH2PO4, 0.1% (w/v) 

NH4Cl, 0.05% (w/v) CaCl2 · 2 H2O, 0.05% (w/v) NaCl, 

0.11% (w/v) MgSO4 · 6 H2O, 0.0003% (w/v) FeCl3, 2 % 

(v/v) lactic acid, 2% (w/v) agar, pH 5.5 adjusted with KOH 

Isolation of mitochondria from Saccharomyces cerevisiae 

Resuspension buffer 10 mM DTT, 100 mM Tris, pH 9.4 

Sorbitol buffer 1.2 M sorbitol, 20 mM KH2PO4, pH 7.4 adjusted with KOH 

Homogenization 

buffer 

0.6 M sorbitol, 1 mM EDTA, 0.2% (w/v) BSA, 1 mM 

PMSF, 10 mM Tris, pH 7.4 

SEH-buffer 0.6 M sorbitol, 1 mM EDTA, 20 mM HEPES, pH 7.4 

adjusted with KOH 

Chemical competent E. coli cells 

CaCl2-solution 0.1 M CaCl2 

LB-medium 1% (w/v) (bacto-)trypton, 0.5% (w/v) yeast extract, 1% 

(w/v) NaCl (for culture plates ad 1.5% (w/v) agar 

Plasmid transformation into E. coli cells 

LB-medium with 

selective antibiotics 

in general: ampicillin, 100 µg/ml 

In vitro synthesis of radioactive precursor proteins 

DTT-solution 0.1 M 

MgAc 15 mM 

m
7
G(5´)ppp(5´) G 

RNA Cap Structure 

Analog 

2.5 mM  

methionine solution 

(non-radioactive) 

58 mM 

ribonucleoside 

triphosphates 

(rNTPs) 

2.5 mM ATP, GTP, UTP, CTP diluted in H2O 

Sucrose solution 1.5 M 
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Transcription buffer 

(5x) 

50 mM MgCl2, 10 mM spermidine, 200 mM Tris, pH 7.5 

Isolation of the TOB complex by Ni-NTA affinity purfication 

Ni-NTA 

solubilization buffer 

10% (v/v) glycerol, 1 mM PMSF, 15 mM imidazole, 50 mM 

HEPES, pH 8.5 

Ni-NTA wash buffer 1 mM PMSF, 50 mM HEPES, pH 8.5 

Isolation of the TOB complex by Flag-tag affinity purification 

Flag solubilization 

buffer 

10% (v/v) glycerole, 1 mM PMSF, 50 mM HEPES, pH 8.5 

Flag washing buffer 1 mM PMSF, 0.084% (v/v) Triton X-100, 50 mM HEPES, 

pH 8.5 

Isolation of the TOM core complex 

Solubilization buffer 300 mM NaCl, 20% (v/v) glycerol, 20 mM imidazole, 1% 

(w/v) β-DDM, 1 mM PMSF (freshly added), 20 mM Tris-Cl 

pH 8.5 

Equilibration buffer 20% (v/v) glycerol, 0.2% (w/v) β-DDM, 1mM PMSF, 50 

mM Tris-Cl pH 8.5 

TOM washing 

buffer 1 

300 mM NaCl, 10% (v/v) glycerol, 20 mM imidazole, 0.1% 

(w/v) β-DDM, 1 mM PMSF, 20 mM Tris-Cl pH 8.5 

TOM washing 

buffer 2 

10% (v/v) glycerol, 40 mM imidazole, 0.1% (w/v) β-DDM, 

1 mM PMSF, 50 mM KAc/MOPS pH 7.2 

TOM elution buffer 10% (v/v) glycerol, 300 mM imidazole, 0.1% (w/v) β-DDM, 

1 mM PMSF, 50 mM KAc/MOPS pH 7.2 

ResQ low salt buffer 10% (v/v) glycerol, 0.03% (w/v) β-DDM, 50 mM 

KAc/MOPS pH 7.2 

ResQ high salt 

buffer 

10% (v/v) glycerol, 7.457% (w/v) KCl, 0.03% (w/v) β-

DDM, 50 mM KAc/MOPS pH 7.2 

Gel filtration buffer 0.03% (w/v) β-DDM, 10 mM KAc/MOPS pH 7.2 

Isolation of the BCS1-complex 

NaPi-buffer 1 M Na2PO4 was titrated with 1M NaH2PO4 to pH 8.0 

Protease arrest, 100x dissolved in DMSO according to instructions 

Solubilisation buffer 3% (w/v) digitonin, 100 mM NaCl, 20 mM imidazole, 5% 

(v/v) glycerol, 1x protease arrest, 50 mM NaPi-buffer, pH 

8.0 

Washing buffer 0.1% (w/v) digitonin, 100 mM NaCl, 20 mM imidazole, 5% 

(v/v) glycerol, 50 mM NaPi-buffer, pH 8.0 

Elution buffer 0.1% (w/v) digitonin, 100 mM NaCl, 400 mM imidazole, 

5% (v/v) glycerol, 50 mM NaPi-buffer, pH 8.0 

SDS PAGE and TCA precipitation 

72% TCA 72% (w/v) TCA in H2O 

4x Laemmli 8% (w/v) SDS, 20% (v/v) ß-mercaptoethanol, 240 mM Tris, 

pH 6.8, 40% (v/v) glycerol, 0.02% (w/v) bromphenolblue 

2x Laemmli 4% (w/v) SDS, 10% (v/v) ß-mercaptoethanol, 120 mM Tris, 

pH 6.8, 20% (v/v) glycerol, 0.01% (w/v) bromphenolblue 

5 % SDS-gel 5 % acrylamide-bis (37.5 : 1), 30% (w/v), 60 mM Tris, pH 

6.8, 0.1% (w/v) SDS, 0.05% (w/v) APS, 0.1% (v/v) TEMED 

12.5% SDS-gel 12.5 % acrylamide-bis (37.5 : 1), 30% (w/v), 380 mM Tris, 

pH 8.8 0.1% (w/v) SDS, 0.06% (w/v) APS, 0.06% (v/v) 

TEMED 

SDS-running buffer 24.8 mM Tris, 1.9 M glycine, 0.1% (w/v) SDS 
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Western blotting 

SDS-transfer buffer 0.1% (w/v) SDS, 192 mM glycin, 25 mM Tris, pH not 

adjusted 

Staining of proteins 

Coomassie 

destaining solution 

30% (v/v) methanol, 10% (v/v) acetic acid, pH not adjusted 

Coomassie staining 

solution 

45% (v/v) methanol, 40% (v/v) acetic acid, 0.2% (w/v) 

Coomassie Brilliant Blue R-250, pH not adjusted 

Ponceau S solution 0.2% (w/v) Ponceau S, 3% (w/v) TCA, pH not adjusted 

Pepspot protein interaction assay 

Blocking buffer 3% BSA (w/v), 2.7 mM KCl, 137 mM NaCl, 50 mM Tris, 

pH 8.0 

Anode buffer I 20% (v/v) methanol, 30 mM Tris, pH not adjusted 

Anode buffer II 20% (v/v) methanol, 300 mM Tris, pH not adjusted 

Cathode buffer 20% (v/v) methanol, 40 mM aminohexanoic acid, 25 mM 

Tris, pH 9.2 

PBS-buffer (10x) 150 mM NaCl, 9.2 mM Na2HPO4, 1.6 mM NaH2PO4, pH 

7.2 

Regeneration buffer 

IA 

2% (w/v) SDS, 100 mM ß-mercaptoethanol, 62.5 mM Tris, 

pH 6.7 

TBS-buffer 2.7 mM KCl, 137 mM NaCl, 50 mM Tris, pH 8.0 

T-TBS-buffer 0.05% (v/v) Tween20, 2.7 mM KCl, 137 mM NaCl, 50 mM 

Tris, pH 8.0 

Binding studies of mitochondrial precursor proteins to the isolated TOB complex 

Beads binding buffer 0.084% (v/v) TX-100, 15 mM imidazole, 50 mM HEPES, 

pH 7.8 

Beads washing 

buffer 

0.084% (v/v) TX-100, 5 mM imidazole, 5 mM MgCl2, 50 

mM HEPES, pH 7.8 

Tryptic digestion of protein samples for mass spectrometry analysis 

ACN/TFA-solution 50% (v/v) ACN, 0.25% TFA, pH not adjusted 

DTT-solution 10 mM DTT, 25 mM NH4HCO3, pH not adjusted 

IAA-solution 55 mM IAA, 25 mM NH4HCO3, pH not adjusted 

NH4HCO3-buffer 25 mM NH4HCO3, pH 7.6 

Trypsin-solution 200 ng/µl trypsin in 50 mM acetic acid, pH not adjusted 

Mass spectrometry analysis of protein samples by electrospray ionisation 

Buffer A 0.1% (v/v) FA in HPLC grade water, pH not adjusted 

Buffer B 80% (v/v) ACN, 0.1% (v/v) FA in HPLC grade water, pH 

not adjusted 

Immunodecoration 

TBS-buffer 154 mM NaCl, 10 mM Tris, pH 7.5 

ECL-reagent 1.24 mM luminol, 0.2 mM PCA, 100 mM Tris, pH 8.5; 

add H2O2 to a final concentration of 0.012 % (v/v) directly 

before use 

Flag-TBS-buffer 138 mM NaCl, 2.7 mM KCl, 50 mM Tris, pH 8.0 

Luminol 248 mM luminol (= 5-Amino-2,3-dihydro-1,4-

phthalazinedione free acid) in DMSO 

PCA 91.35 mM in DMSO 

Affinity purification of antibodies 

Antiserum solution 6.5 ml rabbit antiserum, 1.2 ml 25 x EDTA free complete 

protease inhibitor solution, 22.3 ml 10 mM Tris, pH 7.5 
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Cystein-buffer 50 mM (L)-cysteine, 5 mM EDTA, 50 mM Tris, pH 8.5 

