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I  Summary 

Proteostasis is defined as the ability of cells to control the concentration, conformation 

and subcellular location of its proteins by maintaining a dynamic equilibrium between protein 

synthesis and degradation. All cellular factors that participate and assist in maintaining protein 

homeostasis under normal and stress conditions constitute the proteostasis network (PN). 

Molecular chaperones and components of the degradation machinery form central hubs of the 

PN and play a pivotal role in the life of a protein from its synthesis to degradation. Deficiencies 

in proteostasis are associated with numerous diseases, such as neurodegenerative diseases 

(Huntington’s disease, Parkinson’s disease etc.), cancer and cardiovascular disease. Additionally, 

the gradual loss of cellular proteostasis capacity is implicated both as a cause and consequence of 

the aging process. 

The understanding of proteostasis and its regulation requires a suitable sensor that can 

report on the status of the PN under different cellular conditions. Previously reported proteostasis 

sensors were either tissue-system specific or limited to measuring the changes in specific 

components of the PN. Thus, they cannot be used to report global changes in the PN in different 

cell types and organs. To circumvent all these limitations, we developed temperature sensitive 

mutants of the enzyme Firefly luciferase (Fluc) as proteostasis sensors. 

We selected Fluc because it provides several advantages:  A.) The enzyme has no 

biological role in widely used cellular and animal systems, and thus the sensors derived from it 

can be used with minimal perturbation of the system under investigation. B.) Fluc depends on 

chaperones for its folding and therefore the protein folding and refolding capacity of cells can be 

readily estimated via enzymatic activity measurements. C.) Fluc activity can be measured by a 

simple luminescence-based assay with exquisite sensitivity and a wide dynamic range in cell 

extracts, intact cells and model organisms. Moreover, by tagging Fluc with appropriate signal 

sequences, inter-compartmental proteostasis can be easily studied.  

In this study, we generated 6 single and 12 Fluc double mutants by weakening polar 

contacts in the Fluc three-dimensional structure. Using translation in rabbit reticulocyte lysate 

(RRL), we showed that the mutations affected the thermostability of the variants to different 
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degrees. Among the 18 Fluc variants, we selected the least stable single mutant, R188Q 

(FlucSM) and the least stable double mutant, R188Q+R261Q (FlucDM) for further in vitro and 

in vivo characterization. We probed the effect of mutations on the structure of Fluc variants by 

several assays such as proteinase K digestion and could show that FlucSM and FlucDM are 

conformationally destabilized. 

To further increase their potential as biological sensors, we tagged Fluc variants with 

EGFP. We were able to show that Fluc-EGFP based sensors do not significantly affect the 

proteostasis capacity of the cellular system under study. We next demonstrated the applications 

of Fluc-EGFP variants in different cell types and model organism under various stress 

conditions. Upon heat stress, FlucSM and FlucDM formed aggregates in HeLa cells which were 

efficiently resolubilized during recovery. Thus, Fluc-based sensors function as reporters of heat 

stress and allow assessment of the cellular capacity to refold heat denatured protein. We also 

showed that Fluc-EGFP based sensors are efficient in reporting the global changes in 

proteostasis when folding and degradation components of the PN are inhibited by small molecule 

inhibitors. Next we demonstrated that the Fluc-based sensors are efficient in reporting the decline 

in cellular proteostasis capacity by mutant huntingtin with an expanded polyglutamine stretch. 

Using C. elegans, we demonstrated the application of Fluc-EGFP variants in studying tissue-

specific differences upon heat stress and during aging. We showed that body-wall muscle cells 

and neuronal cells in C. elegans respond differentially to acute stress (heat stress) and to chronic 

proteome stress during aging. 

We tagged Fluc-EGFP and FlucDM-EGFP with a nuclear localization signal (NLS) or a 

nuclear export signal (NES) to study inter-compartmental proteostasis between the nucleus and 

the cytoplasm. Using Fluc-EGFP variants, we showed that although the nucleus is highly 

sensitive to proteostasis imbalance, it is more efficient in recovering from stress than the cytosol. 

Furthermore, contrary to our expectations, we observed that NES-FlucDM-EGFP formed 

aggregates in the nucleus upon proteasome inhibition. These nuclear aggregates were present in 

the nucleoli and they co-localized with 20S proteasomes and ubiquitin. We showed that the 

degradation of NES-FlucDM-EGFP is enhanced when it is retained in the nucleus, suggesting a 

role of the nucleus in degradation. We also proposed a role of DnaJB1 (Hsp40), a co-chaperone 

of Hsp70, in targeting and degradation of cytosolic misfolded protein in the nucleus. 
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In summary, this study describes the development and characterization of Fluc-EGFP 

based sensors and their potential applications to assess the proteostasis status in a wide range of 

experimental systems, including cell and organism models of stress, neurodegenerative disease 

and aging. The use of the sensors to understand the differential regulation of the PN in the 

nucleus and the cytosol is also described. 
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II  Introduction 

II.1. Proteins 

Cells are the basic and elementary entities of an organism and contain a wide range of 

biomolecules such as nucleic acids, proteins, carbohydrates and lipids to constitute their 

structural and functional framework. The genetic information encoded by nucleic acids is 

transcribed and translated into proteins which are highly specialized in their functions. Protein 

molecules are polymers of a combination of 20 different L-amino acids which have the same 

backbone but different side chains. It is the sequence and combination of amino acids that 

confers different physical, chemical and biological properties to proteins and allows them to 

adopt a unique three-dimensional structure that reflects their functions inside the cell. 

There are four different hierarchical levels of organization of protein structure. The first 

level is primary structure, which is the linear sequence of amino acids translated from the genetic 

code. The next level is secondary structure which refers to the spatial arrangement of amino 

acids in a particular order giving rise to a highly regular local sub-structure. Generally, α-helix, 

β-sheet and β-turns are the most common forms of secondary structures in proteins. The third 

level refers to the tertiary structure which involves the global positioning of the secondary 

structure elements in three-dimensional space and both covalent (peptide bonds and disulfide 

bridges) and non-covalent interactions (hydrogen bonds, Van-der-Waals and hydrophobic 

interactions) are the determinants of this type of arrangement. The last level of protein 

organization is quaternary structure which results from the assembly of two or more separate 

polypeptide chains (identical or different) in three-dimensional complexes to form a multi-

subunit protein. 

II.2. Protein Folding 

Synthesis of proteins begins on the ribosome, a giant multi-molecular complex of 

proteins and ribosomal RNA that, in concert with other protein molecules, translates the genetic 

code of the messenger RNA (mRNA) into a linear chain of amino acids called polypeptide. The 

amino acids are covalently linked to each other by a peptide bond between carboxyl and amino 

groups, a reaction catalyzed by ribosomes during translation. This process of translation takes 

place in a vectorial fashion with the N-terminus of polypeptide emerging first from the 
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ribosome’s exit tunnel. The newly synthesized polypeptide chain must acquire a unique three-

dimensional conformation in order to perform its function in the cell. This conformation is 

referred as “native state” of a protein and the process by which the polypeptide chains adopt their 

functional structure is called “protein folding”. 

During protein folding, a polypeptide chain in solution can access a large number of 

conformations because of the free rotation of every single covalent bond in the backbone of its 

constituting amino acids. If a polypeptide has to scan all the possible available conformations it 

would take an astronomical amount of time to reach its native state. This ambiguity between the 

calculated time and the actual time that a polypeptide takes to fold is known as the Levinthal 

Paradox (Levinthal et al., 1962; Zwanzig et al., 1992). Since in cells protein folding usually 

occurs on a biologically relevant time scale, in the order of seconds to minutes, Levinthal 

proposed that folding follows a well-defined pathway, taking place through a series of transient 

intermediates rather than through a random conformational search. 

Several models have been proposed to account for the rapid folding of proteins. 

According to the first model called “hydrophobic collapse” model, there is a rapid non-specific 

collapse of the polypeptide chain where hydrophobic non-polar side chains are buried deep 

inside the core, and hydrophilic and polar side chains are exposed on the surface of the folded 

protein. From a thermodynamic perspective, the sequestration of the hydrophobic side chains 

from the solvent facilitates the formation of folding intermediates and therefore hydrophobic 

collapse occurs spontaneously and results in the formation of the molten globule state (Dill et al., 

1995; Kauzmann, 1959). The second view about protein folding, also regarded as “framework 

model” postulates that the folding process is a directed process where the local interactions lead 

to the transient formation of the secondary structural elements. Once a framework is set, the 

secondary structures then eventually collapse to give rise to the tertiary structure of a protein 

(Baldwin, 1989; Fersht, 2008; Kim and Baldwin, 1982). To reasonably account the folding 

process, a third view called “nucleation-condensation model” unifies the features of both the 

hydrophobic collapse model and the framework model. According to this model, folding is a 

hierarchical process that begins with the initial rapid formation of the secondary structures. There 

is a gradual build-up/layering of new structures over the previous ones which help in 

stabilization of folding intermediates. During this process, the water molecules are excluded 
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from the hydrophobic core which minimizes the free energy and leads to the collapse of the 

partially folded polypeptide chain to its native state (Daggett and Fersht, 2003; Dill et al., 1995).  

II.3. Energy Landscape Perspective on Protein Folding 

In the past, many models were proposed to describe protein folding in vitro. However, 

the complexity of the folding process and its variability for different proteins delayed the 

understanding of this dynamic process. Moreover, the initial models mainly focused on folding 

of small single domain proteins upon dilution from denaturant. To overcome the short comings 

of these models, a different perspective based on the protein’s potential energy surface was 

developed. This energy landscape perspective, also referred as “folding funnel” is a pictorial 

representation that describes the progression of an unfolded polypeptide chain with a very high-

dimensional accessible conformational space en route to the native state at the global energy 

minimum (Bryngelson et al., 1995; Clark, 2004; Dill and Chan, 1997) (Figure 1).  

The folding funnel can often be rugged due to kinetic traps where partially folded 

intermediates get entrapped. These kinetic traps, also called local energy minima, arise due to 

non-specific intramolecular interactions in the folding intermediates (Brockwell and Radford, 

2007). The number and depth of local kinetic traps on the energy landscape defines the degree of 

ruggedness of the folding pathway (Onuchic et al., 1997). Under physiological conditions, the 

folding of nascent chains becomes even more complex due to the collision between different 

folding intermediates. Such intermolecular interactions besides impairing the folding process can 

also lead to the entrapment of partially folded or misfolded states in the major kinetic traps where 

they may eventually aggregate. These aggregates including amyloid fibrils have very deep global 

energy minima and therefore they are more stable species than the native protein itself. Cells 

have evolved complex mechanisms to prevent these off-pathway aggregation reactions by 

encoding a set of helper proteins called molecular chaperones that prevent non-native 

interactions between the folding intermediates and help in smoothing the energy landscape (Hartl 

et al., 2011). 
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Figure1: Energy landscape perspective on protein folding and misfolding. 

Scheme of a funnel-shaped folding pathway that polypeptide chains undergo in order to reach their native 

state by forming intramolecular contacts. The polypeptide chains at the top of funnel can acquire a wide 

range of conformations and as they move down the funnel to reach their native state (shown in green), 

their folding intermediates can get kinetically trapped. In vivo, molecular chaperones help these folding 

intermediates in traversing the rugged energy-landscape by preventing intermolecular interactions. 

However, due to molecular crowding, several folding intermediate species may engage in non-specific 

intermolecular interactions to form amorphous aggregates, oligomers or amyloid fibrils. These products 

of off-pathway folding reaction have very deep global energy minima (hence they are highly stable) and 

therefore they might get trapped irreversibly (shown in red). Modified from (Hartl et al., 2011). 

 

II.4. Proteostasis 

Protein folding in cells is a highly complex and challenging process due to the highly 

crowded and heterogeneous intracellular environment. Escherichia coli express around 300-400 

gl
-1

 of total macromolecules in the cytoplasm (Zimmerman and Trach, 1991). It has been 

estimated that macromolecules occupy around 20-30% of the total cell’s volume and therefore 

this fraction is physically unavailable to other molecules. This results in exclusion of volume that 

a molecule can occupy and causes crowding (van den Berg et al., 2000). Macromolecular 

crowding also plays a role in the functional interactions between molecules (Martin and Hartl, 
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1997). However, crowding can also considerably enhance the affinities between protein 

molecules, especially partially folded intermediates. Aberrant non-specific interactions between 

non-native structures can lead to the formation of aggregates (Dobson, 2003; Ellis, 2006). 

Furthermore, in such a crowded milieu, these interactions are significantly aggravated upon 

cellular stress. The source of the stress can be environmental such as heat stress or intrinsic such 

as oxidative stress.  

Aggregates, often exposing ‘sticky’ hydrophobic residues can potentially sequester 

essential cellular factors leading to cellular toxicity and numerous protein conformational 

disorders, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, 

Huntington’s disease and prion diseases (Bucciantini et al., 2002; Olzscha et al., 2011; Suhr et 

al., 2001). To circumvent the unproductive folding of nascent chains and to prevent misfolding 

and aggregation of proteins, cells inherently protect their proteome through protein quality 

control at various stages from protein synthesis to folding and degradation of irreversibly 

misfolded species. Thus, cells have evolved the ability to adapt to non-permissive conditions by 

up-regulating the expression of a subset of proteins that participate in restoring the disturbed 

homeostasis.  

The capacity of cells to control the concentration, conformation, binding interactions and 

subcellular location of each individual protein constituting the proteome is called protein 

homeostasis or proteostasis (Balch et al., 2008; Powers et al., 2009). The set of factors/proteins 

that engage in maintaining the health of other proteins from their birth to their death constitute 

the proteostasis network (Figure 2). Among these, molecular chaperones and components of the 

cellular degradation machinery, namely the ubiquitin proteasome system and autophagy form the 

central hub of the proteostasis network (PN). Protein remodeling factors comprising of proteins 

engaged in refolding misfolded proteins, disaggregation and translocation across biological 

membranes are equally important for the maintenance of cellular proteostasis. A deficiency in 

proteostasis has been implicated in numerous human diseases and contributes to cellular 

dysfunction and aging. 
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Figure 2: The major components of the proteostasis network (PN). 

The PN comprises over 1000 general and specialized components such as chaperones, components of 

degradation machinery (ubiquitin, proteasome and autophagy) and proteins involved in trafficking that 

integrate with each other to maintain cellular protein homeostasis. Chaperones shield the hydrophobic 

patches on emerging nascent chains and aid the folding intermediates to reach their native state. 

Intermolecular interactions between partially folded intermediates result in protein misfolding. The 

misfolded proteins are either refolded to the native state by chaperones or they are eventually degraded by 

the ubiquitin proteasome system. Failure in refolding and degradation results in the accumulation of 

misfolded proteins and the formation of aggregates. The aggregates can be resolubilized by the action of 

disaggregase or they are cleared by autophagy mediated sequestration and degradation. 

 

II.4.1. Molecular Chaperones in Proteostasis 

Competition between protein folding and misfolding is a fundamental feature of the 

folding process in cells. During translation, nascent chains are inserted into the crowded milieu 

of the cell and expose numerous hydrophobic surfaces and regions of unstructured polypeptide 

backbone that can mediate non-covalent interactions with other non-native polypeptides. 

Bacteria have fast translation rates of 10-20 residues per second compared to ~ 3-8 residues in 
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eukaryotes (Liang et al., 2000; Pedersen, 1984). In eukaryotes, a polypeptide can begin to fold to 

form a protein domain as soon as it emerges from the ribosomes, a process called co-translational 

folding. However, a domain can only completely fold when its entire sequence has emerged from 

the ribosome (Agashe et al., 2004; Netzer and Hartl, 1997). This scenario exposes non-native 

surfaces on nascent chains for a considerable length of time to interact non-specifically and make 

them highly aggregation prone.  

In addition to the exposure of hydrophobic surfaces on nascent chains during co-

translational folding, the close proximity of nascent chains on polyribosomes may substantially 

increase their tendency to form non-native structures. However, cells have evolved systems 

which protect the emerging polypeptides from non-specific intra- or inter-molecular interactions. 

The first level of quality control is ensured by the arrangement of the polyribosomes on the 

mRNA. In both prokaryotes and eukaryotes, the polyribosomes are spatially positioned in 

staggered or pseudo-helical arrangement with their exit tunnels facing outwards. This 

arrangement maximizes the distance between emerging nascent polypeptide chains on adjacent 

ribosomes and hence serves to minimize the intermolecular interactions that otherwise may lead 

to aggregation and limit productive folding (Brandt et al., 2010; Brandt et al., 2009).  As the 

environment in cells is highly crowded with various macromolecules and therefore not an ideal 

habitat for productive protein folding, an additional quality control mechanism at the level of 

chaperones becomes essential (Georgopoulos, 1992).  

Cells encode a group of proteins called chaperones to prevent nascent chains from 

aberrant interactions. The term molecular chaperone was first used by Laskey and colleagues to 

describe a role of nucleoplasmin, an acidic nuclear protein that helps in the assembly of 

nucleosomes by neutralizing the non-specific ionic interactions between histones and DNA 

(Laskey et al., 1978). Later, John Ellis described chaperones as a ubiquitous family of proteins 

which mediate the correct folding of other polypeptides without being the component of the final 

functional structure (Ellis, 1987; Ellis, 1993).  

Notably, chaperones by themselves do not provide any steric information for either 

polypeptide folding or in the oligomerization process; rather they use ingenious mechanism to 

promote the folding of nascent and newly synthesized polypeptide chains along the folding 

pathway. Chaperones, transiently and non-covalently, shield the exposed hydrophobic surfaces 
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on their substrate clients and prevent their non-specific interactions with other molecules. These 

proteins, in some cases, can also facilitate the post-translational assembly of polypeptides into 

oligomeric structures as in the assembly of the functional enzyme Ribulose-1,5-bisphosphate 

carboxylase oxygenase (Rubisco) (Hemmingsen et al., 1988; Liu et al., 2010; Saschenbrecker et 

al., 2007). Many of the chaperones promote de novo folding by iterative cycles of substrate 

binding and release driven by ATP hydrolysis and may require co-factors or co-chaperones. 

Another common determinant evolutionary conserved in almost all the chaperone families is 

their specificity to recognize hydrophobic segments flanked by basic amino acid residues in their 

client proteins (Rousseau et al., 2006). This feature allows them to selectively recognize 

unfolded or misfolded proteins because they expose otherwise buried hydrophobic amino acid 

residues.  

Although in cells there is a constitutive expression of all major chaperone classes, there is 

a remarkable increase in their cellular concentrations during conditions of stress (Ananthan et al., 

1986; Bienz and Pelham, 1987). Such stress-induced chaperones are also called Heat Shock 

Proteins (HSPs) and they are generally classified according to their molecular weight, such as 

Hsp100, Hsp70, Hsp90, Hsp60, Hsp40 and small HSPs like Hsp27.  

After more than three decades of research it is now well established that molecular 

chaperones are multifaceted and highly versatile molecules that are involved in diverse cellular 

functions, including de novo folding, oligomeric assembly, intracellular protein trafficking, 

refolding of stress denatured proteins and assistance in proteolytic degradation (Hartl and Hayer-

Hartl, 2009). A detailed discussion on their synthesis and their role in preventing protein 

aggregation during stress follows. 

II.4.1.1. Different Classes of Chaperones 

Chaperones are highly conserved in all three domains of life from archaea to bacteria to 

eukaryotic cells and they follow the same functional principles (Figure 3). They form a cellular 

folding network that helps to maintain the integrity of the cellular proteome both during normal 

growth and under stress conditions. Chaperone mediated folding is highly processive and it is 

coupled to translation and translocation which prevents the newly synthesized polypeptides from 

drifting into the bulk cytosol (Langer et al., 1992; Thulasiraman et al., 1999). Subsequently, 
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chaperones are classified broadly into three main classes depending on their functional role at 

different stages of protein maturation. 

 

Figure 3: Organization of chaperone pathways in the three domains of life. 

(a) In eubacteria, the nascent chains emerging from ribosomes interact with Trigger Factor (TF) and most 

of them (~ 70% of total) may fold rapidly into proteins upon release from the ribosomes without further 

assistance. Longer chains interact subsequently with DnaK (Hsp70) and DnaJ, chaperones which help in 

folding through several ATP-dependent iterative cycles of binding and release (~ 20% of total). About 

10% of total chains transit the GroEL and GroES chaperonin system to reach their native state (N). (b) In 

archaea, only some species contain DnaK/DnaJ. (c) In eukaryotes, similar to TF, nascent chain-associated 

complex (NAC) probably interacts with nascent chains. About 20% of chains reach their native states 

through assistance by ribosome associated chaperones (RAC), Hsp70 and Hsp40. A subset of chains 

requires Hsp90 for their folding. About 10% of chains are co- or post-translationally transferred to the 

chaperonin TRiC/CCT by Hsp70 and prefoldin (PFD). Adapted from (Hartl and Hayer-Hartl, 2009). 

 

II.4.1.1.1. Ribosome Associated Chaperones 

This category of chaperones includes proteins like Trigger factor (TF) (in bacteria), 

Ribosome Associated Complex (RAC) (in eukaryotes) and Nascent chain Associated Complex 

(NAC) (in both archaea and eukaryotes) that interact with newly synthesized nascent chains at 

the ribosome exit tunnel (Figure 3). Therefore, these ribosome associated chaperones are 

optimally positioned to interact with the majority of nascent chains destined to the cytosol. They 

all transiently bind to the exposed hydrophobic residues on polypeptide chains and prevent them 

from making non-specific intra or intermolecular contacts, thus delaying their premature co-
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translational folding (Agashe et al., 2004; Kaiser et al., 2006; Kramer et al., 2009). This provides 

sufficient time to the elongating polypeptide to receive its entire structural information requisite 

for the productive folding to begin.  

Much of our current understanding about the functions and mechanism of this class of 

chaperones is based on the studies done with TF. TF is a 48 kDa protein that binds to ribosomes 

in a 1:1 stoichiometry and interacts with nascent chains in an ATP independent manner 

(Hesterkamp et al., 1996). Recognition of ribosome bound polypeptide by TF is mediated by 

short sequences enriched in hydrophobic (particularly aromatic) residues (Patzelt et al., 2001). 

However, hydrophobicity alone is not the only determinant of affinity of TF for nascent chains 

because it has been shown that TF does not bind to the hydrophobic signal anchor sequence of 

FtsQ protein. TF can also recognize hydrophilic surfaces on certain folded domains of ribosomal 

protein S7 (Lakshmipathy et al., 2010). A recent study on the functions of TF suggests that 

bacterial outer membrane proteins are the most prominent substrates of TF and loss of TF results 

in premature, co-translational protein translocation (Oh et al., 2011). On the basis of these 

findings, similar functions of NAC and RAC can be envisioned. For instance, mutations in NAC 

have been shown to cause early embryonic lethality in higher eukaryotes, such as M. musculus, 

D. melanogaster and C. elegans (Bloss et al., 2003; Deng and Behringer, 1995; Markesich et al., 

2000). However, direct evidence of these archaeal and eukaryotic ribosome bound chaperones in 

protein folding remains elusive. 

II.4.1.1.2. Non-ribosome Associated Chaperones 

The members of this class of chaperones are ubiquitously present in the cytosol of 

eubacteria, eukaryotes and some archaea, as well as in subcellular organelles such as the 

endoplasmic reticulum and mitochondria. They include members of the Hsp70 (DnaK) 

chaperone system and members belonging to the Hsp90 chaperone family that mediate the 

folding of longer nascent chains that failed to achieve their native state by ribosome associated 

chaperones (Figure 3). Since these chaperones participate in the folding process downstream, 

they do not bind directly to the ribosomes and are involved in both co- or post-translational 

folding of nascent chains. Chaperones belonging to this class show functional redundancy with 

ribosome associated chaperones whereby they hold and stabilize the nascent chains in a state 

competent for subsequent folding or translocation. The structure and mechanistic insight into the 
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functions of the Hsp70 chaperone system and Hsp90 is presented in detail in the following sub-

sections. 

In eukaryotes and archaea, another protein complex called prefoldin or Gim complex 

(GimC) acts in a manner similar to Hsp70 to stabilize nascent chains. It is a 90 kDa hetero-

oligomeric complex involved in folding of actin and tubulin in Saccharomyces cerevisiae 

(Geissler et al., 1998; Hansen et al., 1999). Besides functioning in protein folding, prefoldin is 

also involved in channeling the substrates to the further downstream chaperones called 

chaperonins (Siegert et al., 2000; Vainberg et al., 1998).  

II.4.1.1.2.1. The Hsp70 Chaperone System 

The members of the Hsp70 family are highly conserved and ubiquitously distributed 

proteins found in all organisms from prokaryotes (DnaK) to eukaryotes (Hsp70). In eukaryotes, 

they are also present in subcellular organelles, mitochondria (e.g. Grp75) and endoplasmic 

reticulum (e.g. Grp78 or BiP or Kar2). There are multiple functionally redundant homologs of 

Hsp70 in the eukaryotic cytosol, such as in S. cerevisiae that contains four non-ribosome 

associated Hsp70s, Ssa1-4 and three ribosome-associated Hsp70s, called Ssb1, Ssb2 and Ssz1 

(Lindquist and Craig, 1988; Nelson et al., 1992; Pfund et al., 1998). The cytosol of higher 

eukaryotes contains a constitutively expressed Hsp70 homolog called Hsc70 (Heat Shock 

Cognate 70) and a stress inducible form, Hsp70. Henceforth, “Hsp70” will be generally used for 

different organisms and different compartments. 

The crystal structure of Hsp70 shows that it consists of a ~ 44 kDa N-terminal domain 

(ATPase domain) that mediates ATP binding and hydrolysis (Flaherty et al., 1990) and a ~ 27 

kDa C-terminal peptide binding domain (Bukau and Horwich, 1998; Zhu et al., 1996) (Figure 

4a). The C-terminal domain contains a β-sandwich subdomain with a peptide binding cleft and a 

α-helical latch-like segment that acts as a lid to permit the entry and release of the substrate. 

Using a number of different approaches including phage display and synthetic peptide libraries, a 

consensus motif recognized by Hsp70 in substrate polypeptides has been identified. It has been 

found that Hsp70 has high affinity for short extended peptide stretches (approx. seven residues) 

enriched in aliphatic, hydrophobic residues (particularly leucine and isoleucine) in the central 

region flanked by positively charged residues (Blond-Elguindi et al., 1993; Flynn et al., 1991; 

Richarme and Kohiyama, 1993; Rudiger et al., 1997). Such binding sites for Hsp70 occur on 
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average every ~ 40 residues in proteins and may account for the activity of Hsp70 to prevent 

aggregation (Rudiger et al., 1997). This substrate specificity allows Hsp70 to recognize structural 

features that are fingerprints of most nascent chains and enables it to shield unfolded 

polypeptides during translation and translocation and prevent them from premature folding. This 

binding affinity for hydrophobic side chains also allows Hsp70 to recognize misfolded and non-

native protein conformations with exposed hydrophobic residues. Quantitative 

immunoprecipitation analysis in mammalian cells demonstrated that Hsc70 transiently and 

preferentially associates with elongating polypeptides larger than 20 kDa and at least 15-20% of 

newly synthesized proteins associate with Hsc70 during their biogenesis (Thulasiraman et al., 

1999). These results are consistent with findings in prokaryotes where DnaK was shown to 

interact with ~ 15% of polypeptides and has been shown to facilitate the post-translational 

folding of multi-domain proteins through several cycles of binding and release (Calloni, 2012; 

Teter et al., 1999). 

Hsp70, like all other chaperones, transiently associates with its substrates and uses an 

ATP dependent mechanism to facilitate protein folding. The mechanistic elucidation of the 

reaction cycle of Hsp70 came from both in vitro and in vivo studies, primarily using DnaK which 

has served as a paradigm for all canonical Hsp70s (Figure 4b). Hsp70 has been shown to bind 

only to unfolded, but not to folded or native proteins in a temperature-dependent manner and the 

complex of Hsp70 with the nucleotide (ATP or ADP) modulates its intrinsic affinity for the 

polypeptide (Palleros et al., 1991; Pellecchia et al., 2000). In the ATP bound state, Hsp70 rapidly 

binds to its polypeptide in an open state where the latch over the peptide binding cleft is open. 

The hydrolysis of bound ATP by the N-terminal ATPase domain causes a conformational change 

leading to the closure of the latch and holding of the substrate molecule in a folding competent 

state (Liberek et al., 1991b; Palleros et al., 1994). 
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Figure 4: Structure and reaction cycle of the Hsp70 chaperone system. 

(a) Domain architecture of Hsp70 showing the N-terminal ATPase domain and the C-terminal peptide 

binding domain (residue numbers refer to human Hsp70). The interaction of prokaryotic and eukaryotic 

cofactors with Hsp70 is shown schematically. Only the Hsp70 proteins of the eukaryotic cytosol contain 

an EEVD sequence at their C-terminus that mediates their interaction with tetratricopeptide repeat (TPR) 

containing proteins like HOP and CHIP. (b) Reaction cycle of Hsp70. (1) The reaction cycle starts with 

the Hsp40 (red) mediated delivery of unfolded substrate to ATP-bound Hsp70 (yellow). (2) Hsp40 

stimulates ATPase activity of Hsp70 resulting in ATP hydrolysis and closure of the α-helical lid (blue) to 

stabilize the Hsp70-substrate complex. Hsp40 dissociates from Hsp70 (3) Nucleotide exchange factor 

(NEF) (green) catalyzes the dissociation of ADP. (4) ATP binding to Hsp70 induces a conformational 

change leading to opening of α-helical lid and release of substrate. (5) Released substrate either folds to a 

native state (N), is transferred to downstream chaperones or rebinds to Hsp70 for another round of folding 

cycle. Adapted from (Hartl and Hayer-Hartl, 2009). 
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The cycling of Hsp70 between its different nucleotide bound states is regulated by its two 

co-chaperones, Hsp40 and NEF (Nucleotide Exchange Factor) (Harrison et al., 1997; Liberek et 

al., 1991a; Mayer et al., 2000). Hsp40 (DnaJ) is a ~ 41 kDa J-domain containing protein whose 

N-terminal domain binds to Hsp70 and stimulates its ATPase activity. This results in ATP 

hydrolysis and concomitant stabilization of the Hsp70-substrate complex (Cyr et al., 1992; 

Mayer, 2010). The carboxyl terminal domain of Hsp40 has a substrate binding property and it 

can recognize aromatic and large aliphatic residues that allow it to recruit Hsp70 to target 

polypeptides in spatial proximity (Misselwitz et al., 1998; Rudiger et al., 2001; Szabo et al., 

1996). Thus, Hsp40s provide substrate specificity to their partner Hsp70 molecules. 

Consequently, cells possess a variety of different Hsp40 molecules with different substrate 

binding properties which further broadens the activity spectrum of Hsp70 (Kampinga and Craig, 

2010). In addition to Hsp40, NEFs play a pivotal role in the functional cycle of Hsp70. These 

protein molecules bind to the ATPase domain of Hsp70 and by modifying the conformation of 

the nucleotide binding pocket, promote the release of bound ADP (Figure 4). This allows the 

rebinding of another ATP molecule, which then triggers the release of substrate from the peptide 

binding cleft and thus completes the Hsp70 folding cycle (Harrison et al., 1997; Szabo et al., 

1994). In prokaryotes, GrpE (23 kDa) acts as a NEF for DnaK and it is also present in eukaryotes 

in organelles of symbiotic origin (i.e. mitochondria and chloroplasts). Eukaryotic cytosol 

contains the BAG-1 protein and proteins belonging to the Hsp110 family that act as a NEF for 

Hsp70 (Dragovic et al., 2006; Hohfeld and Jentsch, 1997; Polier et al., 2008; Raviol et al., 2006). 

Since members of the Hsp70 family, together with their co-chaperones, function at a very 

crucial junction in the hierarchical structure of protein folding helpers, they are functionally 

integrated with other chaperone members and they co-ordinate with each other to provide a 

protective folding compartment (Langer et al., 1992; Thulasiraman et al., 1999). For instance, it 

was demonstrated in E. coli that deletion of DnaK in TF-deleted cells resulted in massive 

aggregation of cytosolic proteins and combined deletion of both TF and DnaK caused synthetic 

lethality (Calloni, 2012; Deuerling et al., 1999). Further, upon deletion of TF, the polypeptide 

flux through DnaK increases from ~ 15% to ~ 40% showing that there is partial functional 

redundancy between different classes of chaperones (Teter et al., 1999). Using firefly luciferase 

as a model protein, it was shown in rabbit reticulocyte lysate (RRL) that Hsc70 together with 

Hsp40 and TRiC sequentially mediate the folding of luciferase nascent chains and depletion of 
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either of these chaperones disrupts the highly organized chaperone pathway (Frydman et al., 

1994). In S. cerevisiae, it was shown that Hsp70 and TRiC cooperate in the folding and assembly 

of the Von Hippel-Lindau (VHL) tumor suppressor complex (Melville et al., 2003). Thus, Hsp70 

synergizes its activity with other chaperones and co-chaperones to effectively fold cellular 

proteins and lack of one chaperone component generally causes other chaperone members to 

take over its functions. 

Hsp70 members are highly multifunctional proteins that have been shown to play a key 

role in proteome maintenance, such as in de novo protein folding (co- or post-translational), 

protein translocation across membranes (Lyman and Schekman, 1997; Matlack et al., 1999; 

Young et al., 2003), refolding of stress damaged proteins (Ben-Zvi et al., 2004; Goloubinoff et 

al., 1999; Schroder et al., 1993; Sharma et al., 2010), in preventing protein aggregation (Auluck 

et al., 2002; Broadley and Hartl, 2009; Klucken et al., 2004; Sakahira et al., 2002; Warrick et al., 

1999), disaggregation (Ben-Zvi and Goloubinoff, 2001; Diamant et al., 2000; Liberek et al., 

2008; Shorter, 2011) and degradation of irreparable misfolded proteins (Bercovich et al., 1997; 

Fisher et al., 1997; Urushitani et al., 2004). These essential and diverse cellular functions of 

Hsp70 are attributed to its physical interaction with various co-chaperones such as Hsp40, NEFs 

and with proteins such as HIP, HOP and CHIP. 

HIP, Hsp70 Interacting Protein, is a ~ 48 kDa eukaryotic protein that was identified in a 

yeast two-hybrid screen (Hohfeld et al., 1995). HIP has been shown to interact with the ATPase 

domain of Hsp70 by its tetratricopeptide repeat (TPR) region (Velten et al., 2000) and this 

interaction slows dissociation of ADP from Hsp70. This stimulates the chaperone activity of 

Hsp70, presumably because it stabilizes the Hsp70 substrate complex by preventing premature 

substrate release (Hohfeld et al., 1995). In this regard, HIP is antagonist to BAG-1 which 

promotes the release of the bound ADP from Hsp70 and results in substrate release (Hohfeld and 

Jentsch, 1997; Takayama et al., 1997). Recently, HIP together with Hsc70 has been shown to 

significantly reduce inclusion formation in an in vitro model of Spinal Bulbar Muscular Atrophy 

(SBMA) and a primary neuronal model of polyglutamine disease (Howarth et al., 2009). 

