
Amortised Resource Analysis
for Object-Oriented Programs

Dulma Rodriguez

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

Eingereicht am 28. Juni 2012

Amortised Resource Analysis
for Object-Oriented Programs

Dulma Rodriguez

Erstgutachter: Prof. Martin Hofmann, PhD
Ludwig Maximilians-Universität München

Zweitgutachter: Prof. Dr. C.-H. Luke Ong
University of Oxford

Abgabedatum: 28. Juni 2012
Disputationsdatum: 5. Oktober 2012

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

ii

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, §8, Abs. 2 Pkt. .5.)

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir
selbstständig, ohne unerlaubte Beihilfe angefertigt ist.

Dulma Rodriguez
München, 28. Juni 2012

Abstract

As software systems rise in size and complexity, the need for verifying some
of their properties increases. One important property to be verified is the
resource usage, i.e. how many resources the program will need for its execu-
tion, where resources include execution time, memory, power, etc. Resource
usage analysis is important in many areas, in particular embedded systems
and cloud computing. Thus, resource analysis has been widely researched
and some different approaches to this have been proposed based in particular
on recurrence solving, abstract interpretation and amortised analysis.

In the amortised analysis technique, a nonnegative number, called poten-
tial, is assigned to a data structure. The amortised cost of operations is then
defined by its actual cost plus the difference in potential of the data struc-
ture before and after performing the operation. Amortised analysis has been
used for automatic resource analysis of functional and object-oriented pro-
grams. The potentials are defined using refined types and typing rules then
ensure that potential and actual resource usage is accounted for correctly.
The automatic inference of the potential functions can then be achieved by
type inference.

In the case of functional programs, the structure of the types is known.
Thus, type inference can be reduced to solving linear arithmetic constraints.
For object-oriented programs, however, the refined types are more compli-
cated because of the general nature of objects: they can be used to define any
data structure. Thus, the type inference must discover not only the poten-
tial functions for the data structure but also the data structures themselves.
Other features of object-oriented programs that complicate the analysis are
aliasing and imperative update. Hofmann and Jost presented in 2006 a
type system for amortised heap-space analysis of object-oriented programs,
called Resource Aware JAva (RAJA). However, they left the problem of
type inference open.

In this thesis we present a type inference algorithm for the RAJA system.
We were able to reduce the type inference problem to the novel problem of
satisfiability of arithmetic constraints over infinite trees and we developed
a heuristic algorithm for satisfiability of these constraints. We proved the
soundness of the type inference algorithm and developed an OCaml imple-
mentation and experimental evaluation that shows that we can compute

iii

linear upper-bounds to the heap-space requirements of many programs, in-
cluding sorting algorithms for lists such as insertion sort and merge sort
and also programs that contain different interacting objects that describe
real-life scenarios like a bank account.

Another contribution of this thesis is a type checking algorithm for the
RAJA system that is useful for verifying the types discovered by the type
inference by using the proof carrying code technology.

iv

Zusammenfassung

Eine wichtige Eigenschaft von Software ist der Ressourcenverbrauch; also
der Verbrauch von Ausführungszeit, Speicher, und anderen quantifizierbaren
Größen. Speziell bei eingebetteten Systemen und in Situationen wo Rechen-
leistung abgerechnet wird ist die automatische Vorhersage des Ressourcenver-
brauchs sehr wünschenswert. Es wurden daher verschiedene Ansätze zur
Lösung dieses Problems entwickelt, insbesondere Rekurrenzgleichungen, ab-
strakte Interpretation und die amortisierte Analyse, mit der sich auch die
vorliegende Arbeit befasst.

In der amortisierten Analyse wird eine nichtnegative Zahl, genannt Poten-
zial, einer Datenstruktur zugewiesen. Die amortisierten Kosten von Opera-
tionen ergeben sich aus den tatsächlichen Kosten zuzüglich der Differenz
im Potenzial der Datenstruktur vor und nach der Durchführung der Oper-
ation. Indem man die Potenzialfunktionen als (verfeinerte) Typen auffasst,
wird die Aufgabe der automatischen Findung der Potentiale zu einem Typ-
inferenzproblem.

Bei funktionalen Programmen ist die Struktur der Typen bekannt, deswe-
gen kann die Typinferenz auf die Lösung linearer arithmetischer Unglei-
chungen reduziert werden. Aber da Objekte beliebige Datenstrukturen
definieren können, sind die verfeinerte Typen für objekt-orientierte Pro-
gramme viel komplizierter. Aus diesem Grund muss die Typinferenz nicht
nur die Potenzialfunktionen entdecken sondern auch die codierten Daten-
strukturen an sich. Die Analyse wird durch weitere Eigenschaften von
objekt-orientierten Programme erschwert wie das Aliasing und imperatives
Update. Hofmann und Jost haben 2006 ein Typsystem für die amortisierte
Heap-Space-Analyse von objekt-orientierten Programmen vorgestellt; ge-
nannt Resource Aware JAva. Allerdings blieb das Problem der Typinferenz
offen.

In dieser Arbeit präsentieren wir ein Algorithmus zur Typinferenz für
das System RAJA. Wir reduzieren die Typinferenz auf das neuartige Pro-
blem der Erfüllbarkeit von arithmetischen Ungleichungen über unendliche
Bäume. Darüber hinaus entwickeln wir einen heuristischen Algorithmus
für die Erfüllbarkeit dieser Ungleichungen. Zusätzlich haben wir die Ko-
rrektheit des Algorithmus bewiesen. Wir haben den Algorithmus in OCaml
implementiert. Experimente belegen, dass wir lineare obere Schranken an

v

den Heap-Space-Verbrauch vieler Programme berechnen können, z.B. für
Sortieralgorithmen für Listen wie Sortieren durch Einfügen oder Mischen,
sowie Programme die verschiedene interagierende Objekte enthalten, die
reale Szenarien beschreiben wie z.B. ein Bankkonto.

Ein weiterer Beitrag dieser Arbeit ist ein Type-Checking Algorithmus.
Damit ist eine Uberprüfung der Typen möglich, die die Typinferenz liefert,
z.B. mit Hilfe der proof carrying code Technologie.

vi

Acknowledgements

This thesis would not have been possible without the dedication and support
of my supervisor Martin Hofmann. I thank him for suggesting this difficult
research topic and believing in my ability to master it.

I also thank Andreas Abel for many interesting discussions on type sys-
tems and fixpoints. I thank Steffen Jost for kindly giving me access to all
his drafts related to the RAJA system and for many insightful discussions.

I thank Luke Ong for inviting me to Oxford to discuss my work and for
his many useful questions about RAJA and its relation to other research;
these encouraged me to seek a deeper understanding of various issues.

Andrew Gordon’s Marktoberdorf 2009 lecture inspired me to relate the
type inference for RAJA to that of refinement types.

I thank Ramyaa for various insightful discussions on the relation of con-
straints over infinite trees to recurrence relations. I thank my colleagues for
listening to numerous talks on my research and providing useful feedback; in
particular Jan Hoffmann, Javier Esparza, Helmut Seidl, Lennart Beringer,
Robert Grabowski, Markus Latte, Ulrich Schöpp and Vivek Nigam. I also
thank Max Jakob for technical support, in particular for setting up the
RAJA demo web-page.

Special thanks to Martin Churchill for listening patiently to my research
problems and providing me with useful advice, and for proofreading chapters
of this thesis. Many thanks also to my family for their constant love and
support.

I acknowledge financial support from the DFG Graduiertenkolleg 1480
(PUMA) and the EU integrated project MOBIUS IST 15905.

vii

viii

Contents

Abstract iii

Zusammenfassung v

Acknowledgements vii

1 Introduction 1

1.1 Motivation . 1

1.2 Java-like language . 2

1.3 Method . 3

1.4 Contributions . 4

1.5 Outline . 5

1.6 Relation to published work 7

2 FJ with Update 9

2.1 Overview . 9

2.2 Syntax and typing . 10

2.2.1 Syntax . 10

2.2.2 Typing . 13

2.2.3 Type reconstruction 15

2.3 Semantics of FJEU . 17

2.3.1 Standard operational semantics 17

2.3.2 Special semantics for heap-space analysis 24

3 Resource Aware Java 27

3.1 Informal presentation and examples 27

3.1.1 Refined types, views and potential 30

3.1.2 Monomorphic and polymorphic method types 30

3.1.3 Potential of a runtime configuration 31

3.1.4 Examples . 31

3.2 Introduction to the RAJA system 36

3.2.1 Views and refined types 36

3.2.2 Constraints . 40

3.2.3 Monomorphic and polymorphic RAJA method types . 42

ix

3.2.4 Sharing Relation . 46

3.2.5 Typing RAJA . 50

3.3 Heap soundness and potential 53

3.4 Algorithmic problems . 63

4 Type Checking RAJA Programs 65

4.1 Overview . 65

4.2 RAJA program with explicit types 66

4.3 Algorithmic views . 68

4.4 Typing . 71

4.4.1 Syntax-directed typing rules 72

4.4.2 Verification of correctness of typing 74

4.5 Decidability of typing . 83

4.5.1 Decidability of subtyping 84

4.5.2 Efficiency of typing . 84

5 Type Inference for RAJA 87

5.1 Overview . 87

5.2 RAJA programs with monomorphic recursion 88

5.3 Generation of RAJAm programs 91

5.3.1 Constraint generation rules 91

5.3.2 Verification of correctness of constraint generation . . 96

5.4 Analysing the heap-space requirements of
FJEU programs . 102

5.5 Generating a finite RAJA program with explicit types 104

6 Linear Constraints over Infinite Trees 105

6.1 Overview . 105

6.2 Infinite trees . 107

6.3 Constraints . 112

6.3.1 Algorithmic problems 116

6.4 Elimination of tree variables 118

6.5 Solving a system of constraints 121

6.5.1 Tree schema substitution and ∆Ts(C) 122

6.5.2 Computation of ∆Ts(C) 126

6.5.3 Linear constraint system (LCS) 129

6.5.4 Heuristic algorithm for solving a system of constraints 133

6.6 Applications to resource analysis 135

6.6.1 Views to infinite trees 135

6.6.2 Infinite trees to views 139

6.6.3 Subtyping and arithmetic constraints to systems of
constraints . 141

6.6.4 Algorithm for solving subtyping and arithmetic con-
straints . 146

x

7 Prototype Implementation 149
7.1 Memory aware interpreter for FJEU programs 149

7.1.1 Usage . 151
7.1.2 Analyser module . 152

7.2 Experimental results . 155

8 Related Work 159
8.1 Resource analysis . 159

8.1.1 Abstract interpretation 160
8.1.2 Recurrence solving . 162
8.1.3 Type systems . 163
8.1.4 Separation logic . 165
8.1.5 Other techniques . 166

8.2 Refinement types . 167
8.3 Linear types and capabilities 168

9 Conclusions 171
9.1 Further directions . 171

xi

xii

List of Figures

2.1 The syntax of FJEU. 11

2.2 FJEU subtyping, FJEU typing and FJEU method typing. . . 14

2.3 FJEU type reconstruction. 16

2.4 Operational semantics of FJEU. 18

2.5 Operational semantics of FJEU for heap-space analysis. . . . 25

3.1 Copying lists in FJEU. 28

3.2 Appending lists in FJEU. 29

3.3 Infinite tree representing view rich. 37

3.4 RAJA Typing. 51

3.5 Algorithmic problems regarding the type system RAJA. . . . 64

4.1 Syntax of annotated FJEU expressions. 67

4.2 Definition of algorithmic views. 69

4.3 Algorithmic RAJA Typing. 73

5.1 RAJAm Typing. 89

5.2 Constraint generation rules. 93

5.3 Generation of RAJAm polymorphic types. 94

5.4 Call graph for the program for copying lists extended with
inheritance relations. 95

5.5 Schematic structure of the algorithm for generating polymor-
phic RAJA method types in the simplified case of analysing
the two mutually recursive methods C.m and D.n. 96

5.6 Schematic structure of the algorithm for building a monomor-
phic RAJA method type for the main method of an FJEU
program. 103

6.1 Some infinite trees. 106

6.2 Nesting depth of a variable x in a system of constraints C. . . 114

6.3 Algorithmic problems regarding systems of constraints. 117

6.4 Elimination of a tree variable from a set of tree constraints. . 119

6.5 Representation of a tree schema Ts and a matching valuation. 123

6.6 Tree schema substitution and ΓTs(T C). 124

6.7 Extending tree schema to a valuation. 126

xiii

6.8 ΓiTs(T C) and T CiTs. 127
6.9 Tree schema for a linear constraint system. 130
6.10 Bringing left or right linear loops into linear loops. 132
6.11 Heuristic algorithm for solving a system of constraints C. . . . 134
6.12 View rich and how it is reduced to the infinite trees rich+ and

rich−. 136
6.13 Reducing a conjunction of subtyping and arithmetic constraints

to a system of constraints. 142
6.14 Heuristic algorithm for solving a conjunction of subtyping and

arithmetic constraints C. 147

7.1 Schematic structure of the implementation of a memory aware
interpreter for FJEU programs. 150

7.2 Schematic structure of the implementation of the analyser. . 153
7.3 Experimental results. The column LoC represents the lines

of code of the program, the column Heap-space shows the
result of the analysis: the prediction of the required size of
the heap, which is in all cases equal to the actual heap-space
consumption of the program. Nr. of variables represents
the number of tree variables that the program creates when
generating constraints. Nr. of variables after elimina-
tion represents the number of tree variables that appear in
the constraints of main after eliminating all possible variables.
Run time represents the run time of the analysis. n repre-
sents the size of the input. 156

8.1 Overview of tools for resource usage analysis for imperative
programs. The column Paradigm shows whether the tool
is for object-oriented programs or just for imperative pro-
grams. The column Automatic? shows if the tool is fully-
automatic. The column Resource shows the resource that
the tool analyses. Column Aliasing? shows whether the
tool takes aliasing into account. Finally, column GC? shows
whether the tool takes garbage collection into account. This
is only applicable if the resource is heap-space or generic. . . 160

xiv

Chapter 1

Introduction

This thesis studies the problem of analysing the resource consumption of
programs automatically. In particular, it focuses on the analysis of the
heap-space requirements of object-oriented programs.

Our system takes a Java-like program and computes statically a linear
bound to its heap space requirements, as a function of the size of its in-
put. The analysis is fully automatic, i.e. it does not require any user input.
Whenever the analysis returns a result, it is guaranteed to be correct. More-
over, the system can analyse many interesting programs.

1.1 Motivation

The study of resource analysis is very relevant, in particular for real-time
and embedded systems, which need to respond to externally generated input
stimuli within a finite and specified period (a deadline). Failing to meet
the deadline can result in loss of life, damage to environment or economic
loss. Hence, for those systems, it is very important to obtain an upper
bound on the execution time of the programs to ensure that they will meet
their deadlines even in the worst case. But the analysis of other resources
is relevant as well: an application that needs a particular resource for its
execution and can not obtain it, will also fail to meet its deadline. For
instance, it is important to ensure that applications will not run out of
memory. The probability of this event would be rather insignificant if those
systems had unlimited resources available, but embedded systems often run
in small devices with constrained resources.

The size and complexity of real-time systems vary from a few hundred
lines of assembler or C to more than a million lines of Ada code in the core
system of the Space Station Freedom [Rai92]. It has been estimated that
99% of the worldwide production of microprocessors is used in embedded
systems [Tur99].

Traditionally, embedded systems have been written in languages such

1

as C, C++ or Ada. In the last years, Java has also emerged as a suitable
language for real-time systems. With Java, developers can target a platform-
independent API and migrate their applications to different devices without
recompiling them. Further, the object-oriented nature of Java supports well-
structured development and software reuse. Errors introduced by the need to
manage memory explicitly in languages such as C and C++ are some of the
most difficult problems to diagnose. One of the Java programming model’s
major strengths is that the Java Virtual Machine (JVM) performs mem-
ory management, other than the application. However, traditional garbage
collectors can introduce long delays at times that are impossible for the
application programmer to predict.

The Real-time Specification for Java (RTSJ) [BBG+00] is a set of inter-
faces and behavioural specifications that was created to address some of the
limitations of the Java language that prevent its widespread use in real-time
systems.

To support tasks that cannot tolerate garbage collection interruptions,
the RTSJ defines scoped memory areas. When objects are executing within a
scoped memory area, all memory allocations are performed from the scoped
memory. When there are no objects active inside an area, the allocated
memory is reclaimed. Each scoped memory area is allocated with a maxi-
mum size.

To use scoped memory efficiently and safely, the programmers must de-
termine upper bounds on the heap-space requirements of the threads, so that
they can specify an accurate maximum size of the scoped memory area. The
bounds must be tight enough to enable the efficient use of the limited re-
sources of the embedded device and, more importantly, it must be ensured
that the code will be executed without running out of memory.

1.2 Java-like language

Our target language is a subset of Java, that we call FJEU and that is similar
to Featherweight Java [IPW99]. It contains object-oriented features such as
classes, objects, inheritance and imperative update. It does not contain
loops, but only recursion. This is not a major restriction, since loops can
be transformed into recursive methods easily. Also, the language does not
contain other advanced features of the Java language such as exceptions or
threads.

We assume a simple freelist based model where we maintain a set of free
memory units, the freelist. When creating an object, a heap unit required to
store it is taken from the freelist, provided it contains enough units. When
deallocating an object, the unit returns to the freelist. We deallocate objects
explicitly by means of a free () expression. This freelist-based model is an
abstraction from concrete memory models, which we consider convenient for

2

keeping the theory simple. We believe that extending the analysis to deal
with concrete memory models such as the scoped memory from RTSJ would
be straightforward.

Using a special free () expression to recover each heap unit that is no
longer required is an over-approximation for the recovery that can be per-
formed by the garbage collector. We do not treat in this thesis the problem
of automatically inserting free () expressions, since this problem is orthogo-
nal to the problem of resource analysis, which is the main focus of this thesis.
There are, however, various works that tackle this problem, which we could
integrate in our analysis. For instance, Chin et al. [CNQR05] handle the
automatic insertion of free () expressions using an alias type system.

1.3 Method

The need for resource prediction has been widely recognised and there has
been considerable progress in the last years. Several approaches to resource
analysis have been proposed, such as approaches based on recurrence solv-
ing [Weg75, US09, AAG+12], on abstract interpretation [FHL+01, GL02,
GMC09] and on amortised analysis [HJ03, HJ06, Cam08, HR09, JLHH10,
Atk11, HAH11].

Many of the proposed techniques work under the assumption that control-
flow is determined by some numeric parameters such as size of input or linear
arithmetic functions thereof. Other dependencies of the control flow are over-
approximated by simply taking the maximum over all possible runs. This
works well for programs that use arrays that are allocated at the beginning
with a given size and processed with for loops with a simple iteration pat-
tern. This is very useful in embedded systems or scientific computing where
most programs have such a shape. However, this does not work well with
object-oriented programs where resource behaviour depends on the dynamic
class tags of objects.

The method of amortised analysis [Tar85, Oka98] is particularly effective
in those cases. Therein, data structures are assigned nonnegative numbers,
called potential. Then, it is possible to compute bounds on the “amortised
cost” of an individual operation; that is, its actual resource usage plus the
difference in potential of the data structure before and after performing
the operation. This makes it possible to take into account the effect that an
operation might have on the resource usage of subsequent operations. When
amortised analysis is used for automatic resource analysis, we use refined
types to define the potentials; typing rules then ensure that potential and
actual resource usage is accounted for correctly. Type inference then makes
possible an automatic inference of the potential functions.

In amortised resource analysis for functional programs the data struc-
tures are known (e.g. lists or trees) and only the potential functions must be

3

found. Thus, the type inference can be reduced to solving linear arithmetic
constraints. In the object-oriented case even the data structures must be
discovered by the analysis because objects can be used for just anything be
it lists, trees, graphs, etc. As a result, automatic inference becomes con-
siderably more challenging unless one is willing to accept user annotations
specifying the way in which objects are to be used, for instance in the form
of separation logic annotations [HQLC09, Atk11].

In this thesis we show that it is possible to analyse the resource consump-
tion of object-oriented programs using the amortised analysis technique and
type systems without requiring user annotations.

1.4 Contributions

We build upon a system of refinement types for amortised analysis for FJEU
programs called Resource Aware JAva (RAJA) which was first described by
Hofmann and Jost [HJ06]. This is a powerful type system that can capture
the heap-space requirements of many programs.

In this type system, the FJEU classes are refined with views, which
are infinite trees labelled with real numbers, that can have an arbitrarily
complicated structure. This is necessary to model the general structure of
objects. Notice that first-order functional programs can be embedded into
FJEU programs, if one models the inductive data types as objects using the
Composite pattern.

Moreover, the type system takes aliasing into account, which means that
the resource analysis based on this system is sound for all programs, even if
they contain shared or even cyclic data structures.

Due to the complexity of this type system, the problem of type inference
has been open for various years. The main contribution of this thesis is a
type inference algorithm for a modified version of this system. The type
inference comprises three steps:

1. Generating subtyping and arithmetic constraints from a program.

2. Reducing the subtyping constraints to constraints over infinite trees.

3. Solving the constraints over infinite trees.

This thesis also makes the following contributions:

1. We developed a system of constraint-based types for methods that rep-
resent the method’s heap-space requirements. Introducing these poly-
morphic method types allows for a modular resource analysis, because
each method can be analysed independently of its callers. In particu-
lar, if the method type is saved after the analysis, that method does

4

not need to be analysed again if new methods are added to the pro-
gram, except for the case when the method is redefined in a subclass.
This is discussed in detail in Chapter 5.

2. We developed a type checking algorithm for an annotated version of
the RAJA system, where the methods are given a finite set of concrete
RAJA types (not polymorphic types). Those concrete types can be
seen as certificates of the resource usage of the program and the type
checking algorithm helps to verify that the given resource bounds are
correct, independently of the type inference algorithm. We describe
this algorithm in Chapter 4.

3. We described the novel problem of satisfiability of arithmetic con-
straints over infinite trees. Although we could not settle the question
whether the problem is decidable in general, we proposed a heuris-
tic algorithm for solving the constraints when they admit solutions
that are regular trees, and proved its soundness. This is described in
Chapter 6. Notice that, because we can solve only a restricted class
of constraints, our type inference algorithm can only compute linear
bounds for programs and can not analyse programs whose heap-space
consumption is a non-linear function on the size of its arguments.

4. We described an algorithm for eliminating variables from constraints
over infinite trees, while preserving the satisfiability of the constraints.
The algorithm cannot eliminate all variables, but it can eliminate most
variables, which is useful for improving the efficiency of the analysis.
This is also described in Chapter 6.

5. We validated the usability of our approach with an implementation
and experimental evaluation. The experiments validate both the type
system and the heuristic algorithm for solving the constraints over
infinite trees. We were able to compute precise linear bounds on many
programs, including copying and sorting linked-lists, appending lists,
creating doubly-linked lists and converting a list of strings to a list
of bank accounts. The experiments also show the efficiency of our
analysis, and how the use of the elimination procedure improves the
efficiency drastically. The implementation and the analysed FJEU
programs are available online1; we described them in Chapter 7.

1.5 Outline

This thesis is organised as follows:
Chapter 2 describes the syntax and semantics of the language FJEU,

including resource aware semantics. Further, it describes the basic typing

1http://raja.tcs.ifi.lmu.de/download

5

rules for FJEU programs, that are similar to the typing rules for Feath-
erweight Java. It also shows a type reconstruction algorithm that is able
to reconstruct the type of variables in let expressions in most cases. The
type inference algorithm then assumes that the type of all variables in let
expressions is available, which simplifies the type inference.

Chapter 3 presents the type system RAJA, a refinement of FJEU’s
type system. It gives an informal presentation of the system, and shows its
use in various examples. Then, it describes the type system formally, and
develops the soundness proof, which is basically the soundness proof for the
original RAJA system [HJ06] with some minor modifications. Chapter 2
and 3 do not contain many novel results; the details of the proofs have been
included for completeness.

Chapter 4 describes the type system RAJA with explicit types that is
equivalent to the RAJA system, but that is more suitable for type check-
ing and type inference. A RAJA program with explicit types assigns not
only a polymorphic type to each method, but also a (possibly infinite) set of
concrete types, which is the set of instances of the polymorphic type. More-
over, some FJEU expressions are annotated with refined types, in contrast
to the RAJA system, where the expressions have no annotations. The most
important feature of this system, however, is the fact that the typing rules
are syntax directed. This allows for automatic type-checking. We show that
a RAJA program is well typed iff a RAJA program with explicit types is
well-typed.

Chapter 5 develops a type inference algorithm for the system RAJAm ,
a subset of the system RAJA with explicit types; that is, a system where
polymorphic recursion is not allowed. We decided to exclude polymorphic
recursion to simplify the type inference algorithm. We define constraint
generation rules that are sound and complete with respect to the typing rules
of RAJAm . The constraints are generated on the basis of the call graph of
the program, and are solved using the algorithm described in Chapter 6.

Chapter 6 develops a theory of infinite trees and presents the syntax
and meaning of the constraints over the trees. Then, it shows various algo-
rithmic problems regarding the constraints, such as satisfiability and optimi-
sation. It describes an algorithm for eliminating variables from constraints,
and shows its soundness, completeness and termination, in the cases when
the algorithm can eliminate the variables. Moreover, it presents a heuristic
algorithm for solving the constraints, and proves its soundness. It also de-
tects a subclass of constraints for which the algorithm is complete. Finally,
it shows a reduction from subtyping constraints to constraints over infinite
trees.

Chapter 7 describes a prototype implementation of the algorithms de-
scribed in the thesis. The implementation consists of an interpreter for
FJEU programs with embedded heap-space analysis. The tool creates an
optimised heap, whose size is defined by the parameters given by the analy-

6

sis. The soundness of the RAJA system guarantees that the programs will
not run out of memory when using a heap of that size. In this chapter we de-
scribe implementation details of the interpreter, and of the analyser module
in particular, including various optimisations. Then, we present an exper-
imental evaluation of the tool. We describe the analysed FJEU programs
and discuss the results of the evaluation.

Chapter 8 gives an overview of the research related to this thesis. In
particular, it reviews works on resource analysis, on refinement types and
on linear types and types-and-capabilities systems.

Chapter 9 discusses the results of the thesis and shows various direc-
tions for further research.

1.6 Relation to published work

Various contributions of this thesis have been presented in international
conferences.

• The type system RAJA and its soundness proof have been presented
in the European Symposium on Programming 2006 by Hofmann and
Jost [HJ06]. (Chapter 2 and 3)

• Later, Hofmann, Jost and Rodriguez have presented the complete
soundness proof for the RAJA system in a technical report [HJR].
(Chapter 2 and 3)

The main differences between the system presented in [HJ06, HJR]
and the system presented in this thesis are now given. We introduced
polymorphic types, we modified the definition of subtyping and shar-
ing, and we defined the views in a different way. All these changes
allowed for a more efficient type inference algorithm, but had little
impact in the soundness proof.

• Hofmann and Rodriguez have presented a type checking algorithm for
RAJA in the 18th EACSL Annual Conference on Computer Science
Logic [HR09]. This algorithm is similar to the algorithm from Chap-
ter 4. However, in this thesis we present a simpler algorithm that
requires more annotations, because we also present type inference and
so the users do not need to provide the annotations.

• Hofmann and Rodriguez have presented the problem of satisfiability
of constraints over infinite trees, the heuristic algorithm and the elim-
ination procedure in the 18th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning [HR12]. These
results can be found in Chapter 6 in more detail. For instance, we
present a proof of termination for the elimination procedure, which
does not appear in [HR12].

7

8

Chapter 2

FJ with Update

2.1 Overview

Our formal model of Java, Featherweight Java with Update (FJEU), was
first defined by Hofmann and Jost [HJ06]. It extends Featherweight Java(FJ)
[IPW99] with attribute update, conditional, null pointers and explicit deal-
location. It is thus similar to Flatt et al. Classic Java [FKF98].

The typing rules of FJEU are very similar to those of FJ but the seman-
tics is considerably different since it models a mutable heap. While FJ is
purely functional, FJEU is imperative. FJEU contains the basic important
features of the Java language such as objects, inheritance, side effects and
aliasing. It was defined with the main purpose of analysing the resource
consumption of programs. Hence it does not include advanced features such
as exceptions or blocks, since they would complicate the proofs significantly
and do not offer major challenges to the resource analysis.

Because of its simplicity and similarity to Java, FJEU has been the target
language of choice in various works on static analysis of object-oriented
programs. In particular, Kersten presented in his Master Thesis [Ker09]
a system of sized types for determination of polynomial upper-bounds for
heap-space consumption of FJEU programs. Beringer et al. provided in
[BGH10] a region type system for pointer and string analyses for FJEU
programs. Later, Grabowski extended FJEU with strings in [Gra11] and
defined a type system for ensuring programming guidelines for preventing
code injection.

There has been a number of proposals for small imperative subsets of
Java such as Mølhave and Petersen’s AFJ [lP05], which extends FJ with
an update statement and defines the semantics using generalised labelled
transition systems. Biermann et al. define MJ, an imperative core of Java
that contains constructor methods, block structure and field update in ad-
dition to FJ. They model the operational semantics of MJ as transitions
between configurations where a configuration is a heap, variable stack, term

9

and frame stack for modelling the block structure scoping.

An FJEU program P = (C ,main) is a partial finite map from class names
to class definitions, which we also refer to as class table, where main is the
method that will be executed when running P. Here is a simple program in
FJEU. We shall see more FJEU programs in the following chapter.

class Person {

String name;

String address;

}

class Student extends Person {

String matriculationnr;

}

class Main {

Student main() {

let s = new Student in

let s = s.name <- ‘‘Dulma Rodriguez ’’ in

let s = s.address <- ‘‘Oettingenstr. 67’’ in

let s = s.matriculationnr <- ‘ ‘14232564’’ in

return s;

}

}

Notation We write D :: Γ ` e : C for meaning that D is the type derivation
that shows that e has type C in the context Γ. We write fg for meaning
the union of the maps f and g when dom(f) ∩ dom(g) = ∅. We write f |A′
where f : A → B and A′ ⊆ A for the function f restricted to the domain
A′.

2.2 Syntax and typing

2.2.1 Syntax

Throughout the following sections we will consider a fixed (but arbitrary)
class table C for the ease of notation. The abstract syntax of FJEU is given
in Fig. 2.1. The metavariables C, D, E, F , G, H range over class names; a,
b range over field names; m ranges over method names; x, y, z ranges over
variables and e ranges over expressions. We write ~A as a shorthand for a
sequence of field declarations A1 . . . An and ~M as a shorthand for a sequence
of method declarations M1 . . .Mm. Moreover we write ~x as a shorthand for
x1, . . . , xn.

10

c ::= class C [extends D] { ~A; ~M} (Class)
A ::= C a (Attribute)
M ::= H m(E1 x1, . . . , Ej xj){return e; } (Method)
e ::= x (Variable)
| null (Constant)
| new C (Construction)
| free(x) (Destruction)
| (C)x (Cast)
| x.ai (Access)
| x.ai<-x (Update)
| x.m(~x) (Invocation)
| if x instanceof C then e1 else e2(Conditional)
| let [D]x = e1 in e2 (Let)

Figure 2.1: The syntax of FJEU.

The class declaration class C [extends D] { ~A; ~M} introduces a class
named C with an optional super-class D and fields A1 to An and methods
M1 to Mm.

We write S(C) to denote the super-class D, provided that C has a super-
class. We write A(C) to denote the ordered set of attributes of C, including
inherited ones, i.e. A(C) := {A1, . . . , An}∪A(D). As in FJ, we do not allow
redeclaration of fields in subclasses. We define A(S(C)) := ∅ in the case
that C has no super-class. We write C.ai to denote the class type of each
attribute ai of class C.

We write Meth(C) to denote the set of all defined method names of C,
including inherited ones, i.e. Meth(C) = {M1, . . . ,Mm} ∪ Meth(D). The
method declaration H m(E1 x1, . . . , Ej xj){return e; } defines a method
named m with parameters xi of type Ei and result type H. The method
body is the expression e. For a method m of class C we write Mbody(C,m)
to denote the term that comprises the method body of method m, i.e.
Mbody(C,m) = e. We write C.m to denote the method type of m in class
C, i.e. C.m = E1, . . . , Ej → H. If otherwise m is not defined in C,
then Mbody(C,m) = Mbody(D,m) and C.m = D.m, provided that D is
the super class of C. In the case that C has no super-class, we also define
Meth(S(C)) := ∅ for the sake of a uniform notation.

Each class has only one implicit constructor, which sets all class at-
tributes to a nil value.

The expression free(x) for explicit object deallocation does not occur in
Java, it is rather similar to the expression free(x) from C or delete(x) from
C++. Java has built-in garbage collection to handle memory deallocation.
We added explicit deallocation to FJEU nevertheless because we plan to
analyse the heap-space requirements of FJEU programs. Our long-term goal

11

is to introduce the free(x) expressions automatically, in the places where
the Java garbage collector would free the space for the object x. For doing
this we need to predict the behaviour of the garbage collector. However,
we do not treat that problem in this thesis since here we focus on resource
analysis.

Please note that the rule for field update differs slightly from Java: Eval-
uating the term x.a<-y has the side effect of updating the field a of object
x with the value y. However, the whole term itself does not evaluate to
the right-hand value y as in Java, but rather to the left-hand value x. Of
course, we can define the Java style update as let u = (x.a<-y) in y. The
reason for choosing the other primitive is that the proof of type soundness
becomes slightly easier and also that it is more natural from a resource-
oriented point of view since the updated object (x) should still be available
whereas the update value (y) should be considered “consumed” unless ex-
plicitly duplicated. This will become clearer in Chapter 3.

The expressions are in let -normal form which means that all the inter-
mediate expressions are named and there are no nested expressions such
as x.a<-y.a. The let -normal form of terms was merely chosen to elimi-
nate boring redundancies from our proofs. In fact, in our implementation of
FJEU we allow nested expressions and transform them in let -normal form
by a simple preprocessing. Note that we will also write “e1; e2” instead of
“let Dx = e1 in e2” if x does not appear anywhere else inside the program.

Moreover, we do not only allow a variable to be used more than once
in update or invocation expressions. For instance, we do not allow the
expression x.a<-x or x.m(y, x). This is not a proper restriction, since we
can transform such expressions into let expressions, by creating a copy of
the variable to be used twice. For instance, x.a<-x can be transformed to
let y = x in x.a<-y, which is allowed. This syntactic restriction makes our
type checking and type inference algorithms slightly simpler.

The type of the variable x in the let -expressions can be declared by
the user. However, it can be inferred automatically in most cases by an
algorithm that we will show later on. In the following chapters, when we
analyse refined types for FJEU programs, we assume that those types are
present: they can be either supplied manually by the user or discovered by
the type inference algorithm. The reason for this requirement is that the
algorithms for type checking and type inference for refinement types become
significantly simpler when they do not need to find FJEU types as well.

12

2.2.2 Typing

We say that C is a subtype of D, and write C <: D, when S(C) = D or
S(C) <: D. In other words, C <: D is the reflexive and transitive closure of
the subclass relation given by the extends clauses in C . (Fig. 2.2)

Definition 2.2.1 (C1 ∨ C2) The least upper bound C1 ∨ C2 of the classes
C1 and C2 is defined as the class D with C1 <: D and C2 <: D and for all
classes E with C1 <: E and C2 <: E holds D <: E.

If C1 and C2 do not have a common super-class, then C1∨C2 is undefined.
This can occur because we do not assume that there is always a class Object
with C <: Object for each class C, as is the case in Java and FJ.

An environment Γ is a finite partial mapping from identifiers to class
names. The typing judgement of FJEU takes the form Γ ` e : C, read “in
the environment Γ, expression e has type C”. It is defined as a standard
extension of the FJ typing rules (Fig. 2.2), with the difference that our rules
are non-syntax-directed. There is one rule for each form of expression and
an additional rule for subtyping, in the style of Classic Java. Moreover, we
introduce the rule (`FDuplicate) for using variables more than once. The
reason for this design choice will become clear in Chapter 3 when we define
refined types for FJEU. There, the rule (♦Share) extends (`F Duplicate)
with refined types. However, with (♦Share) a variable can only be dupli-
cated if there are refined types for each occurrence that are in the so called
sharing relation. This control mechanism for variable duplication is essential
for the accurate analysis of resource consumption of programs.

For two environments Γ and Θ we write Γ <: Θ for meaning ∀x ∈
Θ .Γ(x) <: Θ(x).

The expressions null and free(x) can have any type E. While this is the
standard typing for null expressions in Java or Classic Java, it is less obvious
why free(x) can have any type, when its main purpose is deallocating a cell
from the heap. A more sensible type for it would be void, but we did not
add the type void to FJEU for reasons of simplicity. The typing of free(x)
can nevertheless be justified by its semantics: as we will see later, a free(x)
expression evaluates to a null pointer.

The typing judgement for method declarations has the form ` m :
C.m ok, read “the method declaration m is well-typed with type C.m”. A
method is well-typed if its body can be typed with its result type, where the
free variables are the parameters of the method with their declared types
plus the variable this with type C.

Finally, an FJEU program is well-typed if the methods of all classes are
well-typed.

Definition 2.2.2 (Well-typed FJEU-program)
An FJEU-program P = (C ,main) is well-typed if the following condition is
satisfied: ∀C ∈ C ,m ∈ Meth(C) . ` m : C.m ok.

13

FJEU Subtyping C <: D

C <: C

C <: D D <: E

C <: E

S(C) = D

C <: D

FJEU Typing Γ ` e : C

∅ ` new C : C
(`FNew)

x :C ` free(x) : E
(`FFree)

C <: E

x :E ` (C)x : C
(`FCast) ∅ ` null : E

(`FNull)

x :C ` x : C
(`FV ar)

C.a = D

x :C ` x.a : D
(`FAccess)

C.a = D

x :C, y :D ` x.a<-y : C
(`FUpdate)

Γ1 ` e1 : D Γ2, x :D ` e2 : C

Γ1,Γ2 ` let Dx = e1 in e2 : C
(`FLet)

C.m = E1, . . . , Ej → H

x :C, y1 :E1, . . . , yj :Ej ` x.m(~y) : H
(`F Invocation)

x ∈ Γ Γ ` e1 : C Γ ` e2 : C

Γ ` if x instanceof E then e1 else e2 : C
(`FConditional)

Θ ` e : D Γ <: Θ D <: C

Γ ` e : C
(`FSub)

Γ, y1 :D, . . . , yn :D ` e : C

Γ, x :D ` e[x/y1, . . . , x/yn] : C
(`FDuplicate)

FJEU Method Typing ` m : C.m ok

m ∈ Meth(C) C.m = E1, . . . , Ej → H

this :C, x1 :E1, . . . , xj :Ej ` Mbody(C,m) : H
(`FMBody)` m : C.m ok

Figure 2.2: FJEU subtyping, FJEU typing and FJEU method typing.

14

2.2.3 Type reconstruction

In this section we show an (incomplete) algorithm for reconstructing the type
of the variable x in let -expressions when it has been omitted by the user. In
Fig. 2.3 we define the judgement Γ ` e− : (e, C), read “in the environment
Γ, the expression e− with missing type annotations has type C and can be
annotated as e”. We also define the related judgement Γ ` e− : any type,
read “in the environment Γ, the expression e− can have any type”. This
judgement models the cases where we are not able to infer a type, e.g. for
null and free(x) expressions, but also for conditional expressions in some
cases.

The main goal of the algorithm is to reconstruct the type for x in ex-
pressions let x = e−1 in e−2 . This is possible if we can infer a type for e−1 .
There are five nested cases for handling let -expressions.

1. There is no type for x.

(a) It is possible to infer a type for e−1 . This case is dealt with by the
rule (`RLet) where an annotated expression is returned.

(b) It is not possible to infer a type for e−1 .

i. x does not appear in e−2 . Then, an arbitrary but fixed type
D is given to x in the rule (`RLet Fail).

ii. x appears in e−2 . There is no rule for this case, so the algo-
rithm fails. This means that in this case the user needs to
provide a type annotation for x.

2. There is a type for x.

(a) It is possible to infer a type for e−1 . Then we check that the
inferred type is a subtype of the declared type in the rule (`R
Let Ann).

(b) It is not possible to infer a type for e−1 . Then an annotated
expression is returned with the declared type in the rule (`R
Let Fail Ann).

For the conditional expression if x instanceof C then e1 else e2 it is
possible to infer a type, if a type can be inferred for e1 or e2. If a type can
be inferred for only one of them, then that will be the type of the whole
expression. If, otherwise, a type can be inferred for both expressions, the
type returned will be the least upper bound of those types. Finally, if no type
can be inferred for e1 or e2, then we can not infer a type for the conditional
expression.

The remaining rules are closely related to the typing rules. Since the
type inference rules should be syntax-directed, the rules (`F Sub) and (`F
Duplicate) have been integrated in the other rules. We obtain the following
soundness result:

15

Γ ` null : any type
(`RNull)

x ∈ dom(Γ)

Γ ` free(x) : any type
(`RFree)

x ∈ Γ Γ ` e−1 : any type Γ ` e−2 : any type
(`RCond Fail)

Γ ` if x instanceof E then e−1 else e−2 : any type)

Γ(x) = C

Γ ` x : (x,C)
(`RV ar)

Γ(x) = E C <: E

Γ ` (C)x : ((C)x,C)
(`RCast)

Γ ` new C : (new C,C)
(`RNew)

Γ(x) = C C.a = D

Γ ` x.a : (x.a,D)
(`RAccess)

Γ(x) = C C.a = D Γ(y) <: D

Γ ` x.a<-y : (x.a<-y, C)
(`RUpdate)

Γ(x) = C C.m = ~E → H Γ(yi) <: Ei
Γ ` x.m(~y) : (x.m(~y), H)

(`R Invocation)

Γ ` e−1 : (e1, D) Γ, x :D ` e−2 : (e2, C)
(`RLet)

Γ ` let x = e−1 in e−2 : (let Dx = e1 in e2, C)

Γ ` e−1 : any type x /∈ Vars(e2) D ∈ C Γ, x :D ` e−2 : (e2, C)
(`RLet Fail)

Γ ` let x = e−1 in e−2 : (let Dx = e−1 in e2, C)

Γ ` e−1 : any type Γ, x :D ` e−2 : (e2, C)
(`RLet Fail Ann)

Γ ` let Dx = e−1 in e−2 : (let Dx = e−1 in e2, C)

Γ ` e−1 : (e1, E) Γ, x :D ` e−2 : (e2, C) E <: D
(`RLet Ann)

Γ ` let Dx = e−1 in e−2 : (let Dx = e1 in e2, C)

x ∈ Γ Γ ` e−1 : (e1, C1) Γ ` e−2 : (e2, C2) C1 ∨ C2 is defined
(`RCond Lub)

Γ ` if x instanceof E then e−1 else e−2 :

(if x instanceof E then e1 else e2, C1 ∨ C2)

x ∈ Γ Γ ` e−1 : any type Γ ` e−2 : (e2, C2)
(`RCond2)

Γ ` if x instanceof E then e−1 else e−2 :

(if x instanceof E then e−1 else e2, C2)

x ∈ Γ Γ ` e−1 : (e1, C1) Γ ` e−2 : any type
(`RCond1)

Γ ` if x instanceof E then e−1 else e−2 :

(if x instanceof E then e−1 else e2, C1)

Figure 2.3: FJEU type reconstruction.

16

Lemma 2.2.3 (Soundness of type reconstruction) Let e− be an expres-
sion with missing annotations, Γ be a context and C ∈ C .

1. If D :: Γ ` e− : any type then Γ ` e− : C.

2. If D :: Γ ` e− : (e, C) then Γ ` e : C.

Proof.

1. By a trivial induction on the derivation D.

2. By induction on the derivation D. We show some representative cases.

Case

Γ ` e−1 : any type Γ, x :D ` e−2 : (e2, C)

Γ ` let Dx = e−1 in e−2 : (let Dx = e−1 in e2, C)
(`RLet Fail Ann)

By 1. we get Γ ` e−1 : D and by induction hypothesis we get
Γ, x :D ` e2 : C, thus, we can finish with the rules (`FLet) and
(`FDuplicate).

Case
x ∈ Γ Γ ` e−1 : (e1, C1) Γ ` e−2 : (e2, C2) C1 ∨ C2 is defined

Γ ` if x instanceof E then e−1 else e−2 :

(if x instanceof E then e1 else e2, C1 ∨ C2)

By induction hypothesis we obtain Γ ` e1 : C1 and Γ ` e2 : C2.
Then, since Ci <: C1 ∨ C2, we obtain with (`F Sub), Γ ` e1 :
C1 ∨ C2 and Γ ` e2 : C1 ∨ C2 and finish with (`FConditional).

2

2.3 Semantics of FJEU

In this section we present operational semantics for the language FJEU.
First we define standard operational semantics and later we present slightly
modified semantics for analysing the heap-space requirements of FJEU pro-
grams.

2.3.1 Standard operational semantics

We assume a set Loc of locations, ranged over by the letter `. A stack
value v is either a location ` ∈ Loc or a special value 0 /∈ Loc. A stack or
environment η is a partial mapping from identifiers to stack values.

A heap value w is a record consisting of a class name C ∈ C and list
of labelled stack values, written (C, a1 : v1, . . . , ak : vk). A heap σ is a
partial mapping from locations to heap values. We write σ[`.a 7→ v] for

17

Operational Semantics of FJEU η, σ ` e; v, τ

η, σ ` x; ηx, σ
(`SV ar)

η, σ ` null ; 0, σ
(`SNull)

` /∈ dom(σ) A(C) = {a1, . . . , ak} τ = σ[` 7→ (C, a1 :0, . . . , ak :0)]

η, σ ` new C ; `, τ
(`SNew)

ηx = ` σ` = (C, a1 :v1, . . . , ak :vk)

η, σ ` free(x) ; 0, σ[` 7→ (invalid)]
(`SFree)

ηx = ` σ` = (D, a1 :v1, . . . , ak :vk) D <: C

η, σ ` (C)x; ηx, σ
(`SCast I)

ηx = 0

η, σ ` (C)x; ηx, σ
(`SCast II)

ηx = ` σ` = (C, a1 :v1, . . . , ak :vk)

η, σ ` x.ai ; vi, σ
(`SAccess)

ηx = ` σ` = (C0, a1 :v1, . . . , ak :vk) a = ai τ = σ[`.ai 7→ ηy]

η, σ ` x.a<-y ; `, τ
(`SUpdate)

η, σ ` e1 ; v1, ρ η[x 7→ v1], ρ ` e2 ; v2, τ

η, σ ` let x = e1 in e2 ; v2, τ
(`SLet)

ηx = ` σ` = (C, a1 :v1, . . . , ak :vk) Mbody(C,m) = e0

[this7→`, x1 7→ηy1 , . . . , xj 7→ηyj], σ ` e0 ; v, τ
(`S Inv)

η, σ ` x.m(~y) ; v, τ

ηx = ` σ(`) = (D, a1 :v1, . . . , ak :vk) D <: E η, σ ` e1 ; v, τ

η, σ ` if x instanceof E then e1 else e2 ; v, τ
(`SCond I)

ηx = ` σ(`) = (D, a1 :v1, . . . , ak :vk) D 6<: E η, σ ` e2 ; v, τ

η, σ ` if x instanceof E then e1 else e2 ; v, τ
(`SCond II)

ηx = 0 η, σ ` e2 ; v, τ

η, σ ` if x instanceof E then e1 else e2 ; v, τ
(`S Cond III)

Figure 2.4: Operational semantics of FJEU.

18

the heap σ
[
` 7→ (C, a1 : v1, . . . , ai : v, . . . , ak : vk)

]
, provided that ai = a and

σ` = (C, a1 :v1, . . . , ak :vk).

The judgement η, σ ` e ; v, τ defined by the rules in Fig. 2.4 shall
mean that the expression e evaluates successfully to the value v, beginning
with stack η, heap σ and ending with heap τ .

One possible way to interpret the presented operational semantics is
the assumption of a freelist-based memory model. The freelist contains
initially a certain number of locations corresponding to unused heap units.
Upon memory allocation the required number of locations is taken from the
freelist; upon deallocation a corresponding number of locations of freed heap
units are returned to the freelist. Issues of alignment and fragmentation will
be ignored here.

In the underlying informal physical model it is perfectly possible that
such a freelist occasionally contains locations that are still reachable from
the current environment by dangling pointers. Therefore a call to new may
return a (stale) pointer that is therefore aliased from the beginning. Such an
accidental runtime alias may even violate type safety, since a standard type
system abstracts away from physical memory addresses. However, existing
work may already be used to exclude such faulty behaviour (amongst other
beneficial properties), e.g. the alias types by Walker and Morrisett [WM01],
or the bunched implication logic as practised by Ishtiaq and O’Hearn [IO01].

Therefore, we choose the modular approach of switching essentially to a
storeless semantics [RBR+05, BIL03, Deu94, Jon81], hence allowing us to
assume that a call to new will always return a fresh pointer and leave it to
the reader to choose his or her preferred method to ensure this.

We admit a special heap value (invalid) to mark freed heap values. Hence
locations are never removed from the domain of the heap and all allocated
locations are thus trivially fresh. Locations pointing to disposed heap values
are treated like dangling pointers. Hence pointers to invalid locations are
harmless as long as they are never dereferenced, so cyclic data structures can
be deallocated. In this context we write ` ∈ σ by meaning “` ∈ dom(σ) and
σ(`) 6= (invalid)”. We explicitly write ` ∈ dom(σ) otherwise. Notice that any
attempt to deallocate a previously deallocated object leads to immediate
abortion of the program since in the rule (`SFree) we assume ` ∈ σ.

One may note that one way of directly modelling these semantics lies in
the use of indirect pointers (symbolic handles) used by earlier implementa-
tions of the Sun JVM for the compacting garbage collector.

Soundness of the heap

Intuitively, a heap is sound when each object record contains exactly the
attribute labels as specified in the class table and furthermore, for each
alias, its actual class is a subtype of the static class as derivable from the
typing context. In the following we define the concepts of access path and

19

alias formally for being able to formalise this definition of soundness of a
heap.

Definition 2.3.1 (Access path) An access path is a list of attribute names,
written a1.a2. . . . an = ~p.

It is convenient to write A(C, ~p) for the class type reached by following the
access path ~p, i.e. A(C, ~p.a) = A(A(C, ~p) , a). Sometimes we will abbreviate
A(C, ~p) by writing C.~p. The empty access path is denoted by ε.

Definition 2.3.2 (Prefix of a path) An access path ~q is a proper prefix
of a path ~p, written ~q ≺ ~p, if and only if there is a non-empty access path ~a
such that ~q.~a = ~p. Moreover, an access path ~q is a prefix of a path ~p, written
~q � ~p if ~q ≺ ~p or ~q = ~p.

