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Abstract

Photoinduced ultrafast isomerizations are fundamental reactions in photochemistry
and photobiology. This thesis aims for an understanding of the generic forces driving
these reactions and a theoretical approach is set up, able to handle realistic systems,
whose fast relaxation is mediated by conical intersections. The main focus is on the
development of strategies for the prediction and accelerated optimization of conical
intersections and their application to artificial compounds with promising physico-
chemical properties for technical applications as molecular switches. All calculations
are based on advanced quantum chemical methods and mixed quantum-classical dy-
namics.
In the first part of this thesis the two-electron two-orbital theory by Michl and
Bonačić-Koutecký used in its original formulation to rationalize the structure of con-
ical intersections in charged polyene systems is extended by including the interac-
tions of the active pair of electrons with the remaining closed-shell electrons that are
present in any realistic system. A set of conditions, called resonance and heterosym-
metry conditions, for the formation of conical intersections in multielectronic systems
are derived and verified by calculations on the basic units ethylene, cis-butadiene
and 1,3-cyclohexadiene at various geometries and functionalizational patterns. The
quantitative results help to understand the role of geometrical deformations and sub-
stituent effects for the formation of conical intersections and to derive rules of thumb
for their qualitative prediction in arbitrary polyenes. An extension of the rules of
thumb to conical intersection seams is formulated. The strategy pursued is to divide
the molecular system into basic units and into functional groups. Each unit and its
intersection space are treated independently, thereby reducing the dimensionality of
the search space compared to the complete molecule. Subsequently, the intercon-
nectivity of the intersection spaces of the different units is determined and an initial
guess for the complete seam is constructed. This guess is then fed into a quantum
chemistry package to finalize the optimization. The strategy is demonstrated for
two multi-functionalized systems, hemithioindigo-hemistilbene and trifluoromethyl-
pyrrolylfulgide.
In the second part of this thesis state-of-the-art quantum chemical calculations
and time-resolved transient and infrared spectroscopy are used to reconstruct the
complex multi-channel isomerization mechanisms of hemithioindigo-hemistilbene and
trifluoromethyl-indolylfulgide. Both the cis-trans isomerization in hemithioindigo-
hemistilbene and the electrocyclic ring closure/opening in indolylfulgide are charac-
terized by a charge transfer in the excited state. The ability of each system to stabilize
this charge transfer is essential for the returning to the ground state. The relaxation
to the ground state through extended regions of the seam is found to be the decisive
step determining the reaction speed and the quantum yield.
In the last part of this thesis mixed quantum-classical dynamics simulations at multi-
configurational perturbation theory (MS-CASPT2) level, using Tully’s fewest switches
surface hopping approach, are performed to study the ultrafast photoreactivity of 1,3-
cyclohexadiene in the gas-phase. For this purpose a numerical routine for the efficient
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calculation of non-adiabatic couplings at MS-CASPT2 level is presented. The major
part of the excited molecules are found to circumvent the 1B2/2A1 conical inter-
section and reach the conical intersection seam between the excited state and the
ground state instantaneuosly. Time constants for the evolution of the wavepacket on
the bright 1B2-state, the relaxation into the 2A1-state and the return to the ground
state are extracted. It is demonstrated that the accessibility of the conical intersec-
tion seam depends on its energetic and spatial relation to the minimum energy path,
as well as on the momentum which is accumulated during relaxation on the excited
state potential energy surface.
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Introduction

Ever since the finding about the atomic structure of matter it has been our pursuit
to cast a glance in chemical, biological and physical processes at atomic resolution,
i.e. to follow geometrical deformations like bond breaking and formation in space
and time. Tracking the temporal and spatial evolution of a system is the matter of
dynamics. As the length scale of molecular bonds is 10−10 m (= 1 Ångstrom) and
the nuclear speed is in the order of 103 m/s a femtosecond temporal resolution is
required to achieve a sub-Ångstrom spatial resolution, i.e. to freeze the motion at
atomic level. Ultrashort pulses provide a tool to monitor high-speed motion and open
the door to femtodynamics. In their pioneering work Zewail and co-workers devel-
oped the pump-probe technique[1–3], allowing to take snap shots of the motion of the
wavepacket on the excited state potential energy surface by applying a probe pulse at
different delay times after triggering an event with a pump pulse. The pump-probe
time-resolved spectroscopy allows to address fundamental questions reagarding the
time order and time scale of photochemical and photobiological processes. This tech-
nique also proves valuable for studying processes in the ground state, e.g. protein
folding initiated by an ultrafast molecular deformation induced by the pump pulse[4],
thereby establishing a precise zero time reference for determining the time scales of
folding. Nowadays, the development of the time-resolved techniques has extended
the probing window from the ultraviolet to the near-infrared[5–13], thus permitting
to follow the dynamics over extended regions of the excited state surface. A variety of
experimental setups like time-resolved transient absorption, fluorescence, photoelec-
tron and infrared spectroscopy have been designed that allow to observe the dynamics
from different angles.
The introduction of the pump-probe technique launched a wave of experimental
research on a variety of chemical and biological systems. It soon became evident
that a number of processes occur much faster than any theoretical model could ex-
plain at that time. Exemplarily, prototypical molecules like ethylene[14, 15] and
1,3-cyclohexadiene[16–20], but also bulky systems like retinal[21–23] were found to
return to the ground state in a fraction of a picosecond. The efficient ultrafast trans-
fer of population between states could be explained only when real potential energy
surface crossings between different electronic states, i.e. conical intersections[24–26],
were considered. The development of novel theoretical approaches[27–35] special-
ized at the optimization of low-energy conical intersections catalyzed the research
of photoreactions. These peculiar points on the potential energy surface (called by
some authors diabolic points[36]) were quickly recognized as the key factor for the
stability of DNA bases[37–42], the initial event in the process of vision[43–46], elec-
trocyclic photoreactions[47–50], photodissociations[51–53], energy and charge trans-
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Introduction

fer processes[54, 55], etc.. As the passage through a conical intersection occurs very
rapidly and can not be detected spectroscopically it has become a task for the quan-
tum chemists to shed light on their structure, accessibility and reactivity. In recent
years, as new field of research the optimization and characterization of energetically
low-lying conical intersection seams, hyperlines of conical intersections allowing for
a versatile and effective decay to ground state from extended regions of the excited
state potential energy surface, moved into the focus of interest[36, 56–60].
The present work provides an ab-initio treatment of ultrafast photoreactions mediated
by conical intersection by means of quantum chemistry and mixed quantum-classical
dynamics. In the first section the basic theoretical concepts are outlined. In the
second section a theory is presented which allows to derive rules of thumb to predict
the structure of single conical intersections and conical intersection seams in arbitrary
multifunctionalized polyenes. The method is based on an extension of the two-electron
two-orbital model introduced by Michl and Bonačić-Koutecký[61]. It is able to predict
structure, topology and energy dependence on the substituent pattern and accelerates
the search of conical intersections and conical intersection seam. In three examples
this general technique is applied to the photochromic systems 1,3-cyclohexadiene/cZc-
hexatriene, hemithioindigo-hemistilbene and trifluoromethyl-indolylfulgide, the latter
two being candidates for application as molecular photoswitches in protein folding
studies[62] and molecular electronics[63]. Conical intersection seams found in both
systems, together with data from time-resolved transient and infrared spectroscopy,
are used in the third section to reconstruct the complex multi-channel isomerization
mechanism of both chromophores. The relaxation to the ground state through ex-
tended regions of the seam is found to be the decisive step determining the reaction
speed and the quantum yield of isomerization.
Quantum chemistry gives valuable insights into possible intermediates, barrier heights
and ground state products by means of minimum energy paths. However, momen-
tum conservation in vibrational modes drives the systems away from the minimum
energy path and can alter the outcome of the reaction. Dynamical simulations are
indispensable for answering the following questions: (i) What time constants char-
acterize the individual steps of a reaction? (ii) What is the population distribution
in different reaction channels? (iii) Which regions of the conical intersection seam
are reached preferentially? (iv) What is the product distribution out of the conical
intersection seam? Dynamical simulations on polyatomic systems are very tedious
and exact quantum dynamics in full coordinate space is currently out of reach for
photoreactions. Quantum dynamics calculations in a reduced coordinate space is an
alternative, but the coordinates have to be selected with great care to be physically
meaningful. Semi-classical dynamics[64, 65] provide a workaround by focusing on
a subset of the system, which is treated quantum mechanically (the electronic de-
grees of freedom) under the influence of the rest of the system treated classically
(the nuclear degrees of freedom). This partitioning allows to mimic the evolution of
a quantum dynamical wavepacket by a swarm of classcial trajectories driven by the
quantum mechanical electronic potential. In this work the Tully’s fewest switches
surface hopping approach[66] implemented in the software package for Newtonian
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dynamics Newton-X[67] is interlaced with the multi-state complete active space per-
turbation method[68–70] available in Molpro[71] to simulate non-adiabatic dynamics
through conical intersections. In the fourth section of this work the implementation
of non-adiabatic couplings at multi-state complete active space perturbation theory
level, as well as preliminary results on the dynamics of 1,3-cyclohexadiene are pre-
sented. Cyclohexadiene is a prototype for a molecular photoswitch[72] and is the
building block of the family of fulgide switches[73]. It is expected that the disclosure
of its dynamics will provide valuable information about the accessibility and reactivity
of the conical intersection seam[74] beyond the static description.
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1. Theoretical background

The present work investigates light-induced ultrafast chemical reactions proceeding
on a femtosecond to picosecond time scale by means of ab initio quantum chemical
methods. The time-independent Schrödinger equation

ĤΨ(r, R) = E(r, R)Ψ(r, R) (1.1)

provides the foundation of quantum chemistry. The molecular wavefunction Ψ(r, R)
contains the whole information about the nuclear and electronic degrees of freedom
of the system and Ĥ is the Hamiltonian operator

Ĥ = −
∑

α

1
2mα

∇2
α

︸ ︷︷ ︸

T̂ nuc

−
∑

i

1
2

∇2
i −

∑

α,i

Zα

Rα,i

+
∑

i,j

1
Rij

+
∑

α,β

ZαZβ

Rαβ
︸ ︷︷ ︸

Ĥel

. (1.2)

The first two terms in eq. 1.2 give the kinetic energy of the nuclei (i.e. T̂ nuc) and
of the electrons. The third term gives the electron-nuclei attraction and the last
two terms give the electron and nuclear repulsion, respectively. The indices α, β
and i, j run over the nuclei and electrons. Solution of eq. 1.1 poses a formidable
challenge and is practically impossible for systems with more than three degrees of
freedom unless some approximations are introduced. Probably the most significant
one is the Born-Oppenheimer (BO) approximation, named after Max Born and Julius
Robert Oppenheimer, which allows to treat electronic and nuclear degrees of freedom
separately[75, 76]. Its physical justification is provided by the high ratio of the masses
of nuclei and electrons, allowing the electrons to quasi-instantaneously adapt to a new
nuclear arrangement. Therefore, the electronic motions depend only parametrically
on the positions of the nuclei. This dependence allows us to write the total wavefunc-
tion Ψ(r, R) in a product form

ΨBO(r, R) = χ(R)Ψel(r; R), (1.3)

where χ(R) depends only on the nuclear coordinates and Ψel(r; R) depends explic-
itly on the electronic and parametrically on the nuclear coordinates. Ψel(r; R) is an
eigenfunction of the electronic Schrödinger operator Ĥel

ĤelΨel(r; R) = V (r; R)Ψel(r; R), (1.4)

with V (r; R) the electronic energy. The ansatz of eq. 1.3 simplfies the solution of
eq. 1.1 significantly and is the basis of modern quantum chemistry. The electronic
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1. Theoretical background

Schrödinger equation can be solved for a number of fixed nuclear configurations in
order to obtain the parametrical dependance of the electronic energy V (R) on the
nuclear coordinates. The function V (R) enters the time-independent Schrödinger
equation as a potential in which the nuclear wavefunction evolves

(

T̂ nuc + V (R)
)

χ(R) = E(R)χ(R). (1.5)

The BO approximation is well suited for many purposes. However, there are cases
where it fails and an explicit treatment of the correlation between molecular and elec-
tronic degrees of freedom is indispensable. In sec. 1.1 the circumstances under which
the BO approximation breaks down are elaborated and the most prominent example
for this break down, the conical intersections, are introduced. Sec. 1.2 provides a
detailed insight into the mathematical treatment of conical intersections and conical
intersection seams, their optimization and characterization. In sec. 1.3 the multi-
configurational nature of photochemical processes, occuring via conical intersections,
is elucidated with the help of molecular symmetry. Finally, in sec. 1.4 several quan-
tun chemical methods for treating multi-configurational problems are presented. The
following notation is used throughout: vectors are denoted by an arrow (e.g. ~X),
matrices are given in bold (e.g. H).

1.1. Beyond the Born-Oppenheimer approximation

Going beyond the BO approximation the molecular wavefunction Ψ(r, R) is no longer
represented as the simple product from eq. 1.3. A formally exact ansatz is given by
expanding the molecular wavefunction in the complete basis of eigenfunctions Ψel

i of
the electronic Schrödinger equation 1.4 at a fixed nuclear geometry R as

Ψ(r, R) =
∑

i

χi(R)Ψel
i (r; R). (1.6)

Inserting expansion 1.6 into eq. 1.1, multiplying from left with Ψel
j

1 and integrating
over the electronic coordinates gives

∑

i

〈

Ψel
j

∣
∣
∣T̂ nuc

∣
∣
∣χiΨel

i

〉

+
∑

i

〈

Ψel
j

∣
∣
∣Ĥel

∣
∣
∣χiΨel

i

〉

= E
∑

i

〈

Ψel
j

∣
∣
∣χiΨel

i

〉

. (1.7)

Using eq. 1.4 and the chain rule for the second derivatives T̂nuc the final form of the
time-independent Schrödinger equation for the nuclei is obtained

∑

i

(

T̂ nucδij + Viδij +
〈

Ψel
j

∣
∣
∣T̂ nucΨel

i

〉

− 2
∑

α

1
2mα

〈

Ψel
j

∣
∣
∣∇αΨel

i

〉

∇α

)

χi = E
∑

i

χiδij

(1.8)

1From here on dependencies on nuclear and electronic degrees of freedom are not denoted explicitly.

6



1.1. Beyond the Born-Oppenheimer approximation

or in a matrix notation
(

T̂ nuc
1 + ~V T

1 + K
)

~χ = ~ET
1~χ. (1.9)

K is the non-adiabatic coupling matrix with elements

Kij = −
∑

α

1
2mα

(
〈

Ψel
i

∣
∣
∣∇2

αΨel
j

〉

︸ ︷︷ ︸

scalar coupl.

+2 ·
〈

Ψel
i

∣
∣
∣∇αΨel

j

〉

︸ ︷︷ ︸

derivative coupl.

·∇α). (1.10)

It describes the change of the electronic wavefunction with the nuclear displacement,
i.e. correlates nuclear and electronic motions. To that point no approximation has
been introduced and eqs. 1.8 and 1.9 are formally exact. In most cases the elec-
tronic structure changes only slightly with geometrical deformation and electrons can
quickly adapt to the new nuclear arrangement. Then, the coupling terms are neg-
ligible and the BO approximation is justified. However, there are also cases where
the electronic structure changes abruptly over a small geometrical deformation. The
electrons can no longer follow the nuclei instantaneuosly and the BO approximation
breaks down, giving rise to large couplings Kij. It is therefore a matter of general
concern to clarify when the BO approximation is impractical.
The scalar couplings are significantly smaller in magnitude than the dervative cou-
plings. However, they cannot be completely neglected, as the Hamiltonian operator
Ĥ would become Non-Hermitian. The hermeticity can be recovered by considering
the non-Hermitian part of the scalar couplings, which can be expressed through the
derivative couplings as

∑

α ∇α ·
〈

Ψel
i

∣
∣
∣∇αΨel

j

〉

[77]. Thus, the non-adiabatic coupling

Kij is determined by the properties of the derivative couplings
〈

Ψel
i

∣
∣
∣∇αΨel

j

〉
2

〈

Ψel
i

∣
∣
∣∇αΨel

j

〉

= −
〈

Ψel
j

∣
∣
∣∇αΨel

i

〉

and
〈

Ψel
i

∣
∣
∣∇αΨel

j

〉

=

〈

Ψel
i

∣
∣
∣∇αĤ

∣
∣
∣Ψel

j

〉

Vj − Vi

. (1.11)

The expression on the left states that the derivative coupling couples only vibronic
states belonging to different electronic states (for i = j the coupling element is zero).
The expression on the right shows that, in general, the derivative coupling between
two states increases in magnitude when their Potential–Energy–Surface (PES)s come
closer.
Large couplings induce an efficient and rapid change between electronic surfaces. This
phenomenon lies beneath the experimental observation that ultrafast photochemical
reactions can take less than a few hundred femtoseconds from the moment of excita-
tion of the reactant into an electronically Excited State (ES) to the formation of the
product in the Ground State (GS). In order to shed light on the ultrafast molecular
mechanisms it is crucial to locate energetically accessible regions where PESs degen-
erate. These special points, known as Conical Intersection (CoIn), are characterized
in the next section.

2For derivation see Appendix A

7



1. Theoretical background

1.2. Conical intersections

Although the conditions for potential energy curve crossing had been analyzed math-
ematically already in the thirties by von Neumann and Wigner[78] another fifty years
had to go by before chemists took the concept of CoIns to heart. While CoIns be-
tween excited states were recognized as an effective relaxation mechanism from higher
ES to the first ES (Kasha’s rule[79] is a direct consequence from the instantaneuos
relaxation to first ES), radiationless deactivation from the first ES was explained by
vibronical coupling of the ES wavefunction to the GS using Fermi’s golden rule[72]. It
was believed that in molecules the realization of the concept of CoIn between the GS
and the first ES demands formidable structural deformations. Hence, CoIns would
occur only in high energy regions on the PES and would be irrelevant for the photo-
chemistry. The lifetimes predicted by the Fermi’s golden rule reach from nanoseconds
down to several hundred picoseconds. Due to the lack of techniques allowing for sub-
nanosecond time resolution the validity of applying the Fermi’s golden rule could not
be experimentally verified up to the late ’80s. Zewail’s pioneer works[1, 3] on fem-
tosecond pump-probe gas-phase spectroscopy demonstrated that some photoreactions
proceed much faster than anticipated. In the following years the pump-probe tech-
nique was successfully transfered to the condensed phase and the ultrafast photoreac-
tivity was confirmed in numerous studies. With the advance of computer technology
and the development of affordable methods for treatment of ES the observed ultrafast
photoreactivity could be attributed to the presence of low-energy CoIns between the
GS and first ES[47, 80–87]. In the next subsections some characteristic properties of
CoIns, as well as methods for their localization and characterization are presented.

1.2.1. Adiabatic versus diabatic representation

In sec. 1.1 it was stated that the rapid change of the character of the electronic
wavefuncton in the vicinity of a CoIn is responsible for the large non-adiabatic cou-
plings Kij. The calculation of coupling elements is a rather tedious task. Further-
more, their local nature requires to sample the PES around a CoIn in small in-
tervals to recover their correct shape. A possible workaround is to use the diabatic
representation[88, 89]. Diabatic wavefunctions are mathematical constructs that diag-
onalize the coupling matrix K. From a chemical point of view diabatic wavefunctions
can be understood as distinct electronic configurations (e.g. covalent or ionic), which
behave smoothly, even in the vicinity of a CoIn. However diabatic wavefunctions
are not eigenfunctions of the electronic Hamiltonian Hel and the coupling between
states occurs via the off-diagonal elements in the Hamiltonian matrix. The adiabatic
wavefunctions, which are eigenfunctions of the electronic Hamitonian, are allowed to
change their character. This happens instantaneously when passing through a CoIn
and leads to large non-adiabatic couplings. Then, the leading electronic configuration
does not manage to stick with the adiabatic state and follows the diabatic surface,
i.e. changes to a different adiabatic surface.
Transformation between a pair of diabatic and adiabatic states is unitary and is given
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1.2. Conical intersections

by the following formula3

(

Ψd
1

Ψd
2

)

=

(

cos(α) − sin(α)
sin(α) cos(α)

)(

Ψad
1

Ψad
2

)

, (1.12)

with α the rotational or mixing angle[89] for which the coupling Kij vanishes. The
diabatic representation is chemically more intuitive because it follows the energy of
a particular electronic configuration along the reaction coordinate and allows for a
smooth change of PESs. Therefore, it is used to derive the conditions for CoIn
formation.

1.2.2. Conditions for the existence of conical intersections

The adiabatic wavefunction is expanded in the vicinity of a CoIn in the basis of two
orthonormalized diabatic states Ψd

1 and Ψd
2[90]

Ψad = c1Ψd
1 + c2Ψd

2. (1.13)

The eigenstates and energies ε1 and ε2 in this basis are obtained by solving the secular
problem

(

H11 − ε H12

H12 H22 − ε

)(

c1

c2

)

= 0, (1.14)

with matrix elements Hij of the form
〈

Ψd
i

∣
∣
∣Ĥ
∣
∣
∣Ψd

j

〉

. Diagonalizing eq. 1.14 gives

ε1/2 =
H11 + H22 ±

√

(H11 − H22)2 + 4H2
12

2
. (1.15)

At a CoIn the two states are isoenergetic, i.e. ε1 = ε2. This requirement provides a
set of two independent conditions for the degeneracy

H11 − H22 = 0 and H12 = 0. (1.16)

Eqs. 1.16 implicate that two independently variable nuclear coordinates are needed
to reach a point of degeneracy. This conclusion is the basis for the non-crossing rule
which states that in diatomics real crossings can occur only between states of different
(spatial or spin) symmetry, as the coupling term H12 is zero. In this special case the
condition H11 − H22 = 0 can be fulfilled at a particular internuclear distance. For
states of the same symmetry the coupling term has a finit magnitude and no internu-
clear distance exist where both conditions are fulfilled simultaneously. In polyatomic
molecules with 3N − 6 independently variable coordinates this limitation does not
hold. Correspondingly, degeneracy can occur at each point of a 3N − 8 dimensional
hyperspace, known as the Intersection Space (IS)[89].

3Provided that the two states are well separated everywhere on the PES from the remaining
electronic states.

9



1. Theoretical background

Figure 1.1.: A symmetric CoIn within the two-dimensional BS, which lifts the
energetic degeneracy. The 3N-8 dimensional IS, which preserves the degeneracy,
lies perpendicular to the BS. The BS vectors in the diabatic (eqs. 1.17) and in
the adiabatic (eqs. 1.18) basis do not coincide but span the same plane.

At each point of this space the degeneracy is lifted along two specific vectors derived
from the conditions in eq. 1.16

~g = ∇R(H11 − H22) (1.17a)
~h = ∇RH12 (1.17b)

These vectors span the BS[89] perpendicular to the IS (fig. 1.1).
The implementation of algorithms for optimizing CoIns requires the knowledge of the
BS. However, while the requirements in eqs. 1.16 are formulated in a diabatic basis,
most quantum chemical programs provide adiabatic states and energies. Using the
transformation between adiabatic and diabatic states (eq. 1.12) it can be shown that
the adiabatic vectors

~X1 = ∇R(V1 − V2) (1.18a)

~X2 = (V2 − V1)
〈

Ψad
1

∣
∣
∣∇RΨad

2

〉

(1.18b)

span the very same plane around a CoIn as ~g and ~h (see Appendix B) (fig. 1.1).
Thereby, V1 and V2 are the adiabatic energies. Therefore, it suffices to calculate the
gradient difference vector ~X1 and the scaled derivative coupling vector ~X2 to obtain
the BS in the vicintiy of a CoIn. In reality, the BS is curved in space[91] and the plane

10



1.2. Conical intersections

spanned by ~X1 and ~X2 at a CoIn is only tangential to the curved BS. Consequently,
also the space spanned by the 3N −8 vectors perpendicular to ~X1 and ~X2 is tangential
to the IS and displacement along them lifts the degeneracy as well. Recovery of the
degeneracy is possible by a subsequent displacement along ~X1 and ~X2. With this
consideration it becomes possible to formulate a set of curvilinear coordinates, which
reproduce the IS energy profile around the CoIn correctly to second order[59, 60].
Differentiating the energy twice with respect to the curvilinear coordinates provides
a projection of the Hessian matrix to the IS. Its diagonalization gives frequencies
and normal modes characterizing the local curvature of the IS around a CoIn. This
analysis allows to search the IS not only for local minima but also for saddle points[92].
It facilitated the optimization of Minimum–Energy–Path (MEP) in the IS, boosting
the search of energetically low-lying CoIn seams[74].

1.2.3. Projection method for optimizing minimum energy conical

intersections

S  Minimum1

1X

S  S  MECI0 1

S1
ER

S1
ER( )ISP

0S

1S

Figure 1.2.: Schematic representation of the algorithm used to optimize minimum
energy CoIns (S0S1MECI). The effective gradient, which is followed during the
optimization, has two contributions. Starting at an arbitrary position in space,
displacement along the gradient difference vector ~X1 locates the nearest point
of degeneracy between the upper (S1) and the lower (S0) states (green arrows).
Following the projection of the S1 gradient onto the orthogonal complement to
the plane spanned by the gradient difference ( ~X1) and derivative coupling ( ~X2)
vectors locates a minimum in the IS.
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1. Theoretical background

Next, a robust and fast method for locating minimum energy CoIns, proposed
originally by Bearpark et al.[31, 92] and currently implemented in software packages
like Gaussian[93] and Molpro[71], is outlined. The general idea is to minimize an
effective gradient composed of two terms

~g = 2(V2 − V1)
~X1

∣
∣
∣

∣
∣
∣ ~X1

∣
∣
∣

∣
∣
∣

+ PIS(∇RV2). (1.19)

Displacement along the gradient difference vector ~X1 drives the algorithm towards
the nearest point of degeneracy (green line in fig. 1.2). The multiplication of the
normalized gradient difference vector with the energy difference assures that the first
term vanishes when both states become degenerate. The second term represents the
projection of the ES gradient onto the orthogonal complement to the plane spanned
by ~X1 and ~X2 (blue lines in fig. 1.2), accomplished by the projection matrix PIS =
1−A(AT A)−1AT with A a matrix with columns ~X1 and ~X2. At a point of degeneracy
the orthogonal complement to the plane spanned by ~X1 and ~X2 is tangential to the
IS. Following the projection of the gradient onto this sub-space ensures that the
optimized structure is a minimum in the IS (S0S1MECI in fig. 1.2). Consequently, at
a minimum energy CoIn the energy of the upper state increases in any of the 3N − 8
directions of the IS. Then, the energy of the lower state increases as well, as the
degeneracy between the upper and the lower state is conserved in the IS. Thus, any
information about the GS products accessible directly from the apex of the CoIn is
reserved to the BS. A completely symmetric CoIn (a CoIn with a circular base of the
cone) as given in fig. 1.1 would implicate an infinite number of relaxation directions
in the GS[56]. In practice, there exist preferential relaxation directions associated
with steep slopes on the GS PES. These preferential directions can be obtained by
performing an unrelaxed scan on a circular cross section around the CoIn in the plane
spanned by X1 and X2. The number of minima passed through during the scan equals
the number of barrierless relaxation pathways in the GS.
By performing an unrelaxed scan one neglects the fact that the plane spanned by
X1 and X2 coincides with the BS only in infinitesimal displacement from the apex
of the cone. An advanced procedure to cope with this issue replaces the scan on
the circular cross section by a constrained optimization on a hypersphere around the
CoIn[94]. In the present work solely unrelaxed scans around CoIns were performed.
It deserves further attention, that the information about the GS relaxation channels
gathered in this way is non-dynamical and describes accurately only vibrationally
cold ES molecules which relax to the GS through the tip of the CoIn.
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1.3. Orbital analysis of photochemical reactions: when

to look for conical intersetions

The previous section focused on the mathematical background of CoIns. Up to now
a chemical interpretation of the conditions for CoIn formation (eqs. 1.16) has been
left out. One goal of this work is to establish a correlation between the chemical
composition, the molecular structure and the accessibility of CoIns. For that purpose
a Molecular Orbitals (MO) analysis which is used to estimate the energy profile along
geometrical deformations is presented. Thereby, the emphasis is on isomerizations.
Figure 1.3a presents the valence orbitals of three unsaturated hydrocarbones, which
can undergo either a double bond torsion (ethylene, bottom row) or a cyclization (cis-
butadiene, middle row and cZc-Hexatriene (HT), top row). In the case of ethylene,
starting at the Highest Occupied Molecular Orbital (HOMO) a double bond torsion
introduces a node in the MO, thereby correlating the HOMO of the one isomer to the
Lowest Unoccupied Molecular Orbital (LUMO) of the other isomer. Correspondingly,
the configuration with a doubly occupied HOMO of the one isomer correlates to the
configuration with a doubly occupied LUMO of the other isomer and vice versa. This
correlation diagram (dashed black lines in fig. 1.3a) allows to follow the energy of a
particular electronic configuration along a reaction coordinate in analogy to a diabatic
representation. The same correlation pattern is encountered for butadiene and HT
with respect to the symmetry conserving disrotatory (σv mirror plane) and conrota-
tory (C2 rotation axis) cyclization (fig. 1.3a). Thus, the correlation diagrams of all
three reactions can be described with the same diabatic scheme (green dashed lines
fig. 1.3b). By allowing the diabatic states to mix adiabatic states are constructed
(red, black and blue solid line in fig 1.3b). Thereby, the diabatic curve crossings be-
come avoided crossings (marked with circles) in the adiabatic representation. Several
conclusions can be drawn from the correlation diagram:

a) Geometrical deformations for which the PESs of GS and ES come close can be
derived by symmetry considerations.

b) A low-energy CoIn between GS and ES is likely to exist when the valence orbitals
of reactant and product are correlated according to fig. 1.3. In fact, this correla-
tion is in the heart of the qualitative rules by Woodward and Hoffmann[95, 96],
predicting symmetry "allowed" and "forbidden" photoisomerizations.

c) The non-crossing rule for diatomics[78] holds along the symmetry conserving
coordinate. A real CoIn can be reached by an asymmetric deformation.

d) Different isomerization reactions are characterized by a common correlation
diagram. Hence, rules for locating CoIns that apply to one of the isomerization
reactions outlined above should apply to all three reactions.

The diabatic scheme (fig. 1.3b) shows that in the avoided crossing regions the adi-
abatic states cannot be represented by a single electronic configuration and become
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1. Theoretical background

Figure 1.3.: a) Correlation diagrams for ethylene, cis-butadiene, cZc-HT along
the symmetry conserving reaction coordinates double bond torsion, disrotatory
and conrotatory ring opening/closure. b) A unifying diabatic (dashed lines)
and adiabatic (solid lines) representation of the correlation diagrams of ethylene,
cis-butadiene, cZc-HT. The diabatic states cross, the adiabatic states exhibit
avoided crossings.

a mixture of configurations. Therefore, for the accurate quantum chemical descrip-
tion of photoisomerization reactions mediated by CoIns it is essential to use methods
which can handle multiconfigurational problems. Such methods are in the focus of
the next section.

1.4. Solution of the time-independent Schrödinger

equation

The electronic wavefunction Ψel is a many-particle function, depending explicitly on
the coordinates of the electrons and parametrically on the coordinates of the nuclei.
Each electron is represented in the basis of one-paticle wavefunctions φ̃i, also known
as spin-orbitals[75], products of the spatial wavefunctions of the electronic coordinates
and spin wavefunctions, describing its spin (

∣
∣
∣α
〉

or
∣
∣
∣β
〉

)

φ̃i = φi

∣
∣
∣α
〉

or φ̃i = φi

∣
∣
∣β
〉

. (1.20)
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The total electronic wavefunction can be expanded in the complete basis of one-
particle spin-orbitals[75]. If the total electronic wavefunction Ψel depends only on
one variable the expansion reads

Ψel(1) =
∞∑

i

Ci φ̃i(1). (1.21)

For two independent variables an expansion in the same one-particle basis reads

Ψel(1, 2) =
∞∑

i,j

Ci,j φ̃i(1)φ̃j(2). (1.22)

Correspondingly, for a system of n electrons the exact expansion reads

Ψel(1, 2, . . . , n) =
∞∑

i,j,...,m

Ci,j,...,m φ̃i(1)φ̃j(2) . . . φ̃m(n). (1.23)

A proper electronic wavefunction must satisfy several conditions. The Pauli exclusion
principle postulates that it must change sign when the coordinates of any two electrons
are exchanged

Ψel(1, 2, . . . , n) = −Ψel(2, 1, . . . , n). (1.24)

With eq. 1.24 eq. 1.23 is rewritten as a linear combination of Slater determinants,
i.e. mathematical construct, which satisfy the Pauli principle

Ψel(1, 2, . . . , n) =
∞∑

q

CqΨSD
q with ΨSD

q =
1√
n!

φ̃i(1) · · · φ̃n(1)
...

. . .
...

φ̃i(n) · · · φ̃n(n)

, (1.25)

where the expansion goes over all possible i, j . . . , m combinations. The expansion
coefficients Cq are unknown and an optimization procedure is required (see sec. 1.4.2).
The electronic wavefunction Ψel commutes with the spin and angular momentum
operators Ŝ2, Ŝz, L̂2 and L̂z, however, the Slater determinants do not. It is therefore
conventional to work with Configuration–State–Function (CSF)s Φ, which are spin-
and symmetry adapted linear combination of Slater determinants, to avoids spin-
contamination issues[97].
The spatial part φi of the one-particle wavefunction φ̃i used to construct the Slater
determinants are unknown as well and need to be optimized (see sec. 1.4.2). Roothaan
proposed to expand each φi in the complete basis of atomic orbitals Θk[98]

φi =
∞∑

ki

cki Θk. (1.26)

The atomic orbitals can be either of Slater type or Gaussian type, the former being
hydrogen-like and thus more accurate, the latter allowing for a fast integral calcu-
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1. Theoretical background

lations. With increasing molecular size and number of integrals the STOs quickly
become impractical, so that nowadays the GTOs are the functions of choice in quan-
tum chemical calculations. Due to the inaccurate description at very short and large
distances from the nuclei each Θk is represented as a non-variable contraction of
several primitive GTOs

Θk =
∑

t

dkt χt. (1.27)

The non-variable nature of the expansion assures the uniformity of quantum chemical
calculations. The art and size of the contraction scheme, i.e. the basis set, decide on
the quality of the orbital representation. In general, the quality improves with the
number of primitive GTOs included in the contraction. The use of finit basis sets
represents an error source that must not be underestimated.
The complex nature of the many-particle wavefunction requires a treatment at several
levels as summarized in the follwing scheme:

Ψel
︸︷︷︸

el. wave fct.

