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Abkürzungsverzeichnis 
 
 
CR   Cruciate retaining = kreuzbanderhaltend 
ECD                           Equivalent circle diameter = Kreisdurchmesser 
GM-CSF  Granulocyte macrophage colony-stimulating factor                                          
ICAM-1  Intercellular adhesion molecule-1 = interzelluläres Adhäsionsmolekül-1 
IL   Interleukin 
LFA-1   Lymphocyte function-associated antigen 1 = Leukozyten- 
                                   funktionsassoziiertes-Antigen-1       
Mac-1   Macrophage-1 antigen = Makrophagen-Adhäsions-Ligand-1 
MCP-1   Monocyte chemotactic protein-1 
MIP-1   Macrophage inflammatory protein-1 
NO   Stickstoffmonoxid 
OPG   Osteoprotegerin 
PE   Polyethylen 
RT   Raumtemperatur 
RANK   Rezeptor-Aktivator von NF-κB 
RANKL  Ligand des Rezeptor-Aktivators von NF-κB 
TNF-α   Tumor-Nekrose-Faktor-α 
UHMWPE  Ultra-high-molecular-weight-polyethylene = Ultrahochmolekulares  
                                   Polyethylen 
VCAM-1  Vascular adhesion molecule-1 = vaskuläres Adhäsionsmolekül-1 
VLA-4   Very late antigen-4 
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I. Einleitung 
 
 

In der heutigen Knieendoprothetik stellt die aseptische Lockerung das Hauptproblem und die 

häufigste Ursache für eine Prothesenrevision dar (Forster et al. 2003, Graves et al. 2004, 

Horwitz et al. 2009).  

Auf das Schwedenregister gestützt, ist die Entstehung von Osteolysen und folglich ein 

Versagen des Implantats der Grund für 40% aller Revisionsoperationen (Robertsson et al. 

2001).  

Wie bereits vielfach gezeigt wurde, wird die aseptische Prothesenlockerung insbesondere 

durch Polyethylenabriebpartikel induziert (Fehring et al. 2004, Naudie et al. 2004, Naudie et 

al. 2007), die zu einer unspezifischen Inflammationsreaktion und zu Osteolysen infolge einer 

negativen Bilanz des Knochenstoffwechsels führen (Otto et al. 2006, Purdue et al. 2007, 

Revell et al. 2008, Holt et al. 2007, Dress et al. 2008).  

Zellulär wird dieser Prozess vor allem durch Makrophagen vermittelt, die verschiedene 

Zytokine wie IL-1β, IL-6 und TNF-α sezernieren, die zu einer autokrinen Aktivierung dieser 

und zu einer parakrinen sowie systemischen Aktivierung weiterer Makrophagen und 

Leukozyten führen (Ingham et al. 2005, Purdue et al. 2007). Außerdem werden über 

komplexe molekularbiologische Kaskaden Osteoklasten aktiviert und Osteoblasten gehemmt 

(Vermes et al. 2001, Chiu et al. 2009), was in einer Resorption von Knochensubstanz 

resultiert (Atkins et al. 2009, Drees et al. 2008, Gallo et al. 2008, Otto et al. 2006, Tuan et al. 

2008).  

Gezeigt wurde überdies, dass die Partikelanzahl, -größe und -morphologie Einfluss auf 

diesen Entzündungsprozess haben und weiterhin, dass Partikel unterschiedlicher 

Prothesenmaterialien eine in Intensität und Ausprägung unterschiedliche Reaktion 

hervorrufen (Fehring et al. 2004, Fisher et al. 2004, Griffin et al. 2007, McEwen et al. 2005, 

Purdue et al. 2007, Shanbhag et al. 1994, Yang et al. 2002).  

Um diesem Problem zu begegnen, wird versucht, die Abriebfestigkeit des Kunststoffes 

Polyethylen unter bestmöglichem Erhalt der biomechanischen Eigenschaften zu erhöhen, 

indem das Herstellungsverfahren dieses Werkstoffes modifiziert und Polyethylen besonderen 

Vergütungsverfahren unterzogen wird (Muratoglu et al. 2003, Muratoglu et al. 2007, Ries et 

al. 2005a). Das derzeit am häufigsten verwendete Polyethylen ist das ultra-high-molecular-

weight-polyethylene, UHMWPE. Neben diesem gibt es das hochvernetzte, so genannte 

crosslinked Polyethylen, das auch in der Knieendoprothetik Anwendung findet (Jacofsky et 

al. 2008).  

Dieser Polyethylenabkömmling zeigt sich in Studien im Labor abriebresistenter als das 

UHMWPE (McEwen et al. 2005, Muratoglu et al. 2002, Muratoglu et al. 2003, Muratoglu et 

al. 2004, Muratoglu et al. 2007). Insbesondere in der Hüftendoprothetik gibt es Studien, die 
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die Vorteile, besonders den verminderten Abrieb dieses Polyethylens beschreiben (Digas et 

al. 2003a, Heisel et al. 2005, McKellop et al. 2000, Shen et al. 2005).  

In der Knieendoprothetik wird die Verwendung des crosslinked Polyethylens jedoch noch 

kontrovers diskutiert (Gencur et al. 2003, Rodriguez et al. 2008, Ries et al. 2005a). Es gibt 

erste Versagensberichte (Bradford et al. 2004a, 2004b) und Hinweise darauf, dass bei 

diesem Polyethylen zwar eine geringere Menge an Abriebpartikeln im Simulator entsteht 

(Muratoglu et al. 2004, Utzschneider et al. 2009a, 2009b), die produzierten Partikel aber 

kleiner und folglich biologisch aktiver sind (Affatato et al. 2005, Fisher et al. 2004, Minoda et 

al. 2008). Eine aktuelle in vitro Studie zeigt eine stärker ausgeprägte inflammatorische 

Reaktion bei diesem PE-Abkömmling (Illgen et al. 2008).  

Bezüglich der crosslinked Polyethylene existieren aber bislang keine Studien, die die 

Entstehung und Charakterisierung der Partikel in vivo und deren biologische Aktivität 

untersuchen. Ebenso fehlen klinische Langzeitergebnisse.  

Ziel dieser Studie war es deshalb, anhand eines in vivo Mausmodells zu untersuchen, ob 

sich die in vitro produzierten Abriebpartikel dieser beiden Polyethylene, UHMWPE und 

crosslinked Polyethylen (PE), in ihrer biologischen Reaktivität unterscheiden. 

Hierzu wurden in dieser Arbeit sechs verschiedene Polyethylenwerkstoffe, darunter vier 

crosslinked Polyethylene und zwei ultrahochmolekulare Polyethylene, getestet und die 

biologische Reaktion auf deren Abriebpartikel in vivo mittels Immunhistochemie quantifiziert, 

beurteilt und interpretiert. 
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II. Grundlagen 

II.1. Das Kniegelenk 

 

II.1.1. Makroanatomie und Biomechanik des Kniegelenks 

 

Das Kniegelenk ist ein Drehscharniergelenk und besteht aus zwei Anteilen: dem 

Femorotibialgelenk zwischen den Femurkondylen und dem Tibiaplateau und dem 

Femoropatellargelenk zwischen Femur und Patella (Benninghoff und Drenckhahn 2008, 

Lippert 2003). Zwischen den mit hyalinem Gelenkknorpel überzogenen Femurkondylen und 

dem Tibiaplateau befinden sich die aus Faserknorpel bestehenden Menisci, Meniscus 

medialis und Meniscus lateralis (Lippert 2003). Der Meniscus medialis ist sichelförmig und 

mit dem medialen Seitenband, dem Ligamentum collaterale mediale, verwachsen, der 

Meniscus lateralis ist halbrund. Die Menisci ermöglichen eine Vergrößerung der 

Kontaktfläche sowie einen Ausgleich der Inkongruenzen zwischen den Femur- und 

Tibiakondylen und dienen der Gelenkführung und der flächenhaften Druckverteilung vom 

Femur auf die Tibia (Lippert 2003). Umgeben wird das Kniegelenk von der Gelenkkapsel, die 

aus der äußeren Membrana fibrosa und der inneren Membrana synovialis besteht (Lippert 

2003). Zwischen den beiden Schichten der Gelenkkapsel befindet sich unterhalb der Patella 

der so genannte Hoffasche Fettkörper, der der Unterpolsterung der Synovia dient. 

Die Stabilität im Kniegelenk wird durch komplexe Bandstrukturen gewährleistet, zum einen 

durch die Seitenbänder, Ligamentum collaterale mediale und laterale, die das Gelenk 

gegenüber Varus- und Valgusstress stabilisieren sowie bei Flexion und Extension als 

Führungsbänder dienen. Zum anderen sichern die Kreuzbänder, Ligamentum cruciatum 

anterius und posterius, das Gelenk bei Innen- und Außenrotation. Unabhängig von der 

Gelenkstellung stehen fast immer Anteile der Kreuzbänder unter Spannung (Lippert 2003). 

Das Kniegelenk hat zwei Hauptachsen, um die vier Hauptbewegungen möglich sind, 

Extension, Flexion, Außenrotation und Innenrotation (Lippert 2003).  

Die Bewegung im Kniegelenk ist eine Kombination aus Roll- und Gleitbewegung. Bei der 

Flexion rollen die Femurkondylen zunächst bis ca. 25°, danach gleiten sie zunehmend nach 

dorsal. Die Menisci bewegen sich bei Flexion, insbesondere lateral, nach dorsal, bei 

Extension nach ventral (Lippert 2003). Die aktive Flexion beträgt ca. 140°, die passive 

Flexion ca. 160°. Aktiv erfolgt eine Extension bis 0°, passiv ist eine Hyperextension von 5-10° 

möglich. Bei den letzten 10° der Extension erfolgt eine Schlussrotation der Tibia von ca. 5° 

(Lippert 2003). 

Rotationsbewegungen werden im gestreckten Kniegelenk durch die Seitenbänder 

eingeschränkt. Bei gebeugtem Kniegelenk ist eine Außenrotation bis zu 40° und eine 
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Innenrotation bis zu 10° möglich. Bei der Außenrotation bewegt sich der laterale Meniscus 

nach ventral, während sich der mediale Meniscus nach dorsal bewegt. Bei Innenrotation 

verhält es sich umgekehrt (Lippert 2003).   

 

 

Abb. 1: Anatomie des Kniegelenks (Gray 2007) 

 

 

II.1.2. Histologischer Aufbau des Kniegelenks 

 

Das Kniegelenk besteht aus Gelenkknorpel, Knochengewebe mit Kortikalis und 

Knochenmark sowie Synovialgewebe (Vigorita 2010).  

Der Gelenkknorpel ist ein hyaliner Knorpel, der aus Chondrozyten und Knorpelmatrix 

besteht. Die Chondrozyten, Knorpelzellen, liegen meist in kleinen Gruppen, eingeschlossen 

in einem Knorpelhof, der die Matrix in der unmittelbaren Umgebung bezeichnet (Welsch 

2006). Dies wird dann als Territorium oder Chondron bezeichnet. Die Knorpelmatrix setzt 

sich aus Kollagen-Typ-II, -IX, -X, -XI, Hyaluronsäure, dem Proteoglycan Aggrecan und 

Wasser zusammen. Da der ausgereifte Knorpel keine Innervation oder Blutgefäßversorgung 

besitzt, erfolgt die Ernährung über Diffusion aus der Synovialflüssigkeit (Welsch 2006).  

Der hyaline Gelenkknorpel lässt sich in vier Schichten gliedern. Die erste, dem Gelenkspalt 

am nächsten liegende Schicht, wird als Tangentialfaserschicht bezeichnet (Welsch 2006). 

Zahlreiche dünne Kollagenfibrillen verlaufen annähernd parallel zur Oberfläche und die 

Chondrozyten sind länglich und spindelförmig (Welsch 2006).  

In der zweiten Schicht, der Übergangszone, treten die Chondrozyten oft einzeln oder in 

Paaren auf und die Kollagenfasern kreuzen sich.  

1. Femur 

2. Tibia 

3. Fibula 

4. Lig. collaterale laterale 

5. Lig. collaterale mediale 

6. Lig. cruciatum anterius 

7. Lig. cruciatum posterius 

8. Menisci 
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In der folgenden Radiärzone verlaufen die Kollagenfasern senkrecht zur Oberfläche und die 

Chondrozyten liegen in länglich angeordneten Gruppen, Knorpelzellsäulen, vor (Welsch 

2006).  

Die vierte Schicht besteht aus mineralisiertem Knorpel, der dem subchondralen Knochen 

aufliegt. Hier befinden sich nur noch wenige, vereinzelte Chondrozyten.  

Zwischen der dritten und der vierten Schicht liegt eine kalziumreiche Grenzzone, die so 

genannte „tide mark“ (Welsch 2006).  

Das Knochenmark des Femurs und der Tibia stellt histologisch ein retikuläres Bindegewebe 

aus Kollagen-Typ-III produzierenden Fibroblasten und Fettzellen dar. Diese Fibroblasten 

sind blasse Zellen mit einem länglichen, hellen Kern (Welsch 2006). Ebenso wie die 

Makrophagen, die im Stroma verteilt sind, produzieren sie Zytokine und Wachstumsfaktoren 

für die Regulation der Hämatopoese. In das Knochenmarksstroma sind außerdem zahlreiche 

dünnwandige Blutsinus eingebettet, deren Endothel, durch das die Auswanderung der reifen 

Blutzellen stattfindet, keine Basallamina besitzt (Welsch 2006, Murphy 2009).  

Als Ort der Blutzellbildung, vor allem der Bildung und Reifung des spezifischen und 

unspezifischen zellulären Immunsystems, ist das Knochenmark von Bedeutung für 

Entzündungsreaktionen und Abwehrprozesse (Murphy 2009). Findet im Organismus ein 

inflammatorischer Prozess statt, wird im Knochenmark über Zytokine und 

Adhäsionsmoleküle die Differenzierung, Neubildung und transendotheliale Migration von 

Leukozyten angeregt (Murphy 2009).  

Umgeben wird das Kniegelenk von der Gelenkkapsel, deren innere Schicht die 

Synovialmembran ist. Diese bildet vielgestaltige, in den Gelenkraum ragende Falten und 

Zotten (Welsch 2006). Die Synovialmembran besteht aus der inneren synovialen Intima und 

der äußeren subintimalen Schicht (Vigorita 2010). Die synoviale Intima setzt sich aus ein bis 

vier Schichten synovialer Deckzellen zusammen, wobei die Typ-A-Zellen 

(makrophagenähnliche Zellen) und die Typ-B-Zellen (fibroblastenähnliche Zellen, die die 

Bindegewebsmatrix und die Synovialflüssigkeit produzieren) unterschieden werden (Vigorita 

2010). Das subinitimale Gewebe enthält Blut- und Lymphgefäße, vegetative Nervenfasern, 

Fettzellen, Kollagenfibrillen und elastische Fasern (Vigorita 2010).  
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Abb. 2: Histologischer Aufbau eines Gelenks. Zu sehen sind subchondrales Knochengewebe, 

hyaliner Gelenkknorpel, sowie der Aufbau der Synovialmembran mit A-, B- und Fettzellen sowie 

Blutgefäßen (Welsch 2006) 

 

 

II.2. Knieendoprothetik 

 

II.2.1. Einteilung der künstlichen Kniegelenke und Prothesendesigns 

 

Bei den zahlreichen verschiedenen Knieprothesenmodellen unterscheidet man grundsätzlich 

zwischen einem unikompartimentellen, bei dem nur ein femorotibiales Gelenkkompartiment 

(medial oder lateral) ersetzt wird, einem bi- (femorotibial) und einem trikompartimentellen 

(femorotibial und retropatellar) Gelenkersatz (Krukenmeyer 2009).  

Weiterhin werden die Prothesen nach dem Grad der Kopplung in ungekoppelt, teilgekoppelt 

und achsgeführte Implantate eingeteilt. Entscheidend hierfür ist die gegebene ligamentäre 

Führung des zu operierenden Gelenks (Krukenmeyer 2009).  
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II.2.1.1. Unikondylärer Gelenkersatz  

 

Das unikondyläre Implantat, die so genannte Schlittenprothese, kommt bei isolierter medialer 

Gelenkzerstörung zur Anwendung. Voraussetzung dafür ist ein intakter Bandapparat sowie 

weitgehend physiologische Achsverhältnisse. Das vordere und hintere Kreuzband müssen 

intakt sein, um die Stabilität in der Sagittalebene zu gewährleisten (Krukenmeyer 2009).  

Daraus ergeben sich Indikationen wie die Entität der anteromedialen Gonarthrose, des 

Morbus Ahlbäck (ausgedehnte Osteonekrosen) oder großer osteochondraler Defekte 

(Krukenmeyer 2009).  

Die weniger invasive Implantationstechnik, eine geringere Zahl an intra- und postoperativen 

Komplikationen sowie eine niedrigere peri- und postoperative Morbidität sind einige Vorteile 

dieses Prothesentyps (Krukenmeyer 2009).  

Hinzu kommt, dass durch den Erhalt aller nicht beschädigten Strukturen des Kniegelenks 

eine möglichst natürliche Kinematik sichergestellt wird. Auch die Rehabilitation verläuft 

schneller als beim totalen Gelenkersatz und es werden längere Standzeiten erreicht 

(Krukenmeyer 2009).  

Ein wesentlicher Nachteil liegt darin, dass die Operation technisch sehr anspruchsvoll ist und 

dass im Falle eines Implantatversagens ein totalendoprothetischer Ersatz aufgrund der 

notwendigen Knochenresektion bei der Primärimplantation nicht unproblematisch ist.   

Bezüglich des Designs ähneln diese Prothesen den bikondylären Modellen mit einer 

Femurkomponente, die die Oberfläche des medialen oder lateralen Femurkondylus ersetzt. 

Tibial wird eine Metallkomponente verwendet und als Gleitlager zwischen dem Tibiaplateau 

und dem Femurschild ein Polyethylen-Inlay (Krukenmeyer 2009).  

Im Unterschied zur bikondylären Variante wird das femoropatelläre Gleitlager nicht mitersetzt 

und die Femurkomponente endet ventral am Vorderrand der in maximaler Extension 

belasteten Kondylenfläche (Krukenmeyer 2009).  

 

 

II.2.1.2. Ungekoppelter bikondylärer Oberflächenersatz 

 

Der ungekoppelte bikondyläre Oberflächenersatz stellt die Standardtherapie der 

Pangonarthrose dar und ermöglicht ein der normalen Kniegelenksfunktion ähnliches Roll-

Gleitverhalten mit begrenzter Rotationsfähigkeit (Krukenmeyer 2009).  

Auch hier ist eine ausreichende ligamentäre Gelenkführung erforderlich, vor allem durch die 

Kollateralbänder, die den Kraftschluss der Prothese ermöglichen. Das vordere Kreuzband ist 

nicht notwendig (Jerosch 1999).  
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Dieses Prothesenmodell besteht aus einem femoralen Metallschild, einem tibialen 

Metallplateau mit fixiertem oder mobilem Polyethylen-Inlay und optional einem 

Retropatellarersatz aus Polyethylen oder Polyethylen auf Metall (metal-backed) 

(Krukenmeyer 2009).  

Die Erhaltung oder Ersetzung des hinteren Kreuzbandes ist aktuell Gegenstand kontroverser 

Diskussionen, wobei für die Erhaltung die stabilisierenden und propriozeptiven 

Eigenschaften des Ligaments sprechen. Die Erhaltung des hinteren Kreuzbandes 

gewährleistet beispielsweise Schutz vor Subluxation und Dislokation der Tibia nach 

posterior. Gegner des kreuzbanderhaltenden Vorgehens führen an, dass dieses bei einer 

ausgeprägten Arthrose oft strukturelle Schädigungen und funktionelle Defizite aufweist (Scott 

2007).  

Wird das hintere Kreuzband ersetzt, spricht man von einer Posterior-stabilisierten-Prothese. 

Prothesen, bei denen das hintere Kreuzband erhalten bleibt, werden als „cruciate-retaining“ 

(CR) bezeichnet (Kohn und Rupp 1999).  

Auch über die Notwendigkeit des Retropatellarersatzes wird noch kontrovers diskutiert. 

Zum Einsatz kommt dieser vor allem bei symptomatischer retropatellarer Arthrose und 

progredient destruierenden Gelenkerkrankungen wie beispielsweise der rheumatoiden 

Arthritis. Bei gut erhaltener Patellarückfläche und regelhafter -führung kann nach derzeitiger 

Studienlage darauf verzichtet werden.  

Ein weiterer Designparameter ist die Kongruenz der Prothese, genauer gesagt die 

Kongruenz zwischen Metallkomponente und Kunststoff-Inlay. Man unterscheidet zwischen 

kongruenten Modellen nach dem „Round-on-round-“ oder „Flat-on-flat-Prinzip“ und 

inkongruenten Modellen nach dem „Round-on-flat-Prinzip“ (Jerosch 1999).  

Auf der einen Seite bedingt eine konforme Artikulationsflächengestaltung eine geringere 

Kontaktbelastung, einen minimalen Verschleiß, eine erhöhte Gelenkstabilität sowie eine 

stärkere Belastung der Prothesen-Knochengrenze (Jerosch 1999).  

Auf der anderen Seite führt weniger Konformität zu einem größeren Bewegungsspielraum 

des Kniegelenks, einer erhöhten, aber kleinflächigen Kompressionsbelastung und einer 

gesteigerten exzentrischen Belastung des Tibiaplateaus (Jerosch 1999).  

 

 

II.2.1.3. Teilgekoppelte Prothesen  

 

Ist der Bandapparat nicht mehr vollkommen intakt, werden teilgekoppelte (semi-constrained) 

Prothesen verwendet, die die Stabilität im Gelenk durch designspezifische Variationen des 

Inlays gewährleisten (Krukenmeyer 2009). Durch einen Zapfen im Polyethylen-Inlay, der sich 
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in einer interkondylären Box der Femurkomponente abstützt, kann beispielsweise eine 

Schwäche der Kollateralbänder ausgeglichen werden (Krukenmeyer 2009).  

 

 

II.2.1.4. Achsgeführte Prothesen  

 

Des Weiteren gibt es die Möglichkeit, das Kniegelenk durch achsgeführte (full-constrained) 

Prothesen wie Scharnierprothesen zu ersetzen, die meist sowohl femoral als auch tibial 

langstielig verankert sind und entweder über ein reines Scharniergelenk oder einen tibialen 

Zapfen, ähnlich des teilgekoppelten Modells, gekoppelt sind (Krukenmeyer 2009). Nachteil 

dieses Typs ist vor allem, dass die natürliche Kinematik des Kniegelenks nur begrenzt 

reproduziert werden kann (Krukenmeyer 2009). Die Indikation wird daher hauptsächlich 

gestellt, wenn eine Gonarthrose mit chronisch ligamentärer Instabilität, eine ausgeprägte 

Fehlstellung oder Kontraktur vorliegt oder eine Revisionsoperation notwendig ist 

(Krukenmeyer 2009).  

 

 

 

 

Abb. 3: Schematische Übersicht der verschiedenen Prothesenmodelle (Kohn und Rupp 1999) 
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II.2.1.5. Mobile- versus fixed-bearing 

 

Zusätzlich unterteilt man die Knieendoprothesen bezüglich des Gleitlagers in mobile- und 

fixed-bearing-Varianten (Buechel et al. 2001, McEwen et al. 2001, McEwen et al. 2005, 

Fuchs 2003).  

Beim Typ des mobile-bearing gleitet oder rotiert das Polyethylen-Inlay innerhalb 

vorgegebener Limitierungen oder auch uneingeschränkt auf der tibialen Komponente, 

während das Inlay beim fixed-bearing auf der tibialen Metallplatte befestigt ist (Fuchs 2003, 

McEwen et al. 2005). Weiterhin gibt es bei den mobilen Gleitlagern eine Unterteilung in 

Floating- (a.p.-Translation und Rotationsbewegungen) und Rotating-platform- (auf Innen- 

und Außenrotation beschränktes Design) Modelle (Fuchs 2003). Allen mobile-bearings ist 

gemein, dass das mobile Polyethylenplateau zum einen konform mit den Femurkondylen, 

zum anderen flat-on-flat mit dem Tibiaplateau artikuliert. Rotation und Translation können 

durch Stopps, wie Führungsrinnen oder Verankerungszapfen in der Oberfläche der 

Tibiakomponente, eingeschränkt werden oder unlimitiert bleiben (Fuchs 2003).  

Theoretisch reduzieren mobile Gleitlager den Abrieb, da eine hohe Kongruenz zwischen 

Metall und Kunststoff die Kontaktbelastung und Flächenanpressung auf der Oberseite des 

Inlays minimiert (Fuchs 2003, Callaghan et al. 2001, Cheng et al. 2003). Auch bei starker 

Flexion des Kniegelenks bleibt eine große Kontaktfläche und somit die physiologische Roll-

Gleitbewegung erhalten und der posteriore Spätabrieb, wie er bei fixierten Designs mit 

Round-on-flat-Prinzip entsteht, wird reduziert (Fuchs 2003, Sathasivam et al. 2001).  

Außerdem werden, wie beim normalen Kniegelenk, auftretende Dreh- und Scherkräfte auf 

die umgebenden Weichteile übertragen (Prinzip des „Load-Sharings“), was sich durch die 

verringerte Reibung in Folge reduzierter Krafteinwirkung am Knochen-Implantat-Interface 

positiv auf die Langlebigkeit des Implantats auswirkt (Fuchs 2003).  

Allerdings wurden diese theoretischen Vorteile, eine Überlegenheit oder höhere 

Erfolgsquoten der mobile-bearings gegenüber den fixed-bearings in klinischen Studien 

bisher nicht bewiesen (NIH 2004, Jacobs et al. 2004, Kim et al. 2001, Price et al. 2003). 

Beide Designs weisen nach zehn Jahren Überlebensraten von bis zu 95% auf (Buechel et al. 

2001, Callaghan et al. 2000, Huang et al. 2003). Außerdem entsteht bei den mobilen 

Polyethylenlagern im Gegensatz zum fixed-bearing durch die zusätzliche Artikulationsfläche 

zweiseitig Abrieb, also auch auf der Unterseite des mobile-bearings (Chapman-Sheath et al. 

2002). Weitere Einschränkungen der mobilen Gleitlager stellen beispielsweise 

Subluxationsphänomene mit weichteiligem Impingement sowie Dislokationen der Inlays dar 

(Fuchs 2003, Huang et al. 2002b). Einklemmungen und folglich höherer Verschleiß kommen 

vor allem bei Gleitlagern vor, die mit Führungselementen ausgestattet sind. Bei Rotating-

platform-Designs gilt der „Spinout“ (Subluxation) des Inlays als wesentlicher Nachteil. 
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Besonders bei asymmetrischem Beugespalt, der zu diesem Spinout führt, ergibt sich 

dadurch oft ein früheres Versagen der Prothese (Fuchs 2003). Außerdem wurde gezeigt, 

dass fixed-bearings zu einer vermehrten Erzeugung größerer Abriebpartikel führen, die 

weniger biologisch reaktiv sind (Wimmer et al. 1998), während die Partikel bei mobile-

bearings kleiner und reaktiver sind (Huang et al. 2002a), was ein erhöhtes Risiko für eine 

aseptische Lockerung andeutet. 

Zusammengefasst bestätigten sich die hypothetischen Vorzüge der mobile-bearings 

praktisch bislang nicht, es bestehen beachtliche Nachteile und es wurde keine Überlegenheit 

gegenüber fixed-bearings gezeigt (Huang et al. 2007).     

 

 

II.2.2. Materialien in der Knieendoprothetik 

 

Die meist verwendeten Knieendoprothesenmodelle bestehen aus Metalloberflächen an 

Femur und Tibia sowie einem dazwischen geschalteten Kunststoffgleitlager (Kohn und Rupp 

1999). Als Standardgleitpaarung in der Knieendoprothetik gilt heute Polyethylen-Metall. 

UHMWPE stellt im künstlichen Kniegelenk den Werkstoff der Wahl für das Gleitlager 

zwischen Femur- und Tibiakomponente dar (Kohn und Rupp 1999, Wright 2005). Im Bereich 

der Metalle, die die Femur- und Tibiakomponente bilden, werden insbesondere zwei große 

Gruppen unterschieden. 

Zum einen gibt es Metalllegierungen auf Cobaltbasis, meist unter Zumischung von Chrom, 

Molybdän und weiteren Komponenten. Zum anderen werden Titanlegierungen, in der Regel 

kombiniert mit Aluminium und Vanadium eingesetzt. (Kohn und Rupp 1999, Kurtz 2004) 

Am häufigsten wird heute die Kobalt-Chrom-Gusslegierung CoCr29Mo nach ISO 5832-4 für 

die Femur- und Tibiaimplantatkomponenten verwendet (Elke et al. 2001).  

 

 

II.2.3. Ultra-high-molecular-weight-polyethylene (UHMWPE) als tribologische 

Gleitflächenkomponente im künstlichen Kniegelenk  

 

II.2.3.1. Polyethylen 

 

Polyethylen ist ein durch Polymerisation von Ethen [CH²=CH²] hergestellter 

thermoplastischer Kunststoff mit der vereinfachten Kettenstrukturformel [CH²=CH²]n (Bargel-

Schulze 2000, Streicher et al. 2003).  

Chemisch besteht es aus Wasserstoff und Kohlenstoff in Form hochmolekularer Alkane 

(Bargel-Schulze 2000). 
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Abb. 4: Struktur eines Polyethylenmoleküls (Bargel-Schulze 2000) 

 

 

Die Eigenschaften von Polyethylen hängen wesentlich vom Grad der Kristallinität und vom 

Polymerisationsgrad n ab (Bargel-Schulze 2000). Die Struktur des Polyethylens ist 

teilkristallin, es besteht aus amorphen und kristallinen Bereichen. Mit dem Grad der 

Kristallinität erhöht sich die Dichte, mit steigendem Polymerisationsgrad die mittlere 

Molekülmasse. Dichte und Molekülmasse stellen so die zentralen Unterscheidungsmerkmale 

der einzelnen PE-Abkömmlinge dar (Bargel-Schulze 2000).  

Mit Erhöhung der Dichte wie auch der Kristallinität steigen Steifheit, Festigkeit, Zähigkeit und 

Härte, die chemische Beständigkeit nimmt zu und die Gasdurchlässigkeit nimmt ab. Eine zu 

hohe Kristallinität kann allerdings zu einer schädlichen Sprödigkeit führen (Bargel-Schulze 

2000).  

Des Weiteren ist der Kunststoff PE milchig-trüb und matt, besitzt eine hohe Beständigkeit 

gegen Säuren und Laugen und weist eine geringe Durchlässigkeit für Gas und Wasserdampf 

auf. Für Sauerstoff und Kohlendioxid ist es hingegen gut durchlässig (Bargel-Schulze 2000).  

Überdies zeichnet sich Polethylen durch eine hohe Zähigkeit und Bruchdehnung, durch 

gutes Gleitverhalten, Temperaturbeständigkeit von -85°C bis +90°C und durch eine geringe 

Wasseraufnahme aus (Bargel-Schulze 2000). Hergestellt wird es durch Polymerisation von 

petrochemisch erzeugtem Ethylengas.   

 

 

II.2.3.2. UHMWPE 

 

Die Einführung des Polyethylens erfolgte durch Sir John Charnley Mitte der 50´er Jahre. 

Heute sind 80% aller Hüft- und 100% aller Knieendoprothesen mit UHMWPE ausgestattet 

(Krukenmeyer 2009).  
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UHMWPE ist ein semikristallines Polymer mit einem durchschnittlichen Molekulargewicht 

von > 2 x 10000000 g/mol (Brach del Prever et al. 2009). Etwa 50% des Polymers sind 

kristallin und 50% amorph (Kurtz 2004, Ries et al. 2005b).  

 

Abb. 5: Semikristalline Struktur des Polymers UHMWPE (Kurtz 2004) 

 

 

Da im Polymerisat immer eine Mischung von Ketten unterschiedlicher Länge vorliegt, wird 

ein durchschnittliches Molekulargewicht angegeben. UHMWPE wird zunächst als Pulver 

durch das sog. Ziegler-Verfahren gefertigt (Streicher et al. 2003). In diesem 

Niederdruckverfahren wird Ethylen mittels Mischkatalysatoren bei 10-500 N/cm² Überdruck 

und einer Temperatur von 20-150°C unter Luft- und Feuchtigkeitsausschluss polymerisiert 

(Jerosch 1999). Im Pulver verbleibt allerdings immer ein Anteil an Katalysatorresten. Mittels 

Wasserdampfdestillation wird das Pulver gereinigt und dann getrocknet (Streicher et al. 

2003). Anschließend wird das Pulverpolymerisat bei ca. 200°C zu Platten, Stangen oder 

Endprodukten nach Press- (compression moulding) und RAM-Extrusionsverfahren 

weiterverarbeitet (Streicher et al. 2003). Temperatur und Druck bei der Verarbeitung führen 

zu einer Variation der Materialeigenschaften, was auch den Verschleiß beeinflusst (Jerosch 

1999, Streicher et al. 2003). Das Implantat-Inlay entsteht dann entweder durch 

Präzisionsfräsen aus PE-Platten oder durch das so genannte Formpressen (Jerosch 1999). 

Dabei wird das PE-Pulver direkt zu Fertigteilen gepresst (Jerosch 1999).  

