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Abstract 

 

Essential information about the activity or even the mechanics of tectonic and erosional 

processes can be extracted from their surface expression. For this purpose, it is necessary to 

appropriately constrain the temporal as well as the spatial framework, in which to consider a 

specific process. While recently developed dating techniques, such as thermochronology or 

radiocarbon dating, allow to assess the age of landforms and therefore rates of tectonic and 

erosional processes, detailed spatial information is also required to assess these rates 

correctly. Due to a lack of appropriate topographic data in the past it was sometimes 

challenging to reliably approximate the spatial framework, because the size of a particular 

landform can often cover a wide range of spatial scales. Recently available, conventional 

topographic data, such as those of the Shuttle Radar Topography Mission, substantially 

improved the definition of an appropriate spatial framework due to their spatial coverage and 

resolution of down to less than 1 m. However, to constrain this framework at a detail beyond 

the resolution of several decimeter terrestrial laser scanning provides a highly efficient 

approach. This technique permits the rapid acquisition (within minutes) of tremendous 

amounts of topographic data with both, a high resolution of a few centimeters and a high 

accuracy of a few millimeters. High-resolution topographic maps of a certain area of the 

surface of the Earth are derived from individual laser-scanner measurements, that in turn 

allow to characterize the in-situ geomorphic setting at great detail. Moreover, repeated 

measurements of this area allow to quantify morphological changes thereby supporting the 

survey of surface processes on short-term scales ranging from days up to several years. The 

former approach is best suited for tectono- and the latter one for fluvial-geomorphic studies, 

and we present results from two case studies that are either based on single or repeated laser-

scanner measurements. In the first case, we combined field mapping and high-resolution 

digital elevation model (DEM) analysis to evaluate the detailed meter- to hundred meter-scale 

structure and surface expression of one flank of the Rex Hills pressure ridge in the western 

United States. Based on terrestrial laser scanning (Riegl LMS-Z420i


) we derived a DEM 

with cm-scale resolution and extracted high-resolution topographic cross-sections. This 

enabled us to identify fault scarps and determine their relative ages and geometry. In the 

second case, we carried out a detailed field mapping of erosion and sedimentation patterns in 

the Alp Valley, central Switzerland, to assess its Holocene evolution. Simultaneously, we 

conducted repeated high-resolution (less than 1 cm locally) laser-scanning surveys (Topcon 

TLS-1000


) along two tributaries, the Erlenbach and Vogelbach, to determine channel-

morphology changes and the nature of shortest-term sediment transport by comparing the 

individual DEMs derived from these measurements, as well as to evaluate the context to the 

longer-term evolution of the Alp Valley. Both case studies, however, highlight the potential of 

medium-range laser scanners with measurement distances of up to hundreds of meters. Such 

scanners are most appropriate to efficiently analyze closely-spaced fault scarps across a broad 

range of spatial scales, and to document complex morphologic changes in small mountainous 

torrents due to sediment transport. Moreover, terrestrial laser scanning is a key tool to monitor 

surface processes, but the insights gained from this method are generally evaluated best in the 

context of further data sets including geochronological, structural, subsurface, or climate data. 

Surface processes, in particular erosion, sediment transport, and deposition in sedimentary 

basins are intermittent in space and time challenging both, the appropriate definition of a 

spatiotemporal framework addressed above and a comprehensive process understanding. A 

major objective of this thesis is to contribute to a better understanding of scale linkage 
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concerning these processes. We therefore first carried out a comprehensive comparison of 

short- to long-term erosion measurements from the Alps based on an approach originally 

established to evaluate the significance of geologic and geodetic measurements along intra-

continental faults on time scales of millions to tens of years. In a second step, we re-assessed 

the sediment budget of the Alps, a data set that is usually considered to be an appropriate 

measure of long-term erosion in the Alps. The two major results of both studies indicate that: 

short- and medium-term erosion in the Alps over years to ten thousands of years is 

dominantly influenced by climate and weather variability, e.g., due to seasonal differences in 

the amount of precipitation; whereas long-term erosion over millions of years is controlled by 

tectonic processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 

 

Zusammenfassung 

 

Im Allgemeinen können aus der Gestalt der Erdoberfläche wesentliche Informationen über 

die Aktivität oder sogar Mechanik von Erosions- und tektonischen Prozessen gewonnen 

werden. Hierfür ist es unerlässlich den zeitlich-räumlichen Rahmen, innerhalb dessen ein 

bestimmter Prozess betrachtet werden soll, adäquat zu definieren. Während mit unlängst 

entwickelten Datierungsmethoden, wie der Thermochronologie oder der 

Radiokarbonaltersbestimmung, das Alter von Geländeformen und somit Raten von Erosions- 

und tektonischen Prozessen bestimmt werden können, sind dafür aber auch detaillierte 

räumliche Informationen erforderlich. Da geeignete topographische Daten in der 

Vergangenheit oft nicht vorhanden waren, war es nicht immer einfach den räumlichen 

Rahmen angemessen zu definieren, auch weil die Größe einer bestimmten Geländeform über 

mehrere Größenordnungen hinweg variieren kann. Gegenwärtig erleichtern konventionelle 

Topographiedaten, wie die der Shuttle Radar Topography Mission, die Definition des 

räumlichen Rahmens beträchtlich vor allen Dingen wegen ihrer räumlichen Abdeckung und 

Auflösung von bis zu weniger als 1 m. Um den räumlichen Rahmen nun aber in einem Detail 

definieren zu können, das jenseits einer Auflösung von mehreren Dezimetern liegt, bietet das 

terrestrische Laserscannen einen hoch effizienten Lösungsansatz. Mit dieser Technik können 

innerhalb von ein paar Minuten große Mengen topographischer Daten sowohl mit einer hohen 

Auflösung von wenigen Zentimetern als auch einer hohen Genauigkeit von wenigen 

Millimetern erhoben werden. Auf Grundlage einzelner Laserscannermessungen können 

hochaufgelöste, topographische Karten eines bestimmten Ausschnittes der Erdoberfläche 

generiert werden, die eine sehr detaillierte Charakterisierung der gegenwärtigen 

geomorphologischen Situation ermöglichen. Außerdem können durch wiederholte 

Vermessung desselben Ausschnittes Oberflächenänderungen quantifiziert werden, was 

wiederum das Monitoring von Oberflächenprozessen über Tage bis mehrere Jahre hinweg 

erlaubt. Der erste dieser beiden Ansätze ist für tektonische und der letztere für fluviatile 

geomorphologische Studien am besten geeignet. In dieser Dissertation werden nun die 

Ergebnisse zweier Fallstudien vorgestellt, die entweder auf der einmaligen oder wiederholten 

Anwendung eines terrestrischen Laserscanners beruhen. Für die erste Fallstudie haben wir 

eine geologische Geländekartierung mit der Analyse eines hochaufgelösten digitalen 

Höhenmodells (DHM) kombiniert, um die Struktur und Morphologie einer störungsbedingten 

Struktur, den Rex Hills in den westlichen USA, umfassend zu untersuchen. Mit Hilfe 

terrestrischer Laserscanner-Messungen (Riegl LMS-Z420i


) haben wir ein DHM mit einer 

Auflösung im cm-Bereich generiert, aus dem wir wiederum hochaufgelöste topographische 

Profile extrahiert haben. Anhand dieser Profile konnten wir Erdbeben bedingte Terrainstufen 

entlang einer Flanke der Rex Hills identifizieren sowie deren relative Alter und Geometrie 

erfassen. Für die zweite Fallstudie haben wir mittels einer detaillierten Kartierung von 

Erosions- und Sedimentationsmustern im Alptal in der zentralen Schweiz die Holozäne 

Entwicklung dieses Tales rekonstruiert. Gleichzeitig haben wir wiederholt hochauflösende 

(teilweise unter 1 cm) Laserscanner-Messungen (Topcon TLS-1000


) entlang der Nebenbäche 

Erlenbach und Vogelbach durchgeführt. Durch den Vergleich einzelner DHMs konnten wir 

morphologische Änderungen der Bachsohle und die Art des kurzfristigen Sedimenttransportes 

in beiden Bächen dokumentieren und einen Bezug zur längerfristigen Entwicklung des 

Alptales ableiten. Die Ergebnisse beider Studien verdeutlichen das Potenzial von 

Laserscannern mit Messdistanzen von mehreren Hundert Metern. Diese sind am besten für die 

effiziente Analyse eng beieinander liegender, Erdbeben bedingter Terrainstufen sowie die 

Charakterisierung komplexer, morphologischer Änderungen auf Grund von Materialtransport 
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in Wildbächen geeignet und das über mehrere räumliche Größenordnungen hinweg. Das 

terrestrische Laserscannen ist eine Schlüsseltechnologie, um Oberflächenprozesse zu 

überwachen, aber die Erkenntnisse, die mit dieser Methode gewonnen werden, sollten unter 

Einbeziehung weiterer Datensätze evaluiert werden. Dazu gehören u.a. geochronologische 

und strukturelle Daten oder auch Untergrund- und Klimadaten. 

Oberflächenprozesse insbesondere Erosion, Sedimenttransport und Ablagerung in 

Sedimentbecken sind ihrer Natur nach episodische Prozesse und das in Raum und Zeit. Dies 

erschwert einerseits ein umfassendes Prozessverständnis und andererseits die adäquate 

Definition des räumlich-zeitlichen Rahmens wie eben diskutiert. Ein Hauptziel dieser 

Dissertation ist es, zu einem besseren Verständnis der räumlich-zeitlichen Verknüpfung von 

Skalen bezüglich dieser Prozesse beizutragen. Daher haben wir zunächst einen detaillierten 

Vergleich von kurz- bis langfristigen Erosionsmessungen in den Alpen durchgeführt. Dieser 

Vergleich beruht auf einem Ansatz, der ursprünglich dazu verwendet wurde, die Bedeutung 

geologischer und geodätischer Messungen entlang intrakontinentaler Störungen über  

Zeiträume von Millionen von Jahren bis zu zehn Jahren zu evaluieren. Des Weiteren haben 

wir das Sedimentbudget der Alpen neu untersucht. Dieser Datensatz wird gewöhnlich als eine 

geeignete Messung der langfristigen Erosion in den Alpen betrachtet. Die zwei wichtigsten 

Ergebnisse dieser beiden Studien zeigen, dass über kurz- und mittelfristige Zeiträume von 

mehreren Jahren bis zehn Tausend Jahren Erosion in den Alpen wohl primär durch 

klimatische Variabilität beeinflusst wird, z.B. durch jahreszeitliche Unterschiede der 

Niederschlagsmenge; wohingegen über langfristige Zeiträume von Millionen von Jahren 

hinweg Erosion durch tektonische Prozesse kontrolliert wird. 
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1. Introduction 

 

1.1. Introduction 

 

Erosion and tectonics modify the surface of the Earth in a manner, that resulting changes 

often provide information about spatiotemporal process activity or process mechanics (e.g., 

Yeats et al., 1997). Fault scarps, for example, represent the most obvious surface expression 

of tectonic activity. Such scarps had been extensively studied to constrain fault kinematics as 

well as scarp-degradation processes (e.g., Wallace, 1977; Arrowsmith et al., 1998). Fault 

scarps are due to coseismic surface offset, and in postseismic times the initially relatively 

steep scarps tend to become less steep due to erosion of material at the top and deposition at 

the base of the scarp (Fig. 1.1). 

Or, fluvial channel patterns change in response to changes in sediment load, grain size of 

transported sediment, stream flow-velocity, or stream gradient (Fig. 1.2A; e.g., Schumm and 

Khan, 1971). It is common along a river course that braided rivers favored by high sediment 

loads and flow velocities change downstream into meandering rivers when stream gradient 

and sediment load decline (Fig. 1.2A; e.g., Burbank and Anderson, 2001). This behavior bears 

potential information about tectonic uplift patterns as suggested by experimental results (e.g., 

Fig. 1.2B; Ouchi, 1985), although each of the factors influencing channel patterns can be 

independent of tectonic activity (Burbank and Anderson, 2001). 

Conceptual landscape evolution models introduced in the past, such as the models of Davis 

(1899) and Penck (1953), hinge on assumptions about the timing of tectonic forcing. The 

former model assumes a short-lived, tectonically induced uplift in the beginning that results in 

the formation of topography during the 'youth' stage (Fig. 1.3A). Subsequently, erosion 

progressively lowers the topography during the stage of 'maturity' resulting in the formation 

of a peneplain during the 'old age' stage (Fig. 1.3A). The latter model assumes tectonically 

induced uplift increases from the beginning toward a maximum, and diminishes afterwards 

(Fig. 1.3B). This would result in the gradual growth of topography toward a maximum stage 

of relief. Erosion is presumed to affect the uplifting region during the building of topography, 

to exceed uplift when it diminishes, and to progressively lower topography at the end (Fig. 

1.3B). However, in the absence of a chronological framework these models remained 

unconstrained and therefore speculative (Burbank and Anderson, 2001). New techniques 

developed during the last decades, including thermochronology, cosmogenic nuclide or 

radiocarbon dating, allow now to constrain the age of landforms, and hence to assess the rates 

of tectonic and erosional processes (e.g., Burbank and Anderson, 2001). 

Apart from temporal constraints, however, detailed spatial information is also required to 

assess these process rates appropriately. This demand is exemplarily emphasized in chapter 

IV, in which we re-evaluated the sediment budget of the Alps (Kuhlemann et al., 2001, 2002). 

This is based on the assumption that material deposited in all circum-Alpine sedimentary 

basins is solely derived from the Alps, which allows to determine erosion rates in the Alps. 

However, we observed two phases in the spatiotemporal Alpine erosion-deposition pattern. 

Sediments were deposited in proximal basins during the first phase, whereas deposition 

occurred in distal basins during the second phase. Apparently, sediments have not been 

derived solely from the Alps during the latter phase, they had also been derived from the area 

of the proximal basins. This implies a drastic increase of the potential erosion area. Therefore, 

the basic assumption of the sediment budget is valid during the first phase when the spatial 

framework is appropriately defined by erosion of material occurring in the Alps and its 

deposition in the proximal basins. In contrast, this assumption is presumably invalid during 

the second phase due to the increase of the potential erosion area. Hence, the spatial 

framework needs to be re-defined to constrain erosion rates in the Alps correctly. Erosion of 

http://dict.tu-chemnitz.de/english-german/exemplarily.html
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Alpine material occurred in the Alps and proximal basins and was deposited in the distal 

basins. 

The definition of a suitable spatial framework primarily depends on the size of a specific 

landform that can often cover a broad range of spatial scales. To proceed with the fault-scarp 

example mentioned above (Fig. 1.1), such scarps range in height from only a few cm – up to 

25 cm high scarps formed near Lompoc in the NW Transverse Ranges, California, during a 

ML 2.5 earthquake that occurred on 7 April 1981 (Yerkes et al., 1983); or coseismic radar 

interferograms yielded a displacement of 56 cm related to the 28 June 1992 MW 7.3 Landers 

earthquake (Massonnet et al., 1994) – up to tens of metres – a more than 45 m high scarp had 

been reported along the NW flank of the Humboldt Range, Nevada, that is most likely due to 

the occurrence of repeated earthquakes along the fault (Wallace, 1977). 

Recently available, topographic data facilitate the definition of an appropriate spatial 

framework because of their spatial coverage and resolution. On one hand, such data comprise, 

for example, satellite imagery or Shuttle Radar Topography Mission (SRTM) data with a 

global coverage of continental topography and a resolution ranging from tens of metres – e.g., 

90 m for STRM data – down to less than 1 m for satellite imagery (e.g., Li, 1998). On the 

other hand, these data also comprise sets of limited spatial coverage such as airborne Light 

Detection And Ranging (LiDAR) data or aerial photography (Fig. 1.4A; e.g., Heritage and 

Hetherington, 2007). All these data are commonly based on either remote sensing or airborne 

data-acquisition techniques, and they can replace field-based labor-intensive techniques, such 

as plane-table measurements carried out by e.g., Hudnut and Sieh (1989), or GPS leveling 

utilized by e.g., Carretier et al. (2002) and Friedrich et al. (2004). Furthermore, they are 

particularly suited for detailed mapping purposes, e.g., to constrain fault patterns, drainage 

networks, or the distribution of landforms such as moraines. 

To approximate the spatial framework at a detail beyond the resolution of several 

decimeter terrestrial laser scanning provides an efficient approach (Fig. 1.4A; e.g., Large and 

Heritage, 2009). This technique enables the detailed mapping of morphologic characteristics 

of individual landforms that cannot be derived when mapping is based on satellite imagery or 

similar data. For example, the latter allows to map drainage networks as mentioned above, 

and at most to map the outlines of gravel bars along a river bed. In contrast, the application of 

terrestrial laser scanning allowed to determine the grain-scale topography of such gravel bars 

(Entwistle and Fuller, 2009; Hodge et al., 2009).  
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Fig. 1.1 (A) Simplified geomorphic development of a normal fault-scarp. (B) Conceptual geomorphic evolution 

of a reverse fault scarp (simplified after Carretier et al., 2002). 
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Fig. 1.2 (A) Changing fluvial channel patterns in response to variations in sediment load, grain size of 

transported material, stream flow-velocity, or stream gradient (simplified after Burbank and Anderson, 2001). 

(B) Map of an exemplary drainage network to demonstrate that river patterns provide potential information about 

regional tilting due to tectonic processes. Rivers meander due to a higher gradient west of the tilt axis, whereas 

they are straight east of it due to a lower gradient. Hence, this region appears to be tilted toward the east. 

 

 

 

 

 

Fig. 1.3 Conceptual models of landscape evolution (simplified after Burbank and Anderson, 2001). (A) Model of 

Davis (1899): After short-lived uplift and building of topography, erosion results in the progressive reduction of 

relief through time. (B) The model of Penck (1953) is based on the relationship between erosion and uplift. The 

initial uplift is slow, followed by first accelerated, then decelerated uplift, and finally by quiescence. Erosion 

affects the uplifting region during building of topography, exceeds uplift when it diminishes, and progressively 

lowers topography at the end. 
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← PREVIOUS PAGE 

Fig. 1.4 (A) Spatial and short-term scale coverage of terrestrial laser scanning is shown in black (modified after 

Heritage and Hetherington, 2007). Various types of laser scanners (red ellipses: I – long range, II – medium 

range, III – short range) allow for observation of Earth surface processes across a broad range of spatial scales. 

Single measurements, the 'static' approach in the text, provide high-resolution topographic base maps, and allow 

to characterize the in-situ geomorphic situation of a certain area. Repeated measurements, the 'dynamic' 

approach in the text, allow to monitor surface processes on short-term scales of days to years. For comparison, 

gray colored items indicate spatial and temporal limitations of conventional geomorphic surveying techniques 

(modified after Heritage and Hetherington, 2007). However, terrestrial laser scanning covers spatial and 

temporal scales that cannot be considered by the common approaches. (B) Spatiotemporal scales of geomorphic 

process activity including both, erosional and tectonic processes, are outlined in black to be compared with the 

methodological scale coverage shown in Figure 1.4A. Spatiotemporal scales of selected erosional processes are 

highlighted in light gray. Large floods flush sediment to coastal areas that are often more than 1000 km away 

from the river head (e.g., Frostick and Jones, 2002), whereas even small streams can transport large amounts of 

material during a short time (e.g., Wolman and Miller, 1960). Hill-slope erosion comprises mass-wasting 

processes, such as sudden landslides and rock-fall, or slow soil creep, which can affect only certain areas of a 

hill-slope or entire mountain flanks (e.g., Trenhaile, 2007). Spatiotemporal scales of tectonic processes are 

shown in dark gray to illustrate the significance of different scales. Time-scale constraints of the latter 

approximated after Friedrich et al. (2003). In summary, modern airborne and terrestrial survey-technologies 

shown in Figure 1.4A have a temporal limit to monitor geomorphic processes, so that especially their short-term 

activity can be measured and evaluated using these techniques. 
 

 

1.2. High-Resolution Topography Data from Terrestrial Laser Scanning 

 

1.2.1. Evolution of the Discipline 

 

Plane Table, Theodolite, and Remote Sensing Techniques 

 

In past and modern times, the technical progress of field surveying disciplines supported 

scientific progress. Newly acquired data allowed new observations which in turn improved 

the understanding of Earth surface processes. In the 1970s, for example, while new 

developments in spaceborne remote-sensing technologies permitted a systematic observation 

of the Earth's surface at a global scale, scientists recognized the growing need to study the 

Earth as a complex system of processes that operate over a variety of spatiotemporal scales 

(Fig. 1.4; e.g., Salomonson et al., 2006). However, a brief review of a few surveying 

techniques including exemplary applications illustrates this evolution. 

On one hand, conventional surveying comprise traditional, graphical methods with manual 

data acquisition such as the plane table. On the other hand, they comprise more recent 

terrestrial techniques such as the theodolite, and modern remote sensing technologies 

including satellite imagery etc. The latter type of survey technique also allows an automated 

data acquisition without field work. Hence, technical progress is generally time saving by 

reducing labor-intense field work, and it is economic by reducing financial efforts (e.g., Large 

and Heritage, 2009). 

The plane table is a rotatable drawing board usually mounted horizontally on a tripod and 

set up above a certain point (e.g., Ritchie et al., 1988). A so-called alidade, often a rule with a 

telescopic sight, allows to sight objects of interests and to perform a graphical triangulation in 

the field. Thus, topographic information of a study site can be directly obtained. Prior to 

detailed mapping with a plane table it is recommended to define a set of control points, whose 

coordinates or relative positions are known in order to prevent the accumulation of errors 

associated with the graphical triangulation. However, plane tables had been traditionally used, 

for example, to survey beach profiles (Duncan Jr., 1964) or for geologic mapping purposes 

(e.g., Holmes and Page, 1956). 

http://en.wikipedia.org/wiki/Ruler
http://en.wikipedia.org/wiki/Telescopic_sight
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Theodolites were the most commonly used survey instrument prior to the establishment of 

laser-scanning sensors, and they are still one of the standard tools owing to their versatility, 

accuracy and ease of operation (Fig. 1.4A; Large and Heritage, 2009). Furthermore, a 

theodolite is an Electromagnetic Distance Measuring (EDM) device enabling two basic 

operations; it measures angles in horizontal and vertical planes (e.g., Ritchie et al., 1988). 

Surveys using this instrument were carried out in the field, for example, to determine fault-

creep rates (Galehouse, 2002), to monitor the topographic growth of volcanoes (e.g., Nakada 

et al., 1995), or to measure the orientation of geological structures (e.g., Gross et al., 1997). 

Remote sensing, an equivalent term for observing the Earth at some distance, developed 

rapidly (e.g., Liang, 2008). These techniques provide manifold data of the surface of the Earth 

that can be used to monitor surface processes with a high spatial coverage (Fig. 1.4). Prior to 

the 1970s, black and white aerial photographs had been used for terrain analysis over several 

decades (Fig. 1.4A; Townsend, 1981). In contrast, newer techniques became available starting 

in the 1970s. Sensors carried by satellites or airplanes generally record electromagnetic 

radiation that has been reflected or emitted by the Earth's surface, and that has been subject to 

modification by the atmosphere (e.g., Hardy, 1981). However, satellite based sensors 

comprise, for example, microwave (radar) and optical (lidar) devices (Salomonson et al., 

2006), and airborne based sensors comprise photographic devices (Fig. 1.4A; e.g., Hardy, 

1981). 

 

Terrestrial Laser Scanning 

 

Since the development of the first terrestrial laser scanner in 1999 (e.g., Large and 

Heritage, 2009), laser scanning has developed into an effective and widely utilized tool in 

geomorphology to provide high-resolution topographic maps, and to monitor surface 

processes (e.g., White and Jones, 2008; Large and Heritage, 2009). This technique is simply 

based on the emission of a laser beam and its reflection from the terrain surface to depict a 

certain area in 3-D. The method generally allows the rapid acquisition (within minutes) of 

large amounts of topographic data with both, a high resolution of up to a few cm and a high 

accuracy of a few mm (e.g., Buckley et al., 2008). This provided the great opportunity to 

derive high-density spatial information across landscapes that are unsuited for conventional 

surveying due to their inaccessibility and spatial extent (Large and Heritage, 2009). 

Terrestrial laser-scanning applications cover a broad range of spatial and short-term scales 

that are otherwise not considered (Fig. 1.4A; e.g., Milan et al., 2007). Single laser-scanner 

measurements represent the base for high-resolution topographic maps, that allow to describe 

the in-situ geomorphic setting of a certain area at great detail (Fig. 1.4A). This herein called 

'static' approach is most appropriate for tectono-geomorphic studies, e.g., to reconstruct the 

rupture pattern along a fault segment or to determine fault displacements (Fig. 1.4B; e.g., 

Oldow and Singleton, 2008; Wilkinson et al., 2010). In contrast, repeated measurements of a 

certain area allow to quantify changes, which facilitates the monitoring of surface processes 

on short-term scales ranging from days up to several years (Fig. 1.4A). This 'dynamic' 

approach is therefore most suitable for fluvial-geomorphic studies, e.g., to measure erosion 

and aggraddation of material along a river bed (Fig. 1.4B; e.g., Milan et al., 2007; Heritage 

and Hetherington, 2007). 

The availability of various scanner types allow for measurements of variable resolution 

across a broad range of spatial scales (Fig. 1.4A). Short-range scanners, such as the VIVID-

910


 (Konica Minolta), measure across distances of only a few m with mm-scale resolution, 

and are therefore particularly suited to monitor surface processes at areas of several 

squaremeters or even less in size (e.g., Baran, 2005, unpublished diploma thesis). In contrast, 

long-range scanners, such as the LMS-Z620


 (Riegl), with measurement distances of up to 

several km are well suited to monitor landslides (e.g., Dunning et al., 2009) and areas of rock-
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fall (e.g., Abellán et al., 2010) that can cover entire mountain flanks. However, medium-range 

scanners, such as the TLS-1000


 (Topcon) or LMS-Z420i


 (Riegl), measure across distances 

ranging from 1 m up to hundreds of m with cm-scale resolution. Due to this flexibility, the 

latter type of scanner is best suited for applications in various geomorphic settings as 

demonstrated in this project.  

 

1.2.2. Tectonic Geomorphology – 'Static' Studies 

 

There are two fields of tectonic research, in which terrestrial laser scanning had been 

utilized (e.g., Wei et al., 2010; Pollyea and Fairley, 2011). The first one comprises the 

detailed analysis of fault and fracture surfaces. These surfaces often display irregularities, 

such as bumps, or long wavelength and low amplitude curvatures, which can have major 

effects on the mechanical behavior of a fault during coseismic slip (Sagy et al., 2007; Jones et 

al., 2009). Moreover, a better understanding of the interaction between this irregular geometry 

and fault kinematics is required to improve the knowledge of processes including reactivation 

of faults, and fluid flow in faulted reservoirs (e.g., Jones et al., 2009). However, the 3-D 

geometry of fault and fracture surfaces was rarely quantified in the past beyond a dm-scale 

resolution mainly due to the usage of labor-intense techniques, such as the plane table or 

theodolite, so that these features had often been examined in 1-D transects or 2-D maps (e.g., 

Olariu et al., 2008). So far, a few studies had been carried out to image and analyze fault and 

fracture surfaces in 3-D with a resolution of less than 10 cm based on measurements with 

terrestrial laser scanners (e.g., Renard et al., 2006; Sagy et al., 2007; Olariu et al., 2008; Jones 

et al., 2009). 

The second field of research is the detailed reconstruction of spatial rupture and 

displacement patterns along fault systems. Laser-scanner measurements were conducted to 

supplement the reconstruction of fault-rupture histories covering longer time-scales of several 

earthquake cycles, and short-term scales of postseismic deformation. Wilkinson et al. (2010), 

the short-term scale example, monitored the postseismic deformation on and near the surface 

rupture of the L’Aquila earthquake (MW 6.3) from 6
th

 April 2009 in central Italy based on 

repeated laser-scanner surveys 8–124 days after the earthquake. Oldow and Singleton (2008), 

the long-term scale example, applied laser scanning in the Alvord basin along the 

northwestern margin of the Great Basin, USA, where ancient wave-cut terraces of the former 

Lake Alvord were crosscut by normal faults. They determined the late Pleistocene and 

Holocene fault displacement based on the terrace offset across these faults. 

The latter example illustrates that the acquisition and interpretation of data in the field is 

generally facilitated where tectonically induced surface deformation, i.e., fault scarps, are 

exposed in areas of simple and uniform topography. In contrast, this is challenging when fault 

scarps are superimposed on complex and dissected topography. Such topography is 

commonly observed in flower structures, which are important to evaluate the evolution and 

linking of strike-slip fault systems (e.g., Sylvester, 1988; Cowgill et al., 2004a, 2004b). Here, 

we combined detailed field mapping and high-resolution digital elevation model (DEM) 

analysis to evaluate the structure and surface expression of one flank of the Rex Hills pressure 

ridge (Fig. 1.8). Based on terrestrial laser scanning using the scanner LMS-Z420i


 (Riegl), we 

derived a detailed DEM with a cm-scale resolution and extracted high-resolution topographic 

cross-sections, that allowed us to study the complex high-resolution fault-scarp morphology 

across a flower structure despite the absence of subsurface data (chapter I). 

 

1.2.3. Fluvial Geomorphology – 'Dynamic' Studies 

 

Terrestrial laser-scanning in fluvial environments had been conducted to characterize the 

grain-scale topography of gravel-bed rivers (e.g., Entwistle and Fuller, 2009), and to monitor 



22 

 

morphologic changes along channel beds due to the erosion and deposition of material (e.g., 

Milan et al., 2007; Heritage and Hetherington, 2007). The actual surface morphology of 

gravel-bed channels is a key component of the fluvial system that also influences sediment 

transport (Hodge et al., 2009). In the past, it was difficult to quantify this effect appropriately 

by using methodologies, such as profilers or photogrammetry, due to an inadequate data 

density (Fig. 1.4A; Milan et al., 2007; Hodge et al., 2009). It requires grain-scale elevation 

data of in-situ fluvial gravel surfaces that are difficult to obtain (Hodge et al., 2009). So far, 

only a few detailed studies evaluate the suitability of terrestrial laser scanning in this context 

(e.g., Hodge et al., 2009; Entwistle and Fuller, 2009). These studies then focus on describing 

the in-situ setting captured by a scan, or they consider only short-term scales of a few days in 

length (e.g., Milan et al., 2007). However, the significance of such measurements is rarely 

evaluated in the context of longer geological time-scales. The case study presented here 

therefore focuses on the context between short-term sediment transport measured with laser 

scanners in small gravel-bed streams and mountainous landscape evolution since the last 

glacial maximum (LGM; chapter II). 

In the Alps, landscape response to glacier retreat following the LGM had often been 

evaluated on a long-term scale of thousands of years (e.g., Hinderer, 2001). However, long-

term erosion measurements often represent averaged values without considering its short-term 

event character (e.g., Wittmann et al., 2007). In contrast, even small streams can transport 

large amounts of material during a short time (e.g., Wolman and Miller, 1960), but the 

cumulative effect of such short-term erosion events for longer time-scales is rarely 

considered. To bridge this gap, we carried out detailed geomorphic-geologic mapping based 

on a LiDAR DEM to best constrain the post-glacial evolution of the Alp Valley located in the 

northern Swiss Prealps (Fig. 1.9B). We then compared it with results derived from repeated 

laser-scanner surveys (TLS-1000


, Topcon, and ScanStation


, Leica) in the Erlenbach and 

Vogelbach channel beds to monitor short-term sediment transport at a cm-scale resolution 

(Fig. 1.9B). 

 

1.2.4. Measurements and Data Processing 

 

The basic field work with the medium-range laser scanners used in this study – LMS-

Z420i


 (Riegl), TLS-1000


 (Topcon), and ScanStation


 (Leica) – follows a simple and 

established principle (e.g., Bonnaffe et al., 2007; Buckley et al., 2008). The particular scanner 

is mounted on a tripod at the first scan position (Fig. 1.5). The scanner power was taken either 

from an external battery (e.g., LMS-Z420i


, Riegl; Fig. 1.5A) or an internal set of batteries 

(e.g., TLS-1000


, Topcon). The scanning procedure was easily controlled with a laptop, and 

both, a wireless and a default wire-lead data transmission between scanner and laptop were 

possible. In case of the Topcon scanner TLS-1000


, a control panel also allowed the manual 

operation of the scanner, and data were stored directly on a memory card. Furthermore, two of 

the laser scanners – the LMS-Z420i


 (Riegl) and TLS-1000


 (Topcon) – carried a digital 

camera allowing a later combination of scans and photographs (Fig. 1.5A). During scanning, 

each scanner can rotate 360° around a vertical axis (Fig. 1.5A). While a scanner was set up at 

its position, several reflectors were distributed as marker points in the region of interest to 

avoid distortions during subsequent DEM generation (Fig. 1.5B). Following a calibration 

process for scanner and camera (definition of scan resolution, scan window etc.), the first scan 

was performed at position P1 while the camera took pictures of the scanned area (Fig. 1.5B). 

The scanner was then moved to the next position (P2; Fig. 1.5B). At least three reflectors 

(black circles in Fig. 1.5B) need to be located in the overlapping region between scans P1 and 

P2 (marked by ellipse in Fig. 1.5B). Using the scanner software packages, it was possible to 

search for such overlapping marker points within individual scans and thereby link these 
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scans to form a merged data set covering a larger area. This procedure was repeated until the 

area of interest was completely covered. 

The basic result of such laser-scanner measurements was a large point cloud with a cm-

scale resolution and an accuracy of approximately ±5 cm or less (1 σ). Such a point cloud 

provides the basis for the subsequent data processing. The specific details on using the 

individual laser scanners and associated software packages during data processing are further 

outlined in chapters I and II. In this study, however, there are differences concerning the 

scanning procedure and subsequent data processing when applying a laser scanner in a 

tectonic or fluvial setting. 

For the tectonic application (chapter I), the resulting point cloud with cm-scale resolution 

mentioned above represents the basis for a DEM. The surface of the generated DEM is 

defined by a triangulated irregular network (TIN), in which the points define the triangle 

corners (Fig. 1.6A). Clearly, the size and number of triangles depend on point density and 

terrain complexity (e.g., red circle in Fig. 1.6A). For the purpose to examine the surface 

expression of tectonic processes, geo-referencing of the DEM into global coordinates was not 

necessary. Furthermore, this DEM permitted the extraction of detailed sub-data sets, e.g., in 

the form of topographic cross-sections, and the identification and analysis of subtle features 

not obvious in the field. 

In contrast to the tectonic application, several requirements need to be matched to monitor 

surface-morphology changes that are due to fluvial sediment transport (chapter II). These are: 

(i) repeated laser-scanning surveys of the same site allow to monitor such changes; (ii) geo-

referencing of the point clouds derived from the repeated surveys into local or global 

coordinates in order to compare data of the same site but of different acquisition dates; and 

(iii) DEM generation based on the geo-referenced point clouds in the form of regular grids 

(Fig. 1.6B) in order to derive quantitative insight into surface-morphology changes by 

subtracting one grid from another. However, it has to be noted that regular grids should be of 

a smaller size to display the topography of a rugged terrain appropriately (Moore et al., 1991), 

but since the grid is regular, a smooth terrain is then represented by a large number of squares 

resulting in partial redundancy (e.g., red circle in Fig. 1.6B). 
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Fig. 1.5 (A) Photograph of the laser scanner LMS-Z420i
®
 set-up for field work. The vertical rotation axis of the 

scanner is additionally shown. (B) The sketch emphasizes the scanning procedure. The scanner is shifted from 

position P1 to P2 after the first scan. The second scan is performed at P2. An overlap (white area) exists between 

both positions, where reflectors (black circles) are used to link the individual scans. 

 

 

 

 

 

Fig. 1.6 Example of a DEM surface represented by both, (A) a triangulated irregular network (TIN), and (B) a 

regular square grid (modified after Brostuen and Cox, 2000). (A) Points define the triangle corners respectively 

nodes of the TIN. The size and number of triangles depend on point density as well as terrain complexity, e.g., 

area within red circle. (B) To display the topography of a rugged terrain appropriately requires regular grids of a 

smaller size, but a smooth terrain is then represented by a large number of squares resulting in redundancy (e.g., 

area within red circle). 
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1.3. Quantifying Erosion on Multiple Time-Scales 

 

Erosion, sediment transport, and deposition in sedimentary basins are episodic across 

spatial and temporal scales (Fig. 1.4B; e.g., Frostick and Jones, 2002). This intermittency can 

be recognized in sedimentary deposits, because large floods, for example, that flush sediment 

into coastal areas are recorded in the form of perceptible layers in near-coastal deposits 

(Frostick and Jones, 2002). Furthermore, it is well known from the monitoring of river loads 

in mountainous areas that fluvial processes are episodic (e.g., Wolman and Miller, 1960; 

Keller and Weibel, 1991). The length of such records typically ranges from a few years up to 

tens of years (e.g., Kirchner et al., 2001). However, erosion rates derived from such short-

term observations were reported as basin-averaged rates, and had also been extrapolated to 

longer time-scales implying continuity without temporal changes (Richards, 2002). Longer-

term erosion measurements over thousands to millions of years were similarly given as 

average values without considering the event character of erosion, which also depends on the 

temporal resolution of these measurements. 

The contrast between this implied continuity and actual episodicity as well as the 

consideration of individual spatiotemporal scales aggravates a comprehensive understanding 

of erosion (e.g., Frostick and Jones, 2002). Hence, an integrated view of erosion across all 

scales is needed (e.g., Jones and Frostick, 2002), but rarely discussed in the literature (e.g., 

Kirchner et al., 2001). To conduct such a comprehensive comparison, we selected an 

approach that has been originally established to evaluate the spectral character of tectonic 

deformation (Fig. 1.7A). Friedrich et al. (2003) utilized the cumulative displacement with 

time approach to investigate the significance of geologic and geodetic measurements along 

intra-continental faults on time-scales of millions of years to tens of years. This approach 

facilitated the direct comparison of displacement rates from different time-scales (Fig. 1.7A). 

In chapter III, we adopted the approach of Friedrich et al. (2003) and considered 

cumulative erosion with time to evaluate directly the variability of erosion on the long-

(millions of years), medium- (thousands to ten thousand years), and short-term (years to 

decades) scale, and to discuss the potential significance of erosion measurements (Fig. 1.7B). 

We compiled published data from the Alps to compare erosion rates quantitatively especially 

due to the availability of various data. Lastly, a continuous short-term data set on bed-load 

transport from the Erlenbach basin, located in the northern Swiss Prealps, enabled us to 

evaluate the short-term nature of mountainous erosion in detail (Fig. 1.7B). 

 

http://dict.tu-chemnitz.de/english-german/noticeable.html
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Fig. 1.7 (A) Schematic plot indicating the significance of tectonic, fault dynamic and transient processes on three 

different temporal scales (modified after Friedrich et al., 2003). (B) Plot shown in Figure 1.7A redrawn with the 

purpose to illustrate the adopted approach of cumulative erosion described in the text, and to indicate a potential 

significance of erosion measurements at three different time-scales. 

 

 

1.4. Geological Setting of the Study Areas 

 

1.4.1. Eastern California Shear Zone, USA 

 

Deformation along the Pacific-North American plate boundary is spread across a broad 

zone of faulting in the western United States (Fig. 1.8A). The San Andreas fault that forms the 

actual plate boundary accommodates approximately 35 mm/a of the 48 mm/a of relative plate 

motion (e.g., Bennett et al., 2003). However, about 9–23% of the total relative motion is 

absorbed by the Eastern California Shear Zone, a diffuse array of northwest striking faults 

east and south of the Sierra Nevada-Great Valley microplate (Fig. 1.8A; Dokka and Travis, 

1990). Between latitudes 35°N and 37°N, the dextral strike-slip Stateline fault system (SFS) 

represents the eastern limit of the Eastern California Shear Zone (Fig. 1.8A). Geodetic data 
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point to a surface velocity jump in the NW component across the northern Amargosa segment 

of the SFS (Fig. 1.8B) from ~0 mm/a east of the fault to 0.9–1.1 mm/a west of the fault with 

respect to a fixed North American reference frame (Wernicke et al., 2004). Furthermore, 

tectono-geomorphic observations suggest Holocene activity along portions of the SFS and 

Pleistocene activity along the entire fault system (Menges et al., 2003; Guest et al., 2007). 

Offset estimates for the three segments of the SFS vary from ~25–45 km (e.g., Stevens, 

1991; Schweickert and Lahren, 1997) in the north, to ~10 km in Stewart Valley, W of 

Pahrump (Burchfiel et al., 1983), and 3 km in the south (Walker et al., 1995). Those estimates 

are typically derived from the offset of pre-Cenozoic markers. The most recent offset estimate 

of ~30 km during the last ~13.1 Ma along the southern SFS was found by Guest et al. (2007), 

and is based on the dextral offset of ~13.1 Ma old proximal volcanic and associated rock-

avalanche deposits (Fig. 1.8B). This estimate corresponds to a minimum long-term time-

averaged geologic displacement rate of ~2.3 mm/a for the southern Pahrump and Mesquite 

segments of the SFS (Fig. 1.8B). The current geodetic surface velocity across the northern 

portion of the SFS alone is 0.7–1.2 mm/a with respect to a fixed North American reference 

frame (Wernicke et al., 2004; Hill and Blewitt, 2006). 

On the earthquake-recurrence time-scale of ~10 ka, however, morphologic changes due to 

surface ruptures along the SFS and fault-scarp degradation processes are poorly constrained 

and have therefore not been associated with the evolution of fault structures and the SFS. 

Hence, we examined fault scarps and drainage offsets related to the Rex Hills flower structure 

based on high-resolution topographic data derived from terrestrial laser scanning (chapter I). 

 

 



28 

 

← PREVIOUS PAGE 

Fig. 1.8 (A) Shaded relief map indicating the location of the Stateline fault system with respect to other major 

fault zones involved in accommodating dextral motion along the Pacific-North American plate boundary 

(modified after Guest et al., 2007). Abbreviations: ECSZ – Eastern California Shear Zone, SFS – Stateline fault 

system, RCF – Rogers Creek fault, CF – Calaveras fault, SAF – San Andreas fault, SJFZ – San Jacinto fault 

zone, GF – Garlock fault, DVFCFZ – Death Valley Furnace Creek fault zone, and KCF – Kern Canyon fault. (B) 

Shaded relief map showing the Stateline fault system and nearby major active faults of the surrounding area 

(modified after Guest et al., 2007). The white arrow marks the position of the Devil Peak rhyolite intrusions, and 

the black arrow marks the offset volcanic and associated rock-avalanche deposits at Black Butte described by 

Guest et al. (2007). Abbreviations: IF – Ivanapah fault, NDVFCFZ – northern Death Valley Furnace Creek fault 

zone, SFS—Stateline fault system, BM – Bare Mountains, CM – Cottonwood Mountains, FM – Funeral 

Mountains, IM – Ivanapah Mountains, KR – Kingston Range, MM – Mesquite Mountains, MR – McCullough 

Range, NR – Nopah Range, NYM – New York Mountains, RR – Resting Spring Range, TM – Tucki Mountain, 

and YM – Yucca Mountain. 

 

 

1.4.2. Alpine Orogeny 

 

The Alpine orogeny is often described as a series of episodes of tectonic, metamorphic, 

and erosional activity from Cretaceous to Quaternary times (e.g., Schlunegger et al., 2007; 

Bernet et al., 2009; Handy et al., 2010). The convergence between the European and Adriatic 

plates started approximately in the late Cretaceous, and resulted in the collision of both plates 

during the late Eocene (Schmid et al., 1996). Slab break-off occurred presumably at about 34–

29 Ma (von Blanckenburg and Davies, 1995), during which the dense oceanic part of the 

subducting European plate was detached from its upper buoyant part (Davies and von 

Blanckenburg, 1995; Regard et al., 2008). However, convergence continued after the collision 

obvious from thrusting along the Periadriatic fault and propagation of the Helvetic nappes 

from 32–19 Ma, as well as foreland propagation in the Southern Alps since 19 Ma (Fig. 1.9A; 

Schmid et al., 1996). Foreland basins formed north and south of the Alps due to continental 

collision and convergence since the Eocene that led to crustal thickening and loading of the 

subducting European plate (Fig. 1.9A; e.g., Schmid et al., 1996; Andeweg and Cloetingh, 

1998). 

Sedimentation in the north-Alpine foreland basin (Molasse basin) during the Oligocene 

was characterized by deep marine conditions with deposition of turbidites, locally referred to 

as Flysch deposits (e.g., Hesse, 1975; Sinclair, 1997). In contrast, the so-called Molasse 

sedimentation was characterized by shallow marine conditions during the early Miocene and 

more continental conditions during the late Miocene (e.g., Doppler, 1989; Schlunegger et al., 

2001; Kuhlemann et al., 2001). Deposition of sediments in the Molasse basin ceased between 

8.5 and 4.5 Ma (Fig. 1.9A; e.g., Lemcke, 1974; Bernet et al., 2009). Parts of the basin deposits 

were affected by the propagating thrust front and consequently exhumed to the surface, where 

they are reworked since the late Miocene (e.g., Kuhlemann et al., 2001). However, 

sedimentation in the south-Alpine foreland basin (Po basin) during the early Oligocene 

occurred under deep marine conditions due to turbidity currents, and from late Oligocene to 

middle Miocene under submarine conditions along submarine fans and canyons (Fig. 1.9A; 

e.g., Schlunegger, 1999). Following the desiccation of the Mediterranean from 5.6–5.5 Ma, 

renewed sedimentation occurred under fluvial-deltaic and lagoonal conditions obvious from 

the stratigraphic record of the Lago Mare deposits of the Messinian salinity crisis (Willett et 

al., 2006). 

Exhumation in the Alps is due to normal faulting and erosion at the surface (e.g., Bernet et 

al., 2009), which is similar to other convergent orogens (Ring et al., 1999). Large extensional 

structures, such as the Tauern window in the Eastern Alps (Fig. 1.9A), are treated as 

indicators of tectonic exhumation (e.g., Schlunegger and Willett, 1999). Zircon fission track 

ages of exposed bedrock show clear differences in Alpine cooling ages between the Western 
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and Eastern Alps (Bernet et al., 2001). Cooling ages in large parts of the Western Alps are 

relatively young (less than 36 Ma), and older in most areas of the Eastern Alps (more than 50 

Ma). 

 

1.4.3. Alp Valley, Switzerland 

 

The Alp Valley is located in the northern foothills of the Swiss Alps (Fig. 1.9A), south of 

the town of Einsiedeln (Fig. 1.9B). The Alp River drains the valley toward the north. The two 

sub-study sites of the fluvial case study are the small tributary basins of the Erlenbach (0.74 

km²) and Vogelbach (1.56 km²). The former of these two is located on the eastern flank of the 

southern Alp Valley, and the latter on the western flank of the central valley (Fig. 1.9B). 

The Alp Valley is cut into Alpine thrust sheets that are composed of sedimentary rocks 

(Fig. 1.9B). In the north, the Helvetic frontal thrust is the contact between the subalpine 

Molasse to the north and the Cretaceous Wägital Flysch to the south (Fig. 1.9B). The latter 

belongs to the Ultrahelvetic-Penninic Flysch series exposed in the central and southern Alp 

Valley, which further comprise the Habkern and Schlieren Flysch (Fig. 1.9B; Hantke, 1967). 

These Flysch series are distinguished by their tectonic position, where the Schlieren Flysch 

represents the eastern-most and the Wägital Flysch the western-most (Stammbach, 1988). The 

southern Alp Valley is marked by the prominent Penninic cliffs of the Grosser and Kleiner 

Mythen, that were thrust over Helvetic and Ultrahelvetic-Penninic Flysch units (Fig. 1.9B). 

The Helvetic units are part of the so-called Einsiedler Schuppenzone (e.g., Kuhn, 1972). 

Wide areas of the Alp Valley flanks are subject to sliding processes of unconsolidated 

material (Hantke, 1967). Furthermore, the appearance of the Alp Valley floor in the north is 

dominated by a gravel terrace of Würmian age, whereas the valley floor in the south is shaped 

by alluvial fans. Late Würmian-aged lateral moraines are located at the base of the Mythen 

mountain peaks in the southern Alp Valley (Hantke, 1967 and 1970). 

