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Abstract

Component-based software engineering has emerged as an important software
engineering discipline to cope with the growing complexity of today’s software
systems. Components are encapsulated software units with well-defined interfa-
ces. A key principle of component-based development is to build larger systems
by composition of smaller, less complex components. An important application
area concerns reactive systems in which the modelling and verification of com-
ponent behaviours is essential. To support correct usage and implementation of
reactive components, interfaces should be equipped with rigorous formal specifi-
cations of component behaviours.

This thesis presents a comprehensive study and analysis of specifications of
interfaces for reactive components on the basis of modal input/output automata
(MIOs), with a focus on interface refinement, interface composition and interface
compatibility. MIOs are based on modal transition systems that were introduced
by Larsen and Thomsen and that generalize labelled transition systems by di-
stinguishing between may and must modalities for transitions. MIOs explicitly
support loose specifications and offer an elegant approach to stepwise refine-
ment. However, they lack a compatibility notion that is preserved by weak mo-
dal refinement, and support neither the integration of data specifications nor the
specification of quantitative properties. In this thesis we develop an upwards and
downwards closed hierarchy of novel specification theories for MIOs that reme-
dy these shortcomings. Specification theories within the hierarchy are related by
theory embeddings. The top element of our hierarchy of specification theories is
given by a weak modal specification theory for MIOs including data and quanti-
tative specifications, the bottom element is given by a strong modal specification
theory for deterministic MIOs.

On the one hand, we define MIOs with data constraints that integrate con-
trol flow and data flow of an interface. This new model extends MIOs by va-
riables which are controlled by the owning component and visible to the envi-
ronment. Transitions are augmented with pre- and postconditions to describe
the dependencies between communication and data states. On the other hand,
K -weighted MIOs address quantitative properties by labelling transitions with
weights from a partially ordered weight structure K . This generalized forma-
lism is capable of expressing constraints on non-functional properties such as
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resource consumption or costs.
Our proposed modal specification theories use interface refinement that is

either based on strong modal refinement, a white box refinement taking into ac-
count internal actions, or weak modal refinement, a black box refinement with
observational abstraction of internal actions. Interface composition is defined by
synchronous communication via input and output actions. Interface compatibili-
ty is based on the notion of strong or weak environment correctness which requi-
res outputs of a component to be received by its environment, in the weak case
after some internal steps.

This thesis studies also three particular aspects of (modal) specification theo-
ries. The first aspect concerns the verification of refinements. For finite MIOs
with data constraints involving infinite variable domains, modal refinement is
in general undecidable. We propose predicate abstraction to derive over- and
under-approximations for concrete and abstract specifications, respectively, such
that refinement between approximations (which is decidable) implies refinement
between original specifications. Second, we introduce modal refinement distan-
ces for K -weighted MIOs. Modal refinement distances are a generalization of
strong modal refinement and measure how close a K -weighted MIO is to refi-
ne another one by taking into account distances on weights. Third, we propose
a contract approach for interface specifications that explicitly distinguish bet-
ween assumptions on the environment and guarantees of a component, strictly
following the principle of separation of concerns. We study the relation between
specification theories and contract theories in an abstract setting, and we show
how a contract theory can be built in a generic way on top of any specification
theory. We identify behaviour and environment semantics of contracts which are
the basis for further definitions of contract refinement and contract compositi-
on. The latter raises the problem of finding most permissive assumptions such
that the mutual assumptions of composed contracts are satisfied. For complete
specification theories supporting quotient, conjunction and a maximal environ-
ment operator, we show that a constructive definition of contract composition
can be given. The generic contract framework is instantiated for strong specifi-
cation theories based on deterministic MIOs and MIODs. In particular, we show
that deterministic MIOs with strong modal refinement and strong environment
correctness form a complete specification theory.

Finally, we have implemented several modal specification and contract theo-
ries in the MIO Workbench, an Eclipse-based tool with an intuitive and easy-to-
use graphical user interface. It supports the design of MIOs and modal contracts
as well as the verification of refinement and compatibility notions used in this
thesis.



Zusammenfassung

Komponentenorientierte Softwareentwicklung hat sich als wichtiges Prinzip in
der Entwicklung von komplexen Softwaresystemen durchgesetzt. Komponenten
verkapseln Softwareelemente und bieten ihre Funktionalität über wohldefinier-
te Schnittstellen an. Ein Grundprinzip der Komponentenorientierung liegt im
Entwickeln von größeren Systemen durch Komposition von kleineren, weniger
komplexen Komponenten. Ein wichtiger Anwendungsbereich sind reaktive Sy-
steme, bei denen die Modellierung und Verifikation von Komponentenverhalten
unerlässlich ist.

In dieser Arbeit wird eine umfassende Studie über Schnittstellenspezifikati-
on von reaktiven Komponenten durchgeführt. Der Ansatz basiert auf modalen
Input/Output-Automaten (MIOs) und fokussiert auf Schnittstellenverfeinerung
sowie Komposition und Kompatibilität. MIOs basieren auf modalen Transiti-
onssystemen, die von Larsen und Thomsen eingeführt wurden und die üblichen
Transitionssysteme durch die Unterscheidung von “may” und “must” Transitio-
nen verallgemeinern. MIOs ermöglichen lose Spezifikationen sowie flexible Ver-
feinerungsbegriffe. Jedoch unterstützen MIOs weder einen Kompatibilitätsbe-
griff der durch schwache modale Verfeinerung erhalten bleibt, noch wurden bis-
her Datenspezifikationen oder die Spezifikation von quantitativen Eigenschaften
integriert. Diese Arbeit entwickelt neuartige Spezifikationstheorien für MIOs,
die die genannten Schwächen beheben. Die eingeführten Theorien werden durch
Einbettungen in Beziehung gesetzt, wodurch eine nach oben und unten abge-
schlossene Hierarchie ensteht. Eine schwache Theorie für MIOs mit Datenspezi-
fikationen und quantitativen Eigenschaften bildet das oberste Element der Hier-
archie, das unterste Element ist eine starke Theorie für deterministische MIOs.

Dazu werden MIOs mit Datenspezifikationen eingeführt, die sowohl Kon-
trollfluss als auch Datenfluss integrieren. Dieser neue Formalismus erweitert
MIOs um nach außen hin sichtbare Variablen der Komponenten. Transitionen
werden um Vor- und Nachbedingungen erweitert, um die Abhängigkeiten zwi-
schen Kommunikation und Datenänderungen zu modellieren. Außerdem werden
K -gewichtete MIOs definiert, die quantitative Eigenschaften durch Elemente
auf Transitionen aus einer partiell geordneten Menge K beschreiben. Dieser
allgemeine Formalismus kann Bedingungen an nicht-funktionale Eigenschaften,
wie beispielsweise Ressourcenverbrauch oder Kosten, ausdrücken.
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Die eingeführten modalen Spezifikationstheorien basieren entweder auf star-
ker Verfeinerung (mit expliziter Betrachtung von internen Aktionen) oder schwa-
cher Verfeinerung (mit Abstraktion von internen Aktionen). Komposition ist defi-
niert über synchrone Kommunikation mittels Input- und Output-Aktionen. Kom-
patibilität basiert auf starker oder schwacher Umgebungskorrektheit. Diese for-
dert, dass Outputs einer Komponente von der Umgebung angenommen werden
(im schwachen Fall werden interne Aktionen davor erlaubt).

Diese Arbeit befasst sich außerdem mit drei weiteren Aspekten von moda-
len Spezifikationstheorien. Der erste Aspekt betrifft die Verifikation von Verfei-
nerung. Für endliche MIOs mit Datenspezifikationen und unendlichen Daten-
bereichen ist die Verfeinerung im Allgemeinen unentscheidbar. Daher wird ei-
ne Prädikatenabstraktion entwickelt, um Über- und Unterapproximationen für
konkrete und abstrakte Spezifikationen zu konstruieren, so dass eine (entscheid-
bare) Verfeinerung zwischen Approximationen die Verfeinerung der ursprüng-
lichen Spezifikationen impliziert. Als zweiten Aspekt werden modale Verfeine-
rungsdistanzen für K -gewichtete MIOs untersucht. Modale Verfeinerungsdi-
stanzen verallgemeinern starke modale Verfeinerung und geben ein Maß für die
Präzision der Verfeinerung unter Beachtung der Transitionsgewichte an. Drit-
tens werden Verträge im Kontext von Schnittstellenspezifikationen von Kompo-
nenten untersucht. Verträge unterscheiden explizit zwischen Annahmen an und
Garantien für die Umgebung einer Komponenten und folgen damit strikt dem
Prinzip “separation of concerns”, der Trennung von unterschiedlichen Aspekten
einer Spezifikation. Der Zusammenhang zwischen Spezifikations- und Vertrags-
theorien wird auf einer abstrakten Ebene untersucht. Insbesondere wird gezeigt,
wie eine Vertragstheorie, ausgehend von einer gegebenen Spezifikationstheorie,
definiert werden kann. Dazu werden Verhaltens- und Umgebungssemantik von
Verträgen definiert, die die Grundlage für Vertragsverfeinerung und Vertrags-
komposition darstellen. Bei der Vertragskomposition ist insbesondere wichtig,
die schwächste Vorbedingung zu finden, so dass die gegenseiten Annahmen der
zu komponierenden Verträge erfüllt sind. Für vollständige Spezifikationstheo-
rien, die Konjunktion, Quotient und maximale Umgebungskorrektheit unter-
stützen, wird gezeigt, wie schwächste Annahmen konstruiert werden können.
Dank der generischen Definition der Verträge erhält man Vertragstheorien für
deterministische MIOs sowie MIOs mit Datenbedingungen. Insbesondere wird
gezeigt, dass deterministische MIOs mit starker modaler Verfeinerung und star-
ker Umgebungskorrektheit eine vollständige Spezifikationstheorie bilden.

Die MIO Workbench ist ein Eclipse-basiertes Werkzeug und implementiert
die eingeführten Spezifikations- und Vertragstheorien für MIOs und modale Ver-
träge. Die graphische Oberfläche der MIO Workbench ermöglicht die Model-
lierung von MIOs und modalen Verträge und unterstützt die Verifikation von
Verfeinerungs- und Kompatibilitätsbegriffen.
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Chapter 1

Introduction

Reactive software systems are omnipresent in our everyday life. They are run-
ning on consumer hardware such as smart phones or televisions, but also in
safety-critical air traffic control systems or medical equipment. Such systems
are reactive [99] by continuously interacting with their environment and by re-
sponding to external stimuli. They are often specifically designed to provide func-
tionalities on limited hardware with strict requirements on resource usage such
as time, memory or energy [106, 164]. The design and verification of such in-
creasingly complex systems still face major challenges [165].

An important and established approach to tackle the complexity of such sys-
tems is component-based development in which the system is decomposed into
smaller and less complex components. Each component is implemented inde-
pendently and provides access to its functionality by well-defined interfaces,
abstracting from internal implementation details. To enable formal analysis
and verification of global behavioural properties of reactive component-based
systems, component interfaces must be equipped with specifications with con-
cise and rigorous formal semantics. Ongoing research on component-based de-
sign [129] seeks for heterogeneous specification languages that adequately ad-
dress functional as well as non-functional aspects of components.

1.1 Software Components and Component Inter-
face Specifications

There is a common agreement that a (software) component is an independent
unit which can be composed with other components to form a larger system.
According to Szyperski [169], a software component is best described as follows:

“A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A soft-
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ware component can be deployed independently and is subject to com-
position by third parties.”

This definition already mentions most of the key aspects of components and
component-based development. Composition is the principle by which individ-
ual components are composed to form a larger component assembly. The speci-
fication of components is given by the specifications of the component interfaces
which are the access points of the functionality provided by that component. In
particular, these interface specifications should be seen as contracts between the
user and the implementor of the component, and may include assumptions on
the context (i.e. on the user of the component). The second sentence says that
a component should be “deployed independently”. This suggests that the com-
ponent is an independent, encapsulated entity with its own local memory that
works correctly as long as the contracts at its interfaces are respected by the en-
vironment. Finally, the importance of independent components also manifests in
the phrase “(a software component) is subject to composition by third parties”.
Components are often delivered as compiled software units and later integrated
by a system architect into a larger system, and therefore any context depen-
dencies must be explicitly specified in the interface specifications to admit the
construction of correct component assemblies.

The shape of such interface specification formalisms, which functional or non-
functional aspects they should cover and their level of detail, turned out to be
quite challenging [129, 165, 164]. In recent years, component-based design [129]
has become increasingly important also for embedded systems which often op-
erate under strict limitations like timing constraints or restricted availability
of resources like power or fuel. Embedded systems call for novel heterogeneous
specification formalisms. Balancing the strive for lightweight, efficiently analyz-
able specifications and including functional and non-functional aspects to assure
component assemblies with strong global properties is still subject of research.
Functional aspects should cover the temporal ordering of communication events
and changing data states of the component. Non-functional aspects should allow
for the integration of time, probabilities or resource consumption.

Another aspect that has received much attention is the integration of be-
havioural variability to allow for the design of software product lines [55, 77, 53].
The aim in such software product lines is to jointly design a family of variations
of a component by a generic specification which can then later be refined to effi-
cient, product- and platform-dependent component implementations.

Finally, a suitable formalism should support a notion of refinement to develop
component-based systems in a top-down manner, from abstract specifications
to concrete specifications or implementations. To ensure correct interaction be-
tween reactive components, a notion of compatibility is desired which expresses
when components work together properly. Refinement should satisfy a composi-
tionality property ensuring that refinement is preserved by composition, i.e. we
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can always replace a component by a refined one while retaining global system
refinement. Furthermore, whenever compatibility has been shown on an ab-
stract level of specifications, it should be preserved to any refined specifications.

Altogether, interface specification formalisms should be able to adequately
address reactive systems by supporting

• loose specifications and behavioural variability, with a notion of refinement
for stepwise development of specifications; ideally, refinement supports ob-
servational abstraction;

• composition for structurally combining specifications, with a notion of com-
patibility determining when specifications can work together properly,

• such that compositionality of refinement and preservation of compatibility
is satisfied.

The formalism should be capable to address the specification of

• functional properties, allowing for the specification of interaction protocols
(like the temporal ordering of communication events) together with visible
data states of the component integrating control flow and data flow aspects,

• non-functional properties including quantitative properties like resource
consumption (power or fuel) or costs, timed properties for expressing real-
time constraints, and probabilities to enable probabilistic analysis of the
behaviour.

Finally, the formalism should support

• contracts that explicitly distinguish between assumptions on the environ-
ment and guarantees of a component, strictly following the principle of sep-
aration of concerns.

1.2 State of the Art in Interface Specifications
Traditional approaches to the specification of component behaviours include pro-
cess algebras like CSP [107], CCS [141], or ACP [34]. They focus on modelling
parallel, distributed systems and support a variety of behavioural equivalence
relations and simulation preorders. Process algebras have also been integrated
into component models, for instance, Wright [4] defines a component model with
ports and connectors, and CSP is used to model the behaviour of connectors.
State machines [98] are another classical approach to modelling the reactive be-
haviour of components by communication protocols. State machines are also part
of the Unified Modeling Language (UML) [149], the standard modelling language
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for object-oriented systems. Both approaches, based on process algebras and on
state machines, are established formalisms for behaviour modelling, and they
have seen many different extensions in the literature to cope with the specifica-
tion of functional (like data) and non-functional properties.

Many recent works in the area of interface specifications are based on state
transition systems aiming at light-weight formalisms. This line of research was
fundamentally inspired by I/O Automata [135] that were introduced by Lynch
and Tuttle as a formal model to describe concurrent, distributed systems. I/O
automata distinguish between input, output and internal actions. Importantly,
the transition relation in I/O automata is input-enabled since all input actions
are required to be enabled in every state, modelling reactive components that
can never refuse to receive an input. There exist several extensions of I/O au-
tomata in the literature, including timed I/O automata [116] and hybrid I/O au-
tomata [134]. Using I/O automata for assume-guarantee specification of compo-
nent interfaces was investigated in [123].

In 2001, de Alfaro and Henzinger introduced interface automata [61] that are
based on I/O automata, but drop the requirement of input-enabledness, i.e. not
in every state there must exist a transition for each input action. Omitting an
input in a specific state allows for expressing that this input should not be sent
by the environment to the component in the actual state. Interface automata
are an instance of interface theories [63] and support refinement, composition
and compatibility. Refinement of interface automata is defined by an alternating
simulation relation [63] that requires every output of the concrete interface to
be simulated by the abstract interface, and vice versa for inputs. Therefore,
refinement basically means providing less outputs and offering more inputs.

Compatibility of two interface automata is based on the absence of commu-
nication errors, that are reachable states of their composition in which one in-
terface automaton can send out an output to another one which is, however, not
ready to take that output due to the absence of a corresponding input transi-
tion. De Alfaro and Henzinger introduced a novel optimistic approach to com-
patibility [61] where two interface automata are compatible if there exists an
environment in which no communication error is reachable. Since the introduc-
tion of interface automata in 2001, several approaches have been proposed that
extend interface automata towards time [65], resources [52], data [58, 146], and
assume-guarantee rules [76].

Although interface automata constitute a solid theory and offer several ex-
tensions to cope with other functional and non-functional properties, we still
believe that interface automata, already in their basic form with alternating re-
finement, have some shortcomings and do not fully meet the requirements listed
in Section 1.1 in a satisfactory manner. The reason is twofold. Firstly, there is
no way of expressing that certain outputs must be performed, guaranteeing a
certain progress. Hence, one can always construct trivial refinements consist-



1.2 State of the Art in Interface Specifications 5

ing of a single input-enabled state, in which no outputs are possible. Secondly,
interface automata do not fully support observational refinement. Although the
direction in alternating refinement [61, 63] from concrete to abstract supports
observational abstraction w.r.t. internal transitions, the direction from abstract
to concrete is strict, meaning that no internal steps can be inserted when real-
izing an input of the abstract specification. One reason why this is disallowed
lies in the definition of compatibility which requires inputs to happen immedi-
ately without delay. A weak simulation of inputs would render preservation of
compatibility under refinement fail to hold. We claim that having an observa-
tional refinement is crucial for the applicability of interface theories for realistic
examples, and in particular, the step from abstract to concrete should support
the introduction of internal steps.

In 2007, Larsen et al. [124] proposed to use modal input/output automata
(MIOs) for the modelling of component interfaces. MIOs are based on Modal
Transition Systems (MTSs) which were introduced by Larsen and Thomsen [126]
in 1988, and use input, output and internal actions as transition labels. MTSs
differ from standard labelled transition systems by having two types of transi-
tions: the may-transition relation models the allowed behaviour whereas the
must-transition relation determines the required behaviour. With these two
kinds of transitions at hand, one can express loose behavioural specifications
by having proper may-transitions that need not be preserved by refinement.

t0 t1

in?

out!
in?

T
in out t′0 t′1

in?

out!

T ′
in out

Figure 1.1: Two modal input/output automata T and T ′

Examples of MIOs are depicted in Figure 1.1. The dashed transitions repre-
sent the allowed behaviour (may-transitions), whereas the transitions with solid
line represent required behaviour (must-transitions). Input and output actions
are annotated with question and exclamation marks, respectively. The MIO T
in Figure 1.1 formulates that the input in? must be possible and the subsequent
output out! is allowed but not required in refinements.

The notion of modal refinement [126] is central for MIOs and is a general-
ization of bisimulation relating an abstract and a concrete MIO. More precisely,
modal refinement is a preorder between two MIOs and is defined in a simulation-
like manner requiring the may-transitions of the concrete specification to be sim-
ulated by the abstract specification, and conversely for the must-transitions. A
modal refinement T ′ of T can be seen in Figure 1.1: the may-transition labelled
with output action out! has been strengthened to a must-transition which must
then be preserved in any further refinement of T ′.
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The main difference to the interface automata is the flexibility of modalities
that are independent of the types of actions. Any transition can be declared
as a must-transition to be preserved in any refinement, for instance, the MIO
T ′ shown in Figure 1.1 requires out! to be possible after each occurrence of
in?. Therefore, MIOs offer more expressive power than interface automata and
are suitable for specifying local liveness (a transition must be present) and local
safety properties (a transition is disallowed).

In [124] Larsen et al. transferred the idea of compatibility of interface au-
tomata [61] to the level of MIOs. Recently, it was shown that modal transition
systems (without input, output and internal actions and without compatibility)
form a fully-fledged interface theory [158] supporting operators like conjunction
and quotient on specifications which are useful in component-based design.

However, also the theory of modal input/output automata still holds some
weaknesses to be discussed. In [109] Hüttel and Larsen proposed weak modal
refinement, a natural extension of strong modal refinement [126] to take into
account observational abstraction, very similar to the step from strong bisimula-
tion to weak bisimulation [142]. So far, MIOs and compatibility notions have only
be considered in the context of strong modal refinement. Moving from strong to
weak modal refinement does, however, not conserve the properties of interface
theories, as the compatibility notion used in [124] requires that an input action
is immediately enabled as soon as the communication partner has enabled the
corresponding output action. Clearly, weakly refining a MIO and adding inter-
nal steps before a transition with input action may introduce communication
errors breaking compatibility. A minimal example illustrating this observation
is shown in Figure 1.2. S and T are compatible in the sense of [124], however,
their refinements S′ and T ′ are not compatible. The refinement T ′ of T has in-
troduced an internal step int before the input action msg?, and thus T ′ is not
immediately ready to perform the action msg? to receive the output msg! from
S′. This observation does also hold for interface automata if one would choose
alternating refinement with a weak simulation from the abstract to the concrete
interface.

In the literature one can find timed extensions [49, 35, 36] of modal transi-
tion systems as well as probabilistic extensions [45, 68] and a weighted exten-
sion [114]. However, referring to the list of requirements in Section 1.1, MIOs
crucially lack any extension to cope with the specification of data states. An
integrated formalism is desirable that combines modalities of MIOs with the
loose specification of visible data states a component can adopt as well as data
states a component requires to access in its environment. Extending MIOs by
data is of great importance for practical use in modelling of large-scale systems.
Also, MIOs lack the possibility of the specification of quantitative constraints like
costs or resource consumption which is of importance once MIOs shall be used
for components that are subject to non-functional requirements. Furthermore,
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s0 s1
msg!

S
msg

s′0 s′1
msg!

S′
msg

t0 t1
msg?

T
msg

t′0 t′1 t′2
int msg?

T ′
msg

int

is refined to is refined to

is compatible with

is not compatible with

Figure 1.2: Weak modal refinement does not preserve compatibility

in the tradition of interface automata, assumptions and guarantees have been
always simultaneously specified in a single MIO. To avoid cluttering of differ-
ent viewpoints in a single specification, contracts offer a way of explicitly distin-
guishing component guarantees and assumptions on the environment, leading
to a clean separation of concerns. Preliminary work was conducted by Goessler
and Raclet [90] and by Quinton and Graf [154] for contracts based on modal
transition systems. However, both works [90, 154] do not consider compatibility.

1.3 Research Goals
Our goal in this thesis is to contribute to the field of formal approches to compo-
nent interface specifications based on modal input/output automata. The motiva-
tion of choosing modal input/output automata is that they are expressive enough
to rule out the shortcomings of interface automata mentioned above, and modal-
ities for transitions are crucial for obtaining observational specification theories
while supporting loose specifications and behavioural variability. This thesis fo-
cuses on the following research goals.

• Development of modal input/output automata with

– data constraints for the specification of changing data states
of the component, integrating control flow and data flow aspects,

– quantitative properties to address aspects like resource con-
sumption,

under consideration of
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– strong modal refinement, a white box refinement taking into
account internal actions, and weak modal refinement, a black
box refinement with observational abstracting of internal ac-
tions,

– strong and weak environment correctness which is pre-
served by strong and weak modal refinement, respectively.

• Arranging the introduced modal specification theories in an upward
and downward closed hierarchy obtained by defining embeddings
between the theories

• Development of a generic contract framework for the specifica-
tion of component interfaces by explicit assume-guarantee pairs that
can be instantiated by any specification theory

In the next section, we give an overview of the results presented in this thesis.

1.4 Contributions

Specification Theories

All results in this thesis are introduced in the context of a specification theory
that formalizes essential ingredients and properties of any formal theory sup-
porting the compositional design of component interfaces. Our notion of a spec-
ification theory is inspired by de Alfaro and Henzinger’s interface theories [62]
and interface languages [63]. In our study, a specification theory Th is formally
defined as a tuple

Th= (S,Si,⊗,≤,→)

where S is a set of interface specifications, Si ⊆S is a subset of implementa-
tions, ⊗ ⊆S×S→S is a partial composition operator that composes two (com-
posable) interface specifications, ≤ ⊆S×S is a preorder capturing refinement
of interface specifications, and finally → ⊆S×S is an environment correctness
predicate that determines pairs (S,E) of specifications expressing that S “works
properly” in the environment E when they are composed. All constituents of a
specification theory are left abstract. Instances of this framework must define
what interface specifications are and what composition, refinement and envi-
ronment correctness mean. A specification theory requires the following three
properties:
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Compositional refinement:

If S⊗E is defined, S′ ≤ S and E′ ≤ E, then S′⊗E′ is defined
and S′⊗E′ ≤ S⊗E.

Preservation of environment correctness:

If S → E, S′ ≤ S and E′ ≤ E, then S′ → E′.

Finality of implementations:

For all I ∈Si and all S ∈S, S ≤ I implies I ≤ S.

In any specification theory we are interested in the implementation semantics
JSK of S ∈ S which is defined as the set of all implementations refining S. A
natural refinement preorder, called thorough refinement, can then be derived by
relying on implementation semantics only: S ∈ S thoroughly refines T ∈ S if
and only if JSK ⊆ JTK. An interesting question is in which cases refinement ≤
and thorough refinement is equivalent. This question is discussed whenever we
introduce a specification theory in this thesis.

For stating precisely the relationships between specification theories we pro-
pose morphisms, embeddings and reflective embeddings. A morphism, similar to
algebraic homomorphisms in algebraic specification [176], is a function between
the sets of interface specifications of two specifications theories that preserves
composition, refinement and environment correctness; embeddings are injective
morphisms, and an embedding is reflective if refinement and environment cor-
rectness is also reflected, i.e. preserved in the opposite direction.

Let Th1 = (S1,Si
1,≤1,⊗1,→1) and Th2 = (S2,Si

2,≤2,⊗2,→2) be two
specification theories. A morphism f from Th1 to Th2 is a total function
f :S1 →S2 such that, for all S,T ∈S1,

1. If S ∈Si
1, then f (S) ∈Si

2.

2. If S⊗1T is defined, then f (S)⊗2 f (T) is defined and f (S⊗1T)= f (S)⊗2
f (T),

3. if S ≤1 T, then f (S)≤2 f (T),
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4. if S →1 T, then f (S)→2 f (T).

The morphism f is an embedding if f is injective.
The morphism f is a reflective embedding of Th1 in Th2 if it is an em-
bedding (i.e. injective) and for all S,T ∈S1,

1. if f (S) ∈Si
2, then S ∈Si

1,

2. if f (S)⊗2 f (T) is defined, then S ⊗1 T is defined and f (S)⊗2 f (T) =
f (S⊗1 T),

3. if f (S)≤2 f (T), then S ≤1 T,

4. if f (S)→2 f (T), then S →1 T.

Establishing a morphism (or embedding) f from a specification theory Th1
to a specification theory Th2 allows to transfer any designs with environment
correctness and refinement proofs from Th1 to Th2. If f is, moreover, a reflective
embedding of Th1 in Th2 then the notions of implementations, refinement and
environment correctness in Th2, restricted to specifications from the image of
f , coincide with the respective notions in Th1. We may also say that Th2 is a
conservative extension of Th1.

Specification Theories for MIOs

As our second contribution, we propose a specification theory for the set MIO of
all MIOs and the set MIOi of all implementations, based on modal synchronous
composition ⊗ [126] and strong modal refinement ≤s [126]. The latter gives rise
to implementation semantics JSKs for any MIO S ∈ MIO as described before.
Thorough refinement of MIOs, defined as inclusion of implementation seman-
tics, is shown to be equivalent to strong modal refinement whenever the abstract
MIO is deterministic, i.e. JSKs ⊆ JTKs is equivalent to S ≤s T whenever T is de-
terministic. As environment correctness notion we consider strong environment
correctness →s. Communication errors occur when an output is enabled in a
specification and the environment in the current state does not have the corre-
sponding input enabled. A MIO is a strongly correct environment for another
MIO if there are no communication errors reachable in their composition. Com-
munication errors are inspired by [61, 124], however, in contrast to [61, 124] we
follow a pessimistic view on component compatibility. The result is a specifica-
tion theory ThMIOstrong for MIOs. We also introduce a specification theory ThdMIO

strong
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that restricts the sets of MIOs and implementations to deterministic ones and
that can be embedded in ThMIOstrong.

ThMIOstrong =
(
MIO,MIOi,⊗,≤s,→s

)
ThdMIO

strong =
(
dMIO,dMIOi,⊗,≤s,→s

)

To address the problem of strong environment correctness not being pre-
served by weak modal refinement, we define the novel notion of weak environ-
ment correctness →w that requires the input to happen possibly after some must-
transitions labelled with internal actions, which constitutes a considerable re-
laxation of strong environment correctness. We derive a specification theory for
MIOs, based on weak modal refinement ≤w [109] and weak environment correct-
ness →w, in particular, we show that weak environment correctness is preserved
by weak modal refinement.

ThMIOweak =
(
MIO,MIOi,⊗,≤w,→w

)

Specification Theories for MIOs with Data Constraints

To allow for modelling rich interfaces with data, we extend MIOs with variables
yielding modal input/output automata with data constraints (MIODs). Each
MIOD includes two sets of variables V prov and V req. Provided variables in V prov

are controlled by the owning component, with read and write access, and visible
to the environment which has read access only. Required state variables also
belong to the interface specification and model variables the component expects
to be visible in the environment. Crucially, transitions are augmented with pre-
and postconditions. A transition label is of the form [ϕ]α[π] where α is an action,
the precondition ϕ is a predicate with variables from V prov and V req which acts
as a guard restricting the enabledness of the respective transition to the data
states (of the interface itself and the environment) which satisfy ϕ. The postcon-
dition π is a predicate relating a previous data state of V prov and V req to a next
data state of V prov, thus determining all possible next (post) data states of the
owning component depending on the previous data state. For the postconditions,
we adhere to the idea of loose specifications and admit postconditions that are se-
mantically relations (rather than functions). The set of all MIODs is denoted by
MIOD. The set MIODi consists of all implementations, that are MIODs for which
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every allowed transition is also required and all postconditions are assignments
mapping a previous data state to exactly one post data state.

We show how modal synchronous composition ⊗d can be defined on MIODs.
Moreover, strong modal refinement can be extended to MIODs accordingly, tak-
ing into account pre- and postconditions in transition labels. The idea of strong
modal refinement ≤d

s for MIODs is illustrated below in Figure 1.3.

T

S

is refined to

t1
[ϕ]α[π]

t2

s1
[ϕ′]α[π′]

s2

⇒ ⇒
t1

[ϕ]α[π]
t2

s1
[ϕ′]α[π′]

s2

⇒

⇒
Figure 1.3: Idea of strong modal refinement for MIODs

Enabled may-transitions in the concrete interface specification S must be
simulated by the abstract interface specification T, and both enabledness and
effect on the data state must be allowed. Conversely, every must-transition in T
with precondition ϕ must be present in S with a possibly stronger precondition
ϕ′, and the postcondition π′ specifying the effect on the data state must imply π.

Analogous to the case of MIOs, we investigate the relationship between strong
modal refinement ≤d

s for MIODs and thorough refinement (induced by ≤d
s ), and

we show that they coincide if the abstract MIOD is deterministic.
When variables have large or infinite domains, the verification of strong modal

refinement may become subject of the state explosion problem, or even unde-
cidable. To deal with such problems, we propose predicate abstraction [93] for
MIODs as a verification technique of strong modal refinement. In order to check
a refinement S ≤d

s T between two MIODs S and T with the same set of variables
V prov and V req, we show how to derive over- and under-approximations So and
Tu of S and T, for which it holds S ≤d

s So and Tu ≤d
s T by construction of So and

Tu. These approximations use a finite number of predicates in pre- and post-
conditions, partitioning the data state space of V prov and V req. Then, So ≤d

s Tu

can be decided by encoding the finite number of predicates by Boolean variables.
Hence, once one has established So ≤d

s Tu, S ≤d
s T follows from transitivity of

strong modal refinement.
We lift strong environment correctness to the level of MIODs, denoted →d

s ,
by taking into account the pre- and postconditions. The result is a specification
theory ThMIODstrong for MIODs and a specification theory ThdMIOD

strong for deterministic
MIODs, both based on strong modal refinement and strong environment correct-
ness. In particular, we will show that ThdMIOD

strong can be embedded in ThMIODstrong.
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ThMIODstrong =
(
MIOD,MIODi,≤d

s ,⊗d,→d
s

)
ThdMIOD

strong =
(
dMIOD,dMIODi,≤d

s ,⊗d,→d
s

)

We show how any implementation in MIOD can be equipped with a denota-
tional semantics, formalized as input/output transition systems with data where
a state consists of an abstract control state and a data state for the provided
variables, and transitions are guarded by data states for the required variables.
We prove that MIODs can be independently implemented in the above sense, in
particular, we show that the denotational semantics is preserved by synchronous
composition.

We also propose weak modal refinement ≤d
w and weak environment correct-

ness →d
w for MIODs, that basically follow the same ideas as for MIOs. The dif-

ference is here that internal steps may be inserted only if they do not change the
current values of provided variables. This restriction is crucial for compositional-
ity of weak modal refinement: if internal transitions could change provided state
variables, new behaviour could emerge in the composition of the more concrete
specifications that was not allowed by the composition of the more abstract spec-
ifications. With weak modal refinement and weak environment correctness, we
arrive at a specification theory for MIODs:

ThMIODweak =
(
MIOD,MIODi,⊗d,≤d

w,→d
w

)

Specification Theories for K -Weighted MIOs
We propose K -weighted MIOs (K -WMIOs) that are capable to capture basic
quantitative aspects of systems. Transitions are equipped with labels from a
weight structure K = (K ,¹,⊕) consisting of a set of weights K , a partial order ¹
on K , and a weight synchronization operator ⊕ that describes how weights are
combined during parallel composition. Weight structures K can be instantiated
to model quantitative constraints on non-functional properties such as resource
consumption or costs. We adapt strong modal refinement to take into account
weight refinement, i.e., in a refinement step a label k ∈ K can be refined to an-
other label k′ ∈ K whenever k′ ¹ k. On this basis, we revisit strong modal refine-
ment, implementation semantics, thorough refinement, and identify sufficient
conditions for completeness of strong modal refinement. We define modal syn-
chronous composition ⊗K for K -WMIOs and show that it is compositional with
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respect to strong modal refinement ≤K
s . Since we consider weights that model

quantitative constraints like resource consumption that do not necessarily play
a role in communication correctness between components, we define strong envi-
ronment correctness →K

s like →s for MIOs, by not considering the weights. The
outcome are two specification theories ThK -WMIO

strong for K -WMIOs and ThdK -WMIO
strong

for deterministic K -WMIOs.

ThK -WMIO
strong =

(
K -WMIO,K -WMIOi,⊗K ,≤K

s ,→K
s

)
ThdK -WMIO

strong =
(
dK -WMIO,dK -WMIOi,⊗K ,≤K

s ,→K
s

)

In [121] Larsen characterized strong modal refinement for MTSs by Hennessy-
Milner-Logic (HML). We propose K -HML and prove a logical characterization of
strong modal refinement of K -WMIOs.

We also defined weak modal refinement ≤K
w and weak environment correct-

ness →K
w for K -WMIOs. The latter is again based on →w and is independent

of any weights. The former, weak modal refinement ≤K
w , requires simulation in

both directions up to internal actions, very similar to weak modal refinement for
MIOs. Importantly, however, we allow that weights are distributed to several
transitions in a refinement. K -WMIOs together with weak modal refinement
and weak environment correctness are shown to form a specification theory.

ThK -WMIO
weak =

(
K -WMIO,K -WMIOi,⊗K ,≤K

w ,→K
w

)

A Hierarchy of Specification Theories

In the course of the thesis we build up step by step a hierarchy of specification
theories for MIOs, MIODs, K -WMIOs. Lastly, we define K -WMIODs as the in-
tegration of MIODs and K -WMIOs in a single formalism, and we define modal
specification theories ThdK -WMIOD

strong , ThK -WMIOD
strong and ThK -WMIOD

weak . The obtained
modal specification theories are arranged in a hierarchy, by defining suitable
(reflective) embeddings between them. The complete picture showing all specifi-
cation theories for MIOs, MIODs, K -WMIOs and K -WMIODs together with all
embeddings ( ) and reflective embeddings ( ) can be seen in the figure
below.
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ThMIODweak ThMIOweak ThK -WMIO
weak

ThMIODstrong ThMIOstrong ThK -WMIO
strong

ThdMIOD
strong ThdMIO

strong ThdK -WMIO
strong
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strong

ThdK -WMIOD
strong

ThK -WMIOD
weak

Modal Refinement Distances for K -Weighted MIOs
With regard to refinement for quantitative specifications like K -WMIOs, we
think that a preorder as a refinement notion is not adequate. We argue that
there is a need for a notion of refinement distance that is a (non-symmetric)
function that maps pairs (S,T) of specifications to a value in R≥0 expressing how
“well” S refines T; if S is a strong modal refinement of T then the refinement
distance is 0, otherwise it is a value greater than 0 and it yields ∞ if S does not
even refine T without considering the weights.

We focus on Kintv-WMIOs with the weight structure Kintv = (Kintv,¹intv,⊕intv)
where Kintv consists of all integer intervals, the partial order ¹intv is defined by
set inclusion, and ⊕intv is interval addition. We then show for Kintv-WMIOs
how to lift strong modal refinement to a modal refinement distance given by the
function

dm : Kintv-WMIO×Kintv-WMIO→R≥0 ∪ {∞}.

The function dm is defined via recursive equations accumulating distances of
integer intervals of matched transitions such that, for any S,T ∈ Kintv-WMIO
with the same action signature,

dm(S,T)= 0 whenever S is a strong modal refinement of T;
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0< dm(S,T)<∞ whenever there is only a slight discrepancy between S and T
such that an interval k of a transition in S does not refine the interval ` of
the matched transition in T, i.e. k 6¹intv `;

dm(S,T)=∞ whenever there is an error in the discrete structure (given by may-
and must-transitions) of S and T.

We investigate a thorough notion of modal refinement distances, denoted dt,
and we prove that in general dt(S,T) ≤ dm(S,T) for two Kintv-WMIOs S and
T. Equality is shown to hold whenever T is deterministic. Finally, we prove that
the modal refinement distance dm satisfies a quantified version of composition-
ality, more precisely, we prove that

dm
(
S′⊗Kintv T ′,S⊗Kintv T

)≤ dm(S′,S)+dm(T ′,T)

for any S,S′,T,T ′ ∈ Kintv-WMIO. The study of “environment correctness dis-
tances” is not further discussed in this thesis, however, it could be defined in
principle in a similar fashion as modal refinement distances.

Contracts for Component Interfaces
Component contracts are a popular approach in component-based design: they
explicitly distinguish between assumptions on the environment and guarantees
of a component, strictly following the principle of separation of concerns. We
study the relation between specification theories and contract theories in an ab-
stract setting, and we show how a contract theory can be built in a generic way
on top of any specification theory. In particular, for a contract C = (A,G) with as-
sumption A and guarantee G satisfying G → A, we identify behaviour semantics
and environment semantics JCKbeh and JCKenv of contracts, respectively. The envi-
ronment semantics JCKenv consists of all environments satisfying the assumption
A, whereas the component behaviour semantics JCKbeh is given by all implemen-
tations I satisfying the guarantee G whenever they are put in an environment
satisfying A – this is formally defined by relativized refinement I ≤A G, a gener-
alization of refinement. Environment and component behaviour semantics are
the basis for the definitions of contract refinement and contract composition. For
the former we define a contract C′ to thoroughly refine another contract C, if C′

admits less correct component behaviours and more correct environments than
C, formally JC′Kbeh ⊆ JCKbeh and JC′Kenv ⊇ JCKenv. We prove that C′ = (A′,G′)
thoroughly refines C = (A,G) if and only if A ≤ A′ and G′ ≤A G.

More complex is contract composition of two contracts that shall yield a new
contract adequately describing the assumptions and guarantees of the new com-
posed system. We make this precise by the definition of contract dominance that
subsumes necessary conditions to ensure a sound composition of component be-
haviours and environments of the individual contracts. A contract composition is
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then defined as the strongest dominating contract. As a crucial result, we show
that a constructive definition of contract composition is possible whenever the
underlying specification theory is complete and contracts have normal forms.

• Complete specification theories form a subclass of specification theories that
additionally offer the following operators: Conjunction ∧ computes a great-
est lower bound of two specifications w.r.t. refinement; quotient � yields a
maximal solution X to the equation S⊗ X ≤ T, i.e. T�S is a most general
specification X that can be composed with S in order to refine T; finally, the
maximal compatibility operator max·→(·) computes, for given specifications
S and E, a largest refinement E′ of E such that S → E′.

• A contract C = (A,G) has a normal form if there is an equivalent contract
(A,Gnf ) with the same semantics such that a specification S is a behaviour
of C if and only if S ≤ Gnf , i.e. the behaviour semantics of (A,Gnf ) is inde-
pendent of A.

For specification theories that satisfy these assumptions we prove that the
contract composition (i.e. a strongest dominating contract) of (A1,G1) and (A2,G2)
can be defined by(

maxGnf
1 ⊗Gnf

2 →((A1�Gnf
2 )∧ (A2�Gnf

1 )), Gnf
1 ⊗Gnf

2

)
.

When defining environment correctness of contracts by contract dominance, we
arrive again at a specification theory, this time with the set of interface specifi-
cations consisting of all contracts.

Thanks to the generic setting of our considerations, we get contract theories
“for free” for any specification theory. For the instantiation of the contract frame-
work to the specification theory ThdMIO

strong for deterministic MIOs, we show that,
on the one hand, ThdMIO

strong is complete (thanks to determinism which is a neces-
sary assumption), and that, on the other hand, every contract over ThdMIO

strong has
a normal form. These results allow us to compute contract composition accord-
ing to the above formula. Moreover, relativized refinement is characterized by a
weakening operator.

We also instantiate the generic contract framework for the specification the-
ory ThdMIOD

strong for deterministic MIODs. In contrast to the first instantiation we
do not define a complete specification theory, however, we give a direct definition
of relativized refinement. We also discuss the role of pre- and postconditions in
assumptions and guarantees.

Tool Support: The MIO Workbench
The MIO Workbench is a tool for the verification of MIOs and modal contracts.
It is based on the Eclipse framework [75] and features a sophisticated graphical
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user interface. The tool was initially implemented by Philip Mayer in 2009 and
presented for the first time in [27]. In the course of this thesis it was continuously
extended and enhanced. The current version of the MIO Workbench implements
all relations and operators of the specification theories ThMIOstrong and ThMIOweak, the
complete specification theory ThdMIO

strong, and the generic contract framework in-
stantiated for the complete specification theory ThdMIO

strong. The MIO Workbench
supports an input language to define MIOs and modal contracts and to execute
verification tasks like modal refinement and environment correctness checks.
The parser for the input language is generated with the help of the Xtext frame-
work [171] that also generates a text editor offering syntax highlighting. Im-
portantly, the user interface features a series of editors (graphical MIO editor,
graphical contract editor, generated text editor), a shell reusing the generated
parser to allow execution of statements of the input language, and a verification
view that provides a side-by-side view on two MIOs in order to visualize results
of modal refinement and environment correctness checks.

1.5 Thesis Structure
In Chapter 2, we start with defining the abstract framework of specification the-
ories, their morphisms and (reflective) embeddings. The modal specification the-
ories are then introduced.

• In Chapter 3: ThMIOstrong, ThdMIO
strong and ThMIOweak

• In Chapter 4: ThMIODstrong, ThdMIOD
strong and ThMIODweak , with a predicate abstraction

technique for the verification of strong modal refinement

• In Chapter 5:

– ThK -WMIO
strong , ThdK -WMIO

strong , ThK -WMIO
weak for K -WMIOs,

– ThK -WMIOD
strong , ThdK -WMIOD

strong , ThK -WMIOD
weak for K -WMIODs combining data

and quantitative aspects

Modal refinement distances are studied in Chapter 6 for interval weighted MIOs.
How to move from specification theories to contracts is investigated in Chapter 7,
with exemplifying instantiations to the modal specification theories ThdMIO

strong and
ThdMIOD

strong . The MIO Workbench that we have used and developed further in the
course of this thesis is presented in Chapter 8. Finally, in Chapter 9, we summa-
rize the results and elaborate on possible directions for future work.



Chapter 2

Specification Theories

In this chapter we propose a simple and general algebraic axiomatization, called
specification theory, that is inspired by previous works on interface theories [62,
63] and captures the algebraic structure of formal theories supporting the top-
down design of component-based systems featuring concurrent, reactive compo-
nents.

We focus on the essential parts such a theory should provide. Firstly, a spec-
ification theory should support the stepwise development of component speci-
fications by refining abstract specifications to more concrete ones until reach-
ing specifications that can be considered as (abstractions of) implementations
in which no design choices are left open. Secondly, we require a way of struc-
turally composing specifications of concurrently running communicating compo-
nents. Thirdly, a notion of environment correctness expresses whether a compo-
nent communicates or interoperates correctly in a given environment.

This chapter introduces the formal notion of a specification theory and lays
the foundation of the following parts of the thesis. All of the concrete theories
introduced in this thesis later on will be shown to be instances of this abstract
framework. The abstract algebraic definition of specification theories immedi-
ately leads to morphisms and (reflective) embeddings between specification the-
ories, inspired by algebraic morphisms [176], and allows for arranging the intro-
duced theories in a hierarchy stating precisely their relationships.

Outline. In Section 2.1 we present the formal definition of specification theo-
ries, together with associated notions of morphisms and (reflective) embeddings
between specification theories. Section 2.2 summarizes related works and we
conclude in Section 2.3 with a short summary.



20 2. Specification Theories

2.1 Definition
Specification theories define a set of specifications and a subset of implemen-
tations, together with their (1) refinement, (2) composition and (3) environment
correctness which are key concepts for any specification formalism aiming at top-
down design of component-based systems.

(1) The refinement relation ≤ is a binary relation that relates “concrete” and
“abstract” specifications. A statement S ≤ T reads “S refines T” and means
that S is less abstract than T.

(2) The composition operator ⊗ allows to compose two specifications to a larger
one. We admit partial composition operators that compose only composable
specifications; composability of specifications usually expresses syntactical
restrictions two communicating components must satisfy, like the matching
of provided and required interfaces that are going to be connected.

(3) The environment correctness relation → expresses that a specification works
properly in an environment. A statement S → E reads “E is a correct en-
vironment for S”, or “S feels well in E”. The idea of the environment cor-
rectness relation is that the component with specification S might require
its environment to satisfy some constraints such that S does not fail (the
precise definition of “failing” is up to the concrete instantiation). A derived
symmetric compatibility notion is given by S� T if and only if S → T and
T → S.
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Figure 2.1: The two dimensions of a specification theory

The composition operator and environment correctness relation (and its de-
rived notion of compatibility) concern the horizontal dimension of a specification
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theory, i.e. they operate on different components that are on the same level of
abstraction. The vertical dimension is addressed by the refinement relation re-
lating specifications for the same component but from different levels of abstrac-
tions. The two dimensions are illustrated in Figure 2.1.

There are a series of basic properties a specification theory requires. Firstly,
refinement is a preorder (i.e. reflexive and transitive) and the composition oper-
ator is commutative and pseudo-associative. Secondly, refinement is preserved
by composition.1 Thirdly, environment correctness is preserved by refinement.
Lastly, we identify a subset of specifications, called implementations, that are
required to be final elements with respect to refinement.

Definition 2.1.1 (Specification Theory)
A specification theory

Th= (S,Si,≤,⊗,→)

consists of

• a set S (“specifications”),

• a subset Si ⊆S (“implementations”),

• a reflexive and transitive relation ≤ ⊆S×S (“refinement”) which gives rise
to an equivalence relation on S: for all S ∈S, S ≈ S′ if and only if S ≤ S′

and S′ ≤ S;

• a (strict) partial function ⊗ :S×S→S (“composition”) which is commuta-
tive and pseudo-associative in the following sense:2

– for all S,E ∈S, if S⊗E is defined, then E⊗S is defined and S⊗E =
E⊗S; “=” means set-theoretic equality of elements,

– for all S,E,E′ ∈S, if S,E,E′ are pairwise composable, then (S⊗E)⊗E′

and S⊗ (E⊗E′) are defined and (S⊗E)⊗E′ = S⊗ (E⊗E′);

we call S and E composable if S⊗E is defined;

• a binary relation →⊆S×S (“environment correctness relation”) such that,
if S → E, then S⊗E is defined; we write S�E and call S and E compatible
if S → E and E → S,

such that the following properties are satisfied:

A1. Compositional refinement:
1In other words, refinement is required to be a precongruence with respect to composition.
2By ⊗ being strict we mean that assertions like “(S⊗T)⊗U is defined” is equivalent to “S⊗T

is defined and (S⊗T)⊗U is defined”.
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If S⊗E is defined, S′ ≤ S and E′ ≤ E, then S′⊗E′ is defined and
S′⊗E′ ≤ S⊗E.

A2. Preservation of environment correctness:

If S → E, S′ ≤ S and E′ ≤ E, then S′ → E′.

A3. Finality of implementations:

For all I ∈Si and all S ∈S, S ≤ I implies I ≤ S (and hence I ≈ S).

Refinement ≤ together with the set of implementations Si leads to the notion
of implementation semantics of a specification S ∈S which is defined as the set

JSK,
{

I ∈Si
∣∣∣ I ≤ S

}
.

A specification S ∈S is said to be consistent if and only if JSK 6= ;. Thus, by this
definition of consistency, any implementation I ∈Si is consistent.

The implementation semantics gives rise to another notion of refinement,
called thorough refinement: a specification S ∈ S thoroughly refines another
specification T ∈ S if and only if JSK ⊆ JTK. An interesting question in every
specification theory is the study of the relationship of refinement ≤ and thorough
refinement. As refinement ≤ is transitive, an immediate consequence is that re-
finement implies thorough refinement, i.e. refinement implies restriction of the
set of implementations.

Theorem 2.1.2 (Soundness of Refinement)
For any specifications S,T ∈S, whenever S ≤ T, then JSK⊆ JTK.

Proof. Let I ∈ JSK, then I ≤ S. We also know S ≤ T by assumption, and since
refinement is transitive, it follows that I ≤ T. I is an implementation, hence
I ∈ JTK.

The converse direction, called completeness of refinement, cannot be proven on
this abstract level. Later in this thesis we see instances of specification theories
that do not satisfy the converse implication, and we identify sufficient conditions
for completeness of refinement to hold.

Specification theory morphisms and (reflective) embeddings. In the last
part of this section, we consider morphisms, embeddings and reflective embed-
dings between specification theories that express relationships between them.
Since specification theories can be considered as algebraic structures [176] a
specification theory morphism, similar to an algebraic homomorphism between
algebraic structures, is a function between two specification theories preserving
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the composition operator, the refinement relation and the environment correct-
ness relation. An embedding is an injective morphisms, and reflective embed-
dings are embeddings for which refinement and environment correctness are also
reflected, i.e. preserved in the opposite direction.

Definition 2.1.3 (Morphism, embedding)
Let Th1 = (S1,Si

1,≤1,⊗1,→1) and Th2 = (S2,Si
2,≤2,⊗2,→2) be two specification

theories. A specification theory morphism (or just morphism) from Th1 to Th2 is
a total function f :S1 →S2 such that, for all S,T ∈S1:

1. If S ∈Si
1, then f (S) ∈Si

2.

2. If S⊗1 T is defined, then f (S)⊗2 f (T) is defined and f (S⊗1 T)= f (S)⊗2 f (T).

3. If S ≤1 T, then f (S)≤2 f (T).

4. If S →1 T, then f (S)→2 f (T).

An embedding of Th1 in Th2 is an injective morphism from Th1 to Th2. If there
exists an embedding of Th1 in Th2 then we write

Th1 Th2 .

Establishing a specification theory morphism f from Th1 to Th2 demonstrates
that (1.) f preserves implementations, (2.) translation of specifications from Th1
to specifications in Th2 via f is compositional with respect to ⊗ and, (3.) and (4.),
any environment correctness or refinement assertions in Th1 can be transferred
to Th2 in which they continue to hold. Embeddings additionally require injec-
tivity. A typical example of a specification theory embedding f of Th1 in Th2 is
when a component-based design consisting of a collection of specifications in Th1
shall be transferred to a richer specification theory Th2, e.g., as we shall see later
in this thesis, to include additional aspects like data or quantitative properties.
Then the embedding f ensures that any assertions in Th1 involving ⊗1, ≤1, →1
are still valid in Th2 after translation via f .

Theorem 2.1.4
Any functional composition of morphisms (embeddings) is again a morphism (em-
bedding).

Proof. Let f12 be a morphism from Th1 to Th2, and let f23 be a morphism from
Th2 to Th3. Then f23 ◦ f12 is a morphism from Th1 to Th3.

1. If S ∈Si
1, then f12(S) ∈Si

2, hence f23( f12(S)) ∈Si
3.

2. Let S,T ∈S1. Then

f23( f12(S))⊗3 f23( f12(T))= f23( f12(S)⊗2 f12(T))
= f23( f12(S⊗1 T)).
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3. Assume that S′ ≤1 S holds. Then it follows that f12(S′) ≤2 f12(S), and then
also f23( f12(S′))≤3 f23( f12(S′)).

4. Assume that S →1 E is satisfied. Then f12(S) →2 f12(E) which implies
f23( f12(S))→3 f23( f12(T)).

The functional composition of embeddings is again an embedding since func-
tional composition preserves injectivity.

Reflective embeddings are special embeddings g which also reflect implemen-
tations, refinement and environment correctness in images of g.

Definition 2.1.5 (Reflective embeddings)
Let Th1 = (S1,Si

1,≤1,⊗1,→1) and Th2 = (S2,Si
2,≤2,⊗2,→2) be two specification

theories. A reflective embedding of Th1 in Th2 is an embedding g of Th1 in Th2
such that for all S,T ∈S1,

1. if g(S) ∈Si
2, then S ∈Si

1,

2. if g(S)⊗2 g(T) is defined, then S⊗1 T is defined and g(S)⊗2 g(T)= g(S⊗1 T),

3. if g(S)≤2 g(T), then S ≤1 T,

4. if g(S)→2 g(T), then S →1 T.

If there exists a reflective embedding of Th1 in Th2 we also write

Th1 Th2 .

Establishing a reflective embedding between two specification theories wit-
nesses a stronger relationship than a morphism or an embedding does. If g is a
reflective embedding of Th1 in Th2, then any design in Th1 can be transferred to
the images of g in Th2 while preserving implementations, refinement and envi-
ronment correctness (since g is also a morphism), but in addition, any new re-
finement and environment correctness assertions in Th2 can be transferred back
to Th1 as long as specifications from g(S1)⊆S2 are involved only. Similar to the
case of morphisms and embeddings, reflective embeddings can be functionally
composed to form again a reflective embedding.

When given a specification theory Th, and a prospective specification theory
Th′, then it suffices to define a reflective embedding of Th′ in Th in order to prove
that Th′ is indeed a specification theory.
Theorem 2.1.6
Let Th = (S,Si,≤,⊗,→) be a specification theory. Let Th′ = (S′, (Si)′,≤′,⊗′,→′)
be a quintuple consisting of a set S′, a set (Si)′, a (strict) partial function ⊗′ :
S′×S′ →S′, a relation ≤′ ⊆S′×S′ and a relation →′ ⊆S′×S′. If there is a
function g :S′ →S satisfying the conditions of a reflective embedding, then Th′ is
a specification theory, too.
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Proof. We have to prove the conditions a specification theory has to satisfy, cf.
Definition 2.1.1.

The domain of g is S′ and by the first condition in Definition 2.1.5 g(I) is
defined for every implementation I ∈ (Si)′, hence (Si)′ ⊆ S′. Refinement ≤′ is
clearly reflexive and transitive: For any S ∈S′, S ≤′ S follows from g(S) ≤ g(S).
Moreover, for any S,T,U ∈S′, S ≤′ T ≤′ U implies g(S) ≤ g(T) ≤ g(U). By tran-
sitivity, g(S) ≤ g(U), and then S ≤′ U by the properties of g. Similarly, one can
show pseudo-associativity and commutativity of ⊗′. We check that (A1), (A2) and
(A3) are satisfied.

A1. Let S,S′,T,T ′ ∈S′ such that S⊗′T is defined, and assume that S′ ≤′ S and
T ′ ≤′ T. Then g(S)⊗g(T) is defined, g(S⊗′T)= g(S)⊗g(T), g(S′)≤ g(S) and
g(T ′) ≤ g(T). Since (A1) holds in Th it follows that g(S′)⊗ g(T ′) is defined
and g(S′)⊗ g(T ′) ≤ g(S)⊗ g(T). From g(S′)⊗ g(T ′) it follows that S′⊗′ T ′ is
defined and g(S′⊗′ T ′) = g(S′)⊗ g(T ′). By transitivity of refinement we get
g(S′⊗′ T ′)≤ g(S⊗′ T). Thus S′⊗′ T ′ ≤ S⊗′ T.

A2. Let S,S′,E,E′ ∈S′ and assume that S →′ E and S′ ≤′ S and E′ ≤′ E. Then
g(S) → g(E) and g(S′) ≤ g(S) and g(E′) ≤ g(E). Since (A2) holds in Th we
get g(S′)→ g(E′), thus S′ →′ E′.

A3. Finally, every element in (Si)′ is a final element with respect to refinement.
Let S ∈ (Si)′, T ∈S′, and assume that T ≤′ S. Then g(T)≤ g(S) and g(S) ∈
Si, hence g(S)≤ g(T). The latter implies S ≤′ T which was to be shown.

