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1. Summary 

Aspergillus fumigatus is a saprophytic mold that naturally inhabits the soil. Asexual 

reproduction yields hardy conidia that circulate in the air and are inhaled daily by 

humans. The fungus seems not to have evolved distinct mechanisms of pathogenicity, 

but is capable of responding to many stressful environmental cues present in its naturally 

harsh niche. The robust conidia present no problem to a fully functioning immune system, 

but if the innate immune system is compromised, the conidia can become activated and 

differentiate within the lung tissue to form invasive and disseminating hyphae. The 

resulting disease is called aspergillosis and is difficult to detect and to treat. To date, 

scientists have yet to find the factor(s) missing during immunosuppression that allow a 

healthy patient to easily dispose of A. fumigatus. We explored two possibilities: the 

production of neutrophil extracellular traps (NETs) and the release of IFN-γ by natural 

killer (NK) cells. We report here that NETs alone cannot kill the fungus, but do inhibit 

polar growth. Elongation of hyphal tips is abrogated due to zinc starvation, likely a 

consequence of the zinc-chelating, NETs-associated protein calprotectin. NK cells alone 

are also incapable of fungicidal activity, but their release of IFN-γ upon contact with A. 

fumigatus abrogates hyphal growth by a yet unknown mechanism. In vitro studies of the 

innate immune response, though helpful, are far from representative of the in vivo 

response. Neither NETs nor IFN-γ alone can manage Aspergillus infection, but in 

combination, these and other immune assaults certainly can. The difficulty lies in 

identifying the precise combination of immune cells and cytokine milieu that in a healthy 

individual prevent infection.  

Additionally, we explored mechanisms by which the fungus responds to stress, namely 

the HOG MAPK pathway, historically involved in osmotic stress response. In filamentous 

fungi, certain stress signals are sensed by a cytoplasmic hybrid histidine kinase sensor 

and then passed through the HOG system via phosphorylation. We identified the putative 

hybrid sensor kinase in A. fumigatus, and generated a corresponding knockout mutant. 

The ΔtcsC mutant was indeed sensitive to osmotic stress, and resistant to the 

phenolpyrrole fungicide fludioxonil. In the wild type the addition of either osmotic stress 

or fludioxonil resulted in SakA phosphorylation and translocation to the nucleus. SakA, 

the Hog1 homolog in A. fumigatus, is located at the end of the HOG pathway, confirming 

the role of TcsC as the cytoplasmic sensor upstream of SakA. In hypoxia, on farnesol, and 

in high concentrations of divalent cations the ΔtcsC mutant exhibited a striking “fluffy” 

phenotype characterized by the production of tremendous aerial hyphae and little or no 
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differentiation, i.e., no conidiation. Though the ΔtcsC mutant showed no change in 

virulence compared to wild type, components of the TcsC signalling pathway remain 

promising targets for antifungal agents. 
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1.1 Zusammenfassung 

Aspergillus fumigatus ist ein saprophytischer Schimmelpilz, der natürlicherweise im 

Boden vorkommt. Durch asexuelle Vermehrung entstehen Dauerformen, sogenannte 

Konidien, die über die Luft verteilt und vom Menschen täglich eingeatmet werden. Nach 

dem jetzigen Kenntnisstand besitzt A. fumigatus keine ausgefeilten 

Pathogenitätsmechanismen, ist aber in der Lage sich an Stresssituationen effizient 

anzupassen und überlebt so auch unter harten Bedingungen. Konidien sind zwar robust, 

stellen aber kein Problem für ein funktionstüchtiges Immunsystem dar. Ist die 

angeborene Immunität aber beeinträchtigt, so keimen die Sporen aus und es bilden sich 

Hyphen, die invasiv in das Gewebe eindringen und sich so ausbreiten. Die daraus 

resultierende Erkrankung, invasive Aspergillose genannt, läßt sich nur schwer 

nachweisen und behandeln. Die Mechansimen, die A. fumigatus in gesunden Personen 

effizient eliminieren, die aber im immungeschwächten Patienten fehlen, sind bis heute 

kaum verstanden. In dieser Arbeit haben wir zwei mögliche Elemente untersucht: die 

Produktion von neutrophil extracellular traps (NETs) und die Freisetzung von IFN-γ durch 

natural killer (NK) Zellen. Wir konnten zeigen, dass NETs den Pilz nicht abtöten können, 

aber immerhin sein Wachstum reduzieren. Das Spitzenwachstum der Hyphen wird dabei 

durch Zink-Mangel inhibiert, der vermutlich auf den NET-assoziierten Zink-Chelator 

Calprotectin zurückgeht. NK Zellen besitzen allein keine fungizide Aktivität, aber sie 

setzen nach Kontakt mit A. fumigatus IFN-γ frei, das wiederum das Hyphenwachstum 

durch einen bisher unbekannten Wirkmechanismus beeinträchtigen kann. In vitro 

Studien der angeborenen Immunantwort sind wichtig, spiegeln aber meist die 

Komplexität der in vivo Antwort nur unzulänglich wider. Für sich allein können weder 

NETs noch IFN-γ eine Aspergillus Infektion eliminieren, im Zusammenspiel miteinander 

und mit anderen Elementen der Immunantwort sind sie dazu aber offensichtlich in der 

Lage. Das wissenschaftliche Hauptproblem liegt in der Identifizierung der genauen 

Kombination von Immunzellen und Cytokin-Milieu, die eine Infektion in gesunden 

Personen unterbindet.  

Als weiterer Punkt dieser Arbeit wurde ein Element des HOG MAPK Signalwegs 

untersucht, der in vielen Pilzen die Adaptation an hyperosmolaren Stress steuert. 

Filamentöse Pilze nehmen bestimmte Stresssituationen durch cytoplasmatische Hybrid-

Histidin-Kinase Sensoren wahr, die dann das Signal als Phosphorylierung an Elemente 

des HOG Signalwegs weitergeben. In dieser Arbeit haben wir die putative Hybrid-

Sensorkinase TcsC in A. fumigatus identifiziert und eine entsprechende 
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Deletionsmutante hergestellt. Die ΔtcsC Mutante erwies sich als sensitiv gegenüber 

osmotischem Stress und resistent gegenüber dem Phenolpyrrol-Fungizid Fludioxonil. Im 

Wildtyp führt  osmotischer Stress und die Zugabe von Fludioxonil zu einer 

Phosphorylierung und anschließenden Translokation des SakA Proteins in den Zellkern. 

Das Hog1-homologe Protein SakA ist die terminale Komponente des HOG Signalwegs, 

und unsere Daten belegen, dass TcsC in A. fumigatus als cytoplasmischer Sensor 

oberhalb von SakA fungiert. Hypoxie, Farnesol oder hohe Konzentrationen divalenter 

Kationen induzieren in der ΔtcsC Mutante einen auffälligen Wachstumsphänotyp. Diese 

“fluffy” genannte Wuchsform zeichnet sich durch eine massive Zunahme der Lufthyphen 

und eine stark reduzierte Differenzierung und Konidienbildung aus. Obwohl für die ΔtcsC 

Mutante keine Attenuierung nachgewiesen werden konnte, so bietet der TcsC Signalweg 

dennoch interessante Ziele für neue anti-mykotische Wirkstoffe. 
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2. Introduction 

Ascomycota is a phylum of the Fungi kingdom defined by the presence of an ascus, a 

sexual spore-bearing cell. The sexual process involves the production of haploid 

ascospores via meiosis of the diploid cell in the ascus. In the order Eurotiales, the asci 

develop within a closed, spherical structure, called the cleistothecium (see Figure 1). 

Within the cleistothecium, the asci are well protected, but can only be released by rupture 

of the cleistothecium, i.e., there is no specific mechanism for spore dispersal (Carlile et 

al., 1994). Though the phylum is distinguished by the unique cells involved in sexual 

reproduction, the species Aspergillus fumigatus was thought to produce only asexually 

until quite recently. The name Aspergillus, in fact, comes from the Latin aspergillum,  

  

 

 

 

 

 

 

which is a mop for distributing holy water, and refers to an asexual structure called the 

conidiophore; the image is often used to depict the genus. Though the Aspergilli, of which 

there are approximately 250 species (Dyer and O'Gorman, 2012), all produce asexual 

Figure 1. Morphology of the Aspergilli: sexual and asexual reproductive structures. 

 
The name Aspergillus comes from the Latin aspergillum, a mop for distributing holy water, obviously in 

reference to the appearance of the conidiophore. The conidiophores produce and release large numbers of 

asexual spores called conidia, which are constantly dispersed into the air. It was very recently discovered 

that Aspergillus fumigatus can also reproduce sexually. Meiosis yields haploid asci from the diploid ascus. 

The asci develop within a closed structure called the cleistothecium. The lower magnification photos are of 

A. fumigatus strains AfS35 crossed with D141 on oatmeal agar after 4 months growth in the dark at 30ºC. 

The cleistothecium was taken from the plate as indicated and photographed under higher magnification. 

Aforementioned photos taken in collaboration with Edita Szewczyk at the Research Center for Infectious 

Diseases, Julius-Maximilians-University Würzburg. Cartoon cleistothecium adapted from (Dyer and 

O'Gorman, 2012). 
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spores via the conidiophore, the members of this genus differ greatly from one another in 

other aspects. A. glaucus and A. restrictus, for example, are remarkable because of their 

tolerance of low water activities. A. niger is commonly used in fermentation processes; it 

produces citric acid used in soft drinks. A. flavus and A. oryzae are used in the production 

of Asian food and drinks (Carlile et al., 1994). Researchers now have the genome 

sequences of nearly a dozen species at their disposal (available online at 

http://www.cadre-genomes.org.uk/index.html). Of the 250 species known, only a handful 

can act as pathogens, the most important of which (at least clinically) and indeed the 

topic of this study is A. fumigatus.  

 

2.1 The innate immune response to Aspergillus fumigatus 

The genus Aspergillus comprises saprophytic fungi that grow naturally in the soil as a 

mycelium, a mass of branching hyphae. Upon contact with air, the mycelia form 

conidiophores that produce and release large numbers of asexual spores called conidia. 

These conidia circulate in the air (1-100 conidia/m3) and it is estimated that the average 

person inhales several hundred conidia per day. To a healthy immune system this 

presents no problem, but in an immunocompromised host Aspergillus can cause severe 

systemic infection, with a mortality rate of 80-90% (Latgé, 1999). Invasive aspergillosis, 

in most cases caused by A. fumigatus and to a lesser extent by A. terreus and A. flavus 

(Marr et al., 2002), is currently the most important fungal disease (Latgé, 2001; 

McCormick et al., 2010b), occurring in patients whose immune systems have been 

jeopardized, e.g., by leukemia, lymphoma, neutropenia, as well as stem cell or organ 

transplantation. As these medical practices become more common, the incidence of 

Aspergillus infection continues to rise as a consequence.  

Aspergillosis is difficult to detect and therefore difficult to treat (McNeil et al., 2001). 

Clinical symptoms alone are too vague to diagnose invasive aspergillosis with certainty; 

chest X-rays are too nonspecific and cannot be used for early diagnosis; histopathology 

cannot be used in neutropenic or thrombocytopenic patients and typically cannot 

distinguish Aspergillus from other filamentous fungi; and Aspergillus species are slow-

growing, which means it may take several days to weeks for positive culture results. 

Galactomannan, a component of the Aspergillus cell wall, has been used in a double-

sandwich enzyme immunoassay to diagnose invasive aspergillosis in Europe for over ten 

years. The assay is standardized, user-friendly, and both sensitivity and specificity are 
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generally high (Ostrosky-Zeichner, 2012; Walsh et al., 2008). Optimal aspergillosis 

therapy is two-fold, requiring both the restoration of leukocyte counts and immune 

function coupled with effective antifungal treatment at the earliest stages of infection. 

Several antifungals are currently available (e.g., amphotericin B, voriconazole and other 

triazoles, and caspofungin), though use of these alone rarely yields complete remission 

(Traunmüller et al., 2011). The pathogenicity of Aspergillus relies largely on its ability to 

grow as different morphotypes in changing environments within the human host—a 

characteristic that also makes treatment rather difficult, especially regarding response to 

antifungal therapy. Aspergillus conidia swell and germinate in the alveoli, where they are 

confronted by resident alveolar macrophages and epithelial cells (see Figure 2) (Herzog 

et al., 2008). As infection persists, elongated hyphae penetrate blood vessels, spreading 

via the vascular route to other organs and the brain (Kradin and Mark, 2008). Depending 

on the time of treatment, the antifungal molecule must reach growing fungal cells within 

the alveoli, within a granuloma, embedded within the tissue, or travelling through the 

blood stream. The response rate to the antifungals currently available is therefore quite 

low (Lin et al., 2001). The patient and scientific communities urgently need, not only a 

better understanding of the pathogen, but more importantly, insight into the pathogen-

host interaction. Only then will better detection and therapeutic options become a 

possibility. 

 

2.1.1 Resident alveolar macrophages versus conidia 

The body’s first line of defense against Aspergillus is the innate immune system. As 

shown in Figure 2, upon inhalation, conidia are confronted by resident alveolar 

macrophages, though no response is initiated until the resting conidia have begun to 

swell and shed their hydrophobic surface layer. Resting conidia are protected by a rodlet 

layer comprising RodA protein covalently bound to the cell wall, allowing this morphotype 

to avoid recognition by immune cells (Aimanianda et al., 2009). As conidia grow (i.e., 

swell), this protein layer is shed, exposing carbohydrates of the cell wall and prompting 

the maturation of resident alveolar macrophages and subsequent cytokine release. 

Though alveolar macrophages can phagocytose conidia and kill them by producing 

reactive oxygen species (ROS) (Philippe et al., 2003), Mircescu et al. have shown that 

neutrophils and not alveolar macrophages are essential for immune defense in the early 

stages of infection (Mircescu et al., 2009). Recognition by both neutrophils and alveolar 
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macrophages is via the dectin-1 receptor, which binds β-glucan in the fungal cell wall, 

and has been shown to bind specifically to swollen conidia and hyphae but not resting 

conidia in Aspergillus (Hohl et al., 2005). Dectin-1 is expressed on all monocytes, 

macrophages, dendritic cells, neutrophils, and eosinophils (Willment et al., 2005). It was  

 

 

 

shown that during Aspergillus infection, dectin-1 is recruited in vivo to alveolar 

macrophage phagosomes that harbor conidia with exposed β-glucans (Hohl et al., 2005), 

and that dectin-1-deficient mice are impaired in inflammatory response by alveolar 

macrophages and in recognition by recruited neutrophils (Willment et al., 2005; Werner 

et al., 2009). The Toll-like receptors (TLR) 2 and 4 also play a role in fungal recognition 

and subsequent inflammatory response (Mambula et al., 2002; Meier et al., 2003; Wang 

et al., 2001; Netea et al., 2006), though the Aspergillus binding partners are still 

unknown. It has been published that TLR2 and MyD88 (myeloid differentiation primary 

response gene [88]) signalling are required for efficient phagocytosis (Luther et al., 

Figure 2. The innate immune response during Aspergillus 

fumigatus infection.  

 
Upon inhalation, resting conidia are initially confronted by 

resident alveolar macrophages. Conidia that escape 

phagocytosis began to swell and germinate. At this stage 

they are attacked by recruited neutrophils and 

macrophages, both of which can phagocytose swollen 

conidia and small germlings.  Larger germlings and hyphae 

are thought to be contained and killed directly by activated 

PMNs or indirectly by molecules released by PMNs and 

natural killer cells. 
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2007), and that TLR2 dimerizes with TLR1 to activate NF-κB (Rubino et al., 2012). As 

shown in Figure 3, binding of a pathogen associated molecular pattern (PAMP) to either 

dectin-1 or a TLR activates NF-κB, thereby inducing proinflammatory cytokine and 

chemokine production (Werner et al., 2009). However, each pattern recognition receptor 

(PRR) has different adaptor protein partners that couple to different TNF receptor 

associated factor 6 (TRAF6) complexes (Dennehy and Brown, 2007). Clearly, the 

mechanism of Aspergillus recognition continues to elude researchers and it is thus vital 

for the future development of both diagnosis and treatment of Aspergillus infections that 

the details of recognition are elucidated. 

 

Figure 3. Dectin-1 and TLR signalling pathways in innate immune cells. 

 
Both dectin-1 and TLR signalling lead to NF-κB activation and cytokine production. However, dectin-1 uses the Syk 

kinase and CARD9 adaptor protein to couple to the TRAF6 complex and activate NF- κB, while TLRs use the MyD88 

adaptor protein and IRAK (IL-1 receptor-associated kinase). Dectin-1 binds β-glucan, a component of the Aspergillus 

cell wall.  The binding partners for the TLR receptors involved in Aspergillus response are currently not known 

[adapted from (Dennehy and Brown, 2007; Netea et al., 2006)]. 
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2.1.2 Recruited neutrophils and macrophages versus germlings and hyphae 

When polymorphonuclear neutrophils (PMN) are recruited to the site of infection, they 

can respond in three ways: phagocytosis, degranulation and production of ROS, or with 

the release of neutrophil extracellular traps (NETs). The conidia that manage to escape 

alveolar macrophages are phagocytosed by infiltrating PMNs (Behnsen et al., 2007). 

Alternatively, they may germinate and are then attacked by PMNs that adhere to the 

hyphal surface, triggering a respiratory burst (Latgé, 2001), or become entangled in 

NETs—masses of decondensed chromatin decorated with antimicrobial proteins and 

opsonins (Papayannopoulos and Zychlinsky, 2009). NETs-associated proteins include 

neutrophil elastase, calprotectin, lactoferrin, and the long pentraxin 3 (Urban et al., 

2009a; Bottazzi et al., 2009). NETs are believed to function by physically containing the 

microbe within the sticky mass of chromatin, thus forcing direct contact with or placing it 

in close proximity to the antimicrobial NETs-associated proteins. Neutrophil elastase 

activity is required for NET formation in PMNs (Papayannopoulos et al., 2010), but is also 

capable of neutralizing the harmful effects of bacterial pathogens (Papayannopoulos and 

Zychlinsky, 2009). Calprotectin and lactoferrin are metal chelators and function by 

depleting the immediate environment of nutrients required for fungal growth, namely zinc 

and iron, respectively (Urban et al., 2009c; Zarember et al., 2007). Pentraxin 3 is a well 

documented opsonin (Bottazzi et al., 2009) and is believed to bind directly to 

galactomannan in the Aspergillus cell wall (Garlanda et al., 2002). The roles of each of 

these proteins, and indeed of NETs themselves, are still not well understood in the 

context of fungal infection. In fact, the mechanism of NETosis during fungal infections is 

not yet understood. The use of PMNs from patients with chronic granulomatous disease 

(CGD), in which the cells exhibit impaired nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase function, in the laboratory suggests a role for NADPH oxidase in the 

NETosis pathway, at least in response to A. nidulans (Bianchi et al., 2011). Also, gene 

therapy was used in CGD patients to restore NETosis, thereby restoring neutrophil 

elimination of A. nidulans conidia and hyphae (Bianchi et al., 2009). However, Henriet et 

al. showed that human leukocytes can kill A. nidulans by ROS-independent mechanisms 

and that CGD cells, even lacking a functioning NADPH oxidase, are able to damage A. 

nidulans hyphae (Henriet et al., 2011). This suggests an alternative pathway to the 

respiratory burst and perhaps, therefore, to NETosis, known until now to depend on 

NADPH oxidase activity and ROS (Brinkmann and Zychlinsky, 2007; Fuchs et al., 2007). 

Marcos et al. have recently shown that the G-protein coupled receptor CXCR2 mediates 
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NET formation independent of NADPH oxidase and involves Src family kinases (Marcos et 

al., 2010). The current study explores not only the role of NETs in response to A. 

fumigatus infection, but the function of NETs-associated proteins involved in A. fumigatus 

attack, with hopes of elucidating the mechanism of NETosis in response to this very 

important fungal pathogen. 

All three modes of PMN response lead to the recruitment of circulating monocytes to the 

site of infection, where maturation is induced (see Figure 2). Again, the mechanism of 

and reasons behind maturation are debated in the literature. Rosas et al. showed that β-

glucans were insufficient for the induction of cytokine production by macrophages but 

were able to act in synergy with the TLR-mediated cytokine responses (Rosas et al., 

2008; Ferwerda et al., 2008). It was originally believed that neutrophils, short-lived as 

they are, were first-response effector cells whose sole purpose was cell death to release 

toxic substrates. It has now become clear: while that remains true, neutrophils are also 

important recruiters and initiators of the body’s defense against incoming pathogens 

(Ellis and Beaman, 2004). Their role in the innate immune response is just beginning to 

unfold and much work remains to fully understand the role of these altruistic cells.  

 

2.1.3 Dendritic and natural killer cells versus germlings and hyphae 

Dendritic cells act as the sentries of the immune system and are involved in both the 

innate and adaptive immune responses. In a murine model, the number of monocyte-

derived dendritic cells correlates with survival of Aspergillus-infected neutropenic mice 

(Park et al., 2010). It was recently shown that TNF-α (tumor necrosis factor alpha) 

produced by macrophages and mature dendritic cells in the lung acts as a molecular 

switch, modulating the activity of CD4 Tcells and promoting neutrophilic inflammation (Fei 

et al., 2011). Maturation of resident dendritic cells is induced by contact with the 

pathogen and results in increased expression of costimulatory molecules and improved 

antigen presentation (Burns et al., 2004). Aspergillus is recognized by dectin-1 on 

immature dendritic cells and binding of the PRR induces a proinflammatory cytokine 

response (Mezger et al., 2008), which also seems to be inducible independent of MyD88 

(Rogers et al., 2005). Dendritic cells can also be activated by natural killer cells, a 

process requiring both cell contact and TNF-α production (at least in vitro). This 

interaction, however, is tightly regulated by the natural killer cell to dendritic cell ratio 

(Hamerman et al., 2005; Piccioli et al., 2002). 
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Not only do natural killer cells activate dendritic cells, but the reciprocal activation also 

occurs. Originally published in 1999, it is now well established that dendritic cells 

enhance the cytotoxicity of natural killer cells against microbes and induce the natural 

killer cell secretion of IFN-γ (interferon gamma) (Fernandez et al., 1999; Hamerman et al., 

2005). Natural killer cell activation requires the concerted binding of cell surface 

receptors and the action of pro-inflammatory cytokines. Natural killer cells mediate 

pathogen death via two known mechanisms. The first is exocytosis of cytotoxic granule 

contents (perforin, granzymes, granulysin), which mediate a diverse range of cell death 

pathways. The second is via target cell apoptosis, which is mediated by the binding of Fas 

and TRAIL (TNF-related apoptosis-inducing) ligands on the surface of natural killer cells. 

The expression of Fas and TRAIL is regulated by IFN-γ (Smyth et al., 2005). It is becoming 

increasingly evident that natural killer cells cannot only directly attack extracellular 

pathogens, including Aspergillus and other fungi, via granule exocytosis (Ma et al., 2004; 

Schmidt et al., 2011), but the secretion of IFN-γ alone protects the host from infection 

(Morrison et al., 2003; Park et al., 2009). The activity of natural killer cells in a virus-

infected host has been studied in great detail, but the role of natural killer cells during 

fungal infection is still not well characterized, nor is the effect of IFN-γ secretion and the 

activity of this molecule against A. fumigatus, a denouement explained in part by the 

current study. 

 

2.2 The Aspergillus fumigatus stress response 

Aspergillus, though quite capable of causing invasive infection in a human host, does so 

accidentally (Tekaia and Latge, 2005). The reasons why only a handful of the hundreds of 

Aspergillus species are capable of causing infection are unclear, as is the mechanism 

enabling these Aspergillus species to be successful pathogens. The fungus has evolved 

mechanisms for surviving in decaying organic matter, its natural niche, but these 

mechanisms possibly aid the pathogen in avoiding immune clearance by any of the cells 

detailed in Figure 2 and promote growth in hostile host tissues (Cramer et al., 2011). The 

most obvious of these defenses is the complex fungal cell wall, comprising a number of 

polysaccharides that both activate and moderate the immune response, while protecting 

the intracellular compartments from exogenous stresses. These sugars include β-

1,3/1,4,-glucan, chitin, and galactomannan (Latge, 2007). Intracellularly, Aspergillus 

depends on cytosolic sensors to recognize and respond to environmental stress. Soluble 
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histidine kinases and response regulators are components of a phosphorelay system 

required to both respond to environmental cues and for normal cell maintenance (Li et 

al., 2010b). The system is part of a two-component signalling cascade present in 

prokaryotes and in eukaryotes, a prominent example in fungi is called the HOG (high 

osmolarity glycerol) pathway. The HOG pathway was originally identified in 

Saccharomyces cerevisiae as playing a crucial role in maintaining water balance in hyper- 

and hypoosmotic conditions (Bahn, 2008). In bacteria, virulence and antibiotic resistance 

are two outcomes of such signalling systems (Mascher, 2006). Since members of two-

component phosphorelay systems have not been found in humans, and are valuable for 

fungal survival under stress, components of this pathway can be excellent drug targets. 