Previously derived geologic and geomorphic maps of the Alp Valley lack either structural 

and geomorphic detail (Fig. 1.9B; e.g., Hantke, 1967; Winkler et al., 1985), or cover only 

parts of the valley (e.g., Stammbach, 1988; Schuerch et al., 2006). The post-glacial landscape 

evolution of the Alp Valley has therefore not been constrained appropriately, and the context 

between short-term sediment transport and this evolution was also rarely considered in the 

past (e.g., Stammbach, 1988). Hence, we combined detailed geomorphic-geologic mapping in 

the Alp Valley with repeated terrestrial laser-scanner surveys in the Erlenbach and Vogelbach 

basins to better explore this context (chapter II). 
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Fig. 1.9 (A) Shaded relief map of the Alps showing major units and fault systems, and the location of the Alp 

Valley (compiled from Willett et al.; 2006; Robl et al., 2008). Abbreviations: Br – Brenner fault, In – Inntal 

fault, Ka – Katschberg fault, La – Lavanttal fault, Mö – Mölltal fault, Mu – Mur-Mürz fault, PF – Periadriatic 

fault, Se – Salzachtal-Ennstal fault, JF – Jura front, HF – Helvetic front, and PT – Penninic thrust. (B) Geologic 

map of the Alp Valley area (modified after Winkler et al., 1985). Abbreviations: A – Amselspitz, GM – Grosser 

Mythen, KM – Kleiner Mythen, R – Rotenflue, MG – Mördergruebli, and S – Schijen. 
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1.5. General Remark 

 

The major chapters of this thesis have been published in or will be submitted to peer-

reviewed journals. The relevant articles are: 

Baran, R., Guest, B., and Friedrich, A.M. (2010) High-resolution spatial rupture pattern of a 

multiphase flower structure, Rex Hills, Nevada: New insights on scarp evolution in 

complex topography based on 3-D laser scanning: Geological Society of America Bulletin, 

Volume 122, Number 5/6, p. 897-914, doi: 10.1130/B26536.1 

Baran, R., McArdell, B.W., Schlunegger, F., Wunderlich, T.A., and Friedrich, A.M. (in 

preparation for submission to Geomorphology) Short-term sediment transport in context of 

post-glacial landscape evolution: Insights from field mapping and high-resolution LiDAR 

measurements, Alp Valley, Switzerland 

Baran, R., McArdell, B.W., Schlunegger, F., and Friedrich, A.M. (in preparation for 

submission to International Journal of Earth Sciences) Sediment Transport and Erosion 

Rates in the Alps on Scales Ranging from Years to Millions of Years – Implications for 

the Variability of Mountainous Erosion 

Baran, R., Schlunegger, F., and Friedrich, A.M. (in preparation for submission to Geology) 

Erosion of Dying Foreland Basins: Did the Sediment Discharge of the Alps Really 

Accelerate Five Million Years Ago? 

For reasons of readability, although it causes some redundancies, and consistency of the 

formatting, the first article appears in a modified format in this thesis. The reprint version of 

this article and the related data repository are contained in the appendix of the thesis. 

Similarly, the latter three of the four articles will be submitted in a modified form to the 

relevant journals. Lastly, the envelope attached to the inside of the back-cover contains a CD 

with a PDF file of this thesis. 
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2. Chapter I 

 

High-resolution Spatial Rupture Pattern of a Multiphase Flower Structure, 

Rex Hills, Nevada: New Insights on Scarp Evolution in Complex Topography 

Based on 3-D Laser Scanning 

 

2.1. Abstract 

 

Fault scarps represent the most obvious expression of tectonic activity at the Earth’s surface. 

Studies on scarp morphology place constraints on fault kinematics and scarp-degradation 

processes, and were often based on geomorphic dating techniques. Fault scarps exposed in 

areas of simple topography facilitate data acquisition and interpretation, whereas little work 

had been done where fault scarps are superimposed on complex, dissected topography. Fault 

scarps developed in complex topography are commonly observed along flower structures and 

at tips of strike-slip faults. Such structures are important elements for evaluating the evolution 

and linking of strike-slip fault systems, and appear to be scale-independent from several 

meters to hundreds of kilometers. We examined the detailed meter- to hundred meter-scale 

structure and surface expression of a flank of one fault-scarp bounded pressure ridge (Rex 

Hills flower structure) by combining field mapping with high-resolution digital elevation 

model (DEM) analysis. Based on terrestrial laser scanning we generated a detailed DEM and 

extracted high-resolution topographic cross-sections, which enabled us to identify fault scarps 

and to determine their relative ages and geometry. Our study site is located on the 

transpressional left-bend between the Pahrump and Amargosa segments of the dextral 

Stateline fault system (SFS). The topography is characterized by alternating valleys and ridges 

(each ~100 m long, relief of ~4 m). We observed the following: the southern Rex Hills slope 

exhibits three fault scarps related to three reverse fault branches; the basal scarp (scarp 1) is 

most continuous, and exhibits five segments, the upper two scarps (scarps 2 and 3) are less 

continuous. Furthermore, fault scarps exposed on ridge crests are more numerous (up to four 

to five scarps) and smaller (~5 m high); valleys often exhibit single large (>10 m high), 

smoothed scarps. To easily detect differences between the scarps, we evaluated the height and 

slope angle of the scarps using topographic cross-sections. Our analysis indicates that scarp 

shape is influenced by fault dip, lithology, and degradation processes resulting in large scatter 

and broad overlap in scarp-height–slope-angle space. The analysis further indicates that scarp 

degradation is stronger in the valleys, and that the preservation potential of small, individual 

fault scarps is therefore greater on the ridge crests. We compared our fault-scarp data with 

published, calibrated data yielding an age of ~2 ka for the Rex Hills scarps consistent with an 

earlier finding. This suggests that the scarp shape mainly reflects progressive degradation 

since the most recent surface rupture. Our approach of analyzing high-resolution topographic 

data of closely-spaced fault scarps is promising especially when combined with subsurface 

data as well as geochronological and paleoseismic data, and it provides a basic scheme for 

analyzing scarp populations in a complex topographic region. Despite the absence of 

subsurface data, our approach allowed the study of complex high-resolution fault-scarp 

morphologies across a flower structure for the first time. 
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2.2. Introduction 

 

Generally, fault scarps represent the best recognizable natural surface expression of 

seismic activity along active fault systems (e.g., Wallace, 1977; Yeats et al., 1997). Fault-

scarp morphology studies had been conducted to constrain fault kinematics and especially 

scarp degradation often by using geomorphic dating techniques (Fig. 2.1; e.g., Bucknam and 

Anderson, 1979; Hanks et al., 1984; Avouac, 1993; Arrowsmith et al.; 1998 as examples 

along strike-slip and normal faults). Typically these studies are carried out where fault scarps 

are continuously exposed in areas of relatively simple and uniform topography, and where 

single isolated fault-scarp profiles can be easily acquired using labour-intensive techniques 

(e.g., Arrowsmith et al., 1998). These techniques are difficult to apply in areas where many 

small scarps are exposed, or where scarps are very subtle. Consequently, the patterns that 

result from fault scarps that are superimposed on a more complex and dissected topography 

have not been adequately explored at smaller spatial scales and compared with a larger spatial 

scale as considered by e.g., Landgraf et al. (2009). 

A potentially efficient solution to close this gap in our knowledge is provided by recently 

developed terrestrial laser-scanning technologies, which are rapidly developing into effective 

research tools in tectonic geomorphology. A laser-scanner survey can rapidly (within 

minutes) acquire large amounts of topographic data with both a high resolution (up to a few 

cm) and high accuracy (of only a few mm; e.g., Buckley et al., 2008). These data can then be 

converted into high-resolution digital elevation models from which geomorphological data 

sets can be extracted. Furthermore, the high resolution of these data permits the extraction of 

large sub-data sets, and the identification and analysis of subtle features not obvious in the 

field. 

Fault scarps that form in complex topography are commonly observed along flower 

structures occurring at fault bends and tips of strike-slip faults (e.g., Sylvester and Smith, 

1976; Sylvester, 1988; van der Pluijim and Marshak, 2004; Cowgill et al., 2004a, 2004b). 

These structures are particularly important for the evolution and linkage of separate strike-slip 

fault segments (Cunningham and Mann, 2007; Landgraf et al., 2009). 

As with faults in general, flower structures are scale-independent features ranging in size 

from the orogeny scale of hundreds of kilometres to more regional scales of tens of kilometers 

in extent, such as the Confidence Hills in southern Death Valley (Dooley and McClay, 1996), 

and down to the tens of meters scale of small sag ponds and pressure ridges (e.g., Crowell, 

1974; Wakabayashi et al., 2004 for the latter two scales). As such, there have been many 

studies of these features where their internal geometry and evolution typically are inferred by 

interpreting geological mapping, seismic data, and analogue modelling (e.g., Wilcox et al., 

1973; Harding, 1985; Naylor et al., 1986; McClay and Dooley, 1995; Dooley and McClay, 

1996; McClay and Bonora, 2001). In contrast, however, few detailed studies of small-scale 

flower-structure surface morphology have been documented in the geologic literature. The 

likely reason is that these studies require time-consuming and occasionally expensive field 

work, and the complexity of the data returned requires acquisition of a very large data set. 

Therefore, a large amount of under-utilized information about the geometry and kinematics of 

flower structures is contained in their surface expression, especially in surfaces exhibiting 

fault scarps or sets of fault scarps. For example, fault-scarp analysis can provide information 

about how deformation is distributed in time and space on the thousand to hundred thousand 

year scales (e.g., Wallace, 1987; Arrowsmith et al., 1998; Carretier et al., 2002; Friedrich et 

al., 2003 and 2004; Wesnousky, 2005; Landgraf et al., 2009). To this end, high-resolution 

surface scans provide an efficient approach for extracting and analyzing the detailed surface 

characteristics of a given structure and quantifying its spatial and temporal evolution. 

There are several small-scale transpressional flower structures within the eastern California 

shear zone; however, only a few exhibit surface fault-scarps. The Rex Hills (informal name) 
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flower structure is located near Pahrump, Nevada, on a left-bend of the Stateline fault system 

(Fig. 2.2), and it exhibits a set of subtle fault scarps on its flanks which are challenging to map 

in the field using traditional methods. Furthermore, due to their size and accessibility the Rex 

Hills are an excellent natural laboratory to study the surface expression of a positive flower 

structure in an arid environment using a terrestrial laser scanner. 

In this chapter we present the results of a study aimed at characterizing the shape of fault 

scarps exposed along the kilometer-scale Rex Hills flower structure where we combined 

detailed field mapping with high-resolution digital elevation model (DEM) analysis. A new 

feature of our approach is the use of very high-resolution DEM data derived from a ground-

based laser-scanning survey. This technique allows us to identify very subtle scarps not 

recognized otherwise, and facilitates efficient extraction of sub-data sets. It also provides a 

potentially powerful tool for evaluating scarp degradation (Fig. 2.1) superposed on larger 

scale erosion patterns of hillslopes, and for morphological relative dating within scarp 

populations. The latter may be the critical component required to evaluate ancient scarp 

populations. 

 

 

 

Fig. 2.1 Vertical exaggerated topographic profile of a 100-yr-old scarp where the dotted line indicates the 

measured profile and the black line is the form of the initial scarp derived by using an initial slope of 41° 

(modified after Nivière et al., 1998). The gray shaded areas mark the location of erosion and accumulation of 

material along the scarp profile explaining scarp degradation. 

 

 

2.3. Stateline Fault System (SFS) 

 

The Stateline fault system (SFS) is a dextral strike-slip fault that, between latitudes 35°N 

and 37°N, probably forms the eastern limit of the Eastern California Shear Zone–southern 

Walker Lane belt as defined by Dokka and Travis (1990) and Stewart (1980), (Guest et al., 

2007; Fig. 2.2A). Geodetic data indicate an increase in the NW component of the surface 

velocity across the northernmost segment of the SFS (Fig. 2.2B) from ~0 mm/a east of the 

fault to 0.9–1.1 mm/a west of the fault with respect to a fixed North American reference 

frame (Wernicke et al., 2004). Holocene activity along portions of the SFS and Pleistocene 

activity along the entire fault is documented by tectono-geomorphic observations (Menges et 

al., 2003; Guest et al., 2007). 

Offset estimates for different segments of the SFS range from ~25–45 km (Poole and 

Sandberg, 1977; Cooper et al., 1982; Stevens, 1991; Schweickert and Lahren, 1997) in the 
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north, to ~10 km in Stewart Valley, west of Pahrump (Burchfiel et al., 1983), and 3 km 

(Walker et al., 1995) in the south. These offset estimates are typically based on the offset of 

pre-Cenozoic markers. The most recent offset estimate of ~30 km during the last ~13.1 Ma 

along the southern SFS was determined by Guest et al. (2007), and is based on the dextral 

offset of ~13.1 Ma old proximal volcanic and associated rock-avalanche deposits (Fig. 2.2B). 

This provides a minimum long-term time-averaged geologic displacement rate of ~2.3 mm/a 

for the southern Pahrump and Mesquite segments of the SFS (Fig. 2.2B). The geodetic surface 

velocity across the northern part of the SFS alone is 0.7–1.2 mm/a with respect to a fixed 

North American reference frame (Wernicke et al., 2004; Hill and Blewitt, 2006). 

On the earthquake-recurrence time-scale (~10 ka), however, fault-scarp degradation (Fig. 

2.1) and morphologic changes due to ruptures along the SFS are poorly documented and have 

therefore not been related to the evolution of fault structures and the SFS. Hence, we 

evaluated fault scarps and drainage offsets related to the Rex Hills flower structure using 

high-resolution topographic data based on 3-D laser scanning. 

 

2.4. Tectono-Geomorphic Setting of the Study Area 

 

Following Guest et al. (2007), the SFS is divided into three segments which are separated 

by contractional left-bends: the Amargosa segment to the north, the central Pahrump segment, 

and the Mesquite segment to the south (Fig. 2.2B). 

The Rex Hills study site lies along a transpressional left-bend between the Pahrump and 

Amargosa segments of the SFS where the central part of the SFS crosses from Stewart Valley 

into southern Amargosa Valley (Fig. 2.2B). Late Quaternary surface deformation along this 

portion of the SFS is associated with a large transpressive domal uplift centered on the 

northern piedmont of the Resting Spring Range (Menges et al., 2003). Linear pressure ridges 

in this area are typically bounded by a discontinuous, 8–10 km long set of aligned, en-echelon 

fault scarps. These scarps are up to ~3 m high with slope angles of 20–30°, and associated 

with dextral drainage offsets of 0.5 to ~5 m. Menges et al. (2003) determined vertical and 

lateral offsets yielding an average dextral-reverse net slip of ~3 m for the most recent faulting 

event. Furthermore, they inferred a latest Holocene age (<2 ka) for this event based on 

stratigraphic relationships and scarp morphology. This rupture event was a Mw 7.1–7.3 event 

whose rupture zone most likely continued ~35–40 km to the SE through Stewart Valley into 

northwestern Pahrump Valley (Menges et al., 2003). Lastly, this rupture-length estimate is 

based on the rupture length–displacement relationship of Wells and Coppersmith (1994) 

because the rupture length is poorly constrained in this area, and the displacement size 

indicates that the rupture length is greater than the exposed fault-scarp system. 

The Rex Hills are two small connected hills: the NW hill is 40 m high and has a dome 

shape with a diameter of ~900 m; the SE hill is 45 m high, boat hull-shaped, and ~1500 m 

long by ~750 m wide (Fig. 2.3A). The hills consist of poorly consolidated Plio-Pleistocene 

conglomerate with rare bedding exposures that strike parallel to the trend of the hills (Fig. 

2.3B). Unconsolidated and locally overturned (Fig. 2.4A) Plio-Pleistocene fluvio-lacustrine 

sediments are located at the base of the southern Rex Hills flank and on their northwestern 

slope (Fig. 2.3B). The sediments exposed at the Rex Hills site consist of quartzite and 

carbonate clasts, and are presumably derived from the Montgomery Mountains and Resting 

Spring Range, which consist of Precambrian and Paleozoic sedimentary rocks (Figs. 2.2B and 

2.3B; Burchfiel et al., 1983). However, due to uncertainty about the amount of dextral offset 

in this region other source regions are possible. 

The Rex Hills fault pattern exhibits a reverse and a dextral strike-slip component. The 

dextral component is expressed as drainage offsets with a magnitude of up to ~10 m (Fig. 

2.4C), commonly associated with zones of highly fractured clasts within the Plio-Pleistocene 
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conglomerate that show dextral sense of shear (Fig. 2.4D). The thrust component is expressed 

as 0.3- to 2-m-high fault scarps (Fig. 2.4B). 

The southern flank of the eastern Rex Hills is defined by a N-dipping reverse fault. The 

main evidence supporting this interpretation is the presence of steeply N-dipping, overturned, 

channelized fluvial sediments sticking out in the footwall of the fault defining the north limb 

of a footwall syncline (Figs. 2.4A and 2.3B). The surface expression of this fault is 

characterized by 1- to 2-m-high fault scarps (Fig. 2.4B) and dextral drainage offsets of 0.75–

1.5 m. 

The northern flank of the Rex Hills is also bounded by dextral oblique reverse faults. The 

eastern Rex Hills north flank exhibits clear dextral offsets of 2–3 m (Fig. 2.4C) as well as 

small poorly defined fault scarps (Fig. 2.3B). Faults exposed along the western Rex Hills 

north flank exhibit dextral drainage offsets of 2–3 m to ~10 m, dextrally fractured 

conglomerate, and 1- to 2-m-high fault scarps. Here, the fault is vertical to steeply S-dipping 

(Fig. 2.3B) based on fracture orientations in the conglomerate. The Plio-Pleistocene strata on 

the northern flank show no clear evidence of folding (e.g., overturned bedding) but bedding 

adjacent to the fault in the footwall dips steeply to the SW. 

The fault pattern in the adjacent area SE of the Rex Hills is marked by a general NW-SE 

trend. The fault location is inferred from different characteristics: two springs are located in 

this area where several shrubs lie along a NW-SE trend, subparallel to the strike of the main 

fault trace (Fig. 2.3B). Small scarps observed on the surface of the Pleistocene terrace level 

Pt2 are aligned in NW-SE direction and are probably fault related (Fig. 2.3B). 

 

 

 

 

Fig. 2.2 (A) Simplified location map of the Stateline fault and major fault zones of the Eastern California Shear 

Zone. Abbreviations: GF – Garlock fault, SF – Stateline fault, FCF – Furnace Creek fault, DVF – Death Valley 

fault. (B) Shaded relief map showing the Stateline fault system (SFS) and nearby major active faults of the 

surrounding area (modified after Guest et al., 2007). The white arrow marks the position of the Devil Peak 

rhyolite intrusions, and the black arrow marks the offset volcanic and associated rock-avalanche deposits at 

Black Butte described by Guest et al. (2007). Abbreviations: IF – Ivanapah fault, NDVFCFZ – northern Death 

Valley Furnace Creek fault zone, SFS – Stateline fault system, BM – Bare Mountains, CM – Cottonwood 

Mountains, FM – Funeral Mountains, IM – Ivanapah Mountains, KR – Kingston Range, MM – Mesquite 

Mountains, MR – McCullough Range, NR – Nopah Range, NYM – New York Mountains, RR – Resting Spring 

Range, TM – Tucki Mountain, and YM – Yucca Mountain. 
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Fig. 2.3 (A) U.S. Geological Survey digital elevation model (DEM) of the Rex Hills with 10 m resolution 

derived from the National Elevation Data set (NED). The mapping (Fig. 2.3B) and laser-scanning area are 

indicated with a black frame and a blue frame, respectively. Labels in brackets and points with indicated view 

direction (yellow and black) emphasize the locations of pictures shown in Figure 2.4. (B) Detailed geologic map 

of the Rex Hills site. The scanning area is marked with a blue frame. The inset shows a general geologic cross-

section.   
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← PREVIOUS PAGE 

Fig. 2.4 Locations of pictures are shown in Figure 2.3A. The colored version of this figure is contained in Figure 

DR4 [see footnote 1]. (A) Photo looking down onto overturned Plio-Pleistocene lacustrine sedimentary rock 

sticking out at the southern Rex Hills base. The black lines emphasize bedding, outline of the trough, and 

crossbedding within this small trough. The strike and dip of the bed measured at the steeply dipping bedding-

plane (upside down) is 110/70 NNE, and indicated by the appropriate symbol. The bedding plane appears as a 

line due to the map-view perspective of this photo. The arrow pointing to the north is rotated slightly relative to 

the strike and dip symbol in order to ensure the accuracy of the view. (B) Fault scarp exposed on the southern 

flank of the Rex Hills. (C) Dextral drainage offset exposed on the northern Rex Hills flank. The location of the 

offset channel and fault scarp are indicated by appropriate text labels. (D) Fault zone within the Plio-Pleistocene 

conglomerate. The vertical fault plane is indicated by transparent white, and is outlined with a solid white line. 

The offset clasts are outlined by a solid black line. The right-hand white arrow is supposed to indicate movement 

out of the rock along the fault, whereas the left-hand white arrow indicates movement into the rock. 
 

 

2.5. Methods 

 

To study the morphology of the Rex Hills scarps, we combined detailed geological 

mapping (Fig. 2.3B) with the interpretation of a high-resolution DEM (Fig. 2.5). We focused 

on mapping of individual faults, fault scarps, and offsets recorded in bedrock gullies. The 

DEM is based on measurements made with a terrestrial laser scanner (Riegl 3-D laser scanner 

LMS-Z420i


) in March and April 2006, and it covers the E-W trending southern flank of the 

eastern boat hull-shaped half of the Rex Hills indicated by a blue frame in Figure 2.3. This 

method is based on the emission of a laser beam and its reflection from the terrain surface. 

The resulting point data are used to generate a detailed DEM with cm-scale resolution. We 

summarized the field work and scanning procedure in the GSA Data Repository Item 

2010050 accompanying the published paper respectively in Figure DR1 of this item, which 

can be found in the appendix of this thesis. 

 

2.6. Results 

 

2.6.1. Laser-Scanner Based DEM (LDEM) 

 

Two surface features of the Rex Hills southern slope are identified in different display 

formats of the LDEM; different views of the LDEM (Figs. 2.5A and 2.5B) on one hand and a 

contour map of the LDEM (Fig. 2.5C) on the other. The first feature is the alternation of small 

valleys and ridges (each ~100 m long, relief of ~4 m) descending from the main ridge axis 

along the S-dipping slope of the Rex Hills (Fig. 2.5A and 2.5C). The second is a set of 

triangular facets at the base of the slope related to the oblique-reverse fault scarps (Fig. 2.5A), 

which we interpreted as gravity-controlled faces due to fluvial undercutting of their base 

resulting in scarp retreat. Hence, they will not be considered further. 

The slope angle is a critical diagnostic feature of fault scarps (e.g., Bucknam and 

Anderson, 1979; Nash, 1980). Young scarps should have a steep slope angle, whereas the 

slope angle decreases with age assuming a constant diffusivity, and a homogenous material 

(e.g., Bucknam and Anderson, 1979). We used the slope map of the LDEM to identify fault 

scarps and to attempt a distinction between the different fault scarps (Fig. 2.6B). All scarps 

formed in the same material because the entire southern Rex Hills slope consists of Plio-

Pleistocene conglomerate (Fig. 2.3B). Linear features with a steep angle are assumed to be 

fault scarps, if there is no alternative scarp-producing process available, e.g., fluvial drainage. 

These linear features are evident in the LDEM at the base of the southern Rex Hills slope 

(Fig. 2.6B) and correspond to the reverse segment identified in Figure 2.3B. In contrast, the 

eastern part of the southern slope is characterized by the alternation of small valleys and 

ridges with steep slopes (Fig. 2.6A), which makes fault-scarp mapping using the slope map in 
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this area more difficult. We marked the traces mapped along the eastern Rex Hills slope (Fig. 

2.6B) in an oblique view of the LDEM for comparison (Fig. 2.5B). Furthermore, the set of 

gravity-controlled and fault-related triangular facets observed in Figure 2.5A are characterized 

by a steep angle, and marked with a dotted line as retreating scarp (Fig. 2.6B). 

In order to detect fault scarps that cannot be identified in the LDEM at first sight, and to 

image especially their spatial distribution and continuation, 83 detailed topographic profiles 

mainly perpendicular to the E-W trend of the eastern half of the Rex Hills were extracted. 

These profiles are spaced unevenly based on the width of the valleys and ridges, and include 

profiles that traverse along small valleys and ridge crests (Fig. 2.5A). The profiles were used 

to extract the scarp height and slope angle for each identified scarp (Table DR1 [see footnote 

1]; Fig. 2.7A). Frequently more than one scarp can be observed in a profile (Fig. DR2
 
[see 

footnote 1]). In these cases, the fault-scarp labeling listed in Table DR1 starts with the 

lowermost scarp. 

The uncertainty associated with the scarp-height determinations amounts to ±20 cm (1 σ). 

Individual point locations have a measurement uncertainty of ±5 cm (1 σ) representing an 

error induced by the laser scanner. The scarp height, as indicated in Figure 2.7A, is defined by 

the difference in the z-coordinate between two points resulting in a total measurement 

uncertainty of ±10 cm (1 σ). The remaining uncertainty of ±10 cm (1 σ) is subjectively 

introduced by selecting the base and top points of each scarp profile manually (Fig. 2.7A). 

Due to the large point-cloud density, repeated selection of single top and base points yielded 

similar scarp-height values for each scarp differing by ~20 cm. Thus, the total uncertainty 

adds up to ±20 cm (Figs. 10–14). 

To establish a fault-branch configuration that explains the observed fault-scarp pattern, we 

followed the assumptions first stated by Bucknam and Anderson (1979) that the slope angle 

of fault scarps decreases with time and therefore with age (Fig. 2.7B). Next, we isolated a set 

of fault-scarp profiles fitting this assumption (Fig. 2.7C), and based on this evaluation we 

assigned a possible configuration of reverse fault branches and segmentation patterns to the 

entire fault-scarp set (Fig. 2.8). The scarp lines 1–3 in Figure 2.8 are intended to give the 

general configuration of the scarps and associated fault branches. We used these lines to 

approximate fault locations based on scarp symmetry, although the exact fault locations 

cannot be determined without subsurface data. 

Based on the topographic profile analysis, we identified three fault scarps (Fig. 2.8): scarp 

1 is continuous, extends along the base of the slope, and exhibits five segments; scarps 2 and 

3 are less distinct and extend along the upper part of the slope where scarp 2 exhibits four 

segments. In an oblique 3-D view of the LDEM, scarp 1 is most obvious due to its continuous 

surface expression in contrast to scarp 2 which is less clearly defined (Fig. 2.5B). Scarp 3 

cannot be detected using such a perspective. 

Generally, the steeper, smaller, individual fault scarps are better preserved along profiles 

that lie parallel to a ridge crest (e.g., profile numbers 20, 39, 46 and 61; Fig. 2.8A), whereas 

profiles located in valleys commonly exhibit a higher, single fault scarp (e.g., profile numbers 

42, 53, 64 and 77; Fig. 2.8A). The scarp height for all scarps ranges from 0.3 m up to 13.2 m 

over two orders of magnitude. The slope angles generally increase from E to W (Fig. 2.8A). 

To evaluate the influence of fault dip on scarp morphology along the Rex Hills slope, we 

approximated the local near-surface dip angle of the two fault branches related to the more 

continuous scarps 1 and 2 (Fig. 2.5C). Where possible we mapped the fault trace on a 

topographic map of the LDEM (1 m contour-line interval; Fig. 2.5C) by assuming that the 

base of scarps 1 and 2 are equivalent to the fault trace (Fig. 2.8). Based on the intersection of 

the local fault trace with topography, we inferred that the fault associated with scarp 1 

exhibits a shallow near-surface dip of 10–15°. In contrast, the scarp 2 fault is characterized by 

a steeper dip of ~10–20° (Fig. 2.5C). 
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Dextral offsets in the drainage network were identified in the field as a common 

morphological feature of the Rex Hills structure (Fig. 2.4C). Within the LDEM, magnitudes 

for nine dextral offset features were measured along straight lines, taken from one termination 

of the offset feature to the other (Fig. 2.9; Fig. DR3 [see footnote 1]). All of these features 

were formed in poorly consolidated Plio-Pleistocene conglomerate (Fig. 2.3B). The offset 

magnitude ranges from 7.77 m to 56.5 m (Fig. 2.9; Table DR2 and Fig. DR3 [see footnote 1]). 

We estimated the uncertainty bound for each measurement to be 30% (equal to 3 σ) of the 

derived offset value given that some of the offset features are curvilinear and intersect the 

fault at low angles (Fig. 2.9B; Table DR2 [see footnote 1]). Moreover, erosion focused in the 

drainage valleys led to the deposition of younger sediments, which may have masked parts of 

the older offset channel-bed. The 30% bound further accounts for subjectively introduced 

uncertainties mainly due to the fact that some offset features are not as obvious as the 

examples shown in Figures 9B–9E. In some cases, the offset evaluation is further hampered 

by the LDEM resolution. Where the LDEM grid next to the offset feature is coarser, e.g., 

triangles increase in size, the low point-cloud density is due to shielding effects during the 

scanning induced by the Rex Hills valley-ridge morphology (e.g., Fig. DR3E [see footnote 

1]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

[1] GSA Data Repository Item 2010050 is contained in the appendix of this thesis: Figure DR1 illustrating the 

scanning procedure used for the Rex Hills study site; Figure DR2 showing the actual profiles; Table DR1 

summarizing the LDEM data of the topographic profiles for fault-scarp height, slope angle, and vertical 

separation; Figure DR3 showing the remaining measured offsets not indicated in Figure 2.9; Table DR2 listing 

the nine dextral offsets measured in the LDEM; colored versions of Figures 2.4 and 2.6 (Figs. DR4 and DR5); 

and a text file with the raw data of the profiles, is available at http://www.geosociety.org/pubs/ft2009.htm or by 

request to editing@geosociety.org. 
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Fig. 2.5 High-resolution topographic maps showing the results of the 3-D laser-scanner survey with cm-scale 

resolution. (A) 3-D view of the laser-scanner based digital elevation model (LDEM). Triangular facets described 

in the text and the alternation of ridges and valleys are clearly visible in this view. The location of the LDEM is 

marked in Figure 2.3 by a blue frame. The black arrow on the right side of the LDEM indicates the elevation 

difference of 40 m. The dashed white line at the bottom of the LDEM marks the location of the lowermost points 

of topographic profiles extracted from the LDEM. The profile numbering is also shown, and the topographic 

profiles are evenly spaced between the indicated profile location intervals traversing along the ridges and 

valleys. The white frame shows the outline of the LDEM contour map (Fig. 2.5C). (B) Both pictures show an 

oblique 3-D view of the LDEM looking east along the Rex Hills front. The location of the basal scarp is obvious 

in this view, and is indicated by a solid white line in the right-hand picture. In contrast, the mapped upper fault 

trace is more difficult to recognize, and indicated by a dashed white line. (C) Contour map of a LDEM section 

(Fig. 2.5A for location). The black lines indicate local fault traces. 
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Fig. 2.6 Slope-angle map of the LDEM: the very light-gray color fits to a minimum slope-angle of 0°, and the 

dark-gray color correlates with slope angles of 45°. The colored version of this figure is further contained in 

Figure DR5 [see footnote 1]. (A) Slope map showing the alternation of gullies and ridges. (B) Slope map 

showing location of mapped fault scarps, inferred fault traces, and gravity-controlled scarps. 
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Fig. 2.7 (A) Topographic profile number 46 and definition of scarp height, slope angle θ, and vertical separation 

used for the profile analysis in Figure 2.8. The profile location is shown in Figure 2.5A. (B) The sketch shows 

the expected fault-scarp profile according to the assumption that the scarp-slope angle decreases with age 

(Bucknam and Anderson, 1979). (C) Scarp profiles extracted from the LDEM fitting the expected profile shape 

shown in Figure 2.7B. We inferred the scarp configuration based on these selected profiles and adopted this 

pattern in Figure 2.8. The location of the three fault scarps is also shown in the LDEM, and the profile locations 

can be obtained from Figure 2.5A. 
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Fig. 2.8 Summary of the topographic profile analysis. (A) The scarp-slope map shows scarp heights and 

maximum slope-angles of the individual fault scarps identified in the 83 topographic profiles extracted from the 

LDEM. The location of the topographic profiles is sketched at the bottom of the plot, and can be alternatively 

inferred from Figure 2.5A. The location of the three fault scarps is shown in the LDEM. (B) This plot is similar 

to Figure 2.8A but without the scarp slope-angle. Instead, it shows only the scarp heights of the individual fault 

scarps. The possible configuration of reverse fault branches and their segmentation are colored in order to 

explain the observed fault-scarp pattern. 
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Fig. 2.9 (A) The location of nine measured dextral offsets is marked in the LDEM, and summarized in Table 

DR2 [see footnote 1]. The offsets marked with a continuous rectangle are shown in detail in Figures 2.9B–2.9E. 

In contrast, no detail is shown for offsets marked with a dashed rectangle. The legend is valid for the offsets 

shown in Figures 2.9B–2.9E. (B) Details of dextral offset number 1. (C) Details of offset number 2. (D) Details 

of offset number 5. (E) Details of offset number 9. 

 

 

 

 

 

Fig. 2.10 Plot of scarp height H versus slope angle θ for the three identified fault scarps showing broad scatter. 

The thin error bars indicate scarp-height uncertainties. 
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2.6.2. Scarp-Height vs. Slope-Angle Plots 

 

The height and slope angle of fault scarps are two diagnostic features required to 

characterize the evolution of normal fault scarps in cohesionless material (Bucknam and 

Anderson 1979; Nash, 1980; Hanks et al., 1984; Fig. 2.1 for comparison). Profile studies on 

late Quaternary normal fault scarps revealed that the slope angle is related to the logarithm of 

scarp height for a given age, and that for fault scarps of a given height the slope angle 

decreases with age (Bucknam and Anderson, 1979). Here, the approach described by 

Bucknam and Anderson (1979) is sufficient although more sophisticated models are available. 

We evaluated the relationship between scarp height and slope angle for the scarps identified 

in the 83 topographic profiles extracted along the southern slope of the Rex Hills (Fig. 2.8). 

Using this basic approach enabled us to easily detect differences between several fault scarps 

in detail without any modelling efforts. 

Considering slope angle and scarp height of all scarps extracted from the 83 profiles yields 

a scatter plot with a near circular data distribution (Fig. 2.10) resulting in poor correlation for 

the three fault scarps. In an effort to reduce the scatter, we plotted the profile results from 

ridges (black dots) and valleys (white dots) separately for each scarp (Fig. 2.11). The resultant 

scatter plots show an improvement in the ridge-profile correlation coefficients for scarps 1 

and 3, and minimal improvement for scarp 2 (black regression lines in Fig. 2.11). The valley-

profile data (gray regression lines in Fig. 2.11) generally exhibit less correlation except for 

scarp 3 (Fig. 2.11C). 

To further improve the correlations and obtain insights into the surface processes 

controlling the scarp geometries, we reduced the data in several steps until better correlation 

coefficients were obtained compared to Figure 2.11. This procedure is justified because we 

extracted the topographic profiles manually from the LDEM. First, we removed ambiguous 

scarp profiles from the fault-scarp data. These are possible compound fault scarps where the 

upper and lower portions may belong to separate scarps that have merged (e.g., profile 

numbers 22, 42, 53, 64, 77, and 80 in Fig. 2.8). Secondly, we eliminated scarp profiles located 

at the tips of fault-scarp segments (e.g., profile numbers 43, 44 and 45 for the basal fault scarp 

in Fig. 2.8B), which are characterized by smaller offsets than the central portion of the 

segments. After completing this operation, we were able to obtain a slight improvement in the 

overall correlation (Fig. 2.12), and noted that we obtained better correlation for the ridge-

profile data (black regression lines) than for the valley-profile data (gray regression lines) 

except in the case of scarp 2 (Fig. 2.12B), which exhibits less correlation than scarps 1 and 3 

(Figs. 2.12A and 2.12C). To further improve the correlation for scarp 2, we isolated profiles 

which are located solely on the ridge crests and neglected profiles from the entire valley walls 

and floors where erosion would affect scarp morphology. Some of the scarp profiles 

previously indicated as ridge profiles (Figs. 2.11B and 2.12B) are not located on ridge crests. 

They are actually located on the uppermost valley walls (e.g., profile number 21 in Fig. 2.8), 

where the slope is rather gentle compared to the middle part of a valley wall (also Fig. 2.6). 

Considering only ridge-crest profiles yields an improved correlation coefficient for scarp 2 

(Fig. 2.13). Finally, due to the fact that in Figure 2.12 the valley regression-lines plot below 

the ridge regression-lines compared to Figure 2.11 (discussed below), we focused our further 

evaluation on the ridge-profile data of scarps 1 and 3 (Figs. 2.12A and 2.12C), and the ridge-

crest profile data of scarp 2 (Fig. 2.13). 

To approximate the age of the Rex Hills scarps, we plotted our results together with the 

calibrated normal fault-scarp data of Machette et al. (2001) and Friedrich et al. (2004) 

indicated by thin black lines in Figure 2.14. This approach was required because no such data 

are available for reverse fault scarps. Machette et al. (2001) collected data from scarps of 

known age formed in sandy gravels from across the Basin and Range Province (e.g., 

Bucknam and Anderson, 1979). The conglomerate comprising the Rex Hills is mostly 
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composed of gravel-sized clasts with a fine-grained sandy to silty fraction (e.g., Fig. 2.4D; 

Simon Kübler and Markus Hoffmann, 2009, pers. comm.). The similarity between the 

calibrated scarp and the Rex Hills scarp material suggests that it is not unreasonable to 

compare the Rex Hills data with the calibration curves of Machette et al. (2001) and Friedrich 

et al. (2004). We do recognize, however, that we ignored climatic variations and the effect of 

variations in internal stratigraphic and structural architectures between the scarp sets when we 

did this. 

The maximum age obtained for the basal fault scarp by Menges et al. (2003) is 2 ka 

equivalent to the Fish Springs regression line (thin black line number 2 in Fig. 2.14). The 

slope of this regression line is steeper than that of the regression line for the basal fault scarp 

(scarp 1, thick black line labeled S1 in Fig. 2.14) and scarp 2 (thick black line labeled S2), but 

it is similar to the slope of the regression line for fault scarp 3 (thick black line labeled S3). 

Due to the small lithologic differences in the data set of Machette et al. (2001; e.g., sandy 

gravel) and the Rex Hills data (e.g., fine-grained sandy to silty gravel), and the broad overlap 

and scatter in the data characterizing the three Rex Hills scarps, we cannot assign a precise 

age to these scarps. However, our age estimate is consistent with the age derived by Menges 

et al. (2003) because the regression lines of the three scarps plot near or above the 2 ka Fish 

Springs line (Fig. 2.14). Furthermore, the Rex Hills scarp regression-lines plot clearly above 

the regression line of a well constrained event in Crescent Valley (3 ka; gravel deposits; 

Friedrich et al., 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.11 Plots of scarp height H versus slope angle θ for the three fault scarps differentiating between ridge and 

valley scarps in order to reduce and explain the scatter observed in Figure 2.10. Black lines correspond to ridge 

regression-lines, whereas gray ones correspond to valley regression-lines. The thin error bars indicate scarp-

height uncertainties. (A) Scarp 1: basal fault scarp with a broad overlap between ridge and valley data. (B) Scarp 

2: between scarp 1 and 3, also with a broad overlap between ridge and valley data. (C) Scarp 3: uppermost scarp 

shows a clear difference between ridges and valleys although only a few data points had been obtained. 

           → NEXT PAGE 



53 

 

 

 

 

 



54 

 

 

 

 

 

 

 

 



55 

 

← PREVIOUS PAGE 

Fig. 2.12 These plots are similar to Figure 2.11. They show the results after reducing the data of the three fault 

scarps as described in the text. The difference between ridge and valley profiles is now obvious. The gray valley 

regression-lines generally plot below the black ridge regression-lines suggesting that scarp degradation is more 

efficient in the valleys than on the ridges. The thin error bars again indicate scarp-height uncertainties. The thin 

black lines outline high-angle scarp profiles (>40°) localized in the area of profile numbers 55–69 (Fig. 2.8A) 

plotting above the average data population (details discussed in the text). (A) Plot of scarp height H versus slope 

angle θ shows the results for scarp 1 after eliminating ambiguous scarps whose upper part was interpreted to 

belong to scarp 2 and its lower part to scarp 1 (e.g., profile numbers 32, 42, 53, 54, 60, 64, 64, 71, 77, and 80 in 

Fig. 2.8), and removed scarps located at segment tips of scarp 1 (e.g., profile numbers 1, 2, 3, 7, 8, 9, 13, 18, 23, 

25, 34, 43, 44, 45, and 59 in Fig. 2.8). (B) Plot of scarp height H versus slope angle θ for scarp 2 after removing 

ambiguous scarp whose upper part was interpreted to belong to scarp 3 and its lower part to scarp 2 (e.g., profile 

number 22 in Fig. 2.8), and eliminating scarps located at segment tips of scarp 2 (e.g., profile numbers 24, 25, 

33, and 55 in Fig. 2.8). (C) Plot of scarp height H versus slope angle θ for scarp 3 after the elimination of the 

ambiguous scarp whose upper part was interpreted to belong to scarp 3 and its lower part to scarp 2 (e.g., profile 

number 22 in Fig. 2.8).   
 

 

 

 

 

Fig. 2.13 Plot of scarp height H versus slope angle θ for scarp 2 including only data from scarps solely located 

on the actual ridge crests to obtain a better correlation for this scarp. Fault scarps from valley walls and floors are 

neglected due to erosion affecting the scarp morphology especially in valleys. Removed scarps previously 

indicated as ridge scarps are (compared to Fig. 2.12B), e.g., profile numbers 17, 20, 21, 32, 38, 41, 47, 51, 57, 

62, 69, 72, and 74 (Fig. 2.8). These scarp profiles are actually located on the uppermost valley walls where the 

slope is gentle compared to the middle part of a valley wall (Fig. 2.6). The thin error bars indicate scarp-height 

uncertainties. 
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2.7. Discussion 

 

2.7.1. Fault-Scarp Pattern 

 

The southern Rex Hills slope is characterized by three fault scarps. The most continuous 

scarp lies along the toe of the slope, whereas the upper part of the slope exhibits a 

discontinuous, less distinct set of scarps (Fig. 2.8). We detected the basal scarp while 

conducting geologic mapping where we determined bedding attitudes next to the scarp, and 

inferred the fault dip in several places (Figs. 2.3B and 2.4D). The two remaining scarps were 

identified during the topographic profile analysis. 

The scarp slope-angle pattern of the southern Rex Hills slope is characterized by a general 

increase from E to W. The eastern part of the slope is dominated by lower scarp slope-angles 

(blue and green in Fig. 2.8A), and the western part by higher angles (red to yellow). The fault 

branch associated with the basal scarp 1 exhibits a near-surface dip of up to ~10–15°, whereas 

the fault related to scarp 2 is characterized by a steeper dip of approximately ~10–20° (Fig. 

2.5C). Furthermore, the slope angle of scarp 2 is often steeper than that of scarp 1 along 

strike, e.g., areas of profile numbers 39–45 or 57–62 (Fig. 2.8A). 

Fault dip can affect scarp morphology, and a different dip between fault branches may 

account for observed variations in fault-scarp steepness (e.g., Carretier et al., 2002). 

Moreover, internal oblique reverse faults of flower structures tend to be steeper in dip than the 

bounding faults (e.g., Sylvester, 1988). This suggests that the fault dip may be a factor 

influencing the scarp steepness along the southern Rex Hills slope due to the approximated 

difference in near-surface dip of the faults related to scarps 1 and 2 (Fig. 2.5C). However, the 

degree of the influence is difficult to evaluate given that the upper scarp 2 is less continuous 

than scarp 1 (Fig. 2.8), and that we do not have any direct information about the fault 

orientation in the subsurface. 

Spatially correlated factors, e.g., lithologic heterogeneity, may also control scarp 

morphology. For example, the western part of the southern Rex Hills slope is characterized by 

a concentration of high-angle fault scarps (slope angle >40°; area of profile numbers 55–69 in 

Fig. 2.8A). This concentration of steep scarps may be due to lithologic contrasts; the Plio-

Pleistocene conglomerate (Fig. 2.3B) may be more consolidated in this part of the Rex Hills 

resulting in generally steeper scarps. Scarp morphology may also be controlled by across 

strike lithologic contrasts within the Plio-Pleistocene conglomerate, which could account for 

the average slope-angle difference observed between scarps 1 and 2, although this is difficult 

to evaluate due to the extremely poor bedding exposures within the Rex Hills conglomerate. 

Also, it is worth noting that there is no obvious difference in the conglomerate in terms of 

grain size, clast composition, or consolidation across the scarps, which suggests that the 

material is probably very similar in character across strike. 

All three scarps show signs of fault segmentation, with the basal scarp exhibiting the 

clearest segmentation pattern (Fig. 2.8B). The basal scarp is divided into five segments, and 

the second scarp into four segments along strike. The highest and most degraded scarp is too 

discontinuous to evaluate with confidence. The basal scarp segments transferred an 

approximately constant, net vertical slip from one segment of the reverse fault branch to the 

next one, in one case via a right stepover implying dextral offset (Fig. 2.8B). 

The fault-scarp segmentation pattern suggests that the faults may be characterized by a 

changing geometry along strike. Variations in reverse fault dip could result in decreasing 

scarp height towards fault-segment tips as observed in Figure 2.8B. Segmentation may be 

caused by variations in fault strength, geometry, and loading distribution, and may control the 

extent and magnitude of ruptures (e.g. Hilley et al., 2001). For example, Hilley et al. (2001) 

used boundary element models to study these effects on surface offsets along the Cholame 

and Carrizo segments of the San Andreas fault. Their results suggest that the observed offset 
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gradient at the segment boundary is caused by strength contrasts between the overlapping 

fault segments. 

 

 

Fig. 2.14 Plot of scarp height H versus slope angle θ for the three identified fault scarps with ridge-profile data of 

scarps 1 and 3 from Figures 2.12A and 2.12C and ridge-crest profile data of scarp 2 from Figure 2.13 in order to 

determine the age of the Rex Hills scarps. The thick black lines with labels S1 for scarp 1, S2 for scarp 2, and S3 

for scarp 3 are the corresponding regression lines. The thin black lines (numbered 1–5) correspond to the 

regression lines of previously published data (Machette et al., 2001; Friedrich et al., 2004). The error bars 

indicate scarp-height uncertainties. 
 

 

2.7.2. Scarp Height and Slope Angle 

 

The preservation potential of small fault scarps along a hillside cut by ridges and valleys is 

higher on ridge crests relative to the adjacent valleys. Our evaluation of the scarp-height 

versus slope-angle relationship for the three fault scarps indicates that scarps exposed in 

valleys are slightly more degraded than scarps exposed on ridges (Fig. 2.12). Most of the 

valley scarps are characterized by a lower slope angle than ridge scarps of a similar height 

(e.g., scarp 3, Fig. 2.12C) implying that degradation is more efficient in valleys than on ridges 

given that these scarps have the same age. 

Carretier et al. (2002) observed that scarp morphology for cumulative reverse fault scarps 

along the Gurvan Bogd fault system, which is similar to the Rex Hills setting, is controlled by 

slope erosion and the internal structure (e.g., folding, Fig. 2.15A). The dip of faulted beds 

may therefore have an impact on scarp-degradation processes, although, as noted above, this 

is very difficult to evaluate due to the general lack of bedding exposures in the study area. The 

variations in scarp morphology between valleys and ridges, on the other hand, suggests that 

slope erosion plays an important, possibly dominant, role in controlling the scarp morphology 

along the southern Rex Hills slope, which consists of poorly sorted conglomerate and shows 

no clear evidence of internal structures such as folds (Fig. 2.3B). We observed that scarp 

profiles from adjacent ridge crests and valleys are markedly different. Ridge crests preserve 

smaller individual scarps, whereas valleys exhibit longer wavelength, low-amplitude scarps 
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(Fig. 2.15B). We attribute this along-strike variation to different degradation processes acting 

on ridges and in valleys. On ridge crests, degradation is controlled by the local slope and 

height of the scarp as well as local material properties. Whereas, on valley walls and valley 

bottoms water flows episodically, and is concentrated in channels thereby exerting a strong 

effect on the erosion and redistribution of material (Fig. 2.15B). This implies that ridge crests 

of the Rex Hills are preferable for accurate scarp-profile analyses, and explains much of the 

scatter observed in scarp slope-angle–height space where valley and valley-wall profiles are 

included (Figs. 2.11 and 2.12). 