Kristalline Lamellen 

Amorphe Regionen 
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Abschließend wird das UHMWPE sterilisiert. Die häufigste Sterilisationsmethode ist die 

Gammabestrahlung mit Dosen zwischen 25 und 40 kGy (Streicher et al. 2003, Muratoglu et 

al. 2003a). Der Nachteil dieses Verfahrens liegt in der Bildung freier Radikale, die mit 

Umgebungssauerstoff reagieren und oxidative Kettenspaltungen hervorrufen, was zu einer 

Abnahme der Quervernetzungen und der mechanischen Stabilität des Werkstoffes führt 

(Brach del Prever et al. 2009, Ries et al. 2005a, 2005b). Allerdings kommt es auch zu einer 

zusätzlichen Vernetzung, da ein Teil der freien Radikale zu neuen Bindungen reagiert. Die 

Oxidationsprozesse werden heutzutage durch eine Sterilisation unter Sauerstoffausschluss 

im Vakuum oder in einer Inertgasatmosphäre (Stickstoff oder Argon) reduziert (Brach del 

Prever et al. 2009, Ayers 2001, Tamura et al. 2002, Lewis 1997). Für die Oxidation sind 

weiterhin Lagerungsbedingungen und die absorbierte Gesamtdosis entscheidend. Höhere 

Strahlungsdosis und Lagerung bei höherer Temperatur resultieren in einer gesteigerten 

Oxidation (Brach del Prever et al. 2009). Die freien Radikale können auch eine 

Nachoxidation bedingen, das heißt, es kommt bei der Lagerung und auch noch nach der 

Implantation in vivo zu Oxidationsprozessen mit Sauerstoff (Ries et al. 2005b). Um diese 

Nachoxidationen zu minimieren, gibt es spezielle Verpackungen und Lagerungsbedingungen 

für das Polyethylen (Brach del Prever et al. 2009). Das Implantat wird beispielsweise in 

Spezialtüten doppelt verpackt und in eine Aluminiumhülle eingeschweißt, wodurch der 

Sauerstoffgehalt in der Verpackung reduziert wird (Brach del Prever et al. 2009). Die 

Oxidation ist vor allem schädlich, da sie zu Zerstörungen 1-2 mm unterhalb der Oberfläche 

des Polyethylengleitlagers führt, die den Ausgangspunkt für spätere 

Ermüdungserscheinungen des Materials darstellen können (Tamura et al. 2002, Hood et al. 

1983, Ayers 2001).     

Neben der Gammabestrahlung gibt es auch die Gassterilisation, zum einen mit Ethylenoxid, 

zum anderen mit Plasmagas (Brach del Prever et al. 2009). Vorteil davon ist, dass keine 

Radikale entstehen, es kommt auch zu keiner weiteren Vernetzung und Veränderung in der 

chemischen Zusammensetzung (Sobieraj et al. 2009).  

Medizinisches UHMWPE stammt hauptsächlich aus den Granulaten GUR 1020 und GUR 

1050 (Kurtz 2004). GUR steht für Granulat, Ultrahochmolekular, Ruhr Chemie, die erste 

Ziffer für das Herstellungsland (1=USA, 4=Deutschland), die zweite Ziffer für den Zusatz von 

Calciumstearat (1=ja, 0=nein), die dritte für das durchschnittliche Molekulargewicht und die 

vierte ist eine herstellerinterne Ziffer (Streicher et al. 2003).  
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II.2.3.3. Crosslinked Polyethylen 

 

Hochvernetztes, so genanntes crosslinked Polyethylen wurde aufgrund seiner erhöhten 

Abriebfestigkeit zu einer neuen Option in der Endoprothetik (Galvin et al. 2006, McEwen et 

al. 2005, Muratoglu et al. 2002, Muratoglu et al. 2003a, Muratoglu et al. 2004, Muratoglu et 

al. 2007). Hochvernetztes Polyethylen entsteht durch kovalente Bindungen zwischen 

benachbarten Polyethylenketten (Brach del Prever et al. 2009). Die Quervernetzungen im 

Polyethylen können entweder chemisch mit Peroxiden oder durch hochenergetische 

Strahlung wie Gamma- oder Elektronenstrahlung erzeugt werden (Streicher et al. 2003).  

Das heute gängige Verfahren zur Erzeugung von crosslinked PE ist eine erhöhte 

Bestrahlungsdosis und ein anschließender Temperaturvorgang zur Reduktion der freien 

Radikale, die aufgrund der hohen Bestrahlungsdosis vermehrt entstehen (Brach del Prever 

et al. 2009, Ries et al. 2005a). Dosen für hochvernetztes UHMWPE liegen im Bereich von 

3,3 bis 10 Mrad. Der Temperaturvorgang ist entweder ein Erhitzen über den Schmelzpunkt 

(remelting-Verfahren) oder knapp unter den Schmelzpunkt (annealing-Verfahren) (Ries et al. 

2005a). Vorzug des remelting-Verfahrens ist die Beseitigung beinahe aller freien Radikale, 

Nachteil ist die Verschlechterung von Materialeigenschaften des Polyethylens, wie 

Bruchfestigkeit, Zähigkeit, Zugfestigkeit, Festigkeit an Dehngrenzen und die Erhöhung des 

E-Moduls (Brach del Prever et al. 2009, Ries et al. 2005a, Bradford et al. 2004a, Baker et al. 

2003, Oral et al. 2004). Nachteil der annealing-Methode ist der Verbleib einer gewissen 

Menge an freien Radikalen und so der Entstehung von Oxidationsprozessen und folglich von 

Ermüdungserscheinungen des Werkstoffes (Brach del Prever et al. 2009, Oral et al. 2004). 

Neuere crosslinked Polyethylene werden beispielsweise nach dem annealing-Verfahren 

hergestellt, aber mit dem Zusatz eines pharmakologischen Antioxidans wie beispielsweise 

Vitamin E (Oral et al. 2007) oder in einem sequentiellen Prozess gering dosierter 

Bestrahlung und Erwärmung (Ries et al. 2005a, Wang et al. 2008).  

Wichtiger Vorteil dieses Polyethylenabkömmlings ist die durch die dreidimensionale Struktur 

verursachte hohe Verschleißfestigkeit (Brach del Prever et al. 2009, Streicher et al. 2003, 

Utzschneider et al. 2009a, 2009b).   

 

 

II.2.3.4. Knieprothesendesigns dieser Arbeit 

 

In dieser Arbeit wurden sechs unterschiedliche Polyethylen-Inlays mit den von den 

Herstellern dazu empfohlenen Endoprothesendesigns getestet, wobei fünf davon 

kommerziell erhältlich sind und eines eine experimentelle Kombination darstellt 

(Utzschneider et al. 2009b).  
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Material- 

kombination 
Prothesendesign Polyethylen Herstellungsprozess 

A (=X3) 
Scorpio® 

(Stryker) 

XPE (=Crosslinked 

PE) (X3™) 

Fixed-bearing CR 24mm, GUR 1020, 3x30 kGy 

Gammabestrahlung, annealing und sequentielle 

Bestrahlung, 

Gasplasmasterilisation 

B (=Durasul) 
Natural Knee® II 

(Zimmer) 
XPE (Durasul™) 

Fixed-bearing ultra-kongruent CR 19mm, GUR 

1050, 95 kGy Elektronenbestrahlung, 

Remelting, Gassterilisation mit Ethylenoxid 

C (=Prolong) 
Nex Gen® 

(Zimmer) 
XPE (Prolong™) 

Fixed-bearing CR 14mm, GUR 1050, 65 kGy, 

Elektronenbestrahlung, remelting, 

Gasplasmasterilisation 

D (=XPE*) LCS® (DePuy) XPE 

Mobile-bearing (rotating-platform) 15mm, GUR 

1020, 50 kGy Gammabestrahlung, remelting, 

Gasplasmasterilisation *)  

E 

(=UHMWPE1) 
LCS® (DePuy) 

Konventionelles 

UHMWPE 

Mobile-bearing (rotating-platform) 15mm, GUR 

1020, 20-40 kGy Gammabestrahlung unter 

Vakuum in foil (GVF) 

F 

(=UHMWPE2) 

Natural Knee® II 

(Zimmer) 

Konventinelles 

UHMWPE 

Fixed-bearing kongruent 13mm, GUR 1050, 

Gammasterilisation 

Tab. 1: Übersicht der verwendeten Polyethylene, des Herstellungsverfahrens dieser sowie des 

Designs und der Materialkombination der entsprechenden vom Hersteller empfohlenen Prothese 

*) Experimentelle Kombination, nicht kommerziell erhältlich  

 

                                         

 

 

 

 

 

 

Abb. 6: Verwendete bikondyläre Knieprothesenmodelle 

[A) aus http://www.stryker.de; B) und C) aus http://www.zimmergermany.de; D) aus 

http://www.kneereplacement.com/DePuy]  

A = Scorpio® 

D = LCS® complete 
C = NexGen® 

B = Natural Knee® II 

http://www.stryker.de/
http://www.zimmergermany.de/
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II.2.4. Abrieb im künstlichen Kniegelenk 

 

II.2.4.1. Mechanismen und Erscheinungsformen des Polyethylenabriebs 

 

Definiert wird Abrieb als Materialverlust aufgrund mechanischer Belastung einer Oberfläche 

(Wimmer 2000). 

Faktoren, die Einfluss auf die Abriebentstehung haben, sind die auf das Material 

einwirkenden Kräfte, die Druckbelastung, die Kongruenz der Artikulationsflächen und somit 

die Größe der Kontaktflächen sowie die Dicke und Verschleißfestigkeit des Materials. Die 

Abriebrate wächst mit exzessiven Belastungen, wie sie bei Scheerkräften entstehen, hohem 

Kompressionsdruck und kleinen Kontaktflächen (Brach del Prever et al. 2009, Revell et al. 

2008, Streicher et al. 2003).  

Bei der Abriebentstehung werden vier verschiedene Mechanismen unterschieden (Wimmer 

2000). 

Zunächst gibt es den adhäsiven Abrieb, wobei zwei glatte Oberflächen gegeneinander 

gleiten und Partikel von einer Oberfläche auf die andere gezogen werden (Wimmer 2000). 

Dahinter steht die transiente Bindung der Artikulationsflächen unter mechanischer Last. Des 

Weiteren entsteht abrasiver Abrieb beim Kontakt zwischen einer weicheren und einer 

härteren Oberfläche, wobei die härtere Oberfläche Partikel aus der weicheren herauskratzt 

oder wenn sich härtere Partikel zwischen zwei weicheren Oberflächen befinden (McKellop et 

al. 2007). Tribochemischer Abrieb wird durch chemische Reaktionen des 

Umgebungsmediums induziert (Wimmer 2000). Von Ermüdungsabrieb spricht man, wenn 

beispielsweise akkumulierter Stress an der Oberfläche die intrinsische Ermüdungskraft 

übersteigt, es zu oberflächlichen Brüchen kommt und Partikel freigesetzt werden (Wimmer 

2000, Otto et al. 2006). Hierzu zählt typischerweise die Delamination (Wimmer 2000, Kurtz 

2004, Hood et al. 1983). 

Durch die verschiedenen Abriebmechanismen entstehen an den Artikulationsoberflächen 

bestimmte Veränderungen und Schäden, die als Abrieberscheinungen bezeichnet werden 

(Hood et al. 1983).   

Zunächst gibt es das „Polishing“ oder „Burnishing“, dabei kommt es durch die Abriebpartikel 

zu einer Oberfläche, die wie glatt poliert aussieht (McKellop et al. 2007). Außerdem können 

an den Artikulationsflächen Kratzer entstehen, was als „Scratching“ bezeichnet wird 

(McKellop et al. 2007). Sie entstehen durch mikroskopische Rauhigkeit der Komponenten. 

Abrasion bezeichnet die Zerfaserung des Polyethylens durch eine raue Oberfläche 

(McKellop et al. 2007). Kraterähnliche Defekte auf der Kunststofffläche werden „Pitting“ 

genannt (Hood et al. 1983). Eine weitere Abrieberscheinung ist die Delamination. Dabei 

kommt es unter der Oberfläche des Polyethylens zu erhöhten Spannungs- und 
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Dehnungsbelastungen und konsekutiv eben dort zur Entwicklung und Fortpflanzung von 

Rissen und Defekten (Jerosch 1999, Hood et al. 1983). Überdies existiert die 

Oberflächenverformung, „plastic deformation“ oder auch Kriechen (Creeping) genannt, bei 

der das Inlay zwar seine Form verändert, aber keine Abriebpartikel entstehen (Wright 2005). 

Schließlich existiert der „Dreikörperabrieb“, der durch zwischen die Artikulationsflächen 

geratene Fremdkörper, wie Zementpartikel und Knochenfragmente, eine massive 

Schädigung der PE-Oberfläche bedingt und so die Verschleißfestigkeit herabsetzt (Jerosch 

1999, Hood et al. 1983).  

 

 

 

Originaloberfläche 

 

A 

Kratzer 

 

B 

Polierte Oberflächenanteile 

 

C 

Abrasion 

 

D 

 

Abb. 7: Rasterelektronenmikroskopische Bilder von Polyethylen-Inlays mit (A) Originaloberfläche, (B) 

Kratzern, (C) polierten Oberflächenanteilen und (D) Abrasion (aus dem Labor für Biomechanik und 

Experimentelle Orthopädie, Ludwig-Maximilians-Universität, München)  
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II.2.4.2. Charakteristika der Polyethylenabriebpartikel 

 

Die entstehenden Abriebpartikel unterscheiden sich in Parametern wie Größe, Form, 

Oberfläche und Volumen, welche sich alle auf die biologische Reaktivität auswirken (Fehring 

et al. 2004, Fisher et al. 2004, Griffin et al. 2007, Purdue et al. 2007, Yang et al. 2002).  

Partikelcharakteristika, die die Ausprägung der biologischen Reaktion, also des 

Inflammationsprozesses beeinflussen, sind die Menge an Partikeln, deren Morphologie, 

Größe, Volumen und Längenverhältnis sowie die chemische Reaktivität des 

Partikelmaterials. Die Entzündungsantwort steigt mit der Partikelmenge und außerdem ist 

bekannt, dass längliche Partikel inflammatorischer wirken als runde (Hallab et al. 2009). Die 

Größe der Partikel spielt eine entscheidende Rolle bei der aseptischen Prothesenlockerung 

(Hallab et al. 2009, Yang et al. 2002). Tribologische Untersuchungen zeigten, dass die 

mengenmäßig größte Fraktion der Partikel kleiner als 1 μm ist und die mittlere Größe bei 0,5 

μm liegt (Hallab et al. 2009). Partikel im Nanometerbereich werden von Zellen mittels 

Pinozytose oder Endozytose aufgenommen (< 150 nm) und Partikel mit einer Größe 

zwischen 150 nm und 10 μm werden von einem breiten Spektrum an Zellen phagozytiert, 

wie Osteoblasten, Fibroblasten, Endothelzellen und Makrophagen (Hallab et al. 2009, Green 

et al. 2000). Größere Partikel werden von multinukleären Riesenzellen inkorporiert (Drees et 

al. 2008, Ingham et al. 2005, Otto et al. 2006, Revell et al. 2008). Insbesondere von 

Makrophagen phagozytierte Partikel, also bis 10 μm große Partikel, induzieren eine 

ausgeprägte biologische Reaktion (Drees et al. 2008, Otto et al. 2006, Revell et al. 2008, 

Holt et al. 2007).   

 

 

II.2.5. Ursachen des Knieendoprothesenversagens 

 

Die Zahl der Erstimplantationen beläuft sich in Deutschland auf etwa 130.000 künstliche 

Kniegelenke pro Jahr. In überproportionalem Maß nimmt aber auch die Zahl der Revisions- 

und Wechseloperationen (ca. 5% Anstieg 2006 gegenüber 2005) zu, insbesondere bei 

jüngeren Patienten (Graichen et al. 2007). Für eine Insuffizienz des künstlichen Kniegelenks 

und eine folglich notwendige Revisionsoperation gibt es verschiedene Gründe. In ca. 44% 

der Fälle ist das Versagen des Implantats durch Polyethylenabrieb bedingt (Robertsson et al. 

2001). Die aseptische Lockerung der Endoprothese, die durch die Polyethylenabriebpartikel 

induziert wird, stellt somit deutlich die Hauptursache für die Notwendigkeit einer 

Revisionsoperation dar. Eine weitere Komplikation ist bei etwa 5,7% der Patienten die 

Instabilität (Robertsson et al. 2001). Bei der Implantation der Prothese kann es zu einer 

Verletzung des Bandapparates und infolgedessen postoperativ zu einer ligamentären 
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Instabilität kommen. Bei etwa 9,9% der Patienten führt eine Infektion zu einem Versagen der 

Prothese und bei ca. 0,9% treten periprothetische Frakturen auf (Robertsson et al. 2001). 

Risikofaktoren hierfür sind eine bestehende Osteoporose, eine Fehlpositionierung der 

Prothesenkomponenten, langstielige Implantate und Revisionssituationen (Krukenmeyer 

2009). Seltene Ursachen für ein Versagen des künstlichen Kniegelenks sind weiterhin eine 

avaskuläre Nekrose der Patella oder eine Arthrofibrose (Callaghan et al. 2004).  

 

 Early 
N 

Late 
N 

All 
n 

 
% 

Infection 231 86 317 9,9 
Loosening 557 854 1411 44,1 
Other mech. 158 237 395 12,4 
Fracture 15 15 30 0,9 
Patella 180 31 211 6,6 
Instability 113 70 183 5,7 
Progress 253 225 478 14,9 
Other 91 82 173 5,4 
Total 1598 1600 3198 100,0 
Tab. 2: Schwedisches Knieprothesenregister 1975–1997: Indikationen für primäre 

Revisionsoperationen von Knieendoprothesen von 1988 bis 1997 (Median der Prothesenstandzeit = 

45 Monate) (Robertsson et al. 2007) 

 

 

II.2.6. Biologische Reaktion auf Polyethylenpartikel: aseptische Lockerung 

 

Die aseptische Osteolyse stellt die Hauptursache für das Versagen von Knieendoprothesen 

und Revisionsoperationen dar (Forster et al. 2003, Graves et al. 2004, Horwitz et al. 2009).  

Die molekularbiologischen Prozesse und Kaskaden, die in mehreren komplexen Schritten 

Osteolysen und eine aseptische Lockerung der Prothese bewirken, sind bisher noch nicht bis 

ins Detail bekannt (Holt et al. 2007, Drees et al. 2008, Gallo et al. 2008, Ingham et al. 2005, 

Jacobs et al. 2001, Tuan et al. 2008). Zusammengefasst induzieren die Abriebpartikel eine 

Aktivierung von Makrophagen und weiteren Immunzellen, die über die Sekretion von 

Zytokinen und anderen Entzündungsmediatoren zur Knochenresorption führen, indem sie zu 

einer Aktivierung der Osteoklastogenese und zu einer Hemmung der Osteoblastenfunktion 

führen. Wie die Partikel an die Implantat-Knochen-Grenze gelangen, wo die 

Knochenresorption erfolgt, wird nach wie vor kontrovers diskutiert. Nach Schmalzried et al. 

werden die Polyethylenpartikel gemäß der Theorie des so genannten „Periimplantatspaltes“ 

mit der Synovialflüssigkeit in durch mechanische Faktoren entstandene Mikrospalten 

zwischen Knochen und Implantat transportiert und verteilt und lösen dort über die Aktivierung 

von Makrophagen lokal den Abbau von Knochensubstanz aus (Schmalzried et al. 1992). 

Andere Studien hingegen postulierten, dass Partikel Knochen durchwandern können (Massin 
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et al. 2004, Libouhan et al. 2008). Außerdem gibt es Hinweise darauf, dass Abriebpartikel 

auch in regionäre Lymphknoten transportiert werden (Revell et al. 2008). Überdies konnten 

in Organen wie Leber, Milz, Niere und Lunge Partikel nachgewiesen werden (Revell et al. 

2008).  

An der Kontaktfläche zwischen Knochen und Implantat kommt es zur Ausbildung der so 

genannten periprothetischen Membran, einer der Synovialmembran ähnlichen 

Pseudomembran (Drees et al 2008, Ingham et al. 2005, Otto et al. 2006, Revell et al. 2008). 

Dort befinden sich Zellinfiltrate, die aus Makrophagen, multinukleären Riesenzellen, 

Prothesenlockerungs-spezifischen Fibroblasten, Endothelzellen, Mastzellen und vereinzelt 

aus T-Lymphozyten bestehen (Drees et al 2008, Ingham et al. 2005, Otto et al. 2006, Revell 

et al. 2008, Tuan et al. 2008). Auch die Polyethylenabriebpartikel sind in dieser Membran, 

die das resorbierte Knochengewebe ersetzt, darstellbar (Drees et al. 2008, Otto et al. 2006, 

Revell et al. 2008). Überdies spiegelt die Proliferation von Fibroblasten und Endothelzellen 

aktives Geweberemodelling wieder. 

Voraussetzung für die folgende osteolytische Kaskade ist die Opsonierung der 

Abriebpartikel. Sie werden an Proteine wie Albumin, Immunglobuline, Komplementfaktoren 

oder an Kollagen gebunden, wodurch die Phagozytose durch Makrophagen und 

multinukleäre Riesenzellen erleichtert wird (Revell et al. 2008). Auch bakterielle Produkte wie 

Exotoxine lagern sich an die Abriebpartikel an und verstärken die Entzündungsreaktion 

(Drees et al. 2008). Die Polyethylenpartikel interagieren nun mit Makrophagen, Osteoklasten 

und Fibroblasten und werden entweder phagozytiert oder aktivieren Rezeptoren auf der 

Oberfläche dieser Zellen (Gallo et al. 2008, Tuan et al. 2008). Dies führt zu einer 

gesteigerten Sekretion von Entzündungsmediatoren wie Zytokinen, Chemokinen, 

Wachstumsfaktoren und proteolytischen Enzymen. Insbesondere IL-1β, TNF-α, IL-6, IL-17 

und Granulozyten-Makrophagen colony-stimulating factor (GM-CSF) werden von den 

aktivierten Makrophagen sezerniert und wirken proinflammatorisch (Drees et al. 2008, 

Ingham et al. 2005, Holt et al. 2007, Purdue et al. 2007, Revell et al. 2008). Es kommt zur 

Rekrutierung weiterer Makrophagen und anderer Entzündungszellen (Drees et al. 2008, 

Wooley et al. 2004, Revell et al. 2008). Ein Grund hierfür liegt unter anderem darin, dass die 

Makrophagen die phagozytierten Partikel nicht verdauen können (Otto et al. 2006). Für die 

osteolytische Kaskade sind vor allem die Zytokine IL-1β, IL-6 und TNF-α von Bedeutung, 

wobei die Synthese von IL-6 hauptsächlich durch IL-1β und TNF-α gesteigert wird. IL-1β und 

TNF-α bewirken synergistisch sowohl eine Aktivierung von differenzierten Osteoklasten, als 

auch eine Stimulierung der Differenzierung von Osteoklastenvorläuferzellen (Wei et al. 

2005). TNF-α kann diese Prozesse allein in Gang setzten, während IL-1β nur synergistisch 

mit TNF-α wirkt. Die Knochenresorption erfolgt nun zum einen direkt durch aktivierte 

Makrophagen, die durch periostale Knochenresorption kleine Osteolysen erzeugen, zum 
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anderen durch rekrutierte, zytokin-aktivierte Osteoklasten und durch aus Makrophagen 

differenzierte Osteoklasten (Ali et al. 1984, Fallon et al. 1983, Mundy et al. 1977, Quinn et al. 

1996). Die multinukleären Osteoklasten resorbieren mittels Kathepsin K und Säure größere 

Areale des Knochens und bilden ausgedehnte Lakunen (Purdue et al. 2007, Tamaki et al. 

2008). Intrazellulär existiert neben anderen ein Hauptsignalweg, der über TNF-α und IL-1β 

zur Osteoklastogenese führt.  Dieser läuft über den Transkriptionsfaktor NF-κB, der im 

Zytoplasma normalerweise von einem Hemmfaktor gebunden wird. Im Rahmen von 

Inflammationsprozessen wird dieser Inhibitor proteolytisch abgebaut und NF-κB gelangt in 

den Kern, wo er an die Promotorregion seiner Zielgene (insbesondere proinflammatorische 

Zytokine, Chemokine, Adhäsionsmoleküle) bindet (Drees et al. 2008, Ingham et al. 2005, 

Revell et al. 2008, Holt et al. 2007, Otto et al. 2006).  

 

Abb. 8: Schematische Darstellung der die Entstehung aseptischer Osteolysen im Bereich künstlicher 

Gelenke vermittelnden Signalkaskaden einschließlich der beteiligten Zellen sowie der 

proinflammatorischen Mediatoren (Purdue et al. 2007) 
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Dieser Transkriptionsfaktor NF-κB kann durch den Rezeptor-Aktivator von NF-κB (RANK) 

aktiviert werden, das seinerseits vom Liganden des Rezeptor-Aktivator von NF-κB (RANKL) 

aktiviert wird (Drees et al. 2008, Otto et al. 2006, Gallo et al. 2008, Purdue et al. 2007). Die 

Aktivierung und Expression von RANKL wird wiederum von TNF-α reguliert, das zusätzlich 

den Gegenspieler von RANKL, Osteoprotegerin (OPG), hemmt (Baumann et al. 2005, Fuller 

et al. 2002, Zhang et al. 2001, Xu et al. 1996). RANKL ist ein Mitglied der TNF-Familie und 

stimuliert über seinen Rezeptor RANK direkt die Differenzierung und Aktivierung der 

Osteoklasten. Die biologische Aktivität von RANKL wird durch OPG gesteuert (Ingham et al. 

2005, Otto et al. 2006, Revell et al. 2008). Das Verhältnis von RANKL und OPG ist 

entscheidend für den Knochenstoffwechsel und das Gleichgewicht zwischen Knochenauf- 

und -abbau. Ist dieses Gleichgewicht  durch TNF-α zugunsten von RANKL verschoben, 

resultieren daraus eine negative Knochenbilanz, Knochenresorption und Osteolysen (Gallo 

et al. 2008, Purdue et al 2006, Purdue et al. 2007, Tuan et al. 2008).  

Die zentralen Funktionen von NF-κB liegen wiederum in der Steuerung der Sekretion von 

TNF-α durch Makrophagen und der Expression von Entzündungsgenen und 

Adhäsionsmolekülen (Purdue et al. 2007, Drees et al. 2008, Kouba et al. 1999, Otto et al. 

2006).  

Da TNF-α in diesem Prozess eine zentrale Rolle einnimmt und synergistisch mit IL-1β wirkt 

(Wei et al. 2005), ist der immunhistochemische Nachweis dieser Zytokine von Bedeutung für 

diese Arbeit. 

Neben den Makrophagen wurde auch die Anwesenheit von Lymphozyten in der 

periprothetischen Membran nachgewiesen (Gallo et al. 2008, Tuan et al. 2008, Revell et al. 

2008). Die Rolle dieser im Prozess der aseptischen Prothesenlockerung ist allerdings noch 

Gegenstand kontroverser Diskussion. Abriebpartikel aktivieren Makrophagen, die Mediatoren 

wie Macrophage inflammatory protein-1 (MIP-1) und Monocyte chemotactic protein-1 (MCP-

1) sezernieren, die wiederum Lymphozyten anlocken (Purdue et al. 2007). Überdies wurde 

das Interleukin IL-15 in der Lockerungsmembran nachgewiesen, was eine spezifische 

Stimulierung vorhandener T-Lymphozyten andeutet (Revell et al. 1998). Außerdem 

exprimieren die T-Zellen RANKL (Gallo et al. 2008), ebenso ein Hinweis auf einen aktiven 

Einfluss auf den Knochenstoffwechsel. Die in der periprothetischen Membran 

nachgewiesenen Lymphozyten sind hauptsächlich T-Helferzellen, wobei die T1-Helferzellen 

überwiegen. Zusätzlich wurde festgestellt, dass sich das Verhältnis von CD4+-Zellen zu 

CD8+-Zellen bei Patienten mit aseptischer Osteolyse verändert (Landgraeber et al. 2009). Je 

ausgedehnter die Osteolysen, desto kleiner wird der CD4+-CD8+-Quotient (Landgraeber et 

al. 2009). Diesen Hinweisen auf eine Beteiligung der Lymphozyten an der aseptischen 

Lockerung von Endoprothesen stehen allerdings Studien gegenüber, die aseptische 

Osteolysen in Lymphozyten-Knockoutmäusen nachweisen (Gallo et al. 2008).  
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Folglich ist eine weitere Erforschung der Bedeutung der Lymphozyten für die 

Prothesenlockerung in der Zukunft anzustreben.  

Des Weiteren spielen Fibroblasten eine aktive Rolle in dem Prozess der 

Osteolysenentstehung. Einerseits werden sie direkt durch Abriebpartikel aktiviert, 

andererseits durch die von Makrophagen sezernierten Zytokine. Sie hemmen zum einen die 

Osteoblastenfunktion und induzieren zum anderen direkt eine Osteoklastenaktivierung 

(Koreny et al. 2006, Sabokbar et al. 2005). Zuletzt gibt es Hinweise darauf, dass auch 

Chondrozyten an den inflammatorischen Prozessen der Prothesenlockerung beteiligt sind, 

indem sie Polyethylenpartikel phagozytieren und so eine erhöhte Stickstoffmonoxid (NO)- 

und Prostaglandin E2-Freisetzung bedingen, was wiederum die Arthroseentstehung 

begünstigt (Chang et al. 2008). 

 

 

II.2.7. Humorale Mediatoren der aspetischen Osteolyse 

 

II.2.7.1. Adhäsionsmoleküle und Leukozyten-Endothelzell-Interaktion 

 

Die Adhäsionsmoleküle sind eine heterogene Gruppe von Molekülen, die auf den 

Oberflächen der Zellen exprimiert werden und durch Bindungen Wechselwirkungen unter 

den Zellen regulieren. Während einige Adhäsionsmoleküle dauerhaft vorhanden sind, 

bedürfen andere einer vorherigen Aktivierung der Zelle, beispielsweise durch entsprechende 

Entzündungsmediatoren (Murphy 2009, Vollmar 2005).  

Grundsätzlich werden die Adhäsionsmoleküle in drei Gruppen unterteilt, in die Selektine, die 

Mitglieder der Immunglobulinsuperfamilie und die Integrine (Murphy 2009, Vollmar 2005).  

 

Für diese Arbeit ist vor allem das interzelluläre Adhäsionsmolekül-1 (ICAM-1 = intercellular 

adhesion molecule-1) von Bedeutung. Es gehört zur Immunglobulinsuperfamilie, hat ein 

relatives Molekulargewicht von 75-115 kDa und besteht aus fünf extrazellulären, einer 

transmembranen und einer kurzen zytoplasmatischen Domäne (Murphy 2009, Vollmar 

2005).  

Konstitutiv wird dieses Adhäsionsmolekül in geringen Mengen auf Endothelien exprimiert, 

nach Induktion durch Interleukin-1β oder TNF-α im Rahmen inflammatorischer Prozesse 

hingegen ist es auf einer Vielzahl von Zellen vorhanden (Murphy 2009, Vollmar 2005). Dazu 

zählen Lymphozyten, Monozyten und Makrophagen, aber auch Endothelien, dendritische 

Zellen, Fibroblasten und Epithelzellen des Thymus (Murphy 2009, Vollmar 2005).  

ICAM-1 spielt eine wichtige Rolle bei der interzellulären Adhäsion und transendothelialen 

Migration von Leukozyten bei Entzündungsprozessen, die es durch Bindung mit Integrinen 
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wie Makrophagen-Adhäsions-Ligand-1 (Mac-1) oder Leukozyten-funktionsassoziiertes-

Antigen-1 (LFA-1), die auf Endothelzellen und Leukozyten exprimiert sind, ermöglicht und 

erleichtert (Murphy 2009, Vollmar 2005, Tuan et al. 2008).  

 

Die Leukozyten-Endothelzell-Interaktion und transendotheliale Migration verläuft in mehreren 

Schritten. Voraussetzung für die Auswanderung der Immunzellen ins Gewebe ist die 

Aktivierung des Endothels durch Chemokine wie IL-8 und Zytokine wie IL-1β oder TNF-α, die 

von aktivierten Makrophagen sezerniert werden (Murphy 2009, Vollmar 2005). Der erste 

Schritt der Emigration der Leukozyten, die im Blutstrom schwimmen, ist das „Rolling“ 

(Murphy 2009, Vollmar 2005, Revell et al. 2008). Auf Endothel- und Immunzellen befinden 

sich Adhäsionsmoleküle, so genannte Selektine, die ihre Liganden binden und so die 

Adhäsion der Leukozyten ermöglichen. Durch eine schnelle proteolytische Abspaltung der 

Selektine gelingt zwar eine Verringerung der Geschwindigkeit und ein Rollen der weißen 

Blutkörperchen, aber nicht deren Anhaften (Murphy 2009, Vollmar 2005, Tuan et al. 2008). 

Im weiteren Verlauf interagieren nun die endothelialen Oberflächenrezeptoren ICAM-1 und 

das vaskuläre Adhäsionsmolekül-1 (VCAM-1 = vascular adhesion molecule-1) mit ihren 

Liganden, den Integrinen Mac-1, LFA-1 und very late antigen-4 (VLA-4) (Murphy 2009, 

Vollmar 2005). Dadurch geht die lockere reversible Bindung in ein irreversibles „Sticking“ 

über und die Immunzellen können sich ausbreiten („Spreading“) und das Blutgefäß durch 

Lücken zwischen den Endothelzellen verlassen (Murphy 2009, Vollmar 2005). Aufgrund des 

chemotaktischen Gradienten, der vom Entzündungsherd ausgeht, wandern die Immunzellen 

dann zwischen den Endothelzellen hindurch zum Ort der Inflammation (Murphy 2009, 

Vollmar 2005, Tuan et al. 2008, Revell et al. 2008).  
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Abb. 9: Schematische Darstellung der Leukozyten-Endothelzell-Interaktion mit transendothelialer 

Migration (Welsch 2006) 

 

 

II.2.7.2. Zytokine 

 

Zytokine sind endogene Peptidhormone mit einem großen Spektrum biologischer 

Eigenschaften. Die heute bekannten Zytokine lassen sich entsprechend ihrer Funktionen in 

verschiedene Gruppen einteilen – Chemokine, Interferone, Interleukine, Tumor-Nekrose-

Faktoren, Wachstumsfaktoren und Kolonie-stimulierende-Faktoren (Murphy 2009, Vollmar 

2005). Ihre Wirkung ist vor allem auto- und parakrin, aber auch systemische Effekte sind 

möglich. 

