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Summary

To analyze gene regulatory networks, the sequence-dependent DNA/RNA binding affinities
of proteins and non-coding RNAs are crucial. Often, these are deduced from sets of sequences
enriched in factor binding sites. Two classes of computational approaches exist. The first
describe binding motifs by sequence patterns and search the patterns with highest statistical
significance for enrichment. The second class use position weight matrices (PWMs) that
describe the binding site by a more powerful probabilistic model. They cannot maximize
the statistical significance of enrichment but maximize a likelihood instead. In this thesis,
I present XXmotif (eXhaustive evaluation of matriX motifs), the first PWM-based motif
discovery method that directly optimizes the statistical significance of enrichment. It
computes 100,000s of single-site P-values for thousands of candidate PWMs during the
refinement. For this purpose, we developed an efficient branch-and-bound algorithm that
calculates exact single-site P-values using an eighth-order background model. This approach
allows us to naturally combine P-values for motif enrichment, conservation, and localization.
When tested on ChIP-chip/seq, miRNA knock-down, and co-expression data sets from yeast
and metazoans, XXmotif outperforms state-of-the-art tools, both in numbers of correctly
identified motifs and in the qualities of PWMs. In segmentation modules of D. melanogaster,
XXmotif detects the known key regulators and several new motifs (Hartmann et al., 2012a).

The core promoter is defined as the region where the basal transcription machinery assembles
to initiate transcription. Evidence is accumulating for the involvement of core promoters in
transcriptional regulation. Several core promoter elements are known in eukaryotes (e. g.,
TATA-box, Initiator, BRE, DPE). However, in many genes only one or no motif has been
identified, prompting the question how the transcription machinery finds the core promoter.
Yet unknown motifs or the incorporation of physical properties of the DNA might be an
explanation. Our de novo motif analysis using XXmotif reveals new, highly significant motifs
that are conserved and enriched in promoter regions. In human core promoters, XXmotif
reports in a single run most previously described and four novel motifs sharply peaked
around the transcription start site (TSS), among them a novel Initiator motif similar to
the fly version. Applied on core promoter regions in D. melanogaster, XXmotif reveals 12
known and 7 novel elements, all highly significant, conserved, and non-randomly localized
with respect to the TSS. In addition, we identified four different classes of core promoters.
Each class consists of a defined set of core promoter elements that build a strong indicator
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for the width of the TSS cluster, the degree of gene regulation, the stallability, as well as
the minimum and maximum transcription rate (Hartmann et al., 2012b).

An interactive web server for XXmotif is available at http://xxmotif.genzentrum.lmu.de.
It provides (a) free binaries and sources for the command line version of XXmotif, (b) a
list of all significantly overrepresented motif PWMs with web logos, number of occurrences,
and E-values, (c) a graph with color-coded boxes indicating the positions of user selected
motifs in the input sequences, (d) a histogram of the overall positional distribution for user
selected motifs, and (e) a page for each motif with all significant motif occurrences, their
P-values for enrichment, conservation, and localization, their sequence contexts, as well as
their coordinates within the input sequences (Luehr et al., 2012).
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Part I.

XXmotif - P-value Based Motif
Identification





1. Introduction to Motif Finding

Understanding the regulatory control mechanisms involved in transcriptional networks
is one of the main objectives in computational biology (Wasserman and Sandelin, 2004).
Although the decryption of the entire network is still a distant hope, major progress has
been made in understanding the key regulators of the network, the transcription factors
(TFs). These proteins bind to specific sequence elements in the DNA depending on their
intrinsic preferences (see Chapter 4), leading to an activation or repression of the target
gene. Revealing these sequence preferences, in the following referred to as sequence motifs, is
necessary to predict the binding sites and binding strengths of every TF within an organism.
Subsequently, these binding strengths can be used in combination with additional and partly
yet unknown sequence properties, to predict the expression strength of every gene.

Motif finding tools have the objective to reveal these sequence motifs. Analyzing data sets
enriched in a TF of interest, they aim for detecting sequence patterns more frequent than
expected by chance. Experimental proceedings in determining binding sites of TFs in vitro
or in vivo (see Sections 4.3 and 4.4) have led to a tremendous growth of data sets enriched in
binding sites, making motif finding tools more valuable than ever. Next to over representation,
analyzing divergences between related species might increase the accuracy of a motif search.
Since functional regions within the DNA mutate at lower rates than nonfunctional regions
(Wang and Stormo, 2003), conserved nucleotides indicate biological importance. In addition,
some recently developed algorithms are able to incorporate nucleosome occupancies or
experimentally determined binding profiles (Narlikar et al. (2007), Georgiev et al. (2010))
into their de novo motif analysis.

This chapter provides a general definition of the motif finding problem and presents frequently
used motif models and approaches to solve it. Furthermore, the frequently used sequence
logo to graphically visualize the binding affinities of a transcription factor is described.



4 Chapter 1: Introduction to Motif Finding

1.1. Motif Finding Problem

Formally, the motif finding problem can be defined as follows:

Given a set of X strings of symbols from some alphabet A that are essentially
random except that in some of them is a motif site of length W sampled from
some unknown set S, find a model that best describes S.

An example of such a problem is given in Table 1.1. It consists of 5 input sequences of each
length 30 over the alphabet A of all 26 English lower case letters. Predicted motif sites
illustrating a sample of S are shown in upper case. But, given the definition, the detection
of all motif sites is not sufficient to solve the motif finding problem, it is also necessary to
define a model of S able to generalize to unseen instances (see Section 1.2).

Example Problem Possible Result

kafemotafsitemakilggahlleghejv
qigjbvkajlmotifsiaeajkqlebabbe
katellhallbergebkalhheerokamel
allhmenicatlexmooramofifsitefe
hmotifsiteekglckhagekdgotojall

kafeMOTAFSITEmakilggahlleghejv
qigjbvkajlMOTIFSIAEajkqlebabbe
katellhallbergebkalhheerokamel
allhmenicatlexmooraMOFIFSITEfe
hMOTIFSITEekglckhagekdgotojall

predicted sites={motafsite, motifsiae, mofifsite, motifsite}

Table 1.1.: Example motif finding problem. Predicted motif sites are shown in upper case.

In the definition, the motif finding problem is described as a zero or one occurrence per
sequence (zoops) problem. However, if for an input set prior knowledge is available that
all sequences contain exactly one motif occurrence, the motif finding problem can be
reformulated to a one occurrence per sequence (oops) problem. Similarly, if more than one
motif site might be present within the input sequences, the motif finding problem can be
reformulated to the most general case, the multiple occurrence per sequence (mops) problem.

Since nearly no data set exists without false positives, the development of an algorithm
solving only the oops problem is almost useless for biological problems. The zoops problem,
however, is important for the detection of core promoter elements, as these elements that
contact the core transcriptional machinery exist at most once per promoter (see Chapter
6). The mops problem is the typical problem in case of TFs. Many TFs bind in clustered
regions consisting of many binding sites of the same element. Since TFs bind to DNA,
the considered alphabet consists only of the four nucleotides, adenine (A), cytosine (C),
guanine (G), and thymine (T), i. e., A = {A,C,G,T}.
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1.2. Motif Models

Multiple approaches have been described to model the intrinsic sequence preferences of TFs
(e. g., MacIsaac and Fraenkel (2006), GuhaThakurta (2006)). All of them make assumptions
to simplify the complex binding profile, with the independence assumption of complete
independence between all positions being the most widely used one. In general, this
assumption is reasonable since most studied cases indeed show no dependencies between
positions (Roulet et al. (2002), Benos et al. (2002)). However, for some factors clear de-
pendencies could be observed (Badis et al., 2009), demonstrating the relevance of more
sophisticated models than the classical ones: consensus string and positional weight matrix.

1.2.1. Consensus string

The simplest way to represent a motif is a consensus string that only consists of the most
common symbol at every position within the binding site. E. g., given the example result of
Table 1.1, the consensus string would be motifsite. In order to build a consensus string for
the sequence specificity of a TF, it is possible to use solely the four nucleotides (A, C, G, T),
or to allow degeneracies using IUPAC characters as an extended alphabet (Cornish-Bowden,
1985). A summary of all IUPAC characters and the respective origin of designation is
depicted in Table 1.2.

Symbol Meaning Origin of designation
A A Adenine
C C Cytosine
G G Guanine
T T Thymine
W A or T Weak interaction (2 H bonds)
S C or G Strong interaction (3 H bonds)
R A or G puRin
Y C or T pYrimidine
K G or T Keto
M A or C aMino
B C, G, or T not A, B follows A
D A, G, or T not C, D follows C
H A, C, or T not G, H follows G
V A, C, or G not T, (not U), V follows U
N A, C, G, or T aNy nucleotide

Table 1.2.: The IUPAC code representing an extended alphabet including symbols for degenerate
nucleotides.
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All sites matching a consensus string are considered binding sites, however, additional
binding sites can be selected by tolerating a certain number of mismatches. Tolerating
mismatches is especially important if the very specific non-degenerate alphabet is used (e. g.,
Pavesi and Pesole (2006)).

1.2.2. Position weight matrix (PWM)

Another widely used motif model is the positional weight matrix (PWM). It consists of a
two-dimensional matrix, of which every row corresponds to one symbol of the used alphabet,
e. g., the four nucleotides, and every column to a position within the motif. The values
within the matrix give the likelihood of each symbol at the respective position within a list
of motif sites (Stormo et al., 1982). Hence, PWMs allow for a probabilistic description of
the binding site without being restricted to degenerate nucleotides of a predefined alphabet.
However, as all possible sites match to every given PWM with different probabilities, a
threshold is necessary to separate matching binding sites from non-binding sites.

Generating a sequence logo is an elegant way to visualize a PWM, combining several different
types of information in one figure (Schneider and Stephens, 1990): (a) the order of frequency
of symbols at every position, with the highest frequent symbol at the top (b) the relative
frequencies of every symbol at every position (c) the amount of information present at every
position in the motif, measured in bits. The sequence logo for the example of Table 1.1 is
given in Figure 1.1. As the frequencies of every symbol are ordered, the consensus sequence
motifsite of the motif can be obtained by combining all symbols at the top of every position.
To define the information R at each position within the motif, the difference between the
maximum possible entropy and the entropy of the observed symbol distribution is calculated:

R = Smax − Sobs = log2N −
(
−

N∑
n=1

pn log2 pn

)
(1.1)

As the used alphabet consists of N = 26 symbols, the maximum possible entropy is 4.7
bits per position. Positions 3, 4, and 8 within the motif have all only two symbols with
frequencies p0 = 0.25 and p1 = 0.75. Hence, the information at these positions is 3.89 bits.

Figure 1.1.: Sequence logo for a possible result of the motif finding problem shown in Table 1.1.
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1.3. Approaches to Solve the Motif Finding Problem

Several approaches have been developed to solve the motif finding problem, each tailored to
the underlying motif model. In case of consensus strings, the motif space is finite given a
certain motif length allowing for an enumeration of all possible consensus strings. In contrast,
PWMs have an infinite motif space that necessitates an iterative refinement of the motif
model to the optimal solution. Interestingly, despite of the differences between consensus
strings and PWMs, both motif models are able to outperform each other depending on the
benchmark (Tompa et al. (2005), Sandve et al. (2007)). A possible combination that utilizes
the advantages of consensus strings and PWMs is to start with an enumerative phase as a
candidate filter based on consensus strings followed by an iterative refinement phase based
on PWMs (Linhart et al., 2008).

1.3.1. Enumerative approach

Enumerative approaches are based on an exhaustive enumeration of consensus strings. Some
tools use a degenerate alphabet (e. g., Georgiev et al. (2010)), others allow for mismatches to a
non-degenerate alphabet (e. g., Pavesi and Pesole (2006)). A main advantage of enumerative
approaches is the possibility to cover large regions of the motif space efficiently. Starting
with all seed k-mers of a given length k, for instance k = 5, seeds are extended as long as a
quality score increases. As the number of binding sites can be counted given a k-mer, it is
possible to use P-values as the quality measure.

1.3.2. Iterative approach

Iterative approaches are based on an iterative refinement of candidate PWMs. This refine-
ment consists of a site refinement that updates the motif sites being bound by the current
PWM. Some algorithms additionally perform a length refinement that optimizes the number
of columns in the current PWM. As this iterative refinement is very time consuming, it is
not possible to refine all seeds of a given length till convergence. Therefore, the complete
refinement is typically done only on a very small subset or even only on the most promising
seed. This seed can for instance be selected by the seed that has the best score after one
iteration (Bailey and Elkan (1994)).

The two most widely used approaches to iteratively refine a candidate PWM are called
expectation maximization EM and Gibbs sampling. However, both approaches are based on
the optimization of a score function. How to optimize a solid P-value for a PWM is for the
first time described within this work.
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EM algorithm

Expectation maximization is a two-step process: In the expectation step, the current model
is scanned over all sequences to calculate an estimate for each position to contain the motif.
Then, in the maximization step, the model is adjusted to provide a better match to the
sequences. Therefore, every position within the motif PWM is updated by the frequency in
each motif site weighted by the calculated probability in the expectation step. This cycle of
sequence scanning and model updating is repeated until convergence.

The implicit one occurrence per sequence model can be extended to a zero or one occurrence
per sequence model by introducing an estimate that the motif PWM matches to background
frequencies rather than to the sequence positions. If the likelihood of this estimation is close
to one the potential binding sites within the sequence have only small contributions to the
next maximization step.

The most widely used tool applying the EM-algorithm is MEME (Bailey and Elkan, 1994).
Due to several extensions (Bailey et al. (2010), Bailey (2011)), MEME still remains one of
the most powerful motif finding tools available.

Gibbs sampling

Gibbs sampling is in principle very similar to the EM algorithm described above. It also
uses a two-step process of first scanning over all sequences to derive probabilities for each
position to contain the motif, followed by a model updating step based on the probabilities
obtained in the first step. However, in contrast to the EM algorithm, the new model is not
a weighted mixture of all possible positions, it is an unweighted mixture of one binding site
per sequence. This binding site is selected by sampling over all possible positions within
the sequence, whereas the calculated probabilities reflect the likelihood of a position to
be selected. In case of a zero or one occurrence per sequence model, the introduced site
consisting of only background frequencies might be selected, leading to no contribution of
this sequence.

The first motif finding tool that uses this approach is Gibbs Sampler (Lawrence et al., 1993).
However, also more recent algorithms are based on Gibbs sampling, for instance PRIORITY
(Narlikar et al., 2006).



2. Materials and Methods

This chapter provides details of the theoretical foundation and the efficient realization of
significance calculations within XXmotif. Furthermore, it provides all the parameters used
for the tested motif finding tools within the benchmarks. This should support repeatability
of the results and point out the main ideas that allow for efficient calculations of P-values
from PWMs.

The remainder of this methods chapter is organized as follows: Section one describes
wherefrom XXmotif can be obtained. Section two provides the statistical framework used
for calculating P-values from PWMs followed by the third section that gives a more detailed
description of the XXmotif workflow. Finally, section four summarizes the tools used in the
benchmarks and lists the chosen parameters.

2.1. Availability

The command line version of XXmotif can be obtained as source code or binaries (64 Bit and
32 Bit versions for UNIX systems) from ftp://toolkit.lmb.uni-muenchen.de/xxmotif.

The XXmotif web server is available at http://xxmotif.genzentrum.lmu.de.

2.2. Statistical Framework

In order to optimize the P-value of a motif PWM, it has to be possible to calculate the
significance of a specific site given the PWM as well as the significance of a set of binding
sites. This section provides the theoretical basis to efficiently calculate P-values from PWMs.

2.2.1. Calculating the significance of an l-mer – Background model

To calculate the probability to find a given l-mer x by chance, a background model has
to be used. This model should be calibrated on a set having the same DNA properties as
the input set, but no motifs (negative set). The simplest background model assumes no
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correlations between the positions of the l-mer (0th-order background model), and hence,
utilizes only monomer probabilities of the nucleotides f(xi) on the negative set. According
to this background model, the probability to find an l-mer x is:

Pbg(x) =
l∏

i=1
f(xi) (2.1)

However, the independence assumption underlying this model is very inaccurate and leads
to an overestimation of the significance of poly A/T stretches or dinucleotide repeats, which
are very frequent in non-coding DNA.

Therefore, many motif finding tools use higher-order background models to capture these
dependencies. E. g., for a kth-order background model all (k+1)-mers within the negative set
are counted and probabilities f(x1 . . . xk+1) and conditional probabilities f(xk+1|x1 . . . xk)
are calculated. With these, the probability to find an l-mer x can be calculated as follows:

Pbg(x) = f(x1 . . . xk+1)
l∏

i=k+2
f(xi|xi−k . . . xi−1) (2.2)

The main drawback of this method is the huge amount of possible (k+1)-mers for large k’s
necessary to estimate from usually limited data. As poly A/T stretches and dinucleotide
repeats are usually longer than 6 residues, a k of at least 8 is still useful. However, this leads
to very few counts that are indistinguishable from noise for many of the 262144 different
9-mers even for large negative sets.

To overcome this problem, XXmotif uses interpolated Markov models (Salzberg et al., 1998)
which automatically use lower-order probabilities if the negative set does not provide enough
counts for higher-order k-mers. Given a pseudocount factor α and the number of occurrences
of a k-mer n(x1 . . . xk), the conditional probability f(xk+1|x1 . . . xk) can be calculated as
follows:

f(xk+1|x1 . . . xk) = n(x1 . . . xk+1) + 4αf(xk+1|x2 . . . xk)
n(x1 . . . xk) + 4α (2.3)

In case of few k-mer counts, i. e., n(x1 . . . xk+1) ≈ 0, the formula simplifies to the result of
order k − 1. However, if the k-mer counts are high, i. e., n(x1 . . . xk+1)� 4α, the formula
corresponds to the one of order k.

We used α = 10 as default value for XXmotif as it seems to be a good trade-off between
noise reduction and utilization of the counts of higher orders.



2.2 Statistical Framework 11

2.2.2. Calculating the significance of a binding site given a PWM

To calculate the P-value of a specific site x of interest with length l given a PWM, the
P-values of all l-mers z that have a better or equal log-odds score S(z) than the site of
interest S(x) have to be summed up:

P -value(x) =
∑

z∈{z:S(z)≥S(x)}
Pbg(z) (2.4)

where the log-odds score S(x) is calculated by summing up the logarithm of the probability
to have nucleotide xi at position i within the PWM divided by the background probability
of this nucleotide f(xi):

S(x) =
l∑

i=1
log

(
PWM(i, xi)

f(xi)

)
(2.5)

Since it is very time consuming to generate all 4l l-mers, P -value(x) cannot be efficiently
obtained by exhaustive enumeration of all l-mers with score S(z) ≥ S(x). However, by using
a branch-and-bound technique, it is possible to generate exactly these high-scoring l-mers in
linear time with respect to the output size, i. e., the number of l-mers generated.

Branch-and-bound algorithm

Every PWM column contributes independently to the log-odds score (see Equation 2.5).
Therefore, given the prefix of length m of an l-mer, the maximum log-odds score of the
remaining suffix Smax,m+1 is easily calculated by summing up the maximum log-odds value
of the corresponding columns:

Smax,m+1 =
l∑

i=m+1
max

j∈{A,C,G,T}

{
log

(
PWM(i, j)

f(j)

)}
(2.6)

If the maximum score of the suffix is not high enough to reach the threshold S(x), it
is not necessary to enumerate the suffixes and the current path can be abandoned. All
paths reaching the l-th column correspond to l-mers that are ‘similar enough’ to the PWM.
Pseudocode for the procedure is given in Algorithm 1.