This interpretation is further supported by a linear diffusion analysis performed for the 

basal fault scarp. We examined the spatial variability of the diffusivity parameter (κ) and the 

degradation coefficient (τ) by assuming a known age of 2 ka for this scarp (Menges et al., 

2003). Both parameters are twice as much for valleys than for ridge crests implying that for 

the past 2 ka scarp degradation occurred at twice the rate in valleys than occurred on ridges. 

Lithologic differences and slumping also induce scatter in scarp slope-angle–height space. 

The western part of the southern Rex Hills slope exhibits a concentration of high-angle fault 

scarps (slope angle >40°; area of profile numbers 55–69 in Fig. 2.8A) that plot above the 

average population (outlined with black thin lines in Fig. 2.12). This concentration of steep 

scarps may not only be due to lithology contrasts as discussed previously, the steep slope of 

these scarps may alternatively be inherited from a steeper paleotopography, localized 

slumping, or subsidence. 

After we reduced the initial data set by removing points which may not represent purely 

diffusive degradation processes, we attempted to provide an independent estimate of the scarp 

ages by comparing our fault-scarp data with data compiled from other scarps formed in poorly 

consolidated gravel elsewhere in the Basin and Range by Machette et al. (2001) and Friedrich 

et al. (2004) (Fig. 2.14). In this comparison, our data plot between the 0.4 ka Old Ghost curve 

and the 8.5 ka Drum Mountains curve, and overlap the 2 ka Fish spring curve of Machette et 

al. (2001). More specifically, the scarp 1 data points generally lie on or below the 2 ka curve 

suggesting that it is slightly older than 2 ka, whereas the scarp 2 points plot well above the 2 

ka curve suggesting a slightly younger age for this scarp. If we assume that the scarps are 

from the same event, then it is likely that this event has occurred around 2 ka consistent with 

the estimate of Menges et al. (2003). The alternative that the scarps represent different events 

that occurred a few hundred years apart is impossible to evaluate due to a lack of offset 

stratigraphic markers. However, if this was the case, it would be a possible example of 

earthquake clustering (e.g., Doser, 1986; Wallace, 1987). 

The general evolution of the Rex Hills flower structure is consistent with the results of 

analogue models of restraining stepovers in strike-slip fault systems. This interpretation is 

mainly supported by the pronounced surface expression of the basal reverse fault related to 

scarp 1, and the less distinct expression of faults related to scarps 2 and 3 (Fig. 2.8). This is 

similar to the observed evolution of the experimental pop-up structures, which are 

characterized by a widening of the structure and the outward propagation of the bounding 

basal faults (McClay and Bonora, 2001). 

 

2.7.3. Dextral Offsets and Displacement Rate 

 

Cumulative dextral offsets are caused by repeated, individual seismic events, for example, 

along the San Andreas fault (Sieh, 1978), where numerous late Holocene dextral offsets are 

observed along the rupture of the 1857 earthquake. The youngest offsets reach up to 9.5 m 

between Cholame and Wrightwood in central and southern California, and are related to the 

1857 event (Sieh, 1978), whereas older offsets represent multiple ruptures as documented by 

e.g., the 120 m and 380 m offset channels at Wallace Creek (Sieh and Jahns, 1984; their Fig. 

1b). The drainage-offset magnitudes observed at the Rex Hills site suggest a similar scenario, 
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where large offsets represent multiple events while smaller offsets of a few meters or less 

represent the most recent event. 

The surface displacement of a single earthquake recorded along multiple fault branches is 

often characterized by a wide range of values, e.g., along the San Andreas fault (Sieh, 1978; 

Hilley et al., 2001). Hence, individual measured surface displacements cannot be easily 

transferred into average displacement rates, and we calculated first the average displacement 

of a single rupture event along the Rex Hills fault segment. Dextral offset magnitudes 

identified in the Rex Hills LDEM vary from 7.77 m to 56.5 m (Fig. 2.9; Fig. DR3 and Table 

DR2). The smallest, individual dextral gully offsets of 0.75–1.5 m were measured in the field. 

Menges et al. (2003) observed that dextral drainage offsets range from 0.5 to ~5 m along the 

SFS. They related these offsets to an earthquake with an expected Mw of 7.1–7.3 and a latest 

Holocene age (≤2 ka) based on the surface displacement–magnitude relationship derived by 

Wells and Coppersmith (1994). This suggests that for a single earthquake along the SFS 

displacement is greater than 0.75– 1.5 m. For a 7.1–7.3 magnitude earthquake along the SFS, 

we calculated an average displacement of 1.5–3 m using the same approach (Wells and 

Coppersmith, 1994; additional detail below). We suggest that the offsets determined in the 

LDEM represent cumulative offsets of several earthquakes recorded by gullies older than ~2 

ka. 

We focused displacement-rate determinations on the four most obvious dextral offsets 

from the LDEM (Figs. 2.9B–2.9E). Cumulative offsets of 8.5–19 m would be the result of 

~3–12 earthquakes with an average offset of 1.5–3 m for each earthquake, respectively. Due 

to poorly constrained evidence for an older rupture event along the SFS, Menges et al. (2003) 

approximated a preliminary earthquake recurrence-interval of 10 ka. Based on their data, we 

estimated here a recurrence-interval range of 5–15 ka containing an uncertainty bound of 50% 

(equal to 1 σ). Using this recurrence-interval range, the ~3–12 earthquakes correspond to a 

time span of ~15–180 ka. These results suggest an average displacement rate for the Rex Hills 

fault segment of ~0.05–1.3 mm/a during the past 15–180 ka spanning two orders of 

magnitude. This rate is in the same range as slip-rate estimates of 0.04 ± 0.03 mm/a for the 

central part of the SFS and 0.03 ± 0.02 mm/a for the northern part (Stepp et al., 2001) as well 

as the geodetic rate of 0.7–1.2 mm/a inferred by Wernicke et al. (2004). Furthermore, the 

upper bound of our displacement-rate estimate (1.3 mm/a) is roughly half of the long-term 

minimum, time-averaged, geologic rate determined for the Mesquite segment of the SFS 

(~2.3 mm/a; Guest et al., 2007). It is unclear whether our tentative displacement-rate 

determination is representative of the displacement rate for the entire Pahrump segment of the 

SFS without any additional data from this segment, and so it is difficult to evaluate its 

significance in context of the entire fault system. 
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Fig. 2.15 Schematic diagrams showing degradation behaviour of closely-spaced reverse fault scarps developed 

on poorly consolidated conglomerate. (A) Scarp morphology of a reverse fault scarp is controlled by slope 

erosion and internal structure in terms of folding (structural setting modified after Carretier et al., 2002). (B) The 

sketch shows schematic profiles and preservation potential of individual fault scarps on ridge crests and in 

valleys. Degradation processes are concentrated within a valley, and therefore individual, small fault scarps 

merge to one large scarp with time. 
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2.8. Conclusions 

 

We quantified the morphology and structure of the kilometer-scale Rex Hills flower 

structure by combining field mapping and high-resolution DEM analysis. The use of very 

high-resolution DEM data derived from a terrestrial laser-scanning campaign allowed us to 

conduct a detailed study of fault-scarp patterns exposed on the southern Rex Hills slope, and 

to ultimately attempt to distinguish different scarps in terms of apparent age. 

The southern Rex Hills slope is characterized by a complex pattern of three fault scarps 

which are related to three individual reverse fault branches (Fig. 2.8). Two scarps show signs 

of segmentation (Fig. 2.8B), and we suggest that the faults may be characterized by laterally 

variable fault dips resulting in rupture segmentation and offset gradients as observed at the 

tips of the basal fault-scarp segments (Fig. 2.8B). Furthermore, fault dip, lithologic contrasts, 

and degradation processes appear to significantly influence the scarp morphology along the 

southern Rex Hills slope resulting in broad scatter and overlap in scarp-height–slope-angle 

space (Figs. 2.10–2.14). A key aspect of this study was to identify the source of scatter in our 

slope-angle–scarp-height data. With this goal in mind, we noted that the southern slope is 

characterized by the alternation of small-scale ridges and valleys (Fig. 2.5), and that scarp-

degradation processes are likely to be higher in these valleys than on the ridges (Fig. 2.15B). 

By removing data obtained from the valley bottoms and valley walls, we were able to realize 

a significant improvement in the data distributions, and from this we suggest that the 

preservation potential of small, individual fault scarps is greater on ridge crests than on 

hillslopes and valley floors, and that ridge-crest profiles provide more accurate information 

about closely-spaced fault branches. 

The most promising aspect of high-resolution topographic data for neotectonics is that it 

has the potential to allow for fault-scarp population studies. This would be possible where 

scarps could be assigned well constrained ages and then be grouped into event populations 

that represent the group of scarps associated with a particular earthquake. Based on the Rex 

Hills fault-scarp analysis, we can distinguish clear statistical differences between the scarps, 

but the implied difference in absolute age is difficult to evaluate without making fairly radical 

assumptions. It is clear, therefore, that for this type of analysis to be truly compelling tight 

geochronological constraints are required. The Rex Hills site, though well suited to the laser-

scanning survey, is unfortunately not very well suited to a geochronological study (absence of 

well datable material), and is therefore probably not the best site for additional work on this 

important problem. 

Lastly, and most importantly, our study reveals that high-resolution topographic analysis 

has the potential to significantly improve our understanding of the geometry and evolution of 

small-scale tectonic topography in general, and when combined with subsurface data and 

geochronological data, it provides a comprehensive data scheme for neotectonic studies. 
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3. Chapter II 

 

Short-Term Sediment Transport in Context of Post-Glacial Landscape 

Evolution: Insights from Field Mapping and High-Resolution LiDAR 

Measurements, Alp Valley, Switzerland 

 

3.1. Abstract 

 

A mountain belt is a topographic composite of erosional and depositional landforms. Such 

landforms contain detailed information about a particular process that can be used to decode 

the evolution of a mountainous landscape. In the Alps, geomorphic mapping based on 

recently available high-resolution topographic data allowed to evaluate the long-term 

landscape response to deglaciation following the last glacial maximum (LGM), when the 

Alpine land surface was exposed to the atmosphere for thousands of years. In contrast, even 

small mountainous streams are capable to transport substantial amounts of material within a 

short time, e.g., during heavy thunderstorms. Morphologic changes that occurred during large, 

rare floods and their long-term effects on a landscape are often documented and discussed, but 

changes due to more frequent, smaller floods are rarely considered. This is mainly due to the 

great variability of short-term sediment transport, and a lack of appropriate topographic data 

from which such changes can be quantified. Repeated terrestrial laser-scanning surveys 

provide the unique opportunity to monitor even shortest-term (days to years) fluctuations in 

sediment transport, erosion and storage, and to quantify its variability. The new challenge is to 

derive information that can be related to the long-term evolution of a mountainous landscape. 

In this study, we evaluated the context between short-term sediment transport and the post-

glacial evolution of the Alp Valley in central Switzerland. We combined detailed mapping of 

erosion and sedimentation patterns in this valley to place constraints on its Holocene 

evolution using a high-resolution (2 m) digital elevation model, and repeated high-resolution 

(<1 cm locally) laser-scanning campaigns conducted along two tributaries, the Erlenbach and 

Vogelbach, to monitor channel-morphology changes and the nature of shortest-term sediment 

transport. Our results revealed that short-term sediment transport is enhanced when a channel 

bed, such as that of the Erlenbach, formed on a dip-slope, in contrast to a channel, such as that 

of the Vogelbach, which is cut into a non-dip-slope mountainous flank. The sediment flux 

through the former type of channel is transport-limited, because dip-slopes often promote 

massive landsliding. This explains the transport-limited flux of material in the Erlenbach, 

which is indeed incised into an unconsolidated landslide deposit. In contrast, the sediment 

flux through the latter type of channel is supply-limited, because such landslides usually do 

not occur on non-dip-slopes. This explains the supply-limited sediment flux in the Vogelbach 

which incises into bedrock. Moreover, the increased short-term sediment transport in the 

Erlenbach compared to the Vogelbach confirms the hypothesis that bedrock channels are 

more stable than gravel-bed channels. The latter may effectively prevent bedrock erosion up 

to a few thousand years, e.g., ~2 ka in case of the Erlenbach. This approximation is based on 

the transport length of single decimeter- to meter-sized boulders and the recurrence interval of 

floods with varying magnitude, as well as our observations that a ~5-m-sized boulder 

exhibited no transport during those floods obvious from a dense vegetation cover on top of the 

boulder and that the landslide deposit is up to several tens of meters thick. Hence, we suggest 

that the buffering effect has prevailed throughout the Holocene equal to a time-scale of ten 

thousand years. Finally, the change from glacially influenced erosion and deposition in the 
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Alp Valley to the recent pattern dominated by mass wasting and fluvial processes occurred 

progressively after the LGM. It started in the north and propagated to the south in direction of 

glacier retreat based on two facts: (i) fluvial gravel cover a ground-moraine deposit in the 

north, and late-Würmian lateral and terminal moraines occur only in the south; and (ii) these 

moraines – located at the base of the Mythen rock cliffs – form an effective sediment trap for 

rock-fall debris derived from these cliffs. 

 

3.2. Introduction 

 

Mountain belts are composite landscapes with inherited topographic signatures (e.g., 

Alborz mountains; Landgraf et al., 2009) that can be used to decipher their evolution. In 

mountainous terrain, erosional and depositional landforms, such as head scarps of landslides 

or glacial moraines, are the type of geomorphic signal from which very detailed information 

about a specific process can be extracted to reconstruct spatiotemporal erosion and 

sedimentation patterns (e.g., Schlunegger et al., 2002; Allen, 2008). In the Alps, for example, 

repeated glaciations during the Pleistocene and glacial advances of the younger past – e.g., 

Little Ice Age, 16
th

–19
th

 century – had been identified based on the occurrence of terminal 

moraines (e.g., Penck and Brückner, 1909). However, recently available high-resolution 

topographic data sets provide the unique opportunity to derive such detailed information, and 

had been efficiently utilized, e.g., to investigate the post-glacial sedimentation pattern in a 

central Alpine valley (Otto et al., 2009). 

During the last (Würmian) glaciation, most areas of the Alpine land surface had been 

covered with ice for several thousand years (e.g., Kelly et al., 2004). During glacial retreat, 

this land surface was exposed quite rapidly to atmospheric conditions within thousands of 

years. According to Ballantyne (2002), the Alpine landscape was prone to a rapid change, 

which also incorporated a change of the dominating erosion processes – from glacial- to 

fluvial-dominated (e.g., Church and Ryder, 1972). In the Alps, the response to this change had 

often been investigated on a long-term scale of thousands of years based on Alpine and local 

sediment-budget studies, the analysis of topographic data etc. (e.g., Müller, 1999; Hinderer, 

2001; Schlunegger et al., 2002; Norton et al., 2008).  

In mountainous areas, however, even small streams are capable to transport large amounts 

of material during a short time, e.g., following heavy precipitation (e.g., Wolman and Miller, 

1960). The cumulative effect of several of such short-term erosion events for the long-term 

sediment flux from a drainage basin is only rarely considered because there seems to be a 

limit due to the high variability in sediment transport on short time-scales (days – years – 

centuries). In contrast, from previous comparisons of short- and long-term erosion 

measurements (e.g., Kirchner et al., 2001) as well as from the evaluation of magnitude-

frequency flood distributions (e.g., Molnar, 2001; Molnar et al., 2006) it became obvious that 

the size and frequency of large events is particularly relevant in this context. However, 

landscape changes that occurred during such large floods are most frequently documented, 

e.g., changes along longitudinal river profiles (Molnar et al., 2008), but there is a lack of data 

from which morphologic changes in channel beds can be quantified when more frequent 

floods had occurred. 

Terrestrial laser scanning has recently developed into an effective tool in geomorphology 

to monitor even shortest-term fluctuations in sediment transport and storage (e.g., Heritage 

and Hetherington, 2007; Entwistle and Fuller, 2009). The new challenge is to quantify the 

variability of short-term erosion, transport, and sedimentation, and to extract information that 

can be compared to longer-term measurements. For this purpose, repeated measurements can 

be used for precise monitoring of episodic sediment transport, because a laser-scanner survey 

can rapidly (within minutes) acquire large amounts of topographic data with both a high 

resolution (up to a few cm) and high accuracy (of only a few mm; e.g., Buckley et al., 2008). 
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By comparing such topographic data of the same area but from different acquisition dates, it 

should be possible to constrain vertical surface changes, which can be the type of parameter 

that can be compared to longer-term measurements.  

One of the best study sites in the Alps to evaluate the context between short-term sediment 

transport and post-glacial landscape evolution is the Alp Valley in central Switzerland (Fig. 

3.1A). This is because the valley was covered by glaciers during the Würmian glaciation (e.g., 

Hantke, 1967 and 1970), and recent monitoring of hydrology and sediment transport is carried 

out by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) that 

established several monitoring sites since the late 1960s (e.g., Burch, 1994). Here, we first 

present results of a detailed geomorphic-geologic mapping campaign to constrain post-glacial 

landscape evolution and current erosion and sedimentation patterns in the Alp Valley (Plate I 

[see footnote 2]). Our mapping is based on a LiDAR (Light Detection And Ranging) derived 

digital elevation model (DEM; horizontal resolution 2 m, vertical resolution 1 m). Next, we 

present results of repeated photographic and ground-based LiDAR surveys that we conducted 

along two mountainous gravel-bed dominated channel beds – the Erlenbach and Vogelbach 

(Fig. 3.1B; Plate I). Our approach is supplemented by the independent monitoring of the 

WSL. Lastly, we compared historical documents and combined it with a literature search 

focused on the historic development of this area to investigate landscape evolution over a few 

hundred years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 (A) Shaded relief map of the Western Alps showing the location of the Alp Valley (Fig. 3.1B; modified 

after Willett et al.; 2006). Abbreviations: PF – Periadriatic fault, JF – Jura front, HF – Helvetic front, and PT – 

Penninic thrust.. (B) Geologic map and profile of the Alp Valley area modified after Winkler et al. (1985). We 

outlined the mapping areas of the Alp Valley (Plate I), Erlenbach basin (Fig. 3.2), and Vogelbach basin (Fig. 3.8) 

accordingly. Black tick marks with annotated numbers depict Swiss coordinates in km, and gray tick marks with 

annotated numbers depict northern latitude and eastern longitude.              → NEXT PAGE 

 

 

Plate I New detailed geomorphic map of the Alp Valley. The location of the Vogelbach and Erlenbach basins is 

indicated with according text boxes. Tick marks with thick annotated numbers depict Swiss coordinates in km, 

and tick marks with thin annotated numbers depict northern latitude and eastern longitude. The map is contained 

in the envelope attached at the inside of the back-cover [see footnote 2]. 

 

[2] Plate I is contained in the envelope attached at the inside of the back-cover. 
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3.3. Study Area – Background 

 

The Alp Valley is located in the northern Swiss Prealps, south of the town of Einsiedeln 

(Fig. 3.1). The Alp River drains the valley northward. Our two study sites are the small 

tributary basins of the Erlenbach and Vogelbach. The former is located on the eastern flank of 

the upper Alp Valley, and the latter on the western flank of the central valley (Fig. 3.1B). We 

first describe the general geologic-geomorphic setting of the Alp Valley, and continue with 

detailed descriptions of the Erlenbach and Vogelbach basins including known aspects about 

geology, channel morphology, sediment transport, hydrology, and vegetation. 

 

3.3.1. Alp Valley 

 

Geological Setting 

 

The Alp Valley is cut into Alpine thrust sheets that are composed of sedimentary rocks 

(Fig. 3.1B). On one hand, these rocks comprise resistant rocks such as massive conglomerate 

and limestone, and on the other hand less resistant rocks such as sandstone, marl and shale. 

According to Kühni and Pfiffner (2001), the Alp Valley is located at the border between rocks 

of high erodibility to the north and medium erodibility to the south.  

In the north, the Helvetic frontal thrust forms the contact between the subalpine Molasse to 

the north and the Cretaceous Wägital Flysch to the south (Fig. 3.1). The Oligocene to 

Miocene Molasse consists of massive conglomerate, the Nagelfluh, and sandstone (Plate I 

[see footnote 2]; e.g., Ringholz, 1904). The Wägital Flysch belongs to the Ultrahelvetic-

Penninic Flysch series exposed in the central and southern Alp Valley, which further 

comprise the Habkern and Schlieren Flysch (Fig. 3.1B; Hantke, 1967). These Flysch series 

are distinguished by their tectonic position where the Schlieren Flysch represents the eastern-

most appearance and the Wägital Flysch the western-most (Stammbach, 1988). Both, the 

Ultrahelvetic-Penninic Flysch series and Molasse units are characterized by a high erodibility 

(Kühni and Pfiffner, 2001). 

The Habkern Flysch consists of beige limestone, green shale and gray marl (Stammbach, 

1988), and is only locally exposed in the southeastern Alp Valley and east of Amselspitz (Fig. 

3.1B; Plate I). The Schlieren Flysch mainly consists of brownish marl, green shale, calcareous 

sandstone, and calcarenite (Hantke, 1967), and is exposed over a wide area of the 

southeastern-most Alp Valley (Fig. 3.1B; Plate I). The Wägital Flysch is exposed in the 

central Alp Valley (Fig. 3.1B; Plate I). It is composed of two fractions: the Cretaceous 

fraction comprising irregular bedded brecciated sandstone and silty marl, as well as 

irregularly bedded calcarenite with silty marly shale; and the Eocene fraction consisting of 

marl and marly shale, silty to sandy shale, and calcareous sandstone (Winkler et al., 1985). 

The southern Alp Valley is marked by the prominent Penninic cliffs of the Grosser and 

Kleiner Mythen (Fig. 3.1B; Plate I). These rocky cliffs mainly consist of massive dolostone 

and red limestone of Triassic to Cretaceous age (Ringholz, 1904). They are characterized by a 

medium erodibility, the resistance of a lithology against incision by rivers/glaciers and mass 

wasting by slope processes (Kühni and Pfiffner, 2001; erodibility map based on geotechnical 

map of Switzerland), and were thrust over Helvetic and Ultrahelvetic-Penninic Flysch units 

(Fig. 3.1B). The Helvetic units are part of the so-called Einsiedler Schuppenzone (e.g., Kuhn, 

1972), and comprise Nummulite beds, which consist of sandstone and limestone, and the 

Amdener beds, which consist of marl (Plate I; e.g., Ringholz, 1904; Stammbach, 1988). 
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Quaternary Deposits 

 

Lateral and terminal as well as ground moraines formed below the base of the Mythen 

mountain peaks in the south (Plate I). These moraines formed during late stages of the 

Würmian glaciation – the Chindli and Nasen stages (Hantke, 1967 and 1970). Furthermore, a 

Würmian-aged terrace deposit formed in the north (Plate I; Hantke, 1967). Two post-glacial 

landslide deposits occur along the eastern flank of the Alp Valley: one of them is located in 

the area of the Erlenbach in the south, and another one is located ~2 km farther north (Plate I). 

 

Valley Morphology 

 

The geomorphology of the Alp Valley floor varies markedly between the north and south. 

While the appearance of the northern valley floor is dominated by the flat surface of the 

Würmian-aged gravel terrace that is bounded by a steep and up to more than 10 m high 

escarpment, several alluvial fans occur in the southern valley (Plate I).  

Wide areas of the Alp Valley flanks, especially in the central and southern area, are subject 

to sliding processes and exhibit a typical hummocky topography (Plate I; e.g., Hantke, 1967). 

Most of the small tributary streams incise unconsolidated sliding material – e.g., Erlenbach, 

one of our sub-study sites – whereas bedrock is mainly exposed along channel beds – e.g., 

Vogelbach, the other sub-study site – and at local rock cliffs (Plate I). However, rock cliffs 

such as the Mythen mountain peaks are characterized by steep slopes (angles up to more than 

85°), whereas the post-glacial landslide deposits or alluvial fans exhibit much gentler slopes 

with angles that typically range between 5° and 25° (Fig. 6.2-1). 

 

3.3.2. Erlenbach 

 

The Erlenbach is a small tributary located on the eastern Alp Valley flank in the south 

(Figs. 3.1 and 3.2; Plate I). The catchment covers an area of 0.74 km² with a mean channel 

slope of 18% (~10°), and a catchment altitude of 1110–1655 m (Table 3.1; e.g., Burch, 1994; 

Schuerch et al., 2006). The lower two-thirds of the Erlenbach basin are developed on a large 

landslide that mainly consists of late Cretaceous to middle Eocene Wägital Flysch (Fig. 3.2; 

Plate I; e.g., Rickenmann & McArdell, 2007). The Flysch is composed of mudstone and 

calcareous sandstone (Winkler et al., 1985), and covered by a gleyic soil of very low 

permeability (Rickenmann and Dupasquier, 1994; Yager, 2006). Weathering of this material 

results in silty sand with clay, gravel, and sparse boulders of up to 2 m in diameter (Schuerch, 

2005). 

Intact Eocene Flysch bedrock consists mainly of mudstone, and is exposed only along the 

upper Erlenbach channel (Fig. 3.2; Schuerch et al. 2006). Furthermore, the Helvetic Amdener 

beds are exposed in the uppermost catchment, where a thrust fault defines the contact to the 

Eocene Wägital Flysch (Fig. 3.2; Plate I; e.g., Hantke 1967; Stammbach, 1988). 

The Erlenbach channel bed, especially the well studied lowermost ~530 m of the channel, 

is characterized by a step-pool to cascade morphology (Hegg and Rickenmann, 1998) where 

steps are formed by woody debris and boulders of 0.5–2.5 m in diameter with a highly 

variable horizontal step-spacing of 10–50 m (e.g., Rickenmann and Dupasquier, 1995; 

Schuerch et al., 2006). Apart from these large, relatively immobile boulders, mostly 

sandstone, the channel bed is further composed of intervening finer and more mobile 

sediment patches (Yager, 2006). The average grain-size distribution of the surface-bed 

material is characterized by d90 = 350 mm, d50 = 75 mm, and d30 = 18 mm (Hegg and 

Rickenmann, 1998). The characteristic grain sizes of transported material range from 125–140 

mm for d90 to 20–40 mm for d50 (Ziltener, 2007). 
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Small slides occur on the hill-slopes adjacent to the Erlenbach channel (Fig. 3.2), and 

deliver episodically large amounts of poorly sorted sediment to the channel (Schuerch et al., 

2006). Along the lowermost ~530 m of the channel, the southern channel bank exhibits a 

series of active slides, whereas slides are far less frequent on the northern bank (Schuerch, 

2005). The head scarps of these slides are usually 1–2 m high, and they do not affect bedrock. 

Furthermore, the slides frequently appear to move as multiple blocks with different velocities, 

and vegetation patches on the slide masses are separated by bare sub-soil (Schuerch et al., 

2006). 

The Erlenbach basin is characterized by a mean annual precipitation of 2300 mm (Table 

3.1; e.g., Rickenmann, 1997). High intensity storms occur frequently in the summer, whereas 

from November to April the precipitation usually consists of snow summing up to 30–40% of 

the annual precipitation (e.g., Hegg and Rickenmann, 1998). The Erlenbach exhibits a mean 

annual stream flow of 1850 mm (Table 3.1; Rickenmann, 1997). Increased water discharge in 

winter and spring is either due to snow-melt, or rain-on-snow events (Schuerch et al., 2006). 

High water discharges in summer are caused by frequent, high-intensity storms resulting in 

sharp rises to peaks of short duration (e.g., Rickenmann and McArdell, 2007). This rapid 

runoff response to rainfall with extreme flood peaks is mainly due to the low infiltration 

capacity of the shallow loamy soils (Rickenmann, 1997; Molnar et al., 2008).  

On average more than 20 bed-load transport events occur each year in the Erlenbach 

(Rickenmann and Fritschi, 2010), and between 1986 and 1989 the average annual suspended 

sediment yield was 1225 t/km² a (Table 3.1; Keller and Weibel, 1991). During the largest 

recorded flood (20
th

 June 2007) with a peak water-discharge of 16 m³/s, a bulk sediment 

volume of 1650 m³ had been transported (e.g., Turowski et al., 2009). Grains of step-forming 

size (>0.5 m in diameter) and woody debris had been deposited in the sediment retention 

basin (Molnar et al., 2008). For comparison, the second largest flood (25
th

 July 1984) with a 

maximum water-discharge of 12 m³/s transported a total sediment volume of 2000 m³ with 

boulders of 1 m in diameter (Rickenmann, 1997). However, the June 2007 event yielded a 

complex reorganization of the channel bed and its step-pool morphology (Molnar et al., 

2010). Prior to this flood, from 1993 to 2004, aggradation of up to ~2.5 m occurred in two 

broad zones along the lowermost ~530 m of the channel bed that coincide with the location of 

major landslides and high channel slopes (Schuerch et al., 2006). In contrast, during the flood 

in 2007, erosion of up to ~3 m and the formation of new steps mainly occurred in these broad 

zones where the major landslides are located (Molnar et al., 2010). 

Lastly, the Erlenbach basin is covered by 40% coniferous forest and 60% wetlands with 

grass and shrubs (Table 3.1; Hegg and Rickenmann, 1998). Where toppled coniferous trees lie 

on the ground, newly growing vegetation consists of alder and shrubs (Schuerch, 2005). 

During the 20
th

 century, systematic logging took place within the catchment, but was stopped 

within the last 20 years. 

 

3.3.3. Vogelbach 

 

The Vogelbach is a small tributary located on the western flank of the central Alp Valley 

with a catchment elevation of 1000–1500m, a drainage area of 1.56 km², and a channel slope 

of 10–30% (~6–17°; Milzow et al., 2006; Figs. 3.1 and 3.8; Plate I). It incises into calcareous 

sandstone, argillite and bentonite schist – Cretaceous Wägital Flysch (Fig. 3.8). Following 

Hantke (1967), the trunk channel of the Vogelbach trends parallel to a thrust fault that 

deformed the Wägital Flysch internally (Plate I).  

The Vogelbach channel bed is dominated by a step-pool morphology, and a heterogeneous 

sediment mixture ranging in grain size from gravel to boulders, including a few small and 

discontinuously-weathered bedrock outcrops (e.g., Fig. 3.9; Milzow et al., 2006). The hill-
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slopes of the Vogelbach basin are covered by a clay-rich soil with low infiltration rate 

(Milzow et al., 2006). 

The Vogelbach catchment exhibits a mean annual precipitation of 2050 mm, 30–40% as 

snow, which is similar to that of the Erlenbach basin (Table 3.1; e.g., Keller and Weibel, 

1991). The Vogelbach shows a fast runoff response to precipitation due to low infiltration, 

steep slopes and a well-developed channel network (Milzow et al., 2006). Furthermore, large 

floods occur after high intensity storms especially when precipitation coincides with the snow 

melt. In general, the Vogelbach is characterized by a low flow stage in winter and a higher 

flow stage during snow-melt season and in the summer. The highest water discharge had been 

recorded during the summers of 1995 and 1998 (6.4 m³/s; Milzow et al., 2006). For 

comparison, the peak water-discharge during the flood from 20
th

 June 2007 was ~4.3 m³/s (J. 

Turowski, pers. comm., 2008). The mean annual suspended-sediment yield between 1986 and 

1989 was 725 t/km² a (Table 3.1; Keller and Weibel, 1991). Lastly, the Vogelbach basin is 

covered by 65% forest as well as 35% meadows and pastures (Table 3.1). 

 

 
Table 3.1: Characteristics of the Erlenbach and Vogelbach basins. 

Catchment parameter Erlenbach Vogelbach 

Area (km²) 0.74 1.56 

Mean elevation (m) 1350 1365 

Mean slope (°) ~10° 6–17° 

Forest cover (%) 40 65 

Wetland & grassland (%) 60 35 

Mean annual precipitation (mm) 2300 2050 

Mean annual stream flow (mm) 1850 1460 

Mean suspended-load 1986–1989 (t/km² a) 1225 725 

Compiled from Keller and Weibel (1991), Milzow et al. (2006), and Rickenmann and McArdell (2007). 

 

 

3.4. Methods and Data 

 

We combined detailed geomorphic mapping in the Alp Valley with the analysis of high-

resolution laser-scanner measurements from the Erlenbach and Vogelbach channels to better 

integrate observations on sediment transport of a few days to a few years in length into the 

post-glacial evolution of the valley over the last couple of thousand years. We supplemented 

this approach by considering the historical record of the Alp Valley area that allowed us to 

qualitatively examine its landscape evolution over a few hundred years. 

 

3.4.1. Mapping and Photo Documentation 

 

We carried out detailed geomorphological and geological field mapping in the Alp Valley 

and the two tributary basins of the Erlenbach and Vogelbach at a scale of 1:10.000 (Figs. 3.2 

and 3.8; Plate I). Our mapping is based on a LiDAR derived DEM with a horizontal 

resolution of 2 m and vertical resolution of 1 m (provided by WSL, 2006). Previously derived, 

published maps of the Alp Valley lack either structural and geomorphic detail (Fig. 3.1B; e.g., 

Hantke, 1967; Winkler et al., 1985), or cover only parts of the Alp Valley (e.g., Stammbach, 

1988). However, the high resolution of the DEM allows to bridge this gap, because it enabled 

us to map the entire valley at a consistent level of detail, and we combined geomorphic and 

geologic structures in one map (Plate I). Thus, we mapped the morphology of the Alp Valley 

floor and its hill-slopes in coherent, unprecedented detail, previously only available for the 

Erlenbach area in the south (Fig. Plate I; Stammbach, 1988). We also added structural detail, 

such as bedding orientation, and reconstructed the orientation of local fold axes (Figs. 3.2 and 
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3.8; Plate I) in order to better evaluate potential causes of differences in erosion and 

deposition patterns across the Alp Valley. Furthermore, we conducted photographic surveys 

along the trunk streams of the Erlenbach and Vogelbach to better document the nature of 

short-term sediment transport (e.g., grain-sizes of transported material), and to evaluate 

channel-morphology changes (Figs. 3.3 and 3.9). 

 

3.4.2. Historical Record 

 

To describe the landscape evolution in the Alp Valley region over a scale of a few hundred 

years, we analyzed a number of historical documents, including paintings, photographs, and 

other illustrations (Figs. 3.14, 6.2-6 and 6.2-7) as well as literature on the historic 

development of this area (e.g., Saurer, 2002). These historical documents, largely from the 

area of the Benedictine monastery of Einsiedeln founded in 934 AD (Eberle, 1984), provide a 

long-term basis to evaluate landscape evolution over the last ~500 a. So far, this approach is 

rarely considered in geomorphologic studies as pointed out by Rees (1973). 

 

3.4.3. Laser-Scanner Surveys 

 

We conducted several laser-scanning campaigns along the lowermost reaches of the 

Erlenbach and Vogelbach to determine short-term channel-bed changes and sediment 

transport (Figs. 3.2 and 3.8; Plate I). We used two terrestrial medium-range scanners: the 

Leica ScanStation
®

 in 2008, and TOPCON GLS-1000
®

 in 2009. Both scanners measure across 

distances of a few hundred meters. We scanned with a resolution of 3 cm (Leica 

ScanStation
®

) and 1 cm (TOPCON GLS-1000
®

) at a distance of 30 m to gain a high point 

density across the focus site. A calibration of the two scanners yielded no significant 

differences. 

Field work with both laser scanners followed the same principle (e.g., Heritage and 

Hetherington, 2007; Buckley et al., 2008; Baran et al., 2010). The scanner is mounted on a 

tripod at successive positions, and the area of interest is mapped by scans with variable 

overlap. Along the Erlenbach and Vogelbach channel beds, the scanner was set up at four 

different positions to cover ~40 meter-long sections of the lowermost channel beds (Figs. 3.2 

and 3.8). We captured transient sediment transport by choosing three different scan-interval 

lengths (Table 3.2): (i) daily scans in the Erlenbach to evaluate the effect of an increased 

water discharge following precipitation; (ii) an interval length of several months (seasonal) in 

the Erlenbach and Vogelbach to investigate the time-averaged response probably due to 

several bed-load transport events; and (iii) monthly scans in both channel beds bridging the 

gap between (i) and (ii). 

Lastly, we defined a set of fixed reference points distributed along each channel-bed 

section. When several reference points were visible from the different scan positions, it was 

more accurate to merge the individual scans into a common point cloud of a channel-bed 

section. Later, we also used these fixed reference points to convert the point-cloud data from 

local project into Swiss coordinates. For this, we combined kinematic GPS measurements and 

surveying by a total station (Leica TCRP1203+
®

) to determine the Swiss coordinates of our 

reference points.  

 

 

 

 

 

 

 

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=Benedictine&trestr=0x401
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Table 3.2: Laser scanning Erlenbach and Vogelbach – 2008 and 2009. 

Erlenbach Vogelbach 
Year 

Retention basin Channel bed Channel bed 

4 June ● 5 June ●   
2008 

21 October ● 21 October ●   

17 May ●/●● 16 May ●/●● 17 May ●/●● 

2009 

17 June ●● 17 June ●● 16 June  ●● 

16 July ●● 15 July ●● 14 July ●● 

13 August ●● 13 August ●● 12 August ●● 

7 September ●● 6 September ●● 8 September ●● 

28 October ●/●● 29 October ●/●●/●●● 30 October ●/●● 

  31 October ●●●   

  1 November ●●●   

  3 November ●●●   

  6 November ●●●   

Scan interval: ● Seasonal ●● Monthly ●●● Daily 

 

 

3.4.4. Data Processing and Error Analysis 

 

We utilized various software packages for our data processing – ScanMaster
©

, Cyclone
©

, 

Pointools
©

, Octave
©

, Perl
©

, and Generic Mapping Tools
©

 – because it allowed us to 

customize the processing for our purpose. To generate a single high-resolution point cloud of 

a channel bed for a certain time, we first registered each scan of a particular laser-scanner 

survey in the same coordinate system by using the fixed reference points defined in the field, 

or by using alternative points that we selected manually from overlapping areas of individual 

scans. 

Next, it was necessary to geo-reference each point cloud to quantify the difference between 

two point clouds covering the same area, but which were acquired at different times. For this 

purpose, we used the fixed reference points from which we knew the coordinates. In some 

cases, we also used alternative reference points that we selected manually from the point 

cloud, which yielded the smallest geo-referencing error, by using our fixed reference points 

(error ≤ ±1 cm, 1 σ). We used this latter approach to reduce the geo-referencing error that we 

derived when using only the fixed reference points. 

We transformed the Erlenbach data into the Swiss coordinate system, and the Vogelbach 

data into a local project coordinate system. Each choice is due to the resulting total error from 

both, the scan registration and the geo-referencing process (further detail below). For the 

Erlenbach, the transformation into Swiss coordinates yielded a smaller error (maximum of 

±3.1 cm, 1 σ) than into local coordinates (maximum error ±5.2 cm, 1 σ). In contrast, for the 

Vogelbach the transformation into local coordinates yielded a smaller error (maximum ±4.6 

cm, 1 σ) than into Swiss coordinates (maximum error ±5.7 cm, 1 σ). Thus, the total error of 

the Erlenbach data is in the range of ±4 cm (1 σ) based on the maximum error of ±3.1 cm, 

which resulted from the transformation of the Erlenbach data into Swiss coordinates. The total 

error (1 σ) of the Vogelbach data is on the order of ±5 cm approximated from the maximum 

error of ±4.6 cm (1 σ), that occurred during the transformation of the Vogelbach data into 

local coordinates. 

To quantify channel-bed changes that may have occurred between two laser-scanner 

surveys, we constructed interferograms of data sets acquired at different times. Based on the 

point clouds for the Erlenbach and Vogelbach, we generated regular grids with a horizontal 

resolution of 5 cm for each data set, and by subtracting one grid from another we quantified 

the vertical difference between them. Schaefer et al. (2004) introduced this approach to 

determine surface deformation of several cm at the lock gates of a hydropower station during 

the filling and draining process. We then visualized the results of this subtraction for the 
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Erlenbach in Figure 3.4, and the Vogelbach in Figure 3.10. We often observed changes 

concentrated along the grid margins, which we ascribed to the fact that the Erlenbach and 

Vogelbach channel banks are more or less vertical in those areas (e.g., Figs. 3.4B and 3.10A). 

The grid subtraction is not appropriate to quantify vertical changes along vertical planes.  

We validated the choice of transforming the Erlenbach data into Swiss coordinates and the 

Vogelbach data into local ones. We therefore compared the results of the grid subtraction 

when the data had been transformed into local coordinates with the results after their 

conversion into Swiss coordinates. In particular, the grid-subtraction results for the Vogelbach 

based on the Swiss coordinates sometimes yielded local differences that we did not observe 

for the results with the local coordinates (Fig. 3.10). In these cases, our field observations 

during laser scanning in the Vogelbach agree with the results of the grid subtraction based on 

the local coordinates. 

To allow for an appropriate interpretation of the grid-subtraction results (Figs. 3.4 and 

3.10) we carried out a manual inspection of each point cloud. For this, we used the point 

clouds derived from measurements with the TOPCON GLS-1000
®

 scanner. With the 

integrated camera of this scanner, we acquired photos of the scanned area. With the color 

information contained in the images, it was possible to color those point clouds using the 

software ScanMaster
©

. After the coloring, each point in a cloud bears information on space 

(xyz coordinates) and color (RGB values). By a visual inspection of two point clouds from 

different times, we had been able to characterize the nature of short-term sediment transport in 

the Erlenbach and Vogelbach (Figs. 3.5 and 3.11). This approach is similar to the comparison 

of photographs taken along both channels at different times (Figs. 3.3 and 3.9).  

 

3.4.5. Erlenbach: Retention Basin and Event Data 

 

For two reasons the Erlenbach provides a unique opportunity to evaluate our laser-

scanning based observations on channel-bed changes and sediment transport in context of 

accompanying environmental conditions. First, a sediment-retention basin, that was 

constructed in 1982 and designed to trap sediment for research purposes (e.g., Rickenmann 

and McArdell, 2007), enabled us to monitor the total sedimentation of the Erlenbach quasi 

simultaneously to our scanning surveys along the channel (Fig. 3.6). The basin was slowly 

drained prior to each survey to avoid disturbing sedimentary deposits. We scanned the basin 

deposit several times in 2008 and 2009 (Table 3.2) based on the approach described above, 

and utilized a scan resolution of 3 cm at a distance of 30 m. The data processing comprised 

similar steps. Both, the registration of individual scans into a common point cloud and the 

transformation of point clouds into Swiss coordinates are based on the usage of fixed 

reference points. Here, the reference points and their Swiss coordinates had been determined 

and provided by the WSL (2008). The total error associated with the scan registration and 

geo-referencing process is in the range of ±1 cm (1 σ). We generated regular grids with a 

horizontal resolution of 5 cm for each data set, and by subtracting one grid from another we 

determined the sedimentation in the basin (Fig. 3.6). Second, independently obtained 

continuous data on bed-load discharge, water discharge and precipitation in the Erlenbach 

catchment were available from the WSL covering the time interval of our laser scanning (Fig. 

3.6, Tables 6.2-1 and 6.2-2). We refer to the appendix of this chapter for details about these 

data, e.g., including information about associated errors. 
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3.5. Results 

 

3.5.1. Alp Valley 

 

Based on our field mapping, the Alp Valley can be divided into four characteristic 

lithological units (Plate I [see footnote 2]): (i) the Molasse; (ii) the Flysch series and Amdener 

beds; (iii) the Helvetic units (limestone) and Penninic cliffs; and (iv) the Quaternary deposits 

of the Alp Valley floor. These four units are in agreement with Hantke (1967), Winkler et al. 

(1985), and Stammbach (1988). 

The subalpine Molasse exposed in the northern Alp Valley exhibits a uniform structural 

pattern. The Molasse dips to the S-SSE with angles of 35–55°. The conglomerate (Nagelfluh) 

forms elongated rocky cliffs with a steep north slope and a gentle southern dip-slope (Plate I). 

Rock-fall occurs on the north slopes, where we found conglomerate boulders deposited at the 

cliff bases. The southern dip-slopes exhibit a hummocky topography typical for sliding areas. 

Moreover, streams are often parallel to the strike of the conglomerate beds particularly on the 

western flank of the Alp Valley (Plate I). These small streams incise the Molasse bedrock in 

some places. Moreover, the conglomerate is composed of rounded clasts with a manifold 

origin (e.g., sedimentary and granitic rock types), and a calcareous, fine-grained matrix. As 

weathering of the matrix proceeds the rounded clasts preferentially drop out, and they also 

compose the alluvial channel-bed cover. 

Our mapping revealed in agreement with Hantke (1967) and Stammbach (1988) that large 

parts of the central and southern Alp Valley flanks are subject to sliding processes and exhibit 

a typical hummocky topography (Plate I). This is the area in which the Ultrahelvetic-Penninic 

Flysch series and Amdener beds are exposed. Where the marl of the Amdener beds is exposed 

in the south, it exhibits badland-style erosion with deep and steep gullies (Plate I). However, 

sliding areas were often found along S to SE directed dip-slopes, but they are not restricted to 

this condition (Plate I). Furthermore, the orientation of ridges and valleys is in some places 

along the central Alp Valley flanks parallel to the approximate ENE-WSW to NE-SW strike 

of fold axes and thrust faults (Plate I). 

The Penninic cliffs of the Mythen mountain peaks form steep, rocky cliffs that dominate 

the landscape of the southern Alp Valley (Plate I). Debris cones, composed of angular 

limestone clasts ranging in size from less than 1 cm to several m, formed at the base of the 

Mythen cliffs (Plate I). Similarly to the Molasse conglomerate, the Helvetic limestone forms 

steep, rocky cliffs with rock-fall debris at their base on one hand, and a dip-slope with a 

hummocky topography due to sliding processes on the other hand – e.g., top of the eastern 

Alp Valley flank in the north (Plate I). 

Quaternary deposits of the Alp Valley floor are markedly different between the north and 

south. In the south, lateral and terminal as well as ground moraines formed below the base of 

the Mythen mountain peaks (Plate I). These Würmian-aged moraines (Hantke, 1970) are 

composed of poorly sorted massive limestone clasts with boulders up to several m in size. The 

northern Alp Valley floor is dominated by a flat terrace plain that is bounded by an up to 15 m 

high escarpment (Plate I). In the upper ~10–15 m, the Würmian-aged terrace deposit (Hantke, 

1967) consists of well sorted and rounded fluvial gravels containing local lithologies 

mentioned earlier. The fluvial gravels are underlain by discontinuous, ~0.2–0.3 m thick, 

varved clay deposits which are again underlain by a ~0.75–1 m thick ground moraine. The 

latter one is poorly sorted, contains local lithologies, and is composed of a fine-grained matrix 

and scratched boulders up to ~0.5 m in diameter. 

To evaluate the efficiency of fluvial and rock-fall processes, we mapped the corresponding 

deposition and erosion areas (Fig. 6.2-5). An alluvial fan is the deposit derived from fluvial 

transport of material, and a drainage basin located upstream of a fan apex defines the 

corresponding erosion area (Fig. 6.2-5A, Table 6.2-3). Similarly, a debris cone is the deposit 
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that is due to rock-fall on steep rock cliffs, where the cliff walls represent the erosion area 

(Fig. 6.2-5B, Table 6.2-4). Hence, we used the deposition area – i.e., area of alluvial fans or 

debris cones – and erosion area – i.e., area of drainage basins or rock cliffs – as proxies for the 

spatial scale affected by a particular process (Fig. 3.14).  This approach is appropriate because 

the erosion and deposition areas do not overlap (Fig. 6.2-5). In contrast, we did not consider 

the post-glacial landslides because the degree of overlap between erosion and deposition area 

is uncertain. For example, the surface area of the Erlenbach landslide is ~1.4 km² (Plate I), but 

we were not able to map the corresponding erosion area appropriately because the landslide 

deposit covers most parts of the basal slip-plane. 