HOP, Hsp70-Hsp90 Organizing Protein, a 60 kDa protein (also called Sti1 or p60 in 

yeast) was first identified in a genetic screen to play a role in heat shock response of some Hsp70 

genes (Nicolet and Craig, 1989; Smith et al., 1993). Subsequently, it was shown that HOP is a 
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functional homolog of the BAG-1 protein that stimulates nucleotide exchange by Hsp70 (Gross 

and Hessefort, 1996). HOP interacts with Hsp70 and Hsp90 via its three TPR domains and plays 

an essential role in coupling Hsp70 to Hsp90 (Scheufler et al., 2000; Schmid et al., 2012). For 

example, it was shown in S. cerevisiae that association of HOP with Hsp70 and Hsp90 redirects 

VHL tumor suppressor protein from the folding pathway to the ubiquitin-proteasome mediated 

degradation pathway (McClellan et al., 2005). HOP has also been shown to stimulate refolding 

of thermally denatured firefly luciferase by bridging the interaction between Hsp70 and Hsp90 

(Johnson et al., 1998).  

CHIP, Carboxyl-terminus of Hsc70 Interacting Protein is a cytoplasmic 35 kDa protein 

which possesses three N-terminal TPR domains that bind to the C-terminus of Hsp70 and Hsp90 

molecular chaperones (Ballinger et al., 1999). CHIP has been shown to inhibit the Hsp40 

induced stimulation of ATPase activity of Hsp70 and, thus, acts as a negative regulator of the 

Hsp70 reaction cycle (Ballinger et al., 1999; Stankiewicz et al., 2010). The C-terminus of CHIP 

possesses an E3 ubiquitin ligase like activity that allows it to ubiquitylate irreparable Hsp70 and 

Hsp90 bona fide substrates (in vitro and in vivo) and targets them for the ubiquitin-proteasome 

mediated degradation pathway (Connell et al., 2001; Murata et al., 2001). CHIP together with 

Hsc70 has been shown to ubiquitylate immature forms of cystic fibrosis transmembrane 

conductance regulator (CFTR) protein and mutant superoxide dismutase 1 (SOD1) protein and 

facilitate their degradation (Meacham et al., 2001; Urushitani et al., 2004). Both CFTR and 

SOD1 are implicated in protein misfolding diseases, cystic fibrosis disease and familial 

amyotrophic lateral sclerosis (ALS) disease, respectively. A recent study suggests that CHIP has 

an intrinsic chaperone like activity that enables it to selectively recognize and bind misfolded 

proteins. This function of CHIP is temperature sensitive which may allow CHIP to target heat 

denatured proteins directly for degradation (Rosser et al., 2007). Therefore, CHIP plays a pivotal 

role in cellular triage decisions that regulate the balance between folding and degradation of 

chaperone substrates. 

II.4.1.1.2.2. The Hsp90 Chaperone System 

The dimeric heat shock protein 90 (Hsp90) is a highly conserved protein found in all 

organisms from bacteria to mammals except archaea. Using genomics and bioinformatics 

approaches, a study has shown that Hsp90 family members underwent multiple duplications and 
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also subsequent losses during their evolution. This study has classified the members of the 

Hsp90 family into 5 subfamilies: (i) cytosolic Hsp90A, (ii) endoplasmic reticulum (ER)-

localized Hsp90B, (iii) chloroplast Hsp90C, (iv) mitochondrial TNFR-associated protein (TRAP) 

and (v) bacterial High temperature protein G (HtpG) (Chen et al., 2006). The cytosolic Hsp90A 

is further divided into Hsp90AA (constitutively expressed isoform) and Hsp90AB (inducible 

isoform during stress).  

While the eubacterial HtpG is dispensable under normal growth conditions (Bardwell and 

Craig, 1988), the Hsp90 in eukaryotes is one of the most abundant (~ 1-2% of total cytosolic 

proteins) and essential protein for cell viability (Borkovich et al., 1989). This means in 

eukaryotes Hsp90 could have many diverse cellular functions other than chaperoning folding 

intermediates. Indeed, Hsp90 was first identified during affinity purification of the proto-

oncogenic tyrosine kinase v-Src protein where it co-immunoprecipitated with v-Src from (Rous 

sarcoma) virus-transformed chicken cells (Brugge et al., 1981). Later, Hsp90 was found to be 

associated with several different clients such as protein kinases and nuclear steroid receptors 

(e.g. glucocorticoid receptor) (Joab et al., 1984; Schuh et al., 1985; Smith, 1993; Smith et al., 

1992). Since then, Hsp90 clients have grown tremendously owing to genome-wide high 

throughput studies. For instance, in S. cerevisiae, 1,022 unique proteins interact genetically and 

505 proteins interact physically with Hsp90, making Hsp90 one of the most highly connected 

proteins in the yeast genome network (http://thebiogrid.org/35923/summary/saccharomyces-

cerevisiae/hsp82.html). Although protein kinases and steroid hormone receptors are the best 

understood clients of Hsp90, other essential proteins such as transcription factors, chromatin 

remodeling factors and proteins involved in cell signaling unequivocally require Hsp90 for their 

structural maturation and functional regulation (Sharma et al., 2012; Taipale et al., 2010). 

Because of its central position in numerous vital regulatory hubs, Hsp90 is absolutely essential 

for stable propagation of cancerous cells (Kubota et al., 2010; Neckers, 2007; Pick et al., 2007; 

Whitesell and Lindquist, 2005). 
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Figure 5: Structure and ATPase cycle of the Hsp90 chaperone system. 

(a) Domain structure of Hsp90 consisting of amino-terminal domain (NTD), middle domain (MD) and 

carboxy-terminal domain (CTD). (b) Schematic of conformational cycle of Hsp90. In ADP-bound state, 

Hsp90 is present in open or relaxed state. ATP binding to the ATPase domain of NTD induces a 

conformational rearrangement in Hsp90 and the subsequent closure of the ATP lid in the NTD. After lid 

closure, the NTDs dimerize, forming the closed Hsp90 dimer. This ATP-bound state of Hsp90 is referred 

to as closed or tense state and this state is committed for ATP hydrolysis. After ATP hydrolysis, the 

NTDs dissociate and both monomers separate amino-terminally. The inactive substrate molecule interacts 

mostly with the middle domain (MD) and is conformationally activated as Hsp90 proceeds through the 

ATPase cycle. Adapted from (Taipale et al., 2010). 

 

Hsp90 exits as a dimer in the functional active state. As shown in Figure 5a, the monomer 

contains a highly conserved amino-terminal domain (NTD) connected to a middle domain via a 

charged linker. The NTD has a nucleotide binding pocket and has a weak intrinsic ATPase 

activity (Obermann et al., 1998; Prodromou et al., 1997). Several conserved residues in the NTD 

form a molecular lid that closes over the nucleotide binding pocket in its ATP bound state 

(closed or tense state). In the closed state, a slow transient interaction of the NTDs of each 

monomer facilitates ATPase activity (Cunningham et al., 2008; Prodromou et al., 2000). 
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Hydrolysis of ATP with subsequent dissociation of ADP restores Hsp90 to its original open or 

relaxed state (Sullivan et al., 1997).  

The ATPase cycle has been shown to result in large and highly dynamic conformational 

rearrangements that enable Hsp90 to recognize its diverse client repertoire and are essential for 

client maturation (Csermely and Kahn, 1991; Hessling et al., 2009) (Figure 5b). Some naturally 

occurring small molecule compounds like geldanamycin bind to the ATP binding pocket of 

Hsp90 with high affinity and specificity. This causes the displacement of ATP and functional 

arrest of the Hsp90 chaperone cycle (Stebbins et al., 1997; Whitesell and Lindquist, 2005). The 

middle domain is followed by a carboxy-terminal domain (CTD) which mediates dimerization 

and is less conserved in sequence (Harris et al., 2004; Minami et al., 1994). The five C-terminal 

residues (MEEVD motif) form a highly conserved TPR domain binding site that allows Hsp90 to 

interact with a number of co-chaperones containing TPR domains (Pearl and Prodromou, 2006; 

Young et al., 1998).  

Like the Hsp70 family members, Hsp90 function is also modulated by its sequential 

cooperation with different co-chaperones that regulate the ATPase activity of Hsp90 and hence 

its interaction with the diverse substrates (Li et al., 2012; Prodromou et al., 1999). Co-

chaperones such as HOP and p23 inhibit Hsp90’s ATPase activity and are likely to be involved 

in client loading or the formation of a Hsp90-client substrate complex (McLaughlin et al., 2006; 

Schmid et al., 2012; Southworth and Agard, 2011; Young and Hartl, 2000). The co-chaperone 

AHA1 (Activator of Hsp90 ATPase homologue 1) stimulates the Hsp90 conformational cycle by 

enhancing the ATPase activity and permitting the substrate release for the next maturation step 

(Meyer et al., 2004; Panaretou et al., 2002). Some co-chaperones like HOP and CHIP play an 

essential role in facilitating the cooperative and successive action of Hsp40, Hsp70 and Hsp90 on 

client proteins to promote either folding or degradation. For example, in the maturation of 

progesterone receptor (PR), Hsp40 first docks onto the unfolded PR polypeptide and then 

recruits the Hsp70-ATP complex. Hydrolysis of ATP triggers the formation of the stable 

complex Hsp70-ADP-PR. Hsp90-HOP then binds Hsp70-ADP, allowing transfer of PR to 

Hsp90. The final maturation step of PR involves the binding of p23 and ATP to Hsp90, which 

then leads to the dissociation of HOP and Hsp70 (Cintron and Toft, 2006). Repeated failure of 

the maturation step of the client by Hsp90 results in the degradation of the substrate by CHIP. 
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CHIP has also been reported to remodel the Hsp90-client complex by impairing the binding of 

p23 which is required for the late maturation steps of Hsp90 clients and promotes their 

degradation through the proteasome (Connell et al., 2001). Thus, a fine balance between protein 

folding and degradation mediated by Hsp90 critically depends on the cellular concentrations and 

affinities of the co-chaperones (Kundrat and Regan, 2010). 

Apart from its physiological function, Hsp90 plays a critical role during stress conditions. 

Early evidence for the role of Hsp90 in protein folding came from in vitro studies where it was 

demonstrated that chemically denatured substrates like citrate synthase (mainly α-helical 

structure) and Fab fragment of a monoclonal antibody (only β-sheets present) can be efficiently 

refolded with a high yield in the presence of purified Hsp90 (Wiech et al., 1992). It was also 

shown in vitro that Hsp90 primarily functions in preventing aggregation of stress-denatured 

proteins and maintains them in a folding competent state (Freeman and Morimoto, 1996; 

Yonehara et al., 1996). Further, in vivo studies using firefly luciferase as a model substrate have 

documented the role of Hsp90 in protecting the proteins during stress and its role in refolding of 

non-native structures and degradation of terminally misfolded proteins during recovery from 

stress (Schneider et al., 1996). Hsp90-HOP, together with Hsp70-Hsp40 functions as a folding 

machine, also called foldosome that participates in the refolding of stress-denatured proteins 

during the recovery phase and prevents aggregation of misfolded proteins (Hutchison et al., 

1994; McClellan et al., 2007; Powers et al., 2008; Schumacher et al., 1996; Walerych et al., 

2009; Wegele et al., 2006). The Hsp90 reservoir, besides buffering proteostasis against 

environmental stress, is also involved in safeguarding protein functions in context of genetic 

variation. Hsp90 maintains mutant proteins in their functional state and hence silences the 

preexisting mutations in the genetic background. However, during stress, the Hsp90 reservoir is 

depleted which allows the emergence of hidden phenotypes from the mutant proteins that can be 

tolerated by cells, leading to genetic evolution (Jarosz and Lindquist, 2010; Queitsch et al., 2002; 

Rutherford and Lindquist, 1998). 

II.4.1.1.3. The Chaperonins  

Further downstream of non-ribosome associated chaperones, at the distal end of the 

folding pathway, large cylindrical protein machines called chaperonins participate in the folding 

of newly synthesized polypeptides (Figure 3). The chaperonins are double-ring complexes of 
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~800 kDa conserved in all domains of life. They are nano-cage compartments enclosing a central 

cavity where proteins in non-native states can be encapsulated for folding process (Viitanen et 

al., 1992). Unlike ribosome bound chaperones (TF, NAC and RAC) and Hsp70, that primarily 

functions in the de novo folding process by holding newly synthesized chains in a folding 

competent state, the cylindrical chaperonin complexes are presumed to work like an Anfinsen’s 

cage where the unfolded polypeptide in the central cavity of chaperonin is secluded from the 

cellular milieu. Under these conditions, similar to infinite dilution, the unfolded polypeptide 

achieves its native state according to its thermodynamic potential (Ellis, 1994). However, 

experimental evidence suggests that like all other ATP dependent chaperones, the chaperonins 

fold the polypeptides via iterative annealing mechanism of substrate binding and release at the 

expense of energy from ATP hydrolysis. For example, the GroEL-GroES system has been shown 

to actively participate in the folding process by causing steric confinement of the protein. This 

reduces the entropic folding barrier of the intermediate and strongly accelerates native state 

formation (Chakraborty et al., 2010). 

Depending on the architecture and sequence similarity, the chaperonins have been 

divided into two distinct subgroups (Figure 6). Group I chaperonins, such as GroEL (L for large) 

in Escherichia coli and Hsp60 in organelles of symbiotic origin (mitochondria and chloroplasts), 

require a co-factor/co-chaperonin called GroES (S for small) or Hsp10 for their functions. GroES 

or Hsp10 acts like a lid that sits on the GroEL central cavity and helps in protein encapsulation. 

Group II chaperonins such as thermosome in archaea and TRiC in eukaryotes (TCP-1 Ring 

Complex, also called CCT for Chaperonin Containing TCP-1) do not require any co-factor to 

encapsulate proteins in their cavity.  They have a built-in lid formed by the protrusion of a α-

helical insertion in their apical domain (Ditzel et al., 1998; Klumpp et al., 1997). 

The bacterial chaperonin GroEL and its co-chaperone GroES are indispensable for the 

viability of E. coli under all growth conditions (Fayet et al., 1989; Horwich et al., 1993). 

Structurally, GroEL consists of two heptameric rings of identical subunits of 57 kDa each, 

stacked back-to-back (Braig et al., 1994). GroES, on the other hand, is a dome-shaped 

homoheptameric ring of 10 kDa subunits each that binds to the ends of the GroEL cylinder in the 

presence of ATP (Hunt et al., 1996) (Figure 6a). The GroEL-GroES machine is a well-

orchestrated system where binding of GroES to GroEL leads to allosteric modulation in the 
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GroEL subunits (Xu et al., 1997). This results in expansion of the central cavity, enough to 

encapsulate a polypeptide of ~ 60 kDa (Hartl and Hayer-Hartl, 2002; Sakikawa et al., 1999; Tang 

et al., 2006). Generally, it takes ~ 10 sec for the ATP hydrolysis which drives the folding of 

intermediates to native tertiary structure inside the GroEL cavity. However, if the substrate still 

exposes hydrophobic residues then it is immediately captured for the next round of the folding 

cycle (Corrales and Fersht, 1996; Mayhew et al., 1996). It has been shown in vitro that GroEL 

can bind about half of the total soluble proteins of E. coli in denatured state (Viitanen et al., 

1992) and in vivo approximately 10-15% of all cytoplasmic proteins (under normal growth) and 

upto 30% of stress denatured proteins interact with GroEL (Ewalt et al., 1997; Houry et al., 

1999; Kerner et al., 2005).  

 

Figure 6: Structure of the chaperonin system in prokaryotes and eukaryotes. 

(a) Crystal structure of the asymmetric GroEL-GroES complex in prokaryotes (Protein Data Bank: 

1AON), showing the GroES-bound chamber of GroEL (called cis ring) and the opposite GroEL ring 

(called trans ring). Adapted from (Xu et al., 1997). (b) left: Crystal structure of the eukaryotic chaperonin 

TRiC/CCT (Protein Data Bank: 3P9D), showing two heterogeneous 8-membered rings stacked back-to-

back. Right: domain structure of one of the eight TRiC subunits consisting of equatorial domain (blue), 

intermediate domain (cyan) and apical domain (magenta). The α-helical protrusion in the apical domain 

acts as a built-in lid for substrate encapsulation. Adapted from (Dekker et al., 2011). 

 

Group II chaperonins also function in a similar manner as the GroEL/ES system in ATP 

dependent substrate encapsulation in the chaperonin cavity (Meyer et al., 2003). Though they 

also have a double ring structure like group I chaperonins, they are more heterogeneous in 

sequence and structure. For example, thermosome has two or three different subunits per 

complex arranged in eight or nine fold symmetrical rings. TRiC from eukaryotes is a hetero-

oligomeric, toroid shaped complex consisting of eight different subunits per ring and each 

subunit is ~ 50-60 kDa in size (Figure 6b). Interestingly, Group II chaperonins share sequence 
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homology with GroEL at the ATP binding site, but they differ considerably in sequence of the 

substrate binding site (Kim et al., 1994; Spiess et al., 2006). TRiC, like GroEL, is an essential 

protein since at least two cytoskeletal proteins, actin and tubulin, are obligate substrates of TRiC 

(Dobrzynski et al., 1996; Gao et al., 1992; Llorca et al., 1999; Yaffe et al., 1992). Unlike 

GroEL/ES which can act only post-translationally, TRiC has been shown to fold the discrete 

domains of firefly luciferase co-translationally (Frydman et al., 1994). From biochemical studies 

using unfolded firefly luciferase, actin and tubulin, it has been shown that while GroEL/ES failed 

to fold these model proteins, TRiC was able to mediate their folding, suggesting that it can 

interact with a different range of substrates via mechanism distinct from class I chaperonins 

(Frydman et al., 1992; Tian et al., 1995; Yam et al., 2008). A recent study of the TRiC 

interactome suggests that ~ 10% of newly synthesized cellular proteins, including actin, tubulin, 

cell cycle regulators and tumor suppressors are TRiC substrates. Generally, multidomain proteins 

ranging from 40-75 kDa are ideal substrates (Yam et al., 2008). This study also showed that 

proteins belonging to oligomeric assemblies are highly enriched in the interactome and this 

suggests a role of TRiC in facilitating protein complex assembly in cells. 

II.4.2. HSF1 and Stress Response 

Both prokaryotes and eukaryotes have an evolutionary conserved mechanism to 

effectively respond to changes inflicted by their environment (global or local). This mechanism 

was first observed as a temperature-induced puffing pattern in polytene chromosomes of 

Drosophila melanogaster larvae salivary glands (Ritossa, 1962). It is now broadly referred to as 

heat shock response. A decade later, many research studies showed that the heat shock response 

resulted in a robust activation of a subset of genes encoding the heat shock proteins (HSPs) that 

primarily restore the disturbed biochemical landscape of a cell (Lindquist, 1986; Morimoto, 

1993). 

Further insight into the mechanism of the heat shock response outlined the following 

highly conserved features that are either prerequisites or the consequences of cellular stress 

response (Figure 7). 

1. The heat shock response is mediated at the transcription level by an array of highly 

conserved inverted repeats (nGAAn), called as Heat Shock Elements (HSEs) that are 

present in multiple copies, upstream of the hsp genes (Amin et al., 1988; Pelham, 1982). 
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2. The transcriptional induction of stress response upon proteotoxic insults is led by a 

specific transcription regulator, Heat Shock Factor (HSF) that selectively binds to the 

HSEs and induces transcription of HSPs (Abravaya et al., 1991; Kingston et al., 1987; 

Parker and Topol, 1984; Wu, 1984). Yeast, fruit fly, and nematode possess only a single 

HSF whereas mammals have three different HSFs, HSF1, HSF2 and HSF4 (Akerfelt et 

al., 2007). Distinct HSFs exhibit tissue-specific patterns of expression and contribute to 

diverse physiological and developmental processes. Among different HSFs, HSF1 is 

considered as a master regulator for induction of hsp genes during stress (Morimoto, 

1998; Trinklein et al., 2004).  

 

Figure 7: HSF1 mediated heat shock response. 

Under normal conditions, Heat Shock Factor 1 (HSF1) exists as an inactive monomer in a complex with 

Hsp70, Hsp40 and Hsp90 in the cytoplasm. Stress conditions lead to protein unfolding and misfolding in 

the cytoplasm which results in dissociation of the chaperone complex from HSF1. HSF1 then trimerizes 

and translocates to the nucleus where it undergoes post-translational modifications including acetylation, 

sumoylation that render it transcriptionally active. Activated HSF1 trimer induces the transcription of hsp 

genes, resulting in the translation of HSPs, including Hsp70 and Hsp90. The increased cellular 

concentration of these chaperones binds to HSF1 and attenuates its activity by negative feedback 

mechanism. Adapted from (Neef et al., 2011). 
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3. Under normal physiological conditions, monomeric HSF1 is diffusely distributed in 

cytoplasm and nucleus and is kept in an inactive complex with Hsp70, Hsp40 and Hsp90 

(Ali et al., 1998; Mosser et al., 1993; Nadeau et al., 1993; Zou et al., 1998). During 

proteotoxic stress, the structure and function of proteins is compromised, leading to the 

depletion of the chaperone reservoir. As a result, the chaperone complex from HSF1 

dissociates and free HSF1 monomers assemble into a trimer (Sorger and Nelson, 1989). 

Extensive post-translational modifications such as acetylation, phosphorylation and 

SUMOylation renders HSF1 active (Akerfelt et al., 2010). The active HSF1 trimer then 

translocates to the nucleus and binds to the HSEs to induce transcription of HSPs (Baler 

et al., 1993; Perisic et al., 1989; Sarge et al., 1993; Westwood et al., 1991). Thus, the heat 

shock response is initiated by the presence of misfolded and damaged proteins (Ananthan 

et al., 1986; Baler et al., 1992). Some aggregation prone proteins like those involved in 

Huntington’s disease (mutant huntingtin) and Parkinson’s disease (mutant α-synuclein) 

fail to properly induce the stress response (Hay et al., 2004; Prahlad and Morimoto, 2009; 

Zourlidou et al., 2007) which may contribute to the pathology of neurodegeneration. 

4. The HSPs shield non-native or misfolded proteins and help in recovery from proteostasis 

imbalance. Once the chaperone reservoir reverts to normal, the HSF1 activation is 

attenuated by a negative feedback mechanism upon rebinding of the chaperone complex 

and post-translational modifications (Abravaya et al., 1992; Baler et al., 1992; Guo et al., 

2001; Shi et al., 1998). 

This multistep and highly regulated activation of the heat shock response culminates in 

restoration of proteostasis. However, failure in eliciting a stress response can lead to global 

instability of the proteome and may result in accumulation of misfolded proteins which can 

engage in non-specific interactions to form aggregates. Therefore, many studies are now 

focusing on increasing the stress response via HSF1 activation to provide a potential therapeutic 

edge to diseases of proteostasis deficiency (Neef et al., 2011). 

II.4.3. Protein Misfolding and Aggregation 

During its lifetime, an organism is under constant stress such as environmental (e.g. 

nutrient balance), physical (e.g. heat stress), chemical (e.g. oxidative stress) and 
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pathophysiological (e.g. ischemia, bacterial infection etc.). Destabilizing mutations in the genetic 

background, translational errors and chronic stress like aging further risk the integrity of the 

proteome (Drummond and Wilke, 2008; Gidalevitz et al., 2010). Despite the activation of stress 

response and the existence of various protein surveillance mechanisms including molecular 

chaperones and degradation pathways, the load of non-native protein species can overwhelm the 

cellular quality control system during proteotoxic insults. Under these circumstances, proteins 

fail to fold correctly or to retain their biologically active state. This may result in exposure of 

otherwise buried hydrophobic residues and cause protein misfolding (Dobson, 1999, 2003). 

During extreme or prolonged stress, misfolded proteins significantly populate the crowded 

cellular milieu and engage in non-specific intra- or inter-molecular interactions which may result 

in the formation of aggregates or inclusion bodies (IBs). IBs can be cytoplasmic and/or nuclear 

and sometimes they are formed in the perinuclear area, close to the microtubule organizing 

centre (MTOC) in eukaryotic cells. These IBs around the MTOC, referred as aggresomes contain 

ubiquitinated misfolded proteins and are formed in a microtubule dependent, active process, 

caged by the intermediate filament protein vimentin (Johnston et al., 1998; Kopito, 2000).  

If these products of off-pathway reaction are not cleared either by refolding, by 

resolubilizing or by degradation, their accumulation can lead to proteinopathies and cellular 

toxicity. Indeed, many neurodegenerative disorders such as Alzheimer’s disease (AD), 

Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS) and 

prion-based diseases are protein conformational diseases associated with a gain-of-function 

phenotype (Table 1). In these diseases, the causative proteins form amyloid fibrils or plaques 

consisting of SDS insoluble and heat stable cross β-pleated sheets that run perpendicular to the 

long axis of the fibril (Chiti and Dobson, 2006; Sunde and Blake, 1997). These highly ordered 

amyloid fibrils can be cytoplasmic, nuclear or even extracellular and are generally formed via 

nucleation based linear pathways from monomers to oligomers to protofibrils to fibrils 

(Kiefhaber et al., 1991; Sipe, 1992). Despite the often ubiquitous expression of disease-related 

proteins, only a selective population of neurons gets affected in these neurodegenerative 

diseases. 
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Table 1: Clinical and biochemical features of neurodegenerative diseases. Adapted from 

(Soto, 2003). 

Disease Clinical features Proteins involved 
Cellular location of 

aggregates 

Alzheimer’s (AD) Progressive dementia Amyloid-β and tau 
Extracellular, 
cytoplasmic 

Parkinson’s (PD) Movement disorder α-Synuclein Cytoplasmic 

Huntington’s (HD) 
Dementia, motor and 
psychiatric problems 

Huntingtin Nuclear 

Amyotrophic lateral 
sclerosis (ALS) 

Movement disorder Superoxide dismutase Cytoplasmic 

Transmissible 
spongiform 

encephalopathies 

Dementia, ataxia, 
psychiatric problems 

and insomnia 

Prion protein Extracellular 

 

All the protein conformational diseases listed above are associated with pleiotropic 

effects that contribute to the generic cellular toxicity by the respective causative proteins (Figure 

8). Toxicity can be due to the exposure of normally buried moieties such as hydrophobic side 

chains or free main chain NH and CO groups that can lead to non-native hydrogen bond 

interactions with other proteins (Mossuto et al., 2010). Indeed, several studies have shown that 

sequestration of metastable and essential cellular factors such as proteins involved in chromatin 

remodeling, transcription, translation, nuclear import and cytoskeletal structure by the aggregates 

is the major cause of observed toxicity in vivo (Bucciantini et al., 2002; Chai et al., 2002; 

Olzscha et al., 2011; Suhr et al., 2001). Aggregates can also interfere with the cellular defense 

mechanisms by altering protein folding homeostasis (Gidalevitz et al., 2006; Satyal et al., 2000), 

by blocking proteasome mediated degradation (Bence et al., 2001; Bennett et al., 2005) or by 

inhibiting autophagy (Cuervo et al., 2004). Other models suggest that the aggregates can engage 

in aberrant interaction with cellular membranes leading to the formation of membrane pores 

(Lashuel et al., 2002) or they can disturb cellular ion homeostasis (Quist et al., 2005), may cause 

mitochondrial dysfunction and oxidative stress (Muller et al., 2010) (Figure 8). 
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Figure 8: Models for the mechanism of neurodegeneration due to protein misfolding and 

aggregation. 

Neuronal cell death in diseases like Huntington’s disease and Alzheimer’s disease can be contributed by 

both loss-of-function of native active proteins and/or gain-of-function by misfolded proteins. Mutations, 

translational errors and various kinds of stress can lead to protein unfolding and degradation which results 

in depletion of active functional molecules and hence loss-of-function phenotypes. Proteins can lose their 

structure and can engage in non-specific intermolecular interactions to form cytoplasmic and or 

intranuclear aggregates and inclusion bodies. Often, these aggregates, due to sticky exposed hydrophobic 

residues, can display gain-of-function phenotypes by either sequestering essential cellular factors or by 

causing oxidative stress. 

 

Not only the misfolded proteins with gain-of-function phenotype can lead to pathological 

states and human diseases, but protein misfolding can also result in loss-of-function phenotypes 

(Winklhofer et al., 2008). For example, mutations in proteins such as p53 and VHL tumor 

suppressor cause enhanced degradation and subsequent decrease in the concentration of the 

active functional molecules may lead to tumor development (Scott and Frydman, 2003). It has 

also been shown that mutations in CFTR impair its correct folding and transport from the 

endoplasmic reticulum to the plasma membrane, causing loss of CFTR function and cystic 
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fibrosis (Amaral, 2005). The following sub-section discusses in detail Huntington’s disease as an 

example to understand the principles of gain-of-function and loss-of-function phenotypes. 

II.4.3.1. Huntington’s Disease 

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder 

characterized by progressive motor dysfunction, cognitive decline and psychiatric disturbance 

due to neuronal cell death. It is caused by an expansion of trinucleotide CAG repeats in the first 

exon of the huntingtin gene (also called IT-15), which translates to an abnormally long 

polyglutamine (polyQ) stretch in the corresponding huntingtin protein (Htt) 

(The_Huntington's_Disease_Collaborative_Research_Group, 1993). Expansion of the polyQ 

stretch beyond 35-40 residues results in the formation of intranuclear inclusions in affected 

neurons (Davies et al., 1997; DiFiglia et al., 1997) and the propensity of Htt aggregation 

dramatically increases as the length of the polyQ stretch increases (Chen et al., 2002; Georgalis 

et al., 1998) (Figure 9). The mean age of onset of HD is 40-50 years, but expansion of the CAG 

repeat beyond 60 glutamines results in juvenile HD with more severe neuronal dysfunction. The 

length of the polyQ stretch in Htt is directly correlated to clinical severity of the disease and its 

penetrance in afflicted individuals (Duyao et al., 1993; Snell et al., 1993).  

 

 

Figure 9: HD onset as a function of CAG repeat length.  

HD is caused by an expansion of a CAG repeat in the first exon of the huntingtin gene. CAG trinucleotide 

encodes glutamine and expansion of glutamine residues beyond 35-40 in Htt protein results in HD. 

 

The exact function of the ubiquitously expressed wild-type Htt protein is still elusive; 

however, certain studies report that Htt is essential for embryonic development and has an anti-

apoptotic role by blocking the activation of caspase-3 and caspase-9. Htt is also believed to play 

a role in vesicle transport and in regulating gene transcription and RNA trafficking (Cattaneo et 
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al., 2005; Finkbeiner, 2011; Ross and Tabrizi, 2011; Zuccato et al., 2010). Therefore, HD 

involves both loss-of-function of the normal Htt that impairs its fundamental role in neuronal 

cells, and predominantly gain-of-function by the mutant Htt proteins that form amyloid-like 

inclusions (Scherzinger et al., 1997).  

An intriguing aspect of Htt mediated cell toxicity is concerning the identification of the 

protein species that actually overrides the cellular proteostasis capacity and mapping of the 

interactome of mutant Htt. A considerable body of experimental evidence suggests that 

formation of Htt inclusions is a protective mechanism, employed by cells to sequester potentially 

dangerous soluble oligomers of misfolded Htt (Arrasate et al., 2004; Bodner et al., 2006; Miller 

et al., 2010; Takahashi et al., 2008). This sequestration may reduce the number of exposed 

regions in mutant Htt that otherwise would titrate away cellular folding factors, putting the 

folding of the metastable proteome in jeopardy (Gidalevitz et al., 2006; Satyal et al., 2000). 

Another plausible cause of Htt toxicity may involve direct or indirect interference with the 

ubiquitin proteasome system as shown by the presence of ubiquitinated Htt and proteasome 

subunits in IBs (Chai et al., 1999; Jana et al., 2001; Mitra et al., 2009; Sieradzan et al., 1999; 

Venkatraman et al., 2004). Alternatively, Htt can lead to cell death by its combined effect on the 

cellular folding and degradation machinery as it may increase the load of endogenous 

aggregation prone proteins, resulting in loss-of-function phenotypes. 

Consistent with these hypotheses, several studies have conducted genome wide screens in 

different model organisms such as transgenic D. melanogaster and C. elegans to identify genetic 

factors whose suppression or over-expression regulate the toxicity of mutant Htt (Kazemi-

Esfarjani and Benzer, 2000; Nollen et al., 2004; Silva et al., 2011; Zhang et al., 2010). All these 

studies have identified genes belonging to distinct classes including genes involved in RNA 

metabolism (RNA pol II subunits, splicing factors), protein synthesis (ribosomes, initiation and 

elongation factors), protein folding (chaperones) and protein degradation (proteasome subunits 

and autophagy factors). The role of molecular chaperones, particularly Hsp70 and Hsp40, in 

suppressing Htt aggregation and its associated toxicity has been extensively elucidated using 

different experimental approaches (Hageman et al., 2010; Muchowski et al., 2000; Sakahira et 

al., 2002; Warrick et al., 1999; Wyttenbach et al., 2000). Besides molecular chaperones, cells 
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have evolved distinct mechanisms to protect themselves from accumulation of toxic protein 

species. These mechanisms are discussed in the following sections. 

II.4.4. Cellular Defense Mechanisms against Protein Misfolding 

All cells have a remarkable capacity to buffer changes in the highly dynamic intracellular 

environment on exposure to proteotoxic stress. Given the fact that nearly 20-30% of all proteins 

in mammalian cells are intrinsically disordered (Dunker et al., 2008) and can engage in 

promiscuous molecular interactions (Vavouri et al., 2009), cells considerably invest in a number 

of protein quality control factors to prevent protein misfolding and aggregation. Among these 

factors, molecular chaperones and degradation machinery of proteostasis play an essential role.  

Members of the chaperone family, besides participating in de novo folding of nascent 

chains, are also involved in refolding of misfolded protein species and re-solubilizing aggregates. 

The degradation machinery, comprising the ubiquitin proteasome system and autophagy 

components, ensures the timely removal of irreparable and terminally misfolded proteins. Since 

both chaperone mediated refolding and degradation are ATP dependent processes, from a 

thermodynamic perspective refolding is preferred over degradation. This kind of cellular triage 

decision whether to refold or to degrade proteins is critically dependent on co-chaperones like 

CHIP and E3 ubiquitin ligases. Cells may also sequester and direct potentially deleterious protein 

species to specific cellular sites in order to avoid toxic effects of protein aggregation. Such 

deposition sites could be aggresomes (Johnston et al., 1998; Kopito, 2000) or recently identified 

juxtanuclear quality-control compartment (JUNQ) and insoluble protein deposit (IPOD) sites in 

yeast and higher eukaryotes (Kaganovich et al., 2008). This organization would probably allow 

cells to facilitate the efficient clearance of aggregate in subsequent steps of either disaggregation 

or degradation. 

In the following sub-sections, the role of molecular chaperones in refolding and 

disaggregation and the role of the degradation machinery in protecting cells are briefly discussed. 

