Untersuchungen in einem Post-Status epilepticus-Modell: Evaluierung eines positronen-emissions-tomographischen Verfahrens und Prüfung des Peptidmimetikums Cintrofin

Inaugural-Dissertation
zur Erlangung der tiermedizinischen Doktorwürde
der Tierärztlichen Fakultät
der Ludwig-Maximilians-Universität München

von
Vera Franziska Agnes Rußmann
aus Heidelberg

München 2012
Dekan:         Univ.-Prof. Dr. Braun

Berichterstatter:  Univ.-Prof. Dr. Potschka

Koreferenten:  Univ.-Prof. Dr. Göbel
               Univ.-Prof. Dr. Poulsen Nautrup
               Priv.-Doz. Dr. Maierl
               Univ.-Prof. Dr. Hirschberger

Tag der Promotion:  11. Februar 2012
Für meine Familie
Inhaltsverzeichnis

I. Einleitung ......................................................................................................................... 1

II. Literaturübersicht .......................................................................................................... 3

1. Epilepsien .................................................................................................................... 3
   1.1 Definition und Bedeutung .................................................................................... 3
   1.2 Klassifizierung .................................................................................................... 4
   1.3 Tiermodelle ......................................................................................................... 5
2. Darstellung transporterassoziierter Pharmakoresistenz mittels eines positronen-emissions-
   tomographischen Verfahrens .................................................................................... 8
   2.1 Pharmakoresistente Epilepsien ........................................................................... 8
   2.1.1 Einführung ...................................................................................................... 8
   2.1.2 Mechanismen der Pharmakoresistenz ............................................................ 9
   2.1.2.1 Multidrug-Transporter-Hypothese .............................................................. 9
2.2 Positronen-Emissions-Tomographie ........................................................................ 16
   2.2.1 Funktionsprinzip ........................................................................................... 16
   2.2.2 Klinische Anwendungsgebiete der Positronen-Emissions-Tomographie ......... 16
3. Prüfung der Wirksamkeit des Peptidmimetikums Cintrofin ........................................ 17
   3.1 Anfallsinduzierte neuronale Plastizität ................................................................. 17
   3.1.1 Neurogene  ...
<table>
<thead>
<tr>
<th>Inhaltsverzeichnis</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Versuchstiere</td>
<td>52</td>
</tr>
<tr>
<td>2.2 Elektrisches SE-Modell</td>
<td>52</td>
</tr>
<tr>
<td>2.3 Anfallsparameter</td>
<td>52</td>
</tr>
<tr>
<td>2.4 Überwachung spontaner Anfälle</td>
<td>53</td>
</tr>
<tr>
<td>2.5 Verhaltensuntersuchungen</td>
<td>53</td>
</tr>
<tr>
<td>2.5.1 Open Field</td>
<td>53</td>
</tr>
<tr>
<td>2.5.2 Elevated Plus Maze</td>
<td>54</td>
</tr>
<tr>
<td>2.5.3 Black White Box</td>
<td>55</td>
</tr>
<tr>
<td>2.5.4 Morris Water Maze</td>
<td>56</td>
</tr>
<tr>
<td>2.6 Histologische Gewebeaufbereitung</td>
<td>57</td>
</tr>
<tr>
<td>2.7 Immunohistochemische und histochemische Färbemethoden</td>
<td>58</td>
</tr>
<tr>
<td>2.8 Auswertung und Statistik</td>
<td>61</td>
</tr>
<tr>
<td>2.9 Versuchsdesign</td>
<td>64</td>
</tr>
<tr>
<td>V. Ergebnisse</td>
<td>66</td>
</tr>
<tr>
<td>1. Darstellung transporterassozierter Pharmakoresistenz mittels eines positronen-emissions-tomographischen Verfahrens</td>
<td>66</td>
</tr>
<tr>
<td>1.1 Elektrisches SE-Modell</td>
<td>66</td>
</tr>
<tr>
<td>1.2 Monitoring von spontanen Anfällen während der Vehikelphase</td>
<td>66</td>
</tr>
<tr>
<td>1.3 Selektion von Respondern und Non-respondern</td>
<td>67</td>
</tr>
<tr>
<td>1.4 PET-Untersuchungen</td>
<td>68</td>
</tr>
<tr>
<td>1.4.1 [^1\text{C}]\text{Quinidin-Kinetik}</td>
<td>69</td>
</tr>
<tr>
<td>1.4.2 Anreicherung des Tracers [^1\text{C}]\text{Laniquidar}</td>
<td>73</td>
</tr>
<tr>
<td>1.4.3 Anreicherung des Tracers [^1\text{C}]\text{Phenytoin}</td>
<td>76</td>
</tr>
<tr>
<td>1.4.4 Anreicherung des Tracers [^1\text{C}]\text{Quinidin}</td>
<td>78</td>
</tr>
<tr>
<td>1.4.5 Anreicherung des Tracers [^1\text{F}]\text{Fluordeoxyglucose (FDG)}</td>
<td>81</td>
</tr>
<tr>
<td>1.4.6 Korrelation zwischen SUV und Anfallsreduktion</td>
<td>82</td>
</tr>
<tr>
<td>1.5 Quantifizierung der Pgp-Expression</td>
<td>83</td>
</tr>
<tr>
<td>1.6 Korrelation zwischen Anfallsfrequenz und Pgp-markierter Fläche</td>
<td>86</td>
</tr>
<tr>
<td>2. Prüfung der Wirksamkeit des Peptidmimetikums Cintrofin</td>
<td>87</td>
</tr>
<tr>
<td>2.1 Elektrisches SE-Modell</td>
<td>87</td>
</tr>
<tr>
<td>2.2 Überwachung auf spontane Anfälle</td>
<td>87</td>
</tr>
<tr>
<td>2.3 Prüfung antiepileptogener Effekte durch Cintrofin</td>
<td>88</td>
</tr>
<tr>
<td>2.3.1 Verhaltensmodelle</td>
<td>88</td>
</tr>
<tr>
<td>2.3.2 Immunohistochemie</td>
<td>94</td>
</tr>
<tr>
<td>VI. Diskussion</td>
<td>103</td>
</tr>
<tr>
<td>1. Darstellung transporterassozierter Pharmakoresistenz mittels eines positronen-emissions-tomographischen Verfahrens</td>
<td>103</td>
</tr>
<tr>
<td>2. Prüfung der Wirksamkeit des Peptidmimetikums Cintrofin</td>
<td>113</td>
</tr>
<tr>
<td>VII. Zusammenfassung</td>
<td>119</td>
</tr>
<tr>
<td>VIII. Summary</td>
<td>122</td>
</tr>
<tr>
<td>IX. Literaturverzeichnis</td>
<td>124</td>
</tr>
<tr>
<td>X. Anhang</td>
<td>159</td>
</tr>
<tr>
<td>1. Geräte</td>
<td>159</td>
</tr>
<tr>
<td>2. Lösungen und Substanzen</td>
<td>161</td>
</tr>
<tr>
<td>Publikationen</td>
<td>167</td>
</tr>
<tr>
<td>Danksagung</td>
<td>168</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>ABC</td>
<td>ATP-binding cassette</td>
</tr>
<tr>
<td>ABCG/BCRP</td>
<td>breast cancer resistance protein</td>
</tr>
<tr>
<td>ABC/MRP</td>
<td>multidrug resistance associated protein</td>
</tr>
<tr>
<td>AEDs</td>
<td>antiepileptic drugs (Antiepileptika)</td>
</tr>
<tr>
<td>AK</td>
<td>Antikörper</td>
</tr>
<tr>
<td>Akt</td>
<td>Proteinkinase B</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>Aqua dest.</td>
<td>Aqua destillata</td>
</tr>
<tr>
<td>ap</td>
<td>anterior posterior</td>
</tr>
<tr>
<td>biot.</td>
<td>biotinyliert</td>
</tr>
<tr>
<td>BLA</td>
<td>basolaterale Amygdala</td>
</tr>
<tr>
<td>BrdU</td>
<td>Bromdesoxyuridin</td>
</tr>
<tr>
<td>BSA</td>
<td>bovines Serumalbumin</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>C</td>
<td>Kohlenstoff</td>
</tr>
<tr>
<td>CA</td>
<td>Cornu Ammonis (Ammonshorn)</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>CCD</td>
<td>Charge-coupled Device</td>
</tr>
<tr>
<td>CCTV</td>
<td>Closed Circuit Television</td>
</tr>
<tr>
<td>Cer</td>
<td>Cerebellum</td>
</tr>
<tr>
<td>CLC</td>
<td>Cardiotrophin-like Cytokine</td>
</tr>
<tr>
<td>CLF</td>
<td>Cytokine-like Factor</td>
</tr>
<tr>
<td>cm</td>
<td>Zentimeter</td>
</tr>
<tr>
<td>CNTF</td>
<td>Ciliar Neurotrophic Factor</td>
</tr>
<tr>
<td>CNTFRα</td>
<td>Ciliar Neurotrophic Factor-Rezeptor-α</td>
</tr>
<tr>
<td>CP</td>
<td>Caudate Putamen (Striatum)</td>
</tr>
<tr>
<td>Cs</td>
<td>Caesium</td>
</tr>
<tr>
<td>CSF</td>
<td>Zerebrospinalflüssigkeit (Liquor cerebrospinalis)</td>
</tr>
<tr>
<td>CT-1</td>
<td>Cardiotrophin-1</td>
</tr>
<tr>
<td>Cy</td>
<td>Carbocyanin</td>
</tr>
<tr>
<td>DA</td>
<td>Dalton</td>
</tr>
<tr>
<td>DAB</td>
<td>3,3′Diaminobenzidin</td>
</tr>
<tr>
<td>dB</td>
<td>Dezibel</td>
</tr>
<tr>
<td>DCX</td>
<td>Doublecortin</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Name</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>d.h.</td>
<td>das heißt</td>
</tr>
<tr>
<td>dv</td>
<td>dorsoventral</td>
</tr>
<tr>
<td>ED1</td>
<td>extracellular domain 1</td>
</tr>
<tr>
<td>EEG</td>
<td>Elektroenzephalogramm</td>
</tr>
<tr>
<td>Erk</td>
<td>Mitogen-aktivierte Proteinkinase</td>
</tr>
<tr>
<td>F</td>
<td>Fluor</td>
</tr>
<tr>
<td>Fa.</td>
<td>Firma</td>
</tr>
<tr>
<td>FDG</td>
<td>2-Deoxy-2(^{18})F)Fluoro-D-Glucose; ([^{18})F]Fluordeoxyglucose</td>
</tr>
<tr>
<td>FGL</td>
<td>FG loop (mimetisches Peptid, welches von dem neuralen Zell-adhäsionsmolekül (neural cell adhesion molecule, NCAM) abgeleitet wurde)</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full width at half maximum (Halbwertsbreite)</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>g/l</td>
<td>Gramm pro Liter</td>
</tr>
<tr>
<td>GCL</td>
<td>granule cell layer (Körnerzellschicht)</td>
</tr>
<tr>
<td>GD</td>
<td>Gyrus Dentatus</td>
</tr>
<tr>
<td>GFAP</td>
<td>glial fibrillary acidic protein</td>
</tr>
<tr>
<td>gp130</td>
<td>Glykoprotein 130</td>
</tr>
<tr>
<td>GRB2</td>
<td>growth factor receptor-bound protein 2</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>HCl</td>
<td>Salzsäure</td>
</tr>
<tr>
<td>H</td>
<td>Hiltus</td>
</tr>
<tr>
<td>Hipp</td>
<td>Hippocampus</td>
</tr>
<tr>
<td>HPLC</td>
<td>High-performance liquid chromatography (Hochdruck-Flüssigkeitschromatographie)</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxidase (Meerrettich-Peroxidase)</td>
</tr>
<tr>
<td>H(_2)O(_2)</td>
<td>Wasserstoffperoxid</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>IBE</td>
<td>Internationales Büro für Epilepsie (International Bureau for Epilepsy)</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>ILAE</td>
<td>Internationale Liga gegen Epilepsie (International League against Epilepsy)</td>
</tr>
<tr>
<td>i.p.</td>
<td>intraperitoneal</td>
</tr>
<tr>
<td>IU</td>
<td>International Unit (Internationale Einheit)</td>
</tr>
<tr>
<td>i.v.</td>
<td>intravenös</td>
</tr>
<tr>
<td>Jak</td>
<td>Janus-Kinase</td>
</tr>
<tr>
<td>K(_1)</td>
<td>Transportrate ins Gehirn</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Ausdruck</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>K₂</td>
<td>konstante Ausstromrate pro Minute</td>
</tr>
<tr>
<td>Kap.</td>
<td>Kapitel</td>
</tr>
<tr>
<td>keV</td>
<td>Kiloelektronenvolt</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>lat</td>
<td>lateral</td>
</tr>
<tr>
<td>LIF</td>
<td>Leukemia Inhibitory Factor</td>
</tr>
<tr>
<td>LIFRß</td>
<td>Leukemia Inhibitory Factor-Rezeptor-ß</td>
</tr>
<tr>
<td>M</td>
<td>molare Masse</td>
</tr>
<tr>
<td>MAP</td>
<td>Mitogen-aktiviertes Protein</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-aktivierte Proteinkinase</td>
</tr>
<tr>
<td>MBq</td>
<td>Megabecquerel</td>
</tr>
<tr>
<td>mdr</td>
<td>multidrug resistance</td>
</tr>
<tr>
<td>MEK1</td>
<td>MEK1 Protein</td>
</tr>
<tr>
<td>MEZ</td>
<td>Mitteleuropäische Zeit</td>
</tr>
<tr>
<td>Mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Magnesiumchlorid</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>mod.</td>
<td>modifiziert</td>
</tr>
<tr>
<td>MR</td>
<td>Magnetresonanztomographie</td>
</tr>
<tr>
<td>MRPs</td>
<td>Multidrug Resistance Proteine</td>
</tr>
<tr>
<td>ms</td>
<td>Millisekunde</td>
</tr>
<tr>
<td>MWM</td>
<td>Morris Water Maze</td>
</tr>
<tr>
<td>n</td>
<td>Tierzahl, Gruppengröße</td>
</tr>
<tr>
<td>N</td>
<td>Teilchenanzahl</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natriumchlorid</td>
</tr>
<tr>
<td>Na₂HPO₄</td>
<td>Dinatriumhydrogenphosphat</td>
</tr>
<tr>
<td>NaOH</td>
<td>Natronlauge</td>
</tr>
<tr>
<td>NeuN</td>
<td>neural specific nuclear protein (neuronales Kernprotein)</td>
</tr>
<tr>
<td>OC</td>
<td>occipitaler Cortex</td>
</tr>
<tr>
<td>OD</td>
<td>optical density (Optische Dichte)</td>
</tr>
<tr>
<td>OSM</td>
<td>Oncostatin-M</td>
</tr>
<tr>
<td>OSWLS</td>
<td>ordered-subsets weighted least-squares</td>
</tr>
<tr>
<td>p</td>
<td>Signifikanzniveau</td>
</tr>
<tr>
<td>PC</td>
<td>parietaler Cortex</td>
</tr>
</tbody>
</table>
PET | Positronen-Emissions-Tomographie
---|---
Pgp | P-Glykoprotein
pH | potentia hydrogenii (Wasserstoffionenkonzentration)
PI3-K | Phosphatidylinositol-3-Kinase
PVC | Polyvinylechlorid
r | Korrelationskoeffizient
RAID | Redundant Array of Independent Discs (Redundante Anordnung unabhängiger Festplatten)
Ras | Proto-Onkogene
ROIs | regions of interest
rpm | revolutions per minute (Umdrehungen pro Minute)
SE | Status epilepticus
s | Sekunde
SEM | standard error of the mean (Standardfehler)
SGZ | subgranuläre Zone
SH2 | Src homology 2
SHP2 | non-receptor tyrosine phosphatase (Tyrosin-Phosphatase)
Sos | Son of Sevenless
SSC | Saline-Natriumcitrat
SSSE | self-sustaining status epilepticus (sich selbsterhaltender Status epilepticus)
STAT | signal transducers and activators of transcription
SUV | standardized uptake value
SVZ | subventrikuläre Zone
Tab. | Tabelle
TBS | Tris Buffered Saline
TQD | Tariquidar
u.a. | unter anderem
UV | ultraviolett
verd. | verdünnt
v.s. | versus
Vₜ | volume of distribution (Koeffizient der Verteilung zwischen Blut und Gehirn)
µA | Mikroampère
µl | Mikroliter
µm | Mikrometer
z.B. | zum Beispiel
ZNS | Zentrales Nervensystem
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Prozent</td>
</tr>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>2D</td>
<td>2-dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>3-dimensional</td>
</tr>
</tbody>
</table>
I. Einleitung


Die nicht ausreichende Kontrolle der Anfallsaktivität ist für Epilepsiepatienten mit einer erheblichen Einschränkung der Lebensqualität (GULPEK et al. 2011) sowie einem erhöhten
II. Literaturübersicht

1. Epilepsien

1.1 Definition und Bedeutung


Klassifizierung


Der Mehrzahl der Epilepsieerkrankungen liegt eine initiale Gehirnschädigung zugrunde. Dies können Traumata, Fieberkrämpfe, Schlaganfälle, Enzephalitiden, perinatale Hypoxien oder
ÜBERSICHT


![Einteilung epileptischer Anfälle anhand des Anfallsmusters](image)

Abb. 1 Einteilung epileptischer Anfälle anhand des Anfallsmusters

Aufgrund der anatomischen Lokalisation des epileptischen Fokus werden symptomatiche (strukturell metabolische) fokale Epilepsien in Temporallappenepilepsien, Frontal-, Parietal- und Okzipitalappenepilepsien unterteilt.

### 1.3 Tiermodelle

Tiermodelle haben eine große Bedeutung in der experimentellen Epilepsieforschung, da sie für die experimentelle Prüfung neuer pharmakologischer Strategien und Therapien unentbehrlich sind (EGUIBAR u. CORTES MDEL 2010). An das Tiermodell einer Erkrankung werden drei grundlegende Ansprüche gestellt. Dem Modell und der Erkrankung

Abb. 2: Schematische Darstellung der Epilepsie-Tiermodelle

**SE-BLA-Modell**

2. Darstellung transporterassoziierter Pharmakoresistenz mittels eines positronen-emissions-tomographischen Verfahrens

2.1 Pharmakoresistente Epilepsien

2.1.1 Einführung


2.1.2 Mechanismen der Pharmakoresistenz


2.1.2.1 Multidrug-Transporter-Hypothese


**Blut-Hirn-Schranke**


**P-Glykoprotein**


Transporterbasierte Pharmakoresistenz
bedingen (POTSCHKA 2010c). Der genaue Ablauf dieser Mechanismen konnte bisher noch nicht vollständig aufgeklärt werden.

2.2 Positronen-Emissions-Tomographie

2.2.1 Funktionsprinzip

2.2.2 Klinische Anwendungsgebiete der Positronen-Emissions-Tomographie
Eine große Bedeutung kommt der PET im Bereich Tumordiagnostik (KATO et al. 2009) und Tumorstaging (YU et al. 2011) zu. Hierbei ermöglicht die PET ein präoperatives Staging

3. Prüfung der Wirksamkeit des Peptidmimetikums Cintrofin

3.1 Anfallsinduzierte neuronale Plastizität

3.1.1 Neurogenese

ÜBERSICHT


3.1.1.1 Neurogenese und Epilepsie-assoziierte Störungen


3.1.2 Neurodegeneration

Im Zusammenhang mit der Epileptogenese stellt die Neurodegeneration die am besten beschriebene Veränderung dar (PITKÄNEN u. LUKASIUK 2009). Zum jetzigen Zeitpunkt existiert allerdings eine kontroverse Datenlage hinsichtlich der Fragestellung, ob spontan wiederkehrende Anfälle zur Neurodegeneration beitragen (PITKÄNEN u. LUKASIUK 2009). In mehreren Studien konnte jedoch bereits gezeigt werden, dass bestimmte

Abb. 5: Coronalschnitt durch das Gehirn einer Ratte im Bereich des Hippocampus, wobei die CA₁- und CA₃c/4-Region, die vorrangig von einer anfallsinduzierten Neurodegeneration betroffen sind, markiert wurden.
3.2 Bedeutung psychiatrischer Komorbiditäten und kognitiver Defizite bei Epilepsien


Obwohl die Symptome neuropsychiatrischer Begleiterkrankungen zumeist denen der idiopathischen Grunderkrankung entsprechen, differiert das Erscheinungsbild Epilepsie-assoziiertes neuropsychiatrischer Störungen häufig. Dadurch wird die Diagnosestellung und damit auch eine adäquate Therapie erschwert (DEVINSKY 2003; KANNER 2003). Die

3.3 Antiepileptogene und krankheitsmodifizierende Strategien

3.3.1 Einführung


*Ciliary Neurotrophic Factor (CNTF)*


Abb. 6: Schematische Darstellung des Rezeptorkomplexes für das Zytokin CNTF. Der Receptor besteht aus zwei signaltransduzierenden, transmembranären Untereinheiten (gp130 und LIFRß) und dem Liganden-bindenden CNTFRα.


