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E quindi uscimmo a riveder le stelle.

Dante Alighieri





Zusammenfassung

Dynamische Modelle sind wichtige Hilfsmittel, um aus projizierten Beobachtungsdaten

auf die Massenverteilung und die Phasenraumstruktur von Galaxien zu schließen, und

dabei ihre Entstehungs- und Entwicklungsprozesse zu verstehen. Eine relativ neue

und vielversprechende Technik, dynamische Modelle zu konstruieren, ist die “made-

to-measure” Methode, bei der ein System von Teilchen sukzessive einer beobachteten

Lichtverteilung und gemessenen projizierten stellaren Kinematik angeglichen wird. Da

die intrinsische, dreidimensionale Struktur der Modelle dann bekannt ist, können sie

verwendet werden, um die Massenverteilung und Bahnstruktur der Galaxie zu verstehen.

In dieser Arbeit verwenden wir den “made-to-measure particle” Code NMAGIC, um

die spezielle Klasse der schwach im Röntgenbereich strahlenden elliptischen Galaxien

von mittlerer Leuchtkraft zu erforschen, deren Geschwindigkeitsdispersionsprofile stark

mit dem Radius abfallen, was auf sehr diffuse dunkle Materie Halos hindeutet, die

möglicherweise in Konflikt zu Vorhersagen von Galaxienentstehungsmodellen stehen.

Im ersten Teil der Arbeit führen wir eine “moving prior” Regularisierungsmethode

in NMAGIC ein, welche eine korrekte und von systematischen Fehlern freie

Rekonstruktion der dynamischen Struktur der beobachteten Galaxie ermöglicht. Im

sphärischen Fall, in welchem theoretisch eine eindeutige Invertierung der Daten

möglich ist, zeigen wir, dass NMAGIC mit der neuen Regularisierungsmethode die

Verteilungsfunktion und intrinsische Kinematik einer Zielgalaxie (mit idealen Daten)

mit hoher Genauigkeit reproduziert, unabhängig von der ursprünglich als Startmodell

gewählten Teilchenverteilung. Weiterhin untersuchen wir, wie sich unvollständige

und verrauschte kinematische Daten auswirken, und kommen zu dem Schluss, dass

die Zuverläßigkeit der Modelle auf Gebiete mit guten Beobachtungsdaten beschränkt



ist. Schließlich werden mit einer Version der moving-prior Regularisierung für

axialsymmetrische Systeme die am besten passenden NMAGIC Modelle der zwei

elliptischen, mittelstark leuchtenden Galaxien NGC 4697 und NGC 3379 aus früheren

Arbeiten rekonstruiert, um einen glatteren Fit an die Beobachtungsdaten zu erhalten.

Im zweiten Teil der Arbeit untersuchen wir die rätselhafte elliptische Galaxie

NGC 4494 mittlerer Leuchtkraft. Wir konstruieren axialsymmetrische NMAGIC

Modelle mit unterschiedlichen dunkle Materie Halos und Inklinationen, um etwas

über ihre Massenverteilung und Bahnstruktur zu erfahren. Die Modelle werden

eingegrenzt durch Radialgeschwindigkeiten von planetarischen Nebeln und kinematischen

Absorptionsliniendaten in “slitlets”, was uns ermöglicht, zu erforschen, bei welchen Radien

die dunkle Materie anfängt zu dominieren bzw. Spuren des Entstehungsmechanismus

sichtbar werden. Mit geeigneten Monte-Carlo-Simulationen bestimmen wir mit NMAGIC

die ∆χ2 Werte verschiedener Konfidenzniveaus für die Schätzung der Parameter

der dunklen Halos und finden andere Werte, als in der Literatur über dynamische

Modellierung normalerweise verwendet. Unsere best-fit NMAGIC Modelle für NGC

4494 innerhalb dieser Konfidenzniveaus schließen einen diffusen dunklen Halo aus; sie

haben einen Anteil dunkler Materie von ungefähr 0, 6± 0, 1 bei 5 Effektivradien und eine

näherungsweise flache (konstante) totale Kreisgeschwindigkeit von ∼ 220 km/s außerhalb

des Effektivradius. Die Anisotropie der Sternbahnen ist mässig radial. Diese Ergebnisse

sind unabhängig von der angenommenen Inklination der Galaxie, aber edge-on Modelle

werden bevorzugt.

Schließlich vergleichen wir die dunklen und stellaren Halos von den bisher modellierten

elliptischen Galaxien mittlerer Leuchtkraft und folgern, dass ihre Kreisgeschwindigkeiten

ähnlich sind. Die genaue Wechselwirkung zwischen dunkler und leuchtender Materie war

während der Entstehung jeder Galaxie wahrscheinlich unterschiedlich – und NGC 4494

zeigt einen besonders hohen Anteil an dunkler Materie, speziell im Zentrum, was vielleicht

das Ergebniss vergangener Verschmelzungsereignisse sein könnte.



Abstract

Dynamical models are an important tool to infer the mass distribution and phase-space

structure of galaxies from projected observational data, and thereby learn about the

processes driving their formation and evolution. A recent and promising technique to

build dynamical models is through made-to-measure particle methods, in which a system

of particles is trained to match the observed light distribution and projected stellar

kinematics of a galaxy. Because the intrinsic, three-dimensional structure of such models is

then known, they can be used to understand the mass distribution and orbital structure

of the galaxy. In this thesis we use the made-to-measure particle code NMAGIC to

investigate the particular class of X-ray-faint, intermediate-luminosity elliptical galaxies,

whose velocity dispersion profiles decline strongly with radius, suggesting very diffuse

dark matter halos in possible tension with the predictions of galaxy formation models.

In the first part of the work, we introduce a moving prior regularization method in

NMAGIC which facilitates a correct and unbiased recovery of the dynamical structure

of the observed galaxy. In the spherical case in which theoretically a unique inversion

of (idealized) data exists, we show that NMAGIC with the new regularization method

recovers the distribution function and intrinsic kinematics of the target galaxy with high

accuracy, independent of the initial particle model. We then investigate the effects of less

complete and noisier kinematic data, and conclude that the reliability of the models is

limited to those regions in which good observational constraints exist. A version of the

moving prior regularization suited for axisymmetric systems is then used to reconstruct

the best-fitting NMAGIC models determined in previous works for the two intermediate-

luminosity elliptical galaxies NGC 4697 and NGC 3379, obtaining smoother fits to the

observational data.



In the second part of the work, we explore the enigmatic intermediate-luminosity elliptical

galaxy NGC 4494. We construct axisymmetric NMAGIC models with different dark

matter halos and inclinations, in order to learn about its mass distribution and orbital

structure. The kinematic constraints include radial velocities of Planetary Nebulae and

absorption line kinematics data in slitlets, and allow us to probe those radii where dark

matter starts to dominate and the imprint of formation mechanisms becomes apparent.

Using suitable Monte Carlo simulations, we determine the ∆χ2 values of various confidence

levels for the estimation of the dark halo parameters with NMAGIC, and find that these

are different from the values usually employed in the dynamical modeling literature. Our

best-fitting NMAGIC models for NGC 4494 within these confidence levels rule out a

diffuse dark halo; they have a dark matter fraction of about 0.6± 0.1 at 5 effective radii,

and an approximately flat total circular velocity ∼ 220 km/s outside 1 effective radius.

The orbital anisotropy of the stars is moderately radial. These results are independent

on the assumed inclination of the galaxy, but edge-on models are preferred.

Finally, we compare the dark and stellar halos of the intermediate-luminosity ellipticals

modeled so far, and conclude that their circular velocity curves are similar. The detailed

interaction between dark and luminous matter during galaxy formation was probably

different for each galaxy, and NGC 4494 shows a particularly high dark matter fraction,

especially in the center, which might be a reminiscence of merger events.
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1
Introduction

Elliptical galaxies have become the focus of a vast number of observational and theoretical

studies during recent years. Understanding their dynamical structure is one way of

learning how these galaxies formed and evolved. In this respect, dynamical models

represent an important tool to infer the gravitational potential, mass distribution, dark

matter content, and stellar orbits of galaxies from observational data.

This Introduction provides the reader with the basic background about galaxies. First, the

observational classification of galaxies is described, and their formation in the cosmological

context is sketched. Then, we focus on ellipticals, discussing their observational properties

and dynamics, with particular care to their dark and stellar halos. Finally, we outline the

main issues that will be addressed in the thesis.

1.1 Galaxies - an overview

The small part of ignorance that we arrange and classify
we give the name of knowledge.

Ambrose Bierce

Astronomy is probably the oldest of all sciences. The charming beauty of the night sky has

always fascinated people, originating legends and myths of any sort. The word “galaxy”

itself derives from a Greek term for milk, since in one of these legends the swathe of light

in the sky - our own Galaxy, the Milky Way - is nothing less than a river of milk flowing

from the breast of Hera, wife of Zeus in the Olympian pantheon.

Already thousands years ago, galaxies could be spotted by eye in the night sky as small

clouds or “nebulae”, but it was only in the XVII century that Galileo realized, with the

help of the first telescope, that our Milky Way is actually made of many stars, and it was

1



2 Introduction

Figure 1.1: The Hubble-Sandage classification scheme for galaxies, from Chaisson and McMillan (2004).
For the alternative de Vaucouleurs’ classification scheme, see Kormendy (1982).

only in the XVIII century that Thomas Wright speculated (correctly) that some of these

nebulae were separate Milky Ways - “island universes”, as Immanuel Kant called them.

Whether the nebulae were actually independent galaxies was a long-standing issue,

culminated in the so called Great Debate held in the 20’s between Harlow Shapley

and Heber Curtis (see e.g. Trimble, 1995). Eventually, their extragalactic nature was

uncovered by Edwin Hubble, who was able to resolve the outer parts of M31 - the

Andromeda galaxy - as a collection of stars, and observed some Cepheid variables there.

Cepheids are pulsating stars that obey a well-defined relation between luminosity and

pulsation period, which allows to measure their distance. In this way, Hubble could prove

that M31 lies well beyond the boundaries of our Milky Way.

After spending many years surveying thousands of galaxies, Hubble noticed a remarkable

trend: galaxies could be grouped according to their morphology at optical wavelengths1

in a diagram which is still widely used (Hubble, 1936).

The diagram, shown in Fig. 1.1, classifies galaxies into a small number of “natural groups”

that share common structural features. It is characterized by a tuning-fork: to the left

of the bifurcation are ellipticals, called early-type galaxies, to the right are spirals and

irregulars, called late-type galaxies. This notation originates from the incorrect thought

that the sequence, from left to right, is an evolutionary one.

Elliptical galaxies are among the brightest objects in our Universe. The isophotes,

i.e. contours of constant surface brightness (light per unit area), on their images are

1 Galaxies can be also classified at alternative wavelengths, for instance using their near-infrared morphology (e.g.
Jarrett, 2000).
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describable as concentric ellipses (see Section 1.3.1). The ellipticity increases along the

sequence, from E0 (circular image on the sky) to E7 (elongated image). The number n in

the label En quantifies the degree of ellipticity, with n = 10(1− q), where q = b/a is the

apparent axis-ratio, a the projected long axis, and b the short one. The sequence E0→E7 is

not a sequence of anything fundamental, but rather one of apparent flattening (Tremaine,

1987). Galaxies can be flattened for at least two reasons, rotation and orbital anisotropy2

(e.g. Illingworth, 1977; Binney, 1978; Davies, 1981), and ellipticals are mainly flattened

by orbital anisotropy. However, they span only a moderate range of true flattenings (e.g.

Sandage et al., 1970), and their apparent flattening mostly depend on the inclination at

which the galaxy is observed (Binney and de Vaucouleurs, 1981). The absence of elliptical

galaxies flatter than about E7 can be explained with a firehose instability (Merritt and

Hernquist, 1991; Merritt and Sellwood, 1994).

Spiral galaxies contain a bulge and a prominent disk, which exhibits spiral arms. Whilst

“classical bulges” are similar to small ellipticals residing in the center of disks, some

bulges, the so called “pseudo-bulges”, are really more like disks (Kormendy, 1993). These

pseudo-bulges show photometric and kinematic evidence for disk-like dynamics, and are

thought to be built secularly out of disk material (Kormendy and Kennicutt, 2004). Pure

(thin) disk galaxies, i.e. bulgeless systems, are also observed (e.g. Goad and Roberts,

1981; Matthews et al., 1999; Kormendy et al., 2010). Hubble’s diagram breaks up spirals

according to the presence or absence of a bar-like structure. More than half of all spirals

are barred, whereas ellipticals do not have bars. Spiral galaxies belong to a sequence

Sa→Sd of (i) decreasing bulge to total luminosity, (ii) less tightly wound arms, (iii)

increasing clumpiness. The gas mass also increases along such sequence.

Lenticular (S0) galaxies constitute a hybrid class between ellipticals and spirals: they have

disk-like dynamics, but resemble ellipticals in the lack of cool gas, young stars, and spiral

arms. Recently, the kinematic analysis of a large sample of nearby early-type galaxies

(ellipticals and lenticulars) from the ATLAS-3D survey showed that only one third of the

morphologically classified ellipticals are genuinely elliptical-like objects, while the rest are

misclassified lenticular-like systems (Cappellari et al., 2011). Over the years, alternative

classifications for S0s have been proposed in which lenticular galaxies parallel the sequence

Sa→Sc of spirals (van den Bergh, 1976; Cappellari et al., 2011; Krajnović et al., 2011;

2 This refers to the shape of the velocity dispersion tensor (see Section 1.4).
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Kormendy and Bender, 2012).

Ellipticals and S0s make up for about the 40% of the total mass of galaxies in the local

universe (Bernardi et al., 2010).

Finally, the less luminous and less defined objects on the right of the diagram are named

“irregulars”, and there is no galaxy so unusual that it cannot be fit into this group.

Even if a proper definition of a “galaxy” is still matter of debate (e.g. Willman and

Strader, 2012), roughly speaking galaxies are complex systems made up of different

components - dust, gas, stars, dark matter - held together by gravity. Their stellar

mass3 increases from irregular galaxies (∼ 108M⊙) to ellipticals (∼ 1012M⊙). Elliptical

galaxies are surrounded by atmospheres of hot gas, which constitutes a few percent of

their baryonic mass, and they do not contain cold gas. The content of cold gas increases

along the Hubble sequence, contributing up to 90% of the luminous mass in the most

gas-rich irregular galaxies.

Hubble’s original division between the two classes of ellipticals and spirals stood the test of

time, and such bimodality has been recently confirmed by several large statistical surveys

of the local galaxy population, such as the Sloan Digital Sky Survey and the two-degree

Field survey (e.g. Bell et al., 2003; Kauffmann et al., 2003; Baldry et al., 2004). In most

cases, the morphology of a galaxy matches its colour, presumably because of different

populations of stars, either old or newly formed, that dominate its light (see e.g. the

review by Roberts and Haynes, 1994). In particular, spiral galaxies appear blue because

they are actively forming hot young stars, while elliptical galaxies are red, with an old

stellar population. The morphology of galaxies is closely linked to the environment, with

elliptical galaxies preferentially clustering in overdense regions of the Universe, such as

the inner parts of galaxy clusters (e.g. Baldry et al., 2006).

Significant revisions of the Hubble sequence have been proposed by Kormendy and Bender

(1996), who ordered ellipticals by isophote shape as an indicator of velocity anisotropy

(see Section 1.3.1), and by Cappellari et al. (2011), who separated early-type galaxies into

fast and slow rotators, instead of lenticular and elliptical galaxies, in a way that is nearly

insensitive to projection effects (see Section 1.3.2).

After this observational overview of the kind of galaxies that populate our Universe, we

now turn to describe how these stellar systems formed and evolved in the cosmological

3 The solar mass M⊙ = (1.98892 ± 0.00025) × 1033 g is a standard unit of mass in Astronomy.



1.2 Galaxy formation in the cosmological scenario 5

framework. In this context, as originally proved by Slipher’s and Hubble’s observations

of galaxies receding from us, galaxies are the building blocks, the fundamental units of an

expanding Universe.

1.2 Galaxy formation in the cosmological scenario

The study of origins is the art
of drawing sufficient conclusions

from insufficient evidence.
Allan Sandage

The basic picture of modern cosmology is that of a Universe which began from a hot and

homogeneous state, then expanded, cooled down, and ultimately assembled the structures

that we appreciate today - galaxies, galaxy clusters, and superclusters (e.g. Weinberg,

1972; Peacock, 1999).

The expansion of the Universe is most often described by the scale factor a(t), which is set

to unity today, and by the expansion rate or Hubble function H(t) = ȧ/a, which regulates

the proportionality between the distance and recession velocity of galaxies. The current

expansion rate is the Hubble constant H0 = 100h km/s/Mpc, with h ∼ 0.7 (Komatsu

et al., 2011)4. The equations of Einstein’s General Relativity, together with the equations

of state of the different components of the Universe, determine the evolution of the scale

factor.

Nowadays, many independent and complementary observations5 support the evidence

that the expansion of the Universe is presently accelerated.

The most economical framework to describe the currently available observational data

is the so called ΛCDM paradigm, in which the Universe has a flat space-time geometry,

and its energy budget is dominated by a cosmological constant, which is the simplest

version of an unknown form of dark (or vacuum) energy responsible for the accelerated

expansion (Efstathiou et al., 1990). Typically, the densities of the different components of

the Universe are expressed via the ratio Ωi of the density of the i-component to the critical

density, i.e. the density of a flat Universe. As shown in Fig. 1.2, the ΛCDM concordance

model has cosmological parameters ΩM = 0.27 for the matter density, contributed by

4 For reference, 1 parsec (pc) is abut 3.26 light-years.
5 Observational evidence of the presently accelerated expansion of the Universe includes and combines the analysis of

distant Supernovae of Type Ia (Riess et al., 1998; Schmidt et al., 1998; Perlmutter et al., 1999), temperature fluctuations
in the Cosmic Microwave Background radiation (Komatsu et al., 2011), Baryon Acoustic Oscillations (Percival et al., 2010;
Sanchez et al., 2012), large-scale clustering of galaxies (Maddox et al., 1990; Reid et al., 2010), integrated Sachs-Wolfe effect
(Giannantonio et al., 2008), and weak lensing tomography (Schrabback et al., 2010).
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Figure 1.2: Constraints on the energy budget of our “dark“ Universe from different observational data
(Gondolo, 2004). A Universe characterized by ΩM = 0.27 and ΩΛ = 0.73 is almost 14 billion years old.

baryons plus considerable non-baryonic cold dark matter, and ΩΛ = 0.73 for the density

of dark energy (Komatsu et al., 2011). Cold Dark Matter (CDM) is assumed to consist

of non-relativistic and collisionless particles, interacting only through gravity.

According to the current picture of theoretical cosmology, quantum fluctuations in the

early Universe were exponentially amplified during an accelerating phase of expansion

which is referred to as inflation (Guth, 1981), and transformed into classical density

perturbations. Dark matter density fluctuations were the first to collapse by gravitational

instability (Jeans, 1902) right after the epoch of equivalence, when the Universe

switched from being radiation-dominated to being matter-dominated. These dark matter

fluctuations originated the potential wells in which later the baryonic material was

accreted, and the first structures assembled. This happened only after recombination,

i.e. the epoch when the Universe had cooled down enough for the protons to capture

electrons and form hydrogen atoms. Once recombination occurred, the photons could

travel freely (decoupling), and so the Universe became transparent.

The most investigated model of structure formation, which is supported by strong

observational evidence, is the so called bottom-up scenario: structures grow hierarchically,

with small dark matter structures forming first, and then assembling into larger systems

(Doroshkevich and Zeldovich, 1975; Peebles, 1984; White et al., 1987).

While the linear regime of structure formation can be described analytically, this is not

true for the non-linear regime, and numerical simulations have become the major tool
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to investigate the evolution of dark matter halos at every scale - from galaxy clusters

down to dwarf galaxies. Indeed, since cold dark matter behaves as a collisionless fluid,

N -body simulations provide a simple way to sample its phase-space distribution with a

set of N particles evolving under self-gravity. Cosmological N -body simulations, from

the pioneering work of Einasto et al. (1974); White and Rees (1978) to the latest high-

resolution simulations (e.g. Springel et al., 2005b, 2008), show that the structures are

embedded in extended dark matter halos, and that these dark halos share a universal

mass density profile (Navarro et al., 1996, 2010). With proper scaling, a dwarf galaxy

halo is almost indistinguishable from a galaxy cluster halo.

Unfortunately, dark matter-only simulations do not provide any information about the

baryons which astronomers directly observe. The build-up of the stellar content of galaxies

is actually very complicated, and many different physical processes are involved, which are

strongly non-linear, deeply intertwined, and poorly understood: gas cooling and heating,

star formation, feedback from Active Galactic Nuclei (AGN) and stellar evolution, galaxy

interactions and mergers. In practice, two strategies have been developed to tackle

the problem: (i) full cosmological simulations model gas dynamics directly, adopting

a Lagrangian (Smoothed Particle Hydrodynamics, e.g. Monaghan, 1992) or Eulerian

(Adaptive Mesh Refinement, e.g. Berger and Colella, 1989) approach, and specific

prescriptions for star formation and feedback (e.g. Springel et al., 2001; Norman et al.,

2007; Springel, 2010); (ii) semi-analytic models use precise recipes, which are both

physically and observationally motivated, to include baryonic physics in the output of

N -body simulations (e.g. White and Rees, 1978; Kauffmann et al., 1993; Springel et al.,

2001; Guo and White, 2008).

The basic process leading to galaxy formation is the cooling of gas, and its descent into the

potential well of dark matter halos. This collapse increases the density and temperature

of the gas, which generally reduces the cooling time more rapidly than it reduces the

collapse time, so that the original gas cloud fragments into small, high-density clouds that

eventually form the first stars in the young galaxies (Binney, 1977; Rees and Ostriker,

1977; Silk, 1977).

At one extreme, the process of galaxy formation can be treated as totally dissipational with

respect to energy, with the accreted gas that dissipates into thermal energy the kinetic

energy it acquires while descending in the potential well (e.g. Lackner and Ostriker,
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2010). According to the “classical” picture of the monolithic collapse, elliptical galaxies

assembled their mass in a rapid burst of “in-situ” star formation at early times, and then

passively evolved to present day (Eggen et al., 1962; Larson, 1975; Jimenez et al., 1999).

Investigations of the dynamical implications of this scenario with numerical simulations

have shown density profiles and orbital structures similar to those of real ellipticals (e.g.

van Albada, 1982).

At the opposite extreme, a purely dissipationless model for the assembly of the stellar

component predicts that stars are formed in smaller systems far from the ultimate galaxy,

i.e. “ex-situ”, and then assembled through minor or major mergers6, which are more

naturally rooted in a hierarchical scenario of structure formation (White and Frenk, 1991).

When compared to the characteristic structures of a monolithic collapse, mergers can

reproduce a wider diversity of dynamical systems.

The idea that elliptical galaxies can originate from mergers of disk galaxies, i.e. the

so called “merger hypothesis” (Toomre, 1977), is especially consistent with the observed

“morphology-density relation” by which the number of ellipticals increases with increasing

density of the environment, contrary to the number of spirals (Dressler, 1980; Postman

and Geller, 1984). Indeed, early numerical simulations showed that mergers could lead

to something resembling elliptical galaxies (e.g. Fall, 1979; Gerhard, 1981; Negroponte

and White, 1983; Blumenthal et al., 1984). Moreover, direct observations of recent merger

remnants (e.g. Schweizer, 1982; Lake and Dressler, 1986; Doyon et al., 1994; Genzel et al.,

2001; Rothberg and Joseph, 2004; Cooper et al., 2012) and of faint shells and tidal features

around elliptical galaxies (e.g. Malin and Carter, 1983) support the idea of mergers as

drivers for galaxy evolution at high and low redshift7.

Of course, major mergers have a more dramatic effect. However, the current view is

that the bulk of the stars in present day ellipticals cannot originate from major mergers

of present day disk galaxies, or major mergers of their progenitors (Naab et al., 2009).

Minor mergers, instead, are much more frequent, and dominate the assembly history of

elliptical galaxies (Bell et al., 2006; Khochfar and Silk, 2006; Genel et al., 2008; Lotz

et al., 2011; Hirschmann et al., 2012; Gabor and Davé, 2012). Simulations (Hilz et al.,

6 The relative sizes of the merging galaxies determine whether a merger is major (roughly equal-sized galaxies) or minor
(one galaxy is significantly smaller than the other).

7 In this context, redshift indicates the cosmological redshift z, i.e. the stretching of light due to the expansion of the
Universe, and provides a distance measurement for those galaxies which are far away enough that their peculiar motions
can be ignored.
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2012) show that different dynamical processes dominate the evolution of dissipationless

major and minor mergers, respectively violent relaxation (Lynden-Bell, 1967; Spergel and

Hernquist, 1992) and tidal stripping.

The presence of gas during the merger event also plays an important role in shaping the

final kinematic structure of the merger remnant: gas rich (wet) mergers produce galaxies

dominated by rotation, whereas the remnants of gas-poor (dry) mergers are dominated

by random motions (e.g. Barnes and Hernquist, 1996; Bournaud et al., 2005; Cox et al.,

2006; Naab et al., 2006; Ciotti et al., 2007). As shown by Hernquist et al. (1993), wet

mergers represent a way to solve one strong problem with the “merger hypothesis”, namely

the fact that the stellar phase-space densities at the centers of ellipticals far exceed the

maximum densities in observed spirals (Carlberg, 1986; Kormendy, 1989). An important

consequence of wet mergers is that the gas flows to the center and forms new stars in a

compact starburst, thus modifying the inner profiles of the remnant (Mihos and Hernquist,

1994; Springel, 2000; Springel et al., 2005a; Hopkins et al., 2008, 2009). Such process

may account for the extra light at small radii observed in low-luminosity ellipticals (e.g.

Kormendy, 1999; Kormendy et al., 2009).

The picture of galaxy formation has become more complex - and more exciting - with

the recently established phenomenon of archaeological downsizing (Cowie et al., 1996):

older stellar ages are observed in more massive galaxies, suggesting that the stellar

mass is assembled first and faster in massive galaxies rather than in smaller ones, in

an anti-hierarchical fashion with respect to a naive reading of the hierarchical growth

of structures. Interestingly, the observed downsizing does not contradict a hierarchical

structure formation scenario, and cosmological simulations of galaxy formation seem to

do a good job in reproducing the observations by including appropriate feedback from

AGN and/or stellar evolution (e.g. Springel et al., 2005a; Scannapieco et al., 2005; Oser

et al., 2012). The reason resides in the difference between formation time and assembly

time: the most massive galaxies do harbor the oldest stars, which formed early on in

smaller structures; the galaxies themselves were assembled later (see e.g. De Lucia et al.,

2006).

Recent cosmological simulations for the build-up of elliptical galaxies provide a useful

interpretation for the interplay of different processes during galaxy formation in terms of

a two-phase formation scenario (e.g. Naab et al., 2007; Oser et al., 2010; Johansson et al.,
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2012; Lackner et al., 2012). According to these numerical works, galaxies experience two

regimes of growth: a hierarchical regime at high redshift, when baryons follow the growth

of dark halos, and an anti-hierarchical quenching of star formation and accretion episodes

at later epochs. The first rapid “in-situ” phase is dominated by accretion of gas and strong

and dissipational star formation, whereas the subsequent dissipationless “ex-situ” phase

is more extended in time, and it is dominated by stellar mergers and re-arrangement of

stars that have formed outside the galaxy itself. In this inside-out hierarchical growth

scenario, elliptical galaxies assembled their dense core until redshift z ∼ 1 − 2, and then

slowly built their outer envelope until present day by accreting smaller systems, whose

star formation history was truncated at early times. The phenomenon of accretion is

particularly prominent in more massive systems (Hirschmann et al., 2012; Gabor and

Davé, 2012; Lackner et al., 2012).

In general, simulations reproduce a whole body of observational findings on size evolution

(ellipticals were more compact and denser in the past, e.g. Trujillo et al. (2006); van

Dokkum et al. (2010); Szomoru et al. (2012)), stellar kinematics (e.g. Saglia et al.,

2010a; Arnold et al., 2011; Coccato et al., 2011), and metallicity (e.g. Mehlert et al., 2003;

Forbes et al., 2011; Greene et al., 2012) in nearby elliptical galaxies. Both theoretical and

observational studies (e.g. Bender et al., 1992; Ciotti and van Albada, 2001; Robertson

et al., 2006; Scarlata et al., 2007; Faber et al., 2007) have argued that a combination

of dissipational and dissipationless processes is needed to match the observed properties

of elliptical galaxies. Higher quality of observational data, together with improvements

and refinements of the modeling techniques, undoubtedly represent the keys to unveil the

formation pathways of ellipticals.

1.3 Observational properties of elliptical galaxies

Thinking is more interesting than knowing,
but less interesting than looking.

Johann Wolfgang von Goethe

Elliptical galaxies have long been regarded as boring “red and dead” objects, populated

by old stars and passively evolving over cosmic time (e.g. Dunlop et al., 1989).

For quite a long time, it has been erroneously thought that these systems were dynamically

simple, flattened by rotation, structureless, and depleted of gas. However, since the mid-

1970s it became clear that these stellar systems are far from being boring (e.g. de Zeeuw
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and Franx, 1991). Though smaller ellipticals can be flattened by rotation, ellipticals in

general rotate too slowly (e.g. Bertola and Capaccioli, 1975; Illingworth, 1977), and rather

are flattened by orbital anisotropy (e.g. Binney, 1978; Davies, 1981). In this respect,

they are dynamically hot systems in which most of the support against gravitational

collapse comes from random motions, opposed to cold systems, like spiral galaxies, in

which ordered rotation contributes most of the internal kinetic energy. Consequently,

stars in elliptical galaxies move along orbits which are much more intricate than those in

spirals, and this makes it harder to understand their dynamics and formation mechanisms.

Furthermore, the launch of X-ray satellites revealed that most of these galaxies do contain

gas, contributing up to 10% of their total mass (e.g. Sarazin, 1990). Their interstellar

medium is at high temperatures ∼ 107K, and notable Bremsstrahlung emission can be

observed at X-ray wavelengths (e.g. Forman et al., 1979).

Over the years, a rich variety of sub-structures have been identified in elliptical galaxies

in the various forms of shells, ripples, stellar disks, rings, kinematically decoupled

components, and younger stellar components (e.g. Malin and Carter, 1983; Franx and

Illingworth, 1988; Bender, 1988a; Krajnović et al., 2011).

Nowadays, every elliptical is also thought to harbor a central supermassive black hole

whose mass correlates with the properties of the host galaxy, suggesting an intimate

connection between the processes of black hole growth and galaxy evolution (Magorrian

et al., 1998; Ferrarese and Merritt, 2000; Gebhardt et al., 2000).

This Section summarizes the main observed properties of nearby elliptical galaxies in terms

of photometry and kinematics. The modeling of photometric and kinematic observational

data provides significant insights into the global structure of these galaxies, as will be

shown in this thesis.

1.3.1 Optical photometry

The isophotes of elliptical galaxies are concentric ellipses within the photometric errors

(Kent, 1984; Lauer, 1985; Jedrzejewski, 1987; Peletier et al., 1990).