Lastly, to approximate temporal variations of erosion in the Alp Valley we considered the 

sedimentary record of the neighbouring Sihl Valley, east of the Alp Valley (Fig. 3.1B). Lüdi 

(1939) evaluated a series of drill cores from the Sihl Valley that had been derived prior to the 

establishment of the reservoir lake in the 1930s (Saurer, 2002). He observed fine laminated 

marls resulting from sedimentation in a stagnant water body, and suggested that a post-glacial 

lake existed in the valley. The lake had been progressively filled with sediment from the south 

towards the north within 10 ka (Lüdi, 1939). The siltation of this lake was further promoted 

by a base-level drop of the Sihl River, which progressively incised into a terminal moraine 

that bounded the lake in the north thereby inducing a decrease of the water table. However, 

based on a profile through the sediment body derived by Lüdi (1939), we approximated the 

maximal horizontal delta growth in the Sihl Valley during the Holocene (Fig. 3.13). We 

observed a slow progradation from 10–6 ka (650 m/ka), a rapid increase from 6–5 ka (3400 

m/ka), and a slower progradation 5–3 ka ago (1950 m/ka). 

 

3.5.2. Erlenbach 

 

Geomorphic-Geologic Setting 

 

Our detailed field mapping in the Erlenbach basin revealed that small slides occur almost 

along the entire trunk channel-banks (Fig. 3.2). Along the lowermost ~1.2 km, the trunk 

stream is cut into a post-glacial landslide deposit, and locally it is even incised down to the 

bedrock, that consists of Eocene Wägital Flysch (Fig. 3.2; Plate I). The landslide deposit is 

generally characterized by a gentle, hummocky toporaphy (Fig. 3.2). In contrast, the Amdener 

beds exposed upstream of the landslide deposit in the uppermost part of the Erlenbach basin 

exhibit a badland-style erosion with deeply incised gullies (Fig. 3.2). 

The Erlenbach channel trends nearly parallel to the bedding-strike orientation along the 

rare Wägital Flysch bedrock outcrops, whereas it crosscuts the bedding of the Amdener beds 

in the uppermost catchment (Fig. 3.2). The bedrock in the upper Erlenbach basin generally 

dips to the SSE-SE. However, since a substantial part of the eastern Alp Valley flank is 

covered by the landslide with a surface area of ~1.4 km² further structural information on 

bedrock geology is lacking. 

 

Short-Term Channel-Bed Changes and Sediment Transport 

 

Along the Erlenbach channel bed, we derived similar results from both, the comparison of 

photographic surveys (Fig. 3.3) and the evaluation of our laser-scanning data (Figs. 3.4 and 

3.5). The comparison of photographs indicated that the small slides along the stream delivered 

lots of material to the channel bed (Fig. 3.3), and we observed sliding vegetation on top of the 

slide masses (Fig. 3.3B). We further observed that large boulders of several m in diameter 

exhibited no transport (Fig. 3.3A). The grain size of transported material ranges from silt and 

sand (Fig. 3.3B) to boulders of several dm in diameter (Fig. 3.3A) and m-sized boulders (Fig. 

3.3B). 
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The quantitative comparison of the Erlenbach laser-scanner data, the grid-substraction 

results, revealed that channel-bed changes generally occurred in localized areas with a stained 

or punctual shape (Fig. 3.4). For example, in 2008 we observed a point-shaped negative 

change in channel-bed elevation of roughly 1 m (Fig. 3.4A left) that was due to the transport 

of a ~1-m-sized boulder. The stained shape of the observed changes can also be due to the 

transport of loose tree branches. Furthermore, the qualitative evaluation of the laser-scanner 

data revealed that the transport length of dm-sized boulders is in the range of several m (Fig. 

3.5A), and that the grain size of transported sediment ranges from boulders of several dm in 

diameter (Fig. 3.5B) to silt and sand (Fig. 3.5C). In contrast, buried boulders in the channel 

bed exhibited no transport (Fig. 3.5D). In summary, current sediment transport in the 

Erlenbach from 2008–2010 appears to be active, and only very large or buried boulders are 

‘immobile’ according to Schuerch et al. (2006) and Yager (2006). 

 

Retention Basin and Event Data 

 

We quantified the total sedimentation in the Erlenbach retention basin based on repeated 

laser scanning of the basin deposit (Table 3.2). We observed the complete excavation of the 

deposit in 2008, because it was required to excavate the basin due to ongoing construction 

work (Fig. 3.6A). In this case, the empty basin represents a planar reference frame to monitor 

the growth of the deposit in 2009 (Fig. 3.6). We observed no sedimentation during the winter 

term from October 2008 to May 2009 (Fig. 3.6A), whereas episodic sedimentation occurred 

during the summer term which was greatest from May to August 2009 (Fig. 3.6B). For 

example, we observed localized sedimentation of up to ~4 m from June to July, of up to ~2 m 

from July to August, and less than ~1m from August to September (Fig. 3.6B). 

Bed-load discharge, water discharge and precipitation had been independently monitored 

by the WSL. We summarized the data of the bed-load transport events that occurred during 

our laser scanning in Figure 3.7. In both years, 2008 and 2009, we observed that most of the 

events occurred during the summer term, and that the greatest bed-load discharge was 

recorded during events from June to August, whereas the smallest events occurred in the 

winter term (Fig. 3.7A). Similarly, water discharge and precipitation during these events were 

greatest and more frequent in the summer, whereas they were lowest and less frequent in the 

winter (Figs. 3.7B and 3.7C). 
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Fig. 3.2 Detailed geomorphic map of the Erlenbach. The location of the photographs shown in Figure 3.3 is 

indicated with white stars. Tick marks with thick annotated numbers depict Swiss coordinates in km, and tick 

marks with thin annotated numbers depict northern latitude and eastern longitude. 

 

 

 

 

 

 

 

 

 

Fig. 3.3 Photographs along the Erlenbach channel bed where ellipses indicate changes between 2009 and 2010. 

Note that photos have a slightly different scale resulting from different camera angles when pictures had been 

acquired. The location of the examples is indicated in Figure 3.2. (A) ~5 m sized boulder exhibited no change in 

position. In contrast, smaller boulders of ~0.4 m or less in size and vegetation such as small trees had been 

transported. Slides delivered material to the channel bed. Line of sight is upstream. (B) Slide on the southern 

channel bank where boulders up to ~2 m in size had been transported. Especially the base of the slide delivered 

material to the channel bed. We observed no changes in the uppermost part of the slide. The arrow in the upper 

right corner indicates downstream direction is to the west.               → NEXT PAGE 
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← PREVIOUS PAGE 

Fig. 3.4 Quantitative results of channel-bed changes for the Erlenbach that are related to the grid subtraction 

described in the text, and based on the point clouds of the Erlenbach channel bed. An enlarged version of this 

figure is contained in the appendix (Fig. 6.2-2). Note that the vertical and horizontal axes are of different scale to 

facilitate the visualization of channel-bed changes because the channel section is much longer than the channel 

bed is wide. Tick marks with annotated numbers depict Swiss coordinates in m. We indicate the location of 

examples compiled in Figure 3.5 accordingly. Channel-bed changes generally occurred in localized areas, and 

have a blurry or punctual shape. (A) Seasonal intervals, 2008 and 2009. (B) Monthly intervals, 2009. (C) Daily 

interval, 2009. Additionally, Figure 6.2-2 in the appendix contains the remaining results for the daily intervals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.5 Examples related to our visual comparison of point clouds derived for the Erlenbach channel bed. Their 

location is indicated in Figure 3.4, and ellipses indicate channel-bed changes in 2009. (A) One ~0.6 m sized 

boulder had been transported by ~3.4 m. White arrows in the left and middle image represent the tips of the 

arrow in the right image, in which the left and middle image are shown simultaneously. (B) Boulders up to ~0.5 

m in size and (C) fine-grained material had been transported. (D) Buried boulders exhibited no change in 

position.                     → NEXT PAGE 
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Fig. 3.6 Quantitative results of the sedimentation in the Erlenbach retention-basin that are based on the grid 

subtraction mentioned in the text and on the point clouds of the basin deposit. An enlarged version of this figure 

is contained in the appendix (Fig. 6.2-3). Tick marks with annotated numbers depict Swiss coordinates in m. We 

observed the excavation of the basin deposit that was necessary due to ongoing construction work in 2008, and 

the growth of the deposit in 2009. (A) Seasonal intervals, 2008 and 2009. (B) Monthly intervals, 2009.  

           → NEXT PAGE 
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← PREVIOUS PAGE 

Fig. 3.7 Erlenbach event data on sediment discharge (A), water discharge (B), and precipitation (C) for 2008 and 

2009. We additionally compiled these data in Tables 6.2-1 and 6.2-2 in the appendix, and marked the timing of 

our laser-scanner campaigns in gray. 
 

 

3.5.3. Vogelbach 

 

Geomorphic-Geologic Setting 

 

Our detailed field mapping in the Vogelbach basin (Fig. 3.8; Plate I) revealed that the 

Wägital Flysch exposed along the trunk channel is intensively deformed. The Flysch exhibits 

folds of varying wavelength (up to ~10 m) and style (narrow to open). In many cases, the 

channel trends nearly parallel to the local bedding-strike and fold-axis orientation, whereas in 

other cases, the trunk stream crosscuts fold cores as well as bedding (Fig. 3.8). Dip-slopes 

occur often on the northern trunk channel-bank facilitating sliding. Slides also appear at fold-

core locations, e.g., along the southern bank of the lowermost trunk channel (Fig. 3.8). 

Furthermore, wide areas of the upper Vogelbach basin exhibit a hummocky topography 

characteristic for active sliding (Fig. 3.8). 

 

Short-Term Channel-Bed Changes and Sediment Transport 

 

Along the Vogelbach channel bed, both the comparison of photographic surveys (Fig. 3.9) 

and the evaluation of the laser-scanning data (Figs. 3.10 and 3.11) yielded similar results. The 

comparison of photographs revealed that bedrock exposures along the trunk channel exhibited 

no change (Fig. 3.9), and that only boulders of up to ~0.3 m in diameter (Fig. 3.9A) as well as 

loosely deposited limbs (Fig. 3.9B) had been transported. The quantitative comparison of our 

laser-scanner data, the grid-substraction results, indicated that the Vogelbach channel-bed 

morphology remained mainly unmodified for most of the time (Fig. 3.10).  If a change 

occurred it was often localized at spots (e.g., circle labelled with 3.11C in Fig. 3.10B). The 

qualitative evaluation of the laser-scanner data revealed that large m-sized boulders did not 

move (e.g., Figs. 3.11A and 3.11B). We also observed that mainly loose limbs (Fig. 3.11A) 

and boulders of ~0.4 m or less in size (Fig. 3.11C) had been transported. In summary, current 

sediment transport in the Vogelbach from 2009–2010 appears to be restricted to particles of 

less than ~0.5 m in diameter, and woody debris. 

 

3.5.4. Historical Record 

 

During the last ~200 a, the morphology of the Alp Valley did not change based on a 

comparison of canvas, post cards and our own field photos (Figs. 3.14, 6.2-5 and 6.2-6). We 

mainly observed an increase in forest respectively vegetation cover (Fig. 3.14), and residential 

areas, e.g., the growth of Alpthal village in the central Alp Valley (Fig. 3.1B). The drainage 

network of the Alp River and its tributaries had been modified during the last decades (Peter 

Steiner, pers. comm., 2011). The main course of the Alp River had been channelized, and 

check dams had been constructed along the lower channel beds of several tributaries and the 

Alp River bed to stabilize them. Many of these constructions had been destroyed or seriously 

damaged during a large flood on 25
th

 July 1984, and had been rebuilt afterwards (Peter 

Steiner, pers. comm., 2011). Lastly, the landscape morphology around the monastery of 

Einsiedeln exhibited no change during the last ~500 a (Fig. 6.2-7). Instead, we observed 

drastic changes in the forest cover, and the growth of Einsiedeln city around the monastery. 

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=residential&trestr=0x8001
http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=area&trestr=0x8001
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Fig. 3.8 Detailed geomorphic map of the Vogelbach. The location of the photographs shown in Figure 3.9 is 

indicated with white stars. Tick marks with thick annotated numbers depict Swiss coordinates in km, and tick 

marks with thin annotated numbers depict northern latitude and eastern longitude. 
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Fig. 3.9 Photographs along the Vogelbach channel bed where ellipses indicate changes between 2009 and 2010. 

The location of the examples is indicated in Figure 3.8. Line of sight is upstream. (A) Only boulders of ~0.3 m or 

less in size had been transported, whereas bedrock exposures and large m-sized boulders exhibited no change in 

position. (B) Loosely deposited limbs in the channel bed had been transported.  
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Fig. 3.10 Quantitative results of channel-bed changes for the Vogelbach that are related to the grid subtraction 

mentioned in the text, and based on the point clouds of the Vogelbach channel bed. An enlarged version of this 

figure is contained in the appendix (Fig. 6.2-4). Note that the vertical and horizontal axes are of different scale to 

facilitate the visualization of channel-bed changes because the channel section is longer than the channel bed is 

wide. Tick marks with annotated numbers depict local project coordinates in m. We indicate the location of 

examples shown in Figure 3.11 accordingly. Channel-bed morphology generally exhibited no change most of the 

time, and if a change occurred it had been localized at spots, e.g., 12C in (B). (A) Seasonal interval, 2009. (B) 

Monthly intervals, 2009. 
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Fig. 3.11 Examples related to our visual comparison of point clouds derived for the Vogelbach channel bed. 

Their location is indicated in Figure 3.10, and ellipses indicate channel-bed changes in 2009. We observed that 

boulders up to ~0.4 m and finer grained material, as wells as loosely deposited limbs had been transported. (A) 

Transported limb. (B) Transport of gravels and finer grained material. (C) Transport of ~0.4 m sized boulder. 
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3.6. Interpretation 

 

3.6.1. Erlenbach and Vogelbach 

 

Short-Term Sediment Transport 

 

Sediment transport along the Erlenbach channel is currently much more active than along 

the Vogelbach based on our short-term monitoring (Figs. 3.3–3.5 compared with Figs. 3.9–

3.11). Our results indicate that: (i) the maximum grain size of transported sediment is greater 

in the Erlenbach than in the Vogelbach; (ii) decimeter to meter-sized boulders are transported 

more frequently in the Erlenbach than in the Vogelbach; (iii) numerous small slides deliver 

large amounts of fine-grained sediment to the Erlenbach channel in contrast to the Vogelbach; 

and (iv) channel-bed changes occur more often in the Erlenbach than in the Vogelbach over 

the time interval of our monitoring. The sediment flux in the Vogelbach appears to be 

controlled by the availability of material for transport (supply-limited), whereas the sediment 

flux in the Erlenbach appears to be controlled by the ability of the stream to transport material 

(transport-limited). 

We suggest that these differences originate from the morphologic differences between the 

Vogelbach and Erlenbach basins. The morphology of the former possesses a clear non-dip-

slope situation (Fig. 3.8), whereas the morphology of the latter bears great resemblance to a 

dip-slope situation (Fig. 3.2). The similarity with a dip-slope situation is well documented 

along the middle reach of the Erlenbach, and the regional dip of stratigraphic units is 

consistent with such a situation (Fig. 3.2; Plate I). But bedding in the upper Erlenbach basin 

exhibits a contrary dip to the SE, and the bedrock is buried beneath the post-glacial landslide 

deposit across wide areas so that structural information is lacking, and we cannot entirely 

preclude a non-dip-slope situation for the Erlenbach (Fig. 3.2; Plate I). 

Short-term sediment transport in the Erlenbach is marked by clear seasonal differences as 

revealed by our laser scanning, and the WSL monitoring. Sedimentation in the retention basin 

and the occurrence of changes along the Erlenbach channel were most significant from May 

to August 2009 when the greatest bed-load transport events and most intense precipitation 

were recorded (Figs. 3.4B and 3.6B compared with Fig. 3.7). In contrast, we observed no 

sedimentation in the basin and channel-bed changes during the late autumn 2009 when we 

also carried out daily laser scanning (Figs. 3.4B, 3.4C and 3.6B). 

Short-term sediment transport in the Erlenbach appears to exhibit temporal differences. In 

the late spring and summer 2009, we observed that several landslides along the lowermost 

~530 m of the channel delivered large amounts of sediment to the channel bed (e.g., Fig. 

3.3B). Simultaneously, we observed the growth of the basin deposit (Fig. 3.6B), and channel-

bed changes that were often due to the transport of boulders ranging in size from several dm 

in diameter up to m-sized boulders (e.g., Figs. 3.3B, 3.5A and 3.5C). From 2003–2004, 

however, Schuerch et al. (2006) observed that landslide derived sediment discharge to the 

channel was greatest during the winter and spring months, while most of the fluvial sediment 

transport occurred during short, intense summer storms. We suggest that the current pattern of 

sediment transport that we observed may have prevailed since the occurrence of a large flood 

on 20
th

 June 2007, and that erosion of the channel bed during this flood may have resulted in a 

longer-term destabilization of the landslides and increased sediment input as we observed 

(Fig. 3.3B). 

We further suggest that the spatial extent of potential channel-bed changes correlates with 

the magnitude of a sediment transport event. Our monitoring in the Erlenbach (Figs. 3.3–3.5) 

and the WSL monitoring (Fig. 3.7) revealed that particularly the more frequent and smaller 

events yielded only localized changes along the channel often due to the transport of single 
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boulders. In contrast, infrequent large floods, such as in June 2007, yielded a complete 

reorganization of the step-pool morphology along the stream (Molnar et al., 2010). 

 

Short-Term Scale and Post-Glacial Landscape Evolution 

 

The marked differences in sediment-transport activity between the Erlenbach and 

Vogelbach may also originate from the fact that the former incises unconsolidated landslide 

material whereas the latter incises bedrock (Plate I; e.g., Keller and Weibel, 1991). At short-

term scales, such behavior may indicate that bedrock channels might be more stable than 

gravel bed channels, and that the latter type buffers bedrock erosion. This behavior may have 

prevailed over thousands of years since the termination of the last glaciation because lateral 

moraines of late-Würmian age occur only in the upper Alp Valley (Plate I). 

The Erlenbach channel may effectively buffer bedrock erosion on time-scales of at least a 

few hundred years based on an exemplary and simplified approximation of ours. A single 

~0.6-m-sized boulder had been transported across a distance of ~3.4 m between June and July 

2009 (Fig. 3.5A). Here, we illustrated the difference between May and October to indicate 

that the boulder exhibited no further transport. However, it was most likely transported during 

the greatest event 2009 with a peak water discharge of 3.48 m³/s (Fig. 3.7A; Table 6.2-2). If 

we simply assume an annual recurrence of such an event during which the boulder is 

transported for ~3.4 m, and that the boulder was initially located ~1 km upstream at the upper 

limit of the landslide complex (Plate I), it requires ~300 a until the boulder passes the basin 

outlet. In contrast, we observed that boulders of more than 1 m in diameter exhibited no 

transport during our monitoring (e.g., Fig. 3.3A), but such boulders exhibited transport during 

the large flood in June 2007 with a peak water discharge of 16 m³/s (e.g., Turowski et al., 

2009). Turowski et al. (2009) observed a minimum transport length of ~22 m for one m-sized 

boulder during this flood. It requires ~2100 a to transport such a boulder across a distance of 

~1 km from the upper limit of the landslide complex towards the basin outlet assuming an 

estimated recurrence interval of 47 a (Turowski et al., 2009). Hence, it is more likely that the 

buffering of bedrock erosion is effective on even longer time-scales of a few thousand years. 

We investigated the context between short-term sedimentation based on laser scanning of 

the Erlenbach retention basin (Fig. 3.6) and long-term delta growth in the Sihl Valley (Fig. 

3.13) to better understand how short-term measurements compare with long-term ones. In 

2009, maximum sedimentation rates in the Erlenbach basin range between ~1 m/a in the 

lower and 4 m/a in the upper part of the basin (Fig. 3.6A) equal to ~1000–4000 m/ka. 

Holocene delta-growth rates in the Sihl Valley were on the same order of magnitude, and 

range from ~650–3400 m/ka (Fig. 3.13). Hence, short- and longer-term measurements of 

sedimentation appear to be compatible at least on the local scale defined by the Alp and Sihl 

Valleys. 

 

3.6.2. General Mode – Alp Valley 

 

The erosion and sedimentation pattern of the Alp Valley is likely lithologically and 

structurally influenced. Wide areas of the hill-slopes are subject to sliding processes, 

especially where the Wägital and Schlieren Flysch composed of marl, shale, and sandstone 

are exposed (Plate I). Most tributaries of the Alp River incise sliding material, e.g., the 

Erlenbach, whereas bedrock is mainly exposed along channel beds, e.g., the Vogelbach, or at 

rock cliffs, e.g., the Mythen mountain peaks (Plate I). Such rocky cliffs are mainly composed 

of massive conglomerate or limestone, and debris cones and slopes at the cliff bases consist of 

angular clasts and boulders characteristic for rock-fall deposits (Plate I). Furthermore, valleys 

and ridges on the eastern flank of the central Alp Valley and to the west of the valley exhibit 

the same orientation as fold axes in the Wägital Flysch (Plate I). We also observed that 

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=exemplary&trestr=0x8004
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tributary channels are parallel to thrust faults, e.g., the Vogelbach in the central Alp Valley 

(Plate I). Lastly, we often observed hummocky topography due to sliding along hill-slopes 

that are dip-slopes, e.g., in areas underlain by Molasse conglomerate in the north, or Wägital 

Flysch on the western valley flank in agreement with Stammbach (1988; Plate I). 

We suggest that the current landscape of the Alp Valley is due to a change from glacially 

influenced erosion and sedimentation to a pattern dominated by mass movements and fluvial 

processes (Plate I). This change occurred progressively since the LGM, starting in the north 

and propagated to the south in direction of glacier retreat. This is because we observed fluvial 

gravels overlying a ground-moraine deposit in the north, and lateral and terminal moraines of 

late-Würmian age occur only in the south (Plate I). Moreover, a series of debris cones 

developed at the base of the Mythen cliffs, and at their base the late-Würmian lateral and 

terminal moraines form a sediment trap for the rock-fall material (Plate I). Hence, we propose 

that the processes currently shaping the Alp Valley have been active since the termination of 

the Würmian glaciation at the beginning of the Holocene. Prior to this change, glacial 

processes affected the entire Alp Valley at least during the Würmian glaciation in the late 

Pleistocene. 

Currently active erosion and sedimentation processes affect different spatial scales in the 

Alp Valley. We compared the efficiency of fluvial processes and rock-fall. Clearly, alluvial 

fans cover a larger area than debris cones, and the area affected by fluvial processes is larger 

than the area affected by rock-fall (Plate I; Figs. 3.12 and 6.2-4). Hence, fluvial processes 

appear to be much more efficient than rock-fall during the Holocene (Fig. 3.12). We further 

suggest that landsliding is a common process shaping the Alp Valley based on the surface 

area of ~1.4 km² of the post-glacial landslide deposit in the Erlenbach area (Plate I). 

Erosion in the Alp Valley may have undergone changes during the Holocene based on our 

approximation of Holocene delta-growth rates in the Sihl Valley, east of the Alp Valley (Fig. 

3.13). Here, sedimentation was slow from 10–6 ka (650 m/ka), followed by a rapid increase 

from 6–5 ka (3400 m/ka), and a slower sedimentation from 5–3 ka (1950 m/ka; Fig. 3.13). 

Furthermore, by using the delta-growth rates as a proxy for erosion, we also suggest that 

Holocene climate variations may have influenced erosion in the Sihl Valley. Küchler (2002) 

summarized the results of the pollen analysis of the lake Sihl sediments: a cool climate with 

tundra vegetation prevailed since the LGM, followed by a warming period (birchs and pines), 

and a warm period with deciduous forests. When considering these findings in context of the 

delta-growth rates in Figure 3.13, we suggest that erosion was low during the time of the 

prevailing cooler climate, and increased during the time of the prevailing warmer climate. 

On shorter time-scales of a few hundred years, the landscape of the Alp Valley area 

appears to be stable based on our evaluation of the historical record (e.g., Fig. 3.14). Although 

we observed anthropogenic changes on the hydrologic system, e.g., the main course of the 

Alp River had been channelized and stabilized with check dams (Peter Steiner, pers. comm., 

2011), drastic changes in the vegetation and forest cover due to de- and reforestations, e.g., 

around the monastery of Einsiedeln (Fig. 6.2-7), as well as the growth of villages and cities 

(e.g., Figs. 6.2-6 and 6.2-7), the general morphology exhibited no major change. In contrast, 

we suggest that these changes had mainly localized effects, and sliding processes affecting the 

Alp Valley slopes might be either very slow or even inactive on such short time-scales. 

 

 

 

 



93 

 

 

Fig. 3.12 Plot of deposition area versus erosion area to compare the efficiency of rock-fall and fluvial processes 

during the Holocene. Fluvial processes appear to be more efficient than rock-fall. We used the deposition area – 

i.e. area of alluvial fans and debris cones – and erosion area – i.e. area of drainage basins and rock cliffs – as 

proxies for the spatial scale affected by fluvial processes and rock-fall. This approach is satisfied because the 

erosion and deposition areas do not overlap (Fig. 6.2-5). Based on the 2 m LiDAR-DEM, we mapped the erosion 

and deposition areas accordingly (Fig. 6.2-5), and compiled these data in Tables 6.2-3 and 6.2-4 in the appendix. 

 

 

 

 

 

Fig. 3.13 Maximal horizontal delta growth rates in the Sihl Valley during the Holocene. We modified the profile 

through the sediment body of the post-glacial Sihl lake after Lüdi (1939) and Küchler (2002). The original 

profile of Lüdi (1939) was reconstructed based on a series of drill cores from the Sihl Valley that cover the area 

of the recent reservoir lake and the post-glacial lake. Please note the varying length scale of the horizontal 

distance axis along the profile. The peat bed appears to be a few thousand years old (Küchler, 2002). However, 

we suggest that its age is at least 3 ka because the peat bed covers the youngest post-glacial lake filling. 
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Fig. 3.14 Historical record of the upper Alp Valley and area of the Mythen mountain peaks (location in Fig. 

3.1B). Line of sight is indicated on top of the figure. We observed an increase in forest cover, and an increase in 

vegetation cover on top of the Grosser Mythen debris cones. (A) Grosser Mythen. 1805: Mythen mountain 

peaks, painting by H.C. Escher von der Linth. 2010: Photograph of the Grosser Mythen by R. Baran. (B) Upper 

Alp Valley. 1910: Post card of the upper Alp Valley provided by A. Fassler (pers. comm., 2010). 1950: Post card 

of the upper Alp Valley provided by A. Fassler (pers. comm., 2010). 2010: Photograph upper Alp Valley by R. 

Baran. 
 

 

3.7. Discussion 

 

3.7.1. Erlenbach and Vogelbach 

 

Short-Term Sediment Transport 

 

Our short-term monitoring on sediment-transport activity in the Erlenbach and Vogelbach 

revealed that transport in the former (Figs. 3.3–3.5) differs considerably from that in the latter 

(Figs. 3.9–3.11). Our results point to an increased activity in the Erlenbach compared to the 

Vogelbach, and coincide with observations on suspended-load in both streams from 1986–

1989, which was ~40% higher in the Erlenbach (Table 3.1; Keller and Weibel, 1991). 

Apparently, sediment flux in the Erlenbach is transport-limited and that in the Vogelbach 

supply-limited, and we suggest that this difference is due to the morphologic differences 
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between both basins, a dip-slope setting for the Erlenbach and non-dip-slope for the 

Vogelbach. 

Such a difference had also been reported for E-facing and W-facing valley flanks of 

drainages in the eastern Swiss Alps (Schneider et al., 2008). There, lithological series dip sub-

parallel to the E-facing flanks promoting landsliding, and providing an explanation for the 

transport-limited sediment flux on these slopes. In contrast, this structural setting stabilizes 

hill-slopes of the W-facing valley flanks, and can explain the supply-limited sediment flux 

from these slopes. Furthermore, our detailed mapping in the Erlenbach (Fig. 3.2) and 

Vogelbach (Fig. 3.8) revealed a great similarity with the geomorphic setting of the E- and W-

facing valley flanks described by Schneider et al. (2008). Similar to the Erlenbach (Fig. 3.2), 

the E-facing flanks are characterized by gentle slopes, a low channel density and a low degree 

of channel branching, and they are affected by large landslides that are important sediment 

sources. Similar to the Vogelbach (Fig. 3.8), no such slides had been observed on the W-

facing valley flanks, and they are characterized by a highly branched channel network along 

which bedrock is exposed. 

These observations exemplify theoretical concepts indicating that the ratio between 

sediment discharge on hill-slopes and that in channels has a significant impact on 

mountainous landscapes (e.g., Simpson and Schlunegger, 2003). In summary, these models 

predict that a high dependence of sediment discharge on hill-slope processes leads to the 

formation of landscapes with smooth topographies, low hill-slope relief, and non-branched 

valleys, whereas the predominance of channelized processes leads to the formation of hill-

slopes dissected by a stable and highly branched channel network (Schlunegger et al., in 

press). A high sediment discharge on transport-limited hill-slopes such as the Erlenbach (Fig. 

3.2) thererfore prevents the formation of a stable channel network (e.g., Schlunegger et al., in 

press). So far, the theoretical models lack quantitative data that could resemble their 

predictions, but the detailed results of our short-term monitoring on sediment transport in the 

Erlenbach and Vogelbach by using laser scanning and photo documentation support the 

model predictions and provide quantitative insight (Figs. 3.3–3.5 compared to Figs. 3.9–3.11). 

Sediment transport in both streams, the Erlenbach and the Vogelbach, exhibits a 

pronounced event character and clear seasonal differences (e.g., Figs. 3.4 and 3.6). Although 

detailed observations on the boundary conditions in our study were limited to the Erlenbach 

(Fig. 3.7), both basins are characterized by similar climatic conditions (e.g., Keller and 

Weibel, 1991; Table 3.1). Most of the sediment transport events occurred during short, intense 

summer thunderstorms in agreement with e.g., Rickenmann (1997). Furthermore, our results 

agree well with observations on the Erlenbach and Vogelbach suspended-load, where the 

mean monthly load of both streams was greatest during the summer term and much smaller in 

the winter term (Keller and Weibel, 1991). 

Rare large floods in the Erlenbach, such as the June 2007 event, do not only change the 

mode of the short-term sediment-transport pattern, they also have a longer-term impact on this 

pattern. Prior to this flood, slides along the lower channel delivered material to the channel 

bed mostly in winter and spring, and fluvial transport occurred during thunderstorms in 

summer (Schuerch et al., 2006). After this flood, we recognized the simultaneous fluvial 

transport and sediment delivery from the slides to the channel in late spring and summer (e.g., 

Figs. 3.3B, 3.5A and 3.6B). Our observations are consistent with the results of Turowski et al. 

(2009) who detected an increased sediment discharge in the aftermath of the June 2007 event 

lasting for about a year or longer. In agreement with Turowski et al. (2009), we attributed the 

increased sediment-delivery activity of the landslides to be due to the destabilization of the 

channel bed and its banks that originated from this exceptional flood. 

Observations from numerous rivers, including magnitude-frequency flood distributions, 

indicate that annual recurring floods transport most of the suspended-load and in some regions 

much of the bed-load (e.g., Wolman and Miller, 1960; Molnar, 2001; Molnar et al., 2006). 
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Such floods appear to have only small effects on a landscape compared to infrequent large 

floods that not only transport bed-load but also expose the bedrock (Molnar et al., 2006). This 

behavior is confirmed by observations in the Erlenbach suggesting that the magnitude of 

sediment-transport events has an impact on the spatial extent of potential channel-bed 

changes. However, we quantified the small effects just mentioned that were due to the 

occurrence of more frequent floods (Fig. 3.7). We observed only localized changes along the 

channel that were mostly due to the transport of single boulders (Figs. 3.3 and 3.5). In 

contrast, a complete reorganization of the step-pool geometry occurred along the Erlenbach 

during the June 2007 flood accompanied by local erosion of up to ~3 m (Molnar et al., 2010). 

 

Short-Term Scale and Post-Glacial Landscape Evolution 

 

The interpretation, that the distinct differences in short-term sediment transport between 

the Erlenbach and Vogelbach result from the fact that the former incises unconsolidated 

landslide material and the latter bedrock (e.g., Keller and Weibel, 1991), is an aspect that 

relates to the contrasting settings of both basins, the dip-slope vs. non-dip-slope situation 

discussed in the previous chapter. However, this behavior implies that bedrock channels are 

more stable than gravel-bed channels at short-term scales, and that gravel-bed channels buffer 

bedrock erosion. For the Erlenbach, we approximated the time-scales at which it can 

effectively buffer bedrock erosion. It prevents actual bedrock erosion on time-scales of up to a 

few thousand years based on simplified calculations using the transport length of single 

boulders and the recurrence interval of different floods. Turowski et al. (2008) and Stark et al. 

(2009) noted that alluvial cover overlying bedrock can buffer bedrock erosion over similar 

time-scales that also appear to depend on the cover thickness. 

The short-term differences in sediment transport between the Erlenbach and Vogelbach 

most likely have prevailed over thousands of years since the termination of the last glaciation 

because late-Würmian aged moraines occur only in the upper Alp Valley (Plate I). Similarly, 

our comparison of short-term sedimentation rates in the Erlenbach retention basin (Fig. 3.6) 

and long-term delta-growth rates in the Sihl Valley (Fig. 3.13) revealed that such short- and 

longer-term measurements seem to be compatible on the local scale of the Alp and Sihl 

Valleys. Our suggestion contrasts the findings of Kirchner et al. (2001). They found that 

conventional sediment-yield measurements can significantly underestimate long-term average 

rates of sediment delivery. These contrasting implications highlight the need for a careful 

analysis when comparing erosion and sedimentation measurements from different temporal 

scales. This appears to be easier at the local scale of the Alp and Sihl Valleys, because 

geomorphic-geologic and environmental conditions usually do not change that drastically 

across such small scales which otherwise might explain differences. In contrast, these 

conditions can change significantly at larger spatial scales thereby complicating the 

interpretation of measurements from different time-scales. 

 

3.7.2. General Mode – Alp Valley 

 

The erosion and sedimentation pattern in the Alp Valley is likely lithologically controlled 

(Plate I). For example, we observed active sliding in areas where the Wägital Flysch is 

exposed, or rock-fall at rock cliffs that are often composed of massive limestone (Plate I). 

According to the erodibility map of Kühni and Pfiffner (2001), the Alp Valley is located at the 

border between rocks of medium erodibility to the south and high erodibility to the north. The 

Ultrahelvetic-Penninic Flysch series and Molasse units are characterized by a high erodibility, 

whereas Mesocoic carbonates of the Penninic units exhibit a medium erodibility (Kühni and 

Pfiffner, 2001). We also mapped two post-glacial landslides in an area underlain by Wägital 
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Flysch (Plate I). Similarly, the largest landslides in the eastern Swiss Alps cluster in the region 

underlain by Bündner schists and Flysch (Korup and Schlunegger, 2009). 

Furthermore, the erosion and sedimentation pattern in the Alp Valley is likely structurally 

influenced (Plate I). We observed that valleys and ridges are parallel to thrust faults and fold 

axes (Plate I). Similarly, even the major Rhone and Rhine River courses in the central 

Western Alps are trapped by faults and thrusts (Schlunegger and Hinderer, 2001; e.g., Fig. 

3.1A), or the Inn, Salzach, and Enns Valleys in the Eastern Alps are trapped by strike-slip 

faults (e.g., Robl et al., 2008). 

Dip-slopes form natural slip surfaces facilitating active sliding. In the Alp Valley, we often 

observed a hummocky topography on such slopes that is a characteristic indicator for active 

sliding (Fig. 3.8; Plate I). The most prominent local example in this context is the Goldau 

landslide from 1806, ~10 km west of the Alp Valley (e.g., Zehnder 1988). It occurred on a 

dip-slope flank of the Rossberg mountain in an area underlain by Molasse conglomerate 

(Thuro et al., 2005; Thuro and Hatem, 2010). However, further examples in this context had 

been reported from the southern Rocky Mountains and Mackenzie Mountains in western 

Canada (Trenhaile, 2007), or southern New Zealand (Pearce and O’Loughlin, 1985). 

Based on Alpine and local sediment-budget studies, Hinderer (2001) and Müller (1999) 

invoked a major change of the Alpine erosion pattern due to deglaciation. They found that 

post-LGM denudation rates were significantly higher than during Holocene and modern times 

reflecting the accelerated denudation and sediment supply during deglaciation. This is in 

agreement with the paraglacial model of Church and Ryder (1972), in which the increased 

sediment supply is due to the availability of large amounts of unconsolidated ice-marginal 

sediments. Also, drainage-basin scale studies of Schlunegger et al. (2002), Schlunegger and 

Schneider (2005) and Norton et al. (2008) in the northern Swiss Prealps revealed that the 

current erosion pattern initiated after the termination of the last glaciation. These findings are 

in line with our detailed geomorphic-geologic mapping in the Alp Valley (Plate I). Our results 

indicate that the change from glacial influenced erosion and sedimentation to a pattern 

controlled by mass wasting and fluvial processes occurred progressively from north to south 

in direction of glacier retreat since the LGM. For example, the late-Würmian lateral and 

terminal moraines at the base of the Mythen rock cliffs form a sediment trap for rock-fall 

debris derived from these cliffs (Plate I). 

We next recognized the areal difference between the area affected by rock-fall and the area 

influenced by fluvial processes (Plate I; Fig. 6.2-5). We quantified this difference by 

comparing the corresponding erosion and deposition areas. Fluvial processes were much more 

efficient than rock-fall throughout the Holocene, because both erosion and deposition area 

related to fluvial processes are larger than those for rock-fall (Fig. 3.12). We further identified 

landsliding as a common process shaping the Alp Valley based on the surface area of the 

landslide deposit in the Erlenbach area (~1.4 km²; Plate I). This is in agreement with the dense 

clustering of landslides (>1 km²) in the eastern Swiss Alps (Korup and Schlunegger, 2009). In 

summary, our analysis indicates that simultaneously active erosion processes affect different 

spatial scales, and can be differentiated by their relative contribution on sculpting the modern 

Alp Valley landscape; fluvial processes and landsliding prevail over rock-fall processes.  

We approximated Holocene delta-growth rates in the Sihl Valley, and found that 

sedimentation rates varied by a factor of three to five throughout the Holocene (Fig. 3.13). 

Furthermore, we considered these rates as a suitable erosion proxy, and propose that Holocene 

climate variations may have an impact on erosion in the Sihl Valley based on the pollen 

analysis of the post-glacial lake Sihl sediments (Küchler, 2002). Our suggestion is in 

agreement with e.g., Leemann and Niessen (1994) or McDonald et al. (2003). Leemann and 

Niessen (1994) interpreted that the sedimentary record of the Lake Silvaplana in the 

southeastern Swiss Alps reflects relative changes of summer air temperature during the 

Holocene. Also, McDonald et al. (2003) demonstrated that a period of increased alluvial fan 



98 

 

deposition in the Mojave Desert, California, coincided with a more humid climate during the 

Pleisto-Holocene transition. 

Lastly, the Alp Valley landscape appears to be stable throughout the last centuries although 

numerous anthropogenic changes on the hydrologic system or forest cover occurred in this 

area (e.g., Fig. 3.14). These changes had only localized effects that had been reported so far. 

For example, mountain slopes and stream banks became unstable due to massive deforestation 

carried out by the first settlers during the 13
th

–15
th

 century (Saurer, 2002; e.g., Fig. 6.2-7). 

Furthermore, in some places sliding processes on the Alp Valley hill-slopes are inactive at 

short-term scales of few hundred years in length, e.g., the western valley flank in the south 

appears to be inactive in contrast to the eastern flank (Stammbach, 1988; Plate I). 

 

3.8. Conclusions 

 

We evaluated short-term sediment transport in two pre-Alpine channel beds, the Erlenbach 

and Vogelbach, in context of the Alp Valley evolution throughout the Holocene. The use of a 

high-resolution (2 m horizontally, 1 m vertically) DEM allowed us to map erosion and 

sedimentation patterns in the Alp Valley in great detail, and to attempt to reconstruct the post-

glacial landscape evolution on a long-term scale of thousands of years (Figs. 3.2 and 3.8; 

Plate I). We further attempted to supplement this reconstruction by comparing historical 

documents to investigate the landscape evolution over several decades to hundreds of years 

(e.g., Fig. 3.14). Finally, we carried out repeated photographic and high-resolution (<1 cm 

locally) laser-scanning campaigns to monitor channel-morphology changes and the nature of 

shortest-term sediment transport, on a seasonal, monthly, and daily scale (Table 3.1; Figs. 

3.3–3.5 and 3.9–3.11). 

At short-term scales, our results indicate that sediment transport is enhanced when a 

channel bed is formed on a dip-slope valley flank, e.g. Erlenbach (Figs. 3.2–3.5), in contrast 

to a channel cut into a non-dip-slope flank, e.g., Vogelbach (Figs. 3.8–3.11). The sediment 

flux through dip-slope channels is transport-limited, and that through non-dip-slope channels 

is supply-limited. Dip-slopes promote landsliding, which explains the transport-limited flux in 

the Erlenbach channel. This channel is mostly incised into an unconsolidated landslide deposit 

(Fig. 3.2; Plate I). In contrast, such landslides usually do not occur on non-dip-slopes 

explaining the supply-limited sediment flux in the Vogelbach, which incises into bedrock 

(Fig. 3.8; Plate I). Insofar, the interpretation of Keller and Weibel (1991), that the differences 

in sediment-transport activity between both streams originate from the fact that the Erlenbach 

incises unconsolidated landslide material and the Vogelbach bedrock, is a consequence of the 

contrasting geomorhic settings between both basins. 

The increased short-term sediment transport in the Erlenbach compared to the Vogelbach 

confirms the hypothesis, that bedrock channels are more stable than gravel-bed channels 

(Figs. 3.3–3.5 and 3.9–3.11). The latter type of channel appears to effectively prevent bedrock 

erosion up to a few thousand years, e.g., ~2 ka for the Erlenbach. Taking into account that this 

approximation is based on the transport length of single dm- to m-sized boulders and the 

recurrence interval of floods with different magnitude, as well as that a ~5 m sized boulder 

appears to exhibit no transport during those floods deduced from a dense vegetation cover on 

top of the boulder (Fig. 3.3A), and that the landslide deposit is up to several tens of m thick, 

we conclude that the buffering effect has prevailed throughout the Holocene equal to a time-

scale of ten thousand years. 

On top of this, morphologic changes along a channel bed correlate with the size and 

frequency of an event as revealed by observations along the Erlenbach. We quantified the 

localized changes in the channel bed that occurred during smaller, more frequent floods (Fig. 

3.4), whereas a complete reorganization of the step-pool structure occurred during exceptional 

floods (Turowski et al., 2009). Furthermore, there exists a temporal alternation of aggradation 
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and erosion along the Erlenbach stream profile. Schuerch et al. (2006) observed decadal scale 

aggradation of up to ~2.5 m along the lowermost ~530 m of the profile between 1993 and 

2004, where Molnar et al. (2010) detected up to 3 m erosion during the June 2007 flood event. 

Such complex temporal alternations of aggradation and erosion along gravel-bed channels 

further contribute to the buffering effect discussed above. 

A comparison of sedimentation rates in the Erlenbach retention basin (Fig. 3.6) with 

Holocene delta-growth rates in the Sihl Valley (Fig. 3.13) revealed that short- and long-term 

measurements of sedimentation appear to be compatible at least on the local scale of the Alp 

and Sihl Valleys. However, due to the differences in sediment transport along bedrock 

(Vogelbach) and gravel-bed (Erlenbach) channels, it requires longer monitoring of sediment 

transport in bedrock than in gravel-bed channels until short-term erosion rates match long-

term rates. Based on our short-term sedimentation rates from the Erlenbach (Fig. 3.6), 

monitoring periods along gravel-bed channels can be as short as one year to match long-term 

rates. In contrast, during the exceptional June 2007 event increased bed-load transport had 

also been observed in the Vogelbach (e.g., J. Turowski, pers. comm., 2008), while we 

observed only minor sediment-transport activity during our monitoring (Figs. 3.9–3.11). With 

an estimated return period of 47 a for the June 2007 flood (Turowski et al., 2009), it becomes 

obvious that monitoring periods along bedrock channels on the order of tens of years are 

required until short-term rates would match long-term ones. 

Lastly, the change from glacial influenced erosion and deposition in the Alp Valley to the 

current pattern dominated by mass wasting and fluvial processes occurred progressively, 

starting in the north and propagated to the south in direction of glacier retreat (Plate I). This is 

for two reasons: (i) we found fluvial gravels overlying a ground-moraine deposit in the north, 

and lateral and terminal moraines of late-Würmian age occur only in the south (Plate I); and 

(ii) these moraines located at the base of the Mythen rock cliffs form a sediment trap for rock-

fall debris derived from these cliffs (Plate I). Finally, the erosion pattern of the Alp Valley 

also appears to be lithologically and structurally controlled, e.g., rock-fall at limestone cliffs, 

or sliding along dip-slopes (Plate I). 
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4. Chapter III 

 

Sediment Transport and Erosion Rates in the Alps on Scales Ranging from 

Years to Millions of Years – Implications for the Variability of Mountainous 

Erosion 

 

4.1. Abstract 

 

Erosion, sediment transport, and deposition are episodic. This is due to changes in factors 

that relate to the magnitude of forces capable to transport material, such as flash floods, and 

that are endemic to sediment supply, such as the availability of material for transport. 

However, there is a contradiction between this actual episodicity and an apparent continuity 

originating from the extrapolation of short-term, basin-averaged erosion rates to longer-term 

scales, and the fact that longer-term measurements of erosion were similarly given as 

averaged rates. Since profound comparisons of erosion rates covering a variety of these scales 

are lacking to a certain extent in the geologic literature, we carried out such a comparison 

based on an approach utilized to study the spectral character of tectonic deformation. The 

cumulative-displacement-with-time approach allowed to directly evaluate the significance of 

geologic and geodetic measurements along intra-continental faults on time-scales of 10 to 10 

millions years. We considered cumulative erosion with time to evaluate the long- (millions of 

years), medium- (thousands to ten thousand years), and short-term (years to decades) 

variability of erosion. Due to the availability of abundant data sets, we collected published 

data from the Alps to quantitatively compare erosion rates. Moreover, short-term data on bed-

load transport from the small Erlenbach basin in central Switzerland enabled us to investigate 

the short-term characteristics of mountainous erosion. Long-term erosion in the Alps is 

presumably dominated by tectonic processes in accordance with results revealed by a 

thorough re-evaluation of the Alpine sediment budget (chapter IV). For the Western Alps, this 

suggestion is supported by a comparison of our cumulative erosion estimates for the last ~35 

Ma with estimates derived from other data sets. For example, our estimates of up to ~32 km 

coincide with an approximation of ~30 km based on a restored geological ‘eroded cross-

section’. Medium- and short-term erosion in the Alps is mainly influenced by climatic and 

weather variations, respectively. Pleistocene climatic changes appear to result in changes of 

the prevailing erosional mode at glacial-interglacial transitions. We infer from our linear 

compilation that Alpine erosion rates rapidly declined during the Holocene, and associated the 

increased sediment transport during deglaciation immediately after the last glacial maximum 

to the availability of large amounts of unconsolidated sediments and high transport capacities 

similar to previous findings. The Erlenbach data revealed that seasonal differences in 

precipitation explain differences in water discharge during bed-load transport events, which in 

turn affect the magnitude of an event. In conclusion, our approach to evaluate cumulative 

erosion across a variety of spatiotemporal scales provides an efficient approach to directly 

compare different erosion measurements as well as to evaluate the variability of medium- and 

short-term mountainous erosion appropriately, but additional data covering the intermediate 

time-scale between our medium- and long-term scale need to be considered to allow for a 

better comparison between these scales.  
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4.2. Introduction 

 

Erosion of mountainous regions, sediment transport, and deposition in sedimentary basins 

are intermittent across a variety of spatiotemporal scales (e.g., Wolman and Miller, 1960). 

