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1 Abstract 

Vertebrate extraocular muscles show a highly complex anatomy, which differs 

in many respects from skeletal muscles. Furthermore, there is a considerable 

variation among different species with regard to the presence of proprioceptive 

organs. Whereas muscle spindles and Golgi tendon organs are well developed 

in sheep and pig, neither are found in cat, and only poorly developed muscle 

spindles are present in human and monkey. In all vertebrates studied so far 

cuffs of nerve terminals around multiply innervated muscle fibers of the global 

layer, termed palisade endings (PE) are present at the myotendinous junction.  

Palisade endings (PE) are specialized nerve endings unique to extraocular 

muscles. There is still an ongoing debate on PE function. A proprioceptive 

function is supported by their ultrastructural morphology, and the location of the 

majority of their terminals within the muscle tendon. A motor function of PEs is 

suggested by the expression of different cholinergic markers, and the binding of 

α-bungarotoxin to at least a small proportion of PE nerve endings. So far the 

location of the somata giving rise to the PEs is unknown.  

After eye muscle injections with different tracers, and the investigation of 

retrogradely labeled cells after three days of survival, there are two possible 

options for the location of the cell bodies of PEs: The trigeminal ganglion (TG), 

where almost all of the sensory afferents of eye muscles come from, or the 

motor neurons of the abducens (nVI), trochlear (nIV) and oculomotor nucleus 

(nIII) in the brainstem, where the motor neurons of the extraocular muscles are 

situated.  

In the first part of this thesis the histochemical and morphometric properties of 

TG cells projecting to the extraocular muscles were studied and related to 

different nerve fibers and terminals in these muscles, to obtain more information 

about their function. Retrogradely labeled TG neurons and eye muscle 

terminals were processed for the presence of substance P (SP), nitric oxide 

synthase (NOS), calretinin (CR) and cholinacetyltransferase (ChAT). Injections 

of the tracer were placed into the medial rectus (MR) or the lateral recuts 

muscle (LR), either in the belly or in the distal, myotendinous part of the muscle. 

PEs were only labeled by CR or ChAT and none of the other markers that were 

used. Furthermore, CR positive retrogradely labeled tracer cells in the TG were 
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rarely found (under 1 % of all tracer cells). The results indicate that the possible 

function of TG afferents could be mainly vasodilatation or nociception whereas 

the probability of proprioception via PEs is very low. These results point to the 

fact, that the source of the PE cell body is probably localized in the brainstem. 

In a second attempt to solve this problem, rhesus monkey received tract-tracer 

injections (WGA or CT) into the oculomotor nucleus, which contains the motor 

neurons of the medial, inferior and superior recti and inferior oblique muscles, 

as well as the trochlear nucleus, which contains the motor neurons of the 

superior oblique. All extraocular muscles were processed for the combined 

immunocytochemical detection of the tracer and non-phosphorylated 

neurofilament for the visualization of the complete muscle innervation. In all 

muscles (except lateral rectus) numerous anterogradely tracer labeled PEs 

were found, as well as tracer-filled tendon organs. In addition the en plaque and 

en grappe motor endings, were also strongly tracer positive. Double 

immunolabeling revealed that all types of nerve endings including tendon 

organs were anterogradely labeled, except the thin tyrosine hydroxylase 

positive autonomic nerve fibers of the sympathetic system. No anterograde 

labeling was found within the trigeminal ganglia. 

These results suggest that the somata of palisade endings are located within 

the brainstem, in or around the oculomotor nuclei, and confirm several previous 

studies. In how far the multiple nerve endings of non-twitch muscle fibers and 

the PEs form an anatomical entity with one parent soma in the periphery of the 

oculomotor nuclei was studied by morphological and histochemical analysis of 

the peripheral neurons around the motor nuclei. This data revealed two 

populations: one group of cholinergic multipolar neurons represent the motor 

neurons supplying the multiple motor innervation, one group of round calretinin 

positive cholinergic neurons giving rise to PEs. If the palisade endings do have 

a sensory function, then their cell body location amongst the non-twitch motor 

neurons would be an ideal location to control the tension in the non-twitch 

extraocular muscle fibers, and the data brought together in this thesis points 

strongly in this direction.  

To fully establish this hypothesis more physiological experimental data is 

required.  
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2 Introduction 

An understanding of the control of eye movements leads to fundamental 

insights into how the brain works. Irregularities in the motility of eye muscles are 

often the result of abnormal processes in the brainstem. However in almost 

every area of the brain, in monkey and human, some activity related to eye 

movements, can be found. Furthermore, the complexity of these movements is 

reflected not only in the organization of central activity, but also in the 

construction and innervation of the individual extraocular eye muscle (EOM) 

itself.  

 

2.1 Extraocular muscles  

2.1.1 Arrangement and function 

The eye is moved by six extraocular muscles (EOMs), four recti muscles (the 

superior-, inferior-, medial- and lateral rectus) and two oblique muscles 

(superior- and inferior oblique). A seventh EOM, the levator palpebrae 

superioris (LP), does not affect the movement of the eye, but elevates the upper 

eyelid and appears only in mammals (Spencer and Porter, 2006). The presence 

of these four recti and two oblique muscles is consistent across vertebrates, 

only the pattern of innervation and the site of insertion differs (Isomura, 1981). 

In the bony orbit the eyeball is surrounded by the EOMs, together with 

connective tissue and orbital fat. All muscles, with the exception of the inferior 

oblique (IO) and LP muscle, have their origin in the annulus of Zinn, a tendinous 

ring which surrounds the optic foramen and a portion of the superior orbital 

fissure (Sevel, 1986). The LP has its origin at the sphenoid bone, above the 

optic foramen, whereas the IO arises from the maxillary bone in the medial wall 

of the orbit (Fig. 1). 

The medial rectus (MR) lies medial to the globe and inserts posterior to the 

corneoscleral junction; the lateral rectus (LR) lies on the lateral aspect of the 

globe and inserts on the sclera via a long and broad tendon. Besides these two 

horizontal muscles the two vertical muscles, the superior rectus (SR) and 

inferior rectus (IR), insert dorsally and ventrally on the globe, anterior to the 

equator. The superior oblique muscle (SO) inserts at the posterotemporal 
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surface of the globe, passes medially, through the trochlea, a chondral ring at 

the upper edge of the medial orbit, and courses proximally to the tendinous 

annulus. Lastly, the IO originates from the maxillary bone behind the lacrimal 

fossa, passes ventral to the tendon of the IR and inserts on the lateral eyeball, 

between the IR and LR (Miller, 1998) (Fig. 1). 

 

Fig. 1 Alignment of the eye muscles: The left drawing shows the alignment of eye muscles within 
the orbit. All muscles, with the exception of the inferior oblique (IO) and LP muscle, have their 

origin at the annulus of Zinn. The LP has its origin at the sphenoid bone, above the optic foramen, 

whereas the IO arises from the maxillary bone in the medial wall of the orbit. All eye muscles 
except the LP insert on the globe. The right picture shows a dissected monkey right eye with the 

extraocular muscles and corresponding nerves. NII – optic nerve; NIII – oculomotor nerve; NIV – 

trochlear nerve; NVI – abducens nerve. (Illustration left: modified from Patrick Lynch, Yale 

University School of Medicine). 

 

According to their location and insertion to the globe, the EOMs have different 

functions in eye movements (Tab. 1). The horizontal muscles of the MR and LR 

insert on the opposite sides of the globe, as do the vertical muscles of SR and 

IR, therefore these muscle pairs are functional antagonists. The MR is the 

principal adductor and the LR the principal abductor of the eye. These two are 

the only muscles with no secondary function. In contrast, the SR and IR have, in 

addition to their function for elevation and depression a secondary function. 

Depending on the starting position, the SR participates in intorsion and 

adduction as tertiary function, while the IR contributes also to extorsion and 

adduction. The main action for the SO is intorsion, the secondary and tertiary 

actions are depression and abduction, respectively. The IO is mainly involved in 

the extorsion, but also in elevation and abduction (Horn and Leigh, 2011).  
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Tab. 1 The eye muscles and their different functions in eye movements 

 

2.1.2 Gross and fine anatomy 

Compared to skeletal muscles, the EOMs show unique functional features in 

morphology and physiology, which is reflected in their composition. They are 

among the fastest and most fatigue resistant muscles in mammals, but also 

possess slow, non-twitch muscle fibers, a phylogenetically older muscle type 

which has been well studied in avians and amphibians (Morgan and Proske, 

1984, Spencer and Porter, 1988, Ruff et al., 1989).  

Since 1938 it has been known, that the EOMs are compartmentalized into an 

outer orbital and an inner global layer (Kato, 1938). The inner global layer faces 

the optic nerve and the globe and inserts via a tendon on the sclera of the eye 

ball, whereas the orbital layer faces the periorbital and orbital bone and inserts 

onto the fibroelastic connective tissue, present around the equator of the globe, 

called Tenon’s capsule (Demer et al., 2000). In some species a third layer has 

been described: in sheep there is a C-shaped portion of the muscle lying 

distally, and external to the orbital layer: it is called the peripheral patch layer 

(Harker, 1972). In humans a marginal layer has been identified using 

histochemical markers (Wasicky et al., 2000).  

Muscle Primary	
  Function Secondary	
  Function Tertiary	
  Function

Medial	
  rectus adduction none none

Lateral	
  rectus abduction none none

Superior	
  rectus elevation intorsion adduction

Inferior	
  rectus depression extorsion adduction

Superior	
  oblique intorsion depression abduction

Inferior	
  oblique extorsion elevation abduction
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All EOMs consist of two basic muscle fiber categories (Spencer and Porter, 

2006). One of them corresponds to the twitch fibers (type IIA) of mammalian 

skeletal muscles, the singly innervated fibers (SIFs), which respond with an ‘all-

or-nothing’ potential to electrical stimulation. The second type are multiply 

innervated fibers (MIFs), which are atypical for mammalian skeletal muscles, 

and besides in EOMs are described in the laryngeal muscles and in the tensor 

tympani muscle of the middle ear (Fernand and Hess, 1969, Mascarello et al., 

1982, Périé et al., 1997, Han et al., 1999, Schiaffino and Reggiani, 2011). They 

respond with local potentials to electrical stimulation resulting in a slow tonic 

contraction (Siebeck and Kruger, 1955).  

Since the first distinction between the MIFs and SIFs, the classification of 

mammalian EOM fiber types has been complemented by studying the 

histochemical properties (Ringel et al., 1978), morphology with light and 

electron microscopy (Cheng and Breinin, 1966) and electrophysiology (Hess 

and Pilar, 1963, Bach-y-Rita and Ito, 1966). Nowadays, the broadly accepted 

scheme of classification includes six different fiber types, characterized on the 

basis of their location in the orbital or global layer, on their mitochondrial content 

and hence their fatigue properties and also on their classification into a singly or 

multiply innervation type (Spencer and Porter, 1988). The orbital layer of muscle 

consists of two fiber types, one MIF type and one SIF type, the global layer of 

one MIF type and three SIF types. This arrangement is a common pattern seen 

across different species (Spencer and Porter, 2006). 

Up to 80 % of the orbital muscle fibers represent SIFs, which have small 

myofibrils (myofibril volume 60 % is smaller than in skeletal muscles with 70-85 

%) (Hoppeler and Fluck, 2002) and a relatively high percentage of mitochondria 

(20 % volume of the orbital SIFs) and accordingly also a high oxidative enzyme 

content. In addition their capillary network is higher developed than in the global 

layer. These features implicate that they are fast twitch and highly fatigue 

resistant muscles, but they have also the competence for anaerobic metabolism 

(Spencer and Porter, 1988). Furthermore, the orbital layer shows different 

expressions of the myosin gene, unique to the mammalian EOMs and the 

laryngeal muscle, and an embryonic myosin heavy chain isoform, usually 

associated with developing skeletal muscles (Wieczorek et al., 1985, Jacoby et 

al., 1990, Brueckner et al., 1996). The myosin isoforms are specialized to 
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provide specific contractile force/velocity profiles (Spencer and Porter, 2006) 

and they are distributed heterogeneously along the length of a muscle fiber 

(Rubinstein and Hoh, 2000, Lucas and Hoh, 2003).  

The MIFs make up 20 % of the orbital layer fibers. Their myofibrils are larger 

than those of the orbital SIFs, and along one fiber, where the multiple nerve 

terminals are distributed, they show characteristics of twitch, as well as none 

twitch muscle fibers (Pachter, 1984). These MIFs express, apart from the slow 

twitch isoform, an embryonic myosin and a unique neonatal myosin heavy chain 

isoform (Wieczorek et al., 1985, Rubinstein and Hoh, 2000, Briggs and 

Schachat, 2002). 

In the global layer there are three different, types of SIFs: red, intermediate and 

white, all of them with characteristics of fast twitch fibers. The global red SIFs 

represent one third of the global layer. They are suggested to be significant 

fatigue resistant, and furthermore express a IIA myosin isoform (Rubinstein and 

Hoh, 2000). The intermediate SIFs incorporate one fourth of the fast twitch 

global fibers. With their intermediate contraction speed and intermediate fatigue 

resistance they are classified between the red and white SIFs. The latter 

comprise one third of all fibers of the global layer with characteristics of fast 

twitch, low fatigue resistance fibers (Spencer and Porter, 1988). 

The remaining 10 % of the global fibers are MIFs, with an ultrastructural profile 

similar to slow, tonic muscle fibers of amphibians. After electrical stimulation 

they exhibit slow graded, local contractions with non-propagated responses 

(Chiarandini and Stefani, 1979). 

 

2.2 Eye movements 

Keeping images stable on the retina is a prerequisite for accurate visual 

perception. Movement of an image across the retina as during head movements 

would lead to blurred vision without eye movements. There are at least six 

different types of eye movements: The vestibulo-ocular reflex (VOR), the 

optokinetic response (OKR), smooth pursuit eye movements, vergence, 

saccades and visual fixation (Horn and Leigh, 2011). The VOR is a 

compensatory eye movement in response to head movements in the opposite 
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direction. By moving the eyes at the same speed as the head it prevents 

slippage of retinal images. The activation is mediated by canal and otolith 

receptors in the labyrinth. While the VOR operates best at brief and high 

frequency changes in head position, it is poor at low frequency changes 

(Büttner and Büttner-Ennever, 2006). The optokinetic responses (OKR), in 

contrast are slow, conjugated eye movements responding to large moving 

visual fields. Extended stimulation in one direction leads to optokinetic 

responses consisting of alternate slow phases and contralateral quick phases. 

VOR and OKN are sufficient eye movements to stabilize vision for species with 

no fovea centralis, the retinal region with the highest density of cones. 

Therefore, these two types of eye movements are present in all vertebrates 

investigated so far (Baker, 1998, Fritzsch, 1998). Species with a fovea must 

focus stationary visual objects there to obtain clear vision, a task accomplished 

by saccadic eye movements. They move both eyes rapidly in a conjugate 

manner to a desired target without head movements. In primates, saccades last 

between 15 and 100 milliseconds and reach speeds of up to 800°/s. They are 

one of the fastest and most accurate movements of vertebrates and can be 

modified voluntarily, with the exception of their velocity, which depends on the 

angular distance of a target (Büttner and Büttner-Ennever, 2006). But saccades 

can also occur spontaneously e.g. in an alert state, and even in complete 

darkness. In afoveate animals they usually occur together with head 

movements (Leigh and Zee, 2006). Smooth pursuit eye movements are needed 

to track a moving target, shifting over a stationary background smoothly. These 

eye movements are limited, and are often associated with saccadic movements, 

because the image on the fovea slides away and has to be captured again 

there (Leigh and Zee, 2006). It is a voluntary movement that requires attention 

and can reach velocities up to 100°/s, but it is considered as a slow eye 

movement (Lisberger et al., 1981, Simons and Büttner, 1985). Normally the 

eyes track moving objects together with the head, but the VOR automatically 

brings the eyes in an opposite direction of the head movement, and must 

therefore be suppressed under the conditions of smooth pursuit. It is suggested 

that a smooth pursuit signal cancels the VOR (Leigh, 1999). In contrast, gaze 

holding or visual fixation, holds a fixed image steadily on the fovea and permits 

a stable eye position between the eye movements (Büttner and Büttner-

Ennever, 2006). 
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To keep a target in focus on both foveae, even when the distance is less than 

30 meters, frontal eyed animals perform disconjugated eye movements, e.g. 

vergence eye movements. The vergence system allows precise alignment of 

the visual axes for bifoveal fixation and stereopsis. Generally vergence 

movements are slow (latency 150-200 ms), but can be much faster when they 

are associated with saccades (Leigh and Zee, 2006). 

All these types of eye movements use the same muscles and moreover the 

same motor neurons. David Robinson pointed out in the 1970’s that different 

eye movements are achieved through different, and relatively separate, 

premotor neural circuits driving the motor neurons. However, nowadays 

research shows that extraocular motor neurons are not a homogenous 

population that participates equally in all types of eye movements (Büttner-

Ennever et al., 2001). 

 

2.3 Motor innervation of extraocular eye muscles  

2.3.1 Organization of motor neurons 

The motor neurons of the extraocular muscles lie in three distinct nuclei within 

the brainstem (Fig. 2.). The oculomotor nucleus (nIII) and the trochlear nucleus 

(nIV) are located in the mesencephalon, the abducens nucleus (nVI) more 

caudal at the pontomedullary junction.  
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Fig. 2 A sagittal section of the monkey brainstem: this figure demonstrates the location of the 
oculomotor (nIII), trochlear (nIV) in the mesencephalon and abducens nucleus (nVI) more caudal at 

the pontomedullary junction. RIMLF - mesencephalic rostral interstitial nucleus of the medial 

longitudinal fasciculus; INC – interstitial nucleus of Cajal; NIII – oculomotor nerve; SC – superior 
colliculus; IO – inferior olive. 