→ Φ
︸︷︷︸

conf. state fct.

→ ΨSD
︸ ︷︷ ︸

Slater det.

→ φ̃
︸︷︷︸

spin orbital

→

φ
︸︷︷︸

mol. orbital

→ Θ
︸︷︷︸

contr. basis fct.

→ χ
︸︷︷︸

prim. basis fct.

An exact electronic wavefunction Ψel is completely determined by two infinite sets
of expansion coefficients, the CSF (Cq in eq. 1.25) and MO (cki in eq. 1.26) coef-
ficients. As inifinite expansions are not manageable practically different truncation
schemes have been proposed. The crudest approximation is to completely discard the
multiconfigurational nature of the electronic wavefunction and only optimize the MO
coefficients. This basic approach is known as the Hartree–Fock (HF) Self–Consistent–
Field (SCF) method[75, 76]. It constitutes the fundament for all subsequent methods.
A significant improvement is achieved by expanding the wavefunction in the basis of
all determinants generated via single and double excitations from the HF determinant
and finding the optimal solution for the CSF coefficients. Those methods are known
as CI with Singles (CIS)[99] and CI with Singles and Doubles (CISD)[100]. Despite
discarding higher order excitations, already for CISD the expansion space becomes
prohibitively large even for medium-sized molecules and basis sets. A more sophis-
ticated strategy is to optimize the MO and CSF coefficients simultaneously. This
ansatz, called the Multi–Configuration SCF (MCSCF) method[101–104], achieves ac-
curate results with a significantly reduced number of determinants/CSFs. However,
the additional effort emerging from the complexity of the optimization procedure
makes it necessary to restrict the excitations to a subspace of orbitals, referred to as
the active space. This modification of the MCSCF ansatz is called the Complete–
Active–Space SCF (CASSCF)[101–104]. Normally, the active space is constructed
from the valence orbitals. The remaining orbitals are further described at HF level.
This shortcomming prevents CASSCF from providing quantitative results. Two im-
provements have been established, the Multi–Reference–CI (MRCI)[104–106] and the
Complete–Active–Space–Perturbation–Theory (CASPT2)[68–70]. Both methods ex-
tend the expansion space by including higher order excitations from the CASSCF
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1.4. Solution of the time-independent Schrödinger equation

wavefunction. The MRCI is a variational approach, similar to CIS and CISD, but
using a CASSCF reference function instead of a HF one. CASPT2 treats higher order
excitations as perturbation to the CASSCF wavefunction. Both techniques provide
almost quantitative results, however, at the expense of immense computatinal effort.
CASPT2 is less time-consuming and the method of choice for the systems studied
in this work. The next sections provide an overview of the MCSCF and CASPT2
methods. To reduce the mathematical complexity a more practical notation of wave-
functions and operators, known as second quantization, is briefly introduced.

1.4.1. A short introduction to second quantization

Wavefunctions and operators in the standard formulation of quantum mechanics (i.e.
first quantization) are defined as functions in the Hilbert space Hn of a fixed number of
particles n. Second quantization provides an alternative formulation[75, 107] capable
of treating systems with variable number of particles. It extends the expansion space
of the wavefunction to the Fock space, constructed as a direct sum over Hilbert spaces
Hn (n = 0 . . . N , with N the maximal number of one-particle functions in the system)

FN = H0 ⊕ H1 ⊕ · · · ⊕ HN . (1.28)

Second quantization redefines wavefunctions and operators in the basis of a common
set of elementary operators (creation and annihilation operators) and allows for a
compact formulation of analytical solutions in multiconfigurational problems.
In second quantization4 the occupation number vector

∣
∣
∣k
〉

is the pendant to a Slater
determinant. It gives the occupation of a particular Slater determinant

∣
∣
∣k
〉

=
∣
∣
∣k1, k2, · · · , kN

〉

, (1.29)

with N the total number of orbitals (occupied and unoccupied) and ki = 0, 1 according
to whether the i-th orbital is occupied by an electron or not. In first quantization any
multiconfigurational wavefunction can be expanded in the basis of Slater determinants
(eq. 1.25). In second quantization the expansion is realized in the basis of occupation
number vectors

∣
∣
∣k
〉

∣
∣
∣Ψ
〉

=
∑

k

Ck

∣
∣
∣k
〉

. (1.30)

The creation and annihilation operators Second quantization allows to formu-
late operators which shift occupation number vectors between Hilbert spaces. The
creation operator â†

i

â†
i

∣
∣
∣k1, · · · , 0i, · · · , kN

〉

= (−1)

(
∑i−1

j=1
kj

)
∣
∣
∣k1, · · · , 1i, · · · , kN

〉

,

â†
i

∣
∣
∣k1, · · · , 1i, · · · , kN

〉

= 0
(1.31)

4This section was written based on the lectures of Jeppe Olsen given at the ESQC 2011[108].
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creates an electron in the i-th orbital if it is initially unoccupied and gives zero if this

orbital is already occupied. The phase factor (−1)

(
∑k−1

j=1
kj

)

depends on the position
of the orbital in the occupation number vector and assures that the Pauli exclusion
principle is fulfilled.
The annihilation operator âi

âi

∣
∣
∣k1, · · · , 1i, · · · , kN

〉

= (−1)

(
∑i−1

j=1
kj

)
∣
∣
∣k1, · · · , 0i, · · · , kN

〉

,

âi

∣
∣
∣k1, · · · , 0i, · · · , kN

〉

= 0
(1.32)

annihilates an electron in the i-th orbital if it is occupied and gives zero if this orbital

is empty. It can be also defined as the adjoint to the creation operator, i.e. âi =
(

a†
i

)†
.

The product â†
j âi annihilates an electron in the i-th orbital and creates an electron

in the j-th orbital j, thus, performing an i → j single-electron excitation

â†
j âi

∣
∣
∣k1, · · · , 1i, · · · , 0j · · · , kN

〉

= ±
∣
∣
∣k1, · · · , 0i, · · · , 1j · · · , kN

〉

. (1.33)

Higher order excitation operators can be defined in analogous way.

Wavefunctions in second quantized form Each occupation number vector
∣
∣
∣k
〉

can

be expressed as a product of creation operators applied to the vacuum state
∣
∣
∣

〉

, which
is just an empty vector

∣
∣
∣k
〉

=
N∏

i=0

(â†
i )

ki

∣
∣
∣

〉

. (1.34)

From the above definitions for the elementry operators (eq. 1.31 and 1.32) it fol-
lows that the product a†

iai applied to an occupation number vector leaves the vector
unchanged and multiplies it with the occupation number of orbital i

N∑

i

â†
i âi

∣
∣
∣k
〉

=
∑

i

(ki)
∣
∣
∣k
〉

= n
∣
∣
∣k
〉

, (1.35)

with n being the total number of electrons in the system.

One-and two-electron operators in second quantized form Operators can also be
reformulated in second quantized form under the consideration that first and second
quantization should give the same result when applied to a wavefunction. Any one-
electron operator can be written in a form

f̂ =
∑

ij

fij â
†
j âi =

∑

ij

〈

j
∣
∣
∣ĥ(1)

∣
∣
∣i
〉

â†
j âi, (1.36)
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where ĥ(1) is an arbitrary one-electron operator in its first quantized form. Any
two-electron operator can be written in a form

ĝ =
∑

ijkl

gijklâ
†
j â

†
l âkâi =

∑

ijkl

〈

jl
∣
∣
∣ĥ(1, 2)

∣
∣
∣ki
〉

â†
j â

†
l âkâi, (1.37)

where ĥ(1, 2) is an arbitrary two-electron operator in its first quantized form.
Formulated in this way both operators are independent of the number of electrons in
the system, but depend on the orbital basis.
With the above definitions the electronic Hamilton operator (eq. 1.2) can be refor-
mulated in the scope of second quantization as

Ĥel = −
∑

i

1
2mi

∇2
i −

∑

α,i

Zα

Rα,i
︸ ︷︷ ︸

∑

i
ĥ(i)

+
∑

i,j

1
Rij

︸ ︷︷ ︸

1

2

∑

ij
ĥ(i,j)

=
∑

ij

fij â
†
j âi +

1
2

∑

ijkl

gijklâ
†
j â

†
l âkâi. (1.38)

When the spin of the electron is taken into account eq. 1.38 becomes

Ĥel =
∑

ij

fijÊji +
1
2

∑

ijkl

gijklêjilk (1.39)

with the spin-adapted excitation operators Êji =
∑α,β

σ â†
jσâiσ and êjilk = ÊjiÊlk −

δilÊjk.

Matrix elements in second-quantized form When the electronic Hamiltonian op-
erator (eq. 1.39) is applied to a wavefunction of the form eq. 1.29 the matrix element
〈

Ψ
∣
∣
∣Ĥ
∣
∣
∣Ψ
〉

becomes

〈

Ψ
∣
∣
∣Ĥ
∣
∣
∣Ψ
〉

=
∑

ij

fij

〈

Ψ
∣
∣
∣Êji

∣
∣
∣Ψ
〉

+
1
2

∑

ijkl

gijkl

〈

Ψ
∣
∣
∣êjilk

∣
∣
∣Ψ
〉

=
∑

ij

fijDji +
1
2

∑

ijkl

gijkldjilk.

(1.40)
Dji and djilk are matrix elements of the one- and two-electron density matrices D

and d

Dji =
∑

rs

CrCs

〈

r
∣
∣
∣Êji

∣
∣
∣s
〉

and djilk =
∑

rs

CrCs

〈

r
∣
∣
∣êjilk

∣
∣
∣s
〉

. (1.41)

Eq. 1.40 provides a very compact expression for the energy expectation value of
multiconfigurational wavefunctions. The one- and two-electron integrals fij and gijkl

collect the MO parameters, while the CSF coefficients show up in the density matrices
D and d.

1.4.2. The MCSCF formalism

The MCSCF approach optimizes the MO and CSF coefficients simultaneously. The
complexity of the optimization procedure requires either the explicit selection of con-
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1. Theoretical background

figurations or restriction of the excitations to an orbital subspace, the active space.
CSFs are generated by either performing all possible excitations among the active
orbitals (i.e. CASSCF or solely excitations up to a certain order (i.e. Restricted–
Active–Space–Self–Consistent–Field (RASSCF)[109]). The MCSCF theory gives a
qualitatively correct description of the wavefunction in regions where different elec-
tronic configurations interact (static or long-range correlation[110]). In the following
two variants of the CASSCF formalism are presented, the Single-State CASSCF (SS-
CASSCF) and the State-Average CASSCF (SA-CASSCF)[111, 112].

SS- and SA-CASSCF energies The MCSCF wavefunction has the form of eq. 1.29
and the total MCSCF energy is given by eq. 1.40. The energy is a function of the
MOs ~φ and the CSF coefficients ~C. As the MOs define a real orthonormal basis the
optimal solution can be formulated by a unitary transformation of the MO basis

~φ = UT ~φ 0 with UT U = 1, (1.42)

where ~φ 0 denotes some initial guess for the MOs. The orthogonal transformation ma-
trix U contains n2 optimization parameters (with n the size of the matrix). However,
it can be shown (see Appendix C) that the number of linearly independent parame-
ters of an orthogonal matrix is only n(n − 1)/2. This prohibits the straightforward
use of minimizers like Newton-Raphson to find the optimal solution. This problem
can be resolved by writing down the transformation matrix in a matrix exponential
form

U = eK = 1 + K +
1
2

K2 + · · · +
1

m!
Km + · · · . (1.43)

This is possible when K is a skew-symmetric matrix (i.e. KT = −K). Then the
matrix exponential is unitary

(

eK
)T

eK = eK
T

eK = e−KeK = 1. (1.44)

The lower triangular matrix of K contains n(n−1)/2 linearly independent parameters.
In second quantization K is expressed as the one-electron operator (see Appendix D)

K̂ =
∑

pq

kpqEpq, (1.45)

with Epq the spin-adapted one-electron excitation operator and kpq the elements of
the matrix K, also called the orbital rotation parameters. In the following the entity
of rotation parameters is referred to as the set ~k. The action of K (and, hence, of K̂)
on a trial initial set of MOs transforms each MO as follows

φp = φ0
p +

∑

q

kpqφ
0
q +

1
2

∑

qr

kprkrqφ
0
q + · · · . (1.46)
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1.4. Solution of the time-independent Schrödinger equation

The CSF-coefficients are parametrized in a similar fashion. Thus, an optimal solution
for the MCSCF wavefunction can be generated from a guess wavefunction Ψ0 (a linear
combination of CSFs with initial MO and CSF coefficients ~φ 0 and ~C0) by applying
exponential operators

E(~k, ~p) =
〈

Ψ
∣
∣
∣Ĥ
∣
∣
∣Ψ
〉

=
〈

Ψ0

∣
∣
∣e−P̂ e−K̂ĤeK̂eP̂

∣
∣
∣Ψ0

〉

, (1.47)

with P̂ the operator containing the linearly independent CSF rotational parameters
~p.
The optimal parameters can be now obtained via a Newton-Raphson scheme trun-
cated to second order. Therefore the energy is expanded in the space of parameters
of ~k and ~p around ~φ 0 and ~C0

E(~k, ~p) = E0 +

(
~k
~p

)T (

~gk

~gp

)

+
1
2

(
~k
~p

)T (

hkk hkp

hkp hpp

)(
~k
~p

)

= E0 + ~λT ~G +
1
2

~λT H~λ.

(1.48)

E0 is given by eq 1.40, ~λ is the supervector containing the optimization parameters,
~G is the supervector containing gradients of the energy with respect to ~λ and H is
the Hessian supermatrix of the second derivatives of the energy. At a stationary point
in the parameter space the first derivative of the energy is zero

∂E(~λ)

∂~λ
= 0 = ~G +

1
2

H~λ ⇒ ~λ = −1
2

H−1 ~G. (1.49)

The elements of ~G and H are obtained by applying the Baker-Campbell-Hausdorff
formula (see Appendix E) to eq. 1.47, i.e. by expanding the exponentials according
to eq. 1.43

E(~k, ~p) =
〈

Ψ0

∣
∣
∣Ĥ + [K̂, Ĥ] + [P̂ , Ĥ] +

1
2

[K̂, [K̂, Ĥ]]+

[P̂ , [K̂, Ĥ]] +
1
2

[P̂ , [P̂ , Ĥ]]
∣
∣
∣Ψ0

〉

.
(1.50)

Exemplarily, the gradient of the energy ~gk with respect to the MO rotations (eq.
1.48), can be derived from eq. 1.50 as

〈

Ψ0

∣
∣
∣[K̂, Ĥ]

∣
∣
∣Ψ0

〉

=
∑

pq

kpq

〈

Ψ0

∣
∣
∣[Epq, Ĥ]

∣
∣
∣Ψ0

〉

= ~k~gk, (1.51)

where eq. 1.45 was used. The gradient of the energy ~gp with respect to the CSF
rotational parameters and the elements of the Hessian H (eq. 1.48) can be expressed
in a similar fashion in terms of one- and two-electron integrals and density matrices,
which allows for their analytic computation.
Eq. 1.49 is evaluated to obtain the rotational parameters ~k and ~p. Next, the action
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1. Theoretical background

of eK and eP on the wavefunction Ψ0 is computed[104]. This can be readily done
by rewriting the exponential according to the Taylor expansion introduced in eq.
1.43. However, this algorithm is quite expensive as it involves multiplications of large
matrices. An alternative approach is to diagonalize K and P and express the matrix
exponential (e.g. K) as

eK = VeiεV† = V (cos (ε) − i sin (ε)) V† with KV = iεV. (1.52)

V is the unitary matrix which diagonalizes the skew-symmetric matrix K and ε is a
diagonal matrix with real values.
An iterative procedure is applied until the gradient ~G falls in magnitude below a
certain threshold. Then, the rotational parameters ~λ become all zero according to
eq. 1.49, which corresponds to a multiplication of the MOs with a unit matrix U = 1

and a stationary solution has been found.
As the Hessian (eq. 1.48) is prohibitively large approximative schemes are utilized,
where the off-diagonal terms are discarded[113]. In an even cruder approximation
also hpp can be neglected[104]. Furthermore, it is allowed only for rotations between
inactive and active orbitals, as inactive-inactive, active-active or virtual-virtual rota-
tions of electron pairs do not change the CASSCF wavefunction.
The energy and orbitals at HF level can be obtained as a special case of the MCSCF
procedure where the CSF expansion is truncated to only one Slater determinant. Eq.
1.49 then simplifies to

~k = −1
2

h−1
kk ~gk. (1.53)

This procedure for obtaining the HF wavefunction is known as the quadratically
converged SCF approach[114].
Eq. 1.49 can be utilized to optimize ES as well, because the n-th ES constitutes a
saddle point in the parameter space with n − 1 negative eigenvalues in the Hessian.
However, for ES the state specific variant of CASSCF (i.e. SS-CASSCF) is prone to
convergence problems due to root flipping. This happens when the orbitals of the ES
under optimization are very different than the orbitals of a lower state. Then, both
states may start to continously switch order during the iterative procedure. Root
flipping is nearly inevitable when dealing with higher ESs where the state density is
large. Furthermore, two SS-CASSCF states of the same spatial symmetry are not
orthogonal, which complicates the calculation of transition properties like transition
dipole moments, non-adiabatic couplings, etc. Finally, in certain cases a description
of two or more states on equal footing is desired, e.g. at CoIns. To deal with these
problems a state averaged variant of CASSCF (i.e. SA-CASSCF) was developed. Here
the optimization objective is not the energy of a single state, but rather a weighted
average of N states of interest

Ẽ =
N∑

i

wiE
SA
i (~̃k, ~pi) with 0 ≤ wi ≤ 1 and

∑

i

wi = 1. (1.54)
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1.4. Solution of the time-independent Schrödinger equation

An average set of MOs, obtained by the set of rotational parameters ~̃k, is optimized for
all N states, which are orthonormalized by N sets of SCF parameters {~p1, · · · , ~pN}.
The variational condition (eq. 1.49) is modified to

∂Ẽ(~̃λ1:N)

∂~̃
λ1:N

=
N∑

i

wi
∂ESA

i (~̃k, ~pi)

∂~̃
λ1:N

= 0, (1.55)

where ~̃
λ1:N indicates the energy dependence on an averaged set of MO rotations and

on N sets of CSF parameters. SA-CASSCF resolves the shortcomings of SS-CASSCF.
However, a disbalance in the quality of the individual state-averaged states can arise
when the optimal MOs for the different wavefunctions differ significantly.

SS- and SA-CASSCF Gradients Differentiating eq. 1.48 with respect to a displace-
ment of an atomic center Rα and truncating to first order gives the general form of
the CASSCF energy gradient

∂E

∂Rα

=
∂E0

∂Rα

+
∂~λT

∂Rα

~G + ~λT ∂ ~G

∂Rα

. (1.56)

For optimal MO and CSF-coefficients, as obtained at SS-CASSCF level by the
Newton-Raphson procedure outlined in eq. 1.49 ~λ and ~G become zero and the second
and third term vanish leaving[104]

∂ESS
i

∂Rα

=
∂E0

i

∂Rα

=
∑

ij

∂fij

∂Rα

Dji +
1
2

∑

ijkl

∂gijkl

∂Rα

djilk −
∑

ij

Fij
∂Sij

∂Rα

. (1.57)

with the Fock matrix element

Fij =
∑

k

fikDkj + 2
∑

klm

giklmdjklm. (1.58)

The first and the second term in eq. 1.57 follow from differentiating eq. 1.40 with
respect to Rα, while the third term contains overlap derivatives and arises from the
orthogonality condition for the MOs at all Rα. In the state-averaged case the gradient

~gik̃ of the i-th averaged state with respect to the MO rotations ~̃k does not vanish
according to eq. 1.55 and the gradient is given by

∂ESA
i

∂Rα

=
∂Ẽ0

i

∂Rα

+
∂~̃k

∂Rα

~gik̃ =
∂Ẽ0

i

∂Rα

+
∂Ẽ0

i

∂~̃k

∂~̃k

∂Rα

. (1.59)

The second term couples the MO coefficients and is obtained by solving the Coupled–
Perturbed MCSCF (CPMCSCF) equations[104, 115], obtained by differentiating eq.
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1.49 with respect to Rα

∂~λ

∂Rα

=




∂~̃k

∂Rα

∂~p

∂Rα





T

= −H−1 ∂G

∂Rα

. (1.60)

Hence, the computation of state-averaged gradients is associated with the additional
effort of calculating the total Hessian.

1.4.3. Second-order perturbation theory

Despite providing a correct description of the wavefunction in asymptotic and state
degeneracy regions, CASSCF needs improvement for obtaining quantitative results
except for small molecules. As the orbitals outside the active space are further de-
scribed at HF level short-range correlation effects (dynamic correlation) are not prop-
perly treated. Consequently, excitation energies, relative stabilization of stationary
geometries, transition state barrier heights, etc. at CASSCF level have often only
qualitative character. In the worst scenario CASSCF can predict a wrong order-
ing of the ES[116] and complicate the interpretation. An improvement could be
achieved by adapting the second order Møller–Plesset (MP2) ansatz[117, 118] to ES.
The MP2 approach has been shown to successfully resolve the major part of the
correlation energy around the GS equilibrium geometry[118, 119], providing almost
quantitative results for GS calculations. The CASPT2 generalizes the MP2 ansatz to
multi-configurational wavefunctions[68–70]. MP2 and CASPT2 are special applica-
tions of the Rayleigh-Schrödinger perturbation theory, which is presented in the next
subsection.

Rayleigh-Schrödinger perturbation theory The Rayleigh-Schrödinger perturba-
tion theory assumes that the electronic correlation energy can be recovered by adding
a "small" perturbational term to the Hamiltonian for which a solution has been found
(e.g. the Fock operator in case of MP2). This assumtion is well justified as the cor-
relation energy contributes less than 5% to the total electronic energy. The exact
Hamiltonian reads

Ĥ = Ĥ0 + λĤ1, (1.61)

with λ = 0 . . . 1 an arbitrary real parameter. Next, the perturbed energy and wave-
function are expressed via power series in the parameter λ around the zeroth-order
solution

E = E0 + λE1 + λ2E2 + · · · , (1.62a)
∣
∣
∣Ψ
〉

=
∣
∣
∣Ψ0

〉

+ λ
∣
∣
∣Ψ1

〉

+ λ2
∣
∣
∣Ψ2

〉

+ · · · . (1.62b)
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1.4. Solution of the time-independent Schrödinger equation

Inserting eqs. 1.61, 1.62a and 1.62b into the time-independent Schrödinger equation
1.4 gives

(

Ĥ0 + λĤ1
) (∣
∣
∣Ψ0

〉

+ λ
∣
∣
∣Ψ1

〉

+ · · ·
)

=
(

E0 + λE1 + · · ·
) (∣
∣
∣Ψ0

〉

+ λ
∣
∣
∣Ψ1

〉

+ · · ·
)

.

(1.63)
Collecting powers of λ gives the zeroth- and higher-order equations

λ0 : Ĥ0
∣
∣
∣Ψ0

〉

= E0Ψ0, (1.64a)

λ1 : Ĥ0
∣
∣
∣Ψ1

〉

+ Ĥ1
∣
∣
∣Ψ0

〉

= E0
∣
∣
∣Ψ1

〉

+ E1
∣
∣
∣Ψ0

〉

, (1.64b)

λ2 : Ĥ0
∣
∣
∣Ψ2

〉

+ Ĥ1
∣
∣
∣Ψ1

〉

= E0
∣
∣
∣Ψ2

〉

+ E1
∣
∣
∣Ψ1

〉

+ E2
∣
∣
∣Ψ0

〉

. (1.64c)

Using the intermediate normalization condition
〈

Ψ0
∣
∣
∣Ψn

〉

= 0 with n = {1, 2, . . . } one
obtains an expression for the n-th-order energy

E0 =
〈

Ψ0
∣
∣
∣Ĥ0

∣
∣
∣Ψ0

〉

, (1.65a)

E1 =
〈

Ψ0
∣
∣
∣Ĥ1

∣
∣
∣Ψ0

〉

, (1.65b)

E2 =
〈

Ψ0
∣
∣
∣Ĥ1

∣
∣
∣Ψ1

〉

. (1.65c)

Thus, provided that one has the first-order perturbed wavefunction
∣
∣
∣Ψ1

〉

one can
calculate the CASPT2 perturbation energy using eq. 1.65c. The first-order wave-
function is obtained by solving eq. 1.64b. Therefore, the configurational space of the
first-order wavefunction and the zeroth-order operator Ĥ0 have to be defined. Their
definition is not unique and different construction schemes have been suggested in
the literature. In the following the most common scheme is discussed.

CASPT2 first-order wavefunction The configurational space in which the first-
order wavefunction is expanded can be devided into four subspaces V0, V⊥, VSD

and VT Q...[68]. V0 is the one-dimensional space spanned by the reference CASSCF
wavefunction

∣
∣
∣Ψ0

〉

. V⊥ contains all other wavefunctions which can be obtained with
the reference active space. VSD is generated by single and double excitations from the
reference space V0 (i.e. ÊqpÊsr

∣
∣
∣Ψ0

〉

). The VT Q... space arises from higher excitations

from
∣
∣
∣Ψ0

〉

. The V⊥ and VT Q... subspaces are per construction orthogonal to the
reference CASSCF wavefunction and do not contribute to the correction. Therefore,
the first-order wavefunction is spanned in the VSD space

∣
∣
∣Ψ1

〉

=
∑

i

CiΨ
VSD

i =
∑

pqrs

Cqs
prÊqpÊsr

∣
∣
∣Ψ0

〉

, (1.66)

where i runs over each possible pqrs combination. Single excitations from
∣
∣
∣Ψ0

〉

are
generated by requiring that either p = q or r = s. The generated expansion functions
are not orthogonal. It is noted that different VSD expansion spaces are generated
from different reference CASSCF wavefunctions.
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1. Theoretical background

CASPT2 zeroth-order Hamiltonian While at MP2 level the definition of a zeroth-
order operator Ĥ0 is straightforward (i.e. a sum of HF one-electron operators), at
CASSCF level a zeroth-order operator does not exist. Here, the zeroth-order Hamil-
tonian proposed by Andersson, Malmqvist and Roos is discussed[68]. It is defined as
a sum of one-electron operators in a way that simplifies to the HF operator in case
of a closed-shell reference wavefunction

Ĥ0 = P̂0F̂ P̂0 + P̂⊥F̂ P̂⊥ + P̂SDF̂ P̂SD + P̂T Q...F̂ P̂T Q.... (1.67)

P̂0, P̂⊥, P̂SD and P̂T Q... are projection operators on the individual configuration sub-
spaces and F̂ is the second quantized form of the HF operator constructed from the
one- and two-electron matrix elements and the one-electron density matrix (eq. 1.40)

F̂ =
∑

pq

fHF
pq Êqp with fHF

pq = fpq +
∑

rs

Drs

(

gpqrs − 1
2

gprqs

)

. (1.68)

With the definition for the first-order wavefunction from eq. 1.66 the action of the
zeroth-order Hamiltonian reduces to the action of F̂ to the VSD subspace.

CASPT2 energy By inserting eq. 1.66 and eq. 1.67 in eq. 1.64b one obtains the
following system of linear eqations

∑

ij

Ci

〈

ΨVSD

j

∣
∣
∣(Ĥ0 + E0)

∣
∣
∣ΨVSD

i

〉

= −
〈

ΨVSD

j

∣
∣
∣Ĥ1

∣
∣
∣Ψ0

〉

, (1.69)

or in a matrix form
(F − E0S)C = −V. (1.70)

S is the overlap matrix of the non-orthogonal expansion functions ΨVSD

i with elements

Sij =
〈

Ψ0
∣
∣
∣ÊrsÊpqÊxvÊzy

∣
∣
∣Ψ0

〉

, (1.71)

where i,j are determined by a given pqrs,vxyz combination, respectively. F is the
zeroth-order Hamiltonian matrix with elements

Fij =
∑

tu

fHF
tu

〈

Ψ0
∣
∣
∣ÊrsÊpqÊutÊxvÊzy

∣
∣
∣Ψ0

〉

. (1.72)

The matrix elements of V can be evaluated recalling that Ĥ1 = Ĥ − Ĥ0 and using
eqs. 1.39 and 1.67. Eqs. 1.71 and 1.68 show that higher-order density matrices have
to be stored and evaluated. Thus, different contraction schemes have been developed
to minimize the computational effort.
Using eq. 1.70 the multi-configurational second-order perturbation energy E2 (eq.
1.65c) is then obtained as

E2 =
〈

Ψ0
∣
∣
∣F̂ 1

∣
∣
∣Ψ1

〉

=
∑

i

Ci

〈

Ψ0
∣
∣
∣Ĥ1

∣
∣
∣ΨVSD

j

〉

= V†C = −V†(F − E0S)−1V, (1.73)
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1.4. Solution of the time-independent Schrödinger equation

an expression similar to the one of the MP2 perturbation energy. From eq. 1.73 it
follows that configurations from the expansion set VSD with energies close to the
reference energy E0 will lead to an overestimation or even singularities of the pertur-
bation energy. This is know as the "intruder state" problem[120, 121]. As perturbation
theory holds only for small perturbations, such configurations should be included al-
ready in the preceeding CASSCF calculation. If this is not practicable a level shift
technique can be applied[120, 121]. Thereby a finite shift (normally 0.1 − 0.3 a.u.)
is added to the reference energy E0, which removes the effect of the intruder state.
Caution is required that no new intruder states arise by accidental degeneracy of the
shifted reference energy with energies of other configurations.

MS-SR-CASPT2 and MS-MR-CASPT2 The Single-State CASPT2 (SS-
CASPT2) ansatz described above has one notable shortcoming arising from the def-
inition of the first-order wavefunction, namely, the static correlation is considered
only at the preceeding CASSCF level. While the reference wavefunction

∣
∣
∣Ψ0

〉

is or-
thogonal to the the wavefunctions from the V⊥ space, the perturbed wavefunction∣
∣
∣Ψ0

〉

+λ
∣
∣
∣Ψ1

〉

is not. Hence, SS-CASPT2 wavefunctions of different states are no longer
orthogonal, although their reference wavefunctions are. A re-orthogonalization is re-
quired, i.e. the static correlation between the different states has to be re-evaluated.
Two improvements of the SS-CASPT2 alogorithm, the Multi-State Single-Reference
CASPT2 (MS-SR-CASPT2)[70] and the Multi-State Multi-Reference CASPT2 (MS-
MR-CASPT2)[70] approaches, implement this re-orthogonalization.
In MS-SR-CASPT2 equation 1.70 is solved independently for n states (i.e. n SS-
CASPT2 independent calculations are performed), each characterized by its own
expansion space Vn

SD, generated from the corresponding reference CASSCF wave-
function

∣
∣
∣Ψ0,n

〉

, and by a zeroth-order Hamiltonian Ĥ0,n, projecting on Vn
SD. After

the perturbative corrections have been computed independently for all states the cou-
plings between the individual (non-orthogonal) states are calculated. A Hamiltonian
matrix of n2-size is diagonalized to provide a set of eigenfunctions.
In MS-MR-CASPT2 a single expansion space VSD common to all states is con-
structed, which constitutes a union of the expansion spaces generated by single and
double excitation from all reference wavefunctions. The perturbation corrections for
all states are obtained in one cycle. Subsequently, construction and diagonalization
of the effective Hamiltonian is performed as in MS-SR-CASPT2 to obtain the eigen-
functions. MS-MR-CASPT2 gives the most accurate results but is more expensive
than MS-SR-CASPT2.
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2. The extended two-electron
two-orbital theory

If the Franck-Condon (FC) point is the doorway to the ES, which determines the
initial direction of relaxation, then CoIns are the outlet to the GS, which decide
over reaction speed and product distribution. Ever since their importance was
recognized[24–26] the general goal of understanding and predicting their structure
and energetics has been pursued[50, 122–126]. With the valence bond formalism[127]
it could be shown that similar geometrical patterns (-(CH)3-kinks) determine the
CoIn geometry of a vast number of conjugated polyenes[123, 128]. Michl and Bonačić-
Koutecký presented a two-electron two-orbital model[61] to predict CoIns in strongly
polar and charged systems, which was successfully applied to several biological sys-
tems containing a protonated Schiff base[129, 130].
Going beyond single CoIns, the ES dynamics is even better accounted for by
CoIn seams, the low-lying regions in the IS (sec. 1.2), accessible during a
photoreaction[74, 116, 131–133]. In analogy to reaction pathways on potential energy
hypersurfaces, the intersection seams can be regarded as the minimum energy con-
nection between stationary CoIns in the IS[92]. The relevance of seams was confirmed
by quantum dynamics[77, 134] and semi-classical calculations for various molecular
systems[42, 49, 135–139], pointing out the necessity for methods to locate and ratio-
nalize them. To the authors’s knowledge three different strategies are followed for
locating CoIn seams. The straightforward one is based on a constrained optimization
out of a minimum energy CoIn[140–142]. It is the most realizable approach for large
complex systems, but it fails when the constrained coordinate has an overlap with
the BS that lifts the degeneracy between electronic states. More elaborate methods
consider the curvature of the IS[143], permitting the application of MEP following
algorithms[92]. A further method that locates the lowest seam parallel to the ES MEP
has been presented recently[144]. These methods provide a mathematical framework
for the optimization of CoIn seams.
In this chapter the two-electron two-orbital ansatz by Michl and Bonačić-Koutecký is
extended and its applicability is expanded from unfunctionalized non-polar to multi-
functionalized strongly polar polyene systems. In the first section a set of equations
for the degeneracy between the GS and the first ES are derived. In the next two sec-
tions geometrical and electronical effects, which satisfy these equations, are discussed.
Simple rules of thumb for predicting and locating CoIns and CoIn seams from the
chemical composition alone are formulated and conceptual strategies for the search
of CoIns are outlined. In a series of examples the rules are applied to distinguish
low-energy from high-energy CoIns and to reveal the complex branched nature of
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the CoIn seam in unfunctionalized non-polar to multi-functionalized strongly polar
polyene systems. Parts of this chapter are published in A. Nenov, T. Cordes, T. T.
Herzog, W. Zinth and R. de Vivie-Riedle J. Phys. Chem. A 2010, 114, p. 13016, A.
Nenov, R. de Vivie Riedle J. Chem. Phys. 2011, 135, p. 034304 and A. Nenov, R.
de Vivie-Riedle J. Chem. Phys. 2012, 137, p. 074101.

