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1. Introduction 
1.1. Retroviruses 
Retroviruses are a large and diverse family of RNA viruses. Virions (i.e. virus 

particles) of retroviruses are enveloped particles about 80-100 nm in diameter. They 

contain two copies of a single-stranded, linear, nonsegmented RNA genome of 

positive polarity 7-12 kilobases (kb) in length. The characteristic of this family is its 

replication mechanism, which includes the reverse transcription of the single-

stranded virion RNA into double-stranded DNA and the integration of this DNA into 

the host genome as a provirus.  

All retroviral genomes contain three major coding domains, gag, pol and env, that 

carry the information for the virion proteins (Figure 1.1) [1].  

 

 

 

Figure 1.1.: Genomic organization of a retrovirus RNA-genome.  
The retroviral genes gag, pol and env are surrounded by the untranslated sequences. 
 

 

 

Gag directs the synthesis of internal virion proteins that form the matrix, the capsid 

and the nucleoprotein structures. Pol contains the information for the reverse 

transcriptase and the integrase enzymes and the surface and transmembrane 

components of of the viral envelope protein are derived from env. 

An additional coding domain in all retroviruses is pro, which encodes the virion 

protease. Simple retroviruses bear only this basic information, whereas complex 

retroviruses contain additional sequences encoding proteins with regulatory or 

auxiliary functions.  

The family of Retroviridae is divided into two subfamilies, the Orthoretrovirinae and 

the Spumaretrovirinae. The Orthoretroviriane subfamily consists of 6 genera, the 

Alpharetrovirus, Betaretrovirus, Gammaretrovirus, Deltaretrovirus, Epsilonretrovirus 

and the Lentivirus. The Spumaretroviriane subfamily consists of a single genus, the 

Spumaretrovirus.  
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Table 1.1.: Classification of Retroviruses. 
a Distinctive features seen in transmission electron micrographs 
 

 

 

Various members of α, β-, χ and δ-Retroviruses can cause cancers in humans and 

other mammals and in birds. Members of the Lentivirinae cause immunodeficiency 

diseases in various animals. Spumavirinae are not known to cause diseases. 

 

1.2. HIV as a complex retrovirus  
1.2.1. The HIV-1 genome organization and viral proteins 
The best known and probably most studied retrovirus is the Human 

Immunodeficiency Virus (HIV), which is a Lentivirus. Figure 1.2 shows a schematic of 

the 9,75 kb HIV-1 proviral genome. It contains several open reading frames (i.e. 

genes) that code for a total of 15 proteins [2,3]. The protein-coding region is flanked 

by long terminal repeats (LTR). The LTRs are produced during reverse transcription 

and are composed of the U3 (unique, 3’-end), the R (repeated) and the U5 (unique, 

5’-end) regions. The LTRs are essential for viral transcription, which initiates in the 5’ 

LTR and terminates in the 3’ LTR.  

In addition to the gag, pol and env genes found in all functional retroviral genomes, 

the HIV proviral genome contains genes that encode regulatory proteins (tat, rev), as 

well as genes for “accessory” proteins (vif, vpr, vpu, and nef). 
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Figure 1.2.: Schematic composition of the HIV-1 genome. 
Illustrated is the structure of the viral genome of HIV-1. The viral RNA contains three typical retroviral 
genes gag, pol and env, as well as lentivirus-specific regulatory and accessory genes rev, tat, nef, vpr, 
vpu and vif. At the 5’- and the 3’-site of the RNA LTR regions are positioned. The colored boxes 
symbolize the different protein-coding sequences with different reading frames. 
 

 

 

Figure 1.3 shows a schematic of a mature HIV virion. Like all retroviruses, the HIV 

particle contains a lipid bilayer envelope associated with viral glycoproteins. The 

envelope surrounds a capsid, which contains the viral RNA genomes and enzymes.    

The gag gene codes for the Gag polyprotein precursor Pr55GAG. Cleavage of Pr55GAG 

by the viral protease during virus maturation produces the structural proteins Matrix 

(MA), Capsid (CA) Nucleocapsid (NC), and the p6 protein.  

Inside the capsid, displayed in Figure 1.3, two copies of the single-stranded RNA 

genome are stored. These RNA molecules are stabilized and packaged with the aid 

of the nucleocapsid proteins [3].  

The information for all enzymatic proteins of the virus, the reverse transcriptase (RT, 

p66/p51), the protease (PR, p11) and the integrase (IN, p32) are contained in the pol 

gene. These proteins are synthesized from the Gag-Pol- polyprotein precursor 

protein (Pr160GagPol), from which they are cleaved by the viral protease. During 

maturation of virus particles (see section 1.2.2), the protease first cleaves itself from 

the polypeptide chain and then cleaves the other proteins from the Gag and Gag-Pol 

polyproteins. The reverse transcriptase (RT) converts the single-stranded viral RNA 

into double-stranded DNA. The major catalytic activities of the RT are DNA 

polymerization from RNA and DNA templates and degradation of RNA (RNase H). 

The env gene contains the information for the viral envelope proteins that consist of 

the surface subunit (SU/gp120) exposed on the virion surface and the 

transmembrane subunit (TM/gp41) embedded in the virion envelope. The viral 

envelope proteins are produced from a precursor glycoprotein, gp160, which is 

glycosylated and cleaved into the gp120 and gp41 subunits by a host protease 
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during trafficking through the Endoplasmic reticulum and Golgi apparatus. The Env 

proteins form “spikes” on the virion consisting of three SU and three TM domains. 

 

 

 
 
Figure 1.3.: Schematic of an retrovirus particle. 
The schematic overview displays the organization of a retrovirus and its proteins. The Figure is not 
true to scale. 
 

 

 

The viral regulatory proteins Tat and Rev are are essential for the replication of HIV-1 

and are both stimulators of viral gene expression. Tat stimulates viral RNA 

production from the 5’ LTR. It binds to the TAR (transactivation response) element on 

the RNA after transcription has started. Subsequently it recruits Cyclin T and CDK9 

resulting in phosphorylation of the RNA Polymerase II at its C-terminal domain. This 

increases transcription by approximately 100-fold [4,5,6]. Furthermore, Tat is capable 
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of loosening the chromatin structure at the 5’-LTR by recruiting HATs (Histone 

deacetylases) and thereby facilitating RNA transcription [7]. 

Rev stimulates the expression of viral structural proteins and enzymes. These 

proteins can only be translated if unspliced or singly spliced RNAs are exported to 

the cytoplasm. Rev mediates the transport of these RNAs to the cytoplasm [8]. For a 

more detailed description of Rev, see below (see section 1.2.3). 

 

The HIV accessory protein Nef is another important protein for HIV-1 virus 

replication. Nef is a 27-34 kDa multifunctional protein. It enhances virion infectivity 

[9,10] and increases viral replication in primary lymphocytes and macrophages [11]. 

Nef can mediate down regulation of CD4 cell surface expression, an event that 

appears to be important for the release of HIV-1 from the cell [12,13]. Furthermore 

Nef can protect infected cells from being killed by cytotoxic T cells [14] by 

downregulating the cell surface expression of major histocompatibility complex I 

(MHC-I) molecules [15]. Several in vivo studies have demonstrated the importance of 

Nef for the efficiency of viral replication and for the maintenance of high viral loads 

[16,17]. Nef induces the release of inflammatory factors [18] and activates NF-κB 

[18,19]. The viral accessory proteins Vif, Vpr and Vpu are crucial for virus 

propagation and disease induction in vivo. They have multiple functions, including the 

defense against antiviral activities of the host [20]. 

 
1.2.2. HIV-1 replication cycle 
In many of these cells, the virus can replicate, albeit with different efficiencies. The 

stages of HIV replication are virus entry, reverse transcription, integration, proviral 

gene expression, assembly of virus particles, budding and maturation of virus 

particles. Each stage involves many and complex virus-host interactions.  Here I will 

just briefly outline each stage and refer the reader to various reviews for further 

details [2,3,21]. HIV-1 entry into the cell (Figure 1.4) begins with the interaction of the 

trimeric envelope complex (Env spike) and both CD4 and a chemokine receptor 

(generally either CCR5 or CXCR4, but others are known to interact) on the cell 

surface [22,23]. The Env spike contains binding domains for both CD4 and 

chemokine receptors [22,23]. 

The first step in fusion involves the high-affinity attachment of the CD4 binding 

domains of gp120 to CD4. Once gp120 is bound with the CD4 protein, the envelope 
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complex undergoes a structural change, exposing the chemokine binding domains of 

gp120 and allowing them to interact with the target chemokine receptor [22,23]. This 

allows for a more stable two-pronged attachment, which allows the N-terminal fusion 

peptide gp41 to penetrate the cell membrane. 

After fusion of the viral envelope with the cellular plasma membrane, the virion core 

is released into the cytoplasm [24]. The retroviral RNA genome undergoes reverse 

transcription leading to production of a double-stranded DNA molecule [25]. This 

complex process is catalyzed by the viral reverse transcriptase (RT) (for an overview 

see [2]). Initially, the RT synthesizes a short, (-) strand cDNA, using a host transfer 

RNA (tRNA) bound to the primer binding site (pbs) downstream of the U5-region in 

the viral RNA as primer. The short (-) strand cDNA anneals to complementary 

sequences located at the opposite end of the RNA template (first strand transfer). 

The RT then extends short (-) strand DNA, using the viral RNA as template. 

Subsequently, the RT uses the newly synthesized (-) DNA as template for generation 

of the (+) strand DNA. Again, the RT initially synthesizes a short DNA segment. This 

time, a viral RNA fragment bound to the (–) strand DNA upstream of the 3’ LTR 

serves as primer. The short (+) strand DNA anneals to the pbs sequences in the 

newly generated (–) strand DNA (second strand transfer) and is extended. Both 

strand transfer and synthesis of the (+) strand DNA require degradation of RNA in 

RNA-DNA hybrids, which is catalyzed by the RNase H activity of the RT [26]. Errors 

during reverse transcription are not corrected and are a major factor for the high 

mutation rates of retroviruses.   

The double-stranded viral DNA remains associated with cellular and viral proteins, 

which together form the pre-integration complex (PIC). In the PIC the integrase is 

bound to specific sequences (att sites) located at the ends of the viral double-

stranded DNA, where it processes the 3’ ends of the viral DNA for integration [27,28]. 

The PIC is subsequently transported to the nucleus, where the integrase can mediate 

integration of the double-stranded viral DNA into the host genome [24]. Provirus 

formation is essential for virus replication. 

The promoter/enhancer sequences in the 5’ LTR of the provirus direct transcription, 

the first step of proviral gene expression. The LTR contains numerous binding sites 

for cellular transcription factors [29]. These include multiple binding sites for SP1 (3) 

and NF-kB (2), which are key elements for HIV transcription. Initial viral transcription 

is mediated solely by the interaction of cellular transcription factors with the LTR and 
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is generally low. The primary transcript produced is a full-length transcript. Alternative 

splicing of this transcript results in the production of many different HIV transcript 

species (compiled in Figure 3.5; see also [30]. The HIV transcript species fall into 

three major classes: 1) the ~9 kb unspliced transcript which encodes the Gag- and 

the Gag-Pol precursor polyproteins and serves as viral RNA genome; 2) the ~5 kb 

partially spliced transcripts, which encode the Env, Vif, Vpr and Vpu proteins, and 3) 

the ~2 kb fully spliced transcripts which encode Tat, Rev and Nef.  

During initial transcription, the fully spliced transcript class predominates, resulting in 

early production of the Tat and Rev. Binding of Tat to the TAR greatly enhances, the 

transcription rate [24] (see 1.2.1 for a brief description of Tat activities). The Rev 

protein binds to the RRE (Rev responsive element) on partially and unspliced viral 

mRNAs and enables these mRNAs to exit the nucleus, where they are otherwise 

retained until spliced [31,32](see section 1.2.3 and Figure 1.5 for a description of Rev 

activites). Translation of the full-length mRNA at polysomes leads to production of the 

Gag and Gag-Pol polyprotein precursors. Production of the latter protein requires 

ribosomal frameshifting during translation. The Env precursor polyprotein is produced 

by ribosomes associated with the endoplasmic reticulum. 

The production of the full set of viral proteins allows virus assembly to begin. This 

process takes place at the plasma membrane of the host cell and is directed by the 

Gag precursor protein. The Gag-protein precursor protein is inserted into the inner 

leaf of the lipid bilayer via a myristic acid moiety covalently attached to its N-terminus. 

A patch of highly basic amino acid residues in the MA domain promotes membrane 

attachment further. Virus assembly requires Gag-Gag interactions, which are 

mediated by the other domains in the Gag precursor protein, especially CA. The viral 

RNA genome is packaged into nascent virions by interaction of the NC-domain, 

which contains two zinc-finger motifs, with the packaging signal in the virus RNA. The 

Env polyprotein (gp160) migrates through the endoplasmic reticulum where it is 

glycosylated and is transported to the Golgi complex. In the Golgi, the gp160 

precursor protein is cleaved by a cellular furin protease to the two HIV envelope 

glycoproteins gp41 and gp120. The Env proteins are transported to the plasma 

membrane of the host cell where gp41 anchors gp120 to the membrane of the 

infected cell. Gag recruits Env proteins to sites of assembly by interactions between 

its MA domain and the cytoplasmic tail of Env gp41. 
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The virion uses the cellular endosomal sorting machinery to bud from the host cell. 

This involves interaction of the p6 domain of the Gag precursor protein with a 

component of the ESCRT (endosomal sorting complex required for transport)-I 

protein complex.  

Maturation of the virus particle to an infectious virion either occurs in the forming bud 

or in the immature virion after it buds from the host cell. During maturation, HIV 

proteases cleave the polyproteins into individual functional HIV proteins and 

enzymes [2].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.4. (next page): The replication cycle of HIV-1. 
After entry of the virus into the host cell through binding of gp120 to CD4 and the co-receptors the 
capsid is released into the nucleus of the host cell. The viral RNA genome is converted into double-
stranded DNA copies by reverse transcription. These double strand copies of viral DNA are integrated 
into the host-cell genome, forming the provirus. Transcirption of the provirus leads to a primary full-
length transcript that can serve as viral RNA genome or as substrate for alternative splicing. In the 
initial phase of expression, the primary transcript is fully spliced for production of key stimulators of 
viral gene expression, Tat, Rev and Nef. Tat activates transcription. Rev mediates the export of Intron-
containing mRNAs to the cytoplasm for translation, resulting in the production of viral structural 
proteins and enzymes. New viral particles are assembled, bud from the plasma membrane, and are 
processed after release. For further details see text. 
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1.2.3. HIV-1 Rev 

Rev is among the first viral proteins produced in the virus replication cycle [33]. It is 

required for the production of HIV structural proteins and RNA progeny genomes 

from intron-containing viral mRNAs during HIV replication [30]. Rev is a protein of 

116-amino acids that has been shown to continuously shuttle between the nucleus 

and the cytoplasm [34]. In HIV permissive cell lines, Rev localizes predominantly to 

the nucleus. Rev contains a nuclear export signal (NES) and an RNA binding domain 

(nuclear localization signal (NLS)) specific for the viral Rev response element (RRE). 

The NLS domain also serves as a nuclear import signal [8]. 

 

Rev promotes the nuclear export of partially spliced and unspliced HIV-1 mRNA 

species, which are specified by the presence of the Rev response element (RRE). 

Rev binds to the RRE, on unspliced and single spliced RNAs, stabilizes these RNAs 

in the nucleus and mediates their export to the cytoplasm by recruiting the nuclear 

export receptors CRM1/Exportin1 and RanGTP (Figure 1.5) [8]. This ternary complex 

(Rev-CRM1-RanGTP) binds to proteins of the nuclear pore complex, known as 

nucleoporins. Subsequently, the RNA is translocated to the cytoplasm, where 

RanGTP is hydrolyzed to RanGDP leading to dissociation of CRM1 and RanGDP 

from the RNA-protein-complex. The mRNA is then translated to produce viral 

structural proteins and enzymes, or in the case of the unspliced transcript, can serve 

as genome for virion formation. Rev is re-transported to the nucleus through the 

interaction of its nuclear localization signal (NLS) with Importin-β. In the nucleus 

Importin-β interacts with RanGTP resulting in the release of Rev [32]. 

 
 

 

 

 

 

 

 

 

 

 



Introduction  19 

 

 
 

 

Figure 1.5.: Rev-Shuttling. 
Rev binds to the RRE on unspliced and partially spliced HIV mRNAs. Rev then recruits the nuclear 
export protein CRM1 bound to Ran-GTP (1) for export of the entire complex through the nuclear pore 
(2). In the cytoplasm RanGTP is hydrolyzed to RanGDP, leading to dissociation of CRM1 and 
RanGDP from the RNA (3). The mRNA can than be translated at ribosomes (4). Rev binds to 
Importin-β (5) and shuttles back to the nucleus (6). The release of Rev in the nucleus occurs through 
the binding of RanGDP to Importin-β (7), freeing Rev to bind anew to viral mRNAs (1).       
 

 

 

Rev also contributes to other processes required for the efficient utilization of HIV 

RNAs, including splicing, translation and packaging of the viral RNA genomes 

[35,36]. In astrocytes, the Rev protein exhibits reduced activity, shuttles with altered 

dynamics between the nucleus and cytoplasm and accumulates to abnormally high 
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levels in the cytoplasm [37,38]. Furthermore, Rev-dependent transcripts are 

selectively depleted in astrocytes persistently infected with a functional HIV provirus 

[39]. These results provide evidence for the existence of cellular mechanisms for 

regulation of Rev activity and suggest that these mechanisms can impact HIV 

production levels. Studies of HIV expression in astrocytes implicate the post-

transcriptional HIV regulatory protein Rev as a potential target for cellular HIV 

suppression [37,38,39].   

 
1.3. Human endogenous retroviruses (HERVs) 
Approximately 8-9% of the human genome is composed of endogenous retroviral 

elements (HERVs). Endogenous retroviruses are found in all phyla and homologues 

of many HERVs are present among primates, representing 70 million years of 

evolutionary time. Complete HERV sequences possess a similar genomic 

organization to many exogenous retroviruses, containing three genes, gag, pol and 

env flanked by two long terminal repeats (LTRs). Gag, pol and env are often 

truncated through mutations and deletions and most HERVs are not able to produce 

proteins or replicate. It is hypothesized that during the course of primate evolution, 

exogenous progenitors of HERVs inserted themselves into germ-line cells, where 

they expanded via retrotransposition and reinfection [40,41]. HERVs are distributed 

among all chromosomes [42].  

 

HERVs are classified according to sequence similarities in the polymerase (pol)-gene 

[43]. Three major classes of HERVs have been characterized, illustrated in Figure 

1.6. Class I HERVs show sequence similarities to γ-retroviruses, Class II HERVs to 

β-retroviruses and the Class III HERVs to human spumaviruses [44]. HERV classes 

are subdivided into several families according to the sequence similarity of their 

potential primer binding site (pbs) in the 5’ untranslated region with the corresponding 

complementary sequence of cellular tRNAs (e.g. HERV-W has a pbs matching the 3’ 

end of the tRNA for W, tryptophane). Nevertheless this classification system fails for 

many HERV groups because often two HERVs primed by the same tRNA do not 

belong to the same phylogenetic family according to the sequence similarity of their 

pol genes.  
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Figure 1.6.: Classification of HERVs. 
The phylogenetic tree was derived from DNA sequences of the reverse transcriptase domain [44]. 
Displayed are class I, class II and class III HERVs as well as the exogenous retroviruses HIV (human 
immunodeficiency virus), HRSV (human spumavirus) and HTLV (human T-cell leukemia virus). 
 

 

 

Figure 1.6 reveals the relationships among HERV groups. There seems to be only 

minor similarity between HERVs and some human exogenous retroviruses like HIV-

1, HTLV-1 and HRSV. Interestingly, HERVs are more closely related to animal 

retroviruses such as MLV and MMTV suggesting a past interspecies transmission of 

progenitor exogenous retroviruses [45]. During evolution HERVs and their 

exogenous relative have been separated because of mutations and deletions. The 

analysis of the human genome has revealed only 3 HERVs with intact open reading 

frames for gag, pol and env [46], all of them belonging to the HERV-K(HML-2) family, 

although these HERVs possess point mutations in critical parts of the reverse 

transcriptase. Beside the sequence differences in the HERV-classes there exist also 

differences in the copy numbers of each HERV in the genome. While approximately 

1000 HERV-H copies can be found in the human genome, there are only 40-115 

copies of HERV-W and about 60 copies of HERV-K(HML-2) [44,47]. 

Most analyzed elements have been found in higher primates including Old World 

monkeys, but not in New World monkeys [48]. This suggests that a major invasion 

and expansion of pol containing endogenous retroviruses (ERVs) occurred after New 

Class III 
spumaviruses 

Class II 
β-retroviruses 

Class I 
γ  -retroviruses 
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World Monkeys lineage separated from Old World Monkeys and apes (Figure 1.7). 

This interval of time dates back approximately 33 to 57 million years [49,50]. 

 

 

 
 
Figure 1.7.: Integration and expansion of human endogenous retroviruses in primate evolution.  
Displayed are the time points of integration as well as amplification in the genome. The axis on the 
right side shows the time in million years, the axis on the left side illustrates the DNA difference in 
percent between the species. 
 