If D is a multiset of classes, we simply write D.~p for the multiset {D.~p |
D ∈ D}. We also use the Kleene star for the set of paths possibly containing
repetitions, i.e. a.b.c.b.c.e ∈ a(.b.c)∗.e. We allow ourselves to omit the dots
in access path expressions.

Definition 2.3.3 (Alias) An alias v.~p is a pair of a stack value v and a
(possibly empty) access path ~p. For a given heap σ we recursively define
Jv.~pKσ by

Jv.~pKσ =

v if ~p = ε

vi if ~p = ~q.ai ∧ σJv.~qKσ = (C, a1 :v1, . . . , ak :vk)

0 otherwise

We say that v.~p is an alias for the location ` within σ if Jv.~pKσ = ` holds,
i.e. the alias represents a valid path leading to a proper location.

In order to relate an FJEU typing to a heap configuration, we define:

Definition 2.3.4 (Dynamic and static type of an alias)

Tv.~pUdyn
σ = C iff σ(Jv.~pKσ) = (C, a1 :v1, . . . , ak :vk)

T(v :C).~pUstat
σ =

{
C if ~p = ε

D.a if ~p = ~q.a ∧ Tv.~qUdyn
σ = D

Note that Tv.~qUdyn
σ and T(v : C).~q.aUstat

σ are only defined if Jv.~qKσ is
defined and within the domain of σ.

20

Lemma 2.3.5 Let σ be a heap, v be a value and ~p an access path and
D <: C. Then T(v :D).~pUstat

σ <: T(v :C).~pUstat
σ .

Proof. By induction on |~p|. 2

Definition 2.3.6 (Sound Heap) We write σ � η : Γ to say that a memory
configuration consisting of heap σ and stack η is sound and satisfies an FJEU
typing context Γ, if

ran(η) ⊆ dom(σ) ∪ {0} (2.3.1)

∀` ∈ dom(σ) . σ(`) = (C, a1 :v1, . . . , ak :vk) =⇒
∀i ∈ {1, . . . , k} . vi ∈ dom(σ) ∪ {0} ∧ A(C) = {a1, . . . , ak}

(2.3.2)

∀x ∈ dom(η) . ηx.~p ∈ σ .Tηx.~pUdyn
σ <: T(ηx :Γx).~pUstat

σ (2.3.3)

We write σ � v : C as abbreviation for σ � [x7→v] : x : C. Klein and

Nipkow [KN04] and other authors define the equivalent of our relation σ � v :
C in a slightly different manner, namely they require (in our notation) that
if σ(v) = (D, . . .) then D <: C and whenever σ(`) = (C, a1 : v1, . . . , ak : vk)
and σ(vi) = (E, . . .) then E <: C.ai.

Our notion is equivalent to Nipkow’s when restricted to the reachable
fragment of σ. We prefer our path-oriented version for two reasons: first, it
allows us to give a precise meaning to static types of heap locations which,
as is easily seen, depend on the access path leading up to the location.
Furthermore, this definition generalises more smoothly to the annotated
version RAJA of FJEU to be defined in Chapter 3. Indeed, in RAJA the
static type will depend on the entire access path and not only on its last hop
as is the case in FJEU. It is interesting to note that some of our constructs
involving access paths are actually quite similar to constructs used in [BIL03]
which deal with a proper storeless semantics.

Lemma 2.3.7 (Compatibility with subtyping) Let Γ <: Θ and σ be a

heap and η be a stack. If σ � η : Γ then also σ � η : Θ.

Proof. We only need to show item (2.3.3) from Definition 2.3.6. We notice

that Tηx.~pU
dyn
σ <: T(ηx : Γx).~pUstat

σ by assumption and T(ηx : Γx).~pUstat
σ <:

T(ηx :Θx).~pUstat
σ by Lemma 2.3.5. Finally, the goal follows by transitivity.

2

21

Lemma 2.3.8 Let Γ be a context, D,C1, . . . , Cj ∈ C and σ be a heap and
η be a stack. Then

1. If σ � η : (Γ, y : D) then also σ � η′ : (Γ, x1 : D, . . . , xj : D) where
η′ = η[x1 7→ ηy, . . . , xj 7→ ηy].

2. If σ � η : Γ and Γ = x1 : C1, . . . , xj : Cj then also σ � η′ : (Γ, x̂1 :
C1, . . . , x̂j :Cj) where η′ = η[x̂1 7→ ηx1 , . . . , x̂j 7→ ηxj].

Proof. In both cases the goal follows by ran(η′) = ran(η) and by assump-
tion. 2

Lemma 2.3.9 If D :: η, σ ` e ; v, τ and dom(η) ∩ dom(η′) = ∅ then also
ηη′, σ ` e; v, τ .

Proof. By induction on D. 2

Theorem 2.3.10 (Soundness of FJEU typing) Let P = (C ,main) be a
well-typed FJEU program, e be an expression, Γ,∆ be a context and C ∈ C .
Moreover let σ, τ be heaps and η be a stack. If

D :: Γ ` e :C (2.3.4)

E :: η, σ ` e; v, τ (2.3.5)

σ � η : (Γ,∆) (2.3.6)

then

τ � η[xres 7→ v] : (∆, xres :C) (2.3.7)

where xres is assumed to be an unused auxiliary variable, i.e. xres /∈ Γ,∆.

Proof. The proof is by induction on the derivation E and a subordinate
induction on the derivation D.

Case (`FSub) Assume thatD was established in the last step by application

of rule (`F Sub), so Θ ` e :D and σ � η : (Γ,∆). Since Γ <: Θ we

obtain σ � η : (Θ,∆) by Lemma 2.3.7. Then, by induction hypothesis,

we get τ � η[xres 7→ v] : (∆, xres :D) and, after applying Lemma 2.3.7

again, we obtain the desired τ � η[xres 7→ v] : (∆, xres : C) since
D <: C.

Case (`F Duplicate) Assume that D was established in the last step by
application of rule (`F Duplicate), so Γ, x1 : D, . . . , xj : D ` e : C

and σ � η : (Γ, y : D,∆). By Lemma 2.3.8 we obtain σ � η[x1 7→
ηy, . . . , xj 7→ ηy] : (Γ, x1 : D, . . . , xj : D,∆). Then, by induction

hypothesis, we obtain the desired τ � η[xres 7→ v] : (∆, xres :C).

22

Case (`SNew) We have
Γ ` newC :C

(`FNew) and

` /∈ dom(σ) τ = σ[l 7→ (C, a1 :0, . . . , ak :0)] : (∆, xres 7→ C)

η, σ ` newC ; l, τ

were A(C) = {a1, . . . , ak}. (2.3.3) follows by (2.3.6) and C <: C which
follows by definition. Item (2.3.2) follows directly by (2.3.6) and the
rule (`SNew). Item (2.3.1) follows by (2.3.6) and l ∈ τ .

Case (`SFree) We have
ηx = ` σ` = (C, a1 :v1, . . . , ak :vk)

η, σ ` free(x) ; 0, σ[` 7→ (invalid)]

We notice that item (2.3.2) follows trivially from (2.3.6) because it only
imposes a condition to l ∈ dom(σ) with σ(l) = (C, a1 : v1, . . . , ak : vk)
and in this case σ(l) = (invalid). Moreover, ηxres = 0 /∈ τ , thus items
(2.3.1) (2.3.3) follow directly from (2.3.6).

Case (`SCast I) We have
ηx = ` σ` = (D, a1 :v1, . . . , ak :vk) D <: C

η, σ ` (C)x; ηx, σ

Item (2.3.3) follows by (2.3.6) and by Tηx.εUdyn
σ︸ ︷︷ ︸

D

<: T(ηx :C).εUstat
σ︸ ︷︷ ︸

C

which follows by assumption. The rest follows directly by (2.3.6).

Case (`S Access) We have
ηx = ` σ` = (C, a1 :v1, . . . , ak :vk)

η, σ ` x.ai ; vi, σ
Item

(2.3.1) follows by (2.3.6), item (2.3.2), i.e. for all σ(l) = (C, a1 :
v1, . . . , ak : vk) holds vi ∈ dom(σ) and ηxres = vi, thus, ran(η) ⊆
dom(σ) ∪ 0 follows. The rest follows by (2.3.6).

Case (`SUpdate) We have

ηx = ` σ` = (C0, a1 :v1, . . . , ak :vk) a = ai τ = σ[`.ai 7→ ηy]

η, σ ` x.a<-y ; `, τ

Item (2.3.2) follows by (2.3.6), item (2.3.1), i.e. τl = (C0, a1 : v1, . . . , ai :
ηy, . . . , ak : vk) and ηy ∈ dom(σ) ∪ {0} by (2.3.6), item (2.3.1). The
rest follows by (2.3.6).

Case (`SLet) We have

η, σ ` e1 ; v1, ρ η[x 7→ v1], ρ ` e2 ; v2, τ

η, σ ` let x = e1 in e2 ; v2, τ
(`SLet)

Γ1 ` e1 : D Γ2, x :D ` e2 : C

Γ1,Γ2 ` let Dx = e1 in e2 : C
(`FLet)

Then, by induction hypothesis we get ρ � η[xres 7→ v1] : (Γ2, xres :D).

Then by induction hypothesis again we obtain our goal τ � η[xres 7→
v2] : (xres : C).

23

Case (`S Inv) We have

ηx = ` σ` = (C, a1 :v1, . . . , ak :vk) Mbody(C,m) = e0

η′︷ ︸︸ ︷
[this7→`, x1 7→ηy1 , . . . , xj 7→ηyj], σ ` e0 ; v, τ

(`S Inv)
η, σ ` x.m(~y) ; v, τ

C.m = E1, . . . , Ej → H

x :C, y1 :E1, . . . , yj :Ej ` x.m(~y) : H
(`F Invocation)

By Lemma 2.3.8 we obtain σ � ηη′ : (this : C, x1 : E1, . . . , xj : Ej).
Moreover, since without loss of generality dom(η) ∩ dom(η′) = ∅, we
get by Lemma 2.3.9 ηη′, σ ` e0 ; v, τ . Then, by induction hypothesis,
we obtain the required σ � ηη′[xres 7→ v] : (∆, xres :H).

2

2.3.2 Special semantics for heap-space analysis

In Fig. 2.5 we define special operational semantics for FJEU programs which
consists of adding counters (non-negative natural numbers m and m′) to the
standard rules for keeping track of the number of unused heap units before
and after evaluating e respectively. We will use this semantics in Chapter 3,
where we define a type system for the static prediction of the heap-space
requirements of FJEU programs. Similar counters can be introduced for
keeping track of the usage of other kind of resources.

Note that rule (`Sh New) is only applicable if there are enough un-
used heap units available for the allocation of a new object, otherwise the
evaluation of a (`Sh New) expression gets stuck. We require 1 heap unit
to allocate any object for simplicity. Practical implementations would take
into account the size of the object and how many memory cells are needed
for its allocation in the heap. Heap units are unconditionally made available
again by the free expression. Our analysis will identify an upper bound on
m and a lower bound on m′ for a given expression and program.

We include the rule (`Sh Waste) which allows us to abandon unused
memory units in order to facilitate some proofs.

Lemma 2.3.11 Let e be an expression. σ, τ be heaps and η be a stack.
Then: ∃m,m′ .D :: η, σ

m
m′ e; v, τ iff E :: η, σ ` e; v, τ .

Proof.

Case “⇒” By induction on the derivation D.

Case “⇐” By induction on the derivation E .
2

24

Operational Semantics of FJEU for heap-space analysis η, σ
m
m′ e; v, τ

η, σ
m
m x; ηx, σ

(`ShV ar)
η, σ

m
m null ; 0, σ

(`ShNull)

` /∈ dom(σ) A(C) = {a1, . . . , ak} τ = σ[` 7→ (C, a1 :0, . . . , ak :0)]

η, σ
m+ 1
m new C ; `, τ

(`ShNew)

ηx = ` σ` = (C, a1 :v1, . . . , ak :vk)

η, σ
m

m+ 1 free(x) ; 0, σ[` 7→ (invalid)]
(`ShFree)

η, σ
m

m′ + d e; v, τ

η, σ
m
m′ e; v, τ

(`ShWaste)

ηx = ` σ` = (D, a1 :v1, . . . , ak :vk) D <: C

η, σ
m
m (C)x; ηx, σ

(`ShCast I)

ηx = 0

η, σ
m
m (C)x; ηx, σ

(`ShCast II)
ηx = ` σ` = (C, a1 :v1, . . . , ak :vk)

η, σ
m
m x.ai ; vi, σ

(`ShAccess)

ηx = ` σ` = (C0, a1 :v1, . . . , ak :vk)a = ai τ = σ[`.ai 7→ ηy]

η, σ
m
m x.a<-y ; `, τ

(`ShUpdate)

η, σ
m
m′ e1 ; v1, ρ η[x 7→ v1], ρ

m′

m′′ e2 ; v2, τ

η, σ
m
m′′ let x = e1 in e2 ; v2, τ

(`ShLet)

ηx = ` σ` = (C, a1 :v1, . . . , ak :vk) Mbody(C,m) = e0

[this7→`, x1 7→ηy1 , . . . , xj 7→ηyj], σ
m
m′ e0 ; v, τ

(`Sh Inv)
η, σ

m
m′ x.m(~y) ; v, τ

ηx = ` σ(`) = (D, a1 :v1, . . . , ak :vk) D <: E η, σ
m
m′ e1 ; v, τ

η, σ
m
m′ if x instanceof E then e1 else e2 ; v, τ

(`ShCond I)

ηx = ` σ(`) = (D, a1 :v1, . . . , ak :vk) D 6<: E η, σ
m
m′ e2 ; v, τ

η, σ
m
m′ if x instanceof E then e1 else e2 ; v, τ

(`ShCond II)

ηx = 0 η, σ
m
m′ e2 ; v, τ

η, σ
m
m′ if x instanceof E then e1 else e2 ; v, τ

(`Sh Cond III)

Figure 2.5: Operational semantics of FJEU for heap-space analysis.

25

Lemma 2.3.12 (Waste)

1. ∀d ∈ N .D :: η, σ
m
m′ e; v, τ =⇒ η, σ

d+m
d+m′ e; v, τ .

2. Let D :: η, σ
m
m′ e; v, τ . Then, if n ≥ m also η, σ

n
m′ e; v, τ .

Proof.

1. By induction on the derivation D.

2. We have n = m+ x for some x. By item 1. we have η, σ
n

m′ + x e ;
v, τ , and by rule (`ShWaste) we get η, σ

n
m′ e; v, τ .

2

It is convenient to extend the special semantics to real annotations so that
these annotations can be found by solving linear arithmetic constraints.

Definition 2.3.13 We extend the operational semantics to real annotations
t, t′ ∈ R+

0 in the following way:

η, σ
t
t′ e; v, τ

def⇐⇒ η, σ
dte
dt′e e; v, τ

In the following chapters we shall study the problems of describing the an-
notations using refined types and finding them automatically via type infer-
ence.

26

Chapter 3

Resource Aware Java

In this chapter we extend the typing system of FJEU to a system of refined
types called Resource Aware JAva (RAJA) for the compile-time analysis of
the heap-space requirements of FJEU programs.

Recall that we assume a simple freelist based model where we maintain a
set of free memory units, the freelist. When creating an object, a heap unit
required to store it is taken from the freelist, provided it contains enough
units. When deallocating an object, the unit returns to the freelist.

The goal of the analysis is to predict a bound on the initial size that
the freelist must have so that a given program may be executed without
causing unsuccessful abortion due to insufficient memory. We achieve this
by combining amortised analysis [Tar85, Oka98] with type-based techniques
in order to define potentials.

Essentially each object is ascribed an abstracted portion of the freelist,
referred to as potential, which is just a nonnegative number, denoting the
size of freelist portion associated with the object. Any object creation must
be paid for from the potential in scope. The initial potential thus represents
an upper bound on the total heap consumption.

In this chapter we shall describe the typing system RAJA. In Section 3.1
we describe the system informally and show its use in some examples. Sec-
tion 3.2 then introduces the typing system formally. In Section 3.3 we de-
scribe how to calculate a potential function based on the RAJA typing and
prove the soundness of the system. Finally, Section 3.4 describes the prob-
lems of type checking and type inference that we will attempt to solve in
the following chapters.

3.1 Informal presentation and examples

Before we describe the RAJA system, we would like to demonstrate the front
end of our method with a couple of small examples. In Fig. 3.1 we define
singly linked lists using the Composite pattern.

27

class List {

List copy() {

return null;

}

}

class Nil extends List {

List copy() {

return new Nil;

}

}

class Cons extends List {

Object elem;

List next;

List copy() {

let res = new Cons() in

let _ = res.elem <- this.elem in

let _ = res.next <- this.next.copy() in

return res;

}

}

class Main {

List main(List l) {

return l.copy();

}

}

Figure 3.1: Copying lists in FJEU.

We define the class List as an abstract list, the class Cons for describing
the nodes and the class Nil for modelling the end of the list. Moreover,
we define a method for copying lists. Running the analysis on the program
yields the following results; no annotations by the programmer are required.

Program will execute successfully with a free-list >=

1. + 1. * length of the input

It is clear that the heap-space consumption of this program is exactly the
length of the list plus 1, since during the execution of the program one Cons
object for each node of the list is allocated and additionally one Nil node is
allocated.

Now let us consider a method for appending lists (Fig. 3.2). The call
this.appAux(y, dest) imperatively appends y to this and places the re-

28

sult into dest.next. The auxiliary object dest is subsequently deallocated
and the concatenated list is returned. When we analyse the program we
obtain the following output:

Program will execute successfully with a free-list >= 1.

class List {

Cons appAux(List y, Cons dest) {

return null;

}

List append(List y) {

let dest = new Cons in

let _ = this.appAux(y, dest) in

let result = dest.next in

let _ = free(dest) in

return result;

}

}

class Nil extends List {

Cons appAux(List y, Cons dest) {

return dest.next <- y;

}

}

class Cons extends List {

Object elem;

List next;

Cons appAux(List y, Cons dest) {

let _ = dest.next <- this in

return this.next.appAux(y, this);

}

}

class Main {

List main(List l1, List l2) {

return l1.append(l2);

}

}

Figure 3.2: Appending lists in FJEU.

Notice that the heap-space consumption of the program is indeed constant
since the list is appended in place and the only allocated object is dest. This
example offers challenges to the analysis nevertheless, due to the aliasing

29

caused by the multiple use of the variable this in the method appAux in
the class Cons. Later we will show how this example can be typed in our
system.

3.1.1 Refined types, views and potential

As already mentioned, our approach is based on amortised analysis and
we wish to assign data structures a potential that can be used to pay for
any object creation. We could assign potential to classes, but then every
object of a given class would have the same potential, which would be very
inflexible. Indeed, we should be able to assign different objects of the same
class different potentials, so that we need to refine the notion of classes.
The solution is to introduce the views and to build refined types, that we
can assign potential to, by combining classes and views. If C is a class and
r is a view, then Cr is a refined type.

The set of views V C is defined coinductively on the basis of a given FJEU
program by the maps ♦(.), Aget(., .) and Aset(., .). The potential function

♦(.) : C × V C → R+
0 ∪∞

assigns each refined type Cr a nonnegative real number or infinite, the po-
tential. The maps

Aget(., .) : ∀C ∈ C .V C × A(C)→ V C

and

Aset(., .) : ∀C ∈ C .V C × A(C)→ V C

assign views to the fields, where Aget(Cr, a) represents the view used when
reading the field a of class C under the view r, and Aset(Cr, a) is the view
used when writing the field a.

We define views coinductively because in this way they have a seman-
tic status, namely infinite labelled trees. This is useful in the constraint
generation and solving.

3.1.2 Monomorphic and polymorphic method types

The refined types for methods consist of views for the method’s arguments
(including this), a view for its result and two numbers representing the po-
tential consumed and released by the method, respectively. More concretely,

if a method m has a method type Cr0 ;Er11 , . . . , E
rn
n

m/m′−−−→Hrn+1 , this means
that it is defined in the refined type Cr0 and may be called with arguments
v1 :Er11 , . . . , vn :Ernn , whose associated potential will be consumed, as well
as an additional potential of m. The return value will be of type Hrn+1 ,
carrying an according potential. In addition to this a potential of another

30

m′ units will be returned. We call these types monomorphic RAJA method
types.

In the original description of the system RAJA [HJ06] Hofmann and Jost
introduced the notion of polymorphic RAJA method types as a set of mono-
morphic RAJA method types. In this thesis we give a different definition of
polymorphic method types: they are as monomorphic RAJA method types,
with views and numbers replaced by variables and constraints upon them.
Concretely, a polymorphic type of a method m of class C with FJEU type
~E → H consists of view variables for its arguments, a view variable for its
result and two number variables, together with a conjunction of subtyping
and arithmetic constraints, written

φ = ∀~v, q1, q2 . C
v0 ; ~E~v q1/q2−−−→Hvn+1 & C

The subtyping constraints describe relations between refined types which
can be reduced to relations between views as we will see later. For instance,
if a view r satisfies Aget(Cv0, a) v v0 then the get view of the field a of class
C under r must be a subtype of r. A view r is a subtype of a view s if for
all classes C holds ♦(Cr) ≥ ♦(Cs), i.e. the potential of C under r is greater
or equal than the potential of C under s. Moreover, for each field a of C we
must have Aget(Cr, a) v Aget(Cs, a), thus, we say that subtyping is covariant
in the get views. For the set views, however, subtyping is contravariant,
which means that if r is a subtype of s, then Aset(Cs, a) v Aset(Cr, a).

The arithmetic constraints describe relations between the potential of
views and real numbers. For instance, for any two views r0 and r1 and
number n satisfying ♦(Cv0) ≥ ♦(Cv1)+p must hold that the potential of the
class C under r0 is greater or equal than the potential of C under r1 plus n.

3.1.3 Potential of a runtime configuration

One runtime object can have several refined types at once, since it can be
regarded through different views at the same time. The overall potential of
a runtime configuration is the (possibly infinite) sum over all access paths
in scope that lead to an actual object. Thus, if an object has several access
paths leading to it (aliasing) it may make several contributions to the total
potential. Our type system has an explicit contraction rule: If a variable is
used more than once, the associated potential is split by assigning different
views to each use.

3.1.4 Examples

In the following we wish to illustrate the system by showing the details of
the analysis of the programs for copying and appending lists from Figures
3.1 and 3.2.

31

Copying lists

We wish to analyse the heap-space requirements of the method copy(), which
is equal to the length of the list to be copied plus 1, as we have seen before.
Recall the definition of copy() in class Cons:

List copy() {

let res = new Cons() in

let _ = res.elem <- this.elem in

let _ = res.next <- this.next.copy() in

return res;

}

For each node of the list, a new node is created, the rest of the list is
copied recursively and the new node’s element and pointer to the next node
in the list are updated.

Each node of the original list needs to have enough potential to pay for
the creation of the new node. This requirement is captured in the constraint
♦(Consvself) ≥ ♦(Consvres)+1, where vself is the view variable that corresponds
to the argument this and vres is the view variable corresponding to the re-
sulting list. Recall that for simplicity we assume that every object can be
allocated in only one cell of the heap.

Moreover, since the method is called recursively with the next item in
the list, the potential of the next node must be greater or equal than the
potential of the current node. More generally, the refined type of the next
node must be a subtype of the refined type of the current node, which is
expressed in the constraint Aget(Consvself, next) v vself . There are no restric-
tions to the potential of the resulting node but its refined type should be a
subtype of the refined type of its next node (vres v Aget(Consvres, next)).

In summary, the RAJA polymorphic method type of the method copy()
is the following:

Consvself q1/q2−−−→Listvres & Aget(Consvself, next) v vself ∧ vres v Aget(Consvres, next)
∧♦(Consvself) ≥ ♦(Consvres) + 1

Now recall the definition of copy() in class Nil:

List copy() {

return new Nil();

}

The variable this must pay for the object creation, thus, the polymorphic
type for this method is:

Nilvself q1/q2−−−→Listvres & ♦(Nilvself) ≥ ♦(Nilvres) + 1

32

The body of the method copy() in class List is just null, since this method is
not supposed to be called. Thus, there are no restrictions to this method’s
type. However, the analysis would not be sound if the method’s polymorphic
type contained no constraints at all because an object of type List can have
dynamic type Cons, causing that the actual method to be executed at run-
time is the method copy of class Cons, leading to unpredictable heap-space
consumption. Hence the correct type for copy in List is built by adding the
constraints of the copy method in the subclasses Cons and Nil:

Listvself q1/q2−−−→Listvres & Aget(Consvself, next) v vself ∧ vres v Aget(Consvres, next)
∧♦(Consvself) ≥ ♦(Consvres) + 1
∧♦(Nilvself) ≥ ♦(Nilvres) + 1

Recall that the main method calls the copy method with the input list l:

class Main {

List main(List l) {

return l.copy();

}

}

It is intuitively clear that the heap-space consumption of main is just
the heap-space consumption of the copy method. In fact, the constraints of
method calls consist of the constraints of the called method after variable
renaming. We obtain the following type for main:

Mainvself ; Listvl q1/q2−−−→Listvres & Aget(Consvl, next) v vl ∧ vres v Aget(Consvres, next)
∧♦(Consvl) ≥ ♦(Consvres) + 1
∧♦(Nilvl) ≥ ♦(Nilvres) + 1

It is not hard to see that the valuation

π = ({vself 7→ rich, vl 7→ rich, vres 7→ poor}, {q1 7→ 0, q2 7→ 0}

builds the best possible solution for the constraints of all methods, where
rich and poor are the following views:

♦(·) rich poor

List 0 0

Nil 1 0

Cons 1 0

Main 0 0

Consrich Conspoor

Aget(· , next) rich poor
Aset(· , next) rich poor

(3.1.1)

33

The names rich and poor were chosen for remarking that some classes under
the view rich have potential 1 and the classes under the view poor have
potential 0. We could compare potential with money metaphorically, since
you can spend it for paying for object creation. In this sense a view with
some potential can be said to be “rich” and a view with no potential to be
“poor”. Notice that we could visualise the views rich and poor as follows:

List<rich>
potential = 0

Cons<rich>
potential = 1
next: List<rich, rich>

Nil<rich>
potential = 1

Main<rich>
potential = 0

view rich

List<rich>
potential = 0

Cons<rich>
potential = 1
next: List<rich, rich>

Nil<rich>
potential = 1

Main<rich>
potential = 0

List<poor>
potential = 0

Cons<poor>
potential = 0
next: List<poor, poor>

Nil<poor>
potential = 0

Main<poor>
potential = 0

view poor

List<poor>
potential = 0

Cons<poor>
potential = 0
next: List<poor, poor>

Nil<poor>
potential = 0

Main<poor>
potential = 0

We then obtain the following monomorphic RAJA method types:

M(List, copy) = Listrich 0/0−→Listpoor

M(Cons, copy) = Consrich 0/0−→Listpoor

M(Nil, copy) = Nilrich 0/0−→Listpoor

M(Main,main) = Mainrich; Listrich 0/0−→Listpoor

These types state that copy is only defined in Listrich, Nilrich and Consrich, but
not in, e.g., Listpoor and the potential of this will be consumed. The return
value will be of type Listpoor hence carry potential 0. Moreover, since the
type of the argument l in the main method is Listrich, the method copy can be
called and the potential of l will be consumed, which is equal to the length
of the list plus 1. This is the overall potential consumed by the program
which is equal to its heap-space consumption.

Now, why is the potential of a list of type Listrich equal to n+ 1, when n
is the length of the list? Suppose that l points to a list of length 5.
l
↓

Cons Cons Cons Cons Cons Nil

The potential is calculated as the sum over all access paths starting from
l and not leading to null. In this case, these access paths are

• ~p1 = l

• ~p2 = l. next

• ~p3 = l. next. next

34

• ~p4 = l. next. next. next

• ~p5 = l. next. next. next. next

• ~p6 = l. next. next. next. next. next

Each of these has a dynamic type: Cons for ~p1 to ~p5 and Nil for ~p6.
Each of them also has a view that can be computed by chaining the view of
l along the get views, which is the view rich in each case. For each access
path, we now look up the potential annotation of its dynamic type under its
view. It equals 1 in every case given ♦

(
Consrich

)
= ♦
(
Nilrich

)
= 1 , yielding a

sum of 6.

Appending lists

Now let us look at the analysis of the program for appending lists imper-
atively in more detail. Recall the definition of the method appAux in class
Cons.

Cons appAux(List y, Cons dest) {

let _ = dest.next <- this in

return this.next.appAux(y, this);

}

Here we wish to focus on how the system handles aliasing. Notice that
the variable this is used three times in the method’s body, hence its potential
has to be shared among all occurrences for the analysis to be sound. The
view variable corresponding to this is again vself and the view variable corre-
sponding to dest is vdest. Then, we obtain the constraint vself v vself ⊕ vself ⊕
vdest which implies that ♦(Consvself) ≥ ♦(Consvself) + ♦(Consvself) + ♦(Consvdest)
must hold. Notice that this implies that ♦(Consvself) = 0.

Moreover we get the constraint vself v Aset(Consvdest, next) for the update
dest.next <- this to be correct and the constraint Aget(Consvself, next) v
vself since the method is called recursively with this. next. The following
valuation builds a solution for these constraints.

π = {vself 7→ poor, vdest 7→ n}

where poor and n are defined as follows:

♦(·) poor n

Cons 0 0

List 0 0

Nil 0 0

Main 0 0

Conspoor Consn

Aget(· , next) poor n
Aset(· , next) poor poor

(3.1.2)

We say in this case that poor can be split into poor, poor and n, written
.(poor |poor, poor, n), which is equivalent to poor v poor ⊕ poor ⊕ n.

35

Circular lists

As a final example, we wish to show how our system prevents cyclic lists
from being copied. If this was allowed, the program would not terminate
and would require infinite amount of memory. Assume the following main
method that creates a list with a loop and copies it.

List main() {

let cons = new Cons in

let _ = cons.next <- cons in

return cons.copy();

}

Let vcons be the view variable corresponding to cons, then we obtain the
constraint ♦(Consvcons) ≥ ♦(Consvres) + 1 by substituting the variable vself in
the constraints from the copy method with the variable vcons. Notice that
this requires the potential of Cons under vcons to be at least 1.

Further, handling aliasing gives us the constraint vcons v vcons ⊕ vcons ⊕
vcons, making the system of constraints unsolvable since, on the one hand,
♦(Consvcons) ≥ 1 and on the other hand, ♦(Consvcons) ≥ 3♦(Consvcons).1

Notice that this is again a consequence of our rule for aliasing that guar-
antees soundness at all times.

3.2 Introduction to the RAJA system

In this section we describe the RAJA system formally including views, re-
fined types and the RAJA typing system.

3.2.1 Views and refined types

We set D = R+
0 ∪ {∞}, i.e., the set of nonnegative real numbers together

with an element ∞. Ordering and addition on R+
0 extend to D by ∞+ x =

x+∞ =∞ and x ≤ ∞.

Definition 3.2.1 We define the set V C of views coinductively by

• ♦(·) assigns to each view r ∈ V C and class C ∈ C a number ♦(Cr).

• Aget(· , ·) assigns to each view r ∈ V C and class C ∈ C and field
a ∈ A(C) a view s = Aget(Cr, a).

• Aset(· , ·) assigns to each view r ∈ V C and class C ∈ C and field
a ∈ A(C) a view s′ = Aset(Cr, a).

1This analysis has been simplified for the explanation but it shows the main idea.

36

1

1

1

...
...

1

...
...

g s

1

1

...
...

1

...
...

g s

g s

Figure 3.3: Infinite tree representing view rich.

We remark that a view can be regarded as an infinite tree given by

V C = {t | t :L∗C → D}

where the set of labels LC is defined as follows:

LC = {Ck.aj .t | Ck ∈ C , aj ∈ A(Ck) , t ∈ {get, set}}

Further, we say that a view is regular if it is a regular infinite tree, i.e. if it
contains a finite number of different sub-trees. For instance, the view rich
described in Section 3.1.4 can be represented as the regular infinite tree dis-
played in Fig. 3.2.1 where g stands for Cons. next.get and s for Cons. next.set.

We define an inequality relation between views r v s coinductively.

Definition 3.2.2 (r v s) Let r, s ∈ V C . We define r v s coinductively by

∀C ∈ C .♦(Cr) ≥ ♦(Cs) (3.2.1)

∀C ∈ C ∀a ∈ A(C) .Aget(Cr, a) v Aget(Cs, a) (3.2.2)

∀C ∈ C ∀a ∈ A(C) .Aset(Cs, a) v Aset(Cr, a) (3.2.3)

Notice that the defined preorder v on views is covariant in the get views
and contravariant in the set views.
We define the operations ∨ : V C × V C → V C and ∧ : V C × V C → V C

simultaneously. Let s1, s2 ∈ V C , then, for each C ∈ C and a ∈ A(C) we set:

♦(Cs1∨s2) = min(♦(Cs1),♦(Cs2))
Aget(Cs1∨s2, a) = Aget(Cs1, a) ∨ Aget(Cs2, a)
Aset(Cs1∨s2, a) = Aset(Cs1, a) ∧ Aset(Cs2, a)

♦(Cs1∧s2) = max(♦(Cs1),♦(Cs2))
Aget(Cs1∧s2, a) = Aget(Cs1, a) ∧ Aget(Cs2, a)
Aset(Cs1∧s2, a) = Aset(Cs1, a) ∨ Aset(Cs2, a)

37

Lemma 3.2.3 Let s1, s2 ∈ V C . Then for all i ∈ {1, 2} holds

1. si v s1 ∨ s2.

2. s1 ∧ s2 v si.

Proof. Simultaneously by coinduction.

1. We show (3.2.1), (3.2.2) and (3.2.3). Let C ∈ C and a ∈ A(C). Then:

(a) (3.2.1) follows by ♦(Csi) ≥ min(♦(Cs1),♦(Cs2)).

(b) (3.2.2) follows by Aget(Csi, a) v Aget(Cs1, a) ∨ Aget(Cs2, a), which
follows by the coinduction hypothesis (1).

(c) (3.2.3) follows by Aset(Cs1, a) ∧ Aset(Cs2, a) v Aset(Csi, a), which
follows by the coinduction hypothesis (2).

2. We show (3.2.1), (3.2.2) and (3.2.3). Let C ∈ C and a ∈ A(C). Then:

(a) (3.2.1) follows by max(♦(Cs1),♦(Cs2)) ≥ ♦(Csi).
(b) (3.2.2) follows by Aget(Cs1, a) ∧ Aget(Cs2, a) v Aget(Csi, a), which

follows by the coinduction hypothesis (2).

(c) (3.2.3) follows by Aset(Csi, a) v Aset(Cs1, a) ∨ Aset(Cs2, a), which
follows by the coinduction hypothesis (1).

2

Lemma 3.2.4 Let s1, s2, r ∈ V C . Then for all i ∈ {1, 2} holds

1. If si v r then s1 ∨ s2 v r.

2. If r v si then r v s1 ∧ s2.

Proof. Simultaneously by coinduction.

1. We show (3.2.1), (3.2.2) and (3.2.3). Let C ∈ C and a ∈ A(C). Then:

(a) (3.2.1) follows by min(♦(Cs1),♦(Cs2)) ≥ ♦(Cr), which follows by
the assumption ♦(Csi) ≥ ♦(Cr).

(b) (3.2.2) follows by Aget(Csi, a) v Aget(Cr, a) implies Aget(Cs1, a) ∨
Aget(Cs2, a) v Aget(Cr, a), which follows by the coinduction hy-
pothesis (1).

(c) (3.2.3) follows by Aset(Cr, a) v Aset(Csi, a) implies Aset(Cr, a) v
Aset(Cs1, a)∧Aset(Cs2, a), which follows by the coinduction hypoth-
esis (2).

2. We show (3.2.1), (3.2.2) and (3.2.3). Let C ∈ C and a ∈ A(C). Then:

(a) (3.2.1) follows by ♦(Cr) ≥ max(♦(Cs1),♦(Cs2)), which follows by
the assumption ♦(Cr) ≥ ♦(Csi).

38

(b) (3.2.2) follows by Aget(Cr, a) v Aget(Csi, a) implies Aget(Cr, a) v
Aget(Cs1, a)∧Aget(Cs2, a), which follows by the coinduction hypoth-
esis (2).

(c) (3.2.3) follows by Aset(Csi, a) v Aset(Cr, a) implies Aset(Cs1, a) ∨
Aset(Cs2, a) v Aset(Cr, a), which follows by the coinduction hypoth-
esis (1).

2

Corollary 3.2.5 (Least upper bound and greatest lower bound)

1. s1 ∨ s2 is the least upper bound of s1 and s2.

2. s1 ∧ s2 is the greatest lower bound of s1 and s2.

Proof. Follows by the Lemmas 3.2.3 and 3.2.4. 2

Lemma 3.2.6 (Monotonicity of ∧ and ∨) Let r, r′, s, s′ ∈ V C . Then:

1. if r v r′ and s v s′ then r ∧ s v r′ ∧ s′.

2. if r′ v r and s′ v s then r′ ∨ s′ v r ∨ s.

Proof. Simultaneously by coinduction. 2

We define the addition operations on views ⊕ : V C × V C → V C and
� : V C × V C → V C simultaneously as follows. Let s1, s2 ∈ V C , then,
for each C ∈ C , a ∈ A(C) we set:

♦(Cs1⊕s2) = ♦(Cs1) + ♦(Cs2)
Aget(Cs1⊕s2, a) = Aget(Cs1, a)⊕ Aget(Cs2, a)
Aset(Cs1⊕s2, a) = Aset(Cs1, a)� Aset(Cs2, a)

♦
(
Cs1�s2

)
= min(♦(Cs1),♦(Cs2))

Aget
(
Cs1�s2, a

)
= Aget(Cs1, a)� Aget(Cs2, a)

Aset
(
Cs1�s2, a

)
= Aset(Cs1, a)⊕ Aset(Cs2, a)

Lemma 3.2.7 Let r, s1, s2 ∈ V C and let i ∈ {1, 2}. Then:

1. If r v s1 ⊕ s2 then r v si.

2. If s1 � s2 v r then si v r.

Proof. Simultaneously by coinduction. 2

39

Lemma 3.2.8 (Monotonicity of ⊕ and �.) Let r, r′, s, s′ ∈ V C and let
i ∈ {1, 2}.

1. If r v r′ and s v s′ then r ⊕ s v r′ ⊕ s′.

2. If r′ v r and s′ v s then r′ � s′ v r � s.

Proof. Simultaneously by coinduction. 2

A RAJA type or refined type consists of a class C and a view r and is written
Cr. If Cr is a refined type then we denote by |Cr| = C the underlying FJEU
type C and by 〈〈Cr〉〉 = r its view. We extend the subtyping of FJEU classes
(Fig. 2.2) to refined types as follows.

Definition 3.2.9 (Cr <: Ds) We extend subtyping to refined types by

Cr <: Ds ⇐⇒ C <: D and r v s (3.2.4)

Notice that since both v and <: on FJEU are reflexive and transitive so is
<: on RAJA. In the following, when we refer to subtyping, unless specified
otherwise, we mean subtyping of refined types.

In contrast to the original RAJA system [HJ06], our modified system
does not require the set view of a field a of a refined type Cs to be a subtype
of its get view in all cases, i.e. we do not require Aset(Cs, a) v Aget(Cs, a)
to hold for every refined type Cs and field a ∈ A(C). We shall see later
that, for proving soundness, Aset(Cs, a) v Aget(Cs, a) is only required for the
dynamic type of a location in a heap and all its fields, and the main view
that corresponds to that location. The advantage of this modification will
become clear in Chapter 5, when we present a type inference algorithm for
the system based on constraint generation; the modification will cause that
less constraints are generated, which increases efficiency.

Definition 3.2.10 Let Cr be a refined type. We say that Cr is a main
RAJA type and write Cr main, if ∀a ∈ A(C) .Aset(Cr, a) v Aget(Cr, a).

3.2.2 Constraints

In this section we define formally the subtyping and arithmetic constraints
that build polymorphic RAJA method types. Let ViewVars be an infinite
set of view variables and NumVars be an infinite set of arithmetic vari-
ables. In the following grammar, we define a set of view expressions that
we call ViewExpr. A view expression is either a view variable v, a get or
a set view of a given field a of a class C (Aget(Cv, a) or Aset(Cv, a)) or the
addition of two view variables v1 ⊕ v2. Moreover, we define a set of arith-
metic expressions called ArithExpr. An arithmetic expression is either a

40

nonnegative real number n, an arithmetic variable p, a potential expres-
sion ♦(Cv) where C is a class and v is a view variable or the sum of two
arithmetic expressions (ae1 +ae2). Further, we define a set of subtyping con-
straints SConstr with Cvexp1 <: Dvexp2 ∈ SConstr, a set of constraints over
views VConstr with vexp1 v vexp2 ∈ VConstr and vexp1 = vexp2 ∈ VConstr
and a set of arithmetic constraints AConstr with ae1 ≥ ae2 ∈ AConstr and
ae1 ≤ ae2 ∈ AConstr. tt is the empty constraint, i.e. a constraint that is
always satisfied.

vexp ::= v | Aget(Cv, a) | Aset(Cv, a) | v ⊕ v ∈ ViewExpr
ae ::= n | p | ♦(Cv) | ae + ae ∈ ArithExpr
SC ::= Cvexp <: Dvexp ∈ SConstr
VC ::= vexp v vexp | vexp = vexp ∈ VConstr
AC ::= ae1 ≥ ae2 | ae1 ≤ ae2 ∈ AConstr
C ::= AC | SC | VC | C ∧ C | tt

Let π = (πv, πa) be a pair of maps: πv : ViewVars→ V C is a map from view
variables to views and πa : NumVars→ D is a map from number variables to
nonnegative real numbers or infinity. We define the meaning of arithmetic
expressions π(ae) inductively as follows.

π(p) = πa(p)
π(n) = n

π(♦(Cv)) = ♦
(
Cπv(v)

)
π(ae1 + ae2) = π(ae1) + π(ae2)

The meaning of view expressions π(vexp) is defined as follows.

π(v) = πv(v)

π(Aget(Cv, a)) = Aget
(
Cπv(v), a

)
π(Aset(Cv, a)) = Aset

(
Cπv(v), a

)
π(v ⊕ v′) = πv(v)⊕ πv(v′)

The meaning of constraints π |= C is defined as follows.

π |= Cvexp1 <: Dvexp2 iff C <: D and π(vexp1) v π(vexp2)
π |= vexp1 v vexp2 iff π(vexp1) v π(vexp2)
π |= vexp1 = vexp2 iff π(vexp1) v π(vexp2) and π(vexp2) v π(vexp1)
π |= ae1 ≥ ae2 iff π(ae1) ≥ π(ae2)
π |= ae1 ≤ ae2 iff π(ae1) ≤ π(ae2)
π |= C ∧ D iff π |= C and π |= D
π |= tt

If π = (πv, πa) is a pair of maps, we write dom(π) for meaning dom(πv) ∪
dom(πa). Moreover, if π′ = (π′v, π

′
a), we write ππ′ for meaning (πvπ

′
v, πaπ

′
a),

when dom(π) ∩ dom(π′) = ∅. Recall that for two maps f, g we write fg for

41

the union of the maps when dom(f) ∩ dom(g) = ∅. Further, if π̄ = (π̄v, π̄a)
with dom(π) ⊇ dom(π̄), then we write π|dom(π̄) for meaning the pair of maps
(πv|dom(π̄v), πa|dom(π̄a)).

While constraints are quantifier free we will often need quantification
over views in side conditions. To ease notation we allow quantification over
view variables in such situations which is understood as quantifying over
views. For example ∀w .D(w) ⇒ ∃v . C(w, v) means: for all valuations π
with π |= D, there exists a valuation π′ with π′(w) = π(w) and π′ |= C.

We write C(~v, ~q) for meaning that the conjunction of constraints C con-
tains the variables ~v ∈ ViewVars and ~q ∈ NumVars.

3.2.3 Monomorphic and polymorphic RAJA method types

Now that we have defined views, refined types and subtyping and arithmetic
constraints, we are ready to define the RAJA method types.

If ~v = v0, . . . , vn+1 is a vector of length n+ 2, with n ≥ 0, we write ~v for
meaning the (possibly empty) vector v1, . . . , vn.

Definition 3.2.11 (An n-ary monomorphic RAJA method type)
An n-ary monomorphic RAJA method type T consists of n+ 2 views ~s and

two numbers m1,m2 written T = s0;~s m1/m2−−−−→ sn+1.

We call the set of monomorphic RAJA method types MonoType. We also

write Cs0 ; ~E~s m1/m2−−−−→Hsn+1 to denote an FJEU method type combined with
a corresponding monomorphic RAJA method type.

Definition 3.2.12 (An n-ary polymorphic RAJA method type)
An n-ary polymorphic RAJA method type φ consists of n+2 view variables
~v and two arithmetic variables ~q = q1, q2 and existentially quantified (view
and arithmetic) variables ~w, ~t and a conjunction of subtyping and arithmetic
constraints on them written

φ = ∀~v, ~q ∃ ~w,~t . v0;~v q1/q2−−−→vn+1 & C(~v, ~q, ~w,~t)

We call the set of polymorphic RAJA method types PolyType. We often
write

∀~v, ~q ∃ ~w,~t . Cv0 ; ~E~v q1/q2−−−→Hvn+1 & C(~v, ~q, ~w,~t)

to denote an FJEU method type combined with a corresponding polymor-
phic RAJA method type.

A polymorphic method type stands for the set of all monomorphic types
that satisfy its constraints. Because this type does not depend on the
method’s callers, the resource analysis for the method can be performed
modularly.

42

Definition 3.2.13 (Instance of a polymorphic method type)

Let T = Cs0 ; ~E~s m1/m2−−−−→Hsn+1 be a monomorphic RAJA method type and

∀~v, ~q ∃ ~w,~t . Cv0 ; ~E~v q1/q2−−−→Hvn+1 & C(~v, ~q, ~w,~t) a polymorphic RAJA method
type. We say that T is an instance of φ, written: “T instanceof φ” iff there
exists a valuation π with π |= C such that π(vi) = si for i ∈ {0, . . . , n + 1}
and π(qj) = mj for j ∈ {1, 2}.

Definition 3.2.14 (RAJA program)
A RAJA program is an annotation of an FJEU program P = (C ,main)
in the form of a tuple R = (C ,main,M) where M assigns to each class C
and method m ∈ Meth(C) with n arguments an n-ary polymorphic RAJA
method type M(C,m).

We write constr(φ) for the conjunction of constraints of a polymorphic
method type φ, i.e.

constr(φ) = C if φ = ∀~v, ~q ∃ ~w,~t . v0;~v q1/q2−−−→vn+1 & C

We define trivial polymorphic RAJA method types with no constraints for
a given class C and method m, called >(C,m), by:

>(C,m) = ∀~v, ~q . v0;~v q1/q2−−−→vn+1 & tt

Definition 3.2.15 (Subtyping of monomorphic method types)

If T = ~r n1/n2−−−→rn+1 and T ′ = ~sm1/m2−−−−→sn+1 then T <: T ′ is defined as n1 ≤ m1

and n2 ≥ m2 and r0 = s0 and si v ri for i = 1, . . . , n and rn+1 v sn+1.

Definition 3.2.16 (Subtyping of polymorphic method types)
Let C,D, ~E,H ∈ C with C <: D and let φ and ψ be polymorphic RAJA
method types refining the FJEU method type ~E → H of method m in class
C and D, respectively. Then φ <: ψ iff:

∀T ′ with T ′ instanceof ψ .∃T with T instanceof φ

such that T <: T ′ (3.2.5)

We call a polymorphic RAJA method type empty if its constraints are un-
satisfiable and nonempty if they can be satisfied.

Fact 3.2.17 (Properties of subtyping of RAJA method types)

1. If φ <: ψ and ψ is nonempty then φ is nonempty as well.

2. If φ <: ψ and φ is empty then ψ must be empty as well.

43

Definition 3.2.18 (φ ∨ ψ)
Let C,D, ~E,H ∈ C with C <: D or D <: C and let φ and ψ be polymorphic
RAJA method types refining the FJEU method type ~E → H of method m in
class C and D, respectively.

φ=︷ ︸︸ ︷
∀~v, ~p ∃~w,~t . Cv0 ; ~E~v p1/p2−−−→Hvn+1 & C

ψ=︷ ︸︸ ︷
∀~v′, ~p′ ∃~w′,~t′ . Dv′0 ; ~E~v

′ p′1/p
′
2−−−→Hv′n+1 & D

Then, we define φ ∨ ψ by:

φ ∨ ψ = ∀~v,~v′, ~u, ~p, ~p′, ~q ∃~w, ~w′,~t,~t′ . (C∨D)u0 ; ~E~u t1/t2−−→Hun+1 & E where

E = C [u0/v0] ∧ D [u0/v
′
0] ∧

∧
i

(ui v vi ∧ ui v v′i) ∧ (vn+1 v un+1)

∧ (v′n+1 v un+1) ∧ (q1 ≥ p1) ∧ (q1 ≥ p′1) ∧ (q2 ≤ p2) ∧ (q2 ≤ p′2)

Lemma 3.2.19 (l.u.b. of RAJA polymorphic method types)
Let φ, ψ polymorphic RAJA method types. Then φ ∨ ψ is the least upper
bound of φ and ψ, i.e.

1. φ <: (φ ∨ ψ) and ψ <: (φ ∨ ψ).

2. ∀ξ with φ <: ξ and ψ <: ξ holds (φ ∨ ψ) <: ξ.

Proof. Let
φ=︷ ︸︸ ︷

∀~v, ~p ∃~w ,~t . Cv0 ; ~E~v p1/p2−−−→Hvn+1 & C

ψ=︷ ︸︸ ︷
∀~u, ~q ∃ ~w′ , ~t′ . Dv′0 ; ~E~v

′ p′1/p
′
2−−−→Hv′n+1 & D

and let φ ∨ ψ be defined as in Def. 3.2.18:

φ ∨ ψ = ∀~v,~v′, ~u, ~p, ~p′, ~q ∃~w, ~w′,~t,~t′ . (C ∨D)u0 ; ~E~u t1/t2−−→Hun & E where

E = C [u0/v0] ∧ D [u0/v
′
0] ∧

∧
i

(ui v vi ∧ ui v v′i) ∧ (vn+1 v un+1)

∧ (v′n+1 v un+1) ∧ (q1 ≥ p1) ∧ (q1 ≥ p′1) ∧ (q2 ≤ p2) ∧ (q2 ≤ p′2)

1. We show φ <: (φ ∨ ψ), in particular we show

∀ ~u , ~q ∃~w′ , ~t′ . E =⇒ ∃~v , ~p , ~w ,~t . C ∧ v0 = u0 ∧∧
i=1..n

ui v vi ∧ vn+1 v un+1 ∧ p1 ≤ q1 ∧ p2 ≥ q2 (3.2.6)

which follows clearly when we substitute E by its definition. ψ <:
(φ ∨ ψ) follows just as trivially.

