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Die Nager […] sind […] höchst merkwürdig gebildet. Scharfes, aber geringes Erfassen, 

eilige Sättigung, auch nachher wiederholtes Abraspeln der Gegenstände, fortgesetztes, 

fast leidenschaftliches, absichtslos zerstörendes Knuspern, welches dann wieder in den 

Zweck, sich Lager und Wohnungen aufzubauen und einzurichten, unmittelbar eingreift 

und sich dadurch abermals bewährt: daß im organischen Leben selbst das Unnütze, ja 

das Schädliche selbst, in den notwendigen Kreis des Daseyns aufgenommen, ins Ganze 

zu wirken und als wesentliches Bindemittel disperater Einzelheiten gefordert wird. 

– Johann Wolfgang von Goethe: Die Skelette der Nagetiere – 
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1. Introduction and objectives 

Colorectal cancer constitutes a major cause of tumor-related morbidity and mortality in 

the industrialized world (Parkin et al., 2005; World Cancer Research Fund, 2007). To 

our current understanding, colorectal cancer develops from adenomatous precursor 

lesions by a multistep progress that involves multiple independent mutational events in 

oncogenes and tumor suppressor genes (Arnold et al., 2005; Fearon, 2011). In most 

cases of sporadic colon cancers, one allele of certain tumor suppressor genes becomes 

inactivated by loss of specific chromosomal regions (“loss of heterozygosity”, LOH), 

with particularly high frequencies on chromosome 17p (p53), 18q (DCC, SMAD4, 

SMAD2) and 5q (APC) (Fearon and Vogelstein, 1990; Arnold et al., 2005; Fearon, 

2011). The acquirement of an inactivating somatic mutation in the remaining wildtype 

allele promotes tumor development due to perturbation of critical signaling pathways 

controlling cellular metabolism, proliferation, differentiation; and survival (Fearon, 

2011; Hanahan and Weinberg, 2011).  

Previously, down-regulated by oncogenes 1 (DRO1) was noted to be down-regulated 

after neoplastic transformation of RK3E cells, in various colorectal and pancreatic 

cancer cell lines, in several primary colorectal cancer specimens (Bommer et al., 2005) 

and in thyroid neoplastic cell lines and tissues (Visconti et al., 2003). Moreover, re-

expression of DRO1 in several cancer cell lines reduced both colony formation and 

anchorage-independent growth (Bommer et al., 2005), and induced sensitization to 

various apoptotic stimuli (Bommer et al., 2005; Ferragud et al., 2011). Thus, DRO1 was 

proposed to be a putative tumor suppressor gene (Bommer et al., 2005). 

 

Obesity, characterized by excessive body fat accumulation, is known to be a major risk 

factor for the development of cardiovascular and metabolic disease (WHO, 2011). 

According to the WHO, obesity is a worldwide epidemic (WHO, 2011). White adipose 

tissue functions as an endocrine organ, secreting a variety of hormones and cytokines, 

so called adipokines, implicated in energy homeostasis and body weight regulation 

(Vazquez-Vela et al., 2008; Singla et al., 2010). Dysregulated production of adipokines, 

as in obesity, leads to the disruption of whole-body energy homeostasis and contributes 

to the development of metabolic disorders (Ailhaud et al., 2006; Ahima and Osei, 

2008). 

DRO1/Dro1 is known to be ubiquitously expressed, with highest levels in white adipose 

tissue (Aoki et al., 2002; Liu et al., 2004; Bommer et al., 2005; Okada et al., 2008; 
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Tremblay et al., 2009). Dro1 expression was also substantially decreased in epididymal 

white adipose tissue of several obese mouse models (Okada et al., 2008). Recent in 

vitro studies reported Dro1 to be a novel adipocyte-secreted protein that modulates 

adipocyte differentiation (Tremblay et al., 2009), a process involved in adipose tissue 

expansion (Hausman et al., 2001; Guilherme et al., 2008;).  

 

The aim of the present study was to elucidate the effects of Dro1 loss on colorectal 

carcinogenesis and body growth in vivo. We therefore generated the first constitutive 

Dro1 knockout mouse model (Dro1
-/-

) using a Cre/loxP strategy. To investigate the 

effect of Dro1 loss on colorectal tumorigenesis, Dro1
-/-

 mice were crossed into the 

Apc
+/Min

 background, a well established intestinal tumor mouse model (Moser et al., 

1990). Body weight, total body fat, lean mass, longitudinal growth, organ and fat pad 

weight as well as glucose and lipid metabolism were investigated under normal diet 

conditions and when maintained on a high-fat diet to evaluate a possible involvement in 

body growth. Moreover, the differentiation potential of primary mouse Dro1
-/-

 

preadipocytes was assessed in vitro to clarify the role of Dro1 in adipogenesis.
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2. Review of the literature 

2.1 Down-regulated by oncogenes 1 (DRO1/Dro1) 

2.1.1 Overview 

DRO1, also named, steroid-sensitive gene 1 (SSG1), up-regulated in bombesian receptor 

subtype 3 knockout mouse (URB), coiled-coil domain containing 80 (Ccdc80), CL2 and 

Equarin-L was first described in 2001 and to date is characterized in man, mouse, rat, 

chicken and Xenopus (Marcantonio et al., 2001; Aoki et al., 2002; Mu et al., 2003; 

Visconti et al., 2003; Bommer et al., 2005; Tremblay et al., 2009). Mouse Dro1 

comprises 57.744 bp and is encoded by 8 exons (Bommer et al., 2005; 

http://genome.ucsc.edu/). The start codon is located on exon 2 that also encodes most of 

the protein mass (http://genome.ucsc.edu/). DRO1/Dro1 was found to be ubiquitously 

expressed, with highest levels in white adipose tissue (Aoki et al., 2002; Liu et al., 

2004; Bommer et al, 2005; Okada et al., 2008; Tremblay et al., 2009). In chicken and 

man, two alternatively spliced transcripts were identified (Mu et al., 2003, Bommer et 

al., 2005; Cha et al., 2005; Trembay et al., 2009). Mouse DRO1 features a single long 

open reading frame of 949 amino acids, with an apparent molecular mass of 108 kDa 

(Mu et al., 2003; Liu et al., 2004; Bommer et al., 2005). Mouse, rat, chicken and human 

DRO1 show pronounced sequential and structural similarities (Mu et al., 2003; Liu et 

al., 2004; Bommer et al., 2005; Tremblay et al., 2009). The amino acid sequence 

exhibits 3 internal repeats which represent the most highly conserved (93 to 97%) 

regions between mouse, rat, chicken and man (Aoki et al., 2002; Liu et al., 2004; 

Bommer et al., 2005; Tremblay et al., 2009). Moreover, it shows homology to the 

putative tumor suppressor sushi repeat-containing protein, X chromosome (SRPX) 

(Aoki et al., 2002; Visconti et. al., 2003; Liu et al., 2004; Bommer et al., 2005; 

Tremblay et al., 2009). Within the cell, DRO1 was found to be located in the cytosol 

(Marcantonio et al., 2001; Bommer et al., 2005), the nucleus/nucleolus (Visconti et. al., 

2003), the Golgi apparatus and at the cytoplasmic membrane (Ferragud et al., 2011). A 

hydrophobic N-terminal signal peptide suggests DRO1 to be a secretory protein (Mu et 

al., 2003; Visconti et al., 2003; Liu et al., 2004; Bommer et al., 2005). Secretion of full-

length forms as well as cleaved fragments was reported for adipose tissue-derived 

stromal cells (Okada et al., 2008) and several cell lines ectopically expressing 

DRO1/Dro1, namely 3T3-L1 fully differentiated adipocytes (Tremblay et al., 2009), 

COS7 (Liu et al., 2004), Flp293 (Okada et al., 2008) and MCF-7-TetOn cells (Ferragud 

http://genome.ucsc.edu/
http://genome.ucsc.edu/
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et al., 2011). By contrast, it was not detected to be a secretory protein in transfected 

HEK293T and COS cells (Bommer et al., 2005). In vivo DRO1 was identified to be a 

secreted cartilage protein since it localized to the extracellular matrix of post-natal 

mouse femoral head cartilage (Wilson et al., 2011), the hyperthrophic cartilage region 

of facial, axial and appendicular developing mouse skeleton (Liu et al., 2004) and 

mouse embryonic rib cartilage (Manabe et al., 2008). 

In rat mammary tissue Dro1 expression was identified to be tightly regulated by 

estrogen and it was proposed that its over-expression is associated with mammary 

carcinogenesis (Marcantonio et al., 2001). High DRO1 expression was shown in human 

bone marrow stromal cells, with a drastically decrease during osteoblastic 

differentiation. As temporal and spatial expression patterns correlate with the timing 

and sites of cartilage development in skeleton element formation in mouse embryos, 

Dro1 was implicated in skeletogenesis (Liu et al., 2004). Consistently, recent findings 

suggest a role for Dro1 within the extracellular matrix during mouse post-natal cartilage 

development prior to bone formation (Wilson et al., 2011). DRO1 was also identified as 

an extracellular matrix component that promotes cell attachment and matrix assembly in 

vitro (Manabe et al., 2008). In chicken eye development Dro1 was demonstrated to be 

expressed in the lens with a high-dorsal-to-low-ventral gradient at the equatorial region 

from the early embryonic stage until the postnatal period (Mu et al., 2002). 

Microinjection of DRO1 mRNAs into 4-8 cell stage Xenopus embryos caused abnormal 

eye formation, thus it was proposed to play an important role in eye development (Mu 

et al., 2002). Dro1 was also implicated in hair development due to the fact that it is 

over-expressed in hair follicle dermal papilla cells as compared to dermal fibroblasts 

(Cha et al., 2005). Furthermore, in hair follicle dermal papilla cells DRO1 expression 

was found to be androgen responsive (Cha et al., 2005). The putative function of DRO1 

in adipose tissue as well as its proposed tumor suppressor gene role are presented in the 

following in more detail.  

 

2.1.2 The putative tumor suppressor role 

DRO1 was found to be down-regulated in RK3E epithelial cells neoplastically 

transformed by β-catenin stabilization as well as by various oncogenes. Also, DRO1 

expression is considerably reduced in several colon and pancreatic cancer cell lines, in 

the majority of primary colorectal cancers samples (Bommer et al., 2005) and in human 

thyroid neoplastic cell lines and tissues (Visconti et al., 2003). DRO1 down-regulation 
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is presumably mediated by transcriptional repression through trans-acting repressors 

binding to the promoter. Recent findings demonstrated down-regulation of DRO1 by 

amplified in breast cancer 1 (AIB1) (Ferragud et al., 2011), an oncogene that acts as a 

transcriptional co-activator in the nucleus and is implicated in cancer development 

(Gojis et al., 2010). Furthermore, DRO1 sensitizes cells to different apoptotic stimuli in 

vitro and re-expression in cancer cell lines results in a reduction of their malignant 

growth properties. DRO1 was therefore postulated to be a candidate tumor suppressor 

gene that may play a crucial role in both intestinal tissue homeostasis and 

carcinogenesis (Bommer et al., 2005). Repression of DRO1 by the AIB1 oncogene 

contributes to inhibition of apoptosis, confirming the role of DRO1 in facilitating the 

apoptotic cascade (Ferragud et al., 2011). 

 

2.1.3 Putative functions in adipose tissue 

DRO1/Dro1 is a gene predominantly expressed in white adipose tissue with 

considerably lower levels in other tissues (Aoki et al., 2002; Liu et al., 2004; Bommer 

et al., 2005; Okada et al., 2008; Tremblay et al., 2009). Thus, it was often supposed to 

play important roles in energy storage and metabolism (Aoki et al., 2002; Okada et al., 

2008; Tremblay et al., 2009). In mildly obese bombesin receptor subtype-3 mice, a 

mouse model of obesity and metabolic syndrome, Dro1 was shown to be up-regulated 

in brown adipose tissue and was therefore hypothesized to have a unique function in 

thermogenesis (Aoki et al., 2002). Furthermore, Dro1 expression was demonstrated to 

be down-regulated in epididymal white adipose tissue of several obese mouse models, 

an effect probably induced by obesity-related low-grade inflammation as treatment of 

3T3-L1 adipocytes with insulin, tumor necrosis factor-alpha (TNF-α), H2O2 and 

hypoxia resulted in reduced Dro1 mRNA levels (Okada et al., 2008). In vitro studies 

reported DRO1 to be an adipocyte secreted protein and it was proposed to be a novel 

adipokine, which might influence whole-body energy homeostasis and contribute to 

metabolic disorders in obesity (Okada et al., 2007; Tremblay et al., 2009).  

Recent findings indicate that Dro1 plays an important role during adipogenesis, as Dro1 

knockdown in preadipocyte clonal cells (3T3-L1) significantly impaired their ability to 

differentiate into adipocytes and accumulate lipids. During adipocyte differentiation 

Dro1 was found to be expressed in a biphasic manner. While proliferating 3T3-L1 

preadipocytes show relatively low Dro1 mRNA levels, expression increases 

dramatically when cells reach postconfluency. Dro1 expression is highly reduced during 
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early differentiation but increases again in the late stage of adipocyte differentiation 

(Tremblay et al., 2009). The transition from undifferentiated preadipocytes into lipid-

filled fat cells is hallmarked by a series of transcriptional changes. CCAAT/enhancer 

binding protein alpha (C/EBPα), a basic leucine-region zipper protein and the nuclear 

receptor peroxisome proliferator activated receptor gamma (PPARγ), both master 

regulators of adipogenesis, promote transcription of early adipogenetic genes that are 

required for fatty acid uptake, triglyceride formation and lipid metabolism (Ross et al., 

2000; Vázquez-Vela et al., 2008). It was postulated that DRO1 indirectly induces 

C/EBPα and PPARγ expression by repression of canonical Wnt/ß-catenin signaling 

pathway (Tremblay et al., 2009). 

The canonical Wnt/ß-catenin pathway plays a crucial role during cell proliferation, cell 

differentiation and embryonic development and is considered the predominant regulator 

of adipogenesis (Ross et al., 2000; Bennet et al., 2002; Clevers, 2006). In short, in the 

absence of a Wnt signal, β-catenin becomes phosphorylated by glycogen synthase 

kinase-3 (GSK-3) which results in ubiquitination and subsequent destruction of β-

catenin by the proteasome. Binding of secreted Wnt to the Frizzled-receptor inhibits the 

destruction complex, thus leading to the stabilization and accumulation of β-catenin in 

the cytoplasm and its translocation to the nucleus. Once there, it binds to transcription 

factors of the T-cell factor/lymphoid enhancing factor (TCF/LEF) family, leading to the 

transcriptional activation or repression of target genes (Logan and Nusse et al., 2004; 

Clevers, 2006).  

In 3T3-L1 cells depleted for Dro1 the activity of the Wnt signaling pathway was 

actually increased compared to controls. Interestingly, over-expression of Dro1 also 

impaired adipocyte differentiation by a mechanism that does not influence canonical 

Wnt signaling and which still remains to be determined (Tremblay et al., 2009). This 

phenomenon - inhibition of adipogenesis upon over-expression and knockdown of the 

same gene - is already known for other modulators of adipogenesis (Ross et al., 2000; 

Wang et al., 2006; Cheung et al., 2007).  

 

2.2 Intestine 

2.2.1 Overview 

The intestine comprises two anatomically and functionally distinct segments, the small 

intestine and the large intestine. Both sections share a general structure in the 
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organization of the gut wall constituted by several tissue layers, including, from within 

outwards, the tunica mucosa, tela submucosa, tunica muscularis and tunica serosa. 

The tunica mucosa, adjoining the gut lumen, is subdivided into the lamina epithelialis 

mucosae, composed of a columnar epithelium, lamina propria mucosae, comprising 

connective tissue, vasculature and lymphatic tissue, and lamina muscularis mucosae, 

constituted by a thin smooth muscle layer. To increase the absorbent capacity of the gut, 

the columnar epithelial cells are fitted with microvilli.  

The tela submucosa is represented by connective tissue, blood vessels, nerves and 

vegetative ganglion cells (plexus submucosus). 

Throughout the whole intestine, lymphoid tissue is scattered in the lamina propria 

mucosae and tela submucosa, referred to as the gut-associated lymphatic tissue (GALT). 

The tunica muscularis comprises two smooth muscle layers, a circularly arranged inner 

layer (stratum circulare) and a longitudinally arranged outer layer (stratum 

longitudinale). Between those layers lies a varying amount of connective tissue, 

containing vegetative nerve cells (plexus myentericus). 

The tunica serosa includes a single-layered epithelium and a small amount of 

connective tissue (Hees and Sinowatz, 2000; Hedrich et al., 2004).   

 

2.2.2 Small intestine 

The main function of the small intestine is to digest and reabsorb nutrients with the aid 

of bile from the liver and enzymes from the pancreas. The small intestine is divided into 

three sections, duodenum, jejunum and ileum. In the small intestine the absorbent 

surface is enlarged by alternating fingerlike protrusions (villi) which are composed of 

lamina epithelialis mucosae and lamina propria mucosae. Villi, projecting into the 

intestinal lumen, alternate with invaginations called crypts of Lieberkühn. The length of 

the intestinal villi decreases from the duodenum to the ileum. The lamina epithelialis 

mucosae consists of four differentiated cell types: absorbent epithelial cells, 

representing the predominant cell type, goblet cells, enteroendocrine cells and Paneth 

cells (Hees and Sinowatz, 2000). Goblet cells, named after their characteristic cup-like 

shape, are exocrine cells displaying many secretory granules and are found regularly at 

the bottom of the crypts. They secrete high-molecular-weight glycoproteins called 

mucins which form a protective mucus blanket overlaying the intestinal surface (Hees 

and Sinowatz, 2000; Specian et al., 1991). A small number of the epithelial surface 

lining cells is represented by enteroendocrine cells which secrete various hormones, e.g. 
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serotonin and secretin (Hees and Sinowatz, 2000; Schonhoff et al., 2004). In the small 

intestine, in contrast to the large intestine, a fourth type of epithelial cells is present, the 

Paneth cell. These cells are located at the base of the crypt and secrete lysozyme, 

antimicrobial peptides and growth factors (Porter et al., 2002; Yeung et al., 2011). The 

lamina propria mucosae comprises solitary lymph nodes and large amounts of 

lymphocytes, plasma cells and granulocytes. Duodenal tubuloalveolar glands 

(Brunner`s glands), located in the lamina propria mucosae and tela submucosa, secrete 

alkaline mucus which forms a protective blanket against the acidic content of the gastric 

juice. Aggregated lymph nodes (Peyer`s patches) of the tela submucosa are 

characteristic for the ileum (Hees and Sinowatz, 2000). The surface of the Peyer`s 

patches features M-cells which serve to sample antigens (Hedrich et al., 2004).       

Every day, more than 10
11

 enterocytes are shed into the gut lumen, thus the intestinal 

epithelium has to undergo continuous replacement (Potten and Loeffler, 1990). The 

cells composing the columnar single layer intestinal epithelium derive from a 

multipotent stem cell population located basolaterally in the crypts. These stem cells 

divide and give rise to transient progenitor cells which proliferate in the lower third of 

the crypt (“transit-amplifying” crypt compartment), migrate upwards towards the tip of 

the villus, and differentiate along the way into the different mature cell types. Fully 

differentiated mouse enterocytes reach the surface epithelium after a journey of three to 

five days where they undergo apoptosis and are shed into the gut lumen (Giles et al., 

2003; Sancho et al., 2003, Schonhoff et al., 2004; Simons and Clevers, 2011). Paneth 

cells also derive from the stem cells residing at the bottom of the crypt, however, 

differentiation of progenitor cells takes place during a downward migration towards a 

Paneth cells compartment at the base of the crypt, where they reside for about 20 d, 

after which they are phagocytosed (Sancho et al., 2003; Buske et al., 2011; Simons and 

Clevers, 2011; Yeung et al., 2011). Proliferation, migration and differentiation in the 

intestinal epithelium are regulated by the canonical Wnt signaling pathway. 

Proliferating and undifferentiated stem and precursor cells at the bottom of the crypt 

exhibit high nuclear β-catenin levels allowing for the expression of β-catenin/TCF target 

genes. During migration towards the surface of the epithelium Wnt signaling decreases, 

resulting in cell cycle arrest and differentiation (Stappenbeck et al., 1998; Radtke and 

Clevers, 2005; Clevers, 2006; Yeung et al., 2011). On the contrary, in Paneth cells Wnt 

signaling promotes terminal differentiation (Clevers, 2006).  
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2.2.3 Large intestine 

The large intestine is subdivided into three segments, the caecum, the colon and the 

rectum. The main function of this compartment lies in its capacity to reabsorb water, 

electrolytes, and vitamins. In the large intestine the mucous membrane forms crypts of 

Lieberkühn, but no villi. The lamina epithelialis mucosae comprises absorbent epithelial 

cells, enteroendocrine and mucin-secreting goblet cells, but no Paneth cells are found. 

The number of goblet cells is increased in comparison to the small intestine 

(Stappenbeck et al., 1998; Hees and Sinowatz, 2000; Hedrich et al., 2004; Simons and 

Clevers, 2011). 

In the mouse, the ascending and transverse parts of the colon exhibit transverse folds, 

whereas the descending colon and rectum have longitudinal folds (Hedrich et al., 2004). 

The assertions made above for the small intestine relating to the epithelial renewal also 

largely apply to the large intestine (Hees and Sinowatz, 2000; Hedrich et al., 2004).   

 

2.2.4 Genetics of colorectal cancer 

Colorectal cancer is the major cause of non-smoking-related cancer mortality in the 

Western World (Parkin et al., 2005; World Cancer Research Fund, 2007). In the general 

population the lifetime risk of colorectal cancer is about 5 to 6% (Hawk and Levin, 

2005). Approximately 95% of colorectal cancers are adenocarcinomas (in the following 

referred to as colorectal cancer) (World Cancer Research Fund, 2007).  

Eighty percent of all colorectal malignancies develop spontaneously, only 20% being 

due to a hereditary cancer syndrome (Kerber et al., 2005).  Colorectal carcinomas 

evolve from preexisting adenomatous lesions of the intestinal glandular epithelium 

(Fearon and Vogelstein, 1990; Bienz and Clevers, 2000; Fearon, 2011). The adenoma-

carcinoma sequence is a progressive multistep process involving the sequential 

accumulation of genetic alterations that account for novel or increased function of 

oncogenes and inactivation of tumor suppressor genes (Fearon and Vogelstein, 1990; 

Arnold et al., 2005; Fearon, 2011). Oncogenes are always activated by somatic 

alterations, that is, the mutation arises in non-germ cells during lifetime, in consequence 

of specific point mutations, gene rearrangements, chromosome rearrangements or 

amplifications (Fearon, 2011). Defects of tumor suppressor genes can be caused by both 

inherited and somatic alterations and result from localized mutations, complete loss of 

the gene or epigenetic alterations, e.g. transcriptional silencing due to promoter 

hypermethylation (Arnold et al., 2005, Fearon, 2011; Curtin et al., 2011). A substantial 
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fraction of colorectal carcinomas display microsatellite instability, i.e. mutations in 

microsatellite sequences caused by mutations in the DNA mismatch-repair system, 

which can initiate and promote tumor formation when oncogenes and/or tumor 

suppressor genes are involved (Arnold et al., 2005, Fearon, 2011). In most cases of 

sporadic colon cancers, loss of specific chromosomal regions affecting one allele of 

certain tumor suppressor genes (“loss of heterozygosity” (LOH)) occurs, with 

particularly high frequencies on chromosome 17p (protein 53 (p53)), 18q (deleted in 

colorectal cancer (DCC), mothers against decapentaplegic homolog 2 (SMAD2), 

mothers against decapentaplegic homolog 4 (SMAD4)) and 5q (adenomatous polyposis 

coli (APC)) (Fearon and Vogelstein, 1990; Arnold et al., 2005; Fearon, 2011). The 

acquirement of an inactivating somatic mutation in the remaining wildtype allele 

promotes tumor development due to perturbation of critical signaling pathways 

controlling cellular metabolism, proliferation, differentiation and survival (Fearon, 

2011; Hanahan and Weinberg, 2011). Inactivation of the APC tumor suppressor gene as 

a consequence of mostly truncating mutations and LOH, respectively, plays a leading 

role in the initiation of sporadic colorectal neoplasms and is present in about 80% of 

colorectal adenomas and carcinomas (Nishisho et al., 1991; Powell et al., 1992; Polakis, 

1999; Fearon 2011). In familial adenomatous polyposis (FAP), an inherited form of 

colorectal cancer, a germline mutation within the APC gene promotes the development 

of a multitude (hundreds to thousands) of adenomatous polyps in the large intestine 

(Lynch, 2003; Logan and Nusse, 2004; Arnold et al., 2005; Fearon, 2011). In the 

majority of sporadic colorectal tumors as well as tumors from FAP patients, both APC 

alleles are inactivated (Bienz and Clevers, 2000). APC is part of a multiprotein 

destruction complex which plays a crucial role in Wnt signaling by the regulation of 

intracellular β-catenin levels. APC dysfunction leads to the stabilization and 

accumulation of β-catenin that translocates into the nucleus, complexes with DNA-

binding proteins of the TCF/LEF family and activates the transcription of genes 

regulating cell proliferation, migration and differentiation (Bienz and Clevers, 2000; 

Giles et al., 2002; Arnold et al., 2005; Aoki et al., 2007). The disruption of the Wnt 

signaling pathway perturbs normal intestinal homeostasis and finally triggers adenoma 

development (Bienz and Clevers, 2000; Giles et al., 2002; Arnold et al., 2005). In the 

intestinal epithelium, stabilized β-catenin is supposed to impair enterocyte 

differentiation and migration, implicating an expansion of the “transit-amplifying” crypt 

compartment (Bienz and Clevers, 2000). In the murine intestine, loss of APC was found 
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to induce hyperproliferation in the crypt compartment, to abrogate cell migration and to 

interfere with differentiation (Sansom et al., 2004; Andreu et al., 2005). Colorectal 

adenomas may progress stepwise to carcinomas through the accumulation of multiple 

independent somatic alterations in further tumor suppressor genes (e.g. p53, SMAD4, 

SMAD2) and oncogenes (e.g. KRAS, BRAF) (Arnold et al., 2005).  