 

 

After integration and endogenization of retroviruses in the primate genome, HERV-

subtypes show strong amplification and further distribution in the genome. Tristem 

and colleagues [41] defined 31 HERV families, which represent unique clades, each 

derived from a single infection of the human germ line. In recent evolutionary history 

HERV-K(HML-2) elements were particularly active. The most recent amplification of 

HML-2 started about 5 million years ago after the evolutionary split of humans from 

chimpanzee [51,52,53]. In humans, HERV-K(HML-2) insertion polymorphisms are 

known, suggesting that reinfection events must have occurred recently [41,54,55] 

and may still be occurring among humans. Because of this activity, HERV-K(HML-2) 

is one of the best-studied HERV-subtypes. 
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1.4. HERV-K(HML-2)  
The best characterized human endogenous retroviral (HERV) family is HERV-

K(HML-2). HERV-K(HML-2) proviruses are present in the genomes of humans, apes 

and Old World monkeys having originated about 40 million years ago. Approximately 

60 full-length HERV-K(HML-2) proviruses are estimated to be present in the human 

germ-line [44]. Two types of HERV-K(HML-2) genomes exist. Type 1 genomes 

display fused pol and env genes and express exclusively unspliced mRNA [56]. 

HERV-K(HML-2) type 2 full-length transcripts are spliced to subgenomic env and two 

smaller mRNAs [56,57]. All human HERV-K(HML-2) proviruses described to date 

have mutations that inhibit viral replication, but some full-length open reading frames 

(ORFs) can encode selected viral proteins. These induce Gag-Pol, Env, and 

cORF/K-Rev suggesting that HERV-K(HML-2) might be capable of replicating by 

complementation and also raising the possibility of recombination among co-

packaged HERV-K(HML-2) genomes [58]. In the past 2 years, one group has created 

an infectious clone of HERV-K(HML-2) [58], and another has shown that virus can be 

generated using several transcomplementary plasmids [59]. Thus, at least in its 

reanimated form with mutations corrected to reintroduce open reading frames, 

HERV-K(HML-2) can replicate. However there is a debate as to whether or not 

HERV-K(HML-2) is still capable of replication in humans. Some HERV-K(HML-2) 

proviruses have been duplicated with their cellular flanking sequences and are now 

present on multiple chromosomes.  

HERV-K(HML-2) expression seems to be associated with testicular germ-cell tumors 

[60]. One of the HERV-K(HML-2) encoded proteins called Rec (synonymic cORF, K-

Rev), has a Rev-like function, as it stabilizes unspliced and incompletely spliced viral 

transcripts and enhances their nuclear export [61,62]. The rec transcript is produced 

from the env gene by alternative splicing [56]. It has been shown that the expression 

of the HERV-K(HML-2) Rec protein induces tumor formation in nude mice [63]. 

Another HERV-K encoded protein is Np9. Due to a 292-bp deletion in HERV-K(HML-

2) type 1 and the generation of a specific splice donor site, the env open reading 

frame in this provirus type produces Np9 instead of Rec [64]. Therefore, the np9 

transcript is transcribed exclusively from the HERV-K type 1 provirus. NP9 and Rec 

share the N-terminal 14 aminoacids. The 9-kDa protein localizes predominantly to 

the nucleus of the cell and is expressed in various tumor tissues and transformed cell 

lines [64,65]. Several studies indicate that Np9 constitutes an oncoprotein [65,66]. 
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Furthermore, HERV-K(HML-2) transcripts and proteins were detected in several 

diseases [67,68] like rheumatoid arthritis [69], schizophrenia and bipolar disorders 

[70,71],  and in HIV infected patients [72,73,74,75].  

 

1.5. HERVs and disease 
Exogenous retroviruses have been shown to cause well characterized diseases, for 

example HIV-1 can cause AIDS. There is no current evidence that infectious HERVs 

are produced, suggesting they replicate exclusively as endogenous elements of the 

cell. This is in sharp contrast to many mammals, particularly rodents, in which the 

lines between endogenous and exogenous retroviruses can become very blurred 

[27]. However, given their interactive nature within the genome, HERVs can 

potentially cause diseases by a variety of mechanisms, displayed in Figure 1.8.  

 

 

 
 
Figure 1.8.: Pathogenic potential of HERVs. 
HERVs may be pathogenic by influencing the expression of adjacent genes via LTR sequences or by 
expression of pathogenic gene products that may modulate immunological functions or interact with 
cellular transcription factors involved in cancer. 
 

 

 

Many HERVs contain functional promoters, enhancer-elements and polyadenylation 

signals in their LTRs [76]. These regulatory sequences can affect the expression of 
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neighboring genes. Such modulation could for example lead to an activation of 

oncogenes or inactivation of tumor suppressor genes. Furthermore, while not forming 

fully functional infectious virus several HERV-elements code for individual gene 

products [77] that could be pathological. For example the HERV envelope (env) 

protein is associated with several chronic diseases (autoimmune disease), 

neurological diseases [78], and suppression or stimulation of the immune response 

[79,80]. Furthermore some HERV proviruses like HERV-K(HML-2) express a spliced 

RNA encoding for proteins like Rec or NP9, which have been implicated in 

oncogenesis [81]. Another controversial issue is the potential of the HERV-K(HML-2) 

family to produce viral particles, which could infect other cells and thus could cause 

insertion mutagenesis.  

 

Most HERVs have been silenced by mutations and/or are controlled epigenetically 

(e.g. methylation of DNA or chromatin inactivation). However, they may be 

reactivated by environmental conditions such as radiation, chemicals and infectious 

agents [82,83,84,85] or exogenous viruses [72,73,74,75,86,87,88,89,90,91,92]. The 

following tables give an overview of reported activation of the expression of ERV 

sequences in human or mouse cells after infection with different viruses (Table 1.2) 

or other infectious agents (Table 1.3). 

 

 
Table 1.2.: Overview of known ERV activation after infections with diverse viruses 
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Table 1.3.: Overview of known ERV activation through infectious agents 

 

 

 

Epstein-Barr virus (EBV) and human herpes virus 6 (HHV-6), for example, have been 

shown to transactivate expression of a potential HERV-K18 encoded superantigen, 

which stimulates T-cell activation [88,89,92,93,94]. This process might be crucial for 

the establishment of long-term infection by EBV and HHV-6 and play a role in the 

development of associated diseases. Similarly, the expression of HERV-W Gag and 

Env proteins has been proposed to be induced by Herpesviridae in MS patients and 

is hypothesized to be linked with MS pathogenesis [87]. Because of the association 

of HERVs with a multitude of complex diseases, a thorough investigation of the 

influence of exogenous viruses on the expression of HERVs in human cells is 

necessary in the context of pathogenic consequences. 

 

Exogenous retroviruses such as HIV are functionally similar in most ways to HERVs 

with the exception that currently no human lentiviruses are transmitted vertically from 

the parent germline to offspring genome. Given the similarity of HIV to HERVs and 

particularly their regulation via the LTRs, it is a plausible and testable hypothesis that 

infection of cells by HIV and subsequent activation of the HIV provirus could 

influence the expression of HERV LTRs that rely on similar signals and transcription 

factors for their own expression. The regulatory proteins Rev and Rec (cORF) of HIV 

and HERV-K(HML-2), respectively, are structurally and functionally related and Rev 
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may substitute for Rec in transient transfection assays [61,62,95]. Furthermore, 

intracellular defense mechanisms that influence HIV are thought to have evolved to 

control HERV activity [96,97]. There is current evidence that HIV infection can cause 

the production of anti-HERV-K antibodies [59] and the detection of HERV-K RNA in 

plasma of HIV-1 infected patients was described [73]. Nixon and colleagues [75] 

demonstrated that T cells in the human immune system respond to HERV epitopes 

when a person is infected with HIV. They showed HERV-specific immune responses 

upon HIV-1 infection, which could be an important factor in controlling HIV infection. 

Thus, there are multiple levels of interaction between HIV and HERVs that should be 

explored.  

 

 

1.6. Aim of the Work 
There is strong evidence that infection by exogenous viruses can influence 

expression of HERVs. Thus the aim of this work was to investigate the activation of 

different HERV families by HIV-1. To this end I compared HERV expression profiles 

in different persistently HIV-1 infected cell-lines (astrocytes, HeLa cells and T-cells) 

and in uninfected cells. In order to validate a direct connection between exogenous 

virus infection and HERV expression changes, I investigated the influence of 

changes in HIV expression levels on HERV expression profiles. Therefore I chose 

various siRNAs for artifical suppression of HIV expression. To examine the 

relationship between HIV and HERV expression under more natural conditions, I 

identified a group of natural host factors that influence HIV production in infected 

cells (Risp) and investigated the effects of Risp expression on both HIV and HERV 

expression.  Furthermore, I performed studies to elucidate the role of the Risp group 

in HIV replication. 

The results of my study support a direct link between expression of HIV and various 

HERV sequences. 
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2. Materials and Methods 
2.1. Materials 
2.1.1. Buffers 

Product Composition (Manufacturer) 
Caesium chloride (5.7 M) 5.7 M CsCl (MW 168.36) 

1 mM EDTA, pH 8.0 
25 mM Na-citrate, pH 7.0 

Hybridization Solution 3 x SSC 
0.2 x SDS 
50 % Form amide 
ddH2O 

Lysis buffer (Immunoprecipitation) 5 x TBS 
10 % Triton 100 
500 mM EDTA 
500 mM EGTA 
125 mM Na4P2O7 
100 mM Na3VO4 
1.2 % PIM 
0.44 % PMSF 

Lysis buffer 50 mM Tris-HCl pH 8.0 
150 mM NaCl 
0.02 % NaN3 
0.1 % SDS 
1 % Nonidet P-40 
0.5 % Deoxycholat 
Protease inhibitors: 
       2 µg/ml Leupeptin 
       2 µg/ml Aprotinin 
       1 mM PMSF 

Loading buffer for DNA 15 % Ficoll 
5 mM EDTA 
0.01 % Bromphenolblue 
0.01 % Xylenxyanol 

MOPS-Buffer Invitrogen, Karlsruhe 

PBS (phosphate buffered saline) pH 7.4 140 mM NaCl 
5.4 mM KCl 
9.7 mM Na2HPO42.H2O 
2 mM KH2PO4 

PBS-Tween (0.1%) PBS + 0.1 % Tween-20 
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Prehybridization solution 6 x SSC               
0.5 % SDS 
1 % BSA  

Reduction solution (NaBH4-solution) NaBH4 
1 x PBS  
100 % Ethanol 

SDS loading buffer  Invitrogen, Karlsruhe 

10% SDS solution 100 g Sodiumdodecylsulfate in 
1000 ml ddH2O 

20 x SSC 3 M NaCl (MW 58.44)                  
300 mM Na-Citrate (MW 294.1) 

Sodium acetate (3M), pH 5.2 3 M solution, pH was adjusted 
with acetic acid 

TAE (50x) 2 M Tris-Acetate, 
100 mM Na2-EDTA, 
10 mM Tris-HCl 

TES-buffer 10 mM Tris/HCl, pH 7.5 
10 mM EDTA, pH 8.0 
0.1 % SDS 

Washing solution 1 (DNA chip) 1 x SSC 
0.1 % (w/v) SDS 

Washing solution 2 (DNA chip) 0.1 x SSC 
0.1 % (w/v) SDS 

Washing solution 3 (DNA chip) 0.1 x SSC 

Western-Blot transfer buffer Invitrogen, Karlsruhe 
 
 
2.1.2. Chemicals 

Product Manufacturer 
2 log DNA Ladder  New England Biolabs, Schwalbach 

Ampicillin  Sigma, Deisenhofen 

Agar Invitrogen, Karlsruhe 

AMV Reverse Transkriptase Roche Diagnostics, Mannheim 

ß-Mercaptoethanole  Stratagene, Amsterdam, Netherlands 

BSA Sigma, Deisenhofen 

Bromphenolblue Merck, Darmstadt 

Calf Intestinal Alkaline Phosphatase  New England Biolabs, Schwalbach 
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DMEM (Dulbecco’s modified eagle’s medium) 
with Glutamax-I (L-Analyl-L-Glutamin) and 4.5 
g/l Glucose  

Invitrogen, Karlsruhe 

dNTPs  Perkin Elmer Cetus, Überlingen 

DNase  Promega, Madison, USA 

EDTA Sigma, Deisenhofen 

Ethanol Merck, Darmstadt 

Ethidiumbromide (1%  w/v)  Serva, Heidelberg 

Acetic acid  Merck, Darmstadt 

FCS Biochrom, Berlin 

Formamide Sigma, Deisenhofen 

FuGENETM HD transfection Kit  Roche Diagnostics, Mannheim 

G418 / Geniticin  Invitrogen, Karlsruhe 

Ionomycin  Merck, Darmstadt 

Isopropanol  Merck, Darmstadt 

Leptomycin B Sigma, Deisenhofen 

Methanol Merck, Darmstadt 

Paraformaldehyde (used: 2% in PBS) Sigma, Deisenhofen 

Penicillin/Streptomycin solution (P./S.) Invitrogen, Karlsruhe 

PMA Merck, Darmstadt 

Protein G (immobilized) Perbio Science 

Pyromycine Sigma, Deisenhofen 

Restriction enzymes New England Biolabs, Schwalbach 

SeaKem® LE Agarose  FMC Bio Products, Rockland, USA 

Sodium borohydride (NaBH4) Sigma, Deisenhofen 

Sodium chloride Sigma, Deisenhofen 

Sodium citrate Sigma, Deisenhofen 

Trypsin-EDTA solution Invitrogen, Karlsruhe 

Tween 20 Sigma, Deisenhofen 
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2.1.3. Antibodies 

Product Dilution 
mouse-anti-GAPDH 

mouse-anti-humanCD3 (IgG2a) 

mouse-anti-humanCD28 (IgG1) 

rabbit-anti-Risp (41-62/282-302/573-593/830-850) 

rat-anti-16.4.1  

rat-anti-Rev 5C6 

anti-mouse-HRPO  

anti-mouse-IgG1 

anti-mouse-IgG2a 

anti-rabbit-HRPO 

1:10000 

1 µg/ml 

5 µg/ml 

1:1000 

1:500 

1:50 

1:10000 

2.5 µg/ml 

2.5 µg/ml 

1:10000 

 
 
2.1.4. Kits 

Product  Manufacturer 
DNase Treatment Kit Promega, Madison, USA 

ELISA BD Biosciences, Düren 
KAPA 2G Robust Nippon Genetics Europe GmbH 

Light Cycler® 480 System Roche Diagnostics GmbH, Penzberg 

NucleoBond PC 500 Kit Macherey-Nagel, Düren 

NucleoBond PC MINI Kit Macherey-Nagel, Düren 

NucleoSpin Extract II Macherey-Nagel, Düren 

NuPAGE Colloidal-Staining Kit Invitrogen, Karlsruhe 

PARIS™ Kit Applied Biosystems, Carlsbad, 
Carlifornia 

pGEM®-T Easy Vector System Promega GmbH, Mannheim  

QIAquick Gel Extraction Kit Qiagen, Hilden 
QIAshredder Qiagen, Hilden 

RNAiFect Transfection Kit Qiagen, Hilden 

RNEasy Kit Qiagen, Hilden 

Superscript II First strand cDNA synthesis Kit Invitrogen, Karlsruhe 
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2.1.5. Consumable materials 

Product  Manufacturer 
Bis-Tris/Tris-Acetate-Gels 
(4-12% und 3-8%) 

Invitrogen, Karlsruhe 

6-, 24- and 96-well plates Nunc International, Wiesbaden  

384 well plates Genetix Limited, New Milton, United 
Kingdom 

Counting chamber Fast Read 102 Madaus Diagnostics, Cologne 

Coverglass Lifter Slip 22x22 Erie Scientific Company, Portsmouth, 

USA 

CSS-100 Silytated Slides Arraylt-CEL-Associates, Los Angeles, 
USA 

Eppendorf tubes 0,5 ml, 1,5 ml, 2 ml Eppendorf, Wesseling-Berzdorf 

Falcon® EASY GRIPTM Tissue Culture 
Dish, 35 x 10 mm 

Becton Dickinson, USA 

Falcon® 15 ml and 50 ml tubes Becton Dickinson, USA 

Fixogum Marabu, Tamm 

Hybridization chamber Greiner, Nürtingen 
Hyperfilm ECL, High performance 
Chemiluminescence film 

Amersham Biosciences, 
Buckinghamshire 

Nitrocellulose membrane Invitrogen, Karlsruhe 

Nunc Cryo TubeTM Vials Nunc International, Wiesbaden 

Nunc Solo Flask   25 cm2  
(Cell Culture Flask) 

Nunc International, Wiesbaden 

Nunc Solo Flask   80 cm2  
(Cell Culture Flask) 

Nunc International, Wiesbaden 

Nunc Solo Flask   185 cm2  
(Cell Culture Flask) 

Nunc International, Wiebaden 

Slide transport box Greiner, Nürtingen 

Super Signal West Pico 
Chemiluminescent Substrate 

Pierce, Rockford 

Western-Blot Filterpaper Invitrogen, Karlsruhe 
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2.1.6. Equipment 

Equipment  Manufacturer 
FACScalibur Cytometer 
§ Exitationlaser:  488nm, 15mW 
§ Fluorescence-Detection:  

o FL-1 (BP 530/30) 
o FL-2 (BP 585/30) 
o FL-3 (LP 650) 

BD Biosciences, Düren 

Sigma 1-15 Microcentrifuge  Sigma GmbH, Oserode 

ChemiDoc Quantity One Vers. 2.4.1 Build 008  BioRad, Munich 

Hettich Rotanta/TR Hettich, Tuttlingen 

Infors incubator Infors AG, Switzerland 

Master Cycler gradient 5331  Eppendorf, Hamburg 

Shimadzu UV-160 A Spektrometer  Shimadzu Corp., Japan 

Thermomixer 5435  Eppendorf, Hamburg 

Transilluminator 312 nm  Bachofer 

KODAK  Kodak, Munich 

Horizontal Electrophoresis Systems Thermo Fisher Scientific, NY, USA 

PowerPac 300 Power supply BioRad, Munich 
ChemiDoc Molecular Imager BioRad, Munich 

CSS-100 silylated slides Telechem, Atlanta, USA 
Eppendorf Mastercycler 5333 Eppendorf, Hamburg 

Eppendorf Mastercycler gradient 5331 Eppendorf, Hamburg 

Special accuracy weighing machine Scaltec, Heiligenstadt 
GMS 418 Arrayer Affymetrix, Santa Clara, USA 

GMS 418 Array-Scanner Affymetrix, Santa Clara, USA 

Herolab Clene Cab Herolab GmbH Laborgeräte, 
Wiesloch 

Hettich large bench centrifuge Micro Rotanta 
460R Andreas Hettich GmbH, Tuttlingen 

Light Cycler (R) 480 System Roche Diagnostic, Mannheim 

Spectrafuge 24 D Abimed, Langenfeld 

Shaking water bath Köttermann GmbH & Co KG, 
Uetze/Hänigsen 

Thermomixer 5436/compact Eppendorf, Hamburg 
Eppendorf centrifuge 5415R Eppendorf, Hamburg 
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Vortex Genie 2 Scientific Industries, New York, USA 

Weighing machine SCALTEC SPO51 SCALTEC Instruments GmbH, 
Göttingen 

 
 
2.1.7. Oligonucleotides 
Mixed oligonucleotide primers (MOP) for multiplex-PCR 

Target ID Source Orien-
tation 

Modifi-
cation 
(5’) 

Oligonucleotide sequence Degene-
rations 

Type ABD primer cocktail (MOP-A)  

HML-1 U35102 
forward - GGAGAAAAAGTACTGCCACAAGGC - 

reverse Cy3 GGAGAACAGAATATCATCCATGTA - 

HML-2 M14123 
forward - GGAGAAAAAGTGTTACCTCAGGGA - 

reverse Cy3 GGAGAATAAAATATCATCAATATA - 

HML-3 U35236 
forward - GGAGAAAAAGTGTTGTCACAGGGC - 

reverse Cy3 GGAGAAGTATATATCATCCATATA - 

HML-4 AF020092 
forward - GGAGAAAAAGTCCTACCACAAGGC - 

reverse Cy3 GGAGAAGAGGAGATCATCCATGTA - 

HML-5 U35161 
forward - GGAGAAGTGCTTCCTGAAGGGATG - 

reverse Cy3 GGAGAATAAAATATCATCCATAAA - 

HML-6 U60269 
forward - GGAGAAAGAGTTTTACCCCAAGGC - 

reverse Cy3 GGAGAAAAGAATATCATCCATATA - 

HML-7 AP003171 
forward - GGAGAAGTTTTACCTCAAGGAATG - 

reverse Cy3 GGAGAACAGTATATCATCCATATA - 

HML-8 AL513321 
forward - GGAGAAGTACTTCCTCAGGGAATG - 

reverse Cy3 GGAGAATAAAATATCATCAATATA - 

HML-9 AC025569 
forward - GGAGAAGTTCTACCCCAAGAGATG - 

reverse Cy3 GGAGAACAAAATATCATCCACATA - 

HML-10 U07856 
forward - GGAGAAAAAGTTTTGCCCCAGGGT - 

reverse Cy3 GGAGAATCTACTTTTTGCTGCACA - 

MMTV M15122 
forward - GGAGAATAGGTTTTGCCCCAGGGT - 

reverse Cy3 GGAGAAAAGAGGATGTCATCCATGTA - 
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Target ID Source Orien-
tation 

Modifi-
cation 
(5’) 

Oligonucleotide sequence Degene-
rations 

Type C primer cocktail (MOP-C) 