  

The nVI lies in the tegmentum of the pontomedullary junction near the midline 

and underneath the genu of the facial nerve, and contains the motor neurons of 

the ipsilateral LR muscle. Some species, e.g. cat, contain the motor neurons of 

additional muscles, the retractor bulbi muscles, accessory eye muscles 

controlling the nictitating membrane, and therefore participating in the retraction 

reflex of the eye (Spencer et al., 1980). Besides the motor neurons the 

abducens nucleus contains internuclear neurons, which project to the MR motor 

neurons in the contralateral nIII via the medial longitudinal fasciculus (MLF) and 

provide the neuroanatomical basis for conjugate, horizontal eye movements 

(Glicksman, 1980, Büttner-Ennever and Akert, 1981, Evinger et al., 1987, 

Straka and Dieringer, 1991).  

The trochlear nucleus (nIV) is located in the mesencephalic tegmentum and 

adjoins the oculomotor nucleus caudally. Almost all of its motor neurons 

innervate the contralateral SO muscle, only a few of them project to the 

ipsilateral SO muscle (Evinger et al., 1987). 



2 Introduction 11 

The oculomotor nucleus (nIII) contains motor neurons of the ipsilateral MR, IR, 

IO and the contralateral SR muscles. Systematic investigations of the location 

of individual motor neuron groups within nIII began with clinical, 

neuroanatomical and electrophysiological methods in the late nineteenth 

century (Edinger, 1885, Bernheimer, 1897, Brouwer, 1918). However the 

presently accepted topographical map of nIII was investigated not until 1953 by 

retrograde degeneration techniques in non-human primates (Warwick, 1953). 

After introduction of retrograde tract-tracing methods, for example with 

horseradish peroxidase (HRP) more detailed information about the organization 

of oculomotor nuclei was achieved in different species including primates (Fig. 

3) (Gacek, 1977, Akagi, 1978, Glicksman, 1980, Büttner-Ennever, 2006). These 

subgroups have a topographic arrangement, illustrated for monkey and rat in 

Fig. 3. 

 

Fig. 3 A topographical organization of motor neurons in the nIII of monkey (A) and rat (B); whereas 

the motor neurons of almost all eye muscles, which are innervated by nIII, lay on the ipsilateral 
side, the SR motor neurons lay contralateral. Motor neurons of singly-innervated twitch muscle 

fibers (SIFs) lie within the boundaries of nIII, whereas motor neurons of multiply innervated fibers 

non-twitch fibers (MIFs) are located in the periphery of nIII in the C- and S-group most obvious in 
non-human primates (A). 

 

In all investigated species the subgroups for motor neurons of eye moving 

muscles within nIII follow an IR, MR, IO and SR sequence from rostral to 

caudal. In frontal eyed species, like monkey, the motor neurons of the LP form a 

separate subgroup caudal to the nIII, in the central caudal nucleus (CCN), 
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whereas in lateral eyed animals, like rat, the LP population lies laterally on the 

contralateral side (Evinger, 1988). 

Another difference in the organization of the nIII between primates and non 

primates is the threefold representation of the MR in the primate nIII. The A-

group, at the ventral portion of the nIII, extends into the MLF and contains the 

largest number of MR motor neurons. The B-group appears as a circle-round 

group at the dorsolateral within nIII and dorsomedially, at the peripheral border 

of the nucleus lies the C-group (Büttner-Ennever and Akert, 1981, Porter et al., 

1983) (Fig.3).  

 

2.3.2 Singly- and multiply innervated fiber motor neurons 

Although the multiple representation of the MR in the primate nIII is not clear 

yet, tract-tracer experiments in monkey suggest the C-group of the nIII 

comprises multiply innervated muscle fiber motor neurons, while the A- and B-

group motor neurons give rise to the singly innervated muscle fibers (Büttner-

Ennever et al., 2001) (Fig.4 A). Tracer injections into the belly or the distal 

myotendinous junction of EOMs in monkey were made by Büttner-Ennever et 

al. (Büttner-Ennever et al., 2001). Only the distal injections, enclosing 

exclusively the endplates of the MIFs and some special nerve endings called 

palisade endings revealed a second set of motor neurons in all of the three 

oculomotor nuclei, smaller in diameter with a completely different organization 

from that of the “classical” large motor neurons (Büttner-Ennever et al., 2001). 

The second set of motor neurons was shown to have a different morphology 

and different histochemical properties (Eberhorn et al., 2005a). The “traditional” 

SIF motor neurons were exclusively found within the boundaries of the 

oculomotor nuclei, whereas the motor neurons of the MIFs were located in the 

periphery of the nuclei: the C-group, located dorsomedially at the peripheral 

border of the nIII, containing the MIF motor neurons of MR and IR (Fig. 4 B); the 

S-group, at the midline between the nIII, containing the MIF motor neurons of IO 

and SR. The peripheral MIF groups of nIV form a cap over the dorsal surface of 

the nucleus, whereas the MIF group of the VI lay around the medial borders of 

this nucleus and between the rootlets of the NVI, or around the facial genu 

(Büttner-Ennever et al., 2001, Wasicky et al., 2004). 
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Fig. 4 Location of the singly- and multiply innervated fiber neurons in the nIII (A) in the monkey 
(and other primates) the MR motor neurons are separated in an A-group, at the ventral portion of 

the nIII, which contains the largest number of MR motor neurons, dorsolateral the B-group and 

dorsomedially, at the peripheral border of the nucleus the C-group. The C-group contains the MIF 
motor neurons of the MR and the IR (B), the S-group contains the MIF motor neurons of the SR and 

IO. (B) Transverse section of monkey nIII demonstrating retrogradely labeled neurons after a very 

distal tracer injection into MR. Note that only the peripheral cells of the C-group are tracer positive. 
(Figure from Lienbacher et al. 2011a) 

 

2.3.3 Neuromuscular junctions 

The EOMs consist mainly of twitch fibers that show an ‘all-or-nothing’ 

contraction, activated by an endplate that lies approximately in the middle of 

each fiber, called en plaque ending (Namba et al., 1968, Spencer and Porter, 

2006). These nerve terminals are embedded in the deep depressions of the 

sarcolemma, usually encircling the muscle fiber. The neuromuscular junctions 

of the singly innervated, twitch fibers in the global layer are morphologically 

identical to that of the orbital SIFs. Only the en plaque terminals in the global 

layer of the intermediate SIFs show clusters of large nerve endings, located in 

synaptic depressions (Spencer and Porter, 1988). At the proximal third, in the 

region where the nerve enters the muscle, the en plaque endings form a dense 

innervation band across the global layer.  

The non-twitch fibers of the EOMs are multiply innervated along their whole 

length, and generate only a local contraction that is not propagated throughout 
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the muscle fiber by the so-called en grappe endings (Spencer and Porter, 1988, 

Porter et al., 1995). In the orbital layer, the motor endings at the mid-belly 

resemble those of the orbital SIFs, but proximal and distal to the center the 

terminals are small and look like a string of pearls (Fig. 5). 

 

Fig. 5 Eye muscle with its different fiber types and endings; the singly innervated muscle fibers 
(SIFs) are innervated by only one terminal per fiber with an “all or nothing” action potential signal, 

whereas the multiply innervated fibers (MIFs) have more than one nerve terminal distributed all 

over the fiber length, with only local potentials. The MIFs extend proximal and distal into the 

tendon ,where the palisade endings (PEs) are located at the distal tip of theses fibers at the 
myotendinous junction. 

 

2.4 Sensory innervation of extraocular eye muscles 

2.4.1 Sensory ganglion cells 

Based on the general organization of sensory innervation of head structures, it 

is expected that the cell bodies of sensory neurons innervating the eye muscles 

lie in the trigeminal ganglion (TG) (Brodal, 1981, Usunoff et al., 1997). 

Accordingly, tracer injections into the eye muscles result in retrogradely labeled 

neurons not only in the motor nuclei, but also labeled cell bodies in the 

ophthalmic division of the TG providing sensory innervation of the eye muscle 

(Daunicht et al., 1985, Porter and Donaldson, 1991). Some reports suggest the 

mesencephalic trigeminal nucleus (VMes) as a further source of sensory 

afferents to the extraocular muscles (Alvarado-Mallart et al., 1975b, Buisseret-

Delmas and Buisseret, 1990, Wang and May, 2008).  
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The trigeminal ganglion (also called semilunar or gasserian ganglion) is situated 

on the anterior, superior surface of the petrous bone in the middle fossa of the 

skull, and is surrounded by arachnoid and dura. It contains the cells of origin of 

all trigeminal sensory axons with different cell sizes (from 20 µm to 80 µm in 

diameter), and different neurochemical properties (Lazarov, 2002). The axons 

arising from each cell body bifurcate to form an anterior branch, which proceeds 

to the periphery in one of the three trigeminal nerve divisions, and a posterior 

branch, which enters the brainstem at the pontine level and travels within the 

brainstem to terminate within the principal and spinal trigeminal nucleus (Brodal, 

1981, Parent, 1996).  

The TG has three peripheral branches, which provide the somatosensory 

innervation of the face including the orbita and eye: the ophthalmic branch (V1) 

supplies the forehead, upper eye lid, cornea, conjunctiva, frontal sinuses and 

the dorsum of the nose; the maxillary branch (V2) innervates the upper lip, the 

lateral portion of the nose, part of the oral cavity, the maxillary sinus, upper jaw 

and the roof of the mouth as well as the upper dental arch, the third, mandibular 

branch (V3) innervates the lower lip and chin, the cheek, the lower teeth, the 

lower jaw, the floor of the mouth and part of the tongue (Brodal, 1981, Usunoff 

et al., 1997, Voogd et al., 1998). Furthermore, motor axons travel through the 

mandibular nerve of the sensory TG to the masticatory muscles. The TG shows 

a clear topographical organization, where the mandibular aspect lies 

posterolateral, the ophthalmic division anteromedian and the maxillary fraction 

located in between (Kerr et al., 1964, Marfurt, 1981).  

 

2.4.2 Proprioceptors in the eye muscles 

One type of sensory receptors in the EOMs are mechanoreceptors, which are 

classified as proprioceptors. They lie deep in the muscle tissue and respond to 

contractions, stretch, tension and generally to changes in muscle position. 

Sherrington was the first to define proprioception: “a reflex system for the 

maintenance of body position and coordination of movement” (Sherrington, 

1906). Until now it is suggested that there are two putative proprioceptive 

structures in the EOMs: the muscle spindles and the Golgi tendon organs.  
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Muscle spindles are found in the majority of somatic muscles of all tetrapod 

vertebrates, but the first description of muscle spindles in the EOMs was made 

by Cilimbaris (Cilimbaris, 1910). A typical spindle consists of some small 

intrafusal muscle fibers that receive a motor as well as a sensory innervation; it 

lies in parallel with the extrafusal muscle fibers. It is enclosed within a fluid filled 

capsule of perineurium, with a fusiform appearance. The equatorial region 

occupies in large part the intracapsular space, in which the muscle fibers are 

thinner and enclosed by a fibrous capsule. The intrafusal fibers appear as 

nuclear chain fibers and nuclear bag fibers. Nuclear chain fibers, making most 

of the intrafusal fibers, are shorter and thinner than the nuclear bag fibers and 

their central nuclei are arranged in a continuous row, in contrast to bag fibers 

which have clustered nuclei (Barker, 1974). Both types are enwrapped by 

annulospiral primary sensory endings, the chain fibers furthermore secondary 

sensory flower-spray and annulospiral endings on the distal sides of the primary 

endings. The motor innervation is the same for both fiber types: efferent axons 

of small caliber terminating on the contractile polar regions. They arise from 

gamma motor neurons which are considered to regulate the sensitivity of the 

spindles during contraction of the corresponding extrafusal muscle fibers 

(Barker, 1974). (The motor neurons innervating the extrafusal fibers are, in 

contrast, alpha neurons). The sensory afferent endings of the intrafusal fibers 

respond to stretch. 

Most of the extraocular muscle spindles seem to deviate from the classical 

muscle spindle found in the skeletal muscles (Cooper and Daniel, 1949, 

Ruskell, 1999, Donaldson, 2000). Furthermore there are large variations in the 

distribution of these receptors between different species (Harker, 1972, Barker, 

1974), and some species possess no spindles at all (Ruskell, 1999) (Tab. 2).  

Golgi Tendon Organs (GTOs) are fusiform receptors at the musculotendinous 

junction, with thin, encapsulated bundles of small tendon fascicles and a 

number of muscle fibers, attached on one pole. An afferent nerve fiber 

innervating the GTO enters the capsule and branches via numerous terminals 

between the bundles of collagen. These proprioceptors lie in series with the 

extrafusal fibers and serve as a force transducer that responds more to tension 

than to stretch (Hunt, 1974). They respond to active tension, generated by 

contracting muscle fibers, with a low threshold (Jami, 1992).  
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Although GTOs are important proprioceptors in mammalian striated somatic 

muscles, second to muscle spindles, they show large variations in morphology 

and distribution in eye muscles of different species, and they are completely 

absent in a lot of species (Ruskell, 1999) (Tab. 2). 

Even in species with very few, or no muscle spindles or GTOs, representations 

of eye position or stretch reflexes were found (Dancause et al., 2007, Wang et 

al., 2007, Balslev and Miall, 2008).  

There is a third possible proprioceptive terminal in the eye muscles, found in all 

species investigated so far: the palisade endings (Tab. 2). 

 

Tab. 2 Classical and possible eye muscle proprioceptors like muscle spindles, Golgi tendon 

organs and palisade endings and their appearance in different species. 

 

2.4.3 Palisade endings 

Palisade endings (PE) were described and named by Dogiel in 1906 (Dogiel, 

1906) (Fig.6). PEs with a surrounding fibroblast like cell capsule were also 

called myotendinous cylinders (Ruskell, 1978). The PEs arise from nerve fibers 

that enter the tendon from the central muscle nerve and turn back 180° to re-

enter the muscle zone distally, to form a cuff of nerve endings around the tip of 

MIFs of the global layer (Chiarandini and Stefani, 1979, Ruskell, 1999). Until 

now, PEs were found in human and monkey (Tozer and Sherrington, 1910, 

Richmond et al., 1984, Ruskell, 1999, Donaldson, 2000, Lukas et al., 2000), cat 

(Alvarado-Mallart and Pincon Raymond, 1979), dog (Rungaldier et al., 2009), 

sheep (Blumer et al., 1998), rabbit (Blumer et al., 2001b) and rat (Eberhorn et 

al., 2005b). In monkey up to 300 PEs were found in one single MR muscle 

Muscle 
Spindles

Golgi Tendon 
Organs

Palisade 
Endings

Human +/- + +
Monkey +/- + +
Sheep + + +

Pig + + +
Cat - - +
Rat - - +
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(Ruskell, 1978). In human and cat PEs were also found in the proximal 

myotendinous part of EOMs (Cooper and Daniel, 1949, Alvarado-Mallart and 

Pincon Raymond, 1979) and may be a general feature in other species, but this 

has not yet been proven. Like GTOs they lie in series, at one end connected to 

a multiple innervated, non-twitch fiber, at the other related to the tendon of the 

muscle.  

Since the first descriptions of PEs (Huber, 1900, Dogiel, 1906), there has been 

an ongoing debate about their function. Sas and Scháb were the first to 

suggest, by degeneration experiments with cranial nerves or degenerations 

around the motor nuclei, that the PEs are motor structures (Sas and Schab, 

1952). Recent research has tried to confirm the fact that PEs are motor 

endings. More specifically, the PEs in humans show a basal membrane around 

their terminals, which is taken as a typical feature for motor endings (Lukas et 

al., 2000); secondly, they use acetylcholine as a transmitter, as motor neurons 

do (Konakci et al., 2005a, Konakci et al., 2005b, Blumer et al., 2006, Blumer et 

al., 2009). On the other hand a sensory function was proposed by other groups: 

for example the degeneration experiments of Tozer and Sherrington revealed 

an afferent and efferent function of the oculomotor nerves (Tozer and 

Sherrington, 1910). Detailed studies of the ultrastructural morphology support 

the function of a sensory terminal (Ruskell, 1978, Alvarado-Mallart and Pincon 

Raymond, 1979, Blumer et al., 1998). Furthermore, tracer injections targeting 

the trigeminal nerve of the cat were reported to lead to anterograde labeling of 

PEs in the extraocular muscles (Billig et al., 1997). 
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Fig. 6 Drawing of a palisade ending taken from the study by Dogiel in 1906. PEs arise from nerve 

fibers that enter the tendon from the central muscle nerve and turn back 180° to re-enter the 
muscle zone distally and form a cap of nerve endings around the tip of MIFs of the global layer. 

 

The debate on the palisade ending function was compounded by the lack of 

knowledge about the location of their cell bodies. For sensory function they 

would be expected to lie in the trigeminal ganglion or mesencephalic trigeminal 

nucleus, for motor function in the motor nuclei of extraocular muscles. 

 

2.5 Aims of the project 

1. The TG accommodates most of the cell bodies for sensory terminals of the 

face. Furthermore, tracer injections in the EOMs showed retrogradely labeled 

cells in the ophthalmic subdivision of the TG (Porter and Donaldson, 1991). 

Until now there is no information about their function and what kind of terminals 

these TG cells subtend in the eye muscles. In order to characterize retrogradely 

labeled TG cells and their corresponding endings in the EOM, we analyzed 

these neurons with immunohistochemistry and morphometrical methods. 
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2. Taking into account that the oculomotor nuclei within the brainstem contain 

the motor neurons innervating SIF and MIF muscle fibers, tracer injections were 

placed into the oculomotor nucleus or nerve to find out if PEs can be 

anterogradely labeled.  

 

3. A close investigation of the histochemical properties of nerve endings was 

performed to find potential proteins unique to palisade endings. In a next step 

the putative PE cell bodies were studied for the presence of these proteins.  