 

2.2.1 The two-component HOG pathway 

The HOG pathway is conserved from yeast to fungi and can be divided into two modules: 

the two-component system and the HOG MAPK (mitogen-activated protein kinase) 

module (see Figure 4). External stresses are sensed by a hybrid sensor kinase (HK), 

which then autophosphorylates a histidine residue in the histidine kinase domain. The 

phosphate is transferred through the system: to an aspartate residue in the response 

regulator receiver domain (REC) of the histidine kinase, then to a histidine residue of a 

histidine-containing phosphotransfer protein (HPt), and finally to an aspartate residue of 

the response regulator (RR). The response regulator can act as a transcription factor to 

trigger the expression of downstream target genes or directly activate the HOG MAPK 

module.  Here again, a phosphorylation reaction runs through the module, now yielding a 

phosphorylated Hog1 MAPK, which is translocated to the nucleus, where it induces the 

expression of target genes necessary to defend the fungus from stress (Bahn, 2008). In 

pathogenic fungi, the HOG pathway governs the response to a wide array of stimuli, 

including osmotic shock, UV stress, oxidative and heavy metal stress, high temperatures, 

and osmotic stress (Bahn et al., 2007). There is also evidence for activity of the HOG 

pathway (directly or indirectly) during growth, differentiation, and infection (Alonso-Monge 

et al., 1999; Bahn et al., 2006). These systems have been implicated in virulence in both 

plant and animal pathogens, and though the HOG pathway is highly conserved, little is 

known about its components and functions in Aspergillus, especially A. fumigatus. 
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2.2.2 Hybrid sensor kinases 

Initiating signal transduction through the two-component HOG pathway is a hybrid sensor 

kinase. Such proteins have been described in prokaryotes, slime molds, plants, and fungi, 

but not in animals. The fungal hybrid sensor kinases are quite diverse with regards to 

number in a single species, functions, and domain structures (Bahn, 2008), but among 

the diverse sensor kinases all those identified to date in fungi exist as hybrids, in which 

Figure 4. The two-component HOG pathway.  

 
In bacteria and fungi a stress signal is sensed by an HK, which autophosphorylates and then transfers a phosphate 

through the two-component and HOG MAPK modules to the Hog1 MAPK. Phosphorylated Hog1 translocates to the 

nucleus where it activates the expression of stress-defensive genes [adapted from (Bahn, 2008)]. 
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the histidine kinase and response regulator domains are within a single polypeptide, as is 

an HATPase_c domain, required for ATP binding. Thirteen putative hybrid sensor kinases 

have been identified in A. fumigatus but only two have been studied functionally: the 

Group IV HK TcsA and the Group VI HK TcsB (Li et al., 2010a). Deletion of tcsA or tcsB did 

not alter the growth or stress resistance of A. fumigatus (Du et al., 2006; Pott et al., 

2000). It is now the phosphotransfer protein domain that is considered essential. In 

contrast to other filamentous ascomycetes, plants, and bacteria examined thus far, A. 

fumigatus contains only one histidine-containing phosphotransfer domain protein (Tekaia 

and Latge, 2005). 

Group III hybrid sensor kinases are characterized by amino acid repeats at the N-

terminus. These conserved sequences were denoted HAMP domains for the types of

proteins in which they were initially discovered (histidine kinases, adenyl cyclases, 

methyl-accepting chemotaxis proteins, phosphatases) (Buschart et al., 2012; Li et al., 

2010a). Signal transduction occurs down a poly-HAMP chain whereby consecutive HAMP 

domains interconvert between two conformations (Airola et al., 2010; Dunin-Horkawicz 

and Lupas, 2010). Group III hybrid sensor kinases have been implicated in virulence of 

both animal and plant pathogens, namely, the hybrid sensor kinase Nik1 in Candida 

albicans and the homologous BOS1 in Botrytis cinerea (Selitrennikoff et al., 2001; Viaud 

et al., 2006), respectively. In the present study, a single Group III HK in A. fumigatus was 

identified and named TcsC. Additionally, the role of the HOG pathway in A. fumigatus 

stress response and virulence by deletion of the tcsC gene was examined. 

 

2.3 The fungus versus the host ― Aims of the thesis 

The study of any pathogen, or faux pathogen as may be the case with Aspergillus, 

requires not only an understanding of the pathogen itself but an understanding of the 

body’s attack against this invader, and most importantly, an understanding of the 

interaction between the host and the microbe. The current study attempts this rather 

daunting task by starting with a simple premise: both the host and pathogen must 

combat a complex array of stresses as they meet one another. Their individual abilities to 

deal with these stresses, and in fact continue to thrive in such an environment, may 

reveal the key to Aspergillus’ pathogenicity, but also the missing factor(s) in an immune 

system that is usually capable of dispelling this non-pathogenic, even ubiquitous, invader. 
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We identified stress signals and defense mechanisms of the innate immune system, 

namely NETosis and IFN-γ release by natural killer cells in response to Aspergillus 

infection. We simultaneously explored a pathway in A. fumigatus involved in defending 

the microbe from stresses normally encountered within its environmental niche, but also 

perhaps during infection of a human host. 
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Summary 

 
Aspergillus fumigatus is currently the major air-

borne fungal pathogen. It is able to cause several 

forms of disease in humans of which invasive 

aspergillosis is the most severe. The high mortality 

rate of this disease prompts increased efforts to 

disclose the basic principles of A. fumigatus 

pathogenicity. According to our current knowledge, 

A. fumigatus lacks sophisticated virulence traits; it is 

nevertheless able to establish infection due to its 

robustness and ability to adapt to a wide range of 

environmental conditions. This review focuses on 

two crucial aspects of invasive aspergillosis: (i) 

properties of A. fumigatus that are relevant during 

infection and may distinguish it from non-pathogenic 

Aspergillus species and (ii) interactions of the 

pathogen with the innate and adaptive immune 

systems. 

 
It starts with the mould 
 
Aspergilli are saprophytes that commonly grow on decay-

ing plant material. They are able to utilize a wide range of 

organic substrates and adapt well to a broad range of 

environmental conditions. In contact with air the mycelium 

forms specialized structures, so-called conidiophores. 

These produce large numbers of conidia (asexual spores) 

that are efficiently dispersed through the air and inhaled by 

humans.  
Aspergillus fumigatus is currently the most important air-

borne fungal pathogen causing different kinds of disease 

depending on the immune status of the host (e.g. 
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invasive and non-invasive pulmonary infections or allergic 

bronchopulmonary aspergillosis). Most cases of invasive 

aspergillosis are associated with haematological malig-

nancies, particularly haematopoietic stem cell transplan-

tation, leukaemia or lymphoma. The risk of invasive 

Aspergillus infection is particularly high for patients with 

persistent neutropenia, graft-versus-host disease (espe-

cially with concomitant steroid therapy) and certain types of 

allogeneic transplantation (Segal et al., 2002; Camps, 

2008). In all cases, recovery of granulocytes is pivotal for 

the survival of these patients. 

 
What makes the difference? 
 
Fungal conidia of many species are inhaled by humans in 

substantial numbers, but invasive aspergillosis is caused 

predominantly by A. fumigatus and only to a much lesser 

extent by Aspergillus terreus, A. flavus and others (Marr et 

al., 2002; Morgan et al., 2005), while the other approxi-

mately 650 Aspergillus species are unable to provoke 

severe infections. This indicates a selective process that 

operates even in immunocompromised patients and elimi-

nates most fungal invaders before or when they reach the 

lower respiratory tract (Fig. 1). Regrettably, our knowledge 

about this protective mechanism and the stage at which 

innocuous fungi are eliminated is still in its infancy. 
Fungi are important pathogens for insects, amphibians 

and plants, and since most fungi grow best at ambient 

temperatures, it was speculated that vertebrate endothermy 

evolved primarily for protection against fungal infections 

(Casadevall, 2005). Invasive Aspergillus infections usually 

start in the non-inflamed lung, hence at normal body 

temperature. Under this condition many Aspergillus species 

are able to germinate and grow. A. fumigatus is a 

particularly thermotolerant organism: its temperature 

optimum ranges from 37°C to 42°C, but it can grow at up to 

55°C and thereby approaches the upper temperature limit of 

eukaryotic organisms. This suggests that A. fumigatus 

evolved distinct mechanisms of stress resistance that might 

provide the basis of its virulence. Several mutants obtained 

by chemical mutagenesis were identified that grow at 42°C, 

but not at 48°C. Interestingly, none of them was attenuated 

in virulence (Chang et al., 
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Fig. 1. What makes the difference? Conidia 

of numerous Aspergillus and other fungal 

species are constantly inhaled by humans, 

but A. fumigatus is responsible for the vast 

majority of infections. Potential criteria that 

may decide the success of infection are 

indicated. 
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2004). In contrast, disruption of the cgrA gene, which 

reduced growth at 37°C, but not at 25°C, led to an attenu-

ation in virulence in a murine (37°C), but not in a Drosophila 

melanogaster (25°C) model of infection (Bhabhra et al., 

2004). Further support for a correlation between thermo-

tolerance and pathogenicity came from studies that com-

pared different A. fumigatus isolates (Paisley et al., 2005) or 

Aspergillus species (Araujo and Rodrigues, 2004). Thus, 

certain genes that are required for thermotolerance seem to 

be also relevant for virulence. Thermotolerance may reflect 

a general hardiness that helps A. fumigatus to cope with 

different stress conditions. Although some traits have been 

implicated, it is still ambiguous whether they are distinct for 

A. fumigatus. It will be a challenge in the future to prove that 

human body temperature is the critical parameter that 

obviates infections by the numerous non-pathogenic 

Aspergillus species. 
During infection Aspergillus must procure nutrition from 

the host. The finding that methylcitrate synthase is required 

for invasive Aspergillus infections (Ibrahim-Granet et al., 

2008) indicates that the fungus feeds mainly on amino 

acids. This implies that the degradation of pro-teins is 

crucial during infection and A. fumigatus is well 

 
 

 
equipped with numerous proteases to make amino acids 

available (Monod et al., 2009). However, attempts to 

define relevant proteases by single mutations failed, as 

have recent studies in which PrtT, a regulator control-ling 

a subset of extracellular proteases, was deleted 

(Bergmann et al., 2009; Sharon et al., 2009).  
According to our current knowledge A. fumigatus lacks 

sophisticated virulence factors that are solely dedicated 

to permit a pathogenic lifestyle. This distinguishes A. 

fumi-gatus from many bacterial pathogens and reflects 

its evo-lutionary background as a saprophytic soil 

dweller. Further research will have to uncover the 

secrets of its flexibility and robustness that distinguish 

this important and life-threatening opportunistic pathogen 

from its numerous non-pathogenic colleagues. 

 
First encounter: host–pathogen interactions in 

the alveoli 
 
Conidia of A. fumigatus are inhaled by humans and, due to 

their small size, travel deep into the respiratory system. 

Alveoli are the principal origin of systemic Aspergillus 

infections, although infection may also start from other 
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Fig. 2. Schematic representation of the innate immune response at an early stage of infection.  
A. Resting conidia arrive in the alveolus.   
B. Germination of the spores and initial interactions with alveolar macrophages and alveolar epithelial cells.   
C. Later stage of infection characterized by hyphae that infiltrate blood vessels, activation of platelets, establishment of hypoxic conditions 

(indicated in grey) and vascular spread of infection.  

 

anatomical sites, like the sinus. In the alveolus the fungus 

germinates in a highly specialized anatomical niche that 

consists of type I and type II epithelial cells, alveolar 

macrophages, interstitial fibroblasts and endothelial cells 

(Herzog et al., 2008) (Fig. 2A). The thin and flat alveolar 

type I cells cover 95% of the alveolar surface and mediate 

the gas exchange in collaboration with underlying 

endothelial cells. Fibroblasts produce extracellular matrix 

proteins and thereby build up the scaffold for the alveolus. 

Type II cells cover only 5% of the alveolar surface, but play 

an important role by keeping the alveolar space free of fluid.  

 

Type II cells are additionally involved in the innate immune 

response. They release opsonins, such as complement and 

surfactant proteins, to the alveolar space and are able to 

respond to microbial infections with the production of 

cytokines (Herzog et al., 2008). 

Conidia of different Aspergillus species were shown to 

activate the alternative complement cascade and asexual 

spores from clinical isolates induce a stronger response 

than non-pathogenic environmental isolates (Dumestre-

Pérard et al., 2008). Thus, complement produced by 

alveolar cells might be an important player at this stage of 

infection.
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In vitro, A. fumigatus conidia bind efficiently to the surface 

of A549 cells. These type II-like cells represent the standard 

model for studying interactions of Aspergillus with the 

alveolar epithelium. Conidia also bind to several matrix 

proteins, e.g. fibrinogen, laminin, and type I and type IV 

collagen (Bromley and Donaldson, 1996), and pre-

incubation with fibrinogen or laminin impaired conidial 

binding to A549 cells (Bromley and Donaldson, 1996; 

Bouchara et al., 1997). Hence, receptors for matrix proteins 

may reside in the surface layer of resting conidia and 

mediate the primary adhesion to host tissue in the lung. 

However, the relevance of these findings for the virulence of 

A. fumigatus is still unclear. 
Conidia are also internalized by A549 cells and travel to 

an acidic compartment comprising lysosomal markers. It 

has been reported that only 3% of these asexual spores 

survive, suggesting that A549 cells have the ability to kill 

conidia in a phagosomal compartment. The few conidia that 

survived in this hostile environment formed germ tubes, 

breached host membranes and escaped from the infected 

cell (Wasylnka and Moore, 2003). A549 cells infected with 

viable A. fumigatus conidia release IL-6 and IL-8 (Zhang et 

al., 2002), which underlines the role of type II cells in the 

innate immune response to fungi and in particular in the 

recruitment of neutrophils to the site of infection. 

 
The innate immune response 
 
Aspergillus conidia are able to withstand harsh conditions. 

This is due to a reduced water content, the accumulation of 

protective molecules in the cytoplasm, and a protective 

surface layer comprising two hydrophobin proteins (Thau et 

al., 1994; Paris et al., 2003) and a melanin layer (Langfelder 

et al., 1998; Tsai et al., 1998). Resting conidia shrouded in 

this hydrophobic mantle are immunologically inert particles 

(Aimanianda et al., 2009). Activation of resting conidia leads 

to an isotrophic growth that bursts open the rigid surface 

layer and thereby exposes the carbohydrates of the cell 

wall. Evidence is mounting to support the importance of 

fungal-specific glycostructures as target molecules for 

invariant, germ line-encoded pattern recognition receptors 

(PRRs) that are crucial for the innate immune response. 

Currently three main PRRs are believed to participate in the 

response to A. fumigatus: Dectin-1 and the Toll-like 

receptors TLR2 and TLR4. At least dectin-1 is of general 

importance for the recognition of fungal pathogens (Herre et 

al., 2004). Recognition of its ligand, β-1,3-glucan, by the 

innate immune system is evolutionarily old and can be 

traced back to ancient invertebrates, like the horse-shoe 

crab Limulus polyphemus. Aspergillus β-1,3-glucan triggers 

a strong inflammatory response and enhances phagocytosis 

by macrophages (Steele et al., 2005; Luther et al., 2007).

 

 

 

Immunocompe tent mice are prone to Aspergillus infections 
if they lack dectin-1 (Werner et al., 2009), whereas TLR2 or 

TLR4 are only required after immunosuppression 

(Dubourdeau et al., 2006). The ligand of dectin-1, β-1,3-

glucan, is hardly detectable on resting conidia, but 

prominent on swollen conidia and germ tubes. Interestingly, 

it is not traceable on hyphae (Hohl et al., 2005), a fact that 

has been discussed as a fungal stealth strategy. If this in 

vitro observation holds true during infection, the essential 

role of dectin-1 in the defence of Aspergillus is solely based 

on its importance in the combat of swollen conidia and germ 

tubes and therefore restricted to a very early stage of 

infection (Fig. 2B).  
The Aspergillus molecules that are recognized by other 

PRRs are still under debate. Given their surface exposure 

and specificity for fungi, certain carbohydrates are excellent 

candidates for pathogen-associated molecular patterns 

(PAMPs) and the exemplary fungal pathogen Candida 

albicans was recently shown to be recognized by the 

concerted action of three PRRs that detect β-1,3-glucan 

(dectin-1), O-linked mannan (TLR4) and N-linked mannan 

(mannose receptor) (Netea et al., 2006). 
In contrast to Aspergillus, C. albicans is a yeast and has a 

long record as a human pathogen. Thus, lessons learned 

from Candida may not necessarily apply to Aspergillus. 

Since purified carbohydrate ligands are usually not 

available, unambiguous proof for the rel-evance of certain 

Aspergillus glycostructures as PAMPs depends on 

appropriate mutants. Mutants in key enzymes of protein O-

glycosylation and glycolipid syn-thesis have been analysed, 

but revealed no phenotype with respect to cytokine release 

in murine macrophages (Wagener et al., 2008; Kotz et al., 

2010). This might be the consequence of a fundamental 

difference between yeasts and filamentous fungi: C. 

albicans produces highly mannosylated proteins and 

glycolipids, whereas comparatively smaller glycoconjugates 

are characteristic of A. fumigatus.  
Resident alveolar macrophages engulf conidia and 

respond to this encounter by producing cytokines and 

chemokines. This triggers a massive recruitment of neu-

trophils, which is the hallmark that distinguishes a sub-

stantial inflammation from a daily skirmish. Neutrophils 

patrol through the bloodstream and have to be attracted to 

the site of infection. They are the executors of the acute 

inflammatory response and the particular susceptibility of 

granulopenic patients to severe Aspergillus infections 

underlines their relevance. Depletion experiments also 

assigned a critical importance to neutrophils, but not to 

alveolar macrophages (Mircescu et al., 2009). The ability of 

neutrophils to attack and kill A. fumigatus depends on TLR2, 

TLR4 and dectin-1 (Bellocchio et al., 2004; Werner et al., 

2009). Elimination of conidia and small germ tubes is 

accomplished by phagocytosis, while the release of 
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microcidal molecules enables neutrophils to attack larger 

hyphal cells. Recently, the formation of neutrophil extra-

cellular traps (NETs) triggered by A. fumigatus was dem-

onstrated in the infected lung (Bruns et al., 2010). NETs 

represent an anti-microbial effector mechanism that 

mediates killing of a diverse range of bacterial pathogens as 

well as C. albicans (Papayannopoulos and Zychlinsky, 

2009). NETs are unable to eliminate A. fumigatus, but 

reduce hyphal growth by depleting zinc ions (McCormick et 

al., 2010), a mechanism that might be valuable to confine 

infection.  
A rapid influx of neutrophils into the lung can be observed 

in mice that inhaled larger numbers of conidia. After 2–3 h, 

samples obtained by bronchoalveolar lavage contained 

large aggregates of neutrophils and conidia, and 

germination was shown to be inhibited over a period of 24 h 

(Bonnett et al., 2006). In contrast, gp91phox-/-mice, which 

are deficient in phagocyte NADPH oxidation and therefore 

production of reactive oxygen species (ROS), are already 

susceptible to low doses of conidia (Bonnett et al., 2006). 

Alveolar macrophages from p47phox-/- mice, which are also 

deficient in ROS production, are impaired in killing of A. 

fumigatus (Philippe et al., 2003). These findings are in line 

with the fact that patients with Chronic Granulomatous 

Disease (CGD) who are deficient in ROS production are 

also more susceptible to Aspergillus infections. However, 

the concept that ROS are pivotal for killing of Aspergillus is 

still under debate. A yap1 mutant, although highly sensitive 

to ROS, behaved as wild type in confrontation experiments 

with human neutrophils and in a murine model of infection 

(Lessing et al., 2007), whereas a triple mutant lacking all 

three superoxide dismutase genes was more efficiently 

killed by macrophages, but not attenuated in virulence 

(Lambou et al., 2010). Mutations in the tmpL and the 

conidial catalase A gene are sensitive to oxidative stress in 

vitro and attenuated in virulence (Kim et al., 2009; Ben-Ami 

et al., 2010); however, killing assays with murine alveolar 

macrophages revealed no difference between the catA 

mutant and the wild type (Paris et al., 2003). 
Recent data demonstrate that CGD patients have an 

impaired ability to form NETs. Restoration of ROS produc-

tion by gene therapy was shown to reconstitute NET 

formation and to protect a CGD patient from a severe 

Aspergillus nidulans infection (Bianchi et al., 2009). The 

recent findings that NADPH oxidase restrains the innate 

immune response and limits inflammation provides another 

important tool to better understand the particular sensitivity 

of CGD patients to recurrent infections (Segal et al., 2010). 

Thus, apart from a potential direct action on microbes, ROS 

seem to play an important role in directing the innate 

immune response. 
Natural killer (NK) cells represent a further facet of innate 

immunity. They are recruited early during Aspergillus 
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infection and participate in the anti-fungal response 

(Morrison et al., 2003). At this stage, NK cells are the major 

source of IFN-γ (Park et al., 2009), a cytokine that is known 

to increase the microbicidal activity of phagocytes. Further 

studies are clearly required to define the role of NK cells in 

anti-Aspergillus immunity.  
The large pentraxin PTX3 belongs to a family of acute 

phase proteins that represent the major humoral arm of 

innate immunity. PTX3 is produced by macrophages and 

epithelial cells in response to infection. Moreover, it is stored 

in larger quantities in the granules of neutrophils that release 

PTX3 during NETosis (Jaillon et al., 2007). PTX3 is an 

opsonin that mutually binds to the complement protein C1q 

and ficolin-2, a recognition molecule of the lectin 

complement pathway (Ma et al., 2009). Thus, PTX3, C1q 

and ficolin-2 might form complexes on the conidial surface 

and thereby amplify the innate immune response. 

Remarkably, PTX3 deficiency renders immuno-competent 

mice highly susceptible to A. fumigatus infection (Garlanda 

et al., 2002). Early administration of PTX3 enhances the 

conidiocidal activity of neutrophils and limits the 

inflammatory pathology (D’Angelo et al., 2009). The latter 

effect can be attributed to a faster elimination of PTX3-

opsonized conidia (Garlanda et al., 2002) and a reduced 

neutrophil recruitment due to the binding of PTX3 to P-

selectin (Deban et al., 2010). A fast elimination of PTX3-

opsonized conidia and a concomitantly restrained 

inflammation provide a rationale for the fact that NADPH 

oxidase-deficient mice can be protected by the exogenous 

administration of PTX3 (D’Angelo et al., 2009). 

 
Invasive pulmonary aspergillosis: tissue invasion 

and inflammation 
 
After penetration of the epithelial layer of the alveoli, the 

fungus immediately comes in direct contact with the 

underlying blood vessels (Fig. 2C). Here, A. fumigatus 

requires no sophisticated adhesion and invasion mecha-

nisms to breach epithelial or endothelial barriers. Instead it 

can rely on the robust architecture of its cell wall and the 

enormous driving force of the polarized hyphal growth. 

Aspergillus is a so-called angiotrophic fungus and infection 

of vessels is a characteristic histopathological feature of 

invasive Aspergillus infections (Kradin and Mark, 2008). As 

an organism that is used to growing in complex organic 

matter, A. fumigatus has a well-developed ability to follow 

gradients; during infection this will guide hyphae to blood 

vessels that transport oxygen and carbohydrates. 