  

Die Interleukine sind für die Regulation der Immunabwehr und der Entzündungsreaktion 

sowie für die Kommunikation der daran beteiligten Zellen von immenser Bedeutung (Murphy 

2009, Vollmar 2005). Weiterhin sind sie an der Bildung der Blutzellen aus Vorläuferzellen im 

Knochenmark beteiligt. Zum einen wirken die Interleukine im Differenzierungsprozess der 

Zellen der Hämatopoese mit und zum anderen regen sie bei Entzündungsprozessen die 

Bildung neuer Zellen im Knochenmark an (Murphy 2009, Vollmar 2005). Auch die 

Stromazellen und die extrazelluläre Matrix des Knochenmarks spielen eine wichtige Rolle, da 

vor allem Letztere Zytokine bindet und so ein Reservoir darstellt (Murphy 2009, Vollmar 

2005).  
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II.2.7.2.1. Interleukin-1β (IL-1β) 

 

IL-1β ist ein Monomer aus 153 Aminosäuren und wird hauptsächlich von Makrophagen und 

Epithelzellen produziert (Murphy 2009, Vollmar 2005). Es spielt bei der Immunreaktion auf 

Fremdstoffe eine entscheidende Rolle (Murphy 2009, Vollmar 2005). Die unspezifische 

Abwehr und frühe Entzündungsreaktion werden verstärkt, die Durchblutung gefördert und 

durch Induktion einer vermehrten Produktion anderer Zytokine wie GM-CSF, IL-6 oder TNF-α 

werden Neutrophile Granulozyten und Makrophagen rekrutiert (Murphy 2009, Vollmar 2005). 

Überdies fördert IL-1β die Hämatopoese im Knochenmark zum einen direkt, zum anderen 

indirekt über die Induktion anderer Wachstumsfaktoren wie IL-3 oder GM-CSF in 

Stromazellen des Knochenmarks (Murphy 2009, Vollmar 2005). Von zentraler Bedeutung für 

diese Arbeit ist auch die Verstärkung der Osteoklastogenese und Knochenresorption durch 

ein Zusammenwirken von IL-1β und TNF-α (Drees et al. 2008, Tanabe et al. 2005, Wei et al 

2005, Ingham et al. 2005, Otto et al. 2006). Stimuli für die Produktion dieses Interleukins sind 

GM-CSF, mikrobielle Stoffwechselprodukte und Zellbestandteile sowie andere 

Entzündungsmediatoren wie TNF-α, aber auch IL-1β selbst (Murphy 2009, Vollmar 2005).  

 

II.2.7.2.2. Interleukin-6 (IL-6) 

 

Interleukin-6, ein Monomer aus 184 Aminosäuren, wird von Zellen des Monozyten-

Makrophagen-Systems, T-Zellen und Endothelzellen produziert (Murphy 2009, Vollmar 

2005). Vor allem durch andere proinflammatorische Zytokine wie IL-1β und TNF-α wird die 

Synthese von IL-6 gesteigert (Chiba et al. 1994, Epstein et al. 2005b, Wei et al. 2005).  

Zu den vielfältigen Wirkungen von IL-6 zählen unter anderem die Induktion der B-Zellreifung 

sowie des Zellwachstums und der Differenzierung zytotoxischer T-Lymphozyten und die 

Produktion von Akut-Phase-Proteinen (Murphy 2009, Vollmar 2005). Überdies ist es an der 

Steigerung der Granulopoese und Megakaryopoese im Knochenmark beteiligt (Murphy 

2009, Vollmar 2005). Wie auch IL-1β und TNF-α ist IL-6 an der Verstärkung der 

unspezifischen Immunantwort beteiligt (Murphy 2009, Vollmar 2005). Außerdem fördert IL-6 

eine Proliferation von Osteoklasten und wirkt folglich ebenso negativ auf den 

Knochenstoffwechsel (Greenfield et al. 1999, Manolagas et al. 1998, Vermes et al. 2000, 

Murphy 2009, Vollmar 2005).  
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II.2.7.2.3. Tumornekrosefaktor-α (TNF-α) 

 

TNF-α ist ein Trimer aus 157 Aminosäuren und wird überwiegend von Zellen des 

Monozyten-Makrophagen-Systems gebildet, aber auch von Natürlichen Killerzellen und T-

Lymphozyten (Murphy 2009, Vollmar 2005). Stimuli der Produktion von TNF-α sind virale 

und bakterielle Antigene, andere Wachstumsfaktoren und Zytokine wie IL-1, GM-CSF und 

TNF-α selbst (Murphy 2009, Vollmar 2005, Wei et al. 2005). Dieses Zytokin ist der zentrale 

Mediator der lokalen und systemischen Entzündungs- und Immunreaktion und übt eine 

Vielzahl von Wirkungen auf verschiedenste Zellen aus. Grundsätzlich kann TNF-α die 

Apoptose, Zelldifferenzierung und -proliferation anregen (Murphy 2009, Vollmar 2005). Zu 

den wichtigsten Effekten gehören die Anregung von Zellen des Monozyten-Makrophagen-

Systems zur Phagozytose und zur Produktion weiterer Zytokine, die Steigerung der 

Myelopoese, die Aktivierung von Granulozyten und die Produktion von Akut-Phase-Proteinen 

durch Hepatozyten. Überdies aktiviert TNF-α das Endothel, was zu einer erhöhten 

Expression von Adhäsionsmolekülen und zu einer Induktion der Gerinnungsreaktion führt 

(Murphy 2009, Vollmar 2005). Außerdem kommt es vor allem über IL-1β zu einer Aktivierung 

der Fibroblasten der Synovia von Gelenken und zu einer Zerstörung des Gelenkknorpels, 

beispielsweise durch die Synthese von Kollagenasen (Murphy 2009, Vollmar 2005). Auf den 

Knochenstoffwechsel hat TNF-α dieselbe Wirkung wie IL-1β und IL-6. Die Aktivität der 

Osteoblasten wird gehemmt und die der Osteoklasten gefördert, was zu einer negativen 

Bilanz und zum Verlust von Knochensubstanz führt (Murphy 2009, Vollmar 2005, Fuller et al. 

2002, Holding et al. 2006, Otto et al. 2006, Zhang et al. 2001).  

 

 

II.3. Studiendesign des Gesamtprojektes 

 

Da diese Arbeit Teil eines umfassenderen Projektes ist und in dessen Zusammenhang 

besser verstanden werden kann, soll das Studiendesign dieses Gesamtprojektes im 

Folgenden näher erläutert werden. 

Ziel dieses Projektes war es, die biologische Aktivität der Abriebpartikel von crosslinked 

Polyethylenen im Vergleich zum konventionellen UHMWPE an einem in vivo Modell zu 

untersuchen (Utzschneider et al. 2009a, 2009b).  

 

 

 

 

 



- 36 - 
 

II.3.1. Untersuchung des tibialen Polyethylen-Inlays im Kniegelenkssimulator 

mit Gewinnung von Abriebmaterial 

 

Zunächst wurden die zuvor vorgestellten Knieprothesendesigns unter identischen 

Bedingungen im Kniesimulator (Stallforth/Ungethuem, Deutschland) auf ihren 

Abriebmechanismus und die Abriebraten getestet (Utzschneider et al. 2009a).  

Dabei verwendete man zu den Inlays die von den Herstellern empfohlenen Knieprothesen, 

um Vergleichbarkeit zur klinischen Praxis und zum Patienten zu gewährleisten. Von jedem 

Werkstoff wurden drei Inlays getestet. Als Testmedium diente ein Kälberserumgemisch (25% 

Neugeborenenkälberserum mit 0,1% sodium azide Lösung in sterilem Wasser) 

(Utzschneider et al. 2009a).  

Anschließend wurden die Tribokontaktzonen gemessen, die Verschleißrate alle 0,5 Millionen 

Zyklen bis hin zu 5 Millionen Zyklen gravimetrisch (mg/Jahr) und volumetrisch (mm³/Jahr) 

ermittelt und der Mechanismus mittels Licht- und Rasterelektronenmikroskop analysiert 

(Utzschneider et al. 2009a).  

 

 

II.3.2. Separation und Analyse des Abriebmaterials und Endotoxineliminierung 

 

Im Anschluss wurden die Abriebpartikel nach der Methode der Säuredigestion vom Serum 

getrennt und auf Größe, Form und Volumen mittels Bildauswertungssoftware (Leica QWin, 

Image Processing) untersucht (Utzschneider et al. 2009b).  

Daraufhin wurde der Endotoxingehalt unter die Nachweisgrenze gesenkt, um die biologische 

Aktivität im in vivo Modell ohne Verfälschungen messen zu können (Utzschneider et al. 

2009b).  

Dieser Schritt war nötig, um die selbst im Simulator produzierten, aber nicht sterilen 

Abriebpartikel verwenden zu können, was den Vorteil hat, dass diese den im künstlichen 

Kniegelenk beim Patienten erzeugten Partikeln in Form- und Größenparametern sehr viel 

ähnlicher sind als die sterilen, kommerziell erwerbbaren Partikel. 

In dieser Arbeit lagen mindestens 85% der Partikel aller PE-Gruppen mit ihrem Durchmesser 

im Submikrometerbereich (Utzschneider et al. 2009b). Die sechs verschiedenen Kunststoffe 

wiesen ähnliche Partikelgrößenspektren mit einem Equivalent Circle Diameter (ECD) von 

0,39 ± 0,37 bis 0,42 ± 0,44 μm für die UHMWPE-Partikel und einem ECD von 0,33 ± 0,23 bis 

0,46 ± 0,46 μm auf. Die Mehrheit der Partikel war rund, glatt, granular, irregulär und sie 

hatten ähnliche Aspect-Ratio-Werte (Utzschneider et al. 2009b). Die Polyethylene X3, 

Durasul und XPE* produzierten im Kniesimulator allerdings signifikant weniger Abriebpartikel 

als die Polyethylene Prolong, UHMWPE1 und UHMWPE2. X3- und Durasul erzeugten 
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größtenteils Partikel < 0,5 μm. Aufgrund der insgesamt geringen Anzahl an Partikeln 

entstand bei X3 dennoch die geringste Anzahl an Partikeln < 0,5 μm (Utzschneider et al. 

2009b).  

 

 

Abb. 10: Rasterelektronenmikroskopische Bilder der Abriebpartikel der verschiedenen 

Knieprothesendesigns (A=X3, B=Durasul, C=Prolong, D=XPE*, E=UHMWPE1, F=UHMWPE2, 

Originalvergrößerung: 5.000- und 10.000-fach) (Utzschneider et al. 2009b) 

 

 

II.3.3. Messung der biologischen Aktivität der Abriebpartikel im in vivo 

Mausmodell 

 

Im nächsten Schritt dieses Studiendesigns wurde nun die biologische Reaktion auf die 

erzeugten Abriebpartikel anhand eines Mausmodells untersucht. 

Dazu standen sechs Gruppen von je acht Mäusen sowie acht Kontrolltiere und drei 

Positivkontrollmäuse zur Verfügung.  

Zunächst wurde den Mäusen eine Partikelsuspension (0,1% Partikel-Volumen/PBS-

Volumen) in das linke Kniegelenk injiziert, wobei alle Tiere einer Gruppe dieselbe 
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Suspension bekamen. Den Kontrolltieren wurde nur PBS injiziert, den Positivkontrollmäusen 

nicht aufgereinigte Partikelsuspension. Anschließend wurde am achten Tag eine 

Intravitalmikroskopie des Kniegelenks durchgeführt, nachdem dieses frei präpariert und 

Fluoreszenzmarker intravenös appliziert worden waren. Das Ziel der Intravitalmikroskopie, 

die ein Teilprojekt dieser Studie darstellt, war die Messung inflammatorischer Reaktionen wie 

der Leukozyten-Endothelzell-Interaktionen und der Mikrozirkulation in der Synovialmembran 

im Kniegelenk der Maus.      

Die vorliegende Arbeit untersucht schließlich mit Hilfe immunhistochemischer 

Färbemethoden in vivo im murinen Kniegelenk die biologische Aktivität der Abriebpartikel.  
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III. Zielsetzung 

 

Die Hauptursache für die Lockerung von Knieendoprothesen stellen die 

Polyethylenabriebpartikel dar. Aus diesem Grund wird versucht, die Abriebfestigkeit der in 

der Endoprothetik verwendeten Kunststoffe zu optimieren. Während UHMWPE nach wie vor 

als Standard-Polyethylen in der Knieendoprothetik gilt, wird die Anwendung von crosslinked 

Polyethylen als Prothesen-Inlay bis dato kontrovers diskutiert.  

Das Ziel dieser Studie war ein Vergleich der biologischen Aktivität von Abriebpartikeln sechs 

unterschiedlicher, in der Knieendoprothetik verwendeter Polyethlenwerkstoffe, darunter vier 

crosslinked Polyethylene und zwei UHMWPE. 

Hierzu wurde anhand eines in vivo Mausmodells die inflammatorische Reaktion auf die 

Polyethylenpartikel immunhistochemisch mit den Antikörpern IL-1β, IL-6, TNF-α und ICAM-1 

analysiert. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- 40 - 
 

IV. Material und Methoden 

 

IV.1. Gewebeproben 

 

Die Gewebeproben, die die Grundlage für diese Arbeit darstellten, waren Kniegelenke von 

weiblichen Balb/c-Mäusen. 

Insgesamt gab es sechs Versuchsgruppen sowie eine Kontrollgruppe, wobei eine Gruppe 

aus jeweils acht Mäusen bestand, die gleichermaßen behandelt wurden. Zusätzlich gab es 

drei Mäuse, die als Positivkontrolle dienten. Diese Mäuse wurden in den Tierhaltungsräumen 

des Walter-Brendel-Zentrums, Campus Großhadern, gehalten. Zum Zeitpunkt der 

Knieentnahme waren sie zwischen 10 und 16 Wochen alt, wogen etwa 20 Gramm und 

wurden in Käfigen bei 22°C, kontrollierter gefilterter Luftumwälzung und 12 Stunden Tag-

Nacht-Rhythmus gehalten. 

Alle Tiere erhielten autoklaviertes Trockenfutter und Leitungswasser. Um Verunreinigungen 

im Wasser zu vermeiden, bekamen die Tiere, die in den Versuchsställen verweilten, zum 

normalen autoklavierten Trockenfutter mit Salzsäure (1000-fach verdünnt) angereichertes 

Leitungswasser. 

Alle Versuche wurden gemäß des Tierschutzes bei der Regierung von Oberbayern registriert 

und bewilligt (Aktenzeichen: 55.2-1-54-2531-139-07). 

 

 

IV.2. Verwendete Materialien 

 

IV.2.1. Antikörper und Seren 

 

Material Firma 

Anti-mouse IL 1 Goat IgG*) 

aufgelöst mit sterilem PBS 

Konzentration: 0,1 mg/ml 

R&D Systems Minneapolis, USA 

Anti-mouse IL 6 Goat IgG*) 

aufgelöst mit sterilem PBS 

Konzentration: 0,1 mg/ml 

R&D Systems Minneapolis, USA 

Anti-mouse TNF Goat IgG*) 

aufgelöst mit sterilem PBS 

Konzentration: 0,2 mg/ml 

R&D Systems Minneapolis, USA 
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Anti-mouse ICAM-1 Goat IgG*) 

aufgelöst mit sterilem PBS 

Konzentration: 0,1 mg/ml 

R&D Systems Minneapolis, USA 

Biotinylierter Pferd-anti-Ziege IgG*)  

aufgelöst mit 1ml Aquadest  

Konzentration: 1,5 mg/ml 

Vector Laboratories Inc. Burlingame, 

Ca 94010, USA 

Pferdeserum*) (normal horse serum)  Vector Laboratories Inc. Burlingame, 

Ca 94010, USA 

Tab. 1: Antikörper und Seren  

*) primäre Antikörper werden bei -20°C, sekundärer Antikörper und Serum bei 4°C gelagert  

 

 

IV.2.2. Allgemeine Reagenzien 

 

Material Firma 

Ethanol absolut mit Petrolether vergällt Apotheke Innenstadt Universität 

München, Deutschland 

Ethanol 70% mit Methylketon vergällt Apotheke Innenstadt Universität 

München, Deutschland 

Ethanol 40% mit Methylketon vergällt Apotheke Innenstadt Universität 

München, Deutschland 

PBS-Puffer pH 7,4 (nach 1:10 

Verdünnung) 

Apotheke Innenstadt Universität 

München, Deutschland 

Natriumacetat-Puffer 0,1M  

pH 5,5 (mit Essigsäure eingestellt) 

Natriumacetat-Trihydrat 13,6 g 

Gereinigtes Wasser zu 1 L 

Apotheke Innenstadt Universität 

München, Deutschland 

Dimethylsulfoxid Merck KGaA Darmstadt, Deutschland 

Wasserstoffperoxid 30% 

1l =1,11 kg 

Merck KGaA Darmstadt, Deutschland 

Methanol 

1l = 0,79 kg, M = 32,04 g/mol 

Merck KGaA Darmstadt, Deutschland 

Xylol (Isomerengemisch zur Synthese) 

1l = 0,86 kg 

M = 106,17 g/mol 

Merck KGaA Darmstadt, Deutschland 
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Saure Hämalaunlösung (nach P. 

Mayer) 

Romeis § 648 

Hämatoxylin 1,0 g 

Natriumjodat 0,2 g 

Aluminiumkaliumsulfat-Dodecahydrat 

50,0 g 

Chloralhydrat 50,0 g 

Citronensäuremonohydrat 1,09 g 

Gereinigtes Wasser zu 1000,0 g 

Apotheke Innenstadt Universität 

München, Deutschland 

AEC-Tabletten 

3-Amino-9-ethyl-carbazole 

Sigma Aldrich Chemie GmbH 

Steinheim, Deutschland 

EDTA-4Na20%-Citronensäure 

pH 7,1 

EDTA-4Na 200,0 g 

Zitronensäure x 1 H²O 37,19 g 

Gereinigtes Wasser zu 1,0l 

Apotheke Innenstadt Universität 

München, Deutschland 

Neutral-gepufferte Formaldehydlösung 

4% 

Microcos GmbH Garching, 

Deutschland 

Microscopy Aquatex 

pH = 7,0 1l = 1,08 kg 

Merck KGaA Darmstadt, Deutschland 

Paraffinpallets 

Paraplast Plus 

Mc Cormick Scientific St. Louis, 

USA 

Brij 35 Solution 30% Sigma Aldrich Chemie GmbH 

Steinheim, Deutschland 

Vectastain Elite ABC Kit Standard Vector Laboratories Inc. Burlingame, 

Ca 94010, USA 

Roti-Histol Carl Roth GmbH + Co Karlsruhe, 

Deutschland 

Tab. 2: Allgemeine Reagenzien 

 

 

IV.2.3. Verbrauchsmaterialien 

 

Material Firma 

Rotilabo Kassetten für Biopsien Carl Roth GmbH + Co Karlsruhe, 

Deutschland 

Faltenfilter (Dia: 185 mm) Munktell & Filtrak GmbH  

Bärenstein, Deutschland 
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Parafilm Pechiney Plastic Packaging  

Chicago, USA 

Bechergläser 1000 ml, 600 ml Duran Schott AG Mainz, Deutschland 

Färbeküvetten  Wagner&Munz GmbH München, 

Deutschland 

Färbegondeln Wagner&Munz GmbH München, 

Deutschland 

Glaspipetten 

Costar Stripette 5 ml, 25 ml 

Corning Inc. New York, USA 

 

Münchner Mappen Wagner&Munz GmbH München, 

Deutschland 

Rotilabo-Färbekästen Carl Roth GmbH + Co Karlsruhe, 

Deutschland 

5-, 15 ml-Tubes   Becton Dickinson and Company  

Heidelberg, Deutschland 

Rotilabo-Präparatekästen Carl Roth GmbH + Co Karlsruhe, 

Deutschland 

Objektträger Superfrost Plus Menzel GmbH & Co KG 

Braunschweig, Deutschland 

Deckgläser 24x32 mm Menzel GmbH & Co KG 

Braunschweig, Deutschland 

Microtom Blade A35-pfm Feather 

Produkte für Medizin AG 

Köln, Deutschland 

Pipettenspitzen Gilson International B.V. Limburg-

Offenheim, Deutschland 

Zentrifugenröhrchen TTP Techno Plastic Products AG 

Trasadingen, Schweiz 

Reagiergefäße 1,5 ml Sarstedt AG & Co Nümbrecht, 

Deutschland 

Tab. 3: Verbrauchsmaterialien 

 

 

IV.2.4. Geräte 

 

Gerät Firma 

Schlittenmikrotom Jung Heidelberg, Deutschland 

Paraffin-Streckbad Gesellschaft für Labortechnik 

Burgwedel, Deutschland 
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Streckbank Medax GmbH & Co.KG Neumünster, 

Deutschland 

Trockenschrank Memmert GmbH & Co.KG 

Büchenbach, 

Deutschland 

Abzug Prutscher Laboratory Systems GmbH 

Neudörfl, Österreich 

Schüttler (Certomat) Sartorius AG Göttingen, Deutschland  

Paraffinausgießstation 

Leica EG 1160 

Leica Microsystems Nussloch, 

Deutschland 

Entwässerungsautomat 

Hypercenter XP 

Thermo Shandon GmbH Frankfurt, 

Deutschland 

Mikroliterpipetten (1-10 µl, 10-100 µl, 

100-1000 µl) 

Gilson International B.V. Limburg-

Offenheim, Deutschland 

Pipetus Hirschmann Laborgeräte GmbH & 

Co.KG Heilbronn, Deutschland 

Gefrierschrank -20° Celsius Robert Bosch GmbH Stuttgart, 

Deutschland 

Kühlschrank  Liebherr Hausgeräte GmbH 

Ochsenhausen, Deutschland 

Lichtmikroskop Carl Zeiss MicroImaging GmbH 

Jena, Deutschland 

Tab. 4: Geräte 

 

 

IV.2.5. Herstellung von Puffern und Lösungen 

PBS-Puffer      

Um eine 10 l PBS-Puffer-Lösung herzustellen, wurde 1 l PBS-Puffer mit 9 l Aquadest 

verdünnt. 

 

PBS-Brij    

Es wurde 1 ml Brij 35 Solution 30% mit 1000 ml PBS-Puffer vermischt, um PBS-Brij zu 

erhalten. 

 

Lösung zum Blockieren endogener Peroxidasen 

Zu 160 ml PBS-Puffer wurden 20 ml Methanol sowie 20 ml Wasserstoffperoxid 30% mit Hilfe 

von 25 ml-Glaspipetten und einem Pipetus gegeben. Da dabei giftige Dämpfe entstanden, 

wurde unter dem Abzug gearbeitet. 
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ABC Komplex      

Zu 1 ml PBS-Puffer wurden je ein Tropfen A und ein Tropfen B hinzugefügt. Der so erzeugte 

ABC-Komplex benötigte 30 Minuten und hielt im Kühlschrank gelagert für zwei Stunden. 

 

AEC Färbelösung    

Eine 3-Amino-9-ethyl-carbazole-Tablette (AEC) wurde mit 10 ml Dimethylsulfoxid in ein 

Becherglas gegeben und mit Parafilm abgedichtet. Mittels eines Schüttlers wurde die 

Tablette in Dimethylsulfoxid in Lösung gebracht. Etwa zehn Minuten vor Gebrauch wurden 

200 ml Na-Acetat-Puffer pH 5,5 dazugegeben und die Lösung durch einen Faltenfilter filtriert. 

Kurz vor Anwendung wurden noch 60 µl Wasserstoffperoxid hinzugefügt. 

 

 

IV.3. Methoden 

 

IV.3.1. Herstellung von Paraffinblöcken 

 

Die Gewebeproben, die Kniegelenke der Mäuse, wurden bis zur Weiterverarbeitung in 

Zentrifugenröhrchen, die mit neutral-gepufferter Formaldehydlösung 4% gefüllt waren, im 

Kühlschrank bei 4°C aufbewahrt. Die Formaldehydlösung diente der Fixierung der Gelenke, 

damit diese erhalten blieben und für die Immunhistologie verwendet werden konnten. 

 

IV.3.1.1. Entkalkung 

 

Zur Entkalkung der knochenhaltigen Gewebeproben, die für das spätere Schneiden 

notwendig war, wurde EDTA-4Na20%-Citronensäure mit einem pH-Wert von 7,1 verwendet. 

Aufgrund der gewebeschonenden EDTA-Entkalkung blieben die Knie histologisch gut 

beurteilbar. 

Zunächst wurde die Formaldehydlösung abgegossen und die Zentrifugenröhrchen wurden 

mit Hilfe eines Pipetus mit etwa 2 ml der EDTA-Lösung gefüllt, sodass die Knie mit 

Flüssigkeit bedeckt waren.  

Nach einer Woche wurde die Lösung abgegossen und durch neue EDTA-Lösung ersetzt, in 

der die Knie für eine weitere Woche verblieben.    
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IV.3.1.2. Wässerung und Entwässerung 

 

Nach der 14-tägigen Entkalkung wurden die Knie in Vorbereitung auf die Paraffinausgießung 

nun zunächst gewässert und anschließend entwässert. 

Zunächst wurde die EDTA-Lösung abgegossen und die Knie mittels einer Pinzette in zuvor 

beschriftete Einbettkassetten transferiert.  

In einem Becherglas wurden die Kassetten unter laufendem Leitungswasser und 

zeitweiligem Umrühren mit einer Glaspipette für zwei Stunden gewässert und die EDTA-

Lösung ausgewaschen. 

Daraufhin wurden die Kassetten in einen Korb in den Entwässerungsautomaten Hypercenter 

XP gelegt, wo diese mit in der Konzentration aufsteigender Alkoholreihe (Alkohol 70% für 

120 min, Alkohol 70% für 60 min, Alkohol 96% für 60 min, Alkohol 96% für 60 min, Alkohol 

96% für 60 min, Alkohol 100% für 60 min, Alkohol 100% für 60 min, Alkohol 100% für 60 

min) und anschließend mit zweimal Roti-Histol für je 90 Minuten entwässert wurden. Im 

Anschluss wurde der Korb zweimal je 90 Minuten lang mit flüssigem, 60°C heißem Paraffin 

gefüllt. 

Bis zur folgenden Einbettung verblieben die Kassetten in diesem flüssigen Paraffin.  

 

 

IV.3.1.3. Paraffinausgießung 

 

Die Paraffineinbettung erfolgte an der Paraffinausgießstation. 

Die Einbettkassetten mit den entwässerten und paraffininfiltrierten Gewebeproben wurden in 

das Kassettenbad überführt, das mit flüssigem Wachs gefüllt und auf 60°C temperiert war, 

um eine frühzeitige Erstarrung der Probe zu verhindern. 

Außerdem wurden die Ausgießformen in dem dafür vorgesehenen Moldbehälter bei 60°C 

vorgewärmt. 

Nacheinander wurden die Kassetten aus dem Kassettenbad entnommen, geöffnet und das 

Präparat mit Hilfe einer Pinzette in eine passende Ausgießform gegeben.  

Zur Orientierung des Präparates konnte die Ausgießform mit dem Präparat kurz auf die 

Kühlplatte der Station gestellt und das Präparat mit einer Pinzette in die gewünschte Position 

gebracht werden. 

Daraufhin wurde der Kassettenboden auf die Form aufgelegt, diese mit flüssigem, 60°C 

heißem Paraffin gefüllt und auf die Kühlplatte geschoben, deren Temperatur  

- 5°C betrug. Nachdem das Paraffin vollständig erstarrt war, konnte der Paraffinblock mit 

eingegossenem Präparat leicht aus der Ausgießform entnommen werden und 

überschüssiges Paraffin mit einem Messer von der Kassette entfernt werden. 
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Die Blöckchen wurden in Aufbewahrungskisten bei Raumtemperatur (RT) gelagert. 

  

 

IV.3.2. Herstellung von Paraffinschnitten 

 

Zur Anfertigung der Paraffinschnitte wurde ein Schlittenmikrotom verwendet. 

Zunächst wurde das Paraffinblöckchen für etwa 15 Minuten in einem Gefrierschrank bei - 

20°C gekühlt.  

Währenddessen wurde das Paraffin-Streckbad mit Aquadest befüllt und auf 45°C erwärmt 

sowie die Trockenbank auf 50°C eingestellt. 

Nun wurde das Schlittenmikrotom mit Mikrotomöl geölt, zusammengesetzt und das 

Mikrotommesser eingelegt. 

Nach dem Einspannen des gekühlten Blöckchens auf dem Tisch des Mikrotoms und dem 

Anschneiden bis zur gewünschten Ebene wurden 6 µm dicke sagittale Schnitte angefertigt, 

die mit Hilfe von Seidenpapier auf das Streckbad transferiert und von dort auf einen 

Superfrost Plus-Objektträger gezogen wurden. 

Anschließend trockneten die 50 Schnitte ungefähr 30 Minuten auf der Trockenbank, bevor 

sie beschriftet und in Glasfärbegondeln eingesetzt wurden. 

Über Nacht wurden die Präparate in den Glasfärbegondeln in einem Trockenschrank bei 

50°C vollständig getrocknet, um schließlich in Präparatekästen bei Raumtemperatur 

aufbewahrt zu werden.   

 

 

IV.3.3. Immunhistologie  

 

IV.3.3.1. Theoretische Grundprinzipien der immunhistologischen Färbung 

 

Grundsätzlich finden zahlreiche verschiedene Färbemethoden Anwendung. Das Ziel der 

immunhistochemischen Färbung ist es, antigene Komponenten in Zellen und 

Gewebsschnitten nachzuweisen. Dazu verwendet man spezifische Antikörper, die an das 

darzustellende Antigen binden und anschließend sichtbar gemacht werden. Dies wird durch 

mit Enzymen, Fluoreszenzfarbstoffen oder radioaktiven Isotopen markierten Antikörpern 

erreicht. Als Enzyme finden hauptsächlich Meerrettich-Peroxidase und alkalische 

Phosphatase Verwendung. In dieser Arbeit wurde Peroxidase als Enzym benutzt, das mit 

Hilfe eines Substrates ein farbloses Chromogen in ein farbiges Endprodukt umwandelt und 

so die immunchemische Reaktion sichtbar macht.  
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Abb. 11: Graphische Darstellung 
der direkten (A) und indirekten  (B) 
immunhistochemischen 
Färbemethoden (Murphy 2009) 

 
 
Abb. 12: Graphische Darstellung der 
immunhistochemischen  (Strept-) Avidin-
Biotin-Complex (ABC)-Färbemethode 
(Murphy 2009) 

Von den einzelnen Methoden ist zunächst die direkte Methode zu nennen, bei der das zu 

untersuchende Antigen unter definierten Bedingungen 

mit einem spezifischen Antikörper zusammengebracht 

wird, der direkt mit einem Enzym gekoppelt ist. In einem 

weiteren Schritt reagiert das Enzym mit einem Substrat 

unter Bildung eines Farbstoffes (Abb. 11A). 

Außerdem gibt es die indirekte Zwei-Schritt-Methode, bei 

der ein unkonjugierter Primärantikörper an das Antigen 

bindet (Abb. 11B). Anschließend wird ein zweiter 

enzymkonjugierter Antikörper, der gegen das Fc-

Fragment des Primärantikörpers gerichtet ist, 

aufgetragen. Es folgt die Enzym-Substratreaktion. Diese 

Methode ist viel sensitiver, da mehrere Zweitantikörper 

an einen Primärantikörper binden können, was zu einer 

Signalverstärkung führt. Des Weiteren erlaubt es diese 

Methode für verschiedene Primärantikörper den gleichen 

markierten Sekundärantikörper zu nehmen. 

 

Zusätzlich kann die Sensitivität der indirekten Methode 

noch gesteigert werden, indem man einen 

Tertiärantikörper dazugibt, der mit dem gleichen Enzym gekoppelt ist wie der 

Sekundärantikörper und gegen diesen gerichtet ist. So erhöht sich die Sensitivität durch die 

größere Anzahl an Enzymmolekülen. Diese Methode wird als Drei-Schritt-Methode 

bezeichnet. 

 

Darüber hinaus gibt es die Avidin-Biotin-Peroxidase-Methode (ABC-Methode), die die 

Färbemethode dieser Arbeit darstellte (Abb. 12). 

Das Prinzip basiert auf der hohen Affinität von 

Streptavidin (Streptomyces avidinii) und Avidin 

(Hühnereiweiß) für Biotin. Streptavidin und 

Avidin besitzen jeweils vier Bindungsstellen für 

Biotin. Dabei wird zunächst ein unkonjugierter 

Primärantikörper auf das Gewebe gegeben, der 

an das Antigen bindet. Anschließend bindet ein 

biotinylierter Sekundärantikörper einer anderen 

Tierspezies, der im Überschuss dazugegeben 

wird, spezifisch an den Primärantikörper. Der 
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nun zugefügte enzymmarkierte Avidin-Biotin-Komplex  lagert sich mit der Avidin-

Komponente an das kovalent an den Sekundärantikörper gebundene Biotin an. An das Biotin 

des Avidin-Biotin-Komplexes ist eine Peroxidase gekoppelt. Die Peroxidase fungiert als 

Enzym und überträgt Elektronen vom Chromogen auf das zugegebene Substrat, das 

dadurch reduziert wird. Das farblose Chromogen wird zu einem Farbstoff oxidiert. 

In dieser Arbeit wurden als Chromogen 3-Amino-9-ethyl-carbazole (AEC) und als Substrat 

Wasserstoffperoxid verwendet. Es entstand ein rotes Endprodukt aus AEC und 

Wasserstoffperoxid wurde zu Wasser reduziert.  

 

 

IV.3.3.2. Färbetechnik und Färbeprotokoll 

 

In dieser Arbeit wurde die ABC-Methode als immunhistochemische Färbemethode 

angewandt und erfolgte über zwei Tage. 

Vor Beginn der Färbung wurden Präparate ausgesucht, beschriftet und in die 

Glasfärbegondel eingesetzt. 

Der erste Tag der Färbung begann mit der Entparaffinierung der Schnitte.  

Dazu wurden die Färbegondeln mit den Präparaten zunächst zweimal für je zehn Minuten in 

mit Xylol gefüllte Färbeküvetten gestellt, wobei unter dem Abzug gearbeitet wurde. 

Anschließend kamen die Gondeln zur Rehydrierung für jeweils fünf Minuten in Küvetten mit 

in der Konzentration absteigender Alkoholreihe (Ethanol 100%, Ethanol 70%, Ethanol 40%) 

und wurden daraufhin für weitere fünf Minuten in PBS-Puffer gewaschen. 