Type C Shih et al., 
1989 

forward - GGAGAATGGAAAGTGYTRCCMCAR
GG  

8 

reverse Cy3 GGAGAACAGCAGSAKGTCATCCAYG
TA  

8 

HERV-I M92067 forward - GGAGAATKKACMSKMYTRCYYCARG
GG  

1072 

HERV-L G895836 reverse Cy3 GGAGAAAKMWKRYCATCMAYRTAM
TG  

8192 

HERV-H AF026252 
forward - GGAGAAGTACTGCTGCAAAGCTTCA - 

reverse Cy3 GGAGAACACACGATCGGCAGGGAG
A 

- 

RGH2 D11078 
forward - GGAGAAGTAATGCTGCAAGGTTTC - 

reverse Cy3 GGAGAAGAAGAACATCACCAATATA - 

HERV-F 
AC000378 forward - GGAGAARTMCTMCMYCARGGGTT 64 

Z94277 reverse Cy3 GGAGAAAAGGAGGTCATCTAGATAT - 

HIV-1 K02013 
forward - GGAGAAGTGCTTCCACAGGGATGG - 

reverse Cy3 GGAGAAATACAAATCATCCATGTA - 

Housekeeping gene primer cocktail (MOP- HKG) 

ß-Actin E01094 
forward - ATGATGATATCGCCGCGCTCG - 

reverse Cy3 CATGTCGTCCCAGTTGGTGACG - 

Ubi-quitin U49869 
forward - GTTGGCTTTCTTGGGTGAGCTTG - 

reverse Cy3 AAGAGTACGGCCATCTTCCAGCTG - 

RPL19 
NM_ 
000981 

forward - CCCGAATGCCAGAGAAGG - 

reverse Cy3 CTTCCTTGGTCTTAGACCTG - 

GAPDH 
NM_ 
002046.1 

forward - AGTCAACGGATTTGGTCGTATTGGG - 

reverse Cy3 ACGTACTCAGCGCCAGCATCG - 

HPRT 
NM_ 
000194 

forward - GTGATGATGAACCAGGTTATGACCTTG - 

reverse Cy3 CTACAGTCATAGGAATGGATCTATCAC - 

 

The final concentration of the utilized primer dilutions was 50 pmol/µl. Underlined 5‘ 

nucleotide sequences designate so-called “clamp”-sequences which were 

implemented to improve the binding ability of the primers. 
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Specific pol(RT) primers to be combined for detection of non-human retroviruses 

Target ID Source Orien-
tation 

Modifi-
cation 
(5’) 

Oligonucleotide sequence (5’à3’)  Degene
-rations 

BoEV-1 X99924 forward - GGAGAATGGACYCGMYTVCCMCARGG - 

JSRV A27950 
forward - GGAGAATAGGTTCTCCCBCAGGG 3 

reverse Cy3 GGAGAAATATATATATCATCCACATA - 

MLV J02255 
forward - GGAGAATAGGTTTACCACAAGGA - 

reverse Cy3 GGAGAACAGCAGTAAGTCATCYACGTA 2 

OvEV2 X99932 forward - GGAGAATGGATTCAACTTCCACAAGG - 

MPMV M12349 
forward - GGAGAATAGGTTTTACCACAAGG - 

reverse Cy3 GGAGAAAAGAGGATGTCATCCATGTA - 

Mac ERV 

- ERVK 

(Han, K. et 
al., 2007) 

forward - § § 

reverse Cy3 § § 

GaLV M26927 
forward - GGAGAATAGCGGCTACCACAAGGG - 

reverse Cy3 GGAGAAACCAAGAGGTCGTCCACATA - 

BaEV D10032 
forward - GGAGAATAGCGCCTTCCHCAAGGG 3 

reverse Cy3 GGAGAACAAGAGGAGGTCATCTACATA - 

PERV AF038600 
forward - GGAGAATAGCGACTGCCCCAAGGG - 

reverse Cy3 GGAGAACAGAAGCAGGTCATCCACGTA - 

FIV M59418 
forward - GGAGAAAGTTTACCACAGGGGTGG - 

reverse Cy3 GGAGAAATATATATCATCCATATA - 
 

The final concentration of the utilized primer dilutions were 50 pmol/µl. Underlined 5‘ 

nucleotide sequences designate so-called “clamp”-sequences which were 

implemented to improve the binding ability of the primers. § = For amplification, the 

human MOP cocktails were used. 

 

 
 
 
 



Material and Methods  37 

Oligonucleotides for the retrovirus-specific microarray (capture probes) 

Retrovirus class Family/group RepBase 
Name b) Genebank-ID Localization on 

microarray 

Class-I-
retroviruses 
(γ-retrovirus-like) 

HERV-I 
HERV-I 
 
HERVIP10F 

HERV-I (M92067) 
HERV-IP-T47D 
(U27241) 
Seq65 (AP000842) 

E9 
E10 
E11 

 HERV-S HERV18 
HERV-S (Z84470) 
Seq77 (AC005040) 

E7 
E8 

 HERV-T HERVS71 
S71pCRTK6 (U12969) 
S71pCRTK1 (U12970) 

F1 
F2 

 HERV-FRD MER50I 
ERV-FRD (U27240) 
HS49C23 (Z93019) 
HERV-Z (Z69907) 

F3 
F4 
F5 

 HERV-R HERV-R ERV-3 (AC004609) F6 

 HERV-E HERV-E 
E4-1 (M10976) 
Seq32 (AC010636) 

F7 
F8 

 HERV-H HERV-H 
RGH2 (D11078) 
HERV-H (AF026252) 
Seq66 (AL359740) 

F9 
F10 
F11 

 HERV-F 
HERVH48I 
HERVFH19I 
HERVFH21 

HERV-F2 (AC002416) 
HERV-F (Z94277) 
HERV-Fb (AC00378) 

G9 
G10 
G11 

 HERV-W HERV17 HERV-W (AF009668) G3 

 ERV9 

HERV9 
HERV17 
 
HERV9 
HERFFH19I 

Seq64 (AC005253) 
Seq63 (AC018926) 
ERV9 (X57147) 
Seq59 (AC006397) 
Seq60 (AL135749) 

G4 
G5 
G6 
G7 
G8 

Retrovirus class Family/group RepBase 
Name b) Genebank-ID Localization on 

microarray 

Class-II-
retroviruses 
(β-retrovirus-like) 

HML-1 HERVK14I 
HML-1 (U35102) 
Seq29 (S77579) 

A8 
A9 

 
HERV-K 
(HML-2) 

HERVK 

HERV-K10 (M14123) 
HERV-K2.HOM 
(U87592) 
HERV-K(HP1) 
(U87588) 
HERV-K(D1.2) 
(U87595) 
HERV-K10 (U39937) 

B1 
B2 
B3 
B4 
C6 
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 HML-3 HERVK9I 

Seq26 (AC073115) 
Seq34 (AL592449) 
HML-3 (U35236) 
HERV1 (S66676) 
Seq43 (AF047595) 

B5 
B6 
B7 
B8 
B9 

 HML-4 HERVK13I 
Seq10 (AF047591) 
HERV-K-T47D 
(AF020092) 

B10 
B11 

 HML-5 HERVK22I HML-5 (U35161) B12 

 
HERV-K 
(HML-6) 

HERVK3I 
HML-6 (U60269) 
Seq38 (AC010328) 
Seq56 (AC018558) 

A10 
A11 
A12 

 HML-7 HERVK11DI NMWV7 (AP003171) C12 

 HML-8 HERVK11I NMWV3 (AL513321) C11 

 HML-9 - NMWV9 (AC025569) C10 

 
HERV-K(C4) 
(=HML-10) 

HERVKC4 
HERV-KC4 (U07856) 
Seq31 (AL162734) 

C8 
C9 

Retrovirus class Family/group RepBase 
Name b) Genebank-ID Localization on 

microarray 

Class-III- 
retroviruses 
(spumavirus- 
like) 

HERV-L 
HERV-L 
=MLT2 

HERV-L (G895836) 
Seq39 (AC091914) 
Seq45 (AC006971) 
Seq51 (AL353741) 
Seq58 (AL590730) 

E2 
E3 
E4 
E5 
E6 

Human 
exogenous 
retroviruses 

  

LAV-1 (K02013) 
HIV-2 (J04542) 
HTLV-1 (M81248) 
HTLV-2 (M10060) 
HFV (Y07725) 

H2 
H3 
H4 
H5 
H6 

Human 
housekeeping 
genes 

  

Ubiquitin (U49869) 
GAPD (NM_002046.1) 
RPL19 (NM_000981) 
ß-Actin (E01094) 
HPRT (NM_000194) 

A2 
A3 
A4 
A5 
A6 

Localization dots   Cy3 -labelled 
oligonucleotides 

A1, A7, D1, 
E1, E12, H1 

 

b) RepBase, Genetic Information Research Institute, Sunnyvale, California 

(http://www.girinst.org). 
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Control-oligonucleotides for quality assurance of the retrovirus-specific-
microarray 

Control Name Genebank-ID Oligomer Localization on 
microarray 

Control 
1 

antisense-MMTV M15122 42-mer D2 
Control 
2 

antisense-HML-1 U35102 36-mer A6 
Control 
3 

antisense-HML-5 U35161 42-mer B12 
Control 
4 

antisense-2HOM AF298587 36-mer E5 
Control 
5 

antisense-HERV-W AF009668 42-mer G3 
 
 
2.1.8. Media 

Media  Composition 
Storage-Medium for procaryotic cells 2 parts 80 % Glycerin  

1 part 10 mM MgCl2 

Storage-Medium for eucaryotic cells DMEM, 20% FCS 
1 % Penicillin/Streptomycin 
10 % DMSO 

LB-Agar LB-Medium with 15 g/l Agar 

LB-Amp Plates LB-Agar with 100 µg/ml Ampicillin 

LB-Medium (after Luria-Bertani) 10 g Trypton 
5 g yeast extract 
10 g NaCl, 
Aqua dest. to 1 l, pH 7.0 

LB-Amp-Medium LB-Medium with 100 µg/ml Ampicillin 

Medium for eucaryotic celllines DMEM 
10 % FCS 
1 % Penicillin/Streptomycin 

SOC-Medium (Invitrogen, Karlsruhe) 20 g Trypton  
5 g yeastextract 
0.5 g NaCl  
2.5 mM KCl 
20 mM Glucose 
 to 1 l with Aqua dest., pH 7.0 
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2.1.9.Software 

Software Manufacturer 
Adobe Acrobat CS3 Adobe Systems, USA 

Adobe Illustrator CS3 Adobe Systems, USA 

Adobe Photoshop CS3 Adobe Systems, USA 

Apple OSX 10.6 Apple, USA 

Gene Construction Kit 3 Textco Inc., USA 

MacVector 6.5.1 Accelrys, SanDiego, USA 

Microsoft Word and Excel 2004 for MAC  Microsoft Corp., USA 

Endnote X Thomson ISI ResearchSoft 

Light Cycler 480 software Roche Diagnostics, Mannheim 

Prism 4.0 b GraphPad, San Diego, USA 
 
 
 
2.1.10. Human cell lines 
LC5 

Human epithelia cell line from cervix-carcinoma cloned from a HeLa derivative [98] 

(ATCC No. CRL-7923). 

 

LC5-HIV  

Human epithelia cell line (LC5) from cervix-carcinoma, persistently infected with HIV-

1IIIb. 

 

LC5-CD4 

LC5-CD4, a clonal LC5 cell line transduced with an amphotropic retroviral vector 

containing the human CD4 receptor gene [99]. 

 

85HG66  

Human astrocytic cell line [100] originates from a brain tumor. 

 

TH4-7-5 

Human astrocytic cell line, 85HG66 [100], persistently infected with HIV-1IIIb 
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KE37/1  

Human T-lymphoma cell line obtained from M. Popovic (Bethesda, USA). 

 

KE37-1/III B  

Human T-lymphoma cell line (KE37-1) persistently infected with HIV-1IIIb [101]. 

 

U138MG 

Human astrocytic glioblastoma cell line. This cell line originates from an astrocytic 

tumor [102,103,104]. 

 

Human primary astrocytes  

Human primary astrocytes were purchased from 3H Biomedical AB and cultured 

according to the vendor’s instructions.  

 

HNSC.100 and HNSC.100 derived astrocytes 

HNSC.100 cells and generation of enriched astrocyte populations is described in 

[105] and [106].  

 

HNSC.100 derived neurons 

HNSC.100-derived neurons were generated by culturing in neurobasal medium 

(Invitrogen) supplemented with 1 x B27 supplement (Invitrogen), 10 ng/ml brain-

derived neurotrophic factor (BDNF, Tebu-Bio, Offenbach, Germany) and 10 ng/ml 

platelet derived growth factor (PDGF, Tebu-Bio) for at least 10 days.  

 
2.1.11. Plasmids 
pCRispsg143 

The plasmid pCRispsg143 contains a human brain cDNA with the entire FAM21C 

encoding sequence (1320 AA; Accession No. Q9Y4E1) fused in-frame to GFP 

coding sequences and the CMV promoter for transcriptional control.  

 

pC16.4.1sg143 

The plasmid pC16.4.1sg143 was constructed as described in [107].  
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pLRed(INS)2R 

The Rev-reporter plasmid pLRed(INS)2R [107] contains the Rev response element 

(RRE) and two tandem copies of INS 1 and 2 [108].  

 

pCTat 

The pCTat expresses the 86 amino acid-variant of Tat (HXB3) under the control of 

the CMV promoter with a SV40 polyadenylation signal [39,109].  

 

pCsRevsg143 

The sRev amplified from pBsRev was cloned into pFRED143 [110]. In this construct 

sRev underlies the control of a CMV promoter and is fused to GFP. The GFP coding 

sequence has no startcodon of his own and can therefore only be expressed 

together with Rev. (Dr. Neumann, HelmholtzZentrum München) 

 

Y26A and Y47H2 

The construction of the Tat-mutated HIV-1 LAI proviral clones was described 

previously [111]. These plasmids were kindly provided by Ben Berkhout. 
 
2.1.12. Bacteria 
TOP10F’ 

Competent cells for chemical transformation (cfu=1x108-5x109/µg). 

These bacterias overexpress the lac-repressor (laclq-gen) for an effective 

suppression of the lac promoter (Invitrogen, Karlsruhe).  

 

2.1.13. Enzymes 

Name Manufacturer 
E. coli RNase H (2 U/µl) Invitrogen, Karlsruhe 
Expand High Fidelity Enzyme mix  Roche Diagnostics GmbH, Mannheim 

GoTaq® DNA Polymerase (5 U/µl) Promega GmbH, Mannheim 
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2.2. Methods 
2.2.1. Cell culture and transfection 
2.2.1.1. Cell cultivation and storage 
All cells were maintained in Biochrom VLE-RPMI 1640 with stable glutamine and 2,0 

g/l NaHCO3 and 10% fetal calf serum (Seromed, Berlin, Germany). If applicable, 100 

U/ml penicillin and 100 µg/ml streptomycin was added to the culture. Cells were 

cultured in an H2O-saturated atmosphere with 5% CO2 at 37°C. At a density of about 

70-80% cells were splitted. The old medium was removed, cells were washed with 10 

ml PBS, and 1 ml trypsin-EDTA was added. After 5 minutes incubation at 37 °C, cells 

were resuspended in new medium and splitted 1:5 or 1:10 in new medium. Cell lines 

used were either purchased from the American Type Culture Collection (ATCC) or 

authentified by the German Collection of Microorganisms and Cell Cultures (DSMZ).  

 
2.2.1.2. Thawing and freezing of cells 
Cells stored in nitrogen were thawed in a water bath. Afterwards they were 

transferred to culture flasks with prewarmed medium. The next day old medium was 

removed, cells were washed with 10 ml PBS and new medium was added.  

For freezing, cells were washed with 10 ml PBS, detached with 0.7 ml Trypsin-EDTA 

and resuspended in new medium. Cells were transferred to a 15 ml Falcon tube and 

centrifuged for 10 minutes at 700 rpm at room temperature. The supernatant was 

removed and storage medium was added. The resuspended cells were transferred 

into cryotubes (1.0 ml per cryotube) and then stored in a Bicell biofreezing vessel at –

80°C. 

 

2.2.1.3. Transfection of eucaryotic cells with FuGENE  
All overexpression transfection experiments were performed in 12-well plates. Cells 

were seeded at a density of 1 x 105 cells per well one day prior to transfection and 

cultured for 72 hours after transfection. Transfection was performed with 

FuGENETMHD Transfection Reagent (Roche) using 500 ng plasmid DNA per well.  

 
2.2.1.4. Rev activity assays 
Rev activity was determined as described previously [107,109]. Cell transfections 

were performed with FuGENETMHD in 6-well plates (2 x 105 cells per well) using 1 µg 

pLRed(INS)2R, 0.4 µg pCTat, 0.3 µg pFRED143 and 0.3 µg pCsRevsg143. Parallel 
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transfections were performed without pCsRevsg143 to determine reporter gene 

expression in the absence of Rev.  

48 hours after transfection, cells were analyzed by flow cytometry as described in 

[107]. GFP-positive cells were identified and the percentage of RFP-reporter-positive 

cells within this transfected cell population determined. The influence of increased 

Risp expression on Rev activity was evaluated by adding 0.3 µg pCRispsg143 to the 

transfection mixtures. For Risp knock-down experiments, cells were first transfected 

with two Risp specific siRNAs according to the manufacturer’s protocol (Qiagen). 24 

hours after siRNA transfection, the cells were washed, culture media renewed and 

transfections performed with the plasmids for the Rev activity assay. For quantitative 

analysis of nucleo-cytoplasmic distribution of reporter RNAs, cells were separated in 

nuclear and cytoplasmic fractions using the PARIS Kit (Ambion) and total RNA 

extracted according to the manufacturer’s protocol.  

 

2.2.1.5. Stimulation of Jurkat T-cells with PMA/ionomycin and CD3/CD28 
For stimulation of Jurkat T-cells, cells in conditional complete RPMI medium were 

incubated with phorbol-12-myristate-13-acetate (PMA) and ionomycin or antibodies 

against CD3 and CD28. 

Stimulation with PMA/ionomycin: PMA (phorbol-12-myristate-13-acetate) possesses 

structural similarity to diacylglycerol (DAG) and can therefore activate PKCθ and thus 

NF-⎢B in T cells. Ionomycin induces Ca2+ influx from intracellular Ca2+ storage 

compartments and therefore mainly influences the activation of NFAT. For 

stimulation of Jurkat T-cells (2 x 106 cells in 1 ml), 200 ng/ml PMA and 300 ng/ml 

ionomycin were added directly to the medium and incubated for the indicated time. 

Stimulation through CD3/CD28 antibody ligation: Crosslinking of the co-stimulatory 

receptor CD28 and the CD3 subunits of the T cell receptor by specific primary and 

secondary antibodies mimics the receptor aggregation, which is under physiological 

conditions induced by the T cell/APC (antigen presenting cell) contact. This leads to 

activation of antigen-receptor specific signaling cascades. The following antibodies 

were used at the given concentrations to stimulate 2 x 106 cells in 300 µl: anti-hCD3 

(IgG2a): 1 µg/ml, anti-hCD28 (IgG1):  5 µg/ml, anti IgG1: 2.5 µg/ml and anti IgG2a: 

2.5 µg/ml.  

After stimulation cells were placed on ice, washed once with cold PBS and lysed 

immediately with the indicated buffers. 
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2.2.1.6. RNA interference 
Transfections were carried out using RNAiFect transfection reagent (Qiagen) 

according to the manufacturer’s protocol. The day before transfection, 1 x 105 target 

cells per well were seeded in a 12-well plate. 2 µg siRNA per well was used for each 

transfection. After 24 h, medium was removed, cells were washed with PBS and new 

medium was added. Gene silencing was monitored by p24 ELISA analysis of the 

supernatant 72 hours after transfection. RNA of siRNA treated cells was extracted 

using the Qiagen RNeasy Mini Kit, reverse transcribed using the Superscript II Kit 

and analyzed using the HERV microarray.  

 

2.2.1.7. Influence of Risp proteins on HIV-1 production  
Cells were seeded at a density of 1 x 105 cells per well of a 12-well plate one day 

prior to transfection. To analyze the effect of overexpression of Rispsg143 and 

16.4.1sg143, cells were transfected with 500 ng plasmid DNA per well. For Risp 

knock-down, cells were transfected with two Risp specific siRNAs (siRisp 

AAGTGGAAGCCAAGTCTATAT and siRisp AAGATGAGGATGACCTCTTTA 

designed and synthesized by Qiagen). An evaluated non-silencing siRNA (from 

Qiagen, Hilden, Germany) served as a negative control. siRNAs transfections were 

performed with RNAiFect transfection reagent (Qiagen) according to the 

manufacturer’s protocol. 24 hours after transfection, culture media was renewed and 

cells were incubated for another 72 hours. Cell culture supernatants (extracellular 

sample) were incubated with Triton-X-100 at a final concentration of 0.5%. Cells were 

lysed in 5% Triton-X-100 (intracellular sample) and lysates diluted with PBS to a final 

Triton-X-100 concentration of 0.5%. Both samples were centrifuged for 5 minutes at 

16.000 g (room temperature) and cleared supernatants were subjected to the HIV-1-

p24-Antigen-ELISA assay for quantification of p24 antigen using the manufacturer’s 

protocol (Beckman Coulter, Krefeld, Germany). Late and early HIV-1 transcripts were 

analyzed using quantitative real-time RT-PCR.  

