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Climate is what we expect, weather is what we get.
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Preface

Under the Kyoto Protocol, the European Union (EU) committed to reducing green-

house gas (GHG) emissions by 8 per cent compared to the 1990 level in the period

from 2008 to 2012. An obvious way to implement such a reduction target is to

cap emissions at the required level and to issue the respective amount of emission

allowances which may then be traded on a market. Hence, the European Union

Emissions Trading Scheme (EU ETS) was set up to back the Kyoto commitment

with a climate policy instrument (Ellerman et al., 2010). In 2005, the world’s largest

cap-and trade scheme was established and at first covered carbon dioxide (CO2)

emissions from around 10,000 installations such as power plants, cement or metal

works.1 About 40 per cent of European GHG emissions are regulated under the

EU ETS. Europe can meet most of its Kyoto mitigation goals with the emission

reductions in the EU ETS. Sectors outside of the EU ETS, such as buildings and

transport, need to decrease GHG exhaust to a smaller extent. Currently, national

energy efficiency standards or investment programs are in place to pave a low-carbon

path in non-ETS sectors. These sectors may be included into the EU ETS at a

later point, but proposals are not yet on the table. However, the EU ETS was

extended to the aviation sector in 2012, and the number of complying entities rose

to 12,800. Starting Phase III (2013-2020), the allocation mechanism for emission

allowances will change. Until now, the emission rights, so-called European Union

Allowances (EUA), were allocated in so-called National Allocation Plans (NAP) by

the European Commission (EC) and given out for free. Soon the EC will only decide

on the total cap, but not on its allocation, and will auction the respective EUAs

centrally.

1Covered industries are electricity production, other combustion, refineries, coke ovens, metal
ore, iron and steel, cement, glass, ceramics, paper and pulp.
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Market-based instruments, such as emissions trading, are the preferred policy

option as they assure static efficiency by yielding abatement at least cost. In an

emissions trading scheme the installations with the lowest marginal abatement cost

reduce their emissions and sell the “freed” emission rights to firms with higher

marginal costs. Given an overall reduction target, the carbon price indicates the

cost-effective solution (Tiedenberg and Lewis, 2008). In the EU ETS least cost

abatement is further promoted by the possibility to comply with credits from abate-

ment activities under the Clean Development Mechanism (CDM). Reduction of

GHG may be cheapest in developing countries, and EU ETS installations may tap

this potential by complying with a certain share of such CDM credits. A more

detailed discussion of the CDM and its link to the EU ETS is provided by Ellerman

et al. (2010) or Linacre et al. (2011).

In addition to static efficiency, market-based instruments are said to promote

dynamic efficiency in the long-run and thus provide incentives in low-carbon invest-

ments (Tiedenberg and Lewis, 2008). These incentives can only be triggered by a

carbon price that is high enough to make new abatement technologies profitable.

Investments in emission-reducing technologies need to be cheaper in the long-run

than maintaining the status quo and buying emission rights. Moreover, investors

have to trust in the stringency and credibility of the policy target. Otherwise,

firms will hesitate and delay investments in low-carbon technologies that are usually

capital-intensive (Hepburn, 2006; Grubb and Newberry, 2008).

After almost eight years of experience with emissions trading in Europe, the

success of this policy instrument can be assessed thoroughly. Clearly, regulated

installations complied with the national emission caps in the past years. Figure 1

shows that verified emissions remained below the cap in most of Phase I (2005-2007)

and Phase II (2008-2012). In 2008, the installations required several allowances more

than originally allocated. However, firms could also surrender some of their 2009

EUAs or CDM credits for compliance. EUA allowances did not become scarce

in the following years – mainly due to generous EUA allocations and a slump in

emissions during the economic crisis. Recent estimates suggest that installations will

be oversupplied with 1.1 billion emission rights by 2012.2 In 2011, only Germany’s

installations needed more emission allowances than they originally received through

2Bloomberg, 12. May 2012, EUs Hedegaard says CO2 auctions review is short-term fix,
www.businessweek.com.
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their NAP – probably due to strong growth and the nuclear phase-out. In a nutshell,

while an institutional infrastructure to cap and trade emissions has been created in

recent years, the system currently provides few incentives to deviate from business-

as-usual emissions.

Figure 1: Yearly emissions cap and compliance in the EU ETS
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Note: Allocated allowances and verified emissions in Phase I (2005-2007) and Phase II (2008-2012).
Data have been aggregated for the EU 27. Source: www.carbonmarketmonitor.com.

But did the EU ETS trigger abatement? This question is rather difficult

to assess as it requires assumptions about the counterfactual development without

an emission cap. Using patent data, Raphael Calel (2012) find that the EU ETS

has so far not significantly encouraged firms to develop new technologies. However,

estimates by Ellerman and Buchner (2008) and Grubb and Newberry (2008) indicate

that some additional abatement took place Phase I. One of the most likely forms of

abatement is fuel-switching in the electricity sector as it does not require investments

in new equipment (Ellerman et al., 2010).3 Fuel-switching is based on the idea

that carbon pricing makes electricity generation from coal plants relatively more

expensive than generation from gas because coal combustion exhausts more CO2.

Depending on the relative prices of gas, coal, and carbon, it might be profitable to

3Notwithstanding that fuel switching is a cheap form of abatement, Ellerman et al. (2010) object
that the fuel-switching capacity and therefore abatement potential is rather limited.
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switch fuels and burn cleaner gas instead of coal. One has to note that there is

not one switch price but rather a band of switch prices depending on the efficiency

of given plants. Figure 2 illustrates one possible switch price and the carbon spot

price for Phase II. When the CO2 price is above the switch price, using less carbon-

intensive gas instead of coal should in theory be cheaper (Clò and Vendramin, 2012).

As depicted in Figure 2, the European carbon price was mostly too low to induce

switching in Phase II.4

Figure 2: Development of switch and carbon price in Europe
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Note: This switch price is calculated on the basis of the month ahead price for coal (CIF ARA) and
natural gas, both traded on the Intercontinental Exchange (ICE). This switch price is calculated
for a coal plant with a thermal efficiency of 36% and a combined cycle turbine gas plant with an
efficiency of 49%. Assumed emission factors are 950 kg CO2 per megawatt hour (MWh) for coal
and 420 kg CO2 per MWh for gas. Source: Datastream and own calculations.

The carbon price in the EU ETS is a crucial parameter in all abatement

decisions.5 It provides incentives to tap the fuel-switching potential, and more

importantly, to invest in low carbon technologies in the long-run. Therefore, under-

standing what drives the carbon price is absolutely essential. This thesis aims to

provide insights into the price development and its determinants. Going from there,

4The assumptions that underly this switch price have been altered as a robustness check. The
conclusion remains that the carbon price was too low to induce switching.

5The European carbon price is in the following also labelled as EUA price.
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implications for the design of the carbon market can be derived. The first two

chapters shed light into the versatile nature of the carbon price. On the one hand,

the EU ETS was created to serve as a policy instrument and is highly dependent

on cap decisions of the EC that steer supply (Grubb and Newberry, 2008). On the

other hand, carbon has been turned into a commodity that is now embedded into the

existing structure of commodity and financial markets. The literature has to some

extent identified how these markets interact. One finding is that fuel prices drive the

EUA price (Mansanet-Bataller et al., 2007; Alberola et al., 2008; Hintermann, 2010).

When coal is cheap, demand for emission rights and their price rises. Hence, coal

is usually reported to be negatively correlated with the EUA price, while natural

gas is positively correlated with the EUA price. Another finding from the existing

literature is that the carbon price influences the electricity price. Various studies

show that carbon price shocks are passed through to wholesale power prices (Fell,

2008; Zachmann and von Hirschhausen, 2008; Bunn and Fezzi, 2009).

Chapter 1 further investigates the relationship between carbon, commodity,

and financial markets and yields important insights into their dependence.6 Different

copulas are applied to investigate the complex dependence structure between EUA

futures returns and those of commodities, equity and energy indices. Copulas are

a flexible method to model the relationship between variables as they account for

different types of tail dependence. The application of copulas yields possibly better

insights than the application of linear correlation models only. This chapter’s results

illustrate a significant relationship between EUA returns and the other considered

return series. The dependence is most appropriately modelled by the Gaussian

and the Student-t copula. This contradicts some earlier studies that report no

statistically significant or even negative correlations between returns of emission

allowances and financial variables. Furthermore, time-varying copulas show that the

estimated parameters are not constant over time. The dependence is particularly

stronger during the period of the financial crisis. Finally, a Value-at-Risk (VaR)

6This chapter is joint work with Stefan Trück and Marc Gronwald. The paper has been
published as Gronwald, M., Ketterer, J., Trück, S., 2011. The relationship between carbon,
commodity and financial markets A copula analysis. The Economic Record 87, special issue,
105-124. For publication in this thesis, I updated Section 1.2.2 and Section 1.3. Where necessary
and appropriate, I corrected the wording of the published text. Figures 1.1, 1.2, 1.3 and 1.5 are
not included in the final publication, but in the working paper version: Gronwald, M., Ketterer,
J., Trück, S., 2011. The dependence structure between carbon emission allowances and financial
markets A copula analysis. CESifo Working Paper, 3418.
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analysis can illustrate the advantages of copula methods in an investment context.

The Student-t copula provides an appropriate quantification of VaR at different

confidence levels while other models fail to specify the risk correctly. Ignoring

the actual nature of dependence could lead to an underestimation of the risk for

portfolios combining EUAs with commodities or equity investments. Hence, the

findings in Chapter 1 are also relevant for investments which depend on the price

development of multiple commodities, such as gas, coal, and carbon. Once the risk

structure can be better understood and hedged, investments will be more attractive.

The European carbon price is not a pure commodity market given its strong

underlying political influence. The EUA price cannot be sufficiently explained by

only investigating the relationship between the EU ETS and the existing structure

of financial and commodity markets. This is confirmed by Hintermann (2010) who

shows that demand-side fundamentals, such as fuel prices and weather proxies,

provide an insufficient explanation of the EUA development in Phase I. To capture

the carbon price in an appropriate way, the regulatory framework and related

decisions on the supply of emission allowances should be included in a carbon price

model.

Chapter 2 is concerned with the influence of the political arena on the carbon

price.7 In a first step, the application of a combined jump-GARCH model illustrates

that the behaviour of the EUA price is characterised by large price movements.

The results show that between 40 and 60 per cent of the carbon price variance is

triggered by jumps. In a second step, a database of regulatory events in the European

carbon market is compiled. It shows that these regulatory events help to explain the

identified carbon price jumps. Decisions on EUA supply and news from international

carbon markets are particularly important drivers of sudden price movements. New

regulation places market participants in a changed environment and related price

reactions seem quite abrupt. These results can assist regulators the way if the

outcome of smoother carbon prices is desired. The EC should avoid imprecise

debates on future policy that introduce uncertainty. A clear communication strategy

should be adopted that conveys information about the long-term reduction target

and the policy strategy. It is certainly difficult to find a balance between flexibility

7Chapter 2 is based on joint work with Marc Gronwald. Our paper has been published as
working paper Gronwald, M., Ketterer, J., 2012. What moves the European carbon market? –
Insights from conditional jump models. CESifo Working Paper, 3795. Chapter 2 includes an
additional regression analysis in Section 2.5 which is not part of the original paper.
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and commitment when designing the carbon market. But credible policy targets

and rules are a condition to stabilise the carbon price and carbon price expectations

that trigger investments in low-carbon technologies. Discretionary policy steps and

a deviation from the announced reduction path might unsettle the carbon market

(Helm et al., 2003). Instead of investing in costly and complex low-carbon projects,

market participants are likely to mistrust the current climate policy and wait until

more information regarding the climate change objective becomes available.

Clearly, policy makers should prevent the carbon price signal from deterio-

rating. However, whilst a stable price signal is necessary to trigger low-carbon

innovation and investment, it may not alone be sufficient (Montgomery and Smith,

2007; Hanemann, 2010). The economic literature has long debated whether one

single instrument might be enough to induce mitigation in the long-run. Several

studies conclude that additional market failure related to positive externalities from

research and development (R&D) or principal-agent problems cannot be tackled by

one policy but do justify additional instruments (Jaffe and Stavins, 1994; Newell,

2010; Acemoglu et al., 2012). When facing climate change, investment horizons

might be too long, projects too expensive and market failures too diverse to be

solved by a single instrument (Hepburn, 2010).

Introducing different national and supra-national climate policies is not with-

out problems. A multitude of climate policy instruments can be beneficial, but the

policy mix needs to be well-tuned. If combined instruments are not complementary,

the effects can be detrimental (Sinn, 2008; Fankhauser et al., 2010; Monopolkom-

mission, 2011). A straight forward example is the interaction between emissions

trading and renewable support schemes. In most European countries, renewable

energy support has led to a surge in renewable energy capacity. This is good news

with regard to the CO2-intensity of the energy sector. But because the overall

emissions cap remains fixed, emission rights, set free in the energy sector, can be

bought cheaply from other sectors. A rough calculation can help illustrating this

effect for Germany. Sensfuß (2011) estimates that renewable electricity generation

replaced 83.5 terawatt hours (TWh) of conventional power in Germany in 2010. It

is assumed that 1 kilowatt hour (kWh) conventional electricity produces on average

679 g CO2, given the German conventional electricity mix (BMU, 2012).8 Therefore,

8Gruet (2011) assume 696 g per CO2 for all of Europe. They estimate that additional wind
power generation reduced 126 Mt in Europe in 2010.
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the additional renewable electricity would have avoided about 57 million tons (Mt)

CO2 in 2010, whereas the total EU ETS cap for Germany was 453 Mt in 2010.

Although this example gives only rough estimates, it becomes clear that substantial

amounts of CO2 can be shifted to other ETS-covered sectors or counties, reduce

demand for EUA allowances, and lower the CO2 price but not the overall emissions.

To assure the effectiveness of interacting policies, renewable energy growth trends

and energy efficiency plans need to be reflected by the EU ETS cap. Otherwise, the

market is over-allocated as the demand for EUA allowances reduces, and the carbon

price decreases.

Figure 3: Interactions between carbon and energy markets
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Renewable electricty

generation

European carbon price +

Figure 3 illustrates the interaction between the aforementioned markets. First,

the relationship between the carbon and the electricity price has been outlined above

and is further illustrated in Chapter 1. Second and as just discussed, additional

renewable electricity generation reduces the carbon price, given that the cap is not

adjusted.9 Finally, electricity generation from variable renewable energy sources has

a dampening effect on the electricity price.

Chapter 3 of this thesis provides further insight into this relationship and

how renewable power generation influences the electricity price. More specifically,

Chapter 3 evaluates the effect of wind electricity in-feed on the level and volatility

of the electricity price using a GARCH model. Wind electricity is particularly

9Certainly, a high carbon price makes renewables more competitive with conventional energy as
coal becomes more expensive (Sáenz de Miera et al., 2008). However, under the current feed-in tariff
scheme, renewables do not have to compete as they are subsidised. This effect can be neglected in
the current market situation.
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interesting because its contribution to the German power mix is substantial, but

subject to significant variation. The empirical results show that this fluctuation is

transmitted to the electricity price. Variable wind power on the one hand reduces

the price level, and on the other hand increases its volatility. With a low and volatile

wholesale price, the profitability of electricity plants, conventional or renewable, is

greatly reduced. Consequently, the construction of new plants is at risk, which

has major implications for the energy market and the security of supply. The new

challenges with renewables require adjustments to the regulatory and the policy

framework of the electricity market. This chapter’s results suggest that regulatory

change is able to stabilise the wholesale price. The empirical investigation shows

that the electricity price volatility has decreased in Germany after the marketing

mechanism of renewable electricity was modified. This gives confidence that further

adjustments to regulation and policy may foster a better integration of renewables

into the power system. Going forward, the stability of the electricity price could

be promoted in a dual approach. First, by giving incentives to build flexible power

plants that absorb fluctuation of wind and solar PV power in-feed. Second, pol-

icy instruments should address the variable in-feed of renewable power itself. As

renewable generation gained ground in power markets, support schemes should be

increasingly dependent on the wholesale electricity price. So far, German feed-in

tariffs do not vary with the wholesale price. But price-dependent subsidies give

incentives to feed-in during times of high wholesale prices when electricity supply is

needed most. Pursuing both approaches, namely additions of flexible capacity and

market-based subsidy payments, smoothes the transition to a low-carbon electricity

market with a stable price and secure supply.

Efforts to reduce GHG emissions in Europe resulted in the creation of a

common carbon market and various national support schemes for renewable energy.

The main focus of this thesis is to explore whether the design of carbon and electricity

markets lead to the desired price signals and emissions abatement. The observations

in both markets point to challenges that question the success of climate change

mitigation. Some of these obstacles could be resolved by better combining policies

in both markets. The EU ETS and renewable energy support overlap to a large

extent and the desired effects of both policies might cancel out. Making the policy

design more coherent is certainly not easy but offers a promising solution.

xv



With respect to emissions trading in Europe, this policy instrument should not

rashly be condemned as non-effective. Instead, its long term goal and perspective

should be sharpened. The future of the EU ETS will certainly be influenced by

the international climate negotiations. But European policy makers should assure

that the chosen policy path will be further pursued and emphasise which emissions

reductions the EU ETS will deliver after 2020. While the progress towards a global

agreement has been sluggish in recent years, national and sectoral initiatives seem

on the rise with emissions trading schemes being developed in Australia, China,

and the United States. This validates the experience and institutional framework

already provided in Europe. In the long-run, the possibility to link all these schemes

in a bottom-up approach could give a wider perspective and scope to the emissions

trading approach.

xvi



Chapter 1

The Relationship between Carbon,

Commodity, and Financial

Markets - A Copula Analysis

1.1 Introduction

Under the Kyoto Protocol the EU has committed to reducing greenhouse gas (GHG)

emissions by 8 per cent compared to the 1990 level in the period from 2008 to

2012. To give a price to carbon emissions and to incentivise the reduction of

GHG emissions, an EU-wide CO2 emissions trading system, the so-called EU ETS,

has been set up. The right to emit a particular amount of CO2 has become a

tradable commodity and is now a factor of production that is subject to stochastic

price changes. This new market not only requires regulated emitters to run an

adequate risk management, it also provides new business development opportunities

for market intermediaries and service providers such as brokers or marketeers. It is

essential for carbon market players to learn about price dynamics in order to realise

trading as well as risk strategies and investment decisions.

Since the beginning of the emissions trading in 2005, a number of studies have

analysed the price behaviour of the European Union emission allowances (EUA).

Paolella and Taschini (2008), Benz and Trück (2009) as well as Daskalakis et al.

(2009) provide an econometric analysis of the behaviour of allowance prices and

1
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investigate different models for the dynamics of short-term spot prices. Other studies

investigate derivative products in EUA markets, the convenience yield, the term

structure of futures prices (Trück et al., 2006) as well as the effects of options trading

on market volatility (Chevallier et al., 2009). Studies by Böhringer and Lange (2005)

and Schleich et al. (2006) simulate the development of the CO2 price with respect

to changes in different market design parameters.

The aim of this chapter is to provide a thorough analysis of the dependence

structure between EUA returns and those of other financial variables and commodi-

ties. As EUAs are a factor of production, it is plausible to assume that changes in the

emission allowance price are related to the dynamics of other commodity markets.

We contribute to the literature in three dimensions. First, we apply different copula

models to investigate the nature of dependence between EUA returns and those of

other financial assets. Copulas are generally a very flexible method to model the

relationship between different variables. Among the advantages are the possibility to

account for different types of tail dependence of the return series under consideration.

The application of copulas yields possibly better insights than the application of

linear correlation models only. To our best knowledge, this chapter is a pioneer study

on copulas in the area of carbon market research. Second, we apply time-varying

copulas to investigate whether the relationships under consideration are constant

over time. This procedure allows us to investigate whether influencing factors on

the carbon price changed over time and whether the financial crisis had an impact on

the dependence of the considered variables. Finally, we conduct a risk management

analysis to further illustrate the usefulness of the application of copulas. It is often

argued that the EUA price is more strongly influenced by policy measures and

regulatory changes than other commodities (Chevallier, 2009). In consequence,

this market provides new challenges to market participants that need to adapt

their risk strategy. Therefore, we provide a risk analysis by comparing benchmark

models including a standard variance-covariance approach to the estimated copula

models. This allows to evaluate the models’ ability to quantify market risk. We

show that a misspecification of the actual dependence structure might not only

lead to an inappropriate specification of the portfolio return distribution but also

underestimate the risks from joint extreme returns.

The remainder of the chapter is organised as follows. Section 1.2 provides

a brief description of the market mechanism for CO2 emission allowances as well
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as price drivers of the market. Section 1.3 provides a review of different copula

models with respect to estimation and model testing. Moreover, an overview of the

considered data is given. Section 1.4 presents the empirical results of our study and

the risk analysis. Section 1.5 concludes and gives suggestions for future work.

1.2 Carbon Pricing in Europe

1.2.1 Regulatory Setting

This section briefly discusses the regulatory setting of the EU ETS. The scheme

affects combustion installations exceeding 20 MW including different kinds of in-

dustries such as metal, cement, paper, glass as well as power generation and refiner-

ies. In total, the EU-ETS included some 10,000 installations in 2005, representing

approximately 40 per cent of EU’s GHG emissions. After an initial pilot trading

period from 2005 to 2007, new National Allocation Plans (NAPs) have been issued

for the second trading phase from 2008 to 2012. From 2013 onwards, a third

trading period will run until 2020. In this third period, the individual NAPs will

be replaced by unified allocation rules applying to all member states. Therefore,

the annual quantity of allocated emission allowances has already been specified by

the EU-Directive until the year 2020. According to the European Commission, the

importance of auctioning will increase in Phase III reducing the number of allowances

that is allocated free of charge. Some regulatory settings are particularly important

as they shape compliance behaviour and thus are likely to have price effects. Under

the current system, banking – the storage of unused allowances – gives more leeway

for complying parties and smoothes the CO2 price. A recent and more detailed

discussion of banking and borrowing is provided by Chevallier (2012).

Generally, a lack of allowances requires a company to either buy a sufficient

amount of EUAs or to invest in some plant-specific process improvements. A

third option is the purchase of additional allowances and emission credits from

Clean Development Mechanism (CDM) or Joint Implementation (JI) projects, the

so-called Flexible Mechanisms under the Kyoto Protocol. Failure to submit a

sufficient amount of allowances at the end of the compliance year results in sanction

payments of 100e per EUA. In addition, companies have to surrender the missing

allowances. As a consequence, participating companies face several risks specific to
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emissions trading. In particular, price risk of fluctuating allowance prices, volume

risk, and political risk have to be considered. Because of unexpected fluctuations

in energy demand, the emitters do not know ex ante their exact demand for EUAs.

As the framework and goals of climate policies may change, market participants

face risks from the political arena, see also Chapter 2. Naturally, market generic

risks, for example counterparty, operational, and reputational risk, are also present

(Bokenkamp et al., 2005).