Glycine-solution 100 mM glycine, pH 2.5 

NaCl-solution 1 M NaCl 

Na2HPO4-solution 100 mM Na2HPO4, pH 11.5 

NaN3-buffer 0.05% NaN3, 5 mM EDTA, 50 mM Tris, pH 8.5 

Sodium citrate 

solution 

100 mM trisodium citrate (C6H5Na3O7·2H2O), pH 4.0 

Sulfo Link-buffer 5 mM EDTA, 50 mM Tris, pH 8.5 

10 mM Tris-buffer, 

pH 7.5 

10 mM Tris, pH 7.5 

10 mM Tris-buffer, 

pH 8.8 

10 mM Tris, pH 8.8 

1 M Tris-buffer, pH 

8.8 

1 M Tris, pH 8.8 

Tris/NaCl-buffer 0.5 M NaCl, 10 mM Tris/HCl, pH 7.5 

NHS-Sepharose  

Coupling buffer 

200 mM NaHCO3, 500 mM NaCl, pH 8.3 

NHS-Sepharose Tris 

buffer 

100 mM Tris, pH 8.5 

PBS-buffer 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1,76 mM 

KH2PO4 

Cryo-electron microscopy 

Nanogold washing 

buffer 

1 mM PMSF, 0.084% (v/v) Triton X-100, 50 mM HEPES, 

pH 8.5 
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6.1.5 Neurospora crassa strains 

Strain Genotype 

 

Origin or source 

and reference  

(if applicable) 

NCN251  

(also called 

74A) 

A FGSC 2489 

 

76-26 his-3 mtrR a 

(mtrR imparts fpa resistance) 

 

R.L. Metzenberg 

71-18 pan-2 BmlR a (BmlR imparts benomyl 

resistance) 

R.L. Metzenberg 

HP1 Heterokaryon of 76-26 plus 71-18 F. Nargang 

Tob55 

(Tob55KO-1) 

Sheltered heterokaryon. As HP1, but 

with replacement of the tob55 gene in 

76-26 nucleus with a hygromycin 

resistance (hygR) cassette. 

F. Nargang 

(120) 

 

Tob55 

(Tob55KO-3) 

As Tob55KO-1 As Tob55KO-1 

T55His6-1 his-3 mtrR a Δtob55 ::hygR contains an 

ectopic copy of genomic tob55 with N-

terminal hexahistidinyl tag. Also 

bleomycin resistant. 

F. Nargang 

(120) 

T55His6-3 As T55His6-1, but different clone As T55His6-1 

ST55-2 his3 mtrR  a Δtob55 ::hygR contains an 

ectopic copy of tob55 cDNA specific 

for the short form. 

F. Nargang 

(120) 

IT55-8 his3 mtrR  a Δtob55 ::hygR contains an 

ectopic copy of tob55 cDNA specific 

for the intermediate form. 

F. Nargang 

(120) 

LT55-2 his3 mtrR  a Δtob55 ::hygR contains an 

ectopic copy of tob55 cDNA specific 

for the long form. 

F. Nargang 

(120) 

His9-Tob55 

(H6C4-5) 

his-3 mtrR a Δtob55 hygR 

Contains an ectopic copy of genomic 

tob55 with an N-terminal nine His tag. 

Also bleomycin resistant. 

F. Nargang 

(108) 

His9-Tob55ST his-3 mtrR a Δtob55 ::hygR contains an 

ectopic copy of tob55 cDNA specific 

for the short form with an N-terminal 

nine His-tag. Also bleomycin resistant. 

F. Nargang 
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55FH123 his-3 mtrR a Δtob55 hygR 

Contains an ectopic copy of tob55 

cDNA specific for the short form with 

with an N-terminal nine His-tag, and an 

ectopic copy of tob55 cDNA specific 

for the intermediate form with an N-

terminal Flag-tag. Also bleomycin and 

benomyl resistant. 

F. Nargang 

Tob37 

(Tob37KO-5) 

Sheltered heterokaryon. As HP1, but 

with replacement of tob37 gene in 76-

26 nucleus with a hygromycin 

resistence (hygR) cassette. 

F. Nargang 

His9-Tob37 

(9His-Tob37-2) 

his-3 mtrR a Δtob37 hygR 

Contains an ectopic copy of genomic 

tob37 with a C-terminal nine His tag. 

Also bleomycin resistant. 

F. Nargang,  

(108) 

Tob38 

(Tob38KO-6) 

Sheltered heterokaryon. As HP1, but 

with replacement of tob38 gene in 76-

26 nucleus with a hygromycin 

resistence (hygR) cassette. 

F. Nargang 

His9-Tob38 

(9His-Tob38-3) 

his-3 mtrR a Δtob38 hygR 

Contains an ectopic copy of genomic 

tob38 with a C-terminal nine His tag. 

Also bleomycin resistant. 

F. Nargang 

(108) 

mdm10 mdm10  

his-3 mtrR hygR a 

Replacement of mdm10 gene in 76-26 

with hygromycin resistance (hygR) 

cassette 

F. Nargang 

(108) 

GR 107 expression of a Tom22 with a 

hexahistidinyl tag at its C-terminus 

W. Neupert (31, 

164) 
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6.1.6 Saccharomyces cerevisiae strain 

 

 

6.1.7 Peptides 

 

Name of 

peptide 

Sequence Use Origin 

Tob38Nc-8 

 

RDPEYTDLLDRFYI

TPASS 

Injection into rabbits for 

synthesis of polyclonal 

antibodies against Tob38 

from N. crassa; the peptide 

was coupled to KLH before 

injection. 

Peptide corresponds 

to  the residues 146 – 

182 of the Tob38 

protein from N. 

crassa. 

Tob38Nc-4 

 

C - 

RDPEYTDLLDRFYI

TPASS 

Used for affinity 

purification of antibodies 

against Tob38 from N. 

crassa out of antiserum 

Peptide corresponds 

to the residues 146 – 

182 of the Tob38 

protein from N. 

crassa with an extra 

cystein at the N-

terminus. 

Tob38Nc-9 KYMSDAEGEVEGN

MGFILASRK 

Injection into rabbits for 

synthesis of polyclonal 

antibodies against Tob38 

from N. crassa; the peptide 

was coupled to KLH before 

injection. 

Peptide corresponds 

to  the residues 269 – 

290 of the Tob38 

protein from N. 

crassa. 

Tob38Nc-5 

 

C-

KYMSDAEGEVEGN

MGFILASRK 

Used for affinity 

purification of antibodies 

against Tob38 from N. 

crassa out of antiserum 

Peptide corresponds 

to  the residues 269 – 

290 of the Tob38 

protein from N. 

crassa with an extra 

cystein at the N-

terminus. 

Tob37Nc-10 

 

DTDAEMERLEREE

REREAAG 

Injection into rabbits for 

synthesis of polyclonal 

antibodies against Tob37 

from N. crassa; the peptide 

was coupled to KLH before 

injection. 

Used for affinity 

purification of antibodies 

against Tob37 out of 

antiserum. 

Peptide corresponds 

to  the residues 165 – 

184 of the Tob37 

protein from N. 

crassa. 

Strain Genotype 

 

Origin or source and reference  

(if applicable) 

N-His6-Bcs1 in Δbcs1 W303a Kai Hell, N. Wagener, W. Neupert 
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Tob37Nc-11 

 

KRRIKLEGLAAEVF

DVLGEVDF 

Injection into rabbits for 

synthesis of polyclonal 

antibodies against Tob37 

from N. crassa; the peptide 

was coupled to KLH before 

injection. 

Used for affinity 

purification of antibodies 

against Tob37 out of 

antiserum. 

Peptide corresponds 

to  the residues 212 – 

233 of the Tob37 

protein from N. 

crassa. 

Tob37Nc-12 

 

VGLGSFGAAGAMF

AGLA 

 

Injection into rabbits for 

synthesis of polyclonal 

antibodies against Tob37 

from N. crassa; the peptide 

was coupled to KLH before 

injection. 

Used for affinity 

purification of antibodies 

against Tob37 out of 

antiserum. 

Peptide corresponds 

to  the residues 426 – 

442 of the Tob37 

protein from N. 

crassa. 

Mdm10Nc-

22 

 

EDNKYNELNATSR

HELELID 

 

Injection into rabbits for 

synthesis of polyclonal 

antibodies against Mdm10 

from N. crassa; the peptide 

was coupled to KLH before 

injection. 

Peptide corresponds 

to  the residues 20 – 

32 of the Mdm10 

protein from N. 

crassa, primary 

sequence modified in 

the Nargang lab 

(108). 

Mdm10Nc-

C22 

 

C-

EDNKYNELNATSR

HELELID 

Used for affinity 

purification of antibodies 

against Mdm10 from N. 

crassa out of antiserum 

Peptide corresponds 

to  the residues 20 – 

32 of the Mdm10 

protein from N. 

crassa, primary 

sequence modified in 

the Nargang lab (108) 

with an extra cystein 

at the N-terminus. 