Um endogene Peroxidasen zu blockieren und somit unspezifische Färbungen zu verhindern, 

wurden die Präparate im folgenden Schritt für fünf Minuten in eine Lösung aus PBS-Puffer, 

Methanol und Wasserstoffperoxid gegeben. Auch dieses erfolgte unter dem Abzug, da bei 

der Herstellung der Lösung giftige Dämpfe entstehen. 

Aufgrund der Verwendung einer Peroxidase ist es notwendig, endogene Peroxidasen zu 

blockieren, um unspezifische Bindungen zu vermeiden. 

Im Anschluss wurden die Präparate fünf Minuten lang in einer Küvette mit PBS-Brij-Lösung 

gewaschen. 

Bevor nun jeweils 100 µl Pferdeserum auf die Schnitte pipettiert wurden, wurden die 

Objektträger mit einer Pinzette aus der Färbegondel genommen, mit Zellstoff die Flüssigkeit 

um das Präparat herum abgewischt und die Objektträger in eine mit destilliertem Wasser 

benetzte Färbekammer gelegt. 

Das Pferdeserum wurde 1:100 in PBS-Puffer verdünnt und auf die Schnitte pipettiert, sodass 

das Präparat benetzt war. Das Pferdeserum diente zur Absättigung von elektrostatischen 

Ladungen der Proteine, so dass der im nachfolgenden zugegebene Primärantikörper 
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möglichst spezifische Bindungen mit dem nachzuweisenden Antigen eingehen konnte. Die 

Schnitte wurden nun 30 Minuten bei Raumtemperatur mit dem Serum inkubiert.  

Nachdem die Objektträger abgeklopft waren, wurden im nächsten Schritt je 100 µl des 

Primärantikörpers auf die Schnitte pipettiert und in der feuchten Kammer über Nacht bei 4°C 

im Kühlschrank inkubiert. Als Primärantikörper wurden Anti-Maus-IL 1-β, -IL 6, -TNF-α, und -

ICAM-1 verwendet, die mit PBS-Puffer verdünnt wurden, wobei IL-1β, IL 6 und TNF-α im 

Verhältnis 1:10 und ICAM-1 1:1000. Als Negativkontrolle wurde an Stelle des 

Primärantikörpers PBS verwendet. 

Am zweiten Tag der Färbung wurden die Färbekammern zunächst aus dem Kühlschrank 

geholt, die Objektträger abgeklopft und in die Färbegondel eingesetzt. 

Danach folgte für dreimal fünf Minuten ein Waschen der Präparate in PBS-Brij, anschließend 

wurden sie wieder mit einer Pinzette aus der Gondel genommen und abgewischt, um 60 

Minuten in der Färbekammer mit 100 µl der Sekundärantikörpers inkubiert zu werden. 

Als Sekundärantikörper diente ein biotinylierter Anti-Ziege IgG aus dem Pferd, der in der 

Verdünnung 1:200 in PBS-Puffer gelöst wurde. 

Bevor die Schnitte erneut dreimal fünf Minuten in PBS-Puffer gewaschen wurden, wurden sie 

abgeklopft und aus der Färbekammer zurück in die Färbegondel überführt. 

Nach diesem Waschschritt und dem darauf folgenden Abwischen wurden auf jedes Präparat 

100 µl des ABC-Komplexes pipettiert. Die Schnitte verblieben so für 30 Minuten bei 

Raumtemperatur in der Färbekammer. 

Anschließend folgte nach erneutem Abklopfen der Objektträger ein letztes dreimal 

fünfminütiges Waschen in Küvetten mit PBS-Brij-Lösung. 

Im nächsten Schritt wurden die Präparate unter dem Abzug für zehn Minuten in Küvetten mit 

der vorbereiteten AEC-Lösung gegeben, anschließend in PBS-Puffer und sofort danach 

wurde in Leitungswasser die Färbung gestoppt. 

Abschließend wurden die Präparate zum Anfärben der Zellkerne für 30 Sekunden in saure 

Hämalaunlösung und dann in Leitungswasser gestellt. 

Um die Präparate zu fixieren und aufbewahren zu können, wurden sie mit einem Tropfen 

Aquatex und Deckgläsern eingedeckelt und im Dunkeln über Nacht bei Raumtemperatur 

getrocknet. 

In Färbekästen einsortiert, wurden sie bei Raumtemperatur gelagert.     
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1. Tag   

Xylol 100% 200 ml Küvette 10 min 

Xylol 100% 200 ml Küvette 10 min 

Ethanol 100% 200 ml Küvette 5 min 

Ethanol 70% 200 ml Küvette 5 min 

Ethanol 40% 200 ml Küvette 5 min 

PBS-Puffer  200 ml Küvette 5 min 

160ml PBS + 20ml Methanol 

+ 20ml H2O2 30% 

200 ml Küvette 5 min 

PBS- Brij 200 ml Küvette 5 min 

Pferdeserum 1:100 verdünnt 

in PBS-Puffer 

100 µl pro Schnitt 30 min bei RT 

1. Ak verdünnt mit PBS-

Puffer 

IL-1β 1:10 

IL-6 1:10  

TNF-α 1:10 

ICAM-1 1:1000 

Kontrolle: PBS-Puffer 

100 µl pro Schnitt Über Nacht bei 4°C im 

Kühlschrank 

Tab. 7: Färbeprotokoll (Teil 1) für die immunhistochemischen Untersuchungen mit IL-1β, IL-6, TNF-α 

und ICAM-1 

 

2. Tag   

PBS-Brij 200 ml Küvette 3x5 min 

2. Ak 1:200 verdünnt in  

PBS-Puffer 

Horse anti Goat 

100 µl pro Schnitt 60 min bei RT 

PBS-Brij 200 ml Küvette 3x5 min 

ABC-Komplex 100 µl pro Schnitt 30 min bei RT 

PBS-Brij 200 ml Küvette 3x5 min 

AEC-Lösung 200 ml Küvette 10 min 

PBS-Puffer 200 ml Küvette  

Färbung stoppen mit 

Leitungswasser 

200 ml Küvette  

Saure Hämalaunlösung 200 ml Küvette 30 sec 

Differenzieren mit 

Leitunswasser 

  

Eindecken mit Aquatex   

Tab. 8: Färbeprotokoll (Teil 2) für die immunhistochemischen Untersuchungen mit IL-1β, IL-6, TNF-α 

und ICAM-1 
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IV.3.4. Auswertung 

 

IV.3.4.1. Histologische Auswertung 

 

Die histologische Auswertung erfolgte an einem Lichtmikroskop. 

Um das Vorkommen von IL-1β, IL-6, TNF-α und ICAM-1 in der Synovia, dem Knochenmark 

und dem Gelenkknorpel des Kniegelenks nachzuweisen, wurden die insgesamt 56 Knie der 

sechs Versuchsgruppen und acht Kontrollknie getestet. In die 56 Versuchsgruppenknie 

wurde zuvor die entsprechende Poyethylenpartikelsuspension injiziert und in die 

Kontrollgruppenknie nur PBS. Außerdem gab es Knie, in die nicht aufgereinigte 

Partikelsuspension injiziert wurde und die als Positivkontrolle dienten. Von jedem Knie 

wurden pro Antikörper jeweils zwei Präparate immunhistochemisch gefärbt und beurteilt. 

Die Präparate wurden mit Hilfe einer Aufsatzkamera in verschiedenen Vergrößerungen 

fotografiert. Die Darstellung der Präparate in Punkt V. erfolgt anhand von Bildtabellen. 

Exemplarisch zeigt dies die folgende Tabelle. 

 

 

K = Kontrollgruppe  

 

 

 

A = Gruppe X3 

 

B = Gruppe Durasul 

 

C = Gruppe Prolong 

 

D = Gruppe XPE* 

 

E = Gruppe UHMWPE1 

 

F = Gruppe UHMWPE2 

Tab. 9: Exemplarische Darstellung der Bildtabellen in Punkt V 

 

 

IV.3.4.1.1. Beurteilung des Gelenkknorpels und des Knochenmarks 

 

Um die biologische Reaktion der Abriebpartikel auf den Gelenkknorpel zu beurteilen, wurden 

die Färbungen mit IL-1β, IL-6 und TNF-α ausgewertet. Alle Präparate wurden jeweils mit den 

entsprechenden Negativkontrollen verglichen, wodurch unspezifische Bindungsphänomene, 

wie sie beispielsweise durch Bindung an Fc-Rezeptoren entstehen, zuverlässig von 

spezifischen Antigen-Antikörper-Bindungen abgegrenzt werden konnten. Außerdem wurden 

die Präparate mit den Positivkontrollen verglichen und das Ausmaß der positiven Reaktion 

der Versuchspräparate ins Verhältnis zu den Positvkontrollen gesetzt. 
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Als positiv galten rot angefärbte Chondrozyten des Gelenkknorpels des Femurs und der 

Tibia des Mauskniegelenks. 

Die Präparate wurden nach dem folgenden semiquantitativen Schema ausgewertet: 

Der Anteil der positiven Chondrozyten wurde im Vergleich zur Positivkontrolle in Prozent 

geschätzt. Die Auswertung des Anteils der gefärbten Zellen erfolgte in den Stufen (-) (= 0% 

positive Zellen), (+) (= >0-25% positive Zellen), + (= >25-50% positive Zellen), ++ (= >50-

75% positive Zellen) und +++ (= >75% positive Zellen). 

Außerdem wurde bei den Präparaten das Knochenmark des Femurs und der Tibia 

analysiert. Hierfür wurden ebenso die Färbungen mit den Antikörpern IL-1β, IL-6 und TNF-α 

untersucht. Als Auswertungsschema wurde das des Knorpels verwendet. Auch hier wurden 

rot angefärbte Zellen als positiv gewertet. Da das Knochenmark aus einer Vielzahl 

verschiedener reifer Zellen und Vorstufen, die entweder Zytokine wie IL-1β, IL-6 und TNF-α 

sezernieren oder exprimieren, und aus einer Matrix, die als Zytokinreservoir für die 

Zellinteraktion und -differenzierung dient, besteht, wurde in dieser Arbeit der prozentuale 

Anteil an positiven Zellen des Knochenmarks beurteilt ohne die Zellen speziell zu 

differenzieren. 

 

IV.3.4.1.2. Auswertung der Synovialmembran des Mauskniegelenks 

 

Von wesentlicher Bedeutung ist in dieser Arbeit die Beurteilung der Reaktion der 

Synovialmembran auf die injizierten Polyethylenpartikel. 

Dazu wurden die Präparate der Färbungen mit IL-1β, IL-6 und TNF-α ausgewertet, indem 

jeweils mindestens 100 Synovialzellen ausgezählt wurden und die Prozentzahl der davon 

positiven, das heißt rot angefärbten Zellen ermittelt wurde. Dieser Wert wurde für die 

statistische Auswertung verwendet. 

Des Weiteren fand bei den mit dem Antikörper ICAM-1 gefärbten Präparaten eine 

semiquantitative Auswertung der Gefäße im subintimalen Gewebe der Synovialmembran 

statt. Auch hier wurde eine Analyse nach dem Schema der Knorpelauswertung durchgeführt. 

Ausgewertet wurde aber hier nicht die Zahl positiver Zellen, sondern positiver, rot 

angefärbter Gefäße. 

 

IV.3.4.2. Statistische Auswertung 

 

Die aus den Versuchsdurchführungen erhobenen Daten wurden mit dem 

Tabellenkalkulationsprogramm Excel 2003 von Microsoft erfasst, die statistische Auswertung 

erfolgte mit Hilfe des Statistikprogramms XLSTAT. 
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Für die statistische Auswertung wurde beim Gelenkknorpel, Knochenmark und bei den 

Gefäßen im Synovialmembrangewebe jeweils der Mittelwert (M) der Auswertungsstufen als 

numerischer Wert angenommen. Das heißt (-) entspricht dem Mittelwert M=0%, (+) dem 

Wert M=12,5%, + dem Wert M=37,5%, ++ dem Wert M=62,5% und +++ dem Wert M=87,5%. 

Bei der Synovialmembran wurde die Prozentzahl positiver Zellen direkt als numerischer Wert 

verwendet. Zur Berechnung der so genannten „Gesamtentzündlichkeit“ wurden die 

prozentualen Werte der positiven Zellen der Färbungen der verschiedenen Primärantikörper 

addiert und die Summe diente als numerischer Wert für die folgenden statistischen Tests.  

Da keine Normalverteilung angenommen werden konnte (p < 0,05), wurde als statistischer 

Test der nichtparametrische Kruskal-Wallis-Test verwendet. Mit diesem Test wurde 

untersucht, ob zwischen den Gruppen ein signifikanter Unterschied besteht. Um den 

festgestellten Unterschied zu lokalisieren, wurde im Anschluss daran als Post-hoc-Test eine 

Bonferroni-Korrektur durchgeführt. Als statistisch signifikant galten die Ergebnisse bei einer 

Irrtumswahrscheinlichkeit von p < 0,05. 

Zur graphischen Darstellung der Ergebnisse wurden Säulendiagramme gewählt. 
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V. Ergebnisse 

 

Bei allen statistischen Tests in den immunhistochemischen Untersuchungen lag das 

Bonferroni korrigierte Signifikanzniveau bei p = 0,0024. 

 

V.1. Der Gelenkknorpel 

 

V.1.1. Expression des Zytokins IL-1β im Gelenkknorpel 

 

Aus der Analyse aller Präparate der Färbung mit dem Primärantikörper IL-1β ergab sich kein 

signifikanter Unterschied (p > 0,0024) zwischen den einzelnen Gruppen sowie zur 

Kontrollgruppe (p-Werte siehe Tab. 11*, * = Tab. 10 – 33 im Anhang). 

Der Mittelwert der Kontrollgruppe lag bei 21,9% positiven Chondrozyten, der der Gruppe X3 

bei 46,9% und der der Gruppe Durasul bei 37,5%. Bei der Gruppe mit dem Werkstoff 

Prolong ergab sich ein Mittelwert von 21,9%, bei XPE* von 40,6%, bei UHMWPE1 von 

26,6% und bei UHMWPE2 von 32,8% (Abb. 13). 
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Abb. 13 zeigt die nicht signifikant (p > 0,0024) vermehrte Expression (p-Werte siehe Tab. 11*) von IL-
1β in allen Versuchsgruppen gegenüber der Kontrollgruppe (PBS) im murinen Gelenkknorpel 7 Tage 
nach intraartikulärer Partikelinjektion 
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In den Bildausschnitten der Abb. 14 lässt sich erkennen, dass sich in den Präparaten 

Chondrozyten in allen vier Schichten des Gelenkknorpels rot anfärbten, wobei der Großteil 

der positiven Knorpelzellen in der zweiten und dritten Schicht lag. Außerdem wird deutlich, 

dass sich die Chondrozyten rot anfärbten, während weder der Knorpelhof noch Strukturen in 

der interterritorialen Matrix positiv reagierten.     

Überdies ist zu sehen, dass sowohl in den Präparaten der mit Polyethylen behandelten 

Mäuse (Abb. 14A-F) als auch im Kontrollpräparat (Abb. 14K) Chondrozyten des 

Gelenkknorpels positiv reagierten und sich rot anfärbten. 

Die Bilder der Abb. 14 verdeutlichen zusätzlich, dass die Anzahl der positiven Chondrozyten 

in allen Polyethylengruppen vergleichbar war. 
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Abb. 14 zeigt mit IL-1β gefärbte Präparate des 
murinen Kniegelenkknorpels der Kontrollgruppe 
sowie der Versuchsgruppen X3-UHMWPE2. In 
Abb. 14K und A-F sind sowohl negative als auch 
positive, rot angefärbte Chondrozyten zu 
erkennen. Die Anzahl der positiven 
Knorpelzellen ist in allen Präparaten 
vergleichbar. 
Vergrößerung K und A-F: 200x 

  

  

 

 

A=X3 

          C= Prolong 

B=Durasul 

     E=XPE* 

K=Kontrolle 

F=UHMWPE2 

100μm 
  

100μm 

100μm 

100μm 
100μm

 

 

100μm 
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V.1.2. Expression des Zytokins IL-6 im Gelenkknorpel 

 

Beim Zytokin IL-6 wurde in den Polyethylengruppen gegenüber der Kontrollgruppe keine 

signifikant (p > 0,0024) vermehrte Expression festgestellt. Bei den verschiedenen 

Polyethylengruppen unterschieden sich nur Prolong und X3 signifikant (p = 0,002, Abb. 15). 

Bei der Kontrollgruppe betrug der Mittelwert 32,8% positive Knorpelzellen, bei der Gruppe 

mit dem Polyethylen X3 35,9%. Die Gruppen mit den Werkstoffen Durasul und XPE* hatten 

einen Mittelwert von 29,7%, Prolong hatte 14,1%, UHMWPE1 31,3% und UHMWPE2 23,4%. 
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Abb. 15 zeigt die nicht signifikant (p > 0,0024) vermehrte Expression (p-Werte siehe Tab. 13*) von IL-
6 im murinen Gelenkknorpel in allen Versuchsgruppen gegenüber der Kontrollgruppe (PBS) 7 Tage 
nach intraartikulärer Partikelinjektion. Ein signifikanter Unterschied bestand nur zwischen den 
Gruppen X3 und Prolong (p = 0,002) 

# = signifikanter Unterschied zwischen den Versuchsgruppen (p = 0,002) 
 
 

 

Abb. 16 zeigt mit dem Primärantikörper IL-6 gefärbte Präparate, darunter ein Präparat der 

Kontrollgruppe (Abb. 16K) und je ein Präparat der Gruppen X3 (Abb. 16A) und Durasul (Abb. 

16B), die repräsentativ für alle Werkstoffgruppen sind. In allen drei Bildausschnitten, auch in 

der Kontrollgruppe, sind positive Chondrozyten zu erkennen, wobei die Anzahl der positiven 

Chondrozyten in den einzelnen Präparaten vergleichbar ist. Insgesamt färbten sich in allen 

Präparaten nur vereinzelt Knorpelzellen rot an. 

Außerdem fällt auf, dass in diesen mit IL-6 gefärbten Präparaten im Vergleich zur Färbung 

mit dem Primärantikörper IL-1β tendenziell weniger Chondrozyten positiv reagierten.   

   #    # 
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Abb. 16 zeigt mit IL-6 gefärbte Präparate des 
murinen Kniegelenkknorpels der Kontrollgruppe 
K sowie der Versuchsgruppen A und B.  
In Abb. 16K sind vor allem negative 
Chondrozyten zu erkennen, wobei in Abb. 16A 
und B positive, rot angefärbte Chondrozyten 
gekennzeichnet sind. Die Anzahl der positiven 
Knorpelzellen ist jedoch gering.  
Vergrößerung K, A, B: 200x  

  

 

 

V.1.3. Expression des Tumornekrosefaktors-α im Gelenkknorpel 

 

Bei der Färbung mit dem Primärantikörper TNF-α lag der Mittelwert in der Kontrollgruppe bei 

26,6% positiven, rot angefärbten Chondrozyten, während die Werte für die Gruppen X3 

64,1%, Durasul 64,1%, Prolong 31,3%, XPE* 34,4%, UHMWPE1 39,1% und UHMWPE2 

35,9% betrugen. 

Daraus folgte bei den Werkstoffen X3 und Durasul ein signifikanter Unterschied sowohl zur 

Kontrollgruppe als auch zur Prolong-Gruppe (p = 0,000 und p = 0,001; Abb. 17). 
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Abb. 17 zeigt die vermehrte Expression (p-Werte siehe Tab. 15*) von TNF-α im murinen 
Gelenkknorpel in allen Versuchsgruppen gegenüber der Kontrollgruppe (PBS) 7 Tage nach 
intraartikulärer Partikelinjektion. Zwischen den Versuchsgruppen unterschieden sich nur X3 und 
Durasul signifikant von Prolong (p-Werte siehe Tab. 15*). 
* = signifikanter Unterschied zur Kontrollgruppe (p-Werte siehe Tab. 15*) 
# = signifikanter Unterschied zwischen den Versuchsgruppen (p-Werte siehe Tab. 15*) 

 

 

 

 

Abb. 18 zeigt Präparate aus der Kontrollgruppe (Abb. 18K) und allen Polyethylengruppen 

(Abb. 18A,B,D+F), die mit dem Primärantikörper TNF-α gefärbt wurden. 

In allen Bildausschnitten, auch in dem der Kontrollgruppe, sind positive Chondrozyten zu 

erkennen. Auffällig ist, dass sich in den Präparaten der Gruppen X3 (Abb. 18A) und Durasul 

(Abb. 18B) deutlich mehr positive Chondrozyten befanden als in den Präparaten der 

Kontrollgruppe (Abb. 18K) und der Gruppen XPE* und UHMWPE2 (Abb. 18D+F), in denen 

nur vereinzelte Knorpelzellen positiv reagierten. In dem Ausschnitt der Gruppe Durasul (Abb. 

18B) ist zu erkennen, dass sich die Chondrozyten stark positiv anfärbten.  

Verglichen mit den Färbungen IL-1β und IL-6, reagierte bei der Färbung mit TNF-α 

tendenziell insgesamt eine größere Anzahl an Chondrozyten positiv. 

 

 

 

* # # * # 
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Abb. 18 zeigt mit TNF-α gefärbte Präparate des 
murinen Kniegelenkknorpels der Kontrollgruppe 
K sowie aller Versuchsgruppen A,B,D und F. In 
den Abb. 18A,B,D und F sind negative und 
positive, rot angefärbte Chondrozyten zu 
erkennen. Auffällig ist, dass in Abb. 18A und B 
im Vergleich zu den anderen Präparaten eine 
höhere Anzahl an positiven Knorpelzellen zu 
sehen ist.  
Vergrößerung K und A-D: 200x, Vergrößerung 
F:400x 

  

  

 

 

V.1.4. „Gesamtentzündlichkeit“ des Gelenkknorpels 

 

Die „Gesamtentzündlichkeit“ des Gelenkknorpels bildet die synergistische Wirkung der 

Zytokine IL-1β, IL-6 und TNF-α ab. 

Es resultierte ein signifikanter Unterschied der Gruppen X3 und Durasul zur Gruppe Prolong 

(p < 0,0001 und p = 0,001). Im Vergleich zur Kontrollgruppe zeigten nur die mit X3 
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behandelten Mäuse eine signifikant erhöhte „Gesamtentzündlichkeit“ des Gelenkknorpels (p 

= 0,001; Abb.19). 
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Abb. 19 zeigt die vermehrte Expression (p-Werte siehe Tab. 16*) von IL-1β, IL-6 und TNF-α im 
murinen Gelenkknorpel aller Versuchsgruppen gegenüber der Kontrollgruppe (PBS) 7 Tage nach 
intraartikulärer Partikelinjektion. Zwischen den Versuchsgruppen unterschieden sich nur X3 und 
Durasul signifikant von Prolong (p-Werte siehe Tab. 16*). 
* = signifikanter Unterschied zur Kontrollgruppe (p-Werte siehe Tab. 16*) 
# = signifikanter Unterschied zwischen den Versuchsgruppen (p-Werte siehe Tab. 16*) 

 

 

V.2. Das Knochenmark 

 

V.2.1. Hochregulierung des Zytokins IL-1β im Knochenmark 

 

Bei den Färbungen mit dem Erstantikörper IL-1β wurde im Knochenmark festgestellt, dass in 

allen Werkstoffgruppen die Prozentzahl der positiven Zellen signifikant höher war als in der 

Kontrollgruppe (p < 0,0024). Zwischen den einzelnen Gruppen wurde kein signifikanter 

Unterschied verzeichnet (p > 0,0024) (p-Werte siehe Tab. 18*; Abb. 20). 

Der Mittelwert der Kontrollgruppe lag bei 9,4% positiven Zellen, während dieser Wert bei den 

Gruppen X3 40,6%, Durasul 37,5%, Prolong 46,9%, XPE* 59,4%, UHMWPE1 43,8% und 

UHMWPE2 64,1% betrug. 

 

 

 

  * #   #   # 
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Abb. 20 zeigt die vermehrte Expression (p-Werte siehe Tab. 18*) von IL-1β in allen Versuchsgruppen 
gegenüber der Kontrollgruppe (PBS) im murinen Knochenmark 7 Tage nach intraartikulärer 
Partikelinjektion. 
* = signifikanter Unterschied zur Kontrollgruppe (p-Werte siehe Tab. 18) 

 

Abb. 21 zeigt Ausschnitte aus dem Knochenmark der Kontrollgruppe (Abb. 21K) und aller 

Polyethylengruppen (Abb. 21A-F). Das Bild der Kontrollgruppe (Abb. 21K) enthält im 

Knochenmark nur vereinzelt positive, rot angefärbte Zellen, während in den Präparaten der 

Werkstoffgruppen (Abb. 21A-F) deutlich mehr positive Zellen zu erkennen sind. 

In allen Bildausschnitten der Abb. 21 ist zu sehen, dass verschiedene Zellen im 

Knochenmark positiv reagierten. Die großen rot angefärbten Zellen in den Präparaten 

entsprechen beispielsweise unreifen Vorstufen, während die kleineren Zellen reife Zellen 

darstellen. Insbesondere auf den Bildern der Gruppen X3, Durasul, XPE* (Abb. 21A+B+D) 

und UHMWPE1 (Abb. 21E) kann man sehr eindrücklich große positive Zellen sehen, deren 

Zytoplasma intensiv rot angefärbt ist. Teilweise ist der eigentlich blaue Kern auch vom rot 

angefärbten Zytoplasma überdeckt. Insgesamt wird anhand der Abbildungen deutlich, dass 

das Knochenmark der mit Polyethylenpartikeln behandelten Mäuse (Abb. 21A-F) deutlich 

mehr angefärbte Zellen aufweist als das der Kontrollgruppe (Abb. 21K). Diese 

Hochregulation der Zytokinexpression entspricht einer entzündlichen Aktivierung des 

Knochenmarks. Die positiven Zellen waren über das gesamte Knochenmark des Femurs und 

der Tibia verteilt, sowohl proximal als auch distal. Auffällig ist, dass vor allem im Bereich der 

Blutsinus des Knochenmarks zahlreiche positive Zellen liegen, wie beispielsweise auf den 

Bildern der Prolong (Abb. 21C) und UHMWPE2 Gruppe (Abb. 21F) zu sehen ist. 

 

    *     *     *     *     *     *  
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Abb. 21 zeigt die mit IL-1β gefärbten Präparate 
des Knochenmarks des murinen Kniegelenks 
der Kontrollgruppe K sowie aller 
Versuchsgruppen A-F.  
Vergrößerung K+A-F: 400x 

  

  

  

K=Kontrolle        

50μm 

B=Durasul 

50μm 

  A=X3 

50μm 

 

C=Prolong D=XPE* 

   50μm 

 

50μm E=UHMWPE1 F=UHMWPE2 

       50μm 

     50μm 
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V.2.2. Expression des Zytokins IL-6 im Knochenmark 

 

Wie bei der Färbung mit dem Antikörper IL-1β, ergab sich bei der Färbung mit IL-6 kein 

signifikanter Unterschied (p > 0,0024) zwischen den einzelnen Polyethylengruppen (p-Werte 

siehe Tab. 20*). Im Gegensatz zu IL-1β reagierten im Vergleich zur Kontrollgruppe nur bei 

den Mäusen, denen eine Suspension mit XPE*-Partikeln injiziert wurde, signifikant mehr 

Zellen positiv (p = 0,000, Abb. 22).  

Der Primärantikörper IL-6 färbte, den Mittelwert betrachtet, in der Kontrollgruppe 24,2% der 

Zellen an. Bei der Gruppe mit dem Polyethylen X3 und XPE* waren 48,4% und 56,3% der 

Knochenmarkszellen positiv, während sich bei den Kunststoffen Durasul 42,2%, Prolong 

46,9%, UHMWPE1 37,5% und UHMWPE2 42,2% der Zellen rot anfärbten. 
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Abb. 22 zeigt die vermehrte Expression (p-Werte siehe Tab. 20*) von IL-6 in allen Versuchsgruppen 
gegenüber der Kontrollgruppe (PBS) im murinen Knochenmark 7 Tage nach intraartikulärer 
Partikelinjektion.  
* = signifikanter Unterschied zur Kontrollgruppe (p = 0,000) 

 
 

Abb. 23 zeigt Ausschnitte aus dem mit IL-6 gefärbten Knochenmark der Kontrollgruppe (Abb. 

23K) und der Gruppen Prolong und XPE* (Abb. 23C+D).  

Wie bei der Färbung mit IL-1β färbten sich auch hier im Kontrollpräparat (Abb. 23K) 

Knochenmarkszellen rot an. Sowohl in der Kontrollgruppe (Abb. 23K) als auch in den 

Polyethylengruppen X3, Durasul, Prolong, UHMWPE1 und UHMWPE2 reagierten jedoch nur 

vereinzelte Knochenmarkszellen positiv. In dem Bildausschnitt der Prolong-Gruppe (Abb. 

   *  
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23C), der auch stellvertretend für die genannten Gruppen ausgewählt wurde, ist eine rot 

angefärbte unreife Vorläuferzelle zu sehen. In dem XPE*-Präparat (Abb. 23D) sind hingegen 

deutlich zahlreiche positive unreife und reife Knochenmarkszellen zu sehen.  

Zusätzlich fiel bei allen mit IL-6 gefärbten Präparaten auf, dass im Knochenmark weniger die 

kleinen Zellen positiv reagierten als viel mehr die größeren. Bei der Färbung mit IL-1β oder 

TNF-α wurde dieser Aspekt nicht in diesem Maß beobachtet.  

 

 

 

 

 

Abb. 23 zeigt mit IL-6 gefärbte Präparate des 
Knochenmarks muriner Kniegelenke der 
Kontrollgruppe K sowie der Versuchsgruppen C 
und D. In Abb. 23D sind deutlich die positiven, 
rot angefärbten Knochenmarkszellen zu sehen, 
während in Abb. 23K und C die negativen Zellen 
überwiegen.  
Vergrößerung K,C,D: 400x 

  

 
 

 

V.2.3. Hochregulierung des Tumornekrosefaktors-α im Knochenmark 

 

Bei der Auswertung der mit TNF-α gefärbten Präparate ergab sich bezüglich des 

Knochenmarks ein signifikanter Unterschied (p < 0,0024) aller Polyethylengruppen außer der 

Gruppe UHMWPE2 zur Kontrollgruppe (p-Werte siehe Tab. 22*). Zwischen den einzelnen 

Polyethylengruppen bestanden keine signifikanten Unterschiede (p-Werte siehe Tab. 22*; 

Abb. 24).  
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C=Prolong 

         D=XPE* 
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Der Mittelwert der Kontrollgruppe war 10,2% positive Zellen. Bei X3 und XPE* färbten sich 

57,8% und 56,3% Zellen positiv an, bei Durasul 51,6%, bei Prolong 40,6%, bei UHMWPE1 

45,3% und bei UHMWPE2 37,5%. 
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Abb. 24 zeigt die vermehrte Expression (p-Werte siehe Tab. 22*) von TNF-α im murinen 
Knochenmark aller Versuchsgruppen gegenüber der Kontrollgruppe (PBS) 7 Tage nach 
intraartikulärer Partikelinjektion.  
* = signifikanter Unterschied zur Kontrollgruppe (p-Werte siehe Tab. 22*) 

 

Abb. 25 zeigt Ausschnitte aus dem Knochenmark der Kontrollgruppe (Abb. 25K) und aller 

Polyethylengruppen (Abb. 25A-F). 

Das Bild der Kontrollgruppe (Abb. 25K), ähnlich wie das der UHMWPE2-Gruppe (Abb. 25F), 

zeigt einen Ausschnitt aus dem Knochenmark mit nur vereinzelten positiven Zellen. 

Besonders im Bild der PBS-Gruppe (Abb. 25K) sind nur sehr wenige große unreife Zellen 

positiv. 

Vor allem in den Bildern der Gruppen X3, Durasul, Prolong und XPE* (Abb. 25A-D) sind 

zahlreiche positive Zellen, sowohl große Vorstufen, als auch kleine reife Zellen zu sehen.  

In den Knochenmarksausschnitten der Gruppen X3 und Durasul (Abb. 25A+B) sind 

beispielsweise zahlreiche kleine reife Zellen rot angefärbt, während bei XPE* und Prolong 

(Abb. 25D+C) die großen positiven Zellen sehr prominent erscheinen. Die positiven Zellen 

liegen sowohl in den proximalen, als auch in den distalen Bereichen des Knochenmarks des 

Femurs und der Tibia, aber auch hier fällt eine Nähe, vor allem der großen Zellen, zu den 

Knochenmarksinus auf. Exemplarisch zeigen dies die Bilder der Gruppen Prolong und XPE* 

(Abb. 25C/D). 

  *      *      *     *      *  

 



- 68 - 
 

 

Abb. 25 zeigt mit TNF-α gefärbte Präparate des 
Knochenmarks muriner Kniegelenke der 
Kontrollgruppe K sowie aller Versuchsgruppen 
A-F. In allen Präparaten der Abb. 25K und A-F 
sind positive, rot angefärbte 
Knochenmarkszellen zu sehen. Es fällt jedoch 
auf, dass in der Kontrollgruppe K und in der 
UHMWPE2-Gruppe (Abb. 25F) weniger positive 
Zellen zu erkennen sind als in Abb. 25A-E.  
Vergrößerung K+B+E: 200x, Vergrößerung 
A+C+D+F: 400x 
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V.2.4. „Gesamtentzündlichkeit“ des Knochenmarks 

 

Auch beim Knochenmark wurde die „Gesamtentzündlichkeit“ untersucht, da die drei Zytokine 

IL-1β, IL-6 und TNF-α das Knochenmark in ähnlicher Weise beeinflussen und in dem 

Prozess der aseptischen Osteolyse synergistisch wirken.  