### 3.3.2 Mimetische Peptide

Peptide bestehen aus einzelnen aneinandergereihten Aminosäuren. Dabei werden Oligopeptide (2-10 Aminosäuren) und Polypeptide (10-100 Aminosäuren) unterschieden. Die Aminosäuresequenz (Primärstruktur) und die dreidimensionale räumliche Anordnung der Aminosäuren ( Sekundär- und Tertiärstruktur) bestimmen die Funktion des Peptids. Mimetische Peptide kopieren nicht die gesamte Aminosäuresequenz eines Peptids, sondern stellen lediglich einen kleinen funktionell bedeutsamen Ausschnitt desselben dar. Die Funktion des Peptids und damit seine uneingeschränkte Wirksamkeit sollen dabei unverändert bleiben, während sich unerwünschte Effekte ausschalten lassen.
3.3.2.1 Cintrofin


Abb. 7: Schematische Darstellung des CNTF-Epitops, welches wichtig für die hohe Bindungsaffinität des CNTF gegenüber dem LIF-Rezeptor ist und von dem das mimetische Peptid Cintrofin abgeleitet wurde (mod. nach KALLEN et al. 1999).

3.4 Verhaltensuntersuchungen

3.4.1 Einführung

3.4.2 Verhaltensmodelle

3.4.2.1 Open Field
periphere Platzierung der Tiere im Offenfeld wird eine erzwungene Konfrontation herbeigeführt (PRUT u. BELZUNG 2003). In einer solchen Situation ziehen Nagetiere spontan die Peripherie der Mitte vor und bewegen sich vorzugsweise nahe den Wänden fort (Thigmotaxis) (PRUT u. BELZUNG 2003). Bisher konnte gezeigt werden, dass sich Ratten, bei denen durch einen elektrisch induzierten SE eine chronische Epilepsie verursacht wurde, im Offenfeld hyperaktiv verhalten (BRANDT et al. 2006b).

3.4.2.2 Elevated Plus Maze
ÜBERSICHT

3.4.2.3 Black White Box

3.4.2.4 Morris Water Maze
III. Arbeitshypothesen und Zielsetzung

Im Rahmen dieses Dissertationsvorhabens wurden mögliche neue Strategien sowohl zur Therapie als auch zur Prophylaxe von Epilepsien experimentell überprüft. Im ersten Teilprojekt wurde die Funktion des *Multidrug*-Transporters P-Glykoprotein mithilfe einer Positronen-Emissions-Tomographie (PET) genauer untersucht. Im Rahmen des zweiten Teilprojekts wurde das Potential des Peptidmimetikums Cintrofin für die Prävention symptomatischer (strukturell metabolischer) Epilepsien und assoziiert psychiatrischer und kognitiver Störungen evaluiert.


immunhistologische Untersuchungen wird abschließend untersucht, inwieweit Effekte von Cintrofin auf die Epilepsieentstehung und auf Epilepsie-assoziierte Verhaltensänderungen auf die Beeinflussung molekularer und zellulärer Prozesse zurückzuführen sind. Die im Rahmen des Projektes zu erhebenden Daten versprechen eine Basis für die Entwicklung innovativer Strategien und translational weiterzuentwickelnder Konzepte für die Prävention symptomatischer Epilepsien. Die neuronalen Veränderungen während des Entstehungsprozesses der Epilepsie sollen durch das Peptidmimetikum Cintrofin dahingehend modifiziert werden, dass die Epilepsie-assoziierten Störungen verhindert oder abgemildert werden.
IV. Material und Methoden

1. Darstellung transporterassoziiierter Pharmakoresistenz mittels eines positronen-emissions-tomographischen Verfahrens

1.1 Versuchstiere

Die Untersuchungen der P-Glykoprotein (Pgp)-Funktion in pharmakoresistenten und pharmakosensitiven epileptischen Ratten mittels Positronen-Emissions-Tomographie (PET) wurden im Rahmen einer Tierversuchs-Anzeige (Ethics Committee for Animal Experiments of Leiden University, Aktenzeichen UDEC09223) durchgeführt. Für die Versuche im elektrischen Status epilepticus (SE)-Modell mit elektrischer Stimulation der basolateralen Amygdala wurden weibliche Sprague-Dawley-Ratten (Harlan Winkelmann, Borchen) mit einem Gewicht von 200-224 g verwendet. Die Tiere wurden einzeln in „Makrolonkäfigen Typ III hoch“ gehalten. Als Einstreu der Käfige diente Weichholzgranulat (Grade 5; Altromin). Die Tiere erhielten Ssniff Rattenfutter (Ssniff R/M Haltung, Spezialdiäten GmbH) und Leitungswasser ad libitum. Das Futter wurde einmal pro Woche und das Wasser zweimal pro Woche erneuert. Das Umsetzen der Ratten in saubere Käfige erfolgte einmal pro Woche, wobei darauf geachtet wurde, dass das Umsetzen stets ein bis zwei Tage vor den einzelnen Teilversuchen stattfand, um eine Beunruhigung der Tiere direkt vor dem Experiment zu vermeiden. Die Tiere wurden bei einem zwölf Stunden Hell-Dunkel-Zyklus (Licht an 7:00; Licht aus 19:00 MEZ) gehalten. Die Umgebungstemperatur im Tierraum betrug 20-24°C, die Luftfeuchtigkeit 50-60%. Nach ihrer Ankunft hatten die Ratten bis Versuchsbeginn mindestens vier Tage Ruhe, um sich an die neue Umgebung zu habituieren. An mindestens drei Tagen vor dem geplanten Versuch wurden alle Tiere durch Handling (Anwendung von Fixationsmethoden) an die Versuchsbedingungen gewöhnt. Der Beginn der Versuche lag stets zwischen 7:00 und 9:00 MEZ, da so circadiane Einflüsse möglichst gering gehalten werden können (STEWART et al. 2001).
1.2 Elektrisches SE-Modell

Elektrodenimplantation
Zur Implantation der Ableitungs- und Stimulationselektrode (bipolare Elektrode aus rostfreiem Stahl mit einer Ummantelung aus Teflon) wurde eine stereotaktische Operationstechnik angewendet. Vor Beginn der Operation wurde den Ratten das Narkotikum Chloralhydrat (360 mg/kg in 10 ml/kg 0,9%-iger NaCl-Lösung) intraperitoneal (i.p.) injiziert. Um eine perioperative Analgesie gewährleisten zu können, wurde den Ratten sowohl 30 min vor der Operation als auch 24 Stunden im Anschluss daran 1 mg/kg Meloxicam (Metacam® Injektionslösung, Boehringer Ingelheim) subkutan appliziert. Vitagel Augengel (Vitagel®, Bausch & Lomb, Berlin) wurde in beide Augen der Ratten eingebracht, um deren Austrocknung während der Operation zu verhindern. Als Lokalanästhetikum wurde Bupivacain (Bupivacain 0,5%, JENAPHARM®) verwendet, das in einer Menge von circa 0,8 ml subkutan an der Schädeloberfläche appliziert wurde.

Um die Elektrode exakt positionieren zu können, wurden die narkotisierten Ratten anschließend in einen stereotaktischen Apparat (TSE Systems GmbH, Bad Homburg) eingespannt. Der stereotaktische Atlas von PAXINOS und WATSON (2005), der die Lage der Hirnstrukturen in Bezug auf Bregma (rostraler Kreuzungspunkt der Schädelknochennähte) wiedergibt, diente während der Operation zur Orientierung, um eine punktgenaue Implantation zu erreichen. Dem stereotaktischen Atlas ist zu entnehmen, dass Lambda (caudaler Kreuzungspunkt der Schädelknochennähte) und Bregma auf der gleichen Höhe liegen müssen, wenn eine exakte Positionierung der Elektrode erreicht werden soll (Abb. 8). Dies wurde dadurch gewährleistet, dass die Oberkieferhalterung auf -3,9 mm ventral der Interaurallinie eingestellt wurde. Im Vorfeld der Operation wurden Lokalisationsversuche durchgeführt, auf welchen die anschließende Implantation der Stimulationselektrode in die basolaterale Amygdala (BLA) basierte. Die Implantation der Elektrode erfolgte im Bereich der rechten Hemisphäre anterio-posterior (ap) +2,2, lateral (lat) +4,8 und dorso-ventral (dv) +8,6 (PAXINOS 2005). Zur Befestigung der Elektrode wurden zwei Fixationsschrauben in der Schädeldecke befestigt, von denen eine rostral und eine caudal der implantierten Tiefenelektrode angebracht wurde. Zusätzlich wurde gegenüberliegend der Elektrode eine indifferente Erdungselektrode mittels einer Schraube am Schädelknochen der Ratte befestigt (Abb. 8).
**SE-BLA-Modell**


<table>
<thead>
<tr>
<th>Krampfschwere</th>
<th>Anfallscharakteristika</th>
<th>______________________________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stadium I</td>
<td>Immobilität, schwacher Fazialklonus (Schließen des ipsilateralen Auges, stereotypes Schnüffeln)</td>
<td>Fokale Anfallsaktivität</td>
</tr>
<tr>
<td>Stadium II</td>
<td>schwerer Fazialklonus (klonische Kaubewegungen, Kopfnicken)</td>
<td>Generalisierte Anfallsaktivität</td>
</tr>
<tr>
<td>Stadium III</td>
<td>unilateraler Vorderextremitätenklonus</td>
<td></td>
</tr>
<tr>
<td>Stadium IV</td>
<td>bilateraler Vorderextremitätenklonus und Aufrichten des Rumpfes</td>
<td></td>
</tr>
<tr>
<td>Stadium V</td>
<td>bilateraler Vorderextremitätenklonus mit Verlust der Stellreflexe (nach hinten Fallen)</td>
<td></td>
</tr>
<tr>
<td>Stadium VI</td>
<td>Stadium V mit explosionsartig einsetzendem Rennen und Springen (running and bouncing)</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 2: Skala der Krampfstadien (RACINE 1975)

1.3 Anfallsparameter

1.4 Überwachung spontaner Anfälle


EEG-Aufzeichnung


**MATERIAL UND METHODEN**

*Video-Aufzeichnung*

Für die Video-Aufzeichnungen wurden vier CCD-Kameramodule für Schwarz-Weiß-Aufnahmen (Conrad Electronic GmbH, Hannover) verwendet, die sich durch ihre Empfindlichkeit im Infrarotbereich auszeichneten. Mithilfe einer Kamera konnten vier Ratten aufgezeichnet werden. Da vier Kameras zur Verfügung standen, konnten so insgesamt 16 Ratten zur selben Zeit überwacht werden. Die Kameras waren mit einem Computer verbunden, der das Datenmaterial auf einer RAID (*Redundant Array of Independent Discs*) speicherte. Um das Verhalten jeder Ratte optimal aufnehmen zu können, wurden Glasaquarien als Käfige verwendet. Jedes Aquarium war 60 cm x 40 cm x 40 cm groß. Um sicherzustellen, dass die Ratten sich jederzeit im Blickwinkel der Kamera aufhalten, wurde jedes Aquarium halbiert und stellte somit Raum für zwei Ratten zur Verfügung.


Die Videoaufnahmen wurden mithilfe des Programms Digi-Protect Searcher 6.275 beta software (ABUS Security-Tech, Affing, Germany) analysiert.

**1.5 Selektion von Respondern und Non-respondern**

Die Selektion der Ratten erfolgte während der 20-tägigen kontinuierlichen EEG- und Video-Überwachung (Abb. 9). Zunächst erfolgte eine zehntägige Vehikelphase. Dabei wurde 16 SE-Tieren mit spontan wiederkehrenden Anfällen und 12 Kontrolltieren zehn Tage lang zweimal täglich (morgens um 8 Uhr und abends um 18 Uhr) 3 ml/kg 0,9%ige isotonische Natriumchlorid-Lösung (B.Braun Vet Care GmbH, Tuttlingen, Germany) i.p. appliziert.

Im Anschluss an diese zehn Tage folgte die ebenfalls zehntägige Phenobarbitalphase, bei der die 16 SE-Tiere mit spontan wiederkehrenden Anfällen und die 12 Kontrolltiere am ersten Tag um 8 Uhr morgens eine einmalige i.p. Bolus-Applikation von 25 mg/kg Phenobarbital (Sigma, Steinheim, Germany) erhielten. Zehn Stunden später erfolgte eine weitere Injektion.
mit einer Dosierung von 15 mg/kg i.p. In den darauffolgenden neun Tagen wurde den insgesamt 28 Ratten zweimal täglich (morgens um 8 Uhr und abends um 18 Uhr) Phenobarbital in einer Dosierung von 15 mg/kg appliziert. Phenobarbital wurde dabei vor der Applikation in 0,9%iger isotonischer Natriumchlorid-Lösung (B.Braun Vet Care GmbH, Tuttlingen, Germany) gelöst und in einem Applikationsvolumen von 3 ml/kg injiziert. Während der Phenobarbital- und der Vehikelphase wurden die Ratten auf nachteilige Effekte der Injektionen, wie zum Beispiel Ataxie und Sedation, überwacht.

Bei drei Kontrolltieren und drei SE-Tieren kam es im Verlauf des Versuches zu einer rapiden Verschlechterung des Allgemeinbefindens, so dass diese Tiere euthanasiert werden mussten.

Im Anschluss an das EEG- und Video-Monitoring wurden die Anfälle der Tiere ausgewertet. Durch den Vergleich der Anfallsfrequenz in der Vehikelphase gegenüber der Phenobarbitalphase konnten die Ratten daraufhin in Responder und Non-responder unterteilt werden. Dazu wurde im Rahmen dieser Studie die Definition der Internationalen Liga gegen Epilepsie herangezogen (KWAN et al. 2010). Demzufolge wurden alle Tiere, bei denen die Applikation von Phenobarbital zu einer 100%-igen Anfallsreduktion geführt hatte, als Responder bezeichnet. Der Begriff Non-responder bezeichnete dagegen Tiere, die trotz der Behandlung mit Phenobarbital weiterhin Anfälle zeigten.

---

Abb. 9: Schematische Darstellung der Selektion von Respondern und Non-respondern
1.6 Retrobulbäre Blutentnahme

Die retrobulbäre Blutentnahme erfolgte bei den 13 SE-Tieren mit spontan wiederkehrenden Anfällen insgesamt zweimal. Die erste Blutentnahme wurde am achten Tag der Phenobarbitalphase durchgeführt, die zweite Blutentnahme am fünften Tag nach Ende des EEG- und Video-Monitorings.

Die retrobulbären Blutentnahmen erfolgten unter Inhalationsnarkose mit Isofluran (Isofluran CP®, cp-pharma, Burgdorf, Germany). Dabei wurde die Inhalationsnarkose mit einer 4%igen Isofluran-Konzentration und einem Sauerstoff-Fluss von 400 ml/min eingeleitet und anschließend mit einem Sauerstoff-Fluss von 200 ml/min aufrechterhalten. Diese Art der Narkose gewährleistet eine 60-secündige chirurgische Toleranz (Schmerzausschaltung) nach Abbruch der Inhalationsnarkose. Zusätzlich erfolgte circa zwei Minuten vor der retrobulbären Blutentnahme eine Lokalanästhesie mit Tetracainhydrochlorid-Augentropfen (Opthocain N, Dr. Winzer Pharma GmbH, Berlin, Germany). Dabei erfolgte die erste Blutentnahme am rechten und die zweite Blutentnahme am linken Auge.

entstandenen Proben wurden erneut auf den Reagenzglasschüttler verbracht und anschließend in das HPLC-System injiziert.

1.7 Durchführung und Auswertung der Positronen-Emissions-Tomographie (PET)

1.7.1 PET Scanner und Radiopharmaka
Die PET-Untersuchungen wurden in Kooperation mit einer holländischen Forschergruppe (Division of Pharmacology Leiden/ Amsterdam Center for Drug Research) durchgeführt (Ethics Committee for Animal Experiments of Leiden University, Aktenzeichen UDEC09223). Dabei wurde ein PET Scanner der Firma Siemens (HRRT, CTI/Siemens, Knoxville, TN, USA) verwendet. Die Bildsequenz betrug 6x10, 1x20, 3x30, 2x60, 2x150, 3x300 und 1x600 Sekunden. Vor Beginn der Emissionsmessung wurden Transmissions-Scans durchgeführt, die eine Korrektur der Abschwächung emittierter Strahlen in der Schnittebene ermöglichten. Dadurch konnte eine höhere Sensitivität erreicht werden. Bei den Transmissions-Scans wurde eine 740 MBq 2-dimensionale (2D) $^{137}$Cs (662 keV)-Punktquelle verwendet (VAN VELDEN et al. 2008). Der anschließende Emissions-Scan wurde 30 Sekunden vor der Tracer-Injektion gestartet.

Die verwendeten Radiopharmaka (Tracer) für diese PET-Untersuchungen waren $^{[11]}$C-Quinidin, $^{[11]}$C-Laniquidar, $^{[11]}$C-Phenytoin und $^{[18]}$F-Fluordeoxyglucose (FDG). Die Tracer wurden in der Einrichtung vor Ort (Division of Pharmacology Leiden/ Amsterdam Center for Drug Research) synthetisiert. Die angewandte Dosis betrug bei allen vier Tracern 15 MBq pro Tier.

1.7.2 Ablauf der PET-Untersuchungen
Insgesamt wurde die PET-Studie bei 22 Tieren im Zeitraum vom 29.11.2010 bis 20.12.2010 durchgeführt, wobei immer zwei Ratten parallel untersucht wurden. Die Aufnahmen fanden in Kooperation mit der bereits erwähnten holländischen Forschergruppe (Division of Pharmacology Leiden/ Amsterdam Center for Drug Research) in Amsterdam statt, wobei die PET-Untersuchungen ein bis vier Wochen nach der Ankunft der Tiere erfolgten. Um die PET-Untersuchungen durchführen zu können, wurden die Tiere anästhesiiert. Dabei erfolgte die Einleitung der Narkose mithilfe einer Plexiglas-Box, in die 4%iges Isofluran
(Pharmachemie BV, Haarlem, Niederlande) in 1 L/min Sauerstoff eingeleitet wurde. Im Anschluss daran erfolgte die Aufrechterhaltung der Narkose mittels einer Maske, über die 2%iges Isofluran in 1L/min Sauerstoff zugeführt wurde. Dabei konnte die Isofluran-Konzentration während des gesamten Experiments abhängig von der Narkosetiefe angepasst werden. Nach Einleitung der Narkose wurden die Tiere auf ein Heizkissen gelegt, um ihre Körpertemperatur bei 37°C aufrechterhalten zu können. Sowohl in die Vena femoralis als auch in die Arteria femoralis wurden vor Beginn der PET-Untersuchungen Katheter eingeführt. Der Katheter, der in die Arterie eingeführt wurde, bestand aus einem 4,5 cm (innerer Durchmesser = 0,25 mm; äußerer Durchmesser = 0,61 mm) langen Polyethylen-Schlauch, der mit einem 18 cm langen Polyethylen-Schlauch (innerer Durchmesser = 0,58 mm; äußerer Durchmesser = 0,96 mm) verschweißt war. Der venöse Katheter bestand aus einem 23 cm langen Polyethylen-Schlauch (innerer Durchmesser = 0,58 mm; äußerer Durchmesser = 0,96 mm), der 3 mm von der Spitze entfernt einen Silikonring aufwies. 3 mm dieses Katheters wurden in die Vena femoralis eingeführt. Sowohl der arterielle als auch der venöse Katheter wurden mit physiologischer Kochsalzlösung gefüllt, welche 25 IU/ml Heparin (Pharmacy, Leiden University Medical Centre, Leiden, Holland) enthielt. Mithilfe des venösen Katheters erfolgte die Applikation der Radiopharmaka, während der arterielle Katheter zur Entnahme der Blutproben diente. Zusätzlich wurde ein Katheter in die Schwanzvene eingeführt. Dieser diente als alternative Möglichkeit für die Applikation der Tracer.

