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Abstract 
 

Cell adhesion molecules play a pivotal role in synaptic plasticity and memory as 

they influence development, maintenance and remodelling of synaptic contacts. 

Novel synaptic CAMs, including neuroplastin, nectin, SynCAM, and 

neurexin/neuroligin, may be promising candidates for studies on cognition as they 

are synapse-specific and able to form and modulate new synapses. Furthermore, 

it is widely accepted that chronic stress and aging impair cognitive functions. The 

aims of this thesis are (I) to assess the impact of aging and chronic stress on 

cognitive performance, (II) to study the contribution of novel synaptic CAMs in 

these processes and (III) the assessment of the therapeutic value of synaptic 

CAMs to treat cognitive diseases at aging or stress-related cognitive dysfunctions.  

First, male CD1 mice were subjected to chronic social stress and the cognitive 

performance in young (3 months) and aged animals (15 months) was tested in a 

variety of cognitive paradigms. Brains were removed under basal conditions and 

2 hours after learning for analysis of hippocampal CAM expression levels. In the 

second part, the effects of Nptn-derived mimetic peptides, Enplastin and Narpin, 

on cognitive performance were investigated either under basal conditions using 

acute intra-hippocampal injections or following stress and/or aging using chronic 

subcutaneous injections. 

It was shown that aging impairs spatial learning and that chronic social stress has 

both acute and long-term adverse effects on cognitive performance, which 

correlate with structural and functional parameters. In addition, these cognitive 

differences could be correlated with altered CAM dynamics on mRNA level. The 

modulation of cognitive performance via Nptn-derived mimetic peptides was 

possible. 

In conclusion, these findings confirmed that stress and aging induce cognitive 

deficits and it is hypothesised that alterations in CAM dynamics play an important 

role in the underlying processes. There might even be a causal link between 

stress-induced cognitive disorders or age-related cognitive deficits and CAM 

dynamics. Future studies will provide further insights into the molecular substrates 

of stress/aging-induced cognitive impairment. 

  



Zusammenfassung 
 

Zelladhäsionsmoleküle (CAMs) spielen eine wichtige Rolle bei synaptischer 

Plastizität sowie Lernen und Gedächtnis, da sie die Entwicklung, die 

Aufrechterhaltung und den Umbau von synaptischen Kontakten beeinflussen. 

Kürzlich entdeckte, sogenannte neuartige synaptische CAMs wie Nptn, Nectin, 

SynCAM, und Neurexin/Neuroligin, sind daher vielversprechende Kandidaten für 

die Kognitionsforschung. Sie sind synapsen-spezifisch, fähig neue Kontakte zu 

bilden und diese zu modulieren. Es ist weithin bekannt, dass chronischer Stress 

und Altern kognitive Fähigkeiten einschränken können. Die Ziele dieser 

Doktorarbeit sind (I) den Einfluss von chronischem Stress und Altern auf die 

kognitive Leistung zu erfassen, (II) den Beitrag von neuartigen synaptischen 

CAMs innerhalb dieser Prozesse zu bewerten und (III) den therapeutischen Wert 

dieser CAMs für die Behandlung von altersbedingten oder stress-induzierten 

kognitiven Störungen zu analysieren. 

Dafür wurden männliche CD1 Mäuse verschiedenen Alters chronischem sozialem 

Stress ausgesetzt und anschließend die kognitive Leistung in einer Reihe von 

Verhaltenstests untersucht. Um die Expression der CAMs im Hippocampus zu 

messen, wurden die Hirne entweder unter basalen Bedingungen herauspräpariert 

oder 2 Stunden nach Lernen. Außerdem wurden die Effekte von Nptn-abgeleiteten 

mimetischen Peptiden, Enplastin und Narpin, auf die kognitive Leistung 

untersucht, entweder unter basalen Bedingungen (mit Hilfe von akuten intra-

hippocampalen Injektionen) oder nach Stress und/oder im Alter (mit Hilfe von 

chronischen subkutanen Injektionen). 

Es wurde bestätigt, dass Altern die Lernfähigkeit vermindert und dass chronischer 

Stress sowohl negative akute als auch negative Langzeiteffekte auf die Kognition 

hat. Diese konnten mit strukturellen und funktionalen Parametern in Verbindung 

gebracht werden. Veränderungen der Kognition gingen einher mit veränderten 

CAM-Expressions-Mustern (auf mRNA Ebene). Die Modulation von kognitiver 

Leistungsfähigkeit durch mimetische Peptide war unter bestimmten Bedingungen 

möglich.  

Diese Ergebnisse lassen die Schlussfolgerung zu, dass die veränderte Expression 

von CAMs eine wichtige Rolle spielt für Prozesse des Alterns sowie bei Stress- 



und Lernvorgängen. Es könnte sogar sein, dass eine kausale Beziehung zwischen 

CAMs und altersbedingten oder stress-induzierten kognitiven Störungen vorliegt. 

Weitere Studien sind nötig, um diese Ergebnisse zu spezifizieren.  

.  
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1 Introduction 

 
It is not stress that kills us; it is our reaction to it. 

 

Hans Selye (1907 – 1982) 

 

1.1 Stress 
 

Stress is an aspect of our daily lives; hence, the term stress is more and more 

used in the colloquial language. Stress is elicited by specific external or internal 

stimuli and includes physically and mentally challenging processes, which have 

the aim to enhance the organisms’ ability to adapt to novel demands. In the 

biological context, the term stress was first coined by Walter Cannon (1932) with 

his hypothesis of the fight-or-flight reaction. He showed in an animal model that a 

hazardous situation induces the sympathetic nervous system (SNS) to release 

catecholamines, increase respiratory, cardiovascular activity and tonicity (Ulrich-

Lai and Herman, 2009), while digestive and reproductive mechanisms are 

inhibited (Sapolsky et al., 2000). Thereby, the animal is prepared for either fighting 

harder or escaping faster. This reaction was viewed as a stress response and part 

of a homeostatic process to ensure survival (Holmes et al., 2006).  

In 1936, Hans Selye, who is deemed the founder of scientific stress research, 

introduced his thesis of the general adaptation syndrome (Selye, 1936; Selye, 

1950; Selye and Fortier, 1950) in which he described a generalised physiological 

stress response comprised of three phases: initially, there is the alarm reaction 

during which the inner homeostasis is disrupted and the SNS is activated. Second 

is the stage of resistance with adaptive mechanisms reaching an optimal level, but 

in case of persisting stress, adverse effects occur due to the high levels of 

catecholamine and cortisol. At last, the stage of exhaustion comes into effect. It is 

characterised by the loss of adaptive capacity and symptoms such as an 

insufficient energy mobilisation, a weakened immune defence and an impaired 

ability to reproduce and might even result in death (Neylan, 1998).  
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Selyes’ theories have been refined, but the concept of a threatened homeostasis 

remains. As all living organisms strive towards a dynamic equilibrium, versatile 

mechanisms are directed towards achieving and reinstating stability (Stott, 1981; 

McEwen, 1998; de Kloet et al., 2005). During these processes of allostasis 

(Sterling and Eyer, 1988; McEwen, 2001; McEwen, 2005), it does not matter if the 

threat is real or imaginary (McEwen, 2000a).  

Often neglected by the general public, stress can act in beneficial ways if the 

challenge is mild and controllable and the adaptive changes are activated for a 

short period of time (Luine et al., 1996). In such cases of avoidance of a chronic 

overstimulation, the term eustress is used (Selye, 1975b; Milsum, 1985). On the 

contrary, if the adaptive system fails to be shut off efficiently or if the stress 

response is inadequate, the organism is unable to cope with challenges in an 

effective manner and the inner homeostasis may remain disrupted. In this case of 

allostatic overload, the stressor is uncontrollable and unpredictable (Koolhaas et 

al., 2011) and the stressful situation can be described as experience of distress 

(Engelmann et al., 2004). It was hypothesised that the costs of allostasis 

chronically accumulate, thereby converting the organism into a state of increased 

vulnerability, which facilitates the development of certain pathologies (McEwen 

and Wingfield, 2003). 

 

1.1.1 Chronic stress as a risk factor 

Stress is known to be related to a variety of complex diseases, but the same 

stressor can elicit different reactions in different individuals (Selye, 1975a). After a 

life-threatening event for example, only 20  - 25 % of all individuals develop post-

traumatic stress disorder (PTSD), whereas others recover completely without any 

apparent psychological long-term damages (Green et al., 1998; Breslau, 2001). 

These inter-individual differences in vulnerability to disease are thought to be 

produced by genetic predispositions and environmental factors such as priming life 

events, particularly in early life (de Kloet et al., 2005). However, it is important to 

note that stress per se is in most cases not sufficient to induce an illness, but 

rather increases the vulnerability to develop a certain disease (de Kloet et al., 

2005; Schmidt et al., 2008).  
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Chronic stress at work, for instance, has become a major risk factor for metabolic 

syndrome, especially in western societies. Metabolic syndrome includes a cluster 

of symptoms (amongst others central obesity and hypertension) that in turn 

increase the risk for cardiovascular diseases (Strike and Steptoe, 2004; Rozanski 

et al., 2005; Chandola et al., 2006) and also raise cardiovascular mortality, for 

example in middle-aged men (Ohlin et al., 2004). Accumulating evidence supports 

these findings and reveals chronic stress as a key player in the onset and 

progression of coronary heart disease, which has become the leading cause of 

premature death in the western world (Brydon et al., 2006; Hassan et al., 2008; 

Sterlemann et al., 2010). Besides physical illnesses, a lot of psychiatric diseases 

are associated with elevated stress levels. For example, psychosocial distress has 

been linked to the risk to develop Alzheimer's disease in old age (Wilson et al., 

2003; Wilson et al., 2006; Wilson et al., 2007). Excessive stress experience also 

imposes a risk factor for PTSD (de Kloet et al., 2005). Moreover, numerous 

studies have demonstrated that major depression, one of the most common 

mental disorders worldwide, can be facilitated by chronic stress exposure (Coplan 

et al., 1996; Holsboer, 2000; Kendler et al., 2000; van Praag, 2005; Weinstein et 

al., 2010). The concept of a causal relationship between chronic stress and 

affective disorders like major depression is supported by the finding of an altered 

or disturbed hypothalamic-pituitary-adrenal axis (HPA axis) function and elevated 

corticotropin-releasing hormone (CRH) levels in depressed patients (Nemeroff et 

al., 1984; Holsboer, 2000; de Kloet et al., 2005; Tichomirowa et al., 2005; Ising et 

al., 2007; Marques et al., 2009). In order to understand the mechanisms 

underlying affective disorders, the system regulating the responses to stress has 

to be considered more closely. 

 

1.1.2 Hypothalamic-pituitary-adrenal axis regulation 

Apart from the fast reaction of the SNS, which is the driving force for the fight-or-

flight reaction inducing the release of catecholamines (adrenalin and 

noradrenalin), there is another slower and in its actions more persistent major 

control module, the HPA axis. Any threat to homeostasis, real like pain perception 

or predicted like the recognition of a predator, triggers HPA stress responses 
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(Herman et al., 2003; de Kloet and Derijk, 2004). HPA axis activation begins with 

parvocellular neurons in the paraventricular nucleus (PVN) of the hypothalamus. 

These cells release CRH and arginine vasopressin (AVP) from the median 

eminence (Frank and Landgraf, 2008). The neuropeptides, CRH and AVP, reach 

the anterior pituitary gland via the portal blood system, where they bind to their 

respective receptors. The occupation of the corticotropin-releasing hormone 

receptor type 1 (CRHR 1) by CRH stimulates the synthesis of pro-

opiomelanocortin (POMC), which is a precursor of the adrenocorticotropic 

hormone (ACTH), while AVP, which binds to the arginine vasopressin receptor 1B 

(V1b), works as a co-expressed peptide to amplify the ACTH response. By these 

means, CRH and AVP stimulate the release of ACTH in a synergistic manner 

(Gillies et al., 1982; DeBold et al., 1984; Herman et al., 2003). Circulating ACTH 

reaches the secretory cells in the zona fasciculata of the adrenal cortex and binds 

to specific receptors leading to on-site secretion of glucocorticoids (GCs) into the 

blood stream. As the main hormonal products of the HPA axis, GCs (cortisol in 

humans and corticosterone in rodents) act at multiple levels and control a great 

variety of behavioural and physiological adaptations. In the periphery, GCs mainly 

contribute to the mobilisation of energy for example by increasing cardiovascular 

activity and glucose metabolism, while at the same time GCs are responsible for 

the dampening of inflammatory mechanisms as well as the suppression of 

reproductive and digestive functions (Munck et al., 1984; Sapolsky et al., 2000; 

Sorrells and Sapolsky, 2007). In the brain, they modulate fear and anxiety-related 

behaviour (Tronche et al., 1999) as well as learning and memory processes (Oitzl 

and De Kloet, 1992; Sandi and Rose, 1994; Sandi, 1998; Shors, 2001; Oitzl et al., 

2001).  
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The nature of a stressor, which activates the HPA axis, can vary in numerous 

ways. Tangible stressors are recognised by somatic, visceral or circumventricular 

sensory pathways (for example a bodily injury) and trigger a reactive response. 

Mentally evoked stressors are centrally generated (for instance a social challenge) 

and lead to an anticipatory response (Herman et al., 2003; Dedovic et al., 2009). It 

is important to note that there are also appetitive stimuli, for example sexual 

behaviour or victory during a social defeat, which activate the HPA axis in the 

same manner like aversive ones (Koolhaas et al., 2011). However, whether a 

certain situation is actually perceived as stressful by an individual depends on 

Figure 1: Overview of the HPA axis. 

The PVN of the hypothalamus 
integrates stress-relevant information 
and receives input from the amygdala 
(excitatory) as well as from the 
hippocampus (inhibitory). Activation of 
the HPA axis initiates the secretion of 
CRH and AVP into the hypophysial 
portal system. At the anterior pituitary, 
CRH and AVP promote ACTH 
secretion into the blood stream. ACTH 
in turn binds to its specific receptors in 
the adrenal cortex, thereby stimulating 
the release of GCs from the zona 
fasciculata. GCs regulate the release of 
CRH, AVP and ACTH via binding to 
2 types of glucocorticoid receptors, the 
GR and the MR, and thereby inhibit 
their own synthesis; adapted from 
Lupien (2009). 
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several factors, such as the speed of recovery of the HPA axis, the controllability 

and predictability of the stimulus. Psychological stressors result in an appraisal of 

the threat, for example when recognising a predator. They are mainly channelled 

through limbic structures such as the amygdala, whereas physiological stressors 

(for example hypoxia) pose an immediate threat to the body and are transmitted to 

the PVN via the brainstem nuclei (Herman and Cullinan, 1997).  

Usually after an adequate stress response, the HPA axis activation is efficiently 

shut off. A prolonged state of hyperactivation and chronically elevated GC levels 

lead to somatic dysregulation and stress-related affective diseases. As a means of 

restoring the HPA axis to its normal function and evading a pathological 

overshooting, GCs terminate the stress response as part of a direct negative 

feedback loop at different levels of the HPA axis.  

 

1.1.3 Negative feedback mechanisms 

To prevent a dysregulation of the HPA axis elicited by persistent stress, a negative 

feedback loop is activated via glucocorticoid (GR) and mineralocorticoid receptors 

(MR) (De Kloet et al., 1998; Pariante et al., 2004). Receptor occupation with GCs 

normalises the activity of the stress system on several levels: the synthesis of 

CRH in the hypothalamus, the ACTH synthesis in the anterior pituitary and the 

synthesis of GCs in the adrenals are inhibited. MRs exhibit a particularly dense 

expression in limbic regions such as the hippocampus, the medial amygdala and 

the septum, while GRs have been found ubiquitously in the brain (Joels et al., 

2006), but are most abundant in the PVN and the hippocampus. MRs display a 

tenfold higher affinity for corticosterone than GRs and are thus continuously 

occupied by GCs. Due to this receptor diversity, de Kloet and colleagues (1987) 

formed the hypothesis that “tonic influences of corticosterone are exerted via 

hippocampal MRs, while the additional occupancy of GRs with higher levels of 

corticosterone mediates feedback actions aimed to restore disturbances in 

homeostasis” (Reul et al., 1990). This means, that in contrast to MRs, which are 

involved in the basal regulation of the HPA axis, GRs are only largely saturated at 

high levels of circulating GCs, which is the case during stress responses or during 

the circadian corticosterone peak (Joels et al., 2006). High GC levels in the 
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morning and low levels in the evening are typical for humans and other diurnal 

mammals; for rodents, which are nocturnal mammals, it is vice versa (Gass et al., 

2001).  

Many studies suggest a crucial role of the hippocampus in the feedback inhibition 

of the HPA axis (Jacobson and Sapolsky, 1991; van Haarst et al., 1997; Furay et 

al., 2008). Nestler and colleagues (2002) have shown that hippocampal 

stimulation leads to a reduction in GC secretion, whereas hippocampal lesions 

increase the GC release (Dunn and Orr, 1984; Herman et al., 2005). Moreover, 

the hippocampus promotes the feedback inhibition of CRH in the PVN via indirect 

GABAergic innervation (Herman and Cullinan, 1997).  

MRs are responsible for behavioural reactivity in novel situations (Oitzl et al., 

1994) and maintenance of neural circuits related to stress (de Kloet et al., 2005), 

while GRs facilitate recovery and storage of information in preparation for future 

challenges (de Kloet, 2003). The relationship between GCs and cognition will be 

further elucidated in the next chapter. 

 

1.1.4 Chronic stress, cognition and aging 

In the literature, the effects of stress on cognition are described differently and 

sometimes even confusingly: on the one hand, it is generally known that stress 

can be linked to cognitive impairment. On the other hand, stressful life events are 

very well remembered up to the point that people are unable to forget their 

adverse experience for example in PTSD. “The direction of changes in memory 

performance –improvement or impairment – depends on whether the stress is 

experienced closely linked in time to and within the context of the information to be 

learned” (Joels et al., 2006). In contrast to acute stress, which can be memory 

facilitating (Dalm et al., 2009; Sandi, 2011), chronic stress promotes disease, 

causes neuronal degeneration (Nestler et al., 2002; Conrad, 2008) and attenuates 

learning and memory (Sandi and Pinelo-Nava, 2007). Learning describes the 

process of acquiring new information, while memory refers to the ability of 

retrieving information, which was acquired in the past and was then stored for the 

future. A variety of studies in healthy human subjects have demonstrated that 

stress hormones have direct but reversible effects on memory and cognition 
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(Bremner, 1999; Heffelfinger and Newcomer, 2001): administration of GCs 

(Keenan et al., 1995; Kirschbaum et al., 1996) or dexamethasone (dex), which is a 

synthetic GC (Newcomer et al., 1994), hampers cognition concerning verbal 

declarative memory. Seeman and colleagues (1997) were able to verify that 

reduced cortisol levels result in an improved memory function, while stress-

induced elevation of cortisol levels leads to memory deficits (Lupien et al., 1997). 

Younger subjects are less susceptible to stress exposure and its resulting 

detrimental effects compared to older subjects (Keenan et al., 1995). Hence, the 

effects of chronic stress on cognition appear not only in dependence of the 

duration of the exposure (acute vs. chronic), but also in dependence of the timing 

“with the highest impact on structures that are developing at the time of the stress 

exposure (stress in prenatal periods) and those undergoing age-related changes 

(in aged individuals)” (Lupien et al., 2009).  

Current data indicate the structural basis for stress-related cognitive deficits: 

during prolonged and severe stress, hippocampal neurons, particularly CA3 (cornu 

ammonis 3) pyramidal neurons, are affected by atrophic processes such as the 

reduction in dendritic branching and loss of dendritic spines (McEwen, 2000a). As 

a consequence of these processes, even cell death may occur (Uno et al., 1989; 

Sapolsky et al., 1990). The hippocampus is a structure, which has an essential 

role in learning and memory (Zola-Morgan and Squire, 1990), hence, hippocampal 

atrophy and cell loss have unfavourable consequences for cognitive function, for 

example spatial cognition (Conrad et al., 1996; Wright and Conrad, 2005; Conrad, 

2006; McLaughlin et al., 2007). Although dendritic retraction is a reversible 

process (Conrad et al., 1999), the susceptibility for damage is increased, which 

enables a normally innocuous event, for instance a metabolic challenge, to cause 

permanent harm in a stress-compromised hippocampus (Conrad, 2008). 

Hippocampal atrophy can also be found in several stress-related diseases like 

Cushing’s syndrome (a rare disease characterised by hyper-secretion of GCs) or 

depression. As these diseases are associated with severe memory deficits, it was 

suggested that hippocampal atrophy may lead to such cognitive deficits (Sapolsky, 

2000). The notion of the hippocampus as a target during stress exposure followed 

by cognitive impairment is further supported by the finding that hippocampus-

independent memory processes seem to be more resistant to chronic stress (Ohl 



 

Introduction 

 
 

 18 

and Fuchs, 1999). In addition to atrophy, chronic stress also leads to a declined 

capacity to generate new granule cell neurons in the adult hippocampal dentate 

gyrus (DG) (Fuchs and Gould, 2000). Although controversial, there is evidence 

that such hippocampal neurogenesis contributes to memory formation (Burke and 

Barnes, 2006; Tan et al., 2010; Deng et al., 2010; Nihonmatsu-Kikuchi et al., 

2011). Electrophysiological studies have shown that chronic stress also reduces 

long-term potentiation (LTP) in the CA1, CA3 and the DG of the hippocampus 

(Pavlides et al., 2002; Alfarez et al., 2003; Gerges et al., 2004). LTP is reflected in 

a persistent increase in the firing rate of synapses after high-frequency stimulation 

and is an underlying mechanism for synaptic plasticity. It is often considered to be 

a crucial phenomenon at the cellular basis of learning and memory processes 

(Sandi, 2004).  

Disadvantageous effects, similar to those seen after stress experience (see 

above), can be revealed in geriatrics. Aging is reflected by a decreased ability to 

adapt to stress and recover from it (Lupien et al., 1997). Furthermore, it is 

associated with an increase in basal corticosterone levels (Sapolsky et al., 1983; 

Sonntag et al., 1987) and an enhanced HPA activity accounts at least partly for 

differences in the occurrence of age-related hippocampal pathology and cognitive 

deficits (Issa et al., 1990). Moreover, it has been shown that adrenalectomy in 

middle-aged rats can have protective effects for cognitive function later in life 

(Landfield et al., 1981; Montaron et al., 2006). It is generally known that normal 

aging is associated with impairments on multiple levels, for instance sensory or 

motor impairments, leading to reduced muscle strength or increased reaction time 

(Kumar and Foster, 2007). More important, aging (as well as stress exposure) 

impairs memory function as it is accompanied by functional alterations in neurons 

such as a considerable reorganisation in the hippocampal circuitry resulting in an 

altered synaptic efficacy in the senescent brain (Rapp et al., 1999; Smith et al., 

2000) and changes in activation patterns concomitant with a global loss of 

integrative function (Kramer et al., 2004; Bishop et al., 2010). In addition to these 

functional alterations, structural changes, for example the loss of neurons in the 

hippocampus or the prefrontal cortex (PFC) and a reduced dendritic and axonal 

arborisation (Shankar, 2010), take place. However, the loss of neurons with aging 

is now recognised to be less decisive than initially estimated. Besides apoptotic 
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mechanisms, the birth of new hippocampal neurons is inhibited, which might be a 

vital process during cognitive aging (Bizon and Gallagher, 2005) and could be 

regarded as an indicator of the cognitive state of aged animals (Montaron et al., 

2006).  

In general, these age-related modifications in brain structure and function are 

characterised by large individual differences. Modifications are not uniform across 

the whole brain (Glisky, 2007) and impact each individual differently (Buckner, 

2004; Reinvang et al., 2010). The evident variability in cognitive functioning in 

young subjects increases in senescent humans (Laursen, 1997; Unverzagt et al., 

2001) as well as in aging animals (Deupree et al., 1991; Gallagher et al., 2003) 

meaning that some individuals suffer from substantial cognitive decline as they 

age, while others exhibit only little or no impairment. Convincing data indicate that 

this variability might originate from challenging life events such as infection 

(Wofford et al., 1996) or psychological stress (VonDras et al., 2005), which 

increase the cognitive vulnerability in old age. This hypothesis is supported by the 

finding that the normal loss of hippocampal neurons during aging is even 

accelerated by stress experience (Landfield et al., 1981; Sapolsky, 1985; Uno et 

al., 1989; Bishop et al., 2010). Lupien and colleagues (1997) hypothesised that the 

altered responsiveness to GCs might be an essential factor explaining the genesis 

of memory deficits in aged populations.  

In conclusion, chronic stress and aging both lead to neuroanatomical and 

neurochemical changes. Both have detrimental effects on cognition, but each 

individual is differently affected in dependence of its own vulnerability. 

Furthermore, chronic stress facilitates adverse effects during aging and, vice 

versa, aging promotes detrimental stress effects. Today, with an increased life 

expectancy, the percentage of senior citizens in the population is constantly 

growing and along with it the demand for elucidation of mechanisms behind 

successful aging (Buiza et al., 2008) and human health at old age (Vijg and 

Campisi, 2008). With almost 50 % of adults over the age of 85 troubled by 

Alzheimer’s disease (in the United States), cognitive deterioration has become one 

of the most crucial health threats in old age (Bishop et al., 2010). The 

determination of the factors (either genetic or environmental factors or a 

combination of both) accounting for the enormous variability in the vulnerability to 
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aging, has become an increasingly pressing issue, as this may provide insights 

into the processes underlying age-related cognitive decline (Chapman et al., 

2010). Therefore, it is useful to incorporate data from studies using animal models. 

 

1.2 The mouse as model organism in scientific research 
 

Although animal models do not reproduce human psychopathology in every detail, 

their need in scientific stress research is evident (McKinney, 1984). Due to ethical 

reasons, it is impossible to manipulate living conditions in human subjects, for 

instance to conduct studies concerning adverse life events. Here, investigators 

have to fall back on patients, who had to endure specific events such as child 

abuse, domestic violence or a natural disaster. Besides ethical issues, it is hardly 

possible to control genetic factors or environmental prehistory of patients, and 

subjects cannot be randomised to treatment groups (Shively, 1998).  

Over the last decade, the mouse has emerged as an ideal model organism for 

various reasons and has become the premier animal to study the basis of human 

pathological conditions (Peters et al., 2007). Mice are small mammals, therefore 

easy to handle; they require little space and can be kept cost-effectively; they have 

a short gestation period (19  – 21 days) and produce fertile offspring at a high rate, 

approximately every 10 weeks. Despite the obvious differences between the 

human and the mouse brain, there are neuronal structures working in specific 

circuits that have been evolutionarily conserved, for example the limbic regulation 

of emotion by the hippocampus and the amygdala (Cryan and Holmes, 2005). 

Additionally, mice and humans share several hereditary diseases such as 

diabetes, cancer or heart disease. The fact that 75 % of mouse genes are in an 

orthologous relationship with human genes is also significant; from the estimated 

20210 mouse and 19042 human protein-coding genes, 15000 are functionally 

related and originated from a common ancestor (Church et al., 2009). Most 

important, there is a wealth of information resources available due to the broad 

range of employments of mice in scientific research over the past 100 years. 

Taken as a whole, mice offer all the necessary resources for the investigation of 
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genetic, molecular and environmental mechanisms of human pathology, for 

example pathologies related to chronic stress experience. 

 

1.2.1 Animal models for chronic stress 

According to Willner (1990; Willner and Mitchell, 2002), there are three criteria that 

need to be addressed, when creating a suitable animal model: face validity, 

predictive validity and construct validity. Face validity implies a similarity of 

symptoms between the model and the clinical condition modelled. However, this 

criterion can only be fulfilled in a restricted manner as it is impossible to model 

complex psychological concepts, for instance suicidal tendencies of depressed 

patients in an animal (Cryan and Holmes, 2005). Predictive validity refers to the 

pharmacologic correlation, thus, to the extent to which clinically effective drugs, 

which influence the pathological state, have an equal impact in the model. 