 

In this thesis I have been able to provide evidence that the PE cell bodies are 

not located in the TG, but are intermingled with the peripheral neurons around 

the oculomotor nuclei. The evidence here supports the hypothesis that they 

may be sensory cells which could provide a proprioceptive signal and modulate 

the activity of the adjacent oculomotor neurons.  
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3 Methods 

The tracer injections in macaque monkeys were conducted in collaboration with 

Prof. Mike Mustari from the Washington National Primate Research Center of 

the University of Washington, Seattle and Prof. Dr. Bernhard Hess from the 

Universitätsspital Zürich, Neurologische Klinik. All experimental procedures 

conformed to the state and university regulations on laboratory animal care, 

including the Principles of Laboratory Animal Care (NIH Publication 85-23, 

Revised 1985), and were approved by their animal care officers and Institutional 

Animal Care and Use Committees.  

 

3.1 Methods for the characterization of retrogradely labeled 
trigeminal ganglion cells and their terminals in the 

extraocular muscles 

Six Macaque monkeys were anesthetized with Ketalar (500 mg Ketamin in 9 ml, 

i.p.) following Isoflurane. Under sterile conditions, the extraocular eye muscles 

were exposed by retracting the eyelids, making a conjunctival incision, and 

partially collapsing the eye ball. Large or small volumes of the neuronal tracers 

cholera toxin subunit B (CT, 5–10 µl, 1 % from List Campbell, CA, USA) or 

wheat germ agglutinin (WGA, 5–10 µl, 2.5 % Sigma, St. Louis, MO, USA) were 

injected through a Hamilton syringe into the belly or the distal tip of the eye 

muscle, respectively. In one monkey only the conjunctiva was injected. 

After a survival time of 3 days the animals were killed with an overdose of 

Nembutal (1-2 ml = minimum 50 mg Pentobarbital, i.p.) and transcardially 

perfused with 0.9 % saline (35 °C) followed by 4 % paraformaldehyde in a 0.1 M 

TBS (Tris buffered saline) (pH 7.4), after an injection of 1 ml Heparin. Eye 

muscles and TGs were removed and transferred through 10 %, 20 % and 30 % 

sucrose in 0.1 M TBS (pH 7.4), until they were cut into 20 µm  longitudinal or 

cross sections on a cryostat (Thermo Scientific Microm HM 560, Fisher 

Scientific, Germany). The brains were immersed in 10 % sucrose in 0.1 M TBS 

(pH7.4) and transferred to 30 % sucrose for 4 days. The brain was cut into 40 

µm  frontal sections also on a cryostat. 
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3.1.1 Combined immunostaining for the tracers and markers in the 

trigeminal ganglion 

Frozen sections of the brain, the TG, and the eye muscles were processed for 

the immunocytochemical detection of the tracers cholera toxin subunit B and 

wheat germ agglutinin (goat anti-choleragenoid, 1:5000; List Biological 

Laboratories, Campbell, CA, USA; goat-anti-WGA, 1:250; Axxora, Germany; 

alternatively rabbit anti-WGA, 1:500, EY-Lab, CA, USA, or rabbit anti-CT, 

1:5000, Sigma, MO, USA) (see also Tab. 3 for primary and secondary 

antibodies) and one of the following markers: calretinin (CR, rabbit anti-CR; 

1:1000; Swant, Marly, Swiss), Parvalbumin (PV, mouse anti-PV, 1:2500, Swant 

Marly, Swiss) , substance P (SP, rabbit anti-SP; 1:100; Zymed, Invitrogen, 

Germany), neuronal nitric oxide synthase (NOS, rabbit anti-NOS; 1:2000; 

Chemicon Millipore, MA, USA) or cholinacetyltransferase (ChAT, goat anti-

ChAT; 1:80; Chemicon  Millipore, MA, USA), incubated for 48 h at 4°C. The 

sections were then reacted with Cy3-anti-rabbit or Cy3-anti-mouse (1:200, 

Dianova, Jackson Immuno Research, Baltimore, USA) and Alexa 488-anti-goat 

(1:200; Molecular Probes, Oregon, USA) for 2 h. Then the sections were 

mounted and coverslipped in Fluoromount medium (SIGMA-ALDRICH, MO, 

USA).  

In selected sections ChAT (1:80) and CR (1:2500) were visualized with an 

immunoperoxidase procedure with subsequent incubation in biotinylated 

secondary antibodies and extravidin-peroxidase and a final reaction in 0.025 % 

diaminobenzidine (DAB) and 0.015 % H2O2 in 0.1M TBS (ph 7.6) for 10 minutes 

(Tab. 3 ). 

 

3.1.2 Cholinacetyltransferase blocking test 

To test the reliability of the ChAT immunostaining in the TG, selected TG 

sections were used for a preabsorption test with the antigen ChAT (ChAT 

antigen, Biomol). Different concentrations of the ChAT antigen with 8, 4, 2 and 1 

µg/ml T antibody were used, at a dilution of 1:80. As a control an additional slide 

without the ChAT antigen was stained for comparison. All TG sections were 

immunostained with DAB as described above.  
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3.1.3 Combined immunostaining for the nerve endings innervating the 

extraocular muscles and associated histochemical markers  

To identify the complete innervation of an extraocular muscle and investigate its 

histochemical properties, flat eye muscle sections of monkey were stained on-

slide for simultaneous detection of SP, NOS, CR, PV or ChAT, combined with 

either mouse anti-synaptosome-associated protein SNAP-25 (SMI 81; 1:2000; 

Sternberger Monoclonals Inc., Maryland, USA) or mouse anti-synaptophysin, 

SYN, 1:20; DAKO, Glostrup, Denmark) using double immunofluorescence. In 

addition the same staining procedures were performed on flat eye muscle 

sections of sheep, which are known to contain numerous well developed 

muscle spindles (Ruskell, 1999). After blocking with 2 % normal donkey serum 

(NDS, Sigma, St. Louis, MO, USA) in 0.1 M TBS, containing 0.3 % Triton X-100 

for 1 hour, the sections were processed with a mixture of antibodies: either 

rabbit-anti-CR, PV, SP, NOS or goat-anti ChAT, together with either mouse 

anti-SYN or mouse anti-SNAP-25 for 48 hours at room temperature. After 

several buffer washes a mixture of fluorochrome-tagged secondary antibodies 

of Cy3 - tagged donkey anti-rabbit (1:200, Dianova, Jackson Immuno Research, 

Baltimore, USA, for CR, NOS or SP), or donkey anti-goat (1:200, Dianova, 

Jackson Immuno Research, Baltimore, USA, for ChAT) combined with Alexa 

488- tagged donkey anti-mouse (1:200, Molecular Probes, Oregon, USA) for 

synaptophysin or SNAP-25 were incubated for 2 hours at room temperature. 

Immunofluorescence for tyrosine hydroxylase (TH) was used to identify 

noradrenergic sympathetic nerve fibers in the eye muscles. Sections were 

incubated in rabbit anti-TH (1:100; Chemicon Millipore, MA, USA) for 24 hours 

at room temperature. After washing sections were treated with donkey anti-

rabbit tagged with the fluorescent dye Alexa 488 (1:200; Molecular Probes, 

Oregon, USA) for 2 hours. 

All fluorochrome stained sections were coverslipped with GEL/MOUNT 

permanent aqueous mounting medium (Biomeda, California, USA) and stored in 

the dark at 4°C. 
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3.2 Identification of cell bodies of palisade endings  

In order to investigate whether the cell bodies of palisade endings are localized 

in the brainstem, two rhesus monkeys (Macaca mulatta) received tracer 

injections into the oculomotor nucleus in the midbrain tegmentum: in one 

monkey tetramethylrhodamine dextran (TMR-DA) into the left (case 1) and 

cholera toxin subunit B (CT) into the right oculomotor nucleus (nIII) (case 2), 

and TMR-DA into the oculomotor nerve (NIII) of a second animal (case 3). The 

animals were between two and three years old. For surgery under aseptic 

conditions the animals (born in captivity at Yerkes National Primate Research 

Center, Atlanta, GA) were anesthetized using isoflurane (1.25-2.5 %). Blood 

pressure, heart rate, blood oxygenation, body temperature and CO2 in expired 

air were monitored with a Surgivet Instrument (Waukesha, WI) and maintained 

in physiological limits. Using stereotaxic methods a titanium head stabilization 

post and titanium recording chamber (Crist Instruments, Hagerstown, MD) were 

implanted (anterior = 2 mm; lateral = 1 mm; tilted 20º away from midline) and 

aimed such that an electrode track located in the center of the chamber 

intersected a point near the oculomotor nucleus. Postsurgical analgesia 

(Buprenorphine. 0.01 mg/kg, every 6 hours) and anti-inflammatory (Banamine 

1.0 mg/kg, every 6 hours) treatments were administered for several days, as 

indicated. 

In all animals the injection sites were identified in the lab of Prof. Mike Mustari 

with single-unit recording using tungsten microelectrodes. Motor neurons were 

recognized by their characteristic burst tonic responses in association with 

appropriately directed saccades. For injection the recording electrode was 

replaced either by a custom made micropipette equipped with a beveled glass 

tip (20-50 µm diameter) and attached by polyethylene tubing to a picoliter pump 

(WPI 830) (case 1 and 2) or a thin Hamilton syringe (case 3). Short duration (50 

ms) pressure pulses delivered over several minutes ejected small tracer 

volumes at each site. The pipette was left in place for 5-10 minutes following 

injection and then gradually removed. In case 1, 0.2 µL non-toxic CT (C-167; 

Sigma/List Biological Laboratories, California, USA; 1 % in aqua bidest) and in 

case 2 0.5 µL TMR-DA (Molecular Probes; D-3308; Oregon, USA; 3000 MW; 15 
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% in acetate buffer, pH 3) was injected. Case 3 received 1 µl TMR-DA directly 

through the Hamilton syringe, which was also left in place for 10 min. 

After three days survival time the animals were sedated with ketamine, 

sacrificed with an overdose of sodium pentobarbital (>90 mg/kg, i.v.) and then 

transcardially perfused with 0.9 % saline followed by 4 % paraformaldehyde in 

0.1 M phosphate buffer (PBS; pH 7.4) (Lienbacher et al., 2011b). 

The brain, the orbital content and both trigeminal ganglia were removed. The 

extraocular muscles were carefully dissected keeping the myotendinous 

junction complete. All tissues were equilibrated in 10 %, 20 % and 30 % 

sucrose in 0.1 M TBS for freeze cutting. The brainstems were cut transversely 

in 40 µm sections with a cryostat (MICROM HM 560). Eye muscles and 

trigeminal ganglia were cut longitudinally in 20 µm sections and directly thaw-

mounted onto glass slides (Superfrost Plus; M&B Stricker).  

In addition, in a third monkey (case 4), 2 tracers were injected into the 

myotendinous junction (the location of palisade- and en-grappe endings), of the 

medial rectus muscle (MR) (CT) and the inferior rectus muscle (IR) (horseradish 

peroxidase-conjugated wheat germ agglutinin, WGA-HRP, Sigma, St. Louis, 

MO, USA) in order to analyze the course of the axons of passage through nIII 

that could be labeled by the injections of cases 1-3, and hence contribute to the 

labeled terminals in the eye muscles. A detailed description of the eye muscle 

injections and tracer detection is given above (Tab. 6, Fig. 27). 

 
3.2.1 Tracer detection in the brain and trigeminal ganglion 

Brainstem sections were immunocytochemically treated free floating with 

antibodies against CT or TMR-DA (Molecular Probes, Oregon, USA; 1:6000). 

The antigenic sites were visualized with a reaction in 0.025 % diaminobenzidine 

(DAB, Sigma, St. Louis, MO, USA) and 0.015 % H2O2 in 0.1M TBS (ph 7.6) for 

10 minutes. 

An on-slide immunofluorescence detection of the tracer was performed for the 

trigeminal ganglion. After blocking with 2 % NDS in 0.1 M TBS containing 0.3 % 

Triton X-100 for 1 hour the slides were processed with goat anti-CT or rabbit 

anti-TMR-DA for 48 hours at room temperature. After washing, the CT or TMR-
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DA-containing sections were treated with the secondary antibody (Cy3
 donkey 

anti-goat or Cy3
 donkey anti-rabbit, respectively; 1:200) for 2 hours at room 

temperature. 

 
3.2.2 Combined immunofluorescence labeling in the extraocular 

muscles 

To identify the complete innervation and verify the presence of tracer in nerve 

fibers and terminals the eye muscle sections were stained on-slide for 

simultaneous detection of CT or TMR-DA combined with either mouse anti-

synaptosome-associated protein SNAP-25 or mouse anti-synaptophysin (SYN) 

using double immunofluorescence. After blocking with 2 % NDS in 0.1 M TBS, 

containing 0.3 % Triton X-100 for 1 hour the sections were processed with a 

mixture of goat anti-CT or rabbit anti-TMR-DA and either mouse anti-SYN or 

mouse anti-SNAP-25 for 48 hours at room temperature. After several buffer 

washes a mixture of fluorochrome-tagged secondary antibodies of either Cy3- 

tagged donkey anti-goat or donkey anti-rabbit combined with Alexa 488 tagged 

donkey anti-mouse for synaptophysin or SNAP-25 were incubated for 2 hours at 

room temperature. Combined immunofluorescence for TH and CT was used to 

specify sympathetic nerve fibers in the eye muscles. Following the 

immunostaining for CT as described above sections were incubated in rabbit 

anti-TH for 24 hours at room temperature. After washing sections were treated 

with donkey anti-rabbit tagged with the fluorescent dye Alexa 488 for 2 hours. 

All fluorochrome stained sections were coverslipped with GEL/MOUNT 

permanent aqueous mounting medium (Biomeda, California, USA) and stored in 

the dark at 4°C. 

 

3.2.3 Combined immunoperoxidase labeling in extraocular muscles 

In selected sections the detection of CT was combined with immunostaining for 

the slow isoform of myosin heavy chain (mouse anti-myosin heavy chain (slow 

(MHCs), 1:100; Novocastra Laboratories Ltd; United Kingdom) to identify non-

twitch muscle fibers (Billeter et al., 1980). After immunostaining for CT (see 

above) the antigenic sites were visualized with 0.025 % DAB, 0.2 % ammonium 
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nickel sulphate (Riedl-De Haën; Hannover, Germany) and 0.015 % H2O2 in 0.1 

M TBS, pH 7.4, for 10 minutes to yield a black staining. After blocking residual 

peroxidase activity with 1 % H2O2 in 0.1 M TBS, pH 7.4, for 30 minutes, sections 

were blocked with 5 % normal horse serum (Vector Laboratories, Burlingame, 

CA, USA), in 0.1 M TBS, pH 7.4, containing 0.3 % Triton X-100 for 1 hour and 

subsequently processed with mouse anti-MHCs for 48 hours at 4°C. After 

several buffer washes the sections were treated with biotinylated horse anti-

mouse (1:200; Vector Laboratories; Burlingame, CA, USA) for 1 hour at room 

temperature. The antigenic sites were visualized with 0.025 % DAB and 0.015 

% H2O2 in 0.1 M TBS, pH 7.4, for 10 minutes to yield a brown staining of non-

twitch muscles fibers. 

 

3.3 Methods for the investigation and differentiation of 

peripheral oculomotor nuclei cells  

Macaque monkeys were injected into the belly or the distal tip of the medial 

rectus muscle with choleratoxin subunit B (CT) or wheat-germ-agglutinin 

(WGA). After a survival time of 3 days, the animals were killed and 

transcardially perfused as described above. The brainstem and the orbital 

contents were removed and cut transversely at 20 µm (eye muscles) and 40 µm 

(brainstem). 

For the immunocytochemical detection of CT or WGA, free floating brain 

sections were pretreated with 1 % H2O2 in 0.1 M TBS buffer pH 7.4 for 30 

minutes to suppress endogenous peroxidase activity, following thoroughly 

washing. For the detection of CT and WGA the sections were blocked with 5 % 

rabbit serum ( Vector Laboratories, Burlingame, CA, USA) in 0.1 M TBS pH 7.4 

containing 0.3 % Triton X-100 for 1 hour and subsequently processed with 

rabbit anti-CT or rabbit anti-WGA (see Tab. 3) for 48 h at 4°C. After several 

buffer washes the sections were treated with biotinylated rabbit anti-goat (1:200; 

Vector Laboratories; Burlingame, USA for CT) for 1 hour at room temperature. 

The antigenic sites were visualized with 0.025 % DAB and 0.015 % H2O2 in 0.1 

M TBS, pH 7.4, for 10 minutes to yield a brown staining of the cells. After 

several washing, the sections were air-dried, dehydrated, and cover-slipped in 

Depex (Sigma, St. Louis, MO, USA). Some of the sections were processed for 
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the tracer CT (goat anti-choleragenoid, 1:5000, List Biological Laboratories, 

Campbell, CA, USA) and for the marker CR (rabbit anti-CR, 1:1000, Swant, 

Marly, Swiss), for 48 h at 4°C. The sections were then reacted with Cy3-anti-

rabbit (1:200, Dianova, Jackson Immuno research, Baltimore, USA) and Alexa 

488-anti-goat (1:200, Molecular Probes, Oregon, USA) for 2 h, mounted and 

coverslipped.  

Macaque monkeys with tracer injections (CT or WGA) into the MR, and one 

additional macaque monkey with a tracer injection (CT) into the distal part of the 

superior rectus muscle (SR) were carefully analyzed with focus on the 

examination of the peripheral C-group neurons of the MR. We distinguished 

between C-group neurons in close proximity to the dorsomedial aspect of the 

oculomotor nucleus (nIII) (after belly injections) and those which extend far 

rostral to nIII encircling the ‘preganglionic neurons of the Edinger-Westphal 

nucleus (EWpg)’ (after distal injections into the myotendinous junction). See 

also: (Büttner-Ennever et al., 2001). 