II.4.4.1. Chaperone Mediated Refolding and Disaggregation 

Using model proteins like β-galactosidase and firefly luciferase, many studies have 

addressed the role of the Hsp70 (DnaK)-Hsp40 (DnaJ)-Hsp110 (GrpE) system (also called KJE 

system) in re-activation of stress denatured proteins both in vitro and in vivo (Ben-Zvi et al., 
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2004; Goloubinoff et al., 1999; Pinto et al., 1991; Schroder et al., 1993).  The refolding reaction 

is generally slow and is strictly dependent on ATP hydrolysis. For example, it has been 

demonstrated that one Hsp70 molecule requires five ATP molecules to effectively unfold a 

single molecule of misfolded luciferase into an intermediate precursor, which can spontaneously 

refold into the native state upon chaperone dissociation (Sharma et al., 2010). It is not only the 

KJE system that is capable of refolding stress denatured proteins, but other chaperones such as 

Hsp90 in cooperation with Hsp70 also participate in recovery of cells by promoting either 

refolding or degradation of misfolded proteins (Schneider et al., 1996; Schumacher et al., 1996; 

Thulasiraman and Matts, 1996). 

Since protein misfolding leads to aggregation, cells have evolved a mechanism to 

disaggregate IBs for efficient resolubilization and refolding by chaperones in subsequent steps. 

The phenomenon of disaggregation was first reported in S. cerevisiae where heat denatured 

proteins can be efficiently reactivated by the cooperative action of Hsp70-Hsp40 and the 

oligomeric, ring forming AAA+ ATPase chaperone Hsp104 (Glover and Lindquist, 1998; Parsell 

et al., 1994). Soon after the discovery of Hsp104 disaggregase in yeast, an orthologous protein 

called ClpB was shown to possess disaggregation activity in E. coli and in chloroplasts and 

mitochondria of higher eukaryotes (Mogk et al., 1999). Several in vitro studies have shown that 

the Hsp104 or ClpB system alone has little or no disaggregation activity and requires 

collaboration with the Hsp70 system for effective disaggregation (Glover and Lindquist, 1998; 

Goloubinoff et al., 1999).  

Hsp104 together with the Hsp70 system forms a bi-chaperone system, whose induction 

during lethal stress enables cells to transiently acquire thermotolerance against subsequent stress 

(Zietkiewicz et al., 2004). Though the precise mechanism of disaggregation is still elusive, some 

evidence suggests that Hsp70-Hsp40 remodels protein aggregates and allows the transfer of 

aggregated polypeptides to the substrate processing pore of Hsp104 (Figure 10). Hsp104, in an 

ATP dependent process, then exerts a threading or pulling activity to facilitate extraction of the 

misfolded polypeptides from the aggregates (Liberek et al., 2008; Lum et al., 2004; Tyedmers et 

al., 2010). Once inside the Hsp104 cylinder, the polypeptide is disentangled to soluble form. 

Upon exit from the Hsp104, the solubilized protein can re-enter chaperone mediated refolding 

cycles (Figure 10). There are only few reports about a disaggregation activity in mammalian 
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cells (Yamamoto et al., 2000) and in C. elegans (Cohen et al., 2006). Recently, in a cell-free 

system, Hsp110 (Apg-2) has been identified as a mammalian disaggregase that in conjunction 

with Hsp70-Hsp40 can catalyze protein disaggregation and reactivation (Shorter, 2011). 

 

Figure 10: Disaggregation mediated by Hsp104 and ClpB in cooperation with the Hsp70 

chaperone system. 

Protein disaggregation in cells is carried out by AAA+ proteins, Hsp104 in S. cerevisiae or ClpB in E. 

coli and occurs in multiple steps. (1) The Hsp70 (DnaK)-Hsp40 (DnaJ) chaperone system remodels 

protein aggregates in an ATP dependent process. (2) The Hsp70-Hsp40 system then assists in presenting 

substrate to the translocation pore of Hsp104/ClpB where polypeptide is pulled at the cost of ATP 

hydrolysis into their catalytic core. (3) The polypeptide is then disentangled to a soluble form and (4) 

released either to refold spontaneously or with assistance from additional molecular chaperones. Adapted 

from (Doyle and Wickner, 2009). 

 

The Hsp70-Hsp40-Hsp104 mediated protein disaggregation process is further enhanced 

by small HSPs such as Hsp27 that directly interact and bind to aggregating proteins. This 

interaction of small HSPs with aggregates may shield the non-native surfaces and hence serves to 

protect the misfolded proteins from proteases. In an ATP independent process, an aspect that is 

remarkably different from other chaperones (except TF), small HSPs induce changes in the 

physiochemical properties of misfolded polypeptides in the aggregates. This presumably 

facilitates the disaggregation machinery to effectively separate and unfold the individual 

polypeptides in the aggregates (Haslbeck, 2002; Haslbeck et al., 2005; Mogk et al., 2003).  

II.4.4.2. The Degradation Arm of Proteostasis 

The degradation machinery of a cell consisting of ubiquitin-proteasome system (UPS) 

and autophagy serves to remove irreparable misfolded proteins and aggregates. Both UPS and 

autophagy have been shown to play a protective role in mitigating the toxic effects of proteins 
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responsible for protein conformational diseases (Hara et al., 2006; Komatsu et al., 2006; 

Ravikumar et al., 2002; Rubinsztein, 2006; Webb et al., 2003). The following sub-sections 

discuss in detail the main components and features of UPS and autophagy in protein quality 

control. 

II.4.4.2.1. The Ubiquitin-Proteasome System (UPS) 

The UPS is constituted by two essential protein components, ubiquitin and the 

proteasome. Cells must be able to faithfully distinguish proteins destined for degradation from 

the rest of its constituent proteome in order to avoid the widespread and unregulated breakdown 

of proteins. Therefore, cells have ingeniously designed a mechanism that involves the covalent 

tagging of a 76 residues protein called ubiquitin to proteasome substrates (Hershko and 

Ciechanover, 1998). This process of covalent attachment of ubiquitin is highly specific and 

follows an ATP dependent enzymatic cascade through different enzymes E1, E2 and E3 

(Ciechanover, 1998) (Figure 11a).  

Briefly, in the first step, ubiquitin is activated by an E1 ubiquitin-activating enzyme that 

adenylates the C-terminal carboxyl group of ubiquitin using ATP. This activation step is 

followed by the formation of a thioester intermediate between conserved Cys residue of the E1 

and the C-terminus of ubiquitin. Ubiquitin is then shuttled from the E1 to a conserved Cys 

residue of the ubiquitin-conjugating enzyme E2. The final step in protein ubiquitination involves 

the transfer of ubiquitin from the E2 to the target protein via an isopeptide bond between the C-

terminal carboxyl group of ubiquitin Gly76 and the ε-amino group of a Lys residue on the target 

protein. E3 ubiquitin ligases, together with their ancillary factors, bind to the substrates and assist 

the E2 enzymes in transferring the ubiquitin moiety. Thus, E3 ligases bind to the substrates prior 

to ubiquitin conjugation and many are highly specific and selective for different substrates. Upon 

conjugation of a single ubiquitin to the target protein, additional isopeptide bonds are 

sequentially formed between the C-terminal Gly76 of another incoming ubiquitin and one of the 

seven Lys residues (generally Lys48) of previously conjugated ubiquitin on the modified protein 

to generate polyubiquitin chains (Finley et al., 1994; Pickart, 2000). A polyubiquitin conjugated 

protein is subsequently targeted to the proteasome for its degradation. 
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Figure 11: The ubiquitin-proteasome system (UPS). 

(a) Proteasome-dependent degradation of ubiquitinated substrates. Ubiquitination and degradation of 

substrate by proteasome involves an enzymatic cascade and occurs through multiple steps. (1) Activation 

of ubiquitin by E1 ubiquitin-activating enzyme. (2) Activated ubiquitin is then transferred to E2 

conjugating enzyme. (3) E3 ubiquitin ligase binds the protein substrate and the E2 enzyme which carries 

an activated ubiquitin. The E3 enzyme then catalyzes the transfer of the ubiquitin moiety from the E2 

enzyme to the protein substrate. This step is repeated multiple times to generate a polyubiquitin chain on 

the substrate protein. (4) The polyubiquitinated substrate is subsequently targeted to the 26S proteasome 

for degradation. (5) The ubiquitin pool is restored by the action of deubiquitinating enzymes that remove 

polyubiquitin chains from the substrate (6) The substrate is then channeled through the catalytic core of 

the proteasome where it is cleaved into short peptides. (b) Structure of eukaryotic 26S proteasome. The 

26S proteasome consists of two subcomplexes; the 20S core particle and the 19S regulatory particle. The 

20S core particle is a barrel-shaped structure made of four stacked rings, two identical outer α-rings and 

two identical inner β-rings. Each α and β ring consists of 7 subunits which are arranged in α7β7β7α7 

symmetry in the 20S complex. Adapted from (Ciechanover, 2005; Maupin-Furlow, 2012). 
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The proteasome is a large, self-compartmentalized nanomachine that harbors different 

proteolytic subunits and is evolutionary conserved across the three domains of life (Baumeister 

et al., 1998; Maupin-Furlow, 2012). The self-assembly of these proteolytic subunits to form a 

functionally active proteasome enables the cells to localize them to different cellular locations in 

the cytosol or in the nucleus, depending on the need. This adds another layer of complexity to the 

spatial-temporal regulation of proteolysis, concomitant with the physiological and developmental 

requisite of the cells. Similar to molecular chaperones, the proteasome also forms a central hub 

of the proteostasis network. It regulates essential cellular processes such as cell division, DNA 

repair, apoptosis etc. by controlling the turnover of regulatory proteins, including cyclins and 

kinases. 

The functional eukaryotic proteasome (26S) consists of a barrel-shaped 20S core particle 

capped on each side by 19S regulatory complexes (Figure 11b). The 20S core particle is 

cylindrical and is composed of structurally similar α and β subunits, stacked upon each other to 

form four heptameric rings (Groll et al., 1997). The outermost rings contain α subunits while the 

inner rings are made of β subunits, assembled in α7β7β7α7 symmetry. The amino-terminal 

threonine residues of β subunits form the catalytic active sites for proteolysis. In eukaryotes, only 

three of the seven β subunits in a single ring are proteolytically active. This results in a total 

number of 6 active sites in the 20S core particle (Baumeister et al., 1998; Voges et al., 1999). 

Using fluorogenic peptide substrates, studies have shown that eukaryotic proteasomes possess 

three major peptidase activities: (i) chymotrypsin-like activity on β5 subunits, which cleaves 

after hydrophobic residues, (ii) trypsin-like activity on β2 subunits, which cleaves after basic 

residues, and (iii) endopeptidase Glu-C like activity on β1 subunits, which cleaves after acidic 

residues. Additionally, mammalian proteasomes can also cleave after branched chain residues 

and between small neutral acids (Cardozo, 1993). The structural and functional information of 

proteasomes has allowed the design of small molecules to inhibit its proteolytic activity. These 

inhibitors, in most of the cases, block the chymotrypsin-like activity of β subunits either 

reversibly, such as MG132, or irreversibly such as lactacystin and epoxomicin (Kisselev and 

Goldberg, 2001; Myung et al., 2001). 

The openings at the end of the 20S core particle is gated by the N-terminal tails of α 

subunits which may play a role in regulating the translocation of substrates through the 

proteolytic channel and may participate in mediating the interaction of 20S core particle with 
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19S regulatory complexes. The 19S regulatory particle is composed of a lid and a base sub-

complex. The base is made of six different AAA+ family ATPase subunits (Rpt1-6) and three 

non-ATPase subunits (Rpn1, Rpn2 and Rpn13). The lid harbors nine other Rpn subunits (Rpn3, 

Rpn5-9, Rpn11-12 and Rpn15) (Tomko and Hochstrasser, 2011; Wolf and Hilt, 2004). The 

AAA+ proteins (Rpt1-6) of 19S regulatory complexes selectively bind and unfold substrate 

proteins, open the gate of 20S core particle and facilitate the vectorial translocation of unfolded 

substrates into the catalytic chamber for proteolysis (Braun et al., 1999; Smith et al., 2005). 

Proteasomal subunits Rpn10 and Rpn13 bind to polyubiquitin chains with very high affinity and 

tetra-ubiquitin chains have been shown to be a good signal for degradation (Thrower et al., 

2000). Upon stable interaction of the polyubiquitin tagged polypeptide with the proteasome, the 

deubiquitylating enzymes (DUBs) cleave off the ubiquitin chain and restore the ubiquitin pool. 

The proteasome is highly processive in nature and generally generates small peptides of 

around 7-9 residues that can be further cleaved into individual amino acids by cytosolic 

proteases. Besides recycling the amino acids for protein biogenesis, the proteasome also has an 

essential role in generating immunocompetent peptides to be displayed by the MHC class I 

complex. 

II.4.4.2.2. Autophagy Mediated Degradation 

Autophagy is defined as a process by which intracellular cytosolic material, including 

proteins, organelles and pathogens are degraded inside the acidic lumen of lysosomes. Therefore, 

autophagy provides an alternative protein quality control pathway for the destruction of 

irreparable misfolded proteins, both soluble forms and aggregates. Autophagy is activated under 

different physiological stress conditions primarily during starvation and oxidative stress (Cuervo 

et al., 1995; Kiffin et al., 2004). Thus, like the UPS, autophagy helps in buffering the effects of 

proteotoxic insults by degrading misfolded proteins and coordinates with the chaperone network 

to fine tune the proteostasis balance between folded and unfolded proteome (Wong and Cuervo, 

2010). 

Four types of autophagy have been shown to co-exist in most cells. While 

macroautophagy and microautophagy are non-selective for their targets, chaperone mediated 

autophagy (CMA) (Cuervo, 2011) and chaperone-assisted selective autophagy (CASA) (Arndt et 

al., 2007; Kettern et al., 2010) are highly selective forms of autophagy. Macroautophagy is a 



Introduction   

 

41 

 

process where cellular organelles like mitochondria (mitophagy), giant proteins like ribosomes 

(ribophagy), lipid droplets (lipophagy) and protein aggregates are secluded ‘in bulk’ from the 

cytosol by a de novo formed double membrane vesicle called autophagosome (Mizushima et al., 

2002). The autophagosomes, in a microtubule-dynein dependent process fuse with lysosomes. 

The acidic environment and hydrolases (proteases, lipases, glycosidases etc.) in the lumen of 

lysosomes then digest the cargo. Microautophagy, on the other hand, involves invagination of the 

lysosomal membrane to sequester cytosolic proteins (in a non-selective manner) in a vesicle that 

later pinches off and release its content in the lysosomal lumen for degradation. 

During CMA, soluble cytosolic proteins (often misfolded) and aggregates displaying a 

pentapeptide sequence similar to KFERQ are recognized and bound by Hsc70 and its co-

chaperones, which deliver the substrate to the monomeric form of LAMP2A receptor (lysosome 

associated membrane protein 2A) at the lysosome membrane. The docking of substrate-

chaperone complex onto the cytosolic tail of LAMP2A receptor promotes multimerization of 

LAMP2A into a high molecular weight complex. This process then causes unfolding of the 

substrate and its translocation across the lysosomal membrane with aid from Hsc70 in the lumen 

of lysosome. Inside the lumen, the translocation complex disassembles and the polypeptides are 

degraded by the processive action of endo- and exo-proteases (Cuervo, 2011). 

Unlike CMA, which does not involve vesicle formation or invagination, CASA involves 

selective engulfment of the substrates by an autophagic isolated membrane leading to lysosomal 

degradation (Arndt et al., 2007; Kettern et al., 2010). In CASA, ubiquitination serves as an initial 

degradation signal, comparable to the proteasomal degradation. The ubiquitinated substrates are 

recognized by the Hsc70-BAG-3 complex that facilitates the interaction of the substrate with the 

adaptor proteins p62 or NBR1 on the autophagosome membrane. This process directs diverse 

chaperone clients towards the lysosomal degradation pathway. The interaction of the co-

chaperone BAG-3 with Hsc70 directs ubiquitinated substrates to the autophagy pathway, while 

the interaction of BAG-1 with Hsc70 promotes UPS mediated degradation. 

Several differences in degradation mechanisms exist between the UPS and autophagy. 

For example, in the UPS, proteolysis is selective, regulated and fast whereas in autophagy it is 

relatively slow and the exact mechanism from initiation of signal for autophagy to protein 

turnover is still not very clear. Also, unlike UPS, autophagy plays an essential role in recycling 
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precursor molecules (amino acids, fatty acids, sugar monomers etc.) by eliminating the non-

essential pool of macromolecules particularly during starvation.  

II.4.5. Small Molecule Regulators of Proteostasis 

The advancement in x-ray crystallography has enabled the detailed understanding of the 

structures of various protein molecules and has allowed correlating the structural changes in 

proteins upon their interaction with different molecules under different physiological conditions. 

Hence, it is now possible to rationally design chemical compounds that can reversibly or 

irreversibly bind to proteins at specific sites to alter their structural and functional properties. 

Such chemically synthesized compounds, so called small molecule regulators, have also been 

designed to restore deficiencies in proteostasis by modulating the key proteins of the proteostasis 

network. Since the proteostasis network encompasses a wide range of key proteins involved in 

different steps in protein biogenesis, maintenance (folding and refolding), trafficking and 

degradation, both activators and inhibitors have been screened to affect each of these individual 

steps. A combination of chemical and biological approaches can be used to rebalance the cellular 

proteostasis capacity under stress conditions and therefore hold a great therapeutic potential to 

treat several human diseases including protein conformational disorders and cancer (Lindquist 

and Kelly, 2011; Mu et al., 2008; Powers et al., 2009). 

The small molecule regulators of proteostasis can be categorized into several groups 

depending on their mode of action and their targets in the proteostasis network. The first group 

consists of small molecules that directly activate or inhibit HSF1 mediated heat shock response. 

Since induction of various HSPs is dependent on the heat shock response, these proteostasis 

regulators (PR) can change the folding landscape of cells under stress conditions. Indeed, results 

from compound screens have identified several PR that induce or prevent the heat shock 

response (Calamini et al., 2012; Westerheide and Morimoto, 2005). For instance, celastrol has 

been identified as an activator of heat shock response (Trott et al., 2008; Westerheide et al., 

2004) and has been shown to protect neuronal cells against toxic effects of mutant Htt (Wang et 

al., 2005; Zhang and Sarge, 2007) or mutant SOD1 (Kiaei et al., 2005). Similarly, triptolide has 

been identified as an inhibitor of HSF1 and hence of heat shock response (Westerheide et al., 

2006) and has been demonstrated to induce apoptosis in pancreatic cancer cells by reducing 

Hsp70 levels (Phillips et al., 2007). 
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The second group of molecules acts by directly interacting with chaperones or the 

proteasome. For example, geldanamycin and its derivatives have been documented to inhibit 

Hsp90 and prevent the maturation of its client proteins. Likewise, MG132 inhibits the 

proteasome and increases the load of misfolded proteins in the cells. Therefore, both 

geldnamycin and MG132 at optimal concentrations are suitable drug candidates against 

transformed cells like certain types of tumor (Kisselev and Goldberg, 2001; Whitesell and 

Lindquist, 2005). Both geldanamycin and MG132 treatment leads to the accumulation of 

misfolded proteins and as a result the chaperones (mainly Hsp70 and Hsp90) dissociate from 

HSF1. This leads to the activation of HSF1. Therefore, both these compounds also induce the 

heat shock response and increase the cellular concentrations of HSPs (Bush et al., 1997; Sittler et 

al., 2001). This effect could be beneficial in preventing the aggregation of proteins such as 

mutant Htt (Sittler et al., 2001). 

The next group of small molecules includes compounds that act as chemical chaperones 

by mimicking the role of a co-chaperone or as pharmacological chaperones (PC) by directly 

interacting with the substrate protein and helping it in acquiring its native folded state. For 

example, an unbiased screen has identified a compound 115-7c which has been shown to act as 

an artificial co-chaperone for Hsp70. This compound stimulates ATPase and folding cycle of 

Hsp70 (DnaK) and can partially compensate for a Hsp40 loss-of-function phenotype in yeast 

(Wisen et al., 2010). In a recent study, it was shown that administration of PR such as celastrol or 

MG132 increase the unfolded protein response (UPR) resulting in the coordinated transcription 

and translation of chaperones and folding catalysts that promote folding of mutant enzyme in the 

ER and prevent it from misfolding/aggregation. The co-administration of PC stabilizes the folded 

state of mutant enzyme and synergizes with PR to effectively rescue the loss-of-function 

phenotype of the enzyme (Mu et al., 2008). Therefore, it seems possible that a combination 

therapy of highly specific PR and PC can be useful to treat protein conformational disorders. 

II.4.6. Proteostasis in Aging  

Aging, a unidirectional and complex phenomenon from birth to death of an organism, is 

associated with progressive decline in the physiological functions and the compromised ability of 

cells to mount a stress response. At the molecular level, aging is characterized by the culmination 

of multiple effects on the structural and functional properties of macromolecules. There is a 
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gradual accumulation of deleterious modifications in nucleic acids, proteins, carbohydrates and 

lipids that are no longer repairable by cells, leading to loss- or gain-of-function phenotypes and 

hence age related diseases (Kenyon, 2005).  

 

Figure 12: Gradual collapse of proteostasis during aging. 

(a) An arbitrary representation of the major components of the proteostasis network on a global landscape 

in two different conditions, young and old. General activity for components involved in transcription, 

translation, folding, trafficking, processing, assembly/disassembly, localization and degradation are 

depicted as nodes in which amplitude of node reflects strength of homeostatic activity. A general 

imbalance in the activities of the major components of the proteostasis network is suggested to ensue 

during aging. Adapted from (Douglas and Dillin, 2010). (b) An inverse correlation exists between failure 

of cellular proteostasis and loss of cellular function during aging. The progressive loss of proteostasis 

capacity during aging results in decline of cell and tissue function and consequently predisposes 

individuals to age-related disorders such as HD. 

 

During aging, there is a progressive decline in the efficiency of protein quality control 

mechanisms (Gidalevitz et al., 2006; Morimoto, 2008) (Figure 12). This deficit in the 

proteostasis capacity predisposes individuals to many late-age onset diseases including 

neurodegenerative diseases such as AD, PD and HD and other maladies like diabetes type II, 

myopathies etc. (Kikis et al., 2010). The role of various signaling pathways and stress responses 

in aging is exemplified from recent findings obtained from C. elegans and D. melanogaster. For 
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example, the reduced activity of the insulin/IGF-1-like signaling (IIS) pathway in mediating 

lifespan extension in various organisms has been well demonstrated (Kenyon, 2010). In C. 

elegans, it has been reported that reduced IIS is beneficial for cells as it protects them from 

toxicity by protein aggregates and HSF1 is required for the IIS pathway to extend lifespan 

(Cohen et al., 2006; Cohen et al., 2009; Morley and Morimoto, 2004). 

The essential role of molecular chaperones in maintaining proteostasis in aging has been 

extensively elucidated by several studies. For instance, over-expression of small heat shock 

proteins is sufficient to extend lifespan in C. elegans and in D. melanogaster (Morley and 

Morimoto, 2004; Morrow et al., 2004). Similarly, induction of molecular chaperones by either 

over-expressing HSF1 (Hsu et al., 2003; Morley and Morimoto, 2004) or by a sublethal dose of 

heat shock significantly extends the lifespan in model organisms and induces resistance against 

subsequent proteotoxic stress (this process is called as hormesis) (Cypser et al., 2006; Olsen et 

al., 2006). Likewise, several studies have shown that the inability of cells to mount an adequate 

stress response against misfolded proteins results in low Hsp70 proteins levels and augments the 

aging process (Bonelli et al., 1999; Fargnoli et al., 1990; Gutsmann-Conrad et al., 1998). This 

affect is presumably due to an increase load of misfolded proteins on the proteostasis machinery 

that directly or indirectly affects the folding of the metastable proteome of a cell, resulting in 

widespread failure of diverse pathways (Ben-Zvi et al., 2009). 

With aging, there is also a gradual decline in the turnover of proteins by UPS and CMA 

in a variety of tissues which further enhances the aggregation of proteins in cells (Cuervo and 

Dice, 2000; David et al., 2010; Tonoki et al., 2009). The decrease in UPS activity can be due to 

multiple mechanisms like a decrease in the expression levels of proteasomal subunits or by 

inhibition of the proteasome by oxidized and damaged proteins. In a transgenic mouse model it 

has been recently shown that by modulating the amount of LAMP2A proteins the CMA activity 

can be maintained until advanced age (Zhang and Cuervo, 2008). Therefore, up-regulation of 

UPS and autophagy by small molecules or by genetic modulation can extend the lifespan of an 

organism. 

Beside defects in cytosolic stress response and protein quality control mechanisms, other 

factors such as oxidative stress, improper UPR in the ER and mitochondria, or failure of DNA 

repair mechanisms all contribute to aging. The downstream effect of all these factors results an 
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unstable environment in the cells, not capable of sustaining homeostasis under basal or elevated 

stress conditions (Kourtis and Tavernarakis, 2011; Taylor and Dillin, 2011). Thus, aging is a 

process exemplified by a cumulative failure of cellular homeostasis due to a multitude of diverse 

and possibly inter-connected factors. 

II.4.7. Sensors of Proteostasis 

Research in the field of protein folding and misfolding has only begun to investigate how 

different components of the proteostasis collaborate with each other to shape the structural and 

functional properties of protein molecules. Our understanding of how different protein quality 

control pathways are functionally integrated with each other and with the stress responses is still 

limited. Several studies have given insights into the molecular mechanisms responsible for 

proteostasis collapse in protein conformational diseases and during aging. However, several 

questions still remain to be investigated such as the identification of toxic species in these 

diseases and the status of proteostasis in different organelles and in different tissues. In order to 

screen large numbers of small molecules as therapeutic drugs for diseases of proteostasis 

deficiency, it becomes essential to have a suitable reporter to rapidly measure proteostasis in 

vivo. The fundamental understanding of the function and regulation of the proteostasis network 

requires molecular tools or sensors to measure its status in different physiological conditions 

(proteostasis sensors).  

Pioneering studies in C. elegans have established the use of temperature sensitive 

mutants of endogenous proteins such as α-paramyosin, dynamin, α-myosin and other proteins as 

sensors of proteostasis (Ben-Zvi et al., 2009; Gidalevitz et al., 2006). These mutant proteins, at 

permissive temperature (15
o
C) are correctly folded and stable, but at higher temperature (25

o
C) 

rapidly unfold and aggregate. Upon expression of mutant Htt protein or during normal aging, 

these mutant proteins start aggregating even at the permissive temperature. Though useful in 

understanding dysregulation of proteostasis in C. elegans, these proteins have some limitations 

as proteostasis sensors. Since these proteins are endogenously expressed in cells, their 

compromised folding may lead to loss-of-function effects and reduced viability. Moreover, at 

restrictive temperature, these mutant proteins can themselves cause some intrinsic stress to 

tissues and therefore can contribute to the observed effects. These mutant proteins, being tissue-

specific, limit the scope of performing comparative analyses of the effect of aging or any other 
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physiological stress on the activity of the proteostasis network in different cell types, tissues and 

model organisms. 

Apart from proteins, the small organic dye ANS (1-anilino-8-naphthalenesulfonate) has 

been used as a sensor to detect protein misfolding in vivo (Hadley et al., 2011). This dye has a 

relatively low fluorescence in aqueous solution which increases significantly upon binding of the 

dye to a hydrophobic surface. Therefore, any stress such as heat stress or UPS inhibition that 

results in protein misfolding enhances the ANS fluorescence compared to normal conditions. 

However, the use of ANS as a sensor has several disadvantages. For example, it cannot be used 

to measure the folding status of proteins in cells in the presence of amyloid proteins such as Htt 

or α-synuclein that will bind to ANS more strongly. Moreover, ANS can also bind to lipid 

droplets and membranes in cells and therefore a change either in the concentration or 

composition of lipids during stress may change ANS fluorescence which would be difficult to 

correlate with the changes occurring at the protein level. 

Many other studies have used different kinds of reporters to measure changes in 

individual components of the proteostasis network. For example, green fluorescent protein fused 

with a short degron sequence at its C-terminus (GFP-CL1) is a good substrate of UPS and hence 

it is rapidly degraded in cells under normal conditions. However, in the presence of aggregation 

prone proteins that inhibit UPS function, the cellular concentration of GFP-CL1 fusion protein 

increases and can be easily monitored (Bence et al., 2001; Nonaka and Hasegawa, 2009). Since 

GFP-CL1 only reports the changes in UPS activity and cannot assess the changes in other 

components of the proteostasis network, it is not an ideal sensor to measure cellular stress. 
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III  Aim of the Study 

One of the biggest problems in the field of protein folding and misfolding is to 

understand how changes in the proteostasis machinery affect the dynamics and regulation of 

proteins. The comprehensive understanding of the proteostasis network and its status during 

disease or aging relies on the development of molecular tools or reporters that can accurately and 

rapidly measure the cellular proteostasis capacity in different conditions. All previously 

described sensors have some limitations and are therefore not optimal to assess the proteostasis 

status in a wide range of experimental systems, including cell and organism models of stress, 

neurodegenerative disease and aging.  

To circumvent these limitations, the objectives covered in this thesis are the following. 

1. To design sensor proteins that can provide a robust, generic and quantitative readout of 

proteostasis in vivo. We selected American firefly (Photinus pyralis) luciferase (Fluc) as a 

model protein and designed site-specific mutants to serve as sensitive reporters of proteostasis 

capacity. 

2. To characterize the Fluc mutants in vitro using rabbit reticulocyte lysate (RRL) and to assess 

their sensitivity in a tissue culture model system under different stress conditions. 

3. To demonstrate the applications of the Fluc-based sensors in C. elegans and to investigate the 

tissue specific differences (body wall muscle cells and neuronal cells) in maintaining 

proteostasis during heat stress and aging. 

4. To selectively target Fluc-based sensor proteins to the nucleus and the cytosol of cells to 

measure and compare inter-compartmental proteostasis capacity. 