The runtime is approximately linear in the number of branches followed, that is in the
number of l-mers generated plus the number of dead-end paths. Two optimizations are used
to reduce the number of futile furcations by trying highest scoring nucleotides first: (a) sort
each column’s entries in order of descending score, (b) reorder columns according to their
highest scoring entry in descending order.
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Algorithm 1 : CreateSimilarKmers(i, Si−1, Zi−1)
Recursive generation of l-mers similar to a PWM with branch-and-bound. The initial call
is CreateSimilarKmers(1, 0, ε), i. e., the algorithm starts in the first column with the
neutral element of addition for the score so far and the empty word for the preceding l-mer.
Data: PWM score matrix

Smax,j maximum possible score for columns j, . . . , l
S(x) similarity threshold: score for site x

Input: i current column
Zi−1 generated (i− 1)-mer
Si−1 score of Zi−1

foreach j ∈ {A,C,G, T} do
Si ← Si−1 + PWMi,j

if Si + S max,i+1 < S(x) then continue
Zi ← Zi−1 · j
if i < l then

CreateSimilarKmers(i+ 1, Si, Zi)
else

add Zi to list of similar l-mers

Of course, the maximal number of similar l-mers is still 4l. However, only high scoring
matches are of interest during the search for significant motifs. This means that only a small
fraction of l-mers has to be considered for stringent thresholds.

Splitting and recombination of branch-and-bound P-values

For long l-mers, enumeration of high scoring matches can still be very time consuming,
especially if the PWM has many degenerate columns. Therefore, we accelerate the calibration
for l > 8 by splitting the motif into two parts, calculate P-values for both parts individually
and combine them to yield the final P-value (see Figure 2.1). The left part of the l-mer (X1)
is set to length 8, the right part (X2) to the remaining nucleotides, allowing to calculate
P-values for l-mers with up to 17 nucleotides. For longer l-mers, even the calibration of the
shorter parts is too time consuming if the PWM is very degenerate.

Calculating independent P-values for both parts as illustrated in Figure 2.1 would neglect
higher-order dependencies between both parts of the l-mer. To calculate the exact P-value
for the combined l-mer, the P-values of the right part has to be calculated depending on
the left part of the l-mer. Therefore, the products for all relevant combinations of left part
l-mers Z1 and right part l-mers Z2 reaching a total score S1 + S2 bigger than the score for
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S

S = S1 + S2

S1

S2

S max
1

S max
2

S− S max
2

{S2 |S2 ≥ S− S1}

Figure 2.1.: Splitting and recombination of the branch-and-bound P-value calculation for long
l-mers (shown in log-space). The l-mer x = x1 . . . xl is divided into two parts X1 = x1 . . . xj and
X2 = xj+1 . . . xl. For each part, the probabilities of relevant scores S1 and S2 are obtained using
the branch-and-bound algorithm CreateSimilarKmers. In order to obtain the P-value P (x) for
reaching at least a total score of S(x), the probabilities of all pairs (S1, S2) with S1 + S2 ≥ S(x)
(light gray area) have to be summed up. Neglecting higher-order dependencies between both parts,
this can be calculated as the sum over relevant S1 columns (shown in dark gray), which in turn can
be constructed incrementally from lower to higher S1:

P (x) = Pr[S1 + S2 ≥ S(x)] =
Smax

1∑
S1≥S(x)−Smax

2

Pr[s1 = S1] Pr[S2 ≥ S(x)− S1].

the site of interest S(x) have to be summed up:

P (x) =
∑

(Z1,Z2)∈{S1+S2≥S(x)}
P (Z1) P (Z2|Z1) (2.7)

To speed up this calculation, we approximate the dependency of the right part to the average
PWM of the left part, allowing for the right part P-values to be summed up independently,
as shown in Figure 2.1. For a left part of length 8, the background order k, and the set Ω of
all possible k-mers, this gives:

P (Z2|Z1) ≈ P (Z2|PWM) =
∑
z∈Ω

(
P (Z2|z)

k∏
i=1

PWM(8−k+i, zi)
)

(2.8)
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2.2.3. Calculate the significance of a set of binding sites

After a P-value is calculated for every site given the PWM, it is necessary to find the optimal
P-value threshold to consider a site as significant, i. e., to assign a site as a binding site of
the motif. This is determined using so-called order statistics. The possible sites are sorted
by their P-value in increasing order (i. e., in order of decreasing significance). For a binomial
distribution, the probability to find exactly K sites in a set of N possible sites with P-values
at least as small as p is

(N
K

)
pK(1− p)N−K . Accordingly, the probability to find at least K

sites with P-values at least as good as the K-th best, PK , is given by:

P (K)
overrep =

N∑
k=K

(
N

k

)
(PK)k (1− PK)N−k (2.9)

The optimal K∗ is the one with minimal P (K)
overrep:

K∗ = argmin
K∈{1,...,N}

{Poverrep(K)} (2.10)

The P-value of the most significant set of binding sites is thus P (K∗)
overrep, and the K∗ best

sites are considered to be functional.

Multiple occurrence per sequence model

Using the multiple occurrence per sequence model (mops model) as the motif model of
XXmotif permits binding sites simultaneously at every position within the input set. Hence,
N , the number of different binding sites, equals the number of nucleotides within the input
set M , subtracted by the nucleotides at the sequence ends covered by the motif. Having L
sequences and a PWM length W ,

N = M − L (W − 1) (2.11)

However, the possibility to have overlapping binding sites is problematic as repetitive motifs
fit to more binding sites than expected by the background model. Hence, we preclude
overlapping sites, which leads to a maximum number of possible sites K that is smaller than
N . If XXmotif is set to search motifs on both strands of DNA, N is increased by a factor
of two. To preclude that palindromic motifs fit to the same binding site on both strands
leading to too significant P-values , we also preclude overlapping binding sites between both
strands.
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Zero or one occurrence per sequence model

Using the zero or one occurrence per sequence model (zoops model) as the motif model of
XXmotif permits at most one binding site per input sequence. Here, N is the number of
sequences and K ranges between 0 and N as overlaps are not possible in this setting. The
P-value PK of a site used in Equation 2.9 now refers to a per sequence P-value that can be
calculated from the site P-value p by calculating the probability to find a binding site with
length W at least as significant as p within sequence S:

PK = 1− (1− p)|S|−W +1 , (2.12)

i. e., the probability of the complementary event of not finding it at any of the |S|−W+1
possible starting positions of the PWM in sequence S.

Instead of individual sequence lengths, the geometric mean length is used for all sequences.
This avoids problems resulting from equally scoring matches becoming disproportionately
significant (or insignificant) if found in very short (or very long) sequences. The geometric
mean is adequate since lengths are scaling variables that are best compared in terms of
factors, not absolute differences.

One occurrence per sequence model

XXmotif also provides a one occurrence per sequence model. It is implemented by using the
same framework as for the zero or one occurrence per sequence model, however, the number
of motifs K is not optimized using order statistics, but manually set to N . Subsequently,
the final P-value is the likelihood to find N times an instance with the N ’th best P-value.
As only the N ’th best P-value contributes to the final result, this option should only be
used if it is known that all sequences contain the motif, otherwise the zero or one occurrence
per sequence option is recommended.

2.2.4. Correcting P-values for multiple testing

Finally, multiple testing has to be taken into account: Any PWM in the whole motif space
has the same chance to achieve a certain significance by coincidence. Hence, for calculating
the E-value which corresponds to the expected number of motifs with a given P-value, a
Bonferroni correction is applied. This is a conservative method that multiplies the calculated
P-value by the number of different motif models that could be tested. Since in principle
infinite slightly different PWMs exist in the motif space, it is necessary to define a parameter
Neff which defines the effective number of possible PWM columns. Hence, for a PWM with
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length W , the respective E-value is calculated as follows:

E-value = P -valueNW
eff (2.13)

In the enumeration phase of XXmotif, the motif model consists of one out of ten different
IUPAC characters per position (A, C, G, T, M, R, W, S, Y, K). However, only the four
nucleotides A, C, G, and T are independent, the remaining characters are partly similar to
each other. Hence, Neff should be set to a value between four and ten, with Neff = 6 is used
as default. In the refinement phase of XXmotif, we use Neff = 10 to account for the strong
similarities between different PWM columns, but still capture the higher number of different
PWMs than IUPAC strings of the same length. In case of the enumeration phase, for which
gaps are allowed in the IUPAC string, additionally to the factor NW

eff , a factor of two per
gap position is used to capture the higher amount of motifs to test if a certain number of
gaps is present.

2.2.5. Calculating conservation P-values

Conservation P-values are like overrepresentation P-values calibrated on the negative set, if
available. Otherwise, the input set is used. They are calculated as the probability to find
at most m mutations from the first sequence to n other sequences within the alignment,
given the frequency of every nucleotide within the site. As this nucleotide composition
c = fsite(A,C,G,T ) is taken into account, different mutation rates within regions of different
A/T content are included.

Pcons(m,n, c) =
m∑

i=0

f(i,n,c)∑∞
j=0 f(j,n,c) (2.14)

For each site it is tested how many sequences have no gaps in the alignment and the maximal
n is used. To preclude that related informative sequences are lost if a closely related sequence
was not alignable and therefore has only gaps at the site position, a preprocessing step is
used to fill gaps in closely related species with the nucleotides of the a more distantly related
species. This procedure can be considered as an upper bound estimation for the mutation
within the site.

To calculate a combined conservation P-value for the K best sites according to the PWM,
we use the formula for the distribution of the product of independent pairwise P-values
given by Bailey and Gribskov (1998):

P (K)
cons ≈ p

∑K−1
i=0 (− log p)i

i! (2.15)



2.2 Statistical Framework 17

where p is the product of conservation P-values of the K considered sites:

p =
K∏

i=1
Pcons,i (2.16)

2.2.6. Weighted combination of P-values

Given two independent P-values p1 and p2, these can be combined to a single P-value using
the formula:

Pcomb = Pr[P1P2 ≤ p1p2] = p1p2 (1− log (p1p2)) (2.17)

However, this formula for independent P-value combination implicitly assumes that both
P-values are similarly important. If the first source of information p1 is much more important
than the second source of information p2, meaning that most non-random events (TPs)
have much smaller p1’s than p2’s, combined P-values can be even worse in distinguishing
non-null-model events than the single P-value of the more important source of information.

E. g., if p1 = 10−5 and p2 = 0.1, Pcomb = 10−6(1− log(10−6) = 1.5× 10−5 > p1

This scenario is very common for XXmotif. Here, overrepresentation P-values p1 are
combined with conservation P-values p2 which often are only slightly significant. This low
information stems from TF turnover events, which cancel out any conservation information
even for functional binding sites, or, if the species are too closely related, even completely
conserved binding sites are not significant.

Therefore, it is desirable to assign a weight w ∈]0, 1[ to the source of information which is
less important and calculate a P-value for the weighted score % = p1p

w
2 (see Figure 2.2).

This can be calculated analytically:

Pcomb = Pr[P1P
w
2 ≤

%︷ ︸︸ ︷
p1p

w
2 ] = %

1
w +

∫ 1

%
1
w

%

Pw
2

dP2 = %− w% 1
w

1− w = p1p
w
2 − p

1
w
1 p2w

1− w , (2.18)

For the weight w = 1/3, which is the default value used in XXmotif, the example calculation
from above gives Pcomb = 6.96× 10−6, which is 1.44 times more significant than the single
P-value.

2.2.7. Calculating positional P-values

If motif instances cluster together at a fixed distance relative to a specified anchor point,
e. g., TSSs or nucleosomes, motif identification is facilitated by introducing a P-value that
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P1Pw
2 > %

P1Pw
2 < %
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1
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%

Figure 2.2.: Weighted combination of P-values. The probability that the product of P1 and Pw
2 is

less than % is equal to the shaded area. This in turn is composed of a rectangle with area %1/w and
the area under P1P

w
2 over [%1/w, 1].

captures the differences of this clustering to a random distribution. To decide whether for
a motif of size l the instances are significantly clustered within a region ∆, a localization
P-value Ploc is calculated using the binomial distribution:

Ploc =
N∑

k=K

(
N

k

)
(Preg)k (1− Preg)N−k with Preg = |∆|

L− l + 1

where K is the number of motifs within the tested region, N is the number of all motif
instances, |∆| is the size of the region where the motifs are clustered and L is the length of
the sequences. To find the region ∆ of highest enrichment, the region with the best Ploc is
selected if it is significant enough (Ploc < 10−3).

Positional quasi P-value

Since Preg cannot be smaller than 1/ (L− l + 1) it is only possible to calculate a quasi
P-value, which cannot directly be combined with the overrepresentation P-value by simply
using the formula for combining P-values shown in Equation 2.18.

We define our positional quasi P-value for position zk and a given cluster region ∆0 ranging
from positions zs to ze by

p(zk) = |{z : 1 ≤ z ≤ L− l + 1 ∧ |z − µ| ≤ d}|
L− l + 1

where
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d = max{|zk − µ|, D}

and

µ = ze + zs

2

D =
⌈∆0

2

⌉
=
⌈
ze − zs + 1

2

⌉

To simplify the expression for p(zk) and see how it depends on µ, D and L− l + 1 one can
first note that

p(zk) = bmin{L− l + 1, µ+ d}c − dmax{1, µ− d}e+ 1
L− l + 1

and write this formula as

p(zk) =


∆0

L− l + 1 for |zk − µ| ≤ D

∆(zk)
L− l + 1 for |zk − µ| ≤ D

(2.19)

where
∆0 = bmin{L− l + 1, µ+D}c − dmax{1, µ−D}e+ 1

and
∆(zk) = bmin{L− l + 1, µ+ |zk − µ|}c − dmax{1, µ− |zk − µ|}e+ 1

as can be seen for two different values for µ and zk in the following figure:

zk

∆(zk)
µ

1 L− l + 1

zk

∆(zk)
µ

1 L− l + 1

Then for zk ≥ µ:
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∆(zk) = bmin{L− l + 1, zk}c︸ ︷︷ ︸
zk

−dmax{1, 2µ− zk}e+ 1

=


b2(zk − µ) + 1c for zk < 2µ− 1

zk for zk ≥ 2µ− 1

(2.20)

For zk ≤ µ we obtain:

∆(zk) = bmin{L− l + 1, 2µ− zk}c − dmax{1, zk}e+ 1︸ ︷︷ ︸
zk

=


b2(µ− zk) + 1c for zk > 2µ− L+ l − 1

L− l + 1− zk + 1 for zk ≤ 2µ− L+ l − 1

(2.21)

We can summarize Equations 2.20 and 2.21:

∆(zk) =



zk for zk ≥ 2µ− 1 (a)

b2|zk − µ|+ 1c for 2µ− L+ l − 1 < zk < 2µ− 1 (b)

L− l + 1− zk + 1 for zk ≤ 2µ− L+ l − 1 (c)

(2.22)

(a)

zk

∆(zk)
µ

1 L− l + 1

(b)

zk

∆(zk)
µ

1 L− l + 1

(c)

zk

∆(zk)
µ

1 L− l + 1

Case (a) can only occur when L− l + 1 ≥ 2µ− 1, i. e., µ ≤ L−l+2
2
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Case (c) can only occur when 2µ− L+ l − 1 ≥ 1, i. e., µ ≥ L−l+2
2

To substitute Equation 2.22 into Equation 2.19, we can now distinguish two cases:

1. µ ≤ L− l + 2
2 :

p(zk) (L−l+1) =



∆0 for µ−D ≤ zk ≤ µ+D (b)

zk for 2µ− 1 ≤ zk (d)

b2|zk − µ|+ 1c for 1 ≤ zk ≤ µ−D ∨ (a)
µ+D ≤ zk ≤ 2µ− 1 (c)

µµ−D µ+D 2µ−1

L−l+1

2µ−1

∆0

zk

p(zk) (L−l+1)

1 L−l+1

(a)
(b)

(c)

(d)

2. µ ≥ L− l + 2
2 :

p(zk) (L−l+1) =



∆0 for µ−D ≤ zk ≤ µ+D (c)

L−l+1−zk +1 for zk ≤ 2µ−L+l−1 (a)

b2|zk − µ|+ 1c for 2µ−L+l−1 ≤ zk ≤ µ−D ∨ (b)
µ+D ≤ zk ≤ L−l+1 (d)

µµ−D µ+D2µ−L+l−1

L−l+1

2(L−l+1−µ)+1

∆0

zk

p(zk) (L−l+1)

1 L−l+1

(a)

(b)
(c)

(d)
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When we sort the values p(zk) in ascending order (indexed by i), we get

p(i) =


2D + 1 for 1 ≤ i ≤ 2D + 1

i for 2D + 1 ≤ i ≤ Λ

i for Λ ≤ L−l+1

× (L−l+1)−1

where

Λ =


2µ− 1 for µ ≤ L−l+2

2

2(L−l+1−µ) + 1 for µ > L−l+2
2

2D+1

2D+1

Λ

L−l+1

Λ
i

L−l+1

p(i)× (L−l+1)

P-value combination of the positional quasi P-value

Suppose our positional P-value p2(i), which may not be uniformly distributed and therefore
is no true P-value, is calculated according to

∆0 = bmin{L− l + 1, µ+D}c − dmax{1, µ−D}e+ 1

p2(i) =


∆0

L− l + 1 for |i− µ| ≤ D

i

L− l + 1 for |i− µ| > D

Suppose the match of the PWM at position i ∈ {1, . . . , L − l + 1} is quantified by a true
P-value p1(i). We would now like to calculate the true combined P-value for p = p1(i) p2(i)
at a specified position i, which is the probability that a better combined P-value could be
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achieved at any start position in a sequence of length L− l + 1:

P-value(p) = P
(
min

i
{p1(i) p2(i)} < p

)
We start by calculating 1−P-value(p):

P

(
min

i
{p1(i) p2(i)} ≥ p

)
=

L−l+1∏
i=1

P (p1(i) p2(i) ≥ p)

=
L−l+1∏

i=1
P

(
p1(i) max

{ ∆0
L−l+1 ,

i

L−l+1

}
≥ p

)

=
∆0∏
i=1

P

(
p1(i) ≥ p L−l+1

∆0

) L−l+1∏
i=∆0+1

P

(
p1(i) ≥ p L−l+1

i

)

=
(

1− p L−l+1
∆0

)∆0 L−l+1∏
i=∆0+1

(
1− p L−l+1

i

)

⇒ P-value(p) can be calculated as follows:

P-value(p) = 1−
(

1− p L−l+1
∆0

)∆0

exp

 L−l+1∑
i=∆0+1

log
(

1− p L−l+1
i

)

if p
L−l+1

∆0
≤ 0.1, we can expand the logarithm into a Taylor series:

log(1 + x) = x+ x2

2 + x3

6 + x4

24 + . . .+ xk

k! + . . . for x = −p L−l+1
i

⇒ by using a first-order approximation one finally gets:

P-value(p) = 1−
(

1− p L−l+1
∆0

)∆0

exp
(
−p (L−l+1)

L−l+1∑
i=∆0+1

1
i︸ ︷︷ ︸

I1(∆0 + 1)

+1
2p

2(L−l+1)2
L−l+1∑

i=∆0+1

1
i2︸ ︷︷ ︸

I2(∆0 + 1)

+ . . .

)

= 1−
(

1− p L−l+1
∆0

)∆0

exp
( ∞∑

k=1

1
k! (−p (L−l+1))k Ik(∆0 + 1)

)

≈ 1−
(

1− p L−l+1
∆0

)∆0

exp

−p (L−l+1)
L−l+1∑

i=∆0+1

1
i


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2.3. Workflow of XXmotif

This section describes the workflow of XXmotif in more detail. In a nutshell, starting with
an optional run of XXmasker, IUPAC strings are extended, merged together to obtain a
PWM model and refined by optimizing the P-value (see Figure 2.3).

