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INTRODUCTION AND OVERVIEW






INTRODUCTION

Magnetic resonance imaging (MRI) is a non-invasive imaging
modality with growing importance in the field of diagnostic radi-
ology. MRI employs the effect of nuclear magnetic resonance to
measure the distribution of nuclei with a non-vanishing spin in
the body. An advantage of MRI is that, unlike other imaging meth-
ods such as computed tomography (CT) or positron-emission
tomography (PET), MRI does not expose the patient to ionizing
radiation. Moreover, MRI provides a wide range of different soft-
tissue contrasts, with the possibility of fine-tuning image contrast
by manipulating a variety of acquisition parameters. MRI also
offers the possibility of imaging beyond morphology and allows
insights into various aspects of tissue function, such as diffusion
of water molecules in the body or the perfusion of tissue and
organs.

Perfusion is defined as the delivery of arterial blood to the
capillary bed. As such, perfusion is responsible for maintaining
the metabolism by supplying tissue and cells with nutrients and
removing metabolic waste products. Perfusion or blood flow" is
thereby one of a variety of parameters that describe and char-
acterize the hemodynamic state of the microvasculature. Other
parameters include the relative blood volume, i. e. the fraction of
space that is occupied by blood vessels, the mean transit time or
the permeability of the vessel walls.

The assessment of the hemodynamic state of brain tissue is of
interest in a range of pathologies such as stroke, brain tumors or
inflammatory diseases such as multiple sclerosis. An important
class of methods for this purpose is formed by bolus-tracking
measurements. Here, a contrast agent is injected rapidly in a vein,
carried through the vasculature by circulation and eventually
arrives at the tissue of interest. If the concentration of contrast
agent is measured with an appropriate means in a time-resolved
manner in the tissue and in arterial blood, a range of hemody-
namic parameters can be derived from the form and relation of
these two curves using the theory of tracer kinetics.

Bolus-tracking perfusion measurements using MRI date back
to the late 1980’s [1] — since then, qualitative and, increasingly,
quantitative perfusion measurements have been carried out in
virtually all body organs, e.g. the lungs [2—4], the kidneys [5],
the prostate [6-8], the heart [9] and the liver [10]. In most organs

Since perfusion is largely dominated by the flow of arterial blood, the terms
perfusion and blood flow are often used interchangeably in MRI literature.
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apart from the brain, the preferred method for dynamic MRI
measurements uses a T1-weighted acquisition, which detects the
changes in the longitudinal relaxation time T; that are induced
by presence of the contrast agent. The contrast agent shortens
the T; time of water protons, which leads to an increase of signal
intensity in Tj-weighted acquisitions. Hence, this approach is
commonly referred to as dynamic contrast-enhanced (DCE) MRL

Due to the special physiology of brain tissue, however, the pre-
dominant approach for dynamic MRI measurements is a different
one. Brain tissue is characterized by a low blood volume (CBV,
cerebral blood volume) in the range of 2-4%, and by a distinct
feature that is absent in other organs, the blood-brain barrier (BBB).
The BBB restricts the passage of a wide range of substances,
including most contrast agents, from the intravascular into the
extravascular space and vice versa. Thus, the total amount of con-
trast agent in healthy brain tissue is small, leading to only small
signal changes and a low contrast-to-noise ratio in T;-weighted
acquisitions. Since a contrast agent that is confined to the in-
travascular space leads to strong T, effects [11, 12], the common
approach for dynamic MRI in the brain uses a T>- or T; -weighted
acquisition and is referred to as dynamic susceptibility-weighted
contrast (DSC) MRIL.

For the purpose of quantification, however, DSC MRI poses
several difficulties that are not present when DCE MRI is used:
The T; relaxivity of contrast agent depends on the micro- and
mesoscopic structure of the tissue and, in particular, is different
between blood and tissue [13]. The ratio of these two relaxivi-
ties enters directly into the quantification as a scaling error. An
additional problem arises when the BBB is disturbed and the
contrast agent can leak into the interstitial volume. Extravasation
of the contrast agent decreases the compartmentalization of the
tracer and thereby reduces the T, relaxation of the tracer. Fur-
thermore, the tracer accumulates in the interstitial space, leading
to a shortening of the T; relaxation time. These two effects mimic
the loss of tracer and thereby complicate the quantification of
perfusion parameters. Although a range of correction algorithms
has been proposed (e. g.[14-17]), the quantification of the tracer
concentration in presence of BBB leakage still remains an issue in
DSC MRI [18].

Since these effects play a less significant role if a Tj-weighted
acquisition is used, the aim of this thesis is to investigate the
feasibility of DCE MRI for the quantification of cerebral hemody-
namics, both in healthy brain tissue and in pathological situations
with BBB leakage. For this purpose, this thesis is organized as
follows:

Chapter 2 is a brief overview of basic anatomy and the phys-
iology of the brain. The purpose of this chapter is to provide a
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physicist with those aspects of physiology that are necessary for
an understanding of tracer kinetic modeling.

Chapter 3 provides a high-level overview of the fundamentals
of magnetic resonance imaging, Ch. 4 discusses the time-resolved
measurement of contrast agent concentrations by means of DCE
MRI in more detail. For the purpose of deriving concentrations
from the measured signal intensities, a brief overview of MR
signal analysis is given, and several aspects of the DCE MRI
acquisition are discussed.

Several techniques to derive various quantitative hemodynamic
parameters from measured time-resolved tracer concentrations
by means of tracer-kinetic theory are described in Ch. 5. In partic-
ular, a set of two-compartment models is introduced; with these
models, most hemodynamic situations that occur in tissue can be
described mathematically.

After these introductory chapters, Chs. 6 — 8 present the origi-
nal research that constitutes this thesis. Ch. 6 presents method-
ological improvements that were developed during the course
of this thesis. In particular, this chapter comprises a simulation
study that investigates a method for automatic model selection
with the aim of further refining quantification using a set of sev-
eral tracer kinetic models. These developments were used in the
two patients studies that constitute the two following chapters.
In an initial study, presented in Ch. 7, the feasibility of quantifi-
cation of cerebral hemodynamics with a 2D DCE MRI sequence
in patients with brain tumors is investigated, and limitations are
identified, in particular the insufficient spatial coverage of the 2D
acquisition and the need for higher contrast-to-noise ratio.

Finally, Ch. 8 presents a study which was conducted in a col-
lective of patients with multiple sclerosis (MS); the aim of this
study was the quantitative assessment of cerebral hemodynam-
ics both in normal-appearing white matter and in MS lesions.
The limitations that were identified in the previous study were
addressed with a dynamic 3D acquisition to achieve complete
spatial coverage of the brain and an optimized post-processing
approach, based on the results of the model selection study in
Ch. 6.






CEREBRAL HEMODYNAMICS: ANATOMY AND
PHYSIOLOGY

The objective of this chapter is to introduce those aspects of
anatomy and physiology that are necessary for an understanding
of tracer kinetic modeling, which is a central part of this thesis.

2.1 ANATOMY AND PHYSIOLOGY OF THE BRAIN
2.1.1  Macrostructure

The brain can be divided into four different sections: the cere-
brum, the cerebellum, the diencephalon and the brainstem, the spatial
relation of these sections is shown in Fig. 1.

CEREBRUM The cerebrum forms the most notable part of the
human brain. It is composed of two symmetric hemispheres
which are connected by a bundle of nerve fibers, the corpus
callosum. The surface of the hemispheres has a convoluted surface,
the convolutions (gyri, singular gyrus) are separated by shallow
grooves called sulci (singular sulcus) and deep grooves called
fissures. These fissures allow to subdivide each hemisphere into
five smaller structures called lobes (cf. Fig. 2): the frontal lobe, the
parietal lobe, the temporal lobe, the occipital lobe and, hidden
from the surface, the insula. Through these convolutions, the
outer surface of the hemispheres is greatly enlarged.

Cross-sections of the brain (Fig. 3) show a clear distinction
of the surface layer, the cerebral cortex, and the underlying white
matter. The cerebral cortex has a thickness of several millimeters
and is composed mainly of gray matter (see below). It is responsi-
ble for receiving and processing stimuli from the senses, for the
voluntary control of skeletal muscles, and for conscious activities.
In general, each hemisphere is responsible for the interaction
with the contralateral side of the body.

Beneath the cerebral cortex is the cerebral white matter, com-
posed mainly of myelinated axons that form connections between
different parts of the brain, e. g. between different regions within
the same hemisphere (association fibers) or between hemispheres
(commissural fibers). The corpus callosum is composed mainly of
commissural fibers, connecting the two hemispheres.

DIENCEPHALON AND BRAINSTEM The diencephalon forms
the connection of the cerebrum to the brain stem and includes
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Inferior peduncle

Medulla oblongata,

Figure 1: The spatial relation between cerebrum, cerebellum and brain
stem (from Gray’s anatomy[19])

92qO| |e11diddo

temporal lobe

Figure 2: Lobes of the cerebral cortex (from Gray’s anatomy)
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Figure 3: Axial, coronal and sagittal sections of the brain, obtained with
a Tj-weighted MRI sequence.

9
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important structures like the thalamus, the hypothalamus and the
pineal gland. The thalamus acts as a relay that forwards sensory
signals to the corresponding cortical areas. Moreover, it has an
important function in the regulation of sleep and wakefulness.
The hypothalamus provides the link between the central nervous
system and the endocrine system; for this purpose, it does not
have a blood-brain barrier like other parts of the brain. It is
also the responsibility of the hypothalamus to control a range
of functions of the autonomic nervous system, thus regulating
hunger, thirst, sleep and fatigue, as well as body temperature.

The brainstem forms the connection of both the cerebellum
and the cerebrum with the spinal cord. Thus, its main role is to
relay information from the body to the cerebellum and cerebrum,
and vice versa. It is composed of the midbrain, providing the
link to the diencephalon, the pons, a bulging structure that links
to the cerebellum, and the medulla oblongata, which forms the
connection to the spinal cord.

CEREBELLUM The cerebellum is a separate structure of the
brain, it is located below the cerebrum and behind the pons, a
part of the brainstem (Fig. 1). It is composed of three parts: two
cerebellar hemispheres and a central region called vermis. The
cerebellum is separated from the cerebrum via a layer of dura
mater, all its functional connections to the rest of the brain are
routed through the pons. The cerebellum is mainly responsible
for the fine control of movement and contributes to precision,
coordination and timing by comparing and correcting actual,
performed movement with the intended movement.

2.1.2  Microstructure

The tissue of the central nervous system (CNS) contains nerve
cells called neurons, glial cells and capillaries. Neurons form a
neural network, for this purpose, they have two kinds of pro-
cesses, dendrites and axons. Axons transmit information by the
conduction of electrical impulses and are connected to other neu-
rons via synapses. For this purpose, they are ensheathed with a
fatty substance called myelin that provides electrical insulation
and facilitates saltatory conduction of action potentials.

Glial cells are generally considered to play a supportive role in
the central nervous system and include microglia, oligodendro-
cytes and astrocytes. Microglia are the macrophages of the CNS
and form the main form of immune defense in the CNS. Oligoden-
drocytes are responsible for producing the myelin sheath around
the axons, consequently, damage to the oligodendrocytes results
in demyelination of axons. Astrocytes are the most numerous of
the glial cells, they play a role in the formation and maintenance
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of the blood-brain barrier and are thought to influence blood flow
by regulating vasodilation.

In the brain, zones of white and gray matter can easily be
distinguished. Gray matter is found mainly in the cerebral cortex,
in the cerebellum and in the basal ganglia. It is composed mainly
of neurons, unmyelinated axons, glial cells and capillaries. Due
to the high metabolic demand of neurons, both blood flow and
blood volume are higher in gray matter than in white matter.
White matter, on the other hand, is found underneath the gray
matter in the cerebral cortex. In contrast to gray matter, it consists
mainly of myelinated axons that connect different areas of gray
matter; moreover, it contains glial cells and capillaries, the latter
to a lesser extent than gray matter. The most prominent white
matter structure is the corpus callosum which connects the two
cerebral hemispheres, but white matter is also found in the brain
stem and in the spinal cord. The main purpose of white matter is
to pass messages between different areas of gray matter within
the brain.

2.1.3 Cerebral vascular system

Blood supply of the brain is accomplished by a range of cerebral
arteries; essentially, each hemisphere is supplied by

e the anterior cerebral artery (ACA),
¢ the middle cerebral artery (MCA) and
e the posterior cerebral artery (PCA).

The anterior and middle cerebral arteries are branches of the
respective internal carotid artery (ICA), the two posterior cerebral
arteries are branches of the basilar artery, which in turn is formed
by the two joined vertebral arteries.

The six cerebral arteries are joined at the base of the brain by a
ring of anastomosis termed the circle of Willis (see Fig. 4). In the
circle of Willis, the two anterior cerebral arteries are connected
by the anterior communicating artery, the two MCAs are connected
to the posterior cerebral arteries via the posterior communicating
artery.

The terminal branches of the cerebral arteries form the cortical
arterial system, from here, arteries and arterioles enter the brain
perpendicularly; the long or medullary arteries pass through the
gray matter and penetrate the white matter, the short vessels
supply the cortical gray matter.

CEREBRAL VEINS Blood is drained from the brain by the cere-
bral veins, which empty into large channels, the sinuses (see Fig.
5). The sinuses have a large diameter, compared to the arteries,

11
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(b) axial MIP and illustration

Figure 4: Main arteries of the brain. Top row: Sagittal and coronal max-
imum intensity projections (MIP) from a 3D time-of-flight an-
giography, bottom row: transverse MIP from the same dataset
and a corresponding illustration from Gray’s anatomy
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Foramen cecum

Torewlar herophili.

Figure 5: The sinuses that drain blood from the brain into the jugular
veins

and do not possess any valves. The superior sagittal sinus is
probably the most prominent of these vessels, it runs from ante-
rior to posterior, increasing its diameter and is continued by one
of the transverse sinuses. The other transverse sinus forms the
continuation of the straight sinus, both transverse sinuses run to
the base of the skull and are continued as the jugular veins.

2.1.4 Cerebral microcirculation and the blood-brain barrier

The term microcirculation describes the flow of blood through
the smallest of vessels, arterioles, metarterioles, capillaries and
venules. The primary function of the microcirculation is to facili-
tate the exchange of a wide range of substances between blood
and tissue. Important prerequisites for such an exchange to take
place are long contact times of the blood and the capillary wall
and a large surface area of the capillary wall. These prerequisites
are fulfilled by the structure of the microcirculation, depicted in
Fig. 6.

Capillaries are the smallest of blood vessels and connect the
arterial side of the microcirculation, i. e. the arterioles, with the
venous, blood collecting side of the microcirculation, represented
by venules. The diameter of capillaries is in the range from 5 to
10 um, consequently, erythrocytes (sized approximately 6 to 8 pum
need to travel through them in single file and need to deform
themselves, thereby increasing their contact surface. Blood flow
through the capillaries is controlled by small, muscular rings
called precapillary sphincters at the arterial end of the capillary.
Depending on the tissue type, a variable amount of capillaries is
closed at any given time point. If the metabolic demand of the

13
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Arteriole

Precapillary
sphincters

Capillaries

Metarteriole

Venule

Figure 6: Structure of the microcirculation: Blood is delivered to the
microcirculation via the arterioles. Precapillary sphincters at
the arterial end of the capillaries control and regulate the
amount of blood that is delivered to the capillaries; after
passage through the capillary bed, the now venous blood is
collected by venules.

tissue rises, more capillaries are opened and the relative blood
volume and blood flow through the tissue increase.

THE CAPILLARY WALL The capillary wall is composed of an
unicellular layer of endothelial cells with a total thickness of
approximately 0.5-1um (see Fig. 7), surrounded by a basement
membrane. The endothelial cells are connected via tight junctions,
gaps between adjacent cells that are not connected form the
intercellular clefts. In peripheral capillaries, fenestrations, pores in
the endothelial cells, allow the passage of small molecules and
some proteins across the capillary wall.

There are three important pathways for the transport of parti-
cles through the capillary wall [20]:

¢ Lipid-soluble substances can pass the capillary wall by
transcellular diffusion across the cell membranes, due to
the large surface of the cell membranes, the transport rate of
these substances is limited only by the blood flow through
the capillary.

* Small hydrophilic molecules such as water, sugars and
amino acids, are relatively free to cross the capillary wall by
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basement
nuclei membrane

endothelial
cells

pericyte neuron

mitochondria

astrocyte

endfeet tight junction

Figure 7: Structure of the capillary wall of cerebral capillaries. In con-
trast to peripheral capillaries, cerebral capillaries have no
intercellular clefts, and endothelial cells are connected with
tight junctions. Endothelial cells of cerebral capillaries are
covered by the endfeet of astrocytes.

passing through gaps between the endothelial cells called
intercellular clefts, and through the fenestrations.

* Larger molecules such as most proteins cannot pass through
the gaps between endothelial cells and thus rely on ac-
tive transport across the cell membrane. Depending on
the size and the lipid solubility of the substance, a range
of mechanisms exists to facilitate transport across the cell
membranes; these mechanisms in general require the ex-
penditure of energy.

The flow of fluid across the capillary wall is controlled by a
delicate balance between the hydrostatic intravascular pressure
and the osmotic pressure arising through differences in the con-
centration of soluted salts and plasma proteins between blood
plasma and interstitial fluid. As blood enters a capillary from
an arteriole, the hydrostatic pressure in the capillary exceeds the
osmotic pressure, resulting in a net flow from the vessel into the
interstitium. In the middle of the capillary, the hydrostatic and
osmotic pressures are equal, leading to a zero net flow; the main
exchange of substances takes place in this zone of the capillary.
On the venous end of the capillary, the blood pressure falls below
the osmotic pressure, so that excess fluid is removed from the
interstitium.

THE BLOOD-BRAIN BARRIER In contrast to peripheral cap-
illaries, capillaries in the brain have no fenestrations and no

15
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intercellular clefts; the endothelial cells are connected with tight
junctions, so that the passage of soluted substances across the
capillary wall is effectively inhibited. Cerebral capillaries are sur-
rounded and covered by the end-feet of astrocytes (see Fig. 7),
providing physical support of the capillaries; astrocytes are also
assumed to play a role in the formation of the tight junctions.

Small and lipid-soluble substances such as oxygen, carbon
dioxide, small alcohols and also anaesthetics can pass the capil-
lary wall by diffusion through the endothelial cells; due to the
special structure of the cerebral capillary walls, the permeability
for electrolytes and and larger molecules such as plasma pro-
teins is orders of magnitude smaller. This strict separation of
intravascular and interstitial space forms the blood-brain barrier
(BBB).

It is the purpose of the blood-brain barrier to protect the sensi-
ble brain tissue from potentially harmful substances, as well as
to restrict access of viruses and bacteria. The blood-brain barrier
is essential to maintain brain homeostasis and to insulate the
brain from the endocrine system. Moreover, the BBB restricts the
passage of neurotransmitters into the circulation.

2.2 PATHOLOGIC CONDITIONS

The hemodynamic status of brain parenchyma is altered or dis-
turbed in a range of pathologies and diseases. Probably the most
notably disturbance is BBB leakage, which is easily demonstrated
as hyperintense areas on contrast-enhanced T;-weighted images.
BBB leakage can occur as a consequence of inflammation, as a
result of radiation, in areas of necrosis and in primary or sec-
ondary brain tumors. Changes in blood flow and blood volume
are more difficult to demonstrate and usually require a dynamic
measurement. The most prominent example is stroke, where the
occlusion of an artery results in decreased blood flow in the area
that is supplied by that artery.

2.2.1  Multiple sclerosis

Multiple sclerosis (MS) is a chronic, inflammatory, immune-
mediated demyelinating disease of the central nervous system.
During the disease, the myelin ensheathing the axons is destroyed
in focal areas, which results in multiple sclerotic lesions [21].
These lesions are a characteristic feature of MS; the location of
these lesions determines the symptoms and neurological deficits
that occur during the course of the disease. Consequently, a wide
range of symptoms can occur in MS, including cognitive impair-
ment, bladder and bowel dysfunctions, optic neuritis, speech
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impairment, and fatigue. Depending on the further evolution of
such a lesion, the neurological deficits may revert or persist.

For the definitive diagnosis of MS, according to the McDonald
criteria [22, 23], it is necessary to demonstrate both dissemination
in space and in time. Dissemination in space and time means
here that individuals must have a minimum of two attacks and
these attacks must affect two different sites. In the revised criteria,
the second attack need not have a clinical manifestation, but can
e.g.be confirmed by a new lesion visible in MRL

LESION EVOLUTION Immune engagement is considered to be
an early step in the formation of a new lesion [21]. Autoreactive
lymphocytes cross the BBB and initiate an inflammatory response.
This inflammmatory response sustains the initial breakdown of
the BBB, and leads to increased blood flow and blood volume.
The resulting BBB leakage can readily be demonstrated by con-
trast agent extravasation in MRI. Oligodendrocytes, the cells that
are responsible for creating and maintaining the myelin sheath
around the axons, are attacked and destroyed, resulting in a
loss of the myelin sheath around the axons. Since myelin occurs
mainly in white matter, MS lesions concentrate in white matter
in the brain as well as in the spinal cord. After recovery from the
acute inflammatory phase, the axons may become remyelinated,
or the demyelination and the corresponding neurologic deficits
may persist.

MRI IN MS MRI has become an important tool in the diag-
nosis and in the clinical workup of MS. Dissemination in space
and time, which is required for the diagnosis of MS, can be
demonstrated with MRI even if the patient has only a clinically
isolated syndrome suggestive of MS [24]. Most MS lesions ap-
pear as hyperintense areas on Tr-weighted or fluid-attenuated
inversion recovery (FLAIR) images. This hyperintensity can be
caused by different processes during lesion evolution, so that
the specificity is low. Active lesions in an acute inflammatory
phase can be distinguished from inactive lesions by uptake of
contrast agent, leading to hyperintensity of Tj-weighted imaging.
Moreover, T1-weighted imaging allows for the detection of “black
holes”, lesions that are associated with severe tissue damage and
appear hypointense both on pre- and postcontrast images. For
detailed overview about MR imaging in MS, the reader is referred
e.g.to [24—26].

2.2.2  Tumors and angiogenesis

Brain tumors can be classified as primary brain tumors, originat-
ing from brain tissue, or secondary brain tumors, that originate
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from other organs and have metastasized into the central nervous
system. Both types of tumors can produce similar symptoms
by invasion of the brain, by compression of structures and by
increase of the intracranial pressure. The clinical symptoms are
determined by the area of the brain that is affected by the tumor.

A critical step in the evolution of a tumor is the onset of
angiogenesis. In its initial stage, which is also called dormant stage,
any tumor is supplied by diffusion, which is limited to short
distances. Consequently, any tumor that does not have a vascular
supply is limited to a sub-millimeter size, determined by the
distance over which sufficient amounts of oxygen and nutrients
can diffuse. To grow beyond this size, the tumor needs some
form of angiogenesis to form new blood blood vessels, which
allow supply with nutrients and removal of metabolic waste by
convective flow.