 

 

  



Materials and Methods   
 

49 

 

IV  Materials and Methods 

IV.1. Materials 

IV.1.1. Chemicals 

 

10X DNA Loading Buffer Fermentas (St. Leon-Rot, Germany) 

17-AAG Enzo Life Sciences (Lorrach, Germany) 

1-Propanol p.a. Merck (Darmstadt, Germany) 

2-Phenylbenzothiazole (PBT) Sigma (Deisenhofen, Germany) 

Acetic acid Merck (Darmstadt, Germany) 

Acetone Sigma (Deisenhofen, Germany) 

Acrylamide : Bisacrylamide; 37.5 : 1; 30% Serva (Heidelberg, Germany) 

Agar Fluka (Buchs, Switzerland) 

Agarose LE Biozym (Hess. Oldendorf, Germany) 

Albumin bovine Fraction V Serva (Heidelberg, Germany) 

Ammonium Persulfate Sigma (Deisenhofen, Germany) 

Ampicillin-Natriumsalz Merck (Darmstadt, Germany) 

Bacto-Agar Difco (Detroit, USA) 

Bacto-Peptone Difco (Detroit, USA) 

Bacto-Tryptone Difco (Detroit, USA) 

Bacto-Yeast Extract Difco (Detroit, USA) 

Bio-Rad Protein Assay Bio-Rad (Munich, Germany) 

Bis-Tris Fluka (Buchs, Switzerland) 

Bromophenol Blue Sodium Salt Sigma (Deisenhofen, Germany) 
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BSA Standard Pierce (Rockford, USA) 

Calcium Chloride Dihydrate Sigma (Deisenhofen, Germany) 

Cholesterol Fluka (Buchs, Switzerland) 

Celastrol Calbiochem (La Jolla, USA) 

Complete Protease Inhibitor Cocktail Roche (Basel, Switzerland) 

Cycloheximide Sigma (Deisenhofen, Germany) 

DAPI Invitrogen (Carlsbad, USA) 

DharmaFECT Transfection Reagent Thermo Scientific (Colorado, USA) 

Dimethylsulphoxide (DMSO) Sigma (Deisenhofen, Germany) 

di-Potassium Hydrogen Phosphate Carl Roth GmbH (Karlsruhe, Germany) 

di-Sodium Hydrogen Phosphate Carl Roth GmbH (Karlsruhe, Germany) 

Dithiothreitol (DTT) Sigma (Deisenhofen, Germany) 

dNTP Set Metabion (Martinsried, Germany) 

Dulbecco's MEM Biochrom AG (Berlin, Germany) 

Dulbecco's MEM without phenol red Biochrom AG (Berlin, Germany) 

ECL Plus Detection Kit Millipore (MA, USA) 

Endotoxin Free Water Sigma (Deisenhofen, Germany) 

Ethanol Absolute Merck (Darmstadt, Germany) 

Fetal Bovine Serum (FBS) Gibco (Paisley, UK) 

Fluorescent Mounting Medium DAKO (Hamburg, Germany) 

GeneRuler 100bp DNA ladder Fermentas (St. Leon-Rot, Germany) 

GeneRuler 1kb DNA ladder Fermentas (St. Leon-Rot, Germany) 

Geneticin (G418)/Neomycin PAA (Pasching, Austria) 
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Glycerin/Glycerol Merck (Darmstadt, Germany) 

Glycine Sigma (Deisenhofen, Germany) 

Guanidinium Chloride Merck (Darmstadt, Germany) 

Hygromycin B Sigma (Deisenhofen, Germany) 

Immersion oil VWR International (Darmstadt, Germany) 

Kanamycin Sigma (Deisenhofen, Germany) 

Leptomycin B Sigma (Deisenhofen, Germany) 

L-Glutamine Gibco (Paisley, UK) 

Lipofectamine 2000 reagent Invitrogen (Carlsbad, USA) 

Lipofectamine PLUS reagent Invitrogen (Carlsbad, USA) 

Lipofectamine RNAiMAX reagent Invitrogen (Carlsbad, USA) 

Magnesium Sulphate Sigma (Deisenhofen, Germany) 

Manganese Chloride Dihydrate Sigma (Deisenhofen, Germany) 

Methanol p.a. Merck (Darmstadt, Germany) 

MG132 BioMol (Hamburg, Germany) 

MOPS Sigma (Deisenhofen, Germany) 

N,N,N’,N’-Tetramethyl-ethane-1,2-diamine 

(TEMED) 

Sigma (Deisenhofen, Germany) 

Nonidet P40 (NP-40) Roche (Basel, Switzerland) 

Opti-MEM I Gibco (Paisley, UK) 

PageRuler Prestained Protein Ladder Thermo Scientific (Colorado, USA) 

Paraformaldehyde Merck (Darmstadt, Germany) 

Pen Strep (Penicillin Streptomycin) Gibco (Paisley, UK) 

Phenylmethanesulfonylfluoride (PMSF) Serva (Heidelberg, Germany) 
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Phosphate Buffered Saline (PBS) pH 7.2 Gibco (Paisley, UK) 

Ponceau S Sigma (Deisenhofen, Germany) 

Potassium Acetate Sigma (Deisenhofen, Germany) 

Potassium Chloride Merck (Darmstadt, Germany) 

Potassium Dihydrogen Phosphate Carl Roth GmbH (Karlsruhe, Germany) 

Potassium Phosphate Carl Roth GmbH (Karlsruhe, Germany) 

Rubidium Chloride Sigma (Deisenhofen, Germany) 

Skim Milk Powder Gabler & Saliter (Oberguenzburg, 

Germany) 

Sodium Chloride Merck (Darmstadt, Germany) 

Sodium Deoxycholate Sigma (Deisenhofen, Germany) 

Sodium Dihydrogen Phosphate-monohydrate Merck (Darmstadt, Germany) 

Sodium Hydroxide Merck (Darmstadt, Germany) 

Sodiumdodecylsulfate (SDS) Serva (Heidelberg, Germany) 

Sodium-Ethylenediaminetetraacetic acid (EDTA) Merck (Darmstadt, Germany) 

Sybr Safe DNA gel stain Invitrogen (Carlsbad, USA) 

Trans- 1,2- cyclo- hexanediaminetetraacetate 

(CDTA) 

Sigma (Deisenhofen, Germany) 

Tris (Trizma base) Sigma (Deisenhofen, Germany) 

Triton X-100 Sigma (Deisenhofen, Germany) 

TrypLE
TM

 Express Gibco (Paisley, UK) 

Tween 20 Sigma (Deisenhofen, Germany) 

β-Mercaptoethanol Merck (Darmstadt, Germany) 
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IV.1.2. Materials and Instruments 

µ-Slide 8 well for Live Cell Analysis IBIDI (Martinsried, Germany) 

15 ml Polypropylene Conical Tube Becton and Dickinson  (New Jersey, USA) 

50 ml Polypropylene Conical Tube Becton and Dickinson  (New Jersey, USA) 

5415C and 5417R Centrifuges Eppendorf (Hamburg, Germany) 

Accumet Basic pH Meter Fisher Scientific (Schwerte, Germany) 

AG285 and PB602 Balances Mettler Toledo (Gießen, Germany) 

Avanti J-25 Centrifuge with Rotors JLA 10.500 

and JA 25.50 

Beckman (Munich, Germany) 

CO2 Water Jacketed Incubator Forma Scientific (Waltham, USA) 

Cryo-tubes Nunc (Roskilde, Denmark) 

DNA Speedvac DNA110 Savant (New York, USA) 

DU 640 UV/VIS Spectrophotometer Beckman (Munich, Germany) 

Fluorescence Microscope Axiovert 200M Zeiss (Jena, Germany) 

Gel Documentation System BioCapt MWG BiotechAG (Göttingen, Germany) 

Gilson Pipetman 2, 10, 20, 100, 200 and 1000 µL Abimed (Langenfeld, Germany) 

ImageReader LAS-3000 FUJI (Tokyo, Japan) 

Innova 4430 Incubator New Brunswick Scientific (Nürtingen, 

Germany) 

Light Microscope Diavert Leitz (Wetzlar, Germany) 

Luminometer Lumat LB 9507 Berthold (Bad-Wildbad, Germany) 

Millex SV Filter Units, pore size 0.22 μM Millipore (Eschborn, Germany) 

MilliQ Plus Deionization System Millipore (Eschborn, Germany) 

MiniProtean2 Electrophoresis Chamber Bio-Rad (Munich, Germany) 
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Nanodrop 1000 Spectrophotometer Thermo Scientific (Colorado, USA) 

Nitrocellulose Membrane, PROTRAN Schleicher & Schuell (Dassel, Germany) 

PCR Tubes AB-0266 Thermo Scientific (Colorado, USA) 

pH-Meter pH538 WTW (Weilheim, Germany) 

Poly-L-Lysine Round Coverslips, 12mm BD Biosciences (CA, USA) 

Safe Imager 2.0 Blue-Light Transilluminator Invitogen (Carlsbad, USA) 

Scepter
TM

 Automated Cell Counter Millipore (MA, USA) 

Scepter
TM

 Sensors - 60µM Millipore (MA, USA) 

Tank Blot System Bio-Rad (Munich, Germany) 

TCS SP2 Confocal Laser Scanning Microscope  Leica (Wetzlar, Germany) 

Thermocycler PCR T3 Biometra (Göttingen, Germany) 

Thermomixer Comfort Eppendorf (Hamburg, Germany) 

Tissue Culture Dish 100 X 20 mm Becton and Dickinson  (New Jersey, USA) 

Tissue Culture Plate, 96 well Becton and Dickinson  (New Jersey, USA) 

Tissue Culture Plate, 48 well Becton and Dickinson  (New Jersey, USA) 

Tissue Culture Plate, 12 well Becton and Dickinson  (New Jersey, USA) 

Tissue Culture Plate, 24 well Becton and Dickinson  (New Jersey, USA) 

Tissue Culture Plate, 6 well Becton and Dickinson  (New Jersey, USA) 

Transformer for Electrophoresis PAC300 Bio-Rad (Munich, Germany) 

UltraVIEW Vox Spinning Disk Confocal 

Microscope 

Perkin Elmer (MA, USA) 

Weighing Balance CP3202P Sartorius (Göttingen, Germany) 
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IV.1.3. Enzymes 

DpnI New England Biolabs (Ipswich, USA) 

Pfu DNA Polymerase Promega (Madison, USA) 

Proteinase K Merck (Darmstadt, Germany) 

Restriction Enzymes New England Biolabs (Ipswich, USA) 

T4 DNA Ligase New England Biolabs (Ipswich, USA) 

IV.1.4. Bacterial Strains 

 

DH5αF’ F’/endA1 hsdR17 (rk
-
, mk

+
) glnV44 thi-1 recA1 gyrA 

(NA1
r
) relA1Δ (lacIZYA-argF) U169 deoR [φ80dlacΔ 

(lacZ)M15] 

 

SURE e14
-
(McrA

-
) Δ(mcrCB-hsdSMR-mrr)171 endA1 

supE44 thi-1 gyrA96 relA1 lac recB recJ sbcC 

umuC::Tn5 (Kan
R
) uvrC[F’ proAB lacI

q
ZΔM15 Tn10 

(Tet 
r
)] 

IV.1.5. Softwares 

Aida Image Analyzer 4.15.025 Raytest (Straubenhardt, Deutschland) 

Adobe Photoshop CS5.1 Adobe Systems (San Jose, USA) 

Axiovision Rel 4.7 software Zeiss (Jena, Germany) 

Chromas version 1.45 Griffith University (Queensland, Australia) 

FIJI Various Contributors 

Leica TCS Analysis Leica (Wetzlar, Deutschland) 

Sigma Plot 10.0 Systat Software (San Jose, USA) 

Volocity 6.0 Perkin Elmer (MA, USA) 
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IV.1.6. Kits Used 

Name Cat.  No. Company 

Dual Glo Luciferase Assay System E2920 Promega (Madison, USA) 

iScript Select cDNA Synthesis Kit 170-8896 Bio-Rad (Munich, Germany) 

Gel and PCR Clean Up System A1460 Promega (Madison, USA) 

Luciferase Assay System E1510 Promega (Madison, USA) 

Minipreps Wizard Plus A9282 Promega (Madison, USA) 

Plasmid Midiprep System A2495 Promega (Madison, USA) 

Steady Glo Luciferase Assay System E2510 Promega (Madison, USA) 

TnT T7 Quick coupled 

Transcription/Translation System 
L1170 Promega (Madison, USA) 

 

IV.1.7. Antibodies 

Name Cat. No. Company 

Anti-Luciferase pAb G7451 Promega (Madison, USA) 

Anti-GFP 11814460001 Roche (Basel, Switzerland) 

Anti-GAPDH MAB374 Millipore (MA, USA) 

Anti-c-Myc (9E10) sc- 40 Santa Cruz Biotechnology Inc. (CA, USA) 

Anti-Renilla Luciferase MAB4410 Millipore (MA, USA) 

Anti-Hsc70 (1B5) sc- 59560 Santa Cruz Biotechnology Inc. (CA, USA) 

Anti-Hsp40 4868 Cell Signaling Technology (MA, USA) 

Anti-20S Proteasome ab22673 Abcam (Cambridge, UK) 

Anti-Ubiquitin (FK2) 04-263 Millipore (MA, USA) 

Anti-Mouse IgG (whole molecule) 

Peroxidase Conjugate 
A4416 Sigma (Deisenhofen, Germany) 

Anti-Rabbit IgG (whole molecule) 

Peroxidase Conjugate 
A9037 Sigma (Deisenhofen, Germany) 

Anti-Goat IgG (whole molecule) 

Peroxidase Conjugate 
A5420 Sigma (Deisenhofen, Germany) 

Cy3 labeled Goat anti-mouse IgG 115-165-062 Jackson ImmunoResearch (Suffolk, UK) 

Cy3 labeled Goat anti-rabbit IgG 111-165-045 Jackson ImmunoResearch (Suffolk, UK) 
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IV.2. Media and Buffers 

IV.2.1. Media 

LB Medium 

10 g/l Bacto tryptone, 5 g/l Bacto yeast extract, 10 g/l NaCl, pH adjusted to 7.0 with NaOH. 

LB Agar 

16 g/l Bacto agar dissolved in LB medium. 

NGM Agar 

0.3% (w/v) NaCl, 0.25% (w/v) peptone, 25 mM KPO4, 1 mM CaCl2, 1 mM MgSO4, 5 mg 

cholesterol (dissolved in ethanol) and 1.7% (w/v) agar. 

 

IV.2.2. Buffers 

4X SDS Sample Buffer (Laemmli Buffer) 

240 mM Tris (pH 6.8), 8% (w/v) SDS, 40% (v/v) glycerol, 1.4 M β-Mercaptoethanol, 0.02% 

(w/v) bromphenol blue 

PBS (Phosphate buffered saline)  

137 mM NaCl, 2.68 mM KCl, 10.1 mM Na2HPO4, 1.76 mM NaH2PO4, pH adjusted to 7.4 with 

HCl  

SDS-PAGE Running Buffer  

50 mM Tris-HCl pH 8.3, 380 mM glycine, 0.1% (w/v) SDS  

1x TAE Agarose Gel Electrophoresis Buffer  

242 g/l Tris base, 57.1 ml/l acetic acid, 50 mM EDTA  

TBS (Tris buffered saline)  

25 mM Tris-HCl, pH 7.2, 150 mM NaCl  

TBST (TBS + Tween 20)  

0.1% (v/v) Tween 20 in TBS 
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Transfer Buffer for Western Blotting  

25 mM Tris, 192 mM glycine, 20% (v/v) methanol, pH 8.4 

Cell Lysis Buffer 

50 mM Tris (pH 7.8), 150 mM NaCl, 0.25% (w/v) sodium deoxycholate, 1% (v/v) NP-40, 1 mM 

EDTA and 1 tablet protease inhibitor cocktail per 10 ml. 

SDT Buffer 

4% (w/v) SDS, 100 mM Tris-HCl (pH 7.6) and 0.1 M DTT 

Stop Buffer 

25 mM Tris-phosphate (pH 7.8), 2 mM CDTA, 1 mg/ml BSA and 2 mM cycloheximide 

 

IV.3. Molecular Cloning Methods 

All routine molecular biology methods such as polymerase chain reaction (PCR), agarose 

gel electrophoresis, DNA quantification, competent cell preparation and transformation of 

bacterial cells etc. were performed according to “Molecular cloning” (Sambrook, 2001) unless 

otherwise stated. Plasmid DNA was isolated from DH5α or SURE (for isolation of Htt-20Q-

mCherry and Htt-97Q-mCherry constructs) cells using Plasmid Midiprep System (Promega) 

according to manufacturer’s protocol. Only high quality DNA (with A260/280 > 1.85 and A260/230 > 

2.10) was used for in vitro experiments in rabbit reticulocyte lysate and for transfection of 

mammalian cells. Primers used for PCR amplification were purchased from Metabion 

(Martinsried, Germany). Routine plasmid preparation for cloning was done using Minipreps 

Wizard Plus kit (Promega). PCR clean up and gel purification of DNA for cloning purpose was 

done using Gel and PCR Clean up System (Promega). DNA sequencing was performed by the 

sequencing facility at MPI core facility (Martinsried, Germany).  
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IV.3.1. Preparation and Transformation of Chemically Competent 

E. coli Cells 

For preparation of chemically competent E. coli cells, a single colony of DH5α or SURE 

strain was grown in LB overnight with continuous shaking at 37
o
C. Next day, 5 mL of bacterial 

culture was inoculated in 500 mL fresh LB medium and grown to an optical density (O.D. 600) of 

0.5 at 37
o
C. The cells were then centrifuged in sterile tubes at 5000 g for 10 min at 4

o
C. The cell 

pellet was resuspended in 125 ml ice-cold transformation buffer I (30 mM potassium acetate, 50 

mM manganese chloride, 100 mM rubidium chloride, 10 mM calcium chloride and 15% 

glycerol) and incubated on ice for 20 min. After incubation, the cells were again centrifuged at 

5000 g for 10 min at 4
o
C and the pellet was gently resuspended in 20 ml ice-cold transformation 

buffer II (10 mM MOPS, 75 mM calcium chloride, 10 mM rubidium chloride and 15% glycerol). 

Finally, 50 µl aliquots were frozen in liquid nitrogen and stored at -80
o
C. 

For transformation, 50 µl chemically competent E. coli cells were mixed with 50-100 ng 

plasmid DNA or 20 µl ligation mixture and incubated on ice for 30 min. The cells were heat 

shocked at 42
o
C for 50 sec and tubes were immediately placed on ice for 2 min. 1 ml of LB 

medium was subsequently added and the cells were shaken at 37
o
C for 1 h. The cell suspension 

was then plated on LB agar plates containing suitable antibiotic(s) and incubated at 37
o
C until 

colonies had appeared. 

IV.3.2. PCR Amplification 

PCR mediated amplification of plasmid DNA or linear DNA was performed by setting a 

25 µl PCR reaction containing the following components 

DNA Template 20 ng DNA 

Primers 20 pmole each 

dNTPs 200 µM each 

Pfu Polymerase 2.5 units 

Polymerase reaction buffer (with Mg
2+

) 1 X 

Additives 3-6% DMSO if GC content > 50% 
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PCR Cycling conditions: 

Reaction Step Temp Time 

Initial Denaturation 95
o
C 3 min 

Cycle Denaturation 95
o
C 30-60 sec 

Annealing (dependent on Tm of primers) ~ 55
o
C 30-60 sec 

Extension (duration dependent on template length) 72
o
C 500bp/min 

Final Extension  72
o
C 15 min 

 

IV.3.3. Site-Directed Mutagenesis PCR 

Site-directed mutagenesis was done to introduce mutations at specific positions in Firefly 

luciferase (Fluc) to generate mutants. Briefly, the plasmid was PCR amplified using Pfu 

polymerase and primers as described before. The PCR product was digested with 1 µl Dpn I 

(New England Biolabs) in appropriate buffer for 2 h at 37
o
C to cleave the parental (methylated) 

DNA. The PCR product was then used to transform chemically competent E. coli cells and 

plated on suitable LB agar plates. The plates were incubated overnight at 37
o
C until colonies had 

appeared. The colonies were inoculated into fresh LB medium with suitable antibiotic and 

plasmid was isolated using Minipreps Wizard Plus Kit (Promega). The constructs were routinely 

sequenced to confirm the mutations. 

IV.3.4. DNA Restriction and Ligation 

DNA digestion was performed using restriction endonuclease enzymes according to the 

manufacturer’s instructions (New England Biolabs). A 20 µl digestion reaction was set 

containing 2 µg plasmid DNA or PCR product and 1-2 µl of each restriction enzyme in the 

appropriate reaction buffer. The digested DNA was separated from the uncut DNA by agarose 

gel electrophoresis. The digested DNA was purified from the agarose gel using Gel and PCR 

Clean up System (Promega). DNA concentrations were measured by UV absorption 

spectroscopy at λ = 260 nm. 

For ligation reaction, 20 µl reaction was set containing 100-200 ng digested vector DNA, 

100-200 ng insert DNA in molar ratio of 1:3 (vector:insert) and 100 units of T4 DNA ligase in 

X 30 
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ligase buffer. The reaction mixture was incubated at 16
o
C for overnight. The ligation product 

was transformed into competent E. coli cells as described. 

IV.3.5. Generation of Expression Constructs 

Following primers were used for the cloning of various constructs used in this study. The 

underlined residues indicate restriction endonuclease sites introduced for cloning. 

Primer Sequence 

Fluc FOR 5’- CCGCTCGAGCATGGAAGACGCCAAAAAC - 3’ 

Fluc REV 5’- TCCCCCCGGGTTACAATTTGGACTTTCCGC - 3’ 

Rluc FOR 5’- ACGCCTCGAGATGGCTTCCAAGGTGTACGA - 3’ 

Rluc REV 5’- ACGCGGCCGGCCTTACTGCTCGTTCTTCAGCACG - 3’ 

NPM1 FOR 5’- CGGGATCCCGATGGAAGATTCGATGGACATGGAC - 3’ 

NPM1 REV 5’- CGGAATTCCGGTGGAGGTGAAAGAGACTTCCTCCACTGCC - 3’ 

 

Cloning of Firefly Luciferase in Mammalian Expression Vector 

The Firefly luciferase (Fluc) gene from plasmid pGL3 basic (Promega, Madison, USA) 

encoding residues 1-550 of wild-type Fluc (with the C-terminal peroxisomal targeting signal Ser-

lys-Leu replaced by Ile-Ala-Val and containing two point mutations, Asn50Asp and Asn119Gly, 

to improve efficiency of the enzyme) was PCR amplified using Fluc FOR and REV primers. The 

PCR product was digested with XhoI and XmaI restriction endonucleases and sub-cloned into 

the pCI-neo vector (Promega) to form pCIneoFluc. pCIneoFluc constructs were used for in vitro 

translation in rabbit reticulocyte lysate (RRL) and for expression in mammalian cell culture. 

Generation of Fluc mutants 

To generate Fluc mutants, site-specific mutations were done using site-directed 

mutagenesis primers. Following primers were used to introduce mutations in Fluc gene in 

pCIneoFluc plasmid in order to generate Fluc mutants. 
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Primer Sequence 

K135Q FOR 5’- CCAAAAAGGGGTTGCAACAAATTTTGAACGTGCAA - 3’ 

K135Q REV 5’- TTGCACGTTCAAAATTTGTTGCAACCCCTTTTTGG - 3’ 

K135M FOR 5’- CCAAAAAGGGGTTGCAAATGATTTTGAACGTGCAA - 3’ 

K135M REV 5’- GCGGCCGGCCAATAAGCTTTTGTTCTTTCTGC - 3’ 

R188Q FOR 5’- CGATTTTGTGCCAGAGTCCTTCGATCAGGACAAGACAATTGC - 3’ 

R188Q REV 5’- GCAATTGTCTTGTCCTGATCGAAGGACTCTGGCACAAAATCG - 3’ 

R188K FOR 5’- CGATTTTGTGCCAGAGTCCTTCGATAAAGACAAGACAATTGC - 3’ 

R188K REV 5’- GCAATTGTCTTGTCTTTATCGAAGGACTCTGGCACAAAATCG - 3’ 

R261Q FOR 5’- CGGATATTTGATATGTGGATTTCAAGTCGTCTTAATG - 3’ 

R261Q REV 5’- CATTAAGACGACTTGAAATCCACATATCAAATATCCG - 3’ 

R261K FOR 5’- CGGATATTTGATATGTGGATTTAAAGTCGTCTTAATG - 3’ 

R261K REV 5’- CATTAAGACGACTTTAAATCCACATATCAAATATCCG - 3’ 

Fluc Stop 

removal FOR 
5’- GGAAAGATCGCCGTGAAACCCGGGATCCACCGGTC - 3’ 

Fluc Stop 

removal REV 
5’- GACCGGTGGATCCCGGGTTTCACGGCGATCTTTCC - 3’ 

 

To generate EGFP-tagged constructs, the stop codon of the luciferase gene in the 

pCIneoFluc was changed to AAA, encoding lysine. EGFP from pEGFP-N2 vector (Clontech, 

CA, USA) was inserted at the 3’ end of Fluc in pCIneoFluc plasmid using XmaI and NotI 

restriction sites to generate pCIneoFluc-EGFP. To generate pCIneoFlucSM-EGFP, site-directed 

mutagenesis using primers R188Q FOR and REV and pCIneoFluc-EGFP as DNA template was 

performed. To generate pCIneoFlucDM-EGFP, another round of site-directed mutagenesis using 

primers R261Q FOR and R261Q and pCIneoFlucSM-EGFP as DNA template was performed.  

EGFP-tagged luciferase variants were cloned for C. elegans in a similar manner in the 

pPD30-38 vector (under the unc-54 promoter) for muscle-specific expression and in pDP#SU006 

(under the F25B3.3 promoter) for neuron-specific expression. The Fluc-EGFP constructs for 

expression in C. elegans were prepared by Dr. Prasad Kasturi. 
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Generation of Huntingtin Constructs 

Huntingtin constructs were prepared by cloning the exon1 fragment of huntingtin gene 

(Htt) containing sequence encoding the polyglutamine region (20Q or 97Q) (Behrends et al., 

2006) N-terminally fused to mCherry in the pcDNA3.1(+) mammalian expression vector 

(Invitrogen). The restriction endonucleases used were BamHI and XhoI. For plasmid 

propagation, chemically competent SURE cells were used. The length of the polyQ stretch in all 

constructs was verified by DNA sequencing. 

Generation of HSPA1A-Rluc-myc construct 

The construct HSPA1A-Rluc-myc expresses C-terminally Myc-tagged Renilla luciferase 

(Rluc) under control of the HSF1 dependent HSPA1A promoter. To generate this construct, the 

Rluc gene was PCR amplified from the phRL-TK vector (Promega) using primers Rluc FOR and 

REV. The PCR product was digested with XhoI and FseI restriction endonucleases and 

subcloned into plasmid pUB/Bsd HSP70-Luc (Fluc gene under control of the HSPA1A promoter, 

gift from Prof. H. Wagner, Technical University of Munich) by replacing the Fluc gene. A myc 

tag was introduced at the 3’ end of the Rluc gene by four rounds of sequential site-directed 

mutagenesis using the following primers 

Primer Sequence 

Myc1 FOR 5’- GAGCAGAAAGAACAAAGGCCGGCCGC - 3’ 

Myc1 REV 5’- GCGGCCGGCCTTTGTTCTTTCTGCTC - 3’ 

Myc2 FOR 5’- GCAGAAAGAACAAAAGCTTATTGGCCGGCCGC - 3’ 

Myc2 REV 5’- GCGGCCGGCCAATAAGCTTTTGTTCTTTCTGC - 3’ 

Myc3 FOR 5’- AACAAAAGCTTATTTCTGAAGAGGCCGGCCGC - 3’ 

Myc3 REV 5’- GCGGCCGGCCTCTTCAGAAATAAGCTTTTGTT - 3’ 

Myc4 FOR 5’- TTATTTCTGAAGAAGACTTGGGCCGGCCGC - 3’ 

Myc4 REV 5’- GCGGCCGGCCCAAGTCTTCTTCAGAAATAA - 3’ 

 

The residues that were added in each subsequent step to introduce myc tag are underlined. 
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Generation of NLS- and NES-Fluc-EGFP Constructs 

To generate constructs for NLS- and NES-Fluc-EGFP variants, NLS (Fischer-Fantuzzi 

and Vesco, 1988) and NES (la Cour et al., 2004) sequences were added 3’ end of CMV promoter 

in pcDNA3.1 myc his A plasmid (Invitrogen) by sequential site-directed mutagenesis. The Fluc-

EGFP gene was PCR amplified and subcloned at the 3’ end of NLS or NES sequence in 

pCDNA3.1 myc his A vector using restriction enzymes KpnI and XbaI. NLS- and NES-

FlucDM-EGFP constructs were generated by site-directed mutagenesis of NLS- and NES-Fluc-

EGFP constructs, respectively. All constructs were verified by DNA sequencing. The constructs 

expressing NLS- and NES-Fluc-EGFP variants were generated by Andreas Wörner. 

Generation of NPM1-mCherry Construct 

To generate NPM1-mCherry construct, NPM1 or B23 gene (Cluster ID- Hs.557550 and 

Library Number- NIH_MGC_68) was PCR amplified from human genome library collection 

(MPI core facility, Martinsried, Germany) using primers NPM1 FOR and REV. The purified 

PCR product was digested with restriction endonucleases EcoRI and BamHI and subcloned 

upstream of mCherry by replacing Htt-20Q in Htt-20Q-mCherry plasmid. The sequence of 

resultant construct was verified by DNA sequencing. 

IV.3.5.1. Constructs 

Following constructs were used in this study 

Name Plasmid backbone Antibiotic resistance 

 
 

1 2 

wild type (Fluc) pCI-neo Ampicillin Neomycin 

K135Q pCI-neo Ampicillin Neomycin 

K135M pCI-neo Ampicillin Neomycin 

R188Q (FlucSM) pCI-neo Ampicillin Neomycin 

R188K pCI-neo Ampicillin Neomycin 

R261Q pCI-neo Ampicillin Neomycin 

R261K pCI-neo Ampicillin Neomycin 

K135Q+R188Q pCI-neo Ampicillin Neomycin 
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K135Q+R188K pCI-neo Ampicillin Neomycin 

K135Q+R261Q pCI-neo Ampicillin Neomycin 

K135Q+R261K pCI-neo Ampicillin Neomycin 

K135M+R188Q pCI-neo Ampicillin Neomycin 

K135M+R188K pCI-neo Ampicillin Neomycin 

K135M+R261Q pCI-neo Ampicillin Neomycin 

K135M+R261K pCI-neo Ampicillin Neomycin 

R188Q+R261Q (FlucDM) pCI-neo Ampicillin Neomycin 

R188Q+R261K pCI-neo Ampicillin Neomycin 

R188K+R261Q pCI-neo Ampicillin Neomycin 

R188K+R261K pCI-neo Ampicillin Neomycin 

Fluc-EGFP pCI-neo Ampicillin Neomycin 

FlucSM-EGFP pCI-neo Ampicillin Neomycin 

FlucDM-EGFP pCI-neo Ampicillin Neomycin 

HSPA1A Rluc myc pUB/Bsd Ampicillin Blasticidin 

Htt-97Q-mCherry pcDNA3.1(+) Ampicillin Hygromycin B 

Htt-20Q-mCherry pcDNA3.1(+) Ampicillin Hygromycin B 

NLS-Fluc-EGFP pcDNA3.1 myc his A Ampicillin Neomycin 

NLS-FlucDM-EGFP pcDNA3.1 myc his A Ampicillin Neomycin 

NES-Fluc-EGFP pcDNA3.1 myc his A Ampicillin Neomycin 

NES-FlucDM-EGFP pcDNA3.1 myc his A Ampicillin Neomycin 

NPM1-mCherry pcDNA3.1(+) Ampicillin Hygromycin B 

unc-54 Fluc-EGFP pPD30-38 Ampicillin ------ 

unc-54 FlucSM-EGFP pPD30-38 Ampicillin ------ 

unc-54 FlucDM-EGFP pPD30-38 Ampicillin ------ 

F25B3.3 Fluc-EGFP pDP#SU006 Ampicillin ------ 

F25B3.3 FlucSM-EGFP pDP#SU006 Ampicillin ------ 

F25B3.3 FlucDM-EGFP pDP#SU006 Ampicillin ------ 
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IV.4. Protein Analytical Methods 

IV.4.1. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis 

(SDS-PAGE) 

SDS-Polyacrylamide gels were prepared as follows 

Chemicals 12% Separating Gel 4% Stacking Gel 

 10 ml 15 ml 4 ml 8 ml 

Distilled H2O 3.3 ml 4.9 ml 2.7 ml 5.5 ml 

30% Acrylamide mix 4 ml 6 ml 670 µl 1.3 ml 

1.5 M Tris (pH-8.8) 2.5 ml 3.8 ml ------ ------ 

1 M Tris (pH-6.8) ------ ------ 500 µl 1 ml 

10% SDS 100 µl 150 µl 40 µl 80 µl 

10% APS 100 µl 150 µl 40 µl 80 µl 

TEMED 4 µl 6 µl 4 µl 8 µl 

 

SDS-PAGE was performed using a discontinuous buffer system (Laemmli, 1970) in Bio-

Rad Mini-Protean2 electrophoresis chambers employing a constant current of 30 mA in SDS-

PAGE running buffer. Protein samples for SDS-PAGE were prepared by mixing the samples 

(cell lysate or soluble fraction) with 2X Laemmli loading buffer (Laemmli, 1970). Prior to 

loading, samples were boiled at 95
o
C for 5 min.  

IV.4.2. Western Blotting 

Proteins were resolved by SDS-PAGE and gels were transferred onto nitrocellulose 

membranes in a Mini Trans-Blot Electrophoretic Transfer Cell (Bio-Rad) in transfer buffer (25 

mM Tris, 192 mM glycine, 20% (v/v) methanol, pH 8.4) at constant current of 250 mA for 1 gel 

(300 mA for 2 gels) for 90 min. Following transfer, the membranes were blocked in 5% skim 

milk powder in TBST solution for 1 h. The membranes were then incubated with primary 

antibody (diluted in blocking solution) for 1 h at room temperature or overnight at 4
o
C. The 

membranes were extensively washed with TBST solution for 3-4 times (each washing of 5 min), 

followed by incubation with HRP-conjugated (horseradish peroxidase) secondary antibody in 
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TBST for 3 h at room temperature. After extensive washing with TBST solution for 3-4 times, 

protein bands were detected by incubating the membranes with ECL detection reagent and using 

Luminiscent ImageReader LAS-3000 system (FUJI). 

IV.4.3. Protein Quantification by Bradford’s Assay 

Soluble fractions of proteins were quantified in a calorimetric assay based on the method 

developed by Bradford (Bradford, 1976) using Bio-Rad protein assay reagent. As a reference, a 

calibration curve of BSA was used. Absorbance values were recorded at 595 nm using DU 640 

UV/VIS Spectrophotometer (Beckman). 

IV.5. In Vitro Characterization of Fluc Mutants 

IV.5.1. Thermal Denaturation of Fluc Variants in RRL 

Luciferase (Fluc) mutants were transcribed and translated in rabbit reticulocyte lysate 

(RRL) using the Promega TnT T7 quick coupled transcription and translation kit as 

recommended by the manufacturer. Unless otherwise indicated, pCI-neo constructs of Fluc 

variants were incubated in RRL at 30
o
C for 90 minutes. To analyze the functional stability of the 

mutant proteins, translation reaction was stopped by three-fold dilution of samples into ice-cold 

stop buffer (25 mM Tris-phosphate pH 7.8, 2 mM trans-1,2-cyclo- hexanediaminetetraacetate 

(CDTA) and 1 mg ml
-1

 BSA) containing 2 mM cycloheximide. The reaction mixtures were 

incubated at various temperatures, and luciferase activity was determined using Luminometer 

Lumat LB 9507 (Berthold) at the indicated times by mixing 2 µl sample in 30 µl Luciferase 

Assay System (Promega). The measuring time was set to 0.1 sec in the instrument. 

IV.5.2. Measurement of Fluc Specific Activity in RRL 

For specific activity measurements (luciferase activity normalized to the luciferase 

protein content in the sample), Fluc mutant proteins were transcribed and translated in RRL at 

30
o
C for 90 minutes. Translation reaction was stopped by addition of stop buffer containing 

CHX, as described above. Aliquots at 30
o
C were withdrawn at 0 min and 120 min and luciferase 

activity was measured. To measure Fluc amount, 2 µl RRL sample was mixed in 20 µl Laemmli 

loading buffer and ran on SDS-PAGE. Fluc amount was analyzed by immunoblotting with 
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luciferase antibody (Promega G7451, polyclonal, which recognizes wild-type and mutant 

luciferase proteins with similar efficiency).  

IV.5.3. Assessment of Co-translational Folding Efficiency of Fluc 

Variants in RRL 

To check for the efficiency of co-translational folding of Fluc mutants, Fluc DNA was 

added to RRL at 30
o
C and 1 µl of sample was withdrawn at different times and mixed with 30 µl 

Luciferase Assay System (Promega) to measure the luciferase activity. 

IV.5.4. Limited Proteolysis by Proteinase K  

To assess the structural flexibility, Fluc variants were transcribed and translated in RRL 

at 30
o
C for 90 min followed by three-fold dilution in stop buffer containing 2 mM 

cycloheximide. The reaction mixture in each case was distributed into 2 aliquots for determining 

luciferase activity at 20
o
C in the presence and absence of proteinase K (1 µg ml

-1
) (Merck) at 

different time points. Luciferase activity was measured as described before. The action of 

proteinase K was inhibited by addition of 5 mM PMSF. Samples for SDS-PAGE were prepared 

by mixing 2 µl diluted RRL in 20 µl Laemmli loading buffer and boiling them for 5 min at 95
o
C. 

The pattern of proteinase K digestion was visualized by immunoblotting with Fluc antibody. 

IV.5.5. Guanidinium Chloride Denaturation 

Fluc variants were synthesized in RRL as described above. Translation was stopped by 

addition of stop buffer containing 2 mM cycloheximide. The proteins were denatured by ten-fold 

dilution of reaction mixture in ice cold Buffer B (20 mM HEPES- KOH (pH 7.4), 100 mM 

KAcO, 5 mM Mg(AcO)2, 0.5 mM EDTA, 1 mM DTT ) containing varying concentrations of 

guanidinium chloride (GdmCl) in the presence and absence of proteinase K (1 µg ml
-1

). To 

determine luciferase activity, 2 µl diluted RRL sample was withdrawn and mixed with 30 µl 

Luciferase Assay System (Promega). 

IV.5.6. Cold Denaturation Method 

Fluc mutants were transcribed and translated in RRL at 25
o
C for 90 min followed by 

three-fold dilution in stop buffer containing 2 mM cycloheximide. The reaction mixture in each 
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case was distributed into 2 aliquots for determining luciferase activity at 20
o
C and 4

o
C at 

different times. After 60 min, the aliquots at 4
o
C were shifted to 20

o
C to follow the change in 

luciferase activity. 

IV.6. In Vivo Characterization of Fluc Variants 

IV.6.1. Cell Culture and Transfection 

HeLa (ATCC Number: CCL-2) and HEK 293T (ATCC Number: CCL-131) cells were 

maintained in Dulbecco’s Modified Eagle’s medium (DMEM; Biochrom) supplemented with 

10% fetal bovine serum (FBS), 1% penicillin-streptomycin (Gibco) and 1% L-glutamine (Gibco) 

at 37
o
C in an atmosphere of 5% CO2. To perform heat-stress experiments, cells were transiently 

transferred to an incubator maintained at 43
o
C for 2 h. The stock solutions for small molecule 

compounds, 17-AAG, MG132 and PBT were prepared in DMSO. The compounds were diluted 

in DMEM medium and applied to cells for the indicated times. 