1.2.2 Literature Overview

To set up a comprehensive analysis, it is of great importance to identify the key

price determinants of the CO2 emission allowances. Following the investigation of

the SO2 permit price by Burtraw (1996), we categorise the principle driving factors

of the CO2 allowance price into (i) policy and regulatory issues, and (ii) market

fundamentals that directly concern the production of CO2 and thus the demand

of CO2 allowances. For our pricing model, we are interested in the determinants

of short-term price behaviour. Policy changes might lead to sudden price spikes

and phases of extreme volatility if the market was surprised by decisions concerning

the allowance allocation or the European commitment to reduce GHG emissions by

30% instead of 20% until 2020 (Sanin and Violante, 2009; Gronwald and Ketterer,

2012). Incorporating part (ii), the allowance price fundamentally depends on the

emission level of CO2 which is influenced by factors such as economic growth and

fuel prices. Some comprehensive research on determinants has been conducted by

Mansanet-Bataller et al. (2007), Alberola et al. (2008), and Chesney and Taschini

(2008). An important force is weather data such as temperature, rainfall, and wind

speed. Hintermann (2010) detects a negative effect of availability of hydropower in

Nordic countries during the first trading phase. Rickels et al. (2010) confirm this

result for the second trading phase and find the same relationship with respect to

wind power: higher wind speeds in Germany lead to a lower EUA price. Mansanet-

Bataller et al. (2007), Rickels et al. (2007), and Alberola et al. (2008) show that

extremely hot or cold days have a positive effect on the EUA price.

Energy variables have a clearly identified impact on the price of emission

allowances (Chevallier, 2009). For example, an electricity producer switching from

‘cheap-but-dirty’ coal to ‘expensive-but-cleaner’ gas can significantly reduce emis-
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sions per MWh of produced electricity. Therefore, fuel-switching from coal to gas

implies less emissions to be covered with permits, and the price of EUAs should be

dependent on prices of gas and coal. With respect to the influence of energy prices on

the carbon price, the literature reports relatively robust patterns. Mansanet-Bataller

et al. (2007) find positive effects of oil and gas prices on the EUA price in Phase I,

while there is no significant influence of the coal price. The same results are given

by Hintermann (2010). In a study by Rickels et al. (2007), coal shows up with a

negative sign. Similarly, Alberola et al. (2008) reports a negative effect of coal on

the carbon price and detect positive effects of gas and oil prices.

The dependence of carbon and energy prices is studied in bidirectional manner.

On the one hand, the driving factors for the carbon price are identified. On the other

hand, the reverse effect of carbon on energy and commodity prices is investigated.

Kara et al. (2008) report that the EU emissions trading has a price-increasing effect

on the electricity price in Finland. Fell (2008) finds a strong response of Nordic

electricity prices to EUA price shocks. Thoenes (2011) reaffirms this conclusion

for the German market. Fell (2008) and Thoenes (2011) both discover that the

relationship between fuel prices and the electricity price is different during peak

and off-peak load. Zachmann and von Hirschhausen (2008) show that carbon price

changes are passed through to the wholesale power price in Germany during Phase I

(2005-2007). This effect seems asymmetric as carbon price increases have a stronger

impact on the power price. Prete and Norman (2011) can confirm the pass-through

to the electricity price in in several European countries during Phase II (2008-2012),

but they cannot confirm the asymmetric price adjustments. Bunn and Fezzi (2009)

investigate the impact of the EU ETS on wholesale electricity and gas prices in

the UK. Using a structural co-integrated VAR model, they conclude that the prices

of carbon and gas jointly influence the equilibrium price of electricity. Nazifi and

Milunovich (2010) apply a restricted VAR model to test for existence of causal

relationship and long-run links between the price of carbon and prices of energy

fuels and electricity. Their results suggest that the dynamics of fuel prices are

rather independent from the price of emissions permits during Phase I. Bertrand

(2012), however, shows that the carbon price has a significant impact on gas and

coal prices during Phase II. The latter study also confirms the effect of the EUA

price on the electricity price. Generally, the literature finds a pass-through of the

carbon to the electricity price, but the results for fuel prices seem varied.
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Less attention is payed to the relationship of the emission allowance price with

financial variables. A rising carbon price, as a factor of production, could be related

to additional costs and uncertainties for producers and might have an adverse effect

on equity markets in general or equities of certain industries in particular. Kosobud

et al. (2005) find no statistically significant correlations between monthly returns of

the SO2 emission allowance price in the US market and returns from various financial

investments. Hintermann (2010) spots no influence of the British FTSE equity index

during the first trading phase of the EU ETS. Oberndorfer (2009) examines the

impact of the EUA price development on stock market returns of energy companies

and identifies a positive effect that varies across countries. Veith et al. (2009) employ

a multifactor model and confirm this finding for the first trading phase: stock market

returns of energy companies are positively correlated with the emission allowance

price. Daskalakis et al. (2009) detect negative correlations of EUA futures with

equity market returns that might offer significant diversification opportunities to

European equity investors. They argue that the factors determining stock and bond

prices are substantially different from those affecting emission permits. In a study

on the relationship between macroeconomic variables and carbon futures, Chevallier

(2009) finds that stock and bond markets – as proxies for macroeconomic risk – have

little influence on EUA futures. The author suggests that emission allowances are

an too easily storable commodity and therefore not prone to react to macroeconomic

shocks as much as stock markets.

To our best knowledge, so far there has been no empirical study concentrating

mainly on the dependence structure between EUA returns and those of other fi-

nancial variables or commodity markets. Next to standard approaches investigating

linear dependence by correlation analysis, in our analysis we apply different copulas

to model the complex dependence structure between the return series of carbon

emission, commodity, and equity markets.

1.3 Data and Model

1.3.1 Copula Models

The application of copula models has lately become very popular in empirical

finance as copulas are a flexible instrument for modelling the dependence structure
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of financial time series. Copulas allow to assess various forms of dependence between

the variables under consideration. Hence, the application of copulas yields deeper

insights into the relationship of financial assets than simple correlation measures.

Variables can be related in very specific ways (Hull, 2007). The copula concept is

particularly attractive as it allows to reflect various forms of dependance, asymmetric

or non-linear, between the variables of interest. This can, for example, be helpful as

asset returns tend to be stronger correlated during volatile market phases and market

downturns (Longin and Solnik, 2001). Such specific behaviour can be captured by

copulas.

In empirical finance, traditional methods of describing the dependence struc-

ture between a set of variables have lately been criticised. Assuming that the

joint distribution of asset returns is normal and using the covariance matrix as a

measure of dependence, might be too simplistic. As shown in studies by Jondeau and

Rockinger (2006a), Junker et al. (2006), Luciano and Marena (2003), and McNeil

et al. (2005), the relationship between financial assets might not be appropriately

described by simple correlations. This might lead to an inadequate assessment of

risks in joint extreme price movements. The copula methods offers a more flexible

approach to measure the dependence structure of asset returns and a more robust

way to assess risks. With respect to analysing the dependence structure between

different financial assets, copula models do not necessarily require assumptions

of joint normality for the distributions.1 Instead, a copula allows joining vari-

ous marginal distributions, sometimes also called unconditional distributions (Hull,

2007), into their one dimensional multivariate distribution. This is possible because

the multivariate joint distribution can be decomposed into marginal distributions

and an appropriate functional form for the dependence between the asset returns

under consideration. As its name suggests, the copula only provides information

how the underlying variables are linked or connected, but not about their marginal

distributions. Spitting these two components allows to combine a wide range of

marginals with different copula functions. A detailed description of the copula

method and its application in finance is given by Cherubini et al. (2004).

This section provides a brief review on the estimation as well as goodness-of-fit

tests for copulas that will be used in the subsequent empirical analysis. Since this can

1Note that the Gaussian copula with the assumption of normal marginals coincides with the
multivariate normal distribution and is fully characterised by the correlation coefficient.
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be considered as a pioneer study on applying and testing different copula models to

emission allowance markets, we also briefly illustrate some basic concepts of copula

families and the dependence measure Kendall’s τ .

1.3.2 Copula Functions

A copula is a function that combines marginal distributions to form a joint mul-

tivariate distribution. Sklar (1959) initially introduced this concept which receives

growing attention and is applied to various issues in financial economics and econo-

metrics (Cherubini et al., 2004; McNeil et al., 2005). Patton (2006) used copulas

to model exchange rate dependance and Jondeau and Rockinger (2006a) to uncover

the relationship of US and European stock market returns. Michelis and Ning

(2010) employed the copula method to investigate the dependence structure between

stock market returns and exchange rate returns in Canada. Copula functions

allow to model relationships without requiring assumptions regarding the joint

distributions of the underlying variables. Overall, the use of copulas allows to model

the dependence in a more general and flexible setting compared to linear correlation

measures: non-linearity, asymmetry, and fat tails can be captured. The following

provides an introduction to copulas as in Trück and Rong (2010). The interested

reader may find further information in Nelsen (1999), Cherubini et al. (2004), or

Hull (2007).

A copula is the distribution function of a random vector in Rn with standard

uniform marginals. The copula approach allows to differentiate between uncondi-

tional distributions of respective variables and their dependance structure (McNeil

et al., 2005). Given a random vector of random variables X = (X1, . . . , Xn)′, its

dependence structure is completely described by the joint distribution function

F (x1, . . . , xn). Each random variable Xi has a marginal distributions Fi that is

assumed to be continuous for simplicity. Each continuous random variable X can

be transformed, using its own distribution function F . Then, the random variables

F (X) are uniformly distributed over [0, 1] . Hence, the copula can be extracted from

the joint distribution function:
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F (x1, . . . , xn) = P (X1 < x1, . . . , Xn < xn)

= P [F1(X1) < F1(x1), . . . , Fn(Xn) < Fn(xn)]

= C(F1(x1), . . . , Fn(xn)), .(1.1)

The function C is the so-called copula of the random vector X and represents a joint

distribution function with standard uniform marginals.2 The copula combines the

marginal distribution of Fi to recover the joint distribution. In particular, any choice

of marginal and joint distributions can be connected using the copula method.

1.3.3 Examples of Copulas

There are many different types of copulas from which we chose the most commonly

applied functions: the Gaussian, Student-t, Clayton, and Gumbel copula. Given

their parametric form, the multivariate Gaussian and Student-t copula belong to

the class of elliptical copulas. Probably the most commonly used copula is the

Gaussian copula which is constructed from the multivariate normal distribution and

is denoted by:

CG
ρ (u1, . . . , ud) = Φd

Σ(Φ−1(u1), . . . , Φ
−1(ud)).(1.2)

Hereby, Φ represents the standard normal cumulative distribution function, Φ−1

the inverse of the standard normal cumulative distribution function and Φd
Σ the

standard multivariate normal distribution with correlation matrix Σ. Applying

CG
ρ to two univariate standard normally distributed random variables, results in

a standard bivariate normal distribution with correlation coefficient ρ. As the

multivariate normal copula correlates random variables rather near the mean, it

fails to incorporate dependence in the tail. The Student-t copula, by contrast, is

able to capture tail dependence to some extent and is written as:

TΣ,v(u1, u2, . . . , ud) = tΣ,v(t
−1
v (u1), t

−1
v (u1), . . . , t

−1
v (ud)),(1.3)

2If the marginal distributions Fi are continuous, the copula function C(F1(x1), . . . , Fn(xn)) is
unique (Sklar, 1959).
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where tΣ,v is the multivariate Student-t distribution with v degrees of freedom and

correlation matrix Σ. Depending on the degrees of freedom parameter, the Student-

t copula determines the strength of the tail dependence. Generally, strong tail

dependence is illustrated by low values of the parameter v.

Both elliptical copulas can be used to model symmetric tail dependence. In

economic and financial applications it might, however, be useful to differentiate the

behaviour in the upper and the lower tail. Financial assets often only exhibit tail-

dependence in one of the tails, for example when they are stronger correlated during

market downturns. Two variables that are characterised by strong tail-dependence

in the lower left tail exhibit simultaneous extreme negative returns, whereas high

positive returns in one of the variables may be rather independent of the other

variable. To model such asymmetric tail dependence, so-called Archimedean copulas

can be used (Cherubini et al., 2004). Amongst the Archimedean copulas, the most

intensely used functions are the Clayton and the Gumbel copula. On the one hand,

the Clayton copula captures greater co-movements in the lower left tail. On the

other hand, the Gumbel copula exhibits stronger dependence in the upper right tail.

The multivariate Clayton copula is denoted by:

CCl
θ (u1, ..., ud) =

[
d∑

i=1

u−θ
i − d + 1

]1/θ

,(1.4)

For the Clayton copula, the parameter θ > 0 measures the degree of depen-

dence between the considered variables. A high θ indicates strong dependence,

particularly in the negative lower tail. When θ is close to zero, the dependence

between the marginals vanishes (Trivedi and Zimmer, 2005). As mentioned above,

the Gumbel copula depicts co-movements in the positive upper tail and is denoted

by:

CGu
ϕ (u1, ..., ud) = exp

−{
d∑

i=1

(−ln(ui)
ϕ

}1/ϕ
 ,(1.5)

where ϕ > 1 indicates the dependence between the random variables X1, ...Xd.
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Often Kendall’s τ is used for characterising the dependence structure. Kendall’s

τ is a rank-based measure of dependence based on the concept of concordance. When

large values of one random variable occur together with large values of another

variable, one speaks of concordance (Trivedi and Zimmer, 2005). In the case of

discordance, by contrast, large values are linked to low values. Kendall’s τ measures

the probability of concordance and discordance (McNeil et al., 2005). Values of τ

range from −1 to +1, while in the case of independence τ will be 0 (Nelsen, 1999).

Kendall’s τ is a simple concept but allows estimating the true underlying copula as it

is shown for example by Deheuvels (1979).3 In the case of a bivariate one-parameter

copula, Kendall’s τ is an appropriate dependence measure, as there is a one-to-one

relationship between the copula parameter and Kendall’s τ .

Figure 1.1: Scatter plot of simulated dependence
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Note: Scatter plots of the simulated dependence structure of ranks for different copulas with the
same Kendal’s τ = 0.5. This figure illustrates the dependence between ranks for the Gaussian
(upper left panel), Student-t (upper right panel), Clayton (lower left panel), and Gumbel copula
(lower right panel).

For the purpose of illustrating the different copula models, Figure 1.1 shows

scatter plots for four different copula functions based on the same Kendall’s τ = 0.5.

3Another rank-based measure of dependence is Spearman’s ρ. Cherubini et al. (2004) explain
these measures as well as their differences in greater detail.
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The upper panels illustrate the symmetric dependence structure for the Gaussian

and the Student-t copula. The Student-t copula exhibits more tail dependence than

the Gaussian copula but only captures symmetric tail dependence. However, the

asymmetric Clayton copula detect greater dependence in the lower left tail, while

stronger co-movements in the upper right tail are captured by the Gumbel copula.

1.3.4 Estimation Procedure

As asserted above, copulas offer an alternative to the correlation coefficient as it

comes to modelling the dependence structure. Different approaches to estimate

copulas have been suggested in the literature (Cherubini et al., 2004; Schölzel and

Friederichs, 2008; Michelis and Ning, 2010). In this article, the copula parameters

are estimated using the transforms from the empirical marginal distribution function

F̂i(xi) by canonical maximum likelihood (CML) estimation (Bouye et al., 2000).4

The vector of parameters is estimated semi-parametrically by maximising the log

likelihood for the copula density using the empirical marginals F̂i(xi).

Because of the conditional heteroscedasticity usually present in financial time

series, instead of modelling the unconditional return distribution, we concentrate on

the conditional returns. We employ the framework of semi-parametric copula-based

multivariate dynamic (SCOMDY) models suggested by Chen and Fan (2006). As

the name indicates, this class of models arises from a combination of methods.

The conditional mean and the conditional variance of a multivariate time series

are specified parametrically, while the joint distribution takes a semi-parametric

form using a parametric copula and non-parametric marginals. The method creates

additional flexibility. The typical non-normal movements of financial time series can

be captured more accurately. Still, the copula estimation remains low-dimensional

and allows to represent various non-linear and asymmetric dependence structures

(Linton and Yan, 2011). Following the notation by Chen and Fan (2006), Yt is

4In the bivariate case, based on the estimated value of τ , the dependence parameter for the
chosen copula can be calculated as a function of τ . Genest et al. (2009) explain this procedure for
the Gaussian, Student-t, Clayton and Gumbel copula. Under weak regularity conditions on the
copula family, this yields a consistent estimator of the dependence parameter. For the Student-t
copula, as indicated by Equation 1.3, the econometrician has to also estimate the parameter for
the degrees of freedom. In comparison to other estimation techniques, the copula estimation via
rank transformation and Kendall’s τ is particularly simple and therefore often used in practical
applications. Unfortunately, it is limited to a bivariate setting because it makes inference on the
dependence structure of the multivariate model from a chosen dependence coefficient.
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a d-dimensional process of endogenous and Xt is a vector of exogenous variables,

t = 1, ...n denotes a vector stochastic process. A SCOMDY model is then defined

as follows:

(1.6) Yt = µt(θ1) +
√

Ht(θ)ϵt,

where the vector µt(θ1) denotes the true conditional mean parameter and the vec-

tor Ht(θ) the true conditional variance, both for given values of Yt−1, Yt−2, ... and

Xt, Xt−1, .... The innovations in vector ϵt are i.i.d. with zero mean and unit variance.

They have the distribution function F (ϵ) = C(F1(ϵ1)), ..., Fd(ϵd)) with Fj(·) as true

but unknown continuous marginal and C(u1, ..., ud) as true copula function.

Various non-linear models can be used for modelling the conditional mean and

the conditional variance. In combination with the variety of available copula models,

this approach allows a great extent of flexibility for the final model specification.

The reader may find a more thorough description of the SCOMDY model class

in the original paper by Chen and Fan (2006). The estimation procedure can be

summarised the following way:

1. Estimate all conditional mean and variance parameters to obtain standardised

innovations.

2. The empirical distribution function of these standardised innovations, denoted

as F̂j(µj,t(θ)), j=1,...,d, is estimated non-parametrically. Section 1.4 describes

this step for our dataset.

3. The copula dependence parameter is derived by using the copula specification

as in Equations 1.2 to 1.5 and its density C(F̂1(ϵ1,t(θ)),..., F̂d(ϵd,t(θ)) for

maximisation of the log likelihood.

1.3.5 Goodness-of-Fit Tests

As described in Section 1.3.3, each copula captures a different dependence struc-

ture (Trivedi and Zimmer, 2005). The econometrician needs to decide which of

the estimated copulas reflects the actual dependence structure of the data most

appropriately. According to Berg and Bakken (2007), this decision should not be

based on the information criteria such as Akaike’s Information Criterion (AIC).
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Instead, it is recommended to use goodness-of-fit (GOF) approaches to reject or

accept a specific copula (Panchenko, 2005; Genest et al., 2006, 2009). Several GOF

test have been suggested by the literature, see e.g. Berg and Bakken (2007) or

Genest et al. (2009). In our empirical analysis, we use goodness-of-fit tests that

investigate the distance between the estimated and the so-called empirical copula to

select the most appropriate among a set of copulas (Genest et al., 2006, 2009). The

nonparametric empirical copula is calculated from the empirical margins whereby

its functional form is fitted to the data. The distance between the estimated and

the empirical copula is then evaluated using the so-called Cramér-Von Mises test

statistic. The parametric copula that is closest to the empirical copula represents

the most appropriate choice (Trivedi and Zimmer, 2005).

The following section describes the procedure in greater detail. Empirical cop-

ulas were introduced by Deheuvels (1979). The empirical copula can be understood

as the sample version of the dependance structure (Cherubini et al., 2004). The

empirical marginal distribution converges towards the actual distribution function

for n approaching infinity. Let (X1i, ..., Xni) be n observations of the random variable

Xi. Then, the empirical marginal cdf for a random variable Xi is:

F̂i(xi) =
1

n + 1

n∑
j=1

I(Xji ≤ xi) i = 1, .., d,(1.7)

where I(·) returns the value of 1 if Xji ≤ xi and 0 otherwise. The term n + 1 in the

denominator is used to keep the empirical cdf below 1. Given the marginal cdf’s,

the empirical probability integral can be transformed uji = F̂i(xji) for i = 1, .., d and

j = 1, .., n for the vector u = (u1, .., ud), and the empirical copula can be derived by:

Cemp(u) =
1

n + 1

n∑
j=1

I(F̂1(xj1) ≤ u1), ...., F̂d(xjd) ≤ ud))(1.8)

=
1

n + 1

n∑
j=1

I(U1 ≤ u1, ...., Ud ≤ ud).(1.9)

According to Tsukahara (2005), the empirical copula is a consistent estimator

of the true copula and therefore is a well-accepted benchmark for copula goodness-
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of-fit tests.5 We concentrate on so-called ‘blanket tests’ which do not depend on

prior categorisation of the underlying data or any arbitrary choice of smoothing

parameters, weight functions, or kernels. Genest et al. (2009) specify different

versions of such tests and conduct a large Monte Carlo experiment to compare these

options. They report particularly good results for the blanket tests using ranks or

the Rosenblatt transform. To evaluate the distance between the estimated and the

empirical copula, the authors find the best results for the so-called Cramér-Von Mises

statistic. Hence, we only describe tests based on ranks that use the Cramér-Von

Mises statistic for measuring the difference between the estimated and the empirical

copula.

We investigate whether a specific parametric copula represents the dependence

structure of a multivariate distribution appropriately. The test procedure can be

roughly summarised as follows:

1. Based on the empirical cdfs for the marginal series, estimate the empirical

copula Cemp(Ui) and the parametric copula Cθ(Ui).

2. Using the Cramér-Von Mises statistic, calculate the distance between the

empirical and the estimated copula:

Sn =
n∑

i=1

[Cemp(Ui) − Cθ(Ui)]
2

3. In a bootstrap procedure, for some large integer D, the following steps are

repeated:

(a) Generate a random sample from Cθ and compute the associated rank

vectors (U∗
1 , ..., U∗

n) as well as the empirical copula Cemp∗(u).

(b) Estimate the parametric copula Cθ∗ .

(c) Determine S∗
n =

∑n
i=1[C

emp∗(Ui) − Cθ∗(Ui)]
2 for the generated sample.

4. From the D bootstrap samples, an approximate p-value, measuring the goodness-

of-fit of the copula, can be calculated as the fraction of simulations where

S∗
n > Sn.

5Note that the empirical copula is not a copula according to the definition by Deheuvels (1979),
but rather the observed frequency of P (U1 ≤ u1, ...., Ud ≤ ud).
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Under the null hypothesis, a specific copula provides a good fit for the depen-

dence structure of a multivariate distribution. High p-values, which do not reject the

null, indicate that the considered copula mirrors the actual dependence structure

of the data well. For a copula that does not represent an appropriate choice, given

the actual data, the p-value should be low. In this case, depending on the level

of confidence, the null hypothesis will be rejected. Note that for the case where

several copula families cannot be rejected by the goodness-of-fit tests, an alternative

approach as specified in e.g. Chen and Fan (2006) or Diks et al. (2010), needs to be

implemented. These tests are particularly designed to compare competing copula

models based on their in-sample (Chen and Fan, 2006) or out-of-sample (Diks et al.,

2010) log likelihood scores.

1.3.6 Data

In this section, we investigate the dependence structure between daily returns from

traded emission allowance contracts and various other financial variables during

the time period 2. January 2008 to 31. December 2009. The existing literature

discusses the factors which are most important for the carbon price. Based on this

research, we examine a number of variables from commodity and financial markets.