Angiogenesis is a common process during growth, but also
in wound healing and in the female reproductive cycle. The
start of angiogenesis, however, forms also a critical step in the
development of a tumor, since only a vascular supply allows a
tumor to grow beyond microscopic size.

The process of vessel formation can be accomplished with
different mechanisms. Sprouting angiogenesis occurs in well char-
acterized stages [27]. In an early stage, angiogenic growth pro-
moting factors such as VEGF (vascular endothelial growth factor) are
released by inflammatory, hypoxic or tumor cells. These factors
initiate detachment of pericytes that cover the vessel wall, in-
crease the permeability of the endothelial cell layer, and activated
endothelial cells release enzymes that degrade the basement
membrane. In this stage, plasma proteins can extravasate from
the vessel and build an extracellular matrix. Endothelial cells then
proliferate into this matrix and form sprouts. These sprouts extend
towards the source of the angiogenic stimulus and ultimately fuse
with other vessels to initiate blood flow. Eventually, the newly
formed vessel becomes mature and stable, however, in a tumor,
this rarely occurs, resulting in a malformed vessel network. Other
types of vessel formation such as intussusceptive angiogenesis have
been described, but the relevance of these processes for tumor
angiogenesis is less understood [27].

The morphology and function of pathologic tumor vessels that
result from dysregulated angiogenesis differs from that of normal
vessels in a range of points [28]. Tumor vessels are leaky as a
result of large gaps between endothelial cells and an abnormal
basement membrane due to high levels of vascular endothelial
growth factor expressed by tumor cells. Moreover, tumor vessels
are not organized in a hierarchical and successively branching
fashion like normal vascular networks, but instead are disorga-
nized with varying and large vessel lumen diameter, resulting in
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non-uniform and chaotic blood flow. The interstitial pressure in
the tumor is high, partly due to the lack of a functional lymphatic
system, so that not all areas of the tumor are supplied by blood,
resulting in areas that are hypoxic and also not accessible to
blood-borne drugs.

19






FUNDAMENTALS OF MR IMAGING

Magnetic resonance imaging (MRI) employs the effect of nuclear
magnetic resonance for the purpose of spatially resolving the dis-
tribution and relaxation properties of hydrogen atoms (or other
atomic nuclei with non-vanishing nuclear spins). This chapter can
only provide a high-level overview about the fundamentals of
magnetic resonance, for a detailed review, the reader is referred
to standard textbooks about magnetic resonance imaging [29, 30].

3.1 NUCLEAR SPIN AND MACROSCOPIC MAGNETIZATION

The atomic nucleus is composed from protons and neutrons and
is characterized by the atomic number Z, describing the number
of protons, the mass number A, which describes the total number
of protons and neutrons in the nucleus, and the nuclear spin
quantum number I. I may be zero, half-integer or integer. Generally,
isotopes with even mass numbers have integer spin and isotopes
with odd mass numbers have half-integer spin. The simplest
example is the hydrogen nucleus ! H, consisting of a single proton
with I = 1/2. For isotopes with even mass numbers, two more

rules apply [30]:

¢ If both the numbers of protons and neutrons are even, the
nuclear spin is I = 0, an example is 2C with 6 protons and
6 neutrons.

¢ If both the numbers of protons and neutrons are odd, the
nuclear spin is integer and larger than zero, for example
the spin of deuterium 2H is = 1.

If I is non-zero, the magnetic moment u of the nucleus is con-
nected to the nuclear spin I via

p=nl (3-1)

Here, vy is the gyromagnetic ratio, which is a characteristic con-
stant for the nucleus. For the hydrogen nucleus, - has the value
2.675 x 10%rad T~ 1s™ 1.

SPINS IN AN EXTERNAL MAGNETIC FIELD The behavior of
an atomic nucleus with non-zero spin and magnetic moment u
in an external magnetic field B can be described classically by

p _
qf — mxB (3-2)
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This is the classical equation for the magnetic dipole and implies,
that a given magnetic moment will precess around the vector
of the magnetic field with the field strength B with the Larmor
frequency wy = yB.

In the absence of an external field, a collection of a large num-
ber of spins, such as the 1H nuclei in a sample of water, has
a vanishing net magnetization, since the individual magnetic
moments point in all possible orientations in space and are dis-
tributed uniformly. If the sample is brought into a static magnetic
field (or, equivalently, an external magnetic field is switched on),
a non-vanishing net magnetization will develop, since the distri-
bution of the individual magnetic moments will be skewed by
the direction of the magnetic field.

This effect can be described classically (see e.g.[31]), since the
angular distribution of the magnetic moments obeys Boltzmann
statistics:

exp(—E(0)/kT)

P@®) = o exp(—E(6)/kT) sin 6d6

(3-3)

with the energy E(0) = —uBcos 6 that depends on the angle 6
between the magnetic moment y and the magnetic field B.

With this distribution, the equilibrium magnetization of the
sample in water can be calculated [31] as

M, = (/On P(0)(u cos 0) sin 6d6 (3-4)

- 1*y*By
4kT

This approximation is valid for small degrees of polarization,
which occur if thermal energies are not too low (kT > yhBy). In
this limit, the classical description yields the same result as the
quantum-mechanical description. In a setting typical for MRI,
i.e.a magnetic field of 1.5 T and room temperature, the polariza-
tion is in the order of 107°. This illustrates that high magnetic
fields are required to produce a measurable magnetization in a
water sample.

Just as in the case of a single spin in an magnetic field, the
temporal evolution of the macroscopic magnetization M(t) of a
collection of spins in an arbitrary magnetic field B(t) is described
by the differential equation

dM(t)
dt

= YM(t) x B(t). (3:5)

In particular, the transverse component of the magnetization will
precess with the Larmor frequency wp around the direction of
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the magnetic field. This precession produces a radiofrequency
field, this field is the quantity that is measured in MRL

3.2 RADIOFREQUENCY EXCITATION

The angle between the macroscopic magnetization M and the
magnetic field By = By - e, can be modified by irradiation with a
radiofrequency (RF) pulse By(t). If Bi(t) rotates around &, with
the frequency w;

Bi(t) = By - (éx cos(wit) + &, sin(wit)), (3.6)
the temporal evolution of the magnetization can be written as

AM(t)
dt

=7+ M(t) x (Bo + Ba(t)) (37)

=9 -M(t) x (By cos(wit)éx + By sin(wt)é, + Boé;).

After transformation from the laboratory system (x,y,z) into a
coordinate system that rotates around é, with the frequency w;
(x" = xcos(wit) +ysin(wit),y = —xsin(wit) +ycos(wit), 2z’ =
z), Eq. (3.7) simplifies to

dM(1)
dt

— - M(t) X (Biéx+ (Bo — %)ez» (3.8)

Eq. (3.8) describes a precession of the macroscopic magnetiza-
tion around the effective magnetic field Beg = B1éx + (Bo — %)éz
with a frequency of wefr = YBeg. If the frequency w; of the
RF pulse equals the Larmor frequency wy, the z-component of
the effective field vanishes and M precesses around the x’-axis
alone. If such a RF pulse is irradiated over a time interval At, the
magnetization M is flipped from the z-axis by the flip angle

a = yBiAt (3.9)

Hence, the magnitude of the flip angle can be adjusted either by
the duration At or the amplitude B; of the RF pulse. After the
RF pulse is switched off, the transverse magnetization Mirans =
M sin a that was created by flipping the magnetization away from
the z-axis precesses around the z-axis with the Larmor frequency
wo.

3.3 RELAXATION AND BLOCH EQUATIONS

After the magnetization M has been flipped by a RF pulse, several
relaxation processes occur that eventually restore the equilibrium
magnetization My = Moé,.
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The longitudinal or spin-lattice relaxation time T; characterizes
the exponential restoration of the longitudinal component M, of
the magnetization, the reason for this relaxation is spin-lattice in-
teraction. Consequently, the energy that is released by relaxation
of the longitudinal magnetization is absorbed by the lattice.

On the other hand, the coherent transverse magnetization that
exists immediately after a RF excitation pulse decays by a loss
of phase coherence between the different spins. Every spin is
exposed to fluctuating field which vary the z-component of the
magnetic field and hence the precession frequency and the phase.
This decay of the transverse relaxation is characterized by the
spin-spin relaxation time T».

Generally, the decay of the transverse relaxation is faster as
the Tp-relaxation alone can explain. This is due to magnetic field
inhomogeneities and changes in susceptibility that result in ad-
ditional variations in the phase of the spins, this component
of the transverse relaxation is characterized by a time constant
T;. In contrast to the T-relaxation, the Tj-relaxation can be re-
versed by inverting the phase. The entire decay of the transverse
magnetization is described by a time constant T,

i — i _|_ i ( 10)
R P ¥

In general, the relaxation times T7, T, and T, vary e.g.between
different types of tissue, but depend also on the magnetic field
Bo.

Empirically, the relaxation processes can be described by the
Bloch equations:

de o Mx
ar (M x B)x T
dM M
Y _ Y
0 v(M x B), T (3.11)
M, Mo — M,
t V(M B): + T

We now consider the simple case of a constant and homoge-
neous magnetic field B = Bypé; and excitation of the equilibrium
magnetization My = Moé; with a RF pulse resulting in transverse
and longitudinal magnetizations M, (0), M (0), M.(0). The Bloch
equation for the longitudinal component M, of the magnetization
is solved by the exponential

M, (t) = My — (Mo — M,(0))e™/T. (3.12)



3.4 SPIN AND GRADIENT ECHOES

If we introduce complex notation for the transverse magnetiza-
tion M| () = My(t) +iM,(t), the solution of the Bloch equations
(3.11) for the transverse magnetization becomes simply

M () = M, (0)e e/ : (3.13)

The transverse magnetization M, precesses around the z-axis
with the Larmor frequency wp and decays exponentially with
the time constant T,, whereas the longitudinal magnetization
recovers exponentially with time constant T; to the equilibrium
magnetization. The time constant T; that is used here describes
the decay of the transverse magnetization due to reversible and
irreversible dephasing. This behavior is commonly referred to as
free induction decay or FID.

3.4 SPIN AND GRADIENT ECHOES

As stated above, the free induction decay of the transverse re-
laxation after excitation with a RF pulse is caused by dephasing
due to spin-spin interactions and due to static inhomogeneities
of the external magnetic field. The latter effect can be reversed
e.g.by applying a RF pulse that flips the magnetization by 180°
at a time Tg /2 after the excitation pulse. If we consider two spins
that experience a slightly different external magnetic field, these
spins will have acquired a phase difference of A¢p = AwTg/2
after the time interval Tr/2. Applying a 180°-RF pulse inverts
the phase between those two spins to A¢p = —AwTg/2. Since the
precession frequencies of these two spins are constant in time
(if the spins remain at the same position), the phase difference
A¢ will vanish after the time T after the excitation pulse and
a so-called spin echo will form. This spin echo has the form of
a reversed FID before the echo time Tg, and is similar to a FID
after the echo time. If the echo time is increased, an exponential
decay of the spin echo can be observed. The reason for this is that
the 180°-pulse can only recover the dephasing that occurs due to
static, local field inhomogeneities, but not the dephasing that is
due to dynamic spin-spin interactions.

GRADIENT ECHO A different method for the generation of an
echo relies on the application of an additional magnetic field
gradient. This gradient changes the magnetic field in a position-
dependent manner and hence changes the local Larmor frequen-
cies. For simplicity, we consider a gradient field that has only a
component G, = G parallel to the external magnetic field and
varies linearly in z-direction. In a gradient sequence as illustrated
in Fig. 8, the constant negative gradient in the time interval (t1,t2)
causes a phase accumulation for a spin at position z and time ¢
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Figure 8: If this gradient switching scheme is applied after RF excitation
at time fo < t1, a gradient echo is produced at time Tg. The
area under the negative first gradient lobe equals the first half
of the second gradient lobe from f3 to Tf.

in [t1, t2] of Ap = yGz(t — t1). During the second gradient lobe
with a positive value of G, the phase accumulation of the same
spin is

Ap = yGz(ty — t1) — yG(t — t3) (3.14)

and it is obvious that the phase accumulation of each spin, in-
dependent of its z-position, vanishes at t = t3 + (f, — t;) = T.
Hence, a gradient echo occurs at the time where the area under the
second gradient lobe cancels out the area under the first gradient
lobe.

3.5 SPATIAL ENCODING AND MR IMAGING

All spins in an homogeneous magnetic field have the same Lar-
mor frequency wy; hence the FID that occurs after excitation does
not contain any information about the localization of the spins.
In order to produce an image, it is therefore necessary to spa-
tially encode the signal, so that an image can be reconstructed. A
means to achieve this is the spatial modulation of the magnetic
field by overlaying of a magnetic gradient field Bg = G(t) - xé;,
so that the external magnetic field becomes

B(x,t) = Bo + G(t) - xé; (3.15)

For simplicity, we consider a simple one-dimensional example,
which can easily be generalized to the three-dimensional case.
We assume a spatially varying spin density p(x) and an exter-
nal magnetic field with time-dependent, overlaid gradients that
vary linearly in x. Neglecting relaxation effects, the transverse
magnetization after excitation can be written as

My (x,t) = p(x)e?™D M (0) (3.16)
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Here ¢(x,t) is the phase of the transverse magnetization that
accumulated in the magnetic field B(x,t) = By + xG(t):

(1) — ./Otdrcu(r) _ 'y/othB(x,T)

t
:wot—i-x'y/o dtG(7) (3.17)

= wot + xk(t)

with the definition of the spatial frequency

k(t) = ’)//OthG(‘L'). (3.18)

The RF signal that is detected in an MRI experiment is propor-
tional to the spatial average of the transverse magnetization:

S(t) o /dxML(x,t) (3.19)

and, with the phase (3.17), can thus be written as

S(t) = /dxp(x)ei‘*’ote”k(t)
= ei‘*’ot/dxp(x)ei"k(t) (3.20)

Apart from a scaling factor, the measured RF signal S(t) = S(k(t))
is therefore the value of the Fourier transform of the spin density
p(x) at the point k(t). Since k(t) is determined by the gradient
field G(t), it is possible to measure S(k) for arbitrary values of
k; in particular, if S(k;) is measured in a sufficient number of
points k;, it is possible to determine an approximation of the spin
density p(x) by an inverse discrete Fourier transform (DFT):

p(x) Y S (ki)e (3.21)

In MRI, S(k) is often measured in an equidistantly spaced grid of
2N points in k-space centered at the origin. In the one-dimensional
case, p(x) can then be determined with a proportionality constant
Cas

N .
p(x =C Y S(nAk)e "ok, (3.22)
n=—N

The distance Ak between two points in k-space determines the
field of view (FOV) as

27T
FOV = 0y (3-23)
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this follows from the periodicity of the exponential in Eq. (3.21).
Since the DFT is reversible, p(x) can be calculated likewise at 2N
equidistant values of x in image space; the spatial resolution of
the image in the 1D case is thus

Ax = Fov_ 277[ (3-24)
2N 2NAk

In the three-dimensional case, k(t) is replaced by a three-di-
mensional vector k(t) in a vector space commonly referred to
as k-space. The value of k(t) is determined by the time integral
over the gradient field G(t), by choosing appropriate gradient
fields G(t), the value of S(k) can be measured at arbitrary points
in k-space. A special case is 2D imaging, here, only a thin slice
of the volume is excited and k-space becomes two-dimensional.

Consequently, only 2D gradient fields need to be applied.

SLICE SELECTION The spatial encoding with magnetic field
gradients takes place after the spins have been excited with a
RF pulse at time t = 0. This excitation can be non-selective in
the sense that all spins in a given volume are excited; for this
purpose, a RF pulse alone with the appropriate Larmor frequency
suffices. It is, however, also possible to excite only a single slice,
by applying a magnetic field gradient during the RF pulse. This
gradient detunes the Larmor frequency along its direction, so
that only a single plane perpendicular to the gradient direction
has a Larmor frequency that matches the frequency of the pulse.
The thickness and the profile of the slice that is excited by the
pulse depend on the frequency spectrum and the bandwidth of
the pulse as well as on the gradient amplitude.

The excitation of a single, sufficiently thin slice in the xy-plane,
as opposed to non-selective excitation, leads to a signal

S(kx, ky, t) o /Mxy(x,y,to)e_i(kxerkVy)dxdy (3.25)
Xy

so that the k-space needs to be sampled only in two dimensions.

K-SPACE SAMPLING To calculate the inverse Fourier trans-
formation without additional complications such as regridding,
k-space needs to be sampled in a equidistantly spaced grid with
Ny - Ny points. Fig. g illustrates a simple, single-slice 2D gradient
echo sequence with 2D cartesian readout. Inmediately after an
excitation, the phase is given by ky = k, = 0. A phase encoding
gradient G, is applied in y-direction for the time T, together
with a read dephasing gradient —Gy, applied for the time span
Ty /2 to locate the point (ky, k) = v(—Gx7:/2, GyTy) in k-space.
Subsequently, a readout gradient G is applied for the time span



3.5 SPATIAL ENCODING AND MR IMAGING 29

Yvy

\4

%N
8

At —————

>
A >

Figure 9: 2D cartesian sampling of k-space in the case of a simple,
single-slice 2D gradient echo sequence.

T and N signal points are collected along a line in k-space. This
experiment is repeated Ny times with varying values of the phase
encoding gradient, so that k-space is finally sampled at N, - Ny,
data points.

A multitude of different k-space sampling schemes (e.g. carte-
sian, radial, spiral) and phase-encoding orders (e. g.sequential,
centric, reverse centric) have been proposed and are in use. For
an overview, the reader is referred e. g. to [29].

SEQUENCES In MR imaging, the combination of the steps ex-
citation, possibly refocusing pulses, spatial encoding, echo gen-
eration and signal acquisition is generally referred to as pulse
sequence. An important parameter for a sequence is its repetition
time Tg, which is generally defined as the time from one excita-
tion pulse to the next.The choice of various sequence parameters
such as Tg, Tr or the flip angle a has strong influence on the
image contrast that is generated between tissues that differ e. g.in
their relaxation times.

In MR imaging, a wealth of different sequences exist, and new
sequences are developed (and named according to imaginative
acronyms) on a regular basis. These sequences can differ in vari-
ous parameters, such as the way in which the echo is generated
(e.g.spin-echo or gradient-echo), the image contrast that is gen-
erated by variation of sequence parameters such as Tg, Tr or the
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flip angle a or the k-space sampling scheme (cartesian, radial,
spiral, 2D or 3D).

3.6 CONTRAST AGENTS

The scope of the medical application of magnetic resonance can be
widened considerably through the application of contrast agents.
In the context of magnetic resonance imaging, a contrast agent
is a substance that alters the relaxation times T;, T; and T in its
vicinity. Depending on the biological and chemical properties of
the contrast agent as well as the way of administration, different
tissues are affected differently by the contrast agent, so that the
image contrast can be altered significantly, thereby providing a
wealth of additional information about the tissue.

A fundamental difference to other medical imaging modali-
ties such as X-ray imaging or computed tomography is that in
MR imaging the contrast agent is never visualized directly. In-
stead, the effect of the contrast agent on the relaxation of spins is
observed.

The most widely used contrast agents in MR imaging are based
on the Gadolinium ion Gd*". Due to its seven unpaired electrons,
this ion is strongly paramagnetic and thereby reduces the T; and
T, relaxation times. To reduce the toxicity of Gd°*, it is usually
embedded into a chelate complex with ligands such as DTPA
(diethylene triamine pentaacetic acid).

The interaction of the unpaired electrons of the Gadolinium
ion with the hydrogen nuclei of water results in a reduction of
the relaxation times T; and T, by dipole-dipole interaction. This
effect is a short-range effect, the Gadolinium ion affects only
spins in its immediate vicinity.

The presence of a paramagnetic contrast agent in tissue also
results in an increase of the local magnetic susceptibility. In an
external magnetic field, this results in a higher local field in the
vicinity of the contrast agent. If the contrast agent is distributed
homogeneously in the tissue, this leads to an increase of the
Larmor frequency and equilibrium magnetization. If, however,
the contrast agent is distributed inhomogeneous, local magnetic
field gradients arise between the compartments that contain con-
trast agent and those that do not. These gradients shorten the T}
relaxation times of the tissue; an important characteristic of this
effect is that it acts over mesoscopic distances. This is particularly
relevant in a situation where the contrast agent is confined to
blood vessels and cannot extravasate into the interstitial space —
here, the induced gradients strongly increase the T, effects of the
contrast agent.
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The effect of contrast agent on the longitudinal relaxation time
T; of a homogeneous medium is described by:

Ri =Ryp+ri-c (3-26)

where R; = T; ! is the relaxation rate in presence of contrast
agent, R is the relaxation rate in absence of contrast agent, r;
is the relaxivity and c is the concentration of the contrast agent.
Generally, the ri-relaxivity of a given contrast agent depends
on a variety of factors such as the magnetic field strength, the
temperature and the chemical composition of the contrast agent.

The majority of contrast agents that are used in MR imaging
are extracellular, hence, the contrast agent is usually distributed
inhomogeneously in tissue. In that case, the susceptibility ef-
fects of the contrast agent that were discussed above contribute
strongly to the effect of the contrast agent on the relaxation of
the transverse magnetization. Consequently, the r;-relaxivity de-
pends strongly on the structure of the tissue and the distribution
of contrast agent in this structure, so that a functional relation can
only be provided for special situations such as intact brain tissue.
Here, a dependence of the relaxivity on the vessel size and ori-
entation has been observed within certain regimes and used for
vessel size imaging [32]. Additional difficulties arise if the distribu-
tion of the contrast agent in the tissue is not constant during the
measurement. This may happen e.g.in the imaging of tumors:
the contrast agent arrives in the blood vessels, causing small
gradients and thereby shortening the transverse relaxation time
T5. Gradually, the contrast agent leaks into the interstitial space,
the local gradients and hence the effect of the contrast agent on
T; reduce, although the macroscopic concentration in the tissue
remains unchanged or even increases due to the accumulation of
contrast agent in the interstitium.
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DYNAMIC CONTRAST-ENHANCED MRI

In the context of bolus-tracking measurements, the quantification
of perfusion is composed of two distinct steps. In the first step,
the time-dependent concentrations of contrast agent or tracer
after bolus administration are measured in a supplying artery
and in the tissue of interest. In the second step, hemodynamic
parameters such as blood flow, blood volume or the flow across
vessel wall are derived from the form of these curves using the
theory of tracer kinetics. This chapter discusses the first step, the
measurement of time-dependent contrast agent concentration
using magnetic resonance imaging (MRI).