Mdm10Nc-

23 

 

ATKNDEYKGVLKA

RLD 

Injection into rabbits for 

synthesis of polyclonal 

antibodies against Mdm10 

from N. crassa; the peptide 

was coupled to KLH before 

injection. 

Peptide corresponds 

to  the residues 332 -

333 and 423 – 425 of 

the Mdm10 protein 

from N. crassa, 

primary sequence 

modified in the 

Nargang lab  (108). 
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Mdm10Nc-

C23 

 

C-

ATKNDEYKGVLKA

RLD 

Used for affinity 

purification of antibodies 

against Mdm10 from N. 

crassa out of antiserum 

Peptide corresponds 

to  the residues 332 -

333 and 423 – 425 of 

the Mdm10 protein 

from N. crassa, 

primary sequence 

modified in the 

Nargang lab  (108) 

with an extra cystein 

at the N-terminus. 

Mdm10Nc-

25 

 

HKLGEPFRSLGEVQ

YSS 

Injection into rabbits for 

synthesis of polyclonal 

antibodies against Mdm10 

from N. crassa; the peptide 

was coupled to KLH before 

injection. 

Peptide corresponds 

to  the residues 463 – 

480 of the Mdm10 

protein from N. 

crassa, primary 

sequence modified in 

the Nargang lab 

(108). 

AQUA55 EDGFGVFISDAR Isotopic labelled peptide 

(heavy peptide) used for the 

quantification of the Tob55 

subunit in the isolated TOB 

complex; arginine 

substituted by isotopic 

arginine (bold) (
13

C6, 
15

N4), 

mass shift  +10 Da 

Thermo Fisher 

Scientific GmbH, 

Ulm, GER 

AQUA38 DPEYTDLLDR Isotopic labelled peptide 

(heavy peptide) used for the 

quantification of the Tob38 

subunit in the isolated TOB 

complex; arginine 

substituted by isotopic 

arginine (bold) (
13

C6, 
15

N4), 

mass shift  +10 Da 

Thermo Fisher 

Scientific GmbH, 

Ulm, GER 

AQUA37 VYADSQAYK Isotopic labelled peptide 

(heavy peptide) used for the 

quantification of the Tob37 

subunit in the isolated TOB 

complex; lysine substituted 

by isotopic lysine (bold) 

(
13

C6, 
15

N2), mass shift  +8 

Da 

Thermo Fisher 

Scientific GmbH, 

Ulm, GER 
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6.1.8 Whitehead codes and molecular masses of selected proteins from 
Neurospora crassa 

 

Protein Whitehead code  Molecular mass (kDa) 

Tob55 NCU05593 54.7  (long),  

54.1  (intermediate), 

50.7  (short) 

Tob37 NCU00923 48.6  

Tob38 NCU01401 37.3  

Tom40 NCU01179 38.1 

Mdm10 NCU07824 52.7  

porin NCU00431 30  

 

For further information seek the complete N. crassa genome database: 

http://www.broadinstitute.org/annotation/genome/neurospora/FeatureSearch.html 

 

 

6.1.9 Antibodies 

 

Primary 

antibody 

Blocking 

buffer 

Dilution 

primary 

antibody 

Secondary 

antibody 

Dilution 

secondary 

antibody 

anti-His 
Penta-His 

Antibody, BSA-

free, 

mouse 

monoclonal IgG1 

3% 

(w/v)BSA 

in TBS-

buffer 

1 : 1000 

in 3% 

(w/v) 

BSA in 

TBS-

buffer 

Goat-Anti-

Mouse 

IgG 

(H + L)-

HRP 

Conjugate 

1:3000 in 

10% (w/v) 

skimmed 

milk 

powder in 

TBS-buffer 

anti-Flag 
Monoclonal Anti-

FLAG, 

antibody 

produced in 

mouse,  

Clone M2, 

purified 

immunoglobulin 

3% (w/v) 

skimmed 

milk 

powder in 

Flag-TBS-

buffer 

1:1900 in 

3% (w/v) 

skimmed 

milk 

powder in 

Flag-

TBS-

buffer 

Goat-Anti-

Mouse 

IgG  

(H + L)-

HRP 

Conjugate 

1:3000 in 

in 3% 

(w/v) 

skimmed 

milk 

powder in 

Flag-TBS-

buffer 

rabbit 

antisera or 

affinity 

purified 

antibodies 
Polyclonal 

Antibodies risen 

in rabbits by 

antigen injection; 

affinity 

purification was 

performed if 

required 

5% (w/v) 

skimmed 

milk 

powder in 

TBS-

buffer 

1:30 – 

1:24000 

in 5% 

(w/v) 

skimmed 

milk 

powder in 

TBS-

buffer 

Goat-Anti-

Rabbit 

IgG  

(H + L)-

HRP 

Conjugate 

1:10000 in 

5% (w/v) 

skimmed 

milk 

powder in 

TBS-buffer 
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6.1.10 Plasmids 

 

Plasmid Description Reference 

pGEM4 empty Promega, Madison, 

USA 

pGEM4PorinNc Porin from N. crassa 

expressed under control 

of Sp6-promotor, 

ampicillin resistance 

W. Neupert  

(165) 

pGEM4Su9DHFR fusion protein of 

mitochondrail targeting 

sequence of subunit 9 of 

Fo-ATPase from N. 

crassa and 

dihydrofolate reductase 

(DHFR) from mouse 

expressed under control 

of Sp6-promotor, 

ampicillin resistance  

W. Neupert  

(166) 

pGEM4Tom22Nc Tom22 from N. crassa 

expressed under control 

of Sp6-promotor, 

ampicillin resistance 

N. Pfanner 

(163) 

pGEM4Tom40Nc Tom40 from N. crassa 

expressed under control 

of Sp6-promotor, 

ampicillin resistance 

N. Pfanner 

(167) 
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6.2 Methods 

Unless stated otherwise, methods were performed at room temperature. 

6.2.1 Cell biology 

6.2.1.1 Cultivation of Neurospora crassa 

Growth and handling of N.crassa were performed as described previously (168). For the 

cultivation of N. crassa, solid Vogel´s growth medium was inoculated with a few granules of 

the silica stock of the strain of interest in Erlenmeyer flasks. These A-flasks were incubated 

for 48 hours in the dark at 30°C and subsequently for around 190 hours at light at room 

temperature. With mycelium from the A-flasks, a second lot of flasks was inoculated and 

cultivated as described for the A-flasks. The fungus was harvested from the solid medium 

with 50 ml sterile water per flask and vigorous swirling and used for inoculating liquid 

medium.  

For a 2 l-culture, 1.9 l of Vogel´s minimal liquid medium were mixed with 100 ml of 

harvested N. crassa. For a 50 l-culture, a 10 l-preculture was started with 1 liter of harvested 

mycelium and 9 l Vogel´s minimal liquid medium containing 40 µg/ml chloramphenicol. 

After 6 hours, 40 liters of Vogel´s minimal medium were mixed with this preculture and 

cultivated for another 14 – 16 hours. Cultivation in liquid medium was performed at 30°C 

with constant aeration. The mycelium was harvested by filtration of the liquid medium. 

 

 

6.2.1.2 Preparation of silica stocks from Neurospora crassa 

Mycelium of one to two A-flasks was harvested with a total volume of 50 ml 10 % (w/v) 

skimmed milk and vigorous swirling. The solution was filtered through an autoclaved funnel 

filled with cotton batting. 300 µl of the filtrate were mixed with 1 g silica gel in a glass vial, 

dried in an exicator at room temperature for 3 weeks and stored at -20°C.  

 

6.2.1.3 Isolation of mitochondria from Neurospora crassa 

Mycelia were ground in the presence of sand and 0.25 M SET-buffer. The sand was separated 

from the cell extract by two sequential centrifugation steps at 2594 x g for 5 minutes. The cell 

organells in the supernatant were sedimented at 10976 x g for 50 minutes at 4°C. The 

mitochondria were scraped off from the very top of the resulting pellet and resuspended in 

0.25 M ST-buffer. After homogenization of the mitochondria they were again sedimented at 

10976 x g for 50 minutes at 4°C, resuspended in a smaller amount of 0.25 M ST-buffer and 
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homogenized. The concentration of mitochondrial proteins was determined by Bradford 

assay. 

 

6.2.1.4 Isolation of outer mitochondrial membrane vesicles from Neurospora 

crassa 

Mycelia were ground in the presence of sand and 0.25 M SET-buffer. The sand was separated 

from the cell extract by two sequential centrifugation steps at 2594 x g for 5 minutes. The cell 

organelles in the supernatant were sedimented at 10976 x g for 50 minutes at 4°C. The 

mitochondria were scraped off from the very top of the resulting pellet and resuspended in 

0.25 M SET-buffer. After homogenization of the mitochondria the amount of mitochondrial 

protein was determined by Bradford assay. The homogenized mitochondria were spun down 

at 10976 x g for 50 minutes at 4°C, resuspended in 0.25 M SET-buffer and incubated at 37°C 

for 5 minutes. Afterwards, mitochondria were transferred into swelling buffer under stirring at 

4°C to a final concentration of 1 g mitochondrial proteins per litre of swelling buffer. 