Nachdem die drei Katheter eingeführt worden waren, wurden die Köpfe der Tiere mithilfe einer speziell angefertigten Kopfhalterung im PET Scanner fixiert. Atmung, Körpertemperatur, Sauerstoffsättigung und Herzfrequenz der Tiere wurden während der gesamten PET-Untersuchung kontinuierlich überwacht. Die Injektion des Radiopharmakons $^{11}$C]Laniquidar erfolgte um zehn Uhr morgens, die des $^{11}$C]Phenytoin um elf Uhr morgens und die des $^{11}$C]Quinidin um 12 Uhr mittags. Im Anschluss an die Applikationen der Tracer folgte jeweils ein 45-minütiger PET-Scan. Um 12.50 Uhr wurde der Pgp-Hemmstoff Tariquidar (API Services Inc, Westford, MA, USA) als zehnminütige Infusion von 15 mg/kg in 5%iger Glucose in Kochsalzlösung über den venösen Katheter appliziert. 20 min nach Beginn der Tariquidar-Infusion erfolgte die zweite Injektion des Tracers $^{11}$C]Quinidin, um 14.05 Uhr die zweite Applikation des $^{11}$C]Laniquidar und um 15.05 Uhr die zweite Injektion des $^{11}$C]Phenytoin. Im Anschluss an diese Applikationen folgte wiederum jeweils ein 45-minütiger PET-Scan. Um 16.05 Uhr wurde $^{18}$F]-FDG injiziert und danach 60 min gescannt (Abb. 10).
Während den Scans erfolgten pro Tier insgesamt 16 Blutentnahmen, bei denen jeweils 100 µl Blut mithilfe des zuvor eingeführten Katheters aus der Arteria femoralis entnommen wurden. Die ersten acht Blutentnahmen erfolgten 20 s, 40 s, 1 min, 2 min, 5 min, 10 min, 20 min und 45 min nach der ersten \( ^{11}C \)Quinidin-Applikation. Die restlichen acht Blutproben wurden während dem \( ^{11}C \)Quinidin-Scan entnommen, der im Anschluss an die Tariquidar-Applikation stattfand. Dabei erfolgten die Blutentnahmen 20 s, 40 s, 1 min, 2 min, 5 min, 10 min, 20 min und 45 min nach der zweiten \( ^{11}C \)Quinidin-Injektion. In einem Tropfen der Blutprobe wurde mittels eines Gamma Counters (1282 Compugamma, LKB Wallac, Turku, Finnland) die Radioaktivität gemessen. Die restliche Menge an Blut wurde mithilfe eines heparinisierten 1,5 ml-Reaktionsgefässes (Eppendorf-Cup) aufgefangen und anschließend zentrifugiert, um das Plasma zu erhalten. Das Plasma wurde daraufhin ebenfalls in den Gamma Counter verbracht. Dadurch konnte die Radioaktivität im Blut und im Plasma parallel zu den PET-Scans ermittelt werden. Da während der Scans aufgrund der langen Narkosezeiten Tiere starben und aufgrund der überaus schwierigen Tracer-Synthese teilweise nicht alle Tiere gescannt werden konnten, varierte die Anzahl der Tiere bei den einzelnen Auswertungen. In Bezug auf den \( ^{11}C \)Laniquidar-Scan konnten fünf Kontrolltiere, vier Responder und vier Non-responder ausgewertet werden. Während des \( ^{11}C \)Phenytoin-Scans umfassten die Gruppen lediglich drei Kontrolltiere, einen Responder und drei Non-responder. Beim \( ^{11}C \)Quinidin-Scan konnten acht Kontrolltiere, fünf Responder und vier Non-responder ausgewertet werden. Der abschließende FDG-Scan umfasste fünf Kontrolltiere, drei Responder und vier Non-responder. Zur Bestimmung der Radioaktivität im Blutplasma wurden vier Kontrolltiere, vier Responder und vier Non-responder ausgewertet.
1.7.3 Rekonstruktion und Analyse der PET-Daten

Im Anschluss an die Korrekturen in Bezug auf radioaktiven Zerfall, Streuung und Randomisierung wurden die einzelnen PET-Scans rekonstruiert, wobei eine iterative „3D ordered-subsets weighted least-squares (3D-OSWLS)“-Methode angewendet wurde (VAN VELDEN et al. 2009). Die Auflösung der Punkquelle variierte im Bereich des Sichtfeldes in der transaxialen Richtung von ca. 2,3 bis 3,2 mm (FWHM) und in der axialen Richtung von 2,5 bis 3,4 mm (DE JONG et al. 2007). Für die Analyse der PET-Daten wurde die Software Amide 0.8.22 (LOENING u. GAMBHIR 2003) verwendet. Durch die Anwendung eines Magnetresonanztomographie (MR)-basierten Rattengehirn-Atlas (BUITER et al., bislang unveröffentlichte Daten) konnten anhand der $[^{18}\text{F}]$-FDG-PET-Bilder sechs „regions of interest“ (ROIs) bestimmt werden. Dabei wurde der MR-Atlas visuell mit der Gesamtzahl der Bilder innerhalb eines Zeitrahmens von 30 bis 60 min abgeglichen. Anschließend wurden die ROIs auf die Zeitrahmen aller Scans projiziert, wodurch man Zeit-Aktivitäts-Kurven für jeden Scan und jedes Tier erhielt. Dabei stellten Hippocampus, occipitaler Cortex, parietaler Cortex, linkes und rechtes Putamen Caudate (Striatum) und Cerebellum die ROIs dar. Abbildung 11 zeigt die repräsentative Darstellung der ROIs am Beispiel einer Ratte.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Applikationen</th>
<th>Blutentnahmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.00 Uhr</td>
<td>[${}^{11}\text{C}$]Laniquidar</td>
<td>20s, 40s, 1min, 2min, 5min, 10min, 20min und 45min nach [${}^{11}\text{C}$]Quinidin-Applikation</td>
</tr>
<tr>
<td>11.00 Uhr</td>
<td>[${}^{11}\text{C}$]Phenytoin</td>
<td>20s, 40s, 1min, 2min, 5min, 10min, 20min und 45min nach [${}^{11}\text{C}$]Quinidin-Applikation</td>
</tr>
<tr>
<td>12.00 Uhr</td>
<td>[${}^{11}\text{C}$]Quinidin</td>
<td></td>
</tr>
<tr>
<td>12.50-13.00 Uhr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.10 Uhr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.05 Uhr</td>
<td>FDG</td>
<td></td>
</tr>
<tr>
<td>15.05 Uhr</td>
<td>[${}^{11}\text{C}$]Phenytoin</td>
<td></td>
</tr>
<tr>
<td>16.05 Uhr</td>
<td>[${}^{11}\text{C}$]Laniquidar</td>
<td></td>
</tr>
</tbody>
</table>

Abb. 10: Schematische Darstellung der Applikationen und Blutentnahmen während der PET-Untersuchungen
MATERIAL UND METHODEN

Abb. 11: Repräsentative Darstellung der „regions of interest“ (ROIs) am Beispiel einer Ratte. Hipp = Hippocampus; OC = occipitaler Cortex; Cer = Cerebellum; CP = Putamen Caudate (Striatum); PC = parietaler Cortex.

Die Zeit-Aktivitäts-Kurven wurden anschließend im Hinblick auf die injizierte Aktivität und das Tiergewicht korrigiert, um die „standardized uptake values“ (SUVs) im Verlauf der Zeit zu erhalten.

\[
SUV = \frac{Radioaktivität \text{ pro Gewebegewicht}}{Injizierte \ Radioaktivität \text{ pro Körpergewicht}}
\]

Die Daten der Scans wurden mithilfe der graphischen Analyse nach Logan (LOGAN et al. 1990) ausgewertet. Dabei wurde der Plasma-Eingangswert verwendet, um eine Bewertung des $K_1$-Parameters (Transportrate ins Gehirn in ml/g/min) und des „volume of distribution“ ($V_T$; Koeffizient der Verteilung zwischen Blut und Gehirn; $V_T = K_1 / K_2$; $K_2$ = konstante Ausstromrate pro Minute) zu erhalten. Die Werte der SUVs, $K_1$ und $V_T$ wurden vor und nach Tariquidar-Applikation ermittelt und anschließend miteinander verglichen. Zusätzlich wurden die SUVs des $^{18}$F-FDG-Scans im Verlauf der Zeit zwischen den Tiergruppen miteinander verglichen. Der $K_1$-Parameter und $V_T$ konnten bei insgesamt sechs Kontrolltieren, fünf Respondern und vier Non-respondern bestimmt werden.
1.8 Histologische Gewebeaufbereitung

Dekapitation

Herstellung der Gefrierschnitte

1.9 Immunhistochemische Fär bemethoden

Mit der Methode der Immunhistochemie soll in diesem Teil der Arbeit untersucht werden, ob zwischen Respondern, Non-respondern und Kontrolltieren eine Veränderung der Expression des Multidrug-Transporters Pgp nachgewiesen werden kann.

Immunhistochemischer Nachweis von P-Glykoprotein
Der Expressionsnachweis von Pgp erfolgte anhand eines immunhistologischen Standardprotokolls, wobei die Schnittebenen -2,3, -3,8 und -5,8 mm relativ zu Bregma (PAXINOS 2005) verwendet wurden. Die Pgp-Expression wurde mithilfe eines
1.10 Auswertung und Statistik

Auswertungen
Sowohl die immunhistochemischen Auswertungen als auch die Analyse der PET-Daten wurden vom Experimentator verblindet durchgeführt. Die Schnittebenen, die für die immunhistochemische Auswertung der Gehirnregionen herangezogen wurden, wurden nach PAXINOS und WATSON (2005) definiert.

Quantifizierung der Pgp-Expression


Statistik

MATERIAL UND METHODEN


1.11 Versuchsdesign

2. Prüfung der Wirksamkeit des Peptidmimetikums Cintrofin

2.1 Versuchstiere

Die Versuche zur Prüfung der Wirksamkeit des Peptidmimetikums Cintrofin wurden im Rahmen eines genehmigten Tierversuches (Aktenzeichen 55.2-1-54-2531-40-07) an weiblichen Sprague Dawley Ratten des Versuchstierzüchters Harlan Winkelmann, Borchen, durchgeführt. Die Tiere wurden einzeln in „Makrolonkäfigen Typ III hoch“ gehalten. Im Weiteren erfolgte die Haltung der Ratten analog zu der bereits beschriebenen Rattenhaltung (Kap. IV.1.1). Zum Zeitpunkt der Versuchsdurchführung wogen die Tiere 200-224 g. Zur Vermeidung circadianer Einflüsse wurden die Versuche stets zwischen 7:00 und 9:00 MEZ begonnen.

2.2 Elektrisches SE-Modell

Elektrodenimplantation

Die Implantation der Elektrode erfolgte analog zu der bereits beschriebenen Elektrodenimplantation (Kap. IV.1.2). Als Lokalanästhetikum wurde ebenfalls Bupivacain (Bupivacain 0,5%, JENAPHARM) verwendet, das in einer Menge von ca. 0,8 ml subkutan an der Schädeloberfläche appliziert wurde.

SE-BLA-Modell

Die Stimulation der basolateralen Amygdala erfolgte analog zu dem bereits beschriebenen SE-BLA-Modell (Kap. IV.1.2).

2.3 Anfallsparameter

2.4 Überwachung spontaner Anfälle


2.5 Verhaltensuntersuchungen

2.5.1 Open Field


In diesem Versuchsaufbau bestand das *Open Field* aus einer schwarzen runden Kunststoffgrundfläche, deren Durchmesser 85 cm betrug und die von einer 39 cm hohen Wand umgeben war. Die Grundfläche des nach oben offenen Kunststoffbehälters wurde mithilfe der Software EthoVision (Noldus, Niederlande) virtuell in vier Quadranten unterteilt. Das *Open Field* wurde mit einer 40 Watt starken Glühbirne ausgeleuchtet. Während des
MATERIAL UND METHODEN

gesamten Experiments lief ein Generator, der weißes Rauschen (60 dB) produzierte und dadurch auditive Störreize maskierte. Über dem Open Field wurde eine Kamera angebracht (CCTV Camera, Panasonic, Suzhou, China), die die Verhaltensweisen und Ortsänderungen in zeitlicher Reihenfolge registrierte. Ein Versuchsduerlauf dauerte zehn Minuten. Die Tiere wurden dabei einzeln in die Mitte des Feldes gesetzt und verblieben für zehn Minuten im Open Field. Beim Verbringen der Tiere in die Apparatur wurde darauf geachtet, dass die Blickrichtung für jedes Tier gleich war.

Zwischen den einzelnen Testdurchläufen wurde die Apparatur mit 0,1%iger Essigsäure gereinigt, um die Duftmarken des Vorgängertieres zu entfernen.

Im Anschluss an den Versuch wurden für jedes Tier die zurückgelegte Gesamtstrecke (cm), die Durchschnittsgeschwindigkeit der Bewegung (cm/s), die Aufenthaltsdauer in den Zonen und die Anzahl des Aufrichtens berechnet.

2.5.2 Elevated Plus Maze

Das Elevated Plus Maze ist eine der am weitesten verbreiteten Methoden zur Messung von angstassoziiertem Verhalten. Das Prinzip beruht dabei auf der verhaltensbiologischen Beobachtung, dass Nagetiere offene Flächen ohne Rückzugsmöglichkeiten meiden (MONTGOMERY 1955), um potentiellen Fressfeinden zu entgehen. Um die sogenannte vertikale Motorik, das heißt das Aufrichteverhalten der Tiere, zu beurteilen, wurden die Rearings (=Aufrichten der Tiere auf die Hinterbeine) gezählt. Das Grooming (=Putzverhalten) und die Head Dips (=Herabschauen der Tiere von den offenen Armen) der Tiere während des Versuchs wurden ebenfalls notiert.

Arme gesetzt. Dabei wurde darauf geachtet, dass alle Tiere zu Beginn des Versuchs in
denselben offenen Arm blickten.
Zwischen den einzelnen Testdurchläufen wurde die Apparatur mit 0,1%iger Essigsäure
gereinigt, um die Duftmarken des Vorgängertieres zu entfernen.
Im Anschluss an den Versuch wurden für jedes Tier die zurückgelegte Gesamtstrecke (cm),
die Durchschnittsgeschwindigkeit (cm/s), die Dauer der Aufenthalte in den offenen und
geschlossenen Armen (s), die Häufigkeit der Eintritte in die offenen und geschlossenen Arme,
die Anzahl des Aufrichtens und die Anzahl der Head Dips berechnet.

2.5.3 Black White Box
Die Black White Box wird als Test auf angstassoziiertes Verhalten eingesetzt. Da sich die
Ratte als nachtaktives Tier bevorzugt im Dunkeln aufhält, wird genau diese Tendenz anhand
der Black White Box gemessen. Die Apparatur bestand aus zwei oben offenen Boxen, von
denen eine weiß und die andere schwarz war. Die beiden Hälften waren nur durch einen
offenen Durchgang miteinander verbunden. Die Grundfläche der weißen Hälfte maß
39 cm x 40 cm, die der schwarzen Hälfte 20 cm x 39 cm. Die Wände, die die beiden Hälften
und den Durchgang umgaben, waren 29 cm hoch. Die Grundfläche des Durchgangs maß
10 cm x 10 cm. Die Boxen und der Durchgang wurden aus PVC hergestellt. In diesem
Versuchsaufbau wurde die Black White Box mit einer 40 Watt starken Glühbirne
ausgeleuchtet. Die Beleuchtungsstärke betrug in der schwarzen Hälfte 40 lux und in der
weißen Hälfte 50 lux. Während des gesamten Experiments lief ein Generator, der weiβes
Rauschen (60 dB) produzierte und dadurch auditive Störreize maskierte. Über der Black
White Box wurde eine Kamera angebracht (CCTV Camera, Panasonic, Suzhou, China), die
die Verhaltensweisen und Ortsänderungen in zeitlicher Reihenfolge registrierte. Ein
Versuchsdurchlauf dauerte fünf Minuten. Die Tiere wurden dabei einzeln in die weiße Hälfte
der Black White Box gesetzt. Beim Verbringen der Tiere in die Apparatur wurde darauf
geachtet, dass die Blickrichtung für jedes Tier gleich war.
Zwischen den einzelnen Testdurchläufen wurde die Apparatur mit 0,1%iger Essigsäure
gereinigt, um die Duftmarken des Vorgängertieres zu entfernen.
Im Anschluss an den Versuch wurden für jedes Tier die Anzahl der Übertritte zwischen den
Hälften der Black White Box, die Latenzzeit bis zum ersten Übertritt (s) und die Dauer der
Aufenthalte in den beiden Hälften (s) berechnet.
2.5.4 Morris Water Maze


Beim Verbringen der Tiere in das Becken wurde stets darauf geachtet, dass die Blickrichtung für jedes Tier gleich war. Ein Versuchsdurchlauf dauerte für jede Ratte höchstens eine Minute. Falls die Tiere die Plattform nach dieser Zeit nicht gefunden hatten, wurden sie aus dem Wasser geholt und für zehn Sekunden auf die Plattform gesetzt. Das Schwimmbecken wurde nach jedem Versuchsdurchgang von schwimmenden Fäkalien befreit. Das Wasser wurde zudem jeden Tag abgelassen.

Im Anschluss an den Versuch wurden für jedes Tier die zurückgelegte Gesamtstrecke (cm), die Durchschnittsgeschwindigkeit (cm/s), die Anzahl des Auffindens der Plattform, die Latenzzeit bis zum Auffinden der Plattform (s) und die Dauer der Aufenthalte in den einzelnen Quadranten (s) berechnet. Da parallel zu der spatial probe ein Tier der Gruppe SE/Cintrofin aufgrund schlechten Allgemeinbefindens euthanasiert werden musste, wurde dieses aus allen Auswertungen, die das Morris Water Maze betrafen, herausgenommen.

2.6 Histologische Gewebeauflbereitung

Perfusion

Bei der Perfusionsfixierung wird das natürliche Gefäßsystem des Körpers für eine schnelle Fixierung des Gewebes verwendet.

Dafür wurden die Ratten zunächst mit 500 mg/kg Pentobarbital (Sigma-Aldrich Chemie GmbH, München) i.p. euthanasiert. Anschließend wurde eine Knopfkanüle vom linken Herzventrikel aus in die Aorta geschoben. Das rechte Herzohr wurde aufgeschnitten, um den Abfluss des Blutes und der Perfusionslösung zu erlauben. Der gleichbleibende Perfusionsdruck wurde mithilfe einer geeigneten Perfusionspumpe aufrecht erhalten. Dieser Druck entsprach circa dem Blutdruck des Tieres. Bevor das Fixans verwendet wurde, wurde der Blutkreislauf der Ratte mit 0,01 M phosphatgepufferter 0,9%iger Kochsalzlösung (pH-Wert 7,6) gespült. Zur Fixierung des Gewebes wurde ein 1:1 Gemisch aus 8%igem Paraformaldehyd in 0,2 M Phosphatpuffer (pH-Wert 7,6) mit einer Temperatur von 4°C verwendet.

Nach der Perfusion wurden die Gehirne entnommen und in 4%igen Paraformaldehyd überführt. Dort verblieben sie bei einer Temperatur von 4°C 24 Stunden lang. Dadurch wurde eine zusätzliche Fixation ermöglicht. Anschließend wurden die Gehirne in eine 30%ige Saccharoselösung in 0,1 M Phosphatpuffer (pH-Wert 7,6) verbracht. In dieser Saccharoselösung verblieben die Gehirne für mindestens drei Tage. Dadurch konnte ein
ausreichender Gefrierschutz gewährleistet werden. Die Protokolle zur Herstellung der Pufferlösungen und des Fixans sind in Kapitel X.2 aufgeführt.

**Herstellung der Gefrierschnitte**


2.7 Immunhistochemische und histochemische Färbenmethoden


**Nissl-Färbung**

Immunhistochemische Nachweismethoden


Standardprotokoll DCX und ED1

Gehirnschnitte in eine Diaminobenzidin-Reaktionslösung verbracht (pro Gehirn 4 ml Tris/Ni-Lösung, 1 mg in 100 µl Aqua dest. gelöstes DAB und 1 µl 32%iges H₂O₂). Nach 90 s wurde diese Reaktion durch dreimal fünfminütiges Spülen mit TBS beendet. Die Schnitte wurden anschließend auf entfettete Objektträger aufgezogen, getrocknet, dehydriert und mit Entellan (Merck, Darmstadt) eingedeckt. Die im Rahmen dieser Arbeit verwendeten primären und sekundären Antikörper sind in Tabelle 3 angegeben.

*Standardprotokoll BrdU/NeuN*

primärer Antikörper | Hersteller | Konzentration | sekundärer Antikörper | Hersteller | Konzentration
---|---|---|---|---|---
polyklonaler Ziege-anti-DCX | Santa Cruz | 1:300 | polyklonaler biot. Esel-anti-Ziege | Jackson Immuno Research | 1:500

monoklonaler Maus-anti-CD68 | AbD serotec | 1:300 | polyklonaler biot. Kaninchen-anti-Maus | Dako | 1:500

monoklonaler Ratte-anti-BrdU | AbD serotec | 1:30 | Cy3-konjugierter Esel-anti-Ratte | AbD serotec | 1:1000


Tab. 3: Bei immunhistochemischen Untersuchungen verwendete primäre und sekundäre Antikörper

2.8 Auswertung und Statistik

Auswertungen
Alle immunhistochemischen Auswertungen wurden verblindet durchgeführt. Die Schnittebenen, die für die Auswertung der Gehirnregionen herangezogen wurden, wurden nach PAXINOS und WATSON (2005) definiert.