It is the purpose of the MRI acquisition to produce time-
resolved signal intensities S(t) before, during and after the ad-
ministration of the contrast agent. Care must be taken to find a
suitable balance between a range of factors influencing the data
quality, these factors include the contrast-to-noise ratio (CNR) as
well as the temporal and spatial resolution of the measurement.
Contrast agent concentrations or approximations thereof can be
derived from the measured signal intensities using MR signal
theory. Depending on the degree of sophistication, it may be
necessary to acquire further calibration data, such as precontrast
T values or the actual flip angle distribution.

The first part of this chapter briefly presents two popular meth-
ods for the MRI acquisition, the second part describes MR signal
analysis with the aim to derive contrast agent concentrations (or
approximations thereof) from the measured signal intensities.
The third part of this chapter deals with several aspects of the
MR acquisition itself.

4.1 DSC OR DCE MRI

The presence of contrast agent causes changes of the longitudinal
and transverse relaxation rates R, Ry and Rj. Depending on
the MR sequence used for the acquisition, these changes lead to
changes of the measured signal intensity, which in turn can be
utilized to estimate the contrast agent concentration using MR
signal theory. Two different approaches have seen widespread
use for the dynamic measurement of contrast agent concentration:
In dynamic contrast-enhanced (DCE) MRI, the T; = 1/R; shorten-
ing effect of paramagnetic contrast agents is employed. When
images are acquired with a T;-weighted sequence, the presence
of contrast agent thus leads to an increase of the signal intensity.
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Dynamic susceptibility contrast-enhanced (DSC) MRI, on the other
hand, utilizes the fact that the contrast agent produces local mag-
netic field gradients. When the signal is acquired with a T>- or
T;-weighted sequence, these gradients cause a dephasing of the
water protons and hence a decrease of signal intensity.

For most organs of the body, DCE MRI is the preferred method
for perfusion measurements [4, 6, 33—35], since either the blood
volume is large, or the contrast agent can readily extravasate
into the interstitial volume, so that the total amount of contrast
agent is large enough to cause strong signal changes. In the brain,
however, the setting is different. Not only is the cerebral blood
volume small (3-5ml/100m [36]), but also, the tracer is confined
to the intravascular space by the blood-brain barrier. Thus, the
total amount of contrast agent in brain tissue is small, leading
only to small signal changes in DCE MRI. The compartmental-
ization of the tracer to the intravascular space, however, causes
strong magnetic field gradients on a microscopic scale [12], so
that the T, effects of contrast agent and hence the signal changes
in healthy brain parenchyma are strong [11]. This has lead to
a widespread use of DSC MRI for the assessment of cerebral
perfusion [1, 37—40] in a wide range of applications, including
brain tumors and multiple sclerosis.

Absolute quantification of cerebral hemodynamics with DSC
MRI, however, remains challenging. For a quantitative analysis,
it is necessary to measure tracer concentrations both in the tissue
of interest and in a tissue-feeding artery (see chapter 5). However,
the T; relaxivities of contrast agent are different between artery
and tissue, thus producing a scaling error in the quantification.
Moreover, if the tracer can leak into the interstitial volume due
to blood-brain barrier leakage, the local magnetic field gradients
causing the susceptibility contrast are reduced, which leads to
smaller signal changes, thus distorting estimates of the tracer
concentration. Additionally, the tracer that accumulates in the in-
terstitial space causes T; effects and thus a signal increase, which
leads to underestimation of the tracer concentration. To mini-
mize these T; effects, several approaches such as data truncation
[41] or modeling [14, 16] have been proposed, but the loss of
susceptibility contrast cannot be easily corrected for. This raises
the question, whether, despite the lower CNR, a Tj-weighted
sequence would be more suitable for the quantification of cere-
bral hemodynamics, both in healthy brain parenchyma and in
lesions with blood-brain barrier leakage. The remainder of this
chapter thus focuses on MRI signal analysis and acquisition with
T;-weighted MRI.
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4.2 MR SIGNAL ANALYSIS

The purpose of MR signal analysis in the context of DCE MRI is
to derive the tracer concentration ¢(t) from the measured signal
intensity S(t). Two distinct aspects play a key role in MR signal
analysis:

1. Relaxation: The contrast agent shortens the T; relaxation
time of the water protons in its vicinity.

2. Signal: The shortening of T; leads to an increase of signal
intensity. The amount of signal increase depends on the
pulse sequence that was used for the acquisition as well as
on the imaging parameters.

The presence of a paramagnetic contrast agent leads to an in-
crease of the longitudinal relaxation rate R; and a shortening of
the longitudinal relaxation time T7 = 1/R;. Whereas the actual
interactions leading to this effect are quite complex, it has been
shown [42] that the relation of the relaxation rate to the concen-
tration is linear for concentrations that occur in typical DCE MRI
measurements and is of the form

Ry = Ry +r1C (4.1)

Here, Ry is the precontrast relaxation rate, rq is the relaxivity of
the contrast agent and c is the concentration. The time-dependent
concentration in the tissue can then be derived from the change
in relaxation rate Ry (t) — Ryo and the relaxivity r; as

() = 2l = Ruo (4.2)

5}

if the relaxivity of the contrast agent is known. However, under
the assumption that the relaxivity is independent of the tissue
type, the value of rq cancels out in a quantitative tracer kinetic
analysis as in chapter 5 .

It remains to derive the change in relaxation rate from the
measured signal intensity. In virtually all sequences that are used
for DCE MR, the signal intensity S(t) is of the form [43]:

S(t) =Q-e /T2 sin(a) - m, (R (1)) (4.3)

Here, () is a global calibration constant, which absorbs the coil
sensitivity and the equilibrium magnetization. The exponential
describes the T;-weighting, « is the flip angle and m, is the
longitudinal magnetization as a function of the relaxation rate.

In general, the echo time T is chosen so short that the influence
of changes in R is negligible, so that all factors in Eq. (4.3) apart
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from m,(R;(t)) can be regarded as constant in time. Thus, we
can write the signal 5(¢) in presence of contrast agent and the
baseline signal Sy with a quantity I'(x) that is constant in time as

S() = T(x) - ma (R (1)) (4.4)
SO = F(x) . mZ(Rlo)

I' is, however, not necessarily constant in space, since it absorbs
the coil sensitivity and the sinus of the flip angle, which both may
vary inside the acquired volume, e. g.if surface coils are used for
the signal reception.

The exact form of the function m, in Eq. (4.4) is determined
by the sequence that is used for the acquisition and in general
depends not only on the relaxation rate, but also on sequence
parameters such as the repetition time between excitation pulses
or the flip angle.

However, even without knowledge of the exact form of m, the
change in relaxation rates and thus the contrast agent concentra-
tion can be approximated using either the signal enhancement or
the relative signal enhancement.

4.2.1  Signal enhancement

Subtraction of egs. (4.4) yields
§(t) = So = I'(x) - [mz(Rq1) — mz(Ruo)] (4-5)

With the assumption that m, is linear in R;, the change in
relaxation rate depends in a linear fashion on the change in
signal intensity:

Ri(t) = Ryp = kT~ (x) - (S(t) — So) (4.6)

and the tracer concentration (4.2) is thus proportional to the
signal enhancement (SE) S(t) — So:

k

o(t) = Ef‘l(x)(s(t) —So) =k~ (5(t) - S0) 47)

The value of the factor k in Eq. (4.7) cannot be determined without
additional calibration measurements of e. g. the flip angle and the
coil sensitivity profile. However, if k is equal in the artery and in
the tissue of interest, the value of k cancels out in a quantitative,
tracer-kinetic analysis (see chapter 5).

If this equality is not given, for example if surface coils with a
rather inhomogeneous coil sensitivity are used or if the B;-field
is inhomogeneous, the ratio of IA(artery and IA(tissue enters directly as
a scaling error of the perfusion parameters.
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4.2.2  Relative signal enhancement
Under the assumption that I'(x) is constant in time, division of
Egs. (4.4) yields

S(t)  ma(Ry(t))
So my(Ry) (45)

so that R;(f) can be determined as

Ru(t) = m;! {mz(Rlo) - Séé)} (4:9)

Again with the assumption of m, being linear in R, the change
in relaxation rate and thus the concentration in Eq. (4.2) can be
expressed in terms of the relative signal enhancement (RSE) as

_ RuoS(t) = So

e(t) i So

(4.10)

The scaling factor in (4.10) is independent of both flip angle
and coil sensitivity, which both may vary in space. However, the
formula shows that an additional measurement of Ry is required
to accurately quantify the tracer concentration using the relative
signal enhancement. Without the knowledge of the precontrast
relaxation rates Ryg in artery and tissue, the approximation of the
tracer concentrations with the relative signal enhancement would
produce an error with the amplitude of Rigartery / R10,tissue, €Ven
in the linear regime of m,.

4.2.3 Direct measurement of Ry and R;

The approximation of the contrast agent concentration using the
signal enhancement or the relative signal enhancement both rely
on the assumption that m, depends linearly on R;. Although this
assumption is generally valid for small concentrations and relax-
ation rates, it does not necessarily hold for large concentrations
that can occur e. g.in vessels during the first pass of the contrast
agent.

If we consider the example of a spoiled gradient-echo (SPGR)
sequence with flip angle a and repetition time Ty in the steady
state, m, has the following form [29]:

S = My -sin(a)e”TER2 . (Ry) (4.11)
1—e TrR

mz(Ry) = 1 — cos(a)e~TrR

This dependence of m, on the relaxation rate for a SPGR se-
quence is illustrated in Fig. 10. Clearly, m, is linear only for small
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Figure 10: Normalized longitudinal magnetization produced by a SPGR
sequence with different flip angles and Tr = 2.0ms. Top: Ry
values that occur in blood plasma with typical CA concentra-
tions [42]. Bottom: the same sequence with high relaxation
rates, demonstrating the nonlinear behavior of m,
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values of R, for higher values of the longitudinal relaxation rate,
a nonlinear regime and even saturation is reached. The linear
regime and the signal yield can be extended if higher flip angles
are used. However, a higher flip angle deposits more RF energy
in the tissue, so that in clinical practice the maximal value of
the flip angle is limited by the specific absorption rate (SAR).
Practically, the flip angle is often chosen as high as the SAR limit
allows.

Since the highest concentration of contrast agent in DCE MRI
measurements typically occur in the arteries during the first pass
of the contrast agent bolus, the approximation of concentration
either by relative or absolute signal enhancement typically results
in an underestimation or even clipping of the arterial input func-
tion. This, in turn, would be directly reflected in the estimates of
tissue blood flow or tissue blood volume in a subsequent tracer
kinetic analysis.

The influence of T, effects in Eq. (4.3) is typically small in DCE
MR, since the echo time T is usually in the order of milliseconds
or below. However, if high concentrations of contrast agent occur,
such as during the first pass of the bolus in the artery, ignoring
T; effects may lead to a significant underestimation of the arterial
concentration.

If the above mentioned effects cannot be minimized either
through optimization of the acquisition sequence (i.e. optimal
choices of sequence parameters like T, Tg, & and possibly sat-
uration or inversion times) or the injection protocol (e. g.slower
injection rates, smaller dose of contrast agent, splitting into sev-
eral injections), a possible remedy is to directly measure the
Rq(t) and Rj(t) relaxation rates at each time point at the cost of
temporal resolution.

This approach is demonstrated in [44] and [45], in which a
saturation-recovery gradient multi-echo sequence is employed.
Briefly, this sequence employs a global saturation pulse and, after
a certain saturation recovery time Ts, acquires a series of images
at different echo times for each time point. From the series of
signal intensities at each time point f, the relaxation rate R;(t)
can be determined by fitting a monoexponential to the data. For
the calculation of Ry (t), a precontrast measurement of Rjg and
R, is necessary; this precontrast measurement is carried out once
with two different saturation recovery times Ts. With knowledge
of Ryp and the previously determined Rj(t), Ri(t) can then be
determined for each time point.

4.3 MR ACQUISITION

The setup of a DCE MRI experiment involves the choice of the MR
scanner, in particular with respect to the field strength, as well
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as the choice of contrast agent, injection protocol and imaging
sequence, and, lastly, the careful optimization of the sequence
with respect to measurement properties such as CNR, temporal
and spatial resolution and spatial coverage. Each of these choices
affects and depends on the others, and is also influenced by
the tissue under investigation and the actual objective of the
measurement.

In general, setting up a measurement protocol for DCE MRI
involves a trade-off between

CONTRAST-TO-NOISE RATIO In the context of DCE MRI, the
“data quality” cannot be assessed with the conventional
quantity signal-to-noise ratio. Instead, the contrast-to-noise
ratio (CNR) should be used, which in this context describes
the amount of signal change caused by the presence of
contrast agent compared to the noise in the data. A possible
measure of CNR is the ratio of the maximum of the signal-
time curve and the noise in the baseline signal (before
the arrival of contrast agent). CNR can be increased by
sacrificing spatial or temporal resolution, by increasing
the dose of contrast agent or through the use of a higher
field strength. Moreover, CNR depends on the tissue type,
especially on the blood volume in the tissue.

SPATIAL RESOLUTION AND COVERAGE Obviously, the spatial
resolution needs to be high enough to identify the struc-
tures of interest. Moreover, for a quantitative analysis, it is
necessary that an arterial input function can be measured.
For this purpose, it is beneficial if the voxel size is so small
that at least one, better several, voxels can be identified that
are completely embedded in an artery to reduce the influ-
ence of partial volume effects. If this cannot be achieved due
to other constraints, it is sometimes possible to find a voxel
that is completely embedded in large venous vessel, which
then allows for correction of partial volume effects(see 6.3).
It is important to mention that the signal-to-noise ratio of
an MR acquisition is proportional to the voxel volume and
hence the in-plane resolution, so that large signal gains can
be achieved by reducing the spatial resolution.

TEMPORAL RESOLUTION Another important matter is the tem-
poral resolution of the measurement. Intuitively, one would
assume that the measurement is better the faster it is. Unfor-
tunately, this is not true in MRI, since a faster measurement
almost inevitably leads to a decrease in signal-to-noise ra-
tio (unless sophisticated acceleration schemes are used).
Moreover, a reduction in sampling speed can be utilized to
increase either spatial coverage, spatial resolution or CNR.
It is thus of importance to identify the minimal temporal
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resolution that still allows for accurate quantification. One
requirement is that all concentration-time curves, in par-
ticular the rapid signal changes in the artery during the
first pass of the contrast agent, are sufficiently sampled to
observe the broadening of the contrast agent bolus between
the artery and the tissue (this already indicates that the
term “sufficient sampling” includes not only high temporal
resolution, but also sufficient CNR). In general, it is reason-
able to assume that the temporal resolution should be faster
than the time scales of the processes that are to be observed.
Since the shortest time scales in the context of perfusion
quantification are the plasma transit times which are usu-
ally not faster than 3 to 5 seconds, a sampling interval of
less than 2 seconds is usually recommended [4, 46] for the
assessment of plasma flow.

4.3.1  Dynamic imaging

The ultimate aim of imaging in the context of perfusion quantifi-
cation is to produce temporally resolved and accurate measure-
ments of tracer concentrations in tissue and in arterial blood.

PULSE SEQUENCES For the assessment of hemodynamics from
time-resolved data, DCE MRI usually employs 2D [47—49] or 3D
[50-52] sequences with a spoiled gradient-echo readout.

With 2D sequences, high temporal resolutions can be achieved
by acquiring only a limited number of slices, thereby sacrificing
spatial coverage. 3D sequences, on the other hand, provide large
spatial coverage and resolution, but require more effort to achieve
sufficient temporal resolution. Through the introduction of paral-
lel imaging [53, 54] and view sharing [55, 56], data quality and
speed of 3D acquisition have become considerably better and are
gradually replacing 2D measurements in current practice.

The use of 3D acquisitions is beneficial for a number of reasons.
For example, it is possible that the precise location of a pathology
cannot be determined on precontrast images — and contrast agent
cannot be administered before a perfusion measurement. With a
2D acquisition, only a limited number of slices can be placed in
the area where a pathology is suspected, and the risk of missing
the pathology is greatly increased. A 3D acquisition in the same
situation might provide coverage of e. g. the whole brain and thus
guarantees to capture all existing lesions

Likewise, longitudinal studies benefit as well from the use of
3D acquisitions, since reproducible slice placement between MR
examinations is often an issue with 2D acquisitions. Moreover,
even if the same slice positioning can be achieved, it is possible
that location or size of the pathology have changed, so that
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acquisition of a single slice often does not allow conclusions about
the state of the pathology. This is of particular relevance if the
characterization of very heterogeneous regions such as metastases
or primary tumors is an objective of the measurement — here, a
3D acquisition could capture the whole tumor, whereas a slice
of a 2D acquisition might capture either the highly vascularized
tumor rim or a central necrotic region with no perfusion at all,
with a corresponding outcome of perfusion quantification.

ACCELERATION To reduce scan time, or, correspondingly, in-
crease the temporal resolution, it is possible to acquire only a part
of the k-space (undersampling), thereby saving data acquisition
time, and reconstruct the full k-space data after the measurement
by utilizing different properties of k-space.

Partial Fourier methods employ the symmetry of k-space to
reduce the number of phase-encoding steps, either in phase-
encoding or slice-encoding direction, so that fewer k-space lines
are to be acquired. Typical partial Fourier factors are 5/8, 6/8 or
7/8, however the scan time reduction leads to a loss of signal-to-
noise ratio.

A different class of methods is formed by the parallel imaging
algorithms (see e.g.[57] for a review or [58] for a comprehen-
sive overview). There is a large number of algorithms available,
including SENSE, SMASH, PILS, CAIPIRINHA and GRAPPA.
These methods have in common that they use an array of re-
ceiver coils for the data acquisition and acquire only a subset
of the k-space lines, typically every second or every third line.
Such an undersampling of k-space would lead to aliased images;
therefore, parallel imaging methods employ the spatial sensitivity
profiles of the multiple coils to reconstruct the full data either
in k-space, such as in GRAPPA, or in image space, such as in
SENSE.

For time-resolved angiography, so-called view sharing tech-
niques such as TRICKS [59], TREAT [55] and TWIST [56] have
been developed. These methods employ temporal k-space un-
dersampling, where the central part of k-space is sampled more
often than peripheral regions of k-space. For each reconstructed
time point, the peripheral k-space data is then reconstructed
using data acquired at earlier (forward data sharing) or later
(backward data sharing) time points. The underlying assumption
of these methods is that data in the central part of k-space, which
is responsible for image contrast, changes more rapidly during
administration of contrast agent than data in peripheral k-space
regions, so that it is sufficient to update the peripheral k-space
data less often. The image quality and the temporal resolution
that can be achieved with these methods depend on the size
of the central k-space region that is updated often(obviously, a
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larger central region results in less artifacts and slower measure-
ment) and the extent of undersampling in the peripheral k-space.
A further increase in measurement speed is achieved with the
TREAT and TWIST sequences through the additional use of par-
allel imaging, which further reduces the amount of k-space data
that is sampled.

The TWIST scheme is applied in the k, — k, (phase encoding)
plane of k-space, the readout direction k, is neglected, since
readout of a single k-space line is fast. The phase encoding plane
is divided by a critical distance k. into a central, low-frequency
region A and a complimentary high-frequency region B. Region
B is further divided into N subsets, so that each point in B is in
exactly one subset. During the acquisition, the full k-space data
is acquired only once, either for the first or the last image. For
all other images, only region A and one of the subsets in B is
acquired, the missing B subsets are copied from earlier or later
measurements. Hence, the degree of undersampling with TWIST
is characterized by two parameters pA and pB. pA describes the
central portion of k-space, pB = 1/N is the fraction of the region
B that is acquired for each image.

4.3.2  Contrast agents and injection protocol

All standard MR contrast agents can be used for dynamic imag-
ing. As a rule of thumb, the vascular parameters such as blood
flow and blood volume are determined from the dispersion of
the first pass of contrast agent between artery and tissue, whereas
extravascular parameters such as the permeability surface area
product or the interstitial volume are determined from the form
of the later phase. Hence, the contrast agent administration needs
to be accomplished in a way that allows for the observation of a
first pass, typically, the contrast agent is injected as a bolus with a
high injection rate in the order of 2 to 4ml/s.

Typically, a standard dose of contrast agent (0.1 mmol/kg body
weight) is used. Most contrast agents have a concentration of
0.5mmol/1 so that for a 70kg patient 14ml of contrast agent
are injected. A notable exception is Gadovist with the double
concentration, allowing for sharper bolus profiles. Care should be
taken that the arterial concentration remains in the linear regime
even at the peak concentration during the first pass of the contrast
agent, in order to avoid an underestimation of the AIF. For this
purpose, the injection flow or the dose of contrast agent can be
reduced. This approach, however, might render it impossible
to observe the broadening of the bolus, in particular in weakly
perfused tissue. To circumvent this problem, it has been proposed
in several studies to construct the AIF from a prebolus measurement
[9, 60], where the measurement is preceded by a measurement
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with a very small amount of contrast agent. Through shifting and
summing up the arterial concentration curve produced by the
prebolus, an AIF can be reconstructed that does not suffer from
saturation effects. This approach, however, requires additional
post-processing time and effectively doubles the measurement
time, which is often unfeasible in clinical practice.

An interesting compromise might be to split the single, standard-
dose injection into two half-dose injections [49, 61]. Thereby, the
peak concentration could be reduced substantially, while main-
taining sharp bolus profiles and the full dose of contrast agent.

If measures of permeability are an objective of the measurement
and if extravasation of the contrast agent is expected, protein-
bound tracers should be avoided. Firstly, the relaxivity of such
contrast agents depends on the protein concentration which is
usually different between blood plasma and interstitial fluid,
so that the tracer concentration cannot be readily determined.
Furthermore, the pharmacokinetics differ between protein-bound
and unbound tracer particles, obviously, unbound particles can
pass the vessel walls more easily than protein-bound particles.

4.3.3 Calibration measurements

If the concentration-time curves are to be approximated using the
relative signal enhancement, a measurement of the precontrast
relaxation rate Rjo or, equivalently, the precontrast Ty time is
necessary. For 2D saturation recovery acquisitions, this is usually
done by acquiring several datasets with varying saturation re-
covery times Tg before the administration of contrast agent. The
precontrast saturation recovery signal depends exponentially on
TS and R102

S (1 - eiTsRm) (4.12)

so that Rjp (and Mp) can then be determined by fitting Eq. (4.12)
to the measured data (e. g.[34, 49]).

Although this approach is considered the gold standard for T;
mapping, the long acquisition times render inversion-recovery
approaches unfeasible for Ty mapping in 3D datasets.

Therefore, T1 mapping for 3D datasets is usually performed
with 3D SPGR acquisitions with several flip angles [62-65]. Pre-
contrast Tjo values can then be obtained by fitting the measured
data to the signal equation of a 3D SPGR sequence.