As illustrated in Section 1.2.2, the literature identifies energy prices to exert a strong

influence on the carbon price due to fuel-switching in the power sector. Therefore,

from commodity markets, we choose gas and coal futures returns as well as 2010

oil futures returns. The gas and oil futures are obtained from the International

Commodity Exchange (ICE). Data on coal futures as well as electricity futures are

taken from the European Energy Exchange (EEX) in Leipzig. The underlying for the

electricity futures is the Phelix Day Base. Data on the EUA price are obtained from

the London-based European Climate Exchange (ECX). As emission levels are related

to economic activity, we take stock markets as a proxy for economic development. In

addition to the broader European stock market index, the Eurostoxx 50, we consider

the more energy-specific DJ Europe Energy Stock Index (E1ENE) and the European

Renewable Energy Index (ERIXP). One may assume that the relationship between

the carbon price and energy-related stocks is particularly strong. For our analysis,

we consider log-returns that are calculated as rt = ln(Pt/Pt−1) from the original

price series.



1.4. ESTIMATION RESULTS 17

1.4 Estimation Results

1.4.1 Dependence Structures

Following the SCOMDY approach described in Section 1.3.4, in a first step we need

to find an appropriate model for the marginals. We need to estimate the parameters

for the conditional mean µj,t(θ1) and conditional variance hj,t(θ) equations.6 We

focus on different ARMA-GARCH specifications for each of the considered series

and abstain from using additional exogenous variables. To avoid over-fitting, the

best model is chosen based on Akaike’s Information Criterion (AIC) and Bayesian

Information Criterion (BIC). Table 1.1 summarises the results for the considered

series and reports the model choice according to the considered model parsimony

criteria. The obtained standardised residuals will then be used in the subsequent

empirical analysis. To test for i.i.d property of the standardised residuals, the BDS

test for independence was applied to the standardised residuals. The BDS test is a

portmanteau test for time-based dependence in a series and can be used to examine

whether the residuals are independent and identically distributed. We found that

for none of the considered series the null hypothesis of i.i.d could be rejected. In

the following, we therefore assume that all standardised residuals exhibit the desired

i.i.d. property necessary for the copula estimation. For ease of readability, we will

henceforth adhere to the expression returns instead of using standardised residuals.

Table 1.1: Choice of the best ARMA-GARCH model

Time series Suggested model
EUA futures ARMA(1,0)-GARCH(1,1)
Coal futures ARMA(1,0)-GARCH(2,3)
Oil 2010 futures ARMA(0,0)-GARCH(1,1)
Gas futures ARMA(0,1)-GARCH(1,2)
EEX futures ARMA(1,0)-GARCH(1,3)
Eurostoxx 50 Spot ARMA(1,0)-GARCH(1,2)
E1ENE Spot ARMA(1,0)-GARCH(1,2)
ERIXP Spot ARMA(1,1)-GARCH(1,1)

Note: The choice of the best ARMA-GARCH model for each of the considered time series is based
on AIC and BIC model selection criteria.

In a next step, we investigate the dependence structure between returns of

EUAs and the other considered commodities and financial variables based on the

6The estimation was conducted in Matlab.
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Figure 1.2: Illustrating daily EUA 2010 and coal futures
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Note: Standardised residuals for daily EUA 2010 futures versus coal futures (upper left panel),
ranks for daily EUA 2010 Futures standardised residuals versus ranks for coal futures standardised
residuals (upper right panel), 3d histogram of rank transforms for daily EUA 2010 futures versus
coal futures (lower left panel), and fit of the Student-t copula to the rank transforms (lower right
panel).

fitted models for the marginal return series. As pointed out in Section 1.3.4, after

estimating the parameters for the marginal series, the next step is to estimate the

empirical distribution functions F̂j(µj,t(θ)). This has the advantage that the possibly

unknown distribution for the returns is not required, since the empirical marginal cdf

can be used. The CML method is then applied to the transforms from the empirical

distribution function to estimate the dependence parameters θ̂ for the Clayton, ϕ̂

for the Gumbel, the copula correlation parameters ρ̂G for the Gaussian, and ρ̂t for

the Student-t copula. Note that the degrees of freedom parameter v needs to be

estimated for the Student-t copula, so that the results for the copula correlation

parameters ρ̂G and ρ̂t are not necessarily identical.

Figure 1.2 provides a plot of the standardised residuals for daily EUA 2010

futures versus coal futures, the rank transforms of the standardised residuals for
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Figure 1.3: Illustrating daily EUA 2010 futures and E1ENE
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Note: Standardised residuals for daily EUA 2010 futures versus E1ENE returns (upper left panel),
ranks for daily EUA 2010 futures standardised residuals versus ranks of E1ENE standardised
residuals (upper right panel), 3d histogram of ranks transforms for daily EUA 2010 futures versus
E1ENE (lower left panel), and fit of the Student-t copula to the rank transforms (lower right
panel).

EUA 2010 futures versus coal futures, a 3d histogram of the rank transforms, and

the fit of the Student-t copula to the transforms. The analogous graphs are also

provided for the series daily EUA 2010 futures versus E1ENE returns in Figure 1.3.

We also estimate Kendall’s τ̂ for each of the bivariate series and conduct a

significance test for the dependence between returns with H0 : τ = 0 versus H0 :

τ ̸= 0. The test is non-parametric, as it does not rely on any assumptions on the

distributions of two variables X and Y . Then under a null hypothesis of X and

Y being independent, the sampling distribution of τ will have an expected value of

zero. Note that the precise distribution cannot be characterised in terms of common

distributions, however, it can be calculated exactly for small samples.7

7For larger samples, commonly an approximation to the normal distribution, with zero mean
and variance 2(2n + 5)/9n(n − 1) is used. For further details on the test we refer to Prokhorov
(2001).
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We find significant dependence at the 1% level between EUA returns and other

return series. Only for the oil futures, the estimated coefficient for Kendall’s τ̂ is not

significant at the 1% or 5% level. The results are displayed in Table 1.2. We find that

Kendall’s τ̂ ranges from approximately -0.05 to 0.41 for the different series, while the

Gaussian and the Student-t copula correlation parameters range from approximately

-0.07 to 0.60. The highest dependence can be observed between returns of 2010 EUA

and electricity futures contracts, while we observe the lowest rank dependence and

correlation between 2010 EUA and oil futures contracts. Interestingly, here the

estimated coefficients for Kendall’s τ̂ , ρ̂G, and ρ̂t are slightly negative. However, in

2008 and 2009 the oil futures behaved quite particular, dropping from a peak at 140

US Dollars to a price remaining at around 80 US Dollars. This might explain the

weak correlation and the negative sign. There is not only a significant dependence

between commodity and EUA futures contracts, but also between EUA futures and

equity markets. In fact the returns of stock market indices – the Eurostoxx 50,

the energy specific index E1ENE, and the renewable energy index ERIXP – seem

to exhibit even a higher degree of dependence with EUA futures returns than for

example oil and gas futures. Generally, our results contradict some of the earlier

studies by Kosobud et al. (2005) and Daskalakis et al. (2009) on the dependence

between emission allowances and other financial assets. While the former found no

statistically significant correlations between returns of SO2 emission allowances and

returns from other financial variables, the latter observed that EUA futures returns

were negatively correlated with equity market returns during the pilot trading

period.

To investigate which of the copulas describes the dependence structure best, we

use the Cramér-Von Mises statistic to measure the distance between the empirical

and the estimated copula. Because the distance between the estimated and the

empirical copula alone is not sufficient to determine whether any of the models

really provides a good fit to the data, goodness-of-fit tests proposed by Genest

et al. (2009) are conducted. Recall that for these tests, the null hypothesis is that

the examined copula provides an appropriate fit to the data. Following the test

procedure described in the previous section, for each of the copula families, we create

D = 1000 bootstrap samples and determine the distance between the empirical and
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Table 1.2: Kendall’s τ̂ and estimated copula dependence parameters

Asset τ̂ θ̂ ϕ̂ ρ̂G ρ̂t

Coal futures 0.2458** 0.5250 1.2666 0.3680 0.3744 (v̂ = 27.90)
Oil 2010 futures -0.0544 0.0000 1.0000 -0.0696 -0.0711 (v̂ > 1000)
Gas futures 0.1140** 0.2114 1.1175 0.1804 0.1857 (v̂ = 14.96)
EEX futures 0.4135** 0.9840 1.6010 0.5920 0.6008 (v̂ = 14.19)
Eurostoxx 50 Spot 0.1818** 0.3473 1.2055 0.2954 0.2984 (v̂ = 21.47)
E1ENE Spot 0.2651** 0.5732 1.3067 0.3937 0.4044 (v̂ = 8.82)
ERIXP Spot 0.2005** 0.4761 1.2115 0.3169 0.3203 (v̂ = 12.31)

Note: Kendall’s τ̂ and the estimated copula dependence parameters θ̂ for the Clayton, ϕ̂ for the
Gumbel, ρ̂G for the Gaussian, and ρ̂t, v̂ for the Student-t copula for standardised residuals of EUA
futures and the considered assets. For Kendall’s τ we also report the results of a significance test
with H0 : τ = 0. The asterisk denote significant rejection of the null hypothesis at the 1% ** and
5% * level.

the estimated copula for each sample.8 The samples are then used to calculate

p-values with respect to the null hypothesis. The p-value provides the level of

significance at which the null hypothesis would be rejected. The p-value therefore

measures how much evidence we have against the null hypothesis of an appropriate

fit of the suggested copula. Results for the Cramér-Von Mises statistic as well as

p-values for the considered copula families are presented in Table 1.3.

The results indicate that for the majority of the considered bivariate series

the Student-t copula yields the smallest distance between the estimated and the

empirical copula. The distance is the smallest for five of the considered bivari-

ate series, while it yields the second smallest distance for the other two pairs.

Interestingly, the Gaussian copula also provides distances that are only slightly

higher than those of the Student-t copula and significantly smaller than those of the

Clayton and the Gumbel copula. Only for the relationship between EUA futures

and Eurostoxx 50 spot returns, the Gumbel copula yields the smallest distance. For

the relationship between EUA futures and ERIXP spot returns, the Clayton copula

yields the smallest distance.

Our results are also confirmed by the conducted bootstrap goodness-of-fit tests.

We find that the Student-t and the Gaussian copula perform best for most of the

considered series. An appropriate fit of the Gaussian and the Student-t copula to the

dependence structure cannot be rejected for any of the series at the 5% significance

8This is the number of bootstrap samples that is also applied in Genest et al. (2009) providing
good results for the considered goodness-of-fit tests.
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level. At this significance level, the hypothesis of an appropriate fit of the Clayton

and the Gumbel copula is rejected for five out of seven series. An appropriate fit of

the Clayton or the Gumbel copula cannot be rejected at the 5% level between EUA

and gas futures (Clayton and Gumbel), EUA futures and the ERIXP spot (Clayton)

as well as EUA futures and the Eurostoxx 50 (Gumbel). For the Gumbel copula an

appropriate fit is even rejected at the 1% level for most of the series.

Table 1.3: Distance between estimated and empirical copula

Asset Clayton Gumbel Gaussian Student-t
Coal futures 0.0326 (0.036) 0.0557 (<0.001) 0.0167 (0.536) 0.0162 (0.601)
Oil 2010 futures 0.0702 (0.014) 0.0702 (<0.001) 0.0328 (0.064) 0.0324 (0.062)
Gas futures 0.0177 (0.471) 0.0211 (0.158) 0.0164 (0.585) 0.0151 (0.654)
EEX futures 0.1537 (<0.001) 0.0521 (<0.001) 0.0085 (0.980) 0.0083 (0.938)
Eurostoxx 50 0.0519 (0.002) 0.0162 (0.478) 0.0235 (0.242) 0.0235 (0.205)
E1ENE 0.0557 (0.003) 0.0471 (<0.001) 0.0155 (0.635) 0.0130 (0.797)
ERIXP 0.0193 (0.333) 0.0478 (<0.001) 0.0239 (0.209) 0.0220 (0.264)

Note: Either the Student-t or the Clayton copula yield the lowest distance according to the Cramér-
Von Mises statistic. The p-values, shown in parentheses, are based on bootstrap goodness-of-fit
test (Genest et al., 2009). Bold letters indicate the lowest distance for the considered series.

Overall, we find that the elliptical Gaussian and Student-t copula provide an

appropriate fit to all considered bivariate return series. Given the rather symmetric

dependence structure for most of the considered variables, the findings of Zach-

mann and von Hirschhausen (2008) regarding an asymmetric relationship cannot

be confirmed by our study. This is in line with Prete and Norman (2011) who

report a symmetric structure for emission allowance futures and electricity futures

during Phase II. Note that the conducted goodness-of-fit tests are not able to provide

information on which copula provides the best fit to the data. The tests do neither

reject the Gaussian nor the Student-t at the 1% or 5% level for any of the series. For

most of the considered return series, they provide p-values of a magnitude greater

then 0.2. To decide which model is closer to the true model among a set of valid

models, alternative tests would be required, as described in Chen and Fan (2006)

and Diks et al. (2010). We leave this investigation to future work.

1.4.2 Time-Varying Copulas

To investigate the nature of the dependence through time, we further apply a time-

varying estimation of the copula parameters for the bivariate series. We hereby

decide to estimate the different copula parameters using a rolling window approach
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as it is applied in Giacomini et al. (2009) or Grégoire et al. (2008). Again, we consider

a conditional approach such that, in a first step, we estimate ARMA-GARCH models

for each return series and calculate the standardised residuals. In a second step,

the empirical distribution function is applied to the standardised residuals, and the

copula models are estimated based on the derived ranks. We choose a window length

of 126 trading days that corresponds to approximately six months. The first period

considers returns from 3. January 2008 to 30. June 2008, while the last window

uses data from 6. July 2009 to 31. December 2009.9 Figure 1.4 shows a plot of

the estimated copula parameters for the Clayton, Gumbel and Student-t copula.

Depicted is the relationship between EUA futures returns and coal, electricity, and

gas futures returns as well as the relationship between the Eurostoxx 50, E1ENE, and

ERIXP spot returns respectively. Note that for all series the estimated dependence

parameter for the Gaussian copula was almost identical to the Student-t copula

parameter. Therefore, these parameters are not provided in the graphs.

For most of the considered series, we find that the estimated copula parameters

exhibit time-variation. We generally find that the dependence between EUA futures

and the considered commodity futures is increasing during the period of the financial

crisis in the second half of 2008. The dependence between the return series seems to

decrease to a lower level during 2009, in particular in its second half. This confirms

general results on time-varying correlation or dependence suggesting that returns

from financial markets exhibit higher dependence during periods of economic or

market downturn.

The degree of time-variation, however, is considerably different for some of the

relationships under investigation. The dependence structure between EUA and coal

futures exhibits a particularly strong change: the copula parameters start to increase

for samples beginning in the second half of 2008. For example, the parameter of

the Clayton copula rises from approximately 0.4 to a value higher than 1. This

indicates that joint downward movements of the two series occur considerably more

often during this period of time. The parameters of the Student-t and the Gumbel

copula exhibit a similar behaviour, but in a more retained manner. The relationship

between EUA and electricity futures is generally found to be stronger for the entire

9More advanced approaches on the estimation of time-varying copulas, also with respect to
the optimal choice of window length, have been suggested by Patton (2006), Rodriguez (2007),
and Giacomini et al. (2009). However, our aim in this section is to provide a simple and rather
descriptive analysis of the dependence structure through time.
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Figure 1.4: Estimated copula parameters over time
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Note: Estimated copula parameters for the Clayton (blue), Gumbel (green), and Student-t (red)
copula for a six month rolling window period. The first window covers observations from January
to June 2008, while the last period covers observations from July to December 2009. The graphs
show the results for dependence structure between returns for daily EUA 2010 futures and coal
futures (upper left panel), electricity futures (upper right panel), gas futures (middle left panel),
Eurostoxx 50 spot contracts (middle right panel), E1ENE DJ Europe Energy Stock Index spot
contracts (lower left panel) and ERIXP European Renewable Energy Index spot contracts (lower
right panel).
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time horizon. The relationship of EUA and gas futures seems to change only by the

end of 2008.

Analysing the relationship between EUA futures returns and the considered

equity indices yields further interesting insights. The dynamics of the dependence

structure between EUA futures and E1ENE spot returns are quite similar to those

of commodity markets through time. We find, however, different results for the

relationship between EUA futures and Eurostoxx 50 spot returns as well as ERIXP

spot returns: here the dependence is very low during the first six months of 2008.

The estimated parameters for the Clayton and the Student-t copula are close to zero,

while the parameter for the Gumbel copula is approximately one, indicating that

the dependence is very weak during this period. Three months later the dependence

becomes stronger, and the estimated parameters for all of the considered copulas

start to increase. For the Eurostoxx 50, this increase continues until August 2009,

while the parameters for the ERIXP rise significantly until February 2009. All

copula parameters rise in absolute terms, in relative terms the increase is much

higher for the Student-t and the Clayton copula. This suggests that joint downward

movements are more pronounced during the financial crisis. Towards the end of

the investigated period, we find a slightly decreasing dependence structure between

EUAs and all of the considered equity indices. Note that conclusions as to whether

there is a structural break or a significant change in the dependence structure during

the considered period require further statistical tests as suggested by Patton (2006)

or Giacomini et al. (2009).

1.4.3 Risk Management Analysis

As mentioned in Section 1.2.2, the EUA price is more likely to be influenced by

policy measures and regulatory changes than conventional commodities. This spe-

cific feature brings about new challenges how to integrate EUAs in a portfolio.

Therefore, we extend the present analysis by a risk management perspective and

consider different exemplary portfolios with investments in several of the considered

assets. We test the Gaussian and Student-t copula models against two benchmark

approaches: a standard (static) multivariate variance-covariance approach and a

univariate AR-GARCH type model that is applied directly to the created return

series of the constructed portfolios. The forecasting performance of the models is
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investigated by conducting an out-of-sample analysis comparing one-day-ahead VaR

and distributional forecasts for the portfolios. We report the results for portfolios

with equal weights for each of the assets. We would like to point out that robustness

checks with varied portfolio weights and assets did not change the quality of the

results. In the following, results for four different portfolios will be reported:

• Portfolio 1 (PF1) with equal 25% weight for the following futures contracts:

EUA, coal, oil and gas.

• Portfolio 2 (PF2) with equal 25% weiht for the following futures contracts:

EUA, coal, gas and electricity.

• Portfolio 3 (PF3) with equal 25% weight for the following assets:

EUA, electricity, Eurostoxx 50 and ERIXP.

• Portfolio 4 (PF4) with equal 25% weight for the following assets:

EUA, Eurostoxx 50, E1ENE and ERIXP.

Value-at-Risk Analysis

For each portfolio (PF1-PF4) we create the return series based on the assumed equal

weights w = 0.25 for each asset. Then, in an out-of-sample forecasting study, the

performance of the copula models is tested against a standard multivariate normal

(MVN) approach and a univariate AR(1)-GARCH(1,1) model for the portfolio

return series. Note that the multivariate normal approach does not consider the

conditional variance of the individual assets, so we expect the forecasts to vary

significantly less through time for this model. Therefore, we assume that the

multivariate normal approach cannot react to significant volatility changes in any

of the assets and might underestimate the risk, in particular during times of high

volatility.

With respect to copula models, we decide to examine the forecasting perfor-

mance using the Gaussian and the Student-t for the multivariate dependence struc-

ture between returns of the individual assets. Note that while these copulas provide

an appropriate fit to the dependence structure in the bivariate case, we cannot

generally extrapolate these results to a multivariate setting. Before conducting our

risk analysis, the fit of both copulas to the dependence structure between individual
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assets of the four portfolios was tested using the goodness-of-fit tests described in

Section 1.3.5 and 1.4. The results indicated that an appropriate fit of both, the

Gaussian and the Student-t, to the multivariate data could not be rejected.

Similar to Section 1.4.2, our risk analysis is conducted using a rolling window

of t = 126 days length, corresponding roughly to six months of observations. For the

univariate model, we derive the distributional forecast for the returns based on the

fitted AR-GARCH model and the most recent forecast for the conditional volatility.

For the benchmark variance-covariance approach, we assume that the return series

and the dependence structure can be described by a multivariate normal distribution.

Under this assumption, we simply need to estimate the variance-covariance matrix Σ

for the return series. Using portfolio theory, the mean of the marginal return series,

the given portfolio weights, and the estimated variance-covariance matrix allow us to

calculate a distributional forecast of portfolio returns for the next day. For the copula

approach, we apply the discussed SCOMDY model with an AR(1)-GARCH(1,1)

process for the marginal series.10 Therefore, for each time step, we initially fit an

AR-GARCH model to the individual return series and calculate the standardised

residuals. Then, using the transforms from the empirical distribution function for

the standardised residuals, the Gaussian and the Student-t copula are fitted to the

multivariate series. We estimate the multivariate Gaussian and Student-t copula for

each time step, and therefore obtain the correlation matrix ĈGaussian and ĈStudent as

well as the degrees of freedom parameter v̂ for the Student-t copula. Then, we use

the estimated copulas to simulate 10000 vectors of dependent uniformly distributed

random variables (u1, u2, u3, u4) from both copulas. Thereafter, the inverse of the

empirical distribution function and the conditional forecast for the volatility for the

marginal series are used to calculate the simulated conditional asset returns for the

series. Finally, using the portfolio weights we can then determine a simulated return

distribution for the portfolio in t + 1.

An exemplary plot of the simulated return distribution for two of the methods

and Portfolio 4 is provided in Figure 1.5. Here, the distributional forecast for one

of the time steps using the Student-t copula model in comparison to a standard

10Because the analysis was conducted in a rolling window setting, different AR-GARCH type
models will provide the best fit to the data at different points in time. Because choosing the
optimal model for each series at any time step based on a parsimonious model selection criteria
would be tedious, we decided to stick to a simple AR(1)-GARCH(1,1) that generally provided a
good fit to all of the series.
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Figure 1.5: Exemplary plot of return distribution forecast

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
0

5

10

15

20

25

30

35

Portfolio Return y

f(
y)

−0.06 −0.055 −0.05 −0.045 −0.04 −0.035 −0.03 −0.025
0

1

2

3

4

5

6

7

8

Portfolio Return y

f(
y)

Note: Exemplary plot of the return distribution forecast (left panel) and the tail of the return
distribution forecast (right panel) for the multivariate normal and the Student-t copula approach
with v = 8.03 for Portfolio 4. For both plots the blue line is the probability density for the
multivariate normal approach, while the red line provides the simulated density for a model using
the Student-t copula to model the dependence structure between rank transforms.

variance-covariance approach is plotted. Our results indicate that the standard

variance-covariance approach provides a lower estimate for the risk in particular in

the extreme tail of the distribution. Generally, for the model using the Student-t

copula, the simulated portfolio return distributions often exhibit some skewness and

excess kurtosis.

The first six months were chosen as calibration period such that forecasts

for the time period 1. July 2008 to 31. December 2009 are compared. As men-

tioned above, the forecasts are determined using a rolling window technique with

re-estimation of the marginal distributions and dependence parameters after each

time step. The length of the in-sample period is fixed with 126 trading days, while

the start date and end date successively increase by one observation. Figure 1.6

provides a plot of the actual portfolio returns as well as the estimated 99%-VaR

forecasts for Portfolio 4 using the univariate AR-GARCH model, a standard MVN

approach as well as the conditional copula models (Student-t and Gaussian). The left

panel illustrates that since the MVN approach does not take into account conditional

volatility, there is significantly less variation in the VaR forecasts. During periods of

extreme returns, for example in October - December 2008, the model continuously

underestimates the risk. The second benchmark model, namely the univariate

AR-GARCH model for the portfolio returns, seems to provide reasonable forecasts

for the 99%-VaR. The right panel shows that also the considered copula models
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seem to provide an appropriate quantification of the 99%-VaR with only a small

number of VaR exceptions. At a first glance, we also observe that there is only a

minor difference with respect to VaR quantification between the Gaussian and the

Student-t copula model. A more rigourous analysis based on VaR exceptions and

distributional forecasts will be conducted in the following.