Problems arise, if there are no effective drugs available for the disease. To 

achieve high construct validity, the model’s and the disorder’s theoretical 

rationales have to be investigated and the underlying neurobiological mechanisms 

should be homologous for the two (Fuchs, 2005). Nonetheless, the etiology for a 

lot of diseases is far from clear. In this case, specific risk factors that have been 

identified for a particular pathology should be implemented. Although it can be 

challenging to fulfil all 3 of these criteria, there are numerous validated animal 

models available, for example for chronic stress and depression. Sometimes, 

chronic stress models are utilised to study depression. In this case, these models 

often employ a form of social instability due to the fact that in humans the majority 

of stress-related diseases can be traced back to social stressors (Brown and 

Prudo, 1981) and that social factors are the most potent key stimuli to trigger 

disease, not only in humans, but also in social animals like mice (Bartolomucci et 

al., 2005). Thereby, the fundamental point is not the social status itself, but the 

stability of the social situation (Sachser et al., 1998). 

A promising model for chronic psychosocial stress has been developed by Fuchs 

and colleagues (2005) and is conducted in male tree shrews. It is based on their 

highly territorial behaviour towards intruders and forces two males to coexist, who 

in turn exhibit dominant/subordinate behaviour. Other commonly used models for 
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chronic social stress (CSS), particularly in the mouse or rat, are chronic social 

defeat (CSD) paradigms and the visible burrow system (VBS). During the CSD, 

one animal is regularly confronted with a larger and more aggressive conspecific 

(Koolhaas et al., 1997). In the VBS, rats live in mixed-sex groups and display 

different types of behaviours (offensive or defensive), which can be associated 

with the development of social hierarchies (Blanchard et al., 1995). Although these 

animal models hold a high degree of face and predictive validity, they are labour-

intensive, need a lot of space and thus restrict the amount of animals that can be 

studied. These limitations avert the use of studies, which need a large scale of 

animals, for instance drug screenings. To avoid such restrictions, Schmidt and 

colleagues (2007; 2008) developed a novel CSS paradigm, which considers not 

only the underlying biological mechanisms of stress-related human pathologies, 

symptoms and treatment options, but is also easy to apply and applicable for 

large-scale studies. 

 

1.2.2 The chronic social stress paradigm 

The CSS paradigm, which was used for this study, is based on the disruption of 

the social hierarchy between group-housed, adolescent, male mice (see chapter 

2.2). It was developed to fulfil all three criteria of validity with a high degree 

(Schmidt et al., 2008) and evade the restrictions still borne by other animal 

models. Many pre-existing models are problematic with regard to the applied 

stressor (continuity and adaption) and applicability (Schmidt et al., 2007). 

A variety of studies investigates effects during chronic stress exposure or directly 

afterwards, but studies reporting on the long-term effects of chronic stress remain 

rare. However, it is also important to tap these long-term stress effects, as human 

malignancies often develop with a latency of several years or even decades, for 

instance after childhood trauma. Effects occurring acutely after chronic stress 

exposure are likely to reflect mostly the non-pathological adjustments following 

stress (Schmidt et al., 2007) and can be considered rather a physiological support 

of behaviour than an actual stress response (Koolhaas et al., 2011). As it is known 

that some stimuli are perceived as stressful only in the beginning (Martinez et al., 

1998) and furthermore to maximise construct validity, the employed social stress 
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stimulus has to be truly chronic with persisting effects, even when the stressor is 

discontinued. Our CSS model meets these requirements as it offers an 

unavoidable, stressful social situation, where the stressor is constantly present 

over a prolonged period of time without the animals being able to adapt to it. 

Applying this CSS paradigm, Schmidt and colleagues (2007) showed persistent 

stress effects after 1 week of recovery. These stress effects reflect alterations in 

HPA axis functioning, which can be found in humans after chronic stress exposure 

as well. Hence, face validity is given. These alterations in HPA axis function 

regarding adrenal sensitivity, corticosteroid receptor expression and anxiety-

behaviour and could be prevented via antidepressant treatment, thereby fulfilling 

the predictive validity criterion. Furthermore, this model leads to neuroendocrine 

and behavioural alterations retrievable 12 months after the cessation of the 

stressor (Sterlemann et al., 2008; Sterlemann et al., 2010), thereby exhibiting 

actual long-term stress effects.  

Another characteristic, which adds further evidence for the validity of this CSS 

model, is its timing. It is conducted during adolescence, which represents a time 

frame of high vulnerability. Adolescence in rodents is defined slightly different from 

author to author: according to Tirelli (2003), it encompasses the time between 

PD 21 and 59. Spear (2000) considered PD 28 to 46 as adolescent. As in the 

model CSS was applied for 7 weeks long from PD 28 to PD 77, the paradigm 

covered this phase and early adulthood in any case. Adolescence is a shaping 

and highly adaptive period with ongoing neuroendocrine and behavioural changes 

(Tsoory and Richter-Levin, 2006). Due to these developmental processes and the 

fact that the basis for social interactions is built in the adolescent phase, 

adolescent animals are highly vulnerable for imprinting factors, especially for  

social stressors. 

All in all, the recently developed CSS paradigm is easy to apply, cost-effective, as 

there is no need for special equipment, it enables a high throughput with relatively 

little effort and it closely mimics the human situation of social stress with regard to 

the three validity criteria. Thus, it is an ideal tool to investigate complex stress-

related questions, such as the involvement of novel cell adhesion molecules 

(CAMs) in chronic stress and aging. 
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1.3 Cell adhesion and cell adhesion molecules 
 

In the last chapters, the entwined concepts of chronic stress, cognition and aging 

have been discussed. Another subject that is important in this context is cell 

adhesion (CA). The remodelling in neuronal structure, which appears during aging, 

learning processes and also after chronic stress exposure, needs “destabilisation 

of membrane proteins that are involved in the organisation and maintenance of 

neural circuits, the simultaneous interaction with the cytoskeleton and the 

translation of neurotrophic signals” (Sandi, 2004). Consequently, CA and its 

mediation by CAMs play an important role in chronic stress, aging and cognition.  

On the one hand, CA describes a targeted cell assembly and on the other hand 

the establishment of boundaries between distinct cell types. CA emerges either by 

binding of one cell to another or to the extracellular matrix (ECM) (Papusheva and 

Heisenberg, 2010). CAMs, which navigate CA, are transmembrane glycoproteins 

that typically consist of three units: an extracellular domain, one segment passing 

through the membrane and an intracellular anchor region. They emerge in the 

remodelling of the cytoskeleton (Gumbiner, 1993) and are crucial during both early 

development, like embryonic organ development, and life-long maintenance of 

three-dimensional structures. CAMs are evident in tissues undergoing 

development in adult organisms (Gumbiner, 1996) and regulate normal tissue 

function (Aplin et al., 1998) and tissue regeneration (Chen et al., 2004; Rao and 

Winter, 2009). They are involved in numerous processes such as wound healing 

(Hynes and Lander, 1992), proliferation as well as cell survival (Hynes, 1999) and 

signal transduction leading to the regulation of cell growth and differentiation 

(Rosales et al., 1995). CAMs are not merely static structures that keep cells 

together by adhesion, but dynamic regulators of synaptic function able to receive 

and integrate signals from the extracellular environment (Dalva et al., 2007). 

Thereby, it is important to note that even if CA is reduced or abrogated, CAMs still 

retain their signalling abilities (Cavallaro and Dejana, 2011). CAMs, which are 

located at synaptic membranes and bridge the synaptic cleft (see Figure 2), are 

vital in synapse formation and stabilisation (Sandi, 2004). Synapses are 

asymmetric cell junctions with highly specialised and protein-dense membrane 

regions such as the active zone on the presynaptic side and the postsynaptic 
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density (PSD) on the opposed side. To enable neurons to communicate through 

synapses, specific proteins, for instance neuronal CAMs (nCAMs), are 

accumulated at both sides of a neuronal cell contact, thereby forming trans-

synaptic protein complexes (Li and Sheng, 2003). In this study, the focus lies on 

these nCAMs, which are regarded as the “backbone of synapses” (Giagtzoglou et 

al., 2009) and build the foundation for memory and learning. They are essential 

during synaptogenesis, but also in mature synapses. In the developing nervous 

system, they mediate neurite outgrowth including growth cone motility and 

migration of precursor cells (Gumbiner, 1993) and control processes such as 

target recognition for new synapses, synapse differentiation, integrity and stability 

of the synapse. In the mature synapse, they are responsible for the regulation of 

synaptic structure, function and plasticity (Dalva et al., 2007).  

 

 

 

 

 

 

 

 

 

Presynaptic 

Postsynaptic 

Figure 2: Scheme of a mature 
synapse.  

On the presynaptic side, 
neurotransmitter molecules (red 
circles) are transported in 
vesicles. Upon the arrival of an 
action potential, they undergo 
exocytosis by fusion with the 
plasma membrane and are 
released into the synaptic cleft. 
They travel to the opposite side 
and then bind to postsynaptic 
receptors (red). The precise 
alignment of cell contacts is 
established by ligand-receptor 
pairs (blue and green) such as 
nCAMs; adapted from Abbas 

(2003). 



 

Introduction 

 
 

 26 

There are four main CAM families: integrins, cadherins, selectins and the 

immunoglobulin superfamily (Ig-SF) (Hynes, 1999; Aricescu and Jones, 2007) with 

the latter being particularly significant for this study. Polypeptides belonging to the 

Ig-SF are characterised by the presence of a specific protein domain, the Ig-fold, 

which has been conserved over time and may be called evolutionary ancient. This 

Ig-related domain can appear in varying numbers within a single polypeptide 

(Brümmendorf and Rathjen, 1995). It is often accompanied by a second type of 

protein module, the fibronectin type III (Fn3) (Vaughn and Bjorkman, 1996), which 

was first detected in the adhesive ECM protein fibronectin (Hynes, 1999). The Ig-

fold is composed of 70-110 amino acid residues. It is embedded in a beta-sheet 

structure of two antiparallel beta-sheets, which are connected by hydrophobic 

interactions (Brümmendorf and Rathjen, 1995). These two opposing beta-sheets 

are stabilised by disulfide bonds formed by pairs of cysteine residues (Vaughn and 

Bjorkman, 1996). The Fn3 repeats are folded into this beta-sheet (Hynes and 

Lander, 1992). Although Ig-SF members have the same core structure, the 

peripheral regions can differ in their composition. Hence, Ig-SF members are quite 

diverse (Chothia and Jones, 1997). Sequencing of the human genome disclosed 

the Ig-SF as the largest CAM family with the distinctive protein domain widely 

represented in vertebrates (Lander et al., 2001), but also in invertebrates such as 

Drosophila melanogaster or Caenorhabditis elegans (Vogel et al., 2003). 

Almost three decades ago, NCAM (neural cell adhesion molecule) was discovered 

as one of the first membrane proteins participating in CA between neurons (Thiery 

et al., 1982). It is a prototype member of the Ig-SF and indicated early the 

importance of CAMs from this family in synaptic plasticity (Scholey et al., 1993; 

Lüthl et al., 1994). NCAM is comprised of two Fn3 repeats and five Ig-domains 

(Yamagata et al., 2003) and forms homophilic complexes (via self-self 

interactions) (see Figure 3). A multitude of subsequent studies on NCAM further 

highlighted its role as they revealed NCAM to be highly expressed in the CNS and 

to have a fundamental role during memory formation (Cremer et al., 1994; Ronn et 

al., 1995; Fox et al., 1995; Muller et al., 1996; Becker et al., 1996; O'Connell et al., 

1997). Due to stress-related alterations in its gene expression (Sandi et al., 2001; 

Grootendorst et al., 2001; Touyarot and Sandi, 2002; Venero et al., 2002), NCAM 
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might be involved in processes by which corticosterone affects memory formation 

(Sandi and Loscertales, 1999).  

All novel synaptic CAMs investigated in this study belong to the Ig-SF except for 

Neuroligin (Nlgn) and Neurexin (Nrxn), which pose an independent group for 

themselves (Yamagata et al., 2003).  

 

1.3.1 Novel synaptic cell adhesion molecules 

Besides already well characterised CAMs like NCAM, there are a couple of novel 

CAMs, which just have been recently identified: Nectin, SynCAM or Necl (nectin-

like protein), Nrxn/Nlgn (see Figure 3) and Neuroplastin (Nptn).  

All Nectins have three extracellular Ig-folds and are associated with the actin 

cytoskeleton through afadin, a Nectin- and actin-filament-binding protein 

(Kakunaga et al., 2005). Nectin 1 (Nec 1) and Nectin 3 (Nec 3) are implicated both 

in homophilic and heterophilic binding (Narita et al., 2011), whereas the 

heterophilic interaction between Nec 1 and Nec 3 is regarded as the strongest one 

in the various possible combinations between all Nectin members (Sakisaka and 

Takai, 2004). Nec 1 and Nec 3 are located in an asymmetric manner at pre- and 

postsynaptic sites of membranes for example in the adult mouse CA3 (Honda et 

al., 2006). This “asymmetric localisation of Nec 1 at the terminus of an axon and 

Nec 3 at dendrites plays a major role in defining selective interactions between an 

axon and dendrites”, as until now it remained elusive “why an axon initiates 

contact with a dendrite, but not with other axons and why a dendrite seeks contact 

with axons, but not with other dendrites” (Ogita et al., 2010). Inhibiting the 

formation of the Nec 1-Nec 3-dimer leads to reduced synapse size (Mizoguchi et 

al., 2002). Overall, Nectins are required as the structural and functional basis for 

synapses (Irie et al., 2004), sometimes in cooperation with cadherins (Takai and 

Nakanishi, 2003). Nonetheless, the question remains as to how synapses are 

regulated in detail via Nectins. 

Besides Nectins, there are SynCAMs, also called Necls, which show a Nectin-like 

structure with three Ig-folds in the extracellular space, a single transmembrane 

region and a carboxy-terminal intracellular tail (Biederer, 2006). There are 

interactions between SynCAM 1 / Necl 2 and Nec 3 as well as between 
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SynCAM 3 / Necl 1 and Nec 1 (Irie et al., 2004; Biederer, 2006). However, their 

functional roles still have to be determined. SynCAMs appear in pre- and 

postsynaptic cell compartments and are known to prefer heterophilic over 

homophilic CA with SynCAM 1 / Necl 2 and SynCAM 2 / Necl 3 being the strongest 

heterophilic pair (Fogel et al., 2007). SynCAM 1 / Necl 2 and SynCAM 2 / Necl 3 

are both highly expressed in the hippocampus and seem to be able to organise 

synapses and contribute to their function (Fogel et al., 2007). Biederer and 

colleagues (2002) demonstrated that SynCAM over-expression leads to an 

increase in spontaneous synaptic activity and that SynCAM in non-neuronal cells 

drives neurons in near proximity to form synapses onto the non-neuronal cells. 

Besides their involvement in late stages of neural circuit formation for instance 

during synaptogenesis, a recent study confirmed that SynCAMs are also involved 

during early developmental steps in the spinal cord of chickens: SynCAM 2 / Necl 3 

could be identified in the floorplate, thus being a key player in axon guidance 

(Niederkofler et al., 2010). 

Nlgns, which do not belong to the Ig-SF, share some similarities with SynCAMs: 

they are postsynaptic membrane proteins and both have an intracellular anchor 

organised around a PDZ-based scaffold (scaffolding proteins containing multiple 

protein-binding motifs) (Sheng and Sala, 2001). They operate via the same 

presynaptic signalling pathways (Washbourne et al., 2004) and furthermore, 

SynCAMs and Nlgns are the only known CAMs sufficient to promote presynaptic 

differentiation and maturation during artificial synapse induction (Li and Sheng, 

2003; Sara et al., 2005; Wittenmayer et al., 2009). Additionally, SynCAM 1 and 

Nlgn 1 both promote excitatory synaptic transmission (Washbourne et al., 2004).  

The binding partners for postsynaptic Nlgns are Nrxns, a family of presynaptic cell 

surface receptors (Missler et al., 1998). Rodents and other mammals express 

6 main Nrxns (1 to 3 and  or ) (Tabuchi and Südhof, 2002) and four main Nlgns 

(1 to 4) (Bolliger et al., 2008), whereby Nrxns undergo extensive splicing, which 

leads to hundreds of variants (Ullrich et al., 1995). Nrxns and Nlgns form a tight 

trans-synaptic complex with a rank order of affinities depending on the involved 

isoforms and splice variants (Comoletti et al., 2006). Nlgn 1 and Nlgn 2 are 

differentially located, meaning presynaptic Nrxn interacts with postsynaptic Nlgn 1 

at excitatory (glutamatergic) synapses only, while at inhibitory synapses 
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(GABAergic), Nrxn binds to Nlgn 2 (Song et al., 1999; Graf et al., 2004; Chubykin 

et al., 2007). When interfering with the Nlgn-Nrxn interaction in culture, synapse 

formation is inhibited (Li and Sheng, 2003). Moreover, it has been shown that 

mutations in genes that encode Nlgns or Nrxns are linked to cases of autism 

(Jamain et al., 2003), mental retardation (Talebizadeh et al., 2006) and learning 

disability (Südhof, 2008). 

 

 
 

 

Figure 3: Synaptic adhesion molecules with known ligands. The extracellular domain of NCAM 

is designed out of five Ig-domains and two Fn3 repeats. Except for NCAM, the depicted adhesion 
molecules possess a binding motif (small yellow circle) that binds to PDZ proteins. SynCAM and 
Nectin exhibit similar extracellular structures, both being comprised of three Ig-domains. Nlgn and 
Nrxn do not belong to the Ig-SF and thus do not contain an Ig-domain. On the left, there are 
adhesion molecules, which are present postsynaptically (Nlgn). The right side illustrates CAMs 
believed to be present in presynaptic membranes (Nrxn). CAMs presented in the middle are 
capable of homophilic binding, hence they appear both pre- and postsynaptically (NCAM, SynCAM, 
Nectin); adapted from Yamagata (2003). 

 

Nptn, another member of the Ig-SF, appears in two isoforms, Np 55 and Np 65 

(formerly known as gp 65 and gp 55), generated by alternative splicing from a 

single gene and named according to their molecular weight (Owczarek et al., 

2010). These two isoforms can be discriminated by the presence of the Ig 1-

domain: Np 65 is comprised of three extracellular Ig-domains including the Ig 1-

domain, while Np 55 has two Ig-folds with the Ig 1-domain being absent 

(Langnaese et al., 1998). Unlike Np 65, which is neuron-specific, Np 55 is widely 

expressed in rodent tissues including all brain regions (Langnaese et al., 1998). 

Until now, Np 55 has not been detectable in humans, thus, Np 65 is the main 

human isoform. In the rodent forebrain, Np 65 is evident in the cortex, 

Presynaptic Postsynaptic 
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hippocampus, putamen, amygdala and the thalamus (Smalla et al., 2000). Only 

Np 65 is involved in homophilic binding (Buckby et al., 2004) and exhibits a central 

role in synapse stabilisation and memory formation. LTP increases the Np 65 level, 

while antibodies against Np 65 prevent LTP (Smalla et al., 2000). The role of Np 55 

is only poorly understood, but Owczarek and colleagues (2010) were able to 

demonstrate that Np 55 binds in a heterophilic manner to fibroblast growth factor 

receptor 1 (FGFR 1), which is important during development, maintenance and 

regeneration of the CNS. This activation of FGFR 1 by Np 55 induces neurite 

outgrowth. 

All nCAMs specified above are promising candidates for studies on cognition as 

they are synapse-specific, able to form new synapses and able to recruit the 

synaptic machinery. Nonetheless, Nptn proved to be of particular value for studies 

involving mimetic peptides.  

 

1.3.2 Mimetic peptides 

Mimetic peptides are synthesised polymers, which might mimic biological effects 

of the original peptide from which they are derived. They are not complete copies, 

but normally encompass a motif of several amino acids, which poses an active 

and rather small section. In the past, scientists were able to reveal the impact of 

mimetic peptides on cognition. FGL, a mimetic peptide for NCAM, was verified to 

improve hippocampus-dependent memory formation in the long term (Cambon et 

al., 2004; Secher et al., 2006), to prevent impairment of spatial memory as well as 

the reduction of hippocampal neurogenesis related to chronic stress (Borcel et al., 

2008). Moreover, FGL was shown to facilitate synaptogenesis (Cambon et al., 

2004), axonal outgrowth (Kiselyov et al., 2003) and neuronal survival in 

hippocampal cultures (Neiiendam et al., 2004). These findings indicate mimetic 

peptides of nCAMs as a new tool with therapeutic relevance for the treatment of 

stress-related disorders and impairments. 

As mentioned above, Np 55 is comprised of two Ig-domains (Ig 2 and Ig 3) 

(Empson et al., 2006), functions as a FGFR ligand and is not involved in 

homophilic binding. This finding was further supported by microsphere binding 

experiments showing that only constructs including the Ig 1-domain are capable of 



 

Introduction 

 
 

 31 

mediating homophilic binding, while the Ig 2 and/or Ig 3-module are not sufficient 

(Smalla et al., 2000). X-ray crystallography revealed the crystal structure of the 

ectodomain of Np 55: Ig 2 and Ig 3 are “positioned in an extended conformation, 

with Ig 3 oriented at an angle of  45° to the Ig 2 module axis” (Owczarek et al., 

2010) (see Figure 4). The two modules are linked via a short region comprised of 

only three amino acids. The Ig 2-domain consists of two beta-sheets (connected 

by a cysteine bridge) with overall eight beta strands, thus forms a classical beta-

sheet structure (see chapter 1.3). The Ig 3-domain has 12 additional residues 

compared to Ig 2 and has nine beta strands instead of eight (Owczarek et al., 

2010). The heterophilic interaction between Np 55 and FGFR is mediated via a 

motif in the Ig 2-domain. From this motif, the mimetic peptide for Np 55, which is 

called Narpin, is derived (see Figure 4). The motif is remarkably homologous to a 

motif in the first Ig-domain of FGFR 1 (similarities: 77 %) (Owczarek et al., 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Three-dimensional 
structure of the ectodomain 

of Np 55. 
The Ig 2-domain with the N-
terminus and the Ig 3-domain 
with the C-terminus are 
depicted. Both modules consist 
of several beta strands (lilac). 
The Narpin motif is derived 
from the A and B strands and 
an interconnecting loop (green) 
in the Ig 2-domain; adapted 

from Owczarek (2010). 
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Owczarek and colleagues (2010) revealed that Narpin, like Np 55, binds to 

FGFR 1, that both induce neurite outgrowth in cell culture of hippocampal neurons 

and that Narpin has antidepressive-like effects in rats during the forced swim test 

(FST). It is hypothesised that Np 55-induced signalling may be implicated in 

synaptic plasticity in vivo. 

In contrast to Np 55, Np 65 is characterised by the presence of a third Ig-domain 

(Ig 1), which allows homophilic binding (Owczarek et al., 2011). The putative 

binding site is located in the F-G loop of the Ig 1-domain (see Figure 5). This loop 

is completely exposed to its environment, oriented perpendicularly to the surface 

of its Ig 1-module and able to establish a contact with the F-G loop of an opposing 

Nptn molecule. The Ig 2-module is oriented at an angle of  45° to the Ig 1-module 

axis. The mimetic peptide for Np 65, Enplastin, is derived from the homophilic 

binding site. It was shown that both, Np 65 and Enplastin activate intracellular 

signalling pathways via FGFR and p38 mitogen-activated protein kinase (p38-

MAPK) and that they induce neurite outgrowth with Enplastin being a stronger 

agent during these processes. Disruption of Np 65 homophilic binding via 

Enplastin inhibits neurite outgrowth in vitro and impairs the initial phase of spatial 

learning in rats in the Morris water maze (MWM) (Owczarek et al., 2011). 

 

 

Figure 5: Three-dimensional structure of the ectodomain of Np 65. The homophilic interaction 

between two extracellular Np 65 domains (red and turquoise) is depicted. The binding site is 
located in the F-G loop of the Ig 1 domain (encircled). For both molecules, the Ig 1 domain with the 
N-terminus, the Ig 2 domain and the Ig 3 domain with the C-terminus are indicated; adapted from 
Owczarek (2011). 
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1.4 Scope of the thesis 
 

Chronic stress and aging attenuate cognitive functions and are often accompanied 

by diseases such as major depression or Alzheimer’s disease. The aims of this 

thesis are (I) to assess the impact of CSS and aging on cognitive performance, (II) 

to determine the contribution of novel nCAMs in these processes and (III) the 

assessment of the therapeutic value of nCAMs to treat cognitive diseases at aging 

or stress-related cognitive dysfunctions. To pursue these objectives, several 

experiments were conducted, which addressed the following issues.  

 

• Effects of learning experience and/or stress on expression levels (mRNA 

and protein level) of recently identified nCAMs. 

 

• Effects of Nptn-derived mimetic peptides (Enplastin and Narpin) on 

cognition under basal conditions (intra-hippocampal injections). 

 

• Effects of Enplastin and Narpin on cognition following stress and/or aging 

(subcutaneous injections). Are peptides able to compensate for already 

existing cognitive deficits? 

 

The detailed design and background of each experiment will be introduced 

separately in chapter 2.3. 
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2 Material and Methods 

 

2.1 Experimental animals 

 

All experiments were carried out with male CD1 mice delivered from the Charles 

River Laboratories (France or Sulzefeld, Germany). CD1 is a genetically variable 

outbred mouse strain (Rice and O'Brien, 1980; Chia et al., 2005). Female mice 

were excluded from all experiments to avoid confounding factors, for example 

estrogens, which are known to affect cognitive performance in female rodents 

(Grootendorst et al., 2004) as well as the different activation of cortical areas by 

stress in dependence of the stage of oestrus (Figueiredo et al., 2002). 

Furthermore, there are large gender differences in the susceptibility to individual 

stressors and reliable stress models are mostly validated for male animals 

(Palanza et al., 2001; Palanza, 2001). 

As all animals were ordered from a supplier, they were allowed to habituate to the 

animal facilities of the Max Planck Institute of Psychiatry in Munich for at least one 

week before starting any experiments. The animals were 4 to 12 weeks of age on 

the day of arrival, depending on the experiment. All animals were housed in 

groups of four until postnatal day 77 (PD 77), then they were singly housed in 

standard Plexiglas cages (22 cm x 16.5 cm x 14 cm (l x w x h)) (see Figure 6). 

Housing and testing of the mice took place under standard conditions with a 

12 h/12 h dark/light cycle with lights on at 7:00 am, constant temperature of 

22 ± 2° C and humidity of 55 ± 5 %. Food (Altromin 1324, Altromin GmbH, 

Germany) and drinking water were provided ad libitum. 

All experiments were performed according to current regulations of the European 

Communities Council Directive 2010/63/EU. All efforts were made to minimise 

animal suffering during the experiments. The protocols were approved by the 

committee for the Care and Use of Laboratory Animals of the Government of 

Upper Bavaria, Germany.  
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Figure 6: Standard Plexiglas cage with bedding and additional nesting material. 

 

2.2 Chronic social stress procedure 

 

To assess the consequences of CSS, animals underwent the CSS procedure (see 

Figure 7) described previously by Schmidt and colleagues (2007), where the social 

stress is constantly present and covers an important life stage. The CSS paradigm 

was conducted during the animals’ adolescent phase from age 4 weeks to 

12 weeks. By changing the cage composition of the animals twice per week, each 

mouse had to face regularly three unknown cage mates in a new, clean cage. The 

rotation schedule was randomised in order to minimise the possibility of a 

repeated encounter of the same mice. An exemplary rotation schedule for 64 mice 

is depicted in Table 1. As the animals kept on fighting for a distinct social 

hierarchy, the change of cage mates created an unstable social environment, 

which the animals could not adapt to and could not avoid. Control animals 

remained in the same group of four throughout the whole 7 weeks, therefore being 

able to build a stable hierarchy. Animals with major wounds or overly aggressive 

animals were excluded. In all cases, these were less than 3  %. After 7 weeks of 

group-housing, all animals (control and stress animals) were separated and singly 

housed. In contrast to other species, single-housing itself does not pose a stressor 
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in male mice. It has no impact on behaviour or stress response (Arndt et al., 2009) 

and it does not affect immuno-endocrine parameters (Bartolomucci et al., 2003). 