 

2.2.1.8. Infection of LC5-CD4 cells 
LC5-CD4 cells were infected with an HIV-1 patient isolate (Serum 891). Cells were 

cultured for further three weeks. Then RNA was isolated and further analyzed by 

microarray analysis (2.2.2.10), real-time RT-PCR (2.2.2.11) or loci identification 

(2.2.2.12).  
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Production of Y26A and Y47H2 virus was done as followed: 293T cells were 

transfected with either of the plasmids together with plasmids for Tat (pCTat) and 

Rev (pCsRevsg143) production. Cell culture supernatant was used to infect LC5-

CD4 cells and cultured for two days. 

 

2.2.2. Molecular biology methods 
2.2.2.1. Minipreparation of plasmid DNA 
5 ml LB-Amp-medium were inoculated with a single bacteria colony picked from a 

freshly streaked agar plate. The culture was incubated overnight at 37 °C and ~ 200 

rpm. 2 ml of the culture were centrifuged for 5 minutes at 5000 rpm and DNA from 

the bacteria pellet was isolated after manufacturer’s protocol (Macherey-Nagel). 

 

2.2.2.2. Maxipreparation of plasmid DNA 
150 ml LB-Amp-Medium was inoculated with 1 ml of a pre-culture. The culture was 

incubated overnight at 37 °C and ~ 150 rpm. The DNA was extracted using the 

Nucleobond-Kit (AX500) (Macherey-Nagel). 

 

2.2.2.3. DNA restriction digestion 
0,5 µg – 1 µg plasmid DNA was incubated with 10U of the corresponding restriction 

enzyme for 1 h in the corresponding buffer and at the appropriate temperature.  

 
2.2.2.4. Agarose gel electrophorese  
Gels with agarose concentrations between 0.8 % and 2 % were used for 

electrophorese. The percentage of the agarose content was reduced with increasing 

height of the DNA-fragment. A 1 % ethidium bromide solution was added in a 

1/10000 dilution to the gel (dissolved in 1 x TAE buffer). Electrophoresis was carried 

out at 80 to 120 V in 1 x TAE buffer. The 2-log DNA ladder from New England 

Biolabs was used as standard. 

 
2.2.2.5. Isolation of DNA from agarose gels 
To isolate DNA from agarose gels the NucleoSpin Extract II Kit from Macherey-Nagel 

was used after manufacturer’s protocol. 

 



Material and Methods  47 

2.2.2.6. pGEM®-T Easy Vector System cloning  
For cloning PCR DNA fragments into the pGEM®-T Easy vector the following 

reaction was used: 

 

 

 

 

 

 

 

 

 

 

 

The reaction was mixed gently and incubated for 30 minutes at room temperature.  

For transformation of the chemo-competent Top10F’ cells, 2 µl of the ligation reaction 

was added to the competent E.coli and incubated for 30 minutes on ice. Then the 

cells were heat-shocked 30 seconds at 42°C without shaking and immediately 

transferred to ice for another 2 minutes. 250 µl of room temperature SOC medium 

(Invitrogen) was added and the tubes were shook horizontally (200 rpm) at 37°C for 1 

hour. 50 µl from each transformation was spread on a prewarmed ampicillin plate. 

The plate was incubated at 37°C overnight. 

 
2.2.2.7. RNA isolation 
Total RNA was extracted using a Qiagen RNeasy Mini Kit according to the 

manufacturer’s protocol. 1 x 106 cells were used for RNA isolation. RNA was eluted 

with 30 µl of RNase-free water. After measuring the concentration with a 

spectrophotometer, the RNA was stored at -80 °C. 

 

2.2.2.8. DNase digest   
To remove genomic DNA contamination, RNA samples (1µg) were treated with 1 

U/µg RNase-free RQ1DNase (Promega, Mannheim).  

For DNase digestion the RQ1DNase-KIT from Promega was used.  

Digestion Reaction: 

Fresh PCR product              2 µl 
 
2 x rapid ligation buffer        5 µl 
 
pGEM®-T Easy vector        1 µl 
 
T4 DNA ligase                     1 µl 
 
Water                                  1 µl 

 
end volume                        10 µl 
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The digestion mix was incubated for 30 minutes at 37 °C. Afterwards 1 µl RQ1 

DNase Stop solution was added and incubated for another 10 minutes at 65 °C for 

inactivation. 

To assure that all genomic DNA was removed, 25 ng of each mRNA preparation was 

tested by PCR with mixed oligonucleotide primers (MOP) [70]. Only RNA 

preparations negative for amplification products were used for subsequent reverse 

transcription and MOP multiplex PCR. Reaction mixture: 

 

 
 Water                                      15,375µl 
 
 GoTaq Reaction Buffer             2,5µl 
 
 dNTPs (10mM)                          1µl 
 
 MOP-C Primer (20µM)               2µl 
  
 MOP-HKG Primer (10µM)         1µl 
 
 GoTaq-Polymerase (5U/µl)      0,125µl 
 
 Template RNA                           3µl 
  
 end volume                              25µl 
 

 

PCR program see section 2.2.2.10 

 
 
 

 
RNA 
 
RQ1 DNase-buffer 
 
RQ1 DNase 
 
Nuclease free water 
 
end volume 
 

4 µg 

1 µl 

1 U/µg RNA 

variable 

10 µl 
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2.2.2.9. Reverse transcription PCR (RT-PCR)  
Reverse transcription of RNA was generated from 1 µg total RNA with Superscript II 

performed according to the manufacturer’s protocol using random hexamers. 

Reverse transcriptions were followed by an RNase H digestion step (Promega). 

 

2.2.2.10. Retrovirus-specific microarray 
Figure 2.1 shows an application of the DNA-microarray. The so-called capture 

probes are spotted on the glass slides, which covered by an aldehydsurface. 

These capture probes consist of two oligonucleotides, which correspond to a highly 

conserved region in the pol gene of the respective HERV family. The oligos are 

modified at the 5’ prime end with an amino group. This group can bind covalently to 

the aldehyde surface. Subsequently, a multiplex PCR for the pol gene is carried out 

using degenerate primers. The reverse primers are Cy3 labeled yielding a 

fluorescently labeled PCR product after amplification. The PCR products are then 

hybridized to the chip and positive results detected with a microarray scanner. 

 

 

 

 

 

 

 

 

 
Figure 2.1.: Schematic overview of the DNA chip procedure 

 

Hybridization probe synthesis, MOP multiplex PCR, DNA microarray preparation, 

hybridization and post-processing of retrovirus-specific microarrays was performed 

as described in the following sections. Hybridized microarrays were scanned using 

an Affymetrix Scanner GMS 418 (laser power settings, 100%; gain, 50).  

Figure 2.2 illustrates the assortment and arrangement of the retrovirus- and gene-

specific oligonucleotides on the microarray. The combination of letters and numbers 

depicts the exact position of each HERV-family. 

 

 

Fluorescence-labeled 
hybridization probe 

Fluorescence detection 

Hybridization 
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Figure 2.2.: Organization of the oligonucleotides on the DNA chip 

2.2.2.10.1. Amplification of hybridization probes by multiplex-PCR 

The MOP-C-primer set is based on degenerate primers [112] and permits the 

amplification of human and vertebrate γ-retroviral RT-sequences and various 

exogenous virus sequences. The other primer set (MOP-A) enables the amplification 

of human β-retroviral RT-sequences. The PCR for each primer mixture was 

performed separately to allow the optimal amplification of the retrovirus-related 

elements. Oligonucleotides specific for human housekeeping genes (MOP-HKG) 

served as internal control for the quality of the RNA and the reproducibility of the 

microarray data [113]. 

Reaction mixture: 

 

 Water                                      19.8µl 
 Reaction Buffer                        2.5µl 
 dNTPs (10mM)                        1µl 
 MOP-A / MOP-C                      2µl 
 MOP-HKG                                1µl 
 Polymerase (5U/µl)               0.125µl 
 Template cDNA                        5µl 
  
 end volume                             50µl 
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PCR conditions: 

 Temperature Time 
Initial denaturation 95 °C 1.0 min 

Denaturation 94 °C 0.5 min 
Annealing 45 °C 3.0 min 
Elongation 72 °C 2.0 min 
à  3 cycles   

Denaturation 94 °C 0.5 min 
Annealing 50 °C 2.0 min 
Elongation 72 °C 2.0 min 
à  30 cycles   

Final extension 72 °C 7.0 min 
 4 °C ∞ 

 

 

2.2.2.11. Quantification of RNA by real-time RT-PCR 
For amplification of pol(RT) sequences of the HERV families, the following HERV 

subgroup-specific pol primers were used: 

 

HERV subgroup-specific  
pol primers 

Orientation Oligonucleotide sequence (5’à3’)  

S71pCRTK-1 (HERV-T) 
forward GTACCCCAGGTAGGAAACTCTGGG 

reverse CCCCTACCCTTTTTGGGG 

E4-1 (HERV-E) 
forward GCTTTCTTTCTGATCCTAGGCTGTG 

reverse CTTTGGGGAGGCGTTGGCTCGAGACC 

ERV-9 
forward CCTCAACTGTTTTAATGTCTTAGGGCGAGG 

reverse CCCTCATCTGTTTGGTCAGGCCC 

Seq59 (ERV-9) 
forward GTGCTGAGGGCCCTGGTTCCTCTGG 

reverse GTGCTGAGGGCCCTGGTTCCTCTGG 

HERV-KC4 (HML-10) 
forward GAATCTCTTCTAATTTGAACCTTTTGAGG 

reverse GAATCTCTTCTAATTTGAACCTTTTGAGG 

HERV-K (HML-2) 
forward GGCCATCAGAGTCTAAACCACG 

reverse CTGACTTTCTGGGGGTGGCCG 

HIV-1 
forward GTTCATAACCCATCCAAAGGAATGGAGG 

reverse CCAAAGTAGCATGACAAAAATC 
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In general, HERV-specific primers for LightCycler real-time RT-PCR were designed 

in such a way that for each HERV one primer matched the capture probe sequences 

used in the corresponding microarray experiments, whereas the second primer was 

located 100 to 150 base pairs upstream of the first primer [113]. Quantitative real-

time RT-PCR was performed with the Roche LightCycler 480 System, using LC480 

DNA Master SYBR Green and standard LightCycler protocol (Roche Diagnostics, 

Mannheim). Real-time RT-PCR experiments for each gene were performed in 

triplicate. Cycling conditions on a Roche LightCycler 480 (LC 480) were as follows: 

initial denaturation step at 95°C for 10 minutes, and then 45 cycles at 95°C for 10 s, 

60°C for 5 s, and 72°C for 10s. After 45 cycles, melting curves were generated for 

the final PCR products by decreasing the temperature to 65°C for 15 s followed by an 

increase in temperature to 95°C. Fluorescence was measured at 0.2°C increments. 

RNA-Polymerase II-transcripts (RPII) were analyzed as internal standard, using 

primers given in [114]. ΔCT -values are calculated as follows CT(RPII)-CT(HERV-

element) and were normalized to RPII levels (=15). The x-fold induction of HERV 

expression in HIV-1 infected cells was calculated by the 2-
ΔΔ

C
T method [115], with 

values normalized to RPII and relative to expression in non-infected cells. 

Furthermore, extensive standardization of PCR reactions was initially performed 

through melting curve analysis of respective amplicons in order to minimize primer 

pair formation (data not shown). The relative expression ratio of HIV-1 transcripts and 

Rev-reporter RNAs was calculated from the real-time RT-PCR efficiencies and the 

crossing point deviations of the target gene versus the house keeping gene RPII 

(RNA polymerase II), as described in [116]. The following primers were used for the 

reporter transcripts: 5’ RRE: 5’-CGAGCTCGGTACCCCAAGGCAAAGAGAAGAGT 

GG-3’; 3’ RRE: 5’-CAATAGCCCTCAGCAAATTGTTCTGCTGC-3’). Amplification 

lead to a 174 bp long product, which represents the first half of the RRE sequence. 

For the HIV-1 transcripts following primers were used: late HIV-1 transcripts (forward 

primer 5’-GCCCCTCCCATCAGTGGAC-3’; reverse primer 5’- 

GCCTTGGTGGGTCGTACTCCTAATGG -3’), early HIV-1 transcripts (forward primer 

5’-CTCTATCAAAGCAACCCACCTCCCAA-3’; reverse primer 5’- 

GCGGTGGTAGCTGAAGAGGCACAGG -3’). All real-time RT-PCR experiments 

were done as triplicates from three independent RNA preparations. 
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2.2.2.12. Amplification, cloning, and sequence analysis of HML-2 transcripts.  
For the amplification of HML-2 transcripts, PCR was performed using 2 µl of 

undiluted cDNA from cells infected for three weeks with a HIV-1 patient isolate (LC5-

CD4acute) and uninfected cells (LC5-CD4). HERV-K(HML-2) specific primers [117] 

were used to generate gag gene-derived PCR products: gag_plus (5’-

GGCCATCAGAGTCTAAACCACG-3’) and gag_minus (5’-

GCAGCCCTATTTCTTCGGACC-3’). The 50 µl PCR mix contained 1x Expand High 

Fidelity buffer with MgCl2, deoxynucleotide mix at 0.2 µM each, and 2.6 U expand 

High Fidelity enzyme mix (Roche Diagnostics, Mannheim). PCR cycling conditions 

were as follows: initial denaturation at 94°C for 5 min; 40 cycles at 94°C for 1 min, 

annealing at 57°C for 45 s, and elongation at 72°C for 1 min, followed by a final 

elongation step at 72°C for 10 min. HML-2- specific gag PCR products were purified 

(NucleoSpin Extract II, Macherey-Nagel, Düren) and cloned into the pGEM®-T Easy 

vector (Promega) and transformed into TOP10F’ bacterial cells. Plasmid DNA was 

isolated from insert-containing colonies according to the manufacturer’s protocol 

(NucleoSpin Plasmid, Macherey-Nagel, Düren). Subsequently, cloned HML-2 cDNAs 

were analyzed by sequencing (Institute for Immunology und Genetics, 

Kaiserslautern, Germany) and mapped to their respective genomic loci. For the latter 

procedure, we used the BLAT tool at the Human Genome Browser database with 

cloned cDNA sequences as probes to search the March 2006 version of the human 

genome. 

 
2.2.3. Biochemical methods 
2.2.3.1. Western-Blot 
Whole cell lysates were prepared with lysis-buffer and separated on precast 4-12% 

Bis-Tris gradient acryl-amid gels (Invitrogen) and transfered onto nitrocellulose 

membranes (Biorad, Munich, Germany). Risp peptide antibodies were generated by 

Peptide Specialty Laboratories. Peptide sequences were selected by the following 

parameters: hydrophilicity; surface probability; chain flexibility; secondary structure 

according to Chou-Fasman. Protein bands were detected by an enhanced 

chemiluminescence system (Perbio Science, Bonn, Germany).  
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2.2.3.2. p24-antigen analysis 
Quantification of p24 antigen was performed using the Coulter HIV-1-p24-Antigen-

Assay (Beckman Coulter). Five % Triton-X was added to the whole-cell extracts and 

the supernatant, centrifuged 5 minutes for 13.000 rpm at room temperature and 

diluted with PBS to a final concentration of 0.5 % Triton-X. The p24 Elisa was 

performed according to the manufacturer’s protocol. 
 
2.2.3.3. Analysis of brain tissue expression patterns 
Frozen brain tissue samples were obtained from the Edinburgh HIV Brain and Tissue 

Bank (http://www.hivbank.ed.ac.uk/). Tissue samples were derived from the frontal 

and parietal lobes of two individuals (both age 30) with HIV encephalitis and one HIV 

negative individual (age 22). Neither of the AIDS subjects had received effective 

combination therapy, their deaths having occurred before 1995. Brain tissue samples 

were stored at –80°C from the time of autopsy. Brain tissues were investigated by 

Western-Blot analysis. 
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3. Results 
Several studies suggest that HIV-1 infection can influence expression of members of 

the HERV-K family [72,73,74,118,119]. The present study was initiated to determine 

if HIV-1 infection could influence HERV expression on a more general level. 

Therefore I investigated the comprehensive HERV expression profile in various HIV-

1 infected cell lines using a retrovirus-specific DNA chip based on a highly conserved 

region within the pol gene [113] (described in section 2.2.2.10). 

 

3.1. Several HERV families are activated in persistently HIV-1 
infected cells 

To investigate the influence of HIV-1 infection on the transcription of human 

endogenous retroviruses, I used three persistently HIV-1 infected cell-lines TH4-7-5 

(astrocytes), LC5-HIV (a HeLa-derived subclone) and KE37/1-IIIB (T-lymphoma 

cells). I chose these cell lines, because they represent different cellular backgrounds 

and differ in their levels of HIV productivity. 

To analyze the expression profiles of various HERV families in these three HIV 

infected cell lines I performed microarray analysis. The original uninfected cell lines 

85HG66 (astrocytes), LC5 (HeLa cells) and KE37/1 (T-lymphoma cells) 

corresponding to each infected cell line were used as controls. 

 

3.1.1. HIV-1 production levels of the three persistently infected cell lines 
First, the infected cell lines were investigated for their ability to produce viral proteins 

and virus, respectively. Intracellular (cell lysate) and extracellular (supernatant) 

samples of the cell lines after 24 h virus production were used to analyze the amount 

of the capsid protein p24 with a Gagp24 ELISA (Figure 3.1/A-B). Gagp24-protein was 

detected in all infected cell lines (Figure 3.1/A-B), but not in the uninfected control cell 

lines. Furthermore, it could be shown that the three cell lines TH4-7-5, LC5-HIV and 

KE37/1-IIIB differ in their Gagp24 production level. TheTH4-7-5 showed the lowest 

Gagp24 production. The LC5-HIV and the KE37/1-IIIB showed an approximately 10 

to 40-times higher Gagp24 release than TH4-7-5 cells. TH4-7-5 cells were previously 

shown to contain one provirus copy per cell [39]. Real-time RT-PCR confirmed this 

result. The KE37/1-IIIB cell line contains about 6 proviral copies per cell (Figure 

3.1/C). Less than one provirus per cells was detected in the LC5-HIV cell population, 

suggesting that not all cells of the examined population contain the HIV-1 provirus.  
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Figure 3.1.: Virus  production and provirus copy numbers of different persistently HIV-1 
infected human cell lines. 
(A) Intracellular Gagp24-production in the infected cell lines TH4-7-5, KE37/1-IIIB and LC5-HIV. (B) 
Extracellular Gagp24-released by the infected cell lines TH4-7-5, KE37/1-IIIB and LC5-HIV. Gagp24-
production was measured using a Gagp24 ELISA. The mean value and standard deviations of 
triplicate measurements are indicated. (C) The number of proviral DNA copies per cell measured with 
quantitative real-time RT-PCR. 
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3.1.2. HERV transcription profiles of three persistently HIV infected cell lines 
For microarray analysis HIV-1 infected and uninfected samples were tested in 

triplicate microarray hybridization assays, according to a standardized chip 

hybridization protocol [70,120] (see section 2.2.2.10). A digitally processed alignment 

of a representative data set of infected and uninfected samples is shown in Figure 

3.2. The microarray represents all three classes of HERVs (Figure 1.5). It contains 52 

representative HERV pol(RT)-derived sequences from 18 major HERV families, all of 

which include at least one full-length provirus in the human genome [44]. Three 

housekeeping genes served as internal controls for RNA quality. The HIV-1 capture 

probe served as a positive control to show that all infected cell lines (KE37/1-IIIB, 

LC5-HIV, TH4-7-5) are HIV-1 positive and all uninfected cells (KE37/1, LC5, 

85HG66) are HIV-1 negative. In all infected cell lines several HERV families could be 

identified that show higher expression levels in infected cells compared to uninfected 

control cells. Members of at least 6 HERV families, HERV-T, HERV-E, ERV-9, HML-

3, HML-4 and HML-10, belonging to class I and II HERVs were found to be 

upregulated in HIV-1 infected cells (marked red in Figure 3.2). The more ancient 

class III HERV elements remained unaffected in all cell lines. As expected the HIV-1 

capture probe showed positive signals in all three infected cell lines and no signal in 

the uninfected control cell lines.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2. (next page): Retrovirus specific DNA-microarray to investigate the expression 
profile of different HERV-families in persistently HIV-1 infected cell lines.  
Three HIV-1 infected cell lines were compared with the corresponding uninfected cell line. The 
housekeeping genes serve as a quality control and consequently as an internal standard. The 
microarray contains probes for detection of HERV families from all three HERV classes (I, II, III). HIV-1 
oligonucleotides are also spotted on the chip as a positive control for HIV-1 expression by HIV-1 
infected cells. The members of at least 6 HERV families HERV-T, HERV-E, ERV-9, HML-3, HML-4 
and HML-10 (marked in red) were found to be upregulated in persistently HIV-1 infected cell lines. A 
representative data set from three independent experiments is shown (three independent RNA 
isolations). False color mapping was used for image visualization. 
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Interestingly, the microarray analysis suggests differences between the HERV 

expression profiles of the three infected cell lines (Figure 3.3) Thus LC5-HIV and 

KE37/1-IIIB cell lines show higher levels of expression of the HERV groups 

S71pCRTK-1 (HERV-T), E4-1 (HERV-E), ERV9, Seq59 (ERV9), Seq10 (HML-4), 

HERV-K-T47D (HML-4), HERV-KC4 (HML-10) and the five groups of the HML-3 

family, Seq26, Seq34, HML-3, HERV1 and Seq43 than TH4-7-5 cells (marked red in 

Figure 3.3). 
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Figure 3.3.: Comparison of the HERV expression profiles of three HIV-1 infected cell lines.  
Expression of HERV families S71pCRTK-1 (HERV-T), E4-1 (HERV-E), ERV9, Seq59 (ERV9), Seq10 
(HML-4), HERV-K-T47D (HML-4), HERV-KC4 (HML-10) and the five groups of the HML-3 family are 
higher in KE37/1-IIIB and LC5-HIV cells than in TH4-7-5 cells (marked in red). HERV groups validated 
by real-time RT-PCR are marked with asterisks “*”. A representative data set from three independent 
experiments is shown. The data represent a subset of the data from Figure 3.2. False color mapping 
was used for image visualization. 
 