Figure 1.6: Portfolio returns and 99%-VaR forecasts for Portfolio 4
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Note: The VaR forecasts are based on using a univariate GARCH model for the portfolio return
series (red) and standard multivariate normal approach (green) (left panel) and for the conditional
copula model using a Student-t (red) and Gaussian (green) copula (right panel).

Given the estimated model parameters for the marginal distributions and

dependence structure, we are able to calculate a model-dependent confidence interval

for the next observation of the portfolio return yt+1. Following Kupiec (1995),

Christoffersen (1998) and Hull (2007), we evaluate the quality of the VaR forecasts

by comparing the nominal number of exceptions of the models to the true number of

exceptions. Because comparing the nominal and true coverage might be sensitive to

the choice of the confidence level α, we decided to investigate the coverage for three

different values of α. For each of the models we calculate the VaR for the 95%,

99%, and 99.9% confidence level. If the implied VaR forecasts are accurate, the

percentage of exceedances should be approximately 5%, 1% and 0.1%, respectively.

We further conduct a statistical test investigating whether a model provides an

acceptable number of VaR exceptions. The test is based on the binomial distribution

and simply investigates whether the number of exceedances is significantly higher

than the expected number for p = 0.05, p = 0.01, and p = 0.001 (Hull, 2007). The

null hypothesis is that the model provides an adequate number of exceptions such
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that rejection of the null indicates that the model significantly misspecifies VaR

estimates.

Table 1.4: Testing different VaR specifications

95% VaR 99% VaR 99.9% VaR

Portfolio # Exc. Fraction # Exc. Fraction # Exc. Fraction

PF1 Univariate 31 8.05%** 6 1.56% 3 0.78%**
PF2 Univariate 28 7.27%* 8 2.08%* 2 0.52%*
PF3 Univariate 31 8.05%** 8 2.08%* 2 0.52%*
PF4 Univariate 27 7.01%* 9 2.34%** 2 0.52%*

95% VaR 99% VaR 99.9% VaR

Portfolio # Exc. Fraction # Exc. Fraction # Exc. Fraction

PF1 MVN 25 6.49% 12 3.12%** 2 0.52%*
PF2 MVN 26 6.75% 9 2.34%** 2 0.52%*
PF3 MVN 28 7.67%* 14 3.64%** 6 1.56%**
PF4 MVN 28 7.67%* 11 2.86%** 6 1.56%**

95% VaR 99% VaR 99.9% VaR

Portfolio # Exc. Fraction # Exc. Fraction # Exc. Fraction

PF1 Gaussian 26 6.75% 6 1.56% 0 0.00%
PF2 Gaussian 24 6.23% 4 1.04% 1 0.26%
PF3 Gaussian 21 5.45% 5 1.30% 3 0.78%**
PF4 Gaussian 21 5.45% 3 0.78% 2 0.52%*

95% VaR 99% VaR 99.9% VaR

Portfolio # Exc. Fraction # Exc. Fraction # Exc. Fraction

PF1 Student-t 26 6.75% 6 1.56% 0 0.00%
PF2 Student-t 24 6.23% 4 1.04% 0 0.00%
PF3 Student-t 21 5.45% 6 1.56% 1 0.26%
PF4 Student-t 21 5.45% 3 0.78% 1 0.26%

Note: Number and fraction of exceedances for 95%-, 99%-, and 99.9%-VaR for the multivariate
normal (MVN), the univariate GARCH model as well as the Gaussian and the Student-t copula
approach. The asterisk denote rejection of an appropriate VaR specification for specific confidence
level at 1% ** and 5% * significance (Hull, 2007).

With a total number of 385 days, the expected number of VaR exceptions

is approximately 19.25 for the 95%, 3.85 for the 99%, and 0.385 for the 99.9%

confidence level. Table 1.4 reports the actual number and fraction of exceedances

as well as the results for the significance test for the number of VaR exceptions.

We find that for a vast majority of considered portfolios and confidence levels the

copula models are superior to the benchmark models with respect to the difference

between the actual and the expected number of exceedances.
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For the 95% confidence level, all models provide a slightly higher number of

exceedances than expected. In particular for the portfolios containing investments

in commodities and equity (PF3 and PF4), the coverage is worse for the univariate

GARCH and the MVN model. For these portfolios, both copula approaches provide

a better estimation of the risk quantile and yield a lower number of exceptions than

the benchmark models. The conducted tests for VaR exceptions indicate that a

correct specification of VaR levels is rejected for Portfolio 3 and 4 at the 5%, often

even at the 1%, significance level for the multivariate normal and the univariate

GARCH model. However, an appropriate specification of VaR for Portfolio 3 and 4

cannot be rejected for the Student-t copula at any of the considered VaR confidence

level. For the 99% and 99.9% confidence levels, the copula models seem to provide

better VaR estimates. Here, the univariate GARCH and the multivariate normal

approach do not yield appropriate VaR forecasts such that the observed number

of exceptions for any of the considered portfolios consistently exceeds the expected

number. Table 1.4 clearly illustrates that both copula models offer better results,

where the nominal number of exceptions for the considered confidence levels is much

closer to the theoretical number.

Overall, with respect to backtesting the VaR models, the copula approach

consistently outperforms the multivariate normal model. The univariate GARCH

yields better results than the multivariate normal model but still shows a higher

number of exceptions than the copula models almost at all confidence levels. In

comparison to the Gaussian copula, the Student-t copula provides very similar

results for the 95% and 99% confidence levels and slightly better results at the

99.9% confidence level. At this confidence level, an appropriate VaR specification

is rejected for almost all portfolios for the two benchmark models, while it is only

rejected twice for the Gaussian copula and never for the Student-t copula. Therefore,

we conclude that the Student-t copula model provides the best results for the VaR

specification.

Distributional Forecasts

We investigate the ability of the models to provide accurate forecasts of the portfolio

return distribution. Tests that are based on the confidence intervals might be

unstable as they are sensitive to the choice of the confidence level α. Therefore,
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we also apply tests that investigate the complete distributional forecast, instead of

a number of quantiles only. We perform a distributional test that evaluates the

accuracy of the density forecasts, following Crnkovic and Drachman (1996) and

Diebold et al. (1998). We are interested in the distribution of the return yt+1, t > 0

that is forecasted at time t. Let f(yt+1) be the probability density, and the associated

distribution function of yt+1 is denoted by:

(1.10) F (yt+1) =

yt+1∫
−∞

f(x)dx.

To conduct the test, we determine F̂ (yt+1) using the estimates for the marginal

return distributions and copula or correlation parameters from the rolling window

in-sample period. Based on this information, we can calculate a rolling forecast

of the portfolio return distribution for the next day. Given that F̂ is the correct

forecast for the distribution, Rosenblatt (1952) shows that the transformation of yt:

(1.11) ut+1 =

yt+1∫
−∞

f̂(x)dx = F̂ (yt+1),

is i.i.d. uniform on [0, 1]. Crnkovic and Drachman (1996) and Diebold et al. (1998)

provide tests that can be used to investigate violations of either independence or

uniformity in the forecasts.

Testing for uniformity, Crnkovic and Drachman (1996) suggest to use a test

based on the distance between the empirical and the theoretical cumulative distri-

bution function of the uniform distribution. This may be done using the Kuiper

statistic DKuiper = D+ + D− with D+ = sup{Fn(u)− F̂ (u)} and D− = sup{F̂ (u)−
Fn(u)}. Hereby, Fn(u) denotes the empirical distribution function for the probability

integral transforms of the one-day ahead return forecasts and F̂ (u) the cdf of

the uniform distribution. Table 1.5 presents the results for the conducted tests.

Again, we find that the Gaussian and the Student-t copula models generally provide

better results than the multivariate normal model and the univariate GARCH

model. Probability integral transforms of the one-day ahead return forecasts for

the multivariate normal model are non-uniformly distributed. For Portfolio 1, 2

and 3, the test rejects the hypothesis of a uniform distribution even at the 1%
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level while for Portfolio 4 the uniformity assumption is rejected at the 5% level.

In comparison to the univariate model, the Gaussian and the Student-t copula

model perform better for Portfolio 1 and 2, while the univariate model provides

the smallest distance to the uniform distribution for Portfolio 3 and 4. While

the appropriateness of the three models is not rejected for Portfolio 3 and 4, the

Student-t copula model is the only one that cannot be rejected at the 1% level for

Portfolio 1. For Portfolio 2, appropriate distributional forecasts are rejected for all

considered models. Furthermore, all models seem to provide better forecasts for

PF3 and PF4 with a higher share in equity indices, while they perform worse for

PF1 and PF2 consisting of commodity futures only. The Student-t copula model

clearly outperforms the multivariate normal model and seems to deliver slightly

better results than the univariate GARCH and the Gaussian copula approach.

Table 1.5: Kuiper test statistics

PF1 PF2 PF3 PF4
Univariate GARCH 0.1311** 0.1367** 0.0593 0.0577
Multivariate Normal 0.1183** 0.1149** 0.1121** 0.0985*
Gaussian Copula 0.1063** 0.1055** 0.0750 0.0710
Student-t Copula 0.0966* 0.1054** 0.0807 0.707

Note: Results for Kuiper test statistics. The asterisk denotes rejection of the model at the 1% **
and 5% * significance level, for n=386 observations.

Overall, our results suggest that copula models are particularly useful for risk

management purposes and short-term forecasting of future return distributions for

portfolios containing investments in emission allowances. These results could be im-

portant not only for risk management or hedging, but also for the purpose of portfolio

optimisation. Deviating from the standard variance-covariance approach could be

of interest, in particular when higher moments of the portfolio return distribution

are considered or when risk-adjusted measures are used (Jondeau and Rockinger,

2006b; Keating and Shadwick, 2002). Note that our results were also robust when

alternative portfolio weights, combination of assets, and different window sizes for

the rolling estimation were considered.
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1.5 Conclusions

The aim of this chapter is to deepen the understanding of the relationship be-

tween European carbon, commodity, and financial markets. We apply different

copulas to analyse the dependence structure between EUA futures returns and

those of other financial assets and commodities during the Kyoto commitment

period. Copulas offer great flexibility for modelling the relationship between different

financial variables. The application of copulas also yields insights with respect

to non-linear dependence and tail dependence between the considered variables.

We first investigate which copulas are most appropriate to model the dependence

structure. Second, we focus on the time-varying properties of the dependence

structure. The latter step allows us to examine whether the relationship has changed

over time and whether the financial crisis had an influence on the dependence

between EUA futures and other financial variables. The usefulness of copulas is

further illustrated in a Value-at-Risk and density forecasting analysis. We consider

different portfolios combining investments in EUAs with several other assets and test

the Student-t as well as the Gaussian copula model against two benchmark models:

a standard variance-covariance approach and a univariate AR-GARCH model that

is applied directly to the portfolio returns.

The following insights emerge from these efforts. First, a significant positive

dependence structure is found between EUA futures and coal, gas, and electricity

futures returns as well as between EUA futures and equity spot returns. Only

between EUA and oil futures we find the dependence to be insignificant. Our results

contradict earlier studies by Kosobud et al. (2005) and Daskalakis et al. (2009)

suggesting no statistically significant or even negative correlations between emission

allowances and other financial variables. We confirm results by Mansanet-Bataller

et al. (2007) and Hintermann (2010) who find a positive relationship between several

commodities and the emission allowance prices. Regarding the nature of dependence,

we find evidence of a symmetric dependence structure between emission allowances

and other financial assets. For the majority of the considered bivariate series, the

Student-t and the Gaussian copula are most appropriate, significantly outperforming

the Clayton and the Gumbel copula with respect to a goodness-of-fit test. Second,

we obtain interesting results on time-variation of the estimated copula parameters.

In particular, we find a stronger dependence between EUA futures returns and
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most of the considered variables during the global financial crisis. This confirms

general results on asset returns from financial markets exhibiting higher dependence

during periods of extreme economic or market downturn. Finally, our risk analysis

illustrates that applying a standard variance-covariance approach to the multivariate

series is likely to underestimate the kurtosis and in particular the tail risk of the

portfolio return distribution. The application of an AR-GARCH model to the

portfolio returns also underestimates the risk in the lower extreme tail. A Student-t

copula model that generally performs better with respect to interval and density

forecasts than all the other considered models, including the implemented Gaussian

copula model, gives indication of some tail dependence.

In a nutshell, our results recommend copulas as an appropriate tool for de-

scribing the dependence structure between returns from EUA contracts and those

of other financial variables. The application of copulas may be particularly useful for

risk management purposes and short-term forecasting for investments in a portfolio

containing emission allowances. Given the potential tail dependence, our findings are

also relevant for investors or portfolio managers, in particular when higher moments

of the portfolio return distribution or risk-adjusted measures are considered.





Chapter 2

How Political is the European

Carbon Market? – Insights from

Conditional Jump Models

2.1 Introduction

As I have long-argued, investment in green energy will never be certain

unless we bring some stability to the price of carbon.

George Osborne, Chancellor of the Exchequer, 2011

With the aim of reducing greenhouse gas emissions, different climate policies

are implemented around the world. They range from command and control reg-

ulation to more market-based approaches. One renowned instrument is emissions

trading which establishes a quantitative emissions target and requires offsetting

climate-active gases with tradable certificates. The European Union Emissions

Trading Scheme (EU ETS), established in 2005, is currently by far the largest

existing carbon market. But in the meanwhile other trading schemes have devel-

oped: the first compliance period of the Regional Greenhouse Gas Initiative, an

emissions trading initiative of ten north-eastern US states, has started in 2009. New

Zealand has an emissions trading scheme in place which is stepwise extended to

37
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more sectors, Australia will introduce carbon trading in 2015.1 Moreover, China

recently announced the implementation of six regional ETS by 2013.2

As more systems are set in place and policy makers aspire to link them, it is

necessary to gain confidence that these systems spur emission abatement. Incentives

to reduce emissions are provided by the carbon price signal as already outlined

in the Introduction of this thesis. However, there are several reasons for concern

regarding the reliability of the price signal. First, Hintermann’s (2010) paper finds

that fundamentals related to the marginal abatement costs, such as gas and coal

prices or weather variables, provide an insufficient explanation of the carbon price

in Phase I of the EU ETS. Second, Gronwald et al.’s (2011) finding of a stronger

relationship between the European Allowance Unit (EUA) price and those of other

financial commodities during the financial crisis suggests that undesirable influences

are present. Finally, concerns about price volatility in the newly established carbon

market have been raised repeatedly, especially since the price for a EUA dropped by

almost 50% in April 2006 (Chevallier, 2011b). Variation of the carbon price is the

central feature of emissions trading, but excessive volatility reduces the efficiency

of this policy instrument (Fankhauser et al., 2010). A capricious price development

increases abatement cost uncertainty in the short-run and is possibly detrimental to

investments in the long-run. With a carbon price that is weakly connected to market

fundamentals and instable, the desired transition to a low-carbon economy might

be at risk. Therefore, policy makers and economists worry about the efficiency of

emissions trading as a climate policy instrument. With the aim of improving the

European policy mechanism, it is necessary to better understand the carbon price

fluctuations and their sources.

This chapter’s aim is to deepen the understanding of the EUA price behaviour

in the EU ETS. The focus lies on the more detailed description of carbon price

volatility. Our main contribution is to disentangle the carbon price fluctuation and

to provide new insights regarding the sources of these disturbances. The carbon

market literature has addressed various statistical features of the EUA price such as

volatility clustering or the occurrence of price jumps. This study goes beyond the

existing literature and treats these statistical features in an integrated approach by

applying Chan and Maheu’s (2002) combined jump-GARCH model. This method

1More information is available at: www.climatechange.gov.au/government/reduce/carbon-
pricing.aspx.

2Reuters, 11.4.2011, China planning emissions trading in 6 regions, www.reuters.com.
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allows to systematically explain the volatility structure and to differentiate between

smooth price fluctuation and sudden, extreme price movements. Moreover, the

variance decomposition proposed by Nimalendran (1994) is employed to determine

which portion of the variance is attributable to jumps. The empirical strategy

helps to shed light into the different components of carbon price fluctuation. More

importantly, explanations for the observed patterns are provided, particularly for

price jumps that disrupt the market most.

On the one hand, a smooth and continuous price fluctuation is likely to arise

from market fundamentals providing steady information about the demand for

emission allowances. On the other hand, the high prevalence of jumps is probably

related to news which introduce unexpected or essential changes to the market

structure. Various studies show that markets, subject to political influences, are

likely to exhibit extreme price movements, see in particular Jorion (1988). This

chapter investigates to what extent political events trigger jumps in the European

carbon market. In contrast to other commodity markets, the possibility to trade

emission rights is a purely political decision. As the policy framework is such an

essential feature to the market, it is a potential explanation for the dominance of

jumps in the carbon price. This is further motivated by previous research on the

EU ETS which finds a strong influence of the regulatory framework and related

political decisions on the carbon price (Mansanet-Bataller et al., 2011; Chevallier,

2011b; Conrad et al., 2012). Therefore, the present analysis assesses which jumps are

related to decisions of the EU Commission or news from the international climate

change arena. Understanding how and why the carbon price develops, gives a sound

basis to possibly counteract the volatile price development.

The results can be summarised as follows. First, the jump-GARCH model pro-

vides a good fit to the data and thus explains the capricious carbon price movements

well. Second, no fewer than 40% to 60% of the carbon price variance are attributable

to jumps. Third, a considerable number of the extreme price movements captured by

the model’s jump component can be related to information regarding EUA supply

and changes in the administrative framework. This source of disturbance has not

been researched widely in the empirical literature. Given our results, it seems an

important information channel in a strongly regulated market.

The remainder of this chapter is organised as follows: Section 2.2 further

explains this study’s contribution to the literature, Section 2.3 provides a description
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of the data and the empirical approach. Section 2.4 presents the estimation results

and the variance decomposition. Section 2.5 discusses the occurrence and source of

carbon price jumps. Finally, Section 2.6 ends by some concluding remarks.

2.2 Literature Overview

This chapter builds on two streams of empirical literature: studies assessing the car-

bon price determinants and studies analysing the carbon price behaviour. Generally,

the carbon price reflects supply as well as demand information of EUAs (Cheval-

lier, 2011a). While the supply of emission rights is determined by the European

Commission who decides on the total cap and the final allocation, the demand for

EUAs is related to the amount of emissions that firms need to cover. This, in turn,

depends on factors like weather conditions or differences between the coal and the

gas price (Mansanet-Bataller et al., 2007). If the use of less carbon-intensive gas

becomes cheaper than the use of coal, power producers with switch-capacity can opt

for gas and therefore reduce their need for carbon allowances (Christiansen et al.,

2005; Chevallier, 2009). The weather, on the one hand, affects the availability of

renewable energy which can replace fossil energy sources (Hintermann, 2010; Rickels

et al., 2010). On the other hand, particularly hot and cold temperatures increase

the demand for air-conditioning or heating which thrives up the electricity demand.

Apart from these fundamentals, the literature is less clear about the driving

forces of the carbon price. The dependence with financial markets has been discussed

controversially. Hintermann (2010) cannot find a relationship of carbon with the

British FTSE equity index during the first trading phase. Chevallier (2009) shows

that different variables from stock and bond markets have little influence on EUA

futures. However, Daskalakis et al. (2009) identify negative correlations of carbon

futures with equity market returns in Phase I. Notwithstanding this debate, the

relationship between the EUA market and other financial markets grew stronger

during the period of the financial crisis (Gronwald et al., 2011).3

Many explanations for carbon price changes have been given, but Hintermann

(2010) shows that these demand-side fundamentals provide an insufficient explana-

tion of the EUA development in Phase I. To better explain the carbon price, the

3For a more detailed discussion, the reader is referred to Chapter 1.
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regulatory framework and related decisions need to be included in a price model.

The existing literature has touched upon this issue by assessing the effect of NAP

decisions on the carbon price (Chevallier, 2011b; Mansanet-Bataller et al., 2011;

Conrad et al., 2012). In addition, Alberola and Chevallier (2009) emphasise the

importance of the regulation which bans the transfer of allowances from Phase I to

Phase II. Furthermore, Neuhoff et al. (2006) illustrate which distortions can arise

depending on the allocation mechanism of EUAs. This study will provide further

insights into the importance of such regulatory events.

Regarding the behaviour of the carbon price, the most relevant results for this

chapter arise from papers by Paolella and Taschini (2008), Benz and Trück (2009),

Chevallier (2011b), and Daskalakis et al. (2009). As a common feature, these papers

apply univariate time series approaches to investigate the empirical properties of

the EUA price. While the former papers provide evidence of a GARCH structure

in carbon price returns, Daskalakis et al. (2009) show that EUA futures prices are

characterised by jumps. Jumps are also included in the framework of Chevallier

and Sévi (2010) when modelling the implied volatility of carbon price returns.

In contrast to previous studies, the present analysis treats jumps and conditional

heteroscedasticity in a single approach to explain the carbon price behaviour. Chan

and Maheu’s (2002) autoregressive jump intensity (ARJI-)GARCH model is applied

to EUA futures returns covering both Phase I and II.

Since the prevalence of jumps has been emphasised in the literature, the ARJI-

GARCH lends itself well to capture the fluctuations present in the series. The model

allows to differentiate between smooth price movements and more disruptive ones.

The latter is captured by the model’s jump component which identifies sudden,

extreme market fluctuations exceeding the usually observed price movements. Most

importantly, the intensity of jumps can vary over time and allows tracking when

jumps happened. The derived jump series is purely data-driven as it does not

require any pre-specification which sample period to study or which events cause

price spikes. By contrast, Sanin and Violante (2009) take ex-ante decisions regarding

the events that potentially cause price jumps and then include these in their model.

The ARJI-GARCH therefore provides an unbiased measure of jumps in Phase I and

II of the EU ETS. Moreover, the contribution of jumps to the total volatility is

assessed by employing Nimalendram’s (1994) variance decomposition procedure.
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2.3 Data and Model

Figure 2.1 illustrates the development of the EUA futures price from May 2005 to

April 2011.4 The EUA futures initially traded at levels between 20 to 30e. When

the market learned about the oversupply with emission allowances in April 2006, the

carbon price crashed. Until mid 2007, it did not recover and traded around 20e.

With the beginning of 2008 (Phase II), however, the EUA futures price rose back

to levels between 25e and 30e. During the economic crises, the market finally

experienced a second large price decline. The price depression was less abrupt,

but the EUA futures were steadily pushed below 10e. Together with the levels

of production, demand for allowances declined, and excess allowances were sold to

quickly access liquidity. In autumn 2009, the price picked up again and traded

between 10e and 15e, probably driven by allowance demand for Phase III.

Figure 2.1: European Union Allowance 2011 futures prices
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Source: Intercontinental Exchange (ICE) London.