2.1. Mathematical framework

2.1.1. The two-electron two-orbital model revisited

The two-electron two-orbital model[145, 146] makes the assumption that all states,
relevant for the photoreaction, can be constructed by permuting two electrons in the
two frontier orbitals of the system (active space). At the equilibrium geometry of a
conjugated π-system these orbitals correspond to the highest occupied and the lowest
unoccupied MOs π and π∗, respectively. The assumption simplifies the multiconfigu-
rational problem to a full-Configuration-Interaction (CI) calculation in a two-orbital
subspace:
∣
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∣
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∣
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∣ππ∗

〉

Φ3 =
∣
∣
∣π∗2

〉

.

(2.1)

In eq. 2.1 Φ1,2,3 are CSFs (sec. 1.4) constructed by permuting two electrons in the
active orbitals and Ĥ = ĥ1 + ĥ1 + 1

r12
is the Hamiltonian of the two-electron system.

It is further assumed that at the equilibrium geometry both active orbitals can be
constructed by a unitary transformation from a pair of equivalent MOs A and B,
localized at different atomic centers:

(

π
π∗

)

=
1√
2

(

1 1
1 −1

)(

A
B

)

. (2.2)

In the basis of A and B the 3 x 3 CI determinant eq. 2.1 reads:
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(2.3)
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with

E0 = hAA + hBB +
1
4

(JAA + JBB) +
1
2

JAB + KAB,

∆J =
1
4

(JAA + JBB) − 1
2

JAB,

εAA/BB = 2hAA/BB + JAA/BB,

(2.4)

where hAA/BB are the one-electron integrals, hAB the resonance integral and
JAA/BB/AB are the two-electron Coulomb repulsion integrals. The exchange integral
KAB and the hybrid integrals

〈

AA
∣
∣
∣AB

〉

and
〈

BB
∣
∣
∣BA

〉

are negligible in the basis of
the localized MOs A and B due to the vanishing overlap and can be therefore omitted.
The required equivalence between A and B at the equilibrium geometry forces the
equivalence εAA = εBB and simplifies the determinant eq. 2.3 to:

∣
∣
∣
∣
∣
∣
∣

E0 + 2hAB − E 0 ∆J
0 E0 − 2KAB + ∆J − E 0

∆J 0 E0 − 2hAB − E

∣
∣
∣
∣
∣
∣
∣

. (2.5)

Diagonalization of the determinant eq. 2.5 provides the energies and (unnormalized)
wavefunctions of the three roots at the equilibrium:

ES0
= E0 −

√

4h2
AB + ∆J2 Ψ1 = − ∆J

√

4h2
AB + ∆J2 + 2hAB

Φ1 + Φ3, (2.6a)

ES1
= E0 + ∆J Ψ2 = Φ2, (2.6b)

ES2
= E0 +

√

4h2
AB + ∆J2 Ψ3 =

∆J
√

4h2
AB + ∆J2 − 2hAB

Φ1 + Φ3, (2.6c)

The resonance term hAB, which is negative in magnitude, is responsible for the large
energetic stabilization of the GS equilibrium, where |hAB|2 ≫ ∆J2. Thus, each state
is described in good approximation by a single configuration, i.e. Ψ1 = Φ1, Ψ2 =
Φ2, Ψ3 = Φ3.
Naturally, the first condition for a degeneracy between the GS and first ES would
imply the cancelation of the resonance integral hAB:

hAB = 0. (2.7)

With decreasing magnitude of the resonance integral the condition |hAB|2 ≫ ∆J2

does not hold anymore. When eq. 2.7 is fulfilled the energies and wavefunctions of
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2. The extended two-electron two-orbital theory

eq. 2.6c become:

ES0
= E0 − ∆J Ψ1 =

1√
2

(Φ1 − Φ3) , (2.8a)

ES1
= E0 + ∆J + (εAA − εBB) Ψ2 =

1
2

(

Φ1 +
√

2Φ2 + Φ3

)

, (2.8b)

ES2
= E0 + ∆J − (εAA − εBB) Ψ3 =

1
2

(

Φ1 −
√

2Φ2 + Φ3

)

. (2.8c)

Eq. 2.8 has a general form as it includes the term εAA −εBB. In the special case when
A and B are equienergetic (i.e. εAA − εBB = 0) one speaks about a homosymmetric
biradical geometry[61]. In the general case the GS and first ES are separated by a
finite gap ES1

− ES0
= 2∆J + (εAA − εBB). The reason for the finit gap is understood

by analyzing the wavefunctions 2.8. When the resonance integral hAB vanishes the
individual electronic states can no longer be approximated by a single configuration
as done at the equilibrium geometry. By expressing the wavefunctions in eq. 2.8 in
the basis of the localized MOs A and B one obtains:

Ψ1 =
1√
2

(Φ1 − Φ3) =
∣
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∣Aα(1)Bβ(2)

〉

−
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〉
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〉

, (2.9a)
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=
∣
∣
∣Aα(1)Aβ(2)

〉

=
∣
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〉

, (2.9b)

Ψ3 =
1
2

(

Φ1 −
√

2Φ2 + Φ3

)

=
∣
∣
∣Bα(1)Bβ(2)

〉

=
∣
∣
∣B2

〉

. (2.9c)

The GS is no longer described by a closed shell configuration, it is a singlet biradical.
Both ES have the electrons occupying either one of the localized orbitals A and B.
These configurations will be refered to as zwitterionic in the following. Due to the
localized nature of orbitals A and B both active electrons avoid each other better when
occupying different orbitals. Therefore, the biradical configuration lies energetically
lower than both zwitterionic configurations. Some additional deformations are needed
which can compensate for the stronger Coulomb repulsion in the zwitterionic state.
The condition that needs to be satisfied in order to obtain a degeneracy between the
GS and first ES reads:

JAA − JAB = hBB − hAA. (2.10)

An asymmetric deformation that lifts the equivalence between the energies of the
localized orbitals without violating eq. 2.7 is required to reach a CoIn.
Eqs. 2.7 and 2.10 have proved quite handy in the discussion of CoIns in highly
polar and charged polyenes[61]. Introduction of polar groups and charges alters the
electron-nuclei attraction and, thus, the Right–Hand–Side (RHS) of eq. 2.10 and can
be used to fulfill the requirement. In particular, this model found application in the
interpretation of the photochemistry of several biological compounds, like retinal[129,
130] and the chromophore of the yellow fluorescing protein[147, 148].
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2.1. Mathematical framework

2.1.2. The extended two-electron two-orbital model

During derivation of the conditions eqs. 2.7 and 2.10 the interactions of the two active
eletrons with the remaining electrons (present in a realistic system) were completely
neglected. In the course of this work the two-electron two-orbital ansatz was refined
by including the interactions of the active electrons with a closed-shell of 2n electrons
(n being the number of closed shell orbitals). For the purpose it is more convinient to
work in the biradical/zwitterionic basis (eq. 2.9). Rewriting the 3 x 3 CI problem
(eq. 2.1) in this basis gives:
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(2.11)
with
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∣ii
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(2.12)

The sums run over the n closed shell orbitals. Inclusion of additional interactions in
the model introduces two terms to eq. 2.7:

2hAB + 4
n∑

i

〈

Ai
∣
∣
∣Bi

〉

− 2
n∑

i

〈

AB
∣
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∣ii
〉

= 0. (2.13)

Although the hybrid integrals
〈

Ai
∣
∣
∣Bi

〉

and
〈

AB
∣
∣
∣ii
〉

are an order of magnitude smaller
than the resonance integral hAB their sum is no longer negligible for the quantification
of eq. 2.13.
With eq. 2.13 fulfilled, diagonalizing the determinant 2.11 and requiring that ES0

!=
ES1

provides the extended form of eq. 2.10:

JAA − JAB = ( hBB − hAA )
︸ ︷︷ ︸

one − electron term

+

(

2
n∑

i

JiB − 2
n∑

i

JiA

)

−
(

n∑

i

KiB −
n∑

i

KiA

)

︸ ︷︷ ︸

two − electron term

=

= εB − εA. (2.14)
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where εA = hAA + 2
n∑

i
JiA −

n∑

i
KiA and εB = hBB + 2

n∑

i
JiB −

n∑

i
KiB are defined as

the energies of the singly occupied orbitals A or B in the presence of 2n fixed core
electrons (not equivalent to εAA and εBB introduced earlier). With the two-electron
term an additional tool for lowering the GS/ES gap, besides the introduction of po-
lar groups and charges, becomes available. The receipe is to modulate the repulsive
interactions of the two active electrons with the remaining 2n closed-shell electrons.
In the course of this work eqs. 2.13 and 2.14 are referred to as the resonance and
the heterosymmetry conditions, respectively. The resonance condition is equivalent
to the condition H11 − H22 = 0 in the diabatic representation (eq. 1.16) and the
heterosymmetry conditions is equivalent to the diabatic condition H12 = 0 (eq. 1.16).
Thus, the resonance and the heterosymmetry conditions are a re-formulation of the
diabatic conditions in terms of adiabatic quantities, obtainable from quantum chemi-
cal calculations. A potential application of this relation for the optimization of CoIns
without calculating the gradient difference ~X1 and derivative coupling vectors ~X2 (eq.
1.18) is discussed at the end of this chapter.
With the resonance and heterosymmetry conditions it is possible to classify all es-
sential motions leading to a CoIn. Eqs. 2.13 and 2.14 are very general and allow
the description of substituted and unsubstituted polyenes on equal footing and can
be used to address the following questions. What is the role of the specific geomet-
ric arrangement found at a CoIn? What is the influence of functional groups? Are
qualitative predictions on structure and energetic position possible? Eqs. 2.13 and
2.14 have been quantified by SA-CASSCF(2,2) calculations with averaging over three
states, which closely resemble the 3 x 3 CI problem 2.1, for several basic units[125].
The quantitative results allow to separate the factors deformation and substituent ef-
fects and to derive rules of thumb for qualitative prediction of CoIns and CoIn seams
in arbitrary polyenes.

2.2. Rules for finding single conical intersections

In section 1.3 a correlation diagram was presented (fig. 1.3), which generalizes
the behaviour of several isomerization reactions: a double bond torsion in a 2π-
electronic system (ethylene), a disrotatory electrocyclic ring closure/opening in a 4i π-
electronic system (cis-butadiene) and a conrotatory electrocyclic ring closure/opening
in a (4i + 2)π-electronic system (Cyclohexadiene (CHD)). In diabatic representa-
tion the states cross along the reaction coordinate, thereby fulfilling the condition
H11 − H22 = 0 (eq. 1.16). Using the equivalence between this diabatic condition and
the resonance condition, the basic motions which fulfill eq. 2.13 are easily identified:
a 90 ◦ torsion in any double bond sub-unit and a half-way conrotatory or disrota-
tory ring opening/closure in any 4iπ- or (4i + 2)π-electronic sub-unit, respectively.
In correspondence with the Woodward-Hoffmann (WH) rules[95, 96] used to predict
the stereochemistry of pericyclic reactions on the basis of orbital symmertry analysis
(sec. 1.3) this set of basic motions is labeled as WH-motions. Any of the WH-motions
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2.2. Rules for finding single conical intersections

Figure 2.1.: (left) Schematic representation of the energy change of the localized
orbitals A and B upon pyramidalization and tilt. Pyramidalization lowers the
energy εA of orbital A by minimizing the repulsive interactions

∑n
i JiA of the

active electrons therein with the remaining 2n closed-shell electrons. Tilt in-
creases the energy εB of orbital B by maximizing the repulsive interactions
∑n

i JiB of the active electrons therein with the remaining 2n closed-shell elec-
trons. (right) Schematic representation of the energy change of the localized
orbitals A and B upon conjugation to functional groups with mesomeric effect.
Negative mesomeric effect induced by low-lying π∗-orbitals has the same net ef-
fect as pyramidalization. Positive mesomeric effect possible through the presence
of heteroatoms with lone pairs has the same net effect as tilt.

leads to a homosymmetric biradical geometry. Note, that a geometrical deformation
is mandatory to fulfill eq. 2.13.

To reach a CoIn from a homosymmetric biradical geometry further deformations
are required. Quantifying eqs. 2.13 and 2.14 for various geometrical constellations
in several basic molecular systems (ethylene, cis-butadiene, 1, 3-CHD, see ref. [125])
helped to extract a set of deformations which satisfy the heterosymmetry condition
eq. 2.14. These are pyramidalization and tilt. Exemplarily, fig. 2.1, left, sketches the
influence of both deformations on the two-electron term of eq. 2.14, tab. 2.1 provides
calculated values for all quantities occuring in eqs. 2.13 and 2.14 on the example of
the basic unit ethylene.
The homosymmetric biradical geometry EthyleneOBF is the reference geometry for
demonstrating the effect of pyramidalization and tilt. At EthyleneOBF the resonance
term hAB becomes zero and both frontier orbitals A and B degenerate at energy of
−0.6378 a.u.. The energetic splitting between the GS and the first ES of 0.1179 a.u.
is caused by the Coulomb repulsion in the doubly occupied frontier orbitals of the
first ES

∣
∣
∣A2

〉

−
∣
∣
∣B2

〉

given by the expression 1/2(JAA + JBB) = JAA = 0.4428 a.u..
For comparison, the Coulomb repulsion JAB in the biradical GS is 0.3197 a.u..
The Coulomb repulsion in the zwitterionic state is compensated by applying either
pyramidalization or tilt. In fig. 2.1, left and tab. 2.1 the tilt acts exclusively on
orbital B and the pyramidalization on orbital A. Generally, tilt is any deformation,
which enhances the Coulomb repulsion 2

∑n
i JiB between the active electrons and the

remaining 2n closed-shell electrons (fig. 2.1, right). In the particular example this
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enhancement shows by moving C1 towards one of the hydrogens attached to C2. A
comparison of the homosymmetric biradical EthyleneOBF to the tilted Ethylenetilt

indicates that the Coulomb repulsion 2
∑n

i JiB increases by ≈ 0.15 a.u. due to this
deformation. The increase of the singly occupied orbital energy εB destabilizes the co-
valent biradical configuration

∣
∣
∣A•B•

〉

relative to the zwitterionic configuration
∣
∣
∣A2

〉

.
Pyramidalization is a deformation, which shields the active electrons from the re-
maining 2n electrons (fig. 2.1). In the example this is achieved by pyramidalizing C2,
which changes the hybridization of orbital A from sp2 to sp3. As a consequence the
term 2

∑n
i JiA decreases by ≈ 0.10 a.u. at Ethylenepyr with respect to EthyleneOBF

favoring the zwitterionic state
∣
∣
∣A2

〉

.
Tilt and pyramidalization are most effective when acting on different orbitals. A
degeneracy between the biradical GS and the zwitterionic ES will be reached upon
any of the introduced deformations. Minimum energy CoIns are reached by applying
both motions simultaneously, as found for Ethylenepyr/tilt. Conceivably, the energetic
degeneracy can be preserved along the gradual transformation from the purely pyra-
midalized to the purely tilted CoIn. This idea is amplified in sec. 2.3.
Geometrical deformations alone do not fully exploit the potential of eq. 2.14. Asym-

metric functionalization with polar groups lifts the energetic degeneracy of both lo-
calized orbitals A and B by inducing electron density flux. Functionalizing ethylene
(tab. 2.2) reveals that mesomeric groups (e.g. -NH2, -COOH, etc.) have the same
net effect on eq. 2.14 as geometrical deformations (fig. 2.1, right). Inductive effects
were found to be much weaker, as they act along the σ-bond, while the frontier or-
bitals in polyenes have π-character. A negative mesomeric effect is observed when
one of the localized orbitals (e.g. A in fig. 2.1, right) interacts with an energetically
low-lying virtual π∗-orbital of a functional group forming the bonding orbital A′. The
resulting density flux has two effects. On the one hand, the electron-nuclei attraction
hAA (one-electron term in eq. 2.14) increases (hAA = −11.4571 a.u. compared to
hAA = −10.6645 a.u. at EthyleneCOOH in tab. 2.2). On the other hand, the delo-
calization of electron density into the π∗-orbital lowers the repulsion within orbital
A′ (JAA decreases from 0.4428 a.u. at EthyleneOBF to 0.4039 a.u. at EthyleneCOOH

in tab. 2.2). Both effects lower the corresponding orbital energy ǫ′
A. A positive me-

someric effect is observed when a lone pair interacts with one of the localized orbitals
(e.g. B in fig. 2.1). The new orbital B′ is shifted to higher energy ǫ′

B due to the
increased Coulomb repulsion 2

∑n
i JiB (two-electron term in eq. 2.14). Comparable

to the combined effect of tilt and pyramidalization, the substituent effects are most
effective when they act simultaneously on different orbitals. If their electron donating
and withdrawing strength is properly chosen, they can stabilize the homosymmetric
biradical geometry to a CoIn (EthyleneCOOH/NH2

in tab. 2.2).
Based on the quantitative results for the basic units a three-step strategy for the con-
ceptual search of CoIns in functionalized and non-functionalized conjugated polyenes
is proposed. The rules of thumb are:

1) Distinguish basic units, which are sterically unimpeded of undergoing a WH-
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EthyleneOBF EthyleneCOOH EthyleneNH2
EthyleneCOOH/NH2

geometry

orbital A

orbital B

hAA -6.2543 -11.4571 -8.1794 -13.3561
hBB -6.2543 -10.6645 -8.5460 -12.8085
hAB 0.0000 0.0000 0.0000 0.0010
JAA 0.4428 0.4039 0.4519 0.4159
JAB 0.3197 0.3079 0.3079 0.2959
2
∑n

i JiA 5.8137 10.7922 7.5484 12.9515
2
∑n

i JiB 5.8139 10.0061 8.0280 12.5480
εA′

a -0.6378b -0.6650 -0.6309 -0.6576
εB′

a -0.6378b -0.6584 -0.5180 -0.5330
∆|A•B•〉,|A2〉 0.1179 0.0864 0.0283 -0.0073

aεA′/B′ = hAA/BB + 2
∑n

i JiA/iB −
∑n

i KiA/iB
bhere εA′/B′ correspond to εA/B

Table 2.2.: Quantification of the terms occuring in eqs. 2.13 and 2.14 for a 90°
twisted ethylene, substituted with a carboxyl group (EthyleneCOOH), with an
amino group (EthyleneNH2

) and with both. At the homosymmetric biradical
geometry (EthyleneOBF) the orbital energies εA/B are equal. Groups with a
negative mesomeric effect (e.g. -COOH) lower the energy, while groups with a
positive mesomeric effect (e.g. -NH2) increase the energy of the localized orbital
they are attached to. Together both effects induce the required energetic splitting
between εA and εB to reach a CoIn without need of geometrical deformations.
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2.3. Rules for finding low-energy conical intersection seams

deformation. There could be more than one basic unit depending on the molec-
ular composition.

2) Fulfill the resonance condition: For each basic unit selected in 1) apply the
corresponding WH-motion, which cancels the resonance term hAB to form the
homosymmetric biradical with localized frontier orbitals A and B.

3) Fulfill the heterosymmetry condition, starting from the homosymmetric birad-
ical: Assign geometrical deformations and/or mesomeric effects that tune the
relative energies εA/B of the localized orbitals. Their energetic splitting has to
compensate the electronic repulsion in the doubly occupied zwitterionic config-
uration.

The predefined geometries can be used as input to finalize the optimization of CoIns
by quantum chemical optimizations.

2.3. Rules for finding low-energy conical intersection

seams

The two conditions formulated in eqs. 2.13 and 2.14 hold for any point in the IS. In
this section it will be demonstrated that with their help the rules of thumb can be
extended to predict the position of CoIn seams. The strategy is to divide the IS into
segments where the geometry changes linearly, thus, permiting the application of lin-
ear interpolation techniques. The resonance and heterosymmetry conditions are used
to estimate supporting points on these segments and to predict the interconnectivity
of the individual segments.
In the following it is differentiated between two classes of CoIn seams. The first class
includes seams related to one WH-coordinate alone. They arise through variations
of the individual terms in eq. 2.14, leaving eq. 2.13 unchanged. The second class in-
cludes seams connecting different WH-coordinates, indicating possible loss channels.
In this case variations in the integrals of both eqs. 2.13 and 2.14 are needed. As
the aim are rules of thumb with qualitative predictive power, the simple form of the
resonance condition, i.e. eq. 2.7, is used.

Conical intersection seams associated with one Woodward-Hoffmann coordinate
In this class the CoIn seams can be visualized by a plane orthogonal to one particular
WH-coordinate (~g) (fig. 2.2). This plane is spanned by geometrical deformations
(tilt, pyramidalization) and substituent effects. Each point in the plane fulfills the
resonance condition. The crossing point with the WH-coordinate corresponds to the
homosymmetric biradical. Specific combinations within the plane result in a motion
in ~h-direction and lead to a point on a CoIn seam. At each point of the seam ~h
changes its direction, whereas ~g stays parallel to the WH-coordinate (as indicated in
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Figure 2.3.: Partitioning scheme of the closed loop CoIn seam around the homosym-
metric biradical geometry EthyleneOBF (0° pyramidalization, 0° tilt) into linear
segments.

the pyramidalization/tilt coordinates and the energy profile of the seam depend on
the specific functionalization pattern. As an example a seam in the Hemithioindigo-
Hemistilbene (HTI) system is presented in section 2.4.3.

Conical intersections seams connecting different Woodward-Hoffmann coordi-
nates Depending on the complexity of the molecule several WH-coordinates can
exist (e.g. torsion around several double bonds). Each WH-coordinate has a seam
associated to it that is located in the corresponding hAB = 0 plane (red-, green- and
blue-rimmed planes in fig. 2.4). Only seams in one of the planes mediate the desired
photoreaction, while the others lead to by-products. The second class of CoIn seams
connects the different planes (solid line in fig. 2.4) and thus opens pathways to com-
peting loss channels. The search focuses on the energetically low-lying seams that
connect the minimum energy CoIns on the different planes. As these CoIn seams are
not restricted to a single WH-coordinate a systematic strategy is required to explore
the full 3N − 6 coordinate space.
For this purpose the resonance condition (eq. 2.7) is re-formulated in more intuitive

terms going down to the atom-centered basis. The localized MOs A and B (eq. 2.2)
are represented as a linear combination of atomic orbitals χi:

A =
∑

i

cAiχAi and B =
∑

j

cBjχBj, (2.15)
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dividual homosymmetric biradicals can be reached in two ways. The first one cancels
individual two-center resonances

〈

χi

∣
∣
∣ĥ
∣
∣
∣χj

〉

by spatial separation as realized through
torsional motion or bond cleavage. The second one cancels individual expansion coeffi-
cients cAicBj. This happens only in 2nπ-electron subunits, which become structurally
decoupled from the remaining π-system by a geometric deformation. Due to their
odd number of positive and negative resonance integrals, the subunits also decouple
energetically and do not contribute to the active orbitals anymore.
Biradical structures belonging to different WH-coordinates (circles on the dashed line
in fig. 2.4) are starting points for a subsequent search of CoIns. For their qualitative
prediction the second condition, eq. 2.14, has to be fulfilled. This can be realized by
geometrical deformations or substituents effects as formulated in the rules of thumb
given in the section 2.2. The individual CoIns found by this strategy serve as sup-
porting points in the IS for the subsequent linear interpolation of the interconnecting
seams. The systematic pairwise cancelation/generation of the two-center integrals in
eq. 2.16 guarantees that the effects needed to connect two supporting points occur
simultaneously, thus the linear interpolation between two supporting points is justi-
fied.
Now the rules of thumb for a systematic prediction and optimization of low-lying
CoIn seams connecting different WH-coordinates are summarized. The approach is
presented graphically in fig. 2.4, the individual rules show as black diamonds. The
only knowledge required is the geometry of reactant and product. Rules 1. and 2.

do not require additional quantum chemical calculations. Rule 3. and 4. only need
final optimizations of the predicted structures.

1. The WH-coordinate associated with the photochemical reaction under consid-
eration is identified. The resonance integral is formulated in the basis of the
atomic orbitals as a sum of two-center integrals (eq. 2.16). The geometry which
satisfies eq. 2.7 is determined (labeled as "reference" in fig. 2.4).

2. Different scenarios for the pairwise cancelation/generation of positive and neg-
ative resonance integrals, which preserve the simplified resonance condition are
followed. Each scenario is connected to a different WH-coordinate and leads to
the associated homosymmetric biradical structure. The dashed line connects
the individual biradical structures.

3. Mesomeric effects of functional groups can fulfill eq. 2.14 (thick arrows in fig.
2.4). For their analysis the localized MOs A and B are best suited and consid-
ered at each biradical structure. Geometries without mesomeric stabilization
are discarded, as they typically lead to high energy seams. CoIn optimizations
are started at the predicted geometries (red-, green- and blue-rimmed arrows).
These geometries are not necessarily stationary points in the IS. Therefore,
geometrical constraints (available via step 2.) need to be introduced. The
optimized structures serve as supporting points for 4.

4. By analizing the electronic configuration of the ES it is decided which sup-
porting points can be linked together via a low-energy seam. Only supporting
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points with the same ES electronic configuration (either
∣
∣
∣A2

〉

or
∣
∣
∣B2

〉

) can be
interconnected. A linear interpolation scheme with a subsequent constrained
CoIn optimization locates the seam (solid line in fig. 2.4) connecting the ref-
erence CoIn (green-rimmed arrow) to the CoIns associated with the additional
WH-coordinates. The constraints, which must facilitate the stepwise cancela-
tion/generation of pairs of two-center resonance integrals, are taken from step
2..

In this work the projection method presented in sec. 1.2.3 was used for the final
optimization of the estimated CoIns. When geometrical constraints are applied the
projection method converges at geometries with a finite energy gap. This obstacle
can be surmounted by a subsequent unconstrained optimization along the gradient
difference vector ~X1[142] (eq. 1.18a). It locates the nearest CoIn to the input geom-
etry. This step is usually associated with the energetic destabilization and therefore
it is crucial that already the preceding steps locate a geometry in the vicinity of the
low-energy CoIn seam. This last step can be omitted when the constraint-adapted
gradient projection method[149] for CoIn optimization is used.

2.4. Applications

In this sections the rules of thumb for optimization of CoIns (sec. 2.2) and CoIn
seams (sec. 2.3) are applied on realistic conjugated polyene systems. For the purpose
photochromic molecules were chosen which undergo photoinduced ultrafast CoIn me-
diated isomerization: CHD/cZc-HT as a representative of non-polar unfunctionalized
polyenes, where CoIns are formed through geometrical deformations, HTI as a repre-
sentative of weakly polar polyenes, where low-energy CoIns are formed by combining
geometrical deformations and substituent effects and trifluoromethyl-pyrrolylfulgide
as a representative of multi-functionalized strongly polar polyenes, where the func-
tional groups alone determine the structure of the CoIns1. HTI and fulgides have
potential application as coherently driven molecular photoswitches. However, rep-
resentatives of both families are characterized by a relatively low photoswitching
quantum yields[116, 126, 150–153]. It is intriguing to pinpoint the reason for the low
yield. The rules presented above are well suited to address the question, whether
the presence of concurring deactivation channels to the GS is responsible for the low
quantum yields.
In sec. 2.4.1 the rules of thumb are benchmarked against known CoIns in the
CHD/cZc-HT system. In sec. 2.4.2 low-lying CoIns in the HTI system are identified.
In sec. 2.4.3 a seam in the HTI system, associated with the cis-trans isomerization
coordinate is presented. In sec. 2.4.4 the complex branched structure of the CoIn
seam in the fluorinated pyrrolylfulgide system is revealed.

1The reader is referred to capter 3 for the detailed discussion on the mechanisms of HTI and fulgide
isomerization.
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2.4.1. Conical intersections in non-polar polyenes:
1,3-cyclohexadiene/cZc-hexatriene

In sec. 2.2 CHD/cZc-HT was identified as a 6π-electronic basic unit, as it is the small-
est unit, which can undergo a conrotatory WH-motion. In this regard the system was
used in ref. [125] as one of the basic units to quantify the rules of thumb outlined
in sec. 2.2 at SA-3-CASSCF(2,2) level of theory. In this section the CHD/cZc-HT
system is used to demonstrate the application of these rules for non-polar conjugated
polyenes. Several already known CoIn geometries are rationalized2.
Fig. 2.5 summarizes three local minima in the IS of the CHD/cZc-HT system (bottom
row). The global minimum in the intersection space CoInmin was first described by
Robb and colleagues[47] and marks one of the pioneering results that demonstrates
the crucial role of CoIns in ultrafast photochemistry. The structures of CoInbu and
CoIn2 were reported by Tamura et al.[154]. More recently the existence of a low
lying accessible CoIn seam connecting CoInbu and CoInmin[74] was reported. All
structures exhibit a triangular pattern, denoted in the literature either as a -(CH)3-
kink[86, 89, 155] or as a Hula-Twist[123, 156]. Its formation has been recognized as
a necessary condition in non-polar polyenes to reach GS/ES degeneracy[80, 86, 157].
The three-step strategy for the conceptual search of CoIn structures is visualized in

fig. 2.5 (top to bottom) for CoInbu, CoIn2 and CoInmin. The final CoIn optimizations
of the predicted structures were performed with an active space of 6 electrons and
6 orbitals and averaging over the GS and the first ES. The electronic wavefunctions
at SA-2-CASSCF(6,6) show dominant contributions from the biradical (

∣
∣
∣A•B•

〉

) and

zwitterionic (
∣
∣
∣A2

〉

or
∣
∣
∣B2

〉

) configurations in support of the practicability of the rules
of thumb (see ref. [125]). The basic units in CHD/cZc-HT system are ethylene, cis-
butadiene and CHD itself. The known CoIn structures can be derived from ethylene
and cyclohexadiene. CoInbu (left column) is associated with a torsion (one-bond flip)
around the C2-C3 double bond of the ethylene basic unit3 leading to an asymmetric,
though nearly homosymmetric biradical with degenerate localized orbitals A3,5 and
B2. Due to the intact σ-bond the torsion is partially hindered. Subsequent pyrami-
dalization at C3 (denoted by a blue arrow in fig. 2.5) and tilt of C2 towards C4 forms
the well known -(CH)3-kink arrangement, here between the adjacent centers C2, C3

and C4. In the following, this arrangement is referred to as a 1,3-kink (marked by a
dashed blue line in fig. 2.5). In agreement with sec. 2.2 the pyramidalization lowers
the energy of orbtial A′

3,5 while the tilt raises the energy of orbital B′
2.

CoInmin (middle column) is associated with the C2-symmetry preserving conrotatory
rotation in the full 6π-electron space. Along this WH-coordinate the frontier orbitals
degenerate and localize either at C1, C3 and C5 or at C2, C4 and C6. These orbitals
are labeled A1,3,5 and B2,4,6. Subsequently, a tilt in the carbon scaffold C2-C6 leads
to a more flexible 1,5-kink arrangement without pyramidalization. It enhances the

2For the prediction of further energetically low lying CoIn geometries in the CHD/cZc-HT system
see sec. 4.2 and ref. [125].

3A torsion around the C4-C5 double bond leads to a mirror-symmetric species.
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CHD/cZc-HT system, further closed ring and open ring low-energy CoIns can be
predicted and optimized. A short discussion is presented at the end of sec. 4.2.

2.4.2. Discrimination between low- and high-energy conical
intersections: hemithioindigo-hemistilbene

Figure 2.6.: Ground state isomers of Z-HTI (left) and E-HTI (right) in the HTI
system. The building blocks hemithioindigo and hemistilbene (encircled) have a
common double bond (highlighted).

HTI has two stable GS conformers, Z-HTI and E-HTI (fig. 2.6). Both conformers
are interconvertable by visible light. HTI is composed of a hemithioindigo and a
hemistilbene moieties sharing a common double bond. For the application of the
rules of thumb (sec. 2.2) a separation into a basic unit and functional groups (i.e.
sulfur, carbonyl, phenyl) is convenient.

Conical intersections associated with the 2π-electronic basic unit ethylene The
most obvious separation of HTI is into an ethylene unit (C3-C4 in fig. 2.7) and func-
tional groups. Both π-obitals and π-electrons of the ethylene unit are regarded as the
active space for the conceptual discussion. The torsional motion around the double
bond (one-bond flip), which connects both HTI isomers, coincides with a WH-motion
(sec. 2.2). The resonance condition (eq. 2.13) is fulfilled at a 90° twisted geometry
(fig. 2.7). There, both subunits, hemithioindigo and hemistilbene, as well as the active
orbitals are spatially decoupled (fig. 2.7). The orbital localized at the hemithioindigo
is denoted as A3 while the orbital localized at the hemistilbene is denoted as B4. Next,
the miscelaneous possibilities to satisfy the heterosymmetry condition (eq. 2.14) via
geometrical deformations and mesomeric effects are discussed. The final CoIn op-
timizations of the predicted structures were performed with an active space of 10
electron and 9 orbitals and averaging over the GS and the first ES (see Appendix I).
The electronic wavefunctions at SA-2-CASSCF(10,9) show dominant contributions
from the biradical (

∣
∣
∣A•B•

〉

) and zwitterionic (
∣
∣
∣A2

〉

or
∣
∣
∣B2

〉

) configurations in support
of the practicability of the rules of thumb (see ref. [116]).