 

2.3 Adipose tissue 

2.3.1 Overview 

Adipose tissue is a multi-depot organ comprising several subcutaneous and visceral 

sites that are distributed over the body (Gesta et al., 2007; Cinti, 2009). In addition to 

mature adipocytes, which represent the major cell type, adipose tissue includes 

fibroblasts, macrophages, vascular cells, preadipocytes, and nerves, collectively referred 

to as the stromal vascular fraction (Hausman et al., 2001, Gesta et al., 2007; Vazquez-

Vela et al., 2008). According to their unique morphology and distinct function, two 

different types of adipocytes, brown and white, are distinguishable and organized in two 

tissues, the white adipose tissue and the brown adipose tissue. Both cell types are able to 

store triglycerides and release fatty acids (Cinti, 2005). In rodents, adipose tissue was 

found to exhibit pronounced plasticity as white adipocytes have the ability to 

transdifferentiate into brown adipocytes and vice versa, according to biological 

requirements (Cinti, 2005; Cinti, 2009). During embryogenesis, adipose tissue origins 

from mesenchymal stem cells. These cells give rise to undifferentiated preadipocytes 

which differentiate into adipocytes (Gregoire et al., 1998; Gesta et al., 2007). 

Preadipocytes are fibroblast-like cells which reside in adipose tissue and bear the ability 

to proliferate and differentiate into mature adipopcytes (Gregoire et al., 1998; Hausman 

et al., 2001). It remains unknown whether brown and white adipocytes and adipocytes 

from different fat depots evolve from the same type of preadipocytes (Gesta et al., 

2007). After birth, adipose tissue grows rapidly, due to both an increase in fat cell size 

(adipocyte hypertrophy) and the addition of new adipocytes (adipocyte hyperplasia), a 

process collectively termed adipogenesis (Hausman et al., 2001; Vazquez-Vela et al., 

2008). As mature adipocytes are postmitotic, additional adipocytes can only origin from 

preadipocytes (Hausman et al., 2001). Adipogenesis is mediated by hormones, 

cytokines, and growth factors and implicates down-regulation of the canonical Wnt 

signaling pathway and expression of transcription factors of the C/EBP and PPAR 

families, especially C/EBPα and PPARγ (Gregoire et al., 1998; Ross et al., 2000; 
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Kennel et al., 2005; Christoduolides et al., 2006; Gesta et al., 2007; Hausman et al., 

2001). Adipogenesis takes place within cell clusters and is closely interrelated with 

angiogenesis (Nishimura et al., 2007). Most likely the proliferation of preadipocytes is 

induced by circulating factors and neuronal inputs as well as paracrine and autocrine 

factors secreted from the various cells composing adipose tissue (Lau et al., 1996; 

Serrero and Lepak, 1996; Hausman et al., 2001). 

 

2.3.2 White adipose tissue 

White adipocytes are spherical cells which store triglycerides in a single large lipid 

droplet that accounts for more than 90% of the cell’s volume. A single fat pad contains 

adipocytes of variable size, ranging from 10 μm to 100 μm, depending on the size of the 

fat vacuole. White adipose tissue is the primary site for the storage of dietary energy in 

the form of triglycerides (Cinti, 2005). Dietary lipids are enzymatically hydrolyzed in 

the proximal intestinal lumen by lipases leading to the production of non-esterified fatty 

acids which are taken up by the enterocytes (Bamba and Rader, 2007). In the 

enterocyte, free fatty acids are re-esterified to triglycerides and packaged with 

apolipoprotein B-48 and other lipids to form so-called chylomicrons. Chylomicrons are 

secreted into the intestinal lymph and reach the systemic circulation via the thoracic 

duct. In the capillaries of adipose tissue, hydrolysis of chylomicron-triglycerides into 

non-esterified fatty acids is mediated by lipoprotein lipase which is synthesized by 

adipocytes, anchoraged to proteoglycans on the endothelial surface and dependent on its 

cofactor apoC-II, an integral part of chylomicrons. The non-esterified fatty acids are 

taken up by adipocytes where they are re-esterified into triglycerides for energy storage 

(Bamba und Rader, 2007). In times of energy deprivation, free fatty acids and glycerol 

are generated by lipolysis of triglycerides and released into the circulation, thereby 

providing an energy source for other tissues, mainly the skeletal muscle (Ahima and 

Osei, 2008; Bays et al., 2008; Guilherme et al., 2008 Karpe et al., 2011). Uptake of 

circulating free fatty acids by adipocytes plays only a minor role compared to fatty acid 

uptake from hydrolysis of chylomicron-triglycerides (Bamba and Rader, 2007). 

Furthermore, white adipose tissue functions as an endocrine organ because of its 

capacity to secrete a variety of hormones and cytokines, so called adipokines (Vazquez-

Vela et al., 2008; Singla et al., 2010). Adipokines not only participate in the control of 

energy metabolism (e.g. leptin, adiponectin, resistin, visfatin), they also play a role in 

immunological responses (TNF-α, monocyte chemotactic protein-1 (MCP-1)) and the 
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regulation of blood pressure (e.g. apelin) (Gregoire et al., 1998; Ailhaud, 2006; 

Vazquez-Vela et al., 2008; Bays et al., 2008). Leptin was the first adipokine described 

and constitutes an important regulator of energy homeostasis and body weight as it 

provides a satiety signal to the central nervous system. After food intake leptin is 

secreted from adipocytes into the blood circulation and binds to receptors expressed by 

hypothalamic neurons. Thereby a signal transduction cascade is activated that results in 

a decrease in energy consumption and an activation of energy expenditure pathways. 

Moreover, leptin, together with adiponectin, enhances insulin sensitivity (Gregoire et 

al., 1998; Ahima and Osei, 2008; Guilherme et al., 2008; Morris and Rui, 2009; Singla 

et al., 2010). There is also strong evidence that autocrine and paracrine signaling 

pathways as well as neuronal influences play an important role in the maintenance of 

adipose tissue homeostasis (Ahima and Osei, 2008).    

 

2.3.3 Brown adipose tissue 

Brown adipocytes store triglycerides in the form of many lipid droplets, thus showing a 

multilocular appearance. Brown adipose tissue is more densely vascularized and 

innervated than white adipose tissue, and brown adipocytes possess large characteristic 

mitochondria containing the protein uncoupling protein 1 (UCP1), a member of the 

mitochondrial carrier family. Brown adipose tissue is primarily located in the 

intrascapular region and is most abundant at birth as it is replaced by white adipose 

tissue during aging (Gesta et al., 2007). The main function of brown adipose tissue is 

the generation of body heat from triglycerides and fatty acids in a process called (non-

shivering) thermogenesis. Combustion of fatty acids in the respiratory chain results in 

an electrochemical proton gradient between the outer and inner mitochondrial 

membrane. In brown fat mitochondria UCP1, the equivalent of an H
+
 transporter, is able 

to release the energy stored in this proton gradient in the form of heat (Cannon and 

Nedergaard, 2004; Gesta et al., 2007; Ravussin and Galgari, 2011). Thermogenesis is 

under the control of the sympathetic nervous system and is activated by a temperature 

below thermoneutrality. Under conditions of increased thermogenetic demand, new 

brown adipocytes can either derive from preadipocytes by adipogenesis or by direct 

transformation of white into brown adipocytes (Cinti, 2009).  
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2.3.4 Obesity 

Obesity (also termed adiposity) is characterized by an excessive growth of white 

adipose tissue caused by an increase in energy uptake and a decrease in energy 

expenditure. Obesity is defined in humans by a body mass index (body weight (kg) 

divided by (body height (m))
2
; BMI) greater than 30. In industrialized countries obesity 

is a major health problem (World Health Organization (WHO), 2011). In 2008, 

according to the WHO, 1.5 billion adults were overweight (BMI greater than 25), of 

these 200 million men and 300 million women were considered obese. Moreover, 

nearly 43 million children under the age of five were overweight in 2010.  

In times of positive caloric balance, adipose tissue expands due to a rising deposit of 

triglycerides. This is accomplished through increases in adipocyte size (adipocyte 

hypertrophy) as well as increases in adipocyte number (adipocyte hyperplasia) 

(Hausman et al., 2001; Vazquez-Vela et al., 2008). During the development of obesity 

in young animals (early-onset obesity), adipogenesis contributes far more to the 

increase of fat mass than in older animals (late-onset obesity) as the capacity of 

preadipocytes to become fully functional mature adipocytes declines in adult life 

(Lemonnier, 1972; DiGirolamo et al., 1998; Hausman et al., 2001; Vazquez-Vela et al., 

2008). In times of positive energy balance, storage of excess energy is initially 

accomplished by adipocyte hyperthrophy (Guilherme et al., 2008; Hausman et al., 

2001). Adipocytes, however, possess only a restricted capacity for cell expansion, hence 

if adipocytes reach a critical cell size further energy can only be stored by an increase in 

adipocyte number. This critical cell size is assumed to be genetically determined and 

specific for each fat depot that means some fat depots are more prone to undergo 

hyperplasia than other (Hausman et al., 2001). In rodents, for example, perirenal and 

inguinal fat pads have a high tendency to hyperplasia whereas hypertrophy is more 

characteristic for epididymal and mesenteric fat depots (DiGirolamo et al., 1998). 

Hyperthrophic adipocytes are more prone to undergo necrotic-like cell death than non-

hypetrophic adipocytes (up to 30-fold), thus it was suggested that with increasing 

obesity only the switch from adipocyte hyperthorphy to hyperplasia is able to further 

increase the lipid storage capacity of adipose tissue (Cinti et al., 2005). Moreover, 

adipocyte hyperthrophy was linked to adipocyte dysfunction given that a high degree of 

hyperthrophy in comparison to hyperplasia is related with the risk to develop metabolic 

disease (Ravussin and Smith, 2002; Bays et al., 2008). Obesity is strongly associated 

with a number of chronic diseases such as coronary atherosclerotic heart disease, gout, 
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restrictive lung disease, gall bladder disease, some forms of cancer, degenerative 

arthritis, infertility, and sleep apnoea (Montague and O'Rahilly, 2000; Hausman et al., 

2001; Singla et al., 2010). There are also several metabolic complications of obesity 

(termed metabolic syndrome), including impaired glucose tolerance, insulin resistance, 

often giving way to β-cell failure, type 2 diabetes, dyslipidemia, hypertension, and 

premature heart disease (Bays et al., 2008; Singla et al., 2010). In humans, visceral 

adipose tissue accumulation is supposed to be associated with increased mortality and a 

higher risk to develop metabolic disease (Montague and O'Rahilly, 2000; Bays et al., 

2008; Singla et al., 2010).  

Excess body fat storage is often accompanied by insulin resistance that is characterized 

by decreased insulin-stimulated glucose uptake and metabolism in adipocytes and 

skeletal muscle and by impaired suppression of hepatic glucose output. There is strong 

evidence that these changes in glucose metabolism are due to defective signaling from 

the insulin receptor and down-regulation of the glucose transporter type 4 (GLUT-4) 

(Singla et al., 2010). Furthermore, adiposity leads to a rise in basal lipolysis in adipose 

tissue and impaired trapping of fatty acids in adipocytes implicating elevated circulating 

free fatty acids. Elevated circulating fatty acid levels result in ectopic lipid accumulation 

in the pancreas, muscle and liver and strongly influences cellular glucose uptake, thus 

being one of the main factors causing insulin resistance (Boden, 2008; Guilherme et al., 

2008; Vazquez-Vela et al., 2008; Singla et al., 2010).  

The endocrine function of adipose tissue is highly impaired in obesity. With increasing 

body fat mass the release of adipokines from adipose tissue becomes more and more 

dysregulated, thus disrupting physiological whole-body energy homeostasis (Ahima and 

Osei, 2008). Most adipokines (e.g. leptin, TNF-α, interleukin-6 (IL-6) and resistin) are 

upregulated in obesity, however, adiponectin levels are inversely related to adiposity 

(Ahima and Osei, 2008; Vazquez-Vela et al., 2008). Hyperthrophic adipocytes secrete 

high amounts of leptin, however, in adiposity non-adipose tissues have developed leptin 

resistance and high circulating leptin levels promote insulin resistance (Ahima and Osei, 

2008; Vazque-Vela et al., 2008; Morris et al., 2009).  

Given that adipose tissue contains all the components of the renin-angiotensin system 

and constitutes a major source of extra-hepatic angiotensinogen, it is supposed that 

adipose tissue directly contributes to obesity-related hypertension (Ailhaud, 2006).  

Moreover, obese adipose tissue develops a chronic low-inflammatory state that is due to 

an increase in the secretion of pro-inflammatory factors (e.g. TNF-α, IL-6, MCP-1) 
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from and a decreased production of anti-inflammatory factors (e.g. transforming growth 

factor- β (TGF-β)) by adipocytes. Thereby, immunoreactive cells, primarily bone-

marrow derived macrophages, are attracted and accumulate in adipose tissue in an 

amount that is positively correlated with adipocyte size and BMI (Bays et al., 2008; 

Singla et al., 2010; Guilherme et al., 2008; Weisberg et al., 2003; Wellen and 

Hotamisligil, 2003). Macrophages were found to be predominantly localized around 

dead adipocytes, hence it was supposed that necrotic-like cell death of hyperthrophic 

adipocytes contributes to the aggregation of macrophages in adipose tissue (Cinti et al., 

2005). Activated macrophages secrete a plethora of inflammatory cytokines, especially 

TNF-α, which strongly enhances lipolysis and impairs triglyceride deposition in 

adipocytes, thus contributing to excess blood levels of free fatty acids and triglycerides 

and finally to insulin resistance, type 2 diabetes and ectopic lipid deposition (Guilherme 

et al., 2008; Weisberg et al., 2003). 
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3. Animals, Materials and Methods 

3.1 Animals 

3.1.1 Dro1 constitutive knockout mice (Dro1
-/-

) 

Dro1 constitutive knockout mice (in the following designated as knockouts or Dro1
-/-

 

mice) were generated by gene targeting using a Cre-loxP-mediated recombination 

system (Fig. 3.1). For generation of the targeting construct, the essential exon 2 of the 

Dro1 gene and 5’ and 3’ homology arms were amplified by PCR from genomic DNA of 

E14 mouse embryonic stem cells. In doing so, a loxP site was added to the end of the 5’ 

homology arm. A targeting vector was created by insertion of the PCR products into the 

multiple cloning site of the pPNT4 (Conrad et al., 2003) cloning vector that also carried 

a neomycin resistance gene, a thymidine kinase gene and another loxP sequence. The 

construct was linearized by SalI restriction digest and electroporated into E14 mouse 

embryonic stem cells. An embryonic stem cell line that had integrated the construct 

correctly by homologous recombination was identified by Southern blot analysis and 

microinjected into blastocysts of C57BL/6N mice. Blastocysts were transferred into the 

uteri of pseudopregnant synchronized foster mothers and the resulting chimeric progeny 

were intercrossed with C57BL/6N mice to establish a mouse line with floxed Dro1 

alleles (Dro1
fl/fl

). Dro1
fl/fl

 females were mated to transgenic males expressing Cre 

(causes recombination) recombinase, a type 1 topoisomerse from P1 bacteriophage that 

catalyzes recombination between loxP sites, under control of the cytomegalovirus 

(CMV) promoter (Schwenk et al., 1995). The heterozygous Dro1
+/-

 offspring was bred 

to obtain Dro1
-/- 

mice. In the present study Dro1
fl/fl

 mice were used as control animals, 

in the following referred to as “controls”. Dro1
fl/fl

 mice were generated by PD Dr. 

Marlon R. Schneider and were made available for the present studies. 

 



Animals, Materials and Methods 

 

 

18 

 

Fig. 3.1 Schematic representation of the strategy employed to generate Dro1
-/-

 mice. The 

essential exon 2 of the Dro1 gene was flanked by 2 loxP sequences. Cre-recombinase-

mediated recombination between loxP sites results in deletion of exon 2 and Dro1 

knockout. Black boxes: exons; White arrows: loxP sites; PGK-neo: phosphoglycerine 

kinase neomycin resistance cassette. 

3.1.2 B6.C-Tg(CMV-cre)1Cgn/J mice 

B6.C-Tg(CMV-cre)1Cgn/J mice (Schwenk et al., 1995) were kindly donated by Prof. 

Dr. Irmgard Förster, Heinrich-Heine-University, Düsseldorf. In this mouse strain the 

Cre gene is under transcriptional control of a human CMV minimal promoter and is 

expressed during early embryogenesis in all tissues including germ cells. Thus Cre-

mediated deletion of the loxP-flanked DNA sequence is ubiquitously present and the 

acquired mutation is transmitted through the germ-line. The transgene was observed to 

be linked to the X chromosome (Schwenk et al., 1995). 

 

3.1.3 C57BL/6J-Apc
Min

/J mice 

C57BL/6J-Apc
Min

/J mice (in the following referred to as Apc
+/Min

 mice) were purchased 

from the Jackson Laboratory (Bar Harbor, USA). Apc
+/Min

 mice were established from 

an ethylnitrosourea-treated C57BL/6J male mouse and carry a single autosomal 

dominant germ-line nonsense mutation at nucleotide 2549 (codon 850) in the Apc tumor 

suppressor gene (Moser et al., 1990; Su et al., 1992). Somatic allelic loss of the 

remaining Apc wild-type locus leads to dysregulation of the Wnt signaling pathway 

(Levy et al., 1994; Luongo et al., 1994). The resulting phenotype is characterized by a 
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high predisposition to develop a multitude of tumors of the intestinal tract. Therefore 

the mutant gene was named multiple intestinal neoplasia (Min) (Moser et al., 1989). 

Apc
+/Min

 mice develop, on average, 30 tumors throughout the entire length of the 

intestinal tract, though the majority of neoplastic lesions are distributed to the small 

bowel and few occur in the colon (Moser et al., 1990; Shoemaker et al., 1997; Boivin et 

al., 2003). Apc
+/Min

 mice die, on average, at 120 d of age in consequence of secondary 

effects of tumor growth, mainly intestinal bleeding and obturation (Moser et al., 1990; 

Shoemaker et al., 1997). On the C57BL/6 background all intestinal tumors are 

adenomas which may, especially in older animals, occasionally progress to 

adenocarcinomas (Moser et al., 1990; Shoemaker et al., 1997; Boivin et al., 2003). 

Invasion of tumors into the tela submucosa is uncommon (McCart et al., 2008) and 

adenocarcinomas possess no metastatic properties (Boivin et al., 2003). Spontaneous 

colonic ACF formation is rare or absent (Reitmair et al., 1996; Song et al., 2000; Boivin 

et al., 2003). Tumor burden was observed to be strongly affected by the genetic 

background due to the presence or absence of genetic modifiers, so called modifiers of 

Min (Mom) (Shoemaker et al., 1997; Halberg et al., 2000; McCart et al., 2008). Since 

mutant homozygotes die early in embryogenesis (Moser et al., 1990; Moser et al., 

1995), all studies were conducted in heterozygote mice of both genders. Considering the 

fact that Apc
+/Min 

females are seldom healthy enough to maintain a pregnancy and feed 

an eventual litter (Moser et al., 1990), only heterozygote males were used for breeding. 

Apc
+/Min

 males were mated to Dro1
-/- 

females and the resulting male Dro1
+/-

;Apc
+/Min

 

offspring was intercrossed with Dro1
-/-

 females to obtain Dro1
-/-

;Apc
+/Min

 progeny. 

Dro1
fl/fl

;Apc
+/Min

 mice were used as control animals to Dro1
-/-

;Apc
+/Min

 mice and were 

bred as described for Dro1
-/-

;Apc
+/Min

 mice. In the following, Dro1
fl/fl

;Apc
+/Min

 mice are 

entitled as “Apc
+/Min

 controls”. Mice on the Apc
+/Min

 background were inspected on a 

daily basis and sacrificed when moribund. 

To investigate Mom1 allele status of Dro1
-/-

;Apc
+/Min

 and Apc
+/Min

 control mice, a 

500 bp region of the Mom1 allele was amplified by PCR using primers Mom1#1 and 

Mom1#2 (see below for general PCR conditions). PCR products were digested with 

BamHI (MBI Fermentas, St. Leon-Rot) for 1 h at 37°C and separated along with a 

molecular weight marker (pUC mix molecular weight marker, MBI Fermentas, St. 

Leon-Rot) on a 1.5% Tris-acetate-EDTA buffer (TAE) agarose (Invitrogen, Karlsruhe) 

gel containing ethidium bromide (Roth, Karlsruhe). Electrophoresis was carried out in 

an agarose gel electrophoresis chamber (MWG-Biotech, Ebersberg) at 120 V for 45 min 
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in a TAE running buffer. DNA band patterns were visualized with ultraviolet light at 

254/366 nm. 

 

Restriction digest: 

PCR product  20 µl 

BamHI buffer (MBI Fermentas, St. Leon-Rot)  5 µl 

BamHI restriction enzyme 1 µl 

Bidistilled water  24 µl 

 

50x TAE running buffer 

Tris (Roth, Karlsruhe) 242.0 g 

Glacial acetic acid (Roth, Karlsruhe) 57.1 ml 

Ethylenediaminetetraacetic acid (EDTA), 0.5 M, pH 8.0  100 ml 

(VWR International, Darmstadt)   

Bidistilled water up to  1 l 

 

3.1.4 Animal maintenance 

Animals were maintained under specific pathogen free conditions in a closed barrier 

system in the facilities of the Gene Center. They were housed separated by sex in type 2 

and type 3 Makrolon cages, with a 12 h light cycle at 22°C and 40% humidity. Food and 

water were provided ad libitum and mice were either fed a chow diet (V1536, Ssniff, 

Soest, Germany; 13.0 MJ/kg, with 9% energy derived from fat, 33% from protein, and 

58% from carbohydrate) or, to induce obesity, a high fat diet (D12492 mod., Ssniff, 

Soest, Germany; 25.2 MJ/kg, with 60% energy derived from fat, 19% from protein, and 

21% from carbohydrate). Mice were weaned at an age of 3 weeks and earmarked. In 

case studies were conducted in mice younger than 3 weeks, foot tattooing was used to 

identify animals. Cervical dislocation was applied for killing.  

Experiments were carried out in accordance with the German Animal Protection Law 

and were officially sanctioned by the local authorities (AZ 55.2-1-54-2531-126-09).   
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3.2 Materials and Methods 

3.2.1 Mouse Genotyping 

3.2.1.1 Sample collection 

Samples were collected when mice were 3 to 4 weeks of age by clipping 0.5 mm of the 

tail tip with a pair of scissors (Aesculap, Tuttlingen). The wound was blotted dry from 

blood on absorbent paper and closed with Histoacryl
® 

liquid skin glue (B. Braun, 

Melsungen). Samples were immediately frozen on dry ice, transferred to a 1.5 ml 

centrifuge tube (Eppendorf, Hamburg), and stored at -80°C to prevent DNA 

degradation. 

 

3.2.1.2 Extraction of DNA from mouse tail tips 

Digestion buffer (620 µl) was added to the centrifuge tubes containing the frozen tail 

tips and the samples were incubated at 56°C overnight with gentle shaking. 

 

Digestion buffer: 

Nuclei Lysis Solution (Promega, Mannheim)   500 µl 

EDTA, 0.5 M, pH 8.0  120 µl 

Proteinase K, 20 mg/ml (Roche, Mannheim)  17.5 µl 

 

The next day 3 µl of RNase (Roche, Mannheim) were added and samples incubated at 

37°C for 20 min to degrade RNA. Thereafter 200 µl Protein Precipitation Solution 

(Promega, Mannheim) were added and the samples were vortexed vigorously at high 

speed for 20 s. After chilling on ice for 5 min, samples were centrifuged at 14.000 x g 

for 4 min to pelletize precipitated proteins at the bottom of the tube. The supernatant 

containing the DNA was carefully transferred to a clean 1.5 ml centrifuge tube 

containing 600 µl of room temperature isopropanol (Merck, Darmstadt) and the solution 

was gently mixed by inverting the tubes until white strands of precipitated DNA were 

visible. To pelletize DNA, samples were centrifuged at 14.000 x g for 1 min. After 

carefully removing the isopropanol, 600 µl of room temperature 70% ethanol (Merck, 

Darmstadt) were added to the pellet and the tubes were inverted several times to wash 

the DNA. Samples were again centrifuged for 1 min at 14.000 x g, the ethanol carefully 

removed using a pipette and the pellet air-dried for 10 min. To rehydrate DNA, 50 µl of 
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DNA Rehydration Solution (Promega, Mannheim) were added and samples incubated 

for 1 h at 65°C. 

 

3.2.1.3 PCR analysis 

PCR reactions were prepared on ice using the Taq DNA polymerase Kit (Qiagen, 

Hilden) and were carried out in a reaction volume of 20 μl in DNase-, RNase and 

pyrogen-free 100 μl PCR-reaction-tubes (G. Kisker GbR, Steinfurt). 

 

Mastermix preparation (per sample):  

PCR buffer, 10x (Qiagen, Hilden)  2.00 μl 

dNTPs, 1 mM (MBI Fermentas, St. Leon-Rot) 2.00 μl 

Q-Solution (Qiagen, Hilden) 4.00 μl 

MgCl2, 25mM (Qiagen, Hilden)  1.25 μl 

Sense primer, 2 µM  1.00 μl 

Antisense primer, 2 µM   1.00 μl 

Bidistilled H2O  7.65 μl 

Taq Polymerase, 5U/µl (Qiagen, Hilden)  0.10 μl 

Template DNA, about 50 ng/µl  1.00 μl 

 

Mastermix preparation using primers Apc33, Apc34 and Apc758 to genotype Apc
+/Min

 

mice (per sample):  

PCR buffer, 10x  2.00 μl 

dNTPs, 1 mM  4.00 μl 

Q-Solution  4.00 μl 

MgCl2, 25 mM  1.25 μl 

Primer Apc33 2.00 μl 

Primer Apc34 2.00 μl 

Primer Apc758 2.00 μl 

Bidistilled H2O 1.65 μl 

Taq Polymerase, 5U/µl  0.10 μl 

Template DNA, about 50 ng/µl  1.00 μl 
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The reaction took place in a thermal cycler (Biometra, Göttingen) according to the 

following protocol: 

Step 1: 94°C – 4 min  (DNA denaturation) 

Step 2: 94°C – 1 min  (DNA denaturation) 

Step 3: Annealing temperature  (primer annealing) 

Step 4: 72°C – 2 min  (elongation) 

Step 5: 72°C – 10 min  (elongation) 

Step 6: 4°C  (cooling) 

 

Step 2 to 4 were repeated 35 times (36 amplification cycles in total), thereafter the 

program continued with step 5. Amplified products and a molecular weight marker were 

loaded into the slots of 1.5% agarose TAE gels containing ethidium bromide and 

electrophoresis was carried out in an electrophoresis chamber at 120 V for 45 min in a 

TAE running buffer. DNA band patterns were visualized with ultraviolet light at 

254/366 nm. 