44

2. Let ξ = ∀~o,~l ∃ ~̂w , ~̂t . F o0 ; ~E~o l1/l2−−→Hon+1 & G. By assumption we have
C <: F and D <: F and :

φ <: ξ ⇐⇒ ∀~o ,~l ∃ ~̂w , ~̂t .G =⇒ ∃~v , ~p ∃~w ,~t . C ∧ v0 = o0 ∧∧
i=1..n

oi v vi ∧ vn+1 v on+1 ∧ p1 ≤ l1 ∧ p2 ≥ l2 and (3.2.7)

ψ <: ξ ⇐⇒ ∀~o ,~l ∃ ~̂w , ~̂t .G =⇒ ∃ ~v′ , ~p′ ∃~w′ ,~t′ .D ∧ v′0 = o0 ∧∧
i=1..n

oi v v′i ∧ v′n+1 v on+1 ∧ p′1 ≤ l1 ∧ p′2 ≥ l2 (3.2.8)

We show φ ∨ ψ <: ξ ⇐⇒

∀~o ,~l ∃ ~̂w , ~̂t .G =⇒ ∃ ~u , ~q ,~v ,~v′ , ~p , ~p′ , ~w ,~t , ~w′ ,~t′ . E ∧ u0 = o0 ∧∧
i=1..n

oi v ui ∧ un+1 v on+1 ∧ q1 ≤ l1 ∧ q2 ≥ l2 (3.2.9)

Let π |= G with π(oi) = ri and π(li) = mi and let i ∈ {1, . . . , n}.
Then, by (3.2.7), there exists π1 with π1|dom(π)= π and π1(vi) = si,
π1(pi) = ni with π1 |= C and ri v si and sn+1 v rn+1 and n1 ≤ m1

and n2 ≥ m2.

Moreover, by (3.2.8), there exists π2 with π2|dom(π)= π and π2(ui) =
s̄i, π2(pi) = n̄i with π2 |= D and ri v s̄i and s̄n+1 v rn+1 and n̄1 ≤ m1

and n̄2 ≥ m2. Then (3.2.9) follows with π̃ = π1 π2 π3 where:

π3 = {u0 7→ s0, u1 7→ s1 ∧ s̄1, . . . , un 7→ sn ∧ s̄n, un+1 7→ sn+1 ∨ s̄n+1},
{t1 7→ max(n1, n̄1), t2 7→ min(n2, n̄2)}

since si ∧ s̄i v si and si ∧ s̄i v s̄i and ri v si ∧ s̄i because si ∧ s̄i is the
g.l.b. of si and s̄i by Corollary 3.2.5.

Moreover, since sn+1∨ s̄n+1 is the l.u.b. of sn+1 and s̄n+1 by Corollary
3.2.5, sn+1 ∨ s̄n+1 v rn+1 and sn+1 v sn+1 ∨ s̄n+1 and s̄n+1 v sn+1 ∨
s̄n+1. Further, we show:

(a) max(n1, n̄1) ≥ n1 and max(n1, n̄1) ≥ n̄1 which follows trivially.

(b) min(n2, n̄2) ≤ n2 and min(n2, n̄2) ≤ n̄2 which follows trivially.

(c) max(n1, n̄1) ≤ m1 which follows from n1 ≤ m1 and n̄1 ≤ m1.

(d) min(n2, n̄2) ≥ m2 which follows from n2 ≥ m2 and n̄2 ≥ m2.

2

45

3.2.4 Sharing Relation

In a RAJA program, if a variable is to be used more than once, then the
different occurrences must be given different types which are chosen such
that the individual potentials assigned to each occurrence add up to the
total potential available for that variable. We introduce the sharing relation
.(r |s1, . . . , sn) for splitting the potential of a view r among a multiset of
views s1, . . . , sn. For example, if we have l : Listrich we can use the variable
l with the types Lists1 and Lists2 if .(rich |s1, s2) holds.

The relation we define here is stronger than the sharing relation from
the original RAJA system [HJ06]. With the new relation we are able to
identify the sharing relation with the subtyping relation, since we can prove
.(r |s1, s2) is equivalent to r v s1 ⊕ s2. This way, we can concentrate on
subtyping when describing type checking and type inference algorithms for
RAJA in the following chapters.

Definition 3.2.20 (Sharing Relation)
We define the sharing relation between a single view r and a multiset of views
D written .(r |D) simultaneously with the relation &(r |D) coinductively by

1. if .(r |D) then for all C ∈ C :

♦(Cr) ≥
∑
s∈D

♦(Cs) (3.2.10)

∀s ∈ D . r v s (3.2.11)

∀a ∈ dom(A(C)) ..
(
Aget(Cr, a)

∣∣Aget
(
CD, a

))
(3.2.12)

∀a ∈ dom(A(C)) .&
(
Aset(Cr, a)

∣∣Aset
(
CD, a

))
(3.2.13)

2. if &(r |D) then for all C ∈ C :

min
s∈D
♦(Cs) ≥ ♦(Cr) (3.2.14)

∀s ∈ D . s v r (3.2.15)

∀a ∈ dom(A(C)) .&
(
Aget(Cr, a)

∣∣Aget
(
CD, a

))
(3.2.16)

∀a ∈ dom(A(C)) ..
(
Aset(Cr, a)

∣∣Aset
(
CD, a

))
(3.2.17)

where Aget
(
CD, a

)
= {Aget(Cs, a) | s ∈ D}, Aset

(
CD, a

)
= {Aset(Cs, a) | s ∈ D}.

If D = {s1, . . . , si} is a finite multiset, we also write .(r |s1, . . . , si) for
.(r |D). In the following we prove several properties of the sharing relation.

46

Lemma 3.2.21 Let r ∈ V C . Then:

1. .(r |{r})

2. &(r |{r})

Proof. Simultaneously by coinduction. 2

Lemma 3.2.22 Let r ∈ V C and D be a multiset D ⊆ V C . Then:

1. If .(r |D) then ∀E ⊆ D ..(r |E).

2. If &(r |D) then ∀E ⊆ D .&(r |E).

Proof. Simultaneously by coinduction.

1. (3.2.10) follows by ♦(Cr) ≥
∑

s∈D ♦(C
s) ≥

∑
s∈E ♦(C

s). (3.2.11) fol-
lows by assumption. (3.2.12) follows by the co. hyp. (1) and (3.2.13)
follows by the co. hyp. (2).

2. (3.2.14) follows by mins∈E ♦(Cs) ≥ mins∈D ♦(Cs) ≥ ♦(Cr). (3.2.15)
follows by assumption. (3.2.16) follows by the co. hyp. (2) and (3.2.17)
follows by the co. hyp. (1).

2

Lemma 3.2.23 Let r, s ∈ V C and D,E be multisets D ⊆ V C and E ⊆ V C .
Then:

1. .(r |D ∪ {s}) ∧ .(s |E) =⇒ .(r |D ∪ E)

2. &(r |D ∪ {s}) ∧ &(s |E) =⇒ &(r |D ∪ E)

Proof. Simultaneously by coinduction.

1. (3.2.10), ♦(Cr) ≥
∑

sD∈D ♦(C
sD) +

∑
sE∈E ♦(C

sE) follows by ♦(Cr) ≥∑
sD∈D ♦(C

sD) + ♦(Cs) and ♦(Cs) ≥
∑

sE∈E ♦(C
sE) with transitivity.

(3.2.11), r v sD follows by assumption and r v sE follows by r v s
and s v sE , which hold by assumption, and transitivity.

(3.2.12) follows by the co. hyp. (1) and (3.2.13) by the co. hyp. (2).

2. (3.2.14) We show

min
s′∈D∪E

♦
(
Cs
′
)
≥ ♦(Cr) (3.2.18)

By assumption we have min
s′∈D∪{s}

♦
(
Cs
′
)
≥ ♦(Cr) (3.2.19)

min
s′′∈E

♦
(
Cs
′′
)
≥ ♦(Cs) (3.2.20)

We obtain the following two cases:

47

Case ♦(Cs) ≤ mins′∈D ♦
(
Cs
′
)

, i.e. mins′∈D∪{s} ♦
(
Cs
′
)

= ♦(Cs).

Then, we get min
s′∈D
♦
(
Cs
′
)

︸ ︷︷ ︸
n

≥ ♦(Cr) by (3.2.19) and transitivity.

Moreover, we get min
s′∈E
♦
(
Cs
′
)

︸ ︷︷ ︸
m

≥ ♦(Cr) (3.2.20) and transitivity

and the goal follows since mins′′∈D∪E ♦
(
Cs
′′
)

is either n or m.

Case ♦(Cs) ≥ mins′∈D ♦
(
Cs
′
)

, i.e. mins̄∈D∪{s̄} ♦(C
s̄) = mins̄∈D ♦(C s̄).

Then, by (3.2.20), mins′∈D∪E ♦
(
Cs
′
)

= mins̄∈D ♦(C s̄), thus, the

goal follows by (3.2.19).

(3.2.15) follows by assumption and transitivity. (3.2.16) follows by the
co. hyp. (2) and (3.2.17) follows by the co. hyp. (1).

2

Lemma 3.2.24 Let r, r′, s, s′ ∈ V C and D be a multiset D ⊆ V C .

1. r′ v r ∧ s′ v s ∧ .(r |D ∪ {s′}) =⇒ .(r′ |D ∪ {s})

2. r v r′ ∧ s v s′ ∧ &(r |D ∪ {s′}) =⇒ &(r′ |D ∪ {s})

Proof. Simultaneously by coinduction. Let si ∈ D.

1. (3.2.10) follows by ♦
(
Cr
′
)
≥ ♦(Cr) and ♦

(
Cs
′
)
≥ ♦(Cs) and ♦(Cr) ≥∑

si∈D ♦(C
si) + ♦

(
Cs
′
)

which follow by assumption, and transitivity.

(3.2.11) follows by r′ v r v si and r′ v r v s′ v s, which follow by
assumption, and transitivity. (3.2.12) follows by the co. hyp. (1) and
(3.2.13) follows by the co. hyp. (2).

2. (3.2.14) We show minsi∈D∪{s} ♦(C
si) ≥ ♦

(
Cr
′
)

and we have

♦(Cs) ≥ ♦
(
Cs
′
)

(3.2.21)

♦(Cr) ≥ ♦
(
Cr
′
)

(3.2.22)

min
si∈D∪{s′}

♦(Csi) ≥ ♦(Cr) (3.2.23)

By transitivity and (3.2.22) and (3.2.23) we obtain

min
si∈D∪{s′}

♦(Csi) ≥ ♦
(
Cr
′
)

(3.2.24)

Then, there are two cases:

48

Case ♦
(
Cs
′
)
≤ min

si∈D
♦(Csi) (3.2.25)

We get ♦
(
Cs
′
)
≥ ♦
(
Cr
′
)

(3.2.26)

by (3.2.24). Then, if minsi∈D∪{s} ♦(C
si) = ♦(Cs), we finish by

(3.2.21) and (3.2.26) with transitivity. Otherwise, the goal follows
by (3.2.25) and (3.2.26) with transitivity.

Case
♦
(
Cs
′
)
≥ min

si∈D
♦(Csi) (3.2.27)

We get min
si∈D
♦(Csi) ≥ ♦

(
Cr
′
)

(3.2.28)

by (3.2.24). Then, minsi∈D∪{s} ♦(C
si) = minsi∈D ♦(Csi) by (3.2.21)

and (3.2.27) and the goal follows.

(3.2.15) follows by si v r v r′ and s v s′ v r v r′, which follow by
assumption, and transitivity. (3.2.16) follows by the co. hyp. (2) and
(3.2.17) follows by the co. hyp. (1).

2

Lemma 3.2.25 Let r, s1, s2 ∈ V C . Then

1. .(r |s1, s2) ⇐⇒ r v s1 ⊕ s2

2. &(r |s1, s2) ⇐⇒ s1 � s2 v r

Proof. Simultaneously by coinduction.

1. Case “⇒” We have .(r |s1, s2) and we show r v s1⊕s2. In particular,
we show (3.2.1), (3.2.2) and (3.2.3).

(a) (3.2.1) follows by assumption.

(b) (3.2.2) follows by .
(
Aget(Cr, a)

∣∣Aget(Cs1, a) ,Aget(Cs2, a)
)

im-
plies Aget(Cr, a) v Aget(Cs1, a) ⊕ Aget(Cs2, a), which follows by
the coinduction hypothesis (1).

(c) (3.2.3) follows by &
(
Aset(Cr, a)

∣∣Aset(Cs1, a) ,Aset(Cs2, a)
)

implies
Aset(Cs1, a) � Aset(Cs2, a) v Aset(Cr, a), which follows by the
coinduction hypothesis (2).

Case “⇐” We have r v s1⊕s2 and we show .(r |s1, s2). In particular,
we show (3.2.10), (3.2.11), (3.2.12) and (3.2.13).

(a) (3.2.10) follows by assumption.

(b) (3.2.11) follows by Lemma 3.2.7.

(c) (3.2.12) follows by the coinduction hypothesis (1).

(d) (3.2.13) follows by the coinduction hypothesis (2).

49

2. Case “⇒” We have &(r |s1, s2) and we show s1�s2 v r. In particular,
we show (3.2.1), (3.2.2) and (3.2.3).

(a) (3.2.1) follows by assumption.

(b) (3.2.2) follows by &
(
Aget(Cr, a)

∣∣Aget(Cs1, a) ,Aget(Cs2, a)
)

im-
plies Aget(Cs1, a) � Aget(Cs2, a) v Aget(Cr, a), which follows by
the coinduction hypothesis (2).

(c) (3.2.3) follows by .
(
Aset(Cr, a)

∣∣Aset(Cs1, a) ,Aset(Cs2, a)
)

implies
Aset(Cr, a) v Aset(Cs1, a) ⊕ Aset(Cs2, a), which follows by the
coinduction hypothesis (1).

Case “⇐” We have s1�s2 v r and we show &(r |s1, s2). In particular,
we show (3.2.14), (3.2.15), (3.2.16) and (3.2.17).

(a) (3.2.14) follows by assumption.

(b) (3.2.15) follows by Lemma 3.2.7.

(c) (3.2.16) follows by the coinduction hypothesis (2).

(d) (3.2.17) follows by the coinduction hypothesis (1).
2

3.2.5 Typing RAJA

The RAJA-typing judgement is formally defined by the rules in Fig. 3.4. The
type system allows us to derive assertions of the form Γ

n
n′ e : Cr where e is

an expression or program phrase, C is an FJEU class, r is a view (so Cr is a
refined type) and Γ is a RAJA context, i.e. a map from variables to refined
types. Finally n, n′ are nonnegative real numbers. The meaning of such a
judgement is as follows. If e terminates successfully in some environment
η and heap σ with unbounded memory resources available then it will also
terminate successfully with a bounded freelist of size at least n plus the
potential ascribed to η, σ with respect to the typing in Γ. Furthermore, the
freelist size upon termination will be at least n′ plus the potential of the
result with respect to the view r.

The typing rules extend the typing rules of FJEU. Notice that the
rules (♦Share) and (♦Waste) are not syntax directed. Thus, they need
to be eliminated when we come to implement a type checker in Chapter 4.
(♦Waste) corresponds to the rule of subsumption of FJEU (`F Sub) and
weakens context, type, and effect.

We say that a RAJA context is a subcontext of another, and write Γ <:
Θ, iff forall x ∈ dom(Θ) holds Γx <: Θx. Notice that, for Γ <: Θ to be
defined, dom(Θ) ⊆ dom(Γ) must hold. We write ∅ to denote the empty
RAJA context. Then, by definition, Γ <: ∅ for any RAJA context Γ.

The purpose of the (♦Share) rule is to ensure that a variable can be used
more than once without duplication of potential. Recall the copy method
from Fig. 3.1 and suppose we have the following expression:

Γ, l :Listrich
n
n′ let nl = l.copy() in l.copy() : Listpoor (3.2.29)

50

RAJA Typing Γ
n
n′ e : Cr

Cr main

∅
♦(Cr) + 1

0 new C : Cr
(♦New)

n′ = min{♦(Dr) | D <: C}

x :Cr
0

n′ + 1 free(x) : Es
(♦Free)

C <: E

x :Er
0
0 (C)x : Cr

(♦Cast)
∅ 0

0 null : Es
(♦Null)

x :Cr
0
0 x : Cr

(♦V ar)
∀Ei <: C .Aget(Eri , a) v s D = C.a

x :Cr
0
0 x.a : Ds

(♦Access)

∀Ei <: C . s v Aset(Eri, a) C.a = D

x :Cr, y :Ds
0
0 x.a<-y : Cr

(♦Update)

Γ1
n
n′ e1 : Ds Γ2, x :Ds n′

n′′ e2 : Cr

Γ1,Γ2
n
n′′ let Dx = e1 in e2 : Cr

(♦Let)

M(C,m) = φ (Cs0 ; ~E~s n1/n2−−−→Hsn+1) instanceof φ

x :Cs0 , y1 :Es11 , . . . , yn :Esnn
n1
n2 x.m(~y) : Hsn+1

(♦Invocation)

x ∈ Γ Γ
n
n′ e1 : Cr Γ

n
n′ e2 : Cr

Γ
n
n′ if x instanceof E then e1 else e2 : Cr

(♦Conditional)

.(s |s1, . . . , sj) Γ, y1 :Ds1 , . . . , yj :Dsj
n
n′ e : Cr

Γ, x :Ds
n
n′ e[x/y1, . . . , x/yj] : Cr

(♦Share)

n ≥ u n+ u′ ≥ n′ + u Γ <: Θ Ds <: Cr Θ
u
u′ e : Ds

Γ
n
n′ e : Cr

(♦Waste)

RAJA Method Typing ` m : φ ok

m ∈ Meth(C) φ = M(C,m)

∀T = (Cs0 ; ~E~s n1/n2−−−→Hsn+1) instanceof φ .(s0 |r1, r2)

this :Cr1 , x1 :Es11 , . . . , xn :Esnn
n1 + ♦(Cr2)

n2 Mbody(C,m) : Hsn+1

(♦MBody)` m : φ ok

Figure 3.4: RAJA Typing.

51

We cannot allow that because objects of type Listrich carry potential to
copy themselves just once. If we allowed the second call to the copy method
we would be creating objects without “paying” for them, which would be
unsound. Since the method copy is only defined for the view rich, the only
possibility of typing (3.2.29) would be that we could split the view rich into
the views rich, rich, i.e. .(rich |rich, rich), but that is not possible because
♦
(
Consrich

)
< ♦
(
Consrich

)
+ ♦
(
Consrich

)
.

The judgement ` m : φ ok defined in Fig. 3.4, where m is the name of a
method, means that φ is a valid polymorphic RAJA method type for m if the
method body of m can be typed with the arguments, return type and effects
as specified in all instances of φ. However, notice that we split the view s0

specified for this in the concrete instance of φ into two views r1 and r2, such
that .(s0 |r1, r2) holds. We then put this in the context with the view r1 and
use the potential of r2 in the method body. This mechanism allows us to use
potential from the variable this for paying for object creations. We cannot
use the potential from other variables in similar ways because at compile
time it is not known whether the variable references a null pointer.

We shall illustrate this mechanism with an example. In the copy method
from Fig. 3.1 we need one item of potential in order to create a Conspoor

object. We said before that this object creation will be paid for with the
potential of this, but how exactly? In order to use the potential of this of
refined type Consrich, we put it in the context with a modified refined type,
say, Conss1 . Moreover, we find another view s2 with potential 1, such that
.(rich |s1, s2) holds. Then we can derive:

this :Conss1
1
0 let List res = new Conspoor in . . . in return res;

Notice that in many cases, the set of instances of a polymorphic RAJA
method type is infinite, so that the rule (♦MBody) cannot be implemented.
However, in Chapter 4 we present rules for type checking RAJA programs
effectively when we are given a finite set of monomorphic RAJA method
types for each method. Moreover, in Chapter 5 we give a rule for generating
subtyping and arithmetic constraints for methods that we prove sound with
respect to this rule.

Programs are well-typed if all method bodies admit the announced poly-
morphic RAJA method type and this type is nonempty and the type of a
method m in a class C is a subtype of the type of the method m in the
superclass of C. Formally,

Definition 3.2.26 (Well-typed RAJA-program)
A RAJA-program R = (C ,main,M) is well-typed if the following conditions
are satisfied:

1. ∀C ∈ C ,m ∈ Meth(C) . ` m : M(C,m) ok

2. ∀C ∈ C ,m ∈ Meth(C) .M(C,m) is nonempty.

52

3. ∀C,D ∈ C withS(C) = D ⇒ M(C,m) <: M(D,m).

We remark that if an expression e can be typed in the RAJA system, it
can also be typed in the FJEU system. If Γ is a RAJA context, we write |Γ|
for meaning its underlying FJEU context.

Lemma 3.2.27 If D :: Γ
n
n′ e :Cr then |Γ| ` e :C.

Proof. By induction on D. 2

3.3 Heap soundness and potential

In this section we define a potential function based on RAJA typing and
we prove the soundness of the system, which consist of proving that if e
can be evaluated successfully in some environment η and heap σ with an
unbounded freelist, then it will also evaluate successfully with a bounded
freelist of size at least n plus the potential ascribed to η, σ with respect to
the typing in Γ.

Recall that in FJEU we assign both a static type T(v :C).~pUstat
σ and a

dynamic type Tv.~pUdyn
σ to each accessible location in a heap specified by a

variable v and an access path ~p.

We emphasise that RAJA uses the same runtime model as FJEU, in
particular no RAJA typing information will be attached to objects in the
heap. Therefore, we will be able to define a static RAJA type in analogy
with the static FJEU type, but no dynamic RAJA type will be available.
Of course, as in the case of FJEU the static RAJA type of a value and an
access path will depend on the heap. In RAJA it will depend on the entire
access path and not just on its last component. For example, if v points to
a list of length 2 in σ then the static RAJA type of v. next under the view
rich is Consrich and the static RAJA type of v. next. next under the view poor
is Nilpoor.

Definition 3.3.1 (Static RAJA Type) For a given heap σ, a stack value

v, a (possibly empty) access path ~p and a RAJA type Cr such that σ � v : C
we recursively define bbb(v :r).~pcccstat

σ by

bbb(v :r).~pcccstat
σ =

r if ~p = ε

s
if ~p = ~q.a and bbb(v :r).~qcccstat

σ = t

and Tv.~qUdyn
σ = E and Aget

(
Et, a

)
= s

If C = Tv.~pUdyn
σ and s = bbb(v :r).~pcccstat

σ , then Cs is the static RAJA type of
v.~p under the view r.

Note that bbb(v :r).~q.acccstat
σ is only defined if Jv.~qKσ ∈ σ.

53

Furthermore, assume that Γ is a RAJA context and σ is a sound heap
with respect to its underlying FJEU context |Γ| and an environment η, i.e.

σ � η : |Γ|. We then define the multiset of views associated with all aliases
of a location ` ∈ σ by

Vσ,η,Γ(`) = {bbb(ηx :〈〈Γx〉〉).~pcccσ | x ∈ Γ, Jηx.~pKσ = `}

In the following we define when a heap is sound with respect to a RAJA
context Γ and environment η. Clearly, the heap should be sound with re-
spect to |Γ| and η. Moreover, for each location ` ∈ σ must hold that there
exists a view r, its proto-view, that can be split among the multiset of views
associated with all aliases of l. Finally, if D is the dynamic type of `, Dr

should be a main RAJA type.

Definition 3.3.2 (Sound Heap) We say that a memory configuration con-

sisting of heap σ and stack η satisfies a RAJA context Γ, written σ � η : Γ,
if

σ � η : |Γ| (3.3.1)

∀` ∈ σ .∃ r ∈ V C ..(r |Vσ,η,Γ(`)) (3.3.2)

for D = T`Udyn
σ . Dr main (3.3.3)

We write σ � v : Cr for meaning σ � [x 7→v] : x:Cr.
One may wonder how the mere existence of a “common” view for all the

aliases of some location could be of any use; the answer lies in the following
lemma:

Lemma 3.3.3 Let C ∈ C and r ∈ V C and D ⊆ V C and Cr main. If
.(r |D) then for all a ∈ A(C) and s ∈ D holds .

(
Aset(Cs, a)

∣∣Aget
(
CD, a

))
.

Proof. .(r |D) implies .
(
Aget(Cr, a)

∣∣Aget
(
CD, a

))
.

The goal follows by Lemma 3.2.24 with Aset(Cr, a) v Aget(Cr, a). 2

The potential of an object in the heap is the sum over the potential of the
static RAJA types corresponding to all access paths in scope that start in
the object’s location. The potential of a runtime configuration is the sum
over the potential of all reachable objects.

Definition 3.3.4 (Potential) If σ � v : Cs we define Φσ(v : r) ∈ D by

Φσ(v : r) =
∑
~p

φσ
(
(v :r).~p

)

where φσ
(
(v :r).~p

)
=

{
♦(Ds) if Tv.~pUdyn

σ = D and bbb(v :r).~pcccstat
σ = s

0 otherwise

54

The potential is extended to environments and contexts as follows:

Φσ(η : Γ) =
∑
x∈Γ

Φσ(ηx : 〈〈Γx〉〉)

where we assume σ � η : |Γ|.

This sum is possibly infinite, e.g. in the presence of circular data structures
or an infinite heap. Furthermore each alias of a location makes a different
contribution to the sum, whose value depends on the static RAJA type of
that alias. Notice that φσ

(
(v :r).~p

)
= 0 if Jv.~pKσ = 0.

The potential interacts with subtyping and sharing as might be expected:

Lemma 3.3.5 (Potential and subtyping) Let C ∈ C and r, s ∈ V C and
σ be a heap and v be a heap value and r v s and Jv.~pKσ ∈ σ. Then:

1. bbb(v :r).~pcccstat
σ v bbb(v :s).~pcccstat

σ .

2. Φσ(v : r) ≥ Φσ(v : s).

Proof.

1. By induction on ~p. If ~p = ε the goal follows by assumption.

Case ~p = ~q.a. Let Tv.~qUdyn
σ = E and bbb(v :r).~qcccstat

σ = t and
bbb(v :s).~qcccstat

σ = t′.

bbb(v :r). ~q.acccstat
σ v bbb(v :s). ~q.acccstat

σ ⇐⇒
Aget
(
Et, a

)
v Aget

(
Et
′
, a
)

which follows by t v t′, which holds by induction hypothesis.

2. We show, for each ~p, φσ
(
(v : r).~p

)
≥ φσ

(
(v : s).~p

)
. Let Tv.~pUdyn

σ = D

and bbb(v :r).~pcccstat
σ = t and bbb(v :s).~pcccstat

σ = t′. Then, the goal follows

by ♦
(
Dt
)
≥ ♦
(
Dt′
)

, which follows by 1.

2

Lemma 3.3.6 (Potential and sharing) Let C ∈ C and σ be a heap and
v be a heap value and r, s1, . . . , sn ∈ V C and Jv.~pKσ ∈ σ and .(r |s1, . . . , sn).
Then:

1. .
(
bbb(v :r).~pcccstat

σ

∣∣bbb(v :s1).~pcccstat
σ , . . . , bbb(v :sn).~pcccstat

σ

)
2. Φσ(v : r) ≥

∑
i Φσ(v : si).

Proof.

1. By induction on ~p. If ~p = ε the goal follows by assumption.

55

Case ~p = ~q.a. Let Tv.~qUdyn
σ = E and bbb(v :si).~qcccstat

σ = ti.

.
(
bbb(v :r).~q.acccstat

σ

∣∣bbb(v :s1).~q.acccstat
σ , . . . , bbb(v :sn).~q.acccstat

σ

)
⇐⇒

.
(
Aget
(
Et, a

) ∣∣Aget
(
Et1, a

)
, . . . ,Aget

(
Etn, a

))
which follows by .(t |t1, . . . , tn), which holds by induction hy-
pothesis.

2. We show, for each ~p, φσ
(
(v : r).~p

)
≥
∑

si
φσ
(
(v :si).~p

)
. Let Tv.~pUdyn

σ =

D and bbb(v :r).~pcccstat
σ = t and bbb(v :si).~pcccstat

σ = ti. Then, the goal
follows by ♦

(
Dt
)
≥
∑

ti
♦
(
Dti
)
, which follows by 1.

2

The following definition will be useful for proving the soundness of field
update. It allows us to describe formally the paths that are not affected by
the update.

Definition 3.3.7 Let σ be a heap and v be a heap value and ~p be an access
path and l be a location. Then we say that v.~p passes through `.a in σ,
written [σ, v, ~p G `, a] iff there exists ~q ≺ ~p with Jv.~qKσ = ` ∧ ~q.a � ~p.

Lemma 3.3.8 Let σ be a heap and v, w be heap values and ~p be an access
path and l be a location and τ = σ[`.a 7→ w]. Then ¬[σ, v, ~p G `, a] implies
Jv.~pKσ = Jv.~pKτ .

Proof. By induction on ~p.

Case ~p = ε. Then Jv.~pKσ = Jv.~pKτ = v.

Case ~p = ~q.b. By assumption, for all ~q ≺ ~p holds that if Jv.~qKσ = ` then
~q.a � ~p. We have by induction hypothesis Jv.~qKσ = Jv.~qKτ . Then,
σJv.~qKσ = τJv.~qKτ = (C, a1 : v1, . . . , an : vn). If Jv.~qKσ = ` then b 6= a by
assumption. If b = ai then Jv.~pKσ = Jv.~pKτ = vi, otherwise Jv.~pKσ =
Jv.~pKτ = 0.

2
Lemma 3.3.9 (Heap soundness and subtyping) Let σ be a heap, η an

environment and Γ,Θ be RAJA contexts. If σ � η : Γ and Γ <: Θ then also
σ � η : Θ.

Proof. σ � η : |Θ| follows by Lemma 2.3.7. Next we show (3.3.2). Let
` ∈ σ, by assumption we have a proto-view q with:

.
(
q
∣∣{bbb(ηx :〈〈Γx〉〉).~pcccstat

σ | x ∈ Γ, Jηx.~pKσ = `}
)

Moreover, for x ∈ Γ holds: bbb(ηx : 〈〈Γx〉〉).~pcccstat
σ v bbb(ηx : 〈〈Θx〉〉).~pcccstat

σ by
Lemma 3.3.5 and assumption, thus, by Lemma 3.2.24, we obtain the desired

.
(
q
∣∣{bbb(ηx :〈〈Θx〉〉).~pcccstat

σ | x ∈ Θ, Jηx.~pKσ = `}
)

Finally, (3.3.3) follows by assumption. 2

56

Lemma 3.3.10 (Heap soundness and sharing) Let σ be a heap, η an
environment and let Γ = x :Cr,∆ and η′ = η[y1 7→ηx, . . . , yn 7→ηx] and Γ′ =

y1 : Cs1 , . . . , yn : Csn ,∆ and .(r |s1, . . . , sn). Then if σ � η : Γ then also

σ � η′ : Γ′.

Proof. σ � η′ : |Γ′| follows by Lemma 2.3.8. Next we show (3.3.2). Let
` ∈ σ, by assumption we have a proto-view q with:

.
(
q
∣∣Vσ,η,∆(`) ∪ {bbb(ηx :r).~pcccstat

σ | Jηx.~pKσ = `}
)

By Lemma 3.3.6 and assumption we obtain:

.(bbb(ηx :r).~pcccσ |bbb(ηx :s1).~pcccσ, . . . , bbb(ηx :sn).~pcccσ)

Then, applying Lemma 3.2.23 for each ηx.~p with Jηx.~pKσ = ` gives us the
desired

.(q |Vσ,η,∆(`)
⋃
i Vσ,η,x:Csi (`))

Finally, (3.3.3) follows by assumption. 2

Theorem 3.3.11 (Soundness of RAJA typing)
Let R be a well-typed RAJA program, e be an expression, Cr be a refined
type and Γ,∆ be RAJA contexts. Let moreover σ, τ be heaps and η be an
environment.

D :: Γ
n
n′ e :Cr (3.3.4)

E :: η, σ e; v, τ (3.3.5)

σ � η : (Γ,∆) (3.3.6)

Then
η, σ

n+ Φσ(η : Γ) + Φσ(η : ∆)
n′ + Φτ(v : r) + Φτ(η : ∆) e; v, τ (3.3.7)

τ � η[xres 7→ v] : (∆, xres :Cr) (3.3.8)

where xres is assumed to be an unused auxiliary variable, i.e. xres /∈ Γ,∆.
Note that (3.3.6) implies dom(Γ) ∩ dom(∆) = ∅ by definition of notation.

Proof. The proof is by induction on E and a subordinate induction on D.
For establishing (3.3.8) we will address only parts (3.3.2) and (3.3.3) of Def.
3.3.2 since (3.3.1), soundness of FJEU typing, follows by Theorem 2.3.10,
since, by Lemma 3.2.27, |Γ| ` e :C.

Case (♦Share) Without loss of generality, we assume x, y1, . . . , yn /∈ ∆.
Let Γ = Θ, x :Ds, e = e0[x/y1, . . . , x/yn] for some e0 and Γ′ = Θ, y1 :
Dq1 , . . . , yn :Dqn . From (3.3.4) and rule (♦Share) we obtain Γ′

n
n′ e0 :

Cr and .(s |q1, . . . , qn). Furthermore let η′ = η[y1 7→ηx, . . . , yn 7→ηx].

57

From (3.3.5) we obtain η′, σ e0 ; v, τ by a derivation of the same

length. σ � η′ : (Γ′,∆) holds by Lemma 3.3.10. Applying the induction
hypothesis now yields

η′, σ
n+ Φσ(η

′ : Γ′) + Φσ(η
′ : ∆)

n′ + Φτ(v : r) + Φτ(η
′ : ∆) e0 ; v, τ

By Lemma 3.3.6 holds Φσ(ηx : s) ≥
∑

i Φσ(ηx : qi) and hence Φσ(η : Γ) ≥
Φσ(η

′ : Γ′). Since η and η′ coincide on ∆, we also have Φσ(η : ∆) =
Φσ(η

′ : ∆) and Φτ(η : ∆) = Φτ(η
′ : ∆). Hence we obtain

η, σ
n+ Φσ(η : Γ) + Φσ(η : ∆)
n′ + Φτ(v : r) + Φτ(η : ∆) e; v, τ

by Lemma 2.3.12, item 2, as required.

Case (♦Waste) Assume that (3.3.4) was established in the last step by
application of rule (♦Waste), so Θ

u
u′ e : Ds and Γ <: Θ and Ds <:

Cr. Furthermore n ≥ u and n′ + u ≤ u′ + n. Since Γ <: Θ we
have by Lemma 3.3.9, σ � η : (Θ,∆). The induction hypothesis gives

τ � η[xres 7→ v] : (∆, xres :Ds) from which we get τ � η[xres 7→ v] :
(∆, xres :Cr) again by Lemma 3.3.9. We also obtain

η, σ
u+ Φσ(η : Θ) + Φσ(η : ∆)
u′ + Φτ(v : s) + Φτ(η : ∆) e; v, τ

We have by Lemma 3.3.5 Φσ(η : Γ) ≥ Φσ(η : Θ), so we get by
Lemma 2.3.12, item 1

η, σ
u+ (n− u) + Φσ(η : Γ) + Φσ(η : ∆)
u′ + (n− u) + Φτ(v : s) + Φτ(η : ∆) e; v, τ

and finish with rule (`ShWaste), since n′ ≤ u′ + n− u.

Case (`S New) By (3.3.4) we have e = new C, n = ♦(Cr) + 1, n′ = 0,
Γ = ∅ and v = `. We have Φτ(v : r) = ♦(Cr) since Jv.aiKτ = 0 by
rule (`SNew). Furthermore Φσ(η : ∆) = Φτ(η : ∆) since existent lo-
cations are not altered and even more importantly ` /∈ dom(σ) and
(3.3.6) guarantees by (2.3.2) and (2.3.1) that ` does not occur any-
where in η and σ. Therefore (3.3.7) follows by Lemma 2.3.12, item 2.
For (3.3.8) we note that Vτ,η[xres 7→`],Γ(`) = {r}, but .(r |r) follows by
Lemma 3.2.21 and Cr main follows by assumption.

Case (`S Inv) In this case
e = x.m(~y) (3.3.9)

Γ = x :Cs0 , y1 :Es11 , . . . yj :Esnn (3.3.10)

M(C,m) = ∀~v, ~q ∃~w,~t . Cv0 ; ~E~v q1/q2−−−→Hvn+1 & C(~v, ~q, ~w,~t) (3.3.11)

π = π′({v1 7→ s1, . . . , vn+1 7→ sn+1}, {q1 7→ n1, q2 7→ n2}) |= C
(3.3.12)

58

The premises of (3.3.5) yield:

ηx ∈ σ (3.3.13)

σ(ηx) = (D, a1 :v1, . . . , ak :vk) (3.3.14)

Mbody(D,m) = e0 (3.3.15)

η′, σ ` e0 ; v, τ (3.3.16)

where η′ = [this 7→ ηx, x1 7→ ηy1 , . . . , xn 7→ ηyn]. Without loss of
generality dom(η) ∩ dom(η′) = ∅. Moreover we have:

M(D,m) = ∀~u, ~p ∃ ~w′, ~t′ . Du0 ; ~E~u p1/p2−−−→Hun+1 & D(~u, ~p, ~w′, ~t′) (3.3.17)

We have D <: C by (3.3.6) which implies M(D,m) <: M(C,m) because
R is a well-typed RAJA program, i.e. by Def. 3.2.26. Then we obtain,
by the definition of subtyping, a valuation π̄ with π̄|dom(π)= π such
that π̄ |= D and s0 = π̄(u0) and si v π̄(ui) and π̄(un+1) v sn+1 and
π̄(p1) ≤ n1 and π̄(p2) ≥ n2. Notice that n2 ≤ π̄(p2) + (n1 − π̄(p1))︸ ︷︷ ︸

≥0

.

Since π̄ |= D, by ` m : M(D,m) ok and (♦Waste) we get

this :Dr1 , x1 :E
π̄(u1)
1 , . . . , xn :E

π̄(un)
n

π̄(p1) + ♦(Dr2)
π̄(p2) e0 : H π̄(un+1)

this :Dr1 , x1 :Es11 , . . . , xn :Esnn
n1 + ♦(Dr2)

n2
e0 : Hsn+1

and .(s0 |r1, r2). By (3.3.16) and Lem.2.3.9 we have ηη′, σ ` e0 ; v, τ .
Application of the induction hypothesis then yields

ηη′, σ
n0

n2 + Φτ(η[xres 7→ v] : ∆, xres : Hsn+1) e0 ; v, τ (3.3.18)

where n0 = n1 + ♦(Dr2) + Φσ(ηη
′ : ∆, this :Dr1 , x1 :Es11 , . . . , xn :Esnn).

We have:

Φσ(η : ∆, x :Cs0 , y1 :Es11 , . . . , yn :Esnn)

= Φσ

(
ηη′ : ∆, x1 :Es11 , . . . , xn :Esnn

)
+ Φσ(ηx : s0)

≥︸︷︷︸
Lem. 3.3.6

Φσ

(
ηη′ : ∆, x1 :Es11 , . . . , xn :Esnn

)
+ Φσ(ηx : r1) + Φσ(ηx : r2)

≥Φσ

(
ηη′ : ∆, this :Dr1 , x1 :Es11 , . . . xn :Esnn

)
+ ♦(Dr2)

(3.3.19)

where the crucial part of the last step follows by Tηx.εU
dyn
σ = D and

therefore ♦(Dr2) is a part of the sum Φσ(ηx : r2). The conclusion then
follows by Lem. 2.3.12, item 2.

Case (`S Access) Suppose that (3.3.4) and (3.3.5) have been derived by
rules (♦Access) and (`S Access). So we have ηx = `, τ = σ, C0 =

59

TηxU
dyn
σ , Aget(Cr0 , a) = s0, s0 v s, C.a = D and Γ = x : Cr and

v = Jηx.aKσ. We show

η, σ
Φσ(ηx : r) + Φσ(η : ∆)
Φσ(v : s) + Φσ(η : ∆) x.a; v, τ

which specialises to Φσ(ηx : r) ≥ Φσ(v : s). By definition of poten-
tial we know Φσ(ηx : r) ≥ Φσ(v : s0). Moreover s0 v s implies by
Lemma 3.3.5, Φσ(v : s0) ≥ Φσ(v : s), thus, we finish by transitivity.

Case (`SUpdate)
Suppose that (3.3.4) and (3.3.5) have been derived by rules (♦Update)
and (`SUpdate).

So we have ηx = `, τ = σ[`.a 7→ ηy], C0 = TηxU
dyn
σ , s0 = Aget(Cr0 , a),

s = Aget(Cr, a) and Γ = x :Cr, y :Ds. Let furthermore Θ := ∆, x :Cr

and Λ = Γ,∆.

We assume ηy ∈ σ for otherwise ∀z ∈ Θ, ~p . Jηz.~pKτ ∈ τ =⇒ Jηz.~pKτ =
Jηz.~pKσ hence the claim is trivially true. The case ηy ∈ σ is more
interesting for then τ may contain new valid path, possibly circular
ones, whose effects on the potential and heap soundness we will now
study.

For any locations `1, `2 let

P (`1, `2) =
{
~p
∣∣ J`1.~pKσ = `2 ∧ ¬[σ, `1, ~p G `, a]

}
(3.3.20)

denote the set of access paths from `1 to `2, which do not pass through
`.a. Notice that by Lem. 3.3.8 we have{

~p
∣∣ J`1.~pKσ = `2 ∧ ¬[σ, `1, ~p G `, a]

}
={

~p
∣∣ J`1.~pKτ = `2 ∧ ¬[τ, `1, ~p G `, a]

}
or in other words, the set P (`1, `2) remains unchanged if we replace σ
by τ within the defining equation (3.3.20) for P (· , ·).
We now define for z ∈ Γ,∆

Dz = P (ηz, `) Nz =
⋃
`2∈σ

P (ηz, `2)

Notice ε ∈ Dx and ∀z .Dz ⊆ Nz.

Observe for z ∈ Θ that{
~p
∣∣ Jηz.~pKτ ∈ τ} = Nz] (Dz(.a.Dy)

∗.a.Ny)

For the “⊆”-direction, use the fact that a path ~p such that Jηz.~pKτ ∈ τ
either does not pass through `.a in which case ~p ∈ Nz, or else it passes

60

through `.a a finite number of times and can then be decomposed as
~p = ~d.a.~e1. . .a. ~ek.~r where ~d ∈ Dz, ~ei ∈ Dy and ~r ∈ Ny.

By assumption (3.3.6) and Def. 3.3.2 there exists r′ with .(r′ |Vσ,η,Λ(`))
where

Vσ,η,Λ(`) =
{
bbb(ηz :Λz).~pcccstat

σ | z ∈ Λ, Jηz.~pKσ = `
}

⊇
{
bbb(ηz :Λz).~pcccstat

σ | z ∈ Λ, ~p ∈ Dz

}
=
{
bbb(ηz :Λz).~pcccstat

τ | z ∈ Λ, ~p ∈ Dz

}
where the last step follows since bbb(ηz : Λz).~pcccstat

σ = bbb(ηz : Λz).~pcccstat
τ

for ~p ∈ Dz. Therefore by Lemma 3.2.22 we obtain

.
(
r′
∣∣{bbb(ηz :Λz).~pcccstat

τ | z ∈ Λ, ~p ∈ Dz

})
Moreover, r ∈ bbb(ηz : Λz).~pcccstat

τ since x ∈ Λ and ε ∈ Dx and Cr
′

0 main
holds by the definition of a sound heap, so that we can apply Lemma 3.3.3
and obtain:

.
(
Aset(Cr0 , a)

∣∣{bbb(ηz :Λz).~p.acccstat
τ | z ∈ Λ, ~p ∈ Dz

})
By (3.3.6) we have C0 <: C, thus, we have by assumption s v Aset(Cr0 , a).
Therefore by Lemma 3.2.24

.

(
s

∣∣∣∣∣
{
bbb(ηz :Θz).~qcccstat

τ | z ∈ Θ, ~q ∈ Dz.a
}

]
{
bbb(ηy :s).~qcccstat

τ | ~q ∈ Dy .a
})

(3.3.21)

We will now prove

.
(
s
∣∣{bbb(ηz :Θz).~qcccstat

τ

∣∣ z ∈ Θ, ~q ∈ Dz(aDy)
∗a
})

(3.3.22)

by proving ∀n . IH(n) where we have

IH(n) ≡ .
(
s
∣∣{bbb(ηz :Θz).~qcccstat

τ

∣∣ z ∈ Θ, ~q ∈ Dz(aDy)
≤na

})
as our induction hypothesis. IH(0) follows directly from (3.3.21) and
Lemma 3.2.22.

Now suppose IH(n) holds for some n. For any ~q2 ∈ Dy .a we have
Jηy.~q2Kτ = ηy ∈ τ . By Lemma 3.3.6 we have

.
(
bbb(ηy :s).~q2cccstat

τ

∣∣∣ {bbb(ηz :Θz).~q.~q2cccstat
τ

∣∣ z ∈ Θ, ~q ∈ Dz(aDy)
≤na

})
Hence we may replace the multiset

{
bbb(ηy :s).~qcccstat

τ | ~q ∈ Dy .a
}

by{
bbb(ηz : Θz).~q.~q2cccstat

τ

∣∣ z ∈ Θ, ~q ∈ Dz(aDy)
≤na

}
in (3.3.21) thanks

to Lemma 3.2.23 yielding IH(n+ 1) as required.

61

We will now prove (3.3.7) which specialises to

Φσ(ηy : s) + Φσ(η : Θ) ≥ Φτ(η : Θ)

In order to prove this equation, we expand

Φτ(η : Θ) =
∑
z∈Θ

∑
~p

φτ
(
(ηz :Θz).~p

)
which can be split by our earlier observations into

=
∑
z∈Θ

∑
~p∈Nz

φτ
(
(ηz : Θz).~p

)
+
∑
z∈Θ

∑
~q∈Dz(aDy)∗a

∑
~r∈Ny

φτ
(
(ηz : Θz).~q.~r

)
For the first addend we calculate∑

z∈Θ

∑
~p∈Nz

φτ
(
(ηz :Θz).~p

)
=
∑
z∈Θ

∑
~p∈Nz

φσ
(
(ηz :Θz).~p

)
≤Φσ(η : Θ)

and for the second addend we calculate∑
z∈Θ

∑
~q∈Dz(aDy)∗a

∑
~r∈Ny

φτ
(
(ηz :Θz).~q.~r

)
=
∑
z∈Θ

∑
~q∈Dz(aDy)∗a

∑
~r∈Ny

φτ
(
(ηy :bbb(ηz :Θz).~qcccstat

τ).~r
)

=
∑
z∈Θ

∑
~q∈Dz(aDy)∗a

∑
~r∈Ny

φσ
(
(ηy :bbb(ηz :Θz).~qcccstat

τ).~r
)

≤
∑
z∈Θ

∑
~q∈Dz(aDy)∗a

Φσ

(
ηy : bbb(ηz :Θz).~qcccstat

τ

)
≤Φσ(ηy : s)

where the last inequality follows by (3.3.22) and Lemmma 3.3.6.

For proving (3.3.8) let `2 be an arbitrary location in dom(τ) = dom(σ).
From (3.3.6) we have the existence of a q such that .(q |Vσ,η,Λ(`2)).
Therefore by Lem. 3.2.22

.

(
q

∣∣∣∣∣
{
bbb(ηz :Θz).~pcccstat

τ

∣∣ z ∈ Θ, ~p ∈ P (ηz, `2)
}

]
{
bbb(ηy :s).~pcccstat

τ

∣∣ ~p ∈ P (ηy, `2)
})

(3.3.23)

Note the change from σ to τ which is legitimate since only access paths
in P (·, ·) are considered. From (3.3.22) and Lemma 3.3.6 we obtain
∀~p ∈ P (ηy, `2)

.
(
bbb(ηy :s).~pcccstat

τ

∣∣{bbb(ηz :Θz).~q.~pcccstat
τ

∣∣ z ∈ Θ, ~q ∈ Dz(aDy)
∗a
})

62

Hence from (3.3.23) and Lemma 3.2.23 we obtain

.

(
q

∣∣∣∣∣
{
bbb(ηz :Θz).~pcccstat

τ

∣∣ z ∈ Θ, ~p ∈ P (ηz, `2)
}

]
{
bbb(ηz :Θz).~pcccstat

τ

∣∣ z ∈ Θ, ~p ∈ Dz(aDy)
∗aP (ηy, `2)

})

and therefore .(q |Vτ,η,Θ(`2)) as required, since

Vτ,η,Θ(`2) =
{
bbb(ηz :Θz).~pcccstat

τ

∣∣ z ∈ Θ, Jηz.~pKτ = `2
}

=
{
bbb(ηz :Θz).~pcccstat

τ

∣∣ z ∈ Θ, ~p ∈ P (ηz, `2) ∪
Dz(aDy)

∗aP (ηy, `2)
}

Finally, (3.3.3) follows by (3.3.6).

2

This corollary is a direct consequence of the main result and it is in this
form that we intend to use it.

Corollary 3.3.12 Suppose that P = (C ,main) is an FJEU program con-
taining the classes List, Cons and Nil for building singly-linked lists, a class
C containing a method D main(List args), and arbitrary other classes and
methods.

Suppose furthermore, that there exists a RAJA annotation of this pro-

gram containing the following type for main: Cr
′
; Listr n/n

′
−−→Ds, where

♦(Consr) = m and ♦(Nilr) = k and Aget(Consr, next) = r. Then, evaluating
main in a heap where args points to a linked list of length l requires at most
k + n+ml memory cells.

3.4 Algorithmic problems

We have presented a type system for analysing the heap-space consump-
tion of FJEU programs and we have proved its soundness. However, the
declarative system presented here cannot be implemented for the following
reasons: first, the typing rules are not syntax directed; second, for checking
the polymorphic types of methods we need to check all their (possibly in-
finite) instances, which is infeasible. Hence we need an algorithmic version
of the system that is more suitable for a practical implementation. More-
over, the analysis would not be practical if the programmers would need
to provide the views and potential annotations by hand. Therefore a type
inference algorithm is vital.

63

Algorithmic typechecking
Given: A RAJA program R = (C ,main,M).
Wanted: Is R a well-typed RAJA program?

Type inference
Given: An FJEU program P = (C ,main).
Wanted: A well-typed RAJA program R = (C ,main,M).

Heap-space analysis
Given: An FJEU program P = (C ,main).
Wanted: Number of heap cells required for executing main as a func-

tion of main’s arguments.

Figure 3.5: Algorithmic problems regarding the type system RAJA.