Following 30 minutes of stirring, the resulting mitoplasts were sedimented at 10976 x g for 30 

minutes and resuspended in a smaller volume of 0.25 M SET-buffer. With an automated 

glass-teflon-homogenizer, the outer mitochondrial membrane was sheared off the mitoplasts 

for 40 minutes at 4 °C. 20 ml of the homogenate was applied on a step gradient of 20 ml 0.9 

M - SET buffer at the bottom and 9 ml of 0.25 M SET-buffer and centrifuged for 1 hour at 

141370 x g, 4°C. The vesicles of the outer mitochondrial membrane could be taken from a 

thin layer between the 0.9 M SET-buffer and the 0.25 M SET-buffer and were mixed with 

half of the volume of 2 M SET-buffer. 15 ml of these outer mitochondrial membrane vesicles 

(OMVs) were overlaid with 20 ml 0.7 M SET-buffer and 3 ml Tris/EDTA-buffer and 

centrifuged at 141370 x g overnight at 4°C. OMVs could be collected from the interface 

between the Tris/EDTA-buffer and the 0.7 M SET-buffer. The double volume of OMV-buffer 

was added and the OMVs were centrifuged for 1 hour at 183960 x g. Finally, the sedimented 

OMVs were dissolved in OMV-buffer. The protein concentration was determined by 

Bradford assay and aliquots of the OMVs were shock frozen in liquid nitrogen and stored at -

80°C.  
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6.2.1.5 Cultivation of Saccharomyces cerevisiae 

Cultivation of the Saccharomyces cerevisiae yeast strain “N-His6-Bcs1 in Δbcs1” was 

performed according to standard procedures (169). Yeast from a glycerine-stock were struck 

out on solid lactate complete medium and cultivated at 30°C. After 2 days of cultivation, 

yeast from the solid medium were used for the inoculation of liquid lactate medium and 

incubated under moderate shaking at 30°C.  

 

6.2.1.6 Preparation of glycerol stocks from Saccharomyces cerevisiae 

For the preparation of stocks of S. cerevisiae, yeast cells from solid medium plates were 

mixed with 15% (v/v) glycerol in water and stored at -80°C.  

 

6.2.1.7 Isolation of mitochondria from Saccharomyces cerevisiae 

Mitochondria from S. cerevisiae were isolated according to standard procedures as described 

before (170). Yeasts were cultivated in liquid medium to an OD600 of 1 – 1.5 and harvested by 

centrifugation at 2800 x g for 5 min at room temperature (RT). The cells were washed with 

sterile water and resuspended to a final concentration of 0.5 g/ml yeast cells in resuspension 

buffer and incubated for 10 min at 30°C under moderate shaking. Following centrifugation 

2000 x g for 5 min at 4°C, the cells were washed again with a final concentration of 0.16 g/ml 

yeast cells in sorbitol buffer. For the digestion of the cell wall, 2.5 mg zymolyase were added 

per g yeast cell and incubation was performed for 30 – 45 min at 30°C under moderate 

shaking. Resulting spheroplasts were harvested by centrifugation at 2000 x g for 5 min at 4°C 

and homogenized 10 times in a Dounce-homogenizer at 4°C with a final concentration of 0.16 

g/ml spheroplasts in homogenization buffer. After centrifugation at 2000 x g for 5 min at 4°C, 

the supernatant was stored on ice and the remaining pellet was again resuspended and 

homogenized as described before. The supernatants of the first and second homogenization 

were pooled and centrifuged at 2000 x g for another 5 min at 4°C to sediment cell remnants. 

Mitochondria were spun down by centrifugation at 17000 x g for 12 min at 4°C and 

resuspended in SEH-buffer. Cell remnants were again separated by centrifugation at 2000 x g 

for 5 min at 4°C and the mitochondria in the supernatant were pelletized by centrifugation at 

17000 x g for 12 min at 4°C. Mitochondria were resuspended in SEH-buffer with a final 

concentration of 10 mg/ml protein, aliquotted, frozen in liquid nitrogen, and stored at -80°C. 
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6.2.1.8 Preparation of cryostocks from Escherichia coli cells 

For storage 1 ml of an Escherichia coli (E. coli) overnight culture was mixed with 1 ml 87% 

glycerol and kept at -80°C. 

 

6.2.1.9 Chemical competent Escherichia coli cells 

500 ml of LB-medium were inoculated with 5ml overnight-culture of E. coli and grown at 

37°C to an OD600 of 0.4. Following incubation on ice for 15 minutes the bacteria were spun 

down at 1756 x g for 15 minutes at 4°C. The pellet was resuspended in 40 ml CaCl2-solution 

and after 30 minutes on ice, the bacteria were harvested by centrifugation at 1756 x g for 15 

minutes at 4°C. After resuspending the pellet in 20 ml CaCl2-solution, 4 ml glycerol, 100% 

were added and the bacteria were incubated on ice for 2 hours. 200 µl aliquots of the 

suspension were shock-frozen in liquid nitrogen and subsequently stored at -80°C. 
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6.2.2 Molecular biology 

6.2.2.1 Plasmid transformation into Escherichia coli cells 

For amplification, in general plasmids were transformed into DH5α E. coli cells. For that, 100 

µl of chemical competent E. coli cells were thawed on ice and mixed with 1 µl of purified 

plasmid and incubated on ice for 15 minutes. After a heat shock for 30 seconds at 42°C, the 

cells were placed on ice for 2 minutes. Subsequently, 800 µl LB-medium without any 

selective antibiotics was added and the cells were shaken at 37°C for 45 minutes. A small 

amount of the bacteria were outplated on LB-medium with and without selective antibiotics 

and incubated overnight at 37°C to monitor the transformation efficiency. 55 ml of LB-

medium with selective antibiotics were inoculated with the remaining bacteria suspension and 

incubated over night at 37°C for the following plasmid isolation.  

 

6.2.2.2 Plasmid isolation out of Eschericia coli cells 

Plasmids were isolated from 50 ml overnight bacteria culture with the Promega Pure Yield 

Plasmid Midiprep System - Kit according to the instructions. For the determination of the 

DNA-content, the eluate with the purified plasmid was diluted 1 : 50 with water and analyzed 

photometrically as described (6.2.2.3). The yield of ~ 400 µl purified plasmids was stored at -

20°C. 

 

6.2.2.3 Photometrical quantification of nucleic acids 

The DNA-concentration was determined photometrically by measuring the absorption of the 

solution at 260 nm in a quartz crystal cuvette. Absorption of 1 corresponds to 50 µg/ml 

double strand DNA. 
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6.2.2.4 In vitro synthesis of radioactive precursor proteins 

6.2.2.4.1 In vitro transcription 

For the synthesis of radioactive precursor proteins, plasmid DNA encoding for the protein of 

interest under the control of the SP6-promotor was transcribed by the SP6-RNA-polymerase 

to RNA. For that, a transcription mix (50µl) with 3 - 10 µg of purified plasmids, 10 mM 

MgCl2, 2 mM spermidine, 10 mM DTT, 1.6 u/µl RNasin RNase (ribonuclease) inhibitor, 0.5 

mM ribonucleoside triphophates (rNTPs), 0.13 mM m
7
G(5´)ppp(5´)G, 0.75 u/ml SP6-RNA-

polymerase and 40 mM Tris (pH 7.5) was incubated for 1 hour at 37°C. The RNA was 

precipitated at -20°C for 30 minutes in the presence of 244 mM LiCl and 73% ethanol. 

Following a centrifugation at 36000 x g for 20 minutes at 2°C, the pellet was washed with 150 

µl cold 70% (v/v) ethanol and DNA was spun down again at 36000 x g for 20 minutes at 2°C. 

After evaporation of the ethanol at RT, the pellet was resuspended in water supplemented 

with 1.54 u/µl RNasin RNase inhibitor solution. RNA was stored at -20°C.  

 

6.2.2.4.2 In vitro translation 

For the translation of the protein of interest from the isolated mRNA, a translation mix (45 µl) 

with 6.25 µl RNA, 25 µl rabbit reticulocyte lysate, 0.875 µl amino-acid mix without 

methionine, 0.25 µl RNasin RNase inhibitor and 3 µl 
35

S-methionine (radioactive methionine) 

was incubated for one hour at 30°C. The synthesis of radioactive protein was stopped by 

adding 3.2 mM methionine (non-radioactive methionine) and 167 mM sucrose. 1 µl and 3 µl 

of the synthesized protein were analyzed by SDS-PAGE and Western blotting followed by 

autoradiography. The protein was shock-frozen in aliquots in liquid nitrogen and stored at -

80°C.  

 

6.2.2.4.3 TNT coupled reticulocyte lysate system 

In the TNT coupled reticulocyte lysate system, transcription and translation were performed 

in the same reaction mix. The TNT-mix (50 µl), containing 25 µl TNT rabbit reticulocyte 

lysate, 2 µl TNT Reaction buffer, 1 µl TNT SP6 Polymerase, 1 µl amino-acid mix without 

methionine, 4 µl 
35

S-methionine (radioactive methionine), 1 µl RNasin RNase inhibitor and 1- 

3 µg plasmid-DNA, was incubated for 1.5 hours at 30°C. When radioactive porin precursor 

was synthesized, the reaction was already stopped after 40 minutes. Following the addition of 

3.7 mM methionine (non-radioactive) and 194 mM sucrose, the protein was shock-frozen in 
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aliquots in liquid nitrogen and stored at -80°C. 1 µl and 3 µl of the synthesized protein were 

analyzed by SDS-PAGE and Western blotting followed by autoradiography. 
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6.2.3 Protein biochemistry 

6.2.3.1 Autoradiography 

Radioactive proteins were detected by exposing a X-ray film (Kodak) on the dried membrane 

with immobilized proteins for different time spans, ranging from a few hours to 15 days. 