Stark (1977) proved that elliptical galaxies whose isophotes are similar ellipses have

volume brightness distributions which are constant on similar ellipsoids. Thus, the

intrinsic shape of elliptical galaxies can be spherical, axisymmetric oblate (flattened),

axisymmetric prolate (elongated), or triaxial (fully ellipsoidal).
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Accurate CCD photometry shows that the isophotes are not perfect ellipses, and

deviations from pure ellipses are usually quantified by the amplitude a4 of the cos(4ϑ)

term in a Fourier expansion of the isophote radius in polar coordinates (Carter, 1978;

Bender and Moellenhoff, 1987). The sign of the a4 parameter discriminates between

disky (elongated along the major axis, a4 > 0) and boxy (rectangular, a4 < 0) isophotes.

As discussed by Kormendy and Bender (1996), isophote shape is an indicator of velocity

anisotropy. In particular, all disky ellipticals rotate rapidly, and in general are isotropic,

while boxy ellipticals tend to rotate slowly and are anisotropic. Being the orbital

anisotropy a fundamental dynamical property of galaxies, Kormendy and Bender (1996)

proposed a revised version of the Hubble’s sequence based on the a4 parameter, which

measures velocity anisotropy, rather than on the apparent ellipticity. Such new gradation

from boxiness to diskiness is illustrated in Fig. 1.3.

Figure 1.3: Morphological classification of galaxies proposed by Kormendy and Bender (1996). Elliptical
galaxies are illustrated edge-on and at ellipticity ǫ ∼ 0.4.

It has been variously suggested that many physical properties of elliptical galaxies

correlate with the two kinds of deviations of the isophote shape, implying an intrinsic

dichotomy : normal and fainter ellipticals, which are typically radio and X-ray quiet, are

disky, rapidly rotating, and generally axisymmetric, whereas giant ellipticals, which are

usually X-ray and radio loud, tend to be boxy and slowly rotating, and may be moderately

triaxial and anisotropic (Bender et al., 1988; Bender, 1988b; Kormendy and Djorgovski,

1989; Kormendy and Bender, 1996; Faber et al., 1997; Trujillo et al., 2004b; Kormendy

et al., 2009). The two families of ellipticals also exhibit a different behaviour of the surface

brightness profile in the central galactic regions: fainter elliptical galaxies are coreless and

have central extra light, while brighter ellipticals have cores, i.e. central missing light
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(e.g. Nieto et al., 1991; Kormendy et al., 2009). It is very likely that the structural and

physical differences between these two families reflect different formation mechanisms.

Recent simulations of galaxy formation show that massive boxy ellipticals may originate

from equal-mass mergers of disk galaxies or early-type galaxies, while low-luminosity disky

ellipticals may be produced by minor mergers or late infall of gas (Naab and Burkert, 2003;

Khochfar and Burkert, 2005). Bekki and Shioya (1997) found that the isophotal shapes

are strongly affected by the rapidity of gas consumption by star formation in wet mergers,

and that mergers with gradual star formation are more likely to form disky ellipticals. In

general, dissipational remnants tend to be disky whereas dissipationless remnants tend to

be boxy (Cox et al., 2006). The extra light at the centers of the fainter, disky ellipticals

may be a signature of dissipational starburst in wet mergers (e.g. Nieto and Bender,

1989; Springel, 2000; Hopkins et al., 2009; Kormendy et al., 2009), whereas central cores

may be indicative of dry mergers, or scouring by binary massive black holes8 after the

last major merger.

The orientation of the isophotes may change going from the galactic center outwards:

isophote twists have been observed since long time ago (e.g. Liller, 1960; King, 1978),

and they can be interpreted as a projection effect of a triaxial galaxy in which the ellipticity

changes with radius (Stark, 1977; Kormendy, 1982), or as an intrinsic misalignment of

the major axis at different radii in a merger remnant (Gerhard, 1983b,a).

In general, ellipticals have bright nuclei and faint outer envelopes. Their surface brightness

can be well fitted by several empirical formulae, of which the most well-known is the

generalization of the de Vaucouleurs (R1/4) law proposed by Sersic (1968):

I(R) = Ie exp(−7.67[(R/Re)
1/n − 1]) (1.1)

(Bertin, 2000), where I is the surface brightness at projected radius R, Re is the effective

radius that contains half of the projected light, Ie is the surface brightness at Re, and n

the Sersic index, which correlates with the luminosity (Ciotti and Bertin, 1999).

The intrinsic luminosity density of an elliptical galaxy can be obtained by deprojecting

its surface brightness, if one assumes a certain shape and inclination (Magorrian et al.,

1998; Kronawitter et al., 2000). However, the deprojection is unique only for spherical

8 If more than one of the merging galaxies contains a massive black hole, then galaxy mergers imply the formation of
bound systems of massive black holes (Begelman et al., 1980) which can influence the stellar distribution on larger spatial
scales than single supermassive black holes (Milosavljević and Merritt, 2003), and leave a “mass deficit” imprint in the
galactic nucleus (Merritt, 2006).
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systems, or axisymmetric systems viewed edge-on, i.e. for a viewing direction in the plane

normal to the axis of symmetry (Rybicki, 1987; Gerhard and Binney, 1996). In principle,

the stellar mass profile can then be inferred from the luminosity density, if the stellar

mass-to-light ratio is known from stellar population or dynamical models.

1.3.2 Kinematics of ellipticals

The motions, or kinematics, of stars in elliptical galaxies contain fundamental information

on the orbital structure and mass distribution of these systems, and can be measured from

the absorption lines generated by the atmospheres of giant stars in the galaxy spectra.

These absorption lines are broadened and shifted by the motion of stars along the line-

of-sight. The line-of-sight velocity distribution (LOSVD) can be extracted from such

broadening (Bender, 1990; Rix and White, 1992), and fitted by a Gaussian with mean

V equal to the bulk motion of the stars, and width equal to the dispersion σ in the

velocities of the stars along the line-of-sight. Deviations of the line profile from a Gaussian

are commonly parameterised by Gauss-Hermite coefficients hn, with odd/even Gauss-

Hermite moments measuring skewed/symmetric deviations (van der Marel and Franx,

1993; Gerhard, 1993). Higher-order terms are of the greatest importance to constrain the

anisotropy and mass distribution of ellipticals (Gerhard, 1993; Merritt, 1993).

Typical results from measuring the line profiles by fitting (V , σ, h3, h4) report velocity

rotation curves which tend to rise in the very central galactic regions and then flatten

out, and dispersion profiles that either stay flat or fall in the outer regions (Bender et al.,

1994; Gerhard et al., 1999; Rix et al., 1999; Saglia et al., 2010b; Pu et al., 2010; Spolaor

et al., 2010).

In recent years, the development of integral field units such as SAURON (Bacon et al.,

2001), VIRUS-P (Hill et al., 2008), and DEIMOS (Proctor et al., 2009), has literally

added a new dimension to the observations of nearby ellipticals, providing two-dimensional

maps of the LOSVD moments typically out to 1Re (e.g. Emsellem et al., 2004, 2011).

Based on the huge amount of new kinematic data obtained with the survey ATLAS-3D

conducted with SAURON, an alternative classification for early-type galaxies (ETGs) has

been proposed by Cappellari et al. (2011), as shown in Fig. 1.4.

In this new framework, ETGs are divided into slow and fast rotators according to the

stellar angular momentum λR that they possess per unit mass (Emsellem et al., 2007). The
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Figure 1.4: Classification of nearby galaxies from the ATLAS-3D sample (Cappellari et al., 2011). The
ETGs are classified according to the absence of spiral arms or extended dust lanes.

two classes appear to have different dynamical properties: slow rotators are more massive

and nearly round, with some triaxiality highlighted by significant kinematic misalignment

(see Section 1.4.1), while fast rotators are rather flattened, nearly axisymmetric, and span

a larger range of orbital anisotropies. Most ETGs (85%) are fast rotators (Emsellem et al.,

2011). Different formation mechanisms have been proposed to explain the origin of fast

and slow rotators (see Burkert et al., 2008, and references therein). In particular, it is

believed that slow rotators accrete a lot of mass (50%-90%) and undergo up to three

major mergers (Naab et al., 2006; Bois et al., 2011), while fast rotators accrete less than

50% of their mass, and experience less than one major merger during their life (Khochfar

et al., 2011).

For many elliptical galaxies, kinematics have been accurately measured within 1 − 2Re,

with only a few studies reaching out to 3 − 4Re (e.g. Mehlert et al., 2000; Spolaor

et al., 2010; Coccato et al., 2010), into the very interesting region where dark matter

starts to dominate and the orbital timescales become long, so that one would expect that

the signatures of formation processes are preserved longer. Lately, the effort of pushing

kinematic observations towards the galactic halos has been undertaken measuring stellar

LOSVDs from deep multi-object spectroscopic observations out to 3.5Re (Proctor et al.,

2009; Foster et al., 2011).

As will be shown in this thesis, the spatial coverage of the data, together with their quality,

plays a fundamental role in limiting the degeneracies involved in the dynamical modeling

of galaxies.
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1.3.3 Kinematics from discrete tracers

Probing the mass distribution and kinematics of the outer halos of ellipticals is a task

which is strongly thwarted by the rapid fall-off of the stellar surface brightness, which

hinders measurements of the absorption line kinematics. A way to overcome such

limitation is provided by the so called discrete tracers, i.e. populations of objects, such as

planetary nebulae (PNe) or globular clusters (GCs), that can be used as test particles to

trace the kinematics. The velocities of these discrete tracers can be measured even when

the surface brightness is low.

PNe occur as a brief stage of stellar evolution, when stars with masses between 0.8−8M⊙

leave the asymptotic giant branch, and set forth to the white dwarf stage. In this rapid

phase, stars are surrounded by an envelope of gas which converts up to 15% of their

ultraviolet radiation energy in a bright [OIII] emission line (Dopita et al., 1992). At

this wavelength, these little stars are incredibly brighter than anything else around them.

This allows spectroscopic identification of PNe, and measurement of their line-of-sight

velocities from Doppler shift. Thus, kinematics can be measured out to several effective

radii of the galaxies, where the stellar density is too faint, and optical spectroscopy suffers

from low signal-to-noise ratio. Indeed, the use of PNe allowed to measure two-dimensional

velocity and velocity dispersion out to 6−9Re in nearby elliptical galaxies (e.g. Ciardullo

et al., 1993; Hui et al., 1995; Arnaboldi et al., 1996; Méndez et al., 2001; Douglas et al.,

2002; Teodorescu et al., 2005; Coccato et al., 2009).

GCs, instead, are near-spherical clusters of old stars which move as test particles in the

galaxy potential (Harris, 1991), and they appear in large number in almost all elliptical

galaxies. At the distance of ellipticals, these objects are nearly point-like sources, though

very bright. Hence, after photometric identification, the absorption line kinematics in

integrated spectra can be measured, even in the outer regions of galaxies. Being the ages of

GCs comparable to the age of the Universe, these objects are valuable tools to investigate

the earliest star formation episodes of their host galaxy. However, the observed colour

bimodality of GC systems, commonly interpreted as a metallicity bimodality (Brodie and

Strader, 2006), complicates the study of their kinematics (e.g. Côté et al., 2003; Strader

et al., 2011). In particular, while the density and kinematics of PNe are generally in good

agreement with those of the stars, there are indications that the (metal-poor) GCs may
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not be in equilibrium with the bulk of the stellar population (e.g. Peng et al., 2004;

Romanowsky et al., 2009; Das et al., 2011).

In order to place significant constraints on the mass distribution of galaxies, a sample of

roughly 100−200 radial velocities is needed, provided that some information on the stellar

kinematics within the central galactic regions is available (Saglia et al., 2000; Romanowsky

and Kochanek, 2001; Gerhard, 2006). Since typical samples of discrete tracers consist of

a few hundred objects, only the mean velocity and velocity dispersion moments of the

LOSVD can be accurately determined (but see Napolitano et al., 2009; Amorisco and

Evans, 2012).

Whilst random errors in absorption line kinematics are dominated by the signal-to-noise

(which depends on exposure time, wavelength range, and spectral resolution), random

errors in kinematics from discrete tracers are typically dominated by the small numbers

statistics, and attention must be paid to systematics, selection, and completeness of the

sample of indicators.

Figure 1.5: Mean rms velocity (top) and velocity dispersion (bottom) profiles as a function of radius for
the sample of elliptical galaxies studied in Coccato et al. (2009).

Combining absorption line kinematics and PNe velocities, Coccato et al. (2009)

investigated the outer-halo kinematics of a sample of 16 early-type galaxies. An intriguing

outcome of their study is shown in Fig. 1.5: galaxies fall into two groups, with either

slowly decreasing or steeply falling mean rms velocity profile V 2
rms = σ2 + V 2. The few
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ellipticals with rapidly falling velocity profiles, which suggest diffuse dark matter halos in

some tension with the predictions of galaxy formation models (see Section 1.5.1), are the

subject of this work.

Interestingly, Coccato et al. (2009) showed that the outer halo kinematics are correlated

with other galaxy properties: brighter ellipticals, which are preferentially boxy in shape

and have smaller values of V/σ (see Section 1.3.1), tend to have flatter mean rms velocity

profile. These galaxies are brighter both in B-magnitude and X-ray, and the reason for

the correlation between the flat velocity profile and the X-ray emission is presumably that

a massive halo is needed to keep the X-ray emitting gas. Ellipticals with declining rms

velocity profiles, instead, are generally less massive, and come in a wider range of shapes

and V/σ ratios.

In general, galactic halos are characterized by more complex radial profiles of the specific

angular momentum parameter λR than the ones observed within 1Re (see also Proctor

et al., 2009). However, slow rotators have on average flatter mean rms velocity profiles,

whereas galaxies with steeply declining profiles are fast rotators.

1.3.4 Scaling relations

Elliptical galaxies are an amazing combination of complexity and regularity. Despite

the complicated mechanisms behind their origins, and the observed dichotomy, they are

characterized by several fundamental relations between the observed photometric and

kinematic properties. These scaling relations have long been thought to contain important

clues about the physical processes that shaped their formation and evolution (see e.g. the

review by Renzini, 2006).

Scaling laws of ellipticals have been known since de Vaucouleurs (1948), who showed

the similarity of their surface brightness profiles, and Fish (1964), who found a relation

between potential energy and mass. Sandage (1972) discovered a color-magnitude relation

obeyed by the elliptical galaxies belonging to Virgo and Coma clusters: the integrated

colours of elliptical galaxies become bluer and bluer towards fainter magnitudes (see also

Baum, 1959; Visvanathan and Sandage, 1977). A similar scaling law was found to hold

for Local Group and cluster ellipticals (Faber, 1973), and it has been confirmed by many

successive investigations (e.g. Bower et al., 1992). More massive ellipticals have older

stellar populations and higher metallicity, which would both result in redder colours.
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However, there are compelling evidences in favour of the metallicity origin for the color-

magnitude relation (Kodama and Arimoto, 1997).

Faber and Jackson (1976) identified a relation between the magnitude and the velocity

dispersion of elliptical galaxies, which encouraged them to propose that these systems

belong to a one-parameter family, the mass being the parameter. The Faber-

Jackson relation states that the total blue luminosity increases with velocity dispersion

approximately as LB ∝ σ4 (see the analog for spiral galaxies by Tully and Fisher, 1977).

Similarly, the Mg2 absorption line index increases with velocity dispersion, and both the

colour-magnitude and the Mg2 − σ relations are primarily sequences in galaxy stellar

mass. At increasing stellar mass, as traced by either luminosity or velocity dispersion, the

redder colour and Mg-absorption line strength along the relations reflect an increase in

both total metallicity and α/Fe ratio9 (e.g. Thomas et al., 2005a; Gallazzi et al., 2006).

Furthermore, Kormendy (1977) showed that the surface brightnesses and effective radii

of ellipticals correlate with luminosity and with one another. In particular, the more

luminous galaxies are larger but have lower surface brightnesses.

As a matter of fact, both the Faber-Jackson and the Kormendy relation are important

projections of a much tighter correlation which implies that elliptical galaxies lie on

the so called Fundamental Plane in the three-dimensional space of [log(Re), log(σ0), Ie]

(Dressler et al., 1987; Djorgovski and Davis, 1987; Bender et al., 1992). The Fundamental

Plane relation is a useful indicator of the distances of elliptical galaxies, as it allows to

estimate Re in physical units from the two distance-independent quantities σ and Ie.

Since the original formulation of this relation, the size and quality of early-type galaxy

samples have been constantly improving (e.g. Bernardi et al., 2003; Gargiulo et al., 2009;

Hyde and Bernardi, 2009; La Barbera et al., 2010; Graves and Faber, 2010; Saglia et al.,

2010b) in the effort of understanding its intrinsic scatter (thickness) and its tilt relative

to the two-dimensional surface defined by virial equilibrium. In particular, the tilt of

the Fundamental Plane can result from either a non-homology of early-type galaxies,

or a systematic variation of their mass-to-light ratio with mass, due to differing stellar

populations and/or dark matter fractions (e.g. Ciotti et al., 1996; Busarello et al., 1997;

Nipoti et al., 2003; Trujillo et al., 2004a; Bolton et al., 2007; Tortora et al., 2009).

9 The α-elements are O, Ne, Mg, Si, S, Ar, Ca, and Ti, i.e. those that are built up by nuclear fusion reactions that
consume α-particles nuclei. The α-Fe ratio quantifies the relative importance of Supernovae of Type Ia and II, and hence
is used to constrain formation timescales (Greggio and Renzini, 1983; Matteucci and Greggio, 1986).
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Finally, another remarkable correlation between the intrinsic properties of elliptical

galaxies has been discovered more recently, and it relates the masses of supermassive

black holes, which are present in the center of most galaxies (Kormendy & Richstone

1995), with the luminosity and even better with the velocity dispersion of their hosts

(Magorrian et al. 1998; Ferrarese & Merritt 2000; Gebhardt et al. 2000; Tremaine et

al. 2002; Graham & Driver 2007). The existence of such correlations provides strong

evidence that the black hole growth and the evolution of its host galaxy directly influence

one another (see e.g. Ciotti, 2009).

1.4 Dynamics of elliptical galaxies

Philosophy is written in that great book
which ever lies before our eyes - I mean the universe -

but we cannot understand it if we do not first learn the language
and grasp the symbols in which it is written.
It is written in the mathematical language,

and the characters are triangles, circles and other geometric figures,
without whose help it is impossible to comprehend a single word of it;

without these characters one wanders through a dark labyrinth in vain.
Galileo Galilei

Elliptical galaxies contain up to hundreds of billions of stars which move according to

Newton’s laws of motion and Newton’s law of gravity. Hence, a statistical approach can

be profitably adopted in stellar dynamics, similar to that employed in classical statistical

mechanics. However, there are some fundamental differences between stellar systems

and other N -body systems like gases or plasmas, and they reside in the nature of the

gravitational force, which is a long-range interaction, and which is always attractive.

The long-range nature of gravity implies that stars in galaxies rarely undergo physical

collisions, unless they move in unusually crowed regions like galactic nuclei. Moreover,

the graininess in these stellar systems can be neglected, since nearby stars have an

unimportant perturbing effect on the gravitational force felt by any individual star. As

a result, the gravitational force on any star does not change rapidly and unevenly as the

star orbits, so that each star moves in the smooth average field generated by the galaxy

as a whole - stars, gas, dust, and dark matter.

The lack of gravitational charges of opposite sign, instead, entails that stellar systems

tend to form strongly inhomogeneous equilibria where in macroscopic terms gravity is

balanced by a stellar-dynamic “pressure”, or orbital anisotropy, as described below.
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This Section summarizes the basic ideas on how the dynamics of stars in elliptical galaxies

can be described and how dynamical models of observational data can be constructed.

1.4.1 Stellar orbits in elliptical galaxies

The dynamics of ellipticals are related to the trajectories, or orbits, of their stars.

These are much more complicated in ellipticals than in disk galaxies, and range from

highly eccentric, near-radial to tangential, near-circular orbits. The orbital distribution

is defined isotropic if it consists of a balanced combination of orbits such that the local

velocity dispersions in all directions are equal, and anisotropic otherwise. A wide range

of anisotropies is possible, but systems with very strong radial anisotropy are unstable to

the formation of a bar, and this instability limits the amount of radial anisotropy in the

central galactic regions (Fridman and Poliachenko, 1984).

Most notably, the orbits of stars are distinguished according to the symmetry of the

gravitational potential. Generally, they do not have a simple shape, and they are

not closed, the two only exceptions being the point-mass Kepler potential and the

homogeneous sphere harmonic potential.

Regular orbits in 2n-phase-space possess n isolating integrals of motion10 which shape

their orbits. They can be formally decomposed into n independent periodic motions, and

they lie on an n-dimensional manifold which is topologically equivalent to an n-torus.

This is not true for irregular (stochastic) orbits, which may wander anywhere permitted

by conservation of energy, with a complicated structure. It is generally believed that

regular orbits provide a skeleton for the mass distribution that produces the gravitational

potential, but stochastic orbits exist that populate phase-space regions avoided by regular

orbits (de Zeeuw, 1985). Even if such stochastic orbits typically exhibit substantial

variability on short timescales, it is still possible to characterize some statistical properties

of ensembles of these orbits (e.g. Merritt and Fridman, 1996).

In any spherically-symmetric potential, all stars move on regular orbits, and have four

isolating integrals: energy and angular momentum vector. The trajectories of stars are

confined to a plane perpendicular to their angular momentum vector, and they consist

of a combination of two periodic motions, in the radial and azimuthal direction, which

can be represented as a path on a 2-torus. Stars typically move on rosette orbits, that
10 An integral of motion I(x,v) is a function of the phase-space coordinates that stays constant along the orbit of a star.

It is called isolating if it restricts motion to subspaces of phase-space.
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is precessing ellipses confined between an inner pericentre radius and an outer apocentre

radius in the orbital plane.

In any axisymmetric potential, there are two integrals of motion: energy and angular

momentum component along the symmetry axis. In the plane perpendicular to the

symmetry axis, in which the gravitational force is central, axisymmetric potentials are

indistinguishable from spherical ones. Instead, the motion of stars beyond the equatorial

plane can be reduced to the motion in a non-uniformly rotating meridional plane. For

realistic galactic potentials, it is often found that most of the stellar orbits are regular,

and that they respect an effective third integral of motion, for which in general there is no

analytic expression (Contopoulos, 1963; Binney and Tremaine, 2008). In these systems

a few stochastic orbits exist, which respect only the two classical integrals. However,

in the general case the third integral does not exist. Stellar orbits can be grouped

into topologically distinct families: in oblate axisymmetric potentials the main family

is represented by the short-axis tube (or loop) orbits, whereas in prolate potentials the

inner and outer long-axis tube orbits dominate.

Non-axisymmetric (triaxial) potentials admit an even richer and more intricate orbital

structure (Statler, 1987), the only integral of motion being the energy. Long-axis and

short-axis tube orbits still exist in non-rotating triaxial potentials, and by superposing

them it is possible to arrange for intrinsic rotation field whose angular momentum

vector can be aligned with any axis. This is a unique property of triaxial systems, and

indeed represents a kinematic signature of triaxiality. Furthermore, a new orbital family

dominates the backbone of these systems, the one of box orbits, which resemble Lissajous

figures, carry stars arbitrarily close to the galactic center, and have an alternating sense

of rotation.

1.4.2 Dynamical equilibria of ellipticals

Being the 2-body timescale, i.e. the time over which 2-body encounters significantly

change stellar orbits, longer than the age of the Universe11, elliptical galaxies are normally

assumed to be collisionless. Since the dark halos of galaxies are believed to be composed of

particles for which the collision-times are even longer, they can be described as collisionless

fluids in phase-space as well.

11 This may not be true in the central nuclei of ellipticals.
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For a collisionless systems, the discreteness effects can be ignored, and the dynamics of any

population of stars can be fully described by the so called distribution function (hereafter

DF) or phase-space density f(x,v, t), which represents the probability density of finding

some stars in the small phase-space volume d3x d3v centered on (x,v) at time t. In a

statistical sense, f is the density of stars expected over an ensemble of equivalent systems

sharing the same global (macroscopic) properties but having different detailed positions

and velocities of the individual stars.

The motion of the phase-space fluid must conserve mass, that means particles are neither

created nor destroyed. This is enough to derive the Vlasov (or collisionless Boltzmann)

equation Df/Dt = 0, which, together with the Poisson’s equation, are the fundamental

equations of collisionless stellar dynamics (Henon, 1982; Binney and Tremaine, 2008).

The dynamical evolution of the DF is governed by the mean-field gravitational potential,

and it is generally time-dependent. However, the smooth appearance and regular shapes

of ellipticals suggest that they rest in a (nearly) steady-state equilibrium, so we can focus

on describing equilibrium states of elliptical galaxies, i.e. time-independent solutions to

the Vlasov equation. These equilibrium solutions are valid for timescales shorter than the

evolutionary time.

Assuming that ellipticals are collisionless systems in steady state, their DF can depend

on the phase-space coordinates only through the integrals of motion of the gravitational

potential by Jeans’ theorem. Only the isolating integrals are relevant (Lynden-Bell, 1962),

and correspond to the action integrals on the orbital tori (Binney and Tremaine, 2008).

Jeans’ theorem is commonly assumed in building equilibrium models of elliptical galaxies.

Its global nature implies that different parts of a stellar system are dynamically coupled,

so that the target galaxy should be modelled globally. Moreover, the global nature of the

the integrals implies that knowing the density at one point on the torus means knowing

it everywhere on it. This is why it is possible to construct a dynamical model from

observations which are known only in a subspace of phase-space.

Two basic techniques have been devised to construct galaxy models: that from the

DF f to the spatial density ρ, and that from ρ to f (Dejonghe, 1986; Bertin, 2000;

Binney and Tremaine, 2008). The distribution function priority method (from f to ρ)

proceeds choosing a physically-based DF, and then obtaining the density distribution via
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the equation

ρ(x) =

∫
f(x,v)d3v. (1.2)

In the self-consistent case in which the density determines the gravitational potential

through Poisson’s equation, the potential can also be obtained. Solving the so called

Jeans’ problem (from ρ to f) requires instead an inversion of the integral equation above

for a specific potential-density pair. Since the distribution function is generally not known

a priori, modelers normally adopt the second approach, but more than ρ is used nowadays

to constrain f , and dynamical models need to be capable of matching an increasing

amount of observational data of diverse kind.

In particular, observance of the full LOSVD allows to reconstruct the DF in the case in

which the potential is known (Dejonghe and Merritt, 1992), or to put constraints on both

the DF and the gravitational potential in the more general case in which the latter is not

known in advance (Merritt and Saha, 1993; Gerhard, 1993).

In any case, the solution to the Jeans’ inversion problem does not always exist, since

some consistency requirements (f > 0) should be imposed (e.g. Ciotti and Morganti,

2009, 2010a). Also, the solution is generally not unique, and many DFs might exist

that reproduce the data. In fact, the hot nature of elliptical galaxies gives them great

freedom in the way stellar orbits can be arranged. Unfortunately, this means that velocity

dispersion profiles alone (plus streaming velocity profile, in the case in which the galaxy

has some rotation) are not enough to determine the mass distribution, due to a inherent

degeneracy with orbital anisotropy (Binney and Mamon, 1982). Such degeneracy is

amplified further by the uncertainties related to the actual shape of elliptical galaxies and

our viewing geometry, so that many solutions can be found that are equally compatible

with the observational data, and assumptions are necessary in order to obtain a unique

answer.

Different methods to construct dynamical models which match the observational data are

available, as discussed below.

1.4.3 Dynamical models

The modeling of photometric and kinematic observational data is of the greatest

importance to infer the intrinsic properties of elliptical galaxies, and ultimately understand

their origin and evolution. Dynamical models are an essential tool to determine the mass,
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gravitational potential, orbital structure, and phase-space DF from the observed data.

First, a measurement of the total mass and of the mass profile of stellar systems is a

key element to constrain the mass-to-light ratio of the stars, equivalent to the stellar

initial mass function, and the amount and radial distribution of dark matter, in order

to compare real galaxies with the predictions of numerical models of galaxy formation.

Second, a measurement of the total gravitational potential, which plays a fundamental role

in shaping the orbital structure, can only be done indirectly via dynamical models, a part

from the cases of X-ray bright elliptical galaxies (see the review by Buote and Humphrey,

2012), or early-type lens galaxies (e.g. Treu and Koopmans, 2004). Finally, the orbital

structure, and the 6-coordinates DF of the stellar populations and sub-populations, can

only be constrained or recovered via dynamical modeling.

Different techniques to create models which reproduce the observational data have been

devised, and we now briefly describe each one of them in turn. Even if it is not

clear whether the usual modeling assumptions, e.g. dynamical equilibrium, gravitational

potential, symmetry, anisotropy, are fully justified, in principle dynamical models can also

be used to test the validity of these assumptions.

Moment-based (Jeans) models Rather than undertaking the venture of solving the Vlasov

equation, one can consider a set of moment equations (Dejonghe, 1986; Binney and

Tremaine, 2008). The system of moment equations is often not closed, but there are

important cases in which it can be closed and solved, and in these cases one can gain

valuable insights.

For instance, in spherical stellar systems, combining the first two equations of the hierarchy

results in the first-order Jeans equations, which read simply

d(ρσ2
r )

dr
+

2βρσ2
r

r
= −ρ

dφ

dr
, (1.3)

where φ is the total gravitational potential, and ρ and σr are the density and the radial

velocity dispersion of any tracer population which moves in the potential. The anisotropy

parameter

β(r) ≡ 1− σ2
t

2σ2
r

(1.4)

(Binney and Mamon, 1982), where σt =
√
(σ2

ϑ + σ2
φ)/2 is the tangential velocity

dispersion, quantifies the anisotropic pressure of stellar motions. β = 0 identifies an
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isotropic orbital distribution, whereas β → 1 and β → −∞ describe radial and tangential

departures from orbital isotropy, respectively. If the DF depends only on energy, then

the velocity distribution is isotropic everywhere (β = 0). Instead, values of β 6= 0 are

determined by the way in which the DF depends on the angular momentum. In consistent

stellar systems, i.e. systems whose DF is non-negative, the value of the anisotropy

parameter is linked to the slope of the density profile (An and Evans, 2006; Ciotti and

Morganti, 2010b).

Assuming that the system is isotropic, i.e. β = 0, the equation above can be simply

integrated based on inverted ρ and σr, which are derived from the actual measured

quantities (surface brightness and line-of-sight velocity dispersion). Instead, the typical

way to solve the Jeans equations for anisotropic models is to assume a specific functional

form for β(r) and then treat equation (1.3) as a first-order linear differential equation

for ρσ2
r . Different choices of β(r) yield different predictions for the line-of-sight velocity

dispersion profile, and the anisotropy parameter can then be constrained optimizing the

fit to the observations.

Jeans equations have been extended to the axisymmetric case, assuming a constant mass-

to-light ratio and a velocity ellipsoid that is aligned with cylindrical coordinates (e.g.