In the remaining of this thesis we attempt to solve those two problems:
algorithmic type checking and type inference, which we define formally in
Fig. 3.5. Notice that, by Corollary 3.3.12, solving the type inference problem
for a particular program P implies solving the heap-space analysis problem
for P.

64

Chapter 4

Type Checking RAJA
Programs

4.1 Overview

The main goal of this chapter is to define a typing system that is equivalent
to the system described in the previous chapter, but that is more suitable for
algorithmic tasks like type checking and type inference than the declarative
system.

Some of the typing rules from the previous chapter are not syntax-
directed. One of them is the rule (♦Waste).

n ≥ u n+ u′ ≥ n′ + u Γ <: Θ Ds <: Cr Θ
u
u′ e : Ds

Γ
n
n′ e : Cr

(♦Waste)

To create syntax-directed typing rules, subtyping and weakening of potential
annotations can be integrated in the other rules and so (♦Waste) can be
removed from the system. Another non-syntax-directed rule is (♦Share).

.(s |s1, . . . , sj) Γ, y1 :Ds1 , . . . , yj :Dsj n
n′ e : Cr

Γ, x :Ds n
n′ e[x/y1, . . . , x/yj] : Cr

(♦Share)

Unlike with (♦Waste), integrating (♦Share) in the remaining rules is not
so simple: the system gives no information about how to find the views
s1, . . . , sj .

Another rule that is difficult to implement, although it is syntax-directed,
is the rule (♦Let).

Γ1
n
n′ e1 : Ds Γ2, x :Ds n′

n′′ e2 : Cr

Γ1,Γ2
n
n′′ let Dx = e1 in e2 : Cr

(♦Let)

When type checking a let expression, even if we know the potential anno-
tations n, n′′, there is no way of knowing the annotation n′.

65

Finally, the rule for method typing (♦MBody) is also problematic: know-
ing the polymorphic type here is not enough for type checking the method.
Similarly to the rule (♦Share), this rule gives no information about how to
find the views r1, r2.

m ∈ Meth(C) φ = M(C,m)

∀T = (Cs0 ; ~E~s n/n
′

−−→Hsn+1) instanceof φ .(s0 |r1, r2)

this :Cr1 , x1 :Es11 , . . . , xn :Esnn
n+ ♦(Cr2)

n′ Mbody(C,m) : Hsn+1

(♦MBody)` m : φ ok

For solving all those difficulties when type checking RAJA programs, we
need to annotate the programs with more information than only the poly-
morphic RAJA types. We need view and potential annotations inside the
body of methods as well. In particular, we need to annotate all the variable
occurrences with views, and the let expressions with potentials. Moreover,
the annotations depend on the particular instance of the polymorphic type.
Thus, we would need a map from monomorphic types to annotated expres-
sions. You could think that these are just too many annotations, and that
it would be definitely infeasible to write them all by hand. That is true,
but we aim at describing type inference for the system. You can regard
the system described in this chapter as an intermediate step towards type
inference: only when we know how much information we actually need, we
can infer it.

This chapter is organised as follows. In Section 4.2 we describe RAJA
programs with explicit types, which are RAJA programs with more anno-
tations and that contain sets of instances of the polymorphic RAJA types.
In Section 4.3 we describe algorithmic views that will be useful for describ-
ing an algorithmic rule for typing method bodies. Then, we describe the
algorithmic typing rules in Section 4.4 and prove them sound and complete
with respect to the declarative rules from Chapter 3. We conclude with a
discussion about efficiency of algorithmic typing of RAJA programs, given
that they are finite, in Section 4.5.

Notation. In this chapter we use the letters r, s, p, q for referring to views
and the letters n,m, u,w when referring to elements of D. Notice than in
other chapters we use p, q for referring to arithmetic variables and u,w for
referring to view variables. Since in this chapter we do not speak about
variables or constraints, there should be no room for confusion.

4.2 RAJA program with explicit types

We consider here RAJA programs extended with annotations in the types
and bodies of methods in a way that we can type check them deterministi-
cally. First, we require each method to be annotated with a set of mono-

66

e◦ ::= xs (Variable)
| null (Constant)
| new C (Construction)
| free(xs) (Destruction)
| (C)xs (Cast)
| xs.ai (Access)
| xs.ai<-x

s (Update)
| xs.m(xs11 , . . . , x

sn
n) (Invocation)

| if xs instanceof C then e◦1 else e◦2(Conditional)
| let [D]xn = e◦1 in e◦2 (Let)

Figure 4.1: Syntax of annotated FJEU expressions.

morphic RAJA types that are instances of the method’s polymorphic type.
These types can be built by solving the resource constraints of the method.

Moreover, we require variables to be annotated with a view, except for
when the variable is declared. This is necessary due to the non-deterministic
nature of the rule (♦Share) that provides no information about how the re-
fined types for the different occurrences of a variable can be found. With the
variable occurrences annotated with views, the task of the type checker is to
check the correctness of a given sharing. We also require the let expressions
to be annotated with a nonnegative number n ∈ D, which is necessary for
type checking the expression. In summary, we say that an FJEU expression
e is annotated, written e◦, when it is defined by the grammar in Fig. 4.1.

Definition 4.2.1 (RAJA program with explicit types)
A RAJA program with explicit types is an annotation of an FJEU program
P = (C ,main) in the form of a tuple R+ = (C ,main,V ,M, Inst,Abody) where

1. R = (C ,main,M) is a RAJA program.

2. V ⊆ V C is a set of views.

3. Inst assigns to each class C and method m ∈ Meth(C) with n arguments
a nonempty set of n-ary monomorphic RAJA method types Inst(C,m)
such that for all T ∈ Inst(C,m) holds T instanceof M(C,m) and if

T = s0;~s n/n
′

−−→sn+1 then for all i holds si ∈ V .

4. For each class C ∈ C and method m ∈ Meth(C) and T ∈ Inst(C,m),
if Mbody(C,m) = e then Abody(C,m, T) = (e◦, n), where e◦ is an an-
notation of e and n ∈ D. Moreover, for each view s that appears in e◦

holds s ∈ V .

Definition 4.2.2 Let R+ = (C ,main,V ,M, Inst,Abody) be a RAJA program
with explicit types. We say that R+ is complete if for each class C ∈ C and
m ∈ Meth(C) holds if T instanceof M(C,m) then T ∈ Inst(C,m).

67

We do not require all RAJA programs with explicit types to be com-
plete since, in most cases, this would mean that the map Inst is infinite,
which would preclude the type checking algorithm from Section 4.4 from
terminating. However, if the RAJA program with explicit types is complete
and well-typed, we can prove that its underlying RAJA program is also
well-typed.

We define subtyping between sets of monomorphic RAJA method types
as follows.

Definition 4.2.3 (Subtyping of explicit types) Let C,D ∈ C with
C <: D and m ∈ Meth(C). Then Inst(C,m) <: Inst(D,m) iff

∀T ′ ∈ Inst(D,m) ∃T ∈ Inst(C,m) . T <: T ′

Notice that this definition of subtyping coincide with Def. 3.2.16 when
the set Inst(C,m) is equal to the set of instances of M(C,m).

4.3 Algorithmic views

In this section we define algorithmic views that include operations to con-
struct the intermediate views r1 and r2 in the declarative rule for method
typing (♦MBody), since the mentioned rule gives no information about how
to find them. We define the views nC and (s �− n)C for this purpose.

The view nC is defined such that the potential of C under nC is n and
the potential of any other class D under nC is 0. It is intended to be used
together with the view (s �− n)C, which is nothing but the view s, with n
units of potential stripped-off in the class C. This way, we can split s into
(s �− n)C and nC, such that .

(
s
∣∣(s �− n)C, nC

)
holds. If we need to use n units

of potential from the type Cs of this in the method body of a given method,

we give this the type C(s
�− n)C and use the potential of CnC in the method.

Recall the copy method from Fig. 3.1. In order to use the potential of
the variable this of RAJA type Consrich, we can put it in the context with

the type Cons(rich
�− 1) Cons , then we can derive:

this :Cons(rich
�− 1) Cons

1︷ ︸︸ ︷
0 + ♦

(
Cons1 Cons

)
0 let List res = new Conspoor in . . .

in return res;

If s ∈ V C , n ∈ D and D ∈ C , we then define the algorithmic views nD, n−D ,
(s �− n)D coinductively as shown in Fig. 4.2. In the following we prove the
desirable properties of algorithmic views.

68

For each C,D ∈ C and a ∈ A(C) we set:

♦(CnD) =

{
n if C = D
0 otherwise

♦
(
Cn−D

)
=

{
n if C = D
∞ otherwise

♦
(
C(s �− n)D

)
=

{
♦(Cs) �−n if C = D
♦(Cs) otherwise

Aget(CnD, a) = 0D

Aget
(
Cn−D, a

)
= ∞−D

Aget
(
C(s �− n)D, a

)
= Aget(Cs, a)

Aset(CnD, a) = ∞−D
Aset
(
Cn−D, a

)
= 0D

Aset
(
C(s �− n)D, a

)
= Aset(Cs, a)

where for n, n′ ∈ D, n
�−n′ is defined by

n
�−n′ =

{
n− n′ if n ≥ n′
0 otherwise

Figure 4.2: Definition of algorithmic views.

Lemma 4.3.1 Let C ∈ C and s ∈ V C and n ∈ D. Then

1. s⊕ 0C = s.

2. s�∞−C = s.

Proof. Simultaneously by coinduction.

1. We prove simultaneously s⊕ 0C v s and s v s⊕ 0C. (3.2.1) follows
by ♦(Cs) + 0 = ♦(Cs). (3.2.2) follows by coinduction hypothesis (1).
(3.2.3) follows by coinduction hypothesis (2).

2. We prove simultaneously s�∞−C v s and s v s�∞−C . (3.2.1) follows
by min(♦(Cs),∞) = ♦(Cs). (3.2.2) follows by coinduction hypothesis
(2). (3.2.3) follows by coinduction hypothesis (1).

2

Lemma 4.3.2 Let C ∈ C and s ∈ V C and n ∈ D. Then:

1. If ♦(Cs) ≥ n then s v (s �− n)C.

2. If ♦(Cs) ≥ n then s v nC.

3. If ♦(Cs) ≤ n then n−C v s.

Proof. Let D ∈ C and a ∈ A(D).

69

1. We show (3.2.1). In case C = D the goal follows by ♦(Ds) ≥ ♦(Ds) �−n
which follows by assumption. Otherwise the goal follows by ♦(Ds) ≥
♦(Ds). (3.2.2) and (3.2.3) follow trivially.

Next we show 2. and 3. simultaneously by coinduction.

2. We show (3.2.1). In case C = D the goal follows by ♦(Ds) ≥ n which
follows by assumption, otherwise it follows from ♦(Ds) ≥ 0.

(3.2.2) follows by the coinduction hypothesis (2). (3.2.3) follows by
the coinduction hypothesis (3).

3. We show (3.2.1). In case C = D the goal follows by ♦(Ds) ≤ n which
follows by assumption, otherwise it follows from ♦(Ds) ≤ ∞.

(3.2.2) follows by the coinduction hypothesis (3). (3.2.3) follows by
the coinduction hypothesis (2).

2

Lemma 4.3.3 Let C ∈ C and s, s1, s2 ∈ V C and n ∈ D.

1. If ♦(Cs) ≥ n then .
(
s
∣∣(s �− n)C, nC

)
.

2. If ♦(Cs) ≤ n then &
(
s
∣∣s, n−C).

Proof. Simultaneously by coinduction.

1. Let D ∈ C and a ∈ A(D). We show (3.2.10), i.e.

♦(Ds) ≥ ♦
(
D(s

�− n)C
)

+ ♦(DnC) and get the following cases:

Case C = D, then the goal follows by ♦(Ds) ≥ ♦(Ds) �−n+ n, which
follows by assumption.

Case C 6= D, then the goal follows by ♦(Ds) ≥ ♦(Ds) + 0.

(3.2.11) follows by Lemma 4.3.2.

(3.2.12) follows from .
(
Aget(Ds, a)

∣∣Aget(Ds, a) , 0C
)

which follows by
coinduction hypothesis (1), since for all views s holds ♦(Ds) ≥ 0 and
s = (s �− 0)C.

(3.2.13) follows by &
(
Aset(Ds, a)

∣∣Aset(Ds, a) ,∞−C
)

which follows by coin-
duction hypothesis (2).

2. We show (3.2.14), i.e. ♦(Ds) ≤ min(♦
(
D(s

�− n)C
)
,♦(DnC)) and get the

following cases:

Case C = D, then the goal follows by ♦(Ds) ≤ ♦(Ds) since ♦(Ds) ≤ n
by assumption.

70

Case C 6= D, then the goal follows by ♦(Ds) ≤ min(♦(Ds),∞).

(3.2.15) follows by Lemma 4.3.2.

(3.2.16) follows from &
(
Aget(Ds, a)

∣∣Aget(Ds, a) ,∞−C
)

which follows by
coinduction hypothesis (2), since for all views s holds ♦(Ds) ≤ ∞.

(3.2.17) follows by .
(
Aset(Ds, a)

∣∣Aset(Ds, a) , 0C
)

which follows by coin-
duction hypothesis (1).

2

Lemma 4.3.4 Let C ∈ C and s, s1, s2 ∈ V C .

1. Then .(s |s1, s2) and ♦(Cs2) ≥ n imply (s �− n)C v s1.

2. Then s v s1 and ♦(Cs) ≥ ♦(Cs1) + n imply (s �− n)C v s1.

3. (s �− n)C v s1 implies s v s1.

Proof.

1. Let D ∈ C and a ∈ A(D). We show (3.2.1), i.e. ♦
(
D(s

�− n)C
)
≥ ♦(Ds1)

and we obtain the following cases:

Case C = D, then the goal follows by ♦(Ds) �−n ≥ ♦(Ds1) which
follows by ♦(Ds) ≥ ♦(Ds1) + ♦(Ds2) and ♦(Ds2) ≥ n that follow
by assumption.

Case C 6= D, then the goal follows by ♦(Ds) ≥ ♦(Ds1) which follows
by assumption.

(3.2.2) follows by Aget(Ds, a) v Aget(Ds1, a) that follows by
.
(
Aget(Ds, a)

∣∣Aget(Ds1, a) ,Aget(Ds2, a)
)

which follows by assumption.

(3.2.3) follows by Aset(Ds1, a) v Aset(Ds, a) that follows by
&
(
Aset(Ds, a)

∣∣Aset(Ds1, a) ,Aset(Ds2, a)
)

which follows by assumption.

2. Similar.

3. It follows by the fact that ♦(Cs) �−n ≥ ♦(Cs1) implies ♦(Cs) ≥ ♦(Cs1).

2

4.4 Typing

In this section we define when RAJA programs with explicit types are well-
typed, by giving syntax-directed typing rules for annotated expressions and
a rule for typing method bodies. Then, we will show that a RAJA program
is well-typed iff it can be extended to a complete well-typed RAJA program
with explicit types.

71

4.4.1 Syntax-directed typing rules

We wish to define syntax-directed typing rules for annotated FJEU expres-
sions based on the rules from Chapter 3, thus, the rules (♦Share) and
(♦Waste) must be integrated in the remaining rules. Instead of using
(♦Waste), we integrate subtyping in the rules.

The advantage of annotating all the variable occurrences of an annotated
expression with a view is that the rule (♦Share) can be integrated easily into
the rule (♦Let). The task of the type checker is to check that the potential
available in the refined type of a variable can be split into the potential of all
the views corresponding to each occurrence of the variable. More concretely,
if the type of x is Cr, and x is used twice in e, and the first occurrence of x
is annotated with the view s1, and the second occurrence with the view s2,
then .(r |s1, s2) most hold. However, recall that we proved in last chapter
that .(r |s1, s2) is equivalent to r v s1 ⊕ s2. Thus, the type checker builds
s1 ⊕ s2 and checks subtyping. Notice that we do not integrate (♦Share) in
other rules like (♦Invocation) or (♦Update), since we require that in those
expressions a variable appears only once, as explained in Chapter 2.

We define the judgement Γ
n
n′ e

◦ ⇔ Cr inductively by the rules in
Fig. 4.3, where |Γ|, e◦, Cr and n, n′ are inputs and the multiset of views 〈〈Γ〉〉
is output. Recall that if Γ is a RAJA context, we write |Γ| for meaning its
underlying FJEU context. Moreover, e◦ is an annotated FJEU expression
and |e◦| is the same FJEU expression with all the annotations removed. We
sometimes write e for meaning |e◦| in this case.

We write Γ0 for meaning Γ0(x) = C0C for each x ∈ Γ0. The idea is to
annotate the types of the variables that are not used in the given expression
with views with potential 0.

Moreover, let Γ1 and Γ2 be two RAJA contexts with |Γ1| = |Γ2|, then
Γ1 ⊕ Γ2 and Γ1 ∧ Γ2 are RAJA contexts defined as follows:

(Γ1 ⊕ Γ2)(x) = |Γ1|〈〈Γ1(x)〉〉⊕〈〈Γ2(x)〉〉

(Γ1 ∧ Γ2)(x) = |Γ1|〈〈Γ1(x)〉〉∧〈〈Γ2(x)〉〉

In summary, we define the partial function typecheck(|Γ|, e◦, Cr, n, n′) as
follows.

typecheck(|Γ|, e◦, Cr, n, n′) =

{
(〈〈Γ〉〉) if Γ

n
n′ e

◦ ⇔ Cr

fail otherw.

In Fig. 4.3 we also define the algorithmic judgement `a m : Inst(C,m) ok
for checking that the method’s body of m admits all the types in Inst(C,m).
The type checking algorithm returns a greater context than the declared
one. This has to be checked. Moreover, the annotation p represents the
amount of items of potential that we take from the potential of the refined
type of this in the type T for using in the method’s body. Thus, we need to
check that the potential of the refined type of this is at least p.

72

Algorithmic RAJA Typing Γ
n
n′ e

◦ ⇔ Cr

∀a ∈ A(D) .Aset(Dr, a) v Aget(Dr, a)

Dr <: Cr n ≥ ♦(Dr) + 1 n′ ≤ n− ♦(Dr)− 1
(ONew)

Γ0
n
n′ new D ⇔ Cr

n′ ≤ n+ min{♦(Dr) | D <: C}+ 1

Γ0, x :Cr
n
n′ free (xr)⇔ Es

(OFree)

D <: E Dr <: Cs n′ ≤ n
Γ0, x :Er

n
n′ (D)xr ⇔ Cs

(OCast)
n′ ≤ n

Γ0
n
n′ null⇔ Cs

(ONull)

Er <: Cs n′ ≤ n
Γ0, x :Er

n
n′ x

r ⇔ Cs
(OV ar)

∀F <: C .Aget(F r, a) v s C.a = E E <: D n′ ≤ n
Γ0, x :Cr

n
n′ x

r.a⇔ Ds
(OAccess)

∀G <: E . s v Aset(Gr, a) E.a = D F <: D Er <: Cq n′ ≤ n
Γ0, x :Er, y :F s

n
n′ x

r.a← ys ⇔ Cq
(OUpdate)

Γ1
n
n′ e

◦
1 ⇔ Ds Γ2, x :Ds n′

n′′ e
◦
2 ⇔ Cr

Γ1 ⊕ Γ2
n
n′′ let Dxn′ = e◦1 in e◦2 ⇔ Cr

(OLet)

x ∈ Γ Γ1
n
n′ e

◦
1 ⇔ Cr Γ2

n
n′ e

◦
2 ⇔ Cr

Γ1 ∧ Γ2
n
n′ if x instanceof E then e◦1 else e◦2 ⇔ Cr

(OCond.)

(
Gs0 ; ~E~s m/m

′
−−−→Hs′

)
∈ Inst(G ,m)

Gr0 <: Gs0 F rii <: Esii Hs′ <: Cr
′

n ≥ m n′ ≤ m′ + n−m
(OInv.)

Γ0, x :Gr0 , y1 :F r11 , . . . , yn :F rnn
n
n′ x

r0 .m (yr11 , . . . , yrnn)⇔ Cr
′

Algorithmic RAJA Method Typing `a m : Inst(C,m) ok

T = Cr0 ; ~E~r n/n
′

−−→Hrn+1 ∈ Inst(C,m) (r0
�− p)C v s0 ri v si ♦(Cr0) ≥ p

Abody(C,m, T) = (e◦, p) this :Cs0 , x1 :Es11 , . . . , xn :Esnn
n+ p
n′ e◦ ⇔ Hrn+1

`a m : Inst(C,m) ok

Figure 4.3: Algorithmic RAJA Typing.

73

RAJA programs with explicit types are well-typed if for each method
m in a class C holds m : Inst(C,m) ok and the set of types of m in C is a
subtype of the set of types of m in the super-class of C.

Definition 4.4.1 (Well-typed RAJA-program with explicit types)

A RAJA-program R+ = (C ,main,V ,M, Inst,Abody) is well-typed if the fol-
lowing conditions are satisfied:

1. ∀C ∈ C ,m ∈ Meth(C) . `a m : Inst(C,m) ok

2. ∀C,D ∈ C withS(C) = D ⇒ Inst(C,m) <: Inst(D,m).

4.4.2 Verification of correctness of typing

In this section we will show that a RAJA program is well-typed iff it can be
extended to a complete well-typed RAJA program with explicit types.

Verification of soundness

In the following we show that the syntax-directed typing judgement defined
in Section 4.4.1 is sound w.r.t. the declarative typing judgement from Chap-
ter 3. Notice that this holds even for RAJA programs with explicit types
that are not complete.

In the proof we will use the fact that Γ <: ∅ for any context Γ without
explicit notice.

Lemma 4.4.2 (Soundness of algorithmic RAJA typing)
Let R+ = (C ,main,V ,M, Inst,Abody) be a RAJA program with explicit types.
If D :: Γ

n
n′ e

◦ ⇔ Cr then Γ
n
n′ |e◦| : Cr.

Proof. By induction on D.

Case (ONew). We have Dr <: Cr and Dr main and n ≥ ♦(Dr) + 1 and
n′ ≤ n − ♦(Dr) − 1. Then, by (♦New) followed by (♦Waste), we
obtain the desired goal.

Dr main (♦New)

∅
♦(Dr) + 1

0 new D : Dr Dr <: Cr

Γ0 <: ∅ n ≥ ♦(Dr) + 1 n′ ≤ n− ♦(Dr)− 1
(♦Waste)

Γ0
n
n′ new D : Cr

Case (OFree). Similarly, by (♦Free) followed by (♦Waste).

Case (OCast). We have Dr <: Cs and D <: E and n′ ≤ n. Then, by
(♦Cast) followed by (♦Waste), we obtain the desired goal.

74

D <: E

x :Er
0
0 (D)x : Dr Dr <: Cs Γ0, x :Er <: x :Er n′ ≤ n

Γ0, x :Er
n
n′ (D)x : Cs

Case (OV ar). Follows similarly, by (♦V ar) followed by (♦Waste).

Case (OAccess). We have C.a = E and ∀F <: C .Aget(F r, a) v s and
E <: D and n′ ≤ n. Then, by (♦Access) followed by (♦Waste), we
obtain the desired goal.

∀F <: C .Aget(F r, a) v s C.a = E

x :Cr
0
0 x.a : Es Es <: Ds Γ0, x :Cr <: x :Cr n′ ≤ n

Γ0, x :Cr
n
n′ x.a : Ds

Case (OUpdate). We have E.a = D and ∀G <: E . s v Aset(Gr, a) and
F <: D and Er <: Cq. Then, by (OUpdate) followed by (♦Waste),
we obtain the desired goal.

∀G <: E . s v Aset(Gr, a) E.a = D

x :Er, y :Ds 0
0 x.a← y :Er Er <: Cq F s <: Ds n′ ≤ n

Γ0, x :Er, y :F s
n
n′ x.a← y : Cq

Case (OLet). For ease of notation let us assume w.l.o.g. Γ1 = y :Cr1 and
Γ2 = y :Cr2 . By induction hypothesis we obtain y :Cr1

n
n′ e1 :Ds and

y :Cr2 , x :Ds n′

n′′ e2 :Cr. After substituting y by y1 in e1 and y by y2 in

e2 we obtain y1 :Cr1
n
n′ e1 [y1/y] :Ds and y2 :Cr2 , x :Ds n′

n′′ e2 [y2/y] :
Cr. Then, by (♦Let), we obtain

y1 :Cr1
n
n′ e1 [y1/y] :Ds y2 :Cr2 , x :Ds n′

n′′ e2 [y2/y] :Cr
(OLet)

y1 :Cr1 , y2 :Cr2
n
n′′ let Dx = e1 [y1/y] in e2 [y2/y] :Cr

Then, by (♦Share), we obtain the desired goal

y :Cr1⊕r2
n
n′′ let Dx = e1 in e2 :Cr

since, by Lemma 3.2.25, we obtain .(r1 ⊕ r2 |r1, r2).

Case (OCond.). Let us assume again for ease of notation w.l.o.g. Γ1 = y :
Cs1 and Γ2 = y :Cs2 . By induction hypothesis we obtain y :Cs1

n
n′ e1 :

Cr and y :Cs2
n
n′ e2 :Cr. We notice that s1∧s2 v si by Lemma 3.2.3.

Then we obtain the desired goal by (♦Waste) and (♦Conditional).

y :Cs1
n
n′ e1 :Cr

(♦Waste)
y :Cs1∧s2

n
n′ e1 :Cr

y :Cs2
n
n′ e2 :Cr

(♦Waste)
y :Cs1∧s2

n
n′ e2 :Cr

(♦Conditional)
y :Cs1∧s2

n
n′ if x instanceof C then e1 else e2 :Cr

75

Case (OInv.). We have Gs0 ; ~E~s m/m
′

−−−→Hs′ ∈ Inst(G,m) and Gr0 <: Gs0 and

F rii <: Esii and Hs′ <: Cr
′

and n ≥ m and n′ ≤ m′ + n −m. Then,
the desired goal follows by (♦Invocation) and (♦Waste).

Gs0 ; ~E~s m/m
′

−−−→Hs′ instanceof M(G,m)

x :Gs0 , y1 :Es11 , . . . , yn :Esnn
m
m′ :Hs′ Gr0 <: Gs0 F rii <: Esii . . .

Γ0, x :Gr0 , y1 :F r11 , . . . , yn :F rnn
n
n′ :Cr

′

2

Next we show that if R+ is a well-typed complete RAJA program with
explicit types then its underlying RAJA program is well-typed as well.

Lemma 4.4.3 (Soundness of algorithmic RAJA method typing)
Let R+ = (C ,main,V ,M, Inst,Abody) be a complete RAJA program with

explicit types. Let C ∈ C and m ∈ Meth(C) such that `a m : Inst(C,m) ok.
Then ` m : M(C,m) ok.

Proof. Let T = ~E~r n/n
′

−−→Hrn+1 ∈ Inst(C,m) and Abody(C,m, T) = (e◦, p).
Then, Mbody(C,m) = |e◦|. We have

this :Cs0 , x1 :Es11 , . . . , xn :Esnn
n+ p
n′ e◦ ⇔ Hrn+1

♦(Cr0) ≥ p and ri v si and (r0
�− p)C v s0. Then, by Lemma 4.3.3 we get

.
(
r0

∣∣(r0
�− p)C, pC

)
. We then get the desired goal by soundness of algorith-

mic typing (Lemma 4.4.2) and (♦Waste):

this :Cs0 , x1 :Es11 , . . . , xn :Esnn
n+ p
n′ |e◦| : Hrn+1

C(r0
�− p)C <: Cs0 Erii <: Esii (♦Waste)

this :C(r0
�− p)C , x1 :Er11 , . . . , xn :Ernn

n+ p
n′ |e◦| : Hrn+1

2

Theorem 4.4.4 Let R+ = (C ,main,V ,M, Inst,Abody) be a complete RAJA
program with explicit types. Then R = (C ,main,M) is well-typed.

Proof. Let C ∈ C and m ∈ Meth(C) and M(C,m) = φ and `a m :
Inst(C,m) ok. Then ` m : φ ok by Lemma 4.4.3. Let further S(C) = D.
Then M(C,m) <: M(D,m) follows by Inst(C,m) <: Inst(D,m) because R+

is complete. 2

76

Verification of completeness

In this section we show that given a well-typed RAJA program, we can
extend it to a complete RAJA program with explicit types that is well-typed
as well.

First, we show that the syntax-directed typing judgement defined in Sec-
tion 4.4.1 is complete w.r.t. the declarative typing judgement from Chap-
ter 3. The completeness proof is a bit more complicated than the soundness
proof. The reason for this is that we have eliminated the rules (♦Share)
and (♦Waste) and we have to show that typing derivations that use these
rules are still admissible in the syntax-directed typing system.

The following lemma states the admissibility of sharing in the syntax-
directed typing system.

Lemma 4.4.5 (Share)
Let D :: Γ, y1 : Ds1 , . . . , yn : Dsn n

n′ e
◦ ⇔ Cr and .(s |s1, . . . , sn). Then

Γ, x :Ds̄ n
n′ e[x/y1, . . . , x/yn]◦ ⇔ Cr and s v s̄.

Proof. By induction on D. For ease of notation let us assume Γ = ∅ and
n = 2.

Case (OLet). We have

y1 :Ds1 , y2 :Ds2 n
n′ e

◦
1 ⇔ Dq y1 :Dr1 , y2 :Dr2 , x :Dq n

n′ e
◦
2 ⇔ Cr

y1 :Ds1⊕r1 , y2 :Ds2⊕r2 n
n′ let Dxn′ = e◦1 in e◦2 ⇔ Cr

(OLet)

and .(s |s1 ⊕ r1, s2 ⊕ r2). Also notice that .(s1 ⊕ s2 |s1, s2) and
.(r1 ⊕ r2 |r1, r2), so by induction hypothesis we obtain s1⊕s2 v ŝ and
r1 ⊕ r2 v r̂ and

z :Dŝ n
n′ e1[z/y1, z/y2]⇔ Dq z :Dr̂, x :Dq n′

n′′ e2[z/y1, z/y2]⇔ Cr

z :Dŝ⊕r̂ n
n′′ (let Dx = e◦1 in e◦2)[z/y1, z/y2]⇔ Cr

(OLet)

and we show s v ŝ⊕ r̂. We compute as follows:

.(s |s1 ⊕ r1, s2 ⊕ r2) ⇐⇒

.(s |s1, r1, s2, r2) ⇐⇒

.(s |s1 ⊕ s2, r1 ⊕ r2) ⇐⇒ Lemma 3.2.24

.(s |ŝ, r̂) ⇐⇒ Lemma 3.2.25

s v ŝ⊕ r̂

Case
y1 :Ds1 , y2 :Ds2 n

n′ e
◦
1 ⇔ Cr y1 :Dr1 , y2 :Dr2 n

n′ e
◦
2 ⇔ Cr

y1 :Ds1∧r1 , y2 :Ds2∧r2 n
n′ if y1 instanceof E then e◦1 else e◦2 ⇔ Cr

(OCond.)

and .(s |s1 ∧ r1, s2 ∧ r2). Also notice that .(s |s1, s2) and .(s |r1, r2),
so by induction hypothesis we obtain s v ŝ and s v r̂ and

z :Dŝ n
n′ e

◦
1 ⇔ Cr z :Dr̂ n

n′ e
◦
2 ⇔ Cr

z :Dŝ∧r̂ n
n′ (if z instanceof E then e◦1 else e◦2)[z/y1, z/y2]⇔ Cr

(OCond.)

and we show s v ŝ ∧ r̂ which follows by Lemma 3.2.4.
2

77

The next lemma is the main technical lemma of this proof; it states the
admissibility of the rule (♦Waste) in the syntax-directed typing system,
which means admissibility of subtyping and weakening of the potential an-
notations.

Lemma 4.4.6 (Waste) Let R = (C ,main,M) be a well-typed RAJA pro-
gram and Inst(C,m) be the set of instances of M(C,m) for all C ∈ C and
m ∈ Meth(C).

If D :: Θ
u
u′ e

◦ ⇔ Ds and Ds <: Cr and |Γ| <: |Θ| and n ≥ u and
n+u′ ≥ n′+u then there exists an annotation for e such that Γ

n
n′ e

◦ ⇔ Cr.

Proof. By induction on D.

Case (ONew) We have Θ0
u
u′ new D ⇔ Cr and Dr <: Cr <: Ep and

∀a ∈ A(D) .Aset(Dr, a) v Aget(Dr, a) and

n ≥ u (4.4.1)

n+ u′ ≥ n′ + u (4.4.2)

u ≥ ♦(Dr) + 1 (4.4.3)

u′ ≤ u− (♦(Dr) + 1) (4.4.4)

Then n ≥ ♦(Dr) + 1 follows by (4.4.1) and (4.4.3) with transitivity.
Moreover, n′ ≤ n − (♦(Dr) + 1) follows by (4.4.2) and (4.4.4). Thus,
we conclude by (ONew):

Γ0
n
n′ new D ⇔ Ep

Case (OFree) We have Θ0, x : Cr
u
u′ free(xr) ⇔ Es and Es <: F p and

G <: C and m = min{♦(Dr) | D <: C} and

n+ u′ ≥ n′ + u (4.4.5)

u′ ≤ u+m+ 1 (4.4.6)

n′ ≤ n+m+ 1 follows by (4.4.5) and (4.4.6). Then we conclude with
(OFree):

Γ0, x :Gr
n
n′ free(xr)⇔ F p

Case (OCast) We have Θ0, x :Er
u
u′ (D)xr ⇔ Cs and D <: E and Dr <:

Cs <: Gq and F <: E and

n+ u′ ≥ n′ + u (4.4.7)

u′ ≤ u (4.4.8)

Then n′ ≤ n follows by (4.4.7) and (4.4.8). Then we finish with
(OCast):

Γ0, x :F r
n
n′ (D)xr ⇔ Gq

78

Case (OAccess)

∀I <: C .Aget(Ir, a) v s C.a = E E <: D

Θ0, x :Cr
u
u′ x

r.a⇔ Ds
(OAccess)

and Ds <: F p and G <: C and

n+ u′ ≥ n′ + u (4.4.9)

u′ ≤ u (4.4.10)

Then n′ ≤ n follows by (4.4.9) and (4.4.10). We obtain by (OAccess):

∀H <: G .Aget(Hr, a) v s v p C.a = E E <: D

Γ0, x :Gr
n
n′ x

r.a⇔ F p
(OAccess)

Case (OUpdate)

∀G <: E . s v Aset(Gr, a) E.a = D F <: D Er <: Cq

Θ0, x :Er, y :F s
u
u′ x

r.a<-ys ⇔ Cq

and Cq <: C ′q
′

and E′ <: E and F ′ <: F and

n+ u′ ≥ n′ + u (4.4.11)

u′ ≤ u (4.4.12)

Then n′ ≤ n follows by (4.4.11) and (4.4.12). Then we finish with
(OUpdate):

∀G <: E′ . s v Aset(Gr, a) E′.a = D F ′ <: F <: D Er <: Cq <: C ′q
′

Γ0, x :E′r, y :F ′s
n
n′ x

r.a<-ys ⇔ C ′q′

Case (OInv.) We have

T ′ = Gp0 ; ~E~pm1/m2−−−−→Hpn+1 ∈ Inst(G ,m) Gr0 <: Gp0

F rii <: Epii Hpn+1 <: Cr
′

u1 ≥ m1 u2 ≤ m2 + u1 −m1
(OInv.)

Γ0, x :Gr0 , y1 :F r11 , . . . , yn :F rnn
u1
u2

xr0 .m (yr11 , . . . , y
rn
n)⇔ Cr

′

Moreover we have Ḡ <: G and F̄i <: Fi and Cr
′
<: C̄ r̄ and w1 ≥ u1

and w2 − w1 ≤ u2 − u1.

By definition of subtyping of sets of monomorphic RAJA types we get

that there exists T = s0;~s n1/n2−−−→sn+1 ∈ Inst(Ḡ,m) with T <: T ′, i.e.
n1 ≤ m1 and n2 ≥ m2 and p0 = s0 and pi v si and sn+1 v pn+1.

Next, we check that the following subtyping judgements and inequal-
ities hold:

79

• Ḡr0 <: Gp0 = Gs0

• F̄ rii <: F rii <: Epii <: Esii

• Hsn+1 <: Hpn+1 <: Cr
′
<: C̄ r̄

• w1 ≥ u1 ≥ m1 ≥ n1

• w2 − w1 ≤ u2 − u1 ≤ m2 −m1 ≤ n2 −m1 ≤ n2 − n1

Then, we can finish by (OInv.):

(Ḡs0 ; ~E~s n1/n2−−−→Hsn+1) ∈ Inst(Ḡ ,m) Ḡr0 <: Gs0

F̄ rii <: Esii Hsn+1 <: C̄ r̄ w1 ≥ n1 w2 − w1 ≤ n2 − n1
(OInv.)

Γ0, x :Ḡr0 , y1 : F̄ r11 , . . . , yn : F̄ rnn
w1
w2

xr0 .m (yr11 , . . . , y
rn
n)⇔ C̄ r̄

Case (OCond.) We have

x ∈ Θ Θ1
u
u′ e

◦
1 ⇔ Cr Θ2

u
u′ e

◦
2 ⇔ Cr

Θ1 ∧Θ2
u
u′ if x instanceof E then e◦1 else e◦2 ⇔ Cr

and Cr <: Ep and |Γ| <: |Θ| and n ≥ u and n+ u′ ≥ n′ + u. Then by
induction hypothesis and (OCond.) we obtain:

x ∈ Γ Γ1
n
n′ e

◦
1 ⇔ Ep Γ2

n
n′ e

◦
2 ⇔ Ep

Γ1 ∧ Γ2
n
n′ if x instanceof E then e◦1 else e◦2 ⇔ Ep

Case (OLet) Θ1
u
u′ e

◦
1 ⇔ Ds Θ2, x :Ds u′

u′′ e
◦
2 ⇔ Cr

Θ1 ⊕Θ2
u
u′′ let Dxu′ = e◦1 in e◦2 ⇔ Cr

(OLet)

and Cr <: Ep and |Γ| <: |Θ| and

n ≥ u (4.4.13)

n′′ ≤ u′′ + n− u (4.4.14)

We wish to apply the induction hypothesis on e1 with n, u′ + n − u
and on e2 with u′ + n − u and n′′. Hence we need to check that the
following inequalities holds:

• n ≥ u which follows by (4.4.13).

• u′ + n− u ≤ u′ + n− u which follows trivially.

• u′ + n− u ≥ u′ which follows by (4.4.13).

• n′′ ≤ u′′ + u′ + n− u− u′ which follows by (4.4.14).

Thus, we can apply the induction hypothesis and (OLet) and obtain:

Γ1
n

u′ + n− u e◦1 ⇔ Ep Γ2, x :Ds u′ + n− u
n′′ e◦2 ⇔ Ep

Γ1 ⊕ Γ2
n
n′′ let Dxu′+n−u = e◦1 in e◦2 ⇔ Ep

(OLet)

2

80

Lemma 4.4.7 (Completeness of algorithmic RAJA typing)
Let R = (C ,main,M) be a well-typed RAJA program and Inst(C,m) be the
set of instances of M(C,m) for each C ∈ C and m ∈ Meth(C).
If Γ

n
n′ e : Cr then there exists an annotation for e such that ∆

n
n′ e

◦ ⇔ Cr

and |Γ| = |∆| and Γ <: ∆.

Proof. By induction on typing derivations.

Case Γ1
n
n′ e1 : Ds Γ2, x :Ds n′

n′′ e2 : Cr

Γ1,Γ2
n
n′′ let Dx = e1 in e2 : Cr

(♦Let)

Let us assume for ease of notation w.l.o.g. Γ1 = y :Cr1 and Γ2 = z :Er2 .
Then, by induction hypothesis, we obtain

x :C r̂1
n
n′ e

◦
1 ⇔ Ds (4.4.15)

and
z :E r̂2 , x :Ds′ n′

n′′ e
◦
2 ⇔ Cr (4.4.16)

and ri v r̂i and Ds <: Ds′ . Then, we apply the Waste Lemma
(Lemma 4.4.6) to (4.4.15) and obtain

x :C r̂1 , z :E0E n
n′ e

◦
1 ⇔ Ds′ (4.4.17)

and we apply Lemma 4.4.6 again to (4.4.16) and obtain

x :C0C , z :E r̂2 , x :Ds′ n′

n′′ e
◦
2 ⇔ Cr (4.4.18)

Next, by applying rule (OLet) to (4.4.17) and (4.4.18) we obtain

x :C r̂1⊕0C , z :E0E⊕r̂2 n
n′′ let Dxn

′
= e◦1 in e◦2 ⇔ Cr

which, by Lemma 4.3.1, is equivalent to

x :C r̂1 , z :E r̂2
n
n′′ let Dxn

′
= e◦1 in e◦2 ⇔ Cr

Case
x ∈ Γ Γ

n
n′ e1 : Cr Γ

n
n′ e2 : Cr

Γ
n
n′ if x instanceof E then e1 else e2 : Cr

(♦Conditional)

For ease of notation w.l.o.g. let us assume Γ = x :Ds. By induction
hypothesis we get x :Ds1 n

n′ e
◦
1 ⇔ Cr and x :Ds2 n

n′ e
◦
2 ⇔ Cr and

Ds <: Dsi . We then apply (OCond.) and obtain

x :Ds1∧s2 n
n′ if x instanceof E then e◦1 else e◦2 ⇔ Cr

Then Ds <: Ds1∧s2 follows by Lemma 3.2.3.

81

Case (♦Invocation). We have

M(C,m) = φ (Cs0 ; ~E~s n1/n2−−−→Hsn+1) instanceof φ

x :Cs0 , y1 :Es11 , . . . , yn :Esnn
n
n′ x.m(y1, . . . , yn) : Hsn+1

(♦Invocation)

Since R+ is complete, we know that (Cs0 ; ~E~s n1/n2−−−→Hsn+1) ∈ Inst(C,m)
and can apply (OInv.).

(Cs0 ; ~E~s n1/n2−−−→Hsn+1) ∈ Inst(C,m)

x :Cs0 , y1 :Es11 , . . . , yn :Esnn
n1

n2
xs0 .m(ys11 , . . . , y

sn
n) : Hsn+1

(OInv.)

Case
.(s |s1, . . . , sn) Γ, y1 :Ds1 , . . . , yn :Dsn n

n′ e : Cr

Γ, x :Ds n
n′ e[x/y1, . . . , x/yn] : Cr

(♦Share)

By induction hypothesis we get ∆, y1 :Dŝ1 , . . . , yn :Dŝn n
n′ e

◦ ⇔ Cr

with Γ <: ∆ andDsi <: Dŝi for i ∈ {1, . . . , n}. Then, by Lemma 3.2.24
we obtain .(s |ŝ1, . . . , ŝn). Then, by the Share Lemma (Lemma 4.4.5)
we obtain ∆, x :Dŝ n

n′ e[x/y1, . . . , x/yn]◦ ⇔ Cr with s v ŝ.

Case

Θ
m
m′ e : Ds n ≥ m m′ −m ≥ n′ − n Γ <: Θ Ds <: Cr

Γ
n
n′ e : Cr

(♦Waste)

Let us assume for ease of notation w.l.o.g. Θ = x :Ep and Γ = x :F q.
Thus, we have by assumption F q <: Ep. By induction hypothesis
we get x : Ep

′ m
m′ e

◦ ⇔ Ds with Ep <: Ep
′
. By the Waste Lemma

(Lemma 4.4.6) we get an annotation for e such that x :F p
′
:

n
n′ e

◦ ⇔
Cr. Moreover, F q <: F p

′
follows from q v p′ which follows from

F q <: Ep <: Ep
′

with transitivity.
2

Next we show that if R = (C ,main,M) is a well-typed RAJA program
then we can find V , Inst and Abody such that R+ = (C ,main,M, Inst,Abody)
is well-typed.

Lemma 4.4.8 (Completeness of algorithmic RAJA method typing)

Let R = (C ,main,M) be a well-typed RAJA program. Further let C ∈ C
and m ∈ Meth(C) and let Inst(C,m) be the set of instances of M(C,m). If
` m : M(C,m) ok then there exists a map Abody(C,m, ·) such that `a m :
Inst(C,m) ok.

Proof. Let T = Cs0 ; ~E~s n/n
′

−−→Hsn+1 instanceof M(C,m) and .(s0 |q1, q2) and
let Mbody(C,m) = e. We have

this :Cq1 , x1 :Es11 , . . . , xn :Esnn
n+ ♦(Cq2)

n′ e : Hsn+1

82

By Lemma 4.4.7 we get an annotation for e such that

this :Cr0 , x1 :Er11 , . . . , xn :Ernn
n+ ♦(Cq2)

n′ e◦ ⇔ Hsn+1

and Cq1 <: Cr0 and Esii <: Erii for all i = 1, . . . , n. Let p = ♦(Cq2).
Then, we set Abody(C,m, T) = (e◦, p). We need to show (s0

�− p)C v r0. By
Lemma 4.3.4 we get (s0

�− p)C v q1 and we are done by transitivity. 2

Theorem 4.4.9 Let R = (C ,main,M) be a well-typed RAJA program.
Then there exists a set of views V and maps Inst and Abody such that
R+ = (C ,main,M, Inst,Abody) is well-typed.

Proof. We set V = V C and for each C ∈ C and m ∈ Meth(C) we set

Inst(C,m) = {T ∈ MonoType | T instanceof M(C,m)}

Then, by Lemma 4.4.8, we get Abody(C,m, ·) such that `a m : Inst(C,m) ok.
Moreover, if S(C) = D, then Inst(C,m) <: Inst(D,m) follows from
M(C,m) <: M(D,m). 2

4.5 Decidability of typing

In the previous section we provided syntax-directed rules for type checking
RAJA programs with explicit types that are equivalent to the declarative
and non-deterministic typing rules from Chapter 3. These rules will be
useful for proving the correctness of the constraint generation rules for type
inference that we shall describe in Chapter 5.

Moreover, we have described a deterministic type-checking algorithm
that can be implemented for checking correctness of RAJA programs with
explicit types, provided that the range of the map Inst is finite and that the
set of views V is finite and the views are regular.

Definition 4.5.1 (Finite RAJA programs with explicit types)
Let R+ = (C ,main,V ,M, Inst,Abody) be a RAJA program with explicit types.
We say that R+ is finite if the following conditions are satisfied:

1. V is a finite set of regular views.

2. For each C ∈ C and m ∈ Meth(C) holds Inst(C,m) is finite.

83

4.5.1 Decidability of subtyping

For checking that RAJA programs with explicit types are well-typed, we
need to check subtyping between RAJA types and between sets of mono-
morphic RAJA method types, both of which can be reduced to checking sub-
typing between views, i.e. checking s1 v s2 when s1 and s2 are views, which
is defined coinductively. Hence we can implement subtyping between views
using an algorithm for computing membership in greatest fixpoints. Con-
cretely, we use an algorithm defined and proved correct in [Pie02, Ch. 21],
which works for coinductive definitions that fall into a specific scheme, i.e.
a goal is supported by a set of sub-goals in a deterministic way. In our case,
a goal s1 v s2 is supported by the set of sub-goals Aget(Cs1, a) v Aget(Cs2, a)
and Aset(Cs2, a) v Aset(Cs1, a) for each class C ∈ C and a ∈ A(C).

The idea of the algorithm is to maintain a list of assumptions. Every
goal is kept in this list, unless some condition is not fulfilled. The condition
in our case is ♦(Cs1) ≥ ♦(Cs2) for each class C. Then, the algorithm is
called recursively with all the sub-goals. If a given sub-goal is an element
of the list of assumptions (which means it has been a goal before) then we
conclude that the sub-goal is in the coinductive defined relation.

As described in [Pie02, Ch. 21], the algorithm terminates if the set of
reachable states from a given goal (a pair of views) is finite. Since views
are infinite trees, the set of reachable states can be infinite. Hence, we must
ensure that we check subtyping only between views for which the set of
reachable states is finite and this is the case for regular views.

This is the reason why we require the views that appear in a finite RAJA
program to be regular. However, in the syntax-directed typing rules from
Section 4.4.1, we use not only views from the given set V , but also computed
views like s1 ⊕ s2 or nC. Fortunately, these computed views are regular as
well, as the following fact shows.

Fact 4.5.2 Let s, s1, s2 ∈ V C and n ∈ D and C ∈ C and let ∗ ∈ {⊕,�,∧,∨}.
Then:

1. nC and n−C are regular.

2. (s �− n)C is regular, if s is regular.

3. s1 ∗ s2 is regular, if s1 and s2 are regular.

4.5.2 Efficiency of typing

In the following we prove that given a finite RAJA program with explicit
types R+, it can be decided in polynomial time whether R+ is well-typed.

84

Lemma 4.5.3 (Efficiency of syntax-directed typing)
Γ

n
n′ e

◦ ⇔ Cr is decidable in polynomial time.

Proof sketch. The backwards application of the syntax-directed typing
rules produces a linear number of subtyping constraints. Furthermore, the
algorithmic view expressions occurring in these constraints are themselves
of linear size. It then suffices to restrict attention to the views that occur
as sub-expressions of the ones appearing in the constraints. Their number
is therefore polynomial in the size of the program. A complete table of
the subtyping judgements for this relevant subset can then be computed
iteratively in polynomial time. In practice, a goal-directed implementation
performs even better. 2

Theorem 4.5.4 (Efficiency of typing finite RAJA programs)
Given a finite RAJA program R+ = (C ,main,V ,M, Inst,Abody) with explicit
types, its well-typedness is decidable in polynomial time.

Proof. Let C ∈ C and m ∈ Meth(C). Then `a m : Inst(C,m) ok is
decidable in polynomial time because

this :Cs0 , x1 :Es11 , . . . , xn :Esnn
u
u′ Mbody(C,m)◦ ⇔ Hrn+1

is decidable in polynomial time by Lemma 4.5.3. Let moreover S(C) = D.
Then Inst(C,m) <: Inst(D,m) is decidable in polynomial time, as discussed
in Section 4.5.1. 2

In [HR09] we provided a similar type checking algorithm for RAJA pro-
grams and we also gave an implementation. The main difference between
that system and the system presented here is that here we require more
annotations and the rules are considerably simpler. The reason for this is
that, when we described the system in [HR09], we had not developed the
type inference algorithm yet, and thus we wanted to reduce the amount of
annotations that a programmer had to write to a minimum. Here we have
more annotations because we also have a type inference algorithm that will
provide them, that we shall describe in the next chapter.

85

86

Chapter 5

Type Inference for RAJA

5.1 Overview

In this chapter we present an algorithm that, when given an FJEU program
P = (C,main), generates a RAJA program based on P by giving polymorphic
RAJA method types to the methods of P. Moreover, we give an algorithm
for generating a monomorphic RAJA method type for the main method of
P, by solving the constraints of main’s polymorphic type. The heap-space
consumption of P follows from the potential given to main’s arguments by
that type, as discussed in Chapter 3.