Angioinvasion often results in infarction and consequently in 

reduced oxygen supply (Fig. 2C). Recruitment of neutrophils 

will furthermore disturb the integrity of the endothelial and 

epithelial barriers. Local obstruction of the airways may 

induce oedema, alveolar flooding and completely shut down the 
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oxygen supply. Consequently, the fungus has to adapt to a 

hypoxic environment. According to our current knowl-edge, 

A. fumigatus relies on its oxidative energy metabo-lism to do 

so. The putative transcription factor SrbA is essential for 

hypoxic adaptation and virulence (Willger et al., 2008). This 

important finding demonstrates that the adaptation to 

hypoxia is a prerequisite for the survival of A. fumigatus in 

the inflamed tissue and its ability to spread to different 

organs.  
It has become evident only recently that hypoxia is also a 

strong signal to immune cells. Effector cells that are 

recruited from the bloodstream, like neutrophils and 

monocytes, travel along an oxygen gradient when enter-ing 

inflamed tissue. Hypoxia is deciphered by these cells as an 

activating signal and HIF-1, the central transcrip-tional 

activator of hypoxic adaptation in mammalian cells, 

activates the anti-microbial activities of phagocytes and has 

been discussed as a master regulator of the innate immune 

response (Nizet and Johnson, 2009). It will be a challenge, 

in future analyses of the innate immune response to A. 

fumigatus, to consider the hypoxic adaptation of both the 

pathogen and the host. 

 
The adaptive immune response to A. fumigatus 
 
The innate and the adaptive immune responses generally 

collaborate to defeat infections. T and B lymphocytes 

represent the two parts of the adaptive immune system. In 

contrast to the combat-ready innate defence, the adaptive 

response follows afterwards and reacts to signals 

originating from the innate immune response. The daily 

housekeeping work of eliminating inhaled fungal conidia 

relies solely on the innate immune system, whereas a 

concerted action of the innate and adaptive immune 

systems is required to fight established and potentially life-

threatening infections.  
Aspergillus-specific antibodies have been detected in 

immunocompromised patients suffering from invasive 

aspergillosis, but their functional importance is often con-

sidered minor. However, administration of β-1,3-glucan-

specific antibodies can be protective (Torosantucci et al., 

2005) and the importance of antibodies in protection against 

aspergillosis clearly deserves more attention.  
While the role of B cells is still under debate, it is 

generally accepted that T cells play an important role in the 

defeat of aspergillosis and fungal infections in general. The 

T cell response is in many ways linked to the innate immune 

response. Dendritic cells (DCs) infiltrate the infected region, 

differentiate in response to the pathogen and, when loaded 

with antigen, migrate to the draining lymph nodes to instruct 

T cells. T cells have the ability to either activate phagocytes 

or limit the immune response. The collateral tissue damage 

caused by an exaggerated inflammatory response 

contributes substantially to the morbidity of Aspergillus 

 
infections and the control of immune effector cells is 

therefore of prime importance. DCs are located at the cross-

roads and direct the immune system either towards a 

balanced and protective Th1 or towards an excessive, 

inflammatory Th17 response. Production of IFN-γ by Th1 

cells is fundamental to optimize the microbicidal activity of 

phagocytes. In contrast, stimulation of Th17 cells and the 

production of IL-23 by DCs promote a destructive 

inflammatory response and impair anti-fungal resistance 

(Zelante et al., 2007). Regulatory T cells (Tregs) limit the 

inflammatory response steered by Th1 cells and act in an 

antagonistic fashion to Th17 cells.  
In conclusion, an efficient anti-Aspergillus immune 

response requires the coordinated actions of innate and 

adaptive immunity. Both arms are part of a highly inter-

connected and interdependent network that must be finely 

tuned in order to find balance between protection and 

immunopathology. The adaptive immune system repre-

sents the regulatory part and is crucial to activate, direct and 

finally limit the innate immune response, especially 

neutrophils which act as the major executors of aggressive 

anti-fungal measures.  
As a tightly controlled innate immune response is pivotal 

to eliminate the pathogen, resolve inflammation and initiate 

tissue repair, attempts have been undertaken to develop 

new therapeutic concepts aimed at modulation of the 

adaptive immune response. The adoptive transfer of Th1 

cells has already been successfully applied to treat human 

patients (Perruccio et al., 2005) and effective DC 

vaccination has been described in a murine model of 

infection (Bozza et al., 2003). More recently, an siRNA 

approach has been successfully applied in a similar infec-

tion model to optimize the host response by dampening 

PI3K/Akt/mTOR inflammatory pathways (Bonifazi et al., 

2010). 

 
Systemic spread of infection 
 
During invasive Aspergillus infection, hyphae commonly 

target blood vessels, as mentioned above. This often results 

in thrombosed vessels and the appearance of targetoid 

lesions (Kradin and Mark, 2008). Hyphae and conidia 

activate platelets in vitro and this host–pathogen interaction 

probably promotes thrombosis and contributes to 

inflammation in vivo (Rødland et al., 2010). The propensity 

to invade blood vessels is also a means for dissemination 

via the bloodstream. Viable fungal cells are rarely found in 

the peripheral blood, a fact that severely hampers diagnosis 

of disseminated Aspergillus infections. This is a 

consequence of the hyphal architecture that establishes 

tight cellular cohesion by a common cell wall and prevents 

the release of single cells or fragments. However, a 

detachment of short hyphal segments may 
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occasionally occur and drive the systemic spread of infec-

tion. Alternatively, phagocytes may ingest small fungal 

elements and displace them (Fig. 2C). Secondary blood 

vessel-borne infectious foci often grow with a characteristic 

sunburst appearance (Kradin and Mark, 2008). Thrombosis 

is a common feature of these lesions and instrumental to 

generate hypoxic conditions. Aspergillus furthermore inhibits 

angiogenesis through production of secondary metabolites, 

like gliotoxin, and thus enforces the formation of hypoxic 

conditions (Ben-Ami et al., 2009). The resulting 

disseminated abscesses are the hallmark of this late stage 

of infection and appear in different organs. 
One of the major complications during Aspergillus 

infection is its dissemination into the central nervous system 

(CNS), surmounting the blood–brain barrier. CNS 

aspergillosis has been diagnosed with increasing frequency 

over the past decade; parenchymal abscesses represent 

the majority of these with true meningitis being rare. 

Although the blood–brain barrier consists of tight junctions 

between all endothelial cells in capillaries supplying brain 

cells, A. fumigatus is able to overcome this barrier and to 

penetrate into the cerebrospinal fluid (CSF). Infiltration of A. 

fumigatus into the CNS is often fatal because of reduced 

penetration capacities of most anti-fungal agents and 

impaired numbers of immune cells present in the CSF 

(Schwartz and Thiel, 2009). 

 
Concluding remarks 
 
Systemic infections by A. fumigatus are only found in 

patients with severely impaired immune defences. Clearly, 

such infections are rather a consequence of modern medi-

cine and cannot have influenced the evolution of this 

opportunistic pathogen. So far, there is no evidence that 

Aspergillus acquired pathogenic traits in host–pathogen 

interactions with, for example, predatory protozoa. Also 

sequencing of the genome did not provide any hints for the 

presence of classical virulence factors. But in order to 

survive in the soil, A. fumigatus acquired a high level of 

stress tolerance and flexibility that could provide a basis for 

its pathogenicity. However, to distinguish itself from non-

pathogenic moulds A. fumigatus appears to keep additional 

secrets that have yet to be disclosed. 
Infections by filamentous fungi are a severe medical 

problem characterized by an increasing number of cases 

and limited therapeutic options. Hence, the identification of 

new therapeutic targets is an urgent need. Filamentous 

fungi rely on polarized hyphal growth to invade tissues and 

cross barriers. Therefore, studies on the hyphal orga-

nization and cell biology may uncover new Achilles heels of 

these pathogens.  
During infection Aspergillus has to deal with changing 

conditions at different anatomical sites. For a deeper 

understanding of the interactions between the pathogen 
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and the host, the experimental conditions have to be 

adapted to the reality of the infected tissue. Environmental 

parameters, such as the oxygen concentration, have to be 

considered and infection models have to mirror the com-

plexity of the immune response. Travelling along this road 

will enable us to further shape the contours of this oppor-

tunistic pathogen. 
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Abstract 
 

Neutrophil extracellular traps (NETs) represent a distinct mechanism to control and eliminate microbial infections. Our results show that 

conidia and germ tubes of the human pathogenic mold Aspergillus fumigatus are able to trigger the formation of NETs. Viable fungal cells are 

not essentially required for this host-pathogen interaction. Neutrophils engulf conidia and thereby inhibit their germination, a process that is 

independent of NETosis. In the experimental set-up used in this study neutrophils do not kill germ tubes, but reduce their polar growth and this 

inhibition depends on NETs as it can be overcome by the addition of DNase-1. The Zn
2+

 chelator calprotectin is associated with the 

Aspergillus-induced NETs and addition of Zn
2+

 abrogates the NET-mediated growth inhibition. In summary, our data provide evidence that 

NETs are not sufficient to kill A. fumigatus, but might be a valuable tool to confine infection. 
©2010 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved. 
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1. Introduction 

 
Aspergillus fumigatus is the most prevalent airborne fungal 

pathogen causing life-threatening infections in immunocom-

promised patients. Although immunocompetent humans 

inhale several hundred A. fumigatus spores per day they 

commonly do not develop a detectable disease  [1]. This 

protection relies essentially on cells of the innate immune 

system. Phagocytes are crucial for clearance of inhaled 

conidia and in particular neutrophils are thought to kill 

hyphae, which are too big to be phagocytosed  [2]. Alveolar 

macrophages were originally thought to clear infection; 

however, this notion has been recently challenged by the 

finding that neutrophils, but not alveolar macrophages, are 

essential for clearance of A. fumigatus infections  [3]. 
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Neutrophils are in the first line of defense against microbial 

infections. They are short-lived, versatile cells that must be 

recruited to the site of infection  [4]. Neutrophils can combat 

microbes by at least three distinct mechanisms: (1) phagocy-

tosis, (2) release of anti-microbial molecules and (3) 

formation of neutrophil extracellular traps (NET). These 

NETs were described only recently  [5]. They consist of a 

scaffold of DNA decorated by a distinct set of cytoplasmic 

and granular proteins, while other abundant cytoplasmic 

proteins do not associate with NETs  [6]. 
The formation of NETs can be triggered by a variety of 

microbes or alternatively by interleukin 8 (IL-8) or phorbol 

myristate acetate (PMA). Several pathogens, such as Staphy-

lococcus aureus, Salmonella enterica and Candida albicans 

induce NETs and when trapped within these structures are 

eliminated by NET-mediated killing  [7]. Several proteins 

have been implicated in the anti-microbial activity of NETs, 

e.g., histones, elastase and calprotectin  [5,6,8]. 
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Induction of NETs has been characterized in detail for C. 

albicans yeasts and hyphae  [9] and first evidence that NET 

formation can be triggered by A. fumigatus conidia has been 

published  [10]. In this study, we analyzed the ability of A. 

fumigatus to trigger NET formation as well as the impact of 

NETs on germination and growth of this fungal pathogen. 
 
2. Materials and methods 
 
2.1. Strains and materials 

 
The A. fumigatus strain ATCC 46645 was used throughout 

this study. If required, fungal cells were killed by exposure to 

ultra violet (UV) light as follows. Resting conidia (RC) were 

incubated in 20 ml RPMI1640 plus 50 µg/ml gentamicin in a 

closed 50 ml Falcon tube overnight at room temperature to 

synchronize germination. Germ tubes (GT) were generated by 

incubating an additional 3-4 h at 37 °C with shaking. Mor-

photypes were verified microscopically. Cells were then 

centrifuged at 5000 g for 10 min at room temperature and 

resuspended in sterile deionized water. The fungal cells were 

subjected to UV-light in a sterile Petri dish for 4-6 h and then 

washed once in sterile deionized water. Killing was confirmed 

by plating the cells in RPMI1640 and confirming no growth 

occurred over a period of 1-2 days. 
 
2.2. Isolation of neutrophils 

 
Whole blood from healthy donors was diluted in an equal 

volume of PBS, layered over Ficoll solution (GE Health-care), 

and centrifuged at 300 g for 20 min at room temperature. The 

supernatant was removed; the remaining cells were washed 

once in PBS, and centrifuged at 200 g for 10 min at 4 °C. The 

supernatant was removed and the pellet resuspended in cold 

ammonium chloride lysis buffer. Lysis was carried out for 30 

min at 4 °C followed by centrifugation at 200 g for 10 min at 

4 °C. The cells were again resuspended in cold lysis buffer 

and incubated for 10 min at 4 °C. Neutrophils were then 

harvested by centrifugation and resuspended in RPMI1640. 
 
2.3. Immunofluorescence 

 
The monoclonal antibody (mab) L10-13 was raised by 

immunization of mice with culture supernatant of A. fumi-

gatus grown in 2% collagen-water medium. This hybridoma 

was identified in a screening for antibodies that stained A. 

fumigatus hyphae in immunofluorescence. Primary anti-

bodies to neutrophil elastase and calgranulin A were 

purchased from Abcam (ab21595) and Santa Cruz Biotech-

nology (sc-20174), respectively. The cover slips were first 

blocked in 1:100 goat serum in PBS at 37 °C for 30 min and 

washed once with PBS. Primary antibodies were used at 1:50 

in PBS or as undiluted hybridoma supernatant at 37 °C for 1 

h. The cover slips were then washed three times in PBS. 

Secondary antibodies, α-mouse IgM-Cy3 (Jackson Immu-

noResearch) or α-rabbit-FITC (Abcam) were used at 1:1000 

 
and 1:100, respectively, at 37 °C for 1 h. The cover slips were 

again washed three times with PBS and then mounted to glass 

slides in Vectashield containing DAPI (Vector Laboratories) 

and analyzed by fluorescence microscopy using a Leica SP-5 

confocal laser scanning microscope (Leica Microsystems). 
 

 
2.4. Germ tube preparation 

 
RC were incubated overnight as described above. GT were 

generated by incubating at 37 °C for another 4 h with shaking. 

If necessary, the GT were stained with a final concentration of 

0.3 mg/ml fluorescein-isothiocyanate (FITC, Sigma) in 0.1 M 

sodium carbonate buffer, pH 10.0. The staining was done at 

37 °C for 30 min, with shaking, in the dark. Stained GT were 

washed twice with sterile deionized water and used immedi-

ately for infection experiments. 

 
2.5. Resting conidia growth inhibition assay 
 

Isolated neutrophils were seeded at 8 x 10
5
 cells per well in 

6-well plates with 3 ml RPMI1640 plus 50 µg/ml gentamicin 

and three poly-L-lysine-coated glass cover slips per well. 

Where appropriate, neutrophils were incubated with 25 nM 

PMA (Sigma) at 37 °C, 5% CO2 for 30 min. The medium was 

then removed and fresh RPMI1640 added. PMA-treated 

neutrophils recovered an additional 20 min at 37 °C, 5% CO2. 

If Cytochalasin D was used to inhibit phagocytosis, 

neutrophils were incubated in a final concen-tration of 10 

µg/ml for 1 h prior to infection. If DNase-1 (Roche Applied 

Sciences, Mannheim, Germany) was used to degrade NETs, it 

was added at a final concentration of 20 U/ ml to neutrophil 

cultures prior to infection. 2.4 x 10
6
 RC were added to each 

well and the infection carried out at 37 °C, 5% CO2. At 6 h 

incubation, cells were fixed in 4% paraformaldehyde and 

stored in this solution at 4 °C until stained for 

immunofluorescence. Swollen conidia were distinguished 

from RC by immunofluorescence using the monoclonal 

antibody (mab) L10-13 and an appropriate Cy3-labeled 

secondary antibody. Samples were analyzed using a Leica SP-

5 and the percentage of swollen conidia was determined using 

software provided with the microscope. At least 300 conidia 

were counted in total for each experimental parameter. 

Conidial growth in the absence of neutrophils was used as a 

control. 

 
2.6. Germ tube viability assay 

 
We generated an A. fumigatus mito-GFP strain to analyze 

viability of hyphae at a single cell level. Briefly, we inserted a 

phleomycin resistance cassette of pJW104 into the mito-GFP 

construct pRS54  [11]. The resulting plasmid pJW106 was 

transformed into D141 and positive clones were screened by 

fluorescence microscopy. Live cell microscopy studies were 

performed using a Leica SP-5 microscope (Leica 

Microsystems). 

A. McCormick et al. / Microbes and Infection 12 (2010) 928-936 929 



   Publication 2 

 

 30 

930 A. McCormick et al. / Microbes and Infection 12 (2010) 928-936 
 
2.7. Germ tube growth inhibition assay 

 
Neutrophils were seeded as above with the addition of 

PMA or DNase-1 in the same manner, as appropriate. 2.4 x 
10

6
 FITC-stained GT were added to each well and the 

infection carried out at 37 °C, 5% CO2 for 3 h. Cells were 

fixed in 4% paraformaldehyde and stored in this solution at 

4°C until stained for immunofluorescence. Hyphal growth 

during the experiment was determined after immunofluores-

cence staining using mab L10-13 and an appropriate Cy3-

labeled secondary antibody. Samples were analyzed using a 

Leica SP-5. The length of the GT grown beyond the FITC-

labelled portion was measured using software provided with 

the microscope. At least 100 randomly chosen GT were 

measured for each experimental parameter. Fungal growth in 

the absence of neutrophils was used as a control. 
 
2.8. Neutrophil viability assays 

 
To analyze neutrophil apoptosis during NET formation, 

neutrophils and fungal cells (GT or RC, without FITC-

labeling) were co-incubated as above for 3 h. Cells were fixed 

in 4% paraformaldehyde and stored in this solution at 4 °C 

until stained for immunofluorescence. Fungal cells were 

labeled with the mab L10-13 and an appropriate Cy3-labeled 

secondary antibody. To analyze cell death, cells were stained 

with DAPI and apoptotic cells were labeled using an In Situ 

Cell Death Detection Kit (Roche Applied Sciences) according 

to the manufacturer’s instructions. Briefly, a TUNEL reaction 

mixture, which incorporates fluorescein dUTP at DNA strand 

breaks, was used to detect apoptotic neutrophils. NETs were 

labeled with DAPI, present in the mounting medium.  
To analyze neutrophil death during NET formation, an 

LDH Cytotoxicity Assay Kit (Cayman Chemical Company) 

was used according to the manufacturer’s instructions. 

Briefly, lactate dehydrogenase (LDH) present in the cell 

culture supernatant was calculated by measuring the amount 

of formazan (which absorbs light strongly at 490 nm) 

produced. LDH released into the medium as a result of cell 

death is proportional to the amount of formazan produced. 
 
2.9. Statistical analysis 

 
The Student’s t-test was used to determine the significance 

of differences. Results were plotted using Sigma Plot (Systat 
Software). 
 
3. Results 

 
Neutrophils are supposed to play a crucial role in the 

combat of A. fumigatus infections, but the precise mechanisms 

employed by this innate immune cell to kill the fungi are not 

well defined yet. We analyzed the interactions of human 

neutrophils and viable resting conidia (RC) of A. fumigatus. 

During co-incubation, the highly motile neutrophils engulfed 

many spores within the first hour (data not shown). After 3 h 

some neutrophils died and released large amounts of DNA. 

 
Elastase, a characteristic component of NETs, was found in 

association with the extracellular DNA (Fig. 1A and B). 

Similar NET-like structures were observed when neutrophils 

were challenged with viable A. fumigatus germ tubes (GT) 

(Fig. 1C), whereas neutrophils cultured 3 h without fungal 

cells, appeared to be intact and elastase was only detectable 

after permeabilization of the membranes (Fig. 1D). We also 

challenged PMNs with UV-killed A. fumigatus conidia and 

GT, both were able to trigger NET formation as their viable 

counterparts (Fig. 1E and data not shown).  
We quantified the release of lactate dehydrogenase (LDH) 

as a measure of cell death. PMA treatment of PMNs led to 

high LDH activity in the supernatant (approx. 80,000 µU/ml). 

Relative to this value, the release of LDH by non-treated 

PMNs and neutrophils challenged with either viable RC or GT 

reached approximately 10, 40 and 50%, respectively. Similar 

rates of cell death were obtained if cells were counted indi-

vidually after DAPI staining (Fig. 2B). A parallel TUNEL 

staining revealed that only very few untreated PMNs showed 

clear signs of apoptosis, whereas the majority of staurosporine 

treated cells became apoptotic. Incubation with GT or RC did 

not increase the number of apoptotic cells compared to the 

untreated control (Fig. 2B). Breaks of the DNA strands, which 

are visualized by the TUNEL assay, were not detected in the 

NETs (Fig. 2C and D). In conclusion, these data suggest that 

the apoptotic program of neutrophils is not activated by A. 

fumigatus RC and GT.  
NET-mediated killing of C. albicans has been analyzed 

using a plating assay to determine the number of surviving 

fungal cells  [6]. Swollen conidia and GT of A. fumigatus have 

a strong tendency to form aggregates, a fact that severely 

hampers analysis based on plating assays. We therefore 

studied the impact of NETs on A. fumigatus at the single cell 

level. For this purpose we used mab L10-13 that recognizes 

swollen conidia and GT, but not RC (Fig. 3A). The reactivity 

of L10-13 mab was not influenced by proteinase K treatment, 

but was abrogated after perjodate and mild acid treatment 

(data not shown). These results and the fact that L10-13 

belongs to the IgM isotype strongly suggest that L10-13 

recognizes a surface exposed carbohydrate of the A. fumigatus 

cell wall that comprises galactofuranose (data not shown).  
After co-incubation of viable RC and neutrophils samples 

were stained with L10-13 and DAPI and the percentage of 

swollen, L10-13 positive conidia was determined. The 

presence of neutrophils clearly reduced the percentage of 

swollen conidia after 6 h (Fig. 3B). We analyzed whether 

PMA as an additional trigger of NET formation  [5] enhances 

the inhibitory effect on conidial germination, which was not 

the case (data not shown). We then analyzed germination 

separately for three conidial subpopulations: (1) spores that 

were associated with NETs, (2) spores that were associated 

with intact and apparently viable PMNs and (3) extracellular 

conidia that were not associated with PMNs or NETs. The 

percentage of swollen conidia for these three subpopulations 

is given in Fig. 3C. Germination of PMN-associated spores 

was clearly reduced compared to extracellular spores. 

Strikingly, germination of NET-associated conidia was not inhibited. 
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Fig. 1. A. fumigatus induces the formation of NETs by human neutrophils. Isolated neutrophils were incubated for 3 h in the presence of viable RC (panels A and 

B), viable GT (panel C), UV-killed conidia (panel E) and as a control without fungal cells (panel D). DNA was visualized by DAPI, shown in blue, fungal cells 

were stained in red using mab L10-13 and neutrophil elastase is depicted in green. Neutrophils in panel D were permeabilized to detect intracellular elastase. No 

permeabilization was performed in A, B, C and E. Clusters of conidia are indicated by arrowheads in B and E. Bars indicate 30 µm in A and C, 5 µm in B and 25 

µm in D and E (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
 
To analyze whether phagocytosis was responsible for the 
reduced germination of cell-associated spores, we treated 
PMNs with cytochalasin D. Under this condition, neutrophils 
were viable (Fig. 2B), but the conidia remained largely 
extracellular and the vast majority germinated after 6 h (Fig. 
3C). We then induced NETosis by pre-treatment of 
neutrophils with PMA and incubated conidia with the 
resulting NETs in the presence of cytochalasin D. Although 
NETs were formed (data not shown) no inhibition of 
germination was detected (Fig. 3C). DNase-1 treatment of 
PMNs, which is known to degrade NETs and supplementation 
of the medium with Zn

2+
 ions had no impact on the level of 

germination (data not shown). Taken together, these data 
show that NETs are induced by A. fumigatus conidia, but are 
not able to inhibit germination.  

To analyze the impact of NETs on the viability of A. 
fumigatus hyphae we used an A. fumigatus strain with GFP-
tagged mitochondria. Fungal mitochondria are organized as a 
dynamic tubular network that continually changes its shape 
and moves throughout the cell  [12]. The dynamic reorgani-
zation of these organelles reflects the cellular vitality. Co-
incubation of this strain with NETs for several hours had no 
impact on the dynamics of the mitochondrial network 
(supplementary file S1) indicating that NETs were not able 
to kill hyphae. 