 

3.2.2 Identification of knockout mice by non-radioactive Southern blot 

3.2.2.1 Digest, electrophoresis and transfer of DNA 

DNA was extracted from liver samples as described above (Chapter 3.2.1.2) and DNA 

concentration was measured with a spectrophotometer (Beckman, Palo Alto, USA) at 

260 and 280 nm. 10 μg of genomic DNA were restriction digested with PstI (MBI 

Fermentas, St. Leon-Rot) over night at 37°C in a centrifuge tube. 

 

Restriction digest:  

Liver genomic DNA, 10 μg  15.0 μl 

PstI restriction enzyme    3.0 μl 

Buffer PstI (MBI Fermentas, St. Leon-Rot)   4.0 μl 

Spermidine, 0.1 M (Sigma-Aldrich, Deisenhofen)    1.0 μl 

Bidistilled water  17.0 μl 

 

The next day 10 μl of 6x loading dye (MBI Fermentas, St. Leon-Rot) were added to 

each sample and DNA fragments were separated by electrophoresis on a 0.9% agarose 

TAE gel containing ethidium bromide for 6 h at 60 V using a TAE running buffer. DNA 

fragments were visualized by ultraviolet light at 254/366 nm and photographed together 
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with a ruler. For DNA denaturation, the gel was placed in buffer I (1.5 M NaCl (Roth, 

Karlsruhe), 0.5 M NaOH (Roth, Karlsruhe)) for 45 min by gently shaking. The gel was 

rinsed with bidistilled water and transferred to buffer II (1.5 M NaCl, 1.0 M Tris-HCl 

(Roth, Karlsruhe)) for 30 min to depurinate DNA. In the meantime a nylon membrane 

(Pall Corporation, Pensacola, USA) was cut to the size of the gel, wetted in bidistilled 

water for 10 min and incubated in 10x saline-sodium citrate buffer (SSC) until needed. 

For transfer of DNA, the gel was placed upside down on a piece of filter paper (GE 

Healthcare, Munich) whose ends were dipped into a 10x SSC reservoir. The gel was 

carefully covered with the membrane, wetted filter paper, and a stack of tissue towels 

(both cut to the size of the membrane), and a burden of approximately 1 kg was placed 

on top. Air bubbles were removed with a glass pipette after each step. Blotting took 

place over night, so that the buffer was drawn from the buffer reservoir through the gel, 

the nylon membrane and the filter paper to the stack of dry paper tissues by capillary 

force. Thereby the DNA fragments were carried to the nylon membrane on which they 

were immobilized. The next day the membrane was removed and washed in 6x SSC for 

5 min. Thereafter it was illuminated with ultraviolet light (120 J/cm
2
) for 60 s to cross-

link DNA covalently to the membrane. 

 

20x SSC: 

NaCl  175.3 g 

Sodium citrate (Merck, Darmstadt)    88.2 g 

Bidistilled water up to  1 l 

Adjusted to pH 7.0 

 

3.2.2.2 Non-radioactive probe labeling 

The digoxigenin (DIG) labeled hybridization probe was generated by PCR from 

C57BL/6N mice genomic DNA using the DIG Probe Synthesis kit (Roche, Mannheim). 

The dNTP mixture contains DIG labeled uridine nucleotides, in consequence DIG is 

incorporated into the nucleic acid probe by the DNA polymerase. Preparation of the 

PCR reaction was accomplished in 100 µl PCR tubes on ice using primers Dro3’end#1 

and Dro3’end#2. 
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Master mix (per sample): 

PCR buffer with MgCl2, 10x (Roche, Mannheim)   5.00 μl 

PCR DIG Probe Synthesis mix (Roche, Mannheim)   5.00 μl 

Forward primer, 2 µM    5.00 μl 

Reverse primer, 2 µM    5.00 μl 

Enzyme mix (Roche, Mannheim)   0.75 μl 

Bidistilled water  28.25 μl 

Template DNA, about 50 ng/µl    1.00 μl 

 

Thermic cycling was carried out in a thermal cycler according to the following protocol: 

Step 1: 94°C – 4 min  (DNA denaturation) 

Step 2: 94°C – 1 min  (DNA denaturation)  

Step 3: 58°C – 1 min  (primer annealing)  

Step 4: 72°C – 2 min  (elongation) 

Step 5: 72°C – 10 min  (elongation) 

Step 6: 4°C  (cooling) 

 

Steps 2 to 4 were repeated 44 times before the program continued with step 5 (45 

amplification cycles in total). 5 µl of the amplified product were transferred to a clean 

100 µl tube containing 15 µl bidistilled water and 4 µl 6x loading dye. The aliquot was 

run on a 0.9% agarose TAE gel containing ethidium bromide along with a DNA 

molecular weight marker. DNA band patterns were visualized by ultraviolet light. The 

remaining probe was stored at -20°C until needed. 

 

3.2.2.3 Hybridization, washing and detection 

For hybridization, washing and detection, the DIG Block and Wash Buffer Set (Roche, 

Mannheim) was used and all necessary solutions were prepared following the 

manufacturer`s manual. All washing and incubation steps were performed with gentle 

agitation at room temperature if not stated differently. 

The nylon membrane was placed in a glass hybridization tube (Bachofer, Reutlingen) 

and incubated in pre-heated DIG Easy Hyb buffer (Roche, Mannheim) for 30 min. 30 µl 

of the DIG labeled probe were transferred to a 1.5 ml centrifugation tube, heated at 

95°C for 5 min, cooled on ice for 2 min and added to the DIG Easy Hyb buffer in the 

hybridization tube. Hybridization took place over night at 39°C. The next day non-
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bound probes were removed by washing the membrane 2 times for 5 min in 2x SSC 

containing 0.1% sodium dodecyl sulfate (SDS; Merck, Darmstadt) and 2 times for 15 

min in 0.5x SSC containing 0.1% SDS at 65°C. Thereafter the membrane was incubated 

in Washing buffer (Roche, Mannheim) for 5 min, in Blocking solution (Roche, 

Mannheim) for 1 h and finally treated for 30 min with alkaline phosphatase conjugated 

Anti-DIG-AP Fab fragments (Roche, Mannheim) diluted 1: 10.000 in Blocking 

solution. Unbound Anti-DIG-AP Fab fragments were eliminated by rinsing the 

membrane 2 times for 15 min with Washing buffer. Next, the membrane was removed 

from the hybridization tube, placed with the DNA side facing up in a hybridization bag 

and 2 ml of CSPD ready-to-use detection solution (Roche, Mannheim) were applied and 

spread evenly and without air bubbles over the membrane. After 5 min, excess liquid 

was removed from the hybridization bag, the edges were heat-sealed and the membrane 

was exposed to a chemiluminiscence film (GE Healthcare, Munich) until the required 

signal strength was achieved.  

 

3.2.3 Evaluation of gene expression at the RNA level  

3.2.3.1 Extraction of RNA from tissues 

Mice were killed by cervical dislocation and tissue samples (liver, muscle, heart, white 

adipose tissue and brown adipose tissue) excised immediately. The intestine was 

excised and the faecal content rinsed out with 1x phosphate buffered saline (PBS) using 

cannula (B.Braun, Melsungen) and syringe (Codan Medical ApS, Roedby, Denmark). 

The intestine was opened longitudinally, laid open and small intestinal epithelium and 

colon epithelium were scraped off with cover glass slides (VWR International, 

Darmstadt) and transferred to 1.5 ml centrifuge tubes. Samples were frozen on dry ice 

and stored at -80°C. For RNA isolation, frozen tissue samples (~50-100 mg) were 

transferred to 5 ml plastic tubes (Greiner Bio-One, Frickenhausen) containing 1 ml of 

Trizol reagent (Invitrogen, Karlsruhe) and homogenised for 60 s using a homogenizer 

(ART Labortechnik, Müllheim) at 23500 rpm. To avoid cross-contamination the tip of 

the homogenizer was cleaned with diethylpyrocarbonate-treated (DEPC; Sigma-

Aldrich, Deisenhofen) water and 0.2 M NaOH between samples. The lysate was 

centrifuged at 12.000 x g for 10 min at 4°C and the supernatant was transferred to a 

clean 2 ml centrifuge tube (Eppendorf, Hamburg). Samples were incubated for 5 min at 

room temperature, 0.2 ml chloroform (Merck, Darmstadt) were added and the solution 

shaken vigorously by hand for 15 s. Phase separation was achieved by incubating 
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samples for 3 min at room temperature and centrifugation at 12.000 x g for 15 min at 

4°C. The upper clear, aqueous phase which contains the RNA fraction was transferred 

to a clean 1.5 ml centrifuge tube. To precipitate RNA, 0.5 ml isopropanol was added 

and the tubes were inverted several times. Incubation was carried out for 10 min at 

room temperature and RNA was pelletized by centrifugation at 12.000 x g for 10 min at 

4°C. After decantation of the supernatant, the RNA was washed with 0.5 ml of ice-cold 

75% ethanol and samples centrifuged at 7.500 x g for 5 min at 4°C. The ethanol was 

carefully removed with a pipette, the pellet air-dried for 3 min and resuspended in 

100 µl DEPC-treated water. For RNA cleanup the RNeasy Mini kit (Quiagen, Hilden) 

was used according to the manufacturer`s manual. RNA was finally dissolved in 50 µl 

DEPC-treated water and stored at -80°C. 

 

10x PBS: 

NaCl  80.0 g 

Na2HPO4 (Merck, Darmstadt) 14.7 g 

KCl (Merck, Darmstadt)   2.0 g 

KH2PO4 (Merck, Darmstadt)   2.4 g 

Bidistilled water up to  1 l 

Adjusted to pH 7.4 

 

3.2.3.2 cDNA synthesis 

RNA concentration was measured with a spectrophotometer and samples diluted in 

DEPC-treated water to a final RNA concentration of 0.5 µg/µl. Genomic DNA was 

removed from the RNA preparation using DNase I, Amplification Grade (Invitrogen, 

Karlsruhe). 

 

DNaseI digest (per sample): 

DNase I reaction buffer, 10x (Invitrogen, Karlsruhe). 2 µl 

DNase I Amp Grade, 1U/ µl (Invitrogen, Karlsruhe). 2 µl 

DEPC-treated water 8 µl 

RNA preparation, 0.5 µg/µl 8 µl 

 

After an incubation for 15 min at room temperature, the DNase I was inactivated by the 

addition of 2 µl of 25 mM EDTA solution (Invitrogen, Karlsruhe) to the reaction 
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mixture and heating for 10 min at 65°C. cDNA was synthesized using the SuperScript 

First Strand cDNA Synthesis System (Invitrogen, Karlsruhe) in a final reaction volume 

of 55 µl. PCR reactions were prepared in DNase-, RNase and pyrogen-free 0.5 ml 

centrifuge tubes (Eppendorf, Hamburg) on ice as follows: 

 

RNA/ primer mixture (per sample): 

dNTPs, 10 mM  2.75 µl 

Random hexamer primer (Invitrogen, Karlsruhe) 2.75 µl 

Template RNA, 4 µg  22.0 µl 

 

cDNA synthesis mix (per sample):  

RT buffer, 10x (Invitrogen, Karlsruhe)   5.5 µl 

MgCl2, 25 mM (Invitrogen, Karlsruhe) 11.0 µl 

DTT, 0.1 M (Invitrogen, Karlsruhe)   5.5 µl  

RNaseOUT, 40 U/ µl (Invitrogen, Karlsruhe) 2.75 µl 

Superscript III RT, 200 U/ µl (Invitrogen, Karlsruhe) 2.75 µl 

 

The RNA/ primer mixture was incubated at 65°C for 5 min and chilled on ice for 1 min. 

The cDNA synthesis mix was intermixed and reverse transcription was carried out as 

follows: 

 

Step 1: 25°C  – 10 min  

Step 2: 42°C  – 50 min  

Step 3: 70°C  – 15 min  

Step 4: 4°C  –   1 min  

 

Finally RNA was degraded by addition of 2.75 µl of RNase H (Invitrogen, Karlsruhe) 

and incubation at 37°C for 20 min.  

 

3.2.3.3 Quantitative real-time PCR (RT-PCR) 

PCR reactions were prepared in 96 well real-time PCR plates (Eppendorf, Hamburg) in 

a total reaction volume of 20 µl using the Taq DNA polymerase Kit and HotStar Taq 

polymerase (Quiagen, Hilden). The intercalating dye SYBR
®
 Green (Lonza, Basel, 

Switzerland) was used as fluorescent reporter in the reaction. 
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Mastermix (per reaction): 

PCR buffer, 10x 2.0 µl 

MgCl2, 25 mM 1.0 µl 

Q-Solution 4.0 µl 

dNTPs,10mM 0.5 µl 

Forward primer, 10 µM 1.0 µl 

Reverse primer, 10 µM 1.0 µl 

SYBR
®
 Green, 1: 2000 0.8 µl 

HotStar Taq, 5 U/ µl 0.2 µl 

Bidistilled water 7.5 µl 

cDNA 2.0 µl 

 

Real-time PCR plates were sealed using a heat sealing foil (Eppendorf, Hamburg) and 

DNA was amplified and quantified in a Mastercycler
®
 ep realplex PCR machine 

(Eppendorf, Hamburg) according to the following protocol: 

 

Step 1: 95°C  – 15 min (DNA denaturation) 

Step 2: 95°C  – 30 s (DNA denaturation) 

Step 3: 55°C  – 30 s (primer annealing) 

Step 4: 72°C  – 30 s (elongation) 

Step 5: 82°C  – 20 s (DNA quantification) 

Step 6: 95°C  – 15 s (DNA denaturation) 

Step 7: 60°C  – 15 s 

Step 8: Heating to 95°C  – 20 min (melting curve determination) 

Step 9: 95°C  – 15 s 

 

Steps 2 to 5 were repeated 55 times (56 amplification cycles in total) whereupon the 

program continued with step 6. The amount of Dro1 cDNA was compared to the 

amount of the housekeeping gene Gapdh and each sample was normalized on the basis 

of its Gapdh content. 
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3.2.4 Evaluation of gene expression at the protein level  

3.2.4.1 Extraction of proteins from tissues 

Tissue samples (heart, lung, liver, spleen, kidney, intestine, white adipose tissue, 

skeletal muscle) were frozen on dry ice and stored at -80°C until needed. 

Approximately 50 mg of frozen tissue samples were transferred to a 5 ml plastic tube 

containing 400 µl of protein extraction buffer and homogenized at 23500 rpm for 30 s. 

To avoid protein carryover between samples the homogenizer was rinsed with 

bidistilled water after each sample. The homogenate was transferred to a 1.5 ml 

centrifuge tube, incubated for 5 min at 95°C, cooled down on ice for 5 min, and 

centrifuged for 5 min at 4°C and 13.000 x g. The supernatant containing the proteins 

was transferred to a fresh 1.5 ml centrifuge tube and samples were stored at -20°C until 

needed. 

 

Protein extraction buffer: 

Tris, 1M, pH 7.5        2 ml 

Triton X-100 (Roth, Karlsruhe)        2 ml 

Laemmli buffer, 5x      20 ml 

Bidistilled water      76 ml 

 

5x Laemmli buffer: 

Tris, 1M, pH 6.8   65.5 ml 

Glycerol (Roth, Karlsruhe) 100.0 ml 

EDTA, 0.5M, pH 8.0     2.0 ml 

SDS     20.0 g 

Bromphenol blue (Serva, Heidelberg)       0.1% 

Bidistilled water up to  200 ml 

 

3.2.4.2 Determination of protein concentration 

To determine the protein content of the samples, a bicinchoninic acid (BCA) protein 

assay was performed. For generation of a standard curve, serial dilutions of a bovine 

serum albumin (BSA; Roth, Karlsruhe) stock solution (4 mg/ml) were prepared. 10 µl 

of the samples of unknown protein concentration and of the standards were added into 

the wells of a 96-well plate (Becton Dickinson, Heidelberg) individually and intermixed 
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with 200 µl CuSO4-BCA solution and 40 µl 1x PBS. The reaction was incubated for 

30 min at 37°C and the absorbance was measured at 562 nm in a micro-plate reader 

(Tecan, Männedorf, Switzerland). For generation of a standard curve, protein 

concentrations of standards were plotted versus their absorbance. To obtain protein 

concentration in the unknown samples their absorbance was applied to the standard 

curve.  

 

CuSO4-BCA solution: 

CuSO4 solution (Sigma-Aldrich, Deisenhofen)      70 µl 

BCA (Sigma-Aldrich, Deisenhofen) 3430 µl 

 

3.2.4.3 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) 

Protein separation was performed using the Mini Protean
®
 3 cell system (Bio-Rad, 

Munich). Preparation of the separating gel was accomplished in a 50 ml glass beaker 

under continuous agitation and poured into the space between the glass plates of the 

system, leaving space for the stacking gel. To ensure a plain surface the gel was covered 

with bidistilled water. After polymerization for 1 h the stacking gel was prepared 

accordingly, poured on top of the separating gel and a comb was inserted. After 

polymerization, the plates were implanted into the electrophoresis chamber filled with 

SDS-PAGE electrophoresis buffer and the comb was removed. Prior to loading, 20 µg 

of each protein sample was transferred to a fresh 1.5 centrifuge tube, filled up with 1x 

Laemmli buffer to 30 µl, incubated at 95°C for 5 min and chilled on ice. In some 

experiments 5% 2-mercaptoethanol (Merck, Darmstadt) was added to the protein 

samples. Samples were loaded into the wells of the gel along with a molecular weight 

marker (PageRuler
TM

Prestained Protein Ladder, MBI Fermentas, St. Leon-Rot) and 

separated by electrophoresis on the stacking gel at 100 V for 15 min and on the 

separating gel at 140 V until the dye front run off the bottom of the gel. 
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Separating gel (12%):  

Tris, 0.5 M, pH 8.8    2.5 ml 

Acrylamide, 30% (Bio-Rad, Munich)   4.0 ml 

SDS, 10%    100 µl 

Ammonium persulfate, 10% (Bio-Rad, Munich)     50 µl 

Temed (Bio-Rad, Munich)       5 µl 

Bidistilled water  3.35 ml 

 

Stacking gel (5%): 

Tris, 0.5 M, pH 6.8  1.25 ml 

Acrylamide, 30%    1.5 ml 

SDS, 10%    100 µl 

Ammonium persulfate, 10%    100 µl 

Temed        5 µl 

Bidistilled water  3.35 ml 

 

SDS-PAGE electrophoresis buffer: 

Tris  30.3 g 

Glycine (Merck, Darmstadt)  144 g 

SDS     10 g 

Bidistilled water up to  1 l 

 

3.2.4.4 Blotting 

Transfer of the separated proteins was performed using a semidry electroblotting 

apparatus (Bio-Rad, Munich). A polyvinylidene difluoride (PVDF) membrane 

(Millipore, Billerica, USA) was cut the size of the gel and kept in methanol (Merck, 

Darmstadt) until needed. Two sheets of blotting paper (Bio-Rad, Munich) were soaked 

in 200 ml of 1x transfer buffer containing 40 ml methanol. One sheet of blotting paper 

was placed onto the semidry blotter and covered with the membrane. The gel was taken 

out of the electrophoresis apparatus, placed on top of the membrane and covered with 

another sheet of blotting paper. Between each step air bubbles were removed by use of a 

pipette. The upper electrode was put onto the blotting apparatus and blotting was carried 

out at 15 mA for 1 h. 
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10x transfer buffer: 

Tris  58.2 g 

Glycine  29.2 g 

SDS    3.7 g 

Bidistilled water up to  1 l 

 

3.2.4.5 Detection 

After blotting, the PVDF membrane was placed in a glass hybridization tube and 

incubated in 1x Tris buffered saline Tween20 (TBST) containing 5% instant skimmed 

milk powder (Roth, Karlsruhe) for 60 min, washed 2 times with 1x TBST for 5 min and 

treated with the primary antibody diluted in 1x TBST containing 1% milk powder for 

60 min. The membrane was washed 3 times for 5 min with 1x TBST, incubated with the 

secondary antibody diluted 1: 10.000 in 1x TBST containing 1% milk powder for 

60 min and washed 2 times with 1x TBST for 20 min. For detection, the membrane was 

treated with 2 ml ECL Western blotting Detection Reagent (GE Healthcare, Munich), 

enveloped in plastic foil and exposed to a chemiluminiscence film until the required 

signal strength was achieved. All incubation steps were carried out at room temperature 

with gentle agitation. 

To remove primary and secondary antibodies the membrane was treated with Restore 

Western Blot Stripping Buffer (Thermo Scientific, Rockford, USA) for 10 min, washed 

3 times for 1 min with bidistilled water and washed 2 times for 5 min with 1x TBST. 

 

25x TBS:  

Tris    60 g 

NaCl   200 g 

HCl, 12 N (Merck, Darmstadt) 7.9 ml 

Bidistilled water up to  1 l 

Adjusted to pH 7.6  

 

1x TBST: 

25x TBS  40 ml 

Tween
®
20 (Sigma-Aldrich, Deisenhofen)     2 ml 

Bidistilled water up to  1 l 
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Primary antibodies:  

Mouse anti-actin antibody (MP Biomedicals, Solon, USA), diluted 1: 1000 

Rabbit anti-CCDC80 antibody (Acris, Herford), diluted 1: 5000  

Rabbit anti-CCDC80 antibody (Sigma-Aldrich, Deisenhofen), diluted 1: 1000 

 

Secondary antibodies:  

Donkey anti-rabbit antibody (GE Healthcare, Munich), diluted 1: 10.000 

Goat anti-mouse antibody antibody (MP Biomedicals, Solon, USA), diluted 1: 10.000 

 

3.2.5 Histological analysis 

3.2.5.1 Hematoxilin and eosin (H&E) staining 

Heart, lung, liver, spleen, kidney, intestine and the cranial tip of the epididymal white 

adipose tissue depot were dissected, the intestine processed as described in Chapter 

3.2.6.1, samples placed in a histology cassette (Medite, Burgdorf) and fixed in 4% 

buffered formaldehyde solution at 4°C for a minimum of 24 h. Samples were 

dehydrated, embedded in paraffin, and 4 μm tissue sections were cut and mounted on 

glass microscope slides (Menzel-Gläser, Braunschweig). After the sections dried for 3 d 

at room temperature they were deparaffinized in Roti
®
-Histol (Roth, Karlsruhe) for 

40 min and rehydrated in a descending graded alcohol series (100% ethanol, 90% 

ethanol, 80% ethanol, 70% ethanol, 50% ethanol) down to bidistilled water. They were 

stained in hematoxylin solution according to Mayer (Sigma-Aldrich, Deisenhofen) for 2 

min, rinsed under running tap water for approximately 10 min and counterstained in 

eosin solution (Medite, Burgdorf) for 2.5 min. Next, slices were rinsed in bidistilled 

water, dehydrated in an ascending graded alcohol series (50% ethanol, 70% ethanol, 

80% ethanol, 90% ethanol, 100% ethanol) to Roti
®
-Histol and mounted with mounting 

medium (VWR International, Darmstadt) and cover glass slides. Histopathologic 

analysis of H&E-stained tissue sections was performed in a blinded manner by Dr. Jens 

Neumann, Institute of Pathology, University of Munich. 
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4% buffered formaldehyde solution: 

Paraformaldehyde (Sigma-Aldrich, Deisenhofen)  40 g 

10x PBS  100 ml 

NaOH, 5 M  250 µl 

Bidistilled water up to  1 l 

Adjusted to pH 7.4 

 

3.2.5.2 Periodic acid Schiff (PAS) staining  

Intestines were processed, formaldehyde fixed and paraffin embedded as described in 

Chapter 3.2.6.1. PAS staining was performed according to a standard protocol at the 

Institute of Pathology, University of Munich. The number of PAS-positive cells per 

total cells in the crypt-villus axis of the small intestine was counted in 20 crypts per 

mouse. 

 

3.2.5.3 Elastic van Gieson (EvG) staining 

Livers were formaldehyde fixed and paraffin embedded as described in Chapter 3.2.5.1. 

EvG staining was performed according to a standard protocol at the Institute of 

Pathology, University of Munich. Histopathologic examination of EvG-stained tissue 

sections was performed in a blinded manner by Dr. Jens Neumann, Institute of 

Pathology, University of Munich. 

