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Abstract

Diffractive dissociation of a π− beam(190 GeV/c) on a proton target was mea-
sured at the COMPASS spectrometer. During a run in 2008, a large number
of events with π−π−π+η in the final state was recorded. Partial wave analy-
ses(PWA) of these data are being performed, concentrating on the kinematic
domain of momentum transfer t

′

from 0.1 to 1.0 GeV 2/c2.

Subject of this thesis is the diffractive production of X from π−p → Xp with
the subsequent decays X → π−f1 and f1 → π−π+η. Two different decays
of the η were selected: η → π−π+π0(γγ) and η → γγ. A kinematic fitting
routine was used to improve the data selection. In order to do the PWA, a
Monte Carlo(MC) simulation is needed to account for the detector acceptance.
In the mass-independent PWA the angular distributions of the real events are
compared with the event distributions imposed on Monte Carlo(MC) events
in order to determine the production amplitudes of different assumed partial
waves in mass bins of 50 MeV/c2 of the invariant mass mX of X in the range
1.3 < mX <3.0 GeV/c2, by means of a maximum-likelihood-fit. Then a sim-
plified mass-dependent fit of Breit-Wigner amplitudes has been applied to the
distributions of production intensities as a function of mX in order to deter-
mine the contributions of known or presumed resonances.

In the π−f1 channel, we focus on the S, P and D wave i.e. orbital angular
momentum L=0, 1, 2 between π− and f1. Significant intensity and phase
motion are observed for the following JPCM ǫ combinations, where J, P, C,
M and ǫ stand for the total angular momentum, parity and charge conjuga-
tion, total spin projection and reflectivity: 1−+1+ (S wave), 1++0+ (P wave),
2−+0+ (D wave). Parts of these intensities can be assumed to be linked to
the known mesons π1(1600), a1(1640) and π2(1880). Relative branching ratios
of the exotic meson π1(1600) with JPC = 1−+ are estimated to be roughly
BR(1−+ → π−ρ(770)): BR(1−+ → π−η

′

): BR(1−+ → π−f1)= 3:1:2.
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ZUSAMMENFASSUNG

Die diffraktive Anregung von π−-Mesonen mit einem Impuls von 190 GeV/c an
einem Proton Target wurde am COMPASS Spektrometer gemessen. Während
einer Messperiode im Jahr 2008 wurde eine grosse Anzahl von Ereignissen mit
der Kombination π−π−π+η im Endzustand aufgezeichnet. Partialwellenanal-
ysen (PWA) dieser Daten werden durchgeführt. Sie konzentrieren sich auf den
kinematischen Bereich von Impulsüberträgen im Quadrat, t

′

, von 0.1 bis 1.0
(GeV/c)2.

Gegenstand dieser Arbeit ist die diffraktive Produktion von angeregten
Zuständen X über die Reaktion π−p → Xp mit den anschliessenden Zerfällen
des Systems X → π−f1 und des Mesons f1 → π+π−η. Zwei daran an-
schliessende Zerfälle des η -Mesons wurden selektiert: η → π+π−π0, wobei
π0 → 2γ zerfällt, und der direkte Zerfall η → 2γ. Ein kinematischer Fit
wurde verwendet, um die Datenselektion zu verbessern. Bei der Durchführung
der PWA wird eine Monte-Carlo-Simulation (MC) benötigt, um die Detek-
torakzeptanz zu berücksichtigen. Bei der ”massen-unabhängigen” PWA wer-
den die gemessenen Winkelverteilungen der Ereignisse verglichen mit denen,
die man theoretisch erwartet mit MC-simulierten Ereignissen, um die Produk-
tionsamplituden der verschiedenen angenommenen Partialwellen in Massenin-
tervallen von 50MeV/c2 über den Massenbereich 1.3 < mX < 3.0GeV/c2 der
invarianten Masse von X zu bestimmen, mittels eines Maximum-Likelihood-
Fits. Im Anschluss daran wurde ein vereinfachter massenabhängiger Fit von
Breit-Wigner-Amplituden auf die Produktionsintensitäten der verschiedenen
Partialwellen als Funktion von mX angewandt, um die Beiträge von bekannten
oder vermuteten Resonanzen zu bestimmen.

Beim π−f1-Endzustand konzentrieren wir uns auf die S, P und D-Welle,
d.h. Bahndrehimpulse L = 0, 1, 2 zwischen π− und f1. Signifikante Intensitäts
und Phasenbewegungen werden beobachtet für die folgenden JPCM ǫ Kom-
binationen, wobei J, P, C, M und ǫ den Gesamtspin, die innere Parität,



xviii Zusammenfassung

die Ladungsparität, die Projektion des Gesamtspins auf die z-Achse und die
Reflektivität bezeichnen: 1−+1+ (S-Welle), 1++0+ (P-Welle), 2−+0+ (D-Welle).
Teile der beobachteten Intensitäten können mit den bekannten Resonanzen
π1(1600), a1(1640) und π2(1880) in Verbindung gebracht werden. Relative
Verzweigungsverhältnisse des exotischen Mesons π1(1600) mit JPC = 1−+ wur-
den abgeschätzt und betragen etwa: BR(1−+ → π−ρ(770)): BR(1−+ → π−η′):
BR(1−+ → π−f1) = 3:1:2.



Chapter 1

Introduction

One of the most important questions in contemporary particle physics is to un-
derstand the phenomena related to the dynamics of the strong force. Quantum
Chromodynamics (QCD), the theory of the strong interactions, is certainly
most successful as its viability has been confirmed by many experiments. How-
ever, one of its most striking predictions - the existence of new classes of non-
qq̄ mesons - still awaits definite experimental confirmation: Glueballs ought
to exist, objects composed entirely of valence gluons, as should hybrids, states
in which a color-octet qq̄ pair is neutralized in color by a constituent gluon[23].

The main lesson that has been learnt from the previous experiments is that
the identification of glueballs requires complete information on all neighboring
states, in particular include[23]:
1) Availability of high-statistics data samples;
2) Reconstruction of final states containing both neutral and charged particles;
3) Observation of the same meson in many different channels;
4) Production of mesons in different reactions.
Interesting in the context of the search for exotics is the study of diffractively
produced meson systems by the use of π− interactions with a proton[23].

One of the main goals of the COMPASS experiment (located at SPS at
CERN: see figure 2.1) is the study of meson spectroscopy in the gluon-rich
proton-proton central production and in diffractive pion and kaon scattering.
One of the main objectives is to identify new glueballs or hybrid states[22] or
to confirm still uncertain candidates. An exotic meson has been observed and
published in previous experiments, also by COMPASS. However, the better
understanding of exotic states is needed. Subject of this thesis is the diffractive
production of X from π−p → Xp with the subsequent decays X → π−f1 and
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f1 → π−π+η. COMPASS incorporates a large (30 mrad to 180 mrad) and
small (0 mrad to 30 mrad) angle spectrometer, which enable the investigation
of various physics topics. The good momentum resolution is the advantage of
such a twostage spectrometer technique[23].

As for the reasons of interest in the πf1 channel comparing with the πρ,
πη and πη

′

channel, we can list the following:
1) Predicted decay of 1−+ in πf1 channel have large branching ratio.
2) The width of f1 is narrow, almost like η and η

′

, so we can treat the decay
X → π−f1 as two-body decay(see section 1.3).
3) Due to the fact that f1 has higher mass than η, ρ and η

′

, the X(mX >
mπ +mf1) also has higher mass.

In order to provide the necessary knowledge for the physics results pre-
sented in this thesis, this chapter covers topical features in meson spectroscopy.
First of all, introduce the Standard Model and Quark Model. Then the main
properties of mesons are summarized and exotic states are introduced. Finally,
a brief overview of the partial wave analysis is given.

1.1 Models

1.1.1 Standard Model

The Standard Model of particle physics is a theory concerning the electromag-
netic, weak and strong nuclear interactions which mediate the dynamics of the
known subatomic particles. Developed throughout the early and middle 20th
century, the current formulation was finalized in the mid 1970s upon experi-
mental confirmation of the existence of quarks. Since then, discoveries of the
bottom quark (1977), the top quark (1995) and the tau neutrino (2000) have
given credence to the standard model. Because of its success in explaining a
wide variety of experimental results, the standard model is sometimes regarded
as a theory of almost everything[13].
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Figure 1.1: The elementary particles of Standard Model[13]

The standard model falls short of being a complete theory of fundamental
interactions because it does not incorporate the physics of general relativity,
such as gravitation and dark energy[36]. The theory does not contain any vi-
able dark matter particle that possesses all of the required properties deduced
from observational cosmology. It also does not correctly account for neu-
trino oscillations (and their non-zero masses). Although the standard model
is theoretically self-consistent, it has several unnatural properties giving rise
to puzzles like the strong CP problem and the hierarchy problem.

Nevertheless, the standard model is important to theoretical and exper-
imental particle physicists alike[36]. For theoreticians, the standard model
is a paradigm example of a quantum field theory, which exhibits a wide
range of physics including spontaneous symmetry breaking, anomalies, non-
perturbative behavior, etc. It is used as a basis for building more exotic models
which incorporate hypothetical particles, extra dimensions and elaborate sym-
metries (such as supersymmetry) in an attempt to explain experimental results
at variance with the standard model such as the existence of dark matter and
neutrino oscillations. In turn, the experimenters have incorporated the stan-
dard model into simulators to help search for new physics beyond the standard
model from relatively uninteresting background.
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The first step towards the Standard Model was Sheldon Glashow’s discov-
ery, in 1960, of a way to combine the electromagnetic and weak interactions.[37]
In 1967, StevenWeinberg and Abdus Salam incorporated the Higgs mechanism[48]
into Glashow’s electroweak theory, giving it its modern form.

The Higgs mechanism is believed to give rise to the masses of all the ele-
mentary particles in the Standard Model[40]. This includes the masses of the
W and Z bosons, and the fermions. The Higgs mechanism is also believed to
give rise to the masses of quarks and leptons.

After the neutral weak currents caused by Z boson exchange were discov-
ered at CERN in 1973,[45] the electroweak theory became widely accepted.
Glashow, Salam, and Weinberg shared the 1979 Nobel Prize in Physics for
discovering the electroweak theory. The W and Z bosons were discovered ex-
perimentally in 1981, and their masses were found to be as the Standard Model
predicted.

The theory of the strong interaction, to which many contributed, acquired
its modern form around 1973-1974, when experiments confirmed that the
hadrons were composed of fractionally charged quarks[46].

Recently, the standard model has found applications in other fields besides
particle physics such as astrophysics and cosmology, in addition to nuclear
physics.

At present, matter and energy are best understood in terms of the kine-
matics and interactions of elementary particles. To date, physics has reduced
the laws governing the behavior and interaction of all known forms of matter
and energy to a small set of fundamental laws and theories. A major goal of
physics is to find the ”common ground” that would unite all of these theories
into one integrated theory of everything, of which all the other known laws
would be special cases, and from which the behavior of all matter and energy
could be derived[41](at least in principle).

The Standard Model groups two major extant theories, quantum elec-
troweak and quantum chromodynamics, into an internally consistent theory
that describes the interactions between all known particles in terms of quan-
tum field theory. For a technical description of the fields and their interactions,
see Standard Model (mathematical formulation)[41].
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The Standard Model includes 12 elementary particles of spin -1/2 known
as fermions. According to the spin-statistics theorem, fermions respect the
Pauli Exclusion Principle. Each fermion has a corresponding antiparticle[30].

The fermions of the Standard Model are classified according to how they
interact (or equivalently, by what charges they carry)[36]. There are six quarks
(up, down, charm, strange, top, bottom), and six leptons (electron, electron
neutrino, muon, muon neutrino, tau (particle), tau neutrino). Pairs from each
classification are grouped together to form a generation, with corresponding
particles exhibiting similar physical behavior[see figure 1.1].

The defining property of the quarks is that they carry color charge, and
hence, interact to the strong interaction. A phenomenon called color confine-
ment results in quarks being perpetually (or at least since very soon after the
start of the big bang) bound to one another, forming color-neutral compos-
ite particles (hadrons) containing either a quark and an antiquark (mesons)
or three quarks (baryons). The familiar proton and the neutron are the two
baryons having the smallest mass. Quarks also carry electric charge and weak
isospin. Hence they interact with other fermions both electromagnetically and
via the weak nuclear interaction.

The remaining six fermions do not carry color charge and are called leptons[30].
The three neutrinos do not carry electric charge either, so their motion is di-
rectly influenced only by the weak nuclear force, which makes them notoriously
difficult to detect. However, by virtue of carrying an electric charge, the elec-
tron, muon, and tau all interact electromagnetically[27].

Each member of a generation has greater mass than the corresponding
particles of lower generations[36]. The first generation charged particles do
not decay; hence all ordinary (baryonic) matter is made of such particles.
Specifically, all atoms consist of electrons orbiting atomic nuclei ultimately
constituted of up and down quarks. Second and third generations charged
particles, on the other hand, decay with very short half lives, and are observed
only in very high-energy environments. Neutrinos of all generations also do
not decay, and pervade the universe, but rarely interact with baryonic matter.

Interactions in physics are the ways that particles influence other particles[31].
At a macro level, electromagnetism allows particles to interact with one an-
other via electric and magnetic fields, and gravitation allows particles with
mass to attract one another in accordance with Einstein

′

s General Relativity[31].
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The standard model explains such forces as resulting from matter particles
exchanging other particles, known as force mediating particles (Strictly speak-
ing, this is only so if interpreting literally what is actually an approximation
method known as perturbation theory, as opposed to the exact theory)[31].
When a force mediating particle is exchanged, at a macro level the effect is
equivalent to a force influencing both of them, and the particle is therefore
said to have mediated (i.e., been the agent of) that force. The Feynman-
diagram calculations, which are a graphical form of the perturbation theory
approximation, invoke force mediating particles and when applied to analyze
high-energy scattering experiments are in reasonable agreement with the data.
Perturbation theory (and with it the concept of force mediating particle) in
other situations fails[31]. These include low energy QCD, bound states, and
solitons.

The known force mediating particles described by the Standard Model also
all have spin (as do matter particles), but in their case, the value of the spin
is 1, meaning that all force mediating particles are bosons[36]. As a result,
they do not follow the Pauli Exclusion Principle. The different types of force
mediating particles are described below. Photons mediate the electromagnetic
force between electrically charged particles. The photon is massless and is
well-described by the theory of quantum electrodynamics.

The W+, W−, and Z gauge bosons mediate the weak interactions between
particles of different flavors (all quarks and leptons). They are massive, with
the Z being more massive than the W[31]. The weak interactions involving
the W act on exclusively left-handed particles and right-handed antiparticles.
Furthermore, the W± carry an electric charge of +1 and -1 and couple to
the electromagnetic interactions. The electrically neutral Z boson interacts
with both left-handed particles and antiparticles. These three gauge bosons
along with the photons are grouped together which collectively mediate the
electroweak interactions.

The eight gluons mediate the strong interactions between color charged
particles (the quarks)[36]. Gluons are massless. The eightfold multiplicity
of gluons is labeled by a combination of color and an anticolor charge (e.g.,
redantigreen). Because the gluon has an effective color charge, they can inter-
act among themselves. The gluons and their interactions are described by the
theory of quantum chromodynamics.

The Higgs particle is a hypothetical massive scalar elementary particle the-
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Figure 1.2: The role which Higgs boson plays in the Standard Model[48]

orized by Robert Brout, Francois Englert, Peter Higgs, Gerald Guralnik, C.
R. Hagen, and Tom Kibble in 1964 (see 1964 PRL symmetry breaking papers)
and is a key building block in the Standard Model.[13] It has no intrinsic spin,
and for that reason is classified as a boson (like the force mediating particles,
which have integer spin). Because an exceptionally large amount of energy and
beam luminosity are theoretically required to observe a Higgs boson in high
energy colliders, it is the only fundamental particle predicted by the Standard
Model that has yet to be observed[48].

The Higgs boson plays a unique role in the Standard Model, by explain-
ing why the other elementary particles, the photon and gluon excepted, are
massive[31]. In particular, the Higgs boson would explain why the photon
has no mass, while the W and Z bosons are very heavy. Elementary particle
masses, and the differences between electromagnetism (mediated by the pho-
ton) and the weak force (mediated by the W and Z bosons), are critical to
many aspects of the structure of microscopic (and hence macroscopic) matter.
In electroweak theory, the Higgs boson generates the masses of the leptons
(electron, muon, and tau) and quarks.

Maybe the Large Hadron Collider at CERN will confirm the existence of
this particle. It is also possible that the Higgs boson may already have been
produced but overlooked.
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1.1.2 Quark Model

In physics, the quark model is a classification scheme for hadrons in terms of
their valence quarks-the quarks and antiquarks which give rise to the quantum
numbers of the hadrons[34].

The quark model was originally just a very good classification scheme to
organize the depressingly large number of hadrons that were being discovered
starting in the 1950’s and continuing through the 1960’s, received experimen-
tal verification beginning in the late 1960’s and continuing to the present[34].

These quantum numbers are labels identifying the hadrons, and are of
two kinds. One set comes from the Poincare symmetry JPC , where J, P and
C stand for the total angular momentum, parity and charge conjugation[34].
The remainder are flavour quantum numbers such as the isospin, strangeness,
charm, and so on. The quark model is the follow-up to the Eightfold Way
classification scheme.

All quarks are assigned a baryon number of 1/3[35]. Up, charm and top
quarks have an electric charge of +2/3, while the down, strange, and bottom
quarks have an electric charge of -1/3. Antiquarks have the opposite quan-
tum numbers. Quarks are also spin 1/2 particles, meaning they are fermions.
Mesons are made of a valence quark-antiquark pair (thus have a baryon num-
ber of 0), while baryons are made of three quarks (thus have a baryon number
of 1)[34].

In particle physics, color charge is a property of quarks and gluons that is
related to the particles’ strong interactions in the theory of quantum chromo-
dynamics[4]. Colour quantum numbers have been used from the beginning.
However, colour was discovered as a consequence of this classification when
it was realized that the spin S = 3/2 baryon, the ∆++ required three up
quarks with parallel spins and vanishing orbital angular momentum, and there-
fore could not have an antisymmetric wavefunction unless there was a hidden
quantum number (due to the Pauli exclusion principle)[39]. Oscar Greenberg
noted this problem in 1964, suggesting that quarks should be para-fermions.
Six months later Moo-Young Han and Yoichiro Nambu suggested the existence
of three triplets of quarks to solve this problem[43].

While the quark model is derivable from the theory of quantum chro-
modynamics, the structure of hadrons is more complicated than this model
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reveals[43].

1.2 Meson World and Resonances

1.2.1 Meson Characteristics

Normal(no-exotic) mesons are bound states of a quark (q) and an antiquark
(q̄). Each of the two quarks has a spin of s = 1/2 so overall the system can
have a total spin of S = 0 or S = 1[32]. The vector sum of total spin and
orbital angular momentum L define the total angular momentum J of the qq̄
system. In addition to that one could get radial excitations supplement the
ground state. Using the preceding characteristics, mesons are classified in the
following way[11]:

Type J P S L names

Pseudoscalar Meson 0 - 0 0 π, K, η, η
′

Scalar Meson 0 + 1 1 a0, K
∗
0 , f0, f

′

0

Vector Meson 1 - 1 0 ρ, K∗, ω, φ

Pseudovector Meson 1 + 1 1 a1, K1A, f1, f
′

1

Pseudovector Meson 1 + 0 1 b1, K1B, h1, h
′

1

Table 1.1: Types of mesons and quantum numbers for the lowest lying
states[11]. Here J, P and S stand for the total angular momentum, parity
and total spin. The L is the orbital angular momentum between quarks.

Flavourless mesons consist of a quark and an antiquark (same flavour)[3],
flavoured mesons are made of quarks and antiquarks of different flavours.

In particle physics we distinguish between C-Parity (charge conjugation)
and G-Parity. C-Parity is only defined for mesons that are their own antipar-
ticle. G-Parity is a generalization of the C-parity[11].