We are only able to analyse a subset of the programs that are typeable
in the RAJA system. We have the following restrictions:

First, we do not analyse programs with polymorphic recursion; we anal-
yse programs that are typeable in a subset of RAJA that allows only mono-
morphic recursion, called RAJAm .

Second, the algorithm for solving subtyping constraints that we describe
in Chapter 6, is capable of solving only a subset of the constraints that
arise during the analysis, i.e. a subset of the constraints that correspond
to programs whose heap-space consumption can be described as a linear
function. Finding an algorithm for solving all the subtyping constraints
remains an open problem for future work.

When we are able to obtain a well-typed RAJA program for P, we can
also extend it to a finite RAJA program with explicit types, that can be
type checked with the efficient algorithm described in Chapter 4.

This chapter is organised as follows. In Section 5.2 we describe the sys-
tem RAJAm . Then, in Section 5.3 we present an algorithm for generating
RAJAm programs. Section 5.4 discusses the algorithm for constraint solv-
ing, which is described in Chapter 6. Finally, Section 5.5 describes how we
can build a finite RAJA program with explicit types.

Notation. In this chapter we use the notation C.m for referring to the
method m of class C, when we wish to distinguish it from the method of
the same name in another class.

87

5.2 RAJA programs with monomorphic recursion

In type systems with polymorphic types and recursion, polymorphic recur-
sion is possible. Polymorphic recursion means that, in recursive calls, any
instance of the polymorphic type can be used, whereas in monomorphic
recursion only one instance can be used: the same instance that the poly-
morphic type is being typechecked with.

In this section we shall define a subset of the RAJA system, called
RAJAm , where only monomorphic recursion is allowed. The reason for
not treating polymorphic recursion is that type inference in the presence of
polymorphic recursion is difficult, in particular we would need to compute a
fixpoint when generating constraints for recursive functions. We decided to
develop a simpler type inference algorithm, that does not require a fixpoint
computation, because RAJAm is expressive enough for coding interesting
programs, as we shall see in our experimental evaluation in Chapter 7.

RAJAm programs are RAJA programs with explicit types with slightly
modified typing rules. In Fig. 5.1 we define typing rules that are sound with
respect to the typing rules for RAJA programs with explicit types from
Chapter 4, but that forbid programs that use polymorphic recursion.

We implement monomorphic recursion with the help of a map

Ξ : ∀C ∈ C .Meth(C)→ MonoType

For type checking a method body, we check that it is typeable with each
instance T of its polymorphic RAJA method type φ. The map Ξ keeps track
of those instances during type checking, i.e. we set Ξ(C,m) = T . Then,
in the method invocation rule, we check that the methods that appear in
dom(Ξ) can only be called with the same instance T .

Another important aspect of the implementation of monomorphic re-
cursion is the order in which methods are type checked. We need to distin-
guish between recursive and non-recursive method calls. With non-recursive
methods calls, we can use any instance of the polymorphic type of the
called method. That is why there are two rules for method invocation:
(∇PolyInv.) for polymorphic method invocation and (∇MonInv.) for mo-
nomorphic method invocation. In the rule (∇PolyInv.) we assume that the
called method is not mutually recursive with the method we are currently
analysing, and consequently, we can use any instance of its polymorphic type.
On the other hand, we apply the rule (∇MonInv.) when the called method
appears in the map Ξ, which means that this method and the method whose
body we are analysing are mutually recursive.

The judgement for typing the body of a method (`m M ok) shall mean
that all the methods in the domain of the map M are well-typed.

88

RAJAm Typing M; Ξ; Γ
n
n′ e⇔ Cr

∀a ∈ A(D) .Aset(Dr, a) v Aget(Dr, a)

Dr <: Cr n ≥ ♦(Dr) + 1 n′ ≤ n− ♦(Dr)− 1
(∇New)

M; Ξ; Γ0
n
n′ new D ⇔ Cr

n′ ≤ n+ min{♦(Dr) | D <: C}+ 1

M; Ξ; Γ0, x :Cr
n
n′ free (xr)⇔ Es

(∇Free) D <: E Dr <: Cs n′ ≤ n
M; Ξ; Γ0, x :Er

n
n′ (D)xr ⇔ Cs

(∇Cast)

n′ ≤ n
M; Ξ; Γ0

n
n′ null⇔ Cs

(∇Null) Er <: Cs n′ ≤ n
M; Ξ; Γ0, x :Er

n
n′ x

r ⇔ Cs
(∇V ar)

∀F <: C .Aget(F r, a) v s C.a = E E <: D n′ ≤ n
M; Ξ; Γ0, x :Cr

n
n′ x

r.a⇔ Ds
(∇Access)

∀G <: E . s v Aset(Gr, a) E.a = D F <: D Er <: Cq n′ ≤ n
M; Ξ; Γ0, x :Er, y :F s

n
n′ x

r.a← ys ⇔ Cq
(∇Update)

M; Ξ; ~y : ~F ~p
n
n′ e

◦
1 ⇔ Ds M; Ξ; ~y : ~F ~q, x :Ds n′

n′′ e
◦
2 ⇔ Cr ri v pi ⊕ qi

M; Ξ; ~y : ~F~r
n
n′′ let Dxn′ = e◦1 in e◦2 ⇔ Cr

(∇Let)

x ∈ Γ M; Ξ; Γ1
n
n′ e

◦
1 ⇔ Cr M; Ξ; Γ2

n
n′ e

◦
2 ⇔ Cr

M; Ξ; Γ1 ∧ Γ2
n
n′ if x instanceof E then e◦1 else e◦2 ⇔ Cr

(∇Conditional)

(
Gs0 ; ~E~s m/m

′
−−−→Hs′

)
instanceof M(G ,m) Gr0 <: Gs0

F rii <: Esii Hs′ <: Cr
′

n ≥ m n′ ≤ m′ + n−m
(∇PolyInv.)

M; Ξ; Γ0, x :Gr0 , y1 :F r11 , . . . , yn :F rnn
n
n′ x

r0 .m (yr11 , . . . , yrnn)⇔ Cr
′

(
Gs0 ; ~E~s m/m

′
−−−→Hs′

)
∈ Ξ(G ,m) Gr0 <: Gs0

F rii <: Esii Hs′ <: Cr
′

n ≥ m n′ ≤ m′ + n−m
(∇MonInv.)

M; Ξ; Γ0, x :Gr0 , y1 :F r11 , . . . , yn :F rnn
n
n′ x

r0 .m (yr11 , . . . , yrnn)⇔ Cr
′

RAJAm Method Typing `m M ok

`m M′ ok ∀ (C,m) ∈ M′′ ∀T = (Cr0 ; ~E~r n/n
′

−−→Hrn+1) instanceof M′′(C,m)

dom(Ξ) = dom(M′′) Ξ(C,m) = T (r0
�− p)C v s0 ri v si ♦(Cr0) ≥ p

Abody(C,m, T) = (e◦, p) M′; Ξ; this :Cs0 , x1 :Es11 , . . . , xn :Esnn
n+ p
n′ e◦ ⇔ Hrn+1

`m M′]M′′ ok

Figure 5.1: RAJAm Typing.

89

When analysing M, we partition its domain according to the call graph
of the program: If the methods m1, . . . ,mj in the classes C1, . . . , Cj are
mutually recursive and (Ci,mi) ∈ dom(M) for each i ∈ {1, . . . , j}, and all
the methods called by the methods m1 to mj are in

dom(M′) = dom(M) \
⋃

i∈{1,...,j}

(Ci,mi)

then we proceed as follows. First, we check `m M′ ok. Then, for checking
m1 to mj , we set dom(Ξ) =

⋃
i∈{1,...,j}(Ci,mi), we check each instance Ti of

the polymorphic type of mi, and at the same time we set Ξ(Ci,mi) = Ti.
Notice that we have described the general case, when we are in the presence
of j mutually recursive methods, but clearly j can be equal 1 in the case of
standard recursion or no recursion at all. We also remark that we call the
class where mi appears Ci for ease of notation. It is by all means possible
that mi and mj are in the same class; in that case Ci = Cj .

Definition 5.2.1 (Well-typed RAJAm -program)
A RAJAm -program R+ = (C ,main,V ,M, Inst,Abody) is well-typed if the
following conditions are satisfied:

1. `m M ok

2. ∀C,D ∈ C withS(C) = D ⇒ M(C,m) <: M(D,m).

Lemma 5.2.2 (Soundness of RAJAm typing)
Let R+ = (C ,main,V ,M, Inst,Abody) be a complete RAJAm -program and let
M = M′]M′′. If Ξ(C,m) instanceof M′′(C,m) for each (C,m) ∈ dom(M′′)
and D :: M′; Ξ; Γ

n
n′ e⇔ Cr then ∆

n
n′ e⇔ Cr and Γ <: ∆.

Proof. By induction on D.

Case (∇MonInv.). We can finish with (OInv.) because of the assumption
Ξ(C,m) instanceof M′′(C,m) for each C ∈ C and m ∈ Meth(C).

Case (∇Let). By the induction hypothesis and Lemma 3.2.8.

Case (∇Conditional). By the induction hypothesis and Lemma 3.2.6.

2

90

Lemma 5.2.3 (Soundness of RAJAm method typing)
Let R+ = (C ,main,V ,M, Inst,Abody) be a complete RAJAm -program. If
`m M ok then for all (C,m) ∈ dom(M) holds `a m : Inst(C,m) ok.

Proof. By induction on `m M ok. Let M = M′]M′′ and `m M′ ok. Then, by
induction hypothesis, for all (D,m′) ∈ dom(M′) holds `a m : Inst(D,m′) ok.
Moreover let:

(C,m) ∈ dom(M′′) (5.2.1)

T = (Cr0 ; ~E~r n1/n2−−−→Hrn+1) instanceof M′′(C,m) (5.2.2)

Ξ(C,m) = T (5.2.3)

(r0
�− p)C v s0 (5.2.4)

ri v si (5.2.5)

♦(Cr0) ≥ p (5.2.6)

Abody(C,m, T) = (e◦, p) (5.2.7)

M′; Ξ; this :Cs0 , x1 :Es11 , . . . , xn :Esnn
n+ p
n′ e◦ ⇔ Hrn+1 (5.2.8)

since Ξ(C,m) instanceof M′′(C,m) for each (C,m) ∈ dom(M′′), we can apply
Lemma 5.2.2 and obtain

this :Cq0 , x1 :Eq11 , . . . , xn :Eqnn
n+ p
n′ e◦ ⇔ Hrn+1

with si v qi. Since ri v qi by (5.2.5) and transitivity, we obtain the desired
`a m : Inst(C,m) ok. 2

5.3 Generation of RAJAm programs

Let P = (C ,main) be an FJEU program. In this section we present an algo-
rithm that generates subtyping and arithmetic constraints for the methods
in P. This gives us polymorphic RAJAm method types that represent the
heap-space consumption of the methods.

It is important to remark that the generation of a polymorphic RAJAm

method type for a method can be performed modularly because the type does
not depend on the method’s callers. This implies that when programmers
add new classes and methods to the program, the polymorphic type for the
method is still valid, except for the case when the method is redefined in a
newly added subclass. The reason for this will be explained in detail later.

5.3.1 Constraint generation rules

In the following we present rules for generating subtyping and arithmetic
constraints from FJEU programs that are sound and complete with respect

91

to the typing rules from the system RAJAm . The rules (Fig. 5.2) describe
a constraint generation judgement

M; Ξ; Γ
p
p′ e⇔ Cv & C

where e is an expression, Γ maps variables to FJEU types refined with
view variables, Cv is an FJEU type refined with a view variable, p and p′

are arithmetic variables and C is a conjunction of subtyping and arithmetic
constraints. Further, Ξ is a map from classes and methods with n arguments
to n+ 2 view variables and two arithmetic variables.

The judgement reads: expression e has type Cv in the context Γ, sub-
ject to the constraints C. Moreover, the judgement defines a total function
generateConstraints that generates constraints for an expression:

generateConstraints(M,Ξ,Γ, p, p′, e, Cv) = C if M; Ξ; Γ
p
p′ e : Cv & C

Our notation and methodology has been partially inspired by Knowles and
Flanagan’s type reconstruction algorithm for refinement types [KF07].

We sometimes write ~y : ~F~v to mean the context y1 : F v1
1 , . . . , yn : F vnn .

The subtyping constraints are of the form Cv <: Du where C and D are
classes and v and u are view variables. We also create constraints of the
form u v v ⊕ w in the rule (MLet), where v ⊕ w is a view expression.

There are two rules for method invocation: (MPolyInv) for polymorphic
method invocation and (MMonInv) for monomorphic method invocation.

In the rule (MPolyInv) we assume that the called method has already
been analysed and so its polymorphic RAJA method type is available. The
constraints generated by this rule consist of the method’s constraints, where
we substitute the view and arithmetic variables with fresh ones, in conjunc-
tion with subtyping and arithmetic constraints needed for the integration of
the (♦Waste) rule.

We apply the rule (∇MonInv.) when the called method appears in the
map Ξ, which means, as we discussed earlier, that the method and the
method whose body we are analysing are mutually recursive. In that case
the constraints for the method are not yet available. Thus, we only generate
the standard subtyping and arithmetic constraints.

The judgement `mc M ok returns RAJAm polymorphic method types
for the methods in M by generating the constraints for the methods’ bod-
ies. We perform the analysis on the basis of the call graph of the program,
which we modify slightly by adding the inheritance relations to it. Con-
cretely, let (C1,m1,1), . . . , (C1,m1,j1), . . . , (Cn,mn,1), . . . , (Cn,mn,jn) be an
enumeration of all the pairs of classes and methods in a program P, such
that Ci ∈ C and mi,k ∈ Meth(Ci).

92

M; Ξ; Γ
p
p′ e : Cv & C

C = (Ev <: Cu ∧ p′ ≤ p)
M; Ξ; Γ, x :Ev

p
p′ x : Cu & C

(MV ar)
C = (p′ ≤ p)

M; Ξ; Γ
p
p′ null : Cv & C

(MNull)

C = (Dv <: Ev ∧ Dv <: Cu ∧ p′ ≤ p)
M; Ξ; Γ, x :Ev

p
p′ (D)x : Cu & C

(MCast)

E =
∧
a∈A(D) A

set(Dv, a) v Aget(Dv, a)

D = Dv <: Cv ∧ p ≥ ♦(Dv) + 1 ∧ p′ ≤ p− ♦(Dv)− 1 C = D ∧ E
(MNew)

M; Ξ; Γ
p
p′ new D : Cv & C

C =
∧
D<:C p

′ ≤ p+ ♦(Dv) + 1

M; Ξ; Γ, x :Cv
p
p′ free (x) : Eu & C

(MFree)

C =
∧
E<:C(C.a)A

get(Ev,a) <: Du ∧ p′ ≤ p)

M; Ξ; Γ, x :Cv
p
p′ x.a : Du & C

(MAccess)

C = (
∧
E<:C F

w <: (C.a)A
set(Ev,a) ∧ Cv <: Du ∧ p′ ≤ p)

M; Ξ; Γ, x :Cv, y :Fw
p
p′ x.a← y : Du & C

(MUpdate)

M; Ξ; Γ
p
p′ e1 : Cv & C1 M; Ξ; Γ

p
p′ e2 : Cv & C2 C = (C1 ∧ C2)

M; Ξ; Γ
p
p′ if x instanceof E then e1 else e2 : Cv & C

(MCond.)

C = (C1 ∧ C2 ∧
∧
i ui v vi ⊕ wi)

M; Ξ; ~y : ~F~v
p
p′ e1 : Du & C1 M; Ξ; ~y : ~F ~w, x :Du p′

p′′ e2 : Cv & C2
(MLet)

M; Ξ; ~y : ~F ~u
p
p′′ let Dx = e1 in e2 : Cv & C

Ξ(G,m) = Gv0 ; ~E~v q1/q2−−−→Hvn+1 AC = p ≥ q1 ∧ p′ ≤ q2 + p− q1

SC = Gu <: Gv0 ∧ Fui
i <: Evii ∧ Hvn+1 <: Cu

′
C = SC ∧ AC

(MMonInv)
M; Ξ; Γ, x :Gu, ~y : ~F ~u

p
p′ x.m (~y) : Cu

′
& C

M(G,m) = ∀~v, ~q ∃~v′ , ~q′ . Gv0 ; ~E~v q1/q2−−−→Hvn+1 & D D′ = D[~w/~v, ~w′/~v′,~t/~q, ~t′/~q′]

SC = Gu <: Gw0 ∧ Fui
i <: Ewi

i ∧ Hwn+1 <: Cu
′

AC = p ≥ t1 ∧ p′ ≤ t2 + p− t1 C = SC ∧ AC ∧ D′
(MPolyInv)

M; Ξ; Γ, x :Gu, ~y : ~F ~u
p
p′ x.m (~y) : Cu

′
& C

Figure 5.2: Constraint generation rules.

93

`mc M ok

`mc M
′ ok ∀i = 1 .. k (Ci,mi) ∈ dom(M′′) Ξ(Ci,mi) = Cv0i ; ~E~v p1/p2−−−→Hvn+1

M′; Ξ; this :C v̄0i , x1 :Ev11 , . . . , xn :Evnn
p̄1
p2 Mbody(C,m) : Hvn+1 & C(i)

ψ(i) = ∀~v, ~p . Cv0 ; ~E~v p1/p2−−−→Hvn+1 & (C(i) ∧ v0 v v̄0 ∧ ♦(Cv0i) + p1 ≥ ♦
(
C v̄0i

)
+ p̄1)

S(Dj) = Ci λj =

{
M′(Dj ,mi) if (Dj ,mi) ∈ dom(M′)

>(Dj ,mi) if (Dj ,mi) ∈ dom(M′′)
φ(i) = ψ(i) ∨

∨
j λj

D(i) =
∧
l∈{1,...,k} constr(φ

(l)) M′′(Ci,mi) = ∀~v, ~p . Cv0i ; ~E~v p1/p2−−−→Hvn+1 & D(i)

`mc M
′]M′′ ok

Figure 5.3: Generation of RAJAm polymorphic types.

Then, we build a directed graph G = (V,E) as follows. We set

V =
⋃

i∈{1,...,n},k∈{1,...,ji}

(Ci,mi,k)

and we build the set E of edges by:

((Ci,mi,k), (Cj ,mj,t)) ∈ E ⇐⇒ mi,k calls mj,t

((Ci,mi,k), (Cj ,mj,t)) ∈ E ⇐⇒ mi,k = mj,t and S(Cj) = Ci

For example, the graph corresponding to the program for copying lists de-
fined in Fig. 3.1, can be represented as in Fig. 5.4.

After we have built the graph, we decompose it in its strongly connected
components to obtain the acyclic component graph GSCC. Afterwards, we
sort the obtained dag GSCC topologically and call the constraint generation
algorithm in that order, with the strongly connected components being anal-
ysed together. The decomposition in strongly connected components and
the topological sorting of graphs are based on the algorithm for depth-first
search of graphs, and are discussed, for instance, in Cormen’s “Introduction
to Algorithms” [CLRS01].

If we apply these algorithms to our example graph from Fig. 5.4, we
obtain the following order:

(Nil, copy), [(Cons, copy), (List, copy)], (Main,main)

where (Cons, copy) and (List, copy) are analysed together.
Now, why do we need to extend the call graph with inheritance rela-

tions? The reason for this is that, before we analyse a method m in a class
C, we would like to analyse the same method m in each subclass D of C.
For proving soundness of the constraint generation algorithm we need to
show M(D,m) <: M(C,m), and this follows trivially when we add the con-
straints of D.m to the polymorphic type of C.m. For example, the method

94

(List, copy)(Cons, copy)

(Nil, copy)(Main, main)

Figure 5.4: Call graph for the program for copying lists extended with in-
heritance relations.

List.copy should contain the constraints generated by the body of the meth-
ods Cons.copy and Nil.copy. Otherwise, a variable of type list could be used
for calling the method copy, and this call would always be possible since
there are no constraints for the method body of List.copy. However, dur-
ing runtime the variable could point to a Cons object in the heap, causing
the method Cons.copy to be executed, and this would lead to unpredictable
resource consumption.

Let us analyse in detail the following lines from the rule for constraint
generation for methods:

S(Dj) = Ci λj =

{
M′(Dj ,mi) if (Dj ,mi) ∈ dom(M′)

>(Dj ,mi) if (Dj ,mi) ∈ dom(M′′)
(5.3.1)

φ(i) = ψ(i) ∨
∨
j

λj (5.3.2)

We are interested in adding the constraints of Dj .mi to M′′(Ci,mi),
because Dj is a subclass of Ci. Because of the order in which we call the al-
gorithm, there are two possible cases: either the method Dj .mi has already
been analysed at this moment, or the method Dj .mi is being analysed to-
gether with the method Ci.mi. In the first case we set λj = M′(Dj ,mi) and
in the second case we set λj = >(Dj ,mi) because the polymorphic type of
Dj .mi is not available yet. In either case, we create the least upper bound of
ψ(i) and λ1 to λn, if Ci has n subclasses. ψ(i) is the polymorphic method type
for Ci.mi that contains the constraints that arise by analysing the method’s
body. The operation ψ(i) ∨

∨
j λj combines the constraints of the types in

such a way that ψ(i) ∨
∨
j λj is the least upper bound of ψ(i) and λj , as we

proved in Lemma 3.2.19.

If we are analysing together the methods C1.m1, . . . , Ck.mk, we create
the types φ(1), . . . , φ(k) as described so far. Then, in a last step, we add

95

Constraint generation
for body of C.m

Constraint generation
for body of D.n

Addition of constraints of m
 in subclasses of C

Addition of constraints of n
 in subclasses of D

Creation of a polymorphic
type for C.m

Creation of a polymorphic
type for D.n

Generation of polymorphic
RAJA method types

Constraint generation
for body of C.m

Constraint generation
for body of D.n

Addition of constraints of m
 in subclasses of C

Addition of constraints of n
 in subclasses of D

Creation of a polymorphic
type for C.m

Creation of a polymorphic
type for D.n

Input: FJEU methods
 C.m and D.n

Output: polymorphic RAJA method types
 for C.m and D.n

Figure 5.5: Schematic structure of the algorithm for generating polymorphic
RAJA method types in the simplified case of analysing the two mutually
recursive methods C.m and D.n.

to each polymorphic method type φ(i) the constraints of the other methods
φ(1), . . . , φ(i−1), φ(i+1), . . . , φ(k):

D(i) =
∧

l∈{1,...,k}

constr(φ(l)) (5.3.3)

We can think of this step as adding the constraints retrospectively, which
we needed to add in the rule (∇MonInv.), or when adding the constraints
of the method mi in the subclasses of Ci. Fig. 5.5 shows a schematic struc-
ture of the judgement `mc M ok in the simplified case where dom(M) =
{(C,m), (D,n)}.

5.3.2 Verification of correctness of constraint generation

In this section we shall prove soundness and completeness of the constraint
generation rules with respect to the typing rules for RAJAm programs.

Notation. If Ξ is a map from classes and methods with n arguments to
n+ 2 view variables and 2 arithmetic variables, we write π(Ξ) to mean the
map from classes and methods to monomorphic RAJA method types that is
obtained after substituting every view and arithmetic variable in Ξ with its
value in the valuation π. Similarly, π(Γ) means the context that we obtain
after substituting the view variables in Γ with their values in π.

96

In addition, we use the notations |Ξ| and |Γ| for meaning the follow-
ing. If Ξ is a map from classes and method names to monomorphic RAJA
types, then |Ξ| denotes a map from classes and method names to view and
arithmetic variables with dom(|Ξ|) = dom(Ξ). Similarly, if Γ is an FJEU
context, then |Γ| is a context from program variables to FJEU types refined
with view variables with the same domain as Γ.

Soundness proof

In the following we prove that, if the constraints generated for the expression
e are satisfiable, then the expression is typeable in the RAJAm system with
the result type, context and effect given by the solution to the constraints.

Lemma 5.3.1 (Soundness of constraint generation)
If D :: M; Ξ; Γ

q1
q2 e : Cv & C and π |= C then there exists an annotation for

e with M;π(Ξ);π(Γ)
π(q1)
π(q2) e◦ : Cπ(v).

Proof. By induction on D.

Case (MFree) We have C =
∧
D<:C q2 ≤ q1 + ♦(Dv) + 1. Let π(qi) = ni

and π(v) = r. Then, we have for each D <: C, n2 ≤ n1 + ♦(Dr) + 1,
thus, also n2 ≤ n1 + min{♦(Dr) | D <: C} + 1. Moreover, since the
view variables in Γ are not used in the constraints C, we can assume
w.l.o.g. π(ui) = 0̂Ci if Γ = ~y : ~C~u. Further, we get the annotation
free(xr) for e. Thus, we can finish with (∇Free).

Case (MCond.). For ease of notation let us assume Γ = y :Du. We have

M; Ξ; y :Du q1
q2 if x instanceof D then e1 else e2 : Cv & C1 ∧ C2

and π |= C1 ∧ C2. Then, also π |= C1 and π |= C2. Let π(v) = r and
π(u) = s and π(pi) = ni. By induction hypothesis and (∇Conditional)
we get

x ∈ Γ M; Ξ;x :Ds n1

n2
e◦1 ⇔ Cr M; Ξ;x :Ds n1

n2
e◦2 ⇔ Cr

M; Ξ;x :Ds∧s n1

n2
if x instanceof E then e◦1 else e◦2 ⇔ Cr

and the goal follows since s = s ∧ s.

2

97

Lemma 5.3.2 Let P = (C ,main) be an FJEU program and let dom(M) =
{(C,m) | C ∈ C ,m ∈ Meth(C)} and let D ::`mc M ok and let M(C,m) be
non-empty for each (C,m) ∈ dom(M). Then:

1. There exists Abody with `m M ok.

2. S(D) = C implies M(D,m) <: M(C,m).

Proof.

1. By induction on D. We have `mc M′ ok and

Ξ(Ci,mi) = Cv0
i ; ~E~v p1/p2−−−→Hvn+1

M′; Ξ; this :C v̄0
i , ~x : ~E~v

p̄1

p2
Mbody(C,m)⇔ Hvn+1 & C(i)

D(i) = (C(i) ∧ v0 v v̄0 ∧ ♦(Cv0
i) + p1 ≥ ♦

(
C v̄0
i

)
+ p̄1) ∧ E

M′′(Ci,mi) = ∀~v, ~p . Cv0
i ; ~E~v p1/p2−−−→Hvn+1 & D(i)

`mc M′]M′′ ok

By induction hypothesis `m M′ ok. We have by assumption

T = (Cr0i ; ~E~rm1/m2−−−−→Hrn+1) instanceof M′′(Ci,mi) i.e. (5.3.4)

π = {v0 7→ r0, vi 7→ ri, v̄0 7→ r̄0}, {pi 7→ mi, p̄1 7→ n̄1} |= D(i) (5.3.5)

Let n = n̄1
�−n1. Then we have r0 v r̄0 and ♦(Cr0i)+n1 ≥ ♦

(
C r̄0i
)
+n̄1,

i.e. ♦(Cr0i) ≥ ♦
(
C r̄0i
)

+ n. Then, by Lemma 4.3.4, we get (r0
�− n)Ci

v
r̄0. Let Mbody(C,m) = e. Then, we obtain an annotation for e by
Lemma 5.3.1 such that:

M′;π(Ξ); this :C r̄0i , ~x : ~E~r
n̄1

n2
e◦ ⇔ Hrn+1 (5.3.6)

Moreover, we set Abody(C,m, T) = (e◦, n). We conclude `m M′]
M′′ ok.

2. Follows by the design of the judgement `mc M ok, as discussed earlier.
2

Theorem 5.3.3 (Soundness of generation of a RAJAm program)
Let P = (C ,main) be an FJEU program. Then, there exists M such that,
for each C ∈ C and m ∈ Meth(C), if M(C,m) is a non-empty polymorphic
type, then there exists Inst, Abody and V such that R+ = (C ,main,V ,M, Inst,
Abody) is a complete well-typed RAJAm program.

Proof. Let dom(M) = dom(Inst) = {(C,m) | C ∈ C ,m ∈ Meth(C)}. By
Lemma 5.3.2 we obtain values for M and a map Abody such that `m M ok
and M(D,m) <: M(C,m) if S(D) = C. Moreover, we set V = V C and
Inst(C,m) = {T | T instanceof M(C,m)}. 2

98

Corollary 5.3.4 (Soundness of generation of a RAJA program)
Let P = (C ,main) be an FJEU program. Then, there exists M such that if
M(C,m) is a non-empty polymorphic type for each C ∈ C and m ∈ Meth(C),
then R = (C ,main,M) is a well-typed RAJA program.

Proof. By Theorem 5.3.3 we obtain a complete well-typed RAJAm program
R+ = (C ,main,V ,M, Inst,Abody). By Lemma 5.2.3 R+ is also a complete
well-typed RAJA program with explicit types. Finally, by Theorem 4.4.4,
the underlying RAJA program of R+, R = (C ,main,M) is also well-typed.

2

Completeness proof

Next, we show that, when applied to a typeable expression, the constraint
generation rules emit a satisfiable constraint set.

Lemma 5.3.5 (Completeness of constraint generation)
If M; Ξ; Γ

n1

n2
e ⇔ Cr and M; |Ξ|; |Γ| p1

p2
|e◦| : Cv & C then there exists π

with π(pi) = ni, π(v) = r, π(|Γ|) = Γ, π(|Ξ|) = Ξ such that π |= C.

Proof. By induction on typing derivations.

Case (∇V ar) We have M; Ξ; Γ0, x :Er
n1

n2
xr ⇔ Cr. Then, by (MV ar) we

obtain

M; |Ξ|; |Γ0|, x :Ev
p1

p2
x : Cu & (Ev <: Cu ∧ p2 ≤ p1)

Then, let |Γ0| = ~y : ~F ~w. Then

π = {v 7→ r, u 7→ s, wi 7→ 0Fi
}, {pi 7→ ni} |= (Ev <: Cu ∧ p2 ≤ p1)

by assumption.

Case (∇MonInv.) We have M; Ξ;x :Gr0 , ~y : ~F~r
n1

n2
x.m(~y) : Crn+1 and

Ξ(G,m) = Gs0 ; ~E~s n1/n2−−−→Hsn+1 and let |Ξ|(G,m) = Gu0 ; ~E~u q1/q2−−−→Hun+1 .
By (MMonInv) we get

M; |Ξ|;x :Gv0 , ~y : ~F~v
p1

p2
x.m (~y) : Cvn+1 & C

and C = (Gv0 <: Gu0 ∧ F vii <: Euii ∧ Hun+1 <: Cvn+1 ∧ p1 ≥
q1 ∧ p1 + q2 ≥ p2 + q1). Set π = {vi 7→ ri}, {pi 7→ ni} and π(|Ξ|) = Ξ.
Then π |= C follows by assumption.

99

Case (∇PolyInv.) We have M; Ξ;x : Gr0 , ~y : ~F~r
n1

n2
x.m(~y) : Crn+1 and

constr(M(G,m)) = D(~u, ~q, ~u′, ~q′) and we have a valuation π |= D with
π(ui) = si and π(qi) = mi. By (MPolyInv) we get

M; |Ξ|;x :Gv0 , ~y : ~F~v
p1

p2
x.m (~y) : Hvn+1 &

D[~w/~u,~t/~q, ~w′/~u′, ~t′/~q′] ∧ Gv0 <: Gw0 ∧ F vii <: Ewii ∧
Hwn+1 <: Cvn+1 ∧ p1 ≥ t1 ∧ p1 + t2 ≥ p2 + t1 (5.3.7)

Then we set π′ = π({vi 7→ ri, wi 7→ si}, {pi 7→ ni, ti 7→ mi}). Then
π′ |= C follows by assumption.

2

Lemma 5.3.6 (Completeness of constraint generation)
Let R+ = (C ,V C ,M, Inst,Abody) be a well-typed RAJAm program and let N
be a map with dom(N) = dom(M) and `mc N ok. Then for all (C,m) ∈ M
holds N(C,m) <: M(C,m).

Proof. By induction on the derivation of `m M ok. We have `m M′]M′′ ok
and `mc N′] N′′ ok. W.l.o.g. we assume that dom(M′) = dom(N′) and
dom(M′′) = dom(N′′). By induction hypothesis ∀(C,m) ∈ M .N(C,m) <:
M(C,m). Next we show ∀(Ci,mi) ∈ dom(N′) .N′(Ci,mi) <: M′(Ci,mi). Let

M′′(Ci,mi) = δ(i) = ∀~u, ~q . Cu0
i ; ~E~u q1/q2−−−→Hun+1 & E

Ξ(Ci,mi) = T = (Cs0i ; ~E~s n1/n2−−−→Hsn+1) instanceof δ(i)

ψ(i) = ∀~v, ~p . Cv0
i ; ~E~v p1/p2−−−→Hvn+1 & D(i)

S(Dj) = Ci λj =

{
N(Dj ,mi) if (Dj ,mi) ∈ dom(N′)

>(Dj ,mi) if (Dj ,mi) ∈ dom(N′′)

φ(i) = ψ(i) ∨
∨
j

λj

N′(Ci,mi) = ξ(i) = ∀~v, ~p . Cv0 ; ~E~v p1/p2−−−→Hvn+1 &
∧

l∈{1,...,k}

constr(φ(l))

We show ξ(i) <: δ(i). First, we show φ(i) <: δ(i) and we notice that this fol-
lows from ψ(i) <: δ(i) and for all j, λj <: δ(i) with the l.u.b. property. We

know by I.H. that for (Dj ,mi) ∈ dom(N′) holds

λj︷ ︸︸ ︷
N′(Dj ,mi) <: M′(Dj ,mi)

and M′(Dj ,mi) <:

δ(i)︷ ︸︸ ︷
M′′(Ci,mi) because R+ is well-typed. Thus, by tran-

sitivity we get λj <: δ(i). For (Dj ,mi) ∈ dom(N′′) is λj = >(Dj ,mi) and
>(Dj ,mi) <: δ(i) holds trivially. Next, we show ψ(i) <: δ(i).
From T instanceof δ(i) we get π = {ui 7→ si}, {qi 7→ ni} |= E . We show
that there exists π′′ such that π′′|dom(π)= π and, moreover, π′′ |= D(i) and

100

s0 = π′′(v0) and si v π′′(vi) and π′′(vn+1) v sn+1 and π′′(p1) ≤ n1 and
π′′(p2) ≥ n2, where

D(i) = C ∧ v0 v v̄0 ∧ ♦(Cv0
i) + p1 ≥ ♦

(
C v̄0
i

)
+ p̄1 (5.3.8)

By assumption we have Abody(Ci,mi, T) = (e◦, p) and

M; Ξ; this :Cr0i , x1 :Er11 , . . . , xj :E
rj
j

n1 + p
n2

e◦ : Hsn+1 (5.3.9)

(s0
�− p)Ci

v r0 (5.3.10)

si v ri (5.3.11)

♦(Cs0i) ≥ p (5.3.12)

By Lemma 5.3.5 we obtain

M; |Ξ|; this :C v̄0
i , x1 :Ev1

1 , . . . , xn :Evnn
p̄1

p2
|e◦| :Hvn+1 & C

π′ ⊇ ({v̄0 7→ r0, vi 7→ ri, vn+1 7→ sn+1}, {p̄1 7→ n1 + p, p2 7→ n2}) |= C
and π′(|Ξ|) = Ξ (5.3.13)

Now we set
π̃ = ππ′({v0 7→ s0}, {p1 7→ n1}) (5.3.14)

We show the following items:

• π̃ |= C follows by (5.3.13) and (5.3.14).
•

π̃ |= v0 v v̄0 ⇐⇒ (5.3.14)

s0 v r0 ⇐by Lemma 4.3.4

(s0
�− p)Ci

v r0 ⇐(5.3.10)
•

π̃ |= ♦(Cv0
i) + p1 ≥ ♦

(
C v̄0
i

)
+ p̄1 ⇐⇒ (5.3.13)

♦(Cs0i) + n1 ≥ ♦(Cr0i) + n1 + p ⇐⇒
♦(Cs0i) �− p ≥ ♦(Cr0i) follows by (5.3.10)

• s0 = π̃(v0) follows by (5.3.14).

• si v π̃(vi) follows by (5.3.11) and (5.3.13).

• π̃(vn+1) v sn+1 follows by (5.3.13).

• π̃(p1) ≤ n1 follows by (5.3.14).

• π̃(p2) ≥ n2 follows by (5.3.13).

Altogether we have shown π̃ |= D(i) and we have shown that π̃ is the
desired π′′. Finally we notice ∀l 6= i . π̃ |= constr(φ(l)) since π̃(|Ξ|)(Cl,ml) =
Ξ(Cl,ml) and Ξ(Cl,ml) instanceof N′′(Cl,ml). Thus, ξ(i) <: δ(i) follows. 2

101

5.4 Analysing the heap-space requirements of
FJEU programs

In this section we shall investigate how to apply a RAJA program to the
analysis of the heap-space requirements of the underlying FJEU program
P = (C ,main). In particular, we wish to compute an upper bound on the
amount of heap-cells needed for executing the method main as a function
of main’s arguments. By the results in Chapter 3, this follows from the
potential given to main’s arguments by its RAJA type. We have already
seen in the previous section how to obtain a polymorphic RAJA type for
main, but, for being able to read off the potential from that type, we need
a concrete instance of the type, which we can obtain by solving the type’s
constraints.

Figure 5.6 shows the schematic structure of the algorithm for building a
monomorphic RAJA method type for main.

The first step of the algorithm is the generation of a polymorphic RAJA
method type for main which was described in Section 5.3. The next step is
solving the constraints, i.e. obtaining a valuation mapping view variables
to views and arithmetic variables to numbers that satisfies the constraints,
and building the monomorphic RAJA method type based on those views
and real numbers.

Whereas solving linear arithmetic constraints is easily achieved by an
LP-Solver, solving subtyping constraints is more challenging. The task of
solving a constraint Cu <: Dv can be reduced to the tasks of solving C <: D
and u v v, by the definition of subtyping. C <: D can be checked easily by
analysing the inheritance relations in the program. Thus, the real challenge
is solving u v v. Solving these kind of constraints is difficult for various
reasons.

First, the views are infinite objects, and the subtyping relation over
views is defined coinductively. Thus, unfolding the definition of subtyping;
that is, trying to solve the constraints ♦(Cu) ≥ ♦(Cv) for each C ∈ C and
Aget(Cu, a) v Aget(Cv, a) and Aset(Cv, a) v Aset(Cu, a) for each a ∈ A(C) would
lead to more unfolding steps and this process would not terminate.

Second, subtyping over views is covariant in the get views and contravari-
ant in the set views. The contravariance also brings difficulties. For this
reason, we study in Chapter 6 a simpler type of infinite trees than views,
that have nonnegative real numbers in the nodes. For these trees, we define
an inequality relation that is covariant in all cases. Because these trees are
simpler objects, solving constraints over them is simpler than solving con-
straints over views. Thus, we solve the inequalities over views by reducing
them to inequalities over infinite trees.

102

Constraint generation
for main Section 5.3

Generation of a monomorphic
RAJA method type for main

Constraint generation
for main Section 5.3

Solving constraints
from main’s type

Reduction of constraints to
constraints over infinite trees Section 6.6.3

Solving constraints
over infinite trees Section 6.5

Creation of views Section 6.6.3

Input: FJEU program P = (C, main)

Output: monomorphic RAJA method type for main

Reduction of constraints to
constraints over infinite trees Section 6.6.3

Solving constraints
over infinite trees Section 6.5

Creation of views Section 6.6.3

Solving constraints
from main’s type

Reduction of constraints to
constraints over infinite trees Section 6.6.3

Solving constraints
over infinite trees Section 6.5

Creation of views Section 6.6.3

Figure 5.6: Schematic structure of the algorithm for building a monomorphic
RAJA method type for the main method of an FJEU program.

In Chapter 6 we describe the infinite trees. For solving constraints over
infinite trees, we still have the problem that unfolding the inequality relation
would not terminate. This is why, to ensure termination of unfolding, we
present a heuristic algorithm for solving these constraints in Section 6.5 that
assumes that the solutions to the constraints are regular infinite trees. This
implies, however, that the algorithm is not able to solve all the constraints
but only a subset of them that admit regular solutions. Therefore, when
using this algorithm, we can solve only subtyping constraints that admit
regular views as a solution, which correspond to programs whose heap-space
consumption is a linear function of its input.

Hence, the algorithm that we present in this thesis can compute only
linear bounds on the heap-space requirements of programs. However, we
remark that this is because no better algorithm for solving the constraints
over infinite trees is known at the moment. In fact, it is unknown whether
the problem of solving those constraints is decidable. If the problem was
decidable, and an algorithm for solving the constraints is found, we could,
with the same general mechanism, analyse programs whose heap-space con-
sumption can be described as an non-linear function.

We present the reduction from subtyping and arithmetic constraints to
inequalities over trees and arithmetic constraints in Section 6.6.3. The re-

103

duction delivers sets of tree variables that correspond to view variables.
Then, by solving the constraints over infinite trees by the previously men-
tioned algorithm, we obtain a solution to the constraints, i.e. a valuation
that maps those tree variables to regular infinite trees and arithmetic vari-
ables to numbers. When we combine those trees together to build views,
we obtain a map from view variables to regular views that, together with
the map from arithmetic variables to numbers, represents a solution to the
original subtyping and arithmetic constraints.

5.5 Generating a finite RAJA program with ex-
plicit types

We have seen in the previous section how to compute bounds on the heap-
space requirements of an FJEU program by giving a monomorphic RAJA
method type to the program’s main method. Here we show how to generate
all the monomorphic RAJA method types for all the methods that are nec-
essary to justify the RAJA typing of main. If we are able to do this, and we
obtain a finite set of monomorphic RAJA method types for each method,
then we can implement the efficient type checking algorithm described in
Chapter 4. This way, we would obtain efficiently verifiable certificates that
validate the prediction of the heap-space requirements of FJEU programs
given by the analysis. In the following we show how we can achieve this.

First, we notice that the algorithm for generating constraints from Sec-
tion 5.3 generates a finite amount of constraints for main. This follows by
the fact that each rule generates a finite amount of constraints and the con-
straint generation algorithm is not recursive. This is the main advantage of
not allowing polymorphic recursion.

Next, we notice that the polymorphic RAJA method type of main con-
tains the constraints of all the methods that are relevant to main’s execu-
tion. For instance, if a method m is called n times during main’s execution,
then its constraints appear in main’s type n times, each time containing
different variables. Let D(~w,~t) be the constraints from m’s type and let
Ci = D[~v(i)/~w, ~p(i)/~t]. Further, let C = E ∧

∧
i=1...n Ci(~v(i), ~p(i)) be the con-

straints of main’s type, and let π be a valuation that satisfies C, which we can
find in some cases by the algorithm mentioned earlier. Then πi = π|~v(i),~p(i)

satisfies Ci. Thus, we can build a monomorphic RAJA method type Ti for
m based on πi. That way, we build a set of n monomorphic RAJA method
types for the method m.

The soundness of the so created finite RAJA program with explicit types
follows by the soundness of the algorithms for constraint generation and
solving, described in Section 5.3 and Section 6.6.4, respectively.

104

Chapter 6

Linear Constraints over
Infinite Trees

6.1 Overview

In this chapter we present a new algorithmic problem related to linear arith-
metic over D = R+ ∪ {∞}. Indeed, it can be seen as a special case of linear
arithmetic with infinitely many variables (with some schematic notation so
as to make instances of the problem finite objects).

While in general linear arithmetic with infinitely many variables is easily
seen to be undecidable (introduce a variable xit for every position i and time
t of a computation on a Turing machine) the question of decidability for our
special case remains open. We do, however, provide a heuristic solution for
an important subcase motivated by the type inference algorithm for RAJA,
which we discuss in Chapter 5.

We begin with an informal description of our constraint systems. We
have arithmetic variables that take on values in D = R+ ∪ {∞} and tree
variables whose values are infinite trees whose nodes are labelled with el-
ements of D. We fix a finite set L = {l1, . . . , ln} of labels to address the
children of a node, e.g. L = {L,R} for infinite binary trees and L = {tl} for
infinite lists.

Such trees can be added, scaled, and compared componentwise; further-
more, we have an operation ♦(.) that extracts the root label of a tree, thus
if t is a tree expression then ♦(t) is an arithmetic expression. Finally, if t
is a tree expression and l ∈ L then l(t) is a tree expression denoting the
l-labelled immediate subtree of t.

Given a system of constraints built from these constructions we can ask
for satisfiability and for values of selected arithmetic variables. Asking for
values of tree variables makes no sense in general as these are infinite objects.
We can also ask for the optimum value of some linear combination of the
arithmetic variables.

105

t1 = t2 = l1 = l2 =

1

1

1

...
...

1

...
...

L R

1

1

...
...

1

...
...

L R

L R
2

2

2

...
...

2

...
...

L R

2

2

...
...

2

...
...

L R

L R
1

1

1

...

tl

tl

1

2

3

...

tl

tl

Figure 6.1: Some infinite trees.

In Fig. 6.1 two infinite trees t1, t2 over label set L = {L,R} are defined.
It also contains two infinite trees over label set L = {tl} which are effectively
infinite lists. Within one and the same constraint system we can only use
trees over one and the same label set. These trees satisfy for example:
L(t1) = R(t1) = t1, t1 v t2, l2 v l1, ♦(t1) = 1, ♦(t2) = 2. We also have
t1 + t1 = t2 and 2t1 = t2 and tl(l1) = l1 + l2.

Now, the constraint system tl(x) w x ∧ ♦(x) ≥ 1 is satisfiable, for
example with x = l1 and its optimum value with respect to the objective
c = ♦(x) to be minimised equals 1. The constraint system L(x) w x ∧
R(x) w x ∧ ♦(x) ≥ 6 is satisfiable, for example with x = 6t1.

The constraint system ♦(x) ≥ 1∧ 2tl(x) = tl(x) is also satisfiable,
namely by x = 10ω, but ♦(x) ≥ 1∧ 2tl(x) = tl(x)∧ x = tl(x), however, is
unsatisfiable. As already mentioned, we currently do not know whether sat-
isfiability of such constraint systems is in general decidable, but the heuristic
method we shall present covers all the constraint systems given so far. This
is because, the trees witnessing satisfiability were regular in the sense that
their set of subtrees is finite. So, t1, t2, l2 are regular, but l1 is not. Accord-
ingly, a constraint system like ♦(x) ≥ 1∧ tl(x) w x∧ tl(y) w x + y is not
amenable to our heuristic as it does not admit a regular solution.

In order to decide satisfiability of constraints in general it is tempting
to use Büchi tree automata; however, in order to represent our “arithmetic”
trees as a tree whose nodes are labelled with letters from a finite alphabet,
we would have to represent the numerical annotations using extra branches
and then primitive predicates such as equality cannot be recognised by a
Büchi tree automaton. Indeed, we conjecture that the algebraic structure of
arithmetic trees is not “automatic” in the sense of [BG00].

Nevertheless, we believe that satisfiability of our constraint systems is
decidable; in support of this conjecture, we can enlist the fact that the set of
solutions to a constraint system is convex in the sense that if ~t1 and ~t2 are
both solutions then so is (1−λ)~t1+λ~t2 for λ ∈ [0, 1]. Furthermore, constraint

106

systems can be reduced by algebraic manipulations and elimination steps to
canonical forms from which solutions can be read off.

We encountered these constraint systems as part of our endeavour of
developing an automatic type inference for the object-oriented resource type
system presented in this thesis. We hope, though, that due to their compact
and general formulation our arithmetic tree constraint systems will find other
applications beyond type inference as well.

We were surprised to find practically no directly related work. One
notable exception is [DV07] where constraint satisfaction problems with in-
finitely many variables are introduced and studied. The difference to our
work is twofold: first, the range of individual variables in loc.cit. is finite,
e.g. Boolean in contrast to D in our case; secondly, the access policy is much
more general and leads to undecidability in general. Interestingly, the near
absence of related work has also been noted in loc.cit.

This chapter is organised as follows. Section 6.2 describes the infinite
trees formally. Then, Section 6.3 describes constraints over infinite trees and
arithmetic constraints containing tree expressions. This section also lists im-
portant problems regarding these constraints like satisfiability. Then, Sec-
tion 6.4 shows an algorithm that partially solves the problem of eliminating
variables from constraints. Further, Section 6.5 describes a heuristic algo-
rithm for solving satisfiability. Finally, Section 6.6 presents a reduction from
subtyping and arithmetic constraints to constraints over trees and arithmetic
constraints. This section finishes with an algorithm for solving the subtyp-
ing and arithmetic constraints, which uses the mentioned reduction and the
heuristic algorithm described in Section 6.5.

6.2 Infinite trees

In this section we present infinite trees labelled with nonnegative real num-
bers. Fix a finite set of labels L = {l1, . . . , ln}.

Definition 6.2.1 The set TLD of infinite trees is given by TLD = {t | t :L∗ →
D} where D = R+ ∪ {∞} with 0 ∈ R+.

We will refer to elements w ∈ L∗ as paths. We denote the empty word by ε.
We write w̄ for the reverse of w and |w| for the length of w, where |ε| = 0
and |lw| = |w|+ 1.

A tree t′ is a sub-tree of a tree t if there exists w ∈ L∗ so that t′(p) = t(w p)
for all p ∈ L∗. Further, we say that an infinite tree is regular if it contains
a finite number of different sub-trees. The set TLD carries a final coalgebra
structure consisting of the function

〈♦, step〉 : TLD → D× (L → TLD)
t 7→ 〈t(ε), λl w . t(l w)〉

107

where step li returns the ith subtree, and ♦ gives the label of the root node
tree. In [SR10], Silva and Rutten give a similar final coalgebra structure for
binary infinite trees. We write li as a short notation for step li. Let U be
a domain. Every family of functions lti : U → U and o : U → D defines a
function h : U → TLD, such that:

♦(h(x)) = o(x) li(h(x)) = h(lti(x))

We define a preorder v between trees as follows:

Definition 6.2.2 Let t, t′ ∈ TLD. We define t v t′ coinductively by
t v t′ ⇐⇒

♦(t) ≤ ♦
(
t′
)

(6.2.1)

li(t) v li(t′) for all li ∈ L (6.2.2)

Alternatively, we can define the same preorder pointwise by:

Definition 6.2.3 Let t, t′ ∈ TLD. Then t vind t
′ ⇐⇒ for all paths w ∈ L∗:

t(w) ≤ t′(w) (6.2.3)

Lemma 6.2.4 Let t, t′ ∈ TLD. Then:

1. li(t)(w
′) = t(liw

′) for all li ∈ L and w′ ∈ L∗.

2. t vind t
′ ⇐⇒ ♦(t) ≤ ♦(t′) and li(t) vind li(t

′) for all li ∈ L.