 

  
We then determined the growth of GT in the presence of 

neutrophils. For this purpose we adapted a method described 

recently by Wozniok et al.  [13]. GT were labeled with FITC 

and then co-incubated with neutrophils. At the indicated time 

points samples were fixed and stained with L10-13. Polar 

growth of hyphae resulted in terminal FITC-negative 

segments that were stained with L10-13. A representative 

picture of such a staining is shown in Fig. 4A. We determined 

the length of the FITC-negative segments as a measure for 

growth of the GT. The impact of PMNs on GT growth is 

shown in Fig. 4B. As before, we observed no evidence for 

killing of hyphae by NETs. However, we measured a reduced 

hyphal growth in the presence of NETs. The median values 

for the control hyphae and those co-incubated with 

neutrophils were 12.04 µm and 7.80 µm, respectively. This 

difference was highly significant (p value <0.0001) and 

reproducible in several experiments. In contrast to RC, no 

difference in hyphal growth was evident in the presence of 

DNase-1 (Fig. 4C) indicating that the formation of NETs is a 

prerequisite for the observed growth inhibition.  
Calprotectin has recently been described as an important 

constituent of NETs and evidence has been provided that this 
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Fig. 2. Quantification of cell death and apoptosis in response to A. fumigatus. Panel A: Release of lactate dehydrogenase (LDH) was measured after 3 h to 

determine cell death. PMN treated with PMA formed many NETs and most of the cells died. The corresponding LDH release was set as 100%. Relative values 

are given for PMNs treated with RC or GT and for non-treated controls. Standard deviations were calculated from three independent values each. Panel B: PMNs 

were treated with different stimuli for 3 h and the percentage of intact cells (black bars), TUNEL positive apoptotic cells (open bars) and cells that underwent 

NETosis (hatched bars) is given. Standard deviations were calculated from three independent values each. The data are representative of two completely 

independent experiments. Three sets each comprising at least 100 PMNs were analyzed. Abbreviations: GT = germ tubes; RC = resting conidia; PMA = phorbol 

12-myristate 13-acetate; STS = staurosporine; CytD = cytochalasin D; n.t. = not treated. Panel C and D: TUNEL staining of PMNs incubated with GT for 3 h. 

Green: TUNEL; red: L10-13; blue: DAPI. NETs are indicated by arrowheads. The bar in panel D represents 25 µm and is also valid for panel C (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 
protein plays a crucial role in the NET-mediated killing of C. 
albicans [6]. We stained A. fumigatus-induced NETs for 
calgranulin A, a constituent of the calprotectin heterodimer. 
Calprotectin was detectable in large patch-like structures, but 
also on the hyphal surface (Fig. 5A and B, arrows and arrow-
heads, respectively). Calprotectin is known to bind metal ions 
and addition of Zn

2+
 to the medium restored the survival of 

NET-associated C. albicans [6]. Supplementation with Zn
2+

 
also rescued the hyphal growth of A. fumigatus (Fig. 6A), but 
in the absence of PMNs addition of Zn

2+
 had no positive 

influence on hyphal growth (Fig. 6B). Addition of iron 
(ferritin at 1.0 µg/ ml) was not able to restore growth of GT in 
the presence of NETs (data not shown). Taken together, our 
findings demonstrate that the growth inhibition of A. 
fumigatus hyphae by NETs is at least in part mediated by the 
chelation of Zn

2+
 ions. 

 
4. Discussion 

 
The formation of NETs by neutrophils has recently been 

identified as a novel mechanism to combat microbes. Reports 
of NET-mediated killing have been published for bacteria, 
fungi and parasites [5,6,8]. The particular compromise of 
neutropenic patients underlines the importance of neutrophils 
for control of A. fumigatus. Apart from neutropenic patients, 
chronic granulomatous disease (CGD) patients also have a 
higher risk to develop systemic A. fumigatus infections  [14].  

 

Since CGD patients lack functional NADPH oxidase, reactive  
oxygen species (ROS) were for a long time believed 
tomediate killing of A. fumigatus. However, an A. fumigatus 
mutant that is highly sensitive to ROS turned out to be as 
virulent as the wild type  [15]. Resistance of a CGD patient to 
a systemic Aspergillus infection was recently restored by 
NADP oxidase gene therapy and NETosis was discussed as a 
crucial element in the resistance to systemic Aspergillus 
infections  [16]. An Aspergillus nidulans strain was isolated 
from this patient by bronchoalveolar lavage and PMA-induced 
NETs were shown to inhibit its germination and growth  [16]. 
Although A. nidulans is generally regarded as non- or low-
pathogenic fungus, infections of humans and in particular 
CGD patients have been reported  [17]. However, infections 
by A. nidulans are rare and A. fumigatus is by far the 
dominating species causing systemic Aspergillus mycoses  
[1]. During revision of this work Bruns and co-workers 
described the formation of NETs by A. fumigatus infected 
human neutrophils and in vivo in a murine model of infection  
[18]. 

In this study, we show that A. fumigatus conidia and GT 

are able to induce the formation of NETs by human 

neutrophils. The fungal cells seem to play no active part in 

this interaction, as UV-killed conidia and GT are also able to 
trigger NET formation. NETs are the most recently described anti- 
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Fig. 3. PMN inhibit germination of conidia by phagocytic internalization. Panel A: Differential binding of the L10-1 monoclonal antibody to resting and swollen 

conidia. Bound antibody is shown in red. The bar represents 5 µm. Panel B: Resting conidia were incubated for 6 h with and without neutrophils. Activation of 

spores was determined microscopically after staining with mab L10-13. The percentage of germinated conidia is shown in the absence (black bar) and presence 

(gray bar) of neutrophils. Three sets each comprising at least 100 conidia were analyzed. Panel C: Germination of RC after co-incubation for 6 h with PMNs pre-

treated or not with PMA and/or cytochalasin D to induce NETosis and block the actin cytoskeleton, respectively. The percentage of swollen conidia is shown for 

spores that were extracellular (gray bars), PMN-associated (white bars) or NET-associated (black bars). Standard deviations are shown for three groups of at least 

100 cells each. The result is representative of two independent experiments. nd = not detectable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. NETs inhibit growth of A. fumigatus hyphae. Panel A: Small GT were labeled with FITC and grown for 3 h in cell culture medium. Fixed samples were 

stained with mAb L10-1 to visualize the entire length of the hyphae. Panel B: Labeled GT were grown for 3 h with and without neutrophils. Samples were 

analyzed as described above. The length of the apical FITC-negative segments was determined and depicted in a box diagram. The difference between the two 

samples was significant by Student’s t-test ( p < 0.0001). The data presented are representative for a set of three independent experiments. Panel C: Labeled GT 

were grown for 3 h with and without neutrophils in the presence of DNase-1. The length of the apical FITC-negative segments was determined and depicted in a 

box diagram. The presence of DNase-1 abolished the reduction in hyphal growth due to the presence of neutrophils. The data presented are representative of a set 

of two independent experiments. 
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Fig. 5. Localization of calprotectin with NETs triggered by A. fumigatus. GT were co-incubated with neutrophils for 3 h and analyzed by immunofluorescence. 

Calprotectin is shown in green, GT are stained in red using mab L10-13 and DNA is visualized in blue by DAPI. Localization of calprotectin in patches and on 

the hyphal surface is indicated by arrows and arrowheads, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

 
microbial mechanism employed by neutrophils. NET forma-
tion was shown to be triggered by C. albicans and NET-
mediated killing has been described for C. albicans and 
Cryptococcus neoformans [6,9]. Incubation of PMNs with A. 
fumigatus led to the formation of NETs, but did not result in 
an enhanced frequency of apoptotic cell death. Single strand 
breaks, which are characteristic for apoptotic cells were not 
detectable in NETs. Our results show that approximately 40% 
of the neutrophils produced NETs after 6 h at an MOI of 1:3. 

We found that co-incubation with neutrophils for 6 h 
reduced the germination of A. fumigatus conidia by approx. 
60%. Phagocytosis of conidia occurs before NET formation 
and damage of internalized conidia within intact neutrophils 

 
may contribute to the observed inhibition of germination. To 
determine the impact of phagocytosis, we analyzed neutro-
phils that were treated with cytochalasin D, a drug that 
strongly inhibits actin dynamics. We found that such neutro-
phils were immotile and unable to phagocytose conidia. 
Consequently, conidia remained extracellular and germinated 
normally. This finding indicates that the phagocytic uptake by 
neutrophils is crucial for the observed inhibition of germina-
tion. Accordingly, degradation of NETs by DNase-1 or 
supplementation of the medium with Zn

2+
 ions had no impact 

on germination. We therefore assume that internalized conidia 
remain in a resting state due to the hostile conditions in the 
phagosome. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Addition of Zn

2+
 ions rescues the growth inhibition by NETs. Panels A: FITC-labeled germ tubes were incubated for 3 h with and without neutrophils and 

in the presence of the indicated concentrations of extracellular Zn
2+

. Samples were fixed and stained with mab L10-13. The length of the apical FITC-negative 

segments was determined and depicted in a box diagram. Addition of Zn
2+

 significantly increased hyphal growth in the presence of PMNs. Student’s t-test:  

**p < 0.01; ***p < 0.001. The data presented are representative for a set of three independent experiments. Panel B: FITC-labeled germ tubes were grown for 3 h 

in cell culture medium supplemented with and without 0.5 µg/ml Zn
2+

. Samples were fixed and stained with mab L10-13. The length of the apical FITC-negative 

segments was determined and depicted in a box diagram. Addition of Zn
2+

 slightly reduced the hyphal growth, but this difference was not significant according 

to the Student’s t-test. The data presented are representative of a set of two independent experiments.
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In some experiments neutrophils that were pre-treated with 

PMA blocked germination as efficiently as non-treated cells. 

However, an additional treatment with cytochalasin D 

completely abrogated this effect. We observed in many 

experiments that a certain subset of neutrophils was especially 

motile and actively internalizing Aspergillus spores. Whether 

this subpopulation is more resistant to NETosis triggered by 

PMA remains to be analyzed. In conclusion, our results 

provide evidence that although conidia trigger NET 

formation, their germination is not impaired by NETs.  
Neutrophils are short-lived cells that have to be recruited to 

the site of infection. Little is known about the role of 

neutrophils in non-infected, healthy tissue. Inhaled A. fumi-

gatus conidia reach the alveoli where they encounter alveolar 

macrophages as the major resident phagocytic cell type. The 

impact of neutrophils on the elimination of inhaled conidia 

remains to be determined, while their importance in the 

combat of hyphae is generally accepted. We therefore 

addressed the question whether NETs induced by A. fumigatus 

GT are able to kill hyphae. GT of a strain in which mito-

chondria are tagged by targeted GFP expression showed a 

normal mitochondrial morphology and dynamics after co-

incubation with neutrophils for several hours. This 

demonstrates that NETs per se are unable to kill hyphae. We 

then analyzed the fungal growth of single GT during co-

incubation with neutrophils. Again we observed no evidence 

for killing of GT, but we detected a significant inhibition of 

the fungal growth. It is conceivable that the reduced hyphal 

growth was a consequence of NETosis, (1) since GT are too 

large to be taken-up by phagocytosis and (2) since DNase-1 

treatment abrogated the observed growth inhibition. This is 

furthermore in line with very recent results showing that the 

oxygen consumption of A. fumigatus is reduced in the pres-

ence of NETs  [18].  
Calprotectin was recently identified as a major component 

of NETs that is important for killing of C. albicans [6]. 
Neutrophil-derived calprotectin was found inside S. aureus 
abscesses and shown to inhibit growth of this bacterium by 
chelation of Zn

2+
 and Mn

2+
 [19]. In this study, we detected 

calprotectin in association with NETs induced by A. fumigatus 
and in smaller amounts also directly on the fungal surface. 
Addition of Zn

2+
 rescued the growth inhibition observed for 

NETs, suggesting that chelation of Zn
2+

 by calprotectin is an 
important mechanism in this interaction. The iron chelator 
lactoferrin is another characteristic component of NETs  [6] 
and was shown to inhibit growth of A. fumigatus in vitro  [20]. 
However, in our experiments supplementation with ferritin 
was not sufficient to rescue hyphal growth in the presence of 
NETs, suggesting that the major mechanism operating here is 
the depletion of zinc by calprotectin.  

In summary, our data show that A. fumigatus conidia and 

GT are able to induce the formation of NETs by human 

neutrophils. Neutrophils inhibit germination of RC, but this 

effect seems to be largely due to phagocytosis of the spores. 

More importantly, we observed a reduced polar growth of GT 

and hyphae due to the chelation of zinc. This effect was 

clearly dependent on NETosis. NETs per se seem to be unable 

 
to kill A. fumigatus and to clear infection. However, trapping 
the fungus in NETs and reducing its growth might be an 
important means to confine infection. 
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Despite the strong interest in the NK cell-mediated immunity toward malignant cells and viruses, there is a relative lack of data 

on the interplay between NK cells and filamentous fungi, especially Aspergillus fumigatus, which is the major cause of invasive 

aspergillosis. By studying the in vitro interaction between human NK cells and A. fumigatus, we found only germinated mor-

phologies to be highly immunogenic, able to induce a Th1-like response, and capable of upregulating cytokines such as IFN-γ and 

TNF-α. Moreover, priming NK cells with human rIL-2 and stimulating NK cells by direct NK cell–pathogen contact were 

essential to induce damage against A. fumigatus. However, the most interesting finding was that NK cells did not mediate anti-

Aspergillus cytotoxicity through degranulation of their cytotoxic proteins (perforin, granzymes, granulysine), but via an alterna-

tive mechanism involving soluble factor(s). To our knowledge, our study is the first to demonstrate that IFN-γ, released by NK 

cells, directly damages A. fumigatus, attributing new properties to both human NK cells and IFN-γ and suggesting them as 

possible therapeutic tools against IA. The Journal of Immunology, 2011, 187: 1369–1376. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Natural killer cells are CD56+CD3- lymphocytes that are cytotoxic 

against neoplastic and virus-infected host cells (1). They possess a 

sophisticated repertoire of activating and inhibitory receptors 

through which they perceive their environment. In response to 

stimuli, they produce and release cytokines and chemokines, such 

as IFN-γ and TNF-α, which shape the host’s immunity (2, 3). 

Moreover, they exert a strong, cytolytic effect via the perforin–

granzyme, Fas ligand (FasL), and TRAIL pathways (1). 

Increasing data provide evidence of direct NK cell action against 

extracellular pathogens, such as bacteria (4), parasites (5), and 

yeast (6). A role for NK cells and IFN against Aspergillus 

fumigatus in mice has been suggested (7). This was recently 

confirmed by Morrison et al. (8), who showed that, in neutropenic 

mice with invasive aspergillosis (IA), the recruitment of NK cells 

was a critical host defense mechanism. In a similar animal model, 

it was shown that NK cell-derived IFN-γ was the protective factor 

against IA (8, 9). Clinical data confirmed an antifungal and, more 

specifically, the anti-Aspergillus activity of IFN-γ (7, 10–14). 

These studies attributed the beneficial effect of IFN-γ to its 

immunoregulatory role with phagocytes of the innate immune 
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system, which are conventionally involved in the host defense 
against A. fumigatus (11, 15).  

In our study, we investigated the largely unknown interplay be-

tween human NK cells and A. fumigatus. We showed that human 

NK cells interact only with germinated morphotypes of the fun-

gus, and direct physical contact is necessary to induce an NK cell 

response. This response involves expression of Th1-like cytokines 

and release of a soluble factor that has direct antifungal 

properties, which we identified as IFN-γ. These data provide new 

insights into NK cell biology demonstrating that A. fumigatus, an 

extra-cellular pathogen, is a direct target of these cells. Moreover, 

to our knowledge our results identify, for the first time, 

unrecognized properties of a key IL and designate IFN-γ as the 

mediator of a novel NK cell cytotoxic mechanism. 
 
Materials and Methods  
Cells 
 
Institutional approval was obtained to isolate cells from the buffy coat of 
peripheral blood from healthy volunteer donors. After layering over a Ficoll 

standard density gradient (Biochrom AG), untouched NK (CD56
+
CD3

-
) cells 

were isolated by MACS negative selection procedure, using the NK cell 
isolation kit (Miltenyi Biotec), according to the manufacturer’s protocol, and 

were resuspended at a concentration of 1 x 10
6
 cells/ml in culture media 

(RPMI 1640 with 2 mM L-glutamine [Invitrogen] supplemented with 10% 
heat-inactivated FCS [Sigma-Aldrich] and 100 mg/ml gentamicin [Refobacin; 
Merck]). The human erythroleukemia cell line K562 (provided by R. 
Seggewiss, Medizinische Klinik II, Würzburg, Germany) was cultured in the 
same culture medium and at the same density as NK cells. In all experiments, 
except those performed with resting NK cells, NK cells were pulsed with 500 
U/ml recombinant human (rh)IL-2 (Proleukin; Novartis) for 24 h before being 
used. 
 
Fungal strains 
 
A. fumigatus resting conidia (ATCC 46645) were cultivated for 3 d on 
beer mash plates at 28˚C. Conidia were detached from the plate using 
endotoxin-free sterile water and were filtered through a cell strainer, 40-
µm nylon mesh pore membrane, to obtain a single-fungal cell suspension. 
Swelling and synchronization of fungal growth were achieved by 
cultivating conidia in culture medium at room temperature and under 
continuous shaking at 200 rpm overnight. Germlings were obtained after an 
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additional 5-h incubation at 37˚C in the shaker. Fresh swollen conidia and 
germlings were used directly in cocultures with NK cells. 
 
Infection experiments 
 
After priming, NK cells were applied to 24-well plates at a density of 1 x 10

6
 

cells/ml, 1 ml/well, and were cocultured with swollen conidia or germlings at an 

E:T ratio of 1, at 37˚C and 5% CO2 humidified air. Cocultures with the K562 

cell line were established as positive controls. Evaluation of cell viability using 
trypan blue dye preceded all experiments. To estimate the effect of NK cell–

fungal cell contact, cocultures were performed in the presence of transwell 

permeable membranes (Corning) with pores (0.4 µm) small enough to prohibit 
the contact of cells placed on opposite sides of the insert, but large enough to 

enable the free diffusion of molecules between the basal and apical 

compartments of the well. Cultures were harvested at 3, 6, and 12 h and were 

centrifuged at 5400 rpm for 5 min. Culture supernatants were stored at -80˚C. 
RNA was extracted from the cell pellets with the RNeasy mini kit and 

QiaShredder spin columns, according to Qiagen’s protocol. QuantiTect reverse 

transcription kit (Qiagen) was used for the reverse transcription of 500 ng total 

RNA into cDNA following the manufacturer’s protocol. To evaluate the 

importance of exocytosis of cytotoxic lysosomal proteins in fungal damage, NK 
cells were treated for 12 h with 5 mM EGTA (IDRANAL VI; Sigma-Aldrich). 

EGTA is a calcium (Ca
2+

) chelating agent, inhibiting the Ca
2+

 flux required for 

degranulation. NK cells were also treated with 25 mM SrCl2 (Sigma-Aldrich) for 

24 h, to induce degranulation and thereby to eliminate cytotoxic granules (6). 

The cells were then washed three times in culture media before being used in the 

experiments. NK cell viability was not affected by such treatments (trypan blue 

exclusion). 

 
Real-time quantitative PCR assays 
 
Reactions were performed with a LightCycler 1.5 (Roche). Real-time PCR 

master mix was made with 10 µl Qiagen Quantifast system supplemented with 

0.75 ml primers (5 µM; Tib-molbiol), 1 µl probes (3 µM; Tib-molbiol), and 4.5 

µl RNase-free water per reaction, and 2 µl cDNA added as template. We 

investigated the expression of two genes, as follows: IFN-γ (primers, 5’-

GCATCCAAAAGAGTGTGGAG-39, 59-GCAG-GCAGGACAACCATTAC-

3’; probes, 5’-LC640-TCCAAGTGATGGCTG-AACTGTCG-PH-3’, 5’-

TCCAACGCAAAGCAATACATGAACTC-FL-3’), TNF-α (primers, 5’-

CTCTGGCCCAGGCAGTCAGA-3’, 5’-GGCGTTT-GGGAAGGTTGGAT-3’; 

probes, 5’-GCATTGGCCCGGCGGTTC-FL-3’, 5’-LC640-

CCACTGGAGCTGCCCCTCAGCT-PH-3’). Results were normalized against 

the housekeeping gene 5-aminolevulinate synthase expression (primers, 5’-

CAGCTCCCGCTCTAAGTCCA-3’, 5’-AATGAGTCGCCA-CCCACG-3’; 

probes, 5’-CCTGCCCCAGCACCATGTTGTTTC-FL-3’, 5’-

LC640GTGTCCATAACTGCCCCACACACC-PH-3’) of the unstimulated 

control at each time point. 
 
ELISA 
 
IFN-γ and TNF-α release were quantified in culture supernatants, according to 
the manufacturer’s instructions (BioSource International). 
 
FACS analysis 
 
The purity of NK cells was assessed by FACS analysis, consistently showing 
.95% CD56

+
CD3

- NK cells. The average proportion of CD56
+
CD3

- cells, 
evaluated immediately after isolation from PBMCs, was 96.53%. Twenty-four 
hours later, after priming with rhIL-2, the CD56

+
CD3

-
 cells accounted for 

97.9%, and these cells were used in subsequent experiments. In detail, the 
contaminating WBC populations were: CD3

+
 T cells, 1.8%; CD20

+
 B cells, 

0.19%; CD14
+
 monocytes, 0.15%; CD1c

+
CD19

-
CD14

-
 myeloid dendritic cells, 

0.36% (CD56-PE, CD3-FITC, CD20-allophyco-cyanin, CD14-allophycocyanin, 
CD1c-PE, CD19-FITC [BD Biosciences]). The release of cytotoxic molecules 
was assessed by the detection of de-granulation markers CD107a,b on 
CD56

+
CD3

-
 NK cells (CD107a-FITC, CD107b-FITC, CD56-allophycocyanin, 

CD3-PerCP [BD Biosciences]). 
 
Plating assays 
 
Plating assays were performed by coculturing 4 x 10

5
 NK cells with different 

morphologies of A. fumigatus at an E:T ratio of 1. The assay was performed for 
3 and 6 h in 600 µl medium, at 37˚C and 5% CO2 humidified air. In similar 
experiments, 4 x 10

5
 germlings were incubated for 3 h in 600 µl culture 

supernatant. Supernatants were obtained after 6-h coculture of a high number of 
NK cells (8 x 10

6
/ml) with germlings in an E:T ratio of 1. The mean 

concentration of IFN-γ, determined by ELISA, in these supernatants was 18 
pg/ml. For plating assays, NK cells were lysed at each time point with 1.5 ml 
cold water, and, after serial dilutions, fungal cells were plated on Sabouraud  

 
agar. After overnight incubation at 37˚C, the CFU was counted. The results were 
normalized against a growth control, in which A. fumigatus was incubated on 
culture medium. Fungal growth in the different chambers of transwell plates and 
in the presence of Abs was also measured using a plating assay. When 
appropriate, NK cells were treated with 50 mg/ml human IgG (Talecris), 1.6 
mg/ml blocking Ab against TRAIL, and 10 ng/ml FasL Ab (R&D Systems). 
 
Analysis of fungal damage 
 
A total of 2 x 10

5
 fungal germlings was cultured in 150 µl NK cell supernatant 

(prepared as above), IFN-γ partially depleted supernatant, or culture medium 

supplemented with rhIFN-γ (Invitrogen) and at 37˚C. IFN-γ depletion was 

performed magnetically, using the IFN-γ secretion assay cell enrichment and 

detection kit (Miltenyi Biotec). IFN-γ was depleted by 85%. The mean 

concentration of IFN-γ, in IFN-γ partially depleted supernatants, was 2.5 pg/ml 

(as determined by ELISA). To mimic fungal damage caused by IFN-γ, we used 

rhIFN-γ. rhIFN-γ was diluted in culture medium to a final concentration equal to 

that in the undepleted supernatant of each experiment (as determined by 

ELISA). To evaluate the dose response, rhIFN-γ was diluted in RPMI 1640 

without any supplements. This medium was inoculated with germlings and 

conidia, as described above. After a 3- to 6-h incubation period, the cultures 

were washed three times with cold water. A total of 400 µl PBS with 0.5 mg/ml 

2,3-bis[2-methoxy-4-nitro-5-sulfo-phenyl]2H-tetrazolium-5-carboxanilide 

(XTT) (Sigma-Aldrich) and 50 µg/ml coenzyme Qo (Sigma-Aldrich) was added 

to fungus, which was then incubated for 1.5 h at 37˚C (16). Duplicate 100 µl 

samples of supernatant were transferred to an ELISA plate, and the OD was 

measured at 450 nm with 655 nm reference filter. Antifungal effect was 

calculated according to the following formula: percentage of damage = (1 - x/y) 

x 100, where x is the OD of the different culture conditions and y is the OD of 

the negative control (fungus alone). 