The sections of a supplementary case, containing nIII and immunostained for 

the cholinergic marker ChAT, were analyzed for the morphology of the 

peripheral neurons in the C-group. The cholinergic C-group neurons can be 

distinguished from preganglionic neurons of the EWpg as another cholinergic 

neuron group in the perioculomotor region by their different histochemical 

properties, e.g. the lack of non-phosphorylated neurofilaments and the 

presence of cytochrome oxidase (Eberhorn et al., 2005a, Horn et al., 2008) 

 

3.4 Analysis 

The slides were examined either with a Leica microscope DMRB (Bensheim, 

Germany) or with a Zeiss Axioplan microscope (Carl Zeiss MicroImaging, 

Germany) under brightfield conditions. Both microscopes are additionally 

equipped with appropriate filters for red fluorescent Cy3
 (excitation: 550 nm) 

(Leica: N2.1; excitation filter BP 515-560 nm; Zeiss: excitation filter BP 546-590 

nm) and green fluorescent Cy2
 (excitation: 492 nm) or Alexa 488 (excitation: 

488 nm) (Leica: I3; excitation filter BP 450-490 nm; Zeiss: excitation filter BP 

475-530 nm), which were used to analyze the immunofluorescence. 

Photographs were taken with a digital camera (Pixera Pro 600 ES; 
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Klughammer, Markt Indersdorf, Germany), captured on a computer with Pixera 

Viewfinder software (Klughammer) and processed in Photoshop 11.0 (Adobe 

Systems, Mountain View, CA). Confocal pictures were taken on a Leica TCS 

SP 1 confocal laser-scanning microscope (Leica Microsystems, Mannheim) with 

a 40x oil objective (NA 1.4, resolution 200 nm/pixel), equipped with three lasers 

at 488 nm, 561 nm and 633 nm. The double immunofluorescence slides with 

Cy3
 or Alexa 488 dyes were recorded at 543 or 488 excitation wave length. The 

sharpness, contrast, and brightness were adjusted to reflect the appearance of 

the labeling seen through the microscope. The pictures were arranged and 

labeled in CorelDraw (CorelDraw 11.0; Corel, Ottawa, ONT, Canada). The 

axonal course of retrogradely labeled motor neurons was reconstructed using 

Neurolucida software (MicroBrightField, Inc., Vermont, USA; Version 6). Only 

those cells with a clearly visible nucleus were measured with ImageJ software. 

The mean diameter in µm was calculated in Excel 2007 by [Dmin + Dmax] /2. 

All histograms were made with Microsoft Excel 2010.  
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Tab. 3 List of antibodies and their sources with the applied methods used in this thesis. 
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4 Results  

4.1 Retrogradely labeled cells in the trigeminal ganglion and 
their innervation in the extraocular motor neurons 

4.1.1 Location of eye muscle injections and their control by 

retrogradely labeled motor neurons 

5 monkeys received a tracer injection into the myotendinous junction or the 

muscle belly of either the MR or LR (Fig. 7) and one monkey (Monkey 6) 

received a conjunctiva injection as a comparison. Depending on the location 

and tracer volume of the injection, the actual tracer uptake after eye muscle and 

conjunctiva injection was verified from the tracer detection in the flat eye muscle 

sections. 

 

Fig. 7 Different tracer injection sites in eye muscle of two cases (Monkey 1 (A) and 2 (B). (A) Tracer 

uptake (blue) from a very distal injection into the myotendinous junction that contaminated only 
very few en plaque endings and only a small fraction of the multiple endings with PEs. (B) Tracer 

uptake (blue) of a large belly tracer injection that involved en grappe and en plaque endings, but 

extended also into the myotendinous junctions and contaminated the PEs.  

 

In a next step of analysis, all motor nuclei of extraocular muscles, e.g. 

oculomotor (nIII), trochlear (nIV) and abducens nucleus (nVI) were analyzed for 

the presence of retrogradely labeled neurons – with focus on peripheral versus 

central motor neuronal groups. The complete results of the motor neuronal 

labeling are listed in table 4. In accordance to earlier studies tracer injections 

into the muscle belly led to retrogradely labeled motor neurons within and 

around the respective motor nuclei. A muscle injection into the myotendinous 
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junction resulted in selective tracer labeling of peripheral motor neurons (Fig. 4) 

(Büttner-Ennever et al., 2001).  

In all cases with a belly injection into the MR, retrograde labeling was found in 

all MR motor neuronal groups including the peripheral C-group. Additional 

weaker labeling was found in SR-, and IR- motor neurons, and in one large 

belly injection case also SO motor neurons (Tab. 4). A tracer injection into the 

LR often led to additional labeling of the central and or only peripheral IO motor 

neurons in the S-group. One case (Monkey 4) with a very small CT injection 

(4.5 µl), very distal into the tendon of the LR muscle, did not reveal any 

retrograde tracer labeling within the abducens nucleus. However, interestingly 

light tracer positive afferents in the spinal trigeminal nucleus were noted (below 

the cuneate nucleus area). 

In Monkey 1, with a CT injection into the LR myotendinous junction (9.8 µl), 

besides the peripheral MIF neurons in the abducens area additional neurons in 

the S-group were labeled due to contamination of the adjacent myotendinous 

junction of the IO.  

Monkey 2 received a large WGA injection (10 µl) into the belly of the MR 

muscle. In addition to tracer labeling of the MR motor neurons in the A-, B-, and 

C-group, all other eye muscles including the LP, but except the IO, were 

contaminated as judged from retrograde labeling of the corresponding motor 

neuronal subgroups and the stained muscles (Tab. 4).  

Monkey 3, injected with CT (5.3 µl) in the belly of the MR muscle showed 

selective labeling of the A-, B- and C-group in nIII with no contamination of other 

muscles. 

Monkey 4 had a CT injection into the myotendinous junction of the LR (4.5 µl). 

Although the muscle showed a tracer uptake, no labeled motor neurons, even in 

the nVI were found.  

Monkey 5 was injected into the myotendinous junction of the SR muscle and 

showed only labeled motor neurons in the SR area of the nIII contralateral, but 

also ipsilateral. Furthermore, peripheral motor neurons in the S-group were also 

tracer positive. 
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Monkey 6 received an injection into the conjunctiva of the eye to compare the 

retrogradely labeled TG neurons with eye muscle injections. Next to the 

injection area, the IO, the peripheral neurons of the S-group and also nVI and 

peripheral neurons of nVI were contaminated. 

In none of the cases did we find any tracer positive cells within the 

mesencephalic trigeminal nucleus, but in all cases including case 4 without 

motor neuronal labeling retrogradely labeled ganglion cells were found in the 

ipsilateral TG. Furthermore, in a few cases (Monkey 1, 3 and 4) tracer labeled 

neurons in the orbicularis oculi region of the facial nucleus were seen (Tab. 4).  

 

 

Table 1 Overview of the tracer injection cases in the EOMs or the conjunctiva, listing the injection 

site and location of retrogradely labeled neurons. 

 

4.1.2 Location and population of the retrogradely labeled trigeminal 

ganglion cells after eye muscle injections 

Almost all retrogradely labeled ganglion cells in the TG were found in the 

ophthalmic subdivision. Only a few were at the border to, or in the area of the 

maxillary subdivision. Irrespective of the injected muscle or the location of the 

tracer uptake area within the muscle the distribution pattern in the ophthalmic 

TG subdivision was the same (Fig. 8). 

 

Tracer	
   Location	
  of	
  the	
  injection n	
  III	
  central n	
  III	
  peripheral n	
  IV n	
  VI TG Vmes VII

Monkey	
  1	
  (P	
  181) CT
LR	
  myotendinous	
  

junctions
IO	
   S-­‐group No peripheral Y No Y

Monkey	
  2	
  (M	
  182) WGA MR	
  belly
MR	
  	
  (A-­‐	
  and	
  B-­‐group)	
  SR	
  	
  

IR	
  
C-­‐group Y Y Y No No

Monkey	
  3	
  (X183) CT 	
  MR	
  belly MR	
  	
  (A-­‐	
  and	
  B-­‐group) C-­‐group No No Y No Y

Monkey	
  4	
  (L	
  184) CT
LR	
  myotendinous	
  

junction
No No No No! Y No Y

Monkey	
  5	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
(RZn10	
  ri)

CT
SR	
  myotendinous	
  

junction
SR	
  mostly	
  contralateral,	
  	
  	
  	
  	
  	
  	
  	
  

a	
  few	
  ipsilateral
S-­‐group No No Y No No

Monkey	
  6	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
(32-­‐473)

CT conjunctiva IO	
   S-­‐group No
central	
  and	
  
peripheral

Y No No
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Fig. 8 Drawing of three representative flat sections of a monkey trigeminal ganglion (A-C) from 

medial to lateral, indicating the location of CT tracer labeled cells after a muscle belly injection into 
the MR. Almost all retrogradely labeled cells, indicated by black dots, are located in the ophthalmic 

part of the TG. (A-C) (D) High-power photograph of immunofluorescence (green) of CT-labeled cells 

in the ophthalmic part of V1 (insert of C).  

 

The morphometric analysis of the tracer labeled cells in TG revealed a large 

population of small and medium-sized cells with a mean diameter ranging 

between 16 and 44 µm and a small population of large neurons with a diameter 

between 48 and 74 µm (Fig. 9). The cell numbers of both populations were 

more evenly distributed in the case with the belly injection (Monkey 2) or in the 

case with an injection into the conjunctiva (Monkey 6) (Fig. 9). 
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Fig. 9 Cell size profile of retrogradely labeled neurons in the TG after different injections into the 

eye muscle (cases: P181, M182, X183, L184 and RZn10ri) or conjunctiva (case 32-473). Most of the 
tracer containing cells have a mean diameter between 24 µm and 44 µm. Only in the belly injection 

case M182 and in after a conjunctiva injection additional large cells are labeled.  

 

4.1.3 Histochemically characterized trigeminal ganglion populations 

innervating extraocular muscles . 

In order to characterize the tracer labeled TG cells, additional stainings for 

either substance P, neuronal nitric oxide synthase, calretinin, parvalbumin or 

cholinacetyltransferase have been performed. All markers were found in the 

trigeminal ganglion and involved cells of all sizes, small, medium-sized and 

large neurons (see WGA-labeling in Fig. 10). The analysis of double labeled TG 

sections revealed that all markers were present in more or less large 

populations of tracer labeled TG cells (Fig. 10 and 11). 

 

Fig. 10 High-power photograph of a flat section of the trigeminal ganglion (Monkey 2) 

immunostained for NOS (A) and the tracer wheat germ agglutinin (WGA) (B). Note that tracer 
labeled population includes all cell sizes (B), whereas NOS positive neurons involve only small 

cells (A). The expression of both markers in some neurons (C, arrows) indicates that NOS positive 

TG neurons innervate the extraocular muscle. 
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Fig. 11 High-power photographs of double immunofluorescence preparations in monkey trigeminal 

ganglion demonstrating tracer-labeled cells (middle panel, green cells) projecting to extraocular 
muscles and the markers nitric oxide synthase (NOS) (A-C), calretinin (CR) (D-F), substance P (SP), 

(G-I), cholinacetyltransferase (ChAT) (J-L), parvalbumin (PV) (M-O). The right panel shows the 

overlay of both fluorescent markers. Double labeled cells appear in yellow (arrows). Note the 
unexpected finding of ChAT positive neurons in the TG that project to extraocular muscles (J, K, 

L).  
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Substance P 

In all cases, SP double labeled cells were mostly small or medium sized, with a 

mean diameter between 16 µm and 36 µm (Fig. 11, G-I). The largest population 

of SP positive and tracer labeled cells were counted after an injection into the 

conjunctiva (42.4 %), were some of the SP double labeled neurons had a cell 

size up to 48 µm, followed by injections into the myotendinous junction (34.39 

%, 22.08 % and 13.7 %). One of the belly injections (Monkey 3) showed also 

22.08 % double labeled SP neurons; in the other case (Monkey 2) only 6.23 % 

were counted (Fig. 12, I-VI and Tab. 6). 

 

Nitric oxide synthase (NOS) 

As for SP the largest populations of NOS positive, tracer labeled trigeminal 

ganglion cells were found in those cases with tracer injections into the distal 

region of the eye muscles including the myotendinous junction (Fig. 11, A-C and 

Tab. 6). This was very obvious for the tendon injection of Monkey 4 with 27.53 

%, which had not revealed any motor neuronal labeling, and for Monkey 5 with 

a myotendinous injection into the SR with 39.7 % NOS double labeled cells. In 

the distal injection of Monkey 1, 16.57 % were NOS positive and tracer labeled. 

The central belly injection cases (Monkey 3 and 2) revealed variable 

populations of double labeled cells with 22.86 % and 6.91 %, respectively (Tab. 

6). In all cases the tracer labeled NOS neurons represent a population of small 

to medium-sized cells with a mean diameter between 16 µm and 40 µm. (Fig. 

12, I-V) 

 

Calretinin (CR) 

Within the tracer labeled TG neurons, calretinin-expressing cells formed a very 

small population of small to medium-sized neurons (mean diameter 16-24 µm) 

(Fig. 11, D-F, Fig. 12 IV, Tab. 6). Again the largest population (1.12 %) was 

seen for the case with a tendon injection, and only 0.5 % for Monkey 3 and 1. 

No double labeled neurons were found in Monkey 2 with a muscle belly 

injection. Only 2 cells of Monkey 4 are included in the histogram, because the 
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cells size was only measured when the nucleus was visible (Fig. 12 IV and Tab. 

6). 

 

Parvalbumin (PV) 

PV-immunoreactive neurons make up only a very small population of tracer 

labeled neurons (8.8 % and 9.7 %) (11, M-O and Fig. 12 V, VI). They were 

present only after an injection into the myotendinous junction (Monkey 5) or 

conjunctiva (Monkey 6) and included mean to large sized neurons (mean 

diameter 22 µm - 52 µm) (Fig. 12, V, VI and Tab. 6) 

 

Fig. 12 (I-VI) Cell size profiles of double labeled tracer neurons and the respective marker 

associated population in the TG after different injection targets in the eye muscles (I-V) or the 
conjunctiva (VI). (I) The SP positive tracer cells were small or middle sized, the NOS double labeled 

cells were almost in the same range (II) The two ChAT labeled cells had a very small mean diameter 

(16 µm), whereas the SP and NOS neurons range between were small to middle sized. A single 
double labeled SP cell had a mean diameter of 48 µm. (III) The mean diameter for NOS double 

labeled showed also small and midsize cells with a peak at 28 µm, as well as for SP cells with a 

peak at 32 µm. (IV) Case L 184 was the only case showing double labeled CR positive tracer cells 
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with a small mean diameter. NOS or SP positive tracer labeled cells ranged in the middle field with 
a peak at 28 µm. (V) SP and NOS double labeled cells were small to middle sized, whereas the PV 

immunostained neurons had large cell bodies. (VI) The SP double labeled cells after a conjunctiva 

injection were also small and middle sized, the PV stained and tracer positive neurons had middle 
sized and large cell bodies. 

 

Cholinacetyltransferase (ChAT) 

Stimulated by the work of Tooyama and Kimura (Tooyama and Kimura, 2000, 

Yasuhara et al., 2007) who found a splicing variant of ChAT, which they termed 

peripheral ChAT (pChAT), in the TG of rat, the presence of pChAT and the 

central ChAT were investigated in our monkey TGs. The appearance of ChAT 

positive cells within the TG as a sensory ganglion was an unexpected finding 

(Fig. 11 J-L and Fig. 12 II). Unlike in rat that served as a control no 

immunostaining for pChAT was present in the monkey TG (Fig. 13). All TGs 

investigated for the presence of ChAT (Tab. 5) contained a consistent small 

population of neurons expressing this cholinergic marker. The majority was 

found in the ophthalmic subdivision (Fig. 14). The systematic analysis of 5 

cases (Monkey 1, 2, 3, 4 and 5 ) for tracer labeled neurons expressing ChAT, 

revealed only in 2 cases (Monkey 2 and 5) a few tracer double labeled ChAT 

positive cells (0.7 %) (only a few cells in Monkey 2 could be measured) (Tab 5).  

 

Fig. 13 (A) High-power photograph of rat trigeminal ganglion demonstrating a tracer labeled neuron 

(green, arrow) after a medial rectus muscle injection expressing immunoreactivity for the 

peripheral cholinacetyltransferase (p-ChAT) (B) (red, arrow). (C) The overlay of A and B reveals the 
double labeled neuron in yellow.  
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Tab. 4 Overview of cases with ChAT immunoreactive cells in the trigeminal ganglion, demonstrated 

in fluorescence. All tested cases revealed ChAT positive cells, two of them (Monkey 2 and 5) 
showed in addition double labeling with a retrogradely tracer from EOM injections. 

 

 

Fig. 14 (A-B) Photographs of flat sections through monkey trigeminal ganglion (TG) 

immunostained for cholinacetyltransferase (ChAT) in overview (A) and high-power magnification 

revealing several ChAT positive neurons (B, arrows). The ChAT immunostaining of motor fibers in 
the mandibular branch (V3) served as positive control. (C) Drawing of three TG sections 

demonstrating the location of ChAT immunolabeled neurons (red dots). Note that most ChAT 

positive neurons were found in the ophthalmic division of the TG, and few at the border or in the 
maxillary division  

 

For verification of the ChAT immunolabeling, selected TG section underwent an 

incubation in pre absorbed anti-ChAT with its antigen at different dilutions (8 

µg/ml, 4 µg/ml, 2 µg/ml, 1 µg/ml). A control slide with the ChAT antibody 

showed a few positive ganglion cells in the ophthalmic division and positive 

nerve fibers supplying the masticatory muscles in the mandibular division (V3) 

(Fig. 15 A,B).  
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The incubation of the 1 and 2 µg/ml antigen solution plus ChAT antibodies 

revealed no positive labeling of cells, but a lightly stained mandibular branch 

(Fig. 15 C). In the slides, incubated with the 4 and 8 µg/ml antigen solutions 

plus ChAT antibodies, there was no immunolabeling of either cells or fibers, 

indicating that the ChAT antibody detects specially the synthetizing enzyme of 

acetylcholine (Fig. 15 D).  