Strictly speaking C is only a good quantum number for neutral mesons[33](like
π0), however, for charged ones made up from u and d quarks only it can be
defined through the neutral component of the corresponding isospin multi-
plet. More precisely the G-parity is introduced as a charge conjugation oper-
ation followed by a rotation in isospin space about the y axis. Both isospin
I(additive quantum number) and G-parity(multiplicative quantum number)
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Figure 1.3: The pseudoscalar meson nonet. Members of the octet are shown
in green, the singlet in magenta. The name of the Eightfold Way derives from
this classification[35].

are conserved in strong interactions and, in the qq̄ model, the following rela-
tions hold[32]:

P = (−1)L+1 (1.1)

C = (−1)L+S (1.2)

G = (−1)IC = (−1)L+S+I . (1.3)

The members of different nonets differ in the relative spin orientation of the
constituent quarks and their relative orbital angular momentum. The mem-
bers of the same group differ in their isospin and strangeness. The nonets(see
figure 1.3) are classified by their meson-spin J, P-parity and C-parity.

Well known mesons with the classification L=0, J=0, P=-1 and spin S=0
are called pseudoscalar mesons(e.g. figure 1.3). Lightest mesons weakly de-
cay into lepton pairs or electromagnetically decay into two photons[11]. They
decay into hadrons by virtue of the strong interaction, if their mass is high
enough.

Mesons which have a spin S=1 (parallel quark spin) and L=0, J=1, P=-1
and C=-1 are called vector mesons(see table 1.1). They have a higher mass
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Figure 1.4: The pseudovector meson nonet. The K1 meson observed are
K1(1270) and K1(1400). They are mixtures of the quark model states with
JPC= 1++ and 1+−.

than the pseudoscalar mesons (the lowest lying state). Vector mesons domi-
nantly decay due to the strong interaction, with a short average lifetime[32].

Mesons which have a spin S=0 or 1 (parallel quark spin) and L=1, J=1,
P=+1 and C=+1 are called pseudovector mesons(see figure 1.4). The pseu-
dovector mesons have the same P as scalar mesons and have the same J=1 as
vector mesons(see table 1.1)

From equations 1.1-1.3, it is apparent that JPC quantum numbers like
0+−, 1−+ , 2+−, are not accessible in qq̄ systems[63]. The firm establishment
of such spin-exotic states would be a direct hint for the existence of objects
with either gluonic excitations or more than two quarks involved[47]. In that
context hybrids[51], glueballs or tetraquarks are mostly discussed, which are
in general referred to as exotics[55]. This should not be confused with spin-
exotics, because also a hybrid for example can have normal quantum numbers
allowed for any qq̄ system. This brings up a general feature of mesons, namely
that those with identical external quantum numbers can mix, even if they have
a different internal flavor structure[52]. In fact many of the physically observed
particles like the η have uu, dd and even ss components. This composes a big
challenge for the detection of exotics with normal quantum numbers since they
would most likely mix with ordinary qq̄ states and it is extremely difficult to
prove this small admixture. Thus it is much more encouraging to look for
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spin-exotic states[63].

1.2.2 Resonances

Particles with a long lifetime can easily be seen by track detectors or bubble
chambers. Particles having a very short lifetime decay rapidly into different
particles. It is not possible to detect them directly but to reconstruct them
from their decay products. These decaying particles are called ”resonances”.
Resonances can be produced in two different types of experiments[11]:

1) In a ”resonance formation” two particles collide and generate a reso-
nance as an intermediate state of the incoming and outgoing particle.

2) At a ”resonance production” we infer the presence of a resonance when
the invariant energy of the two or more outgoing particles has a favoured value.

It is difficult to find resonances in this manner because one needs to exam-
ine all combinations of outgoing particles and assign their energies (invariant
masses) to see if there is an enhancement. High-energy experiments allow to
generate new particles and one can check whether they originate from reso-
nances yet unknown. The mass of an absolutely stable particle is well defined.
A less stable particle always has a blurred value of mass which can be ex-
plained by the uncertainty principle[11].

In this thesis the mass dependence of the production amplitude of a reso-
nance is usually parameterized by means of a relativistic Breit-Wigner (BW)
function[63],

BW (m,M0,Γ0) ∼
1

M2
0 −m2 − iM0ΓT (m)

(1.4)

where M0 and Γ0 are the mass and width of the resonance, respectively. This
formula takes a mass dependent total width into account.

ΓT (m) =
∑

n

Γ0n
M0

m

qn
q0n

F 2
Ln(qn)

F 2
Ln(q0n)

(1.5)

with Γ0 = ΓT (M0), which represents a sum over all possible decay channels n
(partial width Γ0n) of the resonance. Here qn denotes the break-up momentum
of the particular (two-body) decay 3 and q0n = qn(M0). The functions FLn

are the so-called Blatt-Weisskopf barrier factors, which are connected to the
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spherical Hankel functions[63]. From those they carry over an asymptotic
behavior when qn approaches the threshold defined by the mass of the decay
particles, which can effect the resonance shape.

1.3 Partial Wave Introduction

In the 90s of the last century high statistics experiments have lead to a better
insight in the spectrum of hadrons[57]. In particular the finding of crypto-
exotic and JPC exotic states tremendously improved the experimental situ-
ation in meson spectroscopy. All this was possible only with sophisticated
analysis methods like the decomposition of measured phase-space distribution
into partial waves and to express the partial waves in terms of complicated
dynamical functions[57].

The basic task is to find all resonances, with their static properties like
mass, width, spin and parities[57]. This is a very demanding task, since a lot
of resonances overlap. In addition complicated production processes or scat-
tering with many waves in the intermediate state complicate the situation[50].

Before we want to begin the partial wave analysis, first of all we should
learn the kinematics and two-body reactions at least.

1.3.1 Kinematics

Center of mass and laboratory system

In the collision of two particles of masses m1 and m2, the total center of mass
energy

√
s = Ecm can be expressed by the Lorentz-invariant form[26]:

√
s = Ecm = ((E1 + E2)

2 − (~p1 + ~p2)
2)1/2 (1.6)

Here E1 and E2 are the energies of two particles. The particle of mass m1

has energy E1 and 3-momentum ~p1. Together E1 and ~p1 are a 4-vector p1 =
(E1, ~p1). So the p21 = (E1, ~p1)(E1,−~p1) = E2

1 −|~p1|2 = m2
1 and E2

2 −|~p2|2 = m2
2.

From formula 1.6 one derives:

Ecm = [m2
1 +m2

2 + 2E1E2(1− β1β2 cos θ)]
1/2 (1.7)

where θ is the angle between two particles(particle 1 and particle 2). β is the
velocity of the particle where β1 = |~p1|/E1 and β2 = |~p2|/E2. In the laboratory
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frame where one particle (of mass m2) is at the rest (laboratory frame)[26].
β2=0 one obtain:

Ecm = [m2
1 +m2

2 + 2E1labm2]
1/2 (1.8)

The velocity of the center of mass in the lab system is

βcm = |~plab|/(E1lab +m2) (1.9)

The ~plab is the 3-momentum ~p in laboratory system. Here the ~plab ≡ ~p1lab.

Two-body reactions

Two particles of momenta (4-vector) p1 and p2, masses m1 and m2, energy
E1 and E2 scatter to particles of momenta (4-vector) p3 and p4, masses m3

and m4, energy E3 and E4; the ~pi are the 3-momenta. The Lorentz-invariant
variables are defined by[28]. Here the s correspond to the squared c.m. energy
E2

cm in formula 1.6

s = (p1 + p2)
2 = (p3 + p4)

2 = m2
1 + 2E1E2 − 2~p1 ~p2 +m2

2 (1.10)

t = (p1 − p3)
2 = (p2 − p4)

2 = m2
1 − 2E1E3 + 2~p1 ~p3 +m2

3 (1.11)

u = (p1 − p4)
2 = (p2 − p3)

2 = m2
1 − 2E1E4 + 2~p1 ~p4 +m2

4 (1.12)

And they satisfy

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4 (1.13)

In the center of mass system[28]:

t = (E1cm − E3cm)
2 − (p1cm − p3cm)

2 − 4|p1cmp3cm|sin2(θcm/2) (1.14)

Here pcm are absolute values of the 3-momenta in the center of mass system.
The θcm is the angle between particle 1 and particle 3 in the center of mass
system.

t = t0 − 4|~p1cm||~p3cm|sin2(θcm/2) (1.15)

where θcm is between particle 1(In) and particle 3(Out) in the center of mass
system. The limiting values t0(θcm = 0) and t1(θcm = π) for 2 → 2 scattering
are:

t0 = [(m2
1 −m2

3 −m2
2 +m2

4)/2s
−1/2]2 − (p1cm − p3cm)

2 (1.16)
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and

t1 = [(m2
1 −m2

3 −m2
2 +m2

4)/2s
−1/2]2 − (p1cm + p3cm)

2 (1.17)

In the literature the notation tmin(tmax) for t0(t1) is sometimes used, which
should be discouraged since t0 > t1. The energies and momenta of the incom-
ing particles in the center-of-mass reference system are[28]:

E1cm = (s+m2
1 −m2

2)/2s
1/2 (1.18)

Here E1cm is the energy of particle 1 in the center of mass system. s is defined
in formula 1.10.

E2cm = (s+m2
2 −m2

1)/2s
1/2 (1.19)

Here E2cm is the energy of particle 2 in the center of mass system. For E3cm

and E4cm, change m1 to m3 and m2 to m4. Then

picm = [E2
icm −m2

i ]
1/2 (1.20)

and

p1cm = p1labm2/s
1/2 (1.21)

Here the subscript laboratory refers to the frame where particle 2 is at rest[28].
The picm is the absolute value of the 3-momenta p of particle i(1 to 4) in the
center of mass system. The Eicm is the energy of particle i(1 to 4) in the
center of mass system. The mi is the mass of particle i(1 to 4). The plab is the
absolute values of the 3-momenta p in laboratory system.

1.3.2 Diffractive dissociation

Diffractive scattering is studied at Compass using π− beam, proton target and
can be used for the production of exotic particles. The decay products of the
resonances can be analyzed with the help of the spectrometer[11].

The incoming pion scatters off the target and gets excited to some state
X. Then X decays into π−f1 and f1 decays to π−π+η. Thus X=π−π−π+η in
the case of the analysis presented in this thesis and the reaction studied is
symbolically written as: π− + p → X + p → π−π−π+ηp.

In the diffractive scattering process a direct excitation of the beam particle
occurs by the exchange of a reggeon to a resonance[63]. At the excitation a
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momentum t is transferred to the target proton. Mesons are mainly produced
in diffractive processes. The meson production from pion disscociation is a
method to produce hadrons with the same internal quantum numbers as a
pion. Hybrids can also be produced, like the pseudovector mesons with the
exotic quantum number JPC = 1−+. Three of these resonances were reported
by the VES and E852 experiment: π1(1400), π1(1600) and π1(2000)[11].

At elastic vertices, a particular reggeon plays a dominant role, the so called
pomeron(P). The real nature of the pomeron is perhaps not entirely under-
stood but experiments and theoretical predictions have shown that it should be
a gluonic object as only momentum and angular momentum is exchanged[11].

The squared four-momentum transfer t of a diffractive reaction can be
assigned by measuring the momenta of the involved particles:

t = (pπ − pX)
2 = (Eπ − EX)

2 − (~pπ − ~pX)
2 (1.22)

The four-momentum-vectors of the incoming particle (p) and the produced
particle or resonance (X), are described by pπ and pX . The energy of π and X
are defined by Eπ and EX . ~pπ and ~pX stands for the three-momentum-vectors
of the incoming particle and the produced particle or resonance. The recoiling
nucleon remains intact, while the incoming particle is excited[11]. However,
in one event the same t applies to the proton vertex t=(Pp − Prec)

2= (mp −
Erec)

2 − ~p2rec ≈ −|~prec|2 The resonance or particle X which is produced in this
reaction, subsequently decays into lighter particles and can be reconstructed
from its decay products.

1.3.3 Isobar Model and Decay amplitude

Before we want to write down a decay amplitude using a particular spin formal-
ism, it has to be defined how the final state particles are grouped to construct
the decay chain. The most popular approach is the isobar model. In this
model it is assumed that not only the primary interaction π−p → Xp leads
to a two-body final state but also all subsequent decays of X appear to be
two-body decays[63]. For the case of π−π−π+η final states, the produced state
X can decay into f1(also referred to as isobar) and a bachelor π−. Then f1 de-
cays to either the isobar a±0 and bachelor π∓ or the isobar called (π−π+)S and
bachelor η. In general, the isobar model has been found to work extremely
well in very different environments and for most of the known hadrons[63].
Exceptions may of course be direct decays in more than two particles or decay
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chains involving rescattering processes of the final state particles.

The full description of the state X will be shown in section 7.1 which
includes J, M(the total spin projection) and ǫ(the reflectivity basis) also its
parity P and charge conjugation C.

The amplitude of X decay into the final states π−f1 has the same struc-
ture as the amplitude describing the decay of f1 into its childrens. The total
amplitude is the product of the amplitudes describing each step of the chain,
where each step is a two-body decay in the isobar model.

The initial decay of the X into its children is evaluated in the Gottfried-
Jackson frame. This frame is a rest frame of the resonance X with the z axis
in the direction of the beam and the y axis perpendicular to the production
plane. As for general case the state X has spin J with z projection M. It decays
into two children x1 and x2 with helicity λ1 and λ2. These children have a
breakup momentum ~p and relative orbital angular momentum L. The decay
amplitude can be written as:

AX = (2L+ 1)1/2
∑

λ

DJ∗
Mλ(ΩG)(L0sλ|Jλ)(sx1

λx1
sx2

− λx2
|sλ)FL(p)aLsAx1

Ax2

(1.23)

Where the total spin s= sx1
+sx2

and λ = λx1
- λx2

is the component of s
in the direction defined by x1 and x2’s momentum helicity frame. The Ax1

is the decay amplitude of x1 and the Ax2
is the decay amplitude of x2. τ =

(θG, φG, θH , φH ,mx1
). The

√
2L+ 1 factor which along with the two Clebsch-

Gordon coefficients come from the fact that we are using helicity states and
must relate the helicity coupling constant to the Ls-coupling constant.

FL(p) where p= |~p| is an angular momentum barrier factor added to give
the amplitude the correct behavior near threshold. The aLs depending on the
mX is the Ls coupling constant which contains the dynamics of the decay.

Rotational properties of the helicity states lead to the D-functionDJ∗
Mλ(ΩG).

Here ΩG = (θ, φ, 0) are the Euler angles of x1 in the Gottfried-Jackson frame.
The choice of γ = 0 means the third angle γ defines the phase convention.

In our case, the state X decays to π− and f1. Here π
− with spin s1 =0 and

helicity λ1=0, f1 with spin s2 =1 and helicity λ2=0, ±1. This decay amplitude
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will then be used in section 7.3.



Chapter 2

The COMPASS Experiment

COMPASS(CommonMuon Proton Apparatus for Structure and Spectroscopy)
is one of the fixed target experiments at CERN. In COMPASS there are more
than 300 physicists from 26 institutions all over the world, they have the same
aim which is know more about the hadron structure. The COMPASS spec-
trometer comprises several types of tracking detectors, hadronic and electro-
magnetic calorimeters, RICH detector and muon filters[24]. It is a two-stage
spectrometer consisting of a small angle (0 - 30 mrad) and a large angle part
(30 - 180 mrad).

Figure 2.1: Location of the COMPASS experiment at CERN[22]

The COMPASS spectrometer was assembled in 1999-2000 and commis-
sioned during a technical run in 2001. The first data taking period started in
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summer 2002 and ended in fall 2004. The experiment had its first shut down
in 2005 for repairs, refits and new installations. The years 2006 and 2007 were
dedicated to the muon run, 2008 and 2009 to the hadron programme. In 2010
a polarized proton was used again to study structure functions[63].

2.1 COMPASS Setup

The construction of the spectrometer is shown in figure 2.2[14].

Figure 2.2: Schematic design of the spectrometer[14]

The figure 2.2 provides an overview of the 2-stage COMPASS spectrome-
ter indicating important parts. The target was surrounded by a Recoil Proton
Detector (RPD) measuring the signature of diffractive processes, the recoil
proton. The final states, neutral and charged, of decaying resonances excited
in the target were identified and measured by the spectrometer behind the
target. The principle of a spectrometer is bending of charged particle tracks
by dipole magnets in order to measure their momentum with high accuracy
and acceptance over a wide momentum range.

To do so the spectrometer was built up in two stages. The first Spec-
trometer Magnet (SM1) is a 110cm long dipole and it was located about 4m
downstream the target. The field integral is about 1Tm and the angular ac-
ceptance of ±180 mrad defined the required detector acceptance in the first
stage in the horizontal plane. The first stage, which is also called Large Angle
Spectrometer (LAS), featured besides various tracking detectors also a charged
final state PID with the Ring Imaging Cherencov (RICH) detector, the first
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electromagnetic calorimeter (ECAL1) for neutral state identification, the first
hadronic calorimeter (HCAL1) and the first muon wall (MW1) for muon iden-
tification. A momentum range starting from below 1 GeV/c up to about 60
GeV/c was covered by this stage[63].

Figure 2.3: Artistic view of COMPASS[20]

Particles higher in momenta than 60 GeV/c were passing the second Spec-
trometer Magnet (SM2). Its field integral of 4.4Tm deflected charged particles
up to ±30 mrad and was therefore defining the required acceptance of the
Small Angle Spectrometer (SAS). It was featuring a similar set-up as found
in the LAS apart from a RICH. It was originally foreseen to place also one
RICH in the second stage but has not been realized yet mostly due to financial
reasons.

2.1.1 Target Region

With the different requirements of different experiments, the COMPASS tar-
get has to satisfy different conditions. The hadron beam consists of different
particles: The beam, which was used for this thesis consists of pions with some
kaons and antiproton contaminations (negative hadron beam). Fast Cherenkov
counters are used to identify the incoming particles in such a mixed beam[63].

Depending on the individual experimental requirements a proton or lead
target can be used. The target is surrounded by a recoil proton detector(RPD),
which comprises two rings that are made of scintillating material. Two sta-
tions of silicon microstrip detectors in front of and behind the target, with a
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high spatial resolution and a good resistance against high fluxes, are used to
measure the angle between the incoming and outgoing beam[11].

2.1.2 Recoil Proton Detector

The mission of Recoil Proton Detector is to collect protons coming from the
target, detect and reconstruct their momentum. The detector consists of two
cylinders, each consisting of several scintillator strips[49]. The inner cylinder
has a distance of 120 mm from the steel shaft. The two rings in the beam
direction are asymmetrically aligned to the target, the forward movement of
the recoil protons are be considered. The scintillators cover an angle of 55◦ to
90◦[5].

Figure 2.4: Acceptance range of Recoil-Proton-Detector[5]

2.1.3 Tracking Detectors

Tracking detectors measure the 3D positions of charged particles as they travel
through it, usually in a magnetic field, accordingly to allow measurement of
their momentum[17]. The tracking system at COMPASS is used to cope with
the expected particle flux in the different positions along the whole spectrom-
eter. Along the beam and very close to the target the used detectors must
unify two important factors. A high particle rate capability (up to a few
MHz per channel) is needed as well as a very good space resolution (100µm
and better)[11]. The beam path itself is surrounded only by some material
to diminish secondary interactions of beam particles and to minimize mul-
tiple scattering effects. Many tracking stations are arranged alongside the
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spectrometer. Each station consists of a set of detectors of the same type
at approximately the same z-coordinate along the beam. According to their
different requirements these stations are installed at different locations of the
spectrometer:

VSAT(Very Small Area Tracking):
With the help of the BMS(beam momentum station) it is possible to determine
the momentum of the incoming muons on an event-by-event basis[11]. At a
radial distance of 2.5-3cm, the beam region is covered by eight scintillating
fiber hodoscopes which ensure the tracking of incoming and scattered beam
particles as well as the detection of all other reaction products arising near the
beam. For the hadron beam the BMS can not be used. Too many interactions
of the beam would take place in the BMS.

The COMPASS silicon microstrip detectors are situated upstream of the
target and used to detect incoming muons in the muon programme and for
track and vertex reconstructions of hadron particles. The beam divergence is
taken into account by using various sizes of these microstrip detectors[11].

SAT(Small Area Tracking):
For distances larger than 3cm from the beam, 12 Micromegas detectors (Mi-
cromesh Gaseous Structure), assembled in 3 stations and 11 GEMs (Gas Elec-
tron Multipliers) cover the region from the upstream side of the SM1 magnet
to the end of the spectrometer[11].