In particular at higher field strengths, an inhomogeneous distri-
bution of the flip angle a cannot be ruled out. Since the actual flip
angle enters into the calculation of Tj, it is advisable to measure
the actual flip angle and use this correction for the calculation of
T; [66, 67].
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Figure 11: Calculation of a precontrast 3D T; map. Images 1 to 4: a
representative slice of 3D volumes acquired with flip angles
of 2.5, 5°, 10° and 19°, image 5: map of the relative flip
angle, scaled from 70% to 150%, image 6: resulting T; map,
scaled from o to 2000 ms

Fig. 11 shows an example of this 3D T; mapping strategy. Four
3D volumes (matrix size 128 x 104, 44 slices) of the brain were
acquired with flip angles of 2.5°, 5°, 10° and 19° and a constant
repetition time Tg = 3.1ms (see images 1 to 4 in Fig. 11).

A mabp of the relative flip angle &measured / ¥preset Was measured
using a pulsed steady-state sequence [67] with alternating repe-
tition times Tr of 20 and 100 ms. The resulting map of the flip
angle distribution is shown in image 5 in Fig. 11 and was used to
calculate the T map (image 6) from the four volumes measured
with variable flip angles.

Unfortunately, the pulsed steady-state sequence is not gen-
erally available as a product sequence, so that a measurement
of the actual flip angle and thus quantitative 3D T; mapping
with a variable flip angle approach is currently not feasible in
a clinical setting. Therefore, the most reliable strategy for the
approximation of contrast agent concentration from 3D DCE MRI
is currently the absolute signal enhancement (see 4.2.1), since
quantitative values of tissue and blood T; are a prerequisite for
the use of relative signal enhancement.
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TRACER KINETICS - QUANTIFICATION OF
HEMODYNAMICS

The overall aim of perfusion quantification is to derive infor-
mation about the hemodynamic status of the tissue of interest
from the measured concentration (or signal) time curves. Several
strategies are feasible for this purpose, the most simple is a vi-
sual analysis of the dynamically acquired images. This form of
analysis allows for quick detection of areas with e. g. perfusion
defects or blood-brain barrier leakage (see Fig. 12), however, it is
of limited use e. g. for the purpose of therapy monitoring, since it
does not yield any quantitative scores.

PIXEL LEVEL OR REGION LEVEL Generally speaking, all pa-
rameters that go beyond a purely visual characterization of per-
fusion patterns can be calculated either on the pixel level or on
the region of interest (ROI) level. In pixelwise calculations, the
signal-time course of each pixel is evaluated and one or more pa-
rameters are derived from each curve, thereby producing images
or maps of each parameter. In a ROI analysis, the signal intensities
of all pixels in the region are averaged for each time point, so
that a single, averaged signal-time course is produced, which is
then further evaluated.

An analysis on the region level is usually more robust and
accurate, since averaging over several pixels increases the contrast-
to-noise ratio — on the downside, information about potential
heterogeneity in the region is lost. A popular approach is to
calculate a map of a robust parameter such as area under the

Figure 12: Three phases from a perfusion measurement in a patient
with multiple sclerosis. Left: before arrival of contrast agent,
center: arterial phase, right: late enhancement. In the late
phase, two contrast-enhancing lesions (arrows) can be identi-
fied
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Figure 13: [llustration of several descriptive parameters: AUC: area
under the curve (shaded); max: maximal signal enhancement;
TTP: time to peak. This curve was measured in lesion #2 in
the dataset shown in Fig. 12.

curve (see below) and use this map to localize and define a region;
the averaged curve of this region can then, due to the increased
CNR, be further analyzed with a more sensitive method.

The simplest form of quantification derives descriptive or semi-
quantitative parameters from the form of the tissue curve alone.
Popular parameters of this type are, among others, the area under
the curve (AUC), the maximum of the curve, the time to peak and
the bolus arrival time (see Fig. 13). All these parameters have in
common that they in one way or another describe the form of the
tissue curve.

Although these parameters are easy to calculate, they have
several drawbacks. Their interpretation in terms of physiology is
unclear, e. g. a large AUC may either be related to a large vascular
volume, or to a large vessel wall permeability and consequently
much extravasation. Likewise, a large maximum value might
be caused either by strong enhancement during the first pass
of contrast agent due to high values of blood flow and blood
volume and or by very slow enhancement, where the peak value
is reached at the end of the measurement.

Moreover, the values of semiquantitative parameters depend
very much on acquisition parameters, such as the total acquisition
time, the speed and dose of contrast agent injection or image
contrast. Therefore, they are of limited use for cross-sectional or
longitudinal studies.

Obviously, the exact form of the tissue concentration-time curve
is determined by two different factors: the hemodynamic proper-
ties of the tissue itself and the tracer concentration in the vessels
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feeding the tissue, generally referred to as arterial input function
(AIF). Therefore, it should be possible to derive tissue hemody-
namics from the tissue and arterial plasma concentration-time
curves. The link between those quantities is provided by the
theory of tracer kinetics, which is valid for linear and stationary
tissues [68]. A tissue is considered linear, if the response of the
tissue is proportional to contrast agent dose; it is considered
stationary, if the tissue response is independent of the time of
injection. This implies the assumption, that the hemodynamic pa-
rameters of the tissue remain constant during the measurement.

For linear and stationary tissues, the theory of tracer kinetics
relates the concentrations in arterial blood plasma’ and tissue
ca(t), ct(t) by convolution with a residual function R(#):

ct(t) = Fp- R(t) ® cq(t) (5.1)

In this equation, ® denotes convolution, Fp is the flow of blood
plasma into the tissue and R(t) is the tissue residue function.

R(t) describes the fraction of tracer that is present in the tissue
at any given time t > 0 after an ideal, instantaneous contrast
agent administration. Hence, a residue function is always positive,
monotonously decreasing and R(0) = 1.

The product Fp - R(t) is called tissue response function or impulse
response function (IRF). It describes the response of the tissue to
an ideal, instantaneous arterial input function (“impulse”) and
contains all hemodynamic properties of the tissue. Quantification
of hemodynamics thus boils down to the determination of Fp -
R(t) from the concentrations measured in arterial blood and
tissue.

Two classes of methods exist for this purpose: the model-free
approach makes no assumptions about the form of the residue
function and aims to determine R(#) numerically from the mea-
sured arterial and tissue concentrations. This approach is de-
scribed in section 5.1. Section 5.2 deals with the model-based
approach, which assumes a certain mathematical structure of
the residue function; the form of the residue function is de-
rived from assumptions about the physiology of the tissue. Thus,
model-based approaches are less general than the deconvolu-
tion approaches, but promise, through inclusion of this a priori
knowledge, to yield more information and more independent
parameters than model-free methods.

In MR, the concentration in arterial plasma is usually derived from the signal
intensity in an artery supplying the tissue. This yields the concentration in
arterial blood, from which the plasma concentration can be obtained by scaling
with the hematocrit hct: ¢;p = ¢q/ (1 — hct).
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5.1 DECONVOLUTION ANALYSIS

Model-free approaches applied to measured data c(t), ¢,(t) pro-
duce the impulse response function Fp - R(t) directly with a
procedure called deconvolution [69-73].

From the IRF, two important microcirculatory parameters de-
scribing the hemodynamic properties of the tissue can be derived.
The plasma flow Fp to the tissue can be determined as the max-
imum of the IRF, since R(+ = 0) = 1. Furthermore, the mean
transit time (MTT) of the tissue equals the area under R(t). From
these quantities, the volume of distribution vp can be derived
by the central volume theorem as vp = Fp - MTT. The volume of
distribution is the entire volume that is accessible for the tracer: If
the tracer is confined to the vasculature, such as in healthy brain
tissue, vp equals the plasma volume, if however the tracer can
extravasate, such as in brain tumors or inflammatory lesions, vp
represents the entire extravascular, extracellular volume.

The deconvolution itself, i. e. the determination of the impulse
response function from the measured concentrations, is an ill-
posed problem, which means that some kind of regularization is
necessary in order to suppress unphysical solutions. A large num-
ber of regularization methods is available, one of the more pop-
ular approaches is truncated singular value decomposition [69, 70],
an alternative regularization procedure is standard form Tikhonov
regularization (see e.g.[71]). Both of these procedures require the
determination of an optimal value of a regularization param-
eter, so that an appropriate compromise between suppression
of unphysical oscillations and minimal bias of the solution is
maintained. A regularization parameter that is chosen too small
will lead to unphysical solutions with high-frequency oscillations
with a large amplitude, a regularization parameter that is chosen
too large will suppress details and produce a solution with too
much dampening [73]. Unfortunately, the optimal value of the
regularization parameter is not necessarily constant for all pixel
curves in a measurement, but depends on physiological as well as
measurement variables, such as the contrast-to-noise ratio; hence,
it might be necessary to determine the optimal value of the reg-
ularization parameter for each single curve. For this purpose, a
range of methods is available, two of which are generalized cross
validation and an optimized L-curve-criterion, for details, the reader
is referred to e. g. [73].

As an example, Fig. 14 shows the results of an deconvolution
analysis of the same data as in Fig. 13, the corresponding arterial
input function and the residue function that in this case was
determined with an optimized L-curve-criterion. The bold line
that approximates the measured curve shows the convolution of
the determined residue function with the arterial input function.
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It is well known that the results of a deconvolution analysis are
quite sensitive to noise in the data (see e.g.[4] for a simulation
study), in particular, the plasma flow Fp tends to be increasingly
underestimated with increasing noise in the data. In the context of
cerebral perfusion measurements, this sensitivity to noise is a mi-
nor concern if large signal changes occur, such as in T;-weighted
perfusion measurements. In Tj-weighted perfusion imaging how-
ever, the signal changes and hence the available contrast-to-noise
ratio are much smaller due to the low cerebral blood volume,
so that additional constraints may need to be imposed on the
form of the residue function to facilitate reliable quantification
of perfusion. In [47], the residue function is constructed from a
set of polynomials, thereby decreasing the number of degrees of
freedom in the solution and thus increasing the stability of the
solution. The number of degrees of freedom can be reduced to
an absolute minimum by a different strategy, which is presented
in the following section.

52 TWO-COMPARTMENT MODELS

In contrast to the model-free deconvolution approach, so-called
compartment models assume a certain internal structure of the
tissue of interest. Specifically, tissue is assumed to be composed of
one or more compartments; a compartment is defined as a space
in which the contrast agent is distributed instantly and uniformly
(“well-mixed”). A more general definition of a compartment is
that the flux of contrast agent Jou(f) out of the compartment
through a specific outlet i is proportional to the concentration
c(t) in the compartment:

Jout,i(t) = Fic(t) (5-2)

The proportionality constant F; is referred to as the clearance or
transfer rate. If the tracer is transported through the outlet by con-
vection, the clearance equals the flow through the outlet [46, 68].
In the context of DCE MRI, typical examples for compartments
are the blood plasma or the extracellular, extravascular space.

To model a tissue that is composed of several compartments, it
is necessary to identify the compartments as well as the respective
in- and outlets of each compartment. With the definition of a com-
partment (5.2) and conservation of mass in each compartment, a
set of first order differential equations can be built that describes
the time-dependent concentrations in each compartment. The
residual function that solves such a system with n compartments
is always a sum of 1 exponentials [46].
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Figure 14: This figure shows the same data as Fig. 13 along with
a “fit” to the original data, calculated with Tikhonov-
regularized deconvolution (top). Estimated parameters were
(after correction for partial volume effects in the AIF) Fp =
9.5ml/100ml/min and vp = 14 ml/100ml. The calculated
residual function FpR(t) is shown on the bottom left, the
convolution of this residual function with the arterial input
function (bottom right) produces approximates the measured
curve.
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Figure 15: Illustration of the two-compartment exchange model. Tracer
is transported with the plasma flow Fp into the vascular com-
partment with volume vp. From there, it is either removed
from the system via the venous outflow, or it is transported
with the permeability surface area product PS into the ex-
travascular, extracellular (i. e. interstitial) volume vg, from
whence it will eventually flow back into the vascular com-
partment.

5.2.1  Two-compartment exchange model

The two-compartment exchange (2CX) model is applicable for
most tissues where the tracer can access the blood plasma and
the extravascular, extracellular (interstitial) space. The model was
introduced for tumors in [34] and is illustrated in Fig. 15. It is
defined by the following assumptions:

A. Both the blood plasma space P and the interstitial space E
can be described as compartments, i.e. Eq. (5.2) holds.

B. The interstitial compartment exchanges tracer only with the
plasma compartment.

c. The clearance from P to E and the clearance from E to P
are equal.

D. The clearance from P out of the system equals the plasma
flow into P.
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With the above mentioned assumptions, the differential equa-
tions defining the model can be written as [45, 46, 49]:

dcC

UPT; = —PS(CP—CE)-FPP(CP,A —Cp) (5.3)
dC

vEd—f — +PS(Cp — Cf)

where Cg, Cp and Cp 4 denote the tracer concentrations in the
interstitial volume, the plasma volume and the arterial plasma
volume, respectively. vp and vg are the relative volumes of the
plasma and interstitial compartments, Fp is the arterial plasma
flow and PS, the permeability surface area product, is the flow from
the plasma compartment over the vessel wall into the interstitial
compartment and back. It is immediately clear from Egs. (5.3)
that the 2CX model is fully defined by four parameters.

The solutions for Cp and Cg can then be written as the convolu-
tion of the arterial plasma concentration Cp 4 with the accordant
residue function Fp - Rp(t) or Fp - Rg(t) , respectively:

Rp(t) = e ™+ 4 TpK_E_(e - — ¢7K+) (5-4)
Re(t) = (1 — TgK_)E_(e™ K- — ¢71K+)

The parameters K, K_, E_ are given by:

1 _ _ _ _ e

Ki:§ (TP1+TE1:E\/(TP1+TE1)2_4TE1T81> (5:5)
Ky — Tyt

E.=——E .6
K, —K_ (5.6)

In this notation, the two compartment exchange model is fully
defined by the four parameters {Fp, T, Tg, Tp}, with Tp being
the mean transit time of a hypothetical intravascular tracer and
TE, Tp the mean transit times in the interstitial and vascular com-
partment, respectively. These transit times are related to the four
parameters defining the model by

op UE op

Tp = PS+ Iy T = 7S T = Ip (5.7)

The inverse transformation is given by [45]:

T
PS = Fp <TB - 1> 0P =PS-Tx vp=FpT  (5.8)
P
Hence, the total tissue concentration C;(t) = vpCp(t) + veCg(t)
can be written as convolution of the arterial plasma concentration
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Figure 16: Components of the residual function of the 2CX model; for
clarity, parameters have been arbitrarily adjusted.

with a biexponential total residue function R(#) = Rp(t) + Rg(t):

Ci(t) =Fp- |e K 4 E_(e7% — 6’”(*)} ® Cq(t) (5.9)

The residue functions for the plasma and interstitial compart-
ments Rp(t), Rp(t) are shown in Fig. 16, along with the total
residue function. It should be noted that the residual function
for the interstitial compartment Rg(t) does not fulfill the prop-
erties of residue functions stated above. In particular, Rg(0) is
zero, and only starts decreasing after having reached a peak at
t > 0. This observation does not violate the principles of tracer
kinetics, since the residual function for the whole tissue fulfills
the expected properties; instead, it reflects the fact that the tracer
arrives in the vascular compartment first and only then can reach
the interstitial compartment.

SPECIAL CASES OF THE 2CX MODEL In several imaginable
situations, the measured data c(t), ¢;(t) might not contain enough
information for a reliable estimation of all four parameters of
the 2CX model, so that the full 2CX model is underdetermined.
In these situations, it may be helpful to introduce additional
assumptions that reduce the number of free parameters.

The 2CX model is underdetermined in the following scenarios:

1. The tracer extravasates slowly, so that the interstitial con-
centration remains small during the acquisition time.
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2. The tracer extravasates rapidly, so that the intra- and ex-
travascular compartments appear as one well-mixed com-
partment.

3. The intravascular concentration cannot be distinguished
from the arterial concentration. This can occur if (i) the
plasma flow is large or if (ii) the temporal resolution and
the contrast-to-noise ratio (CNR) of the measurement are
not sufficient.

In these situations, the four-parameter 2CX model is under-
determined so that not all four parameters can be determined
reliably. This underdetermination can be handled by modifying
the model equations (5.3) and incorporating additional assump-
tions. Essentially, these modifications reduce the bi-exponential
residue function in (5.9) to a mono-exponential residue function,
thereby removing interpretation difficulties.

5.2.2  Two-compartment uptake model

Under the assumption that the interstitial concentration remains
much smaller than the plasma concentration (Cr < Cp), the
model equations (5.3) reduce to:

dc

vpd—tp — —PS-Cp+Fp(Cpa — Cp) (5.10)
dCg
=L _4ps.c

UE T + P

These equations define the two-compartment uptake model (2CU)
[49, 74]. The solution of (5.10) yields the partial residue functions
of the uptake model as

Rp(t) = e~/ (5.11)
Re(t) = E(1 — e t/Tr)

with the extraction fraction

PS

E=Ps7F (5.12)

The total residual function of the uptake model is then the mono-
exponential

R(t) = e t/Tr 4 E(1-— e_t/T”) (5.13)
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Figure 17: The two-compartment uptake model, characterized by the
assumption of small tracer concentration in the interstitial
space, so that no tracer flows back from the interstitium

into the plasma space. This has the consequence that the
interstitial volume v cannot be measured.

From the three parameters Fp, Tp, E that fully define the uptake
model, the plasma volume vp and the permeability surface area
product PS can be derived as

EFp ~ TpFp

PS =1—F VP=1_F (5.14)

We refer to this model with the term uptake model, since it is
able to describe extravasation of the tracer into the interstitium,
but not its washout. This behaviour is reflected in the interstitial
residue function Rg(t) (5.11), which does not return to zero, but
instead reaches a constant, positive value, hence describing a
fraction of the tracer remaining in the interstitial compartment
(uptake). The assumption of small interstitial concentration Cg
holds true not only if the extravasation of contrast agent is very
small, but also, if the total acquisition time of a bolus tracking
experiment is so short that Cr never reaches high values. In such
a situation, the 2CX model would be underdetermined and fitting
the 2CX model to such data would result in parameter estimates
with poor precision.

As a corollary, we note that the uptake model obviates the need
for even simpler models [75] for situations in which the tracer is
distributed in a single compartment only. This is the case e.g.in
a scenario, where the flow of the tracer between the intravascular
and interstitial compartment is comparable to or larger than
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the plasma flow into the intravascular compartment, so that the
tissue appears as a single, well-mixed compartment with the
volume of distribution vp = vp + vg. Describing such a tissue
with the uptake model yields the plasma flow Fp, the volume of
distribution vp and a permeability surface area product PS = 0.

A similar situation occurs if the tracer is confined to the in-
travascular compartment, e. g.in healthy brain tissue, where the
blood brain barrier effectively impedes the passage of the tracer
across the capillary walls, or if an intravascular tracer is used.
Likewise, this scenario can be described by the uptake model
with a permeability surface area product PS = 0. In this case, the
volume obtained with the uptake model is the plasma volume
Op.

Without additional assumptions about the tissue structure, it
is, however, impossible to decide whether the volume that the
uptake model yields is the plasma volume vp alone or the entire
extracellular volume vp = vp + vE.

5.2.3 Two-compartment Tofts model

For tissues with negligible amounts of intravascular contrast
agent, the widely used Tofts model [76, 77] has been developed.
The residue function of this model is the mono-exponential

R(t) — Ktmnse—tkep (5‘15)

where the model parameters K" and k., are related to the
interstitial volume vg, the plasma flow Fp and the extraction
fraction E via

Ktrans _ EFp kep = EFp/vE (5.16)

The extraction fraction E measures the amount of tracer that is
extracted from the capillary bed, it is related both to the plasma
flow Fp and the permeability surface area product PS. Since these
quantities are not measurable separately with the Tofts model,
the term K" is introduced. In this form, the Tofts model is a
two-parameter model.

The assumption of negligible intravascular concentrations does
not hold in a wide range of tissues; tumors in particular are often
strongly vascularized. To facilitate the use of the Tofts model
in such a tissue, the original Tofts model has been extended by
adding a vascular term to the residue function

R(t) = vpd(t) 4 K!ronse=the (5.17)

Here, vp denotes the plasma volume and J(t) is a Dirac delta
function. This three-parameter model is usually referred to with
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the term extended or modified Tofts model [75, 77, 78] and has seen
widespread use. For the sake of consistency, we abbreviate the
modified Tofts model as 2CT in this thesis, since the modified
Tofts model can be seen as a special case of the 2CX model. For
this reason, it may be inappropriate under certain conditions
to use the 2CT model instead of the 2CX model. This has been
observed both in experimental data [65] as well as in simulation
studies [79, 80]. In a recent study [81], Sourbron and Buckley
showed that the 2CT model is valid only in the regime of vanish-
ing intravascular volume vp — 0 and high plasma flow Fp — oo,
i.e.in tissue that is at the same time weakly vascularized and
highly perfused. If this is the case, the 2CT model is a special
case of the 2CX model and K" can be interpreted as PS. In
reality, the conditions of infinite plasma flow or vanishing plasma
volume are seldom fulfilled, but in the context of DCE MRI, they
can be relaxed since the measured concentrations are i) sampled
at discrete time points and ii) suffer from noise in the data. Con-
sequently, the 2CT model may still be the appropriate model, if
e.g.the plasma flow is high, and either the temporal resolution
or the contrast-to-noise ratio in the data is insufficiently low to
estimate the plasma flow.
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METHODOLOGICAL DEVELOPMENTS

After the overview about quantification of hemodynamics with
DCE MRI that was presented in the first part of this work, this
first chapter of the second part presents new methodological
developments for the evaluation and absolute quantification of
hemodynamic parameters in the brain with DCE MRI. Applica-
tions of these technical developments in two patient studies are
presented in the two following chapters.

In this chapter, a robust method for automated model selection
is introduced and evaluated in a simulation study (section 6.1).
Section 6.2 is concerned with details of model fitting and imple-
mentation issues; section 6.3 discusses the issue of measuring
tracer concentrations in arteries.

6.1 MODEL SELECTION

We have seen in section 5.2 that the most general two-compartment
model is the 2CX model. However, the use of the 2CX model may
be inadequate for data analysis if the structure of the data does
not support the reliable estimation of all four parameters defining
the 2CX model. In these cases, it is advisable to use either the
2CU or the 2CT model to remove parameter redundancies and to
increase the precision of the parameter estimates.

Conversely, an insufficient model that is not able to describe all
important features of the data will produce parameter estimates
with a large bias.

Hence, a central issue in modelling DCE data is to select a
model that is complex enough to describe all features in the
data and not too complex to avoid parameter redundancy and
thus meaningless estimates [75]. In general, models with too few
parameters are not able to fit to the data and lead to bad fits and
thus biased parameter estimates. Conversely, models with too
many free parameters yield estimates with low precision [82].

However, it is not clear beforehand which model should be cho-
sen for a particular curve. The choice of the model is complicated
by the fact that the choice of the most appropriate model is not
only affected by measurement parameters such as temporal reso-
lution, total acquisition time or CNR that are easily assessable,
but also by the hemodynamic properties of the tissue itself.