 

3.2.6 Immunohistochemistry (IHC) 

3.2.6.1 Bromodeoxyuridine (BrdU) staining 

BrdU is a proliferation marker that is incorporated, instead of thymidine, into the newly 

synthesized DNA of cycling cells. To analyse cell proliferation in the intestine, mice 

were injected intraperitoneally with BrdU (30 mg/kg body weight; Roche, Mannheim) 

1 h prior to sacrifice. Mice were killed and the intestine excised immediately. The 

caecum was discarded and the colon and small intestine rinsed with 1x PBS to remove 

fecal material. The small intestine was cut equally into 3 pieces. Each intestine section 

was curled up in a histology cassette and fixed in 4% buffered formaldehyde solution at 

4°C for 48 h. After the samples were dehydrated and embedded in paraffin, 4 μm tissue 

sections were sliced and mounted on superfrost glass microscope slides (Menzel Gläser, 

Braunschweig). Slices were dried for 1 week at room temperature, and baked at 45°C 
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for 1 h to improve the adherence of the tissue to the glass microscope slides and to melt 

the paraffin. They were deparaffinised and rehydrated as described above (Chapter 

3.2.5.1) and heat-induced epitope retrieval was performed by cooking in Target 

Retrieval Solution (Dako, Hamburg) at 99°C for 40 min. Cooled slices were washed 2 

times in 1x TBS for 2 min, incubated in rabbit serum (PromoCell, Heidelberg) diluted 

1: 10 in 1x TBS for 30 min and treated with rat anti-BrdU primary antibody (Serotec, 

Düsseldorf) diluted 1: 50 in 1x TBS for 1 hour. The slices were washed 2 times for 

2 min in 1x TBS and incubated in 3% H2O2 (Roth, Karlsruhe) for 10 min. The samples 

were then washed 3 times in 1x TBS for 2 min and incubated in rabbit anti-rat 

secondary antibody (Serotec, Düsseldorf) diluted 1: 50 in 1x TBS for 30 min. They 

were washed again 3 times for 2 min in 1x TBS and subsequently treated with 

diaminobenzidine solution (Sigma-Aldrich, Deisenhofen) until the required staining 

strength was achieved. The staining reaction was stopped by washing in 1x TBS. Next, 

slices were stained in hematoxylin solution according to Mayer for 30 s, rinsed under 

running tap water for approximately 10 min, dehydrated to Roti
®
-Histol as described 

above (Chapter 3.2.5.1) and mounted with mounting medium and cover glass slides. All 

incubation, washing and staining steps were carried out at room temperature. To 

evaluate intestinal proliferation the number of BrdU-stained cells was counted in 20 

crypts of the small intestine and 20 crypts of the colon per mouse.  

 

10x TBS: 

NaCl  80.0 g 

Tris  30.0 g 

Bidistilled water up to  1 l 

Adjusted to pH 7.4 

 

3.2.6.2 Matrix metalloproteinase-7 (MMP-7) staining 

MMP-7 staining was performed to identify Paneth cells. Intestines were processed, 

formaldehyde fixed and paraffin embedded as described above (Chapter 3.2.6.1) and 

4 μm tissue sections were cut, mounted on superfrost microscope glass slides and dried 

at 37°C for 3 d. For antigen unmasking, deparaffinised sections were sub-boiled at 95°C 

for 40 min in 10 mM sodium citrate buffer (pH 6.0). Cooled sections were incubated in 

methanol containing 3% H2O2 for 30 min, washed 3 times for 5 min in 1x PBS, treated 

with 0.5% BSA dissolved in 1x PBS for 30 min and incubated overnight at 4°C in goat 
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anti-MMP-7 (Santa Cruz Biotechnology, Heidelberg) primary antibody diluted 1: 100 in 

1x PBS. Next day sections were washed 3 times for 5 min in 1x PBS and incubated in 

donkey anti-goat biotinylated secondary antibody (Santa Cruz Biotechnology, 

Heidelberg) diluted 1: 200 in 1x PBS for 30 min. After being treated with avidin-biotin-

peroxidase complexes (Vector Laboratories, Burlingame, USA) for 30 min, the sections 

were washed 3 times for 5 min in 1x PBS and incubated in diaminobenzidine solution 

for 10 min. The staining reaction was stopped by washing for 5 min in 1x PBS. Finally, 

the sections were washed for 5 min in bidistilled water, stained in hematoxylin solution 

according to Mayer for 30 s, rinsed under running tap water for approximately 10 min, 

dehydrated to Roti
®

-Histol as described above (Chapter 3.2.5.1) and mounted with 

mounting medium and cover glass slides. Incubation, washing and staining steps were 

performed at room temperature if not differently stated.    

 

3.2.6.3 Cleaved caspase-3 staining  

To identify apoptotic cells, cleaved caspase-3 staining was performed on intestinal 

tissue sections. Intestines were processed, formaldehyde fixed and paraffin embedded as 

described above (Chapter 3.2.6.1), and 4 μm tissue sections were cut, mounted on 

superfrost microscope glass slides and dried at 37°C overnight. Sections were 

deparaffinised in Roti
®

-Histol for 10 min, incubated in ethanol for 10 min and treated 

with 96% ethanol for 2 min before being transferred to methanol containing 3% H2O2. 

For antigen retrieval, slices were cooked in 1x TBS containing 0.001% Tween
®
20 in a 

pressure cooker. After incubation in 1x TBS containing 5% goat serum (Sigma-Aldrich, 

Deisenhofen), the sections were treated with avidin blocking reagent (Vector 

Laboratories, Burlingame, USA) for 15 min, washed in 1x TBS for 1 min, and treated 

with biotin blocking reagent (Vector Laboratories, Burlingame, USA) for 15 min. After 

being incubated with primary rabbit anti-cleaved caspase-3 antibody (Cell Signaling, 

Danvers, USA) diluted 1: 200 in 1x TBS, sections were washed 3 times for 5 min in 1x 

TBS and incubated with goat anti-rabbit secondary antibody (DAKO, Hamburg) diluted 

1: 200 in 1x TBS. Sections were then treated with avidin-biotin-peroxidase complexes 

for 30 min, washed 2 times in 1x TBS for 5 min and incubated with diaminobenzidine 

solution for 5 min. Thereafter slices were processed as described above (Chapter 

3.2.6.2). The number of cleaved caspase-3-positive cells was counted in 50 crypt-villus 

units in the small intestine and in 100 crypts in the colon per mouse. 
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3.2.6.4 β-catenin staining 

Intestines were processed, formaldehyde fixed and paraffin embedded as described 

above (Chapter 3.2.6.1). Immunohistochemistry of β-catenin in the intestine was 

performed by the Institute of Pathology, University of Munich. β-catenin-stained 

intestinal sections were evaluated for the accumulation of nuclear β-catenin by 2 

investigators who were blinded to the experimental groups. Within neoplastic tissue the 

percentage of nuclear β-catenin-positive cells was estimated. 

 

3.2.6.5 Ki-67 staining 

Intestines were processed, formaldehyde fixed and paraffin embedded as described 

above (Chapter 3.2.6.1). Immunohistochemistry of Ki-67 in the intestine was performed 

by the Institute of Pathology, University of Munich. The percentage of Ki-67-positive 

cells within neoplastic tissue was estimated by 2 investigators who were blinded to the 

experimental groups.  

 

3.2.7 Analysis of body and organ growth 

Body weight of mice was recorded using a laboratory scale (BP4100S, Sartorius, 

Göttingen). Nose-rump-length (NRL), defined as the distance from the tip of the nose to 

the base of the tail, was measured under anesthesia with the aid of a ruler. Anesthesia 

was induced by intraperitoneal injection of ketamine (100 mg/kg body weight, Bremer 

Pharma, Warburg) and xylazine (5 mg/kg body weight, Selectavet, Munich). To 

determine organ weight, the animals were killed, the organs (heart, lungs, liver, spleen, 

kidneys) immediately excised, blotted dry from blood on absorbent paper and weighted 

to the nearest mg with a laboratory scale (BP221S, Sartorius, Göttingen). For bilateral 

organs the paired weight was recorded. Carcass weight was determined after the 

removal of organs, fat pads, skin and head. For long bone size analysis, femora were 

dissected, coarsely freed from surrounding tissue, incubated in 1x PBS at 80°C for 2 h, 

and maintained in 1% papain (Merck, Darmstadt) at 37°C overnight. After the bones 

were cleaned with water and dried at 37°C overnight, their length was determined with 

a slide rule. 
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3.2.8 Analysis of adipose tissue parameters 

3.2.8.1 Total body fat content 

Total body fat content and lean mass were analyzed in live mice by magnetic resonance 

imaging (MRI) using the Minispec LF50 (Bruker, Karlsruhe). After recording their 

body weight, the mice were placed in a perforated plastic cylinder (Bruker, Karlsruhe), 

carefully restrained with the aid of a plastic plunger (Bruker, Karlsruhe) and inserted 

into the Minispec LF50 for a 2 min lasting measurement. Total body fat and lean mass 

values in percent were converted to fat in g. To guarantee accurate measurement and to 

reduce stress in animals, analyses did not start before the mice were 4 weeks of age.    

  

3.2.8.2 Fat pad weight 

Mice were sacrificed, and the epididymal, abdominal and subcutaneous white fat pads 

were excised and weighted to the nearest mg using a laboratory scale. 

 

3.2.9 Analysis of liver triglyceride content 

At necropsy the liver was resected, frozen on dry ice and stored at -80°C until needed. 

50 mg of frozen tissue were transferred to a 5 ml tube containing 500 μl of 0.9% NaCl 

solution and homogenized at 23500 rpm for 60 s. To avoid sample carryover the tip of 

the homogenizer was rinsed with 0.9% NaCl for 30 s after each sample. The 

homogenate was centrifuged at 14.000 x g for 1 min to pelletize tissue debris and the 

supernatant containing the triglycerides was transferred to a clean centrifuge tube. The 

triglyceride content of the supernatant was determined by use of the Triglyceride FS Kit 

(DiaSys, Holzheim). The principle of this test involves enzymatic hydrolysis of 

triglycerides by lipase into glycerol and free fatty acids. The glycerol produced is then 

measured in a series of enzymatic reactions by the formation of a quinoneimine dye. To 

create a standard curve for triglyceride concentration, a dilution series of the 

Triglyceride FS standard (200 mg triglycerides/dl; DiaSys, Holzheim) was prepared. 

10 μl of the supernatant or standard were pipetted in duplicate into the wells of a 96-

well plate, treated with 10 μl of 1% dioxycholic acid (Merck, Darmstadt) and incubated 

for 5 min at 37°C with gentle agitation. 200 μl of Triglyceride FS reagent (DiaSys, 

Holzheim) were added to each well, incubated for 20 min at 37 °C with gentle shaking 

and absorbance was measured in a micro-plate reader at 495 nm against blank. A 

standard curve was generated by plotting absorbance of standards versus their 
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triglyceride concentration. Triglyceride content of samples was calculated with the aid 

of the standard curve. 

 

3.2.10 Evaluation of serum parameters 

3.2.10.1 Blood collection 

Blood was drawn from the retro-orbital sinus with heparinized capillary tubes (Brand, 

Gießen) under ketamine and xylazine injection narcosis (Chapter 3.2.7) and collected in 

a 1.5 ml centrifugation tube. Blood samples were centrifuged at 7.000 x g for 10 min at 

4°C to isolate serum. Serum was stored in aliquots of 50 μl at -80°C until use.  

 

3.2.10.2 Serum free fatty acids 

Free fatty acids were determined in 10 μl of serum using the Free Fatty Acid 

Quantification Kit (Abcam, Cambridge, United Kingdom) according to the 

manufacturer`s manual. The principle of the assay is the conversion of fatty acids to 

their CoA derivatives, which are subsequently oxidized with the concomitant generation 

of color.  

 

3.2.10.3 Serum triglycerides 

Serum triglycerides were measured with the Triglyceride FS Kit. For information on the 

principle of the test and preparation of the standard curve see above (Chapter 3.2.9). 10 

μl of serum and 200 μl of Triglyceride FS reagent were intermixed in the wells of a 96-

well plate in duplicate, incubated for 20 min at 37°C with gentle shaking and 

absorbance was measured in a micro-plate reader at 495 nm against blank. Triglyceride 

concentration of serum samples was calculated using a standard curve.  

 

3.2.11 Analysis of glucose tolerance and insulin tolerance 

After mice were fasted for 16 h (5 pm to 9 am), blood glucose level was measured in a 

drop of blood from the tail vein using a glucometer (Abbot, Ludwigshafen). 

Subsequently mice were injected intraperitoneally either with glucose solution (1.5 g/kg 

body weight; B. Braun, Melsungen) for glucose tolerance test or with insulin (0.75 U/kg 

body weight; B. Braun, Melsungen) for insulin tolerance test. In both assays blood 

glucose levels were determined 20, 40, 60 and 120 min after administration of glucose 

or insulin.  
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3.2.12 Evaluation of preadipocyte differentiation in primary cell culture 

Stromal vascular (SV) cells were isolated, cultured and differentiated according to 

Hausman et al., 2008. 

 

3.2.12.1 Isolation of SV cells 

For isolation of SV cells, inguinal fat pads of 5 mice were pooled. Mice were killed by 

cervical dislocation, the lower abdominal area disinfected with isopropanol and the 

abdominal skin incised in the mid-line. Inguinal fat pads were dissected using sterile 

instruments and transferred to a 10 cm Petri dish (Becton Dickinson, Heidelberg) filled 

with 20 ml prewarmed DMEM/F12 medium (PAA Laboratories GmbH, Pasching, 

Austria) containing 100 units penicillin (Sigma-Aldrich, Deisenhofen) and 0.1 mg 

streptomycin (Sigma-Aldrich, Deisenhofen) per ml (in the following referred to as 

DMEM/F12 medium). Inguinal fat pads were transferred to a sterile 100 ml glass 

beaker, and minced with sterile pointed scissors. After adding 10 ml of digestion buffer, 

the beaker content was transferred to a 100 ml Erlenmeyer flask.  

 

Digestion buffer: 

HEPES (Sigma-Aldrich, Deisenhofen) 0.1 M 

NaCl 0.12 M 

KCl 50 mM 

D-glucose (Sigma-Aldrich, Deisenhofen) 5 mM 

BSA 1.5% 

Calcium chloride (Merck, Darmstadt) 1 mM 

Collagenase type I (Sigma-Aldrich, Deisenhofen)  10.000 U 

Dissolved in bidistilled water  

 

Following incubation in a rotating shaker (Infors AG, Bottmingen) for 60 min at 37°C 

and 115 rpm, the undigested tissue was removed by pouring the solution through a 

100 μm nylon cell strainer (Becton Dickinson, Heidelberg) into a 50 ml centrifugation 

tube (Becton Dickinson, Heidelberg). Additional 20 ml of DMEM/F12 medium were 

added and the cell suspension centrifuged at 200 x g for 10 min at room temperature to 

pelletize SV cells. The supernatant was removed and cells resuspended in 30 ml of fresh 

DMEM/F12 medium containing 10% fetal bovine serum (FBS; Biochrom AG, Berlin). 

To remove cell clumps, the cell suspension was filtered through a 40 μm nylon cell 
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strainer (Becton Dickinson, Heidelberg) into a 50 ml centrifugation tube. After 

centrifugation at 200 x g for 10 min at room temperature, the supernatant was discarded, 

cells resuspended in 7.5 ml of DMEM/F12 medium containing 10% FBS and plated in 

12 well cell culture plates (Becton Dickinson, Heidelberg) at a density of 4.8 x 10
3 

cells/cm
2
. 

 

3.2.12.2 Maintenance and differentiation of SV cells 

One day after plating, the medium was replaced with DMEM/F12 medium containing 

5% FBS and exchanged every 2 d until the cells became confluent. Differentiation of 

preadipocytes was induced by incubating confluent cells with induction medium for 

72 h.  

 

Induction medium: 

Dexamethasone (Sigma-Aldrich, Deisenhofen)  0.1 μM 

IBMX (Sigma-Aldrich, Deisenhofen) 250 μM 

Insulin   17 nM 

Dissolved in DMEM/F12 medium containing 5% FBS 

 

The induction medium was exchanged for DMEM/F12 medium containing 10% FBS 

and 17 nM insulin. The insulin containing medium was removed after 72 h and replaced 

with DMEM/F12 medium containing 10% FBS. Every other day 70% of the medium 

was substituted with fresh DMEM/F12 medium containing 10% FBS until cells were 

filled with lipid droplets. 

 

3.2.12.3 Oil red O staining 

Adipocyte lipid droplets were identified by oil red O staining. The medium was 

removed, each well rinsed with 500 μl 1x PBS and cells fixed by addition of 1 ml 4% 

buffered formaldehyde solution. After 10 min the fixative was removed, cells rinsed 

with 60% isopropanol for 30 s and oil red O stain (0.34 mM oil red O (Sigma-Aldrich, 

Deisenhofen), dissolved in 60% isopropanol) applied 1 ml per well for 10 min. Cells 

were rinsed again with 60% isopropanol for 30 s and 500 μl 1x PBS were added to each 

well. Oil red O staining was accomplished according to Ramírez-Zacarías et al., 1992. 
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3.2.12.4 Differentiation scoring 

To evaluate differentiation properties of SV cells the number and size of oil red O-

stained lipid droplets were counted by computer image analysis. Oil red O-stained wells 

were viewed under a light microscope (Olympus, Hamburg) at 100x magnification and 

areas showing a high density of lipid droplets were photographed with a digital camera 

(Olympus, Hamburg). Images were processed with GIMP Portable (Freeware, 

Copyright by John T. Haller) so that all colors, except red, were removed. The 

following commands were used for the conversion: Color saturation (All: -100, Red: 

+100), Transparency, New layer (Layer fill type: White), Lower layer. An accurate 

conversion was ensured by comparing the converted images to the original images. 

Photos were converted into black and white and the quantity and mean area of black 

particles were analyzed with Image J (Freeware) using the following commands: Image 

(8-bit), Threshold (Default, Red), Analyze Particles (Size: 10-Infinity; Circularity: 0.00-

1.00). To minimize incorrectness caused by staining artifacts values less than 10
2
 pixel 

were excluded from analysis. An example of digital image processing is shown in Fig. 

3.2.  
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Fig. 3.2 Oil red O-stained differentiated SV cells were photographed at 100x 

magnification (A). All colors except red were erased by digital image processing (B) 

and photos converted into black and white (C). The number and mean area of black 

particles were counted by computer image analysis.   

3.2.13 Analysis of aberrant crypt foci (ACF) 

3.2.13.1 Tissue collection 

Mice were sacrificed at the age of 5 and 10 weeks, respectively. The colon was excised 

and rinsed with 1x PBS to remove fecal content. After the colon was cut into 2 equal 

sections, each segment was put on a Super Frost microscope glass slide, opened 

longitudinally and laid open. A piece of filter paper cut the size of the glass slide was 

placed on the top and attached by the aid of paper clips. Samples were fixed in 4% 

buffered formaldehyde solution at 4°C for a minimum of 24 h. 

 

3.2.13.2 Methylene blue staining 

The formaldehyde-fixed intestinal sections on the microscope glass slides were washed 

2 times for 10 min in 1x PBS. Filter paper and paper clips were removed and samples 

stained in 0.1% methylene blue staining solution (Sigma-Aldrich, Deisenhofen) for 
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3 min. The colon was mounted with liquid gelatin (Merck, Darmstadt) and a cover glass 

slide, and the samples were stored at 4°C until the gelatin solidified. Methylene blue 

staining was accomplished according to Bird, 1987. 

 

3.2.13.3 ACF scoring 

Whole-mount colonic samples were placed under a dissecting microscope (Zeiss, Jena) 

and examined at 25x magnification. The criteria used to identify ACF were increased 

crypt size (in comparison to most crypts in the field), round or elongated luminal 

openings and a thickened layer of epithelial cells that stain more intensely with 

methylene blue (Bird, 1987; Fenoglio-Preiser and Noffsinger, 1999; Boivin et al., 2003; 

Gupta et al., 2008). 

 

3.2.14 Analysis of weight and length of the intestine  

Mice were sacrificed and the intestine excised immediately. The caecum was discarded 

and the small intestine and colon rinsed with 1x PBS to remove fecal material. Small 

intestine and colon were weighted to the nearest mg with a laboratory scale and their 

length was measured with a ruler. 

 

3.2.15 Analysis of intestinal neoplastic lesions 

3.2.15.1 Tissue collection 

Mice were killed, the intestine dissected and transferred to a plastic dish containing 1x 

PBS. The caecum was discarded and the colon and small intestine rinsed with 1x PBS 

to remove fecal material. The small intestine was cut into 3 equal segments and each 

intestinal section was placed on a piece of filter paper, opened longitudinally, laid open 

and fixed in 4% buffered formaldehyde solution at 4°C for a minimum of 24 h.  

 

3.2.15.2 Tumor scoring  

Formaldehyde-fixed intestinal sections were placed under running water for 10 min to 

remove excess formaldehyde. The intestine was detached from the filter paper and 

tumor number and their maximum diameter were determined under a dissecting 

microscope at 10x magnification. Depending on their size, tumors of the small intestine 

were classified into the categories “≤ 2 mm” and “> 2.5 mm”. Because of uncertainty 

about the precise anatomic demarcation, the colon and rectum were scored as “colon”. 
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A quantity of small intestinal lesions and all colonic tumors sized ˃ 2 mm in diameter 

were resected including adjacent normal tissue, dehydrated and embedded in paraffin. 4 

µm tissue sections were cut in parallel with the mucosal surface, mounted on glass 

microscope slides and stained with H&E. Histopathologic analysis of neoplastic lesions 

was performed in a blinded manner by Dr. Jens Neumann, Institute of Pathology, 

University of Munich, using standard criteria for the classification of human adenomas 

of the colon and the assessment of the degree of dysplasia. The diagnosis intramucosal 

adenocarcinoma was made for lesions with high grade dysplasia/IEN in combination 

with focal invasion of the lamina propria mucosae. Adenocarcinomas invading through 

the lamina muscularis mucosae into the tela submucosa were termed invasive 

adenocarcinoma.      

 

3.2.16 Statistical analysis 

All data are displayed as means ± standard deviation. All data were analyzed for normal 

distribution using Kolmogorov-Smirnov test with Dallal-Wilkinson-Lilliefor P value 

(GraphPad Prism version 4.00 for Windows, GraphPad software, San Diego, USA). To 

analyze significance of differences, two-tailed Student`s t-test (normally distributed 

data) or two-tailed Mann Whitney U test (not normally distributed data) were performed 

(GraphPad Prism version 4.00 for Windows). Body weight gain, total body fat gain and 

lean mass gain were evaluated by 2-factorial ANOVA (GraphPad Prism version 4.00 

for Windows). P values < 0.05 were considered to be statistically significant.   

 

3.2.17 Primer sequences 

Sequences of the primers used in the experiments are the following: 

 

Name Sequence 

β-actinFW 5’-GGCATCGTGATGGACTCC-3’ 

β-actinRV 5’-GTCGGAAGGTGGACAGGG-3’ 

Apc33 5’-GCCATCCCTTCACGTTAG-3’ 

Apc34 5’-TTCCACTTTGGCATAAGGC-3’ 

Apc758 5’-TTCTGAGAAAGACAGAAGTTA-3’ 

Cre1 5’-AATCGCCATCTTCCAGCAGG-3’ 
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Name Sequence 

Cre2 5’-GATCGCTGCCAGGATATACG-3’ 

Dro3’end#1 5’-GCA AAG CTC TAG ATA AGC CAG-3’ 

Dro3’end#2 5’-ACT CCT GTT CAT AAT GGC CAG-3’ 

Dro1homo1 5’-TTCTTTAACTATCTCCTGCCC-3’ 

Dro1homo2 5’-CATCATTGTATTATCCACTTGG-3’ 

Dro1rec 5’-ACGTGTCTCTGAGTTTCACAAC-3’ 

mDro1FW 5’-CTTCCTCCTGCTCCAGTCAC-3’ 

mDro2RV 5’-CTGGATAGGCAGTGGTGGTT-3’ 

mGapdhFW 5’-TCATCAACGGGAAGCCCATCAC-3’ 

mGapdhRV 5’-AGACTCCACGACATACTCAGCACCG-3’ 

Mom1#1 5’-GTC-CAA-GGG-AAC-ATT-GCG-3’ 

Mom1#2 5’-AGA-ACA-GGT-GAT-TTG-GCC-C-3’ 

 

3.2.18 Materials 

3.2.18.1 Machines  

Agarose gel electrophoresis chamber   MWG-Biotech, Ebersberg 

Analytical balance   Sartorius, Göttingen 

Benchtop 96 tube working rack   Stratagene, La Jolla, USA 

Blunt forceps   Aesculap, Tuttlingen 

Digital camera  Olympus, Hamburg 

Dissecting microscope   Zeiss, Jena 

Fine scissors   Aesculap, Tuttlingen 

Gel documentation system   Intas, Göttingen 

GIMP Portable  Freeware, Copyright by John T.  