 

Fig. 15 Preabsorption controls of the ChAT antibody. Monkey TG tissue stained with ChAT 

antibodies using immunoperoxidase methods before (A and B) and after (C and D) preabsorption 

of the antibody with its antigen cholinacetyltransferase (ChAT) at different concentrations. In the 
control stained motor fibers of the mandibular branch (A, arrow) and few cells are immunolabeled 

(B, arrow), whereas preabsorption with ChAT abolished immunostaining, thereby confirming the 

specifity of the antibody.  
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Tab. 5 Number and relative amount of cells in the trigeminal ganglia associated with a specific 

marker projecting to the extraocular muscles or conjunctiva 

 

In addition, the analysis of anterogradely tracer labeled trigeminal afferents in 

the brain revealed very light staining in all cases with tracer labeled TG cells 

from EOM injections (Fig. 16). After entering the brainstem at pontine level 

tracer labeled axons traveled caudally and terminated in the oral and interpolar 

part of the spinal trigeminal nucleus. Furthermore, there were tracer labeled 

afferents in the more rostral part of the principal sensory nucleus of the 

trigeminal complex. No labeling was seen in the mesencephalic trigeminal 

nucleus. 

 

Injection SP NOS CR ChAT PV

double labeled 
cells   108	
  	
  -­‐	
  34,39	
  % 56	
  	
  -­‐	
  	
  16,57	
  % 2	
  	
  -­‐	
  	
  0,57	
  % 0	
  	
  -­‐	
  	
  0	
  % not	
  done	
  (n.d.)

     all tracer 
labeled cells 314 338 349 630 n.d.

double labeled 
cells 81	
  	
  -­‐	
  	
  6,23	
  % 67	
  	
  -­‐	
  	
  6,91	
  % 0	
  	
  -­‐	
  	
  0	
  % 2	
  -­‐	
  0,7	
  % n.d.

all tracer labeled 
cells 1301 969 589 285 n.d.

double labeled 
cells 87	
  	
  -­‐	
  	
  22,08	
  % 56	
  	
  -­‐	
  	
  22,86	
  % 1	
  	
  -­‐	
  	
  0,50	
  %	
   0	
  	
  -­‐	
  	
  0	
  % n.d.

all tracer labeled 
cells 394 245 202 241 n.d.

double labeled 
cells 101	
  	
  -­‐	
  	
  22,80	
  % 117	
  	
  -­‐	
  	
  27,53	
  % 5	
  	
  -­‐	
  	
  1,12	
  % 0	
  	
  -­‐	
  	
  0	
  % n.d.

all tracer labeled 
cells 443 425 445 569 n.d.

double labeled 
cells 50	
  -­‐	
  13,7	
  % 127	
  -­‐	
  39,7	
  % n.d. n.d. 40	
  -­‐	
  8,8	
  %

all tracer labeled 
cells 364 323 n.d. n.d. 453

double labeled 
cells 87	
  -­‐	
  42,4	
  % n.d. n.d. n.d. 22	
  -­‐	
  9,7	
  %

all tracer labeled 
cells 205 n.d. n.d. n.d. 227

Monkey 1 (P 181)                                                
CT tendon LR

Monkey 2 (M 182)                                        
WGA belly MR

Monkey 3 (X 183)                                          
CT belly MR

very distal 
injection 

(myotendinous 
juction)

belly injection (A-, 
B- and C-group) 

with big 
contaminations 

(SR, IR, SO, LR)

large belly 
injection (A-, B- 
and C-group)

Monkey 4 (L 184)                                          
CT  tendon LR

very distal 
injection 

(myotendinous 
juction)- no 

labeled motor 
neurons! 

Monkey 5 
(RZn10ri)                          

CT tendon SR

distal injection 
(myotendinous 

junction)

Monkey 6 (32-
473)                            

CT Conjunctiva

conjunctiva 
injection
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Fig. 16 Transverse section of a monkey (Monkey 4) brainstem at the level of the hypoglossal 
nucleus (n 12) and cuneate nucleus (Cu) demonstrating tracer (CT) labeled trigeminal afferents in 

the spinal trigeminal nucleus (SP5), see detailed view (arrow). ml – medial lemniscus; Py – 

pyramidal tract. 

 

4.1.4 Labeling of eye muscle structures with different markers  

In order to study the innervation targets of the different TG cell populations, 

extraocular muscles of monkey have been immunostained for the markers 

substance P, nitric oxide synthase, calretinin and cholinacetyltransferase. For a 

more thorough study of proprioceptive structures flat eye muscle sections of 

sheep were stained in addition.  

Substance P labeled predominantly thin nerve fibers and small terminals, which 

surround the blood vessels like a net (Fig. 17 A-F). SP was neither expressed in 

en grappe or en plaque endings nor in annulospiral or flower-spray endings in 

muscle spindles in sheep.  
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Fig. 17 A-C: High-power photographs of a cross section (A-C) and a longitudinal sections (D-F) 
through an extraocular muscle. It shows a blood vessel associated with immunoreactive terminals 

containing substance P (SP) (A, D) confirmed as neural structures by SNAP-25 immunoreactivity 

(B, E), which reveals the complete innervation. The overlay of both photographs (C, F) 
demonstrates thin SP- negative (C, arrow) and SP positive nerve fibers in yellow (C, F).  

 

NOS was present in thin nerve fibers around blood vessels (Fig. 18 A-C). In 

addition the collagen capsule of muscle spindles only in sheep eye muscle was 

NOS positive (Fig 19). 

 

Fig. 18 NOS (A) and SNAP-25 (B) double labeling (C) of monkey (A-C) eye muscles; (A) NOS labeled 

nerve fibers around blood vessels (C, white arrow) but no other fibers or terminals like en plaque 

endings (C, yellow arrow). 
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Fig. 19 NOS (red staining) labeled in the sheep muscle tissue the capsules of the muscle spindles 
(yellow arrow). SNAP-25 (green staining) shows the innervation of the muscle spindle (white arrow) 

and the innervation of the extrafusal fibers of the eye muscle (blue arrows). 

 

CR was present in palisade endings and associated tendon endings, which 

have been identified with SNAP-25-immunostaining and outlined them clearly 

(Fig. 20 A-C). Combined immunostaining for CR and synaptophysin (SYN), a 

synaptic vesicle protein, showed that the majority of SYN positive terminals 

were CR positive, but between 16 % and 22 % were not double labeled. These 

CR-negative terminals were not confined to either tendon or muscle, but were 

found in both (Fig. 20 D-F). The close inspection of the complete muscle 

innervation did not reveal any CR positive en plaque ending, however a few en 

grappe endings (Fig. 20 G-L). 
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Fig. 20 CR staining in the monkey eye muscle (A, D, G, J) double labeled (yellow color) with either 

SNAP-25 for the complete innervation (B, H, K) or synaptophysin for the terminals (SYN) (E). CR 
was only present in palisade endings (C, F, arrows) and few en grappe endings (G-I), but most of 

them did not contain CR (see J-L). 

 

PV was only present in en plaque endings on the outside margin of the EOMs, 

which involves the orbital layer (Fig. 21). No PV positive en plaque endings 

were seen in the middle, innervation zone of the muscles. Furthermore, no en 

grappe endings or any other terminals were immunoreactive for PV. 
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Fig. 21 Immunostaining for parvalbumin (PV) in the extraocular muscles (A) confirmed as neural 

staining by SNAP-25 expression (B) also shown in yellow in the overlay of A and B (C). PV 

immunoreactivity was only found in en plaque endings on the outside margin of the EOMs 
corresponding to the orbital layer.  

 

The cholinergic marker ChAT was present in all putative motor en plaque (Fig. 

22 A, B) and en grappe endings (Fig. 22 C, D), but also in PEs including their 

tendon endings (Fig. 22 E, F). Double immunofluorescence for ChAT and TH 

revealed that the fine nerve endings around blood vessels represent 

sympathetic nerve fibers (not shown).  

 

Fig. 22 Examples of ChAT labeled structures the monkey extraocular muscles (A, C, E) confirmed 

as neural endings revealed by combined immunostaining for SNAP-25 (B, D, F): en plaque ending 

(A, B), small en grappe endings (C, D) and palisade endings at the myotendinous junction (E, F).  
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4.2 Anterogradely labeled terminals in the extraocular 
muscles after tracer uptake within and around the 

oculomotor nucleus  

In order to find out, whether palisade endings can anterogradely be labeled 

after a tracer injection into the oculomotor nucleus, two monkeys had received 

tracer injections into the nIII area.  

4.2.1 Tracer injections and uptake area 

In one monkey with two injections (case 1 and 2), the tracer injection sites were 

centered in nIII (Fig. 23; Tab. 7). A second monkey with one tracer injection in 

the nIII axons (case 3) was also analyzed.  

In case 1 the injection (TMR-DA) was centered ventrally in the MR A-group of 

the left nIII (Fig. 23 A-C). The tracer uptake area involved the subgroups of the 

IR, superior rectus (SR) and inferior oblique (IO) muscles in the left nIII as well 

as the trochlear nucleus (nIV) and the central caudal nucleus (CCN) containing 

levator palpebrae (LP) motor neurons (Porter et al., 1989). 

In case 2 the tracer injection (CT) was centered more dorsally in the right nIII 

involving the subdivisions of the IR, MR, SR and IO (Fig. 23 D-F). Additional 

uptake was noted in the left nIII covering the SR area, the right nIV and CCN. 

Tracer uptake had also occurred from the C-group and the preganglionic 

neurons in the Edinger-Westphal nucleus (EW) as indicated by the retrograde 

labeling in the olivary pretectal nucleus (Büttner-Ennever et al., 1996). 

In case 3 the injection site (TMR-DA) was placed ventrolateral to nIII hitting the 

traversing axons of the third nerve as they leave nIII. Strongly labeled tracer-

filled axons within the fascicles of the third nerve indicated that tracer uptake 

had occurred from the injured axons of the nerve (Fig. 23.G-I). Case 3 was the 

only case which was not analyzed in detail. 
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Fig. 23 Reconstructions of transverse brain stem sections (from caudal to rostral) of three monkey 

cases showing the location (case 1: deep red, case 2: deep blue, case 3: deep orange) of the tracer 

injections and the extent of the uptake area (case 1:light red , case 2: light blue, case 3: light 
orange). (A–C) Case 1: The tetramethylrhodamine dextran (TMR-DA) injection involved the 

oculomotor (nIII) and trochlear nucleus (nIV), but spared the C-group (C). (D–F) Case 2: CTB 

injection involved nIII, EW and the C-group and, to a minor extent, nIV. (G–I) Case 3: The TMR-DA 
injection was placed into the oculomotor nerve (NIII), and did not involve the motor neurons in nIII 

and nIV. Aq, aqueduct; CCN, central caudal nucleus; RN, red nucleus; 3V, third ventricle; INC, 

interstitial nucleus of Cajal. Scale bar 500 µm. (Figure from Lienbacher et al. 2011b) 

 

4.2.2 Anterograde tracer labeling in extraocular muscles (case 1-3) 

All tracer injections involving either nIII (case 1 and 2) or nerve bundles of the 

oculomotor nerve (NIII) (case 3) revealed distinct anterograde labeling of nerve 

endings in the respective extraocular muscles, depending on the injection site 

(Tab. 7)  
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Accordingly, in all cases the lateral rectus muscles, whose motor neurons lie in 

the abducens nucleus at pontomedullary level, were tracer negative. The 

anterogradely labeled terminals comprise en plaque endings concentrated 

around the middle third of the muscle fibers in the global and in the orbital layer 

(Fig. 24 A, B), and small en grappe endings, which are distributed along single 

muscle fibers but concentrated at the distal and proximal ends (Fig. 24 E,F). In 

addition all extraocular muscles contained numerous anterogradely tracer 

labeled palisade endings at the myotendinous junction (Fig. 24 C,D; 25 F,G). 

The systematic analysis of combined immunostaining for tracer and either 

SNAP-25 (Fig. 24; 25 A, B; D, E), or SYN (Fig. 25 F,G), permitted an estimation 

of the percentage of tracer labeled nerve endings and a judgment on their types 

(Tab. 8). Slides from the orbital and global layer of cases 1 and 2 were used for 

the semi-quantitative analyze. 

 

Fig. 24 Combined immunofluorescence of the tracer TMR-DA (red) and SNAP-25 (green) identifying 

en plaque (A, B), en grappe (E, F), and palisade endings (C, D) in the medial rectus muscle of the 
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monkey in case 1. Each pair of neighboring photographs shows the same section with different 
fluorescence filters. (Figure from Lienbacher et al. 2011b) 

 

 

Fig. 25 Different nerve endings in the extraocular muscles. (A, B) An identified SNAP-25 positive 
spiral ending (A; green) was anterogradely labeled with CTB (B; red) after injection into the 

oculomotor nucleus tracer (case 2). (C) CTB-labeled en plaque endings (red) and TH positive nerve 

ending (green), which does not contain tracer (case 2). (D, E) Tracer-negative (D) small nerve 

ending in the eye muscles stained for SNAP-25 (E) (case 1). (F, G) The synaptic endings of an 
anterogradely TMR-DA-labeled palisade ending (G; red) are visualized by immunostaining for 

synaptophysin (F; green) (case 1). (Figure from Lienbacher et al. 2011b) 

 

The TMR-DA injection in case 1 resulted in strong anterograde terminal labeling 

in the corresponding extraocular muscles, i.e. ipsilateral MR, IR and IO and 

contralateral SR (Fig. 23 A-C). The detailed analysis revealed that in the left MR 

almost all (99,6 %) en plaque, en grappe and palisade endings appeared to be 

tracer labeled (Fig. 23 B,D,F; Tab. 6 and 7). In the ipsilateral IR 20 % were 

labeled, in the inferior oblique 75 % and in the contralateral SR 85 %. The 
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strong labeling of all nerve ending types in the superior oblique (SO) of both 

sides (ipsilateral: 91 %; contralateral: 87 %) was attributed to tracer uptake of 

the injured trochlear nerve damaged by the injection needle. 

In case 2, CT positive nerve terminals were found in the ipsilateral IR (18 %), 

MR (50 %), IO (46 %) as well as a few in the contralateral SO (1 %), and SR of 

both sides (ipsilateral: 14 %; contralateral: 15 %) (Fig. 23 D-F, Tab. 7 and 8). 

The partial tracer labeling of the complete nerve ending population in the 

respective eye muscles was attributed to the incomplete coverage of the nIII 

with partial inclusion of the nIV by the CT injection (Fig. 23 D-F). 

For both cases it should be pointed out that in all muscles – irrespective of the 

amount of tracer-labeling – all types of nerve endings, en plaque, en grappe 

and palisade endings, were labeled. In addition every muscle contained a few 

tracer positive spiral endings around single muscle fibers (Fig. 25 A,B). 

The TMR-DA injection in case 3 (Fig. 23 G-I, Tab. 7) which involved only the 

oculomotor nerve revealed a similar pattern of anterogradely labeling in the 

ipsilateral IR, MR and SR as described above. A fraction of all nerve ending 

types including palisade endings were tracer labeled. 

 

Tracer Injection Tracer Uptake

Case 1           Tetramethylrhodamine dextran injection in the left nIII MR, IR, IO region in left nIII ; SR  region right;  trochlear 
nucleus, both sides

Case 2             Choleratoxin subunit B injection in the right nIII IR, MR, IO in right nIII; SR region in nIII bilateral, C-group, 
EW; trochlear nucleus right

Case 3                     Tetramethylrhodamine dextran injection in the left NIII Nerve fibres mainly left side, also contamination of a few 
fibres on the right side 

Case 4 WGA-HRP injection in the distal part of  IR; Choleratoxin 
subunit B injection in the distal part of the MR Myotendinous area of injected IR and MR

 

Tab. 6 Overview of the central tracer injection cases, indicating the injection side and specifying 

the involved motor neuronal groups. 
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Tab. 7 Number of en plaque, en grappe and palisade endings in different extraocular muscles of 

case 1 and 2 and their tracer labeling. (Table from Lienbacher et al. 2011b) 

 

A surprising result was the discovery of several anterogradely labeled 

neurotendinous ending complexes, which correspond to the tendon organs 

described by Ruskell (Ruskell, 1979) in the myotendinous junction of MR, in 

both the CT and the TMR-DA tracer cases (case 1 and 2), (Fig. 26 A-C). They 

were often seen associated with a tracer labeled palisade ending (Fig. 26 A, B), 

but evidence for a definite neural continuity between a tendon organ and a 

palisade ending was not visible in these tracer sections. However a neural 

continuity between tendon organs and palisade endings was apparent from 

analysis of a complete series of SO sections systematically stained for SNAP-

25 to reveal all neural structures. 

Extraocular 
Muscles

% of tracer 
positive en plaque 

endings

Counted en 
plaque endings

Tracer positive en 
plaque endings

% of tracer 
positive en grappe 

endings

Counted en 
grappe endings

Tracer positive en 
grappe indings

% of tracer 
positive palisade 

endings

Counted palisade 
endings

Tracer positive 
palisade endings

MR le 100 2497 2487 100 20 20 100 23 23

IR le 20 1610 325 6 18 1 0 3 0

Case 1 IO le 76 1202 910 46 11 5 100 1 1

TMR-DA SO ri 88 1248 1096 71 51 36 100 6 6

SO le 90 1072 968 94 36 34 95 19 18

SR ri 85 1034 878 73 26 19 100 4 4

SR le 0 n. c.                    
(not counted)

0 0 0 0 0 0 0

LR ri 0 n. c. 0 0 0 0 0 0 0

MR ri 50 1765 875 29 14 4 60 15 9

IR ri 18 932 167 13 8 1 0 2 0

Case 2 IO ri 46 811 374 50 6 3 100 2 2

CTB SR le 15 910 137 5 20 1 33 6 2

SR ri 14 1744 241 8 37 3 25 4 1

SO le 1 1108 13 0 67 0 0 4 0

SO ri 0 n. c. 0 0 0 0 0 0 0

LR ri 0 n. c. 0 0 0 0 0 0 0
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Fig. 26 Brightfield immunoperoxidase staining for MHCs (brown) combined with either SNAP-25 

(black) or CTB (black). (A) A SNAP-25 positive palisade ending (PE) (black) contacts an MHCs 
positive MIF in the top left corner; its axon is seen to be continuous with a tendon ending (TE) in 

the superior oblique tendon (T). (B, C) CTB labeled palisade endings (black) and labeled tendon 

ending (black) in the MR muscle, after tracer injection in the oculomotor nucleus (case 2). (Figure 

from Lienbacher et al. 2011b) 

 
4.2.3 Tracer-negative nerve endings in extraocular muscles 

In all central injection cases (1-3) two distinct nerve fiber types remained tracer- 

negative and were visualized only by SNAP-25 immunoreactivity. One group 

gave rise to very small terminals, which innervated one muscle fiber via a single 

contact. These terminals were found throughout the muscle with an incidence of 

two to three per section (Fig.25, D,E). Another tracer-negative type represents 

fine fibers with small endings resembling that of en grappe, but meandering 

across several muscle fibers and often being associated with blood vessels. 