Exposure times depended on the signal intensities observed after developing the films 

 

6.2.3.2 Isolation of the TOB complex by Ni-NTA affinity chromatography 

OMVs from N. crassa were solubilized in Ni-NTA solubilization buffer for 2 hours in the 

presence of 0.192% (v/v) Triton X-100 or 0.64% (w/v) digitonin, resulting in an 

detergent/protein ratio of 6/1 (TX-100) and 20/1 (digitonin), respectively. After a 

centrifugation step for clarification at 36000 x g for 20 minutes, the supernatant was loaded 

on a Ni-NTA agarose column (1.66 mg solubilized protein / 100 µl matrix, 100%) for affinity 

purification. The column was rinsed stepwise with 16 column volumes (CVs) of Ni-NTA 

washing buffer with 15 mM imidazole, 25 CVs with 20 mM imidazole and 10 CVs with 40 

mM imidazole. Bound proteins were eluted with Ni-NTA washing buffer with 200 mM 

imidazole. Depending on the detergent used, the Ni-NTA washing buffer contained either 

0.084 % Triton X-100 or 0.24% (w/v) digitonin. The isolation was performed at 4°C. 

 

6.2.3.3 Isolation of the TOB complex by Flag-tag affinity purification  

OMVs from N. crassa were solubilized in Flag solubilization buffer for 2 hours in the 

presence of 0.192 % Triton X-100. After a centrifugation step for clarification at 36000 x g 

for 20 minutes, the supernatant was loaded on ANTI-FLAG M2-Agarose Affinity Gel (1.66 

mg solubilized protein / 10 µl matrix, 100%) and incubated for 2 hours with gentle agitation. 

Following a centrifugation at 4000 x g for 3 minutes, the supernatant with the unbound 

proteins was removed. The ANTI-FLAG M2-Agarose Affinity Gel with the bound proteins 

was transferred to a Mini-frit column in an 2 ml reaction tube and rinsed 5 times with 10 CVs 

of Flag washing buffer. After an incubation of 2 minutes, the washing buffer was removed by 

a centrifugation step at 4000 x g for one minute each. For elution, 2.5 CVs of Flag washing 

buffer with 5 µg/µl three fold Flag peptide was added to the matrix and incubated for 30 

minutes with gentle agitation. Bound proteins were sedimented at 4000 x g for 1 minute. The 

isolation was performed at 4°C. 
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6.2.3.4 Isolation of the TOM core complex 

The TOM core complex was isolated according to a protocol established by Patrick Schreiner 

in the group of W. Neupert (LMU, Munich, GER), as listed below. The protocol was adapted 

from “Structural investigation of two supramolecular complexes of the eukaryotic cell: the 

proteasome and the mitochondrial TOM complex”, (171). 

 

TOM core complex was isolated from a N. crassa strain (GR-107) that carried a version of 

Tom22 with a hexahistidinyl tag at its C-terminus. The TOM core complex was isolated 

according to Ahting et al., 1999 (172), with some modifications in the protocol. Isolated 

mitochondria were solubilized in solubilization buffer at a protein concentration of 10 mg/ml for 

30 min at 4°C. Insoluble material was removed by centrifugation, and the clarified extract was 

loaded onto the equilibrated Ni-NTA agarose column using 4 ml resin per g of total mitochondrial 

protein. The column was washed with 5 CVs of TOM washing buffer 1 and with 10 CVs of TOM 

washing buffer 2. The bound protein was eluted with 4 CVs of TOM elution buffer. The eluted 

fraction of the Ni-NTA column was loaded onto an equilibrated Resource Q anion exchange 

column. The complex was eluted with a linear potassium chloride gradient. For further 

purification, the fractions containing TOM core complex were pooled, concentrated to 500 μl 

(spin filtration devices from Pall Corporation, 100 kDa cut-off) and loaded onto a Superose 6 size 

exclusion column. Proteins were eluted in gel filtration buffer. Stock solutions of purified TOM 

core complex were stored at a protein concentration of 10-20 mg/ml at 4°C. An average 

preparation of the protein started with ~1.5 kg of Neurospora cells (wet weight) which yielded 

about 5 g of mitochondrial proteins and 1-2 mg of purified TOM core complex. 

 

6.2.3.5 Isolation of the BCS1complex 

Mitochondria isolated from the “N-His6-Bcs1 in Δbcs1” Saccharomyces cerevisiae strain 

were resuspended in solubilisation buffer by pipetting. After incubation for 10 min on ice in 

the presence of 3% (w/v) digitonin, unsolubilized mitochondria were sedimented by 

centrifugation at 10000 x g for 10 min at 4°C and the supernatant was loaded on a Ni-NTA 

agarose batch (5 mg solubilized protein / 100 µl matrix, 100%) for affinity purification. 

Following incubation of 1 hour at 4°C under gentle agitation, the beads were subjected to 

three washing steps in which the matrix beads were resuspended in washing buffer, spun 

down at 1000 x g for 1 min at 4°C and resuspended again in fresh buffer. For elution of the 

bound proteins, the matrix was incubated fort 10 min in elution buffer at 4°C and eluted 

proteins were separated from the matrix beads by centrifugation at 1000 x g for 1min at 4°C. 
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The isolation of the BCS1 complex was performed according to a protocol established by N. 

Wagener (Neupert group, LMU, Munich, GER).  

 

6.2.3.6 Carbonate extraction 

OMVs were resuspended in 100 mM Na2CO3 with different pH values of 10.8, 11.5 and 12.5 

and incubated for 30 minutes on ice. As a control, proteins were treated with 10 mM HEPES-

KOH, pH 7.4. By centrifugation for one hour at 125800 x g, transmembrane proteins were 

sedimented and could thereby be separated from the soluble and membrane associated 

proteins in the supernatant. The proteins in the supernatant were precipitated with 

trichloracetic acid as described (6.2.3.8). 

 

6.2.3.7 Protein concentration  

If needed, the isolated proteins of the TOB complex were concentrated by using an Amicon 

Ultra 30k device. Centrifugation was performed at 4000 x g at 4°C.  

 

6.2.3.8 Protein precipitation 

Proteins in solution were mixed with 1/5
th

 volume of 72% trichloracetic acid (TCA) and 

frozen overnight at -20°C. The precipitated proteins were sedimented at 36000 x g for 15 

minutes at 4°C and washed with 100% acetone. The pellet was dried at 35°C for 30 minutes 

and, unless stated otherwise, resolved by cooking in 2 x Laemmli at 95°C for 5 minutes.  

 

6.2.3.9 Determination of the protein concentration by Bradford assay 

The protein concentration was determined by adding 1ml of a 1:5 dilution of the “Bio-Rad 

Protein assay” solution to the samples of same volume. Following 5 minutes of incubation at 

RT, the absorbance at 595 nm was measured in a 10 mm path length microcuvette. The 

protein solution of interest was diluted and 2.5 µl, 5 µl and 7.5 µl were measured twice. The 

protein concentration was calculated according to a standard curve, measured in parallel with 

48 µg, 24 µg, 12 µg, 6 µg, 3 µg, 1.5 µg and 0 µg of the “Bio-Rad Protein Assay Standard I”. 

 

6.2.3.10 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) 

By denaturing discontinuous sodiumdodecylsulfate polyacrylamide gelelectrophoresis (SDS-

PAGE) proteins were separated according to their molecular mass as described previously 
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(173). Proteins were solved in 2 x Laemmli and cooked for 5 minutes at 95°C, applied on a 

5% SDS-gel and separated on a 12.5% SDS-gel. The gels used had a size of 140 mm x 140 

mm and a thickness of 1 mm. Standard running conditions were 30 mA for 2 – 3 hours at RT 

in SDS-running buffer. By comparison with marker proteins of known size running on the 

same gel, the molecular weight of the sample proteins could be estimated. 

 

6.2.3.11 Blue Native-Polyacrylamide gel electrophoresis (BN-PAGE) 

Proteins from mitochondria (60 – 120 µg) or OMVs (10 – 30 µg) were solubilized in 1 x 

NativePAGE sample buffer containing 0.9% - 1.8% (v/v) TX-100 or 0.75% - 6% (w/v) 

digitonin, resulting in a protein/detergent ratio of 6/1 (TX-100) and 10/1 – 40/1 (digitonin), 

respectively. Following 1 hour of incubation on ice, the samples were centrifuged for 

clarification at 20 000 x g for 30 minutes and the supernatant was mixed with NativePAGE 5 

% G-250 sample additive to adjust the final G-250 concentration in the sample to at least 1/4
th

 

of the detergent concentration. BN-PAGE was performed as previously described (142, 174) 

with NativePAGE Novex 4-16 % Bis-Tris Gel according to the instructions. All buffers were 

used and gelelectrophoresis was performed at 4°C. The bovine heart mitochondria used as 

protein standard for the mass estimation in the BN-PAGE analysis were provided by Ilka 

Wittig (Schägger group, Goethe-University Frankfurt, Frankfurt am Main, GER).  