Cappellari, 2008), and also to triaxial galaxies (van de Ven et al., 2003) with separable

potentials (de Zeeuw, 1985).

Since the Jeans equations relate quantities which are observationally accessible, such as

the surface density and the velocity dispersion profile, they constitute a valuable tool to

model galaxies. The technique is very simple, and it has proven to be extremely useful

in a large variety of applications (e.g. Young, 1980; Binney and Mamon, 1982; Binney

et al., 1990; Magorrian and Binney, 1994; Lokas, 2002; Williams et al., 2009; Cappellari

et al., 2009a). Among the drawbacks of these moment-based methods are the need for

assumptions to close the system of equations, the lack of any guarantee on the positivity

of the underlying DF (consistency requirements), and the difficulties in modeling higher

order information such as the LOSVD (but see Lokas and Mamon, 2003).

Models with distribution functions Jeans’ theorem naturally brings up the idea of

representing galaxies as a superposition of functions of the integrals of motion, and fit the

observations with combinations of parametrized functions of the integrals of motion or of
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the action integrals of orbits.

Such DF-based methods have been explored in spherical or integrable systems (e.g.

Dejonghe, 1986; Dejonghe and de Zeeuw, 1988; Gerhard, 1991; Hunter and de Zeeuw, 1992;

Carollo et al., 1995; Kronawitter et al., 2000), axisymmetric models (see e.g. Hunter and

Qian, 1993; Dehnen and Gerhard, 1994; Kuijken, 1995; Magorrian, 1995; Merritt, 1996),

and nearly integrable potentials (e.g. Dehnen and Gerhard, 1993; Matthias and Gerhard,

1999; Binney, 2010).

The main advantage of these techniques is that they obviously access the full phase-space

DF directly, although generally requiring assumptions on the symmetry of the target

galaxy.

Schwarzschild models The integrals of motion define a torus in phase-space, which is

traced out by the orbits of stars. Therefore, by Jeans’ theorem, the DF can be regarded as

a function of the orbits, and the problem can be handled with numerical orbit integration,

desisting from the analytic approach.

This is the basic idea behind the Schwarzschild method (Schwarzschild, 1979, 1993), which

is essentially a way to solve an optimization problem: a trial potential is assumed, a large

library of orbits in that potential is computed, and finally the contribution of each orbit

is adjusted so to reproduce the observed photometry and kinematics. A sequence of trial

potentials can be explored, and ∆χ2 analysis can be used to infer confidence levels on the

best-fitting model (Press et al., 1992).

Orbit-based models do not place any assumption on the orbital anisotropy, and they can

use any kind of kinematic information, including higher order moments of the LOSVD,

and discrete kinematic tracers (e.g. Chanamé et al., 2008). Of course, the orbit library

needs to be constructed so as to provide a good sampling of phase-space (see e.g. Thomas

et al., 2004; van den Bosch et al., 2008).

Schwarzschild modeling is very powerful, and it has been extensively used (e.g. Richstone

and Tremaine, 1985; Rix et al., 1997; van der Marel et al., 1998; Cretton et al., 1999;

Cappellari et al., 2012; Gebhardt et al., 2003; Valluri et al., 2004; Thomas et al., 2005b;

van den Bosch and de Zeeuw, 2010), although applications are mostly restricted to

axisymmetric systems. A shortcoming of the method is that it requires the computation

of a large and representative orbit library for every new trial potential.
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Made-to-measure particle models A yet different numerical approach to the problem

consists of representing the target galaxy with a N -body particle system. Provided

particles explore the available phase-space reasonably well, then the DF (or at least mass

distribution function) can be mapped out in a statistical sense by following the particles

along their orbits, in analogy with the Schwarzschild technique.

Particle-based methods work by slowly correcting the individual weights of particles as

they are evolved in the gravitational potential, following the idea of Syer and Tremaine

(1996). The correction of the particle weights aims at finding a satisfactory compromise

between the goodness of the fit to the observational data, and some degree of smoothness

(regularization) of the underlying particle model. Density and kinematic observables are

used simultaneously in the weight correction by minimizing χ2-deviations between data

and particle model (de Lorenzi et al., 2007), as will be explained in Chapter 2. A new

regularization method for spherical and axisymmetric made-to-measure particle models

will be presented in this thesis, that facilitates recovering both a smoother and more

accurate DF (Morganti and Gerhard, 2012).

The particle-method was first applied to the Milky Way’s bulge and disk in Bissantz et al.

(2004). Then, a version modified to model observational data with errors was implemented

in the parallel code NMAGIC by de Lorenzi et al. (2007). So far, NMAGIC has been used

to investigate the dynamics of the outer halos of two intermediate-luminosity elliptical

galaxies, NGC 4697 and NGC 3379 (de Lorenzi et al., 2008, 2009), and of a massive

elliptical galaxy, NGC 4649 (Das et al., 2010a).

Recent implementations of the particle method can be found in Dehnen (2009), who

proposed a different technique for the weight adaptation, and Long and Mao (2010), who

modelled a sample of SAURON elliptical and lenticular galaxies (Long and Mao, 2012)

with a technique similar to NMAGIC. A related particle method but with a different way

of adjusting to the observational constraints is the iterative technique of Rodionov et al.

(2009).

Among the main strengths of the particle technique are its geometric flexibility, the fact

that the potential can be evolved self-consistently from the particles, and that there is

no need to specify integrals of motion or stellar orbits a priori. Several relevant issues

are still open regarding made-to-measure particle models, and particularly the recovery

of the unique solution, and the way in which we fit models to data and draw inferences
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from these fits. We will come back to these issues in the next chapters.

1.5 The outer halos of elliptical galaxies

There is no dark side of the moon, really.
As a matter of fact, it’s all dark.

Pink Floyd

1.5.1 Dark halos

The structures in our Universe, at both small and large scales, are not constituted by the

luminous matter alone. Instead, some sort of dark component, whose exact nature is still

unknown12, makes up for the dominant fraction of their mass.

At the largest scales of galaxy clusters, there is overwhelming evidence of dark matter

from the mass profiles derived applying virial theorem arguments to the velocities of

galaxies (e.g. Zwicky, 1937), hydrostatic equilibrium to the X-ray emitting intracluster

medium (e.g. Sarazin, 1988), and gravitational lensing techniques (e.g. Mellier et al.,

1993; Schindler et al., 1995).

At smaller scales, dark matter manifested much earlier in spiral galaxies than in ellipticals,

due to the presence of an ideal diagnostic like the neutral hydrogen HI in the disk (e.g. van

Albada and Sancisi, 1986; Persic et al., 1996). The remarkable flatness of the rotation

curve of the extended disk of cold gas provides convincing evidence that the luminous

matter alone is not enough to explain the total gravitational potential, unless alternative

theories of gravitation, such as the Modified Newtonian Gravity (Milgrom, 1983), are

considered. Accordingly, spiral galaxies are believed to reside in extended dark matter

halos.

Dark matter in dwarf galaxies was first suggested by Faber and Lin (1983), and

measurements of stellar velocity dispersions indicate that dwarf galaxies possess the

highest mass-to-light ratios of any known galactic systems. (e.g. Koch et al., 2007;

Mateo et al., 2008; Walker and Peñarrubia, 2011). It is still much debated whether flat

cores, rather than the cusps predicted by dissipationless cold dark-matter models, exist

in the central regions of dwarf galaxy halos. In particular, observations of central cores

12 Baryons as candidate for dark matter are ruled out by astrophysical and cosmological evidence (Gaitskell, 2004).
Non-baryonic candidates are classified as hot and cold dark matter depending on their kinematical state (relativistic/non-
relativistic) in the early universe, at the time of decoupling of light and matter. Hot dark matter is ruled out by measurements
of the Cosmic Microwave Background and the clustering of galaxies (e.g. Tegmark et al., 2004; Cole et al., 2005; Seljak
et al., 2006). An intermediate state called warm dark matter is also a viable possibility (e.g. Bode et al., 2001; Avila-Reese
et al., 2001).
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(e.g. Carignan and Beaulieu, 1989; de Blok et al., 2001; Lokas, 2002; de Blok et al., 2008)

have also been interpreted as evidence for warm dark matter (e.g. Moore, 1994).

A crucial prediction of the hierarchical scenario for galaxy formation (see Section 1.2) is

that every galaxy, ellipticals included, should be embedded in a dark matter halo. Indeed,

dark matter is also inferred in elliptical galaxies, as detailed below.

Knowing the dark matter distribution in galaxies is of the greatest importance not only

to verify the predictions of galaxy formation theories, but also to constrain their major-

assembly epoch, which, due to the collisionless nature of dark matter, is related to the

halo concentration (e.g. Navarro et al., 1996; Wechsler et al., 2002).

The evidence of dark matter in ellipticals is much more challenging than in spiral galaxies,

because of a lack of an ubiquitous kinematic tracer of immediate interpretation such as

the cold gas. In fact, only rarely ellipticals harbor extended gas disks or rings that can be

used as direct tracers of the total potential (e.g. Bertola et al., 1993; Franx et al., 1994;

Oosterloo et al., 2002; Weijmans et al., 2008). In general, the presence of dark matter

in elliptical galaxies is inferred from modelling the dynamics of stars, from hydrostatic

equilibrium of their X-ray emitting gas, and from gravitational lensing.

The first stellar dynamical evidence of dark matter halos came from the measurements of

a slowly decreasing velocity dispersion profile in the three elliptical galaxies NGC 4472,

IC 4296, and NGC 7144 (Saglia et al., 1993). Subsequently, considerable improvement of

the quality of spectroscopic data allowed an accurate modeling of the observed LOSVD

(including higher order moments), and eventually ascertained the presence of dark halos

around ellipticals in nearby groups of galaxies, as well as in the Virgo, Fornax, and Coma

galaxy clusters (e.g. Kronawitter et al., 2000; Gerhard et al., 2001; Cappellari et al., 2006;

Thomas et al., 2007b, 2009b; Tortora et al., 2009). Kinematic information from discrete

tracers such as PNe and GCs represents a key element to probe the mass distribution and

orbital structure of elliptical galaxies well beyond 2Re, out in the halo (e.g. Méndez et al.,

2001; Douglas et al., 2002; Peng et al., 2004; de Lorenzi et al., 2008, 2009; Napolitano

et al., 2009; Das et al., 2011; Napolitano et al., 2011; Deason et al., 2012). As explained

in Section 1.4, dynamical evidence of dark halos is complicated by the fact that the

stellar orbits are not known a priory, and different orbital distribution may give the same

distribution of light. Also, while the total mass of a galaxy can be inferred via dynamical

modeling, assessing the relative contribution of the stellar and dark matter components
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is much harder (e.g. Thomas et al., 2007b; Deason et al., 2012).

The best-fitting dynamical models are generally consistent with a total flat circular

velocity curve (see e.g. Ciotti et al., 2009) similar to the rotation curves measured in

spirals. These models have dark matter fractions of 10%− 50% of the total mass within

1Re, and higher values at 4Re (Thomas et al., 2007b; Weijmans et al., 2009). There

are indications that such dark matter fractions are lower for fast rotators than for slow

rotators (Cappellari et al., 2006).

So far, the greatest evidence for dark matter is confined to the bright giant elliptical

galaxies, for which it is possible to map the mass distribution using X-ray emission of

hot gas (e.g. Loewenstein and White, 1999; Mathews and Brighenti, 2003; Fukazawa

et al., 2006; Humphrey et al., 2006; Nagino and Matsushita, 2009; Das et al., 2010b) or

strong gravitational lensing techniques combined with stellar dynamics (e.g. Maoz and

Rix, 1993; Keeton, 2001; Treu and Koopmans, 2004; Auger et al., 2010a). On the whole,

these studies agree that, at least for the more massive ellipticals (and lenticulars), dark

matter halos are generally present, and the total mass density profile is consistent with

being isothermal, i.e. the potential is logarithmic, similar to disk galaxies (e.g. Gavazzi

et al., 2007; Bolton et al., 2008; Koopmans et al., 2009; Churazov et al., 2010; Grillo,

2012).

Unfortunately, this kind of analysis are feasible for only a fraction of ellipticals (Pellegrini

et al., 2007), and the situation with less-luminous, X-ray faint, intermediate-mass elliptical

galaxies is much more challenging. Originally, the observations of surprisingly low PNe

radial velocities in the outskirts of ordinary ellipticals have been interpreted as an odd

signature of “naked” halos, characterized by very low dark matter fractions (Ciardullo

et al., 1993; Méndez et al., 2001; Romanowsky et al., 2003; Douglas et al., 2007). However,

advanced dynamical models, using NMAGIC, have shown that the observational data of

two of these galaxies, NGC 4697 and NGC 3379, are consistent with dark matter halos

and radially anisotropic stellar distributions (de Lorenzi et al., 2008, 2009). These halos

are typically more diffuse than those found for the X-ray bright galaxies. Radial orbits

may mask the dark matter distribution, and projection effects when viewing a triaxial

elliptical may also produce lower line-of-sight velocity dispersions (Dekel et al., 2005).

The combined modeling of kinematics from absorption line spectra plus radial velocities

of discrete tracers is roughly consistent with the simple picture where less-luminous
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ellipticals are also embedded in dark matter halos, with dark matter fractions ∼ 50%

at 5Re (Napolitano et al., 2009; Deason et al., 2012).

Results from stellar dynamical models, which for massive systems are confirmed by X-

ray and lensing studies, are broadly consistent with the predictions of high-resolution

simulations of galaxy formation (e.g. Dekel et al., 2005; Mamon and Lokas, 2005; Naab

et al., 2007; Oñorbe et al., 2007). It is anyway important to keep in mind that the

simulations are still quite sensitive to the specific implementations of baryonic physics.

1.5.2 Stellar halos and constraints on galaxy formation

The mechanisms responsible for the build-up of elliptical galaxies have been an open issue

in astrophysics for a long time. The smooth morphology and dynamically hot nature of

these galaxies, together with their long ages and old stellar populations, and with the

relatively short star formation timescales implied by the α-enrichment, suggest that they

are the result of a formation episode far back in time, characterized by violent relaxation

in phase-space (Lynden-Bell, 1967; Spergel and Hernquist, 1992). This is also consistent

with the observations of massive elliptical galaxies at high redshift (e.g. Franx et al., 2003;

Daddi et al., 2004; Glazebrook et al., 2004), and with the tightness of the observed scaling

relations and their slow evolution with redshift (e.g. van Dokkum et al., 2000; Blakeslee

et al., 2003). Meanwhile, many pieces of evidence favour the merging hypothesis (e.g. van

Dokkum, 2005, and references therein). Most likely, galaxy formation is a combination of

dissipative and dissipationless processes.

Elliptical galaxies today are collisionless to a very good approximation, hence they retain a

wealth of information about their formation pathways in the present-day orbital structure.

These relics of their formation history are especially preserved in the galactic halos, due

to longer dynamical timescales.

For instance, a dynamically violent assembly process results in a well mixed distribution

of orbits, without strong gradients in the phase-space density. By contrast, dissipational

evolution, e.g. through wet mergers, ends up more likely in disky remnants, with phase-

space density peaks on orbits with high angular momentum (e.g. Dehnen and Gerhard,

1994; Thomas et al., 2009a).

Hence it is clear that the recovery of the dynamical structure of elliptical galaxies gives

valuable information about the history of these systems.
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Typical results of spherical models fitting the observational data show that the orbital

structure of ellipticals is radially biased, a part from the very central regions (Rix et al.,

1997; Gerhard et al., 1998; Kronawitter et al., 2000; Gerhard et al., 2001; Magorrian

and Ballantyne, 2001; Houghton et al., 2006). Some mild radial anisotropy is also

found using gravitational lensing techniques (e.g. Koopmans et al., 2009). A gradual

change from central isotropy to strong outer radial anisotropy is the fingerprint of the

classical “monolithic collapse” in the orbital structure (van Albada, 1982). Also, a radially

anisotropic orbital composition can be seen as a result of accretion processes during galaxy

formation. Axisymmetric dynamical models of elliptical galaxies have found a variety of

orbital distributions (e.g. Matthias and Gerhard, 1999; Emsellem et al., 1999; Cretton

et al., 2000; Verolme et al., 2002; Gebhardt et al., 2003; Copin et al., 2004; Cappellari et al.,

2006; Thomas et al., 2009b), and this might also be a consequence of the fact that spherical

models are typically constructed for the more massive round galaxies, whose formation

is characterized by significant accretion, whereas axisymmetric models for the smaller

disky ellipticals. A large variety of orbital configurations can be naturally interpreted as

a consequence of different initial conditions in the specific merging configuration.

In this respect, a very promising avenue of research is represented by the comparison

of the orbital structure derived from dynamical models of observed galaxies with that

of simulated galaxies (e.g. Sáiz et al., 2004; Jesseit et al., 2005; Burkert and Naab,

2005; Burkert et al., 2008; Thomas et al., 2009a). In the literature, simulated merger

remnants rotate slowly, and have radially anisotropic velocity distributions, due to the

accretion of smaller sub-units onto the central object (Abadi et al., 2006; Naab et al.,

2009). Dissipational processes in wet mergers may decrease the level of radial anisotropy

(e.g. Naab et al., 2006; Thomas et al., 2009b) and explain many of the features observed in

real ellipticals, including counter-rotating disks and kinematically decoupled components

(e.g. Cox et al., 2006; Jesseit et al., 2007; Hoffman et al., 2010).

1.6 Aims and structure of this thesis

It would be so nice
if something made sense

for a change.
Lewis Carroll

The goal of the present thesis is to improve our knowledge about the mass distribution
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and dynamical structure of the intermediate-luminosity elliptical galaxies, and also

about the made-to-measure modelling technique. In particular, we present significant

improvements to the made-to-measure particle method, which is relatively unexplored

but highly promising, since in principle it is simpler to use, and more general, than

the Schwarzschild method. The class of intermediate-luminosity elliptical galaxies with

rapidly decreasing velocity dispersion profiles represents a particularly interesting target

for dynamical modeling, as their surprisingly fast-decreasing velocity profiles have cast

doubts on the presence of dark matter (e.g. Romanowsky et al., 2003; Douglas et al.,

2007).

The first, “methodological” part of this thesis is devoted to answer to some questions

which are important to address in order to draw robust conclusions from made-to-measure

particle models of galaxies:

• How reliable are made-to-measure particle models of the observational data? To

which level of accuracy can particle models recover the phase-space distribution

function and intrinsic properties of a target galaxy?

• For a given set of observational data, how much does the final particle model depend

on the initial one? How worse does the situation get with incomplete or noisy data?

• Given a realistic data set, how well can the characteristic parameters of the dark

matter halo of galaxies be recovered with made-to-measure methods? Which is the

uncertainty, or the level of accuracy, for dark halo parameter estimates?

As we will see in Chapter 2, the issue of an efficient regularization method for particle

models arises naturally from the first two questions above. Therefore, we will introduce

an alternative technique to regularize made-to-measure particle models, which enforces a

correct and unbiased recovery of the target galaxy from noisy observational data.

Then, in the second part of this thesis we will apply our improved made-to-measure

particle method to study the dynamics of the intermediate-luminosity elliptical galaxy

NGC 4494 (Chapter 3). The main goal of this part of the work is to constrain the dark

matter halo of NGC 4494; in particular, our axisymmetric NMAGIC models explore

a sequence of dark matter halos, and different inclinations, and fit photometric and

kinematic observational data which extend beyond 3Re, and include PNe radial velocities

and - for the very first time - new absorption line kinematics data in slitlets placed all
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around the galaxy. The questions that we would like to answer with our dynamical models

are:

• What is the mass distribution, and dark matter fraction of NGC 4494? Do the

observational data require dark matter, or are they rather consistent with the picture

of a “naked” galaxy?

• What is the orbital structure of the stars in NGC 4494, and which formation channels

are suggested for this intermediate-luminosity elliptical?

• Are the halos of the three intermediate-luminosity ellipticals with rapidly falling

velocity dispersion profiles modelled so far with NMAGIC (NGC 4697, NGC 3379,

NGC 4494) similar, or do they differ? And what about their orbital structure?

Finally, the thesis will close in Chapter 4 with a summary and an outlook of future

directions of research.
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2
Regularizing made-to-measure

particle models of galaxies

Marco Polo describes a bridge, stone by stone.
≪But which is the stone that supports the bridge?≫Kublai Khan asks.

≪The bridge is not supported by one stone or another≫, Marco answers,
≪but by the line of the arch that they form.≫

Kublai Khan remains silent, reflecting.
Then he adds: ≪Why do you speak to me of the stones?

It is only the arch that matters to me.≫

Polo answers: ≪Without stones there is no arch.≫

Italo Calvino

This work has been published as Morganti et al. (2012) in MNRAS.

Made-to-measure methods such as the parallel code NMAGIC are powerful tools to build

galaxy models reproducing observational data. They work by adapting the particle

weights in an N-body system until the target observables are well matched. In this

Chapter we introduce a moving prior regularization (MPR) method for such particle

models. It is based on determining from the particles a distribution of priors in phase-

space, which are updated in parallel with the weight adaptation. This method allows one

to construct smooth models from noisy data without erasing global phase-space gradients.

We first apply MPR to a spherical system for which the distribution function can in theory

be uniquely recovered from idealized data. We show that NMAGIC with MPR indeed

converges to the true solution with very good accuracy, independent of the initial particle

model. Compared to the standard weight entropy regularization, biases in the anisotropy

structure are removed and local fluctuations in the intrinsic distribution function are

reduced. We then investigate how the uncertainties in the inferred dynamical structure

37
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increase with less complete and noisier kinematic data, and how the dependence on the

initial particle model also increases. Finally, we apply the MPR technique to the two

intermediate-luminosity elliptical galaxies NGC 4697 and NGC 3379, obtaining smoother

dynamical models in luminous and dark matter potentials.

2.1 Introduction

In galactic dynamics, the modelling of photometric and kinematic observations is of

great importance to infer intrinsic properties of galaxies such as their orbital structure,

total gravitational potential, and phase-space distribution function (DF). As detailed

in Chapter 1, different techniques to create made-to-measure systems reproducing the

observational data have been devised, and can be broadly grouped in DF-based, moment-

based, orbit-based, and particle-based methods [see also Syer and Tremaine (1996,

hereafter ST96)].

DF-based methods fit observations with parametrized functions of the integrals of motion

or of the action integrals of orbits. Applications include spherical or integrable systems

(e.g. Dejonghe, 1986; Dejonghe and de Zeeuw, 1988; Gerhard, 1991; Hunter and de

Zeeuw, 1992; Carollo et al., 1995; Kronawitter et al., 2000), axisymmetric models (see

e.g. Hunter and Qian, 1993; Dehnen and Gerhard, 1994; Kuijken, 1995; Magorrian, 1995;

Merritt, 1996), and nearly integrable potentials (e.g. Dehnen and Gerhard, 1993; Matthias

and Gerhard, 1999; Binney, 2010). The main advantage of these methods is that they

provide the phase-space DF directly, although they generally require assumptions on the

symmetry of the target galaxy.

Moment-based methods find solutions of the Jeans equations that best reproduce observed

quantities such as surface density and velocity dispersion (e.g. Young, 1980; Binney and

Mamon, 1982; Binney et al., 1990; Magorrian and Binney, 1994; Lokas, 2002; Cappellari,

2008; Williams et al., 2009; Cappellari et al., 2009a). Among the drawbacks of these

methods are the need for assumptions to close the system of equations, the lack of any

guarantee on the positivity of the underlying DF, and the difficulties in modelling higher

order information such as the line-of-sight velocity distribution (LOSVD).

Orbit-based methods (Schwarzschild, 1979, 1993) compute a large library of orbits in

a fixed potential, and then adjust the weight of each orbit until the photometry and
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kinematics of the target galaxy are well matched (e.g. Richstone and Tremaine, 1985;

Rix et al., 1997; van der Marel et al., 1998; Cretton et al., 1999; Cappellari et al., 2002,

2006; Gebhardt et al., 2003; Valluri et al., 2004; Thomas et al., 2005b; van den Bosch and

de Zeeuw, 2010). Schwarzschild modelling is widely used, e.g. to infer the masses of black

holes at the centers of galaxies, but applications are mostly restricted to axisymmetric

systems. Moreover, the technique requires the computation of a large and representative

orbit library for every new trial potential.

Particle-based methods for the most part work by slowly correcting individual weights

of particles as they are evolved in the gravitational potential (ST96), until the N -body

system reproduces the observational data. Kinematic and density observables can be used

simultaneously in the weight correction by minimizing χ2-deviations between data and

particle model (de Lorenzi et al., 2007, hereafter DL07). Among the main strengths of

this so-called made-to-measure (M2M) technique are its geometric flexibility, the fact that

the potential can be evolved self-consistently from the particles, and that there is no need

to store an orbit library.

The M2M method was first applied to the Milky Way’s bulge and disk in Bissantz

et al. (2004). A version modified to model observational data with errors (χ2M2M) was

implemented in the parallel code NMAGIC by DL07. This has been used to investigate

the dynamics of the outer halos of the two intermediate-luminosity elliptical galaxies

NGC 4697 and NGC 3379 (de Lorenzi et al., 2008, 2009, hereafter DL08; DL09), and of

the massive elliptical galaxy NGC 4649 (Das et al., 2010a). More recent implementations

of the M2M method can be found in Dehnen (2009), who proposed a different technique

for the weight adaptation, and Long and Mao (2010). A related particle method but with

a different way of adjusting to the observational constraints is the iterative technique of

Rodionov et al. (2009).

M2M techniques are very promising, but relatively unexplored. It is therefore a natural

question whether these particle methods can actually recover the phase-space DF of a

target galaxy if the data uniquely specify it. For a given set of data, how much does the

final particle model depend on the initial one? And how is this dependence influenced by

incomplete or noisy data? Furthermore, given that a system of N particles is trained to

match a much smaller number of observational constraints, the problem arises of reducing

model degeneracies and preventing the method from fitting the noise in the data.
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The above issues are related and are connected to the concept of regularization. In

standard χ2M2M practice, a weight entropy is used to regularize the particle model:

through the entropy function all particle weights are biased towards a smooth distribution

of predefined priors, which are specified together with the initial model, and thus implicitly

contain assumptions about the dynamical structure of the target galaxy. Therefore,

unless the dynamical structure of the galaxy is known beforehand, smoothing with weight

entropy makes it difficult to construct models with strong phase-space gradients, e.g.

between near-radial and near-circular orbits. This is discussed further in Section 2.2

below. A similar effect arises in Schwarzschild models regularized using maximum-entropy

constraints (Richstone and Tremaine, 1988), which tend to isotropize the final DF (e.g.

Thomas et al., 2005b).

In this Chapter we describe a new Moving Prior entropy Regularization (MPR) method

based on the idea of a distribution of particle priors, which are computed according to

phase-space occupation and which evolve together with the adaptation of the particle

weights. The new method minimizes the dependence of the solution on the adopted

initial particle model, and facilitates recovering both a smoother and more accurate DF,

reducing local fluctuations without erasing global phase-space gradients.

The Chapter is organized as follows. In Section 2.2 the basics of the χ2M2M method are

laid out, the main concerns related to the traditional regularization are explained, and our

implementation of MPR is developed. In Section 2.3 a series of spherical target models

is constructed for testing the M2M method with MPR. Then, in Section 2.4 and 2.5 we

investigate the different roles played by regularization, initial particle model, and data

quality for recovering the correct galaxy model, and we show that the true solution can

indeed be recovered from sufficiently good data. Finally, two astrophysical applications

are presented in Section 2.6, where we reconstruct regularized NMAGIC models for the

two intermediate-luminosity elliptical galaxies NGC 4697 and NGC 3379 in their dark

matter halos.

2.2 Regularization of particle models

In this Section we outline the χ2M2M method, and discuss some issues related to its

standard (weight entropy) regularization. An alternative method to regularize M2M
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particle models is then presented.

2.2.1 The χ2M2M technique to model observational data

The goal of the χ2M2Mmethod (DL07) is to evolve anN -body system of particles orbiting

in a potential to make it reproduce the observables of a target galaxy. The potential can

be either fixed and known a priori, or time-varying and self-consistently computed from

the particles.

Each particle is characterized by its phase-space coordinates zi = (ri,vi) and by a

weight wi. The particles should be interpreted in a probabilistic sense: they do not

represent single stars but rather phase-space fluid elements (e.g. Hernquist and Ostriker,

1992). If M is the total stellar mass of the system, then individual particles have masses

mi = wiM/
∑N

i=1wi.

An observable of a target galaxy characterized by a distribution function f(z) is defined

as

Yj =

∫
Kj(z)f(z) d

6z, (2.1)

where Kj is an appropriate kernel and z = (r,v) are the phase-space coordinates.

Given a set of observables Yj, j = 1, ..., J , including e.g. photometry and kinematics, the

particle weights wi of the N -body system are evolved until the model observables

yj(t) =

N∑

i=1

wiKj [zi(t)] (2.2)

agree with the target observables Yj. Here, the kernel includes a selection function which

ensures that only particles with a direct effect on the observable yj contribute to it.

Commonly, the model observables are replaced by their time-averaged values

ỹj(t) = α

∫ ∞

0

yj (t− τ) e−ατ dτ (2.3)

to increase the effective number of particles contributing to them, and to reduce temporal

fluctuations.

The task of adapting individual weights of orbiting particles until the target and the model

observables match is accomplished by solving the set of differential equations referred to

as “force-of-change”:

dwi(t)

dt
= εwi(t)

(
µ
∂S

∂wi
−
∑

j

Kj [zi(t)]

σ(Yj)
∆j(t)

)
, (2.4)
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where ε is a small positive constant, and the meaning of the other variables is clarified

below.

Equation (2.4) maximizes the merit function

F = −1

2
χ2 + µS (2.5)

with respect to the particle weights wi. Here

χ2 =
J∑

j=1

∆2
j (2.6)

is a statistical measurement of the goodness of the fit in terms of deviations

∆j(t) =
ỹj − Yj

σ(Yj)
(2.7)

between target and model observables, taking the error σ(Yj) of the target observable into

account.

For the regularization functional, the weight entropy

S = −
N∑

i=1

wi log(wi/ŵi) (2.8)

is a common choice. S is a measure of the plausibility of the model in terms of the

smoothness of the weight distribution and thus, indirectly, of the resulting DF, and it

serves the purpose of regularization by pushing the particle weights towards some smooth

predetermined weights ŵi, called priors. In typical applications the number of particles

is much higher than the number of data constraints on the particle model; this intrinsic

ill-conditioning of the problem translates into a large freedom in the weight adaptation,

and results in models fitting the noise in the data. That is why a simple minimization of

χ2 is not a well-defined procedure to determine the model uniquely, and a certain degree

of regularization is necessary.

The balance between regularization and fit to observational constraints in equation (2.5)

is controlled by the constant µ, so that generally models with smaller µ aim for better fits

to the data, but models with larger µ have smoother DFs. In practice, the best choice of

µ is case-dependent (see e.g. Gerhard et al., 1998; Thomas et al., 2005b, DL08, DL09),

hinging on the specific properties of the observational data to be modelled (error bars,

scatter, spatial coverage), the phase-space structure of the galaxy, and possibly also the

adopted initial particle model.
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As we will see in the next Chapter, a likelihood term can also be added to the merit

function (2.5) to account for the constraints from a sample of discrete velocities.