Aus dieser Analyse folgte, dass das Knochenmark in allen Präparaten der 

Polyethylengruppen signifikant (p < 0,0024) entzündlicher war als in den Präparaten der 

Kontrollgruppe (p-Werte siehe Tab. 23*). Aus dem Vergleich der einzelnen Werkstoffgruppen 

resultierten keine signifikanten Unterschiede (p-Werte siehe Tab. 23*; Abb. 26). 
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Abb. 26 zeigt die vermehrte Expression (p-Werte siehe Tab. 23*) von IL-1β, IL-6 und TNF-α im 
murinen Knochenmark aller Versuchsgruppen gegenüber der Kontrollgruppe (PBS) 7 Tage nach 
intraartikulärer Partikelinjektion.  
* = signifikanter Unterschied zur Kontrollgruppe (p-Werte siehe Tab. 23*) 

 

V.3. Die Synovialmembran 

 

V.3.1. Hochregulierung des Zytokins IL-1β in der Synovialmembran 

 

Zunächst ergab sich bei der Auswertung der mit IL-1β gefärbten Präparate eine gegenüber 

der Kontrollgruppe signifikant höhere Expression (p < 0,0024) dieses Zytokins bei allen 

    *      *       *     *     *       *  
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Mäusen, die mit den verschiedenen Polyethylenabkömmlingen behandelt wurden (p-Werte 

siehe Tab. 25*). 

Bei der Kontrollgruppe war der Mittelwert 0% angefärbte Synovialzellen und bei den 

Gruppen X3 9,9%, Durasul 6,5%, Prolong 4,9%, XPE* 12,1%, UHMWPE1 und UHMWPE2 je 

6,7%. 
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Abb. 27 zeigt die vermehrte Expression (p-Werte siehe Tab. 25*) von IL-1β in allen Versuchsgruppen 
gegenüber der Kontrollgruppe (PBS) in der murinen Kniegelenkssynovialmembran. Zwischen den 
Versuchsgruppen war lediglich bei Prolong und XPE* ein signifikanter Unterschied (p = 0,001) 
vorhanden. 
* = signifikanter Unterschied zur Kontrollgruppe (p-Werte siehe Tab. 25*) 
# = signifikanter Unterschied zwischen den Versuchsgruppen (p-Werte siehe Tab. 25*) 

 

Abb. 28 zeigt einen Bildausschnitt der mit IL-1β gefärbten Synovialmembran der 

Kontrollgruppe (Abb. 28K) und Bilder der X3- und XPE*-Gruppe (Abb. 28A+D). Die 

Präparate der anderen Werkstoffe entsprachen in der IL-1β-Expression der X3- und XPE*-

Gruppe. Die Bilder sind folglich repräsentativ und verdeutlichen den signifikanten 

Unterschied in der Zytokinfreisetzung.  

Auf dem Bild der Kontrollgruppe (Abb. 28K) ist die Synovialmembran mit Intima und 

subintimaler Schicht zu sehen. Es sind blau angefärbte synoviale Deckzellen sowie das 

subinitimale Fettgewebe zu erkennen. Es wird deutlich, dass die synoviale Intima schmal ist 

und aus wenigen Zellschichten besteht. Rote, positive Zellen sind nicht zu erkennen. 

Im Vergleich zur Kontrollgruppe sind auf beiden Bildern der PE-Gruppen (Abb. 28A+D) rot 

angefärbte, positive Synovialmembranzellen zu sehen. Außerdem wird anhand beider Bilder 

die Proliferation der Synovialmembran deutlich. Die positiven Zellen sind über die 

vielschichtige Synovialmembran verteilt und begrenzen sich nicht auf die oberflächlichste 

  *   * #   *     * #  *      *   
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Deckzellschicht. Auch in der Subintima befinden sich IL-1β-exprimierende Zellen. 

Exemplarisch wird anhand der Bilder der X3- und XPE*-Gruppe (Abb. 28A+D) deutlich, dass 

die Synovialmembran in den Präparaten der Polyethylengruppen im Vergleich zur 

Kontrollgruppe (Abb. 28K) zum einen proliferierte und zum anderen zahlreiche positive, IL-

1β-exprimierende Zellen aufwies.  

 

 

Abb. 28 zeigt die mit IL-1β gefärbten Präparate 
der Synovialmembran muriner Kniegelenke der 
Kontrollgruppe K sowie der Versuchsgruppen A 
und D (K=Kontrolle, A=X3, D=XPE*). In Abb. 
28K sind negative Synovialzellen 
gekennzeichnet, während in Abb. 28A+D 
positive, rot angefärbte Synoviozyten und eine 
Proliferation der Synovialmembran zu erkennen 
sind. Vergrößerung K: 400x Vergrößerung A+D: 
1000x 

 

 

 

 

 

 
 

 
 
 
V.3.2. Expression des Zytokins IL-6 in der Synovialmembran 

 

Die Auswertung der IL-6-Färbungen ergab bei der Kontrollgruppe einen Mittelwert von 1,7% 

und bei den Gruppen X3 einen Mittelwert von 22,3%, bei Durasul von 3,3%, bei Prolong von 

4,7%, bei XPE* von 20,3%, bei UHMWPE1 von 11,8% und bei UHMWPE2 von 4,2%. 

Ein signifikanter Unterschied zur Kontrollgruppe resultierte deshalb bei den Gruppen X3, 

XPE* und UHMWPE1. Betrachtet man die einzelnen Gruppen, so unterscheiden sich XPE* 

und UHMWPE1 signifikant von Durasul und UHMWPE2, UHMWPE1 zusätzlich von Prolong 

und X3 nur von Durasul (p-Werte siehe Tab. 27*; Abb. 29).   
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Abb. 29 zeigt die vermehrte Expression (p-Werte siehe Tab. 27*) von IL-6 in der murinen 
Kniegelenkssynovialmembran in allen Versuchsgruppen gegenüber der Kontrollgruppe (PBS).  
* = signifikanter Unterschied zur Kontrollgruppe (p-Werte siehe Tab. 27*) 
# = signifikanter Unterschied zwischen den Versuchsgruppen (p-Werte siehe Tab. 27*) 

 

Abbildung 30 zeigt Bilder der Kontrollgruppe und aller Polyethylengruppen, die Ausschnitte 

aus der mit IL-6 gefärbten Synovialmembran des Kniegelenks darstellen. Im Kontrollpräparat 

(Abb. 30K) ist die synoviale Intima schmal und enthält keine positiven Zellen. Das 

subintimale Gewebe besteht zum Großteil aus Fettzellen. Eine Proliferation der Gefäße oder 

Kollagenfasern liegt hier nicht vor. Positive Synovialmembranzellen sind nicht zu erkennen. 

Das Bild der Gruppe X3 (Abb. 30A) stellt einen Ausschnitt aus dem proliferierten 

subintimalen Gewebe der Synovialmembran dar. Sehr deutlich sind hier die zahlreichen 

positiven roten Zellen zu sehen. Abb. 30B ist ein Präparat der Durasul-Gruppe. Die synoviale 

Intima ist hier mittelgradig verdickt und weist einzelne positive Zellen auf.  

Der Ausschnitt aus der Synovialmembran einer mit Prolong behandelten Maus (Abb. 30C) 

zeigt eine proliferierte Deckzellschicht, die aus sehr dicht aneinander gelagerten Zellen 

besteht. Positive Zellen sind allerdings nur wenige zu erkennen. 

Das Bild der XPE*-Gruppe (Abb. 30D) zeigt eine sehr stark proliferierte Synovialmembran 

mit zahlreichen positiven Zellen. Auch in der unmittelbaren Umgebung der Gefäße liegen 

viele IL-6-exprimierende Zellen.  

Anhand der Ausschnitte aus der Synovialmembran der Gruppen UHMWPE1 und UHMWPE2 

(Abb. 30E+F) wird deutlich, dass bei beiden Präparaten eine proliferierte Intima vorliegt, aber 

das UHMWPE2-Gelenk eine weniger positive Reaktion mit einer geringeren Anzahl an rot 

angefärbten Zellen aufweist als das UHMWPE1-Gelenk. 

 * #    * #  * # 

 

  #      #   # 
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Abb. 30 zeigt mit IL-6 gefärbte Präparate der 
Synovialmembran muriner Kniegelenke der 
Kontrollgruppe K sowie aller Versuchsgruppen 
A-F. 
In Abb. 30K sind negative Synovialzellen zu 
sehen, während in den Abb. 30A-F positive, rot 
angefärbte Synoviozyten erkennbar sind.  
Vergrößerung K: 400x, Vergrößerung A+D: 
1000x, Vergrößerung B+C+E+F: 200x 
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V.3.3. Hochregulierung des Tumornekrosefaktors-α in der Synovialmembran  

 

Bei den mit TNF-α gefärbten Präparaten lag der Mittelwert der Kontrollgruppe bei 3,3% 

positiven Zellen, der der Gruppen X3 bei 22,3%, Durasul bei 15,6%, Prolong bei 10,4%, 

XPE* bei 15,2%, UHMWPE1 bei 15,6% und UHMWPE2 bei 9,0%. Während zwischen den 

Gruppen keine signifikanten Unterschiede bestanden, wurde bei den Polyethylengruppen, 

außer bei der Prolong- und UHMWPE2-Gruppe, eine gegenüber der Kontrollgruppe 

signifikant (p < 0,0024) erhöhte TNF-α-Expression festgestellt (p-Werte siehe Tab. 29*; Abb. 

31).  
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Abb. 31 zeigt die vermehrte Expression (p-Werte siehe Tab. 29) von TNF-α in der murinen 
Kniegelenkssynovialis in allen Versuchsgruppen gegenüber der Kontrollgruppe (PBS).  
* = signifikanter Unterschied zur Kontrollgruppe (p-Werte siehe Tab. 29) 

 

Abb. 32 zeigt Bildausschnitte aus der mit TNF-α gefärbten Synovialmembran der 

Kontrollgruppe und aller Polyethylengruppen. Das Bild der Kontrollgruppe (Abb. 32K) weist 

eine sehr dünne Synovialmembran aus wenigen Zellschichten und ein subintimales Gewebe 

aus hauptsächlich Fettzellen auf. Positive Zellen liegen nicht vor. Auf den Bildern der 

Gruppen X3 (Abb. 32A), Durasul (Abb. 32B), XPE* (Abb. 32D) und UHMWPE1 (Abb. 32E) 

sind die Proliferation der Synovialmembran und zahlreiche positive Synovialmembranzellen 

zu erkennen. Die positiven Zellen liegen sowohl in allen Schichten der Synovialmembran, als 

auch in der Subintima. Im Vergleich zu den anderen Werkstoffgruppen sind in der 

Synovialmembran der Gruppen Prolong (Abb. 32C) und UHMWPE2 (Abb. 32F) weniger 

positive Zellen zu erkennen. Im Bild der Gruppe Prolong (Abb. 32C) sieht man 

beispielsweise nur eine eindeutig positive Synovialzelle. Der auf den Bildern vorhandene 

rosafarbene Hintergrund ist unspezifisch und wurde nicht gewertet. 

    *     *     *     *  
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Abb. 32 zeigt mit TNF-α gefärbte Präparate der 
Synovialmembran muriner Kniegelenke der 
Kontrollgruppe K sowie aller Versuchsgruppen 
A-F. 
Abb. 32K stellt einen Ausschnitt aus der 
Synovialmembran eines Kontrollpräparates mit 
negativen Synoviozyten dar. In den Abb. 32A-E 
sind positive, rot angefärbte Synovialzellen 
gekennzeichnet. 
Vergrößerung K+F: 200x, Vergrößerung A-E: 
1000x 

  

  

  

K=Kontrolle 

F=UHMWPE2 

 100μm 

20μm 

D=XPE* 

            20μm 
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           A=X3 

20μm 
 

20μm 
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   20μm 

       E=UHMWPE1 

100μm 
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V.3.4. „Gesamtentzündlichkeit“ der Synovialmembran 

 

Da im Prozess der aseptischen Lockerung vor allem die Zytokine IL-1β, IL-6 und TNF-α 

synergistisch wirken, wurde eine „Gesamtentzündlichkeit“ der Synovia aus diesen drei 

Inflammationsmarkern ermittelt. Wie bei Knorpel und Knochenmark wurden hierfür die 

Prozentwerte der positiven Zellen addiert. 

Dabei konnte ein signifikanter Unterschied aller Gruppen außer der Prolong-Gruppe zur 

Kontrollgruppe festgestellt werden (p-Werte siehe Tab. 30*). Bei den einzelnen 

Polyethylengruppen unterschied sich nur XPE* signifikant von Prolong (p = 0,001) und von 

UHMWPE2 (p = 0,001; Abb. 33). 
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Abb. 33 zeigt die vermehrte Expression (p-Werte siehe Tab. 30*) von IL-1β, IL-6 und TNF-α in der 
murinen Kniegelenkssynovialmembran aller Versuchsgruppen gegenüber der Kontrollgruppe (PBS) 7 
Tage nach intraartikulärer Partikelinjektion. Zwischen den Versuchsgruppen bestand nur bei Prolong 
und XPE* ein signifikanter Unterschied (p = 0,001)  
* = signifikanter Unterschied zur Kontrollgruppe (p-Werte siehe Tab. 30*)  
# = signifikanter Unterschied zwischen den Versuchsgruppen (p = 0,001) 

 

 

V.3.5. Hochregulierung des Adhäsionsmoleküls ICAM-1 in der 

Synovialmembran 

 

Das Adhäsionsmolekül ICAM-1 färbte insbesondere die Gefäße im subintimalen Gewebe an. 

Bei den ICAM-1-Färbungen wurde ein signifikanter Unterschied (p < 0,0024) aller Gruppen 

zur Kontrollgruppe festgestellt (p-Werte siehe Tab. 32*). Die Polyethylengruppen 

unterschieden sich untereinander hingegen nicht (p-Werte siehe Tab. 32*).  

 * #    *  * #   *   *  * # 
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Der Mittelwert der Kontrollgruppe lag bei 18,8% positive Synovialgefäße, während dieser 

Wert bei den Gruppen X3 bei 73,4%, Durasul bei 67,2%, Prolong bei 70,3%, XPE* und 

UHMWPE1 bei 73,4% und bei UHMWPE2 67,2% betrug (Abb. 34). 
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Abb. 34 zeigt die vermehrte Expression (p-Werte siehe Tab. 32*) von ICAM-1 in den Gefäßen der 
murinen Kniegelenkssynovialmembran in allen Versuchsgruppen gegenüber der Kontrollgruppe 
(PBS). 
* = signifikant gegenüber der Kontrollgruppe (p-Werte siehe Tab. 32*) 
  

Abb. 35 zeigt Bildausschnitte aus Präparaten der Kontrollgruppe und aller 

Polyethylengruppen, die mit dem Primärantikörper ICAM-1 gefärbt wurden.  

Auf dem Bild der Kontrollgruppe (Abb. 35K) sind überwiegend negative Gefäße im 

subintimalen Gewebe der Synovialmembran zu erkennen. 

Im Vergleich dazu sind in den Bildausschnitten der Werkstoffgruppen (Abb. 35A-F) sehr 

deutlich die positiven, rot angefärbten Gefäße im Bereich der synovialen Subintima zu 

sehen. In den Präparaten der Gruppen X3 (Abb. 35A), XPE* (Abb. 35D) und UHMWPE2 

(Abb. 35F) sind nahezu alle Gefäße positiv und intensiv rot angefärbt.  

Zu beachten ist, dass die ICAM-1-exprimierenden Gefäße sowohl unmittelbar unterhalb der 

synovialen Deckzellschicht, als auch im gesamten subintimalen Gewebe lokalisiert sind.  

Überdies war auffällig, dass neben der gesteigerten Expression von ICAM-1 in den 

Präparaten der Polyethylengruppen in dem Synovialmembrangewebe insgesamt mehr 

Gefäße vorhanden waren.    

     *      *    *      *     *      *  
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Abb. 35 zeigt mit ICAM-1 gefärbte Präparate 
des Synovialmembrangewebes muriner 
Kniegelenke der Kontrollgruppe K sowie aller 
Versuchsgruppen A-F. 
In Abb. 35K sind vor allem negative Gefäße zu 
sehen. Die Abb. 35A-F zeigen hingegen 
zahlreiche positive Gefäße und auch eine im 
Vergleich zur Kontrolle höhere Anzahl an 
Gefäßen im Synovialmembrangewebe.   
Vergrößerung K: 400x und A-F: 200x 
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VI. Diskussion 

 

Die aseptische Osteolyse ist heute nach wie vor das Hauptproblem in der Knieendoprothetik 

und der häufigste Grund für das Versagen des Kniegelenkersatzes (Gallo et al. 2008, 

Graves et al. 2004, Tuan et al. 2008). Im künstlichen Kniegelenk steht hier der 

Polyethylenabrieb im Vordergrund (Fehring et al. 2004, Naudie et al. 2004, Purdue et al. 

2006, Green et al. 2000), da Polyethylen in der Knieendoprothetik nach wie vor den 

Gleitpaarungswerkstoff der Wahl darstellt. Um diesen zu minimieren, wurden zahlreiche 

Versuche unternommen mit dem Ziel, den Werkstoff Polyethylen und dessen Abriebfestigkeit 

unter bestmöglichem Erhalt der biomechanischen Eigenschaften zu optimieren (Muratoglu et 

al. 2007, Ries et al. 2005a, 2005b, Simis et al. 2006, Streicher et al. 2003). Aktuell existiert 

diesbezüglich das crosslinked Polyethylen als Alternative zum konventionellen UHMWPE.  

Die Abriebpartikel induzieren einen inflammatorischen Prozess, der über komplexe und noch 

nicht bis ins letzte Detail geklärte biomechanische und molekularbiologische Kaskaden, 

zellulär insbesondere vermittelt durch Makrophagen, multinukleäre Fremdkörperriesenzellen, 

Osteoblasten und Osteoklasten, zu einem Ungleichgewicht im Knochenstoffwechsel und 

folglich zu Osteolysen und zur aseptischen Prothesenlockerung führt (Drees et al. 2008, 

Ingham et al. 2005, Revell et al. 2008, Purdue et al. 2007, Holt et al. 2007). Die zentrale 

Rolle der Zytokine, Wachstumsfaktoren und Adhäsionsmoleküle im Rahmen dieser 

unspezifischen Entzündungsreaktion ist in vielen Studien bereits nachgewiesen (Drees et al. 

2008, Holt et al. 2007, Otto et al. 2006, Purdue et al. 2007).  

Das Ziel dieser Studie war ein Vergleich sechs verschiedener Polyethylenwerkstoffe, 

darunter vier crosslinked Polyethylene und zwei UHMWPEs, und die Quantifizierung und 

Interpretation von deren biologischer Aktivität anhand immunhistochemischer 

Untersuchungen an einem in vivo Mausmodell. 

Dies ist die erste Studie, die in Kombination zum einen die biologische Reaktion auf sechs 

verschiedene Polyethylenabriebpartikel, darunter sowohl vier crosslinked PEs als auch zwei 

konventionelle UHMWPEs, direkt im Kniegelenk in vivo untersucht und beurteilt und zum 

anderen Polyethylenpartikel benutzt, die im Kniesimulator gewonnen wurden. 
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VI.1. Diskussion der Methodik  

 

VI.1.1. Diskussion des in vivo Modells 

 

In dieser Arbeit wurde Mäusen eine Polyethylenpartikelsupension intraartikulär ins 

Kniegelenk injiziert und anschließend die biologische Reaktion mittels 

immunhistochemischen Färbungen untersucht. Dieses Modell ist aus zahlreichen Gründen 

geeignet, um die biologische Aktivität von Polyethylenabriebpartikeln im Hinblick auf den 

Prozess der aseptischen Osteolyse zu analysieren. 

Zunächst arbeitete diese Studie mit einem in vivo Modell, das den zahlreichen in vitro 

Modellen gegenüber den Vorteil besitzt, dass multiple Zellen und Gewebearten sowie deren 

Wechselwirkungen und die reziproken Einflüsse analysiert werden können. Der Vorteil 

gegenüber anderen in vivo Modellen besteht außerdem darin, dass dieses Modell ein 

murines Kniegelenk war und folglich alle für den Prozess der aseptischen Osteolyse 

spezifischen Gewebearten und Zellen enthielt, vergleichbar mit dem menschlichen 

Kniegelenk. Die Partikel wurden intraartikulär injiziert und befanden sich deshalb eben dort, 

wo sie im künstlichen Kniegelenk durch Abrieb des Polyethylengleitlagers entstehen. Die 

intraartikuläre Applikationsform hat im Gegensatz zu der intramuskulären oder intrakutanen 

den Vorteil, dass die Freisetzung von Abriebpartikeln in den Gelenkraum durch implantierte 

Endoprothesen inklusive der Verteilung im Gelenk durch die Synovialflüssigkeit simuliert 

werden kann. Die Erkenntnisse können daher gut auf die Physiologie des humanen Gelenks 

und Organismus und die klinische Praxis übertragen werden. 

Es gibt außerdem Studien, die im Zusammenhang mit der biologischen Aktivität von 

Abriebpartikeln zeigten, dass die Reaktionen von Maus und Mensch übereinstimmen oder 

zumindest ähnlich sind, was die Verwendung der Maus als Tiermodell bekräftigt (Matthews 

et al. 2000, Sethi et al. 2003). Die Vorteile der Maus, auch im Gegensatz zu größeren 

Versuchstieren, bestehen des Weiteren in der guten Verfügbarkeit, den vergleichsweise 

niedrigen wirtschaftlichen Kosten, der hervorragenden Reproduzierbarkeit und dem gut 

erforschten Genom und Immunsystem, das mit dem humanen Organismus vergleichbar ist 

(Yang et al. 2007). Zahlreiche weitere in vivo Modelle verwenden ebenso die Maus, aber 

injizieren die Polyethylenpartikel in einen chirurgisch konstruierten Hohlraum über der 

Schädelkalotte oder im Bereich des Mausrückens, in den wahlweise ein Stück Knochen 

einer genetisch identischen Maus implantiert wurde (Illgen et al. 2009, Ren et al. 2004, Ren 

et al. 2006a, Yang et al. 2002, Yang et al. 2004, Wooley et al. 2002). Es wurde zwar gezeigt, 

dass die Modelle sensitiv für Unterschiede bezüglich verschiedener Partikelmaterialien und -

formen sind, ein Nachteil dieser Modelle ist aber die Lokalisation der Partikelinjektion, das 
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heißt, dass die Partikel nicht mit den für das Kniegelenk spezifischen Gewebearten in 

Kontakt kommen und Prozesse gemessen werden, die im Bereich des Rückens oder des 

Schädels und nicht im Gelenk stattfinden.  

Die Arbeitsgruppe Ma et al. spritzte beispielsweise über vier Wochen UHMWPE-Partikel in 

das distale Mäusefemur (Ma et al. 2008). Zunächst wurde über einen parapatellären Zugang 

ein Loch in das distale Mäusefemur gebohrt und dann zwischen den Schulterblättern eine 

Pumpe implantiert, über welche hinweg die Partikel infundiert wurden. Es folgten eine Mikro-

CT-Analyse sowie histologische und immunhistochemische Untersuchungen (Ma et al. 

2008). Vorteilhaft an diesem Modell ist mit Sicherheit die wiederholte Partikelapplikation, die 

dem natürlichen Partikelanfall im menschlichen künstlichen Kniegelenk am ähnlichsten ist. 

Allerdings fehlt wiederum der Kontakt der Partikel zu den spezifischen Gewebearten eines 

Gelenks und die Größenverhältnisse implizieren eine gewisse Störanfälligkeit. Die 

Publikation erklärt überdies nicht ausreichend, wie gewährleistet wird, dass der 

Pumpmechanismus regelrecht funktioniert und die Partikelapplikation am richtigen Ort 

stattfindet.      

Ein weiteres Modell wurde von Yang et al. etabliert. Bei Balb/c-Mäusen wurden über einen 

parapatellären Zugang Titan-Pins zentral ins proximale Tibiaplateau implantiert, 20 μl 

Partikelsuspension injiziert und die Mäuse je nach Gruppe nach zwei bis 26 Wochen getötet. 

Im Anschluss wurden Mikro-CTs und immunhistochemische Analysen gemacht (Yang et al. 

2007). Dieses Modell erscheint geeignet, da ein längerer Zeitraum besteht und eine Art 

Prothesenschaft implantiert wurde. Es bleibt jedoch zu diskutieren, in wie weit es möglich ist, 

bei den Größenverhältnissen eines Mausmodells diese Maßnahmen ohne größere Schäden 

durchzuführen.  

Als Untersuchungszeitraum wurde in dem Modell dieser Arbeit eine Woche im Anschluss an 

die erfolgte intraartikuläre Injektion der Partikel gewählt, da vergleichbar mit dieser Studie 

zahlreiche andere in vivo Studien auch Kurzzeitstudien sind, was einen 

Untersuchungszeitraum der biologischen Reaktion des Organismus auf die Abriebpartikel 

von ein bis vier Wochen meint (Ma et al. 2008, Illgen et al. 2009, Ren et al. 2006a, Ren et al. 

2006b, Wooley et al. 2002, Yang et al. 2002, Yang et al. 2004). Trotz der Anwendung 

unterschiedlicher Methoden und Materialien weisen nahezu alle Studien bereits nach diesem 

Zeitraum einen inflammatorischen Prozess, teilweise mit Aktivierung von Osteoklasten und 

folglich Osteolysen, als Reaktion auf Polyethylenpartikel nach (Ren et al. 2004, Illgen et al. 

2009, Yang et al. 2002, Yang et al. 2004, Wooley et al. 2002), was den Kurzzeitcharakter 

des Modells dieser Arbeit unterstützt.  

Die Arbeitsgruppe Zysk et al. arbeitete bereits mit dem Modell dieser Arbeit, untersuchte 

histologisch die biologische Reaktion auf intraartikulär injizierte Polystyrol- und 

Polystyrenpartikel und zeigte eine inflammatorische Reaktion im Kniegelenk, vor allem im 
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Bereich der Synovialmembran (Zysk et al. 2003, Zysk et al. 2004, Zysk et al. 2005). Als 

Untersuchungszeitraum wurden ebenfalls sieben Tage gewählt (Zysk et al. 2003, Zysk et al. 

2004, Zysk et al. 2005). Zysk et al. zeigten außerdem, dass das Modell sensitiv genug ist, 

um zwischen Abriebpartikeln verschiedener Materialien bezüglich der inflammatorischen 

Reaktion zu unterscheiden (Zysk et al. 2003, Zysk et al. 2004, Zysk et al. 2005). Dadurch 

wird bekräftigt, dass dieses Modell funktioniert und adäquat für die Untersuchung der 

Reaktion auf Abriebpartikel im Hinblick auf den Prozess der aseptischen Lockerung ist.    

Eine Studie der Arbeitsgruppe Sacomen et al., die die Wirkung von UHMWPE-Partikeln an 

einem Kanichenmodell untersuchte, wählte einen Zeitraum von sechs Monaten mit allerdings 

auch nur einer einmaligen Partikelapplikation zu Beginn (Sacomen et al. 1998).  Der 

fehlende Nachweis von IL-6 und der nicht vorhandene Unterschied der IL-1β-Sekretion 

zwischen Werkstoff- und Kontrollgruppe deutet darauf hin, dass die Analyse der 

Zytokinfreisetzung nach diesem Zeitraum zur Beurteilung der inflammatorischen Reaktion 

weniger geeignet ist (Sacomen et al. 1998). Ursache dafür könnte die nur einmal 

stattfindende Partikelapplikation sein.  

Als Limitation des Modells dieser Arbeit ist zu erwähnen, dass der Prozess der aseptischen 

Osteolyse bei einer Knieprothese beim Menschen über mehrere Jahre verläuft und die 

Polyethylenpartikel kontinuierlich durch Abrieb und Verschleiß aufgrund der Kinematik und 

Belastung des Kniegelenks entstehen (Krukenmeyer 2009, Jerosch 1999). Wie oben 

beschrieben ist der Prozess der aseptischen Osteolyse eine komplexe Kaskade 

verschiedener molekularbiologischer Reaktionen, die zu einer negativen Bilanz des 

Knochenstoffwechsels und folglich zur Resorption von Knochensubstanz führt (Drees et al. 

2008, Gallo et al. 2008, Otto et al. 2006, Purdue et al. 2007, Revell et al. 2008, Holt et al. 

2007).  

Das Modell dieser Studie ahmt den einmaligen, akuten Prozess nach, den die 

Kunststoffpartikel im Kniegelenk auslösen und der ein Entzündungsgeschehen in Gang 

setzt, wie es sich bei der aseptischen Prothesenlockerung durch kontinuierlich entstehenden 

Abrieb auf vergleichbare Weise, aber wiederholt abspielt. Nach der Kenntnis des Autors 

wurde bis jetzt noch nicht bewiesen, dass es sich bei der aseptischen Osteolyse um eine 

chronische Entzündungsreaktion handelt und es besteht daher die Möglichkeit, dass eine 

Häufung akuter Inflammationen vorliegt, die in einer Resorption der Knochensubstanz 

resultiert. 

Obwohl es sicher sinnvoll und wichtig ist, im weiteren Verlauf auch Langzeitmodelle mit 

wiederholter Partikelapplikation zu etablieren, scheint der Zeitraum von einer Woche für die 

Untersuchung der Zytokinfreisetzung im Hinblick auf den Prozess der aseptischen Osteolyse 

adäquat zu sein.   
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Ein weiterer positiver Aspekt dieser Studie ist die Tatsache, dass zur biologischen Aktivität 

von UHMWPE-Partikeln bereits zahlreiche in vivo Studien existieren (Ma et al. 2008, Ren et 

al. 2004, Ren et al. 2008, Yang et al. 2002, Yang et al. 2004), während neben dieser Arbeit 

zum Vergleich mit den crosslinked Polyethylenen aktuell nur eine in vivo Studie vorliegt 

(Illgen et al. 2009).  

Zusammengefasst liegen die Vorteile dieses Modells insbesondere in der Wahl des 

Kniegelenks als Untersuchungsgewebe, in der Verwendung von im Simulator erzeugten 

Abriebpartikeln aus in der klinischen Praxis benutzten Werkstoffen und Prothesendesigns 

sowie in der in vivo Analyse der biologischen Reaktivität verschiedener crosslinked 

Polyethylene. Außerdem wird die bedeutendste Limitation, der kurze 

Untersuchungszeitraum, durch das Funktionieren anderer Kurzzeitmodelle sowie das Modell 

der Arbeitsgruppe Zsyk et al. relativiert (Zysk et al. 2003, Zysk et al. 2004, Zysk et al. 2005).     

 

 

VI.1.2. Diskussion der untersuchten Zytokine und Entzündungsmediatoren 

 

Das Zytokin IL-1β ist ein proinflammatorisches Zytokin, dem in dem Prozess der aseptischen 

Osteolyse eine zentrale Bedeutung zukommt (Archibeck et al. 2001, Holt et al. 2007, Ingham 

et al. 2005, Jacobs et al. 2001, Purdue et al. 2007, Revell et al. 2008). Die durch den IL-1-

Rezeptor vermittelte Signalkaskade resultiert ähnlich wie bei TNF-α in einer Aktivierung von 

NF-κB (Ingham et al. 2005). Im Knochenstoffwechsel induziert es die Aktivierung und 

Differenzierung von Osteoklasten und Osteoklastenvorläuferzellen (Neale et al. 1999). 

Außerdem steigert es die Expression von RANKL auf Knochenmarksstromazellen und 

Osteoblasten (Gallo et al. 2008, Zwerina et al. 2004). Synergistisch mit TNF-α stimuliert es 

die Osteoklastogenese und folglich die Resorption von Knochensubstanz (Kobayashi et al. 

2000). Es ist ein wichtiger Kofaktor von TNF-α, kann aber alleine nach bisherigen 

Erkenntnissen keine Osteoklastendifferenzierung auslösen (Wei et al. 2005). Außerdem 

unterstützt IL-1β das Überleben von Osteoklasten, indem es die Apoptose hemmt (Gallo et 

al. 2008). Wichtig ist überdies noch, dass es die Produktion von OPG hemmt und so 

wiederum die Knochenresorption durch eine Einschränkung der Funktion der Osteoblasten 

begünstigt (Drees et al. 2008). In zahlreichen in vitro und in vivo Studien wurde die durch 

Polyethylenabriebpartikel gesteigerte Sekretion von IL-1β gezeigt (Matthews et al. 2000, 

Illgen et al. 2008, Wilke et al. 2005, Wooley et al. 2002). Überdies wurde es auch in der 

periprothetischen Pseudomembran von Patienten, die eine Revisionsoperation aufgrund 

einer aseptischen Lockerung benötigten, nachgewiesen (Drees et al. 2008, Stea et al. 2000, 

Ingham et al. 2005, Kim et al. 1993, Holt et al. 2007). Die Bedeutung von IL-1β wird überdies 

an einer Studie deutlich, die anhand eines Nagermodells zeigte, dass Retroviren mit der 



- 84 - 
 

genetischen Information für IL-1-Rezeptorantagonisten den Spiegel von Kathepsin K senkten 

und so Osteolysen minimierten (Yang et al. 2004).  

Das Zytokin IL-6 wird ebenso in der periprothetischen Lockerungsmembran exprimiert (Stea 

et al. 2000, Stea et al. 1999, Sabokbar et al. 1995, Punt et al. 2009). Zur Entstehung der 

aseptischen Osteolyse trägt es vor allem dadurch bei, dass es die Osteoklastogenese 

induziert und in Osteoblasten eine Suppression der Genexpression der Prokollagene und 

folglich eine Störung der Biosynthese des Knochenkollagens bedingt (Manolagas et al. 1998, 

Greenfield et al. 1999, Vermes et al. 2000). Zahlreiche Studien zeigten bereits, dass die IL-6-

Freisetzung von IL-1β und TNF-α verstärkt wird (Wei et al. 2005, Chiba et al. 1994, Epstein 

et al. 2005b). TNF-α stimuliert beispielsweise die IL-6 Sekretion von Osteoblasten (Vermes 

et al. 2000). Die wichtige Rolle von IL-6 im Knochenstoffwechsel bekräftigt die Eignung 

dieses Zytokins zur Untersuchung der aseptischen Osteolyse.  

Wie IL-1β spielt TNF-α eine zentrale Rolle in dem Prozess der aseptischen Lockerung 

(Drees et al. 2008, Fuller et al. 2002, Holding et al. 2006, Holt et al. 2007, Ingham et al. 