The Micromegas detector has a two parallel electrode structure and a set
of microstrips for readout at the bottom. When a particle passes through the
conversion area it comes to an ionisation. The produced primary electrons
drift into a moderate field. An avalanche is then produced in the amplication
gap. The resulting electron pairs can now be detected by the strips. The mesh
is used to separate the two gaps and to avoid the reflux of produced ions to
the conversion gap. GEM detectors are built of 3 copper plated foils instead
of one mesh. These detectors ensure a high space resolution(< 100µm) with
a low radiation length in the small area region[11].

LAT(Large Area Tracking):
The large angle tracking system consists of planar drift and straw tube cham-
bers. These are gas detectors with anode wires of different types[11]. The
MWPCs (Multiwire Proportional Counters) are installed along the entire spec-
trometer. These counters are able to amplify single photoelectrons and detect
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them.

2.1.4 RICH Detector

The RICH Detector, located in the first spectrometer (RICH-1), is needed for
hadron identification[11]. It separates hadrons into kaons, pions and protons,
according to their momenta. The RICH-1 is a large-size Cherenkov Counter
and works in the domain of 5 GeV/c to 80 GeV/c.

Therefore, it covers the whole angular acceptance of COMPASS LAS[11].
The working principle is based on the emission of Cherenkov photons in C4F10

radiator gas and their subsequent reflection by two spherical mirrors. These
photons are dissipated to electrons by the CsI photocathodes of 8 MWPCs
and finally detected by the latter.

2.1.5 Electromagnetic Calorimeters

An electromagnetic calorimeter is a detector which determines the energy of
electrons, positrons and photons[11]. The COMPASS spectrometer contains
two electromagnetic calorimeters ECAL1 and ECAL2. ECAL1 is directly in-
stalled in front of HCAL1, ECAL2 in front of HCAL2. Hadrons only lose a
small amount of their energy due to electromagnetic interactions. Therefore,
hadrons are likely to be detected in the proximate HCALs. Electromagnetic
Calorimeters with good performances are needed for the COMPASS hadron
program and for the studies of GPDs.

The γγ of a decaying π0 or η are detected in the two electromagnetic
calorimeters ECAL1 and ECAL2. Neutral pions are reconstructed from neu-
tral clusters in the calorimeters, as it was described(more details see[11], page
79).

2.2 Hadron beam

The COMPASS hall is connected to the SPS by means of a 600m long beam
line. At its beginning, the intense primary proton beam impinges on a beryl-
lium production target with a thickness of 500mm. From the produced par-
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ticles, secondary hadrons (mainly pions) up to 280 GeV/c can be selected by
tuning a series of focussing and bending magnets.

Here we show the overview of the CERN accelerator facility where we can
know the role of SPS in CERN.

Figure 2.5: The role of SPS which provides the beam for COMPASS can be
seen from the overview of the CERN accelerator facility. The COMPASS
spectrometer is located at the north area of the SPS.[63]

The beam consisted mainly of charged pions, kaons and (anti)protons when
running in hadron mode. Both, positive or negative charges could be selected.
The choice of the charge had direct impact on the beam composition. The
composition depends also on the selected beam momentum.

In the positive hadron beam, protons were dominant with a large contri-
butions of pions. While protons dominated as they are produced as leading
particles from the primary beam, anti-protons require a pair production pro-
cess and are thus a minor component in the negatively charged hadron beam.
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There mostly pions were found. In both cases kaons were just a small compo-
nent of several percent[20].

2.3 Sandwich Veto Detector

The Sandwich Veto Detector(SVD) vetoes an event when one of the particles
has a large angle(> 11◦C) with larger than the acceptance of the LAS. The
SVD is a common detector for the Central Production as well as the Diffractive
Dissociation that has been carried out in 2008 and 2009[64]. It is capable of
detecting charged as well as neutral particles. The SVD consists of alternate
layers of Pb and scintillators.

2.3.1 Role of the SVD in COMPASS

Figure 2.6 summarizes how the Sandwich Veto Detector is used in the COM-
PASS setup(more details will be shown in section 3.1[11]).

Figure 2.6: Sandwich Veto Detector in the COMPASS setup[64]

The two stage spectrometer located downstream of the target has a certain
acceptance limit for particles incident on it. This acceptance limit with respect
to the centre of the target is about 180 mrad. If events with particles which
fall within this acceptance angle, we record or store these events. If events
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with particles falling outside this acceptance angle, we prevent these from en-
tering our Data Acquisition System[64]. Since the memory space is limited,
so these events would unnecessarily eat up a lot of memory space and more
importantly they would add a lot of junk to our relevant data, thus making
them impure. The offline analysis of this impure data would then be a diffi-
cult job. So in order to prevent these unimportant data from entering into our
memory system, we put the sandwich Veto detector in between the target and
the Spectrometer which would then reject the events falling outside the accep-
tance angle of the spectrometer. The central hole of the Sandwich detector is
allowed to make a solid angle of 192 mrad by placing the detector at a distance
of 1550 mm and fixing the radius of the hole to 250 mm. The particles corre-
sponding to our desired events (those falling within the acceptance angle of the
spectrometer less than 192 mrad) are allowed to pass through the hole undis-
turbed. The particles corresponding to undesired events (those falling outside
the acceptance angle of the spectrometer bigger than 192 mrad) are allowed
to hit the Sandwich detector, which then vetoes these events (rejects these
events) and prevents them from entering the data system. Thus the Sandwich
detector reduces the junk from the data and thereby acts as a data purifier[11].

2.3.2 The Components of SVD

The sandwich Veto Detector is composed of Steel plates, steel base plates, air
gaps and lead(Pb)/scintillator layers.

The steel plates are 1mm thick. These plates provide mechanical stability
to the scintillators and the Pb plates, and keep them in proper place. The steel
base plates are 8 mm thick. These are also meant for providing mechanical
stability to the detector and they are also used to attach the detector to the
support structure.

The role of the air gaps is to maximize internal reflections in the scintil-
lators and thus to increase the efficiency of the detector. Air has a smaller
refractive index than the scintillators, so it assists well in total internal reflec-
tion. Apart from the air gaps, a 0.1 mm specially designed paper is wrapped
around the scintillators to aid reflections of the escaped light back into the
scintillators.

As for the Pb/scintillator layers: The Sandwich veto is meant to detect
high energy as well as neutral particles[11]. If we were concerned in detecting
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only low energy electrons then the plastic scintillators alone would have served
our purpose. But since we are concerned with detecting high energy electrons,
photons and other charged particles, the low Z scintillators alone would not
do. The reason for this is explained as follows: For high energy electrons the
dominant process of energy loss is bremsstrahlung. This energy loss is propor-
tional to Z2. For such electrons, the photons produced by bremsstrahlung are
also of very high energy, well above the threshold for electron positron pair
production, so the photons will typically produce an electron positron pair,
each having an average half the energy of the photon. These new particles
are still very fast and may give further bremsstrahlung, leading to further pair
production and so on.

The result is that an incident electron of very high energy will produce an
electromagnetic shower. A similar electromagnetic shower is produced when
a high energy photon is incident on a high Z material. So we see that both
high energy electrons as well as photons initiate electromagnetic showers, and
this process is facilitated by high Z materials. In order to meet the high Z
requirements NaI scintillators can be used. But this would mean that we will
need a very thick and huge piece of NaI in order to capture an appreciable
amount of shower. However for a large detector, this is practically not feasible
since it would be too costly. So an alternate choice is to use a passive layer
(such as Pb in our case) which provides the high Z necessary for electromag-
netic shower generation followed by a scintillation layer which would record
the charged particle’s signal. Many layers of alternate Pb and scintillator are
used in order to capture a substantial amount of shower.

Figure 2.7: Module of Sandwich Veto Detector

The frontal active area of a module is 800*400 mm2. The thickness of the
module is 89.5 mm, which is also the thickness of the complete detector. The
thickness of a module is shared among the scintillators, Pb plates, steel plates,
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ground steel plate and air gaps[11] are as follows:

(a) 10 steel plates of 1 mm thickness each

(b) 1 ground steel plate of 8 mm thickness

(c) 3 layers of scintillators with 10 mm thickness each

(d) 2 layers of scintillators with 5 mm thickness each

(e) 5 Pb plates of 5 mm thickness each

(f) Air gap between the Pb plates and scintillators (of 10 mm thickness) is
1.5 mm, so for three layers a total of 4.5 mm air gap

(g) Air gap between the Pb plates and scintillators (of 5 mm thickness) is
1mm, so for two layers a total of 2 mm air gap

Fig. 2.8 shows how the thickness is divided among the various components.

Wavelength shifting optical fibres of 1 mm diameter are glued into the
grooves of the scintillators(more details see[64]).

Figure 2.8: The divided thickness among the various components

The fibres hanging out from the scintillator ends are connected to PM
tubes. The arrangement of the PM tubes is shown in figure 2.9.
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Figure 2.9: The arrangement of the PM tubes

The analog signals coming out of each PM tube are led to a discriminator
and the logical signals from the discriminator are led to Time Digital Con-
verter(TDC).
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Measurements with the SVD

In this chapter measurements with the Sandwich Veto Detector(SVD) are de-
scribed. The goal was to determine how many photons are produced when a
minimum ionizing particle(MIP) passes through. First section describes the
setup of the experiment. In the second section we describe the analysis. Last
but not the least, we show the efficiency of the SVD.

3.1 Experimental setup

An experiment was set up to show the efficiency of sandwich veto detec-
tor(SVD). Through the calculation we can know the properties of the SVD.

In order to know the number of photons which are produced by a minimum
ionizing particle (MIP) we measure both the recorded signal and the signals
of single photons, then compare with each other.

To this end, we took advantage of muons from cosmic radiation, since they
have enough energy to pass through the detector, and thus their energy is
only determined by the traversed detector thickness. The distribution of en-
ergy corresponds to a Landau distribution.

In this experiment we set two triggers to measure the Sandwich(PMT1
and PMT2). The PMT1 base with 2 connectors and the PMT2 base with
4 connectors. The HV of Ch0(Trigger PMT1) was 1453 V and the HV of
Ch1(Trigger PMT2) was 1809 V.
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Figure 3.1: The Setup of Sandwich Measurements[64]

For the first measurement we set the angle at 45 degree.

SVD module 12: single photon @5mV, HV ch2 @1895V.

SVD module 11: single photon @5mV, HV ch3 @2054V.

The parameters value of experiment setup have been listed in the table 3.1.

Single photo HV connectors
SVD module 12 5mV 1895V ch2
SVD module 11 5mV 2045V ch3
PM1T / 1453V ch0
PM2T / 1809V ch1

Table 3.1: The parameter value of experiment setup
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Figure 3.2: Schematic view of the experimental arrangement[64]

These two photo multipliers(PM 1 and PM 2) were each associated with
a discriminator. When a signal from the photomultiplier exceeds a certain
threshold value, the discriminator produces the logic signals, then these sig-
nals are sent to a coincidence unit. The coincidence was connected as a logical
”and”(not ”or”) thereby it outputs a logic signal only when the two discrimi-
nators both send the signals. If the coincidence outputs a logic signal, it will
trigger the oscilloscope to record the PM signals from the sandwich. In order
to reduce the large number of spurious coincidences, the width of the discrim-
inator output was set to 5 ns. The experiment arrangement is shown in figure
3.2[64].

3.2 Analysis

Photon signals from scintillating material can be detected and converted by
wavelength shifting fibres(see page 29). The fibres are connected to the pho-
tomultiplier window, so that the light transported by the fibres hit the pho-
tocathode. The number of photoelectrons emitted from the photocathode are
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multiplied in the photomultiplier.

The MIP signals were recorded for module 11 of the sandwich detector as
shown in the figure 3.3.

Figure 3.3: Signals from MIPs[64]

Photomultiplier signals from cosmic muons traversing the final detector as-
sembly have average rise times (20%−80%) of 3.3 ns, logarithmic decay times
of 9 ns, and widths at half maximum of 12 ns(see fig. 3.4). These values are
larger by a factor of almost three than those obtained for single photons and
they are also larger than the corresponding values for a single double layer.
The differences are attributed to the statistical spread of light collection times
from scintillator via wavelength shifting fibres(see page 29).

The value of MIP signals are averaged in figure 3.4.

Figure 3.4: The averaged shape of the MIP signals[64]
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Single photon signals are recorded for module 11 of the sandwich detector
which are shown in the figure 3.5.

Figure 3.5: Overlay of single photon signals in module 11

The average shape for a single photon is shown in figure 3.6.

Figure 3.6: Average shape of single photon signals[64]

With these results we can achieve our goal, and determine how many pho-
tons are produced when the minimum ionizing particle pass through. For this
purpose, the values from the MIP signals are divided by the values of single
photons. The area under the PM signal is proportional to the integral of volt-
age over time and (since the voltage on the oscilloscopy is measured on a 50 Ω
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resistor) hence proportional to the integral of current over time, hence charge
equivalent to that proportion is the desired integral.

Here we evaluate the numbers in table 3.2 by comparing the results of MIP
and Single Photon.

MIP Single photo ratio
top value 95.74 mV 3.60 mV 26.59
half-value width 12.09 ns 3.52 ns 3.43
integral 1488.6 mV ns 23.5 mV ns 63.3

Table 3.2: Comparing of MIP and Single Photon.

The conclusion is that a minimum ionizing particle produces an average of
63.3 photons in the sandwich veto detector.

3.3 Efficiency of SVD

The efficiency for the MIPs was determined with 160GeV muon beams using a
halo trigger (see COMPASS spectrometer). This beam is normally used for the
alignment. The distribution of muons in the detector, which was reconstructed
in the spectrometer for a track are shown in figure 3.7. A veto flag probability
of 98% was obtained for the muons with a reconstructed track traversing the
SVD, This value refers to homogeneous irradiation of the complete detector
plane excluding the central hole. Tracks at the block edges contribute more
than half of the missing 2%[23].

As registered matches all tracks are counted, which gave a hit(TDC) in the
corresponding module of SVD. The voltage signal from one of the photomulti-
plier of the detector will be further processed by the TDC. The TDC indicates
the arrival signal time relative to a reference time, thus the TDC signal con-
tains time information. To determine the efficiency just need to compare the
number of recorded with the number of muon tracks hits in the detector[64].

The aim was to determine the efficiency for the sandwich detector.
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Figure 3.7: Distribution of reconstructed muon tracks in the sandwich - veto
- detector as a function of the coordinates x, y perpendicular to the beam.
Lines indicate the twelve modules from which the detector is composed.

The definition of the total efficiency is[64]:
∑

i Ai · εi
∑

i Ai

(3.1)

Here the Ai is the area i of SVD, the εi is the efficiency of area i. In order
to do the evaluation of the efficiency, the whole detector was divided in areas
approximately 9.5cm × 9.5cm. For each area efficiency is calculated as the
number of hits registered divided by the total number of hits. The efficiencies
of the individual areas are shown in figure 3.8 with color palette.

εi =
ND

i

NH
i

(3.2)

Where ND
i is the number of detected µ in area i and NH

i is the number of µ
hitting area i.



38 3. Measurements with the SVD

Here we present the efficiency of the sandwich detector, which includes 12
modules which have been introduced in section 2.3.

Figure 3.8: The efficiency of Sandwich Detector[64]

We sum over the efficiency of all bins weighted with their area(see figure
3.8).

Intrinsic Efficiency A: similar definition as total efficiency, just cut the bor-
der bins with 1cm margin.

Intrinsic Efficiency B: Sum of hits in one module divided the number of
tracks which go through the module.

The table 3.3 show the efficiency for every Module and for the whole Sand-
wich with the 2008 and 2009 data[64].
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2009 2008

Module total intrinsic A intrinsic B intrinsic B

1 98.2% 100.0% 100.0% 98.2%

2 88.7% 90.8% 89.3% 100.0%

3 98.1% 99.3% 99.8% 100.0%

4 97.7% 100.0% 100.0% 99.1%

5 97.0% 99.1% 99.4% 98.6%

6 98.6% 99.8% 99.8% 99.8%

7 97.8% 99.3% 99.0% 99.3%

8 98.5% 100.0% 100.0% 92.2%

9 98.0% 99.7% 99.6% 99.6%

10 97.3% 99.2% 99.5% 100.0%

11 97.9% 99.4% 99.2% 99.6%

12 99.1% 100.0% 100.0% 98.7%

Detector 97.6% 99.2%

Table 3.3: Efficiency of Sandwich-Veto-Detectors for 2009 and 2008 Data[64].
Intrinsic Efficiency A: Same as total efficiency, but without border areas (with
1cm margin). Intrinsic Efficiency B: Sum of hits in one module divided the
number of tracks which goes through the module.

From the table 3.3 we can see the total efficiency of SVD is 97.6%. The
efficiency A is (99.2 - 97.6)% higher than the total efficiency, which means
the hole and edges lose tracks less than 1.6%. In the 12 modules there are six
modules with the efficiency higher than 98% and six modules with the efficiency
lower than 98%. If we take away the best module and worst module(88%),
the efficiency of SVD should be 98%.
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Chapter 4

Event selection of π−f1

In this chapter the event selection of π−f1 is presented. First of all the tools
which are usually used in COMPASS should be introduced. Then the analyzed
data set and the event selection are presented. In order to understand what we
have detected with all kinds of detectors, event selection takes a very important
role. In this thesis, we concentrate on the event selection of these processes:
π−p → Xp,

X → π−f1,
f1 → π−π+η,

Then we have two cases of η decays,

{

η → π−π+π0, π0 → γγ
η → γγ.

In the first section we describe the event selection of γγ, π−π+γγ, π−π+π−π+γγ,
π−π−π+π−π+γγ. Then we apply the cut for π0, η, f1, X(π

−f1) and reconstruct
all the reactions during the process π−p → π−f1p.

4.1 The analysis tools in COMPASS

In order to extract physics from the experiment at COMPASS, we need some
tools to analyse the raw data which we get from the experiment. The usual
tools include ROOT, PHAST, CORAL and so on. The goal is to obtain the
information about the mass, angular, t distribution, four vector of particles
and so on. The raw data is first decoded using a Data Decoding library. Data
from calibration and slow control measurements are stored in a MySQL data
base.[15]
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4.1.1 ROOT

The amount of data generated from the Large Hadron Collider(LHC), be-
ginning to run at the year 2009, is larger than anything seen before. And
the twenty-year-old FORTRAN libraries can not meet the request. Although
PAW(Physics Analysis Workstation), and GEANT(program describes the pas-
sage of elementary particles through the matter) are still very popular, these
tools could not scale up to the challenges. The ROOT looks like the tools
specially for the experiment of LHC and COMPASS experiment profits from
this.

ROOT is an object-orientated analysis tool to analyse data in high en-
ergy physics[29]. It was developed in the context of the NA49 experiment at
CERN. NA49 has generated an impressive amount of data, around 10 TB per
run. This rate provided the perfect environment to test and develop the next
generation data analysis. Before use of ROOT, we should know something
about CINT(its C++ interpreter). It is an independent production which
ROOT is using for the command line and script processor[29].

The development of ROOT is a continuous conversation between users and
developers with the line between the two blurring at times and the users be-
coming codevelopers. When it comes to storing and mining large amount of
data, physics plows the way with its Terabytes, but other fields and industry
follow close behind as they acquire more and more data over time. They are
ready to use the true and tested technologies physics has invented. In this way,
other fields and industries have found ROOT useful and they have started to
use it also. The data is structured in branches and store in trees on an event-
by-event basis[29].

The results can be presented visually in order to analyse and evaluate the
information. This program plays a very important role in the COMPASS anal-
ysis work. It provides an efficient way to archive diverse data in a structured
way. All the non-calibration data are stored in ROOT files, include raw data,
mDST and so on.

4.1.2 CORAL

CORAL(Compass Reconstruction and AnaLysis) is the data reconstruction
programme in COMPASS. With the help of the DAQ(Data Acquisition) and
MySQL(Structured Query Language)[11] data base the programme CORAL
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is able to reconstruct vertices and tracks for every processed event, while the
reconstruction occurs in several steps.

First of all, the data read-out of the hardware is digitized and transformed
into time information and signal amplitudes. For that purpose abstract elec-
tronics identification numbers of all detector channels are mapped to real 3-
dimensional coordinates. These informations shed light on particle trajecto-
ries, using magnets (SM1, SM2) and the RICH detector[63].