From the functional groups attached directly to the ethylene unit only the car-
bonyl group has a considerable effect on the energies of orbitals A3 and B4 due to
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can be correlated to the mesomeric effects by taking the pre-stabilization of orbital
A3 by the carbonyl group into account and applying pyramidalization to C3 from the
same orbital. Subsequent tilting of the hemistilbene moiety (and hence orbital B4)
towards the sulfur forms a potential CoIn geometry (CoInS in fig. 2.7, the pyrami-
dalized C3 is marked by a blue circle). CoIn optimization of the predicted structure
retains the predefined arrangement. Further CoIns can be obtained for purely pyra-
midalized or tilted arrangements. In contrast to the unfunctionalized ethylene, where
purely pyramidalized and purely tilted CoIns are not minimum energy points in the IS
the purely tilted CoInAc in HTI (fig. 2.7) with the hemistilbene moiety tilted towards
the oxygen is energetically stable (tab. 2.3). The orientation of the oxygen lone pair
towards B4 requires a smaller tilt in contrast to ethylene (CoIntilt in fig. 2.1) and,
thus, facilitates the formation of a minimum energy CoIn.
Despite the

∣
∣
∣A2

〉

-configuration being more stable then the
∣
∣
∣B2

〉

-configuration at the

CoInS CoInAc CoInEt CoInHT CoInCHD

∆E (eV) 0.00 −0.72 0.72 1.36 −0.76
localization pattern A3/B4 A3/B4 A3/B4 A3/B4 A1,3,5/B2,4,6

ES configuration
∣
∣
∣A2

〉 ∣
∣
∣A2

〉 ∣
∣
∣B2

〉 ∣
∣
∣B2

〉 ∣
∣
∣A2

〉

torsion (°) 90.0 90.0 90.0 90.0 154.9
pyramidalization (°) 64.01 0.61 54.12 59.62 3.01

tilt (°) 18.63 -21.73 -28.04 23.34 -5

1Pyramidalization defined for C3.
2Pyramidalization defined for C4.
3Tilt defined for C4.
4Tilt defined for C3.
5Tilt not defined for angles other than 90°.

Table 2.3.: Relative stabilization ∆E in eV, localized orbital patterns, ES (S1)
electronic configuration and relevant coordinates for the CoIns given in fig. 2.7.
Optimization was performed at SA-CASSCF(10,9) level with averaging over two
states. The energy of CoInS is used as reference for ∆E.

90° twisted geometry the energetic order of both configurations can be changed by
applying pyramidalization and tilt in inverse way, i.e. pyramidalization to orbital B4

and tilt to orbital A3. Again several possibilities exist. Following the pyramidaliza-
tion of C4 a tilt of the hemithioindigo (and hence orbital A3) can proceed towards C5

of the phenyl group, leading to CoInHT (fig. 2.7, the pyramidalized C4 marked by a
blue circle), or towards the hydrogen H8, leading to CoInEt (fig. 2.7, the pyramidal-
ized C4 marked by a blue circle). Both geometrical constellations are very prominent
and occur in various unfunctionalized polyenes. The triangular C-C-C or C-C-H ar-
rangements are known as -(CH)3-kinks[86, 155] or Hula-twists[123, 156]. In fact, the
C-C-S triangular arrangement at CoInS is closely related to the -(CH)3-kink. In HTI
the formation of CoInHT and CoInEt counteracts the mesomeric effect of the carbonyl
group, which is a strong indicator for their irrelevance in the ES dynamics. Indeed,
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both CoInHT and CoInEt are significantly higher in energy than CoInS and CoInAc

(tab. 2.3).
For the sake of completeness it is noted that CoInS, CoInHT and CoInEt possess
diastereomeric structures for 180° torsion around the central double bond (labeled
CoInS∗ , CoInHT∗ and CoInEt∗ with different characteristics due to the asymmetry in
the molecule (see Appendix F). Their formation is readily understood in the context
of the above discussion and will not be discussed further. CoInS∗ will be revisited in
sec. 3.1 when the isomerization mechanism of HTI is investigated.

Conical intersections associated with the 6π-electronic basic unit hexatriene
For HTI a 6π-electronic unit enclosing the oxygen and five carbon atoms C2 through
C6 can be identified. It can be regarded as a hexatriene basic unit with one carbon
atom exchanged by an oxygen. Hexatriene can undergo a cyclization to a CHD solely
from a cZc-conformation. Correspondigly, only E-HTI is cyclizable. This observation
will be of relevance for the study of the HTI photoreaction mechanism in sec. 3.1.
An intermediate geometry with a partially formed C1-C6 σ-bond can be located (fig.
2.7) with localized active orbitals A1,3,5 and B2,4,6. Due to the electronegativity of
the oxygen the energy of orbital A1,3,5 decreases, leading to the stabilization of the
∣
∣
∣A2

〉

-configuration and, thus, the degeneracy is reached along the WH-coordinate
without any additional geometrical deformations (CoInCHD). Rather, the exchange
of a carbon from the basic unit by an oxygen introduces the asymmetry needed to
reach a degeneracy. Correspondingly, this CoIn is notably stable (table 2.3) and must
not be neglected during the dicussion of the HTI dynamics, even if it is not associated
with the cis-trans-isomerization.

2.4.3. Conical intersection seam belonging to a single

Woodward-Hoffmann coordinate:

hemithioindigo-hemistilbene

In the previous section the rules for obtaining single CoIns (sec. 2.2) were utilized to
locate minimum energy CoIns in the HTI system (fig. 2.7). All CoIns with exception
of CoInCHD have in common that they were derived from a 90° twisted geometry by
applying pyramidalization and/or tilt. According to the discussion in sec. 2.3, these
CoIns belong to a plane orthogonal to the WH-coordinate cis-trans isomerization
(fig. 2.2). At CoInS and CoInAc the ES has a

∣
∣
∣A2

〉

-configuration, while at CoInEt and

CoInHT it has a
∣
∣
∣B2

〉

-configuration. The heterosymmetry condition (eq. 2.14) does
not allow for a configuration change along the seam (see also sec. 2.3). Hence, CoInS

and CoInAc are connected by a seam with
∣
∣
∣A2

〉

-configuration. CoInEt and CoInHT are

connected by a seam with a
∣
∣
∣B2

〉

-configuration. A connection between both seams
does not exist in the scope of the extended two-electron two-orbital theory. In the
following, the seam between CoInS and CoInAc is presented.
Referring to the general form of the seam, derived in fig. 2.3, the CoInS-CoInAc seam
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Figure 2.8.: CoIn seams mediating the cis-trans isomerization in ethylene (top) and
HTI (bottom). Geometries at selected points are given. Dashed lines indicate
the projections of calculated points along the seams. Only the seam segment
with positive pyramidalization angles is plotted (see fig. 2.3).

has to be curved in the pyramidalization/tilt plane as well. A straightforward linear
interpolation gives poor starting structures for the subsequent constrained CoIn op-
timization. To provide further supporting points, first, a purely pyramidalized inter-
mediate CoInS/Ac with a pyramidalization angle of 74° was optimized4. For negative

4For definition of the pyramidalization and tilt angles in HTI see Appendix G
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tilt angles no local minimum exists for high pyramidalization angles. An intermediate
structure with pyramidalization angle of 67° and tilt of −12° was obtained by scan-
ning the tilt coordinate. With this preliminary work the HTI seam between CoInS

and CoInAc was devided into linear segments and the interpolation approach could
be applied to finalize the seam (fig. 2.8, bottom). Both pyramidalization and tilt
were kept fixed during CoIn optimizations out of the interpolated geometries. For
comparison, the corresponding seam segment in ethylene is given in fig. 2.8, top.
The supporting points were optimized as follows: CoInpyr/tilt constitute a minimum
in the full 3N −8 IS, CoInpyr and CoIntilt are minimum energy CoIns in CS-symmetric
subspaces.
Indeed, the ehtylene seam and the HTI seam exhibit similar curvature in the IS,
however, with differences in the energetic profile and in the magnitude of geometrical
displacement. The HTI seam is characterized by weaker pyramidalization and tilt
which is attributed to the mesomeric effect of the carbonyl group and the favorable
orientation of the lone pairs of the heteroatoms. Furthermore, CoInAc constitutes a
minimum in the IS. The modest deformation together with the pronounced energetic
stability makes the seam segment around CoInAc easier accessible than its pendant
in the ethylene system and accelerates the relaxation to the GS.

2.4.4. Conical intersection seams connecting different

Woodward-Hoffmann coordinates: pyrrolylfulgide

Figure 2.9.: Two GS isomers of trifluoromethyl-pyrrolylfulgide, cZc (left) and C
(right). The basic unit 1, 3-CHD/cZc-HT is highlighted.

In the previous section a seam confined to the pyramidalization/tilt subspace of
the intersection subspace was presented. In complex systems more than one WH-
motion is feasible and concurrent photoprocesses may be initiated simultaneously.
In such case the seams connecting planes orthogonal to different WH-coordinates
have to be optimized. Rules for achieving this goal were presented in sec. 2.3.
In the following, these rules are utilized to find seams associated with competing
channels to the electrocyclic isomerization between the open (cZc) and the closed
(C) forms of trifluoromethyl-pyrrolylfulgide (fig. 2.9). Three scenarios are discussed
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Figure 2.10.: Visualization of the resonance integral hAB by superimposing the lo-
calized orbitals A and B along the conrotatory electrocyclic ring closure/opening
coordinate (WH-coordinate, green line) of the basic unit 1,3-CHD/cZc-HT. Pos-
itive (bij) and negative (aij) two-center resonance integrals between neighbor-
ing carbon centers are denoted. The requirement of eq. 2.7 is met at the
homosymmetric biradical geometry labled [3/3] with localized active orbitals
A1,3,5 = χ1 − χ3 + χ5 and B2,4,6 = χ2 − χ4 + χ6 and an equal number of positive
and negative two-center resonance integrals.

and a thorough analysis is carried out only for one scenario (for the analysis of the
remaining scenarios see Appendix H).

1. The WH-coordinate which guides the cZc↔C isomerization in fulgide is a conro-
tatory rotation. The basic unit associated with this rotation is the 6π-electron 1, 3-
CHD/cZc-HT (given in bold in fig. 2.9). The HOMO and the LUMO at the equilib-
rium geometries of CHD and cZc-HT are expressed in the basis of equivalent localized
MOs A and B according to eq. 2.16. For cZc-HT they read A1,3,5 = χ1 − χ3 + χ5 and
B2,4,6 = χ2 − χ4 + χ6 (fig. 2.10). For CHD the localized orbitals are A3,5 = χ3 − χ5

and B2,4 = χ2 − χ4 (fig. 2.10). Along the WH-coordinate the requirement of the sim-
plified resonance condition (eq. 2.7) is met at the homosymmetric biradical geometry
labeled [3/3] (fig. 2.10), as the resonance intergral hAB is composed of equal number
of positive (b12, b34, b56) and negative (a16, a23, a45) resonance integrals

hAB = b12 + a23 + b34 + a45 + b56 + a16 = 0. (2.17)

In the following hAB is visualized by superimposing the localized orbitals A and B
as shown in fig. 2.10. Then, the sign of the two-center resonance integrals results
from the relative phase of the atomic orbitals at neighbouring atoms. Naturally, this
representation resembles the nodal structure of the delocalized orbitals.
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mations. Center C1 and C2, as well as C4 and C5 are involved in aromatic rings
(pyrrole and maleic anhydride, fig. 2.9) and torsion around these bonds is hindered.
With this in mind the following biradical structures can be derived.

• Scenario 1 (green→red in fig. 2.11). Torsion around the C3-C4 bond weakens
b34. The simultaneous elongation of the C1-C6 distance lowers a16. The result
is a [2/2] open-ring geometry (fig. 2.11, top row). Additional torsion around
the C2-C3 bond leads to the [1/1] geometry. The integral a23 is weakened and
the C1-C2 unit (2nπ-unit is decoupled from the π-system (cAicBj = 0). At the
[1/1] geometry the resonance integral hAB consists only of two terms b56 and
a45.

• Scenario 2 (green→blue in fig. 2.11). Torsion around the C5-C6 bond weakens
b56. Simultaneous increase of the C1-C6 distance weakens a16. The result is a
[2/2] geometry (fig. 2.11, middle row), again an open-ring structure, which is
different from scenario 1. Additional torsion around the C2-C3 bond cancels a23

and decouples the C1-C2 unit from the π-system (cAicBj = 0), leading again to
a [1/1] geometry.

• Scenario 3 (green→magenta in fig. 2.11). Torsion around the C5-C6 bond weak-
ens b56. Simultaneous torsion around C2-C3 (fig. 2.11, bottom row) weakens
a23 and yields a [2/2] geometry. Increase of the C1-C6 distance decouples the
C1-C2 unit from the π-system and ultimately leads to the [1/1] geometry from
scenario 2. Decrease of the C1-C6 distance (i.e. formation of a σ-bond) decou-
ples the C1-C6 unit to yield a new [1/1] closed ring geometry with only b34 and
a45 contributing to the resonance hAB.

In principle CoIn seams can connect each pair of homosymmetric biradicals. In the
current example the interest is on seams reachable from the reference structure [3/3].
Which seam is energeticly favorable is decided by the mesomeric effects, i.e. the
interaction of the basic unit with the substituents.

3. The discussion of the mesomeric effects is limited to scenario 3. The remaining
scenarios are shown in the Appendix H. For the analysis the localized molecular
basis at each biradical geometry is considered. The geometrical deformations in 2.
divide the original π-system in subunits as indicated by the dashed lines in fig. 2.12.
Only non-bonding subunits contribute to the final MOs, i.e. subunits that undergo
bonding and antibonding interactions with the remaining π-orbitals can be discarded
(red crosses). Such subunits typically have no amplitudes in the terminal position.
The resulting localized active orbitals are A3,5 and B2,6 for the [2/2] geometry and
A3,5 and B2 for the [1/1] geometry.
For these orbitals the influence of the functional groups to satisfy the heterosymmetry

condition (eq. 2.14) is investigated. Two mesomeric groups are present in the fulgide,
an anhydride moiety with negative mesomeric effect (-M) conjugated to the basic unit
at C4 and C5 and an amino moiety with positive mesomeric effect (+M) conjugated
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at C1 and C2. Exemplarily, fig. 2.13 shows the interaction of the functional groups at
the geometries [3/3] and [1/1]. The energetic position of the resulting functionalized
orbitals is indicated.

[ 3/3 ] geometry. Each substituent can act on both orbitals A1,3,5 and B2,4,6 (fig. 2.13
green-rimmed arrows). By appropriate combination of the mesomeric effects
either the electronic configuration

∣
∣
∣A2

〉

or
∣
∣
∣B2

〉

is stabilized. In each case a
CoIn with the GS is reached simply by adjusting bond lengths as shown in fig.
2.13.

[ 1/1 ] geometry. Each substituent can act only on one orbital. The anhydride conju-
gates to center C5 from orbital A3,5, the amino group to center C2 from orbital
B2 (fig. 2.13 violet-rimmed arrow). Both effects stabilize exclusively

∣
∣
∣A2

〉

the
configuration.

From these predicted geometries low-lying CoIns were optimized by quantum chemi-
cal methods. The final CoIn optimizations of the predicted structures were performed
with an active space of 8 electron and 8 orbitals and averaging over the GS and the
first ES. The electronic wavefunctions at SA-2-CASSCF(8,8) show dominant contri-
butions from the biradical (

∣
∣
∣A•B•

〉

) and zwitterionic (
∣
∣
∣A2

〉

or
∣
∣
∣B2

〉

) configurations
in support of the practicability of the rules of thumb[126]. These structures are the
supporting points for the subsequent linear interpolation of the seam. In table 2.4
selected low-lying CoIns from scenarios 1-3 are presented. In the first row the geome-
tries of the CoIns and the structures of the homosymmetric biradical basic units are
superimposed. Latter were obtained by constrained optimization at CASSCF(2,2)
level, whereby the constraints originate from rule 2. Their optimization is not re-
quired for the seam, but advantageous for testing different substitution patterns.
The comparison shows that the CoIns retain to a great extent the geometries of the
biradicals. The interactions of the substituents with the π-system manifest in bond

Figure 2.12.: Localized MOs at the [3/3], [2/2] and [1/1] biradical geometries for
scenario 3 (green→magenta). Dashed red lines indicate the spatial separation
of the π-system into subunits. Red crosses mark atomic centers which do not
contribute to the final MOs.
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Figure 2.13.: Conjugation of the amino group (+M effect) and anhydride group
(-M effect) to the π-system of the basic unit in the fulgide. The energetic order
of the active orbitals is shown on the right side. For the reference geometry
[3/3] two conjugation patterns that stabilize either the

∣
∣
∣A2

〉

or
∣
∣
∣B2

〉

configura-
tion (upper and lower green-rimmed arrows) can be formulated. For the [1/1]
geometry of scenario 3 only one conjugation pattern is possible, stabilizing the∣
∣
∣A2

〉

configuration.

length rearrangements (table 2.4) rather than in structural deformations. As a general
rule mesomerically stabilized CoIns are more stable then CoIns formed by pyrami-
dalization or tilt alone. CoInA and CoInB are associated with the reference biradical
[3/3] (upper and lower branch in fig. 2.13) and thus with the WH-coordinate of the
electrocyclic reaction. CoInC, CoInD and CoInE are associated with WH-coordinates
leading to by-products and result from scenarios 1, 2 and 3, respectively.

4. The CoIn seams between the supporting points are now obtained by linear in-
terpolation. Thereby, the focus is on seams that either include CoInA or CoInB.
These seams constitute loss channels for the main photoreaction. The resonance
and heterosymmetry conditions (eqs. 2.13 and 2.14) do not allow for configuration
change along the seam. Hence, only CoIn structures with the same electronic con-
figuration, either

∣
∣
∣A2

〉

or
∣
∣
∣B2

〉

can be connected, resulting in two low-lying seam
branches (CoInB-CoInD, CoInB-CoInE) arising from CoInB. Only one seam branch
(CoInA-CoInC) arises from CoInA. The necessary constraints for the optimization of
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CoInA CoInB CoInC CoInD CoInE

∆E 1.0 0.2 0.0 0.7 0.4
geometry [3/3] [3/3] [2/2] [1/1] [1/1]
local. pattern A1,3,5/B2,4,6 A1,3,5/B2,4,6 A1,3/B4,6 A3,5/B6 A3,5/B2

ES config.
∣
∣
∣B2

〉 ∣
∣
∣A2

〉 ∣
∣
∣B2

〉 ∣
∣
∣A2

〉 ∣
∣
∣A2

〉

+M/-M C1/C4 C2/C5 C1/C4 -/C5 C2/C5

C1-C6 (Å) 2.42 2.03 4.38 3.20 1.76
C4-C(=O) (Å) 1.40 1.50 1.39 1.51 1.50
C5-C(=O) (Å) 1.53 1.43 1.51 1.39 1.45
N-C1 (Å) 1.30 1.41 1.29 1.37 1.43
N-C(−C2) (Å) 1.45 1.32 1.42 1.38 1.32

Table 2.4.: Structures, relative stabilization ∆E in eV, localized orbitals A and B,
ES electronic configuration of the extended two-electron two-orbital model, rele-
vant mesomeric effects and distances for selected low-lying CoIns from scenarios
1-3. The energy of CoInC is used as reference for ∆E. Optimization was done at
SA-CASSCF(8,8)/6-31G* level with averaging over three states. For comparison
the structures of the homosymmetric biradical basic units (red-colored), opti-
mized at SA-CASSCF(2,2)/6-31G* level with averaging over three states, are
superimposed.

the intermediate points along each seam can directly be obtained from 2. For the
CoInA-CoInC seam, the torsion around C3-C4 and the distance C1-C6 were kept fixed.
For the CoInB-CoInD seam, torsions around C2-C3 and C5-C6 as well as the distance
C1-C6 were kept fixed. For the CoInB-CoInE seam, the torsion around C2-C3 and the
distance C1-C6 were kept fixed. The seams are plotted in fig. 2.14 against the C1-C6

coordinate, which all seams have in common.
The findings are summarized in fig. 2.15, where the spatial and energetic relation

of the reactive CoIns and the competing CoIn seams (dashed lines) between the GS
and the ES is sketched. The reactive regions are shown in green, the competing loss
regions are shown in red, blue and magenta, according to the color code used in fig.
2.14. The desired photoreaction connects isomer C and cZc via CoInA and CoInB.
The substituent effects that allow for the fast dynamics in these complex fulgides,
simultaneously reduce the selectivity of the reaction as can be seen from fig. 2.15.
Thus, also the competing channels are easily accessible from the FC regions of both
isomers. They can either photostabilize the system or lead to by-products.
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Figure 2.16.: Adiabatic (solid lines) and diabatic (dashed) potential energy curves
for the photodissociation of a symmetric σ-bond (left) and for a hole transfer
process (right). Electronic configurations are denoted. During photodissocia-
tion the resonance condition is fulfilled along the bond-breaking coordinate, the
heterosymmetry condition along an asymmetric distortion. Latter can be intro-
duced through a functionalization or a geometrical deformation. In hole transfer
processes both active orbitals are decoupled, thus, the resonance condition is ful-
filled already at the FC point. Functionalizations and geometrical deformations
aim to stabilize the

∣
∣
∣nπ∗

〉

-state and to destabilize the
∣
∣
∣n2
〉

-state.

2.5.1. Application to photodissociation and hole transfer

processes

So far the rules of thumb have been discussed in connection with photochemical iso-
merization reactions in conjugated polyenes, where the photoreactivity is determined
by the interaction of the two active electrons in the highest occupied π and lowest
unoccupied π∗ orbitals (fig. 1.3). However, the rules have a much more general scope
of application, e.g. for photodissociation (fig. 2.16, left) and for hole transfer pro-
cesses (fig. 2.16, right).
To describe a photodissociation the active space has to be composed of the σ and σ∗

orbitals of the dissociating bond. Starting from a symmetric σ-bond (the basic unit)
the resonance condition is fulfilled along the bond-breaking coordinate (fig. 2.16,
left). Along this coordinate the GS aquires a covalent biradical character (

∣
∣
∣A•B•

〉

,
with A and B localized at either side of the bond), while the two ionic ES degenerate
(
∣
∣
∣A2

〉

±
∣
∣
∣B2

〉

). To satisfy the heterosymmetry condition asymmetric substitutions or
geometrical deformations can be introduced.
Hole transfer processes are associated with an electron transfer between two spatially
separeated MOs. An examples hereof is the population of a dark nπ∗ state out of
a bright ππ∗ state (fig. 2.16, right)[55]. Thereby, the n-orbital is centered at a het-
eroatom somewhere in the system. CoIns between the nπ∗ state and the closed-shell
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2. The extended two-electron two-orbital theory

GS can be understood in the scope of the extended two-electron two-orbital theory
by spanning the active space over the π∗-orbital, the n-orbital and the electron lone
pair therein. Then, again, a two-electron two-orbital active space can be constructed.
Due to the spatial separation of the n- and π∗-orbitals, the resonance condition is
fulfilled already at the FC point. Then, in the spirit of the two-electron two-orbital
theory the n-orbital can be labeled as A and the π∗-orbital as B. The closed shell
GS

∣
∣
∣n2
〉

is equivalent to
∣
∣
∣A2

〉

, the
∣
∣
∣nπ∗

〉

-state to
∣
∣
∣A•B•

〉

. Note, that in contrast to
conjugated polyenes the energetic order of both configurations is reversed. Geometri-
cal (pyramidalization, tilt) and substituent (mesomeric) effects have to be applied to
stabilize the

∣
∣
∣nπ∗

〉

-state and destabilize the closed-shell
∣
∣
∣n2
〉

-state in order to satisfy
the heterosymmetry condition.
Through the appropriate choice of the active pair of orbitals, not necessarily being
the highest occupied and lowest virtual orbitals in the system, it becomes possible to
understand and predict CoIns for various types of photoreactions.

2.5.2. Pre-optimization of conical intersections at Hartree-Fock

level

The extended two-electron two-orbital theory allows to express the diabatic conditions
for CoIn formation via adiabatic quantities, which can be obtained from quantum
chemical calculations. It is possible to formulate a CoIn optimization algorithm,
based on the resonance and heterosymmetry conditions (eqs. 2.13 and 2.14). Here
an algorithm for locating minimum energy CoIns similar to the projection method by
Bearpark and co-workers (sec. 1.2.3) is presented. The general goal is to minimize
an effective gradient composed of three terms

~g = ~f1 + ~f2 + PIS (∇RE1) (2.18)

The first and the second terms are the scaled gradients with respect to the nuclear
coordinates

~f1 =
∣
∣
∣V1

∣
∣
∣ · ∇RV1
∣
∣
∣

∣
∣
∣∇R

~V1

∣
∣
∣

∣
∣
∣

and ~f2 =
∣
∣
∣V2

∣
∣
∣ · ∇RV2

||∇RV2||
(2.19)

of the diabatic quantities

V1 = 2hAB + 4
n∑

i

〈

Ai
∣
∣
∣Bi

〉

− 2
n∑

i

〈

AB
∣
∣
∣ii
〉

V2 = JAA − JAB − εB + εA.

(2.20)

V1 and V2 are obtained from eqs. 2.13 and 2.14. Multiplication with the absolute
values of V1 and V2 assures that the corresponding gradient vanishes at the CoIn.
The last term represents the projection of the GS energy gradient onto the orthogo-
nal complement to the BS. This operator acts similarly to the operator used in the
projection method (eq. 1.19) with the only difference that the BS is defined by the
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vectors ~f1 and ~f2 instead of ~X1 and ~X2.
The presented method locates the lowest point on the GS PES for which the reso-
nance and heterosymmetry conditions are fulfilled. There is no need of calculating
ES properties or non-adiabatic coupling vectors. In principle all quantities can be
collected from a HF calculation by working in a localized basis for the HOMO and
the LUMO. Of course, as the electronic correlation is not properly described at HF
level the obtained geometries can serve only as reference points for a precise CoIn
optimization. Nevertheless, this approach can be valuable for a fast pre-computing
of CoIns in large molecular systems.
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Molecular switches are molecules which can be reversibly transformed between two
or more stable forms[73]. Transformation may be induced by variation of tempera-
ture, of the pH level, by interaction with electric or magnetic field. Molecules with
photochromic properties, i.e. which can switch between stable forms upon inter-
action with light, are promising candidates for technical applications as molecular
switches[158]. Applications in the fileds of biology for studying ultrafast processes
in protein folding[4], of medicine for targeted drug delivery[159] and for photoregula-
tion of enzyme activity[160–163], of molecular electronics for developing data storage
devices[63, 158, 164, 165], logic gates[166] and optomechanical devices[167, 168] were
proposed. For the practical use as photochromic switches molecules have to pos-
sess several properties, e. g. designable absorption spectra and solubility, very high
environmental and photochemical fatigue resistance, high switching efficiency with
respect to the amount of absorbed light, thermal stability and low production costs.
A variety of molecular classes, which satisfy the above requirements, azobenzenes[73],
diarylethenes[73], spyropyranes[73] to name a few, have been brought up for discus-
sion. In the course of this work HTI, a chromophore designed by linking stilbene
and thioindigo, and trifluoromethyl-indolylfulgide, a representative of the fulgide
family[73], were investigated. Switches based on the HTI chromophore undergo a
cis-trans isomerization after irradiation with near-Ultraviolet (UV) light. They are
more suitable for in-vivo applications than azobenzenes, which are currently in use
despite of their limited stability in cellular environments[169] and the need to use
UV radiation to excite their ππ∗ transitions. The decisive photochromic properties of
fulgides switches rely on the pericyclic ring-opening and ring-closure reaction based on
the embedded 1,3-CHD/cZc-hexatriene motif. The closed form absorbs in the visible
spectral range and the open form shows absorption exclusively in the UV and blue.
Thus, the ring-opening and ring-closure reaction can be selectively initiated with
the appropriate wavelength. In a joint experimental-theoretical work the complex
photoisomerization mechanisms of both compounds were elucidated by time-resolved
spectroscopy and state-of-the-art quantum chemical calculations. Time-resolved ab-
sorption spectroscopy was performed at HTI by T. Herzog and T. Cordes. Time-
resolved Infrared (IR)-spectroscopy was performed at trifluoromethyl-indolylfulgide
by F. O. Koller, W. J. Schreier and I. Pugliesi. Parts of this chapter are published in
A. Nenov, T. Cordes, T. T. Herzog, W. Zinth and R. de Vivie-Riedle J. Phys. Chem.
A 2010, 114, p. 13016 and A. Nenov, W. J. Schreier, F. O. Koller, M. Braun, R. de
Vivie-Riedle, W. Zinth and I. Pugliesi, 2012, 116, p. 10518.
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3. Molecular switches

3.1. Photoisomerization of

hemithioindigo-hemistilbene

The molecular system under study, HTI, belongs to a fairly new class of photochromic
molecules[170–173]. The molecular structure of HTI (fig. 2.6) is based on two well-
known organic compounds, namely thioindigo and stilbene. HTI exists in two dif-
ferent stereoisomers (fig. 2.6, Z and E), which can be interconverted by near-UV
and Visible (Vis) light (fig. 3.1). HTI can be regarded as a minimal model for
isomerization comprising the following key features: (i) photochromism (see spectra
in fig. 3.1); (ii) the possibility of studying the light-induced isomerization with high
time-resolution; (iii) composition from two different parent molecules with well-known
properties; (iv) the possibility to study the role of heteroatoms in the photoreaction;
(v) moderate size, which allows state-of-the-art quantum chemical calculations.
Recently, different experimental studies for differently substituted HTI molecules in

Figure 3.1.: UV/Vis spectra of HTI. The absorption of the Z-isomer (black solid
line) and the photostationary state PSE containing the isomer E at high (> 70%)
concentration PSE (blue dashed line) are shown for the non-polar solvent cyclo-
hexane. The arrows indicate the excitation wavelength λe in the time resolved
experiments.

polar solvents have been performed and a qualitative picture of both photoreactions
Z→E and E→Z have been published[150, 151, 174, 175]. HTI derivatives have been
used as ultrafast molecular switches in biomolecules to initiate structural changes at
reasonably high quantum efficiencies[150, 175, 176]. Forward and backward processes
in HTI showed significant differences in the reaction dynamics, and there is a strong
and systematic dependence on substitution[151, 174]. Recently a theoretical study of
HTI was published[177]. Surprisingly, the authors reported fluorescence decay as the
dominant pathway contrary to the interpretation given in the context of the experi-
mental investigations.
HTI is investigated as a complex prototype for Z/E isomerization providing several
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3.1. Photoisomerization of hemithioindigo-hemistilbene

heteroatoms steering the electron flux by their withdrawing and donating charac-
ters. The complexity of experiments and calculations is reduced by focusing on the
photochemistry of the simplest possible HTI compounds without any substituents
in a nonpolar environment, i.e., in cyclohexane. Results are obtained from ultrafast
absorption spectroscopy combined with state-of-the-art quantum chemical methods
(CASSCF/CASPT2 for unsolvated molecules, for details on the quantum-chemical
methods see Appendix I) to answer the following questions: (i) What are the reac-
tion coordinates for the isomerization process? (ii) What is the exact geometric and
electronic structure of the intermediates along the reaction pathway? (iii) What are
the driving forces for isomerization? (iv) Do the heteroatoms influence the choice
between the polar and nonpolar reaction pathways? (v) Why do both isomers, Z and
E, show such a different isomerization speed?

3.1.1. Experimental results: stationary and time-resolved

absorption spectroscopy

In order to allow ready comparison with the results from solvent-free theoretical
investigations, the experiments were performed in the nonpolar solvent cyclohexane.

Z→E photoreaction (400 nm excitation). Exciting the Z-isomer with near-
ultraviolet light at 400 nm immediately results in strong absorption changes. In
fig. 3.2a the time dependence of the absorption change is plotted as a function of
time delay between pump and probe pulses for λpr ) 437 and 573 nm. At time zero
there is a strong rise of the absorption at 573 nm. A weak decay on the time scale
of 2 ps is followed by a strong decrease in absorption on the 10 ps time scale. At
437 nm a rise in absorption is found on the time scale of 600 ps. At 573 nm a very
weak absorption decrease is found at late delay times. Absorption spectra taken at
different delay times are shown in fig. 3.2b. They are important for the molecular
interpretation of the observed transients. At early times, one observes the formation
of a broad and structured absorption change throughout the investigated spectral
range (fig. 3.2b, 0.2 ps). The absorbance change is characterized by peaks at 450
and 550 nm, and a minimum at 425 nm. The absorption increase can be assigned
to ES absorption, which is overlapped by negative signal contributions arising from
GS bleaching (centered at 425 nm) and stimulated emission centered at 490 nm.
The spectral positions, from both GS bleaching and stimulated emission, are in good
agreement with stationary spectra of HTI in the nonpolar solvent cyclohexane (fig.
3.1 and refs. [171] and [173]). On the time scale of a few picoseconds minor changes of
the peak positions and the oscillator strength of ES absorption/stimulated emission
can be observed (fig. 3.2b, 0.2 ps vs 2.0 ps). The dominant decay of the induced
absorption signal is seen on the time scale of 10 ps (fig. 3.2b, 2.0 ps vs 12 ps). After
this decay a broad absorption band with a slight maximum at 450 nm and bleaching
at 425 nm can be observed (fig. 3.2b, 25 ps). It is only after hundreds of picoseconds
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Figure 3.2.: Results from transient absorption spectroscopy. (a and b) Z→E isomer-
ization after 400 nm excitation. (a) Time-dependent absorption change measured
as a function of delay time for probing at 437 and 573 nm. (b) Transient spectra
at certain delay times between pump and probe pulse. (c and d) E→Z isomer-
ization after 485 nm excitation. (c) Time-dependent absorption change recorded
as a function of delay time for probing at 518 and 568 nm. (d) Transient spectra
at certain delay times between pump and probe pulse. In the range of prob-
ing wavelengths marked in blue the accuracy of the absorption measurement is
reduced due to stray light from the excitation pulse.

that most of the remaining induced absorption (>450 nm) decays and reveals the dif-
ference spectrum expected from the formation of the E-isomer. Global fitting of the
data set by a multiexponential model (using three time constants together with an
offset) and the inspection of the transient spectra (see fig. 3.2b) allow interpretation
of the data with the scope of recently established reaction models[178]. There is a
first kinetic component (τ0 = 2.0 ± 0.8 ps) connected with weak absorption changes.
The small changes in absorption indicate that this kinetic component may be caused
by reactions in the excited electronic state. Interestingly, changes of the stimulated
emission during this first reaction are much weaker than the ones observed recently
for HTI in more polar solvents such as dichloromethane[151] or methanol[150, 176].
Subsequently, one finds the second kinetic component (time constant of τ1 = 10 ± 1
ps) with a much stronger absorption signal representing the decay of the ES and the
transition into the GS (of the educt Z-HTI and the product E-HTI). This interpre-
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tation is supported by the observed decay of ES absorption and stimulated emission
and the appearance of the absorption peak at 450 nm corresponding to the product
isomer. At late delay times a very slow component τ2 = 650±200 ps is found, which is
related to the decay of a broad absorption band extending from 400 to 600 nm and the
superimposed recovery of GS bleach at 425 nm. This transition is tentatively assigned
to the decay of a short-lived triplet state. The photochemical conversion efficiency
φpc,Z of the Z→E process was measured in stationary experiments in the weakly polar
solvent dichloromethane and was found to be φpc,Z = 0.230 ± 0.035. An alternative
assignment of the 650 ps kinetic component to the decay of the excited electronic
singlet state can be ruled out by the following observations. One finds a very small
fluorescence quantum yield of HTI in cyclohexane of φfl = 0.0003 and a rather long
radiative lifetime of τrad = 15 ns (obtained from the Strickler-Berg relation[179]). As
a consequence, the fluorescing excited electronic state should have a livetime τS1 in
the range of τS1 ≈ τradphifl = 4.5 ps. This finding gives clear evidence that the slow
kinetic component τ2 = 650 ± 200 ps is not associated with a (fluorescent) singlet
state populated for the major fraction of the molecules.