2.2 Related Work
Our work is inspired by de Alfaro and Henzinger’s framework called interface
theories [62], which was later reworked in [63]. The formal notion of interface
theories was, to our knowledge, the first one to capture crucial operations, re-
lations and their properties that should be satisfied in a theory for component-
based top-down design with a focus on interface compatibility and a stepwise
development methodology.

In their work [62], an interface theory consists of an interface algebra to-
gether with a component algebra thus distinguishing between interface specifi-
cations and component implementations. Interface theories were motivated by
a common abstract framework with the rudimentary concepts for component-
based design and which can be instantiated by concrete formalisms. Later, in
[63], the authors introduced interface languages which simplified the approach
by considering just interfaces (and no component implementations) with the re-
quirements that independent implementability and incremental design is sat-
isfied. De Alfaro and Henzinger defined in [62] a notion that is similar to our
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morphisms: an interface theory I2 is as expressive as I1 if there is a function
from the set of interfaces of I1 to the set of interfaces of I2 such that composi-
tion, compatibility and refinement are preserved (and additional conditions hold
for interconnects and the underlying component algebra).

In the 1980s, Joseph Goguen and Rod Burstall developed an abstract frame-
work, called institution [92], defining the essential concepts that a logical sys-
tem should satisfy. In comparison to specification theories, institutions comprise
a notion of signature, model, sentence and a satisfaction relation between mod-
els and sentences of the same signature. A satisfaction condition expresses that
the validity is invariant under change of signatures. Main differences between
institutions and specification theories are the following:

• In specification theories interfaces play the role of both models and sen-
tences, e.g. I ≤ S means that the implementation I ∈Si satisfies the speci-
fication S ∈S which could also be written I |= S in more logical terms.

• In specification theories we abstract from signatures of specifications.

• Institutions do not support a concept of structurally composing communi-
cating models.

• Environment correctness is a property that could be considered as a sen-
tence, however, environment correctness is a property between two models,
one acting as component behaviour model and the other one as environ-
ment model.

An example of using institutions to formalize the design of component-based sys-
tems is the work on CommUnity which is a parallel program design language
developed by Fiadeiro and Maibaum in [82, 81]. They show how a framework for
the design of parallel programs (or concurrent components) can be formalized as
an institution.

One aspect that is not covered by specification theories, often seen in other
languages geared towards the specification of component-based systems, is the
architectural (hierarchical) structure of these systems. Several formalisms have
been proposed in the literature for the architectural design of systems, also re-
ferred to as architectural description languages (ADL), like, e.g., Wright [4] and
Darwin [136]. A first attempt of including architectural aspects in the abstract
setting of specification theories has been recently developed by Hennicker and
Knapp in [102].

Publication history. The notion of specification theories is based on [27], how-
ever, rather than relying on a symmetric compatibility relation like in [27], we
consider a non-symmetric environment correctness relation. The use of environ-
ment correctness is more general since the symmetric compatibility relation �
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can be obtained by →, see Definition 2.1.1. Morphisms have already been intro-
duced in [22].

2.3 Summary
In this chapter we have proposed a uniform algebraic framework for specifica-
tion theories supporting compositional top-down design of component-based sys-
tems. A specification theory should feature a composition operator to structurally
combine communicating components, an environment correctness relation which
expresses when communicating components interoperate properly with their en-
vironment, and a refinement relation supporting the stepwise development of
implementations from abstract specifications.

We have identified important properties that specification theories should
support, most importantly compositionality of refinement and preservation of en-
vironment correctness by refinement. We have shown how algebraic morphisms,
embeddings and reflective embeddings allow to relate different specification the-
ories.
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Chapter 3

Modal Input/Output Automata

In this chapter we study modal input/output automata [124] as the basis for
specification theories. Modal input/output automata are an extension of modal
transition systems [126] which were introduced by Larsen and Thomsen in 1988
and which are labelled transition systems but with two types of transitions: a
may-transition relation expresses allowed transitions that may be present in a
refinement, whereas must-transitions are mandatory transitions that need to
be preserved in any refinement. Modal transition systems together with modal
refinement give rise to consider modal transition systems as abstractions of (sets
of) labelled transition systems.

In recent years, modal transition systems have gained a lot of interest in the
research community for formal modelling of component behaviour. The main
reasons are twofold: From a theoretical point of view, they are a lightweight ap-
proach to the flexible refinement of transition system-based specifications, and
the concept of must-transitions allows to express local liveness properties. On
the other hand, they are from practical interest to the software product-line com-
munity [152, 55, 10, 84] since modal transition systems can be used to specify a
whole set of different implementations (represented as ordinary labelled transi-
tion systems).

In the first part of this chapter, we recall modal input/output automata [124]
as an extension of modal transition systems [126] by input, output and inter-
nal actions, and their basic notions like synchronous composition and modal re-
finement [126, 109]. For defining a suitable environment correctness notion for
modal input/output automata, we follow the approach of [124], which is inspired
by compatibility of interface automata [61], and consider as a communication er-
ror whenever a component can issue an output for which the environment is not
ready to take that output as an input. As our first contribution in this chapter, we
show that modal input/output automata together with strong modal refinement
and strong environment correctness form a specification theory.

As strong environment correctness is not preserved by weak modal refine-
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ment, we propose as our second contribution a new observational version of
environment correctness which we call weak environment correctness. Weak
environment correctness allows non-observable actions to happen before the rel-
evant input and we show that it is preserved by weak modal refinement hence
giving rise to a novel observational specification theory for modal input/output
automata.

Outline. In Section 3.1 we give a thorough introduction to modal input/out-
put automata. Modal synchronous composition as our composition operator for
modal input/output automata is introduced in Section 3.2. The first specifica-
tion theories ThMIOstrong and ThdMIO

strong are defined in Section 3.3, with strong modal
refinement and strong environment correctness. Weak modal refinement and
weak environment correctness is presented in Section 3.4 which gives rise to
another specification theory ThMIOweak that can be related to ThMIOstrong by an embed-
ding. Finally, in Section 3.5 we discuss related work, and summarize the content
of this chapter in Section 3.6.

3.1 Definition
The behaviour of components is described with external actions which can be
either input or output actions used for communication with the environment,
and internal actions which model internal communication or computation.

Definition 3.1.1 (Action signature)
An action signature is a triple Σ = (Σin,Σout,Σint) where Σin, Σout, Σint are the
pairwise disjoint sets of input, output, and internal actions, respectively. We write
Σext for the set of external actions, that is Σin ∪Σout.

Actions are usually denoted with small Greek letters. We write
⋃
Σ for the

union Σin∪Σout∪Σint. We usually refer with indices to the respective components
of an action signature, i.e. when we are given an action signature Σ1, then Σin

1 ,
Σout

1 , Σint
1 are the sets of input, output and internal actions of Σ1, respectively.

When two components with action signatures Σ1 and Σ2 are composed to form
a larger system, every shared action becomes an internal action. In this thesis
we restrict ourselves to the case of binary communication, so an action α is an
external action of at most two components, an input of one component and an
output of the other one. Other, more general communication schemes in related
approaches are discussed in Section 3.5.

Composing action signatures is not always meaningful according to the above
restrictions. Two action signatures Σ1 and Σ2 are composable if every shared
action in

⋃
Σ1∩⋃

Σ2 is either an input action in Σ1 and an output action in Σ2, or
vice versa.
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Σ1⊗Σ2

δ β1 β2 ζ

Σ1

δ

Σ2

ζ
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Figure 3.1: Composition of action signatures schematically

Definition 3.1.2 (Composability)
Two action signatures Σ1 and Σ2 are composable if(⋃

Σ1
)∩ (⋃

Σ2
)= (Σin

1 ∩Σout
2 )∪ (Σout

1 ∩Σin
2 ).

The composition of two composable action signatures results in a new action
signature in which shared (external) actions become internal actions.

Definition 3.1.3 (Composition)
Let Σ1 and Σ2 be two composable action signatures. The composition of Σ1 and Σ2

is defined by Σ1 ⊗Σ2, (Σin,Σout,Σint) where

Σin = (Σin
1 ∪Σin

2 )\shared(Σ1,Σ2),
Σout = (Σout

1 ∪Σout
2 )\shared(Σ1,Σ2),

Σint =Σint
1 ∪Σint

2 ∪shared(Σ1,Σ2),

with shared(Σ1,Σ2)= (Σin
1 ∩Σout

2 )∪ (Σin
2 ∩Σout

1 ).

Example 3.1.4
Figure 3.1 illustrates the composition of two composable action signatures Σ1 and
Σ2, denoted Σ1⊗Σ2. Each frame represents an action signature; ingoing and out-
going arrows at the frame border show the input and output actions, bullets at
the frame border represent internal actions. For instance, Σ1 is the action signa-
ture determined by Σin

1 = {α1,β2}, indicated by incoming arrows, Σout
1 = {α2,β1},

indicated by outgoing arrows, and Σint
1 = {δ}, indicated by a bullet. When Σ1 and

Σ2 are composed, the shared external actions β1 ∈ Σout
1 ∩Σin

2 and β2 ∈ Σout
2 ∩Σin

1
become internal actions in Σ1 ⊗Σ2, all other non-shared actions keep their types.
Altogether, Σ1⊗Σ2 is determined by the output actions α2 and γ1, the input actions
α1 and γ2, and the internal actions δ,β1,β2,ζ.
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In several sections of this thesis we will focus only on the observable be-
haviour of components and hence treat internal actions as non-observable ac-
tions (traditionally called τ actions in the literature [142]). To achieve a uniform
approach to refinement taking into account internal action names as well as ob-
servational refinement not taking into account internal action names, we would
like to use the same action signatures in both viewpoints and avoid the explicit
introduction of τ actions. Therefore, when we switch to the observational view
on refinement in Section 3.4, we will always assume that each occurring internal
action has a globally unique name, and if composition yields new internal actions
then they are named with a new name. In practice, when composing two com-
ponents with a common internal action in the observational setting, then this
should be still composable and we achieve composability by renaming the clash-
ing internal action (in one of the action signatures) to an internal action with
a new name. To simplify presentation, we will not mention this renaming pro-
cess in the following anymore and always assume the absence of name clashes
of internal actions, but the reader should keep in mind that in the observational
treatment of modal input/output automata names of internal actions do not have
any relevance.

Modal input/output automata [124] are based on modal transition systems as
introduced by Larsen and Thomsen in 1988 [126]. Modal transition systems are
similar to labelled transition systems but equipped with two transition relations:
a may-transition relation expresses which transitions are allowed to be present
in a refinement, whereas a must-transition relation expresses which transitions
are required to be present in any refinement.
Definition 3.1.5 (Modal transition system (MTS))
A modal transition system (MTS) is a tuple

(St, s0,Act, , )

where St is a set of states, s0 ∈ St is an initial state, Act is a set of actions, ⊆
St×Act×St is a may-transition relation, and ⊆St×Act×St is a must-transition
relation such that ⊆ .

Note that MTSs are usually assumed to be syntactically consistent, that is
⊆ , i.e., every required transition is also allowed. In the literature one also

finds mixed transition systems [7] which are MTSs with the requirement ⊆
dropped. Also note that modalities in modal transition systems express con-
straints for refinement – however, a must-transition does not necessarily mean
that this transition must be performed in any system execution. This becomes
clear if there is a choice between two must-transitions.

Following [124], we extend modal transition systems by replacing the set of
actions Act by an action signature Σ = (Σin,Σout,Σint), as introduced in the pre-
vious section. This extension by input/output/internal actions is in line with re-
lated works in the literature, like interface automata [61] or I/O automata [133].
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Definition 3.1.6 (Modal input/output automaton (MIO))
A modal input/output automaton (MIO)1 is a tuple

(St, s0,Σ, , )

where St is a set of states, s0 ∈St is an initial state, Σ= (Σin,Σout,Σint) is an action
signature, ⊆ St×⋃

Σ×St is a may-transition relation and ⊆ St×⋃
Σ×St is

a must-transition relation such that ⊆ .
A MIO (St, s0,Σ, , ) is

• deterministic if for any transitions s α s′ and s α s′′, it holds that s′ = s′′,

• an implementation if = .

All facts and definitions that we provide for particular MIOs are independent
of the names of the states of the MIO. In fact we will use MIOs as represen-
tatives of their isomorphism classes w.r.t. bijections on states. The set of those
isomorphism classes is denoted by MIO. The set of isomorphism classes for de-
terministic MIOs is denoted by dMIO. The set of isomorphism classes of all
(deterministic) implementations is denoted by MIOi (dMIOi, respectively).

We introduce a couple of notations for MIOs which will be frequently used
throughout this thesis and which apply also to all other variants of MIOs later
on. We usually name MIOs by capital Latin letters. States are usually denoted
by same small Latin letters as the MIO itself. If the elements of a MIO S are not
explicitly listed then we refer with StS, s0, ΣS, S, S to the respective elements
of S. As usual, we write s α

S s′ for a transition (s,α, s′) ∈ S. Moreover, s α
S

abbreviates ∃s′ ∈ S : s α
S s′. For a sequence of actions σ ∈ (Σ)∗, the notation

s σ
S s′ means that σ is the empty sequence and s = s′, or σ = α1α2 . . .αn for

some n ≥ 1 and

∃s1, . . . , sn−1 ∈ S : s α1
S s1

α2
S s2 · · · sn−1

αn
S s′.

The label τ is used as a placeholder for an arbitrary internal action, e.g., a tran-
sition s τ

S s′ means that there exists α ∈ Σint such that s α
S s′, and s τ∗

S s′

stands for s σ
S s′ where σ is a finite sequence of internal actions, possibly

empty sequence and then s = s′. All above notations similarly apply to the must-
transition relation.

Example 3.1.7
The example in Figure 3.2 shows a MIO T with action signature determined by
Σin

T = {coin}, Σout
T = {coffee, tea} and Σint

T = {brewWater}. The action signature is
again indicated by the frame having incoming and outgoing arrows for input and

1The abbreviation MIO [’mi:o] stands for modal input/output automaton, and we write MIOs
for the plural form modal input/output automata.
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t0 t1 t2
coin? brewWater

coffee!

tea!

T

brewWater

coin

coffee

tea

Figure 3.2: Vending machine which optionally dispenses tea

output actions, respectively, and a bullet for the internal actions. The states and
transitions are depicted within the frame. The initial state t0 is indicated by a
double circle. May-transitions are drawn with a dashed arrow, must-transitions
with solid arrows. May-transitions underlying must-transitions are not drawn
for simplicity.

To emphasize the type of actions labelling transitions, we often write a question
mark after an input action and an exclamation mark after an output action.

The MIO T specifies a simple vending machine. After throwing a coin into
the machine’s slot, the machine starts brewing water and then dispenses either
coffee or tea. Coffee must always be possible in state t2, whereas tea is an optional
feature that might or might not be possible in a refinement. This intuitive ex-
planation of the semantics of may- and must-transitions is formalized by modal
refinement defined in Section 3.3 below.

3.2 Modal Synchronous Composition

Modal transition systems can be synchronously composed [126] by synchroniz-
ing on shared actions, and by interleaving of other non-shared actions. In this
thesis, we solely consider blocking semantics of message passing, i.e. if a shared
action is enabled in one MIO but not in the other one, then there is no transition
for that action in the composition. Modal synchronous composition [126] mimics
the usual parallel composition of labelled transition systems [142] on the level
of modal transition systems. Crucially, there is a must-transition in the com-
position labelled with a shared action only if the synchronized transitions are
must-transitions.

According to the restrictions for composing action signatures, we say that
two MIOs S1 and S2 are composable if their action signatures Σ1 and Σ2 are
composable.
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Definition 3.2.1 (Modal Synchronous Composition)
Let S j = (St j, s0, j,Σ j, j, j) ∈MIO with Σ j = (Σin

j ,Σout
j ,Σint

j ), j ∈ {1,2}, such that
S1 and S2 are composable. The modal synchronous composition of S1 and S2 is
defined by the MIO

S1 ⊗S2, (St1 ×St2, (s0,1, s0,2),Σ1 ⊗Σ2, , )

where the transition relations , are defined by the following rules:

s1
α

1 s′1 α ∉Σext
2

(s1, s2) α (s′1, s2)

s1
α

1 s′1 α ∉Σext
2

(s1, s2) α (s′1, s2)

s2
α

2 s′2 α ∉Σext
1

(s1, s2) α (s1, s′2)

s2
α

2 s′2 α ∉Σext
1

(s1, s2) α (s1, s′2)

s1
α

1 s′1 s2
α

2 s′2 α ∈Σext
1 ∩Σext

2

(s1, s2) α (s′1, s′2)

s1
α

1 s′1 s2
α

2 s′2 α ∈Σext
1 ∩Σext

2

(s1, s2) α (s′1, s′2)

As we consider MIOs up to bijections between the sets of states and names
of internal actions are relevant for composability of MIOs, modal synchronous
composition is commutative and pseudo-associative.2

Lemma 3.2.2
Modal synchronous composition ⊗ is commutative and pseudo-associative.

Proof. Given two composable MIOs S1 and S2, then S1 ⊗S2 and S2 ⊗S1 only
differ in their state names, hence S1 ⊗S2 = S2 ⊗S1 since we consider MIOs up
to bijection between the sets of states. To show pseudo-associativity, assume
three pairwise composable MIOs S1, S2 and S3. Then also (S1 ⊗S2)⊗S3 and
S1 ⊗ (S2 ⊗S3) are defined. We only show that S1 ⊗ (S2 ⊗S3) is defined, the other
claim is symmetric. Assume that (w.l.o.g., the other cases are similar) there is
β ∈ Σout

1 ∩Σout
23 where Σout

23 is the set of output actions of S2 ⊗S3. Either β ∈ Σout
2 ,

then S1 ⊗S2 would not be defined; or β ∈ Σout
3 , but then S1 ⊗S3 would not be

defined; hence Σout
1 ∩Σout

23 =;. Thus we can conclude that S1⊗(S2⊗S3) is defined.
We do not further elaborate on the transition relations in (S1 ⊗S2)⊗S3 and

S1 ⊗ (S2 ⊗S3). The proof that their may- and must-transition relations coincide
is straightforward.

2If internal action names are relevant then one could even show associativity in the sense that
for all S,E,E′ ∈S, if (S1 ⊗S2)⊗S3 is defined, then S1 ⊗ (S2 ⊗S3) is defined and (S1 ⊗S2)⊗S3 =
S1⊗(S2⊗S3). However, if internal action names are not relevant (which will be the case for weak
modal refinement) this stronger claim fails to hold because composability of (S1⊗S2) and S3 does
not imply composability of S2 and S3 in general. A counterexample is as follows: If S1 has input
action α? and S2 and S3 have output action α!, then (S1 ⊗S2)⊗S3 is defined because internal
action names are not relevant, however, S2 ⊗S3 is undefined.
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3.3 The Specification Theories ThMIOstrong and ThdMIO
strong

3.3.1 Strong Modal Refinement
Refinement allows to relate an abstract specification with a more concrete spec-
ification providing means to develop a system in a stepwise refinement process.
Strong modal refinement [126] requires that, on the one hand, the concrete spec-
ification does not have more transitions than allowed by the abstract specifica-
tion, and on the other hand, the concrete specification has all the transitions that
are required by the abstract specification. Modal refinement is formalized as a
bisimulation-like relation, however, each direction of the simulation is restricted
to may- or must-transitions.

Definition 3.3.1 (Strong modal refinement)
Let S,T ∈MIO with the same action signature Σ = (Σin,Σout,Σint). S is a strong
modal refinement of T, denoted S ≤s T, if there exists a refinement relation R ⊆
StS ×StT such that (s0, t0) ∈ R, and for all (s, t) ∈ R, for all α ∈⋃

Σ,

1. for all s′ ∈ StS, if s α
S s′ then there exists t′ ∈ StT such that t α

T t′ and
(s′, t′) ∈ R,

2. for all t′ ∈ StT , if t α
T t′ then there exists s′ ∈ StS such that s α

S s′ and
(s′, t′) ∈ R.

It is easy to see that strong modal refinement is a preorder, i.e. reflexive and
transitive. If T, the abstract specification, consists of may-transitions only, then
strong modal refinement coincides with simulation [142]; if T is an implementa-
tion, that is the may- and must-transition relations coincide, then strong modal
refinement is equivalent to strong bisimulation [142]. We write S ≈s T if both
S ≤s T and T ≤s S hold.

Lemma 3.3.2
Every implementation I ∈MIOi is a final element with respect to strong modal
refinement.

Proof. Let I ∈ MIOi and assume another MIO S ∈ MIO such that S ≤s I, with
refinement relation R. We define a new refinement relation R−1 = {(i, s) | (s, i) ∈
R}, and show that R−1 proves I ≤s S. Clearly, (i0, s0) ∈ R−1. Let (i, s) ∈ R−1.

1. Assume i α
I i′. Since I is an implementation, we know i α

I i′. From
(s, i) ∈ R it follows that there exists s α

S s′ such that (s′, i′) ∈ R, and thus
s α

S s′ and (i′, s′) ∈ R−1.

2. Assume s α
S s′. Then also s α

S s′. From (s, i) ∈ R it follows that there
exists i α

I i′ such that (s′, i′) ∈ R. Thus (i′, s′) ∈ R−1, and since I is an
implementation, we know that i α

I i′.
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Example 3.3.3
Strong modal refinement defines refinement hierarchies, as shown for a simple
example in Figure 3.3. All depicted MIOs have action signature (Σin,Σout,Σint)
with Σint = {α,β} and Σin =Σout =;. For simplicity, frames and action signatures
are not drawn in this figure. Dotted arrows illustrate refinements: S T ex-
presses that S is a strong modal refinement of T. Note that the transitive closure
of also expresses valid refinements. The topmost MIO allows α or β to happen,
which is refined to either only allow α, only allow β, require α and allow β, or
require β and allow α (second row, from left to right). The third row consists of
implementations that are final elements with respect to strong modal refinement.

α

β

α β
α

β

α

β

α β
α

β

Figure 3.3: Refinement hierarchy induced by ≤s

s0 s1 s2 s3 s4 s5coin? coin?brewWater brewWatertea!

coffee!

tea!

coffee!S

brewWater

coin

coffee

tea

Figure 3.4: A strong modal refinement of the MIO in Figure 3.2

Example 3.3.4
We consider again the simple vending machine specification shown in Figure 3.2.
One possible strong modal refinement is shown in Figure 3.4: In state s2, the ma-
chine can decide between coffee and tea, and for tea it can non-deterministically
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decide between two transitions, one leading to the initial state and the other one
to a state in which the machine will only dispense coffee (not tea anymore). Thus
this particular implementation S of T is allowed to eventually stop dispensing
tea. Formally, the strong modal refinement S ≤s T is proven by the refinement
relation {(s0, t0), (s1, t1), (s2, t2), (s3, t0), (s4, t1), (s5, t2)}.

Recall that a MIO is called an implementation whenever the may- and must-
transition relations coincide. Also recall that the implementation semantics of S,
see Section 2.1, consists of all those implementations I ∈MIOi that refine S:

JSKs,
{

I ∈MIOi
∣∣∣ I ≤s S

}
.

Example 3.3.5
The implementation semantics of the topmost MIO in Figure 3.3 is the set of MIOs
shown in the third row, together with all implementations that are ≈s-equivalent
to some MIO in the third row.

As explained in Section 2.1, the implementation semantics leads to the no-
tion of consistency: a MIO S is consistent if JSKs 6= ;. Since we assumed that
MIOs satisfy ⊆ , we obtain an implementation I of S by refining all may-
transitions to must-transitions; formally, I = I , S. Thus, every MIO is
consistent.

Remark 3.3.6
If one is interested in specifying inconsistent MIOs, one can for instance drop the
requirement ⊆ which yields mixed transition systems [7]. Another possibility
is to explicitly introduce distinguished inconsistent states as it is done, e.g., in the
work of Gössler and Raclet [90] under the name of pseudo-modal specifications.

In Section 2.1 we have introduced a derived “thorough” notion of refinement:
A MIO S thoroughly refines another MIO T (with the same action signature) if
every implementation of S is also an implementation of T. As a consequence of
Theorem 2.1.2 in Section 2.1, strong modal refinement implies thorough refine-
ment.

The question of completeness of strong modal refinement was first investi-
gated, to our best knowledge, by Huth in [108]. More recently, Beneš et al. [32]
proved that strong modal refinement is complete if the abstract MIO is determin-
istic. An example that, in general, thorough refinement does not imply strong
modal refinement can be found in [32].

Theorem 3.3.7 (Relative completeness of strong modal refinement)
Let S,T ∈MIOwith the same action signature and assume that T is deterministic.
Then JSKs ⊆ JTKs implies S ≤s T.
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Note that, in particular, refinement is also complete if only deterministic
MIOs and deterministic implementations are considered. Recently, it has been
shown that deciding thorough refinement for finite modal transition systems is
EXPTIME-complete [31] and since strong modal refinement can be computed in
polynomial time by a greatest fixed-point computation (similarly as in the case
of strong bisimulation [115]), strong modal refinement is widely accepted as the
choice for practical applications.

Remark 3.3.8
Interestingly, modal synchronous composition of MIOs, introduced in Section 3.2,
is an over-approximation in the sense of the implementation semantics: JS⊗TKs )
{I⊗J | I ∈ JSKs, J ∈ JTKs}. See [32, 28] for more details and discussion on this issue.

In what follows, we show that strong modal refinement is compositional: If S
and T are composable MIOs and we replace S and T by strong modal refinements
S′ and T ′, respectively, then S′ and T ′ are composable and the refined system
S′⊗T ′ is a strong modal refinement of S⊗T. In [126] the claim was shown for
general static constructs on modal processes which instantiates also to modal
synchronous composition of MIOs.

Theorem 3.3.9 (Compositional refinement)
Let S,S′,T,T ′ ∈MIO. If S′ ≤s S and T ′ ≤s T and S and T are composable, then S′

and T ′ are composable and S′⊗T ′ ≤s S⊗T.

Proof. It is sufficient to prove the claim for T = T ′. S′ and T are composable
because action signatures are not changed during strong modal refinement. The
construction of the desired refinement relation is straightforward: If RS is the re-
lation demonstrating the refinement S′ ≤s S, then the relation R = {((s′, t), (s, t)) |
t ∈StT , (s′, s) ∈ RS} proves the refinement S′⊗T ≤s S⊗T.

3.3.2 Strong Environment Correctness
In this section, we introduce our first environment correctness notion for MIOs.
Following the approach of [124] which is inspired by interface compatibility of
interface automata [61], we consider as a communication error when an output
can be sent by the specification, however, the environment is not required to
be able to perform the corresponding input which is the case when there is no
must-transition enabled with that input action. Strong environment correctness
between a specification (given as a MIO) and an environment (also itself a MIO)
is consequently the absence of any communication error in the above sense in
any reachable state of the composition of specification and environment under
consideration.

Strong environment correctness is based on the compatibility notion in [124],
however, our notion is firstly not symmetric (outputs of the environment are not



40 3. Modal Input/Output Automata

considered) and secondly adapted to the pessimistic view on compatibility: E is
a correct environment for a specification S if E⊗F is also a correct environment
for S for all F that are composable with E (as opposed to some in the optimistic
approach of [124]).

Another important point here is, for this first version of environment correct-
ness, that the environment must be immediately ready to receive the output,
as opposed to a relaxed form in which the environment may do some steps in
between, before receiving the output. The former one, strong environment cor-
rectness, is shown to be a suitable environment correctness relation for MIOs
with strong modal refinement, the latter is referred to by weak environment cor-
rectness in the following, and formally defined in Section 3.4.2 for MIOs with
weak modal refinement.

For given MIOs S and E, E is a strongly correct environment of S whenever
no communication errors in S⊗E are reachable that are caused from outputs of
S which are inputs of E.

Definition 3.3.10 (Strong environment correctness)
Let S,E ∈MIO be composable. E is a strongly correct environment for S, written
S →s E, if for all reachable states (s, e) in S⊗E, for all α ∈Σout

S ∩Σin
E ,

if s α!
S, then e α?

E .

Strong environment correctness only requires that, whenever a shared out-
put is enabled, then in the environment the corresponding input must be enabled
as well. This, of course, does not imply that the synchronization actually happens
(in case other actions are interleaved). However, one can show that states with
outputs enabled guarantee a certain deadlock-freedom, more precisely, one can
show that this state is eventually left. In order to prove this, we have to as-
sume finite state transition systems (i.e. finitely many states and finitely many
transitions) and strong fairness [130], i.e. we only consider fair computations: A
computation is said to be fair if it is finite or if every transition which is enabled
infinitely many times is also taken infinitely many times. Then, strong environ-
ment correctness implies that, when a MIO is in a state with an output enabled,
the state is eventually left.

Theorem 3.3.11 (Preservation of strong environment correctness)
Let S,S′,E,E′ ∈MIO. If S →s E and S′ ≤s S and E′ ≤s E, then S′ →s E′.

Proof. Assume that S →s E and S′ ≤s S with refinement relation RS and E′ ≤s E
with refinement relation RE. Let (s′, e′) be a reachable state in S′⊗E′ such that
s′ α!

S′ with α ∈ Σout
S ∩Σin

E . Since S′ ≤s S and E′ ≤s E, there exist states s ∈ StS
and e ∈ StE such that (s′, s) ∈ RS and (e′, e) ∈ E and (s, e) reachable in S ⊗E. It
follows that s α!

S s and hence by S →s E and reachability of (s, e), e α?
E. Again

by refinement (e′, e) ∈ RE we get that e′ α?
E′ which was to be shown.
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Figure 3.5: MIOs S1, S2 specifying a client, and T1, T2 specifying a vending
machine

Example 3.3.12
Figure 3.5 illustrates strong environment correctness with four MIOs. On the
left hand side, S1 and S2 specify two clients of the vending machine that can
insert coins into the machine and then take out either coffee or tea. Observe that
S2 ≤s S1, i.e. S1 is more abstract than S2 since the client may not insert a coin
at all, can throw more than one coin into the machine, and may not accept a
tea. On the right hand side, T1 and T2 specify two vending machines, with T2
implementing a beep after dispensing a drink and before accepting the next coin.
Note that T2 6≤s T1 and T1 6≤s T2 because T2 has an additional internal action.

We can see that both S2 →s T1 and T1 →s S2 hold: in all reachable states of
S2⊗T1, for all enabled (shared) output may-transitions there exist corresponding
input must-transitions in the other automaton. However, S1 6→s T1 because (s1, t1)
is a reachable state in S1⊗T1 and the optional transition with output coin! is not
accepted by T1, and T1 6→s S1 because in the same reachable state (s1, t1) the
optional output tea! of T1 is not required to be accepted by S1. It is satisfied that
T2 →s S2, however, we have that S2 6→s T2: in the reachable state (s0, t2), T2 is not
immediately ready to accept the next coin! sent by S2.

3.3.3 Definition of ThMIOstrong and ThdMIO
strong

Having established preservation of environment correctness enables us to ulti-
mately define our first specification theories for MIOs:

Corollary 3.3.13
ThMIOstrong, (MIO,MIOi,≤s,⊗,→s) is a specification theory.
ThdMIO

strong, (dMIO,dMIOi,≤s,⊗,→s) is a specification theory.
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Proof. We show that ThMIOstrong satisfies all the required properties of a specification
theory, see Definition 2.1.1 in Section 2.1.

• MIOi is a (proper) subset of MIO.

• Strong modal refinement ≤s is reflexive and transitive.

• Modal synchronous composition ⊗ was shown in Lemma 3.2.2 to be com-
mutative and pseudo-associative.

• Strong environment correctness →s implies composability: whenever we
have S →s E, then S⊗E is defined; see Definition 3.3.10.

• Compositional refinement (A1) is shown in Theorem 3.3.9.

• Preservation of environment correctness (A2) is shown in Theorem 3.3.11.

• Finality of implementations (A3) has been shown in Lemma 3.3.2.

This finishes the proof that ThMIOstrong is a specification theory. Also ThdMIO
strong is a

specification theory as (A1), (A2) and (A3) also hold for deterministic MIOs; note
that ⊗ applied to deterministic MIOs yields a deterministic MIO again.

Since the two specification theories ThdMIO
strong and ThMIOstrong only differ in the set

of specificiations and implementations, we can define a reflective embedding of
ThdMIO

strong in ThMIOstrong:

Corollary 3.3.14
The identity function id : dMIO → MIO is a reflective embedding of ThdMIO

strong in
ThMIOstrong.

Proof. Clearly, the identity function is injective. All other conditions of Defini-
tion 2.1.5 are trivial as well.

3.4 The Specification Theory ThMIOweak

3.4.1 Weak Modal Refinement
Similar to the step from simulation to weak simulation taking into account silent
moves [142, 88] one can introduce a notion of modal refinement that treats tran-
sitions labelled by internal actions as non-observable steps (or traditionally called
τ-transitions). Such an observational refinement for modal transition systems
was already proposed in 1989 by Hüttel and Larsen [109] under the name of
weak modal refinement. This notion is the generalization of strong modal refine-
ment [126], similar to the generalization of bisimulation for labelled transition
systems to weak bisimulation [142].
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Weak modal refinement requires that every must-transition in the abstract
specification must be simulated in the concrete specification, possibly enclosed
by must-transitions with internal actions. May-transitions in the concrete speci-
fication must be simulated analogously, modulo internal actions, in the abstract
specification. In contrast to strong modal refinement, names of internal actions
do not matter (cf. Section 3.1) and thus there is no restriction on the set of in-
ternal actions of refined and refining MIO; the refining MIO can, in particular,
introduce new internal actions.

Definition 3.4.1 (Weak modal refinement)
Let S,T ∈MIO with the same sets of input and output actions. S is a weak modal
refinement of T, denoted S ≤w T, if there exists a refinement relation R ⊆StS×StT
such that (s0, t0) ∈ R, and for all (s, t) ∈ R, for all α ∈ (

⋃
ΣS)∪ (

⋃
ΣT), the following

conditions are satisfied:

1. For any s′ ∈StS, if s α
S s′ and

• α ∈Σint
S then there exists t′ ∈StT such that t τ∗

T t′ and (s′, t′) ∈ R,

• α ∈Σext
S then there exists t′ ∈StT such that t τ∗ατ∗

T t′ and (s′, t′) ∈ R.

2. For any t′ ∈StT , if t α
T t′ and

• α ∈Σint
T then there exists s′ ∈StS such that s τ∗

S s′ and (s′, t′) ∈ R,

• α ∈Σext
T then there exists s′ ∈StS such that s τ∗ατ∗

S s′ and (s′, t′) ∈ R.

It is easy to see that weak modal refinement is a preorder, i.e. reflexive and
transitive. If S and T do not contain internal transitions, then weak modal re-
finement coincides with strong modal refinement. If both S and T are imple-
mentations, then S ≤w T is equivalent to weak bisimulation [88] between S and
T.

The implementation semantics of S ∈MIO with respect to weak modal refine-
ment is given by JSKw ,

{
I ∈MIOi ∣∣ I ≤w S

}
. As a consequence of Theorem 2.1.2

in Section 2.1, S ≤w T implies JSKw ⊆ JTKw.

Remark 3.4.2
The converse direction, JSKw ⊆ JTKw implying S ≤w T, does not hold in general,
as it does not hold even for strong modal refinement; see Section 3.3.1. Finding
sufficient conditions for MIOs S and T such that JSKw ⊆ JTKw implies S ≤w T
is out of the scope of this thesis. Since relative completeness of strong modal
refinement could be shown for deterministic MIOs one possible choice would be to
consider notions like weak determinism [101].
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Lemma 3.4.3
Every implementation I ∈ MIOi is a final element with respect to weak modal
refinement.

Proof. Let I ∈MIOi and assume another MIO S ∈MIO such that S ≤w I demon-
strated by a refinement relation R. We define a new refinement relation R−1 =
{(i, s) | (s, i) ∈ R}, and show that R−1 proves I ≤w S. Clearly, (i0, s0) ∈ R−1. Let
(i, s) ∈ R.

1. Assume i α
I i′ and α ∈ Σext

I . Since I is an implementation, we know that
i α

I i′. From (s, i) ∈ R it follows that there exists s τ∗ατ∗
S s′ such that

(s′, i′) ∈ R, thus s τ∗ατ∗
S s′ and (i′, s′) ∈ R−1. The case α ∈Σint

I is similar.

2. Assume s α
S s′ and α ∈ Σext

S . Then also s α
S s′. From (s, i) ∈ R it follows

that there exists i τ∗ατ∗
I i′ such that (s′, i′) ∈ R. Since I is an implemen-

tation we know that i τ∗ατ∗
I i′; moreover, (i′, s′) ∈ R−1. The case α ∈Σint

S is
similar.

Example 3.4.4
We continue our example of the vending machine T (see Figure 3.2) and illustrate
weak modal refinement. In Figure 3.6, a MIO S is shown which is a weak modal
refinement of T. First of all, in comparison to T the action signature has been
extended by new internal actions grindCoffeeBeans and beep. A refinement re-
lation proving S ≤w T is {(s0, t0), (s1, t1), (s2, t2), (s3, t2), (s4, t0)}. Note that state s3
does not need to offer a transition for the action tea since it is a may-transition
in the abstract specification T. However, it would not be possible to introduce
an internal transition before tea in S, since it would have to implement coffee
according to the requirements of state t2 in T.

s4 s0 s1 s2

s3

coin?

grindCoffeeBeans

brewWater

coffee!

tea!

beep

S

brewWater grindCoffeeBeans beep

coin

coffee

tea

Figure 3.6: A weak modal refinement S of the MIO T in Figure 3.2

Compositionality of weak modal refinement was already shown in [109] for
modal transition systems.
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s0 s1 s2

put! put!

get!get!

put

get

U

t0 t1 t2

put? put?

get?get?

put

get

B

Figure 3.7: A buffer with capacity two and an environment

b0 b1

put?

pass!

put pass

B1 ⊗ b′
0 b′

1

pass?

get?

get

pass

B2

=
(b0,b′

0) (b1,b′
0) (b0,b′

1) (b1,b′
1)

put? pass put?

get?get?

put

get

B1⊗B2

pass

Figure 3.8: Realization of a buffer of size two by two buffers of capacity one

Theorem 3.4.5 (Compositional refinement)
Let S,S′,T,T ′ ∈MIO. If S′ ≤w S and T ′ ≤w T and S and T are composable, then
S′ and T ′ are composable and S′⊗T ′ ≤w S⊗T.

Proof. The proof is along the lines of the proof of compositionality of strong modal
refinement: It is sufficient to prove the theorem for the special case T = T ′. S′

and T are composable because the set of external actions are not changed and
composability does not depend on names of internal actions (see page 32). If
RS is the relation demonstrating the refinement S′ ≤w S, then the relation R =
{((s′, t), (s, t)) | t ∈StT , (s′, s) ∈ RS} proves the refinement S′⊗T ≤w S⊗T.

3.4.2 Weak Environment Correctness
When moving from strong modal refinement to weak modal refinement it is clear
that we cannot choose strong environment correctness as our environment cor-
rectness notion as weak modal refinement can introduce internal transitions that
may defer input transitions. The following examples illustrates this situation.

Example 3.4.6
Figure 3.7 shows a MIO B specifying a buffer with capacity two, and the MIO
U describes the correct usage of the buffer. Obviously, B is a strongly correct
environment for U .
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Let us assume that we would like to realize the buffer by two buffers of capacity
one, as shown in Figure 3.8: B1 accepts elements and then passes them to the
second buffer B2. The removal of elements (action get) are handled by B2, once an
element has been passed to it. Their composition B1⊗B2 yields the MIO shown in
Figure 3.8. It can be easily verified that B1 ⊗B2 is a weak modal refinement of B.
However, B1 ⊗B2 is not a strongly correct environment for U any more: the state
(s1, (b1,b′

0)) is reachable in U ⊗ (B1 ⊗B2) and

s1
put!

U , but (b1,b′
0) 6 put?

B1⊗B2 .

It is rather clear how we have to adapt our environment correctness notion such
that it is preserved by weak modal refinement: the input transition is not required
to be enabled immediately, but after some internal must-transitions. In this sense
B1 ⊗B2 is a weakly correct environment for U : in state (b1,b′

0), B1 ⊗B2 has an
internal must-transition (labelled with pass) to the state (b0,b′

1) in which put? is
necessarily enabled.

Note that it is essential that these internal transitions that defer the input
transition are must-transitions – if they were may-transitions, they could be dropped
in the next refinement step invalidating preservation of environment correctness.

Definition 3.4.7 (Weak environment correctness)
Let S,E ∈MIO be composable. E is a weakly correct environment for S, written
S →w E, if for all reachable states (s, e) in S⊗E, for all α ∈Σout

S ∩Σin
E ,

if s α!
S, then τ∗α?

E .

Remark 3.4.8
There is an even more flexible notion of environment correctness for which all
the following results in this thesis equally hold: one can also allow transitions
labelled with non-shared output actions before the relevant input transition. The
(symmetric) notion of ultra-weak output-compatibility in [112] follows this idea.

Similar to the case of strong environment correctness, weak environment cor-
rectness guarantees a certain progress. When assuming finite state transition
systems and strong fairness [130], whenever a MIO is in a state with an output
enabled, the state is eventually left.

We can show now that weak environment correctness is preserved by weak
modal refinement, turning it into a suitable environment correctness notion for
a specification theory for MIOs based on weak modal refinement.

Theorem 3.4.9 (Preservation of weak environment correctness)
Let S,S′,E,E′ ∈MIO. If S →w E and S′ ≤w S and E′ ≤w E, then S′ →w E′.
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Proof. Assume that S →w E and S′ ≤w S with refinement relation RS and E′ ≤s E
with refinement relation RE. Let (s′, e′) be a reachable state in S′⊗E′ such that
s′ α!

S′ with α ∈Σout
S ∩Σin

E . Since S′ ≤w S and E′ ≤w E, there exist states s ∈ StS
and e ∈ StE such that (s′, s) ∈ RS and (e′, e) ∈ E and (s, e) reachable in S ⊗E. It
follows that s α!

S s, hence by S →w E there is e τ∗α?
E. From (e′, e) ∈ RE it

follows, by repeated application of the conditions of weak modal refinement for
must-transitions, that e′ τ∗α?

E′ which was to be shown.

3.4.3 Definition of ThMIOweak

We arrive at a specification theory for MIOs with weak modal refinement and
weak environment correctness.

Corollary 3.4.10
ThMIOweak, (MIO,MIOi,≤w,⊗,→w) is a specification theory.

Proof. We show that ThMIOweak satisfies all the required properties of a specification
theory, see Definition 2.1.1 in Section 2.1.

• MIOi is a (proper) subset of MIO.

• Weak modal refinement ≤w is reflexive and transitive.

• Modal synchronous composition ⊗ was shown in Lemma 3.2.2 to be com-
mutative and pseudo-associative.

• Weak environment correctness →w implies composability: whenever we
have S →s E, then S⊗E is defined; see Definition 3.4.7.

• Compositional refinement (A1) is shown in Theorem 3.4.5.

• Preservation of environment correctness (A2) is shown in Theorem 3.4.9.

• Finality of implementations (A3) has been shown in Lemma 3.4.3.

Finally, we would like to study the relationship between the two specifica-
tion theories ThMIOstrong and ThMIOweak introduced in this chapter. Intuitively, the
latter specification theory is more flexible because it features observational no-
tions of refinement and environment correctness treating internal actions as
non-observable. This can be stated more precisely:

Theorem 3.4.11
The identity function id :MIO→MIO, defined by id(S) = S for any S ∈MIO, is an
embedding of ThMIOstrong in ThMIOweak.
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Proof. Carefully inspecting the definition of strong/weak modal refinement and
environment correctness one can easily verify that strong modal refinement im-
plies weak modal refinement and strong environment correctness implies weak
environment correctness. The other conditions of an embedding are trivial.

By the above theorem any design with associated refinement and environment
correctness proofs in ThMIOstrong also hold in ThMIOweak. Furthermore, the above ex-
amples have also shown that defining a reflective embedding between the two
specification theories is not possible, since weak modal refinement does not im-
ply strong modal refinement and similarly weak environment correctness does
not imply strong environment correctness.

We conclude this section by drawing a first fragment of the envisaged hierar-
chy. Figure 3.9 shows the reflective embedding of ThdMIO

strong in ThMIOstrong (denoted by
) from Section 3.3.3, and the embedding of ThMIOstrong in ThMIOweak (denoted by
) shown in Theorem 3.4.11 above.

ThMIOweak

ThMIOstrong

ThdMIO
strong

Figure 3.9: Strong and weak specification theories for MIOs

3.5 Discussion and Related Work
Our approach is based on modal input/output automata [124], that are in turn
based on modal transition systems [126] and extended by the distinction of in-
put, output and internal actions. Using state transition systems with inputs and
outputs to model the communication between concurrent, reactive components
is in the line with established approaches like I/O automata [133] and interface
automata [61]. A key feature that distinguishes it from other works is the use of
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modalities. May- and must-transitions allow for an elegant and flexible refine-
ment notion supporting the stepwise design of component-based systems.

Expressivity and Refinement. Since the introduction of modal transition
systems, several extensions have been proposed in the literature. Disjunctive
modal transition systems [127], 1-selecting modal transition systems [79], tran-
sition systems with obligations [29], and acceptance automata [156] are all gen-
eralizations of modal transition systems offering an increased expressivity with
respect to the transitions that need to or are allowed to be enabled in a particu-
lar state. For instance, a disjunctive modal transition system can express that a
vending machine must output either coffee or tea, but at least one of them. We
believe that our approach to environment correctness can be integrated in all of
the afore mentioned extensions (provided one distinguishes between input and
output actions). However, so far, only modal transition systems offer a notion
of weak modal refinement which we think is of great importance for practical
examples.

Recently, Beneš et al. [30] proposed parametric modal transition systems with
the goal to unify previous attempts to increasing expressivity. Parametric modal
transition systems do not only allow loose specification in the sense of local vari-
ability, but also permit to specify that in a state with several may-transitions
enabled, the choice of transitions which are implemented needs to be persistent
for the whole implementation. Parameters encode this choice accordingly. How-
ever, it is not clear whether weak modal refinement can be defined for parametric
modal transition systems.

As already said, having an observational refinement notion is crucial for prac-
tical examples, in particular, if the formalism should support hierarchical com-
ponents which naturally involve the hiding of actions. To the best of our knowl-
edge, there are two observational refinement notions that have been proposed
for modal transition systems: weak modal refinement [109], and an observa-
tional implementation relation [83] for modal transition systems that gives rise
to a branching modal refinement notion, similar to branching bisimulation [175]
for labelled transition systems.

Interestingly, interface automata [61] use alternating refinement (more in-
puts, less outputs) which actually is observational from concrete to abstract.
However, the direction from abstract to concrete is not observational which is
a severe drawback since invisible actions are usually introduced when going
from abstract to concrete. Moreover, as their notion of compatibility is similar
to strong environment correctness, inputs cannot be delayed by internal actions
in the refinement because internal actions can always be dropped in further re-
finements. Clearly, the lack of must-modalities is a disadvantage of interface
automata in comparison to MIOs. Another shortcoming is that there is no clean
notion of an implementation: any interface automaton can always be refined to
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some automaton without any outputs.

Environment correctness. The idea of our notion of environment correct-
ness, that is outputs must be able to be accepted by the environment, goes back
to interface compatibility of interface automata [61]. However, in their work in-
terface compatibility is a symmetric relation between interfaces, and moreover
features an optimistic treatment of open non-shared actions. In this thesis, we
are following the pessimistic approach that requires that if E is a correct envi-
ronment of S then E can be further composed with other environments F (that
are composable with S⊗E) and still obtain that E⊗F is a correct environment of
S. In [61], the authors deviate from this view by saying that S and T are compat-
ible if there exists an environment of S ⊗T which renders all incompatibilities
(i.e. states in which S can issue an output not being accepted by T, or vice versa)
in S⊗T unreachable.

During the completion of this thesis, we have already investigated other,
more general versions of environment correctness. Stuck-freedom, introduced
by Fournet et al. in [86], is a notion for CCS [142], and intuitively expresses that
a processes should not get stuck in the context of other processes whenever there
are some transitions still enabled. They introduce a conformance relation ex-
tending observational refinement of CCS process, which is a precongruence and
preserves stuck-freedom of processes.

We have restricted composition to binary synchronous communication only,
and our notion of environment correctness is strictly bound to this communica-
tion schema. Clearly, other forms of communication should be supported in a
richer specification theory. Frameworks like BIP [40], Reo [8] or Wright [4] offer
quite flexible means to specify the behaviour of components and their connectors.
BIP [40] features user-defined interaction models which are sets of possible in-
teractions between components, formally powersets of action names, and allow
for modelling, e.g., rendezvouz and (atomic) broadcast communication. Reo [8]
is a specification language for the coordination of concurrent processes or com-
ponents in distributed systems. The focus of Reo is on specifying the behaviour
of connectors and their communication patterns rather than on the behaviour of
the components that communicate through those connectors. Complex connec-
tors can be built with primitive channel types like synchronous, asynchronous or
lossy channels with a well-defined behaviour. Different formal semantics of Reo
connectors has been proposed, for instance, in [9] a coalgebraic semantics of Reo
connectors in terms of relations on timed data streams is defined. In [11] Reo
connectors are translated to constraint automata which are transition systems
with data, and transitions are equipped with names of participating components
and constraint equations that must be satisfied by the data items involved in
the communication. Both for BIP and Reo, refinement notions (on the level of
formal semantics) only cover observational equivalences (since no modalities are
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involved). Explicit notions of compatibility like our environment correctness are
not studied – they are left to the level of formal semantics and suitable logics
to express communication properties. In Wright [4], architectural component
connectors are given a semantics by specifying them with CSP [107]. Wright
focuses not only on the behavioural description of connectors, but also defines ar-
chitectural compatibility by deadlock freeness of connectors which is formalized
by failures-divergence refinement of CSP.

Other related formalisms. Beside interface automata, many other specifica-
tion formalisms have been proposed to model the behaviour of component-based
systems. The following list of related approaches constitute a small selection of
formalisms introduced in recent years and is far from being complete, but con-
tains the most relevant ones comparable to our approach. The main distinction
from the below approaches to our work is that they all (except of [47, 48]) do not
use any kind of modalities which usually delimits refinement to an equivalence
relation not explicitly supporting the stepwise refinement methodology.

In 2001, Plasil and Visnovsky introduced behaviour protocols [151, 117] which
is a process algebraic-like language for specifying component architecture and
the behaviour of communicating components and their operation calls. Behaviour
protocols have been extensively used in the SOFA component model [43]. Unique
to behaviour protocols is their ability to express operation calls as well as returns,
and nestings. In [151] a conformance relation for behaviour protocols is defined
that entails substitutability of components. In [1], compatibility questions and
possible communication errors during composition are investigated, in particu-
lar, they consider an compatibility error called bad activity that is very similar to
our notion of strong environment correctness. However, they do not investigate
whether their conformance relations preserve compatibility.

The FRACTAL component model [41] uses pNets [12] to model component
behaviours. pNets are kind of blueprints for a component assembly with a trans-
ducer. The latter is an LTS with transitions labelled with synchronization vectors
enabling multiway synchronization. The blueprint nature of pNets simplifies the
modelling of hierarchical systems. Along the same way, component-interaction
automata [50] are again an extension of LTS, where transitions are labelled with
input, output and internal actions. The composition operator is parameterized
by sets of (binary) synchronizations. Substitutability properties are shown for an
equivalence relation on component-interaction automata. However, environment
correctness notions have not been explicitly considered so far.

Finally, we finish our list of related approaches by mentioning the work of
Carrez et al. [47, 48] on components with behavioural contracts. For expressing
component contracts they enhance a process algebra by may and must modalities
for input and output actions. The semantics of the modalities is slightly different
to our work, e.g., an input action labelled with the modality must is a constraint
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on the environment and means that the sender is required to (immediately) send
the input. This is not possible in our setting, however, in Chapter 7, we achieve
similar expressivity by moving from MIOs to modal contracts.

Publication history. The derived notion �w that is defined by weak envi-
ronment correctness →w in both directions (see Section 2.1) coincides with the
notion of weak modal compatibility introduced in [27].

3.6 Summary
In this chapter, we have proposed the modal specification theories ThMIOstrong, ThdMIO

strong
and ThMIOweak. The corresponding environment correctness notions require that for
every output the environment must be able to accept it – in the case of strong
environment correctness, the input must be immediately possible, and in the
case of the novel notion of weak environment correctness, the input must be pos-
sible after some internal steps. The latter was the key to being able to define
the observational specification theory ThMIOweak for MIOs based on weak modal re-
finement. Finally, we have related our three specification theories by (reflective)
embeddings.



Chapter 4

Modal Input/Output Automata
with Data Constraints

In this chapter we extend the previously introduced specification theories by tak-
ing into account the specification of data. For each interface specification of a
component, we distinguish between provided and required state variables. Pro-
vided state variables are local to a component, describe the visible data states a
component can adopt, and are accessible from the environment. Required state
variables belong also to the interface specification of a component, however, they
are not related to the data states of the component itself but to the data states
the component can observe in its environment. We do not consider internal state
variables in our approach and stick to abstract control states as before (to allow
graphical representation of specifications, and to reduce technicalities), however,
the control structure could be equally well specified with internal variables.

We introduce modal input/output automata with data constraints (MIODs)
which enhance modal input/output automata with predicates over a state signa-
ture. We use a generic propositional language with Boolean connectives to ex-
press pre- and postconditions that are added to transition labels describing the
admissible data states of a component before and after performing an action.1 In
other words, pre- and postconditions express in which global states the transi-
tion is enabled and to which next provided data states the transition is allowed
to lead, respectively. Following the loose approach of modal transition systems,
postconditions are also allowed to be loose in the sense that, for one global data
state, there may be possible many different next provided data states.

On this basis we study modal synchronous composition, strong and weak
modal refinement and strong and weak environment correctness of MIODs. In

1Note that MIODs form our syntactic level of specifications. As already noted above, the
control structure of the transition systems can as well be specified with purely symbolic methods
using the underlying propositional language, e.g. by guarded commands [70] adapted to actions
and modalities.
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addition to relationships between control states, we take special care of the re-
lationships between data constraints in all these cases. For the verification of
strong modal refinement, we also propose a predicate abstraction technique that
can reduce the state space of large finite specifications. In the case of infinite-
domain variables, rendering the refinement problem undecidable in general,
predicate abstraction serves as a sound verification technique. We show that
MIODs again form a specification theory in which our previous specification the-
ories for MIOs can be embedded.

We also define a denotational semantics of implementations of MIODs, for-
mally given by input/output automata with data states (IODs) which have a pro-
vided data state in each state, and transitions are guarded by required data
states. Importantly, we prove independent implementabiliy of implementations
of MIODs in terms of IODs.

Outline. In Section 4.1 we provide the basic definitions for MIODs, followed by
parallel composition of MIODs in Section 4.2. The specification theories ThMIODstrong

and ThdMIOD
strong based on strong modal refinement and strong environment correct-

ness are defined in Section 4.3. Predicate abstraction is discussed in Section 4.4.
In Section 4.5 the denotational semantics of implementations is defined in terms
of IODs. The specification theory ThMIODweak based on weak modal refinement and
weak environment correctness is defined in Section 4.6. Finally, in Section 4.7,
we summarize related work and we finish this chapter with a short summary in
Section 4.8.

4.1 Definition

We start by introducing state variables which are the basis for modelling concrete
data states and for defining state and transition predicates which appear as pre-
and postconditions on the transitions of MIODs.

In the following we assume given two disjoint global sets LV of logical vari-
ables and SV of state variables. We also assume a predefined data universe U .

Extended action signatures. Actions are extended by formal parameters
which are used to pass values along with actions. An extended action signa-
ture is a triple Σ = (Σin,Σout,Σint) with each action α ∈ ⋃

Σ having an associated
set of formal parameters par(α) ⊆ LV. Equality of actions, so far based on the
action name, is extended to require also equality of formal parameters. Analo-
gously to action signatures, extended action signatures Σ1 and Σ2 are composable
if (

⋃
Σ1)∩ (

⋃
Σ2)= (Σin

1 ∩Σout
2 )∪ (Σout

1 ∩Σin
2 ).
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State signatures. In order to model data states and to equip transitions with
pre- and postconditions we use state variables of two kinds, which both belong to
the given global set SV of state variables.

• Provided state variables describe the local, externally visible data states a
component can adopt.

• Required state variables are used to refer to the data states a component
expects to be visible in its environment.

Definition 4.1.1 (State Signature)
A state signature is a pair V = (V prov,V req) in which V prov ⊆ SV and V req ⊆ SV
are disjoint sets of provided and required state variables, respectively, such that
V prov ∪V req =SV.

In the rest of this chapter, we stipulate the assumption that every component
can observe any visible state variables in its environment, hence for any state
signature V = (V prov,V req) we assume that V prov∪V req =SV, see Definition 4.1.1.
This assumption admits considerable technical simplifications, however, our ap-
proach easily extends to the general setting where one allows state signatures
(V prov,V req) with V prov ∪V req (SV.

Remark 4.1.2
We do not explicitly include internal variables in state signatures. The control
states given by modal input/output automata can be considered as the internal
states a component can exhibit. Of course, those control states could be very well
specified syntactically with (deterministic) transition predicates relating internal
data states. This approach is followed, e.g., by de Alfaro et al. in [58] where they
extend interface automata by variables and the control structure is specified by
transition predicates over internal variables.

State signatures of different components can be composed if their sets of pro-
vided state variables do not overlap, as we require that every state variable in
SV is controlled by at most one component. More formally, two state signatures
V1 = (V prov

1 ,V req
1 ) and V2 = (V prov

2 ,V req
2 ) are composable if V prov

1 ∩V prov
2 = ;. The

composition of composable state signatures is defined as follows.

Definition 4.1.3 (Composition of state signatures)
Let V1 = (V prov

1 ,V req
1 ) and V2 = (V prov

2 ,V req
2 ) be two composable state signatures.

The composition of V1 and V2 is defined as the state signature

V1 ⊗V2, (V prov,V req)

with

V prov =V prov
1 ∪V prov

2 ,
V req = (

V req
1 ∪V req

2
)
\V prov.
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Observe that in the composition V1 ⊗V2 of the composable state signatures V1
and V2 the set of provided state variables are defined by the (disjoint) union of
the provided state variables of V1 and V2; the set of required state variables of
V1⊗V2 are determined by the set of all required state variables of V1 and V2 that
are neither provided state variables of V1 nor V2.