 

6.2.3.12 In gel staining of proteins with Coomassie brilliant blue 

After SDS- or BN-PAGE, the separated proteins in the gel were stained with the Coomassie 

Brilliant Blue dye. The gel was shaken in Coomassie staining solution for at least 30 minutes 

at RT. Subsequently, the stained gel was rinsed several times with water and incubated with 

Coomassie destaining solution until distinct bands became visible. After scanning for 

documentation, the gel was dried overnight between two gel-drying films. 

 

6.2.3.13 Transfer of proteins to a nitrocellulose membrane (Western blotting) 

Unless stated otherwise, proteins separated by SDS-PAGE were transferred by the semi-dry 

blotting procedure (175, 176) onto nitrocellulose membrane. SDS-gels, nitrocellulose 

membrane and Whatman filter paper were incubated in SDS-transfer buffer for ca. 1 minute at 

RT. One Whatman filter paper was placed on the anode electrode plate followed by the 

nitrocellulose membrane, the SDS-gel, another Whatman filter paper and the cathode 
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electrode plate. Transfer was performed at RT at 200 mA or 230 mA for 1 or 1.5 hours, 

respectively. 

 

6.2.3.14 Transfer of proteins to a PVDF membrane (Western blotting) 

For transferring proteins from BN-gels by the semi-dry blotting procedure, a PVDF 

(polyvinylidene fluoride) membrane was incubated in 100% methanol for 1 minute and 

afterwards rinsed in 1 x NuPAGE Transfer Buffer. The BN-gel was incubated in SDS-running 

buffer for 4 minutes and rinsed in 1 x NuPAGE Transfer Buffer. Whatman filter paper was 

also soaked with 1 x NuPAGE Transfer Buffer for 1 minute. One Whatman filter paper was 

placed on the anode electrode followed by the PVDF-membrane, the BN-gel, another 

Whatman filter paper and the cathode electrode plate. Transfer was performed at 130 mA for 

1 hour. All buffers were used and protein transfer was performed at 4°C. After the blotting, 

the proteins were fixed on the membrane by shaking in 8% acetic acid for 15 minutes at RT 

and subsequently air-dried. 

 

6.2.3.15 Reversible staining of blotted proteins by Coomassie Brilliant Blue      

solution  

To visualize proteins transferred to a PVDF-membrane, the wet PVDF-membrane was 

incubated in Coomassie staining solution for 30 to 60 seconds at RT and rinsed in Coomassie 

destaining solution to remove the background staining. Visible marker proteins were marked 

with a pen on the membrane. The membrane was then further destained by shaking in 100% 

methanol for 1 to 2 minutes, rinsed in TBS-buffer and either air-dried or used for 

immunodecoration. 

 

6.2.3.16 Reversible staining of blotted proteins by Ponceau S solution 

To verify the transfer of proteins on a nitrocellulose membrane, the membrane was shaken in 

Ponceau S solution for two minutes at RT after blotting. The immobilized proteins were 

reversibly stained by the Ponceau dye and the membrane was rinsed in water to remove the 

background staining. Afterwards, the membrane was air-dryed. 
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6.2.3.17 Pepspot protein interaction assay 

To analyze specific binding of the isolated TOB complex to its substrates Tom40 and Porin 

and to identify their specific binding sites, a pepspot binding assay was performed. 

Peptide libraries of peptides with 15 amino acids in length and an overlap of 11 amino acids 

were synthesized (JPT Peptide Technologies GmbH, Berlin, GER). Each peptide was 

covalently bound to a spot on a cellulose-PEG-membrane by the C-terminus (pepspot 

membrane). By acetylation the charged N-terminus was transformed into an uncharged 

peptide end and thereby provided the peptide with higher stability towards degradation and 

higher resemblance to the uncharged native peptide side. Cysteins were substituted with serins 

to prevent oxidation and cyclization of the peptide.  

For the protein interaction assay, the pepspot membrane was rinsed in 100% methanol for one 

minute followed by three washing steps with TBS-buffer for 10 minutes at RT. After blocking 

unspecific sites of the pepspot membrane with blocking buffer for three hours, the membrane 

was washed in T-TBS-buffer for 10 minutes. Isolated TOB complex from the His9-Tob37 

strain was added to the membrane at an estimated concentration of 5 µg/ml in blocking buffer 

supplemented with 0.042% (v/v) TX-100 and incubated overnight at 4°C with gentle 

agitation. The next day, the incubation was continued for three more hours at RT and 

subsequently rinsed three times for one minute with T-TBS-buffer. Bound TOB complex was 

transferred to a PVDF-membrane by the semi-dry blotting procedure as follows: two 

Whatman filter papers were incubated in anode buffer II and placed on the anode electrode 

followed by another two Whatman filter paper and a PVDF membrane soaked in anode buffer 

I. Subsequently, the pepspot membrane was put onto the stack upside down and covered with 

two Whatman filter paper pretreated with cathode buffer and the cathode electrode plate. The 

blotting was performed three times with 1.0 mA / cm
2
 pepspot membrane; twice for 30 

minutes and the last time for one hour at RT. After blotting, the PVDF-membranes were 

transferred to T-TBS-buffer.  

The bound TOB complex was detected by immunodecoration against the histidin-tagged 

subunit of the TOB complex as described (6.2.4.1) with slight modifications: blocking was 

performed for three hours at RT, incubation with primary antibody was done overnight at 4°C 

and the secondary antibody was diluted 1:3000 in 5% (w/v) skimmed milk powder in TBS-

buffer. 

Pepspot membranes were washed in T-TBS-buffer three times for 10 minutes and stored at 

4°C. To prepare the pepspot membranes for another protein-interaction assay, they were 

regenerated by shaking them three times for 10 minutes in water at RT, four times for 30 
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minutes in regeneration buffer I at 50°C, three times for 10 minutes in 10x-PBS-buffer at RT, 

three times for 20 minutes in T-TBS buffer at RT and finally three times for 10 minutes in 

TBS at RT. Regeneration efficiency was tested by blotting the pepspot membrane once for 2 

hours and subsequent anti-histidin immunodecoration as described above. 

To control the specificity of the binding sites of the TOB complex, pepspot protein interaction 

assays were performed with isolated TOM core complex out of N. crassa and BCS1 complex 

out of S. cerevisiae. The assay was performed in the very same way except for the fact that 

the complex was incubated with the peptide library in blocking buffer supplemented with   

0.03% (w/v) DDM (TOM core complex) or 0.12% (w/v) Digitonin (BCS1 complex).  

 

6.2.3.18 Binding studies of mitochondrial precursor proteins to the isolated TOB 

complex  

As described in 6.2.3.2 “Isolation of the TOB complex by Ni-NTA affinity chromatography”, 

the TOB complex isolation was performed until the washing step of the bound proteins with 

buffer containing 40 mM imidazole. Subsequently, the column was rinsed with 5 CVs of 

Beads washing buffer. Aliquots of the beads with bound TOB complex were resuspended in 

16 bead batch volumes (BVs) of Beads binding buffer supplemented with 2 mM ATP. 

Radioactive precursor proteins were added to the beads and incubated for 30 minutes on ice. 

Afterwards, the batch was washed twice with 16 BVs of Beads binding buffer. Beads were 

sedimented at 1000 x g for 2 minutes during the washing steps. All steps were performed at 

4°C.  

Subsequently, bound proteins were eluted with 2 x Laemmli and cooking for 5 min at 95°C. 

The eluted proteins were separated by SDS-PAGE and transferred on a nitrocellulose 

membrane. Co-purified radioactive proteins were detected by autoradiography.  

 

6.2.3.19 Tryptic digestion of protein samples for mass spectrometry analysis 

After SDS- or BN-PAGE followed by Coomassie blue staining, protein bands of interest were 

excised from the gel and frozen at -20°C in water until tryptic digestion. After thawing, the 

gel pieces were washed twice with water and twice with NH4HCO3-buffer for 10 minutes at 

RT. To dry the gel pieces, they were treated three times with acetonitrile (ACN) for 10 

minutes at RT. Afterwards, remaining ACN was evaporated for 2 minutes. The gel pieces 

were reduced in dithiothreitol (DTT) solution for one hour at RT and subsequently treated 

with 2-Iodacetamide (IAA) solution for 30 minutes at RT avoiding light exposure. Next, they 

were washed once with NH4HCO3-buffer and three times with ACN for 10 minutes at RT. 
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Remaining ACN was again evaporated for 5 minutes. Trypsin (300 – 400 ng) was now added 

to each dried gel piece. After 2 - 3 minutes, the gel pieces were covered with NH4HCO3-

buffer to a total volume of 50 µl and incubated for 12 – 16 hours at 37°C under moderate 

shaking (550 rpm).  

 

6.2.3.20 Mass spectrometry analysis of protein samples by matrix-assisted laser 

desorption ionization-time of flight (MALDI-TOF) 

For the identification of the different Tob55-protein isoforms, bands in the corresponding 

molecular weight range were excised and digested overnight with trypsin as described. 