Bestimmung der Anzahl thioningefärbter Neurone mittels „optical fractionator“ Methode


**Bestimmung der Anzahl der neuronalen Vorläuferzellen mittels „optical fractionator“ Methode**


**Score-System der Neurodegeneration und Mikroglia im Hippocampus**

Neurodegenerative Veränderungen und Mikroglia-Aktivierung im Bereich des Cornu Ammonis (Ammonshorn, CA) wurden mithilfe eines Score-Systems erfasst. Hierbei wurden CA$_1$-, CA$_{3a}$- und CA$_{3c/4}$-Region differenziert voneinander bewertet.

<table>
<thead>
<tr>
<th>Score</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>keine offensichtlichen Läsionen</td>
</tr>
<tr>
<td>2</td>
<td>eventuelle Läsionen (&lt;20% der Neuronen)</td>
</tr>
<tr>
<td>3</td>
<td>Läsionen mit Einbezug von 20-50% der Neuronen</td>
</tr>
<tr>
<td>4</td>
<td>Läsionen mit Einbezug von &gt;50% der Neuronen</td>
</tr>
</tbody>
</table>

**Bestimmung der Anzahl BrdU/NeuN-positiver Zellen**

Die Quantifizierung der BrdU/NeuN-positiven Zellen erfolgte im Gyrus Dentatus (GD) für sechs verschiedene Schnittebenen relativ zu Bregma: -2,1 mm, -2,7 mm, -3,3 mm, -4,0 mm, -4,3 mm und -4,8 mm. Das Fluoreszenzsignal der doppelmarkierten Schnitte wurde mit einem konfokalen Mikroskop nachgewiesen (Leica TCS SP2, Bensheim). Die Bilder wurden bei 630facher Vergrößerung eingelesen.

**Statistik**

Alle statistischen Berechnungen wurden mit dem Programm GraphPad Prism 5 für Windows durchgeführt. Die Angabe der Daten erfolgt als Mittelwert ± SEM (standard error of the mean, Standardfehler). Zunächst wurde bei den Daten, die durch das Monitoring der Tiere gewonnen worden waren, eine 1-way ANOVA angewandt. Alle weiteren Daten, die während den Verhaltensuntersuchungen zustande gekommen waren, wurden mittels einer 2-way ANOVA analysiert. Für den Vergleich von zwei Stichproben bei Vorliegen parametrischer

2.9 Versuchsdesign

Weiblichen Sprague Dawley Ratten wurde eine Stimulations- und Ableitungselektrode in die rechte basolaterale Amygdala implantiert (Kap. IV.2.2). Im Anschluss an die Elektrodenimplantation wurden die Ratten in vier Tiergruppen eingeteilt. Bei den Ratten der Gruppen 2 (n=17) und 4 (n=17) erfolgte eine elektrische Stimulation der basolateralen Amygdala, während die Tiere der Gruppen 1 (n=13) und 3 (n=13) lediglich einer Schein-Stimulation unterzogen wurden. Dadurch dienten die Tiere der Gruppen 1 und 3 als Kontrollgruppe. Ratten der Gruppen 3 und 4 wurden 4 h, 28 h, 52 h, 76 h und 100 h nach der Induktion des Status epilepticus beziehungsweise der Schein-Statusinduktion mit dem mimetischen Peptid Cintrofin (GL Biochem Ltd., Shanghai, China) behandelt. Die Aminosäuresequenz des Cintrofin wurde vom menschlichen CNTF abgeleitet (148-DGGLFEKKLWGLKV-161; UniProtKB entry P26441). Die Injektion des mimetischen Peptids Cintrofin erfolgte intraperitoneal (3 ml/kg). Zeitgleich wurde den Tieren der Gruppen 1 und 2 ein geeignetes Kontrollpeptid (reversed peptide; GL Biochem Ltd., Shanghai, China) intraperitoneal appliziert (3 ml/kg). Dieses umfasste dieselben Aminosäuren wie Cintrofin, jedoch in umgekehrter Reihenfolge. Sowohl Cintrofin als auch das reversed peptide wurden als Dendrimere synthetisiert, die aus vier Monomeren bestanden und an ein Lysin-Rückgrat gekoppelt waren. Bei allen Ratten erfolgte ab dem fünften Tag nach der Stimulation fünf Tage lang die intraperitoneale Applikation des Proliferationsmarkers Bromdesoxyuridine (BrdU; 3 ml/kg). Die BrdU-Lösung wurde jeden Tag zweimal injiziert, wobei darauf geachtet wurde, dass zwischen den beiden Applikationen stets acht Stunden lagen. Acht Wochen nach der Stimulation begann die Überwachung spontaner Anfälle mittels Video- und EEG-Monitoring, welche insgesamt zwei Wochen dauerte. Eine Woche nach Ende des Monitorings
begannten die Verhaltensuntersuchungen mittels *Open Field, Elevated Plus Maze, Black White Box* und *Morris Water Maze*. Im Anschluss an diese Versuche wurden die Tiere für immunhistochemische Untersuchungen perfundiert. Abbildung 13 gibt den zeitlichen Verlauf des Versuches wieder.

Abb. 13: Elektrisches SE-Modell: Versuchsdesign und zeitlicher Verlauf
V. Ergebnisse

1. Darstellung transporterassoziiierter Pharmakoresistenz mittels eines positronen-emissions-tomographischen Verfahrens

Das Ziel dieser Studie war es, verschiedene Tracer im Hinblick auf ihre Eignung zur Darstellung von P-Glykoprotein (Pgp) zu evaluieren und dabei die Beteiligung dieses Multidrug-Transporters an Prozessen der Pharmakoresistenz detaillierter zu erforschen.

1.1 Elektrisches SE-Modell

Die Dauerstimulation wurde entsprechend der Beschreibung in Kap. IV.1.2 durchgeführt. Dabei wurde der sich selbst erhaltende Status epilepticus (SSSE) nach vier Stunden durch eine Diazepam-Applikation (10 mg/kg i.p.) abgebrochen. Bei Bedarf wurde Diazepam wiederholt appliziert, bis der SSSE beendet war. Von den insgesamt 39 stimulierten Tieren entwickelten 64% (n=25) einen rein generalisierten SSSE (Typ 3). 26% (n=10) zeigten fokale und generalisierte Anfälle (Typ 2). 10% der Tiere (n=4) mussten nach Statusinduktion aufgrund eines schlechten Allgemeinbefindens euthanasiert werden.

1.2 Monitoring von spontanen Anfällen während der Vehikelphase

1.3 Selektion von Respondern und Non-respondern


1.4 PET-Untersuchungen

Die PET-Untersuchungen begannen bei den einzelnen Tieren jeweils vier bis sieben Wochen nach Ende des Video- und EEG-Monitorings und wurden in Kooperation mit der holländischen Forschergruppe „Division of Pharmacology Leiden/ Amsterdam Center for Drug Research“ durchgeführt. Um den Stress der Tiere während dieser Versuche zu minimieren, fanden die PET-Untersuchungen erst ein bis vier Wochen nach der Ankunft der Tiere in Amsterdam statt, wobei die Tracer \([^{11}C]Laniquidar\), \([^{11}C]Phenytoin\), \([^{11}C]Quinidin\) und \([^{18}F]Fluorodeoxyglucose\) (FDG) verwendet wurden.
1.4.1 \([^{11}C]\)Quinidin-Kinetik

Für die Darstellung der \([^{11}C]\)Quinidin-Kinetik musste den Tieren mehrmals Blut entnommen werden. Aufgrund des limitierten Blutvolumens konnte daher im Rahmen der Studie lediglich die Kinetik dieses Tracers genauer untersucht werden.

Die Kinetik des Tracers \([^{11}C]\)Quinidin wurde durch Analyse der Geschwindigkeitskonstanten \(K_1\) (ml/g/min), des „volume of distribution“ (V\(T\)) und der Plasma-SUVs (SUV = „standardized uptake value“) dargestellt. Die SUV im Plasma dient als Angabe der im Plasma vorherrschenden Radioaktivität, \(K_1\) beschreibt den Einstrom des Tracers über die Blut-Hirn-Schanke (MURAKAMI et al. 2005) und V\(T\) stellt einen Koeffizienten der Verteilung des Tracers zwischen Blut und Gehirn dar. Um die Kinetik des Tracers \([^{11}C]\)Quinidin darstellen zu können, wurden sowohl die Plasma-SUV-Werte als auch die V\(T\)- und \(K_1\)-Werte vor und nach Tariquidar-Applikation jeweils miteinander verglichen.

Im Hinblick auf \(K_1\) unterschieden sich die drei Tiergruppen Responder, Non-responder und Kontrolltiere vor der Tariquidar-Applikation nicht signifikant. Bei den Kontrolltieren betrug \(K_1\) vor der Tariquidar-Applikation 0,27 ± 0,05 ml/g/min, bei den Respondern 0,22 ± 0,07 ml/g/min und bei den Non-respondern 0,33 ± 0,10 ml/g/min. Sowohl bei den Kontrolltieren als auch bei den Respondern und Non-respondern kam es durch die Tariquidar-Applikation insgesamt zu einer Erhöhung der \(K_1\)-Werte (Abb. 15). In der Gruppe der Kontrolltiere wurde der \(K_1\)-Wert durch die Tariquidar-Applikation um 100-200% erhöht und in der Tiergruppe der Responder um 100-500%. Lediglich in der Tiergruppe der Non-responder kam es bei einem Tier zu einer Verminderung des \(K_1\)-Wertes um 40%. Bei den restlichen Tieren dieser Gruppe erhöhte sich \(K_1\) um 150-500 %. Der Anstieg des \(K_1\)-Wertes war allerdings in keiner der Tiergruppen signifikant. Die Tiere, die zuvor als Non-responder definiert worden waren, schienen sowohl vor als auch nach der Tariquidar-Applikation im Vergleich zu den Respondern und den Kontrolltieren insgesamt einen höheren \(K_1\)-Wert aufzuweisen. Dieser Unterschied war jedoch nicht signifikant.
Abb. 15.: Effekte der Tariquidar-Applikation auf den $K_1$-Parameter des Tracers $^{11}$C-Quinidin (Mittelwert ± SEM). Sowohl bei den Kontrolltieren als auch bei den Respondern und Non-respondern kam es durch die Tariquidar-Applikation zu einer Erhöhung der $K_1$-Werte. Allerdings führte dieser Anstieg in keiner der Tiergruppen zu einem signifikanten Unterschied (Kontrolltiere: n=6; Responder: n=5; Non-responder: n=4). w/o = without Tariquidar; w = with Tariquidar.

Im Hinblick auf $V_T$ unterschied sich die Gruppe der Non-responder bereits vor der Tariquidar-Applikation signifikant von denen der Kontrolltiere und der Responder. Bei den Kontrolltieren betrug $V_T$ vor der Tariquidar-Applikation 0,63 ± 0,04 ml/g/min, bei den Respondern 0,60 ± 0,06 ml/g/min und bei den Non-respondern 0,78 ± 0,03 ml/g/min. Sowohl bei den Kontrolltieren als auch bei den Respondern und Non-respondern kam es durch die Tariquidar-Applikation zu einer signifikanten Erhöhung der $V_T$-Werte (Abb. 16). In der Gruppe der Kontrolltiere wurde der $V_T$-Wert durch die Tariquidar-Applikation um 200-450% erhöht, in der Tiergruppe der Responder um 217-420% und in der Tiergruppe der Non-responder um 288-350%. Die Tiere der Non-responder-Gruppe wiesen nach der Tariquidar-Applikation im Vergleich zu den Respondern einen signifikant erhöhten $V_T$-Wert auf.
Abb. 16: Effekte der Tariquidar-Applikation auf den VT-Parameter des Tracers $[^{11}\text{C}]\text{Quinidin}$ (Mittelwert ± SEM). Bereits vor der Tariquidar-Applikation wiesen die Non-responder im Vergleich zu Respondern und Kontrolltieren einen signifikant erhöhten VT-Wert auf. Durch die Tariquidar-Applikation kam es sowohl bei den Kontrolltieren als auch bei den Respondern und Non-respondern zu einem signifikanten Anstieg des VT-Wertes. Dabei wies die Tiergruppe der Non-responder im Vergleich zu der Tiergruppe der Responder auch nach der Tariquidar-Applikation einen signifikant erhöhten VT-Wert auf (Kontrolltiere: n=6; Responder: n=5; Non-responder: n=4). w/o = without Tariquidar; w = with Tariquidar; * = signifikant zu der jeweiligen Gruppe w/o; # = signifikant zu Kontrolltieren w/o und Respondern w/o.

Abb. 17: Plasmaprofil des Tracers \[^{11}C\]Quinidin vor (A) und nach (B) Tariquidar-Applikation, wobei die ersten drei Zeitpunkte jeweils in dem dazugehörigen kleineren Ausschnitt dargestellt sind (Mittelwert ± SEM). Sowohl vor als auch nach Tariquidar-Applikation stieg die Radioaktivität im Plasma gegen Ende der Scans erneut an. Die Tariquidar-Applikation führte im Vergleich zu den Werten vor Tariquidar-Applikation innerhalb der ersten Minuten zu einer schnelleren Elimination des Tracers aus dem Plasma. Zu späteren Zeitpunkten konnte jedoch kein Unterschied bezüglich der Plasmaprofile vor und nach Tariquidar-Applikation festgestellt werden (Kontrolltiere: n=4; Responder: n=4; Non-responder: n=4). w/o TQD = without Tariquidar; w TQD = with Tariquidar; SUV = „standardized uptake value“.
1.4.2 Anreicherung des Tracers $[^{11}\text{C}]\text{Laniquidar}$

Um die Anreicherung des Tracers $[^{11}\text{C}]\text{Laniquidar}$ vor und nach der Tariquidar-Applikation darstellen zu können, wurden die SUV-Werte während beiden $[^{11}\text{C}]\text{Laniquidar}$-Scans bestimmt (Abb. 18). Die Verteilung des Tracers im Gehirn betrug während des Scans vor Tariquidar-Applikation bei allen Tieren durchschnittlich unter 0,5 g/ml. Sowohl zum Zeitpunkt 1,33 min als auch zum Zeitpunkt 2,25 min konnte während dieses Scans ein signifikanter Unterschied der SUVs der Non-responder im Vergleich zu den Kontrolltieren und den Respondern festgestellt werden (Abb. 19). Zu allen anderen Zeitpunkten unterschieden sich die SUV-Werte der Kontrolltiere, Responder und Non-responder jedoch nicht signifikant. Durch die Tariquidar-Applikation stieg die Verteilung des Tracers im Gehirn durchschnittlich auf das ca. 4- bis 6,7-fache an. Dabei wiesen zum Zeitpunkt 0,08 min lediglich die Gruppen der Responder und der Kontrolltiere eine signifikante Erhöhung der SUV im Vergleich zum durchschnittlichen Ausgangswert vor der Tariquidar-Applikation auf. Ab Zeitpunkt 0,25 min konnte jedoch bis zum Ende des Scans sowohl bei den Kontrolltieren als auch bei den Tiergruppen der Responder und Non-responder zu allen Zeitpunkten eine signifikante Erhöhung der SUV festgestellt werden. Dabei unterschieden sich die SUV-Werte der Responder und Non-responder nach der Tariquidar-Applikation zu keinem Zeitpunkt signifikant. Während des $[^{11}\text{C}]\text{Laniquidar}$-Scans nach Tariquidar-Applikation konnte jedoch zu den Zeitpunkten 1,33 min und 1,75 min eine signifikante Erhöhung der SUV-Werte der Non-responder im Vergleich zu den SUV-Werten der Kontrolltiere festgestellt werden.
Abb. 18: [¹¹C]Laniquidar-Konzentrationen im Gehirn, dargestellt als SUV, vor und nach Tariquidar-Applikation (Mittelwert ± SEM). Vor Tariquidar-Applikation betrug die [¹¹C]Laniquidar-Konzentration im Gehirn durchschnittlich unter 0,5 g/ml. Durch die Tariquidar-Applikation stieg die Verteilung des Tracers im Gehirn auf das circa 4- bis 6,7-fache an. Zum Zeitpunkt 0,08 min wiesen lediglich die Gruppen der Responder und der Kontrolltiere eine signifikante Erhöhung der SUV im Vergleich zum durchschnittlichen Ausgangswert vor der Tariquidar-Applikation auf. Ab Zeitpunkt 0,25 min konnte jedoch bis zum Ende des Scans sowohl bei den Kontrolltieren als auch bei den Tiergruppen der Responder und Non-responder zu allen Zeitpunkten eine signifikante Erhöhung der SUV festgestellt werden. (Kontrolltiere: n=5; Responder: n=4; Non-responder: n=4); w/o TQD = without Tariquidar; w TQD = with Tariquidar; SUV = „standardized uptake value“.
Abb. 19: 

[¹¹C]Laniquidar-Konzentrationen im Gehirn, dargestellt als SUV, vor und nach Tariquidar-Applikation zu den Zeitpunkten 1,33 min (A), 1,75 min (B) und 2,25 min (C) (Mittelwert ± SEM). Zu allen drei Zeitpunkten konnte sowohl bei den Kontrolltieren als auch bei den Tiergruppen der Responder und Non-responder eine signifikante Erhöhung der SUV-Werte nach Tariquidar-Applikation festgestellt werden. Zudem unterschied sich die Tiergruppe der Non-responder vor Tariquidar-Applikation zu den Zeitpunkten 1,33 min und 2,25 min signifikant von den Gruppen der Kontrolltiere und der Responder. Des Weiteren konnte nach Tariquidar-Applikation zu den Zeitpunkten 1,33 min und 1,75 min eine signifikante Erhöhung der SUV-Werte der Non-responder im Vergleich zu den SUV-Werten der Kontrolltiere nach Tariquidar-Applikation festgestellt werden. (Kontrolltiere: n=5; Responder: n=4; Non-responder: n=4); w/o TQD = without Tariquidar; w TQD = with Tariquidar; SUV = „standardized uptake value“; # = signifikant zu Kontrolltieren w TQD; + = signifikant zu Kontrolltieren w/o TQD und Respondern w/o TQD.
1.4.3 Anreicherung des Tracers $[^{11}\text{C}]\text{Phenytoin}$

Abb. 20: \([^{11}C]\)Phenyltoin-Konzentrationen im Gehirn, dargestellt als SUV, vor und nach Tariquidar-Applikation. A) Durchschnittliche \([^{11}C]\)Phenyltoin-Konzentrationen innerhalb der ersten 2,25 min beider Scans, B) Durchschnittliche \([^{11}C]\)Phenyltoin-Konzentrationen während der gesamten Dauer beider Scans (Mittelwert ± SEM). Innerhalb der ersten 2,25 min beider Scans war der Anstieg der SUV-Werte lediglich bei den epileptischen Tieren im Vergleich zu den SUV-Werten vor Tariquidar-Applikation signifikant. Die Kontrolltiere wiesen innerhalb dieser Zeitspanne keine signifikante Erhöhung der SUV-Werte auf. Im Hinblick auf die durchschnittlichen SUV-Werte während der gesamten Scans konnte jedoch sowohl bei den Kontrolltieren als auch bei den epileptischen Tieren nach der Tariquidar-Applikation eine signifikante Erhöhung der SUVs nachgewiesen werden. (Kontrolltiere: n=3; Responder: n=1; Non-responder: n=3); w/o TQD = without Tariquidar; w TQD = with Tariquidar; SUV = „standardized uptake value“.
1.4.4 Anreicherung des Tracers $[^{11}\text{C}]$Quinidin