E→Z photoreaction. The transient absorption changes induced by excitation at
480 nm of the E isomer are shown in fig. 3.2c,d. The time dependence observed
at two probing wavelengths (518 and 568 nm, fig. 3.2c) reveals very fast reaction
dynamics. This increased reaction speed is also visible in the transient spectra shown
in fig. 3.2d. Immediately after excitation there are features from ES absorption and
GS bleaching (fig. 3.2d). First absorption transients occur on the 100 fs time scale
(see fig. 3.2c) and are followed by a 1 ps process. Subsequently, a weak absorption
change is visible on the 10 ps time scale. No indication for a transient in the 100
ps range have been found. A multiexponential modeling of the transients yields
time constants of τ0 = 260 ± 80 fs, τ1 = 1.2 ± 0.4 ps, and τ2 = 13 ± 6 ps. With
the molecular model proposed for other HTI molecules[178] the 260 fs process is
assigned to the initial motion on the excited electronic potential surface, the 1.2 ps
transient to the transition from the ES to the GS of educt and product, and the
13 ps process to vibrational cooling of the reformed E isomer. The photochemical
yield for Z-product formation was determined in dichloromethane to be only φpc,E =
0.053 ± 0.016. In the following sections the combination of the experimental data
on the minimal molecular models HTI in an nonpolar solvents with state-of-the-
art quantum chemical calculations allows a detailed insight into the pure molecular
driving forces for Z/E isomerization.

3.1.2. Theoretical results: reaction pathways in the excited state

Vertical excitation from the ground state isomers. The GS equilibrium struc-
tures of both isomers characterize the initial and the final states of the photore-
action and were optimized using density functional theory with the B3LYP hybrid
functional[180–182], which has proved to be reliable for GS problems. Both isomers
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SS-CASSCF(14,13) SS-CASPT2(14,13) exp.
∆ESN S0

〈

SN

∣
∣
∣µ
∣
∣
∣S0

〉

∆ES1S0

〈

SN

∣
∣
∣µ
∣
∣
∣S0

〉

∆ES1S0

(eV) (D) character (eV) (D) character (eV)
Z S1 3.75 0.00 nπ∗ 3.48 2.75 ππ∗ 2.92

S2 4.67 2.39 ππ∗ 3.72 0.00 nπ∗ -
E S1 3.57 0.00 nπ∗ 3.27 2.44 ππ∗ 2.76

S2 4.39 2.10 ππ∗ 3.60 0.00 nπ∗ -

Table 3.1.: Vertical excitation energy ∆ESN S0
, transition dipole moment and ES

electronic character at the equilibrium geometries of Z-HTI and E-HTI optimized
at B3LYP/6-31G* level. Transition dipole moments obtained from the oscillator
strength f , according to

〈

S1

∣
∣
∣µ
∣
∣
∣S0

〉

= [3f/2∆CASP T 2
S0−S1

].

were found to be planar, i.e. of CS-symmetry. At SS-CASSCF(14/13) level the low-
est excited electronic state corresponds to a n → π∗ excitation from the oxygen lone
pair into the aromatic system (tab. 3.1). In CS-symmetry this state has no oscilla-
tor strength. Only by symmetry breaking motions some oscillator strength may be
borrowed. The second ES is a π → π∗ transition with a transition dipole moment of
2.39 Debye for Z-HTI and of 2.10 Debye for E-HTI. The excitation energies for the
π → π∗ transition of 4.67 eV (Z-isomer) and 4.39 eV (E-isomer) deviate significantly
from the experimental values (see absorption spectra in fig. 3.1) with maxima at
2.92 eV and 2.76 eV, respectively. Perturbative correction recovers most of the miss-
ing dynamic electron correlation energy of the ππ∗ state, which becomes the lowest
ES at SS-CASPT2 level with excitation energies corrected to 3.48 eV and 3.27 eV.
Comparable calculations at time-dependent density functional theory level confirm
this energetic order[177]. However, the shortcomings of time-dependent density func-
tional theory in describing double excitations, as well as the overestimation of charge
transfer states, which gain in importance away from the FC region, prevents from its
use for the description of the complete ES reaction path. Based on the state order
predicted by SS-CASPT2 and on the magnitude of the transition moments the as-
sumtion is made that upon laser irradiation the electron is excited into a S1 state of
ππ∗ character. Furthermore, the ππ∗ and nπ∗ states are very close in the FC region
(energy separation ≈ 0.3 eV) and one can speculate on a partial excitation of the nπ∗

state by femtosecond pulses opening reaction channels, which compete to the direct
S1-relaxation pathway. Experimental indications are found in the long time constant
τ2 = (650 ± 200) ps, tentatively attributed to triplet contributions. Preliminary cal-
culations support the existence of a side channel trapping the molecule in a dark nπ∗

region on S1 from where it can decay via intersystem crossing.

Conical intersection seam. The isomerization of HTI is a typical example of an
ultrafast photoreaction proceeding on a picosecond time scale. Its ES decay cannot
be explained by means of the avoided crossing model applying Fermi’s golden rule[72].
Furthermore, a radiative decay can be excluded as a major decay path to the GS due
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to the low fluorescence quantum yield φfl = 0.0003) (sec. 3.1.1). It is therefore obvi-
ous to assume a CoIn gated decay model that manages to explain both the ultrafast
time scale and the suppressed fluorescence.
Using the rules of thumb for predicting and optimizing CoIns presented in sec. 2.2
and 2.3 a number of low-lying minimum energy CoIns could be obtained systemat-
ically (sec. 2.4.2). Moreover, several of them could be connected via a low energy
CoIn seam (sec. 2.4.3). With the knowledge about the energetic position of the FC
points the accessibility of the individual CoIns can now be discussed in more detail.
CoInHT, CoInHT∗ , CoInEt and CoInEt∗ lie above the FC limit (tab. 3.2). The strong
deformations needed to counteract the mesomeric effect of the carbonyl group render
them inaccessible from the FC region. These four CoIn are not further considered.
CoInS, CoInS∗ , CoInAc and CoInCHD are energetically accessible from the FC point.
Of all four, CoInS∗ is the energetically highest one due to the sterically unfavorable
alignment of the hemistilbene and the hemithioindigo moieties. CoInS lies about 0.5
eV below CoInS∗ . CoInCHD is the global minimum. The energetic position of CoInAc

is very sensitive to dynamic correlation effects due to the notable nπ∗ contribution to
the ES wavefunction[183]. While SA-CASSCF(10,9) predicts energy in the range of
CoInCHD, at MS-SR-CASPT2(14,13) level CoInAc lies in the range of CoInS. Hence,
insufficient description of dynamic correlation effects falsely overestimates the weight
of CoInAc (and, hence, of the seam region around CoInAc, fig. 2.8) in the decay pro-
cess to the GS.

Perturbative treatment was applied to check the relative energies along the seam

Figure 3.3.: SA-CASSCF(10,9), SA-CASSCF(14/13) and MS-SR-CASPT2(14/13)
energies (averaging over two states) for selected points along the CoIn seam
between CoInAc and CoInS, plotted against the normalized length of the seam in
the full Cartesian space. The blue and the green dots follow the CASSCF seam,
the brown dots follow the CASPT2 corrected seam.

between CoInS and CoInAc (fig. 2.8). At MS-SR-CASPT2(14,13) level with averaging
over the lowest two states the dynamic correlation lifts the degeneracy up to max-
imally 0.5 eV. However, a MS-SR-CASPT2(14,13) scan in the pyramidalization/tilt
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plane could reduce the energy gap to less than 0.1 eV confirming the existence of a
low-lying CoInS/CoInAc seam also at CASPT2 level. In fig. 3.3 the energetic profile
of the seam at different levels of theory is plotted against the normalized length of the
intrinsic seam coordinate. Latter was obtained by adding up the absolute distances in
space between subsequent points on the seam. Thereby, the absolute distances were
rescaled with respect to the normalized distance between CoInAc and the next point
on the seam. The blue and the green dots in fig. 3.3 follow the seam optimized at
SA-CASSCF(10,9) level, the brown dots follow the MS-SR-CASPT2(14/13) corrected
geometries. When perturbative correction is applied the region of pure ππ∗ character
(around CoInS) is stabilized significantly and the seam flattens. Comparison of the
energies of the FC points (tab. 3.2) with the CASPT2 corrected CoIn seam indicates
that it is energetically accessible during the photoreaction.
Once the CoIn seam is reached the decay to the GS becomes possible. Information

about the GS products, accessible from the tip of the CoIn, can be obtained from a
first order Taylor expansion in the BS around a CoIn (sec. 1.2.3). Therefore, a scan
was performed on a circular grid around each of the minimum energy CoIns CoInS,
CoInAc and CoInCHD. The resulting topologies are presented in fig. 3.4. Optimization
from various initial points on the GS PES around CoInS led exclusively to Z-HTI. No
gradient towards E-HTI emerges directly from the CoIn tip. Both E-HTI and Z-HTI
can be formed with equal probability from CoInAc. Both gradients remain indistin-
guishable as they are overlapped by a large gradient in the direction of increasing
C-S distance. For this reason no preferential formation of either isomer out of CoInAc

is expected. For the sake of completeness, the possible formation of a metastable
byproduct, containing an oxetene ring is noted. However its formation is unlikely due
to the tilted form of CoInAc. The GS PES around CoInCHD exhibits a pronounced
gradient towards E-HTI. The possible formation of a closed-ring chromene derivative
introduces a side reaction. The chromene is metastable and relaxes rapidly to E-HTI.
No Z-HTI formation is possible from CoInCHD. An important conclusion from the
aforementioned analysis is that for neither of the two reactants an exclusive decay
to the corresponding product can be observed from the accessible regions of the IS.
CoInS and CoInCHD photostabilize Z-HTI and E-HTI, respectively. Neither isomer is
preferentially formed out of CoInAc, in agreement with the measured quantum yields
of less than 50%.
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3.1. Photoisomerization of hemithioindigo-hemistilbene

Figure 3.5.: Reactive coordinates for the Z-HTI/E-HTI isomerization. (left) Out-
of-plane torsion in the range [0°:360°]; (middle) Pyramidalization (shown for a
torsional angle of 90°) in the range [-90°:90°]; (right) Tilt (shown for a torsional
angle of 90°and pyramidalization of 60Â°) in the range [-90°:90°].

Relaxed scan on the excited state potential energy surface. The reactive coordi-
nates, suited to describe the relaxation from the FC point to the energetically reach-
able degeneracy region, are torsion, pyramidalization and tilt (fig. 3.5). Naturally,
these coordinates fufill the resonance (torsion) and heterosymmetry (pyramidaliza-
tion, tilt) conditions for CoIn formation derived in sec. 2.21.

The torsion constitutes the main reaction coordinate, facilitating the isomeriza-
tion. The pyramidalization and the tilt gain in significance as the CoIn seam is ap-
proached. Due to the heteroatoms involved in the CoIns along the seam (sec. 2.4.2)
the tilt deformation is less pronounced (fig. 2.8 and tab. 3.2). Therefore, torsion
and pyramidalization were chosen for a relaxed scan to obtain preliminary informa-
tion about potential relaxation channels from the FC region to the seam. The scan
was performed at SA-CASSCF(10,9)/6-31G level. The obtained PES, shown in fig.
3.6, is solely of qualitative nature as the fairly small basis set 6-31G has been used
and dynamic correlation effects were not considered. Another issue was the construc-
tion of the active space. CASSCF favors the nπ∗ state compared to the ππ∗ state,
which leads to an inverted energetic order in the FC-region (tab. 3.2) and prevents
a balanced description at CASSCF level. However, non-negligible contributions from
the nπ∗-configuration are responsible for the stabilization of CoInAc. They make the
inclusion of the oxygen lone pair in the active space necessary in the vicinity of the
seam. In principle the unbalanced description of the electron correlation could be
remedied by CASPT2. However, this is not affordable for a two-dimensional scan.
A consistent picture of the PES can be obtained on CASSCF level by excluding
the oxygen lone pair from the active space and afterwards rescaling the energy of
the region around CoInAc to reflect the energetic position obtained at CASPT2 level
(tab. 3.2). Selected geometries on the two-dimensional PES were re-optimized at
SS-CASSCF(10,9)/6-31G* level to assess the quality of the scan.
Z→E potential energy surface. Optimization on the ππ∗ state induces bond length

1For details on their construction in HTI see Appendix G
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3. Molecular switches

Figure 3.6.: ES PES for the Z↔E reaction obtained from a two-dimensional relaxed
scan in the region 0°and 180° torsion and between −30°and 60°pyramidalization.
Two surfaces arise on the E-HTI side between 110° and 170° torsion for different
residual deformations. The upper surface is optimized starting at the FC point,
the lower surface starting at CoInCHD. Approximate ES reaction pathways are
derived from the topography of the PES (dashed white lines).

rearrangements which drive the system out of the FC region (FCZ∗ , 0° torsion, 0°
pyramidalization). Thereby, the central C-C double bond is elongated in response
to the partial promotion of electron density into the π∗-orbital. The relaxed scan
suggests the existence of a local minimum in the region around 20° torsion and 20°
pyramidalization. Unconstrained optimization yields a local minimum at 29.4° torsion
and 13.1° pyramidalization (MinS1Z, see tab. 3.2). It turns out, that pyramidalization
is initiated immediately after the FC point is left. Next, a transition state search was
carried out in the region around 40° torsion and 20° pyramidalization. The transition
state (TSS1Z) is shifted with respect to MinS1Z to larger torsion (43.0°) and pyrami-
dalization angles (21.3°). TSS1Z is characterized by an imaginary frequency of -43.73
cm−1, whose eigenvector activates the tilt and drives the system towards CoInS. The
barrier height is calculated to be less than 1.0 kJ/mol at CASSCF level and about
1.5 kJ/mol at CASPT2 level. The two-dimensional scan reveals a second possibility
to reach the seam in the surrounding of CoInAc by backward pyramidalization after
TSS1Z is passed. Hence, two main relaxation pathways towards the seam are postu-
lated (denoted by white arrow in fig. 3.6).
E→Z potential energy surface. Optimization on the ππ∗ state induces bond length
rearrangements which drive the system out of the FC region. The 180° torsion/0°
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3.1. Photoisomerization of hemithioindigo-hemistilbene

pyramidalization point coincides with a local minimum on the E-HTI side (MinS1E).
The relaxed scan suggests a preferable initial pyramidalization of opposite sign as
compared to the Z→E isomerization. Correspondingly, this deformation is expected
to lead towards CoInS∗, while CoInS is inaccessible from the E-HTI side. However,
due to the unfavorable alignment of the hemithioindigo and hemistilbene moieties at
CoInS∗ this CoIn is destabilized notably (tab. 3.2). Its formation is possible, but
seems highly unlikely. Hence, the relaxation channel through CoInS∗ was discarted
and the two-dimensional scan was restricted to the interval between -30° – 30° pyra-
midalization, revealing a relaxation pathway towards CoInAc (upper white arrow in
fig. 3.6).
In sec. 2.2 it was discussed that E-HTI contains a cyclizable C5O moiety which can
undergo an electrocyclic ring-closure. If CoInCHD, the CoIn associated with the cy-
clization, is taken as starting point for performing a relaxed two-dimenisonal scan
in the torsion/pyramidalization plane a broad energetically low lying valley (lower
surface in fig. 3.6) is found to characterize the S1 PES. The existence of multiple
solutions to the constrained optimization problem implies that further coordinates
(here an electrocyclic ring-closure coordinate) are necessary for the unique construc-
tion of the E→Z surface. Nevertheless, even in the reduced coordinate space of fig.
3.6 it is obvious that already at 10° torsion a rapid relaxation to the region around
CoInCHD is feasible. This channel is associated with a low ES barrier, which renders
it easily accessible from the FC point (lower white arrow in fig. 3.6).

3.1.3. Connecting theory and experiment

The results provided from experiment and theory demonstrate that the cis-trans iso-
merization of HTI conceals a complex reaction mechanism, offering several decay
channels through an extended, low lying, accessible CoIn seam. As a schematic rep-
resentation fig. 3.7 shows the energetic profile of the ES reaction pathways. The
out-of-plane torsion as the main reaction coordinate is displayed in the transparent
plane connecting Z and E. The most left and right segments of that plane visualize
the effect of bond length rearrangement in the planar structures. The elongation of
the central carbon-carbon bond was found to give the major initial energetic stabi-
lization. The diagonal light-gray plane, crossing the torsional plane at 90°, combines
pyramidalization and tilt for a constant torsional angle of 90° 2 and contains a pro-
jection of the CoIn seam connecting CoInS and CoInS∗ via CoInAc (red dashed line).
Based on the arguments derived for the optimized seam segment CoInS/CoInAc (pos-
itive pyramidalization, fig. 2.8), the seam can be readily extrapolated to the region
of CoInS∗ (negative pyramidalization). This extension is expected to lie energetically
high due to the unfavorable orientation of the fragments. In support of this spec-
ulation an intermediate geometry on the seam CoInS∗/Ac, which is the analogue to
CoInS/Ac, was optimized. It was found to lie energetically above the E-HTI FC point.

2The tilt/pyramidalization plane lies orthogonal to the torsional plane. For a comprehensible
visualization, both planes were drawn at an angle of 45Â°.
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3. Molecular switches

Figure 3.7.: Schematic representation of the reaction pathways on the ES PES.
The out-of-plane torsion is symbolized by a transparent plane connecting Z and
E. The shaded planes sketch the effect of bond length rearrangement within the
planar geometries. The diagonal light-gray plane combines pyramidalization and
tilt for a constant torsional angle of 90° and contains a projection of the CoIn
seam connecting CoInS and CoInS∗ via CoInAc (red dashed line). Both dark-
gray surfaces connecting the torsional plane and the CoInS/CoInS∗ seam plane
symbolize modes of contrariwise pyramidalization and torsion.

Evolution from the FC regions of Z-HTI and E-HTI is driven by pyramidalization
and torsion of opposite sign (see fig. 3.6). This is indicated by the two dark-gray
surfaces connecting the torsional plane to the seam plane.

The Z→E reaction . After excitation of the Z-isomer the initial S1-relaxation
is dominated by rapid bond length rearrangement, mainly of the central C-C double
bond, accompanied by solvent adjustment to the altered electron density distribution.
Both processes contribute to the experimental signal. The reaction then proceeds in
a flat region of the ES where gradual redistribution of the energy into torsion and
pyramidalization drives the molecule into the local minimum MinS1Z. Evidence for
the existence of such a local minimum is provided by the detected weak fluorescence.
As the ππ∗ and the dark nπ∗ states (tab. 3.1) in the FC region are nearly of the same
energy, an additional relaxation pathway via a singlet (nπ∗)-triplet (ππ∗)-singlet (π2)
cascade is assumed. Both pathways contribute to the reaction rate k0 = 1/τ0 with
τ0 = (2.0 ± 0.8) ps, observed experimentally. From the absorption changes in the

78



3.1. Photoisomerization of hemithioindigo-hemistilbene

Figure 3.8.: Rate model illustrating the photochemical behavior of HTI, based on
the experimental data (time constants, rates) and quantum-chemically extracted
decay pathways, including the non-reactive and the possible triplet channels.
The color code distinguishes between processes associated with the different rate
constants: processes contributing to the rate constant k0 = 1/τ0 are marked
in red (Z→E) and yellow (E→Z), processes contributing to the rate constant
k1 = 1/τ1 are marked in blue (Z→E) and green (E→Z). The triplet-singlet-
triplet cascade responsible for the long time constant τ2 = (650 ± 250) ps on
the Z-HTI side is colored in cyan. The distribution in the individual channels
is estimated from the quantum yields φpc,Z/E and φisc. The rate constant kAc

1 of
the decay towards the reactive CoInAc is assigned to the effective reaction rate
constants for the Z→E (keff,E→Z) and E→Z (keff,Z→E) isomerization. The rate
constant kCHD

1 of the decay towards CoInCHD is assigned to the non-reactive rate
constant kNR.

range of the GS band at 425 nm the yield φisc of triplet formation is estimated in the
order of the isomerization yield φpc,Z, i.e. φisc ≈ 23%. This value is deduced from the
observation that the amplitude of the bleach recovery and the final offset spectrum at
435 nm (representing the photochemical conversion Z to E) are similar. Consequently,
approximately 77% of the molecules proceed along the singlet pathway.

The second time constant τ1 =(10 ± 1) ps is attributed to the overcoming of the
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3. Molecular switches

shallow ES barrier and relaxing towards the seam. Two main relaxation channels
contributing to the overall rate k1 = 1/τ1 were identified, a reactive channel medi-
ated by CoInAc and a photostabilizing channel via CoInS. Dynamic simulations are
indispensable for recovering the population of the individual channels. Without this
information the experimental quantum yields are used to estimate the distribution
and reconstruct the time constants of the individual relaxation processes (fig. 3.8).
Thereby, following assumptions are made: a) deactivation pathways through the re-
gions around the reactive CoInAc and the photostabilizing CoInS are each described by
one effective time constant giving the collective decay in this region; b) a 1:1 bifurca-
tion in the GS is assumed for the reactive seam segment around CoInAc, i.e. the exact
topology of the seam and effects coming from momentum conservation are neglected;
c) the region in the vicinity of CoInS is completely non-reactive, i.e. an insurmount-
able GS barrier towards E-HTI is assumed; d) deactivation through fluorescence is
neglected. With the estimated population of the siglet state of 77% and the quantum
yield for the Z→E isomerization φpc,Z ≈ 23% the population distribution into the
reactive and non-reactive channel is estimated to be 46%(reactive):31%(nonreactive).
Based on these considerations the effective reaction rate keff,Z→E from MinS1Z to the
E-isomer can be estimated to be keff,Z→E = 1/(16.8 ± 1.6) ps−1 (fig. 3.8).

The E→Z reaction . The initial relaxation process from the FC point of E-HTI is
comparable to the one on the Z-side and leads to the planar minimum MinS1E. There
are no experimental indications of possible triplet contributions, i.e. 100% of the
molecules proceed via the singlet relaxation pathway. During the first several hundred
femtoseconds (τ0 = (260 ± 80) ps) only bond relaxation takes place. Two pathways
emerge from MinS1E. One proceeds primarily along the torsion coordinate towards
CoInAc. A second one, involving the electrocyclic ring-closure of the C5O fragment,
opens the valley to CoInCHD. The first pathway is the photoreactive pathway and is
mechanistically comparable to the one discussed for the Z→E isomerization. Applying
the assumptions outlined above and considering that no Z-HTI can be formed after
relaxation through CoInCHD the time constants of the individual relaxation processes
are reconstructed (fig. 3.8). Taking again the low quantum yield of φpc,E ≈ 5.3%
as a basis only 10.6% of all molecules follow this path. The remaining 89.4% evolve
along the second pathway, the rapid non-reactive deactivation via CoInCHD. With
the specific values for τ1 the effective reaction rate keff,E→Z for Z-HTI formation from
MinS1E can be determined keff,E→Z = 1/(11.3 ± 3.7) ps−1 (fig. 3.8). This value which
is close to the one obtained for the reactive segment of the Z→E reaction and is much
slower than the direct non-reactive decay rate kNR ≈ 1/(1.3 ± 0.4) ps−1 via CoInCHD

(fig. 3.8). The observed high rate of the non-reactive decay is explained well by the
calculations. The two-dimensional scan scan reveals that E-HTI can relax into the
CoInCHD valley already at 10° torsion. The substantial differences observed for the
Z→E and E→Z reactions for time constants and quantum yields can be explained by
the existence of an efficient photostabilizing channel accessible only from E-HTI and
not to differences in the isomerization mechanism itself.
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3.1. Photoisomerization of hemithioindigo-hemistilbene

3.1.4. Summary: charge transfer formation and charge balance
recovery mediated by heteroatoms drive the isomerization

Figure 3.9.: Idealized ES PES segment from FCZ to the CoIn seam with electrostatic
potentials for selected points. The electrostatic potentials were projected on the
0.01 electron bohr−3 isodensity surface. Regions with high proton affinity show
in red, regions with low proton affinity show in blue. For optimal contrast ratio
a minimum value of −0.05 a.u. and a maximum value of 0.15 a.u. were used.
The charge transfer state formed with increasing torsion cannot be stabilized in
the gas-phase and becomes a transition state on the ES.

The driving force for the isomerization is the flux of electron density in the π-system
of HTI. Upon excitation density is transfered from the lone pair of the sulfur into
the π-system of hemistilbene (fig. 3.9, FC). This process weakens the cental double
bond and activates torsion. The isomerization is initiated. With ongoing torsion a
continous decoupling of both sub-units is observed until the delocalization of the π-
orbitals breaks down (fig. 3.9, transition state). At the twisted geometry the carbonyl
group causes the stabilization of a charge transfer state with the frontier electrons
localized at the hemithioindigo. Yet, in gas-phase and unpolar solvents the charge
transfer geometry is unstable and is not formed. Additional deformations, which lead
to the CoIn seam (fig. 3.9, CoIn), restore charge balance. The CoIns transfer back
electron density to the hemistilbene via the lone pairs of the heteroatoms. Therefore,
in gas-phase and in unpolar solvents CoInS and CoInAc coincide with local minima
on the ES, i.e. the CoIn seam crosses the ES MEP and allows for a fast relaxation to
the GS. The picture is expected to change when polar solvents come into play.
In summary, the electron density flux is governed by the heteroatoms. They initiate
charge transfer at the FC, thereby facilitating the isomerization, and restore charge
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3. Molecular switches

neutrality at the seam. Their presence opens new possibilities to stabilize the reaction
pathway by adjustment of the electrostatic interactions. On one hand, this new
diversity comes at the expense of additional loss channels. In the presented model
such a loss channel opens on the side of E-HTI and acts as a very efficient trap. On
the other hand, the new diversity allows for fast photochemical switching, even in
bulky systems such as HTI. Slow skeletal deformations are replaced by fast charge
redistributions using substituent effects in heterocycles.

3.2. Photoisomeriaztion of

trifluoromethyl-indolylfulgide

Figure 3.10.: Isomers of the trifluoromethyl-indolylfulgide. Notation refers to the
configuration of the 1,3-CHD/HT central unit, C denotes closed-, Z open-ring
configuration. In the open-ring structures c = cis and t = trans describe the
orientation of the functional groups with respect to the single bonds C2-C3 in the
hexatriene unit. Coordinates relevant for the subsequent discussion are denoted:
the C1-C6 distance and the torsion angles around the C2-C3 and around the
C5-C6 bond.

The molecular system under study, trifluoromethyl-indolylfulgide, belongs to the
class of fulgides[73]. It exists in one closed-ring form denoted as C-form in fig. 3.10
and several open-ring forms. Figure 3.10 shows the Z-form (with respect to the ori-
entation of the functional groups to double bond C3-C4), which exists in two stable
conformers, denoted as cZc- and tZc-form, indicating the different orientation of the
functional groups with respect to the single bond C2-C3 in the hexatriene subunit
(c = cis, t = trans). Illumination with visible light (fig. 3.11) induces the electro-
cyclic ring-opening of the C-form. Only the cZc-form is cyclizable, the electrocyclic
ring-closure is initiated by UV light (fig. 3.11). Further non-cyclizable open-ring con-
formers (e.g. cEc, tEc, not shown) are accessible from the Z-form. The isomerization
from and into the E-form is not addressed the present study as the Z/E ratio in every
photostationary state was found to be less than 2%[184].

The ultrafast kinetics of ring-opening and closure have been investigated with
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3.2. Photoisomeriaztion of trifluoromethyl-indolylfulgide

Figure 3.11.: UV/Vis spectra of trifluoromethyl-indolylfulgide. The absorption of
the C-isomer (blue, dashed) and the photostationary state PSZ (black, solid)
containing a mixture of the cZc- and tZc-isomers) are shown for the non-polar
solvent 1,4-dioxane. The arrows indicate the excitation wavelength λe in the time
resolved experiments.

UV/Vis transient absorption experiments and time-resolved fluorescence studies[152,
153, 185–200]. In the indolylfulgides and related indolylfulgimides the ring-opening
occurs with a reaction time in the range between 2 and 20 ps and a quantum effi-
ciency between 0.1% and 50% depending on sample temperature[152, 196–198, 200].
The ring-closure proceeds on a sub-picosecond time scale (0.2-0.5 ps) with quan-
tum yields between 10% and 17% and is not influenced by thermal or optical excess
energy[153, 199]. These experiments performed in the UV/Vis range have given
important information. However, questions on the detailed molecular reaction mech-
anism could not be answered. Time-resolved spectroscopy in the mid-IR as comple-
mentary probe for structural and vibrational dynamics can fill this gap. First time
resolved IR-probe experiments on indolylfulgimides in the groundstates have been
carried out by Braun and co-workers[63, 201, 202].
In this work the dynamics of both the ring-opening and the ring-closure reaction
of trifluoromethyl-substituted indolylfulgide, dissolved in tetrachloroethylene, is ex-
plored by means of time resolved UV/Vis-pump IR-probe spectroscopy, characterizing
the reaction in the excited and in the ground state. The sensitivity of this spectro-
scopic technique towards structural and vibrational dynamics will allow to investigate
the interactions of the functional groups with the photochromic core. A comparison to
the previously studied indolylfulgimides will aid the design of photochromic switches
with tailored properties like high quantum yields[125, 126, 193]. State-of-the-art ab
inito quantum chemical calculations (for details on the quantum-chemical methods
see Appendix J) resolve the missing structural resolution at the atomic level and
permit the interpretation of the observed time constants in terms of electronic and
structural changes.
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3.2. Photoisomeriaztion of trifluoromethyl-indolylfulgide

stretch bleach signals and indicate that the photoinduced reaction is associated with
a substantial change in bond character of the CO groups on the maleic anhydride.
Although a complex temporal evolution of the transient signals is observed, relevant
time-scales of the C→Z and Z→C reactions can be identified. For both, the ring-
opening and the ring-closure reaction, transient spectra recorded at a delay time of
50 ps agree well with the scaled steady-state difference spectra of the isomerically
pure C and Z isomers (fig. 3.12a,d) For delay times larger than 50 ps the signals
remain constant (data not shown). Thus, both the C→Z ring opening and the Z→C
ring-closure reactions are completed within 50 ps. At early delay times, before and
around time-zero up to ≈ 0.4 ps, the dominant signal contributions are due to per-
turbed free induction decay and cross-phase modulation[203, 204]. Furthermore, the
solvent tetrachloroethylene shows signal contributions up to 0.4 ps. Thus, the time
range containing information exclusively on the dynamics of the ring-opening and
ring-closure reaction lies between 0.4 and 50 ps. The observed absorption changes
can be classified into three groups according to their spectral signature: (i) recovery
and cooling of reactant GS (blue dashed lines in fig. 3.12b,e), (ii) decay of singlet ES
(red dashed lines in fig. 3.12b,e) (iii) formation and cooling of product states (black
dashed lines in fig. 3.12b,e).

(i) In the transient data one finds instantaneous bleaching that recovers on a time
scale of 20 ps. Bands of this category can be found at 1768 cm−1 and 1851
cm−1 for the ring-opening and at 1829 cm−1 for the ring-closure reaction. The
expected bleaching signal around 1781 cm−1 for the ring-closure reaction could
not be recorded due to technical reasons. All bands correspond to the GS
absorption of the carbonyl stretching vibrations. The bleach recovery is accom-
panied by an induced absorption on the lower frequency side, which undergoes
a blue-shift of several wavenumbers. This signature includes ES relaxation and
hot GS formation[205, 206].

(ii) Positive, instantaneous absorption changes decay predominantly on the 0.5 to
10 ps time scale. Bands of this category can be found around 1708 cm−1 and
1785 cm−1 for the ring-opening reaction and at 1723 cm−1 and 1800 cm−1 for
the ring-closure reaction. These bands are assigned to the asymmetric and
symmetric carbonyl vibrations of the electronically ES.

(iii) The characteristic changes for product formation following the decay of the ES
absorption bands (ii) can be clearly observed at 1785 cm−1 and 1831 cm−1 for
ring-opening and at 1764 cm−1 and 1850 cm−1 for the ring opening reaction.
They show a delayed rise combined with a decay on the 10 to 20 ps time scale
to match the offset value found in the steady state difference spectra (solid line
in fig. 3.12a,d).