This is due to changes in factors that affect the magnitude of forces capable to transport 

sediment, e.g., flash floods, and changes in factors that are endemic to sediment supply, e.g., 

the availability of sediment for transport (Frostick and Jones, 2002; Dühnforth et al., 2007), 

and the availability of water or wind as transport agent (e.g., Hugenholtz and Wolfe, 2010). 

Fluctuations in sediment supply can be decoded from sedimentary deposits. Large floods, for 

example, flush sediment into coastal areas where they are recorded in the form of noticeable 

packages in the deposits, or repeated incision and aggradation along a river bed can be due to 

the passage of sediment waves through a reach (Frostick and Jones, 2002).  

The sporadic nature of fluvial processes had often been recognized during the short-term 

monitoring of sediment yields in mountainous rivers (e.g., Wolman and Miller, 1960; Keller 

and Weibel, 1991; Loizeau and Dominik, 2000). The length of these monitoring periods 

commonly ranges from a few years up to tens of years as, for example, in the Alps 

(Schlunegger and Hinderer, 2001). In the past, erosion rates based on such short-term 

observations were reported as basin-averaged rates (e.g., Hinderer, 2001; Vezzoli, 2004), and 

had often been extrapolated to longer time-scales implying continuity without temporal 

variations (Richards, 2002). Similarly, longer-term erosion measurements over thousands to 

millions of years were given as average values without considering the event character of 

erosion. Wittmann et al. (2007), for example, determined post-LGM (last glacial maximum) 

basin-averaged denudation rates in the central Western Alps using cosmogenic nuclide dating 

of river sediments. 

The contradiction between the apparent continuity and obvious episodicity of erosion as 

well as the restrictive consideration of individual spatial and temporal scales hampers a 

comprehensive process understanding (e.g., Frostick and Jones, 2002). It therefore requires an 

integrated view of erosion across all scales (e.g., Jones and Frostick, 2002). A comprehensive 

comparison of erosion estimates from different temporal scales that also cover broader spatial 

scales are rarely found and discussed in the literature (e.g., Kirchner et al., 2001; Frostick and 

Jones, 2002). Furthermore, various methods have been established to quantify erosion at 

different scales and various terms are utilized to refer to erosion thereby challenging a 

comparison of different erosion estimates. We, therefore, compiled basic definitions of 

relevant terms in Table 4.1, and evaluated their significance in terms of representing rather a 

minimum or maximum approximation of erosion. 

To conduct a comprehensive comparison of erosion estimates, we selected an approach 

that has been originally established to investigate the spectral character of tectonic 

deformation. Friedrich et al. (2003) utilized the cumulative displacement with time approach 

to evaluate the significance of geologic, thermochronologic, geomorphic, and geodetic 

measurements along intra-continental faults on time-scales from 10 to 10 million years (Fig. 

4.1). This allowed the direct comparison of displacement rates from different temporal scales 

(Fig. 4.1). We adopted this approach and considered cumulative erosion with time to evaluate 

the variability of erosion at three time-scales: the long- (millions of years), medium- 

(thousands to ten thousand years), and short-term (years to decades) scales. We compiled 

published data from the Alps to compare erosion rates quantitatively. Lastly, we selected the 

highest-resolution temporal and spatial data based on continuity and high sampling rate of 

erosion measurements. One example of a well-monitored study site on the local and short-

term scale is the small Erlenbach basin in the northern Swiss Prealps, which allowed us to 

evaluate the short-term characteristics of mountainous bed-load erosion (Fig. 4.2A). This data 

set is unique in the Alps because of its continuity and a generally high sampling rate of every 

10 minutes since 1986 (e.g., Turowski et al., 2009). However, we recognized that in principle 

http://dict.tu-chemnitz.de/english-german/noticeable.html
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at least eight of such local-scale study sites need to be evaluated to allow for a statistically 

representative value. 

 

 
Table 4.1: Erosion terms. 

Term Definition 

Weathering 

 

In-situ process: no transport of material – destruction of rocks, minerals, and soils 

exposed at the Earth’s surface: 

a) Mechanical: destruction of rocks, minerals, and soils under atmospheric 

conditions, e.g., heat – subsequent material transport as bed- and suspended-load 

b) Chemical: effect of atmospheric or biologically produced chemicals on destruction 

of rocks, minerals, and soils, e.g., solution – subsequent material transport as 

dissolved-load. 

Sediment yield of 

rivers 

Transport of material as: 

a) Bed-load: particle transport due to sliding, rolling, or saltation – minimum 

approximation of erosion 

b) Suspended-load: particle transport within flowing water detached from river bed – 

minimum approximation of erosion 
c) Dissolved-load: chemical dissolved material transported by flowing water –

minimum approximation of erosion. 

Sediment transport Mass of material transported respectively exported from a certain area during a certain 

time – maximum approximation of erosion. 

Sediment budget 

 

Sediment budget as direct monitoring of erosion: mass of sediments deposited in basins 

to determine average erosion rates of the source terrain (Kuhlemann et al., 2001). 

Unknown dissolved- and suspended-load (silt to clay), and unknown effects due to re-

erosion of basin deposits – minimum approximation of erosion. 

Denudation Loss of mass from both surface and subsurface by mechanical and chemical weathering 

(Corcoran & Doré, 2005) – maximum approximation of erosion. 

Exhumation Removal of overburden material such that previously buried rocks are exposed 

(Corcoran & Doré, 2005). Displacement of rocks with respect to the surface: rate of 

exhumation is simply rate of erosion, or rate of removal of overburden by tectonics 

(England & Molnar, 1990). Exhumation as erosion rate – maximum approximation of 

erosion. 

Erosion Local subaerial or submarine removal of material by mechanical and chemical 

processes (Corcoran & Doré, 2005). Erosional flux of a mountain belt – mass of 

material removed from an orogen (e.g. Willett & Brandon, 2002). 

 

 

4.3. Alpine Orogeny 

 

The Alpine orogeny is often described as a series of episodes of tectonic, metamorphic, 

and erosional activity from Cretaceous to Quaternary times (e.g., Kempf and Pfiffner, 2004; 

Schlunegger et al., 2007; Bernet et al., 2009; Handy et al., 2010). The convergence between 

the European and Adriatic plates started in the late Cretaceous, and resulted in the collision of 

both plates during the late Eocene (Schmid et al., 1996). Slab break-off occurred presumably 

at about 34–29 Ma (von Blanckenburg and Davies, 1995), during which the dense oceanic 

part of the subducting European plate was detached from its upper buoyant part (Davies and 

von Blanckenburg, 1995; Regard et al., 2008). However, convergence continued after the 

collision obvious from thrusting along the Periadriatic fault and propagation of the Helvetic 

nappes from 32–19 Ma, as well as foreland propagation in the Southern Alps since 19 Ma 

(Fig. 4.2; Schmid et al., 1996). Foreland basins formed north and south of the Alps due to 

continental collision and convergence since the Eocene that led to crustal thickening and 

loading of the subducting European plate (Fig. 4.2; e.g., Schmid et al., 1996; Andeweg and 

Cloetingh, 1998; Cederbom et al., 2004). 
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Sedimentation in the north-Alpine foreland basin, the area of the Molasse basin located 

north of the Alps (Fig. 4.2A; e.g., Kuhlemann and Kempf, 2002), during the Oligocene was 

characterized by deep marine conditions with deposition of turbidites, locally referred to as 

Flysch deposits (e.g., Hesse, 1975; Sinclair, 1997). In contrast, the so-called Molasse 

sedimentation was characterized by shallow marine conditions during the early Miocene and 

more continental conditions during the late Miocene (e.g., Doppler, 1989; Schlunegger et al., 

2001; Kuhlemann et al., 2001). Deposition of sediments in the Molasse basin ceased between 

8.5 and 4.5 Ma (Fig. 4.2A; e.g., Lemcke, 1974; Bernet et al., 2009). Parts of the basin deposits 

were affected by the propagating thrust front and consequently exhumed to the surface, where 

they are reworked since the late Miocene (e.g., Kuhlemann et al., 2001).  

Sedimentation in the south-Alpine foreland basin, in principle the area of the Po basin 

located south of the Alps, during the early Oligocene occurred under deep marine conditions 

due to turbidity currents, and from late Oligocene to middle Miocene under submarine 

conditions along submarine fans and canyons (Fig. 4.2A; e.g., Schlunegger, 1999). Following 

the desiccation of the Mediterranean from 5.6–5.5 Ma, renewed sedimentation occurred under 

fluvial-deltaic and lagoonal conditions obvious from the stratigraphic record of the Lago Mare 

deposits of the Messinian salinity crisis (Willett et al., 2006). 

The Mediterranean was separated from the global oceanic system during this crisis and 

dried out imposing a drastic base-level drop (Hsü et al. 1977). Consequently, the southern 

margin of the Alps exhibited massive erosion. The Alpine rivers cut deep valleys across the 

recent Po basin far back into the Alps due to the base-level drop of hundreds or even 

thousands of meters (e.g., Fig. 4.2A; Willett et al., 2006). Recently, these over-deepened 

valleys are filled with up to ~1 km of sediment (e.g., Hinderer, 2001), and confine the Alpine 

lakes of northern Italy (e.g., Bini et al., 1978). However, the Messinian base-level drop at 5.6 

Ma affected only the southern flanks of the Alps, but in early Pliocene times the Danube river 

draining the north-Alpine foreland basin to the east until the late Miocene was captured by the 

Rhone river obvious from recycled Molasse and Bresse graben deposits (e.g., Cederbom et 

al., 2011). This in turn might have been triggered by the Messinian base-level drop affecting 

the Rhone river (e.g., Mocochain et al., 2009). 

Exhumation in the Alps is due to a combination of normal faulting and erosion at the 

surface (e.g., Bernet et al., 2009) similar to other convergent orogens (e.g., Ring et al., 1999). 

Large extensional structures, such as the Tauern window in the Eastern Alps (Fig. 4.2A), are 

treated as indicators of tectonic exhumation (e.g., Schlunegger and Willett, 1999). Zircon 

fission-track ages of exposed bedrock show clear differences in Alpine cooling ages between 

the Western and Eastern Alps (Bernet et al., 2001). Cooling ages in large parts of the Western 

Alps are relatively young (less than 36 Ma), and older in most areas of the Eastern Alps (more 

than 50 Ma). However, such thermochronologic constraints often provide the basis to evaluate 

whether erosion, tectonics, or to which degree both are responsible for exhuming rocks from 

depths (e.g., Vernon et al., 2008, 2009). 
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Fig. 4.1 Schematic diagram indicating the significance of tectonic, fault dynamic and transient processes on 

three different temporal scales (modified after Friedrich et al., 2003). 
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← PREVIOUS PAGE 

Fig. 4.2 (A) Shaded relief map of the Alps showing major geologic units and fault systems, and the location of 

the Erlenbach (compiled from Willett et al., 2006; Robl et al., 2008). Abbreviations: Br – Brenner fault, In – 

Inntal fault, Ka – Katschberg fault, La – Lavanttal fault, Mö – Mölltal fault, Mu – Mur-Mürz fault, PF – 

Periadriatic fault, Se – Salzachtal-Ennstal fault, JF – Jura front, HF – Helvetic front, and PT – Penninic thrust. 

The solid white line denotes the location of the geological transect in Figure 4.2B. (B) Crustal-scale geological 

cross-section through the Western Alps based on seismic and structural data (modified after Pfiffner et al., 2000). 

We highlighted the difference between recent topography (bold solid line) and the restored ‘eroded section’ of 

Pfiffner et al. (2000; bold dashed line): approximately up to 30 km had been eroded (bold dotted line) during the 

collision phase of the Alpine orogeny from late Eocene to present time.  

 

 

4.4. Quantification of Erosion over Time 

 

Suitable data are required to evaluate the variability of mountainous erosion. For the Alps, 

as one of the most extensively studied mountain belts in the world, published data covering 

various scales are available. We compiled data for three time-scales: the long-term scale in 

Table 6.3-4 (millions of years), the medium-term scale in Table 6.3-5 (thousands to ten 

thousand of years), and the short-term scale in Table 6.3-6 (years to decades). We found it 

suitable to introduce the structure of our data base first in general and add then more detail to 

facilitate the understanding of the outcome (Plates II–IV [see footnote 3]). 

The left-hand columns in Tables 6.3-4–6.3-6 contain the original data and relevant 

information about location, methodology, uncertainties etc. The columns on the right-hand 

side contain the erosion rates that we derived by converting the original data. To follow this 

conversion, we provided information on the drainage area of considered basins (Table 6.3-1), 

erosion area (Table 6.3-2), and unit conversions (Table 6.3-3). Based on the converted erosion 

rates, the right-hand columns in Tables 6.3-4–6.3-6, we determined long-, medium- and short-

term cumulative erosion as shown in Plates II–IV ([see footnote 3]). This is simply done by 

summation of erosion rates over the considered time period. For example, an erosion rate of 5 

mm/a prevailing over 10 years equals 50 mm of cumulative erosion after 10 years, or a rate of 

2 m/ka over the last 18 ka equals 36 m of cumulative erosion after 18 ka. When the 

uncertainties of erosion measurements had been published (left-hand columns in Tables 6.3-

4–6.3-6), we considered them in our conversion to erosion rates (right-hand columns in 

Tables 6.3-4–6.3-6) and our calculation of the cumulative erosion (Plates II–IV [see footnote 

3]). In Figure 4.3 we indicated the location of each data set, e.g., the location of drainage 

basins (Figs. 4.3B and 4.3C), and we divided the drainage basins into four classes to easily 

distinguish their size (inset Fig. 4.3; Table 6.3-1). Lastly, we further separated the Alpine data 

sets according to their location in order to better identify spatial differences in erosion (upper 

left corner of Fig. 4.3).   

 

4.4.1. Long-Term and Alpine Scale 

 

Erosion is per definition considered to be one of the processes to exhume rocks from depth 

to the surface of the Earth (Table 4.1; England and Molnar, 1990). Deep-seated rocks are 

often exposed at the surface in the central part of a mountain belt. For example, rocks from ca. 

25 km depth are exposed in the Tauern window within the Eastern Alps (Fig. 4.2A; e.g., von 

Blanckenburg et al., 1989). We thus considered the long-term scale over millions of years for 

a comprehensive comparison of erosion rates across spatiotemporal scales. In the Alps, two 

approaches are utilized to estimate long-term rates, at which erosional and/or tectonic 

processes contribute to the exhumation of rocks (Plate II [see footnote 3]; Table 6.3-4). 

For the first approach, thermochronological data are used to determine exhumation rates 

(details in e.g., von Blanckenburg et al., 1989; Fügenschuh et al., 1997; Schlunegger and 
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Willett, 1999; Bogdanoff et al., 2000; Bernet et al., 2001, 2009; Cederbom et al., 2004; left-

hand columns in Table 6.3-4). If exhumation of deep-seated rocks occurred only due to 

erosion, then these exhumation rates provide a maximum approximation of long-term erosion 

(Table 4.1). The second approach is the sediment budget, for which the volume of sediments 

deposited in circum-Alpine sedimentary basins is related to the area of the Alps to derive 

erosion rates (e.g., Schlunegger, 1999; Kuhlemann et al., 2001; Schlunegger et al., 2001, 

2007; left-hand columns in Table 6.3-4). Although these data provide a direct measure of 

erosion (e.g., Ring et al., 1999), they represent a minimum approximation of long-term 

erosion (Table 4.1). This is because material transport as dissolved- and suspended-load from 

the Alps toward the basins, and the effect of the erosion of already deposited material are 

often poorly known (Table 4.1; e.g., Kuhlemann et al., 2001). Furthermore, sediments are 

dispersed over hundreds to thousands of km away from an orogen, so that a comparison 

between the volume of eroded material and exhumation depth is rather difficult (Ring et al., 

1999). Eroded material from the Alps is indeed dispersed over such distances towards the 

North or Black Sea (e.g., Kuhlemann et al., 2002). 

We identified one source of uncertainty related to the conversion of long-term original 

data. The data of Kuhlemann et al. (2001) were given in km³/Ma (left-hand columns in Table 

6.3-4). Our conversion to erosion rates, the right-hand columns in Table 6.3-4, is based on the 

current erosion area of the Alps given by Kuhlemann et al. (2001; Table 6.3-2). We do not 

exactly know how the erosion area changed with time, hence our converted erosion rates may 

either under- or overestimate actual rates by an unknown degree. However, converted erosion 

rates would change in response to a change of the erosion area, i.e., an increase of the erosion 

area by 10% would yield a decrease of the converted erosion rate by 10%. Given that we 

considered the typical error of 50% derived by Kuhlemann et al. (2001) when converting the 

sediment-budget data to erosion rates and for simplify matters, we discard this potential error 

in the following (Plate II; Table 6.3-4). Instead, we refer specifically to chapter IV of this 

thesis in which we address this issue. 

 

4.4.2. Medium-Term and Regional Scale 

 

We considered the medium-term scale over thousand to ten thousand years for our analysis 

of Alpine erosion due to the availability of various data covering this time-scale. Moreover, it 

represents the specific time-scale that allows to bridge the gap between the long- and short-

term scale (Plate III [see footnote 3]; Table 6.3-5). We generally compiled erosion 

measurements from individual drainage basins, where rates are given as basin-average values, 

e.g., data from Hinderer (2001), Wittmann et al. (2007), and Norton et al. (2011; left-hand 

columns in Table 6.3-5). In contrast, the data of Valla et al. (2010) provide a localized 

incision rate (Plate III; left-hand columns in Table 6.3-5). Medium-term erosion rates in the 

Alps were either derived by approximating the sediment yield from a drainage basin based on 

sediment volumes trapped in valleys and Alpine lakes (e.g., Müller, 1999; Hinderer, 2001; 

Schlunegger et al., 2002; Korup and Schlunegger, 2009), or by approximating the denudation 

using cosmogenic nuclide dating of river sediments (details in e.g., Wittmann et al., 2007; 

Norton et al., 2008, 2011; Delunel et al., 2010; left-hand columns in Table 6.3-5). According 

to Table 4.1, the former approach yielded minimum and the latter one maximum 

approximations of medium-term erosion. 

 

4.4.3. Short-Term and Local Scale: Alpine and Erlenbach Data  

 

Short-term measurements of Alpine river sediment-loads over a few years up to tens of 

years revealed the episodic character of mountainous erosion (e.g., Keller and Weibel, 1991; 

Loizeau and Dominik, 2000). Hence, such data need to be considered when evaluating this 
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event character (Plate IV [see footnote 3]; Table 6.3-6). Nevertheless, short-term observations 

in the Alps are usually reported as basin- and time-averaged rates, and are based on either 

suspended- or bed-load data (left-hand columns in Table 6.3-6). Such rates represent 

minimum approximations of short-term erosion according to Table 4.1, and they are not 

particularly well suited to investigate the episodic nature of erosion. Local erosion 

measurements carried out by Descroix and Mathys (2003) using e.g., measurement sticks, 

over a few years are similarly not suited for this purpose, and they did not allow to calculate a 

meaningful basin-averaged erosion rate (Plate IV; Table 6.3-6). We further noted that the 

uncertainties of short-term erosion measurements are rarely constrained (Table 6.3-6). The 

data of Mathys et al. (2003; Plate IV; Table 6.3-6) suggest that potential uncertainties are in 

the range of up to 50%, and we report this approximate error in the text below in squared 

brackets, although we did not considered this error when converting original data to erosion 

rates (Table 6.3-6) and calculating the cumulative erosion (Plate IV). 

Among the available data on short-term sediment transport in the Alps, the Erlenbach basin 

in the northern Swiss Prealps provides the unique opportunity to evaluate the short-term 

variability of mountainous erosion (Fig. 4.2A). From 1986–2007, continuous time series on 

bed-load discharge, water discharge, and precipitation are available from the Swiss Federal 

Institute for Forest, Snow and Landscape Research (WSL; Table 6.3-7). From 1986–1999, the 

intensity of bed-load transport had been recorded with piezoelectric bed-load impact sensors 

(PBIS; Rickenmann and McArdell, 2007). In 2000, these sensors had been replaced with 

geophones. This indirect monitoring of sediment transport required a calibration following 

Rickenmann and McArdell (2007) for the PBIS data from 1986–1999, and D. Rickenmann 

(pers. comm., 2008) for the geophone data from 2000–2007. We refer to the supplementing 

material of this chapter for details about the calibration. 

The former piezoelectric bed-load impact sensors and recently running geophone systems 

of the Erlenbach allow to monitor indirectly and continuously bed-load discharge and its 

intensity. Continuous monitoring is of great advantage compared to other methods, e.g., 

assessing the movement of tracer particles or collecting moving particles (Rickenmann and 

McArdell, 2007). These methods are often limited in their temporal and spatial resolution 

mainly due to extensive field work and operating instrumentation (e.g., Reid et al., 1980; 

Habersack et al., 2001). However, we summarized the major concerns such as the need for 

calibration on measuring bed-load transport with piezoelectric bed-load impact sensors and 

geophones in the appendix (compiled from Rickenmann and McArdell, 2007; Turowski and 

Rickenmann, 2011). 

We used linear calibration relationships, i.e., equations (A2) and (A3), to determine the 

bed-load discharge of individual events (Table 6.3-7). Hence, we consider a single bed-load 

discharge event as the shortest possible time-scale. Based on the observation of  Rickenmann 

and McArdell (2007) that impulses recorded by bed-load impact sensor no. 3 account for 

56.5% of the total number of impulses recorded by all piezoelectric bed-load impact sensors 

between 1986 and 1999 (details given in the appendix), we set the uncertainty related to the 

calculation of sediment volumes to 50% (Table 6.3-7). 

The actual water level of the Erlenbach is determined with a float system adjusted to a 

trapezoidal channel cross-section (Burch, 1994). These gauging measurements are transferred 

into water discharges by using calibration curves and tables based on hydraulic laboratory 

experiments. The associated standard deviation is lower than 5%, and the main source of 

uncertainty is represented by temporarily deposited sediment changing the initial trapezoidal 

shape of the channel cross-section (Burch, 1994; Table 6.3-7). 

Precipitation in the Erlenbach basin is recorded with totalizers collecting the precipitation 

volume over time, as well as compensators and/or balances measuring the precipitation rate 

with a resolution of 0.1 mm over time based on volume and weight of the precipitation 

quantity (e.g., Burch, 1994). The accuracy of conventional rain-gauge measurements is 
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mainly influenced by the deflection of hydrometers in the wind field above the gauge orifice, 

wetting of the gauge walls, evaporation from the container, and snow drift into the gauge 

(e.g., Frei and Schär, 1998). In Switzerland, however, the annual mean of rain gauges shows a 

systematic under-catch of 7% at lower elevations or protected sites, and up to 25% for wind 

exposed sites at higher elevations (Sevruk, 1985). On average, the annual mean under-catch 

for Switzerland was approximated to 8% (Sevruk, 1985; Table 6.3-7). 
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Fig. 4.3 Shaded relief map of the Alps showing the location of reviewed data for the three different time-scales: 

(A) long-term, (B) medium-term, and (C) short-term scale. The inset in the lower right corner shows a simplified 

sketch to illustrate our classification of the drainage-basin size.             

 

 

 

 

 

 

 

 

 

 

[3] Plates II, III, and IV are contained in the envelope attached at the inside of the back-cover. 
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4.5. Results 

 

4.5.1. Long-Term and Alpine Scale Erosion 

 

Plate II contains the results of our approximation of long-term cumulative erosion in the 

Western and Eastern Alps. We first converted the original sediment-budget and exhumation 

data contained in the left-hand columns of Table 6.3-4 to erosion rates given in km/Ma 

contained in the right-hand columns of Table 6.3-4. We then calculated the long-term 

cumulative erosion over time as described above (km over millions of years; Plate II). 

Sediment-budget based erosion estimates for the Western Alps are significantly higher 

than for the Eastern Alps. Estimates based on the data of Kuhlemann et al. (2001) range 

between ~15–50 km in the Western Alps after 34 Ma (dark blue curve in Plate IIA) and ~1–5 

km in the Eastern Alps after ~33 Ma (red curve in Plate IIB). We observed a broad overlap 

between exhumation and sediment-budget based erosion estimates in the Western Alps (Plate 

IIA). In particular, exhumation based estimates for the central Western Alps (orange data 

points in Plate IIA) overlap with sediment-budget based estimates for the entire and northern 

area of the Western Alps (dark blue and yellow curves in Plate IIA). In some cases, however, 

the sediment-budget based estimates are even greater than the exhumation ones (Plate IIA). 

Exhumation and sediment-budget based erosion estimates in the Eastern Alps are in the same 

range during the last 15 Ma (overlap between orange data points and red curve in Plate IIB), 

and show a simultaneous increase at 15–20 Ma (Plate IIB). From 20–35 Ma, exhumation 

based estimates are greater than the sediment-budget based ones (Plate IIB). 

 

4.5.2. Medium-Term and Regional Scale Erosion 

 

To estimate the cumulative medium-term erosion in the Western and Eastern Alps 

illustrated in Plates IIIA respectively IIIB, we converted published data on sediment yield and 

denudation, left-hand columns in Table 6.3-5, to erosion rates in m/ka, right-hand columns in 

Table 6.3-5. Based on these rates, we then determined the medium-term cumulative erosion 

over time as mentioned previously (m over thousands of years; Plates IIIA and IIIB). 

Medium-term erosion rates increase with drainage-basin size, e.g., the large Inn basin 

exhibited a higher rate with 0.57±0.29 m/ka than the small Weissach basin with 0.42±0.21 

m/ka throughout the last 17 ka (Fig. 4.3B and Plate IIIB). Furthermore, erosion rates in the 

central Western Alps are generally greater than in the northern and southern Western Alps 

(orange data points compared to yellow and light blue ones in Plate IIIA). Similarly in the 

Eastern Alps, erosion rates in the central area are slightly higher than in the southern area; 

rates range between 0.3±0.06 to 1.47±0.34 m/ka in the central area, and between 0.17±0.05 to 

1.04±0.23 m/ka in the southern area (orange data points compared to light blue ones in Plate 

IIIB). Medium-term rates for Bündner schists and Flysch exposed in the Rhine basin are four 

times as much as for crystalline rocks during the last 9.5–12 ka; 4±2 m/ka for the former 

compared to 0.7±0.35 m/ka for the latter (Plate IIIA; Korup and Schlunegger, 2009).  

Finally, the high erosion estimate for the Gorge du Diable in the western French Alps 

represents a localized incision rate (green data points with number 1 in Plate IIIA). In 

contrast, since medium-term erosion estimates based on sediment yield and cosmogenic 

nuclide data provide basin-averaged values and cover similar ranges (Plates IIIA and IIIB), 

we compiled those results again in Plate IIIC. We indicated a decreasing trend that we 

observed for cumulative medium-term erosion estimates with a gray arrow (Plate IIIC). 
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4.5.3. Short-Term and Local Scale Erosion 

 

Plate IV (without inset) contains the results of our calculation of short-term cumulative 

erosion in the Alps. For this, we converted the published data on sediment transport, left-hand 

columns in Table 6.3-6, to erosion rates in mm/a, right-hand columns in Table 6.3-6. These 

rates in turn provide the base to determine the short-term cumulative erosion over time as 

outlined above (mm over years; Plate IV). We similarly estimated the cumulative erosion for 

the Erlenbach basin using the data of the bed-load transport events that occurred in this basin 

(red curve in Plate IV; Table 6.3-7). We further evaluated cumulative frequency distributions 

for these events by separating the data for bed-load discharge, water discharge, and 

precipitation into seasons, and comparing the seasonal frequency distributions with the total 

one (Fig. 4.4). 

Short-term cumulative erosion in the Alps can be separated into two fields (Plate IV 

without inset). First, erosion in the western French Alps is high with rates between ~2.1±0.9 

mm/a (Moulin, 1988–2000) and 33±[17] mm/a (Izon la B., 1990–1995; green data points in 

Plate IV). Second, erosion in the remaining Alps occurs with rates of less than 1±[0.5] mm/a 

(Plate IV). Erosion rates generally increase with drainage-basin size (Plate IV). In the Eastern 

Alps, for example, the large Inn basin exhibits a higher rate of 0.1±[0.05] mm/a (1953–1979) 

than the small Weissach basin with 0.04±[0.02] mm/a (1955–1965). Furthermore, short-term 

rates are approximately twice as much in the central (orange data points in Plate IV) than in 

the northern and southern area of the Western Alps (yellow and light blue data points in Plate 

IV). 

Short-term monitoring periods of erosion are on average much longer in the Western and 

Eastern Alps than in the western French Alps spanning several decades (Plate IV). The 

highest erosion rates observed in the western French Alps were based on localized 

measurements, e.g., measurement sticks and slope profiles. In contrast, basin-outlet 

measurements of bed- and suspended-load in the remaining Alps yielded lower erosion rates 

that represent basin-averaged values (Plate IV). Moreover, erosion estimates based on 

suspended- and bed-load measurements yielded both similar values (Plate IV). For the Ticino 

and Maggia basins in the southern Western Alps, however, we observed that delta-growth 

data yielded lower erosion rates based on a longer monitoring period (Ticino: 0.1±[0.05] 

mm/a, 1932–1986; Maggia: 0.17±[0.85] mm/a, 1926–1984) than suspended-load data that 

yielded higher rates based on a shorter monitoring period (Ticino: 0.22±[0.11] mm/a; 1979–

1995; Maggia: 0.27±[0.14] mm/a, 1985–1993; Plate IV). 

Short-term erosion in the Erlenbach from 1986–2007 is characterized by periods of 

increased erosion that alternate with periods of less erosion (red curve in Plate IV). To better 

understand this temporal variation, we compared the seasonal frequency distributions with the 

total one (Fig. 4.4). We observed that: (i) summer distributions show the greatest similarity 

with the total distribution; and (ii) spring and autumn distributions are quite similar, and plot 

between the summer and winter distributions. In summary, events with the greatest bed-load 

and water discharge as well as precipitation amount occur in summer, whereas events with the 

lowest values occur in winter. 

 

4.6. Interpretation and Significance of Individual Scales 

 

4.6.1. Long-Term and Alpine Scale Erosion 

 

We expected that exhumation based cumulative erosion estimates for the Alps would be in 

the range of sediment-budget based estimates according to the definition, that exhumation is 

the rate of erosion plus the rate of removal of overburden by tectonics (Table 4.1; England 

and Molnar, 1990). Or, that exhumation based erosion estimates would be greater than the 
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sediment-budget based estimates. However, based on our long-term erosion estimates we 

found major differences between the Western and Eastern Alps (Plate II). For the Western 

Alps, we observed both an overlap between exhumation and sediment-budget based erosion 

estimates, and that the latter estimates are even greater than the exhumation based estimates 

(Plate IIA). This latter observation contradicts our expectation, and suggests that the 

definition of England and Molnar (1990) cannot easily be applied to the Western Alps (Table 

4.1). For the Eastern Alps, we observed an overlap between exhumation and sediment-budget 

based erosion estimates over the last 15 Ma, whereas from 20–35 Ma exhumation based 

erosion estimates are greater than sediment-budget based estimates (Plate IIB). These 

observations agree with our expectation, and thus the definition of England and Molnar 

(1990; Table 4.1) can be applied to the Eastern Alps. 

We extracted three cumulative erosion estimates derived for the Eastern Alps from Plate 

IIB to illustrate the implications, if the definition of England and Molnar (1990; Table 4.1) 

can be applied or not (Fig. 4.5). Erosion estimates are either based on sediment budget (red in 

Fig. 4.5) or exhumation (orange in Fig. 4.5) data. In this example, exhumation based estimates 

are greater than the sediment-budget based estimate from 13–30 Ma (Fig. 4.5). Thus, the 

definition of England and Molnar (1990; Table 4.1) can be applied here. Since sediment-

budget data, as those of the Alps (Kuhlemann et al., 2001), are a direct measure of erosional 

exhumation (e.g., Ring et al., 1999), we highlighted the term erosion in red (Fig. 4.5). From 

the difference between exhumation and sediment-budget based estimates, we approximated 

the tectonic signal contributing to exhumation (blue in Fig. 4.5). In the other case, when the 

definition of England and Molnar (1990; Table 4.1) cannot be applied, exhumation based 

estimates simply represent tectonic measurements, and sediment-budget based estimates are 

measurements of erosion (Fig. 4.5). However, we interpret that tectonic processes are the 

major process in the Eastern Alps to exhume rocks from depth whether the definition of 

England and Molnar (1990; Table 4.1) can be applied or not. 

In the Western Alps, exhumation based estimates are sometimes lower than sediment-

budget based erosion estimates contradicting our expectation based on the definition of 

England and Molnar (1990; Table 4.1; Plate IIA). Hence, our suggestion that the definition 

cannot be applied in this case implies, that exhumation based estimates are tectonic 

measurements, and sediment-budget based estimates are erosion measurements as indicated in 

Figure 4.5. However, we interpret that erosion and tectonic processes occurred at similar rates 

in the Western Alps based on the overlap between exhumation and sediment-budget based 

estimates that we also observed (Plate IIA). 

 

4.6.2. Medium-Term and Regional Scale Erosion 

 

Medium-term cumulative erosion in the Alps decreased throughout the Holocene (Plate 

IIIC). Our observation coincides with a decrease of sedimentation rates determined in the 

Walen lake Valley (Müller, 1999) as well as a decrease of the Alpine sediment yield 

(Hinderer, 2001) during the Holocene. We interpret that this decrease is due to a change from 

glacially-dominated erosional processes to a fluvially-dominated erosion pattern during 

deglaciation after the LGM according to the paraglacial model of Church and Ryder (1972). 

Repeated glaciations of the Alps occurred due to Pleistocene climate changes (e.g., 

Muttoni et al., 2003). However, during glaciations glacial erosion processes prevail, while 

fluvial processes dominate during interglacials. A change of the erosional mode thus occurs at 

the transition between glacials and interglacials, and appears to culminate in increased erosion 

at this time as suggested by the Alpine data (Plate IIIC). The paraglacial model of Church and 

Ryder (1972) explains increased sediment transport at the end of a glacial and beginning of an 

interglacial. It implies low transport rates prior and after deglaciation, and high rates during 
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deglaciation mainly due to the availability of large amounts of unconsolidated sediments and 

high transport capacities (Hinderer, 2001). 

Based on these considerations and in agreement with the definition given in Table 4.1, we 

deduced a theoretical model characterized by decreasing sediment-transport rates during the 

time of glacials and interglacials, and increased rates at the transitions between both (dashed 

gray line in Fig. 4.6A). This would yield a step function of cumulative erosion during the late 

Pleistocene as shown by the dashed gray line in Figure 4.6B. Alpine medium-term erosion 

estimates compiled in Plate IIIC agree with our suggestion (Fig. 4.6B). Furthermore, 

sediment-transport data determined by Hinderer (2001) for the last 140 ka from Quaternary 

and post-LGM sediment volumes are similarly in agreement with the model (black, solid thin 

line in Fig. 4.6). These data show considerable increases of sediment transport at the transition 

between glacials and interglacials. Nevertheless, we note that further data are required to 

validate the theoretical model. 

 

4.6.3. Short-Term and Local Scale Erosion 

 

We found significant differences in short-term erosion throughout the Alps with much 

higher erosion rates of up to 33±[17] mm/a in the western French Alps (e.g., Descroix and 

Mathys, 2003), and lower rates of less than 1±[0.5] mm/a in the remaining Alps (e.g., 

Hinderer, 2001; Plate IV). Two aspects can be related to this difference, the monitoring length 

and the type of measurement. First, the short-term erosion estimates in the western French 

Alps are based on very short observation periods of only a few years in length (e.g., Descroix 

and Mathys, 2003), but the longer this period is the smaller is the erosion rate (green data 

points in Plate IV). Accordingly, the lower rates detected elsewhere in the Alps are usually 

based on much longer monitoring periods of up to several decades in length (Plate IV; Table 

6.3-5). Second, erosion estimates from the western French Alps are based on very localized 

measurements, e.g., point measurements with sticks or slope profiles (Descroix and Mathys, 

2003). These estimates are thus not representative for an entire drainage basin, whereas short-

term erosion estimates from elsewhere in the Alps based on basin-outlet measurements can be 

considered as basin-average values. 

That the length of monitoring and the type of measurement affect the approximation of 

short-term erosion rates is further supported by observations for the Ticino and Maggia basins 

in the southern Western Alps. Delta-growth data from Hinderer (2001) revealed lower erosion 

rates for a longer monitoring period (Ticino: 0.1±[0.05] mm/a, 1932–1986; Maggia: 

0.17±[0.85] mm/a, 1926–1984) than suspended-load data from Schlunegger and Hinderer 

(2003) that yielded higher rates for much shorter periods (Ticino: 0.22±[0.11] mm/a; 1979–

1995; Maggia: 0.27±[0.14] mm/a, 1985–1993; Plate IV). These results suggest that long 

monitoring periods are required to determine a short-term erosion rate that would be 

comparable to a medium-term one. However, Kirchner et al. (2001) noted that even 

conventional sediment-yield measurements made over several decades can greatly 

underestimate longer-term average rates of sediment delivery based on a comparison of short- 

and long-term erosion measurements in the Idaho Mountains. 

According to the definitions given in Table 4.1, delta-growth measurements do not 

consider suspended- and dissolved-load, and suspended-load measurements do not consider 

bed- and dissolved-load. Hence, both measurements considered alone represent minimum 

approximations of erosion. The suspended-load of Alpine rivers appears to be greater than the 

bed-load, since delta growth based erosion rates of the Ticino and Maggia basins are lower 

than suspended-load based rates (Plate IV). Simultaneously, however, the available short-term 

data for the Alps indicate that low rates whether based one suspended- or bed-load are in the 

same range (Plate IV). Even if bed- and suspended-load data for a single basin are available 

and added, the resulting erosion rate most likely will not exceed 1±[0.5] mm/a, e.g., the 
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Ticino basin with 0.1±[0.05] mm/a from bed-load data (1932–1986) and 0.22±[0.11] mm/a 

from suspended-load data (1979–1995; Plate IV). 

Finally and most importantly, the Erlenbach data clearly indicate that short-term erosion is 

characterized by alternating periods of increased and decreased activity (Plate IV). In this 

context, the episodic character of short-term erosion can be approximated with a step function 

(inset Plate IV). Furthermore, the shape of this function is influenced by seasonal weather 

differences. Events with the greatest bed-load discharge occur in summer, whereas the 

smallest events occur in winter as revealed by seasonal frequency distributions (Fig. 4.4). 

Accordingly, steps with the greatest height are produced by events that occurred during 

summer (inset Plate IV). 

 

 
Plate II Cumulative long-term erosion based on published Alpine data: (A) Western Alps, and (B) Eastern Alps. 

Associated errors are marked by colored boxes. When original data were reported as a range of values, we also 

determined a range of erosion rates. To visualize such a range, we connected data points of the lower cumulative 

erosion curve and points of the upper curve by thin lines. The actual cumulative curve should then vary between 

the lower and upper limit indicated by the colored area. The location of the studied areas is shown in Figure 

4.3A. The figure is contained in the envelop attached at the inside of the back-cover. 

 

 
Plate III Cumulative medium-term erosion based on published Alpine data: (A) Western Alps, and (B) Eastern 

Alps. Associated errors are marked by colored boxes. The location of the drainage basins is shown in Figure 

4.3B. (C) Cumulative medium-term erosion of Western and Eastern Alps derived from sediment yield and 

cosmogenic nuclide data only, compiled from Plates IIIA and IIIB. The decreasing trend of erosion estimates is 

highlighted with the gray arrow. The figure is contained in the envelop attached at the inside of the back-cover. 

 

 
Plate IV Cumulative short-term erosion based on published Alpine data. We also included the cumulative 

erosion based on event data of the Erlenbach from 1986–2007 (inset diagram). The location of the drainage 

basins is shown in Figure 4.3C. The figure is contained in the envelop attached at the inside of the back-cover. 
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Fig. 4.4 Seasonal and total cumulative frequency plots for bed-load discharge (A), peak-water discharge (B), and 

precipitation (C) of the Erlenbach event data to characterize the temporal variability of erosion from 1986–2007. 

Data provided by the Swiss WSL. 

 

 

4.7. Erosion Across Scales 

 

For a comparison of erosion rates across spatiotemporal scales, we reviewed the 

significance of erosion rates that we calculated for the different scales considered in this 

study. The majority of Alpine short- and medium-term erosion rates can be compared with 

each other (right-hand columns of Tables 6.3-5 and 6.3-6). This is because most of the short-

term erosion rates are derived from suspended- and bed-load data (Plate IV, Table 6.3-6), and 

most of the medium-term erosion rates are based on sediment yield and cosmogenic nuclide 

data (Plate IIIC, Table 6.3-5). As outlined previously, all these measurements yielded basin- 

and time-averaged erosion rates. The bed-load transport data of the Erlenbach compiled in 

Table 6.3-7 represent basin-outlet measurements. At the same time, these data allow for 

evaluating the episodic nature of erosion (inset Plate IV and Fig. 4.4) as well as for 

determining basin-averaged erosion rates (red curve in Plate IV). Moreover, the short- and 
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medium-term erosion rates derived from sediment-yield data can in principle also be 

compared to long-term erosion rates derived from sediment-budget data, because in all three 

cases a volume of transported material is related to a specific erosion area. However, since 

different processes dominate the signal on the long-term scale, we did not compared the short- 

and medium-term rates with the long-term ones.  

Long-term Alpine erosion estimates derived from sediment-budget data (Plate II; e.g., 

Kuhlemann et al., 2001) are in principle similar to the tectonic fault slip in Figure 4.1. These 

cumulative erosion estimates define the erosional flux from an orogen according to the 

orogenic wedge model (Fig. 4.7; e.g., Willett et al., 1993). In the Western Alps, Pfiffner et al. 

(2000) evaluated the linkage between the accretionary and erosional flux using numerical 

forward modelling. Their results indicate that long-term erosion in the Alps depends on the 

convergence between the European and Adriatic plates. Average denudation rates of 1.5 

mm/a are equal to 15 km of denudation per 100 km convergence, and maximum rates of 3 

mm/a translate into 30 km of denudation per 100 km convergence (Pfiffner et al., 2000). Their 

results agree reasonably well with our long-term erosion estimates for the Western Alps (Plate 

IIA). An approximation of erosion derived from a restored ‘eroded’ geological cross-section 

through the Western Alps yielded a similar value of ~30 km (Fig. 4.2B; Pfiffner et al., 2000). 

From our evaluation of the applicability of the definition of exhumation to the Alps (Table 

4.1; Molnar and England, 1990), we interpreted that tectonic processes control the long-term 

erosion in the Alps (e.g., Fig. 4.5). 

Our interpretation is further supported by results based on a renewed analysis of the Alpine 

sediment budget (Kuhlemann et al., 2001; chapter IV). Sediment-budget based erosion 

estimates in the Western Alps document increased erosion over the last 5 Ma (yellow and 

dark blue curves in Plate IIA). This increase is presumably due to a tectonically induced uplift 

of the Alpine foreland basins that caused a lowering of the regional base-level. Subsequent 

head-ward erosion by rivers draining the Alpine foreland occurred across the basins thereby 

removing substantial amounts of Alpine derived material deposited in the foreland basins 

prior to 5 Ma (further details in chapter IV). 

Medium-term erosion rates in the Alps are generally greater than the short-term ones (Plate 

IIIC compared to Plate IV). This suggests a decreasing trend of erosion rates throughout the 

Holocene, which is already obvious when only the relevant medium-term erosion estimates 

are considered (Plate IIIC). Drainage basins in the Eastern Alps, for example, exhibit two to 

ten times greater medium-term rates (Plate IIIB compared to Plate IV). Here, the medium-

term rate for the Inn basin is approximately six times greater than the short-term one 

(0.57±0.29 m/ka for the last 17 ka compared to 0.1±[0.05] mm/a from 1953–1979), or the 

medium-term rate for the Weissach basin is ten times greater than the short-term one 

(0.42±0.21 m/ka for the last 17 ka compared to 0.04±[0.02] m/ka from 1955–1965). The 

declining trend appears to be independent of the size of the drainage basin, because the sizes 

of the Inn and Weissach basins differ by two orders of magnitude according to our drainage-

basin classification (Figs. 4.3B and 4.3C; Table 6.3-1).  

However, medium-term cumulative erosion can be approximated with a step-like function 

(e.g., Fig. 4.6B). This function is analogous to the cumulative displacement characterizing 

fault-system dynamics (Fig. 4.7 compared to Fig. 4.1). The shape of the step function appears 

to be influenced by the change of the dominating erosional mode at glacial-interglacial 

transitions due to Pleistocene climate changes (Fig. 4.6B; e.g., Muttoni et al., 2003), because 

variations in temperature and precipitation affect the extent of glaciers. We ascribed the 

increased sediment transport during deglaciation to the availability of large amounts of 

unconsolidated sediments and high transport capacities (Plate IIIC and Fig. 4.6; e.g., Müller, 

1999; Hinderer, 2001). 

Based on the Erlenbach data (inset Plate IV), we determined a step function of cumulative 

erosion at the short-term scale. This function is basically similar to that derived for the 
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earthquake cycle except that the time-scale of an ‘erosion cycle’ is shorter than for an 

earthquake cycle (Fig. 4.1 compared to Fig. 4.7). The shape of the erosional step function 

depends on seasonal weather differences as revealed by the Erlenbach data (e.g., inset Plate 

IV). These differences are due to differences in temperature and precipitation (Fig. 4.4). The 

amount of precipitation in turn influences water discharge, and the magnitude of an erosional 

event depends on water discharge (e.g., Turowski et al., 2011) as well as the availability of 

material for transport (e.g., Keller and Weibel, 1991). 

In summary, our rigorous analysis of the applicability of the exhumation definition to the 

Alps implies, that tectonic processes play a dominant role to exhume rocks from depth (Fig. 

4.5; Table 4.1). This is supported by a comparison of our long-term erosion estimates with 

estimates derived from numerical modeling and crustal-scale structural data (Plate II 

compared to Fig. 4.2B; Pfiffner et al., 2000). Moreover, our review of Alpine erosion rates 

indicates that not all of the data can be explained with linear, averaged rates of erosion. At the 

medium- and short-term scale, erosion can be approximated with a step function to constrain 

the actual magnitude of the process (inset Plate IV and Fig. 4.6B). Alpine medium-term 

erosion data are characterized by a great variability that results from repeated changes of the 

prevailing erosional mode due to Pleistocene climate changes (Plate IIIC and 4.6). Short-term 

erosion rates exhibit a pronounced variability mainly due to seasonal weather differences as 

revealed by the Erlenbach data (inset Plate IV and Fig 4.4). We further determined a basin- 

and time-averaged erosion rate for the Erlenbach basin (red curve in Plate IV), and compared 

it with the un-averaged curve (inset Plate IV), and Alpine short-term erosion rates estimated 

with linear trends (Plate IV without inset). The averaged Erlenbach curve has the same shape 

as the un-averaged one except that it is smoother (Plate IV). Thus, the short-term variability of 

mountainous erosion can still be detected when using averaged erosion rates, but it cannot 

when these rates are approximated with linear trends (Plate IV). Lastly, it is rather difficult to 

infer longer-term erosion rates from short-term erosion data judging from our previous 

evaluation of the significance of Alpine short-term erosion measurements. Long monitoring 

periods of several tens of years are most likely required to measure an erosion rate that can 

approximate a longer-term one. Even then, this rate can greatly underestimate the longer-term 

rate (e.g., Kirchner et al., 2001). 