Subsequently, the output is written into mDST (Mini Data Summary Tree)
files which can be reconstructed by the analysis tool PHAST.

4.1.3 PHAST

PHAST(Physics Analysis Software Tool) is used to read the produced mDST
files, which provides access to reconstructed event information and allows the
proceeding and filtering of event subsamples[16].

PHAST is the framework for data analysis of the COMPASS experiment
on the level of mDST. It provides:
1) access to reconstructed event information
2) environment for physics analysis code developments
3) tools for mDST processing and filtering of events’ sub-samples

PHAST also provides mDST output data stream at the stage of event re-
construction. Moreover, PHAST allows to use standardized selection routines
for analysis purposes and gives the opportunity to create reduced mDST files
(called µDST) which contain preselected event samples.

4.2 Event selection

What can happen when an incoming negative π beam with 190 GeV energy(Eπ−)
hits the proton? After this chapter we should get some answers from here.

For this analysis, which is presented in this thesis, the principle of particle
identification and reconstruction is based on the knowledge, that neutral par-
ticles (like the π0 and η) decay into γγ which are detected and charged pions
π± do not decay, in general, inside the spectrometer.
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An η in the final state π−p → π−π−π+ηp rapidly decays into γγ, whose
energy and position are assigned by the electromagnetic calorimeters of the
COMPASS experiment.

The data selection occurs in several steps, which will be described in the
following[11]:

(1)the trigger selection
(2)the beam composition
(3)vertex selection (within the target)
(4)Recoil Proton Detector
(5)cluster selection in ECAL1 and ECAL2 calorimeters
(6)kinematic fitting routines were integrated into the data selection to im-

prove the reconstruction

The figure 4.1 show the process.

Figure 4.1: The process of event selection. Selected event topology in the
reaction π−p → π−π0p or π−ηp is shown as an example.

1) Trigger

The preselection is done with the DT0 Trigger. The DT0 is a hadron trig-
ger which is used in 2008 data to select events where the beam particle (π−) is
diffractively excited[21]. The composition of the DT0 trigger is the following
(used for minimum selection criteria).
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The Beam Trigger is used to trigger on interactions of the beam in the
target region[11]. To respect the geometrical properties of the target, such as
its cylindrical shape, this trigger is provided.

A Proton Trigger is used to select recoiling protons emitted from the tar-
get. These protons are detected by the Recoil Proton Detector (RPD). They
are identified by time-of-flight and energy loss measurements[11].

The veto system is used to detect secondary particles produced along the
beamline (hadronic interactions), halo particles, non-interacting particles and
interactions leading to particles going outside the angular acceptance of the
spectrometer and to reject such events.

2) The π− Beam

The incoming beam from the M2 beam line is not a pure pion beam: It
contains kaons (≈ 4.5 percent) and anti-protons (≈0.5 percent)[38].

To exclude negatively charged kaons of the incoming beam, a majority of
hits in CEDAR 1 and CEDAR 2 less than 6 was claimed. The two CEDAR
detectors were set to detect kaons. Majority < 6 correspond to a veto on
Kaons[18]. This cut reduces the small fraction of kaons. Unfortunately, an
exact percentage of the rejected kaons is unknown. One possible explanation
for not knowing the exact value is that only 1/3 of the beam is tagged by the
CEDARs[18].

3)Vertex Selection

For vertex selection we are asking for exactly one primary vertex. A primary
vertex is a detected crossing point between the incoming beam and outgoing
particles from the first(primary) interaction point of the beam hitting the tar-
get (in a fixed target experiment)[11]. In collision experiments this interaction
point is defined as the point where the particles collide.

Due to pileup events which often occur in the reconstruction, we lose statis-
tics. Pileup are background events which are added to the observed signal[62].
They originate in multiple events that appear in the same time window as the
signal of interest. Pileup frequently occurs in high luminosity experiments,
such as colliding experiments, where multiple collisions can happen during a
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single bunch crossing.

There are three outgoing negative charged tracks from every vertex in the
reactions π−p → π−π+γγπ−p or 5 charged tracks in π−p → π−π+π−π+γγπ−p.
One incoming π beam and 3 or 5 outgoing tracks are from the primary vertex.
The primary vertex was located inside of the cylindrical hydrogen target: R
[cm] < 1.57 and -67.5 < z (beam direction) [cm] < -29.5.

Every individual track can be defined by a Lorentz vector[62]. Then we
can get information about the energy of each track. For the f1 final state 3
or 5 charged tracks are requested for every primary vertex. In the case of 3
or 5 outgoing particles, the π−f1 system fulfilled the energy balance given by
the incident beam particle: 186 < E[GeV ] < 196 (The recoil proton carries a
negligible amount of kinetic energy).

4) RPD Criteria

For the azimuthal correlation between the direction of the flight of a recoiling
track (proton in this case) in the RPD with the direction of the flight of the
negatively charged system X(πf1), the azimuthal angles were required to be
in the range of -0.3 < φf1-φπ− < 0.3[61].

5) Cluster Selection in ECAL1 and ECAL2

γγ result from the π0 or η decay, therefore exactly 2 ”good” clusters were
selected in ECAL1 and ECAL2, in accordance with the following criteria:
Each cluster, which is detected by the electromagnetic calorimeters, correlates
to an electromagnetic shower in a group of neighbouring crystals. These clus-
ters are not pointed by a charged track[11].

A minimum of energy deposition in the calorimeter cells is essential, there-
fore we use 1 GeV for ECAL1 clusters and 4 GeV for ECAL2[11]. Since all of
the clusters must be in time with the beam, an additional time cut was per-
formed: the difference of the beam time and the cluster time must be within
t = -3 ns and t = 5 ns.

6) Kinematic Fitting

Experimental measurements of quantities like momentum, mass, time, 4-vectors
etc. are always with errors. For this reason we need a procedure which is able



4.3 Selection of events with 2 good γ clusters 47

to improve our measurements and to give better results(This was introduced
by Tobias Schlüter[11]).

A kinematic fitting routine is a mathematical process, that uses physi-
cal constraints to enhance the measurements. To check the performance of
the fitting, two distributions are used, confidence level distribution and pull
distribution[11].

The confidence level distribution checks the amicability of a fit (data) to
the hypothesized event, while the pull distribution estimates the quality of the
error estimation[62].

Kinematic fitting works as this, using a reliable hypothesis for an event, one
can derive constraints which convert the measured values within their error to
fulfill special requirements[12].

4.3 Selection of events with 2 good γ clusters
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Figure 4.2: Invariant mass of γγ. Distribution of the events as a function of
the invariant mass mγγ in π−p reaction[64].

After we get the mass distribution about γγ, we can see two peaks correspond-
ing to π0 and η. We have two ways to detect the π−f1 final state. One is using
the decay η → π−π+π0, π0 → γγ. Another is the decay η → γγ. Peaks at low
mass ≈ 0.03 GeV/c2 are unphysical(see Tobias Schlüter’s talk[60]).
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4.4 5π final state

The η → π−π+γγ are discussed in this section. The mass distributions in the
decay channel of X → 5 charged π and γγ has been shown in figure 4.3, 4.4
and 4.5.

4.4.1 Selection of events with η → π−π+π0

The figure 4.3 shows the invariant mass distribution of π−π+π0.
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Figure 4.3: Invariant mass of π−π+π0. Distribution of the events as a function
of the invariant mass mπ−π+π0 in the π−p reaction after the selection π0 → γγ
with the cut window: |mγγ −mπ0| < 20MeV/c2.

The mass distribution of π−π+π0 displays two peaks. First one at the mass
560±2 MeV corresponds to the η and second one at the mass 782±5 MeV cor-
responds to the ω.

From the figure 4.3 we learn that the ω has higher background than η.
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4.4.2 Selection of events with f1 → π−π+η
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Figure 4.4: Invariant mass of π−π+η. Distribution of the events as a function of
the invariant mass mπ−π+η in the π−p reaction after the selection η → π−π+π0

with the cut window: |mπ−π+π0 −mη| < 20MeV/c2.

From the mass distribution of π−π+η(η → π−π+π0), we can see two peaks at
the mass 0.95 and 1.25 GeV corresponding to η

′

and f1 (Figure 4.4).

4.4.3 Selection of events with X → π−f1
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Figure 4.5: Invariant mass of π−f1. Distribution of the events as a function of
the invariant mass mπ−f1 in the π−p reaction after the selection f1 → π−π+η
with the cut window: |mπ−π+η−mf1 | < 30MeV/c2 which is range [1.255,1.315]
GeV/c2.
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The mass distribution of π−f1(5π) shows that the leading events are concen-
trated in the mass range [1.6, 2.0]GeV after the total energy exclusively cut
for 5 π.

4.5 3π final state

The η → γγ are discussed in this section. The mass distributions in the decay
channel of X → 3 charged π and γγ has been shown in figure 4.6, 4.7 and 4.8.

4.5.1 Event selection for f1 → π−π+η(γγ)
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Figure 4.6: Invariant mass of π−π+η. Distribution of the events as a function
of the invariant mass mπ−π+η in the π−p reaction after the selection η → γγ
with the cut window: |mγγ −mη| < 20MeV/c2.

From the mass distribution of π−π+η(η → γγ), we can see two peaks at 958±1
MeV and 1282±5 MeV corresponding to η

′

and f1.
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4.5.2 Event selection for X → π−f1
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Figure 4.7: Invariant mass of π−f1. Distribution of the events as a func-
tion of the invariant mass mπ−f1 in the π−p reaction after selection f1 →
π−π+η, η → γγ with the cut window: |mπ−π+η −mf1| < 30MeV/c2 which is
range [1.255,1.315] GeV/c2.

The mass distribution of π−f1(3π) plot is consistent with the one shown in
the figure 4.5 after the total energy exclusively cut for 3 π.

Selections Events Mass peak possible particles
γγ 4617654 135±1MeV π0,η
π−π+π0 3484916 560±2MeV,782±5MeV η,ω

π−π+η(3π) 145962 958±2MeV,1282±5MeV η
′

,f1
π−π+η(γγ) 514452 958±2MeV,1282±5MeV η

′

,f1
π−f1(5π) 10185 around 1700 MeV π1(1600), a1(1640), π2(1880)...
π−f1(3π) 49002 around 1700 MeV π1(1600), a1(1640), π2(1880)...

Table 4.1: The Event numbers and possible particles are listed after different
selections. The third line is η → π−π+π0 and fourth line is η → γγ. The fifth
line is f1 → π−π+π−π+π0 and sixth line is f1 → π−π+γγ.
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4.6 Dalitz plotz
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Figure 4.8: f1 → π−π+η, η → γγ. The y-axis is the m2
π−η and the x-axis is the

m2
π+η[64].

In the Dalitz plot, the number of events of a 3-body final state are plotted as
a function of two (of the three) invariant 2-body masses squared.

From the Dalitz plot for the decay f1 → both π−η and π+η we can see the
a0 around 1.0 GeV/c2. In the middle, with the overlap of π−η and π+η, the
number of events is double to the events in the π−η or π+η.



Chapter 5

Kinematical distribution of π−f1

In this chapter we present the kinematical distributions of the π−f1 chan-
nel. First we show the mass distributions. We take all of the combinations
into consideration. Second we list the t distribution in 500MeV/bin of the
π−f1 mass and compare two kinds of fit, one is Aexp(−bt

′

), another one is
At

′

exp(−bt
′

). Third we present the angular distribution. We compare the
angular distributions in the Gottfried-Jackson and the helicity frame.

5.1 Mass distributions

After event selection, which has been discussed in chapter 4, now we want to
understand more about the different π− and π+ distributions. There are two
π− in the final state for the case η → γγ. In most cases(more than 98%) one
is uniquely associated to the f1 decay. Here we set the X as π−

2 f1 and f1 as
π−
1 π

+η. It means that the π−
1 is the π− from the f1 decay and π−

2 is not. Fig.
5.1-5.3 show all the mass distributions for the case when η → γγ.
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Figure 5.1: Invariant mass of π−
1 π

+(left) and mass of π−
2 π

+(right) after f1
selection. η → γγ. The π−

1 is the π− in f1.
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In the figure 5.1, the left plot is the mass of π−
1 π

+ distributions with the
π−
1 from the f1 decay. It shows peaks at 0.3 and 0.7 GeV. Due to the mass of

π± (0.139 GeV), the sum of π−π+ is around the first peak. The second peak
supports these two π may result from the σ or f0 decay. It means that π−

1 π
+η

in the f1 selection window(see section 4.5) have the (π−π+)Sη decay channel,
dominantly (π−π+)S ≈ f0 or σ.

The mass distribution of π−
1 π

+ sharply falls down when the mass > 0.7
GeV. The π−

1 π
+ mass distribution depends on f1 and η mass windows(see sec-

tion 4.5). The mπ−

1
π+ can not be larger than mf1 −mη ≈ 0.7 GeV. The right

plot is the mass of π−
2 π

+ distributions.
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Figure 5.2: Invariant mass of π−
1 η(left) and mass of π−

2 η(right) after f1 selec-
tion. η → γγ.

Fig. 5.2 show that the both the π−
1 η and π−

2 η have a peak around 1.0 GeV,
which may correspond to the a0(980). The right one has more background
because the π−

1 π
+η with the limit of f1 selection but π−

2 π
+η without any se-

lection. It means after the f1 event selection we reduce the combinatorial
background.

The a0 in π−
1 η is expected, known from previous measurement, (see Dalitz

plot page 50) and the a0 for π−
2 with the η may be due to the background

under f1.
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Figure 5.3: Invariant mass of π−
1 π

+η(left) and mass of π−
2 π

+η(right) after f1
selection. η → γγ.

From figure 5.3, we can learn that the f1 selection cut the mass window
of π−

1 π
+η(see section 4.5) but do not cut the π−

2 π
+η. Comparing the right

plots(π−
2 π

+η distributions after f1 selection) with the π−π+η distributions
without f1 selection(fig. 4.6 in section 4.5.1), we can see the π2π

+η mass
distributions have more background. It make sense, because before we do the
f1 selection the distributions includes either π−

1 or π−
2 but after we cut the

mass of π1π
+η with f1 window, the suitable π− take as π−

1 by the program
and another π− take as the π−

2 . But anyway the π−
2 π

+η still have the peaks at
the η

′

and f1 which is supported by the π−π+η distributions in section 4.5.1.
The number of events in this peak f1 is ≈ 500(see figure 5.3), thus for 1%(≈
500/49002) of the events, both π−π+η combinations yield the f1, which are
the ambiguous events.

In the case of π−f1 decay when η → π−π+π0 we have 3 π− and 2 π+,
So we have

(

2
3

)(

1
2

)

= 6 cases of π−π+ combinations. In order to analyse the
procession, we decide to compare the 6 cases. The mass distribution of π−π+,
π−π+π0 and π−π+π−π+π0 with all kinds of combinations will be shown in
appendix A.

5.2 t distributions

The t
′

is defined as:

t
′

= |t| − |tmin|, |tmin| ≈
(m2

Out −m2
Beam)

2

4|~PBeam|2
(5.1)

where the t has been defined as in section 1.3. The mOut and mBeam are the
mass of outgoing system X and incoming π−. The ~PBeam is the momentum of
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the incoming π−.

Here we show the t distribution when the mass range of the π−f1 is 1.50-
2.0 GeV and fits of two possible t functions which are usually applied in the
PWA(from[64]). Other t distributions will be presented in the appendix B.
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Figure 5.4: The fit A exp(−bt′) vs At′ exp(−bt′): 1.50 < m(π−f1) < 2.00[64]

The fit A exp(−bt′) is used when the projection of the spin J of X is M=0
and At′ exp(−bt′) is used when the projection is M=±1 which will be applied
in chapter 7.

5.3 Angular distributions

Various reference systems are used for the decay angular distributions. In this
section the Gottfried-Jackson frame and the helicity frame will be discussed.

In order to learn more from the π−f1 decay, we divide the mass into 500
MeV intervals. First of all, we define the angle θ and φ in the Gottfride-Jackcen
frame and helicity frame. Then the angular distribution of X → π− + f1 are
shown.

5.3.1 Gottfried-Jackson frame

The Gottfried-Jackson frame has relation to the t-channel conservation which
implies that the spin of π−f1 is aligned along the direction of the beam. In
the Gottfried-Jackson frame, which is presented in the following picture, the
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quantization axis(z axis) is defined as the direction of the beam after boost
into X = π−f1 rest system. The direction of the decay particle f1 defines the
polar angle θG with the z axis.

Figure 5.5: The definition of θG in G-J frame. P is the symbol for the ex-
changed particle supposedly a pomeron.

Here the ~P = ~pin − ~prec is the momentum of the exchange particle, ~pin and
~prec are the momenta of the incoming proton and recoil proton. The θ dis-
tribution is obtained in this way: first rotate all the momenta ~pπ−(incoming
π−), ~pin, ~prec and ~pX around the laboratory beam axis, so that they are in
the x-z plane with the X pointing in the direction of positive x. This defines
the production plane. Then we boost all the momenta ~pπ− , ~pin, ~prec and ~pf1
into the X rest system, with the z axis defined as the direction of beam. The
direction of y axis was defined vertical to the production plane.

The azimuthal angle φ is defined by the production plane and f1 momentum
in X rest system. The θ and φ defined as this section will be used as θG and
φG in the chapter 7.
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Figure 5.6: G-J frame: the cos θG distributions in X rest system
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Figure 5.7: The mass of X vs cos θG distributions in X rest system

From the figure 5.7 we can learn that most of the events are within the
mass range from 1.5GeV to 3.0GeV. With increasing mass of X more events
have cos θG close to -1. In order to see the angular distribution in different
mass ranges more clearly, now we divide the mass into intervals of 200 MeV.
Here we present the mass range from 1.5 to 1.8 GeV, more results will be listed
in the appendix C.
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Figure 5.8: cosθG distribution in X rest system:1.5-1.8. The left plot is for the
mass range [1.5, 1.7] GeV and the right plot is for the mass range [1.6, 1.8]
GeV.

Figure 5.8 support that in the mass range [1.5, 1.8] GeV the cos θG distri-
bution has a maximum but not symmetrical around 0.

Since the f1 has high background(≈ 50%, see figure 5.6), we want to know
how many contributions are from the background in every X mass bin. We as-
sumed the sum of left side-bin and right side-bin distributions are similar as the
background in the central bin. The left side-bin with 1.205 GeV ≤ mπ−π+η ≤
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1.235 GeV; the central bin with 1.255 GeV ≤ mπ−π+η ≤ 1.315 GeV; the right
side-bin with 1.335 GeV ≤ mπ−π+η ≤ 1.365 GeV. It can be seen that after
background subtraction the angular distribution shall be more symmetrical
around cos θG=0.

Here we show the results again for the X mass range from 1.5 to 1.8 GeV.
More plots are shown in appendix C.
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Figure 5.9: The cos θG distribution in X rest system:1.5-1.7. The left one is
the left side-bin; the middle one is the central bin; the right one is the right
side-bin.
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Figure 5.10: The cos θG distribution in X rest system:1.6-1.8. The left one is
the left side-bin; the middle one is the central bin; the right one is the right
side-bin.

Here we show the φG distributions of X=π−f1 system in G-J frame where
η → γγ.
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Figure 5.11: The φG distribution in the X rest system(G-J). The left one is
the left side-bin; the middle one is the central bin; the right one is the right
side-bin.

In order to learn more about φ distributions, we compare φG distributions
in G-J to φH distributions of the HL frame where η → γγ .

5.3.2 Helicity frame

The Helicity frame is related to the s-channel helicity conservation which is
examined in the helicity frame. In the helicity frame of X system the quan-
tization axis (z) points into the direction opposite to the recoil proton in the
CMS of π−proton, respectively.

Here the θH definition is done as this way: first boost into the total CMS.
In this system boost the recoil proton into total CMS, then boost π−, f1
into the X rest system. The definition of the z axis is the opposite direction of
recoil proton and defines the y axis vertical to the production plane(see section
5.3.1).The direction of the decay-particle f1 defines the polar angle θH with
the z axis. The azimutal angle φH is defined by the production plane and f1
momentum in X rest system.