Body weight was monitored once per week throughout the CSS procedure.  

To investigate normal aging in CD1 mice, acute and long-term effects of CSS on 

nCAMs and the effects of CSS during adolescence on aging-induced memory 

decline, animals were single-housed for 12 months upon completion of the CSS 

paradigm. 

 

 

 

Figure 7: CSS paradigm. (A) Control mice (depicted as black lines) were housed in groups of 

four, remaining with the same cage mates. CSS mice (depicted as grey and red lines) were group-
housed for 7 weeks as well, changing the group composition randomly twice per week. White 
boxes represent the control group cages; green boxes represent the CSS group cages. (B) 

Transition of four CSS mice to the new and clean cages. 
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Table 1: CSS rotation schedule. The cage composition of 64 mice (16 cages with four animals 

each) is disrupted twice per week for 7 weeks. Digits represent the animals 1 to 64, digits in bold 
represent the cages 1 to 16.  
 

 

2.3 Experimental design and background 
 

2.3.1 Experiment 1: Effects of CSS in young animals and the 
acute impact on novel synaptic CAMs 

It is known from a great variety of studies (see chapter 1.1.4) that chronic stress 

induces cognitive impairment. To assess the impact of memory loss related to 

stress on novel synaptic CAMs, we investigated region-specific changes of nCAM 

expression on mRNA and protein level in young, male CD1 mice. At the date of 

testing, animals were between 11 to 13 weeks old. Additionally, physiological, 

neuroendocrine and behavioural data were collected.  

The first batch of animals included 32 animals, which were subjected to the CSS 

paradigm, and 32 controls. Animals were divided into subgroups, each consisting 

of control and stress animals in equal parts. The first group of 32 mice were tested 

in the following order in object recognition (OR), Y-maze and MWM (see chapter 

cage

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

week 1 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16 17 21 25 29 18 22 26 30 19 23 27 31 20 24 28 32

week 1 1 6 11 16 2 7 12 13 3 8 9 14 4 5 10 15 17 22 27 32 18 23 28 29 19 24 25 30 20 21 26 31

week 2 1 7 9 15 6 12 14 4 11 13 3 5 16 2 8 10 17 23 25 31 22 28 30 20 27 29 19 21 32 18 24 26

week 2 1 12 3 10 7 14 5 16 9 4 11 2 15 6 13 8 17 28 19 26 23 30 21 32 25 20 27 18 31 22 29 24

week 3 1 17 33 49 12 28 44 60 3 19 35 51 10 26 42 58 7 23 39 55 14 30 46 62 5 21 37 53 16 32 48 64

week 3 1 28 35 58 17 44 51 10 33 60 3 26 49 12 19 42 7 30 37 64 23 46 53 16 39 62 5 32 55 14 21 48

week 4 1 44 3 42 28 51 26 49 35 10 33 12 58 17 60 19 7 46 5 48 30 53 32 55 37 16 39 14 64 23 62 21

week 4 1 51 33 19 44 26 12 58 3 49 35 17 42 28 10 60 7 53 39 21 46 32 14 64 5 55 37 23 48 30 16 62

week 5 1 26 35 60 51 12 17 42 33 58 3 28 19 44 49 10 7 32 37 62 53 14 23 48 39 64 5 30 21 46 55 16

week 5 1 12 3 10 7 14 5 16 9 4 11 2 15 6 13 8 17 28 19 26 23 30 21 32 25 20 27 18 31 22 29 24

week 6 1 7 9 15 6 12 14 4 11 13 3 5 16 2 8 10 17 23 25 31 22 28 30 20 27 29 19 21 32 18 24 26

week 6 1 6 11 16 2 7 12 13 3 8 9 14 4 5 10 15 17 22 27 32 18 23 28 29 19 24 25 30 20 21 26 31

week 7 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16 17 21 25 29 18 22 26 30 19 23 27 31 20 24 28 32

week 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

cage

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

week 1 33 37 41 45 34 38 42 46 35 39 43 47 36 40 44 48 49 53 57 61 50 54 58 62 51 55 59 63 52 56 60 64

week 1 33 38 43 48 34 39 44 45 35 40 41 46 36 37 42 47 49 54 59 64 50 55 60 61 51 56 57 62 52 53 58 63

week 2 33 39 41 47 38 44 46 36 43 45 35 37 48 34 40 42 49 55 57 63 54 60 62 52 59 61 51 53 64 50 56 58

week 2 33 44 35 42 39 46 37 48 41 36 43 34 47 38 45 40 49 60 51 58 55 62 53 64 57 52 59 50 63 54 61 56

week 3 9 25 41 57 4 20 36 52 11 27 43 59 2 18 34 50 15 31 47 63 6 22 38 54 13 29 45 61 8 24 40 56

week 3 9 20 43 50 25 36 59 2 41 52 11 18 57 4 27 34 15 22 45 56 31 38 61 8 47 54 13 24 63 6 29 40

week 4 9 36 11 34 20 59 18 57 43 2 41 4 50 25 52 27 15 38 13 40 22 61 24 63 45 8 47 6 56 31 54 29

week 4 9 59 41 27 36 18 4 50 11 57 43 25 34 20 2 52 15 61 47 29 38 24 6 56 13 63 45 31 40 22 8 54

week 5 9 18 43 52 59 4 25 34 41 50 11 20 27 36 57 2 15 24 45 54 61 6 31 40 47 56 13 22 29 38 63 8

week 5 33 44 35 42 39 46 37 48 41 36 43 34 47 38 45 40 49 60 51 58 55 62 53 64 57 52 59 50 63 54 61 56

week 6 33 39 41 47 38 44 46 36 43 45 35 37 48 34 40 42 49 55 57 63 54 60 62 52 59 61 51 53 64 50 56 58

week 6 33 38 43 48 34 39 44 45 35 40 41 46 36 37 42 47 49 54 59 64 50 55 60 61 51 56 57 62 52 53 58 63

week 7 33 37 41 45 34 38 42 46 35 39 43 47 36 40 44 48 49 53 57 61 50 54 58 62 51 55 59 63 52 56 60 64

week 7 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

5 6 7 81 2 3 4

15 169 10 11 12 13 14
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2.7.1, 2.7.3 and 2.7.4). Behavioural testing started during the last week of the CSS 

procedure, when the animals were 11 weeks old. They were sacrificed in the first 

week of single-housing, 2 hours after the last MWM trial. The second group 

included 32 basal animals without learning experience. These naïve mice were 

sacrificed directly after the CSS procedure, 4 days after the last cage rotation. For 

this first batch of animals, experimenters collected brain tissue for in situ 

hybridisation (ISH: chapter 2.6.1), adrenal glands and thymus for determining 

organ weights (chapter 2.5.3) as well as blood samples for the analysis of plasma 

corticosterone levels (chapter 2.6.3).  

To investigate the effects of CSS on nCAM protein levels, the experiment was 

repeated with a second batch of animals, which was used for Western blot (WB) 

sampling (chapter 2.6.4). After cessation of the CSS procedure, animals were 

sacrificed at two time points, either directly after the CSS paradigm under basal 

conditions (n = 20 naïve animals) or 4 hours after the last MWM trial 

(n = 18 animals with learning experience). The time course for experiment 1 is 

depicted in Figure 8. 
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Figure 8: Schedule for experiment 1. CSS started at PD 28. In both batches, one group of 
animals was killed under basal conditions, directly after the CSS procedure. A second group of 

batch 1 was tested during the last week of CSS and sacrificed during the first week of single-
housing, 2 hours after the last MWM trial. A second group of batch 2 was tested during single-
housing and sacrificed 4 hours after the last MWM trial. Coloured tick marks represent one day of 
testing. 

 

2.3.2 Experiment 2: Effects of CSS in aged animals and the long-
term impact on novel synaptic CAMs 

Similar to experiment 1, this study was designed to evaluate the impact of memory 

loss related to stress, but also to aging on novel synaptic CAMs. It is well known 

that aging is accompanied by a certain degree of cognitive decline (see chapter 

1.1.4). Hence, the study was conducted in aged (15 months of age), male CD1 

mice. Expression patterns of different nCAMs on mRNA and protein level, as well 

as physiological, neuroendocrine and behavioural parameters were analysed. 

Animals went through the CSS procedure as already described. Afterwards, they 

were single-housed for 12 months. Mice with evident diseases or other age-related 

impairments were excluded from the experiment; some animals also died of old 

age before testing. Upon reaching the age of 15 months, the number of healthy, 

residual animals amounted to a total of 31 individuals (n = 15 controls and 

n = 16 stress animals) in batch 1. All mice were first tested in OR and then in the 
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MWM. Analogous to experiment 1, there were two different time points of sacrifice 

after testing: basal animals were sacrificed 2 weeks after the MWM (n = 8 controls, 

and n = 8 stress animals) to allow recovery to baseline, while the second animal 

group was sacrificed directly after learning, namely 2 hours after the last MWM trial 

(n = 7 controls and n = 8 stress animals). Brains and adrenal glands were removed 

and blood samples collected.  

To examine the effects of CSS on protein level, the experiment was repeated with 

a second batch of animals, which was used for WB analysis (chapter 2.6.4), blood 

and adrenal sampling. One year after CSS cessation upon an age of 15  months, 

animals were sacrificed under basal conditions (n  = 10 control and n = 10 stress 

animals). The schedule for the whole study is shown below in Figure 9. 

 

 

 

Figure 9: Schedule for experiment 2. After 7 weeks of CSS during adolescence, animals were 

singly housed for 12 months. All animals of batch 1 were behaviourally tested. There were two 

time points of sacrifice: basal animals were sacrificed after a recovery period of 2 weeks after the 
last test. Another group was sacrificed 2 h after learning. Animals of batch 2 were not tested 
behaviourally, but sacrificed under basal conditions, 1 year after CSS cessation. Coloured tick 
marks represent one testing day. 

  



 

Material and Methods 

 
 

 41 

2.3.3 Experiment 3: Regulation of novel synaptic CAMs by 
dexamethasone 

In order to test whether nCAMs can be regulated directly via the GR, animals 

received subcutaneous (s.c.) injections (see chapter 2.4.2) of dex and were 

sacrificed at five different time points after treatment. Dex is a very potent synthetic 

glucocorticoid. It has a 30 times higher affinity compared to its naturally produced 

analogue and has been widely used in scientific research to assess HPA axis 

negative feedback sensitivity to glucocorticoids (Oxenkrug et al., 1984; Ribeiro et 

al., 1993; Cole et al., 2000).  

In this study, 12 weeks old, male and single-housed CD1 mice were injected with 

a high dose of dex of 10 mg/kg body weight. A total of 100 animals were injected: 

50 animals received dex, while the other 50 served as control group and received 

Ringer solution. Animals were sacrificed at five different time points: 1 h, 2 h, 4 h, 

8 h and 24 hours after the single injection. For each time point, 20 animals 

(n = 10 controls and n = 10 dex animals) were injected. Brain samples for ISH were 

collected as well as blood samples for a corticosterone radioimmunoassay (RIA). 

The time course for experiment 3 is illustrated below in Figure 10. 

 

 
 

Figure 10: Schedule for experiment 3. Animals were singly housed and upon reaching the age of 

12 weeks injected with either dex or Ringer (n = 50 animals each). There were five different time 
points of sacrifice: 1 h, 2 h, 4 h, 8 h after the injection (day 1) or 24 h after the injection (day 2). 
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2.3.4 Experiment 4: Acute treatment of young animals with 
mimetic peptides and the impact on cognition under basal 

conditions  

The aim of this study was to modulate cognition in young animals by a single intra-

hippocampal injection (see chapter 2.4.3) of a certain mimetic peptide, Enplastin 

or Narpin (see chapter 1.3.2 and chapter 2.4.1).  

Animals were 9 weeks old on the date of arrival and singly housed. After the 

acclimatization phase, animals were subjected to stereotactic surgery (see chapter 

2.4.3) during which two cannulas were bilaterally implanted into the hippocampus. 

The mice were allowed to recover from the procedure for 1 to 2 weeks. At the age 

of 12 weeks, they were tested in OR and 1 week later in the Y-maze. All animals 

were sacrificed on the day of their last test. Brains were extracted for localisation 

of cannula placement (see chapter 2.4.3).  

Animals were treated with one of the peptides or belonged to the control group 

receiving artificial cerebrospinal fluid (vehicle animals). The substances were 

injected either before or during training (Figure 11): the first and the second batch 

received intra-hippocampal injections 30 minutes before the acquisition trial 

(batch 1: n = 12 vehicle- and n = 12 Narpin-treated animals; batch 2: n = 20 vehicle- 

and n = 20 Enplastin-treated animals), while the animals of the third and fourth 

batch received the substances during the training, directly after the acquisition trial 

(batch 3: n = 12 vehicle- and n = 12 Narpin-treated animals; batch 4: n = 12 vehicle- 

and n = 12 Enplastin-treated animals).  
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Figure 11: Schedule for experiment 4. All animals were subjected to stereotactic surgery. They 

recovered from the procedure and then were injected intra-hippocampally. Injections of batch 1 
(Narpin) and batch 2 (Enplastin) were conducted before the training (OR and 1 week later Y-maze), 
30 minutes prior to the acquisition. Injections of batch 3 (Narpin) and batch 4 (Enplastin) were given 
during the training, directly after the acquisition. Coloured tick marks represent one day of testing. 

 

2.3.5 Experiment 5: Chronic treatment of young animals with 
mimetic peptides and the impact on cognition after CSS  

The consequences of a chronic treatment with mimetic peptides in young animals 

on cognition were assessed in experiment 5. The main question was if it would be 

possible to reverse or at least improve cognitive deficits elicited by CSS during 

adolescence. 

A total of 64 animals underwent the CSS procedure as described earlier, another 

64 animals served as controls. During the last week of the CSS procedure, the 

animals received s.c. injections of either Narpin (n = 32), Enplastin (n = 32) or 

Ringer (n = 32) on 6 consecutive days. From day 1 to day 4, the injections started 

at 9:00 am and afterwards animals immediately went back to their home cages. In 

contrast, on day 5 and 6, mice were tested in the Y-maze (on day 5) and in OR (on 

day 6) with injections 2 hours prior to testing. Hence, injections started at 7:00 am 

on day 5 and 6. Animals were sacrificed the next day, 24 hours after the last 

training. Experimenters collected brains and blood samples. The time course is 

demonstrated in Figure 12.  
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A fourth batch of 32 animals was used to generate additional WB samples for 

experiment 1 and animals were neither injected nor tested behaviourally, but 

sacrificed after the cessation of the CSS paradigm (not depicted). 

 

 

 

Figure 12: Schedule for experiment 5. Animals were subjected to the CSS procedure and treated 

by s.c. injections with Enplastin, Narpin or Ringer on 6 consecutive days during week 7, the last 
week of the CSS procedure. On testing days (day 5 + day 6), injections were conducted 2 hours 
before testing. The following day (day 7), animals were sacrificed. Coloured tick marks represent 
one day. 

 

2.3.6 Experiment 6: Chronic treatment of aged animals with 
mimetic peptides and the impact on cognition after CSS  

The objectives of experiment 6 were similar to those of experiment 5. The 

consequences of a chronic mimetic peptide treatment on cognition were 

investigated, but in this case in aged animals. Another main point of interest was if 

it would be possible to attenuate cognitive deficits elicited by CSS and/or aging as 

it is generally acknowledged that aging can even amplify stress-related cognitive 

deficits. 

A total of 128 animals were used. Mice underwent the CSS procedure as 

described earlier and were single-housed for one year. Some animals died of old 

age, while others suffered from apparent diseases such as tumours and had to be 

excluded. The number of healthy, residual animals without any evident age-related 

impairments amounted to 51 control and 42 stress animals. Like in experiment 5, 

animals received s.c. injections of either Narpin (n = 24), Enplastin (n = 24) or 
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Ringer (n = 23) on 6 successive days. The injections were timed that upon starting 

behavioural testing, all animals had reached the age of 15 months. On the first 

4 days, injections started at 9:00 am, while on day 5 and day 6 injections were 

given from 7:00 am, 2 hours prior to testing (Y-maze and OR). The injected 

animals were sacrificed 24 hours after behavioural testing. Brain halves and trunk 

blood samples were collected. Figure 13 shows an overview of the whole study. 

One additional batch of animals was used to generate additional WB samples for 

experiment 2. They were neither injected nor tested behaviourally (not depicted). 

 

 

Figure 13: Schedule for experiment 6. Animals underwent the CSS procedure and were then 

single-housed for one year. At the age of 15 months, animals were given s.c. injections of 
Enplastin, Narpin or Ringer on 6 consecutive days. On testing days (day 5 + day 6), injections were 
conducted 2 hours before testing. The next day (day 7), animals were sacrificed. 

 

2.4 Application of substances 
 

2.4.1 Mimetic peptides 

Two different mimetic peptides, Enplastin and Narpin, were applied. They were 

both derived from the recently identified nCAM Nptn and were synthesised as 

tetrameric peptides with two branching points by Schafer-N (Copenhagen, 

Denmark) with a purity of at least 85 %. The peptides’ C-termini were blocked by 

an amide group (CONH2), while the N-termini (NH2) remained free. The peptides’ 

amino acid sequences are depicted in Table 2. In Table 3, the one-letter 

abbreviation system for amino acids can be seen (Coligan, 2001).  
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According to the method of administration, s.c. injection or intra-hippocampal 

injection (see chapters 2.4.2 and 2.4.3.), the mimetic peptides, which were 

delivered in powder form, had to be diluted. In case of repeated injections, for 

example on several consecutive days, the stock solution was freshly prepared on 

a daily basis. 

 

Table 2: Amino acid sequences for Enplastin and Narpin. Amino acids are abbreviated. 
 

Mimetic peptide Peptide sequence 

Enplastin DPKRNDLRQNPSITWIR 

Narpin RIVTSEEVIIRDS 

 
 
Table 3: One-letter code system for the 20 amino acids. 
 

Amino acid 1-letter 

code 

 Amino acid 1-letter 

code 

Alanine A  Leucine L 

Arginine R  Lysine K 

Asparagine N  Methionine M 

Aspartate D  Phenylalanine F 

Cysteine C  Proline P 

Glutamate E  Serine S 

Glutamine Q  Threonine T 

Glycine G  Tryptophan W 

Histidine H  Tyrosine Y 

Isoleucine I  Valine V 

 

2.4.2 Subcutaneous injections 

In order to produce an adequate stock solution for s.c. injections, the powdery 

mimetic peptides were first dissolved in Ringer solution and then diluted to a final 

dosage of 10 mg/kg body weight. To perform the s.c. injections in mice in a correct 

manner, the loose skin above the animals’ neck and shoulders was lifted, thereby 
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already restraining the animal (Fox et al., 2002). The needle was inserted in 

parallel to the animals’ back into the skin fold above the scruff.  

For the detection of mimetic peptides in the brain and to demonstrate that they 

crossed the blood brain barrier via s.c. injections (see chapter 2.6.2), mimetic 

peptides were biotylised at the N-terminus by Schafer-N during the process of 

synthesis. As biotin is a relatively small ring system (see Figure 14), it can be 

easily attached and is very unlikely to interfere with the peptides’ efficacy.  

 

Beside the administration of mimetic peptides via s.c. injections, this method was 

also used to conduct a dex treatment in mice (see chapter 2.3.3) and investigate 

the regulation of nCAMs by this potent synthetic glucocorticoid. To this end, the 

dex stock solution was diluted with NaCl and each animal was injected with 

approximately 100 µl of dex solution (concentration = 10 mg/kg body weight). 

 

2.4.3 Stereotactic surgery and intra-hippocampal injections 

Experimental animals were implanted with bilateral guidance cannulas with the 

CA3 as target area. This enabled us to apply mimetic peptides intra-hippocampally 

at different time points, for example before or during testing. 

Mice were sedated with pentobarbital sodium diluted 1:20 in 0.9 % NaCl 

(Invitrogen GmbH, Karlsruhe, Germany; 0.1 ml/10 g body weight; intra-peritoneal). 

To provide an analgesic effect as well, animals received s.c. injections of Metacam 

Figure 14: Structural formula of biotin. 

Adapted from Merck Index (1989). 
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(Meloxicam; Boehringer Ingelheim Pharma GmbH & Co. KG, Germany, 0.5 mg/kg 

body weight). After ensuring a sufficient anaesthetic depth, the animals were 

placed in a stereotactic apparatus (Type 430005-M/P, TSE Systems GmbH, 

Germany) and fixed by insertion of metal pins into the auditory canals as well as 

lowering of the front teeth into a metal trough. To protect the animals’ eyes against 

dehydration and potential consequential damages like blindness, eyes were 

dabbed with eye ointment (Bepanthen Augen- u. Nasensalbe, Bayer AG, 

Leverkusen, Germany). Under additional, local anaesthesia with lydocaine 

(Xylocain, AstraZeneca GmbH, Wedel, Germany), the skull was exposed and 

stainless steel cannulas (10 mm, 26 gauge (G)) were bilaterally implanted, just 

above the CA3 region. In accordance to a stereotactic mouse brain atlas (Paxinos 

and Franklin, 2001), cannulas targeted the following coordinates relative to 

bregma: posterior: + 2.1 mm, lateral: ± 2.2 mm and ventral + 1.6 mm. For each 

cannula, a hole was drilled. The cannulas were fixed in the skull by locally applied 

instant adhesive (UHU GmbH & Co. KG, Bühl, Germany) and dental cement 

(Paladur, Heraeus Kulzer GmbH, Germany), 2 screws (length: 1.2 mm, diameter: 

2 mm, custom-built from stainless steel, Paul Korth GmbH, Germany) and a final 

layer of dental cement covering the exposed skull. After a successful surgery, 

animals had a recovery period of 1 to 2 weeks. To minimise animal suffering, 

Metacam was constantly administered via the drinking water until the decapitation 

of the animals. 

For the intra-hippocampal injections, mimetic peptides were diluted in artificial 

cerebrospinal fluid to a concentration of 1 µg/µl. A total volume of 1 µl was infused 

in the left and right CA3 of the hippocampus. Injections were administered over 

1 minute by means of injection cannulas (30 G, Type 5 x SS304, Hamilton 

Bonaduz AG, Switzerland) that extended the tip of the guidance cannulas by 

1 mm. After a successful injection, the injection cannula was left in place for 

another minute to allow diffusion of the injectate. During this procedure, animals 

were not anaesthetised and had to be hand-held and fixed carefully by an 

experienced colleague, while a second person conducted the injection. Correct 

cannula placement was determined by post mortem histological verification (see 

Figure 15). Only mice with bilaterally correct placement were included in the final 

analysis. 
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Figure 15: Verification of cannula placement. (A) Coronal brain section illustrating the locus of 
correct implantation (CA3) (Paxinos and Franklin, 2001). (B) Post mortem localisation of cannula 

placement in the hippocampus.  

 

2.5 Sampling procedures 

 

2.5.1 Blood preparation 

Blood was collected individually in labelled 

1.5 ml EDTA-coated microcentrifuge tubes 

(Kabe Labortechnik, Germany). To retrieve 

trunk blood, animals were decapitated after 

anaesthesia with isoflurane (Abbott GmbH & 

Co. KG, Wiesbaden, Germany). For tail 

blood collection (20 µl), a small incision with 

a razor blade was inflicted in the dorsal tail 

vein (see Figure 16) (Fluttert et al., 2000). 

This method needs no anaesthesia and is 

considered relatively stress-free.  

To exclude interference with the basal 

corticosterone levels, the time between the 

first handling of the animals and sampling 

was less than 1 minute. This was an 

Figure 16: CD1 mouse shortly before 
tail cut. The black arrow indicates the tail 

vein.  
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important step, as glucocorticoids can increase within 3 minutes in the plasma 

after a stressful stimulus (Dallman, 2005). Blood samples were constantly kept on 

ice. The contained plasma and cell components were then separated by 

centrifugation for 15 minutes at 8000 rpm (revolutions per minute) at 4° C. Plasma 

was transferred to new, labelled 1.5  ml microcentrifuge tubes and stored at - 20° C. 

Corticosterone was measured using a standard radio immuno assay (RIA) (see 

chapter 2.6.3).  

 

2.5.2 Brain tissue preparation 

After decapitation, brains were dissected from the skull (see Figure 17 A), shock-

frozen in 2-methylbutane (Carl Roth GmbH, Karlsruhe, Germany) and were stored 

at - 80° C for ISH (see chapter 2.6.1).  

For immunohistochemistry (IHC, see chapter 2.6.2), animals were deeply 

anaesthetised by intraperitoneal (i.p.) injection of ketamine/xylazine (Sigma-

Aldrich, Germany). After ensuring a sufficient anaesthetic depth by examining the 

hind limb pedal withdrawal reflex (Buitrago et al., 2008), animals were slowly 

perfused intracardially. Perfusion started with 0.9 % saline and was followed by 

4 % paraformaldehyde (PFA). PFA leads to fixation of tissues by interlinking 

proteins. Upon completion of the perfusion, brains were extracted and additionally 

post-fixed overnight in 4 % PFA at 4° C (Chen et al., 2001). This was followed by 

three washing steps in 1 x PBS and an overnight incubation in 20 % sucrose 

solution at again 4° C. The sucrose solution served as cryoprotectant, partially 

dehydrating the tissue and thereby preventing the development of ice crystal, 

which could cause formation of artefacts. Until further use, perfused brains (see 

Figure 17 B) were stored at - 80° C. 
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Figure 17: Two differently treated mouse brains. (A) Freshly dissected mouse brain (no 
perfusion) containing blood. (B) Bloodless mouse brain after perfusion.  

 

For ISH, frozen brains were mounted on polyfreeze tissue medium (Tissue Tek 

O.C.T. Compound, Sakura Finetek, Staufen, Germany). Brains were sectioned at  

- 20° C in a cryostat (Leica CM 3050, Bensheim Germany) in the coronal plane 

(four to five brain slices per slide). Slices were sectioned at 18 µm cutting 

thickness and thaw mounted on Super Frost Plus slides (Menzel GmbH, 

Braunschweig, Germany) coated with polylysine, which improves cell adherence. 

Conversely for IHC (free floating sections), Super Frost slides without coating (Carl 

Roth GmbH, Karlsruhe, Germany) were used (8 slices per slide). To ensure 

stability of the slices as well as a large yield, slice strength was 25 µm. For both 

cases, ISH and IHC, brain sections were dried on a hot plate at approximately 

30° C and stored at - 80° C. All efforts were made to prevent RNA degradation 

elicited by RNAse contamination. 

For WB analysis, animals were decapitated and the brain was removed. 

Hippocampus extraction was performed on ice: the cerebral cortex covering the 

hippocampus had to be pulled up. The hippocampus was then separated from the 

surrounding tissue and carefully taken out. It was stored on ice in a 1.5 ml tube 

until homogenisation (see chapter 2.6.4).  
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2.5.3 Organ preparation 

Adrenal and thymus glands were removed, stored on ice in tubes with 

physiological saline solution (0.9 % NaCl) and dissected from fat (Pearse, 2006b). 

Before weighing the organs, they were dried for a few seconds on a dust-free 

paper tissue. In aged animals, the extraction of the thymus was foregone, as it is 

known that with increasing age, the thymus gland undergoes a progressing 

involution (Birmingham and Grad, 1954; Delima and Walford, 1975). 