Predicates on states. We use a generic, basic framework to deal with predi-
cates and states. For any sets W,W′ ⊆SV of state variables and set X ⊆LV of logi-
cal variables, we assume a set S (W, X ) of state predicates and a set T (W,W′, X )
of transition predicates. State predicates, often denoted by ϕ, refer to single
states and transition predicates, often denoted by π, to pairs of states (pre- and
poststates). We require that S (W, X ) and T (W,W′, X ) are monotonic w.r.t. set
inclusion in all arguments, and that both sets are closed under the usual logical
connectives like negation (¬) and conjunction (∧) as well as derived connectives
like implication (⇒).

Data states and satisfaction relation. For any W ⊆ SV, we define the set
D(W) of W-data states (or just data states if W is clear from the context) to consist
of all functions δ : W →U assigning values from the predefined data universe U

to state variables in W; an element δ ∈ D(W) defines a concrete data state w.r.t.
W. For each subset X ⊆ LV, we define the set D(X ) of all valuations ρ : X → U .
The unique data state for an empty set of variables is denoted by ε.

We assume that state predicates ϕ ∈S (W, X ) are equipped with a satisfaction
relation (δ;ρ) �X

W ϕ for data states δ ∈ D(W) and valuations ρ ∈ D(X ). If X = ;
then we also write δ �X

W ϕ. Similarly, for transition predicates π ∈ T (W,W′, X )
we assume a satisfaction relation (δ,δ′;ρ)�X

W,W′ π, for two data states δ ∈ D(W)
(prestate) and δ′ ∈ D(W′) (poststate) and valuation ρ ∈ D(X ). Super- and sub-
scripts of the satisfaction relation are omitted in the following if they are clear
from the context. For ϕ ∈S (W, X ), we write �∀ ϕ to express that ϕ is universally
valid, i.e. (δ;ρ) � ϕ for all δ ∈ D(W) and all ρ ∈ D(X ). Similarly, we write �∃ ϕ
to express that ϕ is satisfiable, i.e. there exists δ ∈D(W) and ρ ∈D(X ) such that
(δ;ρ)�ϕ. Universal validity and satisfiability of transition predicates are defined
analogously. The logical connectives are interpreted as usual, e.g. (δ;ρ)�ϕ1∧ϕ2
if and only if (δ;ρ) �ϕ1 and (δ;ρ) �ϕ2. We require that the language contains a
universally valid state (and transition) predicate true. Morever, we assume that
every δ ∈D(W) can be characterized by a predicate ϕδ ∈S (W,;), i.e. δ �ϕδ and
for any δ′ ∈D(W), δ′ �ϕδ implies δ′ = δ. For any state predicate ϕ ∈S (W,;) we
write D(ϕ) for the set

{
δ ∈D(W)

∣∣ δ�ϕ}
.

We will frequently use state predicates in combination with transition predi-
cates. Therefore, we require that every state predicate is also a transition pred-
icate where state variables refer to the prestate only; i.e. given a state predi-
cate ϕ ∈ S (W, X ), we require that ϕ ∈ T (W,W′, X ) for any W′ ⊆ SV, and for all
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δ ∈D(W), all δ′ ∈D(W′) and all ρ ∈D(X ), it is satisfied that (δ,δ′;ρ)�X
W,W′ ϕ if and

only if (δ;ρ)�X
W ϕ. Given a state predicate ϕ ∈S (W, X ) and W′ ⊆ W, we write (ϕ)′

for the transition predicate in T (W′,W, X ) for which for all δ ∈D(W), δ′ ∈D(W′)
and all ρ ∈D(X ), (δ;ρ)�X

W ϕ if and only if (δ′,δ;ρ)�X
W′,W (ϕ)′.

Finally, we require that a satisfaction condition holds, similar to the condition
in institutions [91]. For transition predicates π, the satisfaction condition is as
follows: For all W1 ⊆ W′

1 ⊆ SV, W2 ⊆ W′
2 ⊆ SV and X ⊆ X ′ ⊆ LV, for all δ ∈D(W′

1)
and δ′ ∈D(W′

2) and ρ ∈D(X ′), for all π ∈T (W1,W2, X ) it holds that

(δ,δ′;ρ)�X ′
W′

1,W′
2
π if and only if (δ|W1 ,δ′|W2 ;ρ|X )�X

W1,W2
π

where f |A denotes the usual restriction of a function f to a subset A of its defini-
tion domain. An analogous satisfaction condition is required for state predicates.
The satisfaction condition is implicitly used throughout the proofs in this chap-
ter.

The above definitions are generic and sufficient for the following considera-
tions. Therefore, we do not fix a particular syntax for signatures and predicates
here, neither a particular definition of the satisfaction relation. We claim that
our notions could be easily instantiated in the context of a particular assertion
language based, e.g., on the equational or first-order logic calculus or on set-
theoretic notations like in Z [167]. How this would work in the case of the Object
Constraint Language (OCL) [148] is sketched in [39].

Example 4.1.4
Our running example, inspired by the example presented in [57], is a simple sys-
tem consisting of two components modelling a researcher and a vending machine.
In short, the researcher can drop coins into the machine’s slot, and can request
coffee or tea. After drinking the coffee or tea, the researcher can publish a new
paper for which she is awarded money from the university.

We start by exemplifying the use of state signatures in our running example.
Let us fix the data universe U , Z given by the set of all integers, so all state
variables are of integer type and hence data states assign integer values to state
variables. We now describe only the researcher component R, the actions and state
variables of the vending machine component M is described later.

The extended action signature ΣR of the researcher component is given by

Σin
R = {coffee, tea},

Σout
R = {publish,coin(x),selectCoffee,selectTea},

Σint
R = {}.

The set of input actions consists of coffee and tea to pick up a dispensed coffee or
tea, respectively. Output actions are publish to write and publish a paper, coin(x)
to drop a coin with value x into the machine’s coin slot, selectCoffee and selectTea



58 4. Modal Input/Output Automata with Data Constraints

(press the coffee and tea button, respectively). The only operation having a formal
parameter is coin(x). The state signature VR is determined by

V prov
R = {m},

V req
R = {p, c}.

The component R has as a provided state variable m modelling the amount of
money the researcher has. Required state variables are p which models the ma-
chine’s coffee price and c which models the machine’s current credit – both are
assumed to be visible at the display unit of the vending machine.

Transition Labels of MIODs. We are now able to define the kind of labels
which can occur in a modal input/output automaton with data constraints. Given
an extended action signature Σ and a state signature V , the set L (Σ,V ) consists
of expressions of the form

[ϕ]α[π]

where ϕ ∈ S (V prov ∪V req, par(α)) is the precondition, α ∈ ⋃
Σ is the action, and

π ∈T (V prov ∪V req,V prov, par(α)) is the postcondition.
Preconditions ϕ are state predicates which can refer to any kind of state vari-

able, i.e. to provided variables local to a component as well as to required vari-
ables in the environment. This means that any action of a component can be
guarded by a condition which can be checked in an implementation by inspect-
ing the local data state of the component and by querying the data state visible
in the environment. Postconditions π express to which provided data states the
transition may lead to. Note that π cannot express any constraints on the (un-
controlled) required variables which are owned by the environment. It should
be noted that there is no strict need to distinguish between pre- and postcondi-
tions, however, we think that it is more convenient to separate conditions on the
enabledness of a transition from conditions for the change of data values.

In our previous work [22] the allowed variables in postconditions depended
on whether it is a postcondition for an input/internal action or an output ac-
tion. In the case of input/internal action, the definition in [22] equals our defi-
nition here. However, in [22] postconditions for output actions express require-
ments on required state variables instead of provided ones, i.e. π ∈ T (V prov ∪
V req,V req, par(α)). The idea of postconditions referring to required state vari-
ables is that once an output is issued to another component, the sender would
like to express an assumption on how the receiving component should change
its provided state variables. The methodology presented in this thesis stipulates
that, in contrast to mixing assumptions and guarantees in a single interface
specification, they should be clearly separated from each other. This approach is
followed in Chapter 7 where we formalize a theory of contracts. We see in Chap-
ter 7 that applying the ideas to MIODs allows us to express assumptions on state
changes in the environment.
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The next definition extends modal input/output automata to take into account
constraints on data states. The resulting transition systems provide means of
loose interface specifications for components with data states. They do not only
specify the control flow of behaviours but also the effect on data states in terms
of pre- and postconditions.

Definition 4.1.5 (MIOD)
A modal input/output automaton with data constraints (MIOD)

(St, s0,ϕ0,Σ,V , , )

consists of a set of control states St, an initial control state s0 ∈StS, an initial data
state predicate ϕ0 ∈S (V prov,;), an extended action signature Σ= (Σin,Σout,Σint),
a state signature V = (V prov,V req), and a may- and must-transition relation

, ⊆St×L (Σ,V )×St.

A state is a pair (s,δ) consisting of a control state s ∈ St and a data state
δ ∈ D(V prov) for the provided state variables V prov. A state (s,δ) is reachable if
s = s0 and δ � ϕ0 or there exists N ≥ 1 such that for all 0 ≤ i < N there exists a
may-transition

si
[ϕi]αi[πi] si+1

and data states δi ∈D(V prov), νi ∈D(V req), and ρ i ∈D(par(αi)) such that

(δi ·νi,δi+1;ρ i)�ϕi ∧πi for all 0≤ i < N

and δ0 �ϕ0 and (s,δ)= (sN ,δN).
A MIOD is well-formed if the initial state predicate is satisfiable and all

reachable must-transitions are also allowed by the may-transition relation, and
postconditions on must-transitions are satisfiable.

Definition 4.1.6 (Well-formed MIOD)
A MIOD S = (St, s0,ϕ0,Σ,V , , ) is well-formed if

1. �∃ ϕ0 and

2. for all reachable states (s,δ), if there exists

s
[ϕ]α[π]

s′

and (δ ·ν;ρ) � ϕ for some ν ∈ D(V req) and ρ ∈ D(par(α)), then there exists
δ′ ∈D(V prov) such that

(a) (δ ·ν,δ′;ρ)�π and
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(b) there exists

s
[ϕ′]α[π′]

s′

such that (δ ·ν,δ′;ρ)�ϕ′∧π′.

A sufficient condition for a MIOD to be well-formed is given in the following
lemma: if any must-transition is also a may-transition and if each postcondition
of any must-transition is satisfiable, then well-formedness follows. The proof is
straightforward.

Lemma 4.1.7
Let S be a MIOD. If

1. �∃ ϕ0,

2. ⊆ , and

3. for all must-transitions

s
[ϕ]α[π]

s′,

data states δ ∈D(V prov), ν ∈D(V req) and ρ ∈D(par(α)), if (δ ·ν;ρ) �ϕ, then
there exists δ′ ∈D(V prov) such that (δ ·ν,δ′;ρ)�π,

then S is well-formed.

Next, we define when a MIOD is an implementation which is the case if, first,
there is only one initial provided data state possible and, second, every allowed
change of the provided data state is also required by some must-transition.

Definition 4.1.8 (Implementation)
A MIOD S = (St, s0,ϕ0, (Σin,Σout,Σint), (V prov,V req), , ) is an implementation if

1. |D(ϕ0)| = 1 and

2. for any reachable state (s,δ) and any may-transition

s
[ϕ]α[π]

s′,

if (δ·ν,δ′;ρ)�ϕ∧π for some δ,δ′ ∈D(V prov), ν ∈D(V req), ρ ∈D(par(α)), then
there exists a must-transition

s
[ϕ′]α[π′]

s′

such that

(a) (δ ·ν,δ′;ρ)�ϕ′∧π′ and



4.1 Definition 61

(b) if δ′′ ∈D(V prov) is another data state such that (δ ·ν,δ′′;ρ)�ϕ′∧π′ then
δ′′ = δ′.

Again, we can give less complex and sufficient conditions for a MIOD to be
an implementation: if there is only one initial provided data state possible, the
may-transition relation coincides with the must-transition relation, and every
postcondition describes a unique next provided data state, then the MIOD under
consideration is an implementation. The proof is straightforward and therefore
omitted.

Lemma 4.1.9
Let S = (St, s0,ϕ0,Σ,V , , ) be a MIOD. If

1. |D(ϕ0)| = 1 and

2. = and

3. for every must-transition

s
[ϕ]α[π]

s′

if (δ ·ν;ρ) � ϕ for some δ ∈ D(V prov), ν ∈ D(V req), ρ ∈ D(par(α)), then there
exists a unique δ′ ∈D(V prov) such that (δ ·ν,δ′)�π,

then S is an implementation.

Example 4.1.10
We continue our running example of the researcher and the vending machine. In
Figures 4.1 and 4.2, MIODs are shown specifying the behaviour of the researcher
and the vending machine, respectively.

The state signatures are illustrated by boxes at the bottom frame border; a
filled box represents a provided state variable, an open box represents a required
state variable. Initial state predicates are written in the upper left corner, be-
low the name of the MIOD. Must-transitions are drawn with solid arrows and
may-transitions with dashed arrows. Every must-transition implicitly implies
the presence of a may-transition with the same label and source and target state.
Preconditions are written above or in front of and postconditions below or after
actions. We use a simple language for the predicates, with common arithmetic
operations and relations with their usual interpretation. The primed variables in
postconditions indicate that we refer to its value in the poststate. Preconditions
of the form [true] are omitted. An omitted postcondition stands for a conjunction
of predicates x′ = x for all provided state variables x ∈V prov. Moreover, postcondi-
tions π which do not mention provided state variables x1, . . . , xn are understood as
π∧∧n

i=1 x′i = x. For instance, the vending machine is never allowed to change the
price for a coffee (i.e. the value of the provided state variable p never changes).
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s0 s1

s2 s3

[x = 1 ∧ x ≤ m]
coin(x)!

[m′ = m − x]

selectTea!

tea?
publish!
[m′ > m][c ≥ p]

selectCoffee!

coffee?

R
[m ≥ 0]

publish

coin(x)

selectCoffee

selectTea

coffee

tea

m p c

Figure 4.1: MIOD R specifying the behaviour of the researcher

The researcher can throw 1e coins into the slot of the machine increasing the
credit of the machine by at least 1e. When the credit exceeds the coffee price, the
researcher may press a button to request a coffee (selectCoffee!). The researcher
may also press the tea button (selectTea!) which is dispensed for free by the ma-
chine. After the machine has dispensed either coffee or tea, the researcher may
publish a paper for which she receives new money. Note that the vending machine
possibly also accepts 2e coins.

We use MIODs as representatives of their isomorphism classes w.r.t. bijec-
tions on states. The set of those isomorphism classes of all well-formed MIODs
is denoted by MIOD, the set of isomorphism classes of all well-formed implemen-
tations is denoted by MIODi.

4.2 Modal Synchronous Composition
MIODs can be composed to specify the behaviour of concurrent systems of inter-
acting components with data states. The composition operator extends the modal
synchronous composition of MIOs, see Section 3.2, to take into account pre- and
postconditions.

The modal synchronous composition S1 ⊗d S2 of two MIODs S1 and S2 syn-
chronizes transitions whose labels refer to shared actions. For instance, a tran-
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t0 t1

t2

[x = 1]
coin(x)?

[c′ ≥ c+ x]

[x = 2]
coin(x)?

[c′ ≥ c+ x]

selectTea?

tea![c ≥ p]
selectCoffee? coffee!

M
[p ≥ 0∧ c = 0]

coin(x)

selectCoffee

selectTea

coffee

tea

m p c

Figure 4.2: MIOD M specifying the behaviour of the vending machine

sition with label [ϕ1]α![π1] of S1 is synchronized with a transition with label
[ϕ2]α?[π2] of S2 which results in a transition with label [ϕ1∧ϕ2]α[π1∧π2] where
the original preconditions and postconditions are combined by logical conjunc-
tion. Transitions whose labels concern shared actions which cannot be synchro-
nized are dropped (as usual) while all other transitions (with non-shared actions)
are interleaved in the composition.

Two MIODs S1 and S2 are composable if their extended action signatures
and their state signatures are composable.

Definition 4.2.1 (Modal synchronous composition)
Let Si = (Sti, s0,i,ϕ0,i,Σi,Vi, i, i) ∈ MIOD, i ∈ {1,2}, with Σi = (Σin

i ,Σout
i ,Σint

i ).
The modal synchronous composition of S1 and S2 is defined by the MIOD

S1 ⊗d S2,
(
St1 ×St2, (s0,1, s0,2),ϕ0,1 ∧ϕ0,2,Σ1 ⊗Σ2,V1 ⊗V2, ,

)
where the transition relations , are defined by the following rules:

s1
[ϕ1]α[π1]

1 s′1 α ∉Σext
2

(s1, s2)
[ϕ1]α[π1]

(s′1, s2)

s1
[ϕ1]α[π1]

1 s′1 α ∉Σext
2

(s1, s2)
[ϕ1]α[π1]

(s′1, s2)

s2
[ϕ2]α[π2]

2 s′2 α ∉Σext
1

(s1, s2)
[ϕ2]α[π2]

(s1, s′2)

s2
[ϕ2]α[π2]

2 s′2 α ∉Σext
1

(s1, s2)
[ϕ2]α[π2]

(s1, s′2)



64 4. Modal Input/Output Automata with Data Constraints

(s0, t0) (s1, t1)

(s2, t2) (s3, t0)

[x = 1∧ x ≤ m]
coin(x)

[(m′ = m− x)∧ (c′ ≥ c+ x)]

selectTea

tea
publish!
[m′ > m][c ≥ p]

selectCoffee

coffee

R ⊗d M
[m ≥ 0∧ p ≥ 0∧ c = 0]

m p c

publish

coin(x)

selectCoffee

selectTea

coffee

tea

Figure 4.3: Modal synchronous composition of MIODs R and M

s1
[ϕ1]α[π1]

1 s′1 s2
[ϕ2]α[π2]

2 s′2

(s1, s2)
[ϕ1∧ϕ2]α[π1∧π2]

(s′1, s′2)

s1
[ϕ1]α[π1]

1 s′1 s2
[ϕ2]α[π2]

2 s′2

(s1, s2)
[ϕ1∧ϕ2]α[π1∧π2]

(s′1, s′2)

Note that the composition is well-defined for composable MIODs S1 and S2:
it respects the conditions on the state variables of labels that are allowed to occur
in pre- and postconditions, and S1 ⊗d S2 is well-formed. The proof is straightfor-
ward and therefore omitted. Modal synchronous composition is also commutative
and pseudo-associative.

Example 4.2.2
Figure 4.3 shows the composition R ⊗d M of the two abstract specifications R
and M of the researcher and vending machine (compare also to Figures 4.1 and
4.2). Pre- and postconditions of synchronized transitions are conjoined. Since
all required state variables of R and M are provided by M and R, respectively,
we only have provided state variables left. All shared actions become internal
actions in the composition. Note also that, concerning the modalities, a transition
in the composition labelled with a shared action is only a must-transition if both
synchronized input and output transitions were must-transitions (which is the
case for the must-transitions labelled with coffee and tea).
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4.3 The Specification Theory ThMIODstrong and ThdMIOD
strong

4.3.1 Strong Modal Refinement

We follow the basic idea of strong modal refinement in which must-transitions
of the abstract specification must be respected by the more concrete specification
and, conversely, may-transitions of the concrete specification must be allowed
by the abstract one. Strong modal refinement for well-formed MIODs S and T
takes into account data specifications and is formulated by a relation in StS ×
StT ×D(V prov), relating the two state spaces together with a provided data state.

Before we formally define when S is a strong modal refinement of T, we give
an intuitive explanation. We first discuss the easier direction from concrete to
abstract, see Figure 4.4: Any may-transition in S, for which there are data states
that satisfy both pre- and postcondition, i.e. ϕS ∧πS, must be simulated in T by
a may-transition such that the same data states also satisfy the respective pre-
and postcondition, i.e. ϕT ∧πT . In short, any state change allowed in S must be
simulated by T.

︷ ︸︸ ︷
s

[ϕS]α[πS]
S s′ with (δ ·ν,δ′;ρ)�ϕS ∧πS

=⇒ for all δ, ν, δ′, ρ

t
[ϕT ]α[πT ]

T t′ with (δ ·ν,δ′;ρ)�ϕT ∧πT︸ ︷︷ ︸

Figure 4.4: Illustration of strong modal refinement, from concrete to abstract

The other direction from abstract to concrete concerns must-transitions and
is more involved. Figure 4.5 illustrates the situation. Consider a must-transition
in T such that the precondition ϕT is satisfied. Then there must be a must-
transition in S such that its precondition ϕS is satisfied by the same data states,
see (1) in Figure 4.5. Now the postcondition πT on the transition in T specifies
possible next provided data states the transition is allowed to end up with. Since
refinement must preserve this guarantee to end up in a provided data state sat-
isfying πT , the chosen transition in S and its respective postcondition πS should
allow not more provided data states than πT ; this is illustrated in Figure 4.5 by
the implication (2). The pre data state δ as well as the required data state ν and
parameter data state ρ (which satisfy both preconditions ϕT and ϕS) are fixed,
and then πS should be stronger than πT , admitting at most the next provided
data states that πT admits.
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︷ ︸︸ ︷
s

[ϕS]α[πS]
S s′ with (δ ·ν;ρ)�ϕS and

︷ ︸︸ ︷
(δ ·ν,δ′;ρ)�πS

=⇒ for all δ, ν, ρ(1)

t
[ϕT ]α[πT ]

T t′ with (δ ·ν;ρ)�ϕT︸ ︷︷ ︸ and (δ ·ν,δ′;ρ)�πT︸ ︷︷ ︸

=⇒ for all δ′(2)

Figure 4.5: Illustration of strong modal refinement, from abstract to concrete

Definition 4.3.1 (Strong modal refinement)
Let S,T ∈MIOD with the same extended action signature Σ and the same state
signature V . S is a strong modal refinement of T, denoted S ≤d

s T, if �∀ ϕ0,S ⇒
ϕ0,T and if there exists a refinement relation

R ⊆StS ×StT ×D(V prov)

such that (s0, t0,δ0) ∈ R for all δ0 ∈D(ϕ0,S), and for all (s, t,δ) ∈ R:

1. For all s′ ∈ StS, [ϕS]α[πS] ∈ L (Σ,V ), ν ∈ D(V req), ρ ∈ D(par(α)) and δ′ ∈
D(V prov), if

s
[ϕS]α[πS]

S s′ and (δ ·ν,δ′;ρ)�ϕS ∧πS

then there exist t′ ∈StT , [ϕT]α[πT] ∈L (Σ,V ) such that

t
[ϕT ]α[πT ]

T t′ and (δ ·ν,δ′;ρ)�ϕT ∧πT

and (s′, t′,δ′) ∈ R.

2. For all t′ ∈StT , [ϕT]α[πT] ∈L (Σ,V ), ν ∈D(V req) and ρ ∈D(par(α)), if

t
[ϕT ]α[πT ]

T t′ and (δ ·ν;ρ)�ϕT

then there exist s′ ∈StS, [ϕS]α[πS] ∈L (Σ,V ) such that

s
[ϕS]α[πS]

S s′ and (δ ·ν;ρ)�ϕS

and for all δ′ ∈D(V prov),

if (δ ·ν,δ′;ρ)�πS then (δ ·ν,δ′;ρ)�πT and (s′, t′,δ′) ∈ R.

We show that strong modal refinement is a preorder.

Lemma 4.3.2
Strong modal refinement ≤d

s is a reflexive and transitive relation.
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Proof. Reflexivity is easy to see. To show transitivity, let S1,S2,S3 ∈MIOD with
the same action signature Σ and state signature V . Assume that S1 ≤d

s S2 and
S2 ≤d

s S3, witnessed by refinement relations R12 and R23, respectively. We define
a relation

R = { (s1, s3,δ) | ∃s2 ∈St2 : (s1, s2,δ) ∈ R12, (s2, s3,δ) ∈ R23 }⊆St1 ×St3 ×D(V prov)

and show that R is a refinement relation for S1 ≤d
s S3. The interesting direction

is from abstract to concrete: assume that

s3
[ϕ3]α[π3]

3 s′3

such that (δ · ν;ρ) � ϕ3 for some ν ∈ D(V req) and some ρ ∈ D(par(α)). From
(s2, s3,δ) ∈ R23 it follows that there exists a transition

s2
[ϕ2]α[π2]

2 s′2

such that (δ ·ν;ρ)�ϕ2. From (s1, s2,δ) ∈ R12 it follows that there exists a transi-
tion

s1
[ϕ1]α[π1]

1 s′1

such that (δ · ν;ρ) � ϕ1. Now, for all δ′ ∈ D(V prov), if (δ · ν,δ′;ρ) � π1, then (δ ·
ν,δ′;ρ) � π2 and (s′1, s′2,δ′) ∈ R12; then also (δ ·ν,δ′;ρ) � π3 and (s′2, s′3,δ′) ∈ R23.
Altogether, we get that (δ·ν,δ′;ρ)�π1 implies (δ·ν,δ′;ρ)�π3 and (s′1, s′3,δ′) ∈ R.

A sufficient condition for strong modal refinement is the following.2

Lemma 4.3.3
Let S,T ∈MIOD with the same extended action signature and the same state sig-
nature. If �∀ ϕ0,S ⇒ ϕ0,T and there exists a relation R ⊆ StS ×StT such that
(s0, t0) ∈ R, and for all (s, t) ∈ R,

1. whenever t
[ϕT ]α[πT ]

T t′, then there exists s
[ϕS]α[πS]

S s′ such that �∀ ϕT ⇒
ϕS, �∀ ϕT ∧πS ⇒πT and (s′, t′) ∈ R,

2. whenever s
[ϕS]α[πS]

S s′ then there exists t
[ϕT ]α[πT ]

T t′ such that �∀ (ϕS ∧
πS)⇒ (ϕT ∧πT) and (s′, t′) ∈ R.

Then S ≤d
s T.

2Lemma 4.3.3 is also a sufficient condition for strong modal refinement in the sense of [22] if
only input actions are considered.
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s′0 s′1

s′2

s′3

s′4

[x = 1∧ x ≤ m∧ p ≤ 2]
coin(x)!

[m′ = m− x]

[p > 2]
selectTea!

tea?
publish!

[m′ ≥ m+5]

[c ≥ p]
selectCoffee! coffee?

R′
[m ≥ 0]

publish

coin(x)

selectCoffee

selectTea

coffee

tea

m p c

Figure 4.6: MIOD R′ specifying a refined behaviour of the researcher

Proof. The refinement relation R′ demonstrating S ≤d
s T can be easily defined by

R′ = {
(s, t,δ)

∣∣ (s, t) ∈ R,δ ∈D(V prov)
}
.

It is straightforward to show that R′ is indeed a refinement relation such that
(s0, t0,δ0) ∈ R′ for all δ0 ∈D(ϕ0,S).

Note that if predicates are decidable and the well-formed MIODs S and T are
finite,i.e. have finitely many states and transitions, then Lemma 4.3.3 provides
a decidable, sufficient condition for S ≤d

s T.

Example 4.3.4
The abstract specifications (see Figures 4.1 and 4.2) of the researcher and the
vending machine are now refined as shown in Figures 4.6 and 4.7, respectively.

The refined researcher R′ may only throw a coin into the machine’s slot if she
can observe the coffee price to be less or equal than 2e. In this case, she may select
and drink a coffee. If the coffee price is greater than 2e, she prefers to drink a
tea (free of cost). In any case, after drinking either tea or coffee, she publishes for
which she receives new money, at least 5e. To show the refinement R′ ≤d

s R we
can make use of Lemma 4.3.3 and propose a relation in StR′ ×StR given by

{(s′0, s0), (s′1, s1), (s′4, s3), (s′2, s0), (s′3, s2)}.
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t′0 t′1

t′2

[x = 1∨ x = 2]
coin(x)?

[c′ = c+ x]

selectTea?

tea![c ≥ p]
selectCoffee? coffee!

M′
[p ≥ 0∧ c = 0]

coin(x)

selectCoffee

selectTea

coffee

tea

m p c

Figure 4.7: MIOD M′ specifying a refined behaviour of the vending machine

This relation satisfies all the conditions in Lemma 4.3.3, hence R′ ≤d
s R.

The refined vending machine specification M′, see Figure 4.7, is strengthening
the single may-transition to a must-transition. Again using Lemma 4.3.3, the
relation

Q = {(t′0, t0), (t′1, t1), (t′2, t2)}

witnesses M′ ≤d
s M. As an example, for the pair (t′0, t0) ∈Q let us check whether the

conditions of Lemma 4.3.3 are satisfied, for instance, consider the must-transition
in M

t0
[x=1] coin(x)? [c′≥c+x]

M t0.

Then there is a must-transition in M′

t′0
[x=1∨x=2] coin(x)? [c′=c+x]

M′ t′0

such that

• �∀ x = 1⇒ (x = 1∨ x = 2),

• �∀ (x = 1∧ c′ = c+ x)⇒ c′ ≥ c+ x, and

• (t′0, t0) ∈Q.

All other state pairs in Q can be verified analogously.
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We show that any implementation in MIODi is a final element with respect
to strong modal refinement.
Lemma 4.3.5
Let I ∈MIODi and S ∈MIOD. Then S ≤d

s I implies I ≤d
s S.

Proof. Assume that S ≤d
s I is demonstrated by a refinement relation R. Then it is

straightforward to prove that R−1 = {(i, s,δ) | (s, i,δ) ∈ R} is a refinement relation
demonstrating I ≤d

s S.

The implementation semantics of S ∈MIOD induced by strong modal refine-
ment is denoted by

JSKd
s ,

{
I ∈MIODi

∣∣∣ I ≤d
s S

}
.

It is straightforward to prove that JSKd
s 6= ; if and only if S is well-formed.

In Theorem 2.1.2 we have already shown on the abstract level of specification
theories that refinement implies thorough refinement which is defined by inclu-
sion of implementation semantics. The other direction only holds if the MIOD
on the right hand side is deterministic, which is analogous to the situation found
for MIOs. We first define what determinism means for MIODs.
Definition 4.3.6 (Determinism)
A MIOD S is deterministic, if for every reachable state (s,δ), for all α ∈ ⋃

Σ, ν ∈
D(V req) and ρ ∈ par(α),

1. if there is s
[ϕ]α[π]

s′ and s
[ϕ′]α[π′]

s′′ such that (δ · ν;ρ) � ϕ∧ϕ′, then
s′ = s′′,

2. if there is s
[ϕ]α[π]

s′ and s
[ϕ′]α[π′]

s′′ such that (δ·ν;ρ)�ϕ∧ϕ′, then s′ = s′′

and for all δ′ ∈D(V prov), (δ ·ν,δ′;ρ)�π if and only if (δ ·ν,δ′;ρ)�π′.

Note that determinism requires for may-transitions only that the next con-
trol state is unique. However, for simultaneously enabled must-transitions, we
require that they lead to the same next control state and their postconditions are
equivalent. Intuitively, the reason for the weak condition on the may-transition
relation is that data states are observable and are distinguished by refinement,
i.e. two states (s,δ) and (t,δ′) of two MIODs S and T, respectively, can only be
related if δ= δ′.

The set of the isomorphism classes (w.r.t. bijections on states) of deterministic,
well-formed MIODs is denoted by dMIOD, the set of isomorphism classes for
deterministic, well-formed implementations of MIODs is denoted by dMIODi.

The following theorem shows that completeness of refinement is achieved
once the right hand side is assumed to be deterministic. The proof is an adap-
tation of the proof for completeness of refinement for (usual) modal transition
systems in [32].
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Theorem 4.3.7 (Relative completeness of strong modal refinement)
Let S,T ∈MIOD, and let T be deterministic. Then JSKd

s ⊆ JTKd
s implies S ≤d

s T.

Proof. In this proof, we write (S, s,ϕ) for S where the initial location is replaced
with s ∈ S, and the initial state predicate by ϕ ∈ S (V prov,;). Observe that the
assumption JSKd

s ⊆ JTKd
s then means more precisely3

J(S, s0,ϕδ0)Kd
s ⊆ J(T, t0,ϕδ0)Kd

s

for all δ0 ∈D(V prov) with δ0 �ϕ0,S.
Let R ⊆StS ×StT ×D(V prov) be the smallest relation satisfying

• for all δ0 ∈D(V prov), if δ0 �ϕ0,S, then (s0, t0,δ0) ∈ R,

• for all (s, t,δ) ∈ R, s
[ϕS]α[πS]

S s′, t
[ϕT ]α[πT ]

T t′, ν ∈D(V req), ρ ∈D(par(α)),
δ′ ∈D(V prov), if (δ ·ν,δ′;ρ)�ϕS ∧πS ∧ϕT ∧πT , then (s′, t′,δ′) ∈ R.

We will show that R is a relation witnessing S ≤d
s T.

First, we prove that (s, t,δ) ∈ R implies

J(S, s,ϕδ)Kd
s ⊆ J(T, t,ϕδ)Kd

s . (?)

For (s0, t0,δ0) ∈ R with δ0 � ϕ0,S, this holds by assumption. Now, let (s, t,δ) ∈ R
and assume that all the assumptions of the above second condition hold. Let
I ′ ∈ J(S, s′,ϕδ′)Kd

s with initial state i′0. Then, since S is well-formed and hence
consistent, there exists I ∈ J(S, s,ϕδ)Kd

s with initial state i0 such that

i0
[ϕδ∧ϕν∧ϕρ]α[(ϕδ′ )′]

I i

and the reachable part from i on is the same as I ′ (from the initial state i′0 on), i.e.
(I, i,ϕδ′)= I ′. From (?) it follows that I ∈ J(T, t,ϕδ)Kd

s , and since T is deterministic
we can conclude that (I, i,ϕδ′) ∈ J(T, t′,ϕδ′)Kd

s , and then I ′ ∈ J(T, t′,ϕδ′)Kd
s .

We now show that R is a relation witnessing S ≤d
s T. By definition of R, we

know that (s0, t0,δ0) ∈ R for all δ0 �ϕ0,S. Let (s, t,δ) ∈ R.

1. Assume s
[ϕS]α[πS]

s′ and (δ ·ν,δ′;ρ)�ϕS∧πS. Then there exists an imple-
mentation

I ∈ J(S, s,ϕδ)Kd
s

such that

i0
[ϕδ∧ϕν∧ϕρ]α[(ϕδ′ )′]

I i.
3Recall that, for any W ⊆SV, we assume that every δ ∈D(W) can be characterized by a predi-

cate ϕδ ∈S (W,;), i.e. δ�ϕδ and for any δ′ ∈D(W), δ′ �ϕδ implies δ′ = δ.
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By the assertion above, we know that

I ∈ J(T, t,ϕδ)Kd
s ,

hence there exists t
[ϕT ]α[πT ]

T t′ such that (δ ·ν,δ′;ρ)�ϕT ∧πT . By defini-
tion of R, we finally get (s′, t′,δ′) ∈ R.

2. Assume t
[ϕT ]α[πT ]

T t′ such that (δ ·ν;ρ)�ϕT . Then, for all I ∈ J(T, t,ϕδ)Kd
s

there exists

i0
[ϕδ∧ϕν∧ϕρ]α[(ϕδ′ )′]

I i

for some
δ′ ∈ P , {δ′ ∈D(V prov) | (δ ·ν,δ′;ρ)�πT}.

By this observation and J(S, s,δ)Kd
s ⊆ J(T, t,δ)Kd

s we know that every imple-
mentation of (S, s,ϕδ) has such a transition for some δ′ ∈ P. This can only
be the case if there is a must-transition

s
[ϕS]α[πS]

s′

such that (δ·ν;ρ)�ϕS and for all δ′ ∈D(V req), (δ·ν,δ′;ρ)�πS implies δ′ ∈ P.
By the definition of R, we can infer (s′, t′,δ′) ∈ R; this follows from the fact
that there exist underlying may-transitions in S and T.

The next theorem shows that strong modal refinement is a precongruence
with respect to modal synchronous composition of MIODs.

Theorem 4.3.8 (Compositional refinement)
Let S,S′,T,T ′ ∈MIOD. If S′ ≤d

s S and T ′ ≤d
s T and S, T are composable, then S′,

T ′ are composable and S′ ⊗d T ′ ≤d
s S ⊗d T.

Proof. It suffices to prove the case T ′ = T since composition is commutative. De-
finedness of S′ ⊗d T follows from S ⊗d T and S′ ≤d

s S since strong modal refine-
ment does not change action signatures or state signatures. Let V = (V prov,V req)=
VS ⊗VT . To show S′ ⊗d T ≤d

s S ⊗d T we define a refinement relation R ⊆ (StS′ ×
StT)× (StS ×StT)×D(V prov) by

R = {(((s′, t), (s, t),δS ·δT) | (s′, s,δS) ∈ RS}

where RS witness S′ ≤d
s S. We show that R proves S′ ⊗d T ≤d

s S ⊗d T.
((s′, t), (s, t), (δ0,S′ ·δ0,T)) clearly holds for any δ0,S′ ∈ D(ϕ0,S′) and any δ0,T ∈

D(ϕ0,T), because �∀ ϕ0,S′ ⇒ϕ0,S. Let

((s′, t), (s, t), (δS ·δT)) ∈ R,
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so we can assume that (s′, s,δS) ∈ RS. Let

(s, t)
[ϕ]α[π]

(ŝ, t̂) (1)

be a must-transition in S ⊗d T. The only interesting case is when α is a shared
action of S and T, i.e. α ∈ Σext

S ∩Σext
T . Assume that there is ν ∈ D(V req), ρ ∈

D(par(α)) such that
(δS ·δT ·ν;ρ)�ϕ.

From (1) and the rules of composition it follows that there exist

s
[ϕS]α[πS]

ŝ and t
[ϕT ]α[πT ]

t̂

such that ϕ=ϕS ∧ϕT and π=πS ∧πT . From (s′, s,δS) ∈ RS we can conclude that
there exists

s′
[ϕS′ ]α[πS′ ]

ŝ′

such that (δS ·δT ·ν;ρ)�ϕS′∧ϕT , and for all δ′S ∈D(V prov), if (δS ·δT ·ν,δ′S;ρ)�πS′ ,
then (δS ·δT ·ν,δ′S;ρ)�πS and (ŝ′, ŝ,δ′S) ∈ RS.

Then we have

(s′, t)
[ϕS′∧ϕT ]α[πS′∧πT ]

(ŝ′, t̂)

and the rest follows from the above satisfaction statements, including

((ŝ′, t̂), (ŝ, t̂),δ′S ·δT) ∈ R.

The other direction of modal refinement (condition 2 of Def. 4.3.1, from concrete
to abstract) is very similar to the proof above.

Example 4.3.9
Figure 4.8 shows the composition R′ ⊗d M′ of the refined system specifications R′

and M′ (see also Figures 4.6 and 4.7 for their individual specifications). Thanks to
Theorem 4.3.8 we can infer R′ ⊗d M′ ≤d

s R ⊗d M just by verifying the refinements
R′ ≤d

s R and M′ ≤d
s M.

4.3.2 Strong Environment Correctness
The environment correctness notion that we introduce for MIODs in the fol-
lowing builds upon strong environment correctness as defined for MIOs in Sec-
tion 3.3.2, Chapter 3. From the control point of view strong environment correct-
ness for MIODs requires that in any reachable state of the product S ⊗d E of two
MIODs S (the specification) and E (the environment), if S may issue an output
(in its current control and data state) then E is in a control and data state where
it must be able to take the corresponding input.
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(s′0, t′0)

(s′1, t′1)

(s′4, t′0)

(s′2, t′0) (s′3, t′2)

[p > 2]
selectTea

tea

[x = 1∧ x ≤ m∧ p ≤ 2]
coin(x)
[(m′ = m− x)
∧(c′ = c+ x)]

publish!
[m′ ≥ m+5]

[c ≥ p]
selectCoffee

coffee

R′ ⊗d M′
[m ≥ 0∧ p ≥ 0∧ c = 0]

m p c

publish

coin(x)

selectCoffee

selectTea

coffee

tea

Figure 4.8: Modal synchronous composition of MIODs R′ and M′
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Definition 4.3.10 (Strong environment correctness)
Let S,E ∈MIOD be composable. E is a strongly correct environment for S, written
S →d

s E, if for all reachable states

((s, e), (δS ·δE)) in S ⊗d E,

for all α ∈Σout
S ∩Σin

E , whenever

s
[ϕS]α![πS]

S

and (δS ·δE ·ν;ρ)�ϕS for some ν ∈D(V req
S⊗dE

) and some ρ ∈D(par(α)), then

e
[ϕE]α?[πE]

E

such that (δS ·δE ·ν;ρ)�ϕE.

Recall that we write S�d
s E (“S and E are strongly compatible”) if S →d

s E
and E →d

s S.

Example 4.3.11
Consider the MIODs shown in Figures 4.1, 4.2 and their composition shown in
Figure 4.3. Strong compatibility of the specifications R and M means that, for
instance, in the reachable state (s0, t0, [m 7→ 1, . . .]), in s0 the output coin(x)! is
possible in R with parameter valuation [x 7→ 1] since we have

([m 7→ 1, . . .]; [x 7→ 1])� x = 1∧ x ≤ m .

For R and M to be strongly compatible, we have to check that M is ready to take
that output. And indeed, there is a must-transition for coin(x)? which must be
enabled whenever the parameter valuation is [x 7→ 1] (independent of the provided
data state of M), hence the output of R can be taken by M for sure. The reader
may easily verify the other outputs sent from R to M (and the other way round),
coming to the conclusion that R and M are strongly compatible, i.e. R�d

s M.

Strong environment correctness of MIODs is preserved by refinement:

Theorem 4.3.12 (Preservation of strong environment correctness)
Let S,S′,E,E′ ∈MIOD. If S →d

s E and S′ ≤d
s S and E′ ≤d

s E, then S′ →d
s E′.

Proof. Let ((s′, e′),δS ·δE) be a reachable state in S ⊗d E. From reachability of s′

in S′, e′ in E′ and strong modal refinements S′ ≤d
s S, E′ ≤d

s E we can conclude
that there exist related states s ∈ StS, e ∈ StE such that (s, e) is reachable in
S ⊗d E.

Assume that

s′
[ϕS′ ]α![πS′ ]

S′



76 4. Modal Input/Output Automata with Data Constraints

with α ∈Σout
S ∩Σin

E , and
(δS ·δE ·ν;ρ)�ϕS′

for some ν ∈D(V req
S⊗dE

) and some ρ ∈D(par(α)). Then

s
[ϕS]α![πS]

S

such that (δS ·δE ·ν;ρ) � ϕS. Since ((s, e),δS ·δE) is reachable in S ⊗d E, we can
conclude that

e
[ϕE]α?[πE]

E

with (δS ·δE ·ν;ρ)�ϕE. Again, by strong modal refinement E′ ≤d
s E, we can infer

that

e′
[ϕE′ ]α?[πE′ ]

E′

with (δS ·δE ·ν;ρ)�ϕE′ which was to be shown.

Example 4.3.13
This result allows us to infer strong environment correctness of the refined MIODs
R′ and M′ in both directions, see Figures 4.6,4.7 for the individual MIODs and
Figure 4.8 for their composition. As we have proven strong environment cor-
rectness of R and M in both directions as well as the refinements R′ ≤d

s R and
M′ ≤d

s M, Theorem 4.3.12 allows us to conclude that both R′ →d
s M′ and M′ →d

s R′

hold.

4.3.3 Definition of ThMIODstrong and ThdMIOD
strong

We can now summarize our results for MIODs by stating that MIODs as well as
deterministic MIODs form a specification theory.

Corollary 4.3.14
ThMIODstrong, (MIOD,MIODi,≤d

s ,⊗d,→d
s ) is a specification theory.

ThdMIOD
strong , (dMIOD,dMIODi,≤d

s ,⊗d,→d
s ) is a specification theory.

Proof. Compositionality of strong modal refinement follows from Theorem 4.3.8.
Preservation of strong environment correctness is shown in Theorem 4.3.12. Fi-
nality of implementations is shown in Lemma 4.3.5. All theorems also hold for
deterministic MIOs.

We can obtain a reflective embedding of ThdMIOD
strong in ThMIODstrong by taking the

identity function. The proof is straightforward and omitted.

Corollary 4.3.15
The identity function id : dMIOD→MIOD is a reflective embedding of ThdMIOD

strong in
ThMIODstrong.
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Furthermore, comparing the specification theories ThMIOstrong and ThMIODstrong, we
can observe that the latter is clearly more expressive than the former. In fact
we can define an embedding f of ThMIOstrong in ThMIODstrong in the following way. f
transforms every MIO to a MIOD with no provided and required state variables,
no action parameters, and pre- and postconditions being the universally valid
predicate true. More formally, we can define f : MIO→ MIOD by the function
that maps any MIO S = (StS, s0,ΣS, S, S) to the well-formed MIOD f (S) =
(StS, s0,ϕ0,ΣS,V , f (S), f (S)) with ϕ0 = true, V = (V prov,V req), V prov = V req =;,
and

s [true]α[true]
f (S) s′ if and only if s α

S s′ ,

s [true]α[true]
f (S) s′ if and only if s α

S s′ .

Lemma 4.3.16
The function f as defined above is a reflective embedding of ThMIOstrong in ThMIODstrong,
and f restricted to deterministic MIOs is a reflective embedding of ThdMIO

strong in
ThdMIOD

strong .

Proof. The claim can be easily verified by looking at the definitions of compo-
sition, refinement and environment correctness: they all reduce to the corre-
sponding definitions on MIOs as soon as all predicates are of the form true.
For instance, it is easy to verify that S ≤s T if and only if f (S) ≤d

s f (T) for all
S,T ∈MIO.

Integrating the modal specification theories ThMIODstrong and ThdMIOD
strong introduced

in this section as well as the three reflective embeddings (denoted by ), we
obtain the diagram shown in Figure 4.9 that extends the previous diagram in
Figure 3.9.

4.4 Predicate Abstraction
We now switch our focus to the problem of deciding strong modal refinement
for finite, well-formed MIODs. The problem S ≤d

s T for finite S,T ∈MIOD but
with infinite variable domains is known to be undecidable in general as soon as
the assertion language can express two or more counters for (unbounded) integer
variables. In this case the refinement problem can be reduced to the halting prob-
lem for Minsky machines [143] which is undecidable, see [111] for an overview of
general techniques how to prove undecidability of bisimilarity.

In [22] we have proposed strong modal refinement for MIODs possibly with
infinite variable domains. The naive technique in [22] relies on syntactically
reachable states rather than considering a current data state δ being part of
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ThMIOweak

ThMIODstrong ThMIOstrong

ThdMIOD
strong ThdMIO

strong

Figure 4.9: Modal specification theories and embeddings

the refinement relation, similar but slightly more flexible than the conditions
in Lemma 4.3.3 above. This refinement notion corresponds to the usual refine-
ment of operation specifications, e.g. in behavioural subtyping for object-oriented
programs [131], where preconditions can be weakened and postconditions can
be strengthened. As this refinement notion only takes into account the control
states, strong modal refinement can be decided whenever the set of control states
is finite and the satisfaction relation can be decided. However, better approxima-
tions are clearly desirable, both from a theoretical and from a practical point of
view.

Remark 4.4.1
We do not explicitly study the problem of verifying strong environment correctness
for which, however, the predicate abstraction technique would also work. Whether
predicate abstraction can be extended to the verification of weak strong modal
refinement and weak environment correctness is out of scope and left for future
work.

Example 4.4.2
We illustrate predicate abstraction with the following running example, slightly
more technical and abstract than the previous examples but suited to illustrate
our technique. For the rest of this section, we define the data universe U by the
natural numbers, i.e. U ,N. Figure 4.10 is an abstract specification T of a com-
ponent with two provided state variables x and y of non-negative integers, and
there is a single internal action. T expresses that performing α continuously al-
ternates the data state between “the sum of x+ y is even” and “the sum of x+ y is
odd”.

Consider the MIOD S in Figure 4.11. Our goal is to show that S is a strong
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t0 t1

[true] α [(x′+ y′)%2= 1]

[true] α [(x′+ y′)%2= 0]

T

x y

α

[true]

Figure 4.10: Abstract specification T

s0 s1

[true]
α

[x′%2= 1∧ y′ = y]
[x > 0] α [x′ = x−1∧ y′ = y]

[x = 0] α [x′%2= 1∧ y′ = y]
[x%2= 1]

α

[x′ = 0∧ y′ = y]

S
[x = 0∧ y= 0]

x y

α

Figure 4.11: Concrete specification S

modal refinement of T. However, Lemma 4.3.3 does not work here – for instance,
the state pair (s0, t0) fails the check for the must-transition because of the postcon-
ditions, i.e.

6�∀ (x′%2= 1∧ y′ = y)⇒ (x′+ y′)%2= 1.

In this case, we propose to resort to predicate abstraction techniques [93].
Given two finite, well-formed MIODs S and T we derive over- and under-approx-
imations So and Tu, respectively, using a finite number of predicates partitioning
the provided and required data state space. Importantly, if predicates are decid-
able then we give algorithms how to derive the over- and under-approximation
So and Tu, respectively. Since So and Tu are finite MIODs and the finitely many
predicates can be encoded by Boolean variables, So ≤d

s Tu becomes decidable. As
the main result of this approach to the verification of strong modal refinement,
we show that So ≤d

s Tu implies S ≤d
s T. We describe the predicate abstraction
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technique for MIODs without action parameters, however, they can be easily in-
tegrated with some more technical effort. Technical details about the encoding
of predicates with Boolean variables can be found in [25].

Given a MIOD S = (S, s0,ϕ0,Σ,V , , ), we partition the local data state
space and the uncontrolled data state space using finitely many predicates

Φ1,Φ2, . . . ,ΦN ∈Pred(V prov) and Ψ1,Ψ2, . . . ,ΨM ∈Pred(V req).

It is crucial that the predicates form a partition, i.e. forΦ1,Φ2, . . . ,ΦN ∈Pred(V prov)
this is means

• 6�∃Φi ∧Φ j for all 1≤ i < j ≤ N and

• �∀Φ1 ∨ . . .∨ΦN ;

similar for Ψ1,Ψ2, . . . ,ΨM ∈ Pred(V req). We fix these predicates in the following
to simplify the presentation.

Example 4.4.3
For our running example, we fix the following predicates. Note that we do not
have any required state variables.

Φ1, y= 0∧ x = 0

Φ2, y= 0∧ x > 0∧ x%2= 1

Φ3, y= 0∧ x > 0∧ x%2= 0

Φ4, y> 0∧ (x+ y)%2= 1

Φ5, y> 0∧ (x+ y)%2= 0

These predicates are carefully chosen such that the occurring pre- and postcon-
ditions in S and T can be “best” approximated; automatic procedures obtaining
such predicates is subject of future work.

The transition relation of the over-approximation expands the allowed be-
haviours and limits the required behaviours. Dually, the under-approximation
will further restrict the allowed behaviour and add more required transitions. In
other words, over-approximation is an existential abstraction on may-transitions
and universal abstraction on must-transitions. Conversely, under-approximation
is a universal abstraction on may-transitions and existential abstraction on must-
transitions.

Let us define, for any S ∈MIOD, states s, s′ ∈StS, and actions α ∈⋃
Σ,

mayS(s,α, s′), {(ϕ,π) | s
[ϕ]α[π]

S s′},

mustS(s,α, s′), {(ϕ,π) | s
[ϕ]α[π]

S s′}.
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Definition 4.4.4 (Over-approximation)
Let S and So be two MIODs with the same extended action signature and state
signature. So is an over-approximation of S w.r.t. (Φi)1≤i≤N , and (Ψ j)1≤ j≤M , if
S ≤d

s So and for So it is satisfied that

1. the initial state predicate of So is of the form
∨

i∈IΦi for some ; 6= I ⊆
{1, . . . , N},

2. preconditions in So are of the form (
∨

i∈IΦi)∧ (
∨

j∈JΨ j) for some ; 6= I ⊆
{1, . . . , N} and ; 6= J ⊆ {1, . . . , M},

3. postconditions in So are of the form
∨

i∈I(Φi)′ for some ; 6= I ⊆ {1, . . . , N}.

We now describe a simple algorithm how an over-approximation can be ob-
tained. Minimality requirements are used to ensure that the over-approximation
is as close as possible to the original specification.

Algorithm 1 (A-O). Let S = (StS, s0,ϕ0,Σ,V , , ) ∈ MIOD. The MIOD So is
constructed as follows.

• The control state space of the over-approximation So is given by

StSo ,StS ×
{ ∨

i∈I
Φi

∣∣∣∣∣; 6= I ⊆ {1, . . . , N}

}
.

The state predicate is added to over-approximate the data states which are
actually reachable for this control state in S.

• The initial state is (s0,
∨

i∈IΦi) where i ∈ I if and only if �∃ ϕ0 ∧Φi.

• For a control state (s,Γ) ∈ StSo and some 1 ≤ i ≤ N, 1 ≤ j ≤ M, the following
may- and must-transitions are added:

– If mayS(s,α, s′) 6= ; and

�∃ Γ∧Φi ∧Ψ j ∧
( ∨

(ϕ,π)∈mayS(s,α,s′)
ϕ∧π

)

then

(s,Γ)
[Φi∧Ψ j]α[

∨
i∈I (Φi)′]

So (s′,
∨
i∈I
Φi)

where ; 6= I ⊆ {1, . . . , N} is a minimal set satisfying

�∀ Γ∧Φi ∧Ψ j ∧
( ∨

(ϕ,π)∈mayS(s,α,s′)
ϕ∧π

)
⇒ ∨

i∈I
(Φi)′.



82 4. Modal Input/Output Automata with Data Constraints

– If mustS(s,α, s′) 6= ; and

�∀ Γ∧Φi ∧Ψ j ⇒
( ∨

(ϕ,π)∈mustS(s,α,s′)
ϕ

)
,

then

(s,Γ)
[Φi∧Ψ j]α[

∨
i∈I (Φi)′]

So (s′,
∨
i∈I

(Φi)′)

where ; 6= I ⊆ {1, . . . , N} is a minimal set satisfying

�∀ Γ∧Φi ∧Ψ j ⇒
( ∨

(ϕ,π)∈mustS(s,α,s′)
ϕ∧

(
π⇒ ∨

i∈I
(Φi)′

))
.

The minimality of the postcondition ensures that the effect of this must-
transition is best described (for the fixed set of predicates).

Theorem 4.4.5
Let S be a well-formed MIOD. If a well-formed MIOD So is obtained by Algorithm
(A-O), then So is an over-approximation of S, in particular, it holds that S ≤d

s So.

Proof. Observe that So adheres to the required format of initial state predicate,
preconditions and postconditions. We only have to show that S ≤d

s So. We define
a relation R ⊆StS ×StSo ×D(V prov) by

R = {(s, (s,Γ),δ) | δ�Γ}.

We show that R proves the refinement S ≤d
s So. Assume that the initial state

predicate of So is
∨

i∈I0Φi for some ; 6= I0 ⊆ {1, . . . , N}. We can infer that

(s0, (s0,
∨
i∈I0

Φi),δ0) ∈ R

for all δ0 � ϕ0,S, since for every such δ0 there must exist some i ∈ I0 such that
δ0 �ϕ0 ∧Φi.

Let us consider a triple (s, (s,Γ),δ) ∈ R. Assume a must-transition

(s,Γ)
[Φi∧Ψ j]α[

∨
k∈I (Φk)′]

So (s′,
∨
k∈I
Φk)

such that (δ·ν)�Φi∧Ψ j for some ν ∈D(V req). By the above rules for constructing
So and by δ � Γ (which we know by assumption (s, (s,Γ),δ) ∈ R), it follows that
there exists a must-transition

s
[ϕ]α[π]

S s′

such that (δ ·ν,δ′) � ϕ∧π⇒ ∨
k∈I(Φk)′ for all δ′ ∈ D(V prov). Hence we have that

(s′, (s′,
∨

k∈I(Φk)′),δ′) ∈ R for all δ′ ∈D(V prov) such that (δ ·ν,δ′)�π.
The direction for the may-transition is similar and less difficult.
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Example 4.4.6
The over-approximation of S, see Figure 4.11, constructed according to Algorithm
(A-O) using the fixed predicates Φ1, . . . ,Φ5, as chosen in Example 4.4.3, is shown
in Figure 4.12. Strictly applying Algorithm (A-O) would result in two transitions
from the state (s1,Φ1 ∨Φ3) to the state (s1,Φ2) which have been gathered to a
single transition in Figure 4.12. Let us explain the construction by looking at two
particular transitions. For instance, there is a may-transition

(s0,Φ1) [Φ1]α[(Φ2)′]
So (s1,Φ2)

because there is a may-transition

s0
[true]α[x′%2=1∧y′=y]

S s1

in S such that �∃ Φ1 ∧ true∧ x′%2 = 1∧ y′ = y and I = {2} is the minimal set such
that �∀ Φ1 ∧ x′%2 = 1∧ y′ = y ⇒ (Φ2)′. For an example of a must-transition in So,
we consider

(s0,Φ1) [Φ1]α[(Φ2)′]
So (s1,Φ2).

This transition is present in So because there is

s0
[true]α[x′%2=1∧y′=y]

S s1

in S such that �∀ Φ1 ⇒ true and I = {2} is a minimal set satisfying �∀ Φ1 ⇒
(x′%2= 1∧ y′ = y⇒ (Φ2)′).

We now turn to the definition of an under-approximation Tu of T. Recall
that an under-approximation is a universal abstraction on may-transitions and
existential abstraction on must-transitions.

Definition 4.4.7 (Under-approximation)
Let T and Tu be two MIODs with the same extended action signature and state
signature. Tu is an under-approximation of T w.r.t. (Φi)1≤i≤N , and (Ψ j)1≤ j≤M , if
Tu ≤d

s T and for Tu it is satisfied that

1. the initial state predicate of Tu is of the form
∨

i∈IΦi for some ; 6= I ⊆
{1, . . . , N},

2. preconditions in Tu are of the form (
∨

i∈IΦi)∧ (
∨

j∈JΨ j) for some ; 6= I ⊆
{1, . . . , N} and ; 6= J ⊆ {1, . . . , M},

3. postconditions in Tu are of the form
∨

i∈I(Φi)′ for some ; 6= I ⊆ {1, . . . , N}.
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(s0,Φ1)

(s1,Φ2)

(s1,Φ1 ∨Φ3)

[Φ1 ] α [(Φ2 ) ′]

[Φ2] α
[(Φ1)

′ ∨ (Φ3)
′ ]

[Φ1∨Φ
3] α

[(Φ2)
′ ]

[Φ2 ] α [(Φ1 ) ′]

So

[Φ1]

x y

α

Figure 4.12: Over-approximation of S

We now describe a simple construction of an under-approximation. For this
construction to work, we have to require that every postcondition does not men-
tion unprimed variables, i.e. postconditions must be independent from the pre-
vious data state, and all postconditions must be equivalent to a disjunction of a
selection of the predicates (Φ1)′, . . . , (ΦN)′. More precisely, for every postcondition
we stipulate the existence of a set ; 6= I ⊆ {1, . . . , N} such that �∀ π⇔∨

k∈I(Φi)′.