  Haller 

Glucometer Precision   Abbott, Ludwigshafen 

GraphPad Prism version 4.00 for Windows  GraphPad software, San Diege, USA 

Heating plate with magnetic stirrer   IKA process Equipment, Staufen 

Homogenizer   ART Labortechnik, Müllheim 

Hybridization oven  Saur, Reutlingen 

Hybridization tube   Bachofer, Reutlingen 

Image J  Freeware  

Incubator   Heraeus, Munich 
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Laboratory scale, BP221S  Sartorius, Göttingen 

Laboratory scale, BP4100S  Sartorius, Göttingen 

Light microscope   Olympus, Hamburg 

Mastercycler
®
 ep realplex PCR machine  Eppendorf, Hamburg 

MicroPlate reader  Tecan, Männedorf, Switzerland 

Microwave   Siemens, Munich 

Mini Protean
®
 3 cell system   Bio-Rad, Munich 

Minispec LF50   Bruker, Karlsruhe 

Mouse restrainer   Bruker, Karlsruhe 

Pointed scissors   Aesculap, Tuttlingen 

Rotating shaker   Infors AG, Bottmingen  

Semidry electroblotting apparatus   Bio-Rad, Munich  

Spectrophotometer   Beckman, Palo Alto, USA 

Table centrifuge (5417R)  Eppendorf, Hamburg 

Thermal cycler   Biometra, Göttingen 

Thermomixer 5436   Eppendorf, Hamburg 

UV-Crosslinker   Biometra, Göttingen 

 

3.2.18.2 Consumables 

Blotting paper   Bio-Rad, Munich 

Cannulas   B.Braun, Melsungen 

Centrifugation tube (15 ml, 50 ml)   Becton Dickinson, Heidelberg 

Centrifuge tube (0.5 ml, 1.5 ml, 2.0 ml)   Eppendorf, Hamburg 

Chemoilluminiscence film   GE Healthcare, Munich 

Cover glass slides   VWR International, Darmstadt 

Disposable syringes (2, 5, 10, 20 ml)  Codan Medical ApS, Roedby,  

 Denmark 

Filter paper   GE Healthcare, Munich 

Glass microscope slides   Menzel-Gläser, Braunschweig 

Heat sealing foil   Eppendorf, Hamburg 

Heparinized capillary tubes  Brand, Gießen 

High fat diet  ssniff, Soest 

Histology cassettes  Medite, Burgdorf 

Multi-well cell culture plates   Becton Dickinson, Heidelberg 
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Nylon cell strainer (40 μm, 100 μm)   Becton Dickinson, Heidelberg 

Nylon membrane  Pall Corporation, Pensacola, USA 

PCR-reaction-tubes   G. Kisker GbR, Steinfurt 

Petri dishes (diameter 10 cm)   Becton Dickinson, Heidelberg  

Plastic tubes (5 ml)   Greiner Bio-One, Frickenhausen 

PVDF membrane   Millipore, Billerica, USA 

Real-time PCR plates (96 well)  Eppendorf, Hamburg 

Standard chow  ssniff, Soest  

Super Frost microscope glass slides  Menzel Gläser, Braunschweig 

 

3.2.18.3 Chemicals 

2-mercaptoethanol  Merck, Darmstadt 

Acrylamide, 30%   Bio-Rad, Munich 

Agarose    Invitrogen, Karlsruhe 

Ammonium persulfate, 10%   Bio-Rad, Munich 

Anti-DIG-AP Fab fragments   Roche, Mannheim 

Avidin blocking reagent   Vector Laboratories, Burlingame, 

USA 

Avidin-biotin-peroxidase complexes   Vector Laboratories, Burlingame, 

USA 

BamHI buffer   MBI Fermentas, St. Leon-Rot 

BamHI restriction enzyme  MBI Fermentas, St. Leon-Rot 

Bichinonic acid   Sigma-Aldrich, Deisenhofen 

Biotin blocking reagent   Vector Laboratories, Burlingame, 

USA 

Blocking solution  Roche, Mannheim 

BrdU  Roche, Mannheim 

Bromphenol blue Serva, Heidelberg 

BSA   Roth, Karlsruhe 

Buffer PstI   MBI Fermentas, St. Leon-Rot 

Calcium chloride  Merck, Darmstadt 

Chloroform  Merck, Darmstadt 

Collagenase type I  Sigma-Aldrich, Deisenhofen 

CSPD ready-to-use detection solution Roche, Mannheim 
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CuSO4   Sigma-Aldrich, Deisenhofen 

DEPC  Sigma-Aldrich, Deisenhofen 

D-Glucose  Sigma-Aldrich, Deisenhofen 

Diaminobenzidine   Sigma-Aldrich, Deisenhofen 

Diethylpyrocarbonate  Sigma-Aldrich, Deisenhofen 

DIG Block and Wash Buffer Set Roche, Mannheim 

DIG Easy Hyb buffer  Roche, Mannheim 

DIG Probe Synthesis kit  Roche, Mannheim 

DMEM/F12 cell culture medium PAA Laboratories GmbH, Pasching, 

Austria 

DNA Rehydration Solution  Promega, Mannheim 

DNase I Amp Grade, 1U/ µl  Invitrogen, Karlsruhe. 

DNase I reaction buffer, 10x  Invitrogen, Karlsruhe 

DNase I, Amplification Grade  Invitrogen, Karlsruhe 

dNTPs (DATP, dTTP, dCTP, dGTP)  MBI Fermentas, St. Leon-Rot 

Donkey anti-goat biotinylated antibody  Santa Cruz Biotechnology, 

Heidelberg  

DTT, 0.1 M  Invitrogen, Karlsruhe 

ECL Western blotting detection reagent  GE Healthcare, Munich 

EDTA solution, 25 mM   Invitrogen, Karlsruhe 

EDTA  VWR International, Darmstadt 

Enzyme mix  Roche, Mannheim 

Eosin solution   Medite, Burgdorf 

Ethanol  Merck, Darmstadt 

Ethidium bromide  Roth, Karlsruhe 

FBS   Biochrom AG 

Free Fatty Acid Quantification Kit  Abcam, Cambridge, United Kingdom 

Gelatin  Merck, Darmstadt 

Glacial acetic acid   Roth, Karlsruhe 

Glucose solution   B. Braun, Melsungen 

Glycerol  Roth, Karlsruhe 

Glycine   Merck, Darmstadt 

Goat anti-MMP-7 antibody Santa Cruz Biotechnology, 

Heidelberg 
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Goat anti-mouse antibody antibody   MP Biomedicals, Solon, USA 

Goat serum   Sigma-Aldrich, Deisenhofen  

Goat-anti-rabbit antibody   DAKO, Hamburg 

H2O2   Roth, Karlsruhe 

HCl Merck, Darmstadt)  

Hematoxylin solution according to Mayer   Sigma-Aldrich, Deisenhofen 

HEPES  Sigma-Aldrich, Deisenhofen 

Hot-start Taq, 5 U/ µl  Quiagen, Hilden 

IBMX  Sigma-Aldrich, Deisenhofen 

Isopropanol  Merck, Darmstadt 

KCl  Roth, Karlsruhe 

Ketamine  Bremer Pharma, Warburg 

KH2PO4  Merck, Darmstadt 

Loading dye (6x)  MBI Fermentas, St. Leon-Rot 

Methanol  Merck, Darmstadt 

Methylene Blue  Sigma-Aldrich, Deisenhofen 

MgCl2, 25 mM   Invitrogen, Karlsruhe 

MgCl2, 25mM   Qiagen, Hilden 

Milk powder   Roth, Karlsruhe 

Molecular weight marker  MBI Fermentas, St. Leon-Rot 

Mounting medium VWR International, Darmstadt 

Mouse anti-actin antibody  MP Biomedicals, Solon, USA 

Na2HPO4   Merck, Darmstadt 

NaCl  Roth, Karlsruhe 

NaOH  Roth, Karlsruhe  

Nuclei Lysis Solution  Promega, Mannheim 

Oil red O   Sigma-Aldrich, Deisenhofen 

PageRuler
TM

Prestained Protein Ladder SM0671 MBI Fermentas, St. Leon-Rot 

Papain  Merck, Darmstadt 

Paraformaldehyde   Sigma-Aldrich, Deisenhofen 

PCR buffer with MgCl2, 10x   Roche, Mannheim 

PCR buffer, 10x   Qiagen, Hilden 

PCR DIG Probe Synthesis mix   Roche, Mannheim 

Penicillin   Sigma-Aldrich, Deisenhofen 
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Protein Precipitation Solution   Promega, Mannheim 

Proteinase K  Roche, Mannheim 

PstI restriction enzyme  MBI Fermentas, St. Leon-Rot  

pUC mix molecular weight marker  MBI Fermentas, St. Leon-Rot 

Q-Solution Qiagen, Hilden 

Rabbit anti-CCDC80 antibody  Acris, Herford 

Rabbit anti-CCDC80 antibody  Sigma-Aldrich, Deisenhofen 

Rabbit anti-cleaved caspase-3 antibody  Cell Signaling, Danvers, USA 

Rabbit anti-rat antibody  Serotec, Düsseldorf 

Rabbit serum  PromoCell, Heidelberg 

Random hexamer primer  Invitrogen, Karlsruhe 

Rat anti BrdU primary antibody Serotec, Düsseldorf 

Restore Western Blot Stripping Buffer  Thermo Scientific, Rockford, USA 

RNase   Roche, Mannheim 

RNase H  Invitrogen, Karlsruhe 

RNaseOUT, 40 U/ µl  Invitrogen, Karlsruhe 

RNeasy Mini kit  Quiagen, Hilden 

Roti
®
-Histol   Roth, Karlsruhe 

RT buffer, 10x   Invitrogen, Karlsruhe 

SDS  Merck, Darmstadt 

Sodium citrate   Merck, Darmstadt  

Spermidine (0.1 M)   Sigma-Aldrich, Deisenhofen 

Streptomycin   Sigma-Aldrich, Deisenhofen 

SuperScript First Strand cDNA Synthesis  Invitrogen, Karlsruhe 

Superscript III RT, 200 U/ µl  Invitrogen, Karlsruhe 

SYBR
®
 Green   Lonza, Basel, Switzerland 

Taq DNA polymeras Kit   Quiagen, Hilden 

Taq Polymerase, 5U/µl  Quiagen, Hilden 

Target Retrieval Solution  Dako, Hamburg 

Temed   Bio-Rad, Munich 

Triglyceride FS Kit  DiaSys, Holzheim 

Triglyceride FS reagent  DiaSys, Holzheim 

Triglyceride FS standard,200 mg/dl  DiaSys, Holzheim 

Tris  Roth, Karlsruhe 
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Tris-HCl   Roth, Karlsruhe 

Triton X-100   Roth, Karlsruhe 

Trizol  Invitrogen, Karlsruhe 

Tween
®
20   Sigma-Aldrich, Deisenhofen 

Washing buffer   Roche, Mannheim 

 

3.2.18.4 Drugs 

Dexamethasone   Sigma-Aldrich, Deisenhofen 

Insulin rapid  B. Braun, Melsungen 

Histoacryl
®
 iquid skin glue  B. Braun, Melsungen 

Xylazine  Selectavet, Munich 
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4. Results 

4.1 Generation of Dro1
-/-

 mice 

4.1.1 Establishment of Dro1
-/-

 mice 

One of the embryonic E14 stem cell clones identified for correct construct integration 

into the Dro1 allele was injected into blastocysts from C57BL/6N mice. Transplantation 

of blastocysts into the uteri of pseudopregnant foster mothers resulted in the birth of 14 

mice of which 8 were identified as being chimeric. Crossing of chimeras into the 

C57BL/6N background and screening of the progeny by PCR identified 3 animals to 

transmit a loxP-flanked Dro1 allele through the germ-line. A Dro1
-/-

 line was 

established by intercrossing mice carrying loxP-flanked Dro1 alleles homozygously to 

mice expressing Cre-recombinase under control of the CMV promoter. Dro1
-/-

 mice 

were viable and fertile, showed no increased morbidity or mortality, and litters from 

Dro1
-/-

 parents were similar in number of progeny (Fig. 4.1A) and gender distribution 

(Fig. 4.1B) as compared to litters from control
 
mice. Genotyping was performed by 

PCR analysis from genomic tail tip DNA using primers Dro1homo1 and Dro1homo2 to 

detect the wildtype and floxed Dro1 locus and primers Dro1homo1 and Dro1rec to 

detect the deleted Dro1 locus (Fig. 4.2). Primers Cre1 and Cre2 were employed to 

identify Cre transgenic mice (Fig. 4.2).  

 

 

 

 

 

 

 

 

 

Fig. 4.1 Litter size (A) and gender distribution (B) in litters from Dro1
-/-

 (knockout) 

parents (n=18 litters) and control animals (n=15 litters).    
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Fig. 4.2 PCR analysis of the Dro1, Cre and β-actin locus. Primers Dro1homo1 and 

Dro1homo2 were derived from sequences upstream of exon 2 and on exon 2 resulting in 

a 173 bp fragment for the wildtype and a 211 bp fragment for the floxed Dro1 locus. To 

detect the deleted Dro1 locus primers Dro1homo1 and Dro1rec were derived from 

sequences upstream and downstream of exon 2, resulting in a 272 bp product for the 

deleted locus. Primers Cre1 and Cre2 were employed to identify Cre transgenic mice. 

PCR for the housekeeping gene β-actin was used as loading control.  

4.1.2 Analysis of genomic recombination 

To verify Cre-recombinase-mediated deletion of Dro1, Southern blot analysis with liver 

genomic DNA from 8-week-old Dro1
fl/fl

, Dro1
-/-

 and wildtype mice was performed. As 

expected, digest with PstI resulted in restriction fragments of 7.6 kb (genomic locus), 

7.0 kb (floxed locus), and 6.4 kb (deleted locus) (Fig. 4.3B). PstI restriction sites and 

calculated restriction fragment sizes are displayed in Fig. 4.3A. Deletion of exon 2 on 

the Dro1 gene was also confirmed by PCR analysis from genomic tail tip DNA using 

primers Dro1homo1 and Dro1rec. Primers were derived from sequences upstream and 

downstream of exon 2, resulting in a 272 bp product for the deleted locus (Fig. 4.2). 
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Fig. 4.3 (A) Schematic representation of the strategy employed for Southern blot 

analysis of the Dro1 locus. PstI restriction sites, the probe binding site and expected 

restriction fragment sizes are indicated. Black boxes: Exons; White box: Probe binding 

site; Shaded box: PGK-neo; White arrows: loxP sequences. (B) Southern blot analysis 

of genomic liver DNA digested with PstI from wildtype (+/+), Dro1
fl/fl

 (fl/fl) and Dro1
-/-

 

(-/-) mice.   

4.1.3 Expression analysis 

To investigate Dro1 expression in Dro1
-/-

 mice RNA was extracted from liver, heart, 

muscle, white adipose tissue, brown adipose tissue, small intestinal epithelium and 

colon epithelium of Dro1
-/-

 and control animals at 4 month of age (n=3/ group). 

Quantitative RT-PCR analysis from cDNA using primers mDro1#1 and mDro1#2 failed 

to detect any significant Dro1 expression in tissues of Dro1
-/- 

mice, confirming the 

genetic deletion of Dro1 (Fig. 4.4A). Moreover, PCR analysis from cDNA using 

primers Dro1homo1 and Dro1homo2 detected a 211 bp fragment in several tissues of 

control (Dro1
fl/fl

) animals that is absent in Dro1
-/-

 mice (Fig. 4.4B). 
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Fig. 4.4 (A) Dro1 expression was evaluated by quantitative RT-PCR analysis from 

cDNA in various tissues of Dro1
-/-

 and control animals (n=3/ group). Shown is one 

representative data set (n=1/ group, analyses done in duplicates) and Dro1 expression is 

presented relative to controls. Primers mDro1#1 and mDro1#2 were derived from 

sequences on exon 2. WAT: White adipose tissue; BAT: Brown adipose tissue; SI: 

Small intestine. (B) Gel electrophoresis of Dro1 PCR products using primers 

Dro1homo1 and Dro1homo2 from cDNA detected a 211 bp fragment in several tissues 

of control (Dro1
fl/fl

) animals that is absent in Dro1
-/-

 mice. PCR of Gapdh demonstrates 

that equal amounts of cDNA were employed. 

 

4.1.4 Protein analysis 

For further investigation of Dro1 expression, Western blot analysis of heart, liver, 

muscle, white adipose tissue and intestinal epithelium from 4-month-old Dro1
-/-

 and 

control mice was performed. It was not possible to detect the mouse DRO1 protein 

using antibodies raised against human DRO1, indicating antigenic differences between 

mouse and human DRO1 (data not shown). 
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4.2 Effects of Dro1 loss on intestinal tumor formation 

DRO1 has been identified in in vitro studies as a putative tumor suppressor gene with 

particular relevance for colorectal carcinogenesis (Bommer et al., 2005). In the 

following the effect of Dro1 deficiency on intestinal epithelium homeostasis and 

intestinal tumor formation was investigated in vivo. 

 

4.2.1 Anatomy and histology of the intestine 

4.2.1.1 Weight and length of the intestine 

To detect changes in intestinal growth, Dro1
-/-

 and control mice (n=3/ group) were 

sacrificed at 2.5 months of age and both the small intestine and colon were weighted 

and measured. Intestinal length was similar in Dro1
-/-

 and control mice and no 

significant differences in wet weight were observed (Table 4.1). 

 

Table 4.1 Mean intestinal length and wet weight of the small intestine and colon in 

Dro1
-/-

 (knockout) and control mice at the age of 2.5 months (n=3/ group). Values are 

presented as means and corresponding standard deviations are presented in brackets.  

Genotype Control Knockout
 

Length (cm)   

Small intestine 45.6 (2.3) 46.1 (3.6) 

Colon 9.9 (0.4) 9.9 (0.1) 

Wet weight (g)   

Small intestine 1.17 (0.11) 1.27 (0.25) 

Colon 0.29 (0.03) 0.28 (0.01) 
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4.2.1.2 Intestinal epithelium 

Studies in colorectal cancer cell lines suggested DRO1 to be involved in detachment-

induced apoptosis (Bommer et al., 2005), a phenomenon essential for the maintenance 

of the intestinal epithelium (Grossmann et al., 2002). To determine the consequences of 

Dro1 loss on the architecture of the intestinal epithelium, well oriented histological 

sections of intestinal rolls of 16-week-old Dro1
-/-

 and control mice were investigated for 

pathologic changes. Microscopic analysis of H&E-stained histological sections showed 

no changes in the intestinal epithelium architecture in Dro1
-/-

 mice (n=3; Fig. 4.5A). 

Evaluation of PAS-stained histological sections of the intestine (n=2/ group) revealed a 

normal distribution of mucus-producing goblet cells (Fig. 4.5A). The ratio of PAS-

positive cells per total cells in the crypt-villus axis of the small intestine, counted in 20 

crypts per mouse, was unchanged in Dro1
-/- 

mice as compared to controls (n=2/ group; 

Fig. 4.5C). Loss of Dro1 had no influence on the positioning of Paneth cells at the 

bottom of the small intestinal crypts as demonstrated by MMP-7 staining (n=2/ group; 

Fig. 4.5B). To evaluate intestinal cell proliferation, 16-week-old Dro1
-/-

 and control 

mice (n=3 /group) were subjected to a single intraperitoneal injection of BrdU 1 h 

before sacrificed. Immunohistochemical detection of BrdU-labeled cells failed to 

demonstrate an abnormal proliferation rate in the small intestine and colon of Dro1
-/-

 

mice, as the mean number of BrdU-positive cells, counted in 20 crypts per mouse and 

intestinal segment, was not significantly different from control mice (Fig. 4.6). 

Moreover, the positioning of BrdU-positive cells in the crypt was similar in Dro1
-/- 

and 

control mice (Fig. 4.6). As demonstrated by cleaved caspase-3 staining, no significant 

differences in the mean number of apoptotic cells in the intestinal epithelium of the 

small intestine (counted in 50 crypt-villus units per mouse) and colon (counted in 100 

crypts per mouse) were recorded between control and Dro1
-/-

 mice (n=3/ group; Fig. 

4.6).  
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Fig. 4.5 (A) Representative H&E- and PAS-stained intestinal sections from small 

intestine and colon of 16-week-old Dro1
-/-

 (knockout) and control mice. (B) 

Immunohistochemical detection of MMP-7 in the small intestine of 16-week-old Dro1
-/-

 

(knockout) and control mice. Black arrowheads indicate localization of MMP-7 positive 

cells. (C) Ratio of PAS-positive cells per total cells in the crypt-villus axis of the small 

intestine in 16-week-old Dro1
-/-

 (knockout) and control mice, counted in 20 crypts per 

mouse (n=2/ group).  
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Fig. 4.6 Immunohistochemical detection of BrdU and cleaved caspase-3 in the small 

intestine and colon of 16-week-old Dro1
-/-

 (knockout) and control mice. (B) Mean 

number of BrdU-positive cells, counted in 20 crypts per mouse and intestinal segment, 

in the small intestine and colon of Dro1
-/-

 and control mice (n=3/ group). (C) Mean 

number of cleaved caspase-3-positive cells in the small intestine and colon of Dro1
-/-

 

and control mice, counted in 50 crypt-villus units in the small intestinal and 100 crypts 

in the colon per mouse (n=3/ group).  

 

Colon

Control Knockout
0.00

0.05

0.10

Colon

Control Knockout
0

2

4

6

8



Results 

 

 

62 

4.2.2 Spontaneous intestinal tumor formation  

DRO1 was postulated to be a putative tumor suppressor gene (Bommer et al., 2005). 

Since loss-of-function mutations in tumor suppressor genes are a key aspect of 

colorectal carcinogenesis (Fearon and Vogelstein, 1990; Arnold et al., 2005; Fearon, 

2011), we investigated whether loss of Dro1 initiates intestinal neoplasia. Dro1
-/-

 (n=13) 

and control mice (n=16) of both genders were killed at the age of 18 months and the 

intestines were examined for visible polyps under a dissecting microscope. 

Independently of the Dro1 status no intestinal tumors were observed.   

 

4.2.3 Intestinal tumor formation in Apc
+/Min

 mice 

Since Dro1
-/-

 mice showed no spontaneous tumor formation in the intestinal tract, we 

assumed that loss of Dro1 alone is not sufficient to initiate intestinal tumorigenesis. 

Therefore, Dro1
-/-

 mice were introduced into the Apc
+/Min

 background, a widely used 

intestinal tumor mouse model (Moser et al., 1990), to investigate the impact of Dro1 

deficiency in mice already predisposed to tumor formation. Apc
+/Min

 mice were 

genotyped by PCR analysis from genomic tail tip DNA using primers Apc33, Apc34 

and Apc758 (Fig. 4.7).  

 

 

 

Fig. 4.7 Detection of the Apc
+
 and Apc

Min
 allele by PCR analysis.  
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4.2.3.1 Morbidity and mortality 

Mice on the Apc
+/Min

 background were surveyed daily for symptoms of illness and 

sacrificed when moribund. Dro1
-/-

;Apc
+/Min

 mice exhibited significantly reduced 

survival when compared to Apc
+/Min

 controls (P=0.0004; Fig. 4.8). Whereas compound 

mutant mice were moribund at an average age of 92 d, Apc
+/Min

 control animals 

survived up to an average age of 142 d. Independently of the Dro1 status, morbidity was 

hallmarked by body weight loss, hypothermia, bloody faeces, severe anemia, intestinal 

prolapse, and lethargy. Necropsy showed that severe symptoms of distress were most 

probably due to intestinal obstruction by tumor and intestinal hemorrhage. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.8 Kaplan-Meier survival curve for Dro1
-/-

;Apc
+/Min

 (knockout; n=20) and Apc
+/Min 

control mice (control; n=18).  
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4.2.3.2 Intestinal tumor number and size 

To investigate a possible effect of Dro1 deficiency on tumor formation in Apc
+/Min

 

mice, the intestines of Dro1
-/-

;Apc
+/Min

 and Apc
+/Min

 control mice were examined under 

a dissecting microscope for tumor number, size and localization at different ages. 

Because of uncertainty about the precise anatomic demarcation, the colon and rectum 

were scored as “colon”. Tumors of the caecum were not investigated in the present 

study. 

Moribund Dro1
-/-

;Apc
+/Min

 (n=14) as well as Apc
+/Min

 control mice (n=19) developed a 

multitude of tumors throughout the entire small intestine. Average small intestinal 

tumor multiplicity was similar in both groups (Fig. 4.9A). Evaluation of mean tumor 

frequency between different sites of the small intestine showed that the vast majority of 

small intestinal polyps localized to the middle and distal segment regardless of the Dro1 

status (Fig 4.9B). Likewise, no differences in small intestinal tumor size distribution 

were recorded (Table 4.2).  

        

 

  

 

 

 

Fig. 4.9 Small intestinal tumor number (A) and distribution of tumors between the 

proximal, middle and distal section of the small intestine (B) in moribund Apc
+/Min

 

control (control; n=19) and Dro1
-/-

;Apc
+/Min

 (knockout; n=14) mice.  

Table 4.2 Size distribution of all tumors recorded in the small intestines of moribund 

Apc
+/Min

 control (control) and Dro1
-/-

;Apc
+/Min

 (knockout) mice. 

Genotype Control (n=19) Knockout (n=14) 

No. of tumors recorded 2547 2057 

Thereof ≤ 2.5 mm (%) 2230 (87.6%) 1848 (89.9%) 

>2.5 mm (%) 317 (12.4%) 208 (10.1%) 
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By contrast, differences in colonic tumor frequency between moribund Dro1
-/-

;Apc
+/Min 

(n=17) and Apc
+/Min

 control mice (n=16) were visible to the unaided eye at necropsy 

(Fig. 4.10). Microscopic analysis revealed a more than 3-fold increase in average 

colonic tumor number in Dro1
-/-

;Apc
+/Min 

mice as compared to Apc
+/Min 

controls (Fig. 

4.11A). Whereas all Dro1
-/-

;Apc
+/Min 

mice were affected by tumors of the colon, only 

75% of the Apc
+/Min 

control mice developed colonic polyps. The maximum colonic 

tumor number presented by a Dro1
-/-

;Apc
+/Min 

mouse was 31, in Apc
+/Min

 controls it was 

12 (Fig. 4.11A). To analyze mean distribution of tumors between different sites, the 

colon was divided into a proximal and distal section. Independently of the Dro1 status, 

the majority of colonic tumors localized to the distal section (Fig. 4.11B) and the 

percentage distribution of polyps between the proximal and distal colon was unchanged 

by Dro1 loss (Dro1
-/-

;Apc
+/Min

: 10% proximal, 90% distal; Apc
+/Min

 control: 6% 

proximal, 94% distal). Notably, a significant rise in mean tumor number in both the 

proximal and distal colon was observed in Dro1
-/-

;Apc
+/Min

 mice as compared to 

Apc
+/Min

 controls (Fig. 4.11B). Average tumor size (Fig. 4.11C) and tumor size 

distribution (Table 4.3) were similar in Dro1
-/-

;Apc
+/Min

 and Apc
+/Min

 control mice. 

Frequently, tumors of different sizes were observed in the same animal. No visible 

lymph node or distant metastases were recorded at necropsy, independently of the Dro1 

status. 

 

 

 

 

 

 

Fig. 4.10 Representative examples of longitudinally opened distal colon sections of a 

moribund Apc
+/Min 

control (control) and a moribund Dro1
-/-

;Apc
+/Min

 (knockout) mouse. 

Black arrowheads indicate neoplastic lesions. 
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Fig. 4.11 Number of colonic polyps (A), number of tumors recorded for the proximal 

and distal colon (B), and tumor size (C) in moribund Dro1
-/-

;Apc
+/Min

 (knockout; n=17) 

and Apc
+/Min 

control (control; n=16) mice. *: P ≤ 0.05; **: P ≤ 0.01. 

Table 4.3 Size distribution of all colonic polyps recorded in moribund Apc
+/Min

 control 

(control) and Dro1
-/-

;Apc
+/Min

 (knockout) mice. 