 

 

3.1.3. Validation of HERV chip data by real-time RT-PCR 
Five HERV groups S71pCRTK-1, E4-1, ERV9, Seq59 and HERV-KC4 differentially 

expressed in infected and uninfected cells as determined by microarry analysis 

(marked by asterisks * in Figure 3.3) were selected and subsequently analyzed by 

real-time RT-PCR to confirm the microarray results and to quantify differences in 

their expression in infected and non-infected cells. Individual primers were designed 

that bind specifically in the pol region of each of the 5 upregulated HERV groups. 
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These primers are located in a segment of the reverse transcriptase genes that 

exhibits only marginal homology among HERV-taxa and were selected in a way that 

the amplicons overlap with the corresponding microarray capture probe sequences. 

Figure 3.4 shows the relative expression (2-
ΔΔ

c
T) of the HERV groups S71pCRTK-1, 

E4-1, ERV9, Seq59 and HERV-KC4 in the HIV-1 infected cells compared to the 

uninfected control cells. The data were normalized to RNA Polymerase II (RPII) 

transcript levels, as this gene has been shown to be stably expressed under a variety 

of conditions and after exposure to various stimuli [121,122].  

HIV-1 served as a positive control. Using HIV-1 specific primers, it could be shown 

that the infected cell lines produce specific HIV-1 transcripts (Figure 3.4). The TH4-7-

5 cells produced lower levels of HIV-1 transcripts than the other persistently infected 

cell lines, in agreement with the differences in HIV-1 production levels between these 

cell lines (Figure 3.1). The HERV groups S71pCRTK-1, E4-1, ERV9, Seq59 and 

HERV-KC4 showed higher expression in the HIV-1 infected cells than in unifected 

cells, a result consistent with the microarray data (Figure 3.2 - 3.3).  

Interestingly, upregulation of expression of several HERVs (S71pCRTK-1, E4-1, 

ERV9) was more pronounced in the cell lines that produced higher levels of HIV (i.e. 

LC5-HIV, KE37/1-IIIB) than in the cell line with limited HIV-1 production (TH4-7-5). 

This suggests that the expression levels of selected HERVs may be related to HIV-1 

production levels. This hypothesis is explored in more detail in the next section. 
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Figure 3.4.: Relative expression of HERV elements and HIV-1 transcripts in the HIV-1 infected 
cells referred to the uninfected cells.  
Quantitative real-time RT-PCR results for HIV-1, S71pCRTK-1 (HERV-T), E4-1 (HERV-E), ERV9, 
Seq59 (ERV9) and HERV-KC4 (HML-10) are indicated. Retroviral transcripts were normalized to RPII 
expression levels. The Y-axis shows the x-fold relative expression of the HERV-transcripts 
(S71pCRTK-1, E4-1, ERV9, Seq59 and HERV-KC4) and HIV-1 transcripts in the infected cells 
referred to the uninfected cells. The mean values and standard deviations are indicated for triplicate 
experiments (three independent RNA isolations). 
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3.2. HIV-1 specific siRNAs reverse HERV upregulation 
3.2.1. Experimental proof of the selected siRNAs  
To demonstrate that the observed alterations are indeed associated with HIV-1 

expression, I investigated if silencing of HIV-1 transcription could reverse the 

upregulation of HERV expression. I addressed this question using RNA interference 

assays. The siRNAs against HIV-1 transcripts were selected according to ter Brake 

and Berkhout [123] and their functionality was tested in initial experiments.  

An overview of the HIV-1 transcripts, which are targeted by the chosen siRNAs, is 

shown in Figure 3.5. The siRNA sigag is predicted to reduce levels of the unspliced 

gag and pol transcripts, sitat/rev all transcripts except transcripts encoding for nef 

and four transcripts encoding for vpu/env and sienv together with sinef all HIV-1 

transcripts. HIV-1 contains three major RNA splice variants encoding for all 15 

proteins. These RNAs harbor overlapping sequences regarding the different RNA 

species (see Figure 3.5) making it impossible to design siRNAs that are unique for 

knockdown of individual proteins. A non-silencing siRNA was used to control for 

unspecific effects.  
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Figure 3.5.: Overview of siRNAs used to inhibit HIV-1 exrpression.  
The Figure illustrates the positions of the sequences targeted by the chosen HIV-1 specific siRNAs in 
HIV-1 transcripts.  
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The siRNA functionality was tested in LC5-HIV cells. Levels of the capsid protein 

Gagp24 were measured in extracellular (supernatant) and intracellular (cell lysate) 

samples of the cells 72 h after siRNA transfection. Gagp24 levels were substantially 

lower in all samples of cells treated with siRNAs against HIV-1 transcripts compared 

to cells treated with the non-silencing control siRNA (Figure 3.6).  

 

 
 
 
Figure 3.6.: Gagp24 production by persistently HIV-1 infected LC5-HIV cells treated with 
siRNAs that target various HIV-1 transcripts.  
The figure shows the extracellular and intracellular levels of Gagp24 production of LC5-HIV cells 
treated with specific HIV-1 siRNAs. Gagp24 production was measured using Gagp24 ELISA. The left 
panel shows the extracellular Gagp24 production, the right panel the intracellular Gagp24 production 
after treatment with HIV-1 specific siRNAs. Mean values and standard deviations are shown for 
triplicate experiments. 
 

 

 

3.2.2. HERV transcription profiles after HIV-1 knockdown 
cDNAs from cells treated with siRNAs were investigated with the HERV DNA chip. 

Figure 3.7 illustrates the results of the DNA-microarray analyses. A non-silencing 

siRNA (n.s. siRNA) was used as a control for unspecific silencing effects by siRNAs 

in general. 

Expression of the 12 HERV groups S71pCRTK-1, E4-1, ERV9, Seq59, Seq26, 
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Seq34, HML-3, HERV1, Seq43, Seq10, HERV-K-T47D and HERV-KC4 (Figure 3.7 

marked in red) was reduced in LC5-HIV cells treated with HIV-specific siRNAs, 

compared to cells treated with non-silencing siRNAs. Infected cells that were 

transfected with siRNAs against gag or tat/rev showed reduced HERV expression for 

ERV9 and Seq59, both subgroups of the ERV9 family, compared to the non-silencing 

control. Also the HERV expression for Seq10 and HERV-K-T47D, two subgroups of 

the HML-4 family was reduced. In the case of E4-1 and HERV-KC4 no HERV 

expression could be detected in the sigag or sitat/rev treated cells. After siRNA 

treatment with sinef or sienv no HERV expression was detectable for E4-1, ERV9, 

Seq59, Seq10, HERV-K-T47D and HERV-KC4. Also five HERV groups of the HML-3 

family (Seq26, Seq34, HML-3, HERV1 and Seq43) showed reduced expression after 

siRNA treatment with sienv. 

These results indicate that activation of HERV-groups can be reversed by siRNAs 

that target HIV-1 transcripts and therefore depends on HIV-1 expression. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.7. (next pape): Down-regulation of HIV-1 induced HERV activity by siRNAs targeting 
HIV-1 transcripts. 
LC5-HIV cells were treated with non-silencing siRNAs (sin.s.) or with the siRNA against HIV-1 
transcripts (sigag, sitat/rev, sinef and sienv). Cells transfected with the siRNA against HIV-1 showed 
reduced HIV-production. A diminished HERV expression for S71pCRTK-1, E4-1, ERV9, Seq59, five 
groups of the HML-3 family, two goups of the HML-4 family and HERV-KC4 was observed compared 
to cells treated with non-silencing siRNAs (marked in red). HERV groups validated by real-time RT-
PCR are marked with asterisks “*”. A representative data set for three independent experiments is 
shown (three independent RNA isolations). False color mapping was used for image visualization. 
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3.2.3. Quantification of HERV transcripts after HIV-1 knockdown 
To confirm the reduction of HERV expression detected by microarray analysis after 

reduction of HIV-1 expression, I carried out real-time RT-PCR. Again the 5 HERV 

groups S71pCRTK-1, E4-1, ERV9, Seq59 and HERV-KC4 were investigated 

(marked by asterisks * in Figure 3.7). Figure 3.8 shows the relative expression (2-
ΔΔ

c
T) 

of the HERV groups in the HIV-1 infected HeLa cells (LC5-HIV) treated with specific 

siRNAs against gag, tat/rev, nef and env compared to the non-silencing control cells. 

The data were normalized to the housekeeping gene RNA Polymerase II (RPII). HIV-

1 served as a positive control to monitor reduction of HIV-1 expression after RNAi. 

Specific RNAi against the HIV-1 transcripts gag, tat/rev, nef and env led to 

diminished expression of HIV-1 as shown in Figure 3.8. Knockdown of HIV-1 in the 

LC5-HIV cells by all siRNAs resulted in a reduction of the expression of the HERV-
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groups S71pCRTK-1, E4-1, ERV9, Seq59 and HERV-KC4. Only expression of 

Seq59 elements were less well diminished by siRNAs against env. Thus, it could be 

shown that activation of HERV-elements in HIV-1 infected cells is abrogated after 

treatment with siRNAs against different HIV-1 transcripts.  

All together, these data indicate that activation of expression of several HERV 

families is linked to HIV-1 expression.  

 

 
 
Figure 3.8.: Effects of HIV-1 knockdown on the expression of HIV-1 induced HERVs in HIV-1 
infected cells. 
HERV transcript levels were quantified by real-time RT-PCR, using RNA polymerase II as standard. 
The y-axis shows the x-fold relative expression of the HERV-transcripts and HIV-1 transcripts in HIV-1 
infected (LC5-HIV) siRNA treated cells referred to the uninfected control cells (LC5) treated with the 
same siRNA. Mean values and standard deviations of three triplicate experiments are shown (three 
independent RNA isolations). 
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3.3. Identification of cellular Rev-interacting HIV suppressors (Risp) 
In the previous section I demonstrated that reduction of HIV-1 transcript levels by 

artificial inhibitors (i.e. siRNAs) could influence HERV expression. Here I set out to 

analyze whether natural host factors that influence HIV production affect expression 

of HIV-induced HERVs. To this end, I focused on a protein (16.4.1) encoded by a 

truncated cDNA that interacts with the HIV-1 Rev protein, the major regulator of HIV 

replication (elucidated in the Introduction). 16.4.1 was demonstrated to be capable of 

inhibiting Rev activity, suggesting that it could influence HIV replication. 

My aim was to identify native proteins containing the 16.4.1 region, which I called 

Risp, and to investigate whether they can influence HIV replication levels in 

persistently HIV-1 infected cells. Finally I examined if modulation of replication 

efficiencies by Risp also affects HERV expression. 

 
3.3.1. Discovery of native Risp proteins in human brain tissue samples and 
astrocytes 
To identify native proteins with the 16.4.1 region I searched the UniProtKB database 

and found the 16.4.1 sequence in multiple predicted proteins of the closely related 

FAM21 family. To further characterize the expression of endogenous Risp proteins, I 

used antibodies against various Risp peptide sequences located outside the 16.4.1 

region in FAM21 proteins (Figure 3.9/A) as well as antibodies against a bacterial 

recombinant 16.4.1 protein. These pooled Risp peptide antibodies precipitated 

proteins of different sizes from human cell lysates. Subsequently, the pooled Risp 

peptide antibodies were used for immuno-detection of Risp proteins in human 

primary brain tissues (Figure 3.9/B), primary human fetal astrocytes (Figure 3.9/C) 

and in established brain-derived cell lines (Figure 3.10) by Western blot analysis.  

 

In human brain tissues, expression of Risp proteins was detected in samples from 

uninfected individuals and from individuals with HIV encephalitis derived from 

different regions of the brain (Figure 3.9/B). This suggests that Risp proteins are 

ubiquitously expressed in the human brain. Expression of Risp proteins in human 

astrocytes was demonstrated for human primary astrocytes (Figure 3.9/C), for 

astrocytes generated by differentiation of human HNSC.100 neural progenitor cells  

(Figure 3.10/A), for U138MG astrocytic cells (Figure 3.10/B) and for persistently HIV-

1 infected astrocytic cells TH4-7-5 (Figure 3.10/C).  
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Figure 3.9.: Detection of Risp proteins in human brain tissue samples and in human primary 
astrocytes. 
Antibodies for recognition of Risp proteins were generated by immunizing rabbits with synthetic 
peptides. Peptide sequences represented four regions of multiple predicted FAM21 proteins in the 
UniProtKB database. Western blot analyses were performed with pooled antibodies.  
(A) Schematic of the location of the peptide sequences and of the Rev-interacting 16.4.1 region.  
(B) Detection of Risp in samples from the frontal (FL) or parietal (PR) lobes of brain tissues from two 
individuals (223, 221) with HIV encephalitis (+HIVE) and from one individual (179) negative for HIV (-
HIVE).  
(C) Detection of Risp proteins in lysates of human primary fetal astrocytes. 
 

 

 

While some variations were observed in the Risp protein expression patterns from 

different neural tissue/cell sources, a total of 7 protein bands were detected in all 

brain tissues and astrocyte lysates with the pooled Risp peptide antibodies and anti- 

16.4.1 antibodies (Table 3.1). 
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Table 3.1.: Overview of Risp proteins detected in all brain tissues and astrocytic cell lysates. 
Displayed are the eleven Risp proteins detected in all bran tissues and astrocytic cell lysates. Grey 
shading labels Risp proteins detected with antibodies against Risp peptides and with antibodies 
against recombinant 16.4.1 protein. 
 

 

 

To further confirm that these proteins were bona fide Risp proteins, I analyzed the 

influence of 16.4.1-specific siRNAs on the Risp expression pattern in U138MG cells. 

As demonstrated in Figure 3.10/B, transfection of U138MG cells with 16.4.1-specific 

siRNAs diminished production of all Risp proteins, while unspecific siRNAs had no 

effect on the Risp expression pattern.  
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Figure 3.10.: Risp expression patterns in the human brain-derived cell lines (HNSC.100, 
U138MG and TH4-7-5).  
Risp expression was probed by Western blot analysis of cell lysates with pooled Risp peptide 
antibodies.  
(A) Risp expression patterns in cells of the human neural stem cell line HNSC.100 cultured under 
different conditions. HNSC.100 cells were cultured either as undifferentiated progenitor cells (HNSC) 
or under conditions that promote differentiation to astrocytes (HNSC astro) or to neurons (HNSC 
neuro). Upregulated expression of GFAP (glial fibrillary acidic protein) or synapsin confirmed 
generation of HNSC.100 astrocytes and neurons, respectively. The column graph at the right shows 
the changes in Risp expression levels in differentiated HNSC.100 cultures relative to undifferentiated 
progenitor cells (= 1), as quantified by densitometry of Western blot signals. The total intensity value of 
Risp signals was normalized to the signal intensity of the GAPDH (Glyceraldehyd-3-phosphate 
dehydrogenase) control protein. Risp expression increased over 2-fold in differentiated cultures 
enriched for astrocytes, compared to differentiated cultures enriched for neurons. (B) Risp expression 
in astrocytic U138MG cells. The left panel shows expression of Risp proteins in lysates (L) of U138MG 
cells treated with non-silencing siRNAs. Treatment of cells with Risp-specific siRNAs that recognize 
the 16.4.1 region reduced expression of all Risp proteins (right panel). (D) Risp expression pattern in 
persistently HIV-1 infected astrocytes (TH4-7-5).  
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3.3.2. Biochemical and functional analysis of interactions of Risp proteins with 
Rev in human astrocytes (U138MG) 
After having confirmed the expression of Risp proteins in human astrocytes, I 

investigated in collaboration with Dr. Kamyar Hadian whether native Risp proteins 

are capable of interacting with Rev. To this end an affinity chromatography assay 

previously established in our laboratory for isolation of Rev-interacting proteins from 

human cell lysates [124] was used. Cell extracts were applied to StrepTactin-affinity 

columns containing a bait protein in which Rev was fused to GFP and StrepTagII 

sequences (RevGFP-StrepTagII) (Figure 3.11). To control for interaction specificity, 

parallel assays were performed with a control bait protein lacking the Rev moiety (i.e. 

GFP-StrepTagII). Interactor proteins were eluted from the columns with high-salt 

buffer and eluted proteins analyzed by Western Blot. Risp peptide antibodies 

specifically detected four protein bands corresponding to 30, 38, 49 and 64 kDa in 

elution fractions of assays performed with the Rev-bait protein which were not 

identified in the elution fractions of the control assays. All 4 bands corresponded to 

bands consistently detected with the pooled Risp peptide and the 16.4.1 antibodies 

(Table 3.1). These results support specific interaction of native Risp proteins with 

Rev.  

 
 
Figure 3.11.: Capture of Risp proteins from U138MG astrocyte cell lysates by affinity 
chromatography with Rev-bait proteins. 
Lysates of U138MG cells were subjected to affinity chromatography, using a bait protein consisting of 
Rev, Green Fluorescent Protein (GFP) and StrepTagII sequences (RevGFP-StrepTagII). Bait-
interacting proteins were eluted under high-salt conditions and examined for the presence of Risp 
proteins by Western blot analysis with pooled Risp-peptide antibodies. Parallel affinity chromatography 
assays were performed with bait proteins lacking the Rev moiety (GFP-StrepTagII) to control for 
specific interactions of native Risp proteins with Rev.  
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To investigate whether Risp proteins influence Rev activity, a previously established 

Rev-reporter assay was employed [107]. This assay measures Rev-mediated 

stimulation of the production of a red fluorescent reporter protein (DsRed) encoded 

by an unspliced transcript with multiple elements conferring Rev-dependency [108]. 

Rev-activity is assayed by co-transfecting cells with the reporter plasmid and 

plasmids for expression of Rev-GFP or GFP (baseline control) and the proportion of 

DsRed-positive cells in transfected populations is determined by flow cytometry. As 

demonstrated in Figure 3.12/A, Rev-activity increased by about 250% in U138MG 

cells transfected with Risp-specific siRNAs, compared to cells transfected with non-

specific siRNAs. Conversely, Rev activity diminished by about 40% in cells 

transfected with Risp-GFP expression plasmids for elevation of endogenous Risp 

levels. These results indicate a link between expression levels of Risp and Rev 

activity. In addition to reporter protein production, I investigated the effect of Risp 

expression on the levels of reporter RNAs in the nuclear and cytoplasmic 

compartments, respectively. siRNA-mediated knock-down of Risp led to increased 

reporter RNA levels in the cytoplasm (Figure 3.12/B). Conversely, overexpression of 

Risp increased levels of reporter RNAs in the nucleus (Figure 3.12/C).  

 

 
 
 
 
 
Figure 3.12. (next page): Risp protein levels influence Rev activity in U138MG cells. 
The influence of Risp expression levels on Rev activities in U138MG cells was measured with a Rev-
reporter assay. Endogenous Risp expression was diminished by transfecting cells with Risp-specific 
siRNAs (siRisp). Cells transfected with non-silencing siRNAs served as controls. Risp expression was 
increased by transfecting cells with plasmids for expression of Risp-GFP (i.e. pCRispsg143). Cells 
transfected with expression plasmids for unfused GFP served as controls.  
(A) Influence of Risp expression levels on the Rev-dependent stimulation of production of the red 
fluorescence reporter protein. Rev activities in cells with changed levels of Risp expression are 
indicated relative to Rev activities in the respective control assays, which were set at 100%. Columns 
represent the mean results of three independent experiments and error bars the standard deviation. 
Reduction of native Risp expression increased the Rev-dependent reporter activity by 250%. Elevation 
of Risp expression reduced Rev-reporter activity by approximately 40%. (B-C) Influence of altered 
Risp expression on the levels of Rev-reporter mRNAs in the nucleus (N) and cytoplasm (C) of 
U138MG cells in the presence of Rev. Relative levels of reporter mRNAs in each subcellular 
compartment were quantified by real-time RT-PCR according to the method of Pfaffl [116], using RNA 
polymerase II mRNAs as reference (for details see Materials and Methods). The change of reporter 
mRNA levels (fold-increase) in each compartment represents relative reporter mRNA levels in the 
sample with altered Risp expression normalized to the relative reporter mRNA levels in the control 
sample. Columns represent the mean results of three independent experiments and error bars the 
standard deviation. Reduction of native Risp expression increased levels of reporter mRNAs in the 
cytoplasm (B). In contrast, elevation of Risp expression increased reporter RNA levels in the nucleus 
(C).  
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3.3.3. Cytoplasmic sequestration of Rev proteins by Risp in astrocytes 
Furthermore, the effect of Risp knock-down on the localization of Rev-GFP was 

examined in the nuclear and cytoplasmic compartments of U138MG cells. To this 

end, subcellular fractions were prepared from U138MG cells transfected with siRNAs 

and a Rev-GFP expression plasmid and subjected to Western blot analysis with 

various antibodies (Figure 3.13). Antibodies against Rev confirmed predominant 

localization of Rev-GFP in the cytoplasmic compartment of control cells (i.e. 

transfected with the non-silencing siRNAs). This is in agreement with the previously 

reported cytoplasmic localization behavior of Rev-GFP in U138MG cells [109]. In 
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contrast, cells transfected with Risp-specific siRNAs showed increased accumulation 

of Rev-GFP in the nuclear compartment. Western blot analysis with the Risp peptide 

antibodies detected Risp proteins exclusively in the cytoplasmic fraction and 

confirmed specific knock-down of Risp proteins in this compartment by Risp-specific 

siRNAs. Antibodies against nuclear (histone H2A) and cytoplasmic proteins 

(GAPDH) confirmed the purity of the subcellular fractions (Figure 3.13).  