Algorithm 2 (A-U). Let T = (StT , t0,ϕ0,Σ,V , , ) be a MIOD. The MIOD Tu is
constructed as follows.

• The control state space of the under-approximation Tu is given by

StTu ,StT ×
{ ∨

i∈I
Φi

∣∣∣∣∣; 6= I ⊆ {1, . . . , N}

}
.

The state predicate is added to under-approximate the data states which are
actually reachable in T for this control state.

• The initial state is (t0,
∨

i∈IΦi) where i ∈ I if and only if �∀Φi ⇒ϕ0.

• For a control state (t,Γ) ∈StTu , the following may- and must-transitions are
added:

– If mayT(t,α, t′) 6= ; and there exists a maximal set ; 6= I ⊆ {1, . . . , N}
satisfying

�∀ Γ∧Φi ∧Ψ j ∧
∨
k∈I

(Φk)′ ⇒
( ∨

(ϕ,π)∈mayT (t,α,t′)
ϕ∧π

)
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then

(t,Γ)
[Φi∧Ψ j]α[

∨
k∈I (Φk)′]

Tu (t′,
∨
k∈I
Φk).

– For every (ϕ,π) ∈mustT(t,α, t′), if �∃ Γ∧Φi ∧Ψ j ∧ϕ, then there is

(t,Γ)
[Φi∧Ψ j]α[

∨
k∈I (Φk)′]

Tu (t′,
∨
k∈I

(Φk)′)

where ; 6= I ⊆ {1, . . . , N} is a set satisfying �∀ π⇔∨
k∈I(Φk)′.

Technically, under-approximation may yield a MIOD which is not well-formed:
states may be reachable in which must-transitions are enabled which are not
reachable by may-transitions. However, this does not affect the following result,
as we only use transitivity of refinement which continue to hold for these MIODs.
Note that postconditions on must-transitions are still satisfiable since they are
of the form

∨
k∈I(Φi)′ for some set ; 6= I ⊆ {1, . . . , N}.

Theorem 4.4.8
Let T be a well-formed MIOD. If Tu is the MIOD obtained according to Algorithm
(A-U), then Tu is an under-approximation of T, in particular, it holds that Tu ≤d

s
T.

Proof. Observe that Tu adheres to the required format of initial state predicate,
preconditions and postconditions. We only have to show that Tu ≤d

s T. We define
a relation R ⊆StTu ×StT ×D(V prov) by

R, {((t,Γ), t,δ) | δ�Γ}.

We show that R proves the refinement Tu ≤d
s T. Assume that the initial state

predicate of Tu is
∨

i∈I0Φi for some I0 ⊆ {1, . . . , N}. We can infer that

((t0,
∨
i∈I0

Φi), t0,δ0) ∈ R

for all δ0 �
∨

i∈I0Φi, since for every such δ0 we have that δ0 �
∨

i∈I0Φi ∧ϕ0,T .
Let us consider a triple ((t,Γ), t,δ) ∈ R. Assume a must-transition

t
[ϕ]α[π]

T t′

such that (δ ·ν)�ϕ for some ν ∈D(V req). By assumption (s, (s,Γ),δ) ∈ R, we know
that (δ ·ν)�Γ∧Φi ∧Ψ j ∧ϕ for some i ∈ {1, . . . , N} and some j ∈ {1, . . . , M}. Then by
the rules for constructing Tu, there is

(t,Γ)
[Φi∧Ψ j]α[

∨
k∈I (Φk)′]

Tu (t′,
∨
k∈I

(Φk)′)
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(t0,
∨

1≤i≤5Φi)

(t1,Φ2 ∨Φ4)

(t0,Φ1 ∨Φ3 ∨Φ5)

[ ∨
1≤i≤5Φi ] α [(Φ2 ) ′∨ (Φ4 ) ′]

[Φ2∨Φ4] α
[(Φ1)

′ ∨ (Φ3)
′ ∨ (Φ5)

′ ]

[Φ1∨Φ3∨Φ5] α
[(Φ2)

′ ∨ (Φ4)
′ ]

Tu

[
∨

1≤i≤5Φi]

x y

α

Figure 4.13: Under-approximation Tu of T

where I ⊆ {1, . . . , N} is a non-empty set satisfying �∀ π⇔ ∨
k∈I(Φk)′. It follows

that for all δ′ ∈ D(V prov), whenever (δ · ν,δ′) �
∨

k∈IΦk, then (δ · ν,δ′) � π and
((t′,

∨
k∈IΦk), t′,δ′) ∈ R.

The direction for the may-transition is similar and less difficult.

Example 4.4.9
Figure 4.13 shows the under-approximation Tu of T, obtained by Algorithm (A-
U) except that, for presentation issues and similarly to before, transitions with the
same source and target state and the same modality and postcondition have been
gathered by drawing a single transition with disjoint preconditions.

Corollary 4.4.10
Let S and T be well-formed MIODs with the same extended action signature and
the same state signature. Let (Φi)1≤i≤N and (Ψ j)1≤ j≤M be predicates that partition
the data state spaces D(V prov) and D(V req), respectively.

• Let So be an over-approximation w.r.t. (Φi)1≤i≤N and (Ψ j)1≤ j≤M obtained
according to Algorithm (A-O).

• Let Tu be an under-approximation w.r.t. (Φi)1≤i≤N and (Ψ j)1≤ j≤M obtained
according to Algorithm (A-U).

Then So ≤d
s Tu implies S ≤d

s T.
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Proof. This simply follows from transitivity of ≤d
s and

S ≤d
s So ≤d

s Tu ≤d
s T

where S ≤d
s So is proven in Theorem 4.4.5 and Tu ≤d

s T is proven in Theo-
rem 4.4.8.

Example 4.4.11
It can be easily verified that So, shown in Figure 4.12, is a strong modal refine-
ment of Tu, shown in Figure 4.13. Using Lemma 4.3.3 it sufficies to define the
relation

Q =
{(

(s0,Φ1), (t0,
∨

1≤i≤5
Φi)

)
,(

(s1,Φ2), (t1,Φ2 ∨Φ4)
)
,(

(s1,Φ1 ∨Φ3), (t0,Φ1 ∨Φ3 ∨Φ5)
)
,(

(s0,Φ1), (t0,Φ1 ∨Φ3 ∨Φ5)
)}

and all state pairs in Q satisfy the conditions of Lemma 4.3.3. Thus we have
shown that So ≤d

s Tu.

Finally, our abstraction also supports compositional reasoning about compo-
sition in the following sense:

Theorem 4.4.12
Let S and T be two composable MIODs. Let Φi ∈ S (V prov

S ),1 ≤ i ≤ N, Ψ j ∈
S (V prov

T ),1 ≤ j ≤ M, and Ωk ∈ S (V req
S⊗dT

), 1 ≤ k ≤ P be predicates partitioning
the respective set of data states. Assume that

• So and Su are over- and under-approximation of S w.r.t. (Φi)1≤i≤N and
(Ψ j ∧Ωk)1≤ j≤M,1≤k≤P , obtained according to Algorithms (A-O) and (A-U),
respectively,

• To and Tu are over- and under-approximation of T w.r.t. (Ψ j)1≤ j≤M and
(Φi ∧Ωk)1≤i≤N,1≤k≤P , obtained according to Algorithms (A-O) and (A-U),
respectively,

• (S ⊗d T)o and (S ⊗d T)u are over- and under-approximation of S ⊗d T w.r.t.
(Φi ∧Ψ j)1≤i≤N,1≤ j≤M and (Ωk)1≤k≤P , obtained according to Algorithms (A-
O) and (A-U), respectively.

Then it is satisfied:

1. (S ⊗d T)o ≤d
s So ⊗d To,

2. Su ⊗d Tu ≤d
s (S ⊗d T)u.
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Proof. We prove that (S ⊗d T)o ≤d
s So ⊗d To. For this to show, we define a relation

R = {(((s, t),Γ), ((s,ΓS), (t,ΓT)),δ) | δ�Γ and �∀ Γ⇒ΓS ∧ΓT}

and show that R is a refinement relation for the above refinement statement.
First, let us prove that for all δ0 ∈ D(V prov

S⊗dT
) such that δ0 � ϕ(S⊗dT)o we have

that
(((s, t),ϕ(S⊗dT)o), ((s,ϕSo), (t,ϕTo)),δ0) ∈ R.

We only have to show that �∀ ϕ(S⊗dT)o ⇒ ϕSo ∧ϕTo . Assume δS ·δT � ϕ(S⊗dT)o .
Then we must have Φi and Ψ j such that δS ·δT � Φi ∧Ψ j. By construction of
ϕ(S⊗dT)o it must hold that

�∃ ϕ0,S ∧ϕ0,T ∧Φi ∧Ψ j

which implies
�∃ ϕ0,S ∧Φi and �∃ ϕ0,T ∧Ψ j.

Thus
δS �ϕSo and δT �ϕTo

which is equivalent to
δS ·δT �ϕSo ∧ϕTo .

Second, consider a triple (((s, t),Γ), ((s,ΓS), (t,ΓT)),δS ·δT) ∈ R.

• Assume that ((s, t),Γ)
[ϕ]α[π]

((s′, t′),Γ′) in (S ⊗d T)o, and (δS · δT · ν,δ′S ·
δ′T) � ϕ∧π for some δ′S ∈ D(V prov

S ), δ′T ∈ D(V prov
T ) and ν ∈ D(V req

S⊗dT
). The

interesting case is when α ∈ Σext
S ∩Σext

T . By construction of (S ⊗d T)o, we
know that

ϕ= (Φi ∧Ψ j)∧Ωk and π= ∨
(i, j)∈K

((Φi)′∧ (Ψ j)′)

for some ; 6= K ⊆ {1, . . . , N}× {1, . . . , M} and

�∀ Γ∧ (Φi ∧Ψ j)∧Ωk ∧
 ∨

(ϕ,π)∈mayS⊗d T ((s,t),α,(s′,t′))
ϕ∧π

⇒ ∨
(i, j)∈K

((Φi)′∧ (Ψ j)′).

Then we get

�∃ ΓS ∧Φi ∧ (Ψ j ∧Ωk)∧
( ∨

(ϕ,π)∈mayS(s,α,s′)
ϕ∧π

)

and

�∃ ΓT ∧Ψ j ∧ (Φi ∧Ωk)∧
( ∨

(ϕ,π)∈mayT (t,α,t′)
ϕ∧π

)
.
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Thus, there exist

(s,ΓS)
[ϕS]α[πS]

(s′,
∨
i∈I
Φi) in So

and

(t,ΓT)
[ϕT ]α[πT ]

(t′,
∨
j∈J
Ψ j) in To

such that I and J are the minimal (and non-empty) sets such that
∨

i∈IΦi
and

∨
j∈JΨ j over-approximate the next possible data states. Finally, we

get that

(((s′, t′),
∨

(i, j)∈K
(Φi ∧Ψ j)), ((s,

∨
i∈I
Φi), (t,

∨
j∈J
Ψ j)),δ′S ·δ′T) ∈ R.

• Assume that

((s,
∨
i∈I
Φi), (t,

∨
j∈J
Ψ j))

[Φi∧Ψ j∧Ωk]α[
∨

i∈I′ (Φi)′∧∨
j∈J′ (Ψ j)′]

((s′,
∨
i∈I ′

Φi), (t′,
∨
j∈J′

Ψ j))

in So ⊗d To and δS ·δT ·ν �Φi ∧Ψ j ∧Ωk for some ν ∈D(V req
S⊗dT

). The inter-
esting case is again α ∈Σext

S ∩Σext
T . Then there exist transitions

(s,
∨
i∈I
Φi)

[Φi∧(Ψ j∧Ωk)]α[
∨

i∈I′ (Φi)′] (s′,
∨
i∈I ′

Φi)

and

(t,
∨
j∈J
Ψ j)

[Ψ j∧(Φi∧Ωk)]α[
∨

j∈J′ (Ψ j)′]
(t′,

∨
j∈J′

Ψ j).

Then we can infer that there exists

((s, t),
∨

(i, j)∈K
(Φi ∧Ψ j))

[Φi∧Ψ j∧Ωk]α[
∨

(i, j)∈K ′ ((Φi)′∧(Ψ j)′)]
((s′, t′),

∨
(i, j)∈K ′

(Φi ∧Ψ j))

in S ⊗d To. We still have to show that

�∀

( ∨
(i, j)∈K ′

(Φi ∧Ψ j)

)
⇒

( ∨
i∈I ′

Φi ∧
∨
j∈J′

Ψ j

)
.

But this follows from the rules of contructing over-approximations and the
rules of composition.

The other claim Su ⊗d Tu ≤d
s (S ⊗d T)u can be shown in a similar way.

This result allows reusing abstractions of individual components in a con-
tinued development and verification process. For instance, if we want to verify
S ⊗d T ≤d

s U then we can compute (or reuse) the less complex abstractions So

and To. Theorem 4.4.12 implies then that from So ⊗d To ≤d
s Uu we can infer

S ⊗d T ≤d
s (S ⊗d T)o ≤d

s So ⊗d To ≤d
s Uu ≤d

s U and hence S ⊗d T ≤d
s U .
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4.5 Denotational Semantics
In this section we propose a formal denotational semantics of implementations
of MIODs which assigns, to any implementation I ∈MIODi, its denotational se-
mantics dsem(I) given as implementation model of I. For the definition of imple-
mentation models we use input/output automata with data states (IODs) which
provide a suitable semantic formalization for the behaviour of components im-
plemented on the basis of concrete data states and control states determining
the current execution points of an implementation model. The state space of
an implementation model is given by the Cartesian product of the set StI of
control states and the set D(V prov

I ) of provided data states of I, i.e. any state
(i,δ) ∈St×D(V prov) of an implementation model is determined by a control state
i ∈ StI and a provided data state δ ∈ D(V prov

I ). The set of implementation labels
for the given extended action signature ΣI and state signature VI of I is defined
by the set L impl(ΣI ,VI) which consists of all expressions of the form

[ν]α(ρ)

where ν ∈ D(V req
I ) represents a visible data state of the environment which is a

guard for that transition, α ∈⋃
ΣI is the action, and ρ ∈D(par(α)) is a valuation

of the formal parameters of α. The guard ν expresses that the implementation
model will only execute the transition if the environment is in the data state de-
termined by ν. This will, of course, be crucial when we consider the composition
of implementation models later on. In a concrete program the guard may require
that the component performs in one atomic step a test on the visible data state of
the environment and, depending on the result, performs the action (or, if α ∈Σext

I ,
waits for a synchronization with a communication partner).

Definition 4.5.1 (Input/output automaton with data states (IOD))
An input/output automata with data states (IOD)

(St, i0,δ0,Σ,V , )

consists of a set of control states St, an initial control state i0, an initial data state
δ0 ∈ D(V prov), an extended action signature Σ, a state signature V = (V prov,V req)
such that V prov ∪V req =SV, and a transition relation

⊆ (St×D(V prov))×L impl(Σ,V )× (St×D(V prov)).

We use IODs as representatives of their isomorphism classes w.r.t. bijections
on states. The set of those isomorphism classes of all IODs is denoted by IOD.

Let us now discuss denotational semantics of implementations: To any imple-
mentation I ∈MIODiwe assign its denotational semantics dsem(I) ∈ IOD. The ini-
tial provided data state of the IOD dsem(I) is the unique data state that satisfies
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i0 i3

i1 i2

[x = 1∧ p = 1∧ c = 0]
coin(x)!
[m′ =m−1]

[p = 1∧ c = 1]
selectCoffee!

[m′ =m]

[true]
coffee?
[m′ =m]

[true]
publish!

[m′ =m+1]

I
[m= 4]

publish

coin(x)

selectCoffee

selectTea

coffee

tea

m p c

Figure 4.14: An implementation I ∈MIODi

the initial state predicate of I. The transition relation of dsem(I) is determined
by all transitions such that the involved data states satisfy the pre- and post-
condition of a transition in I. The denotational semantics of implementations is
formalized in the following definition.4

Definition 4.5.2 (Denotational semantics of implementations)
Let I = (StI , i0,ϕ0,I ,ΣI ,VI , I , I) ∈MIODi be an implementation with extended
action signature Σ = (Σin,Σout,Σint) and state signature V = (V prov,V req). The
denotational semantics of I is defined by

dsem(I), (StI , i0,δ0,ΣI ,VI , dsem(I))

where δ0 ∈D(V prov
I ) is the unique data state satisfying δ0 �ϕ0,I , and the transition

relation dsem(I) is defined by the following rule:
for all i, i′ ∈StI , δ,δ′ ∈D(V prov

I ), ν ∈D(V req
I ), α ∈ΣI , ρ ∈D(par(α)):

i
[ϕ]α[π]

I i′ (δ ·ν,δ′;ρ)�ϕ∧π
(i,δ)

[ν]α(ρ)
dsem(I) (i′,δ′)

4Definition 4.5.2 coincides with the implementation relation defined in [22] if only input ac-
tions are considered.
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(i0, [m 7→ 4]) (i3, [m 7→ 3]

(i1, [m 7→ 3]) (i2, [m 7→ 3]

[
[p 7→ 1, c 7→ 0]

]
coin([x 7→ 1])!

[
[p 7→ 1, c 7→ 1]

]
selectCoffee!

. . .

[
[p 7→ ∗,
c 7→ ∗]

]
coffee?

[
[p 7→ ∗, c 7→ ∗]

]
publish!

...

dsem(I)

publish

coin(x)

selectCoffee

selectTea

coffee

tea

m p c

Figure 4.15: The denotational semantics dsem(I) of I, given as an IOD

Example 4.5.3
Figure 4.14 shows a implementation I which is a strong modal refinement of R
(see Figure 4.1 in Section 4.1). The refinement can be easily verified by using
Lemma 4.3.3 and the relation

{(i0, s0), (i1, s0), (i2, s2), (i3, s3)}.

Figure 4.15 shows the denotational semantics dsem(I) of I. The transition la-
belled with [p 7→ ∗, c 7→ ∗] coffee? stands for the set of transitions with labels from
the set

{[p 7→ a, c 7→ b] coffee? | a,b ∈Z},

and similar for the other transition using ∗ in its label.
Let us consider, for instance, the state (i2, [m 7→ 3]) in dsem(I), and the transi-

tion in I

i2
[true]coffee?[m′=m]

I i3.

This must-transition is implemented in dsem(I) by the transitions labelled with
[p 7→ a, c 7→ b] coffee? for arbitrary a,b ∈ Z, so for any required data state ν ∈
D({p, c}) we have a transition labelled with [ν] coffee?. The postcondition m′ = m
requires that the next provided data state is [m 7→ 3].

Next we define a semantic composition operator for implementation models.
Given two IODs G1 and G2, we say that they are composable if their action
signatures and their state signatures are composable, respectively. If G1 and
G2 are composable, then their composition G1 ⊗d

dsem G2 synchronizes transitions
whose labels refer to shared actions: a transition with label [ν1]α(ρ)! of G1 with
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current data state δ1 is synchronized with a transition with label [ν2]α(ρ)? of G2
with current data state δ2 if5

• ν1 coincides with δ2 on all provided state variables of G2, i.e. ν1(x) = δ2(x)
for all x ∈V prov

2 ,

• ν2 coincides with δ1 on all provided state variables of G1, i.e. ν2(x) = δ1(x)
for all x ∈V prov

1 , and

• ν1 and ν2 concide on all state variables that are required in both G1 and
G2, i.e. ν1(x)= ν2(x) for all x ∈ (V req

1 \V prov
2 ).

If the above conditions are met, then both transitions labelled with [ν1]α(ρ)!
and [ν2]α(ρ)? are synchronized to a transition labelled by [ν]α(ρ) where ρ is the
unique required state variable such that ν(x) = ν1(x) = ν2(x) for all x ∈ (V req

1 \
V prov

2 ).
If the above conditions for synchronization are not met then no synchroniza-

tion happens and both transitions from G1 and G2 are dropped in the composi-
tion. As usual, all other transitions with non-shared actions are interleaved in
the composition.

Definition 4.5.4 (Synchronous composition)
Let G j = (St j, g0, j,δ0, j,Σ j,Vj, j) ∈ IOD, j ∈ {1,2} be two composable IODs. The
synchronous composition of G1 and G2 is defined by the IOD

G1 ⊗d
dsem G2,

(
St1 ×St2, (g0,1, g0,2), (δ0,1 ·δ0,2),Σ1 ⊗Σ2,V1 ⊗V2,

)
where the transition relation is defined by the following rules:

(g1,δ1)
[ν·δ2]α(ρ)

1 (g′
1,δ′1) α ∉Σext

2

((g1, g2),δ1 ·δ2)
[ν]α(ρ)

((g′
1, g2),δ′1 ·δ2)

(g2,δ2)
[ν·δ1]α(ρ)

2 (g′
2,δ′2) α ∉Σext

1

((g1, g2),δ1 ·δ2)
[ν]α(ρ)

((g1, g′
2),δ1 ·δ′2)

(g1,δ1)
[ν·δ2]α(ρ)

1 (g′
1,δ′1) (g2,δ2)

[ν·δ1]α(ρ)
2 (g′

2,δ′2)

((g1, g2),δ1 ·δ2)
[ν]α(ρ)

((g′
1, g′

2),δ′1 ·δ′2)

The next result shows that our semantical composition operator ⊗d
dsem pre-

serves the syntactical composition operator ⊗d on the level of MIODs.

5Note that by definition of IODs and composability of G1 and G2, we have V prov
i ∪V req

i = SV
for each i ∈ {1,2}, hence ν1 is defined for all state variables in V prov

2 , ν2 is defined for all state
variables in V prov

1 , and V req
1 \V prov

2 =V req
2 \V prov

1 .
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Theorem 4.5.5
Let I1, I2 ∈MIODi be two composable implementations. Then dsem(I1) and dsem(I2)
are composable and

dsem(I1)⊗d
dsem dsem(I2)= dsem(I1 ⊗d I2).

Proof. Let I1 = (St1, i0,1,δ0,1,Σ1,V1, 1, 1), I2 = (St2, i0,2,δ0,2,Σ2,V2, 2, 2), and
let V = (V prov,V req)=V1 ⊗V2.

Assume

((i1, i2),δ1 ·δ2)
[ν]α(ρ)

dsem(I1)⊗d
dsemdsem(I2) ((i′1, i′2),δ′1 ·δ′2).

Moreover, assume that α ∈ Σext
1 ∩Σext

2 ; the other cases are shown similarly. The
transition must come from a synchronization of

(i1,δ1)
[ν·δ2]α(ρ)

dsem(I1) (i′1,δ′1) and (i2,δ2)
[ν·δ1]α(ρ)

dsem(I2) (i′2,δ′2).

By the definition of the denotational semantics, we can infer that there exist
transitions

i1
[ϕ1]α[π1]

I1 i′1 and i2
[ϕ2]α[π2]

I2 i′2
such that (δ1 ·δ2 ·ν,δ′1 ·δ′2;ρ)�ϕ1 ∧ϕ2 ∧π1 ∧π2. Hence there exists a transition

(i1, i2)
[ϕ1∧ϕ2]α[π1∧π2]

I1⊗d I2
(i′1, i′2).

By the above satisfaction statements we can conclude that there is

((i1, i2),δ1 ·δ2)
[ν]α(ρ)

dsem(I1⊗d I2) ((i′1, i′2),δ′1 ·δ′2)

which was to be shown. In fact all steps can be reversed in the proof, hence the
desired equality of the transition relation is proven.

We conclude this part on denotational semantics of implementations of MIODs
by proposing a notion of strong environment correctness on the level of IODs that
correspond to strong environment correctness on the level of MIODs.

Definition 4.5.6 (Strong environment correctness)
Let G,H ∈ IOD be two composable IODs. H is a strongly correct environment for
G if for every reachable state ((g,h),δG ·δH) in G ⊗d

dsem H, for all α ∈Σout
G ∩Σin

H ,

whenever (g,δG)
[ν·δH ]α(ρ)!

G , then (h,δH)
[ν·δG ]α(ρ)?

H .

We show that strong environment correctness is preserved and reflected by
the denotational semantics.
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Theorem 4.5.7 (Preservation of strong environment correctness)
Let I, J ∈MIOD be two MIODs. Then I →d

s J if and only if dsem(J) is a strongly
correct environment for dsem(I).

Proof. We only show the direction from left to right, the other direction can be
shown by similar arguments. Let ((i, j),δI ·δJ) be a reachable state in

dsem(I)⊗d
dsem dsem(J).

Assume that there is

(i,δI)
[ν·δJ ]α(ρ)!

dsem(I),

then there exists

i
[ϕI ]α![πI ]

I

such that (δI ·δJ ·ν;ρ)�ϕI . Then, from I →d
s J it follows that there is

j
[ϕJ ]α?[πJ ]

J

such that (δI ·δJ ·ν;ρ)�ϕJ . This transition causes dsem(J) to have the transition

( j,δJ)
[ν·δI ]α(ρ)?

dsem(J)

which was to be shown.

4.6 The Specification Theory ThMIODweak

So far, we have only looked at modal refinement and environment correctness
for MIODs in their strong variant. In this section, we show how they can be
extended to weak notions considering transitions labelled with internal actions
as unobservable steps.

4.6.1 Weak Modal Refinement
Let us begin with proposing weak modal refinement for MIODs. In the case
of MIOs (see Section 3.4.1), for a must-transition in the abstract specification,
we have to simulate this must-transition in the concrete specification, however,
we are allowed to add before and after the relevant transition some internal
must-transitions. Obviously, those internal transitions are allowed to change the
control states. When we take into account data states, we have to require that
the internal must-transitions, that are introduced before and after a relevant
transition, are all enabled under the same required data state and do not change
the (visible) provided data state. This seems like an over-restriction, however, it
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is needed for compositionality reasons, see Example 4.6.4 below. For the may-
transitions the situation is simpler: internal may-transitions surrounding the
relevant transition just need to allow to stay in the same visible data state (under
the same required data state).

To formalize that a must-transition shall not change the provided data state
we introduce the notion of stability: a must-transition

s
[ϕ]α[π]

s′

of a MIOD S is (δ,ν)-stable for δ ∈ D(V prov) and ν ∈ D(V req) if there exists ρ ∈
D(par(α)) such that (δ ·ν;ρ) � ϕ, and for all δ′ ∈ D(V prov), (δ ·ν,δ′;ρ) � π implies
δ′ = δ. A may-transition

s
[ϕ]α[π]

s′

is (δ,ν)-stable if there exists ρ ∈D(par(α)) such that (δ ·ν,δ;ρ)�ϕ∧π.

Definition 4.6.1 (Weak modal refinement)
Let S,T ∈MIOD with the same sets of input and output actions and the same state
signature. S is a weak modal refinement of T, denoted S ≤d

w T, if � ϕ0,S ⇒ ϕ0,T
and if there exists a refinement relation R ⊆StS ×StT ×D(V prov) such that for all
δ0 ∈D(ϕ0,S), (s0, t0,δ0) ∈ R, and for all (s, t,δ) ∈ R:

1. (from concrete to abstract)

If

s
[ϕS]α[πS]

s′

and (δ·ν,δ′;ρ)�ϕS∧πS for some ν ∈D(V req), ρ ∈D(par(α)) and δ′ ∈D(V prov),
then there exists a (possibly empty) sequence of (δ,ν)-stable internal may-
transitions from t to some state t′ ∈StT , and then

(a) either α ∈Σint, δ= δ′ and (s′, t′,δ) ∈ R

(b) or there exists

t′
[ϕT ]α[πT ]

t′′

such that

i. (δ ·ν,δ′;ρ)�ϕT ∧πT ,
ii. there exist (δ′,ν)-stable internal may-transitions from t′′ to some

state t′′′ ∈StT such that (s′, t′′′,δ′) ∈ R.

2. (from abstract to concrete)

If

t
[ϕT ]α[πT ]

t′
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such that (δ ·ν;ρ) � ϕT for some ν ∈ D(V req) and ρ ∈ D(par(α)), then there
exists a (possibly empty) sequence of (δ,ν)-stable internal must-transitions
from s to some state s′ ∈StS. Then

(a) either α ∈Σint, (δ ·ν,δ;ρ)�πT and (s′, t′,δ) ∈ R

(b) or there exists

s′
[ϕS]α[πS]

s′′

such that

i. (δ ·ν;ρ)�ϕS,
ii. for all δ′ ∈ D(V prov), if (δ ·ν,δ′;ρ) � πS, then (δ ·ν,δ′;ρ) � πT , and

there exist (δ′,ν)-stable internal must-transitions from s′′ to some
state s′′′ ∈StS such that (s′′′, t′,δ′) ∈ R.

Lemma 4.6.2
Weak modal refinement ≤d

w is reflexive and transitive.

Proof. The proof is along the lines of the proof of Lemma 4.3.2.

Let us prove compositionality of weak modal refinement w.r.t. ⊗d.

Theorem 4.6.3 (Compositional refinement)
Let S,S′,T,T ′ ∈MIOD such that S and T are composable. If S′ ≤d

w S and T ′ ≤d
w T

then S′ and T ′ are composable and S′ ⊗d T ′ ≤d
w S ⊗d T.

Proof. It suffices to prove the case T ′ = T since composition is commutative. De-
finedness of S′ ⊗d T follows from S ⊗d T and S′ ≤d

w S since weak modal refine-
ment does not change external actions or state signatures. Let V = (V prov,V req)=
VS ⊗VT . To show S′ ⊗d T ≤d

w S ⊗d T we define a refinement relation R ⊆ (StS′ ×
StT)× (StS ×StT)×D(V prov) by

R = {(((s′, t), (s, t),δS ·δT) | (s′, s,δS) ∈ RS, t ∈StT ,δT ∈D(V prov
T )}

where RS witness S′ ≤d
s S. We show that R proves S′ ⊗d T ≤d

s S ⊗d T.
((s′, t), (s, t), (δ0,S′ ·δ0,T)) clearly holds for any δ0,S′ ∈ D(ϕ0,S′) and any δ0,T ∈

D(ϕ0,T), because �∀ ϕ0,S′ ⇒ϕ0,S. Let

((s′, t), (s, t), (δS ·δT)) ∈ R,

so we can assume that (s′, s,δS) ∈ RS. Let

(s, t)
[ϕ]α[π]

(ŝ, t̂) (1)
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be a must-transition in S ⊗d T. The only interesting case is when α is a shared
action of S and T, i.e. α ∈ Σext

S ∩Σext
T . Assume that there is ν ∈ D(V req), ρ ∈

D(par(α)) such that
(δS ·δT ·ν;ρ)�ϕ.

From (1) and the rules of composition it follows that there exist

s
[ϕS]α[πS]

ŝ and t
[ϕT ]α[πT ]

t̂

such that ϕ = ϕS ∧ϕT and π = πS ∧πT . From (s′, s,δS) ∈ RS we can conclude
that there exists a (possibly empty) sequence of (δS,ν ·δT)-stable internal must-
transitions from s′ to s′′, and

s′′
[ϕS′ ]α[πS′ ]

ŝ′′

such that for all δ′S ∈D(V prov
S ), if (δS ·δT ·ν,δ′S;ρ)�πS′ then (δS ·δT ·ν,δ′S;ρ)�πS,

and there exist (δ′S,ν·δT)-stable internal must-transitions from ŝ′′ to ŝ′′′ such that
(ŝ′′′, ŝ,δ′S) ∈ RS. It follows that there is a (possibly empty) sequence of (δS ·δT ,ν)-
stable internal transitions from (s′, t) to (s′′, t), and

(s′′, t)
[ϕS′∧ϕT ]α[πS′∧πT ]

(ŝ′′, t̂)

such that

• (δS ·δT ·ν;ρ)�ϕS′ ,

• for all δ′S ∈D(V prov
S ) and all δ′T ∈D(V prov

T ), if (δS ·δT ·ν,δ′S ·δ′T ;ρ) � πS′ ∧πT
then (δS ·δT ·ν,δ′S ·δ′T ;ρ)�πS∧πT , and there exist (δ′S ·δ′T ,ν)-stable internal
must-transitions from (ŝ′′, t̂) to (ŝ′′′, t̂) such that ((ŝ′′′, t̂), (ŝ, t̂),δ′S ·δ′T) ∈ R.

The other direction of weak modal refinement (condition (1) of Definition 4.6.1,
from concrete to abstract) is very similar to the proof above.

Example 4.6.4
The condition that all internal must-transitions that can be added before and
after a transition in S which simulates a corresponding must-transition in T is
indeed necessary. Let us consider a simple example. Let E be a MIOD with x as
required state variable consisting of the transition

e0
[x=1]α

E e1.

Let T be a MIOD with x as provided state variable, initial state predicate x = 0
and with the transition

t0
[x=0]β

T t1.
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Clearly, the composition E ⊗d T will never allow any α to happen. If we refine T
to a MIOD S with transitions

s0
[x=0]τ[x′=1]

S s1
[x=1]τ[x′=0]

S s2
[x=0]β

S s3

then the composition E ⊗d S would require α to happen which renders E ⊗d S not
to be a refinement of E ⊗d T.

4.6.2 Weak Environment Correctness
Finally, we propose weak environment correctness for MIODs. Similar to weak
environment correctness for MIOs in Section 3.4.2, Chapter 3, we can allow inter-
nal or non-shared output must-transitions before the relevant input transition.

Definition 4.6.5 (Weak environment correctness)
Let S,E ∈MIOD be composable. E is a weakly correct environment for S if for all
reachable states

((s, e),δS ·δE) in S ⊗d E,

for all α ∈Σout
S ∩Σin

E , whenever

s
[ϕS]α![πS]

S

such that (δS ·δE ·ν;ρ) � ϕS for some ν ∈ D(V req
S⊗dE

) and some ρ ∈ D(par(α)), then
there exist (δE,ν ·δS)-stable must-transitions with actions in Σint

E leading from e
to a state e′ in E such that

e
[ϕE]α?[πE]

E

and (δE ·δS ·ν;ρ)�ϕE.

Theorem 4.6.6 (Preservation of weak environment correctness)
If S →d

w E and S′ ≤d
w S and E′ ≤d

w E, then S′ →d
w E′.

Proof. This proof is similar to the case of preservation of →d
s by ≤d

s , see Theo-
rem 4.3.12. The only difference is that weak modal refinement can introduce
some stable must-transitions before the relevant input transition which do not
fail weak environment correctness to be satisfied, see Definition 4.6.5.

4.6.3 Definition of ThMIODweak

We arrive at another specification theory for MIODs with weak notions of refine-
ment and environment correctness.

Corollary 4.6.7
ThMIODweak , (MIOD,MIODi,≤d

w,⊗d,→d
w) is a specification theory.
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Proof. Compositionality of weak modal refinement is shown in Theorem 4.6.3,
preservation of weak environment correctness is shown in Theorem 4.6.6. Final-
ity of implementations can be proven as follows: for any I ∈MIODi and S ∈MIOD
such that S ≤d

w I demonstrated by a refinement relation R, the refinement rela-
tion R′, {(i, s) | (s, i) ∈ R} proves I ≤d

w S.

Again, the introduced specification theory ThMIODweak can be integrated into our
existing hierarchy, cf. Figure 4.9, as follows. Firstly, the identity function id :
MIOD→MIOD is an embedding of ThMIODstrong in ThMIODweak ; note that id is not a re-
flective embedding as weak modal refinement does not imply strong modal re-
finement, and similarly, weak environment correctness does not imply strong
environment correctness. Secondly, the same function f : MIO → MIOD from
Lemma 4.3.16, which maps every MIO to a MIOD with empty state signature
and trivial pre- and postconditions, is a reflective embedding of ThMIOweak in ThMIODweak .
The new modal specification theory ThMIODweak and both embeddings are shown in
Figure 4.16.

ThMIODweak ThMIOweak

ThMIODstrong ThMIOstrong

ThdMIOD
strong ThdMIO

strong

Figure 4.16: Modal specification theories for MIOs and MIODs

4.7 Discussion and Related Work
Related works to the specification of component behaviours on the basis of tran-
sition systems has been already summarized in Section 3.5; most of them in-
corporate a notion of data in their model, but lack the flexibility of modalities.
Here, we would like to summarize other related works with a focus on how the
specification of interaction and of the data flow are integrated.
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Several process algebras have been studied to integrate data. As a prominent
example, we mention µCRL [95] that uses ACP and integrates data defined by
equational abstract data types. µCRL allows process variables and actions with
parameters. LOTOS [110] is a combination of an process algebraic part, based
on CCS and CSP, and a data algebraic part, based on the algebraic data type
language ACT ONE [54]. More recently, CSP-CASL [160] has been proposed,
a combination of CSP and the algebraic specification language CASL. The inte-
gration of process algebra and data in the context of object-oriented systems is
followed by, e.g., CSP-OZ [85, 166], where classes are specified by Object-Z, and
the object-oriented system is specified by CSP. CSP-OZ is equipped with failures
and divergence semantics from CSP, and the integration of Object-Z and CSP
happens at the semantic level. Contrary to refinement, compatibility has not yet
been explicitly studied in CSP-OZ.

Other approaches like Circus [161, 177] or rCos [132] offer means to specify
interaction and data aspects, they do not support modalities expressing allowed
and required behaviour. Other related approaches are based on symbolic transi-
tion systems (STS) [80, 12] but STS are mainly focusing on model checking and
not on interface theories supporting the (top down) development of concurrent
systems by refinement. In particular, STS do not support loose data specifica-
tions in the sense of postconditions being arbitrary relations rather than func-
tions. STS are in fact similar to our implementations. Most closely related to the
concept of MIODs is the study of Mouelhi et al. [146] who consider an extension
of the theory of interface automata [62] to data states. However, their approach
does not take into account modal refinements, and they rely on a global set of
variables rather than provided and required variables. Sociable interfaces [58]
are another extension of interface automata which take into account data states
in a similar way, however, they do not consider modalities for transitions. Beside
the lack of modalities in all of the above works, observational refinement taking
into account loose data specifications has not been studied explicitly so far. Exist-
ing works on modal transition systems and their use as specification formalism
for component interfaces [124, 159, 158] do not consider explicit data states.

Predicate abstraction is a well-studied abstraction technique for verification
of large or even infinite state transition systems. Originally introduced by Graf
and Saïdi in [93], it has been used in the context of generalized model check-
ing [89] to derive modal transition systems as abstractions (more precisely, over-
approximations) of usual labelled transition systems. In [163], Shoham and
Grumberg use generalized Kripke modal transitions systems for monotonic ab-
straction-refinement for verifying CTL formulae. This work is in fact very close to
our approach since they employ hyper-must-transitions (similar to must-transi-
tions in disjunctive modal transition systems [127]), which also occur to some ex-
tent in our formalism due to the looseness of postconditions. Finally, we note that
the bisimilarity problem for infinite systems has been intensively studied, and
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several results show decidability for various subclasses, see [119] for an overview.

Publication history. Prior versions of extending input/output automata with
an alternating refinement relation (similar to refinement in interface automata)
which takes data into account has been published in [19]. MIODs have been
first presented in a more restricted formulation in [18] with a longer and revised
version in [22]. This chapter is mostly based on the recent work [25] in which
the notion of strong modal refinement and the predicate abstraction technique
are introduced.

4.8 Summary
MIODs extend of modal input/output automata by taking into account data spec-
ifications. Provided and required state variables for components allow for mod-
elling data-dependent communications increasing the modelling power consider-
ably. We have studied strong and weak modal refinement and strong and weak
environment correctness in the context of MIODs, and identified them as con-
servative extensions of the corresponding notions for MIOs, leading to reflective
embeddings of the specification theories for MIOs in the ones for MIODs. We
have also discussed how strong modal refinement for finite MIODs can be veri-
fied, and proposed a predicate abstraction technique for the verification of refine-
ment involving infinite variable domains. Finally, we have studied denotational
semantics of implementations of MIODs, by translating them into concrete in-
put/output automata with data states, and we have shown that the denotational
semantics is compositional and preserves environment correctness.



Chapter 5

K -Weighted Modal Input/Output
Automata

Nowadays, software systems are often subject of strict non-functional require-
ments, as they operate in restricted environments, like for instance in embedded
systems. Therefore, a suitable formalism for interface specifications of compo-
nents shall express not only functional but also non-functional properties. The
latter are quantifiable properties addressing aspects like resource consumption
(time, power, etc.), costs or probabilities. In order to adress both functional and
non-functional properties of reactive systems, we need new integrated specifi-
cation formalisms allowing to naturally express quantitative information which
can be effectively analyzed. In the literature, several automata-based formalisms
have been proposed, for instance, timed automata [5], weighted automata [74],
hybrid automata [104] or probabilistic automata [155].

We introduce the novel formalism of K -weighted modal input/output au-
tomata that extends modal input/output automata by transition weights from
an algebraic structure K = (K ,¹,⊕). K features a set of weights K , a weight
refinement relation ¹ ⊆ K×K and a synchronization operator ⊕ : K×K → K . The
algebraic structure K is general enough to represent quantitative aspects of the
model with ¹ describing how transition weights can be refined and with ⊕ de-
scribing the effect on transition weights during synchronization in composition.
The novel specification formalism maintains the desirable properties required
by any specification theory supporting compositional reasoning. Besides compo-
sitionality and an equivalence result of modal and thorough refinement, we pro-
vide a logical characterization of K -weighted modal input/output automata with
a Hennessy-Milner-Logic [100] as done for modal transition systems by Larsen
in [121].

Outline. We start in Section 5.1 by defining K -weighted modal input/output
automata by adding weights from a weight structure K to transition labels.
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We define modal synchronous composition for K -weighted MIOs in Section 5.2
and introduce a specification theory for strong modal refinement in Section 5.3.
Hennessy-Milner-Logic for K -weighted MIOs is proposed in Section 5.4 and it is
shown that it characterizes strong modal refinement. In Section 5.5 we introduce
weak modal refinement for K -weighted MIOs giving rise to another specification
theory. In Section 5.6, the envisaged hierarchy of modal specification theory
is completed by integrating K -WMIODs. Finally, we summarize some related
works in Section 5.7 and conclude this chapter in Section 5.8.

5.1 Definition
We shall now introduce the notion of K -weighted modal input/output automata
and some basic properties of the formalism. Before that we need to define the
notion of weight structures used during the system design and specification re-
finement.
Definition 5.1.1 (Weight structure)
A weight structure K = (K ,¹,⊕) consists of a nonempty (possibly infinite) set K
of weights, a partial order ¹ on K expressing weight refinement, and total func-
tion ⊕ : K ×K → K describing the resulting weight of synchronizing two weighted
transitions.

A weight k ∈ K is called an final weight if k′ ¹ k implies k ¹ k′ and hence k = k′

for all k′ ∈ K . In other words, final weights are all elements in K that cannot be
refined further by other weights. The set of all final weights of K is denoted by
K i.

We require any weight structure K = (K ,¹,⊕) to satisfy the following proper-
ties:

1. The synchronization operator ⊕ is commutative and associative.

2. The synchronization operator ⊕ is compositional: for all k,k′,`,`′ ∈ K , if
k′ ¹ k and `′ ¹ `, then k′⊕`′ ¹ k⊕`.

3. The synchronization operator ⊕ is closed under final weights: for all k,k′ ∈
K i, k⊕k′ ∈K i.

4. For any weight ` ∈ K there exists a final weight k ∈K i such that k ¹ `.

To each weight k ∈ K we associate the set JkK of all final weights below k by

JkK=
{

k′ ∈K i
∣∣∣ k′ ¹ k

}
.

Note that by condition (4.) in Definition 5.1.1 any weight k ∈ K can be refined to
a final weight, i.e. JkK 6= ; for every k ∈ K .

We can now define K -weighted modal input/output automata that combine
MIOs with weight structures.



5.1 Definition 105

Definition 5.1.2 (K -Weighted modal input/output automata)
A K -weighted modal input/output automaton (K -WMIO) is a tuple

(St, s0,Σ, , )

where St is a set of states with initial state s0 ∈ St, Σ is an action signature,
⊆St×(

⋃
Σ)×K×St is a may-transition relation, and ⊆ is a must-transition

relation. A K -WMIO (St, s0,Σ, , ) is an implementation if = and all
weights on the transitions are final weights.

A transition (s,α,k, s′) ∈ in a K -WMIO S is written

s
α,k

S s′.

Similar to MIOs in Chapter 3 we use K -WMIOs as representatives of their iso-
morphism classes w.r.t. bijections on states. The set of those isomorphism classes
is denoted by K -WMIO, the set of isomorphism classes of all implementations is
denoted by K -WMIOi.

As in the previous chapters, K -WMIOs are represented as graphs with the
convention that whenever two states are connected by both a must- and a may-
transition under the same action and the same weight, then we draw only the
must-transition.

Example 5.1.3
The most trivial instance of the weight structure is Ktriv = ({•},¹triv,⊕triv) where
¹triv= {(•,•)} and ⊕(•,•)= •. In this minimal weight structure, the single weight •
is also a final weight.

Example 5.1.4
Another more interesting weight structure is given by integer intervals with the
natural inclusion ordering as partial order:

Kintv = (Kintv,¹intv,⊕intv)

where
Kintv =

{
[x, y]

∣∣ x ∈Z, y ∈Z, x ≤ y
}

and [x′, y′]¹intv [x, y] if x ≤ x′ and y′ ≤ y. From the definition of weight refinement
¹intv it follows that final weights are singleton intervals:

K i
intv = { [x, x] | x ∈Z } .

The reader may consult Figure 5.1 for the illustration of the ordering ¹intv of
Kintv and Figure 5.2 for three examples of Kintv-weighted modal input/output
automata. Strong modal refinement ≤Kintv

s is introduced in the next section. Note
that the automaton I is an implementation while S and T are not. Lastly, there is
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· · · [-2,-2][-1,-1] [0,0] [1,1] [2,2] · · ·

· · · [-2,-1][-1,0] [0,1] [1,2] · · ·

· · · [-2,0] [-1,1] [0,2] · · ·
· · ·· · ·· · ·

Figure 5.1: The partial order ¹intv on integer intervals

i0

i1

α, [4,4]α, [2,2]

α

I

≤Kintv
s

s0

s1

α, [4,4]α, [2,3]

α

S

≤Kintv
s

t0

t1

α, [2,6]

α, [2,7]α, [1,3]

α

T

Figure 5.2: Strong modal refinement of Kintv-WMIOs

the weight composition operator ⊕intv for integer intervals. The definition of ⊕intv
depends on how we want to interpret the weights. If the weights on transitions
model, e.g., costs or energy consumption then the composition operator may be
defined as the sum of intervals:

[i1, j1]⊕intv [i2, j2], [i1 + i2, j1 + j2]

Other options for the interpretation of weights may be that intervals model, for
instance, (discrete) time intervals in which a transition can be executed. This
interpretation leads to taking the interval intersection as the weight composition
operator. We will stick to interpreting weights as energy consumption, thus ⊕intv
is assumed to be defined as above from now on. It is straightforward to check that
⊕intv is commutative, associative, compositional and closed under final weights.

We conclude this exemplifying instantiation by considering a more realistic
example. Figure 5.3 presents a simple electronic wiper control component for a
car, with a normal mode and an optional fast mode. Integer intervals express the
allowed energy consumption of each action (using abstract energy units).

Remark 5.1.5
Weight structures can be naturally combined by a product construction allowing
to form (by a general construction) new weight structures combining several as-
pects from existing ones.

If K1 = (K1,¹1,⊕1) and K2 = (K2,¹2,⊕2) are two weight structures, then the
product K1 ⊗K2 is the weight structure (K1 ×K2,¹,⊕) with ¹ and ⊕ defined as
follows, for all k1,k′

1 ∈ K1 and all k2,k′
2 ∈ K2:
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activ
ate?, [0,2]

deactiv
ate?,[0

,1]

wipe?, [2,4]

fast?, [0,1]
normal?,
[0,1]

wipeFast?, [4,8]

deactivate?, [0,1]

SWiper
activate

deactivate

wipe

wipeFast

normal

fast

Figure 5.3: Kintv-WMIO SWiper modeling a simple wiper control component of a
car

• (k′
1,k′

2)¹ (k1,k2) if and only if k′
1 ¹1 k1 and k′

2 ¹2 k2,

• (k1,k2)⊕ (k′
1,k′

2), (k1 ⊕1 k′
1,k2 ⊕2 k′

2).

It is easy to see that the product construction is well-defined, i.e. that ¹ is a par-
tial order, ⊕ is commutative, associative, compositional and closed under final
weights, and any weight can be refined by a final weight. Using the product con-
struction of weight structures, we can e.g. combine existing weight structures to
new (multi-)weight structures.

5.2 Modal Synchronous Composition

Two K -WMIOs can be synchronously composed by synchronizing transitions
with the same shared action. Regarding the weight of the resulting transition in
the composition we use the weight synchronization operator ⊕. Two transitions
for the action α, labelled with weight k ∈ K and ` ∈ K , result in a synchronized
transition labelled by action α and weight k⊕`.

Definition 5.2.1 (Modal synchronous composition)
Let S1,S2 ∈ K -WMIO be composable. The modal synchronous composition of S1
and S2 is defined as the K -WMIO

S1 ⊗K S2, (St1 ×St2, (s0,1, s0,2),Σ1 ⊗Σ2, , )
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where the transition relations and are defined by the following rules:

s1
α,k

1 s′1 α ∉Σext
2

(s1, s2)
α,k

(s′1, s2)

s1
α,k

1 s′1 α ∉Σext
2

(s1, s2)
α,k

(s′1, s2)

s2
α,k

2 s′2 α ∉Σext
1

(s1, s2)
α,k

(s1, s′2)

s2
α,k

2 s′2 α ∉Σext
1

(s1, s2)
α,k

(s1, s′2)

s1
α,k1

1 s′1 s2
α,k2

2 s′2 α ∈Σext
1 ∩Σext

2

(s1, s2)
α,k1⊕k2 (s′1, s′2)

s1
α,k1

1 s′1 s2
α,k2

2 s′2 α ∈Σext
1 ∩Σext

2

(s1, s2)
α,k1⊕k2 (s′1, s′2)

Clearly, modal synchronous composition is commutative and pseudo-associative.

5.3 The Specification Theories ThK -WMIO
strong

and ThdK -WMIO
strong

5.3.1 Strong Modal Refinement
We shall now define the notion of strong modal refinement that combines the
already known different simulation directions for may- and must-transitions
with the weight refinement given by the partial ordering on the weight struc-
ture. More precisely, a may-transition labelled with action α and weight k in the
concrete K -WMIO must be simulated by the abstract K -WMIO with a may-
transition labelled with action α and weight ` such that k ¹ `; a must-transition
labelled with action α and weight ` in the abstract K -WMIO must be simu-
lated by the concrete K -WMIO with a must-transition labelled with action α

and weight k such that k ¹ `.

Definition 5.3.1 (Strong modal refinement)
Let S,T ∈K -WMIO with the same action signature Σ. S is a strong modal refine-
ment of T, written S ≤K

s T, if there exists a refinement relation R ⊆ S ×T with
(s0, t0) ∈ R such that for all (s, t) ∈ R, α ∈⋃

Σ, k ∈ K :

1. for all s′ ∈ StS, k ∈ K , if s
α,k

S s′, then there exist t′ ∈ StT and ` ∈ K such

that t
α,`

T t′, k ¹ ` and (s′, t′) ∈ R,
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2. for all t′ ∈ StT , ` ∈ K , if t
α,`

T t′, then there exist s′ ∈ StS and k ∈ K such

that s
α,k

S s′, k ¹ ` and (s′, t′) ∈ R.

The implementation semantics of a K -WMIO S is defined by the class JSKKs
of all implementations refining S, i.e. JSKKs = {

I ∈K -WMIOi ∣∣ I ≤K
s S

}
.

Example 5.3.2
Strong modal refinement of K -WMIOs is illustrated in Figure 5.2 for the weight
structure Kintv. The refinement relation {(s0, t0), (s1, t0)} is witnessing the strong
modal refinement between S and T. Note that the refined specification S is not
an implementation yet as it contains the weight [2,3] which is not a final weight.
We can thus refine it further, ending up with an implementation I. Here, the
witnessing relation is {(i0, s0), (i1, s1)}.

It can be easily proven that modal refinement ≤K
s is a preorder. The proof

relies on the fact that weight refinement ¹ is a partial order.

Lemma 5.3.3
Every implementation I ∈ K -WMIOi is a final element with respect to strong
modal refinement.

Proof. Let I ∈K -WMIOi and assume another K -WMIO S ∈K -WMIO such that
S ≤K

s I, with refinement relation R. It is straightforward to prove that the re-
finement relation R−1 = {(i, s) | (s, i) ∈ R}.

The notion of strong modal refinement can be understood as refinement de-
fined at the syntactical level as it directly relates the states of two specifications.
A semantically motivated notion of refinement is thorough refinement, as already
explained in Chapter 2: S is a thorough refinement of T if every implementation
of S is also an implementation of T. A consequence of Theorem 2.1.2 in Chap-
ter 2 is that strong modal refinement implies thorough refinement. In general,
thorough refinement does not imply strong modal refinement. A counterexample,
using the weight structure Kintv is given in Figure 5.4. Clearly, the transition

s0
α,[0,1]

S s1

cannot be matched by any of the two transitions from t0 as [0,1] 6¹intv [0,0] and
[0,1] 6¹intv [1,1]. Hence S 6≤Kintv

s T. On the other hand, any implementation of S
is either empty or it is a tree of height one with the outgoing transitions labelled
by α and either [0,0] or [1,1]. All such implementations are also refinements of
T.

It is known that for classical modal transition systems thorough refinement
implies the modal one, under the assumption of determinism [32]; see also The-
orem 3.3.7. We can generalize this result to the set of K -weighted modal in-
put/output automata. Before we define when a K -WMIO is deterministic we
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s0 s1
α, [0,1]

S

α

6≤Kintv
s t0

t1

t2

α, [0,0]

α, [1,1]

T

α

Figure 5.4: Completeness of strong modal refinement does not hold in general:
JSKKs ⊆ JTKKs , but S 6≤Kintv

s T

first define when two weights k1,k2 are unifiable, that is, if there is another
label k which overlaps with k1 and k2 with respect to their sets of final weights.

Definition 5.3.4 (Unifiable weights)
Two weights k1,k2 ∈ K are called unifiable if there exists k ∈ K such that JkK∩
Jk1K 6= ; and JkK∩ Jk2K 6= ;.

Then, determinism expresses that for any two outgoing may-transitions from
the same state and labelled by the same action α, but with different weights k1
and k2, the weights k1 and k2 are not unifiable.

Definition 5.3.5 (Determinism)
Let K = (K ,¹,⊕) be a weight structure. A K -WMIO S is called deterministic if
for any state s ∈StS, any action α ∈⋃

ΣS and any two transitions

s
α,k1

S s′1 and s
α,k2

S s′2,

if k1 and k2 are unifiable, then k1 = k2 and s′1 = s′2.

The set of the isomorphism classes of deterministic K -WMIOs is denoted by
dK -WMIO, the set of isomorphism classes of all deterministic implementations
is denoted by dK -WMIOi.

Returning to Figure 5.4 we can realize that the system T is not deterministic
as there is a branching of the transitions with weights [0,0] and [1,1], while there
exists a weight [0,1] such that J[0,1]K∩ J[0,0]K 6= ; and J[0,1]K∩ J[1,1]K 6= ;.

A very natural assumption that has to be imposed on the weight structures
later on in order to show completeness of strong modal refinement, is complete-
ness of weight refinement: inclusion of sets of final weights implies weight re-
finement.

Definition 5.3.6 (Completeness of weight refinement)
Let K = (K ,¹,⊕) be a weight structure. Weight refinement ¹ is complete if for all
k,` ∈ K , JkK⊆ J`K implies k ¹ `.



5.3 The Specification Theories ThK -WMIO
strong and ThdK -WMIO

strong 111

Note that weight refinement is always sound by definition, i.e. k ¹ ` implies
JkK⊆ J`K by transitivity of weight refinement.

Under the assumption of (1) completeness of weight refinement, and (2) de-
terminism of the abstract K -WMIO, thorough refinement implies strong modal
refinement.

Theorem 5.3.7 (Relative completeness of strong modal refinement)
Let K = (K ,¹,⊕) be a weight structure for which weight refinement ¹ is complete.
Let S,T ∈ K -WMIO such that T is deterministic. Then JSKKs ⊆ JTKKs implies
S ≤K

s T.

Proof. In this proof, for a given K -WMIO S, we write (s,S) for S where the
initial state s0 is replaced by s ∈ S.

Assume that JSKKs ⊆ JTKKs . We define a relation R ⊆StS×StT as the smallest
relation satisfying:

1. (s0, t0) ∈ R,

2. if (s, t) ∈ R, s
α,k

s′, t
α,`

t′, and JkK∩ J`K 6= ; then (s′, t′) ∈ R.