2.3.1. XXmasker

Since XXmotif ranks all motifs by P-value, it is highly sensitive to even rare motifs if the
information content of these motifs is high enough. However, this high sensitivity becomes
problematical if the input sequences contain homologous parts, repeats or low complexity
regions. These stretches of DNA are typically longer than 20 nucleotides and occur multiple
times, typically as perfect repeats. In order to avoid an assignment of high P-values to these
features, we have developed XXmasker, an optional tool that masks these sequence regions
prior to the main algorithm of XXmotif.

Nucleotides are masked by XXmasker if at least one out of the following three conditions is
satisfied:

1. The nucleotide is within a homologous region:
To detect homologous regions, BLAST is used with E-value cutoff 10−10 and the
soft masking option (“-F m S”). For this, a database is incrementally built with all
input sequences, where the first input sequences is kept completely and parts of the
remaining sequences are masked in all regions in which BLAST detects sufficient
homology to any of the already considered sequences. The very stringent E-value
cutoff assures that no informative regions are masked, the BLAST masking option
avoids that low-complexity segments cause homologous parts to fall below the E-value
threshold.

2. The nucleotide is within a low complexity region:
We define a low complexity region to be a DNA stretch of at least 50 nucleotides
consisting of at most two different nucleotides.

3. The nucleotide is within a repeat:
We define a repeat region as a DNA stretch of at least 50 nucleotides consisting of
perfect repeats with a repeat length in between 3 and 10.

Generally, we chose very strict parameters for all of these conditions. However, in some
cases a relaxation of the E-value cutoff, or the masking of imperfect low complexity and
repeat regions might be a possibility to further improve the performance.
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Figure 2.3.: Overview of XXmotif with its main stages. After an optional step to mask confounding
sequence regions (blue), P-values of all 5-mers and gapped palindromic 6-mer seed patterns are
evaluated, and the best seeds are recursively extended by an optional gap and motif position (red).
Patterns are converted into PWMs and fed to the PWM stage (green). Here, similar PWMs are
merged and then iteratively refined by optimizing the motif enrichment P-value. Finally, merging
and refinement stages are iterated till convergence.

2.3.2. Seeds phase

XXmotif starts by enumerating all 5-mers with at most two IUPAC characters (M, R, W, S,
Y, K) as well as all palindromic and tandemic 6-mers with gaps of size 0− 11 between the
first and last three positions (seeds phase; Figure 2.3). For each of these seed patterns, a
P-value is calculated using the binomial distribution which is corrected for multiple testing
to obtain the corresponding E-value.

To calculate the P-value for an IUPAC string U , the probabilities of all l-mers x matching
to U have to be summed up. Therefore, in case of gaps in the IUPAC string, probabilities
of l-mers with any nucleotide at these positions have to be considered:

P (U) =
∑
x∈U

P (x)

where P (x) is calculated as shown in Section 2.2.1. The probability to find K out of N
possible binding sites matching U is calculated using the binomial distribution.

Penrichment =
N∑

k=K

(
N

k

)
(P (U))k (1− P (U))N−k (2.23)

To account for multiple testing, E-values are calculated as described in Section 2.2.4

2.3.3. Extension phase

Seeds are extended using a beam search approach, i. e., not only the one most promising
path is followed, but the B most promising paths are examined. This allows for a very
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efficient extension, while avoiding local minima which may arise more likely by using only
the best path.

As all IUPAC degenerations of a non-degenerate seed are highly overlapping and would
therefore extend to similar IUPAC strings, it is possible to reduce runtime by extending only
a small subset of these. Therefore, we extend only the five most promising degenerate seeds
per non-degenerate seed, giving a total of 5120 5-mer (5 × 45), 3840 gapped palindromic
and 3840 gapped tandemic 6-mer degenerate seeds (5× 12× 43).

All of these seeds are extended individually as long as the E-value improves. Possible
extensions are IUPAC characters (A, C, G, T, M, R, W, S, Y, K) at the beginning and
the end of the current IUPAC string, allowing gaps of size zero to three. Larger gap sizes
are not necessary as it is very unlikely that the extended IUPAC string is more significant
than the unextended version (see Section 2.2.4, multiple testing). Extensions having a lower
E-value than the unextended version are sorted and the three most significant ones (circles
in Figure 2.3) are iteratively extended. Afterwards, extended IUPAC strings are converted
into PWMs by calculating the frequencies of every nucleotide within the matching sites.

Since identical IUPAC strings can be reached from different seeds, all extensions are stored
in a hash allowing for a fast extraction of already calculated results.

Implementation details

In order to efficiently elongate thousands of different seeds, it is necessary to store each
k-mer within a data structure that needs only a minimum amount of memory and can be
modified to an elongated version within a few clock cycles. Furthermore, the possibility to
reach one elongated k-mer from different IUPAC seeds makes it desirable to have a unique
id for each k-mer. This allows to build a hash of already considered k-mers and to stop the
elongation of already traversed paths. The main data structures fulfilling these requirements
are shown as UML class diagrams in Figure 2.4.

Kmer is the central IUPAC k-mer representation class. It contains the offset list of Matches
as sequence/position pairs and a representation of the current IUPAC k-mer. Since the
matches are stored in a doubly linked list, each seed takes 28 bytes of memory on a 64 bit
system. During extension millions of matches have to be stored and deleted from the seeds
list. In order to avoid time consuming memory allocation and release operations we have
developed a pool allocater (Pool_Alloc), which allocates chunks of 8 kilo bytes at once and
releases matches by simply removing the pointer to a position within the chunk.

The k-mer representation interface AbstractKmer was designed with two main requirements:
the characters and gaps at each position should be accessible and modifiable by index, and
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AbstractKmer
id : IdType
length : int
matches : int
getId() : void
length() : int
numMatches() : int
operator==(AbstractKmer&) : bool
virtual charAt(int pos) : int
virtual gapsAfter(int pos) : int
virtual mutate(int pos, char c) : void
virtual clone() : AbstractKmer*
virtual toString() : string

IdType
isNumeric : bool
val : union {uint64_t num, char* str}
operator==(IdType&) : bool
operator<(IdType&) : bool
toString() : string

SmallKmer

charAt(int pos) : int
gapsAfter(int pos) : int
mutate(int pos, char c) : void
clone() : SmallKmer*
toString(): string

UniversalKmer

charAt(int pos) : int
gapsAfter(int pos) : int
mutate(int pos, char c) : void
clone() : UniversalKmer*
toString(): string

Kmer
p_pos : float
p_set : float
set_size : int
seeds : list<Match, Pool_Alloc<Match> >
kmer : AbstractKmer*
getKmer() : AbstractKmer*
setKmer(AbstractKmer*) : void
operator==(Kmer&) : bool

Match
seq : int
pos : int
score : float
operator==(Match&) : bool

Figure 2.4.: Main data structures used for IUPAC k-mers within the XXmotif elongation phase.

each k-mer should have a unique id for hashing.

The SmallKmer implementation is optimized for speed and suitable only for k-mers up to a
certain maximum length. It directly uses its id, a 64 bit integer, for representing a k-mer as a
bit field: c bits represent a character s ∈ Γ followed by g bits designating the number of gaps
after s. The maximum number n of match positions is determined by nc+ (n− 1)g ≤ 64.
With the default values of c = 4 required for 10 IUPAC characters and g = 2, all motifs
with at most eleven match positions separated by no more than three gaps between each
position can be represented. By far the bigger part of motifs are compassed by these limits.
The advantage of the SmallKmer implementation is that all access and mutation operations
can be performed very efficiently by simple logical and bit shift operations.

For exceptionally occurring motifs with more than eleven match positions, XXmotif switches
to the UniversalKmer implementation which uses a list of an arbitrary number of character/gap
pairs. The generality is payed for by loss of efficiency due to list traversal upon access. Since
typically only very few motifs reach the required length during the XXmotif extension phase
the UniversalKmer representation, this does not carry weight as a whole.
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UniversalKmer uses the id field for storing a pointer to a string representation of itself. For
building hashes of k-mers, our hash function decides from the isNumeric flag whether to
compute a value based on the numerical value of the id field or based on the referenced
string.

As the number of match positions within the k-mer is stored directly in the class AbstractKmer,
it is possible to use static casts to decide whether an AbstractKmer has to be considered as a
SmallKmer or a UniversalKmer, making time consuming virtual function calls unnecessary.

2.3.4. Merging phase

Similar PWMs are merged in order to create a list of non-redundant motifs. First, all motifs
are ranked by E-value, and, beginning with the motif having highest significance, similarity
tests are performed. Therefore, all less significant motifs are compared to it, and, if similar
enough, merged. Afterwards, this procedure is repeated for the second most significant
motif, and so on. The criteria for these similarity tests are the following:

1. The divergence between the two PWMs calculated with a normalized Euclidian distance
is smaller than 0.25 in an overlapping region of at least length six. This criterion is
frequently used to assign a motif to be correctly found in diverse benchmarks (e. g.,
Gordân et al. (2010), Georgiev et al. (2010)):

D(a,b) = 1√
2w

w∑
i=1

√ ∑
L∈{A,C,G,T}

(ai,L − bi,L)2 (2.24)

where a and b are the regions of both PWMs that are overlapping and w is the size of
the overlap.

2. The overlapping region has an average entropy over the six positions with highest
information content of at least 0.5 for both PWMs. This assures that the overlap is
within important parts of both PWMs. The restriction to only six positions guarantees
that uninformative positions within a binding site do not negatively influence the score:

E(a) = 1
6

6∑
j=1

 ∑
L∈{A,C,G,T}

aj,L log2
aj,L

0.25

 (2.25)

where a consists of the six PWM columns of the overlap with highest information
content. The use of entropy as a criteria for measuring motif similarity was first
described by Gordân et al. (2010).

3. The binding sites of the motif with less sites overlap at least 20% with the binding
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sites of the other motif. This criterion assures that no motifs are merged that are only
similar in a small overlapping region but different in the surrounding.

Criteria 1 and 2 were also used in our motif sensitivity and metazoan benchmark in order to
determine successful motif discovery.

The merged PWM is built from all binding sites of both PWMs and 10% pseudocounts
(Durbin et al., 2006). If the length of both motifs is not the same, the length of the motif
with the better E-value is chosen. Afterwards, an E-value is calculated for the merged motif.
If this E-value is better than the E-values of both unmerged motifs, only the merged motif
is kept. Otherwise, only the better of the original motifs is kept.

2.3.5. Refinement phase

The set of non-redundant motifs is now iteratively refined by selecting the most significant
motif instances and motif lengths. To decide which sites are functional, putative binding
sites are sorted by P-value. For each K, we calculate the probability of observing by chance
at least K binding sites with a P-value equal to or better than the K-th best. The K
that optimizes the P-value is used to select the sites contributing to the refined PWM (see
Section 2.2.3, order statistics). Afterwards, the PWM is updated using 10% pseudocounts
(Durbin et al., 2006) and the refinement step is repeated.

To decide whether a different motif length is more significant, all PWMs including up to two
more or fewer positions at both ends are tested. For every tested length, order statistics is
used to select the most significant motif set. However, the refined PWM with this new length
might influence the sorting of the putative binding sites and thus the P-value. Therefore,
two iterations of motif set optimization and PWM creation are performed. Afterwards, the
motif length having the best P-value is chosen for a new iteration of the refinement phase.
To improve runtime, only sites of the unoptimized PWM with a log-odds score greater zero
are tested for the most significant motif set.

The observed P-values are corrected for multiple testing and the refinement step is repeated
as long as the E-value improves. Finally, the merging and refinement phases are iterated
until convergence.
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2.4. Overview of the Used Published Motif Finders

In this section we give a short overview of the tools used and describe the parameters chosen
for all benchmarks. Generally, we used the default parameters of each tool and added useful
optional parameters if provided, e. g., the possibility to search on both strands or to use a
multiple occurrence per sequence model. The only exception is MEME for which we used
additional arguments suggested within Bailey et al. (2010).

2.4.1. PRIORITY

PRIORITY (Narlikar et al., 2006) is a PWM-based method that refines the motif model using
Gibbs-sampling, a Markov chain Monte Carlo (MCMC) method that approximates sampling
from a joint posterior distribution by sampling iteratively from individual conditional
distributions (Gelfand and Smith, 1990). PRIORITY uses informative priors based on
common structural classes of transcription factors to improve the sampling and provides
the opportunity to add more priors to the procedure if more information is available,
e. g., a nucleosomal prior (PRIORITY-N , Narlikar et al. (2007)), a discriminative prior
(PRIORITY-D, Gordân et al. (2010)), an alignment-free conservation prior (PRIORITY-C,
Gordân et al. (2010)), or a combination of these.

PRIORITY can only be run with a zero-or-one occurrence per sequence model and cannot
optimize the motif length. As sampling is not deterministic, PRIORITY is run many times
and the resulting motif is set to the best of these trials.

We used PRIORITY version 2.1.0 for all benchmarks.

Parameters PRIORITY

PRIORITY was run using default parameters, consisting of the supplied third order back-
ground model, the default motif length 8 and 50 trials. From the command line it is started
using

java -jar priority.jar -nogui

Parameters PRIORITY-D

To start PRIORITY using the discriminative prior (Gordân et al., 2010), the corresponding
prior has to be created. This can be done using a Perl script supplied by the PRIORITY
package:
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./discr_from_pos_and_neg.pl 8 input.fasta negset.fasta input.prior

Now, we added the directory containing the D-prior to the PRIORITY params file and
started the tool as before.

Parameters PRIORITY-DC

The first step to start PRIORITY using the discriminative conservation prior (Gordân et al.,
2010) is to create a directory (homologs/) consisting of all homologous regions. Afterwards,
the DC-prior is created using two Perl scripts supplied by the PRIORITY package:

./generate_fastalike_cons_simple.pl input.fasta homologs/ 8 input.info

./generate_fastalike_cons_simple.pl negset.fasta homologs/ 8 negset.info

./discr_INFO_from_pos_and_neg.pl 8 input.fasta negset.fasta input.info

negset.info input.prior

PRIORITY is now started as before with the directory containing the DC-prior added to
the params file.

2.4.2. MEME

MEME (Multiple Em for Motif Elicitation, Bailey and Elkan (1994)) is a PWM-based motif
finding tool that iteratively refines candidate PWMs by an expectation maximization (EM)
algorithm. It allows to find the optimal motif length and provides the possibility to add
higher-order background models and the priors used by PRIORITY to improve the motif
search.

MEME was used in version 4.3.0 in our analysis.

Parameters MEME

As suggested by Bailey et al. (2010), depending on the complexity of the organism, two
different parameter settings were used:

./meme input.fasta -dna -revcomp -mod zoops -minsites 20 -nmotifs 4

- Yeast data sets: -minw 7 -maxw 12

- Metazoan data sets: -minw 8 -maxw 20
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Parameters MEME-M

To test MEME with a higher-order background model, we trained a fifth-order background
model using the script fasta-get-markov supplied with the MEME package:

./fasta-get-markov -m 5 > background.b

To incorporate the background model to the motif search, MEME was run using an additional
argument:

-bfile background.b

Parameters MEME-D

Bailey et al. (2010) demonstrated that the performance of MEME can be further improved
by using the discriminative prior from the Hartemink lab (Gordân et al., 2010) as additional
information. Therefore, we created the prior file input.prior using a Perl script from the
Hartemink lab as shown in Section 2.4.1.

Afterwards, we used the script hartemink2psp supplied with the MEME package to translate
this prior to the psp format that can be used as input for MEME:

cat input.prior | hartemink2psp -mod zoops -revcomp -width 8 > input.psp

Now, MEME can be run with the discriminative prior using an additional argument:

-psp input.psp

Parameters MEME-DC

Furthermore, MEME can be run using conservation information by incorporating the
discriminative conservation prior from the Hartemink lab (Gordân et al., 2010) as additional
information. To create this prior, again Perl scripts from the Hartemink lab have to be used
as shown in Section 2.4.1.

Now, as for the discriminative prior, the hartemink2psp script supplied by the MEME
package is used to translate the prior and MEME is started with the -psp input.psp

argument.
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2.4.3. Weeder

Weeder (Pavesi and Pesole, 2006) is a pattern-based motif finding tool that exhaustively
enumerates the motif space. It tolerates mismatches within the patterns and does not need
the exact pattern length as input. Internally, the sequences are represented as a suffix tree,
which also allows to efficiently enumerate longer patterns. However, it is not possible to use
conservation information.

Weeder was used in version 1.4.2 for our analysis.

Parameters

Weeder was started using the optional arguments S, to process both strands of DNA, and M,
to use a multiple occurrence per sequence model:

./weederlauncher.out input.fasta speciescode medium S M

where speciescode was replaced by the respective two letter code.

2.4.4. ERMIT

ERMIT (Evidence Ranked Motif Identification Tool, Georgiev et al. (2010)) is a pattern-
based motif finding tool that incorporates quantitative experimental evidence to find a motif
pattern that is enriched in sequences with high evidence values. It starts with IUPAC 5-mers
and elongates them as long as their enrichment score improves. To incorporate conservation
information, binding sites are filtered to the ones that fit to the pattern in all species.

ERMIT was used in version 1.01 for our analysis.

Parameters ERMIT

To run ERMIT, input files have to be parsed from FASTA format into a special format, and
a summary file has to be created (sequence_file) that contains the location of the input
file. Furthermore, an evidence file has to be created with the probabilities assigned to every
sequence identifier, and a summary file is needed (evidence_file) containing the location
of this evidence file. Now, ERMIT can be started using the command line statement:

./cERMIT evidence_file sequence_file output chip_chip

where chip_chip specifies the data type of the input sequences. As the required evidence
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values per sequence were only available for the yeast ChIP-chip experiments from the
Harbison data set (Harbison et al., 2004), this data type was always set to chip_chip.

Parameters cERMIT

To run ERMIT with conservation information (cERMIT), the homologous regions of an
alignment have to be parsed to the file format required by ERMIT and stored separately
for each species. Afterwards, the locations of each of these files have to be added to the
summary file sequence_file. Now, cERMIT can be started as before:

./cERMIT evidence_file sequence_file output chip_chip

2.4.5. AMADEUS

AMADEUS (Linhart et al., 2008) is both a pattern- and a PWM-based motif finding tool
that starts by enumerating all k-mers of a given length. In the following, these k-mers are
merged depending on their similarity and refined by an EM-algorithm. However, it is neither
possible to optimize the motif length, nor to incorporate conservation information.

AMADEUS was used in version 1.0 for our analysis.

Parameters

To run AMADEUS from the command line, a parameter file (params.txt) has to be created.
Therefore, paths for files with all sequences, input set identifiers and negative set identifiers
have to be supplied. We used the default parameters, motif length 8, and running mode
normal for our analysis:

java -Xmx3000m -jar AmadeusPBM_v1.0.jar file params.txt



3. XXmotif Web Server

3.1. Overview of Web Servers

The most popular web server for motif discovery is the MEME Suite server (Bailey et al.
(2006), Bailey et al. (2009)), within which the PWM-based MEME and GLAM2 motif
discovery programs can be run (Bailey and Elkan (1994), Frith et al. (2008)), alongside
several related tools to compare the discovered motifs to libraries of literature motifs, and
to search for matches to the discovered motifs in sequence databases. With a higher-order
background model to describe sequences that should not carry the sought motifs, MEME
has shown state-of-the-art performance (Bailey et al., 2010). To use higher-order models,
users have to upload their own model file generated using a MEME command line tool,
which will limit most users to the zero order model with lower sensitivity. The SCOPE
web server combines three pattern-based motif discovery tools, which are specialized to find
non-degenerate, degenerate, and gapped motifs, into a single prediction using a “winner
takes all” learning rule (Carlson et al., 2007). The RegAnalyst server runs a motif discovery
method that searches for the most enriched patterns using fixed thresholds for the maximum
number of allowed mismatches. It has been developed for mycobacterial and yeast sequences,
on which it was reported to have higher sensitivity than SCOPE (Sharma et al., 2009). The
WebMOTIFS server takes gene names from human, mouse or S. cerevisiae as input, extracts
promoter sequences, launches four motif discovery programs, and displays the results in a
uniform format (Romer et al., 2007). RSAT is a web toolbox for regulatory sequence analysis
that also offers several simple tools and Gibbs sampling for motif discovery (Thomas-Chollier
et al. (2008), Thomas-Chollier et al. (2011)).