3. t vind t
′ ⇐⇒ t v t′.

Proof.

1. Follows by unfolding definitions:

li(t)(w
′) = (step li t)(w

′)
= λw . t(liw)(w′)
= t(liw

′)

2. By definition,

t vind t
′ ⇐⇒ for each w ∈ L∗ . t(w) ≤ t′(w)
⇐⇒ for each li ∈ L, w′ ∈ L∗ .

t(ε) ≤ t′(ε) and t(liw
′) ≤ t′(liw′)

⇐⇒ 1. for each li ∈ L, w′ ∈ L∗ .
♦(t) ≤ ♦(t′) and li(t)(w

′) ≤ li(t′)(w′)
⇐⇒ for each li ∈ L, w′ ∈ L∗ .

♦(t) ≤ ♦(t′) and li(t) vind li(t
′)

3. Follows by 2.
2

108

We extend the inequality relation over infinite trees to inequality over pairs
of trees in the straightforward manner, i.e. if t1, t2, t

′
1, t
′
2 ∈ TLD then

(t1, t2) v (t′1, t
′
2) ⇐⇒ t1 v t2 and t′1 v t′2

We define addition of trees (+ : TLD × TLD → TLD) by:

♦(t+ t′) = ♦(t) + ♦(t′) li(t+ t′) = li(t) + li(t
′)

and multiplication of trees with a nonnegative scalar (· : R+ × TLD → TLD)
by:

♦(c · t′) = c · ♦(t′) li(c · t′) = c · li(t′)

Lemma 6.2.5 Let t1, t2 ∈ TLD. For all w ∈ L∗ holds (t1 + t2)(w) = t1(w) +
t2(w).

Proof. By induction on w, using Lemma 6.2.4, item 1. 2

We say that a function f : A → B where A,B ∈ {TLD,TLD × TLD} is order-
preserving or monotone if t v t′ implies f(t) v f(t′).

Lemma 6.2.6 (Order-preserving functions)

1. For every l ∈ L holds l is order preserving.

2. + is order preserving.

Proof.

1. Let t, t′ ∈ TLD with t v t′. Then l(t) v l(t′) follows by definition.

2. By coinduction. Let t1, t2, t
′
1, t
′
2 ∈ TLD and let (t1, t2) v (t′1, t

′
2). We

show t1 + t2 v t′1 + t′2, which follows from

(a) ♦(t1)+♦(t2) ≤ ♦(t′1)+♦(t′2), which follows by assumption and the
monotonicity of + over D.

(b) l(t1) + l(t2) v l(t′1) + l(t′2), which follows by coinduction hypoth-
esis, since l(t1) v l(t2) and l(t′1) v l(t′2), by assumption and 1.

2

Definition 6.2.7 Let T, T ′ ⊆ TLD and l ∈ L. Then we define l(T), T + T ′

pointwise by:

l(T) = {l(t) | t ∈ T}
T + T ′ = {t+ t′ | t ∈ T, t′ ∈ T ′}

109

Defining a complete lattice

Recall that an ordered set P is a bounded lattice if P is a lattice and it
contains a bottom and a top element. Moreover, P is a complete lattice if,
for each subset S ⊆ P ,

∨
S (the join of S) and

∧
S (the meet of S) exist.

For more information on lattices see, for instance, Davey and Priestley’s
”Introduction to Lattices and Order: Second Edition” [DP02].

The domain D = R+ ∪ {∞} is a complete lattice under its usual order
by the completeness axiom for R and because it has a top and a bottom

element: ∞ and 0. For each d ∈ D we define d̂ ∈ TLD by ♦
(
d̂
)

= d and

li(d̂) = d̂ for each li ∈ L. Then, ∞̂ is the top element in TLD and 0̂ the
bottom. In the following we will show that (TLD,v) is a bounded complete
lattice. For each subset of TLD, we define its join and its meet as follows.

•
∧

: P(TLD)→ TLD is totally determined by:

♦(
∧
T) = min

t∈T
(♦(t)) li(

∧
T) =

∧
li(T)

•
∨

: P(TLD)→ TLD is totally determined by:

♦(
∨
T) = max

t∈T
(♦(t)) li(

∨
T) =

∨
li(T)

Lemma 6.2.8 (Complete lattice) Let t ∈ TLD and T ⊆ TLD. Then:

1. 0̂ v t.

2. t v ∞̂.

3.
∨
T is the least upper bound of T .

4.
∧
T is the greatest lower bound of T .

5. (TLD,v) is a bounded complete lattice.

Proof.

1. The goal follows by 0 ≤ ♦(t), which follows trivially, and by 0̂ v l(t)
for each l ∈ L, which follows by the coinduction hypothesis.

2. The goal follows by ♦(t) ≤ ∞, which follows trivially, and by l(t) v ∞̂
for each l ∈ L, which follows by the coinduction hypothesis.

3. By coinduction. The goal follows by

(a) ♦(
∨
T) = maxt∈T ♦(t) is the l.u.b. of {♦(t) | t ∈ T}, which

follows by the fact that D is a complete lattice.

110

(b) l(
∨
T) is the l.u.b. of l(T). It follows by the coinduction hy-

pothesis, since l(
∨
T) =

∨
l(T), by definition.

4. By coinduction. The goal follows by

(a) ♦(
∧
T) = mint∈T ♦(t) is the g.l.b. of {♦(t) | t ∈ T}, which

follows by the fact that D is a complete lattice.

(b) l(
∧
T) is the g.l.b. of l(T). It follows by the coinduction hy-

pothesis, since l(
∧
T) =

∧
l(T), by definition.

5. It follows by the items 1. to 4.
2

Lemma 6.2.9 (Functions that preserve
∧
,
∨

) Let l ∈ L. The func-
tions l and + preserve joins and meets. Let T, T ′ ⊆ TLD. Then:

1. l(
∧
T) =

∧
l(T).

2. l(
∨
T) =

∨
l(T).

3.
∧
T +

∧
T ′ =

∧
(T + T ′).

4.
∨
T +

∨
T ′ =

∨
(T + T ′).

Proof.

1. Follows by definition of
∧
T .

2. Follows by definition of
∨
T .

3. By coinduction. The goal follows by

(a)

♦(
∧
T) + ♦(

∧
T ′) = ♦(

∧
T + T ′) ⇐⇒

mint∈T ♦(t) + mint′∈T ′ ♦(t′) = mint′′∈T+T ′ ♦(t′′)
= mint∈T,t′∈T ′ ♦(t) + ♦(t′)

which follows trivially.

(b) Let l ∈ L. We show:

l(
∧
T) + l(

∧
T ′) = l(

∧
T + T ′) ⇐⇒ 1.∧

(l(T)) +
∧

(l(T ′)) =
∧
l(T + T ′)

=
∧

(l(T) + l(T ′))

which follows by the coinduction hypothesis.

4. Similar to 3.
2

111

6.3 Constraints

In this section we consider a system of inequalities among tree expressions
and a system of linear arithmetic constraints. Let X be a fixed, countably
infinite set of tree variables and Λ be a fixed countably infinite set of arith-
metic variables where X ∩ Λ = ∅. We write TAExp to denote the set of
tree expressions that represent a path. We call these expressions atomic.
The set TExp denotes expressions that represent either a path or a sum of
paths. We call expressions in TExp, that are not atomic, compound. More-
over, we write AExp to denote linear arithmetic expressions. An arithmetic
expression is either a number n, an arithmetic variable λ, an expression rep-
resenting a potential found at some path ♦(tae) or a sum of two expressions
ae1 + ae2. We build the sets of valid expressions TExp and AExp by the
following grammar, where x ∈ X, n ∈ D, λ ∈ Λ and l ∈ L.

tae ::= x | l(tae) ∈ TAExp
te ::= tae | te + te ∈ TExp
ae ::= n | λ | ♦(tae) | ae + ae ∈ AExp
tc ::= te v te ∈ TConstr
ac ::= ae ≤ ae ∈ AConstr

A system of constraints is a set of valid tree constraints and arithmetic
constraints, i.e. a pair C = (T C,AC) where T C and AC are finite subsets
of TConstr and AConstr respectively. We write Vars(te) ⊆ X for the set of
tree variables that occur in the tree expression te and Vars(ae) ⊆ X ∪ Λ
for the set of tree and arithmetic variables that appear in the arithmetic
expression ae. Moreover, we write Vars(C) for the set of tree and arithmetic
variables that appear in C. Sometimes we write C(~x,~λ) as a short notation
for Vars(C) = ~x,~λ.

Meaning of constraints

Let π = (πt, πa) where πt : X → TLD and πa : Λ → D. The meaning of
arithmetic expressions π(ae) : D is defined by

π(n) = n
π(λ) = πa(λ)
π(♦(tae)) = ♦(π(tae))
π(ae1 + ae2) = π(ae1) + π(ae2)

The meaning of tree expressions π(te) : TLD is defined by

π(x) = πt(x)
π(l(tae)) = l(π(tae))
π(te1 + te2) = π(te1) + π(te2)

112

Then, π satisfies a tree constraint te v te′ (written π |= te v te′) if π(te) v
π(te′). Similarly, π satisfies an arithmetic constraint ae1 ≤ ae2 (π |= ae1 ≤
ae2) if π(ae1) ≤ π(ae2). Finally, we say π satisfies a system of constraints
C = (T C,AC) if π |= tc for each tc ∈ T C and π |= ac for each ac ∈ AC.

We say that a variable x occurs projected in a set of tree constraints
when x appears in (sub)expressions l(tae), ♦(tae). If x appears as a variable
(sub)expression “x” we say that x occurs as a whole. We write C(xproj) for
the subset of C where x occurs projected and we write C(xwhole) for the
subset of C where x appears as a whole.

Given a tree expression te and a path w we define tew : AExp inductively
by

teε = ♦(te)
telw = l(te)w

(6.3.1)

tew represents the arithmetic expression we obtain starting from te after
following the path w. The resulting expression may not be valid, but it
can be transformed easily into an equivalent valid one with the following
transformations:

♦(tae1 + tae2) = ♦(tae1) + ♦(tae2)
l(tae1 + tae2) = l(tae1) + l(tae2)

(6.3.2)

For example, (x+y)l = ♦(l(x+ y)) is not valid but it is equivalent to ♦(l(x))+
♦(l(y)).

Moreover, we define substitution of tree variables with tree expressions
in constraints C [te/x], substitution of tree expressions with tree variables
C [x/te] and substitution of arithmetic expressions with arithmetic variables
C [ae/λ] as usual and ensure that the resulting constraints are valid, again
by the transformations (6.3.2).

Next, we define the maximal nesting depth of expressions that contain
a given variable x in a system of constraints C.

Definition 6.3.1 (Nesting depth of expressions containing x)
Let C be a system of constraints and x ∈ X. We define the maximal nesting
depth of the (sub)expressions in C that contain x, written ndx(C), inductively
as shown in Fig. 6.2

The following function unfold(T C) unrolls the definition of inequality (v)
in the constraints once. The validity of the resulting constraints is ensured
by applying the transformations (6.3.2).

Definition 6.3.2 (Unfold constraints) Let T C be a set of tree constraints.
We define a function unfold(T C) by unfolding the definition of v and ob-
taining the respective system of constraints.

unfold(T C) =
⋃

tevte′∈T C

⋃
l∈L
{l(te) v l(te′)},

⋃
tevte′∈T C

{♦(te) ≤ ♦
(
te′
)
}

113

Nesting depth ndx(C)

ndx(y) = ndx(x) = 0
ndx(l(tae)) = if x ∈ Vars(tae) then 1 + ndx(tae) else 0
ndx(te1 + te2) = max(ndx(te1), ndx(te2))

ndx(n) = ndx(λ) = 0
ndx(♦(tae)) = if x ∈ Vars(tae) then 1 + ndx(tae) else 0
ndx(ae1 + ae2) = max(ndx(ae1), ndx(ae2))

ndx(tc) = max(ndx(te1), ndx(te2)) where tc = te1 v te2

ndx(ac) = max(ndx(ae1), ndx(ae2)) where ac = ae1 ≤ ae2

ndx(C) = maxij(ndx(tci), ndx(acj)) where C = (
⋃
i tci,

⋃
j acj)

Figure 6.2: Nesting depth of a variable x in a system of constraints C.

Lemma 6.3.3 Let T C be a set of constraints and let (T C′,AC′) = unfold(T C).
Then T C ⇐⇒ (T C′,AC′).

Proof. Follows by the definition of inequality (Def. 6.2.2). 2

In the following we define when variables occur positively or negatively in
expressions.

Definition 6.3.4 (C(x+), C(x−), C(x+, x−))

1. Let tc = te1 v te2 be an inequality among tree expressions.

(a) We say that x occurs positively in tc if x occurs in te2.

(b) We say that x occurs negatively in tc if x occurs in te1.

2. Let ac = ae1 ≤ ae2 be a linear arithmetic inequality.

(a) We say that x occurs positively in ac if x occurs in ae2.

(b) We say that x occurs negatively in ac if x occurs in ae1.

3. Let C = (
⋃
i tci,

⋃
j acj) be a system of constraints.

(a) We say that x occurs positively (negatively) in C and write C(x+)
(C(x−)) if x occurs positively and does not occur negatively (oc-
curs negatively and does not occur positively) in all tci and acj.

(b) We say that x occurs positively and negatively in C and write
C(x+, x−) if x occurs both positively and negatively in tci and
acj.

114

Lemma 6.3.5 Let t, t̂ ∈ TLD with t v t̂ and let π be a valuation and x ∈ X.

1. Let te be a tree expression and let x ∈ Vars(te) ⊆ dom(π). Then,
π[x 7→ t](te) v π[x 7→ t̂](te).

2. Let ae be an arithmetic expression and let x ∈ Vars(ae) ⊆ dom(π).
Then, π[x 7→ t](ae) v π[x 7→ t̂](ae).

Proof.

1. By induction on te, using monotonicity of the function l, when l ∈ L,
and +.

2. Follows by 1.

2

Lemma 6.3.6 Let C(x+) and D(x−) be systems of constraints and t, t̂ ∈ TLD
with t v t̂. Then

1. If π[x 7→ t] |= C(x+) then π[x 7→ t̂] |= C.

2. If π[x 7→ t̂] |= D(x−) then π[x 7→ t] |= D.

Proof.

1. Let C = (T C, AC) and let tc ∈ T C. We have π[x 7→ t] |= te1 v te2(x),
i.e. π[x 7→ t](te1) v π[x 7→ t](te2(x)). Moreover, by Lemma 6.3.5,
we obtain π[x 7→ t](te2) v π[x 7→ t̂](te2(x)). Thus, by transitivity, we
obtain the desired π[x 7→ t̂] |= te1 v te2(x).

Let moreover ac = ae1 v ae2(x) ∈ AC. Then, π[x 7→ t̂] |= ae1 v ae2(x)
follows similarly.

2. Similar to the previous case.

2

Lemma 6.3.7 Let C be a system of constraints and x ∈ X and te1, . . . , ten ∈
TExp and te1, . . . , tem ∈ TExp and π be a valuation. Then

1. If C(x+) and π |= C [tei/x] then π ∪{x 7→
∧
{π(te1), . . . , π(ten)}} |= C.

2. If C(x−) and π |= C [tei/x] then π∪{x 7→
∨
{π(te1), . . . , π(tem)}} |= C.

Proof.

115

1. Let C = (T C, AC) and let te v te′(x) ∈ T C and let π(tei) = ti and
let te′ stand for the function f , where f is possibly a composition of
the functions l for some l ∈ L or + or the identity function and let
π ∪ {x 7→

∧
{t1, . . . , tn}} = π̂. We have π(te) v f(ti), then:

π(te) v f(ti) ⇐⇒ g.l.b.

v
∧
{f(t1), . . . , f(tn)} ⇐⇒ Lemma 6.2.9

v f(
∧
{t1, . . . , tn}) ⇐⇒

v π̂(f(x))

Moreover let let ae v ae′(x) ∈ AC. Then π̂ |= ae v ae′ follows similarly.

2. Similar to the previous case, using the l.u.b. property and Lemma 6.2.9.
2

6.3.1 Algorithmic problems

In this section we discuss algorithmic problems regarding a system of con-
straints C whose study would be of interest.

Satisfiability.

One important problem, with a direct application to type inference for the
RAJA typing system (Chapter 5), is satisfiability. That is, if we have given
a system of constraints, we would like to know whether it is satisfiable.
Moreover, we would like to obtain a valuation π that satisfies the constraints.
Here we give a slightly weaker definition of the satisfiability problem. We
are interested in a finite set of arithmetic constraints that is satisfiable iff
the system of constraints C is satisfiable. Since the trees we are studying
are infinite, it is not possible to obtain a valuation πt : X → TLD in general.
However, we will see in Section 6.5 that we can effectively deliver a valuation
πt when all the values in ran(πt) are regular trees.

Reducing the satisfiability problem to the problem of satisfying a finite
set of arithmetic constraints is advantageous because there are effective ways
of solving linear arithmetic constraints. Moreover, we remark that the prob-
lem of obtaining an infinite set of arithmetic constraints equivalent to C is
trivial. If we follow the definition of inequality (vind) we notice that a set
of inequalities over trees T C =

⋃
i tei v te′i is satisfiable iff the following set

of arithmetic constraints is satisfiable: Γ(T C) = {teiw ≤ te′iw | w ∈ L
∗}. In

Section 6.5 we provide an algorithm for solving satisfiability that is sound
in all cases and complete for constraints systems of a restricted form.

Example 6.3.8 Let L = {l} and T C = {x v l(x), l(x) + l(x) v z} and
AC = {1 ≤ ♦(x)}. The set AC′ = {1 ≤ λ, λ + λ ≤ δ} is equivalent to
(T C,AC). This example can be analysed by our algorithm.

116

Satisfiability
Given: A finite system of constraints C = (T C,AC).
Wanted: A finite set of linear arithmetic constraints AC′ such that:

there is πa with πa |= AC′ iff there is πt such that (πt, πa) |=
C.

Optimisation
Given: A finite system of constraints C = (T C,AC) and a linear

objective function f defined on the arithmetic variables.
Wanted: A valuation πa of the arithmetic variables such that

(πt, πa) |= C for some valuation of the tree variables and
whenever (π′t, π

′
a) |= C then f(π′a) ≤ f(πa).

Elimination of a tree variable
Given: A finite system of constraints C = (T C,AC) and a variable

x ∈ X.
Wanted: A finite system of constraints C′ with x /∈ Vars(C′) ⊆ Vars(C)

and π |= C′ iff ∃t.π[x 7→ t] |= C.

Figure 6.3: Algorithmic problems regarding systems of constraints.

Elimination of a tree variable.

The problem of eliminating a variable x from a system of constraints C while
keeping the satisfiability of the constraints (Fig. 6.3) is interesting for various
reasons. The first one is efficiency. Eliminating variables can reduce signifi-
cantly the size of a system of constraints. Thus, it is a good idea to eliminate
some variables first, and then try to solve the resulting system. On the other
hand, eliminating variables can help in bringing constraints in a form that
is particularly suitable for applying an algorithm (see Section 6.5.3). In Sec-
tion 6.4 we give an algorithm for variable elimination that, however, does not
succeed in eliminating all variables. If we had an algorithm that solved the
elimination problem, the algorithm would solve satisfiability as well, since a
finite system of constraints without tree variables is automatically a finite
set of arithmetic constraints.

Example 6.3.9 Assume we want to eliminate y from

C = {x v y, y v l(x)}, {1 ≤ ♦(y)}

Then our algorithm would return

C′ = {x v l(x)}, {1 ≤ ♦(l(x))}

which is equivalent to C. However, our algorithm is not able to eliminate
x from C′.

117

6.4 Elimination of tree variables

In this section we define an algorithm for eliminating tree variables from a
set of tree constraints while keeping the satisfiability of the constraints. This
algorithm is partially inspired by the Fourier-Motzkin elimination procedure
for eliminating variables from a system of linear inequalities [Mot36, DE73].

Concretely, we define the algorithm elim, that takes a system of con-
straints C and a variable y, and returns a system of constraints C′, which
does not contain y, and that is satisfiable iff C is satisfiable. We present
the judgement C →y C′ as a set of inference rules (Fig. 6.4) and define the
elimination function elim by:

elimy(C) =

{
C′ if C →y C′
undefined otherwise

Depending on whether the variable appears only positively or only negatively
in the rules, or whether it appears both positively and negatively, we choose
one of the rules.

The rule (. Prune) is used when the variable appears either only posi-
tively or only negatively in the constraints. In that case, the variable can
be removed safely from the system of constraints. If the variable appears
in a constraint such as tae1(y) + tae2 v tae, then we return tae2 v tae.
Otherwise, when it appears in a constraint tae1 v tae2, then we remove the
whole constraint. Further, if the variable appears in an arithmetic constraint
♦(tae(y)) + ae2 ≤ ae, we return ae2 ≤ ae.

If the variable has at least one upper bound and appears otherwise only
positively, we use the rule (. Elim+). With that rule, the elimination takes
place by substituting the variable in the constraints with its upper bounds.
The rule (. Elim−) is analogue; we use it when the variable has at least one
lower bound and appears otherwise only negatively.

The last and more complicated rule is (. Elim+/−). We use it when the
variable appears both positively and negatively. In that case, we calculate
C(yproj) and C(ywhole). Recall that C(ywhole) is the subset of the constraints
where the variable appears as a variable expression or sub-expression. More-
over, C(yproj) is the subset of the constraints where the variable appears in
expressions or sub-expressions l(tae) or ♦(tae).

If C(yproj) and C(ywhole) are disjoint sets and ndy(C) > 0, we unfold
C(ywhole) and substitute all the occurrences of li(y) and ♦(y) with fresh vari-
ables zi and λ, respectively. Finally, we eliminate recursively all the new
introduced tree variables zi.

If, on the other hand, C(yproj) and C(ywhole) are not disjoint sets, the
variable cannot be eliminated. This restriction is necessary to ensure termi-
nation, as we shall see in Theorem 6.4.2. For an example of an elimination
problem that would not terminate, suppose we have the constraint l(x) v x
and L = {l} and we want to eliminate the variable x. If we applied the rule

118

Eliminating y from C elimy(C)

C(y+) or C(y−) C′ = erase y from C
C →y C′

(. Prune)

(
⋃
i=1..n{y v tei}) ∪ D(y+),AC(y+)

C →y

⋃
i=1..n (D,AC) [tei/y]

(. Elim+)

(
⋃
i=1..n{tei v y}) ∪ D(y−),AC(y−)

C →y

⋃
i=1..n (D,AC) [tei/y]

(. Elim−)

C(y+, y−) C(yproj) ∩ C(ywhole) = ∅ and ndy(C) > 0

li ∈ L, ~z, λ new C′ = C(yproj) ∪ unfold(C(ywhole)) C′′ = C′ [zi/li(y)][λ/♦(y)]
(. Elim+/−)

C →y elim~z(C′′)

Figure 6.4: Elimination of a tree variable from a set of tree constraints.

(. Elim+/−), we would obtain l(l(x)) v l(x) after unfolding and l(z) v z
after substituting l(x) with a fresh variable z. If we now tried to eliminate
z, we would go through the same procedure again and would not terminate.

Another condition for the application of the rule (. Elim+/−) is that
ndy(C) > 0. This is also necessary for termination. If ndy(C) = 0, then

applying (. Elim+/−) would not succeed in eliminating the variable. The
reason for this is that this rule is useful only when different subtrees of the
tree that the variable represents appear in different constraints, and so the
unfolding and substitution causes that the different subtrees are treated as
two independent variables, which often leads to the elimination of those vari-
ables. For instance, if we wish to eliminate the variable x in the constraints
l1(x) v y, w v l2(x), after the substitution we would obtain z1 v y, w v z2,
and z1 and z2 can be eliminated with the rule (. Prune).

Next, we prove that elim satisfies its specification:

elimy(C) = C′ implies C′ ⇐⇒ ∃y . C

It is important to remark that, given a valuation π for C′, the proof provides
a value t for y, based on the values from π, such that π ∪ {y 7→ t} satisfies
C.

Theorem 6.4.1 (Correctness of elim)
Let C(~x, y, ~λ) be a system of constraints. If elimy(C) = C′(~x,~λ) then for all
π : π |= C′ ⇐⇒ there exists t with π ∪ {y 7→ t} |= C.

Proof. By induction on the recursive definition of elim.

119

Case (.Prune) If C(v+). The goal follows from the fact that we can add the
constraint y v ∞̂ to the system of constraints. Then we could apply
case C = y v ∞̂ ∪ D(y+),AC(y+) and obtain (D,AC) [∞̂/y]. Then
we could remove again the resulting constraints tae v ∞̂ and remove
∞̂ otherwise from compound expressions in the constraints. If C(v−).
We could add 0̂ v y to the system of constraints and proceed similarly
to the previous case.

Case (. Elim+)

Case “⇐=”We have π′ = π∪{y 7→ t} and t v π(tei) and π |= (D,AC).
By Lemma 6.3.6 we get π[y 7→ π(tei)] |= (D,AC) and this implies
π |= (D,AC)[tei/x].

Case “=⇒” Let π |= C′ and let π̂ = π ∪ {y 7→ t} where

t :=
∧
{π(te1), . . . , π(ten)}

Then t v π(tei) by the g.l.b. property and π̂ |= D follows by
Lemma 6.3.7.

Case (.Elim−) The proof is dual to the previous case. In the direction“⇐=”
we use Lemma 6.3.6 and in the direction“=⇒” we set

π̂(y) :=
∨
{π(te1), . . . , π(ten)}

and π(tei) v t follows by the l.u.b. property and π̂ |= D follows by
Lemma 6.3.7.

Case (. Elim+/−)

Case “⇐=” Let

π̂︷ ︸︸ ︷
π ∪ {y 7→ t} |= C. By Lemma 6.3.3 we get π̂ |= C′.

Moreover, set π̄ = π∪{zi 7→ li(t), λ 7→ ♦(t)}. Then π̄ |= C′′ follows
trivially. Finally, by induction hypothesis we get a valuation π′

with π′ |= elim~z(C′′).
Case “=⇒” Let π |= elim~z(C′′). By induction hypothesis we obtain

π ∪ {zi 7→ ti} |= C′′. Let moreover π̂ = π ∪ {x 7→ t̂} where t̂
is defined by li(t̂) = ti and ♦

(
t̂
)

= π(λ). Then π̂ |= C′ follows
trivially. Finally, π̂ |= C follows by Lemma 6.3.3.

2

Termination of the elimination of tree variables

Since the algorithm elim is recursive, its termination is not straight forward.
Indeed, for proving termination we need a measure that decreases in each
recursive call. We will see that the nesting depth of expressions containing
the variable to be eliminated is the appropriate measure.

120

Theorem 6.4.2 The function elimy(C) always terminates.

Proof. We need to find a measure that decreases in each iteration. We can
use the maximal nesting depth of the expressions containing the variable y
in C (ndy(C)). This measure is useful because if ndy(C) = 0 then the rule

(. Elim+/−) cannot be applied and the algorithm terminates.
The only interesting case is (. Elim+/−). We show then

ndzi(C′′) < ndy(C) or ndzi(C′′) = 0 (6.4.1)

Let tc = te v te′ be a constraint in C′′. Let us assume w.l.o.g. zi ∈ Vars(te).
Then t̂c = (te[li(y)/zi] v te′) ∈ C(yproj) ∪ unfold(C(ywhole)). Then either:

Case t̂c ∈ C(yproj). Then ndzi(te) = ndy(te[li(y)/zi])− 1.

Case t̂c ∈ unfold(C(ywhole)). Then, by the side condition C(yproj)∩C(ywhole) =
∅, ndy(te[li(y)/zi]) = 1 and ndzi(te) = 0.

Next, let ac = ae1 ≤ ae2 be a linear arithmetic constraint in C′′. Let us
assume w.l.o.g. zi ∈ Vars(ae1). Then âc = (ae1[li(y)/zi] ≤ ae2) ∈ C(yproj) ∪
unfold(C(ywhole)). Then we notice that âc ∈ unfold(C(ywhole)) can not happen
by the side condition. Hence, âc ∈ C(yproj) and, like in the previous case,
ndzi(ae1) = ndy(ae1[li(y)/zi])−1. Since tc and ac were arbitrary constraints
in C′, (6.4.1) follows. 2

6.5 Solving a system of constraints

In this section we present an algorithm for solving a system of constraints
C = (T C,AC). The linear arithmetic constraints AC can be easily solved by
an LP-Solver. Thus, the challenge is to deal with constraints over trees. Our
goal is to reduce the problem of solving these constraints to the problem of
solving a finite set of linear arithmetic constraints.

We noticed in Section 6.3.1 that the canonical set

Γ(T C) = {tew ≤ te′w | te v te′ ∈ T C, w ∈ L∗}

is infinite. But in some particular cases when the constraints admit regular
solutions, we can obtain a finite set of arithmetic constraints. Our algorithm
seeks solutions to the constraints in the case that the trees must also sat-
isfy some (given) regular structure. When the algorithm is given a regular
structure for the tree variables that occur in T C, that we call a tree schema
Ts, it calculates a finite set of arithmetic constraints ΓTs(T C). We prove
that the algorithm is sound, i.e. if there is a solution for ΓTs(T C), there is
also a solution for T C and the algorithm delivers it. Clearly, the algorithm
is not complete in the general case since not all constraints admit a regular

121

solution. We also give an upper bound on the size of the resulting set of
arithmetic constraints in terms of the sizes of T C and Vars(T C).

Tree constraints in normal form. We say that tree expressions are
in normal form when they are either atomic or a compound expression of
the restricted form: tae + tae′. Moreover, we say that a tree constraint
tc = te1 v te2 is in normal form if te1 and te2 are in normal form and only
one of them is compound. Arbitrary tree constraints tc ∈ TConstr can be
brought into this form by introducing new variables, for example the tree
constraint x v y + z + w is equivalent to {x v y + v, v = z + w}. In the
following section we assume that the tree constraints are in normal form.
This will simplify our computation of |ΓTs(T C)| because we will be able to
use the fact that |Vars(tc)| ≤ 3 for each constraint tc.

6.5.1 Tree schema substitution and ∆Ts(C)

In the following we define tree schemas: a finite set of tree variables, a finite
set of regular trees and a pair of maps, which represent a regular structure
for a set of infinite trees.

Definition 6.5.1 (Tree schema) A tree schema Ts consists of

• a finite subset Ts.X ⊆ X.

• a finite subset Ts.TLD ⊆ TLD closed under l(.) for every l ∈ L.

• a total map Ts.next : L × Ts.X → Ts.X ∪ Ts.TLD.

• a total injective map Ts.♦ : Ts.X → Λ.

A valuation π = (πt, πa) matches tree schema Ts if the following conditions
hold for every x ∈ Ts.X:

• if Ts.♦(x) = λ ∈ Λ then ♦(πt(x)) = πa(λ);

• if Ts.next(l, x) = y ∈ Ts.X then l(πt(x)) = πt(y).

• if Ts.next(l, x) = t ∈ TLD then l(πt(x)) = t.

Example 6.5.2 (Tree schema)
Assume x1, x2 ∈ X and λ1, λ2 ∈ Λ and L = {l}.

Let Ts be a tree schema defined by Ts.X = {x1, x2} and Ts.♦(xi) = λi
for i ∈ {1, 2} and Ts.next(l, x1) = x2 and Ts.next(l, x2) = x1.

Now define the trees t1 and t2 by ♦(t1) = 1, l(t1) = t2 and ♦(t2) = 2,
l(t2) = t1. The valuation π given by πt(xi) = ti and πa(λi) = i matches Ts
(see Fig. 6.5).

122

Ts =⇒ t1 = t2 =

λ1

λ2

λ1

λ2

...

l

l

l

λ2

λ1

λ2

λ1

...

l

l

l

1

2

1

2

...

l

l

l

2

1

2

1

...

l

l

l

Figure 6.5: Representation of a tree schema Ts and a matching valuation.

The reason why the set Γ(T C) is infinite is that it contains expressions
tew for each w ∈ L∗. The main advantage of having a tree schema is that
we can eliminate expressions containing labels (like x1ll = l(l(x1))) from a
set of constraints. The substitution of such expressions with tree schemas
delivers a variable or a constant. In this case l(l(x1))[Ts] delivers x1 because
Ts. next(l, x1) = x2 and Ts. next(l, x2) = x1. We define the functions tae[Ts] :
X∪TLD, te[Ts] : TExp and ae[Ts] : AExp formally in Fig. 6.6. These functions
simplify the given expressions with respect to a particular tree schema so
that T C[Ts] returns a set of constraints over trees with no (sub)expressions
of the form l(tae), while AC[Ts] returns a set of arithmetic constraints that
contains no tree expressions.

In Fig. 6.6 we also define the set ΓTs(T C), a set of arithmetic constraints
whose satisfiability implies satisfiability of T C. We build the set ΓTs(T C)
as follows: for each constraint te v te′ ∈ T C and each path w ∈ L∗, we
add the arithmetic constraints tew[Ts] ≤ te′w[Ts] to the set. The use of tree
schema substitution ensures that ΓTs(T C) is finite, in contrast to Γ(T C). In
the following Lemma we compute an upper bound on the size of ΓTs(T C) as
a function of the sizes of T C and Vars(T C).

Lemma 6.5.3 (Cardinality of the set ΓTs(T C)) Let T C be a set of con-
straints and Ts a tree schema with Ts.X = Vars(T C). Then |ΓTs(T C)| ≤
|T C| · |Ts.X ∪ Ts.TLD|3.

Proof. First, we show, for each tae ∈ TAExp:

|{taew[Ts] | w ∈ L∗}| ≤ |Ts.X ∪ Ts.TLD| (6.5.1)

This follows from the fact that

{taew[Ts] | w ∈ L∗} ⊆ ran(Ts.♦()) ∪ ran(♦()|Ts.TLD)

123

Tree schema substitution

te[Ts]

x[Ts] = x

l(tae)[Ts] =

{
Ts.next(l, y) if tae[Ts] = y ∈ Ts.X
l(t) if tae[Ts] = t ∈ Ts.TLD

(te1 + te2)[Ts] = te1[Ts] + te2[Ts]

ae[Ts]

n[Ts] = n
λ[Ts] = λ

♦(tae)[Ts] =

{
Ts.♦(tae[Ts]) if tae[Ts] = y ∈ Ts.X
♦(t) if tae[Ts] = t ∈ Ts.TLD

(ae1 + ae2)[Ts] = ae1[Ts] + ae2[Ts]

T C[Ts] =
⋃
i{tei[Ts] v te′i[Ts]} for T C =

⋃
i{tei v te′i}

AC[Ts] =
⋃
i{aei[Ts] ≤ ae′i[Ts]} for AC =

⋃
i{aei ≤ ae′i}

ΓTs(T C) =
⋃

tevte′ ∈T C{tew[Ts] ≤ te′w[Ts] | w ∈ L∗}

∆Ts(C) = ΓTs(T C) ∪ AC[Ts]

Figure 6.6: Tree schema substitution and ΓTs(T C).

Then,

|{taew[Ts] | w ∈ L∗}| ≤ | ran(Ts.♦()) ∪ ran(♦()|Ts.TLD)|
≤ |Ts.X ∪ Ts.TLD|

Next, we show, for each te ∈ TExp in normal form:

|{tew[Ts] | w ∈ L∗}| ≤ |Ts.X ∪ Ts.TLD|2 (6.5.2)

Case te = tae. It follows from (6.5.1).

Case te = tae + tae′. First we notice that

{tew[Ts] | w ∈ L∗} = {taew[Ts] + tae′w[Ts] | w ∈ L∗} Thus,
|{tew[Ts] | w ∈ L∗}| ≤ |{taew[Ts] | w ∈ L∗}| × |{tae′w[Ts] | w ∈ L∗}|

≤ |Ts.X ∪ Ts.TLD|2 by (6.5.1)

Now, let te v te′ ∈ T C with either te ∈ TAExp or te′ ∈ TAExp. We
show, similarly to the previous case,

|{tew[Ts] v te′w[Ts] | w ∈ L∗}| ≤ |Ts.X ∪ Ts.TLD|3 (6.5.3)

and the goal follows trivially.
2

124

We would like to remark that we have given an upper bound to ΓTs(T C),
but that this set is much smaller in practice.

The set of arithmetic constraints ∆Ts(C), also defined in Fig. 6.6, is
obtained by adding the constraints in AC, after their substitution with the
tree schema Ts, to the set ΓTs(T C). Thus, ∆Ts(C) is a finite set of arithmetic
constraints without tree variables. We will show below that satisfiability of
∆Ts(C) implies satisfiability of C.

Example 6.5.4 Let X,Λ,L and Ts be defined as in Example 6.5.2. More-
over, let C = {l(x1) v x2, l(x2) v x1}, {1 ≤ ♦(x1), 2 ≤ ♦(x2)}. Then

ΓTs(T C) = { λ2 ≤ λ2,
λ1 ≤ λ1

} ∆Ts(C) = {

λ2 ≤ λ2,
λ1 ≤ λ1,
1 ≤ λ1,
2 ≤ λ2

}

Our next goal is to show the soundness of the algorithm for computing
∆Ts(C): if we have a solution for ∆Ts(C), we can also find a solution for C.
This result is based on the next Lemma, which states the following: given
a tree schema Ts and a valuation π = (πt, πa) that matches Ts, π satisfies
C iff πa satisfies ∆Ts(T C). Moreover we notice that all the trees in ran(πt)
are regular.

Lemma 6.5.5 Let C = (T C,AC) be a system of constraints and Ts be a tree
schema with Ts.X = Vars(T C) and π = (πt, πa) be a valuation that matches
Ts.

1. Let te ∈ TExp and w ∈ L∗. Then πa(tew[Ts]) = (π(te))(w).

2. Let ae ∈ AExp. Then πa(ae[Ts]) = π(ae).

3. πa |= ΓTs(T C) ⇐⇒ π |= T C.

4. πa |= ∆Ts(C) ⇐⇒ π |= C.

Proof.

1. By induction on te, with an inner induction on w.

2. By induction on ae.

3. Let te v te′ ∈ T C. We have

π |= te v te′ ⇐⇒ ∀w ∈ L∗ . (π(te))(w) ≤ (π(te′))(w)
⇐⇒ 1. ∀w ∈ L∗ . πa(tew[Ts]) ≤ πa(te′w[Ts])
⇐⇒ πa |= ΓTs(te v te′)

4. Follows by 2. and 3.
2

125

Extending tree schema to a valuation Ts[πa] : X → TLD

subst(x,Ts, πa) = t
where ♦(t) = πa(Ts.♦(x))

and l(t) =

{
subst(y,Ts, πa) for each l ∈ L if Ts.next(l, x) = y ∈ Ts.X
t′ if Ts.next(l, x) = t′ ∈ Ts.TLD

Ts[πa] = {x 7→ subst(x,Ts, πa) | x ∈ Ts.X}

Figure 6.7: Extending tree schema to a valuation.

Given a tree schema Ts and a valuation πa that satisfies ∆Ts(C), we
can build a valuation Ts[πa] : Ts.X → TLD, as shown in Fig. 6.7, such that
the valuation (Ts[πa], πa) matches Ts. Thus, by Lemma 6.5.5, (Ts[πa], πa)
satisfies C.

Theorem 6.5.6 (Soundness of ∆Ts(C))
Let Ts be a tree schema with Ts.X = Vars(T C) and πa : Λ→ D be a valuation
with πa |= ∆Ts(C). Then there exists a valuation πt : Ts.X → TLD such that
(πt, πa) |= C and if t ∈ ran(πt) then t is regular.

Proof. Since (Ts[πa], πa) matches Ts, the goal (Ts[πa], πa) |= C follows by
Lemma 6.5.5, item 4. Thus, (Ts[πa], πa) is the desired valuation. 2

Lemma 6.5.5 also provides a sufficient condition on C which guarantees
that its satisfiability implies satisfiability of ∆Ts(C). If it is possible to
construct a tree schema such that there is a satisfying valuation for C that
matches it, then ∆Ts(C) is satisfiable. Moreover, it follows that C must admit
regular solutions.

Corollary 6.5.7 (Condition for Completeness of ∆Ts(C)) Let Ts be a
tree schema with Ts.X = Vars(T C) and let π |= C with π matches Ts. Then
πa |= ∆Ts(C).

Proof. Follows by Lemma 6.5.5, item 4. 2

6.5.2 Computation of ∆Ts(C)

In the previous section we described the set ∆Ts(C) and proved that its
satisfiability implies the satisfiability of C. The natural question that arises
is how to compute ∆Ts(C). Computing AC[Ts] is simple, the challenge is the
computation of ΓTs(T C). Adding constraints to the set for each path w ∈ L∗
according to the definition is clearly infeasible since there are infinitely many
paths. However, we can calculate the desired set by iteration: we build a set

126

ΓiTs(T C)

ΓiTs(T C) =
⋃

tevte′∈T C{tew[Ts] v te′w[Ts] | w ∈ L∗, |w| ≤ i}

T CiTs

treeConstrs(T C) = {l(te)[Ts] v l(te′)[Ts] | te v te′ ∈ T C, l ∈ L}

T C0
Ts = T C[Ts]

T Ci+1
Ts = T CiTs ∪ treeConstrs(T CiTs)

T C∞Ts =
⋃
i≥0 T C

i
Ts

w[te]

ε[te] = te
w l[te] = w[l(te)]

Figure 6.8: ΓiTs(T C) and T CiTs.

ΓiTs(T C) iteratively. In the i-th step of the iteration the set contains exactly
the constraints corresponding to the paths w with |w| ≤ i. We prove that the
iteration terminates, i.e. that there is an index j with ΓjTs(T C) = Γj+1

Ts (T C)
and that this set contains all the constraints in ΓTs(T C).

The sets ΓiTs(T C) are useful for proving the soundness of the iteration and
for understanding how it works. However, actually building the sets in each
iteration would be inefficient. Instead, we build a set of tree constraints T CiTs
iteratively (Fig. 6.8), by adding new constraints in each step, so that the
following invariant holds: for all i, Γ0

Ts(T C
i
Ts) = ΓiTs(T C). In the following,

we prove the soundness of the iteration: ΓTs(T C) = Γ0
Ts(T C

∞
Ts) that follows

directly from the invariant. For the proof it is convenient to define w[te] :
TExp (Fig. 6.8) to be able to describe the constraints in T Ci for some i in
terms of the constraints in T C.

Lemma 6.5.8 Let T C be a set of constraints and tc ∈ T C and Ts be a tree
schema and te ∈ TExp and w ∈ L∗. Then:

1. tew[Ts] = w̄[te][Ts]ε

2. T CiTs = {w̄[te][Ts] ≤ w̄[te′][Ts] | te v te′ ∈ T C, w ∈ L∗, |w| ≤ i}

3. For all i holds Γ0
Ts(T C

i
Ts) = ΓiTs(T C).

Proof.

1. By induction on w.

2. By induction on i.

127

Case i→ i+ 1

T Ci+1
Ts = T CiTs ∪ treeConstrs(T CiTs)

=I.H. {w̄[te][Ts] ≤ w̄[te′][Ts] | te v te′ ∈ T C, |w| ≤ i}∪
{l w̄[te][Ts] ≤ l w̄[te′][Ts] | te v te′ ∈ T C, |w| ≤ i}

= {w̄[te][Ts] ≤ w̄[te′][Ts] | |w| ≤ i+ 1}

3. We show
Γ0
Ts(T C

i
Ts) = ΓiTs(T C)

{w̄[te][Ts]ε ≤ w̄[te′][Ts]ε} =2. {tew[Ts] ≤ te′w[Ts]}

for each te v te′ ∈ T C and w ∈ L∗ with |w| ≤ i, and that follows by 1.
2

Corollary 6.5.9 (Soundness of iteration) Let T C be a set of constraints
and Ts be a tree schema. Then: ΓTs(T C) = Γ0

Ts(T C
∞
Ts).

Proof. Follows from Lemma 6.5.8, item 3., since ΓTs(T C) =
⋃
i≥0 ΓiTs(T C).

2

Next, we prove termination of the iteration. The proof consists of two
parts. First we notice that, since T CiTs ⊆ T C

i+1
Ts for all i, if there exists an

index n0 with treeConstrs(T Cn0
Ts) ⊆ T C

n0
Ts, then T Cn0

Ts = T Cn0+1
Ts and for all

i ≥ n0 T CiTs = T Cn0
Ts. The second part of the proof consists in showing that

such an index indeed exists for this sequence. It follows from the soundness
of the iteration and from the fact that the set ΓTs(T C) is finite.

Lemma 6.5.10 (Termination of iteration) Let T C be a set of constraints
and Ts be a tree schema. Then:

1. If there is n0 with treeConstrs(T Cn0
Ts) ⊆ T C

n0
Ts then ∀i ≥ n0 . T CiTs =

T Cn0
Ts.

2. There is n0 with T Cn0
Ts = T Cn0+1

Ts and T C∞Ts = T Cn0
Ts.

Proof.

1. By induction on i.

2. Let us assume T CiTs (T C
i+1
Ts for all i. Then, T C∞Ts is infinite and

Γ0
Ts(T C

∞
Ts) = ΓTs(T C) is infinite as well, but this is a contradiction to

Lemma 6.5.3. Therefore, there exists n0 with T Cn0
Ts = T Cn0+1

Ts . Then,
T C∞Ts = T Cn0

Ts follows by 1.
2

128

Corollary 6.5.11 (Computation of ΓTs(T C)) Let T C be a set of con-
straints and Ts be a tree schema and n0 ∈ N with T Cn0

Ts = T Cn0+1
Ts . Then

ΓTs(T C) = Γ0
Ts(T C

n0
Ts).

Proof. Follows by Corollary 6.5.9 and Lemma 6.5.10. 2

Example 6.5.12 (Computation of ΓTs(T C)) Let Ts and L be defined like
in Example 6.5.2 and T C be defined like in Example 6.5.4. Then, we can
build ΓTs(T C) as follows:

T C0
Ts = {x2 v x2, x1 v x1}

T C1
Ts = {x1 v x1, x2 v x2}

Since T C0
Ts = T C1

Ts, it follows T C∞Ts = T C1
Ts. Moreover

ΓTs(T C) = Γ0
Ts({x1 v x1, x2 v x2})

= {λ1 ≤ λ1, λ2 ≤ λ2}

6.5.3 Linear constraint system (LCS)

In the previous section we proved that our algorithm for solving satisfia-
bility for a system of constraints is sound for any given tree schema. We
also noticed that the algorithm cannot be complete, because it imposes a
regularity condition on the solutions. In this section we study the following
questions: Is there a subset of TConstr, for which the algorithm is complete?
Then, how do we find the right tree schemas?

A set of tree constraints T C induces a graph G = (V,E) whose vertices
V are the tree variables occurring in T C. The set of edges E is defined as
follows: for each te v te′ ∈ T C, for each x ∈ Vars(te) and y ∈ Vars(te′), we
add (x, y) to E. Then, we say that a set of tree constraints T C contains a
loop, when its corresponding graph G contains a closed path. Moreover, we
say that a subset T C′ ⊆ T C is a loop, if the graph G contains a closed path
P and for all tc ∈ T C′ there exists a variable xi ∈ P with xi ∈ Vars(tc) and
for all xi ∈ P there exists tc ∈ T C′ with xi ∈ Vars(tc).

We wish to describe a subset LCS of TConstr such that for each system
of constraints C ∈ LCS we can effectively construct a tree schema TsC with
the following property: if C is satisfiable, there exists a valuation π matching
TsC and satisfying C. We will describe that set as a collection of loops of a
certain restricted form together with constraints defining relations between
the variables that appear in the loops. In particular, the loops should not
contain compound expressions. Moreover, every variable x that appears in a
loop may appear in arithmetic constraints only in sub-expressions ♦(x). The
following grammar describes the restricted sets of tree constraints LTConstr,
RTConstr and the restricted set of arithmetic constraints LAConstr.

129

Tree schema for a LCS C = (T C,AC).

TsC .X = Vars(T C)
TsC .T

L
D = {0̂, ∞̂}

∀xi ∈ TsC .X :
TsC .♦(xi) = λi where λi /∈ Vars(AC)

∀lj ∈ L .TsC .next(lj , xi) =

xk if (lj(xi) v xk) ∈ T C or (xk v lj(xi)) ∈ T C
∞̂ otherwise, if xi occurs in a left linear loop.

0̂ otherwise, if xi occurs in a right linear loop.

π
(πt,Ts)
a = {δ 7→ ♦(πt(x)) | x ∈ Ts.X,Ts.♦(x) = δ}

Figure 6.9: Tree schema for a linear constraint system.

ltc ::= l(x) v x ∈ LTConstr
rtc ::= x v l(x) ∈ RTConstr
pae ::= n | λ | ♦(x) | pae + pae ∈ PAExp
lac ::= pae ≤ pae ∈ LAConstr

Definition 6.5.13 (Linear loop) Let T C′ ⊆ T C be a loop.

1. We say that T C′ is a left linear loop if T C′ ⊆ LTConstr and for all
x ∈ T C′ holds x occurs only positively in T C \ T C′.

2. Further, we say that T C′ is a right linear loop if T C′ ⊆ RTConstr and
for all x ∈ T C′ holds x occurs only negatively in T C \ T C′.

3. We say that T C′ is a linear loop if it is either a left linear or a right
linear loop and for all x ∈ Vars(T C′) holds if x ∈ Vars(ac) for some
arithmetic constraint ac then ac ∈ LAConstr.

Definition 6.5.14 (Linear constraint system (LCS)) We say that T C
is linear if T C = T C′ ∪ (

⋃
i=1,...,n T Ci) where each T Ci is a linear loop with

Vars(T Ci) ∩ Vars(T Cj) = ∅ for i 6= j and Vars(T C′) ⊆ Vars(
⋃
i=1,...,n T Ci).

We remark that the subsystem T C′ from the definition does not contain
loops. This follows by the definition since the variables in T C must appear
either only positively or only negatively in T C′.

Example 6.5.15 Let L = {l} and let C = (T C,AC) and

T C = { l(x1) v x2,
l(x2) v x1

} AC = { ♦(x1) ≤ ♦(x2) + 1,
1 ≤ ♦(x2)

}

Then, T C is a left linear loop and C ∈ LCS.

In Fig. 6.9 we define a type of tree schema for any given LCS C. We
show in the following Lemma that if C is satisfiable there is a valuation that

130

both satisfies C and matches the tree schema TsC . For the construction of
such valuation we use a valuation π

(πt,Ts)
a : Λ → D (Fig. 6.9) that we build

on the basis of another valuation πt and a tree schema Ts.

Lemma 6.5.16 Let C = (T C,AC) be a satisfiable LCS. Then there is a
valuation π′ with π′ |= C and π′ matches TsC.