2.2.2 Issues with standard weight entropy regularization

In the framework of the χ2M2M method summarized above, individual particle weights

are slowly adjusted according to a compromise between χ2, which pushes them to match

the target observables, and entropy S, which instead penalizes against deviations of

the weights from the preassigned set {ŵi} of priors; more precisely, from {ŵi/e} (see

equations [2.5] and [2.8]).

Even though no rule on the choice of the priors exists, they are traditionally set to

ŵi = w0 = 1/N (the “uninformative” or “flat” priors in Bayesian statistics), and the

same is done for the individual weights of the initial particle model. Through the weight

adaptation (2.4), then, the standard Global Weight entropy Regularization (hereafter

GWR) encourages a dynamical structure in the particle model which is similar to that

of the initial particle system. Of course, this bias is stronger for larger values of µ, and

wherever the constraining power of the data is smaller, e.g. in the outer galactic regions.

In practice, smoothing the weights globally towards a set of preassigned, flat priors

through the entropy (2.8) makes it difficult to reproduce strong phase-space gradients

of the target galaxy, e.g. strongly anisotropic velocity distributions, unless either the

right orbital structure is already in place in the initial particle model, i.e. its dynamics

is known beforehand, or a very small value of µ is adopted at the expense of smoothness

of the underlying DF. This was noticed both in DL08 (see their Fig. 10) and DL09,

where under-smoothed models proved necessary to recover strong radial anisotropy in

their elliptical galaxy models.

However, under-smoothed particle models do not represent a proper solution. Indeed,

sufficient regularization is needed not only to prevent the model from fitting the noise

in the data, but also to oppose fluctuations of the particle weights caused by the noise

in the data, and to ensure that the weight distribution on neighbouring phase-space tori

remains continuous, as intuitively expected for a relaxed stellar system.

In what follows we present a new regularization method which alleviates the main issues

of the standard global weight entropy smoothing, and permits smooth M2M particle

models to be obtained that reproduce the phase-space gradients of the target galaxies
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independently of initial conditions.

2.2.3 Alternative regularization based on moving priors

The logical step forward to ease the issues with the GWR is to abandon the idea of

constant priors defined along with the initial particle distribution. Instead we will

determine a smooth distribution of particle priors which follows the phase-space structures

traced by the weight distribution, as the weight distribution evolves to match the

observational data. Then we will use the weight entropy to bias particle weights towards

such moving priors.

This procedure, which we will denote as Moving Prior entropy Regularization (MPR)

should facilitate a smooth DF without erasing larger-scale phase-space gradients. In

terms of orbits, this means that the new regularization should assign the same prior to

particles belonging to the same orbit, similar priors to particles on nearby orbits, and

different priors to particles moving on very different orbits, as required in the presence of

strong velocity anisotropy.

Assignment of new local priors

Therefore, based on Jeans’ theorem (see Section 1.4.2), the assignment of new individual

priors which mirror the underlying evolving DF is best based on the integrals of motion,

respectively orbits, of the particles. This is particularly simple in the spherical case, where

the integrals of motion are known and can be easily found from the particle model. As

already pointed out by DL09, the need for regularization is also strongest for spherical

models, due to their larger number of independent orbits with respect to less symmetric

systems. The aim of the present study is to show that this method works, and how well

it works, in the spherical case. A simple axisymmetric scheme is shown in Section 2.6,

and generalizations to more complicated geometries are sketched out in Section 2.7.

For assigning priors in the spherical case, in practice we sort the particles according to

their energy E and total angular momentum into a rectangular (E, x) grid, where the so

called circularity integral x = L/Lc is the ratio between the actual angular momentum

and the angular momentum Lc which a circular orbit would have at the given energy E.

Once particles are binned in a grid of nE × nx energy and circularity cells, we compute

the average weight ŵkl(k = 1, . . . , nE , l = 1, . . . , nx) contained in each cell, and then we
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assign it as a new prior to all the particles belonging to that cell.

Provided the (E, x) grid correctly resolves the relevant phase-space properties of

the target, such new priors ensure an orbit-based regularization which acts locally,

homogenizing the weights of particles moving on the same and on neighbouring orbits,

but at the same time tolerates global differences among particles on different orbits.

Smoothing of the grid of particle priors

We will see that the priors computed in this way can be quite noisy. To avoid coarseness

in the distribution of priors, and so ensure the global smoothness of the underlying model

DF represented by the (E, x) grid, we implement a two-dimensional spline fit of the

gridded priors. The technique (Press et al., 1992) is well known and widely used, also in

an astrophysical context (e.g. Merritt, 1993; Gerhard et al., 1998; Das et al., 2010b): a

thin-plate spline function for the new priors on the grid is searched, that minimizes the

penalized least square function

∆2 ≡
∑

k,l

ξ2 + λ
∑

k,l

Λ(Ŵ )kl, (2.9)

having defined a function Ŵ (E, x) which equals the values of the priors on the (E, x)

grid. In the equation above, ξ2 measures the deviation between the original value of the

prior and its spline value in each (k, l)-cell, and

Λ(Ŵ )kl =



(
∂2Ŵ

∂E2

)2

+ 2

(
∂2Ŵ

∂E∂x

)2

+

(
∂2Ŵ

∂x2

)2



E=Ek
x=xl

(2.10)

quantifies the complexity of the fitting spline in terms of the second derivatives, which

are numerically computed via finite differences.

The regularization parameter λ determines which of a family of splines, ranging from

a plane for λ → ∞ to an interpolating cubic spline surface for λ → 0, is fitted to the

grid of priors. Obviously, the optimal λ is that which resolves the relevant structures in

the underlying prior distribution, but at the same time damps strong and presumably

spurious variations among nearby priors.

In principle, λ can be calibrated with a sequence of experiments on the (E, x) grid.

However, since particle weights evolve in time, and so does the grid of priors, we decided to

implement the General Cross Validation technique (GCV, G. Wahba, 1990) to determine



46 Regularizing made-to-measure particle models of galaxies

automatically the optimal value of λ each time a new grid of priors is computed. GCV is

based on the principle of sequentially omitting each data point, re-fitting the spline, and

predicting the value of the point from the spline. The technique singles out the optimal

value of λ for this to work best.

New definition of pseudo-entropy

The new moving priors substitute the traditional ones in the definition (2.8) of the pseudo-

entropy, which we slightly modify in order to account for the normalization of the weights.

As already noted, maximizing the standard entropy biases the weights towards ŵi/e, so

that oversmoothing (e.g. for high values of µ) causes an undesired global decrease of all

weights which leads to a poor fit of the mass distribution (see e.g. Fig. 10 in DL08).

In order to avoid such problems, we define a new weight entropy

S = −
N∑

i=1

wi

[
log

(
wi

ŵi

)
− 1

]
, (2.11)

for which we can immediately check that (i) maximizing this quantity pushes the weights

to the actual values of the priors, (ii) positive and negative corrections to the weights

are now a priori equally likely, and (iii) the whole regularization scheme is neutral to

mass, so that the only power to alter the total mass of the system is left to the data (see

Section 2.3.2 below).

2.3 Target models and observables

In this Section we construct a series of spherical targets that we will then model with

NMAGIC (Section 2.4 and 2.5) in order to address two issues, namely (i) testing the

ability of the new regularization scheme to fit the target data with an intrinsically smooth

and unbiased particle model, and (ii) exploring the extent to which the χ2M2M technique

can recover the target phase-space structure from a given data set independently of the

initial particle model.

With these aims in mind, we first focus on a problem whose solution is theoretically known

to be unique. As proved by Dejonghe and Merritt (1992) in the spherical non-rotating

case, if the gravitational potential is known and complete information on the LOSVD at

all radii is available, then the underlying DF can be uniquely recovered. Therefore, the
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first target model we design has a known spherical potential and is truncated in radius,

so that photometric and kinematic data can fully constrain it.

As a second target model, we build an untruncated (infinite) system whose outer regions

remain unconstrained by data, similar to the case of modelling real galaxies.

For both target models, we use the 3D luminosity density together with the LOSVD along

several long-slits as target data in the modelling, similar to DL08 and DL09. For each

model, we generate both a set of idealized kinematic data, i.e. a large number of data

points with small error bars, and a set of more realistic, i.e. sparser and noisier, data

points. We use NMAGIC itself to construct our target dynamical equilibrium structures,

and to determine their observables, as described in more detail below.

2.3.1 Spherical anisotropic Hernquist targets

Our target models are Hernquist (1990) spheres with a radially anisotropic orbital

structure either of the Osipkov-Merritt kind (Osipkov, 1979; Merritt, 1985, hereafter

OM), or of the more mildly anisotropic, quasi-separable kind (Gerhard, 1991). Generally

speaking, they are isotropic in the central regions, and radially anisotropic for radii greater

than a specified anisotropy radius.

The potential-density pair for Hernquist models is

ρ(r) =
aM

2πr(r + a)3
, ϕ(r) = − GM

r + a
, (2.12)

where M is the total mass, G the gravitational constant and a the scale length. We set

the scale length equal to 1 kpc, and we use characteristic values of the elliptical galaxy

NGC 3379 for the total luminosity L = 1.24 × 1010L⊙, the stellar mass-to-light ratio

Υ = 5, and the distance D = 9.8 Mpc. The projected effective radius of our target model

is Re ≈ 38.3′′ = 1.82 kpc.

With respect to the orbital anisotropy, we either fix the OM anisotropy radius ra = 2a,

or we use α = 2 and L0 = 0.3
√
GMa in the prescription of Gerhard (1991) to generate

moderately radially anisotropic models (see equations [2.2] and [3.14] therein).

Following the method described in Debattista and Sellwood (2000), we generate particle

model realizations of the spherical targets. To construct a truncated target, we only

retain particles with energies lower than Emax ≡ ϕ(rmax), with rmax equal to the model

boundary.
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Finally, we relax the particle models in the fixed Hernquist potential (note that the

truncated target is therefore not a self-consistent system), and we compute the target

observables from the final particle model using NMAGIC to integrate the particles, as

detailed below.

2.3.2 Luminosity observables

We consider as density constraint a spherical harmonics expansion of the target luminosity

density on a 1-D mesh of radii rk. The expansion coefficients

alm,k = L
∑

i

γCIC
ki Y m

l (θi, ϕi)wi (2.13)

are computed from the particle realizations through NMAGIC, making use of the cloud-

in-cell technique (see e.g. DL07, Binney and Tremaine, 2008) to distribute the weight of

a particle between nearby grid points. In the definition above, L is the total luminosity of

the target, Y m
l are the standard spherical harmonic functions, and γCIC

ki is the selection

function associated with the cloud-in-cell scheme. The radial grid has 60 points, quasi-

logarithmically spaced between rmin = 0.01′′ and rmax equal to the model boundary (for

the truncated target) or to 1500′′ ∼ 40Re (for the infinite target).

Poissonian error bars, dependent on the number of particles in each shell, are assumed

for the radial mass, while 50 Monte Carlo realizations of the density field of the target

model allow errors to be assigned to the higher order mass moments (see DL07). Because

the targets are spherical, all model alm,k with l 6= 0, m 6= 0 are constrained to be zero

within these errors, while the a00,k are constrained by their values for the known target

luminosity distribution.

When comparing the target data with the model observables, we compute the latter in

the exact same way from the particle model.

By fitting the alm,k coefficients (2.13), the total luminosity of the model is adjusted to the

target luminosity L. The sum of the weights, initially set to
∑N

i=1wi = 1, may therefore

change if the luminosity of the initial model Linitial 6= L. In this work, we set Linitial = L,

and we do not adjust the mass-to-light ratio, except in Section 2.6, so that the total mass

is also constant throughout the evolution.
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Figure 2.1: Geometry of the two different slit setups. The red circle corresponds to Re. Left panel:
idealized configuration of 10 slits covering the target; slit cells outside Re/2 are square (see Section 2.3.3).
Right panel: realistic slit configuration, adapted from NGC 3379 (DL09).

2.3.3 Kinematic observables

As kinematic target observables, we use the luminosity-weighted Gauss-Hermite moments

of the LOSVD (van der Marel and Franx, 1993; Gerhard, 1993) in various slit cells,

computed from the particle realizations using NMAGIC, through

bn,p ≡ lp hn,p = 2
√
πL
∑

i

δpiun(νpi)wi (2.14)

(DL07). Here, lp is the luminosity in slit cell Cp, δpi selects only particles belonging to

that cell, the dimensionless Gauss-Hermite functions are

un(ν) =
(
2n+1πn!

)−1/2
Hn(ν) exp

(
−ν2/2

)
, (2.15)

where Hn denote the standard Hermite polynomials, and finally

νpi = (vz,i − Vp) /σp, (2.16)

with vz,i the line-of-sight velocity of particle i, and Vp and σp the best-fitting Gaussian

parameters of the target LOSVD in the given slit cell.

To compute Vp, σp, h3, h4 from the particle model, we adopt the following procedure. First,

we compute the mean velocity and rms velocity of particles in each slit cell, and use them

to estimate the bn,p from the particles through equations (2.14). Next, we use the first

order relations

∆h1 = − 1√
2

∆V

σ
; ∆h2 = − 1√

2

∆σ

σ
(2.17)
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(van der Marel and Franx, 1993; Rix et al., 1997) iteratively to correct Vp and σp, until

h1 and h2 both converge to zero. Then, the new target moments bn,p are temporally

smoothed to reduce fluctuations caused by particle noise, and this leads to values of h1

and h2 slightly different from zero. Finally, the resulting velocity profile is fitted by a

Gauss-Hermite series (van der Marel and Franx, 1993) setting h1 = h2 = 0, and the bn,p

are recomputed.

Two different slit configurations are considered, as shown in Fig. 2.1. There, the left

panel illustrates a schematic view of an idealized slit data set-up, which consists of 10

slits covering the target and extending as far as rmax = 150′′ ∼ 4Re. In order to increase

spatial coverage in the outer regions, and so to decrease the effects of particle noise, slit

cells outside Re/2 are enlarged and made square. Moreover, Gauss-Hermite coefficients

up to h6 are considered. To assign error bars to the target kinematic data, we compute

averaged values of the final time-smoothed bn,p moments in the 10 different slits, and then

we set the errors equal to
√
2 times the rms deviation of the individual slit cell moments

from the average1. To complete the generation of this slit data set, Gaussian random

variates with 1σ equal to these errors are added to the average moments bn,p. In the

following, we refer to this kinematic data set as idealized data.

For the truncated model, these data are sufficiently close to the required “complete” data

set that we would expect to be able to recover the theoretically unique underlying model

with very good accuracy.

The right panel of Fig. 2.1 shows instead the 6 slits which were used by DL09 to model

NGC 3379; for this second slit configuration, rmax = 100′′ ∼ 3Re, only v, σ, h3, h4 are

available, and observational errors for this galaxy are adopted. Finally, Gaussian random

variates are added to the data with 1σ equal to the observational errors. Hereafter we

refer to this latter kinematic data set as realistic data.

2.4 Convergence to a theoretically unique solution

We now construct NMAGIC models for the radially anisotropic target galaxy model

described above. As constraints we use the luminosity density and the idealized kinematic

data. We determine the optimal value of the regularization parameter, investigate whether

1 The factor
√
2 in the error bars is necessary because, given this generation of kinematic data, the NMAGIC model will

have an intrinsic particle noise similar to that of the data which it will try to match.
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it is possible to converge to the theoretically unique solution, and see how well the target

galaxy can be reproduced starting from different initial particle models.

Our NMAGIC models show for this case that if a unique inversion of data to recover the

underlying target DF exists, then it can actually be found via χ2M2M modelling from

good enough data. The new regularization method proposed in this thesis significantly

improves both the accuracy with which the target intrinsic properties are reproduced, and

the convergence to the right solution independently of initial conditions.

2.4.1 Modelling procedure and diagnostic quantities

Starting from an initial particle model, the weights of all particles are evolved until the

particle system matches the target. As initial particle system, we adopt an isotropic

Hernquist sphere with the same luminosity but scale length a = 1.5 kpc. Different

velocity distributions are also considered, as specified below. During the whole evolution,

the potential is kept fixed to the target potential. The particles are integrated using a

leap-frog scheme.

After a relaxation phase in which the particle system is advanced without weight

correction, weights are updated according to the force-of-change in equation (2.4), i.e.

subject to both data constraints and smoothing constraints, for ∼ 105 correction time

steps. We define the model to have converged if χ2/J averaged over 50 steps is almost

constant in the last 104 steps, with fluctuations which are typically of order 2%. The

particle weights are then constant to a similar accuracy with MPR. Finally, the particles

are freely evolved for another 104 steps without any further weight correction, to ensure

that the final particle model is well phase-mixed. For reference, 104 correction time steps

correspond to ∼ 42 circular rotation periods at the target Re.

When using the new regularization scheme, individual priors are not kept constant in

time but rather they are continuously updated while particle weights are changed to

match the target observables, as detailed above. Particles are sorted according to their

orbital integrals in a grid of nE = 30 and nx = 10 bins, chosen as a compromise between

retaining good resolution for the orbit distribution and ensuring a sufficient number of

particles in all grid cells. The average weight contained in each grid cell is computed, and

then a GCV thin-plate smoothing spline is fitted to the distribution of average weights

on the grid. The spline value in every grid cell is finally assigned as the new prior to all
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particles belonging to the cell.

A typical outcome of the procedure early in the evolution is shown in Fig. 2.2, where the

(E, x) grid of priors is plotted before (left) and after (right) smoothing, and similarly for

a horizontal cut (fixed angular momentum) through the grid.

Figure 2.2: Top: unsmoothed (left) and smoothed (right) grid of individual particle priors after ∼ 103

correction time steps (colour bar on the right). Bottom: a cut of the above grid for x = 0.05, showing
unsmoothed (left) and smoothed (right) particle priors as a function of energy. Priors are smoothed
among nearby cells with the GCV thin-plate smoothing spline described in Section 2.2.3.

The cut shows considerable noise before smoothing in the central grid cells, where even

with a total N ∼ 106 particles the number of particles per cell for a Hernquist model cusp

is still small. In the tests presented here, new priors are computed frequently in the initial

phase and every 104 correction time steps later in the run, which results in an efficient

regularization at a minimum computational cost. When testing the new scheme for very

large µ values, priors are computed and updated more often.

The quality of the final particle model of each run is assessed through three diagnostic

quantities. The first is the goodness of the fit to the data in terms of χ2/J , where J is the

number of data points. Assuming the goodness of fit statistics follows a χ2 probability

distribution function, the mean of the χ2 distribution is equal to the number of degrees
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of freedom, i.e. the number of constraints (data points plus constraints introduced by the

merit function) subtracted by the number of parameters (model parameters plus fitted

weights), which are both difficult to quantify. However, if the number of degrees of freedom

is approximately equal to the number of data points, then χ2/J < 1 means that we are

fitting the data well.

The second is the level to which the known intrinsic kinematics of the target galaxy are

recovered by NMAGIC, quantified by the rms difference between the intrinsic velocity

moments of the target galaxy and those of the final particle model realization. In the

following, the internal kinematics (streaming velocity and velocity dispersions) of the

particle model are computed by binning particles in spherical polar coordinates, using 21

radial shells quasi-logarithmically spaced between rmin = 0.01′′ and rmax, 12 bins in the

azimuthal angle φ, and 21 equally spaced bins in cos θ, where θ is the polar angle.

Finally, we determine the degree to which the particle model reproduces the known phase-

space structure of the spherical target. To quantify this we compute the mass-weighted

relative rms difference between model and target weights (wkl,m and wkl,t, respectively)

in the grid of energy and circularity (E, x) used also for the regularization:

∆grid =

√√√√
∑

k,l

wkl,t

(
wkl,t − wkl,m

wkl,t

)2

/
∑

k,l

wkl,t. (2.18)

2.4.2 Calibrating regularization

Following the same approach as Gerhard et al. (1998), Thomas et al. (2005b), DL08,

and DL09, we construct NMAGIC models for the target galaxy which only differ in the

adopted regularization scheme and the amount of regularization, i.e. the value of the

parameter µ. Note that ε is kept constant between all models.

The results are summarized in Fig. 2.3, where the normalized goodness of fit χ2/J , the

mass-weighted rms over the (E, x) grid, ∆grid, and finally the rms difference between the

internal velocity moments of the target and final particle model, ∆kin, are plotted as a

function of µ, from unsmoothed models (small µ) to oversmoothed models (high µ). We

first focus on the NMAGIC particle models obtained with the traditional GWR technique

(crosses, Fig. 2.3). For a wide range of values of µ 6 104, NMAGIC is able to fit the data

with χ2/J<∼1. No clear minimum is present in the plotted rms deviations in grid and
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Figure 2.3: Quality of the final NMAGIC particle models as a function of the regularization parameter
µ. Top panel : rms deviation (%) of the final particle model from the target internal velocity moments.
Middle panel : rms deviation (%) between the occupation of the (E, x) grid of the target and of the final
NMAGIC model. Bottom panel : goodness of the particle model fit to photometric and kinematic data.
Crosses refer to models obtained with the traditional GWR scheme, dots to models obtained with the
new MPR.

intrinsic kinematics as a function of µ: these quantities stay almost flat for a large range

of µ, and then rapidly increase for µ>∼104, when the increasing degree of smoothing upsets

the fit to the data. By the time the smoothing becomes effective in damping fluctuations

in the intrinsic quantities, the bias introduced by the global nature of the smoothing has

already set in - hence no clear optimal value of µ is found. For GWR and this particular

data set, µ = 104 gives a good compromise between quality of the data fit and recovery

of the target properties - but with little smoothing.

How well the intrinsic kinematics of the target galaxy can be recovered is shown in the left

panel of Fig. 2.4, which compares the known target kinematics with the final NMAGIC

models obtained with µ = 104, 105, 106, 107. As expected, for higher values of µ the
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Figure 2.4: Intrinsic kinematics of the NMAGIC models obtained with the GWR (left panel), and with
the new MPR method (right panel). From top to bottom: radial velocity dispersion profile, vertical
velocity dispersion profile, and anisotropy parameter. The dotted and full black lines show the intrinsic
kinematics of the initial near-isotropic particle model, and of the truncated target galaxy, respectively.
Red, green, blue, and light blue lines correspond to µ = 104, 105, 106, 107 adopted in the modelling.

internal moments remain closer to the initial isotropic moments.

Fig. 2.5 shows the level to which the known target DF can be recovered by NMAGIC for

µ = 104, 106: the distribution of total particle weights in the (E, x) grid is plotted for the

initial particle model, the truncated target, and the models obtained with NMAGIC. We

denote this by “mass distribution function”, or MDF for brevity. Clearly, for µ = 104 the

main phase-space structures are well recovered, showing that NMAGIC is able to fit the

data and to approximately find the underlying MDF, but the peak on high-E near-radial

orbits is underestimated because of the global nature of GWR. For the more heavily

smoothed case with µ = 106, this peak is completely wiped out.

We now consider χ2M2M models obtained by fitting the same target data with MPR. As

can be seen in Fig. 2.3 (black dots), the new method works very well in reproducing
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Figure 2.5: Mass distribution function (MDF) of particle weights in the (E, x) grid, for the initial particle
model (top left), the truncated target galaxy (top right), the models obtained with the standard GWR
(bottom) and with the MPR method (middle), for different values of µ. The colour scheme reflects the
total weight contained in each grid cell, where nE = 30, nx = 10.

the target, and a series of NMAGIC models fitting the photometric and kinematics

constraints of the galaxy within χ2/J<∼1 can be generated for a wider range of µ values.

Of these, models obtained for values of µ <∼103 are essentially driven by the χ2 term

alone. However, when regularization becomes significant, a minimum is reached both in

the rms deviation between intrinsic moments of the particle model and of the target,

and in the rms deviation of their (E, x) distributions (top and middle panels of Fig. 2.3,

respectively). Remarkably, the minimum is well below that achievable with traditional

weight entropy smoothing, indicating that the phase-space structure and the internal

moments of the target can be recovered much better using MPR.

The right panel of Fig. 2.4 shows how close the internal kinematics of the final particle

models for µ = 104, 105, 106, 107 are to those of the target galaxy. Note that the residuals

are so small that the trend with µ seen in Fig. 2.3 cannot be seen; the new scheme allows

one to recover the target moments almost perfectly. The accuracy with which the MDF

in (E, x) integral space is reproduced is shown in Fig. 2.5. Visually comparing this plot



2.4 Convergence to a theoretically unique solution 57

with the corresponding ones for the truncated target and the best model obtained using

standard GWR, shows that the target is now recovered much better. In particular at small

energies, i.e. in the outer regions, the weight of particles on radial orbits is increased while

that of particles on circular orbits is decreased more effectively with MPR, especially for

the preferred µ = 106.

We conclude that, for this particular data set-up, the best choice for µ with MPR is

∼ 106. This value is considerably larger than the corresponding µ of the traditional

GWR, showing that the new regularization succeeds better in reconciling the smoothness

of the underlying model with orbital anisotropy.

It is instructive to compare the final distribution of particle weights for both regularization

schemes. Fig. 2.6 shows that MPR results in a more compact and more structured weight

distribution, which avoids extended tails of extremely increased or decreased weights,

while still providing a good and less noisy fit the data (see below). A similar comparison

in the context of Schwarzschild modelling can be found in Fig. 17 of Thomas et al. (2007b).

Figure 2.6: Distribution of particle weights for the final optimally smoothed NMAGIC models obtained
with the traditional GWR (black histograms, µ = 104) and with the MPR scheme (red histograms,
µ = 106). Particle weights were initialized to w0 = 1/750000 ∼ 10−6.

Along with a more compact weight distribution, MPR also leads to a smoother particle
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Figure 2.7: rms fluctuations of particle weights around the mean value in each (E, x) cell for the optimally
smoothed NMAGIC models obtained with GWR (black crosses, µ = 104) and with MPR (red dots,
µ = 106), as a function of the number of NMAGIC correction time-steps. The top curve (green triangles)
shows an essentially unsmoothed model (µ = 103). w0 = 1/750000 ∼ 10−6 is the value of the initial
particle weights. The grid has nE = 30 times nx = 10 cells, and only those containing more than 50
particles are taken into account, to avoid particle noise effects in the computation of the residuals.

model. This can be quantified by computing the rms fluctuations of particle weights

around the mean value in all the cells of the (E, x) grid for the different kinds of

regularization, as shown in Fig. 2.7.

Not unexpectedly, the fit to the data also looks smoother when adopting the new

regularization, and the larger µ value permitted by this scheme opposes an overfitting

of the data points, as can be appreciated for different observables in Section 2.6 below.

To summarize, we have tested the χ2M2M method with a new Moving Prior

Regularization scheme for a radially anisotropic truncated target model with idealized

data, and have calibrated the best value of the regularization parameter µ. We have shown

that the corresponding NMAGIC models match the target data well and recover the MDF

for this model in its known potential. We have also seen that these models are much less

sensitive to the value of µ than with the traditional weight entropy regularization, which

can only reproduce the global anisotropy of this model essentially without smoothing.

The new regularization scheme allows NMAGIC to recover a particle model that fits the
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data well but is both intrinsically smoother and reproduces the properties of the target

more accurately.

2.4.3 Varying the initial particle model

The results above already show that NMAGIC can recover the orbit distribution of our

truncated spherical target galaxy from a set of data that specifies it essentially uniquely.

In this experiment, we used an isotropic initial model, so now we investigate the natural

question whether and how this result is dependent on the choice of initial particle model.

In particular, we consider both the case in which the initial particle model has a radially

anisotropic OM orbital structure (with anisotropy radius ra = 3a, different from the

target galaxy), and the case in which it is tangentially anisotropic according to the quasi-

separable prescription of Gerhard (1991, with α = 2, L0 = 0.3
√
GMa, c = 0.1). For

both initial particle models we checked that a minimum number of particles on radial and

tangential orbits is present at each energy. By analogy with the experiment described in

the previous Section, the initial particle models are Hernquist spheres with scale-length

a = 1.5 kpc, larger than the target galaxy (a = 1 kpc). The same set-up of the NMAGIC

run is adopted, together with the optimal µ values determined in Section 2.4.2 above for

the two regularization methods.

With the new MPR scheme, the final NMAGIC models obtained for different initial

orbital distributions differ remarkably little. Table 2.1 and Figs. 2.8-2.9 show how well the

intrinsic kinematics and phase-space MDF match those of the known target galaxy. The

MDF of the final particle model is very similar to that of the target galaxy, independent

of the choice of initial conditions (Fig. 2.9). Typical fluctuations in the mass-weighted

relative rms difference between target and model MDF are 12%, while the intrinsic

kinematics of the target is recovered almost perfectly, as shown in Fig. 2.8.

It is instructive to see how a similar result cannot be achieved with the traditional weight

entropy: an inspection of Table 2.1, or Fig. 2.8 and Fig. 2.9 shows the poorer accuracy

of the resulting particle models. Especially for the models with tangentially anisotropic

initial conditions, the smaller number of particles on radial orbits together with GWR

makes it more difficult to reproduce the radially anisotropic target.

We conclude that with the new regularization method NMAGIC converges to the

(theoretically essentially unique) solution to a very good level of accuracy, independently
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Figure 2.8: Truncated target with idealized data: recovery of the intrinsic kinematics with different initial
particle models. From top to bottom: radial, azimuthal, and vertical velocity dispersion profiles, mean
azimuthal streaming velocity, and anisotropy parameter of the NMAGIC models (full lines) for different
initial conditions (dashed lines). The black line indicates the intrinsic moments of the target galaxy.
Blue, red, and green colours correspond to isotropic, radially anisotropic and tangentially anisotropic
initial conditions, respectively. GWR was adopted in the runs shown in the left panel, while MPR in the
runs shown in the right panel.
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ICs χ2/J ∆kin(%) ∆grid(%)
Idealized GWR iso 0.57 4.07 (14.67) 14.24 (43.98)
data rad 0.46 3.62 (11.85) 12.94 (32.25)

tang 1.64 7.56 (27.20) 17.51 (75.46)
MPR iso 0.72 1.49 (14.67) 10.80 (43.98)

rad 0.67 1.62 (11.85) 11.21 (32.25)
tang 1.57 3.38 (27.20) 12.53 (75.46)

Realistic GWR iso 0.26 2.44 (5.17) 7.49 (17.63)
data rad 0.20 3.25 (3.85) 12.68 (15.79)

tang 0.29 7.42 (16.14) 20.85 (56.44)
MPR iso 0.37 1.32 (5.17) 7.39 (17.63)

rad 0.38 3.13 (3.85) 10.27 (15.79)
tang 0.38 2.35 (16.14) 11.09 (56.44)

Table 2.1: NMAGIC models for the truncated target galaxy. Different initial particle models are adopted.
For the traditional weight entropy smoothing µ = 104; for the new regularization scheme, µ = 106. The
goodness of fit χ2/J , ∆kin and ∆grid are computed as described in Section 2.4.1. In brackets, the same
∆kin and ∆grid computed between the initial particle model and the target.