First, we show a technical result (that we use later on) saying that any (s, t) ∈
R satisfies J(s,S)KKs ⊆ J(t,T)KKs . For (s0, t0) ∈ R, we have J(s0,S)KKs = JSKKs ⊆
JTKKs = J(t0,T)KKs from the assumption JSKKs ⊆ JTKKs . Now, let (s, t) ∈ R such
that J(s,S)K⊆ J(t,T)K and assume that there are

s
α,k

S s′ and t
α,`

T t′,

and JkK∩ J`K 6= ;. Let I ′ ∈ J(s′,S)KKs and let m ∈ JkK∩ J`K which exists by the
construction. Then there exists an implementation (i0, I) ∈ J(s,S)KKs such that

i0
α,m

i′

and (i′, I) ≤K
s I ′. From J(s,S)KKs ⊆ J(t,T)KKs it follows that I ∈ J(t,T)KKs . Then

there exists a transition

t
α,`′

t′′

such that (i′, I) ∈ J(t′′,T)KKs and m ∈ J`′K. Now, we have

t
α,`

t′ and t
α,`′

t′′

such that m ∈ J`K∩ J`′K, hence ` and `′ are unifiable. As T is deterministic it
follows that `= `′ and t′ = t′′, so (i′, I) ∈ J(t′,T)KKs . Finally, from (i′, I) ≤K

s I ′ and
Lemma 5.3.3 it follows that I ′ ≤K

s (i′, I), and hence I ′ ∈ J(t′,T)KKs .
Now we show that R is a relation witnessing S ≤K

s T. Clearly (s0, t0) ∈ R. Let
(s, t) ∈ R.
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1. Assume s
α,k

s′. Then, for each final weight m ∈ JkK, there exists an
implementation Im ∈ J(s,S)KKs such that

i0
α,m

i′.

We also know that Im ∈ J(t,T)KKs because J(s,S)KKs ⊆ J(t,T)KKs . Hence there
exists a transition

t
α,`m t′m

such that m ∈ J`mK. We have to show that, for all m ∈ JkK, the weights `m
are the same. Suppose that there are m1,m2 ∈ JkK and transitions

t
α,`m1 t′m1

and t
α,`m2 t′m2

such that m1 ∈ J`m1K and m2 ∈ J`m2K. Then, since m1 ∈ J`m1K∩JkK and m2 ∈
J`m2K∩ JkK and T is deterministic, it follows that `m1 = `m2 and t′m1

= t′m2
.

It follows that there is a unique transition

t
α,`

t′

such that m ∈ J`K for all final weights m ∈ JkK, this means JkK⊆ J`K which
implies k ¹ ` by completeness of weight refinement. Moreover, by the defi-
nition of R, we get (s′, t′) ∈ R.

2. Assume t
α,`

t′. Then, for each implementation I ∈ J(t,T)KKs we have that
there exists a transition

i0
α,m

i′

for some weight m ∈ J`K. We know that J(s,S)KKs ⊆ J(t,T)KKs , so every im-
plementation ( j0, J) ∈ J(s,S)KKs has a transition

j0
α,m

j′.

It follows that S must have a transition

s
α,k

s′

such that m ∈ JkK. Suppose that JkK 6⊆ J`K, then there would exist an imple-
mentation ( j̄0, J̄) ∈ J(s,S)KKs having

j̄0
α,n

j̄′
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with a final weight n ∈ JkK not belonging to J`K, which means that there
must exist another transition in T, say

t
α,`′

t′′

such that n ∈ J`′K. But then we have m ∈ J`K∩ JkK and n ∈ J`′K∩ JkK which
contradicts determinism of T. Thus, we have JkK⊆ J`K, which implies k ¹ `

by completeness of weight refinement. Moreover, by definition of R, we get
(s′, t′) ∈ R.

The desired property of the interplay between composition and refinement,
required for any specification theory, is compositional refinement. In other words,
strong modal refinement is a precongruence with respect to modal synchronous
composition. This is formalized in the following theorem.

Theorem 5.3.8 (Compositional refinement)
For any S,S′,T,T ′ ∈ K -WMIO, if S ⊗K T is defined and S′ ≤K

s S and T ′ ≤K
s T,

then S′ ⊗K T ′ is defined and S′ ⊗K T ′ ≤K
s S ⊗K T.

Proof. It suffices to prove the case T = T ′. Assume that RS is a relation showing
S′ ≤K

s S. We define a relation R ⊆ (StS′ ×StT)× (StS ×StT) by ((s′, t), (s, t)) ∈ R
if and only if (s′, s) ∈ RS and t ∈ StT . We show that R is a refinement relation
witnessing S′ ⊗K T ≤K

s S ⊗K T.
Obviously ((s′0, t0), (s0, t0)) ∈ R where s0, s′0, t0 are the initial states of S, S′, T,

respectively. Let ((s′, t), (s, t)) ∈ R. We only consider those transitions where a syn-
chronization happened during composition, the other cases are less complicated
and therefore omitted.

1. Assume (s′, t)
α,k′⊕`

S′⊗K T (ŝ′, t̂). By the rule of composition, we have

s′ α,k′
S′ ŝ′ and t

α,`
T t̂.

Then, from (s′, s) ∈ RS it follows that there exists

s
α,k

S ŝ

such that k′ ¹ k and (ŝ′, ŝ) ∈ RS. It follows that

• there exists a transition

(s, t)
α,k⊕`

S⊗K T (ŝ, t),

• k′⊕`¹ k⊕` by compositionality of the weight operator ⊕, and
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• ((ŝ′, t), (ŝ, t)) ∈ R.

2. Assume (s, t)
α,k⊕`

S⊗K T (ŝ, t̂). By the rule of composition, we have

s
α,k

S ŝ and t
α,`

T t̂.

Then, from (s′, s) ∈ RS it follows that there exists

s′ α,k′
S′ ŝ′

such that k′ ¹ k and (ŝ′, ŝ) ∈ RS. It follows that

• there exists a transition

(s′, t)
α,k′⊕`

S′⊗K T (ŝ′, t),

• k′⊕`¹ k⊕` by compositionality of the weight operator ⊕, and

• ((ŝ′, t), (ŝ, t)) ∈ R.

5.3.2 Definition of ThK -WMIO
strong and ThdK -WMIO

strong

The last ingredient for a specification theory for K -WMIOs is environment cor-
rectness which strongly depends on the interpretation of weights and which
property environment correctness should express. It should be clear that the
definition of environment correctness must be carefully designed such that it is
preserved by refinement. In our example we instantiate the weight structure to
integer intervals with componentwise addition of interval bounds as the synchro-
nization operator – an intepretation that is suitable if weights are considered
as resource consumption. In this setting an obvious definition of environment
correctness is to just ignore transition weights and resort to environment cor-
rectness of MIOs. Formally, for K -WMIOs S and E we can define S →K

s E by
S ↓→s E ↓ where S ↓ and E ↓ are MIOs that are obtained by removing any tran-
sition weights from S and E, respectively. However, we note that other more
involved definitions of environment correctness are possible but for this thesis
we stick to the above definition.1

1Environment correctness notions must be carefully chosen such that they are preserved by
refinement. For instance, if integer intervals are interpreted as time units after which the action
can be performed, then an obvious definition of S →K

s E is that whenever S issues an output with
transition weight k, then E must be ready to accept it with transition weight ` such that k ≤K

s `.
This would formalize the requirement that the environment E should be less restrictive than
S regarding the time units after which the action is performed. This environment correctness
notion would not be preserved by our refinement in which we are allowed to shrink intervals.
Hence, for this interpretation, other notions of refinement might be needed; this is out of the
scope of this thesis.
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Corollary 5.3.9
Let K = (K ,¹,⊕) be a weight structure. Then

ThK -WMIO
strong , (K -WMIO,K -WMIOi,≤K

s ,⊗K ,→K
s ) and

ThdK -WMIO
strong , (dK -WMIO,dK -WMIOi,≤K

s ,⊗K ,→K
s )

are specification theories.

Proof. Compositionality of refinement is shown in Theorem 5.3.8. Preservation
of environment correctness follows from the definition of →K

s and strong modal
refinement ≤K

s : if weights on transitions are not considered, →K
s and ≤K

s con-
cide with →s and ≤s, and the latter fulfil the requirement of preservation. Any
implementation in K -WMIOi is a final element with respect to strong modal
refinement, see Lemma 5.3.3. All results similarly hold for deterministic K -
WMIOs; in particular, note that modal synchronous composition of deterministic
K -WMIOs yields a deterministic K -WMIO.

In order to relate the introduced specification theories, we can define a reflec-
tive embedding of ThdK -WMIO

strong in ThK -WMIO
strong by the identity function. The proof is

straightforward and omitted.

Corollary 5.3.10
The identity function id : dK -WMIO → K -WMIO is a reflective embedding of
ThdK -WMIO

strong in ThK -WMIO
strong .

Finally, we integrate ThK -WMIO
strong and ThdK -WMIO

strong into our existing hierarchy
of modal specification theories. Clearly, ThMIOstrong can be related to ThK -WMIO

strong by
defining a function gk :MIO→K -WMIO as follows: For any MIO S, gk(S) is the
K -WMIO which results from labelling all transitions with a fixed final weight
k ∈ K i which is a neutral element for ⊕, i.e. k⊕` = ` for all ` ∈ K . Such a final
weight, which is in addition a neutral element for ⊕, is given, for instance, by
[0,0] in Kintv.

Corollary 5.3.11
The function gk as defined above, with a final weight k ∈ K which is a neutral
element for ⊕, is a reflective embedding

• of ThMIOstrong in ThK -WMIO
strong and

• of ThdMIO
strong in ThdK -WMIO

strong .

Proof. To prove the first reflective embedding, we have to check whether

gk(S⊗T)= gk(S)⊗K gk(T)
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for all S,T ∈ MIO. Let us prove the assertion for may-transitions, for must-
transitions the argument is analogous.

(s, t)
α,k

gk(S⊗T) (s′, t′) if and only if (s, t) α
S⊗T (s′, t′)

if and only if s α
S s′ and t α

T t′

if and only if s
α,k

gk(S) s′ and t
α,k

gk(T) t′

if and only if (s, t)
α,k⊕k

gk(S)⊗K gk(T) (s′, t′)

Since k is a neutral element for ⊕ we get that k⊕k = k. The other conditions can
be shown as well. The second reflective embedding similarly holds.

The new hierarchy with the above results integrated is shown in Figure 5.5.

ThMIODweak ThMIOweak

ThMIODstrong ThMIOstrong ThK -WMIO
strong

ThdMIOD
strong ThdMIO

strong ThdK -WMIO
strong

Figure 5.5: The updated hierarchy of modal specification theories

5.4 Logical Characterization of Strong Modal Re-
finement

It was shown in [121] that Hennessy-Milner logic [100] can be used as a logical
characterization for modal refinement of modal transition systems (the reader
may also consult [42]). In this section we shall extend this result to K -WMIOs
and study other related topics. For the rest of this section, we fix a weight struc-
ture K = (K ,¹,⊕).
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s0 s1
coin?,[1,2]

coffee!,[3,6]

tea!,[2,3]

S coin

coffee

tea

Figure 5.6: Simple vending machine with specification of energy consumption

Let us first introduce K -HML, an extension of Hennessy-Milner logic (HML)
that is interpreted over K -WMIOs, taking into account their weights. The syn-
tax of the logic is given by the abstract syntax

ϕ ::= true | false |ϕ1 ∧ϕ2 |ϕ1 ∨ϕ2 | 〈α,k〉ψ | [α,k]ψ

where k ∈ K is a label. We define the ∨-free fragment of K -HML as a set of
formulae in K -HML not containing the disjunction operator.

The formula 〈α,k〉ψ intuitively means that there exists a must-transition in
the current state labelled with α and a weight ` such that J`K ⊆ JkK and the
next state satisfies ψ. The formula [α,k]ψ expresses that for all may-transitions
labelled by α and a weight ` such that JkK∩J`K 6= ; (which means that there are
common final weights of k and `), the formula ψ must hold in the next state.
Formally, the satisfaction relation between a state s ∈ StS of a K -WMIO S and
a formula ϕ is defined inductively as follows.

s |= true
s 6|= false
s |=ϕ1 ∧ϕ2 iff S |=ϕ1 and S |=ϕ2
s |=ϕ1 ∨ϕ2 iff S |=ϕ1 or S |=ϕ2

s |= 〈α,k〉ϕ iff ∃(s
α,`

s′) : J`K⊆ JkK and s′ |=ϕ
s |= [α,k]ϕ iff ∀(s

α,`
s′) : if J`K∩ JkK 6= ; then s′ |=ϕ

We write S |=ϕ iff s0 |=ϕ where s0 is the initial state of S.

Example 5.4.1
Consider the Kintv-WMIO S of a vending machine given in Figure 5.6. After
inserting a coin which consumes between 1 and 10 energy units,

• a coffee must be possible to be dispensed with energy consumption between
4 and 5:

S |= [coin?, [1,10]]〈coffee!, [4,5]〉true
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• However, the possibility to dispense a tea consuming between 1 or 2 energy
units is not guaranteed:

S 6|= [coin?, [1,0]]〈tea!, [1,2]〉true

Observe that the must-transition labelled with tea!, [2,3] can be refined by a
must-transition labelled with tea!, [3,3].

We are now ready to prove the soundness and completeness theorems for our
logic. The following theorem ensures soundness of K -HML, i.e., if a formula
holds for a specification, then it holds for any of its refinements.

Theorem 5.4.2 (Soundness)
Let T ∈K -WMIO, and ϕ be a formula in K -HML. Then

T |=ϕ =⇒ ∀S ≤K
s T : S |=ϕ .

In the proofs in this chapter we frequently use the following notation. For a
given K -WMIO S and a state s ∈ S, we write (s,S) to mean S with the initial
state replaced by s.

Proof. We prove the claim by induction on the structure of ϕ. Assume that T |=ϕ
and S ≤K

s T. Let s0 and t0 be the initial states of S and T, respectively. The
induction basis, where ϕ= true and ϕ= false, is trivial.

ϕ=ϕ1 ∧ϕ2 . By the definition of |= and then from the induction hypothesis.

ϕ=ϕ1 ∨ϕ2 . As in the case above.

ϕ= 〈α,k〉ψ . From T |= 〈α,k〉ψ it follows that there exists

t0
α,`

t

such that J`K⊆ JkK and t |=ψ. Since S ≤K
s T there exists

s0
α,`′

s

such that `′ ¹ ` and (s,S) ≤K
s (t,T). By the induction hypothesis we get

s |=ψ. From transitivity of ¹ we have J`′K⊆ JkK and therefore S |= 〈α,k〉ψ.

ϕ= [α,k]ψ . Let s0
α,`

s such that JkK∩ J`K 6= ;. Since S ≤K
s T we know that

there exists

t0
α,`′

t

in T with ` ¹ `′ and (s,S) ≤K
s (t,T). Clearly, JkK∩ J`′K 6= ; and because

T |= [α,k]ψ we know that t |=ψ. By the induction hypothesis we get s |=ψ

and hence S |= [α,k]ψ.
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We shall now focus on the issue of completeness. We consider two possible
definitions:

1. Completeness with respect to implementations: if all implementations of a
specification S satisfy a formula of the logic, then so does S.

2. Completeness with respect to modal refinement: if all formulae satisfied
by some specification S are satisfied also by another specification T, then
S ≤K

s T.

The latter, completeness with respect to modal refinement, is also known as log-
ical characterization in the literature [121].

We first study the completeness with respect to implementations and observe
that K -HML-logic is not complete in this case. This observation can already be
made with the original HML for modal transition systems, and the reason for
incompleteness is the disjunction.
Theorem 5.4.3
The logic K -HML is incomplete with respect to implementations.

Proof. Let T be an Ktriv-WMIO consisting of a single transition t0
α,•

t, with
Ktriv being the weight structure from Example 5.1.3. Consider the formula
ϕ = 〈α,•〉true∨ [α,•]false. Since there is no must-transition from t0 and at the
same time there is a may transition, we get t0 6|= ϕ. On the other hand, any
implementation of T either contains no transition at all (and then it satisfies
[α,•]false) or it contains at least one outgoing transition (and then it satisfies
〈α,•〉true). Hence any implementation of T satisfies ϕ and we get the incom-
pleteness result with respect to implementations.

Inspecting the proof of the above theorem, one can notice that it is the disjunc-
tion that breaks the completeness property. In fact, we can show completeness if
we consider the ∨-free fragment of K -HML.

Theorem 5.4.4 (Relativized completeness w.r.t. J·KKs )
Let T ∈K -WMIO and let ϕ be a ∨-free formula in K -HML. Then

(∀I ∈ JTKKs : I |=ϕ) =⇒ T |=ϕ .

Proof. We prove the contraposition. We show that for any ∨-free formula ϕ

if T 6|=ϕ then there exists I ∈ JTKKs such that I 6|=ϕ .

The proof is by induction on the structure of the formula ϕ and under the as-
sumption that T 6|=ϕ we construct an implementation (i0, I) if T such that i0 6|=ϕ.
During the construction we will write that we add a transition i0

n (i′0, I ′) for an
implementation (i′0, I ′), meaning that together with this transition we implicitly
add also a disjoint copy of I ′ rooted at i′0 to the implementation I.

The induction basis, where ϕ= true and ϕ= false, is trivial.



120 5. K -Weighted Modal Input/Output Automata

ϕ=ϕ1 ∧ϕ2 . By the definition of |= either T 6|=ϕ1 or T 6|=ϕ2 Assume w.l.o.g. that
T 6|= ϕ1. By applying the induction hypothesis there is I ∈ JTKKs such that
I 6|=ϕ1 and we conclude that I 6|=ϕ1 ∧ϕ2.

ϕ= 〈α,k〉ψ . Assume that T 6|= 〈α,k〉ψ, which is the case if for all t0
α,`

t we
have either (1) J`K 6⊆ JkK or (2) (t,T) 6|=ψ. We construct an implementation
(i0, I) ∈ JTKKs as follows. For every

t0
α,`

t

such that (1) is satisfied, we add the transition

i0
α,n

(i′0, I ′)

into I where n ∈ J`Kr JkK and (i′0, I ′)≤K
s (t,T). For every

t0
α,`

t

such that (2) is satisfied, we have by induction hypothesis an implementa-
tion (i′0, I ′) ∈ J(t,T)KKs such that i′0 6|=ψ. We add

i0
α,m

(i′0, I ′)

to I for some m ∈ J`K. It is easy to see that I ≤K
s T, and moreover I 6|= 〈α,k〉ψ

by the construction.

ϕ= [α,k]ψ . Assume that T 6|= [α,k]ψ. Then there exists t0
α,`

t such that
J`K∩ JkK 6= ; and (t,T) 6|= ψ. By induction hypothesis there exists (i′0, I ′) ∈
J(t,T)KKs such that i′0 6|=ψ. Let (i0, I) ∈ JTKKs be some implementation of T
where we add the transition

i0
α,n

(i′0, I ′)

with n ∈ J`K∩JkK. Clearly, we still have I ≤K
s T and moreover the transition

i0
α,n

i′0

ensures that i0 6|= [α,k]ψ.

A similar completeness result in the setting of partial Kripke structures can
be found also in [6].

We now study completeness with respect to modal refinement, that is the
completeness definition considered in [121]. In this article, it was shown that for
classical modal transition systems HML is complete with respect to refinement.
We first observe that the result does not extend to K -HML and K -WMIOs.
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Theorem 5.4.5
K -HML is incomplete with respect to strong modal refinement.

Proof. Consider the systems S and T from Figure 5.4. By case analysis it is easy
to verify that s0 |= ϕ if and only if t0 |= ϕ for any K -HML-formula ϕ. However,
as argued before, S 6≤K

s T.

On the other hand, if we consider only deterministic systems, K -HML is
complete even with disjunction, as proved below. We let F (S)= {ϕ | S |=ϕ} denote
the set of all formulae in K -HML satisfied by S.

Theorem 5.4.6 (Relativized completeness of strong modal refinement)
Let S,T ∈K -WMIO be deterministic K -WMIOs (see Definition 5.3.5) and assume
that the weight refinement relation ¹ is complete. Then

F (T)⊆F (S) =⇒ S ≤K
s T .

Proof. Assume that F (T)⊆F (S). We define a relation R ⊆ S×T by

R = {(s, t) |F ((t,T))⊆F ((s,S))}.

We show that R is a relation witnessing S ≤K
s T. Clearly (s0, t0) ∈ R for the

respective initial states. Let (s, t) ∈ R.

• First, assume that s
α,k

s′. Clearly, t
α,`

t′ for some ` such that JkK∩
J`K 6= ;, otherwise the formula [α,k]false is satisfied in (t,T) but not in
(s,S), contradicting our assumption that F ((t,T))⊆F ((s,S)). By the deter-
minism of T there can only be one such ` with JkK∩ J`K 6= ;.

For the sake of contradiction assume that k 6¹ `. By completeness of weight
refinement we get JkK 6⊆ J`K. Thus, there exists some m ∈ JkKr J`K. The
formula [α,m]false holds in (t,T) due to the choice of m and the absence of
any other may transition having any common final weights with JkK, hence
in particular also with JmK = {m}. However, [α,m]false does not hold in
(s,S), contradicting the assumption that F ((t,T))⊆F ((s,S)). Thus, we can
assume the existence of

t
α,`

t′

with k ¹ `.

Now we need to argue that (s′, t′) ∈ R. Assume that this is not the case.
Then we have F ((t′,T)) 6⊆ F ((s′,S)), and therefore there is a formula ϕ′

such that (t′,T) |= ϕ′ and (s′,S) 6|= ϕ′. Consider the formula ϕ = [α,k]ϕ′.
Again (t,T) |=ϕ, but (s,S) 6|=ϕ. This contradicts the assumption that

F ((t,T))⊆F ((s,S)).

Thus (s′, t′) ∈ R.
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• Second, assume that t
α,`

t′. As in the previous item, there must be a
transition

s
α,k

s′

such that JkK⊆ J`K, otherwise the formula 〈α,`〉true is satisfied in (t,T) but
not in (s,S), contradicting the assumption that F ((t,T))⊆F ((s,S)). By the
determinism of S we know that

s
α,k

s′

is a unique transition such that JkK ⊆ J`K and due to the completeness of
weight refinement we know that k ¹ `.

It remains to argue that (s′, t′) ∈ R. Assume that this is not the case. The ar-
guments are similar to the previous case by considering the formula 〈α,`〉ϕ′

where t′ |=ϕ′ and s′ 6|=ϕ′. Thus (s′, t′) ∈ R and this completes the proof.

5.5 The Specification Theory ThK -WMIO
weak

5.5.1 Weak Modal Refinement
We finally propose a specification theory for K -WMIOs with weak modal refine-
ment and weak environment correctness. Weak modal refinement for K -WMIOs
is defined along the lines of weak modal refinement for MIOs, see Section 3.4.1 in
Chapter 3, however, weights can be refined and can – in contrast to strong modal
refinement for K -WMIOs – be distributed via ⊕ to several transitions. Intu-
itively, if weights model for instance energy consumption, then a must-transition

t
α,`

T t′

can be refined to a sequence

s1
τ,k1

S . . . sm
τ,km

S sm+1
α,km+1

S sm+2
τ,km+2

S . . . sn
τ,kn

S sn+1,

such that the accumulated resource consumption of this path is below the speci-
fied resource consumpion ` on the abstract level, i.e.

k1 ⊕ . . .⊕kn ¹ `.

Definition 5.5.1 (Weak modal refinement)
Let S,T ∈ K -WMIO with the same sets of input and output actions. S is a weak
modal refinement of T, written S ≤K

w T, if there exists a refinement relation R ⊆
StS ×StT with (s0, t0) ∈ R such that for all (s, t) ∈ R and all α ∈ (

⋃
ΣS)∪ (

⋃
ΣT):
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1. for all s′ ∈StS, for all k ∈ K such that s
α,k

S s′,

• if α ∈Σint
S then

– either k is neutral for ⊕ and (s′, t) ∈ R,
– or there exists t′ ∈StT such that

t
(τ,`1)...(τ,`n)

T t′,

k ¹ `1 ⊕ . . .⊕`n and (s′, t′) ∈ R;

• if α ∈Σext
S then there exists t′ ∈StT such that

t
(τ,`1)..(τ,`m)(α,`m+1),(τ,`m+2),...,(τ,`n)

T t′,

k ¹ `1 ⊕ . . .⊕`n and (s′, t′) ∈ R;

2. for all t′ ∈StT , for all ` ∈ K such that t
α,`

T t′,

• if α ∈Σint
T then

– either k is neutral for ⊕ and (s, t′) ∈ R,
– or there exists s′ ∈StS such that

s
(τ,k1)...(τ,kn)

S s′,

k1 ⊕ . . .⊕kn ¹ ` and (s′, t′) ∈ R;

• if α ∈Σext
T then there exists s′ ∈StS such that

s
(τ,k1)..(τ,km)(α,km+1),(τ,km+2),...,(τ,kn)

S s′,

k1 ⊕ . . .⊕kn ¹ ` and (s′, t′) ∈ R.

It is straightforward to show that weak modal refinement ≤K
w is reflexive and

transitive. Finality of implementations is shown in the following lemma.

Lemma 5.5.2
For any I ∈K -WMIOi and any S ∈K -WMIO, if S ≤K

w I then I ≤K
w S.

Proof. Let R be a refinement relation proving S ≤K
w I. Then it is straighforward

to prove that R−1 = { (i, s) | (s, i) ∈ R } is a refinement relation demonstrating I ≤K
w

S. Clearly, (i0, s0) ∈ R−1. Let (i, s) ∈ R−1. We only consider may-transitions,
must-transitions can be checked analogously. Assume that

s
α,`

S s′
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for some α ∈Σext
S and some ` ∈ K . Then this is also a may-transition, and (s, i) ∈ R

implies that there are transitions

i
(τ,k1)..(τ,km)(α,km+1),(τ,km+2),...,(τ,kn)

I i′

such that ` ¹ k1 ⊕ . . .⊕ kn and (s′, i′) ∈ R. Since ⊕ is closed under final weights,
k1 ⊕ . . .⊕ kn is a final weight and hence `= k1 ⊕ . . .⊕ kn. All may-transitions in I
are also must-transitions, and (i′, s′) ∈ R−1 by definition of R−1.

Theorem 5.5.3 (Compositional refinement)
Let S,S′,T,T ′ ∈K -WMIO. If S ⊗K T is defined and S′ ≤K

w S and T ′ ≤K
w T, then

S′ ⊗K T ′ is defined and S′ ⊗K T ′ ≤K
w S ⊗K T.

Proof. It suffices to prove the case T = T ′. Assume that RS is a relation showing
S′ ≤K

w S. We define a relation R ⊆ (StS′ ×StT)× (StS ×StT) by ((s′, t), (s, t)) ∈ R
if and only if (s′, s) ∈ RS. We show that R is a refinement relation witnessing
S′ ⊗K T ≤K

s S ⊗K T.
Obviously, ((s′0, t0), (s0, t0)) ∈ R where s0, s′0, t0 are the initial states of S, S′,

T, respectively. Let ((s′, t), (s, t)) ∈ R. We only check the may-transitions, i.e.
the direction from concrete to abstract; the proof for must-transitions is analo-
gous. Moreover, we only consider those may-transitions where a synchronization
happened during composition; all other cases are less complicated and therefore
omitted.

Assume (s′, t)
α,k′⊕`

S′⊗K T (ŝ′, t̂). By the rule of composition, we have

s′ α,k′
S′ ŝ′ and t

α,`
T t̂.

Then, from (s′, s) ∈ RS it follows that there exists

s
(τ,k1)...(τ,km)(α,km+1)(τ,km+2)...(τ,kn)

S ŝ

such that k′ ¹ k1 ⊕ . . .⊕kn and (ŝ′, ŝ) ∈ RS. It follows that

• there exist transitions

(s, t)
(τ,k1)...(τ,km)(α,km+1⊕`)(τ,km+2)...(τ,kn)

S⊗K T (ŝ, t),

• k′⊕`¹ k1 ⊕ . . .⊕kn ⊕` by compositionality of the weight operator ⊕, and

• ((ŝ′, t), (ŝ, t)) ∈ R.
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5.5.2 Definition of ThK -WMIO
weak

Weak modal refinement gives rise to a new specification theory for K -WMIO,
with weak modal refinement and weak environment correctness →K

w , defined by
S →K

w E if S ↓→w E ↓ for any S,E ∈K -WMIO.2

Corollary 5.5.4
ThK -WMIO

weak , (K -WMIO,K -WMIOi,≤K
w ,⊗K ,→K

w ) is a specification theory.

Proof. Compositionality of refinement is shown in Theorem 5.5.3. Preservation
of environment correctness follows from the preservation of →w by ≤w since tran-
sition weights are not considered in the definition of →K

w . Finality of implemen-
tations is shown in Lemma 5.5.2.

We conclude this section by relating the newly obtained specification theory
ThK -WMIO

weak to the other theories of the last chapters.

Lemma 5.5.5
The identity function id : K -WMIO→K -WMIO is an embedding of ThK -WMIO

strong in
ThK -WMIO

weak .

Proof. id is injective. Moreover, id is a morphism: Conditions (1) and (2), see
Definition 2.1.3 in Chapter 2, are trivial. For condition (3), the reader can easily
verify that S ≤K

s T implies S ≤K
w T. Condition (4) was already shown for the

embedding id of ThMIOstrong in ThMIOweak.

Second, we can reuse the function gk (for a final weight k ∈ K i which is a
neutral element for ⊕) of Section 5.3.2 to obtain a reflective embedding of ThMIOweak
in ThK -WMIO

weak as follows: given a MIO S, gk(S) is the K -WMIO which results
from S by adding k ∈K i to every transition.

Lemma 5.5.6
The function gk :MIO→ K -WMIO as defined above is a reflective embedding of
ThMIOweak in ThK -WMIO

weak .

Proof. gk is injective. Moreover, gk is a morphism from ThMIOweak to ThK -WMIO
weak , cf.

Definition 2.1.3:

1. Let S ∈MIOi. Then gk(S) ∈K -WMIOi because every may-transition is also
a must-transition and k with which each transition is annotated is a final
weight.

2Recall from Section 5.3.2 that S ↓ is the MIO obtained from S by omitting all transition
weights.



126 5. K -Weighted Modal Input/Output Automata

2. Let S,T ∈MIO. If S⊗T is defined, then gk(S)⊗K gk(T) is defined because
composability only depends on the action signatures. Moreover, gk(S ⊗
T) = gk(S) ⊗K gk(T) since the synchronization of transitions with weight
k result in a transition with weight k⊕k which is k because k is neutral.

3. Let S,T ∈MIO. Then S ≤w T implies gk(S) ≤K
w gk(T): if R is a refinement

relation for S ≤w T, then the same relation proves gk(S)≤K
w gk(T). Again,

it is crucial that k is neutral.

4. Weak environment correctness is trivially preserved by gk as →K
w does not

depend on the weights.

Second, we show that gk satisfies the conditions of a reflective embedding, cf.
Definition 2.1.5.

1. Let S ∈ MIO. If gk(S) ∈ K -WMIOi, then every may-transition is also a
must-transition, hence S ∈MIOi.

2. Let S,T ∈MIO. If gk(S)⊗K gk(T) is defined, then also S⊗T is defined and
gk(S⊗T)= gk(S)⊗K gk(T) because k is a neutral element for ⊕.

3. Let S,T ∈MIO. If gk(S) ≤K
w gk(T), then S ≤w T which is witnessed by the

same refinement relation that proves gk(S)≤K
w gk(T).

4. For S,T ∈MIO, S →w T trivially holds as soon as gk(S) →K
w gk(T) is satis-

fied because weights are not considered in →K
w .

The result that id is an embedding of ThK -WMIO
strong in ThK -WMIO

weak and gk is a
reflective embedding of ThMIOweak in ThK -WMIO

weak is integrated in Figure 5.7.

5.6 Completing the Hierarchy of Modal Specifi-
cation Theories

In this section, we complete our hierarchy of modal specification theories by in-
tegrating the data aspect addressed by MIODs and the quantitative aspect of
K -WMIODs into K -weighted MIOs with data constraints and by defining spec-
ification theories for K -WMIODs.

Definition 5.6.1 (K -WMIOD)
Let K = (K ,¹,⊕) be a weight structure. A K -weighted modal input/output au-
tomaton with data constraints (K -WMIOD)

S = (St, s0,ϕ0,Σ,V , , )
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ThMIODweak ThMIOweak ThK -WMIO
weak

ThMIODstrong ThMIOstrong ThK -WMIO
strong

ThdMIOD
strong ThdMIO

strong ThdK -WMIO
strong

Figure 5.7: The updated hierarchy of modal specification theories

consists of a set of control states St, an initial control state s0 ∈StS, an initial data
state predicate ϕ0 ∈S (V prov,;), an extended action signature Σ= (Σin,Σout,Σint),
a state signature V = (V prov,V req), and a may- and must-transition relation

, ⊆St×L (Σ,V )×K ×St.

All notions of well-formedness, implementations, modal synchronous compo-
sition, strong and weak modal refinement, and strong and weak environment
correctness can be integrated easily. As an example, we would like to make pre-
cise the integration of strong modal refinement ≤d

s of MIODs and strong modal
refinement ≤K

s K -WMIOs. To illustrate the integration, we basically take Defi-
nition 4.3.1 of strong modal refinement for MIODs and add the conditions for the
weights, highlighted by small framed boxes.

Definition 5.6.2 (Strong modal refinement for K -WMIODs)
Let S and T be two well-formed K -WMIODs with the same extended action and
state signature. Then S is a strong modal refinement of T if �∀ ϕ0,S ⇒ ϕ0,T and
there exists a refinement relation

R ⊆StS ×StT ×D(V prov)

such that (s0, t0,δ0) ∈ R for all δ0 ∈D(ϕ0,S), and for all (s, t,δ) ∈ R:

1. For all t′ ∈StT , [ϕT]α[πT] ∈L (Σ,V ), ` ∈ K , ν ∈D(V req) and ρ ∈D(par(α)),
if

t
[ϕT ]α[πT ] `

T t′ and (δ ·ν;ρ)�ϕT
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then there exist s′ ∈StS, [ϕS]α[πS] ∈L (Σ,V ), k ∈ K such that

s
[ϕS]α[πS] k

S s′ and (δ ·ν;ρ)�ϕS and k ¹ `

and for all δ′ ∈D(V prov),

if (δ ·ν,δ′;ρ)�πS then (δ ·ν,δ′;ρ)�πT and (s′, t′,δ′) ∈ R.

2. For all s′ ∈StS, [ϕS]α[πS] ∈L (Σ,V ), k ∈ K , ν ∈D(V req), ρ ∈D(par(α)) and
δ′ ∈D(V prov), if

s
[ϕS]α[πS] k

S s′ and (δ ·ν,δ′;ρ)�ϕS ∧πS

then there exist t′ ∈StT , [ϕT]α[πT] ∈L (Σ,V ), ` ∈ K such that

t
[ϕT ]α[πT ] `

T t′ and (δ ·ν,δ′;ρ)�ϕT ∧πT and k ¹ `

and (s′, t′,δ′) ∈ R.

In a similar way, all other notions can be integrated in a straightforward way. All
required properties for a specification theory, like compositionality of refinement
and preservation of environment correctness under refinement can be easily ver-
ified along the lines of the proofs for MIODs and K -WMIOs. To not overburden
the reader with repeating many similar proofs again and again, we omit the
details and directly state which modal specification theories can be obtained:

• ThdK -WMIOD
strong for deterministic K -WMIODs based on strong modal refine-

ment and strong environment correctness

• ThK -WMIOD
strong for K -WMIODs based on strong modal refinement and strong

environment correctness

• ThK -WMIOD
weak for K -WMIODs based on weak modal refinement and weak

environment correctness

These new specification theories can be integrated and related to the previous
specification theories as shown in Figure 5.8. The embedding of ThK -WMIOD

strong in
ThK -WMIOD

weak is shown by the identity function id : K -WMIOD→K -WMIOD. The
other new embeddings shown in Figure 5.8 are based on (the integration of) the
function f and gk that we have used previously (see Sections 4.3.3 and 5.5.2) to
relate the different specification theories for MIOs, MIODs and K -WMIOs.
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ThMIODweak ThMIOweak ThK -WMIO
weak

ThMIODstrong ThMIOstrong ThK -WMIO
strong

ThdMIOD
strong ThdMIO

strong ThdK -WMIO
strong

ThK -WMIOD
strong

ThdK -WMIOD
strong

ThK -WMIOD
weak

Figure 5.8: The final hierarchy of modal specification theories

5.7 Discussion and Related Work
The idea of modelling quantitative aspects in transition systems by adding weights
to transitions is well studied, see e.g. [14] for an overview. In the context of in-
terface theories for component-based design, interface specifications including
quantitative aspects other than time has been investigated only in a few works.
Probably the most relevant related work is about resource interfaces [52] that
extend well-known state-based interfaces by a resource algebra. In contrast to
our work here, a resource label is assigned to states rather than to transitions.
Resource labels in states allow for modelling, e.g., the amount of power that is
consumed while the system resides in a particular state. A resource algebra,
amongst others, also defines a composition operator on resource labels, hence
in this sense they are equally abstract as in our approach. It is shown that re-
source interfaces can be instantiated to model interesting quantitative problems.
Refinement and logical characterization are not studied.

Extending modal transition systems by weights is inspired by Juhl et al. [114].
They define (interval) weighted modal transition systems, which coincide with
our instantiation of Kintv-WMIOs except that they do not distinguish between
input, output and internal actions. They study (strong) modal refinement, that
coincides with our refinement notion ≤Kintv

s , and prove that it is complete w.r.t.
the derived notion of thorough refinement – a result that follows also from our
Theorem 5.3.7 for the weight structure Kintv. In the second part of the paper an
algorithm is presented for computing largest common refinements of weighted
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modal transitions systems (also known as “conjunction” of specifications, see Sec-
tion 7.1 in Chapter 7). Finally, weighted CTL is suggested and strong modal
refinement logically characterized.

Publication history. This chapter is based on [23] which is slightly more gen-
eral than this thesis chapter. In [23] we introduced label-structured modal tran-
sition systems that extend pure modal transition systems and abstract away
from actions by labelling transitions just with a weight from a fixed weight struc-
ture (in [23] weight structures are called label-sets). It is shown that MIOs can
be obtained by instantiating the weight structure to actions. Moreover, in [23] we
have studied conjunction and quotient of label-structured modal transition sys-
tems, and proposed a determinization algorithm yielding the least deterministic
over-approximation with respect to strong modal refinement.

5.8 Summary
This chapter presents K -weighted modal input/output automata (K -WMIOs)
that extend modal input/output automata by transitions weight from a weight
structure K . The weight structure K = (K ,¹,⊕) features weight refinement ¹
and a weight synchronization operator ⊕ that is general enough to model, for
instance, energy consumption. Modal synchronous composition and modal re-
finement for MIOs can be conservatively extended to K -WMIOs giving rise to a
specification theory. We have proven strong modal refinement to be equivalent
to inclusion of implementation semantics, (as expected) by assuming determin-
ism. We have suggested an extension of Hennessy-Milner logic to K -WMIOs and
have shown the interplay between the logic and the refinement theory in a sim-
ilar way as known from the classical theory of labelled transition systems and
bisimulation. We have proposed a specification theory for K -WMIO based on
weak modal refinement that allows to distribute weights over several transitions
in a refined specification. Most of the proof techniques have been straightforward
generalizations of the techniques developed for MIOs in Chapter 3. Finally, we
have completed our hierarchy of modal specification theories by defining modal
specification theories for K -WMIODs, that integrate data and quantitative as-
pects, and integrating them into the hierarchy by suitable embeddings.



Chapter 6

Quantitative Modal Refinement

Modern reactive systems, in particular embedded systems, often operate in phys-
ically constrained and unpredictable environments. This fact causes additional
challenges in the design and verification of such systems when compared to
classical system design. Therefore, the design of embedded systems calls for
new heterogeneous models that appropriately address functional as well as non-
functional properties [106]. Quantitative constraints must be naturally express-
ible in the models and still allow for an effective analysis of quantitative proper-
ties of interest.

Traditional verification frameworks are based on a discrete interpretation of
property satisfaction, returning either true or false as the answer to a verifica-
tion problem. With regards to functional properties, like the temporal ordering
of emitted and received signals, a Boolean answer is sufficient. However, non-
functional properties will naturally be approximations of real-world implemen-
tations, and small inaccuracies of an implementation with respect to its speci-
fication might turn the verification answer from true to false. This observation
leads us to the need for a framework in which answers to quantitative verifi-
cation problems are of quantitative nature as well. The aim is to be able to
achieve robustness of the satisfaction relation and to differentiate between im-
plementations that almost – as opposed to not at all – satisfy its (quantitative)
specification.

In the literature, several frameworks for quantitative analysis for reactive
systems have been proposed, mainly by de Alfaro et al. [66, 64, 59, 60]. The key
idea in these works is – and which we follow here, too – that relating an abstract
behaviour and a refined one yields a value between 0, for “perfect refinement”,
and ∞ meaning “no refinement at all”. This value is called the refinement dis-
tance from the concrete to the abstract behaviour.

The contribution of this chapter is the first formal foundation for quantitative
specification theories based on K -WMIOs which allow for quantitative analysis
during the refinement and implementation process, thus alleviating the prob-
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lems of the qualitative setting. Although the quantitative study can be carried
out on the abstract level of generic weight structures we stick here to the con-
crete weight structure Kintv of integer intervals introduced in Example 5.1.4,
Chapter 5.

Similarly, there is a wide range of concrete refinement distances that one can
choose – this choice typically depends on the application domain of the quan-
titative constraints. In the literature, one finds point-wise distance [59] mea-
suring the largest individual difference between specifications, accumulated dis-
tance [173] measuring the sum of individual differences along executions of the
specifications, and maximum-lead distance [105] measuring the largest distance
between accumulated differences along executions. For an overview of various
simulation distances that exist in the literature we refer the reader to [172, 51].

In this thesis, we stick to the accumulated refinement distance [173]. This
distance is defined as the fix point of recursive equations, and to ensure conver-
gence with limits different to infinity in more cases we use a discounting factor
which renders differences at later points in executions converge to zero. We fi-
nally remark that the following considerations in this chapter could have been
carried out on an abstract level of distances leaving open the concrete distance
to use [16].

The main result of this chapter is the demonstration how strong modal refine-
ment for Kintv-WMIOs can be generalized to modal refinement distances. Most
importantly, we show that compositionality of strong modal refinement can be
lifted to a similar result for modal refinement distances.

Motivation. Let us start with a motivating example illustrating the idea of
modal refinement distances. First, consider the MIO shown in Figure 6.1 which
models the requirements of a simple email system in which emails are first re-
ceived and then delivered. Before delivering the email, the system may check or
process the email, e.g. for en- or decryption, filtering of spam emails, or generat-
ing automatic answers using an auto-reply feature.1 Any implementation of this
email system must be able to receive and deliver emails, and it may also be able
to check arriving emails before delivering it.

Let us add some quantitative information to the specification, resulting in
a Kintv-WMIO, see Figure 6.2. Every transition label is extended by integer
intervals modeling upper and lower bounds of resource units (which could model
either energy units, memory or some other costs) required for performing the
corresponding actions. For instance, the reception of a new email (receive?) must
take between one and three resource units, the checking of the email (check) is
allowed to take up to five resource units.

In this quantitative setting, there is a problem with using strong modal re-

1The example is inspired by [97].
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receive?

deliver!

check

deliver!

receive deliver

check

S

Figure 6.1: A simple email system specified by S ∈MIO

receive?, [1,3]

deliver!, [1,4]

check, [0,5]

deliver!, [1,4]

receive deliver

check

S∗

Figure 6.2: A simple email system specified by S∗ ∈K -WMIO

finement for K -WMIOs as introduced in Section 5.3.1: If one can only decide
whether or not an implementation refines a specification, then the quantitative
aspects are not adquately taken into account in the refinement process. As an
example, consider the email system implementations in Figure 6.3. Implemen-
tation I1 does not refine the specification S∗, as there is an error in the discrete
structure of actions: after receiving an email, the system can perform one or
more checks, however, S∗ only permits a single check. Implementations I2 and
I3 neither refine S∗: in I2 the action receive? consumes one resource unit too
much and in I3 the action deliver! after performing a check also consumes one
resource unit too much. Implementation I4 on the other hand is a strong modal
refinement of S∗, i.e. I4 ≤Kintv

s S∗.
From an intuitive point of view, however, implementations I2 and I3 conform

much better to the specification S∗ than implementation I1: there are no dis-
crepancies in the discrete structure, only the weights differ by one. Additionally,
observe that the quantitative error in implementation I3 occurs later than the
one in I2. Hence one may want to say that implementation I4 is a perfect re-
finement of the specification S∗, I3 is almost a (perfect) refinement of S∗, I2 is
a bit more problematic than I3 because the difference occurs earlier, whereas
implementation I1 is completely unacceptable as a refinement of S∗. A refine-
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receive?, [2,2]

deliver!, [3,3]

check, [1,1]
receive deliver

check

I1

receive?, [4,4]

deliver!, [3,3]

receive deliver

check

I2

receive?, [3,3]

deliver!, [3,3]

check, [1,1]

deliver!, [5,5]

receive deliver

check

I3

receive?, [2,2]

deliver!, [3,3]

receive deliver

check

I4

Figure 6.3: Four implementations of the simple email system
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ment notion being based on a relation does not allow to make such distinctions
between different negative answers. Therefore, we propose a modal refinement
distance dm that allows to measure how “well” an implementation I satisfies its
specification S, with

• dm(I,S)= 0 if and only if I ≤Kintv
s S, and

• dm(I,S)> 0,<∞ if and only if I ↓≤s S ↓, but I 6≤Kintv
s S,2

• dm(I,S) = ∞ if and only if there is an error in the discrete structure, i.e.
I ↓6≤s S ↓ and I 6≤Kintv

s S.

Our goal is to show that in the example the following relationships between the
individual refinement distances hold:

∞= dm(I1,S)> dm(I2,S)> dm(I3,S)> dm(I4,S)= 0

To sum up, a refinement notion based on a relation is not flexible enough for
quantitative formalisms, as minor and major discrepancies in the refinements
cannot be distinguished. As also observed by Alfaro et al. in [60] we need quan-
titative notions to measure how well a refinement is satisfied. The introduction
of such a quantitative notion of refinement, and its consequences for the spec-
ification theory, in particular how strong modal refinement and the property of
compositionality are affected, are the subject of this chapter.

Depending on the precise application of our quantitative formalism, there are
a two choices which one has to make: The first choice concerns the underlying
weight structure K . The second choice is the precise definition of quantita-
tive refinement as the way quantitative discrepancies between specifications are
measured which depends on whether differences accumulate over time or the in-
terest more lies in the maximal individual differences. In this chapter we stick to
the weight structure Kintv of integer intervals, and regarding the second choice
we decide for accumulated refinement distances [173]; a more general treatment
leaving both weight structure and treatment of quantitative discrepancies ab-
stract can be found in [16].

Outline. In Section 6.1 we introduce modal refinement distances; in particu-
lar, we discuss the relationship of a syntactical definition of modal refinement
distance and a thorough one, and prove their equivalence if the abstract spec-
ification is strongly deterministic. Section 6.2 shows how to lift compositional
refinement to a similar result for modal refinement distances. Finally, we men-
tion related works in 6.3 and summarize this chapter in Section 6.4.

2Recall that the MIOs I ↓ and S ↓ are obtained by removing any transition weights.
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6.1 Modal Refinement Distances
Throughout this chapter we use Kintv-WMIOs. Recall that

Kintv = (Kintv,¹intv,⊕intv)

is the weight structure for integer intervals, with inclusion as weight refinement
¹intv and integer addition as synchronization operator ⊕intv. We also assume
in this chapter finite Kintv-WMIOs, i.e. the set of states and the may-transition
relation (and hence the must-transition relation as well) are finite sets.

When given an implementation I and a specification S, both enhanced with
quantitative information from Kintv, we would like to be able to reason not only
whether I correctly implements S, but also to what extent. Therefore we intro-
duce a notion of modal refinement distance between Kintv-WMIOs.

First we define the distance on weights by

dKintv([x1, y1], [x2, y2])=max(x2 − x1, y1 − y2,0).

The distance dKintv measures the largest difference of lower and upper bounds
that render the inclusion of the intervals not to hold, e.g. dKintv([2,3], [1,5]) = 2.
Note that dKintv is asymmetric, and that dKintv(k,`)= 0 if and only if k ¹intv `.

Similar to [59, 60], the modal refinement distance is defined by the unique
solution to recursive equations. To ensure convergence of the modal refinement
distance from S to T whenever S ↓≤s T ↓, we use a discounting factor that ren-
ders differences at later points in executions converge to zero. More precisely,
if λ ∈ R is a discounting factor with 0 < λ < 1, then the difference in quantita-
tive constraints which occur n steps in the future are discounted by the factor
λn. This is akin to discounted games [180] where one reasons on behaviours in
a discounted manner, giving more importance to differences that happen in the
near future, while accumulating the amount by which the specifications devi-
ate at each step. In the rest of the chapter, let λ ∈ R with 0 < λ < 1 be a fixed
discounting factor.

The recursive equations in Definition 6.1.1 below are motivated by viewing
strong modal refinement for Kintv-WMIOs as a two-player-game [32], very sim-
ilar to the standard bisimulation games used as a characterization of bisimilar-
ity [168]. In each round of such a modal refinement game for S ≤Kintv

s T with
S,T ∈ Kintv-WMIO the players proceed in a state (s, t) with s ∈ StS, t ∈ StT as
follows:

1. The attacker chooses either (1.a) a transition s
α,k

S s′ or (1.b) a transition

t
α,`

T t′.

2. The defender responds by choosing a transition under the same action α,
either
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• in case (1.a) a transition t
α,`

T t′ or

• in case (1.b) a transition s
α,k

S s′,

in both cases it must hold k ¹intv `.

3. The next state becomes (s′, t′) and the game continues with a new round.

A play then corresponds to a sequence of state pairs formed according to the
above rule. A play is finite if one of the players gets stuck by not being able
to select a transition. The player who gets stuck looses the play and the other
player is the winner. If the play is infinite then the defender is the winner. One
can show, cf. [32] for the analogous result for modal transition systems, that a
strong modal refinement S ≤Kintv

s T for Kintv-WMIOs S and T is equivalent to
the existence of a winning strategy for the defender in the game starting in the
initial state (s0, t0).

Let us now extend modal refinement games for Kintv-WMIOs to take into ac-
count the accumulated differences of integer intervals according to dKintv . The
rules for each round are as above, however, we are not interested in winning
strategies anymore but minimizing/maximizing the payoff of the game. The pay-
off ν of the game is defined by the accumulated discounted differences of weights
of the selected transitions during the play induced by strategies of players such
that the attacker is maximizing ν and the defender is minimizing ν. If the at-
tacker gets stuck in a play then the payoff ν is the current value, if the defender
gets stuck in a play then the payoff ν is ∞. Note that an easy consequence of
the definition of the payoff is that if there is a strategy of the attacker to make
the defender unable to respond then the payoff is ∞. The payoff is named modal
refinement distance and formally defined as follows.

Definition 6.1.1 (Modal refinement distance)
Let S = (StS, s0,Σ, S, S) and T = (StT , t0,Σ, T , T) be two finite Kintv-WMIOs.
Let ¿ be the partial order on the function space { f | f : StS ×StT →R≥0 ∪ {∞} } de-
fined by f ¿ f ′ iff f (s′, t′)≤ f ′(s′, t′) for all s′ ∈StS and all t′ ∈StT .

The modal refinement distance dm : StS×StT →R≥0∪{∞} from the state s ∈StS
to the state t ∈ StT is the unique least fixed point, according the partial order ¿,
of the recursive equation

dm(s, t)=max


max

s
α,k

S s′

min

t
α,`

T t′

dKintv(k,`)+λdm(s′, t′),

max

t
α,`

T t′

min

s
α,k

S s′

dKintv(k,`)+λdm(s′, t′).

The distance from S to T is defined by dm(S,T), dm(s0, t0). We write S ≤ε
s T if

dm(S1,S2)≤ ε.
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Note that max; , 0 and min; ,∞. To justify the definition of dm(s, t), we
need to show that the recursive equations in the definition above indeed have a
unique least fixed point.

Lemma 6.1.2
The recursive equation in Definition 6.1.1 has a unique least fixed point according
to the partial ordering ¿.

Proof. The proof is an adaptation of Lemma 3 in [122]. We first assume that
S and T are non-blocking such that in every state there is a must-transition
enabled for each action. Then we know for sure that the distance is in R≥0. Now,
the idea is to use the Banach fixed point theorem [3]:

If (X ,d) is a complete metric space, and F : X → X defines a contrac-
tion, i.e. there exists a constant c ∈ (0,1) such that

d(F(x),F(y))≤ c ·d(x, y) for all x, y ∈ X ,

then F has a unique fixed point.

Let us define the complete metric space (X ,d) and the function F such that we
can apply the Banach fixed point theorem. Since we only consider finite Kintv-
WMIOs we can assume that S and T have p and q states, respectively. The set
R

p×q
≥0 of (p× q)-matrices with entries in R≥0 is a complete metric space with the

metric
ρ(M, N), max

1≤i≤p,1≤ j≤q
|Mi, j −Ni, j|

where Mi, j and Ni, j denote the (i, j)-th entry of the matrix M and N, respectively.
Define F :Rp×q

≥0 →R
p×q
≥0 by

F(M)i, j =max


max

s
α,k

S s′

min

t
α,`

T t′

dKintv(k,`)+λ ·Mk,`,

max

t
α,`

T t′

min

s
α,k

S s′

dKintv(k,`)+λ ·Mk,`.

Following [122] we partition R
p×q
≥0 into finitely many closed polyhedral regions

such that for two matrices M and N in a same region the recursive equation get
resolved to the same transitions, i.e. there are mappings

e, f : {1, . . . , p}× {1, . . . , q}→ Kintv, g : {1, . . . , p}× {1, . . . , q}→ {1, . . . , p}× {1, . . . , q}

such that
F(M)i, j = dKintv(e(i, j), f (i, j))+λ ·Mg(i, j)
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for all M in the same region. If M and N are in a common region then

ρ(F(M),F(N))= max
1≤i≤p,1≤ j≤q

|F(M)i, j −F(N)i, j|

=λ
(

max
1≤i≤p,1≤ j≤q

|Mg(i, j) −Ng(i, j)|
)

≤λ
(

max
1≤i≤p,1≤ j≤q

|Mi, j −Ni, j|
)

=λρ(M, N).

If M and N are in different regions then we consider the straight line segment
between M and N with finitely many intersection points M = Z0, . . . , Zr = N
with other regions. Then we have

ρ(F(M),F(N))≤ ρ(F(Z0),F(Z1))+ . . .+ρ(F(Zr−1),F(Zr))
≤λ(ρ(Z0, Z1)+ . . .+ρ(Zr−1, Zr))
≤λρ(M, N).

The last equality holds because ρ is a metric and all Z0, . . . , Zr are on a straight
line. Thus, we have shown that for non-blocking S and T we have a unique fixed
point dm which yields a distance in R≥0 for all state pairs in StS×StT . Now for the
general case for arbitrary (but still finite) Kintv-WMIOs S and T, F is a function
from (R≥0∪{∞})p×q to (R≥0∪{∞})p×q with additional fixed point M ∈ (R≥0∪{∞})p×q

defined by Mi, j =∞ for all 1 ≤ i ≤ p, 1 ≤ j ≤ q. Hence the recursive equation has
at most two fixed points. We can write the recursive equation from the definition
as 

dm(s1, t1) · · · dm(s1, tq)
dm(s2, t1) · · · dm(s2, tq)

... . . . ...
dm(sp, t1) · · · dm(sp, tq)

= F


dm(s1, t1) · · · dm(s1, tq)
dm(s2, t1) · · · dm(s2, tq)

... . . . ...
dm(sp, t1) · · · dm(sp, tq)


and hence there exists a unique least fixed point.

Except for the symmetrizing max operation, this is precisely the accumulat-
ing branching distance which is introduced in [173]; see also [172] for a thorough
introduction to branching distances as we use them here.

Example 6.1.3
Consider the two implementations S and T in Figure 6.4 with a single internal
action α and with discounting factor λ = 0.9. The below equations are already
simplified by removing all expressions that evaluate to ∞.
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s0 s1

s2

α, [3,3]

α, [7,7] α, [6,6]

α, [9,9]

S

α

t0 t1
α, [6,6]

α, [7,7]

T

α

Figure 6.4: Kintv-WMIOs S and T, dm(S,T)= 18

dm(s0, t0)=max{3+λdm(s1, t1), λdm(s2, t0)}
dm(s0, t1)=∞
dm(s1, t0)=∞
dm(s1, t1)= 0
dm(s2, t0)=max{2+λdm(s2, t0), λdm(s1, t1)}
dm(s2, t1)=∞

What remains to be done is to compute the least fixed point of the equation

dm(s2, t0)=max
{
2+λdm(s2, t0),0

}
which is dm(k1, i2)= 20. Hence dm(s0, t0)=max{3,λ ·20}= 18.

Note that the interpretation of the distance between two specifications de-
pends entirely on the application one has in mind; but in any case, the distance
from S to T is 0 if and only if S ≤Kintv

s T.

Example 6.1.4
Let us analyze the modal refinement distances for the Kintv-WMIOs that were
given in the introduction in Figures 6.2 and 6.3. We can easily compute the modal
refinement distances, and since they are defined as discounted accumulating dis-
tances of the respective labels, we get finite distances in three of four cases.

dm(I1,S)=∞
dm(I2,S)≈ 5,26
dm(I3,S)≈ 2,98
dm(I4,S)= 0

Indeed, we have verified our descending chain of distances that we have claimed
in the beginning of this chapter:

∞= dm(I1,S)> dm(I2,S)> dm(I3,S)> d(I4,S)= 0
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Next we define a thorough distance of specifications, by a similar construction
as the Hausdorff distance between closed subsets of a metric space, see e.g. [147].
Crucially however, our thorough distance is missing the symmetrizing max op-
eration of Hausdorff distance, hence it is asymmetric.

Definition 6.1.5 (Thorough refinement distance)
The thorough refinement distance between Kintv-WMIOs S and T is defined as

dt(S,T), sup
I∈JSKKintv

s

inf
J∈JTKKintv

s

dm(I, J).

Indeed this permits us to measure how well refinement is satisfied; intu-
itively, if two specifications have thorough distance ε≥ 0, then any implementa-
tion of the first specification can be matched by an implementation of the sec-
ond up to ε. Also observe the special case where S is an implementation: then
dt(S,T)= inf

J∈JTKKintv
s

dm(S, J), which measures how close S is to satisfy the spec-
ification T.

In [14] we have shown that similarly to strong modal refinement, computa-
tion of thorough refinement distance is EXPTIME-hard [31], whereas the modal
refinement distance is computable in NP ∩ CO-NP.