Proof. We have given a valuation π = (πt, πa) with π |= C. Let T C =
T C′ ∪ (

⋃
j=1,...,m T Cj(~xj)). For ease of notation, let us assume that | ~xj | = 1.

Thus, ~xj = xj and let π(xj) = tj . We define t̂j by:

Case T Cj = l(xj) v xj). We set lk(t̂j) = ∞̂ for lk 6= l ∈ L.

Case T Cj = xj v l(xj). We set lk(t̂j) = 0̂ for lk 6= l ∈ L.

Moreover we set ♦
(
t̂j
)

= ♦(tj) and l(t̂j) = t̂j . Now we set π̂t = πt[xj 7→ t̂j]

and π̂a = πa ∪ π(π̂t,TsC)
a and π̂ = (π̂t, π̂a). We show π̂ |= C and π̂ matches

TsC : π̂ matches TsC by construction, π̂ |= T Cj follows by construction and
π̂ |= AC follows by π |= AC and ♦

(
t̂j
)

= ♦(tj). Moreover, π̂ |= T C′ follows
by Lemma 6.3.6 because if T Cj is a left linear loop then T C′(x+

j) and tj v t̂j
and if T Cj is a right linear loop then T C′(x−j) and t̂j v tj .

We remark that, in the general case, where | ~xj | ≥ 1, and ~xj = xj1, . . . , xjn,
and we are given that π(xji) = tji, we build t̂ji analogously, and we prove
by coinduction that if T Cj is a left linear loop then tji v t̂ji and, if T Cj is
a right linear loop then t̂ji v tji. 2

Theorem 6.5.17 (Completeness of ∆Ts(C)) Let C be a satisfiable LCS.
Then there is a tree schema Ts and a valuation πa with πa |= ∆Ts(C).

Proof. By Lemma 6.5.16 we obtain a valuation π |= C with π = (πt, πa)
matches TsC . Moreover, by Lemma 6.5.7, we obtain πa |= ∆TsC(C). 2

The restriction to linear constraint systems could seem very strong. How-
ever, we presented an algorithm for eliminating variables from constraints
while maintaining their satisfiability in Section 6.4. In most cases we are able
to eliminate the variables that are not part of a loop with that procedure.
Further, we can often bring the loops in the required form by eliminating
intermediate variables. For example, the loop {l(x) v y, y v x} can be
transformed into l(x) v x if we eliminate y. On the other hand, there are
systems such as {x + x v l(x)}, {1 ≤ ♦(x)} that can not be transformed
into an equivalent linear one. In fact, there is no regular solution for that
system.
Left or right linear loops to linear loops. After we have transformed
the constraints into a collection of left and right linear loops using variable
elimination, then we can transform those loops into linear loops. In par-
ticular, if the variables in the loop appear in arithmetic expressions of the

131

C →linLoop C′

C = (
⋃
i T Ci,AC) T Ci is a left or right linear loop

xi ∈ Vars(C) ndxi(AC) > 1 C′ = unfold(C)
(. toLinearLoop)

C →linLoop C′ [zij/lj(xi)][λi/♦(xi)]

Figure 6.10: Bringing left or right linear loops into linear loops.

form ♦(tae(x)), we show how to transform the loops into equivalent ones,
whose variables appear in arithmetic expressions of the required canonical
form ♦(x).

The transformation is based on unfolding the definition of inequality
and substituting atomic expressions with fresh new variables, just like in
the rule (. Elim+/−) of the elimination procedure. Concretely, we define
the reduction C →linLoop C′ by the rule (. toLinearLoop) shown in Fig. 6.10.
Starting from a set of left or right linear loops, whose variables appear in
the arithmetic constraints with a nesting depth greater than 1, the resulting
system of constraints is built by unfolding the constraints, followed by the
substitution of the expressions lj(xi) and ♦(xi) with fresh variables zij and
λi, respectively. The idea is to iterate this process until, for each variable x,
the nested depth of x in the arithmetic constraints is 1, resulting in a linear
system of constraints. We write C →∗linLoop C′′ for meaning the described
iteration. Consequently, C′′ is a linear constraint system. In the following
we show the correctness of the algorithm and that the iteration terminates.

Lemma 6.5.18 Let C = (T C,AC) be a system of constraints and let T C be
a set of left or right linear loops and let C →linLoop C′ = (T C′,AC′). Then:

1. C ⇐⇒ C′.

2. ndzij (AC′) < ndxi(AC) or ndzij (AC′) = 1.

Proof.

1. Follows by Lemma 6.3.3.

2. Let ac′ ∈ AC′ with zij ∈ Vars(ac). Then ac = ac′ [lj(xi)/zij ,♦(xi)/λi] ∈
C′. Then is either

Case ac ∈ AC. Then ndzij (ac′) = ndxi(ac)− 1.

Case ac /∈ AC. Then ndzij (ac′) = 1 because ndxi(ac) = 2 because
of the shape of the loops in T C, i.e., if l(xi) v xi ∈ C then
♦(l(xi)) ≤ ♦(xi) ∈ AC′ and ndxi(♦(l(xi)) ≤ ♦(xi)) = 2. 2

132

Corollary 6.5.19 Let C = (T C,AC) be a system of constraints and let T C
be a set of left or right linear loops and let C →∗linLoop C′ = (T C′,AC′). Then:

1. C ⇐⇒ C′.

2. C′ is a linear loop and the iteration terminates.

Proof.

1. Follows by Lemma 6.5.18, item 1.

2. We obtain by Lemma 6.5.18, item 2: ndzij (AC′) < ndxi(AC) or
ndzij (AC′) = 1. Thus, the iteration terminates when ndzij (AC′) = 1,
because of the side condition ndzij (AC) > 1 of the rule (.toLinearLoop).
Consequently, if zij ∈ ac for some ac ∈ AC′, then ac ∈ LAConstr.

2

Example 6.5.20 Let L = {l} and let C = (T C,AC) and

T C = { l(x) v x, } AC = { ♦(l(x)) ≤ 1, }

Then, C′ = unfold(C):

T C′ = { l(l(x)) v l(x), } AC′ = { ♦(l(x)) ≤ 1,
♦(l(x)) ≤ ♦(x)

}

Then, C′′ = C′ [z/l(x)][λ/♦(x)]:

T C′′ = { l(z) v z, } AC′′ = { ♦(z) ≤ 1,
♦(z) ≤ λ

}

and C′′ ∈LCS.

6.5.4 Heuristic algorithm for solving a system of constraints

In the previous section we presented an algorithm for solving a system of
constraints, when a tree schema is given. Moreover, we described a subset
LCS for which we can effectively build a tree schema that we can use for
solving the constraints. Moreover, we saw how to bring systems of con-
straints into LCS in some cases; that is, in some cases when the loops in
the system do not contain compound expressions. Here, we wish to sum-
marise the algorithms and procedures presented so far, to build a heuristic
algorithm for solving a system of constraints. The algorithm consists of the
steps described in Fig 6.11.

In the following we show the correctness of the heuristic algorithm, which
follows from the correctness of each step. Notice that the algorithm is sound

133

Heuristic algorithm for solving a system of constraints C.

1. Eliminate variables from C until the only remaining variables are those that
appear in a loop, and obtain C1.

2. Try to bring the loops of C1 with variable elimination to be left or right linear,
and obtain C2.

3. If all the loops are either left or right linear then apply the algorithm for
creating linear loops to C2 (C2 →∗linLoop C3). Then, construct the tree schema
Ts for C3 as described in Section 6.5.3.

4. Otherwise, construct a tree schema Ts for C1 using a heuristic procedure.

5. Compute ∆Ts(C3) (or ∆Ts(C1)) by the iteration procedure described in Sec-
tion 6.5.3.

6. Try to solve ∆Ts(C3) (or ∆Ts(C1)) with an LP-Solver, to obtain a valuation
πa.

7. Build a valuation Ts[πa] based on πa and Ts.

Figure 6.11: Heuristic algorithm for solving a system of constraints C.

for any tree schema. Our algorithm is not complete, yet we shall see in Chap-
ter 7 that we can compute linear bounds on the heap-space requirements of
many interesting programs with a tool that uses this algorithm.

We remark that, because we eliminate variables, the valuation given by
the algorithm needs to be extended to satisfy the constraints. Neverthe-
less, as discussed in Section 6.4, we provide a procedure for extending the
valuation in the proof of Theorem 6.4.1.

Theorem 6.5.21 (Soundness of the algorithm) Let C be a system of
constraints and let π be the valuation given by the algorithm described in
Fig. 6.11. Then, there exists π′ ⊇ π with π′ |= C.

Proof. By Corollary 6.5.11, the iteration indeed computes ∆Ts(C3). Then,
by Theorem 6.5.6, we know π |= C3. Then, π |= C2, by Corollary 6.5.19,
and there exists π′ ⊇ π with π′ |= C1 and π′′ ⊇ π′ with π′′ |= C, both by
Theorem 6.4.1. 2

Next, we show that the algorithm terminates.

Theorem 6.5.22 (Termination of the algorithm)
The algorithm described in Fig. 6.11 terminates.

Proof. Follows by the termination of the elimination procedure (Theo-
rem 6.4.2), termination of the iteration for calculating ∆Ts(C3) (Lemma 6.5.10),
and termination of the creation of linear loops (Lemma 6.5.19, item 2). 2

134

6.6 Applications to resource analysis

In this section we show a reduction from the constraints that are gener-
ated by the algorithm from Section 5.3, and that build polymorphic RAJA
method types, to the systems of constraints described in this chapter. The
reduction allows the use of the heuristic algorithm presented in the previous
section, for solving the subtyping and arithmetic constraints, which describe
the heap-space requirements of FJEU programs.

6.6.1 Views to infinite trees

First, we present a reduction from views to infinite trees. As we discussed
in Chapter 3, views are infinite trees themselves. However, the infinite trees
described in this chapter are simpler. On the one hand, the nodes of the
infinite trees contain one nonnegative real number, whereas the nodes of
views contain one such number for each class. On the other hand, subtyping
for views is contravariant in the set views; that is, in some of its subtrees.
In contrast, inequality over infinite trees is covariant in all subtrees. Thus,
the idea of the reduction is to separate the “positive parts” and “negative
parts” of a view, to build infinite trees.

To reduce a view r ∈ V C , we define, for each class Ci ∈ C , the infinite
trees r+

i , r
−
i ∈ TLD, where

L = L+ ∪ L− and
L+ = {l+kj | Ck ∈ C , aj ∈ A(Ck)}
L− = {l−kj | Ck ∈ C , aj ∈ A(Ck)}

(6.6.1)

such that we can reduce any subtyping statement between views to inequal-
ities between trees. More exactly, we want to prove:

r v s ⇐⇒
∧
Ci∈C

s+
i v r

+
i ∧ r−i v s

−
i (6.6.2)

Definition 6.6.1 Let r ∈ V C . We define the function expand(r) = (~r+, ~r−),
where r+

i and r−i are defined coinductively as follows. Let Ci ∈ C and
Ck ∈ C and aj ∈ A(Ck).

♦
(
r+
i

)
= ♦(Cri)

l+kj(r
+
i) = Aget(Crk, aj)

+
i

l−kj(r
+
i) = Aset(Crk, aj)

−
i

♦
(
r−i
)

= 0

l+kj(r
−
i) = Aget(Crk, aj)

−
i

l−kj(r
−
i) = Aset(Crk, aj)

+
i

Notice that expand is an injective function. Fig. 6.12 shows a representation
of the reduction applied to the view rich, assuming that the only class in
the program is Cons, where g represents Cons.next. get and s represents
Cons.next. set.

135

rich =⇒ rich+ rich−

1

1

1

...
...

1

...
...

g s

1

1

...
...

1

...
...

g s

g s
1

1

1

...
...

0

...
...

g s

0

0

...
...

1

...
...

g s

g s

,

0

0

0

...
...

1

...
...

g s

1

1

...
...

0

...
...

g s

g s

Figure 6.12: View rich and how it is reduced to the infinite trees rich+ and
rich−.

In this context it is useful to define positive and negative infinite trees.

Definition 6.6.2 Let t ∈ TLD.

1. We say that t is positive if for each l+ ∈ L+ holds l+(t) is positive
and for each l− ∈ L− holds l−(t) is negative.

2. We say that t is negative if ♦(t) = 0 and for each l+ ∈ L+ holds l+(t)
is negative and for each l− ∈ L− holds l−(t) is positive.

It is clear that if expand(r) = (~r+, ~r−), then r+
i is positive and r−i is negative.

In the following two lemmas, we prove the required property (6.6.2).

Lemma 6.6.3 Let r, s ∈ V C and r v s and let (~r+, ~r−) = expand(r) and

(~s+, ~s−) = expand(s). Then:

1. s+
i v r

+
i for all i.

2. r−i v s
−
i for all i.

Proof. Simultaneously by coinduction.

1. • We show
♦(si+) ≤ ♦(ri+) ⇐⇒
♦(Csi) ≤ ♦(Cri)

which follows by r v s.
• We show

l+kj(si
+) v l+kj(ri

+) ⇐⇒
Aget(Csk, aj)

+
i v Aget(Crk, aj)

+
i

which follows by the coinduction hypothesis 1., because Aget(Crk, aj) v
Aget(Csk, aj) by assumption.

136

• We show
l−kj(si

+) v l−kj(ri
+) ⇐⇒

Aset(Csk, aj)
−
i v Aset(Crk, aj)

−
i

which follows by the coinduction hypothesis 2., because Aset(Csk, aj) v
Aset(Crk, aj) by assumption.

2. • We show
♦(ri−) ≤ ♦(si−) ⇐⇒
0 ≤ 0

which follows trivially.

• We show
l+kj(ri

−) v l+kj(si
−) ⇐⇒

Aget(Crk, aj)
−
i v Aget(Csk, aj)

−
i

which follows by the coinduction hypothesis 2., because Aget(Crk, aj) v
Aget(Csk, aj) by assumption.

• We show
l−kj(ri

−) v l−kj(si
−) ⇐⇒

Aset(Crk, aj)
+
i v Aset(Csk, aj)

+
i

which follows by the coinduction hypothesis 1., because Aset(Csk, aj) v
Aset(Crk, aj) by assumption.

2

Lemma 6.6.4 Let r, s ∈ V C and (~r+, ~r−) = expand(r) and (~s+, ~s−) =
expand(s). Then: s+

i v r
+
i and r−i v s

−
i for all i imply r v s.

Proof. By coinduction.

• We show ♦(Cri) ≥ ♦(Csi)⇒ ♦(ri+) ≥ ♦(si+) which follows by assump-
tion.

• We show Aget(Crk, aj) v Aget(Csk, aj), which follows by the coinduction
hypothesis, because by assumption we have:

l+kj(si
+) v l+kj(ri

+), l+kj(ri
−) v l+kj(si

−) ⇐⇒
Aget(Csk, aj)

+
i v Aget(Crk, aj)

+
i , Aget(Crk, aj)

−
i v Aget(Csk, aj)

−
i

• We show Aset(Csk, aj) v Aset(Crk, aj), which follows by the coinduction
hypothesis, because by assumption we have:

l−kj(si
+) v l−kj(ri

+), l−kj(ri
−) v l−kj(si

−) ⇐⇒
Aset(Csk, aj)

−
i v Aset(Crk, aj)

−
i , Aset(Crk, aj)

+
i v Aset(Csk, aj)

+
i
2

137

The views defined in Section 3.2 (r1 ∨ r2, r1 ∧ r2, r1 ⊕ r2, , r1 � r2) can be
reduced to infinite trees with the previous reduction.

Lemma 6.6.5 Let r1, r2 ∈ V C . Then:

1. (r1 ∨ r2)+ = r+
1 ∧ r

+
2 .

2. (r1 ∧ r2)+ = r+
1 ∨ r

+
2 .

3. (r1 ∨ r2)− = r−1 ∨ r
−
2 .

4. (r1 ∧ r2)− = r−1 ∧ r
−
2 .

Proof. Simultaneously by coinduction. We show the first item for an illus-
tration.

• We show

♦
(
(r1 ∨ r2)+) = ♦(r1

+ ∧ r2
+) ⇐⇒

♦(Cr1∨r2) = min(♦(r1
+),♦(r2

+)) ⇐⇒
min(♦(Cr1),♦(Cr2)) = min(♦(Cr1),♦(Cr2))

• We show

l+kj((r1 ∨ r2)+) = l+kj(r1
+ ∧ r2

+) ⇐⇒
Aget
(
Cr1∨r2k , aj

)+
= l+kj(r1

+) ∧ l+kj(r2
+) ⇐⇒

(Aget
(
Cr1k , aj

)
∨ Aget

(
Cr2k , aj

)
)
+

= Aget
(
Cr1k , aj

)+ ∧ Aget
(
Cr2k , aj

)+
which follows by the coinduction hypothesis 1.

• We show

l−kj((r1 ∨ r2)+) = l−kj(r1
+ ∧ r2

+) ⇐⇒
Aset
(
Cr1∨r2k , aj

)−
= l−kj(r1

+) ∧ l−kj(r2
+) ⇐⇒

(Aset
(
Cr1k , aj

)
∧ Aset

(
Cr2k , aj

)
)
−

= Aset
(
Cr1k , aj

)− ∧ Aset
(
Cr2k , aj

)−
which follows by the coinduction hypothesis 4.

2

Lemma 6.6.6 Let r1, r2 ∈ V C . Then:

1. (r1 ⊕ r2)+ = r+
1 + r+

2 .

2. (r1 � r2)+ = r+
1 ∧ r

+
2 .

3. (r1 ⊕ r2)− = r−1 ∧ r
−
2 .

4. (r1 � r2)− = r−1 + r−2 .

Proof. Simultaneously by coinduction. 2

138

6.6.2 Infinite trees to views

Let P = (C ,main) be an FJEU program and let L be defined as in (6.6.1).
Then, we wish to build a view from two vectors of infinite trees. Given two
vectors ~t and ~t′, with |~t| = |~t′| = |C |, such that each ti, t

′
i ∈ TLD, we define a

function reduce(~t, ~t′), such that the following holds:∧
Ci∈C

t′i v p′i ∧ pi v ti ⇒ reduce(~t, ~t′) v reduce(~p, ~p′) (6.6.3)

Definition 6.6.7 Let ti, t
′
i ∈ TLD, for each Ci ∈ C . We define the function

reduce(~t, ~t′) = r, where r ∈ V C , coinductively as follows.

♦(Cri) = ♦(ti)
�−♦(t′i)

Aget(Crk, aj) = reduce(
−−−→
l+kj(ti),

−−−→
l+kj(t

′
i))

Aset(Crk, aj) = reduce(
−−−→
l−kj(t

′
i),
−−−→
l−kj(ti))

First, we notice that reduce is the left inverse of expand.

Lemma 6.6.8 Let r ∈ V C . Then reduce(expand(r)) = r.

Proof. Let expand(r) = (~r+, ~r−) and reduce(~r+, ~r−) = s. We show r = s by
coinduction.

1. We show
♦(Cri) = ♦(Csi) ⇐⇒

= ♦(ri+) �−♦(ri−) ⇐⇒
= ♦(Cri) �− 0

which follows trivially.

2. We show

Aget(Crk, aj) = Aget(Csk, aj) ⇐⇒
= reduce(

−−−−−→
l+kj(ri

+),
−−−−−→
l+kj(ri

−)) ⇐⇒

= reduce(
−−−−−−−−→
Aget(Crk, aj)

+
i ,
−−−−−−−−→
Aget(Crk, aj)

−
i)

which follows by the coinduction hypothesis.

3. We show

Aset(Crk, aj) = Aset(Csk, aj) ⇐⇒
= reduce(

−−−−−→
l−kj(ri

−),
−−−−−→
l−kj(ri

+)) ⇐⇒

= reduce(
−−−−−−−−→
Aset(Crk, aj)

+
i ,
−−−−−−−−→
Aset(Crk, aj)

−
i)

which follows by the coinduction hypothesis.
2

Next, we prove the required property (6.6.3).

139

Lemma 6.6.9 Let ~t, ~t′, ~p, ~p′ be vectors of infinite trees. Then, if t′i v p′i
and pi v ti for each i, then r = reduce(~t, ~t′) v reduce(~p, ~p′) = s.

Proof.

• We show

♦(Cri) ≥ ♦(Csi)
♦(ti)

�−♦(t′i) ≥ ♦(pi)
�−♦(p′i)

and this follows from ♦(t′i) ≤ ♦(p′i) and ♦(ti) ≥ ♦(pi), which follows by
assumption.

• We show

Aget(Crk, aj) v Aget(Csk, aj) ⇐⇒
reduce(

−−−→
l+kj(ti),

−−−→
l+kj(t

′
i)) v reduce(

−−−−→
l+kj(pi),

−−−−→
l+kj(p

′
i))

which follows by the coinduction hypothesis, because we have by as-
sumption l+kj(pi) v l

+
kj(ti) and l+kj(t

′
i) v l

+
kj(p

′
i).

• We show

Aset(Csk, aj) v Aset(Crk, aj) ⇐⇒
reduce(

−−−−→
l+kj(p

′
i),
−−−−→
l+kj(pi)) v reduce(

−−−→
l+kj(t

′
i),
−−−→
l+kj(ti))

which follows by the coinduction hypothesis, because we have by as-
sumption l+kj(t

′
i) v l

+
kj(p

′
i) and l+kj(pi) v l

+
kj(ti).

2

The previous property holds when reduce is applied to any two vectors of
trees. The following property, however, holds only when reduce is applied to
a vector of positive trees and a vector of negative trees.

Lemma 6.6.10 Let ~t, ~t′, ~p, ~p′ be vectors of infinite trees, where each ti, pi is
positive and each t′i, p

′
i is negative. Then:

1. reduce(~t, ~t′)⊕ reduce(~p, ~p′) = reduce(
−−−−→
ti + pi,

−−−→
t′i ∧ p′i).

2. reduce(~t, ~t′)� reduce(~p, ~p′) = reduce(
−−−→
ti ∧ pi,

−−−−→
t′i + p′i).

Proof. Simultaneously by coinduction. 2

140

6.6.3 Subtyping and arithmetic constraints to systems of
constraints

Now we are ready to present the reduction from subtyping and arithmetic
constraints to systems of constraints. The reduction is based on the reduc-
tion from views to infinite trees and on the reduction from infinite trees to
views, which we described in the previous sections.

Given a conjunction of subtyping and arithmetic constraints C, for each
view variable v ∈ Vars(C) and class Ci ∈ C , we introduce view variables v+

i

and v−i . Moreover, we reduce each subtyping constraint Cvexp <: Dvexp′ to
an FJEU subtyping statement C <: D and the constraints vexp′+i v vexp+

i

and vexp−i v vexp′−i , where vexp+
i and vexp−i are defined inductively1 in

Fig. 6.13. Further, we require that each value for the variable v+
i must be

a positive tree and that each value for the variable v−i must be a negative
tree. Here we do not specify how we ensure this; we shall see later how we
make sure that this requirement holds when solving systems of constraints
by using the algorithm from Fig. 6.11.

We also reduce each linear arithmetic constraint ae1 ≤ ae2 to ae+
1 ≤ ae+

2 ,
where ae+ is also defined inductively in Fig. 6.13. Then, based on those
reductions, we build Ctree, a system of constraints, and Cclass, a conjunction
of FJEU subtyping statements (Fig. 6.13).

Notice that we assume that all the subtyping constraints are of the form
Cvexp <: Dvexp′ , despite of the fact that constraints over views; that is,
constraints of the form vexp v vexp′ are also allowed. We ignore this fact
here for ease of notation; we can always extend constraints over views to
equivalent subtyping constraints by using the same class as a base type on
both sides of the constraint. Equalities over views (vexp1 = vexp2) are also
allowed, but they stand for the two subtyping constraints vexp1 v vexp2 and
vexp2 v vexp1.

We also assume that the arithmetic constraints are of the form ae1 ≤ ae2,
although constraints of the form ae1 ≥ ae2 are allowed as well. But it is clear
how to bring those constraints into this canonical form: ae1 ≤ ae2 ⇐⇒
ae2 ≥ ae1.

1We define (v ⊕ v′)−i to be v−i ∧v
′−
i , although we have not defined an expression te1∧te2.

However, since expressions v1⊕v2 occur only on the right hand side of constraints (Fig. 5.2),
then a constraint u v v ⊕ v′ reduces to the constraint u−i v v

−
i ∧ v

′
i
−

, which is equivalent
to u−i v v

−
i and u−i v v

′
i
−

, by the l.u.b. property.

141

vexp+
i vexp−i

Aget(Cvk , aj)
+

i = lkj0(v+
i)

Aset(Cvk , aj)
+

i = lkj1(v−i)

(v ⊕ v′)
+
i = v+

i + v′
+
i

Aget(Cvk , aj)
−
i = lkj0(v−i)

Aset(Cvk , aj)
−
i = lkj1(v+

i)

(v ⊕ v′)−i = v−i ∧ v
′−
i

ae+

p+ = p
n+ = n

♦(Cvi)+ = ♦
(
v+
i

)
(ae + ae′)

+
= ae+ + ae′

+

C → (Ctree, Cclass)

C =
∧
k(C

vexpk
k <: D

vexp′k
k) ∧

∧
j(aej ≤ ae′j) →

Ctree =
⋃
k,i{(vexp

′+
ki v vexp+

ki), (vexp
−
ki v vexp′

−
ki)},

⋃
j{ae

+
j ≤ ae′

+
j } and

for each v ∈ Vars(C) holds v+
i is positive and v−i is negative.

Cclass =
∧
k Ck <: Dk

Figure 6.13: Reducing a conjunction of subtyping and arithmetic constraints
to a system of constraints.

Building a satisfying valuation for a system of constraints

When we are given a conjunction of subtyping and arithmetic constraints C
and a valuation that satisfies the constraints, we can build another valuation
in such a way that, if we reduce C to a system of constraints Ctree, the new
valuation satisfies Ctree.

Definition 6.6.11 Let π = (πv, πa) be a valuation from view variables to
views and arithmetic variables to numbers. Then, set

dom(π+
i) = {v+

ji ∈ X | for each vj ∈ dom(π) and each Ci ∈ C}

and set π+
i (v+

ji) = r+
ji, if π(vj) = r. Analogously set

dom(π−i) = {v−ji ∈ X | for each vj ∈ dom(π) and each Ci ∈ C}

and set π−i (v−ji) = r−ji, if π(vj) = r. Finally, set π+/− = (
⋃
i π

+
i ∪

⋃
i π
−
i , πa).

142

Lemma 6.6.12 Let vexp be a view expression and exp be an arithmetic
expression and π be a valuation. Then

1. π+/−(vexp+
i) = π(vexp)+

i .

2. π+/−(vexp−i) = π(vexp)−i .

3. π+/−(ae+) = π(ae).

Proof. 1. and 2. Simultaneously by induction on vexp.

1. Case vexp = v. We show π+/−(v+
i) = π(v)+

i , which follows by defini-
tion of π+/−.

Case vexp = Aget(Cvk, aj). We have

π+/−(Aget(Cvk, aj)
+
i) =Fig. 6.13 π+/−(l+kj(v

+
i))

= l+kj(π
+/−(v+

i))

=I.H. 1. l+kj(π(v)+
i)

=Def. 6.6.1 Aget
(
C
π(v)
k , aj

)+

i

= π(Aget(Cvk, aj))
+
i

Case vexp = Aset(Cvk, aj). Similar.

Case vexp = v1 ⊕ v2. We have

π+/−((v1 ⊕ v2)+
i) =Fig. 6.13 π+/−(v1

+
i + v2

+
i)

= π+/−(v1
+
i) + π+/−(v2

+
i)

=I.H. 1. π(v1)+
i + π(v2)+

i

=Lem. 6.6.6 (π(v1)⊕ π(v2))+
i

= π(v1 ⊕ v2)+
i

2. Very similar to the previous case.

3. By induction on ae.

2

143

Lemma 6.6.13 Let π be a valuation and let Cvexp <: Dvexp′ be a subtyping
constraint and ae ≤ ae′ be an arithmetic constraint and v be a view variable.

1. If π |= Cvexp <: Dvexp′ then π+/− |= (vexp′+ v vexp+) and
π+/− |= (vexp− v vexp′−) and C <: D.

2. If π |= ae ≤ ae′ then π+/− |= ae+ ≤ ae′+.

3. π+/−(v+
i) positive and π+/−(v−i) is negative.

Proof.

1. Let π(vexp) v π(vexp′). We show

π+/−(vexp′+) v π+/−(vexp+) and

π+/−(vexp−) v π+/−(vexp′−) ⇐⇒ Lem. 6.6.12

π(vexp′)+ v π(vexp)+ and

π(vexp)− v π(vexp′)−

which follows by Lemma 6.6.3.

2. Follows by Lemma 6.6.12, item 3.

3. Follows by definition of π+/−.

2

Building a satisfying valuation for a conjunction of constraints

Now we wish to give a satisfying valuation for a conjunction of subtyping
and arithmetic constraints, based on a valuation that satisfies a system of
constraints.

Definition 6.6.14 Let π = (πt, πa) be a valuation where πt is a map from
tree variables to trees and πa is a map from arithmetic variables to numbers.
Moreover let V be a set of view variables such that

dom(πt) = {v+
i , v

−
i | v ∈ V}

Then, we set dom(πv) = V and set

πv(v) = reduce(
−−−−→
πt(v

+
i),
−−−−→
πt(v

−
i))

Finally, set πv = (πv, πa).

144

Lemma 6.6.15 Let vexp be a view expression and ae be an arithmetic
expression and let π be a valuation such that for each v ∈ Vars(vexp) ∪
Vars(ae) holds π(v+

i) is a positive tree and π(v−i) is a negative tree. Then:

1. πv(vexp) = reduce(
−−−−−−→
π(vexp+

i),
−−−−−−→
π(vexp−i)).

2. πv(ae) = π(ae+
i).

Proof.

1. By induction on vexp.

Case vexp = v. We show πv(v) = reduce(
−−−−→
πt(v

+
i),
−−−−→
πt(v

−
i)), which fol-

lows by definition of πv.

Case vexp = Aget(Cvk, aj). We have

πv(Aget(Cvk, aj)) = Aget
(
C
πv(v)
k , aj

)
=I.H. Aget

(
C

reduce(π(v+i),π(v−i))
k , aj

)
=Def 6.6.14 reduce(

−−−−−−−→
l+kj(π(v+

i)),
−−−−−−−→
l+kj(π(v−i)))

=Fig 6.13 reduce(
−−−−−−−−−−−→
π(Aget(Cvk, aj)

+

i),
−−−−−−−−−−−→
π(Aget(Cvk, aj)

−
i))

Case vexp = Aset(Cvk, aj). Similar.

Case vexp = v1 ⊕ v2. We have

πv(v1 ⊕ v2) = πv(v1)⊕ πv(v2)

=I.H. reduce(
−−−→
π(v+

1i),
−−−→
π(v−1i))⊕ reduce(

−−−→
π(v+

2i),
−−−→
π(v−2i))

=Lem 6.6.10 reduce(
−−−−−−−−−−→
π(v+

1i) + π(v+
2i),
−−−−−−−−−−→
π(v−1i) ∧ π(v−2i))

=Fig 6.13 reduce(
−−−−−−−−−→
π((v1 ⊕ v2)

+
i),
−−−−−−−−−→
π((v1 ⊕ v2)

−
i))

2. By induction on ae.

Case ♦(Cv). We have

πv(♦(Cvi)) = ♦
(
C
πv(v)
i

)
=Def. 6.6.14 ♦

(
C

reduce(π(v+
i),π(v−i))

i

)
=Def. 6.6.7 ♦

(
π(v+

i)
)

�−♦
(
π(v−i)

)
=assumption ♦

(
π(v+

i)
)

�− 0
= ♦

(
π(v+

i)
)

= π(♦
(
v+
i

)
)

2

145

Lemma 6.6.16 Let C be a conjunction of subtyping and arithmetic con-
straints and let π be a valuation such that, for each v ∈ Vars(C) holds π(v+

i)
is positive and π(v−i) is negative.

1. Let vexp v vexp′ be a constraint in C. Then, if π |= {vexp′+i v
vexp+

i , vexp−i v vexp′−i }, then πv |= vexp v vexp′.

2. Let ae ≤ ae′ be a constraint in C. Then, if π |= ae+ ≤ ae′+ then
πv |= ae ≤ ae′.

Proof.

1. Follows by Lemma 6.6.15 and Lemma 6.6.9.

2. Follows by Lemma 6.6.15.
2

Theorem 6.6.17 (Soundness and completeness of the reduction)
Let C be a conjunction of subtyping and arithmetic constraints. Then there
exists a valuation π with π |= C iff there exists a valuation π′ with π′ |= Ctree
such that, for each v ∈ Vars(C) holds π′(v+

i) is positive and π′(v−i) is negative
and Cclass holds.

Proof.

Case “⇒” Follows by Lemma 6.6.13.

Case “⇐” Follows by Lemma 6.6.16.
2

6.6.4 Algorithm for solving subtyping and arithmetic con-
straints

In this section we shall present a heuristic algorithm for solving a conjunction
of subtyping and arithmetic constraints, by first reducing the constraints to
systems of constraints, and then applying the heuristic algorithm for solving
systems of constraints, described in Section 6.5.4. The algorithm consists of
the steps shown in Fig. 6.14.

First, we reduce the conjunction of subtyping and arithmetic constraints
C to the system of constraints Ctree and the set of subtyping judgements
Cclass. Then, we create a set of negative variables X− and add each v−i to it.

For proving the soundness of the reduction (Theorem 6.6.17) we require
that the values for the positive tree variables v+

i are positive trees and that
the values for the negative tree variables v−i are negative trees. Recall that
an infinite tree is positive if some of its subtrees are positive (the ones that
we obtain by applying the labels in L+), and all other subtrees are negative.
Moreover, a tree is negative if its root node is labelled with the number 0, and
moreover, some of its subtrees are negative (again, the ones that we obtain

146

Heuristic algorithm for solving a conjunction of constraints C.

1. Create Ctree and Cclass.

2. Build a set X− of negative tree variables; add each v−i to X−, where v ∈
Vars(C).

3. Eliminate variables from Ctree (steps 1. and 2. from Fig. 6.11) and try to
create linear loops (step 3. from Fig. 6.11)). For each new variable z that is

created by the rule (.Elim+/−) (or rule (. toLinearLoop)), if we substitute a
negative path with z, then add z to X−. Moreover, for each new arithmetic
variable λ that is created in the rule (. Elim+/−) (or rule (. toLinearLoop)),
if we substitute ♦(x) with z, and x ∈ X−, then add the constraint λ = 0 to
Ctree.

4. Obtain a tree schema Ts by applying the step 4. from Fig. 6.11.

5. Create ∆Ts(Ctree) by iteration, where in each iteration step, whenever we
substitute an atomic expression tae with a variable x, if tae is a negative
path, we add x to X−.

6. For each variable x ∈ X−, add the constraint ♦(x) = 0 to ∆Ts(Ctree), and

obtain ∆
+/−
Ts (Ctree).

7. Continue with items 6. and 7. from Fig. 6.11, using the extended set

∆
+/−
Ts (Ctree), and obtain a valuation π.

Figure 6.14: Heuristic algorithm for solving a conjunction of subtyping and
arithmetic constraints C.

by applying the labels in L+), and all others are positive. Thus, we can
force infinite trees to be positive or negative by requiring the appropriate
nodes to be labelled with 0. For instance, we must require ♦

(
v−i
)

= 0
and ♦

(
l−(v+

i)
)

= 0, and so on. That is why we modify the elimination
and iteration procedures and the procedure for creating linear loops slightly
(Fig. 6.14): Whenever we unfold the constraints over trees, or create new
tree variables, we need to keep track of which new variables or paths are
negative.

Then, we enrich ∆Ts(Ctree) with the constraints ♦(x) = 0, for each neg-
ative variable x ∈ X−. Finally, we continue with the steps six and seven
from the algorithm from Fig. 6.11; that is, we attempt to solve the set of
constraints ∆Ts(Ctree) enriched with the negativity constraints, using an LP-
Solver. If we obtain a valuation π, we then create regular trees for the tree
variables, by combining π with the tree schema.

Theorem 6.6.18 (Soundness of the algorithm from Fig. 6.14)
Let C be a conjunction of subtyping and arithmetic constraints and let π be
the valuation given by the algorithm described in Fig. 6.14 and let Cclass hold.
Then, there exists π′ ⊇ π with π′ |= C.

147

Proof sketch. By Theorem 6.5.21 we have there exists π′ ⊇ π such that
π |= Ctree. Moreover, the fact that for each v ∈ Vars(C) holds π′(v+

i) is
positive and π′(v−i) is negative follows by modifications to the elimination
and iteration procedures and the procedure for creating linear loops and
by the extension of ∆Ts(Ctree) with the negativity constraints. Then, by
Theorem 6.6.17, π′v |= C. 2

148

Chapter 7

Prototype Implementation

This chapter describes a prototype implementation of the algorithms pre-
sented in this thesis. Section 7.1 describes a memory aware interpreter for
FJEU programs. Section 7.1.1 shows how to compile and to use the tool,
and Section 7.1.2 describes the analyser module with all its sub-modules.
Finally, Section 7.2 describes various programs that we could successfully
analyse with the tool.

7.1 Memory aware interpreter for FJEU programs

I have implemented a tool in OCaml for type checking and evaluating FJEU
programs. The main module of the tool is an analyser of the heap-space
requirements of the code, which is based on the algorithms presented in this
thesis. The tool uses the result of the analysis for building an optimised
heap for evaluating the programs; that is, it creates a heap with a size equal
to the size predicted by the analysis.

The tool assumes that each FJEU program contains a main method
which has one parameter of type List. It also assumes that the program con-
tains the classes List, Cons and Nil which define singly linked lists. Further,
the tool assumes that it is given an input file for the program execution.
The interpreter then creates a singly linked list (one node for each row of
the input file) and saves it in the heap before it starts executing the program.

Thus, if we obtain an upper bound to the heap-space consumption of
the main method, as a function of the length of main’s argument, then it is
also an upper-bound to the heap-space requirements of the program, as a
function of the size of the input file.

The analyser component of the tool can analyse methods whose heap-
space consumption is a linear function on the size of its arguments. When
it analyses the main method of a program, it delivers two nonnegative real
numbers a and b, which shall mean that the program can be evaluated with

149

Memory aware interpreter for FJEU programs

Parser
Sect. 2.2.1 (Fig. 2.1)

LNF transformer
Sect. 2.2.1

Inferrer of FJEU types
Sect. 2.2.3 (Fig. 2.3)

Analyser
Sect. 5.4 (Fig. 5.6)

Interpreter
Sect. 2.3.2

 (a, b)

Parser
Sect. 2.2.1 (Fig. 2.1)

LNF transformer
Sect. 2.2.1

Inferrer of FJEU types
Sect. 2.2.3 (Fig. 2.3)

Analyser
Sect. 5.4 (Fig. 5.6)

Interpreter
Sect. 2.3.2

FJEU program: prog.fjeu

Guaranteed execution with no memory errors with

 size of heap = a + b * | input file |

Input file: input.txt

 (a, b)

Figure 7.1: Schematic structure of the implementation of a memory aware
interpreter for FJEU programs.

no memory errors with a heap of size at least

a+ b · |input file|

The tool consists of 8473 lines of code and is organised in different modules
which we shall describe in the following. Fig. 7.1 shows the modules and
how they interact.

Parser The parser module consists of a parser for FJEU programs, built
with the help of the parser-generator Ocamlyacc1; and a scanner, built
with the scanner-generator Ocamllex2. The parser takes an FJEU file
and delivers a list of class declarations. It accepts FJEU programs
defined by the grammar described in Fig. 2.1. However, it also accepts
programs that are not in let normal form, because we also provide a
module for transforming expressions into let normal form. Moreover, it
accept not only classes as types for variables and fields, but also basic

1http://plus.kaist.ac.kr/∼shoh/ocaml/ocamllex-ocamlyacc/ocamlyacc-tutorial
2http://plus.kaist.ac.kr/∼shoh/ocaml/ocamllex-ocamlyacc/ocamllex-tutorial/

150

data types, such as int, string and bool. Further, the parser accepts
arithmetic expressions, such as x+y or x∗y, and boolean expressions,
such as x == y or x < y.

LNF transformer This module takes a list of class declarations and de-
livers a modified version of this list, where all the expressions in the
methods bodies are in let normal form. The transformation consists of
creating let expressions for each sub-expression in nested expressions.
For instance, the expression x.a.b is transformed into let y = x.a in y.b.
Notice that, although this transformation increases the size of the pro-
gram, it does not change its heap-space requirements.

Inferrer of FJEU types The inferrer module takes a list of class declara-
tions, where all expressions are in let normal form, and infers the types
for the variables in let expressions, by using the algorithm described
in Fig. 2.3 of Section 2.2.3.

Analyser The analyser module takes a list of class declarations, where all
the expressions are in let normal form, and all the variables in let
expressions are annotated with a type, and returns two nonnegative
real numbers a and b. These numbers are the parameters of the linear
function f(n) = a + b · n that describes the heap-space consumption
of the program, where n is the length of the input file. The module
implements the algorithms for constraint generation and solving de-
scribed in the previous chapters. It shall be described in detail in the
following section.

Interpreter The interpreter module takes a list of class declarations, the
parameters a and b delivered by the analyser, and an input file. It then
builds a heap of size a + b · |input file|; the soundness of the analysis
guarantees that a heap of that size will be sufficient for evaluating the
program with no risk of running out of memory. This module imple-
ments the operational semantics rules for FJEU programs described
in Fig. 2.5 of Section 2.3.2. As described in that section, the inter-
preter also keeps counters (non-negative natural numbers m and m′)
for keeping track of the number of unused heap units before and after
evaluating an expression, respectively. This way it can display the real
amount of heap units used by the program, so that it can be compared
to the amount predicted by the analysis.

7.1.1 Usage

The OCaml files that compose the analyser and interpreter tool can be
compiled using a makefile that we also provide. If you execute the command

> make

151

then the files will be compiled with the OCaml native-code compiler ocamlopt3,
which creates the executable file raja.

We provide various command line options that allow to customise the
tool. For type checking, analysing and evaluating an FJEU program you
can execute the following command:

> ./raja <fjeu file> -d <working directory> -i <input file>

The tool will search for the given FJEU file in the given working directory.
If you only wish to analyse the program but not to evaluate it, then you can
achieve this with the command:

> ./raja <fjeu file> -d <working directory> -a

On the other hand, if you only wish to type check and to evaluate the
program, but not to analyse it, then you can type:

> ./raja <fjeu file> -d <working directory> -i <input file> -r

We provide more command line options: If the option -h is provided, and
the option -a is not provided; that is, the program will be evaluated, then
the last heap configuration will be printed. Finally, if the option -help is
provided, a list of options will be displayed.

You can download the source code from the RAJA web site4.

7.1.2 Analyser module

In this section we shall explain the analyser module in more detail. This
module is the most complex one, comprising several sub-modules. Fig 7.2
shows the sub-modules and how they relate.

Constraint generator The first step of the analysis is the generation of
subtyping and arithmetic constraints. This module implements the
constraint generation rules described in the Figures 5.2 and 5.3 from
Section 5.3. As mentioned before, in the implementation we admit
basic data types as well as class types. Thus, in the rules for generating
constraints, we need to check whether the types involved are class types
or not, and only when they are class types, we take them into account
when collecting constraints.

Optimisations. For increasing the efficiency of the analysis, it is useful
to eliminate tree variables from the constraints as soon as possible;
that is, as soon as the generator creates all the constraints that con-
tain one particular variable, it can eliminate that variable from the

3http://caml.inria.fr/, OCaml version 3.11.2.
4http://raja.tcs.ifi.lmu.de/download

152

Analyser of the heap space requirements of FJEU programs

Constraint generator
Sect. 5.3.1 (Fig. 5.2, Fig. 5.3)

Eliminator of tree variables
Sect. 6.4 (Fig. 6.4)

Reductor of tree constraints
to arithmetic constraints

Sect. 6.5

Reductor of subtyping constraints
to tree constraints

Sect. 6.6.3

LP-Solver

Constraint generator
Sect. 5.3.1 (Fig. 5.2, Fig. 5.3)

Eliminator of tree variables
Sect. 6.4 (Fig. 6.4)

Reductor of tree constraints
to arithmetic constraints

Sect. 6.5

Reductor of subtyping constraints
to tree constraints

Sect. 6.6.3

LP-Solver

FJEU program in LNF and with types for variables in let expressions:
 prog.fjeu

Coefficients of bounding function: (a, b)

Figure 7.2: Schematic structure of the implementation of the analyser.

constraints. For instance, in the rule (∇Let) it can eliminate the vari-
ables u, ~w and ~u. This reduces the amount of variables and the amount
of constraints. Still, there is one problem: the rules generate subtyping
constraints, but the elimination procedure works for tree constraints.
The solution is to adapt the constraint generation rules, such that they
reduce the subtyping constraints to tree constraints, and deliver those.
So, the polymorphic RAJA method types in our implementation con-
sist of view and arithmetic variables and systems of constraints (tree
constraints and arithmetic constraints). We relate the view variables
to the constraints over trees by implementing tree variables as tuples
(v, cl, sign), where v is a view variable, cl is an FJEU class, and sign is
either + or −.

Reductor of subtyping constraints to tree constraints This mod-
ule implements the algorithm described in Fig. 6.13 of Section 6.6.3.
As mentioned before, the constraint generator module uses this module
for reducing subtyping constraints to tree constraints in each rule.

Eliminator of tree variables This module implements the algorithm from
Fig. 6.4 in Section 6.4. The algorithm is not complete, so some vari-
ables cannot be eliminated. However, most variables can be elimi-
nated, which increases the efficiency of the analysis significantly. For
this reason, the main factor in the complexity of the analysis is the
complexity of the elimination procedure.

Optimisations. For choosing which rule should be applied, the elim-

153

inator needs to check whether the variable to be eliminated appears
positively or negatively in each of the tree and arithmetic constraints.
However, if an arithmetic constraint contains no tree expressions, the
eliminator does not need to check it. Thus, for avoiding unnecessary
checks, we keep the arithmetic constraints in two sets: one set for
the constraints that contain tree expressions, and another set for the
constraints that do not contain tree expressions.

There is certainly room for more optimisations in this procedure.

Reductor of tree constraints to arithmetic constraints After the
constraints of all methods in the program have been generated, the
next step of the analysis is to solve the system of constraints from the
polymorphic RAJA method type of main. For doing that, we follow
the heuristic algorithm described in Fig. 6.11 from Section 6.5.4; that
is, we build a tree schema and obtain a set of arithmetic constraints
by the iteration procedure.

LP-Solver The last step consists of solving the arithmetic constraints, by
using an LP-Solver. The module LP-Solver consists of a simple inter-
face to the LP-Solver lp_solve5. We build a model file model.lp,
which contains the arithmetic constraints in a very readable format
and call lp_solve with it. The LP-Solver returns either a valuation π
in the file output.txt, or returns that the problem is infeasible.

Because our algorithm is not complete, the latter case can mean differ-
ent things: either that we were not able to find the right tree schema,
or that the heap-space consumption of the program cannot be de-
scribed as a linear function, or that the program is not typeable in
our type system RAJAm , or that there is a memory leak; that is,
there is a programming error and the program needs infinite amount
of heap-space.

On the other hand, if the LP-Solver returns a valuation, then we can
obtain the two parameters a and b as follows. Assume that the poly-
morphic RAJA method type of main is defined by:

∀vself , vl, vres ∃~w~t . Cvself ; Listvl q1/q2−−−→Dvres & C

where C and D are classes from the FJEU program. Then, the arith-
metic constraints that the LP-Solver tried to solve contain the vari-
ables vl+Cons, vl+Nil, vl

+
List and q1 and q2. The variable vl

+
cl with cl ∈

{Cons, List, Nil} corresponds to the arithmetic expression ♦((vl, cl,+)).
Thus, by Theorem 6.6.17, a valuation πv where πv(vl) = rl, and rl is

5http://lpsolve.sourceforge.net/5.5/

154

given by:
♦(Consrl) = π(vl+Cons)
♦(Listrl) = π(vl+List)
♦(Nilrl) = π(vl+Nil)

Aget(Consrl, next) = rl

and πv(qi) = π(qi) satisfies the subtyping and arithmetic constraints
of main. Thus, we can set the parameters n and m as follows:

a := π(q1) + π(vl+Nil) b := π(vl+Cons)

and the soundness of the analysis follows by Corollary 3.3.12. More-
over, to ensure that the upper bound is as tight as possible, we set the
objective function for the LP-Solver as follows:

min : vl
+
Cons

That way, if the heap-space consumption of the program is constant,
the valuation will return π(vl

+
Cons) = 0, and the parameters n and m

will build a constant function.

Notice that we ignore the view variable vself in the analysis because
it corresponds to the variable this, which cannot be used in the main
method.

7.2 Experimental results

Fig. 7.3 shows some programs that we could analyse with our tool. For each
example, we could solve the constraints and resultantly provide a (linear)
upper bound for its heap-space requirements.

The experiments were performed on a 2.20GHz Intel(R) Core(TM)2 Duo
CPU laptop with 2GB RAM. The runtime of the analysis varied from 0.2s
to about 10 minutes on a program of 908 LoC.

The elimination of tree variables is the step that takes most of the time;
we believe that there is room for improvement. We included the columns
Nr. of variables, that shows the overall number of tree variables created
when analysing the given program, and the column Nr. of variables after
elimination, which shows the number of tree variables in the constraints
of the main method after eliminating all the variables that can be elimi-
nated. These data should illustrate that the elimination procedure reduces
the amount of tree variables – and consequently the amount of constraints
– significantly. Whereas the number of tree variables that were generated
is proportional to the size of the programs, the number of variables that
remain after the elimination reflects the amount of loops in the constraints
and the amount of variables in the loops.

155

Program LoC
Heap
space

Nr. of
variables

Nr. of variables
after elimination

Run
time

Copy 37 1 + n 362 8 0.2s

CircList 56 1 + n 1176 14 1.6s

ConstAppend 60 2 + 2n 666 16 0.7s

InsSort 66 2 + n 860 16 1.9s

DList 70 3 + n 880 14 1.2s

Append 80 2 + n 1512 20 3s

MergeSort 127 1 3038 22 10.3s

BankAccount 200 2 + 8n 3710 14 6.3s

Bank 908 11 + 6n 24038 67 9.8 min

Figure 7.3: Experimental results. The column LoC represents the lines of
code of the program, the column Heap-space shows the result of the analy-
sis: the prediction of the required size of the heap, which is in all cases equal
to the actual heap-space consumption of the program. Nr. of variables
represents the number of tree variables that the program creates when gen-
erating constraints. Nr. of variables after elimination represents the
number of tree variables that appear in the constraints of main after elim-
inating all possible variables. Run time represents the run time of the
analysis. n represents the size of the input.