2005, Otto et al. 2006, Purdue et al. 2007). Seine Funktionen sind die Vermittlung einer 

unspezifischen Abwehrreaktion, die Aktivierung der Osteoklastogenese, die Aktivierung von 

NF-κB, die synergistische Wirkung mit RANKL sowie die Regulation von dessen 

Genexpression und die Induktion weiterer proinflammatorischer Zytokine wie IL-1β, IL-6, IL-8 

und des GM-CSF (Merkel et al. 1999, Archibeck et al. 2001, Baumann et al. 2005, Zhang et 

al. 2001, Xu et al. 1996, Wei et al. 2005). Auch TNF-α befindet sich in der periprothetischen 

Pseudomembran des humanen künstlichen Kniegelenks und Partikelkontakt führt bei 

Makrophagen zu einer gesteigerten Expression dieses Faktors (Xu et al. 1996, Stea et al. 

1999, Stea et al. 2000, Holding et al. 2006, Chiba et al. 1994). Es wurde außerdem gezeigt, 

dass eine genetische oder pharmakologische Blockade der TNF-α-Signalkaskade die 

Entstehung von Osteolysen vermindert (Childs et al. 2001, Algan et al. 1996, Ingham et al. 

2005, Schwarz et al. 2000). Merkel et al. stellten beispielsweise fest, dass 

Knochenmarkszellen aus TNF-Rezeptor-Knockout-Mäusen nicht in reife Osteoklasten 

differenzieren können (Merkel et al. 1999). Fuller et al. wiesen zusätzlich nach, dass sehr 

geringe Mengen an TNF-α (100pg/ml) ausreichen, um Osteoklasten zu aktivieren (Fuller et 

al. 2002). Auch die Verhinderung der Apoptose von Osteoklasten und die Verlängerung von 

deren Lebenszeit wird TNF-α zugeschrieben, was wiederum eine verstärkte Osteolyse 

bedeutet (Gallo et al. 2008, Lee et al. 2001). Überdies gibt es Studien, die andeuten, dass 

TNF-α neben der synergistischen Wirkung mit RANKL auch unabhängig davon die 

Differenzierung von Osteoklastenvorläuferzellen zu reifen, Knochensubstanz resorbierenden 

Osteoklasten induzieren kann (Azuma et al. 2000, Kobayashi et al. 2000). Dennoch steht in 

vivo das Zusammenspiel dieser beiden Mediatoren im Prozess der aseptischen Osteolyse im 

Vordergrund (Holding et al. 2006, Clohisy et al. 2003).  
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VI.2. Diskussion der Ergebnisse 

 

VI.2.1. Der Gelenkknorpel 

 

Die Bedeutung des Gelenkknorpels in der Knieendoprothetik liegt vor allem in dem Bereich 

der unikompartimentellen Prothesen (Chang et al. 2008). Beim unikondylären Gelenkersatz 

wird der intakte Gelenkknorpel in dem nicht ersetzten Kompartiment erhalten und soll 

überdies funktionsfähig bleiben (Scott 2007).  

Die Polyethylenabriebpartikel, die mit dem hyalinen Knorpel in Kontakt kommen, lösen auch 

hier eine entzündliche Reaktion aus, eine Exprimierung und Sezernierung von 

proinflammatorischen Zytokinen wie IL-1β, IL-6 und TNF-α, die den Prozess der aseptischen 

Lockerung in Gang setzen und begünstigen. Überdies führt eine Inflammationsreaktion zu 

einer weiteren Degradation des verbliebenen Gelenkknorpels und es gibt Studien, die 

belegen, dass eine fortschreitende Arthrose des nicht ersetzten Kompartiments die häufigste 

Ursache für ein Versagen der unikondylären Prothese darstellt (Dalldorf et al. 1995, Jackson 

et al. 1994, Ridgeway et al. 2002).  

In dieser Arbeit konnte bei den Gruppen X3 und Durasul eine gegenüber der Kontrollgruppe 

signifikant (p < 0,0024) erhöhte Freisetzung von TNF-α festgestellt werden. Bei den 

Zytokinen IL-1β und IL-6 bestätigte sich dies jedoch nicht. 

Die vermehrte Freisetzung von TNF-α in den Gruppen X3 und Durasul kann darauf 

zurückgeführt werden, dass die Abriebpartikel dieser beiden Werkstoffe im Gelenkknorpel 

eine Entzündungsreaktion auslösen. Unterstützt wird dies durch eine Studie der 

Arbeitsgruppe Chang et al., die anhand eines Zellkulturmodells zeigte, dass Chondrozyten 

auf UHMWPE-Partikel entzündlich reagieren und überdies in der Lage sind, die Partikel zu 

phagozytieren (Chang et al. 2008). Außerdem führten die Abriebpartikel zu einer reduzierten 

Überlebensfähigkeit der Knorpelzellen und zu einer gesteigerten Sekretion von 

Stickstoffmonoxid (NO) und Prostaglandin E2, die eine weitere Degradation des Knorpels 

und eine verstärkte Inflammation bewirkten (Chang et al. 2008).  

Die von Chang et al. gezeigte Fähigkeit der Chondrozyten zur Phagozytose von 

Polyethylenpartikeln und die vermehrte TNF-α-Freisetzung in dieser Studie bekräftigen die 

Annahme, dass die Knorpelzellen durch Zytokinfreisetzung und Phagozytose an dem 

Entzündungsgeschehen im Rahmen der aseptischen Osteolyse beteiligt sind. Die 

Chondrozyten hatten in dem Modell dieser Arbeit überdies direkten Kontakt zu den 

Abriebpartikeln, da diese intraartikulär injiziert wurden. Dies ist vergleichbar mit den 
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unikompartimentellen Prothesen im humanen Kniegelenk, bei denen der Abrieb des 

Polyethylengleitlagers auch direkten Kontakt zum verbliebenen Gelenkknorpel hat. 

Da die anderen Werkstoffe auch Polyethylene sind, kann eine Abwehrreaktion auf den 

Kunststoff Polyethylen allein nicht als Begründung ausreichen. 

Auch das Crosslinking an sich bewirkte in dieser Studie keine erhöhte Zytokinfreisetzung 

durch die Chondrozyten, da dies bei der Prolong- und XPE*-Gruppe nicht zutraf.    

Eine mögliche Erklärung für die vermehrte TNF-α-Freisetzung bei den Gruppen X3 und 

Durasul liegt darin, dass diese beiden Werkstoffe mit einer höheren Dosis bestrahlt wurden 

als die anderen Polyethylene. X3 wurde insgesamt mit 90 kGy bestrahlt und Durasul mit 95 

kGy, während die Bestrahlungsdosis bei den anderen Werkstoffen 40 bis 65 kGy betrug 

(Utzschneider et al. 2009b).  

Es ist allerdings zu berücksichtigen, dass sich die in dieser Arbeit verwendeten Polyethylene 

neben dem Crosslinking und der Bestrahlungsdosis in einer Reihe weiterer Parameter 

unterscheiden, deren spezifischer Einfluss auf die biologische Reaktivität für die Zukunft 

geklärt werden muss. Die beiden Polyethylene X3 und Durasul sind in Bezug auf das 

Herstellungs- und Crosslinking-Verfahren bis auf die ähnliche Bestrahlungsdosis vollkommen 

unterschiedlich (siehe II.2.3.4.) und es kann letztlich nicht vollständig geklärt werden, warum 

nur sie eine TNF-α-Freisetzung in den Chondrozyten induzierten.  

Im Hinblick auf die Anwendung der Werkstoffe X3 und Durasul beim unikompartimentellen 

Kniegelenkersatz und beim Ersatz anderer Gelenke mit Erhalt von Gelenkknorpel ist es 

interessant und relevant festzuhalten, dass sie eine gesteigerte Sekretion von TNF-α 

bewirkten.    

 

 

VI.2.2. Die Synovialmembran 

 

Für die Beurteilung der biologischen Aktivität der Polyethylenabriebpartikel ist weiterhin die 

Reaktion der Synovialmembran auf diese von Bedeutung. 

Im menschlichen künstlichen Kniegelenk sind an dem Prozess der aseptischen Lockerung 

die Synovialmembran und die periprothetische Membran beteiligt (Otto et al. 2006). Der 

histologische Aufbau der Synovialmembran ist mit dem der periprothetischen 

Pseudomembran vergleichbar, die im Bereich der Implantat-Knochen-Grenze entsteht 

(Ingham et al. 2005, Revell et al. 2008). Die Fibroblasten der Pseudomembran entsprechen 

den Typ-B-Synoviozyten und die Makrophagen den Typ-A-Synoviozyten der 

Synovialmembran. Außerdem enthalten beide Membranen Fibronektin, Kollagen Typ IV und 

V, Laminin und Heparansulfat (Mapp et al. 1985, Mayston et al. 1984, Pollock et al. 1990). 

Die Präsenz der Zytokine und Entzündungsmediatoren IL-1β, IL-6, TNF-α und ICAM-1 in der 
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periprothetischen Lockerungsmembran wurde bereits vielfach nachgewiesen, sowohl 

anhand von Tiermodellen, als auch durch die Analyse von humanen 

Pseudomembranpräparaten im Rahmen von Prothesenrevisionsoperationen (Stea et al. 

2000, Stea et al. 1999, Drees et al. 2008, Holding et al. 2006, Ingham et al. 2005).  

In dieser Arbeit wurde festgestellt, dass alle Polyethylengruppen in der Synovialmembran 

signifikant (p < 0,0024) mehr IL-1β exprimierten als die Kontrollgruppe. Dies bestätigte sich 

auch bei der Freisetzung von TNF-α, außer bei der Prolong- und der UHMWPE2-Gruppe. 

Eine signifikant (p < 0,0024) vermehrte Freisetzung von IL-6 wurde nur bei der X3-, der 

XPE*- und der UHMWPE1-Gruppe gefunden.  

Die Bedeutung dieser Entzündungsmediatoren im Prozess der aseptischen 

Endoprothesenlockerung wurde wie bereits beschrieben in zahlreichen Studien 

nachgewiesen (Drees et al. 2008, Ingham et al. 2005, Otto et al. 2006, Holt et al. 2007, 

Purdue et al. 2007). Die nach Polyethylenpartikelkontakt erhöhte Freisetzung der genannten 

Zytokine in der murinen Kniegelenksynovialmembran in dieser Studie lässt sich im Rahmen 

der partikelinduzierten Inflammationsreaktion erklären. Überdies begünstigen die durch diese 

Zytokine in Gang gesetzten Signalkaskaden die Entstehung aseptischer Osteolysen. 

Die insgesamt im Vergleich zu IL-1β und TNF-α geringere IL-6-Expression kann 

unterschiedlich begründet und interpretiert werden. Eine vermehrte IL-1β Freisetzung und 

gleichzeitig kein signifikanter Anstieg der Sekretion von IL-6 wurde in einer Studie der 

Arbeitsgruppe Wooley et al. gezeigt und stimmt zum Teil mit den Ergebnissen dieser Arbeit 

überein (Wooley et al. 2004). Die Sekretion von IL-6 wird vor allem durch IL-1β und TNF-α 

induziert und verstärkt (Wei et al. 2005, Chiba et al. 1994, Epstein et al. 2005b). Daher steigt 

dieses Zytokin umso mehr und umso schneller an, je mehr IL-1β und TNF-α vorhanden sind. 

Eine Studie der Arbeitsgruppe Epstein et al. zeigte, dass es in der periprothetischen 

Membran unter der Wirkung von IL-1β zu einer Expression von IL-6 kommt (Epstein et al. 

2005b). Außerdem wurde gezeigt, dass die IL-6 Freisetzung von Makrophagen der 

periprothetischen Membran nach UHMWPE-Partikelexposition nach vier Wochen ihr 

Maximum erreichte, während TNF-α bereits initial deutlich anstieg (Epstein et al. 2005a). Der 

langsamere Anstieg und das erst nach vier Wochen erreichte Maximum der IL-6-Freisetzung 

stimmen damit überein, dass in dieser Arbeit die IL-6-Expression im Vergleich zu IL-1β und 

TNF-α generell geringer war. Der Untersuchungszeitraum von nur eine Woche könnte für die 

Hochregulierung von IL-6 relativ zu früh sein. Es wurde gezeigt, dass durch IL-6 vor allem 

chronische inflammatorische Prozesse unterhalten werden (Kaufmann et al. 2008).  

Die Gruppen X3, XPE* und UHMWPE1 exprimierten allerdings bereits nach einer Woche 

signifikant mehr IL-6 in der Synovialmembran als die Kontroll- und die anderen 

Polyethylengruppen. Hierfür kann nicht allein das Crosslinking ursächlich sein, da 

UHMWPE1 ein konventionelles Polyethylen ist. Da sich die sechs Polyethylene neben dem 
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Crosslinking in zahlreichen anderen Herstellungsparametern unterscheiden, kann letztlich 

nicht vollständig geklärt werden, welche Kunststoffeigenschaft ausschlaggebend ist. 

Überdies muss auch das Zusammenwirken einzelner Werkstoffeigenschaften sowie der 

mögliche Einfluss von Oberflächeneigenschaften oder –ladungen berücksichtigt werden. 

Eine mögliche Erklärung wäre allerdings die Tatsache, dass die GUR 1020 Polyethylene X3, 

XPE* und UHMWPE1 gammabestrahlt wurden, während die GUR 1050 Werkstoffe Durasul, 

Prolong und UHMWPE2 elektronenbestrahlt wurden.  

 

 

VI.2.3. Gefäße in dem subintimalen Gewebe der Synovialmembran    

 

Die Bedeutung der Gefäße im subintimalen Gewebe der Synovialmembran liegt in Bezug auf 

die aseptische Lockerung zum einen in der Hochregulierung der Anzahl der Gefäße und 

Kapillaren und zum anderen in der Aktivierung des Gefäßendothels, da zur Unterhaltung 

dieses entzündlichen Prozesses die Neubildung von Gefäßen sowie das Einwandern und die 

Akkumulation immunkompetenter Zellen erforderlich sind (Murphy 2009). Die vermehrte 

Expression von Adhäsionsmolekülen wie ICAM-1 ermöglicht die Leukozytenadhäsion und 

deren transendotheliale Migration an den Ort des Entzündungsgeschehens (Murphy 2009). 

Im Prozess der aseptischen Osteolyse spielt insbesondere die Migration von Makrophagen 

eine zentrale Rolle (Ingham et al. 2005, Purdue et al. 2007). Al Saffar et al. zeigten bereits 

eine Gefäßneubildung und Leukozyteneinwanderung in die Pseudomembran, wofür die 

Hochregulierung von ICAM-1 eine Grundlage bildet (Al Saffar et al. 1995).  

In dieser Arbeit wurde in allen Polyethylengruppen eine gegenüber der Kontrollgruppe 

signifikant (p < 0,0024) erhöhte Expression von ICAM-1 an den Endothelzellen der Gefäße 

im subintimalen Gewebe der Synovialmembran festgestellt. Zwischen den einzelnen 

Werkstoffgruppen wurde kein signifikanter (p > 0,0024) Unterschied gefunden. Die erhöhte 

Expression lässt sich durch eine entzündliche Aktivierung des Endothels im Rahmen der 

Abwehrreaktion auf die Kunststoffpartikel erklären. Eine gesteigerte Expression von ICAM-1 

wird auch durch IL-1β und TNF-α induziert (Gallo et al. 2008). Die festgestellte Steigerung 

der ICAM-1 Expression stimmt mit den Ergebnissen der Intravitalmikroskopie dieser Studie 

überein, die eine im Vergleich zur Kontrolle signifikant erhöhte funktionelle Kapillardichte und 

Fraktion der rollenden Leukozyten zeigten (Utzschneider, Habilitationsschrift 2010, LMU). 

Diese Arbeit zeigte in den immunhistochemischen Untersuchungen mit ICAM-1 auch eine 

Erhöhung der Gefäßanzahl im Synovialmembrangewebe, was im Hinblick auf die 

funktionelle Kapillardichte wiederum eine Parallelität zu den intravitalmikroskopischen 

Ergebnissen darstellt (Utzschneider, Habilitationsschrift 2010, LMU). 
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Es ist außerdem bereits nachgewiesen, dass ICAM-1 in der menschlichen 

Lockerungsmembran exprimiert wird und dass dort Gefäßneubildungen auftreten (Clarke et 

al. 2001). Auch in der Synovialflüssigkeit von Patienten mit aseptischer Lockerung und 

nötiger Revisionsoperation befand sich vermehrt lösliches ICAM-1 (Sabokbar et al. 1995).  

Die auch in anderen Studien festgestellte gesteigerte Expression von ICAM-1 kann auf den 

von den Partikeln ausgelösten Entzündungsprozess und die damit einhergehende 

Endothelaktivierung und Leukozytenmigration zurückgeführt werden (Otto et al. 2001, Otto et 

al. 2006). Da dadurch Leukozyten in den Bereich der Synovialmembran gelangen, wird so 

durch ICAM-1 die Entstehung der aseptischen Lockerung mitgebahnt und begünstigt. 

Die geringgradige Expression von ICAM-1 in der Synovialmembran des normalen 

Kniegelenks wurde bereits gezeigt und erklärt die moderate Freisetzung in der 

Kontrollgruppe (Hale et al. 1989, Koch et al. 1991).   

 

   

VI.2.4. Das Knochenmark 

 

Neben dem Gelenkknorpel und der Synovialmembran wurde außerdem das Knochenmark 

des Femurs und der Tibia ausgewertet. Für die Knieendoprothetik spielt das Knochenmark 

zum einen eine zentrale Rolle, da es unmittelbaren Kontakt zum Implantat hat, insbesondere 

bei zementfrei verankerten Prothesen. Unsere Arbeitsgruppe wies nach, dass die 

Polyethylenabriebpartikel bereits nach einer Woche durch die Synovialmembran ins 

Synovialgewebe und schließlich ins Knochenmark wandern bzw. transportiert werden 

(Utzschneider, Habilitationsschrift 2010, LMU). Bis dato war es unklar, wie die Abriebpartikel 

zur Implantat-Knochen-Grenze, dem Ort der Knochenresorption, gelangen. Es gab Studien, 

die postulierten, dass die Abriebpartikel mittels der Synovialflüssigkeit über Mikrospalten, die 

durch mechanische Faktoren entstehen, an die Implantat-Knochen-Grenze kommen 

(Anthony et al. 1990, Aspenberg et al. 1998). Es wurde davon ausgegangen, dass die 

Abriebpartikel dort Makrophagen aktivieren und somit der Prozess der aspetischen 

Lockerung in Gang gesetzt wird (Drees et al. 2008, Gallo et al. 2008, Ingham et al. 2005, 

Otto et al. 2006, Revell et al. 2008). Andere Autoren nahmen aber auch an, dass Partikel 

Knochen durchwandern können bzw. durch Knochen transportiert werden (Massin et al. 

2004, Libouhan et al. 2009). Überdies wurden bereits Partikel in Lymphknoten und 

entfernten Organen nachgewiesen (Burian et al. 2006, Urban et al. 2000), was mit dem 

Transport durch Knochen und Synovialgewebe, wie ihn unsere Arbeitsgruppe feststellte, 

übereinstimmt.  

Zum anderen ist das Knochenmark als Ort der Blutzellbildung und -reifung, also auch der 

Immunzellen, wie der Makrophagen und anderen Leukozyten, den zellulären Mediatoren der 
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aseptischen Osteolyse, von Bedeutung (Dexter et al. 1977, Calvi et al. 2003, Lemischka et 

al. 1997, Lemischka et al. 2003, Zhang et al. 2003). Findet ein Entzündungsprozess statt, 

werden Abwehrzellen aus dem Knochenmark rekrutiert und eine Neubildung wird angeregt 

(Murphy 2009). Vermittelt werden diese Prozesse durch Zytokine und Wachstumsfaktoren, 

deren Produktion und Sekretion durch das Inflammationsgeschehen induziert werden 

(Murphy 2009, Vollmar 2005). Außerdem dient die Matrix des Knochenmarks als 

Zytokinreservoir, da diese Botenstoffe zur Zellinteraktion, -differenzierung und -rekrutierung 

notwendig sind.  Neben den Vorläuferzellen der Blutzellen enthält das Knochenmark 

beispielsweise auch Vorstufen von Osteoblasten und Osteoklasten, die im 

Knochenstoffwechsel und folglich im Prozess der aseptischen Osteolyse eine wichtige Rolle 

spielen (Welsch 2006). Aufgrund dessen ist das Knochenmark essentieller Bestandteil für 

die Entstehung und den Verlauf des Prozesses der aseptischen Prothesenlockerung. 

In dieser Arbeit unterschied sich die Expression der Zytokine IL-1β und IL-6 sowie TNF-α im 

Knochenmark hinsichtlich der verwendeten Polyethylenpartikel nicht. Der Vergleich der 

sechs verschiedenen Polyethylenabkömmlinge ergab keine signifikanten (p > 0,0024) 

Abweichungen. In Bezug auf die Kontrollgruppe zeigte sich aber eine signifikant (p < 0,0024) 

höhere Expression von IL-1β in allen mit Polyethylen behandelten Gruppen. Auch die TNF-α-

Freisetzung war außer in der UHMWPE2-Gruppe in allen Gruppen signifikant (p < 0,0024) 

erhöht.  Bei IL-6 hingegen bestätigte sich dies nicht.  

In dem dieser Arbeit zugrunde liegenden Modell hatten die Abriebpartikel keinen direkten 

Kontakt zum Knochenmark. Sie lösten als Fremdkörper und Entzündungsreiz einen 

inflammatorischen Prozess mit der Exprimierung und Sezernierung von Botenstoffen wie IL-

1β und TNF-α im Bereich des Gelenkknorpels und der Synovialmembran aus. Ein 

Entzündungsgeschehen im Bereich des Gelenkknorpels und der Synovialmembran regt im 

Knochenmark die Produktion von humoralen und zellulären Entzündungsmediatoren an, da 

das Knochenmark als Organ des Immunsystems im Rahmen inflammatorischer Prozesse 

aktiviert wird. Da unsere Arbeitsgruppe nachwies, dass sich nach einer Woche Abriebpartikel 

im Knochenmark befanden (Utzschneider, Habilitationsschrift 2010, LMU), ist es möglich, 

dass diese hier einen Entzündungsprozess induzierten. 

Sowohl in in vitro, als auch in in vivo Studien wurde bereits nachgewiesen, dass der Kontakt 

von Knochenmarkszellen mit Polyethylenpartikeln zu einer Steigerung der Sekretion von 

Zytokinen wie IL-1β, IL-6 und TNF-α führt (Tamaki et al. 2008, Sethi et al. 2003, Wilke et al. 

2005). Resultat der Freisetzung dieser Entzündungsmediatoren ist unter anderem die 

Aktivierung von Makrophagen und die Induktion der Osteoklastogenese sowie die Hemmung 

der Funktion der Osteoblasten, gleichbedeutend mit einer Lockerung der Prothese (Wilke et 

al. 2005). Überdies werden durch die Zytokine nicht nur reife Makrophagen und 

Osteoklasten aktiviert, sondern auch die Differenzierung von deren Vorstufen und eine 
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Differenzierung von Makrophagen zu knochenresorbierenden Zellen mit 

osteoklastenähnlichen Eigenschaften stimuliert (Tamaki et al. 2008,Tanabe et al. 2005, Wei 

et al. 2005, Zhang et al. 2001). 

Tamaki et al. zeigten beispielsweise, dass Monozyten bzw. Makrophagen aus dem 

Knochenmark nach Aktivierung oder nach Kontakt mit Polyethylenpartikeln eine gesteigerte 

Fähigkeit besitzen, Knochen zu resorbieren (Tamaki et al. 2008). Die Kathepsin K-positiven 

Makrophagen wiesen Eigenschaften der Osteoklasten auf und wirkten synergistisch mit 

diesen (Tamaki et al. 2008). Folglich wird der Knochenabbau, besonders die proteolytische 

Degradation der Knochenmatrix durch das Enzym Kathepsin K, im Prozess der aseptischen 

Osteolyse auch von Makrophagen bewirkt, die auto- und parakrin von Zytokinen wie IL-1β, 

IL-6 und TNF-α aktiviert werden (Revell et al. 2008). Die Arbeitsgruppe Tamaki et al. zeigte 

überdies, dass die Stimulation der Makrophagen mit den Kunststoffpartikeln zu einer 

erhöhten Expression der Entzündungsmediatoren IL-1β, IL-6 und TNF-α führt (Tamaki et al. 

2008). Außerdem bewirken diese Zytokine nicht nur eine Aktivierung der Makrophagen, 

sondern stimulieren auch die Differenzierung, Reifung und Aktivierung von 

Osteoklastenprogenitorzellen und führen so zu einer Knochenresorption durch Osteoklasten 

(Tanabe et al. 2005, Wei et al. 2005, Zhang et al. 2001). Im Knochenstoffwechsel spielen 

außerdem die Osteoblasten eine zentrale Rolle, indem sie durch Knochenaufbau der 

osteoklastischen Resorption entgegenwirken. Die Osteoprogenitorzellen, Vorstufen der 

reifen Osteoblasten, sind Zellen des Knochenmarks und sind deshalb ebenso den erhöhten 

Zytokinspiegeln exponiert (Murphy 2009). In vitro Studien zeigten anhand einer verminderten 

Mineralisierung, Proliferation und Aktivität der alkalischen Phosphatase, dass die 

Partikelexposition die osteogene Aktivität der Osteoprogenitorzellen hemmt und folglich eine 

periprothetische Knochenregeneration beeinträchtigt (Chiu et al. 2009).  

Polyethylenabriebpartikel induzieren aber nicht nur eine verminderte Aktivität und 

Differenzierung der Oseoblastenvorstufen, sondern führen bei Osteoblasten selbst zu einer 

erhöhten Sekretion des Zytokins IL-6 und zu einer verminderten Prokollagen-α1-

Genexpression und folglich zu einer verminderten Kollagen-Typ-I Synthese (Vermes et al. 

2001). Vermes et al. zeigten außerdem, dass exogenes TNF-α diese beiden Prozesse 

verstärkt und so bei der aseptischen Osteolyse nicht nur aufgrund der Aktivierung der 

Osteoklasten und folglich der Knochenresorption, sondern auch aufgrund verminderten 

Knochenaufbaus durch die Osteoblasten eine zentrale Rolle spielt (Vermes et al. 2001).  

Die in dieser Arbeit im Knochenmark festgestellte Steigerung der Expression und Sekretion 

der Entzündungsmediatoren IL-1β und TNF-α gegenüber der Kontrollgruppe korreliert mit 

den Ergebnissen der genannten Studien.  

Bei dem Zytokin IL-6 konnte hingegen nur in der XPE*-Gruppe eine signifikant (p < 0,0024) 

höhere Expression als in der Kontrollgruppe nachgewiesen werden.  
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Auch in der Synovialmembran wurde IL-6 vermehrt in der XPE*-Gruppe und in den Gruppen 

X3 und UHMWPE1 sezerniert (p > 0,0024). Dies könnte eine entweder stärkere oder 

schneller beginnende inflammatorische Wirkung der XPE*-Abriebpartikel andeuten. Der 

zentrale Aspekt das Knochenmark betreffend ist allerdings mit Sicherheit die erhöhte 

Freisetzung von IL-1β und TNF-α und folglich dessen inflammatorische Aktivierung.  

Zusammengefasst kann folglich aus den Ergebnissen dieser Arbeit das Knochenmark 

betreffend abgeleitet werden, dass alle Polyethylenwerkstoffe gleichermaßen eine im 

Vergleich zur Kontrollgruppe signifikante (p < 0,0024) erhöhte entzündliche Aktivierung des 

Knochenmarks bewirkten, die durch Stimulation von Zytokin induzierten Signalkaskaden den 

Prozess der aseptischen Lockerung durch Osteoklastenaktivierung und 

Osteoblastenhemmung begünstigt.   

 

 

VI.2.5. Konventionelles UHMWPE versus crosslinked Polyethylen 

 

Um dem Problem der abriebinduzierten Osteolysenentstehung zu begegnen, wurden in der 

Knieendoprothetik zahlreiche Versuche unternommen, um die Abriebfestigkeit des 

UHMWPE zu erhöhen (Ries et al. 2005a, Muratoglu et al. 2007).  

Eine neue und viel diskutierte Entwicklung ist das hochvernetzte, so genannte crosslinked 

Polyethylen. In der Hüftendoprothetik ist dieser Polyethylenabkömmling aufgrund sehr guter 

Ergebnisse sowohl in vitro als auch in vivo bereits ein fester Bestandteil (McKellop et al. 

1999, Muratoglu et al. 2001, Ries et al. 2001, Engh et al. 2006, Dorr et al. 2005). Diverse 

Hüftsimulatorstudien zeigen eine starke Reduzierung der Menge an Abriebpartikeln, bis zu 

90%, und auch frühe klinische Studien belegen radiographisch eine signifikant reduzierte 

(50%-72%) Femurkopfpenetration (Muratoglu et al. 2001, McKellop et al. 1999, Martell et al. 

2003, Digas et al. 2003a). Auch Kniesimulatorstudien mit crosslinked Polyethylen weisen im 

Vergleich zum konventionellen Polyethylen einen geringeren Abrieb auf (Muratoglu et al. 

2004, Utzschneider et al. 2009a).  

Dennoch gibt es sowohl in der Hüft- als auch in der Knieendoprothetik bezüglich des 

crosslinked Polyethylens bisher noch sehr wenige in vivo Studien oder Langzeitergebnisse 

(Utzschneider et al. 2009a, 2009b). 

Diese Studie ist bis dato die erste in vivo Studie, die die biologische Aktivität von 

Abriebpartikeln von verschiedenen konventionellen und crosslinked Polyethylenen vergleicht. 

Aus diesem Vergleich konnte unsere Arbeitsgruppe eine ähnliche biologische Reaktivität und 

folglich Biokompatibilität der sechs verschiedenen Polyethylene ableiten. Bezüglich der 

Zytokinsekretion bestanden zum Beispiel im Knochenmark keine signifikanten (p > 0,0024) 

Unterschiede zwischen den einzelnen Polyethylengruppen. Daraus lässt sich schließen, 
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dass alle Werkstoffe eine vergleichbare Aktivierung des Knochenmarks induzierten. Die 

Analyse der „Gesamtentzündlichkeit“ des Kniegelenks bekräftigte ebenso die vergleichbare 

biologische Reaktivität der sechs Polyethylene. Folglich konnte in dieser Arbeit 

immunhistochemisch ein Unterschied zwischen crosslinked PE und UHMWPE nicht bestätigt 

werden. Des Weiteren ergaben sowohl die Intravitalmikroskopie, als auch die histologische 

Auswertung der Hämatoxylin-Eosin-Färbung keine signifikanten Unterschiede zwischen 

crosslinked PE und UHMWPE (Utzschneider, Habilitationsschrift 2010, LMU). Die sechs 

verwendeten Polyethylene dieser Studie unterscheiden sich aber nicht nur durch das 

Crosslinking an sich, sondern auch in anderen Punkten, wie der Sterilisationsmethode, der 

Art des Crosslinkings sowie des anschließenden Temperaturvorgangs, die alle einen 

Einfluss auf die Partikelzahl und deren biologische Reaktivität ausüben können 

(Utzschneider et al. 2009a, 2009b). Der Prozess des „Crosslinkings“ einschließlich des 

Temperaturvorgangs (remelting oder annealing) verändert die chemischen und 

mechanischen Eigenschaften des Polyethylens und führt zwar zu erhöhter Abriebresistenz, 

aber gleichzeitig zu erniedrigter Härte, Bruch-, Streck-, Dehnungs- und Ermüdungsfestigkeit 

(Bradford et al. 2004a, Gomoll et al. 2002, Medel et al. 2007, Naudie et al. 2004, Oral et al. 

2006, Ries et al. 2005 a, 2005b). Es gibt Studien, die zeigten, dass, je höher die 

„crosslinking-Dichte“, also je höher die Bestrahlungsdosis ist, desto geringer sind Bruch- und 

Ermüdungsfestigkeit (Bradford et al 2004a, 2004b). Bezüglich der mechanischen 

Eigenschaften gibt es Studien, die beispielsweise das „annealing“ als Temperaturvorgang als 

am günstigsten ansehen (Medel et al. 2007). Da mit höherer Bestrahlungsdosis die Menge 

an Abrieb sinkt, sich aber auch die mechanischen Werkstoffeigenschaften verschlechtern, 

sieht die Arbeitsgruppe Baker et al. eine geringere „Crosslinking-Dosierung“ als passenden 

Mittelweg (Baker et al. 2003). Crosslinking wirkt sich zwar positiv auf die Abriebrate aus, 

verändert aber die mechanischen Eigenschaften und führt zu einem spröderen und 

brüchigeren Kunststoff (Ries et al. 2005a, 2005b).  

Neben den mechanischen Eigenschaften und der Abriebrate der Werkstoffe sind Größe, 

Form und Morphologie der Abriebpartikel wichtig (Purdue et al. 2007, Fisher et al. 2004). Es 

wurde bereits mehrfach gezeigt, dass kleinere Partikel, vor allem im Bereich < 0,5 μm, eine 

stärker ausgeprägte biologische Reaktion, also Inflammation, hervorrufen (Fisher et al. 2004, 

Huang et al. 2002, Jacobs et al. 2001). Außerdem stellte sich vielfach heraus, dass 

crosslinked Polyethylene zu einer verminderten Abriebrate sowohl im Hüft-, als auch im 

Kniegelenk führen, aber zusätzlich oft kleinere Partikel produzieren als konventionelles 

UHMWPE (Affatato et al. 2005, Ingram et al. 2004, McEwen et al. 2005, Minoda et al. 2008, 

Muratoglu et al. 2002, Muratoglu et al. 2003a, Muratoglu et al. 2004, Muratoglu et al. 2007). 

Ein Vergleich von crosslinked PE und UHMWPE Partikeln, die aus der Synovia von 

Patienten ein Jahr nach der Implantation eines künstlichen Kniegelenks gewonnen wurden, 
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zeigte, dass die Partikel der crosslinked Polyethylene weniger in der Anzahl, aber auch 

kleiner und runder waren (Iwakiri et al. 2009). Es existieren jedoch auch Studien, die zeigten, 

dass sich die Abriebpartikel von crosslinked PE und konventionellem UHMWPE in ihrer 

Größe und Morphologie nicht unterscheiden (Utzschneider et al. 2009a, 2009b).  