The quantile-quantile plot displayed in Figure 2.2 vividly illustrates that ex-

treme price movements are present, and an empirical model needs to be able to

account for this behaviour. Almost every financial market variable is characterised

4The data is obtained from the Intercontinental Exchange (ICE) London.
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by times of high volatility followed by more tranquil periods. This price behaviour

is referred to as volatility clustering.

Figure 2.2: Quantile-quantile plot
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A generalised autoregressive conditional heteroscedasticity (GARCH) model,

as introduced by Bollerslev (1986), is able to capture this behaviour by allowing

the conditional variance to change over time. GARCH models are able to depict

the smooth volatility patterns but cannot explain large discrete price movements.

To include volatility clustering as well as discrete price spikes, Chan and Maheu’s

(2002) ARJI-GARCH approach is used to describe the EUA price movements. It

extends a traditional GARCH model by a conditional-jump component which also

influences the overall volatility. The ARJI-GARCH has been successfully applied to

stock market indices (Chan and Maheu, 2002), exchange rates (Chan, 2003, 2004),

and the oil price (Lee et al., 2010; Gronwald, 2012). As asserted above, the carbon

market is heavily influenced by political decisions which supply the market with

new information in a discrete manner. The application of a jump model is a natural

choice when assuming that these events represent a potential source of discrete

price movements (Jorion, 1988; McCurdy and Maheu, 2004). The following model
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is considered:

(2.1) yt = µ +
l∑

i=1

ϕiyt−i +
√

htzt +
nt∑

k=1

Xt,k

where yt is the EUA return and zt ∼ NID(0, 1).
√

htzt contains the GARCH(p,q)

term ht (Bollerslev, 1986) which follows an ARMA process:5

(2.2) ht = ω +

q∑
i=1

αiϵ
2
t−i +

p∑
i=1

βiht−i.

The last expression in Equation 2.1 represents the so-called jump compo-

nent. The conditional jump size Xt,k, given the history of observations Φt−1 =

{yt−1, . . . , y1}, is assumed to be normally distributed with mean θt and variance δ2
t :

Xt,k ∼ N(θt, δ
2
t ). The number of jumps nt that arrive between t − 1 and t follow a

Poisson distribution with λt > 0:

(2.3) P (nt = j|Φt−i) =
λj

t

j!
e−λt ,

where λt measures the jump intensity that captures the average number of jumps

in a time interval. Two variants of the model are considered here: a constant jump

intensity model with λt = λ, θt = θ, and δ2
t = δ2, and a time-varying jump intensity

model. For the case of the latter, λt is assumed to follow the autoregressive process:

(2.4) λt = λ0 +
r∑

i=1

ρiλt−i +
s∑

i=1

γiξt−i.

The conditional jump intensity is changing over time influenced by the previous jump

intensity λt−i. This persistence parameter illustrates the occurrence of jump clusters.

When many jumps are expected today, the number of jumps tomorrow is expected to

be high as well. For stationarity, |ρ| < 1. Furthermore, the jump intensity is driven

by new innovation ξt−i. This jump intensity residual is an unpredictable component

or jump innovation entering Equation 2.4. The empirical strategy of Chan and

Maheu (2002) is to infer the probability of j jumps at time t − i, P (nt−i = j|Φt−i),

5For details regarding the basic GARCH model, please refer to Chapter 3 or Enders (2004).
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ex post from the observed returns by using a filter.6 The derived jump distribution

is compared to the expectation regarding the number of jumps, λt−i, based on

information at time t − i − 1. The unexpected component is captured by ξt−i

which changes the forecast regarding the number of jumps when the information

set is updated from t − i − 1 to t − i. The proposed jump distribution has two

main advantages. First, the ARMA structure is a flexible parametrisation to model

different autoregressive dynamics. Second, the jump intensity changes endogenously,

and fluctuation is derived from the data only (Chan and Maheu, 2002). λt measures

the expected number of jumps conditional on information Φt−i, but independent

from other market variables.

Finally, let Σ2 denote the total variance of yt. According to Nimalendran

(1994), Σ2 can be decomposed in the diffusion-induced and the jump-induced vari-

ance and be written as follows:

(2.5) Σ2 = ht + λt(θ
2 + δ2).

This decomposition allows one to study the share of jumps in the total variance. As

in the time-varying version of the jump-GARCH model, the decomposition analysis

yields a flexible measure of jump development over time.

2.4 Estimation Results

The estimation is based on the EUA 2011 futures series from 2005 to 2011. The

model is estimated in first log-differences and a constant is included. Table 2.1

provides the estimation results for the constant and the time-varying jump intensity

models.7 The results for the GARCH component are depicted in the upper part

of Table 2.1. The conditional variance exhibits strong persistence with β ranging

between 0.82 and 0.86. The GARCH parameters take similar values in both spec-

ifications and assure a well-behaved variance: all coefficients are positive and fulfil

the restriction of α+β < 1. The results for the jump component are shown in the

lower part of Table 2.1. It is evident that all jump parameters are highly significant.

6For a more thorough discussion of the method, the reader is referred to the original paper by
Chan and Maheu (2002).

7The estimations are calculated in R and Eviews.
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This already demonstrates that the jump-augmented GARCH model is appropriate

for modelling carbon price returns. For both models θ indicates that jumps in the

carbon market are on average negative and therefore have some dampening effect

on returns. In the constant jump model λ is 0.2. Allowing for time dependence

in the expected arrival rate of jumps, gives further insights about its development.

The fluctuation of the time-varying jump intensity is illustrated in Figure 2.3: λt

ranges from zero to 2.5. At times no jumps are expected, in contrast to periods

where several jumps are likely. The λt process is highly persistent with ρ reaching

0.88 and therefore indicates the occurrence of jump clusters.

Table 2.1: Constant and time-varying jump intensity models

Parameter Constant ARJI
1.4E-03 1.7E-03

µ
(0.0086) (0.0010)
1.1E-05 1.3E-05

ω
(0.0241) (0.0034)
0.1039 0.0571

α
(<0.0001) (0.0013)

0.8227 0.8602
β

(<0.0001) (<0.0001)
0.0297 0.0268

δ
(<0.0001) (<0.0001)
-7.0E-03 -5.6E-03

θ
(0.0438) (0.0349)
0.2003 0.0427

λ
(0.0180) (0.0431)

0.8806
ρ -

(<0.0001)
0.4819

γ -
(0.0035)

Note: µ is the constant, ω, α and β are the usual GARCH parameters. The jump parameters are
displayed in the bottom part of the table. The jump mean and variance are denoted by δ and
θ. λ denotes the jump intensity which follows an ARMA process with parameters ρ and γ in the
time-varying model. p-values are in parentheses.

In comparison to a simple GARCH model, the extended jump-GARCH models

clearly improve the model fit. The model selection criteria for a simple GARCH

model (estimated as benchmark) and the augmented models show that the latter

should be preferred (Table 2.2). All three criteria, the AIC, BIC and HQ indicate

a better performance of jump-augmented GARCH models. A likelihood-ratio (LR)

test is conducted to emphasise these results. The LR test allows to compare two

nested models and to evaluate whether an extended (unrestricted) model outper-
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Table 2.2: Model selection criteria

Information criteria
Criterion GARCH Constant ARJI
LogL 3,588.263 3,639.028 3,648.04
AIC -4.716 -4.779 -4.788
BIC -4.702 -4.754 -4.757
HQ -4.711 -4.770 -4.776

Likelihood-ratio test
Compared models Test statistic

101.53
Constant vs. GARCH

(<0.0001)
119.55

ARJI vs. GARCH
(<0.0001)

Note: AIC is short for Akaike’s Information Criterion, BIC for Bayesian Information Criterion and
HQ for Hannan-Quinn Information Criterion. p-values are in parentheses.

forms a simple (restricted) model. The distance between the log likelihoods of

both models is calculated and then tested whether this difference is statistically

significant. The test statistic is χ2-distributed with degrees of freedom equal to the

number of restrictions. If the null hypothesis is rejected, a model without restrictions

increases the log likelihood significantly (Verbeek, 2008). Hence, the results in Table

2.2 show that the jump-augmented specifications provide a better model fit than a

simple GARCH model. The LR test for the constant versus the time-varying model

is non-standard and therefore not explicitly reported (Chan and Maheu, 2002). The

LR test statistic of 18.02 should be large enough to indicate an improvement of the

model fit for the time-varying model.

Figure 2.3 also displays the share of the EUA variance that is triggered by

jumps, based on Nimalendran’s (1994) variance decomposition procedure. Careful

analysis of the decomposed variance yields interesting insights into the functioning

of this market. After the first turbulent months, the portion of variance triggered by

jumps is generally found to fluctuate around 50%. Only in two cases this portion falls

below 40%: in the aftermath of the 2006 price drop and during the price recovery

that followed the financial crisis’ price collapse.8 The variance generally increased

during these periods but a larger portion of this increased variance is captured by

the GARCH component of the model. This is plausible as the respective movements

8The variance share also drops below 40% in early 2005. As this was an extremely early stage
of the EU ETS, price movements of that time should not be deemed very meaningful, see e.g.
Hintermann (2010).
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do not reflect reactions to single events, but rather price movements in a “nervous”

carbon market. Comparing these values to those obtained in other applications

of Chan and Maheu’s (2002) method clearly indicates that price jumps play an

important role in the EU ETS. Gronwald’s (2011) study of the oil market shows that

in periods after 1998 the portion of variance triggered by jumps is about 30%, while

this portion is found to be about 50% during the 1980s. At first, the oil market

was characterised by a generally tranquil price movement with only few extreme

movements while later periods were generally more volatile with less influence of

single events. Hence, carbon price behaviour seems to be similar to the behaviour of

the oil price during the 1980s. What is more, Huang et al. (2007) find that less than

30% of the variance in the Taiwanese stock index is triggered by jumps. During the

election period, when the political uncertainty is particularly high and jumps are

more likely to occur, this share increases to around 40%.

To summarise, the application of Chan and Maheu’s (2002) method yields

strong evidence of conditional jumps in the emission allowance price. The EUA price

is not only characterised by conditional heteroscedasticity but is also subject to large

price movements which occur with time-varying intensity. A considerable portion

of the total variance is triggered by jumps. It is therefore worthwhile studying the

underlying causes of these price jumps.

2.5 Role of Policy

It is a purely political decision that CO2 is a tradable asset. In comparison to

other commodity markets, the carbon market exhibits much stronger ties with

its policy and regulatory frameworks. Various studies show that markets with

strong political influence are more likely to exhibit extreme price movements (Jorion,

1988). This chapter investigates to what extent policy events in the carbon market

trigger the jumps identified in the previous section. A number of studies show that

the EC decisions on National Allocation Plans (NAPs) influence the EUA price

(Mansanet-Bataller et al., 2011; Conrad et al., 2012). Furthermore, the importance

of banking, when EUAs are kept for future compliance periods, and the importance

of the allowance allocation mechanism have been emphasised (Neuhoff et al., 2006;

Alberola and Chevallier, 2009; Chevallier, 2012). This line of research is extended



2.5. ROLE OF POLICY 49

Figure 2.3: EUA prices, jump intensity and variance decomposition
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by the present study as it assesses to which extent such regulatory decisions lead to

extreme price jumps.

For this purpose, a data base has been developed which captures important

decisions by the European Commission as well as changes in the global carbon

market framework. These events are assigned to different categories. The group

EU ETS NAPs summarises decisions by the European Commission on the supply

with EUAs in Phase II through so-called National Allocation Plans. EU ETS

Compliance lists the publication dates of compliance and emissions data which

regularly inform the market about EU ETS demand. The category EU ETS III

consists of the main decisions regarding the EU ETS framework and supply with

EUAs in Phase III. Similarly, the category Global Carbon Market covers influential

events in the international carbon market. Some categories are easier to complete

than others. NAP decisions or compliance data publication are well known and have

a regular pattern. By contrast, the categories EU ETS III and Global Carbon Market

are harder to record as these events are more divers and not pre-scheduled. To

obtain a coherent list, regular carbon market publications by CDC Climat Research,

Euractiv, and Unicredit as well as the European Commission’s communication have

been considered.9 Tables of the selected events can be found in Annex A.

To study the temporal connection between regulatory events and the depicted

jumps, Figures 2.4 to 2.7 present the respective time series from 2007 to 2010. Each

upper panel presents the jump-related variance share derived from the decomposition

analysis, while the lower panel shows the time-varying jump intensity from the

GARCH model. The first observation from these graphs is that the jump intensity

as well as the jump-induced variance exhibit different phases over time. The years

2007 and 2010 appear less steady as there are considerably more sharp spikes in the

jump measures. In 2008 and 2009, with the beginning of Phase II and the financial

crisis, the movements of the jump intensity measures were more sedate.

Figure 2.4 illustrates the results for the year 2007 which was dominated by

the EC’s decisions regarding so-called National Allocation Plans (NAPs). NAPs

determined the final supply with allowances in Phase II and therefore conveyed fun-

damental information. Figure 2.4 shows that EU ETS NAPs events coincided with

sudden carbon price changes in 2007. This result is generally in line with the existing

9Available at: www.bluenext.eu/publications/tendances.html; www.euractiv.de;
www.ec.europa.eu/clima/policies/ets.
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Figure 2.4: Jumps and regulatory events 2007
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Note: The upper panel shows the jump-related variance share in per cent, the lower panel the
GARCH jump intensity measure. Both measures are combined with the same event variables:
EU ETS III (light blue), EU ETS NAPs (pink), EU ETS compliance (green) and Global Carbon
Market (orange). Source: see Tables A.1 to A.4 in Annex A.

literature (Mansanet-Bataller et al., 2011; Sanin and Violante, 2009). Information

regarding NAPs, however, was not only influential in 2007. The European Court’s

decision on 23. September 2009 that Estonia and Poland obtained to few EUAs in

their original allocation, led to an EUA price drop.

The importance of the NAP events shows that information about EU ETS

supply is crucial for market participants. The influence of the demand side can

also be evaluated when concentrating on the EU ETS compliance events. Every

spring, the European Commission publishes two sets of information: the emissions

data at the beginning of April and the amount of surrendered EUAs in a press

release mid of May. These publications clarify whether installations are over- or

undersupplied with allowances. In 2006, this information led to the distinct price

crash shown in Figure 2.1. After 2007, the publication of emissions data has not

surprised the market. This can be depicted when concentrating on the green lines

in each graph which do not overlap with the jumps. Accordingly, the demand side

has been more predictable after the market adjusted in 2006. This confirms the
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Figure 2.5: Jumps and regulatory events 2008
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Note: The upper panel shows the jump-related variance share in per cent, the lower panel the
GARCH jump intensity measure. Both measures are combined with the same event variables:
EU ETS III (light blue), EU ETS NAPs (pink), EU ETS compliance (green) and Global Carbon
Market (orange). Source: see Tables A.1 to A.4 in Annex A.

expectation of Seifert et al. (2008) who conclude that market participants have had

a better estimate of EUA demand after the first EU ETS emissions report in 2006.

In 2008, only a few decisive events changed the price pattern. The adoption

of the EU Climate Package on 23. January 2008 and the supportive vote of the EU

Parliament’s environment committee on the EU’s climate policy in early October

seemed to move the market. These decisions emphasised the European ambitions to

implement a rigourous climate policy. Another small jump can be observed on 16.

October 2008, when the link between the registries ITL und CITL was announced.

The events in 2008 represented important landmarks for the future of the carbon

market and attracted the traders’ attention in an otherwise rather silent phase.

In 2009, the market was very interested in the decisions regarding aviation.

Several steps needed to be taken before the flight sector can be included in 2012,

and the market received many new signals related to this extension of the market

scope. Moreover, surprising news came from the international arena: Russia was
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Figure 2.6: Jumps and regulatory events 2009
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Note: The upper panel shows the jump-related variance share in per cent, the lower panel the
GARCH jump intensity measure. Both measures are combined with the same event variables:
EU ETS III (light blue), EU ETS NAPs (pink), EU ETS compliance (green) and Global Carbon
Market (orange). Source: see Tables A.1 to A.4 in Annex A.

expelled from the international carbon trade and the COP15 climate conference in

Copenhagen could not live up to global expectations.

The year 2010 was exceptionally eventful. In the beginning of 2010, unusual

news moved the carbon market. The debate about the mistakes in IPCC reporting

and the phishing attack of European registries agitated the public. Another concern

was the so-called CER recycling in March when it became obvious that governments

sold CERs which had already been submitted for compliance before.10 From mid-

year onwards, the market reacted sensitively to news regarding the cap in Phase III

as well as to auctioning decisions. Both were crucial events because they updated

market participants about the future supply with EUA allowances. Finally, a spurt

of the carbon price can be observed when HFC projects were banned from the

international and the European carbon market in summer 2010.

10For more information, please check: CMIA, 12.3.2010, CER recycling will damage credibility
of EU member states and depress CER and EUA prices, www.cmia.net.
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Figure 2.7: Jumps and regulatory events 2010
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Note: The upper panel shows the jump-related variance share in per cent, the lower panel the
GARCH jump intensity measure. Both measures are combined with the same event variables:
EU ETS III (light blue), EU ETS NAPs (pink), EU ETS compliance (green) and Global Carbon
Market (orange). Source: see Tables A.1 to A.4 in Annex A.

Table 2.3 underlines that the presented event series can explain the jumps we

derived using the jump-GARCH model. The different categories from our database

are used as explanatory variables in a regression for the λt series. Except for the

EU ETS compliance variable, all event categories are significant and show a positive

sign. Hence, the regulatory events influence the carbon price jumps to a certain

extent. The Volatility Index measures the implied volatility of Standard and Poor

500 options and is used to proxy overall market volatility.

The results of this event analysis depict that decisions regarding the availability

and the restrictions of EUAs are important information for the carbon market. The

existing literature only focused on the NAP decisions in Phase II. These decisions

are key regulatory events but not the only source of turbulence. The EUA allocation

decisions for Phase III also introduced new information. Moreover, news regarding

the global carbon market design have an astonishingly strong feed-back on the EUA

price. This study shows that price spikes are not only related to decisions on EUA

allocation. Some events are related to the administration of the EU ETS, for example
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Table 2.3: Using regulatory events to explain jumps

Category Coefficient
0.157

c
(<0.0001)

0.139
Global Carbon Market

(0.0176)
0.095

EU ETS NAPs
(0.0442)
0.144

EU ETS III
(0.0306)
0.024

EU ETS compliance
(0.7221)
0.007

Volatility Index
(<0.0001)

Adjusted R2 0.129
Log likelihood 177.958
AIC -0.321
BIC -0.293

Note: OLS regression with the λt as dependent variable using heteroscedasticity-robust standard
errors. The Volatility Index is calculated by the Chicago Board Options Exchange. p-values are
in parentheses.

the phishing attack on the registries or the recycled CERs. Such incidents are bound

to happen in a newly established scheme, but they can be prevented if regulators

learn from these events. Finally, not all regulatory events lead to price jumps, and

some of the large jumps cannot be explained by our database. Still, visual inspection

shows that the selected events often coincide with the detected price spikes. The

regression analysis for the event categories confirms that the chosen regulatory and

policy news can help explain the jump intensity movements.

All this underlines that influences from the political arena drive the carbon

price development, in addition to fundamentals like commodity prices or economic

development. However, the nature of this institutional price driver is different.

Political and regulatory events seem to take effect in a discrete manner rather than

to steadily influence the price. Market participants who are used to hedge risk in

other commodity markets have to deal with an additional source of uncertainty. This

is mainly problematic because political risks are difficult to evaluate and to manage

(Grubb and Newberry, 2008). Market risks are potentially easier to diversify than

discrete events related to the regulatory framework.
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The European Commission should therefore aim to provide a transparent and

secure policy environment for market participants. Changes with respect to the

EUA supply, allocation rules, or the acceptance of CDM credits should be kept at a

minimum. The EC decision to announce the overall EUA allocation in Phase III by a

single cap, instead of publishing 29 individual NAPs, is a step in the right direction.

The same information is conveyed, but in a less interfering manner. Moreover,

the regulator should opt for long commitment periods regarding the emissions cap

(Hepburn, 2006). The longer commitment period for Phase III, which runs for 8

and not 5 years, is a positive development. Adjusting the EUA supply during the

commitment period would give the impression that discretionary policy changes are

an option and unsettle market participants. It is rather recommended to set and

to respect clear rules when adjustments to the EUA supply are to be expected.

Otherwise, the policy’s credibility and efficiency is at risk (Hepburn, 2006).

2.6 Conclusions

Emissions trading seems to be the prevalent policy to reduce carbon emissions.

Theoretical arguments state that emissions trading is a cost-efficient approache to

reduce carbon emissions and that it provides dynamic incentives to adapt existing

abatement technologies and to develop new ones (Hahn and Stavins, 1992). Even

more important, establishing a market for emission rights might be politically easier

to enforce than the introduction of carbon taxes (Hepburn, 2006; Tiedenberg and

Lewis, 2008). However, the main criticism of cap-and-trade schemes relates to the

volatility of the carbon price (Parry and Pizer, 2007; Chevallier, 2011b). To validate

these statements, it is of particular importance to analyse the performance of existing

systems and to have a sufficient understanding of the emission allowances price and

its determinants. As the globally largest cap-and-trade system, the EU ETS, has

been in operation for almost 8 years now, an increasing number of studies has been

using data from this market to investigate its performance.

This study sheds light on the behaviour of the carbon price by applying Chan

and Maheu’s (2002) jump-augmented GARCH model to the EU ETS. The empirical

results clearly indicate that the EUA price is characterised by both GARCH and

strong conditional jump behaviour – in Phase I and Phase II. Based on the estimation

results, it is shown that a considerable portion of the variance, between 40 and 60
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per cent, are triggered by jumps. Studying the underlying reasons of these price

jumps yields valuable insights in the functioning of the European carbon market.

It is shown that a considerable amount of extreme EUA price movements is related

to new information regarding emissions allowance supply. This is epitomised by the

price reactions in response to the announcements of the EU ETS NAPs and equally

the EU ETS cap for Phase III. However, information regarding the EUA demand

seems less influential. The carbon price peaks when relevant news from the global

carbon market is released as international carbon credits can be used for compliance

in the EU ETS. The policy framework appears to be an essential driver of carbon

price developments.

Another market, which is also under strong influence of regulatory authorities,

is the money market. The central bank controls the base rate with the aim of

achieving low inflation (European Central Bank) and possibly additional goals such

as the general economic performance (US Federal Reserve Bank). The vast literature

on monetary policy discusses optimal central bank behaviour. It is often argued that,

in addition to controlling the level of inflation, a central bank should also ensure

that inflation volatility is not overly large as this would have negative consequences

for economic growth (Friedman, 1977; Sack and Wieland, 2000; Rudebusch, 2002).

The same can be said for the carbon market. Here, the regulator influences

the level and the volatility of the carbon price by setting an emissions cap. At

the same time, the carbon price is an important determinant of investments in

abatement technology. The price level is a crucial parameter for the profitability

of abatement techniques. In addition, an unduly volatile carbon price makes the

investment decision more complex. This chapter’s results show that the regulator

has some scope in this regard and that controlling price volatility does not seem out

of reach. The authorities should keep in mind that the EUA price is easily disrupted

by their decisions. Regulatory changes should be kept to a minimum. Therefore,

the transition in Phase III from 29 individual NAPs to a single cap decision is a

welcome move. The same information is conveyed, but in a less interfering manner.