 

 
 

Figure 3.13.: Diminished Risp expression increases nuclear levels of Rev-GFP in U138MG cells. 
Cells were first transfected with either non-silencing siRNAs (left panels) or with Risp-specific siRNAs 
(right panels) and then with a plasmid for expression of RevGFP (pCsRevsg143). 48 hours after 
plasmid transfection, nuclear (N) and cytoplasmic (C) fractions were prepared from cells and 
subjected to Western blot analysis, using antibodies that recognize Rev, Risp proteins (pooled peptide 
antibodies), histone H2A (nuclear marker) and GAPDH (cytoplasmic marker). Cells transfected with 
Risp-specific siRNAs showed increased nuclear levels of Rev-GFP, compared to cells transfected with 
non-silencing siRNAs. Risp immunodetection showed cytoplasmic localization of Risp proteins and 
confirmed diminished Risp expression by Risp-specific siRNAs. The purity of the subcellular fractions 
was confirmed by exclusive immunodetection of Histone H2A in nuclear fractions and GAPDH in 
cytoplasmic fractions.  
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Together these data support interaction of native Risp proteins with Rev and suggest 

Risp proteins as cellular inhibitors of Rev fuction by retaining Rev in the cytoplasm of 

U138MG cells.  

 

 

 

3.3.4. Influence of Risp on HIV production and expression of Rev dependent 
HIV transcripts in persistently HIV-infected astrocytes 
I then assessed the influence of Risp proteins on HIV production in the TH4-7-5 cell 

line (i.e. persistently HIV-infected astrocytes) [100] that restricts HIV production as 

shown above. As shown in Figure 3.14/A, transfection of TH4-7-5 cells with Risp-

specific siRNAs selectively increased both extra- and intracellular levels of Gag 

produced by TH4-7-5 cells, compared to transfections with non-silencing siRNAs. 

Conversely, transfection of TH4-7-5 cells with the Risp-GFP expression plasmid 

further reduced the Gag production (Figure 3.14/B). The inhibitory effect was 

recapitulated by expression of the isolated 16.4.1 domain fused to GFP. To 

investigate the effect of Risp expression levels on the levels of Rev-dependent HIV 

transcripts, I performed quantitative real-time RT-PCR assays with primers that 

amplify either late (Rev-dependent) or early (Rev-independent) HIV transcripts. Risp 

knock-down selectively increased levels of late, but not early HIV transcripts (Figure 

3.14/C). An approximately 3-fold increase was observed, compared to cells 

transfected with non-silencing siRNAs. On the other hand, Risp overexpression 

selectively reduced levels of late HIV RNAs, whereas levels of early HIV-RNAs 

increased (Figure 3.14/D). Reduction of late HIV transcripts was recapitulated by 

expression of 16.4.1-GFP.  
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Figure 3.14.: Risp protein levels influence HIV-1 replication in persistently infected astrocytes.  
The TH4-7-5 cell line was used to measure the influence of altered Risp expression levels on the 
production of the HIV-1 Gag p24 (A, B) and on the levels of HIV-1 transcript classes (C, D) in TH4-7-5 
cells (i.e.persistently HIV-1 infected astrocytes).  
Risp expression levels were diminished by transfecting TH4-7-5 cells with Risp-specific siRNAs 
(siRisp). Cells transfected with non-silencing siRNAs served as controls (n.s. control). Risp expression 
levels were increased by transfecting cells with expression plasmids for Risp-GFP or for a fusion 
protein containing the isolated Rev-interacting domain of Risp (16.4.1) and GFP. Cells transfected with 
expression plasmids for unfused GFP served as controls. Levels of each indicated HIV-1 parameter in 
cells with altered Risp expression levels were normalized to the levels of the same parameter in the 
control cells (i.e. 100%). Columns represent the mean results of three independent experiments and 
error bars standard deviations. (A) Increased production of extra- and intracellular Gag p24 by TH4-7-
5 cells with reduced Risp expression. (B) Reduced production of extra- and intracellular Gag p24 by 
TH4-7-5 cells expressing Risp-GFP or 16.4.1-GFP. (C) Selectively increased levels of late, Rev-
dependent HIV-1 transcripts but not of early, Rev-independent transcripts in TH4-7-5 cells with 
reduced Risp expression. (D) Selective reduction of levels of late, Rev-dependent HIV-1 transcripts in 
TH4-7-5 cells expressing Risp-GFP or 16.4.1-GFP. 
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Together these results show that Risp expression levels influence HIV production 

and levels of Rev-dependent RNAs in persistently infected astrocytes. Ectopic 

expression of 16.4.1 has similar effects as Risp overexpression, indicating that the 

effects of the Risp protein are mediated by the 16.4.1 domain.  

 

3.3.5. Risp overexpression decreases HERV expression 
After having established that expression levels of Risp proteins influence HIV-1 

production, I investigated whether Risp expression also influences HERV expression 

as an natural HIV-1 inhibitor compared to the artificial siRNA inhibitors used in 

section 3.2. Risp proteins were overexpressed in LC5-HIV cells to reduce virus 

production and HERV expression levels in these cells were investigated by DNA 

microarray analyses. As expected, Risp overexpression led to a reduced HIV 

production in LC5-HIV cells (Figure 3.15). Furthermore, the expression of HERV 

groups S71pCRTK-1, E4-1, ERV9, Seq59, two groups of the HML-4 family, HERV-

KC4 and the five groups of the HML-3 family, Seq26, Seq34, HML-3, HERV1 and 

Seq43 previously shown to be increased in HIV-1 infected cells (Figure 3.2) were 

nearly completely abolished by overexpression of Risp proteins (marked red in 

Figure 3.15). To exclude unspecific effects on HERV expression caused by Risp 

overexpression in an HIV-1 free context uninfected LC5 cells overxpressing Risp 

proteins were investigated. The HERV expression patterns in uninfected LC5 cells 

were not upregulated by overexpression of Risp proteins and were similar to those of 

untreated LC5 cells. These results strengthen the siRNA data (see section 3.2.2, 

Figure 3.7) and demonstrate again a strong connection between HERV expression 

and HIV-1 production. 
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Figure 3.15.: Overexpression of Risp proteins reduces HERV activity. 
Risp proteins were overexpressed in LC5-HIV cells. The cells transfected with Risp showed reduced 
HIV-production. Furthermore there is a diminished HERV expression for S71pCRTK-1, E4-1, ERV9, 
Seq59, two groups of the HML-4 family, HERV-KC4 and the five groups of the HML-3 family, Seq26, 
Seq34, HML-3, HERV1 and Seq43 compared to the LC5-HIV cells (marked in red). Uninfected LC5 
cells expressing Risp proteins served as a negative control. A representative data set from three 
independent experiments is shown. False color mapping was used for image visualization. 
 

 

 

3.4. Influence of HIV-1 encoded proteins on HERV expression 
My next goal was to investigate the effects of individual HIV proteins on the 

expression of HERV families. It is not possible to selectively knockdown expression 

of single HIV proteins in HIV-infected cells with the siRNAs used here, as explained 

in section 3.2.1. Therefore I transfected plasmids encoding single HIV proteins in 

uninfected LC5 HeLa cells. The effect of the expression of individual selected HIV-1 

proteins on HERV expression in these cells was investigated by microarray analysis. 

Figure 3.16 shows the HERV expression in untreated LC5 cells and LC5 cells 

ectopically expressing the HIV-1 proteins Tat, Rev and Nef. Cells ectopically 

expressing Tat and Rev showed only a slight upregulation in HERV expression, 
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affecting mainly the HERV groups E4-1, ERV-9 and Seq59. In contrast the ectopical 

expression of the Nef protein resulted in an expression of HERV groups S71pCRTK-

1, E4-1, RGH2, ERV9, Seq59, HERV-KC4 and the five groups of the HML-3 family, 

Seq26, Seq34, HML-3, HERV1. Expression of these HERV groups in the Nef-

expressing cells was comparable to the expression of these HERV-groups in HIV-1 

infected LC5-HIV cells.  

To further exclude the involvement of Tat and Rev in HIV-mediated induction of 

HERV expression, the following constructs containing the complete HIV-1 viral 

sequence with Tat and Rev mutations in the tat and rev sequences (Y47H2 and 

Y26A) were used [111]. The Y47H2 virus has a partially active Tat, and shows 

abolished expression of the essential Rev protein, thereby being defective in HIV 

replication [111]. The Y26A virus expresses a non-active Tat protein due to a single 

mutation and encodes for a functional Rev protein (Y26A). 293T cells were 

transfected with plasmids containing the Y47H2 and Y26A genomes and the virus 

was harvested from the supernatant for further infection studies. LC5-CD4 cells were 

subsequently infected with the Y47H2 and Y26A viruses. After infection, cells were 

analyzed for HERV and HIV-1 expression by microarry analysis. As expected, cells 

infected with Y47H2 or Y26A showed lower HIV-1 expression, than the wildtype virus 

(LC5-HIV). Both mutants were able to enhance the expression of HERV groups 

S71pCRTK-1, E4-1, RGH2, HERV-Fb, ERV9, Seq59, Seq10, HML-6, Seq38, 

NMWV-7, HERV-KC4, Seq31 and the five groups of the HML-3 family Seq26, Seq34, 

HML-3, HERV1 and Seq43 (Figure 3.16). Therefore the depletion of the Rev protein 

(Y47H2) and the expression of inactive Tat protein (Y26A) did not prevent 

upregulation of HERV expression. For that reason, these two proteins don’t seem to 

be responsible for the upregulation of HERVs. This data validate the results of the 

overexpression analysis suggesting that HIV-1 Nef is essentially responsible for 

boosting HERV expression. 
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Figure 3.16.: Overexpression of several HIV-1 proteins and infection with Tat and Rev mutated 
HIV-1 virus. 
Displayed is the HERV transcription profile of LC5-cells expressing Tat, Rev or Nef. Uninfected LC5 
cells served as a control. Cells expressing Tat or Rev showed similar HERV transcription profiles as 
the untreated LC5 control cells. Cells expressing Nef showed increased expression of the HERV-
groups S71pCRTK-1, E4-1, ERV9, Seq59, HERV-KC4 and the five groups of the HML-3 family 
(Seq26, Seq34, HML-3 and HERV1) (marked red) similar to LC5-HIV cells. In addition, Nef expressing 
cells upregulated expression of RGH2 and NMWV-7 (marked in red). Infection of LC5-CD4 cells with 
virus supernatants from constructs containing the complete HIV-1 viral sequence with Tat and Rev 
mutations (Y47H2 and Y26A) showed similar HERV expression profiles as cells containing wildtype 
HIV-1 (LC5-HIV). A representative data set from three independent experiments is shown (three RNA 
isolations). False color mapping was used for image visualization.  
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3.5. HERV-K(HML-2) expression is enhanced in cells acutely 
infected with a primary HIV-1 isolate 
3.5.1. HERV expression profiles after acute HIV-1 infection 
As HERV-K(HML-2) transcripts has been observed to be expressed in HIV-1 infected 

Individuals in previous studies [74,119], I wondered why upregulated expression of 

HERV-K(HML-2) was found only in low to undetectable levels in persistently HIV-1 

infected cell lines by microarray analysis (Figure 3.2) and real-time RT-PCR (Figure 

3.18). Previously published data [72,74] were collected with infected PBMC cells 

from HIV-1 infected patients. This raised the question whether there is a difference in 

HERV expression between persistently infected HIV-1 cells by a laboratory strain and 

acutely HIV-1 infected cells by a primary isolate. Therefore, LC5-CD4 cells were 

infected with a primary HIV-1 patient isolate and cultured for two weeks. 

Subsequently they were subjected to microarray analysis and real-time RT-PCR. 

Interestingly, the cells acutely infected with a primary patient isolate showed distinct 

expression of HERV-K(HML-2) (marked red in Figure 3.17), which was not apparent 

in the non-infected control cell line as well as in cells persistently infected with a 

laboratory HIV-1 strain. Figure 3.17 shows HERV-K(HML-2) expression assayed by 

HERV chip analysis. Also representatives of the HERV families HERV-E, ERV-9 and 

HML-3 (marked red in Figure 3.17) showed higher expression in the cells acutely 

infected with a primary patient isolate than in the uninfected control cells.  
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Figure 3.17.: HERV expression after acute infection of LC5-CD4 cells with serum from patient 
891. 
LC5-CD4 cells were infected for two weeks with HIV-1 serum isolated from patient 891 (LC5-CD4 
acute) and showed HIV-productivity compared to the uninfected control cells LC5-CD4. Acute infection 
resulted in an increase of the HERV families HERV-E, ERV-9, HML-2 and HML-3 (marked in red). A 
representative data set from three independent experiments is shown (three RNA isolations). False 
color mapping was used for image visualization. 
 

 

 
In addition, real-time RT-PCR analysis (Figure 3.18.) confirmed a higher HERV-

K(HML-2) expression in the acutely HIV-1 infected cells compared to the persistently 

infected cells LC5-HIV. 
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Figure 3.18.: Quantitative real-time RT-PCR for HERV-K(HML-2) in LC5-CD4 cells acutely 
infected with a primary HIV-1 isolate derived from a patient serum (891) and persistently 
infected cells. 
The y-axis shows the x-fold relative expression of the HERV-K(HML-2) in acutely and persistently HIV-
1 infected cells normalized to the uninfected LC5-CD4 or LC5 control cells. HERV-K(HML-2) showed 
increased expression in acutely HIV-1 infected cells. Mean values and standard deviations are 
indicated for triplicate experiments (three independent RNA isolations).  
 
 
 
3.5.2. Determination of active HERV-K(HML-2) loci 
To investigate which of the approximately 60 described HERV-K(HML-2) loci [44] are 

active in the acutely infected cells I analyzed the sequences of HML-2 transcripts in 

acutely and persistently infected LC5 cells. To this end I generated cDNAs from RNA 

isolated from these cells and amplified HML-2 sequences in these cDNAs using 

primers that bind to the central region of the HML-2 gag gene [117]. I then generated 

molecular clones containing the PCR products. The HML-2 seqeunces were 

analyzed in 34 clones derived from acutely infected cells and eighteen clones from 

HML-2 sequences. The sequences in the clones derived from the acutely infected 

cells mapped to 6 HML-2 proviruses (c1_B, c3_B, c3_C, c3_E, c7_C and c10_B), 

indicating that six HML-2 proviruses were transcribed in acutely HIV-1 infected cells. 

In contrast, only one HML-2 locus was found to be transcriptionally active in the 

uninfected control cell line. Table 3.1 shows the HML-2 proviruses and their 

chromosomal locations. Comparing our results with published results [117] reveals 

that three of the active loci (c1_B, c3_B and c3_C) in acutely HIV-1 infected cells can 

encode a complete Env protein. The proviruses with the chromosomal localization 

1q22 (c1_B) and 3q13.2 (c3_B) are described to code for the NP9 protein [125] 

[126]. 
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Table 3.1.: Localization of transcriptionally active HML-2 proviruses in acute infected cells and 
non-infected cells. 
Each provirus was identified by gag-derived cDNAs. Provirus designations are given in the first 
column. Localization data of HML-2 proviral loci were collected from the human genome sequence as 
given at the Human Genome Browser March 2006 version. *Chromosomal localization of HML-2 
proviral portions amplified by RT-PCR.  
Cytogenetic localization (Chromosome band) of HML-2 proviruses. The orientation of proviruses on 
the chromosomes are given in parantheses. 
 
 
 

3.6. HERV expression is activated by cellular transcription factors 
As transcription factors significantly affect replication or expression of HIV in vivo 

[127,128], they may also influence HERV expression. The HIV-1 LTR consists of 

three functionally discrete regions (U3, R, and U5). Transcription initiation occurs at 

the U3-R boundary in the 5`LTR. Several host cell factors like NF-κB, NFAT and AP1 

bind to HIV-1 LTRs and influence HIV gene expression [29,129]. Thus these factors 

could also affect the expression of endogenous retroviruses.  

To investigate whether common transcription factors can regulate the expression of 

HERV families, Jurkat T-cells were stimulated with PMA/Ionomycin or antibodies 

against CD3/CD28 for 3 hours to activate the transcription factors NF-κB, NFAT and 

AP1 [130,131,132,133] and the expression profile of several HERVs investigated by 

DNA-microarray analyses.  

To check for successful stimulation of the cells, expression of IL-2 mRNA was 
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assayed, which is a major target of the transcription factors after stimulation with 

PMA/Ionomycin or CD3/CD28. Figure 3.19 shows the stimulation-induced expression 

of IL-2 after PMA/Ionomycin or CD3/CD28 stimulation.  

 

 

 
 

Figure 3.19.: Relative expression of IL-2 by real-time RT-PCR. 
The Y-axis shows the x-fold relative expression of IL-2 after PMA/Ionomycin or CD3/CD28 stimulation 
normalized to unstimulated cells. PMA/Ionomycin or CD3/CD28 stimulation results in a high 
expression of IL-2. Mean values and standard deviations are indicated for triplicate experiments (three 
independent RNA isolations).  
 

 

 

Figure 3.20 shows the HERV expression pattern in stimulated and unstimulated T-

cells. Representatives of the HERV families HERV-T, HERV-E, HERV-F, HERV-W, 

ERV-9, HML-2, HML-3, HML-4, HML-6, HML-7, HML-9, HML-10 and HERV-L 

(marked red in Figure 3.20) belonging to class I, II and III HERVs were found to be 

upregulated in stimulated cells. Both stimuli increased the expression of the HERV-

groups S71pCRTK-1, E4-1, ERV9, Seq59, HERV-KC4 and the five groups of the 

HML-3 family (Seq26, Seq34, HML-3, HERV1 and Seq43) as well as four groups of 

the HML-2 family (HERV-K10, HERV-K2.HOM, HERV-KHP1 and HERV-KD1.2) that 

were also upregulated in HIV-1 infected cells (Figure 3.17).  
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Figure 3.20.: HERV expression profile after stimulation of T-cells to activate cellular 
transcription factors. 
Jurkat T-cells were stimulated with PMA/Ionomycin or CD3/CD28 for 3 hours to activate transcription 
factors (e.g. NF-κB). Stimulation of Jurkat T-cells resulted in an increase of several HERV groups 
(marked in red) compared to the unstimulated control cells. A representative data set from three 
independent experiments is shown (three RNA isolations). False color mapping was used for image 
visualization. 
  

 

 

These data suggest that major transcription factors like NF-κB, NFAT and AP1 could 

be involved in the activation of HERV expression. 

Since activation of transcription factors induced HERV expression, I determined the 

5’LTR sequences of the identified HML2 loci (see table 3.1) and analyzed them for 

transcription factor binding sites using Genomatix bioinformatics software. LTRs of 

four active HERV-K(HML-2) loci (c1_B; c3_B; c3_C and c3_E) contained two NF-κB 

transcription factor binding sites whereas NFAT and AP1 sites were not identified 

(Figure 3.21). The HML-2 locus c11_B found to be active in uninfected cells contains 
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only one NF-κB transcription factor binding site compared to the NF-κB sites 

identified in HML-2 proviruses active in acutely HIV infected cells. These results 

suggest involvement of NF-κB in upregulating the expression of HERV groups found 

to be overexpressed in HIV-infected cells. 

 

 
 
Figure 3.21.: NF-κB transcription factor binding sites in active HERV-K(HML-2) proviruses. 
Transciption factor binding sites were investigated with bioinformatic tools (El Dorado software by 
Genomatix). Several NF-κB transcription factor binding sites could be identified in five active HERV-
K(HML-2) proviruses. 
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4. Discussion 
4.1. Upregulated expression of selected HERV-groups in 
persistently HIV-1 infected cells 
Comparison of HERV transcript patterns in three persistently HIV-1 infected cell lines 

revealed activation of the expression of distinct HERV groups of class I and class II 

HERV families in the HIV-1 infected cells compared to the uninfected parental cell 

lines. Four of the upregulated HERV groups belonged to class I families: HERV-T 

(group S71pCRTK1), HERV-E (group E4-1), and ERV9 (groups ERV9 and Seq59), 

and 8 groups to class II families: HML-3 (groups Seq26, Seq34, HML-3, HERV1 and 

Seq43), HML-4 (groups Seq10 and HERV-K-T47D) and HML-10 (group HERV-KC4). 

Upregulated expression of five HERV groups S71pCRTK1, E4-1, ERV9, Se59 and 

HERV-KC4 was confirmed by real-time RT-PCR analysis. Manipulation of HIV 

expression levels directly affected the expression levels of these HERV groups. Thus 

reduction of HIV expression with specific siRNAs greatly reduced expression of the 

upregulated HERV groups. 