Transient transfection of HeLa cells was done using Lipofectamine and PLUS reagent 

(Invitrogen) according to the manufacturer’s protocol. We used 1 µg DNA for transfection in 12-

well format. HEK 293T cells were transiently transfected using Lipofectamine 2000 reagent 

(Invitrogen). Here we used 800 ng DNA for transfection in 12-well format. esiRNA reverse-

transfection experiments were performed with Lipofectamine RNAiMAX (Invitrogen). We used 

300 ng of esiRNA for transfection in 12-well format. Forty-eight hours after esiRNA 

transfection, cells were again transfected with Fluc constructs as described above. For DnaJB1 

down-regulation experiments, HEK 293T cells stably expressing NES-FlucDM-EGFP were 

transfected with either DnaJB1 siRNA (Cat. No. L-012735-01-0005) or control siRNA #3 (Cat. 

No. D-001210-03-05) using DharmaFECT transfection reagent as recommended by the 

manufacturer (Dharmacon). In each transfection protocol (plasmid, esiRNA or siRNA), the 

transfection reagent was diluted in Opti-MEM medium and was replaced with DMEM medium 

(without penicillin-streptomycin solution) after 3 h of application to cells. 
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IV.6.2. Protein Sample Preparation and Specific Activity 

Measurements 

For specific activity measurements, cells were transiently transfected with Fluc variants 

as described above. Twenty four hours after transfection, cells were trypsinized and resuspended 

in DMEM medium. Cells were counted using Scepter
TM

 Automated Cell Counter (Millipore) and 

10,000 cells/well in 100 µl DMEM medium were seeded in 96-well format. The remaining cells 

were centrifuged and washed twice with PBS to remove excess trypsin and DMEM. To prepare 

total cell protein for immunoblotting, equal number of cells were either boiled directly in SDS 

sample buffer or dissolved in SDT buffer (4% (w/v) SDS, 100 mM Tris-HCl (pH 7.6) and 0.1 M 

DTT). To prepare soluble cell fractions, cells were resuspended in cell lysis buffer (50 mM Tris 

(pH 7.8), 150 mM NaCl, 1% (v/v) NP-40, 0.25% sodium deoxycholate, 1 mM EDTA and 1 

tablet protease inhibitor cocktail per 10 ml) and vortexed at regular intervals for 40 min on ice. 

The crude cell lysate was then centrifuged at 16,100g for 30 min at 4
o
C. The supernatant fraction 

was used for analysis of soluble luciferase protein amount. Pellets were dissolved in same 

volume of SDT buffer. 

After 24 h, the cells in 96-well plate were lysed by adding 50 µl Steady-Glo Luciferase 

Assay System buffer (Promega) directly to the wells and incubated in dark at room temperature 

for 15 min. Luminescence was then recorded in a luminometer (Berthold Lumat LB9507) and 

measuring time was set to 2 sec. To determine specific activities, the luminescence values (Fluc 

activities) were divided by luciferase band intensity quantified from immunoblots by 

densitometry using the AIDA software. 

IV.6.3. Fluorescence Microscopy 

For preparing samples for fluorescence microscopy, cells were transiently transfected in 

12-well format and 24 h later were seeded onto 12 mm round poly-L-lysine coverslips (BD 

Biocoat). Following day, the cells were given treatment (heat stress or addition of small 

molecules) and fixed with 4% paraformaldehyde. After fixation, cells were washed thrice with 

PBS and stained with DAPI (to stain DNA). DAPI staining was followed by three times washing 

with PBS and coverslips were then mounted on glass slides using Dako fluorescent mounting 

medium for fluorescence microscopy. 
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Worms were fixed in ethanol and mounted on glass slides using Dako fluorescent 

mounting medium. Fluorescence imaging was performed on a Zeiss Axiovert 200M fluorescence 

microscope equipped with a Zeiss Axiocam HRM camera. Images were acquired using 

Axiovision Rel 4.7 software. Images were resized and brightness and contrast was adjusted in 

Adobe Photoshop CS5.1 software. The filter sets used for image acquisition were the following 

Channel Filter Set No. Beam Splitter Excitation Filter Emission Filter 

DAPI 1 FT395 BP365/12 LP397 

EGFP 38 FT580 BP470/40 BP525/50 

Cy3/mCherry 15 FT495 BP546/12 LP590 

 

For confocal micrographs (only of HEK 293T cells in this study), samples were prepared 

as described above. The confocal microscopy was performed in the MPI core facility using the 

Leica TCS SP2 confocal laser scanning microscope equipped with AOBS beam splitter. Images 

were acquired using the Leica HCX PL APO 63X oil immersion objective with numerical 

aperture of 1.4 and a resolution of 512 x 512. Virtual zoom for each confocal image was set to 

4.00 and image acquisition and analysis was done using Leica TCS Analysis software (Leica). 

For fluorescence immunocytochemistry, cells were fixed with 4% paraformaldehyde, 

followed by 3 times washing with PBS (~5 min each). Cells were then treated with ice-cold 

methanol-acetone solution (1:1) and kept at -20
o
C for 10 min. After washing with PBS, cells 

were treated with 5% skimmed milk solution containing 0.1% (v/v) Triton-X-100 for 1 h at room 

temperature to block and permealize the cells. Primary antibody was diluted (1:500-1:1000) in 

blocking solution and cells were incubated with the antibody solution at 4
o
C for overnight. Cells 

were extensively washed with PBS and incubated with fluorochrome-conjugated secondary 

antibody (diluted 1:200) in PBS/Triton for 2 h at room temperature in dark. For DAPI staining, 

cells were rinsed twice with PBS to remove excess secondary antibody and were stained with 

DAPI. DAPI staining was followed by three times washing with PBS and coverslips were then 

mounted on glass slides using Dako fluorescent mounting medium for fluorescence microscopy. 

IV.6.4. Live Cell Imaging 

For Live cell imaging, ~ 7500 cells/well were grown in DMEM (without phenol red) in a 

µ-Slide 8-well chambered dish coated with poly-L-lysine (IBIDI). Live cell imaging was 
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performed using Perkin Elmer UltraVIEW Vox Spinning Disk system with a Leica DMI6000 B 

inverted microscope equipped with a Leica HCX PL APO 63X oil immersion objective with 

numerical aperture of 1.4. The system was also equipped with HAMAMATSU ImagEM camera 

with a resolution of 512 x 512 and with fully motorized XYZ stage for automated point visiting 

feature. During live cell imaging experiment, the cells were provided optimum growth conditions 

of 5% humidified CO2 and 37
o
C temperature. For live cell imaging of HEK 293T cells 

transiently co-expressing Fluc-EGFP variants and Htt-polyQ-mCherry constructs, image 

acquisition was started 24 h after transfection. To monitor the effect of proteasome inhibition on 

the stability of NES-FlucEGFP variants, live cell imaging of HEK 293T cells stably expressing 

NES-Fluc-GEFP or NES-FlucDM-EGFP was started soon after the addition of 5 µM MG132 to 

the medium. Image acquisition and analysis was done using Volocity 6.0 (Perkin Elmer) 

software. 

IV.6.5. Generation of Stable Cell Lines 

In this study, stable cell lines of HEK 293T cells expressing NLS- and NES-Fluc-EGFP 

variants were generated. Before starting stable cell line generation, a kill curve of Neomycin 

(G418), used as a selection marker, to select transfected cells over untransfected cells was 

prepared. Untransfected HEK 293T cells were treated with increasing concentrations of G418 

from 100-800 µg/ml for ~ 10 days till all cells were dead. The concentration of G418 used to 

select transfected cells was 400 µg/ml.  

Approximately 50 x 10
4
 HEK 293T cells were transfected with 1600 ng DNA of NLS- 

and NES-Fluc-EGFP variants using Lipofectamine 2000 reagent (Invitrogen) as recommended 

by the manufacturer. Twenty four hours after transfection, cells were counted and 10
4
 cells were 

transferred to a new plate. A control plate containing 10
4 

untransfected cells was also prepared. 

Following day, the cells were treated with 400 µg/ml G418 and DMEM was replaced after every 

second day. The treatment of cells with G418 was continued till ~ 95% cells in control plate died 

and transfected cells started forming colonies. Individual colonies were then picked under sterile 

conditions, using pipette and microscope, and were transferred into 96 well plates. The cells 

were allowed to recover in DMEM without G418 and positive clones were selected by 

measuring luciferase activity and monitoring EGFP fluorescence in each case. Different clones 

of each Fluc construct were selected and stored until use.  
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IV.6.6. Cryo-Preservation of Mammalian Cell Lines 

To preserve mammalian cells, cells were trypsinized and resuspended in DMEM 

medium. The cell suspension was centrifuged at 1000 g for 5 min and supernatant was discarded 

to remove excess trypsin. The cell pellet was then resuspended in DMEM medium containing 

10% (v/v) DMSO, 20% (v/v) FBS and 2 ml aliquots were prepared in cryo-tubes. The cells were 

first transferred into an isopropanol filled cryo-preservation box at -80
o
C for three days and 

subsequently transferred to liquid nitrogen tank. 

For re-vitalizing frozen cells, an aliquot was withdrawn from liquid nitrogen tank and 

placed in a water bath at 37
o
C. The cells were then seeded in a tissue culture plate in DMEM 

supplemented with 20% FBS. The cells were allowed to adhere to the plate and medium was 

changed with a fresh DMEM after they completely adhered to the plate bottom.  

IV.6.7. Generation of Transgenic C. elegans 

C. elegans were routinely maintained at 20
o
C on solid nematode growth medium (NGM) 

agar, seeded with E. coli strain OP50 as a food source. Transgenic C. elegans were generated by 

microinjection of worms (Bristol strain N2) with Fluc-EGFP expression vectors. Fluc-EGFP 

expression vectors (25 µg ml
-1

) together with the injection marker pRF4 (rol-6 (su1006), 125 µg 

ml
-1

) were injected into the gonads of adult wild-type (N2) hermaphrodite worms. We selected 

transgenic F1 progeny on the basis of the roller phenotype (expressed from pRF4 marker). 

Individual transgenic F2 worms that were rollers with EGFP fluorescence were picked to 

establish independent lines. To achieve chromosomal integration, selected extrachromosomal 

lines were UV-light irradiated at energy of 300 J and integrated strains were backcrossed six 

times before using them in experiments. The following transgenic strains were generated and 

used in this study 

FUH62 [marIs62 (P(unc-54)Fluc::EGFP)] 

FUH134 [marIs134 (P(unc-54)FlucSM::EGFP)] 

FUH135 [marIs135 (P(unc-54)FlucDM::EGFP)] 

FUH48 [marIs48 (P(F25B3.3)Fluc::EGFP)] 

FUH136 [marIs136 (P(F25B3.3)FlucSM::EGFP)] 

FUH137 [marIs137 (P(F25B3.3)FlucDM::EGFP)] 

Muscle Specific Expression 

Neuron Specific Expression 
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IV.6.8. Reverse Transcriptase-PCR (RT-PCR) Experiments in        

C. elegans 

To perform RT-PCR experiments, we isolated total RNA from ~ 600 FlucDM-EGFP-

expressing worms by the trizol method. 1 µg of total RNA was reverse transcribed to cDNA 

using the iScript Select cDNA Synthesis Kit (Bio-Rad) according to the guidelines of the 

manufacturer. The primers used in this experiment to amplify cDNA were the following. 

Primer Sequence 

FlucDM-EGFP FOR 5’- AGATGACGGGAACTACAAGACACG - 3’ 

FlucDM-EGFP REV 5’- GTGGTCTCTCTTTTCGTTGGGATC - 3’ 

unc-54 FOR 5’- ACGTGTTCGTGAGCTTCAATTCCAGG - 3’ 

unc-54 REV 5’- AGATGGCGATCTGATGACAGCGGC - 3’ 

unc-119 FOR 5’- AATGAGACGGAAGAGAATCTGC - 3’ 

unc-119 REV 5’- GATCATGTCGTCCATGAGTTGT - 3’ 

 

PCR amplification was carried out using three different dilutions of cDNA in 50 µl reaction 

volume and following PCR conditions were used.  

Reaction Step Temp Time 

Initial Denaturation 95
o
C 2 min 

Cycle Denaturation 95
o
C 30 sec 

Annealing  56
o
C 30 sec 

Extension  72
o
C 1 min 

Final Extension  72
o
C 5 min 

 

5 µl of amplified PCR product was analyzed on 2% agarose gel at constant voltage of 100 V. 

Experiments were repeated at least three times, and band intensities were quantified using AIDA 

image analyzer software. 

X 25 
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V  Results 

V.1. Generation of Conformationally Destabilized Firefly 

Luciferase Mutants 

Luciferase from the American firefly Photinus pyralis (EC 1.13.12.7) (Fluc) catalyzes an 

oxidation reaction involving luciferin, ATP and molecular oxygen in the presence of a divalent 

magnesium ion to yield an electronically excited oxyluciferin species (Figure 13a). The decay of 

the excited-state oxyluciferin to the ground state emits a light in the yellow-green region of the 

visible spectrum with a quantum yield of nearly 100% (Deluca, 1976; Seliger and Mc, 1960).  

 

 

 

Figure 13: Design of conformationally destabilized Firefly luciferase (Fluc) variants.  
(a) Fluc-mediated enzymatic reaction. (b) Crystal structure of Fluc (Protein Data Bank: 2d1r) (Nakatsu et 

al., 2006). Highlighted are N-terminal domain (blue) and C-terminal domain (gold). The residues chosen 

for mutations are highlighted in pink while their hydrogen bond interactors (Asp107 and Tyr109, Glu18 

and Gly20, and Thr43 and Asn50) are shown in orange. Products of Fluc catalyzed reaction; AMP and 

oxyluciferin are shown in light blue and light green respectively, indicating the active site. Six single and 

twelve double mutants of Fluc are generated. The mutations R188Q and R188Q+R261Q in red are 

extensively characterized in this study. 
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Fluc is a ~ 60 kDa protein and consists of two distinct domains, the large N-terminal 

domain (residues 1-421) and the small C-terminal domain (residues 422-544) (Conti et al., 1996) 

(Figure 13b). The N-terminal domain consists of a sub-domain (residues 1-190) of 22 kDa that 

has been shown to already fold during translation (Frydman et al., 1999). This co-translational 

folding of the N-terminal sub-domain allows the rapid folding of the entire Fluc molecule upon 

release of the polypeptide chain from the ribosome. The N-terminal domain is separated from the 

C-terminal domain by a wide cleft, and a flexible hinge connects these two domains. The active-

site pocket for the substrates (ATP and luciferin) is constituted by highly conserved residues 

within this cleft. The C-terminal domain acts as a lid over the active site and during the course of 

the reaction it presumably seals the excited-state oxyluciferin from solvent-mediated quenching 

of luminescence (Conti et al., 1996) (Figure 13b).  

To design increasingly destabilized mutants of Fluc, we mutated the large N-terminal 

domain by weakening the polar contacts between amino acids that are located distant in the Fluc 

sequence. The majority of the polar contacts are long-distance salt bridges and hydrogen bond 

interactions which often contribute substantially to the thermodynamic stability of the native fold 

in proteins (Matsui and Harata, 2007). To generate Fluc mutants with unchanged enzymatic 

activity in the folded state, we excluded the positions close to the substrate-binding pocket as 

well as positions at the domain-domain interface. We selected three positions (i) Lys135, (ii) 

Arg188 and (iii) Arg261 for mutagenesis, which are within hydrogen bond distance to Asp107 

and Tyr109, Glu18 and Gly20, and Thr43 and Asn50, respectively. Using this strategy and a site 

directed mutagenesis approach, we generated six single mutants and twelve double mutants of 

Fluc as listed in Figure 13b. Fluc contains a C-terminal Ser-Lys-Leu (SKL) tripeptide that targets 

the protein to the peroxisomes (Gould et al., 1989). To retain Fluc in the cytosol, we replaced the 

SKL tripeptide by Ile-Ala-Val (IAV) which effectively blocks import of Fluc into peroxisomes 

(Sherf and Wood, 1994). 

We first characterized the mutant proteins in vitro and then expressed them in cellular 

models and in C. elegans to validate their applicability as proteostasis sensors. Further, we 

tagged Fluc variants with appropriate signal sequences to study protein homeostasis in the 

cytosol and the nucleus of mammalian cells under different stress conditions. 
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V.2. In Vitro Characterization of Fluc Mutants 

V.2.1. Functional Characterization of Fluc Mutants in RRL 

V.2.1.1. Thermal Instability of Fluc Mutants 

In order to test the conformational and functional stability of the Fluc mutants in vitro, we 

used rabbit reticulocyte lysate (RRL). The RRL system contains all essential cellular components 

necessary for transcription, translation and protein folding and therefore allows the rapid 

production of proteins in vitro. We translated Fluc variants in RRL at 30
o
C for 90 min. 

Following synthesis, we terminated the translation reaction by addition of buffer containing 2 

mM cycloheximide (CHX). This step was followed by incubation of the RRL reaction mixtures 

at different temperatures and measurement of Fluc activity as a function of time (Figure 14). 

 

Figure 14: Schematic diagram illustrating 

the methodology used to characterize Fluc 

mutant proteins in RRL. 

Fluc DNA was transcribed and translated in RRL 

at 30
o
C for 90 min to obtain Fluc protein. The 

translation reaction was stopped by addition of 

stop buffer containing 2 mM cycloheximide 

(CHX) and tubes were incubated at different 

temperatures. At regular time intervals, RRL 

samples were withdrawn and Fluc activity was 

measured for each Fluc variant. 
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Figure 15: Temperature dependent loss of functionality of Fluc single mutants.  

Fluc single mutants were translated in RRL at 30
o
C for 90 min as shown in scheme (Figure 14). The 

translation was inhibited and enzymatic activity of Fluc variants was followed from 30
o
C to 37

o
C (a-d) by 

measuring their activity at the times indicated. Fluc activity is expressed in percentage of the activity 

measured immediately after translation at 30
o
C (set to 100%). Error bars indicate s.d., n=3. 

 

At lower temperatures, 30
o
C and 33

o
C, all Fluc single mutants except mutant R188Q 

were enzymatically active (Figure 15a, b). The single mutant R188Q had lost ~ 30% activity at 

30
o
C and ~ 65% activity at 33

o
C in 120 min. At 35

o
C, wild-type Fluc was still active while Fluc 

single mutants lost 50-80% of their enzymatic activities within 60 min (Figure 15c). Incubation 

of Fluc variants at 37
o
C had a drastic effect on the activities of the mutants which lost more than 

90% of activity in 60 min, compared to wild-type Fluc that lost ~ 35% of the original activity in 
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60 min (Figure 15d). Therefore, among all the single mutations, the mutation R188Q had the 

most pronounced effect on the thermodynamic stability of luciferase enzyme.  

 

Figure 16: Temperature dependent loss of functionality of Fluc double mutants.  
Fluc double mutants were translated in RRL at 30

o
C for 90 min, followed by inhibition of translation and 

incubation at 30
o
C to 37

o
C (a-d) as in Figure 14. Fluc activity was measured at the times indicated and 

expressed in percentage of the activity measured immediately after translation at 30
o
C (set to 100%). 

Error bars indicate s.d., n=3. 

 

Similar to Fluc single mutants, we also characterized double mutants of Fluc in RRL at 

different temperatures. At 30
o
C, all double mutants showed gradual decline in their enzymatic 

activities with time. The double mutants containing R188Q lost ~ 50% of their original activities 

after incubation for 120 min whereas those that contain R188K lost ~ 30-40% activity (Figure 

16a). At 33
o
C, the double mutants containing R188Q lost 80% of the original activity within 30-

40 min in comparison to other mutants that lost same amount of activity in more than 60 min 
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(Figure 16b). All Fluc double mutants lost ~ 80% of original enzymatic activity within 20 min of 

incubation at 35
o
C and within 5 min at 37

o
C (Figure 16c, d). Among all the double mutants that 

were functionally characterized in RRL, the mutant K135M+R188K was most stable whereas the 

mutants containing R188Q were the least stable. As expected, the Fluc double mutants were 

more destabilized relative to the single mutants from which they were derived. The loss of 

enzymatic activity of Fluc single and double mutants at increasing temperatures indicates that 

they have distinct thermodynamic stabilities at different temperatures. 

V.2.1.2. Specific Activities of Fluc Mutants in RRL  

To investigate whether the loss of activities of Fluc mutant proteins at 30
o
C is due to their 

functional inactivation or due to the reduction in protein amount, we determined the specific 

activities (activities relative to the protein amount) of all the Fluc variants (Figure 17).  

 

Figure 17: Specific luminescence activity of the Fluc variants in RRL at 30
o
C.  

Wild type Fluc and its mutant counterparts were translated in RRL at 30
o
C for 90 min. Immediately after 

translation (0 min, black bars) and after 2 h of incubation at 30
o
C (120 min, grey bars), the enzyme 

activities were measured and protein amounts were determined by immunoblotting of total RRL fractions. 

Specific activity was calculated by dividing the enzyme activity with the protein amount. Specific activity 

of wild-type Fluc was set to 100% and used to normalize for the mutants. Error bars indicate s.d., n=3. 
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At the 0 min time point, just after translation, the relative specific activities of all the Fluc 

mutants, except K135M+R188Q, were 70-80% of the specific activity of the wild-type protein, 

indicating that the initial folding of the mutant proteins was highly efficient at 30
o
C. However, 

upon incubation for 2 h at 30
o
C, the Fluc single mutants except R188Q, retained ~ 80% of 

specific activity of wild-type Fluc. The specific activities of Fluc double mutants showed 

variation, with mutants carrying R188Q mutation losing ~ 70-80% of their specific activity. 

Thus, among the single mutants, the mutant R188Q and among the double mutants, the mutants 

containing R188Q were the least stable. This observation was in agreement with the denaturation 

profile of Fluc single and double mutants at 30
o
C for 2 h (Figure 15a, 16a) and suggests that the 

mutant proteins were able to fold properly into their functional active state but weren’t able to 

maintain this state and were denatured. 

 

Figure 18: Thermal stability of wild-type (Fluc), single mutant R188Q (FlucSM) and 

double mutant R188Q+R261Q (FlucDM) selected for further characterization. 
(a-c) Temperature-dependent loss of activity of Fluc (a), FlucSM (b) and FlucDM (c) measured at the 

indicated times and expressed as a percentage of the activity measured immediately after translation (set 

to 100%). Proteins were translated in RRL (90 min at 30
o
C), followed by inhibition of translation and 

incubation at 20-37
o
C. (d) Specific activity of Fluc, FlucSM and FlucDM. The data points were taken 

from Figure 17. Error bars indicate s.d., n=3. 
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For further in vitro and in vivo studies, we selected the single mutant R188Q and the 

double mutant R188Q+R261Q on the basis of their stability and examined them in detail. For 

future reference, the wild-type luciferase is referred as Fluc, the single mutant R188Q as FlucSM 

and the double mutant R188Q+R261Q as FlucDM. We additionally determined the enzymatic 

activities of these three Fluc variants upon incubation for 2 h at 20
o
C and 25

o
C in RRL (Figure 

18a-c). While both Fluc and FlucSM were stable at these temperatures, FlucDM was unstable at 

25
o
C relative to 20

o
C. Thus, as summarized in Figure 18, among these three Fluc variants wild-

type Fluc was the most stable, FlucSM was less stable and FlucDM was the least stable. The 

results also suggest that polar contacts mediated by Arg188 with Glu18 and Gly20 and by 

Arg261 with Thr43 and Asn50 in Fluc are essential for maintaining its thermodynamic stability. 

V.2.1.3. Co-translational Folding Efficiency of Fluc Variants 

Using a RRL system, it has been shown before that the N-terminal sub-domain of Fluc 

undergoes co-translational folding which facilitate the rapid folding of the entire Fluc 

polypeptide upon its release from the ribosome (Frydman et al., 1999). Therefore we checked the 

effect of the mutations on co-translational folding. We monitored the luciferase activity at 

regular time intervals, from start of the reaction in RRL at 30
o
C to its completion after 90 min 

(Figure 19).  

 

We observed a delay of ~ 15min, corresponding to the time required for transcription and 

translation, in the read out of luciferase activity of the three Fluc variants. All Fluc variants 

Figure 19: Co-translational folding 

of Fluc variants in RRL at 30
o
C.  

The enzyme activity of Fluc mutants was 

measured at the indicated times during the 

course of translation at 30
o
C. Zero time 

point indicates the time of addition of Fluc 

DNA to the RRL mix. Error bars indicate 

s.d., n=3. 
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reached saturation in activity after 45 min, presumably due to the depletion of components 

involved in transcription and translation. Wild-type Fluc took ~ 22 min to reach 50% of its 

maximum enzymatic activity compared to FlucSM and FlucDM which took ~ 30 min, 

suggesting that the mutations have affected the co-translational folding efficiency of the Fluc 

variants. 

V.2.2. Structural Characterization of Fluc Variants in RRL 

V.2.2.1. Sensitivity of Fluc Variants to Proteinase K 

The results obtained from the previous experiments showed that the mutations affected 

the functional activity of the Fluc mutants. This could be due to their inability to reach native 

state or due to structural stability. Therefore, in order to obtain information about the effect of 

mutations on the structural flexibility of the Fluc variants, we performed proteinase K assays. 

Proteinase K is a serine protease that exhibits very broad cleavage specificity, cleaving peptide 

bonds adjacent to the carboxylic group of aliphatic and aromatic amino acids (Ebeling et al., 

1974). Since completely folded proteins are less accessible to cleavage by proteinase K 

compared to unfolded and/or denatured proteins, the proteinase K assay can be used to obtain 

qualitative information about the structural integrity of proteins.  

We compared the sensitivity of the newly translated Fluc mutant proteins to proteinase K 

by measuring the enzymatic activities of samples treated with the protease at 20
o
C (Figure 20a). 

In control reactions, without proteinase K, there was no change in the enzymatic activities of the 

Fluc variants. In samples treated with proteinase K, luciferase activity decreased with a half-time 

(t1/2) of ~ 20 min for FlucSM and ~ 7 min for FlucDM. Proteinase K treatment had no effect on 

the activity of Fluc. Moreover, digestion profiles of the Fluc mutant proteins as detected by 

immunoblotting showed a gradual decrease in their band intensities with time upon proteinase K 

addition (Figure 20b). This observation suggests that proteinase K has degraded the Fluc mutant 

proteins which corresponds to a loss of their enzymatic activities with time. Hence, these results 

strongly indicate that Fluc mutants are conformationally flexible and structurally destabilized 

relative to wild-type Fluc. 
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Figure 20: Assessment of conformational flexibility of Fluc variants.  
Fluc mutant proteins are structurally destabilized. (a) Proteinase K sensitivity of Fluc variants in RRL at 

20
o
C. Proteins were translated in RRL (90 min at 30

o
C), followed by inhibition of translation. The newly-

translated proteins were subjected to limited proteolysis by proteinase K at 20
o
C. Enzymatic activity was 

measured at the times indicated and expressed in percentage of the activity measured immediately after 

translation (set to 100%). (b) Proteinase K digestion profiles of the Fluc variants detected by 

immunoblotting with anti-Fluc antibody. (c) Proteinase K sensitivity of Fluc variants in presence of 

increasing concentration of guanidinium chloride. Protein samples were treated in the same manner as in 

(a). Error bars indicate s.d., n=3.  

 

V.2.2.2. Sensitivity of Fluc Variants to Guanidinium Chloride Mediated 

Denaturation 

To obtain more insight into the structural instability of the Fluc mutant proteins, we 

studied their unfolding in vitro in the presence of the chaotropic denaturant guanidinium chloride 

(GdmCl). GdmCl causes denaturation of proteins by disrupting non-covalent interactions (such 

as ionic interactions, hydrogen bonds etc.) and at high concentration (6 M), it leads to complete 
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unfolding of proteins to random coil structures (O'Brien et al., 2007; Tanford, 1970). Therefore, 

GdmCl mediated denaturation can be used to study protein unfolding and folding intermediates. 

Thus, we incubated newly synthesized Fluc mutant proteins in RRL in increasing concentrations 

of GdmCl and measured their activities at 20
o
C (Figure 20c). 

Compared to Fluc, which lost ~ 50% of its original activity in 300 mM GdmCl, we 

observed a rapid decrease in the activities of FlucSM and FlucDM at GdmCl concentration less 

than 150 mM, suggesting rapid unfolding of the proteins. The addition of proteinase K in the 

reaction mixture containing GdmCl further resulted in complete loss of enzymatic activities of 

Fluc mutants at 150 mM GdmCl while the Fluc remained stable under these conditions. Taken 

together, the sensitivity of Fluc mutants towards proteinase K and GdmCl suggest that they are 

structurally more destabilized than wild-type Fluc. 

V.2.2.3. Sensitivity of Fluc Variants to Cold Denaturation  

Following the proteinase K assay and the GdmCl mediated denaturation; we investigated 

the effect of low temperature on the structural and functional properties of Fluc and its variants. 

The rationale behind this experiment was that some proteins are sensitive to denaturation at low 

temperature, a phenomenon called “cold denaturation of proteins”. Although the exact 

underlying mechanism of this phenomenon is still unclear, some studies have proposed a role of 

non-polar groups in unfolding of proteins due to cold denaturation (Dias et al., 2010; Privalov, 

1990). From a thermodynamic perspective, the hydration of non-polar groups in a protein is 

favorable as this releases Gibb’s energy of hydration, which is negative, and increases in 

magnitude at lower temperatures. Consequently, a tightly folded protein with buried hydrophobic 

residues unfolds at low temperature to expose these groups to water.  

To investigate whether structurally destabilized Fluc variants are also prone to cold 

denaturation, we incubated the RRL reaction mixtures with newly translated Fluc mutant 

proteins at 4
o
C and measured luciferase activities at different times (Figure 21a). While wild-

type Fluc was stable, FlucSM and FlucDM gradually lost 20% and 60% of their respective 

activities upon incubation at 4
o
C for 1 h. This suggests that the mutant proteins due to their 

structural instability might have undergone rapid unfolding and presumably exposed their 

hydrophobic groups to the solvent. The subsequent incubation of the reaction mixtures from 4
o
C 

to 20
o
C after 60 min rapidly increased the activities of both FlucSM and FlucDM, indicating that 
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the proteins immediately regained their conformations. No change in enzymatic activities of Fluc 

variants was observed at 20
o
C. We obtained similar results in specific activity measurements of 

Fluc variants at 4
o
C and 20

o
C (Figure 21b). The sensitivity of FlucSM and FlucDM to low 

temperature supports the previous results that they are conformationally flexible relative to Fluc. 

 

Figure 21: Fluc mutant proteins are sensitive to cold denaturation. 
(a) Proteins were translated in RRL (90 min at 30

o
C), followed by inhibition of translation. The newly-

translated proteins were incubated at either 20
o
C (solid lines) or at 4

o
C (dashed lines). Enzymatic activity 

was measured at the times indicated and is plotted as percentage of the activity measured immediately 

after translation (set to 100%). The shift of samples from 4
o
C to 20

o
C after 60 min is indicated by a 

dashed line. (b) Specific activity of Fluc variants at 20
o
C and 4

o
C after 60 min incubation in RRL. 

Specific activity of wild-type Fluc was set to 100% and used to normalize for the mutants. Error bars 

indicate s.d., n=3. 

 

V.3. In Vivo Characterization of Fluc Variants 

V.3.1. Chaperone Dependence of Fluc Variants in vivo 

Many studies have elucidated the role of chaperones, both in vivo and in vitro,  in folding 

and refolding of Fluc (Frydman et al., 1994; Nimmesgern and Hartl, 1993; Schroder et al., 1993; 

Sharma et al., 2010; Thulasiraman and Matts, 1996). Therefore, in order to assess the stability of 

Fluc variants in vivo, we first determined their specific activities in HeLa cells (transformed 

epithelial human cell line derived from cervix). We transiently expressed Fluc, FlucSM and 

FlucDM at a concentration of ~ 2-3µg luciferase protein per milligram total cell lysate. 

Compared to Fluc, the specific activities of FlucSM and FlucDM were ~ 60% and 40% 
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respectively (Figure 22a), suggesting that in HeLa cells, a substantial fraction of the mutant 

protein was functionally less active and misfolded. To assess the role of chaperones, we down-

regulated Hsc70 (HSPA8), a major constitutive chaperone required for folding of Fluc (Frydman 

et al., 1994), by RNAi. Down-regulation of HSPA8 by 50-70% (Figure 22b) further decreased 

the specific activity of the Fluc variants (Figure 22a), presumably due to compromised folding of 

the mutant proteins in the absence of Hsc70 in cells. This result supports the previous findings 

that Fluc and its variants are dependent on Hsc70 (HSPA8) for their folding. 

 

Figure 22: Chaperone dependence of Fluc variants in HeLa cells. 
(a) Fluc, FlucSM and FlucDM were expressed for 48 h in HeLa cells treated with control esiRNA against 

EGFP (black bars) or esiRNA against HSPA8 (which encodes Hsc70) (grey bars). Specific activities of 

Fluc variants in soluble extracts were normalized to wild-type Fluc in control cells (set to 100%). Error 

bars indicate s.d., n=3. (b) A representative immunoblot showing the levels of HSPA8 (Hsc70) protein in 

samples treated with EGFP esiRNA or HSPA8 esiRNA. HSPA8 was probed with anti-Hsc70 antibody 

and GAPDH was used as a loading control. 

 

V.3.2. Generation and Characterization of Fluc-EGFP Variants in 

RRL 

In order to study different aspects of proteostasis in a cell culture model system, we 

tagged the Fluc variants with EGFP at the C-terminus. An EGFP tag was added to Fluc variants 

in order to monitor their cellular distribution under different stress conditions. To check the 

effect of the EGFP tag (~ 30 kDa) on the intrinsic stability of Fluc, FlucSM and FlucDM, we 

performed a functional and structural characterization of the respective fusion proteins in RRL as 

done for the proteins without the EGFP tag. Fluc-EGFP variants followed the same denaturation 

kinetics (Figure 23) and showed a similar digestion profile to proteinase K treatment (Figure 24) 
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as their counterparts without the EGFP tag. Thus, Fluc-EGFP variants have similar functional 

and structural properties as variants without the tag and the EGFP tag has no effect on the 

stability of these fusion proteins. We therefore performed all the following experiments in vivo 

with the Fluc-EGFP variants. 

 

Figure 23: Temperature dependent loss of enzymatic activity of Fluc-EGFP, FlucSM-

EGFP and FlucDM-EGFP.  
Proteins were translated in rabbit reticulocyte lysate at 30

o
C for 90 min, followed by inhibition of 

translation and incubation at 30
o
C to 37

o
C. Fluc activity was measured at the times indicated and 

expressed as percentage of the activity measured immediately after translation at 30
o
C (set to 100%). 

Error bars indicate s.d., n=3. 
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V.3.3. Thermal Stability of Fluc-EGFP Variants in vivo 

To assess the sensitivity of Fluc-EGFP variants to high temperature in vivo, we subjected 

HeLa cells transiently expressing the Fluc-EGFP sensors to heat stress. At physiological 

temperature of 37
o
C, all three Fluc-EGFP variants displayed a diffuse cellular distribution 

(Figure 25). The proteins were mainly cytosolic but they also showed some nuclear staining. 