Figure 2.9: Recovery of the MDF of the truncated target (last column on the right) for different initial
particle models from idealized kinematic constraints. The first column shows the distribution of particle
weights in the (E, x) grid for the isotropic, radially and tangentially anisotropic initial particle models
(from top to bottom). The second column corresponds to the final NMAGIC particle models obtained with
traditional GWR; the third column to the models obtained using the new MPR. The colour scheme reflects
the square root of the total weight contained in each grid cell, where we have adopted nE = 30, nx = 10.
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of the choice of the initial particle model. In this respect, the new MPR method is a

definite improvement over the traditional weight entropy scheme.

2.5 Effects of imperfect data

In astronomical applications, the data constraints are typically less stringent than in the

idealized case considered so far. We therefore now investigate how the results change in

more realistic circumstances.

The following tests represent a sequence of problems that are increasingly less determined

by the data, starting from the truncated target covered by realistic data, and moving on

to infinite stellar systems constrained by data with finite extent. This allows us to isolate

the different roles played by the quality and completeness of data, the initial particle

model, and the regularization scheme.

We find that it is still possible to get close to the target dynamical structure from different

initial particle models with the help of the new regularization method, even though the

lack and/or poor quality of data introduce degeneracies in the models.

2.5.1 Truncated target and realistic kinematic errors

First we construct NMAGIC models for a truncated target with the realistic kinematic

data, with the goal to establish how well the target galaxy can then be reproduced from

different initial particle systems.

The realistic data have larger error bars and smaller data coverage (see Section 2.3.3). For

these models rmax = 100′′ is thus smaller than in the previous case. The different initial

particle models have the same anisotropy structure as in Section 2.4.3, but are adapted

to this rmax - hence they are more similar to the target.

We have repeated the analysis described in Section 2.4.2 to determine the optimal value of

the smoothing parameter µ when these realistic data are adopted. Results do not change

much, and suggest that we can keep the values of µ = 104 for the GWR and µ = 106 for

MPR.

The results of these models are shown in Figs. 2.10 (top part) and 2.11, and more

quantitatively in Table 2.1, for both regularization methods.

The top part of Fig. 2.10 shows the deviations of the models from the target, comparing

the two cases in which idealized and realistic constraints are used. The three sub-panels
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Figure 2.10: Recovery of the intrinsic kinematics for the truncated and infinite targets (top and bottom
figure, respectively) with idealized and realistic data (left and right columns, respectively). The vertical
dashed line corresponds to the radial extent of the data for the infinite target. The shaded yellow
(orange) area shows the range of deviations for the MPR (GWR) method, when the specified range of
initial conditions is adopted. Full (dashed) lines represent the deviations for the final NMAGIC models
obtained with MPR (GWR) starting from different initial particle models. Plotted in each panel are,
from top to bottom, deviations of normalized σ2

r − σ2
ϑ, σ

2
φ − σ2

ϑ, and anisotropy parameter β from the
respective true value of the target.
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show the deviations of σ2
r − σ2

ϑ and σ2
φ − σ2

ϑ normalized by the sum of the two velocity

dispersions, and the deviations of the velocity anisotropy β, as a function of radius. In this

figure, the shaded regions correspond to the range of deviations obtained from modelling

the data with the chosen initial particle systems.

As intuitively might be expected, these deviations increase (i) moving to larger radii, and

(ii) when realistic data are considered. The effect of imperfect data on the final models

is noticeable, in particular closer to the model boundary where poorer constraints from

slit data worsen the recovery of the intrinsic kinematics.

However, we see that also for realistic data the new MPR works well in recovering the

internal kinematics of the target galaxy independently of the initial particle model, and

it is superior to the GWR, as deviations are considerably smaller.

The accuracy with which the phase-space mass distribution function of the target is

matched by the NMAGIC models is shown in Fig. 2.11, where is clear that the traditional

GWR works less well with these realistic data, especially when tangential initial conditions

are adopted.

Because the realistic error bars are larger than those used in the experiments in Section 2.4,

the particle weights undergo smaller changes until they match target observables in a χ2

sense [see equations (2.6) and (2.7)]. For the same reason, the final normalized χ2 between

data and model observables turns out to be smaller (see Table 2.1).

To conclude, these experiments show that the new MPR method improves both the

quality with which the intrinsic properties of the target galaxy can be recovered, and

the independence of the final particle model from the adopted initial model. In fact,

MPR makes it possible to recover the underlying dynamical structure of our radially

anisotropic target galaxy with good accuracy (∆β ∼ ±0.1 only at the outermost point)

even when the quality of the data is not perfect. As already noticed, MPR allows the use

of higher µ values, thus reducing mass fluctuations and enforcing the smoothness of the

underlying model without spoiling the fit to the data.

2.5.2 Finite data for an infinite target

Real stellar systems are clearly not as sharply truncated in radius as the target galaxies

studied so far, and their outer regions are usually not constrained by the available data.

We now come to the more realistic case of modelling an infinite target galaxy using finite



2.5 Effects of imperfect data 65

Figure 2.11: Recovery of the MDF of the truncated target (last column on the right) with realistic data
for different initial particle models. As Fig. 2.9.

data, to explore the limitations that the modelling encounters in this case.

As target galaxy we consider our usual Hernquist sphere with scale length a = 1 kpc,

but this time without truncation. Because of the extreme behavior of the OM radially

anisotropic systems at large radii, we choose a milder anisotropy for our target galaxy,

using the models of Gerhard (1991) with specified circularity function [equations (2.2)

and (3.14) therein], which only depend on a constant parameter α, set equal to 2.

Following the same procedure as adopted above, we model the target starting from

different initial particle models (isotropic, less radially anisotropic, and more radially

anisotropic than the target) and using both regularization schemes. Idealized data and

realistic data are considered in turn.

Infinite target with excellent but radially limited data

Our modelling of the infinite target with idealized but radially limited data confirms

previous experiments (Thomas et al., 2004, DL08) in that the velocity dispersions,

streaming rotation, and anisotropy parameter of the infinite target galaxy can be
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ICs χ2/J (χ2/J)Alm
(χ2/J)slit

Idealized GWR iso 1.08 0.39 1.17
data α = 1 1.02 0.27 1.11

α = 3 0.89 0.21 0.98
MPR iso 0.92 0.45 0.98

α = 1 1.02 0.34 1.12
α = 3 0.78 0.34 0.86

Realistic GWR iso 0.54 0.27 0.67
data α = 1 0.46 0.19 0.59

α = 3 0.43 0.16 0.56
MPR iso 0.62 0.27 0.79

α = 1 0.58 0.25 0.74
α = 3 0.55 0.22 0.71

Table 2.2: NMAGIC models for the infinite target galaxy in its fixed potential. Different initial conditions
and regularization schemes are adopted. χ2 is the usual goodness of fit, normalized by the respective
number of observables.

reproduced reliably only in the regions well inside the part of the galaxy covered by

the data.

Quantitative results are reported in Table 2.2, while the bottom left panel of Fig. 2.10

shows the range of deviations of the final models from the target obtained for different

initial particle systems. The vertical dashed line corresponds to the outermost data point.

This panel shows that in the inner regions of the galaxy, where the data provide good

constraints to the models, the intrinsic properties of the target galaxy are well recovered

independently of the initial particle model, as already found for the truncated target

galaxy. However, at larger radii, and close to the outermost data point, regularization

plays a dominant role in the weight correction of particles, and in those external regions

a bias towards the dynamical structure of the initial particle model cannot be avoided.

Nevertheless, our experiments show that the new MPR considerably reduces such bias

towards the dynamical structure of the initial particle model, as can be seen comparing

the two shaded regions for MPR and GWR.

If we require |∆β| 6 0.1 and compute how far out this is achieved for the range of

models obtained starting from different initial conditions, we find that this radius is 1.4Re

for GWR, while it shifts to 4.3Re when adopting MPR. Considering instead the radius

r(∆β = ±0.2), the standard GWR fails at 3.1Re, while the new method at 8Re.

When, as in this case, a range of dynamical models obtained from different initial particle

models is compatible with the data, one could compare and rank models according to the

usual goodness-of-fit basis (see e.g. Table 2.2), or additionally according to a plausibility
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criterion that, e.g. , favours a constant or smooth outer anisotropy profile.

Infinite target with realistic and finite data

As a logical final step, we consider the case in which an infinite target like the one described

above is constrained by realistic, rather than idealized, data.

We model this target starting again from different initial particle models, and show the

accuracy of the final NMAGIC models in the bottom right panel of Fig. 2.10, and in

Table 2.2.

The bottom part of Fig. 2.10 compares the deviations of the final models from the target

for idealized and realistic data. Apparently, the realistic constraints on an infinite target

galaxy make it really hard for NMAGIC to recover the true intrinsic kinematics of the

target independently of the initial particle model, even though it is still true that the new

MPR method is superior to the GWR.

To quantify how well the particle model reproduces the intrinsic kinematics of the target

galaxy, we can compute r(∆β = ±0.1), which is 0.6Re for the standard GWR, and 1Re

when adopting the new regularization. Considering instead the radius r(∆β = ±0.2),

GWR fails at 0.9Re, while MPR at 1.4Re. Here the kinematic data extend to ∼ 2Re.

Thus, the results previously obtained for the idealized data are confirmed: the new

regularization scheme provides a better reconstruction of the target properties, and is

more independent on the choice of the initial particle model. However, as soon as there is

a lack of data to constrain the models, regularization becomes the dominant term in the

force of change acting on particle weights, and the bias towards the initial particle model

becomes evident.

The main conclusion from these tests is that the reliability of our dynamical models is

limited to those regions in which good observational data exist, and that the better quality

of the data is reflected in a better recovery of the intrinsic properties of the target galaxy.

2.6 Regularized particle models for NGC 4697 and NGC 3379

We now show our new regularization method at work on two real galaxies, and reconstruct

the best-fitting NMAGIC models determined in DL08 and DL09 for the two intermediate-

luminosity elliptical galaxies with rapidly falling velocity dispersion profiles NGC 4697 and

NGC 3379, respectively.
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DL08 and DL09 used NMAGIC to fit spherical and axisymmetric models of different

inclinations to extensive data sets for these galaxies, including photometry, long-slit

spectroscopy, integral-field data and PNe velocities. Different from the experiments of

Sections 2.4 and 2.5, particles are evolved in a total gravitational potential

φ = φ⋆ + φD, (2.19)

where φ⋆ is estimated from the N -particle model for the light distribution via a spherical

harmonic decomposition (Sellwood, 2003, DL07) assuming a constant mass-to-light ratio

Υ, and φD is a dark matter halo potential with the logarithmic parametrization

φD(R, z) =
v20
2
ln

(
r20 +R2 +

z2

q2

)
. (2.20)

Moreover, the mass-to-light ratio is not a fixed parameter, but rather it is determined

simultaneously with the modelling of the dynamical structure in the NMAGIC run.

For both galaxies, the slit data show clear rotation along the major axis on the sky.

However, the regularization scheme as developed in Section 2.2.3 for spherical systems

discourages any rotation in the particle model, as it biases individual weights towards the

same prior regardless of the sense of rotation of the particles. Thus, in the following tests

we adopt a modified set-up for the grid of priors, binning particles according to E and

x, and also according to the sign of their Lz , and assigning individual priors that differ

between particles with different sense of rotation. For an axisymmetric potential, this

effectively uses the total angular momentum L as an approximate third integral, which

may be expected to be a reasonable first approximation unless L ≃ Lz ≃ 0 (Gerhard and

Saha, 1991).

2.6.1 The case of NGC 4697 and its halo

The intermediate-luminosity elliptical galaxy NGC 4697 is seen almost edge-on. Assuming

that the observed nuclear dust-lane is settled in the equatorial plane, Dejonghe et al.

(1996) derived an inclination i = 78◦ ± 5◦, which is consistent with the bulge-disk

decomposition of Scorza et al. (1998) if the disk component has an intrinsic axis ratio

h/R ∼ 0.2. NGC 4697 has fitted Sersic model index n = 3.5, and an effective radius

Re ≈ 66′′ = 3.36 kpc at an assumed distance D = 10.5 Mpc. Kinematic data show

significant major axis rotation reaching ∼ 100 km/s at 90′′.
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Figure 2.12: Particle model fits to the slit data of NGC 4697 along the major (left) and minor axis
(right). The model data points are averages over the same slit cells as the target data, and are connected
by straight line segments. The black line shows model J of DL08, while the red line shows the same
model obtained using the new MPR.

Figure 2.13: Internal velocity moments in the equatorial plane for model J of DL08 (black line) and the
new regularized J model obtained here (red line), for NGC 4697. The vertical dashed lines indicate the
radial extent of the minor axis slit data, major axis slit data, and PN data, from left to right.



70 Regularizing made-to-measure particle models of galaxies

NMAGIC axisymmetric particle models assuming an inclination i = 80◦ were constructed

for NGC 4697 (DL08) fitting simultaneously surface brightness photometry, long-slit

absorption-line kinematics and hundreds of PNe velocities. A range of quasi-isothermal

halos was found to be consistent with the observational constraints, and a massive halo

with circular velocity v0 = 250 km/s at 4.3Re, referred to as model J in the notation

of DL08, fits the PN data best. This model is characterized by a moderately radially

anisotropic orbit distribution, with the anisotropy parameter β ∼ 0.3 at the center and

increasingly higher in the outer regions.

These models were constructed using the traditional GWR, and the µ parameter was set

to 100 to avoid strong biases to the initial conditions. This in turn led to some overfitting

of the slit kinematics data, especially for the higher order kinematic moments (see DL08

for details).

Thus we now build a new regularized J model of NGC 4697, to see whether a similarly

good but smoother particle model can be obtained with the help of the new MPR. We

rerun that exact model with the code NMAGIC using the new regularization scheme,

and µ = 105, and using constraints from both photometric and kinematic data, including

PNe. As specified above, we bin particles according to their integrals E, x, and Lz when

adopting the new regularization method, to allow for the rotation seen in the slit data.

A comparison of the final particle models obtained by DL08 and with this new MPR is

shown in Figs. 2.12 and 2.13. Fig. 2.12 shows the projected absorption line kinematics

of the final particle models overplotted on the data points. As discussed in DL08,

asymmetries between the left-hand side and right-hand side in the profiles do not imply

deviations from axisymmetry or equilibrium, but rather they are due to averages over

slightly different slit cells on both sides. As expected, these asymmetries decrease when

using the new MPR, which allows a higher amount of regularization, and the model

profiles are indeed smoother than for the DL08 model.

The intrinsic kinematics of the final particle models are compared in Fig 2.13: the velocity

anisotropy increases from the center outwards when adopting either GWR or MPR, but

MPR results in much smoother profiles in the regions constrained by data.
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Figure 2.14: Particle model fits to the SAURON integral field kinematic data (Shapiro et al., 2006) for
NGC 3379. Top row : symmetrized SAURON data. Middle row : best-fitting C model (DL09). Bottom
row : new regularized C model. Mean velocity, velocity dispersion, and higher order Gauss-Hermite
moments are shown in the panels from left to right.

Figure 2.15: Internal velocity moments in the equatorial plane for model C of DL09 (black) and the new
regularized C model obtained here (red), for NGC 3379. The vertical dashed line marks the last data
point.
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2.6.2 The case of NGC 3379 and its halo

In DL09 a sequence of spherical and axisymmetric NMAGIC models fitting an extensive

data set (photometry, long-slit and SAURON absorption-line kinematics, PN velocity

dispersion data) was constructed to investigate the mass distribution and orbital structure

of the intermediate-luminosity E1 galaxy NGC 3379.

No independent information on the inclination is available for this galaxy, and values of

i > 40◦ are consistent with the photometry. The effective radius Re ≈ 47′′ = 2.23 kpc at

an assumed distance D = 9.8 Mpc. The combined kinematic data set shows major axis

rotation reaching ∼ 50 km/s at 20′′, with PNe indicating a further increase to ∼ 70 km/s

at 220′′.

DL09 explored a sequence of spherical and axisymmetric models, together with some

triaxial test models. They found that their results were insensitive to the adopted

geometry. Both strongly radially anisotropic models embedded in massive dark matter

halos and nearly isotropic systems dominated by the stellar mass are consistent with

the data. I.e., even the extensive data set used in the modelling was not sufficient to

break the mass-anisotropy degeneracy (Binney and Mamon, 1982, see also Section 1.4.2)

because of the rapidly decreasing velocity dispersion profile for NGC 3379. However, an

analysis of the quality of the fit and of the likelihood of the observed PN velocity data

for the spherical models slightly favoured a range of models centered around the radially

anisotropic halo C, which was obtained for a quasi-isothermal potential in equation (2.20),

with r0/Re = 3, v0 = 130 km/s, and q = 1.

We now reconstruct that spherical C model with the new MPR method. Given the data

set-up is very similar to the one adopted in the tests of Section 2.5, we set µ = 106. We

bin particles according to their integrals E, x, and Lz, because of the observed rotation

in both the slit and SAURON data. For the energy grid we use a linear binning of the

function exp(E), which provides a better sampling of the model DF in the outer regions

for this potential.

Fig. 2.14 shows the fit to SAURON data for the final NMAGIC models obtained with

GWR and MPR. Both particle models reproduce the observed rotation with great

accuracy, and the MPR model is clearly smoother than the original (symmetrized) data.

In particular, notice the ring-like structure in the h4 plot. Even though the new model is
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generated using a much higher value of µ, i.e. much stronger smoothing, it still does a

good job in fitting the observational data, with (χ2/J)sauron = 0.86 (compared to 0.17 for

the traditional GWR).

The intrinsic kinematics of the final NMAGIC models (Fig. 2.15) are similar, but using

MPR the kinks in the profiles disappear. It can be seen that a strong radial anisotropy

is required to match the PNe data in this dark matter halo.

2.7 Discussion and conclusions

Building on the work of ST96, successive investigations (DL07; DL08; DL09; Dehnen,

2009; Long and Mao, 2010) have shown the power of the χ2M2M modelling technique to

learn about the dynamics of galaxies. χ2M2M methods work by adapting the weights of

an N -body particle system until the observational data are well matched in a χ2 sense,

subject to additional regularization constraints. These constraints are needed to prevent

the particle model from acquiring large fluctuations because of scatter and noise especially

in the kinematic data.

Traditionally, a Global Weight entropy Regularization (GWR) is adopted to regularize the

underlying particle system. However, through constant flat priors GWR introduces a bias

in the particle model which makes it difficult to reproduce strong phase-space gradients

of the target galaxy, e.g. anisotropic velocity distributions, unless its dynamical structure

is known beforehand.

In this Chapter we have described a new Moving Prior Regularization (MPR) method,

based on a prior distribution for the particles which evolves with the model. Individual

particle priors are updated along with particle weights to keep track of the phase-

space structures of the evolving weight distribution. The basic idea is to determine the

priors such that they are similar for particles on neighbouring orbits, specified by orbital

invariants or integrals of motion such as energy and angular momentum in the spherical

case. The new priors are then used in a weight entropy function to ensure a regularization

which smoothes locally in phase-space, without erasing global phase-space gradients.

We have then tested this MPR scheme, together with the χ2M2M modelling technique,

using a series of spherical target galaxies with both idealized and realistic data.

Our main conclusions are as follows:



74 Regularizing made-to-measure particle models of galaxies

• For a truncated spherical target galaxy with idealized data, for which in theory a

unique inversion of the data exists, our NMAGIC models with MPR show that the

target can be recovered accurately, and independent of the initial particle model.

• The new MPR generally improves both the accuracy with which the dynamical

structure of the target galaxy is reproduced, and the convergence to the true

solution independent of the initial particle model. Compared to GWR, biases in the

anisotropy structure are removed, and local fluctuations in the intrinsic distribution

function are reduced. Moreover, MPR allows a higher amount of smoothing than

the weight entropy regularization, while the data are still fitted well.

• Lack or poorer quality of data introduce degeneracies in the dynamical modelling

results and a dependence on the initial particle model, so that the reliability of the

models is limited to those regions in which good observational data exist. Also in

this case, the new MPR achieves a better reconstruction of the target properties and

is less dependent on the choice of the initial particle model.

• Using the new MPR, we have reconstructed the best-fitting NMAGIC models

determined in previous work by DL08 and DL09 for the two elliptical galaxies

NGC 4697 and NGC 3379 in their dark matter halos. To this goal, we have extended

the MPR method to the axisymmetric case, using the integrals E and Lz and the

total angular momentum as an approximation to the third integral. The final models

are intrinsically smoother and provide smoother fits to the available data.

There is clearly room for improving the current version of MPR: the method could be

generalized to systems of lower symmetry using the invariants associated with orbits, e.g.

the turning points, to assign moving priors in phase-space to the particles. Moreover, a

cumulative grid-less variant of the method could also be implemented. Re-sampling of

the N -body system from time to time during and after the adjustment of the weights

(Dehnen, 2009) would enforce equal weight for particles orbiting the same torus, but it

would not take care of smoothing between nearby tori with very different weights.

To conclude, the experiments described in this Chapter show that the moving prior

regularization method improves the correct and unbiased recovery of the orbit structure

of the target galaxy from noisy data. A similar regularization scheme could also be

implemented in Schwarzschild orbit superposition models.
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NGC 4494 is one of several intermediate-luminosity elliptical galaxies inferred to have

an unusually diffuse dark matter halo. We use the χ2-made-to-measure particle code

NMAGIC to construct axisymmetric models of NGC 4494 from photometric and various

kinematic data. The extended kinematics include light spectra in multiple slitlets out to

3.5Re, and hundreds of planetary nebulae velocities out to ≃ 7Re, thus allowing us to

probe the dark matter content and orbital structure in the halo.

We use Monte Carlo simulations to estimate confidence boundaries for the halo

parameters, given our data and modelling set-up. We find that the true potential of

the dark matter halo is recovered within ∆G(merit function)∼< 44 (∆χ2 ∼< 101) at 70%

confidence (C.L.), and within ∆G ∼< 59 (∆χ2 ∼< 108) at 90% C.L. These numbers are of

the same order as fluctuations caused by variations of the data within errors, and only

weakly dependent on regularization. They are much larger than the usually assumed

∆χ2 = 2.3(4.6) for 70% (90%) C.L. for two free parameters, perhaps case-dependent, but

75
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calling into question the general validity of the standard assumptions used for halo and

black hole mass determinations.

The best-fitting models for NGC 4494 have a dark matter fraction of about 0.6 ± 0.1 at

5Re (70% C.L.), and are embedded in a dark matter halo with circular velocity ∼ 200

km/s. The total circular velocity curve (CVC) is slightly falling outwards from vc = 220

km/s. The orbital anisotropy of the stars is moderately radial, increasing slightly from

the center outwards. These results are independent on the assumed inclination of the

galaxy, and edge-on models are preferred.

Comparing with the halos of the intermediate-luminosity ellipticals NGC 3379 and

NGC 4697, whose velocity dispersion profiles also decrease rapidly from the center

outwards, the CVCs are quite similar. NGC 4494 shows a particularly high dark matter

fraction, and a strong concentration of baryons in the center.

3.1 Introduction

The formation and evolution of elliptical galaxies have been an open issue in astrophysics

since a long time. Being collisionless to a very good approximation, ellipticals retain relics

of their formation history in the present-day orbital structure, especially in their halos

due to the longer dynamical time scales. According to the currently favoured hierarchical

formation scenario in a ΛCDM cosmology, these halos are dark matter dominated. The

ambitious task of inferring both the orbital structure and mass distribution of ellipticals

is commonly tackled by dynamical modelling of the observational data.

Unfortunately, the lack of an ubiquitous tracer such as HI gas in spiral galaxies (but see

Bertola et al., 1993; Franx et al., 1994; Oosterloo et al., 2002) makes mass measurements

in elliptical galaxies quite challenging, and the greatest evidence of dark halos is confined

to the bright giant ellipticals whose mass distribution can be determined from X-ray

emission of the hot gas (e.g. Loewenstein and White, 1999; Humphrey et al., 2006; Das

et al., 2010b) or strong gravitational lensing techniques (e.g. Maoz and Rix, 1993; Keeton,

2001; Treu and Koopmans, 2004; Auger et al., 2010a). These studies are consistent with

massive dark halos, and nearly isothermal total mass profiles (Ciotti et al., 2009). By

contrast, the situation with less massive, X-ray faint ellipticals is more controversial.

However, dynamical models, particularly when fitting higher order moments of the line-of-
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sight velocity distribution (LOSVD) from stellar absorption lines, eventually ascertained

the presence of dark matter halos around these intermediate-luminosity ellipticals and

are generally consistent with flat circular velocity curves. Being LOSVD measurements

limited by the rapid fall-off of the stellar surface brightness, the kinematics of discrete

tracers such as planetary nebulae (PNe) and globular clusters (GCs) usually represent

the only possibility to probe the mass distribution and orbital structure beyond 2Re, in

the realm of dark matter (e.g. Hui et al., 1995; Méndez et al., 2001; Douglas et al., 2002;

Peng et al., 2004; de Lorenzi et al., 2008, 2009; Napolitano et al., 2009; Das et al., 2011;

Napolitano et al., 2011; Deason et al., 2012).

Curiously, the PNe velocity dispersion profiles of some of the nearby intermediate-

luminosity ellipticals show a strong decline with radius outside 1Re (Coccato et al.,

2009), suggesting very little (if any) dark matter (Romanowsky et al., 2003). The aim

of the present analysis is to expand the sample of modelled intermediate luminosity

ellipticals focussing on NGC 4494, and then compare the results with those which have

been previously obtained for the other galaxies with strongly declining velocity dispersion

profile, namely NGC 4697 (de Lorenzi et al., 2008, hereafter DL08) and NGC 3379 (de

Lorenzi et al., 2009, hereafter DL09).

NGC 4494 is an E1-E2 elliptical galaxy (according to NED - the NASA/IPAC

Extragalactic Database) in the outer regions of the Virgo cluster, with a smooth light

profile and an intermediate stellar mass of about 1011M⊙ (Foster et al., 2011, hereafter

F11). It has been described as either a loose group member (Forbes et al., 1996) or an

isolated galaxy (Lackner and Ostriker, 2010). Among the peculiarities of this galaxy,

a sharp central ring of dust (Forbes et al., 1995; Lauer et al., 2005), a kinematically

decoupled core (Bender et al., 1994; Krajnović et al., 2011), and significant rotation ∼ 60

km/s out to ∼ 3Re (Proctor et al., 2009) have been reported. The latter features, when

coupled, make it difficult to classify NGC 4494 as either a fast or slow rotator (Emsellem

et al., 2007; Coccato et al., 2009; Krajnović et al., 2011). The velocity dispersion profile

of NGC 4494 is rapidly decreasing, from about 160 km/s in the center to about 70 km/s

at ∼ 7Re (Napolitano et al., 2009, hereafter N09), hinting to a deficiency in dark matter.

Also, the X-ray flux of NGC 4494 is two hundred times fainter than that of other galaxies

of the same optical luminosity, which in turn has been interpreted as the result of a

recent interaction which has depleted the gas, or again the evidence of little dark matter
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(O’Sullivan and Ponman, 2004; Fukazawa et al., 2006).

NGC 4494 has been recently modelled using spherical Jeans models (N09), and

axisymmetric particle models constructed with the iterative method (Rodionov et al.,

2009). The available observational data, which included PNe velocities out to ∼ 7Re

(N09), were best fit by low concentration dark halos, with some uncertainties related to

the adopted modelling assumptions, the small differences in the quality of the fits for

different models (N09), and the number of explored models (Rodionov et al., 2009).

Lately, new observational data consisting of stellar absorption line kinematics in multiple

slitlets out to ∼ 3.5Re became available for this galaxy (Proctor et al., 2009, F11).

Moreover, NGC 4494 made a comeback in the work of Deason et al. (2012) as an

outlier with curiously low dark matter fraction within 5Re with respect to model

predictions assuming either a Salpeter or a Chabrier initial mass function. These facts

prompt a further careful analysis of the dark matter content and orbital structure of

NGC 4494, incorporating as many observational data as currently available and assessing

the uncertainties in the recovery of dark halo parameters via dynamical models.

To this aim, we construct new dynamical models fitting all the available photometric and

kinematic data with the flexible particle code NMAGIC (de Lorenzi et al., 2007, hereafter

DL07), which implements a slight modification of the made-to-measure (M2M) technique

proposed by Syer and Tremaine (1996), suited to the modelling of observational data with

errors (χ2M2M). NMAGIC works by slowly correcting the particle weights of an evolving

N-body system until a satisfactory compromise is achieved between the goodness of the

fit to the observational data, and some degree of regularization of the underlying particle

model. More recent implementations of the method can be found in Dehnen (2009), who

proposed a different technique for the weight adaptation and Long and Mao (2010). In the

previous Chapter, we introduced a new Moving Prior Regularization method to generate

smooth χ2M2M particle models fitting noisy data without erasing the global phase-space

structures. So far, the M2M technique has been used to investigate the dynamics of the

Milky Way’s bulge and disk (Bissantz et al., 2004), the mass distribution and orbital

structure in the outer halos of elliptical galaxies (DL08; DL09; Das et al., 2011), and the

dynamics of a sample of SAURON elliptical and lenticular galaxies (Long and Mao, 2012).

In this Chapter, we construct axisymmetric NMAGIC models of the observational data,

which include PNe (N09) and new stellar absorption line kinematics in slitlets (F11), for
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different dark matter contributions to the total gravitational potential, and for different

inclinations.

One of the key points in this work is the study of the accuracy with which the parameters

of our models can be estimated given the observational data at hand. M2M particle

methods, similarly to the more exploited Schwarzschild methods, work by weighting a

system of particles (orbits) in order to achieve a good match to the data, and typically

adjust many more weights than they have data constraints, hence the number of degrees

of freedom1 is likely much smaller than the number of data points (Cretton et al., 2000;

Gebhardt et al., 2000). The relative differences ∆χ2 = χ2 − χ2
min are commonly used

to measure which combinations of parameters provides an equally good fit as the one

that achieves the minimum χ2. On the assumption that the observational errors are

Gaussian distributed (but see van der Marel et al., 2000), ∆χ2 follows χ2-statistics (e.g.

Press et al., 1992). A large number of modelling studies so far assumed that the number

of degrees of freedom is known, and estimated the 68% confidence level on 1 (2,3) free

model parameter(s) based on ∆χ2 = 1(2.3, 3.5) (e.g. van der Marel et al., 1998; Cretton

et al., 1999; Barth et al., 2001; Verolme et al., 2002; Cappellari et al., 2002; Gebhardt

et al., 2003; Valluri et al., 2004; Shapiro et al., 2006; Chanamé et al., 2008; Cappellari

et al., 2009b; van den Bosch and de Zeeuw, 2010; Murphy et al., 2011; Adams et al.,

2012). However, it is hard to figure out the effective number of free parameters involved

in the modelling. Hence, we follow a different approach and use Monte Carlo simulations

of an NGC 4494-like reference galaxy to assign specific confidence intervals enclosing a

certain probability of finding the true values of the parameters (e.g. Press et al., 1992;

Thomas et al., 2005b).