 

4.2. Risp is a negative regulator of HIV-1 replication leading to 
decreased HERV expression 
In a previous study a cDNA encoding a small (171 As) Rev-interacting protein 

sequence (16.4.1) was isolated [107]. Database searching showed that the 16.4.1 

sequence is highly conserved in a family of proteins encoded by human FAM21 

genes (Supplement). The expression of these proteins was previously suggested in 

large-scale transcriptome and proteome analyses. Only few studies have addressed 

potential functions of FAM21 proteins. Individual FAM21 proteins were recently 

proposed to play a role in poxvirus infection [134], have been shown to be part of a 

mulitprotein complex that associates with endosomes [135,136] and to contain motifs 

suggesting a role in actin polymerization [137]. However, FAM21 proteins had not 

been linked to HIV before this study. This work confirms the existence of numerous 

FAM21 proteins containing the Rev-interacting 16.4.1 region. We called this group of 

proteins Risp, for Rev-interacting HIV suppressor proteins. I demonstrated that Risp 

proteins localize exclusively to the cytoplasm of human astrocytes. Furthermore I 

showed that Risp proteins, could function in the context of HIV replication as negative 

regulators of Rev-dependent gene expression and HIV production in astrocytes. 
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Using a Rev-reporter assay, I demonstrated that lowering Risp expression in 

astrocytes increased Rev-dependent production of the reporter protein as well as 

levels of reporter mRNAs in the cytoplasm. In addition, I showed that depletion of 

Risp increases nuclear localization of Rev. These results suggest a model (Figure 

4.1) for Risp-mediated regulation of Rev activity in which Rev-Risp interactions 

promote retention of Rev in the cytoplasm. 
 
 
 

 
 
Figure 4.1.: Hypothesis for the regulation of Rev by Risp proteins.  
HIV-1 can invade the central nervous system (1) and persist in astrocytes (2) that strongly restrict HIV 
production (3). Risp proteins are expressed in the cytoplasm and interact with Rev (4). Rev is 
produced early during HIV replication from multiply-spliced HIV transcripts and continuously shuttles 
between the nucleus and cytoplasm (5a). In the nucleus, Rev binds to and stabilizes single and 
unspliced HIV RNAs, and mediates their export to the cytoplasm (5b), after which it can reenter the 
nucleus (5c). All components for the assembly of new virus particles are produced from Rev-
dependent RNAs (6), making Rev activity key to HIV replication. Our data suggest that Risp proteins 
interfere with Rev (4) by promoting accumulation of Rev in the cytoplasm (7) and thus limit HIV 
production by persistently infected astrocytes (3).  
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The resulting depletion of Rev in the nucleus may compromise the stabilization and 

export of Rev-dependent RNAs to the cytoplasm and ultimately decrease levels of 

HIV mRNAs in the cytoplasm. This model is supported by several experimental 

observations. Thus, amino acids located within the NLS of Rev were demonstrated to 

be essential for interaction of Rev with 16.4.1 [107]. This suggests that interaction of 

Rev with Risp can result in the masking of the Rev NLS. Furthermore, nuclear uptake 

of Rev proceeds with delayed kinetics in astrocytes [38], indicating that Rev is 

prevented from accumulating efficiently in the nucleus of astrocytes during shuttling.  

Studies with the TH4-7-5 model cell line indicate that Risp proteins influence the 

levels of Rev-dependent HIV RNAs and proteins (Gag) during persistent HIV 

infection of astrocytes. Depletion of Risp increased virus production while ectopic 

expression of proteins containing either Risp or the isolated 16.4.1 segment 

diminished low constitutive production of HIV by these cells even further. These 

results further support the link between Risp and HIV production and also indicate 

that the 16.4.1 region alone is sufficient to mediate HIV control by Risp proteins. 

Together these results identify for the first time cellular factors involved in the control 

of HIV production during persistent HIV infection of astrocytes and show that they 

target Rev-dependent gene expression.  

Furthermore, expression of Risp proteins in human brain tissue samples and in 

cultured primary human astrocytes was demonstrated in this work. This raises the 

possibility that Risp proteins may play a role in controlling HIV in astrocytes in 

infected brain tissues in vivo. HIV-infection of astrocytes in vivo is well established. 

Recent data indicate that HIV-infection of astrocytes may occur much more 

frequently than previously anticipated, especially in the vicinity of blood vessels, 

which are proposed to be the sites of entry of HIV to the brain [138]. HIV expression 

markers identified in astrocytes in vivo included HIV RNAs and early viral proteins 

like Nef [139,140,141,142,143,144,145], whereas structural HIV proteins were 

detected much less frequently [100]. Risp-mediated control of HIV production at the 

post-transcriptional level may play an important role in protecting the brain from virus-

induced damage by infected astrocytes with ongoing HIV transcription. Thus post-

transcriptional restriction of HIV replication could limit HIV spread within the brain and 

protect the brain from the effects of the HIV envelope protein gp120, which has a 

high potential to induce neurotoxicity [146]. In addition, low Rev activity may promote 

immune evasion of infected astrocytes as has been suggested for HIV-1 infected 
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primary T-cells cells [147].  

Taken together, Risp proteins may represent a novel group of host cell interaction 

partners of Rev that are capable of controlling HIV production during persistent 

infection in astrocytes.  

 

As Risp proteins are host cell factors that can suppress HIV-1 replication, I used 

these proteins as a tool to investigate the effects of inhibition of HIV-1 replication on 

HERV expression. This complementary approach was chosen to verify the 

connection between HIV and HERV expression, which was based on the decrease of 

HERV expression observed upon siRNA-mediated knockdown of HIV-1 production. 

Overexpression of a host cell factor to inhibit HIV-1 replication has the great 

advantage over HIV-1 knockdown by siRNAs that it is much closer to physiological 

conditions. The RNAi approach has a more drastic inhibitory potential, but remains 

artificial. 

While increased HERV expression patterns were observed in both LC5-HIV (HeLa) 

and TH4-7-5 (astrocytes) cell lines, upregulation of HERV expression patterns was 

more pronounced in LC5-HIV cells than in TH4-7-5 cells. HIV production of LC5-HIV 

cells could be reduced by overexpression of Risp proteins (data not shown), although 

LC5-HIV cells produced much higher basal levels of HIV than TH4-7-5 cells. This 

indicates that HIV suppression by the Risp family is not limited to persistently infected 

astrocytes. 

Decreased HIV production by LC5-HIV cells overexpressing Risp proteins also led to 

substantially lower expression levels of five of the identified HERVs. In contrast 

manipulation of Risp expression levels in uninfected LC5 cells did not affect 

expression of HERVs. Hence, these results clearly demonstrate a link between HIV-1 

production and the activation of several HERV-groups, including E4-1, S71pCRTK-1, 

ERV9, Seq59, HERV-KC4 and HML-3 groups.  

 

4.3. HIV-1 Nef increases expression of several HERV groups 
Reduction of HIV-1 production with HIV-1 specific siRNAs affects the expression of 

multiple HIV-1 proteins. Therefore this approach does not allow analyzing the 

influences of single HIV-1 proteins on HERV expression. I reasoned that early HIV 

proteins, which are decisive for HIV expression, are also the most probable 

candidates to influence HERV expression. Therefore I investigated the effects of Nef, 
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Tat and Rev on HERV expression patterns. The experiments showed that 

overexpression of Tat and Rev had only a slight influence on the expression of 

HERVs. In contrast, Nef overexpression resulted in an increase of the same HERV 

groups also found to be overexpressed in HIV-1 infected cells. Furthermore HeLa 

cells were infected with full HIV-1 virus supernatants that either produced an inactive 

Tat protein and an active Rev protein (Y26A) or produced a poorly functional Tat 

protein and failed to produce Rev (Y47H2) [111]. Interestingly, both virus mutants 

(Y47H2 and Y26A) enhanced the expression of HERV groups S71pCRTK-1, E4-1, 

RGH2, HERV-Fb, ERV9, Seq59, Seq10, HML-6, Seq38, NMWV-7, HERV-KC4, 

Seq31 and the five groups of the HML-3 family Seq26, Seq34, HML-3, HERV1 and 

Seq43 after infection indicating that Tat and Rev are dispensable for activating HERV 

expression. Therefore, these data suggest that HIV-1 Nef seems to have a greater 

impact in boosting HERV expression than Tat and Rev. Future experiments will 

address this hypothesis by investigating the capacity of Nef-deleted HIV-1 viruses to 

upregulate expression of HERVs.  

Nef is a 27/34 kDa, N-terminal myristoylated accessory protein involved in post 

integration infection. Nef is found in the viral particle and is one of the first proteins to 

be produced after invasion of the host cell. Although HIV-1 Nef was originally named 

"negative factor," it has been shown to have a positive role in viral replication and 

pathogenesis. Nef is a viral protein that interacts with host cell signal transduction 

proteins to promote long-term survival of infected T cells [148,149] and for 

destruction of non-infected T cells by inducing apoptosis. Nef also advances the 

endocytosis and degradation of cell surface proteins, including CD4 [12,13] and MHC 

proteins [15]. This action possibly impairs cytotoxic T cell function, thereby helping 

the virus to evade the host immune response [15]. The multifunctional protein thus 

helps the virus maintain high levels of viral load and to overcome host immune 

defenses, contributing to the progression of AIDS. Nef also alters the intracellular 

signaling pathways in lymphocytic cells, thereby inducing a wide range of effects. In 

particular, Nef activates both AP-1 [10] and nuclear factor of activated T cell 

transcription factors [150], as well as the T cell receptor (TCR) chain signaling  [151]. 

Furthermore, Nef activates the calcium dependent signaling in T lymphocytes in a 

TCR-independent manner [152]. 

HIV-1 Nef is also associated with the release of inflammatory factors from human 

macrophages [18]. Treatment of monocytic cells with proinflammatory cytokines, 
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such as tumor necrosis factor (TNF)-α, has been shown to alter HERV (ERV-3 and 

HERV-R) gene expression [153,154,155]. Thus it would be possible that the 

increased HERV expression in HIV-1 infected cells may involve the release of 

inflammatory factors. Investigating HERV expression patterns and expression of 

cytokines by monocytes infected with either a Nef defective virus or a wild type virus 

further validated this data. 

 

4.4. Acute HIV-1 infection induces HERV-K(HML-2) expression 
Upregulated HERV-K(HML-2) expression in HIV-1 infected individuals has been 

observed in previous studies [72,73,74,75,119]. Gontreras-Galindo detected HERV-

K(HML-2) viral RNA in the plasma of HIV type 1 infected individuals as well as the 

increase of HERV-K expression by HIV-1 infection. In my analysis HERV-K(HML-2) 

transcripts could not be detected in the cells persistently infected with a laboratory 

HIV-1 strain. Possibly, HERV-K(HML-2) is only activated in HIV-1 infected cell lines 

for a short period after infection or after infection with a primary HIV-1 strain. 

Therefore a virus isolated from a HIV-1 infected patient was used to infect LC5-CD4 

cells. The cells acutely infected with a primary patient isolate were then investigated 

with quantitative real-time RT-PCR and the HERV specific microarray. A high 

expression of HERV-K(HML-2) was detected in these cells acutely infected with a 

primary HIV-1 strain. Thus, HERV-K(HML-2) expression may be activated only in the 

acute phase of HIV-1 infection or after infection with a primary HIV-1 strain. After 

HERV-K(HML-2) detection in the cells acutely infected with a primary HIV-1 patient 

isolate, the expressed loci of HERV-K(HML-2) transcripts were analyzed and six 

HML-2 proviruses (c1_B; c3_B; c3_C; c3_E; c7_C; c10_B) located on chromosomes 

1, 3, 7 and 10 were found to be active in the HIV-1 infected cells. In the non-infected 

cells only one transcribed provirus (c11_B) could be identified.  

Another aspect that could cause the discrepancy in detection of HERV-K(HML-2) 

expression levels between my data and the results published in Gallindo et al. 2007 

could be that the Gallindo group used HERV-K primers that cannot distinguish 

between the HERV-K groups HML-2 and HML-3. In contrast, the primers used for 

real-time RT-PCR analysis in this study specifically bind to HERV-K(HML-2) 

transcripts. Thus the increased HERK expression found by Gallindo in HIV-infected 

patients could reflect upregulation of HML-3 groups in addition to or rather than HML-

2 groups. I demonstrated upregulation of the HML-3 but not the HML-2 group in 



Discussion  95 

persistently infected cells, whereas members of the HML-2 group are active in cells 

acute infected with the primary HIV-1 strain. As the Gallindo study cannot distinguish 

between these two HML-groups, actually the reason for discrepancy between our 

studies might be the different primers used for HML-2 detection.  

 

High expression of HERV-K proteins has been observed in cancers, autoimmune 

disease and neurodegenerative disorders, such as HIV encephalopathy (HIVE) 

[72,73,156,157]. Thus increased expression of HERV-K(HML-2) could be related to 

AIDS-associated diseases (e.g. HIVE, Kaposis’s sarcoma). HERV-K(HML-2) 

proviruses are present in the genomes of humans, apes and old world monkeys 

since about 40 million years.  

All human HERV-K(HML-2) proviruses described to date have mutations that are 

lethal for viral replication, but some full-length open reading frames (ORFs) encoding 

the viral primary translation products, Gag-Pol, Env, and cORF/K-Rev are present in 

multiple individual proviruses, suggesting that HERV-K(HML-2) might be capable of 

replicating by complementation and also raising the possibility of recombination 

among co-packaged HERV-K(HML-2) genomes [58].  

In addition to pol, gag and env encoded proteins two accessory proteins with 

regulatory functions are produced. HERV-K Type 2 HERV-K(HML-2) members have 

been shown to encode for a 14 kDa protein within the env gene termed Rec [158]. 

This protein displays striking functional similarities to the HIV-1 Rev protein and may 

be involved in germ cell tumor genesis. However, compared with the HERV-K 

proviruses encoding Rev as described in Mayer et al. 2004 [158], none of the active 

HERV-K(HML-2) loci identified in this study seems to code for a Rec protein. All 

active loci are members of the HERV-K(HML-2) Type 1. Due to a 292-bp deletion in 

HERV-K(HML-2) type 1 and the generation of a specific splice donor site, the env 

open reading frame in this provirus type produces a protein called Np9 instead of 

Rec [64]. The Np9 protein has been linked to tumor genesis, because it is expressed 

in mammary carcinoma biopsies, germ cell tumor biopsies, and leukemia blood 

lymphocytes, but not in normal, non transformed cells [66]. Additionally, Np9 was 

shown to interact with the RING-type E3 ubiquitin ligase LNX (ligand of Numb protein 

X). The findings point to the possibility that NP9 is involved in the LNX/Notch/Numb 

pathway and therefore may affect tumor genesis [66]. Three (c1_B; c3_B and c3_C) 

of the six active HERV-K(HML-2) proviruses identified in the HIV-1 infected cells 
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have open reading frames for the Env protein, thus these proviruses might also code 

for the NP9 protein [117]. Two proviruses (c3_B and c1_B) identified in this study 

with the chromosomal localization 1q22 and 3q13.2 have been described to code for 

the NP9 protein previously [125,126]. Thus increased expression of HERV-K(HML-2) 

Np9 could be related to AIDS-associated cancer.   

 

Mechanisms by which HERV-K(HML-2) might also be associated with diseases 

include the production of viral proteins with biological activities, such as the HERV-

K(HML-2) encoded superantigens [159]. 

Superantigens are a class of antigens, which cause non-specific activation of T cells 

resulting in polyclonal T cell activation and massive cytokine release [160]. They do 

this by associating with MHC class II molecules and binding to T cells that express 

particular T cell receptor β chain variable genes. There are two groups of 

microorganisms that are known to include superantigens: bacteria and viruses. While 

a huge number of bacterial superantigens have been well characterized structurally 

and functionally, only three families of viruses have been associated with 

superantigen activity: retroviruses, rhabdoviruses and herpesviruses [161].  

Superantigens are described as modifying factors in HIV infection [162]. 

Superantigens have been found to activate T cells and facilitate HIV expression in T 

cells derived from HIV-1 infected patients [163,164]. CD4 T cells in HIV-1 infected 

patients are primed to die through apoptosis [165,166,167,168]. The process of 

apoptotic death of CD4 T cells in HIV-1 infection comprises two steps, the priming of 

T cells for programmed cell death and stimulation of T cell receptors [165]. For 

example gp120 is considered as a candidate to prime T cells for programmed cell 

death [169]. These primed cells can undergo apoptotic death by stimulation through 

interaction of T cell receptors with specific superantigens [170]. Thus, superantigens 

represent the second signal for programmed cell death.  

Sutkowski et al. identified a superantigen encoded by the envelope gene (env) of the 

human endogenous retrovirus (HERV)-K18 [89]. HERV-K18 is localized to 

chromosome 1q21.2 - q22 [171] and is normally transcriptionally silent. Since an 

active HERV-K provirus located on chromosome 1q22 in HIV-1 infected cells was 

found in this study, it might be possible that the HERV-K18 Env superantigen is 

presented on the surface of HIV infected cells. Furthermore superantigens have been 

implicated to autoimmune diseases like rheumatoid arthritis and Kawasaki disease 
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[172]. As HIV-1 infection is also associated with autoimmune diseases like Kawasaki 

disease [173,174,175], the HERV-K18 Env superantigen may contribute to the 

development of such a HIV-1 associated disease.  

 

4.5. HIV-1 induced transcription factor activation (e.g. NF-κB) may 
be involved in increased HERV expression 
As exogenous cofactors can significantly affect replication or expression of HIV in 

vivo [127,128], they may also affect HERV expression. HIV replication is strongly 

regulated at the transcriptional level through the specific interaction of viral regulatory 

proteins, namely Tat and cellular transcription factors binding to a variety of cis-acting 

DNA sequences in the HIV LTR [176]. One of the main mediators of HIV LTR 

transcription is the nuclear factor-κB (NF-κB) [177]. Two NF-κB sites in the HIV long 

terminal repeat (LTR) have been proposed to be involved in viral transcription and 

replication [129]. Interestingly, it has been reported that HIV infection induces NF-κB 

activation, which may suppress HIV-induced apoptosis in infected myeloid cells 

[178].  

The transcription factor NF-κB is a critical regulator of many cellular processes 

including cell survival and inflammation. NF-κB functions as a hetero- or homodimer 

which can be formed from five NF-κB subunits, NF-κB1 (p50 and its precursor p105), 

NF-κB2 (p52 and its precursor p100), RelA (p65), RelB and c-Rel. NF-κB activation 

involves its nuclear translocation that is initiated by multiple stimuli, such as pro-

inflammatory cytokines, pathogens, antigenic peptides, developmental signals or 

environmental stressors. Activated NF-κB binds to regulatory elements on the DNA 

and induces expression of target genes involved in immune response, inflammation, 

survival, proliferation, differentiation or development [179,180]. 

 

To investigate if cellular transcription factors (e.g. NF-κB) activate HERV expression, 

standard stimuli (PMA/Ionomycin or antibodies against CD3/CD28) were used to 

activate the major transcription factors NF-κB, NFAT and AP1 in T cells 

[130,131,132,133].  

To this end, Jurkat T cells were stimulated with PMA/Ionomycin or antibodies against 

CD3/CD28 for 3 hours. Several HERV families (HERV-T, HERV-E, HERV-F, HERV-

W, ERV-9, HML-2, HML-3, HML-4, HML-6, HML-7, HML-9, HML-10 and HERV-L) 

showed increased expression in stimulated Jurkat cells. Thus it seems that activation 
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of cellular transcription factors could be the reason for the HERV upregulation in HIV-

1 infected cells. 

As HERV-K(HML-2) transcripts showed high expression in stimulated cells, the six 

HERV-K(HML-2) loci (c1_B; c3_B; c3_C, c3_E, c7_C and c10_B) found to be active 

in acutely HIV-1 infected cells were investigated for common transcription factor 

binding sites within their LTRs using bioinformatics tools. LTRs of four active HERV-

K(HML-2) loci (c1_B; c3_B; c3_C and c3_E) contained NF-κB transcription factor 

binding sites, while missing NFAT and AP1 sites. This suggests that HML-2 

proviruses may be activated in these cells through NF-κB binding. Provirus c7_C and 

c10_B lack the 5’LTR [117], suggesting that the transcription of these loci may be 

directed by unknown flanking promoters. Locus c7_C is located closely downstream 

of the SSBP1 gene and thus read-through events might have produced c7_C 

harboring transcripts [117]. As locus c10_B is located within an intron of gene 

(ABCC2), these alternative splicing events might have produced c10_B harboring 

transcripts [117]. The HML-2 locus c11_B found to be active in uninfected cells 

contains only one NF-κB transcription factor binding site with a different location 

compared to the NF-κB sites identified in HML-2 proviruses active in acutely HIV 

infected cells.  

 

Several studies showed that HIV-1 production is associated with NF-κB activation 

[18,19,181,182,183,184,185]. For example in the promonocytic cell line U937, HIV-1 

activates the inducible pool of NF-κB as a result of enhanced IκB-α degradation 

[181,182,183,184]. If LTRs of HERV families HERV-T, HERV-E, ERV-9, HML-3, 

HML-4 and HML-10 found to be active in persistently HIV-1 infected cells also 

contain NF-κB transcription factor binding sites, these HERV elements might also be 

upregulated through the transcription factor NF-κB. This could be analyzed in future 

studies e.g. by identification of the active loci of HERV-goups S71pCRTK-1, and 

HERV-KC(4) and the investigation of the existence of NF-κB binding sites within their 

LTR sequences. The other HERV groups 4-1, ERV-9, Seq59 and the HML-3 groups 

probably comprise too many proviruses [44] to allow analysis of single active loci. 