A global analysis of the transient data using exponential functions shows that both
the ring-opening and the ring-closure reactions proceed with a complex temporal evo-
lution in the ps range with deviations from simple exponential behavior. It has to be
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3. Molecular switches

ν τ1 τ2 τ3

(cm−1) (ps) (ps) (ps)
1851 (i) 2.9 17 ∞
1785 (iii) 2.6 — ∞
1708 (ii) 2.9 — ∞

Table 3.3.: Time constants and amplitudes of the ring-opening reaction. Data have
been analysed by a sum of exponential functions convoluted with the instrumen-
tal response function. The Roman numbers in brackets refer to the category
assignment described in the text

ν τ1 τ2 τ3 τ4

(cm−1) (ps) (ps) (ps) (ps)
1850 (iii) 0.7 11 — ∞
1829 (i) 0.5 — 24 ∞
1764 (iii) 0.5 3.9 24 ∞
1723 (ii) 0.8 7.8 — ∞
1555 0.5 — 23 ∞

Table 3.4.: Time constants and amplitudes of the ring-closure reaction. Data have
been analysed by a sum of exponential functions convoluted with the instrumen-
tal response function. The Roman numbers in brackets refer to the category
assignment described in the text

noted that the decay associated difference spectra derived from a global fit using a sum
of exponential functions partly compensate each other to mimic band shifts and thus
have to be interpreted with care. These deviations are due to cooling of vibrationally
hot molecules[205]. The transient traces of different spectral positions representative
for GS recovery, ES decay and product formation are depicted in figs. 3.13 and 3.14.
Fits on the data at single selected probing wavelength using a sum of exponentials
are given as solid black lines. The resulting time constants are summarized in tabs.
3.3 and 3.4.

Ring-opening (C→Z) kinetics Time transients are given in fig. 3.13. At the posi-
tion of the GS absorption at 1851 cm−1 instantaneous bleaching is observed (i). The
recovery of the bleach signals can be described by two time constants of 2.9 ps and 17
ps (blue). At 1708 cm−1 the decay of the ES can be followed (ii). The decay can be
described by a single time constant of 2.9 ps (red). Product formation is observed at
1785 cm−1 together with the decay of the ES absorption (iii). The kinetics are well
reproduced by one time constants of 2.6 ps (black).
From the experimental data the following picture for the ring-opening reaction is ob-
tained. The initially ES decays with about 3 ps. With this time constant recovery
of the reactant GS via internal conversion and product formation is observed. Cool-
ing of the hot reactant molecules to the solvent surrounding occurs within 10-20 ps.
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3.2. Photoisomeriaztion of trifluoromethyl-indolylfulgide

Figure 3.13.: Transient data for the C→Z reaction at the indicated frequencies.
Fits on the data are given as solid lines with the color matching the respective
category of the underlying molecular process. The resulting time constants are
summarized in table 3.3.

These findings are in line with recent UV/Vis transient absorption experiments in
cyclohexane, where a time constant of 2.2 ps was found for the ES decay and the
cooling was associated with a 7 ps time constant[196].

Ring-closure (Z→C) kinetics Time traces are shown in fig. 3.14. The GS bleach
recovery at 1829 cm−1 (i) can be described by a fast 0.5 ps and a slower 24 ps time
constant (blue). At around 1723 cm−1 one finds a spectrally broad induced absorption
that can be assigned to the singlet ES (ii). In contrast to the ring-opening reaction
the kinetics of the ES decay cannot be described mono-exponentially. A good rep-
resentation of the decay can be obtained by using two time constants of about 1 ps
and 8 ps (red). Similar time constants are observed for the time trace at 1850 cm−1

which represents product formation together with GS recovery of the reactant (iii).
The product band at 1764 cm−1 (iii) can be modeled using three time constants of 0.5
ps, 4 ps and 24 ps (black). Here the transient behavior is partly overlaid by signals
due to cooling of neighboring GS absorption bands.
The data can be interpreted with the following reaction scheme. After photoexcita-
tion a decay of the ES on a sub-picosecond and on a 10 ps time scale is observed.
Additionally, vibrational cooling of hot reactant GS molecules occurs within 30 ps.
These findings are comparable to the ring-closure dynamics observed in the UV/Vis
transient absorption experiments of ref. [199]. The appearance of the product state,
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3. Molecular switches

Figure 3.14.: Transient data for the the Z→C reaction at the indicated frequencies.
Fits on the data are given as solid lines with the color matching the respective
category of the underlying molecular process. The resulting time constants are
summarized in Table 3.4.

observable at 1764 cm−1 and 1850 cm−1, cannot be clearly assigned to either the 0.5
or 10 ps time constant if only these bands are taken into account. To resolve this
ambiguity the product band at 1555 cm−1 (outside the spectral range of fig. 3.12e)
can be used. This band does not overlap with the spectral signatures of the reactant
and can be described by a fast 0.5 ps and a slower 24 ps time constant, confirming
product formation with the 0.5 ps time constant and subsequent cooling of the hot
product within 24 ps. The 10 ps time constant observed at other frequencies cannot
be clearly assigned to either of these processes. It will be discussed below in sec.
3.2.3.
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3.2. Photoisomeriaztion of trifluoromethyl-indolylfulgide

Quantum yields The quantum yield η of the photo-reaction was determined by
comparing the maximum bleach amplitudes with the remaining absorption losses at
delay times later than 50 ps. For the C→Z ring opening reaction it is estimated to
η = 10%, while for the Z→C ring closure reaction η = 20%, in good agreement with
steady state measurements in the visible spectral range[152, 199].

3.2.2. Structural, electronic and vibrational analysis from
ab-initio calculations and vibrational spectra

The complex temporal evolution of the transient spectral signatures of the two C→Z
and Z→C together with the moderate quantum yields are a strong indication that
after excitation the fulgide evolves along a complex ES PES with different competing
pathways. To obtain a mechanistic insight into the nature of the ES and the struc-
tural deformations involved in the ultrafast dynamics, ab initio quantum chemical
calculations have been carried out together with a vibrational analysis of the GS and
first singlet ES.

Ground state geometries Three stable GS isomers are relevant for the subsequent
discussion of the ES dynamics, the closed-ring C-form and two open-ring forms tZc
and cZc (see fig. 3.10). The C-form is planar, with a completely delocalized π-system.
The open-ring isomers are nearly isoenergetic and lie 0.26 eV higher than the C-form.
Torsion around the C2-C3 single bond (63.5° and 120.5° for cZc and tZc, respectively,
table 3.5) weakens the conjugation in the Ï-system. As a consequence the π-orbitals
localize either at the indole or at the anhydride. Only the cZc-form is photochemi-
cally cyclizable.
Due to the sterical interactions of the methyl groups at C1 and C6 the C↔cZc elec-
trocyclic reaction proceeds in the GS via a conrotatory motion, contrary to the WH
rules[95, 96]. The resulting high activation barrier (C↔cZc: 1.95 eV, cZc↔C: 1.86
eV) makes thermal isomerization practically impossible at room temperature. As the
cZc↔tZc isomerization proceedes along a single bond torsion (fig. 3.10) the barrier
associated therewith is only 0.33 eV. Using the Eyring formula

k =
kBT

h
e− ∆G

RT , (3.1)

with kB, h and R the Boltzmann, Planck and ideal gas constants and ∆G the Gibbs
free activation energy an isomerization rate constant k = 107 s−1 is estimated, corre-
sponding to an isomerization time of several tens of ns. Thus, at room temperature
both open-ring forms exist in a thermal equilibrium. Their ratio is estimated using
Boltzmann distribution

PcZc

PtZc

= e
− ∆G

kBT (3.2)

to 60%(cZc):40%(tZc). When the pump pulse is applied to a thermal equilibrium of
a cZc/tZc mixture only 60% of all open-ring fulgides are in a cyclizable form.
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Excited state geometries The lowest excited electronic singlet states of C, cZc and
tZc are of ππ∗-character. The transition is spectroscopically allowed, with an oscil-
lator strength of approximately 0.10. The theoretically predicted excitation energies
(∆ES1S0

in tab. 3.5) are in a fair agreement with the experimentally determined ab-
sorption maxima of 2.20 eV (C-form) and 2.98 eV (Z-form)[199]. The overestimation
of the blue shift by approximately 0.65 eV is attributed to the limited basis set and
the omission of solvent effects in the gas-phase calculations. The ES permanent dipole
moments are larger by a factor of 2 compared to the GS dipole moments. The solvent
tetrachloroethylene is expected to lower the excitation energy. The bathochromic
shift of the closed-ring isomer absorption is attributed to the intact π-system. Both
open-ring isomers absorb at the same wavelength, which renders them spectroscopi-
cally indistinguishable.
Optimization on the spectroscopically accessible first ES from the C-form converges
to a local minimum (MinC) lying approx. 0.5 eV below the FC point (∆ES1

in tab.
3.5). It is reachable solely by bond length rearrangements (partial double bond/single
bond inversion) in the aromatic system. Noticeable is the asymmetric change of the
C4/5-C(=O) bond lengths in the anhydride, as well as the re-hybridization of the ni-
trogen from sp3 to sp2 (tab. 3.5).
Optimization on the spectroscopically accessible first ES from the open-ring cZc- and
tZc-forms yields local minima (MincZc and MintZc) with more pronounced structural
changes and a stabilization of 0.5-0.6 eV with respect to the associated FC points
(∆ES1

in tab. 3.5). Bond rearrangements in the π-system are now accompanied by
torsion around the C2-C3 bond (fig. 3.10). For cZc the torsional angle increases by
approx 10° to 74°, while for tZc it decreases by approx. 15° to 106°. The vertical
energy gaps at MincZc and MintZc (∆ES1S0

in tab. 3.5) indicate that the fluorescence
bands overlap.
Remarkably, the ES gradient accelerates the cyclizable cZc-form towards increasing
torsion around the C2-C3 bond, and, thus, towards further ring-opening, rather than
along the ring closure coordinate. However, this gradient is very sensitive to the an-
gle between the indole and the anhydride. Starting from a slightly less twisted initial
geometry a barrierless pathway along the ring-closure coordinate towards a low-lying
CoIn CoInC/cZc is encountered, which facilitates fast radiationless decay to the GS.
Its geometry is shown in fig. 3.17, top.
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3.2. Photoisomeriaztion of trifluoromethyl-indolylfulgide

comparison of the electrostatic potentials of the GS equilibrium geometries to the po-
tentials of the ES intermediates (fig. 3.15) demonstrates this charge transfer from the
indole to the anhydride. Remarkably, the asymmetric shortening of the C4/5-C(=O)

and N-C bonds (table 3.5), identified as an essential prerequisite for CoIn formation
(sec. 2.4.4), is initiated simultaneously. Thus, the system feels an ES gradient towards
the CoIns already in the FC-region. The calculated electrostatic potentials (fig. 3.15)
indicate that the carbonyl groups are suitable markers to track charge fluctuation,
as the IR-bands associated with CO stretching vibrations are well separated from
the remaining signal. The increase of the charge density in the carbonyl bonds upon
excitation will induce a bathochromic shift in the IR-signal of the ES intermediates,
an indicator for the charge transfer formation. To verify the charge transfer character
in the FC-region of the closed-ring and open-ring isomers, ES vibrational spectra,
extracted from the transient data and calculated with quantum chemical methods,
were compared against each other and to the steady-state spectra of the GS.
The extraction of ES vibrational spectra from the transient absorption data follows

a procedure similar to that described in ref. [207]. The analysis of the temporal
evolution of the absorption changes (sec. 3.2.1) shows that the transient signal at
early delay times (about 0.5 ps) consists predominantly of the negative GS bleach
and the induced ES absorption of the reactant. Signal contributions from (hot) prod-
uct molecules can be neglected. The sum of the transient absorption spectrum at 0.5
ps and the scaled steady-state GS absorption spectrum was calculated to remove the
contributions from the GS bleach and to reconstruct the IR-spectrum. Furthermore,
it was verified that the obtained absorption bands show a transient decay behavior
with time constants of the ES lifetimes (group (ii) signals, sec. 3.2.1). Seven absorp-
tion bands could be identified for the excited C-form (1785, 1708, 1440, 1390, 1340,
1265, 1195 cm−1) and the cZc/tZc-mixture (1800, 1723, 1515, 1470, 1385, 1245, 1195
cm−1), respectively. The spectral positions and intensities were determined by a fit
to a sum of Lorentzians with a width of 5 cm−1. The results are shown in fig. 3.16c
and d as black traces.
CASSCF normal mode analysis were carried out for the GS and ES minima of C,
cZc and tZc isomers and the calculated intensities were convoluted with Lorentzians
with again a width of 5 cm−1. The spectra are shown in fig. 3.16 as colored traces.
Normal modes in the region from 1150 cm−1 to 1950 cm−1 are provided in the sup-
plementary information. The peaks at 1708 cm−1, 1785 cm−1, 1723 cm−1 and 1800
cm−1 can be confidently assigned to the symmetric and antisymmetric CO stretching
modes of the closed- and open-ring forms in the ES, respectively. Both the scaled
calculated spectra and the experimental data show the bathochromic shift of the CO
bands caused by the charge transfer. The shift is indicated by the colored areas in fig.
3.16. An unambiguous assignment of the remaining peaks is not possible due to the
high density of modes in the spectral region between 1200 cm−1 and 1400 cm−1, how-
ever, some general features can be identified. Stretching vibrations of bonds, having
a double bond character in the GS are red-shifted from 1450-1550 cm−1 to 1250-1450
cm−1 due to double bond / single bond rearrangement (bathochromic shift in tab.
3.6). Stretching vibrations of bonds that have acquired partial double bond character
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3. Molecular switches

Figure 3.16.: Comparison between experimentally obtained and calculated GS and
ES vibrational spectra for the C-form (a,c) and the cZc/tZc-forms (b,d). Exper-
imental ES spectra (c,d) are extracted from the transient absorption data at 0.5
ps delay time according to a procedure similar to that described in [207] (black
traces). Theoretical spectra are obtained from a frequency analysis at the local
minima in the ES MinC, MincZc and MintZc (color traces). Calculations were
performed at SS-CASSCF(14/13) level with a scaling factor of 0.86.

exhibit a blue shift (hypsochromic shift in tab. 3.6). The red and blue shifts are again
a consequence of the charge transfer. Similar vibrational bands are observed in the
measured ES vibrational spectra.

Conical intersections To obtain first information about potentially accessible prod-
ucts from the CoIn, a two dimensional scan around CoInC/cZc in the branching plane
was performed (fig. 3.17)[208, 209]. Following the gradient in the GS revealed
that CoInC/cZc facilitates the electrocyclic isomerization in both directions. In fact
CoInC/cZc is a point on an extended low-energy ES/GS degeneracy region, known as
CoIn seam. The location and analysis of this seam is of vital importance for decipher-
ing the ultrafast dynamics of fulgides. In sec. 2.4.4 a low-lying CoIn seam, spreading
from the closed-ring to the open-ring side, was reported for the related compound
trifluoromethyl-pyrrolylfulgide. Although the indole was replaced by a pyrrole, this
substitution does not influence the topography of the seam, as it is determined by the
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3.2. Photoisomeriaztion of trifluoromethyl-indolylfulgide

spectral C-form
shift S0 bond S1 bond

1840 CO(s) 1785 CO(s)
1773 CO(a) 1713 CO(a)

bathochromic 1530 C2-C3,C4-C5 (s) 1448 C4-C5

1497 C2-C3,C4-C5 (a) 1266 C2-C3

1488 indole 1355 indole
hypsochromic 1308 C3-C4 1329 C3-C4

spectral cZc-form
shift S0 bond S1 bond

1832 CO(s) 1790 CO(s)
1770 CO(a) 1731 CO(a)

bathochromic 1544 C5-C6 1330 C5-C6

1516 C3-C4 1426 C3-C4

1495/1469 indole,C1-C2 1321 C1-C2

hypsochromic 1208 C4-C5,C5-C=O 1232 C4-C5,C5-C=O

spectral tZc-form
shift S0 bond S1 bond

1831 CO(s) 1787 CO(s)
1770 CO(a) 1730 CO(a)

bathochromic 1546 C5-C6 1344 C5-C6

1517 C3-C4 1428 C3-C4

1486/1465 indole,C1-C2 1330 C1-C2

hypsochromic 1207 C4-C5,C5-C=O 1227 C4-C5,C5-C=O

Table 3.6.: Assignment of bands in the calculated ES IR-spectra to bands of the
GS IR-spectra for C-, cZc- and tZc-fulgide. Bonds from the aromatic system
with significant contributions to the normal mode associated with each band are
listed. Bands are sorted according to their spectral shift.

interactions of the 1,3-CHD/cZc-HT core with the anhydride group and the nitrogen
lone pair (see sec. 2.3). Correspondingly, the results from the pyrrolylfulgide seam
can be used to locate critical geometries for the indolylfulgide. CoInC/cZc is the coun-
terpart of CoInB in the indolylfulgide system (tab. 2.4). Next, the role of the seam is
elucidated by focusing on the energetic and structural characteristics of two further
CoIns from the indolylfulgide seam, one in the closed-ring region (the counterpart to
CoInE in the pyrrolylfulgide system, tab. 2.4) and one in the open-ring region (the
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counterpart to CoInD in the pyrrolylfulgide system, tab. 2.4).
CoInC (fig. 3.17, middle) is characterized by a pronounced twist of the C2-C3 bond

and an initiated cleavage of the C1-C6 σ-bond (1.79 Å, tab. 3.5). Its geometry can
be rationalized with the rules of thumb derived in sec. 2.2. It is an example of a
strongly polar ethylene derivative[61] (C2-C3 fragment) functionalized with an elec-
tron withdrawing (anhydride) and an electron donating (nitrogen lone pair) group.
As for other strongly polar ethylene derivatives degeneracy with the GS is reached
only for a significantly large torsional angle. The structure and gradients indicate
that CoInC does not mediate the electrocyclic reaction between the C- and the cZc-
form. Indeed, even though the C1-C6 σ-bond is elongated by 0.16 Åcompared to the
GS closed-ring geometry, a scan in the branching plane reveals that CoInC permits a
barrierless relaxation only to the C-form (fig. 3.17, middle).
A similar constellation is found at the open-ring side, where CoIncZc/tZc could be lo-
cated (gig. 3.17, bottom). It also exhibits a pronounced twist of the C2-C3 bond,
this time accompanied by a complete cleavage of the C1-C6 σ-bond (3.01 Å, tab.
3.5). Another structural feature of CoIncZc/tZc is the large twist of the C5-C6 bond.
This structure can be rationalized as a weakly polar ethylene derivative (C5-C6 frag-
ment) with an electron withdrawing carbonyl group conjugated to C5. The nitrogen
lone pair is structurally decoupled and not conjugated to the ethylene fragment.
The insufficient ES stabilization via functionalization requires additional geometrical
deformations to reach a CoIn lie the shortening of the C2-C6 distance. The geomet-
rical deformations shift CoIncZc/tZc energetically above CoInC/cZc and CoInC. The
topographic analysis (fig. 3.17, bottom) reveals that CoIncZc/tZc facilitates a radia-
tionless cZc↔tZc isomerization via a combined motion of torsion around the C2-C3

and the C5-C6 bonds and shortening of the C2-C6 distance, accompanied by bond
rearrangements in the π-system. Ring-closure cannot be initiated from this CoIn.
For comparison the thermal cZc↔tZc isomerization is carried out solely by torsion
around the C2-C3 bond. As a consequence the thermal and photochemical isomeriza-
tion (via TScZc/tZc and CoIncZc/tZc, fig. 3.18) result in different conformers in the GS
with respect to the substituents at C6. Thus, labeling one of the methyl groups can
be utilized to confirm the passage through CoIncZc/tZc upon photoexcitation.

3.2.3. Reaction mechanism

Based on the spectroscopical and theoretical findings a detailed mechanism for the
ring-opening and closure dynamics is proposed, which explain the observed quantum
yields and helps to assign the extracted time constants (fig. 3.18).

Ring-opening (C→Z) Excitation at 560 nm populates the bright ππ∗ first ES. In-
stantaneous relaxation from the FC-region, dominated by bond rearrangements in
the π-system, occurs within the first 100 fs and drives the system into a local min-
imum MinC with an intact C1-C6 σ-bond. This fast initial process is below the
time resolution of the experiment. However, evidence for the population of an in-
termediate in the ES on a sub-picosecond scale is provided by time-resolved UV/Vis
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Figure 3.17.: CoIn topologies of CoInC/cZc, CoInC, CoIncZc/tZc with associated GS
products.
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is assumed for the reactive seam segment around CoInC/cZc, i.e. the exact topology
of the seam and effects coming from momentum conservation are neglected; c) the
region in the vicinity of CoInC is completely nonreactive, i.e. an insurmountable GS
barrier towards cZc is assumed; d) deactivation through fluorescence is neglected.
Using the quantum yield for the ring-opening η = 10% a population distribution of
20%:80% into the reactive and nonreactive channels is estimated. Consequently, a
ratio between the time constants τC→cZc for the reactive and τdeact for the stabilizing
photoprocesses of 4:1 is obtained. Using this relation and an effective time constant
τ1 of about 3.0 ps in the rate equation

1
τ1

=
∑

i

1
τi

, (3.3)

where the sum runs over the individual processes, the time constants τC→cZc and τdeact

are calculated to be 15.0 ps and 3.8 ps, respectively.
The presence of an intermediate MinC prevents the C-form from immediately reach-
ing CoInC/cZc and provides the necessary time window for energy redistribution into
modes, which drive the system towards the nonreactive region on the seam. Analysis
of experimental data from the temperature dependence of the ring-opening reaction
point in the same direction[197, 198].

Ring-closure (Z→C) At room temperature about 60% of the open-ring molecules
exist in the cyclizable cZc-form, while 40% are in the tZc-form. The mixture is excited
at 420 nm to the first bright ES of ππ∗-character. Two competing processes occur in
the FC-region of the cZc-isomer. A barrierless relaxation towards CoInC/cZc facilitates
the ring-closure, the main reaction path, with a time constant τcZc→C. The recorded
short time constant τ1 = 0.5-0.8 ps is assigned to τcZc→C.
Concurrent torsional motion around the C2-C3 bond drives the system to the local
minimum MincZc. From the non-cyclizable tZc-isomer a corresponding local minimum
MintZc can be reached. The longer time constant τ2 = 3.9-11.0 ps is attributed to
the passage from the intermediate minima MincZc and MintZc to the GS of both open
forms passing through CoIncZc/tZc and the closed by seam segment connecting to
CoInC/cZc (fig. 3.19). Photoisomerization between the cZc- and the tZc-forms occurs
exclusively by this process.
In summary, the ring-closure of the cZc-form proceeds on a sub-picosecond time scale,
thereby being an order of magnitude faster than the ring-opening. The ring-closure
is very efficient as the system has no time to redistribute the energy and follows the
gradient on the excited surface in a ballistic fashion towards CoInC/cZc. From the
ring-closure quatum yield of 20% and the 1:1 product distribution out of CoInC/cZc it
follows that two of every three molecules in the cyclizable cZc-form follow the ring-
closure coordinate. The moderate quantum yield is attributed to the high percentage
of non-cyclizable tZc molecules in the initial equilibrium mixture.
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3. Molecular switches

Figure 3.19.: Ground state product accessibility from the CoIn seam, plotted in
the coordinate space of the C1-C6 bond and the torsional angles around the
C2-C3 and the C5-C6 bonds. The region around CoInC facilitates a relaxation
solely to the C-form (red dashed lines). The region around CoIncZc/tZc facilitates
a relaxation solely to the cZc-form (blue dashed lines). In the region around
CoInC/cZc (green solid line) both channels can be accessed.

3.2.4. Summary: ultrafast photoreactivity at the expense of

selectivity

From a joint experimental-theoretical study important information is obtained on the
photoinduced ring-opening/closure of trifluoromethyl-indolylfulgide. Time resolved
IR measurements provide mode-specific dynamics on the few picosecond time scale
which can be related to ES and GS processes. Quantum chemical calculations reveal
a complex potential energy landscape in the excited electronic state with pathways
for ring-opening and closure reactions as well as for competing side-reactions such as
internal conversion to local minimia and the GS.
The existence and the spectral signatures of an additional time constant found dur-
ing the ring-closure reaction and the molecular modeling convincingly shows that
the ensemble of open-ring fulgides contains conformers (tZc) which cannot undergo
cyclization and react via internal conversion back to the GS within about 10 ps.
The cyclizable cZc conformers react much faster on the 500 fs time scale via the
CoInC/cZc. The existence of two conformers also answers the long standing question,
whether ring-opening and ring-closure occur via a common CoIn. It has been argued
that both reactions proceed via different CoIns as the quantum yields do not sum up
to 100%[199, 210]. The present study indicates that both the ring-closure of the cy-
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clizable conformer and the ring-opening proceed in the vicinity of the CoInC/cZc with
high yield. The loss in reaction yield is due to the bifurcation at CoInC during ring-
opening and to the presence of the non-reactive conformers tZc upon ring-closure.
Furthermore, this study sheds light on the electronic nature of the ultrafast photore-
activity of fulgides. Upon photoexcitation a charge transfer from the indole to the
anhydride is initiated already in the FC region. This facilitates bond rearrangements
and drives the system towards reactive and non-reactive regions on the energetically
low-lying CoIn seam. Since the functionalization pattern of the fulgide may stabilize
the charge transfer state in certain geometrical arrangements, substitution may be
used to tune and optimize the photochemical properties. With the acquired knowl-
edge it should become possible to develop strategies for the selective stabilization of
regions on the CoIn seam and for the suppression of undesired side-reactions. This
can be done by introducing sterical constraints to prevent torsion about the C2-C3

bond, but also by new functionalization patterns, which aim at stabilizing CoInC/cZc.
Then, selectivity can be significantly enhanced without sacrifying speed. The rules
derived in secs. 2.2 and 2.3 provide a systematic way to pursue this ultimate goal.
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The previous chapters provided a deep insight into the quantum chemical treatment of
photoreactive molecular systems. Using the information provided by stationary quan-
tum chemical calculations (i.e. electronic structure and geometries, MEPs, analysis
of their curvature) reaction mechanisms were formulated and experimental findings
could be rationalized. However, these reaction mechanisms apply only to slow re-
actions, where the system can dissipate the excess energy to the environment and
follows closely the MEP. At room temperature or when a high amount of energy is
pumped into the system by an intense ultrashort laser pulse the system may deviate
strongly from the stationary path and a dynamical treatment is indispensable. Dy-
namical simulations consider momentum conservation in active modes which drive
the system towards non-stationary regions on the PES. This chapter sets the focus
on the dynamics at the CoIn seam, i.e. the region on the PES, which mediates the
ultrafast relaxation to a lower state. As the seam does not constitute a stationary
point on the PES its accessibility is a question, which can be addressed only by dy-
namical calculations.
The fundamental formula of quantum dynamics is the time dependent Schrödinger
equation:

i
∂Ψ(r, R, t)

∂t
= ĤΨ(r, R, t). (4.1)

A wavefunction ansatz for solving eq. 4.1 performs an expansion of the total wave-
function in the complete basis of electronic states:

Ψ(r, R, t) =
∑

i

χi(R, t)Ψel
i (r; R), (4.2)

with χi the time-dependent nuclear wavefunctions. Inserting eq. 4.2 into eq. 4.1,
multiplying with Ψ∗

j and integrating over the electronic coordinates gives:

i
∂χj

∂t
=
∑

i

(

T̂ nucδij + Viδij +
〈

Ψel
j

∣
∣
∣T̂ nucΨel

i

〉

−
∑

α

1
mα

〈

Ψel
j

∣
∣
∣∇αΨel

i

〉

∇α

)

χi. (4.3)

So far no approximation has been introduced. Quantum dynamical treatment is
the only rigorous approach for solving the equation. It accounts for all quantum
mechanical phenomena without performing any approximations. Solution requires
the precomputation of certain quantities like multidimensional potentials for all states
of interest and nonadiabatic couplings between them. The effort scales exponentially
with the size of the system, which makes quantum dynamics very demanding[211].
Different approximation schemes have been proposed to deal with the complexity of
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eq. 4.3. Mixed quantum-classical dynamics embrace a classical limit for the nuclear
degrees of freedom while treating the electronic degrees of freedom on a quantum
mechanical level along the classical path of the nuclei.

4.1. Mixed quantum-classical dynamics

Depending on the choice of formulation of the quantum dynamical problem and the
way the classical limit is reached one differentiates between Ehrenfest[212, 213] and
surface hopping[66, 214, 215] (both arising from a wavefunction formulation to eq.
4.3), quantum-classical Liouville[216] (arising at the classical limit of the Liouville
equation), Pechukas’[217] (path-integral formulation), Bohmian[218, 219] (hydrody-
namical formulation) dynamics, etc. In this section the Ehrenfest and surface hopping
approaches are presented. The discussion follows the derivation outlined in ref. [65].
Based on eq. 4.3 the necessary approximations are introduced and their significance
is discussed.

1. Neglect of the second derivative of the nuclear wavefunctions T̂nucχj with respect
to the nuclear coordinates. This term is responsible for the spatial correlation of
a wavepacket at a certain time. Neglecting this correlation allows for treating
the dynamics of a wavepacket by a swarm of independent trajactories. This
appoximation localizes the wavepacket entirely at a classical trajectory path R:

χj = cj(t)ξj(R − R), (4.4)

where ξj(R − R)1 is a peaked function centered at each trajectory coordinate
R.

2. Neglect of the second derivative of the electronic wavefunctions Ψel
j with respect

to the nuclear coordinates
∑

i

〈

Ψel
j

∣
∣
∣T̂nucΨel

i

〉

. This term affects the transition

probability between states i and j. Normally, it is small and its neglect is
justified.
Thus, neglecting the first and third term on the RHS of eq. 4.3, inserting the
expression 4.4, multiplying from left with ξ∗

j and integrating over the nuclear
coordinates leads to

i
∂cj(t)

∂t
=
∑

i

(〈

ξj

∣
∣
∣Viδij

∣
∣
∣ξi

〉

− i
〈

ξj

∣
∣
∣~Fij · v̂

∣
∣
∣ξi

〉)

ci(t), (4.5)

where the short-hand notations

~Fij =
∑

α

〈

Ψel
j

∣
∣
∣∇αΨel

i

〉

and v̂ = −i
∑

α

∇α

mα

(4.6)

were introduced.
1From here on the dependency of ξj on the nuclear coordinates is not denoted explicitly.
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3. Classical limit for the momentum operator. The non-local quantum mechanical
velocity operator is substitued by a classical velocity function

v̂α ≈ ~vα(R), (4.7)

which introduces a small error to the transition probability.

4. Saddle-point approximation[220]. The local nature of the classical nuclear
wavepacket (eq. 4.4) allows to approximate the integrals in eq. 4.5 by applying
first-order saddle point approximation

〈

ξi

∣
∣
∣f(R)

∣
∣
∣ξj

〉

=
〈

ξi

∣
∣
∣

(

f(R) + (R − R)f ′(R) + (R − R)2 f ′′(R)
2

+ · · ·
)
∣
∣
∣ξj

〉

≈

≈
〈

ξi

∣
∣
∣ξj

〉

f(R),

(4.8)

thereby requiring the knowledge of f(R) only at the maximum of the product
of both peaked functions ξi and ξj evolving on different PES, i.e. at the center
of the trajectory coordinate R.

5. A unity overlap of the nuclear wavefunctions. The assumption that the overlap
between classical nuclear wavepackets evolving on different PES is unit

〈

ξi

∣
∣
∣ξj

〉

= 1 (4.9)

implies that they are always correlated and no quantum decoherence can
occur[221, 222].

Applying the above approximations to eq. 4.5 gives the final expression for the
evolution of the expansion coefficients cj(t)

i
∂cj(t)

∂t
=
∑

i

(Viδij − i ~Fij · ~v)ci(t). (4.10)

4.1.1. Mean field approach

Using the Ehrenfest theorem[223]

d
〈

Ô
〉

dt
=

i

~

〈

[Ô, Ĥ]
〉

+
〈∂Ô

∂t

〉

, (4.11)

which establishes the correspondence between quantum and classical dynamics one
can obtain the Newton’s equation of motion for the center of the wavepacket

mα
d2Rα

dt2
=

d
〈

p̂α

〉

dt
= −

〈

Ψ
∣
∣
∣∇αĤel

∣
∣
∣Ψ
〉

= Fα. (4.12)
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Using the expansions 4.2 and 4.4 the force acting on the nuclei α can be expressed as

Fα = −
∑

j

∣
∣
∣cj

∣
∣
∣
2∇αVj +

∑

ij

cic
∗
j(Vi − Vj)Fij,α. (4.13)

Eq. 4.10 and 4.13 define the Ehrenfest or mean-field method[213]. Here the evolution
of the classical wavepacket occurs on an average PES. The unity overlap assumption
does not allow wavepackets evolving on different PES to decohere even in regions
where the non-adiabatic coupling is small and the quantum wavepackets would travel
independently on each surface. Thus, the mean-field approch performs good only in
regions of large coupling.