However, in ~ 5% of cells expressing FlucDM-EGFP, a small number of green fluorescent foci 

were observed in the cytosol. This observation augmented the result from the specific activity 

measurements in vivo, supporting the conformational instability of FlucDM. When HeLa cells 

were subjected to heat stress at 43
o
C for 2 h, Fluc-EGFP maintained its diffuse distribution in all 

cells while ~ 45% of the FlucSM-EGFP-expressing cells and ~ 75% of the FlucDM-EGFP-

expressing cells showed inclusions in the cytosol. Upon recovery from heat stress (2 h at 37
o
C), 

only 15-20% of FlucSM-EGFP-expressing cells and about 30% of FlucDM-EGFP-expressing 

cells retained visible aggregates. This observation suggests that during recovery of cells, 

dissociation or degradation of aggregates had occurred. To exclude the contribution of newly 

synthesized protein to this process, we inhibited translation by addition of cycloheximide (CHX) 

to the cells immediately after the heat stress. Upon recovery of cells from heat stress, increased 

diffuse staining of the mutant proteins was observed (Figure 25). 

 

Figure 24: Effect of proteinase K 

treatment on the structural flexibility of 

Fluc-EGFP variants.  

Proteinase K sensitivity of Fluc-EGFP variants 

in RRL at 20
o
C. Proteins were translated in RRL 

(90 min at 30
o
C), followed by inhibition of 

translation. The newly-translated proteins were 

subjected to limited proteolysis by proteinase K 

at 20
o
C. Enzymatic activity was measured at the 

times indicated and expressed in percentage of 

the activity measured immediately after 

translation (set to 100%). Error bars indicate 

s.d., n=3. 
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Figure 25: Thermal stability of Fluc variants in HeLa cells.  
Representative fluorescence micrographs of HeLa cells expressing Fluc-EGFP, FlucSM-EGFP or 

FlucDM-EGFP under normal conditions at 37
o
C (control), after heat stress for 2 h at 43

o
C and after 

recovery (from heat stress) for 2 h at 37
o
C with or without cycloheximide (CHX). EGFP fluorescence is 

shown in white. Arrowheads indicate aggregates. Nuclei were stained with DAPI (blue). Scale bars 

correspond to 10 µm. 

 

The observations were further supported by measurement of the specific activities of the 

Fluc-EGFP variants either immediately after heat stress (43
o
C, 2 h) or upon subsequent recovery 

of the cells (37
o
C, 2 h) in presence or absence of cycloheximide (Figure 26a). Immediately after 

heat stress, we could not detect any luciferase activity in HeLa cell lysates (in all three Fluc 

variants) owing to denaturation of the proteins. During recovery in the presence of CHX, Fluc-

EGFP variants were able to regain 50-70% of their original specific activity, suggesting that 

Fluc-EGFP variants were able to refold. The result is in agreement with the microscopy 

experiment where dissociation of aggregates had occurred and diffuse staining of EGFP 

fluorescence was observed (Figure 25). During recovery in the absence of CHX, the specific 

activities of all Fluc variants exceeded those in control cells (without heat stress). This effect 

may be attributed to HSF1 mediated induction of HSPs during heat stress which may have 
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resulted in more chaperone capacity and consequently increased folding efficiency of newly 

synthesized Fluc-EGFP proteins. 

 

Figure 26: Assessment of refolding capacity of HeLa cells using Fluc-EGFP sensors.  
(a) Specific activity of EGFP-tagged Fluc sensor proteins in HeLa cells upon heat stress (2 h at 43

o
C) and 

recovery (2 h at 37
o
C) in presence or absence of cycloheximide (CHX). Specific activities in control cells 

maintained at 37
o
C were set to 100% in each case. Error bars indicate s.d., n=3. (b) Cell-fractionation 

experiment showing total cell extract, detergent-soluble and insoluble fraction of FlucDM-EGFP 

expressing HeLa cells treated as in a. FlucDM-EGFP was detected by immunoblotting with an antibody 

against GFP. 

 

To further validate that resolubilization of aggregates had occurred, we performed a cell 

fractionation experiment with FlucDM-EGFP expressing cells (Figure 26b). In this experiment, 

we prepared three fractions - total lysate, a detergent-soluble fraction and an insoluble (pellet) 

fraction from cells maintained under three different conditions; without heat stress (control), heat 

stress at 43
o
C for 2 h and recovery in the presence of CHX at 37

o
C for 2 h following heat stress. 

While there was no change in the band intensity of FlucDM-EGFP in total lysate of cells under 

the different conditions, we observed a decrease in the soluble fraction of cells exposed to heat 

stress. A corresponding increase in the band intensity in the insoluble fraction under same 

conditions suggests that aggregation of FlucDM-EGFP has occurred. A relatively high band 

intensity in the soluble fraction of cells that were allowed to recover, compared to heat stressed 

cells, indicates that resolubilization of FlucDM-EGFP aggregates has occurred. These results 

therefore further confirm that most of FlucDM-EGFP protein was insoluble after heat stress, but 



Results   

92 

 

is efficiently resolubilized during recovery in presence of cycloheximide (Figure 26b). Hence, 

the Fluc-EGFP variants have allowed assessment of cellular capacity to refold heat-denatured 

protein. 

The differential sensitivity of Fluc variants towards denaturation in RRL and in vivo 

shows that the proteins can function as sensors of proteostasis imbalance during stress 

conditions. The following sections will show the results obtained as part of the in vivo 

characterization of the Fluc-EGFP based sensors during various conditions that challenge 

cellular proteostasis. 

V.3.4. Effect of Fluc-EGFP-based Sensors on the Cytosolic Stress 

Response 

EGFP-tagged FlucSM and FlucDM were structurally destabilized (as shown by the 

proteinase K assay, Figure 24) and hence they themselves may cause intrinsic stress to the cells. 

Ideally, to qualify as good sensor proteins, the Fluc variants should not affect the proteostasis 

capacity of the cellular system under investigation (or do so only minimally). To investigate this 

possibility, we transiently co-transfected Fluc-EGFP variants in HeLa cells with a reporter for 

the cytosolic stress response. The reporter consisted of the structurally unrelated Renilla 

reniformis luciferase (Rluc) under regulation of the stress-sensitive HSPA1A (Hsp70) promoter 

(Figure 27a). The rationale for using this reporter was that a stress condition such as heat shock 

will cause HSF1 binding to the HSPA1A promoter (Baler et al., 1993; Sarge et al., 1993; 

Westwood et al., 1991) leading to synthesis of Rluc and therefore an increase in its enzymatic 

activity during recovery. If Fluc variants also induce some stress to cells, an increase in Rluc 

activity is expected. 

 In this experiment, the co-transfection efficiency of Fluc-based sensors and HSPA1A-

Rluc construct in cells as determined by fluorescence microscopy was ~ 70%. This means that 

the majority of the cells express both constructs and therefore Rluc activity will mainly reflect 

the effect of Fluc-EGFP variants on the cytosolic stress response. As expected, heat stress 

treatment (43
o
C, 2 h) followed by recovery (37

o
C, 2 h) to cells containing only HSPA1A-Rluc 

reporter resulted in ~ 10-fold induction of Rluc activity and a corresponding increase in Rluc 

protein amount upon immunoblotting (Figure 27). A similar increase in Rluc activity was 
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observed when cells co-expressing Fluc-EGFP variants were treated under the same conditions. 

This indicates that the cells expressing the sensors respond normally to heat stress and there is no 

additional contribution to the cytosolic stress response from the misfolded Fluc mutant proteins. 

In the control experiment, the expression of the Fluc-EGFP variants at 37
o
C without heat stress 

caused only a 1.5-2 fold induction of Rluc activity. Among the Fluc variants, Fluc-EGFP showed 

the most notable effect probably due to its higher expression than FlucSM-EGFP and FlucDM-

EGFP (Figure 27b). 

 

Figure 27: Effect of EGFP-tagged Fluc sensor proteins on the cytosolic stress response.  
(a) HeLa cells were transiently transfected with the stress responsive HSPA1A-Rluc-myc reporter (top) 

along with the plasmids encoding Fluc-EGFP variants or vector-only control. Rluc activity was measured 

either without stress or after subjecting the cells to heat stress for 2 h at 43
o
C followed by recovery for 2 h 

at 37
o
C. Error bars indicate s.d., n=3. RLU stands for relative luminescence unit. (b) Amounts of stress-

responsive Rluc and Fluc-EGFP variants in HeLa cells treated as in a, detected by immunoblotting. 

Arrow indicates Rluc band. Asterisk indicates a non-specific band. GAPDH was used as a loading 

control. 

 

We further validated the results obtained from Rluc activity measurements and estimation 

of Rluc amounts by immunoblotting (Figure 27) by performing immunocytochemistry 

experiment (Figure 28). At 37
o
C, the cells expressing Fluc-EGFP showed very weak Cy3 

fluorescence from myc-tagged Rluc in contrast to cells expressing Fluc-EGFP mutants. This 

suggests that Fluc-EGFP mutants minimally induce the stress response under normal growth 

* 
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conditions, presumably due to their structural flexibility. A substantial increase in Cy3 

fluorescence was observed in cells expressing Fluc-EGFP variants upon heat stress, consistent 

with the increased synthesis of Rluc protein. There was no detectable difference in the Cy3 

fluorescence intensities of cells with or without Fluc-EGFP variants, suggesting that mutant 

proteins when expressed at a low-level caused only a very mild activation of the cytosolic stress 

response. 

 

Figure 28: Fluc-EGFP based sensors minimally induce cytosolic stress response.  
Representative immunofluorescence micrographs of HeLa cells co-expressing HSPA1A-Rluc-myc and 

Fluc-EGFP variants. The cells were either maintained at 37
o
C (no heat stress) or subjected to heat stress 

for 2 h at 43
o
C followed by recovery for 2 h at 37

o
C. Rluc was detected by immunocytochemistry against 

the Myc tag with anti-Myc primary antibody followed by Cy3 conjugated secondary antibody (red). Fluc-

EGFP variants were detected by GFP fluorescence and nuclei were stained with DAPI (blue). Scale bars 

correspond to 10 µm. 
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V.4. Applications of Fluc-EGFP-based Sensors in vivo 

V.4.1. Assessment of Proteostasis Capacity in Presence of Small 

Molecule Inhibitors 

As discussed in section II.4.5, many small molecule compounds are known to target 

different components of the proteostasis network and therefore can be used to modulate the 

proteostasis capacity of cells. Since folding and degradation machineries form central hubs of the 

proteostasis network in cells (Gidalevitz et al., 2010), we used Fluc variants to measure 

imbalances in proteostasis after alteration of these two essential pathways. We modulated the 

folding pathway by inhibiting Hsp90 while degradation was inhibited by targeting the UPS. To 

test whether the Fluc-EGFP based sensors can report such changes, we treated HeLa cells 

transiently expressing Fluc-EGFP variants with the Hsp90 inhibitor 17-allylamino-17-

demethoxygeldnamycin (17-AAG) or with the proteasome inhibitor MG132 (Figure 29).  

17-AAG is a geldanamycin analog that inhibits Hsp90 by displacing ATP from its ATP 

binding pocket and thereby functionally arrests the chaperone cycle of Hsp90 (Sharp and 

Workman, 2006; Whitesell and Lindquist, 2005). Hsp90 is a major cytosolic chaperone and has 

been shown to refold Fluc upon recovery from heat stress (Schneider et al., 1996). Treatment of 

HeLa cells with 0.5 µM 17-AAG for 8 h led to the formation of small green-fluorescent 

aggregates in ~ 8% of cells expressing FlucSM-EGFP and multiple larger aggregates in ~ 50% of 

cells expressing FlucDM-EGFP (Figure 29a). Fluc-EGFP expressing cells, in contrast, showed 

diffuse cytosolic distribution of fluorescence upon 17-AAG treatment. To precisely quantitate 

the effect of 17-AAG mediated Hsp90 inhibition on the proteostasis network, we measured the 

specific activity of Fluc-variants. Upon Hsp90 inhibition, there was a decrease in the specific 

activity of Fluc-EGFP by ~ 40%, of FlucSM-EGFP by ~ 60% and of FlucDM-EGFP by ~ 80% 

(Figure 29b-c). These results suggest that inhibition of Hsp90 compromise the proteostasis 

system, resulting in aggregation of the mutant Fluc-EGFP sensors. 
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Figure 29: Fluc-mutant proteins report on impairment of proteostasis by small-molecule 

inhibitors.  
(a) Representative fluorescence micrographs of HeLa cells expressing Fluc-EGFP, FlucSM-EGFP or 

FlucDM-EGFP treated with 0.1% DMSO, 0.5 µM 17-AAG or 5 µM MG132 for 8 h. EGFP fluorescence 

is shown in white. Arrowheads indicate aggregates. Nuclei were stained with DAPI (blue). Scale bars 

correspond to 10 µm. (b) Specific activities of Fluc-EGFP variants in HeLa cells treated as above. DMSO 

control values were set to 100%. Error bars indicate s.d., n=3. (c) A representative immunoblot showing 

the amounts of Fluc-EGFP variants in HeLa cells treated as in a, detected by anti-GFP antibody. GAPDH 

was used as a loading control. 

 

MG132 is a small molecule that reversibly inhibits the chymotrypsin-like activity of the 

proteasome and hence leads to accumulation of polyubiquitinated proteins in cells which causes 

proteome stress (Kisselev and Goldberg, 2001; Myung et al., 2001). We measured the effect of 

proteasome inhibition on Fluc-based sensors by fluorescence microscopy of HeLa cells that were 

treated with 5 µM MG132 for 8 h. Here, we observed small aggregate-like structures of Fluc-

EGFP in ~ 25% of cells expressing Fluc-EGFP, whereas ~ 70% of FlucSM-EGFP expressing 

cells and ~ 90% of FlucDM-EGFP expressing cells contained aggregates (Figure 29a). A 

possible explanation for this might be the accumulation of Fluc-EGFP mutant proteins upon 

proteasome inhibition. Therefore aggregation might have resulted from an increase in their 
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cellular concentrations. However, MG132 treatment led only to a slight increase in the total 

cellular amount of these proteins as detected by immunoblotting (Figure 29c), which suggests 

that proteasome inhibition doesn’t have a direct influence on the stability of Fluc-EGFP variants 

and therefore the aggregation of these sensor proteins could be caused by a general proteostasis 

imbalance. We further followed the effect of proteasome inhibition by MG132 on Fluc-EGFP 

variants by measuring the specific activity of the proteins. Upon proteasome inhibition, there was 

a minor effect on the specific activity of Fluc-EGFP but the specific activities of FlucSM-EGFP 

and FlucDM-EGFP were reduced by ~ 20% and ~ 50%, respectively (Figure 29b). Thus, Fluc 

mutants are highly sensitive in reporting the impairment of proteostasis capacity from Hsp90 or 

proteasome inhibition and can be used to measure the changes in folding and degradation 

capacity of cells. 

V.4.2. Analysis of Proteostasis Collapse by Huntingtin Protein 

As mentioned in section II.4.3.1, Huntington’s disease (HD) is a progressive 

neurodegenerative disorder caused by expansion of a polyglutamine (polyQ) sequence in the 

huntingtin (Htt) protein. Studies have shown that expansion of polyQ sequences beyond 35-40 

residues results in the formation of aggregates in the nucleus (Davies et al., 1997; DiFiglia et al., 

1997) and leads to cellular toxicity. Moreover, expression of polyQ-containing proteins in the 

nematode C. elegans has been shown to compromise the cellular folding capacity and to disrupt 

proteostasis (Gidalevitz et al., 2006).  

To investigate the sensitivity of Fluc-based sensors to changes in proteostasis in presence 

of Htt-polyQ, we used HEK 293T cells (cells derived from human embryonic kidney and 

transformed with the T-antigen). It is known that expansion of polyQ stretch in the exon1 of the 

Htt gene beyond 35 residues results in Htt aggregation (Davies et al., 1997; DiFiglia et al., 1997). 

Therefore, we transiently co-transfected cells with plasmids encoding the Fluc-EGFP variants 

and with mCherry-tagged Htt exon1 constructs encoding proteins with normal (20-glutamine; 

20Q) or expanded (97-glutamine; 97Q) polyQ sequences. We observed large polyQ-containing 

aggregates 48 h after transfection in almost all cells expressing Htt-97Q, whereas Htt-20Q 

remained diffusely distributed (Figure 30). When we expressed Fluc-EGFP together with Htt-

97Q, small aggregate foci of Fluc-EGFP were observed in only 20% of the cells. However, 

multiple and more distinct aggregates were detected in 50% of cells co-expressing FlucSM-
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EGFP and Htt-97Q and massive aggregation of FlucDM-EGFP was observed in 85% of cells co-

expressing FlucDM-EGFP and Htt-97Q (Figure 30). The aggregates of Fluc-EGFP mutant 

proteins varied in their size and localization. In cells expressing Htt-20Q and Fluc-EGFP 

variants, we detected no aggregates. Thus, the sensors confirmed findings in C. elegans that 

expression of polyQ expansion proteins results in a severe decline of cellular proteostasis and 

disturbs the folding of metastable proteins (Gidalevitz et al., 2006). 

 

 

Figure 30: Fluc-

based sensors report 

on proteostasis 

impairment by 

mutant Htt.  
Representative 

fluorescence confocal 

micrographs of HEK 

293T cells 48 h after co-

transfection with 

vectors encoding Fluc-

EGFP variants and 

mCherry-tagged Htt 

proteins with 20Q or 

97Q. EGFP and 

mCherry fluorescence 

are shown in green and 

red respectively. Nuclei 

were stained with DAPI 

(blue). Scale bars 

correspond to 10 µm. 
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To obtain further insight into the process of proteostasis collapse by polyQ expansion 

proteins and to follow the aggregation kinetics of Fluc-based sensors in presence of Htt-97Q, we 

performed live-cell imaging of HEK 293T cells. The live-cell imaging technique allows real time 

monitoring of cellular events by acquiring images of cells after specified regular intervals for a 

fixed time period. Therefore, real-time changes in the folding status of aggregation prone 

proteins can be easily followed. We imaged cells expressing either the stable Fluc-EGFP or the 

least stable FlucDM-EGFP together with mCherry tagged Htt-97Q 24 h after transfection for a 

period of 44 h (Figure 31).  

In cells expressing Fluc-EGFP and Htt-97Q, we observed the aggregates of Htt-97Q after 

27 h of transfection whereas no aggregates of Fluc-EGFP were detected until 44 h (Figure 31a). 

In cells expressing FlucDM-EGFP and Htt-97Q, the aggregation of FlucDM-EGFP started with 

the formation of small, multiple aggregate foci (at 26 h) that gradually increased in size during 

the course of Htt-97Q aggregation (Figure 31b). The formation of FlucDM-EGFP aggregates 

preceded the aggregation of Htt-97Q. FlucDM-EGFP began to aggregate after 26 h compared to 

Htt-97Q which showed aggregates around 2 h later. This indicates that collapse of proteostasis 

might have occurred before the appearance of detectable Htt-97Q aggregates. This observation is 

in line with other studies that suggest a role of the oligomeric species of the mutant Htt protein in 

proteostasis imbalance and cellular toxicity (Arrasate et al., 2004; Bodner et al., 2006; Miller et 

al., 2010; Saudou et al., 1998; Takahashi et al., 2008). However, after the mutant Htt formed 

visible aggregates, the aggregation of FlucDM-EGFP became more severe and rapid which may 

suggest that aggregation of Htt continues to impose a challenge on the proteostasis machinery of 

cells. In control experiment, cells co-expressing FlucDM-EGFP and Htt-20Q mCherry did not 

show aggregation of either protein (Figure 31c). Thus, while Fluc-EGFP remains stable, 

FlucDM-EGFP exquisitely responds to the decline in proteostasis capacity and FlucDM-EGFP 

aggregation serves as a marker for proteostasis imbalance even before Htt inclusions are visible. 
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Figure 31: Time-course analysis of proteostasis collapse induced by mutant Htt.  
Representative confocal micrographs from live-cell imaging of HEK 293T cells co-expressing (a) Fluc-

EGFP and Htt-97Q-mCherry, (b) FlucDM-EGFP and Htt-97Q-mCherry or (c) FlucDM-EGFP and Htt-

20Q-mCherry at the times indicated. Image acquisition started 24 h after co-transfection of HEK 293T 

cells with vectors encoding Fluc-EGFP variants and Htt-20Q or 97Q-mCherry. EGFP and mCherry 

fluorescence are shown in green and red respectively. Scale bars correspond to 7 µm. 
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V.4.3. Assessing Proteostasis in C. elegans Upon Heat Stress 

Having demonstrated the sensitivity of Fluc-mutants in vitro and in a cell culture model 

system, we tested their applications as proteostasis sensors in an entire organism. We chose the 

multi-cellular nematode C. elegans as a model organism since it is simple and easy to grow and 

to manipulate genetically. Adult C. elegans (hermaphrodite) contains 959 somatic cells, out of 

which 302 are neuronal cells and 95 are body wall muscle cells (Sulston and Horvitz, 1977). 

Moreover, it has a short life span of ~ 2-3 weeks and a generation time of ~ 3-4 days which 

confers an additional advantage to study cellular differentiation and aging processes. C. elegans 

has been used previously to study changes in proteostasis during different conditions such as heat 

stress or in presence of mutant Htt (Gidalevitz et al., 2011). To check the sensitivity of Fluc-

EGFP variants in C. elegans as a tool to monitor proteome stress, the proteins were expressed in 

body-wall muscle cells using the unc-54 promoter or in neuronal cells using the F25B3.3 

promoter as previously described (Morley and Morimoto, 2004) (Figure 32).  

 

Figure 32: C. elegans transgenic lines expressing Fluc-based sensors in body-wall muscle 

cells or neuronal cells.  
Representative fluorescence micrographs of C. elegans showing the expression of Fluc-EGFP either 

under muscle specific promoter (unc-54) or under neuron specific promoter (F25B3.3). A section of 

muscle tissue or neuron tissue is enlarged for better clarity. EGFP fluorescence is shown in green. 
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Under normal growth conditions at 20
o
C, the young adult worms (day 1) expressing Fluc-

EGFP variants in body-wall muscle cells showed diffuse distribution of the sensor proteins 

(Figure 33a). However, upon heat stress at 33
o
C for 1 h (Morley and Morimoto, 2004), FlucDM-

EGFP formed aggregates of various sizes that were dispersed throughout the muscle cells, 

whereas Fluc-EGFP and FlucSM-EGFP remained diffusely distributed. Upon recovery (from 

heat stress), by incubating worms at 20
o
C for 6 h, the number and size of aggregates of FlucDM-

EGFP decreased. A recovery of 24 h led to complete disappearance of aggregates in worms 

expressing FlucDM-EGFP and diffusely distributed EGFP fluorescence predominated, 

suggesting that the C. elegans body-wall muscle cells are able to either resolubilize or degrade 

the aggregates (Figure 33a). 

 

Figure 33: Fluc-based sensors report on acute proteome stress during heat shock in C. 

elegans.  
(a,b) Representative fluorescence micrographs of young-adult worms (day 1) expressing Fluc-EGFP 

variants in body-wall muscle cells (a) or neuronal cells (b) under normal growth conditions at 20
o
C, after 

heat stress for 1 h at 33
o
C and after recovery at 20

o
C for 6 h and 24 h (muscle specific expression) or 6 h 

(neuron specific expression). EGFP fluorescence is shown in green. Scale bars correspond to 10 µm. 
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We obtained similar results from worms expressing the sensor proteins in neuronal cells 

(Figure 33b). Under normal growth conditions, the Fluc-EGFP variants were diffusely 

distributed in neuronal cells. Upon heat stress, FlucDM-EGFP formed aggregates, whereas Fluc-

EGFP and FlucSM-EGFP remained soluble. Upon recovery for 6 h, the aggregates of FlucDM-

EGFP disappeared completely in neuronal cells.  

The tissue-specific differences in the recovery of FlucDM-EGFP aggregates could 

possibly have resulted from differential expression of sensor protein in neuronal and muscle 

cells. We controlled for this possibility by performing semi-quantitative reverse-transcriptase-

PCR (RT-PCR). Here, we monitor the relative mRNA level of FlucDM-EGFP with respect to 

constitutively expressed muscle-specific endogenous protein, unc-54 or neuron-specific 

endogenous protein, unc-119 (Figure 34). We found that the fold change in mRNA level of 

FlucDM-EGFP relative to unc-54 was similar in comparison to its fold change relative to unc-

119. This indicates that tissue-specific differences in the recovery of FlucDM-EGFP aggregates 

were not due to the differential expression of sensor protein in neuronal and muscle cells. 

Therefore, the faster recovery of aggregated FlucDM-EGFP in neuronal cells (6 h) compared to 

muscle cells (24 h) suggests that in young-adult worms neuronal cells are more efficient in 

responding to proteostasis imbalance than muscle cells. 

 

Figure 34: Tissue-specific expression level of FlucDM-EGFP in C. elegans. 
Bar graphs showing the relative mRNA amounts of FlucDM-EGFP in (a) body-wall muscle cells and in 

(b) neuronal cells, determined by RT-PCR. unc-54 (muscle-specific) and unc-119 (neuron-specific) 

served as endogenous controls. Error bars indicate s.d., n=3. 



Results   

104 

 

V.4.4. Assessing Proteostasis in C. elegans During Aging 

In C. elegans, a progressive decline of proteostasis capacity during aging has been 

demonstrated (Ben-Zvi et al., 2009). To test the ability of the Fluc-based sensors to measure the 

changes in the cellular proteostasis during aging, we analyzed the distribution patterns of the 

Fluc-EGFP variants in muscle and neuronal cells of transgenic C. elegans throughout their adult 

lifespan (Figure 35).  

 

 

The worms expressing Fluc-EGFP and FlucSM-EGFP in body-wall muscle cells showed 

diffuse distribution until day 17, but those expressing FlucDM-EGFP displayed small aggregates 

from day 12 on (Figure 35a). The aggregates of FlucDM-EGFP increased both in number and 

size until day 17, with ~ 15% of the worms containing distinct aggregates (Figure 35a, c). 

Similarly, in neuronal cells Fluc-EGFP and FlucSM-EGFP maintained their diffuse distribution 

Figure 35: Fluc-based sensors report 

on proteostasis decline during aging 

in C. elegans.  
(a,b) Representative fluorescence 

micrographs of worms expressing Fluc-

EGFP variants in body-wall muscle cells 

(a) or in neuronal cells (b) under normal 

growth conditions at 20
o
C imaged on 

indicated days. EGFP fluorescence is 

shown in green. Scale bars correspond to 

10 µm. (c) Percentage of FlucDM-EGFP-

expressing worms containing aggregates 

on indicated days. Error bars indicate s.d., 

n=3. Forty worms were counted in each 

experiment. *P<0.05 (Student’s paired t-

test). 
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while FlucDM-EGFP tended to aggregate more frequently already at days 12 and 15 (Figure 

35b). Thus, in young-adult worms, neuronal cells are more efficient in recovering from acute 

stress (such as heat stress) than muscle cells (Figure 34); however, they appeared to be less 

capable of maintaining proteostasis during chronic proteome stress during aging (Figure 35). 

V.4.5. Analysis of the Proteostasis Capacity of Cytosol and Nucleus 

V.4.5.1. Design and Biochemical Characterization of NLS- and NES-Fluc-

EGFP Variants 

The Fluc-EGFP variants characterized so far in vivo, although localized predominantly in 

cytosol, were also present in nucleus under normal conditions at 37
o
C. Therefore, these mutant 

proteins are most likely reporting the global status of proteostasis in cells under different stress 

conditions. However, to measure and compare subtle changes in proteostasis in specific cellular 

compartments such as the cytosol and the nucleus, we created sensor proteins that localize 

exclusively in these compartments. To do this, we tagged Fluc-EGFP and FlucDM-EGFP with 

either a nuclear localization signal (NLS) or a nuclear export signal (NES) at their N-terminus to 

target them to the nucleus or to retain them in the cytosol (Figure 36).  

 

The NLS sequence was derived from the SV40 large T antigen and contains two repeats 

of a positively charged stretch rich in lysine residues (Fischer-Fantuzzi and Vesco, 1988) 

Figure 36: Design of Fluc-based sensors to 

study proteostasis in the cytosol and the 

nucleus.  

The constructs Fluc-EGFP and FlucDM-EGFP 

without any signal sequence were used to study 

overall cellular proteostasis. Fluc-EGFP and 

FlucDM-EGFP were tagged with either a nuclear 

export signal (NES) (shown in yellow) or a 

nuclear localization signal (NLS) (shown in red) 

at the N-terminus to study proteostasis of the 

cytoplasm and the nucleus respectively. 
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whereas, NES was derived from a consensus sequence obtained from prediction algorithm 

program (The NES predictor, NetNES) (http://www.cbs.dtu.dk/services/NetNES/) using 

experimentally validated sequences rich in leucine residues (la Cour et al., 2004). 

 

Figure 37: Temperature-dependent denaturation of NLS- or NES-Fluc-EGFP variants in 

RRL.  
NLS-Fluc-EGFP variants, NES-Fluc-EGFP variants and Fluc-EGFP variants (without signal sequence) 

were translated in rabbit reticulocyte lysate at 30
o
C for 90 min, followed by inhibition of translation and 

incubation at 30
o
C to 37

o
C. Fluc activity was measured at the times indicated and expressed in percentage 

of the activity measured immediately after translation at 30
o
C (set to 100%). Error bars indicate s.d., n=3. 

 

To test the effect of the NLS or NES sequence on the intrinsic heat sensitivity of Fluc-

EGFP based sensors, we used the RRL system. We synthesized the NLS- and NES-Fluc-EGFP 
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variants, along with their counterparts without signal sequence in RRL at 30
o
C for 90 min and 

incubated them at different temperatures to measure their stability (Figure 37). Both NLS- and 

NES-Fluc-EGFP variants showed the same denaturation kinetics as Fluc-EGFP variants without 

the signal sequence. This suggests that the NLS and NES sequences per se do not alter the 

sensitivity of Fluc proteins to thermal denaturation in vitro. 

 

Figure 38: Biochemical characterization of compartment-specific Fluc-EGFP variants in 

vivo. 
Fluc-EGFP variants without signal sequence and with NLS- or NES sequences were transiently expressed 

in HEK 293T cells for 24 h at 37
o
C. Specific activities of all the indicated Fluc-EGFP variants in soluble 

extracts were normalized to Fluc-EGFP without signal sequence (set to 100%). Inset shows the specific 

activities of FlucDM-EGFP variants, normalized to FlucDM-EGFP without signal sequence (set to 

100%). Error bars indicate s.d., n=3. 

 

We also checked the effect of the NLS and NES sequences on the stability of the Fluc-

EGFP variants in vivo by transiently transfecting HEK 293T cells with the constructs of Fluc-

EGFP variants without signal sequence and with those containing an NLS- or NES signal 

sequence. We then measured the specific activities of the corresponding Fluc-EGFP variants 

(Figure 38). We observed no dramatic change in the specific activity of NLS- and NES-Fluc-

EGFP variants compared to their counterparts without the signal sequence (Figure 38), 
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supporting the results from our in vitro study which indicated that the NLS and NES sequences 

do not affect the enzymatic activities of the Fluc-EGFP variants in cells. This result also 

indicates that the proteostasis capacity of the cytosol is similar to that of the nucleus under 

normal conditions. Moreover, the experiment also enabled us to compare the specific activity of 

the Fluc-EGFP variants with the FlucDM-EGFP variants in HEK 293T cells. The specific 

activities of FlucDM-EGFP were ~ 30% of Fluc-EGFP variants, suggesting that a significant 

fraction of the mutant protein was misfolded in cells (Figure 38). 

 

Figure 39: Sorting of Fluc-EGFP-based sensors to cytosol and nucleus of HEK 293T cells.  
Representative confocal micrographs of HEK 293T cells stably expressing cytosol localized NES-Fluc-

EGFP and NES-FlucDM-EGFP and nucleus localized NLS-Fluc-EGFP and NLS-FlucDM-EGFP. Also 

shown are cells with uniformly distributed Fluc-EGFP and FlucDM-EGFP without a signal sequence. 

EGFP fluorescence is shown in green. Nuclei were stained with DAPI (blue). Scale bar, 10 µm. 

 

To further obtain information about the inter-compartmental differences in proteostasis 

capacity between the nucleus and the cytosol under stress conditions, we generated stable cell 

lines. We transfected HEK 293T cells with constructs encoding NLS- or NES-Fluc-EGFP 

variants and selected clones which have stably integrated NLS- or NES-Fluc-EGFP variants in 

their genome. We performed all further experiments with HEK 293T cells showing stable 

expression of nuclear or cytosolic Fluc-EGFP variants. Under normal growth conditions at 37
o
C, 

we examined the subcellular distribution of NLS- or NES-Fluc-EGFP variants by confocal 
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microscopy (Figure 39). Cells expressing NLS-Fluc-EGFP and NLS-FlucDM-EGFP showed 

distribution of EGFP fluorescence predominantly in the nucleus. By contrast, NES-Fluc-EGFP 

variants were predominantly localized in the cytosol. Fluc-EGFP variants without signal 

sequence were distributed both in the cytosol and the nucleus. These observations indicate that 

NLS- or NES-Fluc based sensors are selectively targeted to the nucleus or cytosol, respectively 

and thus can be used to measure inter-compartmental proteostasis. 

V.4.5.2. Effect of Proteasome Inhibition on the Stability of Compartment 

Specific Fluc Sensors 

The effect of proteasome inhibition on the proteostasis network of HeLa cells has been 

demonstrated earlier using untagged Fluc-EGFP based sensor proteins (Figure 29). Although, the 

sensor proteins established that MG132 treatment results in severe disruption of cellular 

proteostasis, they cannot report the changes occurring in different subcellular compartments. To 

measure the effect of proteasome inhibition on the proteostasis of cytosol and nucleus, we treated 

the cells stably expressing NLS- or NES-Fluc-EGFP variants with either DMSO, as a control, or 

5 µM MG132 for 8 h (Figure 40).  

In the DMSO controls, diffuse distribution of EGFP fluorescence was observed in the 

nucleus or in the cytosol of cells expressing NLS- or NES-Fluc-EGFP variants, respectively 

(Figure 40). Fluc-EGFP variants without signal sequence were uniformly distributed both in the 

nucleus and in the cytosol. Upon proteasome inhibition, almost all cells expressing NLS-Fluc 

sensors showed massive aggregation in the nucleus (Figure 40). The aggregation of wild-type 

Fluc in the nucleus suggests that the nuclear environment is highly sensitive to proteostasis 

imbalance. Under the same treatment conditions, only 40-50% of the cells expressing NES-Fluc-

EGFP formed aggregates, which were localized mainly in the cytosol. However, contrary to our 

expectations, 70-80% of the cells expressing NES-FlucDM-EGFP showed aggregates both in the 

nucleus and the cytosol, whereas only 30% of the cells formed aggregates exclusively in the 

cytosol. This observation that NES-Fluc-EGFP formed aggregates mainly in the cytoplasm while 

NES-FlucDM-EGFP formed aggregates both in the nucleus and the cytoplasm suggests that 

there is a differential effect of proteasome inhibition on the stability and subcellular distribution 

of aggregates of NES-Fluc-EGFP variants (Figure 40). 
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Figure 40: NES-FlucDM-EGFP forms aggregates in the nucleus upon proteasome 

inhibition.  
Representative confocal micrographs of HEK 293T cells stably expressing indicated Fluc-EGFP 

constructs. The cells were treated with either 0.1% DMSO or 5 µM MG132 for 8 h. EGFP fluorescence is 

shown in green. Nuclei were stained with DAPI (blue). Scale bar corresponds to 10 µm. 