 
Germlings growth inhibition assay 
 
Germlings of the A. fumigatus strain ATCC 46645 (generated as described 

before) were resuspended in 0.1 M sodium carbonate buffer (pH 10.0) and 0.3 

mg/ml FITC (Sigma-Aldrich) and incubated for 30 min at 37˚C in the dark with 
shaking. Germlings were washed twice in sterile deionized water and 

resuspended in fresh medium at 4 x 10
6
 germlings/ml. Germling solution (100 

µl) was used to inoculate each well of a 24-well plate containing 300 µl/well NK 

supernatant, rhIFN-γ–enriched medium, or supplemented medium and a glass 

coverslip. The mean concentration of IFN-γ was 5.5 pg/ml. The plate was 

incubated at 37˚C, 5% CO2, and, after 6-h incubation, the cells were fixed in 

3.7% formaldehyde for 5 min at room temperature. Germling growth beyond the 

FITC labeling was visualized by immunofluorescence using hybridoma 
supernatant containing the mAb L10-13 (against galactomannan) and a Cy3-

conjugated secondary Ab. Coverslips were mounted to glass slides in 

Fluoroprep, and germling elongation was measured using the software package 

provided with the Leica SP-5 confocal laser scanning microscope (Leica 

Microsystems). At least 100 germlings were measured for each growth 

condition, and a Student t test was used to calculate significance. 

 
Statistics 
 
Estimation of p values was performed with the unpaired, two-sided Student t 
test; p . 0.1 NS, *p , 0.1, **p , 0.05, ***p , 0.001. Bars show arithmetic means of 
the values of the independent experiments - SEM. 

 
Results  
Human NK cells express Th1-like cytokines during interaction 
with A. fumigatus germlings 
 
Both animal and clinical studies have demonstrated the protective 
effect of Th1 immunity against IA, with IFN-γ and TNF-α being 
the major mediators of this response (9, 17–22). To evaluate 
whether human NK cells express these cytokines upon incubation 
with A. fumigatus, we performed in vitro infection experiments 
with resting (conidia) and germinated (germlings) fungal mor-
phologies. We observed that NK cells, challenged by germlings, 
upregulated the genes IFN-γ and TNF-α, in a time-dependent 
pattern, reaching a maximum between 6 and 12 h after stimulation 
(Fig. 1A, 1B). A similar temporal profile was also observed for the 
release of these cytokines, with the maximum being detected after 
12 h of stimulation (Fig. 1C, 1D). Interestingly, resting conidia 
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FIGURE 1. Human NK cells 

mediate a time-dependent Th1-like 

immune response following stimu-

lation by A. fumigatus-germinated 

morphotypes. Measurement of the 

cytokine response of NK cells dur-

ing in vitro interaction with A. fumi-

gatus conidia and germlings at an 

E:T ratio of 1 over time by real-time 

quantitative PCR and ELISA. The 

time-dependent induction of IFN-γ 

(A, C) and TNF-α (B, D) was ob-

served. This effect was especially 

prominent between 6 and 12 h of NK 

cell–fungus coincubation (A–D). 

Conidia were significantly less 

stimulatory than germlings (A, B). 

Germination of conidia caused 

cytokine release from NK cells in a 

time-dependent pattern that peaked 

after 12 h (C). Data from four 

independent experiments with three 

donors each. *p , 0.1, **p , 0.05, 

***p , 0.001. 
 
 
 
 
 
induced no effect on NK cells; however, cytokine release occurred 

following germination (Fig. 1C). Focusing fur-ther on the 

mechanism of this recognition, NF-kB transcription factor 

translocation to the nucleus was demonstrated in the pres-ence of 

germlings, but not by conidia, suggesting the involvement of 

pattern distinct recognition receptors in the interaction of NK cells 

with A. fumigatus (data not shown). 
 
Human NK cells primed with rhIL-2 exhibit cytotoxicity 
against A. fumigatus germlings 
 
To investigate whether NK cells interfere with A. fumigatus 
growth, we performed plating assays. When NK cells were co-

incubated with conidia, there was no fungal damage observed, at 
all time points (Fig. 2A). However, when they were confronted for 

3 h with germlings, there was a significant reduction of 40– 60% in 
the number of fungal colonies (Fig. 2B). To evaluate the influence 

of priming with rhIL-2 on the NK cell cytotoxicity, we repeated the 
previous experiments cocultivating germlings with either rhIL-2–

primed NK or unprimed NKw/o rhIL-2 cells, for 3 h. Resting NKw/o 

rhIL-2 cells were unable to damage A. fumigatus, highlighting the 

importance of priming in the induction of cyto-toxicity (Fig. 2C). 
 
NK cell stimulation by A. fumigatus is contact dependent, but 
antifungal activity is not 
 
To investigate whether the interaction of NK cells with Asper-

gillus was contact dependent or mediated by soluble factors, the 

previous infection experiments were repeated using permeable 

transwell inserts (///) (Fig. 3A, 3B). These allowed the free circu-

lation of soluble molecules, but prohibited direct contact between 

cells placed in opposite compartments. The compartments were 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
inoculated as follows: NK /// germlings and NK + germlings /// 

germlings. NK + germlings and germlings alone served as positive 

and negative controls, respectively (Fig. 3B). Cytokine release was 

determined as before, and plating assays were per-formed after 3-h 

incubation. In the presence of the transwell membrane, without 

direct fungal contact (NK /// Germlings), cytokine release was 

abolished as compared with contact-stimulated NK cells (Fig. 3A, 

NK + Germlings). NK cells showed no antifungal activity across 

the membrane (NK /// Germlings), permitting unhindered growth 

of A. fumigatus (Fig. 3B). However, when NK cells were 

coincubated with the fungus at one side of the insert and germlings 

alone were at the other side (NK + Germlings /// Germlings), the 

CFU of germlings cultured alone was equivalent to the CFU of the 

positive control, where the germlings were cultured in contact with 

NK cells (Fig. 3B, NK + Germlings). These data show that direct 

contact is required as a first step in the stimulation of NK cells by 

A. fumigatus. NK cells then release soluble factors with antifungal 

properties. Thus, NK cell signaling induced by A. fumigatus is 

contact dependent, but the resultant antifungal effect is not. 
 
Soluble factors mediate the anti-Aspergillus effect of NK cells 
 
To confirm the effectiveness of the released soluble factors against 

the fungus, we performed plating assays where germlings were 

incubated, for 3 h, in culture supernatants. Incubation in 

supernatant caused a reduction in CFU development to 60% of that 

observed in culture medium alone (Fig. 4A). The antifungal 

activity of the supernatant was also assessed by the XTT assay. 

Interestingly, 40% fungal damage was observed after exposing 

germlings to culture supernatant for 3 h (Fig. 4B). These findings 

suggest that NK cells exert cytotoxicity against A. fumigatus, 
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FIGURE 2. RhIL-2–primed NK cells exert direct cytotoxicity against A. 

fumigatus germlings. Plating assays were performed with NK cells primed 

with rhIL-2 and challenged with A. fumigatus conidia or germlings for the 

indicated times. Coincubation of resting conidia with NK cells for 3 and 6 h 

had no impact on conidial growth, compared with controls (A). In contrast, 

growth of germlings was clearly reduced after coincubation with NK cells 

(B). Without rhIL-2 priming, NKw/o rhIL-2 cells failed to damage germlings 

(C), demonstrating that a pretreatment with rhIL-2 is essential to render NK 

cells capable of exerting cytotoxicity toward A. fumigatus. Experiments 

were performed independently, on different days, with two to four donors 

each time. Data from four experiments studying the NK cell effect on 

conidia and eight experiments studying the impact on germlings. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 3. NK cell stimulation by A. fumigatus requires direct cell-to-cell 

contact. NK cells and germlings were placed in the two compartments of 

transwell chambers (NK /// Germlings). The insert prohibited cell contact 

between the two populations, but allowed free circulation of molecules 

between the compartments. Without direct contact to the fungus, NK cells 

showed no enhanced cytokine release, as quantified by ELISA (A), as well 

as no cytotoxicity, measured by plating assays (B). To determine whether 

soluble factors released by NK cells upon stimulation by the fungus are 

sufficient to trigger the observed cytotoxic effect, germlings were 

coincubated with NK cells in one compartment and germlings were placed 

in the other compartment (NK + Germlings /// Germlings). The antifungal 

effect across the membrane was normalized against a control in which 

germlings were cultured alone (B). Data from five independent experiments 

with one donor each. *p , 0.1, **p , 0.05. 

 
through soluble molecules released by NK cells after direct con-
tact with the fungus. A. fumigatus might be damaged by these 
factors without being in physical contact with the NK cells. 
 
NK cell anti-Aspergillus cytotoxicity is independent of NK cell 
degranulation 
 
Cytotoxic protein degranulation represents one of the two major 

killing mechanisms of NK cells against malignant and virus-

infected cells (2). To determine whether this mechanism was re-

sponsible for A. fumigatus damage, we evaluated the expression of 

the lysosomal associated membrane proteins LAMP-1 and LAMP-

2 (CD107a,b), which appear on the cell surface when 

degranulation occurs (23). CD107a,b–FITC Abs were incubated 
 

 
Three experiments compared the cytotoxicity of primed and resting NK 

cells. The cultures were performed in duplicates. Each duplicate was plated 

twice on Sabouraud agar plates. *p , 0.1, **p , 0.05. 
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FIGURE 4. The anti-Aspergillus effect of NK cells depends on soluble 

factors. After 3-h incubation in NK cell culture supernatant, fungal 

germlings were plated on Sabouraud agar. The next day, the CFU was 

determined and normalized against the growth control. Data from five 

independent experiments with one donor each (A). In parallel experiments, 

damage of germlings was quantified after 3-h incubation in culture su-

pernatant using an XTT assay. Antifungal activity was calculated in re-

lation to the negative control (germlings incubated in culture medium). 

Data from six independent experiments, with two donors each (B). **p , 

0.05, ***p , 0.001. 
 
 
with unstimulated NK cells (negative control), fungal germlings– 

NK cell cocultures, or K562 cell–NK cell cocultures (positive 

control) for 4 h and measured by flow cytometry. Surprisingly, A. 

fumigatus did not induce the surface expression of CD107a, b on 

NK cells, suggesting that exocytosis of cytotoxic proteins 

(perforin, granzymes, granulysine) is not the mechanism mediat-

ing A. fumigatus damage (Fig. 5A).  
It has previously been shown that mobilization and increase of 

the intracellular Ca
2+

 are essential for exocytosis of the lytic 

granules (24). Moreover, the Ca
2+

 flux correlates with the surface 

expression of CD107a (25). To determine whether exocytosis is 
required for the observed antifungal activity, NK cells were treated 

with EGTA, a Ca
2+

 chelating agent (6), and thereafter challenged 

with A. fumigatus germlings or K562 cells (control) for 3 h. The 
antifungal activity of NK cells was not influenced by EGTA 
pretreatment (Fig. 5B), whereas the same treatment abolished their 
ability to kill K562 cells (trypan blue staining) (Fig. 5C). Depletion 

of cytotoxic proteins from NK cells mediated by SrCl2 that triggers 

degranulation (6) did not affect the antifungal activity of NK cells 
(Fig. 5B). However, the same treatment abolished the cytotoxicity 
of NK cells against the K562 cells (Fig. 5C). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 5. Anti-A. fumigatus activity is degranulation process in-

dependent. NK cells were coincubated for 4 h with FITC-labeled Abs 

directed against the degranulation markers CD107a,b, which are exposed 

on the NK cell surface upon release of cytotoxic proteins. In the presence of 

germlings, the expression of CD107a,b was equivalent to the unstimulated 

control (negative control). However, NK cells exposed these markers upon 

confrontation with K562 cells (positive control) (A). Plating assays were 

performed with NK cells previously treated with EGTA or SrCl2. After 3-h 

coculture with germlings, the antifungal activity of EGTA- and SrCl2-

treated NK cells was equivalent to untreated controls (B). However, the 

same treatments abolished NK cell cytotoxicity toward K562 cells (trypan 

blue detection) (C). Data from three independent experiments with two 

donors each. *p , 0.1, **p , 0.05, ***p , 0.001. 
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FIGURE 6. IFN-γ directly mediates NK cell damage against A. fumigatus. We compared the antifungal effect of undepleted and partially IFN-γ –de-

pleted supernatants on germlings, after 3-h incubation using an XTT assay. Data from 10 independent experiments with one donor each. The bar on the 

right shows the fungal damage caused by the culture medium supplemented with rhIFN-γ at concentrations equal to those detected in NK cell supernatants 

(mean concentration, 17.63 pg/ml). This inhibition resembled that obtained with undepleted supernatants (left bar), whereas partial depletion of IFN-γ 

reduced the fungal growth inhibition (middle bar). Data from four independent experiments (A). The concentrations of IFN-γ of the experimental con-

ditions of A are shown here (B). We confirmed the antifungal effect of IFN-γ, even at low concentrations, by measuring the hyphal elongation under the 

effect of NK supernatants and rhIFN-γ–supplemented medium with same amounts (mean, 5.5 pg/ml) of the cytokine, respectively. After 6-h incubation, 

both conditions caused an equivalent reduction of hyphal elongation, which was statistically significant compared with the growth control. Data from 

three independent experiments (C). A dose-damage relationship was established between the different concentrations of rhIFN-γ in unconditioned RPMI 

1640 medium toward germlings. Data from eight independent experiments (D). *p , 0.1, **p , 0.05, ***p , 0.001.
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The second major cytotoxic pathway engaged by NK cells 

involves the interaction of FasL and TRAIL expressed on NK 

cells, with their cognate receptors on target cells (1). We repeated 

our plating assays after treating NK cells with blocking Abs 

against FasL and TRAIL. Treated NK cells were equally as 

effective as untreated cells against A. fumigatus. This finding 

suggests that FasL and TRAIL do not mediate an antifungal 

response (data not shown). Collectively, these data showed that 

the two major cytotoxic mechanisms of NK cells are not involved 

in the anti-Aspergillus activity. 
 
IFN-γ demonstrates direct anti-A. fumigatus activity 
 
To date, IFN-γ has been recognized as a factor exhibiting indirect 

anti-A. fumigatus properties, via an increase in the antifungal 

activity of innate immune effector cells (26, 27). In our study, we 

investigated whether IFN- γ also acts directly against A. 

fumigatus, as a soluble factor released by NK cells to damage 

fungal germlings. XTT assays were performed after 3-h 

incubation of germ-lings in NK cell supernatants, partially 

depleted of IFN-γ (mean concentration of IFN-γ, 2.5 pg/ml) and 

undepleted supernatant (mean concentration of IFN-γ, 18 pg/ml) 

(Fig. 6B). This dem-onstrated that the depletion of IFN-γ 

decreased the anti-Aspergillus effect of the supernatant (Fig. 6A). 

To confirm the direct antifungal properties of IFN- γ, XTT assays 

were repeated after incubation of the fungus in culture medium

        HUMAN NK CELLS–Aspergillus fumigatus INTERACTION 

 
supplemented with rhIFN-γ at concentrations equal to those 

detected in the complete supernatants by ELISA (Fig. 6B). In fact, 

damage in the presence of rhIFN-γ was equivalent to damage in 

undepleted supernatant, confirming the anti-Aspergillus properties 

of this cytokine (Fig. 6A). To quantify this observation and to 

investigate the presence of a potential, alternative anti-Aspergillus 

molecule, the hyphal length was additionally measured after 6-h 

incubation of germ-lings with low IFN-γ concentration NK 

supernatants and rhIFN-γ –enriched medium (mean concentration 

of IFN-γ, 5.5 pg/ml). Both NK supernatants and rhIFN-γ medium 

inhibited the hyphal elongation similarly. However, a trend of a 

higher inhibition caused by the NK supernatants was observed 

(Fig. 6C). It is worth noting the morphological alterations of the 

fungus caused by NK supernatant (Supplemental Fig. 1, Image 3) 

and rhIFN-γ medium (Supplemental Fig. 1, Image 2). Both 

culture conditions provoked similar structural distortions of the 

germlings, which acquired an uncommon flattened and twisted 

conformation. To provide further evidence for a direct role of 

IFN-γ against A. fumigatus and to exclude any synergistic effect 

with the supplements of the culture medium, we measured by 

XTT assay the effect of different concentrations of rhIFN-γ in 

unconditioned RPMI 1640 medium. A dose-dependent toxicity 

was observed toward germlings (Fig. 6D)..
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In contrast, RPMI 1640 supplemented with rhIFN-γ demonstrated 
no effect against conidia (data not shown). 

These results indicate the direct anti-A. fumigatus properties 
of IFN-γ, and show that IFN-γ is a factor mediating NK cell cyto-
toxicity toward the fungus. 
 
Discussion 
Since their discovery, NK cells have proven to be a useful tool in 

the fight against neoplasia and viral infections. NK cells are both 

potent effectors of innate immunity, exerting direct cytotoxicity 

without prior sensitization (1), and immunoregulatory mediators, 

shaping the response of other immune cells, such as dendritic 

cells and T cells (28–30). Interestingly, their role toward fungal 

pathogens, especially A. fumigatus, has been poorly elucidated. 

Our work aimed to study the direct interaction of human NK cells 

with A. fumigatus. 

Studies in both humans and animals have documented the fa-

vorable effect of the Th1 immune response against IA. Proin-

flammatory cytokines such as IFN-γ and TNF-α are associated 

with increased antifungal activity of phagocytes, higher clearance 

of A. fumigatus, and better response to antifungal treatment (9, 

17–22). Our results reveal that human NK cells challenged with 

A. fumigatus mediate a Th1-like response secreting IFN-γ and 

TNF-α. Interestingly, the release of these cytokines is 

morphotype dependent and is induced only by germlings and not 

by resting conidia. Moreover, in accordance with data in animals 

showing the importance of mouse NK cells for the clearance of A. 

fumigatus from the lungs (8), we demonstrated that human NK 

cells exert direct cytotoxicity against germlings; however, this is 

not the case with conidia. Both cytokine induction and antifungal 

activity suggest that NK cells perceive only germinated 

morphologies of A. fumigatus, recognizing that the fungus has 

escaped the first line of host defense, provided by alveolar 

macrophages and neutrophils (31–33). Priming of NK cells with 

rhIL-2 seems to be a prerequisite for NK cell–fungus interaction, 

suggesting an important role for cytokine-producing immune cells 

in the interplay of NK cells with A. fumigatus. We next 

questioned whether physical contact or soluble molecules 

mediated NK cell signaling and cytotoxicity. Separating the 

immune cells from the fungus, using transwell membranes, we 

observed a complete abrogation of both NK cell stimulation and 

fungal damage. However, when NK cells were cocultured with A. 

fumigatus on one side of the membrane, a condition allowing NK 

cell signaling, the antifungal effect on the other side was 

equivalent to the effect observed when NK cells and A. fumigatus 

were cultured in direct contact. These results indicate a two-step 

mechanism of cytotoxicity. First, germlings stimulate NK cells 

when in direct contact. In response, NK cells release soluble 

molecules able to harm the fungus not in physical contact with the 

immune cells. 

The two major killing pathways of NK cells have been the 

object of extensive studies during the last two decades. Contact-

dependent exocytosis of highly cytotoxic proteins and the 

activation of death receptors on target cells by TNF and FasL are 

the main means of attack by NK cells against tumor- and virus-

transformed cells (1). Our results revealed that neither of these 

mechanisms is specifically involved in the anti-Aspergillus 

activity of NK cells. Instead, we demonstrate that IFN-γ released 

by NK cells in the presence of A. fumigatus germlings causes the 

observed antifungal effect. Moreover, we revealed that the anti-

Aspergillus activity of IFN-γ is concentration dependent. This 

surprising finding is consistent with the previous report that NK-

derived IFN-γ is essential to the host defense in a murine model 

of IA (9). It was shown that NK cell depletion and IFN-γ 

deficiency augmented similarly the severity of IA, suggesting that 
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the contribution of NK cells to the anti-A. fumigatus effect is 

confined to IFN-γ production. More-over, depletion of NK cells 

from IFN-γ knockout mice had no adverse effect on the outcome 

of infection. This argues against an involvement of other 

effectors, apart from IFN-γ (e.g., cytotoxic proteins, perforin, 

granzymes, granulysine) in the NK cell-mediated anti-A. 

fumigatus activity (9). 
Recent data on the human NK cell–A. fumigatus interaction 

recognized an activity of NK cells against germlings. Although 

we found that IFN-γ can directly inhibit the fungal growth, 

Schmidt et al. (34) implicated perforin as a major effector 

molecule of NK cell-mediated anti-Aspergillus activity. We 

believe that the discrepancies between their data and ours can be 

explained by the different study designs. Our study does not rule 

out that perforin, granzymes, granulysine, or other proteins of the 

NK cell granules have antifungal activity. However, our data 

demonstrate that the NK cell–A. fumigatus interaction does not 

involve substantial degranulation, which argues against a 

functional importance of the above mentioned proteins in the 

antifungal activity of NK cells (34). It is worth noting that our 

data cannot exclude the involvement of an additional factor, 

induced by the fungus and secreted by an unknown process. This 

might explain the minor, although significant decrease of the 

antifungal effect caused by the partially IFN-γ –depleted 

supernatant (Fig. 6A) and the trend toward an increased growth 

inhibition induced by the NK cell supernatant (Fig. 6C). 

Moreover, lower levels of hyphal damage caused by rhIFN-γ in 

unconditioned medium (Fig. 6D) compared with FCS and 

refobacin-supplemented medium (Fig. 6A) might reflect effects of 

the supplements. 

Experimental infections in mice and clinical trials in humans 

have recognized the ability of IFN-γ to increase the phagocytic 

activity of innate immune effector cells against different species 

of fungi and especially Aspergillus (9–11, 13, 14, 17, 35). Our 

data suggest that in addition to acting as an immunoregulatory 

molecule, IFN-γ acts directly against Aspergillus, further 

explaining the antifungal effect observed in the previous studies. 

The concept of human proteins and peptides capable of 

eradicating pathogens is not new. Indeed, there is increasing 

evidence regarding the antibacterial and antifungal activity of 

chemokines, defensins, cathelicidins, and histatins (36–39). It is 

worth noting that, in our experiments, low concentrations of IFN-

γ proved to be sufficient for anti-Aspergillus activity. Moreover, 

the finding that rhIFN-γ alone damages A. fumigatus underlines 

that the fungus is directly targeted by this major cytokine. If 

another factor is involved, it should originate from fungal 

germlings. Interestingly, Hu et al. (40) reported a synergistic 

cytotoxicity against hepatoma cell lines, resulting from the 

interaction of IFN-γ with a RNase. IFN-γ might cooperate with 

fungal ribotoxins, secreted by A. fumigatus (41), transforming 

them into suicide molecules for fungus. 

In conclusion, despite the progress in antifungal diagnostics 

and treatment, IA remains a leading cause of morbidity and 

mortality in immunosuppressed patients. Our study sheds new 

light on the host defense against the most common cause of IA, A. 

fumigatus, and provides a rational framework for the use of NK 

cells and IFN-γ as therapeutic tools against IA. 
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Abstract 

 
Two-component signaling systems are widespread in bacteria, but also found in fungi. In this study, we have characterized 
TcsC, the only Group III two-component sensor kinase of Aspergillus fumigatus. TcsC is required for growth under 
hyperosmotic stress, but dispensable for normal growth, sporulation and conidial viability. A characteristic feature of the 
ΔtcsC mutant is its resistance to certain fungicides, like fludioxonil. Both hyperosmotic stress and treatment with fludioxonil 
result in a TcsC-dependent phosphorylation of SakA, the final MAP kinase in the high osmolarity glycerol (HOG) pathway, 
confirming a role for TcsC in this signaling pathway. In wild type cells fludioxonil induces a TcsC-dependent swelling and a 
complete, but reversible block of growth and cytokinesis. Several types of stress, such as hypoxia, exposure to farnesol or 
elevated concentrations of certain divalent cations, trigger a differentiation in A. fumigatus toward a ‘‘fluffy’’ growth 
phenotype resulting in white, dome-shaped colonies. The ΔtcsC mutant is clearly more susceptible to these morphogenetic 
changes suggesting that TcsC normally antagonizes this process. Although TcsC plays a role in the adaptation of A. 
fumigatus to hypoxia, it seems to be dispensable for virulence. 
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Introduction 
 

Aspergillus fumigatus is a mold causing severe and systemic 

infections in immunocompromised patients [1]. The high mortal-

ity of these infections is largely due to the limited therapeutic 

options. Since A. fumigatus seems to lack sophisticated virulence 

factors, alternative therapeutic targets must be considered. The 

ability to respond to a plethora of environmental changes and to 

cope with different stress situations is vital for growth and 

survival of all microorganisms. This applies in particular to 

microbial pathogens that have to adapt to changing environments 

and a hostile immune response during colonization and invasion 

of the host. In fungi, sensing and responding to environmental 

stress is mediated by a set of receptors that are linked to a 

network of down-stream signaling pathways [2]. Interference with 

these signal transduction cascades can impede the fungal 

adaptation to stress and is considered a promising option to 

identify novel therapeutic targets. However, this approach is 

hampered by the conservation of many central signaling 

molecules in fungi and humans. 
 