One might ask whether the thorough refinement distance is different to the
modal refinement distance and how they relate in general. We show in the
rest of this section that the modal refinement distance is in general an over-
approximation of the thorough refinement distance, and if the abstract Kintv-
WMIO is deterministic, the modal refinement distance and thorough refinement
distance coincide.

There is a powerful proof technique via families of relations introduced for
branching distances between implementations in [173] that we here extend to
modal refinement distance.
Definition 6.1.6
We define a modal refinement family for two finite Kintv-WMIOs S and T as an
R≥0-indexed family of relations R = {Rε ⊆StS ×StT | ε≥ 0} such that for any ε≥ 0
and any (s, t) ∈ Rε, for all α ∈⋃

Σ,

• for all k ∈ K , s′ ∈ StS, if s
α,k

S s′, then there exists t
α,`

T t′ for some
` ∈ K , t′ ∈ T, such that dKintv(k,`) ≤ ε and (s′, t′) ∈ Rε′ for some ε′ ≤ λ−1(ε−
dKintv(k,`)

)
,

• for all ` ∈ K , t′ ∈ StT , if t
α,`

T t′, then there exists s
α,k

S s′ for some
k ∈ K , s′ ∈ S, such that dKintv(k,`) ≤ ε and (s′, t′) ∈ Rε′ for some ε′ ≤ λ−1(ε−
dKintv(k,`)

)
,

and such that R is downward closed in the sense that for any set E ⊆ R≥0, if
(s, t) ∈ Rε for all ε ∈ E, then also (s, t) ∈ RinfE.
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Following the proof strategy developed in [173] for implementations, we can
show the following characterization of modal refinement distance by modal re-
finement families:
Proposition 6.1.7
Let S and T be two Kintv-WMIOs with the same action signature Σ. Then the
following are equivalent:

1. S ≤ε
m T.

2. There is a modal refinement family R for S and T with (s0, t0) ∈ Rε ∈ R.

Proof. First, assume that S ≤ε
m T, i.e. dm(s0, t0) ≤ ε, and define a relation family

R = {Rδ | δ≥ 0} by Rδ = {(s, t) ∈StS×StT | dm(s, t)≤ δ} for all δ≥ 0, then (s0, t0) ∈ Rε

holds by assumption. We show that R is a modal refinement family. Downward
closedness of R follows from the fact that there are only a finite number of choices
of transitions for each pair (s, t).

Let (s, t) ∈ Rδ for some δ ≥ 0, then by definition we know that dm(s, t) ≤ δ.
Assume

s
α,k

S s′.

From dm(s, t)≤ δ we can infer that

min

t
α,`

T t′

dKintv(k,`)+λdm(s′, t′)≤ δ.

Hence there exists a may-transition t
α,`

T t′ such that dKintv(k,`)≤ δ and

dm(s′, t′)≤λ−1(δ−dKintv(k,`)).

The latter implies that (s′, t′) ∈ Rδ′ for some δ′ ≤ λ−1(δ− dKintv(k,`)) which was
to be shown. The argument for the other assertion for must-transitions is sym-
metric. This proves that there is a modal refinement family R such that (s0, t0) ∈
Rε ∈ R.

For the reverse direction, assume that (s0, t0) ∈ Rε ∈ R for some modal refine-
ment family R = {Rε | ε ≥ 0}. We prove that (s, t) ∈ Rδ, for some δ ≥ 0, implies
dm(s, t)≤ δ. The claim S ≤ε

m T then follows from the assumption (s0, t0) ∈ Rε.
To this end, observe that the space of functions ∆ = [StS ×StT → R≥0 ∪ {∞}]

forms a complete lattice, when the partial order ¿ is defined such that for f , f ′ ∈
∆, f ¿ f ′ iff f (s, t) ≤ f ′(s, t) for all s ∈ StS, t ∈ StT . Moreover, since max,min,
addition and multiplication by λ are monotone, the function D defined for all
f ∈∆ by

D( f )=max


max

s
α,k

S s′

min

t
α,`

T t′

dKintv(k,`)+λ f (s′, t′),

max

t
α,`

T t′

min

s
α,k

S s′

dKintv(k,`)+λ f (s′, t′)
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is an order-preserving function on ∆, hence by Tarski’s fixed point theorem [170],
D has a least fixed point. Now let us define h(s, t) = inf{δ | (s, t) ∈ Rδ ∈ R}, and
since R is downward closed, we have that (s, t) ∈ Rh(s,t). By showing that h is
a pre-fixed point of D, i.e. that D(h) ¿ h, we get that (s, t) ∈ Rδ implies that
dm(s, t)≤ δ, since h(s, t)≤ δ and dm(s, t)≤ h(s, t).

Since (s, t) ∈ Rh(s,t), every

s
α,k

S s′′ can be matched by some t
α,`

T t′′

such that dKintv(k,`)+λδ′ ≤ h(s, t) for some δ′ ≥ 0 and (s′′, t′′) ∈ Rδ′ , implying
h(s′′, t′′)≤ δ′, but then also dKintv(k,`)+λh(s′′, t′′)≤ h(s, t). Similarly, every

t
α,`

T t′′ can be matched by some s
α,k

S s′′

such that dKintv(k,`)+λh(s′′, t′′) ≤ h(s, t). Hence we have D(h) ¿ h which was to
be shown.

The next theorems show that the modal refinement distance indeed over-
approximates the thorough refinement distance, and that it is exact for deter-
ministic Kintv-WMIOs. Note that nothing general can be said about the pre-
cision of the overapproximation in the non-deterministic case; as an example
we can again observe the two specifications in Figure 5.4, Chapter 5, for which
dt(S,T)= 0 but dm(S,T)= 1.

Theorem 6.1.8
Let S and T be two finite Kintv-WMIOs with the same signature Σ. Then we have
dt(S,T)≤ dm(S,T).

Proof. If dm(S,T)=∞, we have nothing to prove. Otherwise, let R = {Rε ⊆StS ×
StT | ε≥ 0} be a modal refinement family which witnesses dm(S,T), i.e. such that
(s0, t0) ∈ Rdm(S,T), and let I ∈ JSKKintv

s . We have to expose J ∈ JTKKintv
s for which

dm(I, J)≤ dm(S,T).
Let Q ⊆ StI ×StS be a refinement relation witnessing I ≤Kintv

s S, define R′
ε =

Q ◦Rε ⊆StI ×StT for all ε≥ 0, and let R′ = {R′
ε | ε≥ 0}. The states of

J = (StJ , j0,Σ, J , J)

are StT with j0 = t0, and the must-transition relation we define as follows (the
may-transition relation coincides with the must-transition relation):

For any

i
α,k′

I i′

and any t ∈StT for which (i, t) ∈ R′
ε ∈ R′ for some ε, we have

t
α,`

T t′
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with dKintv(k′,`)≤ ε and (i′, t′) ∈ R′
ε′ ∈ R′ for some ε′ ≤λ−1(ε−dKintv(k′,`)

)
. Assume

k′ = [m,m] and `= [x, y]. Let

n =


x if m < x,
m if x ≤ m ≤ y,
y if y< m

(1)

and k′′ = [n,n], and put t
α,k′′

J t′ in J. Note that

dKintv(k′,k′′)= dKintv(k′,`). (2)

Similarly, for any

t
α,`

T t′

and any i ∈StI with (i, t) ∈ R′
ε ∈ R′ for some ε, we have

i
α,k′

I i′

with dKintv(k′,`) ≤ ε and (i′, t′) ∈ R′
ε′ ∈ R′ for some ε′ ≤ λ−1(ε−dKintv(k′,`)

)
. Write

k′ = [m,m] and `= [x, y], define n as in (2) above and k′′ = [n,n], and put

t
α,k′′

J t′

in J. It is straightforward to prove that the identity relation id = {(t, t) | t ∈ StT }
witnesses J ≤Kintv

s T; this essentially follows from the construction of J according
to the above rules.

We also want to show that the family R′ is a witness for dm(I, J) ≤ dm(S,T).
We have (i0, t0) ∈ R′

dm(S,T) = R1 ◦Rdm(S,T), so let (i, t) ∈ R′
ε ∈ R′ for some ε≥ 0. For

any

i
α,k′

I i′

we have

t
α,`

T t′ and t
α,k′′

J t′

by the first part of our construction above, with dKintv(k′,k′′) = dKintv(k′,`) ≤ ε

because of (2), and also (i′, t′) ∈ R′
ε′ ∈ R′ for some ε′ ≤λ−1(ε−dKintv(k′,`)

)
. For any

t
α,k′′

J t′

we must have used one of the constructions above to introduce this transition,
and both give us

i
α,k′

I i′

with dKintv(k′,k′′)≤ ε and (i′, t′) ∈ R′
ε′ ∈ R′ for some ε′ ≤λ−1(ε−dKintv(k′,`)

)
.
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The fact that modal refinement only equals thorough refinement for deter-
ministic specifications is well-known from the previous chapters. Observe that
a deterministic Kintv-WMIO allows at most one transition under each discrete
action in each state since every two intervals [x1, y1] and [x2, y2] are unifiable by
[min(x1, x2),max(y1, y2)]; cf. Definition 5.3.5 in Chapter 5.

Theorem 6.1.9
Let S and T be two finite Kintv-WMIOs. If T is deterministic then dt(S,T) =
dm(S,T).

Proof. If dt(S,T) =∞, then we are done by Theorem 6.1.8. Otherwise, let R =
{Rε | ε≥ 0} be the smallest downward closed relation family for which

• (s0, t0) ∈ Rdt(S,T) and

• whenever we have (s, t) ∈ Rε ∈ R, s
α,k

S s′, and t
α,`

T t′, then (s′, t′) ∈
Rλ−1(ε−dKintv (k,`)).

We show below that this definition makes sense (also that ε− dKintv(k,`) ≥ 0 in
all cases), and that R is a modal refinement family. We will use the convenient
notation (s,S) for the Kintv-WMIO S with initial state s0 replaced by s, similarly
for (t,T).

We first show inductively that for any pair of states (s, t) ∈ Rε ∈ R we have
dt

(
(s,S), (t,T)

)≤ ε. This is obviously the case for s = s0 and t = t0, so assume now
that (s, t) ∈ Rε ∈ R is such that dt

(
(s,S), (t,T)

)≤ ε and let

s
α,k

S s′ and t
α,`

T t′.

Let I ′ ∈ J(s′,S)KKintv
s and [x, x] ∈ JkK.

There is an implementation I ∈ J(s,S)KKintv
s for which

i0
α,[x,x]

I i1

and such that (i1, I)≤Kintv
s I ′. Now

dt
(
(i1, I), (t,T)

)≤ dt
(
(i1, I), (s,S)

)+dt
(
(s,S), (t,T)

)≤ ε,
hence we must have

t
α,`′

T t′′

with dKintv([x, x],`′) ≤ ε. But then by determinism of T, ` = `′ and t′ = t′′. The
above considerations hold for any [x, x] ∈ JkK, hence dKintv(k,`) ≤ ε. Thus ε−
dKintv(k,`) ≥ 0, and the definition of R above is justified. Now let [y, y] ∈ J`K
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such that dKintv([x, x], [y, y]) = dKintv([x, x],`), then there is an implementation
J ∈ J(t,T)KKintv

s for which

j0
α,[y,y]

J j1

and

dm(I, J)≤λ−1(ε−dKintv([x, x], [y, y])
)

=λ−1(ε−dKintv(k,`)
)
,

which, as I ∈ J(s,S)KKintv
s was chosen arbitrarily, entails dt

(
(s,S), (t,T)

)≤ λ−1(ε−
dKintv(k,`)

)
.

We are ready to show that R is a modal refinement family. Let (s, t) ∈ Rε ∈ R
for some ε, and assume

s
α,k

S s′.

Let [x, x] ∈ JkK, then there is an implementation I ∈ J(s,S)KKintv
s with a transition

i0
α,[x,x]

I i1.

Now dt
(
I, (t,T)

)≤ ε by the first part of the proof, hence we have a transition

t
α,`

T t′

with dKintv([x, x],`)≤ ε. Also for any other [x′, x′] ∈ JkK we have a transition

t
α,`′

T t′′

with dKintv([x′, x′],`′)≤ ε, hence by determinism of T, `= `′ and t′ = t′′. It follows
that there is a unique transition

t
α,`

T t′

and as dKintv([x, x],`) ≤ ε for all [x, x] ∈ JkK, we have dKintv(k,`) ≤ ε, and (s′, t′) ∈
Rλ−1(ε−dKintv (k,`)) by definition. The other direction, for must-transitions, can be
shown similarly and the proof is omitted here.

6.2 Compositionality in the Context of Modal Re-
finement Distances

In this section we show that compositionality can naturally be extended to the
context of modal refinement distances. As the main result we show that the
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refinement distance between composed systems can be bounded by the distances
between their constituent systems.

Recall that the weight synchronization operator ⊕intv of the weight struc-
ture Kintv has already been defined in the previous chapter, see Example 5.1.4.
The weight synchronization operator ⊕intv for modal synchronous composition of
Kintv-WMIOs is defined by

[x1, y1]⊕intv [x2, y2]= [x1 + x2, y1 + y2].

After a technical lemma, the next theorem shows that modal synchronous
composition is well-behaved with respect to modal refinement distance in the
sense that the distance between the composed systems is bounded by the dis-
tances of the individual systems. Note also the special case in the theorem of
S1 ≤Kintv

s S2 and S3 ≤Kintv
s S4 implying S1 ⊗Kintv S3 ≤Kintv

s S2 ⊗Kintv S4.

Lemma 6.2.1
For k1,k2,k3,k4 ∈Kintv, we have

dKintv(k1 ⊕intv k3,k2 ⊕intv k4)≤ dKintv(k1,k2)+dKintv(k3,k4).

Proof. Let ki =
(
α, [xi, yi]

)
for all i. We have

dKintv(k1,k2)+dKintv(k3,k4)=max(x2 − x1, y1 − y2,0)+max(x4 − x3, y3 − y4,0)
≥max

(
(x2 − x1)+ (x4 − x3), (y1 − y2)+ (y3 − y4),0

)
=max

(
(x2 + x4)− (x1 + x3), (y1 + y3)− (y2 + y4),0

)
= dKintv(k1 ⊕intv k3,k2 ⊕intv k4).

Theorem 6.2.2
Let Si = (Sti, s0,i,Σi, i, i), i ∈ {1, . . . ,4}, be finite Kintv-WMIOs. Then

dm
(
S1 ⊗Kintv S3,S2 ⊗Kintv S4

)≤ dm(S1,S2)+dm(S3,S4).

Proof. If dm(S1,S2)=∞ or dm(S3,S4)=∞, we have nothing to prove. Otherwise,
let R1 = {R1

ε ⊆ St1 ×St2 | ε ≥ 0}, R2 = {R2
ε ⊆ St3 ×St4 | ε ≥ 0} be witnesses for

dm(S1,S2) and dm(S3,S4), respectively; hence (s0,1, s0,2) ∈ R1
dm(S1,S2) ∈ R1 and

(s0,3, s0,4) ∈ R2
dm(S3,S4) ∈ R2. Define

Rε =
{(

(s1, s3), (s2, s4)
) ∈St1 ×St3 ×St2 ×St4

∣∣
(s1, s2) ∈ R1

ε1
∈ R1, (s3, s4) ∈ R2

ε2
∈ R2,ε1 +ε2 ≤ ε

}
for all ε≥ 0 and let R = {Rε | ε≥ 0}. We show that R witnesses

dm
(
S1 ⊗Kintv S3,S2 ⊗Kintv S4

)≤ dm(S1,S2)+dm(S3,S4).
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We have
(
(s0,1, s0,3), (s0,2, s0,4)

) ∈ Rdm(S1,S2)+dm(S3,S4) ∈ R. Now let(
(s1, s3), (s2, s4)

) ∈ Rε ∈ R

for some ε, then (s1, s2) ∈ R1
ε1
∈ R1 and (s3, s4) ∈ R2

ε2
∈ R2 for some ε1 +ε2 ≤ ε.

Assume

(s1, s3)
α,k1⊕intvk3 (s′1, s′3),

then s1
α,k1

1 s′1 and s3
α,k3

3 s′3. By (s1, s2) ∈ R1
ε1
∈ R1, we have

s2
α,k2

2 s′2

with dKintv(k1,k2)≤ ε1 and (s′1, s′2) ∈ R1
ε′1
∈ R1 for some ε′1 ≤λ−1(ε1−dKintv(k1,k2)

)
;

similarly,

s4
α,k4

4 s′4
with dKintv(k3,k4)≤ ε2 and (s′3, s′4) ∈ R2

ε′2
∈ R2 for some ε′2 ≤λ−1(ε2−dKintv(k3,k4)

)
.

Let ε′ = ε′1 +ε′2, then

ε′ ≤λ−1(ε1 +ε2 − (dKintv(k1,k2)+dKintv(k3,k4))
)

≤λ−1(ε−dKintv(k1 ⊕intv k3,k2 ⊕intv k4)
)

by Lemma 6.2.1. We have

(s2, s4)
α,k2⊕intvk4 (s′2, s′4),

dKintv(k1 ⊕intv k3,k2 ⊕intv k4)≤ ε1 +ε2 ≤ ε again by Lemma 6.2.1, and(
(s′1, s′3), (s′2, s′4)

) ∈ Rε′ ∈ R.

The reverse direction, starting with a transition

(s2, s4)
α,k2⊕intvk4 (t2, t4)

is similar.

6.3 Related Work
Our approach to quantitative analysis of modal transition system reuses exist-
ing notions and results from literature about simulation distances for weighted
automata. Our work is mostly inspired by simulation distances for reactive sys-
tems as followed by the series of works from de Alfaro et al. [66, 64, 59, 60], how-
ever, adapted to take into account modalities. Another related line of research
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in the area of quantitative analysis of systems is that of robustness properties
of timed systems, originating in [153, 178]. In robust model-checking, one con-
siders enlarged semantics of timed automata where all the clock constraints are
widened by perturbation, in order to model the imprecisions of clocks. If no new
behaviour is added by this pertubation, then the system under consideration is
robust, satisfying the property also under minor timing inaccuracies of the con-
crete implementation.

For a comprehensive survey on distances for weighted automata, detailed
comparisons and logical characterizations of distances, applications to timed au-
tomata, etc. we refer the reader to [172].

The results presented in this chapter can be generalized in several directions.
Some are covered in our recent work [16], including the generalization to arbi-
trary distances and weight structures. Environment correctness has not been
defined in this chapter. It would be interesting to study distances for environ-
ment correctness which depends on the particular interpretation of the weight
intervals. The result would be a “quantitative” specification theory which would
be a generalization of the specification theory presented in Chapter 2 by refine-
ment distances and environment correctness distances.

Publication history. The present chapter is based on [14, 15] and contains
additional material not covered by this thesis chapter, for instance, the logical
characterization from Section 5.4 has been completely lifted from the qualitative
to the quantitative setting. Furthermore, we have shown in [14, 15] that cer-
tain results of specification operators like conjunction and quotient can only be
obtained to some extent under certain requirements on the underlying weight
structure.

Additional results that are out of the scope of this thesis include the following
works: In [15] we study a quantified notion of satisfaction of HML-formulae that
can be used to provide a characterization of modal refinement distances. How
to generalize modal refinement distances to arbitrary weight structures Kintv
and with an arbitrary strategy how to measure distances of specifications is pre-
sented in [16].

6.4 Summary
We have shown in this chapter that within the quantitative specification frame-
work of Kintv-weighted modal input/output automata, modal refinement dis-
tances provide a useful tool for measuring quantitative differences in refine-
ments. Modal refinement distances are proven equivalent to a natural thorough
notion of distances if the abstract Kintv-WMIO is deterministic. We have shown
that modal synchronous composition and modal refinement distances satisfy a
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quantified compositionality property.



Chapter 7

Moving from Specification
Theories to Contracts

Assume-guarantee reasoning [145, 113] is a well-studied approach which pro-
poses proof methods to verify global properties of a system by proving local prop-
erties of individual components of the system. For the verification of local prop-
erties, system components are equipped with a specification that consists of an
assumption on its environment, and a guarantee of the component itself given
that the environment meets the assumption. Assume-guarantee reasoning has
been very successfully applied in formal specification and verification, and in
particular in model checking, see e.g. [150].

The motivation for investigating assume-guarantee reasoning in the context
of our research is that, what we have seen so far, only a single specification was
used to describe the behaviour of a component, with implicit assumptions on the
environment. We would like to make these assumptions explicit by splitting the
specification into an assumption on the environment describing what the envi-
ronment has to fulfil in order to correctly use the component, and a guarantee
that describes the behaviour of the component given that the environment fulfils
the assumption. This splitting into explicit assumptions and guarantees has the
following advantages over single, monolithic specifications of components:

• Assume-guarantee specification style clearly distinguishes between the ex-
ternal and internal view on the component. The external view (i.e. the
assumption) only specifies the correct usage of the component, without any
implementation details which are usually not of interest for the environ-
ment. The internal view (i.e. the guarantee) is the specification of the be-
haviour of the component which might or might not include implementa-
tion details. From a practical point of view, having a single specification
with implicit assumptions can distort the component description and it can
be rather difficult or even not feasible to figure out from a single specifica-
tion what are its guarantees and what are its assumptions on the environ-
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ment. Moreover, single specifications might lead to unnecessary complex
verification problems, e.g. compatibility checking of environment and com-
ponent behaviour, that might arise if the behaviour contains implementa-
tion details that need to be considered.

• Reusing already existing, implemented and tested components is a key
concept in component-based development. Assume-guarantee reasoning
supports this fundamental concept by reusing specifications of component
guarantees and only specifying assumptions for the current use case (or for
the environment of interest in which it will be used). The splitting allows
to easily exchange assumptions and to adapt specifications according to the
changing circumstances in the environment.

In the context of behaviour specifications for components that are based on
state transition systems, several approaches were proposed that extend transi-
tion systems by assume-guarantee proof rules, for instance, such theories exist
for discrete systems [123, 154] and probabilistic systems [179, 67]. A more gen-
eral approach to deal with assume-guarantee rules was proposed by Benveniste
et al. [33] where they use sets of traces as specifications and build contracts on
top of it. Those approaches were proposed mostly independently of each other,
with a similar aim of achieving sound and compositional proof rules.

Even though the specification theory is abstract enough to view the above the-
ories for assume-guarantee reasoning again as a specification theory, we would
like to investigate in this chapter whether there is a uniform way of defining
a contract theory (i.e. a theory with assume-guarantee specifications and asso-
ciated proof rules) on top of a given specification theory. Thus, the goal is to
investigate to which extent we can define assume-guarantee reasoning within
a specification theory, and what are the necessary requirements of the specifi-
cation theory to ensure sound proof rules. This study should deliver a uniform
abstract theory of contracts, and we demonstrate how a contract framework can
be derived from a specification theory, using our abstract constructions. As a re-
sult we are able to instantiate “for free” a contract theory out of any specification
theory. Any such derived contract theory is automatically equipped with:

• Behaviour semantics and environment semantics of contracts reflecting the
set of behaviours and environments that satisfy the guarantees and as-
sumptions of the contract, respectively.

• A refinement relation that allows to compare contracts in terms of sets of
correct behaviours and environments.

• Sufficient conditions called dominance for a sound parallel composition of
contracts which encapsulates contracts for two communicating components
into one contract for the composition of the two.
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Furthermore, as an important contribution of this chapter, we identify addi-
tional specification operators that guarantee a direct definition of contract com-
position as the strongest dominating contract. A specification theory is complete
if it is equipped with conjunction to compute a greatest lower bound with respect
to refinement, quotient to compute the residual of specifications with respect to
parallel composition, and a maximal environment operator to compute largest
correct environments. When the underlying specification theory is complete in
the above sense and every contract has a normal form, then contract composi-
tion can be directly defined. Finally, an additional assumption on the interplay
of composition and environment correctness guarantees that we obtain a specifi-
cation theory for contracts.

In the course of this chapter, we show how the generic constructions can be
applied to ThdMIO

strong for which we show is a complete specification theory. We also
show contracts for deterministic MIODs with strong modal refinement and weak
environment correctness; in both instantiations we illustrate the abstract con-
cepts with several small examples. We already point out that our framework
can only be meaningfully instantiated by deterministic MIOs and MIODs with
strong environment correctness; contracts instantiated for weak theories with
weak environment correctness do not seem adequate and we illustrate this claim
by an example. These limitations of our work are again explained in Section 7.5,
together with possible solutions.

At this point, we would like to make our ideas more concrete by illustrating
them with a simple example from our domain of deterministic MIOs, see Fig-
ure 7.1. Assume an implementation I of a simple message processing component
that receives messages, processes them, and then acknowledges the processing to
the sender of the messages. It is important to note that I can receive more than
one message during the processing with the effect that each received message is
processed, and the acknowledgement is sent once for possibly many messages.
The MIO G (with the same action alphabet as I) is the behaviour that I should
comply to. Clearly, I is not a strong modal refinement of G, since the G does only
allow single message processing with one acknowledgement for each processed
message.

However, the implementation I is already very “close” to G (in sense of ≤s)
and can indeed be very well used in those situations in which the environment
waits with sending the next message until it receives the corresponding acknowl-
edgement. This condition on the environment is expressed as assumption A, seen
in Figure 7.2. Actually, A expresses even more: after a message has been sent,
the environment must accept the acknowledgement, a reasonable assumption
on the environment in this context. The specification G has now grown to the
contract (A,G), with A the assumption and G the guarantee. Now, I is a correct
behaviour of G given that the environment does not make use of the additional
message processing feature that I offers. Thus, we have widened the set of re-
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Figure 7.1: Implementation I does not refine the specification G
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Figure 7.2: Implementation I correctly implements the contract (A,G)

finements of G by explicitly stating assumptions on the environment, and I is a
correct refinement of G as long as it is used in a context (i.e. environment) which
satisfies the assumption A.

Outline. We start by introducing complete specification theories in Section 7.1.
In Section 7.2 we will define, for a given specification theory, the notion of a con-
tract and its semantics, contract refinement and contract composition. In par-
ticular, if the underlying specification theory is complete we show how to define
a specification theory for contracts. We then instantiate contracts to determin-
istic MIOs and MIODs and show several examples of such modal contracts that
illustrate contract semantics and contract composition. In Section 7.3 the in-
stantiation is shown for a complete specification theory for deterministic MIOs,
Section 7.4 illustrates modal contracts based on deterministic MIODs. In Sec-
tion 7.5 we summarize limitations of the contract framework. Related works
are mentioned in Section 7.6 and we conclude this chapter with a summary in
Section 7.7.
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ComponentS1 S2

S1∧S2 ≤≥

Figure 7.3: Illustration of conjunction

7.1 Complete Specification Theories
Some theories, which we call complete specification theories, offer additional op-
erators that are useful in designing interface specifications for component-based
systems. Recent works on concrete instances of interface theories [73, 57, 158]
have identified conjunction and quotient as two important ingredients of any
specification theory. The former, conjunction, computes a largest common refine-
ment of two specifications, whereas the latter, quotient, is adjoint to composition
which allows to compute residuals. In addition, we introduce a new operator not
seen before, computing a maximal refinement of a specification such that it is a
correct environment for a given specification. We see later in Section 7.2 that
we can use them to derive most permissive assumptions achieving maximality of
contract compositions.

Conjunction. When two separate teams independently develop specifications
that are intended to be realized by the same component, then it is useful to have
conjunction, denoted ∧, that computes a most general specification that realizes
both specifications (if this is possible, i.e. if there exists a common refinement), cf.
Figure 7.3. When the first team proposes a specification S1 which a component
C should comply with, and the second team proposes S2 for C, then S1∧S2 is the
conjunction of the two specifications which is defined whenever both S1 and S2
can be refined at the same time. Moreover, S1∧S2 is a most general specification
with this property. Formally, conjunction is a partial commutative function

∧ :S×S→S

such that

S1 ∧S2 is defined if and only if ∃X ∈S : X ≤ S1 and X ≤ S2,

and, if S1 ∧S2 is defined, then

S1 ∧S2 ≤ S1 and S1 ∧S2 ≤ S2, and
∀X ∈S : (X ≤ S1 and X ≤ S2) implies X ≤ S1 ∧S2.
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TS ⊗ ? T�S

Figure 7.4: Illustration of the quotient operation

Conjunction S1 ∧S2, if it exists, is unique up to equivalence ≈ of specifications
(see Chapter 2, Definition 2.1.1). Note that the definition also immediately im-
plies that JS1 ∧S2K= JS1K∩ JS2K whenever S1 ∧S2 is defined.

Quotient. Specification theories sometimes come along with a quotient opera-
tor, written �, which is dual to parallel composition (or in other words � is adjoint
to ⊗), cf. Figure 7.4. When given a requirement specification T of the overall sys-
tem and another specification S that is supposed to be part of the system, then
the quotient T�S is a most general solution X satisfying

S⊗ X ≤ T

i.e. T �S is a most general specification such that S ⊗ (T �S) ≤ T. Formally,
quotient is a partial function

� :S×S→S

that satisfies:

T�S is defined if and only if ∃X ∈S : S⊗ X ≤ T.

And if T�S is defined, then

S⊗ (T�S)≤ T, and ∀X ∈S : S⊗ X ≤ T ⇒ X ≤ T�S.

The requirements of a quotient operator implies that T�S is unique up to equiv-
alence of specifications.

Maximal Environment Operator. For obtaining maximally correct environ-
ments for a given specification we stipulate the existence of an operation that,
given two specifications S,E ∈S such that S and E are composable, computes
a largest refinement E′ ∈ S of E such that S → E′. Formally, we require the
existence of a partial operation

max·→(·) :S×S→S

such that

maxS→(E) is defined if and only if ∃E′ ∈S : E′ ≤ E and S → E′,
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and if maxS→(E) is defined, then

maxS→(E)≤ E and S →maxS→(E),
∀E′ ∈S : (E′ ≤ E and S → E′) implies E′ ≤maxS→(E)

Again, maxS→(E) is unique up to ≈.

Definition 7.1.1 (Complete Specification Theory)
A specification theory (S,Si,≤,⊗,→) is complete if it offers conjunction ∧, quo-
tient �, and a maximal environment operator max·→(·).

7.2 Contracts and Their Semantics
For the development of our abstract contract framework, we assume to be given a
specification theory (S,Si,≤,⊗,→) as defined in Chapter 2. Only later, when we
give a direct definition of contract composition we stick to complete specification
theories, so the first part of this section also applies to specification theories
which are not complete.

Assumption 1. (S,Si,≤,⊗,→) is a specification theory.

We start by defining the notion of a contract which explicitly distinguishes
between assumptions and guarantees.

Definition 7.2.1 (Contract)
A contract is a pair (A,G) where A,G ∈S are two specifications such that G → A.

In a contract (A,G), the specification A expresses the assumption on the envi-
ronment of the component, whereas the specification G describes the guarantee
of any component to the environment given that the environment respects the
assumption A. In any contract (A,G) the assumption A should specify a correct
environment for G, i.e. G → A.

For the definition of when a specification is a correct behaviour of a given
contract, we use a notion of relativized refinement which is derived from the re-
finement relation of the underlying specification theory.

Definition 7.2.2 (Relativized Refinement)
Relativized refinement is the ternary relation in S×S×S defined as follows:
for all S,E,T ∈S,

S ≤E T if and only if ∀E′ ∈S : (E′ ≤ E and T → E′)
⇒ (S → E′ and S⊗E′ ≤ T ⊗E′).

S ≤E T intuitively means that S refines T if both are put in any correct en-
vironment E′ that refines E. The following lemmata summarize properties of
relativized refinement that are easy consequences of the definition.
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Lemma 7.2.3
Relativized refinement is a preorder, and for all S,E,E′,T ∈ S, if S ≤E T and
E′ ≤ E then S ≤E′ T.

Proof. Reflexivity and transitivity of relativized refinement is easy to see. For
the second claim, assume that S ≤E T and E′ ≤ E. Let E′′ ≤ E′ and assume
that T → E′′. By transitivity of refinement also E′′ ≤ E, hence we can use our
assumption S ≤E T to infer S → E′′ and S ⊗E′′ ≤ T ⊗E′′. Hence S ≤E′ T which
was to be shown.

We note that for the second part of Lemma 7.2.3, switching the context by a
refined one, the universal quantification in Definition 7.2.2 is essential.

Lemma 7.2.4
Let S,T,E ∈S and assume that T → E. Then S ≤E T if and only if

∀E′ ∈S : E′ ≤ E ⇒ S → E′ and S⊗E′ ≤ T ⊗E′.

Proof. Assume that S ≤E T and let E′ ∈S such that E′ ≤ E. Then S → E′ follows
from S ≤E T, the definition of relativized refinement and T → E′. The same
argument implies S ⊗E′ ≤ T ⊗E′. For the other direction, let E′ ∈S such that
E′ ≤ E and T → E′. Then S → E′ and S⊗E′ ≤ T ⊗E′.

Lemma 7.2.5
Let S,T ∈S. Then S ≤ T implies S ≤E T for any E ∈S.

Proof. Let E′ ∈S such that E′ ≤ E and T → E′. By preservation of environment
correctness, S ≤ T implies S → E′. By compositionality of refinement, we can
infer S⊗E′ ≤ T ⊗E′.

Let us now turn to the definition of the semantics of a contract. The behaviour
semantics of a contract (A,G) is given by the set of all specifications that satisfy
the contract guarantee G under the assumption A:

JCKbeh = {I ∈S | I ≤A G}.

This is a significant generalization of pure specification theories where it is usu-
ally assumed that refinements must literally satisfy the specification. The en-
vironment semantics of the contract (A,G) consists of all environments for (or
users of) the component satisfying the assumption A of the contract:

JCKenv = {E ∈S | E ≤ A}.

In summary, the semantics of a contract is given by both behaviour semantics
and environment semantics. Two contracts are semantically equivalent if they
have the same (behaviour and environment) semantics.
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Remark 7.2.6
In the following, for a given contract C, we use the terms behaviour and environ-
ment for specifications in JCKbeh and JCKenv, respectively.

Our first result is a direct consequence of the definition of a contract and
contract semantics: Whenever one has a correct environment and a correct be-
haviour of a contract, then their composition is a refinement of the composition of
assumption and guarantee of the contract. In other words, the following theorem
states the adequacy of contracts semantics.

Theorem 7.2.7 (Adequacy of Contract Semantics)
Let C = (A,G) be a contract. For all specifications E, I ∈ S, if E ∈ JCKenv and
I ∈ JCKbeh then I → E and E⊗ I ≤ A⊗G.

Proof. The claim follows from Lemma 7.2.4, by choosing T = G, E = A, E′ = E
and S = I, and by applying transitivity of refinement.

This theorem is not used in any later proofs. Still importantly, it states that
both behaviour and environment semantics are adequate, i.e. meeting our in-
tuition about what should result whenever we compose correct behaviours and
environments: their composition should refine the interaction A⊗G that is de-
scribed by any contract (A,G).

The behaviour semantics of a contract in general depends on both the as-
sumption A and the guarantee G. However, when any refinement of G is inde-
pendent of the assumption A, we say that the contract (A,G) is in normal form.

Definition 7.2.8 (Normal Form)
A contract C = (A,G) is in normal form if for all specifications I ∈S, I ≤A G if
and only if I ≤G.

We say that a contract (A,G) has a normal form if it can by transformed into
a semantically equivalent contract (A,Gnf ) in normal form by weakening of G
to Gnf . In Section 7.3 we show that deterministic MIOs are powerful enough to
allow such a semantic-preserving transformation for any contract (A,G). If in
a specification theory every contract has a normal form, then we say that the
specification theory has normal forms.

7.2.1 Refinement of Contracts
Next, we turn to the question how contracts can be refined. We follow here a
standard approach inspired by notions of behavioural subtyping [131] and say
that a contract C′ refines another contract C if C′ admits less behaviours than
C, but more legal environments than C.
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Definition 7.2.9 (Contract Refinement)
Let C and C′ be two contracts. The contract C′ refines the contract C (is stronger
than C), written C′ v C, if JC′Kbeh ⊆ JCKbeh and JC′Kenv ⊇ JCKenv.

The refinement relation between contracts is reflexive and transitive. Ob-
viously, two contracts C, C′ are semantically equivalent if and only if C′ v C
and C v C′. The following theorem characterizes contract refinement by contra-
/covariant (relativized) refinement of corresponding assumptions and guaran-
tees.

Theorem 7.2.10 (Characterization of Contract Refinement)
Let (A,G) and (A′,G′) be two contracts. Then (A′,G′)v (A,G) if and only if A ≤ A′

and G′ ≤A G.

Proof. First we show that (A′,G′)v (A,G) implies A ≤ A′ and G′ ≤A G.

A ∈ J(A,G)Kenv ⊆ J(A′,G′)Kenv

implies A ≤ A′, and similarly,

G′ ∈ J(A′,G′)Kbeh ⊆ J(A,G)Kbeh

implies G′ ≤A G.
Second, for the other direction, we have to show that A ≤ A′ and G′ ≤A G

imply (A′,G′)v (A,G). Thus we have to show

(a) J(A′,G′)Kbeh ⊆ J(A,G)Kbeh,

(b) J(A,G)Kenv ⊆ J(A′,G′)Kenv.

To show (a), let I ∈ J(A′,G′)Kbeh, so I ≤A′ G′. Then also I ≤A G′ by Lemma 7.2.3
and A ≤ A′. From G′ ≤A G and transitivity of relativized refinement it follows
that I ≤A G which is I ∈ J(A,G)Kbeh. To show (b), let E ∈ J(A,G)Kenv, so E ≤ A.
From A ≤ A′ and transitivity of refinement it follows that E ≤ A′, and thus E ∈
J(A′,G′)Kenv.

An immediate consequence is the following corollary:

Corollary 7.2.11
Let (A,G) and (A′,G′) be two contracts such that (A,G) is in normal form. Then
(A′,G′)v (A,G) if and only if A ≤ A′ and G′ ≤G.

Remark 7.2.12
Thorough refinement of contracts and the question of completeness of refinement,
cf. Section 2.1, is not considered here and left for future work.
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7.2.2 Dominance and Composition of Contracts
When behaviours I1 and I2 of individual components are composed, their compo-
sition is only semantically meaningful if the contracts, say C1, C2, of the single
components fit together. This means that there exists a ‘larger’ contract C which
subsumes C1 and C2 such that (1) the composition of any behaviours of C1 and
C2 is a correct behaviour of C, and (2) each correct environment of C controls the
single behaviours in such a way that they mutually satisfy the assumptions of
the single contracts. Inspired by [154] we call such a contract C a dominating
contract for C1 and C2.

Definition 7.2.13 (Dominance)
Let C, C1 and C2 be contracts. C dominates C1 and C2 if the following two
conditions are satisfied:

1. Any composition of correct behaviours of C1 and C2 results in a correct be-
haviour of the contract C:

• ∀I1 ∈ JC1Kbeh :∀I2 ∈ JC2Kbeh : I1 ⊗ I2 is defined and I1 ⊗ I2 ∈ JCKbeh

2. For any correct environment of C, the composition with a correct behaviour
of C1 (C2) results in a correct environment of C2 (C1, respectively):
for all E ∈ JCKenv,

• ∀I1 ∈ JC1Kbeh : E⊗ I1 is defined and E⊗ I1 ∈ JC2Kenv,

• ∀I2 ∈ JC2Kbeh : E⊗ I2 is defined and E⊗ I2 ∈ JC1Kenv.

We say that two contracts C1, C2 are dominable if there exists a contract C domi-
nating C1, C2.

An immediate consequence of the definition of dominance is the following
lemma.

Lemma 7.2.14
Let C,C1 and C2 be contracts. If C dominates C1 and C2 then for any E ∈ JCKenv,
I1 ∈ JC1Kbeh and I2 ∈ JC2Kbeh, it holds that

1. I1 ⊗ I2 → E,

2. I1 → E⊗ I2,

3. I2 → E⊗ I1.

Proof. Let C = (A,G), C1 = (A1,G1) and C2 = (A2,G2). Condition 1 of Defini-
tion 7.2.13 requires I1 ⊗ I2 ∈ JCKbeh which is I1 ⊗ I2 ≤A G. Since G → A and
E ≤ A, we also have I1 ⊗ I2 → E by applying Lemma 7.2.4 for T = G, E = A,
S = I1⊗ I2, E′ = E. Furthermore, condition 2 of Definition 7.2.13 requires E⊗ I1 ∈
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JC2Kenv which implies E⊗ I1 ≤ A2. Since G2 → A2 and I2 ≤A2 G2 it follows from
Lemma 7.2.4 (applied for T =G, E = A2, S = I2 and E′ = E⊗ I1) that I2 → E⊗ I1.
The third claim I1 → E⊗ I2 is symmetric.

Thus, when taking any legal environment E according to the dominating con-
tract C and any implementations I1 composed with I2 of C1 and C2, respectively,
then I1 and I2 feel well in the environment E, but also individually they feel well
in the composed environment of E together with the other implementation.

Dominance is preserved under refinement of individual contracts.

Theorem 7.2.15 (Preservation of Dominance under Refinement)
Let C1,C′

1,C2,C′
2,C be contracts such that C′

1 v C1 and C′
2 v C2. If C dominates

C1 and C2, then C dominates C′
1 and C′

2.

Proof. This theorem follows from the semantic definition of contract refinement
and the fact that dominance of two contracts C1 and C2 is based on the semantics
of the individual contracts in such a way that by replacing C1 with C′

1 and C2
with C′

2 all conditions continue to hold. Formally, we have JC′
iKbeh ⊆ JC′

iKbeh and
JC′

iKenv ⊇ JCiKenv, for i = 1,2. Observing the conditions of dominance, we can see
that we can replace any occurrence of JC′

iKbeh by JC′
iKbeh without changing the

satisfaction of the statements, and similarly for the environment semantics.

For the following results, we generally assume that the underlying specifica-
tion theory has normal forms, i.e. for any C = (A,G) there exists a semantically
equivalent contract Cnf = (Anf ,Gnf ) which is in normal form. Due to the defini-
tion of environment semantics, without loss of generality, we can always assume
in the following that Anf = A.

Assumption 2. The specification theory (S,Si,≤,⊗,→) has normal forms.

The following lemma is a consequence of the definition of a dominating con-
tract.
Lemma 7.2.16
Two contracts C1 and C2 are dominable if and only if their normal forms Cnf

1 and
Cnf

2 are dominable.

Proof. This simply follows from the fact that the definition of dominance of two
contracts C1 and C2 only relies on their semantics, and normal forms Cnf

1 and
Cnf

2 are semantically equivalent to C1 and C2, respectively.

The next theorem provides a characterization of dominance for specification
theories with normal forms. The idea is that there must exist an environment un-
der which behaviours of the single contracts can be adapted to meet each others
assumptions, while satisfying the remaining assumptions on the environment of
the composed system.
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Theorem 7.2.17
Let C1 = (A1,G1) and C2 = (A2,G2) be two contracts with normal forms Cnf

1 =
(A1,Gnf

1 ) and Cnf
2 = (A2,Gnf

2 ), respectively. The following are equivalent:

1. C1 and C2 are dominable,

2. there exists E ∈S such that

(a) E⊗Gnf
1 ≤ A2 and E⊗Gnf

2 ≤ A1,

(b) Gnf
1 ⊗Gnf

2 → E.

Proof. By Lemma 7.2.16, we can show the equivalence of the two conditions for
contracts in normal form.

First, assume that Cnf
1 and Cnf

2 are dominable, say by a contract C = (A,G).
Note that A ∈ JCKenv, Gnf

1 ∈ JCnf
1 Kbeh, and Gnf

2 ∈ JCnf
2 Kbeh. Then, by the definition

of dominance, we can conclude that A ⊗Gnf
1 ≤ A2 and A ⊗Gnf

2 ≤ A1. The claim
Gnf

1 ⊗Gnf
2 → E follows from the first condition of dominance: We know that Gnf

1 ⊗
Gnf

2 ∈ JCKbeh and G → A, hence by perservation of environment correctness we
get Gnf

1 ⊗Gnf
2 → A, hence Gnf

1 ⊗Gnf
2 → E.

Second, for the other direction, we assume that there exists E ∈S such that
E⊗Gnf

1 ≤ A2, E⊗Gnf
2 ≤ A1, and Gnf

1 ⊗Gnf
2 → E. It is easy to verify that the contract

(E,Gnf
1 ⊗Gnf

2 ) dominates Cnf
1 and Cnf

2 .

This theorem shows that in order to find a contract that dominates two con-
tracts (A1,Gnf

1 ) and (A2,Gnf
2 ) it suffices to come up with an E such that the above

two points are satisfied; then (E,Gnf
1 ⊗Gnf

2 ) is a dominating contract. In the fol-
lowing we propose two different variants of finding such a “good” environment
E:

(Variant 1) In this variant we assume that assumptions are decomposable lead-
ing to a simple syntactical construction of a “good” environment E.

(Variant 2) The most general case is covered by the second variant. It relies on
completeness of the underlying specification theory, and a “good” environ-
ment E can be constructed by using quotient, conjunction and the maximal
environment operator. In particular, the so constructed E is shown to be a
most permissive environment E rendering (E,Gnf

1 ⊗Gnf
2 ) a strongest domi-

nating contract.

Contract Dominance based on Decomposability of Assumptions
(Variant 1)

Let us consider two contracts C1 = (A1,Gnf
1 ) and C2 = (A2,Gnf

2 ) in normal form for
which we would like to find a dominating contract (E,Gnf

1 ⊗Gnf
2 ). The situation

is illustrated in Figure 7.5: If
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• the assumptions A1 and A2 of C1 and C2 are decomposable into separate
assumptions A′

1, A′′
1 and A′

2, A′′
2, respectively, and

• A′′
1 and A′′

2 are satisfied by Gnf
2 ⊗ A′

2 and Gnf
1 ⊗ A′

1, respectively, and

• A′
1 ⊗ A′

2 is a correct environment of Gnf
1 ⊗Gnf

2 ,

then E can be easily obtained by composing the assumptions A′
1 and A′

2 that
specify the requirements for the remaining environment. The so obtained domi-
nating contract is shown in Figure 7.6.

A′
1 Gnf

1︸ ︷︷ ︸
A′′

1

≤

A′′
2

︷ ︸︸ ︷
Gnf

2

︸ ︷︷ ︸

≤︷ ︸︸ ︷
A′

2

Figure 7.5: Contracts C1 = (A′
1⊗A′′

1,Gnf
1 ) and C2 = (A′

2⊗A′′
2,Gnf

2 ) with decompos-
able assumptions such that A′

1 ⊗Gnf
1 ≤ A′′

2 and A′
2 ⊗Gnf

2 ≤ A′′
1

A′
1 Gnf

1 Gnf
2

A′
2

Figure 7.6: Contract (A′
1 ⊗ A′

2,Gnf
1 ⊗Gnf

2 ) which dominates the contracts shown
in Figure 7.5

Theorem 7.2.18
Let C1 = (A1,G1) and C2 = (A2,G2) be two contracts with normal forms (A1,Gnf

1 )
and (A2,Gnf

2 ). If if there exists A′
1, A′′

1, A′
2, A′′

2 ∈S such that

1. A′
1 ⊗ A′′

1 ≤ A1 and A′
2 ⊗ A′′

2 ≤ A2, and

2. A′
2 ⊗Gnf

2 ≤ A′′
1 and A′

1 ⊗Gnf
1 ≤ A′′

2, and

3. Gnf
1 ⊗Gnf

2 → A′
1 ⊗ A′

2,

then
(A′

1 ⊗ A′
2,Gnf

1 ⊗Gnf
2 )

dominates C1 and C2.
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Proof. First, we note that (A′
1⊗A′

2,Gnf
1 ⊗Gnf

2 ) is a valid contract since by (3.) Gnf
1 ⊗

Gnf
2 → A′

1 ⊗ A′
2. We show the two conditions of dominance, see Definition 7.2.13.

1. Let I1 ≤ Gnf
1 , I2 ≤ Gnf

2 . By compositionality of refinement we get I1 ⊗ I2 ≤
Gnf

1 ⊗Gnf
2 . Then by Lemma 7.2.5 it follows that

I1 ⊗ I2 ≤A′
1⊗A′

2
Gnf

1 ⊗Gnf
2 .

2. Let E ≤ A′
1 ⊗ A′

2 and I1 ≤Gnf
1 . Then by compositionality of refinement

E⊗ I1 ≤ A′
1 ⊗ A′

2 ⊗Gnf
1

which by assumption A′
1⊗Gnf

1 ≤ A′′
2 and transitivity of refinement and com-

mutativity of ⊗ implies

E⊗ I1 ≤ A′
2 ⊗ A′′

2 ≤ A2, hence E⊗ I1 ≤ A2

which was to be shown. The other condition E ⊗ I2 ≤ A1 can be shown
similarly.

Contract Composition with Underlying Complete Specification Theory
(Variant 2)

In the previous variant we relied on decomposable assumptions such that all the
conditions of Theorem 7.2.18 are satisfied. Clearly, decomposing assumptions ac-
cordingly is often not possible, which is the case as soon as there are behavioural
dependencies between the two communication points (as illustrated in the fig-
ures) of the component.

What we present in this second variant of finding a environment for a dom-
inating contract is much more general approach works as soon as the underly-
ing specification theory is complete (see Section 7.1). In this case we can ob-
tain a dominating contract by using the specification operators of the complete
specification theory, without having to assume decomposable assumptions any-
more. More precisely, when given two dominable contracts C1 = (A1,G1) and
C2 = (A2,G2) with normal forms (A1,Gnf

1 ) and (A2,Gnf
2 ), then we can compute

E that renders (E,Gnf
1 ⊗Gnf

2 ) a dominating contract. Even better, we can show
that the obtained E is a most permissive assumption rendering (E,Gnf

1 ⊗Gnf
2 ) a

strongest dominating contract for C1 and C2.
In general terms, we first define contract composition of two contracts C1 and

C2 as the strongest dominating contract for C1 and C2, or in other words, a con-
tract composition is a dominating contract which satisfies a universal property.
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Definition 7.2.19 (Contract Composition)
A contract C is called contract composition of the contracts C1 and C2 if

1. C dominates C1 and C2,

2. for all contracts C′, if C′ dominates C1 and C2, then C v C′.

Contract compositions, if they exist, are unique up to semantic equivalence
of contracts. We will now turn to the question whether the composition of two
contracts exists and, if so, whether it can be constructively defined in the presence
of a complete specification theory. Thus, to answer this question we assume from
now on a complete specification theory (recall that such a theory has quotient,
conjunction and a maximal environment correctness operator, see Section 7.1)
over which contracts are constructed.

Assumption 3. The specification theory (S,Si,≤,⊗,→) is complete.

In what follows we show that for two given contracts (A1,Gnf
1 ) and (A2,Gnf

2 )
the specification

maxGnf
1 ⊗Gnf

2 →((A1�Gnf
2 )∧ (A2�Gnf

1 ))

forms the most permissive assumptions E rendering (E,Gnf
1 ⊗Gnf

2 ) a composition
of C1 and C2. We first show that the definedness of the above construction is
equivalent to dominability of C1 and C2.

Lemma 7.2.20
Let C1 = (A1,G1) and C2 = (A2,G2) be two contracts with normal forms (A1,Gnf

1 )
and (A2,Gnf

2 ). The following are equivalent:

1. maxGnf
1 ⊗Gnf

2 →((A1�Gnf
2 )∧ (A2�Gnf

1 )) is defined,

2. C1 and C2 are dominable.

Proof. We only need to show that

maxGnf
1 ⊗Gnf

2 →((A1�Gnf
2 )∧ (A2�Gnf

1 ))

is defined if and only if there exists E ∈S such that E⊗Gnf
1 ≤ A2, E⊗Gnf

2 ≤ A1,
and Gnf

1 ⊗Gnf
2 → E, the rest follows from Theorem 7.2.17. For this proof, we basi-

cally use the assumptions on the specification operators as listed in Section 7.1.
The specification

maxGnf
1 ⊗Gnf

2 →((A1�Gnf
2 )∧ (A2�Gnf

1 ))
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is defined if and only if there exists X such that X ≤ (A1�Gnf
2 )∧ (A2�Gnf

1 ) and
Gnf

1 ⊗Gnf
2 → X . The former two hold if and only if X ≤ (A1�Gnf

2 ) and X ≤ (A2�
Gnf

1 ), and again, this is the case if and only if both quotients involved are defined.
Hence, the definedness of

maxGnf
1 ⊗Gnf

2 →((A1�Gnf
2 )∧ (A2�Gnf

1 ))

is equivalent to the fact that there exists X such that X ⊗Gnf
2 ≤ A1, X ⊗Gnf

1 ≤ A2,
and Gnf

1 ⊗Gnf
2 → X .

We can now define contract composition of two dominable contracts.

Definition 7.2.21
Let C1 = (A1,G1) and C2 = (A2,G2) be two contracts with normal forms (A1,Gnf

1 )
and C2 = (A2,Gnf

2 ) . C1�C2 is defined if and only if C1 and C2 are dominable
and then

C1�C2, (maxGnf
1 ⊗Gnf

2 →((A1�Gnf
2 )∧ (A2�Gnf

1 )),Gnf
1 ⊗Gnf

2 ).

Note that C1�C2 is a valid contract since

maxGnf
1 ⊗Gnf

2 →((A1�Gnf
2 )∧ (A2�Gnf

1 ))

is defined by Lemma 7.2.20, moreover,

Gnf
1 ⊗Gnf

2 →maxGnf
1 ⊗Gnf

2 →((A1�Gnf
2 )∧ (A2�Gnf

1 ))

by definition of max·→(·).
The next theorem states that � yields a strongest dominating contract.

Theorem 7.2.22
If the contracts C1 and C2 are dominable, then C1�C2 is (up to semantic equiv-
alence) the composition of C1 and C2.

Proof. By the previous Lemma 7.2.20,

C1�C2 = (maxGnf
1 ⊗Gnf

2 →((A1�Gnf
2 )∧ (A2�Gnf

1 )),Gnf
1 ⊗Gnf

2 )

is defined.
We first show that C1�C2 dominates C1 and C2. The first condition simply

follows from compositionality of refinement. For the second condition, we have
to consider some E ∈ JC1�C2Kenv, i.e.

E ≤maxGnf
1 ⊗Gnf

2 →((A1�Gnf
2 )∧ (A2�Gnf

1 )).
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Since the right hand side is a correct environment for Gnf
1 ⊗Gnf

2 , also E is a correct
environment for Gnf

1 ⊗Gnf
2 which follows by preservation of compatibility. Since

E⊗(Gnf
1 ⊗Gnf

2 ) is defined, also E⊗Gnf
1 is defined. Then we can infer the following

refinements:

E⊗Gnf
1

≤maxGnf
1 ⊗Gnf

2 →((A1�Gnf
2 )∧ (A2�Gnf

1 ))⊗Gnf
1

(by compositionality of refinement)

≤ ((A2�Gnf
1 )∧ (A1�Gnf

2 ))⊗Gnf
1 (by maxE→(S)≤ S)

≤ (A2�Gnf
1 )⊗Gnf

1 (conjunction is greatest lower bound w.r.t. ≤)
≤ A2

Thus E⊗Gnf
1 ≤ A2 and E⊗Gnf

2 ≤ A1.
Now, we have to show that C1�C2 is the strongest dominating contract of C1

and C2. Assume C′ = (A′,G′) another dominating contract of C1 and C2. We know
A′ ∈ JC′Kenv, hence by definition of dominance, we can conclude that A′⊗Gnf

2 ≤ A1,
A′⊗Gnf

1 ≤ A2, and Gnf
1 ⊗Gnf

2 → A′. It follows that

A′ ≤maxGnf
1 ⊗Gnf

2 →((A1�Gnf
2 )∧ (A2�Gnf

1 )) (?)

thus A′ ∈ JC1�C2Kenv. If I ∈ JC1�C2Kbeh, then

I ≤
max

Gnf
1 ⊗Gnf

2 →((A1�Gnf
2 )∧(A2�Gnf

1 )) Gnf
1 ⊗Gnf

2 .

Then we can infer by Lemma 7.2.3 and (?) that I ≤A′ Gnf
1 ⊗Gnf

2 . By dominance
we know that Gnf

1 ⊗Gnf
2 ∈ JC′Kbeh which is Gnf

1 ⊗Gnf
2 ≤A′ G′, hence by transitivity

I ≤A′ G′ which is I ∈ JC′Kbeh.

The next theorem shows that contract refinement is preserved under contract
composition.

Theorem 7.2.23 (Compositionality)
Let C1,C2,C′

1,C′
2 be contracts such that C1 and C2 are dominable. If C′

1 v C1 and
C′

2 v C2 then C′
1 and C′

2 are dominable and C′
1�C′

2 v C1�C2.

Proof. In this proof, we omit the superscript nf for the guarantees (and for the
assumptions, as before) to improve readability. Assume that C1 = (A1,G1), C2 =
(A2,G2), C′

1 = (A′
1,G′

1), and C′
2 = (A′

2,G′
2).

Dominability of C′
1 and C′

2 is already shown in Theorem 7.2.15. We now prove
C′

1�C′
2 v C1�C2. Let E ∈ JC1�C2Kenv, hence

E ≤maxG1⊗G2→((A1�G2)∧ (A2�G1)).
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From the contract refinement of the individual contracts we can conclude that
A1 ≤ A′

1, A2 ≤ A′
2, G′

1 ≤G1 and G′
2 ≤G2. Applying the properties of conjunction,

quotient, and compositionality of refinement (see Chapter 2) we can infer that
(A1�G2)∧ (A2�G1)≤ (A′

1�G′
2)∧ (A′

2�G′
1). It follows that

maxG1⊗G2→((A1�G2)∧ (A2�G1))≤ (A′
1�G′

2)∧ (A′
2�G′

1)

and since the left hand side is a correct environment for G′
1 ⊗G′

2 (by G′
1 ⊗G′

2 ≤
G1 ⊗G2 and preservation of environment correctness), it holds that

maxG1⊗G2→((A1�G2)∧ (A2�G1))≤maxG′
1⊗G′

2→((A′
1�G′

2)∧ (A′
2�G′

1)), (?)

hence E ∈ JC′
1�C′

2Kenv.
Let I ∈ JC′

1�C′
2Kbeh, thus

I ≤maxG′
1⊗G′

2→
((A′

1�G′
2)∧(A′

2�G′
1)) G′

1 ⊗G′
2.