 

2.6 Analytics 

 

2.6.1 In situ hybridisation 

Specific gene expression in brain slices was localised and quantified by means of 

labelled complementary ribonucleotide probes, which bind to the mRNA sequence 

of interest. Investigated brain regions were different areas of the dorsal 

hippocampal formation (CA1, CA3, DG) and the PFC. For our protocol, 35S-UTP 

labelled ribonucleotide probes (NCAM, Nec  1, Nec  3, Nlgn 1, Nlgn 2, Nptn, Nrxn 1 

and SynCAM) were used. Note that the Nptn ribonucleotide probe was designed 

to recognise both prevalent isoforms, Np 55 and Np 65. The Nec 3 ribonucleotide 

probe was designed to recognise all three prevalent splice variants, alpha, beta 

and gamma. These three isoforms differ in their size from alpha being the biggest 

splice variant to gamma being the smallest (Satoh-Horikawa et al., 2000). The 

respective primer sequences for in situ probe design are depicted in Table 4. ISH 

was performed as described previously (Schmidt et al., 2002; Schmidt et al., 

2007). Briefly, sections were fixed in 4 % PFA and acetylated in 0.25 % acetic 

anhydride in 0.1 M triethanolamine/HCl. Subsequently, brain sections were 

dehydrated in increasing concentrations of ethanol. The antisense mRNA probes 

were transcribed from the respective linearised plasmid. Sections were saturated 

with 90 µl of hybridisation buffer containing approximately 1.5 x 106 cpm (counts 

per minute) 35S-UTP labelled riboprobe. Afterwards, brain sections were 

coverslipped and incubated overnight at 55° C. The following day, sections were 

rinsed in 4 x SSC (standard saline citrate), treated with RNAse A (20 mg/l) and 

washed in increasing concentrations of SSC solutions at room temperature. 
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Finally, sections were washed in 0.1 x SSC for 1 h at 65° C and dehydrated 

through increasing concentrations of alcohol. The slides were exposed to Kodak 

Biomax MR films (Sigma-Aldrich, Germany) and developed. Exposure durations 

varied for the different nCAMs between a minimum of 10 hours for Nptn and a 

maximum of 2 weeks for Nec  1. Autoradiographs were digitised and relative 

expression levels were determined by optical densitometry utilising the freely 

available computer program Scion Image (Beta 4.0.3, Scion Corporation, Frederic, 

USA). The mean of four measurements of two different brain slices was calculated 

for each animal. The data were analysed blindly, always subtracting the 

background signal of a nearby structure not expressing the gene of interest from 

the measurements.  

 
Table 4: Primer sequences for in situ probe design.  
 

name forward primer 

(5’ to 3’) 

reverse primer 

(5’ to 3’) 

insert size 

(bp) 

NCAM GATCAGGGGCATCAAGAAAA GGAGGCTTCACAGGTCAGAG 475 

Nec 1 GGCCATCTACAACCCGACTA AAACGGTAACGGCTGATGAC 405 

Nec 3 AGCCGTTACATTCCCACTTG ATTGTCCATCCAACCTGCTC 485 

Nlgn 1 GGGGATGAGGTTCCCTATGT GGATCATCCTGTTTGGCAGT 458 

Nlgn 2 TGTGTGGTTCACCGACAACT CTCCAAAGTGGGCAATGTTT 401 

Nrxn 1 AGTTGTACCTGGGTGGCTTG TCACACGTCCTGCATCTAGC 495 

Nptn GAGGATTCAGGCGAATACCA TTTCAGCCAGAATTCCCAAG 419 

SynCAM GAAGGACAGCAGGTTTCAGC CTAGATAGCGCTGGGTCTGC 431 

 

2.6.2 Immunohistochemistry 

IHC was utilised to confirm that mimetic peptides crossed the blood brain barrier 

via s.c. injections. It is a technique based on the principle of antibodies binding 

specifically to antigens in biological tissues (Ramos-Vara, 2005).  

Here, immunofluorescence for free-floating brain sections was conducted via an 

indirect approach (see Figure 18): one antibody (unconjugated goat-anti-biotin) 

was employed against the antigen being investigated; a second labelled antibody 
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(donkey-anti-goat) was utilised against the first one. Briefly, after transferring the 

brain slices from the slides into the net wells, a short pre-treatment with 

0.2 % Triton X-100 was applied. This step macerates the cells, thereby preparing 

the samples for the incubation with the first antibody and enabling a broad and 

more even coverage. To clean the samples from this detergent, several washes in 

1 x PBS were interposed. Background staining was reduced by treatment with 

blocking serum for 1 hour (with serum from the host species of the second 

antibody), in this case donkey serum. Afterwards, the samples were incubated 

with the first antibody overnight at 4° C. The following day, incubation with the 

second (fluorescence) antibody was conducted for 1 hour at room temperature. 

From here it was important to protect the slides from direct light incidence, thus 

each step was performed in a semi-dark room. To wash out the second antibody, 

samples were repeatedly rinsed in 1 x PBS and finally in distilled water. 

Afterwards, sections were mounted on Super Frost slides, dried in a horizontal 

position, dehydrated in ascending concentrations of ethanol and dried again. At 

last, the sections were covered with Vectashield Mounting Medium and stored 

light-proof at 4° C until microscoping. 

As the injected peptides were biotylised during their synthesis, the employed first 

antibody (unconjugated goat-anti-biotin) specifically recognised the biotin-labelled 

mimetics, which were meant to spread from the injection site via the bloodstream 

through the body, finally across the blood brain barrier and into the brain. The 

second antibody (donkey-anti-goat), specifically bound to epitopes of the host 

species from which the first antibody was derived. It was directly linked to a 

fluorochrome (Alexa Flour 488) to enable immunofluorescence (Coons and Kaplan, 

1950).  
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2.6.3 Corticosterone radioimmunoassay 

For the quantitative analysis of plasma corticosterone (see chapter 1.1.2), a 

commercially available radioimmunoassay (RIA) kit (ImmunoChemTM Double 

Antibody Corticosterone 125I RIA Kit, MP Biomedicals, LLC, Orangeburg, NY, USA; 

sensitivity of 6.25 ng/ml) was utilised. The RIA represents a competitive binding 

assay where endogenous corticosterone with unknown concentration (from the 

plasma samples) and a solution of radioactively (125I) labelled corticosterone with a 

known concentration compete for a limited amount of binding sites on an anti-

corticosterone antibody. This antibody binds to both labelled and unlabelled 

corticosterone as it does not differentiate between the two. The magnitude of 

labelled antibody-corticosterone-complex and the amount of endogenous and 

unlabelled corticosterone are in inverse proportion: the higher the corticosterone 

concentrations in the investigated sample, the lower the amount of binding of 

labelled corticosterone to the antibody and the lower the radioactivity that can be 

measured after centrifugation. After the specific binding of the second antibody, 

which only binds to antibody-corticosterone-complexes, the samples were 

Figure 18: IHC mechanisms. 

The primary antibody (black) 
binds to the antigen (green), 
while the secondary antibody 
(blue), which is associated with 
a fluorchrome (yellow), binds to 
the first antibody. Via this 
indirect technique, the presence 
of biotylised mimetic peptides in 

the brain can be confirmed.  
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centrifuged (15 minutes at 3000 rpm at 4° C). This separates antibody-bound 

corticosterone from unbound corticosterone. The supernatant containing free 

corticosterone was discarded, while the radioactivity of the pellet containing 

precipitated antibody-antibody-corticosterone complexes was measured with a 

gamma counter (Packard Cobra II Auto Gamma; Perkin-Elmer, Waltham, MA, 

USA). For the quantification of the actual corticosterone concentrations from the 

samples, a standard curve built from known corticosterone concentrations had to 

be generated. Gamma counter values were compared to the standard curve, 

thereby revealing the absolute concentrations of corticosterone from the samples 

(Shimizu et al., 1983).  

Processing of all blood samples was performed according to the manufacturers’ 

manual. To obtain results in the optimum range of the standard curve, 10 µl of 

each plasma sample was diluted either 1:100 or 1:200, depending on the expected 

value of the sample. For instance, for basal samples with expected low 

corticosterone values, a higher concentration (1:100) was used and 

correspondingly, for CSS samples with expected higher corticosterone levels, the 

used concentration was lower (1:200). High and low controls were included in the 

kit and provided proof of a successful radioimmunoassay. 

 

2.6.4 Western blot 

The WB is a protein immunoblot, which enables the detection of specific proteins 

in a given tissue sample. By means of gel electrophoresis, denaturised proteins 

are separated by their molecular weight and afterwards transferred to a 

membrane. On the membrane, the investigated protein can be detected by use of 

an antibody specific for the target protein. 

All hippocampi were homogenised in lysis buffer composed of Tris, sucrose and 

EDTA, as well as a ready-to-use mixture of different proteinase inhibitors (Sigma-

Aldrich Chemie GmbH, Germany). Brain tissue was manually shredded by 

repeated pipetting, punching with the pipette tip and in the end via use of syringes 

of decreasing size. Homogenised hippocampi were shortly centrifuged to eliminate 

cell debris. The supernatant containing soluble proteins, plasma membranes and 

internal membranes, was used as protein sample. Protein concentration was 
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determined according to Lowry (1951) with the BioRad DC protein kit (BioRad, 

München, Germany). 40 µg protein per lane were loaded on 10 % SDS-Page. The 

proteins were separated by their molecular weight by means of gel 

electrophoresis. In the process, voltage conditions (120 V) were kept constant for 

1.5 to 2 hours. To transfer the separated proteins to a nitrocellulose membrane 

(Protran BA85, 45 µm, Schleicher und Schüll, Dassel, Germany), the gel was 

blotted at constant current conditions (200 mA) for 40 to 50 minutes. The 

membrane was blocked for 1 hour in 5 % blocking solution, thereby reducing 

nonspecific binding. The last step on day 1 was the overnight incubation at 4° C 

with the respective primary antibody. All antibodies were diluted in TBS-T 

(dilutions: 1:500 to 1:5000). The following primary antibodies were used for WB 

analysis: Nptn (Abcam ab83063), Nlgn 1 (Synaptic Systems 129003), Nec 3 

(Abcam ab633931) and Nec 1 (Abcam ab66985 and Santa Cruz sc-28639). 

Incubation with the second antibody (Goat-Anti-Rabbit IgG/HRP, DAKO P044801-

2) lasted 2 hours and was conducted at room temperature. Antibody detection was 

performed with Amersham ECL analysis systems according to the manufacturers’ 

instructions. The resulting ECL signal was exposed to Super-RX-films (Fujifilm 

Medical X-Ray film, Amersham Buchler, Braunschweig, Germany) with varying 

exposing times from several seconds (for example 10 seconds for samples of 

aged animals for Nec 1 ) to several minutes (for example 3 minutes for Nlgn 1 ). To 

ensure the efficacy of the protein transfer and to check if the membrane contained 

same amounts of protein for the different samples, the membrane was stripped 

with mild stripping buffer (Abcam, Cambridge, UK) and then incubated overnight at 

4° C with a primary Actin antibody (Santa Cruz sc-1616). Actin is ideal to pose as 

control protein: it is part of the cytoskeleton, therefore apparent in all eukaryotes 

and can be found to a similar extent in different individuals of the same species. 

Hence, for samples containing the same amount of protein, a similar Actin signal 

was expected.  

On day 3, incubation with the second antibody (Polyclonal rabbit-anti-goat 

IgG/HRP, Abcam) lasted 2 hours at room temperature. Antibody detection was 

performed as described before with Amersham ECL analysis systems. Blot 

autoradiographs were digitised and quantified by densitometry using Quantity one 

4.6.2 analysis system (Bio-Rad, München, Germany). All data were expressed as 
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relative grey values. The measured adjusted volume of a specific nCAM was 

divided by the measured adjusted volume of the respective Actin. As a result, the 

values were normalised to the amount of the respective protein content. By setting 

the control group (for example basal animals without any testing experience) to 

100 %, the relative percentages of other groups (for example animals after 

learning) were calculated.  

 

2.7 Behavioural testing 
 

Behavioural tests were performed in the same room, where the animals were 

housed. All tests were carried out between 8:00 am and 12:00 pm to minimise 

effects of hormonal variations elicited by the circadian pulsatility of glucocorticoids 

(Lightman et al., 2008). After each trial, behavioural apparatuses were freed from 

faeces and sensory traces with water to limit olfactory cues for following animals. If 

animals were tested in several paradigms one after the other, testing was ordered 

from least to most stressful to minimise the likelihood that behavioural 

performance would be influenced by previous testing experience (McIlwain et al., 

2001). Tracking of the animals was accomplished by means of an automated 

video tracking software (Anymaze 4.20; Stoelting Co., Wood Dale, IL). To exclude 

an apparatus bias, animals with different treatment and condition were randomly 

distributed. The illumination was conducted in an equal manner for all setups. All 

specific apparatuses are described below.  

 

2.7.1 Object recognition test 

Recognition memory is the ability to distinguish the familiarity of things that were 

previously encountered. Our OR protocol is based on the innate propensity of 

rodents for novelty (Ennaceur and Delacour, 1988) and their capability to 

remember earlier encountered objects. The OR test consisted of an acquisition 

trial of 10 minutes, an intertrial interval (ITI) of 30 to 35 minutes and the retrieval 

trial, which lasted 5 minutes. The apparatus is depicted in Figure 19 A & B. During 

the acquisition trial, a single object (glass saltshaker) was positioned in the centre 

of an open field box (OF box: 50 cm x 50 cm x 50 cm (l x w x h)) and the animal 
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was free to explore its environment and the object. During the ITI, animals 

recovered in their respective home cage. For the retrieval trial, the saltshaker used 

during the acquisition (referred to as known object) was exchanged with a clean 

and olfactory neutral replica. The replica and a novel object (metal double nipple) 

were positioned in the two opposite corners of the OF. By these means, the animal 

could neither use any olfactory nor any spatial cues related to the objects’ 

positions. The animal was allowed to explore the OF and the two objects. For the 

analysis, the focus lied on the animal’s interaction with the objects, which is mainly 

represented by sniffing the objects. To detect the animals’ interaction as object 

exploration, the nose-point of the mouse had to be within the object zone 

surrounding the object. Behaviours like using the object as platform to attempt 

escape from the OF box were not rated as object exploration.  

As CD1 mice have a high level of novelty-seeking behaviour, it was expected that 

an animal able to remember the known object, will spend more time exploring the 

novel object. The percentage of the duration exploring the unknown object 

compared to the duration in percent exploring the novel object was calculated. A 

higher preference for the novel object was rated as intact recognition memory. For 

our protocol and experimental procedure, this was a mostly hippocampus-

independent process. Other studies (Ennaceur et al., 1997; Gaskin et al., 2003; 

Winters et al., 2004) have confirmed that to judge the familiarity of complex 

objects, the hippocampus itself and an array of interconnected limbic structures is 

not fully required.  

Both objects were easy to distinguish, but at the same time similar in height and 

width (see Figure 19 C & D). It has been shown that OR tests are useful models to 

assess recognition memory in rodents (Dodart et al., 1997). During testing, 

automated scoring of OR behaviour was not sufficient. Instead, an unbiased 

person blind to the experimental groups, rescored the recorded tests afterwards. 
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Figure 19: Object recognition test. (A) Experimental setup. (B) Schematic overview. The OF box 

is virtually divided into an inner zone (dashed square with 25  cm x 25 cm) and an outer zone. The 
object zone surrounding the objects is depicted as dashed circle.(C) Saltshaker from trial 1, 
referred to as known object during trial 2. (D) Double nipple, referred to as novel object (only 

apparent in trial 2).  
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2.7.2 Y-maze design 1: spontaneous alternation behaviour 

The grey polyvinyl Y-maze apparatus (see Figure 20) consisted of three arms 

(30 cm x 10 cm x 15 cm (l x w x h)), which were identical except for the inner 

labelling. Arms were positioned at equal angles of 120°. One arm was marked with 

triangles, the second arm with bars and the third arm with plus signs, all made 

from white adhesive tape. These bright visual cues were easy to distinguish from 

the dark Y-maze walls and enabled the animals to differentiate between the three 

arms. Additionally, there was one visual cue (sun, half-moon or star) on each of 

the three walls surrounding the apparatus. Via personal communication by M. 

Wolferstätter (research group Landgraf), it could be excluded that mice have a 

preference for specific marks.  

The centre of the Y-maze was the starting point. Each animal had 5 minutes to 

explore the three accessible arms. To be able to calculate the spontaneous 

alternation of the animals, the tracking system recorded the animals’ full rotations, 

among other things. A full rotation is carried out if the mouse visits all three arms 

one after the other without reverting to a previously visited arm. An arm entry was 

counted, when all four limbs of the mouse were within an arm. Alternation 

behaviour is thought to reflect working memory capacity (Sarter et al., 1988). A 

high percentage of full rotations were detected as intact working memory. The 

percentage of spontaneous alternation for each animal was calculated as follows:  

 

Animals with a high spontaneous alternation exhibited a high number of full 

rotations, whereas animals with a low spontaneous alternation tended to return to 

the arm they just had visited and hence displayed a small number of full rotations. 
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Figure 20: Spontaneous alternation Y-maze test. (A) Experimental setup. (B) Schematic 

overview. All three arms were accessible for exploration. 

 

2.7.3 Y-maze design 2: spatial memory 

For this task, the same apparatus (see Figure 21) as described above was used. 

In contrast to design  1, this test comprised of two trials, the acquisition 

(10 minutes) and the retrieval trial (5 minutes), separated by an ITI of 30 minutes, 

which the animals spent in their respective home cage. During the acquisition, a 

removable PVC board blocked one of the three arms. The inaccessible arm was 

referred to as the novel arm during the retrieval. At the beginning of the 

acquisition, the mouse was placed into the central zone facing one of the two 

accessible arms. By exploring the environment, the animals had the possibility to 

memorise the spatial orientation of these arms based on the inner- and extra-

maze cues. It is known that mice do not rely on nonspatial cues, but rather on 

visuospatial orientation to solve a task like the Y-maze (Dellu et al., 2000). After 

30 minutes ITI, the animals were reintroduced to the apparatus with the centre 

zone as their starting point and now all three arms accessible for exploration. 

Previous studies have shown that mice in general seek to explore novel 

environments and that CD1 mice have a spatial memory span of 1 hour (Dellu et 

al., 2000). Hence, it is expected that animals, which remember the spatial 

constellation from the acquisition, prefer to reside in the novel arm. The Y-maze 

test has been confirmed as a valid method to test hippocampus-dependent spatial 

memory (Dellu et al., 1992; Olton and Markowska, 1994; Conrad et al., 1996). To 

assess spatial memory performance, the percentages of time spent in the novel 
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arm compared to the percentages of the time spent in the known arms were 

calculated. The number of entries into the novel arm was measured as well. 

 

 

 

Figure 21: Spatial Y-maze test. (A) Experimental setup. (B) Schematic overview: during trial 1, 

only two arms were accessible, while during trial 2, all three arms were free for exploration. 

 

2.7.4 Morris water maze 

The MWM, originally described by Richard Morris (1984), has become one of the 

most frequently used scientific tools in behavioural neuroscience. Today, it is a 

standard test to assess hippocampus-dependent memory performance and spatial 

learning in rats and mice (D'Hooge and De Deyn, 2001).  

The test was carried out as described previously (Sterlemann et al., 2010) with 

some adaptations. One day before the start of the MWM, the animals’ backs were 

coloured from head to tail with a blue band (Porcimark marking spray, Kruuse, 

Denmark) to facilitate automatic tracking by the video system. Animals were tested 

in a water filled circular pool (110 cm in diameter) at room temperature (21 ± 1° C), 
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where the water reached a height of approximately 20  cm (see Figure 22 A). The 

water was rendered opaque by mixing it with chalk. This ensured that the 

submerged, white-painted platform (10 cm in diameter) blended with the 

background and hence stayed invisible. Several extra-maze visual cues were 

attached to the walls in a distance of 50 to 100  cm, clearly visible for the animals. 

Animals were supposed to navigate a direct path to the hidden platform and 

escape the water, which posed an aversive environment, by using the spatial 

information delivered by the distal cues around the pool. The area of the basin was 

virtually divided into four quadrants called back left, back right, front left and front 

right (see Figure 22 B). For each trial, which lasted 60 seconds, the mouse was 

carefully released into the water. In case of repeated trials, there was an ITI of 

10 minutes. After each swim, animals were gently dried with a towel and then 

could recover in their home cage, which was kept under a red heat lamp to avoid 

hypothermia. 

On the first day of the MWM, animals completed a single free swimming trial 

without a platform. During this pre-training, animals grew accustomed to the water, 

to the swimming and the whole apparatus. Besides that, potential preferences for 

a certain quadrant could be excluded. The second day served as visual training 

with a visible platform elevated 1 cm above the surface. Animals completed four 

subsequent trials, while the location of the platform varied for each trial. The 

starting position of the mice was always located in the opposing quadrant to the 

target. If animals succeeded in navigating to the target and climbed onto it, they 

were immediately removed from the basin. If they failed, animals were guided to 

the target by hand and placed onto it for a few seconds before rescue. By these 

means, animals got accustomed to the procedure that climbing onto the platform 

ends the test, thus terminates the exposure to the aversive environment. After a 

recovery period of 2 days, animals received a spatial training for 3 days, where the 

platform was submerged 1 cm beneath the surface. On each day, animals 

performed in four consecutive trials with varying starting positions, while the 

location of the platform remained the same (quadrant back-left). During this phase, 

escape latencies as well as distance travelled were measured. The next day, the 

platform was removed to conduct a probe trial and measure the animals’ 

preference for the quadrant, where the target had been one day ago. The 
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objective of this single trial was to determine if the animal remembered the target’s 

position learned during spatial training. Therefore, the time spent in the different 

quadrants was measured. After 3 days of recovery, animals had to perform a 

reversal learning task. The submerged and invisible platform received a new 

location (quadrant front-right) in the opposite quadrant compared to the spatial 

training. During four subsequent trials, the animals’ cognitive flexibility to learn a 

new platform position was assessed. Cognitive flexibility implies the ability to 

inhibit a previously learned strategy in order to develop a novel strategy more 

fitting and appropriate to the change in demands (Clapcote and Roder, 2004). 

Parameters of interest were the escape latency and distance travelled to reach the 

target. The timetable for the whole procedure is depicted in Figure 22 C. 

Spatial learning as well as cognitive flexibility were estimated across repeated 

trials. Short escape latencies were rated as intact spatial learning. Reference 

memory was assessed by capturing the preference for the platform area, when the 

platform was absent (Vorhees and Williams, 2006).  
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Figure 22: MWM test. (A) Experimental setup. (B) Schematic overview: the apparatus was divided 
into four quadrants, (C) Overview of the timetable with varying platform positions and varying 

starting positions of the animal. Free swim and probe trial did not include a platform and consisted 
of a single trial. Visual training, spatial training and reversal learning consisted of four trials per day. 
During visual training the platform was visible with varying positions, while during spatial training 
and reversal learning the platform was submerged beneath the water surface (dashed circle) in a 
fixed position. Tick marks on the time axis represent one day. 

 

2.8 Statistics 
 

For statistical comparisons, the commercially available software package 

SPSS 16.0 was used. Simple comparisons of two independent groups were made 

by two-tailed, unpaired t-tests for parametric measurements. All data comparisons 

concerning more than two groups were performed by the appropriate analysis of 

variance (ANOVA), which, in case of significance, was followed by post-hoc 

unpaired t-tests. For an interaction effect, significance was accepted at a level of 

p < 0.1, followed by post-hoc testing. For main effects such as group or condition 

effects, the significance level was set at p < 0.05. To compare multiple time points, 
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repeated-measures ANOVA was used. More than two groups without additional 

variables were compared via a one-way ANOVA. In the event of more than two 

groups with additional variables, a two-way ANOVA was applied to determine the 

target variable. For all cases (except interaction effects, see above), significance 

was accepted at a level of p < 0.05. One asterisk or one number sign indicate a 

significance level of p < 0.05; two asterisks or two number signs indicate a 

significance level of p < 0.01. To enable the estimation of the animals’ OR 

performance based on the mRNA expression, a Pearson correlation was used. 

The Pearson correlation is specified with a number between - 1 and + 1 measuring 

the degree of association between two variables with correlations of - 1 and + 1 

being a perfect correlation. The respective graphs were created with SigmaPlot 

11.0 (Systat Software Inc., Chicago, IL, USA). All results are shown as 

means ± standard error of the mean (SEM). 
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3 Results 
 

3.1 Experiment 1: Effects of CSS in young animals and 

the acute impact on novel synaptic CAMs  
 

Region-specific changes of nCAM expression in young animals (11 to 13 weeks of 

age) after CSS exposure were analysed. Chronic stress influences physiological, 

neuroendocrine and behavioural factors. Thus, these parameters were included in 

the analysis as well. After the CSS exposure, animals were either tested in several 

learning paradigms (after learning) or remained naïve (basal) without testing 

experience. 

 

3.1.1 Physiological data 

In order to assess the impact of CSS exposure on physiological parameters, body 

and organ weights of basal animals were measured. Those data were acquired 

directly after the CSS exposure, on the day of sacrifice. Independent t-tests 

revealed no significant differences in body weight between the two groups (control 

and stress; T26 = 0.294; p = 0.771) as well as in thymus weight (T26 = 1.305; 

p = 0.203; see Figure 23 A). Nonetheless, for adrenal gland weights, which pose a 

sensible marker for stress effects, an independent t-test showed a significant 

increase in stressed animals (T26 = 6.356; p < 0.01; see Figure 23 B). 
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Figure 23: Organ weights related to body weight. (A) Thymus: directly after CSS exposure, 
there were no significant differences in thymus weights between the groups. (B) Adrenal glands: at 

the end of the CSS procedure, adrenal gland weights were significantly increased in stressed 
animals (** significantly different from the control group, p < 0.01). 
 

3.1.2 Neuroendocrine data 

For the analysis of neuroendocrine factors, blood samples were collected. Plasma 

corticosterone levels were determined in basal animals in the morning during the 

circadian nadir, in the last week of the CSS procedure. ANOVA revealed 

differences in corticosterone levels, based upon the condition of mice (basal or 

after learning; F1, 55 = 48.157; p < 0.01; see Figure 24). Post-hoc independent t-

tests exposed significantly elevated levels in the basal stress group compared to 

controls (T25 = 2.450; p < 0.05; see Figure 24). Blood samples from animals with 

learning experience were acquired 2 hours after the last trial of behavioural testing 

(morning to midday), 2 weeks after the cessation of the CSS procedure. Within the 

batch of animals after learning, corticosterone levels did not differ significantly. 

However, post-hoc t-tests confirmed that the corticosterone levels of animals after 

learning were increased compared to basal animals within the same condition 

(control: T24 = 6.557; p < 0.01; stress: T28 = 3.917; p ≤ 0.01; see Figure 24). 
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Figure 24: Plasma corticosterone levels. Basal animals revealed elevated corticosterone levels 

during the CSS procedure compared to control animals. Animals after learning showed increased 
corticosterone levels compared to basal animals (* significantly different from the control group, 
p < 0.05; ## significantly different from respective basal animals, p ≤ 0.01). 
 

3.1.3 Behavioural data 

Several behavioural tests were conducted to examine the animals’ general 

locomotion, cognitive performance and stress-coping behaviour. First, to observe 

hippocampus-independent short-term memory, the OR test was carried out. 

Significant differences were found within the control group: animals spent 

significantly more time with the novel object than with the known object 

(T60 = 11.683; p < 0.01; see Figure 25). In contrast, stress animals spent equal 

amounts of time with both objects. Additionally, control animals spent significant ly 

more time with the novel object than stress animals (T60 = 3.596; p ≤ 0.01; see 

Figure 25).  
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Figure 25: Time spent with objects. Control animals explored the novel object to a significantly 
greater extent than the known object. Also, controls took significantly more time to explore the 

novel object than the stress animals. The dotted line represents chance level at 50 %                          
(** significantly different from known object time, p < 0.01; ## significantly different from control 
animals, p ≤ 0.01). 

 

Second, to test hippocampus-dependent short-term memory as well as general 

locomotion, animals had to perform in the spatial Y-maze. Both groups, control 

and stress animals, spent significantly more time in the novel arm than in the 

known arms (control: T60 = 7.845; p < 0.01; stress: T53 = 4.902; p < 0.01; see 

Figure 26). The results for novel arm time did not differ significantly between both 

groups (T56 = 1.300; p = 0.199). This finding was further supported by the analysis 

of the number of head entries into the arms: both groups entered the novel arm 

more often than the known arms (control: T60 = 6.675; p < 0.01; stress: 

T54 = 5.885; p < 0.01), but the total number of novel head entries did not differ 

between stress and control animals (T56 = 0.814; p = 0.419). The analysis of the 

parameters time immobile and total distance travelled disclosed that both groups 

were similarly active (T58 = 1.061; p = 0.293) and travelled an equivalent distance 

in total (T59 = 0.730; p = 0.468). 