Um die Anreicherung des Tracers $[^{11}\text{C}]$Quinidin vor und nach der Tariquidar-Applikation darstellen zu können, wurden die SUV-Werte während beiden $[^{11}\text{C}]$Quinidin-Scans bestimmt (Abb. 21). Die Verteilung des Tracers im Gehirn betrug während des Scans vor der Tariquidar-Applikation bei allen Tieren durchschnittlich unter 0,6 g/ml. Zu den Zeitpunkten 0,42 min, 1,33 min und 3,50 min konnte während dieses Scans ein signifikanter Unterschied der SUVs der Non-Responder im Vergleich zu den Kontrolltieren und den Respondern festgestellt werden (Abb. 22). Zu allen anderen Zeitpunkten unterschieden sich die SUV-Werte der Kontrolltiere, Responder und Non-Responder während dieses Scans jedoch nicht signifikant. Durch die Tariquidar-Applikation stieg die Verteilung des Tracers im Gehirn durchschnittlich auf das circa 2- bis 5,7-fache an. Dabei konnte lediglich zum Zeitpunkt 0,08 min keine signifikante Erhöhung der SUVs der unterschiedlichen Gruppen im Vergleich zum durchschnittlichen Ausgangswert der Tiergruppen vor Tariquidar-Applikation festgestellt werden. Ab Zeitpunkt 0,25 min wiesen sowohl die Kontrolltiere als auch die Tiergruppen der Responder und Non-Responder bis zum Ende des Scans eine signifikante Erhöhung der SUV-Werte im Vergleich zu den jeweiligen Werten vor Tariquidar-Applikation auf. Zu den Zeitpunkten 0,42 min, 0,58 min, 0,92 min, 1,75 min, 3,50 min, 12,50 min, 30,00 min und 40,00 min waren die SUV-Werte der Non-Responder nach Tariquidar-Applikation im Vergleich zu den SUV-Werten der Kontrolltiere und Responder nach Tariquidar-Applikation signifikant erhöht (Abb. 21). Zum Zeitpunkt 1,33 min waren die SUV-Werte der Non-Responder nach Tariquidar-Applikation lediglich im Vergleich zu den SUV-Werten der Responder nach Tariquidar-Applikation signifikant erhöht (Abb. 22).
Abb. 21: \([^{11}C]Quinidin\)-Konzentrationen im Gehirn, dargestellt als SUV, vor und nach Tariquidar-Applikation (Mittelwert ± SEM). Vor Tariquidar-Applikation betrug die \([^{11}C]Quinidin\)-Konzentration im Gehirn durchschnittlich unter 0,6 g/ml. Durch die Tariquidar-Applikation stieg die Verteilung des Tracers im Gehirn auf das circa 2- bis 5,7-fache an. Lediglich zum Zeitpunkt 0,08 min konnte keine signifikante Erhöhung der SUV-Werte der unterschiedlichen Gruppen im Vergleich zum durchschnittlichen Ausgangswert der Tiergruppen vor Tariquidar-Applikation festgestellt werden. Ab Zeitpunkt 0,25 min konnte jedoch bis zum Ende des Scans sowohl bei den Kontrolltieren als auch bei den Tiergruppen der Responder und Non-responder zu allen Zeitpunkten eine signifikante Erhöhung der SUV-Werte festgestellt werden. (Kontrolltiere: n=8; Responder: n=5; Non-responder: n=4); w/o TQD = without Tariquidar; w TQD = with Tariquidar; SUV = „standardized uptake value“.
Abb. 22: [¹¹C]Quinidin-Konzentrationen im Gehirn, dargestellt als SUV, vor und nach Tariquidar-Applikation zu den Zeitpunkten 0,42 min (A), 0,58 min (B), 0,92 min (C), 1,33 min (D) 3,50 min (E) und 40,00 min (F) (Mittelwert ± SEM). Während des Scans vor Tariquidar-Applikation konnte zu den Zeitpunkten 0,42 min, 1,33 min und 3,50 min ein signifikanter Unterschied der SUVs der Non-responder im Vergleich zu den Kontrolltieren und den Respondern festgestellt werden. Nach Tariquidar-Applikation wiesen die Non-responder zu den Zeitpunkten 0,42 min, 0,58 min, 0,92 min, 1,75 min, 3,50 min, 12,50 min, 30,00 min und 40,00 min im Vergleich zu den Kontrolltieren und Respondern signifikant erhöhte SUV-Werte auf. Zum Zeitpunkt 1,33 min waren die SUV-Werte der Non-responder nach Tariquidar-Applikation lediglich im Vergleich zu den SUV-Werten der Respondern nach Tariquidar-Applikation signifikant erhöht. (Kontrolltiere: n=8; Responder: n=5; Non-responder: n=4); w/o TQD = without Tariquidar; w TQD = with Tariquidar; SUV = „standardized uptake value“; # = signifikant zu Kontrolltieren w TQD und Respondern w TQD; + = signifikant zu Kontrolltieren w/o TQD und Respondern w TQD; o = signifikant zu Respondern w TQD.
1.4.5 Anreicherung des Tracers $[^{18}\text{F}]\text{Fluordeoxyglucose}$ (FDG)

Anhand der $[^{18}\text{F}]\text{Fluordeoxyglucose}$-PET-Bilder konnten die sechs regions of interest (ROI) bestimmt werden, durch die man anschließend die Zeit-Aktivitäts-Kurven für jeden Scan und jedes Tier erhielt. Die Anreicherung des Tracers $[^{18}\text{F}]\text{Fluordeoxyglucose}$ (FDG) wurde dabei bei allen drei Tiergruppen lediglich nach Tariquidar-Applikation bestimmt (Abb. 23).

![Diagramm](image)

**Abb. 23:** $[^{18}\text{F}]\text{Fluordeoxyglucose}$ (FDG)-Konzentrationen im Gehirn, dargestellt als SUV, nach Tariquidar-Applikation (Mittelwert ± SEM). Die durchschnittliche $[^{18}\text{F}]\text{Fluordeoxyglucose}$ (FDG)-Konzentration im Gehirn betrug dabei unter 3 g/ml. (Kontrolltiere: n=5; Responder: n=3; Non-responder: n=4); SUV = „standardized uptake value“.


1.4.6 Korrelation zwischen SUV und Anfallsreduktion

Abb. 25: Korrelation der SUV-Werte des Tracers \([^{11}\text{C}]\text{Laniquidar}\) mit der Anfallsreduktion der Tiere [%] während der Phenobarbital-Phase. Die SUV-Werte des Tracers \([^{11}\text{C}]\text{Laniquidar}\) korrelierten vor der Tariquidar-Applikation signifikant mit der Anfallsreduktion der Tiere während der Phenobarbital-Phase \((r = 0,78, p = 0,02)\).

1.5 Quantifizierung der Pgp-Expression

Abb. 26: Gemessene Fläche des positiven Pgp-Signals relativ zur Gesamtgröße des Messfelds (area) in der CA1-Region des Hippocampus (Mittelwert ± SEM). Responder und Non-responder wiesen im Vergleich zu den Kontrolltieren im Hinblick auf diese Region signifikant erhöhte area-Werte auf (Kontrolltiere: n=7; Responder: n=5; Non-responder: n=4). * = signifikant zu Kontrolltieren.

In der CA3-Region waren die Werte der Pgp-markierten Fläche bei Respondern und Non-respondern ebenfalls tendenziell höher als bei den Kontrolltieren. In dieser Region war der Unterschied jedoch nicht signifikant (Abb. 27).

Abb. 27: Gemessene Fläche des positiven Pgp-Signals relativ zur Gesamtgröße des Messfelds (area) in der CA3-Region des Hippocampus (Mittelwert ± SEM). Responder und Non-responder wiesen im Vergleich zu den Kontrolltieren im Hinblick auf diese Region erhöhte area-Werte auf. Dieser Unterschied war jedoch nicht signifikant (Kontrolltiere: n=7; Responder: n=5; Non-responder: n=4).

Weder im parietalen oder im piriformen Cortex noch in der Körnerzellschicht des GD oder dem Hilus des GD konnten zwischen den Tiergruppen signifikante Unterschiede hinsichtlich der Größe der Pgp-markierten Fläche festgestellt werden (Tab. 4). Des Weiteren unterschieden sich die Tiergruppen im Hinblick auf die OD in keiner der im Rahmen dieser Studie ausgewerteten Regionen signifikant (Tab. 4).

<table>
<thead>
<tr>
<th>Gehirnregion</th>
<th>Pgp-markierte Fläche (area in %)</th>
<th>Optische Dichte (OD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kontrolltiere</td>
<td>Responder</td>
</tr>
<tr>
<td>CA1</td>
<td>0,31 ± 0,05</td>
<td>0,58 ± 0,10*</td>
</tr>
<tr>
<td>CA3</td>
<td>0,71 ± 0,10</td>
<td>0,97 ± 0,12</td>
</tr>
<tr>
<td>Parietaler Cortex</td>
<td>0,39 ± 0,06</td>
<td>0,58 ± 0,14</td>
</tr>
<tr>
<td>Piriformer Cortex</td>
<td>0,27 ± 0,03</td>
<td>0,28 ± 0,03</td>
</tr>
<tr>
<td>Körnerzellschicht des GD</td>
<td>0,31 ± 0,07</td>
<td>0,24 ± 0,04</td>
</tr>
<tr>
<td>Hilus des GD</td>
<td>0,36 ± 0,05</td>
<td>0,34 ± 0,06</td>
</tr>
</tbody>
</table>

Tab. 4: Quantifizierung der Pgp-Expression in Respondern und Non-respondern durch Analyse der immunhistochemisch markierten Fläche und deren optischer Dichte. * = signifikant zu Kontrolltieren.
1.6 Korrelation zwischen Anfallsfrequenz und Pgp-markierter Fläche

Im Anschluss an die Quantifizierung der Pgp-Expression wurde für die CA1- und CA3-Regionen eine mögliche Korrelation zwischen der Pgp-markierten Fläche (area) und der Anfallsfrequenz während der Vehikelphase überprüft. Dabei konnte nachgewiesen werden, dass die Pgp-markierte Fläche in beiden Regionen signifikant mit der Anfallsfrequenz der Tiere während der Vehikelphase korrelierte (Abb. 29).

Abb. 29: Korrelation zwischen der Anfallsfrequenz der Tiere während der Vehikelphase und der Pgp-markierten Fläche (area in %) in der CA1-Region (A) und der CA3-Region (B) (Mittelwert ± SEM). Die Pgp-markierte Fläche korrelierte in beiden Regionen signifikant mit der Anfallsfrequenz der Tiere während der Vehikelphase (A: r = 0.80, p = 0.01; B: r = 0.78, p = 0.01).
2. Prüfung der Wirksamkeit des Peptidmimetikums Cintrofin

Mit dem Ziel, die Effekte einer Behandlung mit dem CNTF-mimetischen Peptid Cintrofin auf anfallsinduzierte neuronale Veränderungen zu untersuchen, wurden im Rahmen dieser Studie sowohl die Ergebnisse der Verhaltensuntersuchungen als auch der immunhistologischen Untersuchungen ausgewertet.

2.1 Elektrisches SE-Modell

Die Dauerstimulation wurde entsprechend der Beschreibung in Kap. IV.2.2 durchgeführt. Dabei wurde der SSSE nach vier Stunden durch eine Diazepam-Applikation (10 mg/kg i.p.) abgebrochen. Bei Bedarf wurde Diazepam wiederholt appliziert, bis der SSSE sicher beendet war. Von den insgesamt 34 stimulierten Tieren entwickelten 65% (n=22) einen rein generalisierten SSSE (Typ 3). 26% (n=9) zeigten fokale und generalisierte Anfälle (Typ 2) und 9% (n=3) wiesen rein fokale SSSE (Typ 1) auf. Ein Tier musste wenige Tage nach Statusinduktion aufgrund schlechten Allgemeinbefindens euthanasiert werden.

2.2 Überwachung auf spontane Anfälle

2.3 Prüfung antiepileptogener Effekte durch Cintrofin

2.3.1 Verhaltensmodelle


*Open Field*

Abb. 30: Effekte von Cintrofin auf Verhaltensweisen im Open Field. A) zurückgelegte Strecke, B) mittlere Laufgeschwindigkeit, C) Aufenthaltsdauer im mittleren Bereich des Open Field (Mittelwert ± SEM). Die stimulierten Tiere wiesen im Vergleich zu den Kontrollgruppen sowohl eine signifikant erhöhte mittlere Laufgeschwindigkeit als auch eine signifikant erhöhte zurückgelegte Strecke auf. Stimulierte, mit Cintrofin behandelte Tiere verbrachten signifikant mehr Zeit im mittleren Bereich des Open Field als die dazugehörige Kontrollgruppe (reversed peptide/ Sham: n=10; reversed peptide/ SE: n=10; Cintrofin/ Sham: n=10; Cintrofin/ SE: n=10).

Elevated Plus Maze
Unterschiede in Häufigkeit und Dauer der „rearings“ oder der „head dips“ konnten nicht festgestellt werden.


**Black White Box**

Die *Black White Box* dient zur Erfassung von angstassoziiertem Spontanverhalten (COSTALL et al. 1989) (Kap. II.3.4.2.3). Die Tiergruppen unterschieden sich weder in der Anzahl der Übertritte zwischen den beiden Kompartimenten, noch in der Aufenthaltsdauer im schwarzen und weißen Kompartiment der Apparatur. Die Latenzzeiten der verschiedenen Gruppen bis zum Aufsuchen der dunklen Seite der Box wichen ebenfalls nicht voneinander ab.
Morris Water Maze


![Graph A](image1)

**A)**

Parameter: Mittlere Schwimmgeschwindigkeit (Mean velocity [cm/s] day 0)

- Sham SE: n=10
- reversed peptide SE: n=10
- Cintrofin SE: n=9

![Graph B](image2)

**B)**

Parameter: Rückgelegte Schwimmstrecke (Distance moved [cm] day 0)

- Sham SE: n=10
- reversed peptide SE: n=10
- Cintrofin SE: n=9

*Abb. 32: Effekte von Cintrofin auf Verhaltensweisen im MWM. A) mittlere Schwimmgeschwindigkeit, B) zurückgelegte Schwimmstrecke (Mittelwert± SEM) während der Habituation im MWM. Die zurückgelegte Schwimmstrecke und die mittlere Schwimmgeschwindigkeit der Cintrofin behandelten SE-Tiere waren im Vergleich zu der mit Cintrofin behandelten Kontrollgruppe signifikant erhöht (reversed peptide/ Sham: n=10; reversed peptide/ SE: n=10; Cintrofin/ Sham: n=10; Cintrofin/ SE: n=9).*
ERGEBNISSE


Abb. 33: Effekte von Cintrofin auf Verhaltensweisen im MWM. Akquisitionskurve nach mehrtagigem Lerntraining im MWM (Mittelwert ± SEM) (reversed peptide/ Sham: n=10; reversed peptide/ SE: n=10; Cintrofin/ Sham: n=10; Cintrofin/ SE: n=9). * = signifikant zu reversed peptide/ Sham, # = signifikant zu Cintrofin/ Sham.
Abb. 34: Effekte von Cintrofin auf Verhaltensweisen im MWM. Dauer bis zum Auffinden der Plattform an den Tagen 2 (A), 4 (B) und 5 (C) (Mittelwert ± SEM). An den Tagen 2, 4 und 5 benötigten die mit reversed peptide behandelten SE-Tiere im Vergleich zu den Kontrollgruppen signifikant mehr Zeit bis zum Auffinden der Plattform. Die Cintrofin behandelten SE-Tiere benötigten an den Tagen 4 und 5 im Vergleich zu den reversed peptide behandelten Kontrolltieren signifikant mehr Zeit für das Auffinden der Plattform (reversed peptide/ Sham: n=10; reversed peptide/ SE: n=10; Cintrofin/ Sham: n=10; Cintrofin/ SE: n=9).


2.3.2 Immunhistochemie

*Nissl*-Färbung

Um das Ausmaß der Neurodegeneration bestimmen zu können, wurden neurodegenerative Veränderungen im Bereich des Cornu Ammonis, des piriformer Cortex und des parietalen Cortex mithilfe eines Score-Systems erfasst (Kap. IV.2.8). Hierbei wurden die CA$_1$-, CA$_2$- und CA$_3$/4-Region differenziert voneinander bewertet. Zusätzlich zur Quantifizierung der Neuronenanzahl erlaubte diese Methode eine Verifizierung der genauen Lage der implantierten Elektrode. Die Tiergruppen unterschieden sich sowohl in der CA$_1$-Region als
ERGEBNISSE


Abb. 36: Effekte von Cintrofin auf neurodegenerative Veränderungen im Score-System. A) neurodegenerative Veränderungen in der CA3a-Region, B) neurodegenerative Veränderungen in der CA3c-Region, C) neurodegenerative Veränderungen im piriformen Cortex (Mittelwert ± SEM). In der CA3a-Region, der CA3c-Region und dem piriformen Cortex waren die neurodegenerativen Veränderungen sowohl bei den reversed peptide behandelten SE-Tieren als auch bei den Cintrofin behandelten SE-Tieren im Vergleich zu den Kontrollgruppen signifikant erhöht (reversed peptide/ Sham: n=10; reversed peptide/ SE: n=10; Cintrofin/ Sham: n=10; Cintrofin/ SE: n=9).

**Doublecortin-Färbung**

Um neuronale Vorläuferzellen nachweisen zu können, wurde eine Doublecortin-Färbung durchgeführt (Kap. IV.2.7). Neuronale Vorläuferzellen des Hippocampus und des olfaktorischen Systems exprimieren das Mikrotubulin-assoziierte Protein Doublecortin (DCX) transient. Aufgrund dieser neuronalen vorläuferzellspezifischen Expression eignet sich DCX

Abb. 38: Effekte von Cintrofin auf die Anzahl DCX-positiver Zellen im Gyrus Dentatus des Hippocampus. Reversed peptide behandelte SE-Tiere wiesen im Vergleich zur korrespondierenden Kontrollgruppe eine signifikant erhöhte Anzahl DCX-positiver Zellen auf (reversed peptide/ Sham: n=10; reversed peptide/ SE: n=10; Cintrofin/ Sham: n=10; Cintrofin/ SE: n=8).

**ERGEBNISSE**

Abb. 39: Effekte von Cintrofin auf die Anzahl hilarer basaler Dendriten im Gyrus Dentatus des Hippocampus. *Reversed peptide* behandelte SE-Tiere wiesen im Vergleich zur korrespondierenden Kontrollgruppe eine signifikant erhöhte Anzahl hilarer basaler Dendriten auf (*reversed peptide*/ Sham: n=10; *reversed peptide*/ SE: n=10; Cintrofin/ Sham: n=10; Cintrofin/ SE: n=8).

**Abb. 40:** Immunhistochemische Färbung des spezifischen Vorläuferproteins Doublecortin (DCX) im Hippocampus eines *reversed peptide* behandelten Sham-Tieres (A), eines *reversed peptide* behandelten SE-Tieres (B-C), eines Cintrofin behandelten Sham-Tieres (D) und eines Cintrofin behandelten SE-Tieres (E-F). Die Anzahl DCX-positiver Zellen mit persistierenden, basalen Dendriten im Gyrus Dentatus des Hippocampus war bei den *reversed peptide* behandelten SE-Tieren im Vergleich zur korrespondierenden Kontrollgruppe signifikant erhöht. (C) und (F) zeigen Vergrößerungen einzelner DCX-positiver Zellen, wobei anfallsinduzierte, in den Hilus reichende, persistierende basale Dendriten mit Pfeilen markiert sind. GCL = *granule cell layer* (Körnerzellschicht); H = Hilus; SGZ = *subgranular zone* (subgranuläre Zone). Maßstabalken = 100 µm
**ED1-Färbung**
Um das Ausmaß der Mikroglia-Aktivierung bestimmen zu können, wurde diese mithilfe eines Score-Systems im Bereich des Cornu Ammonis erfasst (Kap. IV.2.8). Hilus, Gyrus Dentatus sowie CA_{1-}, CA_{3a-} und CA_{3c/4-} Region wurden hierbei differenziert voneinander bewertet. Im Bereich des Hilus konnte bei den Cintrofin behandelten SE-Tieren im Vergleich zu der korrespondierenden Kontrollgruppe eine signifikant erhöhte Mikroglia-Aktivierung festgestellt werden. In der CA_{1}-Region unterschieden sich die reversed peptide behandelten SE-Tiere signifikant von der dazugehörigen Kontrollgruppe. Sowohl im Bereich des Gyrus Dentatus als auch in der CA_{3a-} und CA_{3c-} Region konnten signifikante Unterschiede zwischen den beiden SE-Tiergruppen und den korrespondierenden Kontrollgruppen festgestellt werden. Zudem waren signifikante Unterschiede in der Mikroglia-Aktivierung der beiden Kontrollgruppen hinsichtlich der CA_{3c-}Region zu erkennen (Abb. 41).

Abb. 43: BrdU/NeuN-Doppelmarkierung zweier Zellen eines Cintrofin behandelten SE-Tieres innerhalb des Gyrus Dentatus. Maßstabbalken = 10 µm
VI. Diskussion

1. Darstellung transporterassoziiierter Pharmakoresistenz mittels eines positronen-emissions-tomographischen Verfahrens

Im Rahmen der vorliegenden Studie wurden verschiedene Tracer evaluiert und deren Anreicherung bei pharmakosensitiven Ratten (Responder), pharmakoresistenten Ratten (Non-responder) und Kontrolltieren (control) vor und nach Applikation des Pgp-Hemstoffs Tariquidar verglichen. Im Anschluss an die PET-Untersuchungen wurde eine immunhistochemische Färbung zur Quantifizierung der Pgp-Expression der einzelnen Tiergruppen durchgeführt. Dadurch sollte evaluiert werden, ob zwischen Respondern, Non-respondern und Kontrolltieren eine Veränderung der Pgp-Expression auftritt.


werden, dass das Nichtansprechen der Tiere auf die Behandlung mit Phenobarbital auf einen unzureichenden Wirkstoffspiegel zurückzuführen war.