Hence by Lemma 7.2.3 and (?) we get that

I ≤maxG1⊗G2→((A1�G2)∧(A2�G1)) G′
1 ⊗G′

2.

From the first condition of dominance we know that

G′
1 ⊗G′

2 ≤maxG1⊗G2→((A1�G2)∧(A2�G1)) G1 ⊗G2

and by transitivity of refinement we can conclude that I ∈ JC1�C2Kbeh which
finishes the proof.

What is still missing to form a specification theory for contracts is a notion of
environment correctness which is preserved by contract refinement. It is a slight
discrepancy that arises here in the theory for contracts: Environment correctness
must entail composability, thus our only choice is dominability as environment
correctness which is a symmetric condition rather than a non-symmetric one.
The reason why this discrepancy arises here is that composability is a semantic
rather than a syntactic condition. Preservation of environment correctness then
amounts to preservation of dominability which was proven in Theorem 7.2.15.

Lastly we have to prove that contract composition is commutative and asso-
ciative. Interestingly, associativity can only be proven if we impose the following
assumption on environment correctness.

Assumption 4. Let S1,S2,E ∈ S be specifications. If S1 → S2 ⊗ E and S2 →
S1 ⊗E, then S1 ⊗S2 → E.

The above assumption requires that we can check individually whether S1
and S2 feel well in the remaining environment S2 ⊗E and S1 ⊗E, respectively,
in order to conclude that S1 ⊗S2 feels well in E. We will see later that strong
environment correctness (for both MIOs and MIODs) satisfies this assumption,
in contrast to weak environment correctness which does not satisfy this property.
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Lemma 7.2.24
Contract composition � is commutative and associative.

Proof. Commutativity simply follows form commutativity of conjunction ∧ and
composition ⊗. For proving associativity of �, assume (C1�C2)�C3 for con-
tracts Ci = (A i,G i), 1 ≤ i ≤ 3. We show that C1� (C2�C3) is defined and both
assumptions and guarantees are equivalent. For the guarantees this is easy to
see:

(G1 ⊗G2)⊗G3 =G1 ⊗ (G2 ⊗G3)

follows from associativity of composition. Let us consider the assumptions: we
have to prove that

max(G1⊗G2)⊗G3→((maxG1⊗G2→((A1�G2)∧ (A2�G1))�G3)∧ (A3� (G1 ⊗G2))) (1)

is equivalent to

maxG1⊗(G2⊗G3)→((A1� (G2 ⊗G3))∧ (maxG2⊗G3→((A2�G3)∧ (A3�G2))�G1)). (2)

Let X be a specification refining (1). Then

• G1 ⊗G2 ⊗G3 → X ,

• G2 ⊗G3 ⊗ X ≤ A1, and thus also G1 →G2 ⊗G3 ⊗ X ,

• G1 ⊗G3 ⊗ X ≤ A2, and thus also G2 →G1 ⊗G3 ⊗ X ,

• G1 ⊗G2 ⊗ X ≤ A3, and thus also G3 →G1 ⊗G2 ⊗ X .

It follows that G1 ⊗ X ≤ A2�G3 and G1 ⊗ X ≤ A3�G2, thus G1 ⊗ X ≤ (A2�G3)∧
(A3�G2). From Assumption 4 it follows that G2 ⊗G3 → G1 ⊗ X , hence G1 ⊗ X ≤
maxG2⊗G3→((A2�G3)∧ (A3�G2)). Since we also know that G2⊗G3⊗X ≤ A1 and
hence X ≤ A1� (G2 ⊗G3), we can infer altogether that

X ≤ (A1� (G2 ⊗G3))∧ (maxG2⊗G3→((A2�G3)∧ (A3�G2))�G1).

Finally, X also refines (2) because G1 ⊗G2 ⊗G3 → X . The other direction can be
proven analogously.

In order to obtain a specification theory for contracts, we have to fix a subset
of contracts that form the implementations, i.e. contracts that are final elements
with respect to contract refinement. As we do not further study these final ele-
ments here, we just define the set of final elements semantically: A contract C
is an implementation if whenever C′ v C for some contract C′, then C v C′. By
Corollary 7.2.11 a sufficient condition for a contract (A,G) to be an implementa-
tion w.r.t. v is that (1) (A,G) is in normal form, (2) G is an implementation and
(3) for any A′ ∈S, whenever A ≤ A′ and A′ 6≤ A, then G 6→ A′.
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Corollary 7.2.25
Contracts itself form again a specification theory, with environment correctness
defined as existence of a dominating contract.

Proof. Theorem 7.2.15 shows that dominance is preserved contract refinement.
Compositionality of contract refinement is shown in Theorem 7.2.23. Contract
implementations are final elements with respect to contract refinement.

Remark 7.2.26
Unfortunately, due to the discrepancy mentioned before, it is not possible to define
a specification theory morphism from a specification theory to its derived contract
theory because definedness of S ⊗T in the underlying specification theory does
not imply definedness of (AS,S)� (AT ,T) in general where AS and AT are some
(possibly maximal) correct environments of S and T.

7.3 Modal Contracts based on ThdMIO
strong

In this section we illustrate our generic constructions for moving from a specifica-
tion theory to contracts by considering the complete specification theory ThdMIO

strong
for deterministic MIOs. We first justify this claim in Section 7.3.1 that one can
indeed define conjunction, quotient and a maximal environment correctness op-
erator for deterministic MIOs. After discussing normalization of contracts in
Section 7.3.2 we study a small example in Section 7.3.3 that illustrates contracts
based on deterministic MIOs.

7.3.1 Completeness of ThdMIO
strong

In Section 3.3 we have established the specification theory ThdMIO
strong for determin-

istic MIOs based on strong modal refinement and strong environment correct-
ness. We now show that it is a complete specification theory, i.e. the additional
specification operators conjunction, quotient and a maximal environment oper-
ator can be defined. The assumption of determinism is in fact crucial for the
maximality of the operators; see [69] for an example showing that in general no
conjunction operator exists for non-deterministic modal transition systems.

Pruning

Before we introduce conjunction and quotient for deterministic MIOs, we have
to introduce a pruning operator. When synthesizing new MIOs, it may happen,
e.g. when conjoining MIOs, that there is a local inconsistency due to mismatch-
ing requirements. For instance, assume two MIOs S1 and S2 which describe the
behaviour of the same component and they shall be conjoined to form a largest
common refinement of both S1 and S2. Assume that there is a pair of states
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(s1, s2) of S1 ∧S2 with a must-transition enabled in s1 labelled with α and there
is no may-transition enabled in s2 labelled with α, then there is obviously an
inconsistency in the requirements. Thus, this pair of states (s1, s2) is marked as
inconsistent during the construction of S1 ∧S2 and all states, that necessarily
lead to this state (s1, s2) in S1 ∧S2 by a sequence of must-transitions are con-
sidered inconsistent as well. The pruning ρ takes then a MIO and a subset of
inconsistent states and removes all those states and all states that necessarily
lead to inconsistent states.

The pruning operator for a deterministic MIO S = (StS, s0,ΣS, S, S) is for-
mally defined as follows. First, the must-predecessor is defined, for a set of states
B ⊆StS, by

mustPreS(B), {s ∈StS | ∃α ∈⋃
ΣS, s′ ∈ B : s α

S s′}

and mustPre0
S(B), B, mustPre j+1

S (B),mustPreS(mustPre j
S(B)) for j ≥ 0. Given a

set  ⊆StS of states of S, the pruning of  in S is defined by the tuple

(StρS, s0,ΣS, ρ, ρ)

where

StρS =StS \mustPre|StS |
S ( ),

ρ = ∩(
StρS ×⋃

ΣS ×StρS
)
, and

ρ = ∩(
StρS ×⋃

ΣS ×StρS
)
.

and where |StS| denotes the number of states of S.
One can easily observe that ρ (S) is a deterministic MIO if and only if s0 ∉

mustPre|StS |
S ( ). Moreover, if ρ (S) is a deterministic MIO, the implementation

semantics of S is preserved by ρ (S) when one considers only implementations
I of S for which there exists a refinement relation R ⊆ I × (StS \ ).

Conjunction

Conjoining deterministic MIOs is the operation of computing a largest common
refinement of two deterministic MIOs with the same action signature. Conjunc-
tion of (deterministic) modal transition systems was already defined by Larsen
in 1989 [121].

Definition 7.3.1 (Conjunction)
Let S,T ∈ dMIO with the same action signature Σ and let S∧pre T be the tuple

ρ 
(
(StS ×StT , (s0, t0),Σ, , )

)
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where the set  ⊆ StS ×StT of inconsistent states and the transition relations ,
are defined by the following rules:

s α
S t 6 α

T

(s, t) ∈ 
s 6 α

S t α
T

(s, t) ∈ 

s α
S s′ t α

T t′

(s, t) α (s′, t′)

s α
S s′ t α

T t′

(s, t) α (s′, t′)

s α
S s′ t α

T t′

(s, t) α (s′, t′)
Conjunction ∧ is defined by

S∧T ,

{
S∧pre T if S∧pre T is a deterministic MIO,
undefined otherwise,

for any S,T ∈ dMIO.

Example 7.3.2
We illustrate conjunction of deterministic MIOs again with the vending machine.
Consider two specifications S and T with the same action signature, shown in
Figure 7.7. S expresses that after dispensing coffee or tea, the machine must beep
before any other action is performed. T is a vending machine that must be able to
dispense coffee, and after dispensing a drink, the machine beeps. Additionally, the
machine allows a coin being inserted twice in a row. The machine then dispenses
either coffee or tea, and returns to the state t1.

We are interested in whether these two (loose) specifications are consistent in
the sense that there exists a common refinement of S and T. Applying the con-
junction operator as defined in Definition 7.3.1 results in S ∧T, shown in Fig-
ure 7.8. The state (s1, t1) is an “inconsistent” state because s1 requires beep, how-
ever, t1 does not allow beep. Thus, there is no common refinement of this pair
of states (s1, t1). S ∧ T is then the result of pruning all those states in which
must-transitions lead to such an “inconsistent” state – in our case, we have to
additionally remove the state (s0, t2).

s0 s1

coffee!
tea!

beep
coin?

S

beep

coin

coffee

tea
t0 t1 t2t3

coin? coin?
coffee!

coffee!

tea!
tea!

beep

T

beep

coin

coffee

tea

Figure 7.7: Two MIO specifications for a vending machine.
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(s0, t0) (s0, t1) (s0, t2)(s1, t3) (s1, t1) coin?
coin?

coffee!

coffee!

tea!

tea!
beep

S∧T

beep

coin

coffee

tea

Figure 7.8: The conjunction of S and T from Figure 7.7.

Theorem 7.3.3
Let S,T ∈ dMIO with the same action signature Σ.

1. S∧T is defined if and only if there exists X ∈ dMIO with action signature Σ
such that X ≤s S and X ≤s T.

2. If S∧T is defined, then for any X ∈ dMIO with action signature Σ, whenever
X ≤s S and X ≤s T, then X ≤s S∧T.

Proof. 1. If S ∧T is defined, then one can easily show that S ∧T ≤s S and
S∧T ≤s T. For instance, S∧T ≤s S is shown by the refinement relation

{((s, t), s) | s ∈StS, t ∈StT }.

For the other direction, assume that S ∧T is undefined and assume that
there is X ∈ dMIO such that X ≤s S and X ≤s T. Then the pruning operator
removed the initial state during the construction of S∧T. But this can only
happen if there are must-transitions leading from the initial state to some
inconsistent state (s, t) ∈ in which w.l.o.g. s α and t 6 α . As S and T are
deterministic, X would have to implement these must-transitions in S and
T by a unique sequence of must-transitions in X , leading to a state x ∈StX
such that x is related to s and t. This is a contradiction, because x would
have to implement s α which is, however, not allowed because of t 6 α .

2. Assume that S∧T is defined, and assume that X ≤s S and X ≤s T demon-
strated by refinement relations R1 and R2, respectively. The refinement
X ≤s S∧T is shown by the refinement relation

{(x, (s, t)) | (x, s) ∈ R1, (x, t) ∈ R2}.

Corollary 7.3.4
Let S,T ∈ dMIO such that S∧T is defined. Then JS∧TKs = JSKs ∩ JTKs.
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Quotient

Recall that the quotient operator � is adjoint to composition: T �S is a most
general solution X for the refinement statement S⊗X ≤ T. We first note that the
quotient T�S has the signature ΣT�ΣS, as explained in the following. Given the
action signature ΣT of T and ΣS of S, ΣT is quotientable by ΣS if (

⋃
ΣS) ⊆ (

⋃
ΣT)

and Σint
S ⊆Σint

T , Σout
S ∩Σext

T ⊆Σout
T and Σin

S ∩Σext
T ⊆Σin

T .

Definition 7.3.5
Let ΣT and ΣS be two action signatures such that ΣT is quotientable by ΣS. The
quotient of ΣT by ΣS is defined as the action signature ΣT �ΣS , (Σin,Σout,Σint)
where

Σin = (Σin
T \Σin

S )∪ (Σout
S \Σout

T ),

Σout = (Σout
T \Σout

S )∪ (Σin
S \Σin

T ),

Σint =Σint
T \

(⋃
ΣS

)
.

It is easy to prove that ΣT�ΣS is the unique solution Σ to the statement ΣS⊗Σ=
ΣT .

By the modal synchronous composition with any shared external action be-
coming an internal action, the performing of some actions of S is not visible to
the quotient T �S: every external action of S not shared with T �S, and any
internal action of S are not visible to T. The state space of the quotient T �S
consists, on the one hand, by elements of P≥1(StT ×StS), which contains all the
state pairs (t, s) with the meaning that T is currently in state t and S is in state
s. Note that, since some actions of S are not visible for the quotient T �S, any
reachable state of s′ from s with actions not visible to T �S must be taken into
account as well, and any state in P≥1(StT ×StS) must be closed with respect to
this reachability property. On the other hand, the state space of the quotient
T �S contains a distinguished universal state univ in which the MIO can show
arbitrary behaviour. The universal state is needed to achieve maximality of the
quotient.

Example 7.3.6
Consider an example of a verification component T, that can receive a request by
action check, then performs an internal verification, action verify, then can either
do the external action ok or notOk, and then goes back to the initial state with
the internal action ready. Assume that we are given a component S, that already
partially implements the component T: when receiving a new check request, then,
it forwards this request to another component, and then goes back to the initial
state with ready. The question is now whether there exists a component T�S that,
when composed with S, realizes (more precisely, refines) the given specification T.
As expected, the quotient T�S waits for a verification request, then answers with
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t0 t1

t2t3

check?

verify

ok!

notOk!

ready

T

ready verify

check

ok

notOk

s0 s1

s2

check?

verify!ready?

S

check

verify

ready

{(t0, s0), (t1, s1)}

{(t2, s2)}

{(t3, s2)}

univ

verify?

ok!
notOk!

ready!

ready!

verify?

verify?

verify

ready

T�S

ok

notOk

Figure 7.9: A simple example for the quotient operation
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ok or notOk and then synchronizes with S on the action ready to go back to the
initial state. The additional may-transitions to the universal state univ indicate
which transitions are additionally allowed (and which will not be synchronized
when composing with S). In the following we show that the quotient operator �
can be defined such that T �S is a most general specification X that solves the
problem S⊗ X ≤s T.

Definition 7.3.7 (Quotient)
Let S,T ∈ dMIO such that ΣT is quotientable by ΣS. Let T�pre S be the tuple

ρ 
(
(P≥1(StT ×StS)∪ {univ},R(t0, s0),ΣT �ΣS, , )

)
in which, for any states t ∈StT , s ∈StS,

R(t, s), {(t′, s′) | ∃σ ∈ (
⋃
ΣT \

⋃
(ΣT �ΣS))∗ : t σ

T t′ and s σ
S s′},

and in which the set of inconsistent states  ⊆ P≥1(StT ×StS) is defined as fol-
lows: A set q ∈P≥1(StT ×StS) is in  if at least one of the following conditions is
satisfied:

1. Let α ∈⋃
ΣS,α ∉⋃

(ΣT �ΣS).

(a) ∃(t, s) ∈ q : t α
T and s 6 α

S,

(b) ∃(t, s) ∈ q : t 6 α
T and s α

S,

2. Let α ∉⋃
ΣS,α ∈⋃

(ΣT �ΣS).

∃(t, s), (t′, s′) ∈ q : t α
T and t′ 6 α

T ,

3. Let α ∈⋃
ΣS,α ∈⋃

(ΣT �ΣS).

(a) ∃(t, s) ∈ q : t α
T and s 6 α

S,

(b) ∃(t, s), (t′, s′) ∈ q : t α
T and s′ α

S and t′ 6 α
T .

Moreover, the transition relations , are defined by the following rules:
Let q ∈P≥1(StT ×StS)\ .

1. For any α ∉⋃
ΣS,α ∈⋃

(ΣT �ΣS):

∃(t, s) ∈ q : t α
T

q α ⋃
{R(t′, s) | ∃t ∈ T : (t, s) ∈ q, t α

T t′}

∀(t, s) ∈ q : t α
T

q α ⋃
{R(t′, s) | ∃t ∈ T : (t, s) ∈ q, t α

T t′}
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2. For any α ∈⋃
ΣS,α ∈⋃

(ΣT �ΣS):

∃(t, s) ∈ q : t α
T

q α ⋃
{R(t′, s′) | ∃(t, s) ∈ q : t α

T t′, s α
S s′}

∃(t, s) ∈ q : s α
S ∀(t, s) ∈ q : (s α

S implies t α
T)

q α ⋃
{R(t′, s′) | ∃(t, s) ∈ q : t α

T t′, s α
S s′}

∀(t, s) ∈ q : s 6 α S

q α univ

3. For any α ∈⋃
(ΣT �ΣS):

univ α univ

The quotient operator � is defined by

T�S,

{
T�pre S if ΣT is quotientable by ΣS and T�pre S ∈ dMIO,
undefined otherwise,

for any S,T ∈ dMIO.

The set of inconsistent states  contains those states q ∈ P≥1(StT ×StS) for
which there is a unsatisfiable requirement: either there is some behaviour of S
that cannot be interfered by T �S and does not refine T (conditions in 1.), or
there are two states of T in q with a requirement for T�S that are contradicting
(condition 2.), or there is a requirement in T for an action shared between S and
T�S that is not satisfied by any state s that is possible according to q (conditions
in 3.).

For the transition relations, note that the target states contain all those
states that are reachable by the respective action, but must also contain states
that S may perform without synchronizing with T�S. Also note the rule in (2.)
that introduces transitions to the universal state univ: whenever a shared action
α ∈ (

⋃
ΣS)∩ (

⋃
(ΣT �ΣS)) is not enabled in any possible state s ∈StS (according to

q), then this action will never synchronize and hence the quotient is allowed to
show arbitrary behaviour.

Observe that, to ensure that the above definition is well-defined, one has to
prove that the intermediate transition system in the above construction, before
pruning is applied, is indeed a proper deterministic MIO, i.e. satisfying ⊆ .
This can be seen as follows: Let q ∈P≥1(StT ×StS), and let α ∉ΣS, then

∃(t, s) ∈ q : t α
T implies ∀(t, s) ∈ q : t α

T
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because of inconsistency rule (2) in Definition 7.3.7. Similarly, the consistency
of transitions involving actions α ∈ ⋃

ΣS is also satisfied: Assume (t, s) ∈ q and
t α

T , then by rule (3a) we know that s α
S, hence ∃(t, s) ∈ q : s α

S. Finally,
from rule (3b),

∀(t, s) ∈ q : (s α
S implies t α

T)

follows.
The following theorem shows that the quotient operator � satisfies the ab-

stract properties of a quotient defined in Section 7.1.

Theorem 7.3.8
Let S,T ∈ dMIO.

1. T�S is defined if and only if there exists X ∈ dMIO such that S⊗ X ≤s T.

2. If T�S is defined, then S⊗(T�S)≤s T and for any X ∈ dMIO, if S⊗X ≤s T,
then X ≤s T�S.

Proof. 1. The implication from left to right is subsumed by the second state-
ment. For the other direction, assume that there exists X ∈ dMIO such
that S⊗ X ≤s T. Assume that pruning removes the initial state R(t0, s0).
This is the case if and only if there is a sequence of must-transitions in the
“intermediate” (unpruned) tuple of the quotient construction that lead to
an inconsistent state in  . In other words, there are must-transitions lead-
ing to a state that cannot be realized such that, when composed with S,
refines T. This contradicts with the fact that X is deterministic and solves
the equation, as X would have to implement all the must-transitions, nec-
essarily leading to this inconsistent state because of determinism. Thus,
pruning does not remove the initial state R(t0, s0) and T �S is defined.
Note that by construction of the transition relations, T�S is deterministic.

2. We first show that S⊗ (T�S)≤s T. We define a relation R by

R = { ((s, q), t) ∈ (StS ×P≥1(StT ×StS))×StT | (t, s) ∈ q } ,

and we show that R demonstrates S⊗ (T�S)≤s T. Obviously, it holds that
((s0,R(t0, s0)), t0) ∈ R.

(a) Assume (s, q) α
S⊗(T�S) (s′, q′).

• If α ∈ ⋃
ΣS, α ∉ ⋃

(ΣT �ΣS), then s α
S s′ and q = q′. We know

that (t, s) ∈ q, and since q ∉  , we have t α
T t′, and (t′, s′) ∈ q by

definition. Hence ((s′, q), t′) ∈ R.
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• If α ∉⋃
ΣS, α ∈⋃

(ΣT �ΣS), then s = s′ and q α
T�S q′ where

q′ =⋃
{R(t′, s) | ∃t ∈StT : (t, s) ∈ q, t α

T t′}.

For this transition in T �S to be present, we must have ∀(t, s) ∈
q : t α

T . Hence there exists t α
T t′ such that (t′, s) ∈ q′ by defi-

nition. It follows that ((s, q′), t′) ∈ R.

• If α ∈⋃
ΣS, α ∈⋃

(ΣT �ΣS), then we have s α
S s′ and q α

T�S q′

where
q′ =⋃

{R(t′, s′) | ∃(t, s) ∈ q : t α
T t′, s α

S s′}.

By the precondition of the (unique) rule which generates this tran-
sition, we know that there is t α

T t′ and hence (t′, s′) ∈ q′ and
((s′, q′), t′) ∈ R.

(b) Assume t α
T t′.

• If α ∈ ⋃
ΣS, α ∉ ⋃

(ΣT �ΣS), then s α
S s′ because of (t, s) ∈ q ∉  .

Hence (t′, s′) ∈ q and ((s′, q), t′) ∈ R.
• If α ∉ ⋃

ΣS, α ∈ ⋃
(ΣT �ΣS), then from q ∉  it follows that for all

(ṫ, ṡ) ∈ q, ṫ α
T . Hence there exists q α

T�S q′ with

q′ =⋃
{R(t′, s) | ∃t ∈ T : (t, s) ∈ q, t α

T t′}.

Thus (t′, s) ∈ q′, and ((s, q′), t′) ∈ R.
• If α ∈ ⋃

ΣS, α ∈ ⋃
(ΣT �ΣS), then from (t, s) ∈ q ∉  we can infer

that s α
S s′ and q α

T�S q′ with

q′ =⋃
{R(t′, s′) | ∃(t, s) ∈ q : t α

T t′, s α
S s′}.

Hence (t′, s′) ∈ q′ and ((s′, q′), t′) ∈ R.

We now show the second claim. Let S, X , and T as above, and assume that
S⊗ X ≤s T which is witnessed by a relation R. Then we define a relation
R′ by

R′ = { (x, q) ∈StX ×P≥1(StT ×StS) | ∀(t, s) ∈ q : ((s, x), t) ∈ R }
∪ { (x,univ) | x ∈StX }

where univ is the unique universal state in the construction of T �S. We
show that R′ demonstrates X ≤s T�S. Obviously, it holds that

(x0,R(t0, s0)) ∈ R′,
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because ((s0, x0), t0) ∈ R, and for any state (t, s) ∈R(t0, s0), (t, s) is reachable
from (t0, s0) be actions in

⋃
ΣS \

⋃
(ΣT �ΣS), respectively. Since these tran-

sitions are interleaved in the deterministic MIO S⊗ X and ((s0, x0), t0) ∈ R,
we know that ((s, x0), t) ∈ R.

Now, let (x, q) ∈ R′.

(a) Assume x α
X x′.

• If α ∈⋃
(ΣT �ΣS), α ∉⋃

ΣS, then t α
T for all (t, s) ∈ q. Hence

q α ⋃
{R(t′, s) | ∃t ∈StT : (t, s) ∈ q, t α

T t′}.

We still have to show that for all (t′′, s′′) ∈ ⋃
{R(t′, s) | ∃t ∈ StT :

(t, s) ∈ q, t α
T t′}, it holds ((s′′, x′), t′′) ∈ R. By assumption, we

know that ((s, x′), t′) ∈ R. Then any path with action sequence
σ ∈ (

⋃
ΣT\

⋃
(ΣT�ΣS))∗, starting from s, must be matched with the

unique path with the same action sequence σ, hence ((s′′, x′), t′′) ∈
R.

• If α ∈ ⋃
(ΣT �ΣS), α ∈ ⋃

ΣS, then we distinguish cases: If for all
(t, s) ∈ q, s 6 α

S, then q α univ and (x,univ) ∈ R′. Assume now
that there exists (t, s) ∈ q such that s α

S. We can infer that for
every (t, s) ∈ q, if s α

S then t α
T . Thus, by the rules of the

transition relation of the quotient, we get

q α ⋃
{R(t′, s′) | ∃(t, s) ∈ q : t α

T t′, s α
S s′}.

For every (t′′, s′′) ∈ ⋃
{R(t′, s′) | ∃(t, s) ∈ q : t α

T t′, s α
S s′} we

know that ((s′′, x′), t′′) ∈ R, by the same argument as above, hence

(x′,
⋃

{R(t′, s′) | ∃(t, s) ∈ q : t α
T t′, s α

S s′}) ∈ R′.

(b) Assume q α
T�S q′.

• If α ∈⋃
(ΣT �ΣS), α ∉⋃

ΣS, then

q′ =⋃
{R(t′, s) | ∃t ∈StT : (t, s) ∈ q, t α

T t′}

and there exists (t, s) ∈ q such that t α
T t′. Since ((s, x), t) ∈ R, we

know that x α
X x′ such that ((s, x′), t′) ∈ R. By the same argu-

mentation as above, we get that ((s′′, x′), t′′) ∈ R for all (t′′, s′′) ∈ q′.
Hence

(x′, q′) ∈ R′.
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• If α ∈⋃
(ΣT �ΣS), α ∈⋃

ΣS, then

q′ =⋃
{R(t′, s′) | ∃(t, s) ∈ q : t α

T t′, s α
S s′}

and there is (t, s) ∈ q such that t α
T t′. It follows that there exists

x α
X x′ and s α

S s′ such that ((s′, x′), t′) ∈ R. Again, ((s′′, x′), t′′) ∈
R for all (t′′, s′′) ∈R(t′, s′), hence

(x′, q′) ∈ R′.

Maximal Environment Operator

We already defined a quotient and a conjunction operator for deterministic MIOs
with strong modal refinement, so only a maximal environment operator for strong
environment correctness is missing to achieve a complete specification theory.

We first define the maximal correct environment maxS→s(Σ) for a given action
signature Σ and specification S.

maxS→s(Σ), (P≥1(S)∪ {univ},R(s0),Σ, , )

in which for all states t ∈ T,

R(s),
{
s′ ∈ S | ∃σ ∈ (

⋃
ΣS \

⋃
Σ)∗ : s σ

S s′
}

,

and the transition relations , are defined by the following rules:

∃s ∈ q : s α!
S

q α? ⋃
{R(s′) | ∃s ∈ q : s α!

S s′}

q α? ⋃
{R(s′) | ∃s ∈ q : s α!

S s′}

(1)
∀s ∈ q : s 6 α!

S

q α? univ
(2)

∃s ∈ q : s α?
S

q α! ⋃
{R(s′) | ∃s ∈ q : s α!

S s′}
(3)

∀s ∈ q : s 6 α?
S

q α! univ
(4)

α ∈⋃
Σ α ∉⋃

ΣS

q α q
(5)

α ∈⋃
Σ

univ α univ
(6)

Lemma 7.3.9
Let S ∈ dMIO and Σ be an action signature such that ΣS and Σ are composable.
Then S →s maxS→s(Σ), and for all E ∈ dMIO with action signature Σ, if S →s E,
then E ≤s maxS→s(Σ).
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Proof. We first show that S →s maxS→s(Σ). Observe that for any reachable state
(s, q) in S⊗maxS→s(Σ) we have that s ∈ q. Assume that s α!

S with α ∈Σout
S ∩Σin.

Then, by rule (1) in Definition 7.3.10, we know that q α? in maxS→s(Σ).
To prove the second claim, let E ∈ dMIO with action signature Σ and assume

that S →s E. E ≤s maxS→s(Σ) is proven by the relation

R = { (e, q) ∈StE ×P≥1(StS) | ∀s ∈StS : s ∈ q iff (s, e) is reachable in S⊗E }
∪ { (s,univ) | s ∈StS } .

Clearly, we have that (e0,R(s0)) ∈ R, because any state in R(s0) is reachable
from the initial state with actions not in Σ. Let (e, q) ∈ R. The only interesting
case is to consider q α? q′ in maxS→s(Σ). Then, by rule (1) there must exist s ∈ q
such that s α!

S s′. Since S →s E, we must have e α?
E e′. By definition of q′, we

know that (e′, q′) ∈ R.

Definition 7.3.10 (Maximal environment operator)
The maximal environment operator for strong environment correctness is defined
by

maxS→s(E),

{
E∧maxS→s(ΣE) if S⊗E and E∧maxS→s(ΣE) are defined,
undefined otherwise,

for any S,E ∈ dMIO.

The maximal environment operator w.r.t. strong environment correctness, as
defined above, satisfies the conditions of a maximal environment operator from
Section 7.1.
Theorem 7.3.11
Let S,E ∈ dMIO.

1. maxS→s(E) is defined if and only if there exists E′ ∈ dMIO such that E′ ≤s E
and S →s E′.

2. If maxS→s(E) is defined, then maxS→s(E) ≤s E, S →s maxS→s(E), and for all
E′ ∈ dMIO, if E′ ≤s E and S →s E′, then E′ ≤s maxS→s(E).

Proof. 1. Assume that maxS→s(E) is defined which is E∧maxS→s(ΣE) by def-
inition. Then we can take E ∧maxS→s(ΣE) as the E′ that we are look-
ing for. Since maxS→s(ΣE) is a strongly correct environment for S (see
Lemma 7.3.9), also E ∧maxS→s(ΣE) is a strongly correct environment for
S by preservation of strong environment correctness. The refinement E∧
maxS→s(ΣE)≤s E follows from the properties of conjunction.

For the other direction assume E′ ∈ dMIO such that E′ ≤s E and S →s E′.
Thus we know that E′ ≤s maxS→s(ΣE) as well as E′ ≤s E. Hence E′ ≤s
maxS→s(E) because conjunction is a greatest lower bound with respect to
strong modal refinement.
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2. This follows from very similar arguments as in the previous paragraph.

Summing Up: A Complete Specification Theory for MIOs

Finally, we obtain a complete specification theory for deterministic MIOs.

Corollary 7.3.12
ThdMIO

strong is a complete specification theory with quotient �, conjunction ∧ and the
maximal environment operator max·→s(·) as defined above.

7.3.2 Modal Contracts
We assume a fixed global set Act of action labels. Such a fixed global set of
action labels is needed because the assumption of a contract must encompass
all actions of possible environments, i.e. all actions of contracts that are later
considered for composition must be known in advance. This is caused by the
fact that we use strong modal refinement which does not allow new internal
actions in a refinement hence an assumption in a contract must already take
into account all possible internal actions of any environments.

A modal contract is a pair (A,G) with A,G ∈ dMIO such that G →s A. We
restrict modal contracts to those pairs (A,G) for which ΣA⊗ΣG =ΣAct where ΣAct
is the action signature determined by Σin

Act = Σout
Act = ; and Σint

Act = Act. Note that
due to this signature restriction and composability of A and G the external ac-
tions of A and G must be complementary, i.e. Σin

A =Σout
G and Σout

A =Σin
G . Although

our generic constructions in the previous section does not allow such restrictions
on the signatures (because signatures of specifications are not considered), it is
straightforward to see that contract composition will be closed under this prop-
erty.

Before we go on with discussing semantics of modal contracts, we would
like to stress that MIOs are very suitable for expressing assumptions. May-
transitions allow to specify loose assumptions leaving open many possible design
choices for the environment. Furthermore, must-transition can express local
liveness properties that go beyond specifications based on single MIOs: with a
modal contract, we can specify that an input of the guarantee G must be served
by the environment by putting a must-transition with the corresponding output
in A. Examples of modal contracts with MIOs are shown in the next section.

In order to provide a characterization of relativized refinement – written
S ≤s,E T in the following – and hence in particular a characterization of the
behaviour semantics of a contract, we define a weakening operator that is used
to obtain the normal form of a contract. The weakening of a guarantee G by an
assumption A, written ABG, weakens G by taking into account A by modifying
or adding, for each input action β ∈ Σin

G , may-transitions labelled with β to the
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universal state in G whenever A is not allowed to perform β ∈ Σout
A . Note that

such a weakening is done only for input actions of G, not for output actions of G,
because we want to have environment correctness G →s A preserved. Formally,
the weakening operator is defined as follows.

Definition 7.3.13 (Weakening)
Let A,G ∈ dMIO such that A and G are composable and Σin

A =Σout
G , Σout

A =Σin
G . The

weakening of G by A is defined by

ABG, ((P≥1(A)×G)∪ {univ}, (R(a0), g0),ΣG , , )

where, for any a ∈ A,

R(a), {a′ ∈ A | a τ∗
A a′}

and , are defined as the smallest relations satisfying the following rules:
for β ∈Σint

G :

g
β

G g′

(q, g)
β

(q, g′)
(1)

g
β

G g′

(q, g)
β

(q, g′)
(2)

for β ∈Σext
G :

∃a ∈ q : a
β

A g
β

G g′

(q, g)
β

(
⋃

{R(a′) | ∃a ∈ q : a
β

A a′}, g′)
(3)

∃a ∈ q : a
β

A g
β

G g′

(q, g)
β

(
⋃

{R(a′) | ∃a ∈ q : a
β

A a′}, g′)
(4)

β ∈Σin
G ∀a ∈ q : a 6 β

A

(q, g)
β

univ

(5)

for β ∈⋃
ΣG :

β ∈⋃
ΣG

univ
β

univ

(6)

The weakening operator adds to every state in G a set of states of A in which
A can possibly be in when G is composed with A. Rules (1) and (2) preserve
internal transitions in G, rules (3) and (4) preserve also the external transitions
in G provided that A can possibly perform this action as well. Rule (5) adds an
input transition to the universal state whenever A cannot perform this action.
Finally, rule (6) makes sure that in the universal state all actions are allowed,
i.e. in the universal state ABG may show arbitrary behaviour.

The properties of the weakening operator are summarised in the following
lemma.



186 7. Moving from Specification Theories to Contracts

Lemma 7.3.14
Let (A,G) be a modal contract. Then the following are satisfied:

(a) AB (ABG)= ABG,

(b) A⊗G = A⊗ (ABG),

(c) ABG →s A.

(d) ABG = AmaxBG, with Amax is the maximal implementation of A with the
transition relations defined by Ã , Ã , A.

Proof. We first observe that q ∈ P≥1(A) in any reachable state (q, g) in ABG
contains exactly all those states a ∈ A for which (a, g) is a reachable state in
A⊗G.

(a) This is an immediate consequence from the observation above: ABG already
takes into account all reachable states in A, and in the second weakening
AB(ABG) no input-transitions are added or modified; all states in AB(ABG)
are of the form (q, (q, g)) or univ.

(b) This is again an easy consequence of the fact that G and ABG only differ in
input transitions that are not synchronized when composed with A, hence do
not appear in the composition.

(c) Let ((q, g),a) be a reachable state in (ABG)⊗ A – note that (univ,a) cannot
be a reachable state. Reachability of ((q, g),a) implies reachability of (g,a) in
G⊗A, in particular a ∈ q. If (q, g)

β!
ABG , then also g

β!
G by rule (3), hence

a
β?

A by G →s A.

(d) The construction of ABG only refers to the may-transition relations which
can be easily seen when looking at the rules (1) – (6).

Theorem 7.3.15
Let (A,G) be a modal contract. Then, for any S ∈ dMIO, S ≤s,A G if and only if
S ≤s ABG.

Proof. ⇒: We assume S ≤s,A G and show S ≤s ABG. Let Amax be the maxi-
mal implementation of A (see Lemma 7.3.14). We know that G →s A, and since
Amax ≤s A, by Lemma 7.2.4 we can infer that S →s Amax and Amax⊗S ≤s Amax⊗G
which is demonstrated by a refinement relation R. Let us define a relation
Q ⊆StS × (P≥1(StAmax)×StG) by

Q = {(s, (q, g)) | ∀a ∈ q : ((a, s), (a, g)) ∈ R}∪ {(s,univ) | s ∈StS}.

We show that Q proves S ≤s (AmaxBG), and since AmaxBG = ABG is satisfied
by Lemma 7.3.14, we get S ≤s (ABG).
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First, we have to show that (s0, (R(a0), g0)) ∈Q. We know that

((a0, s0), (a0, g0)) ∈ R,

and every state a ∈ R(a0) is by definition reachable by internal transitions in
Amax; it follows that (a, s0) is reachable by internal transitions which are simu-
lated by (a0, g0) to (a, g0) such that ((a, s0), (a, g0)) ∈ R. Thus (s0, (R(a0), g0)) ∈Q.

Second, let (s, (q, g)) ∈Q.

1. Assume s
β

S s′.

Case β ∈Σint
G . Then, for all a ∈ q, (a, s)

β
A⊗S (a, s′), hence (a, g)

β
A⊗G

(a, g′) and ((a, s′), (a, g′)) ∈ R. It follows that (s′, (q, g′)) ∈Q.

Case β ∈Σout
G . Then, because S →s Amax, we know that for all a ∈ q, we

have a
β

Amax . Then (a, s)
β

A⊗S (a′, s′), hence (a, g)
β

A⊗G (a′, g′)
and

((a′, s′), (a′, g′)) ∈ R.

It follows that (by determinism of G) that there is a unique g
β

G g′,

thus (q, g)
β

AmaxBG (q′, g′) with

q′ =⋃
{R(a′) | ∃a ∈ q : a

β
Amax a′}.

The claim (s′, (q′, g′)) ∈ Q follows then with the same arguments used
above in the demonstration of (s0, (R(a0), g0)) ∈Q.

Case β ∈Σin
G . If for all a ∈ q, a 6 β!

Amax , then by rule (5) we can infer that

(q, g)
β

AmaxBG univ and then (s′,univ) ∈ Q. If there exists a ∈ q such

that a
β!

Amax a′, then the proof of (s′, (q′, g′)) ∈ Q is analogous to the
previous case.

2. Assume (q, g)
β

AmaxBG (q′, g′). This transition must come from rule (3)

thus there is some a ∈ q such that a
β

Amax a′. Let a ∈ q be an arbitrary

state in Amax with a
β

Amax a′. Since Amax is an implementation, we also

know that a
β

Amax a′. Then (a, s)
β

A⊗S (a′, s′), hence (a, g)
β

A⊗G (a′, g′)
and ((a′, s′), (a′, g′)) ∈ R. It follows that (by determinism of S) that there is

a unique s
β

S s′. The claim (s′, (q′, g′)) ∈ Q follows then with the same
arguments used above in the demonstration of (s0, (R(a0), g0)) ∈Q.
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Finally, observe that conditions of a refinement relation are also satisfied for the
pairs (s,univ) ∈Q. This finishes the proof that S ≤s,A G implies S ≤s ABG.

⇐: For the other direction assume Q as a refinement relation demonstrating
S ≤s (ABG). We can assume Ā ≤s A with refinement relation P and G →s Ā
(which already holds by assumption of the theorem).

We first show that S →s Ā. By Lemma 7.3.14 we know that ABG →s A, and
since S ≤s ABG we can infer by preservation of environment correctness that
S →s A, and again Ā ≤s A implies S →s Ā.

Second, we show that StĀ ⊗StS ≤s StĀ ⊗StG . We define R ⊆ ((Ā×S)× (Ā×G))
by

R = {((ā, s), (ā, g)) | ∃a ∈StA, q ∈P≥1(StA) : (ā,a) ∈ P and a ∈ q and (s, (q, g)) ∈Q}.

Clearly it holds that ((ā0, s0), (ā0, g0)) ∈ R. Now let ((ā, s), (ā, g)) ∈ R. We can as-
sume that there is a ∈StA, q ∈P≥1(StA) such that (ā,a) ∈ P, a ∈ q and (s, (q, g)) ∈
Q.

1. Assume (ā, g)
β

Ā⊗G (ā′, g′). We only consider the case when β is a shared

action of A and G. Then ā
β

Ā ā′ and g
β

G g′. Then a
β

A a′ such that

(ā′,a′) ∈ P. Then (q, g)
β

ABG (q′, g′) and a′ ∈ q′ according to rule (4), thus

s
β

S s′ such that (s′, (q′, g′)) ∈ Q. It follows that (ā, s)
β

Ā⊗S (ā′, s′) such
that ((ā′, s′), (ā′, s′)) ∈ R.

2. Assume (ā, s)
β

Ā⊗S (ā′, s′). We only consider the case when β is a shared

action of A and S. Then ā
β

Ā ā′ and s
β

S s′. Then a
β

A a′ such

that (ā′,a′) ∈ P, and from (s, (q, g)) ∈Q it follows that there is (q, g)
β

ABG

(q′, g′), hence g
β

G g′. By definition of q′ in rule (3) we know that a′ ∈ q′.

Then (ā, g)
β

Ā⊗G (ā′, g′) and ((ā′, s′), (ā′, g′)) ∈ R.

A consequence of the above theorem is that the weakening operator can be
used to compute normal forms of modal contracts. This is shown in the following
theorem.

Theorem 7.3.16 (Normal form)
Let (A,G) be a modal contract. Then (A, ABG) is a semantically equivalent modal
contract in normal form. In the following we write Gnf for ABG if A is clear from
the context.

Proof. First of all, ABG →s A follows from part (c) of Theorem 7.3.14.
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Now, we have to show that (A, ABG) is semantically equivalent to (A,G),
thus we have to show that

J(A,G)Kbeh = J(A,Gnf )Kbeh and J(A,G)Kenv = J(A,Gnf )Kenv.

The latter equality is trivial. The former equality J(A,G)Kbeh = J(A,Gnf )Kbeh fol-
lows from part (a) of Lemma 7.3.14 and from Theorem 7.3.15 since

S ≤s,A G ⇐⇒ S ≤s (ABG)
⇐⇒ S ≤s (AB (ABG))
⇐⇒ S ≤s,A (ABG).

Thus, we have shown that ThdMIO
strong has normal forms.

Example 7.3.17
We would like to exemplify the computation of a normal form of a modal contract
by reconsidering the example of the introduction of this chapter. The modal con-
tract (A,G) is shown in Figure 7.10. As the environment is only allowed to send
a message (msg!) once, any behaviour of (A,G) is allowed to implement msg?
with a subsequent arbitrary behaviour. The normalized contract (A,Gnf ) with
Gnf = ABG is shown in Figure 7.11.

msg!

ack?

A
msg?

process

ack!

process

msg

ack

G

Figure 7.10: Modal contract (A,G), not in normal form

msg!

ack?

A
msg?

process

ack!

msg?

msg?

msg?
process
ack

process

msg

ack

Gnf

Figure 7.11: Modal contract (A,Gnf ) in normal form
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For a successful instantiation of the contract framework for ThdMIO
strong, we still

have to show Assumption 4:
Lemma 7.3.18
Whenever S1 →s S2 ⊗E and S2 →s S1 ⊗E, then S1 ⊗S2 →s E.

Proof. Let (s1, s2, e) be a reachable state in S1 ⊗ S2 ⊗ E. If s1
α!

S1 for some
α ∈Σout

S1
∩Σin

E , then according to S1 →s S2 ⊗E we must have

(s2, e) α?
S2⊗E which entails e α?

E .

If s2
α!

S2 for some α ∈Σout
S2

∩Σin
E , then we can use similar arguments to conclude

e α?
E.

Importantly, we prove that variant 1 of finding a dominating modal contract,
see page 163 results in a strongest dominating modal contract given that the
decompositions are independent of each other, i.e. there are no shared actions
between assumptions of the same modal contract. Under this condition of inde-
pendent assumptions, we prove that the dominating modal contract constructed
along the lines of variant 1 equals more precisely the dominating contract ob-
tained by contract composition �.
Corollary 7.3.19
Let C1 = (A′

1 ⊗ A′′
1,G1) and C2 = (A′

2 ⊗ A′′
2,G2) be two modal contracts. If

1. (
⋃
ΣA′

1
)∩ (

⋃
ΣA′′

1
)=; and (

⋃
ΣA′

2
)∩ (

⋃
ΣA′′

2
)=;,

2. A′
2 ⊗Gnf

2 ≤ A′′
1 and A′

1 ⊗Gnf
1 ≤ A′′

2, and

3. Gnf
1 ⊗Gnf

2 → A′
1 ⊗ A′

2,

then
C1�C2 = (A′

1 ⊗ A′
2,Gnf

1 ⊗Gnf
2 ).

Proof. We have to show that

maxGnf
1 ⊗Gnf

2 →(((A′
1 ⊗ A′′

1)�Gnf
2 )∧ ((A′

2 ⊗ A′′
2)�Gnf

1 ))= A′
1 ⊗ A′

2.

First, using condition (1.) it is straightforward to prove that (A′
1 ⊗ A′′

1)�Gnf
2

is defined if and only if A′
1 ⊗ (A′′

1 �Gnf
2 ) is defined, and if they are defined then

(A′
1⊗A′′

1)�Gnf
2 = A′

1⊗(A′′
1�Gnf

2 ). Then A′
1⊗(A′′

1�Gnf
2 )= A′

1⊗X ′
2 for some X ′

2 ∈ dMIO
such that A′

2 ≤s X ′
2. Similarly, we can infer that there exists X ′

1 ∈ dMIO such that
A′

2 ⊗ (A′′
2�Gnf

1 ) = A′
2 ⊗ X ′

1 and A′
1 ≤s X ′

1. Conditions (1.) and (2.) imply that A′
1

and A′
2 have no shared actions. Then one can show that

(A′
1 ⊗ X ′

2)∧ (X ′
1 ⊗ A′

2)= (A′
1 ∧ X ′

1)⊗ (X ′
2 ∧ A′

2)= A′
1 ⊗ A′

2.

Hence
C1�C2 = (A′

1 ⊗ A′
2,Gnf

1 ⊗Gnf
2 )

which is a valid modal contract because of condition (3.).
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Broker Client

transmit
reqAuth

auth

msg

confMsg

Figure 7.12: The static structure of the message transmission system

Broker Client
msg? receive a message
confMsg? receive a confidential message
transmit! deliver the message to the client transmit? receive the message
reqAuth! send out an authentication request reqAuth? receive an authentication request
auth? receive the (valid) authentication information auth! send the authentication information

Table 7.1: Intuitive meaning of actions

7.3.3 Example: Message Transmission System
As an illustration we consider a simple message transmission system which con-
sists of two components: a broker component delivers received messages to a
client component. A standard message is immediately delivered while a confiden-
tial message is only delivered after successful authentication of the client. The
static structure of this component system is shown in Figure 7.12. The meaning
of the input and output actions is summarized in Table 7.1. The fixed global set
Act of action names is given by {msg,confMsg, transmit,reqAuth,auth}.

In the following we specify broker and client component by different modal
contracts C1

Broker,C
2
Broker and C1

Client, C2
Client, respectively, and illustrate the two

variants of finding a (strongest) dominating contract, see Section 7.2.2.

Modal contracts for the broker component. Let us start with specifying
the broker component by the modal contract

C1
Broker = (A1,1

Broker ⊗ A1,2
Broker,G

1
Broker)

shown in Figure 7.13. Note that the assumption A1,1
Broker⊗A1,2

Broker is a composition
of two individual and independent assumptions on the environment of the broker
component. C1

Broker models the following requirements for the behaviour and the
environment.

• A1,1
Broker specifies that at any time the environment may send messages and

confidential messages.

• G1
Broker specifies that any standard message (msg) received by the environ-

ment is immediately sent to the client (transmit). Whenever the environ-
ment sends a confidential message (confMsg), then this message is only
delivered to the client if the broker receives valid authentication informa-
tion (auth) from the client after requesting it (reqAuth).
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• A1,2
Broker is an assumption on the client component and specifies that deliv-

ered messages as well as authentication requests must be received at any
time, and once an authentication request is received, the client must an-
swer with sending the authentication information to the broker. Note that
A1,2

Broker never disallows the sending of the authentication information.

Obviously, C1
Broker is a valid modal contract, satisfying the following to require-

ments: First, the action signatures of assumption and guarantee compose to an
action signature with the set Act of internal actions; second, A1,1

Broker⊗A1,2
Broker is a

strongly correct environment for G1
Broker since A1,2

Broker requires must-transitions
for every input action transmit? and reqAuth? to be enabled in every state. Fi-
nally, note that C1

Broker is in normal form since in the assumption A1,1
Broker⊗A1,2

Broker,
the outputs msg!, confMsg! and auth! are always allowed.

Consider another modal contract

C2
Broker = (A2

Broker,G
2
Broker)

for the broker component shown in Figure 7.14. The main difference between
C2

Broker and C1
Broker is that the assumption in C2

Broker is specified by a single MIO.
The guarantee GBroker

2 is the same as the guarantee G1
Broker of the previous modal

contract C1
Broker. The assumption A2

Broker formulates requirements on the whole
environment of the broker (including the client component), basically following
the same control flow of the guarantee G2

Broker. The assumption A2
Broker expresses

that

• any action is allowed in any state;

• once a confidential message was sent in the initial state, the environment
is obliged to answer any authentication request as the transition labelled
with auth! is a must-transition.

The modal contracts C2
Broker is also in normal form as for every output action in

the environment there is a transition enabled in every state of the assumption.
We finally remark that C2

Broker is a refinement of C1
Broker. As both contracts

are in normal form, by Corollary 7.2.11 we only have to check that1

A1,1
Broker ⊗ A1,2

Broker ≤s A2
Broker and

G2
Broker ≤s G1

Broker.

1Both refinements have been checked in the MIO Workbench, see also Chapter 8.
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msg!
confMsg!

A1,1
Broker msg?

transmit!

confMsg?
reqAuth!

auth?

msg

confMsg

G1
Broker

transmit?

auth!

auth!reqAuth? reqAuth?

auth!

transmit?

reqAuth?
transmit?

A1,2
Broker

transmit

reqAuth

auth

Figure 7.13: C1
Broker = (A1,1

Broker ⊗ A1,2
Broker,G

1
Broker)

msg!

msg!
confMsg!
reqAuth?
auth!

msg!
confMsg!
transmit?
reqAuth?

msg!
confMsg!

transmit?
auth!

transmit?
reqAuth?

auth!

transmit?

confMsg!
reqAuth?

auth!

A2
Broker

msg?

transmit!

confMsg?
reqAuth!

auth?

msg

auth

confMsg

transmit

reqAuth

G2
Broker

Figure 7.14: C2
Broker = (A2

Broker,G
2
Broker)
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Modal contracts for the client component. Similar to the broker compo-
nent we consider two different variants of modal contracts for the client compo-
nent. The first modal contract

C1
Client = (A1

Client,G
1
Client)

is shown in Figure 7.15 and specifies that the client is always able to receive
messages and authentication requests. Furthermore, the client must be able to
answer authentication requests by sending the requested info to the broker. It is
easy to see that the modal contract is valid again (i.e. satisfies the signature re-
striction, and G1

Client →s A1
Client). Moreover, as there is a must-transition enabled

for any input action in any state of G1
Client, the modal contract C1

Client is in normal
form.

Another contract C2
Client = (A2

Client,G
2
Client), shown in Figure 7.16, specifies a

client which is not authorized to receive confidential messages and does not ac-
cept any authentication requests and never sends the authentication information
to the broker. According to the assumption A2

Client, the environment of the client
may show arbitrary behaviour. The guarantee G2

Client specifies that messages
are always received from the broker (transmit?). Note that the modal contract is
valid and is in normal form.

transmit!
auth?
msg
confMsg

transmit!
reqAuth!
msg
confMsg

reqAuth! auth?

msg confMsg

A1
Client

transmit?

reqAuth? reqAuth?

auth!

transmit?

reqAuth?
transmit?

transmit

reqAuth

auth

G1
Client

Figure 7.15: C1
Client = (A1

Client,G
1
Client)

Contract composition. For the illustration of contract composition we con-
sider the modal contracts C1

Broker, C2
Broker, C1

Client and C2
Client introduced above

and discuss all four possible compositions.

C1
Broker�C1

Client :
In this case, we construct C1

Broker�C1
Client by using Theorem 7.3.19: We can
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transmit!
reqAuth!
auth?
msg
confMsg

A2
Client

transmit?

transmit

reqAuth

auth

G2
Client

Figure 7.16: C2
Client = (A2

Client,G
2
Client)

verify that

(
⋃
ΣA1,1

Broker
)∩ (

⋃
ΣA1,2

Broker
)=; and

A1,1
Broker ⊗G1

Broker ≤s A1
Client and

G1
Client ≤s A1,2

Broker and

G1
Broker ⊗G1

Client →s A1,1
Broker

are satisfied, hence

C1
Broker�C1

Client = (A1,1
Broker,G

1
Broker ⊗G1

Client).

The contract composition C1
Broker�C1

Client is shown in Figure 7.17.

msg!
confMsg!

msg?

transmit

confMsg?
reqAuth

auth

msg

confMsg

transmit reqAuth auth

Figure 7.17: C1
Broker�C1

Client

C1
Broker�C2

Client :
In this case, we show that C1

Broker and C2
Client are not dominable, hence

the contract composition C1
Broker�C2

Client is undefined. Assume that there
exists E ∈ dMIO with action signature ΣA1,1

Broker
⊗ΣG1

Broker
such that

E⊗G2
Client ≤s A1,1

Broker ⊗ A1,2
Broker. (?)
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However, A1,1
Broker⊗A1,2

Broker requires that in the initial state there is a must-
transition enabled labelled with reqAuth? – as G2

Client disallows this ac-
tion to happen, the refinement statement (?) cannot hold. Thus, by Theo-
rem 7.2.17, C1

Broker and C2
Client are not dominable.

C2
Broker�C1

Client :
Since the assumption of C2

Broker is given as a single MIO for which no de-
composition is given a priori, we cannot make use of Theorem 7.3.19 for
a syntactic construction of C2

Broker�C1
Client. Nevertheless, as the specifica-

tion theory ThdMIO
strong is complete, we can compute the contract composition

C2
Broker�C1

Client according to its definition which yields the same contract
C1

Broker�C1
Client as shown in Figure 7.17.

C2
Broker�C2

Client :
Recall that C2

Client specifies a client that never accepts authentication re-
quests from the broker and never sends authentication information to the
broker. Again, similar to the previous case, the assumption of C2

Broker is not
given by the composition of two independent assumptions, hence we have
to compute C2

Broker�C2
Client by using the definition of contract composition

�. The result of C2
Broker�C2

Client is shown in Figure 7.18. As expected,
confidential messages may not be sent by the environment, because this
would lead to an unsatisfied assumption of the broker component which
assumes the authentication code to be received once it is requested. The
reader may verify that indeed C2

Broker�C2
Client is dominating C2

Broker and
C2

Client, in particular, if A� denotes the assumption of C2
Broker�C2

Client then

A�⊗G2
Client ≤s A2

Broker

A�⊗G2
Broker ≤s A2

Client.

Observe that the modal contract C2
Broker�C2

Client in Figure 7.18 is not in
normal form, thus C2

Broker�C2
Client is an example that contract composition

� not necessarily results in a modal contract in normal form.

7.4 Modal Contracts based on ThdMIOD
strong

As the second illustration, we instantiate our generic contract framework for
the specification theory ThdMIOD

strong , with strong modal refinement and strong en-
vironment correctness, see Section 4.3. We do not introduce a complete speci-
fication theory for MIODs– we are convinced that conjunction and a maximal
environment operator can be defined (though the latter would be very technical),
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msg!

msg?

transmit

confMsg?

msg

confMsg

transmit reqAuth auth

Figure 7.18: C2
Broker�C2

Client

however, whether quotienting is possible for MIODs is unknown so far (even for
deterministic MIODs) and is subject of future work.2

7.4.1 Modal Contracts
Similar to the instantiation of contracts for MIOs, we assume a fixed global set
Act of action labels. Modal contracts are defined as pairs (A,G) with A,G ∈
dMIOD such that

• G →d
s A

• and A⊗G is a closed MIOD, i.e.

– ΣA⊗ΣG =ΣAct where ΣAct is the action signature determined by Σin
Act =

Σout
Act =; and Σint

Act =;;

– V req
A =V prov

G and V prov
A =V req

G .

In order to illustrate the semantics of modal contracts that are using MIODs
for specifying assumptions and guarantees, a weakening operator B may pro-
vide a characterization of relativized refinement for MIODs as well as obtaining
normal forms of modal contracts, similarly to the case of MIOs. Crucially, in
comparison to the MIO case, the weakening operator B not just replaces or adds
may-transitions to the universal state for input actions that cannot be served by
the environment, but also adds may-transitions to the universal state for output
actions, with preconditions ϕ that are unsatisfiable by the environment (i.e. not
satisfied by all possible data states of the environment). Furthermore, the weak-
ening ABG yields MIODs with infinitely many states and transitions even if A

2In [25] we have define a quotient operator for restricted MIODs where postconditions do not
refer to the previous data states.
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and G are finite MIODs. The weakening ABG can be assured to be finite by
restricting the assumptions A to finite MIODs with postconditions not referring
to the previous data state. As a consequence normalization of modal contracts
based on finite MIODs is not guaranteed to result in finite MIODs. The definition
of the weakening operator as well as a further discussion on sufficient conditions
for obtaining finite normalized contracts is out of the scope of this work.