 

Results

 
 

 72 

Control Stress

Ti
m

e 
in

 %
 s

p
en

t 
in

 a
rm

s

0

10

20

30

40

50

60 Novel arm

Known arms 

**
**

 

Figure 26: Time spent in the arms of the Y-maze. Control animals, as well as stress animals, 
spent significantly more time in the novel arm than in the known arms. No difference between the 

two groups (control and stress) was detected. The dotted line represents chance level at 33 %           
(** significantly different from known arm time, p < 0.01). 

 

Third, animals had to perform in the MWM, which represents a test for 

hippocampus-dependent long-term memory. Over the course of the experiment, 

all animals appeared to learn as they approached the platform faster and faster: 

during the visual training, animals exhibited escape latencies between 35 to 

55 seconds, while during the last trial of the spatial learning, escape latencies 

ranged between 10 to 25 seconds. Nevertheless, the results revealed no 

significant differences between control and stress animals, except for the spatial 

day 2. Here, a repeated measures ANOVA indicated a group effect (control or 

stress; F1, 25 = 4.390, p < 0.05; see Figure 27). Post-hoc t-tests supported the 

finding that at least for some trials (trial 2 and trial 3) on spatial day 2, the controls 

learned more effectively and reached the platform faster than the stress animals 

(trial 2: T27 = 2.873; p < 0.01; trial 3: T28 = 1.785; p < 0.1; see Figure 27). However, 

for trial 3, this finding was merely a trend. Similar results were produced by the 

data set containing the total distances travelled: there were no significant group 

effects (control and stress) except for spatial day 2, when the controls travelled 
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less until they found the platform (trial 2: T26 = 2.500; p < 0.05; trial 3: T27 = 2.311; 

p < 0.05). 
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Figure 27: Escape latencies in the MWM. Overall, all animals exhibited reduced escape latencies 

over time. Only on spatial day 2, a significant difference between the two groups (control and 
stress) was detected (* significantly different from controls, p < 0.05). 

 

To measure the animals’ preference for the former target quadrant (the back-left 

quadrant, where the platform was localised during all trials of the preceding spatial 

training), a probe trial was carried out. Control animals, in comparison to stress 

animals, spent significantly less time in the former target quadrant and at the same 

time significantly more time in the other sectors of the basin (target quadrant: 

T27 = 3.173; p < 0.01; non-target quadrants: T27 = 3.152; p < 0.01; see Figure 28). 

Stress animals significantly preferred the former target quadrant compared to the 

non-target quadrants and spent most of the time there (T28 = 7.358; p < 0.01; see 

Figure 28). Those results could be reproduced by the data set for distance 

travelled per quadrant: stress animals travelled a longer distance in the former 

target quadrant than controls (T27 = 2.315; p < 0.01) and controls travelled a longer 

distance in the non-target quadrants than stress animals (T26 = 2.492; p < 0.05). 
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Figure 28: Time spent in the quadrants of the MWM. Stress animals were found to search for 

the platform mostly in the former target quadrant (back-left); compared to controls, they explored 
this quadrant significantly longer. They spent enhanced periods of time in the back-left quadrant 
compared to the non-target quadrants. By contrast, in comparison to stress animals, the controls 
spent more time in the non-target quadrants (** significantly different from controls, p < 0.01; ## 
significantly different from target quadrant, p < 0.01). 

 

3.1.4 Expression levels of nCAM-mRNA 

Expression patterns on mRNA-level were assessed both in the hippocampus and 

the PFC and for several nCAMs. While there were a variety of regulation patterns 

in the hippocampus for the different nCAMs (NCAM, Nec 1, Nec 3, SynCAM, 

Nlgn 1, Nlgn 2, Nrxn, Nptn), no effects at all could be demonstrated in the PFC. 

Thus, in the following, only the results for hippocampal expression levels are 

presented. 

ANOVA indicated a difference based on the condition (before and after learning; 

F1, 43 = 10.121, p < 0.01; see Figure 29) for NCAM, which is a well-studied synaptic 

CAM that has been discovered almost three decades ago. Post-hoc t-tests 

showed a significant group effect in the DG between control and stress animals 

under basal conditions (T19 = 2.090; p ≤ 0.05; see Figure 29): NCAM was up-

regulated after stress experience. Within the “after learning” batch, no effect was 

present. Post-hoc t-test confirmed another finding: in stress animals, NCAM was 
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down-regulated after learning (T20 = 3.308; p ≤ 0.01; see Figure 29). No further 

significant effects could be demonstrated in the other regions of the hippocampus, 

CA1 or CA3. Until stated otherwise, a group effect indicates a significant difference 

between control and stress animals, while a condition effect relates to a significant 

difference between animals without learning (basal) and animals with learning 

experience (learn). 

  

 

 

 

Figure 29: NCAM-mRNA-signal in the DG. (A) In stress animals under basal conditions, an up-

regulation of NCAM-mRNA was detected compared to controls of the same condition. Additionally, 
there was an effect across conditions: after learning, NCAM-mRNA was found to be down-
regulated in stress animals compared to the basal condition (* within the basal batch, significantly 
different from controls, p ≤ 0.05; ## significantly different from basal stress animals, p < 0.01).     
(B) Depicted are representative NCAM-mRNA autoradiograms of controls (at the top) and stress 

animals (at the bottom), either under basal conditions (on the left) or after learning (on the right). If 
not stated otherwise, this layout will be the same for all following autoradiograms.  

 

Another group of important novel, synaptic CAMs consists of Nectins. They work 

as basic modules in synapse structure and function. The results for Nec 1 exposed 

differential regulations in the CA1 and the DG. In the CA1, ANOVA pointed toward 

both a group effect (F1, 44 = 19.200, p < 0.01; see Figure 30) and an interaction 

effect of group*condition (F1, 44 = 9.811, p < 0.01; see Figure 30). Further analysis 

via post-hoc t-tests revealed a down-regulation of Nec 1-mRNA in control animals 

after learning compared to the basal controls (T20 = 2.432; p < 0.05; see Figure 30)  

as well as an up-regulation of Nec 1-mRNA in stress animals after learning 

compared to the basal stress animals (T21 = 2.166; p < 0.05; see Figure 30). 

Stress  basal

Control  basal Control  learn

Stress  learn

B



 

Results

 
 

 76 

*

#

#

Basal Learn
0

5

10

15

20 Control 

Stress

A

N
e

c1
-m

R
N

A
-s

ig
n

al
 in

 t
h

e
 C

A
1

 [
ar

b
it

ra
ry

 u
n

it
s]

*

Additionally, Nec 1-mRNA was up-regulated in stress animals after learning 

compared to the controls of the same condition (T21 = 4.940; p < 0.01; see Figure 

30). There was no significant effect within the batch of basal animals. 

 

  

 
 
 
 

Figure 30: Nec 1-mRNA-signal in the CA1. (A) In controls after learning, a down-regulation of 

Nec 1-mRNA was identified compared to controls without learning experience. Within the batch of 
animals after learning, there was an up-regulation of Nec  1-mRNA in stress animals compared to 
controls. Along with this, Nec 1-mRNA was found to be up-regulated in stress animals after learning 
compared to the basal condition (** within the learn batch, significantly different from controls, 
p < 0.01; # significantly different from the respective basal animals, p < 0.05). (B) Representative 

Nec 1-mRNA autoradiograms are displayed. 

 

In the DG, ANOVA disclosed a condition effect (F1, 45 = 9.501, p < 0.01; see Figure 

31) for Nec 1. In contrast to the results for Nec 1-mRNA expression in the CA1, 

there was a down-regulation of Nec 1-mRNA in stress animals after learning 

compared to the respective basal animals (T22 = 3.204; p < 0.01; see Figure 31). 

No further significant effects could be demonstrated in the DG. 
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Figure 31: Nec 1-mRNA-signal in the DG. (A) In stress animals, there was an effect across 

conditions: after learning, Nec 1-mRNA was found to be down-regulated compared to the basal 
condition in stress animals (## significantly different from basal stress animals, p < 0.01).             
(B) Representative Nec 1-mRNA autoradiograms are shown. 

 

Nec 1 is engaged in heterophilic interactions and forms adhesion complexes, for 

example with Nec  3, which is its strongest binding partner. The Nec 3-mRNA 

results disclosed both similarities and differences in the expression patterns 

compared to Nec  1. For Nec  3, significant results were found in the CA3 and the 

DG (in contrast to Nec 1 with significant differences in the CA1 and the DG): 

ANOVA revealed a condition effect (F1, 45 = 9.116, p < 0.01; see Figure 32) in the 

CA3; in stress animals, this effect withstood post-hoc t-tests (T22 = 2.498; p < 0.05; 

see Figure 32) and exposed a down-regulation of Nec  3-mRNA in stress animals 

after learning that was also shown for Nec  1 in the DG. A subsequent analysis of 

Nec 3-mRNA in the DG via ANOVA identified a group effect (F1, 45 = 12.139, 

p < 0.01; see Figure 33) as well as an interaction effect of group*condition 

(F1, 45 = 7.334, p ≤ 0.01). Post-hoc t-tests were able to demonstrate a down-

regulation in stress animals after learning for Nec  3 in the DG (T22 = 3.145; 

p < 0.01; see Figure 33), which was alike to the regulation patterns seen before 

both for Nec 1 in the DG and Nec  3 in the CA3. Furthermore, in animals after 

learning, Nec 3-mRNA was down-regulated in the DG of stress animals compared 
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to the controls (T20 = 4.893; p < 0.01; see Figure 33). This group effect remained 

elusive for Nec  1 and was limited to the DG for Nec  3.  

 

 

 

 
 

 

 
 

Figure 32: Nec 3-mRNA-signal in the CA3. (A) In stress animals with learning experience, a 

down-regulation of Nec  3-mRNA was detected (# significantly different from basal stress animals, 
p < 0.05). (B) Representative Nec 3-mRNA autoradiograms are displayed. 

 
 

 

 
 

 
 
 

 

Figure 33: Nec 3-mRNA-signal in the DG. (A) In stress animals after learning, a down-regulation 

of Nec 3-mRNA was detected. In addition, there was a down-regulation in stress animals after 
learning compared to controls of the same condition (** within the learn batch, significantly different 
from control animals, p < 0.01; ## significantly different from basal stress animals, p < 0.01).        
(B) Representative Nec 3-mRNA autoradiograms are shown. 
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Nectins are structurally related to another group of novel CAMs, SynCAMs. 

Besides the structural resemblance, SynCAMs and Nectins interact in heterophilic 

adhesion processes. The results for SynCAM displayed significant effects with 

similar regulation patterns in the whole hippocampus (CA1, CA3, DG). In the CA1, 

ANOVA indicated an interaction effect of group*condition (F1, 46 = 4.810, p < 0.05; 

see Figure 34). Post-hoc t-tests were able to confirm a significant effect within 

control animals: SynCAM-mRNA was up-regulated after learning compared to 

controls under basal conditions (T21 = 2.178; p < 0.05; see Figure 34). Moreover, 

post-hoc testing revealed a significant effect within animals with learning 

experience: SynCAM-mRNA was down-regulated after stress exposure compared 

to controls (T22 = 2.511; p < 0.05; see Figure 34). In the CA3, ANOVA indicated a 

group effect (F1, 46 = 6.117, p < 0.05; see Figure 35): akin to the situation in the 

CA1, SynCAM-mRNA was down-regulated within the learn batch after stress 

exposure (T22 = 2.735; p < 0.05; see Figure 35). In the DG, ANOVA indicated a 

group effect as well (F1, 45 = 7.447, p < 0.01; see Figure 36): again, SynCAM-

mRNA was down-regulated after CSS and learning compared to the respective 

controls (T21 = 3.330; p < 0.01; see Figure 36). In the DG, ANOVA also pointed 

toward an interaction of group*condition (F1, 45 = 7.412, p < 0.01; see Figure 36): 

within stress animals, SynCAM-mRNA was down-regulated after learning 

(T21 = 2.178; p < 0.05; see Figure 36). 
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Figure 34: SynCAM-mRNA-signal in the CA1. (A) There was a down-regulation within animals 
with learning experience after stress exposure. Moreover, in control animals after learning, an up-
regulation of SynCAM-mRNA was discovered compared to the basal controls (* within the learn 
batch, significantly different from controls with p < 0.05; # significantly different from basal control 
animals, p < 0.05). (B) Representative SynCAM-mRNA autoradiograms are shown. 

  
   

 

 
 

 

 

 

Figure 35: SynCAM-mRNA-signal in the CA3. (A) Similar to the situation in the CA1, there was a 

down-regulation of SynCAM-mRNA within animals with learning experience after stress compared 
to the controls (* within the learn batch, significantly different from controls, p < 0.05).                       
(B) Representative SynCAM-mRNA autoradiograms are displayed. 
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Figure 36: SynCAM-mRNA-signal in the DG. (A) In stress animals after learning, a down-

regulation of SynCAM-mRNA was detected compared to controls of the same condition. 
Additionally, there was a down-regulation in stress animals after learning compared to basal stress 
animals (** within the learn batch, significantly different from controls, p < 0.01; # significantly 
different from basal stress animals, p < 0.05). (B) Representative SynCAM-mRNA autoradiograms 

are depicted.  

 
SynCAMs share structural and functional components with Nlgns, for example 

during artificial synapse induction. Nonetheless, Nlgns and their presynaptic 

binding partners, Nrxns, can be summarised in a class of their own. The data for 

Nlgn 1 showed significant effects limited to the DG. ANOVA pointed toward a 

condition effect (F1, 43 = 7.578, p < 0.01; see Figure 37). This finding withstood 

post-hoc t-tests, which revealed a down-regulation of Nlgn 1-mRNA in stress 

animals after learning (T21 = 2.562; p < 0.05; see Figure 37). No further significant 

effects could be demonstrated in the other regions of the hippocampus, CA1 or 

CA3.  
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Figure 37: Nlgn 1-mRNA-signal in the DG. (A) In stress animals after learning, a down-regulation 

of Nlgn 1-mRNA was detected compared to basal stress animals (# significantly different from 
basal stress animals, p < 0.05). (B) Representative Nlgn 1-mRNA autoradiograms are displayed.  

 
For Nlgn 2, there were no significant effects. Overall, the total mRNA-signal was 

weak, probably due to technical problems. Additionally, the standard variation was 

rather high. Overall, these findings established Nlgn 2 as an nCAM, which was not 

regulated by CSS or learning experience. 

The situation for Nrxn, which is the presynaptic binding partner of Nlgn, resembled 

the one for Nlgn 2. In the CA1 and CA3, the total mRNA signal was very weak. In 

the DG, the signal strength was indeed higher. Nonetheless, no significant effects 

could be identified; Nrxn remained unaffected by CSS and learning.  

The results for Nptn, another important nCAM, were more promising. ANOVA 

pointed to an interaction of group*condition in the CA1 (F1, 46 = 3.415; p < 0.1; see 

Figure 38) and allowed post-hoc t-tests. In the CA1, independent t-tests disclosed 

a group effect in the learn animals: Nptn-mRNA was down-regulated after stress 

exposure compared to controls (T21 = 2.894; p < 0.01; see Figure 38). ANOVA 

indicated an interaction of group*condition also in the DG (F1, 46 = 8.333; p < 0.01; 

see Figure 39). Post-hoc t-tests verified the down-regulation of Nptn-mRNA within 

the learn animals after stress exposure (T21 = 3.199; p < 0.01; see Figure 39) and 

thus, the appearance of this effect in the CA1 as well as in the DG. In addition, 

post-hoc t-tests confirmed the up-regulation of Nptn-mRNA in control animals after 
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learning compared to basal controls (T22 = 2.882; p < 0.01; see Figure 39). No 

effect was present in the CA3. 

 

  
 
 

 
 

 

Figure 38: Nptn-mRNA-signal in the CA1. (A) In stress animals after learning, a down-regulation 

of Nptn-mRNA was identified compared to controls of the same condition (** significantly different 
from controls within the learn batch, p < 0.01). (B) Representative Nptn-mRNA autoradiograms are 

displayed. 
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Figure 39: Nptn-mRNA-signal in the DG. (A). The down-regulation of Nptn-mRNA in stress 

animals after learning compared to learn controls that was seen in the CA1 could be reproduced in 
the DG. Furthermore, there was an up-regulation in controls after learning compared to basal 
controls (** significantly different from controls within the learn batch, p < 0.01; ## significantly 
different from basal controls, p < 0.01). (B) Representative Nptn-mRNA autoradiograms are shown. 

 
Table 5 gives a clearer overview of all the previously presented nCAM-mRNA 

results. A striking effect was found for NCAM (DG), Nec 1 (DG), Nec 3 (CA3, DG), 

SynCAM (DG) and Nlgn 1 (DG). For all these nCAMs, a condition effect within the 

stress animals was verified, namely a down-regulation of nCAM-mRNA in animals 

after learning compared to the basal stress animals. Moreover, there was a robust 

effect that appeared for SynCAM (CA1, CA3, DG) and Nptn (CA1, DG): in animals 

with learning experience, nCAM-mRNA was down-regulated after stress exposure 

compared to controls. Due to the up-regulation of nCAM-mRNA in control animals 

after learning, which was observed for Nptn (DG) and SynCAM (CA1), it might be 

more suitable to call this effect an inhibition of up-regulation of nCAM-mRNA 

related to the CSS exposure. 
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Table 5: Summary of mRNA-regulation patterns for NCAM, Nectins, SynCAM, Nlgn 1 and 
Nptn in young animals. In the column on the left, all group effects, which were apparent after 

CSS, are listed, either in basal or in learn animals. The column on the right includes all condition 
effects, which appeared after learning, either in control or in stress animals. A very robust effect 
across conditions was the down-regulation of nCAM-mRNA in stressed animals after a learning 

experience. This effect appeared for NCAM (DG), Nec 1 (DG), Nec 3 (CA3, DG), SynCAM (DG) 
and Nlgn 1 (DG). The down-regulation of nCAM-mRNA after stress exposure in animals with 
learning experience was a striking effect between the groups; this was observed for SynCAM (CA1, 
CA3, DG) and Nptn (CA1, DG). For Nptn (DG) and SynCAM (CA1), it might be more appropriate to 
call this effect an inhibition of up-regulation, as in these cases the nCAM-mRNA in controls was up-
regulated after learning (an upward arrow indicates a mRNA up-regulation; a downward arrow 
indicates a mRNA down-regulation). 
 

nCAM Group effect related to control 

animals 

Condition effect related to basal 

animals 

NCAM 

DG 

 

Basal: ↑ 

 

Stress: ↓ 

Nec1 
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DG 

 

Learn: ↑ 

--- 

 

Control: ↓; Stress: ↑ 

Stress: ↓ 

Nec3 

CA3 
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--- 

Learn: ↓ 

 

Stress: ↓ 

Stress: ↓ 

SynCAM 

CA1 

CA3 

DG 

 

Learn: ↓ 

Learn: ↓ 

Learn: ↓ 

 

Control: ↑ 

--- 

Stress: ↓ 

Nlgn1  

DG 

 

--- 

 

Stress: ↓ 
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DG 

 

Learn: ↓ 

Learn: ↓ 
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Control: ↑ 
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3.1.5 Expression levels of nCAM-proteins 

The determination of nCAM expression on protein level was limited to those 

nCAMs with the most promising results on mRNA-level. This restricted set of 

nCAMs included Nectins, Nlgn 1 and Nptn. Nonetheless, the analysis revealed no 

significant group or condition effects for any of the candidate nCAMs. In total, the 

results on protein level were characterised by high standard variations with 

relatively small group sizes, which may have masked potential differences in the 

significant range. The results for Nec 3 and Nlgn 1 are illustrated as an example 

(see Figure 40 and Figure 41). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 40: Total Nec 3-protein-signal. (A) Depicted are the adjusted volumes of Nec 3 divided by 
the adjusted volumes of the respective Actin. Values have been normalised to the amount of the 

respective protein content. By setting the basal controls to 100 %, the relative percentages of the 
other groups were calculated. No significant effects were identified. (B) Western blot 

autoradiographs of homogenised hippocampi derived from basal mice or mice after learning; 
animals were either stressed (s) or belonged to the control group (c). 
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Figure 41: Total Nlgn 1-protein-signal. (A) Adjusted volumes of Nlgn 1 divided by the adjusted 

volumes of the respective Actin. Basal controls were set to 100 %, the relative percentages of the 
other groups were calculated. There were no significant differences. (B) Western blot 

autoradiographs of homogenised hippocampi derived from basal mice or mice after learning; 
animals were either stressed (s) or belonged to the control group (c). 

 

3.1.6 Correlations 

To elucidate the data further, we checked for correlations between the nCAM-

mRNA expression levels and the performance during the OR test. The analysis 

revealed that there were no significant correlations within the group of stress 

animals only and within the combined group of controls and stress animals. 

Nonetheless, a significant Pearson correlation was found within the group of 

control animals only, namely between the SynCAM expression in the CA1 and the 

percentage of the time spent with the novel object (Pearson = -0.589; p < 0.05; 

see Figure 42). A control animal with a strong SynCAM-mRNA-signal in the CA1 

spent most likely less time with the novel object, while a control animal with a 

lower SynCAM expression spent in all probability more time with the novel object.  
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Figure 42: Pearson correlation between SynCAM-mRNA expression in the CA1 and the 
novel object time. There was a negative correlation stating that animals with a lower expression 

spend more time with the novel object, while animals with a higher expression spend less time with 
the novel object. 

 

3.1.7 Summary 

Adrenal weights were significantly elevated by the CSS procedure compared to 

adrenal weights of control animals. Additionally, the CSS procedure raised the 

corticosterone levels compared to corticosterone levels of controls. In general, 

learning experience increased the animals’ corticosterone levels, both in control 

and in stress animals. CSS inhibited the animals’ performance in the OR test: 

controls spent more time with the novel object than with the known object, while 

stressed animals did not differentiate between the two objects. In the MWM, 

controls, compared to stress animals, managed to reduce the escape latency only 

on spatial day 2. Several candidate nCAMs emerged to be regulated in distinct 

patterns after CSS and learning: NCAM (DG), Nec 1 (CA1, DG), Nec 3 (CA3, DG), 

SynCAM (CA1, CA3, DG), Nlgn 1 (DG) and Nptn (CA1, DG). There was one 

significant correlation between SynCAM-mRNA expression in the CA1 and the 

novel object time during the OR test. 
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3.2 Experiment 2: Effects of CSS in aged animals and the 

long-term impact on novel synaptic CAMs 
 

Male CD1 mice were subjected to the CSS paradigm during adolescence. To be 

able to tap the long-term effects of CSS, they were then allowed to age for 

12 months. Upon reaching the age of 15 months, the animals were behaviourally 

tested. Basal animals were decapitated 2 weeks after the last testing, while learn 

animals were decapitated 2 hours after the last test trial. Region-specific 

expression patterns of several candidate nCAMs on mRNA and protein level, as 

well as physiological, neuroendocrine and behavioural parameters were analysed. 

 

3.2.1 Physiological data 

Adrenal glands of overall 15 control and 16 chronic stress animals, which were 

sacrificed 1 year after CSS exposure, were dissected and weighed. ANOVA 

pointed to a condition effect (F1, 30 = 4.668; p < 0.05), but this finding did not 

withstand post-hoc t-testing. Independent t-tests revealed no significant 

differences between the groups (control and stress) in the absolute weight of the 

adrenal glands (controls compared to stress animals, basal condition: T14 = 0.094; 

p = 0.927, learn condition: T13 = 0.519; p = 0.612). Thymus glands were not 

dissected due to the thymus’ natural tendency to shrink with increasing age.  

 

3.2.2 Neuroendocrine data 

To analyse neuroendocrine factors in basal animals, plasma corticosterone levels 

were determined in the morning during the circadian nadir, 2 weeks after the last 

testing day and 12 months after CSS exposure; independent t-tests did not identify 

a significant group effect between control and stress animals. Blood samples from 

animals with learning experience were acquired 2 hours after the last trial of 

behavioural testing (morning to midday) and likewise 12 months after the 

cessation of the CSS procedure. Within the batch of animals after learning, 

corticosterone levels did not differ significantly between control and stress animals. 

However, ANOVA revealed differences in corticosterone levels, based upon the 

condition of mice (basal or after learning; F1, 28 = 19.663; p < 0.01; see Figure 43). 
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Post-hoc t-tests confirmed that the corticosterone levels of animals after learning 

were increased compared to basal animals (control: T12 = 3.432; p < 0.01; stress: 

T13 = 2.860; p < 0.05; see Figure 43). 
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Figure 43: Plasma corticosterone levels. For both conditions, independent t-tests did not provide 

a significant difference within the groups. Animals after learning showed elevated corticosterone 
levels compared to basal animals (# significantly different from basal control animals, p < 0.05; ## 
significantly different from basal stress animals, p < 0.01). 

 

3.2.3 Behavioural data 

Behavioural tests were conducted to investigate the animals’ general locomotion, 

cognitive performance and stress-coping behaviour. First, to observe 

hippocampus-independent short-term memory, the OR test was carried out. A 

significant difference was verified within the control group: control animals spent 

significantly more time with the novel object than with the known object 

(T28 = 3.432; p < 0.01; see Figure 44). Conversely, stress animals did not prefer 

one object over the other one; they showed no difference in the exploration of the 

objects. The analysis of the parameters time immobile and total distance travelled 



 

Results

 
 

 91 

disclosed that both groups were similarly active (T29 = 0.153; p = 0.879) and 

travelled an equal distance (T29 = 0.306; p = 0.762).  
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Figure 44: Time spent with objects. Control animals explored the novel object to a significantly 

greater extent than the known object. Stress animals showed no significant preference for one of 

the objects. The dotted line represents chance level at 50 % (* significantly different from known 
object time, p < 0.05). 

 

Figure 45 revealed results for the control animals according to a normal 

distribution with the majority of values tending to cluster around a single mean. In 

contrast, the data for the stress animals were distributed according to a bimodal 

distribution with values grouped around two distinct peaks. The first group showed 

a rather weak OR performance and low occupation with the novel object; the 

second group spent a great amount of time with the novel object and thus seemed 

to be protected from the detrimental consequences of the CSS exposure. 
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Figure 45: Time spent with objects. Unlike the controls’, the stress animals’ performance did not 

fit a Gaussian distribution. Within the stress group, there was a bimodal distribution revealing one 
stress group that was still affected by the CSS during adolescence (left circle) and a second group, 
which seemed to be protected from long-term effects (right circle). The red line represents the cut 
off criterion for the stress animals at 60 % time spent with the novel object. 

 

Second, to determine hippocampus-dependent long-term memory, animals had to 

perform in the MWM. Over the course of the experiment, animals seemed to learn 

only partially. During the visual training, they reached the platform continually 

faster except for the last trial. However during the spatial training, the escape 

latencies remained relatively high and although the animals seemed to improve 

from the first to the fourth trial, after each completed spatial day, they started on 

the same level like the day before with escape latencies around 30 seconds. Only 

in the reversal learning, the animals managed to reduce the escape latency 

constantly from trial 1 to trial 4 with final escape latencies around 10 seconds. 

Additionally, the results revealed no significant differences between control and 

stress animals, except for the probe trial. Here, independent t-tests verified that 

the controls needed significantly less time to reach the former platform location 

compared to the stress animals (T26 = 2.372; p < 0.05; see Figure 46).  
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Figure 46: Escape latencies in the MWM. Animals exhibited reduced escape latencies only 

during the visual training and the reversal learning. A significant difference between the two groups 
(control and stress) was detected in the probe trial (* stress and control animals performed 
significantly different from each other, p < 0.05). 