 

When we followed the effect of proteasome inhibition on the subcellular distribution of 

Fluc-EGFP variants without signal sequence we observed that, while 40% of the cells expressing 
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Fluc-EGFP showed aggregates in both cytosol and nucleus, 80% of the cells expressing 

FlucDM-EGFP showed aggregates predominantly in the nucleus (Figure 40). The propensity of 

structurally destabilized FlucDM-EGFP with an NES or without a signal sequence to form 

aggregates primarily in nucleus upon proteasome inhibition suggests a so far undiscovered role 

of the nucleus in protein quality control. 

To understand whether the aggregates formed in the nucleus or whether they were 

imported from the cytosol, we performed live-cell imaging to investigate the aggregation kinetics 

of NES-Fluc-EGFP variants upon proteasome inhibition (Figure 41). Cells expressing NES-Fluc-

EGFP began to show small aggregate-like foci in the cytosol after 2 h of MG132 addition. These 

foci increased in size but remained cytosolic until 8 h. In contrast, cells expressing NES-

FlucDM-EGFP began to display aggregates in the cytosol within 1 h of MG132 addition and 

within 4 h in the nucleus. While the aggregates in the cytosol did not grow in size, the nuclear 

aggregates increased both in number and size in the nucleus until 8 h. This suggests that NES-

FlucDM-EGFP aggregates are not imported from the cytosol but formed in the nucleus. 

 

Figure 41: Time course of aggregate formation of NES-Fluc-EGFP variants upon 

proteasome inhibition.  
Representative confocal micrographs from live cell imaging of HEK 293T cells stably expressing NES-

Fluc-EGFP or NES-FlucDM-EGFP at the times indicated. Time point 0 h indicates the time of addition of 

5 µM MG132 to the medium. EGFP fluorescence is shown in green. White arrows indicate aggregates in 

the nucleus. Scale bars correspond to 14 µm. 
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V.4.5.3. Assessment of the Recovery Capacity of Nucleus and Cytosol after 

MG132 Removal 

To understand the recovery capacity of nucleus and cytosol from stress caused by 

inhibition of proteasome mediated degradation, we incubated cells expressing NLS- or NES-

Fluc-EGFP sensor proteins in medium without MG132 for an additional 16 h after the MG132 

treatment (recovery). 

 

Figure 42: Differences in the recovery profile of nucleus and cytosol upon MG132 removal. 
Representative confocal micrographs of HEK 293T cells stably expressing indicated Fluc-EGFP 

constructs. The cells were fixed either immediately, after treatment with 5 µM MG132 for 8 h or after a 

16 h recovery period in a medium without MG132. EGFP fluorescence is shown in green. Nuclei were 

stained with DAPI (blue). White arrows indicate the presence of aggregates in the cytosol. Scale bars 

correspond to 10 µm. 

 

As shown before, upon proteasome inhibition the cells expressing NLS-Fluc-EGFP 

variants showed dense aggregates in the nucleus, whereas cells expressing NES-Fluc-EGFP 
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displayed aggregates in cytosol (Figure 42). After MG132 treatment, the majority of NES-

FlucDM-EGFP formed inclusions in the nucleus, and only a small subset of cells showed 

inclusions in the cytosol. When cells were allowed to recover from MG132 stress for 16 h, the 

aggregates of NLS-Fluc-EGFP or NLS-FlucDM-EGFP in the nucleus resolved completely, but 

NES-Fluc-EGFP expressing cells still showed small aggregates in the cytosol. In the NES-

FlucDM-EGFP expressing cells, the aggregates in the nucleus resolved completely, however the 

aggregates in the cytosol were still present. These observations indicate that although the 

proteostasis capacity of the nucleus is not sufficient to prevent aggregation of proteins upon 

proteasome inhibition, it is highly efficient in removal of the aggregates of Fluc-EGFP sensors. 

V.4.5.4. Role of the Nucleolus in Stress Response 

In our fluorescence microscopy experiments, we observed that the aggregates of the 

NLS-Fluc-EGFP variants and NES-FlucDM-EGFP in the nucleus were excluded from DNA 

(DAPI negative) at specific sites in the nucleoplasm (Figure 40). To distinguish whether this 

absence of DNA was simply a steric effect or whether it was due to localization of aggregates to 

specific sites in the nucleus, we performed co-localization experiments with a marker for 

nucleoli. 

The nucleolus is a non-membrane bound compartment in the nucleus responsible for 

rRNA transcription, processing and assembly of ribosomal subunits. Besides its role in ribosome 

biogenesis, the nucleolus has been proposed to play an active role in stress response pathways. 

Key stress-related proteins like Hsc70/Hsp70 immediately translocate to the nucleolus during 

heat stress or acidosis (Audas et al., 2012; Banski et al., 2010; Welch and Feramisco, 1984). 

Moreover, many cellular proteins such as p53 (Karni-Schmidt et al., 2008; Klibanov et al., 

2001), promyelocytic leukemia gene product (PML) (Mattsson et al., 2001), cyclins, cyclin 

dependent kinases (CDKs) and several transcription factors such as Sp1 and Sp3 (Latonen et al., 

2011) have been shown to accumulate in the nucleolus upon proteasome inhibition.  

To test whether Fluc aggregates also localized to nucleoli after proteasome inhibition, we 

transiently transfected cells expressing the NLS- or NES-Fluc-EGFP variants with a mCherry-

tagged NPM1 construct. The NPM1 gene in humans encodes a nucleolar protein called 

nucleophosmin (NPM1) or nucleolar phosphoprotein B23 which participates in ribosome 

biogenesis and transport and is used as a marker for nucleoli (Boisvert et al., 2007; Boulon et al., 
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2010). As observed before, treatment of cells with 5 µM MG132 for 8 h led to the aggregation of 

NES-FlucDM-EGFP and all NLS-Fluc-EGFP variants in the nucleus, while NES-Fluc-EGFP 

formed aggregates in the cytosol (Figure 43). The nuclear aggregates co-localized with NPM1-

mCherry, which suggests that nuclear Fluc aggregates accumulate in the nucleolus in response to 

proteasome inhibition.  

 

Figure 43: Accumulation of NLS-Fluc-EGFP variants and NES-FlucDM-EGFP in the 

nucleoli in response to proteasome inhibition.  
Representative confocal micrographs of HEK 293T cells stably expressing the indicated Fluc-EGFP 

constructs and transiently transfected with NPM1-mCherry vector. Twenty four hours after transfection, 

the cells were treated with 0.1% DMSO or 5 µM MG132 for 8 h. EGFP and mCherry fluorescence are 

shown in green and red respectively. Nuclei were stained with DAPI (blue). Scale bars correspond to 10 

µm. 

 

To test whether other forms of stress can also induce the aggregation of NLS- or NES-

Fluc-EGFP variants in the nucleoli, we monitored the effect of heat stress (43
o
C for 2 h) on the 

subcellular distribution of these proteins (Figure 44). Compared to cells maintained at 37
o
C 
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where the majority of cells showed no aggregates, 80-90% of cells expressing NLS-Fluc-EGFP 

variants showed aggregates in nucleoli upon heat stress. In contrast to proteasome inhibition 

which resulted in aggregation of NES-FlucDM-EGFP predominantly in the nucleoli, heat stress 

induced aggregation of Fluc variants with an NES was primarily observed in the cytosol. Around 

20-30% of cells expressing NES-Fluc-EGFP and 60-70% of cells with NES-FlucDM-EGFP 

showed aggregates in the cytosol, and no aggregates were observed in the nucleus. This suggests 

that the aggregation process can be different in both compartments, and may depend on the 

duration and severity of cellular stresses. 

 

 

Figure 44: Heat stress leads to the aggregation of NES-FlucDM-EGFP in the cytosol. 
Representative confocal micrographs of HEK 293T cells stably expressing indicated Fluc-EGFP 

constructs and transiently transfected with NPM1-mCherry. Twenty four hours after transfection, the cells 

were either maintained at 37
o
C or given heat stress at 43

o
C for 2 h. EGFP and mCherry fluorescence are 

shown in green and red respectively. Nuclei were stained with DAPI (blue). Scale bars correspond to 10 

µm. 
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V.4.5.5. The Aggregates of Fluc-EGFP Variants Co-localize with 20S 

Proteasome and Ubiquitin upon Proteasome Inhibition 

Many studies have shown that proteotoxic stress by MG132 leads to the translocation of 

proteasomes to nucleoli (Latonen et al., 2011; Mattsson et al., 2001). Although direct 

experimental evidence supporting a role of the nucleolus in regulating proteasome mediated 

degradation is limited, some reports suggest that the nucleoli, directly or indirectly, influence the 

turn-over of some proteins, such as p53, by regulating their interaction with their binding 

partners (Boyd et al., 2011; Klibanov et al., 2001). 

 

Figure 45: Co-localization of Fluc-EGFP aggregates with 20S proteasome core particle. 
Representative immunofluorescence confocal micrographs of HEK 293T cells stably expressing the 

indicated Fluc-EGFP constructs. The cells were treated with either 0.1% DMSO or 5 µM MG132 for 8 h 

before fixing them with 4% paraformaldehyde. 20S proteasome core particles were detected by 

immunocytochemistry using a 20S proteasome primary antibody followed by a Cy3 conjugated 

secondary antibody (red). Fluc-EGFP variants were detected by EGFP fluorescence and nuclei were 

stained with DAPI (blue). White arrows indicate the presence of 20S proteasome core particle 

surrounding Fluc-EGFP aggregates in the nucleus. Scale bars correspond to 10 µm. 
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To test whether aggregates of NLS- or NES-Fluc-EGFP variants co-localize with the 

proteasome, we employed confocal microscopy using an antibody against the 20S core particle 

of the proteasome (Figure 45). In DMSO control samples, the 20S proteasome core particles 

were uniformly distributed in cells, with slightly higher levels in the nucleus. However, upon 

addition of 5 µM MG132 for 8 h, the 20S core particles distributed to the nucleoli and were seen 

in a ring-like structure surrounding the aggregates of NLS- or NES-Fluc-EGFP proteins.  

 

Figure 46: Fluc-EGFP aggregates in both nucleus and cytosol co-localize with ubiquitin. 
Representative immunofluorescence confocal micrographs of HEK 293T cells stably expressing indicated 

Fluc-EGFP constructs. The cells were treated with either 0.1% DMSO or 5 µM MG132 for 8 h before 

fixing them with 4% paraformaldehyde. Ubiquitin was detected by immunocytochemistry using ubiquitin 

primary antibody (clone FK2) followed by Cy3 conjugated secondary antibody (red). Fluc-EGFP variants 

were detected by EGFP fluorescence and nuclei were stained with DAPI (blue). Scale bar corresponds to 

10 µm. 

 

Having observed that Fluc-EGFP aggregates co-localize with the 20S proteasome, we 

next tested if these aggregates also co-localize with ubiquitin. We selected an ubiquitin antibody 
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that recognizes ubiquitin-conjugated proteins but not free ubiquitin. Like the 20S proteasome, 

ubiquitin also co-localized with Fluc-aggregates upon MG132 stress, indicating that they may be 

ubiquitinated (Figure 46). The co-localization of both 20S proteasomes and ubiquitin with Fluc-

based sensors in the nucleoli of MG132 treated cells suggests that Fluc proteins may be 

transported to the nucleoli under normal conditions and that the nucleolus may have a function in 

the regulation of proteasome mediated protein degradation. 

V.4.5.6. Role of the Nucleus in the Degradation of NES-FlucDM-EGFP  

The aggregation of the cytosolic protein NES-FlucDM-EGFP in the nucleus/nucleolus 

upon proteasome inhibition despite its high concentration in the cytosol was a surprising result. 

Additionally, the co-localization of NES-FlucDM-EGFP aggregates with 20S proteasome core 

particles and ubiquitin suggested a role of the nucleus in the degradation of cytosolic misfolded 

proteins. The hypothesis is in line with a study in yeast which showed that degradation of 

cytosolic misfolded carboxypeptidase Y (CPY*) occurs in the nucleus (Prasad et al., 2010). To 

understand if the cellular localization of the protein has an influence on its degradation, we 

measured the degradation kinetics of NES-FlucDM-EGFP in the nucleus, by performing a 

cycloheximide (CHX) chase experiment in the presence of an inhibitor of nuclear export.  

Proteins containing an NES sequence are maintained cytosolic by constitutive action of 

the CRM1/exportin mediated nuclear export cycle (Fornerod et al., 1997; Fukuda et al., 1997). 

The CRM1 protein, together with RanGTP, binds to leucine-rich NES containing proteins in the 

nucleus and transports them out of the nucleus through the nuclear pore. After exit from the 

nucleus, the hydrolysis of RanGTP to RanGDP by RanGTPase causes the dissociation of CRM1-

cargo complex and thereby releases the cargo into the cytoplasm. This export cycle can be 

inhibited by the small molecule leptomycin B (LMB) which alkylates Cys529 of CRM1 and 

blocks its function (Kudo et al., 1999; Kudo et al., 1998).  

NES-FlucDM-EGFP cells treated with DMSO show a uniform distribution of EGFP 

fluorescence predominantly in the cytosol, whereas cells treated with LMB showed EGFP 

fluorescence both in the cytosol and the nucleus (Figure 47a). This observation indicates that 

LMB was effective in inhibiting the nuclear export cycle (Figure 47a). Next, we measured the 

degradation kinetics of NES-FlucDM-EGFP for up to 9 h by blocking the synthesis of new 

protein through addition of 0.5 mM CHX. Under these conditions, the half-life (t1/2) of NES-
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FlucDM-EGFP was ~ 6 h. These conditions should mainly measure the degradation of NES-

FlucDM-EGFP in the cytosol (Figure 47b, c). However, when LMB and CHX were added 

together, the t1/2 of NES-FlucDM-EGFP was reduced to ~ 3 h which indicates faster degradation 

of the protein when it is retained in the nucleus (Figure 47b, c). There was no significant change 

in the amount of NES-FlucDM-EGFP in cells treated with LMB alone, indicating that LMB 

alone does not influence protein degradation. This result suggests that degradation of NES-

FlucDM-EGFP is enhanced when it is selectively retained in the nucleus compared to its normal 

degradation in the cytosol. 

 

Figure 47: Leptomycin B (LMB) treatment leads to increased levels of NES-FlucDM-EGFP 

in the nucleus and accelerates it degradation.  
(a) Representative confocal micrographs showing subcellular distribution of NES-FlucDM-EGFP in HEK 

293T cells treated with either 0.1% DMSO or 10 ng/ml LMB for 8 h. NES-FlucDM-EGFP was visualized 

by GFP fluorescence (green) and nuclei were stained with DAPI (blue). Scale bars correspond to 10 µm. 

(b) NES-FlucDM-EGFP levels in HEK 293T cells treated with 0.5 mM cycloheximide (CHX), 10 ng/ml 

leptomycin B (LMB) or combination of both (CHX+LMB) for the times indicated. Amount of NES-

FlucDM-EGFP at time point 0 h is set to 100%. Error bars indicate s.d., n=3. (c) Representative 

immunoblots showing the levels of NES-FlucDM-EGFP (probed with anti-GFP antibody) in HEK 293T 

cells treated as above. GAPDH was used as a loading control. 



Results   

120 

 

V.4.5.7. Effect of DnaJB1 Down-regulation on the Degradation of NES-

FlucDM-EGFP 

The results presented in Figure 47 as well as findings using CPY* in yeast (Prasad et al., 

2010) suggest a model, where misfolded cytosolic proteins move to the nucleus for their 

degradation. This model would predict that some cellular factor can recognize these misfolded 

proteins in the cytosol and direct them to the nucleus for degradation. 

Due to their ability to recognize and bind to misfolded proteins, chaperones are a likely 

candidate for such a function. It is well established that chaperones along with co-chaperones 

recognize misfolded proteins and prevent their accumulation either by refolding them or 

targeting them for degradation. The triage decision to refold or degrade a substrate relies on the 

interaction of a co-chaperone with its chaperone. Among chaperones, the Hsp70-Hsp40 system is 

extensively studied and well characterized both in vitro and in vivo.  

Hsp40 (DnaJ), besides stimulating the ATPase activity of Hsp70, has been shown to play 

a role in stress response pathways. It has been shown in HeLa cells that DnaJB1 and Hsp70 

translocate to nucleoli upon heat stress (Hattori et al., 1993; Terada and Mori, 2000). Moreover, 

it has been shown that DnaJB1 co-localizes with nuclear inclusions of polyQ proteins (Chai et 

al., 1999; Seidel et al., 2011) and that it can facilitate the degradation of some substrates (Bailey 

et al., 2002). Therefore, we investigated the effect of Hsp40/DNAJB1 on the folding and 

degradation status of NES-FlucDM-EGFP.  

We studied the effect of DnaJB1 on the degradation kinetics of NES-FlucDM-EGFP by 

transfecting cells with either DnaJB1 siRNA or control siRNA for 72 h, followed by a CHX 

chase experiment in the presence or absence of LMB. The down-regulation of DnaJB1 by siRNA 

treatment depleted endogeneous DnaJB1 by 50-60% (Figure 48b). The t1/2 of NES-FlucDM-

EGFP was ~ 2 h in control siRNA transfected cells treated with both CHX and LMB, compared 

to ~ 4 h in cells treated with CHX alone (Figure 48), supporting the previous results which 

showed that degradation is enhanced when NES-FlucDM-EGFP is retained within the nucleus. 

In cells transfected with DnaJB1 siRNA, a significant stabilization of NES-FlucDM-EGFP was 

observed. The t1/2 was increased to ~ 4 h in cells treated with CHX and LMB and up to 9 h in 

cells treated with CHX alone; suggesting that DnaJB1 is involved in the degradation of NES-
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FlucDM-EGFP and that its down-regulation stabilizes the protein both in the nucleus and the 

cytosol. 

 

Figure 48: Degradation of NES-FlucDM-EGFP is dependent on DnaJB1 (Hsp40).  
(a) Amount of NES-FlucDM-EGFP in cells transfected with either control or DnaJB1 siRNA and treated 

with 0.5 mM cycloheximide (CHX) alone or together with 10 ng/ml leptomycin B (CHX+LMB) at the 

times indicated. Amount of NES-FlucDM-EGFP at time point 0 h set to 100%. Error bars indicate s.d., 

n=3. (b) The representative immunoblots showing the levels of NES-FlucDM-EGFP (probed with anti-

GFP antibody) and Hsp40 (probed with anti-Hsp40 antibody) in cells transfected with either control or 

DnaJB1 siRNA and treated as above. GAPDH was used as a loading control. 

 

V.4.5.8. Effect of DnaJB1 Down-regulation on the Subcellular Localization of 

NES-FlucDM-EGFP Aggregates upon Proteasome Inhibition 

To check the effect of DnaJB1 on the subcellular distribution of NES-FlucDM-EGFP 

aggregates upon proteasome inhibition, we transfected cells with either control siRNA or 

DnaJB1 siRNA for 72 h, followed by treatment with 5 µM MG132 or DMSO for 8 h (Figure 

49).  

DnaJB1 down-regulation resulted in aggregation of NES-FlucDM-EGFP in the cytosol of 

~ 25% cells treated with DMSO, supporting previous findings that Fluc is dependent on the 

Hsp70-Hsp40 system for its folding (Frydman et al., 1994; Schroder et al., 1993). Upon 

proteasome inhibition, in cells transfected with control siRNA, the aggregates of NES-FlucDM-

EGFP were observed predominantly in the nucleus, in contrast to cells with DnaJB1 down-

regulation where aggregates were predominantly cytosolic. These observations suggest that 

DnaJB1 may recognize and transport misfolded forms of NES-FlucDM-EGFP into the nucleus 
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for degradation and that its down-regulation therefore causes the accumulation of Fluc variant in 

the cytosol. 

 

Figure 49: DnaJB1 knockdown leads to the accumulation of NES-FlucDM-EGFP in the 

cytosol upon proteasome inhibition.  
Representative confocal micrographs showing the subcellular localization of NES-FlucDM-EGFP in 

HEK 293T cells transfected with either control or DnaJB1 siRNA and treated with 0.1% DMSO or 5 µM 

MG132 for 8 h. NES-FlucDM-EGFP was visualized by GFP fluorescence (green) and nuclei were stained 

with DAPI (blue). Scale bars correspond to 10 µm. 

 

V.4.5.9. Effect of a Pharmacological Chaperone on the Stability of NLS- and 

NES-Fluc-EGFP Variants 

It has been shown previously that small molecule compounds that can help proteins in 

acquiring their native state may have great therapeutic potential. These compounds, called 

pharmacological chaperones (PC), are highly specific and can rescue proteins from loss-of-

function phenotypes (Mu et al., 2008). Therefore, small molecules that resemble natural 

substrates may act as PC for enzymes. The small chemical compound 2-phenyl benzothiazole 

(PBT) is structurally similar to the natural Fluc substrate D-luciferin and can act as a substrate 

analog (Figure 50a). PBT has been shown to competitively inhibit Fluc by binding specifically to 

the luciferin binding site in vitro with a KI = 0.015 µM. It has also been shown that PBT 

significantly enhances the stability of purified luciferase in vitro (Thompson et al., 1991).  

To test whether PBT can act as a PC for the Fluc-based sensors, especially for the 

destabilized variants NLS- or NES-FlucDM-EGFP, we determined the levels of Fluc-EGFP-
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variants in presence or absence of PBT (Figure 50b). In all NLS- or NES-Fluc-EGFP variants, 

there was a 4-5 fold increase in the levels of Fluc-proteins after a 9 h incubation of cells with 

PBT, which suggests that PBT significantly stabilizes the conformation of wild-type and mutant 

Fluc-proteins. 

 

 

Figure 50: 2-phenyl benzothiazole stabilizes Fluc-EGFP variants.  
(a) Chemical structures of D-luciferin and 2-phenyl benzothiazole (PBT), a competitive inhibitor of Fluc. 

(b) Representative immunoblots showing the levels of NLS- or NES-Fluc-EGFP variants in HEK 293T 

cells treated with 0.1% DMSO or 40 µg/ml PBT for the indicated times. Fluc-EGFP variants were 

detected by anti-GFP antibody and GAPDH was used as a loading control. 

 

To test whether PBT can prevent Fluc-based sensors from MG132 induced aggregation, 

we treated cells expressing NLS- or NES-Fluc-EGFP variants with 5 µM MG132 and PBT for 8 

h (Figure 51). As shown before, cells treated with MG132 alone showed aggregates of all Fluc-

EGFP variants. However, proteasome inhibition in the presence of PBT resulted in only small 

and few aggregates in the nucleus in cells expressing NLS-Fluc-EGFP variants, and no 

aggregates could be observed in cells expressing the NES-Fluc-EGFP variants. These 

observations suggest that PBT significantly stabilizes Fluc variants and reinforces the concept of 

pharmacological chaperones in preventing protein misfolding. 
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Figure 51: 2-phenyl benzothiazole prevents aggregation of Fluc-EGFP variants caused by 

MG132 treatment.  
Representative confocal micrographs of HEK 293T cells stably expressing the indicated Fluc-EGFP 

constructs and treated with 5 µM MG132 alone or together with 40 µg/ml PBT for 8 h. EGFP 

fluorescence is shown in green and nuclei were stained with DAPI (blue). White arrows indicate the 

presence of aggregates in the nucleus. Scale bars correspond to 10 µm. 
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VI  Discussion 

Protein homeostasis or proteostasis describes the ability of a cell to maintain and protect 

its proteome in a biologically active functional state during normal and adverse conditions. 

Conditions such as environmental stress, mutations or genetic polymorphism cause protein 

misfolding and consequently lead to loss-of-function or toxic gain-of-function phenotypes. 

Therefore, a fine balance between folded and misfolded protein species is essential for the 

survival of cells. This is achieved by several dedicated proteins including molecular chaperones 

and their regulators as well as components of the ubiquitin-proteasome and autophagy systems.  

Together these proteins constitute the proteostasis network (PN). Deficiency in cellular 

proteostasis capacity has been implicated in numerous human neurodegenerative diseases such 

as HD, PD and ALS which are caused by protein misfolding and aggregation. Many of these 

diseases affect preferentially the elderly, which is consistent with a gradual decline in the 

efficiency of protein quality control mechanisms during aging (Gidalevitz et al., 2006; Morimoto 

and Cuervo, 2009).  

To prevent protein misfolding and to maintain integrity of the proteome, cells express 

proteins such as HSF1 in cytoplasm and IRE1α, PERK and ATF6α in the ER membrane which 

behave as natural sensors of proteostasis. Protein misfolding in the cytoplasm causes the 

activation of the HSF1 mediated heat shock response which results in increased transcription of 

heat shock genes.  In the past, HSF1 activation was often measured to assess the status of the PN 

(Abravaya et al., 1991). There are different ways to measure for the activation of HSF1.  Gel 

mobility shift assays monitor binding of HSF1 to DNA, immunoblotting can be used to measure 

the phosphorylation status of HSF1. Alternatively, it is possible to measure the protein and 

mRNA levels of HSPs, or to use a suitable reporter system driven by the HSP70 promoter. 

However, HSF1 activity reflects the global degree of proteome stress in cells, and cannot be used 

to assess subtle changes at the level of individual components of the PN. Moreover, some toxic 

and aggregation prone proteins such as mutant huntingtin (Htt) (Hay et al., 2004; Hipp et al., 

2012; Zourlidou et al., 2007) or artificial β-sheet proteins (Olzscha et al., 2011) do not induce the 

heat shock response and might even suppress it. Therefore, HSF1 activity cannot be used to infer 

the changes in cellular proteostasis under these conditions. Protein misfolding in the ER results 

in an activation of the unfolded protein response (Walter and Ron, 2011) which can be semi-
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quantitatively measured by reporter based assays (Merksamer et al., 2008). The activation of heat 

shock response and unfolded protein response indicate that a response has been initiated but does 

not report whether homeostasis is restored. The relatively low sensitivity of these proteins in 

reporting and measuring the global changes in the PN in different physiological states 

necessitates the development of exogenous sensors. 

Ideally, a sensor is able to quantitatively measure changes in proteostasis during acute 

stress conditions such as heat stress or during chronic stresses, including aging. Several sensors 

have been used to report on PN alterations. In C. elegans, temperature sensitive mutants of the 

muscle proteins, α-paramyosin and α-myosin, which are tissue-specific and can lead to loss-of-

function effects, have been used to measure the folding capacity of cells during heat stress and 

upon expression of mutant Htt protein (Ben-Zvi et al., 2009; Gidalevitz et al., 2006). Also, 

proteins such as GFP-CL1, which are limited to reporting changes in specific components of the 

PN have been employed to measure the degradation capacity of cells (Bence et al., 2001; Nonaka 

and Hasegawa, 2009). The major limitation in using these sensors is their inability to report the 

global changes occurring in the PN. Accordingly, they are not useful in comparing proteostasis 

in different cells/tissues and in different cellular organelles.  

To avoid these limitations, we selected Firefly luciferase (Fluc) as a sensor protein to 

study proteostasis. Fluc has no known biological role in the widely used cellular and animal 

models, and thus the sensors derived from it can be used with minimal perturbation of the system 

under investigation. Additionally, its enzymatic activity can be measured by a luminescence-

based assay with exquisite sensitivity over a wide dynamic range in cell extracts, intact cells and 

model organisms. To make Fluc more sensitive to the cellular environment, we introduced point 

mutations to generate proteins with varying conformational stability. We also created Fluc 

mutants tagged with EGFP to further enhance the application of these proteins in cell biology 

experiments. In this study, we used Fluc-EGFP based sensors to monitor the changes in cellular 

protein homeostasis when different nodes of the PN, specifically folding, refolding and 

degradation components were altered. We further attached a nuclear localization sequence (NLS) 

or nuclear export sequence (NES) at the N-terminus of the Fluc-EGFP variants to study the 

proteostasis capacity of the nucleus and the cytoplasm. We believe that our Fluc-EGFP based 

sensors can be used to measure the effect and potency of small molecules on the PN. Chemical 
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screens can be designed to identify proteostasis-regulating compounds that improve the activity 

of these sensor proteins. Moreover, the sensors can be used in genetic screens to identify 

suppressors and/or enhancers of cellular proteostasis capacity in different model organisms. 

In the following sections, we will discuss in detail the results obtained during this study 

and the future perspectives regarding the applications of Fluc-based sensors in understanding 

proteostasis. 

VI.1. Fluc Mutants Are Structurally and Functionally Destabilized 

The thermostability of a protein can be modulated by substitution of amino acids to Pro 

and Gly which can decrease or increase the flexibility of the polypeptide chains (Matsui and 

Harata, 2007; Matthews et al., 1987). Besides hydrophobic interactions and the packing density 

of the molecules, the number of ion pairs and hydrogen bonds in proteins equally contributes to 

their thermostability. This is evident from the presence of large numbers of ion pairs in 

thermostable proteins such as those from hyperthermophilic archaea where ionic interactions 

prevent protein unfolding at higher temperatures (Petsko, 2001; Vieille and Zeikus, 2001). The 

role of hydrogen bonds in the stability of proteins has long been known and been demonstrated 

using various biophysical techniques. It is known that in an unfolded protein, polar amino acids 

form hydrogen bonds with the surrounding water molecules whereas, in a folded protein, these 

amino acids form intramolecular hydrogen bonds which facilitates in the folding process (Myers 

and Pace, 1996; Stickle et al., 1992). Therefore both, electrostatic interactions between ion pairs 

and intramolecular hydrogen bonding, play an important role in the stability of proteins. 

In this study, we tried to destabilize the native state of Fluc by disrupting the salt bridges 

and hydrogen bond interactions in its N-terminal domain. We created site-specific mutations in 

Fluc at conserved residues, excluding positions near the enzyme’s active site and at the domain-

domain interface to maintain the quantum yield of the luminescence reaction (Figure 13). The 

positively charged residues Lys135, Arg188 and Arg261 were substituted with either polar 

uncharged amino acids such as Gln (K135Q, R188Q and R261Q) or with the hydrophobic amino 

acid Met (K135M) to disrupt the salt bridges with their corresponding ion pairs located distant in 

the Fluc sequence. In two cases, R188K and R261K, the aim of the mutation was to break the 

hydrogen bonds (due to shorter length of side chain of Lys compared to Arg) without disturbing 

the salt bridge between ion pairs. Thus, we aimed to decrease the stability of wild-type Fluc by 
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weakening the intramolecular polar contacts in its large N-terminal domain. We generated 6 

single and 12 double mutants from wild-type Fluc.  

We tested the effect of mutations on the structural and functional stability of Fluc through 

a series of in vitro experiments using translation in rabbit reticulocyte lysate (RRL). Here we 

observed that mutations had a significant effect on the thermostability of the Fluc single and 

double mutants. The effect of double mutations on the stability of Fluc was more severe than of 

single mutations. This is most likely due to the synergistic effect of the loss of two polar contacts 

(Figure 15 and 16). To test whether the decrease in the enzymatic activities of Fluc mutants in 

RRL is due to their degradation, we also measured specific enzyme activities. We define specific 

activity as the enzymatic activity of Fluc normalized to its protein amount (quantified from 

immunoblotting). Intriguingly, measurement of the specific activity of Fluc mutant proteins in 

RRL at 30
o
C showed that the proteins were able to fold properly into their functional active state, 

but were no longer able to maintain this form (Figure 17). This observation confirms that 

mutations don’t affect the quantum yield of the luminescence reaction but introduce a 

thermodynamic instability (due to the loss of the polar contacts). This is further enhanced at 

higher temperatures. Moreover, the results obtained from the structural characterization of these 

Fluc mutants by a proteinase K digestion assay and guanidinium chloride denaturation (Figure 

20) correlated the effect of structural flexibility with enzymatic activity. 

Our results show that the mutations don’t significantly affect the functional properties of 

the Fluc mutants under normal conditions but introduce a degree of conformational flexibility in 

their structures. In cells, these mutations can be buffered by the action of molecular chaperones 

which retain these proteins in their conformationally compromised, yet functional state. 

Therefore it is reasonable to assume that these structurally destabilized Fluc mutants in cells 

depend on cellular folding factors to maintain their native state. Any stress that may cause 

titration of these factors is expected to result in destabilization of the mutant proteins to varying 

degrees. Thus, the activity read-out of Fluc mutant proteins under these conditions will measure 

the degree of stress on the protein quality control machinery and therefore Fluc sensors may act 

as “cellular thermometers”.  
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VI.2. Assessment of Folding Capacity of Cells Using Fluc-Based Sensors 

In cells, there is a constant generation of destabilized proteins due to translational errors 

and genetic mutations. Consequently, a metastable sub-proteome exists that is particularly 

vulnerable to proteotoxic stress (Olzscha et al., 2011). Given the fact that ~18% of proteins 

contain at least one missense substitution (Drummond and Wilke, 2008) and nearly 20-30% of 

all proteins in mammalian cells are intrinsically disordered (Dunker et al., 2008), a substantial 

fraction of the human proteome is always at risk of misfolding. To represent the stable and 

metastable proteome of cells, we selected three Fluc variants on the basis of their stabilities 

(Figure 18); the most stable wild-type (Fluc), the moderately stable single mutant R188Q 

(FlucSM) and the least stable double mutant R188Q+R261Q (FlucDM). Using these three Fluc 

variants, we measured the effect of different stresses on the stable and the metastable cellular 

proteome. 