The question of finding environments for modal contracts with MIODs can
only be answered here for situations as in variant 1, see page 7.2.2. More pre-
cisely, when given two modal contracts in normal form and with decomposed
assumptions, then Theorem 7.2.18 offers a way to finding a dominating modal
contract. Variant 2, see page 7.2.2 would require to show that ThdMIOD

strong is a com-
plete specification theory (which is left for future work).

In what follows, we describe in detail the behaviour semantics JCKbeh of modal
contracts C based on MIODs. As said before, we do not define the weakening
operator for MIODs, but propose relativized refinement relations that enable us
to characterize relativized refinement derived from strong modal refinement ≤d

s .
Relativized refinement relations are very related to usual refinement rela-

tions for strong modal refinement, cf. Definition 4.3.1 in Chapter 4, however with
the following differences:

• A must-transition in G with external action must only be simulated if the
environment A does have a may-transition that can synchronize with that
transition. Otherwise, there is no requirement because this transition does
not occur in the composition A⊗d G (see condition 1 in Definition 7.4.1).

• Similarly, any may-transition in S with external action must only be sim-
ulated if the environment A does have a may-transition that can synchro-
nize with that transition. Otherwise, there is no requirement because this
transition does not occur in the composition A⊗d S (see condition 2 in Def-
inition 7.4.1).

A relativized refinement relation R for the refining MIOD S, the context MIOD
A and the refined MIOD G, is a relation in StS ×StA ×D(V prov

A )×StG ×D(V prov
G ).

To take into account all possible states of the environment A, R must be closed
under may-transitions of A (see condition 3 in Definition 7.4.1). Formally, rela-
tivized refinement relations are defined as follows.
Definition 7.4.1 (Relativized Refinement Relation)
Let S,G ∈ dMIOD with the same extended action signature Σ = (Σin,Σout,Σint)
and state signature V = (V prov,V req). Let A ∈ dMIOD with action signature ΣA =
(Σin

A ,Σout
A ,Σint

A ) such that ΣA ⊗Σ=ΣAct, and with state signature VA = (V prov
A ,V req

A )
such that V prov

A =V req, V req
A =V prov.

A relation R ⊆StS×StA×D(V prov
A )×StG×D(V prov

G ) is a relativized refinement
relation for (S, A,G) if �∀ ϕ0,S ⇒ϕ0,G , (s0,a0,δ0,A, g0,δ0) ∈ R for all δ0 ∈D(ϕ0,S),
δ0,A ∈D(ϕ0,A), and for all (s,a,δA, g,δ) ∈ R:
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1. (from abstract to concrete)

Let g
[ϕG ]α[πG ]

G g′ and (δ ·δA;ρ)�ϕG with ρ ∈D(par(β)).

Case β ∈Σint
G . Then there exists

s
[ϕS]β[πS]

S s′

such that (δ ·δA;ρ)�ϕS, and for all δ′ ∈D(V prov
G ), if

• (δ ·δA,δ′;ρ)�πS

then

• (δ ·δA,δ′;ρ)�πG and
• (s′,a,δA, g′,δ′) ∈ R.

Case β ∈Σext
G . If there exists

a
[ϕA]β[πA]

A a′

such that (δ ·δA;ρ)�ϕA, then there exists

s
[ϕS]β[πS]

S s′

such that (δ ·δA;ρ)�ϕS, and for all δ′A ∈D(V prov
A ), for all δ′ ∈D(V prov

G ),
if

• (δ ·δA,δ′A;ρ)�πA and
• (δ ·δA,δ′;ρ)�πS

then

• (δ ·δA,δ′;ρ)�πG and
• (s′,a′,δ′A, g′,δ′) ∈ R.

2. (from concrete to abstract)

Let s
[ϕS]α[πS]

S s′ and (δ ·δA,δ′;ρ) � ϕG ∧πG with ρ ∈ D(par(β)) and δ′ ∈
D(V prov

G ).

Case β ∈Σint
G . Then there exists

g
[ϕG ]β[πG ]

G g′

such that (δ ·δA,δ′;ρ)�ϕG ∧πG and (s′,a,δA, g′,δ′) ∈ R.
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Case β ∈Σext
G . If there exist δA ∈D(V prov

A ) and

a
[ϕA]β[πA]

A a′

such that (δ ·δA,δ′A;ρ)�ϕA ∧πA, then there exists

g
[ϕG ]β[πG ]

G g′

such that (δ ·δA,δ′;ρ)�ϕG ∧πG and (s′,a′,δ′A, g′,δ′) ∈ R.

3. (context)

Let a
[ϕA]β[πA]

A a′ and (δ ·δA,δ′A;ρ)�ϕA ∧πA then (s,a′,δ′A, g,δ) ∈ R.

The following lemma shows a characterization of relativized refinement rela-
tions that will be used to formulate a characterization of the behaviour semantics
of modal contracts.

Lemma 7.4.2
Let S, A,G be MIODs as in Definition 7.4.1. Then there exists a relativized refine-
ment relation R for (S, A,G) if and only if for all A′ ≤d

s A, (A′⊗d S)≤d
s (A′⊗d G).

Proof. ⇒: Assume that there exists a relativized refinement relation R for (S, A,G).
Assume that A′ ≤d

s A, demonstrated by a refinement relation P. We define a re-
lation Q ⊆ (A′×S)× (A′×G)×D(V prov

A ∪V prov
G ) by

Q = {((a′, s), (a′, g),δA ·δ) | ∃a ∈ A : (a′,a,δA) ∈ P, (s,a,δA, g,δ) ∈ R}.

Clearly ((a′
0, s0), (a′

0, g0),δ0,A ·δ0) ∈ Q for all δ0,A ·δ0 ∈ D(V prov
A ∪V prov

G ) such that
δ0,A ·δ0 � ϕ0,A′ ∧ϕ0,S. Now let ((a′, s), (a′, g),δA ·δ) ∈ Q. By definition of Q there
exists a ∈ A such that (a′,a,δA) ∈ P and (s,a,δA, g,δ) ∈ R.

1. Assume that (a′, g)
[ϕ]α[π]

(â′, ĝ) such that (δ ·δA;ρ)�ϕ.

Case β ∈Σint
A⊗dS

. If β ∈Σint
A then a′ [ϕ]β[π]

â′ and g = ĝ. From (a′,a,δA) ∈ P
it follows that for all δ′A ∈D(V prov

A ) with (δA ·δ,δ′A;ρ)�ϕ∧π there is

a
[ϕA]β[πA]

â

such that (δ ·δA,δ′A;ρ)�ϕA ∧πA and (â′, â,δ′A) ∈ P. By definition of R
we can infer that (s, â,δ′A, g,δ) ∈ R. All together, there is

(a′, s)
[ϕ]α[π]

(â′, s)



7.4 Modal Contracts based on ThdMIOD
strong 201

such that (â′, â,δ′A) ∈ P and (s, â,δ′A, g,δ) ∈ R implying ((â′, s), (â′, g),δ′A·
δ) ∈Q.
If β ∈Σint

S =Σint
G . Then â′ = a′ and

g
[ϕ]β[π]

ĝ.

From (s,a,δA, g,δ) ∈ R it follows that there is

s
[ϕS]β[πS]

ŝ

such that (δ ·δA;ρ) � ϕS and for all δ′ ∈ D(V prov
S ), if (δ ·δA,δ′;ρ) � πS

then (δ ·δA,δ′;ρ)�π and (ŝ,a,δA, ĝ,δ′) ∈ R. Thus

(a′, s)
[ϕS]β[πS]

(a′, ŝ)

and also ((a′, ŝ), (a′, ĝ),δA ·δ′) ∈Q follows.

Case β ∈Σext
A⊗dS

. Then

a′ [ϕA′ ]β[πA′ ]
â′

and

g
[ϕG ]β[πG ]

ĝ

such that ϕ′ =ϕA′ ∧ϕG and π′ =πA′ ∧πG . Then

a
[ϕA]β[πA]

â

and (â′, â,δ′A) ∈ P for any δ′A ∈ D(V prov
A ) such that (δA ·δ,δ′A;ρ) � πA′ .

Then from (s,a,δA, g,δ) ∈ R it follows that

s
[ϕS]β[πS]

ŝ

such that (δ ·δA;ρ) � ϕS and for all δ′ ∈ D(V prov
S ), if (δ ·δA,δ′;ρ) � πS

then (δ ·δA,δ′;ρ) � πG and (ŝ, â,δ′A, ĝ,δ′) ∈ R for all δ′A ∈D(V prov
A ) such

that (δA ·δ,δ′A;ρ)�πA. Finally,

(a′, s)
[ϕA′∧ϕS]β[πA′∧πS]

(â′, ŝ)

such that (δ ·δA;ρ) � ϕA′ ∧ϕS, and for all δ′A ∈ D(V prov
A ), for all δ′ ∈

D(V prov
S ), if (δ ·δA,δ′ ·δ′A;ρ) � πA′ ∧πS then (δ ·δA,δ′ ·δ′A;ρ) � πA′ ∧πG

and ((â′, ŝ), (â′, ĝ),δ′ ·δ′A) ∈Q.
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2. Assume that (a′, s)
[ϕ′]β[π′]

(â′, s′) such that (δ ·δA,δ′ ·δ′A;ρ) � ϕ′∧π′ with
δ′ ∈D(V prov

S ), δ′A ∈D(V prov
A ) and ρ ∈D(par(β)).

Case β ∈Σint
A⊗dS

. The case β ∈Σint
A is very similar to the corresponding case

for must-transitions above.
Let β ∈Σint

S =Σint
G . Then â′ = a′ and

s
[ϕ′]β[π′]

ŝ.

Then

g
[ϕG ]β[πG ]

ĝ

such that (ŝ,a,δA, ĝ,δ′) ∈ R. Hence

(a′, g)
[ϕ]α[π]

(a′, ĝ)

and ((a′, ŝ), (a′, ĝ),δA ·δ′) ∈Q.

Case β ∈Σext
A⊗dS

. Then

a′ [ϕA′ ]β[πA′ ]
â′

and

s
[ϕS]β[πS]

ŝ

such that ϕ′ =ϕA′ ∧ϕS and π′ =πA′ ∧πS. Then there exists

a
[ϕA]β[πA]

â

such that (δA·δ,δ′A;ρ)�πA and (â′, â,δ′A) ∈ P. Then from (s,a,δA, g,δ) ∈
R it follows that

g
[ϕG ]β[πG ]

ĝ

such that (δ ·δA,δ′ ·δ′A;ρ)�ϕG ∧πG and (ŝ, â,δ′A, ĝ,δ′) ∈ R. Finally,

(a′, g)
[ϕA′∧ϕG ]β[πA′∧πG ]

(â′, ĝ)

such that (δ ·δA,δ′ ·δ′A;ρ)� (ϕA′ ∧ϕG)∧ (πA′ ∧πG) and ((â′, ŝ), (â′, ĝ),δ′ ·
δ′A) ∈Q.

⇐: Let Amax be A with Amax , Amax , A. We can assume a refinement
relation Q demonstrating Amax ⊗d S ≤d

s (Amax ⊗d G). We define

R = {(s,a,δA, g,δ) | ((a, s), (a, g),δA ·δ) ∈Q}.
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We show that R is a relativized refinement relation for (S, A,G). First, observe
that (s0,a0,δ0,A, g0,δ0) ∈ R for all δ0,A ∈D(ϕ0,A), δ0 ∈D(ϕ0,S). Let (s,a,δA, g,δ) ∈
R. We only prove condition (1.) of Definition 7.4.1, the proofs of the other condi-
tions are similar. Assume that

g
[ϕG ]β[πG ]

G g′

and (δ ·δA;ρ)�ϕG with ρ ∈D(par(β)). If β ∈Σint
G , then

(a, g)
[ϕG ]β[πG ]

Amax⊗dG (a, g′)

which implies

(a, s)
[ϕS]β[πS]

Amax⊗dS (a, s′)

such that ((a, s′), (a, g′),δA ·δ′) ∈Q for all δ′ ∈D(V prov
S ) such that (δ ·δA,δ′;ρ)�πS;

in particular, (δ ·δA,δ′;ρ)� πS implies (δ ·δA,δ′;ρ)� πG . Then (s′,a,δA, g′,δ′) ∈ R
for all δ′ ∈D(V prov

S ) such that (δ ·δA,δ′;ρ)�πS.
If β ∈Σext

G and there exists

a
[ϕA]β[πA]

Amax a′

such that (δ ·δA;ρ)�ϕA, then

a
[ϕA]β[πA]

Amax a′

because in Amax every may-transition is also a must-transition. Then

(a, g)
[ϕA∧ϕG ]β[πA∧πG ]

Amax⊗dG (a′, g′)

which implies (by determinism of Amax)

(a, s)
[ϕA∧ϕS]β[πA∧πS]

Amax⊗dS (a′, s′)

and ((a′, s′), (a′, g′),δ′A · δ′) ∈ Q for all δ′A ∈ D(V prov
A ), δ′ ∈ D(V prov

G ) such that (δ ·
δA,δ′ ·δ′A;ρ) � πA ∧πS. In particular, for every δ′ ∈ D(V prov

S ), (δ ·δA,δ′;ρ) � πS
implies (δ ·δA,δ′;ρ)�πG . Then

s
[ϕS]β[πS]

S s′

such that (s′,a′,δ′A, g′,δ′) ∈ R for all δ′A ∈ D(V prov
A ), δ′ ∈ D(V prov

G ) such that (δ ·
δA,δ′ ·δ′A;ρ)�πA ∧πS.

We now propose a characterization of behaviour semantics of modal contracts.
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Theorem 7.4.3
Let (A,G) be a modal contract, and let S ∈ dMIOD. Then S ∈ J(A,G)Kbeh is equiv-
alent to

1. S →d
s A and

2. there exists a relativized refinement relation for (S, A,G).

Proof. First, assume that S ∈ J(A,G)Kbeh. (1.) Since G →d
s A and A ≤ A, also

S →d
s A by definition of relativized refinement. (2.) By Lemma 7.4.2 we only

have to show that for all A′ ≤d
s A, A′⊗d S ≤d

s A′⊗d G. Let A′ ∈ dMIOD such that
A′ ≤d

s A. By preservation of environment correctness also G →d
s A′. By definition

of relativized refinement we can infer that A′⊗d S ≤d
s A′⊗d G.

Second, assume that S →d
s A and that there exists a relativized refinement

relation R for (S, A,G). Let A′ ∈ dMIOD such that A′ ≤d
s A and G →d

s A′. Then
S →d

s A′ by preservation of environment correctness and S →d
s A. By Lemma 7.4.2

we can conclude that A′⊗d S ≤d
s A′⊗d G which was to be shown.

7.4.2 Example: Bank Account
Let us consider an example of a modal contract using MIODs. The data universe
is given by the set of all integers, i.e. U ,Z.

The modal contract CAccount = (AAccount,GAccount) in Figure 7.19 specifies a
bank account which offers operations for money to be paid in money to be with-
drawn as long as the account’s balance is high enough. The assumption AAccount
allows outputs deposit(x)! for x ≥ 0, and withdraw(x)! for 0≤ x ≤ bal. The guaran-
tee GAccount ensures that withdraw(x)? must be possible exactly when 0≤ x ≤ bal,
and the next provided data state decreases bal by x.

a0

[0≤ x ≤ bal]
withdraw(x)?
[bal′ ≥ bal− x]

[x ≥ 0]
deposit(x)?

[bal′ ≥ bal+ x]

bal

GAccount
[bal≥ 0]

g0
[0≤ x ≤ bal]
withdraw(x)!

[x ≥ 0]
deposit(x)!

withdraw(x)

deposit(x)

bal

AAccount
[true]

Figure 7.19: CAccount = (AAccount,GAccount)

Preconditions in assumptions can be assumed by the implementor of a modal
contract, i.e. any behaviour can assume that the corresponding action is only per-
formed by the environment if the precondition is met. For instance, the precondi-
tion 0≤ x ≤ bal can be assumed by any behaviour whenever a synchronization on
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withdraw(x) between AAccount and GAccount happens because the environment is
only allowed to issue the output withdraw(x)! for 0≤ x ≤ bal. A correct behaviour
SAccount of CAccount is shown in Figure 7.20. Observe that as long as the environ-
ment satisfies AAccount the specified guaranteed behaviour GAccount is respected
by SAccount. However, if the environment does not respect AAccount – for instance,
if the environment issues withdraw(x)! for x > bal – then there is no guaranteed
behaviour anymore. As exemplified by SAccount, after withdraw(x)? for x > bal
arbitrary behaviour is possible.

s0

s1

[0≤ x ≤ bal]
withdraw(x)?
[bal′ = bal− x]

[x ≥ 0]
deposit(x)?

[bal′ = bal+ x]

[(x < 0)∨ (x > bal)]
withdraw(x)?

[true]

[x < 0]
deposit(x)?

[true]

[true]
withdraw(x)?
[true]

[true]
deposit(x)?

[true]

withdraw(x)

deposit(x)

bal

SAccount
[bal= 0]

Figure 7.20: SAccount

To show that indeed SAccount ∈ JCAccountKbeh is satisfied we can use the char-
acterization proved in Theorem 7.4.3. First, SAccount →d

s AAccount trivially holds
because SAccount has no output actions. Second, the relation

{(s0,a0,ε, g0,δ) | δ ∈D({bal})}

is a relativized refinement relation for (SAccount, AAccount,GAccount) where ε is the
trivial data state for the empty set of variables.

Remark 7.4.4
Behaviour semantics of modal contracts are in fact closely related to the seman-
tics of method specifications in object-oriented programs following the idea of De-
sign by Contract [140] where methods are specified by pre- and postconditions.
The precondition formulates requirements on the data state that must hold when
the method body is entered; the postcondition expresses requirements on the data
state that must hold at the end of the method body given that the preconditions
was satisfied upon entry of the method body. These semantics of pre- and post-
conditions is also commonly considered for OCL operation specifications [103].
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Consider the following OCL operation specification for a withdraw operation for
a bank account.

context Account::withdraw(x : Integer)

pre: 0 <= a <= bal

post: bal = bal@pre-x

An implementation of withdraw(x) satisfies the above OCL operation specification
if the postcondition is true whenever the precondition was true when the operation
was called. In our example, the postcondition only has to be established by the
operation body if the precondition is met at the entry of the operation body, i.e. if
0 ≤ x ≤ bal is satisfied for the current value of x and bal. The contract CAccount
would be the natural representation of the above OCL operation specification.

So far, we have seen how preconditions in assumptions are interpreted and
how they are used to considerably enlarge the behaviour semantics of modal con-
tracts based on MIODs. In the following we take a closer look at postconditions
in assumptions that specify how the environment changes its data state when
performing an action (i.e., from the viewpoint of the guarantee, how does the
required data state change).

Postconditions in assumptions also relax the component behaviour seman-
tics. To illustrate this let us consider the modal contract CClient = (AClient,GClient)
for a client of a bank account, with AClient = GAccount and GClient = AAccount, see
Figure 7.21. Whenever some behaviour of CClient issues on output deposit(x)!
with x ≥ 0 then it must synchronize with the corresponding transition in AClient,
labelled with deposit(x)? and postcondition bal′ ≥ bal+ x. Thus, in this case any
behaviour can assume that the balance of the account has increased by at least
x.

a0

[0≤ x ≤ bal]
withdraw(x)?
[bal′ ≥ bal− x]

[x ≥ 0]
deposit(x)?

[bal′ ≥ bal+ x]

bal

AClient
[bal≥ 0]

g0
[0≤ x ≤ bal]
withdraw(x)!

[x ≥ 0]
deposit(x)!

withdraw(x)

deposit(x)

bal

GClient
[true]

Figure 7.21: CClient = (AClient,GClient)

This interpretation gives rise to correct behaviours of the contract CClient that
may show additional outputs that were not specified in GClient. As an exam-
ple consider the implementation IClient in Figure 7.22 which is a component be-
haviour of CClient. Clearly, the implementation IClient does not literally refine the
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guarantee GClient because the precondition x = 50 for withdraw(x) does not sat-
isfy 0≤ x ≤ bal in general. However, IClient refines GClient in the context of AClient:
whenever IClient has deposited an amount of 50 on the bank account, then the im-
plementation can rely on the postcondition bal′ ≥ bal+50, thus it is safe to issue
withdraw(x)! with x = 50; the client can be sure to have a balance of at least 50.
Hence IClient is a component behaviour of CClient, i.e.

IClient ∈ J(AClient,GClient)Kbeh.

By Theorem 7.4.3 we can formally show that IClient is in J(AClient,GClient)Kbeh
by using the following relativized refinement relation R for (IClient, AClient,GClient):

R = {(i0,a0,δA, g0,ε) | δA ∈D(bal≥ 0)}
∪ {(i1,a0,δA, g0,ε) | δA ∈D(bal≥ 50)}

with ε the function with empty domain.

i0 i1

[x ≥ 50]
deposit(x)!

[x = 50]
withdraw(x)!

withdraw(x)

deposit(x)

bal

IClient
[true]

Figure 7.22: Behaviour IClient of CClient

7.5 Limitations of the Approach
We have shown in Corollary 7.2.25 that contracts also form a specification theory
if environment correctness for contracts is defined as dominability. However, this
so-defined specification theory for contracts does not fit very well in the intended
meaning of the notions of composition, refinement and environment correctness.
Environment correctness is in general a non-symmetric condition, however, dom-
inability is a symmetric one; moreover, contract composition only works for dom-
inable contracts. Thus, the theory as defined in this thesis

• lacks a syntactical composition operator that also works for contracts that
are not dominable, and
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• lacks a proper notion of environment correctness for contracts which is pre-
served by contract refinement.

One possibility to resolve these issues would be to pursue further the idea
of define contract composition just for specific cases in which assumptions are
already decomposed according to a suitable partition of action signatures. This
idea of decomposed assumptions can be developed further arriving at so-called
component contracts that consist of a behaviour (or component frame) F together
with a set of port contracts (AP ,GP ) for each port P where the ports are basically
a partition of the action signature of F. Port contracts describe the assumptions
and guarantees at this specific interaction point of the component.

Such an approach would also solve the problem that instantiating contracts
by MIOs with weak modal refinement and weak environment correctness is not
possible so far. The reason for this is twofold. Firstly, specification theories for
MIOs with weak modal refinement and weak environment correctness are in
general not complete.3 Secondly, contracts of the form (A,G) with a single as-
sumption A do not seem adequate for weak environment correctness. Consider
the following example as shown in Figure 7.23. Intuitively, guarantee G together
with assumptions A1 and A2 should be valid contract because A1⊗G →w A2 and
A2⊗G →w A1. But since G 6→w A1⊗A2, (A1⊗A2,G) is not a contract. It seems ob-
vious that contracts should be capable to explicitly express several assumptions.

α!
A1

α? β!
G

α
β!

A2
β

Figure 7.23: Counterexample showing that weak environment correctness is not
adequately supported by the current contract framework

7.6 Related Work
The general framework for contracts is inspired by the work of Benveniste et
al. [33]. They have chosen a trace-based approach, essentially following the
tagged signal model of Lee and Sangiovanni-Vincentelli [128], to represent in-
terfaces which in fact is a specification theory in our sense and an instance of
our proposed abstract contract framework – except that they do not consider
environment correctness and environment semantics. In [33] no definition of
dominance was needed because their trace-based specification theory is complete

3The example in [69] can be easily adapted to show that in general there does not exist a
conjunction operator for MIOs with weak modal refinement.
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which makes a direct definition of contract composition possible. They go further
then what is covered in this chapter by defining conjunction and disjunction of
contracts which we believe can be integrated into our work, too.

The notion of relativized refinement goes back to Larsen’s PhD thesis [120] in
which he generalized bisimulation to take into account contexts to alleviate the
stepwise refinement process.

The idea to equip a specification with behaviour and environment semantics
has been used already in [17] where UML protocol state machines were consid-
ered as specifications of component interfaces.

Modal contracts have already been introduced and investigated in several
previous works, including [90, 154]. Raclet and Goessler [90] propose an imple-
mentation semantics that is slightly different to ours. In their paper, an imple-
mentation I satisfies a contract (A,G) if A ∧ I ≤m G whenever A ∧ I is defined,
which is in fact equivalent to our definition of contract satisfaction, but only for
implementations. Our satisfaction relation works for arbitrary MIOs. Refine-
ment and composition is only syntactically defined, without any semantic con-
siderations as we do it here, hence they lack the universal property for contract
compositions.

In [154], Quinton and Graf define an abstract framework of contracts which
however tends to be technical and complex due to the integration of parameter-
ized composition operators. Besides this difference, they do not consider environ-
ment semantics; their contract semantics coincide with our component behaviour
semantics. Our notion of (semantic) dominance is inspired by their (syntactical)
definition of dominance, but still their work lacks a careful discussion on domi-
nance and the universal property of contract composition.

In summary, in comparison to both works [90, 154], we consider our work
as “more semantical” as behaviour and environment semantics of contracts are
carefully taken into account for the definition of contracts and contract operators.

De Alfaro and Henzinger introduced a new optimistic view on compatibility
and composition in their work on interface automata [61] and interface theo-
ries [62]: Communication errors in a composition should be pruned by removing
input transitions that necessarily lead to those error states. The pruned inter-
face shows then the maximal subspecification such that no communication errors
occur. Larsen et al. [124] transferred de Alfaro and Henzinger’s idea of optimistic
compatibility and composition to modal input/output automata which was later
refined by Raclet et al. in [157]. Their approach is in-fact very close to the idea of
contracts, except that the optimistic approach to compatibility and composition
has the disadvantage that the external and internal view on the component is
mixed in a single specification with implicit assumptions. Once optimistic compo-
sition is computed, internal details of a specification are lost. The use of contracts
is a possibility to separate assumptions on the environment from guarantees of
the component while the latter can still keep details about the component specifi-
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cation (or implementation). Also, moving from specifications to contracts usually
results in a more expressive specification than with single specifications because
the set of correct environments can be further restricted with the assumptions.

The complete specification theory for deterministic MIOs reuses several re-
sults on conjunction and quotient that can be found in the literature. The quo-
tient operator for modal transition systems was first defined by Raclet in [156],
however without considering internal actions (which makes our powerset con-
struction necessary). Conjunction of modal transition systems was already de-
fined by Larsen in 1989 [121].

Publication history. A first version of the present contract framework, with-
out the integration of environment correctness, has been presented in [13]. As an
instantiation we presented in [13] modal contracts based on pure deterministic
modal transition systems without input/output actions.

7.7 Summary
In this chapter, we have shown how to construct a contract framework on top
of any specification theory. We have defined when a contract is dominating two
other contracts, and introduced contract composition as the strongest dominat-
ing contract. Whenever the specification theory is complete (i.e. offers quotient,
conjunction, and a maximal compatibility operator) then we have shown that a
contract composition can be constructively defined. The general constructions on
the basis of abstract specification theories has been illustrated with modal in-
put/output automata which provide a complete specification theory (with strong
modal refinement and strong environment correctness). We also briefly discussed
the instantiation of the framework to modal input/output automata with data
constraints and studied contract semantics in this specific setting.



Chapter 8

Tool Support: The MIO
Workbench

The MIO Workbench [144] is a tool for the design and verification of modal in-
put/output automata (MIOs) and modal contracts with MIOs, implementing the
following theories:

• the specification theory ThMIOstrong, see Section 3.3,

• the specification theory ThMIOweak, see Section 3.4,

• the complete specification theory ThdMIO
strong including conjunction, quotient

and the maximal environment operator for deterministic MIOs, see Sec-
tion 7.3.1,

• modal contracts for the specification theory ThdMIO
strong, i.e., the generic con-

tract framework instantiated for ThdMIO
strong, see Section 7.3.

MIOs and modal contracts can be specified either graphically or by simple tex-
tual syntax in an integrated text editor. The MIO Workbench supports the ver-
ification of strong and weak modal refinement as well as strong and weak en-
vironment correctness in the context of the aforementioned specification theo-
ries. These verification tasks can either be performed in a verification view that
graphically illustrates answers to modal refinement and environment correct-
ness checks, or in a shell (a command-line interpreter) that returns a text-based
answer. In this chapter, we highlight the different editors and views of the MIO
Workbench and describe their basic usage.

Technically, the MIO Workbench is based on the Eclipse platform [75] and
offers a comfortable workbench for user interaction. Eclipse itself became known
as an open-source integrated development environment for Java applications,
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but has grown to a general purpose software development framework. In par-
ticular, the Eclipse platform is highly extensible by Eclipse-plugins reusing ba-
sic functionality the Eclipse core offers, like resource management. The MIO
Workbench is implemented as a set of Eclipse-plugins that use the Eclipse core
framework and extend it by GUI elements used to design MIOs and drive their
verification. The MIO Workbench is open source and can be downloaded from the
website http://www.miowb.net/. The website of the tool additionally provides
a basic usage tutorial as well as several examples.

Outline. In Section 8.1 we give an overview of the implemented relations and
operations for MIOs and modal contracts. The different editors and views of the
MIO Workbench are described in more detail in Section 8.2. The input language
of the MIO Workbench that is used in both text editor and shell is described in
Section 8.3. We compare the MIO Workbench to other related tools in Section 8.4.

8.1 Features
The MIO Workbench currently supports the specification theories ThMIOstrong and
ThMIOweak, the complete specification theory ThdMIO

strong including conjunction ∧, quo-
tient � and the maximal environment operator max·→(·), and modal contracts
for the complete specification theory ThdMIO

strong. In addition, there are four other
notions of modal refinement and compatibility for MIOs implemented in the
MIO Workbench that are not further discussed here. Table 8.1 gives a detailed
overview of the relations and operations that are implemented in the MIO Work-
bench.

We note that contract normalization is implemented by using the weakening
operator, as described in Section 7.3.2. Contract refinement is implemented by
using Corollary 7.2.11, see Section 7.2.1: to verify whether (A1,G1)v (A2,G2) for
two modal contracts (A1,G1) and (A2,G2), we first compute their normal forms
(A1,Gnf

1 ) and (A2,Gnf
2 ), respectively, and then check whether both A2 ≤s A1 and

Gnf
1 ≤s Gnf

2 are satisfied.

8.2 User Interface
An overview of the graphical user interface of the MIO Workbench is shown in
Figure 8.1. The package explorer (1) is a standard view from the Eclipse frame-
work and shows all available projects and their files in the current workspace.
The editor area (2) can either show a graphical editor for MIOs, an editor for
modal contracts, or a text editor with syntax highlighting for textual specification
of MIOs and modal contracts. The verification view, the shell and the properties
view for editing selected elements in the graphical editor are gathered in area

http://www.miowb.net/
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Verification view Shell
Modal refinement
Strong modal refinement ≤s X X
Weak modal refinement ≤w X X
May-weak modal refinement [125, 27] X
Strict-observational modal refinement [139] X

Environment Correctness / Compatibility
Strong environment correctness →s X X
Weak environment correctness →w X X
Strict-observational I/O compatibility [139] X
Ultra-weak compatibility [112] X

Operations
Modal synchronous composition ⊗ X
Conjunction ∧ for dMIO X
Quotient � for dMIO X
Maximal environment operator max·→(·) for dMIO X

Modal contracts (generic contract framework instantiated for ThdMIO
strong)

Contract refinement v X
Contract composition � X
Contract normalization (via weakening operator) X

Table 8.1: Relations and operations implemented in the MIO Workbench
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Figure 8.1: MIO Workbench default perspective

(3). Finally, the user can send (possibly newly constructed) MIOs from the shell
to the image view (4) that draws the MIOs using the layout program dot from
the open source graph visualization software Graphviz [94].1 We now describe
areas (2), (3) and their editors and views in more detail.

8.2.1 Editors (Area 2)
Graphical MIO Editor

The graphical editor of the MIO Workbench displays a MIO in the classical
way as a graph, with states as nodes and transitions as directed edges – may-
transitions are dashed and are omitted if there is a corresponding must-transition
connecting the respective states under the same action. To highlight the action
type, input actions are suffixed with a question mark (?) and output actions are
suffixed with an exclamation mark (!). In addition, transitions labelled with an
input, output and internal action are coloured green, red and gray, respectively.
The palette on the right hand side offers the creation of states and transitions.
All other editing facilities are either accessible by context menus, by direct edit-
ing (e.g. of action names) in place, or by the properties view of the workbench.

1How to properly install the MIO Workbench and Graphviz is described on the webpage of the
MIO Workbench [144].
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The layout can be manually changed simply by moving states and transitions. A
basic automatic layout algorithm is available in the context menu. A new MIO
can be created by using the corresponding wizard; a MIO is stored in an XML-file
with file extension .mio.

Modal Contract Editor

For the design of modal contracts, the MIO Workbench offers a custom editor to
group together MIOs for the specification of the environment (the assumption)
and for the component itself (the guarantee), see Figure 8.2. The user can specify
two lists of MIOs modelling the assumptions and guarantees, respectively. The
assumption of the modal contract is then given by the conjunction of all MIOs in
the list on the left hand side, and similarly, the guarantee of the modal contract
is given by the conjunction of all MIOs in the list on the right hand side. A
validation check is available in the contract editor that checks whether the list
of assumptions and the list of guarantees can actually be conjoined, respectively,
and if the conjoined assumptions form a correct environment for the conjoined
guarantees. All MIOs in modal contracts are references to the individual .mio
files, and each MIO can can be opened in the graphical MIO editor by a double
click. A modal contract is stored in an XML-file with extension .miocontract that
is basically a list of the MIO references.

Figure 8.2: Modal contract editor

Text Editor

The MIO Workbench features a text editor offering a text-based input. The in-
put language, described in more detail in Section 8.3, covers the definition of
MIOs and modal contracts as well as relations and operators (see Table 8.1). The
text editor should be used to write larger designs (or scripts) consisting of sev-
eral MIOs or modal contracts as well as refinement and environment correctness
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checks. The text editor offers a syntax highlighting for the input language, with
error indication whenever a statement cannot be parsed. Technically, the text
editor together with the underlying parser is generated from the grammar using
Xtext [171], see Section 8.3. The scripts need to have the file extension .miotxt –
the text editor is automatically opened for files with this extension.

The scripts are written in the text editor and executed in the shell, a command-
line interpreter, which is described below.

8.2.2 Views (Area 3)
Verification View

The verification view offers a side-by-side view of two MIOs. MIOs from the
project explorer can be put on one of the sides by a simple drag-and-drop. The
verification view supports refinement and environment correctness checks, see
Table 8.1. The desired refinement or environment correctness notion can be se-
lected in the middle panel of the view. For refinement checks, the verification
view shows in the positive case a refinement relation by drawing links between
related states, in the negative one error path (marked in red) is displayed.2 Fig-
ure 8.3 shows a sample of a negative refinement check. For environment correct-
ness checks, the verification view illustrates in the positive case all reachable
states of the composition by drawing links between state pairs. In the negative
case, one reachable state pair and an output transition is marked in red that
cause the environment correctness not to be satisfied.

Shell

The shell offers a powerful text-based interface to the MIO Workbench, for spec-
ification of MIOs and modal contracts as well as the checking of refinement and
environment correctness. The shell can be seen in area (3) in Figure 8.1. Com-
mands can either be executed by typing them directly in the view, or all com-
mands of a .miotxt file can be executed by drag-and-drop of the file from the
project explorer onto the shell. Such .miotxt files should be created with the text
editor, see above. The shell reuses the parser generated from the grammar of the
input language (see Section 8.3), the obtained abstract syntax tree is manually
traversed and evaluated. In addition to .miotxt files, the shell similarly accepts
.mio and .miocontract files storing the described MIO and modal contract, re-
spectively, under their names.

The shell gives a text-based answer to every command, for instance, to ev-
ery refinement check the shell answers either with a refinement relation in the

2The illustration of negative answers to refinement checks is subject of future work, see Sec-
tion 9.2. For deterministic MIOs displaying one error path is fine, however, for non-deterministic
MIOs one would have to depict a set of paths which causes the refinement not to hold.
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Figure 8.3: Negative strong modal refinement check in the verification view

positive case, in the negative no further information is returned; to every envi-
ronment correctness check the shell answers positively, or in the negative case it
prints one communication error with the involved states and action. The input
language is described in detail in the Section 8.3.

Properties View

The properties view can be found in the area (3). It is only important when
the graphical MIO editor is used, then the properties view allows to edit a state
(the name) or a transition (the action and the modality) that is selected in the
graphical MIO editor. When no state or transition is selected in the graphical
MIO editor, then the properties view shows the properties of the whole MIO, i.e.
the name, the start state, a list of actions, and a checkbox to force fixed size of
the states. This latter situation is shown in Figure 8.4.

8.3 Input Language

The input language for the MIO Workbench has been designed with Xtext [171],
a framework that simplifies the creation of domain-specific languages. We have
specified a grammar for which Xtext has generated a parser as well as a text
editor with syntax highlighting (described above). The complete grammar for
the input language is shown in Section 8.3.2.
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Figure 8.4: The graphical MIO editor and the properties view
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8.3.1 Short Tutorial on the Input Language

The input language allows to specify MIOs with an intuitive syntax, for instance,
the MIO shown in Figure 8.4 can be specified by:

mio T2 {

inputs coin

outputs coffee, tea

internals beep

states t0, t1, t2

start t0

mayTransitions

t1 -> t2 [tea]

mustTransitions

t0 -> t1 [coin],

t1 -> t2 [coffee],

t2 -> t0 [beep]

}

Note that, similarly to the graphical representation, may-transitions underlying
must-transitions need not be explicitly mentioned. The assignment

S := T

defines a new MIO S such that S equals T element-wise. The right hand side
of an assignment may use modal synchronous composition ⊗ (denoted || in the
shell), conjunction ∧ (denoted &&), quotient � (denoted --) and weakening B
(denoted >>). Moreover, maxT→(E) is expressed by max(T,E). For example, the
MIO S = (T1 ⊗T2)�T3 can be defined by the command

S := (T_1 || T_2) -- T_3

The command

S <= T

checks whether S is a strong modal refinement of T. Weak modal refinement is
written <=*. The equivalence relations ≈s and ≈w induced by strong and weak
modal refinement are written equiv<= and equiv<=*. A strong environment
correctness statement S →s E can be checked by executing
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S -> E

Weak environment correctness is written ->*, and the induced symmetric com-
patibility notions�s and�w are written <--> and <-->*, respectively.

A modal contract C = (A,G) for existing MIOs A and G can be defined by the
command

C := [ A, G ]

Note that, similar to the assignment of MIOs, the assumption and guarantee
of C are copies of A and G, respectively, to avoid side-effects when normalizing
contracts. New contracts can be constructed by composition or normalization.
Contract composition �, see Definition 7.2.21, is expressed by ||, e.g. two con-
tracts C_1 and C_2 are composed by C_1 || C_2. Normalization of a contract
C, see Theorem 7.3.16, is done by the command normalize(C). For instance, to
define a new contract C by the normal form of the contract composition of C_1
and C_2, we can type

C := normalize(C_1 || C_2)

Refinement of two contracts C_1 and C_2 is expressed by

C_1 <= C_2

The are a few other auxiliary commands. The command list prints a list of
all MIOs and modal contracts that are currently stored in the shell. The com-
mand save S opens a save dialogue to save the MIO (or modal contract) S to a
.mio (or .miocontract) file. There are two different kinds of comments available:

// single-line comments

/*

multi-line comments

*/

Finally, the command view S, where S is the name of a MIO, sends the MIO S

to the image view where it is depicted using the program dot from the Graphviz
package [94]. We remark that the view command is only available in the shell
for technical reasons (in the text editor, a syntax error is indicated by the syntax
highlighting).
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8.3.2 Grammar of the Input Language

1 Statement = 'list' | 'save' UId | 'view' UId

2 | Assignment | BinaryCheck | AutomatonDef ;

3 Assignment = UId ':=' ( Mio | Contract ) ;

4 BinaryCheck = Mio ( Refinement | EnvCorrect ) Mio

5 | Contract '<=' Contract ;

6 Refinement = '<=' | '<=*' | 'equiv<=' | 'equiv<=*'

7 EnvCorrect = '->' | '->*' | '<-->' | '<-->*'

8

9 Mio = UId

10 | Contract '.' ( 'env' | 'spec' )

11 | '(' Mio Composition Mio ')' ;

12 Composition = '||' | '&&' ;

13

14 AutomatonDef = 'mio' UId '{'

15 ( 'inputs' LId ( ',' LId )* )?

16 ( 'outputs' LId ( ',' LId )* )?

17 ( 'internals' LId ( ',' LId )* )?

18 'states' LId ( ',' LId )*

19 'start' LId

20 ( 'may' Transition ( ',' Transition)* )?

21 ( 'must' Transition ( ',' Transition)* )?

22 '}' ;

23 Transition = LId '->' LId '[' LId ( ',' LId)* ']' ;

24

25 Contract = Id | ContractDef ;

26 ContractDef = '[' Mio ',' Mio ']' ;

27

28 UId = ('A'..'Z') ('a'..'z'|'A'..'Z'|'_'|'0'..'9')* ;

29 LId = ('a'..'z') ('a'..'z'|'A'..'Z'|'_'|'0'..'9')* ;

8.4 Related Work
The MIO Workbench was the first tool that implemented a modal specification
theory with operators like conjunction and quotient, with a focus on checking of
environment correctness. Unique to the MIO Workbench is the explicit support
of modal contracts.

The tool TICC [2] implements the interface theory of sociable interfaces [58],
that are interface automata extended with variables, and focuses on interface
compatibility and composition. It also supports the model checking of CTL for-
mulae. A very related tool is CHIC [37] that similarly focuses on interface
compatibility and composition and supports various interface theories like syn-



222 8. Tool Support: The MIO Workbench

chronous assume/guarantee interfaces [62], resource interfaces [52] or web ser-
vice interfaces [38].

ECDAR [56] builds on UPPAAL [174] and implements the timed interface
theory of [57]. The tool supports composition and conjunction and can verify
refinement. Interface compatibility is not explicitly supported, but simple timed
temporal logic properties (subset of TCTL formulae) can be model checked.

TAPAs [46] is a tool for the specification and the analysis of concurrent sys-
tem. It supports of a basic process algebra as input language, internally trans-
lates process terms to labelled transition systems, and is capable to verify vari-
ous equivalences as well as to model check µ-calculus formulae. The interesting
point at TAPAs is that its aim is to be used as a tool in teaching process algebra.
In particular, it supports a representation of processes both as a term and as a
graph at the same time while being consistent with each other. Our verification
view grew out of a similar idea: make results of checks visible and understand-
able for beginners.

The most related tool is MTSA [72, 71]. It is based on the LTSA tool [137] and
integrated into the Eclipse platform – similar to the MIO Workbench – with a so-
phisticated GUI. MTSA supports the construction of modal transition systems
using an adapted FSP (process algebra) syntax [137]. Although modal refine-
ment can be checked on modal transition systems, MTSA focuses on synthesizing
modal transition systems from scenarios/use cases or from requirement specifi-
cations expressed in fluent linear temporal logic [87]. Checks for compatibility of
specifications like environment correctness are not implemented.

Recently, Mica [44] has been released implementing modal interfaces [158].
In particular, (optimistic) composition, conjunction, quotient as well as refine-
ment are supported. The user can interact with Mica through a shell. Visual
representation of modal interfaces is provided by using Graphviz [94], however,
the design of modal interfaces can only be done in the shell by textual input.

Tool and publication history. The MIO Workbench [144] was initiated in
August 2009 by Philip Mayer and was first published in [27]. This first version
of the MIO Workbench already contained strong and weak modal refinement,
symmetric compatibility notions �s and �w [27], the graphical editor and the
verification view. Mayer used the MIO Workbench in his thesis [138] for the
verification of protocols and orchestrations of web services for which MIOs have
been used as a formal semantics. In the course of this thesis the MIO Work-
bench has been extensively improved by the additional features described above.
Some of the improvements were presented in [26], in particular, the shell and
the additional MIO operations quotient and conjunction. Since then, the support
of modal contracts has been added.
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Conclusion

9.1 Contributions

This thesis provides a comprehensive study of formal behavioural specification of
reactive components in the context of modal specification theories. The abstract
framework of a specification theory formalizes essential ingredients and proper-
ties of any formal theory supporting the compositional design and refinement of
component interfaces with a focus on component compatibility. Specification the-
ories have served as the common basis throughout the thesis in order to allow for
detailed comparison of the introduced theories by morphisms and embeddings.

We have considered modal input/output automata (MIOs) as a flexible for-
malism for specifying the behaviour of communicating components. The may
and must modalities for transitions support loose specifications and a stepwise
refinement approach developing component-based systems in a top-down man-
ner, from abstract specifications to implementations.

We have defined novel specification theories for MIOs, both a “strong” variant
(based on strong modal refinement) and a “weak” observational variant (based
on weak modal refinement). To accommodate current needs for rich heteroge-
neous formalisms for component-based design, we have proposed important ex-
tensions of MIOs that take into account data (MIODs) and quantitative aspects
(K -WMIOs) and we have shown how to obtain specification theories for these
extensions (again distinguishing between “strong” and “weak” variant). Thus
we have obtained a hierarchy of specification theories for (deterministic) MIOs,
MIODs, K -WMIOs and K -WMIODs, see Figure 9.1, in which all introduced
modal specification theories are related to each other by (reflective) embeddings.

In more detail, the hierarchy of modal specification theories in Figure 9.1 is
the result of the following key contributions of this thesis:

• The modal specification theories ThMIOstrong and ThdMIO
strong have been inspired

by related work in the literature [124, 158] being the starting point of this
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ThMIODweak ThMIOweak ThK -WMIO
weak

ThMIODstrong ThMIOstrong ThK -WMIO
strong

ThdMIOD
strong ThdMIO

strong ThdK -WMIO
strong

ThK -WMIOD
strong

ThdK -WMIOD
strong

ThK -WMIOD
weak

Figure 9.1: The hierarchy of modal specification theories introduced in this thesis

thesis. We have shown that in ThdMIO
strong strong modal refinement is equiva-

lent to thorough refinement defined by inclusion of implementation seman-
tics. Furthermore, we have shown in Chapter 7 that ThdMIO

strong is a complete
specification theory supporting quotient, conjunction and a maximal envi-
ronment correctness operator; this result has been particularly useful to
derive modal contracts with an explicit contract composition operator (see
below).

• For obtaining the observational specification theory ThMIOweak for MIOs with
weak modal refinement, we have introduced the novel notion of weak envi-
ronment correctness that has been the solution to the problem that strong
environment correctness (from ThMIOstrong and inspired by interface compat-
ibility of interface automata [61]) is not preserved by weak modal refine-
ment. Weak environment correctness requires that the environment guar-
antees to receive any outputs, possibly after some internal must-transitions.

• We have proposed MIOs with data constraints (MIODs) that enrich MIOs
with provided and required state variables. The specification of data has
been integrated by adding pre- and postconditions to transitions describing
in which data states a transition is enabled and to which next (provided)
data states the transition can lead. We extensively studied how modal
refinement, environment correctness, and modal synchronous composition
can be adapted accordingly to take into account pre- and postconditions.



9.1 Contributions 225

The result has been the specification theories ThMIODstrong, ThdMIOD
strong and ThMIODweak

for MIODs. For the specification theories ThMIODstrong, ThdMIOD
strong , we have stud-

ied two additional topics:

– We have introduced predicate abstraction as a possible verification
technique for strong modal refinement for finite MIODs but with infi-
nite variable domains.

– Moreover, we have proposed a denotational semantics of implemen-
tations of MIODs, given by input/output automata with data states
(IODs) that are implementation models with provided data states in
each state and required data states on transitions. We have shown
that the denotational semantics preserves both strong environment
correctness and synchronous composition.

• We have also investigated MIOs extended with transition weights from an
abstract, partially ordered weight structure K . The obtained K -weighted
MIOs (K -WMIOs) are capable of expressing constraints on non-functional
properties such as resource consumption (power, fuel) or costs. We stud-
ied both strong and weak modal refinement for K -WMIOs in which (addi-
tionally to the usual modal refinement of may- and must-transitions) tran-
sition weights can be refined by the partial order of K . The result has
been the specification theories ThK -WMIO

strong , ThdK -WMIO
strong and ThK -WMIO

weak for
K -WMIOs.

The notion of strong modal refinement of K -WMIOs, that has been used
for the definition of the above modal specification theories, can be gener-
alized to modal refinement distances. We have studied how strong modal
refinement can be lifted to modal refinement distances in the context of the
weight structure Kintv of integer intervals. Modal refinement distances are
functions from pairs of Kintv-WMIOs to R≥0 measuring how “well” the re-
finement holds (with 0 meaning that strong modal refinement holds). We
have shown how compositionality can be reformulated for modal refine-
ment distances.

• The specification theories ThK -WMIOD
strong , ThdK -WMIOD

strong and ThK -WMIOD
weak have

been the result of the integration of data aspects and quantitative aspects
into a single formalism.

On the abstract level of specification theories we have studied component con-
tracts as a useful methodology in component-based design. Contracts explicitly
distinguish between assumptions on the environment and guarantees of a com-
ponent, strictly following the principle of separation of concerns. We have shown
how one can build a contract theory in a generic way on top of any specification
theory leading to generic definitions of contract semantics, contract refinement
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and contract dominance which defines necessary conditions for a contract to de-
scribe the structural combination of two contracts. For complete specification the-
ories that feature conjunction, quotient and a maximal environment correctness
operator, we have shown how to obtain a contract composition, i.e. a strongest
dominating contract. Thus, for any instance of a (complete) specification theory
one can obtain a corresponding contract theory “for free”. This has been exem-
plified by instantiating the generic contract framework for the complete speci-
fication theory ThdMIO

strong and for the specification theory ThdMIOD
strong , giving rise to

modal contracts. Several examples have shown that modalities turn out to be
very convenient for formulating loose environment assumptions.

Finally, the MIO Workbench is a tool for the verification of MIOs and modal
contracts, implementing the specification theories ThMIOstrong, ThdMIO

strong, ThMIOweak as
well as modal contracts obtained by instantiating the contract framework for
ThdMIO

strong. The MIO Workbench is based on the Eclipse framework [75] and fea-
tures an intuitive and easy-to-use graphical user interface. It supports a graphi-
cal MIO editor and modal contract editor, a graphical verification view for illus-
tration of modal refinement and environment correctness checks, and features
an expressive input language for the execution of verification tasks.

9.2 Discussion and Future Work

In this section we discuss findings together with future research directions on
the basis of this thesis.

Specification theories, component languages and assemblies. The alge-
braic framework of a specification theory provides a common abstraction for all
the formal theories introduced in this thesis. Specification theories have been
inspired by de Alfaro and Henzinger’s work on interface theories [62, 73]. We
have distinguished between specification theory embeddings and reflective em-
beddings. Further work on this abstract framework may include a formal defini-
tion of products of specification theories to form new specification theories from
existing ones, similar to what we have already done in this thesis: combining
ThMIODstrong with ThK -WMIO

strong resulting in the specification theory ThK -WMIOD
strong .

In the future more fine-grained features of component-based systems like sig-
natures, channels, ports or connectors should be neatly integrated into the ab-
stract framework of specification theories, similar to the work of Janisch [112] or
the work of Allen and Garlan on Wright [4]. Furthermore, specification theories
should explicitly support assemblies of components, with notions of assembly re-
finement and assembly compatibility. A first step into this direction has been
developed by Hennicker and Knapp [102].
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Modalities and variability. The formal theories presented in this thesis are
based on variants of modal transition systems. The use of modalities in mod-
elling the behaviour of component interfaces offers a greater specification vari-
ability and essentially increases the power of stepwise refinement from abstract
specifications towards implementations.1 However, modal transition systems
only provide means to specify local variability, in the sense that a transition
may be implemented or dropped in a later refinement step. There are no global
constraints on these choices possible, e.g. one might want to express that when-
ever one optional feature is implemented, then the other feature has to be there,
too. Another example is the persistence of choices which cannot be expressed in
modal transition systems, i.e. if we choose to implement an optional behaviour,
we should do so whenever we reach that same state again. Recently, Beneš
et al. [30] introduced parametric modal transition systems that try to resolve
this problem by allowing constraints on parameters that regulate the possible
choices of transitions to be implemented.

It would be interesting to integrate such extensions with respect to variabil-
ity aspects into our work. We believe that environment correctness can be inte-
grated in a straightforward way. Whether weak modal refinement can be defined,
for instance for parametric modal transition systems [30], is an open issue.

Communication and compatibility. With regard to communication and com-
patibility of component interfaces (in this thesis defined via environment correct-
ness), we have restricted our specification theories to modal transition systems
with input, output and internal actions with binary synchronous communica-
tion only, i.e. component interfaces are composed by synchronizing on matching
inputs and outputs. Environment correctness is closely connected to this com-
munication scheme, and requires that whenever an output action is enabled,
then the environment must be able to receive that output. This basic idea of
environment correctness has also been at the core of compatibility in the related
approach of interface automata [61], however, with the different optimistic view
on compatibility.

More general communication schemes and associated compatibility notions
are clearly desirable. We believe that adding the support for arbitrary synchro-
nization schemes like in the BIP framework [40] or in Reo [8], in particular al-
lowing 1 : n communication like broadcast, would be a valuable effort. As com-
patibility is always tightly related to the desired communication scheme, a more
general approach to communication errors is needed then. One possibility would
be to lift the notion of stuck-freedom [86] of Fournet et al.– originally developed
for CCS [142] – to the level of modal transition systems. Stuck-freedom is a kind
of deadlock freedom, however, each process (or interface in our case) should not

1Modelling with variability essentially follows the idea of loose algebraic specifications, see
e.g. [162].
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get stuck (or deadlock) as long as external actions are enabled meaning that the
process is still willing to interact with its environment. We claim that output-
compatibility for certain subclasses of MIOs could be equally analyzed with the
more general approach using stuck-freedom. An alternative would be to use log-
ics like the modal µ-calculus [118] interpreted over modal transition systems like
in [96]. Generalizing the satisfaction relation of [96] to a relativized satisfaction
relation taking into account a given context would allow to express environment
correctness and other compatibility notions by suitable formulae. Of course, re-
finement of the specification or the context would need to preserve the relativized
satisfaction relation. It would also be interesting to integrate a logic into our ab-
stract framework of a specification theory.

Another interesting direction of research is the integration of asynchronous
compatibility. In [112, 20, 101] a specification theory was developed that defines
asynchronous compatibility in the context of parallel composition in which com-
ponent interfaces communicate via buffers. In principle, all of the introduced
variants of MIOs in this thesis have to be reconsidered and studied to figure out
how they work with asynchronous communication. In particular, it would be in-
teresting to study asynchronous environment correctness for MIODs which was
inherently synchronous so far: in the denotational semantics of implementations
of MIODs, a transition labelled with [ν]α(ρ) is executed if ν is the data state of
the environment and the environment offers a corresponding transition for α. So
far it was assumed that the check for the environment’s data state and the exe-
cution of α happens in one atomic step – which in the presence of asynchronous
communication would not be possible anymore.

Modal refinement distances. We have presented a quantitative approach to
system specification based on Kintv-WMIOs and modal refinement distances. One
possible direction for future work is the integration of a suitable temporal logic
that can express properties on the weights that are visited during a system run,
e.g. one would like to decide whether there is a run such that the accumulated re-
source consumption stays below a given bound. A preliminary step is presented
in our recent work [24] where we propose a subset of CTL extended with proposi-
tions reasoning about accumulated weights, and show various (un-)decidability
results for the logic.

Contracts. In Chapter 7, we have shown how to derive a contract theory for a
given (complete) specification theory. In particular, we required Assumption 4 to
hold: whenever S1 → S2⊗E and S2 → S1⊗E, then S1⊗S2 → E. Specification the-
ories for MIOs with weak environment correctness and weak modal refinement
are neither complete nor satisfy Assumption 4. To overcome these problems, we
believe that one has to integrate more structural elements into a contract and
arrive at component contracts that consist of a component behaviour (or com-
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ponent frame) F together with a set of port contracts (AP ,GP ) for each port P
that describe the assumptions and guarantees at this specific interaction point
of the component. This extension is clearly closely related with the previously
mentioned issue of integrating structural component concepts into specification
theories. A first step into this direction is presented in our recent work [21],
however, there is still missing a notion of dominance that semantically formu-
lates requirements of contract compositions, and hence the formal treatment of
deriving most permissive assumptions for proper contract compositions is to be
added.

Tool support. So far, the MIO Workbench provides tool support for the speci-
fication theories ThMIOstrong, ThdMIO

strong, ThMIOweak as well as modal contracts obtained by
instantiating the contract framework for ThdMIO

strong. Clearly, all other modal spec-
ification theories of Figure 9.1 should be added, including a support for modal
refinement distances for Kintv-WMIOs. The implementation of the modal spec-
ification theories for MIODs, in particular predicate abstract for strong modal
refinement, would be very worthwhile in order to model and work with larger
case studies. Error reporting for modal refinement and environment correctness
for (small) deterministic MIOs is conveniently realized by the verification view.
However, for non-deterministic MIOs, the verification view cannot handle nega-
tive answers in a satisfactory manner. For instance, if a modal refinement check
for non-deterministic MIOs is negative, the verification view can only present a
path to a state pair that does not satisfy the conditions required by the refine-
ment relation. As MIOs are in general non-deterministic, there could be many
such paths that are better illustrated by a modal refinement game: the user
should be able to play the modal refinement game (possibly directly on the graph-
ical representation of MIOs) against the computer that uses a winning strategy
for showing that the modal refinement does not hold.

Moreover, integrating hierarchical models, assemblies of specifications, in the
sense of [102], and finally port-based components is also desirable. We strongly
believe that having a sophisticated tool support is an indispensable prerequisite
for handling large, industrial case studies.

Software produce lines. In a larger context, modal transition systems have
gained a lot of interest in the software product lines community. Software prod-
uct lines or software product families are sets of related software products with
many similarities but varying functionality. Software product line engineering
is often used as a term for the process of managing the development of soft-
ware product families, see [152] for an overview. For instance, when embedded
systems are realized with similar hardware devices the software usually differs
only in some variation points depending on the functionality of the hardware
device used. Over the last years, modal transition systems have been used to
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model behavioural variability with a prospective application to software product
line modelling [84, 124, 77, 78]. This line of research is of high practical interest
with a promising application area for all the modal specification theories studied
in this thesis.
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