Although various published tools can score conservation in multiple sequence alignments of
related species and a few can exploit the positional clustering of motifs, to our knowledge
none of the web services offer this useful functionality. In contrast, the XXmotif web server
available at xxmotif.genzentrum.lmu.de can combine enrichment P-values for PWMs with
P-values for sequence conservation and for positional clustering of motif occurrences.
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3.2. Input

On the “Data upload page” (Figure 3.1A), users can enter the input sequence set and an
optional background sequence set. The background sequences are used to learn the statistical
background model, which describes how “normal” sequences look like. XXmotif will then
try to find motifs that are enriched in the input set in comparison to the expectation derived
from the background model. When no background sequences are supplied, a second-order
background model is trained from the input sequences. To increase the sensitivity of the
motif search, XXmotif can calculate motif conservation P-values during the search, which
are combined with the enrichment P-values. In this case, the user can upload a set of input
and background multiple sequence alignments, using the “Multiple FASTA” format.

On the “Options” page, the suggested default options can be modified (Figure 3.1B). First,
the user can specify how many motif occurrences per input sequence are expected. For most
transcription factor and microRNA binding sites we would expect multiple occurrences, for
example. For core promoter motifs or splice sites we would expect zero or one occurrence
per sequence. When selecting the latter option, only the best occurrence per sequence is
scored, whereas with the former option, all occurrences above a certain single-site significance
P-value are scored. Searching on both strands is recommended for all motifs that should
occur with similar probabilities on both strands (i. e., as reverse complements of each other.)
This is true for most transcription factor and microRNA binding sites, for example, but not
for core promoter or splice site motifs. The order of the background model specifies how long
the patterns are that XXmotif learns from the background sequence set. An eighth-order
model learns the frequencies of 9-mer nucleotides to model the correlations between nearby
nucleotides. This is the default option selected when a background set is supplied by the
user. When the background model has to be learned from the positive set, the default order
is set to 2. If an order 8 model were trained in this case from the positive set, no motif
shorter than 10 nucleotides could become significant.

Upon pressing “next step”, a summary of all selected options is presented (Figure 3.1C), and
corrections can be made using the “back” button. After job submission, the user is directed
to a status page, which can be bookmarked and automatically redirects to the results page
when the job is finished. If the user has provided an email address, a notification with the
result page URL is sent.

3.3. Output

The results page lists the web logos, E-values, and number of sites of matched motifs found
up to an E-value of 100, (Figure 3.2A). When both strands were searched, the reverse
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Figure 3.1.: Pages for submitting a job
to the XXmotif web server: (A) Upload
input and background sequence sets, (B)
set options for the motif search, (C) ver-
ify and submit.
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complement versions of the motifs are also plotted. More detailed results are hidden behind
expandable boxes.

The “multi distribution plot” (Figure 3.2B) depicts with colored boxes the position and

Figure 3.2.: Sample results with boxes that can be expanded with the orange buttons on the left. (A)
Summary list of discovered motifs sorted by significance (E-value). (B) The “multi distribution plot”
depicts positions and strand of motif occurrences on the input sequences. Motifs can be selected
in the upper part. The single-site P-values are represented by the height of the box, their length
corresponds to the motif length. (C) The “Localization plot” is a histogram view of the positional
distribution of selected motifs relative to an anchor point. All plots can be downloaded in PDF
format.



3.4 Documentation 39

strand of significant motif occurrences within the input sequences. The motifs to display
in this plot can be selected by the user in the upper part of the plot. This allows to plot
clustered binding sites marking, for example, cis-regulatory elements, co-occurring pairs of
motifs, and other positional biases. Setting the mouse over a particular motif site will show
the site’s sequence, strand, start and end position, the single-site P-value measuring the
match quality with the PWM, and a conservation P-value (if multiple sequence alignments
had been supplied). Only sequences with at least one motif site are shown. Most significant
motifs are drawn last and may hide less significant ones.

When the input sequences are all of the same length, a “localization plot” can be displayed
(Figure 3.2C). This graph is useful to analyze positional preferences with respect to the
fixed-length sequence window of the input sequences. It shows in a histogram view the
positional distributions of all user-selected motif occurrences with each motif in a different
color. For instance, motif 1 (TATA-box) in Figure 3.2B is exactly positioned between -33
to -27 bp with respect to the transcription start site (TSS) at position 0, whereas motif 2
(YY1) is located mainly downstream of the TSS. Mouse-over in the histogram provides
the position with respect to the anchor point and the number of counts of the motif. For
instance, Motif 4 in Figure 3.2C has 15 counts sharply peaked at position -6 with respect to
the TSS, and a “CA” dinucleotide at position -1, indicating an initiator like function.

Detailed information about each motif can be obtained by clicking the expand buttons in
the motif summary list. Two single motif graphs can then be viewed (Figure 3.3). The
“motif distribution plot” is similar to the “multi distribution plot” and indicates the positions
of significant matches of the selected motif on the input sequences. The “motif site table”
lists all significant matches with their sequence identifiers, strands, positions, the single-site
P-values, and the sequence contexts of the motif.

All plots can be downloaded with the buttons below them. All data files generated by the
XXmotif program, such as lists of motifs with their occurrence positions, P-values, and
site sequences, PWM weight coefficients, and images of motif logos can be downloaded by
expanding the box “Download XXmotif output files”.

3.4. Documentation

Two sample input sets and pre-computed results allow the user to get a quick overview of
the server’s usage and results. Help buttons and mouse-over explanations are available for
all input options. More general help is listed on the FAQ page.
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Figure 3.3.: Detailed motif view. The first box (“Motif distribution plot”) plots the position of
significant motif matches within the input sequences. The second box (“motif site table”) gives
detailed information on all significant motif matches.

3.5. Implementation

The XXmotif web server was mainly implemented by Sebastian Luehr within a practical
course. It runs on an Apache server using PHP, PERL, and R scripts. The user interface is
dynamically generated HTML content with JavaScripts from the jQuery library. Submitted
jobs are processed on a Scientific Linux computer cluster.

3.6. Conclusion

With the XXmotif web server, we aim to make a very sensitive and reliable motif discovery
method easily accessible to non-expert users. The server has clearly structured input and
results pages and offers various useful interactive analyses. It is unique in being able to
include evidence from motif conservation and positional clustering in the motif search.



Part II.

Analysis of Transcription Factors and
Core Promoters





4. Transcription Factors

4.1. Overview

Transcription factors (TFs) are key regulators in every biological network. Their specific
binding to DNA activates or represses the expression of genes which in turn influences the
number of transcribed primary RNAs and proteins (Latchman, 1997). Since regulation
occurs in most cases at the level of transcription, understanding the behavior of TFs is the
most critical step in understanding the complex mechanisms within biological networks.

The specific binding to DNA is achieved by DNA-binding domains, which combine the
recognition of nucleotides with the readout of the DNA shape. The only places on the DNA
where TFs are able to contact the DNA specifically enough to recognize distinct nucleotides
are the major and minor grooves (see Figure 4.1).

Figure 4.1.: Base recognition in the major and minor groove of DNA (figure taken from Rohs et al.
(2010)). The DNA stretch contains the dodecamer d(GACT)3. The three panels show successive
rotations of 90◦ around the helix axis.
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In the major groove, hydrogen bonds and hydrophobic contacts allow the TF to specifically
recognize which nucleotides are present. All four possible base pairs, i. e., A:T, T:A, C:G,
and G:C have a unique pattern of hydrogen bond acceptors (red), hydrogen bond donors
(blue), thymine methyl groups (yellow), and base carbon hydrogens (white). In contrast,
in the minor groove A:T versus T:A and C:G versus G:C are indistinguishable. Therefore,
most DNA-binding domains form hydrogen bonds with bases in the major groove. Examples
are HTH domains (e. g., homeodomains, λ repressor), zinc finger domains (e. g., TFIIIA),
immunoglobin fold domains (e. g., p53, NFκB, STAT, and NFAT), and the N-terminal end
of basic leucine zipper (bZip) domains (Garvie and Wolberger, 2001).

Although the contacts in the minor groove cannot distinguish A:T from T:A and C:G from
G:C, some families of DNA-binding domains use the minor groove to improve specificity.
For instance, homeodomain proteins have N-terminal arms that dock in the minor groove
in addition to their contacts in the major groove (Gehring et al., 1994b). Moreover, a
special class of TFs, called “architectural proteins”, binds purely in the minor groove. These
proteins play crucial roles in the assembly of large protein-DNA complexes and provide the
possibility of a controlled assembly of the macromolecular complex by a strong bending of
the DNA (e. g., TATA-box, IHF, HMG-box).

Additional to the described “base readout”, the specificity of a TF can be further increased
by a mechanism called “shape readout”. In case of “local shape readout”, the TF improves
the specificity by exploiting local deviations from ideal B-DNA. As an example, AT-rich
sequences lead to a narrowing of the minor groove causing a negative electrostatic potential
recognizable by arginines (Rohs et al., 2009). An interesting example for this “local shape
readout” are the members of the Hox family of TFs. All of them form the same major group
interactions but gain specificity by the Extradenticle (Exd) cofactor that forms contacts to
the minor group if presented to the correct DNA structure (Joshi et al., 2007).

In case of “global shape readout” the entire binding site is not in a classical B-form helix.
An example for the importance of this readout is the papillomavirus E2 protein that binds
as dimer two half sites separated by four nucleotides. However, in order to have a strong
interaction with the DNA, the consensus binding site ACCGN4CGGT is not sufficient; the
DNA has also to be bent (Hegde et al., 1992). Intrinsically bent DNA is correlated with
sequences containing A-tracts, i. e., stretches of A:T base pairs that include ApA (TpT) and
ApT, but not TpA steps (Nelson et al., 1987).

Hence, the binding energy of TFs can be influenced by parts of the DNA that are not
directly contributing to the binding site but alter the global DNA structure. To model
the binding energy of a TF accurately, it is therefore also necessary to model the regions
between and around interacting regions of the TF and the DNA. Moreover, as the DNA
shape is mainly based on the succession of two base pairs that do not have to be positioned
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relative to the interacting regions, modeling PWMs as higher-order PWMs might improve
the model accuracy. E. g., in order to generate a bent stretch of DNA it is not important at
what position an ApT step is located, however, it is important that the base pairs before this
step are exclusively adenines, and the base pairs following this step are exclusively thymines.

4.2. Families of DNA-Binding Domains

This section gives an overview about techniques of TFs to contact the major and minor
grooves of DNA, reveals important features of binding sites, and gives information about
how to incorporate such features within a de novo motif search. As examples, the four most
abundant DNA-binding domains (DBDs) are described. All of them are relatively small
domains consisting of less than 100 amino acids.

4.2.1. Helix-turn-helix motif

The helix-turn-helix (HTH) structural motif is the most widely used DNA-binding domain
in prokaryotes. Escherichia coli, for instance, contains 270 TFs that belong to 11 different
families, with 10 of them utilize the HTH motif (Babu and Teichmann, 2003). This structural
motif is formed by two α-helices connected by a turn and was first described by Anderson
et al. in 1981 (see Figure 4.2).

Amino acid residues in the first α-helix, the recognition helix, contact the major groove of
DNA and thus mediate sequence specificity. Many TFs bind as dimers with two similar
HTH-motifs, for example CRO, CAP, and λ repressor (Brennan and Matthews, 1989). Such
a complex binds to two adjacent major grooves, which leads to palindromic patterns for the

Figure 4.2.: Overall view of the complex between 434 CRO and the OR1 binding site (PDB accession
number: 3CRO). The recognition helix is depicted in blue, the turn in yellow and the second helix of
the helix-turn-helix motif in green. The TF binds as a dimer, leading to a palindromic binding site.
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bound sequence stretches. However, in between the bound regions, the sequence motif has
not to be palindromic.

Therefore, in order to find occurrences of HTH motifs using a motif finding tool, it is
important to use palindromic seeds allowing gaps between both parts of the two palindromic
regions. Furthermore, it is important to allow an extension of these palindromic motifs that
does not have to be palindromic anymore.

4.2.2. Homeodomain

Eukaryotes have found many more solutions than prokaryotes to build a scaffold that allows
for a sequence specific DNA binding. Nevertheless, the prokaryotic HTH motif is exploited in
eukaryotes as well, with homeodomain proteins being the most frequent class. The primary
function of this class of proteins is to regulate the expression of other genes involved in
development and differentiation. Homeobox (Hox) genes code for homeodomains and are
often organized into chromosomal clusters, termed HOX clusters. An intriguing feature of
these clusters is the correlation between the physical location of the gene within the cluster
and the expression pattern along the anterior-posterior body axis. Moreover, all Hox genes
are transcribed in the same direction (Carroll (1995), Kmita and Duboule (2003)).

The homeodomain motif consists of 60 amino acids that are structured as three alpha
helices connected by short linkers. The second and third alpha helix form the prokaryotic
HTH motif. The main sequence specificity is provided by helix three that binds to the
major groove of DNA. The core motif of this interaction is TAAT. However, as this motif
matches many sites by chance, amino acid residues at the N-terminus of the homeodomain
improve specificity by reaching into the minor groove. In addition, some TFs combine
several DBDs or form homodimeric or heterodimeric complexes (Gehring et al., 1994a). For
instance, the POU domain (originally defined based on the four genes Pit-1, Oct-1, Oct-2,
unc-86 ) combines a classical homeodomain, called POU homeodomain, with a POU-specific
domain. This POU-specific domain that is required for a cooperative, high affinity binding,
is approximately 80 amino acids long, and consists of four alpha-helices connected to the
POU homeodomain by a variable linker (Herr et al., 1988).

4.2.3. C2H2 zinc finger

C2H2 zinc fingers, first identified in studies of the Xenopus laevis TF TFIIIA (Miller et al.,
1985) are one of the most common DNA-binding motifs in eukaryotic TFs (Wolfe et al.,
2000). Typically, several zinc fingers are arranged in tandem along the DNA with each finger
having a conserved ββα structure. The most abundant subtype, called the “Krüppel-type”,



4.2 Families of DNA-Binding Domains 47

comprises of 28 amino acids that coordinate a single zinc atom by paired cysteine and
histidine residues (see Figure 4.3).

Positions −1, 2, 3, and 6 (relative to the N-terminus of the alpha helix) are critical for DNA
specificity (Choo and Klug, 1994). Each finger defines binding specificity to around three
adjacent nucleotides. However, although several research groups have designed algorithms
to predict from the amino acid sequence which nucleotides a given zinc finger protein
preferentially binds (e. g., Kaplan et al. (2005), Persikov et al. (2009)), it is still unclear
whether these algorithms can accurately predict the binding preferences in normal cellular
contexts.

Consequently, the tandemic orientation of C2H2 zinc fingers leads to binding sites having
multiple important positions next to each other. Hence, in order to find these kind of sites
it is best to use gapless seeds as starting points of a motif analysis.

Figure 4.3.: Overall view of the complex between Krüppel-like factor 4 (Klf4) and DNA (PDB
accession number: 2WBU). Klf4 consists of three C2H2 zinc finger domains arranged in tandem
orientation. Each zinc finger consists of two beta sheets (yellow) and an alpha helix (blue). All of
them contain two cysteine and two histidine residues that coordinate a single zinc atom (red). Side
chains and labels of these residues are shown.

4.2.4. C6-zinc cluster family

A special class of zinc-containing motifs exists in several TFs from fungi. Here, the DNA
binding domain contains a cluster of two zinc atoms liganded to six cysteine residues
(see Figure 4.4). The first structure of a protein of this class, GAL4, was determined by
Marmorstein et al. in 1992. It consists of two dimerizing subunits, which can be divided into
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three structurally and functionally distinct regions: a dimerization domain at the C-terminus,
a zinc cluster domain at the N-terminus, and a nine-residue long linker region connecting
them.

Figure 4.4.: Overall view of the complex between GAL4 and DNA (PDB accession number: 1D66).
GAL4 consists of two dimerizing monomers, each divided into three distinct regions: a dimerization
domain, a linker region, and a Zn2Cys6 zinc cluster region. The two dimerization alpha helices are
packed into a coiled coil structure. The length of the linker region determines the distance between
both DNA binding sites.

The function of the zinc cluster is to ensure the proper folding of the DBD that binds to
a highly conserved CCG sequence. However, also the linker region contributes to DNA
specificity. Several nonspecific contacts between this region and phosphate groups of the
DNA backbone following the minor groove from the dimerization domain to the zinc cluster
allow the TF to recognize the shape of the DNA strand. Moreover, different lengths of this
linker region allow both DNA binding sites to be separated by different distances.

In order to find this kind of motifs, a motif finding tool needs seeds allowing for large gaps in
between two informative regions. In case of GAL4, the distance between the first CGG site
and the second palindromic CCG site is 11. However, in principle all distances are possible.

4.3. Experimental Techniques for in Vitro Analysis of TFBSs

Different experimental approaches have been developed to analyze TFs, their binding
affinities and binding sites. However, classical techniques like DNA footprinting (Galas and
Schmitz, 1978) or electrophoretic mobility shift assays (EMSA, Hellman and Fried (2007))
are laborious and expensive. A moderate to high resolution binding profile is therefore only
available for around 20% of all TFs. For instance, the largest databases for TF binding
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specificities, Jaspar (Bryne et al., 2008) and UniPROBE (Newburger and Bulyk, 2009),
list currently only around 500 profiles for human and mouse. However, mammals have
approximately 1300 to 2000 TFs (Vaquerizas et al. (2009), Fulton et al. (2009)).

New assays have been developed that allow for a high-throughput analysis of TF binding
specificities in vitro. Important techniques are protein-binding microarrays (Bulyk et al.,
2001), HT-SELEX (Jolma et al., 2010), and HiTS-FLIP (Nutiu et al., 2011).

4.3.1. Protein-binding microarrays

Protein-binding microarrays (PBMs) are microarrays containing double-stranded DNA
sequences at the surface. The TF of interest is incubated to the array and subsequently
washed away to remove weakly bound proteins. Now, fluorescent-labeled antibodies are used
to measure the amount of proteins at each spot, which can be interpreted computationally
as an estimate for the binding specificity of the TF. The most recent designs of PBMs
contain around 44000 different spots of 60 bp long double-stranded DNA. The sequences are
designed to contain each possible 10 bp sequence, of which the vast majority are in different
spots (Berger and Bulyk, 2009).

The main disadvantage of PBMs is the limitation to short binding sites that cannot capture
dimeric binding of, for instance, dimeric RFX-proteins, or the characterization of orientation
and spacing of heterodimeric TF pairs (Jolma et al., 2010).