Studien, die bisher die biologische Aktivität von crosslinked Polyethylenpartikeln 

untersuchten, sind mehrheitlich in vitro Studien (Illgen et al. 2008, Ingram et al. 2004, Smith 

et al. 2009). Eine in vitro Studie der Arbeitsgruppe Illgen et al. zeigt zum einen, dass die 

Partikel des crosslinked Polyethylens kleiner und runder sind als die des UHMWPEs (Illgen 

et al. 2008). Zum anderen geht aus dieser Studie hervor, dass die biologische Reaktion 

konzentrationsabhängig ist und, dass erst bei der höchsten der getesteten Dosierungen bei 

den crosslinked PE Partikeln eine stärker ausgeprägte Entzündung als bei den UHMWPE 

Partikeln entsteht. Ingram et al. zeigten, dass crosslinked Partikel bereits in einer geringeren 

Konzentration als UHMWPE-Partikel zu einer Freisetzung von TNF-α durch murine 

Makrophagen führen (Ingram et al. 2004). Andere Studien hingegen zeigten, dass die beiden 

Polyethylene zu ähnlichen Zytokinspiegeln von IL-1β, IL-6 und TNF-α führen (Sethi et al. 

2003) und auch, dass das Ausmaß an Knochensubstanzverlust bei Verwendung von 

crosslinked PE im Vergleich zu UHMWPE geringer ist (Leung et al. 2007). Sethi et al. fanden 

in ihrem in vitro Makrophagenmodell bezüglich der Sekretion von IL-1β, IL-6 und TNF-α 

keinen Unterschied zwischen crosslinked PE und konventionellem UHMWPE (Sethi et al. 

2003). Sie untersuchten sowohl murine als auch humane Makrophagen. Einschränkend ist 

zu erwähnen, dass die Verwendung von Polyethylen nicht in Partikelform, sondern als Block 

auch gegenüber der Kontrolle zu keiner gesteigerten Zytokinsekretion führte (Sethi et al. 

2003).          

Aktuell gibt es eine in vivo Studie der Arbeitsgruppe Illgen et al., die anhand eines 

Mausmodells zeigte, dass crosslinked PE Partikel inflammatorischer wirken als 

konventionelles Polyethylen (Illgen et al. 2009). Limitierend ist darauf hinzuweisen, dass in 

dieser Studie sehr hochbestrahltes PE sowie industriell gefertigte, kugelförmige Partikel 

verwendet wurden (Illgen et al. 2009). Es bestehen jedoch auch Hinweise darauf, dass 

crosslinked Polyethylene kurz- und mittelfristig zu weniger Osteolysen und nötigen 

Revisionsoperationen als UHMWPE führen und folglich weniger inflammatorisch wirken 

(Hodrick et al. 2008).  

Zu den in dieser Arbeit verwendeten Polyethylenen gibt es aktuell nur einzelne Studien. Die 

Arbeitsgruppe Minoda et al. verglich bei ca. 200 Patienten radiologische und klinische 

Resultate von konventionellem UHMWPE und crosslinked Prolong zwei Jahre nach der 

Implantation des Polyethylen-Inlays mit demselben Prothesendesign (Minoda et al. 2009). Es 

zeigten sich weder klinisch noch radiologisch statistisch signifikante Unterschiede zwischen 

konventionellem und crosslinked PE und es trat bei beiden keine aseptische Lockerung auf 
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(Minoda et al. 2009). Allerdings ist zu beachten, dass der Zeitraum von zwei Jahren relativ 

kurz und zur Beurteilung von frühem Prothesenversagen eher als von aseptischer Lockerung 

geeignet ist. Die klinischen Ergebnisse des crosslinked Polyethylens Durasul als 

Knieendoprothesen-Inlay wurden von Hodrick et al. untersucht (Hodrick et al. 2008). Diese 

Arbeitsgruppe untersuchte ca. 200 Patienten, wobei 100 eine Knieendoprothese mit Durasul 

bekamen und 100 eine mit konventionellem PE. Dabei zeigten die Patienten mit Durasul 

weniger Osteolysen und tibiale Lockerungen als jene mit dem konventionellen UHMWPE 

(Hodrick et al. 2008). In der Durasul-Gruppe war keine Revisionsoperation nötig, während in 

der Gruppe mit dem konventionellen PE drei Revisionsoperationen aufgrund tibialer 

Lockerung durchgeführt werden mussten. Aber auch in dieser Studie wurde nur ein kurz- bis 

mittelfristiger Zeitraum beobachtet. Zu dem crosslinked Polyethylen X3 gibt es eine 

Kniesimulatorstudie, die eine Verringerung des Abriebs gegenüber dem konventionellen 

UHMWPE von ca. 65% feststellte (Wang et al. 2008). Die Kniesimulatorversuche unserer 

Arbeitsgruppe zeigten signifikant verminderte Abriebraten der crosslinked Polyethylene X3, 

Durasul, Prolong und XPE* im Vergleich zu den konventionellen UHMWPE1 und UHMWPE2 

(p < 0,05) (Utzschneider 2009a, 2009b). Bezüglich der Partikelanzahl produzierten die 

Polyethylene X3, Durasul und XPE* signifikant weniger Partikel als die Polyethylene Prolong, 

UHMWPE1 und UHMWPE2 (p < 0,05) (Utzschneider 2009a, 2009b). 

Diese Studie ist aktuell die erste Studie, die in vivo die biologische Aktivität von 

Abriebpartikeln sechs verschiedener Polyethylene, darunter vier crosslinked PEs und zwei 

UHMWPEs, vergleicht. Für die Zukunft sind weitere Studien und vor allem 

Langzeituntersuchungen anzustreben.  
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VII. Zusammenfassung 

 
Heutzutage stellt der Prozess der aseptischen Lockerung in der Knieendoprothetik nach wie 

vor die Hauptursache für eine Prothesenrevision dar. Induziert wird dieser Prozess vor allem 

durch Polyethylenabriebpartikel, die eine Entzündungsreaktion mit der Aktivierung von 

Makrophagen und weiteren Immunzellen sowie der Freisetzung von verschiedenen 

Zytokinen wie IL-1β, IL-6 und TNF-α hervorrufen. Dieser Prozess verläuft über komplexe und 

noch nicht bis ins letzte Detail bekannte Signalkaskaden, die schließlich zu einer Stimulation 

der Osteoklastogenese sowie einer Inhibierung der Osteoblastenfunktion und folglich zu 

einer Resorption von Knochensubstanz und Osteolysen führen.  

Ein Ziel in der Endoprothetik besteht daher darin, Gleitlagerkunststoffe herzustellen, bei 

deren Verwendung zum einen eine geringe Anzahl und zum anderen biologisch wenig aktive 

Abriebpartikel entstehen. Nach wie vor gilt in der Knieendoprothetik der 

Polyethylenabkömmling UHMWPE als Standardmaterial für das Prothesengleitlager. Es 

wurden zahlreiche Versuche unternommen, um die Abriebfestigkeit dieses Kunststoffes 

unter bestmöglichem Erhalt der biomechanischen Eigenschaften zu erhöhen. Unter diesem 

Aspekt wird in der Knieendoprothetik hochvernetztes Polyethylen, so genanntes crosslinked 

PE als Alternative zu UHMWPE kontrovers diskutiert. Crosslinked Polyethylene entstehen 

aus UHMWPE zunächst durch einen Bestrahlungs- und anschließend durch einen 

Temperaturvorgang ober- oder unterhalb des Schmelzpunktes. Dadurch wird das Material 

zwar abriebresistenter, es verändern sich aber auch die biomechanischen Eigenschaften, 

wie beispielsweise die Ermüdungsfestigkeit. Dies ist insbesondere in der Knieendoprothetik 

aufgrund des Roll-Gleit-Mechanismus des Kniegelenks von zentraler Bedeutung, da hier im 

Vergleich zum reinen Gleitmechanismus des Hüftgelenks Ermüdungserscheinungen im 

Vordergrund stehen. Diverse Studien zeigten reduzierte Abriebraten bei der Verwendung 

von crosslinked PE als Prothesen-Inlay und deuteten eine Verminderung der aseptischen 

Prothesenlockerung durch diesen Polyethylenabkömmling an. Bisher existieren allerdings 

nur vereinzelte Studien zur in vivo Analyse der biologischen Aktivität von crosslinked PE 

Abriebpartikeln. 

Das Ziel dieser Studie war es deshalb, anhand eines in vivo Mausmodells zu untersuchen, 

ob sich die in vitro produzierten Abriebpartikel der beiden Polyethylene, UHMWPE und 

crosslinked PE, in ihrer biologischen Reaktivität unterscheiden. 

 

Hierzu wurden 56 Balb/c Mäuse randomisiert einer von sieben Testgruppen zugeteilt: X3 

(3x30 kGy Gamma, annealed und sequentiell bestrahlt; n=8), Durasul (95 kGy E-beam, 

remelted; n=8), Prolong (65 kGy E-beam, remelted; n=8), XPE* (50 kGy Gamma, remelted; 

n=8), UHMWPE1 (n=8), UHMWPE2 (n=8) und Kontrolle (n=8). Die Mäuse erhielten unter 



- 97 - 
 

sterilen Bedingungen eine Injektion mit 50 μl einer 0,1 Vol%-igen Partikelsuspension in das 

linke Kniegelenk. Die Partikel dieser Suspension wurden zuvor in einem Kniesimulator 

erzeugt, anschließend isoliert und von Endotoxinen gereinigt. Die Kontrolltiere erhielten eine 

Injektion mit 50 μl PBS. Nach sieben Tagen wurden die Tiere getötet und die linken 

Kniegelenke in Paraffin eingebettet. Aus den Paraffinblöcken wurden 6 μm dicke Schnitte 

gefertigt und diese immunhistochemisch mit den Primärantikörpern IL-1β, IL-6, TNF-α und 

ICAM-1 angefärbt. Die immunhistochemischen Schnitte wurden mittels eines 

Lichtmikroskops semiquantitativ ausgewertet. Hierzu wurden die spezifischen Gewebe 

Gelenkknorpel, Knochenmark und Synovialmembran evaluiert und die Präparate je nach 

Ausmaß der Zytokinexpression spezifischen Auswertungsstufen zugeordnet. Zur 

statistischen Auswertung erfolgte eine Kruskal-Wallis-Analyse zur Feststellung, ob zwischen 

den Gruppen ein signifikanter Unterschied besteht. Im Anschluss wurde zur Lokalisation des 

detektierten Unterschiedes eine Bonferroni-Korrektur durchgeführt. Das korrigierte 

Signifikanzniveau lag bei p < 0,0024. 

 

Die Auswertung der immunhistochemischen Färbungen zeigte keinen Unterschied zwischen 

den crosslinked PE und den UHMWPE Gruppen in der Expression der untersuchten 

Entzündungsmediatoren IL-1β, IL-6, TNF-α und ICAM-1 in dem murinen Knochenmark und 

Synovialmembrangewebe (p > 0,0024). In allen Testgruppen bestand jedoch gegenüber der 

Kontrollgruppe eine signifikant erhöhte Zytokinsekretion in den genannten Geweben (p < 

0,0024). 

Im murinen Gelenkknorpel zeigten sich generell geringere Zytokinexpressionen. Es ergab 

sich nur in den Untersuchungsgruppen X3 und Durasul eine gegenüber der Kontrollgruppe 

und den übrigen PE-Gruppen signifikant gesteigerte TNF-α-Sekretion (p = 0,000).  

 

Die Ergebnisse dieser Arbeit weisen auf eine vergleichbare biologische Aktivität von 

crosslinked PE und UHMWPE Abriebpartikeln in vivo hin. Insofern stellt crosslinked PE eine 

attraktive Alternative zu UHMWPE als Kunststoff für Endoprothesengleitlager dar und kann 

zur klinisch endoprothetischen Anwendung empfohlen werden. 

Betrachtet man überdies die in zahlreichen Studien nachgewiesene Verminderung der 

Abriebraten bei der Verwendung von crosslinked Polyethylenen, so deutet die vergleichbare 

Biokompatibilität in Kombination mit den reduzierten Abriebraten eine Verminderung der 

osteolytischen Potenz dieses Polyethylenabkömmlings und folglich der aseptischen 

Prothesenlockerung an. 

Interessant ist die erhöhte Expression von TNF-α im murinen Gelenkknorpel der Gruppen X3 

und Durasul im Hinblick auf die Verwendung dieser crosslinked PEs als Gleitlager in 

unikompartimentellen Knieprothesen oder anderen Endoprothesen, bei denen ein Teil des 
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Gelenkknorpels nach der Prothesenimplantation im Gelenk verbleibt. Eine mögliche 

Erklärung für die gesteigerte TNF-α-Sekretion stellt die im Vergleich zu den anderen 

Polyethylenen höhere Bestrahlungsdosis der Werkstoffe X3 und Durasul dar. 

Da zahlreiche crosslinked Polyethylene existieren, die sich, wie auch die in dieser Arbeit 

untersuchten crosslinked PEs, in verschiedenen Eigenschaften wie der Bestrahlungsdosis, 

dem Temperaturvorgang und dem Herstellungsverfahren unterscheiden, sind für die Zukunft 

weitere Studien anzustreben, die den spezifischen Einfluss der einzelnen 

Werkstoffcharakteristika auf die biologische Aktivität des Kunststoffes analysieren. Überdies 

ist es sinnvoll und wichtig, die biologische Reaktivität und inflammatorische Potenz der 

verschiedenen Polyethylenabkömmlinge in Langzeitstudien zu evaluieren.    
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VIII. Anhang 

 
PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

0 0,125 0,625 0,125 0,375 0,375 0,125 

0,375 0,625 0,125 0,375 0,125 0,625 0,125 

0,125 0,625 0,125 0,125 0,125 0,375 0,125 

0,375 0,625 0,125 0,125 0,625 0,125 0,125 

0,375 0,375 0,125 0,125 0,625 0,125 0,375 

0,125 0,875 0,375 0,125 0,125 0,125 0,125 

0,125 0,625 0,875 0,125 0,375 0,375 0,875 

0,125 0,375 0,375 0,125 0,625 0,125 0,375 

0 0,125 0,875 0,125 0,375 0,125 0,375 

0,375 0,125 0,375 0,375 0,375 0,125 0,375 

0,125 0,625 0,125 0,375 0,625 0,375 0,375 

0,375 0,375 0,375 0,125 0,625 0,125 0,125 

0,375 0,625 0,375 0,125 0,625 0,125 0,125 

0,125 0,125 0,125 0,125 0,375 0,125 0,375 

0,375 0,875 0,875 0,375 0,125 0,625 0,875 

0,125 0,375 0,125 0,625 0,375 0,375 0,375 

Tab. 10 zeigt die Prozentzahlen der Chondrozyten, die bei der Färbung mit dem Primärantikörper IL-
1β im  murinen Gelenkknorpel positiv reagierten, wobei sich die Werte 1-8 auf den ersten 
Färbedurchlauf und die Werte 9-16 auf die zweite Färbung beziehen 

 
 
 
Signifikante Differenzen:             

          

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

PBS Nein Nein Nein Nein Nein Nein Nein 

X3 Nein Nein Nein Nein Nein Nein Nein 

Durasul Nein Nein Nein Nein Nein Nein Nein 

Prolong Nein Nein Nein Nein Nein Nein Nein 

XPE* Nein Nein Nein Nein Nein Nein Nein 

UHMWPE1 Nein Nein Nein Nein Nein Nein Nein 

UHMWPE2 Nein Nein Nein Nein Nein Nein Nein 

p-Werte:         

          

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

PBS 1 0,003 0,102 0,958 0,012 0,541 0,211 

X3 0,003 1 0,186 0,003 0,654 0,019 0,089 

Durasul 0,102 0,186 1 0,092 0,382 0,307 0,703 

Prolong 0,958 0,003 0,092 1 0,011 0,507 0,192 

XPE* 0,012 0,654 0,382 0,011 1 0,058 0,210 

UHMWPE1 0,541 0,019 0,307 0,507 0,058 1 0,522 

UHMWPE2 0,211 0,089 0,703 0,192 0,210 0,522 1 

Bonferroni-korrigiertes Signifikanzniveau: 0,0024         

Tab. 11 zeigt die nicht signifikanten Differenzen und entsprechenden p-Werte der statistischen 
Auswertung der immunhistochemischen Färbung des murinen Gelenkknorpels mit dem 
Primärantikörper IL-1β 
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PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

0,125 0,375 0,625 0,125 0,375 0,375 0,125 

0,625 0,125 0,375 0,125 0,125 0,625 0,125 

0,125 0,125 0,125 0,125 0,125 0,875 0,375 

0,375 0,625 0,875 0,125 0,125 0,125 0,125 

0,375 0,375 0,125 0,125 0,875 0,125 0,125 

0,125 0,875 0,125 0,125 0,125 0,125 0,375 

0,375 0,125 0,125 0,125 0,625 0,375 0,625 

0,375 0,125 0,125 0,375 0,625 0,625 0,375 

0,125 0,375 0,625 0,125 0,125 0,125 0,125 

0,375 0,375 0,375 0,125 0,125 0,125 0,375 

0,375 0,375 0,125 0,125 0,125 0,125 0,375 

0,375 0,375 0,375 0,125 0,375 0,125 0,125 

0,375 0,375 0,125 0,125 0,375 0,125 0,125 

0,125 0,875 0,125 0,125 0,125 0,125 0,125 

0,375 0,125 0,375 0,125 0,125 0,375 0,125 

0,625 0,125 0,125 0,125 0,375 0,625 0,125 

Tab. 12 zeigt die Prozentzahlen der Chondrozyten, die bei der Färbung mit dem Primärantikörper IL-6 
im murinen Gelenkknorpel positiv reagierten, wobei sich die Werte 1-8 auf den ersten Färbedurchlauf 
und die Werte 9-16 auf die zweite Färbung beziehen 

 

 
 
Signifikante Differenzen:             

          

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

PBS Nein Nein Nein Ja Nein Nein Nein 

X3 Nein Nein Nein Ja Nein Nein Nein 

Durasul Nein Nein Nein Nein Nein Nein Nein 

Prolong Ja Ja Nein Nein Nein Nein Nein 

XPE* Nein Nein Nein Nein Nein Nein Nein 

UHMWPE1 Nein Nein Nein Nein Nein Nein Nein 

UHMWPE2 Nein Nein Nein Nein Nein Nein Nein 

p-Werte:         

          

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

PBS 1 0,951 0,323 0,001 0,323 0,393 0,110 

X3 0,951 1 0,354 0,002 0,354 0,428 0,124 

Durasul 0,323 0,354 1 0,027 1,000 0,893 0,542 

Prolong 0,001 0,002 0,027 1 0,027 0,019 0,110 

XPE* 0,323 0,354 1,000 0,027 1 0,893 0,542 

UHMWPE1 0,393 0,428 0,893 0,019 0,893 1 0,457 

UHMWPE2 0,110 0,124 0,542 0,110 0,542 0,457 1 

Bonferroni-korrigiertes Signifikanzniveau: 0,0024         

Tab. 13 zeigt die signifikanten Differenzen und entsprechenden p-Werte der statistischen Auswertung 
der immunhistochemischen Färbung des murinen Gelenkknorpels mit dem Primärantikörper IL-6 
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PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

0 0,875 0,875 0,125 0,125 0,625 0,125 

0,375 0,625 0,875 0,125 0,375 0,375 0,375 

0,125 0,875 0,375 0,125 0,125 0,625 0,375 

0,375 0,125 0,625 0,125 0,625 0,125 0,375 

0,125 0,875 0,625 0,625 0,125 0,125 0,875 

0 0,875 0,625 0,625 0,875 0,125 0,625 

0,625 0,875 0,875 0,625 0,125 0,875 0,375 

0,125 0,375 0,125 0,375 0,625 0,125 0,375 

0,125 0,875 0,875 0,125 0,125 0,625 0,125 

0,375 0,125 0,875 0,125 0,125 0,375 0,375 

0,375 0,375 0,625 0,125 0,125 0,375 0,125 

0,625 0,625 0,375 0,375 0,625 0,375 0,375 

0,375 0,875 0,625 0,625 0,375 0,125 0,125 

0,125 0,875 0,375 0,625 0,375 0,125 0,375 

0,375 0,625 0,875 0,125 0,375 0,875 0,625 

0,125 0,375 0,625 0,125 0,375 0,375 0,125 

Tab. 14 zeigt die Prozentzahlen der Chondrozyten, die bei der Färbung mit dem Primärantikörper 
TNF-α im murinen Gelenkknorpel positiv reagierten, wobei sich die Werte 1-8 auf den ersten 
Färbedurchlauf und die Werte 9-16 auf die zweite Färbung beziehen 

 

 

 

Signifikante Differenzen:             

          

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

PBS Nein Ja Ja Nein Nein Nein Nein 

X3 Ja Nein Nein Ja Nein Nein Nein 

Durasul Ja Nein Nein Ja Nein Nein Nein 

Prolong Nein Ja Ja Nein Nein Nein Nein 

XPE* Nein Nein Nein Nein Nein Nein Nein 

UHMWPE1 Nein Nein Nein Nein Nein Nein Nein 

UHMWPE2 Nein Nein Nein Nein Nein Nein Nein 

p-Werte:         

          

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

PBS 1 0,000 0,000 0,619 0,400 0,190 0,286 

X3 0,000 1 0,910 0,001 0,004 0,015 0,008 

Durasul 0,000 0,910 1 0,001 0,003 0,011 0,005 

Prolong 0,619 0,001 0,001 1 0,731 0,416 0,569 

XPE* 0,400 0,004 0,003 0,731 1 0,639 0,821 

UHMWPE1 0,190 0,015 0,011 0,416 0,639 1 0,808 

UHMWPE2 0,286 0,008 0,005 0,569 0,821 0,808 1 

Bonferroni-korrigiertes Signifikanzniveau: 0,0024         

Tab. 15 zeigt die signifikanten Differenzen und entsprechenden p-Werte der statistischen Auswertung 
der immunhistochemischen Färbung des murinen Gelenkknorpels mit dem Primärantikörper TNF-α 
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Signifikante Differenzen:             

          

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

PBS Nein Ja Nein Nein Nein Nein Nein 

X3 Ja Nein Nein Ja Nein Nein Nein 

Durasul Nein Nein Nein Ja Nein Nein Nein 

Prolong Nein Ja Ja Nein Nein Nein Nein 

XPE* Nein Nein Nein Nein Nein Nein Nein 

UHMWPE1 Nein Nein Nein Nein Nein Nein Nein 

UHMWPE2 Nein Nein Nein Nein Nein Nein Nein 

p-Werte:         

          

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

PBS 1 0,001 0,017 0,296 0,217 0,554 0,563 

X3 0,001 1 0,313 < 0,0001 0,031 0,005 0,005 

Durasul 0,017 0,313 1 0,001 0,251 0,073 0,071 

Prolong 0,296 < 0,0001 0,001 1 0,023 0,102 0,105 

XPE* 0,217 0,031 0,251 0,023 1 0,521 0,512 

UHMWPE1 0,554 0,005 0,073 0,102 0,521 1 0,989 

UHMWPE2 0,563 0,005 0,071 0,105 0,512 0,989 1 

Bonferroni-korrigiertes Signifikanzniveau: 0,0024         

Tab. 16 zeigt die signifikanten Differenzen und entsprechenden p-Werte der statistischen Auswertung 
der immunhistochemischen Färbungen des murinen Gelenkknorpels mit den Primärantikörpern IL-1β, 
IL-6 und TNF-α 

 
 
 
 
 
PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

         0 0,125 0,125 0,375 0,125 0,875 0,625 

0,125 0,625 0,125 0,625 0,125 0,875 0,625 

0,125 0,625 0,375 0,375 0,375 0,625 0,875 

0,125 0,625 0,625 0,375 0,375 0,625 0,375 

0,125 0,125 0,375 0,375 0,625 0,625 0,875 

0,125 0,375 0,875 0,375 0,375 0,125 0,875 

0,125 0,375 0,875 0,375 0,625 0,625 0,875 

0 0,375 0,625 0,125 0,625 0,375 0,625 

0 0,125 0,125 0,625 0,625 0,125 0,625 

0,125 0,125 0,125 0,875 0,875 0,125 0,375 

0,125 0,375 0,375 0,625 0,875 0,125 0,375 

0,125 0,625 0,125 0,625 0,875 0,375 0,375 

0,125 0,375 0,625 0,375 0,875 0,625 0,875 

0,125 0,375 0,125 0,375 0,875 0,125 0,625 

0 0,875 0,375 0,625 0,625 0,375 0,625 

0,125 0,375 0,125 0,375 0,625 0,375 0,625 

Tab. 17 zeigt die Prozentzahlen der Zellen, die bei der Färbung mit dem Primärantikörper IL-1β im 
murinen Knochenmark positiv reagierten, wobei sich die Werte 1-8 auf den ersten Färbedurchlauf und 
die Werte 9-16 auf die zweite Färbung beziehen 
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Signifikante Differenzen:             

          

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

PBS Nein Ja Ja Ja Ja Ja Ja 

X3 Ja Nein Nein Nein Nein Nein Nein 

Durasul Ja Nein Nein Nein Nein Nein Nein 

Prolong Ja Nein Nein Nein Nein Nein Nein 

XPE* Ja Nein Nein Nein Nein Nein Nein 

UHMWPE1 Ja Nein Nein Nein Nein Nein Nein 

UHMWPE2 Ja Nein Nein Nein Nein Nein Nein 

p-Werte:         

          

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

PBS 1 0,001 0,002 < 0,0001 < 0,0001 0,000 < 0,0001 

X3 0,001 1 0,694 0,487 0,058 0,765 0,016 

Durasul 0,002 0,694 1 0,276 0,022 0,489 0,005 

Prolong < 0,0001 0,487 0,276 1 0,230 0,692 0,085 

XPE* < 0,0001 0,058 0,022 0,230 1 0,110 0,603 

UHMWPE1 0,000 0,765 0,489 0,692 0,110 1 0,034 

UHMWPE2 < 0,0001 0,016 0,005 0,085 0,603 0,034 1 

Bonferroni-korrigiertes Signifikanzniveau: 0,0024         

Tab. 18 zeigt die signifikanten Differenzen und entsprechenden p-Werte der statistischen Auswertung 
der immunhistochemischen Färbung des murinen Knochenmarks mit dem Primärantikörper IL-1β 

 
 
 
 
 

PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

0 0,125 0,625 0,375 0,625 0,125 0,375 

0,625 0,125 0,375 0,375 0,375 0,375 0,625 

0,375 0,375 0,125 0,125 0,625 0,125 0,625 

0,625 0,625 0,375 0,625 0,375 0,125 0,125 

0,125 0,125 0,375 0,625 0,625 0,125 0,125 

0,125 0,875 0,375 0,625 0,125 0,375 0,625 

0 0,625 0,375 0,375 0,375 0,125 0,375 

0,125 0,375 0,125 0,375 0,625 0,125 0,625 

0 0,375 0,625 0,375 0,625 0,625 0,375 

0,625 0,625 0,375 0,625 0,625 0,625 0,375 

0,375 0,625 0,375 0,375 0,625 0,625 0,625 

0,625 0,625 0,625 0,375 0,375 0,375 0,125 

0 0,125 0,375 0,625 0,875 0,375 0,125 

0 0,875 0,625 0,375 0,625 0,375 0,625 

0,125 0,625 0,625 0,625 0,875 0,625 0,375 

0,125 0,625 0,375 0,625 0,625 0,875 0,625 

Tab. 19 zeigt die Prozentzahlen der Zellen, die bei der Färbung mit dem Primärantikörper IL-6 im 
murinen Knochenmark positiv reagierten, wobei sich die Werte 1-8 auf den ersten Färbedurchlauf und 
die Werte 9-16 auf die zweite Färbung beziehen 
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Signifikante Differenzen:             

          

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

PBS Nein Nein Nein Nein Ja Nein Nein 

X3 Nein Nein Nein Nein Nein Nein Nein 

Durasul Nein Nein Nein Nein Nein Nein Nein 

Prolong Nein Nein Nein Nein Nein Nein Nein 

XPE* Ja Nein Nein Nein Nein Nein Nein 

UHMWPE1 Nein Nein Nein Nein Nein Nein Nein 

UHMWPE2 Nein Nein Nein Nein Nein Nein Nein 

p-Werte:         

          

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

PBS 1 0,005 0,048 0,009 0,000 0,149 0,036 

X3 0,005 1 0,399 0,825 0,337 0,167 0,467 

Durasul 0,048 0,399 1 0,534 0,071 0,590 0,909 

Prolong 0,009 0,825 0,534 1 0,238 0,246 0,612 

XPE* 0,000 0,337 0,071 0,238 1 0,019 0,091 

UHMWPE1 0,149 0,167 0,590 0,246 0,019 1 0,513 

UHMWPE2 0,036 0,467 0,909 0,612 0,091 0,513 1 

Bonferroni-korrigiertes Signifikanzniveau: 0,0024         

Tab. 20 zeigt die signifikanten Differenzen und entsprechenden p-Werte der statistischen Auswertung 
der immunhistochemischen Färbung des murinen Knochenmarks mit dem Primärantikörper IL-6 

 
 
 
 
 
 

PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

0 0,625 0,375 0,375 0,625 0,875 0,375 

0,125 0,125 0,875 0,125 0,375 0,625 0,125 

0,125 0,375 0,625 0,125 0,375 0,125 0,125 

0,125 0,625 0,375 0,625 0,625 0,375 0,125 

0 0,625 0,875 0,625 0,375 0,625 0,625 

0,125 0,625 0,625 0,125 0,375 0,375 0,875 

0 0,625 0,875 0,125 0,625 0,125 0,875 

0,125 0,625 0,375 0,375 0,375 0,375 0,125 

0 0,625 0,125 0,125 0,625 0,625 0,125 

0,125 0,625 0,375 0,125 0,625 0,625 0,625 

0,125 0,625 0,375 0,625 0,375 0,375 0,125 

0,125 0,375 0,375 0,125 0,875 0,375 0,125 

0 0,625 0,625 0,625 0,625 0,375 0,125 

0,125 0,625 0,625 0,875 0,625 0,375 0,625 

0,125 0,875 0,625 0,625 0,625 0,875 0,875 

0,375 0,625 0,125 0,875 0,875 0,125 0,125 

Tab. 21 zeigt die Prozentzahlen der Zellen, die bei der Färbung mit dem Primärantikörper TNF-α im 
murinen Knochenmark positiv reagierten, wobei sich die Werte 1-8 auf den ersten Färbedurchlauf und 
die Werte 9-16 auf die zweite Färbung beziehen 
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Signifikante Differenzen:             

          

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

PBS Nein Ja Ja Ja Ja Ja Nein 

X3 Ja Nein Nein Nein Nein Nein Nein 

Durasul Ja Nein Nein Nein Nein Nein Nein 

Prolong Ja Nein Nein Nein Nein Nein Nein 

XPE* Ja Nein Nein Nein Nein Nein Nein 

UHMWPE1 Ja Nein Nein Nein Nein Nein Nein 

UHMWPE2 Nein Nein Nein Nein Nein Nein Nein 

p-Werte:         

          

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

PBS 1 < 0,0001 < 0,0001 0,001 < 0,0001 0,000 0,003 

X3 < 0,0001 1 0,451 0,061 0,823 0,159 0,026 

Durasul < 0,0001 0,451 1 0,262 0,595 0,514 0,139 

Prolong 0,001 0,061 0,262 1 0,098 0,639 0,722 

XPE* < 0,0001 0,823 0,595 0,098 1 0,236 0,045 

UHMWPE1 0,000 0,159 0,514 0,639 0,236 1 0,409 

UHMWPE2 0,003 0,026 0,139 0,722 0,045 0,409 1 

Bonferroni-korrigiertes Signifikanzniveau: 0,0024         

Tab. 22 zeigt die signifikanten Differenzen und entsprechenden p-Werte der statistischen Auswertung 
der immunhistochemischen Färbung des murinen Knochenmarks mit dem Primärantikörper TNF-α 

 
 
 

Signifikante Differenzen:             

          

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

PBS Nein Ja Ja Ja Ja Ja Ja 

X3 Ja Nein Nein Nein Nein Nein Nein 

Durasul Ja Nein Nein Nein Nein Nein Nein 

Prolong Ja Nein Nein Nein Nein Nein Nein 

XPE* Ja Nein Nein Nein Nein Nein Nein 

UHMWPE1 Ja Nein Nein Nein Nein Nein Nein 

UHMWPE2 Ja Nein Nein Nein Nein Nein Nein 

p-Werte:         

          

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

PBS 1 < 0,0001 < 0,0001 < 0,0001 < 0,0001 0,000 < 0,0001 

X3 < 0,0001 1 0,381 0,531 0,185 0,238 0,852 

Durasul < 0,0001 0,381 1 0,803 0,028 0,762 0,490 

Prolong < 0,0001 0,531 0,803 1 0,051 0,581 0,660 

XPE* < 0,0001 0,185 0,028 0,051 1 0,012 0,131 

UHMWPE1 0,000 0,238 0,762 0,581 0,012 1 0,321 

UHMWPE2 < 0,0001 0,852 0,490 0,660 0,131 0,321 1 

Bonferroni-korrigiertes Signifikanzniveau: 0,0024         

Tab. 23 zeigt die signifikanten Differenzen und entsprechenden p-Werte der statistischen Auswertung 
der immunhistochemischen Färbungen des murinen Knochenmarks mit den Primärantikörpern IL-1β, 
IL-6 und TNF-α 
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PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE1 