Tryptic fragments in the range of 500 – 3500 Da were obtained by reflector matrix-assisted 

laser desorption ionization-time of flight (MALDI-TOF), whereas peptides in the range of 

3500 – 6000 Da were analyzed by linear MALDI-TOF. Measurements were performed on a 

Voyager-DE STR Time Of Flight (TOF) mass spectrometer. With the PeptideMass program 

set for isotope averaging, predicted peptide masses could be obtained (177, 178). The 

automated database search of peptide spectra was performed with the MASCOT software 

(Matrix Science) on the complete N. crassa genome database 

(http://www.broad.mit.edu/annotation/fungi/neurospora/). MALDI-TOF analysis was 

performed in collaboration with Lars Israel (Imhof group, LMU Munich, GER). 

 

6.2.3.21 Mass spectrometry analysis of protein samples by nano-electrospray 

ionisation-LC-tandem MS (ESI-LC-MS/MS) 

For protein identification, the tryptic fragments were separated on a C18 reverse phase 

column by a linear acetonitrile gradient running from 5 – 60% (v/v) buffer B in buffer A 

within 40 minutes followed by 60 – 95% (v/v) within 10 minutes. The peptides eluting from 

the HPLC were directly analyzed by nano-electrospray ionization-LC-tandem MS (ESI-LC-

MS/MS), recorded on an Orbitrap mass spectrometer. Spectra analysis was performed with 

the MASCOT software (Matrix Science) on the complete N. crassa genome database 

(http://www.broad.mit.edu/annotation/fungi/neurospora/). ESI-LC-MS/MS analysis was 

performed in collaboration with Lars Israel (Imhof group, LMU Munich, GER). 

 

6.2.3.22 Peptide quantification by Isotope Dilution Mass Spectrometry (IDMS) 

To determine the absolute and relative amounts the TOB complex subunits Tob55, Tob38 and 

Tob37 in the isolated TOB complex, the isolated complex was excised from a BN-gel and the 

http://www.broad.mit.edu/annotation/fungi/neurospora/
http://www.broad.mit.edu/annotation/fungi/neurospora/
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gel piece was dried as described (6.2.3.21, p. 110). A defined amount of AQUA- 

(AbsoluteQuantification-) peptides, quantified stable isotope (
13

C/
15

N) labelled internal 

peptide standards, were mixed with the shrunken gel pieces before tryptic digestion. Digested 

proteins were analyzed as described in 6.2.3.21 by ESI-LC-MS/MS. By comparison of the 

peak areas in the extracted ion chromatogram (EIC) of each AQUA peptide and the native 

counterpart, the amount of each native peptide was calculated. IDMS analysis was performed 

in collaboration with Lars Israel (Imhof group, LMU Munich, GER). 
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6.2.4 Immunology 

6.2.4.1 Immunodecoration of immobilized proteins 

By immunodecoration with specific antibodies, immobilized proteins of interest could be 

detected on a membrane. PVDF-membranes were prepared in 100% methanol for one minute 

and rinsed with TBS-buffer. Nitrocellulose- as well as PVDF-membranes with immobilized 

proteins were incubated for 10 minutes in TBS-buffer. Blocking of membrane sites not 

associated with immobilized proteins was performed by incubation with blocking buffer for 

30 to 60 minutes. Afterwards, membranes were shaken in a solution of primary antibody for 1 

to 2 hours at RT or overnight at 4°C, rinsed three times for 10 minutes with TBS-buffer, 

incubated for 45 minutes in a solution with horseradish peroxidase (HRP) coupled secondary 

antibody and washed again three times for 10 minutes with TBS-buffer. Following one 

minute of incubation with ECL-reagent, luminescence was recorded with X-ray films 

(FujiFilm). Blocking buffer, dilution of primary and secondary antibodies are listed in 6.1.9 

“Antibodies” above. The dilution of the primary antibodies was dependant from the titer of 

the antiserum or antibody solution. 

 

6.2.4.2 Synthesis of polyclonal antibodies in rabbits 

For the synthesis of specific polyclonal antibodies, rabbits were injected with artificially 

synthesized antigen peptides from the protein of interest (see 6.1.7 “Peptides”). The antigen 

was injected subcutaneously into the upper shoulder area. The first injection was performed 

with 500 µg of peptide mixed with an equal volume of TiterMax Gold Adjuvant. After two 

weeks, the boost immunization was started, meaning that the rabbit was injected every four 

weeks with 250 – 500 µg of antigen peptide mixed with the equal volume of Freund´s 

Adjuvant Incomplete. 8 – 10 Days after injection 20 – 30 ml blood were taken from the ear 

artery of the rabbit. Following a centrifugation of the clotted blood at 3220 x g for 5 minutes 

at RT, the serum was transferred to a new tube and centrifuged again at 27200 x g for 15 

minutes at RT. The clarified serum was incubated for 20 – 30 minutes at 56°C in a water bath 

to inactivate the complement system. The serum was stored at -20°C. For testing the sera, 

proteins from mitochondria and OMVs from N.c. strains expressing, as well as knock-out 

strains, lacking the protein of interest, were separated by SDS-PAGE, blotted and 

immunodecorated with the antisera. 
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6.2.4.3 Affinity purification of antibodies 

To increase titer and specifity of the used antibody solution, specific antibodies were 

extracted out of antisera by affinity purification. For that, antigens were coupled to a matrix.  

In case of a Sulfo-Link matrix, antigens with an extra cystein at one terminus were solved in 

Sulfo-Link buffer in a concentration of 1 mg/ml protein. The Sulfo-Link matrix was packed in 

a column and rinsed with 6 CVs Sulfo-Link buffer. Antigen peptides were given to the 

equilibrated matrix in the column and allowed to bind for 15 minutes at RT with gentle 

agitation. Afterward the column was fixed in a stand clamp and the matrix was left to 

sediment for 30 more minutes without agitation. Unbound antigens were removed by washing 

the column with 3 CVs of Sulfo-Link buffer. For blocking unspecific sites, the matrix was 

incubated with one CV of cystein-buffer for 15 minutes at RT with gentle agitation and 

incubated for 30 more minutes without shaking. Then the matrix was washed with 16 CVs 

NaCl-solution. Before storage at 4°C, the column was washed with NaN3-buffer. 

In case of a NHS-activated sepharose matrix, peptides were bound by their amino group to an 

agarose matrix. For swelling, 1 g NHS-acitvated Sepharose 4 Fast Flow was incubated with 1 

mM HCl at 4°C for 20 minutes. After mild centrifugation at 1000 x g for 15 seconds at 4°C, 

the supernatant was discarded and the beads were washed three times with NHS-Sepharose 

coupling buffer. 5-10 mg of peptides were solved in NHS-Sepharose coupling buffer in a 

concentration of 1-3 mg/ml and were immobilized on the Sepharose for 2 – 4 hours at RT 

with gentle agitation. Free binding sites on the Sepharose were blocked by incubation with 

NHS-Sepharose Tris-buffer for 1 hour at RT. The beads were intensively washed with PBS-

buffer and stored in 20% ethanol at 4°C. 

For antibody purification, the antigen-coupled matrix was equilibrated by rinsing with 10 CVs 

of 10 mM Tris-buffer, pH 7.5. Weakly bound antigen was removed by washing subsequently 

with 10 CVs of glycine-solution, 10 mM Tris-buffer (pH 8.8), Na2HPO4-solution, 10 mM 

Tris-buffer (pH 8.8) and 10 mM Tris-buffer (pH 7.5), each. The matrix was incubated with 

the antiserum solution for 1.5 hours and subsequently washed with 10 CVs 10 mM Tris-

buffer (pH 7.5) and Tris/NaCl-buffer, each.  

Elution of the antibodies was performed stepwise by washing with elution buffers of different 

pH-values. First, 10 CVs of sodium citrate solution were added. 1ml fractions were collected 

in tubes with 200 µl of 1M Tris-buffer (pH 8.8). Afterwards, 10 CVs of glycine-solution were 

loaded on the column and fractions were taken as described above. Subsequently, the column 

was rinsed with 10 CVs of 10 mM Tris-buffer (pH 8.8) and the last elution step consisted of 

rinsing the matrix with 10 CVs of Na2HPO4-solution. 1-ml fractions were collected in tubes 
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with 200 µl of glycine-solution. Finally, the column was washed with 10 CVs 10 mM Tris-

buffer (pH 7.5) and 2 CVs of NaN3-buffer and stored at 4°C.   

The antibody content was initially assessed by application of 20 µl of each fraction on a 

nitrocellulose membrane and subsequent staining with Ponceau S solution. The best fractions 

were tested in an immunodecoration of membranes with immobilized test proteins.  

 

6.2.4.4 Antibody supershifts of proteins in Blue Native-Polyacrylamide gel 

electrophoresis (BN-PAGE) 

OMVs were treated with detergent as described above (6.2.3.11, BN-PAGE). Where 

indicated, 1 µg QUIAGEN Penta-His antibody was added to the solubilized proteins. 

Following one hour of incubation on ice, the samples were centrifuged for clarification at 

36000 x g for 30 minutes and the supernatant was mixed with NativePAGE 5 % G-250 

sample additive (Invitrogen, Carlsbad, CA) to adjust the final G-250 concentration in the 

sample to at least 1/4
th

 of the detergent concentration and separated by BN-PAGE as stated 

before. 
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6.2.5 Cryo-electron microscopy 

 

The TOB complex was isolated as described earlier (6.2.3.2) using TX-100. 4 µl were applied 

to a lacey carbon film on molybdenum EM grids blotted with Whatman‟s #1 filter paper and 

flash frozen in liquid ethane or an ethane-propane mixture cooled by liquid nitrogen. To 

identify a given subunit the His-tag used for isolation was labelled with Ni-NTA-Nanogold 

with gold particles of 1.8 nm. The Ni-NTA nanogold was mixed with the purified complex in 

ratios of 1:4, 1:6 and 1:9 (v/v). After incubation for 45 min on ice, the TOB/nanogold mixture 

was applied to EM grids as described above and serially washed three times on droplets of 

aqueous buffer to remove excess of gold label before they were blotted and flash frozen. The 

plunging of the grids was either performed at RT or at 4°C.  