Figure 5.12: The definition of θH in the Helicity frame
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Here we show the φH distributions of X=π−f1 system in HL frame where
η → γγ.
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Figure 5.13: The φH distribution in X rest system(HL) where η → γγ. The
left one is the left side-bin; the middle one is the central bin; the right one is
the right side-bin.
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Chapter 6

Monte Carlo simulation

In this chapter the Monte Carlo(MC) simulation will be described. A presen-
tation of the MC simulation for the exclusive π−f1 production will be given.
The full MC using the COMGEANT in order to simulate all details of the
spectrometer and, last but not the least, the fast MC will be introduced in
section 6.1. In section 6.2 and 6.3 the mass distribution and angle distribution
are shown with 1 million events generated and accepted. In section 6.4 we
show the acceptance of mass and angular distribution.

6.1 Full MC

The Monte Carlo simulation is the tool to calculate acceptance corrections.
It is generally divided into three steps, which form the so called Monte Carlo
chain[19]:
1) The generation of events: this is obtained using a computer program which
creates artificial events. A list of particles together with their 4-vector mo-
menta, randomly generated satisfying some predefined kinematic distribution
characteristic of the reaction under investigation[19].
2) The output of the event generation is read by a second program, which
simulates the physical processes which take place during the interaction of
the generated particles with the material of the detector components.[54] At
the end of this process, the position of hits in the tracking detectors, together
with time information, showers simulation in the electromagnetic and hadronic
calorimeters, radiation in the Cherenkov detectors, the bending of charged
particles trajectories in the magnetic fields present, all these processes are
simulated and quantitatively determined[19].
3) From the information obtained so far, the same reconstruction program
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used for real data is used to reconstruct the MC events and store them in files
ready for analysis[19].

6.1.1 COMGEANT

In COMPASS we use COMGEANT to do the Monte Carlo simulation. Before
we disscus the COMGEANT, we should know GEANT which is a system of
detector description and simulation tools that help physicists in more and more
fields[25]. The GEANT program describes the passage of elementary particles
through the matter. Originally designed for the High Energy Physics experi-
ments, it has today found applications also outside this domain in the areas
of medical and biological sciencies, radioprotection and astronautics[25]. The
principal applications of GEANT in High Energy Physics are: 1. the tracking
of particles through an experimental setup for simulation of detector response.
2. the graphical representation of the setup and of the particle trajectories.
COMGEANT is derived from a frozen version of the GEANT3 simulation tool,
developed during the last decades at CERN.

Figure 6.1: A MC chain illustrating the typical simulation flow for COMPASS
analysis[63]

Figure 6.1 shows a typical COMPASS Monte Carlo (MC) software chain
as it was set up to simulate the acceptance of exclusive diffractive processes.
Events, produced by generator, were propagated through the spectrometer by
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the COMPASS GEANT (COMGEANT) software[63]. The COMPASS Re-
construction Library (CORAL) package was simulating most of the detector
responses for final user event selection and analysis.

At COMPASS, MC data are written in the same format(mDST files) as real
data. At this point, the same routines written by the user to analyse the real
data are employed to analyze the reconstructed MC data[19]. A quantitative
comparison of the generated and reconstructed MC data puts in evidence the
cumulative effect of geometric acceptance, detector and event reconstruction
efficiency, which all contribute to the distortions of the various spectra charac-
teristic of real data. After the Monte Carlo acceptance calculations, real data
may be corrected and results of physical interest gained from the analysis[19].

Figure 6.2: Event display for a simulated π−p interaction with COMGEANT.

A graphical representation of simulated π−p interactions and subsequent
decays as seen by COMGEANT can be viewed in the figure 6.2, where a section
of the detector layout and the tracks and calorimeter showers are shown (the
various colors correspond to different particle types).

6.1.2 Reconstruction using CORAL

After we obtain the randomly generated events in the first step, we need to
reconstruct the events. In order to reconstruct the interaction of particles in a
generated event with the detector, the CORAL program is used by the COM-
PASS Collaboration.

Specifying in an option file the various configuration parameters, like the
detector geometry and so on, which depends on the year of data taking and
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physics program conducted, the number of events reconstruction, the list of
physical process that a charged or neutral particle undergoes travelling through
the spectrometer, depending on the particle nature and energy, all these infor-
mations result in a so called ZEBRA file[6], which contains the raw data, like
position of the hits in tracking detectors, time characteristic of the signals, en-
ergy deposit of the hadronic and electromagnetic shower in the calorimeters,
Cherenkov radiation in the RICH, and so on[53]. These raw data are sub-
sequently elaborated by the event reconstruction program CORAL, and the
reconstructed events are finally stored in mDST files, in analogy to real data[6].

In order to use CORAL, we need to specify in an option file what kind
of detector configuration has been used by COMGEANT. To speed up the
simulation, a second possibility forseen by the programs was employed: sim-
ulated detector information was not written in the ZEBRA files, instead a
so called pipe, based on a FIFO5 mechanism, sent the COMGEANT output
for the single event directly to CORAL for reconstruction. This method had
the advantage of saving time and space on computer storage system without
loss of precision in the MC simulation[42]. The resulting mDSTs with the
reconstructed events at the end of the MC chain, were ready for use in the
analysis of the MC data, performed with the same routines already written
for real data analysis[6]. The binary file from the event generator contain-
ing the event description on an event-by-event basis constitutes the input for
COMGEANT[19].

In order to reconstruct Monte Carlo simulations with same CORAL version
as for real data and same material maps, the detectors.dat which include
radiation length for detectors outside material maps, per plane efficiencies and
detector position should be known[6]. We can get the vertex information,
position, time and track information from the homepage of COMGEANT. As
for the particle type, in this thesis η, π−, π+, π0 will be cared about.

6.1.3 The full MC and fast MC

The only detection elements in the COMPASS experiment implemented in the
photon acceptance Monte Carlo selection, sometimes also referred to as ”Fast
Monte Carlo”, are the two electromagnetic calorimeters ECAL1 and ECAL2
and the 3.14m long steel tube of the RICH detector that plays a major role in
the acceptance of events with photons (more details see[10]).

The ECALs are implemented as simple plane areas perpendicular to the
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beam line and located at the center of the calorimeters(see section 2.6). An
event is accepted when both photons hit any of the two planes.

With the known 3-momentum of the gammas from the generator one can
easily calculate their hit points in the ECAL planes according to formula 6.1,
with ~rh as the position vector of the hit point, ~rv the generated vertex position,
~pr/|~pr| the direction of the photon’s momentum and κ the distance between
the vertex and the hit point.

~rh =
( rx
ry
rz

)

= κ~pr/ |~pr|+ ~rv (6.1)

To simulate the threshold of the calorimeters an event is neglected if a photon
hits ECAL1 and has an energy smaller than 1GeV or if a photon travels in
ECAL2 and its energy is less then 4GeV.

6.2 Event Generation

Many different event generators are used within the Collaboration, every of
which tuned to a particular channel under investigation, because of the vast
physics program of COMPASS[64].
An event generation consists of a ROOT script written in C++, whose task
is to write in its output file the particle identity and its 4-momentum for all
the particles in an event - on an event by event basis[19]. The processes to
simulate are for the subject of the present thesis:
1) The scattering and diffractive excitation of the incoming beam π− on the
proton at rest in the laboratory frame;
2) The production of the X=π−f1 system in a given kinematic range, similar
to real data;
3) The decay X → π− + f1;
4) The f1 → π−π+η;
5)The η → γγ;

Information about a single event is thus written in the output file describ-
ing the reaction in the interaction point. Due to the two subsequent decays
X → π−f1 → π−π−π+η(γγ), whose description is best suited in the rest
frame of each one of the decaying particles, further complications must be
faced. Therefore much attention was paid to the series of rotations and boosts
which must be performed going from the rest frames to the laboratory frame,
which is the default frame for the further simulation of an event. All these
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decay processes were simulated to be isotropic, for a precise determination of
the acceptance effect on the reconstructed angular distributions[19].

The first thing that the generator code does is randomly choosing a vertex
position. For the z-component a simple random number is uniformly generated
in the target area between -70cm and -30cm(see section 2.1). With a routine
programmed the resulting position vector for the primary vertex is used to
interpolate a possible direction of the beam. The x, y and z component is
randomly picked out of a histogram showing the vertex distribution in 2008
COMPASS data.
As for the generation of the vertex, we can see the figure 6.3.
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Figure 6.3: Generated vertex distribution: the left one is the z-distribution;
the right one is the xy distribution. For the z-component a random number is
generated in the target area(-70cm, -30cm).

With the generated 1 million events we get the X(π−f1) mass distributions
in the mass range [1,3.5] GeV as shown in figure 6.4.

Entries  1000000

1 1.5 2 2.5 3 3.5
0

500

1000

1500

2000

2500

Entries  1000000

Figure 6.4: The generated of X(π−f1) mass distribution in the G-J frame
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Here generate the angular distribution of f1 in the G-J frame with 1 million
random events. The figure 6.5 shows the cos θG distribution with the [-1,1]
range. The φG distribution has the range [-π,π].
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Figure 6.5: The generated cos θG distribution in the G-J frame.

In figure 6.6 the generated energy vs angle of γ in the X system.
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Figure 6.6: The generated energy vs angle of γ.

After generate 1 million events in the X rest system, in order to use
COMGEANT and CORAL, we need to rotate and boost the Lorentz vec-
tors into the laboratory system.
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6.3 Event accepted by fast MC

Figure 6.7 - 6.11 show the accepted distributions of X=π−f1 where the fast
MC was used. In the figure 6.7 we present the π−f1 mass distributions accepte
by fast MC.
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Figure 6.7: The accepted π−f1 mass distribution. The accepted events are
423005. Comparing with the 1 million generated events, the average accep-
tance is about 42 percent(see section 6.5).

Figure 6.8 is the angular distribution of f1 in the X=π−f1 system which
accepted by fast MC.
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Figure 6.8: The accepted cos θG distribution in the G-J frame.
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Next, we divide the mass of X into 200 MeV/bin from 1.5 to 3.1 GeV.

Reconstructed angular distribution of f1 in G-J frame with mass of X[1.5,1.7]
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Figure 6.9: The accepted cos θG distribution of f1 in the G-J frame. The left
plot is in the X mass range from 1.5 to 1.7 GeV; the middle one is in the X
mass range from 1.7 to 1.9 GeV; the right one is in the X mass range from 1.9
to 2.1 GeV.
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Figure 6.10: The accepted cos θG distribution of f1 in the G-J frame. The left
plot is in the X mass range from 2.1 to 2.3 GeV; the middle one is in the X
mass range from 2.3 to 2.5 GeV; the right one is in the X mass range from 2.5
to 2.7 GeV.
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Figure 6.11: The accepted cos θG distribution of f1 in the G-J frame. The left
plot is in the X mass range from 2.7 to 2.9 GeV; the right one is in the X mass
range from 2.9 to 3.1 GeV.

With the MC accepted, we can see in the figure 6.12 where the enery vs
angle of γ is plotted that we lose many events at the small angle.
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Figure 6.12: The distribution of accepted events as a function of energy vs
angle of γ.

From the figure 6.12 we can learn that due to the small ECAL1 gap we lost
events(γs) at the angle 0.005 rad, in additional, the RICH pipe contributes to
the loss of events with the fast MC.

6.4 Acceptance of fast MC

For every bin i of mass distributions and angular distributions, the acceptance
is defined as:

Ai =
N reco

i

N gen
i

(6.2)

Here the N reco
i is the bin content for accepted MC data, N gen

i is the MC
generated data, Ai is the MC acceptance. N reco

i and N gen
i have the same bins.

The acceptance as a function of the π−f1 mass is shown in figure 6.13.
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Acceptance mass distribution
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Figure 6.13: The acceptance as a function of π−f1 mass.

Particular attention was paid to the acceptance for the angle θG. Figure
6.13 are the angular distribution acceptance of f1 in the G-J frame of X rest
system.
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Figure 6.14: The acceptance as a function of cos θG. The acceptance is highest
when cos θ =-1; and the acceptance is lowest when cos θ =1.
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Acceptance angular distribution of f1 in G-J frame with mass of X[1.5,1.7]
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Acceptance angular distribution of f1 in G-J frame with mass of X[1.9,2.1]
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Figure 6.15: The acceptance as a function of cos θG, in different bins of the
mass of X. The left plot is in the X mass range from 1.5 to 1.7 GeV; the middle
one is in the X mass range from 1.7 to 1.9 GeV; the right one is in the X mass
range from 1.9 to 2.1 GeV.

Acceptance angular distribution of f1 in G-J frame with mass of X[2.1,2.3]
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Figure 6.16: The acceptance as a function of cos θG. The left plot is in the X
mass range from 2.1 to 2.3 GeV; the middle one is in the X mass range from
2.3 to 2.5 GeV; the right one is in the X mass range from 2.5 to 2.7 GeV.

Acceptance angular distribution of f1 in G-J frame with mass of X[2.7,2.9]
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Figure 6.17: The acceptance as a function of cos θG. The left plot is in the X
mass range from 2.7 to 2.9 GeV; the right one is in the X mass range from 2.9
to 3.1 GeV.

Comparing these plots we can learn that at higher mass, the angular dis-
tribution of f1 in G-J frame of X system will have lower acceptance when cos θ
= 1. From the formula of Lorentz Boost we can calculate the momentum of
π− and f1 in the lab system. If the f1 goes forwards, the momentum of π− is
very low and outside spectrometer acceptance.



Chapter 7

Partial wave analysis

The partial Wave Analysis (PWA) is a technique used in hadron spectroscopy
to extract information about the spin-parity and decay properties of resonances
produced in hadronic interactions[9]. Typically, these resonances are produced
at accelerator experiments by a variety of production mechanisms[9]. At the
same time it is one of the best ways to do the search for spin-exotic states[9].
With this technique, a given data set containing final state decay products
of some resonances can be exploited and the resonance parameters be deter-
mined. Those include the mass, the width(Γ) and the JPC quantum numbers
as they have been introduced in chapter 1. In order to identify the spin prop-
erties, an evaluation of the angular distributions of the final state particles
is the key. The PWA furthermore takes interferences between different, in
their masses overlapping, states into account. In fact it is often solely this in-
terference behavior, which leads to the believable discovery of a new resonance.

Depending on the particular production mechanism and reaction chain,
different PWA implementations are usually employed. This can be due to
computing performance reasons, but also principle physics arguments can play
a role[1].

Generally PWA begins with some physics assumptions concerning the re-
action process. First of all I will summarize them for the analysis presented
in this work and also point out their implications. Furthermore, a PWA is
always based on the spin formalism, which employs certain reference frames
and decides on the concrete representation of spin states and angular distribu-
tions. Therefore I will briefly introduce a very common approach. The com-
putational techniques of the performed PWA[1], namely a mass-independent
extended maximum likelihood fit followed by a mass-dependent fit, are de-
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tailed at last. All output parameters obtained from the fits are explained and
the quality assurance of the whole procedure is discussed.

In this chapter we concentrate on the PWA of π−f1 and subsequent decays.
The case of π−f1 to π−π−π+η is described here. The purpose is a quantitative
determination of the different possible spin-parity contributions JPC for the
observed structure.

In this chapter we proceed along these ways. First of all we describe the
physics assumptions and implications. Secondly, we present the decay ampli-
tude and production amplitude. Thirdly, we disscus the angular distribution
fit. Then we divide mass bin of X into every 50MeV/c2 in order to get the
mass-independent partial wave analysis. Last but not the least we present a
mass dependent fit.

7.1 Assumptions and Implications

The performed PWA relies on physics assumptions, which are described in
this section. They lead to a parametrization of the reaction cross section and
are therefore crucial for the whole procedure. Some of the assumptions are
connected to the production process and are therefore very specific to the
diffractive dissociation case[63]. The one-Reggeon exchange is an example for
this. Others like the isobar model are very common and used in most PWA
nowadays. As far as possible, the actual impact of each assumption is ad-
dressed, whereas some of the technical points have to be resumed later in this
chapter again after more details about the analysis have been explained. To
provide a basis for the following discussions, figure 7.1 illustrates in a simplified
way the diffractive resonance production, isobar model assumed as described
in section 1.3.3, focussing on the features relevant for the PWA. In particular
all involved quantum numbers and notations are introduced.

In order to be able to exploit the angular distributions of an event in the
PWA fit, it is of course a prerequisite that all final state particles have been
measured by the experiment. In the most general case this includes not only
the resonance decay products but also the recoil particle. However, in the case
of diffractive dissociation at high beam energies the recoil can be regarded as
completely separated (large rapidity gap)[63]. The π− projectile only grazes
the target and the resonance X is purely produced from the upper vertex. Thus
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its properties can in fact be studied from the knowledge of the 4-momenta of
the decay products only. In other words, it is assumed that the total reaction
cross-section factorizes in products corresponding to a projectile/resonance
and a target/recoil vertex without any further final state interactions. The
target just acts as a strong interaction partner and provides momentum and
angular momentum transfer to the beam projectile[63]. Neither it breaks up
nor it is excited and its mass stays therefore the same throughout the whole
reaction. Momentum conservation require that the recoil proton is opposite to
the X in CMS. This is verified in the data selection and part of exclusively cuts.

Before it is possible to write down a decay amplitude using a particular
spin formalism, it has to be defined how the final state particles are grouped
to construct the decay chain. The most popular approach, which is followed
also by the employed PWA program, is the so-called isobar model(see section
1.3).

Figure 7.1: Production and decay of the chain πp → Xp,X → π−f1, f1 → a0π,
a0 → πη in the isobar model.

The state X is characterized by JPCM ǫ, where J, P and C are the total
spin, parity and charge conjugation. M is the spin projection along the z axis
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and ǫ represents symmetry of π−f1 system under reflection in the production
plane. Viewed in the terms of some exchange mechanism ǫ = + corresponds
to natural parity exchange and ǫ = − corresponds to unnatural parity ex-
change. The natural parity means ǫ = Pex(−1)Jex=1. Here the Pex and Jex
are the spin and parity of the exchange trajectory. At high energy the particle
which dominates among the exchanged Regge-trajectories(”Reggeons”) is the
flavourless ”Pomeron”[56]. The S is the spin of f1 and L is the orbital angular
momentum between π−(bachelor) and f1.

The decay at point A is described in the Gottfried-Jackson frame(see sec-
tion 5.3) which is the rest frame of the π−f1 with the beam direction defining
the z-axis and the normal to the production plane defining the y-axis. In this
frame the angles of the f1 (or opposite direction of bachelor pion) are denoted
by θG and φG. The decay at point B is described in the helicity frame, the rest
frame of the π−π+η system with the boost direction to that frame defining
the z-axis. The decay of f1 → π+π−η is a three-body decay. Again in the iso-
bar model this three-body decay is described by subsequent two-body decays
f1 → π±+a∓0 or f1 → (π−π+)Sη and finally a∓0 → π∓η and (π−π+)S → π−π+.

As already mentioned in terms of exchange reactions, as discussed above,
the Pomeron is the most prominent exchange trajectory. It carries angular
momentum and helicity and thus the beam pions with JP= 0− may be ex-
cited to different JP states X[44]. No isospin or electric charge is transferred
from the target to the projectile. It should be emphasized at this point that
the performed PWA does not directly take the quantum numbers of the target
(recoil) into account. The inserted waves refer only to the state X and its de-
cay. The fact that the (unpolarized) target might have spin (nucleon case) or
not (lead case) is only reflected in the number of fit parameters, more precisely
in the rank of the spin density matrix[8].

In strong interactions parity is conserved[7]. This is in particular true for
the diffractive meson production, and therefore the PWA has to take it into
account. It has been a common practice to describe the production charac-
teristics X (see fig. 7.1) in terms of the reflectivity ǫ= ∓1 quantum number,
limiting at the same time the spin projection to values M ≥0. This turns out
to be a very convenient description, since parity conservation can be translated
into the fundamental constraint that waves with opposite ǫ are not allowed to
interfere.

A second important, although again not trivial topic connected to the re-
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flectivity is its correspondence to the exchanged naturality(see page 75). Since
diffractive reactions are dominated by a Pomeron exchange, only ǫ= +1 waves
are expected to contribute significantly to the PWA fit[7]. Therefore, from the
beginning on, much less ǫ = -1 waves compared to ǫ = +1 waves are considered.