The European Commission should further, similar to a central bank, monitor the

carbon price level and its fluctuations. Decisions on essential framework parameters

should be clearly communicated and implemented in a transparent and credible

manner. The experiences from central bank policy should not be neglected. For

monetary policy, clearly communicated policy goals play an important role to steer
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market expectations. A good example is the current record low of the EUA price

which induces speculation regarding a set-aside of allowances or a more ambitious

European emissions reduction target of 30% until 2020. This is precisely the sort

of debate which is undesired as it leads to uncertainty about future policy. A more

clear communication by the European Commission would assure market participants

that no discretionary policy changes will be taken.

One of the main criticisms concerning existing carbon markets is their price

uncertainty. Emissions trading schemes are established in many parts of the world

and probably the most realistic policy option to combat climate change. Therefore,

it would be advisable to counteract this criticism.



Chapter 3

The Impact of Wind Power

Generation on the Electricity

Price in Germany

3.1 Introduction

Renewable electricity has come to dominate the debate over and the development of

the European electricity market. Among European countries, most wind turbines

and solar panels are installed in Germany where renewable electricity has become

even more important since the March 2011 decision regarding the nuclear phase-out.

Figure 3.1 shows that Germany’s wind capacity reached 29 gigawatt (GW) in 2011.

Its solar photovoltaic (PV) capacity soared in the last two years: overall installed

solar PV capacity reached almost 25 GW in 2011 (BMU, 2012). In 2011, wind

electricity accounted for 8 per cent of gross electricity production in Germany, solar

PV for 3 per cent. All renewable sources combined made up 20 per cent of gross

electricity production in 2011 and are Germany’s second most important source of

electricity generation after lignite (BDEW, 2011). The German government plans to

raise this share to 35 per cent by 2020 and to 50 per cent by 2030 (BMU and BMWi,

2011). Onshore and offshore wind will play an important role in this expansion of

renewable electricity capacity.

59
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Figure 3.1: Installed capacity and generated electricity in Germany
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System and market operators face two main challenges as more renewable

power generation is added. First, electricity generated by wind turbines and photo-

voltaic panels is intermittent and hardly adjustable to electricity demand.1 There-

fore, variable electricity generation is not a perfect substitute for conventional energy

sources. Figure 3.2 shows the variability of wind electricity generation. The horizon-

tal line, the so-called capacity credit, gives an impression how much conventional

capacity can be replaced by the existing wind power capacity, given the current

power plant fleet and maintaining the security of supply (IEA, 2011).2 The graph

illustrates that the wind power generation is subject to strong variation and that only

a fraction of installed wind capacity, depicted by the capacity credit line, is expected

to contribute to the power mix with certainty. Second, Germany’s renewable energy

policy grants priority dispatch and fixed feed-in tariffs for renewable electricity

generation. Renewable electricity can be fed into the grid whenever it is produced,

1By contrast, electricity generation from hydro or biomass sources can be managed more
easily. The following conclusions hold for sources like wind and solar PV where intermittency
is particularly pronounced.

2In line with calculations from Hulle (2009), IEA (2011), and Schaber et al. (2012), the capacity
credit is assumed to be 6%. A wind installation of 29075 MW in 2011 was used in the calculation
for this capacity credit line (BMU, 2012).
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regardless of energy demand, and in-feed can be switched off only if grid stability

is at risk (Bundesnetzagentur, 2011).3 As storage is not yet a viable option, high

levels of variable renewable electricity production can be balanced only by adjusting

output from traditional power plants or by exporting excess electricity. Similarly,

when too little wind or sunshine is available during times of peak demand, reserve

capacity has to be dispatched at higher costs.

Figure 3.2: Hourly wind in-feed
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Note: Hourly wind in-feed in MW. The horizontal line illustrates how much electricity German
wind installations (29075 MW in 2011) are expected to reliably generate during peak demand.
This measure is referred to as capacity credit. In line with calculations from IEA (2011), Schaber
et al. (2012) and Hulle (2009) the capacity credit is assumed to be 6%. Source: www.eeg-kwk.de.

Grid operators are obliged to feed-in renewable electricity independent of the

market price. However, the spot electricity price is not independent from renewable

electricity. On the one hand, variable renewable power production is negatively cor-

related with the electricity price. Whenever large volumes of intermittent renewable

electricity are fed into the power grid, the electricity price tends to decline. As

renewable installations are very capital-intensive but have almost zero operational

generation cost, they are certainly dispatched to meet demand. More expensive

conventional power plants are crowded out, and the electricity price declines. This

dampening of the wholesale electricity price is called merit-order effect. Various

assessments uncover this effect for wind electricity generation (Neubarth et al., 2006;

3The operator continues to receive feed-in tariff payments even if the installation is disconnected
from the grid due to capacity constraints of transmission cables.



62 CHAPTER3: WIND POWER AND THE ELECTRICITY MARKET

Nicolosi, 2010; Ray et al., 2010). Due to increasing production levels, the merit-order

effect can also be observed for solar PV electricity (Milstein and Tishler, 2011). On

the other hand, intermittent renewable power not only influences price level, but

also price volatility (Klinge Jacobsen and Zvingilaite, 2010; Cramton and Ockenfels,

2011). This is confirmed by Jónsson et al. (2010) and Woo et al. (2011) who show

that wind generation tends to lower the spot price but increase its variance. The

aim of this chapter is to further investigate the effects of intermittent wind power

generation on the electricity price development in Germany.

The literature shows that wind power generation has a dampening effect on

the electricity price but does not explicitly model the impact of wind power on the

volatility of the electricity price nor elaborate on the development of this relationship

over time. The present analysis introduces daily levels of German wind power

generation as explanatory variable in the mean and the variance equation of a

GARCH model of the German day-ahead electricity price.4 This study makes two

contributions to the literature. First, it explores the effect of wind power generation

on the level and volatility of the electricity price in an integrated approach. In

Germany, where renewables prospered exceptionally from feed-in tariffs, the effect

on the electricity market should be particularly pronounced. Second, it investigates

a regulatory change in the German marketing mechanism of renewable electricity

and its impact on the relationship between wind power and the electricity price.

This study’s findings suggest that wind power generation decreased the whole-

sale electricity price in Germany in the period from 2006 to 2011 but increased

the price volatility. These results are particularly important given European and

German aspirations to usher an energy system dominated by renewables. A low and

volatile electricity price might alter or delay investment decisions in new capacity,

renewable and conventional, required for the transformation of the energy system.

To advance the energy transformation, it should therefore be in the interest of policy

makers to secure a reliable and predictable electricity price. The present analysis

shows that adjusting the electricity market design can stabilise the development of

the electricity price to some extent. Price volatility reduced in Germany after a

modification to the renewable electricity regulation.

4The wind in-feed is estimated in megawatt hours (MWh) per day. Data on solar PV in-feed are
only available a much shorter period from 2010 onwards. Due to data restrictions, the impact of
solar PV electricity is not explicitly estimated in this chapter. It would be interesting to evaluate
this issue at a later point in time.
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The remainder of this chapter is structured as follows. Section 3.2 summarises

the relevant literature on the interaction of wind power generation and the electricity

price. Section 3.3 describes the data, Section 3.4 the employed methods. The

results are presented and discussed in Section 3.5. Section 3.6 gives some policy

recommendations and Section 3.7 concludes.

3.2 Literature Overview

It is widely argued that electricity from variable renewable energy sources – wind and

solar PV – is hard to incorporate in the generation mix. Although the interruptive

effect of variable wind electricity can already be observed today, little empirical

research evaluates its current influence on the wholesale electricity price.

Most studies employ power system models to simulate the effect of increased

var-RE production on the level of electricity price. In the short term, the so-called

merit-order effect is quantified as the difference between a simulated electricity price

with and without the renewable in-feed.5 For Germany, Bode and Groscurth (2006)

and Sensfuß (2011) find that renewable power generation lowers the electricity

price. Despite being very capital-intensive, renewable installations have almost

zero marginal generation cost and thus are certainly dispatched to meet demand.

More expensive conventional power plants are crowded out, and the electricity price

declines. This dampening of the wholesale electricity price is also shown for Denmark

(Munksgaard and Morthorst, 2008) and Spain (Sáenz de Miera et al., 2008). A recent

literature overview of the merit-order effect in the European context is provided by

Ray et al. (2010). Taking a more long-term perspective, Green and Vasilakos (2010)

and Pöyry (2011) simulate the effects of fluctuating renewable electricity for the next

two decades. Green and Vasilakos (2010) find that the British electricity price level

will be significantly affected by variable wind power generation in 2020. Pöyry (2011)

reports a strong merit-order effect by 2030 that decreases the wholesale electricity

price. The consumer price is expected to rise due to soaring costs for subsidies to

renewable electricity. Both studies conclude that the volatility of electricity price

will increase remarkably in the next 10 to 20 years.

5The merit-order effect can be observed for the wholesale price but not for the end-use price
which also reflects the increasing costs for renewables support and for investments in the electricity
grid. The end-use price does therefore not necessarily decrease.
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Very few papers investigate the importance of intermittent renewable power

production for the electricity price using current market data. Neubarth et al.

(2006) evaluate the relationship between wind and price for Germany using an OLS

regression model. Woo et al. (2011) estimate an AR(1) model for high-frequency

power data from Texas, controlling for the gas price, nuclear generation and sea-

sonal effects. Jónsson et al. (2010) analyse hourly Danish electricity data in a

non-parametric regression model, assessing the effects of wind power forecasts on

the average electricity price and its distributional properties in western Denmark.

Both studies conclude that wind power in-feed has a significant effect on the level

and volatility of the electricity price. The present analysis builds on these findings

but takes a different methodological approach. It explicitly models the influence

of intermittent renewable electricity generation on the price level and volatility in

Germany by using a GARCH model. The aim is to track the development of both

components over time and discover whether a regulatory change in the German

electricity market had an impact on the relationship between wind power in-feed

and the wholesale price.

3.3 Data

This chapter introduces daily data for wind electricity generation in the mean and

variance equation of a GARCH model to better explain the unsteady behaviour of

the electricity price. Figure 3.3 illustrates the negative correlation of daily wind in-

feed and the spot electricity price. Whenever high wind speeds allow above-average

electricity generation, one can observe a price dip. An in-depth study will reveal

more insights into this relationship as well as the development of price volatility.

In the following analysis, I use the day-ahead spot electricity price, Phelix Day

Base, from the European Energy Exchange (EEX) as dependent variable.6 Electric-

ity is traded on the day-ahead spot market for physical delivery on the next day.

Separate contracts for every hour of the next day are available. Prices and volumes

for all 24 contracts are determined in a single auction at noon. The Phelix Day

Base is then calculated as the average, weighted price over these hourly contracts.

Generally, the German electricity wholesale market is dominated by over-the-counter

6The time series is downloaded from Datastream.
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Figure 3.3: Forecasted wind in-feed and day-ahead electricity price
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Note: Daily wind electricity generation in MWh per day (blue line) and spot electricity price Phelix
Day Base (red line). Source: European Energy Exchange (EEX).

trading, and the contracts are mostly of a long-term nature (Bundesnetzagentur,

2010). However, trading volumes on the spot market are increasing and the Phelix

is an important benchmark for all other electricity market transactions (Nicolosi,

2010; Monopolkommission, 2011).7

Figure 3.4: Electricity price development
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7The volume on the EEX spot market increased from 203 TWh in 2009 to 279 TWh in 2010. For
comparison, the German gross electricity production was 628 TWh in 2010 (AG Energiebilanzen,
2011). Electricity is also traded on the intraday market, but this market is less liquid and mainly
used to address electricity market imbalances in the short-run.
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The development of the electricity price, Phelix Day Base, is illustrated in

Figure 3.4. This study covers the period from January 2006 to January 2012. As

illustrated in Figure 3.1, the wind installation already exceeded 20 GW during this

period and played an important role in the German electricity mix. Table 3.1 reports

extreme kurtosis and skewness for the electricity price which can either arise from

extreme values or autocorrelation (Bierbrauer et al., 2007). Therefore, outliers are

detected before conducting the empirical analysis. In line with the literature, I filter

values that exceed three times the standard deviation of the original price series

(Mugele et al., 2005; Gianfreda, 2010).8 The outliers are replaced with the value of

three times the standard deviation for the respective weekday.9

Table 3.1: Descriptive statistics

Mean Median Max Min Std. Dev. Skewness Kurtosis
Original Price 48.06 46.07 301.54 -35.57 18.80 2.31 22.94
Deseasonalized 48.06 45.80 114.52 1.96 15.18 0.85 4.11
Log Deseasonalized 3.82 3.82 4.74 0.67 0.32 -0.70 8.09

Figure 3.5: Electricity price variation within the week
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Note: Average electricity price on different weekdays over the sample period.

8The standard deviation is calculated individually for all seven weekdays to compare like with
like. For example, a Monday is compared with the mean and the standard deviation of all Mondays
in the sample (Bierbrauer et al., 2007).

9The outlier detection is repeated after the first round of outliers have been replaced, but no
additional outliers are found. In an alternative run, the median is used to replace outliers. This
does not lead to significant differences in the regression results.
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After smoothing outliers, the seasonal cycle is removed from the time series.

Given that pt=yt+st, the observed price pt comprises a stochastic part yt and a

seasonal component st. Figure 3.5 shows that the average electricity price varies

across the week because of changes in the electricity demand. Similarly, the price

follows a yearly pattern as the different seasons influence the energy demand. Weekly

and yearly seasonality is addressed by using constant step functions which consist of

dummies for each seasonal cycle (Trück and Weron, 2004). Dummies for week days

di and months mj are included in the following function to capture seasonality:10

(3.1) st = c +
7∑

i=1

ξidi +
12∑

j=1

νmj.

The results for the deseasonalisation are shown in Table 3.2. The coefficients for

weekday dummies in Table 3.2 follow the same pattern as shown in Figure 3.5: the

price remains high at the beginning of the week, declines from Friday onward, and

reaches its minimum on Sundays. The dummies for months are not all significant,

but a relevant electricity price reduction is observed in March, April, May, and

August. In October and November, the price is significantly higher than in January.

Finally, the seasonal component is deducted from the original price series, and the

mean of both series is aligned.

Finally, the logarithmic electricity price is calculated and employed in the fol-

lowing analysis.11 Figure 3.6 illustrates the original and the deseasonalised electricity

price series. The descriptive statistics of both series can be found in Table 3.1.

The main explanatory variable is the wind electricity generation in Germany.

An illustration how the in-feed of variable renewable electricity affects the existing

power system can be found in Annex B, Figure B.1. To match the day-ahead horizon

of the dependent variable, I use the predictions for daily wind power generation.

These short-term forecasts are accurate and, more importantly, reflect the infor-

10Seasonal effects could also be addressed by trigonometric components (Lucia and Schwartz,
2002; Bierbrauer et al., 2007). However, such sinusoidal trends cannot be detected in the German
electricity data from 2006 to 2012.

11Estimating the logarithmic price series has the advantage that the coefficients have a straight
forward interpretation. The augmented Dickey-Fuller test statistic is -3.57274 whereas the 1%
critical value is -3.4331. The null hypothesis of a unit root is therefore rejected. The same holds
for the Phillips-Perron test, employed by Knittel and Roberts (2005), with a test statistic of
-17.37986 and a 1% critical value of -3.4330. Hence, it is not necessary to estimate the differences
or returns.
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Figure 3.6: Deseasonalised electricity price
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Note: The upper panel shows the wholesale electricity price after outliers have been filtered and
seasonal trends removed. The lower panel shows the log level of this series.
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Table 3.2: Removing seasonality

Coefficient p-value
c 51.89 (<0.0001)
Tue 2.76 (0.0226)
Wed 2.59 (0.0321)
Thu 2.04 (0.0912)
Fri -0.85 (0.4784)
Sat -9.47 (<0.0001)
Sun -17.49 (<0.0001)
Feb 1.07 (0.4934)
Mar -3.80 (0.0126)
Apr -4.54 (0.0032)
May -6.90 (<0.0001)
Jun -2.82 (0.0670)
Jul -0.56 (0.7100)
Aug -5.66 (0.0002)
Sep 2.00 (0.1913)
Oct 6.27 (<0.0001)
Nov 3.73 (0.0152)
Dec -2.39 (0.1170)

Note: OLS regression with the Phelix Day Base, corrected for outliers, as dependent variable.
Monday and January are used as reference variables. p-values in parentheses.

mation available to participants in the day-ahead market. The forecasts are made

and published by the four German transmission system operators (TSO). The TSOs

then sell the predicted amount of renewable electricity on the day-ahead electricity

market.12 The wind volumes are normally placed as price-independent bids to assure

that they are certainly sold in the day-ahead auction. When the price falls below

-150e in the daily auction, the energy exchange calls a second auction, in which

the wind volumes can be auctioned with a price limit between -350e and -150e

(Bundesnetzagentur, 2012). This rule was first introduced by the regulator in 2010

and revised in 2011 to avoid extreme negative prices as experienced during 2009.

It was only necessary once, on 5. January 2012, to call a second auction.13 The

daily schedule of forecasting and selling wind is schematically illustrated in Figure

3.7. The TSOs should have no incentive to systematically mispredict the expected

renewable electricity generation: if the TSOs sell too much or too little renewable

12The data can be downloaded from the homepages of Tennet, Amprion, EnBW and 50Hertz.
For a shorter period they are also available from www.eeg-kwk.de and the EEX Transparency
Platform, www.transparency.eex.com. The data are available in hourly and 15-minute format. For
this study, 15-minute MW data are averaged for each hour and then summarised to MWh per day.

13Personal communication with Thomas Drescher, Head of Market Operations EPEX Leipzig,
in May 2012.
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electricity on the day-ahead market, they have to balance it on the intraday market

the following day (von Roon, 2011). The wind electricity generation depends on the

weather development and installed capacity but is independent from the electricity

price.14

Figure 3.7: Stylised scheduling in the day-ahead electricity market
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Note: ATC stands for Available Transfer Capacity, EMCC for European Market Coupling
Company. Information regarding the daily operations is obtained from www.marketcoupling.de
and www.epexspot.com.

Of course, electricity price is not solely determined by wind electricity gen-

eration. Several papers indicate that the total electricity load, which reflects the

demand profile, plays an important role in price behaviour. In fact, research shows

that the combination of both factors is particularly important in this regard. Jónsson

et al. (2010) show that the ratio between wind and conventional power production

affects the electricity price most. They use the ratio between wind and load which

is termed wind penetration. Similarly, Nicolosi and Fürsch (2009) find that the

residual load, the electricity demand that needs to be met by conventional power, is

a crucial parameter. The share of wind shows how much wind power contributes to

meeting total electricity demand and illustrates its relative importance. The same

amount of wind electricity will have a different impact on the price during a phase

of high electricity demand than it will during low demand. Load data which reflect

14How much renewable capacity is installed depends greatly on subsidies, namely, the German
feed-in tariff (FIT) system. The FIT does not influence the wholesale electricity price traded on
the energy exchange, but it influences the end-use price because the FIT costs are socialised among
almost all electricity users.
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the demand for electricity should be used in the estimations in order to put the wind

data into context.15

ENTSO-E, the association of European transmission operators, publishes data

on the vertical load and the total load in Germany. The vertical load reflects the

net flows from the transmission to the distribution grid and therefore only a fraction

of total electricity demand.16 Therefore, a better proxy for the demand profile on a

given day is the total load which also includes electricity from small and renewable

sources in the distribution grid (ENTSO-E, 2012).17 ENTSO-E does not yet provide

forecasts for the total load. In line with Jónsson et al. (2010), the predicted load is

constructed according to the following relationship:

(3.2) Lt = L̂t + et,

where Lt is the actual load, L̂t is the predicted load, and et ∼ N(0, σ2) a residual.

By adding noise to the actual load, a load forecast is simulated. The standard

deviation of the error is chosen, in line with Jónsson et al. (2010), as 2 per cent

of the average load in the sample. According to Jónsson et al. (2010) and Weber

(2010), this is consistent with the errors that modern forecasting models produce.18

The advantage of Jónsson et al.’s (2010) method is that the error of the simulated

load forecast and the wind forecast are independent. Otherwise, both errors would

be influenced by the weather forecast.19 When the wind forecast is put in perspective

with electricity demand L̂t, its relative importance for the power system becomes

clear. Figure 3.8 shows that the share of wind fluctuates between 0 and 40 per cent.

The discussed explanatory variables, wind and load, will be included in an extended

GARCH model of the electricity price. The methodology is elaborated in the next

section.

15The demand for electricity should be independent from the variable wind in-feed and should
therefore be an appropriate variable choice to avoid endogeneity problems.

16As the wind electricity is fed into the distribution grid, it is not included in the vertical load
data. However, the vertical load data are most accurate as this can be measured directly by the
TSO.

17However, care should be taken with the quality of the total load data. TSOs can only estimate
the total load, as they do not directly observe all flows in subordinated distribution grids.

18ENTSO-E publishes forecasts and actual values for the vertical load for 2010 and 2011. The
error has a standard deviation of 1.1 per cent of the average load in this period. However, the
vertical load data are more accurate and easier to predict than the total load. Therefore, 2 per
cent seems a reasonable assumption.

19The load forecast is simulated several times to test whether the regression results depend on
the randomly generated noise process. This is not the case.
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Figure 3.8: Share of wind power generation
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Note: The share is calculated as MWh of wind in-feed per MWh electricity load per day. Source:
EEX and ENTSO-E.

3.4 Model

The liberalisation of power markets turned electricity into a tradable commodity and

engendered a great deal of interest in understanding and modelling its price perfor-

mance. Deng (2000), Huisman and Mahieu (2003), Lucia and Schwartz (2002), and

Knittel and Roberts (2005) pioneered this research area. These studies emphasise

that distinct features of the electricity price should be included in an empirical

price model. Electricity, for example, is not storable: supply and demand have to

be matched instantly to avoid temporary imbalances. This can lead to extreme

prices that usually revert quickly once supply and demand reconciled. Hence, mean

reversion is common in electricity markets and should be included in a price model

(Deng, 2000; Huisman and Mahieu, 2003). Another important characteristic of

electricity, reflected in its price, is seasonality. Demand varies throughout the day

and during the week, as well as across the year. Therefore, models of electricity

price should incorporate seasonality, as exemplified by Knittel and Roberts (2005)

or Lucia and Schwartz (2002).

Given the pronounced volatility in the liberalised markets, conditional het-

eroscedasticity models lend themselves well to correctly explain price performance

(Higgs and Worthington, 2010). These so-called GARCH models date back to

Bollerslev (1986). As they appropriately capture the fluctuation and clustering of
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volatility, GARCH models are a widely employed method in financial and commodity

markets. Knittel and Roberts (2005) were among the first to apply a GARCH model

to the electricity price. They use an asymmetric GARCH model to capture price

responses to positive and negative shocks and do indeed detect an inverse leverage

effect. Other GARCH applications that have a bearing on this study are Solibakke

(2002) and Mugele et al. (2005). Furthermore, Escribano et al. (2011) contribute

to the literature by combining jumps and GARCH to explicitly control for price

spikes. They show that taking into account mean reversion, seasonality, and jumps

improves the GARCH model.

To better understand the performance of the electricity price, market funda-

mentals should be reflected in the calculations (Janczura and Weron, 2010). Mount

et al. (2006) and Karakatsani and Bunn (2010) emphasise that variables for demand

and reserve margins should be included to better understand price movements.