4.3.2. HT-SELEX

In HT-SELEX (high-throughput systematic evolution of ligands by exponential enrichment),
the binding specificity of a TF is obtained by an in vitro selection of target sites from a
pool of randomized DNA strands. After complex formation between the TF and the DNA,
bound DNA ligands are separated from free DNA using affinity capture, EMSA or materials
that bind to proteins but not to free double-stranded DNA. Afterwards, the bound DNA
sequences are amplified by polymerase chain reaction (PCR), sequenced and used as the
DNA pool in the next round of selection. Hence, the resulting DNA library is enriched with
bound DNA sequences. After typically three to seven rounds, the binding profile of the TF
of interest can be derived from the enrichment of DNA sequences in each round.

Disadvantages of this approach are possible biases from the resin- or filter-based selection
step and the dependencies on the number of performed cycles. In later cycles only the
high affinity sites are selected, whereas in the first cycles the number of bound sequences is
very low. As all DNA fragments can have a different sequence, the covered sequence space
is very high (1015 sequences, ∼ 25bp). In order to analyze even longer and very specific



50 Chapter 4: Transcription Factors

binding sites, a protocol called DNA immunoprecipitation (DIP) can be applied. Here,
fragmented genomic DNA is used instead of synthetic random sequences, which assures that
every binding site is present at least once within the DNA pool (Liu et al., 2005).

4.3.3. HiTS-FLIP

High-throughput sequencing - fluorescent ligand interaction profiling (HiTS-FLIP) is an in
vitro technique for both high-throughput as well as quantitative measurement of binding
affinity. In a first step, ∼100 million clusters of genomic or random synthetic DNA sequences
are anchored on a microfluid flow cell. After denaturing the double-stranded DNA and
washing away the second strand, double-stranded DNA is rebuild using sequencing by
synthesis (Bentley et al., 2008). Now, hundreds of distinct clusters can be assigned on the
flow cell using the Illumina Genome Analyzer, each consisting of hundreds of identical DNA
molecules. To analyze DNA binding affinities, fluorescently tagged proteins are added to
the flow cell at different concentrations. After an optional washing step, the binding of each
protein to a cluster is quantified by visualizing the fluorescent using the same camera as
before used in the sequencing step. Binding k-mers are detected by an enrichment analysis
within the bound clusters.

The main advantage of HiTS-FLIP is the measurement of tens to hundreds of millions of
binding events. This allows for the detection of complex interdependencies between motif
positions and the analysis of more complex binding events.

4.4. Experimental Techniques for in Vivo Analysis of TFBSs

In vitro analysis of binding specificities of a TF is not enough to reliably predict the binding
patterns of the factor in vivo. In the genome, the occupancy of a TF on the DNA is not only
determined by its specificity, it is also strongly affected by the occupancy of nucleosomes,
higher-order chromatin structure that affects accessibility, protein-protein interactions, and
co-operative interactions mediated by DNA bending and/or unwinding. In addition, the
genome is not a random sequence, and the accessible regions (e. g., promoters) are not similar
in sequence to the whole genome. Hence, it is necessary to devise a background model that
corrects for these biases, which is nontrivial (Hughes, 2011).

Several approaches haven been developed to examine the genomic locations bound by a
specific TF. One important approach is based on endonucleases, another on cross-linking
and antibodies.
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4.4.1. DNase I hypersensitive sites

If a TF binds to DNA, it simultaneously protects the bound stretches from digestion when
exposed to an endonuclease, in particular DNase I (Galas and Schmitz, 1978). In vivo, this
general approach of DNase I digestion can be used to get a global view of open versus closed
chromatin structures (Shibata and Crawford, 2009).

If the interest is not only on revealing all regulatory regions within the genome but to
analyze the binding sites of a specific TF, footprints of all bound factors are not sufficient.
In some cases, bioinformatics analyses are able to predict which TFs bind to a particular
regulatory region (Quitschke et al., 2000). However, techniques like ChIP-chip or ChIP-seq
offer more direct results to solve this kind of problems.

4.4.2. Chromatin immunoprecipitation (ChIP)

Since the 1960s it has been known that formaldehyde can be used to cross-link proteins to
nucleic acids (Perry and Kelley, 1966). Hence, using antibodies against a TF in a sheared
cell treated with formaldehyde allows for a specific isolation of DNA segments bound by
the factor, commonly known as chromatin immunoprecipitation (ChIP) (Solomon and
Varshavsky, 1985).

In order to analyze the bound DNA regions, isolated DNA sequences have to be mapped to
the genome. The oldest mapping technique is based on microarray chips, called ChIP-chip
(Ren et al., 2000). These microarrays cover the whole genome, or at least all non-coding
regions, allowing for every DNA sequence to hybridize with its complementary strand. As
every spot on the chip is linked to a genomic location, the measurement of fluorescent
intensities on the chip can be directly transformed to a binding profile on the genome.
However, since the main part of the measured intensities is due to indirect effects, data
normalization is very important (Siebert et al., 2010). The second mapping technique
uses massive parallel sequencing, called ChIP-seq (Mardis, 2008). Here, over 10 million
oligonucleotides between 20 and 100 bases are sequenced per experiment. These stretches
are read from the end of the ChIP-isolated DNA and are subsequently mapped to the
genome. The binding profile of the TF is resolved by counting the number of mapped
DNA stretches per genomic position. The resolution of ChIP-seq experiments is shown
to be around 40 nucleotides (Venters and Pugh, 2009). However, this resolution can be
dramatically improved using the recently developed ChIP-exo protocol (Rhee and Pugh,
2011). Here, an exonuclease trims the immunoprecipitated DNA to a precise distance to the
site of crosslinking, allowing to achieve nearly single base resolution.

A general disadvantage of ChIP approaches is the dependence on an available antibody that
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has to be very specific for the protein of interest. In addition, the resulting binding profile
is not limited to direct binding events, it consists of all binding events of all proteins the
protein of interest is interacting with.



5. Performance of XXmotif on TFBSs

5.1. Benchmarks

Several benchmarks have been proposed to assess the performance of motif finding tools.
Benchmarks based on artificially created test sequences containing randomly placed occur-
rences of known motifs (Tompa et al. (2005), Sandve et al. (2007)) have the advantage of
being easily evaluable since the true sites are known, but it is questionable how transferable
these results are to biological sequences.

In our first benchmark, we utilize one of these artificial benchmark settings by testing
XXmotif on the benchmark set described by Sandve et al. (2007). It is a pure motif finding
task done on TFBS implanted in artificial or real data sets. In the following, this benchmark
will be called the “Drabløs benchmark”, named by the last author.

For our second and third benchmark we use the large biological data set of Harbison et al.
(2004). It is the most widely employed test set for motif discovery tools (e. g., Georgiev et al.
(2010), Gordân et al. (2010)) and consists of lists of S. cerevisiae intergenic regions that
were significantly enriched in 352 ChIP-chip experiments using 203 tagged transcription
factors, 82 of which assayed under several conditions (Harbison et al., 2004). In our second
benchmark, referred to as “Motif sensitivity benchmark”, we evaluate how many times a
motif finding tool is able to detect the correct motif within the ChIP-enriched regions. In
our third benchmark, referred to as “PWM quality benchmark”, we evaluate how well the
ChIP-chip data can be described by the found PWM.

As a fourth benchmark we analyze TFs from higher eukaryotes as well as miRNAs. The
benchmark was first described by Linhart et al. (2008) and is also used to measure the
runtime of XXmotif and the other used motif finding tools on large data sets.

5.1.1. Drabløs Benchmark

In 2007, Sandve et al. published a benchmark suite consisting of three benchmark sets,
called “Algorithm Markov”, “Algorithm Real”, and “Model Real”, which are all artificially
generated but consist of real binding site fragments extracted from the TRANSFAC database
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(Wingender et al., 1996). Each benchmark set consists of data sets containing between 5
and 78 sequences, in which every sequence contains exactly one implanted motif site.

The performance of the benchmark is measured by the Matthews correlation coefficient
working on the nucleotide level (nCC). This allows not only to evaluate whether there is an
overlap between the prediction and the correct motif, but also whether the correct motif
boundaries are predicted. The Matthews correlation coefficient is a balanced measure that
can be used even if the classes are of different size, which is the case as there are only few
positions bound by the factor (positives), opposed to the unbound positions (negatives):

nCC = TP · TN − FP · FN√
(TP + FP ) · (FP + TN) · (TN + FN) · (FN + TP )

(5.1)

Sequences were either created as real genomic sequences (“Real” data sets) or as third
order Markov sequences (“Markov” data sets). In case of Markov sequences, the motif sites
are randomly implanted. Additionally, data sets were separated by a discrimination score
measuring the similarity of the binding sites from the surrounding sequences. Data sets with
high discrimination scores were used for the “Algorithm” benchmark suite, whereas data sets
with low discrimination scores were used for the “Model” benchmark suite specifically built
to test more sophisticated motif descriptions like higher-order PWMs. However, as only
few motif instances are available within these sets, an improvement by using higher-order
descriptions seems unrealistic. The “Algorithm Markov” set as well as the “Algorithm Real”
set consist of 50 data sets, each containing between 5 and 18 sequences. As every sequence
contains exactly one motif site, motif finding algorithms are challenged to work only on
very small sample sizes. The “Model Real” set consists of only 25 data sets, however, each
containing between 18 and 78 sequences.

The summarized results for all three benchmark sets are shown in Figure 5.1. For all
tested tools, the average nCC value is given for each benchmark set. Detailed results for
each data set are shown in Figure A.1. As it is necessary to know the exact binding sites
of the predicted motif instances to calculate the Matthews correlation coefficient on the
nucleotide level, only tools could be tested that output this information. Therefore, only
Weeder, MEME, and XXmotif were used for comparison. On the “Algorithm Markov” and
“Algorithm Real” benchmark sets, XXmotif significantly outperforms both of the other
tested tools. On the “Model Real” benchmark set, however, XXmotif and Weeder show
nearly similar performance, whereas MEME predicts nearly no correct motif instance at all.
A possible explanation for the better performance of Weeder for the “Real” data sets in
comparison to the “Markov” data set might be the used background model. Weeder uses as
background model with precalculated 6-mer and 8-mer counts given an organism. However,
as no organism is given for any of the data sets, we tested all possible organisms and
chose M. musculus which performed best. Using such a background model is an advantage
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in comparison to MEME and XXmotif which use only a second-order background model
trained on the input set. Contrary, on the “Markov” data set which consists of sequences
created from a third order Markov model, the information within the higher orders of the
background model of Weeder is useless.
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Figure 5.1.: Results of the Drabløs benchmark for three different benchmark sets (Algorithm Markov,
Algorithm Real, and Model Real). The quality of motif predictions is measured by the Matthews
coefficient on the nucleotide level (nCC).

5.1.2. Motif sensitivity benchmark

To test the sensitivity of XXmotif, we applied the most widely used benchmark (Georgiev
et al. (2010), Gordân et al. (2010) on genome-wide yeast ChIP-chip data obtained from
Harbison et al. (2004). It consists of lists of S. cerevisiae intergenic regions that were
significantly enriched in 352 ChIP-chip experiments using 203 tagged transcription factors,
82 of which assayed under several conditions. For a subset of 80 transcription factors and
156 experiments, Harbison et al. (2004) found a published motif as a gold-standard reference.
We gave the general purpose motif discovery tools the positive and negative sets of intergenic
sequences as described in Harbison et al. (2004), while ERMIT (Georgiev et al., 2010) was
supplied with all intergenic sequences and with the set of published ChIP-chip enrichment
P-value for each sequence and each experiment. As described by Harbison et al. (2004),
only experiments having at least ten sequences with a ChIP-chip P-value < 0.001 were
considered.
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In addition to the gold standard set of literature motifs described by Harbison et al. (2004)
(“Harbison set”), we used two more recent data sets of literature motifs obtained by protein
binding microarray (PBM) experiments (“Bulyk set”: 56 motifs matching to 101 experiments
(Zhu et al., 2009), and “Hughes set”: 72 motifs matching to 126 experiments (Badis et al.,
2008)). We initially defined a correctly detected motif as having a normalized Euclidean
distance smaller than 0.25 in an overlapping region of length ≤ 6, as in Georgiev et al. (2010)
and Gordân et al. (2010):

D(a,b) = 1√
2w

w∑
i=1

√ ∑
L∈{A,C,G,T}

(ai,L − bi,L)2 (5.2)

where a and b are the regions of both PWMs that are overlapping and w is the size of
the overlap. But, when working with the “Bulyk set” of reference motifs, we realized that
the definition needs to be extended by the additional requirement of a minimum entropy
in the overlapping part of both matrices, as was done by Gordân et al. (2010). This
precludes counting motifs as correct that have an overlap only in non-informative regions,
which occurred frequently with the “Bulyk set” due to low information content in the outer
positions of these PWMs. Therefore, we additionally require the average relative entropy
per position over the 6 positions with highest information content in the overlapping region
to be at least 0.5 for both PWMs:

E(a) = 1
6

6∑
j=1

 ∑
L∈{A,C,G,T}

aj,L log2
aj,L

0.25

 (5.3)

where a consists of the six PWM columns of the overlap with highest information content.

We measured the sensitivity of the motif discovery tools in the same way as was done
previously (Harbison et al. (2004), Linhart et al. (2008), Georgiev et al. (2010), Gordân et al.
(2010)). For each tool, we counted the number of successfully identified motifs within the top
one and top four predictions (Figure 5.2, Table A.1). Tools that can include conservation
information where tested in both versions. When including conservation, the four yeast
species in the sensu strictu Saccharomyces clade were used for comparison. Alignments were
extracted from the UCSC 7-way yeast alignment (sacCer2) (Blanchette et al., 2004).

XXmotif without conservation information found 217 correct motifs cumulated over all
three data sets, 39% more than PRIORITY-D (Gordân et al., 2010) with 156, the next best
general-purpose tool, and 22% more than ERMIT (Georgiev et al., 2010), which is specialized
to motif discovery on ChIP-chip and ChIP-seq data. With conservation, XXmotif-C detected
220 correct motifs, 41% more than PRIORITY-DC (Gordân et al., 2010) with 156 correct
motif predictions. Interestingly, the background model is critical to avoid ranking false
motifs as top candidates. The standard version of MEME (Bailey and Elkan, 1994) uses a
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Figure 5.2.: Sensitivity of motif discovery tools on yeast ChIP-chip data. Number of correctly predicted
transcription factor binding motifs within the top 1 (A) or top 4 predictions (B). Predictions are
based on ChIP-enriched intergenic regions from 352 ChIP-chip experiments (Harbison et al., 2004).
Three experimental reference sets are used to judge the correctness of motifs (red, green, blue). The
dashed line separates the general-purpose motif discovery tools from ERMIT, which needs ChIP
enrichment P-values as additional information. In the tool names,M indicates a fifth-order Markov
model, C the use of conservation, and D the discriminative prior from the Hartemink lab (Gordân
et al., 2010).

zeroth-order background model trained on the input set and scores only 72 correct motifs
among its top predictions. Replacing its zeroth-order background model with a fifth-order
Markov model learned from the negative set (MEME-M) raises this number to 141. This
can be further increased to 153 by using the discriminative prior from the Hartemink lab
(MEME-D, Bailey et al. (2010)). We analyzed the influence of the background model
by running XXmotif with interpolated Markov models of order 0 to 9 (Figure 5.3). The
improvements were quite dramatic up to order 2, but became much smaller above.

When considering the top four predictions (Figure 5.2B), MEME with a zeroth-order model
achieved results nearly as good as the tools using higher-order background models. Hence,
the higher-order background model and discriminative prior mainly help to rank down false
motifs, which are often repetitive or have a biased nucleotide composition. The sensitivity
of Weeder (Pavesi and Pesole, 2006), AMADEUS (Linhart et al., 2008), and PRIORITY
(Narlikar et al., 2006) on the top four motifs is lower than that of MEME, as these tools
often report different variants of the same motif. Surprisingly, none of the tested tools –
including our own – could gain much on this data set by using conservation information.
MEME improved from 153 (MEME-D) to 155 (MEME-DC), PRIORITY stayed constant at
156 (PRIORITY-D and PRIORITY-DC), and ERMIT even decreased from 180 (ERMIT)
to 179 (cERMIT). This failure might be due to only weak cross-species conservation of
functional binding sites (Borneman et al. (2007), Odom et al. (2007)), but it may also
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Figure 5.3.: Number of correctly identified motifs of XXmotif on the ChIP-chip data set of Harbison
et al. (2004), depending on the order of the background model ranging from zero to nine. Three
experimental reference sets are used to judge the correctness of motifs (red, green, blue). (A) Top 1
prediction without conservation, (B) Top 4 prediction without conservation, (C) Top 1 prediction
with conservation, (D) Top 4 prediction with conservation

point to limitations of how conservation is evaluated and integrated into the motif search
(Mustonen and Lässig (2005), Kim et al. (2009), Shultzaberger et al. (2010)).

To find out how much XXmotif gained by its masking stage, we tested the performance of
the other tools on the masked sequence data but observed only minor improvements (see
Table A.1).

5.1.3. PWM quality benchmark

To assess the quality of the predicted motifs quantitatively, we could simply evaluate the
similarity of the predicted motif PWMs to the reference motifs. However, since some of
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the reference motifs themselves may be quite inaccurate, we sought a quality measure
that is independent of the reference motifs. We were inspired by the reference-free quality
assessment presented by Zhu et al. (2009), with which the quality of the PWMs obtained
with protein binding arrays was measured.

We analyzed how well the ChIP-enriched regions of Harbison et al. (2004) are predicted using
the motif PWMs reported by the tools. We selected the 247 data sets that had at least ten
significantly ChIP-enriched regions (P-value < 0.001). The positive and negative sequence
sets were generated as in the previous section. We selected the best from each breed of tools,
ran these six tools on the 247 sequence sets, and analyzed the PWMs they reported. For this
purpose, we ranked all intergenic regions by the best match to the reported PWM. Regions
that were significantly ChIP-enriched (P-value < 0.001) were counted as correct predictions,
all others as false predictions. A receiver operating characteristic (ROC) curve plots the
number of correct predictions over the number of false predictions (Figure 5.4). Usually,
only a small fraction of all intergenic regions contain a binding site for a transcription
factor. We therefore calculated the partial area under the ROC curve (pAUC) within the
best-ranked 5% false predictions. Here, pAUC = 1 corresponds to a perfect PWM that
scores all significantly ChIP-enriched regions above all other regions. A PWM whose correct
predictions are distributed uniformly among the 5% top-scoring regions would achieve a
pAUC ≈ 0.5. To avoid rewarding methods that tended to report overly specific motifs, we
employed five-fold cross-validation. This technique ensures that PWMs are assessed on a
part of the data that was not used to predict these motifs.

Figure 5.5 shows the cumulated distribution of pAUC values, one for each of 247 PWMs

Figure 5.4.: ROC curve of the PWM found by XXmotif in the CBF1_SM ChIP-chip data set and
the corresponding partial area under curve (AUC) value calculated from it. (A) All intergenic regions
having a ChIP-chip P-value < 0.001 are listed as true positives (TPs) (B) Only those TPs are listed
that have a binding site in the region that matches to at least one of the CBF1 PWMs from the
“Bulyk”, “Hughes”, or “Harbison set”.
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(A, B), and for each of 151 PWMs on a restricted data set (C, D). In A and C, the pAUC
values of the top-ranked PWMs are plotted. The average pAUC values are listed in the
legend. XXmotif attains an average pAUC value 20% higher than that of MEME-DC, the
second best tool, and 40% higher than PRIORITY-DC, the next best. Similar results are
obtained on the best out of the four top-ranked PWMs (Figure 5.5B, D).