4.1.2. Surface hopping approach

Surface hopping is a related method which aims at recovering the decoherence. Here
a trajectory evolves at each instance in time on a single adiabatic PES, although,
according to eq. 4.10 there is non-zero population in each state. The force is then
given by the gradient of a single surface

Fα = −∇αVj. (4.14)

To account for the non-adiabaticity the classical wavepacket is allowed to instantly
change the surface it is evolving on, an event called a surface hop. The decision
whether a hop will occur or not is taken stochastically after calculating the popu-
lation on each state ajj = c∗

jcj according to eq. 4.10. There are multiple ways to
determine whether a hop should occur. The most simple approach forces a hop as
soon as the population of a certain state exceeds a predefined threshold[44]. Another
approach relies on the evaluation of Landau-Zener transition probabilities[224, 225].
The probably most popular formulation is the "fewest switches" approach by Tully[66].
During a time step the change of population of a particular state j is expressed as

∆ajj = −
∑

i

pj→iajj +
∑

i

pi→jaii, (4.15)

with pj→i the transition probability from state j to state i. According to eq. 4.15 at
every time step there is non-zero probability for population transfer from j to i and
backwards. Tully’s ansatz looks for the fewest number of switches to set up the final
population in all states at the end of the time step. Naturally, this can be achieved
if population transfer is allowed in only one direction. This assumption implies that
either one of the sums on the right hand side of eq. 4.15 is kept, depending on whether
the population in state j increases or decreases. For a two-state case the transition
probability is given by the expression

pj→i = −∆ajj

ajj

. (4.16)
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By introducing a sufficiently short time step ∆t for which the change of the population
∆ajj can be approximated via a first order Taylor expansion

∆ajj =
∂ajj

∂t
∆t (4.17)

and using eq. 4.10 the final expression for the "fewest switches" transition probability
is obtained as

pj→i = −2ℜ(aij) ~Fij · ~v

ajj∆t
. (4.18)

The presented approach can be extended to more than two electronic states.
A hop can occur at any instance in time if two conditions are fulfilled. The transition
probability to a certain state must be higher in magnitude than a randomly chosen
number in the [0,1] interval and the total energy of the system must be conserved.
To achieve energy conservation the velocity of the system needs to be readjusted
to compensate the instant change in the potential energy. Usually, the adjustment
is performed along the non-adiabatic vector ~Fij[226], however adjustment along the
energy difference gradient or along the velocity vector itself can be applied. A hop to
a higher PES is rejected if the velocity reduction is higher than the component of the
velocity in direction of ~Fij[227], although eq. 4.10 suggests an electronic transition.
These classically forbidden electronic transitions are the result of the deficiency of the
classical description of a quantum mechanical property as the non-adiabaticity.
The quality of the surface hopping approach is reflected in its ability to reproduce
the averaged occupation ajj(t) of state j at time t (quantum mechanical quantity)

ajj(t) =

∑

j

∣
∣
∣cj(t)

∣
∣
∣
2

Ntot

(4.19)

by the fraction of trajectories Nj(t) evolving on state j (classical quantity)

fj(t) =
Nj(t)
Ntot

. (4.20)

With increasing number of classically forbidden transitions the quality deteriorates.
In mixed quantum-classical dynamics there is no rigorous way to surpass this problem.
The simplest solution is to just ignore forbidden hops, although other suggestions like
reversing the velocity component in the direction of the non-adiabatic coupling have
been proposed.

4.1.3. Integration the Newton’s equation

The integration of the Newton’s equation of motion 4.12 is performed with the Ve-
locity Verlet algorithm[228]. This is a modified version of the Verlet algorithm which
allows to calculate both position and velocity in each time step of a classical dynamics
simulation. As elucidated in the previous section the velocity is required for calculat-
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ing the transition probability pj→i (eq. 4.18) and for monitoring the conservation of
total energy during surface switching. The Velocity Verlet algorithm has an accuracy
of the order of ∆t3 for positions and velocities. The position ~R(t + ∆t) and velocity
~v(t + ∆t) are expanded in Taylor series, truncated to second order

~R(t + ∆t) = ~R(t) + ~v(t)∆t +
1
2
~a(t)∆t2 + O(∆t3) (4.21a)

~v(t + ∆t) = ~v(t) + ~a(t)∆t +
1
2
~j(t)∆t2 + O(∆t3), (4.21b)

with velocity ~v(t), acceleration ~a(t) and jerk ~j(t) the first, second and third derivative
with respect to the nuclear position at time t, respectively. Next, the jerk at time t
is expressend in a forward difference approximation via the accelerations at times t
and t + ∆t

~j(t) =
1

∆t

(

~a(t + ∆t) − ~a(t) + O(∆t2)
)

. (4.22)

Inserting eq. 4.22 into eq. 4.21b gives

~v(t + ∆t) = ~v(t) +
~a(t + ∆t) + ~a(t)

2
∆t + O(∆t3). (4.23)

Eq. 4.21a and 4.23 are the working equations in the Velocity Verlet algorithm. Start-
ing at position R at time t first the new position R(t + ∆t) is obtained using eq.
4.21a. At R(t + ∆t) the new acceleration is calculated using eq. 4.14. It is then used
to calculate the velocity at R(t + ∆t) via eq. 4.23.

4.1.4. Sampling of initial conditions

An important factor in the quasiclassical dynamics is the definition of the initial con-
ditions for the swarm of trajectories. One needs to correctly account for the distribu-
tion of the GS wavepacket in phase space. Wigner’s quasi-probability distribution[229]
provides the probability distribution for a quantum mechanical wavefunction in phase
space and encodes all expectation values. Phase space distribution is given by the
Wigner distribution function

Pw(~q, ~p) = (2π~)−1
∫

χ∗(~q +
~s

2
)χ(~q − ~s

2
) exp (

i

~
~s~p)d~s. (4.24)

It can be shown that this representation gives a correct expression for the probability
of a quantum mechanical wavefunction in phase space.
Asumming a quadratic approximation for the GS potential the GS wavefunction χ(~q)
can be spanned in the basis of eigenfunctions χ(~qi) of the 3N − 6 one-dimensional
harmonic oscillators along the normal modes q1 . . . q3N−6 with reduced masses µi and
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harmonic frequencies ωi

χ(~qi) =
(2α

π

) 1

4

exp (−α~qi
2 +

i

~
~pi~qi +

i

~
γ) with α =

µiωi

2~
. (4.25)

Inserting the expression 4.25 in the Wigner distribution 4.24 and evaluating the in-
tegral gives

Pw(~qi, ~pi) = (π~)−1 exp (−µiωi

~
~qi

2) exp (− 1
µiωi~

~p2
i ). (4.26)

Eq. 4.26 gives the distribution of a quantum mechanical wavepacket in phase space.
It can be utilized to sample the phase space and to reproduce the quantum dynamical
distribution for quasiclassical trajectory runs.
An independent distribution sampling in coordinate space is performed for each mode.
As GS vibrational wavefunctions are used, the maximal imposed displacement along
a normal mode corresponds to a conversion of the zero-point energy EZV P

i = 1
2
ωi into

potential energy. Subsequently, the conjugated momentum is evaluated for each dis-
placement and a stochastic alogrithm decides on the sign of the momentum. Thereby,
it is assured, that each trajectory has a total energy of

EZP E =
1
2

∑

i

ωi, (4.27)

corresonding to the zero-point energy of the system. This procedure assures that
the distribution of the quantum mechanical wavefunction is reproduced, asumming a
sufficient number of initial conditions are generated.

4.1.5. On-the-fly dynamics

As already outlined in the previous sections the mixed quantum-classical dynamics
assume that a quantum wavepacket can be approximated by a swarm of classical (i.e.
localized) uncorrelated trajectories (the swarm). A large number of trajectories is
needed to obtain meaningful results. On the one hand a large set of initial condi-
tions is required to reproduce the quantum mechanical distribution in the GS. On
the other hand the stochastic nature of the surface hopping routine makes a single
trajectory physically meaningless and only a statistical average over all trajectories
can be interpreted.
The local nature of each classical wavefuntion makes the precomputation of PES
unnecessary as the gradient obtained at each time step suffices to determine the sub-
sequent position and velocity of the system. The feature of supplying almost no initial
information in advance (all necessary quantities are calculated "on-the-fly") and the
possibility for a full dimensional treatment are responsible for the attention mixed
quantum-classical approaches received in the past years (Selected reviews and appli-
cations can be found in refs. [43, 65, 148, 219, 230–232]). Since the gradient contains
only local information about the PES short time steps are required. As a rule of
thumb one takes one tenth of the oscillation period of the highest frequency modes

109



4. Mixed quantum-classical dynamics

(normally hydrogen stretching vibrations at 3000 cm−1) for the time step. A standard
value is 0.5 fs. This limitation, together with the necessity of running a relatively
big number of trajectories restricts the application of surface hopping dynamics to
molecules with a limited number of non-hydrogen atoms and time windows of several
hundred femtoseconds if highly correlated ab-initio quantum chemical approaches are
used.
The possibility to solve the electronic problem and perform the nuclear dynamics
separately allows to interlace the surface hopping code practically with any quan-
tum chemical software and to profit from the variety of software packages available.
Newton-X[67], a package for Newtonian dynamics, freely distributed by Mario Bar-
batti and colleagues, offers a flexible framework allowing to write interfaces to quan-
tum chemical software. Part of the present work was connected to the development
of an interface for Newton-X to the software package Molpro[71] with focus on the
implementation of non-adiabatic couplings at MS-MR-CASPT2 level.

4.1.6. MS-MR-CASPT2 on-the-fly mixed quantum-classical

dynamics

A fast and accurate calculation of gradients and non-adiabatic couplings is a key as-
pect in performing non-adiabatic dynamics. While analytic gradients are nowadays
implemented for a variety of methods, analytic non-adiabatic couplings are reserved to
multiconfigurational methods like CASSCF[65, 104] (sec. 1.4.2) and MRCI[65, 104].
Due to its deficient description of dynamic correlation[110] the CASSCF method can
serve merely for qualitative predictions regarding barrier heights and relative stabilites
of intermediates and products. MRCI is very costly and is currently applicable to
molecules with a few non-hydrogen atoms. Another approach with a comparable ac-
curacy as MRCI but considerably cheaper is CASPT2[68–70] (sec. 1.4.3). Nowadays,
this has become the method of choice for systems with tens of non-hydrogen atoms.
In the last years CASPT2 energy calculations has been interlaced with quasi-classical
dynamics codes to correct energies and gradients obtained at CASSCF level[43]. The
aim of this work is to develop surface hopping dynamics entirely at CASPT2 level.
This objective became feasible with the recent implementation of analytic MS-MR-
CASPT2 gradients[233] in the quantum chemistry package Molpro. A drawback,
though, is the lack of analytical non-adiabatic couplings. Fortunatelly, as seen from
eq. 4.10 only the projection of the non-adiabatic coupling on the velocity ~Fij · ~v is
needed for the surface hopping dynamics. This observation simpifies the numerical
calculation of the coupling term significantly as it allows to obtain the desired quan-
tity at the price of one additional energy calculation in direction of the velocity vector.
This idea was originally exploited by Martínez and colleagues to interlace their mul-
tiple spawning dynamics code with MS-MR-CASPT2[234, 235]. The dot product of
the non-adiabatic coupling and the velocity can be reformulated as

~Fij · ~v =
〈

ΨMS
i (R)

∣
∣
∣∇~vΨMS

j (R)
〉

, (4.28)
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where the superscript MS denotes that MS-MR-CASPT2 wavefunctions are used. In
a forward difference approximation the derivative can be written as

〈

ΨMS
i (R)

∣
∣
∣∇~vΨMS

j (R)
〉

=
1
ε

(〈

ΨMS
i (R)

∣
∣
∣ΨMS

j (R + ε~v)
〉

−
〈

ΨMS
i (R)

∣
∣
∣ΨMS

j (R
〉)

+O((ε~v)2).

(4.29)
Due to the orthogonality of the MS-MR-CASPT2 eigenstates the overlap between
the j-th and i-th states at R vanishes, simplifying the expression for the projection
~Fij · ~v. Eq. 4.29 can be evaluated, provided the MS-MR-CASPT2 wavefunctions at
two different geometries can be stored. For technical reasons this simple solution is
yet not practicable with Molpro and a detour is needed. Therefore, two alternative
approaches for evaluating eq. 4.28 with quantities obtainable from Molpro are dis-
cussed.
One can express each MS-MR-CASPT2 wavefunction in the basis of the SS-CASPT2
wavefunctions ΨSS. Then, eq. 4.29 becomes

〈

ΨMS
i (~R)

∣
∣
∣∇~vΨMS

j (~R)
〉

=
1
ε

∑

m,n

cmicnj

〈

ΨSS
m (~R)

∣
∣
∣ΨSS

n (~R + ε~v)
〉

, (4.30)

or in a matrix notation providing all coupling terms at one glance









0 ~F1,2 · ~v · · · ~F1,n · ~v

− ~F1,2 · ~v 0 · · · ~F2,n · ~v
...

...
. . .

...
− ~F1,n · ~v − ~F2,n · ~v · · · 0










≡ F · ~v =
1
ε

CRSR|R+ε~vCT
R+ε~v, (4.31)

where C is the matrix of the expansion coefficients and SR|R+ε~v the overlap matrix of
the SS-CASPT2 wavefunctions at R and R + ε~v. The subscript denotes whether the
quantities are obtained at ~R or at ~R + ε~v.
As the overlap between CASPT2 wavefunctions at different positions is not directly
available in Molpro the wavefunctions at ~R+ε~v is expressed through the wavefunctions
at ~R by the following unitary transformation

ΨSS
i (R + ε~v) =

∑

k

ukiΨSS
k (R). (4.32)

The transformation matrix U with elements uki is obtained by maximizing the overlap
between the states at both geometries. U is then used to rewrite eq. 4.31 as

F · ~v =
1
ε

CRSR|RUCT
R+ε~v. (4.33)

All quantities in eq. 4.33 are available in Molpro using the RS2[236] and the DDR[237]
routines.
An alternative expression for the couplings is obtained by recalling that according to
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4. Mixed quantum-classical dynamics

eq. 1.11 the nonadiabatic coupling can be written as

〈

ΨMS
i

∣
∣
∣∇~vΨMS

j

〉

=

〈

ΨMS
i

∣
∣
∣∇~vĤ

∣
∣
∣ΨMS

j

〉

Vj − Vi

. (4.34)

Expressing the MS-MR-CASPT2 wavefunctions in the basis of the SS-CASPT2 wave-
functions ΨSS and resorting to forward difference approximation eq. 4.34 becomes

〈

ΨMS
i

∣
∣
∣∇~vΨMS

j

〉

=

∑

m,n cmicnj

〈

ΨSS
i (R)

∣
∣
∣Ĥ(R + ε~v)

∣
∣
∣ΨSS

j (R)
〉

ε(Vj − Vi)
. (4.35)

Applying the unitary transformation of eq. 4.32 allows to write
〈

ΨSS
i (R)

∣
∣
∣Ĥ(R + ε~v)

∣
∣
∣ΨSS

j (R)
〉

=
∑

k,l

ukiulj

〈

ΨSS
k (R + ε~v)

∣
∣
∣Ĥ(R + ε~v)

∣
∣
∣ΨSS

l (R + ε~v)
〉

= UT HR+ε~vU,

(4.36)

giving the final expression for the couplings

F · ~v =
CRUT HR+ε~vUCT

R

ε(Vj − Vi)
. (4.37)

Eq. 4.37 has been chosen for the implementation of the MS-MR-CASPT2 surface
hopping dynamics as it correctly reproduces the anti-symmetry of the non-adiabatic
coupling matrix F.
In the next section the implementation is used to study the photodynamics of the
ring-opening of 1,3-cyclohexadiene.

4.2. Application: dynamics of cyclohexadiene

The photoinduced isomerization of 1,3-CHD to cZc-HT is a text book example for a
WH allowed electrocyclic reaction[72]. The desire to follow the ultrafast isomerization
dynamics in real time and decipher all electronic and structural changes involved ini-
tiated the development of novel experimental setups providing sub-picosecond tempo-
ral resolution[239] and theoretical concepts like the radiationless relaxation via CoIn
seams[240].
In the original treatment of photochemical reactions obeying the WH rules[95, 96],
as devised by van der Lugt and Oosterhoff[241, 242], it was assumed that both the
GS and ES reactions evolve along a common symmetry conserving reaction coordi-
nate. In the CHD↔HT isomerization this is a C2-symmetry conserving conrotatory
torsion (fig. 4.1, left). Non-adiabaticity was explained by introducing the concept
of the avoided crossing coinciding with the pericyclic minimum on the ES[242]. It
arises from the correlation of the potentials of the reactant GS and the product ES
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4.2. Application: dynamics of cyclohexadiene

Figure 4.1.: Models for the 1,3-CHD/cZc-HT conrotatory photoisomerization with
assignment of state symmetry. (left) The C2-symmetry preserving isomerization
according to van der Lugt and Oosterhoff leads to an avoided crossing where
the wavepacket stays before decaying non-adiabatically to the GS. (right) In the
asymmetric model a low-energy CoIn (lying out of the drawing plane) is reached
by symmetry-breaking deformations. The system accumulates momentum in
symmetry-breaking modes already at the 1B2/2A1-crossing. Experimental time
constants taken from ref. [238] are denoted.

along the common coordinate (fig. 4.1, left, see also fig. 1.3). According to Fermi’s
golden rule[72] the non-adiabatic coupling of the vibronical levels of the electroni-
cally ES with a continuum of vibronical levels in the GS in the vicinity of an avoided
crossing allows for a nonradiative decay. This treatment applies only to "slow" pho-
tochemical processes. For the CHD/HT system, the energy gap between both cor-
related states remains so large along the symmetry-conserving path that an effective
and fast non-adiabatic transition is impossible, in contradiction to what is observed
experimentally[16–20, 238, 243]. In this case, the role of real crossings displaced from
the symmetry-conserving path is indispensable and the avoided crossing of the van
der Lugt/Oosterhoff picture becomes a real crossing (i.e. CoIn) away from the mini-
mum energy reaction path (fig. 4.1, right).
Robb et al. first reported on the existence of a low-lying asymmetric CoInmin[47] in
the CHD/HT system in the vicinity of the pericyclic minimum. Based on this find-
ing Fuss et al. proposed a symmetry breaking ballistic model[240] of the wavepacket
motion towards the CoIn and assigned time constants to the underlying processes
(fig. 4.1, right). Quantum dynamical simulations confirmed that the sub-picosecond
dynamics can be simulated only when a CoIn is explicitly considered[244, 245]. A
study by Garavelli and co-workers documented an energetically low-lying CoIn seam
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4. Mixed quantum-classical dynamics

connecting CoInmin to a C2-symmetric open-ring CoInC2
[240]. Quantum dynamical

simulations by Hofmann et al. suggested that CoInC2
is the dominant relaxation

pathway during ring-opening[77]. A thorough search in the IS, inspired by this find-
ing, extended the CoIn seam to the closed-ring region[74], providing an outlet towards
the GS from large part of the conrotatory ES MEP.
Unlike other prototypical ultrafast reactions such as the cis-trans photoisomerization
of retinal[45, 46] where the ES relaxation is strongly directed toward the minimum
on the crossing seam ("sand-in-the-funnel" picture), previous studies demonstrated
that in the CHD/HT system the ES MEP and the accessible CoIn seam do not
intersect[74]. Rather, they are quasi-parallel in the 3N − 6 coordinate space, i.e.
evolve along similar geometrical deformations.
In this section the question, which regions of the extended low-lying CoIn seam are
accessed during the ring-opening, is addressed by means of mixed quantum-classical
non-adiabatic dynamics at MS-MR-CASPT2(2,2)/6-31+G* level and averaging over
the lowest three states of the system. Before presenting the results of the simulations
the extended CoIn seam is characterized and compared (energetically and geomet-
rically) to the MEP in the ES. The MEP was optimized at the same theoretical
level used in the dynamical simulations. As currently a CoIn seam optimization at
MS-MR-CASPT2 level is not feasible the CoIn seam between the GS and the first ES
was optimized at CASSCF(6,6)/6-31G* level.
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4. Mixed quantum-classical dynamics

4.2.1. Statical view: Conical intersection seam and excited state
minimum energy path

The first ES of CHD has a ππ∗-configuration (B2-symmetry) and is spectroscopically
accessible (tab. 4.1). The second ES is a doubly excited dark state with A1-symmetry.
It is a well-known fact that CASSCF(6,6) including the π-orbitals in the active space
underestimates the stabilization of the 1B2-state and predicts a false state order in
the FC-region (Table 4.1)[244]. CASPT2(6,6) corrects the behavior and improves the
excitation energy to match the experimental value of 4.96 eV (Table 4.1). A trimmed-
down CASPT2(2,2) calculation including only two electrons and two orbitals in the
active space of the underlying CASSCF calculation gives an excitation energy into the
1B2-state of 5.23 eV, not too far from the value obtained with the larger active space.
The second ES of A1-symmetry is underestimated by over 0.6 eV (Table 4.1) because
HOMO-1→LUMO and HOMO→LUMO+1 excitations have significant contribution
to its wavefunction in the FC-region. Their contributions cannot be fully recovered
by perturbational treatment. Possible consequences for the quasi-classical dynamics
are discussed in the next section.

CASSCF(2,2) CASPT2(2,2) CASSCF(6,6) CASPT2(6,6) exp.
∆E ES config. ∆E ∆E ES config. ∆E

1B2 5.92 π3π4 (1.00) 5.23 7.15 π3π4 (1.00) 5.04 4.96

2A1 9.97 π2
4 (1.00) 6.86 6.54

π2
4 (0.38)

π2π4(0.25)
π3π5 (0.15)

6.25 -

Table 4.1.: Vertical excitation energies to 1B2 and 2A1 states from the GS equilib-
rium of CHD. The 6-31+G* basis set was used throughout. The major config-
urations, contributing to the ES wavefunctions, are denoted. The experimental
value corresponds to the maximum of the longest wavelength band from the
gas-phase UV spectrum in ref. [238].

The ES MEP2 connecting the FC points of CHD and HT is shown in fig. 4.2 (green
line). To check the quality of the MEP a comparison of selected geometries along the
MEP to geometries optimized at MS-MR-CASPT2(6,6)/6-31G* level is made. Latter
are taken from ref. [246]
Starting from the closed-ring side (C1-C6 distance of 1.56 Å) the FC point 1© of

the 1B2 state is left by double-bond/single-bond rearrangment in the 4π butadiene
moiety, associated with a strong decrease of energy (segment 1©- 2©). The weakening
of the double bonds facilitates wagging deformations of the hydrogens attached to C2

2The MEP was approximated in a series of geometry optimizations with a maximal step size of 0.015
Bohr. The segments 1©- 3© and 7©- 5© were obtained through optimizations from the associated
FC points 1© and 7©. The transition states in the segments 3©- 4© and 5©- 4© were estimated by
linear interpolation. Backward and forward optimization from the energetically highest point
along the interpolated line completed the MEP.
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4.2. Application: dynamics of cyclohexadiene

CASPT2(2,2) CASPT2(6,6)
∆ES0S1

∆ES1
C1-C6 C2-C6 ∆ES0S1

∆ES1
C1-C6 C2-C6

Min 1B2 2.86 -0.97 1.754 2.535 3.02 -0.87 1.727 -
Min 2A1 0.09 -1.49 2.092 2.375 0.001 -1.63 2.137 2.394

1 Global minimum coincides with the minimum energy CoIn.

Table 4.2.: Structural and energetic comparison between stationary points along
the MEP obtained at MS-MR-CASPT2(2,2)/6-31+G* level and geometries from
ref. [246] optimized at MS-MR-CASPT2(6,6)/6-31G* level.

and C5. These deformations gradually induce interactions between the π-electrons of
the butadiene moiety and the electron pair in the C1-C6 σ-bond and start the electro-
cyclic ring-opening (segment 2©- 3©). The σ-bond elongate until a shallow minimum
3© on the first ES PES with C2-symmetry is reached at approx. 1.75 Å. Optimization
at MS-MR-CASPT2(6,6) level finds an intermediate with a very similar structure
(table 4.2). Further elongation of the σ-bond combined with an asymmetric distor-
tion, a shortening of the C6-C2 distance, stabilizes the 2A1 state below the 1B2 state.
The asymmetric deformation allows the molecule to circumvent the apex of the CoIn
between the 2A1- and 1B2-states. It proceeds on the lower PES towards the global
minimum of the first ES 4©3 and towards the CoIn seam. The existence of an in-
termediate minimum 3© is discussed controversially in literature and depends on the
quantum chemical method used to obtain the MEP[244]. In any case, due to the large
potential energy decrease from the FC point of nearly 0.95 eV the barrier height of
solely 0.05 eV is not expected to impact the dynamics.
Starting at the FC point 7© on the open-ring side (C1-C6 distance of 3.47 Å) double-
bond/single-bond rearrangment in the 6π hexatriene triggers immediately the ring-
closure. No asymmetric deformation is induced on crossing through the 1B2/2A1

CoIn 6© at 2.73 Å. Further relaxation on the 2A1-state leads to a shallow minimum
5© at 2.21 Å. An asymmetric deformation, shortening of the C2-C6-distance, drives
the system towards the global minimum 4© and towards the CoIn seam. The cal-
culated barrier of 0.02 eV can be neglected due to the preceeding decrease of the
potential energy of nearly 2.10 eV.
The C2-symmetry is preserved on the major part of the ES MEP in the segments
1©- 3© and 7©- 5©. Only in the region around the global minimum 4© asymmetric dis-
tortion is observed. However, exactly this asymmetric deformation drives the system
towards the seam and accelerates the isomerization dynamics by several orders of
magnitude.
Calculations at CASSCF(6,6) level predict energy gaps at the global minimum
of nearly 1.0 eV, demanding strong geometrical deformations to reach the CoIn
seam[47, 240]. On MS-MR-CASPT2(2,2) the global minimum exhibits a much smaller
energy gap of solely 0.09 eV. Accordingly, only minimal deformations are required to

3There exist two equivalent mirror-symmetric minima in whose vicinity the C2-symmetric region
becomes a potential ridge[47, 240].
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Figure 4.3.: CoIns, predicted with the rules of thumb given in sec. 2.2 and opti-
mized at CASSCF(6,6)/6-31G* level. Red arrows denote the WH-coordinate (see
sec. 2.2). Motion along this coordinate fulfills the resonance condition eq. 2.13
leading to the homosymmetric biradicals (middle column). Blue arrows indicate
the subsequent deformations (pyramidalization, tilt), which fulfill the heterosym-
metry condition (eq. 2.14) and lead to the individual CoIns (right column). For
each CoIn, dashed blue lines denote the characteristic 1,3/1,5-kinks, blue arrows
denote the center of pyramidalization.

access the CoIn seam. This is confirmed by comparing the structure of the global
minimum 4© to the CoInmin optimized on MS-MR-CASPT2(6,6) level (tab. 4.2).
The distance between the MEP and the CoIn seam is very sensitive to the dynamic
correlation. At CASSCF level they are further apart than at CASPT2 level.
Next, the CoIn seam, is characterized. It was optimized in a colaboration with the
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4.2. Application: dynamics of cyclohexadiene

Figure 4.4.: Normal modes to the imaginary frequencies for the transition state
geometries along the CoIn seam.

group of Michael A. Robb using their algorithm implemented in a development ver-
sion of Gaussian[93] and described in ref. [92].
In the scope of the extended two-electron two-orbital model (sec. 2.1.1) the lowest
point on the seam CoInmin can be rationalized (see sec. 2.4.1) by realizing that it
is connected to the C2-symmetry conserving conrotatory rotation. Along this WH-
coordinate (sec. 2.2) the frontier orbitals degenerate (at the pericyclic minimum),
thus fulfilling the resonance condition (eq. 2.13), and localize at C1, C3, C5 and at
C2, C4, and C6, respectively (fig. 4.3, top). These orbitals are labeled A1,3,5 and B2,4,6.
Subsequently, a tilt of C6 towards C2 leads to an arrangement which enhances the
electronic repulsion in orbital B2,4,6. Thereby the biradical GS

∣
∣
∣A•B•

〉

is destabilized

toward a CoIn with the
∣
∣
∣A2

〉

ES (fig. 4.3, top).
Starting from CoInmin seam extensions in ring-closing and ring-opening directions

were optimized (red curve in fig. 4.2). In ring-closing direction the formation of the
C1-C6 σ-bond is accompanied by a twist around the C2-C3 bond (fig. 4.2) and a
local minimum in the IS CoInbu emerges. Its structure can be also elucidated with
the rules of thumb given in sec. 2.2 (see sec. 2.4.1). CoInbu formation is associated
with a torsion around the C2-C3 double bond of the ethylene sub-unit of CHD (WH-
coordinate) leading to a homosymmetric biradical with localized orbitals A3,5 and B2

(fig. 4.3). Pyramidalization at C3 (denoted by a blue arrow in fig. 4.3) and tilt of C2

towards C4 forms a triangular arrangement between the adjacent centers C2, C3, and
C4. The pyramidalization lowers the energy of orbtial A3,5 while the tilt raises the
energy of orbital B2. In the following, this arrangement is referred to as a 1,3-kink
(marked by a dashed blue line in fig. 4.3).
A transition state on the CoIn seam CoInTS1 connecting CoInbu to CoInmin was lo-
cated. Its stationary nature was verified by a frequency analysis in the IS[59, 60],
revealing one imaginary mode (fig. 4.4). CoInTS1 has an interesting chemical rele-
vance since it resembles a bond-breaking/making transition state along the seam. In
the region between CoInbu and CoInTS1 only relaxation towards CHD is possible, at
CoInTS1 a concurring channel towards HT opens. In the closed-ring region the seam
was further extended to a C2-symmetric CoInTS2 (fig. 4.2). Frequency analysis (fig.
4.4) revealed that CoInTS2 is a transition state in the IS connecting two equivalent
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asymmetric minima CoInbu.
In ring-opening direction the CoIn seam extends to a C2-symmetric CoInC2 (fig. 4.2)
which is also a transition state in the IS (fig. 4.4), connecting two equivalent asym-
metric minima CoInmin. In fact, the optimized CoIn seam constitutes a closed loop
in the IS:

. . . -CoIn∗
bu-CoInTS2-CoInbu-CoInTS1-CoInmin-CoInC2-CoIn∗

min-CoIn∗
TS1-CoIn∗

bu-. . .

where the * denotes mirror-symmetry.
Symmetric CoIns (e.g. CoInTS2 and CoInC2) cannot be explained with the extended
two-electron two-orbital theory (sec. 2.1.1) because they preserve the degeneracy of
the two localized active orbitals A and B, while fulfillment of the heterosymmetry
condition eq. 2.14 requires asymmetric deformations which lift the degeneracy. In
fact, formation of symmetric CoIns can be attributed to the interactions of A and
B with energetically higher lying virtual orbitals. These interactions are missing in
the extended two-electron two-orbital theory. Nevertheless, due to the additional
requirement of symmetry conservation symmetric CoIns lie typically energetically
higher than asymmetric CoIns (e.g. CoInmin and CoInbu).
Next, the geometrical relation between the MEP and the CoIn seam is addressed.
Fig. 4.2 visualizes the absolute distance (y-axis) in space. Each point on the CoIn
seam is only related to its nearest point on the MEP. The result demonstrates that
the MEP and the CoIn seam are not parallel in space. Rather, they are curved with
respect to each other. Partially differing motions can occur along both paths which
affect their absolute distance and differ from region to region. The MEP and the CoIn
seam approach each other in the vicinity of the global minimum where also CoInmin

is found. In the region between CoInmin and CoInTS1 MEP and seam are dominated
by similar deformations, the shortening/elongation of the C1-C6 and C2-C6-distances.
In the closed-ring and open-ring regions the MEP and the seam develop different de-
formations. Strong torsions in the 4π moiety along the CoInTS1-CoInbu-segment and
shortening of the C1-C5-distance along the CoInmin-CoInC2-segment are observed,
which are essentially different from the motions along the MEP. Correspondingly,
the distance between the MEP and the CoIn seam is large in the FC-regions. This
complex relationship is subsumed in the expression quasi-parallel.
A consequence of the quasi-parallelism is that there is no unique seam associated with
the MEP. Rather, multiple CoIn seam segments can arise in the 3N − 8 dimensional
IS. This idea initiated the search for further CoIns using the predictive power of the
rules of thumb, formulated in sec. 2.2[125]. Selected CoIns are presented with their
localized orbitals in fig. 4.3. All CoIns have been obtained by starting either from
the closed- or the open-ring isomer, selecting 2π- or 4π-subunits and then following
the associated WH-coordinate (e.g. double bond torsions for 2π-subunits). By this
operation homosymmetric biradical geometries were reached where both frontier or-
bitals become degenerate (fig. 4.3, middle column). Subsequent pyramidalization
and tilt at selected centers led to different geometrical arrangements, which served
as starting geometries for the actual quantum chemical optimization. Statical calcu-
lations render all located CoIns accessible from the FC point. However, they have
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a different geometrical and energetic relation to the MEP. It is therefore an open
question which CoIns actually play role in the photoisomerization. This question is
addressed by mixed quantum-classical CASPT2 dynamics.

4.2.2. Absorption spectra

The MS-MR-CASPT2(2,2) calculations limits the description to the energetically
lowest two states with A1-symmetry and one state with B2-symmetry. While the
energetic profile of the 1B2 is correctly reproduced along the MEP, the energy of
the 2A1 state is underestimated in the FC-region (tab. 4.1). Therefore, one con-
cern is whether this inconsistency could affect the simulations. It needs verifications,
whether low-frequency asymmetric vibrational modes induce oscillator strength in
the excitation to the 2A1-state, which is dark at the C2-symmetric GS equilibrium
geometry and whether this excitation is correctly described at CASPT2(2,2) level.
For this purpose the absorption spectrum of CHD was calculated starting from Wigner
distribution around the equilibrium geometry of the GS. A set of 1000 samples was
used and the calculated signals were convoluted with Gaussians of a Full Width at
Half Maximum (FWHM) of 2.5 nm. Figure 4.5a shows a reference absorption spec-
trum at MS-SR-CASPT2(6,6)/cc-pVDZ level averaging over the GS and lowest three
ES (1B2, 2A1 and 3A1), figure 4.5b shows the spectrum at MS-SR-CASPT2(2,2)/6-
31+G* level (used for the subsequent dynamics simulations) averaging over the GS
and the lowest two ES (1B2 and 2A1). Vertical excitation energies from the equlib-
rium geometry is denoted with bars whose (normed) height is proportional to the
oscillator strength of the transition. Contributions to the absorption signal coming
from excitation to the 1B2-, 2A1- and 3A1-states are coded in red, blue and green,
respectively.
The reference absorption spectrum consists of a low-energy band (290-210 nm) from
the excitation to the 1B2 state, a high-energy band (180-130 nm) from excitation
to the 3A1 state and a weak band from excitation to the 2A1 state (220-160 nm).
The spectrum reproduces well the steady state absorption spectra published in the
literature[238, 240, 247]. Apparently, the 1B2 transition dominates the low-energy
window. The absorption spectrum obtained with the smaller active space reproduces
well the low-energy absorption region. For comparison, the spectrum resulting by
omitting the perturbative correction (i.e. at CASSCF(2,2)/6-31+G* level, fig. 4.5,
bottom) exhibits a strong hypsochromic shift. Naturally, the intensive absorption
band in the high-enegry region is missing. The contribution of the excitation to the
2A1-state is underestimated in the spectrum.
In summary, the experimental setup of Fuss et. al which use pulses around 270
nm[238] is best suited for comparison with the presented simulations. The incom-
plete description of the 2A1 state in the FC-region will not interfere with the initial
dynamics.
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Figure 4.6.: Time evolution of the average population in the electronic states in-
cluded in the dynamic simulation performed at MS-MR-CASPT2(2,2)/6-31+G*
(top) and CASSCF(2,2)/6-31+G* (bottom).