Huisman (2008) also recognises the need to enrich the price model with fundamentals

and uses temperature variables to detect changes in price behaviour. Similarly,

Hadsell and Marathe (2006) and Gianfreda (2010) estimate an asymmetric GARCH

model and include traded electricity volume in the variance equation. They find that

the trading volume has an effect on price volatility, which is in line with findings from

stock markets, see for example Bollerslev and Jubinski (1999) or Le and Zurbruegg

(2010). Hadsell (2007) and Petrella and Sapio (2010) touch on another decisive

factor for the electricity price and use a GARCH model to test whether changes in

market design have an effect on price volatility.

Using a GARCH model allows to explicitly test the effect of the wind power

generation on the mean and volatility of the electricity price in an integrated ap-

proach. Moreover, a GARCH model seems most appropriate to mimic the volatility

behaviour of the electricity price. Figure 3.6 illustrates that volatility clustering is

present which is typical in financial markets. This feature hints at autocorrelation

in the data, which is emphasised by the Q-statistic for the squared and the absolute

returns (Zivot, 2009).20 Furthermore, Engle’s (1982) test for autoregressive condi-

tional heteroscedasticity (ARCH) in the residuals confirms that ARCH effects are

present.21

20From an auxiliary OLS regression with the log price, autoregression is detected in the squared
returns. This suggests the estimation of a GARCH model.

21The null hypothesis of no ARCH effects in the residuals is rejected with a highly significant
test statistic of 54.720 (<0.0001) when including two significant lags of ϵ2.
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As electricity is not storable, the price tends to spike and then revert as soon as

the divergence of supply and demand is resolved (Bierbrauer et al., 2007; Escribano

et al., 2011). This mean reverting characteristic of the electricity price motivates

the specification of the GARCH mean equation. To capture mean reversion, the

electricity price can be described by an Ornstein-Uhlenbeck process (Vasiček, 1977),

dpt = κ(µ − pt)dt + σdwt.(3.3)

Here, pt is the electricity price and wt a standard Wiener process. After deviating

from the mean, µ − pt, the price is corrected back to its mean. The speed of the

reversion is given by κ. According to Bierbrauer et al. (2007), Equation 3.3 can

be rewritten for the deseasonalised log price in discrete time as Gaussian AR(1)

process: yt = c + ϕyt−1 + ηt, where c = α · µ, ϕ = 1 − κ and η ∼ iidN(0, σ2).22

Hence, the speed of the mean reversion can be calculated from the coefficient for the

autoregressive parameter. Mean reversion models have often been employed in the

literature (Clewlow and Strickland, 2000; Lucia and Schwartz, 2002), but a plain

mean-reverting process is found to overestimate the variance and the mean reversion

driven by volatile periods (Huisman and Mahieu, 2003). Similar to Knittel and

Roberts (2005), this motivates the estimation of an AR-GARCH model, including

a mean reversion parameter, in the following specification:

yt = µ +
l∑

i=1

ϕiyt−i + ϵt(3.4)

ht = ω +

p∑
i=1

αiϵ
2
t−i +

q∑
j=1

βjht−j,(3.5)

where yt is the log electricity price and ht is its conditional variance. ϵt =
√

htzt

and zt ∼ NID(0, 1). ω is the long-run variance. For the model to be stationary,

αi + βj < 1 and αi, βj > 0.

The daily data for wind generation, wt, are included in the mean and the

variance equation of this model. Given this extension, the specification for the

22For the deseasonalised log price, Equation 3.3 can be written in discrete time as △yt = κ(µ−
yt)△t+sigma△wt. Given △yt = yt+1−yt, the formula becomes yt = κµ+(1−κ)yt−1 +ηt. Check
for example Dixit and Pindyck (1994) for a more detailed description of the transformation from
continuous to discrete time.
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ARX-GARCHX model becomes:

yt = µ +
l∑

i=1

ϕiyt−i +
m∑

j=1

θjwt−j + ϵt(3.6)

ht = ω +

q∑
i=1

αiϵ
2
t−i +

p∑
j=1

βjht−j +
s∑

k=1

γkwt−k.(3.7)

In the normal GARCH model, the coefficients in the variance equation, including

the additional coefficients for γ, should be positive to ensure that the variance is

always positive (Gallo and Pacini, 1998; Zivot, 2009). When a coefficient in the

GARCH variance equation is negative, one can inspect the conditional variance and

check whether it is always positive. In case of a negative coefficient, the variance

stability of the GARCH is linked to the specific sample.23 The problem with negative

coefficients is resolved when estimating an EGARCH where the variance equation is

positive by construction (Nelson, 1991; Gallo and Pacini, 1998). The EGARCH is

an extension in which the additional term allows differentiating between the effect

of negative and positive price shocks to the variance. This asymmetry component is

often referred to as the leverage effect.24 In an EGARCH representation, Equation

3.7 becomes:

(3.8) log(ht) = ω +

q∑
i=1

αi|
ϵt−i√
ht−i

| +
r∑

l=1

δi
ϵt−l√
ht−l

+

p∑
j=1

βjht−j +
s∑

k=1

γkwt−k.

The empirical strategy of this paper is to first estimate the GARCH model with

Equation 3.7 for the German day-ahead electricity price, extended by covariates

for the wind power forecast. All specifications are first estimated including one

AR(1) parameter as derived from the Ornstein-Uhlenbeck process. To capture serial

correlation present in the price series, I then include the number of autoregressive

lags which minimise the Bayesian information criterion (Escribano et al., 2011).

I will report both specifications to show that the coefficients vary only slightly.

Finally, the EGARCH is employed to investigate possible asymmetric influences on

the variance and to double-check variance stability.

23As the aim of this study is not to forecast the price, checking that the actual conditional
variance is positive assures stability.

24If δ ̸= 0, the impact is asymmetric. A positive coefficient of δ indicates that positive price
shocks have a larger impact on volatility than negative shocks. The contrary holds for a negative
δ. The EGARCH is covariance stationary when β < 1 (Zivot, 2009).
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The aim of this study is not only to investigate the impact of wind power

generation on the electricity price, but also the regulatory modification to wind

electricity marketing. The German regulator amended the rules applicable to mar-

keting of renewable electricity in the so-called Ausgleichsmechanismusverordnung

in January 2010. In line with Antoniou and Foster (1992), Holmes and Antoniou

(1995), Bomfim (2003), and Hadsell (2007), a dummy variable is introduced to

capture this regulatory change. The dummy takes the value of 1 after the change.

This gives a first impression as to whether change can be observed in the volatility of

the electricity price after the regulation was amended. However, the dummy imposes

a restriction regarding the expected change ex ante on the model. Therefore, the

influence of the new regulatory design is double-checked by consulting structural

break tests. The OLS-Cusum and the Bai-Perron breakpoint test are employed

to find structural changes in the conditional variance of the GARCH model. This

procedure seems more objective than the dummy variable approach as the results

are not driven by a prior assumption.

The OLS-Cusum test is a generalised fluctuation test (Zeileis et al., 2001)

designed to discover whether a series changes over time. In an auxiliary regression,

a constant is fitted to the GARCH volatility. An OLS-based empirical process

is derived from the cumulative sums of standardised residuals of this regression

(Ploberger and Krämer, 1992). For the OLS-Cusum, this empirical fluctuation

process starts and ends in zero. A breakpoint is detected at the peak of the process

(Zeileis et al., 2003).25 This test is useful to uncover whether a series is characterised

by structural changes and to arrive at a rough impression as to when they occurred.

The so-called Bai-Perron breakpoint test goes into more detail and allows dating the

structural shifts (Bai and Perron, 2003). A least squares regression is partitioned

and the minimal residual sum of squares (rss) is calculated for each segment. The

rss for all segments are summarised. Breakpoints that minimise this sum over all

partitions are calculated. For more detail, see Bai and Perron (2003) or Zeileis et al.

(2003).

25As a robustness check, the F-test is also calculated (Andrews and Ploberger, 1994). The
conclusions for the OLS-Cusum test can be confirmed.
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3.5 Estimation Results

3.5.1 Impact of Wind Power

The results for the GARCH(1,1) estimations can be found in Table 3.3.26 All

standard errors are calculated using the Bollerslev and Wooldridge (1992) method

which assured that the test statistics are robust to non-normality of the residual.

The first column (A) shows the GARCH benchmark specification for the log level of

the electricity price. All coefficients are highly significant, the variance parameters

are all positive, and their sum is smaller than one. The size of the GARCH term β

with 0.56 indicates that the autoregressive persistence β is not particularly strong

for the electricity price. The GARCH term α reflects the impact of new shocks

the conditional variance ht, transmitted though the error term ϵt from Equation 3.4.

The AR term depicts a specificity of the power market. The coefficient of 0.88 in (A)

shows that the price reverts back to its long-run mean. But the speed of reversion,

given by 1 − ϕ1, is low.

The Ljung-Box Q-statistic suggests that serial correlation is not well approx-

imated by a single autoregressive term. Therefore, a more dynamic specification is

estimated and further autoregressive parameters added. By minimising the Bayesian

information criterion, seven lags are included in the specification (A*) in Table 3.4.

The significant seventh lag mirrors the weekly seasonal component and is in line

with Escribano et al. (2011). The GARCH coefficients remain fairly stable with an

increase in β and, vice versa, a reduction of α. Their sum, however, stays below 1.

This shows that the conditional variance is mean-reverting, and shocks only have a

temporary effect on ht (Hadsell, 2007).27

In column (B) and (B*) the logarithms of wind and load are included in

the mean as well as the variance equation of the GARCH(1,1).28 The negative

coefficient for the wind variable shows that the day-ahead price decreases when high

wind electricity generation is forecasted. This confirms findings by Jónsson et al.

(2010) as well as Woo et al. (2011) and underlines the merit-order effect. In the

26The ARCH LM test confirms that the volatility clustering is well captured for all further
specifications. Hence, no ARCH effects remain.

27The half-live of shocks can be calculated by ln(0.5)/ln(α+β), and the conditional variance
reverts back to its mean after 5.91 days (Zivot, 2009).

28Both variables added in logarithms to normalise the size and fluctuation of the series.
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present specification (B) and (B*), the coefficients can be interpreted as elasticities.

When the wind electricity in-feed (MWh per day) increases by 1 per cent, the price

decreases between 0.09 and 0.10 per cent. In the variance equation, the wind variable

is significantly different from zero and positive. Hence, the fluctuating wind in-feed

increases the volatility of the electricity price. To make sure that these results are

not driven by the outliers that remain in the log electricity price, an outlier dummy

is included in all mean equations.29 The coefficient for the load variable is only

significant in specification (B*) in Table 3.4, and illustrates that the price increases

with higher electricity demand. The variance, however, is reduced in times of high

demand, which might arise from higher liquidity of the electricity market.

A similar picture arises in column (C) and (C*) when the share of wind is

included in the GARCH model. The wind variable reflects the share of wind relative

to total electricity load. The coefficient for this wind penetration measure turns out

as expected: a strong wind in-feed lowers the electricity price but increases its

variance. When the share of wind rises by one percentage point, the electricity price

decreases by 1.32 or 1.46 per cent in specification (C) and (C*). The coefficient is

higher than before because the wind variable is now expressed as a share of total load.

For the wind share to rise by one percentage point, the wind electricity production

needs to gain quite substantially.30 When the wind variables are added in (B) and

(C), respectively (B*) and (C*), the coefficient for the GARCH term α increases

slightly, accompanied by a downward adjustment of β. This suggests that a omitted

variable bias skewed their coefficients in the previous specification (A*). Generally,

the fit of the model, measured by the information criteria, improves when more

autoregressive parameters are included in specifications (B) and (C), respectively

(B*) and (C*).

To arrive at a first impression of how wind power’s influence on the electricity

price evolved over time, rolling regressions are calculated for specification (C).31

Figure 3.9 shows how the coefficients evolve, using a three-year window. The rolling

29The dummy captures the 1.1.2007, 1.1.2008, 4.10.2009, and 25.12.2009. When AR terms are
included in the regression, the respective number of lagged dummies is included as well.

30This can be illustrated as follows. The mean wind forecast is 111 GWh per day, the mean load
reaches 1.332 GWh. The average share therefore is 8 per cent. To reach 9 per cent, wind has to
rise a substantial 13 MWh or 12 per cent.

31Rolling regressions with a 2 year window have been calculated as well and give a broadly similar
picture. However, a longer window is preferred for the coefficients to be significant. Moreover, the
picture for specification (B), including log levels for wind and load separately, looks very much the
same.



3.5. ESTIMATION RESULTS 79

T
ab

le
3.

3:
R

es
u
lt

s
A

R
(1

)-
G

A
R

C
H

(1
,1

)
m

o
d
el

s
w

it
h

ad
d
it

io
n
al

ex
p
la

n
at

or
y

va
ri

ab
le

s

D
ep

en
d
en

t
va

ri
a
b
le

:
lo

g
el

ec
tr

ic
it
y

p
ri
ce

S
a
m

p
le

:
1
/
1
/
2
0
0
6

1
/
3
1
/
2
0
1
2

(A
)

(B
)l
og

(W
in

d
)

(C
)W

in
d
/L

oa
d

(D
)W

in
d
/L

oa
d

lo
g(

L
oa

d
)

R
eg

u
la

ti
on

d
u
m

m
y

M
ea

n
eq

u
a
ti
o
n

C
on

st
an

t
3.

83
8

(<
0.

00
01

)
5.

35
1

(<
0.

00
01

)
3.

95
2

(<
0.

00
01

)
3.

93
4

(<
0.

00
01

)
ϕ

1
0.

88
1

(<
0.

00
01

)
0.

89
9

(<
0.

00
01

)
0.

90
1

(<
0.

00
01

)
0.

87
4

(<
0.

00
01

)
lo

g(
W

in
d
)

-0
.0

89
(<

0.
00

01
)

lo
g(

L
oa

d
)

-0
.0

35
(0

.1
94

5)
W

in
d
/L

oa
d

-1
.3

15
(<

0.
00

01
)

-1
.2

49
(<

0.
00

01
)

A
d
u
m

m
y

fo
r

ou
tl
ie

rs
in

th
e

lo
g

pr
ic

e
an

d
it
s

fi
rs

t
la

g
ar

e
in

cl
u
d
ed

in
al

l
m

ea
n

eq
u
at

io
n
s.

V
ar

ia
n
ce

eq
u
a
ti
o
n

ω
0.

00
7

(<
0.

00
01

)
0.

32
4

(<
0.

00
01

)
0.

00
3

(0
.0

07
6)

0.
01

1
(<

0.
00

01
)

α
1

0.
24

3
(<

0.
00

01
)

0.
27

3
(<

0.
00

01
)

0.
26

7
(<

0.
00

01
)

0.
25

0
(<

0.
00

01
)

β
1

0.
55

7
(<

0.
00

01
)

0.
54

1
(<

0.
00

01
)

0.
55

5
(<

0.
00

01
)

0.
30

0
(<

0.
00

01
)

lo
g(

W
in

d
)

0.
00

2
(0

.0
05

9)
lo

g(
L
oa

d
)

-0
.0

24
(<

0.
00

01
)

W
in

d
/L

oa
d

0.
03

1
(0

.0
15

5)
0.

05
2

(<
0.

00
01

)
R
eg

u
la

ti
on

d
u
m

m
y

-0
.0

10
(<

0.
00

01
)

A
d
j.

R
2

0.
68

6
0.

72
6

0.
73

9
0.

74
2

L
og

lik
el

ih
o
o
d

82
9.

29
1

10
83

.4
01

10
75

.0
98

11
50

.7
45

A
IC

-0
.7

41
-0

.9
66

-0
.9

61
-1

.0
28

B
IC

-0
.7

23
-0

.9
38

-0
.9

37
-1

.0
02

N
ot

e:
A

IC
st

an
ds

fo
r

A
ka

ik
e

in
fo

rm
at

io
n

cr
it

er
io

n,
B

IC
fo

r
B

ay
es

ia
n

in
fo

rm
at

io
n

cr
it

er
io

n.
p-

va
lu

es
ar

e
in

pa
re

nt
he

se
s.



80 CHAPTER 3: WIND POWER AND THE ELECTRICITY MARKET
T
ab

le
3.

4:
R

es
u
lt

s
A

R
(7

)-
G

A
R

C
H

(1
,1

)
m

o
d
el

s
w

it
h

ad
d
it

io
n
al

ex
p
la

n
at

or
y

va
ri

ab
le

s

D
ep

en
d
en

t
va

ri
a
b
le

:
lo

g
el

ec
tr

ic
it
y

p
ri
ce

S
a
m

p
le

:
1
/
1
/
2
0
0
6

1
/
3
1
/
2
0
1
2

(A
*)

(B
*)

lo
g(

W
in

d
)

(C
*)

W
in

d
/L

oa
d

(*
D

)W
in

d
/L

oa
d

lo
g(

L
oa

d
)

R
eg

u
la

ti
on

d
u
m

m
y

M
ea

n
eq

u
a
ti
o
n

C
on

st
an

t
3.

86
2

(<
0.

00
01

)
3.

86
2

(<
0.

00
01

)
4.

04
2

(<
0.

00
01

)
3.

97
0

(<
0.

00
01

)
ϕ

1
0.

65
2

(<
0.

00
01

)
0.

58
1

(<
0.

00
01

)
0.

58
9

(<
0.

00
01

)
0.

59
7

(<
0.

00
01

)
ϕ

2
-0

.0
35

(0
.2

53
9)

-0
.0

05
(0

.8
66

8)
-0

.0
40

(0
.1

96
8)

-0
.0

10
(0

.7
23

8)
ϕ

3
0.

09
6

(0
.0

01
0)

0.
08

3
(0

.0
03

6)
0.

09
7

(<
0.

00
01

)
0.

06
0

(0
.0

31
3)

ϕ
4

0.
00

8
(0

.7
70

7)
0.

02
9

(0
.3

34
3)

-0
.0

03
(0

.9
11

6)
-0

.0
09

(0
.7

28
3)

ϕ
5

0.
03

6
(0

.2
19

9)
0.

02
4

(0
.4

52
2)

0.
02

8
(0

.3
48

3)
0.

04
9

(0
.1

74
4)

ϕ
6

0.
10

4
(0

.0
01

0)
0.

11
3

(<
0.

00
01

)
0.

13
0

(<
0.

00
01

)
0.

12
1

(<
0.

00
01

)
ϕ

7
0.

09
3

(<
0.

00
01

)
0.

13
6

(<
0.

00
01

)
0.

16
5

(<
0.

00
01

)
0.

14
9

(<
0.

00
01

)
lo

g(
W

in
d
)

-0
.0

98
(<

0.
00

01
)

lo
g(

L
oa

d
)

0.
08

1
(0

.0
18

5)
W

in
d
/L

oa
d

-1
.4

89
(<

0.
00

01
)

-1
.4

14
(<

0.
00

01
)

A
d
u
m

m
y

fo
r

ou
tl
ie

rs
in

th
e

lo
g

pr
ic

e
an

d
se

ve
n

la
gs

ar
e

in
cl

u
d
ed

in
al

l
m

ea
n

eq
u
at

io
n
s.

V
ar

ia
n
ce

eq
u
a
ti
o
n

ω
0.

00
3

(<
0.

00
01

)
0.

28
1

(0
.0

00
4)

0.
00

2
(0

.0
31

0)
0.

00
9

(<
0.

00
01

)
α

1
0.

16
4

(<
0.

00
01

)
0.

25
0

(<
0.

00
01

)
0.

22
7

(<
0.

00
01

)
0.

25
3

(<
0.

00
01

)
β

1
0.

72
5

(<
0.

00
01

)
0.

56
3

(<
0.

00
01

)
0.

63
8

(<
0.

00
01

)
0.

31
3

(<
0.

00
01

)
lo

g(
W

in
d
)

0.
00

2
(0

.0
47

0)
lo

g(
L
oa

d
)

-0
.0

21
(0

.0
00

3)
W

in
d
/L

oa
d

0.
02

0
(0

.0
63

1)
0.

04
5

(<
0.

00
01

)
R
eg

u
la

ti
on

d
u
m

m
y

-0
.0

08
(<

0.
00

01
)

A
d
j.

R
2

0.
72

0
0.

77
2

0.
78

4
0.

78
3

L
og

lik
el

ih
o
o
d

94
8.

59
8

12
53

.4
31

12
64

.9
87

13
33

.3
51

A
IC

-0
.8

42
-1

.1
15

-1
.1

27
-1

.1
88

B
IC

-0
.7

92
-1

.0
55

-1
.0

72
-1

.1
31

N
ot

e:
A

n
as

te
ri

sk
*

la
be

ls
th

e
sp

ec
ifi

ca
ti

on
s
th

at
in

cl
ud

e
se

ve
n

au
to

re
gr

es
si

ve
la

gs
of

th
e

pr
ic

e.
A

IC
st

an
ds

fo
r

A
ka

ik
e

in
fo

rm
at

io
n

cr
it

er
io

n,
B

IC
fo

r
B

ay
es

ia
n

in
fo

rm
at

io
n

cr
it

er
io

n.
p-

va
lu

es
ar

e
in

pa
re

nt
he

se
s.



3.5. ESTIMATION RESULTS 81

Figure 3.9: Rolling regressions for specification (C) with a three year window
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regressions illustrate, on the one hand, that the wind coefficient from the variance

equation remains fairly constant. On the other hand, the coefficient for the wind

share in the mean equation, depicted by the orange line, becomes less negative over

time. The wind in-feed can no longer decrease the price level as much. Stated

differently, the merit-order effect lessens over time. Sensfuß (2011) find the same

effect for Germany. A plausible explanation for the weaker merit-order effect is the

increasing share of solar PV in-feed. Already, a merit-order effect from wind power

can be observed for solar PV in Germany (Bundesnetzagentur, 2012). As Figure

3.10 shows, electricity generation from solar PV depresses mainly peak power prices.

Lower peak power prices reduce the daily average wholesale price used in this study.

When the average price is lower on days with little wind, the calculated merit-order

effect for wind will be smaller. This also explains the dip during winter 2010 when

solar PV was not able to lower peak prices. Investigating this interaction in an

analysis with hourly prices would be interesting but is left for further research.

Another reason for the weakening merit-order effect could be the stronger electivity

trade within Europe. The possibility to export excess wind electricity generation

smoothes the price development (Hulle, 2009). This effect is further explained at

the end of this section.
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Figure 3.10: Solar PV in-feed and peak prices
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After April 2011, the impact of wind on the electricity price diminishes even

further. This is most likely related to the nuclear phase-out in Germany. Shutting

down nuclear power plants shifts the merit-order curve as illustrated by Figure 3.11.

The price decrease, induced by wind, is less strong when the nuclear capacity is

removed. This results are confirmed by findings of Thoenes (2011).

3.5.2 Impact of Regulatory Change

The empirical framework is used to evaluate modifications to the power market

design and the renewables regulation. The German regulator amended the mar-

keting of renewable electricity in the so-called Ausgleichsmechanismusverordnung

in January 2010. All TSOs are now required to forecast the renewable power

production one day in advance and to sell the total predicted amount on the

day-ahead market. TSOs then receive the revenues from selling the renewable power

volumes at the wholesale market price (see Figure 3.12). However, these funds

are most likely insufficient to remunerate the producers of renewable electricity

according to the feed-in tariff rates. Therefore, TSOs also receive the so-called
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Figure 3.11: Stylised merit-order curve before and after the nuclear phase-out
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EEG levy which is after all raised from the electricity users.32 The EEG levy

covers payments for feed-in tariffs as well as costs from forecasting, balancing, and

marketing of renewable electricity.