The samples are stored under liquid nitrogen and microscopy is performed at liquid nitrogen 

termperature (~ -175°C). Data acquisition was performed on a Tecnai F20 microscope 

operating at 120 kV, using a Gatan 656 cryo-holder. Images were recorded with the 

TOM_acquisition package (179) acquiring images on a 4K FEI EAGLE CCD (charge-

coupled device) camera at 84270x magnification, corresponding to 1.78 Å/pixel.  The images 

were collected with a defocus range (ΔF) from -0.7 and 3.5 µm with an electron dose of 15-25 

e
-
/Å2. Initial selection of the images was done with WEB (180). The defocus contrast transfer 

function (CTF) for each image was determined and the image phases were corrected using 

TOM_ctffindgui. The power spectra could be examined and compared with the determined 

defocus. Images with incorrectly determined defocus or drift were excluded from analysis. 

Astigmatism was corrected.  Particles were picked automatically from the phase corrected 

micrographs using a set of scripts written for SPIDER (System for Processing Image Data 

from Electron microscopy and Related fields) (180, 181). The picking algorithm calculates a 

band pass filter based on the expected size of the particle. The filter includes data from ½ to 4 

times the particle diameter. A 2D average of unaligned particles is used as a reference for 

alignment.  A number of cross correlation peaks in excess of the expected particle number per 

image is requested. This number is reduced by accepting only peaks corresponding to 

particles which are separated by more than 1.5 times the diameter, particles which overlap are 

excluded. The particles boxes are cut from the image and are then masked and realigned in x 

and y to the original reference. Particles which needed to be shifted more than 5 pixels were 

excluded from the data set. It was empirically determined that false positives tend to require 

significant shifts when masked and realigned.  
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Further data processing was performed with the SPIDER software package. Initially, the 

particle images underwent several iterations of reference free alignment and averaging.  

Reference free alignment starts with an arbitrary blob for a reference and then aligns all 

images to this. An average is calculated which then becomes the new reference. All images 

are sequentially aligned to the current average after the current image has been subtracted 

from the average. When the images no longer change alignment parameters the iterations 

stop. The aligned images were then subject to classification.  

The particle images underwent several rounds of alignment by cross correlation to a set of 

reference projections. No high resolution structure of any component of the TOB complex has 

been determined to date. FhaC from Bordetella pertussis, a related transport machinery 

belonging to the same Omp85-TpsB superfamily as Tob55, has been solved (121) and is 

structurally homologous to Tob55. A 3D structural homology model of the Tob55 protein was 

made based on the FhaC structure and Tob55 secondary structure prediction (HHpred and 

MODELLER, LMU gene center). This 3D model was used as a starting point for building 

models of the complex. With these complex models starting references were generated. 

Models with spheres of uniform density were added on the cytoplasmic side of the Tob55 

model approximating the volumes for Tob37 and Tob38. Two spheres, 6 spheres and a 

continuous ring of density were tried as starting models; the continuous ring seemed to bias 

the results the least.    

Images are aligned to 2D projections through a 3D model along predetermined views. The 

views are calculated to be equally separated in distance on a hemi-sphere representing the 

approximate diameter of the object. The direction of the projection has a known Euler angle 

associated with it. When the images are aligned to the model projections the Euler angle of 

the best matching model projection is assigned to the image and used in generating the 3D 

reconstruction. Thereby, an improvement of the reconstruction of the TOB complex could be 

achieved with increasing rounds of alignment and reconstruction. 

Superposition of structures was done with the UCSF Chimera program (Resource for 

Biocomputing, Visualization, and Informatics, University of California, San Francisco, CA, 

USA). 
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7 Abbreviations 
 

AAC – ATP-ADP carrier 

ACN – acetonitrile  

APS – ammonium peroxo disulphate 

AQUA – AbsoluteQuantification (peptides) 

ADP – adenosine diphosphate 

ATP – adenosine triphosphate 

BAM – bacterial ß-barrel assembly machinery 

ß-DDM - n-dodecyl-ß-D-maltoside 

BHM – bovine heart mitochondria 

BN – blue native 

BNGE – blue native gel electrophoresis 

BN-PAGE – blue native polyacrylamide gel electrophoresis 

BSA – bovine serum albumin 

BV – batch volume 

CCD – charged-coupled device 

CCHL – cytochrome c heme lyase 

CCPO – cytochrome c peroxidase 

CTF – contrast transfer function 

cDNA – complementary desoxyribonucleic acid 

cryo-EM – cryo-electron microscopy 

CTP – cytidine triphosphate 

CV – column volume 

Da – Dalton 

ΔF – defocus range 

Δψ – membrane potential 
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DHFR – dihydrofolate reductase 

DLD – D-lactate dehydrogenase 

DMSO – dimethyl sulfoxide 

DNA – desoxyribonucleic acid 

DTT – dithiothreitol 

E. coli – Escherichia coli 

ECL – electrochemical luminescence 

EDTA – ethylenedinitrilotetraacetic acid (also Titriplex III) 

Erv – essential for respiration and viability 

ESI-LC-MS/MS – nano-electrospray ionization-LC-tandem mass spectrometry 

F1ß – ß-subunit of ATP synthase 

Fe/S cluster – iron-sulfur cluster 

FGSC – Fungal Genetics Stock Center 

Fha – filamentous haemagglutinin adhesin 

FPA – p-fluorophenylalanine 

GIP – general insertion pore 

GTP – guanosine triphosphate 

His – histidine  

HEPES – 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid 

HPD – His-Pro-Asp 

HRP – horseradish peroxidase 

Hsp – heat shock protein 

Hz – hertz  

IAA – 2-Iodacetamide 

IDMS – isotope diluted mass spectrometry 

IMS – intermembrane space 

kDa – kilodalton 
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KLH – keyhole limpet hemocyanin 

LB – Luria-Bertani 

LHON – Leber´s hereditary opticus neuropathy 

LMU – Ludwig-Maximilians-Universität München 

MALDI-TOF – matrix-assisted laser desorption ionization time of flight 

MELAS – mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes 

MDM – mitochondrial distribution and morphology 

MIA – mitochondrial intermembrane space import and assembly (machinery) 

Mim – mitochondrial import (protein) 

min – minute 

MPP – matrix processing peptidase 

mRNA – messenger ribonucleic acid 

mtHsp – (mitochondrial) matrix heat shock protein 

mtDNA – mitochondrial desoxyribonucleic acid 

MS – mass spectrometry 

mtHsp – matrix heat shock protein 

MTS – matrix targeting signal 

N.c. – Neurospora crassa 

N. crassa – Neurospora crassa 

NHS – N-hydroxysuccinimide  

Ni-NTA – nickel-nitriloacetic acid 

NBD – nucleotide binding domain 

NTP – nucleoside triphophate 

Omp – outer membrane protein 

OMV – outer mitochondrial membrane vesicle 

OXA – oxidase assembly (complex) 

PAGE – polyacrylamide gel electrophoresis 



Abbreviations 

120 

 

PAM – presequence translocase-associated motor 

pH – potentia Hydrogenii 

Pi – inorganic phosphate 

PBD – peptide binding domain 

PBR – peripheral benzodiazepine receptor 

PCA – p-coumaric acid 

PMSF – phenylmethylsulfonylfluoride 

POTRA – polypeptide transport associated (domain) 

PVDF – polyvinylidene fluoride 

RCSB PDB – Research Collaboratory for Structural Bioinformatics Protein Data Bank 

RNA – ribonucleic acid 

RNase – ribonuclease 

rNTP – ribonucleoside triphophate 

RT – room temperature 

SAM – sorting and assembly machinery 

SDS – sodiumdodecylsulfate 

SDS-PAGE – sodiumdodecylsulfate polyacrylamide gel electrophoresis 

SPIDER – System for Processing Image Data from Electron microscopy and Related fields 

Su9 - subunit 9 of Fo-ATPase from Neurospora crassa 

TBS – Tris buffered saline 

TCA – trichloracetic acid 

TEMED - N, N, N‟, N‟-Tetramethylethylendiamine  

TFA – trifluoroacetic acid 

TIM – translocase of the inner (mitochondrial) membrane 

TOB – topogenesis of mitochondrial outer membrane ß-barrel proteins (complex) 

TOC – translocon at the outer envelope membrane of chloroplasts 

TOF – Time of flight 
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TOM – translocase of the outer (mitochondrial) membrane 

TPR – tetratricopeptide repeat 

Tps – Two-partner secretion 

tRNA – transfer ribonucleic acid 

Tris – trishydroxyaminomethan  

Tween20 – polyoxyethylene-sorbitan monolaurate 

TX-100 – Triton X-100 

UTP – uridine triphospate 

VDAC – voltage-dependent anion-selective channel 

W – Watt 

wt – wild type 
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