In bacteria sensing and processing of stress signals relies 

largely on two-component systems (TCS) that consist of a sensor 

histidine kinase and a response regulator. In fungi and other 

eukaryotes, hybrid histidine kinases (HHK) integrate both  

 
 

functions in a single protein. Fungal TCS are multistep phospho- 

relays composed of a sensor kinase (HHK), a histidine-containing 

phosphotransfer protein (HPt) and one or two response regulators. 

HHK are conserved within the fungal kingdom and depending on 

the species they govern the response to various stress signals, 

including osmotic stress, oxidative stress, hypoxia, resistance to 

anti-fungals and sexual development [3,4]. In contrast to other 

signaling molecules, TCS are attractive candidates for new 

therapeutic targets since they contribute to the virulence of fungal 

pathogens and are not found in vertebrates [3,5].  
In fungi, eleven families of HHK have been described 

according to their protein sequence and domain organization [6]. 

Of several potential HHK present in the genome of A. fumigatus 

only two have been studied so far. Deletion of the Group VI HHK 

gene tcsB (AFUA_2G00660) had no severe impact on growth and 

stress resistance of A. fumigatus, but led to a slightly increased 

sensitivity to SDS [7]. A mutant in the Group IV HHK tcsA/fos1 

(AFU6G10240) showed normal growth, no increased sensitivity 

to osmotic stress, but resistance to dicarboximide fungicides, like 

iprodione, and enzymatic cell wall degradation [8]. This is 

remarkable, since dicarboximide fungicides commonly target 

Group III HHK [9]. Several lines of evidence link Group III HHK 

to the high osmolarity glycerol (HOG) pathway that was initially 
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described as a signaling module enabling yeasts to adapt to high 

external osmotic pressure [10]. However, recent evidence 

suggests that in pathogenic fungi the HOG pathway is 

furthermore involved in the response to diverse kinds of stress 

[4].  
In this study, we have analyzed TcsC, the sole representative of 

the Group III HHK in A. fumigatus. Group III HHK are found in 

bacteria, plants and fungi. They contain a characteristic cluster of 

HAMP domains that mediate signaling in histidine kinases, 

adenylyl cyclases, methyl-accepting chemotaxis proteins and 

certain phosphatases. Conformational changes in the spatial 

organization of the amphipathic helices in HAMP domains allow 

two conformations that either activate or inactivate the kinase 

activity of the output domain [11]. Single HAMP domains of 

membrane-bound HHK are found in close proximity to the 

membrane-spanning segment and transduce signals from the 

external input to the internal output domain. Group III HHK 

contain clusters of 4-6 HAMP domains, that according to a model 

developed recently for the osmo-tolerant yeast Debaryomyces 

hansenii, form a functional unit that is able to sense external 

signals. Changes in external osmolarity are supposed to alter the 

pattern of HAMP domain interactions and thereby modulate the 

inherent kinase activity of the protein [12]. The facts that Group 

III HHK are exclusively found in fungi and that certain fungicides 

can activate these sensor kinases in an uncontrolled and harmful 

manner makes them a potential Achilles heel of fungal pathogens 

that merits further investigations. 
 
Results 
 
The Group III HHK TcsC of A. fumigatus  

The genome of A. fumigatus contains only one putative Group 

III HHK (AFU2G03560). The corresponding protein comprises a 
histidine kinase acceptor domain, a histidine kinase-like ATPase 
domain, a receiver domain and six HAMP domains. It lacks a 
transmembrane segment and is presumably localized in the 
cytoplasm. We designated this protein Two-component system 
protein C (TcsC) following the nomenclature of the previously 

studied Aspergillus TCS sensor kinases TcsA (Fos-1; 
AFU6G10240) and TcsB (AFU2G00660) [7,8,13]. 
 
Generation and Characterization of a ΔtcsC Mutant 

To analyze the function of TcsC, we deleted the gene and 
complemented the mutant by ectopic insertion of the tcsC gene 
under control of its native promoter. The complementation 
procedure and the analysis of the genotype of the resulting strain 
are shown in Figure S1. On AMM, YG or Sabouraud medium the 
mutant grew well, but the colonies had a distinct appearance 
characterized by a broader white rim and fewer extending hyhae 
at the periphery (Figure 1A to D), whereas the complemented 
strain was indistinguishable from the wild type (data not shown). 

At 48°C growth of the mutant was comparable to the controls 

(Figure 1E) demonstrating that it is not particularly sensitive to 
temperature stress. Radial growth of the ΔtcsC mutant was 
slightly slower on AMM supplemented with ammonium tartrate 
(Figure 1E), whereas a remarkable reduction in growth was found 

on AMM plates supplemented with NaNO3 instead of ammonium 

tartrate. This defect was not observed for the complemented strain 
indicating that TcsC is required for normal growth with nitrate as 
sole nitrogen source (Figure 1F). 

In A. nidulans deletion of the homologous nikA gene had 

severe consequences for the production and viability of asexual 

spores [14,15,16]. We therefore compared sporulation and 

conidial viability of the ΔtcsC mutant and its parental strain. After 

four days at 37°C both strains produced a confluent and 

sporulating mycelial layer. No obvious difference in sporulation 

Tcs Sensor Kinase TscC of Aspergillus fumigatus 
 
was apparent and this was confirmed by determining the conidial 
yield per cm2 (mutant: 9.7±0.8x107, parental strain: 9.3±0.8x107). 
Conidia of the ΔnikA gene lose their viability within a few days 

when stored in water at 4°C. In contrast, conidia of the ΔtcsC 

mutant remained fully viable after storage for one month (mutant: 

93.7%±3.0%, parental strain: 95.5%±3.0%). Thus, deletion of the 
Group III HHK gene in A. fumigatus does not affect sporulation 
or conidial viability, thus disclosing a remarkable difference 
between the two homologous sensor kinases in A. fumigatus and 
A. nidulans. 

Conidial viability in A. nidulans was recently shown to depend 

on the presence phosphorylated SakA in resting conidia [17]. 

Several Group III HHK have been linked to the HOG pathway 

and shown to influence the phosphorylation state of HOG 

proteins, like Aspergillus SakA. In immunoblot experiments we 

detected only a slight decrease in the level of SakA 

phosphorylation in resting conidia of the ΔtcsC mutant when 

compared to its parental strain (Figure 2A), demonstrating that 

TcsC is not essentially required for SakA phosporylation in 

resting conidia. 

Group III HHK have been shown to be required for resistance 

to osmotic stress in several fungi, but not in A. nidulans. Our data 

revealed a strong growth inhibition of the ΔtcsC mutant under 

hyperosmotic stress, e.g. on plates containing 1.2 M sorbitol 

(Figure 3B), 1 M KCl (Figure 3C) and 1 M NaCl (data not 

shown). This demonstrates that TcsC is clearly important for 

adaptation to high osmolarity. Immunoblot analysis revealed that 

SakA phosphorylation is much weaker in germlings than in 

resting conidia (Figure 2A and B). However, both 1.2 M sorbitol 

and the antifungal agent fludioxonil induced SakA hyper-

phosphorylation in a TcsC-dependent manner (Figure 2B). Thus, 

TcsC is required for activation of the HOG pathway by 

hyperosmotic stress and the phenylpyrrole antifungal agent 

fludioxonil. 

We found no evidence for an enhanced sensitivity of the ΔtcsC 
mutant to calcofluor white, several clinically relevant antifungals 
(amphotericin B, posaconazol and caspofungin), pH (pH 5-9), 

temperature (20°C–48°C) or oxidative stress (H2O2 and t-BOOH) 

(data not shown). In fact, the mutant turned out to be slightly 
more resistant to the cell wall stressor congo red and UV light 
(Figure 3D and data not shown). Thus, TcsC activity is required 
for adaptation to hyper-osmotic stress, but is not essential for the 
general stress response. 
 
TcsC is Essential for the Fungicidal Acitivity of 
Fludioxonil and Related Compounds 

An interesting feature of Group III HHK mutants is their 
resistance to fludioxonil and related fungicides. Accordingly, the 

ΔtcsC mutant grew normally in liquid medium containing 10 µg/ 
ml fludioxonil, whereas growth of the wild type was completely 

abrogated at 1 µg/ml fludioxonil (data not shown). This pheno-

type was also evident in drop dilution assays on plates 
supplemented with fludioxonil (1 µg/ml; Figure 3E) or the 
functionally related fungicides quintozene (25 µg/ml) and ipro-

dione (25 µg/ml) (Figure S2 B and C, respectively).  
To obtain more information on the impact of fludioxonil at the 

level of individual cells, germlings were incubated in the presence 
of 1 µg/ml fludioxonil. No obvious morphological changes were 

apparent after 2 h (Figure 4A and B), but 4 h and 6 h after 
addition of fludioxonil growth of the wild type (Figure 4D and F) 
and the complemented mutant (data not shown) stopped and the 
cells began to swell, whereas the growth and morphology of the 

ΔtcsC mutant remained normal (Figure 4C and E). Similar results 
were obtained with 25 µg/ml iprodione (data not shown). DAPI 
staining of germlings treated with fludioxonil for 6 h revealed a 
normal distribution of nuclei in hyphae of the mutant.
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Figure 1. Growth of the ΔtcsC mutant. Colonies of the AfS35 wild type and the ΔtcsC mutant grown for 72 h on AMM plates are shown in 
panels A/C and B/D, respectively. Magnifications of the edge of the colonies are depicted in panels C and D. Note the reduced number of 
extending hyphae in the mutant. Panel E: Quantification of the radial growth of AfS35 (black), ΔtcsC mutant (white) and complemented 

mutant colonies (gray) on AMM plates after 48 h and 96 h at 37°C or 48°C. Panel F: Quantification of the radial growth after 96 h of AfS35 

(black), ΔtcsC mutant (white) and complemented mutant colonies (gray) on AMM plates supplemented with 1.4 M NaNO3 or 0.2 M 

ammonium tartrate at 37°C. The experiments shown in panels E and F were done in triplicate. Standard deviations are indicated. Student’s 

t-test: *p,0.005; **p,0.001. doi:10.1371/journal.pone.0038262.g001 

 
(Figure 4G), but an unusually high number of nuclei in the 
swollen cells of the wild type (Figure 4H) and the complemented 
mutant (data not shown). 

We also analyzed the impact of fludioxonil on the germination 

of resting conidia. Spores were incubated in medium 

supplemented with 1 µg/ml fludioxonil. After 28 h, the wild type 

produced only small germlings (Figure S3 A and B), while 

 
abundant hyphae were found in the fludioxonil-treated ΔtcsC 

mutant and an untreated wild type control (data not shown). Thus, 

germination of wild type spores was impaired, but not completely 

abolished by fludioxonil. An additional 18 h incubation in 

fludioxonil yielded cells whose growth was arrested and these 

exhibited irregular, swollen morphologies  (Figure S3 C-F). 
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Figure 2. The role of TcsC in the phosphorylation of SakA. Protein extracts of resting conidia (RC)(panel A) and germlings (panel B) 
were analyzed by immunoblot using specific antibodies to phosphorylated SakA and as a loading control mitochondrial MnSOD. Extracts 
were prepared from germlings treated with 10 µg/ml fludioxonil and 1.2 M sorbitol for 2 and 20 min, respectively. A: parental strain AfS35, B: 
ΔtcsC mutant, C: complemented mutant. 
doi:10.1371/journal.pone.0038262.g002 

 
As observed for germlings, fludioxonil treatment during 

germination resulted in unusually high numbers of nuclei that 

were often clustered in the cytoplasm (Figure S3 A, C and E). 

Only few fludioxonil-treated cells showed signs of leakage after 

46 h (data not shown). We therefore replaced the medium and  

 
incubated the cells for another 15 h without fludioxonil to analyze 

their ability to recover. Although fludioxonil had induced severe 

morphological changes the cells were able to restore growth and 

the resulting hyphae had a normal appearance and a normal 

distribution and number of nuclei (Figure S3 G and H). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. The ΔtcsC mutant is sensitive to hyperosmotic stress and resistant to fludioxonil. Drop dilution assays were performed on 
AMM plates (supplemented with ammonium). Panel A: control; B: 1.2 M sorbitol; C: 1 M KCl; D: 100 µg/ml congo red; E: 1 µg/ml fludioxonil. 

The depicted colonies were obtained after 48 h at 37°C. Top: AfS35; middle: ΔtcsC; bottom: complemented strain. 
doi:10.1371/journal.pone.0038262.g003 
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Figure 4. Impact of fludioxonil on A. fumigatus germ tubes. Conidia of the ΔtcsC mutant (panels A, C, E, G) and its parental strain 

AfS35 (panels B, D, F, H) were seeded on glass cover slips and incubated overnight in AMM at 30°C. The resulting germ tubes were treated 

with 1 µg/ml fludioxonil for 2 h (A, B), 4 h (C, D) and 6 h (E–H) at 37°C. A DAPI staining is shown in panels G and H. Arrows indicate lysed 

cells that lack intracellular nuclei and are associated with amorphous extracellular material. All bars represent 10 µm. 
doi:10.1371/journal.pone.0038262.g004 
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The Role of TcsC in the fluffy Growth Phenotype in  
A. fumigatus  

Tco1, the Group III HHK of Cryptococcus neoformans, is 

required for growth under hypoxic conditions [18]. Oxygen 

limitation is also encountered by A. fumigatus during infection 

and it was recently shown that its ability to grow under hypoxic 

conditions is a prerequisite for virulence [19]. Adaptation of A. 

fumigatus to 1% oxygen results in colonies that are characterized 

by a massive production of aerial hyphae, resulting in a dome-

shaped morphology, and a complete lack of sporulation (Figure 

5A). At 1% oxygen the ΔtcsC mutant was indistinguishable from 

the control strains with respect to growth and colony morphology. 

At 2% oxygen flat and sporulating colonies were found for the 

control strains, whereas the mutant colonies remained white and 

dome-shaped (Fig. 5B). Similar A. nidulans colonies, also 

characterized by the formation of abundant aerial hyphae and the 

lack of sporulation, were described previously as having a ‘fluffy’ 

developmental phenotype [20]. Thus, oxygen limitation seems to 

activate a specific morphogenetic program and the threshold level 

of hypoxic stress required to trigger this developmental process is 

clearly lower in the ΔtcsC mutant. 
A fluffy phenotype is also apparent in the presence of 2 mM of 

the acyclic sesquiterpene alcohol farnesol (Figure 5C and E; 
[21]). Titration of farnesol revealed that at lower concentrations 
the fluffy growth was restricted to the ΔtcsC mutant (Figure 5D). 
Thus, the absence of TcsC renders A. fumigatus more sensitive to 
oxygen limitation and farnesol. Further experiments revealed a 
third trigger for fluffy growth in A. fumigatus. White, dome-
shaped colonies of the mutant, but not of the control strains were 

obtained on plates containing 100 mM CaCl2 and 100 mM MgCl2 

(Figure 5G and data not shown). This phenotypic switch was also 

induced by 100 mM MgSO4 (Figure 5F and H), but not by 200 

mM NaCl (data not shown), indicating that divalent cationic ions, 
but not the slight increase in osmolarity or elevated chloride 
concentration induced the fluffy growth. The phenotypic differ-

entiation was already obvious with 50 mM CaCl2 (Figure 5I), and 

could be enforced by addition of 20 µM farnesol, which per se 
had no impact on the colony morphology (data not shown), 
suggesting a synergistic mode of action for these stimuli. A 
further increase of the calcium concentration to 500 mM induced 
the fluffy growth phenotype in the control strains, but 
concomitantly abrogated growth of the mutant (Figure 5J). Thus, 
oxygen limitation, farnesol and divalent cations activate the fluffy 
developmental program and the lack of tcsC renders cells more 
susceptible to this developmental reprogramming. 

The fluffy growth phenotype in A. nidulans is regulated by a 

heterotrimeric G protein that has been functionally linked to the 

cAMP-dependent protein kinase pathway [22,23]. For A. 

fumigatus, addition of 5 mM cAMP partially rescued the 

sporulation defect caused by farnesol (Figure 6A), but not that 

triggered by 100 mM CaCl2 or hypoxia (1% oxygen) (data not 

shown). We also tested the influence of light that stimulates 

sporulation in many fungi. Exposure of colonies to white light 

rescued the sporulation defect induced by 1% oxygen in the 

parental and the complemented strain, but not in the ΔtcsC 

mutant. Moreover, light also reduced the formation of aerial 

hyphae and resulted in colonies with a normal appearance (Figure 

6B). 100 mM CaCl2 or 2% oxygen are weaker activators of the 

fluffy program. They only influence the growth of the ΔtcsC 

mutant and this effect can also be prevented by light (Figure 6B 

and data not shown). The impact of light on the farnesol-induced 

 
sporulation defect could not be analyzed due to the known 
sensitivity of this agent to light. Thus, light and cAMP can 
antagonize the development towards a fluffy growth phenotype. 
In doing so cAMP was only able to neutralize the effect of 
farnesol, whereas light seems to have a broader impact. 
 
Analysis of the Virulence of the DtcsC Mutant 

The ability to respond to certain kinds of stress is clearly 

impaired in the ΔtcsC mutant. In order to investigate whether this 
negatively affects its virulence potential, cortisone-acetate treated 
mice were infected via the intra-nasal route. Survival of mice 
infected with the ΔtcsC mutant was comparable to those infected 
with the control strains (Figure 7) and the histological analysis of 
samples from the lungs of mice that succumbed to infection also 

revealed no apparent differences (data not shown). A normal 
virulence was furthermore observed in a alternative infection 
model using embryonated eggs [24](data not shown). 
 
Discussion 
 

In an often hostile environment pathogenic microorganisms 

rely on the ability to sense and respond to environmental changes. 

Two-component signaling (TCS) systems are sensing entities that 

are abundant in bacteria, but also found in fungi and plants. 

Because they are absent in mammals, TCS systems and their 

hybrid histidine kinases (HHK) are potential targets for novel 

anti-microbial strategies. Group III HHK are predicted to localize 

in the cytoplasm, but are nevertheless supposed to sense changes 

in the environment. The resulting signals are then transferred via 

a phospho-relay system to two response regulators that directly or 

indirectly trigger an appropriate transcriptional response [4]. In 

this study we have analyzed TcsC, the only Group III HHK of the 

pathogenic mold A. fumigatus. Deletion of the homologous nikA 

gene in A. nidulans has been reported to cause a significantly 

reduced growth on solid medium [14,15], whereas the ΔtcsC 

mutant grows normally on complex media and on minimal 

medium (AMM) supplemented with ammonium. Growth was 

however impaired on AMM supplemented with nitrate, 

suggesting that TcsC is required for efficient nitrogen 

assimilation. In this context it is noteworthy that the growth 

defect of the ΔnikA mutant was observed using minimal medium 

with nitrate as the sole nitrogen source [15] and it would be 

interesting to test the growth of this mutant on a medium 

containing ammonium. 

Although Group III HHK are often linked to the high 
osmolarity glycerol (HOG) pathway, their relevance for 
adaptation to hyperosmotic stress seems to vary in different fungi. 
While the ΔnikA mutant showed a normal ability to adapt to 
hyperosmotic stress [15], the ΔtcsC mutant turned out to be 
highly sensitive. Another striking difference between both 

mutants exists with respect to their conidial viability. Conidia of 

the ΔnikA mutant showed a dramatic loss of viability when stored 
in water for several days [14,15], whereas conidia of the ΔtcsC 
mutant remained fully viable upon storage for several weeks. 
Thus, TcsC and NikA although closely related, appear to differ in 
their biological activities. 

A characteristic feature of mutants lacking Group III HHK is 
their resistance to fungicides, like fludioxonil. These compounds 
are currently used in agriculture, but are also of potential interest 
for the development of novel therapeutic anti-fungals. Their mode 
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Figure 5. The role of TcsC in the stress-induced developmental program leading to a fluffy growth phenotype. Drop dilution 
assays were performed on AMM plates (supplemented with ammonium). Panel A: 1% oxygen; B: 2% oxygen; C: 2 mM farnesol; D: 200 

µM farnesol; E: 2 mM farnesol; F: 100 mM MgSO4; G: 100 mM CaCl2; H: 100 mM MgSO4; I: 50 mM CaCl2; J: 500 mM CaCl2. Side 

views of colonies from C and D are shown in panels E and F. The depicted colonies were photographed after 48 h at 37°C. AfS35 

(top/left); ΔtcsC (middle); complemented strain (bottom/right). doi:10.1371/journal.pone.0038262.g005 

 
of action is unique in that they activate a fungal signaling process, 
the HOG pathway. The hallmark of this activation is the 
phosphorylation and subsequent translocation of SakA/Hog1 to 

 
the nucleus [10]. In A. fumigatus fludioxonil induces a rapid, 
transient phosphorylation and translocation of the MAP kinase 
SakA that leads to a tremendous cellular swelling. Fludioxonil 
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Figure 6. The impact of cAMP and light on the fluffy growth phenotype. Drop dilution assays were performed on AMM plates 
(supplemented with ammonium). The plates were supplemented or treated as indicated and incubated in incubator. When indicated 

plates were incubated under white light produced by an LED light source. Pictures were taken after 48 h at 37°C. 
doi:10.1371/journal.pone.0038262.g006 

 
blocks growth of germ tubes and hyphae, but it is unable to 

completely prevent germination of resting conidia. Prolonged 

incubation in the presence of fludioxonil results in rather odd 

cellular morphologies. These phenotypic changes are stable as 

long as the agent is present, but normal growth can be restored 

after removal of the agent. Apart from their swelling, fludioxonil-

treated A. fumigatus cells are remarkable because of their large 

number of nuclei. A block in nuclear division, as recently 

suggested for fludioxonil-treated A. nidulans [17], was not detect-

able; instead cytokinesis and mitosis seem to be transiently 

uncoupled, resulting in the accumulation of many more nuclei per 

cell than normal. These fludioxonil-induced phenotypic changes 

are dependent on TcsC, since they do not occur in the ΔtcsC 

mutant. 
The complete resistance of the ΔtcsC mutant to fludioxonil 

and related fungicides correlates with its high sensitivity to hyper-

osmotic stress. It has been shown for several plant-pathogenic 

fungi that fludioxonil mediates its anti-fungal effect by activating 

the HOG pathway via a Group III HHK [9]. It is therefore 

conceivable that the characteristic swelling of fludioxonil-treated 

A. fumigatus cells results from a hyperactivation of SakA. This is 

already detectable after 2 minutes and seems to trigger an 

uncontrolled increase in the intracellular osmotic pressure. In A. 

fumigatus, TscC is clearly required for the activation of the HOG 

 
pathway by both, fludioxonil and hyperosmotic stress. Thus, the 
inability of the ΔtcsC mutant to adapt to hyperosmotic stress and 
its resistance to fludioxonil both reflect the important role of the 
TcsC-SakA signaling axis in the control of the internal osmotic 
pressure of A. fumigatus. 

The life cycle of A. fumigatus is tightly controlled by environ-

mental cues. In contact with air hyphae initiate the formation of 

conidiophores and the production of conidia. The ‘fluffy’ de-

velopmental program impedes sporulation and leads to the 

massive formation of aerial hyphae and the appearance of white, 

dome-shaped colonies. Fluffy A. nidulans colonies were initially 

described after treatment with 5-azacytidine [20]. The phenotyp-

ical stability of these mutants indicates that a developmental 

program is permanently activated in these cells. We have recently 

identified the sesquiterpene alcohol farnesol as a trigger for 

transient fluffy growth in A. fumigatus [21]. In the current study, 

we observed similar phenotypic switches in response to hypoxia 

and elevated concentrations of certain divalent cations. The fluffy 

growth type likely provides an advantage enabling the fungus to 

survive under certain kinds of stress. The ΔtcsC mutant shifts 

earlier towards this phenotype than the wild type. White, dome-

shaped colonies appeared at lower concentrations of farnesol and 

divalent cations and at less pronounced hypoxia. The earlier 

adaptation of the mutant does not result in a higher robustness, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Infection of immuno-compromized mice. Intranasal infection of cortisone-acetate treated mice infected with 1x10

6
 conidia 

of the ΔtcsC mutant (n = 20), the parental strain AfS35 (n = 20) and the complemented strain (n = 20). Controls received PBS only. 
Survival of mice is shown over time. 
doi:10.1371/journal.pone.0038262.g007 
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but seems to be the consequence of a reduced stress resistance. 
The limited compensatory potential of the fluffy growth was in 
particular evident at elevated calcium concentrations. The mutant 
shifts already at 50 mM calcium chloride, but its growth is 
abolished at 500 mM calcium chloride, when the wild type is still 
growing well. 