The Chapter is organized as follows. In Section 3.2 we describe the observational data. In

Section 3.3 we outline the modelling technique. In Section 3.4 we construct a NGC 4494-

like target galaxy, together with its observables, and we use it to calibrate the optimal

amount of regularization, and assess the confidence levels for parameter estimation with

NMAGIC. Dynamical models of NGC 4494 for a range of dark matter halo potentials and

inclinations are constructed in Section 3.5, and the main implications of our findings are

discussed in a broader context in Section 3.6. Finally, the Chapter closes in Section 3.7.

1 The number of degrees of freedom is defined as the number of constraints (data points plus constraints introduced by
e.g. regularization) subtracted by the number of free parameters (model parameters plus fitted weights).
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Figure 3.1: From top to bottom: V -band surface brightness, ellipticity, and fourth-order isophotal shape
coefficient a4 as a function of major-axis projected radius for NGC 4494. Circles are the measurements,
lines represent the reprojected values from the axisymmetric deprojections, having assumed an inclination
of 90◦(black), 70◦(green), and 45◦(red).

3.2 Observational data

In this Section we describe the observational data that we will use for modelling the

elliptical galaxy NGC 4494. We adopt a distance of 15.8 Mpc (Tonry et al., 2001), so

that 1 kpc=13′′, a systemic velocity v = 1344 km/s, from NED, and Re = 49′′ ≈ 3.77 kpc

(de Vaucouleurs et al., 1991).

3.2.1 Photometric data and deprojection

As photometric data, we use the V-band surface brightness profile, ellipticity and shape

parameter a4 values of N09. The photometric data extend to 273′′ along the major axis,

and are a combination of HST data in the V and I bands inside 4.3′′ (Lauer et al., 2005),

ground-based observations in BVI out to 32′′ (Goudfrooij et al., 1994), and Megacam

data from the Sloan Digital Sky Survey g′ filter (N09). The total extinction-corrected

luminosity in the V -band is 2.6× 1010LV,⊙ (N09).

A Sérsic fit to the surface brightness profile outside the central dust region (R > 5.6′′)

gives n = 3.30 (N09). The observed ellipticity is ǫ = 0.15−0.20 (axis ratio q = 0.85−0.80)
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for R < Re/2, outside of which NGC 4494 becomes rounder, with ǫ = 0.13 − 0.15

(q = 0.87− 0.85) for 1− 1.5Re.

The radial profiles of surface brightness, ellipticity, and shape parameter a4 are shown in

Fig. 3.1.

In our NMAGIC models for the galaxy NGC 4494, we will not use the 2D surface

brightness, but rather its 3D deprojected luminosity density. The deprojection of the

surface brightness is unique only for spherical or edge-on axisymmetric systems (e.g.

Gerhard and Binney, 1996). Here, we consider axisymmetric deprojections for inclinations

i = 90◦, 70◦, 45◦, which is very close to the minimum inclination allowed by the observed

flattening of NGC 4494 (N09; F11). For each inclination angle, we use the maximum

penalized likelihood scheme and program described in Magorrian (1999) to find a smooth

axisymmetric density distribution consistent with the surface brightness profile. The

method favours a power-law density profile in the radial region not constrained by

photometric data.

The overall good agreement between the measured and reprojected surface brightness,

ellipticity, and shape parameter a4 is shown in Fig. 3.1.

3.2.2 Kinematic data

We combine three kinematic data sets in order to achieve the widest possible spatial

coverage and probe the mass distribution and orbital structure far out in the halo of

NGC 4494. In particular, we use long-slit absorption line kinematics extending out

to ∼ 2Re (Coccato et al., 2009), absorption line kinematics in slitlets out to ∼ 3.5Re

(F11), and PNe line-of-sight velocities reaching ∼ 7Re (N09). The spatial coverage of the

combined kinematic constraints can be appreciated in Fig. 3.2.

Stellar-absorption line slit data

Long-slit absorption line kinematics within ∼ 2Re were presented in Coccato et al. (2009),

and consist of line-of-sight velocity v, velocity dispersion σ, and higher-order Gauss-

Hermite coefficients h3 and h4, along the major and minor axis of NGC 4494.

The original data are shown in Fig. 3.3 with black dots. They are consistent with small or

zero rotation along the minor axis, and substantial major axis rotation, flattening beyond

20′′ at V ∼ 60 km/s out to 120′′. In the inner 10′′ along the major axis, the signature of
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Figure 3.2: Spatial distribution of published kinematic data for NGC 4494. Long-slits along the major
and minor axis are plotted, where the x-axis coincides with the major axis of the galaxy. The positions
of PNe are marked by black crosses, those of the slitlets by green squares. Ellipses represent 3, 6, and
9Re, for an axis ratio q = 0.87.

the decoupled core is apparent. The velocity dispersion decreases from about 160 km/s

at the center to about 80 km/s at ∼ 100′′.

We noticed a systematic offset between the velocities and h3 coefficients measured along

the major and minor axes in the central arcsec. This leads us to suspect an offset of the

minor axis slit in the South direction. The required offset (less than 1′′) is smaller than

the slit width and the average seeing. Furthermore, the h3 measurements along the minor

axis are overall negative on both sides, which is unexpected even for a triaxial system

with minor axis rotation. For the modelling, we therefore replace the measurements of

v and h3 along the minor axis with Gaussian random variates with zero mean and 1σ

dispersion equal to the observational errors.

Inside 32′′ there are many nearby data points whose respective rms deviations are larger

than their error bars. In order to reduce their impact on the modelling, we run a central

moving average over the data within 32′′, averaging over 7 data points (3 points on each

side), and substituting each point with the value of the average.

Then, we minimize the impact of the feature at ∼ 20′′ along the major axis, which is due

to contamination from a foreground star, by artificially increasing the error bars of those

measurements.
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Figure 3.3: Long-slit kinematics along the major (top) and minor axis (bottom) of NGC 4494. Black and
red dots represent the original data and the data used for the modelling, respectively. See Section 3.2.2
for details.
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As we are interested in axisymmetric models of the data, we finally symmetrize the slit

data set, as in DL09. In practice, we average the values of the measured kinematics at

two similar radii (R+, R−) on both sides of the slit with respect to the center. Since the

kinematic data show major axis rotation, we take into account the sign reversal of v and

h3 when symmetrizing the major axis slit data. Then, the new symmetrized data point

is set equal to the weighted mean of the points on both sides, with weights proportional

to the inverse square of the original errors. If σ+ and σ− are the errors on both sides, the

new error σ on the symmetrized data points is set equal to the maximum of

2

σ2
=

1

σ2
+

+
1

σ2
−

(3.1)

and half of the deviation between the original data points, which includes systematic

errors between both sides of the galaxy.

The resulting data, with their respective error bars, are shown with red dots in Fig. 3.3,

where they can be compared with the original measurements.

Stellar-absorption line slitlets data

We include in our kinematic constraints the measurements of v, σ, h3, and h4 in 115

galaxy light spectra in slitlets recently presented in F11, which extend out to 3.5Re.

F11 discussed the generally good agreement between these data and the long-slit

absorption line kinematics of Coccato et al. (2009). Also, they reported that their

uncertainties are likely to be slightly underestimated.

On the whole, the absorption line kinematic data do not show significant evidence for

minor axis rotation. Therefore, being interested in axisymmetric models of the data, we

4-fold the original sample of slitlets, taking into account the sign reversal of v and h3, in

order to decrease the impact of data asymmetries in our models.

Finally, we look for possible outliers in the 4-folded data set consisting of 460 data points.

To this aim, we use the following procedure: for each slitlet, we compute the value of

the average field of v, σ, h3, and h4 from its 20 nearest neighbours, excluding the slitlet

itself. This average is worked out by excluding the lowest and highest 2 values in the

neighbourhood, i.e. considering only the central 80% of the distribution. Moreover,

the average is a weighted one, with weights equal to the inverse square of the larger

of the individual observational error and the median of the observational errors in the
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Figure 3.4: Slitlets kinematics in the 4-folded data set (circles), compared with long-slit (blue dots) and
PNe data (orange triangles). Left and right column are for the measurements around the major and
minor axis, respectively. Filled circles represent the data in a cone of ±15◦ around the axis, while empty
circles are the data points in cones 30◦± 15◦, 60◦± 15◦, respectively. Outliers determined by the method
described in Section 3.2.2 are marked red.

central 80% of the distribution. In the same way, we calculate a weighted rms σ in each

neighbourhood. Then, we flag as outlier any point deviating by more than 2σ from the

weighted mean of its neighbours.

With this procedure, 158 data points are flagged as outliers in velocity and/or velocity

dispersion, and removed from the 4-folded data set. Of the resulting data set consisting

of 302 slitlets, 68 points are marked as outliers in h3 or h4, and therefore we only consider

their velocity and velocity dispersion in the modelling below.

The slitlets data points, together with the outliers determined in this way, are shown in

Fig. 3.4.

Planetary nebulae velocities

Our kinematic observables are completed by the 267 PNe line-of-sight velocities obtained

by N09 with the Planetary Nebulae Spectrograph (PNS, Douglas et al., 2002). As

illustrated in Fig. 3.2, PNe extend out to ∼ 7Re.

Fig. 3.4 shows the comparison of all kinematic data. In the region of overlap, the
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Figure 3.5: Distribution of the line-of-sight velocities of PNe as a function of projected radius. Red crosses
mark the outliers identified by the friendless algorithm. The PNS filter band-pass is overplotted in green.

kinematics of PNe are consistent with those of the stars (see N09, Fig. 6 therein).

In order to look for possible outliers in the sample of PNe, we use the friendless algorithm

presented in Merrett et al. (2003), which flags as outlier any object deviating by more

than n×σ from the velocity distribution of its M nearest neighbours, where σ is the rms

computed in each neighbourhood. Adopting n = 2.5 and M = 20, we remove 10 outliers

from the original sample of PNe. These outliers are highlighted in Fig. 3.5, which shows

the projected phase-space distribution of PNe.

We are left with a catalogue of 257 PNe, whose size we double by applying point-

symmetry, i.e. generating for every PN (x,y,v) the symmetric PN (-x,-y,-v). Such point-

symmetric velocity fields are expected in axisymmetric (or triaxial) potentials. From

previous experiments we know that increasing the number of PNe by a further factor of

two does not improve the modelling significantly.

3.3 Modelling data with NMAGIC

In this Section we briefly recall the NMAGIC made-to-measure (M2M) modelling

technique. We also explain how the initial particle model is set up, and how the

photometric and kinematic target observables are preprocessed for the dynamical

modelling.
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3.3.1 NMAGIC

The parallel code NMAGIC (DL07) is an implementation of a particle-based method to

create χ2M2M models in agreement with observations of galaxies. The algorithm is a

slight modification of the technique proposed by Syer and Tremaine (1996), designed to

model observational data with errors.

The basic idea behind M2M particle methods is to train a system of i = 1, . . . , N particles

to reproduce the observables of a target galaxy by maximizing the function

F = −1

2
χ2 + µS + L (3.2)

with respect to the particle weights wi. This maximization strikes a compromise between

the goodness of the fit (χ2) in terms of deviations between target and particle model

observables, and a pseudo-entropy functional

S = −
N∑

i=1

wi

[
log

(
wi

ŵi

)
− 1

]
(3.3)

which serves the purpose of regularization. The likelihood term L is added to

equation (3.2) to account for the likelihood of a sample of PNe velocities (see DL08).

Since in typical applications the number of particles is much higher than the number

of data constraints on the particle model, regularization is essential. In standard M2M

technique, regularization is achieved by pushing the individual particle weights towards

a smooth distribution of predetermined priors ŵi, which mirror the initial particle weight

distribution and are kept constant during the modelling. As we showed in Chapter 2,

such a Global Weight Entropy scheme makes it hard to reconcile smoothness and orbital

anisotropies in the final particle model. Therefore, in this work we adopt the alternative

Moving Prior Regularization method, and we determine priors which follow the smooth

phase-space structures traced by the weight distribution, as the latter adapts to match

the observational data. This method facilitates recovering both a smoother and more

accurate mass distribution function from noisy data, smoothing over local fluctuations

without erasing global phase-space gradients.

Maximizing the function (3.2) translates into a prescription, the so-called “force-of-

change”, for correcting the weights of the particles while these are evolved in the total

gravitational potential.
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3.3.2 The gravitational potential

The particle modelling technique allows to use both a fixed potential, known a priori, and

a time-varying potential, self-consistently computed from the particle distribution. In our

dynamical models, we assume that the total gravitational potential is generated by the

luminous and dark matter distributions, i.e.

φ = φ⋆ + φD. (3.4)

Following Sellwood (2003) and DL07, φ⋆ is frequently computed from theN -particle model

for the light distribution via a spherical harmonic decomposition, assuming a constant

mass-to-light ratio Υ. The value of Υ is not a fixed parameter, but rather it is determined

during the NMAGIC run, simultaneously with the modelling of the observational data

(see DL08).

Instead, the dark matter halo potential φD is parametrized, and has the logarithmic form

φD(R, z) =
v20
2
ln
(
r20 +R2

)
, (3.5)

(Binney and Tremaine, 2008), where v0 and r0 are a characteristic (constant) circular

velocity and scale-length. This mass model has been widely and successfully used to fit

galaxies (e.g. Fall and Efstathiou, 1980; Persic et al., 1996; Kronawitter et al., 2000;

Thomas et al., 2007b, DL09).

Our dynamical models will explore a range of circular velocity curves, whose behaviour

at large radii varies between the near-Keplerian decline (when stars dominate the total

potential), and a nearly flat (quasi-isothermal) shape obtained for massive dark halos, as

shown in Fig. 3.6.

3.3.3 The initial particle model

We set up initial models of N = 750000 particles extending to 30Re, i.e. ∼ 110 kpc at

the distance of NGC 4494.

The density of these initial particle models is given by a spherical deprojection of

the circularly-averaged surface brightness profile. We follow the method described in

Gerhard (1991) to obtain an isotropic stellar velocity distribution in the total gravitational

potential generated by the stars plus the different dark matter halos described above.
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Figure 3.6: The shaded area shows the range of circular velocity curves corresponding to the total
gravitational potentials used in the dynamical models. Stars represent the self-consistent case with
constant M/L; solid lines correspond to models embedded in various spherical dark matter halos. Black
lines correspond to dark halos with r0 = 4Re and v0 = [70, ..., 270] km/s (from bottom to top). Blue and
red lines correspond to v0 = 150 km/s, and r0 = 3Re and 5Re, respectively.

The particles’ coordinates and velocities are drawn according to the complete distribution

function applying the method of Debattista and Sellwood (2000), and particle weights are

set equal to 1/N .

Finally, following Kalnajs (1977) and DL08, we switch the sign of the velocity of a fraction

of the retrograde particles, with probability

p(Lz) = p0
L2
z

L2
z + L2

0

(3.6)

(where p0 = 0.3, L0 = 0.02), to introduce some angular momentum about the z-axis, while

maintaining a smooth DF in equilibrium. This expedient makes it easier to reproduce the

rotation velocity seen in the kinematic data.

3.3.4 Photometric and kinematic observables for the modelling

We now explain how the different photometric and kinematic observational data are

processed in order to be used as constraints for the NMAGIC models.

For the photometric observables, the 3D luminosity density profile obtained from the

deprojection of the surface brightness is expanded in spherical harmonic functions, and the

expansion coefficients Alm are used as luminosity constraints (e.g. DL07). These Alm are
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computed on a grid of 50 quasi-logarithmically spaced radial shells between Rmin = 0.01′′

and rmax = 20Re, and all the moments that would allow non-axisymmetry are set to zero.

Poissonian errors are used for the mass in shells, whereas the errors for the higher-order

mass moments are determined via Monte Carlo simulations of the density field of the

target galaxy (see DL07).

For the long-slits and slitlets data, we use the luminosity-weighted kinematic observables

for NMAGIC. Hence, we add to the target observables the luminosity in each slit cell

or slitlet, obtained by integrating the surface brightness distribution with a Monte Carlo

algorithm. For the slits, we assume that the slitwidth equals 5′′; for the slitlets, we set the

slitwidth equal to the larger value between 1′′ and the diameter of a circle containing at

least 250 particles of the initial particle model, so as to limit particle noise when computing

model observables. Errors in these luminosities are set to 1% of the luminosity in each

cell.

PNe data are modelled by maximizing the likelihood of the sample of discrete velocities

and positions, as detailed in DL08. For computing the likelihood, the particles and PNe

are binned in elliptical segments, assuming an average projected ellipticity of 0.2. We

consider 3 radial and 4 equally-spaced angular bins, with the first angular bin centered

on the major axis, as shown in Fig. 3.7. Each segment contains at least 30 PNe.

3.3.5 Modelling procedure

Starting from the initial particle model described in Section 3.3.3, the weights of all

particles are evolved until the N -body system matches the target. During the whole

evolution, the potential of the dark halo is kept fixed, but the stellar potential is frequently

computed from the light distribution of the particle system. Particles are integrated in

the total gravitational potential using a leapfrog scheme with adaptive time step.

After a relaxation phase of 1000 steps in which the initial particle model is advanced

without any weight correction, particle weights are updated according to the force-of-

change obtained maximizing equation (3.2), for ∼ 105 correction time steps. Finally, the

particles are freely evolved for another 104 steps without any further weight correction,

to ensure that the final particle model is well phase-mixed. For reference, 104 correction

time steps correspond to ∼ 300 circular rotation periods at the target Re. We define the

model to have converged if χ2 averaged over 50 steps stays almost constant in the last



3.3 Modelling data with NMAGIC 91

Figure 3.7: Segments in which the line-of-sight velocity distribution of particles is computed, for the
likelihood method used to fit PNe with NMAGIC.

104 steps, with fluctuations which are typically of order 2%.

Since the errors are very small for the Alm but much larger for the PNe, the Alm term

contributes more to the force-of-change equation, and changes made to the particle weights

by the PNe data are small. In order to ensure that the halo is appropriately modelled, we

thus increase the contribution of PNe to the force-of-change equation by a factor of 10.

Finally, to generate NMAGIC models we adopt the Moving Prior Regularization presented

in Chapter 2. Hence, new priors are determined in phase-space by binning particles

according to their orbital integrals. In particular, we grid particles according to energy

(E), total circularity function x, and angular momentum with respect to the rotation axis

Lz, in a grid of nE = 20, nx = 4, nz = 2 bins, which at the same time resolves the relevant

phase-space structures and ensures enough particles in each grid cell. The average weight

contained in each cell is computed, and then a thin-plate smoothing spline is fitted to the

grainy grid of priors, before assigning them to the particles. The optimal smoothing

parameter for the thin-plate function is determined by Generalized Cross Validation

(G. Wahba, 1990). The individual particle priors computed in this way are not kept

constant in time but rather they are frequently updated while the particle weights are

adapted to match the target observables.



92 NMAGIC models and dark halo parameter estimates for NGC 4494

3.4 Parameter estimation: how well can the dark matter halo
be recovered?

In this study, we will fit the observational data of NGC 4494 with a sequence of NMAGIC

models obtained for different dark matter halos and for different inclinations. We are not

interested simply in dynamical models that look good on the data (the so-called “chi-by-

eye” approach), but wish to quantify the uncertainties in the best-fit parameters from a

statistical distribution appropriate for our data and modelling method. In this Section,

we describe a simple Monte Carlo method to estimate such a distribution.

In the following, the best-fit parameters are defined as those for which a minimum is

achieved in the merit function

G =
1

2
χ2 −L, (3.7)

which measures the agreement between the observational data and the final model in terms

of the χ2, that the χ2M2M method tries to minimize, and of the log likelihood L, that the
method tries to maximize (note the difference with respect to equation [2.5]). In order

to carry out a robust parameter estimation, we also need to quantify the uncertainties in

these best-fit parameters.

Boundaries of the confidence regions for the estimated parameters will correspond to

contours of constant ∆G relative to the best-fitting model in the sampled parameter

space. In previous dynamical mass analysis (e.g. Gebhardt et al., 2003; Thomas et al.,

2005b; Chanamé et al., 2008; Murphy et al., 2011), uncertainties in the model parameters

are typically estimated by considering the parameter change necessary to increase χ2

by 1 (or 2.3), and to decrease the log likelihood L (see DL08) by a factor of 0.5 (or

1.2) for 1 (or 2) fitted potential parameters (Press et al., 1992). As discussed in the

Introduction, this is equivalent to assuming that all the fitted weight parameters minus

the smoothing constraints are used completely to determine the DF from the data, and

only the potential parameters are left to be determined by the remaining data constraints.

We find empirically for our data set and modelling set-up that ∆χ2 values are ≫ 1, and

therefore in this Section we compute confidence regions for parameter estimation via

Monte Carlo experiments.

In Section 3.4.1, we build a mock target galaxy closely similar to the elliptical galaxy

NGC 4494, which is embedded in a dark matter halo with scale radius and circular velocity
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corresponding to the best-fitting model determined by N09 for NGC 4494. We generate

photometric and kinematic observables for this mock galaxy with the same observational

errors as for NGC 4494. In Section 3.4.2, we use the pseudo-data and known intrinsic

parameters of this NGC 4494-like target galaxy to calibrate the regularization parameter

appropriate for the modelling of NGC 4494. In Section 3.4.3, we use a sequence of

NMAGIC models for the target galaxy to show how well the circular velocity and scale

radius of its (known) dark halo, the total enclosed mass, and the mass-to-light ratio can

be recovered, in a more rigorous way than in previous NMAGIC modelling (DL08; DL09

Das et al., 2011). Finally, in Section 3.4.4 we use Monte Carlo experiments to determine

the appropriate ∆G to be used for confidence boundaries which allow us to quantify

uncertainties in the dark halos parameters and to discriminate between different mass

distributions in the modelling of the real data of NGC 4494.

3.4.1 An NGC 4494-like galaxy and its observables

Our chosen NGC 4494-like target galaxy has the luminosity distribution obtained by

deprojecting the surface brightness of NGC 4494 for i = 90◦, and it is embedded in a

logarithmic dark matter halo (3.5), with r0/Re = 4 and v0 = 150 km/s, as in the best-

fitting Jeans model of N09 for NGC 4494. Similar to the orbital anisotropy predicted by

some merger models in the current cosmological scenario (e.g. Dekel et al., 2005), the

velocity distribution of this NGC 4494-like galaxy is isotropic in the center and increasingly

radially anisotropic at larger radii. As for NGC 4494, we observe the target galaxy from

a distance of 15.8 Mpc, and the projected effective radius Re ≈ 49′′. We set its stellar

mass-to-light ratio to 3.8.

Following the procedure outlined in Section 3.3.3, we generate a particle model realization

for this target, using 750000 particles. To implement the orbital anisotropy of the

target galaxy, we adopt the models with specified circularity function of Gerhard (1991).

Furthermore, we add a certain amount of rotation to the particle model (see Section 3.3.3)

so as to mimic the real NGC 4494.

As luminosity observables we use the coefficients Alm of the spherical harmonic expansion

of the 3D luminosity density, computed as described in Section 3.3.4. The kinematic

observables are v, σ, h3, h4, projected onto both the long-slit set-up and the slitlets set-up

used for the modelling of NGC 4494. These observables can be readily determined using
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Figure 3.8: Quality of the final NMAGIC particle models as a function of the regularization parameter
µ, from unsmoothed models (small values of µ) to oversmoothed models (high values of µ). Top panel :
rms deviation (%) of the internal velocity moments of the final particle model from the target, computed
over the radial region constrained by the data. Middle panel : merit function G in equation (3.7). Bottom
panel : χ2/J of the particle model fit to the J photometric and absorption-line kinematic data points
(J = 4214).

NMAGIC with weight correction turned off, integrating the particle model representing

the target galaxy. After an initial relaxation phase in the fixed total gravitational

potential, time-smoothed kinematic observables are computed directly from the particles,

as described in the previous Chapter. Observational errors from NGC 4494 are adopted,

and Gaussian random variates with 1σ equal to such errors are added to the kinematic

observables computed in this way.

Finally, we generate a mock sample of PNe velocities similar to that described in

Section 3.2.2. To this purpose, we again use NMAGIC to integrate the particle model

which imitates NGC 4494, and in parallel compute the time-averaged velocity and velocity

dispersion of the particles binned in radial and angular segments on the sky. We adopt

the same 3 radial bins and 4 equally-spaced angular bins as in Section 3.3.4. Then, we

consider the catalogue of PNe used for the modelling of NGC 4494, and assign a new

velocity to every PN in the catalogue, according to a Gaussian distribution with velocity

and velocity dispersion of the spatial segment the PN would belong to, given its position

on the sky.
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3.4.2 Calibrating regularization

The regularization parameter to be used when constructing dynamical models is case-

dependent, and it is influenced by several factors, most notably the observational data to

be modelled (error bars, scatter, spatial coverage) and the phase-space structure of the

target galaxy (see e.g. Gerhard et al., 1998; Cretton et al., 1999; Thomas et al., 2005b,

DL08; DL09).

To determine the optimal amount of smoothing given the data, we model the observational

data of the NGC 4494-like galaxy using different values for the regularization parameter

µ, which controls the balance between regularization and goodness-of-fit in equation (3.2).

The Moving Prior Regularization method is used.

The results of our experiments are summarized in Fig. 3.8, which shows, for increasing

values of µ, the reduced χ2, the merit function G in equation (3.7), and the rms difference

(∆kin) between the internal velocity moments (see previous Chapter) of the target and of

the final NMAGIC model.

The minimum in the ∆kin plot determines the value of µ for which the model best recovers

the internal moments of the input model. This occurs at µ ≃ 104. In Fig. 3.8 we also see

that for values of µ > 105 a smooth model fitting the data points within errors can no

longer be found.

Based on the results of these experiments, in the following we will adopt a value of µ = 104

to regularize our NMAGIC models.

3.4.3 Recovery of the dark halo parameters of an NGC 4494-like galaxy

We now construct NMAGIC models that fit the data of the NGC 4494-like target galaxy

for a range of assumed parameters of the dark halo potential in equation (3.5). The key

question that we are interested in is: how well can NMAGIC recover the true parameters

(r0 = 4Re, v0 = 150 km/s) of the dark halo given the observational data at hand?

We follow the modelling procedure outlined in Section 3.3.5, starting from an isotropic

initial particle model computed in each dark halo, as explained in Section 3.3.3. We use

all available photometric and kinematic constraints, including PNe through the likelihood

technique. Our NMAGIC models are regularized with the Moving Prior Regularization

method, adopting the optimal value of µ = 104 determined above.



96 NMAGIC models and dark halo parameter estimates for NGC 4494

50 100 150 200
v0 (km/s)

1

2

3

4

5

6
r 0

/R
e

50 100 150 200
v0 (km/s)

1

2

3

4

5

6
r 0

/R
e

44

44

44

44

44

44

59

59

59

59

59

0 151 302 452 603 754

Figure 3.9: Recovering the halo parameters of an NGC 4494-like galaxy. Each grey circle represents a
final NMAGIC model. The true dark halo has scale radius r0 = 4Re and circular velocity v0 = 150 km/s
(green triangle). The colour scheme reflects the magnitude of the ∆G of each model relative to the overall
best-fitting model, defined as that with the smallest G (red cross). The black lines correspond to 70%
and 90% confidence contours, as derived from the simulations of Section 3.4.4.

We sample the halo parameters (r0,v0) on a grid of ∼ 200 models. The results of these

experiments are shown in Fig. 3.9 in terms of the ∆G of each NMAGIC model relative

to the best-fitting model, which corresponds to the overall smallest G.

The shape of the contours of ∆G in Fig. 3.9 is regular, and there is an extended region

for which the values of G are similar. Many models providing similarly good fits to the

data, all with reduced χ2/J 6 1, are obtained for different parameters of the dark halo

(the number of data points J = 4214). The best-fitting model is found for values of the

dark halo parameters r0 = 3Re and v0 = 150 km/s, and it has a reduced χ2/J = 0.33, log

likelihood L = −1541.04, and G = 2228.45. The scale radius of this best-fitting model is

smaller than that of the true model, which achieves a reduced χ2/J = 0.34, log likelihood

L = −1539.87, and G = 2265.08. For comparison, the no-dark halo model, which provides

the poorest fit to the available observational data, has a final reduced χ2/J = 0.48, log

likelihood L = −1564.33, and G = 2566.35.

Surprisingly, the values of ∆G are large (≫ 1). For instance, the model obtained for the

true parameters of the (known) dark matter halo achieves a value of G which is ∆G ∼ 40
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Figure 3.10: Total enclosed mass (stars plus dark matter) within 2Re for different values of the halo
parameters r0 and v0. Contour values are in units of 1010M⊙.

(∆χ2 ∼ 40) away from the best-fitting model. Applying the classical χ2 statistics for two

degrees of freedom, the true parameters of the dark matter halo would be discarded at

the 99.99% level. We investigate this issue in Section 3.4.4

Note that the contours of ∆G remain open to the top-right edge of the plot (see also

e.g. Gerhard et al., 1998; Thomas et al., 2005b; Murphy et al., 2011), showing that it

is not possible to put robust constraints on both halo parameters simultaneously in this

case. Similar values of G, and hence similarly good models are achieved for halo models

located along a large band extending from low r0 and low v0 to high r0 and high v0. Such

diagonal band shrinks when modeling target galaxies embedded in more massive halos, as

the models that do not contain enough mass are ruled out. Models inside this band share

a similar total enclosed mass within the radial region constrained by the observational

data, as shown in Fig. 3.10 by means of contours of total mass within 2Re in the same

(r0,v0) parameter space. Evidently, the total enclosed mass inside a certain radius is what

the dynamical models constrain best with the data at hand.

Indeed, when plotting the values of ∆G of the final NMAGIC models against enclosed

mass (see Fig. 3.11) the shape of a parabola is evident, despite the scatter in the values

of ∆G.
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Figure 3.11: ∆G of the final NMAGIC models fitting the data of the NGC 4494-like galaxy, as a function
of the total mass inside 2Re divided by the corresponding quantity for the best-fitting model. The red
cross shows the best-fitting model, the green triangle the model with the true dark halo parameters. The
black lines correspond to 70% and 90% confidence regions derived from the simulations of Section 3.4.4.

Finally, how well the NMAGIC models are able to recover the mass-to-light ratio and the

dark matter fraction of the NGC 4494-like galaxy from these data can be appreciated in

Figs. 3.12-3.13. These are both important quantities which we are interested in measuring

with accuracy for real galaxies.

At this stage, two obvious questions are: what is the typical ∆G difference between the

best-fitting NMAGIC model and the model with the true halo parameters? And related to

this, within what errors can we trust the dark halo parameters of the best-fitting model?

The following analysis is designed to answer these questions.

3.4.4 Parameter estimation for the dark matter halo: confidence levels

We now use Monte Carlo simulations to estimate the values of ∆G which represent a

specific confidence level, given the observational data of NGC 4494 and our NMAGIC

modelling technique (see e.g. Press et al., 1992).