Fig. 18 and Table 1 illustrate the problem of model selection.
The curve shown in the figure was measured in a white matter
lesion in a patient with Multiple Sclerosis. The 2CX and 2CU
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Figure 18: Fits of the 2CX, 2CU and 2CT models to the same data as in
Figs. 13 and 14. The resulting parameter estimates, Xz-values
and Akaike weights of each model are shown in Table 1.

Table 1: Parameters produced by the models in Fig. 18. Fp and PS are
given in ml/100ml/min, vp and vg in %

MODEL Fp wvp PS v x> WarC

2CX 25,0 28 1.17 34.7 o0.811 0.35
2CU 240 30 105 - 0.814 0.65
2CT - 191 1.60 125 0981 05-1078

models yield almost identical model fits and rather similar pa-
rameter estimates and x? values, whereas the 2CT model yields
an inferior fit, which is also reflected by the higher x? value.

Obviously, the 2CT model can be ruled out as the best model,
but to determine whether the 2CX or the 2CU model yields the
more reliable estimates is difficult. Based on the x? value alone,
the 2CX model seems to be slightly favoured, but this could be
a consequence of the fact that it has one more free parameter
(ve) and can thus better adapt to the data. An expert user thus
would probably choose the 2CU model as best model, since the
marginal improvement in x? and visual inspection of the fits
as in [49] probably do not justify the additional free parameter
introduced by the 2CX model.

Clearly, a more objective means of model selection would be
desirable.



6.1 MODEL SELECTION

6.1.1  The Akaike information criterion

A promising and mathematically rigorous approach to deal with
model selection is the Akaike Information Criterion (AIC) [82, 83].
Basically, the AIC penalizes the goodness of fit, which in general
is higher for models with more parameters, with the number of
free parameters of the model.

After a model has been fitted to given data, the AIC is easy to
calculate [84]:

AIC=N"-In <SZ\?> +2(K+1) (6.1)

where N is the number of measured data points, SS is the sum of
squared residuals as a measure of the goodness of fit and K is the
number of free parameters. For small (N/K < 40) sample sizes,
the use of the corrected Akaike Information Criterion (cAIC) is
advocated [84]:

2(K +1)(K +2)

cAIC = AIC + N_K_2

(6.2)

The absolute value of cAIC itself has no meaning, however,
among a set of models that has been fit to the same data, the
model with the lowest cAIC is considered to be the model that
approximates the unknown truth best.

To further simplify the model selection in a set with M models,
the Akaike weights w; can be used:

w; = M (6.3)

M
Y exp(—A;/2)
r=1
where
A; = cAIC; — min(cAIC) (6.4)

is the difference between each model’s cAIC and the minimal
cAIC in the set of models.

For each model i, the Akaike weight w; gives the probability
for the model to be model among the set that approximates the
unknown truth best.

In the example above, the last column in Table 1 shows that
the 2CU model has the highest probability to be the best model
and should thus be regarded as the model that yields the most
reliable parameter estimates.
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6.1.2  Multimodel inference

Given an number of similar datasets, the designation of a best
model using the process described above will often provide un-
satisfactory results, as the best model will vary from dataset to
dataset. Since not every model in a given set of models provides
the same parameters, a comparison of parameter estimates is
often complicated or even rendered impossible.

A possible solution to this dilemma might be model averaging
[82, 85]. Given a set of M models, an estimate of parameter X]- is
obtained by averaging over all models in which X; appears:

. ZUiIi,]'Xi’]'

X; = RO (6.5)

M=z

>

where [;; is 1 if the parameter X; appears in model i and zero
otherwise and

ZU+(j) = 2wi1i,j (66)

is the sum w (j) of the Akaike weights over all models, in which
parameter X; appears. On a side note, w(j) quantifies the rel-
ative importance of the parameter X; for modeling the given
data [82].

In [82] it is stated that model averaging might often reduce
bias and increase precision of parameter estimates, compared to
parameter estimates from a single (best) model. This hypothesis
is obviously of particular interest in the context of perfusion
quantification with the set of the three models 2CX, 2CT, 2CU.
Moreover, the multimodel approach avoids the a priori selection
of a particular model for a study, which might be inadequate at
least for a subset of the data.

Hence, the multimodel inference approach might be particu-
larly useful for the quantification of perfusion data, since similar
data will always yield the same set of perfusion parameters, inde-
pendent of the most probable model. However, further studies are
needed to investigate and validate this quantification approach
in the context of cerebral perfusion imaging.

In the remainder of this section, we investigate the applicability
of a multimodel approach in perfusion quantification with a
simulation study:.

6.1.3 Simulation study

The potential of model selection to improve accuracy and pre-
cision of parameter estimates is difficult to evaluate with exper-
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Figure 19: Synthetic arterial input function (dark gray) and 2CX tissue
curve (light gray) that were used for the model selection
simulations. Note the different scaling of the two curves.

imental, measured data, since no accepted non-invasive gold
standard for the measurement of hemodynamic parameters is
available. Moreover, it is not easy to verify if the assumptions un-
derlying a given model, like the assumption of small interstitial
concentrations or of negligible vascular transit time are satisfied
or violated. Hence it is not straightforward to verify with exper-
imental data whether an automatic model selection algorithm,
e.g. with the Akaike information criterion, yields reliable results
and improves parameter estimates.

This situation is entirely different in a simulation setting. By
generating a tissue curve with a particular model, one has exact
knowledge about the true hemodynamic parameters as well as
about the true model. With a suitable simulation of the measure-
ment process, a simulation study is thus an appropriate means to
validate a range of hypotheses about automatic model selection.

A hypothesis that we investigated in a simulation study in [80]
is that the 2CU model is the appropriate model if the interstitial
concentration remains small. In this situation, the 2CU model
should therefore be favoured over the 2CX model by the AIC.
In a tissue that is described with the general 2CX model, the
interstitial concentration is small if the total acquisition time is
short, therefore, the AIC should favour the 2CU model for short
acquisition times and suggest a transition to the true 2CX model
for sufficiently long acquisition times.
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Figure 20: Median value of the Akaike weights for the 2CX, 2CU and
2CT models, in dependence of the total acquisition time; the
AIC clearly suggests a transition from the 2CX to the 2CU
model for acquisition times shorter than approximately 240's
(for these specific SNR and hemodynamic values)

6.1.3.1  Methods

DATA GENERATION To investigate this hypothesis, a synthetic
arterial input function (AIF) was constructed by superposing
gamma variate functions to simulate the first and second pass of
the contrast agent. Using this AIF, we simulated a tissue curve
with the 2CX model with parameters typical for brain tumors
(Fp : 21.9ml/100ml/min, vp : 4.8 %, PS : 2.9 ml/100ml/min, vg :
11.9 %), these values were taken from a subset of the data in
chapter 7. To minimize errors by insufficient temporal sampling,
data were generated with a high temporal resolution of 0.1s, the
simulated total acquisition time was 420s.

SIMULATION OF MEASUREMENT To simulate the measure-
ment process, the generated AIF and tissue curves were sampled
with a fixed temporal resolution (TR) of 1.0 s and variable total ac-
quisition times in the range from 120s to 420's, to avoid artificial
oscillations, the start of each measurement was chosen randomly
between t = 0 and t = TR. Normally distributed noise with
a standard deviation of max(tissuecurve)/4 was added to the
tissue curve to produce a contrast to noise ratio CNR = 4, where
CNR is defined as the ratio of maximal tissue concentration to
standard deviation of noise.



6.1 MODEL SELECTION

QUANTIFICATION The 2CX, 2CU and 2CT models were fitted
to the previously simulated tissue curve, AIC and the Akaike
weights for each fit were calculated, and the parameter estimates
of each model as well as the best model, according to the AIC,
were recorded. To estimate the precision of parameter estimates
of each approach, the process of simulated measurement and
subsequent quantification was repeated 10.000 times for each
acquisition time; median values and the 17th and 83rd percentiles
of the estimates of each model as well as the best model as
suggested by the AIC were calculated as measures of accuracy
and precision.

6.1.3.2 Results

Figure 19 shows the synthetic arterial input function and the
tissue curve that were used as input data. The median values of
the Akaike weights, giving the probability of each model to be
the best model, are shown in Fig. 20. For long acquisition times,
the AIC clearly favours the 2CX model, for shorter acquisition
times, the Akaike weight of the 2CU model increases, suggesting
a transition to the 2CU model for acquisition times shorter than
approximately 280s. The 2CT model is rejected by the AIC over
the whole range of acquisition times.

Estimates of plasma volume vp and permeability surface area
product PS of each model in dependence of the acquisition time
are shown in Fig. 21. Both for vp and for PS the 2CT model
yields estimates with a large deviation of the true values. The
2CU model yields estimates with low variance for all acquisition
times, producing, however, estimates with a large bias for long
acquisition times. The 2CX model, on the other hand, produces
estimates with low bias over the entire range of acquisition times;
for short acquisition times, the variance of parameter estimates is
large.

6.1.3.3 Discussion

In this simulation study, we have investigated the feasibility of
model selection with the AIC. The results confirm our initial
experience, that the 2CU model may be the model of choice if
the interstitial contrast agent concentrations remains small due
to short acquisition times. Moreover, our study shows that model
selection correctly reflects this fact by suggesting a transition
to the simpler 2CU model for short acquisition times. This re-
sult appears plausible, since data that were acquired during a
shorter time span obviously contain less information, so that a
reliable estimation of all underlying model parameters may not

be possible.
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Figure 21: Estimates of plasma volume vp (top) and permeability sur-
face area product PS (bottom) of all models. True values
were vp = 4.8ml/100ml and PS = 2.9ml/100ml/min
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Moreover, the AIC rejects the 2CT model over the whole range
of acquisition times. This rejection is fully justified, since the basic
assumption of large plasma flow or, correspondingly, negligible
plasma transit time, underlying this model is not met and thus
further confirms the use of the AIC as a criterion for automatic
model selection.

In this study, we have deliberately induced a situation with
small interstitial contrast agent concentrations by subsequent
shortening of the acquisition time. In reality, the total acquisition
time is not the only parameter that influences the interstitial con-
centrations - if this were the case, one could simply measure long
enough and thus obviate the need for model selection. Instead,
the choice of the most appropriate model is not only influenced
by measurement parameters that can be controlled in a wide
range, such as the acquisition time, the temporal resolution or the
signal-to-noise ratio, but also by physiological parameters such
as the plasma flow, the plasma volume, the permeability surface
area product and the interstitial volume that are not known a
priori and beyond the control of the experiment. Consequently,
this simulation study is by no means exhaustive, but elucidated
only a small aspect of model selection.

Further studies may address the influence of physiological
parameters on model selection; for instance, one could investigate,
whether model selection reflects the observation in [81] that the
2CT model is the appropriate limit of the 2CX model for weakly
vascularized and highly perfused tissue.

6.2 MODEL FITTING AND IMPLEMENTATION

To estimate model parameters from concentrations ¢,(t), ¢;(t)
measured in arterial blood and tissue, several approaches are
teasible. The differential equations (5.3), (5.10) defining the model
can be solved directly e.g. with a Kutta-Merson algorithm as in
[85], or they can be solved analytically. A widely used approach
for the estimation of model parameters from measured concentra-
tions ¢,(t), ¢¢(t) is non-linear least squares fitting [86, 87]. Here, a
set of initial parameters and the arterial concentration are used to
calculate the right-hand side of equation (5.1). Subsequently, the
outcome of this calculation is compared to the measured tissue
concentration using an appropriate estimator, usually the sum of
squared residuals. In subsequent steps, the initial parameters are
adapted iteratively, until the difference between the calculated
and measured tissue concentrations is minimized or satisfies
another appropriate stopping criterion.
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6.2.1 Discrete convolution

Calculating the tissue concentrations using a model with a mono-
or biexponential residue function frequently requires the nu-
merical calculation of the convolution of an exponential with a
discrete function. An iterative formulation of this time-consuming
operation is described below.

The convolution of two functions f(t), ¢(f) which are defined
for positive values of ¢, is defined as

(Fog)(t /ft—r T)dt 6.7)
0

In the context of model fitting, one of these functions is often
provided as a discrete function c,(t;), measured at time points
ti, i € [0,n] spaced equidistantly with the distance At, while the
other function is an exponential e~*. With the abbreviations

At =t 1 —t (6.8)
_ Caltiv1) — ca(ti)

the linear interpolation of ¢,(T) becomes
ca(T) = ca(ty) +m- (T —1;) (6.10)

and the convolution then has the form

/drca Alti=7) (6.11)
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If Y(t;) is given, Y (t;;1) can be calculated as:

ti+1
Y(ti+1): /dTCa(T)g_(tiH—T)/\

ki tit1
:/drcu(r)e_('")—i—/chu(T)e_("')
ti

tit1
= /drcu Mo (li—tittiv)A /cha(T)e_(“')
b
tiv1
—/drcu ~(EmTA =t —h) +/drcu =)
ti
tita

— p—(ta—H)A Y(H) + / drca(r)e_(tiH_T)/\
(6.12)

With this iterative formula, the discrete convolution (6.11) can
be calculated from the starting point Y (tp) = 0 if the last integral,
further denoted by I, in eq. (6.12) can be determined. With Egs.
(6.8) and (6.10), I can be calculated easily as

tir1 tiv1
[ = e tinh /d'r(ca(ti) — mt;)e™ + / drmte™
ti t

_ Calt) =mbi g -aary 5 [t =D —e g - 1)

A
(6.13)
Thus, to calculate the convolution of an exponential with a dis-

cretely sampled function c,(;), we can use the following iterative
formula:

Y(to) =0 (6.14)
Y(tis1) = e MY (H)
n Ca(ti)A_ mt; (1= A8t

+ 15 | (M = 1) =¥ (At = 1) (6.15)

A basic implementation of this algorithm in the popular open
source language Python might look like this:

def convolution_w_exp(time, aif, tau):

returns the convolution of aif with an exponential
with time constant lam=1/tau.
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lam=1./tau
y=zeros_like(aif)

t=time
x=aif
for i in range(1,len(y)):
dt=t[i]-t[i-1]
edt=exp(-lamxdt)
m=(x[1i]-x[i-1])/dt
y[i]=edt*xy[i-1]
+(X[1-1]-mxt[i-1])/lam*(1l-edt)
+m/lam/lamx ( (lamxt[i]-1)-edt*(lamxt[i-1]-1))
return y

J

This code obviously is not optimized for speed and relies on
proper calling from the fit algorithm, since it does not perform
any input checking. If the code is used in this form, it is imper-
ative that the fit algorithm is constrained to use only non-zero
values of T — if it is called with T = 0, it will instantly crash.

6.2.2  The multimodel interface in PMI

In the course of this work, automatic model selection has been
used both in studies with measured and with simulated data.
The analysis of measured data has been performed with our own,
in-house written software PMI 0.3 and 0.4 [88], written in IDL. To
facilitate straightforward evaluation of multiple models and the
selection of the most appropriate model in PMI with measured
data, a plugin for PMI was developed that allows the fitting of a
range of models to given data. Fig. 22 shows a screenshot of this
multimodel interface, with data from a contrast-enhancing MS
lesion.

Model fitting with this interface requires that the data has been
imported into PMI and an arterial as well as a tissue region have
been defined. For partial volume correction of the AIF (see 6.3),
a venous region is required as well. Once this is accomplished,
the multimodel interface can be started. The first step in quan-
tification is the selection of arterial and tissue regions with the
corresponding drop-down menues. For the determination of the
AIF, the length of the baseline and the hematocrit need to be
provided. If the AIF is to be corrected for partial volume effects,
the apparent plasma volume in a large vein can be provided.

In the next step, the method for the approximation of contrast
agent concentration needs to be selected, various fit options (delay
between arterial and tissue curve, parameter constraints) can be
checked as well.

After these preprocessing steps, the model that is to be fitted
can be chosen; the model menue includes 2CX, 2CU, 2CT and
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Figure 22: Screenshot of the multimodel interface in PMI

simpler models (see Fig. 22), as well as an option best model. If
best model is selected, all models are fitted to the data, and the
Akaike weights are determined.

After a successful fit, the tissue concentration curve is displayed
along with the model fit, on the right hand side of the window,
the parameter estimates are shown. The parameter estimates as
well as the data (i. e. time axis, arterial input function, tissue curve
and model fit) can be exported as a .csv file, allowing further
processing e. g.in spreadsheet software.

63 MEASUREMENT OF THE ARTERIAL INPUT FUNCTION

A quantitative measurement of perfusion requires not only the
concentration-time course in tissue, but also the concentration-
time course in an artery supplying the tissue, commonly called
the arterial input function (AIF) (see Ch. 5). Although the determi-
nation of the AIF is generally much simpler in DCE MRI than in
DSC MRI, care must be taken to avoid errors that would directly
enter into the quantification.

INFLOW EFFECTS A common problem with the measurement
of the AIF is that flowing spins, carried to the imaging slice or
slab by arterial blood, have not yet reached a steady state when
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Figure 23: Axial slices from caudal (1) to cranial (6), taken from a 3D
perfusion measurement before the arrival of contrast agent.
Note the gradually decreasing signal intensity in the internal
carotid arteries (arrows) that can be attributed to the inflow
effect, which completely vanishes in the most cranial slice

they arrive at the site where the AIF is measured. This results in a
large signal enhancement of the arterial lumen; larger vessels that
suffer from inflow effects appear bright in T;-weighted images
even if no contrast agent is present. This is demonstrated in Fig.
23.

The amount of inflow effects depends on the number of excita-
tion pulses that the spins experienced (and thus the speed with
which the flow into the imaging slice or slab occurs) as well as on
sequence parameters like the flip angle and repetition time ([29],
Ch. 24). The increased signal that arises due to flowing blood
mimics the effects of higher relaxation rate Ry, hence, the mea-
surement of the arterial contrast agent concentration is severely
compromised in the presence of inflow effects.

The inflow effect is smaller when smaller flip angles are em-
ployed, this, in combination with non-selective inversion or satu-
ration pulses is the common strategy to minimize inflow effects
with 2D acquisitions [43].

When a 3D acquisition is used, the imaging slab usually can
be positioned in such a way, that inflowing spins in a major
artery travel a sufficient distance in the slab so that they have
reached a steady state when they arrive at the site where the
AIF is measured. This is illustrated in Fig. 23, here, the AIF was
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measured not in the carotid arteries, but in the middle cerebral
artery.

PARTIAL VOLUME EFFECTS Another problem can arise when
only arteries with a diameter of the order of the spatial resolution
of the measurement are available for an AIF measurement. In this
case, the arterial signal is most likely underestimated through
the contributions of the vessel wall or surrounding tissue. With
the assumption that the amount of tracer in the tissue causing
the partial volume effect is negligible compared to the amount of
tracer in the arterial lumen, the measured arterial input function
i (t) is then simply p - ¢,(t), with 0 < p < 1.

Since quantification of hemodynamics relies on the basic equa-
tion of tracer kinetics (5.1), the underestimation of the AIF due
to partial volume effects would lead to overestimation of the
hemodynamic parameters and hence needs to be corrected for.

The value of p can be determined with a reference measure-
ment in a large vessel [49], where a voxel can be found that is
completely embedded in the vessel and thus contains only blood
and does not suffer from partial volume effects. In the brain, can-
didate vessels for this purpose are the large veins like the sinus
sagittalis. The assumption underlying the partial volume correc-
tion is that the venous concentration-time course ¢,(t) can be
written as the convolution of the measured arterial concentration
with a probability density function H(t) [89]:

co(t) = H(t) @ ca(t) = p- H(t) @ c7' () (6.16)

If ¢(t) and ¢,(t) have been measured, the impulse response
function IRF = p - H(t) can be determined without additional
assumptions by numerically deconvolving c,(t) with ¢’ (t) with
an appropriate regularization algorithm like generalized cross-
validation [73]. Since H(t) is a probability distribution, the time
integral of H(t) equals 1, so that p can easily be obtained from
the time integral of p - H(#)":

/IRth:/p'H(t)dt:p/H(t)dt:p (6.17)

This approach for partial volume correction is demonstrated in
Fig. 24 for a patient from the study presented in Chapter 7.

Both studies presented in the following two chapters used this
method for partial volume correction, yielding values of p in the

This is mathematically equivalent to the determination of the blood volume
in the vein by deconvolution. Since the arterial concentration is underesti-
mated, the apparent venous blood volume vZ’;p will be estimated higher than
100 ml1/100ml. Since the blood volume in thé venous voxel is assumed to be

Up,, = 100m1/100ml, the partial volume correction factor can be determined as
a
p= vhf;p/vh,v'
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Top: arterial and venous contrast agent concentrations, mea-
sured in a patient from the study presented in Ch. 7. Bottom:
Corresponding impulse response function, determined by
deconvolution of the venous with the arterial concentration.
In this case, the apparent venous blood volume was deter-
mined as Z)Z;;p = 205ml/100ml; the partial volume correction

factor was thus p = 100/205.
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range of 0.40 to 1.0 with a mean value of 0.69 (Chapter 7) and
0.31 to 0.58 with a mean value of 0.43 in the study presented in
Chapter 8. Since the in-plane resolutions in both studies were
comparable, this difference can be explained by the location in
which the arterial input functions were measured: in the tumor
study, the AIF was measured in the comparably large carotid
arteries, whereas the AIF in the MS study was measured in the
middle cerebral artery which has a much smaller diameter.

It should also be mentioned that in the case of very long total
acquisition times TA the effects of delay and dispersion between
arterial and venous contrast agent concentrations play a much
smaller role. The areas under the two curves are then dominated
by the steady-state concentrations in the two regions, and the
contribution of the first-pass peaks of contrast agent to the area
under the curves becomes much smaller. If this is the case, the
value of p can be approximated simply by [90]

S em ()
[ co(t)dt

with the advantage that no numerically involved deconvolution
algorithm is required.

The assumption underlying this approach for partial volume
correction is that the signal enhancement in the arterial voxel is
dominated by the intravascular compartment and that no tracer
accumulates in the perivascular interstitial space during the time
of the measurement. Although we did not observe this in our
study, care must be taken that this assumption is not violated.

p= (6.18)
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QUANTIFICATION OF CEREBRAL PERFUSION
AND PERMEABILITY WITH 2D DCE MRI:
HEMODYNAMICS IN BRAIN TUMORS

This chapter presents a feasibility study, which combined a DCE-
MRI acquisition for the measurement of tracer concentrations
with a two-compartment modeling approach for the quantifica-
tion of intravascular and interstitial hemodynamic parameters in
brain tissue as well as in primary and secondary brain tumors.