 

To measure the animals’ preference for the target quadrant (the back-left 

quadrant), a probe trial without a platform was carried out. Control animals spent 

significantly more time in the non-target quadrants (T28 = 3.055; p < 0.01; see 

Figure 47) compared to the time in the former target quadrant. Stress animals 

exhibited no preference and searched equally long in the former target zone and 

the non-target zone. This effect within the controls received further support from 

the data set for distance travelled per quadrant; but here the data sufficed merely 

for a trend (T28 = 1.987; p < 0.1). 
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Figure 47: Time spent in the quadrants of the MWM. Control animals searched significantly 
longer in the non-target quadrants for the platform. Stress animals explored the former target 
quadrant and the non-target quadrants equally long (## significantly different from target quadrant, 
p < 0.01). 

 

3.2.4 Expression levels of nCAM-mRNA 

Expression patterns on mRNA-level were assessed for the same candidate 

nCAMs like in the young animals. Due to the poor results in the PFC of young 

animals, nCAM-mRNA levels of aged animals were investigated solely in the 

hippocampus. The following investigated nCAMs showed no significant regulations 

1 year after CSS: NCAM, Nec 1, Nlgn 2 and Nlgn 1. Exemplary, the graph for 

Nlgn 1 expression in the CA3 is depicted in Figure 48 (ANOVA, group:                 

F1, 30 = 0.05; p = 0.824, condition: F1, 30 = 0.505; p = 0.483, interaction of 

group*condition: F1, 30 = 0.000; p = 0.996). 
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Figure 48: Nlgn 1-mRNA-signal in the CA3. (A) There were no significant differences in the CA3. 

This was also true for the CA1 and the DG. (B) Representative Nlgn 1-mRNA autoradiograms are 
depicted. 

 

The majority of candidate nCAMs was not regulated 12 months after CSS and a 

recent learning experience (MWM). However, there were three nCAMs with 

significant differences even 1 year after CSS cessation: Nrxn-mRNA of different 

regions emerged to be similarly regulated in control and stress animals. Nec 3 

showed a group effect solely in the basal batch, while Nptn exhibited a group 

effect only within the batch of animals after learning. For those two nCAMs, 

several condition effects were found as well. 

For Nrxn, ANOVA pointed towards a condition effect both in the CA3 

(F1, 30 = 5.280; p < 0.05) and the DG (F1, 30 = 7.935; p < 0.01). In the CA3, there 

was an up-regulation after learning within controls (T13 = 2.306; p < 0.05; see 

Figure 49). The same effect was found in the DG, but only in stress animals 

(T14 = 2.193; p < 0.05; see Figure 50).  

 

 

 

 

 

 

Control  basal Control  learn

Stress  basal Stress  learn

B



 

Results

 
 

 96 

Basal Learn
0

20

40

60

80

100 Control 

Stress 

#

A

N
rx

n
-m

R
N

A
-s

ig
n

al
 in

 t
h

e
 D

G
 [

ar
b

it
ra

ry
 u

n
it

s]

Basal Learn
0

20

40

60

80

100 Control 

Stress 

#

A
N

rx
n

-m
R

N
A

-s
ig

n
al

 in
 t

h
e

 C
A

3
 [

ar
b

it
ra

ry
 u

n
it

s]

  

  

 

 

Figure 49: Nrxn-mRNA-signal in the CA3. (A) The Nrxn-mRNA-signal was significantly elevated 

in control animals after learning compared to basal controls (# significantly different from basal 
controls, p < 0.05). (B) Representative Nrxn-mRNA autoradiograms are depicted. 

 
 

  

 
 

 
 
 

 

 

 
Figure 50: Nrxn-mRNA-signal in the DG. (A) The Nrxn-mRNA-signal was significantly elevated in 

stress animals after learning compared to basal stress animals (# significantly different from basal 
stress animals, p < 0.05). (B) Representative Nrxn-mRNA autoradiograms are displayed. 
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For Nec 3, ANOVA pointed to an interaction of group*condition in the CA3 

(F1, 29 = 7.146; p < 0.05; see Figure 51). Post-hoc t-testing confirmed that Nec 3-

mRNA was up-regulated in stress animals compared to controls within the batch of 

basal animals (T14 = 3.038; p < 0.01; see Figure 51). This effect between control 

and stress animals, reappeared in the DG (T14 = 2.404; p < 0.05; see Figure 52). 

For both regions, there were no significant effects within the batch of animals after 

learning. However, post-hoc t-tests confirmed an up-regulation of Nec 3-mRNA 

after learning within the control batch (T12 = 2.369; p < 0.05; see Figure 51) and a 

down-regulation after learning within the stress batch (T14 = 2.407, p < 0.05; see 

Figure 51), both in the CA3. 

 

  

 

 

 

Figure 51: Nec 3-mRNA-signal in the CA3. (A) In basal animals, Nec 3-mRNA was up-regulated 

after CSS exposure. Additionally, there were condition effects both in control and in stress animals: 

in stress animals, Nec 3-mRNA was down-regulated after learning, while in controls, Nec 3-mRNA 
was up-regulated after learning (** within the basal batch, significantly different from control 
animals, p < 0.01; # significantly different from the respective basal animals, p < 0.05).                 
(B) Representative Nec 3-mRNA autoradiograms are depicted.  
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Figure 52: Nec 3-mRNA-signal in the DG. (A) There was a significant effect in basal animals: 

Nec 3-mRNA was up-regulated after CSS exposure (* significantly different from controls, 
p < 0.05). (B) Representative Nec  3-mRNA autoradiograms are depicted.  

 

For Nptn, ANOVA indicated a group effect in the CA1 (F1, 30 = 6.958; p < 0.05) as 

well as in the CA3 (F1, 28 = 23.650; p < 0.01) and a condition effect in the DG 

(F1, 30 = 4.387; p < 0.05; see Figure 53). Nptn-mRNA showed a down-regulation in 

stress animals compared to controls within the learn batch. This effect between 

control and stress animals was verified by independent t-tests for the whole 

hippocampus (CA1: T13 = 3.475; p < 0.01; CA3: T13 = 5.120; p < 0.01; DG: 

T13 = 3.451; p < 0.01). Thus, the data for Nptn gene regulation in the DG are 

depicted as an example for the reoccurring down-regulation in stress animals after 

learning (see Figure 53). In the whole hippocampus, there were no significant 

effects within the batch of basal animals. However, Nptn-mRNA was up-regulated 

after learning within controls in the DG (T13 = 2.471, p < 0.05; see Figure 53).  
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Figure 53: Total Nptn-mRNA-signal in the DG. (A) Nptn-mRNA was down-regulated after CSS 
exposure, but only in animals after learning. This affect appeared also in the CA1 and the CA3. 
Moreover in the DG, there was an effect across conditions in control animals: after learning Nptn-
mRNA was up-regulated compared to basal controls (** within the learn batch, significantly different 
from controls, p < 0.01; # significantly different from basal control animals, p < 0.05).                    
(B) Representative Nptn-mRNA autoradiograms are shown.  

 

Table 6 gives an overview of all the previously presented nCAM-mRNA results of 

aged animals. All group effects in stress animals compared to controls are listed, 

as well as the condition effects in animals after learning related to basal animals: 

for Nrxn, a similar regulation across conditions was found, namely an up-

regulation of mRNA after learning, both within stress (DG) and control animals 

(CA3). For Nec 3, there was a robust effect that appeared in the CA3 and the DG, 

but only in the basal animals. For Nptn, there was a robust effect in the opposite 

direction that was only valid in animals with learning experience. This effect was 

apparent in the whole hippocampus (CA1, CA3, DG). Similar to the gene 

regulation of Nrxn in the CA3 of controls, Nec 3- and Nptn-mRNA of control 

animals after learning were also up-regulated compared to basal controls. 

Furthermore, analysis revealed a down-regulation of Nec 3-mRNA in stress 

animals after learning compared to basal stress animals.  
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Table 6: Summary of mRNA-regulation patterns for Nec3, Nptn and Nrxn in aged animals. In 

the column on the left, all group effects, which were apparent after CSS, are listed, either in basal 
or in learn animals. The column on the right includes all condition effects, which appeared after 
learning, either in control or in stress animals. Nrxn was up-regulated after learning, both in control 

(CA3) and stress animals (DG). Nec 3-mRNA emerged to be up-regulated after stress exposure in 
the CA3 and the DG. This group effect appeared only in basal animals. In contrast, Nptn-mRNA 
was down-regulated after stress experience in the whole hippocampus (CA1, CA3, DG). This was 
only valid for animals after learning. Nec 3-mRNA was down-regulated after stress exposure and a 
recent learning experience (CA3) and up-regulated in controls after learning (CA3). Similarly, Nptn-
mRNA was up-regulated in controls after learning (DG) (an upward arrow indicates a mRNA up-
regulation; a downward arrow indicates a mRNA down-regulation). 
 

nCAM Group effect related to control 

animals 

Condition effect related to basal 

animals 
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DG 

 

--- 
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Control: ↑; Stress: ↓ 

--- 
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Learn: ↓ 

Learn: ↓ 

Learn: ↓ 

 

--- 

--- 

Control: ↑ 

 

3.2.5 Expression levels of nCAM-proteins 

The analysis of nCAM expression on protein-level for aged animals was limited to 

the same set of candidate nCAMs like for the young animals; investigated were 

Nectins, Nlgn 1 and Nptn. In contrast to the analysis in young animals, there were 

only basal animals available for the analysis in aged animals. Similar to the results 

for the young animals, the analysis revealed no significant group effects for any of 

the candidate nCAMs. Overall, the results on protein-level were characterised by 

high standard variations with relatively small group sizes, which may have masked 

potential differences in the significant range. The results for Nec 3 are illustrated as 

an example (see Figure 54). 
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Figure 54: Total Nec 3-protein-signal. (A) Depicted are the adjusted volumes of Nec 3 divided by 
the adjusted volumes of the respective Actin. Values have been normalised to the amount of the 

respective protein content. By setting the control group to 100  %, the relative percentage of the 
stress group was calculated. No significant effects were identified. (B) Western blot 

autoradiographs of homogenised hippocampi derived from basal mice that were either stressed (s) 
or belonged to the control group (c). 

 

3.2.6 Correlations 

We checked for correlations between the nCAM-mRNA expression levels and the 

performance during the OR test of basal animals. The analysis revealed that there 

were no significant correlations within the group of control animals only. 

Nonetheless, several significant Pearson correlations were found within the group 

of stress animals only, namely for Nec 3 (DG: Pearson = 0.780; p < 0.05; see 

Figure 55), Nlgn 1 (DG: Pearson = 0.908; p < 0.01; see Figure 56), Nlgn 2 (CA3: 

Pearson = -0.760; p < 0.05; see Figure 57) and Nptn (CA1: Pearson = -0.874; 

p ≤ 0.01; see Figure 58; CA3: Pearson = -0.817; p < 0.05; see Figure 59; DG: 

Pearson = -0.769; p < 0.05; see Figure 60). A positive correlation describes an 

animal spending the more time with the novel object the stronger the nCAM-

mRNA-signal in a specific region of the hippocampus. A negative correlation 

describes an animal, which spends less time with the novel object the higher the 

nCAM-mRNA expression in a specific region.  
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Figure 55: Pearson correlation between Nec 3-mRNA expression in the DG and the novel 
object time. There was a positive correlation stating that animals with a higher expression spend 

more time with the novel object, while animals with a lower expression spend less time with the 
novel object. This was only true for basal stress animals. 

 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 
 

 

 

 

 
Figure 56: Pearson correlation between Nlgn 1-mRNA expression in the DG and the novel 
object time. There was a positive correlation for basal stress animals. 
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Figure 57: Pearson correlation between Nlgn 2-mRNA expression in the CA3 and the novel 
object time. There was a negative correlation stating that animals with a lower expression spend 

more time with the novel object, while animals with a higher expression spend less time with the 
novel object. This was only valid in basal stress animals. 
 

 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
Figure 58: Pearson correlation between Nptn-mRNA expression in the CA1 and the novel 
object time. There was a negative correlation for basal stress animals. 
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Figure 59: Pearson correlation between Nptn-mRNA expression in the CA3 and the novel 
object time. Similar to the situation for Nptn in the CA1, there was a negative correlation for basal 

stress animals in the CA3. 

 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 

 
 

Figure 60: Pearson correlation between Nptn-mRNA expression in the DG and the novel 
object time. There was a negative correlation for Nptn in the DG as well. 
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Besides the correlations in the stress only group, there were also two significant 

findings in the combined group of control and stress animals: SynCAM-mRNA in 

the CA3 was negatively correlated with the novel object time in the OR test 

(Pearson = -0.516; p < 0.05; see Figure 61). For this correlation to come into effect 

apparently both groups, control and stress animals, were necessary as SynCAM 

was not regulated neither in the controls only nor in the stress group only. 

Moreover, Nlgn 1-mRNA in the DG was positively correlated with the novel object 

time during OR (Pearson = 0.497; p ≤ 0.05; see Figure 62). This effect was mainly 

driven by the stress group, but was still apparent in combination with controls. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 61: Pearson correlation between SynCAM-mRNA expression in the CA3 and the 
novel object time. There was a negative correlation for basal control and stress animals. 
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Figure 62: Pearson correlation between Nlgn 1-mRNA expression in the DG and the novel 
object time. There was a positive correlation for basal control and stress animals. 

 

Although these findings confirmed distinct linear correlations between 

hippocampal expression levels of several nCAMs and the performance in the OR 

test, they provided no information about the cause-effect relationship of the 

investigated characteristics. 

 

3.2.7 Summary 

In general, the animals’ corticosterone levels were elevated after learning both in 

control and in stress animals. CSS had long-term effects on the animals’ 

performance during OR and inhibited the cognition of aged mice in the OR test: 

controls spent more time with the novel object than with the known object, while 

stressed animals did not prefer one object over the other. In the MWM, all animals 

did not learn very well. Controls, in comparison to stress animals, exhibited shorter 

escape latencies only during the probe trial, when the platform was removed from 

the maze. CSS was merely able to inhibit the performance in the MWM partially. 

As expected, only few candidate nCAMs were regulated 1 year after CSS and a 

recent learning experience: Nrxn (CA3, DG), Nec 3 (CA3, DG) and Nptn (CA1, 

CA3, DG). In contrast to the results of young animals, there was a variety of 

correlations between nCAM expression and the performance during OR for aged 
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animals: positive correlations were validated for Nec 3 (DG) and Nlgn 1 (DG), 

negative correlations were found for Nlgn 2 (CA3) and Nptn (CA1, CA3, DG). 

 

3.3 Experiment 3: Regulation of novel synaptic CAMs by 

dexamethasone 
 

Young mice (12 weeks of age) were injected subcutaneously with dex (controls 

with Ringer solution) to test whether novel nCAMs can be regulated directly via the 

GR. Due to the promising results from previous experiments, the following genes 

were chosen as candidate nCAMs for this experiment: Nec  1, Nec 3, Nlgn 1 and 

Nptn. Animals were sacrificed at five different time points after the injection. 

 

3.3.1 Neuroendocrine data 

Based on the data from the RIA, it was confirmed that the dex treatment worked 

successfully and that control animals demonstrated normal values according to 

their circadian rhythm. ANOVA indicated a group effect (F1, 95 = 29.659; p < 0.01), 

a condition effect (F4, 95 = 15.449; p < 0.01) as well as an interaction effect 

group*condition (F4, 95 = 16.339; p < 0.01). Both groups (dex and controls) 

displayed elevated corticosterone levels 1 h after the injection. This can be 

attributed to the handling during the injection procedure and the injection itself. 

However, the corticosterone levels of control animals were significantly higher than 

in the dex treated animals (T16 = 2.399; p < 0.05; see Figure 63). In the early 

morning, which means 2 h and 4 h after the injection, all animals appeared to have 

recovered from the injection procedure, as mice exhibited decreased 

corticosterone levels. This would be expected according to the diurnal rhythm of 

plasma corticosterone in rodents. For both time points, there were no significant 

differences between controls and dex animals. In the late afternoon, meaning 8 h 

after the injection, the animals approached the evening circadian peak that is 

typical for nocturnal mammals like mice. Here, controls showed strongly elevated 

corticosterone levels in comparison to the dex animals, where the corticosterone 

synthesis and distribution was inhibited by the dex treatment (T18 = 4.818; 

p < 0.01; see Figure 63). In the morning on the next day, meaning 24 h after the 
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injection, both groups seemed to have returned to baseline corticosterone levels, 

which were very low. 
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Figure 63: Corticosterone levels over the course of the dex experiment. Overall, control 

animals displayed expected levels according to their diurnal rhythm. 1 h after the injection, dex 
animals exhibited decreased corticosterone levels compared to control animals. 8 h after the 
injection, corticosterone levels of dex animals were strongly decreased. For the residual time 
points, there were no significant differences between the two groups (* significantly different from 
control animals, p < 0.05; ** significantly different from control animals, p < 0.01). 

 

3.3.2 Expression levels of nCAM-mRNA 

The analysis of nCAM-mRNA autoradiograms revealed that none of the candidate 

nCAMs was regulated by the dex treatment, as there were no significant 

differences in the total mRNA-signal between the controls and the dex treated 

animals. The results for mRNA expression 1 h after the injection for Nec 1 and 8 h 

after the injection for Nptn are depicted as an example (see Figures 64 and 65). 
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Figure 64: Nec 1-mRNA-signal in the CA1, CA3 and the DG. (A) There were no significant 
differences between the controls and the dex treated animals. (B) Representative Nec 1-mRNA 
autoradiograms are depicted. 
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Figure 65: Nptn-mRNA-signal in the CA1, CA3 and the DG. (A) There were no significant 
differences between the controls and the dex treated animals. (B) Representative Nptn-mRNA 

autoradiograms are depicted. 
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3.3.3 Summary 

The dex treatment was successful; control animals demonstrated normal values 

according to their circadian rhythm. None of the chosen nCAMs was verified to be 

regulated 1 h, 2 h, 4 h, 8 h, or 24 h after the dex injection.  

 

3.4 Experiment 4: Acute treatment of young animals with 
mimetic peptides and the impact on cognition under 
basal conditions 

 

3.4.1 Behavioural data 

The first batch of animals received either the mimetic peptide Narpin or artificial 

cerebrospinal fluid as vehicle. The intrahippocampal injections were conducted 

before the training, that is 30 minutes before the acquisition trial, during which the 

animals were supposed to learn new information. During the OR test, Narpin 

injected animals spent significantly more time with the novel object than with the 

known object (T10 = 2.742; p < 0.05; see Figure 66 A). Vehicle injected animals did 

not prefer one object over the other and spent equal amounts of time with both 

objects (see Figure 66 A). During the spontaneous alternation test in the Y-maze, 

there were no significant differences between the two groups. Narpin injected 

animals as well as vehicle animals performed clearly above the chance level, but 

did not differ from each other (see Figure 66 B).  
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Figure 66: Narpin injections 30 minutes before behavioural testing. (A) During the OR test, 

Narpin animals preferred the novel object over the known object, while vehicle animals did not 

differentiate between the two. The dotted line represents the chance level at 50  % (* significantly 
different from known object time; p < 0.05). (B) Vehicle and Narpin treated animals exhibited an 

equal spontaneous alternation in the Y-maze. The dotted line represents the chance level at 33 %. 

 

The second batch of animals received intrahippocampal injections of Enplastin or 

vehicle 30 minutes before the acquisition trial. During the OR test, both groups 

explored the novel object significantly longer than the known object (vehicle: 

T20 = 4.175; p < 0.01; Enplastin: T22 = 6.844; p < 0.01; see Figure 67 A). During 

the spatial Y-maze, vehicle animals did not prefer the novel arm over the known 

arms (T22 = 0.524; p = 0.605; see Figure 67 B). Only Enplastin treated animals 

showed a significant preference for the novel arm (T20 = 2.328; p < 0.05; see 

Figure 67 B). This effect was further supported by the data set for the arm entries, 

where again only Enplastin treated animals exhibited a preference to enter the 

novel arm more often than the known arms (vehicle: T34 = 0.231; p = 0.819; 

Enplastin: T31 = 2.663; p < 0.05).  
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Figure 67: Enplastin injections 30 minutes before behavioural testing. (A) During the OR test, 

both groups preferred the novel object over the known object. The dotted line represents chance 
level at 50 % (** significantly different from known object time; p < 0.01). (B) In the Y-maze, only 

Enplastin treated animals spent more time in the novel arm compared to the known arms. The 
dotted line represents chance level at 33 % (* significantly different from known arm time; p < 0.05). 

 

The third batch of animals was subjected to the intrahippocampal injections of 

Narpin or vehicle during the behavioural training. Precisely, the injections were 

performed directly after the acquisition trial, which was 30 minutes before the 

retrieval trial, during which the animals were supposed to access the stored 

information. During the OR test, both groups explored the novel object significantly 

longer compared to the known object (vehicle: T12 = 4.807; p < 0.01; Narpin: 

T18 = 3.479; p < 0.01; see Figure 68 A). During the spatial Y-maze, Narpin treated 

animals entered the novel arm significantly more often than the known arms 

(T28 = 2.372; p < 0.05; see Figure 68 B). For vehicle animals, the tendency to enter 

the novel arm to a greater extent than the known arms remained only a trend 

(T4 = 2.753; p < 0.1; see Figure 68 B). However, this effect may be attributed to 

the very small group size of only two animals. The analysis of the percentage of 

the time spent in the arms did not reveal any significant differences, neither for 

vehicle nor for Narpin treated animals (see Figure 68 C).  
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Directly after the acquisition trial, the fourth batch of animals was injected with 

either Enplastin or vehicle. During the OR test, both groups spent significantly 

more time exploring the novel object than the known object (vehicle: T18= 5.979; 

p < 0.01; Enplastin: T28 = 5.411; p < 0.01; both see Figure 69 A). During the spatial 

Y-maze test, vehicle animals did not spent significantly more time in the novel arm 

compared to the known arms (see Figure 69 B). In contrast to Enplastin treated 

animals, which explored the novel arm significantly longer than the known arms 

(T22 = 3.045; p < 0.01; see Figure 69 B). However, the data set regarding the arm 

entries in %, revealed that both animal groups entered the novel arm significantly 

Figure 68: Narpin injections during 
the training (directly after the 
acquisition).  
(A) During the OR test, both groups 

preferred the novel object over the 
known object. The dotted line represents 

chance level at 50 % (** significantly 
different from known object time; 
p < 0.01).  
(B) During the spatial Y-maze, only 
Narpin animals entered the novel arm 
significantly more often. The dotted line 

represents chance level at 33 %              
(* significantly different from known arm 
entries; p < 0.05). 
(C) There were no significant differences 

in the spatial Y-maze regarding the time 
spent in the arms. The dotted line 

represents chance level (33 %). 
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more often than the known arms (vehicle: T18 = 3.749; p < 0.01; Enplastin: 

T22 = 2.912; p < 0.01; both see Figure 69 C). 

 

 
Within each batch, mimetic peptide injected animals did not differ from vehicle 

treated animals in their general locomotion: the total time immobile (batch 1: 

T8 = 1.667; p = 0.134; batch 2: T10 = 0.096; p = 0.925; batch 3: T21 = 1.350; 

p = 0.191; batch 4: T27 = 1.797; p = 0.084) and the total distance travelled 

(batch 1: T8 = 0.471; p = 0.650; batch 2: T10 = 1.087; p = 0.302; batch 3: 

T21 = 1.391; p = 0.179; batch 4: T27 = 1.722; p = 0.097) were equal. 
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Figure 69: Enplastin injections during 
the training (directly after the 
acquisition). 
(A) During the OR test, both groups 

preferred the novel object over the 
known object. The dotted line represents 

chance level at 50 % (** significantly 
different from known object time; 
p < 0.01). 
(B) In the Y-maze, only Enplastin treated 

animals spent more time in the novel arm 
compared to the known arms. The dotted 

line represents chance level at 33 % (** 
significantly different from known arm 
time; p < 0.01). 
(C) Both groups entered significantly 

more often the novel arm. The dotted line 
represents chance level at 33 % (** 
significantly different from known arm 

entries; p < 0.01). 
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3.4.2 Summary 

In the batch of Narpin animals with injections 30 minutes before behavioural 

testing, Narpin animals exhibited a preference for the novel object, while vehicle 

animals spent equal amounts of time with both objects. If Narpin was injected 

during the behavioural testing, both groups (vehicle and mimetic peptide treated) 

preferred the novel object over the known object. In the spatial Y-maze, only 

Narpin animals entered the novel arm significantly more often. Enplastin injections 

30 minutes before behavioural testing did not alter the performance in the OR test: 

both groups explored the novel object longer than the known object. In the spatial 

Y-maze, only Enplastin animals preferred the novel arm (as measured by the arm 

time and the arm entries in %). Enplastin injections during the behavioural testing 

did not change the OR performance, vehicle and Enplastin treated animals both 

explored the novel object longer than the known object. While both groups entered 

the novel arm significantly more often than the known arms, only Enplastin treated 

animals preferred the novel arm in the spatial Y-maze as measured by the time 

spent in % in the arms. Overall, a modification of cognitive performance was 

possible: if vehicle animals already suffered from cognitive deficits and were 

unable to perform above the chance level, the mimetic peptides could counteract 

in some cases and raise the animals’ performance to an anticipated level. 
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3.5 Experiment 5: Chronic treatment of young animals 

with mimetic peptides and the impact on cognition 
after CSS 

 

To assess the consequences of a chronic treatment with mimetic peptides in 

young animals (11 weeks of age) on cognition, male young CD1 mice received 

s.c. injections of Enplastin, Narpin or vehicle (Ringer solution) on 6 consecutive 

days during the last week of the CSS paradigm. To record potential effects on 

cognition, animals were behaviourally tested. On these days, they received the 

injections 2 h prior to the testing. The aim was to investigate the possibilities of 

reversal or at least improvement of cognitive deficits that are elicited by CSS 

during adolescence. 

 

3.5.1 Testing blood brain barrier permeability of mimetic peptides 

To ensure that mimetic peptides crossed the blood brain barrier via s.c. injections  

and verify the validity of experiment 5, a preceding experiment was conducted. 

12 weeks young, male CD1 mice were subcutaneously injected with biotylised 

Enplastin, biotylised Narpin or vehicle (Ringer); 1 h after the injection, the animals 

were perfused and brains extracted. The presence of mimetic peptides in the brain 

was visualised via immunofluorescence for free-floating brain sections (see 

chapter 2.6.2). Confocal imaging microscopy revealed that mimetic peptides 

indeed were able to cross the blood brain barrier and spread in the whole brain. 

Due to tissue damages in the brain slices, it was not possible to provide images of 

the hippocampus with satisfying tissue quality; instead Figure 70 presents images 

of the cortex with layer 1 to 3 (40 x magnification). Nonetheless, the analysis 

clearly demonstrated the mimetic peptides’ crossing of the blood brain barrier.  
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Figure 70: Representative photomicrographs illustrating the presence/absence of mimetic 
peptides in the cortex of the mouse brain. (A) Enplastin (dilution: 1:200). (B) Narpin (dilution: 
1:200). (C) Negative control (vehicle) (blue: cell bodies, green: biotylised and antibody-bound 

mimetic peptide). 

 

3.5.2 Physiological data 

Animals were sacrificed 24 h after the last injection. Adrenals were extracted and 

the analysis revealed that CSS animals had enlarged and thus heavier adrenal 

glands compared to control animals (T22= 3.389; p < 0.01; see Figure 71). 

Independent t-tests showed no significant differences in the final body weight of 

control and stress animals (T22= 0.667; p = 0.512). 
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Figure 71:  Adrenal gland weight. At the end of the CSS procedure, adrenal gland weights were 

significantly increased in stressed animals (** significantly different from the control group, 
p < 0.01). 

 

3.5.3 Neuroendocrine data 

Blood samples were collected simultaneously with the adrenals, hence 24 h after 

the last injection. RIA revealed increased plasma corticosterone levels in stressed 

animals (T91= 2.533; p < 0.05; see Figure 72). In general, the plasma 

corticosterone values were relatively high, even for the control animals. This might 

be attributed to the daily injections and the handling of the mice. 
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Figure 72: Plasma corticosterone levels. Stress animals revealed elevated corticosterone levels 

at the end of the CSS procedure compared to control animals (* significantly different from the 
control group, p < 0.05). 