Combined immunostaining for TH and the tracer indicated that they were 

sympathetic nerve fibers (Fig. 25, C). 
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4.2.4 Analysis of the trigeminal ganglia and the mesencephalic 

trigeminal nucleus 

The systematic analysis of the trigeminal ganglia (TG) and the mesencephalic 

trigeminal nucleus (VMes) of both sides in case 1 and 2, did not disclose any 

tracer labeled cell bodies or terminals. 

 
4.2.5 Course of axons arising from motor neurons in the C-group 

(case 4) 

Injections into the nIII label axons of passage as well as the motor neurons. In 

order to investigate how much, and which terminal labeling in the eye muscles 

in cases 1-3 could be attributed to axons of passage through nIII, injections of 

retrograde tracer substances were placed in the distal muscle ends of the MR 

(CT) and IR (WGAHRP) in one monkey (case 4). Retrogradely filled cells were 

located only in the peripheral oculomotor C-group and not in the classical MR 

(A- and B-group) and IR motor neuron subgroups within nIII (Fig. 27 B). The 

course of the C-group axons in nIII is plotted in Fig. 27 A; they take a 

ventrolateral course through nIII thereby traversing the other motor neuron 

subgroups before leaving nIII (Fig. 27 A). These axons are involved in the 

oculomotor injections and contribute to the terminal labeling seen in cases 1-3. 
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Fig. 27 (A) Reconstruction of caudorostrally arranged transverse brain stem sections 

demonstrating motor neurons (dots) in the C-group (C) that have been tracer-labeled by injections 
into the myotendinous junction of the medial rectus (MR; red) and inferior rectus (IR, blue). The 

respective tracer-labeled axons of both populations travel through the oculomotor nucleus (nIII) 

and would be labeled by injections into nIII. Scale bar, 500 µm. NIII, oculomotor nerve; AM, 
anteromedian nucleus. (B) A summary diagram of the total population of neurons around and 

within the oculomotor nucleus (nIII) after injection into the myotendinous junction of all eye 

muscles, including the C-group and S-group. Present results suggest that they contain both MIF-
motor neurons and palisade ending somata. (Figure from Lienbacher et al. 2011b) 

 

4.3 Differentiation of peripheral oculomotor nuclei cells  

4.3.1 Morphologic and morphometric differentiation of peripheral 

oculomotor nuclei cells 

Morphological and morphometric analysis of the nIII peripheral groups revealed 

a heterogeneous cell population. Belly tracer injections into the MR led to 

retrogradely labeled twitch motor neurons within nIII and neurons in the 

periphery of nIII, with the largest accumulation within the C-group adjacent to 

the dorsomedial aspect of nIII. Very distal tracer injections into the 
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myotendinous junction mostly sparing muscle fibers resulted in exclusive 

labeling of the peripheral neurons around nIII, some of them extending dorsally 

to nIII, encircling the EWpg (Kozicz et al., 2011) and also further rostral to nIII. 

After a systematic inspection of the peripheral, either tracer labeled or ChAT 

labeled neurons, we found numerous multipolar neurons, a morphology typical 

for motor neurons (Fig. 28 B). We also identified a small but consistent 

population of neurons that were round or bipolar, a morphology (Fig. 28 A) 

resembling the sensory ganglion cells of the mesencephalic trigeminal nucleus 

(VMes; Fig. 28 C). The population lay closer to the EWpg, and distant from nIII; 

and, importantly, they were only back labeled after very distal tracer injections. 

These two different morphological cell types were also seen in tracer labeled 

neurons of the S-group after a tracer injection into the myotendinous junction of 

the SR (Fig. 28 D). 

 

Fig. 28 (A, B) Immunoperoxidase staining for cholinacetyltransferase (ChAT) of peripheral C-group 

neurons in the monkey. (C) Ganglion cells within the mesencephalic trigeminal nucleus 
immunostained for non-phosphorylated neurofilament (NP-NF). Note the similarity to the peripheral 
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C-group neuron in A. (D) Retrograde tracer labeled (WGA-HRP) spindle-shaped (white arrow) and 
multipolar (yellow arrow) neuron in the S-group after a distal tracer injection into the superior 

rectus muscle of a monkey. All scale bars: 50 μm. (Figure from Lienbacher et al. 2011a) 

 

4.3.2 Immunohistochemical differentiation of peripheral oculomotor 

nuclei cells 

Based on the finding that, in addition to ChAT, the calcium-binding protein CR is 

present in PEs and that PEs can anterogradely be labeled after tracer injections 

into nIII, a systematic study on nIII neurons with emphasis on the peripheral C-

group was undertaken for the presence of CR.  

As expected all neurons of the C-group dorsomedial to nIII are ChAT positive 

(Eberhorn et al., 2005a), but a few neurons expressed additional CR-

immunoreactivity (Fig. 29). Within nIII all presumed SIF motor neurons express 

only ChAT but no CR.  

The systematic analysis of tracer labeled neurons in the C-group revealed a 

consistent population (12 % - 15 %) of CR-expressing neurons. This was most 

obvious in cases with tracer injections into the myotendinous junction, which 

exclusively label the peripheral neurons around nIII, and also extend further 

rostral to nIII (Fig. 30). 

 

Fig. 29 Neighboring transverse sections through the oculomotor nucleus of monkey showing the 

C-group immunostained for ChAT (A, brown) and CR (B, black). For clarity the red stars indicate 
corresponding blood vessels. T(A) Within the ChAT positive population of C-group neurons a small 

fraction expressed immunoreactivity for calretinin (CR) as well (red rectangle).  
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Fig. 30 High-power magnification of tracer labeled neurons in the C-group (B, green) after a CT-

injection into the myotendinous junctions, some of which contain calretinin (CR) (A, red, white 
arrows. In the overlay (C) tracer labeled CR positive neurons appear yellow. These neurons are 

assumed to present the cell bodies of palisade endings, whereas the CR-negative tracer-labeled 

neurons (A-C, yellow arrow) may represent motor neurons of non-twitch muscle fibers.  
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5 Discussion 

Since the 19th century there have been debates on whether there is a 

conscious sense of position of the eye, in correspondence to that of the skeletal 

system. For example a person cannot detect passive movements of his 

occluded eye, if the surface of the eye is anaesthetized (Brindley and Merton, 

1960). Unlike the skeletal system eyes can use visual information, and two 

basic theories have evolved for the perception of the eye position in the head 

(for review: Carpenter, 1988, Donaldson, 2000): 1. In the outflow theory the eye 

position signal is supplied by a feed-forward motor command (Helmholtz, 1866), 

which was later revived in the concept of efference copy (Holst, 1950). 2. In the 

inflow theory afferent signals are carried from proprioceptors of the eye muscles 

to the brain, as originally described for the skeletal muscles (Sherrington, 1906). 

The source of this signal is still unclear for extraocular muscles. One reason for 

the ongoing debate on the monitoring of eye position is that in contrast to the 

skeletal muscles, there is no need for regulating posture in the eye muscles. 

Furthermore, sensory information is projected to the brainstem via the 

ophthalmic division of the trigeminal nerve, but even if this nerve is cut, there is 

still a working eye movement control, with an adaptation to novel visual targets 

(Guthrie et al., 1983, Lewis et al., 2001). This led to the suggestion, that in the 

absence of the proprioceptive system, the efference copy alone is sufficient for 

visual localization (Lewis et al., 1998). In addition, most of the tested species 

show no stretch reflex in their eye muscles, in contrast to skeletal muscles 

(Keller and Robinson, 1971). On the other hand, proprioceptors in the 

extraocular muscles do exist and a stretch reflex was indeed demonstrated in 

the eye muscles of rats and squirrel monkeys, even though they are reputed to 

lack muscle spindles (Fiorentini and Maffei, 1977, Dancause et al., 2007). In 

addition, recent studies presented data for proprioceptive representations in the 

cortex of human and monkey, even in total absence of visual stimulation (Wang 

et al., 2007, Balslev and Miall, 2008). 

 In the present study we did not see any muscle spindles in the extraocular 

muscles in monkey (Macaca mulatta). This is in agreement with other studies 

on non-human primates (Ruskell, 1999), in which they are not found or 

described as very few and poorly developed (Greene and Jampel, 1966, Maier 
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et al., 1974, Ruskell, 1999). A small number may have escaped detection since 

only a subset of muscle sections, mainly of the global layer, were systematically 

analyzed, and detection of muscle spindles in the longitudinal plane is more 

difficult than in transverse sections.  

In view of the fact that the EOMs perform highly precise movements mediated 

by small motor units, which may require a strong sensory control system, it is 

unsettling to accept that the presence of muscle spindles in eye muscles is 

highly variable between different species (Harker, 1972, Barker, 1974), or even 

absent (Cooper and Daniel, 1949, Ruskell, 1999, Donaldson, 2000, Büttner-

Ennever et al., 2006). If present in EOMs, they are confined to the orbital layer. 

In addition they exhibit a simpler morphology with less intrafusal muscle fibers, 

only of the nuclear chain type (sensitive only to length changes), some of them 

running through the capsule without innervation and variable in number 

depending on the species (Donaldson, 2000),(Cooper et al., 1955, Ruskell, 

1999, Büttner-Ennever et al., 2006), which raised the question of their 

functionality by some authors (Ruskell, 1989, Bruenech and Ruskell, 2001). 

Only the EOMs of ungulates including sheep, pig, and cow possess well 

developed muscle spindles, very similar to that of skeletal muscles including the 

presence of nuclear chain and nuclear bag fibers (Blumer et al., 2001a, Blumer 

et al., 2003). And furthermore, numerous less developed muscle spindles have 

been found in the orbital layer of human eye muscles (Ruskell, 1989, Blumer et 

al., 1999, Wicke et al., 2007). 

There are only two possible direct routes by which the afferents of EOMs may 

enter the brainstem: the trigeminal nerve, which is generally seen as projector 

of sensory information from head structures, or the oculomotor nerves usually 

considered as efferent nerve. There is still no general agreement as to the one 

or the other possibility, or maybe both are being used to transmit proprioceptive 

information, besides the fact that there are enormous differences between 

species. There are even debates, if extraocular muscles use afferent pathways 

for proprioception at all, or if other systems are involved (Carpenter, 1977, 

Guthrie et al., 1983). 

In an attempt to obtain more insight into the afferents of the EOMs, with 

emphasis on proprioception, and to clarify the anatomy of PEs, including the 
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location of their cell bodies, two cell populations were studied more specifically 

which are usually retrogradely labeled after tracer injection into the 

myotendinous junction (Porter et al., 1983, Büttner-Ennever et al., 2001): the 

brainstem regions around the oculomotor nuclei and the ophthalmic portion of 

the trigeminal ganglion. 

 

5.1 Trigeminal innervation of extraocular muscles 

5.1.1 Trigeminal ganglion 

In accordance to earlier studies after tracer injection into the eye muscle the 

retrogradely labeled ganglion cells were all clustered in the ophthalmic 

subdivision of the TG (Brodal, 1981, Porter and Donaldson, 1991, Usunoff et 

al., 1997, Lazarov, 2002). Irrespective of the injected EOM or muscle site (belly 

or myotendinous junction) no obvious somatotopic arrangement was seen in the 

macaque monkey as described for the guinea-pig (Aigner et al., 2000). The few 

neurons found in the maxillary division of the TG, mainly on the border to the 

ophthalmic subdivision, may still represent neurons whose axons travel within 

the ophthalmic branch as seen before in human TG (Hüfner et al., 2009). As a 

general pattern cases with distal myotendinous injections resulted in a more 

homogeneous population of small to medium-sized tracer labeled TG cells, 

whereas a muscle belly or conjunctiva injection led to tracer-labeled TG cells 

with the full range of all sizes small to large sized. Interestingly, in one case 

(Monkey 4) with a very distal tracer LR injection, labeled cells were found in the 

TG, despite the absence of tracer labeled neurons in all motor nuclei including 

the abducens nucleus. Since the same survival time was taken for all 

experiments, and in light of the fact that CT is transported by a faster axonal 

mechanism retrogradely than anterogradely (Bobillier et al., 1976), the lack of 

motor neuronal labeling is not due to insufficient tracer transport. It is more 

likely, that either the distal myotendinous tracer injection hit only sensory 

endings in the tendon sparing the motor terminals, or lid or conjunctiva 

contamination led to the exclusive trigeminal labeling as indicated by a strong 

labeling of the dorsolateral portion in the ipsilateral facial nucleus containing 

motor neurons of the orbicularis oculi muscle (Porter et al., 1989).  
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The finding of anterogradely labeled fine nerve endings in the oral and 

interpolar part of the spinal trigeminal nucleus as that in the principal sensory 

nucleus of the trigeminal complex is in accordance with the findings of other 

authors. In cat transganglionic labeling was mainly found in the oral part of the 

spinal trigeminal nucleus and few in the principal sensory nucleus (Ogasawara 

et al., 1987), whereas in monkey similar strong labeling was found in the 

principal sensory nucleus, the cuneate nucleus and the pars interpolaris of the 

spinal trigeminal nucleus (Porter, 1986).  

The nucleus of the spinal trigeminal tract is composed of three distinct nuclei 

(Liu, 1998): from rostral to caudal the nucleus pars oralis, nucleus pars 

interpolaris and nucleus pars caudalis. As a relay station of the protopathic 

system, it transmits pain and temperature sensation. Therefore the 

anterogradely labeled terminals in the oral or interpolar part of the spinal 

trigeminal nucleus may derive from protopathic fibers of the EOMs. The 

termination areas of the trigeminal afferents in the principal sensory nucleus 

may transmit tactile or light pressure sensation (Liu, 1998, Miller, 1998).  

Theoretically the trigeminal labeling may at least in part be due to unwanted 

tracer uptake from the cornea and/or the orbicularis oculi muscle after leakage 

of the tracer between the closed eyelids and the cornea. The cornea has a 

strong supply from trigeminal afferents, which terminate heavily between the 

caudal pars interpolaris and rostral pars caudalis and only moderately in the 

pars oralis (Marfurt and Echtenkamp, 1988). 

Stimulation of the supraorbital nerve, a branch of the ophthalmic nerve V1, 

which supplies the forehead, skin and conjunctiva of the upper eyelid results in 

the blink reflex by a fast contraction of the orbicularis oculi muscle, which closes 

the eye (Kugelberg, 1952, Horn and Adamcyzk, 2012). Accordingly tracer 

injections into the upper eyelid in monkey result in retrogradely labeled neurons 

within the ophthalmic region of the TG and strong terminal labeling in the ventral 

part of the spinal trigeminal nucleus pars caudalis and less in the interpolar and 

oral part as well as in the principal trigeminal nucleus (May and Porter, 1998). 

Via oligosynaptic pathways the trigeminal nuclei project to the dorsolateral 

portion of the facial nucleus, which contains the orbicularis oculi muscles in 

monkey, the efferent limb of the blink reflex (Porter et al., 1989). Since in 
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several cases some retrogradely labeled motor neurons of the orbicularis oculi 

subgroup in the ipsilateral facial nucleus were found (Tab 4), trigeminal neurons 

and afferents from lid and/or cornea may be contained in the investigated 

populations(Marfurt and Echtenkamp, 1988). However the presence of 

trigeminal labeling even in the absence of motor neuronal labeling in the facial 

nucleus in several cases indicates that a trigeminal innervation of the EOM 

exists.  

 

5.1.2 Mesencephalic trigeminal nucleus 

Usually all spinal and cranial sensory ganglia lie in the periphery, but the VMes, 

located in the rostral rhombencephalon, is a peculiarity (Ramón Y Cajal, 1896, 

Scharf, 1958, Brodal, 1981, Usunoff et al., 1997, Lazarov, 2000). These 

ganglion cells derive from mesencephalic neural crest cells, which migrate 

inward to their final location (Weston, 1970, Narayanan and Narayanan, 1978). 

The VMes is the only known nucleus containing cell bodies of primary afferent 

neurons, which is located in the central nervous system (Johnston, 1909, 

Freeman, 1925).  

Confirming the observations by other investigators (Porter and Spencer, 1982, 

Porter et al., 1983, Daunicht et al., 1985, Bortolami et al., 1987a) no labeling 

was seen in the sensory VMes after tracer injection into the eye muscles in the 

present study. The VMes is known as the location for the cell bodies of muscle 

spindles in the masticatory muscles (Alvarado-Mallart et al., 1975a, Capra et al., 

1985). But some authors have found retrogradely labeled neurons in the VMes 

after eye muscle injections in different species including monkey (Alvarado-

Mallart et al., 1975a, Bortolami et al., 1987b, Wang and May, 2008). These 

retrogradely labeled cells were interpreted as cell bodies from muscle spindles 

of the EOMs. They explained the very low number of cells by the small number 

of muscle spindles in the macaque extraocular muscles (Wang and May, 2008). 