Genotype Control (n=16) Knockout (n=17) 

No. of tumors recorded 50 201 

Thereof ≤ 2.5 mm (%) 34 (68.0%) 138 (68.7%) 

> 2.5 mm (%) 16 (32.0%) 63 (31.3%) 
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To obtain insight into developmental aspects of tumor formation, Dro1
-/-

;Apc
+/Min

 and 

Apc
+/Min

 control mice were sacrificed at 5 and 10 weeks of age and the intestines were 

carefully examined.  

Small intestinal lesions were already present in 5-week-old animals of both groups. In 

the cohort of 8 Dro1
-/-

;Apc
+/Min

 mice, 3 animals exhibited a total of 4 small intestinal 

lesions which were all localized to the proximal section. In age-matched Apc
+/Min

 

controls (n=7), a total of 8 tumors developed in 4 mice, thereof 5 localized to the 

proximal, 1 to the middle and 2 to the distal segment. By 10 weeks of age the mean 

frequency of tumors of the small intestine was reduced in Dro1
-/-

;Apc
+/Min

 mice when 

compared to Apc
+/Min

 controls but statistical significance was not reached (P=0.40; Fig. 

4.12A). Consistent with findings in moribund animals, no differences in mean tumor 

frequency between different sites of the small intestine were observed (Fig. 4.12B).  

At the age of 5 weeks, mice were free of colonic polyps independently of the Dro1 

status. However, by 10 weeks of age, colonic tumors were frequently observed in 

Dro1
-/-

;Apc
+/Min

 mice (in 9 out of 10 mice) but were rather rarely present in Apc
+/Min

 

controls (in 3 out of 8 mice). A significant increase in mean colonic tumor multiplicity 

was recorded in 10-week-old Dro1
-/-

;Apc
+/Min

 mice (n=10) compared to similarly aged 

Apc
+/Min

 controls (n=8; Fig. 4.12C). Analysis of tumor distribution between the 

proximal and distal colon showed that lesions were solely committed to the distal 

section. The proximal colon was tumor free in both groups.  

   

   

 

 

 

 

 

 

Fig. 4.12 Small intestinal tumor number (A) and distribution of tumors between the 

proximal, middle and distal section of the small intestine (B) in Apc
+/Min

 control 

(control; n=10) and Dro1
-/-

;Apc
+/Min

 mice (knockout; n=8) at the age of 10 weeks. (C) 

Intestinal colonic tumor number in Apc
+/Min

 control (control; n=8) and Dro1
-/-

;Apc
+/Min

 

mice (knockout; n=10) at the age of 10 weeks. **: P ≤ 0.01.  
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4.2.3.3 Tumor histology 

A large number of representative small intestinal polyps and all colonic tumors > 2 mm 

in diameter were isolated from the intestines of moribund Dro1
-/-

;Apc
+/Min

 (n=21) and 

Apc
+/Min 

control (n=19)
 
mice and investigated by microscopic analysis of several H&E-

stained serial sections.   

Histologically, tumors (n=60) isolated from the small intestines of moribund Dro1
-/-

;Apc
+/Min

 mice corresponded to tubular adenomas with focal high grade 

dysplasia/intraepithelial neoplasia (IEN) of the epithelium (Table 4.4A). The same was 

true for the vast majority (49 of the 50) of lesions resected from the small intestines of 

moribund Apc
+/Min

 control mice (Table 4.4A). Noteworthy, a single lesion isolated from 

a control mouse euthanized at 144 d of age presented an invasive adenocarcinoma with 

infiltration of tumor cells into the tela submucosa.  

Microscopic evaluation of 83 colonic tumors resected from the colons of moribund 

Dro1
-/-

;Apc
+/Min 

mice revealed that 54 polyps (~65%) resembled tubular adenomas with 

focal high grade dysplasia/IEN and 29 lesions (~35%) had progressed to malignancy 

(adenoma/adenocarcinoma ratio of ~2: 1; Table 4.4A). Seventeen (~59%) of the 29 

adenocarcinomas featured intramucosal adenocarcinomas, the remaining (~41%) were 

characterized as invasive adenocarcinoma penetrating through the lamina muscularis 

mucosae. In the cohort of 21 Dro1
-/-

;Apc
+/Min

 mice, 10 animals (48%) harbored at least 

one colonic tumor with malignant growth features. Notably, 28 of the 29 

adenocarcinomas located to the distal colon. In contrast, colonic adenocarcinomas did 

not develop in the colons of Apc
+/Min

 control mice. Polyps isolated from the colons of 

Apc
+/Min

 control mice were classified, without exception, as tubular adenomas with 

focal high grade dysplasia/IEN of the epithelium (Table 4.4A). Small intestinal and 

colonic adenomas in Dro1
-/-

;Apc
+/Min

 mice were histologically similar to Apc
+/Min

 

control tumors. Representative pictures of H&E-stained sections from tumors from 

moribund Apc
+/Min

 control and Dro1
-/-

;Apc
+/Min

 mice are shown in Fig. 4.13. 

Tumor progression was investigated more closely by histopathologic analysis of tumors 

from 10-week-old Apc
+/Min

 control and Dro1
-/-

;Apc
+/Min

 mice. Assessment of a large 

number of small intestinal polyps showed that all lesions featured adenomas with high 

grade dysplasia/IEN of the epithelium regardless of the Dro1 status (Table 4.4B). 

Histopathologic analysis of 14 colonic tumors from Dro1
-/-

;Apc
+/Min

 mice revealed that 

10 lesions resembled adenomas with high grade dysplasia/IEN and 4 had progressed to 

intramucosal adenocarcinoma (adenoma/adenocarcinoma ratio 2.5: 1; Table 4.4B). By 



Results 

 

 

69 

contrast, 5 of the 6 colonic polyps from Apc
+/Min 

control mice were adenomas with high 

grade dysplasia/IEN and a single adenocarcinoma was observed (Table 4.4B). 

 

 

Fig. 4.13 Representative H&E-stained tissue sections from small intestinal and colonic 

tumors from moribund Dro1
-/-

;Apc
+/Min

 (knockout) and Apc
+/Min

 control (control) mice. 

Black arrowheads indicate invasion of tumor cells through the lamina muscularis 

mucosae into the tela submucosa. 
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Table 4.4 Histopathologic classification of tumors dissected from the small intestine and 

colon of moribund (A) and 10-week-old (B) Apc
+/Min 

control (control) and Dro1
-/-

;Apc
+/Min

 (knockout) mice. For histopathologic classification, small intestinal tumors 

were selected at random. Colonic polyps > 2.0 mm in diameter were analyzed 

A Moribund mice 

Genotype Control (n=19) Knockout (n=21) 

Small intestine 

No. of tumors analyzed 

 

60 

 

50 

Thereof    adenoma 59 (98.3%) 50 (100%) 

                adenocarcinoma 1 (1.7%) - 

   

Colon   

No. of tumors analyzed 15 83 

Thereof    adenoma 15 (100%) 54 (65.1%) 

                adenocarcinoma - 29 (34.9%) 

 

B 10 weeks of age 

Genotype Control (n=15) Knockout (n=16) 

Small intestine 

No. of tumors analyzed 

 

50 

 

50 

Thereof    adenoma 50 (100%) 50 (100%) 

                adenocarcinoma  - - 

   

Colon   

No. of tumors analyzed 6 14 

Thereof    adenoma 5 (83.4%) 10 (71.4%) 

                adenocarcinoma 1 (16.6%) 4 (28.6%) 
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4.2.3.4 Tumor proliferation rate 

The ability to sustain chronic proliferation constitutes the most fundamental hallmark of 

cancer cells (Hanahan and Weinberg, 2011). To investigate a probable effect of Dro1 

deficiency on the cellular proliferation rate in colorectal tumors of moribund Apc
+/Min

 

mice, immunohistochemical staining of Ki-67, a cell cycle related protein, was 

performed on tissue sections of Apc
+/Min

 adenomas (n=11), Dro1
-/-

;Apc
+/Min

 adenomas 

(n=15) and Dro1
-/-

;Apc
+/Min

 adenocarcinomas (n=14). Compared to normal intestinal 

epithelium, cellular proliferation was disorganized and profoundly increased in all 

categories of lesions analyzed (Fig. 4.14A). Quantification of the number of Ki-67-

positive cells revealed that, on average, the percentage of proliferating cells was 

unchanged between Dro1
-/-

;Apc
+/Min

 adenomas, Dro1
-/-

;Apc
+/Min

 adenocarcinomas and 

Apc
+/Min

 control adenomas (Fig. 4.14B). Furthermore, no differences in the distribution 

of Ki-67 cells throughout neoplastic lesions were observed (Fig. 4.14A).   
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Fig. 4.14 (A) Immunohistochemical staining of Ki-67 in colorectal tumors isolated from 

moribund Apc
+/Min 

control (control) and Dro1
-/-

;Apc
+/Min

 (knockout) mice. (B) 

Quantification of Ki-67-positive cells in colonic tumors of moribund Apc
+/Min

 control 

and Dro1
-/-

;Apc
+/Min 

mice (n=11 for Apc
+/Min

 control adenomas, n=15 for Dro1
-/-

;Apc
+/Min

 adenomas, n=14 for Dro1
-/-

;Apc
+/Min

 adenocarcinomas).  
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4.2.3.5 Nuclear β-catenin accumulation 

To investigate whether loss of Dro1 impacts accumulation of nuclear β-catenin within 

colonic tumors of moribund Apc
+/Min

 mice, immunohistochemical staining of β-catenin 

was performed on Apc
+/min

 control adenomas (n=12), Dro1
-/-

;Apc
+/Min

 adenomas (n=11) 

and Dro1
-/-

;Apc
+/Min

 adenocarcinomas (n=14).  

Elimination of Dro1 had no influence on β-catenin staining patterns in morphologically 

normal intestinal epithelium, in which β-catenin was distributed to the cell membrane 

and was rarely observed in cells located at the crypt base (Fig. 4.15A).  

Within neoplastic tissue nuclear β-catenin staining was strongly increased compared to 

normal intestinal epithelium independent of the Dro1 status and malignant progression 

(Fig. 4.15A). The mean percentage of tumor cells exhibiting positive nuclear β-catenin 

staining was similar in Dro1
-/-

;Apc
+/Min

 adenomas when compared to adenomas derived 

from Apc
+/Min

 control mice (Fig. 4.15B). Furthermore, no significant differences in the 

mean percentage of β-catenin positive nuclei were observed between adenomas and 

adenocarcinomas from Dro1
-/-

;Apc
+/Min

 mice (Fig. 4.15B).  

The staining intensity within the nucleus was evaluated by scoring changes in the 

intensity of staining relative to normal epithelium within the same section. Nearly all 

lesions were characterized by strong nuclear β-catenin staining. Noteworthy, low levels 

of nuclear staining were only observed within an Apc
+/Min 

control adenoma.  
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Fig. 4.15 (A) Immunohistochemical staining of β-catenin in the normal intestinal 

epithelium, in colorectal adenoma and in adenocarcinoma from moribund Apc
+/Min 

control (control) and Dro1
-/-

;Apc
+/Min

 (knockout) mice. (B) Percentage of β-catenin-

positive nuclei in colonic tumors from moribund Apc
+/Min

 (co) and Dro1
-/-

;Apc
+/Min

 (ko) 

mice (n=12 for Apc
+/Min

 control adenomas, n=11 for Dro1
-/-

;Apc
+/Min

 adenomas, n=14 

for Dro1
-/-

;Apc
+/Min

 adenocarcinomas).  
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4.2.3.6 ACF formation 

ACF are putative precursor lesions of colorectal adenomas in humans and some mouse 

strains of intestinal cancer (McLellan and Bird, 1988a; Fenoglio-Preiser and Noffsinger, 

1999; Boivin et al., 2003; Gupta and Schoen, 2009). To investigated whether Dro1 loss 

regulates the development of ACF in Apc
+/Min 

mice, Dro1
-/-

;Apc
+/Min

 and Apc
+/Min

 

control mice were sacrificed at the age of 5 (n=5/ group) and 10 (n=5/ group) weeks and 

whole-mount colon preparations were investigated for early morphologic changes of 

colonic crypts by methylene blue staining and trans-illumination. No ACF were 

observed in Apc
+/Min

 mice independently of the Dro1 status. Representative pictures of 

methylene blue stained whole-mount colon samples are displayed in Fig. 4.16. 

 

 

Fig. 4.16 Representative pictures of whole-mount distal colon samples from 10-week-

old Apc
+/Min

 control (control) and Dro1
-/-

;Apc
+/Min

 (knockout) mice stained with 

methylene blue. 

4.2.3.7 Mom1 status 

As the genetic background strongly influences tumor burden in Apc
+/Min

 mice (Gould et 

al., 1996; McCart et al., 2008), the Mom1 allele status of Dro1
-/-

;Apc
+/Min

 and Apc
+/Min

 

control mice was examined (n=15/ group). In order to detect a BamHI restriction site 

present in the resistant Mom1
 
allele (Mom1

R
) but absent in the sensitive Mom1 allele 

(Mom1
S
), a Mom1 PCR product was generated from tail tip genomic DNA, digested 

with BamHI and separated by gel electrophoresis. Dro1
-/-

;Apc
+/Min

 as well as Apc
+/Min

 

control mice were found to carry the Mom1
S
 allele homozygously (Fig. 4.17). 
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Fig. 4.17 Evaluation of the Mom1 allelic status of Dro1
-/-

;Apc
+/Min

 (knockout) and 

Apc
+/Min

 control (control) mice. Representative gel electrophoresis of Mom1 PCR 

products digested with BamHI. The 500 bp fragment indicates absence of a BamHI 

restriction site and is characteristic for the Mom1
S
 allele. The 400 bp and 100 bp 

fragments are characteristic for the Mom1
R
 allele. 
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4.3. Effects of Dro1 loss on body growth  

Since Dro1 has been implicated in energy homeostasis, body weight regulation, and 

obesity (Aoki et al., 2002; Okada et al., 2008; Tremblay et al., 2009) a possible effect 

of Dro1 deficiency on body growth was investigated under standard feeding conditions 

and when mice were exposed to a high-fat diet.  

 

4.3.1 Standard feeding conditions 

4.3.1.1 Body weight 

To ascertain whether inactivation of Dro1 affects body weight gain, selected litters of 

Dro1
-/-

 parents or control parents were weighted weekly from the 11
th

 day of life until 

15 weeks of age. Dro1
-/-

 mice of both genders showed normal development until 10 

(males) and 12 (females) weeks of age after which a significant increase in body weight 

was observed when compared to gender-matched controls (Fig. 4.18A). Examination of 

6- and 18-month-old mice also revealed profound differences in body weight between 

Dro1
-/-

 and control mice (4.18B and 4.18C).  

 

 

 

 

 

 

 

Fig. 4.18 (A) Body weight gain in Dro1
-/-

 (knockout) and control males (n=9 for Dro1
-/-

 

males and n=13 for control males) and females (n=10 for Dro1
-/-

 females and n=8 for 

control females) fed a standard diet. Dro1
-/-

 males exhibited significantly enhanced body 

weight from week 10 as compared to control males. Increase in body weight in Dro1
-/-

 

females as compared to control females was significant from week 12. P ≤ 0.001 for 

males and P ≤ 0.01 for females at 15 weeks of age. (B, C) Body weight in Dro1
-/-

 

(knockout) and control mice of both genders at 6 (B) and 18 (C) months of age (n=5/ 

group for males and n=6/ group for females at 6 months, n=7/ group for males at 18 

months and n=6/ group for females at 18 months). Legend displayed in (B) applies to 

(C). *: P ≤ 0.05; **: P ≤ 0.01; ***: P ≤ 0.001. 
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4.3.1.2 Longitudinal growth 

Since changes in longitudinal body growth may account for differences in body weight, 

the length of the femora and the nose-rump-length (NRL) were investigated in 6-month-

old Dro1
-/-

 and control mice. Both parameters were found to be similar in Dro1
-/-

 and 

control mice (Fig. 4.19A and 4.19B). Notably, by 6 months of age relative nose-rump-

length calculated as body weight divided by NRL (g/cm) was significantly increased in 

Dro1
-/-

 mice of both genders as compared to gender-matched controls (Fig. 4.19C). 

  

 

 

 

 

 

 

 

Fig. 4.19 Femur length (A), nose-rump-length (NRL) (B), and relative nose-rump-

length (RNRL) (C) in 6-month-old Dro1
-/-

 (knockout) and control animals of both 

genders (n=5/ group for males and n=6/ group for females). Legend displayed in (A) 

applies to all figures. *: P ≤ 0.05; ***: P ≤ 0.001. 

4.3.1.3 Organ growth 

To determine a possible effect of Dro1 ablation on organ and carcass weight, Dro1
-/- 

and 

control mice were sacrificed at various stages of life. The weight of the following 

organs was examined: heart, lungs, liver, spleen and kidneys.  

Necropsy of 2-month-old animals revealed similar heart, lung, liver, kidney and carcass 

weight in Dro1
-/-

 and control mice of both sexes. Absolute and relative spleen weight 

was significantly increased in 2-month-old Dro1
-/-

 males as compared to age and 

gender-matched controls; females showed an increase in spleen weight but statistical 

significance was not reached.  

At the age of 6 months a significant rise in liver, spleen and carcass weight was detected 

in both genders of Dro1
-/-

 mice as compared to age- and gender-matched controls. 

Moreover, the weight of lungs and kidneys was profoundly increased in 6-month-old 

Dro1
-/-

 males. The absolute heart weight was increased but statistical significance was 
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not reached. When related to body weight, changes in the weight of lungs, liver, spleen, 

kidneys and carcass did not persist. Notably, the relative weight of heart and kidneys 

was significantly decreased in Dro1
-/-

 females but was unchanged in Dro1
-/-

 males as 

compared to age- and gender-matched control mice. Absolute and relative organ 

weights are presented in Table 4.5 and Table 4.6. Microscopic evaluation of H&E-

stained histological sections of heart, lung, spleen, liver and kidney from 2 (n=3) and 6 

(n=6) months old Dro1
-/-

 mice revealed no obvious pathologic alterations in organ 

architecture.  

 

Table 4.5 Absolute organ weight in male (A) and female (B) Dro1
-/-

 (knockout) and 

control mice at the age of 2 (n=3/ group) and 6 months (n=5/ group for males and n=6/ 

group for females at 6 months). Values are presented as means and corresponding 

standard deviations are displayed in brackets. *: P ≤ 0.05; **: P ≤ 0.01; ***: P ≤ 0.001. 

(-) indicates the absence of significant differences.  

A Organ weights (mg), males 

 
2 months 

Δ 
6 months 

Δ 
Control Knockout

 
Control Knockout 

Heart 144 (9) 159 (31) - 176 (19) 235 (64) - 

Lungs 156 (11) 162 (6) - 189 (33) 240 (39) * 

Liver 1233 (100) 1387 (39) - 1634 (144) 2492 (274) ** 

Spleen 59 (13) 91 (9) * 73 (11) 118 (23) * 

Kidneys 295 (11) 338 (43) - 397 (53) 548 (14) ** 

Carcass 11324 (836) 11297 (607) - 14172 (532) 16791 (415) *** 

 

B Organ weights (mg), females 

 
2 months 

Δ 
6 months 

Δ 
Control Knockout

 
Control Knockout 

Heart 127 (12) 110 (12) - 140 (6) 152 (20) - 

Lungs 159 (13) 143 (6) - 181 (20) 214 (48) - 

Liver 1065 (137) 1110 (77) - 1376 (186) 1811 (327) ** 

Spleen 86 (14) 110 (20) - 82 (12) 125 (17) *** 

Kidneys 262 (9) 257 (24) - 308 (22) 326 (21) - 

Carcass 9977 (319) 9292 (392) - 11003 (703) 13881 (568) *** 
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Table 4.6 Relative organ weight in male (A) and female (B) Dro1
-/-

 (knockout) and 

control mice at the age of 2 (n=3/ group) and 6 months (n=5/ group for males and n=6/ 

group for females at 6 months). Values are presented as means and corresponding 

standard deviations are displayed in brackets. *: P ≤ 0.05; **: P ≤ 0.01; ***: P ≤ 0.001. 

(-) indicates the absence of significant differences.  

A Relative organ weights (% of body weight), males 

 
2 months 

Δ 
6 months 

Δ 
Control Knockout

 
Control Knockout 

Heart 0.55 (0.05) 0.60 (0.10) - 0.52 (0.05) 0.57 (0.18) - 

Lungs 0.59 (0.07) 0.61 (0.03) - 0.56 (0.08) 0.57 (0.07) - 

Liver 4.65 (0.17) 5.23 (0.35) - 4.86 (0.82) 5.99 (1.08) - 

Spleen 0.22 (0.04) 0.34 (0.04) * 0.22 (0.02) 0.29 (0.07) - 

Kidneys 1.12 (0.10) 1.28 (0.18) - 1.18 (0.10) 1.33 (0.24) - 

Carcass 42.68 (0.26) 42.57 (1.35) - 42.21 (1.57) 40.5 (1.48) - 

 

B Relative organ weights (% of body weight), females 

 
2 months 

Δ 
6 months 

Δ 
Control Knockout

 
Control Knockout 

Heart 0.56 (0.06) 0.51 (0.09) - 0.52 (0.04) 0.44 (0.07) * 

Lungs 0.70 (0.05) 0.66 (0.07) - 0.67 (0.07) 0.62 (0.16) - 

Liver 4.68 (0.47) 5.13 (0.09) - 5.12 (0.61) 5.23 (1.05) - 

Spleen 0.35 (0.08) 0.51 (0.06) - 0.30 (0.06) 0.36 (0.06) - 

Kidneys 1.15 (0.05) 1.09 (0.05) - 1.15 (0.08) 0.94 (0.08) *** 

Carcass 43.95 (0.19) 42.99 (1.08) - 40.98 (2.26) 40.01 (2.89) - 
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4.3.1.4 Total body fat and lean mass 

To evaluate changes in body composition, total body fat content and lean mass were 

determined weekly in Dro1
-/-

 and control males from 4 to 15 weeks of age by MRI. 

Dro1
-/-

 males exhibited a significant increase in lean mass compared to controls by week 

9 onwards (Fig. 4.20A). Total body fat tended to be higher in Dro1
-/- 

males but 

statistical significance was not reached (Fig. 4.20B). 

     

 

 

 

 

 

 

 

Fig. 4.20 Lean mass (A) and total body fat (B) gain in Dro1
-/-

 (knockout; n=9) and 

control males (n=13). Increase in lean mass in Dro1
-/-

 males was significant from week 

9 onwards as compared to control males (P ≤ 0.001 at 15 weeks of age). No significant 

differences in total body fat were observed (P=0.32 at 15 weeks of age). Legend 

displayed in (A) applies to both figures. 

4.3.1.5 Fat pad growth 

To investigate changes in fat pad growth the main white adipose tissue depots of 2- and 

6-month-old Dro1
-/-

 and control mice of both genders were weighted and their relative 

contribution to body weight was calculated. Analyses involved the epididymal, 

abdominal and subcutaneous fat pads in males and the abdominal (including ovarian 

and periovarian fat) and subcutaneous fat pads in females. At 2 months of age, when 

body weight of Dro1
-/-

 mice was not significantly different from that of control mice, no 

significant differences in white adipose tissue mass were recorded between Dro1
-/-

 and 

control mice (Fig. 4.21A and 4.21B).  

By 6 months of age when profound differences in body weight were present, substantial 

changes in fat pad weight were observed (Fig. 4.21C and 4.21D). Dro1
-/-

 males 

exhibited significantly enlarged epididymal, abdominal and subcutaneous fat pads when 
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compared to age- and gender-matched controls (Fig. 4.21C). In Dro1
-/-

 females a 

significant rise in abdominal fat was recorded and the weight of the subcutaneous fat 

pad tended to be increased but statistical significance was not reached (Fig. 4.21D). 

Substantial changes in fat pad weight between Dro1
-/-

 and control mice persisted when 

fat pad weight was related to body weight (Fig. 4.21). Evaluation of H&E-stained 

histological sections of the cranial tip of epididymal white adipose tissue from 2- and 6-

month-old Dro1
-/-

 males revealed no obvious pathologic changes.  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Fig. 4.21 Absolute and relative weights of the subcutaneous (subc), abdominal (abd) 

and epididymal (epid) white fat pads in Dro1
-/-

 (knockout) and control males (A, C) and 

females (B, D) at 2 (A, B) and 6 (C, D) months of age. Relative fat pad weight was 

calculated as percent of body weight. (n=3/ group for both genders at 2 months, n=5/ 

group for males and n=6/ group for females at 6 months). Legend displayed in (A) 

applies to all figures. *: P ≤ 0.05; **: P ≤ 0.01. 
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4.3.1.6 Glucose metabolism 

To detect possible changes in glucose metabolism, intraperitoneal glucose tolerance test 

was performed in 14-week-old Dro1
-/-

 (n=9) and control (n=12) males. At this age body 

mass was significantly enhanced in Dro1
-/-

 males when compared to control males 

(32.12 g ± 1.99 g in Dro1
-/-

 males compared to 29.46 g ± 1.45 g in control males. P ≤ 

0.01). Fasted blood glucose levels were similar in Dro1
-/-

 and control mice and Dro1
-/-

 

mice cleared the administrated glucose as efficiently from the blood as controls (Fig. 

4.22). 

 

 

 

 

 

 

 

 

Fig. 4.22 Intraperitoneal glucose tolerance test in 14-week-old Dro1
-/-

 (knockout; n=9) 

and control males (n=12). 

4.3.1.7 Serum triglycerides and free fatty acids 

To elucidate a possible effect of Dro1 deficiency on serum lipids, triglycerides and free 

fatty acids were measured in the serum of 2- and 6-month-old Dro1
-/-

 and control mice. 

At 2 months of age serum triglycerides tended to be lower in Dro1
-/-

 mice as compared 

to controls and by 6 months of age the decrease reached significance (Fig. 4.23A). 

Serum free fatty acid levels were unchanged in Dro1
-/-

 mice when compared to controls 

at 2 as well as 6 months of age (4.23B).  
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Fig. 4.23 Serum triglycerides (A) and free fatty acids (FFA) (B) in Dro1
-/-

 (knockout) 

and control mice at the age of 2 (n=3/ group) and 6 months (n=6/ group). Legend 

displayed in (A) applies to (B). *: P ≤ 0.05. 