Tariquidar-Applikation sehr gering waren, waren diese dennoch höher als die SUV-Werte, die durch Einsatz des Tracers \([^{11}C]\text{Verapamil}\), dem derzeit am meisten verwendeten Pgp-Tracer, in früheren Studien unter ähnlichen experimentellen Bedingungen erzielt werden konnten (SYVÄNEN et al. 2011). Daher scheint \([^{11}C]\text{Laniquidar}\) in dieser Hinsicht für die Untersuchung der Pgp-Expression und –Funktion geeigneter zu sein als \([^{11}C]\text{Verapamil}\).

Einen weiteren positiven Aspekt für den Einsatz des Tracers \([^{11}C]\text{Laniquidar}\) stellt die Tatsache dar, dass der Metabolismus dieses Tracers sehr gering ist (LUURTSEMA et al. 2009).


Des Weiteren konnte bereits gezeigt werden, dass der Pgp-Hemmstoff Tariquidar die Wirksamkeit des Antiepileptikums Phenytoin in einem chronischen Epilepsiomodell an Ratten steigert. Daher könnte die Kombination dieser beiden Wirkstoffe eine
vielversprechende therapeutische Strategie für pharmakoresistente Epilepsiepatienten darstellen (VAN VLIET et al. 2006).

Die im Rahmen der vorliegenden Studie im Hinblick auf den Tracer \[^{11}C\]Phenytoin erhobenen Daten dienen aufgrund der kleinen Gruppengrößen, welche auf die schwierige Tracer-Synthese zurückzuführen sind, lediglich als präliminäre Studie. In Bezug auf einen funktionellen Unterschied zwischen Respondern und Non-respondern schien die Tariquidar-Applikation einen größeren Effekt auf die \[^{11}C\]Phenytoin-Kinetik der Non-responder als auf die der Responder zu haben (Abb. 20). Dieser Unterschied war jedoch nicht signifikant, was vermutlich auf die zu kleinen Gruppengrößen zurückzuführen ist. Dieses Ergebnis unterstützt dennoch jene Studie, in der bereits gezeigt wurde, dass die Tariquidar-Applikation zu einer Steigerung der Wirksamkeit des Phenytoint in einem chronischen Epilepsiemodell an Ratten führt (VAN VLIET et al. 2006). Es werden allerdings weitere Studien mit größeren Tiergruppen nötig sein, um diese präliminäre Studie zu bestätigen. Zum jetzigen Zeitpunkt kann jedoch bereits anhand der vorliegenden Daten darauf hingewiesen werden, dass \[^{11}C\]Phenytoin ein vielversprechendes Radiopharmakon für die nicht-invasive Unterscheidung pharmakoresistenter und pharmakosensitiver Epilepsiepatienten darzustellen scheint.


Die Kinetik des Tracers \[^{11}\text{C}]\text{Quinidin} wurde anhand der Parameter K\(_1\), V\(_T\) und dem Plasmaprofil dieses Tracers evaluiert. Für K\(_1\) (Transportrate ins Gehirn in ml/g/min) konnten sowohl in den Tiergruppen der Responder und Non-responder als auch im Hinblick auf die Kontrolltiere ähnliche Werte nachgewiesen werden. Die K\(_1\)-Werte der Non-responder schienen im Vergleich zu den Respondern und den Kontrolltieren sowohl vor als auch nach Tariquidar-Applikation minimal erhöht. Dieser geringe Unterschied war allerdings weder vor noch nach Tariquidar-Applikation signifikant. In früheren Studien konnte bereits gezeigt werden, dass sich die Tiergruppen der Responder und Non-responder hinsichtlich ihrer Pgp-Expression unterscheiden, wobei bei Non-respondern eine deutlich gesteigerte Pgp-Expression festgestellt werden konnte (VOLK u. LÖSCHER 2005). Aufgrund dieser Daten stellt der Einstrom des Tracers \[^{11}\text{C}]\text{Quinidin} über die Blut-Hirn-Schranke keinen sensiblen Indikator der individuellen Unterschiede in Bezug auf die Funktion des Pgp dar. Durch die Auswertung dieses Parameters konnte kein signifikanter Unterschied der Pgp-Funktion im Hippocampus zwischen pharmakoresistenten und pharmakosensitiven epileptischen Tieren festgestellt werden (Abb. 15). Wie auch für andere Tracer diskutiert, könnten eventuell vorhandene größere Unterschiede in Bezug auf K\(_1\) allerdings durch die relativ schnelle Penetration des Tracers in das Gehirn vor Tariquidar-Behandlung maskiert worden sein (BARTMANN et al. 2010).


Als letzter Tracer wurde FDG verwendet. Dabei wurden die SUV-Werte jedoch lediglich nach Tariquidar-Applikation bestimmt (Abb. 23). Im Gegensatz zu den bisher beschriebenen Tracern wird FDG im Rahmen der PET nicht für die Untersuchung bestimmter Rezeptoren

Schlussfolgerung

Im Hinblick auf die Ergebnisse der immunhistochemischen Auswertung weisen sowohl der signifikante Unterschied der Pgp-Expression zwischen stimulierten Tieren und Kontrolltieren als auch die signifikante Korrelation der immunhistochemisch Pgp-markierten Fläche und der Anfallsfrequenz der Tiere analog zu früheren Studien darauf hin, dass die Anfallsaktivität der Epilepsiepatienten eine gesteigerte Pgp-Expression verursacht (SEEGERS et al. 2002b; LÖSCHER u. POTSCHKA 2005b). Dennoch werden weitere Studien nötig sein, da es sich bei der Pharmakoresistenz der Epilepsiepatienten um einen multifaktoriellen Prozess handelt, der bisher nicht vollständig aufgeklärt werden konnte. Die PET-Untersuchung, bei der die Pgp-Funktion \textit{in vivo} dargestellt werden kann, ist jedoch eine bedeutende Methode zur Selektion pharmakoresisterter Epilepsiepatienten. Durch die PET kann der Pgp-vermittelte Effluxtransport an der Blut-Hirn-Schranke in Individuen dargestellt werden, wodurch die Identifikation jener Patienten, bei denen eine Pgp-Überexpression zur Pharmakoresistenz

2. Prüfung der Wirksamkeit des Peptidmimetikums Cintrofin


Wie bereits im Jahr 2003 beschrieben (BRANDT et al. 2003), entwickelte auch in der vorliegenden Studie die Mehrzahl der Tiere infolge der Dauerstimulation einen sich selbst erhaltenden Status epilepticus (SSSE). Während der anhaltenden Anfallsaktivität werden eine Vielzahl akuter neuroplastischer Veränderungen induziert, die unter anderem neurodegenerative Prozesse mit einschließen (BRANDT et al. 2003). Die Cintrofin-Behandlung beeinflusste weder die Anfallsfrequenz noch die mittlere Anfallsdauer der Tiere (Kap. V.2.2). Daher ist anzunehmen, dass Cintrofin keinen antiepileptogenen Effekt besitzt.

Studien nötig sein, um die komplexen Veränderungen des Verhaltens im post-SE Modell besser interpretieren zu können.


In früheren Studien konnte bereits nachgewiesen werden, dass CNTF als endogener Modulator der hippocampale Neurogenese agiert, indem es sowohl die Zellproliferation als auch die neuronale Differenzierung steigert (EMSLEY u. HAGG 2003). Aufgrund dieser Datenlage wurde im Rahmen der vorliegenden Studie untersucht, ob das CNTF-mimetische
Peptid Cintrofin Epilepsie-assoziierte Veränderungen der hippocampalen Neurodegeneration und Neurogenese beeinflusst.


Behandlung zwar die Anzahl persistierender basaler Dendriten herabsetzte, zugleich jedoch keinen Effekt auf die Entwicklung spontan wiederkehrender Anfälle hatte, stützt die Hypothese, dass hilare basale Dendriten zu einer Übererregbarkeit des epileptischen Gehirns beitragen, nicht.


Schlussfolgerung

VII. Zusammenfassung

Vera Rußmann

Untersuchungen in einem Post-Status epilepticus-Modell:
Evaluierung eines positronen-emissions-tomographischen Verfahrens und Prüfung des Peptidmimetikums Cintrofin


Vor allem im Hinblick auf die Temporallappenepilepsie stellt die Pharmakoresistenz sowohl für die Veterinär- als auch die Humanmediziner ein schwerwiegendes Problem dar, da hierbei bis zu 80% der Patienten refraktär gegenüber Antiepileptika sind. Grundsätzlich ist davon auszugehen, dass es sich bei der Pharmakoresistenz um ein komplexes multifaktorielles Problem handelt. In den vergangenen Jahren wurden bereits mehrere Hypothesen formuliert, die sich mit den zugrundeliegenden Resistenzmechanismen beschäftigen. Als eine mögliche Ursache für das Auftreten von Pharmakoresistenzen bei Epilepsiepatienten wird die Überexpression sogenannter Multidrug-Transporter diskutiert, welche sich an der Blut-Hirn-Schranke befinden und dort den aktiven Transport in Richtung des kapillären Lumens vermitteln. Durch die Überexpression dieser Transporter kommt es bei pharmakoresistenten Epilepsiepatienten zu einem erhöhten Rücktransport der applizierten Antiepileptika in die Blutbahn. Dadurch kann trotz ausreichender Plasma-Konzentration des eingesetzten


Somit ist es mit der vorliegenden Dissertation gelungen, sowohl neuartige Tracer für eine vielversprechende bildgebende Methode zur Identifizierung pharmakoresistenter Epilepsiepatienten zu evaluieren als auch ein krankheitsmodifizierendes mimetisches Peptid zu finden.
VIII. Summary

Vera Rußmann

Research in a post-status epilepticus model:

evaluation of a positron emission tomographic imaging method and validation of the peptide mimetic Cintrofin

Epilepsies are a well known neurological problem in dogs and cats. Likewise, about 50 million people worldwide suffer from active epilepsy, a disorder characterized by spontaneous seizures. The pharmacotherapy of epilepsy requires a lifelong administration of antiepileptic drugs. However, in both veterinary and human medicine pharmacotherapeutic success cannot be achieved in 30% of epileptic patients. Insufficient control of epileptic seizures is associated with a severe reduction in quality of life as well as an increased risk of comorbidities, injuries and sudden death. Moreover, chronic lifelong administration of antiepileptic drugs is often followed by serious side effects that can even affect the quality of life of pharmacoresponsive patients. Due to the individual burden of epileptic patients and the socio-economic burden, a method to overcome pharmacoresistance as well as possibilities to prevent epileptogenesis would be desirable for the future.

As mentioned previously, drug resistance is a major concern in epilepsy treatment particularly in the temporal lobe epilepsy with up to 80% of patients being unresponsive to antiepileptic drugs. Pharmacoresistance is a complex multifactorial problem. In recent years, several hypotheses addressed the underlying mechanisms of pharmacoresistance. The overexpression of multidrug transporters is discussed as a putative reason for pharmacoresistance in epileptic patients. These transporters are located at the blood-brain barrier where they mediate the active transport into the lumen of the capillaries. In pharmacoresistant patients overexpression of these transporters can cause an increased efflux transport of antiepileptic drugs. As a result, an adequate drug concentration cannot be reached in the epileptic focus despite therapeutic plasma concentrations of the antiepileptic drug. The multidrug transporter P-glycoprotein (Pgp) seems to be the most important one in association with pharmacoresistance in epilepsy. Therefore, it was tested by PET investigations whether different radiopharmaceuticals are suitable for imaging Pgp function in a post-status epilepticus model. A radiopharmaceutical, which allows imaging of Pgp function in the nuclear medical diagnostics, might be used to study the underlying mechanisms of pharmacoresistance. Moreover, in the future those patients, who would benefit from treatment with Pgp-modulating drugs, might be identified with a respective imaging technique. According to the present results $[^{11}C]Quinidine$ and
[¹¹C]Laniquidar are suitable tracers for the evaluation of the Pgp function. However, further studies will be necessary to elucidate the exact mechanisms of the aforementioned compounds. Moreover, the significant correlation between the seizure frequency of the animals during the vehicle phase and the immunohistochemically detected expression of the multidrug transporter Pgp supports the hypothesis that the increased Pgp expression in pharmacoresistant epileptic patients is a consequence of uncontrolled seizures.

The majority of epilepsies is caused by symptomatic reasons like head traumas or strokes. In these cases the development of a hyperexcitable epileptic network seems to be a result of multiple molecular and cellular changes in the affected brain regions. Modulating these changes in the early phase after an initial brain injury might interrupt mechanisms of epileptogenesis and thereby prevent the development of epilepsy. Thus, a prophylactic antiepileptogenic therapy which averts epileptogenesis is of utmost interest. Recent studies demonstrated that CNTF plays an important role in the development of neuronal cells based on its trophic effects on parasympathetic, sympathetic and sensory neurons. One aim of this doctoral thesis was to evaluate the antiepileptogenic and disease-modifying potential of the CNTF-derived peptide mimetic Cintrofin and its impact on epilepsy-associated behavioural changes and cognitive deficits. The present study focussed on the impact of the CNTF-derived peptide mimetic Cintrofin on seizure-induced neuroplastic changes. Recent findings demonstrated that Cintrofin increases neuronal differentiation and promotes the survival of neurons in vitro. With regard to epilepsy, the results of the present study indicate that Cintrofin has a disease-modifying effect. In a post-status epilepticus model Cintrofin increased the reduction of anxiety-associated behaviour and improved learning and memory in a spatial learning paradigm. Furthermore, it was demonstrated that the treatment with Cintrofin resulted in a long-term effect on the number of neuronal progenitor cells and a reduced persistence of basal dendrites in status epilepticus-animals. With regard to the control animals Cintrofin treatment led to an increased activation of microglial cells. Moreover, Cintrofin did not show any neuroprotective effect. Further studies will be necessary to investigate whether the missing neuroprotective effect is due to the sequence or the dosage of Cintrofin.

In conclusion, the present study managed to find a disease-modifying peptide mimetic as well as to evaluate novel tracers for a promising imaging method to identify pharmacoresistant epileptic patients.
IX. Literaturverzeichnis

Structure and function of the blood-brain barrier.
Neurobiol Dis 37, 13-25

Astrocyte-endothelial interactions at the blood-brain barrier.
Nat Rev Neurosci 7, 41-53

ADLER, R., K. B. LANDA, M. MANTHORPE u. S. VARON (1979):
Science 204, 1434-1436

Drug distribution in dog brain studied by positron emission tomography.
Biopharm Drug Dispos 9, 567-577

Expression and cellular distribution of multidrug resistance-related proteins in patients with focal cortical dysplasia.
Seizure 16, 493-503

AKAMATSU, N. u. S. TSUJI (2011):
[Deep brain stimulation for epilepsy].
Brain Nerve 63, 365-369

Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway.
Cell 77, 63-71

ALTMAN, J. u. G. D. DAS (1965):
Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats.
J Comp Neurol 124, 319-335

Exposure to antiepileptic drugs does not alter the functionality of P-glycoprotein in brain capillary endothelial and kidney cell lines.
Eur J Pharmacol 628, 57-66


BALTES, S., M. FEDROWITZ, C. L. TORTOS, H. POTSCHKA u. W. LÖSCHER (2007a): Valproic acid is not a substrate for P-glycoprotein or multidrug resistance proteins 1 and 2 in a number of in vitro and in vivo transport assays. J Pharmacol Exp Ther 320, 331-343


Bioorg Med Chem 18, 5489-5497

Neuropoietic cytokines in the hematopoietic fold.
Neuron 7, 197-208

Ciliary neurotrophic factor recruitment of glucagon-like peptide-1 mediates neurogenesis, allowing immortalization of adult murine hypothalamic neurons.
FASEB J 23, 4256-4265

Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy.
Neuroscience 14, 375-403

Epilepsia 51, 676-685

Ciliary neurotrophic factor protects striatal neurons against excitotoxicity by enhancing glial glutamate uptake.
PLoS One 5, e8550

BLANCHARD, J., M. O. CHOبان, B. LI, F. LIU, K. IQBAL u. I. GRUNDE-IQBAL (2010):
Beneficial effect of a CNTF tetrapeptide on adult hippocampal neurogenesis, neuronal plasticity, and spatial memory in mice.
J Alzheimers Dis 21, 1185-1195

Positron emission tomography and ultrasonography. A comparative retrospective study assessing the diagnostic validity in lymph node metastases of malignant melanoma.
Arch Dermatol 131, 1394-1398

BLUMENFELD, H. (2011):
New strategies for preventing epileptogenesis: Perspective and overview.
Neurosci Lett
Ciliary neurotrophic factor/leukemia inhibitory factor/interleukin 6/oncostatin M family of cytokines induces tyrosine phosphorylation of a common set of proteins overlapping those induced by other cytokines and growth factors.  
J Biol Chem 269, 11648-11655

Neurobiol Dis 24, 202-211

Treatment with valproate after status epilepticus: effect on neuronal damage, epileptogenesis, and behavioral alterations in rats.  
Neuropharmacology 51, 789-804

Epileptogenesis and neuropathology after different types of status epilepticus induced by prolonged electrical stimulation of the basolateral amygdala in rats.  
Epilepsy Res 55, 83-103

Use of P-glycoprotein and BCRP inhibitors to improve oral bioavailability and CNS penetration of anticancer drugs.  
Trends Pharmacol Sci 27, 17-24

Combining antiepileptic drugs--rational polytherapy?  
Seizure 20, 369-375

BROOKS, D. J. (2005):  
Positron emission tomography and single-photon emission computed tomography in central nervous system drug development.  
NeuroRx 2, 226-236

Epilepsy.  
N Engl J Med 344, 1145-1151

BUCKMASTER, P. S. u. F. E. DUDEK (1999):  
In vivo intracellular analysis of granule cell axon reorganization in epileptic rats.  
J Neurophysiol 81, 712-721

Axon sprouting in a model of temporal lobe epilepsy creates a predominantly excitatory feedback circuit.  
J Neurosci 22, 6650-6658

Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat.  
Neuroscience 56, 337-344
When drugs and surgery don't work.  
Epilepsia 49 Suppl 9, 79-84

Anxiety- and activity-related effects of diazepam and chlordiazepoxide in the rat light/dark  
and dark/light tests.  
Behav Brain Res 85, 27-35

The impact of social support on health related quality of life in persons with epilepsy.  
Epilepsy Behav 16, 640-645

Synergistic effects of NGF, CNTF and GDNF on functional recovery following sciatic nerve  
injury in rats.  
Adv Med Sci 55, 32-42

Trophic factors counteract elevated FGF-2-induced inhibition of adult neurogenesis.  
Neurobiol Aging 28, 1148-1162

CHEN u. C. G. WASTERLAIN (2006):  
Status epilepticus: pathophysiology and management in adults.  
Lancet Neurol 5, 246-256

CHINCHURE, S., C. KESAVADAS u. B. THOMAS (2010):  
Structural and functional neuroimaging in intractable epilepsy.  
Neurol India 58, 361-370

CHOHAN, M. O., B. LI, J. BLANCHARD, Y. C. TUNG, A. T. HEANEY, A. RABE, K.  
Enhancement of dentate gyrus neurogenesis, dendritic and synaptic plasticity and memory by  
a neurotrophic peptide.  
Neurobiol Aging

New directions in PET neuroimaging for neocortical epilepsy.  
Adv Neurol 84, 447-456

CIPOLLA, M. J. (2009):  
The Cerebral Circulation.  
San Rafael (CA): Morgan & Claypool Life Sciences

CLINCKERS, R., I. SMOLDER, A. MEURS, G. EBINGER u. Y. MICHTOTTE (2005):  
Quantitative in vivo microdialysis study on the influence of multidrug transporters on the  
blood-brain barrier passage of oxcarbazepine: concomitant use of hippocampal monoamines  
as pharmacodynamic markers for the anticonvulsant activity.  
J Pharmacol Exp Ther 314, 725-731


LITERATURVERZEICHNIS


Ciliary neurotrophic factor: pharmacokinetics and acute-phase response in rat.  
Ann Neurol 35, 151-163

Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy.  
Epilepsia 42, 1501-1506

Expression of functional ciliary neurotrophic factor receptors in immortalized gonadotrophin-releasing hormone-secreting neurones.  
J Neuroendocrinol 17, 286-291

The course of cellular alterations associated with the development of spontaneous seizures after status epilepticus.  
Prog Brain Res 135, 53-65

EGUIBAR, J. R. u. C. CORTES METL (2010):  
[Absence epilepsy models in rodents].  
Gac Med Mex 146, 332-338

Modern management of epilepsy: a practical approach.  
Epilepsy Behav 12, 501-539

CLF associates with CLC to form a functional heteromeric ligand for the CNTF receptor complex.  
Nat Neurosci 3, 867-872

Cellular delivery of human CNTF prevents motor and cognitive dysfunction in a rodent model of Huntington's disease.  
Cell Transplant 6, 249-266