In practice, given constraints on computer time, we construct a sequence of NGC 4494-like

galaxies embedded in 10 different dark halos, and model each one of them with a range

of dark halo parameters. Then, for each target galaxy we compute the ∆G between the
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Figure 3.12: As Fig. 3.11, but ∆G of the final NMAGIC models as a function of stellar mass-to-light.
The galaxy has (known) M/L = 3.8.
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Figure 3.13: Recovery of the dark matter fraction fDM = MDM/M as a function of radius for the range of
explored NMAGIC models of the NGC 4494-like data (orange shaded region). The green line represents
the known target, and the red line the best-fitting model. The yellow shaded region shows the 70%
confidence region (see Section 3.4.4).
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Figure 3.14: Normalized cumulative distribution of ∆G (left) and ∆χ2 (right) between the true dark
halo and the best fitting model, for the NGC 4494-like galaxy embedded in 10 different dark halos and
modelled with NMAGIC. The best fitting model is defined as that with the minimum G (χ2). The red
lines correspond to 70% and 90% confidence levels.

best-fitting model and the model obtained for the true parameters. In this way, we can

estimate the proper ∆G within which the true parameters are found in 70% or 90% of

our experiments.

The main results from these experiments are summarized in Fig. 3.14, which shows the

cumulative distribution of ∆G and ∆χ2 between the true dark halo model and the best

fitting model, for the 10 different experiments. It is seen that the NMAGIC models

recover the true potential of the dark matter halo within ∆G ∼< 44 about 70% of the

time, and within ∆G ∼< 59 about 90% of the time. Corresponding values are ∆χ2 ∼< 101

and ∆χ2 ∼< 108 for 70% and 90% confidence bands, respectively, not including the log

likelihood.

The magnitude of these differences is quite surprising. Therefore we perform several

additional tests to understand them better. First, we verify that the measured differences

∆G are actually significant with respect to fluctuations caused by modelling noise or

measurements uncertainties. Indeed, it is natural to speculate that the numerical noise in

the procedure of the weight-adjustment may cause fluctuations of G over time. However,

these fluctuations are comparatively small, as on average they are ∼ 14 in G (∼ 30 in
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Figure 3.15: The merit function G = χ2/2 + L for increasing values of the regularization parameter µ.
Dots represent the mean over 100 models fits to Monte Carlo realizations of the kinematic data of the
NGC 4494-like galaxy; error bars represent the rms deviations from the mean.

χ2), i.e. a factor of three smaller than the typical values of ∆G (and ∆χ2).

Then, in order to quantify the relevance of the observational measurement uncertainties,

we generate a Monte Carlo chain of one hundred realizations of the data of the NGC 4494-

like mock galaxy of Section 3.4.1. Every realization is constructed by drawing random

Gaussian-distributed values for all kinematic data points, such that the mean is as

predicted for the mock galaxy, and the variance corresponds to the observational errors

(see e.g. van der Marel et al., 1998; Cretton et al., 2000; Thomas et al., 2005b). Then, we

model each realization with NMAGIC, assuming the true gravitational potential of the

target galaxy. Computing the dispersion of the values ofG obtained modelingNmock = 100

realizations of the observational data, we conclude that random variations in the data

according to the observational errors correspond to fluctuations in the merit function

G ∼ 25 (and in χ2 ∼ 50) within 1σ. Instead, the experiments above showed that if the

potential is not known in advance, NMAGIC models match the true potential of the dark

matter halo within ∆G ∼< 44 at 1σ level. Hence, the ∆χ2 difference computed by only

fitting the true model to Nmock data sets (e.g. Thomas et al., 2005b) may be slightly

underestimated.

As a further check, we verify whether the minimum value of G and/or the magnitude

of ∆G are influenced by the degree of regularization employed in the NMAGIC fits. In

the framework of Schwarzschild modelling, Verolme et al. (2002) showed that smoothing
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constraints do not affect the shape of χ2-contours significantly, and leave the overall

best-fitting parameters unchanged. Thomas et al. (2005b) constructed Schwarzschild

models for different values of the smoothing parameter, and computed the ∆χ2 due to

Nmock = 60 different realizations of the data sets as a function of the smoothing parameter.

They found that the magnitude of ∆χ2 increases for increasing regularization (see their

Fig. 6). We repeat their experiment modelling Nmock = 100 realizations of the data of the

NGC 4494-like mock galaxy for different values of the regularization parameter µ, and

show our results in Fig. 3.15. The error bars represent the 1σ-variation ∆G as a function

of µ, and show no indication that such ∆G is influenced by the regularization, up until

and including the optimal regularization parameter used in our modeling (µ = 104). An

increase of the fluctuations of G due to regularization is only seen for oversmoothed models

(µ = 105, see Section 3.4.2).

The Monte Carlo experiments also reveal some slight biases which are intrinsic to our

diagnostics of the best-fitting model. In particular, we find that the minimum χ2 values

are achieved on average for more massive halos than that of the target galaxy, as previously

noted in Gerhard et al. (1998), while the maximum L values are typically achieved for

halos which are more diffuse than the true (known) halo. The combination of χ2 and

L in the merit function G in equation (3.7) is less biased, since it strikes a compromise

between these two opposite trends.

3.4.5 Summary

To summarize, we investigated how well the dark halo parameters can be constrained

from data which have the spatial coverage and error bars of the current observational

data for NGC 4494. These data do not suffice to determine both the scale radius and the

circular velocity of the halo in equation (3.5), and different combinations of (r0,v0,Υ) that

provide similar values of the total enclosed mass are allowed. The enclosed mass within

2Re can be determined to within 10%, and the dark matter fraction fDM(3Re) to within

±0.1. For the family of logarithmic dark matter halos, the total circular velocity can be

determined to ±20 km/s.

Via Monte Carlo experiments, we computed confidence levels for parameter estimation.

We conclude that, for NMAGIC models of the observational data at hand, the usual 1σ

(70%) level corresponds to a value of ∆G ∼ 44, and of ∆χ2 ∼ 101 (and ∆G ∼ 59,
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∆χ2 ∼ 108 at 90% confidence level). Using these statistical results, we can now derive

the uncertainties on the determination of the halo parameters for NGC 4494.

3.5 Dynamical models of NGC 4494

We now use NMAGIC to construct axisymmetric dynamical models for NGC 4494

fitting all the photometric and kinematic data described in Section 3.2. Three different

inclinations for the stellar distribution are considered, i = 90◦, 70◦, 45◦, for which we

carried out the deprojections of the photometric data (see Section 3.2.1). In particular,

the latter value is close to the minimum inclination allowed by the observed flattening

of NGC 4494 (N09; F11). For each inclination, we explore a sequence of gravitational

potentials including the self-consistent case with constant M/L, and various quasi-

isothermal dark matter halos.
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Figure 3.16: Results of the NMAGIC dynamical models of NGC 4494 for the range of explored halo
parameters (r0,v0). From top to bottom: i = 90◦, 70◦, 45◦. The grey contours correspond to 70% and
90% confidence levels, as determined in Section 3.4.4. Left column: ∆G of NMAGIC models relative to
the best-fitting model (separate colour bar for each inclination). The bottom-right corner is a region in
which no good models for the data could be found. Right column: V-band mass-to-light ΥV of the final
models.

The main results of our suite of dynamical models are presented in Fig. 3.16. In analogy

with the analysis of the previous Section, we plot the ∆G of each NMAGIC model
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relative to the best-fitting model, defined as that with minimum G, for each inclination

i = 90◦, 70◦, 45◦. In the same figure, we also overplot the 70% and 90% confidence levels

determined from the Monte Carlo experiments of Section 3.4.4. In the right panel, we

show the final mass-to-light ratios of our dynamical models.

The shape of the ∆G-contours is regular, and the range of dark matter halos consistent

with the data within the confidence levels has circular velocity in the range [160 − 240]

km/s and scale radius ∼ 1 − 2Re. The stellar mass-to-light ratio is ΥV ∼ 3.2. The

main characteristics of the mass distribution of the explored models, and of the preferred

models, are plotted in Fig. 3.17. The total circular velocity curve of the good models is

approximately flat (“isothermal”) outside 1Re, with vc(3Re) ∼ 220 km/s. Less massive

halos, as well as models with constant M/L, are not consistent with the data. It is

apparent from Fig. 3.16 that these results, and the topology of the contours of G, are

independent on the adopted inclination of the stellar distribution. Accordingly, the

allowed range for the dark halo parameters is not sensitive to our ignorance of the true

inclination of NGC 4494.
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Figure 3.17: Top four panels: as a function of radius, the dark matter fraction fDM = MDM/M within R,
and the circular velocity curves corresponding to dark matter, stars, and total potential for the NMAGIC
edge-on models (orange shaded region). The yellow shaded region shows the 70% confidence region (see
Section 3.4.4). Lowest panel: the contributions of stars (red) and dark matter (grey) to the total circular
velocity curve (violet) for the edge-on models in the 70% confidence band.

In general, we find that edge-on models (i = 90◦) are preferred, in the sense of a lower
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Figure 3.18: NMAGIC fits to the differential stellar mass distribution (A00 coefficient) for an inclination
of 90◦. The black line is for the best-fitting model (r0 = 1Re, v0 = 170 km/s), the red line is for the model
residing in a diffuser halo (r0 = 5Re, v0 = 90 km/s), and the green line represents the model obtained
for a massive halo (r0 = 1Re, v0 = 250 km/s). The three model curves are nearly identical.

value of G, and of a lower value of χ2, and a higher value of L, respectively. A discussion

of this issue is deferred to Section 3.5.3, whereas we now describe the model fits to the

data, and the orbital structure of the dynamical models.

3.5.1 Model fits to the observational data

For a wide range of dark halos, NMAGIC finds very good fits to the observational data

in terms of χ2 values. In particular, for an assumed inclination of 90◦ all the models that

we tried converged to χ2 values per data point less than 1 (unless extreme values of the

parameters, corresponding to the bottom-right corner of Fig. 3.16 are considered). For

an inclination i = 70◦, the model with constant M/L achieves the poorest fit with a value

of reduced χ2 = 1.14. Similar values of χ2 are also found for a few models obtained with

the more extreme value of the inclination i = 45◦.

The fits to the photometric constraints are generally excellent, and they are

indistinguishable visually for most potentials, and for the different inclinations. Models

compatible with the data at the 90% level achieve these fits with a maximum value of

χ2 = 0.43, 0.48, 0.88 per data point, for i = 90◦, 70◦, 45◦, respectively. Fig. 3.18 shows the

very good fit to the first moment of the Alm, i.e. the differential stellar mass distribution,

for the preferred inclination of 90◦. Three fiducial halo models are shown: the best-fitting

model, and two models which fit the data with χ2 < 1, but lie outside the 90% confidence

band, having a more massive and a more diffuse dark halo than the best-fitting models.

The fits to the long-slit kinematics are also generally good. Models within the 90%
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confidence range achieve a maximum value of χ2 = 0.36, 0.41, 0.35 per point, for

i = 90◦, 70◦, 45◦, respectively. For the fiducial models, these fits are shown in Fig. 3.19,

where it is apparent that the central feature of the kinematically decoupled core in v and

in h3 is reproduced well by our particle models, and that the models have some difficulty

in matching the detailed long-slit kinematics along the outer major axis. In particular,

the best-fitting models have slightly lower values of v and slightly higher values of σ. To

a great extent, these systematic deviations can be credited to the compromise (see below)

that the models must find between the long-slit and the slitlets kinematic data, which

extend to larger radii. The fiducial models show that more massive/diffuse halos result in

higher/lower values of σ and h4 along both axes. Finally, the shaded regions in Fig. 3.19

show the range of models allowed by the different inclinations (for the more massive and

the more diffuse fiducial models), and by the 90% confidence region (for the best-fitting

model).

The fits to the newer slitlets kinematics are achieved with maximum χ2 = 1., 1.18, 1.27

per data point within the 90% confidence level, for the three inclinations of 90◦, 70◦, 45◦,

respectively. Fig. 3.20 shows the fits of the preferred edge-on particle models to the slitlets

kinematics for the fiducial potentials. The trends with halo mass described before are still

clearly visible. Moreover, it can be seen that the best-fitting edge-on model, corresponding

to the black line, has to find a compromise between the kinematic data in slit and slitlets

in the outer region. This results in a lower magnitude for the velocity, and in a higher

velocity dispersion, which explains the deviations from the long-slit kinematics in the

outermost data points.

Finally, Fig. 3.21 shows a comparison of the final NMAGIC models with the PN kinematic

data, for all the inclinations and for the fiducial potentials. The velocity, velocity

dispersion, and LOSVD are plotted in the angular segments in which the PNe velocities

are binned for the modelling (see Section 3.2.2). The axisymmetric nature of our

models is apparent in the reflection symmetry of the kinematics in diagonally opposite

segments. While the mean velocity profiles are well fit by all models shown, the low (high)

dark matter models are systematically low (high) in the PN dispersion plot, and show

systematic deviations from the data histograms. The best-fitting models, instead, provide

a good match to all the observed PN data.
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Figure 3.19: NMAGIC fits to the long-slit kinematic data (black dots) of NGC 4494 along the major
(top) and minor (bottom) axis. The black shaded region shows the best-fitting edge-on models within the
90% confidence range. The red and green shaded regions show the spread of the fiducial models for the
explored inclinations; red is for the model residing in a lighter halo (r0 = 5Re, v0 = 90 km/s), and green
is for the model obtained for a massive halo (r0 = 1Re, v0 = 250 km/s).
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Figure 3.20: NMAGIC fits to the slitlets kinematics near the major axis of NGC 4494 (black dots with
error bars). For comparison, light-green dots represent the major-axis slit data. The model points are
averages over the same slit cells as the data, and are connected by straight line segments. Different
colours represent the fiducial models: black is for the best-fitting model (r0 = 1Re, v0 = 170 km/s), red is
for the model residing in a lighter halo (r0 = 5Re, v0 = 90 km/s), and green is for the model obtained for
a massive halo (r0 = 1Re, v0 = 250 km/s). For simplicity, only the preferred edge-on models are shown.

3.5.2 The internal kinematics of NGC 4494

We now look at the intrinsic kinematics of NGC 4494 models, in order to learn about the

orbital anisotropy of this galaxy. Fig. 3.22 shows the internal kinematics for the range of

explored inclinations.

As expected, in the radial region well constrained by the kinematic data the ratio of the

radial to tangential velocity dispersions is larger for models embedded in a massive halo

than for low dark matter models (see e.g. Binney and Mamon, 1982).

On average, the ratio of the radial to tangential velocity dispersions along R in the best-

fitting models is ∼ 1.2, i.e. the underlying orbital distribution is slightly radially biased.

As discussed further in Section 3.6, the degree of radial anisotropy of NGC 4494 is milder

than what was previously found for the two other intermediate-luminosity ellipticals

NGC 4697 (de Lorenzi et al., 2008) and NGC 3379 (de Lorenzi et al., 2009).

For all the explored potentials, the two components of the tangential velocity dispersion

are similar along the minor axis, as required for an axisymmetric system, whereas the

azimuthal dispersions are higher in the equatorial plane, suggesting that this (rotating)

elliptical may be flattened by meridional anisotropy (e.g. Dehnen and Gerhard, 1993;
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Figure 3.21: NMAGIC fits to the PNe velocities for all the considered inclinations. Top two rows: mean
velocity dispersion and velocity profiles in the angular segments centered on 0◦ (major axis), 90◦, 180◦,
270◦, from left to right. Bottom three rows: LOSVD in the same angular segments at radii of 52′′, 110′′,
and 300′′, going upwards. Colours of the shaded regions are as in Fig. 3.19.

Figure 3.22: Internal kinematics of the final NMAGIC models for NGC 4494. The ratio of the azimuthal to

meridional velocity dispersion (top) and of the radial to tangential velocity dispersion σt =
√
(σ2

ϑ + σ2
φ)/2

(bottom) are plotted as a function of the major axis R in the equatorial plane (left column), and of
the minor axis z in the meridional plane (right column). Colours of the shaded regions are as for
Figs. 3.19, 3.21. The vertical dashed lines show the extent of the kinematic data (long-slit, slitlets,
and PNe, going outwards).
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Thomas et al., 2009a; Das et al., 2010a). Variations due to the assumed inclination are

always larger in the ratio between the azimuthal and meridional velocity dispersions along

R.

Finally, at larger radii, and close to the outermost data points (marked by the vertical

dashed lines), the orbital structure is nearly isotropic along both R and z. As we have

shown in the previous Chapter 2, in those external regions, which are unconstrained by

the observational data, a bias towards the dynamical structure of the initial (isotropic, in

this case) particle model cannot be avoided.

3.5.3 The inclination of NGC 4494

From our NMAGIC models of NGC 4494, we would conclude that the observational data

prefer an inclination of 90◦ out of the three inclinations that we explored. Indeed, edge-

on models provide better fits to the data than models with lower inclinations, in terms

of the merit function G, and of χ2, and L in turn. In particular, we find a ∆G ∼ 140

(270) between the best-fitting edge-on model and the best-fitting model obtained for 70◦

(45◦), which is highly significant when compared to the typical differences ∆G among

different potentials for a given inclination. Visually, it is hard to distinguish the fit to

the observables provided by the 90◦ and the 70◦ inclinations, whereas the more face-on

45◦ models are characterized by a systematically low velocity and velocity dispersion with

respect to the observational data.

Should this preference for edge-on inclinations really be believed? Up to now, we have

assumed a spherical dark halo for all the considered inclinations, and only the stellar

distribution was axisymmetric and varied according to the inclination. We can relax

the assumption of sphericity of the dark matter halo, and investigate dark matter halos

with similar flattening as for the stars. To this end, we consider the more general

parametrization for the logarithmic potential

φD(R, z) =
v20
2
ln

(
r20 +R2 +

z2

q2φ

)
(3.8)

(Binney and Tremaine, 2008). Then, we use the approximate relation 1− qφ ∼ (1− qρ)/3

to derive the flattening of the potential qφ from that of the density distribution qρ, which

we infer from the apparent flattening q of the isophotes via

q2 = cos2 i+ q2ρ sin
2 i. (3.9)
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For an average flattening of the isophotes q = 0.82, the intrinsic flattening of the density

distribution qρ = 0.82, 0.79, 0.59 for i = 90◦, 70◦, 45◦, respectively, and the corresponding

qφ = 0.94, 0.93, 0.86.

We have explored a few flattened dark halos having the same spherically-averaged mass

distribution of the best-fitting models at i = 70◦ and 45◦. Although some of them provide

slightly better fits to the observational data, our main result does not change, and edge-on

models are still preferred by far.

The obvious next question is whether there could be some bias in the modelling technique.

This explanation was proposed by Thomas et al. (2007a), who found that all their best-

fitting Schwarzschild models of N -body merger remnants have i = 90◦, and argued

that edge-on models necessarily have a smaller χ2 than face-on models, due to their

greater freedom in the adjustment of prograde and retrograde orbits to fit rotation and

axisymmetric deviations from a Gaussian LOSVD.

We used our NGC 4494-like galaxy (see Section 3.4.1) to test whether particle models

exhibit a bias analogous to that of orbit-based models. First, we constructed a series of

NGC 4494-like galaxies assuming different inclinations i = 90◦, 70◦, 45◦ for the stellar

distribution. Then, we modelled the observational data of these mock galaxy with

NMAGIC for different inclinations. The results of these experiments are summarized

in Table 3.1, and confirm the findings and the argument of Thomas et al. (2007a): on

average, the values of χ2, and of the merit function G, increase for lower values of the

inclination. An inspection of Table 3.1 reveals that edge-on models generally provide

better fits. This is true both in the case in which the model has the true known inclination

of the target galaxy, and in the case in which the model assumes a wrong value of the

inclination. For reasons that are currently unclear to us, the likelihood favours instead

more face-on models.

This test does not only confirm the existence of some sort of bias (e.g. Thomas et al.,

2007a), but also enables us to quantify its effect on the dynamical models of NGC 4494.

The experiments show that, when modelling a NGC 4494-like galaxy which has a true

inclination i = 70◦(45◦), a ∆G ∼ 60(180) between the edge-on model and the more

inclined models could be associated with the “edge-on bias”. However, our runs display

much larger differences in ∆G between the edge-on and the i = 70◦, 45◦ models. Thus,

combining all these results suggests that NGC 4494 is truly close to edge-on. If so, this
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iG iM χ2 χ2
Alm

χ2
Sl χ2

Lets -L G

90◦ 90◦ 0.34 0.40 0.14 0.67 1539.87 2256.25
70◦ 70◦ 0.37 0.48 0.17 0.67 1535.97 2315.56
45◦ 45◦ 0.44 0.92 0.19 0.73 1509.86 2436.94
90◦ 70◦ 0.36 0.45 0.16 0.66 1539.69 2298.21
90◦ 45◦ 0.49 0.96 0.20 0.84 1541.79 2574.22
45◦ 70◦ 0.40 0.49 0.20 0.73 1513.12 2355.92
45◦ 90◦ 0.41 0.43 0.20 0.76 1513.71 2377.58

Table 3.1: Results of the NMAGIC fit to an NGC 4494-like galaxy whose stellar distribution has a known
inclination iG, assuming an inclination iM in the modelling. χ2 values are normalized by the respective
number of observables JTot = 4214, JAlm

= 450, JSl = 2390, JLets = 1374.

might provide also a simple explanation for the slightly larger rotation velocities measured

in the major axis slit compared to the surrounding slitlets (see Fig. 3.20). This could be

the kinematic signature of a faint disk.

3.6 Discussion

In this Section we discuss (i) the results on parameter estimation of dark matter halos with

NMAGIC, (ii) our dynamical models for NGC 4494 in comparison with previous work, and

(iii) the dark matter distribution and orbital structure of NGC 4494 in the wider context

of the intermediate-luminosity elliptical galaxies with steeply falling velocity dispersion

profiles.

3.6.1 Confidence levels for parameter estimation with NMAGIC

In Section 3.4 we used Monte Carlo simulations of an NGC 4494-like mock galaxy, to assess

the range of dark halo parameters that provide statistically valid fits to the observational

data for the real NGC 4494. The data set for the mock galaxy closely resembled that

used for the dynamical modelling of NGC 4494. We measured the differences in the merit

function ∆G which specify confidence levels enclosing a certain probability of finding the

true values of the parameters (e.g. Press et al., 1992; Thomas et al., 2005b). Specifically,

we constructed and modelled Nmock = 10 NGC 4494-like galaxies in different dark matter

halos, and estimated the distribution of values ∆G between the best-fitting model and

the model with the true halo parameters for our data and modelling set-up.

These experiments showed that NMAGIC dynamical models match the true potential

of the dark matter halo within ∆G ∼< 44 (∆χ2 ∼< 101) about 70% of the time, and

within ∆G ∼< 59 (∆χ2 ∼< 108) about 90% of the time. These values also correspond
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approximately to the fluctuations found within the confidence boundaries. The numerical

noise inG or χ2 caused by the adjustment of particle weights explains only a minor fraction

of these ∆G or ∆χ2 fluctuations. Fluctuations induced by varying the data within their

error bars are much more significant compared to the measured ∆G or ∆χ2 values, as

already noted by Thomas et al. (2005b) in the related context of Schwarzschild method.

Our experiments show, however, that some additional uncertainty must be related to

the freedom associated with comparing different trial potentials. They also indicate that

these results are unaffected by the strength of regularization as long as the model is not

oversmoothed.

The relative differences ∆G (and ∆χ2) found in our experiments are substantially larger

than what is often assumed, and reveal that e.g. the ∆χ2 = 1 criterion for one free

parameter used in many dynamical studies in the literature (e.g. van der Marel et al.,

1998; Cretton et al., 1999; Barth et al., 2001; Verolme et al., 2002; Cappellari et al., 2002;

Gebhardt et al., 2003; Valluri et al., 2004; Shapiro et al., 2006; Chanamé et al., 2008;

Cappellari et al., 2009b; van den Bosch and de Zeeuw, 2010; Murphy et al., 2011; Adams

et al., 2012) is inappropriate for our NMAGIC particle models.

The ∆χ2 = 1 approach is based on χ2-statistics and assumes that the number of degrees

of freedom is known and the number of free parameters is, in this case, one; this assumes

that all the freedom in the fitted weights (or orbits) is used to constrain the distribution

function from the data in the given trial potential, and the trial potential parameter(s) are

then constrained from the remaining data degrees of freedom. Given that the number of

weights is much larger than the number of data points, this assumption does not appear

very likely, and it is not supported by the experiments in our case.

The experience in dynamical modelling with made-to-measure particle models is still

limited, and it is possible that there are some issues with these methods that influence

parameter estimation in different ways than, e.g., Schwarzschild models. In fact, the ∆χ2

values found in our experiments appear to be large compared to typical Schwarzschild

applications. However, given the wide-spread use of dynamical modelling for measuring,

e.g., black hole masses in galaxies, it is important to test the statistical premises of

this work more thoroughly. We believe that Monte Carlo simulations like those we have

performed may be the best way to tackle these issues, and determine the appropriate ∆χ2

values for estimating confidence limits for a given observational and modelling set-up.
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3.6.2 Dynamical models for NGC 4494: comparison with the literature

The elliptical NGC 4494 has previously attracted the attention of several dynamical

studies (e.g. van der Marel, 1991; Kronawitter et al., 2000; Magorrian and Ballantyne,

2001; Romanowsky et al., 2003; Rodionov et al., 2009; Napolitano et al., 2009; Lackner

and Ostriker, 2010).

Our NMAGIC models improve on the models explored so far in some important aspects.

First, we considered as many observational data as currently available, i.e. at large radii

we had available both PNe velocities (N09) and galaxy spectra in slitlets (F11). The

newer slitlets data show a milder drop of the velocity dispersion than what it is suggested

by the long-slit data (F11), and this is likely to account for the larger enclosed mass

beyond ∼ 2Re in our results compared to the Jeans models of N09. Second, because

of the greater constraining power of the new data compared to the PNe, we sampled

the dark halo parameter space much finely than before, for three different values of the

inclination i = 45◦, 70◦, 90◦. Thirdly, we performed a thorough analysis of the confidence

levels at which these parameters can be estimated with our models, given the data at

hand. Finally, contrary to most previous studies that considered spherical models (but

see Rodionov et al., 2009), our NMAGIC models are axisymmetric, and we also explored

the possibility of flattened dark halos. While it is true that the most robust results should

eventually be derived using triaxial models, it has been shown that relaxing the spherical

assumption hardly influences the recovered halo mass (see e.g. DL09).

While NGC 4494 was among the three galaxies described as “naked” in Romanowsky

et al. (2003), and has an unusually low dark matter fraction in the analysis of Deason

et al. (2012), our dynamical models show that a dark matter halo is required. In this

respect, they agree with Rodionov and Athanassoula (2011), although the small sequence

of explored models did not allow them to put robust constraints on the halo mass, and

also with N09. N09 investigated a family of multi-component kurtosis-based Jeans models,

and found the best-fitting logarithmic dark halo for r0 = 4Re and v0 = 150 km/s. These

parameters describe a diffuser halo than what we obtained (see Section 3.5), even if our

best-fitting models are probably consistent with their errors. Whereas at large radii the

differences are mostly owing to the additional slitlets constraints that we included in the

modelling, at small radii we used the surface brightness data of Lauer et al. (2005) that,
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at variance with the Sersic fit modelled by N09, show a strong concentration of light in

the center of NGC 4494 (despite the dust).

The dark matter fraction of our best-fitting NMAGIC models fDM(< 5Re) = 0.6 ± 0.1

is slightly higher than what reported by N09. Interestingly, this value agrees very well

with the model predictions computed by Deason et al. (2012) assuming a Chabrier initial

mass function (see their Fig. 7). Their spherical distribution function models of the

PNe velocities indicated instead a surprisingly low dark matter fraction fDM(< 5Re) =

0.32± 0.12.

Of course, alternative estimates of the mass of NGC 4494, e.g. from the X-ray emission

of hot gas, would be highly desirable. From the compact X-ray gas emission, Fukazawa

et al. (2006) estimated ΥB = 6.2± 1.9 inside 1Re, consistent with the Jeans modelling of

N09 but higher than our NMAGIC results. However, the existence of an X-ray emitting

gas around this galaxy has been questioned (O’Sullivan and Ponman, 2004; Diehl and

Statler, 2007), and the validity of hydrostatic equilibrium may also be dubious (Ciotti

and Pellegrini, 1996).

Additional kinematic constraints at large radii could be obtained from different tracers

of the mass distribution, such as GCs. However, from the analysis of the spatial and

kinematic distribution of blue and red GCs around NGC 4494, which does not follow that

of the stars (F11), it is likely that PNe and GCs are in distinct dynamical equilibria in

the same gravitational potential (see e.g. Das et al., 2011).

Compared to the Jeans models of N09, our best-fitting NMAGIC models have a lower

mass-to-light ΥB = 3.71± 0.15, obtained converting to ΥV using the de-reddened colour

from Goudfrooij et al. (1994). This value of the stellar mass-to-light ratio is easier to

reconcile with independent measurements from stellar population models, which gave

ΥB = 4.3 ± 0.7 for a Kroupa initial mass function (see N09). In this respect, Lackner

and Ostriker (2010) fitted galaxy formation model to the PNe velocities of NGC 4494,

and found that the best-fit dissipational and dissipationless models give ΥB = 2.97 and

ΥB = 3.96, respectively, so that a purely dissipational formation scenario for NGC 4494

seemed to be ruled out (Lackner and Ostriker, 2010).

Finally, the edge-on NMAGIC models that best reproduce the observational data of

NGC 4494 are mildly radially anisotropic, i.e. β ∼ 0.4 for the 90% confidence range.

More inclined NMAGIC models (i = 45◦) within the same confidence range are more
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radially anisotropic, i.e. β ∼ 0.6. The degree of orbital anisotropy is consistent with the

previous analysis of N09 and Deason et al. (2012).

3.6.3 The wider context: intermediate-luminosity ellipticals

NGC 4494 belongs to the group of intermediate-luminosity elliptical galaxies with rapidly

falling velocity dispersion profile (NGC 821,NGC 3379, NGC 4494, NGC 4697), dubbed

“naked” galaxies because of the unusually low dark matter content revealed by the original

(simplified) dynamical models (Romanowsky et al., 2003). The analysis of Coccato et al.

(2009) identified a larger group of early-type galaxies (NGC 821, NGC 3377, NGC 3379,

NGC 4494, NGC 4564, NGC 4697) with strongly decreasing vrms =
√
σ2 + v2 profiles.

Currently, dynamical models have been obtained for all of the galaxies in the original

sample of Romanowsky et al. (2003), including observational constraints from the higher

order moments of the LOSVD, as summarized in N09 (see Weijmans et al. (2009); Forestell

and Gebhardt (2010) for the Schwarzschild models of NGC 821). On the whole, these

dynamical models suggest that most intermediate-luminosity galaxies are inconsistent

with previous claims of little to no dark matter halo.

We now compare the results that we derived for NGC 4494 in this work, with the findings

previously obtained by DL08 and DL09 for NGC 4697 and NGC 3379 using the same

modelling technique (see also the previous Chapter).

Indeed, the photometry and kinematics of these three galaxies are not very different.

They all have intermediate values of luminosity and stellar mass, similarly low values

of the central velocity dispersion ∼ 150 − 210 km/s, and similarly falling vrms profiles

(Coccato et al., 2009).