But there is conflicting data about the existence of muscle spindles in the 

macaque eye muscles: some authors did not find any muscle spindles (Cooper 

and Daniel, 1949), others report on only a small number of poorly developed 

spindles in some of the eye muscles but none in others (Greene and Jampel, 

1966, Maier et al., 1974). During the thorough analysis of many extraocular 



5 Discussion 65 

muscles of monkey for nerve endings in the present study no muscle spindles 

were detected (Büttner-Ennever et al., 2006, Lienbacher et al., 2011b). 

In any case, the cells of the VMes can be ruled out as a source for palisade 

endings on account of their transmitter, which is not acetylcholine (Lazarov, 

2002) (Lienbacher, own observations). 

 

5.1.3 Proposed function of trigeminal tracer labeled cells and their 

afferents in the extraocular muscles  

The histochemical properties of tracer labeled TG cells were studied to get 

more information about the function of the sensory innervation. This was 

complemented by an investigation of nerve endings immunostained for the 

respective markers within the extraocular muscles, which involved ChAT, 

substance P, nitric oxide synthase, calretinin and parvalbumin. The complete 

innervation of the eye muscles was revealed with combined immunostaining of 

the synaptosomal associated protein of 25kDA (SNAP-25). It belongs to a 

family of proteins, which are essential for membrane fusion during exocytosis 

and is part of the SNARE-complex (soluble N-ethylmaleimide-sensitive-factor 

attachment receptor) that is associated with the presynaptic plasma membrane. 

SNAP-25 is located at the plasma membrane in synaptic terminals, but also 

along the axonal membrane (Hodel, 1998, Rizo and Südhof, 2002). It was 

established as reliable marker for nerve fibers and all nerve endings, e.g. motor 

nerves and endplates, sensory fibers and terminals, autonomic innervation of 

blood vessels, and palisade endings at the myotendinous junction in different 

species (Eberhorn et al., 2005b). Accordingly all types of nerve fibers and nerve 

endings were successfully detected by SNAP-25 immunostaining in monkey 

extraocular muscles (Eberhorn et al., 2005b; Lienbacher et al., 2011).  

 

5.1.4 Substance P  

The finding of SP positive neurons in the monkey TG is in accordance with 

other immunohistochemical studies reporting about small SP sensory neurons 

in the TG of monkey (Ng et al., 1993), and other mammals (Hokfelt et al., 1976, 

Tervo et al., 1981, Terenghi et al., 1985, Del Fiacco et al., 1990, Lazarov, 
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1994), but extended by showing that a considerable population of trigeminal SP 

positive neurons innervate orbital structures in monkey (Fackelmann et al., 

2008). In the present study tracer labeled TG cells expressing SP 

immunoreactivity, were most frequently found after a conjunctiva injection (42 

%), followed by the cases with tracer uptake from the myotendinous junction. 

The lowest percentage of tracer labeled SP positive TG cells was found in a 

case where very low tracer uptake was noted from the proximal or distal tendon. 

These findings suggest a strong SP positive innervation of mainly the 

myotendinous portions of EOM, whereby a considerable supply may also target 

the conjunctiva, which has been shown to receive a SP innervation from the TG 

in rat (Luhtala and Uusitalo, 1991, Elsås et al., 1994). Besides in the conjunctiva 

(Shimizu et al., 1982, Selbach et al., 2005b) SP has been identified in different 

parts of the eye: the iris, the ciliary body, the cornea, the episclera, trabecular 

meshwork (Miller et al., 1981, Gibbins and Morris, 1987). The TG was 

suggested to be the origin of sensory SP nerve fibers for these targets, because 

after surgical denervation or chemical treatment with capsaicin, the SP positive 

structures in the anterior eye segments of different species clearly decreased 

(Butler et al., 1980, Miller et al., 1981, Keen et al., 1982). So far little information 

is available from the SP supply in extraocular muscles (Eberhorn et al., 2005c). 

The present study revealed that SP containing fibers and terminals as identified 

by combined immunolabeling for SNAP-25 were primarily found around blood 

vessels.  

Substance P is a part of the neuropeptide family and belongs to the tachykinins 

(Otsuka and Yoshioka, 1993). It is one of the best investigated and described 

members of the neuropeptides. Its biological activity is demonstrated in primary 

sensory neurons and it functions there as neurotransmitters (Hokfelt et al., 

1975, Konishi et al., 1985, Lembeck, 1985). SP was discovered in 1931 by 

Euler and Gaddum (Euler and Gaddum, 1931) and since then localized in 

different brain areas and ganglions including the TG (Cuello et al., 1978, 

Paxinos et al., 1980, Terenghi et al., 1985, Kuwayama and Stone, 1986, Murata 

and Masuko, 2006). One major role of SP is the transfer of nociceptive 

information in sensory afferents, unmyelinated C-fibers (Hunt and Rossi, 1985, 

Levine et al., 1993). In addition to its role in sensory transmission, SP takes part 

in vasodilatation, immune and inflammatory processes (Otsuka and Yoshioka, 
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1993). SP was already demonstrated in the cerebral blood vessels of the rat 

(Shimizu et al., 1999), and it often participates in vasodilatation by being 

mediated by the endothelium derived-relaxing factor (EDRF) for example (Beny 

and Brunet, 1988), or mediating vasodilatation itself (Lembeck and Holzer, 

1979) . SP was also shown to be involved in the blood flow regulation of 

skeletal muscles (Ohlen et al., 1987). Furthermore, the nerve induced 

vasodilatation can be reduced by a tachykinin antagonists like a NOS inhibitor 

(Persson et al., 1991). 

SP seems to participate not only in vasodilatation, but takes also part in 

inflammatory processes. Electrical stimulation, chemical irritations or noxious 

heat released SP on the skin (White and Helme, 1985, Helme et al., 1986, 

Yonehara et al., 1987), the dental pulp (Olgart et al., 1977, Brodin et al., 1981), 

or the eye (Bill et al., 1979, Mandahl et al., 1984). Furthermore, when SP was 

injected into the skin of humans it causes flare, pain and itch (Hagermark et al., 

1978, Foreman et al., 1983, Wallengren and Hakanson, 1987, Pedersen-

Bjergaard et al., 1989), and it is also involved in histamine release (Johnson 

and Erdös, 1973, Fewtrell et al., 1982) which is important for SP-induced flare 

(Hagermark et al., 1978, Barnes et al., 1986).  

Taken together the tracer labeled SP positive neurons in the TG represent 

nociceptive terminals primarily in the conjunctiva (Selbach et al., 2005a). At 

least a portion may give rise to vegetative afferents associated with blood 

vessels participating in vasodilatation of the richly vascularized eye muscles 

and may also participate in inflammatory processes (Johnson and Erdös, 1973, 

Lembeck and Holzer, 1979, Foreman et al., 1983, White and Helme, 1985).  

 

5.1.5 Nitric oxide synthase 

Similar to SP, tracer labeled NOS positive cell bodies within the TG represent 

small and medium-sized neurons in the present study. The presence of small to 

medium-sized NOS positive neurons in the ophthalmic division of the TG has 

been described for different mammals (Nozaki et al., 1993, Alm et al., 1995, 

Lohinai et al., 1997, Tajti et al., 1999) (Edvinsson et al., 1998, Lazarov, 1998).  
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As for SP the most tracer labeled NOS positive neurons in the TG were seen 

after injections into the myotendinous junction of EOMS (up to 40 %), whereas 

belly injections back labeled only the half amount of them (Tab. 6). Nitric oxide 

synthase (NOS) is an enzyme that synthesizes L-Arginin into nitric oxide (NO), 

which is an important signaling, gaseous molecule broadly found in the nervous 

system (Garthwaite, 2008, Steinert et al., 2010). The immunohistochemical 

detection of NOS is regarded as a confirmation of NO as a neuroactive 

substance (Bredt et al., 1990). There are three isoforms of NOS, found in 

neurons (nNOS), or endothelial cells (eNOS) and one inducible type, which is 

expressed in different cell types like macrophages and microglia in the CNS 

(iNOS). All this isoforms have distinct functional and structural peculiarities 

(Alderton et al., 2001). In the present study only nNOS was used, which was 

abbreviated NOS for simplicity. NO, originally identified as endothelium-derived 

relaxing factor (EDRF), is considered to regulate the relaxation of blood vessels 

(Furchgott and Zawadzki, 1980, Palmer et al., 1987, Kelm et al., 1988, Whittle 

et al., 1989, Bredt et al., 1990, Persson et al., 1991). NO regulates 

cardiovascular tone and blood pressure and acts as a mediator of endogenous 

endothelium-dependent vasodilators (Whittle et al., 1989). It is controversially 

discussed if NO is involved in nociception. NO is a second messenger that 

synthetizes cyclic guanosine monophosphate (cGMP) by activating guanylyl 

cylase and some data point to the fact that NO and cGMP are involved in the 

nociceptive system (Meller and Gebhart, 1993, Semos and Headley, 1994, 

Budzinski et al., 2000, Hoheisel et al., 2005). Latest publications show that 

neuronal NOS may be involved in the induction of nociception, but not in the 

maintenance (Isaak and Ellrich, 2011). In addition neuronal NOS participates in 

learning and memory, synaptic modulation, feeding, sleeping, reproductive 

behavior as well as neuronal development and neuronal death (Kiss, 2000, 

Garthwaite, 2008).  

The fact that NOS positive fibers were only found around blood vessels of the 

extraocular muscles is in accordance with the notion that nNOS is involved in 

blood pressure regulation and vasodilatation. Why the collagen tissue of the 

sheep muscle spindles of the eye muscles is NOS labeled, is unclear. NOS is 

indeed sometimes associated with collagen, but always related to damage and 

repair. NO addition resulted in improved collagen synthesis (Pessanh and 
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Mandarim-de-Lacerda, 2000, Bokhari and Murrell, 2012). At the moment there 

is no satisfying answer to the function of NOS positive muscle spindle capsule.  

 

5.1.6 Parvalbumin 

The cases investigated for TG cells containing parvalbumin revealed similar 

small populations of rather large neurons (Fackelmann et al., 2008). It is not 

clear which terminals in the EOMs are associated with the PV positive neurons 

in the TG, since only en plaque endings were found to express PV 

immunoreactivity. The latter is in accordance with the presence of PV in the 

presumed twitch motor neurons within the eye muscle motor nuclei described in 

several species (De la Cruz et al., 1998, Eberhorn et al., 2005a, Horn and 

Adamcyzk, 2012). The specific association of PV with twitch motor neurons is in 

accordance with the notion that the calcium binding protein PV is primarily 

found in neurons with high firing rates as shown for many other functional cell 

groups of the oculomotor system, e.g. saccadic burst neurons (Horn et al., 

1995, Horn and Büttner-Ennever, 1998) or omnipause neurons (Horn et al., 

1994). The trigeminal PV afferents most likely target the conjunctiva and may 

transmit pressure or touch information by mechanoreceptors, like shown in 

orofacial tissue (Ichikawa and Sugimoto, 1997). 

 

5.1.7 Calretinin 

The most surprising finding was that the palisade endings (PE) at the 

myotendinous junction rather selectively expressed the calcium-binding protein 

calretinin (CR). Since a few en grappe endings were CR positive as well, the 

important question as to whether PE and the en grappe endings form an 

anatomical entity, cannot fully be resolved on this basis. However it indicates 

that the twitch and the non-twitch system is separated by a further 

histochemical property the en plaque endings associated with PV the PEs, and 

perhaps few en grappe endings, with CR. 

Given the fact that no other CR positive nerve endings were detected in the 

EOMs and the findings that PEs originate from peripheral cell croups around the 

eye muscle motor nuclei (Lienbacher et al., 2011; Zimmermann et al., 2011) the 
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very small population of tracer labeled CR positive neurons in the TG was not 

surprising. One possible source for these cells is the conjunctiva or the cornea 

(Felipe et al., 1999). 

CR and PV are members of the calcium-binding protein family, which are 

supposed to be involved in the maintenance of the homeostasis of intracellular 

calcium ions (Baimbridge et al., 1992). CR probably activates and generates 

proteins to indirectly influence neurotransmitter release, firing patterns of 

neurons or development and plasticity (Rogers, 1987, Andressen et al., 1993). 

It is specifically synthesized in neurons of distinct populations in the CNS 

(Rogers, 1987, Andressen et al., 1993), but also in peripheral neurons like the 

dorsal root or trigeminal ganglion cells (Ichikawa et al., 1993a, Ichikawa et al., 

1993b, Ichikawa et al., 1994). Furthermore, it is related to proprioceptive 

terminals in the ciliary muscle (Flügel-Koch et al., 2009) and both are shown to 

be specific markers for proprioceptive primary neurons in the dorsal root 

ganglion (Celio, 1990, Ichikawa et al., 1994).  

Data from the ciliary muscle showed that CR was the only proprioceptive 

marker which was present in terminals surrounding the posterior and reticular 

ciliary muscle tips and their elastic tendons (Flügel-Koch et al., 2009). The 

receptors at the posterior muscle tips of the ciliary muscle are supposed to 

measure stretch of the tendon (Flügel-Koch et al., 2009). Because of their 

location on the myotendinous junction at the distal muscle part, and because of 

their CR labeling, which is an often described proprioceptive marker, the PEs 

could have the same function as the CR positive terminals in the ciliary muscle: 

measuring the stretch of the tendon.  

 

5.1.8 Cholinacetyltransferase 

The enzyme cholinacetyltransferase (ChAT), which synthetizes acetylcholine 

from Acetyl coenzyme A and Choline, is a reliable marker for cholinergic 

structures. Until now it is still “the most specific indicator for monitoring the 

functional state of cholinergic neurons in the central and peripheral nervous 

systems” (Oda, 1999). It is present in nerve terminals of cholinergic neurons in 

the central and peripheral nervous system (Oda, 1999). Developed in the 

1980s, the ChAT antibody enabled more detailed insight into the organization 
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and distribution of cholinergic neurons in the brain (Mesulam et al., 1989, 

Mesulam et al., 1992).  

In the present study the ChAT antibody labeled the known motor terminals, en 

plaque and en grappe, but also all PEs, in all eye muscle of monkey, sheep, rat, 

and prenatal pig EOM tissue confirming other studies (Kupfer, 1960, Sadeh and 

Stern, 1984, Oda, 1993, Blumer et al., 1998, Blumer et al., 2009). The 

cholinergic nature of PEs as well as α-bungarotoxin binding to the postsynaptic 

sites of PEs was taken as an indicator for a motor function of these structures 

by other groups (Konakci et al., 2005b, Blumer et al., 2009). However the close 

analysis revealed that only 10 % of the one third of the terminals contacting 

MIFs, show α-bungarotoxin binding (Konakci et al., 2005a, Konakci et al., 

2005b, Blumer et al., 2006, Blumer et al., 2009) indicating postsynaptic 

acetylcholine receptors (Berg et al., 1972). Even if there are parts of the 

terminals cholinergic or α-bungarotoxin positive, it has to be checked very 

keenly if this is enough data to give the PEs a motor function. There is 

information from different fields, that the presence of cholinergic markers is not 

necessarily a proof for a motor function (Yasuhara et al., 2004). 

This was surprisingly confirmed in our own experiments, where a small but 

consistent number of ChAT positive neurons in the TG were found, and shown 

to be most abundant in the ophthalmic division. In few cases, even a projection 

from ChAT positive neurons from the TG to the eye muscles was demonstrated 

by few double labeled neurons. The innervation targets and the function of 

these neurons are unclear, but they are not the source of PEs, since these were 

found within the brainstem around the motor nuclei (Lienbacher et al., 2011; 

Zimmermann et al., 2011).  

A few years ago a splice variant of ChAT cDNA was cloned, that lacks the 

exons 6-9 and was named ChAT of the peripheral type (p-ChAT) (Tooyama and 

Kimura, 2000). P-ChAT was detected in populations of neurons that were until 

than not known as cholinergic, like trigeminal ganglion cells and the sensory 

afferents of the ophthalmic nerve (Yasuhara et al., 2004). The ChAT molecule 

was found in central and peripheral neurons, but not in the TG (Yasuhara et al., 

2004). The immunohistochemical characterization of p-ChAT cells in the rat TG 

with SP or the calbindin (CB) showed different double labeling patterns. There 
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was almost no overlapping of p-ChAT and CB, a marker for proprioceptive cells, 

but most of the SP labeled neurons were p-Chat positive. The absence of 

pChAT labeling in the present monkey study may depend on the lack of this 

ChAT variant in this species and not on methodic problems, since pChAT 

positive neurons were identified in rat TG serving as positive control (Yasuhara 

et al. (Lienbacher et al., 2009). 

 

5.2 Localization of the cell bodies of palisade endings and 

implications for the function 

Central tracer injections into the midbrain targeting nIII, nIV or the oculomotor 

nerve, led to anterograde labeling of classical motor endings in the eye 

muscles, “en plaque” and en grappe terminals, as well as palisade endings and 

nerve terminals within the tendon at the distal myotendinous junction. These 

results indicated that the cell bodies of PEs are located within the brainstem 

around the motor nuclei of extraocular muscles.  

The only nerve fiber type lacking tracer labeling were tyrosine hydroxylase (TH) 

positive fibers, which represent postganglionic noradrenergic sympathetic fibers 

often encircling small blood vessels (Nielsen and Owman, 1967). This finding is 

in accordance with the fact that TH positive sympathetic nerves do not originate 

from nIII, but join the extraocular motor nerves only in the orbit on their way 

from the superior cervical ganglion to supply the arteries to the eye muscles, 

and controlling the regulation of the blood flow to the muscles (Hayakawa et al., 

2000, Thakker et al., 2008).  

The extent of the labeling of “en plaque” endings of SIFs in each individual eye 

muscle depended on the involvement of the motor neuronal subgroups in nIII in 

the tracer uptake area. Only the relatively small uptake of tracer in the trochlear 

nucleus of case 1 did not correlate with the high number of labeled terminals in 

the SO muscles, and the cause remains unclear. A possible explanation could 

be a polyneuronal innervation of the muscle fibers as described in cat inferior 

oblique muscle (Dimitrova et al., 2009). Hence the en grappe terminals on the 

MIFs (which form about 10-20 % of the muscle fibers) were also labeled, even 

though the motor neurons thought to supply them in the peripheral C- and S-cell 
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groups were not within the uptake area (see case 1). Injections of retrograde 

tracers into the myotendinous junctions of MR and IR muscle targeted the en 

grappe innervated tips of the MIFs (case 4), and retrogradely labeled only the 

peripheral C-group and their axons, which travelled ventrally through nIII before 

joining the oculomotor nerve (see case 4, Fig. 27 ). 