 

 

 

 

 

 

 



122 

 

← PREVIOUS PAGE 

Fig. 4.5 Selected cumulative erosion estimates of the Eastern Alps from Plate IIB based on sediment budget (in 

red) and exhumation (in orange) data to clarify the difference between validity and invalidity of the definition for 

exhumation given by England and Molnar (1990; Table 4.1). Sediment-budget data represent a direct measure of 

erosional exhumation following e.g., Ring et al. (1999). Hence, the term erosion is highlighted in red in both 

cases of validity and invalidity of the definition. If the definition can be applied, then the tectonic signal can be 

reconstructed indicated in blue. If the definition cannot be applied, then exhumation based estimates represent a 

measure of tectonic deformation. 

 

 

 

 

Fig. 4.6 Sediment-transport rate (A) and resulting cumulative erosion (B) during repeated Alpine glaciations in 

the Pleistocene. Following the paraglacial model of Church and Ryder (1972), the dashed dark gray line, 

sediment-transport rates decrease to low values during glacials and interglacials, and increase at the transitions 

between glacials and interglacials. The Alpine data from Plate IIIC, the light gray rectangles and bold solid black 

line, and Alpine sediment-transport rates for the last 140 ka derived by Hinderer (2001) based on Quaternary and 

post-LGM sediment volumes, the thin solid black line, are in agreement with the model. Prior to 140 ka, data are 

required to further validate the model. Abbreviations: H – Holocene, G – Glacial, and I – Interglacial. Timing of 

glacials Mindel 640-300 ka, Riss 265-130 ka, and Würm 70-12 ka taken from Hinderer (2001) and Bernet et al. 

(2004). Thus, timing of interglacials is 300-265 ka, 130-70 ka, and 12-0 ka (Holocene). 
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4.8. Conclusions 

 

In this study, we compiled cumulative erosion estimates for the Alps from three different 

time-scales, the long- (millions of years), medium- (thousands to ten thousand years), and 

short-term (years to decades) scales, to evaluate the variability of mountainous erosion. Our 

comparison is based on an approach that was established to investigate the significance of 

geologic and geodetic measurements along intra-continental faults on time-scales of millions 

to tens of years (Fig. 4.1; Friedrich et al., 2003). Our results indicate that this approach is well 

suited to examine the variability of erosion at the medium- and short-term scale (inset Plate 

IV and Fig. 4.6). However, further data on erosion need to be evaluated covering the 

intermediate time-scale over ten thousands to hundred thousands of years between our 

medium- and long-term scale to finally bridge the gap to the long-term scale, and allow for an 

appropriate comparison of erosion rates from different scales. Lastly, we found similarities 

between the cumulative displacement with time and cumulative erosion with time (Fig. 4.1 

compared to Fig. 4.7). Long-term erosion in the Alps is presumably controlled by tectonic 

processes in agreement with a re-evalution of the Alpine sediment budget carried out in 

chapter IV (e.g., Fig. 4.5). In contrast, medium-term erosion rates decline during the Holcene 

until recently throughout the Alps based on a comparison of medium- and short-term erosion 

rates (Plate IIIC compared to Plate IV). Medium-term erosion rates are thus influenced by 

climate changes that yielded major changes in the prevailing erosional mode of the Alps 

(Plate IIIC; Figs. 4.6 and 4.7), and short-term erosion is strongly affected by seasonal weather 

differences (inset Plate IV, Figs. 4.4 and 4.7). 

 

 

 

 

Fig. 4.7 Schematic diagram indicating the significance of erosion and sediment-transport processes on three 

different temporal scales. 
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5. Chapter IV 

 

Erosion of Dying Foreland Basins: Did the Sediment Discharge of the Alps 

Really Accelerate Five Million Years Ago? 

 

5.1. Abstract 

 

The fundamental discussion of whether or not climate change triggered a global 

acceleration of erosion at 5 Ma is widely based on the usage of the sediment-budget concept. 

The sediment yield of the Alps is one of the most striking data sets in the world apparently 

recording a substantial increase in sediment accumulation over the past ~5 Ma. Recently, 

however, this increase has been challenged by the argument that it may be an artefact due to 

observation and measurement biases. We therefore reassessed the basic assumption of the 

sediment-budget concept – namely, the volume of debris eroded from a source terrain and 

deposited in sedimentary basins allows to constrain erosion rates of the source terrain – by re-

evaluating the Alpine sediment budget. We found that from ~34–5 Ma eroded Alpine material 

was deposited in proximal basins such as the north-Alpine foreland basin, whereas from ~5–0 

Ma most of the sediments were deposited in distal basins such as the Black Sea, while 

stratigraphic evidence documents erosion of the proximal foreland basins. Therefore, the 

sediment-budget concept holds in the first stage because material deposited in the foreland 

basins is solely derived from the Alps. It does not hold in the second stage when erosion of 

Alpine-derived sediments deposited in the foreland basins prior to ~5 Ma and their re-

deposition in the distal basins occurred. This implies an approximately threefold increase of 

the potential erosion area. We re-calculated the Alpine sediment yield for the past 5 Ma based 

on previously published observations that the north-Alpine foreland basin was inverted 

around 5 Ma. Our analysis yields much lower values than previously published, and we 

conclude that the Alpine sediment discharge since 5 Ma remained more or less constant, while 

sediment discharge since 5 Ma also affected the large areas of the proximal foreland basins. 

The discharge of Alpine-derived material deposited in the foreland basins prior to ~5 Ma 

presumably increases throughout the Plio-Pleistocene in agreement with an erosional 

unconformity observed between Miocene and Quaternary rocks in the Swiss and German 

Molasse basin. The substantial erosion of the foreland basins appears to be due to their 

tectonically induced inversion about 5 Ma ago indicated by subsidence curves derived from 

the stratigraphic record of the north-Alpine foreland basin. Our findings challenge currently 

dominating views that climate change accelerated erosion of high mountain areas since 5 Ma. 

Models that invoke climatically-triggered isostatic rebound of the Alps since 5 Ma must be 

reconsidered in light of our results. 

 

5.2. Introduction 

 

There is a fundamental debate of whether or not climate-triggered erosion has significantly 

increased globally around 5 Ma (e.g., Hay et al., 1988; Molnar and England, 1990; Zhang et 

al., 2001; Willett, 2010). The sediment-budget approach has been the dominant mode to 

address this question (e.g., Molnar, 2004). However, this increase has recently been 

challenged by Willenbring and von Blanckenburg (2010), although global isotopic data point 

to changes in climatic conditions at around 5 Ma (e.g., Raymo and Ruddiman, 1992; Zachos 

et al., 2001). Willenbring and von Blanckenburg (2010) suggested that the globally 

synchronous increase in sediment accumulation may simply be an artefact due to observation 
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and measurement biases. One reason for their argumentation is that, given sufficient time, 

sedimentary basins might be inverted, and hence the erosion of sediment is observed resulting 

in progressively decreasing strata volumes. 

Central to this debate are the data of Kuhlemann et al. (2001 and 2002), that record a 

substantial increase in the sediment yield of the Alps over the past ca. 5 Ma (Fig. 5.1). Their 

interpretation of the Alpine sediment budget is based on the assumption that debris derived 

from the Alps and deposited in circum-Alpine sedimentary basins (dark gray in inset maps of 

Europe in Fig. 5.1) allows to place constraints on erosion rates of the Alpine source area (light 

gray in inset maps of Europe in Fig. 5.1). According to the argumentation of Willenbring and 

von Blanckenburg (2010), however, they also recognized that the erosion of sediment and its 

re-deposition is a major problem in the subalpine Molasse. The restoration of imbricated 

Molasse thrust sheets is a critical source of error that potentially affects the Oligo- to early 

Miocene sediment budget of the north-Alpine foreland basin, and the middle to latest 

Miocene budget of the southern foreland basin. In contrast, the increased Plio-Pleistocene 

sediment budget is not affected by this error according to Kuhlemann et al. (2001 and 2002). 

Here, we therefore reassess their basic assumption by re-evaluating the Alpine sediment 

budget. Our re-interpretation teased a re-calculation of the Alpine sediment yield for the past 

5 Ma. We conclude that the substantial increase discussed above is only apparent, and that 

actual Alpine sediment-discharge rates throughout the last 5 Ma might have been much lower 

than previously thought. Simultaneously, the discharge of Alpine-derived debris deposited in 

the foreland basins prior to ca. 5 Ma presumably increases throughout the Plio-Pleistocene. 

 

 

 

Fig. 5.1 Cumulative sediment-discharge rates for the Western Alps (A) and Eastern Alps (B) since the Oligocene 

separated for major sediment sinks (redrawn from Kuhlemann et al., 2001 and 2002). The inset maps of Europe 

show the location of the sedimentary basins supplied by the Alps. 
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5.3. Alpine Orogeny and Foreland Basins 

 

The Alpine orogeny is often described as a series of episodes of tectonic, metamorphic, 

and erosional activity from Cretaceous to Quaternary times (e.g., Kempf and Pfiffner, 2004; 

Schlunegger et al., 2007; Bernet et al., 2009; Handy et al., 2010). The convergence between 

the European and Adriatic plates started in the late Cretaceous, and resulted in the collision of 

both plates during the late Eocene (Schmid et al., 1996). Slab break-off occurred presumably 

at about 34–29 Ma (von Blanckenburg and Davies, 1995), during which the dense oceanic 

part of the subducting European plate was detached from its upper buoyant part (Regard et al., 

2008). However, convergence continued after the collision obvious from thrusting along the 

Periadriatic fault and propagation of the Helvetic nappes from 32–19 Ma, as well as foreland 

propagation in the Southern Alps since 19 Ma (Fig. 5.2; Schmid et al., 1996). Foreland basins 

formed north and south of the Alps due to continental collision and convergence since the 

Eocene that led to crustal thickening and loading of the subducting European plate (Fig. 5.2; 

e.g., Schmid et al., 1996; Andeweg and Cloetingh, 1998; Cederbom et al., 2004). Subsidence 

curves derived by Lemcke (1974) for 13 wells distributed over the north-Alpine foreland 

basin area indicate, that subsidence occurred during the Oligo- and Miocene, whereas a 

substantial uplift of several hundred meters occurred since the Pliocene (Figs. 5.2 and 5.3). 

Sedimentation in the north-Alpine foreland basin, the area of the Molasse basin located 

north of the Alps between Lake Geneva in the west and Lower Austria in the east (Figs. 5.2A 

and 5.3; e.g., Andeweg and Cloetingh, 1998; Kuhlemann and Kempf, 2002), during the 

Oligocene was characterized by deep marine conditions commonly referred as Flysch 

sedimentation (e.g., Hesse, 1975; Sinclair, 1997). In contrast, the so-called Molasse 

sedimentation was characterized by shallow marine conditions during the early Miocene and 

more continental conditions during the late Miocene (e.g., Doppler, 1989; Schlunegger et al., 

2001; Kuhlemann et al., 2001). Deposition of sediments in the Molasse basin ceased between 

8.5 and 4.5 Ma (Fig. 5.2A; e.g., Lemcke, 1974; Bernet et al., 2009). Parts of the basin deposits 

were affected by the propagating thrust front and consequently exhumed to the surface, where 

they are reworked since the late Miocene (e.g., Kuhlemann et al., 2001). However, 

sedimentation in the south-Alpine foreland basin, in principle the area of the Po basin located 

south of the Alps analogous to the north, during the early Oligocene occurred under deep 

marine conditions due to turbidity currents, and from late Oligocene to middle Miocene under 

submarine conditions along submarine fans and canyons (Fig. 5.2A; e.g., Schlunegger, 1999). 

Following the desiccation of the Mediterranean from 5.6–5.5 Ma, renewed sedimentation 

occurred under fluvial-deltaic and lagoonal conditions obvious from the stratigraphic record 

of the Lago Mare deposits of the Messinian salinity crisis (Willett et al., 2006). 

 

 

 

 

 

Fig. 5.2 (A) Shaded relief map of the Alps showing major units and fault systems (compiled from Willett et al., 

2006; Robl et al., 2008). Abbreviations: Br – Brenner fault, In – Inntal fault, Ka – Katschberg fault, La – 

Lavanttal fault, Mö – Mölltal fault, Mu – Mur-Mürz fault, PF – Periadriatic fault, Se – Salzachtal-Ennstal fault, 

JF – Jura front, HF – Helvetic front, and PT – Penninic thrust. The solid white line denotes the location of the 

geological transect in Figure 5.2B. (B) Crustal-scale geological cross-section through the Western Alps based on 

seismic and structural data (modified after Pfiffner et al., 2000). We highlighted the difference between recent 

topography (bold solid line) and the restored ‘eroded section’ of Pfiffner et al. (2000; bold dashed line) that is 

based on the estimated volume of eroded material.              → NEXT PAGE, UPPERMOST FIGURE 
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← PREVIOUS PAGE, LOWERMOST FIGURE 

Fig. 5.3 Subsidence curves derived for several wells located in the north-Alpine foreland basin, whose position is 

shown in the inset (modified after Lemcke, 1974). Significant late Cenozoic uplift generally decreases from west 

to east, and is indicated by bold numbers attached to the lower end of the curves. Gray dashed lines are 

extrapolated, and denote eroded parts of the stratigraphy. 
 

 

5.4. Alpine Sediment Budget: Original Data 

 

The sediment budgets of the Western and Eastern Alps derived by Kuhlemann et al. (2001 

and 2002) are shown in Figure 5.1. They determined only the volumes of Alpine-derived 

material deposited in all circum-Alpine basins based on a literature compilation. These data 

include, for example, digitized thickness maps of strata or base contour-lines of sedimentary 

basins. Subsequently, the calculated volumes of sediment were re-compacted to a porosity, 

which is equivalent to the solid rock of the source terrain (details in Kuhlemann et al., 2001 

and 2002). However, their main assumption is that the volume of Alpine-derived sediments 

deposited in all circum-Alpine basins (dark gray in inset maps of Europe in Fig. 5.1) allows to 

calculate average erosion rates of the source terrain, the Western respectively Eastern Alps 

(light gray in inset maps of Europe in Fig. 5.1). This assumption holds, although Kuhlemann 

et al. (2002) noted that Alpine-derived sediments were deposited in basins of generally 

increasing distance to the Alps. 

There are three factors behind this latter observation that represent severe sources of error 

associated with the Alpine sediment budget. First, sedimentary basins might be inverted given 

sufficient time, and hence the erosion of sediment is observed yielding progressively 

declining sediment volumes (Willenbring and von Blanckenburg, 2010). Kuhlemann et al. 

(2001 and 2002) recognized that the erosion of sediment and its re-deposition is a major 

problem in the subalpine Molasse, because the restoration of imbricated Molasse thrust sheets 

represents a critical source of error. This error potentially affects the Oligocene to early 

Miocene sediment budget of the north-Alpine foreland basin, and the middle to latest 

Miocene budget of the southern foreland basin, whereas the increased Plio-Pleistocene 

sediment budget is not affected by this error. Second, most of the circum-Alpine basins are 

not supplied solely from the Alps but also from further source terrains, which is relevant for 

the late Miocene to recent sediment budget (Kuhlemann et al., 2001). For example, the 

Pannonian basin receives sediments from the Alps as well as the Carpathians located 

northeast of the basin. This is a minor issue as long as a basin is located close to the Alps, so 

that the Alps define the major source terrain, and available provenance data in the form of 

heavy mineral compositions etc. allow for the distinction among various source terrains 

(potential error in the range of ±20%). However, this error may increase substantially for 

basins located far away from the Alps, e.g., the Black Sea. In such cases, mixing of fine 

grained debris occurs often under shallow marine conditions challenging the separation of 

various source terrains based on e.g., heavy mineral compositions (Kuhlemann et al., 2001). 

Third, as the drainage area of a basin increases with distance to the Alps, the relative 

contribution of material derived from the Alps to the basin fill will decrease yielding an 

estimated potential error on the order of ±30% in case of the Pleistocene Rhine and Plio-

Pleistocene Danube catchments (Kuhlemann et al., 2001). 

 

5.5. New Aspects of the Alpine Sediment Budget 

 

The calculated cumulative sediment-yield rates of the Alps had additionally been 

differentiated for major sediment sinks (Fig. 5.1). We used this specific information provided 

by Kuhlemann et al. (2001 and 2002) to re-evaluate the sediment budget of the Western and 

Eastern Alps (Fig. 5.5). Surprisingly, we noted that the Rhone fan and Pannonian basin, 
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although situated at opposite sides of the Alps received sediments from both the Eastern and 

Western Alps (Fig. 5.1). In contrast, we expected that the Rhone fan would receive sediments 

only from the Western Alps and the Pannonian basin soley from the Eastern Alps based on 

the spatial separation between the Eastern and Western Alps defined by the meridian of the 

Alpine Rhine river and Lake Como (Kuhlemann et al., 2002). A potential explanation, 

however, is that the dominating direction of material transport in the north-Alpine foreland 

basin exhibited temporal changes (e.g., Schlunegger, 1999; Kuhlemann et al., 2006; 

Schlunegger et al., 2007). For example, the Rhone fan received east-Alpine debris during 

periods when the Pannonian basin received less east-Alpine sediments (Fig. 5.1B). This is 

most likely due to the fact that material was transported mainly to the west in times when the 

Rhone fan received east-Alpine debris, and to the east when the Pannonian basin received this 

kind of debris (Fig. 5.4). However, due to this ambiguity we did not consider the Pannonian 

basin data for the Western Alps (Fig. 5.1A) and the Rhone fan data for the Eastern Alps (Fig. 

5.1B) in our re-evaluation of the Alpine sediment budget (Fig. 5.5). This is of course a 

simplification, but in the Western Alps, for example, the amount of material eroded in the 

Western Alps and deposited in the Pannonian basin over time is much smaller than the 

amount of material deposited in the Rhone fan (Fig. 5.1A). Instead, we considered the Rhone 

fan data only for the Western Alps and the Pannonian basin data only for the Eastern Alps 

according to our expectation. 

The cumulative sediment-discharge rates of the Western and Eastern Alps show the 

significant increase starting about 5 Ma ago (bold black lines in Figs. 5.1 and 5.5). During the 

Oligocene and Miocene sediments had been deposited mainly in proximal basins, such as the 

northern Molasse basin (blue areas in Fig. 5.5). In contrast, during the past ~5 Ma the 

majority of sediments derived from the Alps were deposited in distal basins, such as the Black 

Sea, Adria, and North Sea (red areas in Fig. 5.5). The Rhone delta is an exception from this 

pattern because Alpine sediments had been deposited throughout the last 34 Ma (Fig. 5.5A). 

This delta is a distal basin because Alpine material is not transported any further from there. 

However, the Rhone delta is the distal basin among the distal ones that is located closest to 

the Alps (compare inset maps of Europe in Fig. 5.5) rising the potential to receive Alpine 

debris. 

The Alpine sediment yield calculated by Kuhlemann et al. (2001 and 2002) is based on the 

assumption that all Alpine sediments, whether they had been deposited in proximal or distal 

basins, are derived exclusively from the Alps. During the Oligocene and Miocene, most of the 

Alpine sediments were derived from the Alps and deposited in the proximal basins in 

agreement with their assumption (emphasized by the right-hand sketches at the bottom of 

Figs. 5.5A and 5.5B). However, Kuhlemann et al. (2001 and 2002) further recognized that the 

erosion of sediment and its re-deposition occurred during the Oligocene to early Miocene in 

the north-Alpine foreland basin, and during the middle to latest Miocene in the southern 

foreland basin, but they did not consider that this effect might have occurred during the Plio-

Pleistocene, the time of the calculated increase in the Alpine sediment yield. In contrast, our 

re-interpretation that most of the Alpine sediments had been deposited in distal basins during 

the last ~5 Ma implies that these sediments had not only been derived from the Alps but also 

from the proximal basins (emphasized by the left-hand sketches at the bottom of Figs. 5.5A 

and 5.5B). This is in agreement with observations from the Swiss and German Molasse basin. 

An unconformity between lower or middle Miocene and Quaternary rocks in the Swiss 

Molasse basin had been interpreted to be due to approximately 2 km of erosion near Geneva 

in the southwest declining to ca. 0.3 km in the northeast around Zurich (Cederbom et al., 

2004). Lemcke (1974) suggested that up to 0.1 km of erosion occurred in the area of Anzing, 

east of Munich, in the German Molasse basin (Fig. 5.3), because the Anzing well is located in 

the area where the youngest earliest Pliocene Upper Freshwater Molasse is exposed. 

http://dict.leo.org/ende?lp=ende&p=DOKJAA&search=ambiguity&trestr=0x8001
http://dict.leo.org/ende?lp=ende&p=DOKJAA&search=probability&trestr=0x8001
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Hence, we rather suggest that a major increase of the potential erosion area occurred at ca. 

5 Ma. During the Oligo-Miocene (~34–5 Ma), the proximal basins had been supplied from the 

Alps, where the Western Alps cover an area of 20000 km², and the Eastern Alps an area of 

67000 km² (bottom part and inset of Fig. 5.5). During the Plio-Pleistocene (~5–0 Ma), the 

distal basins were supplied from the area of the Alps and the proximal basins. This is 

equivalent to a more than threefold increase of the potential erosion area for the Western Alps 

from 20000 km² to ca. 74000 km², and an approximately threefold increase for the Eastern 

Alps from 67000 km² to ca. 199000 km² (bottom part and inset of Fig. 5.5). We note that 

these latter approximations of the potential erosion area represent an upper limit, because to 

simplify matters we considered the entire area of the proximal basins. Most of these basins, 

however, were not only supplied by the Alps but also from other source terrains (Kuhlemann 

et al., 2001). It is therefore most likely that Alpine sediments had not been deposited across 

the entire area of the proximal basins prior to their erosion and re-deposition in the distal 

basins. However, in some cases our approximation of the potential erosion area is appropriate. 

For example, in the German portion of the north-Alpine foreland basin Molasse deposits are 

exposed across the entire basin area up to its northern margin (e.g., Bachmann and Müller, 

1992; Geological map of Bavaria). 

 

 

 

Fig. 5.4 Major basin-axial transport direction of sediment in the north-Alpine foreland basin through time. Data 

of the Swiss Molasse basin compiled from Schlunegger (1999) and Schlunegger et al. (2007), and those of the 

German-Austrian Molasse basin taken from Lemcke (1984) and Kuhlemann et al. (2006). 

 

 
Fig. 5.5 Re-evaluation of the cumulative sediment-discharge rates for the Western Alps (A) and Eastern Alps (B) 

by Kuhlemann et al. (2001 and 2002) differentiated for major sediment transport directions (inset maps of 

Europe modified after Kuhlemann et al., 2002). Bluish colors indicate that sediments had been deposited mainly 

in proximal Alpine basins during the Oligocene and Miocene. In contrast, most of the sediments had been 

deposited in distal basins during the last ca. 5 Ma indicated by reddish colors. Based on these observations, we 

suggest that a substantial increase in the potential erosion area occurred approximately 5 Ma ago highlighted by 

diagrams and sketches at the bottom of the figure. In the inset, we provide estimates of the surface area for the 

Western and Eastern Alps and major proximal basins.                → NEXT PAGE 
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5.6. Recalculation of Sediment Budgets and Erosion Rates 

 

If the potential erosion area increased ~5 Ma ago as we suggested, the actual sediment 

yield derived from the Alps alone should be lower than calculated by Kuhlemann et al. (2001 

and 2002). Simultaneously, the sediment yield derived from the area of the proximal basins 

should increase at ca. 5 Ma. We therefore first recalculated the Alpine sediment yield for the 

past ~5 Ma in four steps (Fig. 5.6; Table 5.1), and based on this we then constrained the 

potential sediment yield derived from the proximal basins over the past ~5 Ma (Fig. 5.7; 

Table 5.2). However, we note that both of our sediment-yield calculations exhibit an error of 

±50% which is the typical error of the Kuhlemann et al. (2001 and 2002) data. This is simply 

because our calculations are based on these data. 

 

5.6.1. Alps 

 

Step 1) 

 

In the first step of our recalculation of the Alpine sediment yield, we separated the 

sediment-yield data of Kuhlemann et al. (2001 and 2002) into two time windows. We 

distinguished the data that cover the past 5 Ma from the data that cover the time prior to ~5 

Ma. In Figure 5.6, the former data are highlighted by the black solid lines and the latter by the 

black dashed lines. In the second column of Table 5.1, we listed the sediment-yield data that 

cover the last 5 Ma according to our separation. These data define the starting point of the 

actual recalculation. 

 

 

Step 2) 

 

In the second step, we calculated the erosion rates for the past 5 Ma following the basic 

assumption of Kuhlemann et al. (2001 and 2002). According to their assumption, the high 

sediment yields during this time as given in the second column of Table 5.1 have to be related 

to the area of the Western and Eastern Alps only. We therefore divided the sediment-yield 

data separated in the first step by the surface area of the Western and Eastern Alps, 20000 km² 

and 67000 km². This calculation is represented by step 2) according to Table 5.1. It yielded 

high erosion rates of up to 2.4 km/Ma for the Western Alps and much lower rates of up to 

0.31 km/Ma for the Eastern Alps (third column of Table 5.1). 

 

Step 3) 

 

In the third step, we determined the erosion rates for the same time window by also 

including the regions undergoing erosion in the proximal basins. Hence, we divided the 

sediment-yield data separated in the first step by the surface area of the Western and Eastern 

Alps plus the area of the proximal basins, ~74000 km² and ~199000 km². This is step 3) 

according to Table 5.1. The calculation yielded more than three times lower erosion rates than 

the calculation in the second step (compare the third with the forth column of Table 5.1). 

 

Step 4) 

 

In the last step, the fourth, we used the erosion rates derived in step 3) to recalculate the 

actual sediment yield of the Alps. We did so by multiplying these erosion rates with the 

surface area of the Western and Eastern Alps, 20000 km² and 67000 km² (last column of 

Table 5.1). We compared the recalculated Alpine sediment yields indicated by gray solid lines 
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in Figure 6 with the sediment yield derived by Kuhlemann et al. (2001 and 2002) represented 

by black solid lines in this figure. The recalculation indeed yielded lower sediment-discharge 

rates (Fig. 5.6). Moreover, our recalculated rates show first a decrease and then an increase 

towards recent times, and they are in a similar range as Oligo- to Miocene rates (black dashed 

line in Fig. 5.6). For the Eastern Alps, Kuhlemann et al. (2001) provided an estimate of the 

recent sediment yield on the order of 12000 km³/Ma (black circle in Fig. 5.6B). This value is 

much lower than the original approximation (black line in Fig. 5.6B) suggesting that our 

recalculation is reasonable (gray line in Fig. 5.6B). 

 

5.6.2. Proximal Basins 

 

Step 1) 

 

Based on the results presented in Figure 5.6, we constrained the potential Alpine sediment 

yield derived from the proximal basins over the past 5 Ma (Fig. 5.7, Table 5.2). Since the 

black solid line in Figure 5.7 defines the sediment yield derived from the Alps and proximal 

basins together, and the dark gray solid line in the same figure represents the sediment yield 

derived solely from the Alps, the difference between both should be equal to the sediment 

yield derived solely from the proximal basins (light gray shaded area in Fig. 5.7). In the first 

step, we therefore calculated this difference simply by subtracting our recalculated sediment 

yields (third column of Table 5.2) from the total sediment yields (second column in Table 

5.2). The results of this subtraction were listed in the fourth column of Table 5.2, and 

indicated by light gray lines in Figure 5.7. Our results imply that the sediment yield derived 

from the Alpine-proximal basins may have increased drastically throughout the Plio-

Pleistocene (Fig. 5.7). 

 

Step 2) 

 

In an additional second step, we determined the erosion rates of the proximal basins over 

the last 5 Ma. For this, we considered the surface area of the proximal basins of the Western 

and Eastern Alps, ~54000 and ~132000 km², and we multiplied the potential sediment yield 

from the proximal basins (fourth column of Table 5.2) with this area (last column of Table 

5.2). This calculation yielded much lower erosion rates of up to 0.1 km/Ma for the proximal 

basins of the Eastern Alps than for the proximal basins of the Western Alps with rates of up to 

0.64 km/Ma. 
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Fig. 5.6 Recalculated sediment-yield rates during the last ca. 5 Ma for the Western Alps (A) and Eastern Alps 

(B) indicated by gray solid lines. The recalculation is based on the four steps described in the text, and given in 

Table 5.1A (Western Alps) respectively Table 5.1B (Eastern Alps). The original sediment yield data derived by 

Kuhlemann et al. (2001 and 2002) are shown by black solid lines. For the Eastern Alps, we had been able to 

compare our recalculation with an estimate of the recent sediment yield given by Kuhlemann et al. (2001) and 

marked by a black circle in Figure 5.6B.  

 

 
Table 5.1A: Recalculation of sediment yield for Western Alps (WA) – Figure 5.6A. 

Time (Ma) Sediment yield 

(km³/Ma) of WA 
1)

 

Erosion rate 

(km/Ma) of WA 
2)

 

Erosion rate 

(km/Ma) of WA & 

proximal basins 
3)

 

Recalculated 

sediment yield 

(km³/Ma) of WA 
4)

 

1 48000 2.4 0.65 13000 

2 43000 2.15 0.58 11600 

3 40000 2 0.54 10800 

4 36000 1.8 0.49 9800 

5 33000 1.65 0.45 9000 

 

 
Table 5.1B: Recalculation of sediment yield for Eastern Alps (EA) – Figure 5.6B. 

Time (Ma) Sediment yield 

(km³/Ma) of EA 
1)

 

Erosion rate 

(km/Ma) of EA 
2)

 

Erosion rate 

(km/Ma) of EA & 

proximal basins 
3)

 

Recalculated 

sediment yield 

(km³/Ma) of EA 
4)

 

0 20500 0.31 0.1 6700 

1 15500 0.23 0.08 5400 

2 11000 0.16 0.06 4000 

3 10000 0.15 0.05 3400 

Step 1) Sediment-yield data of Kuhlemann et al. (2001 & 2002) shown by black solid lines in Figure 5.6. 

Step 2) Erosion rates of WA and EA based on sediment-yield data of Kuhlemann et al. (2001 & 2002), and 

surface area of 20000 km² for WA and 67000 km² for EA taken from Kuhlemann et al. (2001).  

Step 3) Erosion rates of WA & their proximal basins and EA & their proximal basins based on sediment-yield 

data of Kuhlemann et al. (2001 & 2002), and surface area of ~74000 km² for WA & their proximal basins and 

~199000 km² for EA & their proximal basins taken from inset of Figure 5.5. 

Step 4) Recalculated sediment yield of WA and EA based on erosion rates from step 3), and surface area of 

20000 km² for WA and 67000 km² for EA taken from Kuhlemann et al. (2001) – gray solid line in Figure 5.6. 
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Fig. 5.7 Calculated potential sediment-yield rates during the last ca. 5 Ma for the proximal basins of the Western 

Alps (A) and Eastern Alps (B) indicated by light gray solid lines. The calculation is based on the description in 

the text, and given in Table 5.2A (Western Alps) respectively Table 5.2B (Eastern Alps). The total sediment-

yield data of Kuhlemann et al. (2001 and 2002) are shown by black solid lines and the recalculated Alpine 

sediment yields by dark gray solid lines. The difference between the total and recalculated sediment yields is the 

potential sediment yield of the proximal basins highlighted by the light gray shaded areas. 
 

 
Table 5.2A: Calculation of sediment yield for proximal basins of Western Alps (WA) – Figure 5.7A. 

Time (Ma) Total sediment 

yield 

(km³/Ma) 

Recalculated 

sediment yield 

(km³/Ma) of WA 

Sediment yield 

(km³/Ma) for  

proximal basins of 

WA 
1)

 

Erosion rate 

(km/Ma) for 

proximal basins of 

WA 
2)

 

1 48000 13000 35000 0.64 

2 43000 11600 31400 0.58 

3 40000 10800 29400 0.55 

4 36000 9800 26200 0.49 

5 33000 9000 24000 0.45 

 

 
Table 5.2B: Calculation of sediment yield for proximal basins of Eastern Alps (EA) – Figure 5.7B. 

Time (Ma) Total sediment 

yield 

(km³/Ma) 

Recalculated 

sediment yield 

(km³/Ma) of EA 

Sediment yield 

(km³/Ma) for  

proximal basins of 

EA 
1)

 

Erosion rate 

(km/Ma) for 

proximal basins of 

EA 
2)

 

0 20500 6700 13800 0.1 

1 15500 5400 10100 0.08 

2 11000 4000 7000 0.05 

3 10000 3400 6600 0.05 

Step 1) Calculation of sediment yield for proximal basins of WA and proximal basins of EA (light gray solid 

lines in Fig. 5.7) based on the difference between total sediment yield (black solid lines in Fig. 5.7), and 

recalculated sediment yield of WA and EA (dark gray lines in Fig. 5.7). This difference is further highlighted by 

light gray area in Figure 5.7. 

Step 2) Erosion rates for proximal basins of WA and proximal basins of EA based on sediment yield from step 

1), and surface area of ~54000 km² for proximal basins of WA and ~132000 km² for proximal basins of EA 

taken from inset of Figure 5.5. 
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5.7. Discussion 

 

We distinguished two stages in the evolution of the Alpine sediment budget. In the first 

stage from ca. 34–5 Ma, eroded Alpine material was deposited in proximal basins such as the 

north-Alpine foreland basin (illustrated by the right-hand sketches at the bottom of Figs. 5.5A 

and 5.5B), whereas in the second stage from ca. 5–0 Ma, most of the sediments were 

deposited in distal basins such as the Black Sea (illustrated by the right-hand sketches at the 

bottom of Figs. 5.5A and 5.5B). This two-stage evolution over the last 34 Ma is consistent 

with the subsidence history of the Molasse basin (Fig. 5.3). Subsidence curves determined by 

Lemcke (1974) for wells located within this basin indicate that it subsided during the Oligo-

Miocene, and was uplifted by several hundred meters since the Pliocene representing the net 

en-bloc rise of the Alpine foreland (Fig. 5.3).  

The origin of the uplift during the second stage had been rarely discussed in the past. 

Andeweg and Cloetingh (1998) modeled the deflection of the European plate underlying the 

Molasse basin due to overthrusting of the African plate (e.g., Fig. 5.2B) in terms of an elastic 

plate model loaded by the Alpine thrust belt and limited subsurface loads with the 

superposition of Plio-Pleistocene uplift of several hundred meters (phase of ‘unflexure’). 

They suggested that the uplift may be due to break-up or delamination of European crust. In 

contrast, Schlunegger et al. (2007) proposed based on the data of Kuhlemann (2000) that the 

climate became wetter at the Mio-Pliocene boundary. Erosion subsequently increased relative 

to crustal accretion, and active deformation shifted toward the internal part of the Alpine 

orogen. This resulted in net unloading of the orogen and hence in flexural rebound of the 

foreland plate (Schlunegger et al., 2007). However, regardless of the origin of the uplift it 

caused the inversion of the Alpine foreland basins about 5 Ma ago, and resulted in a 

significant increase of the erosion area (bottom part of Fig. 5.5). 

The Plio-Pleistocene erosion of the proximal basins removed Alpine-derived sediments 

deposited in these basins prior to 5 Ma. This is obvious from the occurrence of an erosional 

unconformity between Miocene and Quaternary rocks across the Swiss and German Molasse 

basin (e.g., Lemcke, 1974). Cederbom et al. (2004) constrained the magnitude of Plio-

Pleistocene erosion in the northeastern Swiss Molasse basin using apatite fission-track data 

from three vertical sections. These sections are located along a transect from the undeformed 

Molasse in the north to the thrust-faulted subalpine Molasse in the south. Approximately 1.9–

4.5 km of erosion occurred in this area of the Molasse basin over the past ~5 Ma (Cederbom 

et al., 2004). This is equivalent to potential erosion rates in the range of 0.4–0.8 km/Ma. 

Similarly, in a recent study Cederbom et al. (2011) estimated the early Pliocene erosion rate 

for the Swiss Molasse basin to be on the order of ~0.8 km/Ma. These rates agree well with our 

inferred erosion rates for the western Alpine foreland basins ranging from 0.45 up to 0.64 

km/Ma (last column of Table 5.2A). The latter rates are based on our approximation of the 

reworked Alpine sediment yield derived from the proximal basins over the last ~5 Ma (Fig. 

5.7).  

The data of Cederbom et al. (2004, 2011) actually provide an independent estimate of the 

erosion that occurred in the Alpine foreland over the last 5 Ma. Cederbom et al. (2004) also 

considered the sediment budget of the Western Alps to record a doubling of erosion in the 

Western Alps during this time (Fig. 5.1A). Consequently, they identified a coincidence of 

increased erosion in the Alpine foreland and Alpine mountain chain. Since this increased 

erosion coincided with a decline in structural deformation in the Swiss Alps (Schmid et al., 

1996), it appears likely that erosional unroofing of the Alps was greater than crustal 

thickening during the past ~5 Ma, and that isostatic rebound and erosion of the Alpine 

foreland would have been triggered by the accelerated erosion in the Swiss Alps (Cederbom 

et al., 2004). 
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A projection of the basin rebound into the interior of the mountain belt carried out by 

Cederbom et al. (2004) indicates, that ~6.5 km of erosion should have occurred in the central 

area of the Western Alps. This is equal to an erosion rate of 1.3 km/Ma throughout the past ~5 

Ma for the Western Alps. This latter approximation is similar to erosion rates that we 

calculated for the Western Alps according to the main assumption of Kuhlemann et al. (2001 

and 2002; third column of Table 5.1A), but it is twice as much as our recalculated erosion 

rates for the Western Alps (forth column in Table 5.1A). 

However, our estimate of erosion rates of ~0.45–0.65 km/Ma over the past ~5 Ma based on 

the Alpine sediment budget yielded similar values for both, the Western Alps and the area of 

their proximal basins (compare forth column of Table 5.1A with last column of Table 5.2A). 

If so, it would be difficult to invoke a climatic shift toward wetter conditions throughout 

Europe (e.g., Willett, 2010) due to an intensification of the Atlantic Gulf Stream ~4.6 Ma ago 

(Cederbom et al., 2004) to explain the relatively uniform erosion in the interior of the 

mountain belt and its foreland. If instead, erosional unroofing of the Alps was more or less 

constant at a lower rate since long before 5 Ma, then erosion can be ruled out as the leading 

cause of isostatically induced uplift of the Alps since 5 Ma. Based on our analysis, the only 

documented change at around 5 Ma appears to have been the significant increase of the 

eroding surface area by a factor of three (bottom part of Fig. 5.5). Therefore, it appears 

unlikely that erosional unroofing of the Alps was greater than crustal thickening during the 

past ~5 Ma, or in other words that the erosional flux exceeded the accretionary flux. Instead, 

we suggest that regional-scale tectonic processes resulted in surface uplift and erosion of the 

western Alpine proximal basins. 

The uplift of the Alpine foreland basins should have induced a relative lowering of the 

regional base-level, and subsequent retrograde erosion across the basins by rivers draining the 

foreland. Thus, the inner Alps would have not exhibited enhanced erosion until the enhanced 

rates have been propagated through the uplifted foreland, which is in agreement with our 

results (Fig. 5.7). In principle, the Danube river may have recorded such an evolution. Since 

the late Miocene, the river drains most parts of the Molasse basin to the east (Fig. 5.4; 

Lemcke, 1984). This is also obvious from the sediment budget of the Eastern Alps, because 

the sediment discharge to the German Molasse basin started to decline at ~10 Ma, and ceased 

at ~5 Ma (Fig. 5.1B). At about 10 Ma, however, the Danube river system presumably enters 

the Molasse basin from the east (Lemcke, 1984), and by subsequent head-ward expansion of 

the river system to the west, previously deposited Alpine material was eroded. This in turn 

can explain the decline and cessation of the sediment discharge from the German Molasse 

basin (Fig. 5.1B). 

Lastly, the magnitude of the erosion-induced isostatic uplift determined by Champagnac et 

al. (2007) would be accordingly smaller, because their calculation relies on the validity of the 

sediment-budget concept. They modeled an uplift of 0.5 km since 1 Ma to have occurred in 

the central Western Alps in response to a removal of 1.5 km of rock over this time yielding  

an uplift rate of 0.5 mm/a. We calculated that only ~0.65 km of rock had been eroded in the 

Western Alps throughout the last 1 Ma (first cell in forth column of Table 5.1A). This is 

approximately one third of the estimate given by Champagnac et al. (2007). Hence, we expect 

that isostatically induced uplift in the Western Alps may be on the order of ~0.2 km over the 

last 1 Ma presuming that the parameter set used by Champagnac et al. (2007) is not changed 

during the calculation. Assuming a constant rate of erosion over the last 1 Ma, Champagnac et 

al. (2007) compared their isostatically-induced uplift rate of 0.5 mm/a with the recent vertical 

motion obtained by precise measurement of leveling lines in Switzerland, that yielded rates of 

up to 1.1 mm/a in the central Western Alps (Gubler et al., 1981; Kahle et al., 1997). Thus, half 

of the current vertical motion may be due to isostatically induced uplift (Champagnac et al., 

2007). In contrast, if only ~0.2 km of isostatically induced uplift would have occurred in the 
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last 1 Ma equal to a rate of 0.2 mm/a, then most of the recent vertical motion of 1.1 mm/a in 

the Western Alps can be explained by tectonic processes. 

 

5.8. Conclusions 

 

Renewed observations made for the Alpine sediment budget shown in Figure 5.1 indicate 

substantial temporal and spatial differences of the Alpine erosion-deposition pattern during 

the time from ~34–5 and ~5–0 Ma (Fig. 5.5). The sediment-budget concept holds in the first 

stage, when eroded material was derived solely from the Alps and deposited in proximal 

basins such as the Molasse basin (bottom part Fig. 5.5). In contrast, it does not hold in the 

second stage, when material was eroded from the area of the Alps as well as the proximal 

foreland basins, and deposited in distal basins such as the Black Sea (bottom part Fig. 5.5). 

This suggests an approximately threefold increase of the erosion area (bottom part Fig. 5.5), 

that teased a re-calculation of the Alpine sediment yield for the past 5 Ma, and yielded much 

lower values than previously thought (Fig. 5.6). 

The Alpine sediment discharge remained relatively constant during this time, while the 

discharge of Alpine-derived material deposited in the foreland basins prior to ~5 Ma increases 

throughout the Plio-Pleistocene (Fig. 5.7). This is in agreement with an erosional 

unconformity between Miocene and Quaternary rocks found in the Swiss and German 

Molasse basin. The erosion of the foreland basins is presumably due their tectonic inversion 

~5 Ma ago, as suggested by subsidence curves based on the stratigraphic record of the 

Molasse basin (Fig. 5.3). Our results contradict recent views that a global climate change led 

to substantial erosion of mountainous areas since 5 Ma around the world. Instead, regional-

scale tectonic processes appear to dictate mountainous erosion over this time span at least in 

the Alps. Despite the absence of comparable data, such as the Alpine sediment budget (Fig. 

5.1), from other mountain belt-foreland basin systems, the inversion of foreland basins as 

observed in the Alps is a critical component during the orogenic evolution that governs 

erosion in the associated mountain belt on a long-term scale of millions of years. 
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6. Appendices 

 

6.1. Appendix: Chapter I 

 

6.1.1. Reprint of the Geological Society of America Bulletin 
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6.1.2. Data Repository Item 
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6.2. Appendix: Chapter II 

 

6.2.1. Erlenbach Event Data of 2008 and 2009 

 

Bed-Load Discharge 

 

The intensity of bed-load transport in the Erlenbach has been recorded continuously with 

piezoelectric bed-load impact sensors (PBIS) from 1986–1999 (Rickenmann and McArdell, 

2007). In 2000, the sensors had been replaced by geophones. This indirect monitoring 

required a calibration following an equation derived by D. Rickenmann (pers. comm., 2008) 

to convert the 2008 and 2009 geophone data into sediment volumes of individual transport 

events: 

 

   F = 0.4484 SP          (A1) 

 

where 0.4484 is the calibration factor, and the correlation coefficient R² is 0.965. The sum of 

impulses recorded by geophone no. 8 (SP8) is defined as the number of recorded impulses 

divided by 1000. 

The impulses recorded by the former PBI sensor no. 3 accounted for 56.5% of the total 

number of impulses recorded by all sensors between 1986 and 1999 (Rickenmann and 

McArdell, 2007). This was due to the mounting position next to the center-line of the channel-

bed cross-section, and to slightly asymmetric flow conditions upstream of the sensor array, 

that resulted in dominant bed-load transport along the orographic right side of the cross-

section (Rickenmann and McArdell, 2007). Therefore, sensor no. 3 provided most reliable 

and representative data on bed-load transport. Due to the fact that geophone no. 8 is mounted 

in the former position of the PBI sensor no. 3, we considered the impulses recorded by this 

geophone in 2008 and 2009 as most representative, and finally, we set the uncertainty related 

to the calculation of sediment volumes to 50% (Tables 6.2-1 and 6.2-2). 

The Erlenbach impulse data have been evaluated in terms of plausibility (J. Turowski, pers. 

comm., 2008). Evenly distributed impuls counts among the sensors are unlikely, and had been 

removed from the time series. This includes, for example, data resulting from intense 

precipitation. However, the definition of an bed-load transport event is solely based on sensor 

activity. If a short break in sensor activity occurred at high or increasing water discharge, no 

new event was defined (J. Turowski, pers. comm., 2008). 

 

Limitations 

 

The geophone and former PBIS systems record impulses during bed-load transport that are 

due to sliding, rolling and saltating sediment particles across the sensors (Rickenmann and 

McArdell, 2007). The impulse data are converted into sediment volumes using a linear 

calibration equation (D. Rickenmann, pers. comm., 2008). This approach is based on 

Rickenmann and McArdell (2007) who related the PBIS impulse data to the volume of 

sediment trapped within the Erlenbach sediment-retention basin. To evaluate the conversion 

from impulse to sediment volume data, we address some uncertainties and limitations 

influencing PBIS respectively geophone measurements and their interpretation (compiled 

from Rickenmann and McArdell, 2007). 

The grain size of the sediment is a crucial factor controlling these measurements. The 

critical grain size required to produce an impulse on the PBIS is a diameter of 10 mm as 

revealed by laboratory experiments using the Erlenbach sensors and sediment (Etter, 1996). 

Hence, moving particles with a grain diameter less than 10 mm are not detected directly by 

the sensors during bed-load transport. But field data of floods occurring in the Erlenbach 
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showed that 50% of the deposited sediment volume comprises grains that are coarse enough 

to cause a sensor impulse (Rickenmann, 1997; Rickenmann and McArdell, 2007). 

The Erlenbach grain-size distributions of transported material deposited in the retention 

basin and surface-bed material upstream of the basin are markedly different. The 

characteristic grain sizes of the transported sediment are much smaller than those of the 

surface-bed material, e.g. dm of 11.3 mm for the first and dm of 51.2 mm for the latter. The 

deposits in the retention basin are coarser in the upper part of the basin and finer (grain size 

smaller than fine sand; <0.25 mm) in the lower part as well as along its sides. Furthermore, a 

detailed analysis of the basin deposits revealed that during typical flood conditions probably 

almost no sediment coarser than fine sand is transported off the basin (Rickenmann and 

McArdell, 2007). In contrast, during larger floods a substantial transport of silt- and clay-

sized grains through the basin may be possible. However, Rickenmann and McArdell (2007) 

approximated that the proportion of bed-load and suspended load is constant during different 

flood events, and expected that part of the scatter in their calibration relationship is due to a 

changing grain-size distribution of the transported sediment with flood size. In summary, we 

suggest that the calibration relationship used to convert sensor impulses into sediment 

volumes account at least partly for suspended load. 

 

Water Discharge and Precipitation 

 

The actual water level of the Erlenbach is determined with a float system adjusted to a 

trapezoidal channel cross-section (Burch, 1994). These gauging measurements are transferred 

into water discharges by using calibration curves and tables which are based on hydraulic 

laboratory experiments. The associated standard deviation is lower than 5%, and the main 

source of uncertainty is represented by temporary deposited sediment changing the initial 

trapezoidal shape of the channel cross-section (Burch, 1994; Tables 6.2-1 and 6.2-2). 