Protective effect of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington's disease.  
Nature 386, 395-399
Endogenous and exogenous ciliary neurotrophic factor enhances forebrain neurogenesis in adult mice.  
Exp Neurol 183, 298-310

ENGEL (2005):  
What is epilepsy? In: Epilepsy: A comprehensive textbook. Philadelphia: Lippincott-Raven 1-11

ENGEL (2006):  
Report of the ILAE classification core group.  
Epilepsia 47, 1558-1568

Expression of neurogenesis genes in human temporal lobe epilepsy with hippocampal sclerosis.  
Int J Physiol Pathophysiol Pharmacol 3, 38-47

A new hypothesis of drug refractory epilepsy: Neural network hypothesis.  
Med Hypotheses

Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE).  
Epilepsia 46, 470-472

Surgical treatment of epilepsy.  
Neuro Clin 19, 491-515


Physiologic and morphologic characteristics of granule cell circuitry in human epileptic hippocampus.  
Epilepsia 36, 543-558

Nerve growth factor promotes survival of new neurons in the adult hippocampus.  
Neurobiol Dis 26, 47-55

FROMM, M. F. (2000):  
P-glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs.  
Int J Clin Pharmacol Ther 38, 69-74


Molecular cloning and expression of cDNA encoding a murine myeloid leukaemia inhibitory factor (LIF).
EMBO J 6, 3995-4002

Leukemia inhibitory factor receptor is structurally related to the IL-6 signal transducer, gp130.
EMBO J 10, 2839-2848

A new rat model for vulnerability to epilepsy and autism spectrum disorders.
Epilepsia 49 Suppl 8, 108-110

Treatment of depressive disorders in epilepsy patients.
Epilepsy Behav 3, 2-9

GODDARD, G. V., D. C. MCINTYRE u. C. K. LEECH (1969):
A permanent change in brain function resulting from daily electrical stimulation.
Exp Neurol 25, 295-330

GOULD, E. (2007):
How widespread is adult neurogenesis in mammals?
Nat Rev Neurosci 8, 481-488

Absence of a general association between ABCB1 genetic variants and response to antiepileptic drugs in epilepsy patients.
Biochimie 92, 1207-1212

Psychiatric comorbidity, quality of life and social support in epileptic patients.
Nord J Psychiatry

Protective effect of trans-resveratrol against kainic acid-induced seizures and oxidative stress in rats.
Pharmacol Biochem Behav 71, 245-249

HAAS (2010):
Ciliary neurotrophic factor (CNTF)- activated astrocytes are protective in a mouse model of temporal lobe epilepsy.
FENS Abstr., vol.5, 106.14
HALL (1934):
Emotional behavior in the rat. I. Defecation and urination as measures of individual differences in emotionality.
J Comp Psychol. 18, 385-405

Effect of lamotrigine treatment on status epilepticus-induced neuronal damage and memory impairment in rat.
Epilepsy Res 46, 205-223

Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of 'fear'-motivated behaviour.
Naunyn Schmiedebergs Arch Pharmacol 327, 1-5

HASTINGS, N. B. u. E. GOULD (1999):
Rapid extension of axons into the CA3 region by adult-generated granule cells.
J Comp Neurol 413, 146-154

Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway.
Biochem J 334 ( Pt 2), 297-314

Post-injury delivery of rAAV2-CNTF combined with short-term pharmacotherapy is neuroprotective and promotes extensive axonal regeneration after optic nerve trauma.
J Neurotrauma

Unconditioned anxiety and social behaviour in two rat lines selectively bred for high and low anxiety-related behaviour.
Behav Brain Res 111, 153-163

HENRY (1996):
Functional neuroimaging with positron emission tomography.
Epilepsia 37, 1141-1154

HENRY, S. M. HUGHES u. B. CONNOR (2007):
AAV-mediated delivery of BDNF augments neurogenesis in the normal and quinolinic acid-lesioned adult rat brain.
Eur J Neurosci 25, 3513-3525

HERMAN, B. (2004):
Memory and its reorganization in temporal lobe epilepsy.
Epilepsy Curr 4, 139-140


ITO, S. u. H. OGUNI (2011):
[A Ketogenic Diet for Intractable Childhood Epilepsy; As an Early Option as well as a Last Resort.].
Brain Nerve 63, 393-400

JACOBS, B. L., H. VAN PRAAG u. F. H. GAGE (2000):
Adult brain neurogenesis and psychiatry: a novel theory of depression.
Mol Psychiatry 5, 262-269

Injury-induced CRMP4 expression in adult sensory neurons; a possible target gene for ciliary neurotrophic factor.
Neurosci Lett 485, 37-42

JESSBERGER, S., B. ROMER, H. BABU u. G. KEMPERMANN (2005):
Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells.
Exp Neurol 196, 342-351

Combined effects of epileptic seizure and phenobarbital induced overexpression of P-glycoprotein in brain of chemically kindled rats.
Br J Pharmacol 159, 1511-1522

JOHANNESSEN, S. I. u. C. J. LANDMARK (2010):
Antiepileptic drug interactions - principles and clinical implications.
Curr Neuropharmacol 8, 254-267

The relative impact of anxiety, depression, and clinical seizure features on health-related quality of life in epilepsy.
Epilepsia 45, 544-550

Anxiolytic effects of rapid amygdala kindling, and the influence of early life experience in rats.
Behav Brain Res 203, 81-87

JULIANO, R. L. u. V. LING (1976):
A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants.
Biochim Biophys Acta 455, 152-162

Receptor recognition sites of cytokines are organized as exchangeable modules. Transfer of the leukemia inhibitory factor receptor-binding site from ciliary neurotrophic factor to interleukin-6.
J Biol Chem 274, 11859-11867


Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies.
Epilepsia 51, 1069-1077

Early identification of refractory epilepsy.
N Engl J Med 342, 314-319

Refractory epilepsy: a progressive, intractable but preventable condition?
Seizure 11, 77-84

Refractory epilepsy: mechanisms and solutions.
Expert Rev Neurother 6, 397-406

Definition of refractory epilepsy: defining the indefinable?
Lancet Neurol 9, 27-29

Refractory seizures: try additional antiepileptic drugs (after two have failed) or go directly to early surgery evaluation?
Epilepsia 50 Suppl 8, 57-62

PET and SPECT in epilepsy: a critical review.
Epilepsy Behav 15, 50-55

LANDGRAF, R. u. A. WIGGER (2002):
High vs low anxiety-related behavior rats: an animal model of extremes in trait anxiety.
Behav Genet 32, 301-314

Pharmacoresistance in epilepsy: a pilot PET study with the P-glycoprotein substrate R-[11C]verapamil.
Epilepsia 48, 1774-1784

Synthesis and evaluation of [N-methyl-11C]N-desmethyl-loperamide as a new and improved PET radiotracer for imaging P-gp function.
J Med Chem 51, 6034-6043
LAZAROWSKI, A. u. L. CZORNYYJ (2011):  
Potential role of multidrug resistant proteins in refractory epilepsy and antiepileptic drugs interactions.  
Drug Metabol Drug Interact 26, 21-26

Multidrug resistance proteins in tuberous sclerosis and refractory epilepsy.  
Pediatr Neurol 30, 102-106

Differential regulation of ciliary neurotrophic factor (CNTF) and CNTF receptor alpha expression in astrocytes and neurons of the fascia dentata after entorhinal cortex lesion.  
J Neurosci 17, 1137-1146

LEE u. N. SALAMON (2009):  
[18F] fluorodeoxyglucose-positron-emission tomography and MR imaging coregistration for presurgical evaluation of medically refractory epilepsy.  
AJNR Am J Neuroradiol 30, 1811-1816

LEE, L. SCHLICHTER, M. BENDAYAN u. R. BENDAYAN (2001):  
Functional expression of P-glycoprotein in rat brain microglia.  
J Pharmacol Exp Ther 299, 204-212

Role of ciliary neurotrophic factor in microglial phagocytosis.  
Neurochem Res 34, 109-117

LEHMANN, K., M. BUTZ u. G. TEUCHERT-NOODT (2005):  
Offer and demand: proliferation and survival of neurons in the dentate gyrus.  
Eur J Neurosci 21, 3205-3216

Health-related quality of life (HRQOL), activity of daily living (ADL) and depressive mood disorder in temporal lobe epilepsy patients.  
Seizure 8, 88-92

Intractable epilepsy in adults.  
Epilepsy Res Suppl 5, 7-11

Purification, cloning, and expression of ciliary neurotrophic factor (CNTF).  
Science 246, 1023-1025

From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance.  
Cell Mol Life Sci 58, 931-959
Expression of ciliary neurotrophic factor (CNTF) and its tripartite receptor complex by cells of the human optic nerve head.
Mol Vis 13, 758-763

AMIDE: a free software tool for multimodality medical image analysis.
Mol Imaging 2, 131-137

LOGAN, J., J. S. FOWLER, N. D. VOLKOW, A. P. WOLF, S. L. DEWEY, D. J.
SCHLYER, R. R. MACGREGOR, R. HITZEMANN, B. BENDRIEM, S. J. GATLEY u. ET
AL. (1990):
Graphical analysis of reversible radioligand binding from time-activity measurements applied
to [N-11C-methyl]-(−)-cocaine PET studies in human subjects.
J Cereb Blood Flow Metab 10, 740-747

Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned-fear task.
Behav Neurosci 111, 104-113

LÖSCHER u. O. LANGER (2010):
Imaging of P-glycoprotein function and expression to elucidate mechanisms of pharmacoresistance in epilepsy.
Curr Top Med Chem 10, 1785-1791

LÖSCHER u. H. POTSCHKA (2005a):
Blood-brain barrier active efflux transporters: ATP-binding cassette gene family.
NeuroRx 2, 86-98

LÖSCHER u. H. POTSCHKA (2005b):
Drug resistance in brain diseases and the role of drug efflux transporters.
Nat Rev Neurosci 6, 591-602

LÖSCHER u. H. POTSCHKA (2005c):
Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases.
Prog Neurobiol 76, 22-76

New horizons in the development of antiepileptic drugs.
Epilepsy Res 50, 3-16

Animal models of intractable epilepsy.
Prog Neurobiol 53, 239-258

Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs.
Seizure
Role of multidrug transporters in pharmacoresistance to antiepileptic drugs.  
J Pharmacol Exp Ther 301, 7-14

It's time to revise the definition of status epilepticus.  
Epilepsia 40, 120-122

LUKASIUK, P. (2009):  
Seizure-induced gene expression.  
Encyclopedia of basic epilepsy research Oxford: Academic Press, 1302–1309

Several major antiepileptic drugs are substrates for human P-glycoprotein.  
Neuropharmacology 55, 1364-1375

The antiepileptic drug topiramate is a substrate for human P-glycoprotein but not multidrug resistance proteins.  
Pharm Res 26, 2464-2470

Nucl Med Biol 36, 643-649

MAEHARA, T. (2011):  
[Intraoperative Monitoring of epileptic foci: usefulness of multimodality image-guided epilepsy surgery performed in combination with electrocorticography].  
Brain Nerve 63, 321-329

Cyclosporin and organ specific toxicity: clinical aspects, pharmacogenetics and perspectives.  
Curr Clin Pharmacol 3, 166-173

MAIRINGER, S., T. ERKER, M. MULLER u. O. LANGER (2011):  
PET and SPECT Radiotracers to Assess Function and Expression of ABC Transporters in Vivo.  
Curr Drug Metab

Molecular cloning, sequence analysis, and functional expression of a novel growth regulator, oncostatin M.  
Mol Cell Biol 9, 2847-2853
MARCHI, N., G. GUISO, M. RIZZI, S. PIRKER, K. NOVAK, T. CZECH, C.
A pilot study on brain-to-plasma partition of 10,11-dihydro-10-hydroxy-5H-
dibenzo(b,f)azepine-5-carboxamide and MDR1 brain expression in epilepsy patients not
responding to oxcarbazepine.
Epilepsia 46, 1613-1619

Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are
surrounded by synaptic vesicles.
J Comp Neurol 406, 449-460

MARTIN, C., G. BERRIDGE, C. F. HIGGINS, P. MISTRY, P. CHARLTON u. R.
CALLAGHAN (2000):
Communication between multiple drug binding sites on P-glycoprotein.
Mol Pharmacol 58, 624-632

Genetically seizure-prone or seizure-resistant phenotypes and their associated behavioral
comorbidities.
Epilepsia 48 Suppl 9, 30-32

MCNAMARA (1994):
Cellular and molecular basis of epilepsy.
J Neurosci 14, 3413-3425

MCNAMARA u. R. W. SKELTON (1993):
The neuropharmacological and neurochemical basis of place learning in the Morris water
maze.
Brain Res Brain Res Rev 18, 33-49

Ivermectin sensitivity in collies is associated with a deletion mutation of the mdr1 gene.
Pharmacogenetics 11, 727-733

MING, G. L. u. H. SONG (2005):
Adult neurogenesis in the mammalian central nervous system.
Annu Rev Neurosci 28, 223-250

Antiepileptic drugs modulate P-glycoproteins in the brain: A mice study with (11)C-
desmethylloperamide.
Epilepsy Res 94, 18-25

Ultrastructural identification of dividing cells in the adult mammalian central nervous system.
J Neurosci Methods 119, 59-63


PA

PARDRIDGE, W. M. (2005): The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2, 3-14


Seizure-induced neurogenesis: are more new neurons good for an adult brain? 
Prog Brain Res 135, 121-131

Mechanisms and functional significance of aberrant seizure-induced hippocampal 
neurogenesis. 
Epilepsia 49 Suppl 5, 19-25

Attention deficit hyperactivity disorder in children with epilepsy. 
Brain Dev 32, 10-16

The rat brain in stereotactic coordinates. 
Academic Press, Sydney

Newborn neurons with hilar basal dendrites hallmark epileptogenic networks. 
Neuroreport 18, 585-589

Expression cloning of cardiotrophin 1, a cytokine that induces cardiac myocyte hypertrophy. 
Proc Natl Acad Sci U S A 92, 1142-1146

PHELPS, M. E. (2000): 
Positron emission tomography provides molecular imaging of biological processes. 
Proc Natl Acad Sci U S A 97, 9226-9233

Application of annihilation coincidence detection to transaxial reconstruction tomography. 
J Nucl Med 16, 210-224

PIERZCHALA, K. (2010): 
[Pharmacoresistant epilepsy - epidemiology and current studies]. 
Neurol Neurochir Pol 44, 285-290

PITKÄNEN, A. (2010): 
Therapeutic approaches to epileptogenesis--hope on the horizon. 
Epilepsia 51 Suppl 3, 2-17

Efficacy of current antiepileptics to prevent neurodegeneration in epilepsy models. 
Epilepsy Res 50, 141-160

PITKÄNEN, A., T. BOLKVADZE u. R. IMMONEN (2011): 
Anti-epileptogenesis in rodent post-traumatic epilepsy models. 
Neurosci Lett
PITKÄNEN, A. u. H. KUBOVA (2004):
Antiepileptic drugs in neuroprotection.
Expert Opin Pharmacother 5, 777-798

Molecular and cellular basis of epileptogenesis in symptomatic epilepsy.
Epilepsy Behav 14 Suppl 1, 16-25

PITKÄNEN, A. u. K. LUKASIUK (2011):
Mechanisms of epileptogenesis and potential treatment targets.
Lancet Neurol 10, 173-186

Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy.
Lancet Neurol 1, 173-181

Amygdala damage in experimental and human temporal lobe epilepsy.
Epilepsy Res 32, 233-253

POTSCHKA, H. (2010a):
Modulating P-glycoprotein regulation: future perspectives for pharmacoresistant epilepsies?
Epilepsia 51, 1333-1347

POTSCHKA, H. (2010b):
Pharmacol Ther 125, 118-127

POTSCHKA, H. (2010c):
Transporter hypothesis of drug-resistant epilepsy: challenges for pharmacogenetic approaches.
Pharmacogenomics 11, 1427-1438

POTSCHKA, H. (2010d):
Transporterhypothese der Pharmakoresistenz von Epilepsien.
Z Epileptol

Inhibition of multidrug transporters by verapamil or probenecid does not alter blood-brain barrier penetration of levetiracetam in rats.
Epilepsy Res 58, 85-91

P-glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major antiepileptic drug carbamazepine in the brain.
Neuroreport 12, 3557-3560


PRUT, L. u. C. BELZUNG (2003): The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463, 3-33

QIU, Y., D. ROBINSON, T. G. PRETLOW u. H. J. KUNG (1998): Etk/Bmx, a tyrosine kinase with a pleckstrin-homology domain, is an effector of phosphatidylinositol 3'-kinase and is involved in interleukin 6-induced neuroendocrine differentiation of prostate cancer cells. Proc Natl Acad Sci U S A 95, 3644-3649


RAO, M. S. u. A. K. SHETTY (2004): Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci 19, 234-246
RATHJE, PANKRATOVA u. V. BEREZIN A peptide derived from the CD loop-D helix region of ciliary neurotrophic factor (CNTF) induces neuronal differentiation and survival through binding to the leukemia inhibitory factor (LIF) receptor and the common cytokine receptor chain gp130.
European Journal of Cell Biology, in press

REDZIC, Z. (2011):
Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences.
Fluids Barriers CNS 8, 3

REGESTA, G. u. P. TANGANELLI (1999):
Clinical aspects and biological bases of drug-resistant epilepsies.
Epilepsy Res 34, 109-122

Molecular and cellular mechanisms of pharmacoresistance in epilepsy.
Brain 129, 18-35

RICHARDSON, M. (2010):
Update on neuroimaging in epilepsy.
Expert Rev Neurother 10, 961-973

Analysis of immunohistochemical label of Fos protein in the suprachiasmatic nucleus: comparison of different methods of quantification.
J Biol Rhythms 17, 121-136

Exploring the possible interaction between anti-epilepsy drugs and multidrug efflux pumps; in vitro observations.
Eur J Pharmacol 598, 1-8

J Neurosci 22, 5833-5839

Subcellular localization of transporters along the rat blood-brain barrier and blood-cerebrospinal-fluid barrier by in vivo biotinylation.
Neuroscience 155, 423-438

RODGERS, R. J. u. A. DALVI (1997):
Anxiety, defence and the elevated plus-maze.
Neurosci Biobehav Rev 21, 801-810


SANKAR, R. u. A. MAZARATI (2010): Neurobiology of Depression as a Comorbidity of Epilepsy. Epilepsia 51, 81


SCHUETZ, E. G., W. T. BECK u. J. D. SCHUETZ (1996):  
Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells.  
Mol Pharmacol 49, 311-318

[Effectiveness of bromide in therapy resistant epilepsy of dogs].  
Tierarztl Prax 19, 395-401

A neural cell adhesion molecule-derived fibroblast growth factor receptor agonist, the FGL-peptide, promotes early postnatal sensorimotor development and enhances social memory retention.  
Neuroscience 141, 1289-1299

Lack of effects of prolonged treatment with phenobarbital or phenytoin on the expression of P-glycoprotein in various rat brain regions.  
Eur J Pharmacol 451, 149-155

Lack of effects of prolonged treatment with phenobarbital or phenytoin on the expression of P-glycoprotein in various rat brain regions.  
Eur J Pharmacol 451, 149-155

Transient increase of P-glycoprotein expression in endothelium and parenchyma of limbic brain regions in the kainate model of temporal lobe epilepsy.  
Epilepsy Res 51, 257-268

Ciliary neurotrophic factor.  
J Neurobiol 25, 1436-1453

Newly generated dentate granule cells from epileptic rats exhibit elongated hilar basal dendrites that align along GFAP-immunolabeled processes.  
Neuroscience 136, 823-831

Structural changes for adult-born dentate granule cells after status epilepticus.  
Epilepsia 49 Suppl 5, 13-18

Molecular imaging of gene expression and protein function in vivo with PET and SPECT.  
J Magn Reson Imaging 16, 336-351


Hippocampus

Epilepsy Res 38, 207-216

STAFSTROM (2006): Behavioral and cognitive testing procedures in animal models of epilepsy. 

Science 267, 1349-1353

J Neurobiol 25, 1454-1466

J Neurosci 22, 9221-9227

Acta Neurol Scand 113, 139-155

Curr Neurol Neurosci Rep

Epilepsy Res 44, 207-212

Nature 342, 920-923
SYVÄNEN, S., G. LUURTSEMA, C. F. MOLTHOFF, A. D. WINDHORST, M. C.
(R)-[11C]verapamil PET studies to assess changes in P-glycoprotein expression and
functionality in rat blood-brain barrier after exposure to kainate-induced status epilepticus.
BMC Med Imaging 11, 1

TAGA, T. u. T. KISHIMOTO (1992):
Cytokine receptors and signal transduction.
FASEB J 6, 3387-3396

TERASAKI, T. u. K. HOSOYA (1999):
The blood-brain barrier efflux transporters as a detoxifying system for the brain.
Adv Drug Deliv Rev 36, 195-209

THOMAS (2010):
Idiopathic epilepsy in dogs and cats.