 

3.5.4 Behavioural data 

No effects at all could be demonstrated in the OR test. All animals remembered 

the novel object very well and explored it to a great extent. The animals’ 

performance exceeded the chance level by far. For all treatments (Narpin, 

Enplastin, vehicle) and all groups (control, stress), the average novel object time 

resided just below 70 % (see Figure 73). 
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Figure 73: Novel object time in % during the OR test. All animals independently of treatment or 

group exhibited high novel object times. The dotted line represents chance level (50 %). 

 

In the spatial Y-maze, all animals showed a performance clearly above chance 

level. Nonetheless, Narpin and Enplastin seemed to have differential effects: 

Narpin may have protected the animals from detrimental CSS consequences, 

whereas Enplastin did not change the performance for the better or for the worse 

compared to vehicle treated animals. ANOVA did not find significant differences 

for Enplastin treated animals (group: F1, 46 = 0.314; p = 0.578; treatment: 

F1, 46 = 0.440; p = 0.511; interaction group*treatment: F1, 46 = 0.683; p = 0.413), but 

indicated a treatment effect on the percentage of novel arm time between vehicle 

and Narpin treated animals (F1, 46 = 11.210; p < 0.01). Post-hoc t-test 

demonstrated that Narpin treated stress animals spent significantly more time in 

the novel arm compared to stressed vehicle animals (T22= 2.892; p < 0.01; see 

Figure 74 A), while Enplastin treated animals spent equal amounts of time in the 

novel arm compared to vehicle animals, regardless of prior experience (see Figure 

74 B). This result was further supported by the analysis of the novel arm entries, 

where Enplastin and vehicle treated animals again performed similarly and 

entered the novel arm equally often independent of the group. For Narpin treated 
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control animals, there was a trend that they had higher novel arm times than the 

vehicle treated controls (T21= 1.890; p < 0.1; see Figure 74 A). The analysis of the 

novel arm entries for Narpin treated animals supported this trend in the control 

group: here, Narpin animals entered significantly more often the novel arm than 

the vehicle animals (T21= 2.226; p < 0.05; see Figure 75). The analysis of the 

discrimination ratio confirmed that all animals performed above chance levels, that 

Enplastin did not alter the animals’ performance in comparison to vehicle animals 

and that Narpin lead to a protection effect in animals after CSS, as they were the 

only group with an increased discrimination ratio compared to vehicle animals 

(T22 = 2.358; p < 0.05). Mimetic peptide treated animals did not differ from vehicle 

animals in their general locomotion: the time immobile (Enplastin batch: 

T45 = 0.012; p = 0.990; Narpin batch; T45 = 0.606; p = 0.547) and the total distance 

travelled (Enplastin batch; T44 = 1.002; p = 0.634; Narpin batch; T44 = 0.764; 

p = 0.449) were equal. 
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Figure 74: Novel arm time in % in the spatial Y-maze. (A) After CSS, Narpin seemed to have a 

protective effect and the novel arm time remained high. In controls, there was a trend that Narpin 
injections lead to higher novel arm times compared to the vehicle treatment (** within stress group, 
significantly different from vehicle treated animals; p < 0.01). (B) There was no significant effect of 

the Enplastin treatment, neither under control conditions nor after CSS. For both graphs, the dotted 

line represents chance level (33 %). 
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3.5.5 Summary 

Preceding tests clearly demonstrated that mimetic peptides were able to overcome 

the blood brain barrier via s.c. injections. The validity of our CSS paradigm was 

once again confirmed: stress animals exhibited enlarged adrenal glands as well as 

elevated plasma corticosterone levels compared to controls. In the spatial Y-maze, 

all animals showed a performance clearly above chance level. However, Narpin 

and Enplastin had differential impacts on the animals’ cognition: Enplastin did not 

alter the animals’ performance compared to vehicle treated animals, while Narpin 

protected the animals from detrimental CSS consequences and the novel arm time 

remained high. Hence, a modification of cognitive performance via s.c. injections 

was possible, at least for Narpin treated animals.  
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Figure 75: Novel arm entries in % in 
the spatial Y-maze. 

In the control group, Narpin injected 
animals entered the novel arm more 
often than the vehicle injected animals. 
There was no effect in the stress group. 
The dotted line represents chance level 

at 33 % (* within control group, 
significantly different from vehicle treated 

animals; p < 0.05). 
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3.6 Experiment 6: Chronic treatment of aged animals with 

mimetic peptides and the impact on cognition after 
CSS 

 

To assess the consequences of a chronic treatment with mimetic peptides in aged 

animals on cognition, male CD1 mice received s.c. injections of Enplastin, Narpin 

or vehicle (Ringer solution) on 6 consecutive days. The injections were timed that 

upon starting behavioural testing, all animals had reached the age of 15 months. 

Animals were injected in the morning; on testing days, animals received the 

injections 2 h prior to the behavioural test. The aim was to investigate the 

possibilities of reversal or at least improvement of cognitive deficits that are elicited 

by CSS during adolescence and/ or aging. 

 

3.6.1 Physiological data 

Animals were sacrificed 24 h after the last injection. Adrenal glands were extracted 

for further analysis, but independent t-tests were not able to reveal any significant 

differences between control and stress animals (T18 = 1.755; p = 0.096).  

 

3.6.2 Neuroendocrine data 

Blood samples were collected simultaneously with the adrenals, hence 24 h after 

the last injection. As anticipated, RIA disclosed equal plasma corticosterone levels 

in control and stress animals due to the 12 months of undisturbed single-housing 

after the CSS procedure (T55 = 0.306; p = 0.760). Corticosterone values resided in 

the expected basal range just above 10 ng / ml.  

 

3.6.3 Behavioural data 

No effects at all could be demonstrated in the OR test. All animals remembered 

the novel object and their performance exceeded the chance level. For all 

treatments (vehicle, Narpin, Enplastin) and all groups (control, stress), the average 

novel object time resided just below 60 % (see Figure 76).  
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Figure 76: Novel object time in % during the OR test. All animals independently of treatment or 

group exhibited novel object times above chance level. The dotted line represents chance level 
(50 %). 

 

In the spatial Y-maze, all animals showed a similar performance above or barely 

above chance level. There was neither a significant difference in the novel arm 

time between the different treatment groups (vehicle, Narpin, Enplastin) nor 

between stressed animals and controls (see Figure 77). This result was supported 

by the analysis of the novel arm entries, which also did not reveal any significant 

differences between treatments or groups. 
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Figure 77: Novel arm time in % in the spatial Y-maze. No effects at all were demonstrated in the 

spatial Y-maze. Animals exhibited similar novel arm times independent of treatment or group. The 
dotted line represents chance level (33 %). 

 

3.6.4 Summary 

In this experiment, animals were 15 months old. Thus, they had been single-

housed for 1 year after the cessation of the CSS paradigm. Consequently, there 

were no significant differences between control and stress animals regarding the 

physiological and neuroendocrine parameters. Moreover, behavioural testing did 

not reveal any differences, neither in the OR nor in the spatial Y-maze: all animals 

performed similarly independent of treatment or group. Hence, a modification of 

cognitive performance via s.c. injections in aged animals was not possible. 
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4 Discussion 
 

The aim of this thesis was the investigation of recently identified synaptic CAMs 

and their function in processes of cognition, chronic stress and aging in male CD1 

mice. Furthermore, the role of mimetic peptides as novel therapeutic targets was 

examined. 

 

4.1 Physiology 
 

Under control conditions, as well as directly after the CSS exposure or 1 year after 

CSS, physiological parameters were analysed in male CD1 mice by assessing 

body, adrenal gland and thymus weights. 

 

CSS had no influence on body weight 

The chronic activation of the HPA axis has been linked to changes in energy 

homeostasis (for example altered insulin actions), changes in food intake and 

hence, also to changes in body weight (Björntorp, 2001; Dallman et al., 2003; 

Dallman et al., 2004). Although these alterations are very well described, they are 

not fully understood. Human studies revealed that a disturbed HPA axis function is 

accompanied by abdominal obesity, an elevated body mass index and an 

increased waist-to-hip-ratio (Rosmond et al., 1998; Epel et al., 2000; Smith et al., 

2005). In contrast, a variety of studies has shown that animal models of chronic 

stress, for example models that employ subordination, can be linked to a reduction 

in body weight, which was often related to a decreased food intake (Fuchs and 

Flügge, 2002; Rygula et al., 2005; Tamashiro et al., 2006; Tamashiro et al., 2007). 

On the other hand, several laboratories presented animal models of chronic stress 

that induced an increase in body weight and fatty tissue (Bartolomucci et al., 2004; 

Moles et al., 2006; Foster et al., 2006; Solomon et al., 2007).  

Our CD1 mice did not exhibit any significant differences in body weight between 

control and stress animals, neither acutely nor in the long-term. Nonetheless, this 

finding corresponds to previous studies employing the CSS paradigm (Schmidt et 

al., 2007; Schmidt et al., 2008; Sterlemann et al., 2008; Schmidt et al., 2010). 
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Here, the experimental animals’ body weight remained stable over the course of 

the experiment as well. Although CSS exposure did not have a direct effect on 

body weight, Schmidt and colleagues (2009) were able to show that the CSS 

paradigm led to a redistribution of body fat in mice in later life. This redistribution 

caused an unfavourable visceral fat / subcutaneous fat ratio, thereby possibly 

increasing the risk for metabolic disease.  

 

Adrenal gland weight was increased shortly after CSS 

It is generally accepted that a chronic activation of the HPA axis during a long-

lasting stress phase leads to adrenal hyperactivity (Ulrich-Lai et al., 2006). 

Therefore, the adrenal weight is a regularly used parameter to assess the 

effectiveness of stress paradigms. Several studies associated chronic stress 

exposure with enlarged adrenals (Klein et al., 1992; Karst and Joels, 2003; 

Schmidt et al., 2007; Sterlemann et al., 2008; Zoladz et al., 2008), but Ulrich-Lai 

and colleagues (2006) specified these findings: hyperplasia (excessive cell 

division) and hypertrophy (inordinate cell growth) contributed simultaneously to the 

adrenal enlargement, but occurred in different adrenal sub-regions.  

Our results are in line with these previous findings, as adrenal glands were 

consistently enlarged after CSS, thus implying an increased HPA axis activity and 

an adaptation of the HPA axis to chronic stress. However, these effects were only 

observed shortly after stress. A stress effect on adrenal glands in the long-term 

was not detected, as 1 year after the CSS exposure, adrenal glands of stress 

animals exhibited weights, which were equal to those of control animals. It is likely 

that due to adaptation mechanisms, the stress animals were able to recover from 

the stress experience with regard to this parameter. The adrenal gland as an 

endocrine organ is able to adapt to different demands (hyperplasia and involution). 

As the stimulus (CSS) was not present anymore, the hyperplasia was no longer 

needed and the organ size normalised. This is conform to a precedent long-term 

study conducted by Sterlemann and colleagues (2008).  
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CSS did not alter thymus weight 

The thymus being a lymphoid organ plays a key role in initiating and supporting 

immune competence in mammals (Delima and Walford, 1975; Gomez-Sanchez, 

2009). Hence, thymus weight is an indicator for the condition of the immune 

system, which in turn is strongly associated to stress experience (Frieri, 2003; 

Deak, 2008; Stojanovich, 2010). The thymus has a crucial role in the generation of 

T cells, even though there are extra-thymic T cells as well (Clegg et al., 1996; Abo, 

2001). During the foetal and postnatal period, the thymic T cells are most active 

and have a high tendency to migrate from the thymus to the periphery after 

maturation. However, the thymus has been shown to involute during the aging 

process (Aspinall and Andrew, 2000). The thymic involution starts soon after birth. 

Thus, the thymus’ ability to provide mature T cells is diminished throughout life 

until it reaches a minimum in the elderly (Fry and Mackall, 2002; Dominguez-

Gerpe and Rey-Mendez, 2003; Rezzani et al., 2008). This is a normal age-related 

development and should not be equated with a stress-induced thymic atrophy 

(Pearse, 2006a). The thymus is known to be extremely sensitive to stress and 

often reacts towards GCs with apoptosis and therefore shrinkage (Klein et al., 

1992; Karst and Joels, 2003; Taub and Longo, 2005). Nonetheless, the 

histological status of the thymus under both conditions (aging and stress) is 

similar. A reduced amount of cortical lymphocytes as well as the shrinkage of 

thymic lobules characterise both conditions (Schuurman et al., 1994). This 

similarity renders the distinction between aging-induced involution and stress-

induced atrophy problematic. Furthermore, stress may accelerate 

immunosenescence, which is the term for aging-associated immunological 

alterations (Bauer et al., 2009). Consequently, thymus extraction in aged mice was 

not conducted. In young animals, our data did not reproduce the thymus atrophy 

after stress. However, this seems to be a finding that is not as consistent as the 

adrenal hypertrophy and hyperplasia following stress (Karst and Joels, 2003). 
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4.2 Neuroendocrinology 
 

Corticosterone levels were increased shortly after CSS 

To supply the body with energy necessary during periods of stress and high 

arousal, GCs are released as a main hormonal product of the HPA axis. Hence, 

elevated GC levels can be regarded as an endocrine correlate of a continued HPA 

axis hyperactivity. In the past, chronic stress has been frequently associated to 

pathologically elevated levels of circulating GCs and to a dysregulation of the HPA 

axis feedback mechanisms (Henry, 1992; Sapolsky, 1992; Keeney et al., 2001; 

Keeney et al., 2006; Schmidt et al., 2007; Sterlemann et al., 2008).  

In accordance to those studies, significantly elevated morning corticosterone 

levels were found in stressed animals compared to controls directly after the stress 

exposure (in animals without learning experience). As expected, there were no 

significant differences between basal stress animals and basal controls 12 months 

after CSS cessation. As the stimulus (CSS) has been absent for 1 year, the 

corticosterone levels of stress animals were able to normalise. This is conform to 

our findings for adrenal gland weight, which revealed equal values for aged 

controls and stress animals. Furthermore, these results support the hypothesis of 

Qiu and co-workers (2007), who suggested that elevated basal corticosterone 

levels should be regarded as a side effect of enlarged adrenals. 

 

Corticosterone levels were increased after learning in the MWM 

Previous studies showed an up-regulation of corticosterone after learning. 

Behavioural paradigms, such as the MWM, are indeed designed to assess 

cognitive performance, learning and memory. However, these paradigms often 

include an aversive component and the testing procedure alone induces stress in 

the experimental animals, which can be measured as elevated corticosterone 

levels (McIlwain et al., 2001; Mifsud et al., 2011; Trollope et al., 2011). 

Additionally, GCs are strongly involved in the consolidation of memories, for 

example the acquired behavioural response. It is known that apart from the stress 

hormone, stress responses and learning procedures also share some signalling 

pathways (Sandi et al., 1997; Roozendaal et al., 2006; de Quervain et al., 2009). 

Our data confirmed these findings: control and stress animals after learning did not 
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differ significantly in their plasma corticosterone levels, but exhibited in general 

much higher corticosterone levels than animals without learning experience. This 

learning-induced increase of corticosterone levels was found in young as well as in 

aged animals. However, the conclusion that learning increases corticosterone 

levels might not be applicable generally, as both, the exposure to the stressful test 

paradigm (MWM) and the learning process itself, induce corticosterone levels to 

rise. It is difficult to distinguish the process of learning from the stressful 

experience in the test paradigm. 

 

To summarise: (I) CSS acutely elevated corticosterone levels in animals without 

learning. (II) The increased corticosterone levels in animals after learning (control 

and stress animals) verified that the experimental animals were stressed by the 

MWM procedure. (III) The animals were able to recover from the stressful learning 

experience back to low corticosterone concentrations as seen in the basal animals 

from experiment 2. These animals also participated in the MWM, but were 

decapitated for trunk blood sampling only after a recovery period of 2 weeks. 

As neuroendocrine alterations are major players in the metabolic system, a 

neuroendocrine response alone is not a sufficient indicator for the experience of 

stress (Koolhaas et al., 2011). Woodson and colleagues (2003) reported that 

predator exposure as well as the exposure to a female conspecific activated the 

HPA axis in rats to a similar degree. While the first event is highly probable to be 

perceived as stressful by the animals, this is unlikely for the latter. This was 

verified by the fact that only predator exposure impaired the animals’ cognition. 

Nonetheless, if taken together, physiological and neuroendocrine parameters are 

valuable tools for the prediction of HPA axis activity and whether a specific event 

leads to stress perception or not. Thus in this thesis, the combined results of 

physiological and neuroendocrine analysis are sufficient to confirm the proper 

mode of action and the effectiveness of our CSS paradigm.  
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4.3 Cognitive testing 
 

To investigate the influence of CSS and / or aging on learning and memory 

performance, cognitive testing was performed. To test short-term recognition 

memory, the OR test was used (Dodart et al., 1997; Ennaceur et al., 1997; Gaskin 

et al., 2003; Winters et al., 2004). To assess hippocampus-dependent short-term 

spatial memory, the Y-maze test was applied (Dellu et al., 1992; Olton and 

Markowska, 1994; Conrad et al., 1996). Finally, to analyse hippocampus-

dependent long-term spatial learning and memory, mice were tested in the MWM 

test (D'Hooge and De Deyn, 2001; Alvin V. and Terry Jr., 2009).  

 

In young animals, CSS inhibited recognition memory, while the spatial Y-

maze performance remained unaffected 

In experiment 1, young animals were tested in the OR test, the spatial Y-maze test 

and the MWM test. CSS clearly inhibited the animals’ recognition memory. This 

finding is in line with the study from Scullion and colleagues (2009) and Li and co-

workers (2008), who also reported impairments in object recognition following 

stress. However, the study by Wright and Conrad (2005) showed that chronic 

stress left novelty seeking behavior intact, while it impaired spatial recognition 

memory in the Y-maze. In general, object recognition has been specifically linked 

to the function of the prefrontal cortex in humans (Schendan, 2008) and animals 

(Bussey, 2000; Barker, 2008). It seems therefore likely that the exposure to 

chronic social stress in the current study had a negative impact on this brain 

region. In contrast to these results of the OR test, in the Y-maze test, both control 

and stress animals spent more time in the novel arm than in the known arms. 

Hence, it seemed that the CSS procedure did not affect the spatial memory 

performance of our mice in the Y-maze test. However, it is possible that the 

employed ITI of 30 minutes was too short to visualise potential differences 

between control and stress animals, as both groups showed intact spatial 

recognition. To model a chronic stress situation in young animals successfully and 

visualise impairing effects on cognition, apparently, further measures need to be 

taken in the Y-maze. Thus, in follow-up studies, a prolonged ITI between the 

acquisition and the retrieval trial, for example 1 hour instead of the previously 
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employed 30 minutes, could be applied. This more challenging task may reveal 

potential stress-related impairments in young animals in the Y-maze test.  

 

In young animals, CSS partially inhibited spatial MWM learning and memory  

Previous studies have often reported about strain specific and individual variation, 

particularly in the MWM (Crabbe et al., 1999; Gerlai, 2001; Wahlsten et al., 2003). 

Thus, individual variations within experimental animal groups are already known 

as a main impediment in behavioural research and this variability remains an issue 

even in genetically identical cohorts (Saab et al., 2011). Theories about the origin 

are broadly diversified. Epigenetics (Mager and Bartolomei, 2005), site specific 

interactions, for example via animal handling staff (Crabbe et al., 1999), the 

animals’ individuality itself meaning the total collection of innate and acquired traits 

such as timidity or ignorance of risk (Lathe, 2004), early factors (foetus position, 

nutrition in utero) and postnatal effects (endocrine factors, social status) all 

potentially contribute to the individual variation in normal biology as well as in 

diseases. Despite this variety of hypotheses, it is generally accepted that individual 

variation is also a consequence of being unable to regulate all potential factors 

that might influence animal physiology and behaviour (Wahlsten et al., 2003; Saab 

et al., 2011). 

Individual variation was also an issue in our experiment, which may have masked 

overall biological effects. During the probe trial of the MWM, when the platform 

was absent, controls tended to have shorter escape latencies than stress animals, 

but due to the large variability within the groups, this effect did not reach 

significance. The major source of variation probably originated from the different 

aptitudes of animals within the same group to learn the task. There were no 

differences in locomotion such as swim speed or total distance travelled. Thus, the 

individual variability in cognitive ability is much more likely to be the source of 

variation than the variability in the non-cognitive locomotor skills such as 

swimming. This is in accordance to the data by Saab and colleagues (2011). 

During the spatial learning, all young animals were able to solve the task and 

managed to discover the escape platform faster and faster over time. Control 

animals exhibited a significantly reduced escape latency compared to stressed 
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animals, but only on spatial day 2. However, this stress effect was not robust and 

could not be replicated in a separate experiment.  

 

In young animals, cognitive flexibility was reduced by CSS  

Besides escape latency, it is common to measure also the time spent in the former 

target quadrant during the probe trial. Originally, the amount of time spent in the 

former platform quadrant was used as indicator for the strength of memory with a 

decreased amount of time being an indication for impaired cognition. However, 

recently other interpretations were considered, for example interpretations 

concerning the animals’ cognitive flexibility. Cognitive flexibility is an important 

aspect especially for extrapolation from rodent to human studies. Extrapolation to 

human studies is also desirable for the findings from this thesis, but might be a 

long-term goal, which will not be easy to achieve. Humans constantly collect new 

memories, build up on preceding ones and recognise, when a memory is no 

longer valid (Saab et al., 2011). Cognitive flexibility enables individuals to remodel 

their memory stock and shift their focus. Several studies have shown that stress 

experience can lead to deficits in cognitive flexibility in humans (Renner and 

Beversdorf, 2010; Laing et al., 2010; Plessow et al., 2011) as well as in animals 

(Girotti et al., 2011; Nikiforuk and Popik, 2011). 

This was confirmed by our findings during the probe trial, when stressed animals 

spent overall more time in the former platform quadrant searching for the target, 

while control animals spent more time in the non-target quadrants. One could 

hypothesise that due to their intact cognitive flexibility, the controls noticed quickly 

the platform’s absence and started searching in alternative areas for it. 

Conversely, the cognitive flexibility of stressed animals seemed to be impaired and 

the animals failed to disengage from their previously learned strategy and adapt to 

a novel situation by applying a more fitting behaviour.  

 

Overall, the animals showed an equal ability to apply a successful spatial strategy, 

but the stressed animals seemed to be affected to a certain degree in their 

cognitive flexibility. Nonetheless, this inhibition seemed to be in an initial phase, as 

this effect was not continued in the reversal learning phase and was not replicated 

in a separate experiment using another batch of young mice. 
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In total, CSS indeed led to decrements in the cognitive performance of young 

animals during recognition and spatial memory tasks. Nonetheless, the stress 

effects on spatial memory were not that robust due to several reasons. One could 

hypothesise that the observed stress effects acted in a selective manner and 

therefore had a stronger impact on PFC associated memory tasks than on 

hippocampus-dependent tasks. Here, the individual variability of different animals 

within a batch of mice might play a role. Another important aspect may be the 

timing of testing. In contrast to the OR test, MWM testing was performed after the 

cessation of the CSS paradigm. Hence, the animals were not tested directly under 

stress conditions, but had a few days to recover, which in turn might have 

attenuated the detrimental impact of CSS. In conclusion, there was an observable 

CSS phenotype, but it was not that pronounced and stress effects manifested 

themselves only as a mild cognitive impairment. 

 

In aged animals, CSS inhibited recognition memory 

Experiment 2 tested aged animals in OR and the MWM, i.e. 12 months after the 

CSS exposure. A recent study by Bergado and colleagues (2011) revealed that 

aged rats have an ability to detect novelty that is equal to that of young rats. The 

authors further postulated that aging indeed alters the total exploration time, but 

not the ability to differentiate between novel and known objects. Based on this and 

a study by Sterlemann and co-workers (2010), a long-term inhibition in cognitive 

functions due to the CSS procedure (but not due to aging) was expected, as they 

were able to demonstrate long-term cognitive impairments on the spatial memory 

performance of mice in the Y-maze test.  

In line with these previous findings, our data revealed adverse long-term effects on 

the memory performance in the OR test due to the CSS procedure 12 months ago: 

controls preferred the novel object, while stress animals did not distinguish 

between the two objects.  

 

Aged animals exhibited different vulnerabilities towards CSS 

A study by Schmidt and colleagues (2010) discovered vulnerable and resilient 

individuals within a large group of animals that underwent the CSS procedure. 

Vulnerable mice were characterised by still markedly elevated basal corticosterone 
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levels even after a recovery period of 5 weeks. Conversely, resilient mice 

recovered quickly and could not be distinguished from controls after their recovery. 

Further analysis of our OR results also indicated different vulnerabilities within the 

group of stressed animals. The stress animals’ memory performance, unlike the 

controls’, did not fit a Gaussian, but a bimodal distribution with values grouped 

around two distinct peaks (see chapter 3.2.3). The two different peaks are likely to 

resemble two groups of stress animals with different susceptibilities towards the 

CSS exposure 12 months ago. The first group exhibited a weak OR performance 

and was clearly lastingly affected by the CSS. The second group explored the 

novel object longer, performed well above the cut off criterion and hence, seemed 

to be protected. This situation might run parallel to the situation in humans, where 

some individuals suffer from severe and adverse life events, but recover from it 

without any long-term damages, while vulnerable individuals may develop an 

affective disorder after comparably mild stress experience (Charney, 2004; 

Schmidt et al., 2008). This similarity to the human situation is another indication for 

the importance of extrapolation from rodent to human studies and should be 

considered in future experiments. 

 

Aging inhibited spatial learning and memory in the MWM 

A recent study by Bergado and co-workers (2011) showed that major aging-

induced impairments in rats appear especially in the MWM test and that old rats 

learn slower than young ones. Similar results have been reported in other studies 

that employed the MWM test to evaluate spatial learning and memory 

(Rasmussen et al., 1996; Schulz et al., 2002; Topic et al., 2005). Hence, the 

experimental mice were expected to suffer from cognitive impairments in the 

MWM as well. 

Our results confirmed this hypothesis: aged mice, stress as well as control 

animals, failed to acquire the task. During the spatial training, they did not exhibit 

an improvement in escape latencies that was stable from day 1 to day 3. Instead, 

the animals fell back to the level from the day before. At 16 months of age, the 

task according to our protocol might have been too challenging for them. Probably, 

an aged animal needs more training days than the young conspecific to show an 

improvement in the learning curve. Thus, a prolonged spatial learning phase is 
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suggested, for example 6 days of spatial learning instead of the previously applied 

3 days. Aging-induced impairments in visual acuity or in the musculoskeletal 

system can be excluded as failure source, since during the visual training, the 

animals managed to locate and climb onto the platform continually faster.  

 

In aged animals, cognitive flexibility was reduced by CSS  

Cognitive flexibility has been linked to the PFC (Rasmussen et al., 1996; Chao and 

Knight, 1997; Head et al., 2008). The PFC is a brain area that was often 

overlooked in basic research of aging. Animal models of aging frequently have 

been focusing on cognitive deficits due to hippocampal malfunction (Gallagher and 

Rapp, 1997; Rapp et al., 1999; Small et al., 1999; Smith et al., 2000; Small et al., 

2004). However, the PFC is also vulnerable to aging-induced, detrimental 

alterations for example in executive function (Salat et al., 2001; Salat et al., 2005; 

Nordahl et al., 2006; Shankar, 2010; Kaczorowski et al., 2011; Bloss et al., 2011). 

In our experiment, control animals searched significantly longer in the non-target 

quadrants, while stress animals spent equal amounts of time in all quadrants. As 

already suggested for the young animals, this might point to a stronger cognitive 

flexibility in the controls, which persisted even at this age and enabled the controls 

to adapt to the novel situation faster than the stress animals. One could speculate 

that hippocampal aging was more advanced than PFC aging, as controls had an 

intact cognitive flexibility, but spatial learning was inhibited. Furthermore, the PFC 

has been suggested as a brain area able to compensate for some aging-induced 

cognitive deficits (Aine et al., 2006).  