Precipitation in the Erlenbach basin is recorded with totalizers collecting the precipitation 

volume over time, as well as compensators and/or balances measuring the precipitation rate 

with a resolution of 0.1 mm over time based on volume and weight of the precipitation 

quantity (e.g. Burch, 1994). The accuracy of conventional rain-gauge measurements is mainly 

influenced by deflection of hydrometers in the wind field above the gauge orifice, wetting of 

the gauge walls, evaporation from the container, and snow drift into the gauge (e.g. Frei and 

Schär, 1998). In Switzerland, the annual mean of rain gauges shows a systematic under-catch 

of 7% at lower elevations or protected sites, and up to 25% for wind exposed sites at higher 

elevations (Sevruk, 1985). This under-catch is characterized by an annual cycle which is 

lowest in summer, 5% for protected a 10% for exposed sites, and highest in winter, 8% 

respectively 30%. However, on average the annual mean under-catch for Switzerland was 

approximated to 8% (Sevruk, 1985; Tables 6.2-1 and 6.2-2). 
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Table 6.2-1: Erlenbach data – events 2008. 

Date 

Sediment 

discharge Uncertainty 

Peak water 

discharge Uncertainty Precipitation Uncertainty 

 

m³ 50% m³/s 5% mm 8% 

07.01.2008 0.06 0.03 0.83 0.04 0.2 0.02 

27.02.2008 0.06 0.03 0.26 0.01 7.5 0.60 

12.03.2008 1.69 0.85 0.56 0.03 6 0.48 

22.04.2008 1.27 0.63 0.55 0.03 31.8 2.54 

29.04.2008 0.11 0.06 0.42 0.02 0.6 0.05 

03.06.2008 2.28 1.14 0.00 0.00 5.6 0.45 

10.06.2008 4.66 2.33 0.65 0.03 15.6 1.25 

12.06.2008 1.28 0.64 0.60 0.03 6.4 0.51 

13.06.2008 4.52 2.26 0.74 0.04 5 0.40 

02.07.2008 27.18 13.59 1.77 0.09 6 0.48 

03.07.2008 3.03 1.52 0.72 0.04 8.9 0.71 

11.07.2008 12.33 6.17 1.02 0.05 33.8 2.70 

14.07.2008 13.99 6.99 1.16 0.06 45.7 3.66 

20.07.2008 2.38 1.19 0.96 0.05 0.1 0.01 

20.07.2008 10.43 5.21 1.34 0.07 3.5 0.28 

01.08.2008 0.12 0.06 0.56 0.03 1.7 0.14 

15.08.2008 31.29 15.64 1.37 0.07 58.6 4.69 

18.08.2008 0.57 0.29 0.71 0.04 5.9 0.47 

23.08.2008 0.51 0.26 0.75 0.04 0.9 0.07 

06.09.2008 0.01 0.01 0.49 0.02 0.2 0.02 

07.09.2008 0.05 0.03 0.52 0.03 0.8 0.06 

07.09.2008 0.69 0.35 0.65 0.03 9 0.72 

13.09.2008 1.81 0.90 0.84 0.04 2.8 0.22 

16.10.2008 1.25 0.62 0.54 0.03 17.1 1.37 

21.12.2008 0.01 0.01 0.21 0.01 0.1 0.01 
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Table 6.2-2: Erlenbach data – events 2009. 

Date 

Sediment 

discharge Uncertainty 

Peak water 

discharge Uncertainty Precipitation Uncertainty 

 

m³ 50% m³/s 5% mm 8% 

06.04.2009 0.02 0.01 0.17 0.01 0 0 

14.04.2009 0.03 0.01 0.15 0.01 0 0 

19.04.2009 0.03 0.01 0.44 0.02 0 0 

26.05.2009 4.26 2.13 0.79 0.04 5.5 0.44 

27.05.2009 0.33 0.16 0.65 0.03 5.9 0.47 

15.06.2009 37.07 18.54 2.27 0.11 36.3 2.90 

16.06.2009 4.94 2.47 1.03 0.05 7.9 0.63 

19.06.2009 0.02 0.01 0.46 0.02 0.2 0.02 

04.07.2009 58.33 29.17 3.48 0.17 38.3 3.06 

06.07.2009 0.03 0.02 0.34 0.02 0.1 0.01 

07.07.2009 0.02 0.01 0.21 0.01 0 0 

10.07.2009 4.07 2.04 0.87 0.04 5.9 0.47 

18.07.2009 29.93 14.96 1.40 0.07 56.8 4.54 

18.07.2009 0.40 0.20 0.79 0.04 1.4 0.11 

23.07.2009 0.07 0.04 0.52 0.03 0.6 0.05 

24.07.2009 18.04 9.02 1.39 0.07 19.3 1.54 

03.08.2009 0.04 0.02 0.53 0.03 0.1 0.01 

03.08.2009 0.04 0.02 0.56 0.03 0.3 0.02 

03.08.2009 2.26 1.13 1.07 0.05 5.4 0.43 

03.08.2009 6.16 3.08 1.39 0.07 23.4 1.87 

10.08.2009 2.62 1.31 1.29 0.06 0.1 0.01 

10.08.2009 5.15 2.57 1.09 0.05 8 0.64 

01.09.2009 0.32 0.16 0.69 0.03 0.2 0.02 

02.09.2009 5.17 2.58 1.21 0.06 0.9 0.07 

04.09.2009 0.08 0.04 0.55 0.03 0.7 0.06 

05.09.2009 4.95 2.48 0.90 0.05 6.4 0.51 
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Table 6.2-3: Alp Valley – deposition and erosion area of alluvial fans. 

No. Name Deposition area (km²) Erosion area (km²) 

1 Erlenbach 0.017 0.720 

2 Etterenbach 0.100 1.013 

3 Butzibach 0.249 1.871 

4 Gämschbach 0.159 0.909 

5 Chösterliwald 1 0.032 0.088 

6 Chlösterliwald 2 0.056 0.213 

7 Geissbuebenrietli 0.072 0.215 

8 Farenfeld 0.018 0.055 

9 Rüti 1 0.043 0.375 

10 Rüti 2 0.099 0.586 

11 Stöcken 0.033 0.935 

12 Malosenbach 0.085 0.462 

13 Hirzenstock 0.069 0.407 

14 Vogelbach 0.078 1.579 

15 Sunnenberg 0.016 0.368 

16 Pfauenbach 0.038 0.885 

17 Eigenbach 0.027 0.464 

18 Trachslau 1 0.032 0.077 

19 Trachslau 2 0.045 0.268 

20 Trachslau 3 0.041 0.196 

21 Trachslau 4 0.023 0.150 

22 Trachslau 5 0.023 0.285 

 

 
Table 6.2-4: Alp Valley – deposition and erosion area of debris cones. 

No. Name Deposition area (km²) Erosion area (km²) 

1 Grosser Mythen N-slope 1 0.086 0.061 

2 Grosser Mythen N-slope 2 0.117 0.124 

3 Kleiner Mythen N-slope 1 0.110 0.062 

4 Kleiner Mythen E-slope 2 0.098 0.062 

5 Butziflue 1 0.017 0.007 

6 Butziflue 2 0.044 0.019 

7 Butziflue 3 0.011 0.004 

8 Ufem Tritt 1 0.014 0.005 

9 Ufem Tritt 2 0.048 0.013 

 

 

 

 

 

 

Fig. 6.2-1 Slope map of the Alp Valley. Tick marks with annotated numbers depict Swiss coordinates in km. 

               → NEXT PAGE 
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Fig. 6.2-2 Enlarged version of Figure 3.4. (C) Here, we also included our remaining quantitative results for the 

Erlenbach – daily intervals, 2009. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.2-3 Enlarged version of Figure 3.6.               → NEXT PAGES 
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← PREVIOUS PAGES 

Fig. 6.2-4 Enlarged version of Figure 3.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.2-5 Location of deposition and erosion area compiled in Table 6.2-3 for alluvial fans and Table 6.2-4 for 

debris cones. Numbers are the same as in both tables. (A) Location alluvial fans. (B) Location debris cones. 

         → NEXT PAGES 
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Fig. 6.2-6 Historical record of Alpthal village in the central Alp Valley (location in Fig. 3.1B). Line of sight is 

indicated on top of the figure. We observed an increase in forest cover especially between 1820 and 1900, and 

the growth of the village. 1820: Chapel of Alpthal, painting by M. Kälin (1792-1834). 1900: Photograph of 

Alpthal village taken from a brochure of the local authority from October 1993. 2010: Photograph in Alpthal 

village by R. Baran. 
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Fig. 6.2-7 Historical record of Einsiedeln (location in Fig. 3.1B). Line of sight is indicated on top of the figure. 

We observed drastic changes of the forest cover mainly due to chopping and reforestation activity during the last 

centuries. 1509: The oldest illustration of the monastery of Einsiedeln is a xylograph, and recently available as 

official post card. 1619: Etching “Einsidlen” taken from Eberle (1984). 1747-1809: Monastery of Einsiedeln, 

painting by J.J. Aschmann. 1900: Post card of the monastery of Einsiedeln, taken from Eberle (1984). 2010: 

Photograph of the monastery of Einsiedeln by R. Baran. 
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6.3. Appendix: Chapter III 

 

6.3.1. Erlenbach Bed-Load Discharge 

 

Calibration 

 

The indirect monitoring of sediment transport in the Erlenbach using piezoelectric bed-

load impact sensors (PBIS) and geophones required a data calibration. For any continuative 

details on this approach we refer to e.g. Rickenmann and McArdell (2007). However, to 

convert the PBIS data (1986–1999) into sediment volumes we used the equation of 

Rickenmann and McArdell (2007): 

 

   F = 0.934 SP3          (A2) 

 

with F as sediment volume in m³. The sum of impulses recorded by bed-load impact sensor 

no. 3 (SP3) is defined as the number of recorded impulses divided by 1000. The number 0.934 

is the mean individual calibration factor k of Rickenmann and McArdell (2007), and the 

correlation coefficient R² is 0.872. To convert the geophone data (2000–2007) into sediment 

volumes we used the equation provided by D. Rickenmann (pers. comm., 2008): 

 

   F = 0.4484 SP8         (A3) 

 

where 0.4484 is the calibration factor, and the correlation coefficient R² is 0.965. The sum of 

impulses recorded by geophone no. 8 (SP8) is defined as the number of recorded impulses 

divided by 1000. 

The impulses recorded by bed-load impact sensor no. 3 account for 56.5% of the total 

number of impulses recorded by all sensors between 1986 and 1999 (Rickenmann and 

McArdell, 2007). This is due to the mounting position next to the center-line of the channel-

bed cross-section, and to slightly asymmetric flow conditions upstream of the sensor array 

resulting in dominant bed-load transport along the orographic right side of the cross-section 

(Rickenmann and McArdell, 2007). Hence, sensor no. 3 provided most reliable and 

representative impulse data on bed-load transport, and we therefore focused our analysis on 

data recorded by sensor no. 3. Furthermore, we treated the data recorded by geophone no. 8 

(2000 and 2007) similarly because it is mounted in the former position of bed-load impact 

sensor no. 3.  

The Erlenbach impulse data have been evaluated in terms of plausibility (J. Turowski, pers. 

comm., 2008). Evenly distributed impuls counts among the sensors are unlikely, and had been 

removed from the time series. This includes, for example, data resulting from intense 

precipitation. However, the definition of an bed-load transport event is solely based on sensor 

activity. If a short break in sensor activity occurred at high or increasing water discharge, no 

new event was defined (J. Turowski, pers. comm., 2008). 

 

Uncertainties and Limitations 

 

The PBIS and geophone systems record impulses during bed-load transport which are due 

to sliding, rolling and saltating sediment particles across the sensors. The impulse data are 

converted into sediment volumes using the linear calibration equations (A2) and (A3). The 

impulse data are thereby related to the volume of sediment trapped within the Erlenbach 

sediment-retention basin (Rickenmann and McArdell, 2007). To evaluate the conversion from 

impulse to sediment volume data, we address some uncertainties and limitations influencing 

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=continuative&trestr=0x8004
http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=recommend&trestr=0x8002
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PBIS and geophone measurements and their interpretation (compiled from Rickenmann and 

McArdell, 2007; Turowski and Rickenmann, 2011). 

The grain size of the sediment is a crucial factor controlling these measurements. The 

critical grain size required to produce an impulse on the PBIS is a diameter of 10 mm as 

revealed by laboratory experiments using the Erlenbach sensors and sediment (Etter, 1996). 

Hence, moving particles with a grain diameter less than 10 mm are not detected directly by 

the sensors during bed-load transport. But field data of floods occurring in the Erlenbach 

showed that 50% of the deposited sediment volume comprises grains that are coarse enough 

to cause a sensor impulse (Rickenmann, 1997; Rickenmann and McArdell, 2007). 

The Erlenbach grain-size distributions of transported material deposited in the retention 

basin and surface-bed material upstream of the basin are markedly different. The 

characteristic grain sizes of the transported sediment are much smaller than those of the 

surface-bed material, e.g., dm of 11.3 mm for the first and dm of 51.2 mm for the latter. The 

deposits in the retention basin are coarser in the upper part of the basin and finer (grain size 

smaller than fine sand; <0.25 mm) in the lower part as well as along its sides. Furthermore, a 

detailed analysis of the basin deposits revealed that during typical flood conditions probably 

almost no sediment coarser than fine sand is transported off the basin (Rickenmann and 

McArdell, 2007). In contrast, during larger floods a substantial transport of silt- and clay-

sized grains through the basin may be possible. However, Rickenmann and McArdell (2007) 

approximated that the proportion of bed-load and suspended load is constant during different 

flood events, and expected that part of the scatter in their calibration relationship, equation 

(A2), is due to a changing grain-size distribution of the transported sediment with flood size. 

In summary, we suggest that the calibration relationships, equations (A2) and (A3), used to 

convert sensor impulses into sediment volumes account at least partly for suspended load. 

Our approach of using a linear relationships, i.e. equations (A2) and (A3), to calibrate the 

PBIS and geophone impulses is well suited to determine the bed-load discharge of individual 

events but it is unsuitable to constrain the bed-load discharge at a very high temporal 

resolution of minutes (Turowski and Rickenmann, 2011). At such short time scales, bed-load 

discharge can vary drastically even for the same water discharge. Simultaneously, impulse vs. 

bed-load discharge plots exhibit broad spread, and impulse counts can fluctuate strongly for a 

given water and bed-load discharge (Turowski and Rickenmann, 2011). This spread is set by 

two distribution functions: the spread of bed-load discharge at equal water discharge, and the 

spread of the sensor response at a given water and bed-load discharge. However, the bed-load 

function and sensor-response function need to be known to allow for an appropriate 

conversion of impulse data into high temporal resolution bed-load discharge rates. 

Unfortunately, the sensor-response function is unknown, and it probably depends on site-

specific conditions requiring further research (Turowski and Rickenmann, 2011).  
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Table 6.3-1: Drainage area – short- and medium-term scales. 

Drainage basin Area (km²) Class Reference 

Aare 554 3 Hinderer (2001) 

Kander 1120 3 Schlunegger & Hinderer (2001) 

Linth 530 3 

 Lütschine 380 3 

 Melchaa 72 2 

 Reuss 832 3 

 Rhine 6119 4 

 Rhone 5220 4 

 Adda 906 3 

 Cassarate 73 2 

 Maggia 926 3 

 Ticino 1515 3 

 Ammer 600 3 

 Iller 953 3 

 Tiroler Ache 945 3 

 Weissach 95 2 

 Inn 9756 4 

 Sarca 575 3 

 Albula 529 3 Schlunegger & Hinderer (2003) 

Broye 392 3 

 Emme 940 3 

 Glatt 416 3 

 Hinterrhine 1575 3 

 Landquart 616 3 

 Lonza 77.8 2 

 Moesa 471 3 

 Sarine 639 3 

 Simme 344 3 

 Thur 1515 3 

 Visp 778 3 

 Klem 434 3 Wittmann et al. (2007) 

Wasen 12 2 

 Taf 25 2 

 Sense 162 3 

 Gren 6 1 

 Chie 156 3 

 Furka 29 2 

 Verz 186 3 

 Mela 333 3 

 Anza 259 3 

 Sesia 626 3 

 Toce 361 3 

 Fontanne 63 2 Norton et al. (2008) 

Trub 57 2 

 Ahrn 36 2 Norton et al. (2011) 

Antholzer 79 2 

 Arno 47 2 

 Avisio 565 3 

 Bergler 14 2 

 Bitto 86 2 

 Castello 26 2 

 di Adame 98 2 

 di Venina 60 2 
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Fersina 71 2 

 Flagger 18 2 

 Fusino 53 2 

 Hoeller 64 2 

 Krimmler 100 3 

 Lagorai 15 2 

 Masino 133 3 

 Melach 220 3 

 Muehl 29 2 

 Nero 841 3 

 Novate 54 2 

 Oglio 411 3 

 Pfitsch 119 3 

 Pitze 225 3 

 Plima 143 3 

 Schnalz 199 3 

 Silla 25 2 

 Talfer 375 3 

 Tauern 77 2 

 val Moena 22 2 

 Watten 63 2 

 Widshoenau 76 2 

 Zemm 210 3 

 Ziel 30 2 

 Fischenbach 10 2 Schlunegger et al. (2002) 

Walen lake 269 3 Müller (1999) 

Dora baltea at Avise 543 3 Vezzoli (2004) 

Dora Baltea at Sarre 1303 3 

Dora Baltea at Verres 2483 3 

Dora Baltea 3264 3 

Roubine 0.00133 1 Mathys et al. (2003) 

Laval 0.08 1 

 Moulin 0.86 1 

 Brusquet 1.08 1 

 Romanche 1072 3 Delunel et al. (2010) 

Veneon 303 3 

 Tabuc 23 2 

 Saint Pierre 48 2 

 Celse Nierre 27 2 

 Gyr 113 3 

 Roizonne 75 2 

 Bonne 246 3 

 Severaisse 197 3 

 Gorge du Diable 20 1 Valla et al. (2010) 
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Table 6.3-2: Erosion area – long-term scale (Kuhlemann et al., 2001). 

 

Western Alps: 

6500 km² + 3500 km² + 3500 km² + 1000 km² + 3500 km² + 2000 km² = 20000 km² 

 

Eastern Alps: 

7500 km² + 5000 km² + 4000 km² + 19000 km² + 13000 km² + 15000 km² + 3500 km² = 67000 km² 

 

Area supplying northern foreland basin: 

6500 km² Prealps 

3500 km² Aar massif 

3500 km² W Austroalpine nappes 

1000 km² E Penninic nappes 

14500 km² total 

 

Area supplying southern foreland basin: 

3500 km² Lepontine dome 

2000 km² Southalpine (Western Alps) 

15000 km² Southalpine (Eastern Alps) 

20500 km² total 

 

 
Table 6.3-3: Conversion of units. 

 
1 mm/a = 1 m/ka = 1km/Ma 

Density: 2.7 g/cm³ = 2700 kg/m³ = 2.7 t/m³ = 2700000000 t/km³ 

 

Short-term scale: 

t/a = t/km² a 

 

dividing with km² (drainage-basin area)  

t/ha a = t/km² a multiplying with 100 

t/km² a = km/a dividing with 2700000000 t/km³ 

km/a = mm/a multiplying with 1000000 

m³/a = m/a 

 

dividing with m² (drainage-basin area) 

m/a = mm/a 

 

multiplying with 1000 

mm/ka = m/ka 

 

dividing with 1000 

 

Medium-term scale: 

m³/km² a = kg/km² a multiplying with 2700 kg/m³ 

kg/km² a = t/km² a dividing with 1000 

km³ = km³/km² dividing with km² (drainage-basin area) 

km³/km² = km 

 km = m 

 

multiplying with 1000 

m = m/ka 

 

dividing with ka (time period) 

 

Long-term scale: 

km = km/Ma 

 

dividing with Ma (time period) 

km³ = km³/km² dividing with km² (drainage-basin area) 

km³/km² = km 

 km³/Ma = km/Ma dividing with km² (area) 
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Table 6.3-4: Data – long-term scale. 

Value Unit Uncertainty 

Time 

period (Ma) Type of rate? Location Reference 

Time  

Period (Ma) km/Ma Uncertainty 

20500 km³/Ma 10250 0 sediment volume Eastern Alps Kuhlemann  0 0.31 0.16 

15500 km³/Ma 7750 1 sediment-budget, 

 

et al. (2001) 1 0.23 0.12 

11000 km³/Ma 5500 2 circum-Alpine  

  

2 0.16 0.08 

10000 km³/Ma 5000 3 sedimentary basins 

  

3 0.15 0.08 

8500 km³/Ma 4250 4 

   

4 0.13 0.07 

8500 km³/Ma 4250 5 typical error 50% 

  

5 0.13 0.07 

8500 km³/Ma 4250 6 

   

6 0.13 0.07 

8500 km³/Ma 4250 7 temporal error: 

  

7 0.13 0.07 

8500 km³/Ma 4250 8 intervals of 0.5 & 1 Ma 

  

8 0.13 0.07 

8000 km³/Ma 4000 9 erroneous stratigraphic 

  

9 0.12 0.06 

7000 km³/Ma 3500 10 age of formations 

  

10 0.10 0.05 

6000 km³/Ma 3000 11 Pre-Pleistocene: ±20% 

  

11 0.09 0.05 

5500 km³/Ma 2750 12 Pleistocene: ±40% 

  

12 0.08 0.04 

5500 km³/Ma 2750 13 

   

13 0.08 0.04 

5500 km³/Ma 2750 14 

   

14 0.08 0.04 

5500 km³/Ma 2750 15 

   

15 0.08 0.04 

6500 km³/Ma 3250 16 

   

16 0.10 0.05 

10500 km³/Ma 5250 16.5 

   

16.5 0.16 0.08 

9000 km³/Ma 4500 17 

   

17 0.13 0.07 

3000 km³/Ma 1500 18 

   

18 0.04 0.02 

3500 km³/Ma 1750 19 

   

19 0.05 0.03 

3000 km³/Ma 1500 20 

   

20 0.04 0.02 

6000 km³/Ma 3000 21 

   

21 0.09 0.05 

5500 km³/Ma 2750 22 

   

22 0.08 0.04 

5000 km³/Ma 2500 23 

   

23 0.07 0.04 

4500 km³/Ma 2250 24 

   

24 0.07 0.04 

4500 km³/Ma 2250 25 

   

25 0.07 0.04 

4500 km³/Ma 2250 26 

   

26 0.07 0.04 

4000 km³/Ma 2000 27 

   

27 0.06 0.03 

3000 km³/Ma 1500 28 

   

28 0.04 0.02 

2500 km³/Ma 1250 29 

   

29 0.04 0.02 

2000 km³/Ma 1000 30 

   

30 0.03 0.02 
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1500 km³/Ma 750 31 

   

31 0.02 0.01 

2000 km³/Ma 1000 32 

   

32 0.03 0.02 

2000 km³/Ma 1000 33 

   

33 0.03 0.02 

48000 km³/Ma 24000 1  

 

Western Alps 

 

1 2.4 1.20 

43000 km³/Ma 21500 2 

   

2 2.15 1.08 

40000 km³/Ma 20000 3 

   

3 2 1.00 

36000 km³/Ma 18000 4 

   

4 1.8 0.90 

33000 km³/Ma 16500 5 

   

5 1.65 0.83 

16000 km³/Ma 8000 6 

   

6 0.8 0.40 

15000 km³/Ma 7500 7 

   

7 0.75 0.38 

16000 km³/Ma 8000 8 

   

8 0.8 0.40 

16000 km³/Ma 8000 9 

   

9 0.8 0.40 

16000 km³/Ma 8000 10 

   

10 0.8 0.40 

15000 km³/Ma 7500 11 

   

11 0.75 0.38 

16000 km³/Ma 8000 12 

   

12 0.8 0.40 

16000 km³/Ma 8000 13 

   

13 0.8 0.40 

17000 km³/Ma 8500 14 

   

14 0.85 0.43 

19000 km³/Ma 9500 15 

   

15 0.95 0.48 

22000 km³/Ma 11000 16 

   

16 1.1 0.55 

25000 km³/Ma 12500 17 

   

17 1.25 0.63 

19000 km³/Ma 9500 18 

   

18 0.95 0.48 

17000 km³/Ma 8500 19 

   

19 0.85 0.43 

17000 km³/Ma 8500 20 

   

20 0.85 0.43 

19000 km³/Ma 9500 21 

   

21 0.95 0.48 

24000 km³/Ma 12000 22 

   

22 1.2 0.60 

22000 km³/Ma 11000 23 

   

23 1.1 0.55 

20000 km³/Ma 10000 24 

   

24 1 0.50 

18000 km³/Ma 9000 25 

   

25 0.9 0.45 

17000 km³/Ma 8500 26 

   

26 0.85 0.43 

17000 km³/Ma 8500 27 

   

27 0.85 0.43 

16000 km³/Ma 8000 28 

   

28 0.8 0.40 

12000 km³/Ma 6000 29 

   

29 0.6 0.30 

8000 km³/Ma 4000 30 

   

30 0.4 0.20 

7000 km³/Ma 3500 31 

   

31 0.35 0.18 

6000 km³/Ma 3000 32 

   

32 0.3 0.15 
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5000 km³/Ma 2500 33 

   

33 0.25 0.13 

5000 km³/Ma 2500 34 

   

34 0.25 0.13 

0.4-0.7 km/Ma 

 

last 15 exhumation rate Alps Bernet last 15 0.4-0.7 

 

    

detrital zircon 

 

 et al. (2001) 

   

    

fission-track 

     

    

temporal error: 1 Ma 

     

    

of stratigraphic age 

     0.4-0.7 km/Ma 

 

last 30 exhumation rate Alps Bernet last 30 0.4-0.7 

 0.2-0.3 km/Ma 

 

last 30 detrital zircon 

 

 et al. (2009) last 30 0.2-0.3 

 

    

fission-track 

     

    

temporal error: 1 Ma 

     

    

of stratigraphic age 

     

     
Swiss Alps Schlunegger (1999) 

   

    

Foreland basins Molasse basin - N foreland 

    2300 km³ 1200 16.5-20 sediment volume total 

 

16.5-20 0.04 0.02 

2500 km³ 1200 20-25 

 

Lake Geneva 

    

     

 paleo river 

    7500 km³ 3750 20-25 

 

Rigi-Höhronen &  

    

     

Honegg-Napf paleo rivers 

    10000 km³ 5000 20-25 

 

total 

 

20-25 0.13 0.07 

1500 km³ 750 25-30 

 

Lake Geneva  

    

     

paleo river 

    8500 km³ 4250 25-30 

 

Rigi-Höhronen & 

    

     

 Honegg-Napf paleo rivers 

    10000 km³ 5000 25-30 

 

total 

 

25-30 0.13 0.07 

650 km³/Ma 325 16.5-20 Min sediment supply rate Molasse basin - N foreland 

 

16.5-20 0.05 0.02 

1500 km³/Ma 750 20-25 Max sediment supply rate 

  

20-25 0.1 0.05 

1500 km³/Ma 750 25-30 

   

25-30 0.1 0.05 

500 m/Ma --- 16-18 sediment supply rate S foreland basin 

 

16-18 0.5 --- 

150 m/Ma --- 20-22 

   

20-22 0.15 --- 

250 m/Ma --- 30-24/22 

   

30-24/22 0.25 --- 

300 m/Ma --- 0-20 erosion rate Lepontine dome 

 

0-20 0.3 --- 

400 m/Ma --- 0-20 apatite fission-track 

  

0-20 0.4 --- 

500 m/Ma --- 0-20 zircon fission-track 

  

0-20 0.5 --- 

1000 m/Ma --- 20-40 biotite Rb-Sr. K-Ar 

  

20-40 1 --- 
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1000 m/Ma --- 20-40 K-white muscovite Rb-Sr 

  

20-40 1 --- 

200 m/Ma --- 0-20 max. temporal error:  

  

0-20 0.2 --- 

400 m/Ma --- 0-20 6 Ma (from Fig. 10) 

  

0-20 0.4 --- 

5000 m/Ma --- 20-22 

   

20-22 5 --- 

400 m/Ma --- 22-40 

   

22-40 0.4 --- 

600 m/Ma --- 22-40 

   

22-40 0.6 --- 

3300 km³ 

 

13.5-16.5 sediment volume North-Alpine  Schlunegger   

  3500 km³ 

 

16.5-20 

 

foreland basin et al. (2001)  

  15000 km³ 

 

20-25 

 
Switzerland 

 

 

  13000 km³ 

 

25-30 

   

 

  90 m/Ma 45 13.5-16.5 average erosion rate 

  

13.5-16.5 0.09 0.05 

85 m/Ma 40 16.5-20 

   

16.5-20 0.09 0.04 

250 m/Ma 125 20-25 

   

20-25 0.25 0.13 

200 m/Ma 100 25-30 

   

25-30 0.2 0.1 

9500 km³ 

 

13.5-16.5 sediment volume North-Alpine  

 

 

  9500 km³ 

 

16.5-20 

 

foreland basin 

 

 

  20000 km³ 

 

20-25 

 
Switzerland & 

 

 

  6000 km³ 

 

25-30 

 

Germany 

 

 

  2000 km³ 

 

30-34 

   

 

  260 m/Ma 130 13.5-16.5 average erosion rate 

  

13.5-16.5 0.26 0.13 

220 m/Ma 110 16.5-20 

   

16.5-20 0.22 0.11 

330 m/Ma 165 20-25 

   

20-25 0.33 0.17 

100 m/Ma 50 25-30 

   

25-30 0.1 0.05 

40 m/Ma 20 30-34 

   

30-34 0.04 0.02 

20000-56000 km³/Ma 

 

0-1 sediment volume North-Alpine  Schlunegger 0-1 1.38-3.86 

 14000-38000 km³/Ma 

 

1-3 

 
foreland basin  et al. (2007) 1-3 0.97-2.62 

 8000-22000 km³/Ma 

 

3-5 

   

3-5 0.55-1.52 

 3000-9000 km³/Ma 

 

5-10 

   

5-10 0.21-0.62 

 6000-18000 km³/Ma 

 

10-17 

   

10-17 0.41-1.24 

 3000-16000 km³/Ma 

 

17-20 

   

17-20 0.21-1.1 

 8000-18000 km³/Ma 

 

20-22 

   

20-22 0.55-1.24 

 4000-10000 km³/Ma 

 

22-23.5 

   

22-23.5 0.28-0.69 

 1000-4000 km³/Ma 

 

23.5-28.5 

   

23.5-28.5 0.07-0.28 

 300 m/Ma ---  last 25 erosion rate Aar massif, Schlunegger &   last 25 0.3 --- 

400 m/Ma ---  last 25 apatite fission-track, central Swiss Alps Willett (1999)  last 25 0.4 --- 
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500 m/Ma ---  last 25 zircon fission-track 

  

 last 25 0.5 --- 

600 m/Ma ---  last 25 

   

 last 25 0.6 --- 

200 m/Ma --- last 40 erosion rate Penninic crystalline,  

 

last 40 0.2 --- 

300 m/Ma --- last 40 apatite fission-track, eastern Swiss Alps 

 

last 40 0.3 --- 

400 m/Ma --- last 40 zircon fission-track 

  

last 40 0.4 --- 

    

biotite Rb-Sr. K-Ar 

     

    

max. temporal error:  

     

    

5 Ma (from Fig. 8) 

     

    

sediment volume Central Alps Willett  

   20000-57000 km³/Ma 

 

0-1 Alpine foreland North foreland et al. (2006) 0-1 1.38-3.93 

 15000-36000 km³/Ma 

 

1-3  basins 

  

1-3 1.03-2.48 

 8000-22000 km³/Ma 

 

3-5 

   

3-5 0.55-1.52 

 3000-10000 km³/Ma 

 

5-10 

   

5-10 0.21-0.69 

 6000-17000 km³/Ma 

 

10-17 

   

10-17 0.41-1.17 

 8000-26000 km³/Ma 

 

0-1.5 

 

South foreland 

 

0-1.5 0.39-1.27 

 7000-18000 km³/Ma 

 

1.5-5 

   

1.5-5 0.34-0.88 

 49000-58000 km³/Ma 

 

5-5.5 

   

5-5.5 2.39-2.83 

 0-3000 km³/Ma 

 

7-11.5 

   

7-11.5 0-0.15 

 0-6000 km³/Ma 

 

11.5 16 

   

11.5 16 0-0.29 

 

    

erosion estimate Swiss North-Alpine Cederbom 

   

    

apatite fission-track  Foreland transect  et al. (2004) 

   1.7-3.5 km 

 

last 5 

 

Boswil 

 

last 5 0.34-0.7 

 1.4-3.3 km 

 

last 5 max. temporal error  Hünenberg 

 

last 5 0.28-0.66 

 3.8-6.1 km 

 

last 5 2.2 Ma Rigi-Weggis 

 

last 5 0.76-1.22 

 

    

incision rate Aare Valley,  Haueselmann 

   1.2 km/Ma 0.1 0-0.8 cave sediments Swiss Alps  et al. (2007) 0-0.8 1.2 0.1 

0.12 km/Ma 0.1 0.8-4 cosmogenic 10Be & 26Al 

  

0.8-4 0.12 0.1 

    

max. temporal error: 0.6 Ma 

     0.4-1.5 mm/a 

 

last 2-7.5 western block Aosta Valley  Malusà &  last 2-7.5 0.4-1.5 

 0.1-0.3 mm/a 

 

last 2-7.5 eastern block cross-section Vezzoli (2006) last 2-7.5 0.1-0.3 

 

    

exhumation rate Western Alps 

    

    

bedrock-fission track 

     

    

2-7.5 Ma: min. period – 

exhumation from 3 km 

depth with rates of western 
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block – direct comparison to 

eastern block 

    

mean denudation rate Western Alps Bogdanoff 

   0.8-1.5 mm/a 

 

0-3 apatite fission-track Argentera massif  et al. (2000) 0-3 0.8-1.5 

 0.2-0.34 mm/a 

 

3-8 

 

Argentera massif 

 

3-8 0.2-0.34 

 0.2-0.3 mm/a 

 

4-9 max. temporal  Pelvoux massif 

 

4-9 0.2-0.3 

 0.8-1 mm/a 

 

3-5 error: 1 Ma Mont Blanc massif 

 

3-5 0.8-1 

 0.8-1 mm/a 

 

3-5  

 

Aar massif 

 

3-5 0.8-1 

 

    

denudation rate Alps Clark & 

   0.4-0.5 mm/a 

 

last 11.5 biotite Rb-Sr & K-Ar Simplon tunnel. Min  Jäger (1969) last 11.5 0.4-0.5 

 1-1.1 mm/a 

 

last 11.5 heat-flow data Simplon tunnel. Max 

 

last 11.5 1-1.1 

 0.4-0.5 mm/a 

 

last 16.5 

 

Gotthard tunnel. Min 

 

last 16.5 0.4-0.5 

 0.7 mm/a 

 

last 16.5 

 

Gotthard tunnel. Max 

 

last 16.5 0.7 

 0.4-0.5 mm/a 

 

last 20 

 

Tauern tunnel. Min 

 

last 20 0.4-0.5 

 0.7 mm/a 

 

last 20 

 

Tauern tunnel. Max 

 

last 20 0.7 

 

    

erosion rate Tauern window. Frisch  

   

    

mass balance in  Eastern Alps et al. (2000) 

   27000 km³ 

 

13-23  sedimentary basins, W of Tauern window 

 

 

  15000 km³ 

 

13-23 zircon & apatite Tauern window 

 

 

  12000 km³ 

 

13-23  fission-track E of Tauern window 

 

 

  0.15 mm/a --- 13-23 

 

W of Tauern window 

 

13-23 Ma 0.15 --- 

0.3 mm/a --- 13-23 

 

Tauern window 

 

13-23 Ma 0.3 --- 

0.06 mm/a --- 13-23 

 

E of Tauern window 

 

13-23 Ma 0.06 --- 

    

exhumation rate W Tauern window, Christensen 

   

    

Garnet Rb-Sr Eastern Alps et al. (1994) 

   

4 mm/a pos.3/neg.2 

30±0.8-

35.4±0.6 

 

Upper Schieferhülle 

 

30±0.8-35.4±0.6 4 pos.3/neg.2 

2 mm/a 1 

30.2±1.5-

32.7±1 

 

Lower Schieferhülle 

 

30.2±1.5-32.7±1 2 1 

    

exhumation rate SE Tauern window, Cliff et al. (1985) 

   

    

Rb-Sr, K-Ar & Ar-Ar Eastern Alps 

    ≤ 1 mm/a --- 0-16.5 33 mica samples Gneiss dome 

 

0-16.5 ≤ 1 --- 

≥ 5 mm/a --- 16.5-17 20 km N-S tunnel section 

  

16.5-17 ≥ 5 --- 

≤ 1 mm/a --- 17-24 temporal error: 0.5 Ma 

  

17-24 ≤ 1 --- 

0.1 mm/a 0.4 km 0-7±1 exhumation rate W Tauern window, von Blanckenburg 0-7±1 0.1 0.4 km 



232 

 

0.5 mm/a 0.7 km 7±1-13.3±0.3 hornblende K-Ar, Ar-Ar Eastern Alps et al. (1989) 7±1-13.3±0.3 0.5 0.7 km 

1.8 mm/a 2.3 km 13.3±0.3-15±1 mica Rb-Sr, K-Ar 

  

13.3±0.3-15±1 1.8 2.3 km 

2.9 mm/a 2.4 km 15±1-18±0.8 

   

15±1-18±0.8 2.9 2.4 km 

3.6 mm/a 2.6 km 18±0.8-20±0.8 error from Fig. 5 

  

18±0.8-20±0.8 3.6 2.6 km 

0.2 mm/a 1 km 0-9.9±3.6 exhumation rate W Tauern window, Fügenschuh 0-9.9±3.6 0.2 1 km 

1 mm/a 1 km 9.9±3.6-13±2 zircon & apatite Eastern Alps et al. (1997) 9.9±3.6-13±2 1 1 km 

1 mm/a 2 km 13±2-13.3±0.3  fission-track + data of 

  

13±2-13.3±0.3 1 2 km 

1 mm/a 2 km 13.3±0.3-15±1 von Blanckenburg 

  

13.3±0.3-15±1 1 2 km 

2.6 mm/a 2 km 15±1-18±0.8 et al. (1989) 

  

15±1-18±0.8 2.6 2 km 

4 mm/a 3 km 18±0.8-20±0.8 

   

18±0.8-20±0.8 4 3 km 

0.2 mm/a 2 km 20±0.8-30 error from Fig. 2 

  

20±0.8-30 0.2 2 km 

    

exhumation rate W & SE Tauern window, Hejl (1997) 

   

    

zircon & apatite Eastern Alps 

    3000 m --- last 5  fission-track Zillertal Alps (W) 

 

last 5 Ma 0.6 --- 

1000 m --- last 5 

 

Reisseck (SE) 

 

last 5 Ma 0.2 --- 

    

exhumation rate Tauern window, Most (2003) 

   

    

zircon & apatite Eastern Alps 

    0.6 mm/a 

 

5-9  fission-track Ahornspitze and 

 

5-9 Ma 0.6 

 1.1-1.2 mm/a 

 

12-14 temporal error: 0.5 Ma Grinbergspitze 

 

12-14 Ma 1.1-1.2 

 

    

(from Fig. 6.5) 

     0.2 mm/a 

 

0-13±2 exhumation rate Riesenferner pluton, Steenken 0-13±2 0.2 

 0.4-0.6 mm/a 

 

13±2-31±3 Rb-Sr & K-Ar Eastern Alps et al. (2002) 13±2-31±3 0.4-0.6 

 0.2 mm/a 

 

0-16±2 zircon & apatite S of Tauern window 

 

0-16±2 0.2 

 0.4-0.6 mm/a 

 

16±2-31±3  fission-track 

  

16±2-31±3 0.4-0.6 

 

    

temporal error from Fig. 13 
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Table 6.3-5: Data – medium-term scale. 

Value Unit Uncertainty 

Time 

period (ka) Type of rate? Location Reference 

Time 

period (ka) m/ka Uncertainty 

    

mean denudation rate Swiss Alps Wittmann  

   0.48 mm/a 0.14 last 18 in-situ produced  Klem basin et al. (2007) last 18 0.48 0.14 

0.26 mm/a 0.14 last 18 cosmogenic 10Be  Wasen basin 

 

last 18 0.26 0.14 

0.26 mm/a 0.14 last 18 in river-borne quartz Emme basin 

 

last 18 0.26 0.14 

0.11 mm/a 0.14 last 18 

 

Buetsch basin 

 

last 18 0.11 0.14 

0.16 mm/a 0.14 last 18 temporal error: 3 ka Taf basin 

 

last 18 0.16 0.14 

0.25 mm/a 0.14 last 18 moraine sample from Sense basin 

 

last 18 0.25 0.14 

1.28 mm/a 0.3 last 18 Aare basin – LGM Lonza basin 

 

last 18 1.28 0.3 

1.32 mm/a 0.3 last 18 18±3 ka Gren basin 

 

last 18 1.32 0.3 

0.69 mm/a 0.3 last 18 

 

Chie basin 

 

last 18 0.69 0.3 

1.14 mm/a 0.3 last 18 

 

Furka basin 

 

last 18 1.14 0.3 

1.58 mm/a 0.3 last 18 

 

 Reuss basin 

 

last 18 1.58 0.3 

0.7 mm/a 0.3 last 18 

 

Maggia basin 

 

last 18 0.7 0.3 

1.18 mm/a 0.3 last 18 

 

Toce basin 

 

last 18 1.18 0.3 

0.59 mm/a 0.3 last 18 

 

Verz basin 

 

last 18 0.59 0.3 

0.89 mm/a 0.3 last 18 

 

Mela basin 

 

last 18 0.89 0.3 

0.83 mm/a 0.3 last 18 

 

Anza basin 

 

last 18 0.83 0.3 

0.5 mm/a 0.3 last 18 

 

Sesia basin 

 

last 18 0.5 0.3 

    

basin averaged  northern Swiss Alps Norton  

   350 mm/ka 50 last 17 denudation rate Trub basin et al. (2008) last 17 0.35 0.05 

    

cosmogenic 10Be  Fontanne basin, 

    380 mm/ka 50 last 16 

 

 upstream knickzone 

 

last 16 0.38 0.05 

    

temporal error: 3 ka Fontanne basin, 

    540 mm/ka 100 last 16 

 

 downstream knickzone 

 

last 16 0.54 0.1 

1.24-1.69 mm/a 

 

last 15 denudation rate, Walensee Valley, Müller (1999) last 15 1.24-1.69 

 

    

sediment budget - eastern Swiss Alps 

    

    

 lithological model & 

     

    

radiocarbon dating 

     

    

max. temporal error: 0.2 ka 

     

    

denudation rate Western Alps Hinderer  

   380 mm/ka 190 last 17 sediment fluxes  Aare basin (2001) last 17 0.38 0.19 

730 mm/ka 365 last 17 from Alpine catchments Linth basin 

 

last 17 0.73 0.37 
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820 mm/ka 410 last 17 by sediment volume  Lütschine basin 

 

last 17 0.82 0.41 

370 mm/ka 185 last 17 trapped valleys  Melchaa basin 

 

last 17 0.37 0.19 

560 mm/ka 280 last 17 and lake basins Reuss basin 

 

last 17 0.56 0.28 

960 mm/ka 480 last 17 

 

Seez basin 

 

last 17 0.96 0.48 

1060 mm/ka 530 last 17 general error 50% Rhine basin 

 

last 17 1.06 0.53 

950 mm/ka 475 last 17 

 

Rhone basin 

 

last 17 0.95 0.48 

850 mm/ka 425 last 17 max. temporal error Adda basin 

 

last 17 0.85 0.43 

510 mm/ka 255 last 17 <10%; 1 ka Maggia basin 

 

last 17 0.51 0.26 

790 mm/ka 395 last 17 

 

Ticcino basin 

 

last 17 0.79 0.4 

     

Eastern Alps 

    250 mm/ka 125 last 17 

 

Iller basin 

 

last 17 0.25 0.13 

530 mm/ka 265 last 17 

 

Tiroler Ache basin 

 

last 17 0.53 0.27 

420 mm/ka 210 last 17 

 

Weissach basin 

 

last 17 0.42 0.21 

570 mm/ka 285 last 17 

 

Inn basin 

 

last 17 0.57 0.29 

490 mm/ka 245 last 17 

 

Sarca basin 

 

last 17 0.49 0.25 

     

Western Alps 

    950 t/km² a 

 

last 17 sediment yields Aare basin 

 

 

  1810 t/km² a 

 

last 17 

 

Linth basin 

 

 

  2050 t/km² a 

 

last 17 

 

Lütschine basin 

 

 

  940 t/km² a 

 

last 17 

 

Melchaa basin 

 

 

  1390 t/km² a 

 

last 17 

 

Reuss basin 

 

 

  2400 t/km² a 

 

last 17 

 

Seez basin 

 

 

  2650 t/km² a 

 

last 17 

 

Rhine basin 

 

 

  2370 t/km² a 

 

last 17 

 

Rhone basin 

 

 

  2120 t/km² a 

 

last 17 

 

Adda basin 

 

 

  1280 t/km² a 

 

last 17 

 

Maggia basin 

 

 

  1980 t/km² a 

 

last 17 

 

Ticcino basin 

 

 

  

     

Eastern Alps 

 

 

  620 t/km² a 

 

last 17 

 

Iller basin 

 

 

  1330 t/km² a 

 

last 17 

 

Tiroler Ache basin 

 

 

  1060 t/km² a 

 

last 17 

 

Weissach basin 

 

 

  1410 t/km² a 

 

last 17 

 

Inn basin 

 

 

  1220 t/km² a 

 

last 17 

 

Sarca basin 

 

 

  

    

total mechanical denudation Swiss Alps Schlunegger & 

   208 km³ 

 

last 17 volume of excavated rock Rhine basin  Hinderer (2001) 
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196 km³ 

 

last 17 

 

Rhone basin 

    4 km³ 

 

last 17 

 

Linth basin 

    21.4 km³ 

 

last 17 

 

Reuss basin 

    10 km³ 

 

last 17 

 

Aare basin 

    13 km³ 

 

last 17 

 

Lütschine basin 

    33 km³ 

 

last 17 

 

Ticino basin 

    0.034 km³/km² 0.017 last 17 sediment yield per area Rhine basin 

 

last 17 2.00 1.00 

0.038 km³/km² 0.019 last 17 

 

Rhone basin 

 

last 17 2.24 1.12 

0.006 km³/km² 0.003 last 17 general error 50% Linth basin 

 

last 17 0.35 0.18 

0.026 km³/km² 0.013 last 17 (from Hinderer. 2001) Reuss basin 

 

last 17 1.53 0.77 

0.018 km³/km² 0.009 last 17 

 

Aare basin 

 

last 17 1.06 0.53 

0.034 km³/km² 0.017 last 17 max. temporal error Lütschine basin 

 

last 17 2.00 1.00 

0.022 km³/km² 0.011 last 17 <10%; 1 ka Ticino basin 

 

last 17 1.29 0.65 

    

(from Hinderer. 2001) 

     1.6 m/ka --- last 15 sediment yield related  Fischenbach basin Schlunegger  last 15 1.6 --- 

    

to drainage basin-size northern Swiss  et al. (2002) 

   4.6 m/ka --- last 15 effective sediment yield  Prealps 
 

last 15 4.6 --- 

    

related to area of  

     

    

active surface erosion 

     

    

15 ka: tentative age of 

     

    

glacial deposits and surface 

     

    

basin averaged  central & southern Norton 

   

    

denudation rate Eastern Alps et al. (2011) 

   1230 mm/ka 290 0.57 ± 0.13 cosmogenic 10Be  Ahrn 

 

0.57 ± 0.13 1.23 0.29 

302 mm/ka 50 2.38 ± 0.39 

 

Antholzer 

 

2.38 ± 0.39 0.3 0.05 

469 mm/ka 74 1.54 ± 0.24 

 

Arno 

 

1.54 ± 0.24 0.47 0.07 

359 mm/ka 75 2.04 ± 0.43 

 

Avisio 

 

2.04 ± 0.43 0.36 0.08 

246 mm/ka 42 2.92 ± 0.5 Minimum Bergler 

 

2.92 ± 0.5 0.25 0.04 

376 mm/ka 70 1.91 ± 0.36 Maximum Bergler 

 

1.91 ± 0.36 0.38 0.07 

436 mm/ka 76 1.71 ± 0.3 

 

Bitto 

 

1.71 ± 0.3 0.44 0.08 

1036 mm/ka 230 0.69 ± 0.15 

 

Castello 

 

0.69 ± 0.15 1.04 0.23 

480 mm/ka 82 1.51 ± 0.26 

 

di Adame 

 

1.51 ± 0.26 0.48 0.08 

760 mm/ka 210 0.97 ± 0.27 

 

di Venina 

 

0.97 ± 0.27 0.76 0.21 

325 mm/ka 66 2.31 ± 0.47 

 

Fersina 

 

2.31 ± 0.47 0.33 0.07 

1470 mm/ka 340 0.49 ± 0.11 

 

Flagger 

 

0.49 ± 0.11 1.47 0.34 



236 

 

356 mm/ka 57 1.97 ± 0.32 

 

Fusino 

 

1.97 ± 0.32 0.36 0.06 

350 mm/ka 110 1.11 ± 0.19 Minimum Hoeller 

 

1.11 ± 0.19 0.35 0.11 

1090 mm/ka 470 0.66 ± 0.28 Maximum Hoeller 

 

0.66 ± 0.28 1.09 0.47 

537 mm/ka 95 1.31 ± 0.23 

 

Krimmler 

 

1.31 ± 0.23 0.54 0.1 

214 mm/ka 36 3.36 ± 0.57 

 

Lagorai 

 

3.36 ± 0.57 0.21 0.04 

301 mm/ka 63  2.38 ± 0.5 

 

Masino 

 

 2.38 ± 0.5 0.3 0.06 

548 mm/ka 87 1.3 ± 0.21 

 

Melach 

 

1.3 ± 0.21 0.55 0.09 

850 mm/ka 170 0.86 ± 0.17 

 

Muehl 

 

0.86 ± 0.17 0.85 0.17 

287 mm/ka 50 2.62 ± 0.45 

 

Nero 

 

2.62 ± 0.45 0.29 0.05 

710 mm/ka 130 1.03 ± 0.19 

 

Novate 

 

1.03 ± 0.19 0.71 0.13 

660 mm/ka 110 1.09 ± 0.19 

 

Oglio 

 

1.09 ± 0.19 0.66 0.11 

530 mm/ka 100 1.35 ± 0.26 

 

Pfitsch 

 

1.35 ± 0.26 0.53 0.1 

680 mm/ka 140 1.04 ± 0.21 

 

Pitze 

 

1.04 ± 0.21 0.68 0.14 

1100 mm/ka 300 0.65 ± 0.18 

 

Plima 

 

0.65 ± 0.18 1.1 0.3 

580 mm/ka 110 1.21 ± 0.22 

 

Schnalz 

 

1.21 ± 0.22 0.58 0.11 

240 mm/ka 47 3.31 ± 0.65 

 

Silla 

 

3.31 ± 0.65 0.24 0.05 

324 mm/ka 57 2.26 ± 0.4 

 

Talfer 

 

2.26 ± 0.4 0.32 0.06 

1240 mm/ka 240 0.57 ± 0.11 

 

Tauern 

 

0.57 ± 0.11 1.24 0.24 

168 mm/ka 26 4.3 ± 0.66 

 

val Moena 

 

4.3 ± 0.66 0.17 0.03 

519 mm/ka 90 1.39 ± 0.24 

 

Wattem 

 

1.39 ± 0.24 0.52 0.09 

730 mm/ka 170 1.04 ± 0.24 

 

Widshoenau 

 

1.04 ± 0.24 0.73 0.17 

710 mm/ka 130 1 ± 0.19 

 

Zemm 

 

1 ± 0.19 0.71 0.13 

750 mm/ka 150 0.93 ± 0.19 

 

Ziel 

 

0.93 ± 0.19 0.75 0.15 

6.5-13 mm/a 

 

last 5 incision rate Gorge du Diable, Valla  last 5 6.5-13 

 

    

in-situ produced  French Western Alps et al. (2010) 

   

    

cosmogenic 10Be 

     

    

max. temporal error: 0.84 ka 

     

    

denudation rate Ecrins-Pelvoux massif.  Delunel  

   

    

in-situ produced  French Western Alps et al. (2010) 

   0.38 mm/a 0.07 1.977 cosmogenic 10Be  Romanche 

 

1.977 0.38 0.07 

0.61 mm/a 0.11 1.233 in stream sediments Veneon 

 

1.233 0.61 0.11 

0.89 mm/a 0.16 0.846 

 

Upper Romanche 

 

0.846 0.89 0.16 

0.99 mm/a 0.21 0.761 

 

Tabuc 

 

0.761 0.99 0.21 

0.67 mm/a 0.13 1.131 

 

Saint Pierre 

 

1.131 0.67 0.13 

0.8 mm/a 0.14 0.939 

 

Celse Nierre 

 

0.939 0.8 0.14 
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1.07 mm/a 0.2 0.707 

 

Gyr 

 

0.707 1.07 0.2 

0.35 mm/a 0.07 2.142 

 

Roizonne 

 

2.142 0.35 0.07 

0.27 mm/a 0.05 2.735 

 

Bonne 

 

2.735 0.27 0.05 

0.37 mm/a 0.08 2.045 

 

Upper Bonne 

 

2.045 0.37 0.08 

0.63 mm/a 0.13 1.192 

 

Drac 

 

1.192 0.63 0.13 

0.57 mm/a 0.11 1.308 

 

Severaisse 

 

1.308  0.57 0.11 

4 mm/a 2 last 9-12.5 Bündner schists, flysch Rhine basin,  Korup &  last 9-12.5 4 2 

0.7 mm/a 0.35 last 9-12.5 crystalline rock Western Alps Schlunegger  last 9-12.5 0.7 0.35 

    

mean erosion rate 

 

(2009) 

   

    

post-glacial sediment 

     

    

 volume of valley deposits 

     

    

Time period constrained from 

late-glacial lake until 12.5 ka 

and Flims landslide 9.5 ka – 

valley deposits mostly younger 

than 9 ka 
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Table 6.3-6: Data – short-term scale. 