0 0 0,0594 0 0,09 0,0571 0,0571 

0 0,0227 0,0636 0,0648 0,03 0,0194 0,0194 

0 0,1524 0,0263 0,0351 0,0648 0,04 0,04 

0 0,1217 0,0792 0,0471 0,1217 0,0744 0,0744 

0 0,0855 0,0198 0,0192 0,1613 0,0789 0,0789 

0 0,0672 0,02 0,0333 0,1607 0,01 0,01 

0 0,2044 0,1339 0,0758 0,1554 0,1316 0,1316 

0 0,1165 0,1143 0,0896 0,1905 0,1089 0,1089 

0 0 0,0587 0,046 0,087 0,0523 0,0523 

0 0,0267 0,0621 0,0755 0,0287 0,0378 0,0378 

0 0,1489 0,0278 0,0389 0,0665 0,0266 0,0266 

0 0,1299 0,0799 0,0267 0,1239 0,0911 0,0911 

0 0,0634 0,0224 0,0317 0,1601 0,0624 0,0624 

0 0,0856 0,0135 0,0536 0,1629 0,0179 0,0179 

0 0,2189 0,1367 0,0601 0,1527 0,1406 0,1406 

0 0,1354 0,1155 0,0938 0,1858 0,1173 0,1173 

Tab. 24 zeigt die Prozentzahlen der Synoviozyten, die bei der Färbung mit dem Primärantikörper IL-
1β in der murinen Kniegelenkssynovialmembran positiv reagierten, wobei sich die Werte 1-8 auf den 
ersten Färbedurchlauf und die Werte 9-16 auf die zweite Färbung beziehen 

 

 
 
Signifikante Differenzen:             

          

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE1 

PBS Nein Ja Ja Ja Ja Ja Ja 

X3 Ja Nein Nein Nein Nein Nein Nein 

Durasul Ja Nein Nein Nein Nein Nein Nein 

Prolong Ja Nein Nein Nein Ja Nein Nein 

XPE* Ja Nein Nein Ja Nein Nein Nein 

UHMWPE1 Ja Nein Nein Nein Nein Nein Nein 

UHMWPE1 Ja Nein Nein Nein Nein Nein Nein 

p-Werte:         

          

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE1 

PBS 1 < 0,0001 < 0,0001 0,000 < 0,0001 < 0,0001 < 0,0001 

X3 < 0,0001 1 0,196 0,055 0,194 0,241 0,241 

Durasul < 0,0001 0,196 1 0,534 0,010 0,904 0,904 

Prolong 0,000 0,055 0,534 1 0,001 0,458 0,458 

XPE* < 0,0001 0,194 0,010 0,001 1 0,013 0,013 

UHMWPE1 < 0,0001 0,241 0,904 0,458 0,013 1 1,000 

UHMWPE1 < 0,0001 0,241 0,904 0,458 0,013 1,000 1 

Bonferroni-korrigiertes Signifikanzniveau: 0,0024         

Tab. 25 zeigt die signifikanten Differenzen und entsprechenden p-Werte der statistischen Auswertung 
der immunhistochemischen Färbung der murinen Kniegelenkssynovialmembran mit dem 
Primärantikörper IL-1β 
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PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

0 0,968 0 0,0435 0,099 0,1346 0,0381 

0 0,0185 0,0261 0,0446 0,0198 0,1417 0,04 

0,0375 0,0874 0,0338 0,0196 0,0566 0,1176 0,066 

0,0178 0,0476 0,0472 0,049 0,1782 0,1731 0,0187 

0,0267 0,0476 0,0294 0,0556 0,6694 0,0377 0,0165 

0 0,7442 0,0283 0,0762 0,229 0,1333 0,0413 

0 0,6729 0,0588 0,0396 0,2214 0,1034 0,048 

0,0534 0,0923 0,0385 0,0496 0,16 0,0965 0,075 

0 0,1189 0,0034 0,0467 0,0876 0,1389 0,0289 

0 0,0367 0,0344 0,0389 0,0234 0,1635 0,0538 

0,0758 0,0514 0,0312 0,0278 0,0567 0,0923 0,0645 

0 0,0623 0,0501 0,0536 0,1634 0,1687 0,0201 

0 0,0401 0,0268 0,0491 0,6701 0,0586 0,019 

0,0198 0,7045 0,0277 0,0701 0,2367 0,1252 0,0377 

0,0167 0,6578 0,0735 0,0222 0,2178 0,0989 0,0489 

0,0199 0,0856 0,0199 0,0656 0,1655 0,1066 0,0539 

Tab. 26 zeigt die Prozentzahlen der Synoviozyten, die bei der Färbung mit dem Primärantikörper IL-6 
in der murinen Kniegelenkssynovialmembran positiv reagierten, wobei sich die Werte 1-8 auf den 
ersten Färbedurchlauf und die Werte 9-16 auf die zweite Färbung beziehen 

 

 

 

Signifikante Differenzen:             

          

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

PBS Nein Ja Nein Nein Ja Ja Nein 

X3 Ja Nein Ja Nein Nein Nein Nein 

Durasul Nein Ja Nein Nein Ja Ja Nein 

Prolong Nein Nein Nein Nein Nein Ja Nein 

XPE* Ja Nein Ja Nein Nein Nein Ja 

UHMWPE1 Ja Nein Ja Ja Nein Nein Ja 

UHMWPE2 Nein Nein Nein Nein Ja Ja Nein 

p-Werte:         

          

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

PBS 1 < 0,0001 0,145 0,006 < 0,0001 < 0,0001 0,026 

X3 < 0,0001 1 0,001 0,046 0,301 0,266 0,011 

Durasul 0,145 0,001 1 0,189 < 0,0001 < 0,0001 0,439 

Prolong 0,006 0,046 0,189 1 0,002 0,002 0,588 

XPE* < 0,0001 0,301 < 0,0001 0,002 1 0,937 0,000 

UHMWPE1 < 0,0001 0,266 < 0,0001 0,002 0,937 1 0,000 

UHMWPE2 0,026 0,011 0,439 0,588 0,000 0,000 1 

Bonferroni-korrigiertes Signifikanzniveau: 0,0024         

Tab. 27 zeigt die signifikanten Differenzen und entsprechenden p-Werte der statistischen Auswertung 
der immunhistochemischen Färbung der murinen Kniegelenkssynovialmembran mit dem 
Primärantikörper IL-6 
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PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

0 0,1333 0,0857 0,0594 0,1593 0,2475 0,0684 

0,0276 0,0439 0,3279 0,0732 0,0806 0,1727 0,0536 

0,0156 0,2308 0,0435 0,0909 0,0783 0,1485 0,0268 

0,0738 0,0531 0,0392 0,04 0,0959 0,22 0,049 

0,0423 0,1404 0,2029 0,0971 0,2231 0,0952 0,1495 

0 0,24 0,2143 0,2353 0,2389 0,1364 0,1373 

0 0,6535 0,248 0,0294 0,1818 0,1481 0,1456 

0,1167 0,2653 0,0882 0,2167 0,1651 0,0752 0,099 

0,0378 0,1567 0,0823 0,0425 0,1378 0,2289 0,0367 

0 0,0289 0,3067 0,0838 0,0961 0,1977 0,0761 

0,0197 0,2388 0,0534 0,1001 0,0823 0,1845 0,0456 

0,0637 0,0872 0,0628 0,0388 0,1067 0,1836 0,0611 

0,0221 0,1212 0,1826 0,0951 0,2001 0,0967 0,1178 

0,0429 0,2089 0,2362 0,2051 0,2178 0,1211 0,1213 

0,0067 0,6634 0,2289 0,0567 0,1929 0,1567 0,1189 

0,0623 0,2979 0,0945 0,2056 0,1789 0,0823 0,1301 

Tab. 28 zeigt die Prozentzahlen der Synoviozyten, die bei der Färbung mit dem Primärantikörper 
TNF-α in der murinen Kniegelenkssynovialmembran positiv reagierten, wobei sich die Werte 1-8 auf 
den ersten Färbedurchlauf und die Werte 9-16 auf die zweite Färbung beziehen 

 

 

 

Signifikante Differenzen:             

          

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

PBS Nein Ja Ja Nein Ja Ja Nein 

X3 Ja Nein Nein Nein Nein Nein Nein 

Durasul Ja Nein Nein Nein Nein Nein Nein 

Prolong Nein Nein Nein Nein Nein Nein Nein 

XPE* Ja Nein Nein Nein Nein Nein Nein 

UHMWPE1 Ja Nein Nein Nein Nein Nein Nein 

UHMWPE2 Nein Nein Nein Nein Nein Nein Nein 

p-Werte:         

          

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

PBS 1 < 0,0001 < 0,0001 0,004 < 0,0001 < 0,0001 0,012 

X3 < 0,0001 1 0,417 0,019 0,669 0,788 0,007 

Durasul < 0,0001 0,417 1 0,124 0,701 0,588 0,059 

Prolong 0,004 0,019 0,124 1 0,055 0,038 0,728 

XPE* < 0,0001 0,669 0,701 0,055 1 0,875 0,023 

UHMWPE1 < 0,0001 0,788 0,588 0,038 0,875 1 0,015 

UHMWPE2 0,012 0,007 0,059 0,728 0,023 0,015 1 

Bonferroni-korrigiertes Signifikanzniveau: 0,0024         

Tab. 29 zeigt die signifikanten Differenzen und entsprechenden p-Werte der statistischen Auswertung 
der immunhistochemischen Färbung der murinen Kniegelenkssynovialmembran mit dem 
Primärantikörper TNF-α 
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Signifikante Differenzen:       

        

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

PBS Nein Ja Ja Nein Ja Ja Ja 

X3 Ja Nein Nein Nein Nein Nein Nein 

Durasul Ja Nein Nein Nein Nein Nein Nein 

Prolong Nein Nein Nein Nein Ja Nein Nein 

XPE* Ja Nein Nein Ja Nein Nein Ja 

UHMWPE1 Ja Nein Nein Nein Nein Nein Nein 

UHMWPE2 Ja Nein Nein Nein Ja Nein Nein 

        

p-Werte:        

        

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

PBS 1 < 0,0001 < 0,0001 0,003 < 0,0001 < 0,0001 0,002 

X3 < 0,0001 1 0,096 0,005 0,634 0,900 0,006 

Durasul < 0,0001 0,096 1 0,255 0,032 0,073 0,277 

Prolong 0,003 0,005 0,255 1 0,001 0,003 0,959 

XPE* < 0,0001 0,634 0,032 0,001 1 0,726 0,001 

UHMWPE1 < 0,0001 0,900 0,073 0,003 0,726 1 0,004 

UHMWPE2 0,002 0,006 0,277 0,959 0,001 0,004 1 

Bonferroni-korrigiertes Signifikanzniveau: 0,0024     

Tab. 30 zeigt die signifikanten Differenzen und entsprechenden p-Werte der statistischen Auswertung 
der immunhistochemischen Färbungen der murinen Kniegelenkssynovialmembran mit den 
Primärantikörpern IL-1β, IL-6 und TNF-α 

 
 
 
 
 

PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

0,375 0,875 0,875 0,875 0,875 0,625 0,625 

0,125 0,625 0,625 0,875 0,625 0,625 0,625 

0,125 0,625 0,625 0,875 0,875 0,875 0,625 

0,125 0,625 0,625 0,625 0,875 0,875 0,625 

0,125 0,625 0,625 0,625 0,875 0,875 0,875 

0,375 0,875 0,625 0,625 0,625 0,375 0,875 

0,125 0,875 0,875 0,625 0,625 0,875 0,875 

0,125 0,875 0,625 0,625 0,625 0,875 0,375 

0,375 0,625 0,625 0,625 0,875 0,625 0,625 

0,375 0,625 0,625 0,625 0,875 0,625 0,625 

0,125 0,625 0,625 0,625 0,625 0,625 0,625 

0 0,875 0,625 0,875 0,625 0,875 0,625 

0,125 0,875 0,625 0,875 0,625 0,875 0,625 

0,375 0,625 0,875 0,625 0,625 0,375 0,875 

0,125 0,625 0,625 0,625 0,875 0,875 0,875 

0 0,875 0,625 0,625 0,625 0,875 0,375 

Tab. 31 zeigt die Prozentzahlen der Gefäße, die bei der Färbung mit dem Primärantikörper ICAM-1 im 
murinen Kniegelenkssynovialmembrangewebe positiv reagierten, wobei sich die Werte 1-8 auf den 
ersten Färbedurchlauf und die Werte 9-16 auf die zweite Färbung beziehen 

 

 

 



- 110 - 
 

Signifikante Differenzen:             

          

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

PBS Nein Ja Ja Ja Ja Ja Ja 

X3 Ja Nein Nein Nein Nein Nein Nein 

Durasul Ja Nein Nein Nein Nein Nein Nein 

Prolong Ja Nein Nein Nein Nein Nein Nein 

XPE* Ja Nein Nein Nein Nein Nein Nein 

UHMWPE1 Ja Nein Nein Nein Nein Nein Nein 

UHMWPE2 Ja Nein Nein Nein Nein Nein Nein 

p-Werte:         

          

  PBS X3 Durasul Prolong XPE* UHMWPE1 UHMWPE2 

PBS 1 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 

X3 < 0,0001 1 0,275 0,585 1,000 0,873 0,351 

Durasul < 0,0001 0,275 1 0,585 0,275 0,210 0,873 

Prolong < 0,0001 0,585 0,585 1 0,585 0,480 0,700 

XPE* < 0,0001 1,000 0,275 0,585 1 0,873 0,351 

UHMWPE1 < 0,0001 0,873 0,210 0,480 0,873 1 0,275 

UHMWPE2 < 0,0001 0,351 0,873 0,700 0,351 0,275 1 

Bonferroni-korrigiertes Signifikanzniveau: 0,0024         

Tab. 32 zeigt die signifikanten Differenzen und entsprechenden p-Werte der statistischen Auswertung 
der immunhistochemischen Färbung der Gefäße des murinen Kniegelenkssynovialmembrangewebes 
mit dem Primärantikörper ICAM-1 
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X. Abbildungs- und Tabellenverzeichnis 

 

Abbildungsverzeichnis 

 

Abb. 1: Anatomie des Kniegelenks (Gray 2007) 

Abb. 2: Histologischer Aufbau eines Gelenks. Zu sehen sind subchondrales Knochengewebe, hyaliner 

Gelenkknorpel, sowie der Aufbau der Synovialmembran mit A-, B- und Fettzellen sowie Blutgefäßen 

(Welsch 2006) 

Abb. 3: Schematische Übersicht der verschiedenen Prothesenmodelle (Kohn und Rupp 1999) 

Abb. 4: Struktur eines Polyethylenmoleküls (Bargel-Schulze 2000) 

Abb. 5: Semikristalline Struktur des Polymers UHMWPE (Kurtz 2004) 

Abb. 6: Verwendete bikondyläre Knieprothesenmodelle [A) aus http://www.stryker.de; B) und C) aus 

http://www.zimmergermany.de; D) aus http://www.kneereplacement.com/DePuy]  

Abb. 7: Rasterelektronenmikroskopische Bilder von Polyethylen-Inlays mit (A) Originaloberfläche, (B) 

Kratzern, (C) polierten Oberflächenanteilen und (D) Abrasion (aus dem Labor für Biomechanik und 

Experimentelle Orthopädie, Ludwig-Maximilians-Universität, München)  

Abb. 8: Schematische Darstellung der die Entstehung aseptischer Osteolysen im Bereich künstlicher 

Gelenke vermittelnden Signalkaskaden einschließlich der beteiligten Zellen sowie der 

proinflammatorischen Mediatoren (Purdue et al. 2007)  

Abb. 9: Schematische Darstellung der Leukozyten-Endothelzell-Interaktion mit transendothelialer 

Migration (Welsch 2006) 

Abb. 10: Rasterelektronenmikroskopische Bilder der Abriebpartikel der verschiedenen 

Knieprothesendesigns (A=X3, B=Durasul, C=Prolong, D=XPE*, E=UHMWPE1, F=UHMWPE2, 

Originalvergrößerung: 5.000- und 10.000-fach) (Utzschneider et al. 2009b) 

Abb. 11: Graphische Darstellung der direkten (A) und indirekten  (B) immunhistochemischen 

Färbemethoden (Murphy 2009) 

Abb. 12: Graphische Darstellung der immunhistochemischen  (Strept-) Avidin-Biotin-Complex (ABC)-

Färbemethode (Murphy 2009) 

Abb. 23 zeigt die nicht signifikant (p > 0,0024) vermehrte Expression (p-Werte siehe Tab. 2*) von IL-

1β in allen Versuchsgruppen gegenüber der Kontrollgruppe (PBS) im murinen Gelenkknorpel 7 Tage 

nach intraartikulärer Partikelinjektion. 

Abb. 14 zeigt mit IL-1β gefärbte Präparate des murinen Kniegelenkknorpels der Kontrollgruppe sowie 

der Versuchsgruppen X3-UHMWPE2. In Abb. 14K und A-F sind sowohl negative als auch positive, rot 

angefärbte Chondrozyten zu erkennen. Die Anzahl der positiven Knorpelzellen ist in allen Präparaten 

vergleichbar. 

Vergrößerung K und A-F: 200x 

Abb. 15 zeigt die nicht signifikant (p > 0,0024) vermehrte Expression (p-Werte siehe Tab. 4*) von IL-6 

im murinen Gelenkknorpel in allen Versuchsgruppen gegenüber der Kontrollgruppe (PBS) 7 Tage 

http://www.stryker.de/
http://www.zimmergermany.de/
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nach intraartikulärer Partikelinjektion. Ein signifikanter Unterschied bestand nur zwischen den 

Gruppen X3 und Prolong (p = 0,002) 

# = signifikanter Unterschied zwischen den Versuchsgruppen (p = 0,002) 

Abb. 16 zeigt mit IL-6 gefärbte Präparate des murinen Kniegelenkknorpels der Kontrollgruppe K sowie 

der Versuchsgruppen A und B.  

In Abb. 16K sind vor allem negative Chondrozyten zu erkennen, wobei in Abb. 16A und B positive, rot 

angefärbte Chondrozyten gekennzeichnet sind. Die Anzahl der positiven Knorpelzellen ist jedoch 

gering.  

Vergrößerung K, A, B: 200x 

Abb. 17 zeigt die vermehrte Expression (p-Werte siehe Tab. 6*) von TNF-α im murinen Gelenkknorpel 

in allen Versuchsgruppen gegenüber der Kontrollgruppe (PBS) 7 Tage nach intraartikulärer 

Partikelinjektion. Zwischen den Versuchsgruppen unterschieden sich nur X3 und Durasul signifikant 

von Prolong (p-Werte siehe Tabelle 6*). 

* = signifikanter Unterschied zur Kontrollgruppe (p-Werte siehe Tab. 6*) 

# = signifikanter Unterschied zwischen den Versuchsgruppen (p-Werte siehe Tab. 6*) 

Abb. 18 zeigt mit TNF-α gefärbte Präparate des murinen Kniegelenkknorpels der Kontrollgruppe K 

sowie aller Versuchsgruppen A,B,D und F. In den Abb. 18A,B,D und F sind negative und positive, rot 

angefärbte Chondrozyten zu erkennen. Auffällig ist, dass in Abb. 18A und B im Vergleich zu den 

anderen Präparaten eine höhere Anzahl an positiven Knorpelzellen zu sehen ist.  

Vergrößerung K und A-D: 200x, Vergrößerung F:400x 

Abb. 19 zeigt die vermehrte Expression (p-Werte siehe Tab. 7*) von IL-1β, IL-6 und TNF-α im murinen 

Gelenkknorpel aller Versuchsgruppen gegenüber der Kontrollgruppe (PBS) 7 Tage nach 

intraartikulärer Partikelinjektion. Zwischen den Versuchsgruppen unterschieden sich nur X3 und 

Durasul signifikant von Prolong (p-Werte siehe Tab. 7*). 

* = signifikanter Unterschied zur Kontrollgruppe (p-Werte siehe Tab. 7*) 

# = signifikanter Unterschied zwischen den Versuchsgruppen (p-Werte siehe Tab. 7*) 

Abb. 20 zeigt die vermehrte Expression (p-Werte siehe Tab. 9*) von IL-1β in allen Versuchsgruppen 

gegenüber der Kontrollgruppe (PBS) im murinen Knochenmark 7 Tage nach intraartikulärer 

Partikelinjektion. 

* = signifikanter Unterschied zur Kontrollgruppe (p-Werte siehe Tab. 9*) 

Abb. 21 zeigt die mit IL-1β gefärbten Präparate des Knochenmarks des murinen Kniegelenks der 

Kontrollgruppe K sowie aller Versuchsgruppen A-F.  

Vergrößerung K+A-F: 400x  

Abb. 22 zeigt die vermehrte Expression (p-Werte siehe Tab. 11*) von IL-6 in allen Versuchsgruppen 

gegenüber der Kontrollgruppe (PBS) im murinen Knochenmark 7 Tage nach intraartikulärer 

Partikelinjektion.  

* = signifikanter Unterschied zur Kontrollgruppe (p = 0,000) 

Abb. 23 zeigt mit IL-6 gefärbte Präparate des Knochenmarks muriner Kniegelenke der Kontrollgruppe 

K sowie der Versuchsgruppen C und D. In Abb. 23D sind deutlich die positiven, rot angefärbten 

Knochenmarkszellen zu sehen, während in Abb. 23K und C die negativen Zellen überwiegen.  

Vergrößerung K,C,D: 400x 
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Abb. 24 zeigt die vermehrte Expression (p-Werte siehe Tab. 13*) von TNF-α im murinen 

Knochenmark aller Versuchsgruppen gegenüber der Kontrollgruppe (PBS) 7 Tage nach 

intraartikulärer Partikelinjektion.  

* = signifikanter Unterschied zur Kontrollgruppe (p-Werte siehe Tab. 13*) 

Abb. 25 zeigt mit TNF-α gefärbte Präparate des Knochenmarks muriner Kniegelenke der 

Kontrollgruppe K sowie aller Versuchsgruppen A-F. In allen Präparaten der Abb. 25K und A-F sind 

positive, rot angefärbte Knochenmarkszellen zu sehen. Es fällt jedoch auf, dass in der Kontrollgruppe 

K und in der UHMWPE2-Gruppe (Abb. 25F) weniger positive Zellen zu erkennen sind als in Abb. 25A-

E.  

Vergrößerung K+B+E: 200x, Vergrößerung A+C+D+F: 400x 

Abb. 26 zeigt die vermehrte Expression (p-Werte siehe Tab. 14*) von IL-1β, IL-6 und TNF-α im 

murinen Knochenmark aller Versuchsgruppen gegenüber der Kontrollgruppe (PBS) 7 Tage nach 

intraartikulärer Partikelinjektion.  

* = signifikanter Unterschied zur Kontrollgruppe (p-Werte siehe Tab. 14*) 

Abb. 27 zeigt die vermehrte Expression (p-Werte siehe Tab. 16*) von IL-1β in allen Versuchsgruppen 

gegenüber der Kontrollgruppe (PBS) in der murinen Kniegelenkssynovialmembran. Zwischen den 

Versuchsgruppen war lediglich bei Prolong und XPE* ein signifikanter Unterschied (p = 0,001) 

vorhanden. 

* = signifikanter Unterschied zur Kontrollgruppe (p-Werte siehe Tab. 16*) 

# = signifikanter Unterschied zwischen den Versuchsgruppen (p-Werte siehe Tab. 16*) 

Abb. 28 zeigt die mit IL-1β gefärbten Präparate der Synovialmembran muriner Kniegelenke der 

Kontrollgruppe K sowie der Versuchsgruppen A und D (K=Kontrolle, A=X3, D=XPE*). In Abb. 28K sind 

negative Synovialzellen gekennzeichnet, während in Abb. 28A+D positive, rot angefärbte 

Synoviozyten und eine Proliferation der Synovialmembran zu erkennen sind. Vergrößerung K: 400x 

Vergrößerung A+D: 1000x 

Abb. 29 zeigt die vermehrte Expression (p-Werte siehe Tab. 18*) von IL-6 in der murinen 

Kniegelenkssynovialmembran in allen Versuchsgruppen gegenüber der Kontrollgruppe (PBS).  

* = signifikanter Unterschied zur Kontrollgruppe (p-Werte siehe Tab. 18*) 

# = signifikanter Unterschied zwischen den Versuchsgruppen (p-Werte siehe Tab. 18*) 

Abb. 30 zeigt mit IL-6 gefärbte Präparate der Synovialmembran muriner Kniegelenke der 

Kontrollgruppe K sowie aller Versuchsgruppen A-F. 

In Abb. 30K sind negative Synovialzellen zu sehen, während in den Abb. 30A-F positive, rot 

angefärbte Synoviozyten erkennbar sind.  

Vergrößerung K: 400x, Vergrößerung A+D: 1000x, Vergrößerung B+C+E+F: 200x 

Abb. 31 zeigt die vermehrte Expression (p-Werte siehe Tab. 20) von TNF-α in der murinen 

Kniegelenkssynovialis in allen Versuchsgruppen gegenüber der Kontrollgruppe (PBS).  

* = signifikanter Unterschied zur Kontrollgruppe (p-Werte siehe Tab. 20) 

Abb. 32 zeigt mit TNF-α gefärbte Präparate der Synovialmembran muriner Kniegelenke der 

Kontrollgruppe K sowie aller Versuchsgruppen A-F. 

Abb. 32K stellt einen Ausschnitt aus der Synovialmembran eines Kontrollpräparates mit negativen 

Synoviozyten dar. In den Abb. 32A-F sind positive, rot angefärbte Synovialzellen gekennzeichnet. 



- 130 - 
 

Vergrößerung K+D: 200x, Vergrößerung A-F: 1000x 

Abb. 33 zeigt die vermehrte Expression (p-Werte siehe Tab. 23*) von IL-1β, IL-6 und TNF-α in der 

murinen Kniegelenkssynovialmembran aller Versuchsgruppen gegenüber der Kontrollgruppe (PBS) 7 

Tage nach intraartikulärer Partikelinjektion. Zwischen den Versuchsgruppen bestand nur bei Prolong 

und XPE* ein signifikanter Unterschied (p = 0,001)  

* = signifikanter Unterschied zur Kontrollgruppe (p-Werte siehe Tab. 23*)  

# = signifikanter Unterschied zwischen den Versuchsgruppen (p = 0,001) 

Abb. 34 zeigt die vermehrte Expression (p-Werte siehe Tab. 25*) von ICAM-1 in den Gefäßen der 

murinen Kniegelenkssynovialmembran in allen Versuchsgruppen gegenüber der Kontrollgruppe 

(PBS). 

* = signifikant gegenüber der Kontrollgruppe (p-Werte siehe Tab. 25*) 

Abb. 35 zeigt mit ICAM-1 gefärbte Präparate des Synovialmembrangewebes muriner Kniegelenke der 

Kontrollgruppe K sowie aller Versuchsgruppen A-F. 

In Abb. 35K sind vor allem negative Gefäße zu sehen. Die Abb. 35A-F zeigen hingegen zahlreiche 

positive Gefäße und auch eine im Vergleich zur Kontrolle höhere Anzahl an Gefäßen im 

Synovialmembrangewebe.   

Vergrößerung K: 400x und A-F: 200x 

 

 

Tabellenverzeichnis 

 

Tab. 1: Übersicht der verwendeten Polyethylene, des Herstellungsverfahrens dieser sowie des 

Designs und der Materialkombination der entsprechenden vom Hersteller empfohlenen Prothese 

*) Experimentelle Kombination, nicht kommerziell erhältlich 

Tab. 2: Schwedisches Knieprothesenregister 1975–1997: Indikationen für primäre 

Revisionsoperationen von Knieendoprothesen von 1988 bis 1997 (Median der Prothesenstandzeit = 

45 Monate) (Robertsson et al. 2007) 

Tab. 3: Antikörper und Seren  

Tab. 4: Allgemeine Reagenzien 

Tab. 5: Verbrauchsmaterialien 

Tab. 6: Geräte 

Tab. 7: Färbeprotokoll (Teil 1) für die immunhistochemischen Untersuchungen mit IL-1β, IL-6, TNF-α 

und ICAM-1 

Tab. 8: Färbeprotokoll (Teil 2) für die immunhistochemischen Untersuchungen mit IL-1β, IL-6, TNF-α 

und ICAM-1 

Tab. 9: Exemplarische Darstellung der Bildtabellen in Punkt V 

Tab. 30 zeigt die Prozentzahlen der Chondrozyten, die bei der Färbung mit dem Primärantikörper IL-

1β im  murinen Gelenkknorpel positiv reagierten, wobei sich die Werte 1-8 auf den ersten 

Färbedurchlauf und die Werte 9-16 auf die zweite Färbung beziehen  
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Tab. 11 zeigt die nicht signifikanten Differenzen und entsprechenden p-Werte der statistischen 

Auswertung der immunhistochemischen Färbung des murinen Gelenkknorpels mit dem 

Primärantikörper IL-1β 

Tab. 12 zeigt die Prozentzahlen der Chondrozyten, die bei der Färbung mit dem Primärantikörper IL-6 

im murinen Gelenkknorpel positiv reagierten, wobei sich die Werte 1-8 auf den ersten Färbedurchlauf 

und die Werte 9-16 auf die zweite Färbung beziehen 

Tab. 13 zeigt die signifikanten Differenzen und entsprechenden p-Werte der statistischen Auswertung 

der immunhistochemischen Färbung des murinen Gelenkknorpels mit dem Primärantikörper IL-6 

Tab. 14 zeigt die Prozentzahlen der Chondrozyten, die bei der Färbung mit dem Primärantikörper 

TNF-α im murinen Gelenkknorpel positiv reagierten, wobei sich die Werte 1-8 auf den ersten 

Färbedurchlauf und die Werte 9-16 auf die zweite Färbung beziehen 

Tab. 15 zeigt die signifikanten Differenzen und entsprechenden p-Werte der statistischen Auswertung 

der immunhistochemischen Färbung des murinen Gelenkknorpels mit dem Primärantikörper TNF-α 

Tab. 16 zeigt die signifikanten Differenzen und entsprechenden p-Werte der statistischen Auswertung 

der immunhistochemischen Färbungen des murinen Gelenkknorpels mit den Primärantikörpern IL-1β, 

IL-6 und TNF-α 

Tab. 17 zeigt die Prozentzahlen der Zellen, die bei der Färbung mit dem Primärantikörper IL-1β im 

murinen Knochenmark positiv reagierten, wobei sich die Werte 1-8 auf den ersten Färbedurchlauf und 

die Werte 9-16 auf die zweite Färbung beziehen 

Tab. 18 zeigt die signifikanten Differenzen und entsprechenden p-Werte der statistischen Auswertung 

der immunhistochemischen Färbung des murinen Knochenmarks mit dem Primärantikörper IL-1β 

Tab. 19 zeigt die Prozentzahlen der Zellen, die bei der Färbung mit dem Primärantikörper IL-6 im 

murinen Knochenmark positiv reagierten, wobei sich die Werte 1-8 auf den ersten Färbedurchlauf und 

die Werte 9-16 auf die zweite Färbung beziehen 

Tab. 20 zeigt die signifikanten Differenzen und entsprechenden p-Werte der statistischen Auswertung 

der immunhistochemischen Färbung des murinen Knochenmarks mit dem Primärantikörper IL-6 

Tab. 41 zeigt die Prozentzahlen der Zellen, die bei der Färbung mit dem Primärantikörper TNF-α im 

murinen Knochenmark positiv reagierten, wobei sich die Werte 1-8 auf den ersten Färbedurchlauf und 

die Werte 9-16 auf die zweite Färbung beziehen 

Tab. 22 zeigt die signifikanten Differenzen und entsprechenden p-Werte der statistischen Auswertung 

der immunhistochemischen Färbung des murinen Knochenmarks mit dem Primärantikörper TNF-α 

Tab. 23 zeigt die signifikanten Differenzen und entsprechenden p-Werte der statistischen Auswertung 

der immunhistochemischen Färbungen des murinen Knochenmarks mit den Primärantikörpern IL-1β, 

IL-6 und TNF-α 

Tab. 24 zeigt die Prozentzahlen der Synoviozyten, die bei der Färbung mit dem Primärantikörper IL-1β 

in der murinen Kniegelenkssynovialmembran positiv reagierten, wobei sich die Werte 1-8 auf den 

ersten Färbedurchlauf und die Werte 9-16 auf die zweite Färbung beziehen 
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Tab. 25 zeigt die signifikanten Differenzen und entsprechenden p-Werte der statistischen Auswertung 

der immunhistochemischen Färbung der murinen Kniegelenkssynovialmembran mit dem 

Primärantikörper IL-1β 

Tab. 26 zeigt die Prozentzahlen der Synoviozyten, die bei der Färbung mit dem Primärantikörper IL-6 

in der murinen Kniegelenkssynovialmembran positiv reagierten, wobei sich die Werte 1-8 auf den 

ersten Färbedurchlauf und die Werte 9-16 auf die zweite Färbung beziehen 

Tab. 27 zeigt die signifikanten Differenzen und entsprechenden p-Werte der statistischen Auswertung 

der immunhistochemischen Färbung der murinen Kniegelenkssynovialmembran mit dem 

Primärantikörper IL-6 

Tab. 28 zeigt die Prozentzahlen der Synoviozyten, die bei der Färbung mit dem Primärantikörper TNF-

α in der murinen Kniegelenkssynovialmembran positiv reagierten, wobei sich die Werte 1-8 auf den 

ersten Färbedurchlauf und die Werte 9-16 auf die zweite Färbung beziehen 

Tab. 29 zeigt die signifikanten Differenzen und entsprechenden p-Werte der statistischen Auswertung 

der immunhistochemischen Färbung der murinen Kniegelenkssynovialmembran mit dem 

Primärantikörper TNF-α 

Tab. 30 zeigt die signifikanten Differenzen und entsprechenden p-Werte der statistischen Auswertung 

der immunhistochemischen Färbungen der murinen Kniegelenkssynovialmembran mit den 

Primärantikörpern IL-1β, IL-6 und TNF-α 

Tab. 31 zeigt die Prozentzahlen der Gefäße, die bei der Färbung mit dem Primärantikörper ICAM-1 im 

murinen Kniegelenkssynovialmembrangewebe positiv reagierten, wobei sich die Werte 1-8 auf den 

ersten Färbedurchlauf und die Werte 9-16 auf die zweite Färbung beziehen 

Tab. 32 zeigt die signifikanten Differenzen und entsprechenden p-Werte der statistischen Auswertung 

der immunhistochemischen Färbung der Gefäße des murinen Kniegelenkssynovialmembrangewebes 

mit dem Primärantikörper ICAM-1 
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