7.2 Wave selection

In the following we discuss the possible properties (quantum number combi-
nations) of the states X which are produced by the diffractive dissociation
(excitation) of an incoming beam pion to a resonance X on a proton target,
with an elastically recoiling proton. Apart from the mass, these states X are
characterized by the spin and parity JP

X and by the z-projection MX and the
reflectivity ǫ, defined in the Gottfried-Jackson reference system(In order to do
not mix with the JI and JF , in this section we use JX and MX replace the J
and M.).In other words, we provide a list of production selection rules imposed
by the quantum numbers of the incoming particles, pion and proton, and the
particular kinematics and choice of description: 2 → 2 reaction: π−p → Xp at
low momentum transfer t, with abs(t) between 0.1 and 1.0 GeV 2 and invari-
ant masses of X below 3GeV 2. For the choice of a particular final state, i.e.
a specific decay of the resonance X, decay selection rules to be derived from
the quantum numbers of the final state particles provid further constraints of
the possible quantum number combinations for the resonances X. Both, pro-
duction and decay selection rules help to limit the number of amplitudes to
be considered in a partial amplitude analysis.

First we consider the incoming and outgoing system in the cm reference
frame (see figure 5.5) under the assumption that we can add all spins and
angular momenta in a non-relativistic way. For simplicity and intuitive rea-
sons it is assumed that the orbital angular momentum between π− and p in
the incoming state and between X and p in the outgoing state are larger than
the spins of p and X. For peripheral reactions this assumption appears justified.

The projections of both orbital angular momenta to the axes of incoming
and outgoing particles which almost coincide at this large energy are zero. For
the measurements in 2008/2009 an unpolarized proton target was used. Hence
the p spin projection along the chosen z axis is +1/2 or -1/2. Two cases will
be considered, one without a spin-flip and the other one with the spin flip of
the proton.
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The total angular momenta JI and JF of all particles in the initial and in
the final state are given by the vector sums of the spins of the particles (Sp and
Srp = 1/2 for the initial and final, recoil proton, Sπ−= 0 for the pion and JX
for the system X) and the orbital angular momenta between the two incoming
and the two outgoing particles, LI and LF and total angular momenta are
conserved ( ~JI = ~JF ).

~JI = ~LI + ~Sπ− + ~Sp = ~LF + ~JX + ~Srp = ~JF (7.1)

Under the above assumption of large orbital angular momenta this leads to
the following relation between the quantum numbers of the involved angular
momenta:

|LI ± Sπ− ± Sp| = |LF ± Srp + JMX | (7.2)

where JMX may take all values from −JX ,−JX +1, ...0, ...+ JX . (Strictly
speaking, not all values are allowed. If the spin projections are all zero, some
combinations are excluded, due to symmetries and the resulting fact that the
Clebsch-Gordan coefficients involved in the sum of spins are = zero, as will be
discussed below).

The equations for the total parity, a conserved quantum number as well,
of initial and final state are:

PI = Pπ−Pp(−1)LI = PXPrp(−1)LF = PF (7.3)

Here, PI and PF are the parities of the incoming and outgoing state. Pπ− and
Pp are the parities of π− and proton. PX and Prp are the parities of X and
recoil proton. Parity is a multiplicative number and the fact has been used
that the parity of an orbital angular momentum L is (−1)L.

For completeness, the equations for the spin projections are given here as
well, although we will not use it for this first considerations relevant to the
production selection rules:

MI = MLI +Mp = MLF +MX +Mrp = MF (7.4)

Here, MLI is the projection of the orbital angular momentum of the incoming
state. MX is the spin projection of the resonance X(π−f1) with spin JX . And
Mp and Mrp refer to the spin projections of the incoming and recoil proton.
MLF is the projection of LF . MI and MF are the total spin projection of
incoming and outgoing states.
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Consider the case JX=0 as an example. Since Sπ− is 0 one obtains LI±Sp =
LF ± Srp from formula 7.2. Now, for the case that Sp and Srp have the same
sign, which we call non-flip case, we get LI − LF=0. This has an implication
on the intrinsic parity of the produced system X. Using the equations 7.2 for
the parities, it is obvious that for this example JX=0, the parity of X must be
-1, since Pπ− = -1 and the parity of the proton cancels in the equation. When
one considers the spin-flip case (i.e opposite signs of Sp and Srp) one can get
LI − LF=1. So with the formula 7.2 one can also obtain PX= 1.

As a result of these considerations, the states which are allowed for the
production are presented in the table 7.1.

Overlap JX PX

no-flip 0 -1
no-flip 1 +1
no-flip 2 -1
no-flip 3 +1
flip 0 +1
flip 1 ±1
flip 2 ±1
flip 3 ±1

Table 7.1: Quantum number combinations of the system X which are allowed
for the production for the two cases spin-flip and no-flip of the proton. The
JX and PX are the total spin and parity of X. The JI and PI are the total
spin and parity of the incoming state.

In the following considerations we wish to include two more quantum num-
bers: the reflectivity ǫ and the spin projection MX of the resonance in the
Gottfried-Jackson reference system. According to the sometimes very old lit-
erature (from the years 1960-1975) the reflectivity is connected with the nat-
urality of the exchanged particle in the reaction as already mentioned above:

ǫ = Pex(−1)Jex (7.5)

where Pex is the parity an Jex is spin of the exchanged particle. The proof is
easy in the case where all projections of involved angular momenta are zero[2]
but difficult for the case where they are not.

Reflectivity is the quantum number of the reflection operator. Reflection of
coordinates wrt the production plane (x-z plane) corresponds to the product
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of the inversion (parity operator) and a rotation by 180 degrees around the
y axis (vertical to the production plane). The reflectivity eigenstates are as
follows:

| JXMXǫ〉 =| JXMX〉 − ǫPX(−1)JX−MX |JX −MX〉 (7.6)

The variable MX on the left side of this equation together with ǫ is always ≥ 0.

When MX=0 then, obviously, | JXMX〉 =| JX −MX〉. Thus, if the prod-
uct ǫP (−1)J−M =+1, the corresponding reflectivity eigenstate is 0. In other
words, for the positive reflectivity eigenstates, with ǫ=+1, only quantum num-
ber combinations with PX(−1)JX =-1 are allowed. Thus the state 1− for ex-
ample cannot be produced with MX=0 and positive reflectivity.

This result can be derived in an intuitive way making use of the exchange
diagram shown as: [2]. This diagram (compare fig. 7.1) is some kinds of short
notation of the figure underlying equations 7.6 used above. It corresponds to
the picture used to illustrate the Gottfried-Jackson system, however with an
additional boost along the z direction such that the exchange particle is at
rest. With the spin and parity of the exchange particle Jex and Pex and the
orbital angular momentum L between the incoming π and the outgoing system
X and the JpX

X of X, we obtain the simple equation for the resulting spin of X:

~JX = ~L+ ~Jex (7.7)

since the spin of the pion is zero. For the parity, one gets:

PX = Pπ−(−1)LPex = (−1)L+1Pex (7.8)

Note that in this reference system the projection of L can only be zero. Thus
any spin projection can only come from the exchanged particle. Now assuming
Mex =0 and that the exchanged particle has positive naturality, i.e. Pex(−1)Jex

= +1, one can derive the possible values of JpX
X . This has been done for values

JpX
X : 0+, 1−, and 2+, and allowing for all possible values of L.

In these combinations of spin of the exchange particle and the orbital angu-
lar momenta, the symmetry properties of the Clebsch Gordan coefficients enter
since we have to consider the sum of two spins (orbital angular momentum L
and Jex. For instance, combining a Jex = 1 with an L=1 the relevant Clebsch-
Gordan coefficient is zero. This excludes the possibility of producing an X
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with Jp
X = 1− with MX = 0. The result is shown in Table 7.2: For MX = 0

only states X with unnatural spin parity combination can be produced, in
agreement with the considerations above, for the case of non-spin-flip.

For Mex = 1 almost all states except JpX
X = 0+ are allowed, again in

agreement with the results from the simple considerations involving spin flip.
It is therefore suggestive to associate spin flip with an Mex= 1 of the exchange
particle.

JP
X ǫ MX

0−, 1+, 2−, 3+... +1 0
1+, 2−, 3+, 4−... +1 1
1−,2+, 3−, 4+... +1 1

Table 7.2: The JP
XM

ǫ
X states of the wave selection. These 1−, 2+, 3− states

require MX =1 for the natural parity exchange.

So far we have shown that with the simplifying considerations for the case
MX =0 and assuming the exchange of particles with a natural spin-parity
combination only states X with an unnatural spin parity can be produced if
only reflectivity eigenstates with positive ǫ contribute. Thus, these arguments
justify our choice of (production) allowed quantum numbers for the state X
for the cases of MX =0.

Former data analyses have shown that the partial waves with negative reflectiv-
ity ǫ and/or spin projection MX > 1 are much suppressed and, as mentioned,
it has been shown that the production of negative reflectivity eigenstates is as-
sociated with the exchange of an unnatural spin parity combination. In other
words, it make sense to justify the neglect of partial amplitudes with negative
reflectivity and MX =1[63]. Therefore, only states with ǫ = +1 are taken into
account.

In summary, the series of quantum numbers JP = 1+, 2−, 3+, 4− and so on
is consistent with both MX = 0 and = 1. For 0−, since the projection MX is
always ≤ J the spin, only MX = 0 is possible. States with JP = 1−, 2+, 3−, 4+

and so on require MX = 1 if at the same time ǫ = +1. This is independent
from the fact that 1− and 3− are spin-exotic in the sense that they can not
come from a qq system.
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Next, the decay selection rules imposed by the quantum numbers of the two
particles in the final state are derived. The final state of this thesis, X= π−f1,
has isospin I = 1, from the π−. The isospin of the f1 is zero. This state X is
not an eigenstate of C(the charge conjugation eigenvalue). When we quote C,
it is the C-parity of the corresponding neutral final state, for example the state
π0f1, which is indeed an eigenstate of C, since both f1 and π0 are eigenstates
of C. The C parity and G parity are related by the relation C = G(−1)I , where
I is the isospin of the system we transform. G applied to pions is -1, G applied
to f1 is +1. So G of the final state π−f1 is -1, because the total G parity is
multiplicative. Since C = G(−1)I and I = 1 of the π−f1 state, the total isospin
must be 1 and the C of the neutral final state is +1. Thus all of the possible
states X will carry the label C=+1.

For the decay of X into π−f1, the following formulas for the relations be-
tween spin JX and parity PX of X and of π−f1 apply, corresponding to the
equations 7.9 and 7.10 for the decay of the exchange particle into beam pion
and X:

|L− 1| ≤ Jπ−f1 = |Sπ− ± Sf1 ± LM | ≤ L+ 1 (7.9)

and

Pπ−f1 = Pπ−Pf1(−1)L = (−1)L+1 (7.10)

where LM takes all values from -L to +L. Thus, we can get the table 7.3.

L JPC
X

0 1−+

1 0++, 1++, 2++

2 1−+, 2−+, 3−+

3 2++, 3++, 4++

Table 7.3: The possible JPC
X combinations of X allowed from the decay of into

π−f1 with the different orbital angular momentum L. The JPC
X list with the

different orbital angular momentum L. The JX , P and C are the total spin,
parity and charge conjugation of the resonance X(π−f1).

Applying both, the production and decay selection rules derived above, we
can get the final wave selection as shown in table 7.4.
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JPC
X M ǫ

X Wave L
1−+1+ S 0
1++0+ P 1
2++1+ P 1
1−+1+ D 2
2−+0+ D 2
3−+1+ D 2
2++1+ F 3
3++0+ F 3
4++1+ F 3

Table 7.4: The selected waves for the partial wave analysis. Allowed JPC
X for

the states of X decaying into the π−f1 channel. Here, L is the orbital angular
momentum between π− and f1 in the X decay. The JX , P and C are total
spin, parity and charge conjugation of the resonance X(π−f1). The MX is the
projection of JX in the Gottfried-Jackson system.

7.3 Decay Amplitudes and Production Ampli-

tude

Remember the decay amplitude (formula 1.23):

AX = (2L+ 1)1/2
∑

λ

DJX∗
MXλ(ΩG)(L0sλ|JXλ)(sπ−λπ−sf1 − λf1|sλ)FL(p)aLsAπ−Af1

(7.11)

We consider a state X with mass mπ−f1 which has spin J=JX with z pro-
jection M=MX . This state X decays to π− and f1. Here x1 =π−, hence (s1,
λ1)=(sπ− , λπ−) and x2 =f1, hence (s2, λ2) = (sf1 , λf1). In the rest system
of X the π− and f1 have a breakup momentum ~p and relative orbital angular
momentum L.

For the list of possible JPC values as shown in the table 7.4, we can calcu-
late the factors (L0sλ|Jλ) for the three possible spin projections λ(in helicity)
of X. Here we just list five JPC states with J < 3.
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L JPC λ = −1 λ = 0 λ = 1
0 1−+ 1 1 1

1 1++
√

1/2 0
√

1/2

1 2++
√

1/2
√

2/3
√

1/2

2 1−+
√

1/10 -
√

2/5
√

1/10

2 2−+
√

1/2 1 -
√

1/2

Table 7.5: The possible value of the factor (L0sλ|Jλ) when we set different L
and J ,P for the three possible helicities λ of X.

The amplitude for the 1++ case, as an example, is therefore(see page 17)
if we take M=0 according to table 7.4.

AX(1
++) =

√
3[
√

1/2D1
0−1FL(p)aLsAπ−Af1 +

√

1/2D1
01FL(p)aLsAπ−Af1 ]

(7.12)

Here the production factor aLs only depends on the mass of X. As for the
f1 decay, the amplitude Af1(τ) is for both branches, the decay via πa0 and the
decay via (π−π+)Sη:

Af1(τ) =
√
2 + 1

0
∑

λ′=0

DJ∗
λλ′ (ΩH)(1000|10)(0000|00)FL(pf1)a10BW (mf1)Ax1

Ax2

(7.13)

=
√
3D1∗

λ0(ΩH)FL(pf1)a10BW (mf1)Ax1
Ax2

(7.14)

∝ D1∗
λ0(ΩH) (7.15)

Where x1 and x2 are either a
±
0 and π∓ or (π−π+)S and η and a10 is a constant

production factor. The mass dependence of the production amplitude is in
the Breit-Wigner amplitude BW (mf1) and the D1∗

λ0(ΩH) function where ΩH

= (θH , φH , 0). Here the λ
′

is the sum projections of two child particles of f1
decay in helicity frame which just can be 0. All the child particles from the f1
decay into the π±a∓0 or (ππ)sη are spinless. So the decay amplitudes of two
child isobars are constants with respect to angles.

The contribution of resonances with JPCM ǫ are listed in table 7.6.
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L JPCM ǫ Amp(
∑1

λ=−1 D
J∗
M,λ(ΩG)D

1
λ,0(ΩH))

0 1−+1+
∑1

λ=−1 D
1∗
1λD

1∗
λ0Cλ(J

PC)

1 1++0+
∑1

λ=−1 D
1∗
0λD

1∗
λ0Cλ(J

PC)

1 2++1+
∑1

λ=−1 D
2∗
1λD

1∗
λ0Cλ(J

PC)

2 1−+1+
∑1

λ=−1 D
1∗
1λD

1∗
λ0Cλ(J

PC)

2 2−+0+
∑1

λ=−1 D
2∗
0λD

1∗
λ0Cλ(J

PC)

3 3++0+
∑1

λ=−1 D
3∗
0λD

1∗
λ0Cλ(J

PC)

3 4++1+
∑1

λ=−1 D
4∗
1λD

1∗
λ0Cλ(J

PC)

Table 7.6: The connection between the decay amplitude of X(JPCM ǫ) and D
functions when we set different L, J ,P and M. In this table M is the projection
of X in the G-J frame, λ is the sum projections of f1 and π− in the G-J frame.
Cλ(J

PC) are the parameters which have different values according to the JPC ,
λ and the masses of X, f1, a0, (ππ)S.

Assuming for simplicity and didactic reasons that the decay chain of X to
the final state proceeds through steps where all isobar are uniquely defined,
for instance X → f1π

− → (ππ)Sηπ
−, all the angles ΦG and ΦH are uniquely

defined, then equation 7.11 can be written as 7.16-7.18 where constants like√
2L+ 1, aLs and Aπ have been contributed into the constants a1, a2, a3. From

the above analysis we know that when λ=-1, 0 and 1. We can get the decay
amplitude AX(J

PM, τ) as:

AX(J
PML, τ) =a1D

J∗
M−1(ΩG)D

1∗
−10(ΩH)(L0s− 1|J − 1)FL(p) (7.16)

+ a2D
J∗
M0(ΩG)D

1∗
00(ΩH)(L0s0|J0)FL(p) (7.17)

+ a3D
J∗
M1(ΩG)D

1∗
10(ΩH)(L0s1|J1)FL(p) (7.18)

Using the relation between D-functions and spherical harmonics:

Dℓ
m0(α, β, 0) =

√

4π

2ℓ+ 1
Y m∗
ℓ (β, α), (7.19)

the three D-functions for the different λ can be calculated as:

D1∗
−10(ΩH) =

√

4π

2 + 1
Y −1
1 ∝ sin θHe

−iφH (7.20)

D1∗
00(ΩH) =

√

4π

2 + 1
Y 0
1 ∝ cos θH (7.21)
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D1∗
10(ΩH) =

√

4π

2 + 1
Y 1
1 ∝ sin θHe

iφH (7.22)

Therefore, the amplitude AX(J
PCM, τ) for the decay amplitude of X be-

comes:

AX(J
PM, τ) = T1D

J∗
M−1(ΩG) sin θHe

−iφH + T2D
J∗
M0(ΩG) cos θH + T3D

J∗
M1(ΩG) sin θHe

iφH

(7.23)

The ΩG are the angles (θG, φG) in the G-J frame and φH and θH are the
angles which describe the f1 decay in the helicity frame. The M is the spin
projection of X in the G-J frame and J is the total spin of X. T1, T2, T3 are
production of constants and the production parameters. The latter have to be
determined by the PWA-fits to the data.

Now changing to the reflectivity basis:

Aǫ
X(J

PML, τ) = η(M)
[

AX(J
PML, τ)− ǫP (−1)J−MAX(J

P (−M)L, τ)
]

(7.24)

where P is the parity of resonance X, L is the orbital angular momentum.

η(M = 0)=1/2, η(M > 0)=
√

1
2
, η(M < 0)= 0.

Let us take the S wave (L=0 for the X-decay, see table 7.4) for example.
The JPCM ǫ of this wave is 1−+1+, then with ǫ=1, ǫP (−1)J−M=-1, so we get
the amplitude AX(1

−+1+, τ) as:

Aǫ
X(1

−+1+, τ) = AX(1
−+1, τ) + AX(1

−+(−1), τ) (7.25)

= T1D
1∗
1−1(ΩG) sin θHe

−iφH + T2D
1∗
10(ΩG) cos θH + T3D

1∗
11(ΩG) sin θHe

iφH

(7.26)

+ T1D
1∗
−1−1(ΩG) sin θHe

−iφH + T2D
1∗
−10(ΩG) cos θH + T3D

1∗
−11(ΩG) sin θHe

iφH

(7.27)

= T
′

1(cosφG − cos θG sinφG) sin θHe
−iφH + T

′

2 sin θG cos θH sinφG (7.28)

+ T
′

3(cosφG − cos θG sinφG) sin θHe
iφH (7.29)

= [0](cosφG − cos θG sinφG) sin θH cosφH + [1] sin θG sinφG cos θH (7.30)

Here we assumed that the T
′

1 = T
′

3, because the projection should have the
same probability for -1 and 1.

We can know from the function 7.30, the decay amplitude as a function
of cosφH when we integrate over θG, φG, θH . The result(∼ ± cosφH) agrees
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with the φ distribution of f1 in helicity frame(see fig. 5.11). For the general
case, the observed differential intensity as a function of mX and JPCM ǫ is
then written in terms of reflectivity basis as[59]:

I(mX , τ) = η(τ)
∑

ǫ

|
∑

JML

aX(J
PM ǫ,mX)AX(J

PM ǫ, τ)|2 (7.31)

where aX(J
PM ǫ,mX) is the production amplitude, AX(J

P ,M ǫ, τ) is the de-
cay amplitude and τ = (θG, φG.θH , φH ,mf1) is the set of kinematic variables
describing the decay of the resonance and isobar. The η(τ) is the acceptance
function. In order to account for detector acceptance, Monte Carlo simulations
were used to find the acceptance function η(τ) (see chapter 6).