The biggest differences between top 1 and top 4 predictions are observed for Weeder, scoring
0.071 and 0.172, respectively, though top 1 and top 4 predictions are comparable in the
sensitivity benchmark (Figure 5.2). Weeder has the tendency to report short motifs as the
top 1 prediction. These PWMs are too unspecific to achieve good pAUC values although
they are counted as correct in the sensitivity benchmark. The improvement for the top 4
predictions mainly originates from longer versions of the same motif at lower ranks. In
contrast, PRIORITY and AMADEUS have a predefined motif length (eight by default).
Since many regulatory elements have more than eight informative positions, their motifs are
often less specific than those of tools that optimize the motif length. cERMIT incorporates
conservation information into the algorithm by filtering out all non-conserved binding
sites. This strategy leads to very specific PWMs that cannot generalize well to weak but
functional sites. The result is an average pAUC comparable to MEME-DC, Weeder and
PRIORITY-DC, although the algorithm is more sensitive (Figure 5.2). Hence, ERMIT, which
does not incorporate conservation information obtains significantly better average pAUC
values than are obtained for cERMIT (Figure A.2). XXmotif incorporates conservation
information by combining P-values for conservation and motif enrichment (Section 2.2.5).
Therefore, conserved and non-conserved sites can contribute to the resulting motif, leading
to good motif qualities for both the top 1 and top 4 predictions.

No tool achieved a pAUC value of larger than 0.7 on any of the data sets, although ∼50%
of the PWMs are expected to be correct according to Figure 5.2. The low correlation of
binding sites predicted using PWMs and in-vivo binding sites as measured by ChIP-chip/seq
and related techniques is well known, and various causes have been implicated: (1) The
predicted PWM might not be specific enough to separate functional, bound sites from
nonfunctional, unbound sites. (2) Transcription factors only bind effectively in regions with
open, accessible chromatin as measured, for example, by DNase hypersensitivity (Li et al.,
2011). (3) Transcription factors compete with nucleosomes for the DNA reducing binding
efficiencies around regions of high nucleosome occupancy (Segal and Widom, 2009). (4)
Transcription factors with similar sequence specificities can compete for binding sites (Zhou
and O’Shea, 2011). (5) The immunoprecipitated transcription factor might bind indirectly
to the DNA via other factors.

In particular, we observed that quite often, long CA- and TG-repeats were predicted
irrespective of the immunoprecipitated transcription factor. These unspecific motifs are
overrepresented in the ChIP-enriched regions of the Harbison data set and therefore obtained
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Figure 5.5.: PWM quality assessment on yeast ChIP-chip data from Harbison et al. (2004). The
curves quantify how well the scores of the reported PWMs can predict the ChIP enrichment of the
sequences. Each PWM is used to rank the intergenic regions by their maximum PWM score. For
each predicted PWM, a receiver operator characteristic (ROC) curve with the number of correct
predictions over the number of false predictions is computed, and the partial area under the ROC
curve (pAUC) deduced from it. The pAUC is the fractional area under the ROC curve within the 5%
best-ranked false predictions. For an ideal predictor, pAUC = 1. The average pAUC scores are listed
in the figure legends. (A, B) cumulative distribution of the pAUC over all 247 ChIP-chip data sets
that had at least ten significantly enriched regions (P-value < 0.001). Regions with ChIP enrichment
P-value < 0.001 are defined as correct predictions, all other regions as false predictions. (C, D) As in
A, B but using only data sets that have at least five significantly ChIP-enriched regions with matches
to the literature motif, and considering only sequences that contain a match to the literature motif.

high pAUC scores (Eden et al., 2007). To reduce these and other potential sources of
discrepancies between ChIP-enrichment and binding sites, we restricted the analysis to
those 151 data sets which have at least five significantly ChIP-enriched sequences (P-value
< 0.001) with matches to one of the reference motifs in the “Harbison set”, the “Bulyk set”,
or the “Hughes set”. Here, we defined a match to a reference motif by a log-odds score
of at least 70% of the maximum attainable log-odds score for the PWM. We also ignored
ChIP-enriched regions without a match to one of the transcription factor’s reference motifs.
Figure 5.5 (C, D) shows the resulting pAUC distributions. Around 50% of all top-ranked
PWMs reported by XXmotif achieved pAUC values of at least 0.2, compared to 30% in



62 Chapter 5: Performance of XXmotif on TFBSs

Figure 5.5A. XXmotif improved most in this stricter benchmark setting. In the previous
setting (Figure 5.5A, B), the other tools tended to report more low-complexity motifs that
achieved good pAUC scores than XXmotif, whose low-complexity filter masks out most
dinucleotide repeats.

5.1.4. Metazoan benchmark

The great majority of motif discovery tools has been tested on artificial data sets or on
the ChIP-chip data sets of Harbison et al. (2004). Ron Shamir and coworkers therefore
assembled a benchmark set (“metazoan target set compendium”) with sequences mainly from
human and mouse (Linhart et al., 2008): 32 target sets contain enriched transcription factor
binding sites from human, mouse, fly (Drosophila melanogaster), and worm (Caenorhabditis
elegans), which are based on ChIP-chip experiments, co-expressed genes, and other data
sources. Ten target sets from human and mouse contain genes that are co-regulated under
microRNA (miRNA) knock-downs.

The 8-mer miRNA seeds were imported from miRBase 16.0 (Griffiths-Jones et al., 2006).
While Linhart et al. (2008) used experimentally validated transcription factor PWMs from
release 8.0 of the TRANSFAC database (Wingender et al., 1996), we could only access the
latest public release (7.0) and therefore had to remove eight transcription factors from the
analysis. We used the benchmark set up as described in Linhart et al. (2008) to evaluate the
sensitivity of XXmotif and the best versions of the previously tested tools that do not need
multiple sequence alignments to score sequence conservation. ERMIT could not be evaluated
on this benchmark since for many target sets no P-values existed. We used the same metric
as before to calculate the distance of a predicted motif from a literature motif. If multiple
validated motifs were listed in TRANSFAC or miRBase, we took the motif that had the
lowest distance to the predicted motif. The motif analysis was performed as described by
Linhart et al. (2008).

Figure 5.6 displays the results of the top four predictions in the same way as in Linhart et al.
(2008). On the transcription factor target sets, PRIORITY-D finds only two correct motifs,
whereas Weeder, MEME-D, AMADEUS, and XXmotif find 6, 14, 17, and 22, respectively
(divergence ≤ 0.25). When counting only highly similar motif predictions (divergence
≤ 0.15), PRIORITY-D achieves 0, Weeder 3, MEME-D 8, AMADEUS 10, and XXmotif 15
correct predictions. On the miRNA target sets, PRIORITY-D and AMADEUS, whose fixed
motif length of eight coincides with the length of the miRNA seeds, are able to detect 6
and 9 miRNA seeds, respectively. Weeder and MEME-D find 6 and 5, respectively, whereas
XXmotif finds 8 correct miRNA seeds. The results for the top one predictions show the
same trend (Figure A.3).
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Figure 5.6.: Top 4 benchmark results on 24 target sets for transcription factors from human, mouse,
worm and fly, as well as 10 target sets for microRNAs from human, and mouse from the metazoan
target set compendium (Linhart et al. 2008). The plot is adapted from Linhart et al. (2008): The
“Source” column indicates the experimental procedure or database from which the target set was
derived: Gene expression microarrays (Expr), ChIP-chip (CC), ChIP-DSL (C-DSL), DamID (van
Steensel et al., 2001), or Gene Ontology (GO) database (Ashburner et al., 2000). Black and gray
boxes indicate the similarity of the predicted PWM to the reference motif in TRANSFAC or miRBase.
Darker shades indicate closer similarity. “Set Size”: number of sequences within the input set.

We compared the run times of the five tools on the metazoan target set compendium for
a single core Xeon 2.9 GHz CPU (Figure 5.7). AMADEUS is the fastest tool with an
average run time per target set of 1m57s. XXmotif comes in second with an average run
time of 4m27s, whereas PRIORITY-D needs on average 13m23s. Neither AMADEUS nor
PRIORITY-D optimizes the motif length, which is the most time consuming step within
XXmotif. Weeder and MEME do optimize the motif length and are on average 19 and 700
times slower than XXmotif, respectively.
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Figure 5.7.: Rutime of tested tools on the metazoan benchmark. All jobs were run on a single core
Xeon 2.9 GHz CPU.

5.2. Regulatory Motifs for Early Embryo Segmentation in Flies

One of the most studied model systems of transcription regulatory networks is the network
that lays down the segmentation pattern along the anterior-posterior axis in the early
Drosophila embryo (Jaeger et al. (2004), Zinzen et al. (2009), Li et al. (2011), Perry et al.
(2011)). Various transcription factors are known to participate in this network, but also
other, as yet unidentified factors are believed to be involved (Segal et al. (2008), He et al.
(2010)). The identification of these “missing nodes” in the network would set the stage for
more accurate, quantitative models for this network paradigm.

We obtained 54 hand-curated cis-regulatory modules comprising sequences that are primarily
targeted by maternal and gap genes, and exclude some of the pair rule elements that are
primarily targeted by pair rule genes (Schroeder et al. (2004), Schroeder et al. (2011)). The
list of all 54 segmentation modules including the reference of each individual element was
provided by Mark Schroeder (Table A.5). Alignments for these sequences were generated
using the UCSC 14-way multiple sequence alignments (dm3). Since we expect functional
binding sites to be more conserved than background, we used the 13 most related species of
the UCSC 15-way multiple sequence alignments (Blanchette et al., 2004) consisting of the
Drosophila group and Anopheles gambiae as outgroup. For simplicity, we did not supply
a negative sequence set. In this case, XXmotif automatically constructs a second-order
background model from the sequences in the positive set.
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Table 5.1 lists all motifs reported in a single XXmotif run up to an E-value of 1. First, we
note that XXmotif’s E-values are quite conservative due to the Bonferroni correction and
that most motifs with an E-value below 1 correspond to real binding motifs. Of the 19
predicted motifs, 11 were clearly similar to motifs in the Fly Factor Survey (Noyes et al.,
2008) that all correspond to factors known to organize segmentation in the early embryo.
Impressively, the list of motifs includes representatives of most classes of the transcription

Table 5.1.: Motifs discovered in cis-regulatory modules for fly segmentation. The table lists all motifs
that XXmotif reports up to an E-value of 1 in a single run on 54 segmentation modules responsible
for patterning the anterior-posterior (AP) axis during early embryogenesis. To score conservation,
multiple sequence alignments of D. melanogaster, 11 other Drosophila species, and Anopheles gambiae
were supplied as input. For 11 of the 19 predicted motifs, similar literature motifs of transcription
factors known to be involved in AP axis segmentation have been found. The literature motifs and
names of the transcription factors are shown in the rightmost columns. Nine motifs are predicted
that may describe binding affinities of missing nodes in the transcriptional network.
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factors that are known to be involved in the segmentation. Factors missing are Forkhead
that is underrepresented in the considered sequences and Hunchback, for which an unusual
motif with consensus “TTTTTT” was reported in the literature (Gallo et al., 2011). As
Hunchback has many binding sites in the segmentation modules, we surmise that in our
second-order background model a “TT” is followed with high probability by another T,
increasing the P-value for matches to a “TTTTTT” motif beyond significance.

Nine of the predicted motifs cannot be matched to known factors. Their E-values are of
comparable significance as the known motifs. We therefore speculate that many of these novel
motifs belong to transcription factors that represent “missing nodes” in the segmentation
network. It will be exciting to determine experimentally what factors bind to these motifs,
for example using one-hybrid screens (Deplancke et al. (2006), Hens et al. (2011)) or mass
spectrometry techniques (Mittler et al., 2009).

5.3. Human Core Promoter Motifs

Core promoters are the regions around transcription start sites (TSS) to which the general
transcription machinery consisting of RNA polymerase and general transcription factors
bind. In recent years it has become clear that the motif architecture of core promoters can
influence the regulatory behavior of the promoter (Juven-Gershon and Kadonaga, 2010).
Around 15 motifs have been discovered in fly and human core promoters that are enriched
around human TSSs (Gershenzon and Ioshikhes (2005), FitzGerald et al. (2006), Gershenzon
et al. (2006), Xi et al. (2007)), the most frequently occurring ones being the TATA-box
( 10% occurrence) and the SP1 motif ( 11%). Most of the elements are rare and not generally
conserved within Animalia. For example the human Initiator motif reported by Xi et al.
(2007) occurs in only about one percent of all core promoters and bears little resemblance to
the Initiator found in D. melanogaster (consensus TCAGT).

We extracted 1871 core promoter regions from -300 bp to +100 bp around human transcription
start sites from the eukaryotic genome database (Schmid et al., 2006) and ran XXmotif
using the “zero or one occurrence per sequence” option. As we expect core promoter
elements to have a defined distance to the TSS, we used the “localization” option of XXmotif
(Section 2.2.7), in which P-values for positioning of motif occurrences are combined with
the enrichment P-values. No negative sequence set was given, therefore XXmotif learned a
second-order background model from the positive sequence set.

Table 5.2A shows all enriched PWMs with an E-value up to one. 18 of the 31 motifs
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Table 5.2.: Human core promoter motifs discovered by XXmotif. (A) Motifs reported up to E-value of
1 by a single run of XXmotif on 1871 human core promoter regions (-300 bp to +100 bp around TSS)
from the eukaryotic promoter database (EPD, Schmid et al. (2006)). For 18 of the 31 predicted motifs
we found similar motifs in the literature. Their names are given in the last column. The motif at
position 14, which was originally named Initiator (Xi et al., 2007), is actually the reverse complement
of YY1 and is therefore referred to as YY1 (rev) here. Four novel, highly significant motifs, designated
XX1 to XX4, show positional distribution peaks near the TSS. XX4 is the canonical Initiator motif
similar to elements found in D. melanogaster and S. cerevisiae. Nine motifs have a broad positional
distribution and are not named. The positional distributions of the PWMs were obtained by scanning
the PWMs over a larger region (-1000 bp to +500 bp) around the TSS. (B) Top five motifs obtained
with the core promoter sequences of the 65 genes annotated as coding for ribosomal proteins in EPD.
These motifs occur relatively frequently in ribosomal genes and are likely to be characteristic for
constitutively and highly expressed human genes.

are similar to previously described motifs, whose names are given in the last column. These
motifs are indeed enriched within the core promoter region, as shown by their positional
distribution in a region from -1000 bp to +500 bp around the TSS.

Nine motifs are mostly repetitive, of low compositional complexity, and rather uniformly
distributed. We believe that they do not represent functional promoter motifs. Possibly
these low complexity regions serve to modulate the physical properties of the DNA double
helix near the core promoter, for example in order to attract or repel nucleosomes.

XXmotif further detected five sharply peaked motifs with E-values comparable to those of
previously described motifs (XX1 to XX5). XX1 is similar to a tandemic version of NRF2
(rev) missing the first adenine. However, as XX1 has a sharper positional distribution and
a higher E-value than NRF2 (rev), we consider it to be a distinct core promoter element.
YY1 (rev) was called Initiator element in Xi et al. (2007) due to its precise localization at
the TSS. But in contrast to the very specific YY1 (rev) motif, which occurs in only 1.2% of
EPD core promoter sequences, motif XX4 occurs in 6.5%, is equally well positioned at the
TSS, and is similar to known Initiator elements in flies (Ohler, 2006) and yeast (Zhang and
Dietrich, 2005). We therefore suggest that XX4 is the as yet undiscovered canonical human
Initiator motif.

XXmotif also finds a second Initiator element (called the “TCT element”) that was discovered



5.4 Discussion 69

in fly promoters of ribosomal protein genes and was shown to also be enriched around human
TSSs (Parry et al., 2010). To further analyze the ribosomal system of transcription initiation,
we searched for motifs in the subset of 65 promoter regions of genes annotated to code for
ribosomal proteins (Table 5.2B). We found four motifs that we had already seen on the large
set of core promoters, and their PWMs look almost identical. All four are strongly enriched
at ribosomal protein core promoters. As expected, the TCT motif is among them, occurring
at 26% of ribosomal protein genes, compared to 0.5% of all genes (50-fold enrichment). Motif
XX3 is present in 20% of these promoters, in comparison to 0.6% over all EPD promoters.
NRF1 and CLUS1 are enriched 3.5 fold and eight-fold, respectively. XX5 is a novel motif
that bears some similarity to XX2.

In summary, in addition to finding almost all motifs known to be enriched in human core
promoters, we discovered five new motifs that are strongly peaked around TSSs. It will
be exciting to understand the function of these motifs, find the corresponding specific or
general transcription factors and to investigate the association of these motifs with regulatory
properties of core promoters, such as stress inducibility, degree of tissue- and time-dependent
regulation, maximum and basal transcription rates.

5.4. Discussion

We aimed to demonstrate XXmotif’s usefulness in several complementary, biological bench-
marks and applications. On a large data set of ChIP-chip measurements, we compared the
sensitivity and the quality of predicted motifs of various state-of-the-art motif discovery
tools. On a smaller data set, the metazoan target set compendium, we could show that
XXmotif’s sensitivity for detecting the correct motifs was transferable to metazoan and
mammalian sequences, and to diverse scenarios for measuring and selecting motif-enriched
sequences. We then applied XXmotif to 54 segmentation modules in flies and discovered
most of the binding motifs of known segmentation factors.

Finally, we analyzed human core promoter sequences with XXmotif. We found almost all
previously described motifs as well as five novel motifs that have sharply peaked positional
distributions around the TSS. One of the novel motifs is localized to within ±10 base pairs
of the TSS and is similar to the Initiator motif in fly, and yeast, which identifies it as the
canonical human Initiator motif. We did not find the BRE, DPE, and MTE elements.
However, these were never found by a de-novo search on human core promoter sequences.
The BRE element was deduced from crystal structures of TFIIB and TBP bound to the
DNA (Nikolov et al., 1995) and later shown to be weakly positioned, but enriched around
TSSs of several species (Gershenzon et al. (2006), Sandelin et al. (2007)). The MTE and
DPE elements were discovered in D. melanogaster (Ohler et al., 2002) and, by scanning
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their PWMs over human core promoter sequences, the DPE element was then found to be
slightly enriched around human TSSs (FitzGerald et al., 2006). However, their positioning
and signal over background is much weaker than about we observe for the motifs reported by
XXmotif. Five motifs, two of them discovered in this study, are found to be strongly enriched
in human core promoters of ribosomal protein genes. It is an intriguing possibility to try to
combine these motifs into a “super core promoter” that would support extremely high levels
of transcription for applications in basic research and biotechnology (Juven-Gershon et al.,
2006).

Several design aspects contribute to XXmotif’s performance. First, its pattern-based stage
(Figure 2.3, red) is very sensitive and efficient in finding good patterns to be improved in
the PWM stage (green). XXmotif employs palindromic and tandemic seeds with gaps of up
to 11 positions. Its parallel strategy to extend the best five patterns instead of only the best
one and the possibility to extend patterns across gaps allows it to find patterns that do not
contain even a single, significant 5-mer seed.

Second, an eighth-order background model gives clear improvements over lower-order models
(Figure 5.3). The use of an interpolated Markov model makes it possible to train high orders
with limited data (Salzberg et al., 1998). To understand why higher orders help, note that
some sequences with relatively low complexity, such as (imperfect) trinucleotide repeats, can
be strongly overrepresented in the entire genome and will look enriched in comparison to
a first-order background model in any subset of genomic sequences. Some tools, such as
AMADEUS, do not train a statistical background model but instead use the negative set
directly to determine the P-values of patterns. Therefore, no patterns of any length that
are enriched uniformly in the entire genome can become significant. However, this approach
has the disadvantage of limiting the significance of P-values that can be calculated. If a
pattern does not have a single match in the negative set, it is not possible to decide if it can
be improved by extending it. The pattern length is therefore limited to around 8 positions
in practice.