A major finding of this study is the anterograde tracer labeling of palisade 

endings and neurotendinous terminals by nIII injections. 

 

5.2.1 Location of the palisade ending cell bodies in the brainstem 

A central brainstem location of the cell bodies of palisade endings was already 

proposed by Tozer and Sherrington in 1910, who observed degenerated motor 

endplates and palisade endings after transecting the third, fourth and sixth 

cranial nerves in monkey (Tozer and Sherrington, 1910). Similar observations 

were made later by Sas and Scháb (Sas and Schab, 1952) after lesions in the 

area of the eye muscle motor nuclei in cat. Our data and those of others 

(Zimmermann et al., 2011) support these previous findings rather than those of 

more recent studies, which suggest that the palisade ending somata lie in the 

trigeminal ganglion. In one study, tracer injections into the trigeminal ganglion of 

cat anterogradely labeled palisade endings, but not after tracer injections into 

the extraocular motor nuclei (Billig et al., 1997). The reason for the discrepancy 

between this study and our results remains unclear. It is well established by 

previous studies that tracer injections into the myotendinous junction of 

extraocular muscle – the location of palisade endings and tips of MIFs – led to 

retrogradely labeled neurons around the periphery of the classical motor nuclei 

within the brainstem, in the C-and S-groups, the dorsal cap of nIV and at the 

periphery of nVI, and not within the classical motor neurons (Büttner-Ennever et 

al., 2001).  

 

5.2.2 Morphology of palisade endings 

Ever since the description of palisade endings by Dogiel (Dogiel, 1906) there 

has been evidence that the axons giving rise to palisade endings form 

additional multiple contacts along the muscle fiber. Richmond et al. (Richmond 
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et al., 1984) confirmed the finding in humans; and recently in monkey it was 

shown that only about one third of palisade endings have any contact at all to 

MIFs, and in this one third only 10 % of the palisade ending terminals had motor 

properties: more specifically they bound α-bungarotoxin (Blumer et al., 2009), 

which is also confirmed by our tests. The ultrastructural profile showed that 

these synapses have no basal lamina in the synaptic junction, and in so far 

resemble the motor terminals on intrafusal fibers, not those of “en plaque” 

terminals on SIFs (Kubota, 1988, Ruskell, 1989, Blumer et al., 2003, Konakci et 

al., 2005a). The vast majority of palisade terminals does not contact muscle 

fibers, but terminate amongst the collagen bundles of the tendon.  

Furthermore Dogiel (Dogiel, 1906) showed that branches from the PE axons 

forming elaborate terminals in the tendon, often extending deep into the tendon 

and far from the palisade terminal itself. We have found that these are 

particularly well developed in the superior oblique muscle, not studied by Dogiel 

or Ruskell (Dogiel, 1906, Ruskell, 1979) (Fig. 26 A, C). Unlike classical Golgi 

tendon organs, described by Ruskell (Ruskell, 1979), the labeled 

neurotendinous ending complexes were not encapsulated and did not form 

neuromuscular junctions. Our results indicate a unity of tendinous terminals with 

palisade endings, both deriving from cell bodies around the periphery of the nIII. 

 

5.3 The peripheral groups of the oculomotor nuclei – 

location of proprioceptive neurons? 

Tracer injections into different parts of primate eye muscles have shown the 

motor neurons giving rise to en plaque endings innervating the twitch SIFs lay 

within the motor nuclei, whereas the cell bodies of the en grappe endings 

associated with MIFs are located in the periphery of the motor nuclei (Büttner-

Ennever et al., 2001). Accordingly up to now the peripheral cell groups around 

the motor nuclei have been considered as non-twitch motor neurons and as the 

source of multiple nerve endings that are distributed along the whole length of 

muscle fibers characterized by the expression of specific myosin isoforms 

(Kjellgren et al., 2003). However, these distal tracer injections also involve the 

PEs and tendon organs at the myotendinous junctions and in the tendon. In 

light of our recent findings that the cell bodies of PEs are located in the 
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periphery of the motor nuclei, the peripheral cell groups, back-labeled after 

tracer injections into the myotendinous junction, it must be considered that 

some are back-labeled also from PEs. Theoretically, there are two possibilities 

of organization as already suggested previously (Büttner-Ennever et al., 2001): 

either the peripheral neurons around the motor nuclei form one homogenous 

population of neurons that give rise to multiple en grappe endings and PEs plus 

tendon organs, or there are at least two different neuron populations, for 

example, cell bodies of the motor en grappe endings and cell bodies of possible 

sensory PEs. Currently the latter hypothesis is supported by the findings of this 

study showing that the peripheral groups around the motor nuclei contain at 

least two populations that differ in their histochemical features and morphology. 

Within the well-established C-group dorsomedial to the oculomotor nucleus, 

which contains separate populations of neurons innervating IR and MR (Tang, 

2007), a consistent population of CR-expressing neurons was identified. This 

unexpected finding was only confirmed by a systematic detailed analysis of 

peripheral cell groups based on the fact that PEs express CR-immunoreactivity. 

Thereby the expression of ChAT and CR of these peripheral neurons is in 

accordance with the expression of both markers in PEs, supporting the CR 

positive neurons as source for PEs.  

For the MR the CR positive neurons are primarily located rostral to the nIII in 

proximity to the EWpg nucleus. The findings of this reanalysis are in good 

accordance with previous data on the cell sizes comparing tracer labeled 

peripheral and tracer labeled presumed twitch neurons within nIII after a large 

tracer injection into the muscle belly, where a bimodal distribution of cell sizes 

was noted, as well (Büttner-Ennever et al., 2001, see Fig. 13A20). As in the 

previous paper, no difference in cell sizes of retrogradely labeled neurons in the 

peripheral and central, presumed twitch motor neurons, were noted after a 

tracer injection in the belly (Büttner-Ennever et al., 2001, see Fig. 2). We 

extended this morphometric analysis by comparing the cell sizes of peripheral 

cell groups around the EWpg and those of peripheral cells adjacent to nIII only 

back-labeled after distal tracer injections and found a bimodal distribution, with 

the latter group being the larger cells. Only tracer injections into the 

myotendinous junction—the location of PEs—revealed, in addition, a group of 

round or spindle-shaped neurons with a morphology resembling that of sensory 
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ganglion cells (Johnston, 1909) (Fig. 28, A, C). A similar attempt of classification 

based on morphological cell features of tracer labeled neurons after EOM 

injections was undertaken in the pig (Kubota et al., 1988). Multipolar large cells 

were considered as alpha motor neurons corresponding to twitch motor neurons 

and small cells as γ-motor neurons, which may represent the non-twitch motor 

neurons providing multiple innervation and their spindle-shaped and round 

neurons—suggested as sensory cell bodies of spindle afferents—may 

represent the cell bodies of PEs. Although a possible location of sensory 

neuronal cell bodies within the brainstem and not in a separate ganglion, is very 

unusual, there is at least one example of well-known sensory neurons in the 

brainstem. The large round ganglion-like neurons of the mesencephalic 

trigeminal nucleus (Vmes) located close to the fourth ventricle at pontine levels 

and as single neurons at the border of the periaqueductal gray at 

mesencephalic levels represent well-described sensory neurons innervating the 

muscle spindles of the jaw muscles (Johnston, 1909, Alvarado-Mallart et al., 

1975a). Furthermore, several studies indicate that at least part of them may 

innervate muscle spindle afferents of the eye muscles (Bortolami et al., 1987b, 

Wang and May, 2008). Because we never saw tracer labeled Vmes cells after 

distal injections of the EOM (Lienbacher et al., 2011b), this nucleus was ruled 

out as a source of PEs. In addition, tracer injections into the medullary part of 

Vmes did not result in anterogradely labeled PEs (Zimmermann et al., 2011).  

Based on the findings that only tracer injections into the myotendinous junction 

of MR revealed two populations of peripheral neurons—differing in their cell 

sizes and/or morphology—we propose that the round neurons within the 

peripheral cell groups represent sensory cell bodies of the PEs. These sensory 

cells in the periphery of nIII are assumed to give rise to sensory terminals of 

PEs, and the multipolar neurons in the periphery of nIII to represent MIF motor 

neurons, innervating the non-twitch muscle fibers via multiple en grappe 

endings.  

Only active MIFs would provide a tension on the tendon thereby transferring the 

information to sensory palisade ending terminals. A central circuit between 

sensory and motor pathways would stimulate the MIF motor neurons thereby 

modulating the MIF activity (Fig. 31). 
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5.4 Do palisade endings and non-twitch muscle fibers form 
a specialized proprioceptive apparatus?  

Present findings suggest that palisade endings and en grappe endings 

innervate non-twitch MIFs. Both may derive from neurons in the periphery of the 

motor nuclei  (Lienbacher et al., 2011; Zimmermann et al., 2011), whereas the 

motor neurons within the motor nuclei, innervating twitch muscle fibers, would 

generate the eye movement. To date, the peripheral neurons have been 

considered as a homogenous population of neurons for the MIFs (Büttner-

Ennever, 2001). Accordingly, in a first hypothesis one homogenous neuron 

population gives rise to the multiple nerve endings supplying non-twitch MIFs 

that become palisade endings at their terminus (Fig. 31B) (Lienbacher et al., 

2011a). In such an arrangement, the palisade ending terminals including the 

tendon organ-like outgrowth lying in the tendon may be activated upon 

stretching the tendon during an eye movement. The resulting activity would 

reinforce the action of the motor nerve branch and its associated MIF terminals 

on non-twitch muscle fibers locally. Such an intrinsic stretch reflex similar to that 

known for classical smooth muscle fibers was suggested for EOMs (Carpenter, 

1988). However if assumed that such an arrangement serves for maintaining 

the fine alignment of the EOM during eye movements, the activation of the PEs 

by a stretch during an eye movement in the opposite direction should induce a 

deactivation of the MIFs and vice versa: the deactivation of the PEs during an 

eye movement in the ipsilateral direction should activate the MIFs. In this case 

motor and sensory signals would not only coexist in the MIF axon branches and 

support a motor-sensory function, as suggested previously (Lukas et al., 2000; 

Tozer and Sherrington, 1910), but would work against each other. Although a 

co-innervation of sensory and motor endings on MIFs by a single axon is highly 

unusual, there are some examples of similar unusual innervation patterns, e.g. 

the intraganglionic laminar endings on striated oesophageal muscle (Wörl and 

Neuhuber, 2005), where a partial co-localization of cholinergic markers (motor) 

and vesicular glutamate transporter (sensory) was found within single endings.  

A second hypothesis is favored by the present work, and that is that the 

peripheral motor neurons around the classical oculomotor nuclei may represent 

two sets of neurons (Lienbacher et al., 2011a): sensory CR positive neurons in 
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the peripheral groups around the motor nuclei giving rise to sensory PEs - and 

CR negative neurons represent the MIF motor neurons providing the multiple 

innervation of non-twitch muscle fibers (Fig. 31 A). A previous hypothesis was 

based on the assumption that PEs originate from the trigeminal ganglion 

(Büttner-Ennever et al., 2002). The proposed arrangement would reflect a 

circuit similar to the muscle spindle. MIF activity would adjust the tension on the 

tendon, and in response to tension the palisade endings would determine the 

contraction of non-twitch fibers thereby maintaining a sensitive system. A local 

circuit in the oculomotor complex between sensory and motor pathways for 

example by direct collaterals from PE cell bodies would modulate the MIF 

activity (Fig. 31 A) (Lienbacher et al., 2011a). This would support the idea of a 

stretch reflex involving only the non-twitch fibers, as suggested by Keller (Keller 

and Robinson, 1971). Due to their exclusive association with multiple-

innervated non-twitch fibers and their location at the myotendinous junction, the 

palisade endings are well suited to determine the muscle tension. It was 

suggested by David A. Robinson that the palisade endings, together with the 

non-twitch fibers, may function as large „inverted muscle spindles“ that provide 

a sensory input signal to the brainstem. In fact there are some similarities 

between EOM non-twitch fibers and intrafusal fibers: both are multiply 

innervated and they show similar myosin expression (Rossi et al., 2010). 

Assuming the palisade endings are sensory, the non-twitch fibers receive a 

motor and sensory innervation as do intrafusal fibers (Fig. 32) (Lienbacher and 

Horn, submitted). With this model the motor neurons of non-twitch fibers would 

act as gamma motor neurons and through proprioceptive pathways via palisade 

endings determine the muscle tension, rather than contributing to the eye 

movement itself.  

This concept fits well with the fact that the peripheral neurons around the motor 

nuclei receive only input from premotor neurons involved in smooth pursuit, 

vergence and gaze holding, whereas the motor neurons within the motor nuclei 

– corresponding to alpha-motor neurons – receive input from premotor neurons 

involved in saccade and VOR generation (Ugolini et al., 2006; Lienbacher and 

Horn, 2012).  

It will have to be clarified by which routes the signals are transferred to the 

somatosensory cortex. Proprioceptive signals have been found in the superior 
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colliculus, vestibular nuclei, nucleus prepositus hypoglossi and cerebellum, but 

the exact connectivity and routes taken in monkey must be further explored 

(Ruskell, 1999).  

 

Fig. 31 Schematic drawing of the myotendinous junction and its innervation illustrating two 

hypotheses for palisade ending (PE) function. (A) Two functionally different sets of neurons within 

the peripheral neuronal subgroups of nIII provide innervation of the myotendinous junction. 
Sensory neurons give rise to PEs and motor neurons provide multiple innervation by en grappe 

endings. A stretch of the myotendinous junction would transmit a sensory signal via the PEs 

centrally to activate MIF-motor neurons. (B) The cell bodies of peripheral groups around the motor 

nuclei give rise to palisade endings and the multiple en-grappe endings of non-twitch muscle 
fibers thereby mediating an intrinsic stretch reflex in response to tension on the tendon. (Part of 

this figure from Lienbacher et al. 2011a) 
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Fig. 32 Scheme of the proposed hypothesis: palisade endings and multiple-innervated non-twitch 

muscle fibers may act as a large “inverted” muscle spindle, the sensory palisade innervation at the 
distal parts, the motor innervation centrally along the non-twitch muscle fibers. They are arranged 

in parallel to the singly-innervated twitch muscle fibers, innervated by “alpha” motor neurons 

within the motor nuclei providing the contraction of the muscle. Unlike for skeletal muscles the cell 
bodies of sensory (red) and efferent “gamma” motor neurons (blue) are located together in the 

periphery of the motor nuclei. (Figure from Lienbacher, K. and Horn, Anja K. E., Biol Cybern, 

Palisade endings and proprioception in extraocular muscles: a comparison with skeletal muscles 
(2012) (in press), DOI: 10.1007/s00422-012-0519-1). 

 

5.5 Conclusion 

Palisade endings are unique to eye muscles. Their location, histochemistry and 

fine structure have been well studied, but their exact function is unknown 

(Ruskell, 1999, Donaldson, 2000).  

The debate on the palisade ending function was compounded by the lack of 

knowledge about the location of their cell bodies. For sensory function they 

would be expected to lie in the trigeminal ganglion or mesencephalic trigeminal 

nucleus, for motor function in the motor nuclei. Recent studies of Wang et al. 

(Wang and May, 2008) have rekindled interest in the presence of proprioception 

in eye muscles; and as a result palisade endings, which are a constant feature 

of eye muscles, have been often suggested as possible sensory receptors 

(Ruskell, 1999, Donaldson, 2000). Some of their properties are typical of 

sensory endings, such as the numerous terminations in the collagenous tendon, 
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and the lack of a basal lamina at neuromuscular junctions (Lienbacher, 2011b, 

Büttner-Ennever et al., 2006). Further properties of palisade endings favor a 

motor function, such as their transmitter acetylcholine, the location of their cell 

bodies in the periphery of motor nuclei of extraocular muscles and the α-

bungarotoxin binding of 10% of terminals in the myotendinous junction. 

(Ruskell, 1989, Blumer et al., 1999, Demer et al., 2000, Konakci et al., 2005a). 

The TG, location of almost all sensory cell bodies innervating the face together 

with the eye, seems not to contain the cell bodies of PE afferents. The 

retrogradely labeled TG cells from tracer injections into the myotendinous 

junction, which includes the PEs, show many double labeled cells containing SP 

and NOS. Both, SP and NOS seem to be involved in nociception and 

vasodilatation rather than in a proprioceptive function. Only very few CR 

positive and tracer labeled TG cells were found, although all PEs were CR 

immunoreactive. If there are cell bodies, which are possible proprioceptive 

afferents of the PEs, it seems more likely that they are situated in the brainstem 

and not in the TG.  

Two recent studies have independently shown in monkey that palisade ending 

are anterogradely labeled from central tracer injections into the motor nuclei of 

EOMs (Lienbacher, 2011b; Zimmermann, 2011). Based on the tracing results 

applying tracer injections into the myotendinous junction, where palisade 

endings are located, their cell bodies lie in the periphery of the motor nuclei. 

Furthermore the present study supports a hypothesis that the peripheral cell 

groups around the motor nuclei contain two populations: motor neurons that 

provide the multiple innervation of non-twitch muscle fibers and calretinin 

positive neurons that give rise to palisade endings. 

Future experiments are necessary to explore the exact role of PEs, such as 

recording studies in awake monkeys. Another approach may include a resection 

of the myotendinous junction, as done in strabismus surgery and analysis of the 

eye stabilization properties. As an anatomical control the extraocular muscles 

and motor nuclei must be investigated for the absence of calretinin positive 

palisade endings and neurons, respectively.  
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