The goal of the PWA is to extract the production amplitudes as a function
of mX by fitting the theoretical intensity (see formula 7.31) to the data, with
free parameters aX(J

PM ǫ,mx) to be determined from the fit. For the mass
independent fit we divide mX into 50 MeV/c2 mass bin which are named mXi

.
The aXi

(JPM ǫ,mX) are the possible production amplitudes of X in every 50
MeV/c2 mass bin. The AXi

(JP ,M ǫ, τ) are the possible decay amplitudes of X
in every 50 MeV/c2 mass bin. Ii(τ) is the intensity of X in every 50 MeV/c2

mass bin. So we can get the total intensity in every mass bin as:

Ii(mXi
τ) = η(τ)

∑

ǫ

|
∑

JML

(aXi
AXi

)|2 (7.32)

After fitting to the data, the resulting complex production parameters of
fitting can described by

aXi
(JPM ǫ,mXi

) = |aXi
(JPM ǫ,mXi

)|eiφi(J
PMǫ,mXi

) (7.33)

Here the φi(J
PM ǫ,mXi

) is the phase. When we set two waves, we can get
the phase motion. In section 7.6 and 7.7 some figures about the intensity and
phase will be present.

7.4 Cross section and coherence

So far, it has been neglected that the intensity also depends on the t
′

variable.
And it was assumed that all amplitudes for a given ǫ and coherently, see
formula 7.31 and 7.32. The t dependence will be described by a function
f ǫ
i where the index i now is a short name for JPM . To introduce a possible
incoherence between amplitudes a sum of rank r is introduced. Moreover, each
decay amplitude is normalized with the integral of the intensity(amplitude
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square) over phase space =1. In a reasonably narrow m bin and t
′

range, the
mass-independent differential intensity after MC accepted can be expressed
as:

I(τ, t
′

) =
∑

ǫ

Nr
∑

r=1

∣

∣

∣

∣

∣

∑

i

f ǫ
i (t

′

)aǫirA
ǫ
i(τ)/N

ǫ
i (m)

∣

∣

∣

∣

∣

2

, N ǫ
i (m) =

√

∫

|Aǫ
i(τ)|dτ

(7.34)

Here the aǫi and Aǫ
i are the production amplitude and decay amplitude. The

indices i and ǫ denoting different partial waves, characterized by a set of quan-
tum numbers JPCM ǫL; M is the absolute value of the spin projection onto
the z-axis; ǫ is the reflectivity; L is the orbital angular momentum between
the isobar and the bachelor pion(see fig.7.1). The different t

′

(see section 5.2)
dependence of the differential intensity for M=0 and M=1 states is taken into
account by the different functions: f ǫ

i (t
′

) ∝ exp(−bt
′

) and f ǫ
i (t

′

) ∝ t
′

exp(−bt
′

),
here the slope b has been obtained from the data by first making fits in slices
of t

′

. The normalization factors N ǫ
i (m) contain angular-momentum barrier

factors and phase space factors[63].

The second summation in equation 7.34 incoherently adds several coherent
differential intensity terms, in which the same vectors of decay amplitudes Aǫ

i

are multiplied with different independent complex vectors aǫir enumerated by
r = 1...Nr. The latter are also referred to as production vectors. By summing
over r, the spin density with maximal rank Nr can be introduced (one for each
reflectivity ǫ):

ρǫij =
Nr
∑

r=1

aǫira
ǫ
jr (7.35)

and the intensity I can be rewritten accordingly:

I(JPM ǫ,m, τ) =
∑

ǫ

∑

ij

ρǫijĀ
ǫ
iĀ

ǫ∗
j (7.36)

The interference between two partial waves i and j is defined by the non-
diagonal complex spin density matrix element ρǫij.

ρǫij = Rǫ
ije

iφǫ
ij (7.37)

and

Cohǫ
ij = Rǫ

ij/
√

ρǫiiρ
ǫ
jj (7.38)

Where Cohǫ
ij is the coherence. For rank 1 the coherence is 1 and for rank

2...Nr the coherence is ≤ 1.
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7.5 Angular distribution Fit

From the previous sections of this chapter, it can be seen that, regardless of the
special angular distribution, for special J, L and M, the angular distribution
can be written in a general form, using spherical harmonic function Y m

l (θ, φ).

I(θ, φ) =

∣

∣

∣

∣

∣

l
∑

0

l
∑

m=−l

nm
l Y

m
l (θ, φ)

∣

∣

∣

∣

∣

2

(7.39)

Here the parameters nm
l is independent. And for every parameter nm

l , it should
include the real part and imaginary part. From the table 7.2 we know that the
m is =0 or 1. After calculated from above formulas, we can get the following
equations. Here the parameters [0], [1] ...just have the real part. It means that
we take 20 real parameters replace the 10 complex parameters.
From the wave selection rule of the π−f1 channel (see table 7.4) we know that
the L is smaller than 4 and m is -1, 0 and 1. We divide the mass of π−f1 into
bins, here we take the most important mass bin from 1.6 GeV to 1.8 GeV with
the mass range of f1 from 1.25 GeV to 1.31 GeV. Then we can calculate the
angular distribution as follows:

I(θ, φ) =

∣

∣

∣

∣

∣

n0
0 +

3
∑

l=1

1
∑

m=−1

nm
l Y

m
l (θ, φ)

∣

∣

∣

∣

∣

2

(7.40)

(7.41)

I(θ, φ) = [0] + [1] cos θ + [2] cos2 θ + [3] cos3 θ + [4] cos4 θ

+ [5] cos5 θ + [6] cos6 θ + [7] sin θ cosφ+ [8] cos θ sin θ cosφ

+ [9] cos2 θ sin θ cosφ+ [10] cos3 θ sin θ cosφ+ [11] sin2 θ

+ [12] sin2 θcos2φ+ [13] sin θ cos4 θ cosφ+ [14] cos5 θ sin θ cosφ

+ [15] cos θ sin2 θ cos2 φ+ [16] cos θ sin2 θ

+ [17] cos2 θ sin2 θ cos2 φ+ [18] cos3 θ sin2 θ cos2 φ

+ [19] cos4 θ sin2 θ cos2 φ

With this function we can do the fit to the angular distribution in the G-J
frame as follows.
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Figure 7.2: The cos θG vs φG of f1 in π−f1 system. The coloured figure is the
data for π−f1 → π− + f1, the lines correspond to the fit function, the plots
is the projection of the fit. A special function as indicated in the figure with
x = cos θG and y = φG. This angular distribution is in the G-J frame. The
mass range of π−f1 is from 1.6GeV to 1.8GeV. The mass range of f1 is from
1.25GeV to 1.31GeV.

The decay X → π−+f1 can be seen as a simple two-body decay. From the
angular distribution of X → π−+f1, we can learn about some basic and dom-
inant waves. The fit function of cos θ agrees approximately with the function
A − B cos2 θ = A − B + B sin2 θ with the parameters A and B. At the same
time, the fit function of φ agrees approximately with (a + b cosφ)2 with the
parameters a and b. Here the a2 and (b cosφ)2 correspond to the wave inten-
sities and 2ab cosφ corresponds to the interference of two resonances. So the
angular distribution dominantly contributed from sin2 θ(or cos2 θ) and cos2 φ.
Here θ and φ are correspond to θG and φG.

From the formula 7.21, we know cos2 θ dominantly corresponds to Y 0
1 and

constant mostly corresponds to Y 0
0 ; from the formulas 7.20 and 7.22, we know

cos2 φ corresponds to Y 1
1 +Y −1

1 , Y 1
2 +Y −1

2 and Y 1
3 +Y −1

3 . Taking the table 7.4
into consideration, we can get the simple conclusion that in the π−f1 channel
at least 1++0+ and 1−+1+ waves should be included. More details can been
seen from the table 7.7 and 7.8.
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Parameter Value Error
[0] 1.79354e+01 1.37343e-01
[1] 3.37338e+00 2.21266e-01
[2] -1.24918e+01 2.77865e-01
[3] -1.25824e+01 3.24546e-01
[4] 1.37482e+01 3.66095e-01
[5] 8.98647e+00 4.04670e-01
[6] -1.06210e+01 4.41500e-01
[7] -5.74683e+00 2.42373e-01
[8] -5.88497e+00 5.08695e-01
[9] -5.50260e+00 7.53024e-01
[10] 9.12403e+00 9.86817e-01
[11] -1.54467e-01 6.55349e-02
[12] -1.54470e-01 2.81197e-01
[13] 3.88421e+00 1.21234e+00
[14] 1.03144e+00 1.43052e+00
[15] 1.90746e+00 7.04575e-01
[16] -2.49308e+00 1.41421e+00
[17] -7.33980e+00 1.18469e+00
[18] -2.49313e+00 1.72189e+00
[19] 1.61800e+01 2.30945e+00

Table 7.7: The value and error for 20 parameters of the angular distribution(G-
J frame) fit for f1 in the π−f1 system.

From the value and error of table 7.7, we can get the ratio of error to value.

Y m
L Function Value Error Error ratio(%) Parameter

Y 0
0 constant 1.79354e+01 1.37343e-01 0.76 [0]

Y 0
1 (cos θ)2 -1.24918e+01 2.77865e-01 2.23 [2]

Y 1
1 (cos θ sinφ)2 -2.49308e+00 1.41421e+00 56.6 [16]

Y 1
2 (cos θ sin θ cosφ)2 -7.33980e+00 1.18469e+00 16.0 [17]

Y 0
2 (cos θ)4 1.37482e+01 3.66095e-01 2.67 [4]

Y 1
3 (cos2 θ sin θ cosφ)2 1.61800e+01 2.30945e+00 14.2 [19]

Table 7.8: The value and Error of the angular distribution(G-J frame) fit, f1
in π−f1 system.
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With the result of table 7.8, which show the value of parameters [0], [2]
and [4] are with very low error ratio. They correspond to the harmonic are
Y 0
1 , Y

1
2 and Y 1

3 [27]. We also see that the error which corresponds to Y 1
1 is high

in the table 7.7. As for the Y 0
0 (S wave), the function is a constant, from the

table 7.7, the constant parameter is with a low error ratio, which means we
also should include a good S wave in the π−f1 decay.

As for the f1 decay, we also use the parameters as X → π−f1 decay. Now
we do the fit to the angular distributions of f1 decay, we can set the parameters
as following.

I(θ, φ) =
dN

dcosθdφ
=

∣

∣

∣

∣

∣

1
∑

l=0

L
∑

m=−L

nm
L Y

m
L

∣

∣

∣

∣

∣

2

(7.42)

= [0] + [1] cos θ + [2](cos θ)2 + [3] sin θ cosφ (7.43)

+ [4] sin θ cos θ cosφ+ [5](sin θ)2 cos2 φ (7.44)

(7.45)
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Figure 7.3: The cos θH vs φH of a0 in f1 system.

The coloured figure is the data for f1 decay, the lines correspond to the fit
function, the plots is the projection of the fit. A special function as indicated
in the figure with x = cos θH and y = φH . This angular distribution is under
the helicity frame. The mass range of f1 is from 1.25GeV to 1.31GeV.
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From the figure 7.3, the fit function of cos θ agree with the function 1 −
cos2 θ = sin2 θ(similar as X decay), But the fit function of φ agree with cosφ.
According to the formula 7.20-7.22, we can get the function consistent with
the sum of Y 1

1 and Y 0
1 . Due to the Jf1 = 1 = L+0, the L should be 1 which

agree with the analysis.

Parameter Value Error
[0] 1.25719e+01 1.24042e+00
[1] 3.32216e+00 5.02747e-01
[2] -1.98068e+01 1.16300e+00
[3] 6.09054e+00 1.16707e+00
[4] -7.25271e-01 5.52166e-01
[5] 5.05157e+01 3.65217e-01

Table 7.9: The value and error for the parameters of the angular distribu-
tion(HL) fit parameters relevant to the decay of a0 in the f1 rest system.

7.6 Mass Independent PWA

This section we will show some plots of the mass-independent PWA. It involves
a partitioning of the data in bins of the invariant mass mX of the produced
system X(π−f1). For the analysis of this thesis a bin width of 50 MeV/c2 have
been chosen. For each mass bin one individual extended maximum likelihood
fit is then performed using several stages of computational processing. Here we
take advantage of the analysis performed by D. Ryabchikov[58] based on data
selected by H. Wöhrmann using the fast MC simulation for the acceptance
correction.

7.6.1 Intensities

Out of the waves in table 7.4, we present the intensity and phase motion for a
selection of waves. All results will be shown in the appendix D. The param-
eterization of the observed intensity have been shown in section 7.3 with the
production amplitudes aX(J

PM ǫmX) and decay amplitudes AX(J
PM ǫmX).

The results of the fit are the complex production amplitudes aXi
in mass bins

mXi
(see equ. 7.33). In the following some of the partial intensity |aX(JP ,M ǫ,mx)|2

= a∗X(J
P ,M ǫ,mx)aX(J

P ,M ǫ,mx) are shown as a function of mXi
and in the

next section we will show the relative phase motions which integral t and with
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rank 4. The mass-independent PWA has been carried out in 50 MeV/c2 mass
bins and from 1.0 to 3.0 GeV/c2.

Figure 7.4: The intensity of 1−+1+ S wave as a function of mX .

The mass independent fitted intensity distribution for the 1−+ S wave is
shown in figure 7.4 where the state IGJPCM ǫ of X is 1−1−+1+ with the orbit
angle momentum L = 0 (S wave). A peak around the mass 1.76 GeV is clearly
seen.

Figure 7.5: The intensity of 1++ P wave as a function of mx.

Figure 7.5 presents the 1++ partial wave intensity distribution when the
orbital angular momentum is 1. The peak around the 1.7 GeV suggest that
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we see a well-known resonance which should be a1(1640)(see PDG). At the
same time we can see the amount of a1 signal is stronger than the π1 S wave.
When compared with other waves, we can know that the a1 is dominant in
this π−f1 channel. From the phase motion which will be discussed in the next
section we can support this again.

Figure 7.6: The intensity of 2++ P wave as a function of mx.

Figure 7.6 gives the partial intensity distribution of the 2++ wave. The
result of this wave is so suppressed that we barely support the resonance
which was detected in the 2008 data, even if we expect there should be the
a2(1700).

Figure 7.7: The intensity of 1−+ D wave as a function of mx.
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Figure 7.7 presents the the 1−+ D wave(The orbital angular momentum L
is 2) intensity distribution. The error bar is so large that it is not sure this a
good signal even if there is a nice peak.

Figure 7.8: The intensity of 2−+ D wave as a function of mx.

The intensity of 2−+ D wave is shown in figure 7.8. This partial wave
intensity distribution again suggest a resonance. The peak is at 1.9 GeV and
the error bars are not large. From the PDG we know this could be π2(1880).

Figure 7.9: The intensity of 3++ F wave. F wave is the orbital angular mo-
mentum L =3.
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Figure 7.10: The intensity of 4++ F wave. A peak around a mass of [1.8,
2.4] GeV can be observed and a significant rise on from 2.4 GeV, suggesting
resonance at even higher masses.

7.6.2 Phase motions

These motions describe the relation phase between two amplitude as a function
of the mass. From the formula 7.33 we can write:

iφi(J
P ,M ǫ,mx) = ln

axi
(JP ,M ǫ,mx)

|axi
(JP ,M ǫ,mx)|

(7.46)

and for the phase difference between the amplitudes i and j,

∆φij(mx) = φj(mX)− φi(mX) (7.47)

The following figures show the combined terms in the total intensity and
phase motion between IGJPCM ǫL = 1−1−+1+ S wave and 1−1++0+ P wave,
1−1−+1+ S wave and 1−2−+1+ D wave, 1−1++0+ P wave and 1−2−+0+ D
wave. More combined terms and phase motion will be shown in the appendix
D. The left-top is the real part of a∗i aj; the right-top is the imaginary part of
the a∗i aj; the a∗i is the conjugate of production amplitude ai; the left-bottom
is the phase motion and the right-bottom is the coherence which have been
defined in section 7.4(see formula 7.38)[63]. Here the ai is the

∑4
r=1 air.
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Figure 7.11: The combined terms and phase motion between 1−1−+1+ S wave
and 1−1++0+ P wave. The left-top is the real part of a∗(1−+1+)a(1++0+) and
the right-top is the imaginary part of a∗(1−+1+)a(1++0+). The vertical axis is
in units of events in the chosen mass bin of 50 MeV/c2. The left-bottom is the
phase motion in the units of degrees from -90◦ to +90◦ and the right-bottom
is the coherence as defined in formula 7.38. All quantities are plotted as a
function of mx.

Figure 7.12: The combined terms and phase motion between 1−1−+1+ S wave
and 1−2−+0+ D wave. The definition are similar to figure 7.11.



7.7 Mass dependent fit 101

Figure 7.13: The combined terms and phase motion between 1−1++0+ P wave
and 1−2−+0+ D wave. The definition are similar to figure 7.11.

7.7 Mass dependent fit

The second step of the partial wave analysis used at this thesis is the mass-
dependent fit which is performed by employing the χ2-method[63].

The mass-dependent fit is based on the outcome of the mass-independent
PWA. From the known complex production amplitudes in each mass bin a
global model has to be established, which describes the mass-dependence of
the spin density matrix.

The global model is usually based on the simple assumption that the sys-
tems X with various JP are the resonances. In more recent years additional
non-resonant production have been allowed, like Deck-effect. Resonances are
described on the level of amplitudes by Breit-Wigner amplitudes. Thus we do
the fit with BW function in order to get the mass and width of the resonances,
if they are observed.

The mass and width are used in the BW function(see section 1.2.2). There(in
section 1.2.2) the BW intensity fit function has been given which is the square
of BW amplitude with fixed width Γ0.



102 7. Partial wave analysis

BW 2(m) = BW (m)BW ∗(m) = k/((m2 −M2
0 )

2 +M2
0Γ

2
0). (7.48)

Here m is the mX and k is a constant.. M0 and Γ0 are the mass and width of
the resonances.

The assumed amplitudes have to describe the summmed intensity, thus not
only the individual intensity have to be described correctly by the assumed
resonances, but also all the interference term, i.e. relative combined terms and
phase motion.

Figure 7.14: The intensity fit of 1−+ S wave as a function of mX . With the
fit function of BW, we can see the fit agrees with the mass-independent PWA
very well. At the point below 1.4 GeV, little differences come from the phase
space. The peak is around 1.76 GeV/c2. The width is about 300MeV/c2.
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Figure 7.15: The intensity fit of 1++ P wave as a function of mX . With the
fit of two BW functions, we can see the fit agrees with the mass-independent
PWA mostly, the difference below 1.5 GeV is due to the threshold (phase space
factor) are from the phase space. The peaks are around 1.7 and 1.9 GeV/c2.
The widths are about 250 MeV/c2 and 350 MeV/c2. From the PDG we can
know these agree with the a1(1640) and a1(1930).

Figure 7.16: The intensity fit of 1−+ D wave as a function of mx. For this 1
−+

D wave the error bars are so large but the BW fit agrees with the PDG value,
the mass peak is around 1.9 GeV, and the width is about 316 MeV.
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Figure 7.17: The intensity fit of 2−+ D wave as a function of mX . In this BW
fit function we have assumed three resonances. The masses are 1.72, 1.84 and
2.1 GeV/c2 and the widths are 0.25, 0.32 and 0.43 GeV/c2. From the PDG we
know these resonances are π2(1670), π2(1880) and π2(2100). There are some
more resonances at higher mass 2.4 and 2.8 GeV. The phase space also bring
some differences.

Figure 7.18: The intensity fit of 4++ F wave as a function of mX . Inside the
mass range of [1.8, 2.4] GeV, the peak of mass is very cleary which is around
2.0 GeV. From the PDG, we know this agrees with the a4 which has the mass
2.04 GeV and width 400 MeV.
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7.8 Extraction of results from the PWA

From the pictures shown in section 7.6 and 7.7, some results can be extracted.
First of all from the distribution of intensity and phase motion in the π−f1
decay, we observed several particles which will be discussed in section 7.8.1.
Then we can determine the branching ratios of π−f1 decay which will be
present in section 7.8.2.