Third and most importantly, XXmotif can optimize motif PWMs by statistical significance
of enrichment as measured by P-values. It thus combines the solid statistical estimates of
pattern-based algorithms with the more powerful representation of motifs by PWMs. In
contrast to patterns, PWMs can describe weak and strong binding. In a thermodynamic
treatment of factor binding, PWMs emerge naturally, representing the independent energetic
contributions of the binding site nucleotides to the binding energy. A challenge in calculating
P-values for PWMs is that, unlike for patterns, we cannot simply count matches. Instead, we
have to compute P-values for each and every position in the input sequences and somehow
combine these P-values for motif occurrences to yield a motif enrichment P-value. We
have solved this by applying order statistics and we effectively optimize the score threshold
above which potential sites are counted as matches. This procedure can be interpreted
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from a thermodynamic viewpoint. It is equivalent to the zero-temperature approximation of
factor binding, in which sites are either not bound or fully occupied (Homsi et al., 2009).
The optimization of K (and hence of the P-value threshold) corresponds to finding the
factor concentration at which the total occupancy on the positive sequences differs most
significantly from that on the background sequences. But why should it be better to optimize
P-values instead of likelihoods in the first place? In lieu of an answer, we note that all
popular PWM-based tools in the end rank their motifs by P-value, not by the likelihood.

Fourth, because XXmotif quantifies information from all sources (enrichment, conservation,
positioning) by P-values, it is straightforward to combine these without having to resort to
loss-prone heuristics. As an additional advantage, other sources of independent information
such as chromatin accessibility scores could be easily added in this framework.

In conclusion, XXmotif is a general-purpose method for the discovery of enriched motifs in
nucleotide sequences that is based on optimizing the P-values of motif PWMs. In several
benchmarks on yeast and metazoan sequences, XXmotif compares favorably with some of the
best state-of-the-art motif discovery tools. We hope that in this era of functional genomics
and high-throughput, data-driven biology, XXmotif will contribute towards understanding
the regulation of our genomes by sequence-specific binding of protein and ncRNA factors.





6. Analysis of the Motif Architecture within
Fly Core Promoters

6.1. Introduction to Core Promoters in D. melanogaster

Although there has been substantial progress in the structural understanding of eukaryotic
transcription (e. g., Kostrewa et al. (2009)), the regulation of this complex process of
RNA synthesis from a DNA template still remains poorly understood (Juven-Gershon and
Kadonaga (2010), Ohler and Wassarman (2010)). A key step in modulating transcriptional
activity is the initiation, thus the assembly of the pre-initiation complex (PIC) consisting
of the basal transcription factors TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH at
the core promoter (Thomas and Chiang, 2006). Here, within a region of around fifty base
pairs upstream and downstream of the transcription start site (TSS), the DNA is enriched
with defined sequence elements serving as assembly platforms for the basal transcription
factors. Mutations within this so called core promoter elements (CPEs) are able to affect
the efficiency of PIC assembly, displace the native TSS, or alter the expression strength
(Grosschedl and Birnstiel, 1980).

Several CPEs have been identified using biochemical or computational approaches, e. g., the
TATA-box, BRE, Initiator, DPE, MTE, or DRE (Ohler et al. (2002), Smale and Kadonaga
(2003)). However, many genes contain only one or no known CPE, prompting the question
how the transcription machinery finds these core promoters. Yet unknown motifs or the
incorporation of physical properties of the DNA within the core promoter region (Abeel
et al., 2008) might be an explanation.

High quality TSS data provide a detailed genome-wide map of single transcription initiation
events. In D. melanogaster, strong correlations between several CPEs and different initiation
patterns could be identified (Hoskins et al., 2011), demonstrating the possibility to enrich
CPEs by selecting gene sets with special properties. One approach to perform such a
grouping based on TSS data incorporates the width of the region in which initiation occurs
and the proportion of TSS counts within a window of 2 nucleotides around the mode of
the distribution. Following the classification scheme based on this information, one of
three different classes is selected: narrow peak (NP), broad peak (BP), or weak peak (WP)
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promoter (Ni et al., 2010). A second approach is based on a continuous measure defining
the shape of the distribution, the shape index (SI). Promoters with an SI score > −1 are
defined as peaked, whereas promoters with an SI score ≤ −1 as broad (Hoskins et al., 2011).
However, as the SI score is strongly influenced by the number of counts, highly expressed
genes tend to be classified as broad promoters.

Per nucleotide resolution of TSSs is also important for de novo identification of CPEs.
Already known elements like TATA-box, DPE, or MTE are located almost exclusively
at defined positions with respect to the TSS. A previous analysis utilized these distance
restrains by specifically searching for 8-mer/6-mer patterns that are non-randomly enriched
within bins of 20 bp (FitzGerald et al., 2006). However, a rigid bin size and pattern-based
method is prone to be too specific to detect degenerate core promoter elements. The more
flexible PWM model was used by Ohler et al. (2002) to analyze the core promoter of
D. melanogaster. However, as the used motif discovery tool MEME (Bailey and Elkan, 1994)
cannot incorporate localization information, they had to focus the analysis on a very small
region surrounding the TSS.

In vitro and in vivo mutation experiments are frequently used to validate newly identified
motifs (e. g., Lim et al. (2004), Parry et al. (2010), Seizl et al. (2011)). In a small subset of
genes, these experiments prove the importance of a binding site for transcription initiation.
However, mutation experiments are time consuming and do not allow to compare the quality
of nearly similar PWMs. In contrast, in silico approaches allow for a model comparison
on a genome-wide scale. Properties like strand specificity, localization with respect to the
TSS, overrepresentation within the core promoter region, as well as conservation to related
species are useful features to analyze whether a newly found motif might be functional.

Since general transcription factors such as TBP, or TRF2 act in defined complexes with
multiple DNA binding domains (Veenstra and Wolffe (2001), Hochheimer and Tjian (2003)),
subsets of CPEs are more frequently found in the same promoter than in different ones.
Peaked promoters, for instance, have higher frequencies of location-specific CPEs (e. g.,
TATA-box, Initiator, DPE, MTE), whereas broad promoters contain the complementary set
of known elements (Rach et al., 2009). Stalled genes also contain specific elements (GAGA,
Initiator, Pause Button) (Hendrix et al., 2008) indicating that special motif combinations
trigger defined gene properties.

In this chapter we provide an improved picture of the motif architecture of eukaryotic core
promoters. Based on experimentally derived features, i. e., expression strength, difference of
expression within developmental stages, stalling, as well as peakedness of the transcription
initiation cluster, we defined 19 gene sets that allow us to analyze correlations to CPEs. To
assure high quality sets, we derived an expression independent score for the peakedness of
transcription initiation patterns (MAD score), and separated expression classes by analyzing
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their distribution. In order to reveal novel motifs within these sets, we used XXmotif that
combines a P-value that evaluates whether the motif sites are located non-randomly with
respect to the TSS with motif overrepresentation and conservation P-values (see Chapter 2).
Hence, our de novo motif analysis can be performed in a single run on large regions of the
core promoter without loosing the descriptive power of a PWM. All analyses in this chapter
were done in close collaboration with two Master students I was supervising, Anja Kiesel
and Mark Heron.

6.2. Drosophila Core Promoters Fall Into Four Classes

To obtain gene sets likely to consist of different combinations of CPEs, we examined
expression data from different developmental stages (Graveley et al., 2011), stalling data
(Zeitlinger et al., 2007), and CAGE data measuring single transcription initiation events (Ni
et al. (2010), Hoskins et al. (2011)).

6.2.1. TSS cluster width

The CAGE data was used to separate promoters with a defined position of transcription
start sites (TSSs) from promoters utilizing several TSSs distributed over a broad genomic
region. In a first step, we defined clusters of TSSs belonging to one promoter. Therefore, we
smoothed all CAGE tags with a rectangular kernel, and chose continuous regions above the
genomic background as clusters if they were close enough to an annotated gene (Section
6.4.1). To quantify the peakedness of a cluster, we utilized a score calculating the mean
absolute deviation from the median (MAD score):

MAD = 1
n

n∑
i=1
|xi −m(X)| (6.1)

where n is the number of tags within the cluster, xi represents the position of the ith tag
and m(X) is the median tag position within the cluster. In contrast to the SI score (Hoskins
et al., 2011) that has a clear bias towards lower scores if the TSS cluster has many tags, the
MAD score is independent of the cluster size (Figure 6.1).

The distribution of cluster widths over all genes is depicted in Figure 6.2A. The local minima
at cluster width five was used as threshold to classify core promoters as either a narrow peak
(NP) promoter or a broad peak (BP) promoter. As the distribution can be easily fitted by
two Gaussians, we do not find any evidence for the existence of a third class of promoters as
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defined by Ni et al. (2010). For the distribution of SI scores, no clear minimum is observable
(Figure B.1), which indicates that the MAD score is a better measure to define the width of
TSS clusters. For each cluster the TSS was defined as the mode of the tag distribution.

Figure 6.1.: Comparison of the MAD score (A) and SI score (B) metric to estimate the peakedness
of a TSS cluster. Each score is calculated on sampled tags from a normal distribution given the
standard deviation (std-dev).

6.2.2. Gene sets

Figure 6.2 summarizes the distribution of all promoters depending on the TSS cluster
width (A), as well as on different gene expression properties in 30 different developmental
stages (B–F). Gene sets were selected depending on the inducibility of gene expression
(MAD expression, B), minimum gene expression (C), maximum gene expression (D), gene
expression in embryo, larva, or female (E), and gene expression in adult (F). The dashed
lines indicate the used thresholds to define each set. If possible, thresholds were chosen at the
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minima of the distribution (A, C). Otherwise, we used the highest and lowest 10% quantiles
to derive sets of genes with special behaviors. As an exception, we divided the tail of the
MAD expression distribution (B) into two overlapping classes: the “high” class consists of
the 10% genes with highest MAD expression, whereas the “medhigh” class consists of the
top 40% of genes. In addition to these 18 sets, we built a set of all genes classified as stalled
by Hendrix et al. (2008).

Figure 6.2.: Distribution of all genes depending on TSS cluster width (A), strength of gene regula-
tion (B), minimum and maximum expression rate within 30 different developmental stages (C, D),
and gene expression within embryo / larva / female (E) or adult (F). Dotted lines represent the
chosen thresholds to separate all genes into different gene sets.
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6.2.3. Identification of core promoter elements

To examine whether specific core promoter elements are enriched within the chosen gene
sets (Figure 6.2), we performed a de novo motif search for each set separately. Therefore,
we created alignments to the four most related Drosophila species, extracted core promoter
sequences from −100 bp to +50 bp around the identified TSSs, and used XXmotif with
the zero or one occurrence per sequence option (Section 2.2.3). If the same core promoter
element was found in more than one set, we selected the motif with the lowest reported
E-value as the representative for further analysis.

Table 6.1 summarizes the results of the motif search and subsequently performed analysis to
validate the found motifs. In total, we were able to identify 12 previously described CPEs
(Ohler et al. (2002), FitzGerald et al. (2006), Parry et al. (2010)) as well as 7 new elements.
All identified CPEs are highly significant with E-values ranging from 7×10−48 to 1×10−1331

for already known motifs, and 1× 10−24 to 5× 10−160 for the newly identified motifs. Three
CPEs are precisely located at the TSS, which we call based on their localization INR, INR2,
and INR3. In contrast to a previous analysis (Ohler et al., 2002), we did not identify two
distinct motifs for DPE and MTE, but only one motif that overlaps both elements, hence
called MTE/DPE. Moreover, we identified two different E-box variants containing the known
E-box consensus CANNTG that is bound by basic helix-loop-helix leucine zipper (bHLH-zip)
transcription factors: E-box1 and E-box2. E-box1 consists of the CAGCTG consensus and
was computationally identified by FitzGerald et al. (2006). E-box2 consists of the CACGTG
consensus, is positioned with respect to the TSS (Hulf et al., 2005), and bound by Myc-Max
complexes that activate the transcription of nearby genes (Amati et al., 2001).

To assign a motif match in a promoter region as a binding site we used two criteria: (1)
If the motif has a significantly non-random localization, the binding site has to be within
the region of enrichment. This region was taken from the output of XXmotif. (2) The
match score of the PWM to the binding site has to be above a motif specific minimal score
threshold. To determine this minimal score threshold we optimized the mutual information
between the motif and all gene sets separately, which corresponds to an optimization of
the TF concentration (Section 6.4.2). The gene set with the highest mutual information
(and positive correlation) to the motif is given in column “Gene set”. As already shown by
Hoskins et al. (2011), INR, MTE/DPE, GAGA, and revGAGA are enriched within narrow
peak promoters (NP), and INR2, DRE, Ohler7, E-box1, and Ohler6 within broad peak
promoters (BP). However, TATA-boxes, INR3, and E-box2 seem to show special properties,
as they are specifically enriched in the gene sets MAD high (strongly regulated genes), min
high (strongly expressed in every developmental stage), and elf high (upregulated in embryo,
larvae, and female), respectively.

Column “Distr” of Table 6.1 depicts the distribution of all assigned binding sites within
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Table 6.1.: Core promoter motifs detected by XXmotif on 19 different gene sets in D. melanogaster.
If the same motif was found in different gene sets, the motif with the best E-value was chosen. Motifs
above the dashed line are previously described in literature, motifs below are newly detected. The
gene set with the highest mutual information (and positive correlation) to the motif is given in column
“Gene set”. Column “Distr” depicts the distribution of all assigned binding sites within the gene
set having the highest mutual information (“Gene set”) smoothed over five nucleotides. The region
with the highest enrichment of binding sites is taken from the XXmotif out (“Range”). Column
“Conserv” indicates the average conservation of binding sites within related species. whereas 1 is
perfect conservation, and 0 no conservation. The 11 bars correspond to related Drosophila species,
ordered by ascending evolutionary distance. Column “Occ [%]” gives the frequency of motif sites
within the whole sequence set (the gene set of highest mutual information).
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the gene set having the highest mutual information (“Gene set”) from −500 bp to +200
bp with respect to the TSS smoothed over ten nucleotides. Considering only the forward
strand (red curve), two groups of CPEs can be detected: CPEs that have a per nucleotide
defined position with respect to the TSS (i. e., INR, MTE/DPE, INR2, TATA-box, INR3),
and CPEs that show an enrichment within 50 – 100 nucleotides (i. e., GAGA, DRE, E-box1,
Ohler6, E-box2). Our newly identified motifs mainly fit into the second group (i. e., CGpal,
revINR2, TTGTT, AAG3, ATGAA), however, we could also identify a new CPE that is
located within a range of only five nucleotides with respect to the TSS (RDPE). The range
of the most significant motif enrichment as given by XXmotif is depicted within column
“Range”. Considering both forward and reverse strand allows for the analysis of strand
specificity. Again, two groups can be detected: Strand specific CPEs (e. g., INR, MTE/DPE,
Ohler7), and CPEs that are located on both strands (e. g., GAGA, DRE, E-box1). Our
newly identified motifs fall into both classes. AAG3, ATGAA, and RDPE show enrichment
only on the forward strand, whereas the palindromic motif CGpal and TTGTT are found
on both strands with similar frequency. Interestingly, revINR2 has a very low frequency
on the forward strand compared to its known reverse complement INR2, and shows an
enrichment of binding sites not only within the core promoter region from −100 bp to −2
bp with respect to the TSS, but also between −500 bp and −200 bp.

To measure conservation information, we analyzed the difference of PWM scores in D. melano-
gaster to 11 related species (Figure 6.3). In a first step, we correlated the PWM scores
from binding sites of D. melanogaster to aligned binding sites from each related species.
Column “PWM Scores” shows the scatter plots of these correlations for the known motif
MTE/DPE, the newly identified motifs CGpal and ATGAA, as well as a negative control
(AACCTTGG). The remaining motifs and more negative controls are shown in Figure B.2.
The average PWM score distance between D. melanogaster and the related species ordered by
evolutionary distance for all binding sites passing the minimal score threshold and enriched
region filter is shown in Column “Score Distance” as a red circle. The boxes correspond
to the expected score distance calculated on aligned binding sites from sampled sequences
(Section 6.4.3). The final conservation plot (column “Conservation”) depicts a scaled measure
of the sampled and biological score distances, with a one denoting perfect conservation of the
PWM score and a zero no conservation (Section 6.4.3). The barplots in column “Conserv.” of
Table 6.1 summarize these conservation plots. In general, three types of conservation can be
identified: First, CPEs that are equally conserved in the whole Drosophila group (i. e., INR,
MTE/DPE, TATA-box, INR3, E-box2, ATGAA), second, CPEs that are only conserved in
the melanogaster subgroup consisting of the four closest related species (i. e., INR2, DRE,
Ohler7, Ohler6, revINR2, AAG3, RDPE), and third, CPEs that are well conserved within
the melanogaster subgroup, but only moderately conserved within the whole Drosophila
group (i. e., GAGA, revGAGA, E-box1, CGpal, TTGTT, revTTGTT).
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Figure 6.3.: Conservation of newly predicted motifs compared to MTE/DPE and AACCTTGG as
a negative control. Column “PWM Scores” depicts the scores of the motif PWM for each site in
D. melanogaster and the aligned site in D. simulans. . The average PWM score distance between
D. melanogaster and related species is shown in Column “Score Distance” as a red circle. To calculate
the average PWM score we use only binding sites with a PWM score above the minimal score
threshold and within the enriched region. Related species are ordered by evolutionary distance. The
boxes correspond to the expected score distance calculated on aligned binding sites from sampled
sequences. Column “Conservation” depicts a scaled measure of the sampled and biological score
distances, giving a one for perfect conservation of the PWM score and a zero for conservation as
expected from background. Error bars indicate the standard deviation over all sampled conservation
scores (Section 6.4.3).
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6.2.4. Core promoter elements allow for the prediction of gene properties

To analyze the influence of TSS cluster width, expression in developmental stages, and
stalling index on the enrichment of CPEs, we ordered all genes depending on each property
(Figure 6.4, Figure B.3) and calculated Z-scores for the enrichment of every CPE within bins
of 50 genes. Strikingly, sets of CPEs show transitions from correlated to anticorrelated and
vice versa at defined scores. An example is the cluster width of five that is also the value
estimated from the distribution in Figure 6.2A to separate NP and BP promoters. More
specific sets of CPEs are enriched in stalled genes (INR, MTE/DPE, GAGA) (B), genes
with a high expression in every developmental stage (Ohler6, Ohler7, INR3, RDPE) (C),
genes with a high expression in at least one developmental stage (TATA-box, ATGAA, INR3,
RDPE) (D), and within the most regulated genes (TATA-box, ATGAA) (E). Correlating
all CPEs to all gene sets from Figure 6.2 provides a global view on the architecture of core
promoters in D. melanogaster (F). In total, four sets of CPEs with similar correlations to all
considered gene sets are observable, and E-box2 as a specific element for the elf high gene
set consisting of up-regulated genes within embryo, larvae, and female. This special role
of E-box2 fits to the importance of the Myc protein that binds the E-box2 consensus, and
is crucial in controlling cellular proliferation and growth during development (Oster et al.,
2002).