For the quantification of cerebral perfusion with bolus track-
ing MRI, dynamic susceptibility (DSC) MRI has long been the
method of choice. DSC MRI employs the strong decrease in signal
intensity that arises if the contrast agent remains intravascular,
so that the signal changes in healthy brain tissue during bolus
passage are large despite the low blood volume in white and gray
matter. DSC MRI, however, suffers from two major limitations if
absolute quantification of cerebral blood flow (CBF) and cerebral
blood volume (CBYV) is to be achieved. The first difficulty arises
in the measurement of the arterial input function (AIF), since
the contrast agent relaxivity differs between blood and tissue;
the ratio of the relaxivities is reflected directly as a scaling error
in quantitative parameter estimates. The second difficulty is im-
posed if the contrast agent does not remain intravascular, but is
able to extravasate into the extracellular, extravascular volume.
This does usually not happen in healthy brain parenchyma, since
the blood-brain barrier effectively confines the contrast agent
molecules to the intravascular volume; if however the integrity
of the BBB is disturbed, which is the case in inflammation or
in tumor blood vessels, the contrast agent may extravasate and
thereby reduce the susceptibility contrast, as well as amplify the
T; effects. If these effects are not corrected for, e. g. with data trun-
cation, gamma variate fitting or modeling approaches, the tracer
concentration may be underestimated or even appear negative,
leading to large errors in quantification.

These two difficulties do not arise when dynamic contrast-
enhanced MRI is used for the dynamic measurement of contrast
agent concentration. The T; relaxivities of contrast agent are es-
sentially equal in arterial blood and in tissue so that the measure-
ment of the arterial input function is less problematic. Moreover,
extravasation of the contrast agent has no detrimental effect on
the contrast mechanism. On the other hand, the T; relaxivity is
smaller by an order of magnitude than the T2 relaxivities, together
with the small cerebral blood volume in brain parenchyma, this
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leads to small signal changes during the passage of the contrast
agent bolus. Since a fast measurement is essential for sufficient
sampling of the bolus passage, the contrast-to-noise ratio in cere-
bral DCE MRI is low, impeding the determination of quantitative
parameters. However, for the purpose of absolute quantification,
DCE MRI may be a more appropriate approach than DSC MRIL

The objective of this study was therefore to evaluate the feasibil-
ity of quantification of cerebral blood flow (CBF), cerebral blood
volume (CBV) and the permeability surface product (PS) as a mea-
sure of BBB leakage by combining dynamic contrast-enhanced
MRI (see Ch. 4) with a robust two-compartment modeling ap-
proach (see Ch. 5), that is applicable both for tissue with intact as
well as with leaking BBB.

The work presented in this chapter has been published previ-

ously in [49].
7.1 MATERIALS AND METHODS

PATIENTS The objective of this study was to investigate the
feasibility of cerebral perfusion quantification with a Tj-weighted
dynamic measurement. Therefore, a heterogeneous patient collec-
tive was included in the study in order to evaluate our approach
in a wide range of physiologic variations. The study was ap-
proved by the institutional review board, informed consent was
obtained from all patients. In the study, 15 patients either with pri-
mary tumors of the brain (n = 4) or cerebral metastases (n = 11)
were examined with DCE MRI. The metastases were produced
by melanomas (n = 2), bronchial carcinomas (n = 4), lung car-
cinomas (n = 3), breast carcinoma (n = 1) and colon carcinoma
(n = 1). Likewise, the treatment history was heterogeneous — four
patients were untreated, all others had either received radiation
therapy, surgery, chemotherapy or a combination thereof.

DATA ACQUISITION The measurements were performed on a
3T system (Magnetom Tim Trio, Siemens Healthcare, Erlangen)
with a standard head coil. Precontrast measurements included
a Tr-weighted FLAIR sequence that was used to determine the
slice positions of the precontrast T; mapping sequence and the
dynamic measurement.

For precontrast T; mapping as well as for the dynamic ac-
quisition, a 2D saturation recovery spoiled gradient echo (Tur-
boFLASH) sequence was used to acquire 6 slices, one of which
was placed through the base of the skull to measure the arterial
input function, the other five slices were cranial of the first to
achieve optimal coverage of the lesion (or, if present, multiple
lesions), as well as contralateral white and grey matter. The se-
quence parameters for both sequences are shown in Table 2; both
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Table 2: Parameters used for the dynamic acquisition and precontrast

T1 mapping.
Sequence parameters
matrix size 128 x 128
FOV 240 x 240 mm?
in-plane resolution 1.875 x 1.875 mm?
slice thickness 3.5mm

phase encoding steps 96

TE/TR 1.34/2.6 ms
bandwidth 735Hz/px
flip angle 15°

sequences were accelerated using GRAPPA with an acceleration
factor of 2 and 24 reference lines. For precontrast T1 mapping, 17
saturation recovery times in the range of 70 ms to five seconds
were used, the number of averages was increased for the short
saturation recovery times, the total acquisition time for the T;
measurement was 3 minutes. For the dynamic acquisition a fixed
saturation recovery time of 120 ms was used, so that six slices
could be acquired every 1.34s.

For the administration of contrast agent we used a dual bolus
protocol, injecting two half (0.05mmol/kg body weight) doses
of Gd-DTPA (Magnevist, Bayer Schering) intravenously at a rate
of 3ml/s, separated by 60 seconds in order to reduce the peak
concentration during the first pass of contrast agent without
sacrificing the effect of a full dose of contrast agent at late phases.

POST-PROCESSING  All image data were processed using our
in-house written software PMI 0.3. After import of the dynamic
data, a map of the precontrast signal So was calculated as the
mean of the first 15-20 (depending on the arrival time of con-
trast agent) frames. The background was segmented out using a
manually defined threshold on Sy, for all further processing the
background was excluded to speed up the calculations. In the
next step, the signal enhancement S(t;) — So was calculated for
each pixel and each time point ¢;; from the signal enhancement
curves, the area under the curve (AUC) was calculated on the
pixel level using trapezoidal integration. The resulting AUC map
was used to identify and define the following regions of interest:

¢ The six pixels with the highest AUC values in the internal
carotid arteries (ICA), for the measurement of the arterial in-
put function. The ICAs were delineated by circular regions
drawn in the most caudal slice; to assess the reproducibility
of this approach, this step was performed twice by two
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independent observers (Steven Sourbron and Michael In-

grisch).

* A venous voxel, identified as the voxel with the highest
AUC value in the sinus sagittalis.

A map of the precontrast relaxation rate Rjp was calculated
pixel-wise by fitting a monoexponential describing the signal as a
function of the saturation recovery time Ts and Ry (see Eq. (4.12))
to the data acquired with variable saturation recovery times Ts.

The arterial input function was corrected for partial volume
effects as described in Ch. 6.3. To derive the concentration in
blood plasma, the AIF was rescaled with 1/(1 — hct); a fixed
value hct = 0.45 was assumed for the hematocrit, since individual
values were not available.

To facilitate a more reproducible definition of regions of in-
terest in lesions, maps of plasma flow Fp, plasma volume vp
and the permeability surface area product PS were calculated
by pixel-wise fitting of the uptake model (see 5.2.2) to the signal
enhancement curves. Subsequently, a region of interest covering
the lesion was drawn manually on the PS map; to exclude areas
of necrosis and large blood vessels, the region was superposed
on the Fp map and, if necessary, modified.

In the contralateral hemisphere, circular white matter (WM)
and grey matter (GM) regions were drawn on the baseline (So)
map; again the regions were superposed on the Fp map and, if
necessary for the exclusion of large vessels, modified.

Once all regions in the dataset were defined, signal enhance-
ment curves for each region were calculated by averaging the
values of all pixels contained in the region. Quantitative values
of the hemodynamic parameters in each region were determined
by fitting both the two-compartment uptake (sec. 5.2.2) and the
two-compartment exchange model (sec. 5.2.1) to the signal en-
hancement curve; the Akaike Information criterion (sec. 6.1.1)
was used to determine which of the two models was most ap-
propriate for the data; model selection was verified by visual
inspection of the fit. Model fitting was performed using an im-
plementation of a nonlinear least-squares Levenberg-Marquardt
algorithm (MPFIT [87]) with default values for the number of iter-
ations and convergence thresholds, no constraints or limits were
imposed on the parameters. The initial values for the fit were
kept fixed at Fp = 120ml1/100ml/min, PS = 12ml/100ml/min,
vp = 10% and vg = 20 %.

SIMULATIONS To investigate the effect of the temporal reso-
lution and CNR on estimates of the hemodynamic parameters,
a simulation study was set up. An arterial input function (AIF)
was generated as a sum of gamma variate functions and a mo-
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noexponential recirculation. To create a double-bolus AIF, the
single-bolus AIF was copied, shifted by 60 seconds and added
to the original AIF. All parameters were adjusted so that the
AIF resembled a typical measured arterial input function. With
this AIF, synthetic grey and white matter tissue curves were
calculated with a one-compartment model, characterized by a
mono-exponential residue function; for CBF and CBV in both
tissue types, the mean values measured in the patient population
were used (WM /GM: CBF 82/23 ml/100ml/min, CBV 2.6/1.3
ml/100ml). All synthetic data were generated with a temporal
resolution of 0.01s.

To estimate CNR in a representative measured dataset, the
2CU model was fit to the WM and GM curves and the fit was
subtracted from the data to obtain the approximate distribution of
noise. From the standard deviation of the noise and the maximal
signal of the WM and GM curves, the CNR was estimated at 4.1
for white matter and 6.1 for grey matter; the CNR of the AIF was
estimated from the same dataset at a very high value of 130.

To simulate the measurement process, the synthetic AIF and
tissue curves were sampled with a time resolution of dt = 1.34s;
to suppress artificial oscillations, the starting point o was chosen
randomly in the interval [0,dt] . Normally distributed noise with
the corresponding standard deviation (see above) was added to
the curves.

The 2CU model was fitted to the simulated WM and GM curve,
producing estimates of CBF, CBV and PS. These steps of “mea-
surement” and data fitting were repeated 10° times; subsequently,
histograms as well as mean, standard deviation and main per-
centiles of each parameter were calculated. These simulations
were repeated with a fivefold increase in CNR to investigate the
effects of sequence optimization; moreover, the effect of temporal
resolution and CNR on parameter estimates was investigated
by repeating the simulations with variable temporal resolutions
between 0.2s and 10s and variable CNR between 1 and 20.

7.2 RESULTS

MEASUREMENTS  All measurements could be performed with-
out complications; in two patients, no white and grey matter
lesions were defined, since the lesions and therefore the slices
were located in the cerebellum. The AIF definition approach
proved to be reproducible, both observers selected exactly the
same arterial pixels in all datasets.

Fig. 25 shows maps of AUC in the slices where the arterial and
venous regions were defined. The internal carotid arteries as well
as the sinus sagittalis could always be easily identified on maps
of AUC. The partial volume correction is demonstrated for the

85



86

HEMODYNAMICS IN BRAIN TUMORS

Figure 25: This figure illustrates the definition of arterial and venous
regions on maps of AUC. Arteries and veins can easily be
identified as regions with high values of AUC.

Table 3: Average T; estimates from all patients in our study, all values
are given in ms

REGION MEAN(STD. DEV.) RANGE
Blood 2070(196) 1789 — 2535
White matter 957(68) 884 — 1067
Grey matter  1414(241) 1080 — 1850
Tumor 1733(411) 1020 — 2882

same dataset in Fig. 24; partial volume correction factors were in
a wide range between 0.40 to 1.0, with mean 0.69 and standard
deviation o.20.

Figure 26 shows a typical result of the precontrast Ry mea-
surement. In the T} map, white and grey matter appear well
differentiated; no outliers can be observed. On the region of in-
terest level, all tissue regions with the exception of the arterial
region are well described by the monoexponential model.

T; estimates for venous blood, white matter, grey matter and
tumor tissue are shown in Table 3; the T; values measured in the
sinus, in white matter and in gray matter are close to literature
values [91, 92].

Figure 27 shows a representative result of the pixel-wise anal-
ysis in a patient with a metastasis of a melanoma, obtained by
fitting the two-compartment uptake model to each single pixel
curve. PS is close to zero in all regions with healthy brain tissue,
and distinctly demarcates contrast-enhancing lesions. CBV values
in white and grey matter are in the appropriate range, whereas
CBF appears to be higher in brain parenchyma than in the lesion.
In general, lesions could be most readily identified on the PS
maps and were also visible on CBV and CBF maps.

A quantitative analysis is shown in Fig. 28. The arterial input
function (not shown) is similar to the arterial input function in



7.2 RESULTS

2700ms

500 500
400

400

300 300

Signal increase (a.u.)
Signal increase (a.u.)

100 - WM 100 o Vein
N GM N Artery
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Tlincrease (ms) Tlincrease (ms)

Figure 26: Representative T; measurement. Top: T; map showing a
large tumor in the right hemisphere, bottom left: quantitative
T estimations on the ROI level in WM (923ms)and GM
(1506ms), bottom right: T; estimations in the sinus sagittalis
(2134ms) and in the artery (1126ms).
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Figure 27: Parameter maps of CBF (median-filtered), CBV and PS
in the same slice as Fig. 26, calculated with the two-
compartment uptake model. Bottom right: high resolution
contrast-enhanced T;-weighted image at approximately the
same slice position. The lesion, a metastasis of a melanoma,
is easy to identify on the PS map and shows increased CBV.
Singular outliers are visible on CBV and PS maps, the CBF
map suffers from strong artifacts.
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Figure 28: Quantitative analysis on the region level in a patient with

multiple metastases of a small cell lung carcinoma. Top:
Maps of blood volume and permeability surface area product.

Second row: fits of the 2CU model to white matter (left) and
grey matter (right). Third row: fits of the 2CU and 2CX
models to two lesion curves, the position of the lesions is
indicated on the PS map. Bottom row: parameter estimates
for all four curves, the estimates of the lesion curves were
obtained with the 2CX model
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Table 4: Mean values and standard deviations of all parameters mea-
sured in tissue and tumor regions.

Parameter Lesion White matter ~Grey matter
CBF [ml/100ml/min]  42(40) 23(14) 82(21)
CBV [ml/100ml] 8.9(11) 1.3(0.4) 2.6(0.8)
Tp [s] 12(12) 44(2.2) 2.1(1.1)
PS [ml/100ml/min]  2.3(2.2) —0.03(0.08) —0.009(0.05)
vg [ml/100ml] 8.2(4.3) n/a n/a

Fig. 24 and clearly shows the two half-dose injections, each first
pass peak is followed by the second pass of the contrast agent.
The same form of the curve with substantially more noise can be
observed in the white and grey matter regions; the 2CU model
provided a good fit to the data obtained in all regions in normal
appearing brain tissue, yielding a value of PS close to zero. In
tumor regions, the two injections typically resulted in a “two step”
form of the curve. The two steep increases were contributed by
the vascular phase, followed by a slow increase corresponding to
the uptake phase and, in some cases, by a washout phase with
decreasing signal intensity. The 2CU model provided a close, but
not perfect fit to the data, in most cases, the 2CU model showed a
tendency to “oversmooth” the steep increases during the vascular
phase. This tendency could not be observed when the 2CX model
was used; generally, the 2CX model provided a better fit to the
data. One exception was a region in a periventricular cerebral
lymphoma; here, no washout was observed and the 2CX model
did not improve the fit. Correspondingly, the AIC selected the
2CU model as the best model for this region.

An overview about the three parameters that could be mea-
sured with both models in all regions is presented in Fig. 29; the
mean values and standard deviations of these parameters in all
regions is shown in Table 4 .

SIMULATIONS Histograms of the parameter estimates for white
and grey matter from the simulations are shown in figure 30.
Open symbols display results for dt and CNR as in the patient
data, closed symbols represent results from the simulations with
a fivefold increase in CNR. A strong overlap of CBF estimates be-
tween WM and GM can be observed for the low CNR; increasing
CNR by a factor of 5 leads to complete separation between both
tissue types.

The effects of variation in CNR and dt are illustrated in figure
31. Changes in CNR and dt appear to have little effect on the
bias of the results, but both reduction of CNR and increase of dt
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Figure 29: Scatter plots of parameter estimates in tumors (black dia-
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squares). Top: Plot of the vascular parameters CBV and CBF,
bottom: permeability surface area product plotted against
CBF, demonstrating the clear separation of tumors from
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Figure 30: Simulation results - Histograms of CBF, CBV and PS esti-
mates for white and grey matter showing the distribution
of parameter estimates for two different CNRs. The overlap
between WM and GM that can be observed for the low CNR
vanishes completely if CNR is increased by a factor of five.
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Figure 31: Simulation results demonstrating the effects of varying CNR
and dt on the distribution of CBE. The filled triangle repre-
sents values of CNR and dt that are similar to the measured
GM data. Decreasing dt or CNR severely reduce precision;
on the other hand precision can be increased effectively by
increasing CNR.

lead to a severe loss of precision. Moreover, figure 31 illustrates
that the precision of the measurement can be improved more
effectively by increasing CNR than by further reducing dt. A
fivefold increase of CNR reduces the standard deviation of CBF
from 21 ml/100ml/min to 3.9 ml/100ml/min, whereas a fivefold
reduction of dt leads only to a reduction of the standard deviation
to 8.5ml/100ml/min.*

7.3 DISCUSSION

TRACER KINETIC MODELING The 2CU model was able to
accurately describe all curves that were measured in normal
brain tissue and yielded a vanishing permeability surface area
product. This indicates that the assumption that the vascular
space can be described by a compartment (i. e. is well mixed) is
valid and appropriate for brain tissue. It may be argued that a
one-compartment model may suffice for the description of health
brain tissue and should be included in the set of models, since
the 2CU model yields values of PS close to zero (see Table 4) and
thus effectively reduces to a one-compartment model. However,
the inclusion of the “uptake” compartment and the resulting
additional parameter PS does not lead to numerical instability,
so that neglecting the one-compartment appears justified. This
is also indicated by the high precision of PS in the simulation
results (Fig. 30).

In MR, a fivefold increase in CNR can in general not be achieved by a fivefold
reduction of dt. The exact dependence of CNR on dt depends to a large extent on
the pulse sequence and acceleration schemes, but generally speaking, a fivefold
increase of CNR would require approximately a twenty-fivefold reduction of
dt.
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In tumor regions, where a leaking blood-brain barrier can be
assumed, the 2CX model was superior to the uptake model for
most curves. This indicates that the assumption of small intersti-
tial concentration and negligible backflow which defines the 2CU
model does not hold for the long measurement times that were
used in our study — instead, in late phases of the measurement,
the interstitial concentration has increased to a degree where this
assumption no longer holds, thereby rendering the 2CU model
invalid. Dropping this assumption leads to the more general 2CX
model, which describes the observed curves better and yields an
additional parameter, the volume of the interstitial space vg. The
results indicate the validity of our modeling approach, in partic-
ular the restriction to two compartments and the assumption of
well-mixedness in each compartment.

The two-compartment models form a promising alternative
to the deconvolution approach that was used in [47]. A decon-
volution analysis yields only two independent parameters, e.g.
CBF and the volume of distribution. The volume of distribution
is equal to the plasma volume if the blood-brain barrier is intact,
but, if blood-brain barrier is ruptured and contrast agent can
extravasate into the interstitial space, the volume of distribution
equals the entire extracellular space. Hence, the interpretation of
a deconvolution analysis requires additional knowledge of the
status of the blood-brain barrier. This additional information is
not necessary when a two-compartment model such as the 2CU
or 2CX model can be employed, since both models character-
ize perfusion and permeability separately — a one-compartment
analysis, on the other hand, gives rise to the same interpretation
difficulties as a deconvolution approach.

In conditions with low CNR, model-free deconvolution without
constraints on the residue function produces parameter estimates
with low accuracy [71]. In [47], this problem has been addressed
by imposing additional constraints on the form of the residue
function, however, the number of degrees of freedom in a decon-
volution approach is by far greater than in a modeling approach
— the solutions of the 2CX and 2CU model have only four and
three degrees of freedom, respectively. It can be assumed that
this reduction of the degrees of freedom increases the numerical
stability; this issue may be investigated in further simulation
studies.

ACCURACY AND PRECISION The mean values of grey matter
CBF measured in our study appear reasonable; PET studies have
reported lower [36] as well as higher [93] values for CBF in normal
volunteers. This variability may be explained by variations in the
exact placement of the regions of interest. Our estimates for CBV
appear reasonable and are in the range of 2 — 5% that has been
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reported for ex-vivo studies in [94], but PET values have been
reported higher [36]. This observation may be due to the fact that
our data were not measured in healthy volunteers; on the other
hand, it is not unlikely that cerebral blood vessels in the PET
scans have contributed to increased CBV through partial volume
effects. In our data, the high in-plane resolution and careful ROI
definition might have aided to reduce partial volume effects of
blood vessels, thereby reducing the overall GM CBV.

Overall, our CBF and CBV estimates in white and grey matter
are in the right order of magnitude. Although systematic errors
can not be ruled out completely, our results warrant further
studies.

Simulations as well as patient data show that CBF is the pa-
rameter with the highest variation, to the point that CBF does
not reliably differentiate between white and grey matter (see Fig.
29). The simulation results also indicate that an increase of CNR
markedly increases the precision of the CBF estimates, provid-
ing complete separation of white and grey matter for a fivefold
increase of CNR.

We also observed a higher standard deviation of CBV in the
patient data than in the simulations (0.8 vs. 0.1 for GM and
0.4 vs. 0.07 for WM). This can be attributed to two facts: firstly,
a certain deviation in the placement of the regions of interest
cannot be avoided; secondly, the observed high variability in
CBV estimates probably reflects the heterogeneity in our patient
population; since most of the patients underwent some form of
therapy, brain tissue perfusion is likely to vary in a wider range
than in a collective of healthy volunteers.

All perfusion and permeability metrics in tumors cover a wide
range (see table 4), this is likely a consequence of the hetero-
geneity of our patient collective, both with respect to tumor type
and to therapy. The range of extracellular, extravascular volume
measurements is in good agreement with estimates (4 — 12%)for
typical tissue types [94]. The overall mean CBV value in tumors
is higher than in white and grey matter, so that one might expect
increased robustness of perfusion quantification due to the higher
tissue concentrations. Interestingly, not all lesions are highly vas-
cularized: in some lesions, we observed CBV estimates that are
comparable to white matter CBV (see Fig. 29); this indicates that
high accuracy is necessary e.g.to reliably differentiate tumor
recurrence from pure radiation effects.

PROTOCOL OPTIMIZATION For any given spatial coverage,
protocol optimization is a matter of balancing the spatial res-
olution against the temporal resolution (dt) and CNR. For the
method presented in this work, an upper limit on the spatial
resolution is imposed by the necessity to measure the venous
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concentration, the spatial resolution needs to be chosen so that
a pixel that is completely embedded into a vein can always be
found.