4.3.2 High-fat diet feeding conditions 

Since Dro1
-/-

 mice of both sexes exhibited an overweight phenotype under standard 

feeding conditions, the impact of Dro1 elimination on the development of diet-induced 

obesity was investigated. Thus, Dro1
-/-

 and control mice (n=9/ group) were fed a high-

fat diet in which the majority of caloric intake (60%) is from fat for 16 weeks beginning 

at 11 days of age (first day of solid food intake). The following experiments were 

conducted in male mice as changes in adipose tissue mass were more pronounced in 

Dro1
-/-

 males than in females when fed a standard diet.  

 

4.3.2.1 Body weight, body fat and lean mass 

To investigate the effect of Dro1 deficiency on body weight gain in mice maintained on 

a high-fat diet, body weight was measured weekly starting from the 11
th

 day of life until 

17 weeks of age. No significant differences in weight curves were found between 

Dro1
-/-

 and control mice in the first 7 weeks of life. However, from week 8 onwards 

Dro1
-/-

 mice were significantly heavier than controls (Fig. 4.25A). After being exposed 

to a high-fat diet for 16 weeks Dro1
-/- 

mice exhibited 43.9% more body weight than 

controls. Fig. 4.24 demonstrates the dramatic phenotype.  

To analyze how changes in body weight correlate with changes in total body fat and 

lean mass in high-fat diet-fed mice, MRI measurement was performed weekly starting 

from the 4
th

 week of life. By week 8 onwards Dro1
-/-

 mice exhibited a significant 

increase in lean mass (Fig. 4.25B) and body fat (Fig. 4.25C) as compared to controls. 
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Throughout the whole time-course a severe rise in body fat was detected in Dro1
-/-

 mice 

whereas body fat only slightly increased in controls after week 9 (Fig. 4.25C).  

At the age of 15 weeks body weight, body fat and lean mass were significantly 

increased in high-fat diet-fed Dro1
-/-

 mice compared to their normal-fed counterparts. 

Control mice also exhibited higher body weight and body fat under high-fat diet than 

under normal diet but the difference was statistically significant only for body fat. Lean 

mass in controls was unchanged by high-fat diet. Changes in body weight, body fat and 

lean mass in knockout and control mice under normal diet and high-fat diet are 

displayed in Table 4.6. 

 

 

 

Fig. 4.24 Representative picture of a control and Dro1
-/-

 (knockout) mouse after exposed 

to a high-fat diet for 16 weeks. 
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Fig. 4.25 Body weight (A), lean mass (B) and total body fat (C) gain in Dro1
-/-

 

(knockout) and control males (n=9/ group) maintained on a high-fat diet for 16 weeks 

beginning at the 11
th

 day of age. Increases in body weight, body fat and lean mass were 

continually significant after week 8. P ≤ 0.001 for body weight and body fat and P ≤ 

0.05 for lean mass at 17 weeks of age. Legend displayed in (A) applies to all figures.  
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Table 4.6 Comparison of body weight, body fat and lean mass between normal-fed (n=9 

for Dro1
-/-

 males and n=13 for control males) and high-fat diet-fed (n=9/ group) control 

mice and Dro1
-/-

 (knockout) mice at 15 weeks of age. Values are presented as means 

and standard deviations (brackets). *: P ≤ 0.05; **: P ≤ 0.01; ***: P ≤ 0.001. (-) 

indicates the absence of significant differences. 

 Normal diet High-fat diet Δ Increase (%) 

Body weight     

     Control 30.82 (1.94) 31.56 (3.47) - + 2.39 

Knockout
 

33.06 (1.85) 40.92 (5.70) ** + 23.41 

Body fat     

     Control 3.40 (0.53) 4.04 (0.79) * + 18.78 

Knockout 3.41 (0.50) 7.55 (2.11) *** + 121.24 

Lean mass     

     Control 27.42 (1.43) 27.51 (2.8) - + 1.04% 

Knockout 29.65 (1.36) 33.37 (4.05) * + 12.53% 

 

4.3.2.2 Glucose metabolism  

To assess the response to glucose administration under high-fat diet feeding, an 

intraperitoneal glucose tolerance test was performed in 14-week-old Dro1
-/-

 and control 

mice (after they had been exposed to a high-fat diet for 13 weeks). Dro1
-/-

 mice showed 

significantly higher levels of blood glucose after fasting for 16 h when compared to 

controls. Moreover their ability to clear glucose from the blood was substantially 

decreased (Fig. 4.26A). 

An intraperitoneal insulin tolerance test was accomplished one week later to investigate 

the role of insulin resistance in the glucose response. Fasted blood glucose levels tended 

to be higher in Dro1
-/- 

mice but statistical significance was not reached. In addition, 

knockout mice showed a markedly attenuated glucose lowering rate after insulin 

injection when compared to controls (Fig. 4.26B). 
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Fig. 4.26 Intraperitoneal glucose tolerance (A) and insulin tolerance (B) tests in Dro1
-/-

 

and control mice (n=9/ group) after being fed a high-fat diet for 13 and 14 weeks, 

respectively. Legend displayed in (A) applies to (B). *: P ≤ 0.05; **: P ≤ 0.01; ***: P ≤ 

0.001.  

4.3.2.3 Organ growth 

After knockout and control mice had been exposed to a high-fat diet for 16 weeks they 

were sacrificed and the organs and carcass were weighted. In accordance with our 

findings in normal-fed mice, Dro1
-/-

 mice exhibited significantly increased absolute 

weight of lungs, liver, spleen, kidneys and carcass when compared to controls (Table 

4.7). When related to body weight, the weight of heart, lungs, kidneys and carcass was 

over-proportionally decreased in Dro1
-/-

 mice as compared to controls (Table 4.7). 

Noteworthy, the liver was remarkably pale and saffron-colored in all Dro1
-/-

 mice but in 

none of the controls (Fig. 4.27).  
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Table 4.7 Absolute and relative organ weight in Dro1
-/-

 (knockout) and control (n=9/ 

group) males maintained on a high-fat diet for 16 weeks starting from the 11
th

 day of 

life. Values are presented as means. Corresponding standard deviations are displayed in 

brackets. *: P ≤ 0.05; **: P ≤ 0.01; ***: P ≤ 0.001. (-) indicates the absence of 

significant differences. 

 
Organ weights (mg) Relative organ weights 

(% of body weight) 

 Control Knockout
 

Δ Control Knockout Δ 

Heart 173 (21) 204 (63) - 0.54 (0.05) 0.44 (0.11) * 

Lungs 193 (23) 218 (15) * 0.66 (0.03) 0.48 (0.06) *** 

Liver 1491 (192) 2105 (479) ** 4.65 (0.33) 4.55 (0.69) - 

Spleen 92 (63) 199 (81) ** 0.28 (0.16) 0.45 (0.19) - 

Kidneys 398 (43) 468 (71) * 1.24 (0.07) 1.02 (0.12) *** 

Carcass 14012 (1113) 16849 (2116) ** 43.23 (0.90) 37.14 (3.13) *** 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.27 Representative picture of a liver from a Dro1
-/-

 (knockout) and control mouse 

after fed a high-fat diet for 16 weeks starting from the 11
th

 day of life. 
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4.3.2.4 Fat pad growth 

To investigate the effect of Dro1 loss on fat pad weight under high-fat diet feeding 

conditions, the epididymal, abdominal and subcutaneous fat pads of Dro1
-/-

 and control 

mice were weighted after mice had been exposed to a high-fat diet for 16 weeks. 

Consistent with profound changes in body weight and total body fat content, these fat 

compartments were dramatically enlarged in Dro1
-/-

 males as compared to controls (Fig. 

4.28A and Fig.4.29). These changes persisted when fat pad weight was related to body 

weight (Fig. 4.28B). Microscopic examination of H&E-stained histological sections of 

the cranial tip of epididymal white adipose tissue from 17-week-old high-fat diet-fed 

Dro1
-/-

 males revealed no obvious pathologic changes  

 

  

 

 

 

 

 

 

Fig. 4.28 Absolute (A) and relative (B) weight of the subcutaneous (subc), abdominal 

(abd) and epididymal (epid) white fat pad in Dro1
-/-

 (knockout)  and control mice (n=9/ 

group) after fed a high-fat diet for 16 weeks starting from the 11
th

 day of life. Relative 

fat pad weight was calculated as percent of body weight. Legend displayed in (A) 

applies to (B). **: P ≤ 0.01; ***: P ≤ 0.001. 
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Fig. 4.29 Representative pictures of epididymal white fat pads from a control and 

Dro1
-/-

 (knockout) mouse after fed a high-fat diet for 16 weeks starting from the 11
th

 

day of life.  

4.3.2.5 Liver histology 

At necropsy, livers of high-fat diet-fed Dro1
-/-

 mice were substantially increased and 

exhibited a pale appearance. Microscopic evaluation of H&E-stained Dro1
-/-

 liver 

sections revealed severe mixed steatosis with microvesicular and medium sized fat 

vacuoles in more than 80% of hepatocytes of the centrilobular region in 4 of 9 Dro1
-/-

 

mice (Fig. 4.30A). The remaining cases exhibited macrovesicular or mixed steatosis 

with fat vacuoles in 20 to 40% of hepatocytes. In contrast, hepatocellular steatosis was 

not observed in liver sections from control animals (Fig. 4.30A). Colorimetric 

quantification of triglycerides in homogenized liver samples confirmed significantly 

elevated triglyceride levels in Dro1
-/-

 mice as compared to controls (Fig. 4.30B). 

Noteworthy, a slight pericellular and perisinusoidal fibrosis with chicken wire pattern 

could be demonstrated by EvG staining (Fig. 4.30A). Furthermore, a minor Kupffer cell 

aggregation was observed. 
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Fig. 4.30 (A) H&E- and EvG-stained liver sections from a control and Dro1
-/-

 

(knockout) mouse at 17 weeks of age after maintained on a high-fat diet for 16 weeks 

starting from the 11
th

 day of age. (B) Mean triglyceride content in livers of control and 

Dro1
-/-

 mice (n=9/ group). *: P ≤ 0.05. 
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4.3.2.6 Serum triglycerides and free fatty acids 

To investigate changes in circulating triglycerides and free fatty acids, blood of high-fat 

diet-fed Dro1
-/-

 and control mice was collected after they had been exposed to a high-fat 

diet for 16 weeks and the serum was isolated. No significant differences were recorded 

between Dro1
-/-

 and control mice in serum triglycerides (Fig. 4.31A) and free fatty acids 

(Fig. 4.31B). 

  

  

 

 

 

 

 

 

Fig. 4.31 Serum triglycerides (A) and free fatty acids (FFA) (B) in Dro1
-/-

 and control 

mice (n=7/ group) at the age of 17 weeks after exposed to a high-fat diet for 16 weeks.  

4.3.3 Analysis of adipogenesis in SV cells 

Since down-regulation of Dro1 in 3T3-L1 cells was demonstrated to impair adipocyte 

differentiation (Tremblay et al., 2009), a possible impact of Dro1 loss on adipogenesis 

in white adipose tissue SV cells containing primary preadipocytes (Hausman et al., 

2008; Poulos et al., 2010) was investigated in vitro. For this purpose, Dro1
-/-

 and control 

mice were sacrificed at the age of 21 days and SV cells were isolated from the inguinal 

white fat pads, grown confluent and differentiated. Confluence was reached at day 14 

after isolation independently of the Dro1 status and SV cells were differentiated for 

additional 14 days. Oil red O staining revealed that the accumulation of lipids was 

severely increased in differentiated Dro1
-/-

 SV cells as compared to control SV cells 

(Fig. 4.32A), with a significant increase in the mean number (Fig. 4.32B) and size (Fig. 

4.32C) of lipid droplets. 
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Fig. 4.32 (A) Representative pictures of undifferentiated and differentiated oil red 

O-stained control and Dro1
-/-

 (knockout) white adipose tissue SV cells. Mean number 

(B) and mean size (C) of lipid droplets in control and Dro1
-/-

 (knockout) white adipose 

tissue SV cells. Multiplicity and size of lipid droplets were investigated for areas 

showing a high grade of differentiated cells (n=10 areas for Dro1
-/-

 and n=8 areas for 

control SV cells). **: P ≤ 0.01. 
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5. Discussion 

Previous in vitro studies suggested DRO1 to be a putative tumor suppressor (Bommer et 

al., 2005) and modulator of adipogenesis (Tremblay et al., 2009). Until today, 

investigation of Dro1 function in vivo was restricted to expression analysis, offering 

evidence for involvement in colorectal, mammary and thyroid carcinogenesis 

(Marcantonio et al., 2001; Visconti et al., 2003; Bommer et al., 2005), obesity (Aoki et 

al., 2002; Okada et al., 2008), eye development (Mu et al., 2003) and skeletogenesis 

(Liu et al., 2004; Wilson et al., 2011). The aim of the present study was to elucidate the 

function of Dro1 in colorectal carcinogenesis and body growth in vivo. We therefore 

generated the first knockout mouse model in which the Dro1 gene is constitutively 

inactivated using a Cre/loxP strategy. 

  

5.1 Generation of Dro1
-/-

 mice 

In Dro1
-/-

 mice, genetic deletion of Dro1 by Cre-recombinase was demonstrated by 

Southern blot analysis with liver genomic DNA from 8-week-old animals. Loss of the 

targeted exon 2 was further confirmed by PCR analysis from genomic tail tip DNA. As 

expected from the ubiquitous expression of Cre-recombinase under control of the CMV 

promoter, no significant Dro1 expression was detected in various tissues of Dro1
-/-

 

mice, including white adipose tissue and intestinal epithelium, suggesting a high 

efficiency of Dro1 depletion. In accordance with previous findings (Aoki et al., 2002; 

Liu et al., 2004; Bommer et al., 2005; Okada et al., 2008; Tremblay et al., 2009), 

control mice expressed Dro1 in all tissues tested. Unfortunately, it was not possible to 

investigate Dro1 expression by Western blot analysis since antibodies raised against 

human DRO1 were inappropriate to detect the mouse DRO1 protein. This observation is 

rather surprising considering the high sequence homology between human and mouse 

DRO1/Dro1 (Mu et al., 2003; Liu et al., 2004; Bommer et al., 2005).  

Dro1
-/-

 mice were viable and fertile and showed no changes in mortality as compared to 

controls, indicating that Dro1 expression is dispensable for survival. Depletion of Dro1 

was not observed to cause embryonic lethality since the litter size from Dro1
-/-

 parents 

was unchanged as compared to litters from control animals.  
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5.2 Effects of Dro1 loss on intestinal tumor formation 

Quantitative analysis of length and wet weight of small intestine and colon revealed no 

changes in 2-month-old Dro1
-/-

 mice, indicating normal intestinal growth. Microscopic 

evaluation of H&E-stained histologic sections of the intestine from 4-month-old Dro1
-/-

 

mice revealed no obvious pathologic alterations in the architecture of the intestinal 

epithelium. As demonstrated by PAS staining, the number and distribution of goblet 

cells along the crypt-villus-axis was unchanged. In addition, a normal localization of 

Paneth cells at the bottom of the crypt was observed. These findings offer strong 

evidence that Dro1 expression is dispensable for cell maturation and positioning in the 

intestinal epithelium.  

To investigate cell proliferation in the intestinal epithelium, 4-month-old Dro1
-/-

 and 

control mice were injected with BrdU 1 h prior to sacrifice. Immunohistochemical 

detection of BrdU incorporation revealed no effect on the number of BrdU-positive 

cells per crypt, suggesting an unchanged proliferative activity. Furthermore, a normal 

distribution of proliferating cells was observed, with BrdU-positive cells being localized 

close to the crypt base. As demonstrated by immunohistochemical staining for cleaved 

caspase-3, the number of apoptotic cells in the intestinal epithelium was also unaffected. 

Restoration of DRO1 expression in cancer cell lines has been described to result in 

sensitization to various apoptotic stimuli (Bommer et al., 2005; Ferragud et al., 2011), 

however, no pro-apoptotic effect of DRO1 was observed under standard adherent 

growth conditions (Bommer et al., 2005). In summary, our data suggest that Dro1 gene 

expression is dispensable for the maintenance of the intestinal epithelium. 

 

In vitro studies have implicated DRO1 to be a candidate tumor suppressor gene 

(Bommer et al., 2005). To investigate a possible effect of Dro1 deficiency on 

spontaneous tumor formation in the intestinal tract, Dro1
-/-

 and control mice were 

sacrificed at the age of 18 months and the intestines were examined. Regardless of the 

Dro1 status, no spontaneous tumors of the intestine were observed. It is known that 

inactivation of a tumor suppressor gene alone is often not sufficient to cause 

tumorigenesis, and additional mutation events that result in perturbation of other critical 

signaling pathways are necessary (Berger et al., 2011).  

 

To study the consequences of Dro1 deficiency on intestinal tumorigenesis in a tumor-

prone background, Dro1
-/- 

mice were intercrossed with Apc
+/Min

 mice, a well-established 
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intestinal tumor mouse model (Moser et al., 1990). Mice on the Apc
+/Min

 background 

were monitored daily for symptoms of distress and sacrificed when moribund. Survival 

was significantly reduced in Dro1
-/-

;Apc
+/Min

 mice as compared to Apc
+/Min

 controls, 

demonstrating a profound effect of Dro1 deficiency on morbidity and mortality in 

Apc
+/Min

 mice.  

Microscopic examination of whole-mount colon preparations from moribund and 10-

week-old mice revealed that Dro1
-/-

;Apc
+/Min

 mice were characterized by a striking 

increase in mean colonic tumor multiplicity as compared to Apc
+/Min

 controls, 

suggesting a critical role for Dro1 in suppressing tumor initiation in the colon of 

Apc
+/Min

 mice. The dramatically reduced survival observed in Dro1
-/-

;Apc
+/Min

 mice is 

most probably due to the severe rise in mean colonic polyp frequency implicating an 

early onset of morbidity. In cancer cell lines, DRO1 expression has been shown to 

impair growth (Bommer et al., 2005) and induce sensitization to various apoptotic 

stimuli (Bommer et al., 2005; Ferragud et al., 2011). Moreover, overexpression of 

DRO1 in mammary cancer cells has been shown to result in up-regulation of B-cell 

lymphoma 2-associated transcription factor 1 (BCLAF1), a death-promoting 

transcriptional repressor (Ferragud et al., 2011). Resistance to cell death by apoptosis-

avoiding mechanisms constitutes one of the hallmarks of cancer cells (Hanahn and 

Weinberg, 2011). It is therefore tempting to suggest that loss of Dro1 function supports 

the survival of nascent tumors in Apc
+/Min

 mice, resulting in an increase in the final 

number of polyps. The hypothesis that Dro1 deficiency may promote tumor 

establishment by providing a survival benefit for adenomas with Apc inactivation is 

further supported by the fact that the primary localization of colonic polyps was 

unchanged in Dro1
-/-

;Apc
+/Min

 mice as compared to Apc
+/Min

 controls, indicating that 

tumorigenesis is primarily initiated by loss of Apc function. Although Dro1
-/-

;Apc
+/Min

 

mice showed a profound increase in mean tumor multiplicity throughout the colon, the 

percentage distribution of polyps between the proximal and distal colon was unchanged 

when compared to Apc
+/Min

 control mice. Interestingly, Dro1 loss did not change the 

mean size of colonic polyps in Apc
+/Min

 mice.  

 

Histopathologic analysis of tumors isolated from the colon of moribund and 10-week-

old animals revealed that Dro1
-/-

;Apc
+/Min 

mice developed adenomas, intramucosal 

adenocarcinomas and invasive adenocarcinomas, whereas tumors from Apc
+/Min

 

controls overall resembled tubular adenomas (a single adenocarcinoma was observed in 
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the colon of a 10-week-old Apc
+/Min

 control animal). Approximately one third of colonic 

tumors from moribund Dro1
-/-

;Apc
+/Min

 mice had progressed to malignancy and 

adenocarcinomas arose in about 50% of Dro1 knockout mice. Although local invasion 

of colonic adenocarcinomas through the lamina muscularis mucosae into the tela 

submucosa was regularly observed in moribund Dro1
-/-

;Apc
+/Min

 mice, no visible 

metastatic tumors were recorded at necropsy. This may be explained by the rather early 

onset of morbidity in Dro1
-/-

;Apc
+/Min

 mice at an average of 94 d, with insufficient time 

for tumors to generate detectable metastases. Our results also demonstrate that ablation 

of Dro1 in Apc
+/Min

 mice leads to the regular formation of colonic adenocarcinomas in 

young animals, suggesting a critical role for Dro1 as negative regulator of malignant 

progression in adenomas with Apc inactivation. In accordance, DRO1 expression has 

been shown to reduce malignant growth properties (colony formation and anchorage 

independent growth) in various cancer cell lines (Bommer et al., 2005).  

 

Interestingly, analysis of colonic adenocarcinoma distribution between the proximal and 

distal colon in moribund Dro1
-/-

;Apc
+/Min

 mice revealed that only a single malignant 

lesion located to the proximal colon. This asymmetric distribution pattern may be due to 

differences in the timing of tumor development between the proximal and distal colon. 

Dro1
-/-

;Apc
+/Min

 mice at the age of 10 weeks had developed no tumors of the proximal 

colon, but exhibited plenty of lesions in the distal segment. In moribund Dro1
-/-

;Apc
+/Min

 

mice, a small number of tumors located to the proximal colon and tumor multiplicity in 

the distal colon was strongly increased as compared to 10-week-old mice. One can 

conclude from this that polyps in Dro1
-/-

;Apc
+/Min

 mice arise first in the distal colon 

before extending to the proximal segment. Therefore, tumors of the distal colon have 

more time to progress to malignancy than tumors in the proximal segment. Another 

possibility is a non-requirement of Dro1 expression for prevention of tumor progression 

specifically in the proximal colon. Previous studies on human colorectal cancer have 

shown major genetic differences between tumors of the proximal and distal colon 

(Distler and Holt, 1997; Iacopetta, 2002; Nawa et al., 2008). It was suggested that 

differences in gene expression patterns between the proximal and distal colon may 

underlie site-specific differences in carcinogenesis (Glebov et al., 2003), however, the 

molecular mechanisms underlying this observation are poorly understood. The 

development of tumors along different tumorigenic pathways may partly be due to 

differences between the normal proximal and distal colon, e.g. in the embryonic origin, 
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vascularization, crypt length, apoptosis rate and metabolism (Iacopetta, 2002). The 

Dro1
-/-

;Apc
+/Min

 mouse model may provide further evidence that cancers of the proximal 

and distal colon are under the influence of different molecular pathways. 

 

To investigate a possible effect of Dro1 loss on Wnt signaling activation and 

proliferation in tumors from Apc
+/Min

 mice, immunohistochemical staining for β-catenin 

and Ki-67 were performed on a subset of tumors from moribund Dro1
-/-

;Apc
+/Min

 and 

Apc
+/Min

 control mice. As expected from Apc inactivation in tumors from Apc
+/Min

 mice 

(Luongo et al., 1994; Shoemaker et al., 1997), pronounced nuclear β-catenin staining 

was observed in all tumors analyzed, independently of the Dro1 status. Dro1 loss did 

not impact the mean percentage and distribution of cells with nuclear β-catenin 

accumulation within the neoplastic tissue. In addition, β-catenin localization in adjacent 

normal intestinal epithelium was unaffected by Dro1 deficiency. As nuclear β-catenin 

accumulation is viewed as a hallmark of canonical Wnt signaling activation 

(MacDonald et al., 2009), these results offer strong evidence that changes in colonic 

tumor multiplicity and neoplastic progression in Dro1
-/-

;Apc
+/Min

 mice are most 

probably mediated by pathways other than Wnt/β-catenin signaling. 

Ki-67 immunohistochemical staining showed that cellular proliferation indices were not 

significantly different between colonic tumors from moribund Dro1
-/-

;Apc
+/Min

 and 

Apc
+/Min

 control mice, indicating that alterations in cellular proliferation are likely to 

play only a minor role, if any, in the observed phenotypic alterations.  

 

Elimination of Dro1 was not found to impact ACF formation in Apc
+/Min

 mice. ACF, 

putative precursors of adenomas (McLellan and Bird, 1988a; Fenoglio-Preiser and 

Noffsinger, 1999; Boivin et al., 2003), have been observed in some mouse models of 

intestinal cancer (Reitmair et al., 1996; Pretlow et al., 2003) and have been 

demonstrated to be a regular event after treatment with colon carcinogens (McLellan 

and Bird, 1988a; McLellan and Bird, 1988b). In the untreated Apc
+/Min

 mouse ACF are 

known to be rare or absent (Reitmair et al., 1996; Song et al., 2000; Boivin et al., 2003). 

 

The Mom1 allele is known to exert a strong influence on tumor burden in Apc
+/Min

 mice 

(Gould et al., 1996; McCart et al., 2008). It has been previously shown that Apc
+/Min

 

mice carrying the Mom
R
 allele exhibit a significant decrease in tumor multiplicity 

compared to animals on the Mom
S/S

 background (Gould et al., 1996). Analysis of the 
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Mom1 allelic status in Dro1
-/-

;Apc
+/Min

 and Apc
+/Min

 control mice revealed that both 

lines carried the Mom
S
 allele homozygously. This finding clearly demonstrates that 

differences in colonic polyp numbers between Dro1
-/-

;Apc
+/Min

 and Apc
+/Min

 control 

mice are not modulated by differences in the Mom1 allelic status. 

  

Another important observation is that Dro1 deficiency did not result in obvious effects 

on number, size or histopathologic quality of polyps in the small intestine of Apc
+/Min

 

mice, indicating that the Dro1 tumor suppressor gene function in the intestinal tract is 

confined to the colon. Recent investigations on the gene expression in the murine 

intestinal tract have uncovered site-specific differences between the small intestine and 

colon (Klostermeier et al., 2011). It is therefore conceivable that differences in gene 

expression pattern between small and large intestine are responsible for the restriction 

of the tumor suppressor activity of Dro1 to one compartment.  

 

In summary, the analysis of the first Dro1 knockout mouse model clearly demonstrates 

Dro1 to be an important colonic tumor suppressor gene that suppresses polyp initiation 

and particularly prevents tumor progression towards malignancy in Apc
+/Min

 mice. 