So far, little is known about the mechanisms that underlie the 

fluffy growth phenotype and cause its peculiar morphological 

changes. In A. nidulans the fluffy growth seems to be controlled 

by a heterotrimeric G protein that is linked to the cAMP-

dependent protein kinase pathway [22,23]. This and the recent 

finding that farnesol blocks adenylyl cyclase activity in Candida 

albicans [25] prompted us to study the relevance of the 

intracellular cAMP level. Addition of cAMP abrogated the 

farnesol-induced block in sporulation in the wild type, but cAMP 

was unable to rescue the sporulation defect caused by hypoxia or 

elevated calcium concentrations. Light is an environmental signal 

that stimulates sporulation in many fungi. Exposure to light 

restored normal growth and sporulation under hypoxic conditions 

and in the presence of elevated concentrations of divalent cations. 

Thus, light, cAMP and the TcsC protein are factors that impede 

an activation of the fluffy growth program caused by hypoxia, 

farnesol or divalent cations (Figure 8). 
A stable fluffy A. fumigatus mutant secretes more proteases and 

has an increased angioinvasive growth capacity [26]. This 
suggests that fluffy hyphae may be well adapted to the specific 
requirements during infection. In line with this hypothesis, we 
identified oxygen limitation as another trigger for a fluffy growth. 
It will be interesting to analyze to what extent the fluffy growth 

program observed in vitro resembles the morphogenetic program 
that is active during infection. 

The ΔtcsC mutant shows a normal sensitivity to oxidative, 
temperature and pH stress as well as clinically relevant anti-
fungal agents. On the other hand, TcsC activity is important for 
the response to a limited array of stress signals including hypoxia 
(Figure 8). The ability to adapt to oxygen limitation is an essential 
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characteristic of many pathogenic microorganisms. Tco1, the 
homologous group III HHK in Cryptococcus neoformans 
regulates growth under hypoxic conditions and is also required 
for virulence [27]. In A. fumigatus the situation seems to be 
different, since we observed no significant attenuation in 
virulence for the ΔtcsC mutant. However, TcsC is required for the 
anti-fungal activity of fludioxonil and related compounds and 
may therefore be an attractive target for new therapeutic anti-
fungals. Further studies are underway to define the precise mode 
of action of the TcsC stress sensing pathway and the impact of 
fludioxonil on growth and survival of A. fumigatus. 
 
Materials and Methods 
 
Strains Media and Growth Conditions 

The A. fumigatus strain AfS35, a derivative of strain D141, 
has been described in [28]. AMM and YG medium were prepared 
as described [29]. AMM was either supplemented with 1.4 M 

NaNO3 [30] or 0.2 M ammonium tartrate. For hypoxic growth 

plates were incubated at 37°C in a HERAcell 150i incubator 

(Thermo Fisher Scientific) adjusted to 5% CO2 and the desired 
oxygen concentration. 
 
Sequence Analysis and Data Base Searches 

Domains were predicted using SMART (http://smart.embl-
heidelberg.de/) and alignments were performed using CLUSTAL 
(http://www.ebi.ac.uk/Tools/msa/clustalw2/). 
 
Construction of the ΔtcsC Mutant Strain 

All oligonucleotides used in this study are listed in Table S1. 

To construct a suitable replacement cassette a 3.5 kb hygromycin 

resistance cassette was excised from pSK346 using the SfiI-

restriction enzyme. The flanking regions of the tcsC gene 

(approx. 900 bp each) were amplified by PCR from chromosomal 

DNA using the oligonucleotide pairs tcsC-upstream and tcsC-
down-stream. These oligonucleotides harbor ClaI and Sfi sites. After 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. Schematic model of the biological activities of A. fumigatus 
TcsC.  
doi:10.1371/journal.pone.0038262.g008 
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digestion with ClaI and SfiI, ligation of the three fragments 

(resistance cassette and flanking regions) yielded a 5.3 kb deletion 

cassette that was purified using the Wizard SV Gel and PCR 

Clean-Up System (Promega). The fragment was cloned into the 

pCR2.1 vector (Invitrogen) using oligonucleotide-derived ClaI 

sites. A 9.2 kb fragment from the resulting plasmid was linearized 

with SpeI and used for transformation of Aspergillus. The 

construct used for complementation of ΔtcsC was generated by 

amplifying tcsC and its native promoter (1.5 kb region upstream 

of the gene) from chromosomal DNA using the oligonucleotides 

tcsC + native promoter-forward and tcsC-reverse. The gpdA 

promoter was excised from the pSK379 vector using EcoRV and 

NsiI; the latter enzyme generates sticky ends compatible with 

those generated by PstI. The amplified tcsC + native promoter 

fragment was cloned into this modified version of pSK379 using 

oligonucleotide-derived NsiI sites. The resulting plasmid was 

purified as above and used for transformation of the ΔtcsC 

mutant. 

A. fumigatus protoplasts were generated and fungal 

transformation was performed essentially as described previously 

[29]. The resulting protoplasts were transferred to AMM plates 

containing 1.2 M sorbitol and either 200 µg/ml hygromycin 

(Roche, Applied Science) or 0.1 µg/ml pyrithiamine (Sigma-

Aldrich). 

 
Genomic DNA Analysis 

A. fumigatus clones which showed the expected resistance on 

selective plates were further analyzed by PCR. The correct 
integration of the deletion cassette was analyzed at the 5’ end 
using oligonucleotides tcsC-upstream-forward and hph-3-SmaI 
(PCR1) and at the 3’ end using oligonucleotides trpCt-forward 

and tcsC-downstream-reverse (PCR2) (Figure S2). To detect the 
presence of tcsC in the complementation mutant, the entire tcsC 
gene was amplified using primers at the 5’ and 3’ ends of the gene 

(tcsC-forward and tcsC-reverse, PCR3). Primer sequences are 
listed in Table S1. 
 
Quantification of Sporulation Efficiency 

For each strain tested, three small tissue culture flasks (25 cm
2
; 

Sarstedt, Nürnbrecht, Germany) with YG agar were inoculated 

with 4x10
6
 conidia per flask. After incubation for 4 days at 37°C 

conidia were harvested and counted using a Neubauer chamber. 
 
Spore Viability Assay 

To determine their viability, 2x104 resting conidia were 

transferred to 1 ml YG medium in a 24 well plate. After overnight 

incubation at 37°C samples were fixed by addition of 100 µl 37% 

formaldehyde. The percentage of germinated cells was 

determined microscopically. These experiments were done in 

triplicate. 

 
Protein Extraction and Western Blot 

For protein extractions from resting conidia, 75 cm2 flasks 

containing YG agar were inoculated with AfS35 or ΔtcsC conidia 

(in triplicate) and grown at 37°C for 3 days. Conidia were 

harvested in sterile water and the pellet frozen overnight at –20°C. 

Frozen conidia pellet was lyophilized overnight at 6°C. The dry 

pellet was ground with a mortar and pestle in liquid nitrogen. The 

ground conidia powder was added to 300 µl Laemmlie buffer (2% 

[w/v] SDS, 5% [v/v] mercaptoethanol, 60 mM Tris/Cl pH 6.8, 

10% [v/v] glycerol, 0.02 [w/v] bromophenol blue), heated at 95°C 

and immediately extracted twice using a Fast Prep 24 (M.P. 

Biomedical, Irvine, CA) with a speed of 5.5 m/s for 20 s, 

followed by a final heat denaturation at 95 °C for five minutes. 20
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µl protein extract was used for SDS-PAGE on 12% SDS gel. 
Proteins were blotted onto 0.45 µm nitrocellulose membranes and 
labeled with an α-phospho-p38 MAP kinase antibody (Cell 
Signaling Tech-nology [#9211], MA, USA). A monoclonal 
antibody directed against mitochondrial MnSOD (P118-H3) 
kindly provide by Bettina Bauer was used as a loading control. 

For protein extractions from germ tubes, 4x10
7
 resting conidia 

were in-oculated in 10 ml AMM and incubated 9 h at 37°C. The 

germ tubes were treated with 10 µg/ml fludioxonil or 1.2 M 

sorbitol for 2 min or 20 min, respectively, at 37°C. Protein was 

then extracted from the cell pellet as above and used for SDS-
PAGE and immunoblot in the same manner. 
 
Phenotypic Plate Assays 

Isolated conidia were counted using a Neubauer chamber. For 
drop dilution assays, a series of tenfold dilutions derived from a 

starting solution of 1x10
8
 conidia per ml were spotted in aliquots 

of 1 µl onto plates. These plates were supplemented with the 
indicated agents and incubated at the indicated temperatures. For 

quantification of the radial growth, 3 µl containing 3x10
4
 conidia 

were spotted in the centre of a 9 cm Petri dish. The radius of the 
colonies was determined over time. 

E-test strips of voriconazole, amphotericin B and caspofungin 
were obtained from Inverness Medical (Cologne, Germany). Each 
E-test strip was placed onto an AMM agar plate spread with 

8x10
5
 conidia. Plates were incubated 36–48 h at 37°C.  

Paper disk assays were performed by spreading 8x10
5
 conidia 

on AMM, Sabouraud, or YG agar plates and placing a sterile 
paper disk containing fludioxonil, iprodione, or quintozene 

(Sigma-Aldrich; 46102, 36132 and P8556, respectively), or H2O2 

or tert-butyl hydroperoxide (t-BOOH; Sigma-Aldrich). Plates 

were incubated 36–48 h at 37°C. Fludioxonil and iprodione were 

dissolved at 100 mg/ml stock concentrations in DMSO and 
quintozene was dissolved at 10 mg/ml stock concentration in 
chloroform. The influence of light was analyzed using an LED 
light (Osram DOT-it, Osram, Munich, Germany) that was affixed 
15 cm above the Petri dish. 
 
Microscopic Analysis 

To visualize the effects of fludioxonil on germ tubes and 
resting conidia, AfS35 or ΔtcsC resting conidia were inoculated 
in 24-well plates containing 1 ml AMM and glass cover slips. 

Germ tubes were generated by incubating at 30°C overnight 

before adding 1 µg/ml fludioxonil. After incubation at 37°C for 

the indicated times, cells were fixed in 3.7% formaldehyde for 
five minutes at room temperature. Cover slips were mounted to 
glass slides in Vecta Shield containing DAPI (Vector 
Laboratories, Burlingame, California, USA). Cells were then 
visualized using a Leica SP-5 microscope (Leica Microsystems). 
 
Infection Experiments 

To analyze the impact of TcsC we used an intranasal infection 

model using immunocompromized female outbred CD-1 mice. 

Mice were immunosuppressed by intraperitoneal injection of 

cortisone acetate (25 mg/mouse, Sigma-Aldrich) on days –3 and 

0. On day 0 the mice were anesthetized with fentanyl (0.06 mg/ 

kg, Janssen-Cilag, Germany), midazolam (1.2 mg/kg, Roche, 

Germany) and medetomidin (0.5 mg/kg, Pfizer, Germany) and 

infected intranasally with 1x106 conidia in 20 µl PBS. Controls 

received PBS only. Survival was monitored for 14 days. During 

this period, mice were examined clinically at least twice daily and 

weighed individually every day. Kaplan-Meier survival curves 

were compared using the log rank test (SPSS 15.0 software). 

Mice were cared for in accordance with the principles outlined by 

the European Convention for the Protection of Vertebrate Animals 

Used for Experimental and Other Scientific Purposes (European
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Treaty Series, no. 123; http://conventions.coe.int/Treaty/en/ 
Treaties/Html/123). All animal experiments were in compliance 
with the German animal protection law and were approved 
(permit no. 03-001/08) by the responsible Federal State authority 
and ethics committee. 
 
Supporting Information 
Figure S1 (A) Schematic drawing of the genomic tcsC gene 

and the deleted tcsC::hph/tk locus. Approximately 1 kb of the 

5’ and 3’ regions of tcsC gene were used for construction of the 

deletion cassette. The positions of the primers employed for the 

PCR amplifications and the resulting PCR products (PCR 1-3) are 

indicated. (B) Equal amounts of genomic DNA of AfS35, ΔtcsC 

and ΔtcsC+tcsC were used as template for PCR amplification of 

the regions indicated in panel A (PCR 1-3). (TIF) 

 
Figure S2 Resistance of the ΔtcsC mutant to iprodione and 

quintozene. The sensitivity to iprodione and quintozene was 

analyzed in drop dilution assays. AfS35 (top) and its ΔtcsC 

mutant (bottom) were spotted on plates without fungicides (panel 

A) or plates containing either 25 µg/ml quintozene (panel B) or 

25 µg/ml iprodione (panel C). Pictures were taken after 48 h at 

37°C. (TIF) 
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Figure S3  Impact of fludioxonil during germination of A. 

fumigatus conidia. Conidia of A. fumigatus strain AfS35 were 

seeded on glass cover slips and incubated at 37°C in the presence 

of 1 µg/ml fludioxonil for 28 h (A, B) and 46 h (C to F). After 46 

h the medium was replaced by fresh medium. Fungal cells fixed 

after another 15 h in the absence of fludioxonil are shown in G 

and H. DAPI stainings are shown in panels A, C, E and G. All 

bars represent 10 µm. (TIF) 
 
Table S1 Oligonucleotides used in this study. 
(DOC) 
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7. Discussion 

The incidence of aspergillosis has continued to rise over the past few decades, and 

additional diagnosis and treatment options are continuously sought. While many of these 

have proven beneficial, scientists, medical doctors, and patients still require ulterior 

solutions to combat this deadly disease. Aspergillus fumigatus, as a pathogen, remains 

an enigma. The sheer ubiquity of the fungus and the body’s ability to avoid infections on a 

daily basis makes the relatively rare case all the more baffling. We have attempted to 

unravel part of the mystery of A. fumigatus pathogenicity by first exploring defense 

mechanisms of the innate immune system, by expounding upon the role of NETs and IFN-

γ from the host, and then by clarifying the role of a conserved fungal stress response 

pathway, not only in adaptation and growth, but in virulence as well.  

 

7.1 NETs are formed in response to A. fumigatus 

The innate immune system is the host’s first line of defense against inhaled conidia, and 

when functioning properly, together these cells easily rid the body of A. fumigatus. 

Leading the initial attack, and thought to be most important in fending off A. fumigatus 

infection, are the polymorphonuclear neutrophils (PMN) (Mircescu et al., 2009). Conidia 

that manage to escape resident alveolar macrophages must resist attacking PMNs, which 

like alveolar macrophages, can phagocytose resting and swollen conidia and even small 

germlings. Hyphae, however, present a much larger problem. The hyphae not only break 

off and disseminate through the blood stream, but can penetrate tissues, which becomes 

especially dangerous in the brain (McCormick et al., 2010b). Long ago it was shown that 

PMNs align themselves along the surface of a growing hypha (Diamond et al., 1978) so 

that degranulation and the oxidative burst can occur in close proximity to the hyphal 

surface, supposedly damaging the fungal cell with toxic granule contents and reactive 

oxygen species (ROS) (Hasenberg et al., 2011).  

A third mode of neutrophil attack has recently been discovered, called neutrophil 

extracellular traps (NETs) (Brinkmann et al., 2004). During NETosis, the chromosomal 

DNA decondenses and the neutrophil bursts, releasing a sticky mass of DNA decorated 

with antimicrobial peptides and certain cellular proteins, e.g., elastase. NETs have been 

found to degrade virulence factors and kill bacteria, via the attached antimicrobial 

peptides, while the sticky chromatin prevents microbes from spreading (Brinkmann and 
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Zychlinsky, 2007; Papayannopoulos and Zychlinsky, 2009). It has been shown by our 

group (unpublished data) and others (Urban et al., 2009b; Urban et al., 2006) that NETs 

are formed in response to Candida albicans infection. However, while Urban et al. 

showed that NETs per se can kill C. albicans, we have found no evidence of such 

(unpublished data). In the current study we found that NETs are also released in 

response to A. fumigatus conidia and hyphae. It was suggested in a parallel study that 

more NETs are released in response to hyphae than conidia (Bruns et al., 2010); we 

found the same and provide qualitative evidence in our manuscript. Additionally, we 

report this process of NETosis as a form of cell death altogether different than apoptosis 

or necrosis. However, in contrast to the function of NETs during bacterial and even 

Candida infection (at least as reported by others), we found no evidence that NETs alone 

can kill A. fumigatus, neither conidia nor hyphae (McCormick et al., 2010a). 

 

7.1.1 NETs do not inhibit conidial germination but do inhibit hyphal 

elongation 

We showed that PMNs can inhibit germination of resting conidia by phagocytosing the 

spores. Ingested conidia are then degraded within the phagosome (Hasenberg et al., 

2011; Nauseef, 2007) or intracellular germination is at least delayed. In the presence of 

NETs alone (PMNs induced with phorbol myristate acetate [PMA]), resting conidia swell 

and germinate as normal. We confirmed these findings by inhibiting phagocytosis with 

cytochalasin D, a substance that blocks polymerization of the actin cytoskeleton. Also 

under these conditions, resting conidia germinated as normal.  

While we found that NETs, namely the associated calprotectin (and perhaps other NETs-

associated proteins not yet analyzed), can inhibit germ tube elongation by depleting the 

surrounding media of essential zinc, we found no evidence that NETs alone can 

effectively kill A. fumigatus hyphae. We determined that calprotectin, and not lactoferrin, 

is responsible for inhibiting germ tube elongation. Calprotectin is a chelator of zinc and 

manganese; lactoferrin is an iron chelator known to inhibit the growth of A. fumigatus 

conidia (Zarember et al., 2007; Savchenko et al., 2011). Both metal chelators are 

associated with NETs (Urban et al., 2009b). Supplementing the media with Zn2+, but not 

iron or Mn2+ rescued the growth inhibition in the presence of NETs. Interestingly, we 

found that NETs inhibit growth of C. albicans hyphae in a similar way, but we could only 

partially rescue this growth inhibition by adding zinc to the media (unpublished data).  
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For both A. fumigatus and C. albicans growth inhibition assays we measured germ tube 

elongation at the cellular level using a method adapted from Wozniok et al., rather than 

the more common plating assay (Wozniok et al., 2008). Plating assays, though often used 

to determine bacterial killing, are not as reliable a tool to detect fungal killing. Conidia 

and hyphae (and yeast) are very sticky and often grow as large conglomerates. So that 

when plated on agar a single colony may not necessarily represent a single fungal cell. 

Use of the plating assay could be the reason Urban et al. found NETs capable of killing C. 

albicans, while we did not find such evidence in our microscopic growth assay.  

To confirm that NETs could not kill A. fumigatus, we used a strain in which the 

mitochondria were labelled with GFP. Fungal mitochondria are arranged in dynamic 

tubular networks that move throughout the cell, and the constant reorganization reflects 

cellular vitality (Okamoto and Shaw, 2005). We used live-cell microscopy to visualize the 

GFP-tagged mitochondrial dynamics in A. fumigatus hyphae in the presence of NETs 

(PMNs pre-treated with PMA). Under these conditions, no change in mitochondrial 

movement or morphology was detectable, indicating that the hyphae are certainly still 

alive (Supplemental Figure 1, McCormick et al., 2010a).  

 

7.1.2 Proposed purpose and mechanism of NETosis during A. fumigatus 

infection 

There must be further factors that, in vivo, can manage infection. The neutrophils 

themselves may be activated by soluble factors released from other leukocytes, or the 

PMNs may have help from contributory recruited immune cells. Neutrophils are short-

lived cells and it has long been believed that cytokine production is therefore minimal. 

However, it is now becoming clear that not only is their role as effector expanding—to 

include the production of NETs—but neutrophils may also be key recruiters (Ellis and 

Beaman, 2004). In vivo, a whole armament of leukocytes is available to a healthy host, 

and while NETs alone cannot kill the fungus, they serve an important purpose 

nonetheless. They slow and contain fungal growth, perhaps even opsonizing the 

ensnared fungus with pentraxin 3 (PTX3), a well documented opsonin and NETs-

associated protein (Bottazzi et al., 2009; Jaillon et al., 2007; Moalli et al., 2010). PTX3 is 

thought to bind galactomannan in the Aspergillus cell wall, though this was shown 

experimentally using resting conidia, where galactomannan is masked by hydrophobic 

rodlet proteins (Heesemann et al., 2011). Regardless of the binding partner, PTX3 does 
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indeed bind A. fumigatus resting conidia (Moalli et al., 2010), thereby enhancing 

phagocytosis by incoming PMNs, as well as dendritic cells and macrophages (Bottazzi et 

al., 2006). We have seen that PTX3 also binds the hyphal surface (unpublished data). 

Additionally, high blood levels of PTX3 correlate with neutrophil recruitment to sites of 

inflammation (Deban et al., 2010). The acronym—NETs—is no accident. Like a true ‘net,’ 

neutrophil extracellular traps contain microbes while allowing the movement and 

accessibility of other molecules, namely antimicrobial peptides and osponins.  

The mechanism of NETosis was originally thought to be dependent on nicotinamide 

adenine dinucleotide phosphate (NADPH) oxidase and the production of ROS (Brinkmann 

and Zychlinsky, 2007). However, we have found that neutrophils collected from patients 

who have chronic granulomatous disease (CGD) are still capable of NETs production in 

response to A. fumigatus (unpublished data), suggesting the presence of an alternative 

pathway. CGD is caused by mutations in genes encoding subunits of NADPH oxidase, 

rendering these cells incapable of ROS production. CGD patients are therefore less able 

to kill invading microbes and so suffer from recurring life-threatening infections (Seger, 

2008). NADPH oxidase-dependent NETosis signalling is transduced via Syk (spleen 

tyrosine kinase) through PKC, MEK, and ERK (protein kinase C, mitogen-activated kinase 

kinase, extracellular signal-regulated kinase, respectively) to the transmembrane NADPH 

oxidase (see Figure 5). As a result, ROS accumulate and NETs are released. 

Myeloperoxidase, an enzyme that catalyzes the production of hypochlorous acid from 

hydrogen peroxide is required for NETosis in this setting (Metzler et al., 2011). Activation 

of MEK was found in turn to activate Mcl-1, an apoptosis inhibitor (Hakkim et al., 2011), 

confirming our finding that regulated cell death by NETosis is clearly different than 

apoptosis. Β-integrins, and to a lesser extent dectin-1, were found to activate NADPH 

oxidase production of ROS via Syk (Boyle et al., 2011). Dectin-1 is a receptor on the 

surface of many immune cells that recognizes β-glucan present in the Aspergillus cell wall 

(Dennehy and Brown, 2007). The involvement of dectin-1 could explain an NADPH 

oxidase-dependent mode of NETosis in response to A. fumigatus. Additional receptors 

involved in Aspergillus recognition, TLR2 or 4 for example, may also be involved in 

NETosis, but to our knowledge this has not yet been explored. In fact, whether NETosis 

requires specific recognition of a microbe or is a general infection phenomenon has not 

yet been decided. We and others have evidence for an alternative, NADPH oxidase-

independent mechanism of NETosis. Marcos et al. showed that CXCR2 binding on the 

neutrophil surface activates Src kinases and NETs are produced even in the presence of 

NADPH oxidase inhibitors (Marcos et al., 2010). CXCR2 was previously found to be critical 
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to PMN recruitment during Aspergillus response (Phadke and Mehrad, 2005), and 

CXCR2-mediated NETosis could be the means by which neutrophils from CGD patients 

produce NETs in response to A. fumigatus. Non-CGD neutrophils may also utilize this 

pathway. During infection, oxygen concentrations in inflamed tissues rapidly decrease 

from healthy levels (0.5 – 11%) to hypoxic levels (0.5 – 3%) (Dietz et al., 2012). NADPH 

oxidase requires oxygen to produce ROS. We have evidence that neutrophils can also 

undergo NETosis during Aspergillus infection in vitro in hypoxia, and in fact produce even 

more NETs in these conditions (unpublished data), again suggesting an NADPH oxidase-

independent mechanism. The transcription factor HIF-1α is activated in hypoxia but also 

during infection and regulates a wide array of immune response genes, including NF-κB 

and Toll-like receptors (Rius et al., 2008; Werth et al., 2010; Kuhlicke et al., 2007). We 

have evidence that HIF-1α is activated in PMNs both in hypoxia and during A. fumigatus 

Figure 5. NADPH oxidase-dependent and -independent mechanisms of NETosis 

 
NETosis can occur via NADPH oxidase by binding β-integrins and to a lesser extent dectin-1 on the 

neutrophil surface and transducing the signal through Syk. Reactive oxygen species (ROS) are produced 

and myeloperoxidase (MPO) converts H202 to highly reactive antimicrobial molecules. Activation of MEK 

also activates Mcl-1, an apoptosis inhibitor. NADPH oxidase, ROS, and MPO are all required components 

of this pathway. In CGD patients, NETosis occurs independent of NADPH oxidase, by binding of the CXCR2 

receptor on the neutrophil surface. The signal is transudced via Src family kinases. This could also be a 

mechanism of NETosis in hypoxic environments, for example in inflamed tissue during infection. The 

involvement of additional receptors also involved in Aspergillus recognition is still unknown. 
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infection (unpublished data). Whether HIF-1α also plays a part in NETosis has not yet 

been explored, but presents an additional intriguing alternative to the classical NADPH 

oxidase-dependent pathway.  