The previous marketing mechanism was more complicated. TSOs had to pre-

dict the renewable electricity production a month in advance. These forecasts were

quite inaccurate as the wind and solar PV power production is highly dependent on

meteorological factors.33 Energy suppliers and TSOs then agreed on a fixed schedule

for renewable electricity delivery on each day of the following month (Buchmüller

and Schnutenhaus, 2009). These volumes had to be physically delivered from a TSO

to the energy supplier (see Annex B, Figure B.2 for an illustration). As the final

wind in-feed was uncertain, the physical delivery of renewable electricity via the

TSOs to the energy companies was an inefficient mechanism (Monopolkommission,

2009). When wind power generation was lower than expected, the missing electricity

volumes had to be bought by the TSOs on the day-ahead or intrady market. A

surplus of renewable electricity, on the contrary, had to be sold on the market

32EEG stands for Erneuerbare Energien Gesetz. The EEG levy is payed by the energy suppliers
who then pass the costs to consumers and industry. Some electricity users are exempt from the
levy.

33Other renewable electricity generation, for example biomass, is less problematic in this respect.
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Figure 3.12: Marketing mechanism after the regulatory change in 2010
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Note: Illustration adapted from Buchmüller and Schnutenhaus (2009). Blue arrows show the flows
of renewable electricity from the installations to the final electricity users. Orange arrows indicate
monetary flows that finally remunerate the operators of renewable electricity installations. More
detailed information is available at: www.bundesnetzagentur.de

(Erdmann, 2008). More sudden shortfalls had to be fixed on the balancing market.

This mechanism led to substantial balancing costs for adjustments in the spot

markets. In 2008, they reached 595 million Euro for all TSOs (Bundesnetzagentur,

2012). With the new regulation, the forecasting uncertainty and interventions on the

spot markets could be reduced. The related costs shrank substantially to 127 Mio

in 2010, and the electricity users were disburdened (Bundesnetzagentur, 2012).34

Under the old regulation, the expenses for spot and balancing market interventions

were hidden in the network charge (Buchmüller and Schnutenhaus, 2009). Since

2010, these costs are added to the EEG levy. This increases the transparency for

electricity users who get a clearer picture of the renewable subsidy and system costs.

Transparency also increases with regard to the marketed renewable energy

volumes as they have to be sold on the day-ahead market. The additional wind

volumes increase liquidity of the day-ahead and the intraday market significantly

(Bundesnetzagentur, 2012). This is expected to reduce price volatility as smoother

prices can generally be observed in a more liquid market (Figlewski, 1981; Weber,

34The overall EEG levy still continues to rise due to high liabilities from feed-in tariff payments,
just the burden from the balancing costs is reduced.
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2010). Moreover, TSOs had no incentive under the old regulation to optimise

activities on the day-ahead and the intraday market because they could socialise

these expenses via the network charge (UoSC) to electricity users (Buchmüller

and Schnutenhaus, 2009). According to Klessmann et al. (2008), integration of

renewable electricity in Germany was opaque and inefficient before 2010. Under

the new regulation, the interventions on the day-ahead market become obsolete and

related disturbances are expected to reduce.

To test for the effect of the regulatory change on the price volatility, a dummy

variable is included in the variance regression. This procedure follows Antoniou and

Foster (1992), Holmes and Antoniou (1995), Bomfim (2003), and Hadsell (2007).

The dummy variable captures the effect on the variance after the regulatory change

in 1. January 2010. The dummy is not included in the mean equation as the new

regulatory design only alters the way renewable electricity volumes are absorbed

from the market. The overall electricity supply – whether it be generated from

renewable or conventional power plants – remains unaffected by the regulation.

Therefore, the price level should not be affected from the regulatory change, and

the focus lies on the price variance.35

The results from specification (D) and (D*) can be found in Table 3.3 and Table

3.4. In both cases, the negative and significant coefficient for the dummy variable

indicates a reduction of the conditional variance after the regulatory change. The

effects of wind and load, discussed earlier, remain robust. Despite the negative

coefficient for the dummy, the conditional variance does not become negative for

the given sample. Therefore, the specification remains valid. The findings are still

cross-checked in an EGARCH (1,1) which yields a stable variance even with negative

coefficient in the variance equation. The results can be found in Table 3.5. The effect

of the wind share as well as the negative coefficient for the regulatory dummy remain

unchanged. The leverage parameter in specification (E1) and (E1*) is insignificant,

and asymmetry seems not to be present.

Defining a dummy imposes assumptions regarding the structural shift. A more

objective approach is to use a pure time series approach that detects irregularities in

the variance from investigating the data. Following Chevallier (2011b), changes in

the conditional variance are evaluated using various break tests. The OLS-Cusum

35This assumption was double-checked by adding the dummy variable to the mean equation. It
stays insignificant and the results for the variance equation are not affected.
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Figure 3.13: Structural break tests for specification (C) and (C*)
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test is performed for the conditional variance from (C) and the more dynamic

specification (C*). The upper panel of Figure 3.13 shows the empirical fluctuation

process for the OLS-Cusum test together with the boundaries at the 5 per cent

significance level. If the cumulative sum of squares stays within the boundaries, the

residual variance is relatively stable. If it crosses the lines, the fluctuation is too

large, and the null hypothesis of no structural change is rejected. The instability is

depicted by two main peaks that indicate structural shifts in January 2008 and in

January 2010. The next step is to date the volatility shifts in more detail. As shown

in the lower panels of Figure 3.13, the Bai-Perron break test finds four breakpoints

where the BIC is minimised.36 The breaks in the conditional variance are identified

on 25.12.2006, 8.1.2008, 22.12.2008, and 13.1.2010. It is not surprising that multiple

irregularities are depicted in the volatility structure, given the rather unsteady

electricity market. The breakpoint test confirms the structural shifts shown in the

OLS-Cusum test. The conditional variance seems to undergo a change in early

January 2008 and 2010. This confirms the previous regression results and connotes

that the break in early January 2010 relates to the amendment of the marketing of

renewable electricity. As a robustness check, the same test strategy is applied to

specification (B) and (B*). These results can be found in Annex B, Figure B.3.

3.5.3 Impact of Market Coupling

The German market is not isolated, and electricity flows to neighbouring countries

are important, especially for the integration of intermittent renewable electricity. A

good example is the wind power from northern Germany which can often not be

transmitted to the southern parts of the country due to capacity constraints in grid.

High wind energy generation results in exports to neighbour countries, although the

electricity could be used in southern Germany. To make sure that the reduction

in the variance from 2010 onwards is not simply a result of the better integrated

electricity market, I control for cross-border trade in the European electricity market.

The integration of the European electricity market has gained considerable

importance from the creation of the European Market Coupling Company (EMCC).

Since November 2009, Germany and Denmark pursuit day-ahead volume coupling

36Bai and Perron (2003) argue that the Bayesian information criterion is the best measure to
determine the number of breaks.
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on the two interconnectors between Germany and Denmark. In May 2010, the

Baltic cable between Germany and Sweden joined. On 10. November 2010, the

countries of the CWE region (Belgium, France, Germany, Luxembourg and the

Netherlands) and the so-called Northern region (Denmark, Sweden and Norway)

coupled their electricity markets.37 The electricity flows of these countries are now

jointly optimised, and electricity is exported from low-price to high-price areas, as

a matter of efficiency. The necessary congestion management is carried out by the

EMCC in a so-called interim tight volume coupling (Monopolkommission, 2009).38

For this study, I use the interconnector capacities that can be used to export excess

wind production.39 The capacities are reported to the EMCC before the price setting

on the day-ahead market and are therefore exogenous from the dependent variable.40

For reasons of data availability, I use data for the interconnectors between Germany

and the Northern region only (Baltic Cable, DK West and DK East).

The “north-bound” interconnector capacity is included in specification (E2)

and (E2*) in Table 3.5. The coefficient of the EMCC capacity is positive in the

mean equation. With a better connected power market, electricity flows are jointly

optimised, and exports flow from low-price areas to countries where demand and

price are higher. When the electricity price is low in Germany, more export capacity

can stabilise the German price. A higher interconnector capacity also decreases the

conditional variance as a better integrated electricity market is more flexible, and

shocks are more easily absorbed. Finally, the conclusions regarding the regulatory

change and the wind in-feed remain valid. Therefore, previous specifications that

omit the interconnector capacity seem not to be misspecified.

37CWE stands for Central Western Europe. Countries connected in the CWE and the Nordic
region account for approximately 55% of the European electricity generation (Böttcher, 2011).

38The TSOs from the participating countries report the interconnector capacities one day in
advance to the EMCC (see Figure 3.7). In addition, the EMCC receives the anonymised order
books from the participating electricity exchanges after the day-ahead spot market closed at 12am.
The buying and selling orders, including the volumes of renewable electricity and the interconnector
capacity, are optimised by the EMCC. The algorithm determines the price-independent volumes
that have to be sold additionally on those markets that had too high prices. The EMCC only
calculates the additional electricity quantities that are needed to equalise the price amongst
participating countries. The auctioning and price setting remains in the hands of the local
exchanges (Böttcher, 2011).

39The so-called Available Transfer Capacity (ATC) is included in the regressions. ATC is the
physical interconnector capacity which is not yet allocated and is free to use. This export potential
reflects the technical and physical restrictions in the neighbour country.

40The electricity trade flows are an outcome variable as they are determined together with the
price on the day-ahead markets. The data on the electricity trade are therefore not included in
this study.
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3.6 Policy Implications

This chapter shows that intermittent renewable generation already transmits volatil-

ity to the electricity price. The question is how to integrate electricity from variable

sources more smoothly.

First, better geographical integration is important. Building renewable instal-

lations throughout Germany would even out the regional fluctuation and assure that

wind and sunshine are captured at different sites (Klinge Jacobsen and Zvingilaite,

2010). However, optimal sites for renewable installations are limited within one

country. It seems more efficient to connect renewable installations throughout

Europe. Schaber et al. (2012) project that improved interconnection within Europe

will reduce market effects of variable renewable electricity substantially. Hulle

(2009) also emphasise that grid extensions lead to steadier wind generation levels.

Better grid connection can be fostered by new cables but also by using existing

capacity more efficiently. Experience in Europe has shown that modifying the

market coupling regime is helpful in this regard (Hulle, 2009; Monopolkommission,

2011). The presented results, regarding the EMCC market coupling, link in with

these conclusions.

Second, flexible conventional power plants as well as electricity storage help

balancing fluctuations of renewable energy. In times of high renewables in-feed,

storage can collect and save excess electricity. Flexible generation units are power

plants with low ramping costs, for example gas turbines. These plants operate

at high variable but low fixed costs and can therefore be switched on and off to

equalise low renewable power in-feed. The main difficulty of both options, storage

and flexible generation capacity, is their investment cost. Providing responsive

generation capacity needs to be profitable. With more and more renewables in the

power system, conventional plants will mainly balance renewable fluctuation and

therefore operate fewer full-load hours. Recovering the investment costs for flexible

conventional units during these load hours will become more difficult (Klessmann

et al., 2008; Klinge Jacobsen and Zvingilaite, 2010; Steggals et al., 2011). Peri-

ods with peak prices, which allow plant operators to generate revenues, become

less certain and predictable due to the high variability of renewable electricity

generation. The increased refinancing risk questions the viability of investments

in flexible conventional capacity, and the market mechanisms might fail to give
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sufficiently strong investment signals. The literature discusses various policy options,

such as capacity markets, capacity payments, or reliability options, to support the

construction and availability of flexible capacity. All these policy models are subject

of some controversial debate (Cramton and Ockenfels, 2011). It is not clear that

introducing such new policy instruments is beneficial and necessary. For the time

being, ifo and FfE (2012) rather suggest using the existing structure of the balancing

market to auction more long-term capacity.

Finally, this study emphasises that regulatory changes can encourage a better

integration of intermittent renewable electricity in the power system. Going for-

ward, the regulatory and the policy framework should be further adjusted to the

challenges arising from the decarbonisation of the electricity market. Regarding

the regulatory setting, on the one hand, intermittent renewables could be better

integrated if gate closure on day-ahead and intraday markets would be later (Hiroux

and Saguan, 2010). A later gate closure would reduce uncertainty on the spot

markets and balancing costs because a shorter forecasting horizon makes actual wind

generation more predictable.41 Another small step towards a better integration of

renewables is to offer different products on the spot markets. Since December 2011,

the German intraday market offers not only hourly, but 15 minute electricity blocks

(Bundesnetzagentur, 2012). Given the stochastic generation profile of wind and

solar PV, this product increases flexibility for market participants. Such smaller

products should probably be introduced to the day-ahead market as well. With

respect to the policy framework, on the other hand, renewable support schemes

should be revisited. Currently, renewable energy is not exposed to any market

risk in Germany due to guaranteed feed-in tariffs. A more market-based system

would give incentives to realign renewable electricity supply with demand. Support

schemes that depend on the wholesale electricity price make generation most at-

tractive during peak load. Germany already offers renewable electricity producers to

choose between fixed feed-in tariffs and price-dependent feed-in premiums. Since the

beginning of 2012, renewable electricity producers are given a third option: they can

sell their renewable electricity directly on the market without using TSO services.

They forego the feed-in tariff but currently receive a similar payment to make this

option attractive. This so-called Direktvermarktung does not yet reduce subsidy

41The implementation may not be straight forward as all action needs to be coordinated among
European states.
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payments but creates another market-based channel to integrate renewable power.

Together with a transition to feed-in premiums, this approach should be rigorously

pursued. Simultaneously, balancing costs should be partly shifted to the operators

of renewable installations. In Germany, these integration costs are currently passed

on to energy users, in other countries, for example Spain or the UK, the operator

of renewable installations has to bear these costs partly (Klessmann et al., 2008).

When exposing renewables to more market risk, the maturity of the technology and

the functionality of the market need to be taken into account. Surely, intermittent

installations have a limited ability to respond to price signals and should not be

exposed to full risk (Klessmann et al., 2008). But renewable electricity generation

now plays an important role in the German power system and should therefore

assume more responsibility. A completely protected environment can hardly be

sustained when planning to increase the renewables share to 35 per cent of gross

electricity production in 2020. Market-based support could give positive long-run

incentives to exploit portfolio effects, to choose optimal installation sites, and to

improve the generation forecasts (Hiroux and Saguan, 2010).

3.7 Conclusions

With the aim of reducing carbon emissions and increasing energy security, renewable

electricity generation is strongly supported by politicians and interest groups. This

has led, especially during the last decade, to a rapid increase of renewable electricity

generation in many parts of the world. In Germany, renewables now make up 20

per cent of the country’s gross electricity production. The share of intermittent

electricity generation from wind and solar PV has grown particularly quickly. Large

amounts of stochastic wind electricity pose new challenges for the power system.

Assuring a stable electricity supply and price becomes increasingly difficult. Given

that Germany strives for an electricity mix with 35 per cent renewables in 2020

and 50 per cent in 2030, resilient integration of intermittent renewable electricity

becomes absolutely crucial.

The presented results show that intermittent wind power generation does not

only decrease the wholesale electricity price in Germany but also increases its volatil-

ity. This conclusion holds across various specifications underlining the robustness

of the results. The disruptive effect of variable renewables on the wholesale price



3.7. CONCLUSIONS 93

is relevant for the entire energy system. A lower and more volatile electricity price

probably provides insufficient incentives to investment in new generation capacity,

both in renewable as well as conventional capacity. The higher price volatility

introduces uncertainty which, according to Dixit and Pindyck (1994), might lead to a

delay of investments. After all, flexible generation plants become more important to

back-up an increasing share of intermittent renewable electricity, but more difficult

to finance. It is of the utmost importance that the electricity price continues to

induce investments – in carbon-free renewables capacity and in back-up capacity

needed to maintain security of supply.

This study finds evidence that a more reliable price signal can be achieved.

The volatility of the German electricity price decreased after a regulatory change

in 2010. Hence, the market design can to some extent smoothen the volatility of

the electricity price and stabilise its level. Going from here, renewable electricity

regulation should be developed further, towards a more market-orientated structure

that remunerates renewable electricity during phases of high electricity prices. In

Germany, the transformation of the energy system brings along many challenges.

A framework that sets appropriate incentives for new investments and stabilises

the wholesale price is prerequisite to meet these requirements. An efficient and

more market-based integration of variable renewable electricity would unburden the

consumers who currently pay most of the energy transition. This, in turn, could

strengthen public support for the necessary transformations.
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Böttcher, E., 2011. Ein großer Schritt auf dem Weg zum integrierten europäischen

Strommarkt. emw Zeitschrift für Energie, Markt, Wettbewerb 11 (1), 26–28.

Buchmüller, C., Schnutenhaus, J., 2009. Die Weiterentwicklung des EEG-

Ausgleichsmechanismus. Energiewirtschaftliche Tagesfragen 59 (11), 75–79.

Bundesnetzagentur, 2010. Monitoring report. Report, Federal Network Agency,

Bonn.

URL www.bundesnetzagentur.de

Bundesnetzagentur, 2011. EEG Einspeisemanagement, Abschaltreihenfolge, Berech-
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Annex for Chapter 2

List of Selected Policy Events

Table A.1: EU ETS NAPs

Date Event
16.01.2007 NAP Belgium, Netherlands
05.02.2007 NAP Slovenia
26.03.2007 NAP Czech Republic, France, Poland
02.04.2007 NAP Austria
16.04.2007 NAP Hungary
04.05.2007 NAP Estonia
15.05.2007 NAP Italy
25.05.2007 Poland and Czech Republic plan to sue EU over NAPs1

04.06.2007 NAP Finland
13.07.2007 NAP Ireland, Latvia, Lithuania, Sweden
31.07.2007 Latvia does not accept EU cap2

31.08.2007 NAP Danmark
22.10.2007 NAP Portugal
26.10.2007 NAP Bulgaria, Romania
07.12.2007 NAP Slovakia
23.09.2009 Court decision on Polish NAP3

1www.euractiv.com (Article 164066).
2www.euractiv.com (Article165990).
3www.euractiv.com (Article 185715).
Source: www.ec.europa.eu/clima/policies/ets/allocation/2008.

113



114 APPENDIX

Table A.2: Global Carbon Market

Date Event Source
19.06.2007 German Bundestag decides on 22% CER use in EU ETS Unicredit
06.08.2008 Link ITL und CITL announced Unicredit
09.01.2009 Russia is expelled from international trade Unicredit
28.01.2009 Commission’s proposal for a global pact in Copenhagen EC1

20.07.2009 Czech, Poland, Romania, and Ukraine sell AAUs Unicredit
15.09.2009 CDM validator SGS is suspended Unicredit
18.12.2009 COP Copenhagen 07.12.09-18.12.09 Unicredit
21.01.2010 IPCC mistakes Unicredit

29.03.2010 Validator TÜV and Cemco suspended Unicredit
12.03.2010 Recycled CERs Unicredit
23.06.2010 Discussion on HFC projects in the CDM EB Unicredit
26.08.2010 Discussion on HFC projects reaches EU ETS Unicredit

1EC, Climate change: Commission sets out proposals for global pact on climate
change at Copenhagen, Press Release IP/09/141, 28.01.2009.

Table A.3: EU ETS III

Date Event Source
10.01.2007 EC invites members to ’unilaterally’ reduce GHG by 20% in 2020 Unicredit
12.09.2007 Strong divergences regarding the plan to cap GHG from aviation Euractiv1

23.01.2008 European Climate Change Package EC2

07.10.2008 EP environment committee votes in favour of 3 reports on climate change policies3

11.02.2009 EC publishes preliminary list of aviation operators included in the EU ETS EA4

23.04.2009 Revised EU ETS Directive 2009/29/EC EC5

08.06.2009 Detailed interpretation of the aviation activities EC6

28.01.2010 Registries closed due to phishing Unicredit
03.05.2010 Brussels discusses a 30% CO2 reduction target Euractiv7

09.07.2010 Cap first step: number of EUAs to be issued for 2013 EC8

14.07.2010 CC Committee agrees on auctioning Unicredit
21.09.2010 Debate on aviation activities in the EU ETS EC9

22.10.2010 Cap second step and publication of benchmark study EC10

1 www.euractiv.com (Article 166690).
2 www.eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2008:0016:FIN:en:PDF.
3 www.euractiv.com (Article 176099).
4 www.environment-agency.gov.uk/business/topics/pollution/112384.aspx.
5 www.ec.europa.eu/clima/policies/ets/documentation en.htm.
6 www.eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:149:0069:01:EN:HTML.
7 www.euractiv.com (Article 493637).
8 www.europa.eu/rapid/pressReleasesAction.do?reference=MEMO/10/314.
9 www.ec.europa.eu/clima/news/articles/news 2010092101 en.htm.
10 www.eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:279:0034:0035:En:PDF.

Table A.4: EU ETS Compliance

Date Event
02.04.2007 Verified emissions
07.06.2007 Compliance data publication
02.04.2007 Verified emissions
23.05.2008 Compliance data publication
01.04.2007 Verified emissions
15.05.2009 Compliance data publication
01.04.2007 Verified emissions
18.05.2010 Compliance data publication

Source: www.ec.europa.eu/clima/policies/ets/monitoring.
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Renewables and the Power System

Figure B.1: Variable renewable electricity and the power system
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Source: Illustration adapted from Neubarth (2011).

This figure shows how variable renewable electricity influences the power sys-

tem. First, the variable renewable electricity in-feed poses challenges to the grid

which has to absorb the electricity at any point in time. Currently, the German

transmission grid does not have enough capacity to transport the renewable electric-

ity in-feed southwards. This problem is particularly apparent for wind power which
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is mainly generated in northern Germany but is needed in the south. This implies the

need for massive investment in additional transmission cables. Until these cables are

in place, any electricity that exceeds the demand in northern Germany is exported

to neighbouring countries. Second, the impact on the level and volatility of the

electricity price is studied in Chapter 3. Finally, renewable installations affect the

existing power plants which need to balance the intermittent renewable electricity

in-feed. Gas and coal plants in Germany have to satisfy electricity demand not

met by renewables generation but have to be switched off when enough renewable

electricity is generated.

Marketing Mechanism Before 2010

Figure B.2: Marketing mechanism before 2010
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Energy
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EEG FITEEG FIT
Financial
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Note: Illustration adapted from Buchmüller and Schnutenhaus (2009). Blue arrows show the flows
of renewable electricity from the installations to the final electricity users. Orange arrows indicate
monetary flows that finally remunerate the operators of renewable electricity installations. Source:
Illustration adapted from Buchmüller and Schnutenhaus (2009).
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Structural Break Tests

The OLS-Cusum and the Bai-Perron breakpoint strategy are also applied to spec-

ification (B) and (B*) where wind and load are included separately. Results are

shown in Figure B.3 and confirm the previous conclusions. Two main peaks can be

detected, in January 2008 and 2010. The Bai-Perron breakpoint test also indicates

multiple breaks on 22.12.2006, 8.1.2008, 22.12.2008, 6.1.2010. Hence, the structural

break in January 2010 – after the redesign of the renewable electricity marketing –

is confirmed.

Figure B.3: Structural break tests for specification (B) and (B*)
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Note: The upper panels depict the OLS-Cusum test for specification (B) on the left and (B*) on
the right. The lower panels show the respective Bai-Perron breakpoint tests.
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