7.8.1 The mass and width of resonances

waves Mass(GeV) Width(MeV) Possible resonances
1−+S 1.76 300 π1(1600)
1++P 1.70,1.90 250,350 a1(1640), a1(1930)
2++P 1.77 250 a2(1700)
1−+D 2.01 330 π1(2015)
2−+D 1.70,1.88,2.10 250,320,430 π2(1670), π2(1880), π2(2005)
4++F 2.04 400 a4(2040)

Table 7.10: The mass and width of of possible observed resonances.

As for 1−1++0+π−f1 P and 1−2++1+π−f1 P waves, these are well-known mea-
sons a1(1640) and a2(1700). The 1−1−+1+π−f1 S should be π1(1600) and
1−1−+1+π−f1 D waves may be π1(2015). We get the 2−+0+π−f1D wave cor-
responds to π2(1880) and 1−4++1+π−f1F wave corresponds to a4(2040).

As for the 2++1+P wave, from the intensity and phase motion, we are not
sure that we have observed it. The 1−+1+ S wave has a clear peak around
the mass 1.76 GeV/c2 and from the phase motion which always have the 180
degree shift, which means we observed the exotic resonance π1(1600). As for
the 1++0+ P wave, from the intensity, the sharp peak prove this resonance have
the mass around the 1.7 GeV, we know this resonance should be a1(1640) from
PDG. Some more resonances as a1(1930), π2(2005) and a4(2040) are still need
more analysis.

7.8.2 Estimate of relative decay branching ratio

The exotic meson π1(1600) has been in the focus of COMPASS for many years.
In the first PWA published by COMPASS the observation of π1(1600) through
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its decay into ρπ has been reported. Here we want to provide quantitative in-
formation on other decays of π1(1600), namely into πf1, relative to the decay
into ρπ, i.e. on relative branching ratios. We shall use unknown but assumed
equal production and well-known branching ratios of a2(1320) as reference.

First of all we give a didactic introductory remark. Consider the observa-
tion of a resonance X in a given final state ab by diffractive pion excitation on
nucleons: πN → XN with X → ab. The observed number of events is given
by the product as:

N(X → ab) = σ(X) · L ·BR(X → ab) · acc(X → ab) (7.49)

where σ(X) is the cross section for the production, L is the integrated lumi-
nosity and BR(X → ab) is the branching ratio for the decay of X into ab and
acc(X → ab) is the spectrometer acceptance for the detection of resonance X
in the final state ab. Since in general L is not measured in COMPASS and
we want to determine the product σ(X) BR(X → ab) from the PWA we use
σ(X) BR(X → ab) of a known resonance (here X is a2), with known branch-
ing ratios BR(X → ab) as reference. Branching ratios of a2(1320) taken from
PDG:

BR(a2(1320) → 3π ) = 70 % (3π contains ρ(770)π, f2π and ρ(1450)π)

With upper limit from PDG:
BR(a2 → f2π and ρ(1450)π)/ BR(a2 → ρ(770)π) < 0.12.

Thus we estimate the BR(a2 → ρ(770)π) = (63± 3)%

From PDG we also get the branching ratio: BR(a2 → η
′

π) = (0.54± 0.10)%

The branching ratio: BR(a2 → ηπ) = (14.5 ± 2.0)% can be used as a cross
check by comparing for the same data set the a2 decaying to η

′

π and to ηπ.

Measured ratios of intensities from π−(1600) → ρπ and a2 → ρπ can
be gotten from COMPASS exotic 3π publication PRL 104(2010)241803: Ob-
servation of an exotic 1−+ resonance in diffractive dissociation of 190GeV/c
π−p → 3πp, taken from tables in publication[59]. Analysis was based on 2004
data with unknown integrated luminosity. The target was not a proton target
but nucleons in lead. If pomeron exchange dominates, the production cross
sections for the same resonances can be assumed to be equal with the proton
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target. Of course, if data from the 2008 run are available they should prefer-
ably be used.

Intensity of 1−+ → ρ(770)π : (1.7± 0.2)%

Intensity of a2(1320) → ρ(770)π : (19.2± 0.6)%

Using the BR(a2 → ρ(770)π)= 63% we can estimate the relative intensity
a2(1320) →all:(19.2± 0.6)%/(0.63± 0.3) = (30.5± 1.5)%

Hence we obtain for the ratio R1 of the products of production strength times
decay BRs from the published data π−p → π−π+π−p of COMPASS

R1 = (production(1−+)BR(1−+ → ρπ))/(production(a2)BR(a2 → all))
(7.50)

= (1.7± 0.2)%/(30.5± 1.5)% = 0.06± 0.01 (7.51)

Here production stands either for the cross section σ(X) or the product of
cross section times integrated luminosity L. Of course, for PWA results from
the same data sample, L is assumed to be equal for different resonances.

For the ratio obtained in the new η
′

π analysis from new 2009 data of
COMPASS[60]:

R2 = (production(1−+)BR(1−+ → η
′

π))/(production(a2)BR(a2 → all))
(7.52)

≈ 0.021± 0.006 (7.53)

The production cross sections are equal in the new and old data. Thus the
first estimate of the ratios of decay branching ratios for the exotic 1−+ yields,
based on the normalisation with a2(1320), using R1/R2 with an error of 20%.

BR(1−+ → η
′

π)/BR(1−+ → ρ(770)π) = 0.02/0.06 = 1/3 (7.54)

In the case of ab=π−f1 PWA results, there are no obvious known resonances
in this final state. So we has to use the fact that this data sample has the
same integrated luminosity as the final state ab = πη

′

and normalize as well
to X= a2 → πη

′

.
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As for the BR(1−+ → f1π) / BR (1−+ → η
′

π):

BR(1−+ → π−f1)

BR(1−+ → π−η′)
=

N(1−+ → π−f1)acc(X → π−η
′

)

N(1−+ → π−η′)acc(X → π−f1)
(7.55)

if the numbers of events N are extracted from the same data sample i.e. have
the same integrated luminosity L.

A realistic comparison of acceptances is needed, by a realistic MC. Here we
take the acceptance of mass and correct with an acceptance ratio acc(Mπ−f1)/acc(Mπ−η′ ).

In order to estimate of the ratios of decay branching ratios for the exotic
1−+ yields, we present the intensity of 1−+ in in π−η

′

channel. From the
intensity plots of 1−+ → π−f1 and 1−+ → π−η

′

, we can know the events of
these two decays.

Figure 7.19: The left one is the intensity of 1−+ in π−f1 channel and The
right one is the intensity of 1−+ in π−η

′

channel. The peak is very clearly and
mostly have the same mass peak as 1−+ wave in π−f1 channel, acceptance
corrected with the fast MC.

After integrated the differential intensities of π−η
′

and π−f1 in the figure
7.22, the events number of π−η

′

is ≈ 5000 and π−f1 is ≈ 6000.

According the MC acceptance in section 6.3, we can learn that the accep-
tance of fast MC and full MC for π−f1 channel is about 43% and 8.9%[60].
The acceptance of fast MC and full MC for π−η

′

channel is about 72% and
15%[10]. So the ratio of full MC acceptance between π−f1 and π−η

′

is about:

8.9%

15.0%
≈ 0.59± 0.02 (7.56)

and the ratio of fast MC acceptance between π−f1 and π−η
′

is about:

43.0%

72.0%
≈ 0.60± 0.02 (7.57)
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Where the errors have been conservatively estimated, thus the acceptance ra-
tios agree well. This is due to the decay of the final states are both π−π+η.

With the acceptances ratio of Full MC ≈ the acceptances ratio of Fast MC,
we can estimate the BR of these two decays.

N(1−+ → π−f1)acc(X → π−η
′

)

N(1−+ → π−η′)acc(X → π−f1)
≈ 6000

5000 ∗ 0.6 = 2± 0.5 (7.58)

Additionally, the BR between 1−+ → π−f1 and 1−+ → π−ρ(770) is:

N(1−+ → π−ρ(770))acc(X → π−f1)

N(1−+ → π−f1)acc(X → π−ρ(770))
≈ 3/2 = 1.5± 0.3 (7.59)

In summary we have obtained

BR(1−+ → ρπ) : BR(1−+ → η
′

π) : BR(1−+ → f1π) = 3 : 1 : 2 (7.60)
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Chapter 8

Conclusion

Sometimes it is not so easy to understand the experiment. We should use some
tools to analyse the data from the experiment. For example the PHAST,the
root. The experiment provides the key for physics analysis and the more we
understand it the more we can learn from it. Therefore, this thesis analyses a
final state of π−p interactions and describes partial wave analysis of the chan-
nel π−p → (π−f1)p.

The thesis presents the results of the analysis on final states with neu-
tral mesons (η , f1). The reactions π−p → Xp, X → π−f1, f1 → π−π+η,
η → π−π+π0, π0 → γγ and η → γγ with an incoming π− beam of 190 GeV/c
were studied. The analysis was performed on a part of 2008 data. The event
selection was explained in detail with the goal to select favoured events and
minimize background events by applying cuts.

In the scope of this thesis, a partial wave analysis (PWA) of π−π−π+η final
state events from diffractive pion dissociation at COMPASS has been carried
out. In the regime of high momentum transfer (0.1 < t

′

< 1.0GeV 2/c2) more
than 4.5∗106 events have been studied, employing a set of 35 partial waves
in a mass-independent PWA. The particular final state π−f1 is a subset of
the various 2-body intermediate state leading to π−π−π+η. This subset has
been described by 7 partial waves. A subsequent mass-dependent fit has been
performed for 3 waves. The particles a1(1640), π1(1600) and π2(1670)/(1880)
are resolved with good quality, confirming the Particle Data Group (PDG) av-
erage values for mass and width. In addition, the a1(1930), π2(2005), a4(2040)
mesons are included in the data. An emphasis of the analysis certainly is the
spin-exotic 1−+1+(π−f1) wave obtained with the mass-dependent fit. Due to
its exotic quantum numbers, this state cannot be a conventional qq̄ meson
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and is a hot candidate for a qq̄g hybrid. Several theory models predict a 1−+

hybrid in the light-quark sector with a mass between 1.5 and 2.0 GeV/c2[63].
The relative branching ratios have been estimated for the decays of the exotic
meson π1(1600). A first attempt has been made to extract the branching ratio
1−+ → π−f1 relative to that of 1−+ → π−η

′

, BR(1−+ → π−f1)/BR(1
−+ →

π−η
′

) ≈ 2 ± 0.5. This is lower than the value 3.8± 0.8 in the 2010 PDG[27].
Moreover, the branching ratio of 1−+ → π−ρ(770) relative to that of 1−+ →
π−f1 has been estimated, BR(1−+ → π−ρ(770))/BR(1−+ → π−f1) ≈ 1.5 ±
0.3. Thus it has been found that BR(1−+ → π−ρ(770)): BR(1−+ → π−η

′

):
BR(1−+ → π−f1)= 3:1:2.

At the end of this work, we can make some suggestions for a further im-
provement in the analysis of the π−f1 channel at COMPASS, dictated from the
experience gained. In particular, we consider the following important points:
1) The t dependent partial wave analysis of π−f1 final state events from diffrac-
tive pion dissociation should be carried out.
2) With increased statistics the analysis can be extended to higher masses and
higher orbit angular momentum L and projection M.
3) More attention should be paid to extract the partial wave analysis with the
unnatural ǫ= -1.
4) A detailed mass dependent analysis has still to be performed.
5) The fast Monte Carlo similation should be replaced by a more realistic full
Monte Carlo simulation.
6) A systematic study of the contribution of more waves, at least up to 9 waves
(L=3) should be performed.
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Mass distributions

We show mass distributions with all kinds of selections where η → π−π+π0.
The X=π−f1 → π−π+η channel has

(

1
3

)(

1
2

)

= 6 kinds of combinations.

A.1 Mass distribution of π−π+
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Figure A.1: The 6 cases of π−π+ mass distribution after π0 selection without
η and 1 selection. We can see the π−π+ can be ρ(770) which is especially
obvious in the case 3. From the case 6 we can see the peak around 300MeV.
We know the mass of π− and π+ is 139.57MeV. The sum is 280MeV.
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Figure A.2: The 6 cases of π−π+ mass distribution after η We can see that
π−π+ after η selection, the peak of ρ(770) mostly disappear. This is easy to
understand, just because we select the η is decay to π−π+π0, The mass of
π−π+ should be smaller than (770) Which is especially clear in the figure 6.1.
Though the compare, we also can see the background is different. Some of
the difference is caused by the combinatorial background. In this way we can
understand the difference between case 1 and case 6.
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Figure A.3: The 6 cases of π−π+ mass distribution after f1 cut.

A.2 Mass distribution of π−π+π0

Next figures show the mass distribution of π−π+π0.
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Figure A.4: Cases of π−π+π0 mass distribution after π0 cut
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Figure A.5: The 6 cases of π−π+π0 mass distribution after η cut
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Figure A.6: The 6 cases of π−π+π0 mass distribution after f1 cut

A.3 Mass distribution of π−π+π−π+π0

Because the π−π+π−π+π0 include two π+, the combinations should be calcu-
late as C1

3 . That is not the same as just one π− and one π+ distribution which
have six cases. Here we show three cases mass distribution of π−π+π−π+π0.
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Figure A.7: The 3 cases of π−π+π0π−π+ mass distribution after η cut. Here
we have two π+, so we just have 3 cases of π−π+π−π+π0.
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Figure A.8: The 3 cases of π−π+π0π−π+ mass distribution after f1 cut
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Appendix B

t distributions

Here we compare two kinds of t distributions A exp(−bt′) and At′ exp(−bt′) in
every 500 MeV mass bin(from[64]).
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Figure B.1: The fit A exp(−bt′) vs At′ exp(−bt′): 1.00 < m(π−f1) < 1.50
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Figure B.2: The fit A exp(−bt′) vs At′ exp(−bt′): 1.25 < m(π−f1) < 1.75
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Figure B.3: The fit A exp(−bt′) vs At′ exp(−bt′): 1.50 < m(π−f1) < 2.00
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Figure B.4: The fit A exp(−bt′) vs At′ exp(−bt′): 1.75 < m(π−f1) < 2.25
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Figure B.5: The fit A exp(−bt′) vs At′ exp(−bt′): 2.00 < m(π−f1) < 2.50
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Figure B.6: The fit A exp(−bt′) vs At′ exp(−bt′): 2.25 < m(π−f1) < 2.75
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Figure B.7: The fit A exp(−bt′) vs At′ exp(−bt′): 2.50 < m(π−f1) < 3.00
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Figure B.8: The fit A exp(−bt′) vs At′ exp(−bt′): 2.75 < m(π−f1) < 3.25
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Figure B.9: The fit A exp(−bt′) vs At′ exp(−bt′): 3.00 < m(π−f1) < 3.50
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Figure B.10: The fit A exp(−bt′) vs At′ exp(−bt′): 3.75 < m(π−f1) < 4.25
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Figure B.11: The fit A exp(−bt′) vs At′ exp(−bt′): 4.00 < m(π−f1) < 4.50
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Figure B.12: The fit A exp(−bt′) vs At′ exp(−bt′): 4.25 < m(π−f1) < 4.75
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Figure B.13: The fit A exp(−bt′) vs At′ exp(−bt′): 4.50 < m(π−f1) < 5.00
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Appendix C

Angular distributions

C.1 The angular distribution in Gottfried-Jackson

frame

Here we present cos θG distribution with the mass range from 1.7 to 3.0 GeV
after divided the mass into intervals of 200 MeV where the η → π−π+π0.
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Figure C.1: cos θG in X rest system:1.7-2.0 GeV. Here η → π−π+π0.
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Figure C.2: cos θG in X rest system:1.9-2.2 GeV. Here η → π−π+π0.
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Figure C.3: cos θG in X rest system:2.1-2.4 GeV. Here η → π−π+π0.
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Figure C.4: cos θG in X rest system:2.3-2.6 GeV. Here η → π−π+π0.



C.2 The background of f1 in angular distribution 129

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

 in X system: X mass range 2.5-2.7Gev1f Entries  729

Mean   -0.5613

RMS    0.5469

 in X system: X mass range 2.5-2.7Gev1f

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

 in X system: X mass range 2.6-2.8Gev1f Entries  651

Mean   -0.6067

RMS    0.5268

 in X system: X mass range 2.6-2.8Gev1f

Figure C.5: cos θG in X rest system:2.5-2.8 GeV. Here η → π−π+π0.
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Figure C.6: cos θG in X rest system:2.7-3.0 GeV. Here η → π−π+π0.

C.2 The background of f1 in angular distribu-

tion

Here we present cos θ distribution in left side bin, right side bin and central
bin where η → π−π+π0.
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RSB in X system: X mass range 1.7-1.9Gev1f

Figure C.7: cos θG in X rest system:1.7-1.9. The left one is the left side-bin;
the middle one is the central bin; the right one is the right side-bin.
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Figure C.8: Like figure C.7, mass:1.8-2.0.
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Figure C.9: Like figure C.7, mass:1.9-2.1.
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Figure C.10: Like figure C.7, mass:2.0-2.2.
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Figure C.11: Like figure C.7, mass:2.1-2.3.
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Figure C.12: Like figure C.7, mass:2.2-2.4.
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RSB in X system: X mass range 2.3-2.5Gev1f

Figure C.13: Like figure C.7, mass:2.3-2.5.
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Figure C.14: Like figure C.7, mass:2.4-2.6.
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Figure C.15: Like figure C.7, mass:2.5-2.7.
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Figure C.16: Like figure C.7, mass:2.6-2.8.
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Figure C.17: Like figure C.7, mass:2.7-2.9.
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Figure C.18: Like figure C.7, mass:2.8-3.0.
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Appendix D

The phase motion plots

The following figures show the combined terms in the total intensity and phase
motion between 1−1−+1+ S wave, 1−1++0+ P wave, 1−2++1+ P wave, 1−1−+1+

D wave, 1−2−+0+ D wave, 1−3++0+ F wave and 1−4++1+ F wave[58].

Figure D.1: The combined terms and phase motion between 1−1−+1+ S wave
and 1−2−+0+ D wave. The left-top is the real part of a∗(2−+0+)a(1++0+) and
the right-top is the imaginary part of a∗(1−+1+)a(2−+0+). The vertical axis is
in units of events in the chosen mass bin of 50 MeV/c2. The left-bottom is the
phase motion in the units of degrees from -90◦ to +90◦ and the right-bottom
is the coherence as defined in formula 7.38. All quantities are plotted as a
function of mx.
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Figure D.2: Like figure D.1 for the 1−1−+1+S wave and 1−2++1+P wave.

Figure D.3: Like figure D.1 for the 1−1−+1+S wave and 1−3++0+F wave.
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Figure D.4: Like figure D.1 for the 1−1−+1+S wave and 1−4++1+F wave.

Figure D.5: Like figure D.1 for the 1−1++0+P wave and 1−1−+1+D wave.
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Figure D.6: Like figure D.1 for the 1−1−+1+D wave and 1−2−+0+D wave.

Figure D.7: Like figure D.1 for the 1−2++1+P wave and 1−1−+1+D wave.
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Figure D.8: Like figure D.1 for the 1−1−+1+D wave and 1−3++0+F wave.

Figure D.9: Like figure D.1 for the 1−4++1+F wave and 1−1−+1+D wave.
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Figure D.10: Like figure D.1 for the 1−1++0+P wave and 1−2++1+P wave.

Figure D.11: Like figure D.1 for the 1−1++0+P wave and 1−3++0+F wave.
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Figure D.12: Like figure D.1 for the 1−1++0+P wave and 1−4++1+F wave.

Figure D.13: Like figure D.1 for the 1−2++1+P wave and 1−2−+0+D wave.
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Figure D.14: Like figure D.1 for 1−2−+0+D wave and 1−3++0+F wave.

Figure D.15: Like figure D.1 for the 1−4++1+P wave and 1−2−+0+D wave.
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Figure D.16: Like figure D.1 for 1−2++1+P wave and 1−3++0+F wave.

Figure D.17: Like figure D.1 for 1−2++1+P wave and 1−4++1+F wave.
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Figure D.18: Like figure D.1 for 1−4++1+F wave and 1−3++0+F wave.
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