It is generally appreciated that the choice of the temporal
resolution is a major issue in perfusion quantification. The pre-
dominant assumption is that the temporal resolution should be
faster than the mean transit time in the tissue; in [38], a temporal
resolution faster than 1.5s in the brain is recommended. However,
accurate CBF values for dt values longer than typical transit times
have also been reported [52]. Fig. 31 illustrates this issue — firstly,
the figure shows that an increase of dt does not increase the bias
of CBE, but only the variance, so that accurate CBF estimates are
still feasible with high values of dt. Moreover, the figure shows
that no clear transition in the precision of parameter estimates
occurs around the mean transit time of the tissue (1.9 seconds in
this example).

The conclusion that can be drawn from this simulation is that
the mean transit time does not provide a fundamental limit for
the temporal resolution, instead, df should be minimized as far
as possible. Since in MRI a higher temporal resolution dt leads
generally to a decrease of CNR, a reasonable trade-off of this two
measures should be found. Our results indicate, that it may be
advantageous to sacrifice temporal resolution for an increase of
CNR; the simulation results presented in Fig. 30 show that an
increase of CNR has a strong effect on the precision of parameter
estimates.

The six slice 2D acquisition is a major limitation of our study.
It is not possible to cover the whole brain, and, since only five
slices are available to position over lesions, large gaps are the
inevitable result. This imposes strong limitations if the objective
of the measurement is either the evaluation of multiple lesions
such as metastases or multiple sclerosis plaques, or if the loca-
tion of the lesions cannot be determined on precontrast images.
Furthermore, a reproducible slice positioning, which is a prereq-
uisite for longitudinal studies, is difficult to achieve, in particular
if the morphology of the lesions of interest changes between
consecutive investigations. A viable alternative to multi-slice 2D
acquisitions may be to employ a 3D sequence for the acquisi-
tion. With the arrival of sophisticated acceleration schemes like
parallel imaging and view sharing in clinical routine, sufficient
temporal resolutions for perfusion quantification have become
feasible. 3D sequences provide intrinsically higher CNR and have
the additional advantage that no preparation pulse is necessary
for the measurement.

CONCLUSION In this study, we have investigated the feasibility
of a T1-weighted perfusion measurement for the assessment of
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cerebral hemodynamics. For the quantification of hemodynamics,
we have presented a compartment modeling approach that i)
allows for clear separation of perfusion and permeability met-
rics and ii) is valid both for tissues with intact and with leaking
blood-brain barrier. On the pixel level, the precision of parameter
estimates, in particular of CBF, was low and insufficient for accu-
rate quantification; our simulations indicate that this problem can
be addressed with an increase of CNR. On the region-of-interest
level, however, we found that our parameter estimates are in good
agreement with reference values. In conclusion, DCE MRI may
be a suitable alternative to the established DSC measurements, in
particular, since the measurement of an arterial input function is
straightforward and blood-brain barrier leakage does not impose
a fundamental constraint on the quantification.
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QUANTIFICATION OF CEREBRAL
HEMODYNAMICS IN MULTIPLE SCLEROSIS:
DCE MRI IN 3D AT 3T

In our initial study (Ch. 7), we were able to demonstrate the
feasibility of the quantification of cerebral hemodynamics with T7-
weighted DCE MRI with a 2D acquisition. The restriction to only
few slices and the ensuing incomplete coverage of the brain was
identified to be a main limitation of the measurement approach,
hindering the characterization of multiple lesions as well as the
assessment of lesion evolution by longitudinal measurements.
For these purposes, a 3D acquisition with full coverage of the
brain would be desirable.

The quantification of cerebral hemodynamics requires a dy-
namic acquisition with sufficiently high spatial and temporal
resolution and contrast-to-noise ratio. To satisfy these demands
with a 3D measurement providing large spatial coverage, the use
of modern imaging techniques such as parallel imaging and view
sharing is mandatory.

MULTIPLE SCLEROSIS In this study, a collective of patients
with multiple sclerosis (MS) was investigated. MS is a chronic, in-
flammatory, demyelinating disease of the central nervous system
that is characterized by the presence of multiple lesions, mostly lo-
cated in normal-appearing white matter (NAWM). These lesions
are typically in variable states of inflammatory activity, ranging
from chronic lesions without inflammation to active lesions with
high inflammatory activity. An active lesion is characterized by
acute inflammation and consequently exhibits increased CBV
and a breakdown of the blood-brain barrier (BBB). This lesional
inflammation is usually assessed as focal enhancement in Tj-
weighted imaging after administration of contrast agent[25, 95].
This approach, however, yields only binary information about
the state of inflammation, at most, lesional activity can be graded
e.g.as “weak enhancement” or “strong enhancement”. Addition-
ally, the degree of enhancement in a lesion does not only depend
on physiological parameters such increased vascularity or BBB
leakage, but also on a range of experimental parameters such as
the type and dosage of contrast agent, the delay between contrast
agent administration and imaging and various MRI acquisition
parameters [96, 97]. The assessment of quantitative and physio-
logic hemodynamic parameters such as CBF, CBV and PS may
allow for a more fine-grained assessment of inflammatory activity.
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Changes in perfusion are known to precede the development of
BBB leakage in an active lesion by several weeks [98] and are
thus assumed to form an early step in the development of a
new lesion. Moreover, several studies [41, 99—102] have reported
reduced perfusion in NAWM in patients with MS.

For the assessment of lesional hemodynamics, both a high
spatial resolution and a large spatial coverage of the DCE MRI
measurement are required — in particular, if the characterization
of contrast-enhancing (CE) lesions is desired, since it cannot
be decided on pre-contrast images, whether a lesion will show
contrast enhancement or not. To fulfill these demands on the DCE
MRI acquisition, a 3D acquisition can be employed. Sufficient
temporal resolution of the measurement can be achieved with
advanced acceleration schemes such as parallel imaging or view
sharing. On the post-processing level, the issue of low CNR can be
addressed with quantification algorithms that reduce the number
of free parameters, either by introducing additional constraints
on the residue function [47, 48], or by modeling approaches such
as in Chapters 5 and 7.

The purpose of the study presented in this chapter was there-
fore to evaluate the feasibility of a 3D DCE MRI measurement
with coverage of the entire brain for the quantification of cerebral
hemodynamics in patients with MS. At the time of writing this
thesis, the work presented in this chapter has been accepted for
publication in Investigative Radiology.

8.1 MATERIALS AND METHODS

PATIENTS 19 consecutive patients (12 female, 7 male) with
clinically definite MS of both who were scheduled for regular
MRI were included in the study. No further exclusion criteria
were defined, since this study was defined as a feasibility study. In
particular, all subtypes of MS (relapsing-remitting (RR), primary-
progressive (PP) and singular-progressive (SP)) were included.
An overview about the clinical data of the patients is given in
Table 5. With one exception (patient #15, who received interferon
therapy), no patients received therapy at the time of the study.
The median age of the patients was 35 (range 18 to 61 years). The
institutional review board approved of the study, and informed
consent was obtained from each patient.

MR IMAGING The imaging protocol included pre-contrast T-
weighted and fluid-attenuated inversion recovery (FLAIR) imag-
ing as well as post-contrast Tj-weighted imaging. All measure-
ments were performed on a clinical 3T scanner (Magnetom Verio,
Siemens Healthcare, Erlangen, Germany). The number of CE
lesions was determined on conventional T;-weighted contrast-



Table 5: Clinical data of the patients included in the study

ID AGE DISEASE DURATION OF DIS- RELAPSE AT EDSS NUMBER OF CE NUMBER OF
TYPE EASE IN MONTHS  TIME OF STUDY LESIONS FLAIR-LESIONS

1 20 RR 2 y 1 1 20
2 47 RR 48 n 2 0 57
3 28 RR 6 n 2 20 129
4 35 RR 204 n 2 2 117
5 27 RR 4 n 0 0 7
6 18 RR 4 n o 2 28
7 61 sp 132 n 4 0 73
8 138 RR 17 n 2.5 0 62
9 39 RR 5 n 2 0 48
10 33 RR 132 y 3.5 6 107
11 47 RR 11 n 3.5 0 3
12 24 RR 96 n 1 2 101
13 22 RR 6 n 1 2 57
14 57 RR 48 n 2 0 39
15 38 RR 24 n 1 0 65
16 35 RR 4 n 1 0 2
17 44 SP 336 y 4 1 75
18 23 RR 13 n 1.5 0 36
19 28 RR 156 y 4 15 101
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Table 6: Sequence parameters of the 3D DCE MRI acquisition

SEQUENCE PARAMETERS

matrix size 128 x 104 x 44
field of view 220 x 178 mm?
in-plane resolution 1.7 x 1.7 mm?
slice thickness 3.0mm
TE/TR 0.86/2.29 ms
flip angle 19°
bandwidth 1220 Hz /px

TWIST acceleration pA = 0.25,pB = 0.22

enhanced images, the T lesion load was assessed as the number
of hyperintense lesions on FLAIR images.

DCE MRI ACQUISITION For the dynamic acquisition, a time-
resolved 3D spoiled gradient echo sequence providing coverage
of the entire brain was optimized to achieve sufficient spatial and
temporal resolution for bolus-tracking MRI. For this purpose,
the sequence was accelerated using parallel imaging with an
acceleration factor of 2, 24 reference lines were acquired. Further
acceleration was achieved through TWIST view-sharing (see 4.3.1)
with pA = 0.25 and pB = 0.22. Sequence parameters are sum-
marized in table 6. With this sequence, a volume consisting of
44 slices with an in-plane resolution of 1.7 x 1.7 mm? and a slice
thickness of 3 mm covering the whole brain could be acquired
every 2.1s. In total, 200 volumes were acquired, resulting in a
total measurement time of seven minutes.

The sequence was started 10s prior to injection of a standard
dose (0.1 mmol/kg body weight) of gadobutrol (Gadovist, Bayer
Schering). To minimize the risk of signal saturation in the arteries
during the first pass of the contrast agent and to reduce sampling
errors in the arterial input function[61], the same double-bolus
administration scheme as in chapter 7 was used. The contrast
agent was administered in two half dose injections with a flow of
3ml/s separated by 60s, each injection was followed by a 30ml
flush of saline with the same flow.

After completion of the dynamic measurement, standard diag-
nostic Ti-weighted contrast-enhanced images were acquired.

POST PROCESSING The data were transferred to a separate
workstation and analyzed with in-house written software (PMI
0.4 [88]). A map of the baseline signal Sy was calculated by
averaging over all time points before the arrival of contrast agent
in the arteries. This map was used to define regions of interest



8.2 RESULTS

in periventricular normal appearing white matter (NAWM) and,
in 13 patients, in non-enhancing (NE) white matter lesions after
visual co-registration with the FLAIR images.

In contrast to the previous study, the arterial input function
was not measured in the internal carotid arteries, but in the
middle cerebral artery (MCA) to minimize the influence of the
inflow effect. A region was manually defined that covered large
parts of the MCA; in this region, the six pixels with the largest
area under the curve (AUC) were automatically selected. After
averaging the signal intensities in these pixels for each time point,
the arterial plasma concentration was approximated using the
absolute signal enhancement as

ca(t) = (S(t) — So)/ (1 — hct) (8.1)
where hct is the hematocrit value, 5(t) the averaged signal inten-
sity in the six MCA pixels at time ¢ and Sy the averaged baseline
signal intensity. Since individual values of the hematocrit value
were not available, a fixed value of hct = 0.45 was used through-
out the study. The AIF was corrected for partial volume effects
with a reference measurement in the sagittal sinus using the same
method as in the previous study (see also section 6.3).

To simplify the definition of regions of interest in CE lesions,
maps of the permeability surface area product (PS) were calcu-
lated by fitting the 2CU model to each pixel curve. To speed up
the calculations, the background was excluded from this analysis
by masking out all pixels below a threshold value on the baseline
map. Fitting the 2CU model to each pixel curve produced maps
of CBF, CBV and PS; the resulting PS-map was used to manually
define regions in CE lesions in areas with non-zero PS.

For the quantitative analysis on the region of interest level, the
time-resolved concentration in each of the previously defined
regions was approximated using the signal enhancement S(t) —
So (see section 4.2.1). The relative signal enhancement could
not be used, since a T;-mapping sequence was not available
for all patients. The 2CX, 2CU and 2CT models were fitted to
the concentration-time curve of each region using the Levenberg-
Marquardt algorithm [87]; the Akaike weights w 4jc (section 6.1.1)
for each model were calculated and the parameter estimates of
the model with the highest w4;c were recorded.

8.2 RESULTS

In all 19 patients, the measurements were completed without
complications. In nine patients, a total of 53 contrast-enhancing
lesions was detected on post-contrast T;-weighted images; 35 of
these lesions were contributed by just two patients. NE lesions
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Figure 32: Display of the slice positioning of the 3D DCE MRI sequence.
The entire neurocranium is covered by the slab of 44 slices.

were visible on pre-contrast FLAIR images in all patients; in 13
patients, at least one NE lesion could be identified and defined
on the map of the baseline signal.

Fig. 32 illustrates the spatial coverage of the DCE MRI mea-
surement, the entire neurocranium is covered by the 44 slices of
the 3D sequence. No visible inflow effects could be observed in
the middle cerebral arteries, despite strong, inflow-related signal
enhancement in the carotid arteries in caudal slices (see also
Fig. 23). Partial volume correction factors for the AIF were in the
range from 0.31 to 0.58, with a mean value of 0.43.

Fig. 33a shows precontrast FLAIR and contrast-enhanced T;-
weighted images of a patient with a single periventricular ring-
enhancing lesion along with the corresponding slice of the PS-
map that was calculated from the DCE MRI acquisition. The
lesion can be delineated clearly on the FLAIR image, the ring
enhancement is obvious on the T;-weighted image and corre-
sponds to the region with non-zero PS in the PS map. Fig. 33b
shows signal enhancement curves and model fits in a region in
periventricular NAWM and in the rim of the lesion. The models
with the highest w4 ¢ for lesion and NAWM were the 2CX and
the 2CU model, respectively. The lesion curve shows stronger
signal enhancement than the NAWM curve and a slow increase
in the late phase of the measurement. These observations are
also reflected in the parameter estimates — both CBV and PS are
higher in the lesion than in the NAWM region. The AIF that was
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A patient with a single ring-enhancing periventricular le-
sion. Quantitative parameter values in lesion/NAWM were
CBF: 19.7/9.7 ml/100ml/min, CBV: 1.25/0.65 ml/100ml, PS:
0.75/0.02ml/100ml/min, v in the lesion: 12.5 ml/100ml
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measured in the MCA is displayed in Fig. 33c. The two contrast
agent injections are clearly separated, each bolus is followed by
recirculation.

A different case is presented in Fig. 34; in this patient, seven
CE lesions were visible in Tj-weighted contrast-enhanced images,
six of which could be assessed in the DCE MRI measurement.
Fig. 34a shows contrast-enhanced T;-weighted images in two
slice positions, along with the corresponding PS maps. In both
slice positions, several CE lesions can be distinguished. Signal
enhancement curves of the two indicated lesions as well as a
signal enhancement curve in NAWM, along with model fits, are
shown in Fig. 34b. In the late phases of the measurement, the
signal enhancement in both lesions is similar, but the estimates
of hemodynamic parameters differ notably between lesions: In
lesion 1, both vascular parameters are higher than in NAWM,
whereas in lesion 2, only CBF is increased and CBV is similar to
NAWM. PS is increased in both lesions and is close to zero in
NAWM.

Fig. 35 displays representative parameter maps and a high-
resolution T1-weighted contrast-enhanced image of another pa-
tient with multiple CE lesions. CBV and PS maps allow for
discrimination of anatomical features as well as of CE lesions,
isolated pixels in which the fitting algorithm converted to non-
physiological values can be observed both in CBV and PS maps.
The image quality of the CBF map is poor, compared to CBV and
PS maps, even after application of a median filter to remove iso-
lated pixels where the fitting algorithm yielded non-physiological
values.

For the 19 white matter regions and the 13 NE lesions, the
2CU model was, according to the AIC, the best model. 51 out of
the 53 CE lesions could be identified on the PS maps and were
successfully characterized by the 2CT model (9 lesions), the 2CU
model (11 lesions) and the 2CX model (31 lesions). Two small
CE lesions that were visible on contrast-enhanced T;-weighted
images could not be detected on the PS maps.

Results of quantification on the region-of-interest level are
shown in Table 7 and in Figs. 36 and 37. No significant differences
in CBF were observed between NAWM and NE lesions, but NE
lesions had a weakly significantly increased CBV (p < 0.05). In
CE lesions, CBF, CBV and PS were significantly (p < 0.001) higher
than in NAWM; all three parameters had high variability.
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(a) Lesions at two different slice positions. Left column: contrast
enhanced T;-weighted images, right column: PS maps at cor-
responding slice positions
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(b) Signal enhancement curves in the two indicated lesions and
in periventricular NAWM, along with model fits

Figure 34: A patient with a multiple contrast-enhancing lesions. Pa-
rameters for lesion 1 were: CBF=26.0ml/100ml/min,
CBV=3.4%, PS=0.83ml/100ml/min, ©vg=7.8%; for
lesion 2 CBF=64.0ml/100ml/min, CBV=1.1%,
PS=0.95ml/100ml/min, ©vg=154% and for NAWM:
CBF=10.9ml/100ml/min, CBV=1.3% and PS=
0.06 m1/100ml/min
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Figure 35: Representative parameter maps of CBF (a), CBV (b) and PS
(c), along with a contrast enhanced T;-weighted image (d).

Table 7: Mean values (standard deviations) of parameters estimates,
averaged over all patients, in NAWM, NE and CE lesions.
Units of CBF and PS are ml/100ml/min, units of CBV and
vp are ml/10oml. t and f indicate significant (p < 0.05 and
p < 0.001) difference to the corresponding NAWM parameter.

n CBF CBV PS UL

NAWM 19 15.8(6.7) 0.76(0.19) .04(.03) n/a
NE Lesions 13 19.1(12.4) 1.00(.35)t .05(.04) n/a
CE Lesions 51 28.9(22.7)f 1.18(.48)F .98(.56)f 10.7(3.46)
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Figure 36: Box plots summarizing the results of perfusion quantifica-
tion (see also Table 7). Top: distribution of CBF estimates
in NAWM, NE and CE lesions, bottom: distribution of CBV
estimates in NAWM, NE and CE lesions
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NAWM, NE and CE lesions, bottom: plot of PS against CBV
that shows the separation of CE lesions from NAWM and
NE lesions by PS.
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8.3 DISCUSSION
8.3.1 3D DCE MRI

Our study demonstrated the feasibility of a 3D DCE MRI mea-
surement for the quantification of cerebral perfusion and BBB
leakage. In the context of this study of MS lesions, the 3D acqui-
sition enabled the hemodynamic characterization of multiple CE
lesions scattered throughout the brain, despite the fact that the
localization of CE lesions can in general not be determined prior
to the administration of contrast agent.

A benefit of the 3D acquisition is that the AIF can be measured
in the center of the excited volume, where inflow effects can
be assumed to be minimal. This eliminates the need for non-
selective saturation preparation pulses to minimize inflow effects
and increases the available signal, since the longitudinal magneti-
zation is not destroyed before each acquisition. Still, an accurate
measurement of the AIF poses high demands both on spatial
and temporal resolution of the acquisition. The spatial resolution
must be high enough that a single voxel can be found that is
completely embedded in a blood vessel — preferably in an artery,
but if that is not possible due to the small diameter of arteries,
a voxel in the sagittal or transverse sinus can be used for partial
volume correction of the AIF as in this study.

The temporal resolution, on the other hand, must be high
enough to accurately sample the first pass of the contrast agent
bolus; in general, a temporal resolution below 2 seconds is rec-
ommended [90]. These competing demands of high spatial and
temporal resolution on the acquisition can be satisfied with ap-
propriate acceleration techniques, such as, in our case, with a
combination of parallel imaging and view sharing. Our results
demonstrate that CNR was still sufficient for quantification of
hemodynamics on the region level, but the image quality of the
parameter maps, resulting from a pixel-wise calculation, would
benefit from an increase in CNR. Still, the parameter maps are
useful for orientation and for definition of regions of interest, in
particular, the PS map allowed for reliable definition of regions
with BBB leakage. Further studies, however, should consider
to employ a larger voxel size, since an increased voxel volume
results in significant signal gain.

A potentially useful aspect of a 3D acquisition for DCE MRI
is the possibility for image co-registration, that arises through
the gapless coverage of the brain. In cross-sectional studies, co-
registered images may allow for a more reliable definition of
specific areas in the brain, such as white matter structures. In
longitudinal studies, a co-registration of baseline and follow-
up examination should be particularly useful for tracking of
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lesion evolution, since lesion hemodynamics can still be evaluated
even if the slice positioning is not exactly the same between
examinations.

8.3.2  Quantification

MODEL SELECTION For all white matter regions and non-
enhancing lesions, the Akaike information criterion favored the
two-compartment uptake model. This confirms our model selec-
tion approach — since no contrast agent can leave the vascular
bed due to the intact blood-brain barrier, it is not possible to
determine the extravascular, extracellular volume, and the 2CT
and 2CX models would be underdetermined and overfit the data.
On the contrary, in contrast-enhancing lesions, the Akaike infor-
mation criterion favored the exchange model in most cases. This
is partly due to the fact that we used a relatively long total acqui-
sition time, enabling estimation of the extravascular, extracellular
volume, in combination with a high temporal resolution, so that
CBF could be assessed as well. For some CE-lesions, however,
the 2CT model or the 2CU model was chosen by the AIC. This
indicates that, despite the long total acquisition time and the high
temporal resolution, even data from CE lesions may not always
contain enough structural information to justify the fit of all four
parameters defining the full 2CX model.

CONTRAST-ENHANCING LESIONS We observed significantly
increased CBF and CBV in CE lesions compared to NAWM.
This observation may be attributed to vasodilation that occurs
during inflammation in the evolution of a lesion. In a DSC-
MRI study [41], similar results of significantly increased CBF
(21.5(5.1) vs 16.9(3.7) ml/100ml/min, p < 0.007) and CBV (1.4(0.3)
vs. 1.06(0.3) ml/100ml, p < 0.001) in CE lesions, compared to
NAWM, were reported. The large variability in both parameters
that we observed in CE lesions may be explained with the as-
sumption that lesions were captured in different stages of lesion
evolution. In a longitudinal study [98] a strong increase of CBV
in early stages of lesion evolution was observed, followed by
a decline over the course of 20 weeks. The authors explained
the strong increase in CBV by inflammation-mediated vasodila-
tion, and assumed that the subsequent decline might be due to
development of a hypometabolic state. The significantly higher
permeability surface area product that we observed in CE lesions
indicates BBB leakage developing in the course of inflammation,
again, the high variability (see Fig. 36) is presumably caused by
varying degrees of inflammation during lesion evolution.
Consequently, the estimates of CBF, CBV and PS that can be
obtained by the combination of T1-weighted DCE MRI and com-
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partment modeling may allow for an assessment of inflammatory
activity in a lesion and may thus be useful for therapy monitoring
or prediction of the future evolution of particular lesions.