Additionally this hypothesis could be verified by investigation of HERV expression 

patterns after knockout of the NF-kB binding sites.  
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Several studies show that HIV-1 Nef activates NF-κB and therefore stimulates NF-κB 

dependent HIV-1 replication [18,19,185]. Overexpression of HIV-1 Nef in LC5 cells 

showed that HIV-1 Nef has great impact in boosting HERV expression. A 

hypothetical model for activation of HERV and HIV expression by Nef is shown in 

Figure 4.3. Through its N-terminal myristoylation, Nef is targeted to the cell 

membrane [186,187], where it can interact with a wide number of signaling host 

molecules. Afterward, Nef starts the retrograde intracellular path by associating with 

clathrin-coated pits, ultimately accumulating in the endosomal/lysosomal 

compartment [186,187,188,189]. Nef could interact with the catalytic subunit of the V-

ATPase [190,191], inducing its inhibition. The V-ATPase inhibition triggers an 

intracellular signaling ultimately leading to NF-κB activation [18]. Activated NF-κB 

dimerizes, translocates into the nucleus where it may bind to the HIV LTR and to 

HERV LTRs and activate and increase their transcription, respectively. 
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Figure 4.3.: A model for the Nef-induced activation of HERVs. 
(1) Nef is produced in the cytoplasm during HIV-1 infection. (2) Furthermore it can be recruited to the 
cytoplasm through internalization from the extracellular milieu [192] (3) Independent of the origin, Nef 
molecules interact with the catalytic subunit of the V-ATPase, thereby inducing its inhibition. The V-
ATPase inhibition leads to NF-κB activation. (4) Activated NF-κB dimers translocate into the nucleus 
and activate HIV-LTRs and/or induce HERV activation through binding to the NF-κB transcription 
factor binding sites within the HERV-LTRs. 
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4.6. Disease relevance of HIV-1 induced HERV expression 
Evans et al 2009 [193] showed in mice that infection with an exogenous retrovirus 

(MULV) activates expression of endogenous retroviruses.  

Retroviral elements that integrate in close proximity of cellular genes may influence 

normal genome function in their host. Although a de novo integration of activated 

HERV elements has not been described so far, an association of HERV gene 

transcription with disease has frequently been suggested [68,194,195]. Furthermore, 

LTRs of activated HERVs may influence the expression of adjacent oncogenes [196]. 

 
4.6.1. Expression of various cellular genes by HERV-E elements and possible 
association with angiogenesis  

HERV-E transcription has been demonstrated in ovarian cancer [197] and 

rheumatoid arthritis [198] and its LTRs serves as promotor for several cellular genes 

[199,200,201,202]. LTR promoter/enhancers can enhance the transcription of native 

promoters. An example is the presence of an HERV-E LTR that increases the native 

promoter activity and expression of apolipoprotein C-I [199]. Such LTR promoter and 

enhancer functions can influence native promoters over a very long range; distances 

up to 100 kb have been observed [203].  

Previous studies indicate that the LTR of HERV-E acts as an alternative promotor for 

the endothelin-B receptor [199], a receptor that regulates monocyte activity at sites of 

inflammation and the production by monocytes of putative neurotoxins such as nitric 

oxide [204].  

 

Furthermore, in human malignant trophoblasts, HERV-E integration into the growth 

factor gene pleiotropin (PTN) has generated cell type-specific promoter activity [205]. 

Kaposis’s sarcoma is an angioproliferative disease characterized by intense and 

aberrant angiogenesis [206,207]. Its appearance and aggressiveness is dramatically 

increased in HIV infected people. That is why there is a great deal of interest in anti-

angiogenic HIV protease inhibitors [208]. As pleiotrophin is associated with 

angiogenesis [209,210] it would be of interest to determine if the HERV-E loci, where 

the HERV-E element is integrated upstream of the growth factor gene pleiotropin, is 

activated in the HIV-1 infected cells and thus is involved in the development of HIV-1 

mediated Karposi’s Sarcoma. HERV-E showed the highest upregulation in our 

results. The upregulation of the HERV-E subgroup 4-1 in HIV-1 infected cell lines 
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suggests a possible role of this HERV-E locus in HIV-1 associated Kaposis’s 

sarcoma. This hypothesis could be clarified in future studies by investigation of the 

activated loci of HERV-E (4-1) in HIV-1 infected cells, which would be an extended 

study because HERV-E comprise many proviruses as described in Mager & 

Medstrand 2003 [44].  

 

4.6.2. HERV-K(C4) expression in HIV-1 infected cells 
HERV-K(C4) is located in intron 9 of the complement C4A6 gene but is also found in 

some C4B genes [211]. Such sequences appear to be principal contributors to the 

interlocus and interallelic heterogeneity of C4 genes. The occurrence of members of 

the HERV-K(C4) family in the C4A and C4B genes of the class III region of the 

human HLA complex has biological and immunological implications. For example, it 

is plausible that insertions of single or multiple copies of HERV-K(C4) into C4A or 

C4B sequences could alter important immunologic reactivities, such as complement-

dependent cell meditated cytotoxicity, or engender autoimmune reactivities by 

alterations of HLA antigens. Moreover, regulatory sequences in the LTRs of HERV-

K(C4) might affect the expression of C4A, C4B, or HLA genes. Since HIV-1 is 

capable of activating HERV-K(C4) expression, one could hypothesize that alterations 

of HLA genes could lead to cellular changes that help the virus to escape the 

immune system. 

 

4.6.3. Immunsuppressive activity of HERV Env proteins  
ERV9 HERVs appear to be severely truncated, although analysis of the 4 kb 

repetitive sequence revealed the presence of ORFs potentially coding for retrovirus-

related gag, pol and env proteins [212]. Some retroviruses including HERV families 

such as ERV9 and HERV-E contain an immunosuppressive domain within the TM 

(Transmembrane) domain of the Env protein [213,214]. Introduction of an infectious 

murine retrovirus env expression vector presenting this domain into cancer cells can, 

in a mouse model, promote tumor growth by allowing escape from immune 

surveillance [215]. As ERV9 showed activation in the HIV-1 infected cells it would be 

of interest if there are proteins expressed from the coding ERV9 related gag, pol and 

env genes that might cause an escape from the immune surveillance and thus help 

HIV-1 to undergo the immune system.  
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4.6.4 HERVs and their therapeutic potential 
Nixon et al 2007 [75] demonstrated that T-cells of the human immune system 

respond to presented HERV peptides derived from regions of upregulated HERVs in 

HIV-1 infected persons. The study has identified that HIV-1 infection leads to HERV 

expression, peptide presentation on MHC class I molecules and thereby stimulation 

of HERV-specific CD8+ T cell response. They showed HERV-specific immune 

responses in HIV-1 infection.  

One great problem for the immune system to detect HIV-infected cells is that 

presented viral peptides on infected cells change rapidly over time due to high 

mutation rates of the virus. In this context it is interesting to speculate that infected 

cells could use HERVs as a tool to inform the immune system about their infection 

status. Also in my study several HERV families showed upregulated expression in 

HIV-1 infected cells. Several of these identified upregulated HERV families have the 

potential to encode for proteins like NP9 (HERV-K(HML-2)) or superantigens (e.g. 

HERV-K18 or E4-1). Therefore there might be the possibility that they are presented 

on HIV-1 infected cells.  

If HIV-1 infected cells would produce HERV peptides as described above, HERVs 

would provide an effective surrogate target for the immune response to eliminate 

HIV-1-infected cells and could bear the possibility of candidates for inclusion in a new 

type of HIV-1 vaccine. Thus, these CD8+ T cells would be an important factor in 

controlling HIV infection. 

 

Furthermore, an antigen-encoding region, CT-RCC, was found to be part of a specific 

HERV-E locus highly expressed in metastatic renal cell carcinoma (RCC) but not in 

normal tissue, making them also potential targets for tumor immunotherapy 

[216,217]. 
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5. Summary 
Approximately 8-9% of the human genome is composed of endogenous retroviral 

elements (HERVs). Although most HERVs are silenced by a variety of mechanisms, 

they may be reactivated by environmental stimuli like exogenous viruses. As there is 

evidence that HERVs may contribute to pathogenic conditions such as cancer, 

autoimmune diseases, and neurological disorders it is important to examine the 

effect of exogenous viruses such as HIV-1 on the transcriptional activity of HERVs.  

HERV expression profiles of three persistently HIV-1 infected cell lines (derived from 

T-cells, HeLa cells and astrocytes) that differ in their levels of HIV-1 virus production 

were compared using a retrovirus pol specific microarray. Several HERV elements 

belonging to class I and II HERV families were found to be upregulated in all three 

persistently HIV-1 infected cell lines. The results were confirmed and quantified using 

real-time RT-PCR methods. Reduction of HIV-1 transcript levels by artificial inhibitors 

(i.e. siRNAs) resulted in a decrease in HERV expression. Furthermore a novel family 

of host factors (ie. Risp) was identified in the course of this study that can modulate 

HIV-1 production. Overexpression of Risp proteins reduced HIV production and also 

decreased the expression of the upregulated HERVs. Together these results 

demonstrate a direct link between HIV production and expression levels of selected 

HERV families. Studies investigating the influence of the HIV-1 proteins Tat, Rev and 

Nef on HERV expression indicated that HIV-1 Nef seems to be essential for boosting 

HERV expression. In addition to investigate the relationship between HIV production 

and HERV expression during chronic infection, I analyzed HERV expression profiles 

in cells acutely infected with a primary patient-derived HIV-1 isolate. Interestingly, the 

acutely HIV-1 infected cells showed distinctly upregulated expression of HERV-

K(HML-2), compared to uninfected cells. In contrast, HML-2 expression was not 

upregulated in the persistently infected cells. Six HML-2 proviruses were found to be 

transcribed in acutely HIV-1 infected cells, in contrast only one transcriptionally active 

HML-2 locus was found to be active in the uninfected control cell line. Stimulation 

with PMA/Ionomycin or antibodies against CD3/CD28 to activate the transcription 

factors NF-κB, NFAT and AP1 increased the HERV expression pattern of class I, II 

and III HERVs. Therefore, major transcription factors like NF-κB, NFAT and AP1 

seem to be involved in the activation of HERV expression. 

These data demonstrate that productive HIV infection can lead to alterations in the 

transcription patterns of various HERV families in multiple human cell types. The 
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results indicate the involvement of viral proteins, as well as cellular transcription 

factors (e.g. NF-κB) in activation of HERV expression. Several HERVs found to be 

active in HIV-1 infected cells are associated with biological processes like 

angiogenesis or immunosuppression. This suggests that the upregulation of HERV 

expression may influence the pathogenicity of HIV-1. 
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6. Zusammenfassung 
Das humane Genom enthält eine Vielzahl an humanen endogenen Retroviren 

(HERV). Noch vor einigen Jahren ging man davon aus, dass nur etwa 2% des 

humanen Genoms aus endogenen Retroviren besteht. Inzwischen ist jedoch 

bekannt, dass der Anteil an HERVs im humanen Genom etwa 8 - 9 % beträgt und 

HERVs somit eine bedeutende Komponente des menschlichen Genoms darstellen. 

Viele HERVs enthalten funktionelle Promotoren, Enhancer-Elemente und 

Polyadenylierungssignale. Diese regulatorischen Sequenzen können die Expression 

von benachbarten Genen beeinflussen. Eine solche Modulation könnte zur 

Aktivierung von Onkogenen oder zur Inaktivierung von Tumorsuppressorgenen 

führen. HERVs werden daher mit verschiedensten Krankheiten in Zusammenhang 

gebracht (z.B. Krebs, Autoimmunerkrankungen und neurologischen Erkrankungen).  

Fast alle HERVs sind durch epigenetische Kontrollmechanismen inaktiviert worden. 

HERVs können jedoch durch exogene Viren wieder reaktiviert werden. Daher ist es 

von Interesse den Einfluss von exogenen Viren wie HIV-1 auf die Expression von 

HERVs in menschlichen Zellen zu untersuchen.  

Drei persistent HIV-1 infizierte Zelllinien (T-Zellen, HeLa-Zellen und Astozyten), 

welche sich in ihren Levels an HIV-1 Virus Produktion unterscheiden, wurden mittels 

eines Retroviren pol spezifischen Microarrays untersucht. Einige HERV-Elemente 

der Klasse I und II HERV Familien zeigten eine starke Expressionserhöhung in allen 

drei HIV-1 infizierten Zelllinien. Diese Ergebnisse konnten auch mittels real-time RT-

PCR verifiziert werden. Eine Reduktion der HIV-1 Transkripte mittels artifizieller 

Inhibitoren (z.B. siRNAs) ergab eine Reduzierung der HERV-Elemente in Ihrer 

Expression. Des Weiteren wurde in dieser Arbeit eine neue Familie an Proteinen 

(Risp) gefunden, welche die HIV-1 Produktion beeinflussen. Eine Überexpression 

dieser Risp Proteine hemmte die HIV-1 Produktion und zeigte zudem eine 

Reduzierung der HERV Expression. Diese Daten weißen auf einen direkten 

Zusammenhang zwischen HIV-1 Produktion und der HERV Expression hin. Zudem 

wurde der Einfluss der einzelnen HIV-1 Proteine Tat, Rev und Nef auf die HERV 

Expression untersucht. In diesen Untersuchungen schien HIV-1 Nef essentiell für 

den Anstieg der HERV Expression zu sein. Um zusätzlich das Verhältnis zwischen 

HIV Produktion und HERV Expression während der chronischen Infektion zu 

untersuchen, wurde das HERV Expressions-Profil auch in Zellen untersucht, welche 

mit einem primären HIV-1 Patientenisolat infiziert wurden. Interessanterweise zeigten 
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diese akut mit einem Patientenisolat infizierten Zellen einen deutlichen Anstieg an 

HERV-K(HML-2) Expression verglichen zu den nicht infizierten Zellen. In persistent 

infizierten Zellen konnte die HERV-K(HML-2) Expressionserhöhung nicht festgestellt 

werden. Um einen Aufschluss zu bekommen welche Loci in den akut infizierten 

Zellen für die HERV-K(HML-2) Erhöhung verantwortlich sind, wurden die Zellen auf 

aktive HERV-K(HML-2) Loci untersucht. In den akut infizierten Zellen konnten sechs 

transkriptionell aktive Proviren gefunden werden, wohingegen in den nicht infizierten 

Zellen nur ein Provirus aktiv war. Zudem konnte gezeigt werden, dass die Aktivierung 

der Transkriptionsfaktoren NF-κB, NFAT und AP1, durch Stimulierung von T-Zellen 

mit PMA/Ionomycin oder Antikörpern gegen CD3/CD28, eine Expressionserhöhung 

der HERV Familien der Klasse I, II und III zur Folge hatte. Dem zu Folge scheinen 

bedeutende Transkriptionsfaktoren wie NF-κB, NFAT und AP1 an der Aktivierung 

von HERVs beteiligt zu sein. 

Die Daten zeigen, dass eine Infektion mit HIV-1 in verschiedenen humanen Zelllinien 

zu Veränderungen des Transkriptionsprofils von verschiedenen HERV Familien führt. 

Die Ergebnisse deuten auch darauf hin, dass virale Proteine (Nef) als auch zelluläre 

Transkriptionsfakoren (z.B. NF-κB) an der Aktivierung der HERV Expression beteiligt 

sind. Mehrere HERVs, welche in den infizierten Zellen eine höhere Expression 

zeigten als in den nichtinfizierten Kontroll-Zelllinien, sind assoziiert mit biologischen 

Prozessen wie Angiogenese oder Immunsuppression.  Dies würde darauf hindeuten, 

dass die aktivierten HERVs die HIV-1 Pathogenität beeinflussen könnten. 
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7. Conclusions and Perspectives 
These data demonstrate that HIV protein expression leads to alterations in HERV 

transcription pattern in multiple human cell types. Furthermore the results indicate 

that transcription factors (e.g. NF-κB) are involved to activate HERV expression. 

In this study, I obtained evidence suggesting that Nef mediates overexpression of 

HERV transcripts (see result 3.4 and discussion 4.3). To further validate this 

hypothesis one could investigate the HERV expression pattern after infection of LC5 

cells with a Nef-deficient virus.  

Furthermore, I showed that six HERV-K(HML-2) proviruses (c1_B, c3_B, c3_C, 

c3_E, c7_C and c10_B) are active in acute HIV-1 infected cells, of which three 

(c1_B; c3_B and c3_C) can possibly encode for the Env protein, NP9 (see result 

3.5.2 and discussion 4.4). As the Np9 protein is associated with AIDS-related 

cancers, it is of interest if the Np9 protein is in fact expressed in HIV infected cells. To 

this end, HIV infected cells could be analyzed for Np9 protein production by Western 

Blot. 

Overexpression of HERV-K18 and E4-1 in HIV infected cell lines indicated that these 

cells might present superantigens on their surface. As these superantigens could 

serve as a tool to inform the immune system about the HIV infection status of the cell 

(see discussion 4.4), it would be interesting to investigate the presence of these 

superantigens on the surface of the LC5-HIV cells.  
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8. Abbreviations 
 

AP1 Activator protein 1 

ARM Arginin rich motif  

ATP  Adenosintriphosphat  

bp  base pair  

BSA Bovine Serum Albumine 

CD4 Cluster of Differentiation 4 

CDK  Cyclin Dependent Kinase 

CIP Calf Intestinal Alkaline Phosphatase 

CMV  Cytomegalovirus 

CRM1 Exportin1   

DMEM  Dulbecco’s Modified Eagle Medium  

DMSO Dimethylsulfoxide 

DNA  Desoxyribonucleic acid  

dNTP  Desoxynukleotidtriphosphat  

E.coli  Escherichia coli  

EDTA  Ethylendiamintetraacetat  

FACS Fluorescence activated cell sorter 

FCS Fetal Calf Serum  

GDP Guanosindiphosphat 

GFP  Green Fluorescent Protein aus Aequorea victoria  

GTP Guanosintriphosphat 

HIV  Human immunodeficiency virus  

HTLV  Human T-cell leukemia virus  

INS Instabilitätselement 

kb  kilo bases  

kDa  kilo Dalton  

LTR  Long terminal repeat  

MHC Major Histocompatibility Complex   

mRFP monomeric Red Fluorescent Protein 

mRNA  Messenger ribonucleic acid  

NES Nuclear Export Signal 

NFAT Nuclear factor of activated T cells 
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NF-kB  Nuclear factor 'kappa-light-chain-enhancer' of activated B-

cells 

NLS Nuclear Localization Signal 

PBS  Phosphate buffered saline  

PCR  Polymerase chain reaction  

PIM Protease inhibitor mixture 

PMA Phorbol Myristate Acetate 

PMSF Phenylmethylsulfonylfluorid 

RNA  Ribonucleic acid  

RRE  Rev Response element  

SDS  Sodiumdodecylsulfat  

SV40  Simian Virus 40  

Taq  Thermus aquaticus  

TAR Transactivation Response Element 

TNFα Tumor necrosis factor alpha 

Tris Tris(hydroxymethyl-)aminomethan 

tRNA  Transfer-RNA  

U Units 
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10. Supplement 

 
Aligned Sequences: 

No. Sequence Name Sequence Description Length 

   1 pCRisp pCRisp 1372 aa 

2 FAM21A(Q641Q2) FAM21A(Q641Q2) 1341 aa 

3 FAM21A(B7ZME8) FAM21A(B7ZME8) 1320 aa 

4 FAM21A(Q9Y4N4) FAM21A(Q9Y4N4) 490 aa 

5 FAM21B(Q5SNT6) FAM21B(Q5SNT6) 1253 aa 

6 FAM21C(B4E255) FAM21C(B4E255) 531 aa 

7 FAM21C(B4DF48) FAM21C(B4DF48) 1023 aa 

8 FAM21C(Q9y4e1) FAM21C(Q9y4e1) 1320 aa 

9 FAM21C(q9y4e1-3) FAM21C(q9y4e1-3) splice 
variant 

1265 aa 

10 FAM21C(q9y4e1-2) 
FAM21C(q9y4e1-2) splice 
variant 

1312 aa 

11 FAM21C(B9EK53) FAM21C(B9EK53) 1279 aa 

12 FAM21C(B4DZQ6) FAM21C(B4DZQ6) 1245 aa 

13 FAM21D(Q5SRD0) FAM21D(Q5SRD0) 308 aa 

 

 

Alignment (DiAlign format): 

Color code is: 
 
• basic amino acids 
• nonpolar amino acids 
• uncharged polar amino acids 
• acidic amino acids 
• aromatic amino acid 
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Supplement (previous pages): High sequence similaritities between members 
of the Risp protein (i.e. human proteins featuring the 16.4.1 region). Human 
proteins containing the 16.4.1 region were identified by searching the UniProtKB 
database (http://www.ebi.ac.uk/uniprot/) with the 16.4.1 amino acid sequence. All 
proteins identified in this manner belonged to the FAM21 family (gene family with 
sequence similarity 21). Similarities between these proteins was analyzed with 
DiAlign, Genomatix Munich. Shown is the multiple alignments of protein sequences, 
with accession numbers indicated in brackets. pCRisp designates the Risp protein-
encoding sequence in the pCRispsg143 expression plasmid. The blue rectangle 
labels the 16.4.1 region and the green rectangles the locations of the peptides used 
to generate anti-Risp antibodies. 
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