Fig. 3.23 shows the comparison of the NMAGIC models obtained for NGC 4697,

NGC 3379, and NGC 4494. For NGC 4494, we plot the range of best-fitting edge-on

models as determined in Section 3.5. For the other intermediate-luminosity ellipticals, no

rigorous ∆χ2 analysis was performed, but a range of valid models was determined based

on the likelihood of PNe.

As can be seen in the bottom panel of Fig. 3.23, the orbital structure of the three

intermediate luminosity ellipticals is radially biased, in agreement with dynamical models

of elliptical galaxies in the literature (e.g. Merritt and Oh, 1997; Rix et al., 1997; Gerhard

et al., 1998; van der Marel et al., 1998; Matthias and Gerhard, 1999; Gebhardt et al., 2000;
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Figure 3.23: From top to bottom: as a function of radius, circular velocity normalized by its value at 1Re,
dark matter fraction, and anisotropy parameter of the range of valid NMAGIC models obtained fitting
the data of NGC 4494 (this work, violet), NGC 4697 (DL08, orange), and NGC 3379 (DL09, green).

Saglia et al., 2000), with predictions of the monolithic collapse scenario (van Albada,

1982), and with simulations of both binary-mergers (e.g. Gerhard, 1981; Abadi et al.,

2006; Thomas et al., 2009a) and cosmological mergers (e.g. Abadi et al., 2006), though

the remnants of binary mergers can exhibit a variety of orbital distributions (Naab et al.,

2006). NGC 4494, by its side, is characterized by a milder level of radial anisotropy than

the other two galaxies, consistent with the fact that its projected velocity dispersion is

higher (see Fig. 15 of Coccato et al. (2009)) and its surface density profile steeper. Recent

simulations have shown that dissipational processes in wet mergers may decrease the level

of radial anisotropy (e.g. Naab et al., 2006; Thomas et al., 2009b), and also explain many

observed features such as counter-rotating disks, kinematically decoupled components,

and extra light at small radii (e.g. Mihos and Hernquist, 1994; Springel et al., 2005a; Cox

et al., 2006; Jesseit et al., 2007; Hopkins et al., 2008; Hoffman et al., 2010).

The top panel of Fig. 3.23 shows the circular velocity curves normalized at 1Re. At

large radii, the behaviour of the circular velocity is not so different, whereas the greatest

discrepancies can be seen in the central regions, and they are probably due to different

imprints left by baryonic processes during galaxy formation.
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That different baryonic processes were at work in individual galaxies is also suggested

by the fact that the dark matter fraction of these three galaxies is remarkably different

(middle panel of Fig. 3.23), while their global circular velocity curves are more similar.

In particular, the dark matter fraction of NCG 4494 has much higher values, particularly

inside 3Re, than those of NGC 4697 and NGC 3379.

Indications have been reported that the dark matter fractions are lower for fast rotators

than for slow rotators (Cappellari et al., 2006), and indeed it is not immediate to classify

NGC 4494 as a fast rotator, given its central kinematically decoupled core (Krajnović

et al., 2011), and the small value of λR at large radii (Coccato et al., 2009). Transitions

between slow and fast rotators at large distances from the galactic center are not unusual

(Proctor et al., 2009; Coccato et al., 2009) and may be a signature of merger events (e.g.

Hoffman et al., 2010).

At variance with the findings for NGC 3379 and NGC 4697, the larger dark matter fraction

of NGC 4494 is consistent with studies of strong gravitational lensing (e.g. Gavazzi et al.,

2007; Auger et al., 2010a; Barnabè et al., 2011), and with the theoretical results of disk-

galaxy mergers (Dekel et al., 2005) or cosmological smoothed particle hydrodynamics

simulations (e.g. Naab et al., 2007; Oñorbe et al., 2007). Such high dark matter fraction

could be a consequence of some merger event (like those advocated by Proctor et al.

(2009) or F11), able to scatter dark matter particles inside the inner regions of the galaxy

(e.g. Oser et al., 2012; Hilz et al., 2012).

3.7 Conclusions

We presented dynamical models for the intermediate luminosity elliptical galaxy

NGC 4494, fitting photometric and kinematic observational data to investigate its mass

distribution and orbital structure. Our extended kinematic data included the recently

available integrated light spectra in slitlets (Foster et al., 2011) and hundreds of planetary

nebulae velocities reaching out to ≃ 7Re (Napolitano et al., 2009). We used the χ2-

made-to-measure particle code NMAGIC to construct axisymmetric models for various

inclinations exploring a large sequence of gravitational potentials.

In parallel, we carried out a parameter estimation study, investigating how well the

characteristic parameters of dark matter halos can be recovered via NMAGIC modelling of
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the available observational data. For this, we used Monte Carlo simulations of NGC 4494-

like mock galaxies to determine the confidence regions around the best-fitting model.

These confidence bands were then used to discriminate the range of valid models for

NGC 4494.

Our main results can be summarized as follows:

• Given the observational data of NGC 4494 and our NMAGIC modelling set-up,

Monte Carlo simulations showed that the usual 1σ (70%) confidence level corresponds

to a value of the relative difference ∆G = 44 (∆χ2 = 101). At 90% confidence level,

∆G = 59 and ∆χ2 ∼ 108. These differences are much larger than the usual ∆χ2 = 1

criterion, which implicitly assumes that the number of degrees of freedom involved

in the problem is known.

• The best-fitting models for NGC 4494 determined within these confidence levels have

an approximately flat total circular velocity curve outside 1Re, with vc(3Re) ∼ 220

km/s. The larger variation is in the dark matter velocity curve, rather than in the

stellar one. The dark matter fraction of the models within 70% confidence level

is about 0.6 ± 0.1 at 5Re, and they are embedded in a concentrated dark halo

(r0 ∼ 1 − 2Re) with circular velocity ∼ [160 − 230] km/s. With this large dark

matter fraction, the stellar mass-to-light ratio is consistent with the value predicted

by Deason et al. (2012) from the models for a Chabrier IMF. The discrepancy with

the diffuser halo found by the Jeans models of Napolitano et al. (2009) is likely due

to the additional slitlets constraints, which suggest a milder drop of the velocity

dispersion than what predicted from the long-slit kinematics.

• The edge-on models provide the best fits to the available observational data, but

the inferred dark halo parameters (r0,v0) do not depend sensitively on the assumed

inclination. We explored a sequence of flattened dark matter halos, which however

did not change our main result: edge-on models provide better fits to the data than

models with lower inclinations.

• The orbital anisotropy of the stars is increasingly radial from the center outwards,

but the amount of radial anisotropy is smaller than what found in similar previous

works for the two other intermediate luminosity ellipticals with rapidly falling velocity

dispersion profiles NGC 3379 and NGC 4697.
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• Comparing the halos of the intermediate-luminosity ellipticals with rapidly

decreasing dispersion profile modelled so far with the same made-to-measure particle

technique (NGC 3379, NGC 4697 and NGC 4494), we conclude that they have

similar global circular velocity curves. NGC 4494 shows a particularly high dark

matter fraction, and a strong central concentration of baryons. These differences are

probably related to the detailed baryonic processes which shaped these galaxies.



4
Conclusions

I’m astounded by people who want to know the Universe
when it’s hard enough to find your way around Chinatown.

Woody Allen

The study of galaxy formation and evolution has nowadays become an observational

science, and dynamical models are key tools to infer the intrinsic properties of galaxies

from a vast amount of diverse data, with the ultimate goal of learning about their build-up

over cosmic time.

Although largely outnumbered by spiral galaxies, ellipticals contain a significant fraction

of the stars in the Universe, and they are the most massive galaxies known. Therefore,

they provide valuable insight into those processes which govern the assembly of galaxies.

Among ellipticals, a particularly interesting family is represented by the less massive, X-

ray faint, intermediate-luminosity galaxies with rapidly falling velocity dispersion profiles,

which may be surrounded by unusually diffuse dark matter halos, in some tension with

predictions of galaxy formation models. The evidence of dark matter in these galaxies is

particularly challenging, and relies on accurate dynamical models.

This thesis presents advancements in both the methodological respect, regarding made-

to-measure dynamical models of galaxies, and the astrophysical respect, regarding the

intermediate-luminosity ellipticals with strongly decreasing velocity dispersion profiles.

On one hand we have addressed some relevant issues concerning the dynamical modeling

of galaxies with made-to-measure particle methods that reproduce the observational

data. In particular, we have improved the made-to-measure technique by developing

a new regularization scheme, and we have investigated the uniqueness of the solution,

121
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the accuracy of the method, and the dark halo parameter estimation with the particle

modeling approach.

On the other hand, we have studied the enigmatic case of the intermediate-luminosity

elliptical NGC 4494, which might be surrounded by a surprisingly diffuse dark matter

halo. In particular, we have constructed axisymmetric made-to-measure particle models

of NGC 4494 for various inclinations, fitting a variety of observational data in luminous

and dark potentials, with the aim of constraining the orbital structure of the stars, and

the dark matter content deep into the halo. Our detailed analysis expands the sample

of currently modelled intermediate-luminosity ellipticals with rapidly falling velocity

dispersion profiles, and allows us to compare with previous results based on made-to-

measure models.

In the following we will summarize the main improvements to the modeling technique

(Section 4.1), the astronomical analysis and findings (Section 4.2), and some future

perspectives (Section 4.3).

4.1 Made-to-measure dynamical models of galaxies: technical
improvements

Galaxies can be modelled with particles using made-to-measure (M2M) methods such

as the parallel code NMAGIC, which adapt the particle weights in an N-body system

until a good match to the observational data is achieved. Because of their geometric

flexibility and high versatility in modeling observational data of various kind, these are

very powerful modeling tools. However, they have not been explored as extensively as

e.g. Schwarzschild methods.

Among the issues which are worth considering in order to draw robust conclusions from

M2M particle models of galaxies, there are: the reliability, uniqueness, and accuracy of

the final solution, the effects of imperfect data on the recovery of the intrinsic properties

of an observed target galaxy, the impact of regularization, and the confidence levels for

parameter estimation.

All these topics are relevant for Schwarzschild models as well, and indeed have been

investigated to some extent with the Schwarzschild technique (e.g. Verolme et al., 2002;

Valluri et al., 2004; Cretton and Emsellem, 2004; Thomas et al., 2004, 2005b; van de Ven

et al., 2008; Chanamé et al., 2008).
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In the first, methodological part of this work, our efforts have been devoted to explore

these issues in detail with M2M particle models, obtaining the results that we will now

concisely summarize. For this analysis we made an extensive use of mock target galaxies of

known intrinsic properties, which we constructed, together with their mock observational

data, using NMAGIC itself. Such reference galaxies are precious tools to elucidate the

reliability and potential problems of dynamical models.

A new Moving Prior Regularization method An accurate and unbiased reconstruction of

the intrinsic properties of an observed galaxy with M2M methods is deeply connected to

the concept of regularization.

In order to avoid arbitrarily large changes in the particle weights driven by the noise in the

data, the traditional M2M practice makes use of a Global Weight entropy Regularization,

i.e. all the weights are biased towards a smooth distribution of predefined flat priors

through an entropy function (Syer and Tremaine, 1996). These flat priors are specified

together with the initial particle model, and therefore contain implicit assumptions about

the (unknown) dynamical structure of the modelled galaxy. A large contribution of the

entropy to the correction of particle weights is needed to obtain a smooth model. However,

this typically reduces not only local, but also global phase-space gradients. Hence, unless

the (unknown) phase-space structures of the target galaxy are already in place in the

initial conditions, the Global Weight entropy Regularization has hard times reconciling

smoothness and orbital anisotropies in the final particle model.

Instead, we devised and implemented in NMAGIC an alternative Moving Prior

Regularization method for particle models, which allows to smooth the particle weights

locally without washing out the global phase-space gradients. This new technique is

based on determining from the particles a distribution of priors in phase-space, which

are updated during the weight adaptation, and mirror the phase-space structures of the

evolving weight distribution. In practice, these moving priors are the same for particles

that share the same value of the isolating integrals of motion, and vary smoothly between

neighbouring tori. Used in a weight entropy function, the moving priors allow a correct

recovery of the orbital structure of the target galaxy without introducing any overfitting

of the observational data. The dependence of the final particle model on the adopted

initial one is efficiently minimized, and the recovery of a smoother and more accurate
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distribution function from noisy observational data is facilitated.

We have tested this method in the simpler spherical case, binning particles in energy and

angular momentum (more precisely, circularity function), and we have generalized it to

axisymmetric systems, using energy, angular momentum component along the symmetry

axis, and angular momentum. We have used the new Moving Prior Regularization method

throughout this work, and the main improvements achieved with respect to the traditional

smoothing scheme are reported in the following.

Recovery of the intrinsic properties of galaxies It is a natural question whether the M2M

particle methods can recover the dynamical structure of an observed galaxy if the data

uniquely specify it. Also, it is natural to wonder what happens when only imperfect

observational data are available, as in typical astronomical applications.

In the case in which a unique inversion of the data to recover the distribution function

of the target galaxy exists (Dejonghe and Merritt, 1992), we have found that NMAGIC

empowered with the new Moving Prior Regularization method converges to the true

solution independently of the choice of the initial particle model. Typical fluctuations in

the mass-weighted relative rms difference between the (mass) distribution function of the

model galaxy and that of the known target galaxy are of order 12%, while the intrinsic

kinematics of the target galaxy is recovered almost perfectly.

Our sequence of tests shows that the new Moving Prior Regularization represents a

clear improvement over the traditional Global Weight entropy Regularization, since it

removes biases in the dynamical structure, and reduces local fluctuations in the intrinsic

distribution function. Moreover, it allows the use of a larger degree of smoothing without

spoiling the fit to the data.

Inevitably, realistic data, which are spatially limited and possess large error bars, introduce

degeneracies that limit the reliability of the models well inside those regions in which good

data constraints exist. This is true even using the new Moving Prior Regularization,

though the bias towards the initial conditions is reduced, and the properties of the

target galaxy are better recovered. As soon as there is a lack of data to constrain the

particle models, severe uncertainties in the inferred dynamical structure, together with an

increased dependence on the initial particle model, cannot be avoided. Our analysis shows

that the uncertainties in the recovery of e.g. the anisotropy parameter of the target galaxy
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can be seen down to 1/3 of the limiting radius of the data. It is very important to be

aware of such intrinsic, and somehow hidden, limitations, and it is likely that overlooking

these issues may lead to e.g. the kind of discrepancies between M2M and Schwarzschild

models which have been recently reported by Long and Mao (2012) without a satisfactory

explanation.

Of course, these results also stress the need for high quality data with extended spatial

coverage for constructing accurate dynamical models of galaxies.

Parameter estimation Among the questions that are commonly addressed via dynamical

models, a special place is occupied by the recovery of the mass distribution, and especially

of the dark matter content of galaxies.

Until now, very little was known about the uncertainties associated with dark halo

parameter estimates carried out with M2M particle models.

In the literature, the ∆χ2 = 1 (or 2.3,3.5) criterion is commonly adopted to determine

the 68%-confidence level for one (or two, three) free parameter(s), and to assess which

combinations of the parameters are as good as the one that achieves the minimum χ2

(e.g. Cappellari et al., 2002; Gebhardt et al., 2003; Murphy et al., 2011; Adams et al.,

2012). However, this procedure assumes that the number of degrees of freedom involved

in the modeling is known, and that the number of free parameters is only one (or two,

three). In practice, this neglects the large uncertainty associated with the determination

of the number of degrees of freedom (e.g. van der Marel et al., 1998; Cretton et al.,

2000; Gebhardt et al., 2000), and it does not seem a very likely assumption, since the

number of fitted weights is typically much larger than the number of data points. In this

respect, M2M and Schwarzschild models are in principle similar, as they both adapt many

(particle/orbit) weights to match a smaller number of data constraints. However, it is

possible that there are some issues which affect parameter estimation in different ways

for the two different techniques.

In Section 3.4 we have studied how well the dark halo parameters can be determined

via M2M particle modeling of realistic data, and we have computed confidence levels for

parameter estimation using Monte Carlo simulations (e.g. Press et al., 1992).

For the analysis, we used mock NGC 4494-like galaxies embedded in known dark matter

halos, together with the photometric and kinematic data set-up of the elliptical galaxy
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NGC 4494.

Firstly, we found that the currently available observational data are not enough to

determine the scale radius and the circular velocity of the dark halo simultaneously,

and different combinations of the dark halo parameters that provide similar values of

the total enclosed mass are allowed. For these (realistic) observational data, the enclosed

mass within 2Re can be determined to within 10%, the dark matter fraction fDM(3Re)

to within ±0.1, and the total circular velocity to ±20 km/s. Again, these findings stress

the importance of the quality of the observational data: better data would likely narrow

down the range of admitted potentials (e.g. Gerhard, 1993; Merritt, 1993; Chanamé et al.,

2008).

Secondly, we found via Monte Carlo experiments that the true potential of the dark matter

halo is recovered within ∆G(merit function)∼< 44 (∆χ2 ∼< 101) at 70% confidence level,

and within ∆G ∼< 59 (∆χ2 ∼< 108) at 90% confidence level. Interestingly, these relative

differences are much larger than the common criterion ∆χ2 = 1. Numerical errors caused

by noise in the M2M weight adaptation cannot explain the magnitude of these differences,

and also regularization plays a weak role. Instead, as already noted by Thomas et al.

(2005b) in the context of Schwarzschild models, these differences are of the same order as

the fluctuations caused by variations of the data within errors. Our experiments suggest,

however, that some additional uncertainty (freedom) must be associated with comparing

different trial potentials.

These surprising results may be case-specific, since we used the specific observational set-

up of NGC 4494. However, a larger ∆χ2 “threshold” than that usually assumed might

as well be general for M2M particle models. Given its relevance for halo (and black hole

mass) determinations, this issue would be clearly worth investigating further. In this work

we showed that a promising way to tackle the problem is via Monte Carlo simulations,

which allow to determine the appropriate ∆χ2 for parameter estimation in a robust way

for a given observational and modelling set-up.

4.2 Intermediate-luminosity elliptical galaxies with rapidly

falling velocity dispersion profiles

Having tested and improved the accuracy of the M2M particle approach, we have then

used it to reconstruct dynamical models of the intermediate-luminosity elliptical galaxies
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NGC 4697 and NGC 3379, obtaining smoother fits than de Lorenzi et al. (2008) and de

Lorenzi et al. (2009), and to study NGC 4494. These galaxies belong to the family of

ellipticals with curiously low projected velocity dispersion (Romanowsky et al., 2003), and

strongly declining velocity dispersion profile (Coccato et al., 2009).

Unfortunately, the diffuse gas envelopes of these intermediate-luminosity ellipticals do

not allow an independent estimate of their mass distribution via hydrostatic equilibrium

of the X-ray emitting gas, and the evidence of dark matter relies on dynamical models,

which have now and again questioned it (e.g. Romanowsky et al., 2003; Douglas et al.,

2007), indicating possible tensions with the current paradigm of galaxy formation.

As shown by the merger simulations of Dekel et al. (2005), a lower projected velocity

dispersion does not necessarily imply low or no dark matter, and can also result from

a larger radial anisotropy of the stars, or even an intrinsic triaxial geometry. Indeed,

when modelled with more sophisticated techniques, as e.g. NMAGIC, under more general

assumptions, it has been found that the observational data of NGC 4697 and NGC 3379

could be fitted well by models embedded in dark matter halos and characterized by

radially-biased orbital distributions (de Lorenzi et al., 2008, 2009).

In order to expand the sample of intermediate-luminosity ellipticals modelled so far with

NMAGIC, in the second part of this work we have focused on NGC 4494, for which

a particularly diffuse dark matter halo has been found via Jeans modeling (Napolitano

et al., 2009), and a puzzlingly low dark matter fraction has been recently reported by

Deason et al. (2012).

Also, a short while ago the measurements of absorption-line kinematics in multiple slitlets

out to large radii (Foster et al., 2011) became available for this galaxy, in addition to the

radial velocities of PNe (Napolitano et al., 2009).

NMAGIC models of NGC 4494 We have generated NMAGIC models of NGC 4494 for

three different inclinations of the stellar distribution (i = 90◦, 70◦, 45◦) in a variety of

luminous and dark potentials. In contrast to earlier studies using spherical models, we

have constructed axisymmetric models, so to take into account inclination effects and

rotation. Furthermore, we have explored the possibility of flattened, non-spherical dark

matter halos.

The spatial coverage of our kinematic constraints was boosted by hundreds of PNe radial
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velocities reaching out to ≃ 7Re (Napolitano et al., 2009), and - for the very first time - by

the absorption line kinematics (V , σ, h3, h4) in slitlets placed all around the galaxy, out to

≃ 3.5Re (Foster et al., 2011). According to our previous tests, pushing the limiting radius

of the data farther is essential to improve the accuracy of the recovery of the intrinsic

properties of the target galaxy at those radii at which the dark matter is expected to be

important. Being the newest, these slitlets data are very interesting, though attention

must be paid to deal with them, and e.g. devise an objective procedure to identify possible

outliers.

The confidence regions determined with the parameter estimation study described above

were used to discriminate among dynamical models obtained for different dark halo-

parameters, and allowed us to ascertain that the observational data do require some dark

matter, and not even in small amount.

The best-fitting models for NGC 4494 have a dark matter fraction of about 0.6 ± 0.1 at

5Re, and are embedded in a concentrated dark halo with circular velocity ∼ [160 − 240]

km/s. The total circular velocity curve of the models within 90% confidence level is

approximately flat outside 1Re, with vc(3Re) ∼ 220 km/s. More diffuse dark matter

halos, as well as models with constant M/L, are not consistent with the data. The

discrepancy with the diffuser halo preferred by the spherical Jeans models of Napolitano

et al. (2009) is likely due to the additional slitlets constraints, which predict a milder drop

of the velocity dispersion than that suggested by the long-slit kinematics.

The best-fitting NMAGIC models of NGC 4494 are characterized by a moderately radial

orbital anisotropy of the stars, which increases slightly from the center outwards.

Edge-on models provide the best fits to the available observational data. However, the

best-fitting dark halo parameters are hardly affected by the assumptions on inclination

or flattening of the dark halo, and this strengthen the results. Using the related

Schwarzschild approach, Thomas et al. (2007a) noted a bias that led to smaller χ2

values for edge-on models, due to their greater freedom in the adjustment of the orbits

to fit rotation and axisymmetric deviations from a Gaussian LOSVD. By modelling a

sequence of mock galaxies of known inclinations with the M2M method, we have confirmed

the findings and the argument of Thomas et al. (2007a). Nonetheless, we believe that

NGC 4494 is truly close to edge-on, since the “edge-on bias” alone cannot account for the

large χ2-differences found between edge-on models and models with lower inclinations.
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Implications As a final step, we have compared the halos of the intermediate-luminosity

ellipticals which have been modelled so far with the M2M method, i.e. NGC 4697 (de

Lorenzi et al., 2008), NGC 3379 (de Lorenzi et al., 2009), and NGC 4494 (this work).

The photometry and kinematics of these three galaxies are similar: they all have

intermediate values of luminosity and stellar mass, similarly low values of the central

velocity dispersion, and falling vrms profiles (Coccato et al., 2009), though the projected

velocity dispersion of NGC 4494 is higher (see Fig. 1.5).

M2M dynamical models reveal that the orbital structure of the three galaxies is radially

biased, in agreement with dynamical models of elliptical galaxies in the literature (e.g.

Merritt and Oh, 1997; Rix et al., 1997; Gerhard et al., 1998; van der Marel et al., 1998;

Matthias and Gerhard, 1999; Gebhardt et al., 2000; Saglia et al., 2000). As discussed in

the Introduction of this thesis, the way in which an elliptical galaxy assembled its stars

is reflected in its present-day orbital distribution, due to the collisionless nature of these

stellar systems. In particular, radial anisotropy is consistent with theoretical predictions

of the monolithic collapse scenario (van Albada, 1982), and with the simulations of both

binary mergers (e.g. Abadi et al., 2006; Thomas et al., 2009a) and cosmological mergers

(e.g. Abadi et al., 2006).

NGC 4494 is characterized by a milder level of radial anisotropy than the other two

galaxies, consistent with its higher projected velocity dispersion combined with a steeper

surface density profile. Simulations show that dissipational processes in gas-rich mergers

are able to decrease the level of radial anisotropy (e.g. Naab et al., 2006; Thomas et al.,

2009b). Gas dissipation might also explain features such as kinematically decoupled

components and extra light at small radii (e.g. Mihos and Hernquist, 1994; Springel

et al., 2005a; Cox et al., 2006; Jesseit et al., 2007; Hopkins et al., 2008; Hoffman et al.,

2010). The core of the elliptical NGC 4494 is indeed very concentrated, presumably due

to baryonic concentration during the last merger.

At large radii, the best-fitting circular velocity curves of the three intermediate-luminosity

ellipticals NGC 4697, NGC 3379, and NGC 4494 are similar, whereas this is not true in

the central regions, probably owing to the detailed interplay between luminous and dark

matter during galaxy formation. Indeed, the dark matter fraction of these three galaxies is

also remarkably different, and NGC 4494 has the highest values of fDM, particularly inside

4Re. In contrast with the results for NGC 4696 and NGC 3379, which led to speculate
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that the intermediate-luminosity ellipticals could be different from the more massive ones,

such large dark matter fraction is consistent with the findings of strong gravitational

lensing (e.g. Gavazzi et al., 2007; Auger et al., 2010a; Barnabè et al., 2011), and with

the predictions of disk-galaxy mergers (Dekel et al., 2005) and cosmological simulations

(e.g. Naab et al., 2007; Oñorbe et al., 2007). In particular, the high central values of fDM

in NGC 4494 might be a consequence of merger events, as shown by several cosmological

simulations of the formation of elliptical galaxies (e.g. Boylan-Kolchin et al., 2005; Nipoti

et al., 2009; Hilz et al., 2012; Oser et al., 2012). In the two-phase formation scenario

outlined in Section 1.2, mergers, and in particular minor mergers, may be responsible for

increasing the central dark matter fractions of ellipticals. The increase of fDM within the

observable Re in major mergers is driven by violent relaxation, which scatters dark matter

particles in energy space (Oser et al., 2012; Hilz et al., 2012). In minor mergers, instead,

the increase of fDM, which is higher and roughly proportional to the mass growth (Hilz

et al., 2012), can be explained with the size-growth caused by the assembly of a halo of

“ex-situ” stars, which pushes the effective radius farther out, at those radii where the host

galaxy was previously dominated by dark matter.

Interestingly, while NGC 4697 and NGC 3379 are both classified as fast rotators, a similar

classification for NGC 4494 is more dubious, due to the presence of a central kinematically

decoupled core, which is a characteristic feature of slow rotators (Krajnović et al., 2011),

and to the small value of λR at large radii (Coccato et al., 2009). Transitions between slow

and fast rotators at large radii are pretty common (Proctor et al., 2009; Coccato et al.,

2009), and may be a signature of merger events (e.g. Hoffman et al., 2010). Consistent

with our findings on the dark matter fraction, Cappellari et al. (2006) found indications

that the dark matter fractions may be larger for slow rotators than for fast rotators.

Indeed, as suggested by our favoured edge-on inclination for NGC 4494, rotation might

really be of minor importance in this galaxy.

At present, dynamical models have been obtained for all the “naked” galaxies in the

sample of Romanowsky et al. (2003), including observational constraints from the higher

order moments of the LOSVD. On the whole, these dynamical models suggest that most

intermediate-luminosity ellipticals with rapidly falling velocity dispersion profiles are not

consistent with the previous claims of little to no dark matter, and agree with theoretical

predictions in the current scenario of structure formation.
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4.3 Outlook

Based on what we have learnt with this work, we conclude that further progress in the

field could be made in the following ways.

From the methodological point of view, we showed that there are ways to actually improve

the accuracy of dynamical modeling, by understanding the limitations and validity of the

method, and devising more efficient techniques, like the Moving Prior Regularization. Of

course, the version of the Moving Prior Regularization described here could be generalized

also to systems of lower symmetry, assigning moving priors in phase-space based on the

invariants associated with orbits, e.g. the turning points. Alternatively, a cumulative,

grid-less variants of the method could be implemented (e.g. Dehnen, 2009).

Additional and desirable improvements of the made-to-measure modelling techniques

include arbitrary (not constant) stellar mass-to-light profiles, and cosmologically rooted

parametrizations for the dark matter halos. Also, the effect of triaxial geometry could be

explored with made-to-measure particle models (e.g. de Lorenzi et al., 2009). Instead of

performing full triaxial models fitting the observational data, some useful insights could

be more easily obtained with a forward approach, i.e. constructing mock galaxies of

various orientation, angular momentum, and shape, computing their observational data

with NMAGIC, and finally comparing them against realistic data.

Our study has made it clear that the construction of such mock galaxies with mock

observables is of the greatest help to understand and improve the status of dynamical

modeling. It would be interesting to further exploit these mock galaxies to e.g. predict the

amount and quality of observational data needed to construct more accurate dynamical

models, or put more robust constraints on the dark halo parameters. Moreover, our

surprising findings on the large magnitude of the ∆χ2 within which the true dark halo

parameters can be recovered with made-to-measure models also deserve further study.

Given the relevance and the wide-spread use of dynamical models to infer dark halo

masses (but also e.g. black hole masses or galaxy inclinations) from observational data,

it would be important to check the generality of our results for made-to-measure models,

and to understand the reasons behind them.

Finally, mock galaxies could be used in a comprehensive comparison project of the various

modeling techniques available nowadays, to elucidate the performances and limitations of
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each method.

From the astrophysical point of view, it would be interesting to construct dynamical

models for a much larger sample of ellipticals, belonging to any regime of mass and

environment, so as to strengthen the current results, and improve our understanding of

galaxy formation and evolution.

Of course, it is highly desirable that the amount and quality of the observational

constraints improve, in order to narrow down model degeneracies.

Similarities between the orbital structures and dark matter distributions of the dynamical

models and of the outcomes of cosmological simulations of galaxy formation should be

searched, and then used to connect real galaxies to the corresponding assembly history

(Sáiz et al., 2004; Jesseit et al., 2005; Burkert and Naab, 2005; Burkert et al., 2008;

Thomas et al., 2009a). In particular, the remnants of simulated collisionless mergers

have properties similar to the ellipticals in the intermediate-mass regime (e.g. Naab and

Trujillo, 2006). So far, however, the simulated galaxies do not predict the strongly falling

velocity dispersion profiles observed by Coccato et al. (2009), and this suggests that more

refinements in the numerical simulations of galaxies are necessary before they can match

the full spectrum of observed ellipticals.

Recently, cosmological simulations, in particular those of massive galaxies, have been

challenged by several claims that the stellar mass-to-light ratio rises as a function of the

stellar mass of galaxies (van Dokkum and Conroy, 2010; Auger et al., 2010b; Treu et al.,

2010; Cappellari et al., 2012; Conroy and van Dokkum, 2012; Ferreras et al., 2012). If

true, such systematic variation of the stellar Initial Mass Function of elliptical galaxies

could leave little room for the presence of dark matter at the center of massive galaxies,

with important implications for galaxy formation theories. Clearly, these also represent

interesting issues to be explored in the future.
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