NON-ENHANCING LESIONS In NE lesions, we observed a
weakly significant difference to NAWM only for CBV. The rea-
son for this increased CBV remains to be elucidated; yet, it is
consistent with a previous study [41], in which a subset of NE
lesions with increased CBV was identified. In this study, the in-
creased CBV in the subset was assumed to be due to renewed
inflammatory activity in these lesions; this is also consistent with
a longitudinal study [98], which reported an increase in CBV
already before the development of BBB leakage. The increased
CBV in NE lesions that we observed may thus be attributed to
renewed inflammatory activity in at least some of the NE lesions;
this heterogeneity would also explain the high variability both
of CBF and CBV. However, the quantification of hemodynamics
in NE lesions demonstrated in this study should be seen only as
proof of principle. For a more thorough investigation which could
clarify this observation, a co-registration of FLAIR images as well
as Ti-weighted images to the DCE dataset would be highly de-
sirable. Such a co-registration would allow first for more reliable
definition of regions in NE lesions, since regions could then be
drawn directly on the FLAIR images, and second for a classifica-
tion of NE lesions into subgroups by the appearance (hypo- or
isointense) of these regions on T1-weighted images. In a further
step it could be investigated whether these subgroups differ with
respect to their hemodynamics.

NAWM PERFUSION We observed relatively low values of CBF
and CBV in NAWM in all examined MS patients, compared to
values from other studies performed with T;-weighted DCE MRI
[48, 49]. This finding is consistent with the results of several stud-
ies that were performed using DSC MRI [41, 99, 100, 102]; these
studies demonstrated significantly reduced CBF in NAWM of
patients with MS compared to control groups. The reason for this
hypoperfusion is not entirely clear [103]; hypoperfusion might be
either primary as a result of a vascular pathology or secondary
as a result of regional hypometabolism. In a recent study [101],
correlations between reduced perfusion and reduced mean dif-
fusivity were found; the authors attributed this observation to a
primary ischemic origin of hypoperfusion.

8.3.3 Limitations

There are some limitations of our study that need to be taken into
account when interpreting the data. The major limitation of our
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study is the lack of a control group. Lacking such a control group,
we cannot entirely exclude a systematic error that contributes to
our observation of NAWM hypoperfusion in MS, although this
finding is in accordance with several other studies. However, the
most likely source of error in our analysis, namely the underes-
timation of the arterial input function due to nonlinear signal
intensities, would have the opposing effect of overestimation of
CBF and CBV.

Likewise, inflow effects would lead to a similar underestima-
tion of the AIF. However, inflow effects in the middle cerebral
artery appeared to be negligible compared to the inflow effects in
the carotid arteries. Ultimately, the effects of a potential system-
atic error can only be assessed with the measurements in a control
group of healthy subjects. This was beyond the scope of this first
feasibility study, in particular since the risks of administering
contrast agent to healthy subjects need to be considered.

Another limitation of our study may be the conversion of
signal intensity to tracer concentration using the absolute sig-
nal enhancement. This may lead to an erroneous estimation of
hemodynamic parameters; in particular, the arterial concentra-
tion might be underestimated or even clipped during the first
pass of the contrast agent if a nonlinear regime of the signal
equation (4.11) is reached. It is difficult to estimate the extent of
potential nonlinearities from measured DCE MRI data, but the
dual-bolus injection might at least aid in detecting obvious non-
linearities: The AIF in Fig. 33c displays a clear difference in the
peak height of the two boli, indicating that at least no saturation
regime was reached. However, this was not always the case, in
other datasets, the difference between peak heights was smaller
or almost vanishing. A more refined method for the measurement
of concentrations, e. g.by inversion of the signal equation, might
be beneficial for eliminating the issue of potential nonlinearities.

Another error in quantification may arise through inhomo-
geneities in the coil sensitivity profiles: if the coil sensitivities are
different between the locations of artery and the tissue, the ratio
directly enters as a scaling error into the quantification. This can
be resolved by using the relative instead of the absolute signal
enhancement (see also chapter 4.2). For this purpose, however, a
pre-contrast T; measurement is required, which was not available
for all patients at the time of the study.

8.4 CONCLUSION

In this chapter, we have demonstrated the feasibility of a 3D
T;-weighted DCE MRI measurement with gapless coverage of
the whole brain for the assessment of cerebral perfusion in a
collective of patients with MS. Our findings are in accordance
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with previous DSC MRI studies and, in addition, we were able to
measure perfusion and permeability in a straightforward manner
also in areas with blood-brain barrier leakage.

The heterogeneity of MS lesion perfusion parameters that we
found suggests a certain potential for the classification and dif-
ferentiation of lesions; in order to investigate this potential, more
data need to be collected, either in cross-sectional or in longitu-
dinal studies. In the future, quantitative measurements of lesion
hemodynamics may contribute to the prediction of future le-
sion development. A question of particular interest is whether
a lesion will eventually, after the acute phase of inflammation,
develop into a “black hole”, a lesion that appears hypointense on
T;-weighted images.

To validate our observations, to assess stability and repro-
ducibility of our method and to rule out any potential systematic
errors, measurements in a control group would be of particular
interest.

A limitation that has still not been addressed concerns the fact
that reliable quantification is currently only feasible on the region
level. The definition of regions is highly user dependent and may
lead to a certain bias in the outcome of quantitative parameters. In
this study, we have addressed this problem by a hybrid approach:
regions were defined on maps of PS that were calculated on the
pixel level with the 2CU model; for further quantification, the
individual pixel curves in the previously defined region were
averaged to increase CNR. To a certain extent, this approach
reduces the observer bias, but, depending on the parameter map
that is used for region definition, another bias may be introduced.
For example, the definition of regions on a parameter map of PS
ensures that only regions with non-zero PS are defined. Moreover,
potential heterogeneity in the lesion is lost by the averaging
process, thereby obscuring potentially important information.
To overcome this problem, in particular in longitudinal studies
with the purpose of monitoring disease progression or therapy
monitoring, a quantitative analysis on the pixel level would be
desirable, but this is currently not feasible with the low CNR
that can be achieved by DCE MRI in the brain. Even higher field
strengths, e.g. 7T, as well as new acceleration schemes such as
compressed sensing or kt-BLAST may help to increase CNR and
may eventually lead to more accurate and precise pixel-wise
quantification of a range of cerebral hemodynamic parameters.

In conclusion, our study shows the feasibility of quantification
of cerebral hemodynamics with coverage of the whole brain and
sufficient spatial resolution for characterization even of small MS
lesions. The acquisition and quantification protocol should be
capable for the assessment of hemodynamics in a wide range of
cerebral pathologies.
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The assessment of therapy response of primary cerebral tu-
mors such as gliomas under anti-angiogenic therapy might be
an interesting application of this technique. Fig. 38 demonstrates
the evaluation of a DCE MRI dataset, acquired with the same
3D sequence as in the MS study, in a patient with a recurrent
high-grade glioma under anti-angiogenic therapy.
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(a) Contrast-enhanced T;-weighted image (left) and map of area
under the curve (right), showing an enhancing tumor rim
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Figure 38: DCE MRI evaluation of a patient with a recurrent grade IV
astrocytoma






SUMMARY

Hemodynamic parameters such as blood flow, blood volume or
the permeability of the vessel walls can be assessed with dynamic
magnetic resonance imaging (MRI). In most organs in the body,
a dynamic T;-weighted pulse sequence is used for the dynamic
acquisition. Since the presence of contrast agent causes signal
enhancement in such an acquisition, this approach is commonly
referred to as dynamic contrast-enhanced (DCE) MRI. Due to
the special physiology of brain parenchyma, i. e. the small cere-
bral blood volume in combination with the blood-brain barrier
(BBB), the assessment of cerebral hemodynamics with DCE MRI
is challenging and therefore, a different method, dynamic suscep-
tibility contrast-enhanced (DSC) MRI, has long been the method
of choice for the assessment of cerebral hemodynamics.

However, for the purpose of absolute quantification of hemody-
namic parameters such as cerebral blood flow (CBF) or cerebral
blood volume (CBV), DSC MRI is less suitable and suffers from
several limitations, in particular in areas with blood-brain barrier
leakage such as inflammatory lesions or tumors. These problems
do not occur if instead a DCE MRI measurement is used for
data acquisition. Therefore, this thesis investigates whether DCE
MRI is a suitable alternative to DSC MRI for the quantification
of cerebral hemodynamics both in healthy parenchyma and in
various pathologies.

For the assessment of tissue hemodynamics, a bolus-tracking
experiment can be used. Here, a bolus of contrast agent is in-
jected intravenously into the circulatory system. Subsequently,
the spatially and temporally resolved contrast agent concentra-
tions in tissue and in tissue-supplying vessels are monitored or
tracked with a suitable modality, hence the name bolus-tracking.
From these concentration-time courses, a variety of hemodynamic
parameters such as CBF, CBV, the permeability of vessel walls
(permeability surface area product, PS) and others can be de-
rived by means of tracer-kinetic theory. The quantification of
hemodynamic parameters from the data produced by such an
experiment is essentially a two-step process: In a first step, the
time-dependent contrast agent concentrations are derived from
the measured signal (see Ch. 4); this step depends strongly on the
imaging modality. In the second step, descriptive or physiological
hemodynamic parameters are derived from the measured tracer
concentrations by means of tracer kinetic theory (Ch. 5).
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Tissue hemodynamics can be described mathematically with
a compartment modeling approach. A compartment is consid-
ered a space in which a contrast agent or tracer is distributed
uniformly. Different compartments can exchange tracer by means
of flow, and the flow out of a compartment is proportional to the
concentration in the compartment. For the description of cerebral
hemodynamics with extracellular tracers, two compartments are
sufficient: one compartment is formed by the intravascular space,
this compartment can exchange tracer with the extravascular,
extracellular space, which forms the second compartment. This
situation can be described with the general two-compartment ex-
change model (see Ch. 5.2). However, in the context of DCE MRI,
it may happen that this model is underdetermined, e. g. due to
measurement constraints, and consequently results in unreliable
parameter estimates. If this is the case, simpler models which
incorporate additional assumptions need to be applied.

The selection of the most appropriate model is not straightfor-
ward: a model with more parameters will always yield a better fit
than a model with fewer parameters, but at the cost of reduced
precision of the parameter estimates. Therefore, a robust method
for automated model selection in the context of DCE MRI was
evaluated during the course of this thesis. This method is based
on a quantity called Akaike Information Criterion (AIC), which
penalizes the goodness of the fit with the number of free param-
eters. Applying this method requires the fitting of all models
under consideration to the data; after a successful fit, the AIC is
calculated for each model and allows for an objective and user-
independent decision about which model is to be considered the
best model. The potential of this method for automated model
selection was investigated initially in a simulation study (Ch. 6,
[80]). In a further step, the model selection approach was incor-
porated into existing, in-house written software in the form of an
interface that facilitates the rapid evaluation of multiple models
and regions e. g.in measured DCE MRI data.

In a first patient study (Ch. 7 and [49]), a saturation-recovery
2D sequence, acquiring a limited number of slices, was used for
the dynamic acquisition of bolus-tracking data in 15 patients
with various brain tumors and metastases. For the quantification
of perfusion and permeability, two different two-compartment
models were used; the selection of the most appropriate model
for every dataset was performed by an expert user, assisted by
the AIC. This study showed that DCE MRI in the brain is, in
principle, feasible. However, the acquisition of only few slices
proved to be impractical, since the slice positioning is crucial for
the outcome of the quantitative analysis: Hemodynamics in the
tumor rim are likely to be quite different from hemodynamics
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in peritumoral brain tissue or in the tumor center. This study
also highlighted the importance of a high contrast-to-noise ratio
(CNR) for quantification.

In a second patient study (Ch. 8), a collective of 19 patients
with multiple sclerosis (MS) were examined, with the aim to char-
acterize cerebral hemodynamics both in inflammatory lesions,
scattered throughout the white matter, and in normal-appearing
white matter (NAWM). The limitation of insufficient volume cov-
erage that was identified in the first study was addressed by
using a 3D DCE MRI sequence which provided gapless coverage
of the entire neurocranium. For quantification, the multi-model
approach, combined with automated model selection, that was
evaluated in Ch. 6, was used. Values of CBF and CBV in normal-
appearing white matter and in non-enhancing lesions found in
this study are in accordance with values from previous DSC MRI
studies. Moreover, hemodynamics could be quantified also in
inflammatory lesions with BBB leakage. This study demonstrated
that i) a 3D acquisition for DCE MRI in the brain is feasible, ii)
facilitates the quantification of hemodynamics in lesions scattered
through the entire brain as well as in NAWM and iii) that the
multi-model approach with automated model selection is suit-
able for tissue with intact BBB as well as for tissue with BBB
leakage. The results and findings presented in this chapter have
been accepted for publication [104].

The values of CBF and CBV that were determined in both
patient studies are in a reasonable range. In order to identify
and rule out any potential systematic errors and to validate
the proposed approach, further measurements in a collective of
healthy volunteers would be beneficial. This issue is addressed
in an ongoing study. On the technical level, the introduction
of quantitative pre-contrast T; mapping into the measurement
protocol would be highly desirable; the feasibility of the variable
flip angle approach has already been demonstrated in some
patients of the MS study.

During the course of this thesis, a methodology has been
developed and evaluated that allows the characterization and
quantification of cerebral hemodynamics from dynamic contrast-
enhanced MRI data both in healthy brain parenchyma and in
regions with blood-brain barrier leakage. In two patient studies,
the feasibility of the developed methods has been demonstrated
and it was shown that, with the proposed methods, DCE MRI
forms a suitable and promising alternative to DSC MRI for the
quantification of cerebral hemodynamics.
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ZUSAMMENFASSUNG

Hamodynamische Parameter wie der Blutfluss, das Blutvolumen
oder die Permeabilitidt der Gefilwande kénnen mit einer dyna-
mischen Magnetresonanztomographie-(MRT-)Messung beurteilt
werden. In den meisten Organen im Korper wird fiir diesen
Zweck eine Tq-gewichtete Sequenz verwendet. Bei einer solchen
Messung verursacht die Anwesenheit von Kontrastmittel eine
Signalerhthung, man spricht deshalb von dynamischer kontrast-
verstarkter (dynamic contrast-enhanced, DCE) MRT. Im Gehirn
wird die Quantifizierung der Himodynamik mit einer solchen
Messung durch zwei physiologische Besonderheiten, namlich
das geringe zerebrale Blutvolumen und das Vorhandensein der
Blut-Hirnschranke, erschwert. Durch die Kombination dieser bei-
den Faktoren kénnen mit einer DCE-MRT-Messung nur geringe
Signaldnderungen und damit ein schlechtes Kontrast-Rausch-
Verhiltnis (CNR) erzielt werden. Aus diesem Grund wird die
zerebrale Himodynamik gewdhnlich mit einer anderen Methode,
der dynamischen suszeptibilititsgewichteten (DSC) MRT, beur-
teilt.

Wenn allerdings eine absolute Quantifizierung von zerebralen
hdmodynamischen Parametern erwiinscht ist, ergeben sich bei
Verwendung der DSC MRT einige fundamentale Schwierigkeiten,
insbesondere wenn, wie z.B. in Tumoren oder entziindlichen
Léasionen, eine Storung der Blut-Hirn-Schranke vorliegt. Da diese
Schwierigkeiten bei einer DCE-MRT-Messung nicht auftreten,
ist es das Ziel der vorliegenden Arbeit, zu untersuchen, ob die
DCE-MRT trotz des schlechten CNRs eine geeignete Alternative
zur konventionell verwendeten DSC-MRT darstellt.

Die Hamodynamik in gesundem Hirngewebe wie auch in
intrakraniellen Lasionen kann mit einem sogenannten ,bolus-
tracking”-Experiment charakterisiert werden. Bei einem solchen
Experiment wird ein Kontrastmittel als Bolus injiziert und an-
schlieffend die Kontrastmittelkonzentration im Gewebe sowie in
den versorgenden Gefdfien mit hoher rdaumlicher und zeitlicher
Auflésung gemessen. Aus dem Zeitverlauf der Konzentratio-
nen im Gewebe und in arteriellem Blut konnen anschlieffend
mit Methoden der Tracerkinetik eine Reihe von hamodynami-
schen Parametern wie zerebraler Blutfluss (CBF) und zerebrales
Blutvolumen (CBV), aber auch die Permeabilitdt der Gefaflwan-
de (permeability surface area product, PS) bestimmt werden.
Die Quantifizierung der Himodynamik zerfdllt damit in zwei
Einzelschritte: i) die zeitaufgeloste Messung der Kontrastmittel-
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konzentration und ii) die daran anschlieflende tracerkinetische
Analyse.

Zur mathematischen Beschreibung der Himodynamik kénnen
sogenannte ,Kompartiment-Modelle” verwendet werden. Ein
Kompartiment ist hier ein Raum, in dem Kontrastmittel gleich-
mafig verteilt ist. Verschiedene Kompartiment kénnen Kontrast-
mittel mittels Fliissen austauschen, der Fluss aus einem Kom-
partiment ist proportional zur Konzentration im Kompartiment.
Fiir die mathematische Beschreibung der zerebralen Himodyna-
mik sind zwei Kompartimente ausreichend: ein Kompartiment
wird vom intravaskuldren Raum gebildet, dieses Kompartiment
kann Kontrastmittel mit dem zweiten Kompartiment, dem ex-
travaskuldren, extrazelluliren Raum austauschen. Beschrieben
wird diese Situation durch das allgemeine ,two-compartment
exchange-“(2CX-)Modell. Nicht immer konnen alle Parameter
dieses Modells zuverldssig bestimmt werden, es kann vorkom-
men, dass das Modell unterbestimmt ist. In diesem Fall muss
auf einfachere Modelle zuriickgegriffen werden, die mit zuséatzli-
chen Annahmen als Spezialfall aus dem allgemeinen 2CX-Modell
hervorgehen (siehe Kapitel 5.2).

Die Auswahl des jeweils am besten geeigneten Modells ist nicht
trivial: Ein Modell mit mehr Parametern wird eine gegebene Kur-
ve immer besser beschreiben konnen als ein Modell mit weniger
Parametern, allerdings auf Kosten der Prdzision der Parameter.
Im Rahmen dieser Arbeit wurde deshalb eine Methode fiir die
automatische Auswahl des jeweils besten Modells im Kontext
der DCE-MRT evaluiert. Diese Methode basiert auf dem Akaike
Information Criterion (AIC), das die Gtite des Fits mit der An-
zahl der freien Parameter des Modells verrechnet. Um mit dieser
Methode das beste Modell fiir eine gegebene Kurve zu bestim-
men, werden zundchst alle Modelle an die Kurve angefittet und
anschlieflend das AIC berechnet. Auf der Basis des AIC kann
damit objektiv und benutzerunabhéngig entschieden werden,
welches Modell als das beste fiir diese Kurve zu betrachten ist. In
der vorliegenden Arbeit wurde eine Simulationsstudie (Kapitel
6 und [80]) durchgefiihrt, mit der das Potential dieser automa-
tisierten Modellauswahl im Kontext der DCE-MRT untersucht
wurde. Im Anschluss wurde ein Interface fiir die bestehende Soft-
ware PMI 0.4 implementiert, das die einfache Anwendung des
Modellselektions-Ansatzes auf gemessene Patientendaten erlaubt
(siehe Kapitel 6.2).

In einer ersten Patientenstudie (Kapitel 7, [49]) wurden 15
Patienten mit primédren Hirntumoren und Metastasen mit ei-
ner dynamischen, T;-gewichteten 2D-Sequenz untersucht. Fiir
die Quantifizierung der hamodynamischen Parameter wurden
zwei verschiedene Modelle benutzt; das jeweils beste Modell
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wurde vom Auswerter, unterstiitzt durch das AIC, ausgewdhlt.
Diese Studie konnte zeigen, dass die DCE-MRT zur Quantifizie-
rung von Perfusion und Permeabilitdt grundsdtzlich geeignet
ist, konnte aber auch zwei Einschrankungen der verwendeten
Messsequenz identifizieren: Zum einen legten die Simulationen
nahe, dass die Quantifizierung erheblich von einer Erhchung
des CNR profitieren wiirde, zum anderen hat sich die Beschrén-
kung auf nur wenige Schichten insbesondere zur Beurteilung
von Tumorgewebe als nachteilig herausgestellt, weil die Positio-
nierung der Schichten sehr starken Einfluss auf das Ergebnis der
Quantifizierung hat und nur schlecht reproduzierbar ist.

In einer zweiten Patientenstudie (Kapitel 8) wurde ein Kol-
lektiv von 19 Patienten mit multipler Sklerose (MS) untersucht.
Ziel dieser Studie war die Charakterisierung der Himodynamik
sowohl in normal erscheinender weiler Hirnsubstanz (NAWM)
als auch in akut entziindlichen und in chronischen MS-Plaques,
die tiber die gesamte weifle Hirnsubstanz verteilt sein konnen. In
dieser Studie wurde eine fiir die dynamische Akquisition opti-
mierte 3D-Sequenz verwendet, um das Problem der Schichtposi-
tionierung zu umgehen. Diese Sequenz erlaubte die liickenlose
Abdeckung des gesamten Hirnschddels mit ausreichend hoher
zeitlicher Auflésung. Zur Quantifizierung wurde der in Kapitel 6
vorgestellte Multi-Modell-Ansatz verwendet.

Die CBF- und CBV-Werte, die in dieser Studie in NAWM und
in chronischen Plaques bestimmt wurden, stimmen mit Literatur-
werten gut tiberein; zuséitzlich konnten erstmals CBF, CBV und
die Permeabilitdt der Gefafiwande in akut entziindlichen Lésio-
nen quantifiziert werden. Mit dieser Studie konnte gezeigt wer-
den, dass i) eine Quantifizierung der zerebralen Himodynamik
auch mit einer 3D-Messung moglich ist, ii) damit sowoh] NAWM
als auch MS-Plaques im gesamten Hirn charakterisiert werden
konnen und iii) dass der vorgeschlagene Multi-Modell-Ansatz
zusammen mit automatisierter Modellauswahl eine konsistente
Beschreibung von Hirngewebe sowohl mit intakter als auch mit
gestorter Blut-Hirn-Schranke ermoglicht. Die Ergebnisse dieser
Studie wurden bei Investigative Radiology zur Verdffentlichung
angenommen [104].

Zusammenfassend wurden in der vorliegenden Arbeit eine
Reihe von Techniken und Methoden entwickelt, mit denen die
Charakterisierung und Quantifizierung der zerebralen Hamo-
dynamik sowohl in gesundem Gewebe als auch in Gewebe mit
einer Storung der Blut-Hirn-Schranke ermoglicht wird. Mit die-
sen Techniken wurden zwei Patientenstudien durchgefiihrt, die
zeigen konnten, dass die DCE-MRT eine vielversprechende Al-
ternative zur konventionell benutzten DSC-MRT darstellt.
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