Further studies are needed to clarify the underlying mechanisms for the phenotypic 

alterations observed in Dro1
-/-

;Apc
+/Min

 mice.  

Human colorectal cancer is assumed to develop from adenomatous precursor lesions by 

the accumulation of multiple independent somatic alterations in oncogenes and tumor 

suppressor genes (Fearon, 2011). Inactivating mutations of the APC tumor suppressor 

gene are viewed as an early if not initiating event in up to 80% of human sporadic 

colorectal cancers and implicate the development of a multitude of adenomas in the 

colon and rectum of FAP patients (Giles et al., 2003; Fearon, 2011). Our findings 

strongly suggest that loss of DRO1 may be a critical step in colorectal cancer 

development by promoting progression to malignancy in adenomas with APC 

inactivation. This role of DRO1 is supported by the fact that DRO1 expression has been 

shown to be highly reduced in the majority of primary colorectal cancer specimens and 

in numerous colorectal cancer cell lines (Bommer et al., 2005).  

 

5.3 Effects of Dro1 loss on body growth 

Under standard feeding conditions, Dro1
-/-

 mice showed normal development until 10 

(males) and 12 (females) weeks of age, after which a significant increase in body weight 
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was observed as compared to gender-matched controls. Analysis of body composition 

in young males from weeks 4 to 15 by MRI showed that Dro1 loss causes a mild 

increase in total body fat by week 14. At the age of 6 months, the observed differences 

in body weight primarily originated in substantially enlarged epididymal, subcutaneous, 

and abdominal white fat pads. Our findings demonstrate that loss of Dro1 causes 

spontaneous, widespread late-onset obesity, indicating a crucial role for Dro1 in energy 

homeostasis and body weight regulation.  

 

When exposed to a high-fat diet for 16 weeks (starting from the 11
th

 day of age), 

increases in body weight and body fat developed earlier, and remained significantly 

higher after week 8 as compared to diet-matched controls. Moreover, high-fat diet-fed 

Dro1
-/-

 mice exhibited a significant increase in body mass and body fat when compared 

to age-matched, normal-fed counterparts. These findings show that the overweight 

phenotype under standard feeding conditions was not maximal but can further be 

enhanced by diet.  

 

Femur and nose-rump-length were unchanged in 6-month-old Dro1
-/-

 mice, 

demonstrating that longitudinal growth was not affected by disruption of the Dro1 gene. 

This finding offers clear evidence that the observed changes in body mass do not result 

from alterations in body length. The overweight in Dro1
-/-

 mice was further confirmed 

by a significant increase in relative nose-rump-length, calculated as body weight per cm 

body length.  

 

Six-month-old normal-fed and 17-week-old high-fat diet-fed Dro1
-/-

 mice exhibited a 

significant increase in the absolute and relative weight of the major white fat pads. 

Examination of H&E-stained tissue sections from the cranial tip of epididymal white 

adipose tissue revealed no pathologic alterations, regardless of the feeding condition. 

During the development of obesity, white adipose tissue expansion can be accomplished 

by an increase in adipocyte size as well as by the addition of new adipocytes by 

adipogenesis (Hausman et al., 2001; Vazquez-Vela et al., 2008). White adipose tissue 

stromal vascular (SV) cells, a fraction enriched for preadipocytes, are often used as a 

model system to investigate adipogenesis (Gregoire et al., 1998; Hausman et al., 2008; 

Poulos et al., 2010). SV cells were isolated from inguinal white fat pads from 3-week-

old Dro1
-/-

 and control mice, grown confluent and differentiated into mature adipocytes. 
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The differentiated Dro1
-/-

 SV culture exhibited a significant increase in multiplicity and 

size of accumulated oil red O-stained lipid droplets, demonstrating that Dro1 loss 

promotes lipid accumulation in SV cells after the induction of adipocyte differentiation. 

As the number of preadipocytes was not investigated in the freshly isolated SV cell 

fraction, it cannot be excluded that the observed rise in lipid droplet frequency may 

partly be due to an increase in the initial number of adipocyte progenitor cells. Lipid 

accumulation represents one of the hallmarks of adipocyte differentiation (Gregoire et 

al., 1998; Hausman et al., 2001). It is therefore probable that Dro1 loss enhances the 

differentiation potential in SV cells, offering evidence that Dro1 exerts an inhibitory 

effect on the maturation of preadipocytes to adipocytes. It is also tempting to suggest 

that excess body fat in Dro1
-/-

 mice may partly result from deregulated adipogenesis, 

increasing the total number of adipocytes in white adipose tissue. The enhanced 

adipocyte quantity would be available for additional lipid deposition resulting in 

obesity. This hypothesis is supported by the fact that 6-month-old normal-fed Dro1
-/-

 

mice showed a significant decrease in the level of serum triglycerides. White adipose 

tissue is the primary site for the metabolism of circulating triglyceride-rich lipoproteins 

by releasing non-esterified fatty acids by the action of the adipocyte-derived lipoprotein 

lipase (Bamba and Rader, 2007). It can also be speculated that an increase in adipocyte 

multiplicity would imply more cells for lipoprotein lipase synthesis and triglyceride 

uptake, leading to a decrease in the level of circulating triglycerides. Future work is 

needed to investigate the effect of Dro1 loss on adipose tissue cellularity and 

triglyceride turnover in detail.  

 

Our results are in sharp contrast to previous findings that noted impaired adipogenesis 

and lipid accumulation in 3T3-L1 cells following down-regulation of Dro1 by siRNA 

(Tremblay et al., 2009). The 3T3-L1 preadipocyte cell line was isolated from Swiss 3T3 

mouse cells derived from disaggregated 17- to 19- day embryos and contains a single 

cell type (Gregoire et al., 1998; Poulos et al., 2010). In contrast, primary SV cells 

include mesenchymal stem cells, T regulatory cells, endothelial precursor cells, 

preadipocytes and macrophages (Hausman et al., 2008; Poulos et al., 2010). It has been 

noted that the patterns and models of adipogenesis derived from established cell lines 

can dramatically differ from those seen with primary cells (Gregoire et al., 1998; Poulos 

et al., 2010). It is therefore most probable that the contrasting results obtained from 

3T3-L1 and SV cells upon down-regulation/loss of Dro1 may be due to metabolic and 
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physiologic differences between the adipogenic cell models employed. As SV fractions 

contain various cell types, the in vitro conditions may mimic in vivo conditions of 

adipose tissue complexity more closely than cultures of a single cell type (Poulos et al., 

2010).  

 

An important finding is that loss of Dro1 function causes a profound rise in lean mass 

from week 9 onwards, demonstrating the contribution of non-adipose tissue mass to the 

overweight phenotype. In Dro1
-/-

 mice, maintenance on a high-fat diet for 16 weeks 

starting from the 11
th

 day of age caused a substantial increase in lean mass as compared 

to age-matched, normal-fed counterparts. In accordance to previous data on diet-

induced obesity in C57BL/6 mice (Park et al.; 2005; Matyskova et al., 2008), high-fat 

diet feeding had no effect on lean mass in control mice.  

At the age of 2 months, when body weight of Dro1
-/-

 mice was not significantly 

different from that of control mice, absolute and relative spleen weight was significantly 

increased in Dro1
-/-

 males. At the age of 6 months a significant rise in liver, spleen and 

carcass weight was detected in both genders of Dro1
-/-

 mice as compared to age- and 

gender-matched controls. Moreover, the weight of lungs and kidneys was profoundly 

increased in 6-month-old Dro1
-/-

 males. In 17-week-old high-fat diet-fed Dro1
-/-

 mice, 

the absolute weight of lungs, liver, spleen and kidneys was significantly increased. 

These findings indicate an important role for Dro1 in the growth of these organs. 

Changes in absolute weight did not persist when related to body weight, demonstrating 

that increases in organ weight were proportional to the rise in body mass. In 6-month-

old normal-fed females, the relative weight of heart and kidneys was significantly 

decreased. The same was true for heart, lungs and kidneys under high-fat diet feeding, 

demonstrating that increases in absolute weight were insufficient to follow the increase 

in body weight. Furthermore, 6-month-old normal-fed and 17-week-old high-fat diet-

fed Dro1
-/-

 mice exhibited a significant rise in the absolute weight of carcass. Under 

high-fat diet feeding conditions, the increase was disproportional to the increase in body 

weight. The carcass is a complex structure composed of muscle, bone, connective tissue 

and fat. Thus, further studies are needed to clarify the effects of Dro1 loss on carcass 

composition.  

Examination of H&E-stained tissue sections of various organs from normal-fed 2- and 

6-month-old Dro1
-/-

 mice showed no histopathologic changes. When exposed to a high-

fat diet for 16 weeks Dro1
-/-

 mice exhibited severe hepatosteatosis that was 
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accompanied by a minor Kupffer cell aggregation and a slight pericellular and 

perisinusoidal fibrosis. Hepatosteatosis did not progress to steatohepatitis. No 

histopathologic changes were observed in the livers from diet-matched controls. 

Increased lipid deposition was further confirmed by a significant rise in the level of 

triglycerides in homogenized liver samples. In Dro1
-/-

 mice, maintenance on a high-fat 

diet implicated a profound rise in total body fat compared to normal-fed counterparts 

and high-fat diet-fed controls. As excess body fat is known to be a major risk factor for 

the development of fatty liver disease (Hebbard and George, 2010; Cohen et al., 2011), 

it is reasonable to suggest that lipid deposition in livers from high-fat diet-fed Dro1
-/-

 

mice develops secondary to the severe obesity caused by Dro1 loss.  

 

As demonstrated by intraperitoneal glucose tolerance test, 14-week-old standard-fed 

Dro1
-/-

 mice showed normal fasted blood glucose and cleared glucose from the blood as 

efficiently as controls, offering strong evidence that glucose metabolism is unaffected 

by Dro1 loss. However, 14-week-old high-fat diet-fed Dro1
-/-

 mice exhibited glucose 

intolerance characterized by a significant increase in fasted blood glucose and a 

substantially decreased ability to eliminate glucose from the blood as compared to diet-

matched controls. The impaired glucose tolerance was associated with insulin 

resistance, characterized by a significantly decreased glucose lowering rate after insulin 

injection as compared to controls. Excess body fat accumulation is known to be a major 

risk factor for the development of type 2 diabetes (Bays et al., 2008). It is therefore 

likely that changes in glucose metabolism in high-fat diet-fed Dro1
-/-

 mice are 

secondary to obesity. 

 

Free fatty acid serum levels were unchanged in 2- and 6-month-old normal-fed Dro1
-/-

 

mice as compared to diet-matched controls. The same was true after maintenance on a 

high-fat diet for 16 weeks. In general, circulating free fatty acids are a net result of the 

amount of free fatty acids released from adipose tissue and free fatty acids taken up by 

liver, skeletal and cardiac muscle (Karpe et al., 2011). These results therefore indicate 

that Dro1 is most probably not involved in the turnover of free fatty acids. 

 

In summary, our results demonstrate that Dro1 plays a crucial role in body growth as 

Dro1 loss causes the development of general late-onset obesity and stimulates the 

growth of lungs, liver, spleen, kidneys and carcass. Moreover, we identified Dro1 as a 



Discussion 

 
 

105 

putative inhibitor of adipogenesis in vitro, suggesting that Dro1 might control fat cell 

multiplicity in white adipose tissue depots. In the development of obesity, excess energy 

is initially stored by an increase in fat cell size, however, once a critical cell size has 

been reached, further energy storage is accomplished by the addition of new adipocytes 

by adipogenesis (Hausman et al., 2001; Guilherme et al., 2008). Impaired adipogenesis 

implicates excessive adipocyte hypertrophy which is thought to be one of the major risk 

factors for the development of metabolic disease (Bays et al., 2008). As Dro1 

expression impairs the maturation of preadipocytes to adipocytes in SV cells, our 

findings suggest that down-regulation of Dro1 in adipose tissue might be a critical step 

to allow an increase in the number of adipocytes for further energy storage. This 

suggestion is supported by the fact that Dro1 was shown to be down-regulated in 

epididymal white adipose tissue of several obese mouse models (Okada et al., 2008). 

 

Previously, DRO1 was demonstrated to be secreted from 3T3-L1 mature adipocytes and 

was therefore supposed to be a novel adipokine that might influence whole body energy 

homeostasis (Tremblay et al., 2009). In the future, a detailed analysis of energy 

homeostasis in Dro1
-/-

 mice could improve our understanding of Dro1 functions in the 

development of obesity and provide valuable information on potentially involved 

signaling pathways. 

 

5.4 Final considerations 

The Apc
+/Min

 mouse represents a widely used, well-characterized mouse model of 

intestinal neoplasia. However, the usefulness of Apc
+/Min

 mice for the study of 

colorectal carcinogenesis is limited since Apc
+/Min

 mice mainly develop adenomas of the 

small intestine and only few lesions in the colon. Moreover, progression to malignancy 

is rare, a fact that is probably due to the short lifespan of Apc
+/Min

 mice (Shoemaker et 

al., 1997; McCart et al., 2008). In the present study, we demonstrate that inactivation of 

Dro1 on the Apc
+/Min

 background strongly enhances tumor multiplicity in the colon and 

frequently leads to the development of colonic adenocarcinomas. Thus, Dro1
-/-

;Apc
+/Min

 

mice recapitulate the characteristics of human sporadic colorectal cancer and inherited 

FAP more closely than Apc
+/Min

 animals. The Dro1
-/-

;Apc
+/Min

 mouse model described 

here may therefore facilitate the study of colorectal tumorigenesis, the role of other 

genes in adenoma-carcinoma transition, and potential cancer prevention and treatment 

strategies.  
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There is accumulating evidence suggesting that greater body fatness and greater 

abdominal fatness are associated with an increased risk to develop cancer of the 

colorectum (World Cancer Research Fund, 2007). However, until today, the 

mechanisms underlying this observation remain widely unknown. As Dro1 loss results 

in the development of general late-onset obesity characterized by significantly enlarged 

epididymal, abdominal and subcutaneous white fat pads, the Dro1
-/-

 mouse model could 

provide a valuable tool to investigate the correlation between obesity and colorectal 

cancer. 
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6. Summary  

Effects of Dro1 loss on colorectal carcinogenesis and body growth in a constitutive 

knockout mouse model 

Previous studies suggested DRO1 to be a putative tumor suppressor gene that is down-

regulated in various colorectal and pancreatic cancer cell lines, in the majority of 

colorectal cancer specimens (Bommer et al., 2005) and in thyroid neoplastic cell lines 

and carcinomas (Visconti et al., 2003). Re-expression of DRO1 in several cancer cell 

lines reduced their malignant growth properties (Bommer et al., 2005) and induced their 

sensitization to pro-apoptotic stimuli (Bommer et al., 2005; Ferragud et al., 2011).  

DRO1/Dro1 is a gene predominantly expressed in white adipose tissue with 

considerably lower expression levels in other tissues (Aoki et al., 2002; Liu et al., 2004; 

Bommer et al., 2005; Okada et al., 2008; Tremblay et al., 2009). Dro1 was 

demonstrated to be profoundly decreased in epididymal white adipose tissue of several 

obese mouse models (Okada et al., 2008). In 3T3-L1 cells, Dro1 was implicated as a 

bidirectional modulator of adipogenesis (Tremblay et al., 2009). Moreover, DRO1 was 

found to be a secreted protein from 3T3-L1 adipocytes, indicating a role as novel 

adipokine that might influence adipose tissue homeostasis and whole body energy 

metabolism and might be involved in the development of obesity (Tremblay et al., 

2009).  

The aim of the present study was to investigate the effects of Dro1 loss on colorectal 

carcinogenesis and body growth in vivo. We therefore generated the first knockout 

mouse model in which the Dro1 gene is constitutively inactivated (Dro1
-/-

) using a 

Cre/lox-P strategy. Genetic deletion of Dro1 by Cre-recombinase was demonstrated by 

Southern blot and further confirmed by PCR analysis. RT-PCR demonstrated no 

significant Dro1 expression in various organs from Dro1
-/-

 mice, suggesting a high 

efficiency of Dro1 depletion. Dro1
-/-

 mice were viable and fertile and showed no 

changes in lifespan. 

Loss of Dro1 had no effects on length and wet weight of the intestine. Moreover, no 

changes in cell maturation, positioning and the rate of proliferation and apoptosis were 

observed in the intestinal epithelium. Dro1
-/-

 mice did not develop intestinal tumors 

spontaneously. To investigate the effects of Dro1 loss on intestinal tumor formation, 

Dro1
-/-

 mice were crossed into the Apc
+/Min

 background, a widely used intestinal tumor 
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mouse model (Moser et al., 1990). Dro1
-/-

;Apc
+/Min

 mice were characterized by 

significantly reduced survival and a striking increase in colonic tumor multiplicity as 

compared to Apc
+/Min

 controls. Specifically, Dro1 loss promoted progression to 

malignancy in colonic tumors from Apc
+/Min

 mice. Approximately one third of colonic 

tumors from moribund Dro1
-/-

;Apc
+/Min

 mice had progressed to malignancy whereas 

colonic lesions from Apc
+/Min

 controls resembled tubular adenomas.  

Changes in colonic tumor multiplicity and neoplastic progression in Dro1
-/-

;Apc
+/Min

 

mice are most probably mediated by pathways other than Wnt/β-catenin signaling and 

alterations in cellular proliferation are likely to play only a minor role, if any, in the 

observed phenotypic alterations. Dro1 deficiency did not result in obvious effects on 

number, size or histopathologic quality of polyps in the small intestine of Apc
+/Min 

mice, 

suggesting a site-specific tumor suppressor role in the colon. Our findings clearly 

demonstrate Dro1 to be an important colonic tumor suppressor gene that suppresses 

polyp initiation and particularly prevents tumor progression towards malignancy in 

Apc
+/Min

 mice. 

Dro1
-/-

 mice showed normal development until 10 (males) and 12 (females) weeks of 

age, after which a significant increase in body weight was observed that was not 

mediated by changes in longitudinal growth. At the age of 6 months, Dro1
-/-

 mice 

exhibited substantially enlarged major white fat pads and a significant rise in the weight 

of lungs, liver, spleen, kidneys and carcass. The effects of Dro1 loss on body, organ and 

fat pad growth could further be enhanced by high-fat diet feeding conditions. Isolation 

and differentiation of white adipose tissue stromal vascular (SV) cells revealed that 

ablation of Dro1 significantly enhances the differentiation potential of these cells. Our 

results demonstrate a significant role for Dro1 in whole body growth. Moreover, we 

identified Dro1 to be a putative inhibitor of adipogenesis in primary SV culture, 

indicating a probable role in controlling fat cell multiplicity in white adipose tissue 

depots. 

The Dro1
-/-

;Apc
+/Min

 mouse model described here is likely to facilitate efforts to study 

colorectal tumorigenesis mechanisms, the role of other genes in adenoma-carcinoma 

transition and potential cancer prevention and treatment strategies. In addition, the 

Dro1
-/-

 mouse model may provide a valuable tool to investigate the correlation between 

obesity and colorectal cancer. 
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7. Zusammenfassung 

Auswirkungen des Verlustes von Dro1 auf die kolorektale Karzinogenese und das 

Körperwachstum in einem  konstitutiven Knockout-Mausmodell 

Vorangehende Untersuchungen konnten zeigen, dass die DRO1 Expression in 

verschiedenen Kolonkarzinom- und Pankreaskrebszelllinien und in der Mehrzahl 

kolorektaler Primärkarzinome stark vermindert ist (Bommer et al., 2005). 

Entsprechendes wurde für Schilddrüsenkrebszelllinien und -karzinome berichtet 

(Visconti et al., 2003). Eine Reexpression von DRO1 in verschiedenen Krebszelllinien 

reduziert deren maligne Wachstumseigenschaften (Bommer et al., 2005) und erhöht 

deren Sensitivität gegenüber pro-apoptotischen Stimuli (Bommer et al., 2005; Ferragud 

et al., 2011). Ausgehend von diesen Befunden, wurde vermutet, dass DRO1 ein 

potentielles Tumorsuppressorgen ist (Bommer et al., 2005). 

Es ist bekannt, dass DRO1/Dro1 ubiquitär, vor allem jedoch im weißen Fettgewebe 

exprimiert wird (Aoki et al., 2002; Liu et al., 2004; Bommer et al., 2005; Okada et al., 

2008; Tremblay et al., 2009). Eine starke Verminderung der Dro1 Expression wurde im 

epididymalen weißen Fettgewebe verschiedener Adipositas-Mausmodelle nachgewiesen 

(Okada et al., 2008). Untersuchungen in 3T3-L1 Zellen weisen darauf hin, dass Dro1 

ein bidirektionaler Modulator der Adipogenese ist (Tremblay et al., 2009). Es konnte 

gezeigt werden, dass DRO1 von 3T3-L1 Adipozyten sezerniert wird (Tremblay et al., 

2009). Dies lässt vermuten, dass DRO1 ein neues Adipokin sein könnte, das eine 

wichtige Funktion in der Homöostase des weißen Fettgewebes, in der Regulation des 

Energiehaushaltes und in der Entwicklung von Adipositas übernimmt (Tremblay et al., 

2009). 

Das Ziel der vorliegenden Studie war es, die Folgen eines Verlustes von Dro1 auf die 

kolorektale Karzinogenese und des Körperwachstums in vivo zu untersuchen. Aus 

diesem Grund haben wir unter Verwendung des Cre/lox-P-Systems das erste 

Mausmodell generiert, in welchem Dro1 konstitutiv inaktiviert ist. Southern blot und 

weiterführende PCR Analysen bestätigten die korrekte Rekombination durch die Cre-

Rekombinase im Dro1 Gen. Zudem konnte mit RT-PCR keine signifikante Dro1 

Expression in verschiedenen Organen der Dro1
-/-

 Maus nachgewiesen werden. Dro1
-/-

 

Mäuse waren lebensfähig, fertil und zeigten keine Veränderung in der 

Lebenserwartung. 
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Der Verlust von Dro1 hatte keinen Einfluss auf die Länge und das Nassgewicht des 

Darms. Im intestinalen Epithel konnten keine Veränderungen in der Zellausreifung und 

-positionierung sowie in der Proliferations- und Apoptoserate beobachtet werden. Da 

Dro1
-/-

 Mäuse keine spontanen Darmtumoren bilden, wurden sie in den Apc
+/Min

 

Hintergrund eingekreuzt, ein gut etabliertes intestinales Tumormausmodell (Moser et 

al., 1990). Im Vergleich zu Apc
+/Min 

Kontrolltieren zeigten Dro1
-/-

;Apc
+/Min 

Mäuse eine 

signifikant reduzierte Lebenserwartung und eine bedeutende Erhöhung der Tumorlast 

im Kolon. Im Besonderen fördert der Verlust von Dro1 die Progression vom Adenom 

zum Karzinom im Kolon von Apc
+/Min

 Mäusen. Ungefähr ein Drittel der untersuchten 

Kolontumoren aus moribunden Dro1
-/-

;Apc
+/Min

 Mäusen wurden als Adenokarzinome 

identifiziert, wohingegen alle Tumoren aus dem Kolon der Apc
+/Min

 Kontrollmäuse 

Adenome waren.  

Die beobachteten Veränderungen in der Tumorzahl und Tumorprogression in Dro1
-/-

;Apc
+/Min

 Mäusen werden höchstwahrscheinlich durch andere Signalwege als den 

kanonischen Wnt/β-catenin Signalweg vermittelt. Auch spielen Veränderungen der 

Proliferationsrate im Tumorgewebe keine oder nur eine untergeordnete Rolle für die 

Ausbildung des Darmphänotyps in Dro1
-/-

;Apc
+/Min

 Mäusen. Der Verlust von Dro1 hatte 

keinen Einfluss auf die Anzahl, Verteilung und Histologie der Tumoren im Dünndarm 

von Apc
+/Min

 Mäusen. Dies weist darauf hin, dass die Tumorsuppressorfunktion von 

Dro1 spezifisch für das Kolon ist. Unsere Befunde zeigen deutlich, dass Dro1 ein 

wichtiges Tumorsuppressorgen im Kolon in vivo ist, das die Tumorinitiation 

unterdrückt und im Besonderen die Tumorprogression in Apc
+/Min

 Mäusen verhindert.   

Dro1
-/-

 Mäuse entwickelten sich normal bis zur 10. (Männchen) bzw. 12. (Weibchen) 

Lebenswoche. Danach wurde eine signifikante Erhöhung des Körpergewichts 

beobachtet, die nicht mit Veränderungen des Längenwachstums einherging. Im Alter 

von 6 Monaten zeigten Dro1
-/-

 Mäuse stark vergrößerte weiße Fettdepots und eine 

signifikante Erhöhung des Gewichts von Lunge, Leber, Milz, Niere und Karkasse. Das 

Füttern einer fettreichen Diät verstärkte die Auswirkungen des Verlusts von Dro1 auf 

die Körpergewichtsentwicklung und das Wachstum der Organe und Fettdepots. 

Isolierung und Differenzierung von primären Stromazellen (stromal vascular (SV) cells) 

aus weißem Fettgewebe zeigten, dass der Verlust von Dro1 zu einer Steigerung des 

Differenzierungspotentials in diesen Zellen führt. Unsere Ergebnisse demonstrieren, 

dass Dro1 eine bedeutsame Rolle im Körperwachstum spielt. Des Weiteren wurde Dro1 
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in primären SV Zellen als potentieller Inhibitor der Adipogenese identifiziert. Dies 

weist darauf hin, dass Dro1 die Anzahl der Adipozyten im weißen Fettgewebe 

kontrollieren könnte. 

Das hier beschriebene Dro1
-/-

;Apc
+/Min

 Mausmodell sollte die zukünftige Erforschung 

der kolorektalen Karzinogenese, der Funktion weiterer Gene in der Adenom-Karzinom-

Sequenz sowie potentieller Krebsvorsorge und -behandlungsmethoden vorantreiben. 

Des Weiteren könnte die Dro1
-/-

 Maus ein wertvolles Modell sein, um den 

Zusammenhang zwischen Adipositas und der Entstehung des Kolonkarzinoms 

aufzuklären. 
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