RAFFEL (1995):
MDR1 gene expression in brain of patients with medically intractable epilepsy.
Epilepsia 36, 1-6

TOURNIER, N., H. VALETTE, M. A. PEYRONNEAU, W. SABA, S. GOUTAL, B.
KUHNAST, F. DOLLE, J. M. SCHERRMANN, S. CISTERNINO u. M. BOTTLAENDER
(2011):
Transport of selected PET radiotracers by human P-glycoprotein (ABCB1) and breast cancer
resistance protein (ABCG2): an in vitro screening.
J Nucl Med 52, 415-423

Restricted transport of cyclosporin A across the blood-brain barrier by a multidrug
transporter, P-glycoprotein.
Biochem Pharmacol 46, 1096-1099

GAGE (2002):
Functional neurogenesis in the adult hippocampus.
Nature 415, 1030-1034

VAN VELDEN, F. H., R. W. KLOET, B. N. VAN BERCKEL, A. A. LAMMERTSMA u. R.
BOELLAARD (2009):
Accuracy of 3-dimensional reconstruction algorithms for the high-resolution research
tomograph.
J Nucl Med 50, 72-80

VAN VELDEN, F. H., R. W. KLOET, B. N. VAN BERCKEL, C. F. MOLTHOFF, A. A.
LAMMERTSMA u. R. BOELLAARD (2008):
Gap filling strategies for 3-D-FBP reconstructions of High-Resolution Research Tomograph
scans.
IEEE Trans Med Imaging 27, 934-942
VAN VLIET, E. A., S. REDEKER, E. ARONICA, P. M. EDELBROEK u. J. A. GORTER (2005): Expression of multidrug transporters MRP1, MRP2, and BCRP shortly after status epilepticus, during the latent period, and in chronic epileptic rats. Epilepsia 46, 1569-1580


LITERATURVERZEICHNIS


X. Anhang

1. Geräte

*Geräte für die Stimulation der basolateralen Amygdala*

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beobachtungskäfige (Glasaquarien)</td>
<td>Domes Aquaristik, München, Deutschland</td>
</tr>
<tr>
<td>Dentalbohrer</td>
<td>Fa. Karl Fischer, Pforzheim, Deutschland</td>
</tr>
<tr>
<td>EEG-Ableitung</td>
<td>AD-Instruments, Spechbach, Deutschland</td>
</tr>
<tr>
<td>Personalcomputer</td>
<td>Diverse Bezugsquellen</td>
</tr>
<tr>
<td>Stereotaktische Apparate</td>
<td>TSE Systems GmbH, Bad Homburg, Deutschland</td>
</tr>
<tr>
<td>Stimulations- und EEG- Kabel</td>
<td>Conrad Elektronik, München, Deutschland</td>
</tr>
<tr>
<td>Stimulationseinheit</td>
<td>World Precision Instruments, Berlin</td>
</tr>
<tr>
<td>(Accupulser Modell A310C und Stimulus Isolator A365)</td>
<td></td>
</tr>
</tbody>
</table>

*Geräte für die EEG- und Video-Überwachung*

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog-Digitalwandler PowerLab/800s</td>
<td>ADInstruments Ltd, Hastings, UK</td>
</tr>
<tr>
<td>CCD-Kameramodule</td>
<td>Conrad Electronic GmbH, Hannover, Deutschland</td>
</tr>
<tr>
<td>Digi-Protect Searcher 6.275 beta software</td>
<td>ABUS Security-Tech, Affing, Deutschland</td>
</tr>
<tr>
<td>EEG-Software Chart 5</td>
<td>AD-Instruments, Spechbach, Deutschland</td>
</tr>
<tr>
<td>Ein-Kanal-Verstärker Animal Bio Amp</td>
<td>AD-Instruments Ltd, Hastings, UK</td>
</tr>
<tr>
<td>CCD Industrie Tag/Nacht- Überwachungskamera</td>
<td>Sony, Berlin, Deutschland</td>
</tr>
</tbody>
</table>
**Weitere Geräte**

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farbkamera (AxioCam)</td>
<td>Carl Zeiss Microimaging GmbH, Jena, Deutschland</td>
</tr>
<tr>
<td>Gamma Counter</td>
<td>LKB Wallac, Turku, Finnland</td>
</tr>
<tr>
<td>Hochdruck-Flüssigkeitschromatograph (HPLC)</td>
<td>Knauer, Berlin, Deutschland</td>
</tr>
<tr>
<td>Immunhistoapparatur (Shandon Sequenza®)</td>
<td>Thermo Fisher Scientific GmbH, Dreieich, Deutschland</td>
</tr>
<tr>
<td>Konfokales Mikroskop LSM 510</td>
<td>Carl Zeiss Microimaging GmbH, Jena, Deutschland</td>
</tr>
<tr>
<td>Kryostat (HM560M)</td>
<td>Microm, Walldorf, Deutschland</td>
</tr>
<tr>
<td>Leica DMLB-Mikroskop</td>
<td>Leica, Bensheim, Deutschland</td>
</tr>
<tr>
<td>Objektträger Elka</td>
<td>Hartenstein, Würzburg, Deutschland</td>
</tr>
<tr>
<td>Objektträger Histobond®</td>
<td>Paula Marienfeld GmbH und Co. KG, Lauder-Königshofen, Deutschland</td>
</tr>
<tr>
<td>OD-Standard (Calibration of Step Tablet)</td>
<td>Eastman Kodak Company, USA</td>
</tr>
<tr>
<td>BH2-Mikroskop</td>
<td>Olympus, Japan</td>
</tr>
<tr>
<td>PET Scanner</td>
<td>CTI/Siemens, Knoxville, TN, USA</td>
</tr>
<tr>
<td>Reagenzglasschüttler REAX 2000</td>
<td>Heidolph Instruments GmbH &amp; Co.KG, Schwabach, Deutschland</td>
</tr>
<tr>
<td>Software EthoVision</td>
<td>Noldus, Niederlande</td>
</tr>
<tr>
<td>Stereo Investigator 6.0</td>
<td>MicroBrightField Europe, Magdeburg, Deutschland</td>
</tr>
<tr>
<td>Tierkäfige</td>
<td>EHRET GmbH &amp; Co. KG, Emmendingen, Deutschland</td>
</tr>
<tr>
<td>Videokamera (CCTV Camera)</td>
<td>Panasonic, Suzhou, China</td>
</tr>
</tbody>
</table>
2. Lösungen und Substanzen

Protokolle für die histologischen Methoden

Blocking-Lösung
• in Carrier-solution
• 11% Normalserum (Kaninchen, Esel)
• 2% BSA

Carrier-Lösung
• in TBS
• 1% Normalserum (Kaninchen, Esel)
• 1 % Rinderserumalbumin
• 0,3 % Triton X

Chrom-Gelatine-Lösung
• 0,7 g Gelatine + 0,07 g Chrom(III)–Kaliumsulfat-Dodecahydrat
• mit 100 ml Aqua dest. vermischen
• langsam auf 60 °C erhitzen, bis sich die Gelatine gelöst hat
• langsam abkühlen lassen
• eine Messerspitze Thymol dazu geben

DAB-Lösung
• Ansatz (entspricht 3,3 mg 3,3`-DAB)
• 4 ml Tris/Ni-Lösung

Färbelösung für Nissl (Thionin-) -Färbung
• 100 ml 1M Essigsäure + 36 ml 1M NaOH
• auf 1L mit Aqua dest. auffüllen
• auf 60 – 70 °C erhitzen
• darin 1,25 g Thionin lösen
• 1h auf dem Magnetrührer rühren
• anschließend heiß filtrieren
Formamid/SSC
• 4 x SSC: 20 x SSC 1:5 verd. + 0,06 M Natrium-Citrat-Dihydrat
• 2 ml 100% Formamid + 2 ml 4 x SSC

Gefriermedium
• 4,28 g Glucose
• 0,07 MgCl$_2$-Hexahydrat in 25 ml 0,1 M PBS lösen
• ad 50 ml Glycerin

0,01 M phospatgepufferte 0,9% ige Kochsalzlösung
• 0,9% NaCl
• 0,01 M Phosphatpuffer
• mit HCl auf pH 7,6 einstellen

0,4 M Phosphatpuffer (Stammlösung)
• in Aqua dest.
• 5,7% Na$_2$HPO$_4$
• 1,2% NaH$_2$PO$_4$
• mit 1 M NaOH auf pH 7,4 einstellen

0,05 M Tris gepufferte Saline (TBS)
• 0,9% NaCl
• 0,05 M Tris[hydroxymethyl]-aminomethan
• mit HCl auf pH 7,6 einstellen

Natrium-Citratpuffer
• 2,94 g Natrium-Citrat-Dihydrat auf 1000 ml Aqua dest.
• auf pH 9,0 einstellen

Nissl (Thionin-) -Färbung
• 3 min in 100% Alkohol
• 3 min in 95% Alkohol
• 3 min in 70% Alkohol
• 3 min in 100% Alkohol
• 3 min in Aqua dest.
• 75 – 95 s in Thionin
• 3 min in 50% Alkohol
• 3 min in 70% Alkohol
• 3 min in 95% Alkohol
• 3 min in 100% Alkohol
• 3 min in Terpineol/Xylol-Ersatzmedium 1:1
• 3 min in Xylol-Ersatzmedium
• 3 min in frisches Xylol-Ersatzmedium
• mit Entellan eindecken

4% Paraformaldehyd
• 8% Paraformaldehyd in Aqua dest. auf 60 – 70 °C erhitzen, anschließend abkühlen lassen
• mit 1 M NaOH Lösung klären
• filtrieren
• mit 0,2 M Phosphatpuffer auf 4%ige Lösung verdünnen

20 x SSC
• 3M NaCl (175,32 g/l) + 0,3M Natrium-Citrat-Dihydrat (88,23 g/l)

Tris/Ni-Lösung
• 6 g Ammonium-Nickelsulfat Hexahydrat auf 1000 ml TBS
• pH 7,6 kontrollieren
• bei 4°C lagern

Substanzen

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Bezugsquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceton</td>
<td>Carl Roth GmbH &amp; Co., Karlsruhe, Deutschland</td>
</tr>
<tr>
<td>Ammonium-Nickelsulfat-Hexahydrat</td>
<td>Sigma-Aldrich Chemie GmbH, München, Deutschland</td>
</tr>
<tr>
<td>Biotin-gekoppelter sekundärer Kaninchen-anti Maus-Antikörper</td>
<td>DAKO, Dänemark</td>
</tr>
<tr>
<td>Material</td>
<td>Lieferer</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>Biot. Esel-anti-Maus</td>
<td>Jackson Immuno Research, UK</td>
</tr>
<tr>
<td>Borsäure</td>
<td>Carl Roth GmbH &amp; Co., Karlsruhe, Deutschland</td>
</tr>
<tr>
<td>Bovines Serumalbumin</td>
<td>Sigma-Aldrich Chemie GmbH, München, Deutschland</td>
</tr>
<tr>
<td>Bromdesoxyuridin (BrdU)</td>
<td>Sigma-Aldrich Chemie GmbH, München, Deutschland</td>
</tr>
<tr>
<td>Bupivacain (JENAPHARM®)</td>
<td>mibe GmbH Arzneimittel, Brehna, Deutschland</td>
</tr>
<tr>
<td>Chloralhydrat</td>
<td>E.Merck AG, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>Chrom(III)–Kaliumsulfat-Dodecahydrat</td>
<td>Carl Roth GmbH &amp; Co., Karlsruhe, Deutschland</td>
</tr>
<tr>
<td>Cintrofin</td>
<td>GL Biochem Ltd., Shanghai, China</td>
</tr>
<tr>
<td>Cy3-konjugierter Esel-anti-Ratte</td>
<td>AbD serotec, UK</td>
</tr>
<tr>
<td>3,3’ Diaminobenzidin (DAB)</td>
<td>Carl Roth GmbH &amp; Co., Karlsruhe, Deutschland</td>
</tr>
<tr>
<td>Diaminobenzidin-Reaktionslösung (DAB Kit SK-4100)</td>
<td>Vector Laboratories, UK</td>
</tr>
<tr>
<td>Diazepam (Diazepam-ratiopharm®)</td>
<td>Heiland, Hamburg, Deutschland</td>
</tr>
<tr>
<td>Dinatriumhydrogenphosphat</td>
<td>Carl Roth GmbH &amp; Co., Karlsruhe, Deutschland</td>
</tr>
<tr>
<td>Einbettmedium (Tissue Tec Medium)</td>
<td>Leica Microsystems GmbH, Nussloch, Deutschland</td>
</tr>
<tr>
<td>Eindeckmedium (Entellan)</td>
<td>Fa. Merck AG, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>Essigsäure 99,8%</td>
<td>Carl Roth GmbH &amp; Co., Karlsruhe, Deutschland</td>
</tr>
<tr>
<td>Ethacridinlactat (Rivanol®)</td>
<td>WDT, Garbsen, Deutschland</td>
</tr>
<tr>
<td>Product</td>
<td>Supplier</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------------------------------------</td>
</tr>
<tr>
<td>Ethanol 99,8%</td>
<td>Carl Roth GmbH &amp; Co., Karlsruhe, Deutschland</td>
</tr>
<tr>
<td>Formamid</td>
<td>Sigma-Aldrich Chemie GmbH, München, Deutschland</td>
</tr>
<tr>
<td>Gelatine, gepulvert</td>
<td>E. Merck AG, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>Gentamicinsulfat</td>
<td>Carl Roth GmbH &amp; Co., Karlsruhe, Deutschland</td>
</tr>
<tr>
<td>Heparin</td>
<td>Pharmacy, Leiden University Medical Centre, Leiden, Holland</td>
</tr>
<tr>
<td>Isofluran (Isofluran CP®; wurde für die Versuche in Deutschland verwendet)</td>
<td>cp-pharma, Burgdorf, Deutschland</td>
</tr>
<tr>
<td>Isofluran (wurde für die Versuche in Holland verwendet)</td>
<td>Pharmachemie BV, Haarlem, Niederlande</td>
</tr>
<tr>
<td>Kaltpolymerisierender Kunststoff (Paladur®)</td>
<td>Heraeus Kulzer, Hanau, Deutschland</td>
</tr>
<tr>
<td>Magnesiumchlorid-Hexahydrat</td>
<td>Carl Roth GmbH &amp; Co., Karlsruhe, Deutschland</td>
</tr>
<tr>
<td>Marbocyl (Marbocyl® FD1%)</td>
<td>Vétoquinol, Ravensburg, Deutschland</td>
</tr>
<tr>
<td>Meloxicam (Metacam®)</td>
<td>Boehringer, Ingelheim, Deutschland</td>
</tr>
<tr>
<td>Monoklonaler Mausantikörper C219</td>
<td>Calbiochem, USA</td>
</tr>
<tr>
<td>Monoklonaler Maus-anti-NeuN</td>
<td>Millipore, UK</td>
</tr>
<tr>
<td>Monoklonaler Ratte-anti-BrdU</td>
<td>AbD serotec, UK</td>
</tr>
<tr>
<td>Natriumchlorid-Lösung (isoton)</td>
<td>B.Braun Vet Care GmbH, Tuttlingen, Deutschland</td>
</tr>
<tr>
<td>Natrium-Citrat-Dihydrat</td>
<td>Carl Roth GmbH &amp; Co., Karlsruhe, Deutschland</td>
</tr>
<tr>
<td>Natronlauge</td>
<td>E. Merck AG, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>Paraformaldehyd</td>
<td>Carl Roth GmbH &amp; Co., Karlsruhe, Deutschland</td>
</tr>
<tr>
<td>Pentobarbital</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim, Deutschland</td>
</tr>
<tr>
<td>Material</td>
<td>Hersteller/Ort</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------------------------------------</td>
</tr>
<tr>
<td>Phenobarbital</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim, Deutschland</td>
</tr>
<tr>
<td>Polyklonaler biot. Esel-anti-Ziege</td>
<td>Jackson Immuno Research, UK</td>
</tr>
<tr>
<td>Polyklonaler biot. Kaninchen-anti-Maus</td>
<td>Dako, Dänemark</td>
</tr>
<tr>
<td>Polyklonaler Maus-anti-CD68</td>
<td>AbD serotec, UK</td>
</tr>
<tr>
<td>Polyklonaler Ziege-anti-DCX</td>
<td>Santa Cruz, USA</td>
</tr>
<tr>
<td>reversed peptide</td>
<td>GL Biochem Ltd., Shanghai, China</td>
</tr>
<tr>
<td>Salzsäure (HCl)</td>
<td>Carl Roth GmbH &amp; Co., Karlsruhe, Deutschland</td>
</tr>
<tr>
<td>Serum (Kaninchen, Esel)</td>
<td>Vector Laboratories, UK</td>
</tr>
<tr>
<td>Streptavidin Cy2</td>
<td>Jackson ImmunoResearch, USA</td>
</tr>
<tr>
<td>Streptavidin-Meerrettich-Peroxidase (HRP)</td>
<td>SouthernBiotech, USA</td>
</tr>
<tr>
<td>Terpineol</td>
<td>Carl Roth GmbH &amp; Co., Karlsruhe, Deutschland</td>
</tr>
<tr>
<td>Tetracainhydrochlorid-Augentropfen (Ophthocain N)</td>
<td>Dr. Winzer Pharma GmbH, Berlin, Deutschland</td>
</tr>
<tr>
<td>Thionin (Acetate Salt)</td>
<td>Carl Roth GmbH &amp; Co., Karlsruhe, Deutschland</td>
</tr>
<tr>
<td>Toluol</td>
<td>Carl Roth GmbH &amp; Co., Karlsruhe, Deutschland</td>
</tr>
<tr>
<td>Tris[hydroxymethyl]-aminomethan</td>
<td>Carl Roth GmbH &amp; Co., Karlsruhe, Deutschland</td>
</tr>
<tr>
<td>Triton x – 100</td>
<td>Applichem, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>Thymol</td>
<td>Carl Roth GmbH &amp; Co., Karlsruhe, Deutschland</td>
</tr>
<tr>
<td>Vitagel Augengel (Vitagel®)</td>
<td>Bausch &amp; Lomb, Berlin, Deutschland</td>
</tr>
<tr>
<td>Wasserstoffperoxid</td>
<td>Applichem, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>Xylol-Ersatzmedium (Rotihistol®)</td>
<td>Carl Roth GmbH &amp; Co., Karlsruhe, Deutschland</td>
</tr>
</tbody>
</table>
Publikationen

Veröffentlichungen in internationalen Zeitungen

The CNTF-derived peptide mimetic Cintrofin attenuates spatial-learning deficits in a rat post-status epilepticus model.
Manuskript in Vorbereitung

Brain P-glycoprotein function can be studied using two novel PET radiotracers: $[^{11}\text{C}]$quinidine and $[^{11}\text{C}]$laniquidar.
Manuskript in Vorbereitung

Impact of the erythropoietin-derived peptide mimetic Epotris on the histopathological consequences of status epilepticus.
*Epilepsy Research*, 96 Issue 3: 241-249

The erythropoietin-derived peptide mimetic pHBSP affects cellular, behavioral and cognitive consequences in a rat post-status epilepticus model.
*Epilepsia*, 52 Issue 12: 2333-2343
Danksagung

An dieser Stelle möchte ich mich ganz herzlich bei all denjenigen bedanken, die auf verschiedene Weise zum Gelingen dieser Arbeit beigetragen haben.

Mein größter Dank gilt Frau Prof. Dr. Heidrun Potschka für die Überlassung dieser spannenden Themen, die gute Betreuung, die Anleitung zur experimentellen und neurowissenschaftlichen Forschung und die jederzeit gewährte konstruktive Unterstützung meiner Arbeit. Des Weiteren bedanke ich mich für die herzliche Aufnahme in ihre Arbeitsgruppe, das mir entgegengebrachte Vertrauen sowie die stetige Förderung meines beruflichen Werdegangs.


Frau Prof. Elisabeth Bock und Herrn Prof. Vladimir Berezin danke ich für die Bereitstellung des mimetischen Peptids und die gute Kooperation.

Stina Syvänen und dem gesamten Team der Division of Pharmacology Leiden/ Amsterdam Center for Drug Research danke ich für die herzliche Aufnahme in ihre Arbeitsgruppe und die Unterstützung meiner Arbeit.


Katharina Gabriel danke ich für die kompetente und stets fürsorgliche Pflege der Versuchstiere.


Meiner Freundin Lena danke ich dafür, dass sie trotz der teilweise sehr großen Entfernung immer ein offenes Ohr für mich hatte und mich stets mental unterstützte.
Diese Studie wurde unterstützt durch das 7. Forschungsrahmenprogramm der EU (EURIPIDES; Stipendium Nr. HEALTH-F5-2007-201380) sowie das Stipendium PO-681/5-1 der Deutschen Forschungsgemeinschaft (DFG).