Since Fluc mutant proteins are conformationally destabilized, they are good chaperone 

substrates and reporters to measure subtle changes in the folding capacity of cells. We 

determined the stability of the three Fluc variants in HeLa cells by measuring their specific 

activities. The results showed that a substantial fraction of mutant proteins was misfolded (Figure 

22), but not aggregated (Figure 25), under normal growth conditions. The misfolding of mutant 

proteins could be due to the macromolecular crowding in cells which is known to significantly 

increase the collision between partially folded intermediates (Ellis, 2006).  Our results suggest 

that the proteostasis capacity of HeLa cells is sufficient to prevent Fluc variants from forming 

aggregates, possibly by continual removal of their non-native states by degradation. Upon down-

regulation of the constitutive chaperone Hsc70, the specific activity of all Fluc variants further 

decreased (Figure 22), which supports previous findings that Fluc is dependent on Hsc70 for its 

folding and can be used to monitor changes in the folding capacity of cells (Frydman et al., 1994; 

Nimmesgern and Hartl, 1993). In the present study, Fluc-based sensors were used to assess the 

folding capacity of HeLa cells (Figure 22). Fluc has been used in many different model 

organisms and cells for various applications (Naylor, 1999). Therefore, we believe that the Fluc-

EGFP based sensors can also be used to measure the chaperone capacity of cells derived from 

different tissues. This will aid in the comprehensive analysis of cell line specific responses to 

buffer proteotoxic insults. 
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We have used the Fluc variants to study the effects of Hsp90 inhibition on the cellular 

protein folding homeostasis. Upon Hsp90 inhibition by 17-AAG, both FlucSM-EGFP and 

FlucDM-EGFP formed inclusions while Fluc-EGFP fluorescence remained diffusely distributed 

in cells (Figure 29a). Several reasons may account for the aggregation of Fluc mutant proteins 

under these conditions. It could be due to the direct effect of 17-AAG on the folding machinery 

of cells. Hsp90 has been shown to co-operate with Hsp70-Hsp40 via the co-chaperones such as 

HOP in refolding stress-denatured proteins and in preventing misfolded proteins to form 

aggregates (Hutchison et al., 1994; McClellan et al., 2007; Powers et al., 2008; Schumacher et 

al., 1996; Walerych et al., 2009; Wegele et al., 2006). Additionally, Hsp90 inhibition has been 

shown to induce transcription of HSPs by HSF1 mediated activation (Sittler et al., 2001). 

However, the aggregation of Fluc mutants under these conditions suggests that Hsp90 is 

absolutely essential for their conformational maintenance. It also indicates that in functional 

absence of Hsp90, other chaperones cannot overtake its essential functions. This is in line with 

previous reports that demonstrated that Hsp90 is absolutely important for the refolding of Fluc 

and cannot be substituted by addition of other chaperones (Schroder et al., 1993; Thulasiraman et 

al., 1999).  

Hsp90, besides folding and refolding its client substrates, also participates in silencing 

mutations that may arise due to genetic polymorphism, genomic instability, mistranslation, or 

due to incorporation of amino acid analogs in the proteome (Jarosz and Lindquist, 2010; 

Queitsch et al., 2002; Rutherford and Lindquist, 1998). Therefore, an indirect effect of Hsp90 

inhibition on Fluc-EGFP based sensors could be exposure of these “silent mutations” which 

might have increased substrate load on the proteostasis machinery. The preoccupation of cellular 

folding factors, including Hsp90, by these hidden mutations might have therefore resulted in 

aggregation of metastable Fluc variants.  

The results presented in this study demonstrate that Fluc-EGFP-based sensors can report 

the changes in the folding landscape of cells and therefore can be used to measure the effect of 

stress on the folding machinery of cells. In the past, RRL systems have been widely used to 

obtain mechanistic details about the role of various chaperones in refolding of firefly luciferase 

(Nimmesgern and Hartl, 1993; Schumacher et al., 1996) and to identify small molecules that 

modify protein folding (Cassel et al., 2012; Galam et al., 2007; Wisen and Gestwicki, 2008). We 
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suggest that using a RRL based Fluc assay, it should be possible in the future to obtain detailed 

information about the interactions of various chaperones during the folding of differentially 

stabilized Fluc proteins.  

VI.3. Assessment of Refolding Capacity of Cells by Fluc Sensors 

In cells, following a proteotoxic stress, misfolded proteins need to be cleared to prevent 

their accumulation and aggregation. This is achieved by refolding and/or degradation pathways 

that have been shown to integrate with each other to remove these misfolded proteins (Arndt et 

al., 2007). In cells, refolding is thermodynamically favorable over protein degradation and the 

decision between these two pathways may depend on two factors. First, the recognition of 

damage through specific features of the substrate and second, if chaperone mediated refolding 

fails, the substrate is directed to the degradation pathway (Arndt et al., 2007; Kettern et al., 

2010). This means that surface features on a substrate protein, most likely exposed hydrophobic 

residues, determine the decision of cells whether to refold or degrade a substrate. A substrate that 

continues to display its hydrophobic residues for a considerable amount of time is eventually 

targeted to degradation (Marques et al., 2006). For instance, it has been shown in vivo that Hsp90 

together with Hsp70 and other co-chaperones mediate the refolding of heat denatured luciferase. 

Inhibition of Hsp90-mediated refolding by geldanamycin prevents the dissociation of Hsp90 

from luciferase and results in proteolysis (Schneider et al., 1996). Therefore, both the refolding 

and the degradation pathways compete with each other to restore proteostasis after stress. 

In this study, we used Fluc-based sensors to monitor the disaggregation and the refolding 

capacity of cells during recovery from heat stress. In mammalian cells, the Fluc-based sensors 

formed cytosolic foci during heat stress that disappeared partially during recovery (Figure 25). 

Moreover, the renaturation of Fluc-EGFP variants (both enzymatic activity and soluble amount) 

during recovery in the presence of cycloheximide indicates that resolubilization of aggregates 

had occurred (Figure 26). Our results are in line with previous studies that heat denatured 

luciferase can be efficiently refolded in cells (Michels et al., 1997; Pinto et al., 1991; Schneider 

et al., 1996). Although the presence of a disaggregase, such as Hsp104 (in S. cerevisiae) or ClpB 

(in E. coli), in mammalian cells is still unclear, the resolubilization of Fluc aggregates suggests 

that a disaggregation activity is present. Consistent with this hypothesis, a recent study identified 

Hsp110 (Apg-2) as a mammalian disaggregase (Shorter, 2011). However, this study utilized a 
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cell free system and therefore the exact mechanism of Hsp110 and its protein interacting 

partners, if any, is still elusive. We believe that experiments such as immunoprecipitation of Fluc 

aggregates followed by mass spectrometry will aid in the identification of novel proteins that 

participate in the disaggregation and the refolding process. 

VI.4. Fluc-Based Sensors Report on Tissue-Specific Differences in C. elegans  

An intriguing aspect of protein conformational diseases is the selective vulnerability of 

some cells and tissues to the toxic effects of disease-associated proteins such as the huntingtin. 

This specificity occurs despite the ubiquitous expression of these proteins in a wide range of 

cells and tissues at different developmental stages. This may be explained by variations in the 

expression levels of chaperones and other components of the PN within different cell types 

(Powers et al., 2009; Vos et al., 2008). However, a comprehensive understanding of PN 

regulation during development and aging is still lacking.  

Using C. elegans as a model, we observed a difference between muscle and neuronal 

cells in their capacity to remove FlucDM aggregates during recovery from heat stress (Figure 

33). We observed that neuronal cells can recover much faster than muscle cells from acute heat 

stress. This suggests that the proteostasis machinery in neuronal cells is better equipped to 

dispose of aggregated proteins. This observation is in agreement with a previous report which 

states that the chaperoning capacity of body-wall muscle cells is different from that of neuronal 

cells (Kern et al., 2010). Interestingly, we also observed differences between the muscle and the 

neuronal cells in their ability to maintain protein homeostasis during aging (Figure 35). We 

observed that FlucDM in muscle cells appeared as distinct aggregates at day 15 compared to 

neuronal cells where aggregates could already be detected at day 12. This suggests that neuronal 

cells, which are more efficient than muscle cells in recovering from heat stress, are less capable 

of maintaining proteostasis during chronic proteome stress (e.g. aging in our study).  

The tissue-specific differences in maintaining protein stability can be due to multiple 

factors. One possible explanation are differences in the ability of tissues to mount a HSF1 

mediated adaptive stress response. It has been shown previously that neuronal cells are less 

efficient in mounting a stress response when compared with muscle cells and consequently they 

are more sensitive to stress (Kern et al., 2010). The molecular basis for this observation is still 

unclear. Future experiments should be designed that can determine HSF1 expression levels, its 
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efficiency to trimerize and to bind promoter and its ability to induce expression of HSPs in 

muscle and neuronal cells. In C. elegans, even within neuronal cells, differences in protein 

quality control mechanisms have been observed in the presence of pathogenic polyQ proteins 

(Brignull et al., 2006). In this study, the authors have shown that polyQ proteins can exist in a 

soluble state in certain lateral neurons whereas in an aggregated state in motor neurons of the 

same animal. Therefore it seems possible that different tissues have distinct requirements for 

certain factors (involved in protein quality control) whose levels can vary significantly. This may 

then influence their overall buffering capacity. 

The tissue-specific differences can also be due to other reasons such as differences in the 

capacity of clearance pathways, gene-expression profiles, signaling pathways etc. For example, it 

has been shown recently in mammalian cell lines that muscle cells are more efficient in clearing 

aggregates of misfolded mutant SOD1 than neuronal cells. This is due to more efficient 

proteasome activity and rapid activation of the autophagy system in muscle cells (Onesto et al., 

2011). Moreover, many reports have demonstrated that during aging there is a decline in the 

expression and/or activity of the components of the PN such as chaperones (Bonelli et al., 1999; 

Gutsmann-Conrad et al., 1998; Pahlavani et al., 1995), the UPS (Ferrington et al., 2005; Tonoki 

et al., 2009) and the autophagy system (Cuervo and Dice, 2000). Therefore, spatial and temporal 

regulation of the components of the PN may vary in muscle and neuronal cells. To our 

knowledge, there is presently no data allowing a comparison of the levels of different 

components of the PN in young and old muscle cells and neuronal cells. We believe that a 

proteomic analysis of muscle and neuronal cells at different stages of development will further 

broaden the understanding of regulation and interaction of various components of the PN during 

aging. 

VI.5. Fluc-Based Sensors Report on Proteostasis Collapse by Mutant 

Huntingtin 

In protein conformational diseases, including HD, PD and AD, many questions still 

remain unanswered such as elucidating the mechanisms by which aggregates and/or oligomeric 

species cause cellular toxicity, the molecular processes that are affected, tissue-specific 

differences in response to aggregation and the role of the genetic background. In this study, we 

used mutant Htt as a model for an aggregation prone protein and studied its effect on the stability 
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of Fluc variants (Figure 30). The severe aggregation of FlucDM, and to a lesser extent that of 

FlucSM and Fluc, suggests that the protein quality control machinery is compromised by mutant 

Htt. Our observation supports previous findings where mutant Htt has been proposed to modulate 

the folding capacity of cells (Gidalevitz et al., 2006; Satyal et al., 2000). A study by Vendruscolo 

and co-workers has indicated that proteins are only marginally stable under a given set of 

conditions where they remain soluble and function efficiently. However these proteins have 

almost no margin of safety to respond to conditions that impair the cellular regulatory processes 

(Tartaglia et al., 2007). Therefore, it is likely that Htt induces changes in the proteostasis 

capacity of cells. This then has the consequence that proteins with a very low margin of stability, 

like FlucDM, collapse to their unfolded or misfolded conformation.  

If the above mentioned hypothesis is true, the next question that arises is which species of 

Htt inflicts the damage to the proteostasis system? At the moment this question is difficult to 

answer. While several lines of indirect evidence support a role of Htt inclusion bodies in cellular 

toxicity (Davies et al., 1997; DiFiglia et al., 1997; Yang et al., 2002), other studies indicate a role 

of misfolded monomers or oligomers in neuronal cell death (Arrasate et al., 2004; Bodner et al., 

2006; Miller et al., 2010; Saudou et al., 1998; Takahashi et al., 2008). To address this question 

using Fluc sensors, we performed live-cell imaging in HEK 293T cells that were transiently co-

transfected with equal amounts of DNA encoding Fluc sensors and mutant Htt (Figure 31). 

Aggregation of FlucDM-EGFP could be observed earlier than aggregation of Htt97Q-mCherry 

(Figure 31b). This suggests that an imbalance in proteostasis had occurred before the detection of 

visible Htt aggregates. This hints towards a role of oligomers in proteotoxicity. However, the 

detection of Htt oligomers is technically difficult and it is even more challenging to predict the 

conformation of oligomers that can result in toxicity. It has been reported that Htt can misfold 

into distinct conformations which exhibit different toxicity levels in cells (Nekooki-Machida et 

al., 2009).We also observed in our experiments that at later time points, the aggregation of 

mutant Htt further accelerated the aggregation of FlucDM-EGFP. 

Our two observations: (i) the formation of FlucDM-EGFP aggregates before mutant Htt 

aggregates and (ii) severe aggregation of FlucDM-EGFP after Htt aggregation has occurred, 

suggest that both oligomers and visible aggregates of mutant Htt disturb the cellular proteostasis 

machinery. The fact that FlucDM aggregates and Htt aggregates form at different sites suggests 
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that cells may utilize different aggregation pathways for FlucDM and mutant Htt and deposit 

aggregates of these proteins to distinct cellular sites such as IPOD (Insoluble Protein Deposit) 

and JUNQ (Juxta Nuclear Quality control) (Kaganovich et al., 2008). Therefore, by using an 

inducible expression system it would be interesting to know whether the aggregation of these 

two proteins is reversible. Through proteomic studies it may then be possible to identify cellular 

factors responsible for resolubilization and disaggregation.  

Several studies have documented a role of Htt in causing UPS impairment (Bence et al., 

2001; Bennett et al., 2005; Venkatraman et al., 2004). More recently, it was shown that mutant 

Htt, whether aggregated or not, does not impair the 26S proteasome directly but it leads to the 

accumulation of ubiquitinated substrates which disrupts cellular proteostasis (Hipp et al., 2012). 

This study also proposes that Htt can increase the burden on the folding machinery of cells which 

causes some normal chaperone substrates to misfold. As a result, Htt may indirectly affect UPS 

mediated degradation by enhancing the competition among ubiquitinated normal chaperone 

clients. In our study, we have also observed the severe aggregation of FlucDM-EGFP upon 

treatment with proteasome inhibitor MG132 (Figure 29a). Therefore, it is likely that besides 

compromising protein folding homeostasis, Htt also blocks degradation of other cellular proteins 

leading to global dysfunction of the proteostasis machinery.  

VI.6. Analysis of Intra-Compartmental Proteostasis Capacity by Fluc-Based 

Sensors 

Higher eukaryotes contain over 60 different HSP genes that code for proteins belonging 

to different families. For example, the human genome encodes 13 different Hsp70 members and 

41 different Hsp40 (DnaJ) members which might have resulted from multiple duplications and 

retrotranspositions during evolution (Brocchieri et al., 2008; Qiu et al., 2006). Under normal 

conditions, most of the members belonging to these chaperone families are found both in the 

cytosol and to a lesser extent in the nucleus. The different members within the same chaperone 

family sometimes share a significant sequence homology such as cytosolic Hsc70 and Hsp70 and 

sometimes they have a substantial sequence divergence in certain domains, such as DnaJA1 and 

DnaJB1. However, why the human genome encodes so many members within the same 

chaperone family is still unclear. On the one hand the redundancy may indicate the requirement 

of chaperones in different compartments to mediate protein folding. On the other hand, it also 
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reflects that chaperones are not generally promiscuous towards their substrates and that cells also 

require highly specialized chaperones for distinct functions (Hageman et al., 2011; Kabani and 

Martineau, 2008). Moreover, it has been shown in a recent study that some HSPs exhibit tissue- 

or development specific expression which further makes the folding environment of cells highly 

dynamic (Hageman and Kampinga, 2009). Therefore, it is reasonable to envision that 

proteostasis capacity in different compartments could vary and spatial-temporal regulation of the 

PN may differentially affect the sensitivity of compartments to stress. 

In eukaryotic cells there exists a substantial difference between the stability of proteins in 

the nucleus and in the cytosol. In our study, we observed that both the nucleus and the cytosol 

have similar proteostasis capacity to keep proteins soluble under normal conditions (Figure 38). 

However, the severe aggregation of NLS-Fluc-EGFP variants in the nucleus upon heat stress and 

proteasome inhibition, compared to NES-Fluc-EGFP variants in the cytosol (Figure 40 and 44) 

demonstrates that under stress conditions, nucleus is more sensitive than the cytosol. This could 

be due to two reasons; either the nuclear environment is highly dense and crowded with 

macromolecules which enhances the sensitivity of the Fluc variants to stress and/or, this can be 

due to the differences in the proteostasis capacity to deal with unfolded proteins. Indeed, it has 

been shown in past by many studies that the nuclear proteome is highly sensitive to stress and 

that nuclear damage following protein misfolding stress plays a very critical role in stress 

induced cell death (Hageman et al., 2007; Michels et al., 1997; Michels et al., 1995).  

Under normal growth conditions, the nucleus has a relatively low abundance of 

molecular chaperones compared to the cytosol. It has been proposed that high concentration of 

chaperones in the nucleus may be detrimental as they have a high nucleic acid binding affinity 

which can interfere with essential cellular processes such as DNA synthesis (Velazquez and 

Lindquist, 1984). However upon stress, many HSPs along with their co-chaperones translocate 

within 15 min to the nucleus to prevent protein damage (Anderson et al., 2010; Ellis, 2001; 

Ohtsuka and Laszlo, 1992; Velazquez and Lindquist, 1984). Although no scientific data exist to 

explain the lower levels of chaperones in the nucleus, the aggregation of proteins could be a 

combined effect of macromolecular crowding and the absence of chaperones during the first few 

minutes of stress.  
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VI.7. Role of the Nucleus in Protein Quality Control of Cytoplasmic Proteins 

It is now becoming clearer that cells have evolved a defense mechanism to sequester 

toxic misfolded proteins to discrete cellular sites; this may depend on the ubiquitination status 

and aggregation state of these proteins (Kaganovich et al., 2008). Compartmentalization seems to 

be an ingenious way of sequestering deleterious protein conformers that cannot be degraded 

immediately. It is known that inhibition of the UPS by MG132 results in the formation of 

inclusion bodies, also called aggresomes at distinct juxtanuclear location (Johnston et al., 1998; 

Kopito, 2000). The formation of aggresomes has been proposed to facilitate the efficient 

clearance of cytoplasmic aggregates by autophagy during UPS impairment (Iwata et al., 2005). 

Additionally, in yeast and mammalian cells, two additional compartments called JUNQ and 

IPOD have been reported to sequester cytosolic proteins into distinct compartments (Kaganovich 

et al., 2008). While the JUNQ is reported to accumulate soluble misfolded proteins near the 

nucleus, the IPOD sequesters terminally-misfolded insoluble species at the cell’s periphery. The 

proteins in the JUNQ are ubiquitinated and co-localize with proteasomes, whereas the proteins in 

IPOD are not ubiquitinated and co-localize with the autophagy markers. 

In this study, a surprising observation was noticed in the cellular localization of 

aggregates of NES-Fluc-EGFP variants upon proteasome inhibition (Figure 40). While the 

aggregates of NES-Fluc-EGFP were mainly cytoplasmic, the aggregates of NES-FlucDM-EGFP 

were mainly localized in the nucleus. The localization of NES-Fluc-EGFP aggregates near the 

nucleus suggests that deposition occured either in aggresomes or JUNQ compartments. The live-

cell imaging experiments showed that upon MG132 stress, aggregates of NES-FlucDM-EGFP 

formed first in the cytosol and only later began to appear in the nucleus where they gradually 

increased both in size and number (Figure 41). The gradual concentration of the protein in the 

nucleus could be due to uncontrolled flux of proteins into the nucleus or due to a reduced activity 

of the nuclear export machinery. Despite the high concentration of NES-FlucDM-EGFP in the 

cytosol, its propensity to form aggregates in the nucleus upon proteasome inhibition suggests an 

additional pathway utilized by cells for protein quality control.  

In the nucleus, autophagy is absent (Iwata et al., 2005) and therefore the only known 

degradation machinery that exist is the UPS. Interestingly, it was demonstrated in S. cerevisiae 

that the terminally misfolded cytosolic protein, mutant carboxypeptidase Y without signal 
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sequence (ΔssCPY*), migrates into the nucleus and is selectively ubiquitinated by a nuclear E3 

ligase called San1p for degradation by the UPS (Prasad et al., 2010). It is therefore possible that 

some destabilized proteins in the cytoplasm are recognized and selectively targeted to the 

nucleus for UPS mediated degradation. Our microscopy results showed the co-localization of 

NES-FlucDM-EGFP with the 20S proteasome core particle and ubiquitin (Figure 45 and 46), 

suggesting a role of nuclear factors in the degradation of NES-FlucDM-EGFP. These 

observations were further supported by our finding that degradation of NES-FlucDM-EGFP was 

significantly enhanced when its export from the nucleus was blocked by leptomycin B (LMB), 

an inhibitor of the nuclear export cycle (Figure 47b, c).  

Although a mammalian homolog of San1p has not been identified so far, another nuclear 

E3 ligase called UHRF-2 has been identified as a San1p functional ortholog in mammals (Iwata 

et al., 2009). Moreover, the over-expression of San1p or UHRF-2 has been shown to enhance 

degradation of polyQ aggregates in cultured cells and primary neurons (Iwata et al., 2009) which 

underscores the role of the nucleus in preventing the accumulation of misfolded proteins. 

Recently, it was also demonstrated that San1p recognizes exposed hydrophobic residues in its 

substrates for ubiquitination and subsequently targets them for degradation (Fredrickson et al., 

2011).  Although the molecular mechanism are still far from clear, it seems possible that NES-

FlucDM-EGFP, due to its structural instability, may expose otherwise buried hydrophobic 

residues which are eventually recognized by nuclear E3 ligases for degradation. This hypothesis 

is augmented by the observation that NES-Fluc-EGFP, which is conformationally stable, 

predominantly forms aggregates in the cytosol upon proteasome inhibition (Figure 40). Reverse 

genetic screens to identify potential E3 ligases in nucleus for degradation of cytoplasmic proteins 

will be useful in understanding protein quality control mechanisms in the nucleus. 

VI.8. Role of DnaJB1 in the Degradation of Proteins 

The co-localization of NES-FlucDM-EGFP with the 20S proteasome core particle and 

ubiquitin in the nucleus upon proteasome inhibition (Figure 45 and 46) and its rapid degradation 

upon addition of the nuclear export inhibitor (LMB) (Figure 47b, c) suggests that under normal 

conditions this protein may be degraded in the nucleus. In order to be degraded in the nucleus, a 

cytosolic protein such as NES-FlucDM-EGFP should be selectively recognized and shuttled by 

some specific cellular factors from the cytosol to the nucleus. Among the components of the 
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protein quality control machinery, only molecular chaperones (with co-chaperones) and E3 

ubiquitin ligases are known to specifically recognize non-native protein conformations.  

Post-translational modifications of proteins like covalent attachment of SUMO (Small 

Ubiquitin like Modifier) are known to alter the subcellular distribution of the modified protein 

(Johnson, 2004). SUMO has a similar structure as ubiquitin and it is covalently conjugated to 

proteins (on Lys residues) by an enzyme cascade in a manner similar to the ubiquitin-conjugation 

pathway. SUMO E3 ligases recognize a ΨKXE motif in proteins, where Ψ stands for a large 

hydrophobic amino acid like Ile, Leu or Val; K is the Lys residue that is modified; X is any 

amino acid and E is a Glu residue (Johnson, 2004; Teng et al., 2012). Interestingly, a study has 

shown that sumoylation of the Htt protein can alter its stability and promotes neurodegeneration 

in D. melanogaster (Steffan et al., 2004). Additionally, it has been shown that upon proteasome 

inhibition, sumoylation of proteins increases and SUMO-conjugated proteins accumulate in the 

nucleolus (Matafora et al., 2009). Sumoylation of proteins has also been shown to play a role in 

shuttling of proteins between the cytosol and the nucleus (Johnson, 2004). This made 

sumoylation a potential mechanism for the transport of misfolded luciferase into the nucleus. 

However, when we checked the presence of sumoylation sites (ΨKXE motif) in NES-FlucDM-

EGFP using the seeSUMO web server (http://bioinfo.ggc.org/seesumo/) (Teng et al., 2012), we 

could not find any putative sumoylation sites in NES-FlucDM-EGFP. This suggests that nuclear 

targeting of this protein upon proteasome inhibition does not occur because of sumoylation but 

may involve other specific sorting factors that recognize and shuttle NES-FlucDM-EGFP to the 

nucleus. 

It has been demonstrated in different cell-types that most of the HSPs such as Hsp90, 

Hsp70 and Hsp40 immediately move to the nucleus during stress, presumably to prevent the 

further aggregation of nuclear proteins and to rapidly restore the proteostasis in the nucleus for 

cell survival (Akner et al., 1992; Kampinga, 1993; Velazquez and Lindquist, 1984; Welch and 

Feramisco, 1984). Therefore, it is possible that during stress, misfolded proteins bound to HSPs 

may enter the nucleus via translocation of these HSPs. 

Among the various chaperones, the Hsp70-Hsp40 system is extensively studied in terms 

of both structural and mechanistic details. Hsp40 (DnaJ), besides stimulating ATPase activity of 

Hsp70 (Cyr et al., 1992; Mayer, 2010), also recognizes, binds and carries substrates to their 



Discussion   

140 

 

partner Hsp70 molecules (Misselwitz et al., 1998; Rudiger et al., 2001; Szabo et al., 1996). The 

human genome encodes ~ 41 different Hsp40 members. It has been suggested that different 

Hsp40s, due to their substrate recognition ability, may provide substrate specificity to Hsp70 

(Qiu et al., 2006). The Hsp40 members have in common a conserved J-domain and are 

subdivided into three distinct groups (DnaJA, DnaJB and DnaJC) based on the presence of 

certain structural motifs (Cheetham and Caplan, 1998; Kampinga and Craig, 2010). However, 

among these different Hsp40 members, only DnaJB1 has been studied in detail. In HEK 293T 

cells, DnaJB1 is moderately expressed and is highly inducible upon heat stress (Hageman et al., 

2010; Hageman et al., 2011). It has been shown that DnaJB1 suppresses the aggregation of 

polyQ proteins (Rujano et al., 2007; Zijlstra et al., 2010) and also prevents luciferase aggregation 

during heat stress (Hageman et al., 2010). Moreover, it has been demonstrated that 

overexpression of Hsp70 and DnaJB1 facilitates the degradation of polyQ expanded forms of the 

androgen receptor (Bailey et al., 2002). Recently, it has also been shown that less characterized 

members of the DnaJB family, DnaJB6 and DnaJB8, bind non-foldable clients such as polyQ 

proteins and keep them in a state competent for (proteasomal) degradation (Hageman et al., 

2010; Kampinga and Craig, 2010). This suggests that DnaJ proteins, besides participating in 

folding also play an important role in preventing the accumulation of misfolded proteins by 

targeting them for proteasome mediated degradation. 

These characteristics of DnaJB1 in suppressing protein aggregation and its role in 

degradation made it a likely candidate to test its effect on the degradation kinetics of NES-

FlucDM-EGFP. We found that, under conditions when it is retained in the nucleus by the nuclear 

export inhibitor LMB, degradation of NES-FlucDM-EGFP is significantly reduced when 

DnaJB1 is down-regulated (Figure 48). Moreover, in cells with reduced DnaJB1, NES-FlucDM-

EGFP formed inclusions predominantly in the cytosol rather than in the nucleus upon 

proteasome inhibition (Figure 49). Taken together, these results suggest that DnaJB1 participates 

in the degradation of misfolded NES-FlucDM-EGFP and may transport misfolded proteins from 

the cytosol to the nucleus for degradation.  

It is interesting to note that DnaJB1 is active as a dimer and has a V-shaped clamp-like 

architecture that can bind to a large exposed surface area on its substrates with a very high 

affinity (Stirling et al., 2006). Therefore, it is reasonable to assume that the increase in the 
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concentration of DnaJB1, induced by stress, shifts the equilibrium of DnaJB1 from monomers to 

the dimer formation. DnaJB1 dimers can then efficiently sequester misfolded proteins and carry 

them to the nucleus during stress. E3 ligases in the nucleus such as San1p or UHRF-2 can then 

ubiquitinate these proteins and thereby tag them for degradation by the proteasome. This 

suggests that a protein quality control mechanism for the clearance (sequestration or degradation) 

of cytosolic misfolded proteins may exist in the nucleus. This mechanism may be more efficient 

than the mechanisms in the cytosol. More recently, a study has identified two proteins in S. 

cerevisiae called Btn2 and Cur1, which form a complex with Sis1 (DnaJB1 homolog in yeast) 

during acute stress and transport it to the nucleus (Malinovska et al., 2012). Thus, it is likely that 

DnaJB1 in higher eukaryotes may also require some sorting factors to shuttle cytosolic misfolded 

proteins to the nucleus. 

In this study, we selected three Fluc variants; the most stable Fluc wild-type, a 

moderately stable FlucSM and the least stable FlucDM to serve as sensors of proteostasis. We 

showed that these Fluc variants have different stabilities. These sensors can act as representative 

examples of both the stable and the metastable proteome of cells. Using these Fluc sensors we 

can evaluate the effect of proteotoxic stresses on the stability of the endogenous metastable 

proteome. The differential aggregation propensity (or solubility) and luminescence activity of 

our sensors measures the status of the PN under different stress conditions. Our results show that 

Fluc-EGFP based sensors are highly versatile in reporting imbalances in proteostasis both during 

acute (such as heat stress) and chronic stress (such as expression of mutant Htt and during aging) 

conditions. This set of three sensors proteins can therefore serve as a convenient toolkit to 

measure the status of proteostasis in a wide range of experimental systems. Our results also point 

towards a role of the nucleus in the quality control of misfolded proteins in the cytosol. It will be 

interesting to obtain mechanistic details about the role of various PN components in maintaining 

and restoring proteostasis in different cellular compartments. Reporter cell lines simultaneously 

expressing two or more of these sensors, carrying different fluorescent tags, may be employed to 

directly compare the fate of differentially destabilized proteins. A major challenge of future 

research will be to determine the extent to which these sensor proteins can monitor the full range 

of proteostasis-related functions. Fluc sensors are non-endogenous proteins and they represent a 

single structural class of proteins. A comparison of their behavior with that of endogenous 

proteins of different structural classes will be useful for understanding of the PN. 
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VIII  Appendices 

VIII.1. Abbreviations 

17-AAG 17-allylamino-17-demethoxygeldnamycin 

AD Alzheimer's Disease 

ADP Adenosine 5'-diphosphate 

ALS Amyotrophic Lateral Sclerosis  

ANS 1-anilino-8-naphthalenesulfonate 

ATP Adenosine 5'-triphosphate 

CASA Chaperone Assisted Selective Autophagy 

C. elegans Caenorhabditis elegans 

CCT Chaperonin Containing TCP-1 

CDKs Cyclin Dependent kinases 

CFTR Cystic Fibrosis Transmembrane Conductance Regulator  

CHIP Carboxy terminus of Hsp70 Interacting Protein 

CHX Cycloheximide 

CMA Chaperone Mediated Autophagy 

CPY Carboxypeptidase Y enzyme 

CTD Carboxyl terminal Domain 

DMSO Dimethyl Sulphoxide 

DNA Deoxyribo Nucleic Acid 

DnaJ Bacterial Hsp40 Co-chaperone 

DnaK Bacterial Hsp70 Chaperone 

DUBs Deubiquitylating Enzymes 

E. coli Escherichia coli 

EGFP Enhanced Green Fluorescent Protein 

Fluc wild-type Firefly Luciferase 

FlucDM Fluc Double Mutant (luciferase with point mutations R188Q and R261Q) 

FlucSM Fluc Single Mutant (luciferase with point mutation R188Q) 

g Acceleration of Gravity, 9.81m/sec
2
 

GdmCl Guanidinium Chloride 

GroEL Bacterial Hsp60 Chaperonin 
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GroES Bacterial Hsp10 Chaperonin 

GrpE Bacterial Nucleotide Exchange factor of DnaK 

h Hour 

HD Huntington's Disease 

HIP Hsp70 Interacting Protein 

HOP Hsp70-Hsp90 Organizing Protein 

Hsc70 Heat Shock Cognate 70 

HSEs Heat Shock Elements 

HSF1 Heat Shock Factor 1 

Hsp110 Heat Shock Protein 110 

Hsp27 Heat Shock Protein 27 

Hsp40 Heat Shock Protein 40 

Hsp70 Heat Shock Protein 70 

Hsp90 Heat Shock Protein 90 

HSPs Heat Shock Proteins 

HtpG High temperature protein G 

Htt Huntingtin 

IBs Inclusion Bodies 

IIS Insulin/IGF1 like Signaling 

IPOD Insoluble Protein Deposit 

JUNQ Juxtanuclear Quality Control 

LB Luria Bertani 

LMB Leptomycin B 

MD Middle Domain 

mRNA Messenger RNA 

MTOC Microtubule Organizing Centre 

NAC Nascent Chain Associated Complex 

NEF Nucleotide Exchange Factor 

NES Nuclear Export Signal 

NLS Nuclear Localization Signal 

NPM1 Nucleophosmin-1. Also called B23 

NTD Nucleotide Domain 

O.D. Optical Density 
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PBT 2-phenyl benzothiazole  

PC Pharmacological Chaperone 

PCR Polymerase Chain Reaction 

PD Parkinson's Disease 

PDB Protein Data Bank 

PFD Prefoldin 

PML Promyelocytic Leukemia Gene Product 

PN Proteostasis Network 

PolyQ Polyglutamine 

PR Proteostasis regulators 

RAC Ribosome Associated Chaperones 

Rluc Renilla reniformis Luciferase 

RNA Ribo Nucleic Acid 

RRL Rabbit Reticulocyte Lysate 

RT-PCR Reverse Transcriptase PCR 

Rubisco Ribulose-1,5-bisphosphate Carboxylase Oxygenase 

S. cerevisiae  Saccharomyces cerevisiae  

SBMA Spinal Bulbar Muscular Atrophy 

SDS Sodium Dodecyl Sulfate 

SOD1 Superoxide Dismutase 1 

SUMO Small Ubiquitin like Modifier 

TF Trigger Factor 

TPR Tetratricopeptide Repeat 

TRAP TNFR Associated Protein 

TRiC TCP-1 Ring Complex 

UPR Unfolded Protein Response 

UPS Ubiquitin Proteasome System 

VHL Von Hippel-Lindau Protein 

 

 

 



 
 

 
 

VIII.2. Curriculum Vitae 

 

Name Rajat Gupta 

Birth Date December 03, 1984 

Birth Place New Delhi, India 

Nationality Indian 

Dissertation 

Aug. 2008 - Present Ph.D. dissertation under the supervision of Prof. Dr. F. Ulrich 

Hartl in the Department of Cellular Biochemistry, Max Planck 

Institute of Biochemistry, Martinsried. 

Dissertation title: Firefly luciferase mutants as sensors of 

proteome stress 

Education 

May 2007 - May 2008 Master thesis under the supervision of Prof. Dr. Dulal Panda at 

Indian Institute of Technology-Bombay, Mumbai, India. 

Title: Interaction of tau protein with microtubules: implications 

in neuronal disorders. 

May 2006 – May 2008 Master of Science in Biotechnology from Indian Institute of 

Technology-Bombay, Mumbai, India. 

May 2003 – May 2006 Bachelor of Science (Biochemistry Honors) from Deshbandhu 

College, University of Delhi, New Delhi, India. 

Higher Education 

May 2001 – May 2003 Mother Teresa Public School, New Delhi, India. 

 