Additionally, controls exhibited reduced escape latencies during the probe trial. 

This might be an indicator that although all animals were cognitively challenged in 

the MWM due to their advanced age, control animals were able to remember the 

platform location after three training days. Intriguingly, this was not the case for 

animals that were exposed to CSS during adolescence, indicating long-lasting 

effects of the stress experiment. This is in line with a previous study by Sterlemann 

and colleagues (2010). 
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Aging affected spatial learning and memory, but not recognition memory 

Previous studies have highlighted the independence of age-related deficits across 

different cognitive and behavioural domains (Baxter, 2010; Burke et al., 2010) and 

dissociated object recognition and spatial navigation (Winters et al., 2004; 

Forwood et al., 2005). Instead of supporting the concept of a global and 

generalised mechanism for aging-induced cognitive decrements, the authors 

postulated multiple region-dependent mechanisms that underlie different aspects 

of aging. 

This in accordance to our results: aging inhibited the spatial memory performance 

of all animals in the MWM, as they were not able to improve their learning curve 

during the spatial training, but did not alter recognition memory. Overall, it seemed 

that aging specifically affected hippocampus-dependent learning (MWM), while 

hippocampus-independent learning (OR) remained intact.  

 

To summarise, CSS had acute and long-term effects in the OR test and inhibited 

recognition memory. There were no aging-induced decrements in hippocampus-

independent recognition memory, as the aged controls exhibited a clear 

preference for the novel object. In the MWM, CSS partially impaired the spatial 

memory performance (young mice: spatial day 2; aged mice: probe trial). 

Furthermore, in both young and aged animals, stress animals seemed to have a 

limited cognitive flexibility compared to controls, but only during the probe trial.  

 

4.4 Synaptic CAM dynamics on mRNA and protein level 
 

As highlighted in the introduction, chronic stress has profound effects on brain 

structure and function. But how are stress responses translated into changes in 

neural circuits and finally lead to changes in behaviour and cognition? The 

underlying cellular and molecular mechanisms still remain elusive (Sandi, 2004). 

Since nCAMs of the Ig-SF mediate synaptic function and are able to remodel 

neuronal circuits, recent studies have highlighted their role in chronic stress-

induced cognitive and neuronal alterations (Bisaz et al., 2011). However, this is a 

rather new field of research and only few laboratories have dealt with the mRNA or 

protein expression levels of nCAMs after CSS, learning and during aging yet.  
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During the screening process of mRNA expression patterns, three promising 

candidate nCAMs were found. Those nCAMs, namely Nptn, Nec 3 and Nrxn, 

exhibited altered mRNA levels even 12 months after CSS cessation. The 

discussion therefore focuses on these candidate nCAMs. 

 

Learning as a crucial factor in nCAM dynamics 

The most prominent findings for nCAM regulations on mRNA level were found in 

animals after learning. Hereby, CSS was often involved as well. Basal effects, if 

any, seemed to be of little importance. It can be thus concluded that learning is a 

crucial event in the regulation of nCAM dynamics and that learning processes alter 

the flexibility of the whole nCAM system. It is known that synapses form the 

foundation for learning processes: first, there is a change in the electrical 

properties of a synapse, then, second messenger molecules interfere and finally, 

synaptic proteins are modulated (Bear et al., 2007). As nCAMs bridge the synaptic 

cleft, they are very likely to be influenced by learning-induced changes at the 

synapse. This can be confirmed by previous studies for all three of our candidate 

nCAMs. Electrophysiological changes related to learning led to modulations in 

Nptn dynamics: in hippocampal cell culture, Np 65 was increased by LTP, while 

antibodies against Np 65 impaired hippocampal LTP (Owczarek, 2011). A specific 

mouse viral Nec 3 knockdown in vivo indicated a link between this nCAM and 

cognitive function (Wang et al., 2011). Several Nrxn mutant mice revealed 

cognitive deficits in spatial memory and learning (Blundell et al., 2010), impaired 

hippocampal LTP (Dahlhaus et al., 2010) and a reduced synaptic transmission 

(Etherton et al., 2009). In conclusion, learning is suggested as an important 

regulating event in nCAM dynamics, although it is very likely that it is only one of 

several mechanisms involved in the interplay of nCAM regulations. 

 

Potential interactions of aging and learning in nCAM dynamics 

The changes that occur shortly after learning at the synapse may be converted 

into permanent ones by altering the synapse structure lastingly. Hence, storage of 

long-term memory is accompanied by the synthesis of new proteins and the 

modulation of already existing proteins (Bear et al., 2007). These modulations take 

place in the cell body, but also locally at the synapse, where new gene products, 
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presumably also nCAMs, lead to structural modifications and growth of new 

connections (Kandel, 2001; Bailey et al., 2004; Bailey and Kandel, 2008; Choi et 

al., 2011). This is in line with our results, which also showed long-term effects on 

the mRNA expression of specific nCMAs 12 months after CSS and a recent 

learning experience. Due to these observable long-term effects on nCAM 

dynamics, one could speculate that aging and cognition interact to regulate nCAM 

expression patterns. Besides structural alterations at the synapse, epigenetic 

processes or altered signal cascades are also conceivable mechanisms that 

regulate nCAMs in the aging brain and after learning. 

 

Synaptic CAMs were differentially regulated in dependence of the type of 

stressor  

In this thesis, a prominent finding was the up-regulation of specific nCAM mRNAs 

after learning as well as the inhibition of this up-regulation by CSS.  

Intriguingly, other stress paradigms resulted in different effects: a study by Wang 

and colleagues (2011) assessed the impact of early life stress (ELS) on Nptn-

mRNA levels in conditional forebrain CRHR1 knockout and wild-type mice. 

However, there were no significant differences in the regulation patterns of Nptn 

after ELS, neither in the wild type nor in the CRHR1 knockout. The results merely 

sufficed to indicate a trend that Nptn might be down-regulated after ELS. Since 

Wang and colleagues did not measure after learning, it might still be plausible that 

ELS alters nCAM dynamics, but nobody has looked at this yet. The discrepancy 

among this study and the present thesis also underlines the importance of the time 

window during which the stressor is applied, as CSS and ELS are 2 distinct types 

of stress with different durations (7 weeks vs. 7 days) (Rice et al., 2008; Lupien et 

al., 2009), different timings (adolescence vs. first postnatal week) and thus also 

different developmental conditions of the experimental animals (fully organised 

hippocampus vs. a hippocampus in growth). This difference in the developmental 

status also plays a role for Nptn, as Np 65 is not expressed until PD 14 (Marzban 

et al., 2003), while Np 55 is already expressed in the embryonic brain (Buckby et 

al., 2004). This suggests that Np 65 was not even present at the time of ELS, while 

both isoforms were fully expressed during the CSS paradigm. Nonetheless, the 

2 isoforms are not distinguishable by our ISH. For future experiments, it might be 
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interesting to design distinct Nptn ribonucleotide probes for the 2 isoforms, which 

enable the differentiation between Np 65 and Np 55 regulations. 

 

Dissociation of nCAM mRNA and nCAM protein findings 

In contrast to differences observed in the regulation of nCAM mRNA, the analysis 

of nCAM expression on protein-level did not reveal any significant differences 

between the groups. This was the case for young animals as well as for aged 

mice. Several reasons are conceivable. It might be that potential differences were 

masked due to the high variations within a relatively small group. Thus, it could be 

useful to repeat the experiment with an extended group size to reduce the effect of 

individual variability. Another important aspect may be that the analysis on protein 

level, in contrast to the analysis on mRNA level, was conducted for the whole 

hippocampus. This might have masked effects that appeared in separate 

hippocampal compartments or sub-regions. Nonetheless, a technique that allows 

the protein analysis of several separate hippocampal regions is difficult to 

implement and hence also imprecise. One could even speculate that protein 

regulations appear not only in separate hippocampal compartments, but in a 

synapse specific manner. To visualise a synapse specific localisation, a different 

methodical approach is needed. Finally, it is also possible that despite distinct 

effects on mRNA level, these effects simply are not sufficient to be clearly 

noticeable on protein-level. Overall, the absence of a significant difference 

between control and stress animals on nCAM protein level does not diminish the 

validity of the observed mRNA results. 

 

Learning is stressful, but the GR was not sufficient to regulate nCAM 

dynamics 

As behavioural tests, such as the MWM, lead to stress experience in the 

experimental animals and increase corticosterone levels (see chapter 4.2), it was 

important to exclude the possibility that nCAMs were regulated due to the release 

of GCs during the applied learning paradigms. Therefore in experiment 3, dex 

injections in mice were conducted to test whether the effects observed in nCAM 

regulation appeared due to a direct regulation via the GR. Dex is a GR agonist and 

has emerged from its extensive usage in the dexamethasone suppression test 
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(DST). Dex has become a valuable and reliable tool to study HPA axis activity and 

affective disorders related to stress (Carroll et al., 1981; Holsboer, 1983; APA 

Task force, 1987; Cole et al., 2000; Coryell et al., 2006; Steimer et al., 2007).  

For the purposes of this thesis, the dex injections had the aim to mimic a stressful 

situation and induce suppression robust GR activation. Afterwards, nCAM-mRNA 

regulation patterns were screened for potential differences between controls and 

dex treated mice. To flood the body with the synthetic glucocorticoid and ensure 

the drug’s effectiveness, the animals were subcutaneously injected with high 

doses of dex (10 mg / kg body weight). The dex injections activated the 

physiological feedback process and drastically reduced the amount of endogenous 

corticosterone, especially 8 h after the injection, when the mice approached the 

evening circadian peak that is typical for nocturnal mammals. This is in 

accordance to previous findings in humans indicating that the suppression of 

plasma cortisol by dex persists for at least 24 h (APA Task force, 1987). The 

reduction of the endogenous corticosterone levels in our mice confirmed that the 

drug was able to overcome the blood brain barrier in a sufficient manner. 

Subsequent analysis of nCAM-mRNA autoradiograms revealed that there were no 

differences in the hippocampal mRNA expression patterns (CA1, CA3, DG) 

between the control and the dex group at any of the five tested time points. As no 

research group has looked into this matter yet, this finding provides a novel insight 

within the scientific field of novel nCAMs and their role in stress and learning.  

 

In total, dex clearly induced the GR, similar to the activation during a stressful 

learning paradigm, but nCAM expression was not solely regulated by dex. Hence, 

for the mRNA effects seen so far, it is very unlikely that the GR alone was a major 

player. A direct regulation via glucocorticoids can be excluded, while the regulation 

of nCAM mRNA after learning was a consistent finding. Consequently, the 

presented mRNA regulations most likely developed due to the experience of both 

stress and learning. 
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Alterations in nCAM dynamics could be implicated in stress- or aging-

induced cognitive impairments 

At the moment, a distinct causal link between nCAM regulations and cognitive 

decrements cannot be established. However, in this thesis, it was shown that 

nCAM regulation is strongly associated to chronic stress, learning and aging. 

Chronic stress and aging both diminish cognitive function and increase the 

vulnerability towards adverse life events such as disease (see chapter 1.2.2). Due 

to the strong association between nCAMs, chronic stress and aging, nCAMs are 

suggested to be potential regulators in stress- and aging-related alterations that 

are accompanied by symptoms such as cognitive impairment. Nonetheless, 

conclusive human data on nCAM regulations and the implication for cognitive 

diseases are missing in the literature. For Np  65, it is known that the distribution in 

the human brain is remarkably different as compared to rodents. Np  55 expression 

could not be detected at all until now in the human brain. Bernstein and colleagues 

(2007) therefore proposed different cellular functions of Nptn in different species. 

Nec 3 has been revealed to influence axodendritic adhesion and plasticity (Honda 

et al., 2006), but until now only in the mouse model. Dysregulation of the human 

Nrxn-Nlgn complex has been shown to play a role in schizophrenia, autism and 

mental retardation (Kim, 2008; Yan, 2008; Rujescu, 2009). Besides these findings 

for Nrxn-Nlgn, human data are lacking, but still it is very likely that other nCAMs 

also play a crucial role in cognitive alterations related to stress-induced diseases 

or aging. This remains an important issue for future studies. 

 

4.5 Mimetic peptide treatment 
 

4.5.1 Specificity of mimetic peptides  

The differentiation between Np 65 and Np 55 was not possible for the analysis of 

mRNA results, as the ISH ribonucleotide probe was designed to recognise both 

isoforms. Hence, the mRNA results discussed before cannot be attributed to one 

specific Nptn isoform. However, for the effects on cognitive performance after 

mimetic peptide application, this was not an issue: the mimetic peptides were each 

derived from one isoform only, Narpin from Np 55 and Enplastin consequently from 
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Np 65. Thus, the effects elicited by one mimetic peptide can be assigned to a 

specific isoform and thus may indicate a potential implication in cognition or aging.  

 

4.5.2 Acute vs. chronic mimetic peptide treatment  

After acute administration, both peptides were able to improve the spatial memory 

performance in the Y-maze test, although for Narpin, this effect was not that robust 

and resulted only in a mild improvement. One could speculate that a single 

treatment, such as an intrahippocampal injection, was in this case not sufficient to 

initiate changes that underlie the augmentation of cognitive functions. These 

changes might be for example structural alterations, modifications in certain 

signalling pathways or the synthesis of new proteins. It is also likely that a specific 

interplay of several processes and events is needed. A limiting factor could be that 

the time span between the acute administration and the time point of testing was 

too short to allow these restructuring processes. Animals received the mimetic 

peptide either 30 minutes before the behavioural testing or during the ITI. They 

were decapitated on the same day approximately 2 hours after the retrieval trial, 

which limits the time window for restructuring processes to less than 4 hours. 

Narpin might be a substance that needs more time to have a beneficial effect on 

cognition. This is in line with the findings for the chronic Narpin treatment, where 

animals received overall 6 injections within 1 week. Here with a time window of 

7 days from the first injection until testing, Narpin clearly improved the spatial 

memory performance in the Y-maze. 

After chronic treatment, Enplastin was not able to interfere with the spatial 

memory. It is possible that at the time point of testing, the concentration of 

Enplastin was too low after even after several s.c. injections. Enplastin, in contrast 

to Narpin, might be a substance that needs to be present in high concentrations to 

act beneficially, while the time window might be less important. This is in line with 

the findings after acute administration, where Enplastin was injected directly into 

the hippocampus via intrahippocampal cannulas, which ensured a high 

concentration directly at the target area. Here, Enplastin clearly improved spatial 

memory performance in the Y-maze test. A prior experiment indeed showed that 

both mimetic peptides were able to cross the blood brain barrier via s.c. injections. 
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However, the concentration at the time point of testing after an intrahippocampal 

administration is likely to be higher than after a single s.c. injection, as the peptide 

administration is specifically limited to the hippocampus, while after s.c. injections 

the mimetic peptide distributes through the whole body to enter the brain. To which 

extent Narpin or Enplastin penetrate the blood brain barrier and then target 

specifically the hippocampus remains unclear. Hereby, degradation processes 

influence the biological half-life of the substance, but it is not known how or when a 

mimetic peptide is decomposed after an s.c. injection.  

 

4.5.3 Mimetic peptides and hippocampus-independent learning 

Narpin seems to be a substance that is able to improve spatial memory particularly 

after chronic treatment, while Enplastin is only active in a beneficial way after 

acute application. Both were able to improve spatial memory performance in the 

Y-maze test, whereas they did not alter recognition memory in the OR test. It is 

conceivable that due to a “ceiling-effect”, the peptides could not further increase 

recognition memory: all animals already performed so well (novel object time of 

70 %) that an additional increase in the amount of time spent with the novel object 

might be difficult due to the natural tendency of mice to explore their surrounding 

environment. Another important aspect may be the involvement of different brain 

regions for the different behavioural tests: the OR test according to our protocol is 

a mostly hippocampus-independent test, while the Y-maze test mainly depends on 

the hippocampus. As the target area for the mimetic peptides was the 

hippocampus, the finding that a mimetic peptide treatment did not modulate 

hippocampus-independent recognition memory seems convincing. However, it 

remains unclear to which extent s.c. injections specifically target the hippocampus, 

thereby creating the possibility that mimetic peptides reached also brain regions 

related to object recognition such as the PFC. This leads to the consideration that 

Enplastin and Narpin might be involved only in hippocampus-dependent learning 

and simply cannot interfere with recognition memory even if the mimetic peptides 

were present in the responsible brain regions. Nonetheless, these findings do not 

automatically allow the conclusion that Np 65 and Np 55 are not involved in 

hippocampus-independent learning. Enplastin and Narpin are not synthesised as 
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exact copies of Nptn, they do not fully mimic Nptn function but rather act as partial 

agonists (Owzcarek, 2010; Owzcarek 2011). For example, Enplastin is likely to 

cluster several Np 65 molecules on its membrane due to its dendrimeric form, 

which might lead to an increased activation of Np 65-triggered signalling pathways. 

Another difference between this mimetic peptide and the nCAM from which it is 

derived is the evoked pattern of synaptic Ca2+-release. Due to these differences, 

the effects elicited by the mimetic peptides can only indicate a potential function of 

the associated nCAMs. 

 

4.5.4 Limitations of the study 

Interestingly, a relatively frequent finding was that vehicle treated animals did not 

reach a spatial memory performance clearly above chance level, in contrast to the 

animals treated with mimetic peptides. One could speculate that these decrements 

in the Y-maze test emerged as a side effect of the rather stressful 

intrahippocampal injection procedure. Conversely to the s.c. injections, when the 

animals were merely handled for a few seconds, during the intrahippocampal 

injection, the mice had to be hand-held and fixed for at least 4 minutes to allow a 

slow administration and ensure the diffusion of the substance. The hypothesis of 

an impaired cognition due to the stressful injection procedure is supported by the 

fact that in case of the less stressful s.c. injections, animals showed an anticipated 

performance above chance level in the Y-maze as well as in the OR test. 

In conclusion, the beneficial effect of our mimetic peptides after acute treatment 

seemed to be able to take place mainly due to the impaired cognition of vehicle 

animals. It is suggested that the mimetic peptides could counteract the already 

underlying cognitive deficits in the vehicle animals and raise their performance to a 

“normal” and anticipated level. 

 

4.5.5 Memory could not be modulated in aged animals 

In aged animals, both mimetic peptides failed to alter spatial memory performance 

in the Y-maze as well as recognition memory in the OR test. It is conceivable that 

a beneficial effect on cognition needs certain resources or processes to come into 
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action. These resources, for example proteins, enzymes and hormones are 

probably limited and less dynamic in aged animals. An example for a crucial 

process, which might be impaired in aged individuals, is synaptic plasticity. 

Previous animal studies dating back to the late 1970s have shown that age-related 

neurocognitive changes are linked to age-dependent alterations in synaptic 

plasticity (Barnes, 1979; Freitas et al., 2011). It is also likely that these aging-

related limitations have a broadly diversified impact, for example they might affect 

the flexibility of circuits as well as the reaction rate of signalling cascades and the 

availability of certain crucial agents. Thus, one could speculate that also nCAM 

dynamics are more rigid and less plastic than in younger animals. Hence, to 

achieve a modulation of memory in aged animals, additional measures need to be 

taken to overcome the boundaries set by the aging process. For follow-up studies, 

it is feasible to apply higher concentrations of the mimetic peptides. However, 

intrahippocampal injections, which provide an accurate mimetic peptide application 

in high dosages, are difficult to be employed in aged animals due to the increased 

risk of mortality after a surgery. For this reason, it is suggested to implement the 

increase in concentration via s.c. injections and apply several dosages for 

example 15, 20 and 25 mg/kg body weight instead of the prior used dosage of 

10 mg/kg body weight. Another important aspect might be the total duration of the 

treatment, which could be easily prolonged from the previously employed 7 days 

to 14 or 21 days. Finally, one could even hypothesise that learning processes in 

the aging brain do not depend on the same pathways and mechanisms as in the 

young brain and that nCAMs are not at all involved or play only a minor role. This 

needs to be tested in future experiments. 

 

4.6 Summary 
 
Overall, nCAM mRNA expression was altered particularly after learning and the 

modulation of cognitive performance or learning via nCAM derived mimetic 

peptides was possible. The 2 findings together further underline the importance of 

learning processes, when analysing nCAMs and their implication for cognition. 

However, it is important to note that an increased nCAM expression, for example 

more Nptn homophilic binding, not necessarily leads to synaptic and structural 
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remodelling and finally to cognitive enhancement. A good example in this respect 

is NCAM: it has been shown that the inhibition of NCAM homophilic binding via 

polysialylation might serve as a protection mechanism against overstimulation 

induced by chronic stress (Sandi, 2004) (see chapter 4.8). A beneficial effect on 

cognition is dependent on a variety of factors such as timing, type of administration 

and concentration. Thus, the conclusion “the more, the better” is likely not 

applicable for the sophisticated interplay in nCAM dynamics. However, evidence 

was provided that mimetic peptides are able to modulate memory. Altogether, 

these findings confirmed nCAMs as an important novel therapeutic target in the 

search of drugs against stress-induced or age-related cognitive impairments. 

 

4.7 Conclusion 
 
Based on the multiple levels of evidence, which have been provided in the 

previous chapters of this thesis, the following conclusions can be drawn: 

 

1. CSS affects basal HPA axis activity. 

2. CSS has acute and long-term adverse effects on hippocampus-dependent 

(MWM) and hippocampus–independent (OR) learning and memory. 

3. Aging impairs spatial learning and behavioural performance. 

4. CSS, learning and aging differentially affect nCAM-mRNA regulation 

patterns. 

5. Regulations of nCAM expression are not influenced by a direct regulation 

via the GR. Learning experience plays an essential role in this context. 

6. Enplastin and Narpin are both Nptn derived peptides, which are able to 

improve cognition under certain conditions.  

7. Alterations in nCAM dynamics play an important role in learning processes. 

8. Alterations in nCAM dynamics could be causal for stress-induced and / or 

age-related differences in cognitive performance. 

 

In conclusion, the findings described in this thesis support the hypothesis that 

stress and aging induce cognitive deficits and suggest synaptic CAMs as potential 

agents regulating the underlying molecular mechanisms. Synaptic CAMs were 
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confirmed to be promising molecular targets to modulate cognition and treat 

cognitive impairments. 

 

4.8 Future perspectives 
 

In contrast to already well characterised synaptic CAMs like NCAM, the nCAMs 

that are discussed in this thesis may be considered as a novel group, as they just 

have been recently identified. Hence, there are still a lot of issues that need to be 

clarified. 

One aspect might be whether specific nCAMs act in a hierarchical manner or if 

several nCAMs work together, acting in parallel (Washbourne et al., 2004). 

SynCAMs and Nrxns may be an example for different adhesion systems that are 

connected to each other, as both contain a binding site for the same cytoplasmic 

scaffolding protein, which activates identical downstream effectors (Dean et al., 

2003). This common scaffold may be able to integrate signals from different 

extracellular pathways and organise them in a certain ranking order. Thus, it is 

conceivable that there are “early” nCAM systems, which are positioned upstream 

of others. These early nCAMs might be essential for initial synaptic events, for 

example during synaptogenesis, while “late” nCAMs contribute to the stabilisation 

and maturation of synapses. Nonetheless, it remains elusive whether different 

adhesion systems communicate with each other and how that could contribute to 

synapse formation and organisation.  

Another important issue that needs to be addressed is how the activity of nCAMs 

is regulated. Washbourne and co-workers (2004) suggested an activity-dependent 

mechanism, which leads to alternative splicing of nCAM transcripts as response to 

a specific event. These events may be stress or learning experience and lead to 

different activities that regulate nCAM expression. A stress-dependent mechanism 

that regulates nCAM expression has already been reported by Sandi and 

colleagues (2004) for NCAM. NCAM-140, which is a specific isoform of NCAM, 

has been proposed to have a decisive role in the stress-induced hippocampal 

dendritic atrophy that particularly affects CA3 pyramidal neurons. NCAM-140 

expression is diminished after stress, since chronic stress exposure leads to a 

reduced synaptic efficacy, synapse elimination and finally structural shrinkage. 



 

Discussion

 
 

 149 

Pre-existing synapses may be disconnected and the interaction between NCAM 

and FGFR might be hampered, which is responsible for neurite outgrowth. A 

similar mechanism has been suggested for polysialic acid NCAM (PSA-NCAM), 

which is supposed to be part of a neuroprotective circuit and increases plasticity. 

The process of polysialylation is a posttranslational modification that diminishes 

the adhesive properties of NCAM (Tsoory et al., 2008). Due to its “slippery” 

conformational characteristics, PSA-NCAM reduces the binding to other proteins 

(Rutishauser, 2008). Several diseases are linked to increased PSA-levels, for 

example Alzheimer’s disease (Mikkonen et al., 1999), chronic neuropathic pain (El 

Maarouf et al., 2005) and temporal lobe epilepsy (Mikkonen et al., 1998). Their 

pathology often involves the loss of cellular elements or an abnormal circuitry with 

cells that need to be replaced or circuits that need remodelling. The increase in 

PSA-levels could be seen as an attempt to accelerate and improve the repair 

processes. Stress also induces an up-regulation in PSA-NCAM, disconnecting 

synapses and thereby protecting them from overstimulation and potential 

damages exerted by excessive glutamatergic input. More nCAM activity-regulating 

mechanisms are also conceivable for other nCAMs. However, this has to be 

verified in future studies. 

A further important aspect for future studies might be the choice of the mouse 

strain. Strain-specific differences in behavioural, biochemical and molecular 

properties are well described in the literature (Bothe et al., 2005; Brooks et al., 

2005; Nesher et al., 2011). In this thesis exclusively male, CD1 mice were used. 

CD1 is a genetically heterogeneous outbred mouse strain, which provides 

individuals with varying innate traits such as resilience or vulnerability towards 

stress experience (Rice and O'Brien, 1980; Chia et al., 2005). An inbred mouse 

strain exhibits a lower genetic variability, for example mice from the highly 

emotional BALB/c strain in general show elevated levels of anxiety (Dulawa et al., 

2004), while C57BL/6 mice are known to have a non-anxious phenotype (Ohl et 

al., 2003). Palumbo and colleagues (2009) found different effects of chronic stress 

on learning and memory in 2 genetically different strains of mice; the behaviour as 

well as neurodevelopmental and neurochemical parameters revealed strain-

specific properties. Hence, dependent of the strain, mice experiments might 
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provide varying insights into the regulation patterns of nCAMs and their role in 

stress, learning and aging. 

The specific effects of chronic stress exposure emerge as a function of the timing 

and the duration of the stress experience (Lupien et al., 2009). Thus, it is very 

likely that the choice of the stress paradigm might lead to different results 

regarding behaviour and nCAM regulation. Our CSS paradigm interferes with the 

adolescent phase for 7 weeks long and employs a social stressor. Stress in 

adolescence is known to decrease neurogenesis in the DG (Gould et al., 1997), 

reduce hippocampal volume (McEwen, 2000b) and induce dendritic atrophy in 

hippocampal CA3 pyramidal neurons (Magarinos and McEwen, 1995). In contrast, 

prenatal stress has “programming” effects on the HPA axis and the brain (Barker, 

1991), as maternal GCs are able to at least partially pass through the placenta and 

reach the foetus (Seckl, 2008). This may also have an impact on foetal early 

expressed nCAMs and alter nCAM activity and regulation patterns in the long-

term. Postnatal stress, such as maternal deprivation, has long-term effects beyond 

the HPA axis: for example, the density of CRH binding is increased in the PFC, 

hippocampus, cerebellum, amygdala and the hypothalamus (Anisman et al., 

1998). The intensity of these long-term effects is dependent on the duration of the 

pups’ separation from the dam and of the age of the pups (de Kloet and Oitzl, 

2003). Again, this may influence nCAM expression and involved signalling 

pathways. Besides applying stress paradigms that have an impact on life stages 

other than the adolescence, it would be also interesting to test mice in stress 

paradigms that indeed interfere with the adolescent phase, but employ a different 

type of stressor than our CSS paradigm. Consequently, chronic restraint stress or 

chronic social defeat stress might be conceivable for future studies as well.  
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