 

7.2 IFN-γ from NK cells acts directly against A. fumigatus hyphae 

The activity of neutrophils, including NETosis, though unable to alone kill A. fumigatus 

hyphae, is important in abating fungal growth while the remaining innate immune arsenal 

arrives. Belonging to this arsenal are the natural killer (NK) cells. The role of NK cells 

during infection is not as well understood as their role against tumor cells, but it is 

becoming increasingly evident that NK cells also play a crucial role in protecting the host 

from a variety of pathogens (Newman and Riley, 2007). Stimulated NK cells are known to 

release high levels of interferon gamma (IFN-γ), a potent cytokine with a multitude of 

immunoregulatory functions (Boehm et al., 1997; Ellis and Beaman, 2004). Our 

collaborators from the Universitätsklinikum in Würzburg found that IFN-γ is released by 

NK cells in contact with A. fumigatus hyphae in a time- and morphotype-dependent 

manner (Bouzani et al., 2011). IFN-γ released by NK cells, but also in recombinant form, 

can directly damage A. fumigatus hyphae but not conidia, i.e., metabolically active fungal 

cells. Hyphae incubated with NK cell supernatant (the supernatant collected after NK 

cells were infected with A. fumigatus hyphae) or recombinant IFN-γ, showed decreased 

metabolic activity using an XTT assay and decreased polar growth using an assay to 

measure the elongation of individual hypha microscopically (Bouzani et al., 2011). In the 

presence of IFN-γ, the hyphae grew with a strange morphology: long, thin, and often even 

in spiral-shaped curls. Using the A. fumigatus strain with GFP-tagged mitochondria in live-

cell microscopy, we noticed that though the mitochondria remained active, they had lost 

their usual tubular morphology and appeared rather short and round (unpublished data). 

The effect was reduced if an anti-IFN-γ antibody was used to deplete the NK cell 

supernatant. This suggests not only a previously unknown means of attack for NK cells, 

but also a previously unknown method of harming hyphae and a surprising new role for 

IFN-γ as more than just an immunoregulatory molecule.  

The mechanism of IFN-γ activity against A. fumigatus hyphae is still unclear. The finding 

that recombinant IFN-γ alone damages the fungus is quite astounding, suggesting the 

ability of this cytokine to directly target A. fumigatus hyphae. If another factor is involved, 
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it must originate from the fungus, since recombinant IFN-γ alone seems capable of fungal 

damage. Hu et al. reported the synergy of IFN-γ with RNases to kill hepatoma cell lines  

Figure 6. The neutrophil and natural killer cell responses to Aspergillus fumigatus infection: formation of NETs 

and release of IFN-γ 

 
Neutrophils act in three ways to defend the body from Aspergillus infection: by phagocytosing resting and swollen 

conidia and even small germlings (A1); by degranulation and oxidative burst (A2), both of which release 

antimicrobial molecules in close proximity to the growing hyphae; or by NETosis (A3). Neutrophils and natural killer 

(NK) cells both release IFN-γ upon stimulation, which may function by directly damaging the hyphae and also by 

activating incoming NK cells (B). NETs are believed to physically contain microbes, preventing dissemination while 

bringing the microbe in close or direct contact with the antimicrobial NETs-associated proteins. One such protein 

is calprotectin, which chelates proximal zinc, starving the fungus of this nutrient and thus inhibiting polar growth. 

A1: The bright field image shows two neutrophils that have ingested resting conidia (strain ATCC46645). The 

conidia are dyed blue with Blankophor, a chitin-binding dye. A2: A. fumigatus strain AfS35 expressing GFP in the 

cytoplasm is in green. Neutrophils are dyed red with tetramethylrhodamine and are aligned along the hyphal 

surface, presumably prior to degranulation, oxidative burst, or even NETosis. Photo taken together with Julia Beck. 

A3: A. fumigatus strain ATCC46645 shown in red, using α-galactomannan antibody; NETs DNA stained in blue 

with DAPI; neutrophil elastase shown in green. 
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(Hu et al., 2001). Our group published that A. fumigatus does in fact secrete significant 

amounts of ribotoxin, namely mitogillin (Schwienbacher et al., 2005), which could 

theoretically act in cooperation with IFN-γ, but whether this hypothesis is correct remains 

to be tested.                                                                                                                                

 

7.3 Cooperation between innate immune cells is necessary for A. 

fumigatus protection 

We have not yet found a leukocyte capable of single-handedly killing A. fumigatus 

hyphae. The innate immune system’s initial methods of attack, namely phagocytosis, can 

rid the host of conidia, but extending hyphae present a unique dilemma to responding 

immune cells. A hypha is too large to be engulfed, is protected by a tough cell wall, and 

has evolved mechanisms of isolating damaged portions to protect the remaining 

undamaged organism (Latge, 2007). Figure 6 summarizes the work presented in this 

study—the proposed interactions between neutrophils and NK cells in managing A. 

fumigatus hyphae. When phagocytosis is no longer possible, PMNs align themselves 

along the length of a hypha.  From this advantageous position, they can undergo oxidative 

burst, degranulate, or produce NETs. Bruns et al., suggested that only a subpopulation of 

neutrophils can produce NETs (Bruns et al., 2010), a finding we agree with based on our 

own unpublished data. Distinguishing and characterizing this subpopulation has not yet 

been done. But one could speculate that while a percentage of PMNs undergo NETosis, 

others remain intact, perhaps as recruiters or as phagocytes of slow-germinating conidia. 

We have even seen, using live-cell microscopy, that a subpopulation of neutrophils 

responds to both conidia and hyphae. If incubated with resting conidia, for example, 

some neutrophils actively migrate towards the fungus, engulfing numerous conidia while 

others remain in place, seemingly unaffected by the presence of the fungus. Similarly, if 

co-incubated with hyphae, some neutrophils actively migrate towards individual hypha, 

even wrapping the cell membrane around the girth of the hypha, while others don’t show 

any motion (though alive) or move in a seemingly undirected manner (unpublished data). 

IFN-γ is both produced by and bound by PMNs. In fact, PMN responses may change over 

time with the changing cytokine environment, therefore not only enticing other immune 

cells but also acting on themselves (Ellis and Beaman, 2004). Non-autologous 

responders to IFN-γ could of course be NK cells. Whether NK cells actively migrate 

towards PMNs that are actively responding to A. fumigatus infection has not yet been 
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tested, but it is known that early recruitment of NK cells to the lung is critical in the host 

response to asperillosis (Morrison et al., 2003). We hypothesize here that neutrophils do 

more than release NETs and ROS to fight A. fumigatus hyphae, they must also recruit 

help from additional leukocytes, and activate these responders. Responding NK cells, in 

conjunction with activated PMNs, could together attack growing hyphae. 

The immune response to A. fumigatus is a complex network, involving many subsets of 

immune cells, each of which carries out a very specific set of functions. Though studying 

the interaction of each subset with the fungus has been helpful in the past, a more 

complete picture of the body’s clearance mechanisms, especially with regards to this 

rather complex opportunistic pathogen, is necessary for future advancements, not only in 

diagnosis and treatment, but for the general understanding of the scientific community. 

Aspergillus fumigatus then serves as a tool from which we can learn the complex 

workings of the human innate immune response. 

 

7.4 The A. fumigatus response: signalling via the hybrid histidine 

kinase TcsC 

During infection, the host immune system must manage severe stress caused by 

invading Aspergillus conidia and hyphae, but the fungus also must cope with a hostile 

tissue environment. Several signalling cascades have been identified in fungal stress 

response, including the cyclic AMP (cAMP) signalling pathway, Ca2+/calcineurin signalling 

pathway, protein kinase C/mitogen-activated protein kinase pathway, and the Hog1 

MAPK pathway (Bahn, 2008). In the present study, we investigated the role of the sensor 

histidine kinase of the HOG signalling pathway in Aspergillus fumigatus, TcsC, in stress 

response and virulence. We generated a tcsC knockout mutant after identifying the 

putative Group III hybrid histidine kinase (AFU2G03560). The predicted structure (using 

SMART online software) contains six HAMP domains arranged as a poly-HAMP chain (see 

Figure 7), along which the stress signal is presumably transduced as consecutive HAMP 

domains alternate between two stable conformations (Airola et al., 2010; Dunin-

Horkawicz and Lupas, 2010). TcsC lacks a transmembrane domain, but it is becoming 

increasingly clear that cytosolic sensor kinases are more important in regulating 

responses in filamentous fungi than transmembrane histidine kinases (Bahn, 2008).  
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7.4.1 A. fumigatus TcsC is part of the HOG pathway 

We showed that TcsC is involved in the osmotic stress response, as has been shown for 

other yeast and fungal mutants of the HOG pathway (Kruppa and Calderone, 2006), the 

exception is the homologous A. nidulans NikA mutant, which is not sensitive to osmotic 

stress (Vargas-Perez et al., 2007). The ΔtcsC mutant was also resistant to fludioxonil, a 

phenolpyrrole fungicide thought to activate the HOG pathway by acting against hybrid 

histidine sensor kinases (Bahn et al., 2007). The addition of either 1.2M sorbitol (causing 

osmotic stress) or fludioxonil caused a transient translocation of SakA (the A. fumigatus 

Hog1 homolog) to the nucleus in wild type A. fumigatus hyphae (unpublished data). 

Western blot analysis proved that SakA is phosphorylated in its active form in the wild 

type but not in the mutant and that phosphorylation takes place after treatment with 

fludioxonil or osmotic stressors. Phosphorylation and presumably translocation of SakA, 

therefore, requires TcsC signalling, implicating this histidine kinase as the upstream 

sensor in the HOG pathway of A. fumigatus. 

We and others are now finding evidence that the arrangement of poly-HAMP domains in 

hybrid sensor kinases could determine the functionality of these proteins.  Meena et al. 

systematically deleted HAMP domains from the Deboryomyces hansenii Group III sensor 

kinase DhNIK1 and found that alternative interaction among consecutive domains 

regulates activity, like an “on-off switch” (Meena et al., 2010). We found that if this poly-

HAMP chain is interrupted, as is the case with the putative TcsC homolog in A. terreus 

(see Figure 7), the sensitivity to fludioxonil is abolished, although the species can still 

adapt to osmotic stress (unpublished data). Whether the missing HAMP domain or the 

missing REC (receiver) domain in the TcsC homolog in A. terreus is responsible for the 

aberrant fludioxonil response is not yet clear. However, these findings provide additional 

evidence that fludioxonil acts on TcsC homologs in the HOG pathway. TcsC homologs 

without the ability to properly sense this fungicide (via a continuous poly-HAMP chain) or 

pass the signal to a response regulator (from the phosphorylated REC domain) bypass 

the induced toxicity. Interestingly, A. fumigatus TcsC seems functionally more similar to 

other fungal homologs than to the homologs within the genus, namely in A. nidulans or A. 

terreus. In A. nidulans, it was shown that the downstream response regulator SrrA can 

mediate fludioxonil response independently of the HOG pathway (via the second 

response regulator downstream of TcsC, SskA), i.e., independently of the osmotic stress 

response (Vargas-Perez et al., 2007). It is reasonable to hypothesize that A. terreus uses 
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a completely different mechanism to adapt to hyperosmotic stress, though this has not 

yet been shown experimentally. 

In the presence of fludioxonil (and also the functionally related fungicides iprodione and 

quitozene), wild type A. fumigatus cannot grow on agar plates, even at very low 

concentrations, while the mutant is completely resistant. When viewed microscopically in 

liquid media plus fludioxonil (or iprodione, data not shown), wild type conidia and 

germlings swell significantly, often to the point of bursting. These compounds are thought 

to act at TcsC homologs, stimulating glycerol synthesis in wild type strains (Ochiai et al., 

2002; Zhang et al., 2002). As glycerol accumulates, turgor increases and the cells swell 

as a consequence (Lew, 2010). In addition, we found that these swollen cells contain an 

increased number of nuclei compared to untreated cells. Not only are fludioxonil-treated 

cells suffering from increased turgor, but also a seemingly unchecked cell cycle. Perhaps 

the response regulators downstream of TcsC, SrrA and SskA, mediate different toxic 

responses to fludioxonil. We attempted to explore this idea further by creating SrrA and 

SskA knockout mutants in A. fumigatus. However, transformation of Aspergillus is 

performed by stabilizing protoplasts on 1.2M sorbitol, an osmotic condition we found too 

stressful to HOG pathway mutants. In fact, we found that others had similar troubles 

Figure 7. TcsC of A. fumigatus, A. nidulans, and A. terreus: secondary structures as predicted by SMART 

 
A. fumigatus TcsC and A. nidulans NikA contain six consecutive HAMP (histidine kinases, adenyl cyclases, 

methyl-accepting chemotaxis proteins, phosphatases) domains, a HisKA (histidine kinase) domain, an 

HATPase_c domain, and a receiver domain (REC). The A. terreus putative homolog contains only four 

HAMP domains and is missing a REC domain. A stress signal is sensed at the N-terminus and passed to 

the C-terminus via phosphorylation and then through the HOG MAPK pathway. Either of the two missing 

domains in the A. terreus TcsC homolog could be responsible for the species’ inherent resistance to 

fludioxonil. 
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creating a ΔtcsC mutant (personal communication with Nir Osherov at the University of 

Tel Aviv). Though we clearly showed that TcsC is upstream of SakA in the HOG pathway, 

knocking out the downstream response regulator genes (srrA and sskA) will be an 

important step in truly identifying the role of TcsC, not only in the HOG pathway, but in 

other cellular response systems as well. 

Fludioxonil is currently used to control pathogenic fungi in agriculture, and has been 

shown to activate the Hog1 homolog in the plant pathogen Colletotrichum lagenarium 

(Kojima et al., 2004). We have shown that fludioxonil induces SakA phosphorylation and 

translocation to the nucleus in A. fumigatus wild type; it therefore seems plausible that 

fludioxonil or related agents could also be used to treat fungal pathogens of human 

hosts. Initial experiments in an embryonic egg model proved that fludioxonil-treated eggs 

were significantly more likely to survive A. fumigatus infection than controls, but only with 

repetitive treatment (unpublished data). This correlates with our finding that upon 

removal of fludioxonil-containing media, surviving conidia and germlings can resume 

normal growth. Clearly, more research must be done to establish the use of fludioxonil or 

related agents in the clinic, but preliminary results are quite promising and provide the 

framework from which to continue. 

 

7.4.2 Linking TcsC and the HOG pathway to other regulatory modules in 

Aspergillus 

The ΔtcsC mutant also exhibited a strong “fluffy” phenotype under hypoxic stress, in the 

presence of high concentrations of Ca2+, and on farnesol. The mutant and the wild type 

strains showed the same phenotype to all three stressors, namely a tremendous 

production of white aerial hyphae and lack of differentiation, i.e., conidiation, but this 

occurred in the mutant under less stress than the wild type. In A. nidulans, such fluffy 

growth is under the control of a heterotrimeric G protein linked to the cAMP-dependent 

protein kinase pathway (Shimizu and Keller, 2001; Yu et al., 1996). With this in mind, as 

well as the finding that farnesol blocks adenylyl cyclase activity in Candida albicans (Hall 

et al., 2011), we attempted to rescue the fluffy phenotype in both A. fumigatus wild type 

and the ΔtcsC mutant. The addition of exogenous cAMP rescued the differentiation 

defect in the wild type entirely on 2mM farnesol. However, such rescue was not possible 

in high Ca2+ concentrations or hypoxia. A quarter century ago, Tamame et al. found a 

compound, 5-azacytidine, that induced a mutation resulting in a remarkably similar fluffy 
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phenotype in A. nidulans and A. niger. They were able to restore differentiation by simply 

exposing the mutant to light (Tamame et al., 1988; Tamame et al., 1983). Ben-Ami et al. 

have since tried the same with A. fumigatus and subsequently suggested the existence of 

a light-sensing pathway involving G-protein signalling (Ben-Ami et al., 2010). It is known 

that light is necessary for normal Aspergillus development and metabolism (Bahn et al., 

2007; Ruger-Herreros et al., 2011). Accordingly, we found that by incubating the ΔtcsC 

mutant in white light, we could restore conidiation in hypoxia and on 100mM CaCl2. 

Evidence for cross-talk between the HOG pathway and other signalling pathways is not 

new (Bahn, 2008). Here we have provided additional evidence that the HOG pathway 

responds to the well documented signals—osmotic and fludioxonil stress—but also plays a 

role in regulating certain G-protein signalling pathways (McCormick, et al., 2012). 

The fluffy phenotype of the ΔtcsC mutant on farnesol perhaps links HOG signalling to yet 

another A. fumigatus signalling cascade. Farnesol is a quorum-sensing molecule known 

to inhibit cell wall integrity signalling in A. fumigatus (Dichtl et al., 2010). Its aggrandized 

effect on the ΔtcsC mutant suggests that TcsC inhibits the farnesol effector, thus implying 

cross talk between the HOG and cell wall integrity (CWI) pathways. Our unpublished 

finding that the CWI mutant, ΔmpkA, shows increased sensitivity to fludioxonil suggests a 

link between the two signalling pathways. Additionally, we found that the ΔmpkA mutant, 

when grown on fludioxonil, is far less likely to produce spontaneously fludioxonil-resistant 

mutants than the wild-type (unpublished data). Other groups have also found evidence of 

cross-talk between the HOG and CWI pathways (Arana et al., 2005; Hahn and Thiele, 

2002), and such a proposition certainly seems plausible. The first line of fungal defense 

is of course the cell wall, which is also the point of contact between the fungus and 

exogenous stressors. 

HOG two-component signalling in Cryptococcus neoformans regulates not only stress 

response and drug sensitivity, but also sexual development (Bahn et al., 2006). Our 

unpublished data suggest a similar role for the HOG pathway in A. fumigatus. Preliminary 

crossing experiments give evidence that ΔtcsC and wild type crosses produce fewer 

cleistothecia than wild type control crosses, and the cleistothecia appear much larger, are 

more loosely woven, and are always buried under abnormally large piles of hyphae. These 

giant cleistothecia contain nearly ten times more ascospores than wild type. Both ΔtcsC 

strains crossed with the wild type produce these large cleistothecia, though their 

development is delayed, but when the two ΔtcsC strains are crossed, no cleistothecia are 

visible at all, but enormous amounts of aerial hyphae are present (unpublished data in 
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collaboration with Edita Szewczyk and Jorge Amich at the Research Center for Infectious 

Diseases, Julius-Maximilians-University, Würzburg). Our unpublished findings are in 

agreement with data that C. neoformans hog1 mutations influence mating. The same 

group also found that enhanced mating occurs by an increase in the production of mating 

pheromones, which is repressed under control of the HOG pathway in nonmating 

conditions (Bahn et al., 2006; Bahn et al., 2005). In A. nidulans, SakA activity has been 

linked to the transcription factor, SteA, which regulates pheromone production (Dyer and 

O'Gorman, 2012; Kawasaki et al., 2002). Whether the ascospores from the ΔtcsC 

crosses are viable remains to be tested, as does the possibility of crossing two A. 

fumigatus HOG mutants. Though the precise role of TcsC in A. fumigatus sexual 

development is not yet elucidated, the link between fungal sexual development and the 

two-component HOG pathway is clearly suggested by our work and that done with other 

filamentous fungi. The roles of TcsC reported in this study are summarized in Figure 8. 

Figure 8. The various roles of TcsC. 

 
Lack of TcsC results in a switch to the “fluffy” developmental program under less stress than wild type (A). 

Hypoxia, farnesol, and high concentrations of divalent cations induce this fluffy phenotype. Fludioxonil 

activates the HOG pathway via TcsC and causes tremendous swelling, cytoplasmic leakage, and an 

increased number of nuclei (C). Lack of TcsC also influences sexual reproduction in A. fumigatus. 

Heterokaryons produce large, loosely woven cleistothecia that contain ten times more ascospores than wild 

type crosses (B), but ΔtcsC crosses produce no cleistothecia at all. 
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7.4.3 TcsC is not required for A. fumigatus virulence 

Though the HOG pathway has been implicated in virulence in several fungal pathogens 

(Viaud et al., 2006; Chun et al., 2007; Bahn et al., 2006; Jiang et al., 2011), we found no 

difference in virulence between the ΔtcsC mutant and the wild type, in both a mouse 

model and embryonic egg model of infection (data of the latter unpublished). However, 

this should not exclude TcsC or other components of the HOG pathway as drug targets. 

The ΔtcsC mutant was indeed robust, showing no sensitivity to oxidative, temperature, or 

pH stress or to clinically relevant anti-fungal agents. However, the mutant did show, not 

only involvement in a variety of different signalling cascades, but sensitivity to a set of 

stress factors relevant in an infection environment, especially hypoxia. As mentioned 

above, hypoxia in the host is not only a result of inflamed (e.g., infected) tissue, but often 

a necessary trigger, activating a HIF-1-regulated immune response. Aspergillus must be 

able to maintain growth within this environment to be successful as a pathogen. We 

found the ΔtcsC mutant to have increased sensitivity to hypoxic stress, suggesting a point 

of weakness that, perhaps in combination with appropriate drug therapy could open up a 

new therapeutic option.  

 

7.5 Aims for the future 

The treatment of aspergillosis requires a delicate balance between maintaining immune 

integrity and destroying the invading pathogen. The challenge is that the former relies on 

the latter. Effective treatment might involve both immune and antifungal therapy. 

However, such an approach requires a more in-depth understanding of the interaction 

between the innate immune system in the host and stress-response networks in this 

opportunistic pathogen. We have attempted such a two-pronged exploration in the 

current study. The work presented here represents merely a starting point, and further 

experiments are needed to really unravel the mystery of Aspergillus infection. Expanding 

in vitro experiments to include additional innate immune cells, such as macrophages and 

dendritic cells, and different cytokine milieus may explain the system’s mechanism of 

killing the fungus. Determining the role of response regulators downstream of TcsC in the 

HOG pathway and indeed the role of TcsC itself in additional signalling cascades may 

elucidate the means by which the fungus evades immune detection or attack. We have 

begun by reporting the function of NETs on A. fumigatus, the effect of IFN-γ released by 

NK cells on hyphae, and the role of TcsC in virulence and adaptation to stress.  
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9. Abbreviations 

CGD  chronic granulomatous disease 

CWI  cell wall integrity 

ERK  extracellular signal-regulated kinase 

HAMP  histidine kinases, adenyl cyclases, methyl-accepting chemotaxis proteins, 

phosphatases 

HK  hybrid sensor kinase 

HOG  high osmolarity glycerol 

HPt  histidine-containing phosphotransfer protein 

IFN-γ  interferon gamma 

IRAK  IL-1 receptor-associated kinase 

MAPK  mitogen-activated protein kinase 

MEK  mitogen-activated kinase kinase (MAPKK) 

MyD88 myeloid differentiation primary response gene (88) 

NADPH nicotinamide adenine dinucleotide phosphate 

NETs  neutrophil extracellular traps 

NK  natural killer 

PAMP  pathogen associated molecular pattern 

PKC  protein kinase C 

PMA  phorbol myristate acetate 

PMN  polymorphonuclear neutrophil 

PRR  pattern recognition receptor 

PTX3  pentraxin 3 

REC  response regulator receiver 

ROS  reactive oxygen species 

RR  response regulator 

Syk  spleen tyrosine kinase 

TLR  Toll-like receptor 

TNF-α  tumor necrosis factor-alpha 

TRAF6  TNF receptor associated factor 6 

TRAIL  TNF-related apoptosis-inducing ligand 
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