Class 1 (INR, MTE/DPE, GAGA, CGpal) and Class 2 (TATA-box, ATGAA) CPEs are
both present in genes with narrow peak promoters (NP). However, whereas Class 1 enriched
genes show no extreme expression values (max high, min low), are only slightly regulated
(MAD medhigh), and show strong correlations to stalled genes (stalledPol), Class 2 enriched
genes belong to the 10% most highly expressed genes in at least one developmental stage
(max high), and to the most strongly regulated genes (MAD high). Class 3 (INR2, Ohler6,
DRE, Ohler7, E-box1, revINR2, TTGTT) is the only class of CPEs present in broad peak
promoters (BP). Enriched genes are similarly expressed in all developmental stages (MAD
low), a main feature of genes having housekeeping function. Class 4 (INR3, RDPE) is like
Class 2 enriched within the 10% most strongly expressed genes (max high) and mainly
present in narrow peak promoters (NP). However, Class 4 genes are in contrast to all other
classes strongly expressed in all developmental stages (min high). A gene ontology (GO)
analysis of this set of genes clearly describes them as being ribosomal (Table B.1). The only
identified CPE that shows no significant enrichment to any of the 19 gene sets is AAG3. It
might either be of general importance, or specific for a gene set not included in our analysis.
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Figure 6.4.: Fly core promoter motifs are correlated to distinct gene properties. In (A–E), genes are
sorted by five scores and the frequency of the core promoter motifs on the x-axis within bins of 50
genes is indicated from red (depleted) to blue (enriched) by Z-scores. (A) TSS cluster width derived
from CAGE data (Ni et al. (2010), Hoskins et al. (2011)). (B) Stalling index (Zeitlinger et al., 2007),
(C) minimum expression, (D) maximum expression, (E) strength of regulation over 30 developmental
time points (Graveley et al., 2011). (F) Correlation of core promoter elements to 19 different gene
sets reveals four classes of elements with similar MCC values to all sets.

6.2.5. Core promoter elements belong to specific architectures

To analyze whether different CPEs occur within the same core promoter, we calculated
the correlations between all CPEs (Figure 6.5). In agreement with the four identified
classes, most CPEs are positively correlated to all elements within their class and negatively
correlated to CPEs belonging to other classes. Only the Class 4 elements are positively
correlated to some motifs of especially Class 3.

The co-occurrence of CPEs within one class indicates the usage of a specific transcription
initiation complex utilizing several binding sites for each class. One such example is the
TFIID complex that assembles at the DNA due to interactions to the Class 1 element INR
bound by the subunits TAF1 and TAF2 (Smale and Baltimore, 1989), and the DPE element
bound by the subunits TAF6 and TAF9 (Burke and Kadonaga, 1996). Hence, it is likely
that the remaining Class 1 elements also contribute to the binding of TFIID. Within Class 2,
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Figure 6.5.: Fly core promoter elements occur in defined architectures. Correlation of all CPEs to
each other reveals elements that occur preferentially within the same promoter (positive MCC values,
blue) or avoid each other (red).
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TATA-boxes are known to be bound by TBP (Goldberg, 1979) that also belongs to the TFIID
complex. However, TATA-boxes are anti-correlated to the MTE/DPE element, suggesting
that the new element ATGAA replaces the MTE/DPE element in Class 2 promoters. Similar
hypothesis can be stated for Class 4 promoters consisting of INR3 and RDPE. As shown
by Parry et al. (2010), genes containing the INR3 are not regulated by TFIID, but by a
special RNA polymerase II system for ribosomal protein genes. As genes containing the
RDPE element are clearly ribosomal (Table B.2), we named the downstream of the TSS
located element RDPE (ribosomal downstream promoter element) by its potential function
to substitute DPE in the ribosomal system of transcription initiation.

Negative correlations between elements within the same class are only found for elements
located on both strands (e. g., GAGA vs. revGAGA, TTGTT vs. revTTGTT) and for
two groups of elements within Class 3. The first group of elements (Class 3A) consists of
INR2 and Ohler6. Both elements are strongly correlated, which indicates their binding to
the same complex. In contrast, the second group of elements, DRE, Ohler7, and E-box1
(Class 3B), are all anticorrelated to the Class 3A elements, indicating a different mechanism
of transcriptional initiation. DRE promoters are known to be bound by TBP-related factor 2
(TRF2) associating with the DRE-binding factor DREF (Hochheimer et al., 2002). The
remaining elements of Class 3 (TTGTT, revTTGTT) show weak positive correlations to all
elements of their class suggesting that both transcription initiating complexes present in
this class share DNA binding subunits.

6.2.6. Each class of core promoters has defined physical properties

To analyze whether the identified classes of core promoters differ not only in their motif
composition, but also in the physical properties of their surrounding promoter region, we
examined the average dinucleotide frequency over all promoters within each of the four
classes of core promoters (Figure 6.6). All classes show a strong composition bias for A and T
containing dinucleotides, preferentially for ‘AA’ and ‘TT’ adjacent to the core promoter
region located between −100 to +50 bps with respect to the TSS. However, the classes vary
strongly in the shape of A/T enrichment and the most frequently occurring dinucleotides.
Class 1 promoters (A) show a strong ‘AA’ vs ‘TT’ bias within 500 bps downstream of the
TSS that is reduced to around 150 bps for Class 2 promoters. Class 3 promoters possess
two peaks of A/T enrichment, one ∼150 bp upstream and the other 75 bp downstream
of the TSS. The downstream peak consists preferentially of ‘AA’ and ‘TT’ dinucleotides,
whereas the ‘TT’ peak is located around 20 bps upstream of the ‘AA’ peak. In addition to
the two peaks of Class 3, Class 4 promoters show a second ‘AA’ peak located at around 150
bps downstream of the TSS.
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Figure 6.6.: Each class of core promoter elements belongs to genes with distinct dinucleotide patterns.
Each line corresponds to the average frequency of a dinucleotide over all promoters within the
respective class, smoothed over 15 nucleotides. (A) Class 1 promoters (regulated genes), (B) Class
2 promoters (highly regulated genes), (C) Class 3 promoters (housekeeping genes), (D) Class 4
promoters (ribosomal genes).



6.3 Summary 87

6.3. Summary

Our analysis revealed 12 known and 7 novel core promoter motifs in D. melanogaster that are
all conserved and show a clear localization to the TSS. Strikingly, the major core promoter
element composition is sufficient to define fairly reliably to which of four classes a gene
belongs (Figure 6.7). Genes with narrow, focused TSS clusters are strongly enriched in
the green Class 1 and orange Class 2 motif groups, whereas genes with broad TSS clusters
are enriched in the blue Class 3 motif group. Genes constitutively expressed at high levels
(mostly ribosomal protein genes) are strongly enriched in the red Class 4 motif group,
whereas genes that are switched off completely in some conditions are strongly enriched
for motifs from the orange and green groups. Genes that can be regulated by stalling after
initiation are highly enriched for green motifs. These four classes are characterized by their
minimum expression, maximum strength, variability of expression, stallability, and TSS
cluster width. Our results thus demonstrate the importance of core promoter sequences in
shaping transcriptional behavior.

Figure 6.7.: Four classes of core promoters are separated by cluster width (x-axis), minimum expression
strength (y-axis), and maximum expression strength (z-axis). Each point corresponds to a promoter
colored by the core promoter class with the highest scoring motif. Green: Class 1 (regulated genes),
yellow: Class 2 (highly regulated genes), blue: Class 3 (housekeeping genes), red: Class 4 (ribosomal
genes), black: no binding site of any motif.
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6.4. Materials and Methods

6.4.1. Tag clustering

All tags from two CAGE datasets (Ni et al. (2010), Hoskins et al. (2011)) were pooled and
smoothed using a square kernel function of width 41. Clusters were defined as continuous
regions with a tag distribution higher than the genomic average. For each cluster, the TSS
was declared at the position with the most assigned tags. For further analysis, we only
used clusters with at least five annotated tags and no other TSS within a range of 150 bps.
Furthermore, we only considered clusters with either an annotated gene start within 250 bps
downstream of the TSS, have the TSS within an annotated 5’UTR, or contain an annotated
FlyBase (McQuilton et al., 2012) TSS within the cluster. The clustering resulted in 12061
different TSS clusters for 8502 different genes.

6.4.2. Optimization of minimal score thresholds

To determine the minimal log-odd score of a PWM indicating the presence of a motif, we
calculated the mutual information between the motif and all gene sets to which the PWM
has a positive correlation given all minimal score thresholds ranging from −15 to 30 with step
size 0.1. For each motif we chose the minimal score threshold leading to the highest mutual
information in a gene set. Low complexity motifs (TTGTT, revTTGTT) that have the
highest mutual information by accounting only for their nucleotide composition (threshold
around zero) were manually set to 50% of their maximal log-odds score.

6.4.3. Conservation scores

For each motif, conservation scores were calculated on the best scoring site above the minimal
score threshold within the defined range of motif enrichment on all 12061 D. melanogaster
core promoter sequences. Alignments were generated using the UCSC 14-way multiple
sequence alignments (dm3). The conservation score Scons(X) for each of the 11 Drosophila
species X was calculated as follows:

Scons(X) = 1
N

N∑
i=1

Bi(X)− S(X)
Bi(X) (6.2)

whereas S(X) is the average log-odds score difference between D. melanogaster and species X
from the alignment, and Bi(X) is the expected average log-odds score difference from a
null distribution based on the ith of N sets of sampled binding sites. Each binding site is
sampled from a position specific substitution matrix learned on the alignment to species X
at the respective position +/- 10 bps. We used N = 50 for the analysis.
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Figure A.1.: Detailed results of the Drabløs benchmark. The x-axis gives the names of the used data
sets, the y-axis the Matthews correlation coefficient on the nucleotide level (A) Algorithm Markov,
(B) Algorithm Real, (C) Model Real
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A.2. Motif Sensitivity Benchmark

A

B

Table A.1.: Detailed results of motif sensitivity benchmark. The tools are sorted by the sum of the
top 1 predictions. Highest number per benchmark set is given in bold face. Methods above the
separator take only intergenic regions with a ChIP-chip P-value < 10−3 as input, methods below the
separator take all intergenic regions and require the associated P-valueas additional information. (A)
XXmasker is applied only to the input of XXmotif. (B) XXmasker is applied to the input of all tools.
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A.3. PWM Quality Benchmark

Figure A.2.: PWM quality assessment on yeast ChIP-chip data from Harbison et al. (2004). The
curves quantify how well the scores of the reported PWMs can predict the ChIP enrichment of the
sequences. Each PWM is used to rank the intergenic regions by their maximum PWM score. For
each predicted PWM, a receiver operator characteristic (ROC) curve with the number of correct
predictions over the number of false predictions is computed, and the partial area under the ROC
curve (pAUC) deduced from it. The pAUC is the fractional area under the ROC curve within the 5%
best-ranked false predictions. For an ideal predictor, pAUC=1. The average pAUC scores are listed
in the figure legends. (A, B) cumulative distribution of the pAUC over all 247 ChIP-chip datasets
that had at least ten significantly enriched regions (P-value < 0.001). Regions with ChIP enrichment
P-value < 0.001 are defined as correct predictions, all other regions as false predictions. (C, D) As in
A, B but using only datasets that have at least five significantly ChIP-enriched regions with matches
to the literature motif, and considering only sequences that contain a match to the literature motif.
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A.4. Metazoan Benchmark

Figure A.3.: Top 1 benchmark results on 24 target sets for transcription factors from human, mouse,
worm and fly, as well as 10 target sets for microRNAs from human, and mouse from the metazoan
target set compendium (Linhart et al. 2008). The plot is adapted from Linhart et al. (2008): The
“Source” column indicates the experimental procedure or database from which the target set was
derived: Gene expression microarrays (Expr), ChIP-chip (CC), ChIP-DSL (C-DSL), DamID (van
Steensel et al., 2001), or Gene Ontology (GO) database (Ashburner et al., 2000). Black and gray
boxes indicate the similarity of the predicted PWM to the reference motif in TRANSFAC or miRBase.
Darker shades indicate closer similarity. “Set Size”: number of sequences within the input set.
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A.5. Regulatory Motifs For Early Embryo Segmentation in Flies

Number Chr Start End Reference

1 X 2331789 2333533 Schroeder et al. (2004)
2 X 2323048 2324286 Schroeder et al. (2004)
3 X 2324294 2325502 Schroeder et al. (2004)
4 X 2327322 2329503 Schroeder et al. (2004)
5 3R 4520323 4521043 Hox_pro
6 3R 4526520 4527542 Hox_pro
7 2R 21113281 21114511 Hoch et al. (1991)
8 2R 21110142 21111300 Hoch et al. (1991)
9 2R 21111575 21113281 Hoch et al. (1991)

10 3L 20687055 20688533 Schroeder et al. (2004)
11 3L 20692603 20694005 Schroeder et al. (2004)
12 3L 20689640 20690516 Pankratz et al. (1992)
13 3R 26676777 26677272 Liaw and Lengyel (1993)
14 3R 26677663 26678030 Liaw and Lengyel (1993)
15 3R 26675265 26675744 Rudolph et al. (1997)
16 3R 173891 174480 Häder et al. (2000)
17 3L 14166136 14167860 Schroeder et al. (2004)
18 2L 20784670 20786306 Schroeder et al. (2004)
19 3R 19020990 19022410 Schroeder et al. (2004)
20 3R 24411719 24413426 Schroeder et al. (2004)
21 3L 20604991 20606288 Schroeder et al. (2004)
22 2L 12615792 12617776 Schroeder et al. (2004)
23 X 8537082 8538914 Schroeder et al. (2004)
24 2L 12678898 12680520 Schroeder et al. (2004)
25 2L 3832698 3835337 Schroeder et al. (2004)
26 X 584106 9585905 Wimmer et al. (1995)
27 3R 9720485 9720788 Hartmann et al. (2001)
28 3R 12636231 12637975 Shimell et al. (2000)
29 X 8547931 8548807 Gao and Finkelstein (1998)
30 2L 11455640 11455917 Kühnlein et al. (1997)
31 2L 11455917 11456155 Kühnlein et al. (1997)
32 2L 21851517 21853665 Coré et al. (1997)
33 2L 3608812 3610461 Schroeder et al. (2004)
34 2L 3610420 3611803 Schroeder et al. (2004)
35 3R 2692616 2694360 Schroeder et al. (2011)
36 3R 2683373 2684612 Schroeder et al. (2011)
37 3R 2681761 2683378 Schroeder et al. (2011)
38 X 20523501 20524783 Schroeder et al. (2011)
39 X 20533075 20535598 Schroeder et al. (2011)
40 X 20548261 20549257 Schroeder et al. (2011)
41 X 20555735 20556596 Schroeder et al. (2011)
42 X 20594595 20597303 Schroeder et al. (2011)
43 X 20551039 20552655 Klingler et al. (1996)
44 X 20552655 20553990 Klingler et al. (1996)
45 2R 5863006 5863516 Small et al. (1996)
46 2R 5865217 5865879 Stanojevic et al. (1991)
47 2R 5871404 5872005 Fujioka et al. (1999)
48 2R 5873440 5874240 Fujioka et al. (1999)
49 2R 5874147 5874946 Fujioka et al. (1999)
50 3L 8657463 8658374 Howard and Struhl (1990)
51 3L 8657938 8659411 Howard and Struhl (1990)
52 3L 8659411 8660491 Howard and Struhl (1990)
53 3L 8662058 8665028 Howard and Struhl (1990)
54 2L 12080376 12081687 Schroeder et al. (2011)

Table A.2.: Coordinates of the 54 hand-curated cis-regulatory modules in fly segmentation





B. Drosophila Core Promoters

B.1. TSS Cluster Width

Figure B.1.: Distribution of shape index (SI) scores (Hoskins et al., 2011) over all genes. The vertical
line corresponds to the threshold chosen to separate broad peak (BP) promoters from narrow peak
(NP) promoters.
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B.2. Motif Conservation

A
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C
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D

Figure B.2.: Conservation of predicted core promoter motifs and six negative controls. Column
“PWM Scores” depicts the scores of the motif PWM for each site in D. melanogaster and the aligned
site in D. simulans. The average PWM score distance between D. melanogaster and related species is
shown in Column “Score Distance” as a red circle. To calculate the average PWM score we use only
binding sites with a PWM score above the minimal score threshold and within the enriched region.
Related species are ordered by evolutionary distance. The boxes correspond to the expected score
distance calculated on aligned binding sites from sampled sequences. Column “Conservation” depicts
a scaled measure of the sampled and biological score distances, giving a one for perfect conservation
of the PWM score and a zero for conservation as expected from background. Error bars indicate the
standard deviation over all sampled conservation scores (section 6.4.3). (A, B) known motifs, (C)
newly identified motifs, (D) negative controls.
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B.3. Core Promoter Elements vs. Developmental Stages

Figure B.3.: Fly core promoter motifs are correlated to distinct gene properties. Genes are sorted
by the enrichment within a developmental stage (Graveley et al., 2011) and the frequency of the
core promoter motifs on the x-axis within bins of 50 genes is indicated from red (depleted) to blue
(enriched) by Z-scores. (A) Enrichment within embryo / larva / female, (B) Enrichment within adult.
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B.4. Class 4 Core Promoter Elements

GO ID Term Counts Category P-value

GO:0022626 cytosolic ribosome 65/100 CC 1× 10−96

GO:0044445 cytosolic part 65/100 CC 3× 10−83

GO:0003735 structural constituent of ribosome 65/122 MF 6× 10−77

GO:0033279 ribosomal subunit 65/100 CC 5× 10−74

GO:0005840 ribosome 65/100 CC 1× 10−69

GO:0022625 cytosolic large ribosomal subunit 41/100 CC 4× 10−59

GO:0006412 translation 75/120 BP 1× 10−58

GO:0030529 ribonucleoprotein complex 68/100 CC 5× 10−52

GO:0005829 cytosol 71/100 CC 6× 10−52

GO:0000022 mitotic spindle elongation 39/120 BP 1× 10−50

GO:0051231 spindle elongation 39/120 BP 2× 10−50

GO:0005198 structural molecule activity 65/122 MF 4× 10−48

GO:0015934 large ribosomal subunit 41/100 CC 8× 10−44

GO:0043232 intracellular non-membrane-bounded
organelle

78/100 CC 2× 10−36

GO:0043228 non-membrane-bounded organelle 78/100 CC 2× 10−36

GO:0007052 mitotic spindle organization 39/120 BP 4× 10−33

GO:0022627 cytosolic small ribosomal subunit 24/100 CC 1× 10−30

GO:0007051 spindle organization 39/120 BP 1× 10−30

GO:0000226 microtubule cytoskeleton organization 39/120 BP 7× 10−26

GO:0000278 mitotic cell cycle 40/120 BP 5× 10−24

Table B.1.: Top 20 GO terms from GO analysis of Class 4 genes. The analysis was done with DAVID
using the GO FAT category (Huang et al., 2009). Column “Counts” gives the number of genes that
fit to the respective GO term vs. the number of genes that can be mapped to the GO category in
column “Category” (CC: cellular component, MF: molecular function, BP: biological process).
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FlyBase ID Gene Description

FBgn0064225 ribosomal protein L5
FBgn0014026 ribosomal protein L7A
FBgn0261602 ribosomal protein L8
FBgn0015756 ribosomal protein L9
FBgn0013325 ribosomal protein L11
FBgn0029897 ribosomal protein L17
FBgn0035753 ribosomal protein L18
FBgn0010078 ribosomal protein L23
FBgn0002626 ribosomal protein L32
FBgn0037328 ribosomal protein L35A
FBgn0261608 ribosomal protein L37A
FBgn0261593 ribosomal protein S10b
FBgn0005533 ribosomal protein S17
FBgn0010411 ribosomal protein S18
FBgn0029176 elongation factor 1-gamma

Table B.2.: Genes containing the newly identified RDPE (ribosomal downstream promoter element.
14 of 15 genes are described as ribosomal, all of them contain additionally the INR3 element within
the same promoter.
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