The programs consist of list manipulations including copying a list (Copy),
sorting a list (InsSort, MergeSort), converting a list into a doubly-linked list
(DList), or to a circular list (CircList), or to a singly-linked list with a link to
the last element (ConstAppend) or to a list of objects (BankAccount, Bank).
All bounds are exact in our experiments although our soundness result only
ensure an upper bound. There is a demo website where all the examples
can be analysed and downloaded6. In the following we shall describe the
programs in more detail.

Copy The program Copy has been our running example in this thesis and
was described in Fig. 3.1. It takes a list and returns a copy of the list.
It creates a new Cons object for each node of the list and a Nil object.
Hence it needs n+ 1 heap-cells for its execution.

Append We described the program Append in Fig. 3.2. In that program,
the main function takes two lists and returns the list obtained by ap-
pending the second list to the first. The program we analysed is slightly
different, since our interpreter assumes that main has only one argu-
ment of type List. It takes a list, copies it, and then appends the copy

6http://raja.tcs.ifi.lmu.de

156

to the original list. The program requires 1 + n heap-cells for copying
the list and 1 heap-cell in the append method.

DList This program takes a singly-linked list and creates a doubly-linked
list that contains exactly the elements of the input list. It then creates
a singly-linked list again while it disposes the doubly-linked list. It
creates a DCons object for each node of the input list and two DNil ob-
jects for creating both ends of the doubly-linked list. Later, it creates
a Cons node for each node of the doubly-linked list after it disposes
the corresponding DCons node. Finally, it creates a Nil node. Hence
it needs n+ 3 heap-cells for its execution.

CircList This program takes a singly-linked list and creates a circular list
(a singly-linked list, whose last node is linked to the first one). Then,
it linearises the circular list by adding a link from the last node to a
Nil object. It creates a Cons object for each node of the input list and
a Nil object. Thus, it needs n + 1 heap-cells for its execution. This
program shows that our tool performs well in the presence of circular
data.

ConstAppend The program ConstAppend takes a list and creates two
singly-linked lists with a link to the last node of the list. Then it
appends the second list to the first, which takes constant time due to
the extra link to the last node of the list. The heap-space consumption
of this program is 2 + 2n (1 + n for each new list created).

InsSort The program InsSort implements the well-known sorting algorithm
insertion sort. It takes a list of integers and delivers the sorted list.
For sorting the list, it creates new nodes and inserts them in the right
place in the new list. Thus, it takes 1 +n heap-cells for sorting the list
and 1 heap-cell for creating a Main object. So, in total the program
needs 2 + n heap-cells for its execution.

MergeSort The program MergeSort implements another well-known sort-
ing algorithm: merge sort. The idea of the algorithm is to split the
list in two halves and then to merge the two halves, and to do this re-
cursively. In our implementation, when we split the list in two halves,
we deallocate the original list. So the program only takes constant
heap-space (1 heap-cell). The analysis shows that our tool performs
well in the presence of deallocations.

BankAccount This program and the program Bank show the use of our
tool in programs that contain various interacting objects. The program
BankAccount takes a list of strings, and creates a list of bank accounts,
by processing the elements of the input list. Further, it copies the
list of bank accounts and delivers the copy. For creating a list of

157

bank accounts the program creates an ACons object, a Person object,
a BankAccount object and a SavingsAccount object, taking in total
4n + 1 heap-cells. Moreover, for copying the list, it takes another
4n+ 1 cells. In total, the program requires 8n+ 2 heap-cells.

Bank The program Bank is much larger than the other programs (908
LoC). With this program we wish to show that our tool performs
well when given a rather large program, and that it does not take a
prohibitively large amount of time for the analysis. Of course, there is
room for further performance optimisations.

The program takes a list of strings and creates a list of bank accounts
based on the data from the input list. Moreover, it creates a Bank ob-
ject, which contains a list of bank accounts, a list of savings accounts, a
balance, a transfer fee, an interest rate and a currency converter. Then
it performs various transactions such as transfers and withdrawals from
a fixed deposit. Finally, it sorts the list of bank accounts using merge
sort. Creating the list of bank accounts takes 6n heap-cells, creating
the currency converter takes 8 heap-cells and sorting the list takes 1
cell. Further, the program creates a System object; the class System is
an internal library that contains useful functions. In total, the program
needs 6n+ 11 heap-cells.

158

Chapter 8

Related Work

In this chapter we give an overview of the research related to this thesis.
First, we review works that have similar goals to the work in this thesis, i.e.
automatic resource analysis. These often follow very different approaches to
the type-based approach that we follow in this thesis.

Second, we consider works that are related to this thesis because they
use similar techniques, e.g. precise type systems for capturing program
properties, such as refinement types; or type systems that take aliasing into
account, such as linear types or types-and-capabilities systems.

This chapter is organised as follows. Section 8.1 reviews research re-
lated to resource analysis. Section 8.2 reviews research on refinement types.
Finally, Section 8.3 shows some works on linear types and on types-and-
capabilities systems.

8.1 Resource analysis

The automatic computation of bounds for the resource usage of programs
is a very relevant topic. It has applications specially in embedded and real-
time systems, where resource use is constrained. Moreover, ensuring that
those systems deliver results on time is very important, since failure can lead
to catastrophic consequences.

On the other hand, the problem is undecidable. This means that we
will never find a tool that can analyse precisely and efficiently all programs.
These are the main reasons why the topic has been researched so intensively
in the past years and why so many different approaches to it have been
proposed. The approaches are not directly comparable, since some are par-
ticularly useful for some sort of programs, while others work better for other
kinds of programs.

The problem of analysing the resource usage of imperative and object-
oriented programs is even more difficult because analysing data structures
that are stored in a mutable heap, which are possibly shared and can even
be cyclic, is a hard problem.

159

Tool Paradigm Automatic? Resource Aliasing? GC?
SPEED [GMC09] oo no time yes -
LOOPUS [ZGSV11] imperative yes time no -
aiT [FHL+01] imperative no WCET no -
[PHS10] oo no heap-space no no
COSTA [AAG+07] oo yes generic yes yes
[CNQR05] oo no heap, stack no no
[CNPQ08] oo yes heap, stack no no
[HQLC09] imperative no heap, stack yes no
[Atk11] imperative no generic yes no
[FM11] oo no generic yes no
[MP07] oo no time no -
[BFGY08] oo no peak-memory no yes
RAJA oo yes heap-space yes no

Figure 8.1: Overview of tools for resource usage analysis for imperative pro-
grams. The column Paradigm shows whether the tool is for object-oriented
programs or just for imperative programs. The column Automatic? shows
if the tool is fully-automatic. The column Resource shows the resource
that the tool analyses. Column Aliasing? shows whether the tool takes
aliasing into account. Finally, column GC? shows whether the tool takes
garbage collection into account. This is only applicable if the resource is
heap-space or generic.

In this section we give an overview of the different approaches to resource
analysis that have been proposed in the literature, with a special empha-
sis on the tools that analyse imperative and object-oriented programs. We
also show how the different approaches tackle the problem of analysing pro-
grams with shared mutable data structures. Often they rely on user-defined
assertions, in other cases the tools do not handle programs with shared data
structures. Fig. 8.1 shows an overview of the approaches for imperative
programs.

This section is organised as follows. Section 8.1.1 describes tools based on
abstract interpretation. Section 8.1.2 presents tools that follow the classical
approach of generating and solving recurrence equations. Section 8.1.3 de-
scribes tools based on type systems, as RAJA does. We distinguish between
tools that use sized types and tools that use amortised analysis. Section 8.1.4
shows tools based on separation logic, which aim at analysing programs
with shared mutable data structures. Finally, Section 8.1.5 presents other
approaches.

8.1.1 Abstract interpretation

Abstract interpretation [CC77, CH78] is a powerful technique for static pro-
gram analysis. The technique was first described by Cousot [CC77]:

A program denotes computations in some universe of objects.
Abstract interpretation of programs consists in using that deno-
tation to describe computations in another universe of abstract

160

objects, so that the results of abstract execution give some in-
formation on the actual computations.

Various works on resource analysis based on abstract interpretation have
been proposed in the literature. Wilhelm and Wachter [WW08] presented
a good introduction to abstract interpretation with applications to time
analysis.

Gomez and Liu [GL02] described a time analysis for higher-order func-
tional programs. They built time-bound functions and evaluated them based
on partially known input structures. Hence, this analysis does not provide
a general cost function for all possible inputs, as RAJA does.

Ross [Ros06] developed an automatic time complexity analysis to help
C++ library users in selecting types for use in their programs. Each library
call is replaced by a cost-bound function, which is declared on the C++
Standard’s specification of the libraries. Then, an abstract interpretation
is used to approximate the effects of running the program on any possible
input. The problem tackled by the author is slightly different than the
problem that we study in this thesis, because he does not try to infer resource
bounds on concrete implementations, but uses known complexity functions
given in specifications.

Gulwani et al. [GMC09] developed SPEED, a system for computing
bounds on the number of statements a procedure executes in C++ pro-
grams. The system uses counter variables and user-defined quantitative
functions that are associated with abstract data-structures. Then, a linear
invariant generation tool with support for uninterpreted functions computes
linear bounds on the counter variables. Finally, the bounds on the individ-
ual counter variables are composed to generate non-linear and disjunctive
bounds. In contrast to SPEED, RAJA can compute only linear bounds on
procedures that iterate over a data structure. SPEED is particularly suitable
for computing bounds on loops that iterate over arithmetic variables. On the
other hand, RAJA is fully automatic and does not require any user-input.

More recently, Zuleger et al. [ZGSV11] presented a bound analysis on C
programs based on abstract interpretation. More concretely, they used the
size-change abstraction (SCA), a predicate abstraction domain that consists
of boolean combinations of inequality constraints between integer variables
in disjunctive normal form. They did not handle the problem of aliasing,
but handled memory references using optimistic assumptions.

AbsInt’s aiT [FHL+01] is a successful commercial static analyser for the
worst-case execution time (WCET) of tasks in real-time systems. It analyses
binary executables and takes the cache and pipeline behaviour into account.
It performs a value analysis, a cache analysis and a pipeline analysis using
abstract interpretation; and a path analysis using integer linear program-
ming.

161

Puffitsch et al. [PHS10] applied the techniques used for the analysis
of WCET in real-time systems to bound the worst-case heap allocations of
tasks (WCHAs) of Java programs. Their analysis takes into account the
object layout of the underlying JVM and provides different cost functions
for the heap allocation based on the different object layouts. The results
of their experiments showed that their analysis could find tight bounds for
programs but provided rather pessimistic bounds on programs not designed
for real-time systems.

The main difference between the research on WCET or WCHAs and
ours is the fact that these systems take into account low-level features of
hardware, whereas our analysis abstracts away from concrete memory mod-
els.

8.1.2 Recurrence solving

This section describes systems for computing resource bounds that use the
technique of generating and solving recurrence equations based on the pro-
grams. However, these systems generate the equations by symbolic evalu-
ating the programs, often based on abstract interpretation, and so there is
some overlap between related work here and that in the previous section.

The techniques based on recurrence solving have the advantage that the
bounds they produce are not restricted to a complexity class. On the other
hand, solving recurrences is a difficult task.

The first work on automatic time analysis was that of Wegbreit [Weg75].
His prototype system Metric was capable of analysing Lisp programs by
symbolically evaluating the functions to determine a set of recurrence equa-
tions, and by obtaining closed-form expressions for the execution behaviour
of the functions, after solving the equations. He also described the concept
of assigning cost expressions to program expressions, that describe their cost
under a given measure.

Benzinger [Ben01] described the ACAp system, whose main purpose was
the automatic complexity analysis of functional programs synthesised with
the Nuprl theorem prover [CAA+86]. He followed Wegbreit’s approach: a
symbolic evaluator generated complexity expressions by abstract interpre-
tation of the program; a recurrence generator translated recursive calls into
recurrence equations; a recurrence solver tried to solve the equations. He
used the Mathematica symbolic algebra system [Wol03] for recurrence solv-
ing.

Unnikrishnan and Stoller [US09] applied Wegbreit’s framework to the
analysis of the live heap-space usage of programs in a functional language
with garbage collection. More concretely, their analysis computes heap us-
age of programs in the presence of perfect garbage collection. The recur-
rences generated by the analysis contain the max operator, and they pro-
vided methods for solving them. Their analysis is limited to a first-order

162

functional language with lists as the only data-type. Moreover, they do not
allow mutual recursion in the programs. In contrast, RAJA can analyse
programs that contain any data type and mutual recursion, but does not
handle garbage collection.

The COSTA system by Albert et al. [AAG+07, AAG+12] analyses a
subset of Java bytecode using Wegbreit’s technique. The system trans-
forms the bytecode in an intermediate rule-based representation and applies
a path-length analysis [HPSH06] based on abstract interpretation to infer
size relations among program variables. Then, it obtains automatically cost
relations from the program based on a given cost model. Finally, it tries to
obtain a closed form solution for the cost relations, by using the recurrence
solver PUBS [AAGP11]. Since the system is parametric in the cost model,
it can analyse various resources such as time or heap-space. The group
also used similar techniques to develop a termination analyser [AAC+08].
Moreover, they presented a heap-space analysis which is parametric in the
garbage collector [AGGZ10].

Because the bounds generated by the COSTA system are solutions to
recurrence equations, they are not restricted to a specific complexity class. In
contrast, RAJA can generate only linear bounds. Like RAJA, COSTA does
not require user-annotations. On the other hand, the path-length analysis
performed by COSTA to infer size-relations is sound with the condition that
there is no aliasing and cyclic data, whereas the analysis performed by RAJA
is sound for all programs. The possibility of aliasing between variables has
been integrated in the type system, which implies that the system can also
detect cyclic data, without the need of a shape analysis [SRW02] or an
acyclicity analysis [RS06].

We are interested in investigating the relationship between our tree con-
straints and recurrence equations. Perhaps this will enable us to improve our
algorithm for constraint solving, allowing us to compute non-linear bounds.

8.1.3 Type systems

Sized Types

Sized types are a special kind of dependent types to express bounds on the
sizes of data structures. They were first described by Hughes et al. [HPS96]
for proving properties of reactive systems.

Chin et al. [CNQR05] described a sized type system for characterising
the amount of memory required to execute program components. The type
of each data structure included parameters that characterised its size prop-
erties, using Pressburger arithmetic constraints. The type system is for a
Java-like language similar to FJEU, that contains an expression dispose for
object deallocation, similar to FJEU’s free. They developed a technique for
inserting the dispose expression automatically with the help of alias annota-
tions, which we could possibly adapt to the RAJA system. They required

163

that the objects which are being disposed are non-null. We do not require
this explicitly because, according to the operational semantics of FJEU pro-
grams, the evaluation of a disposed expression stops if the object to be
disposed is null, and our analysis is sound only under the condition that
the expression to be analysed evaluates successfully. The authors provided
a type-checking algorithm and an implementation, but did not treat the
problem of type inference.

More recently, Chin et al. [CNPQ08] inferred linear bounds on the heap
and stack usage of low-level assembly-like programs. The analysis relies on
a Pressburger arithmetic solver and also performs fixpoint analysis for han-
dling loops and recursion. In contrast, our type inference analysis does not
need to perform fixpoint computations because it only handles monomorphic
recursion. On the other hand, unlike RAJA, the system from [CNPQ08] in-
ferred path-sensitive information, which improved the precision of the anal-
ysis. However, they did not track the values of mutable fields.

In his PhD thesis, Vasconcelos [Vas08] described a sized and effect type
system for obtaining upper bounds on the dynamic space usage of functional
programs. He inferred sizes of recursive data types and bounds for the stack
and heap usage of functions using abstract interpretation techniques.

Amortised Analysis

Systems based on amortised analysis, including RAJA, aim at assigning
data structures a non-negative number, called a potential, that they can use
to “pay” for using resources. The total potential used by the input data
structures in the program then gives an upper bound on the resource usage.
Type based methods for amortised analysis use type systems for assigning
and sharing the potential.

The first approach to automatically analyse the heap-space usage of pro-
grams using type-based amortised analysis was presented by Hofmann and
Jost [HJ03]. Jost mentioned in his PhD thesis [Jos10] that this work was the
result of constructing a type inference algorithm for Hofmann’s LFPL type
system [Hof00]. The type inference algorithm in [HJ03] consisted in gen-
erating linear arithmetic constraints that arose from the side conditions of
typing derivations, which were solved by an LP-Solver. The system was able
to compute linear bounds for first-order functional programs automatically.

Campbell [Cam08] studied in his thesis the analysis of stack space of
functional programs using the amortised analysis technique. He expressed
bounds for stack usage in terms of the depth of data structures.

Shkaravska et al. [SvEvK09] developed a size-aware type system that
also used the amortised analysis technique for checking size-dependencies
in first-order functional programs. Their analysis was restricted to shapely
functions, which means that the size of the result is a polynomial in terms
of the argument sizes.

164

Jost et al. [JLS+09] constructed a fully automatic WCET analysis based
on the ideas from [HJ03], by building an amortised analysis system for the
programming language Hume [HM03].

More recently, Jost et al. [JLHH10] extended the amortised analysis
technique to higher-order polymorphic functional programs. Their analysis
was generic in the resource to be analysed and they discussed worst-case ex-
ecution time, stack-space usage and heap-memory consumption. Moreover,
they could also handle arbitrary recursive data-types. However, the system
was still limited to computing linear bounds.

In his PhD thesis, Hoffmann [Hof11] described an automatic analysis
for resource usage of first-order functional programs with lists and binary
trees as the only data types, based on the same techniques. In contrast
to the previous systems, Hoffmann’s system was able to compute polyno-
mial bounds. He annotated types with so called multivariate resource poly-
nomials, a generalisation of non-negative linear combinations of binomial
coefficients. His experiments showed that the amortised approach is very
effective when analysing programs with nested data-types, delivering tight
bounds. However, it is not clear how to extend his technique to higher-order
functional programs with arbitrary data-types.

Hofmann and Jost [HJ06] also applied the amortised analysis technique
to the heap-space analysis of object-oriented programs. Because the type
system aimed at describing object-oriented features like imperative update
and inheritance, it was more complicated than the equivalent type system for
functional programs. As a consequence, they did not provide type inference
but provided only the soundness proof. Later, Hofmann and Rodriguez
[HR09] presented an automatic type-checking algorithm for the system.

Finally, this thesis provides a type inference algorithm for a modified
version of the type system from [HJ06]. The algorithm generates tree and
arithmetic constraints and solves the tree constraints using a heuristic al-
gorithm [HR12]. Moreover, in this thesis I also add polymorphism to the
refined types which enables a modular analysis. However, I restrict the type
inference to handle only programs with monomorphic recursion, to avoid
calculating a fixpoint when analysing recursive functions. Another limita-
tion of the algorithm is that it can only compute linear bounds, but I remark
that this is due to our back-end constraint solver and not a limitation of the
type system itself.

8.1.4 Separation logic

Separation logic [Rey02] is an extension of Hoare logic that facilitates rea-
soning about imperative programs with mutable heap. It is often used to
perform shape analysis in a local way [DOY06]. Various works on resource
analysis based on separation logic have been described.

The system HIP/SLEEK [CDNQ10, CDG11] by Chin et al. is aimed

165

at the automatic verification of properties of heap manipulating programs,
based on separation logic. He et al. [HQLC09] proposed a procedure for
analysing the heap and stack usage of imperative programs by integrating
it in the system HIP/SLEEK. They instrumented the program with explicit
operations over variables heap and stk, which represented the memory usage
behaviour of the original program. Then, they passed the modified program
together with its expected memory specification to HIP/SLEEK. This way
they could verify programs that used shared mutable data structures. It
is remarkable the similarity between their functions for instrumenting heap
space dec hp and inc hp and our rules for constraint generation for the
expressions new ((MNew)) and free ((MFree)), with the main difference
that on object creation we not only count the size of the object but also
its potential. In contrast to RAJA which is fully automatic, this system
relies on user-defined memory usage specifications. Moreover, as shown in
the experiments section (Sect. 7.2), our system is also capable of analysing
programs that use shared mutable data structures such as doubly-linked
lists.

Atkey [Atk11] combined amortised analysis and separation logic to anal-
yse imperative programs, which are similar to Java bytecode but without
object-oriented features. He used assertions that describe the current shape
of the heap and the resource that the program may consume. The idea is to
specify resources that depend on the shape of data structures in the heap.
He also employed a proof search procedure to verify that the preconditions
of the methods imply their post-conditions, and to infer the resource anno-
tations, using linear programming. Later, Fenacci and MacKenzie [FM11]
extended the analysis to Java bytecode. Like RAJA, Atkey’s system can
compute only linear bounds. On the other hand, the user needs to provide
complex annotations, whereas RAJA is fully automatic.

8.1.5 Other techniques

Marion and Péchoux [MP07] described an analysis of object-oriented pro-
grams based on sup-interpretations, which provide an upper bound on the
outputs sizes of the function denoted by a symbol. However, they did not
provide inference of the sup-interpretation functions.

Braberman et al. [BFGY08] computed polynomial bounds on the peak-
memory consumption of programs using a region-based memory manage-
ment. Their analysis generated a set of polynomial maximisation problems
which they solved using the Bernstein basis technique. They obtained good
results by testing their approach with well-known benchmarks. However,
their memory model does not allow aliasing and object deallocations, and
their analysis does not deal with memory-consuming recursions. They also
mentioned that they could integrate their technique with type-based meth-
ods for a better handling of complex data-structures.

166

8.2 Refinement types

Type systems are very useful for specifying and checking program properties
at compile-time. Traditional type systems can check many program proper-
ties, but there are many other properties, that could potentially be checked
at compile-time, which they cannot check. This has given rise to extensive
research in the field of refinement types. Those works aim at refining existing
type systems to define more precise properties, for which type checking and
type inference are decidable, or at least require few program annotations.

The term refinement type was first described by Freeman and Pfenning
[FP91]. They described a refinement of ML’s type system. The system
allowed the specification of types such as singleton lists, that refined the
notion of lists. They also provided type inference of refinement types, by
performing abstract interpretation over a finite-lattice of refinements of ML
types.

Xi and Pfenning [XP99] presented DML(C), an extension of ML with
a restricted form of dependent types, which was parametrised over the do-
main of constraints C, from which the type index objects were taken. Type
inference for the extended system was not possible, but they reduced type-
checking of annotated programs to the problem of constraint satisfaction in
the constraint domain C. They also provided an implementation for the
domain of linear inequalities on integers, and presented applications such as
the elimination of array bound checks.

Later, Xi [Xi00] described the dependently typed imperative program-
ming language Xanadu. To handle mutable index expressions, he proposed
allowing to change the type of a variable during evaluation.

The systems of refinement types provided so far were rather restricted
to ensure that specifications could be checked statically. In the following,
various authors tried to increase the expressivity of specifications by mixing
type refinement systems with other techniques.

Mandelbaum et al. [MWH03] developed a two level system for rea-
soning about effectful programs. The first level was a standard ML-style
type system, and the second level used a logic of type refinements to check
more precise properties. Their aim was “to provide a general-purpose logical
framework for reasoning about effectful computations.”

Flanagan [Fla06] developed hybrid type checking, which was a synthe-
sis of static type checking and dynamically-checked contracts, as an at-
tempt to overcome the limitations of purely-static and purely-dynamic ap-
proaches. He illustrated this idea on an expressive (an statically undecid-
able) dependently-typed system, which he called λH . When the type-checker
could neither accept nor refute a subtyping judgement, then it accepted the
corresponding programs but added dynamic checks to ensure that no viola-
tions occurred at runtime.

Later, Knowles and Flanagan [KF07] developed a type reconstruction

167

algorithm for λH . Although λH is an extension of the lambda calculus with
dependent function types and refined based types, we found the general
idea of this algorithm surprisingly useful for our type inference algorithm for
RAJA. We followed the three phases of type reconstruction they proposed:
1. Processing the input program to obtain a set of subtyping constraints, by
constructing constraint generation rules which are sound and complete with
respect with the typing rules. 2. Reducing the subtyping constraints into a
set of implication constraints for their system, and a set of linear arithmetic
constraints for our system. 3. Solving the constraints which gives a valuation
π (or type replacement), that implies typeability of the program.

Rondon et al. [RKJ08] presented Liquid Types, a refinement type system
for which they developed type inference based on a combination of Hindley-
Milner type inference and predicate abstraction. They implemented the
inference on DSOLVE, which analysed OCaml programs and obtained very
good results in verifying programs with very few annotations.

Nystrom et al. [NSPG08] described a system of constraint-based types,
a form of dependent types, for an object-oriented language. They asso-
ciated constraints with class definitions and with method and constructor
definitions. Moreover, the system was parametric in the constraint system,
such that it supported different constraint systems using compiler pluggings.
They developed a type checking algorithm that passed the constraints to the
appropriate constraint solver which checked the constraints for satisfiability.
To check subtyping, the constraint solver also needed to check constraint en-
tailment. The main similarity between this system and RAJA is that both
are constraint-based type systems for an object-oriented program. However,
RAJA does not allow constraints in classes but only in methods, and the
constraints are over types, not over values. Moreover, we present a type in-
ference algorithm for RAJA types, whereas they did not treat the problem
of type inference.

Jhala et al. [JMR10] reduced the problem of refinement type inference
to computing invariants of first-order imperative programs without recursive
data-types. They aimed at using existing abstract interpretation tools for
imperative programs to infer refinement types.

8.3 Linear types and capabilities

Wadler [Wad90] described a linear type system, where values belonging to
a linear type must be used exactly once. To make the type system more
flexible, he also introduced the let! constructor to allow read-only access.
Our type system is similar to linear type systems, because duplication of
references happens in a controlled way, via the sharing rule.

Crary et al. [CWM99] described the Capability Calculus, a compiler
intermediate language for supporting region-based memory management.

168

The calculus handles aliasing by tracking non-aliasing. They tracked regions
with one of two multiplicities: {r+} is the capability to access region r
without restrictions, and {r1} adds the restriction that r is unique. Our
refined types have some similarity with unduplicatable capabilities, except
for types with potential 0, which are duplicatable.

Degen et al. presented Java(X) [DTW07], an extension of Java with a
refinement type system, parametrised by a poset X, from which the anno-
tations are drawn. They also introduced the concept of activity annotations
which is a capability for updating a field in an object. Moreover, they de-
scribed a splitting relation that splits the capability for a resource between
different paths to it. This relation is similar to our sharing relation. In
contrast to RAJA, they did not handle inheritance and did not provide type
inference. Another difference to RAJA is that Java(X) supports typestate
change, while RAJA does not.

More recently, Pilkiewicz and Pottier [PP11] extended a type-and-capabi-
lity system with the notion of monotonic state, meaning that“only the owner
of an object is allowed to change its type, and, furthermore, only in a mono-
tonic manner”. They also applied the system for implementing types that
represent time complexity properties that can be assigned to thunks, using
amortised analysis. Interestingly, they implemented credits as capabilities
(n$ is a linear capability that represents n credits). They also posed the
subtyping axiom (n+p)$ ≡ n$ +p$, which underlines the same general idea
as our sharing relation.

169

170

Chapter 9

Conclusions

In this thesis we have presented a type-based analysis of the heap-space re-
quirements of object-oriented programs. The soundness of each step of the
analysis has been rigorously proved. Moreover, the analysis was modular,
enabled by the use of polymorphic types and a procedure for locally elimi-
nating variables from constraints. Thus, in principle, the analysis is capable
of scaling to large programs. We can see this in practice via our experiments,
which have shown that we can analyse programs of 900 LoC in around 10
minutes. Nevertheless, there is plenty of room for improvement.

Polymorphic types also enable an incremental analysis. The types can
be saved after the analysis, and in most cases they do not need to be re-
analysed when more classes and methods are added to the programs. One
could imagine a scenario where libraries are delivered together with RAJA
types, and the application can use the RAJA types of the libraries to analyse
its resource consumption, without the need to re-analyse the libraries, and
without needing the source code of the libraries.

We also showed that the type inference delivers a finite RAJA program;
that is, a RAJA program, where each method has a finite set of monomorphic
RAJA types, and where all the views are regular. For those programs, we
also developed a simple and efficient type checking algorithm. The RAJA
types can be regarded as a certificate for resource consumption, that can be
checked efficiently with the type checking algorithm.

9.1 Further directions

We can think of various directions for future research. There are two main
branches of research that may increase the number of programs that RAJA
can analyse and improve the precision of the computed bounds. First, we
can seek to improve the type system; second, we can seek to improve the
algorithm for solving constraints over the infinite trees.

171

Improving the type system Although we could not yet grasp the full
expressive power of the RAJA type system because of the difficulties with
constraint solving, we are convinced that RAJA is a very expressive type
system, capable of computing non-linear bounds. However, the type system
can be improved. Perhaps adding typestates will increase the expressivity
and precision of the system, because changing the types of objects after
imperative update can make their types more precise. Another way of im-
proving the precision of the bounds is to make the analysis path sensitive in
the style of Chin et al. [CNPQ08].

The RAJA type system concentrates on the cases when resource con-
sumption depends on the size and shape of data-structures. However, it
does not handle the cases where resource consumption depends on the val-
ues of arithmetic variables, that are incremented in a loop. There are very
good tools that can analyse such programs very precisely, such as SPEED
[GMC09]. Perhaps combining such ideas with our analysis would lead to a
more useful tool.

In the current RAJA system, we use potential from the variable this only,
because this is the only variable guaranteed to be non null at compile time.
However, we could think of an extension of the system that allowed to use
the potential of any variable combined with a static non-nullity analysis.
This may lead to a more expressive type system.

In principle, it is clear how to extend the RAJA system to the analysis
of other resources other than heap-space. However, this implies changing
the typing rules and proving their soundness again. It would be desirable
to have a type system where the concrete resource is not fixed in the typing
rules, in the style of Jost et al. [JLH+09]. This would make the analysis
truly parametric in the resource.

Solving constraints over infinite trees In this thesis we encountered
the problem of arithmetic constraints over infinite trees, and we developed a
heuristic algorithm for its solution, that often succeeds when the constraints
admit regular solutions. However, the research in this area is still preliminary
and there is plenty of room for future research. For instance, it would be
useful to settle the question of decidability of this problem in general, and
also to identify larger tracktable subproblems relevant for resource analysis.

We have already started to analyse ways of reducing constraints over
trees to recurrences, to be able to use recurrence solvers to solve them.
For instance, the constraints l(x) = x + x,♦(x) = 1 can be reduced to the
recurrence equation f(n + 1) = f(n) + f(n) where f(n0) = 1, which has
the solution f(n) = 2n. Then, the solution to the tree constraint would be
a tree t0 belonging to the family of trees ti|i∈N where each ti is defined by:
♦(ti) = 2i and l(ti) = ti+1.

Finally, studying the optimisation problem would be also useful for com-
puting optimised bounds of resource usage.

172

More Java features This thesis focused on making possible the automatic
heap-space analysis of FJEU programs and did not analyse the problem of
extending FJEU with more Java features. However, to enable the resource
analysis of Java programs with our approach, it is necessary to add more
Java features to our target language. Perhaps the simplest way of doing this
is by providing a resource-preserving translation of Java programs to FJEU
programs. For instance, one could translate the loops to recursive functions,
and exceptions to conditional expressions.

Also, the free() expressions should be introduced automatically, by
following an approach that models the behaviour of the garbage collec-
tor. There are various works on the static prediction of garbage collection
[US09, AGGZ10] that could be adapted to our system.

These transformations and extensions are well studied. Thus, we can
conclude that our analysis has the potential to become an efficient, sound
and fully automatic tool for the resource analysis of Java programs.

173

174

Bibliography

[AAC+08] Elvira Albert, Puri Arenas, Michael Codish, Samir Genaim,
Germán Puebla, and Damiano Zanardini. Termination analy-
sis of java bytecode. In Gilles Barthe and Frank S. de Boer,
editors, Formal Methods for Open Object-Based Distributed Sys-
tems, 10th IFIP WG 6.1 International Conference, FMOODS
2008, Oslo, Norway, June 4-6, 2008, Proceedings, volume 5051
of Lecture Notes in Computer Science, pages 2–18. Springer,
2008.

[AAG+07] Elvira Albert, Puri Arenas, Samir Genaim, Germán Puebla, and
Damiano Zanardini. Cost analysis of java bytecode. In Rocco De
Nicola, editor, ESOP, volume 4421 of Lecture Notes in Computer
Science, pages 157–172. Springer, 2007.

[AAG+12] Elvira Albert, Puri Arenas, Samir Genaim, German Puebla, and
Damiano Zanardini. Cost analysis of object-oriented bytecode
programs. Theor. Comput. Sci., 413(1):142–159, 2012.

[AAGP11] Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla.
Closed-Form Upper Bounds in Static Cost Analysis. Journal of
Automated Reasoning, 46(2):161–203, February 2011.

[AGGZ10] Elvira Albert, Samir Genaim, and Miguel Gómez-Zamalloa.
Parametric inference of memory requirements for garbage col-
lected languages. In Jan Vitek and Doug Lea, editors, ISMM,
pages 121–130. ACM, 2010.

[Atk11] Robert Atkey. Amortised resource analysis with separation logic.
Logical Methods in Computer Science, 7(2), 2011.

[BBG+00] G. Bollella, B. Brosgol, J. Gosling, P. Dibble, S. Furr, and
M. Turnbull. The Real-Time Specification for Java. Addison
Wesley Longman, 2000. Available from http://www.rtsj.org.

[Ben01] Ralph Benzinger. Automated complexity analysis of nuprl ex-
tracted programs journal of functional programming. J. Funct.
Program., 11(1):3–31, 2001.

175

[BFGY08] Vı́ctor A. Braberman, Federico Javier Fernández, Diego Gar-
bervetsky, and Sergio Yovine. Parametric prediction of heap
memory requirements. In Jones and Blackburn [JB08], pages
141–150.

[BG00] Achim Blumensath and Erich Grädel. Automatic structures. In
LICS, pages 51–62, 2000.

[BGH10] Lennart Beringer, Robert Grabowski, and Martin Hofmann.
Verifying pointer and string analyses with region type systems.
In Edmund M. Clarke and Andrei Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning - 16th In-
ternational Conference, LPAR-16, Dakar, Senegal, April 25-
May 1, 2010, Revised Selected Papers, volume 6355 of Lecture
Notes in Computer Science, pages 82–102. Springer, 2010.

[BIL03] Marius Bozga, Radu Iosif, and Yassine Laknech. Storeless se-
mantics and alias logic. In Proceedings of the 2003 ACM SIG-
PLAN workshop on Partial evaluation and semantics-based pro-
gram manipulation (PEPM), pages 55–65, New York, NY, USA,
2003. ACM Press.

[CAA+86] Robert L. Constable, Stuart F. Allen, S. F. Allen, H. M. Brom-
ley, W. R. Cleaveland, J. F. Cremer, R. W. Harper, Douglas J.
Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, Scott F.
Smith, James T. Sasaki, and S. F. Smith. Implementing math-
ematics with the nuprl proof development system, 1986.

[Cam08] Brian Campbell. Type-based amortized stack memory prediction.
PhD thesis, University of Edinburgh, 2008.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In Conference Record of the Fourth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 238–252, Los Angeles, Califor-
nia, 1977. ACM Press, New York, NY.

[CDG11] Wei-Ngan Chin, Cristina David, and Cristian Gherghina. A
hip and sleek verification system. In Cristina Videira Lopes
and Kathleen Fisher, editors, OOPSLA Companion, pages 9–
10. ACM, 2011.

[CDNQ10] Wei-Ngan Chin, Cristina David, Huu H. Nguyen, and Shengchao
Qin. Automated verification of shape, size and bag properties via
user-defined predicates in separation logic. Science of Computer
Programming, August 2010.

176

[CH78] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of
linear restraints among variables of a program. In Alfred V. Aho,
Stephen N. Zilles, and Thomas G. Szymanski, editors, POPL,
pages 84–96. ACM Press, 1978.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms, Second Edition. MIT
Press, September 2001.

[CNPQ08] Wei-Ngan Chin, Huu Hai Nguyen, Corneliu Popeea, and
Shengchao Qin. Analysing memory resource bounds for low-
level programs. In Jones and Blackburn [JB08], pages 151–160.

[CNQR05] Wei-Ngan Chin, Huu Hai Nguyen, Shengchao Qin, and Mar-
tin C. Rinard. Memory usage verification for oo programs. In
Chris Hankin and Igor Siveroni, editors, SAS, volume 3672 of
Lecture Notes in Computer Science, pages 70–86. Springer, 2005.

[CWM99] Karl Crary, David Walker, and J. Gregory Morrisett. Typed
memory management in a calculus of capabilities. In Andrew W.
Appel and Alex Aiken, editors, POPL, pages 262–275. ACM,
1999.

[DE73] George B. Dantzig and B. Curtis Eaves. Fourier-motzkin elim-
ination and its dual. J. Comb. Theory, Ser. A, 14(3):288–297,
1973.

[Deu94] Alain Deutsch. Interprocedural may-alias analysis for point-
ers: beyond k-limiting. ACM SIGPLAN Notices, 29(6):230–241,
1994.

[DOY06] Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. A lo-
cal shape analysis based on separation logic. In Holger Her-
manns and Jens Palsberg, editors, TACAS, volume 3920 of Lec-
ture Notes in Computer Science, pages 287–302. Springer, 2006.

[DP02] B. A. Davey and H. A. Priestley. Introduction to Lattices and
Order: Second Edition. Cambridge University Press, 2002.

[DTW07] Markus Degen, Peter Thiemann, and Stefan Wehr. Tracking
linear and affine resources with java(X). In Erik Ernst, editor,
ECOOP 2007 - Object-Oriented Programming, 21st European
Conference, Berlin, Germany, July 30 - August 3, 2007, Pro-
ceedings, volume 4609 of Lecture Notes in Computer Science,
pages 550–574. Springer, 2007.

[DV07] Stefan Dantchev and Frank D. Valencia. On infinite csp’s, 2007.

177

[FHL+01] Christian Ferdinand, Reinhold Heckmann, Marc Langenbach,
Florian Martin, Michael Schmidt, Henrik Theiling, Stephan
Thesing, and Reinhard Wilhelm. Reliable and precise wcet de-
termination for a real-life processor. In Thomas A. Henzinger
and Christoph M. Kirsch, editors, EMSOFT, volume 2211 of
Lecture Notes in Computer Science, pages 469–485. Springer,
2001.

[FKF98] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen.
Classes and mixins. In The 25th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL ’98),
pages 171–183, New York, January 1998. Association for Com-
puting Machinery.

[Fla06] Cormac Flanagan. Hybrid type checking. In J. Gregory Mor-
risett and Simon L. Peyton Jones, editors, POPL, pages 245–256.
ACM, 2006.

[FM11] Damon Fenacci and Kenneth MacKenzie. Static resource anal-
ysis for java bytecode using amortisation and separation logic.
Electr. Notes Theor. Comput. Sci., 279(1):19–32, 2011.

[FP91] Tim Freeman and Frank Pfenning. Refinement types for ML.
In Proceedings of the SIGPLAN ’91 Symposium on Language
Design and Implementation, pages 268–277, Toronto, Ontario,
June 1991. ACM Press.

[GL02] Gustavo Gomez and Yanhong A. Liu. Automatic time-bound
analysis for a higher-order language. In Kenichi Asai and Wei-
Ngan Chin, editors, PEPM, pages 75–86. ACM, 2002.

[GMC09] Sumit Gulwani, Krishna K. Mehra, and Trishul M. Chilimbi.
Speed: precise and efficient static estimation of program com-
putational complexity. In Zhong Shao and Benjamin C. Pierce,
editors, POPL, pages 127–139. ACM, 2009.

[Gra11] Type-Based Enforcement of Secure Programming Guidelines
Code Injection Prevention at SAP, 2011.

[HAH11] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate
amortized resource analysis. In Thomas Ball and Mooly Sagiv,
editors, POPL, pages 357–370. ACM, 2011.

[HJ03] Martin Hofmann and Steffen Jost. Static prediction of heap
space usage for first-order functional programs. In Alex Aiken
and Greg Morrisett, editors, POPL, pages 185–197. ACM, 2003.

178

[HJ06] Martin Hofmann and Steffen Jost. Type-based amortised heap-
space analysis. In Peter Sestoft, editor, ESOP, volume 3924 of
Lecture Notes in Computer Science, pages 22–37. Springer, 2006.

[HJR] Martin Hofmann, Steffen Jost, and Dulma Ro-
driguez. Type-based amortised heap space
analysis. (complete soundness proof). In
http://raja.tcs.ifi.lmu.de/download/files/rajaSoundProof.pdf.

[HM03] Kevin Hammond and Greg Michaelson. Hume: A domain-
specific language for real-time embedded systems. In In Proc.
Conf. Generative Programming and Component Engineering,
Lecture Notes in Computer Science, pages 37–56. Springer-
Verlag, 2003.

[Hof00] Martin Hofmann. A type system for bounded space and func-
tional in-place update–extended abstract. In Gert Smolka, edi-
tor, ESOP, volume 1782 of Lecture Notes in Computer Science,
pages 165–179. Springer, 2000.

[Hof11] Jan Hoffmann. Types with Potential: Polynomial Resource
Bounds via Automatic Amortized Analysis. PhD thesis, Ludwig-
Maximilians-Universiät München, 2011.

[HPS96] John Hughes, Lars Pareto, and Amr Sabry. Proving the cor-
rectness of reactive systems using sized types. In Hans-Juergen
Boehm and Guy L. Steele Jr., editors, POPL, pages 410–423.
ACM Press, 1996.

[HPSH06] Patricia M. Hill, Etienne Payet, Fausto Spoto, and Hill. Path-
length analysis of object-oriented programs. In In Proc. EAAI,
2006.

[HQLC09] Guanhua He, Shengchao Qin, Chenguang Luo, and Wei-Ngan
Chin. Memory usage verification using hip/sleek. In Zhiming
Liu and Anders P. Ravn, editors, ATVA, volume 5799 of Lecture
Notes in Computer Science, pages 166–181. Springer, 2009.

[HR09] Martin Hofmann and Dulma Rodriguez. Efficient type-checking
for amortised heap-space analysis. In Erich Grädel and Reinhard
Kahle, editors, CSL, volume 5771 of Lecture Notes in Computer
Science, pages 317–331. Springer, 2009.

[HR12] Martin Hofmann and Dulma Rodriguez. Linear constraints over
infinite trees. In Nikolaj Bjørner and Andrei Voronkov, editors,
LPAR, volume 7180 of Lecture Notes in Computer Science, pages
343–358. Springer, 2012.

179

[IO01] Samin S. Ishtiaq and Peter W. O’Hearn. BI as an asser-
tion language for mutable data structures. In Proceedings of
the 28th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 14–26, New York, NY,
USA, 2001. ACM Press.

[IPW99] Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. Feather-
weight Java: A minimal core calculus for Java and GJ. In Loren
Meissner, editor, Proceedings of the 1999 ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages
& Applications (OOPSLA‘99), volume 34(10), pages 132–146,
N. Y., 1999.

[JB08] Richard Jones and Stephen M. Blackburn, editors. Proceedings
of the 7th International Symposium on Memory Management,
ISMM 2008, Tucson, AZ, USA, June 7-8, 2008. ACM, 2008.

[JLH+09] Steffen Jost, Hans-Wolfgang Loidl, Kevin Hammond, Norman
Scaife, and Martin Hofmann. “carbon credits” for resource-
bounded computations using amortised analysis. In Ana Caval-
canti and Dennis R. Dams, editors, FM 2009: Formal Methods,
volume 5850 of Lecture Notes in Computer Science, pages 354–
369, Heidelberg, 2009. Springer.

[JLHH10] Steffen Jost, Hans-Wolfgang Loid, Kevin Hammond, and Martin
Hofmann. Static determination of quantitative resource usage for
higher-order programs. In POPL ’10: Proceedings of the 37th
annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 223–236, New York, NY, USA,
January 2010. ACM.

[JLS+09] S. Jost, H-W. Loidl, N. Scaife, K. Hammond, G. Michael-
son, and M. Hofmann. Worst-Case Execution Time Analysis
through Types. In 21st Euromicro Conf. on Real-Time Systems
(ECRTS’09), pages 13–16. ACM, July 2009. Work-in-Progress
Session.

[JMR10] Ranjit Jhala, Rupak Majumdar, and Andrey Rybalchenko. Re-
finement type inference via abstract interpretation. CoRR,
abs/1004.2884, 2010.

[Jon81] H.B.M. Jonkers. Abstract storage structures. In J. W. de Bakker
and J. C. van Vliet, editors, Algorithmic Languages, pages 321–
343. IFIP, North Holland, 1981.

180

[Jos10] Steffen Jost. Automated Amortised Analysis. PhD thesis, Fac-
ulty of Mathematics, Computer Science and Statistics, LMU
Munich, Germany, September 2010.

[Ker09] Rody Kersten. A strict-size logic for featherweight java extended
with update. Master’s thesis, Radboud University Nijmegen,
2009.

[KF07] Kenneth L. Knowles and Cormac Flanagan. Type reconstruction
for general refinement types. In Rocco De Nicola, editor, Pro-
gramming Languages and Systems, 16th European Symposium
on Programming, ESOP 2007, Held as Part of the Joint Euro-
pean Conferences on Theory and Practics of Software, ETAPS
2007, Braga, Portugal, March 24 - April 1, 2007, Proceedings,
volume 4421 of Lecture Notes in Computer Science, pages 505–
519. Springer, 2007.

[KN04] Gerwin Klein and Tobias Nipkow. A machine-checked model
for a Java-like language, virtual machine and compiler. Techni-
cal Report 0400001T.1, National ICT Australia, Sydney, March
2004.

[lP05] Thomas Mashølhave and Lars H. Petersen. Assignment feather-
weight java: Bringing mutable state to featherweight java. Mas-
ter’s thesis, University of Aarhus, 2005.

[Mot36] TS Motzkin. Beiträege zur Theorie der linearen Ungleichungen.
PhD thesis, University of Basel, 1936.

[MP07] Jean-Yves Marion and Romain Péchoux. Resource control of
object-oriented programs. CoRR, abs/0706.2293, 2007.

[MWH03] Yitzhak Mandelbaum, David Walker, and Robert Harper. An
effective theory of type refinements. In Colin Runciman and Olin
Shivers, editors, ICFP, pages 213–225. ACM, 2003.

[NSPG08] Nathaniel Nystrom, Vijay Saraswat, Jens Palsberg, and Chris-
tian Grothoff. Constrained types for object-oriented languages.
ACM SIGPLAN Notices, 43(10):457–474, September 2008.

[Oka98] Chris Okasaki. Purely Functional Data Structures. Cambridge
University Press, 1998.

[PHS10] Wolfgang Puffitsch, Benedikt Huber, and Martin Schoeberl.
Worst-case analysis of heap allocations. In Tiziana Margaria
and Bernhard Steffen, editors, ISoLA (2), volume 6416 of Lec-
ture Notes in Computer Science, pages 464–478. Springer, 2010.

181

[Pie02] Benjamin C. Pierce. Types and programming languages. MIT
Press, Cambridge, MA, USA, 2002.

[PP11] Alexandre Pilkiewicz and Francois Pottier. The essence of mono-
tonic state. In Stephanie Weirich and Derek Dreyer, editors,
TLDI, pages 73–86. ACM, 2011.

[Rai92] Gary Raines. Real time ada in the international space station
freedom. In Proceedings of the 11th Ada-Europe International
Conference on Ada: Moving Towards 2000, 1992.

[RBR+05] N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm.
A semantics for procedure local heaps and its abstractions. In
Jens Palsberg and Mart́ın Abadi, editors, Proceedings of the
32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 296–309, New York,
NY, USA, 2005. ACM Press.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable
data structures. In LICS, pages 55–74. IEEE Computer Society,
2002.

[RKJ08] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid
types. ACM SIGPLAN Notices, 43(6):159–169, June 2008.

[Ros06] Kyle D. Ross. Towards an automatic complexity analysis for
generic programs. In Ralf Hinze, editor, ICFP-WGP, pages 87–
95. ACM, 2006.

[RS06] Stefano Rossignoli and Fausto Spoto. Detecting non-cyclicity
by abstract compilation into boolean functions. In E. Allen
Emerson and Kedar S. Namjoshi, editors, VMCAI, volume 3855
of Lecture Notes in Computer Science, pages 95–110. Springer,
2006.

[SR10] Alexandra Silva and Jan J. M. M. Rutten. A coinductive calculus
of binary trees. Inf. Comput, 208(5):578–593, 2010.

[SRW02] Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Para-
metric shape analysis via 3-valued logic. ACM Trans. Program.
Lang. Syst., 24(3):217–298, 2002.

[SvEvK09] Olha Shkaravska, Marko C. J. D. van Eekelen, and Ron van
Kesteren. Polynomial size analysis of first-order shapely func-
tions. Logical Methods in Computer Science, 5(2), 2009.

[Tar85] Robert E. Tarjan. Amortized computational complexity. SIAM
Journal on Algebraic and Discrete Methods, 6(2):306–318, April
1985.

182

[Tur99] Jim Turley. Embedded processors by the numbers. Embedded
Systems Programming, 1999.

[US09] Leena Unnikrishnan and Scott D. Stoller. Parametric heap usage
analysis for functional programs. In Hillel Kolodner and Guy
L. Steele Jr., editors, ISMM, pages 139–148. ACM, 2009.

[Vas08] P. Vasconcelos. Space cost analysis using sized types. PhD thesis,
University of St Andrews, 2008.

[Wad90] Philip Wadler. Linear types can change the world! In PRO-
GRAMMING CONCEPTS AND METHODS. North, 1990.

[Weg75] Ben Wegbreit. Mechanical program analysis. Commun. ACM,
18(9):528–539, 1975.

[WM01] David Walker and Greg Morrisett. Alias types for recursive data
structures. Lecture Notes in Computer Science, 2071:177+, 2001.

[Wol03] Stephen Wolfram. The Mathematica book (5. ed.). Wolfram-
Media, 2003.

[WW08] Reinhard Wilhelm and Björn Wachter. Abstract interpretation
with applications to timing validation. In Aarti Gupta and
Sharad Malik, editors, CAV, volume 5123 of Lecture Notes in
Computer Science, pages 22–36. Springer, 2008.

[Xi00] Xi. Imperative programming with dependent types. In LICS:
IEEE Symposium on Logic in Computer Science, 2000.

[XP99] Hongwei Xi and Frank Pfenning. Dependent types in practi-
cal programming. In Conference Record of POPL’99: The 26th
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 214–227, San Antonio, Texas, Jan-
uary 20–22, 1999.

[ZGSV11] Florian Zuleger, Sumit Gulwani, Moritz Sinn, and Helmut Veith.
Bound analysis of imperative programs with the size-change ab-
straction. In Eran Yahav, editor, SAS, volume 6887 of Lecture
Notes in Computer Science, pages 280–297. Springer, 2011.

183