4.2.3. Dynamical view: The accessibility of the conical

intersection seam

A set of 50 trajectories was run with the modified version of Newton-X for 200 fs with a
time step of 0.5 fs starting in the first ES with 1B2-symmetry. The quantum chemical
calculations were performed at MS-SR-CASPT2(2,2)/6-31+G* level averaging over
three states. Hopping probabilities were obtained in each step by calculating the
projection of the non-adiabatic couplings onto the velocity vector (sec. 4.1.6). After
a successful hopping event the velocity was adjusted along the gradient difference
vector. A comparative simulation over 50 trajactories was run at CASSCF(2,2)/6-
31+G* level with analytical non-adiabatic couplings.

Figure 4.6, top gives the average occupation ajj(t) (eq. 4.19) of the individual
states during the CASPT2 simulation. In the beginning only the first ES is occupied
(green line). Initial decay at approx. 5 fs is accompanied by population increase in
the second ES which lasts until 35-40 fs. Thereafter a slow decrease of the population
of the second ES within 100 fs occurs. A rapid population of the GS begins only after
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4. Mixed quantum-classical dynamics

25 fs. Within 50 fs half of the population is transferred to the GS, after 150-200 fs
the transfer is almost quantitative.

Relying on the MEP (fig. 4.2) the following mechanism for the depopulation of
the ES is derived. After excitation to the bright 1B2-state initial relaxation occurs
within 5-6 fs (τ1) and drives the system towards the 1B2/2A1-crossing region. The
occupation increase in the second ES manifests the approching of the 1B2/2A1 CoIn.
Approximately two-thirds of the molecules circumvent the CoIn apex and evolve fur-
ther on the first ES, which has now adopted a 2A1 character. To obtain information
about the kinetics of this process the evolution of the average transition dipole mo-
ment µ10 between the GS and the first ES was tracked with time (fig. 4.7, middle).
Thereby the fact was utilized that the dipole moment µ10 decreases rapidly with
enhancing 2A1 character (fig. 4.7, top, approx. 2.5 units). Hence, it constitutes a
suitable observable to determine an approximate time constant for the ES character
change. By a monoexponential fit of the average dipole moment decay a time constant
τ2 = 17.5 ± 0.3 fs was obtained. The molecules that go around the 1B2/2A1 CoIn
quickly apporach the GS/ES CoIn seam and give rise to the initial rapid occupation
increase of the GS within the first 50 fs. One-third of the molecules switch into the
second ES by conserving momentum along the C2-symmetric coordinate, i.e. going
through the 1B2/2A1 CoIn. Their return to the first ES within the next 100 fs is re-
sponsible for the slower occupation increase at later times. An effective time constant
τ3 = 45.5 ± 0.9 fs was obtained for the overall process by fitting the total occupation
decay of both ES a11 + a22. In the end, the overall time needed to return to the GS
is obtained as the sum of the three time constants as approx. 5.5 + 17.5 + 45 = 68 fs.
The propposed mechanism agrees with experimental findings. It confirms the bal-
listic model proposed by Fuss et al.[240] as two-thirds of all molecules are found to
circumvent the 1B2/2A1 CoIn and reach the GS/ES seam instantaneuosly. The time
constants, associated with the individual processes, are, though, shorter than the con-
stants recorded experimentally (τ1 = 21 fs, τ2 = 35 fs, τ3 = 80 fs)[238]. To analyze
this discrepancy a closer look at the hopping events between the GS and ES during
the CASPT2 simulations (fig. 4.8 green bars) is required. While the majority of hops
occur for gaps between 0.1 and 0.5 eV energy gap one out of four hops occurs at
an energy gap larger than 1.0 eV, i.e. in regions with small non-adiabatic couplings.
The comparative CASSCF(2,2) simulations undergo hops in a more limited energy
window (fig. 4.8 red bars) and, consequently, show a considerably slower dynamics
(fig. 4.6, bottom). Thereby, the return to the GS takes approximately twice as long
(125 fs) as obtained from the CASPT2 dynamics.

Next, the relaxation to the GS via the GS/ES CoIn seam is analyzed in detail.
A spatial correlation between hopping geometries and the CoIn seam is established
and dynamically accessible regions on the seam are extracted. Hopping events at
large energy gaps occur away from the CoIn seam and are not considered in the
evaluation. They have no physical meaning and arise due to the stochastical nature
of the dynamics. For a total of 41 hopping geometries the spatial overlap with sta-
tionary CoIns from the seam (fig. 4.2) and the CoIns obtained with the extended
two-eletron two-orbital theory (fig. 4.3) was calculated. As all CoIns are available
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4.2. Application: dynamics of cyclohexadiene

Figure 4.7.: (top) Evolution of the transition dipole moments µ10 (GS → first ES)
and µ20 (GS → second ES) along the MEP; (middle, bottom) Time evolution of
the transition dipole moment µ01 (red line) and of the average total population
in the first and second electronic ES (blue line) from MS-MR-CASPT2(2,2)/6-
31+G* (middle) and CASSCF(2,2)/6-31+G* (bottom) simulations. Monoexpo-
nential fits are also shown.
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4. Mixed quantum-classical dynamics

Figure 4.8.: Hopping occurances against the energy gap between the GS (S0) and
the first ES (S1) during the MS-MR-CASPT2(2,2)/6-31+G* (green bars) and
the CASSCF(2,2)/6-31+G* (red bars) simulations.

only at CASSCF(6,6)/6-31G* level it was approximated that the basic geometrical
features, characterizing each CoIn (1,3-, 1,5-kink, etc.) are independent of the dy-
namic correlation. It turns out that the hopping geometries exhibit large resemblance
to either CoInmin or CoInTS1 and two-thirds of the hopping events occur in the spatial
proximity of CoInmin. Among the 41 samples there were no geometries close to any
of the stationary CoIns given in fig. 4.3. In fig. 4.9 the correlation between hops,
MEP and CoIn seam is visualized in the reduced space of three reactive coordinates,
suitable for descriminating the deformations along the MEP and the seam. The C1-
C4-C3-C6 dihedral angle describes the symmetry conserving ring-opening and, thus,
the major part of the MEP, except for the region around the perycyclic minimum,
where asymmetric deformations towards the seam are initiated (fig. 4.2). These
asymmetric deformations are described by the C2-C6 coordinate. In addition a third
coordinate, the dihedral angle between the normals through C2 and C3, perpendicular
to the first substituents of C2 and C3, respectively, describes the wagging deforma-
tions of the hydrogen atoms along MEP and seam. They are essential for both the
coupling of the π-system to the σ-bond and for the formation of the 1,3-kink around
CoInbu (fig. 4.2).

In the reduced coordinate space the MEP (green line in fig. 4.9) and CoIn seam (red
line in fig. 4.9) exhibit regions which are spatially close and others that are far apart,
in agreement with the representation in fig. 4.2. Hoppings (blue and magenta dots)
are confined to the region between the MEP and the CoIn seam. Now, further details
can be added to the isomerization mechanism. The FC (CHD in fig. 4.9) point is left
by wagging deformations in the butadiene moiety, leading to an increase of the NC2

-
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4. Mixed quantum-classical dynamics

Figure 4.10.: Hopping occurances with time during the CASPT2(2,2)/6-31+G*
simulations. Hopping geometries closer to CoInTS1

are denoted in green, hopping
geometries closer to CoInmin are denoted in red. Formation of CHD after hopping
is encoded with darker colors, formation of HT with lighter color.

duces a bifurcation in the GS, which results in an isomerization quantum yield of
55%. This value, however, overrates the experimentally measured yield of 40%.
As already mentioned earlier, CoInC2 and CoInTS2 are not properly described at
CASPT2(2,2) level due to the limited size of the active space. Thus, relaxation
through these channels, as observed in the quantum dynamical simulations on
CASSCF(6,6) level, could have been underestimated in the quasi-classical simula-
tions in their current form. Simulations with larger active spaces are required to
address this question.

4.2.4. Summary and perspectives

Mixed quantum-classical dynamics simulations at MS-MR-CASPT2 level, using
Tully’s surface hopping routine, were performed to study the ultrafast photoreac-
tivity of CHD in gas-phase. An interface of the package for Newtonian dynamics
Newton-X to the quantum chemistry package Molpro was designed and a numerical
rountine for the efficient calculation of non-adiabatic couplings at MS-MR-CASPT2
level was implemented.
The results confirm the ballistic model, proposed by Fuss and co-workers[240]. About
two-thirds of all excited molecules are found to circumvent the 1B2/2A1 CoIn and
reach an extended region of the GS/ES seam instantaneuosly. Consequently, the iso-
merization proceeds on a femtosecond timescale. It was demonstrated that not the
entire low-energy seam is equiprobably reachable, rather, the accessibility depends
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on the energetic and spatial relation between MEP and CoIn seam, as well as on the
momentum which is accumulated during relaxation on the ES PES. The possibility
to reach both isomers from each point on the accessible CoIn seam is responsible for
the high quantum yield of ≈ 50%.
Although the present study sheds light into the isomerization mechanism, a quan-
titative agreement with the experimental observations is still out of reach. An im-
provement is expected by increasing the number of trajectories and the size of the
active space. Including further π-orbitals in the active space will allow for a realistic
description of the 2A1-state in the FC-region and for an accurate description of the
relaxation through the symmetric CoIns CoInTS2 and CoInC2. This work is currently
in progress.
Several questions, which were not addressed in this work, but are subject to fu-
ture research, are: i) What is the role of the Rydberg states in the isomerization
dynamics[240, 248]? ii) Can higher lying regions of the seam be reached by exciting
CHD to higher vibrational levels of the ES? iii) It has been shown that complex
laser pulses are required to control the isomerizational process[154, 249–253]. It is in-
triguing whether this complexity can be reduced by combining coherent control with
chemical modeling of the CoIn seam.
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5. Conclusion

The presented work explored with the help of state-of-the-art quantum chemical cal-
culations and quasi-classical dynamics simulations how the chemical composition in-
fluences the photoreactivity of molecules. A relation between the molecular structure
and the topography of the intersection space, the 3N-8 dimensional space where the
degeneracy between the ground state and the excited state is preserved, was found.
By exploiting this relation a systematic analysis of the intersection space becomes
available. Benefits with regard to the optimization of conical intersections, molecular
modeling and deciphering complex excited state dynamics were discussed. In this
context quasi-classical dynamics simulations were used to explore the accessibility
of the encountered energetically low lying regions of the intersection space, thereby
providing detailed information about the spatial and temporal evolution of the pho-
toreactions.
In the first part of this thesis the two-electron two-orbital theory introduced by Michl
and Bonačić-Koutecký to rationalize the structure of conical intersections in charged
polyene systems was extended by including the interactions of the active pair of elec-
trons with the remaining closed-shell electrons that are present in any realistic system.
A set of conditions, the resonance and the heterosymmetry conditions, for the forma-
tion of conical intersections in multielectronic systems were derived. The extended
two-electron two-orbital model directly translates into a SA-3-CASSCF(2,2) set up
with two active electrons in two localized active molecular orbitals. The molecu-
lar system is separated into basic units and units reflecting the actual substitution
pattern. Calculations on this theoretical level were performed for the basic units
ethylene, cis-butadiene and 1,3-cyclohexadiene at various geometries and functional-
izational patterns. The quantitative results demonstrated that geometrical deforma-
tions and substituent effects constitute different mechanisms for achieving the same
goal, namely, the formation of conical intersections. Based on this finding rules of
thumb for their qualitative prediction in arbitrary polyenes were derived. Essentially,
no other information besides the chemical composition of the system is necessary. An
extension of the rules of thumb to conical intersection seams was also formulated.
The general idea is to divide the intersection space into subspaces according to the
following criteria:

(i) association with different Woodward-Hoffmann coordinates: for each basic unit
identified in the system (e.g. different double bonds, cis-butadiene sub-units,
etc.) a plane, orthogonal to the corresponding Woodward-Hoffmann motion,
exists, which contains a fraction of the intersection space;

131
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(ii) electronic structure of the excited state: the heterosymmetry condition forbids
the change of the electronic configuration along the seam;

(iii) geometrical deformations and substituent effects which satisfy the heterosymme-
try condition: when both are possible, geometrical deformations are discarded
for energetical reasons;

(iv) connection to the reaction of interest: only subspaces are considered which
contain conical intersections associated with the Woodward-Hoffmann motion
of interest.

The dimensionality of the individual subspaces is reduced to a few degrees of free-
dom, which allows for the location of supporting points in each subspace. Individual
subspaces are then connected by a linear interpolation scheme, which provides the
initial guess for the conical intersection seam. This guess is then fed into a quantum
chemistry package to finalize the conical intersection optimization.
The strategy was demonstrated for three polyene systems: CHD/cZc-HT as a rep-
resentative of non-polar unfunctionalized polyenes, where CoIns are formed through
geometrical deformations, HTI as a representative of weakly polar polyenes, where
low-energy CoIns are formed by combining geometrical deformations and substituent
effects and trifluoromethyl-pyrrolylfulgide as a representative of multi-functionalized
strongly polar polyenes, where the functional groups alone determine the structure
of the CoIns. The rules for optimizing single conical intersections were utilized to
systematically scan the intersection space for minimum energy conical intersections
and differentiate between high- and low-energy ones. Further, a seam connecting
conical intersections associated with the cis-trans isomerization (i.e. the Woodward-
Hoffmann motion) in hemithioindigo-hemistilbene was optimized. It was demon-
strated by comparison with the basic unit ethylene that a similar seam exists in
every compound capable of performing a cis-trans isomerization. The energetics and
topography of the seam depend on the specific functionalization pattern. For pyrrolyl-
fulgide, parts of the seam that either photostabilize the system or lead to by-prodcuts
were found to compete with the reactive parts of the seam.
Understanding the mechanisms and requirements for formation of conical intersec-
tions provides the foundation needed to derive control schemes for quantum yield
enhancement based on a combination of chemical synthesis and light control as pro-
posed in ref. [254]. The performance of molecular switches and photostabilizers could
be improved by opening or closing channels selectively by suitable chemical substi-
tutions. The introduced rules of thumb provide already two strategies how this can
be achieved: by either hindering the motions needed for the resonance condition or
by weakening the mesomeric effects responsible for the formation of a distinct coni-
cal intersection. An intriguing perspectives lie in the utilization of polar solvents to
tune the accessibility of conical intersections[255] and in the coherent laser control
schemes[256] that address specific electronic effects by vibrational mode coupling and
induce directed ultrafast decay through selected regions of the designed intersection
space.
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In the second part of this thesis the theoretical studies on hemithioindigo-hemistilbene
and trifluoromethyl-indolylfulgide were deepened to obtain a detailed static picture
of the isomerizational mechanisms. Experimentally determined rate constants could
be assigned and processes, which cannot be distinguished spectroscopically were re-
vealed. The proposed reaction mechanisms explain the observed differences in the
dynamics of the forward and the backward reactions and are in good agreement with
the measured quantum yields. Both the cis-trans isomerization in hemithioindigo-
hemistilbene and the electrocyclic ring closure/opening in indolylfulgide are charac-
terized by the formation of a charge transfer in the excited state. The ability of each
system to stabilize this charge transfer is essential for the returning to the ground
state. In the indolylfulgide the functional groups stabilze the charge transfer to a
conical intersection with the ground state along the main reaction coordinate. The
presence of functional groups opens a range of possibilities to stabilize the charge
transfer by adjustment of the electrostatic interactions, rather then by geometrical
deformations. Consequently, broad degeneracy regions between the ground and the
excited state emerge, which allow for a fast return to the ground state. However,
also loss channels become easily accessible and the selectivity of the isomerization is
lost. In hemithioindigo-hemistilbene pyramidalization and tilt orient the molecule in
an appropriate way for a charge balance recovery to take place via interactions of the
π-system with the lone pairs of the heteroatoms.
In the last part of this thesis mixed quantum-classical dynamics simulations at multi-
state multi-reference complete active space perturbation theory level, using Tully’s
fewest switches surface hopping approach, were performed to study the ultrafast pho-
toreactivity of 1,3-cyclohexadiene in the gas-phase. The results confirm the ballistic
model, proposed by Fuss and co-workers, as the major part of the excited molecules
are found to circumvent the 1B2/2A1 conical intersection and reach the conical inter-
section seam between the excited state and the ground state instantaneuosly. Time
constants for the evolution of the wavepacket on the bright 1B2-state, the relaxation
into the 2A1-state and the return to the ground state could be extracted, resulting
in an overall reaction time of ≈ 70 fs. It was demonstrated that, effectively, only the
part of the intersection space, facilitating relaxation to both the closed and the open
ring structures, is used for the return to the ground state. The accessibility depends
on the energetic and spatial relation between minimum energy path and accessible
conical intersection seam, as well as on the momentum which is accumulated during
relaxation on the excited state potential energy surface.
The incorporation of multi-configurational perturbation theory into the mixed
quantum-classical dynamics allows for a nearly quantitative description of the elec-
tronic correlation. Consequently, time-resolved spectroscopic data can be reproduced
with high accuracy from first principles. Recently, promissing results have been pub-
lished for ethylene[257]. With the approach outlined in this thesis prototypical and
biologically relevant molecules like 1,3-cyclohexadiene and the DNA bases thymine
and cytosine are now within reach. Furthermore, by incorporating environmental
effects into the mixed quantum-classical dynamics scheme[258] this technique can be
used as a powerful tool to test the applicability of the rules of thumb for molecular
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modeling by sampling the accessibility of the designed conical intersection seam under
realistic conditions. Finally, by comparing the results of the mixed quantum-classical
dynamics to multi-dimensional quantum dynamics simulations (available for example
within the multi-configurational time-dependent Hartee formalism[259]) the challeng-
ing question about the role of pure quantum effects in the molecular dynamics can
be addressed[260].
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A. Properties of the derivative
couplings

To derive the left expression in eq. 1.11 we make use of the orthogonality of eigen-
functions of a hermitian operator
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As the overlap A.1 remains zero for all values of α the derivative with respect to the
nuclear coordinates is also zero
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From the above relation it immediately follows that the derivative coupling matrix is
antihermitian, whose diagonal entries are zero
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The right expression in eq. 1.11 is obtained by differentiating the electronic
Schrödinger equation 1.4 with respect to each nuclear coordinate α and subsequently
multiplying from left with Ψel

j and integrating over the electronic coordinates.
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In the last line the hermiticity of the electronic hamiltonian was used. The above
equation states that the derivative coupling between the states i and j is reciprocally
proportional to their energy gap
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B. Relation between the adiabatic
vectors and the diabatic vectors

By using the two-state adiabatic to diabatic transformation (eq. 1.12) the gradient
difference vector ~X1 (eq. 1.18) can be expressed as
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hence, ~X1 can be represented as a linear combination of the ~g and ~h vectors 1.17.
The scaled derivative coupling vector ~X2 (eq. 1.18) can be expressed as
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In the above derivation eq. A.5 was used. Further, as diabatic functions change slowly
with the nuclear coordinates their derivatives were neglected, i.e.
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C. Number of linearly independent
paramenters in an orthogonal
matrix

An orthogonal matrix is a square matrix with real entries whose columns and rows
are orthonormal. Thus, if we have an nxn matrix, the first column (or row) would
have n − 1 independent parameters, as the only condition it needs to satisfy is to
be normalized. The second column would have n − 2 independent paramenters, as
it must be orthogonal to the first column and normalized as well. The third column
would have n − 3 independent paramenters, the fourth n − 4 and so on. The last
column would have no independent parameters, i.e. will be predefined by the entries
in the previous n − 1 columns. Therefore the number of independent coefficients
equals:

#ofparameters =
n−1∑

1

=
n − 1 + 1

2
· (n − 1) =

n(n − 1)
2

, (C.1)

where the fact was used that the sum of n consequtive numbers starting at 1 is given
by the mean value (n + 1)/2 multiplied by the number of elelments (i.e. n).
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D. Rotational matrix as a
one-electron operator in second
quantization

By applying U on a trial wavefunction ~φ0 transforms a spin-orbital according to

φp =
∑

q

Uqpφ0
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q, (D.1)

where eq. 1.43 was used. In second quantization this transformation corresponds to
the action of a creation operator ã†

p of the form
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in the q-th orbital of the trial wavefunction. The new wavefunction is obtained by
applying a complete set of creation operators on the vacuum state
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Essentially, the above equation generates the new occupation number vector in the
basis of trial occupation number vectors (sec. 1.4.1).
Using eq. 1.43 eq. D.1 can be rewritten as
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where kqp are the coefficients of the rotational matrix K. It can be shown that the
above equation is equivalent to
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where the Baker-Cambell-Hausdorff formula was used (see Appendix E). K̂ is the
operator of eq. 1.45. Inserting the final expression of eq. D.5 into eq. D.3 gives the
final expression for the new occupation number vectors

e−K̂a†
p1

eK̂e−K̂a†
p2

eK̂ . . . e−K̂a†
pN

eK̂
∣
∣
∣

〉

= e−K̂a†
p1

a†
p2

. . . a†
pN

eK̂
∣
∣
∣

〉

= e−K̂ ~φ0 (D.6)

In the last expression the fact that matrix exponential is unitary was used. The action
of eK̂ on the vacuum state

∣
∣
∣

〉

gives

eK̂
∣
∣
∣

〉

= (1 + K̂ +
1
2

K̂2 + . . . )
∣
∣
∣

〉

=
∣
∣
∣

〉

(D.7)

as the operator K̂ first annihilates an electron from the occupation number vector.
Eq. D.6 states that all MO coefficients can be rotated/transformed simultaneously
by applying the exponential operator e−K̂
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E. Baker-Campbell-Hausdorff
expansion of the MCSCF matrix
element

The Baker-Campbell-Hausdorff expansion reads:

eKĤe−K =(1 + K +
1
2

K2 + · · · )Ĥ(1 − K +
1
2

K2 . . . ) =

Ĥ + KĤ − ĤK +
1
2

K2Ĥ − KĤK +
1
2

ĤK2 + · · · =

Ĥ + [K, Ĥ] +
1
2

[K, [K, Ĥ]] + . . . ,

(E.1)

where the Taylor expansion 1.43 for the matrix exponential eK was used. The above
expression is correct up to second order. It can be used to rewrite the operator in the
expectation value eq. 1.47

ePeKĤe−Ke−P = eP(Ĥ + [K, Ĥ] +
1
2

[K, [K, Ĥ]] + . . . )e−P =

Ĥ + [K, Ĥ] +
1
2

[K, [K, Ĥ]] + [P, Ĥ] + [P, [K, Ĥ]] +
1
2

[P, [P, Ĥ]] + . . . .
(E.2)

Again, this expression is correct up to second order. It gives a perscript for calculating
the energy gradients with respect to the rotation coefficients ~k and ~p.
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F. Diastereomeric pairs of CoIns in
HTI
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Figure F.1.: Diastereomeric pairs of CoIns: top) CoInS/CoInS∗ : middle)
CoInEt/CoInEt∗ ; bottom) CoInHT/CoInHT∗ . The atoms essential for the forma-
tion of a particular CoIn are colored in red. The center of pyramidalization is
denoted by a blue circle.
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G. Definition of the reactive
coordinates torsion,
pyramidalization and tilt in HTI

A set of reactive coordinates, well suited to describe the relaxation from the FC point
to the energetically reachable degeneracy region, consists of torsion, pyramidalization
and tilt. Naturally, these coordinates fulfill the resonance (torsion) and heterosym-
metry (pyramidalization, tilt) conditions for CoIn formation derived in sec. 2.2. The
torsion of the hemistilbene with respect to the hemithioindigo (fig. G.1, left) is the
main reaction coordinate (WH-coordinate). For the quantitative evaluation the GS
equilibrium structure of the Z-HTI isomer was chosen as reference geometry with
a torsional angle of 0°. With this definition the Z→E isomerization runs clockwise
(0°→ 180°), the E→Z isomerization counterclockwise (180°→ 0°). The pyramidaliza-
tion is defined as the out-of-plane bending of the hemistilbene. In fig. G.1, middle,
the pyramidalization is visualized for a torsional angle of 90°. At 0° pyramidalization
the bridging carbon atom lies in the plane of the hemithioindigo. The third coordi-
nate is the tilt of the hemistilbene either toward the carbonyl group (negative tilt) or
toward the sulfur (positive tilt). Exemplarily, in fig. G.1, right, the tilt is visualized
for a geometry with a torsional angle of 90° and pyramidalization of 60°. The purely
pyramidalized CoInS/Ac (fig. 2.8) is used as a 0° reference to determine the tilt.

Figure G.1.: Reactive coordinates for the Z/E isomerization. (left) Out-of-plane
torsion with Z-HTI as a zero-point reference in the range [0°:360°]; (middle)
Pyramidalization (shown for a torsional angle of 90°) in the range [-90°:90°];
(right) Tilt (shown for a torsional angle of 90°and pyramidalization of 60Â°) in
the range [-90°:90°].
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According to this definition pyramidalization and tilt can be evaluated as shown in
the sketch G.2 for an arbitrary pyramidalized and tilted geometry (given in black). To
simplify the visualization HTI was truncated to the central double bond ( 1©- 2©) and
its first substituents. As both coordinates are not directly obtainable from a regular
Z-matrix two dummy atoms were introduced (blue dots), so that the plane defined by
1©, X2 and X1 (red-rimmed plane) divides the angle 3©- 1©- 4© in half. With the help of
the dummy atoms the angle between the green-rimmed plane (defined via 2©- 1©-X2)
and the red plane is adjusted to 90°. When this is achieved, the pyramidalization
can be calculated by substracting the angle X1- 1©-X2 from 90°. The tilt is given
through the angle 2©- 1©-X2, i.e. X2 is the projection of 2© in the red-rimmed plane.
Furthermore, it is assumed, that the torsional angle at every CoIn is 90°. In the
sketch G.2 this assumption implies that centers 5© and 6© adjust in order to preserve
orthogonality between the two part of the π-system.

Figure G.2.: Sketch of the construction utilized to read-off pyramidalization and tilt
from an arbitrary geometry (given in black). For this purpose two dummy atoms
are introduced (blue dots). The pyramidalization is calculated by substracting
the angle X1- 1©-X2 from 90° and the tilt is given via the angle 2©- 1©-X2. The
center of pyramidalization is denoted by an blue circle.
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H. Localized molecular orbitals and
effects of the functional groups
for scenario 1. and 2. in
trifluoromethyl-pyrrolylfulgide

Figure H.1.: Localized molecular orbitals at the [2/2] and [1/1] homosymmetric
biradicals in scenario 1 (top) and scenario 2 (bottom) (fig. 2.11 sec. 2.4.4).
Dashed red lines indicate the spatial separation of the π-system into subunits.
Red crosses mark atomic centers which do not contribute to the final molecular
orbitals.
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Figure H.2.: Conjugation of the functional groups -NHR (+M effect) and -CHO (-M
effect) to the π-system of the basic unit for the [2/2] homosymmetric biradical in
scenario 1 (top) and for the [1/1] homosymmetric biradical in scenario 2 (bottom)
(fig. 2.11 in sec. 2.4.4). The alignment of the orbitals reflects their energetic
order.
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I. Quantum chemical methods
utilized in the study of HTI

The quantum chemical studies were performed with the software packages Molpro[71],
Molcas[261] and Gaussian[93]. Excited state structural optimizations were done on
the CASSCF level including up to 10 electrons and nine orbitals in the active space.
For points of interest CASPT2 was carried out, utilizing 14 electrons and 13 orbitals in
the active space. Transition dipole moments were obtained with the CASSCF State-
Interaction mathod (RASSI) method[262] as implemented in Molcas. Electrostatic
potentials[263] were used to visualize the charge distribution along the reaction path
in the ES. For the ES calculations the nomenclature SA-n and MS-n for averaging
over n states in CASSCF and in CASPT2, respectively.
The size of HTI does not allow the inclusion of all π-orbitals in the active space.
All first neighbors to the central double bond and one set of bonding and antibond-
ing orbitals per benzene ring were considered (fig. I.1). Critical is the role of the
oxygen lone pair, which can interact with the π-system depending on the structural
arrangement and in principle must be considered in the active space. However, the si-
multaneous description of nπ∗ and ππ∗ states leads to problems due to the unbalanced
description of the electron correlation for both states at CASSCF level (see dicussion
in sec. 3.1.2). Therefore, the lone pair of the oxygene was included in the active
space only in the single point calculations at the FC point and in the optimization of
CoInAc, which is very sensitive to dynamic correlation effects due to the notable nπ∗

contribution to the ES wavefunction[183] (see discussion in sec. 3.1.2). As the char-
acter of the electronic states and thereby the amount of electronic correlation change
along the MEP CASSCF can often only provide a qualitative description of the ES
topography. Therefore, comparative single point CASPT2(14,13) calculations with
Molcas, using an ionization potential-electron affinity (IPEA) modified zero order
Hamiltonian[264] with an IPEA shift parameter of 0.25 a.u. and a real denominator
shift of 0.30 a.u.[120, 121] were performed at all optimized stationary structures to
incorporate the missing electron correlation. The active space was extended by an
additional set of bonding and antibonding orbitals per benzene ring.
The stationary structures (minima, transition states, CoIns) were optimized on the
CASSCF level with the standard Pople basis set 6-31G*[265, 266] and their charac-
ters were verified by frequency analysis. A relaxed state-averaged scan at CASSCF
level along two reactive coordinates was performed for the construction of the two-
dimensional ES PES, using the smaller basis set 6-31G[265]. Minimum energy CoIns
were optimized with the projection method as implemented in Molpro (see sec. 1.2.3).
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Figure I.1.: (10 electrons/9 orbitals) active space of HTI plus the oxygen lone pair.
Exemplarily, the active orbitals of the Z-HTI are presented.
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J. Quantum chemical methods
utilized in the study of
trifluoromethyl-indolylfulgide

The compound with a de-methylated nitrogen was used in the quantum chemical
calculations. Geometry optimizations were performed with the software packages
Molpro[71] and Gaussian[93]. CASSCF and the time-dependent density functional
theory[267, 268] with the CAM-B3LYP functional[269] were utilized. The complete
π-spaces of the indole and cyclohexadiene/hexatriene subunits were included in a (14
electrons/13 orbitals) large active space (fig. J.1). Averaging over the three low-
est states for the chosen active space was applied (i.e. SA-3-CASSCF). At each
stationary point the missing dynamic correlation was recovered using multistate MS-
SR-CASPT2, correlating the three CASSCF states (denoted as MS-3-CASPT2) as
implemented in Molcas[261]. Thereby, a default ionization potential-electronic affinity
(IPEA) shift of 0.25 a.u.[264], as well as a real shift of 0.1 a.u.[120, 121] were used for
the energy calculations. Transition dipole moments were obtained with the CASSCF
State-Interaction (RASSI) method[262] as implemented in Molcas. Frequency cal-
culations at SS-CASSCF level were performed for ground state equilibrium geome-
tries, as well as for the excited state local minima in the vicinity of the FC-regions.
Normal modes, frequencies and IR-intensities were calculated from analytical first
derivatives and dipole moments obtained via a parallelized numerical procedure. To
verify the CASSCF results, IR-spectra were also calculated at time-dependent density
functional theory level. For comparison with experimental spectra the SS-CASSCF
frequencies were scaled by a factor of 0.86, the CAM-B3LYP frequencies by a factor
of 0.94. The standard Pople 6-31G*[265, 266] basis set was used for the atoms in-
cluded in the π-system, whereas the 6-31G[265] basis set was used for the methyl- and
trifluoromethyl-groups. Ground state and excited state topologies around CoIns have
been obtained by performing an unrelaxed scan in the two-dimensional plane defined
by the gradient difference and derivative coupling vectors. They lift the degeneracy
between electronic states and define the branching space in a first order approxima-
tion (see sec. 1.2). The scan was performed at equidistant displacements (scaling
factors: 0.05, 0.10, 0.15) from the CoIn along the orthonormalized gradient difference
and derivative coupling vectors. Electrostatic potentials at selected geometries were
generated and visualized with Molden[270].
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Figure J.1.: (14 electrons/13 orbitals) active space of trifluoromethyl-indolylfulgide.
Exemplarily, the active orbitals of the C-form are presented.
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List Of Abbreviations

BO Born-Oppenheimer
BS Branching Space
CASPT2 Complete–Active–Space–Perturbation–Theory
CASSCF Complete–Active–Space SCF
CHD Cyclohexadiene
CI Configuration-Interaction
CIS CI with Singles
CISD CI with Singles and Doubles
CoIn Conical Intersection
CPMCSCF Coupled–Perturbed MCSCF
CSF Configuration–State–Function
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ES Excited State
FC Franck-Condon
FWHM Full Width at Half Maximum
HF Hartree–Fock
HOMO Highest Occupied Molecular Orbital
HT Hexatriene
HTI Hemithioindigo-Hemistilbene
IR Infrared
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LUMO Lowest Unoccupied Molecular Orbital
MCSCF Multi–Configuration SCF
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MO Molecular Orbitals
MP2 Møller–Plesset
MRCI Multi–Reference–CI
MS-MR-CASPT2 Multi-State Multi-Reference CASPT2
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SS-CASSCF Single-State CASSCF
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