Value Unit Uncertainty Time period Type of rate? Location Reference Time period mm/a Uncertainty 

    

sediment yield Western Alps Hinderer (2001) 

   480 t/km² a --- 1898-1933 from river-load & Aare basin 

 

1898-1933 0.18 --- 

270 t/km² a --- 1964-1993 delta-growth data Aare basin 

 

1964-1993 0.10 --- 

890 t/km² a --- 1981-1993 

 

Kander basin 

 

1981-1993 0.33 --- 

410 t/km² a --- 1911-1979 

 

Linth basin 

 

1911-1979 0.15 --- 

500 t/km² a --- 1964-1993 

 

Lütschine basin 

 

1964-1993 0.19 --- 

160 t/km² a --- 1911-1987 

 

Melchaa basin 

 

1911-1987 0.06 --- 

70 t/km² a --- 1979-1993 

 

Reuss basin 

 

1979-1993 0.03 --- 

660 t/km² a --- 1911-1989 

 

Rhine basin 

 

1911-1989 0.24 --- 

380 t/km² a --- 1965-1993 

 

Rhone basin 

 

1965-1993 0.14 --- 

410 t/km² a --- 1930-1951 

 

Cassarate basin 

 

1930-1951 0.15 --- 

450 t/km² a --- 1926-1984 

 

Maggia basin 

 

1926-1984 0.17 --- 

280 t/km² a --- 1932-1986 

 

Ticino basin 

 

1932-1986 0.10 --- 

     

Eastern Alps 

    180 t/km² a --- 1931-1979 

 

Ammer basin 

 

1931-1979 0.07 --- 

190 t/km² a --- 1966-1970 

 

Iller basin 

 

1966-1970 0.07 --- 

280 t/km² a --- 1926-1979 

 

Tiroler Ache basin 

 

1926-1979 0.10 --- 

120 t/km² a --- 1955-1965 

 

Weissach basin 

 

1955-1965 0.04 --- 

280 t/km² a --- 1953-1979 

 

Inn basin 

 

1953-1979 0.10 --- 

    

average  Swiss Alps Schlunegger & 

   0.206 mm/a --- 1964-1995 denudation Aare basin Hinderer  1964-1995 0.206 --- 

0.097 mm/a --- 1926-1993 rate from Albula basin (2003) 1926-1993 0.097 --- 

0.141 mm/a --- 1920-1993 suspended-load  Broye basin 

 

1920-1993 0.141 --- 

0.122 mm/a --- 1984-1995 data Emme basin 

 

1984-1995 0.122 --- 

0.129 mm/a --- 1976-1993 

 

Glatt basin 

 

1976-1993 0.129 --- 

0.103 mm/a --- 1974-1993 

 

Hinterrhein basin 

 

1974-1993 0.103 --- 

0.091 mm/a --- 1970-1993 

 

Inn basin 

 

1970-1993 0.091 --- 

0.403 mm/a --- 1981-1993 

 

Kander basin 

 

1981-1993 0.403 --- 

0.59 mm/a --- 1979-1995 

 

Landquart basin 

 

1979-1995 0.59 --- 

0.189 mm/a --- 1964-1995 

 

Linth basin 

 

1964-1995 0.189 --- 

0.176 mm/a --- 1966-1995 

 

Lonza basin 

 

1966-1995 0.176 --- 

0.294 mm/a --- 1964-1995 

 

Lütschine basin 

 

1964-1995 0.294 --- 

0.272 mm/a --- 1985-1993 

 

Maggia basin 

 

1985-1993 0.272 --- 
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0.115 mm/a --- 1981-1993 

 

Moesa basin 

 

1981-1993 0.115 --- 

0.113 mm/a --- 1979-1995 

 

Reuss basin 

 

1979-1995 0.113 --- 

0.242 mm/a --- 1964-1990 

 

Rhine basin 

 

1964-1990 0.242 --- 

0.239 mm/a --- 1965-1995 

 

Rhone basin 

 

1965-1995 0.239 --- 

0.134 mm/a --- 1923-1993 

 

Sarine basin 

 

1923-1993 0.134 --- 

0.153 mm/a --- 1921-1993 

 

Simme basin 

 

1921-1993 0.153 --- 

0.201 mm/a --- 1975-1995 

 

Thur basin 

 

1975-1995 0.201 --- 

0.217 mm/a --- 1979-1995 

 

Ticino basin 

 

1979-1995 0.217 --- 

0.8 mm/a --- 1965-1993 

 

Visp basin 

 

1965-1993 0.801 --- 

0.15 mm/a --- 1965-1995 

 

Rhone basin 

 

1965-1995 0.15 --- 

    

denudation  Western Alps Champagnac 

   0.056 mm/a --- 1964-1995 rate from  Thur basin  et al. (2009) 1964-1995 0.056 --- 

0.097 mm/a --- 1964-1995 suspended-load Linth basin 

 

1964-1995 0.097 --- 

0.041 mm/a --- 1964-1995 data Reuss basin 

 

1964-1995 0.041 --- 

0.02 mm/a --- 1964-1995  Reuss basin 

 

1964-1995 0.02 --- 

0.098 mm/a --- 1964-1995 

 

Aare basin 

 

1964-1995 0.098 --- 

0.137 mm/a --- 1964-1995 

 

Lütschine basin 

 

1964-1995 0.137 --- 

0.022 mm/a --- 1964-1995 

 

Emme basin 

 

1964-1995 0.022 --- 

0.134 mm/a --- 1964-1995 

 

Lonza basin 

 

1964-1995 0.134 --- 

0.165 mm/a --- 1964-1995 

 

Arve basin 

 

1964-1995 0.165 --- 

0.147 mm/a --- 1964-1995 

 

Rhone basin 

 

1964-1995 0.147 --- 

0.184 mm/a --- 1964-1995 

 

Rhine basin 

 

1964-1995 0.184 --- 

0.607 mm/a --- 1964-1995 

 

Landquart basin 

 

1964-1995 0.607 --- 

0.064 mm/a --- 1964-1995 

 

Ticino basin 

 

1964-1995 0.064 --- 

2000000- 

   

suspended  Swiss Alps Loizeau &  

 

0.14- 

 5000000 t/a 

 

1915-1960 sediment load Rhone basin Dominik  1915-1960 0.35 

 1000000- 

     

(2000) 

 

0.07 

 2500000 t/a 

 

1960-1994 

   

1960-1994 0.18 

 

    

bed-load  Dora Baltea basin Vezzoli  

   

    

sediment yield Aosta Valley, Western Alps (2004) 

   0.21 mm/a --- 1999-2002 denudation rate Dora baltea at Avise 

 

1999-2002 0.21 --- 

0.1 mm/a --- 1999-2002 

 

Dora Baltea at Sarre 

 

1999-2002 0.1 --- 

0.07 mm/a --- 1999-2002 

 

Dora Baltea at Verres 

 

1999-2002 0.07 --- 

0.07 mm/a --- 1999-2002 

 

Dora Baltea basin 

 

1999-2002 0.07 --- 

    

average  French Southern Alps, Descroix &  
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soil-loss rate  "terres noires" Mathys  

   9 mm/a --- 1985-1991 from rugosimeter,  Savournon (2003) 1985-1991 9 --- 

8.2 mm/a --- 1987-1990  electronic  Savournon 

 

1987-1990 8.2 --- 

7 mm/a --- 1985-1991 samplers, Saint Genis 

 

1985-1991 7 --- 

6.7 mm/a --- 1987-1990 bottle-siphons, Saint Genis 

 

1987-1990 6.7 --- 

5.9 mm/a --- 1983-1993 sediment traps & Orpierre 

 

1983-1993 5.9 --- 

3.8 mm/a --- 1989-1992 measurement  Orpierre 

 

1989-1992 3.8 --- 

16.2 mm/a --- 1990-1991 sticks Gallands 

 

1990-1991 16.2 --- 

18.9 mm/a --- 1990-1991 

 

Gallands 

 

1990-1991 18.9 --- 

8.5 mm/a --- 1989-1992 

 

Etoile 

 

1989-1992 8.5 --- 

8.7 mm/a --- 1988-1993 

 

Etoile 

 

1988-1993 8.7 --- 

10.3 mm/a --- 1990-1991 

 

La Vière 

 

1990-1991 10.3 --- 

1.4 mm/a --- 1988-1990 

 

Thoard 

 

1988-1990 1.4 --- 

16.5 mm/a --- 1991-1993 

 

Claret 

 

1991-1993 16.5 --- 

30 mm/a --- 1990-1991 

 

Bonneval 

 

1990-1991 30 --- 

11 mm/a --- 1986-1990 

 

Laval 

 

1986-1990 11 --- 

12.1 mm/a --- 1985-1990 

 

Roubine 

 

1985-1990 12.1 --- 

11.5 mm/a --- 1985-1988 

 

Saint Genis 

 

1985-1988 11.5 --- 

6.8 mm/a --- 1962-1979 

 

Seignon 

 

1962-1979 6.8 --- 

30 mm/a --- 1990-1995 

 

Séderon 

 

1990-1995 30 --- 

7 mm/a --- 1990-1995 

 

Eygalaye 

 

1990-1995 7 --- 

8 mm/a --- 1990-1995 

 

Vers s/M. 

 

1990-1995 8 --- 

33 mm/a --- 1990-1995 

 

Izon la B. 

 

1990-1995 33 --- 

5 mm/a --- 1995-1997 

 

La Motte C 

 

1995-1997 5 --- 

    

mean  Draix, French Western Alps Mathys  

   136 t/ha a 60 1985-2000 sediment Roubine basin et al. (2003) 1985-2000 5.04 2.2 

112 t/ha a 46 1985-2000 yield Laval basin 

 

1985-2000 4.15 1.7 

57 t/ha a 24 1988-2000 

 

Moulin basin 

 

1988-2000 2.11 0.89 

0.8 t/ha a 0.7 1988-2000 

 

Brusquet basin 

 

1988-2000 0.03 0.03 
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Table 6.3-7: Data – Erlenbach (0.74 km²) – events 1986–2007. 

Event 
 

Sediment 

discharge Erosion 

Uncer- 

tainty 

Peak 

Water 

discharge 

Uncer- 

tainty 

Precipi- 

tation 

Uncer- 

tainty 

number Date Time m³ mm 50% m³/s 5% mm 8% 

 

20.10.1986 21:46 

       1 20.10.1986 22:55 8.21 0.01 0.01 1.05 0.05 6.8 0.5 

 

23.10.1986 03:16 

       2 23.10.1986 07:50 8.42 0.01 0.01 0.84 0.04 21.4 1.7 

 

28.02.1987 03:58 

       3 28.02.1987 07:00 0.1 0.00 0.00 0.35 0.02 9.2 0.7 

 

01.03.1987 06:05 

       4 01.03.1987 06:21 0.22 0.00 0.00 0.26 0.01 1.2 0.1 

 

02.03.1987 11:32 

       5 02.03.1987 14:38 0.43 0.00 0.00 0.39 0.02 3.4 0.3 

 

28.03.1987 08:04 

       6 28.03.1987 09:56 0.83 0.00 0.00 0.21 0.01 7.1 0.6 

 

28.03.1987 12:01 

       7 28.03.1987 14:28 0.29 0.00 0.00 0.17 0.01 0.7 0.1 

 

19.04.1987 16:02 

       8 19.04.1987 20:21 1.19 0.00 0.00 0.47 0.02 3.7 0.3 

 

20.04.1987 05:11 

       9 20.04.1987 14:08 23.87 0.03 0.02 0.69 0.03 19.2 1.5 

 

20.04.1987 15:30 

       10 21.04.1987 01:18 5.9 0.01 0.00 0.66 0.03 28.2 2.3 

 

24.04.1987 17:13 

       11 24.04.1987 18:16 0.03 0.00 0.00 0.37 0.02 0 0.0 

 

25.04.1987 16:17 

       12 25.04.1987 17:48 0.02 0.00 0.00 0.36 0.02 0 0.0 

 

26.04.1987 13:50 

       13 26.04.1987 18:04 0.86 0.00 0.00 0.41 0.02 0 0.0 

 

28.04.1987 15:03 

       14 28.04.1987 18:18 0.89 0.00 0.00 0.39 0.02 0 0.0 

 

29.04.1987 13:57 

       15 29.04.1987 18:45 1.42 0.00 0.00 0.43 0.02 0 0.0 

 

30.04.1987 15:41 

       16 30.04.1987 15:47 0.01 0.00 0.00 0.31 0.02 0 0.0 

 

01.05.1987 15:33 

       17 01.05.1987 15:39 0.03 0.00 0.00 0.32 0.02 0 0.0 

 

02.05.1987 14:05 

       18 02.05.1987 17:03 0.11 0.00 0.00 0.35 0.02 0.5 0.0 

 

02.05.1987 19:31 

       19 02.05.1987 20:03 0.06 0.00 0.00 0.34 0.02 0.1 0.0 

 

03.05.1987 12:20 

       20 03.05.1987 12:26 0.02 0.00 0.00 0.29 0.01 0.4 0.0 

 

10.05.1987 22:17 

       21 11.05.1987 03:16 9.42 0.01 0.01 0.63 0.03 16.3 1.3 

 

27.05.1987 14:29 

       22 27.05.1987 16:27 1.99 0.00 0.00 0.52 0.03 4.1 0.3 

 

31.05.1987 17:57 

       23 31.05.1987 21:35 9.39 0.01 0.01 0.76 0.04 9.2 0.7 

 

01.06.1987 00:34 

       24 01.06.1987 00:58 0.11 0.00 0.00 0.35 0.02 0.2 0.0 
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03.06.1987 20:48 

       25 03.06.1987 21:59 1.01 0.00 0.00 0.42 0.02 2.1 0.2 

 

04.06.1987 04:15 

       26 04.06.1987 05:38 1.07 0.00 0.00 0.42 0.02 1.6 0.1 

 

04.06.1987 14:30 

       27 04.06.1987 17:55 3.22 0.00 0.00 0.50 0.03 8.6 0.7 

 

05.06.1987 01:57 

       28 05.06.1987 03:26 0.92 0.00 0.00 0.46 0.02 2.5 0.2 

 

08.06.1987 07:07 

       29 08.06.1987 09:26 1.56 0.00 0.00 0.49 0.02 7.2 0.6 

 

09.06.1987 01:46 

       30 09.06.1987 02:36 0.2 0.00 0.00 0.40 0.02 0.4 0.0 

 

15.06.1987 08:34 

       31 15.06.1987 13:24 151.68 0.20 0.10 1.40 0.07 26.9 2.2 

 

15.06.1987 15:59 

       32 15.06.1987 18:38 16.18 0.02 0.01 0.88 0.04 13.2 1.1 

 

15.06.1987 19:46 

       33 16.06.1987 01:06 2.56 0.00 0.00 0.65 0.03 21.3 1.7 

 

18.06.1987 04:54 

       34 18.06.1987 07:19 3.85 0.01 0.00 0.74 0.04 13.8 1.1 

 

18.06.1987 18:49 

       35 18.06.1987 19:35 0.13 0.00 0.00 0.53 0.03 2.1 0.2 

 

18.06.1987 20:17 

       36 18.06.1987 20:52 0.05 0.00 0.00 0.44 0.02 1.6 0.1 

 

24.06.1987 18:13 

       37 24.06.1987 19:05 3.47 0.00 0.00 0.83 0.04 3.7 0.3 

 

24.06.1987 22:47 

       38 25.06.1987 00:08 3.7 0.01 0.00 0.78 0.04 4 0.3 

 

25.06.1987 03:43 

       39 25.06.1987 05:09 0.23 0.00 0.00 0.48 0.02 4.1 0.3 

 

02.07.1987 21:20 

       40 02.07.1987 23:23 151.91 0.21 0.10 4.07 0.20 8.4 0.7 

 

07.07.1987 21:28 

       41 07.07.1987 23:21 68.26 0.09 0.05 1.89 0.09 14.6 1.2 

 

09.07.1987 02:18 

       42 09.07.1987 04:45 442.79 0.60 0.30 4.13 0.21 40.5 3.2 

 

27.07.1987 20:42 

       43 28.07.1987 01:22 13.79 0.02 0.01 1.11 0.06 26.2 2.1 

 

31.07.1987 01:25 

       44 31.07.1987 01:55 1.38 0.00 0.00 0.88 0.04 2.4 0.2 

 

05.08.1987 06:11 

       45 05.08.1987 06:59 0.39 0.00 0.00 0.71 0.04 0.6 0.0 

 

24.08.1987 21:46 

       46 25.08.1987 00:08 19.19 0.03 0.01 1.05 0.05 15.7 1.3 

 

25.08.1987 02:15 

       47 25.08.1987 03:29 2.84 0.00 0.00 0.73 0.04 5.8 0.5 

 

25.08.1987 06:57 

       48 25.08.1987 08:52 4.63 0.01 0.00 0.78 0.04 10.6 0.8 

 

25.08.1987 10:05 

       49 25.08.1987 10:50 2.1 0.00 0.00 0.79 0.04 2.8 0.2 

 

05.09.1987 22:29 

       50 05.09.1987 22:58 1.51 0.00 0.00 0.76 0.04 0.7 0.1 

 

16.11.1987 08:48 
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51 16.11.1987 10:43 5.11 0.01 0.00 0.83 0.04 8.7 0.7 

 

17.12.1987 19:55 

       52 17.12.1987 23:38 1.97 0.00 0.00 0.47 0.02 2.2 0.2 

 

18.12.1987 03:28 

       53 18.12.1987 05:42 0.96 0.00 0.00 0.47 0.02 1.3 0.1 

 

19.12.1987 00:20 

       54 19.12.1987 04:57 62.27 0.08 0.04 1.36 0.07 21.9 1.8 

 

19.12.1987 07:41 

       55 19.12.1987 09:09 5.91 0.01 0.00 0.85 0.04 4.8 0.4 

 

08.04.1988 06:41 

       56 08.04.1988 06:47 0.06 0.00 0.00 0.18 0.01 0.1 0.0 

 

09.04.1988 23:48 

       57 10.04.1988 00:54 0.13 0.00 0.00 0.47 0.02 1.7 0.1 

 

13.04.1988 17:24 

       58 13.04.1988 18:48 0.2 0.00 0.00 0.28 0.01 0.9 0.1 

 

16.04.1988 16:05 

       59 16.04.1988 17:33 0.01 0.00 0.00 0.39 0.02 0 0.0 

 

19.04.1988 16:35 

       60 19.04.1988 17:56 0.07 0.00 0.00 0.42 0.02 0 0.0 

 

20.04.1988 15:16 

       61 20.04.1988 18:26 0.06 0.00 0.00 0.46 0.02 1.5 0.1 

 

01.05.1988 15:14 

       62 01.05.1988 17:07 0.06 0.00 0.00 0.44 0.02 0 0.0 

 

02.05.1988 14:38 

       63 02.05.1988 16:03 0.03 0.00 0.00 0.44 0.02 0 0.0 

 

10.05.1988 22:25 

       64 11.05.1988 00:36 1.69 0.00 0.00 0.60 0.03 5.7 0.5 

 

15.05.1988 19:48 

       65 15.05.1988 22:25 11.34 0.02 0.01 0.84 0.04 14.5 1.2 

 

20.05.1988 12:07 

       66 20.05.1988 13:15 0.26 0.00 0.00 0.49 0.02 2.7 0.2 

 

26.05.1988 13:27 

       67 26.05.1988 14:18 1.74 0.00 0.00 0.74 0.04 0.9 0.1 

 

04.06.1988 15:29 

       68 04.06.1988 16:26 0.84 0.00 0.00 0.58 0.03 1.8 0.1 

 

04.06.1988 20:58 

       69 04.06.1988 22:12 0.29 0.00 0.00 0.50 0.03 2.6 0.2 

 

14.06.1988 18:30 

       70 14.06.1988 19:50 4.45 0.01 0.00 0.80 0.04 7.1 0.6 

 

03.07.1988 07:31 

       71 03.07.1988 09:49 8.99 0.01 0.01 0.93 0.05 14.5 1.2 

 

14.07.1988 02:27 

       72 14.07.1988 04:25 8.19 0.01 0.01 1.01 0.05 5.4 0.4 

 

27.07.1988 15:19 

       73 27.07.1988 16:13 10.75 0.01 0.01 1.30 0.07 2.9 0.2 

 

20.08.1988 07:59 

       74 20.08.1988 08:27 0.19 0.00 0.00 0.67 0.03 0 0.0 

 

20.08.1988 11:11 

       75 20.08.1988 13:30 15.44 0.02 0.01 1.18 0.06 16.6 1.3 

 

29.08.1988 01:47 

       76 29.08.1988 01:59 0.23 0.00 0.00 0.75 0.04 0 0.0 

 

29.08.1988 02:30 

       77 29.08.1988 03:08 0.01 0.00 0.00 0.86 0.04 1.3 0.1 
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05.10.1988 19:07 

       78 05.10.1988 20:09 2.31 0.00 0.00 0.98 0.05 5.7 0.5 

 

10.10.1988 05:21 

       79 10.10.1988 07:11 4.92 0.01 0.00 1.01 0.05 9.5 0.8 

 

10.10.1988 09:08 

       80 10.10.1988 09:47 1.06 0.00 0.00 0.81 0.04 0.5 0.0 

 

13.11.1988 15:11 

       81 13.11.1988 15:30 0.06 0.00 0.00 0.60 0.03 0.3 0.0 

 

05.12.1988 04:12 

       82 05.12.1988 05:53 2.12 0.00 0.00 0.87 0.04 4.8 0.4 

 

05.12.1988 23:21 

       83 06.12.1988 00:23 2.2 0.00 0.00 0.92 0.05 7.4 0.6 

 

10.05.1989 19:35 

       84 10.05.1989 19:53 0.03 0.00 0.00 0.60 0.03 0.6 0.0 

 

01.06.1989 16:49 

       85 01.06.1989 18:28 3.84 0.01 0.00 0.91 0.05 9.7 0.8 

 

02.07.1989 14:57 

       86 02.07.1989 16:36 4.89 0.01 0.00 0.98 0.05 7.7 0.6 

 

27.07.1989 20:19 

       87 27.07.1989 21:53 16.6 0.02 0.01 1.24 0.06 3.2 0.3 

 

31.07.1989 10:42 

       88 31.07.1989 13:11 0.71 0.00 0.00 0.67 0.03 8.3 0.7 

 

31.07.1989 23:51 

       89 01.08.1989 00:38 4.62 0.01 0.00 0.87 0.04 3.7 0.3 

 

01.08.1989 01:00 

       90 01.08.1989 01:23 0.32 0.00 0.00 0.76 0.04 0.1 0.0 

 

01.08.1989 03:56 

       91 01.08.1989 09:16 54.53 0.07 0.04 1.24 0.06 44.7 3.6 

 

01.08.1989 10:59 

       92 01.08.1989 11:06 0.05 0.00 0.00 0.81 0.04 0 0.0 

 

08.08.1989 10:51 

       93 08.08.1989 12:26 2.52 0.00 0.00 1.06 0.05 7.5 0.6 

 

08.08.1989 16:01 

       94 08.08.1989 16:30 0.39 0.00 0.00 0.82 0.04 2.2 0.2 

 

14.08.1989 16:22 

       95 14.08.1989 17:05 11.47 0.02 0.01 1.29 0.06 0.3 0.0 

 

27.08.1989 12:38 

       96 27.08.1989 13:50 2.45 0.00 0.00 0.93 0.05 5.6 0.4 

 

27.08.1989 14:59 

       97 27.08.1989 17:30 10.04 0.01 0.01 1.06 0.05 15.3 1.2 

 

27.08.1989 22:31 

       98 27.08.1989 22:51 0.22 0.00 0.00 0.81 0.04 2.7 0.2 

 

28.08.1989 00:57 

       99 28.08.1989 03:27 3.58 0.00 0.00 1.01 0.05 10.1 0.8 

 

28.08.1989 04:54 

       100 28.08.1989 07:20 3.24 0.00 0.00 0.99 0.05 12.5 1.0 

 

14.10.1989 19:48 

       101 14.10.1989 22:21 0.01 0.00 0.00 0.67 0.03 9.9 0.8 

 

19.12.1989 05:04 

       102 19.12.1989 07:14 0.81 0.00 0.00 0.66 0.03 4.3 0.3 

 

14.02.1990 06:41 

       103 14.02.1990 07:02 0.03 0.00 0.00 0.54 0.03 1 0.1 

 

15.02.1990 03:41 
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104 15.02.1990 13:55 7.83 0.01 0.01 1.11 0.06 21.9 1.8 

 

23.03.1990 04:49 

       105 23.03.1990 06:45 3.66 0.00 0.00 0.74 0.04 13.8 1.1 

 

13.05.1990 19:26 

       106 13.05.1990 21:22 30.12 0.04 0.02 1.24 0.06 11.5 0.9 

 

14.05.1990 21:02 

       107 14.05.1990 21:28 2.99 0.00 0.00 0.93 0.05 0.1 0.0 

 

19.05.1990 16:34 

       108 19.05.1990 20:57 137.17 0.19 0.09 2.52 0.13 25.5 2.0 

 

22.05.1990 23:49 

       109 23.05.1990 00:04 0.07 0.00 0.00 0.25 0.01 0.1 0.0 

 

24.05.1990 21:53 

       110 24.05.1990 22:21 0.52 0.00 0.00 0.56 0.03 0.5 0.0 

 

25.05.1990 06:54 

       111 25.05.1990 10:39 27.37 0.04 0.02 1.15 0.06 21.1 1.7 

 

08.06.1990 08:00 

       112 08.06.1990 10:43 13.24 0.02 0.01 1.09 0.05 17.7 1.4 

 

01.07.1990 06:11 

       113 01.07.1990 06:37 1.66 0.00 0.00 0.78 0.04 0.5 0.0 

 

05.07.1990 17:24 

       114 05.07.1990 19:02 15.34 0.02 0.01 1.13 0.06 10 0.8 

 

29.07.1990 21:15 

       115 29.07.1990 22:50 45.9 0.06 0.03 1.30 0.07 8 0.6 

 

06.08.1990 15:37 

       116 06.08.1990 17:56 68.74 0.09 0.05 1.84 0.09 24.4 2.0 

 

17.08.1990 07:32 

       117 17.08.1990 08:50 7.72 0.01 0.01 0.96 0.05 6.8 0.5 

 

23.09.1990 05:07 

       118 23.09.1990 09:43 19.18 0.03 0.01 1.08 0.05 33.2 2.7 

 

24.09.1990 04:00 

       119 24.09.1990 07:15 6.9 0.01 0.00 1.04 0.05 11.9 1.0 

 

29.10.1990 08:07 

       120 29.10.1990 08:35 0.65 0.00 0.00 0.76 0.04 1.2 0.1 

 

31.10.1990 12:30 

       121 31.10.1990 13:24 0.26 0.00 0.00 0.60 0.03 2.8 0.2 

 

11.11.1990 16:47 

       122 11.11.1990 19:09 3.81 0.01 0.00 0.81 0.04 8.6 0.7 

 

20.03.1991 02:25 

       123 20.03.1991 07:08 6.6 0.01 0.00 0.81 0.04 11.4 0.9 

 

03.06.1991 07:17 

       124 03.06.1991 09:42 2.01 0.00 0.00 0.68 0.03 8.1 0.6 

 

08.06.1991 07:58 

       125 08.06.1991 16:01 6.3 0.01 0.00 0.81 0.04 6.3 0.5 

 

10.06.1991 03:56 

       126 10.06.1991 04:02 0.03 0.00 0.00 0.55 0.03 0.2 0.0 

 

16.06.1991 12:55 

       127 16.06.1991 13:58 0.41 0.00 0.00 0.63 0.03 4.4 0.4 

 

16.06.1991 19:51 

       128 16.06.1991 20:15 0.28 0.00 0.00 0.63 0.03 0.5 0.0 

 

17.06.1991 07:20 

       129 17.06.1991 08:58 6.13 0.01 0.00 0.95 0.05 6.5 0.5 

 

26.06.1991 14:55 

       130 26.06.1991 15:21 5.04 0.01 0.00 1.19 0.06 0.4 0.0 
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27.06.1991 11:46 

       131 27.06.1991 12:23 0.16 0.00 0.00 0.56 0.03 0.2 0.0 

 

28.06.1991 22:38 

       132 29.06.1991 00:02 2.34 0.00 0.00 0.71 0.04 4.8 0.4 

 

12.07.1991 17:41 

       133 12.07.1991 18:54 38.95 0.05 0.03 1.72 0.09 7.5 0.6 

 

14.07.1991 09:56 

       134 14.07.1991 10:02 0.05 0.00 0.00 0.33 0.02 0.1 0.0 

 

14.07.1991 23:49 

       135 14.07.1991 23:58 0.04 0.00 0.00 0.48 0.02 0.4 0.0 

 

24.07.1991 13:53 

       136 24.07.1991 14:16 5.87 0.01 0.00 0.99 0.05 0.2 0.0 

 

26.07.1991 07:53 

       137 26.07.1991 08:57 4.84 0.01 0.00 0.78 0.04 2.4 0.2 

 

11.09.1991 20:01 

       138 11.09.1991 20:09 0.07 0.00 0.00 0.49 0.02 0.3 0.0 

 

23.09.1991 05:40 

       139 23.09.1991 06:41 0.57 0.00 0.00 0.53 0.03 1.1 0.1 

 

27.09.1991 05:20 

       140 27.09.1991 05:51 0.21 0.00 0.00 0.52 0.03 1.4 0.1 

 

30.09.1991 13:27 

       141 30.09.1991 13:50 0.17 0.00 0.00 0.46 0.02 0.5 0.0 

 

22.12.1991 05:08 

       142 22.12.1991 15:13 2.67 0.00 0.00 1.32 0.07 13.3 1.1 

 

15.03.1992 22:18 

       143 15.03.1992 22:48 0.08 0.00 0.00 0.56 0.03 1.6 0.1 

 

23.04.1992 08:51 

       144 23.04.1992 13:08 12.97 0.02 0.01 0.89 0.04 19.5 1.6 

 

28.04.1992 15:48 

       145 28.04.1992 20:46 11.21 0.02 0.01 0.87 0.04 12.7 1.0 

 

26.05.1992 20:40 

       146 26.05.1992 21:13 0.33 0.00 0.00 0.55 0.03 0.7 0.1 

 

10.06.1992 15:03 

       147 10.06.1992 15:23 0.17 0.00 0.00 0.47 0.02 0.6 0.0 

 

11.06.1992 07:56 

       148 11.06.1992 11:09 17.81 0.02 0.01 0.93 0.05 13.1 1.0 

 

21.08.1992 17:54 

       149 21.08.1992 21:20 169.85 0.23 0.11 4.46 0.22 15.3 1.2 

 

30.08.1992 00:27 

       150 30.08.1992 01:10 0.89 0.00 0.00 0.34 0.02 2.1 0.2 

 

31.08.1992 19:24 

       151 31.08.1992 23:03 36.94 0.05 0.02 0.96 0.05 17.8 1.4 

 

04.09.1992 07:43 

       152 04.09.1992 11:11 2.24 0.00 0.00 0.66 0.03 3.5 0.3 

 

04.09.1992 12:25 

       153 04.09.1992 13:40 2.39 0.00 0.00 0.71 0.04 2.5 0.2 

 

18.09.1992 22:31 

       154 18.09.1992 22:37 0.05 0.00 0.00 0.33 0.02 0 0.0 

 

25.10.1992 23:34 

       155 26.10.1992 00:11 0.14 0.00 0.00 0.47 0.02 0.4 0.0 

 

28.10.1992 19:39 

       156 28.10.1992 22:20 10.44 0.01 0.01 0.81 0.04 6.9 0.6 

 

12.12.1992 11:19 
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157 12.12.1992 11:25 0.07 0.00 0.00 0.55 0.03 0.4 0.0 

 

12.01.1993 17:05 

       158 12.01.1993 18:49 1.52 0.00 0.00 0.43 0.02 6.4 0.5 

 

17.03.1993 18:40 

       159 17.03.1993 18:51 0.07 0.00 0.00 0.14 0.01 0 0.0 

 

06.04.1993 08:47 

       160 06.04.1993 13:23 1.21 0.00 0.00 0.55 0.03 12 1.0 

 

03.05.1993 18:08 

       161 03.05.1993 18:14 0.05 0.00 0.00 0.46 0.02 0.4 0.0 

 

30.05.1993 18:38 

       162 30.05.1993 20:02 1.49 0.00 0.00 0.61 0.03 0.5 0.0 

 

02.06.1993 15:55 

       163 02.06.1993 16:18 0.08 0.00 0.00 0.34 0.02 0.2 0.0 

 

11.06.1993 18:03 

       164 11.06.1993 22:26 59.68 0.08 0.04 1.33 0.07 36.4 2.9 

 

17.06.1993 09:48 

       165 17.06.1993 10:45 14.28 0.02 0.01 1.19 0.06 2.8 0.2 

 

17.06.1993 13:57 

       166 17.06.1993 14:22 2.37 0.00 0.00 0.82 0.04 0.0 0.0 

 

23.06.1993 17:58 

       167 23.06.1993 18:32 0.36 0.00 0.00 0.64 0.03 0.6 0.0 

 

05.07.1993 21:20 

       168 06.07.1993 00:23 36.63 0.05 0.02 1.39 0.07 24.8 2.0 

 

06.07.1993 01:47 

       169 06.07.1993 06:06 85.49 0.12 0.06 1.84 0.09 24.8 2.0 

 

10.07.1993 21:59 

       170 11.07.1993 05:14 4.92 0.01 0.00 0.82 0.04 23.3 1.9 

 

15.07.1993 02:40 

       171 15.07.1993 03:04 0.21 0.00 0.00 0.56 0.03 0 0.0 

 

17.07.1993 17:22 

       172 17.07.1993 22:46 113.77 0.15 0.08 3.63 0.18 19.9 1.6 

 

18.07.1993 04:12 

       173 18.07.1993 05:35 0.98 0.00 0.00 0.46 0.02 0 0.0 

 

18.07.1993 18:08 

       174 18.07.1993 20:52 96.12 0.13 0.06 2.46 0.12 21.1 1.7 

 

31.07.1993 05:03 

       175 31.07.1993 07:22 64.66 0.09 0.04 1.80 0.09 21.7 1.7 

 

10.08.1993 16:02 

       176 10.08.1993 17:02 6.36 0.01 0.00 1.48 0.07 4.5 0.4 

 

27.08.1993 18:04 

       177 27.08.1993 20:44 4.57 0.01 0.00 0.80 0.04 11.7 0.9 

 

04.09.1993 04:55 

       178 04.09.1993 08:29 6.12 0.01 0.00 0.94 0.05 14 1.1 

 

13.09.1993 22:43 

       179 13.09.1993 23:40 2.67 0.00 0.00 0.77 0.04 2.6 0.2 

 

08.10.1993 16:22 

       180 08.10.1993 17:18 2.28 0.00 0.00 0.71 0.04 2.6 0.2 

 

08.10.1993 21:34 

       181 09.10.1993 03:58 11.73 0.02 0.01 0.88 0.04 27.4 2.2 

 

14.10.1993 08:31 

       182 14.10.1993 08:48 0.06 0.00 0.00 0.52 0.03 0.4 0.0 

 

06.11.1993 18:30 

       183 06.11.1993 19:43 2.21 0.00 0.00 0.73 0.04 7.1 0.6 
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09.12.1993 08:01 

       184 09.12.1993 08:27 0.04 0.00 0.00 0.12 0.01 0 0.0 

 

19.12.1993 23:27 

       185 20.12.1993 10:27 13.06 0.02 0.01 0.91 0.05 5.3 0.4 

 

21.12.1993 08:34 

       186 21.12.1993 10:54 9.39 0.01 0.01 0.85 0.04 7.7 0.6 

 

25.01.1994 22:29 

       187 25.01.1994 22:51 0.07 0.00 0.00 0.46 0.02 0.9 0.1 

 

26.03.1994 02:51 

       188 26.03.1994 09:54 44.52 0.06 0.03 1.21 0.06 42.9 3.4 

 

25.04.1994 18:54 

       189 25.04.1994 21:52 12.3 0.02 0.01 1.27 0.06 20.7 1.7 

 

19.05.1994 01:56 

       190 19.05.1994 12:25 20.04 0.03 0.01 1.32 0.07 40.3 3.2 

 

24.05.1994 20:51 

       191 24.05.1994 22:15 1.83 0.00 0.00 0.82 0.04 5.9 0.5 

 

26.05.1994 23:28 

       192 27.05.1994 00:12 3.03 0.00 0.00 0.91 0.05 1.8 0.1 

 

29.05.1994 07:16 

       193 29.05.1994 08:54 2.98 0.00 0.00 0.97 0.05 4.4 0.4 

 

09.06.1994 01:01 

       194 09.06.1994 03:06 2.59 0.00 0.00 0.87 0.04 10.1 0.8 

 

09.06.1994 06:19 

       195 09.06.1994 07:38 1.89 0.00 0.00 0.87 0.04 6.4 0.5 

 

06.07.1994 21:31 

       196 06.07.1994 22:59 19.6 0.03 0.01 1.61 0.08 3.1 0.2 

 

08.08.1994 17:23 

       197 08.08.1994 19:24 40.29 0.05 0.03 1.86 0.09 15 1.2 

 

10.08.1994 21:49 

       198 10.08.1994 22:20 0.23 0.00 0.00 0.43 0.02 0.9 0.1 

 

13.08.1994 19:53 

       199 13.08.1994 22:08 6.35 0.01 0.00 0.81 0.04 11.3 0.9 

 

17.08.1994 23:56 

       200 18.08.1994 00:08 0.09 0.00 0.00 0.44 0.02 0.6 0.0 

 

18.08.1994 02:19 

       201 18.08.1994 02:25 0.04 0.00 0.00 0.47 0.02 0.1 0.0 

 

18.08.1994 05:22 

       202 18.08.1994 05:40 0.15 0.00 0.00 0.54 0.03 0 0.0 

 

02.09.1994 03:27 

       203 02.09.1994 04:34 2.09 0.00 0.00 0.82 0.04 3.7 0.3 

 

08.09.1994 18:09 

       204 08.09.1994 20:47 30.39 0.04 0.02 1.41 0.07 16.7 1.3 

 

14.09.1994 18:55 

       205 14.09.1994 19:35 1.11 0.00 0.00 0.81 0.04 1.9 0.2 

 

14.09.1994 21:42 

       206 14.09.1994 22:09 0.3 0.00 0.00 0.66 0.03 2.1 0.2 

 

15.09.1994 21:33 

       207 15.09.1994 22:36 0.6 0.00 0.00 0.63 0.03 3.0 0.2 

 

10.12.1994 06:20 

       208 10.12.1994 06:36 0.2 0.00 0.00 0.42 0.02 0.3 0.0 

 

28.12.1994 04:45 

       209 28.12.1994 15:08 41.65 0.06 0.03 0.89 0.04 35.2 2.8 

 

25.01.1995 13:37 
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210 25.01.1995 14:53 0.62 0.00 0.00 0.46 0.02 0.2 0.0 

 

16.02.1995 04:12 

       211 16.02.1995 04:25 0.08 0.00 0.00 0.45 0.02 0 0.0 

 

18.03.1995 08:17 

       212 18.03.1995 09:43 0.54 0.00 0.00 0.53 0.03 5 0.4 

 

25.04.1995 17:31 

       213 25.04.1995 23:52 16.18 0.02 0.01 0.72 0.04 34.7 2.8 

 

13.05.1995 04:36 

       214 13.05.1995 05:47 0.27 0.00 0.00 0.53 0.03 2.2 0.2 

 

18.05.1995 20:02 

       215 18.05.1995 21:30 1.54 0.00 0.00 0.65 0.03 6.2 0.5 

 

30.05.1995 17:37 

       216 30.05.1995 21:27 25.34 0.03 0.02 1.22 0.06 20.7 1.7 

 

01.06.1995 13:57 

       217 01.06.1995 16:23 0.47 0.00 0.00 0.61 0.03 4 0.3 

 

11.07.1995 21:57 

       218 11.07.1995 22:23 4.04 0.01 0.00 1.16 0.06 9.5 0.8 

 

11.07.1995 22:38 

       219 12.07.1995 00:30 47.43 0.06 0.03 1.86 0.09 12.6 1.0 

 

13.07.1995 17:59 

       220 13.07.1995 19:04 23.52 0.03 0.02 2.06 0.10 3.8 0.3 

 

14.07.1995 15:21 

       221 14.07.1995 19:29 461.88 0.62 0.31 9.75 0.49 18.9 1.5 

 

22.07.1995 22:19 

       222 22.07.1995 23:16 1.51 0.00 0.00 0.32 0.02 0.4 0.0 

 

31.07.1995 17:18 

       223 31.07.1995 18:56 48.13 0.07 0.03 1.80 0.09 0.9 0.1 

 

08.08.1995 23:04 

       224 09.08.1995 03:31 55.31 0.07 0.04 0.83 0.04 21.9 1.8 

 

12.08.1995 16:18 

       225 12.08.1995 16:27 0.11 0.00 0.00 0.70 0.04 0 0.0 

 

13.08.1995 10:17 

       226 13.08.1995 12:09 63.27 0.09 0.04 1.84 0.09 7.6 0.6 

 

14.08.1995 04:28 

       227 14.08.1995 05:11 2.5 0.00 0.00 0.65 0.03 2.0 0.2 

 

20.08.1995 09:15 

       228 20.08.1995 09:45 1.04 0.00 0.00 0.45 0.02 0 0.0 

 

20.08.1995 15:04 

       229 20.08.1995 16:58 32.62 0.04 0.02 1.18 0.06 3.4 0.3 

 

28.08.1995 02:15 

       230 28.08.1995 07:08 110.75 0.15 0.07 1.32 0.07 30.3 2.4 

 

29.08.1995 02:46 

       231 29.08.1995 14:08 44.44 0.06 0.03 0.78 0.04 45.3 3.6 

 

07.09.1995 17:33 

       232 07.09.1995 18:23 0.46 0.00 0.00 0.51 0.03 1.8 0.1 

 

13.09.1995 18:22 

       233 13.09.1995 18:28 0.06 0.00 0.00 0.49 0.02 0 0.0 

 

28.09.1995 00:10 

       234 28.09.1995 03:45 5.68 0.01 0.00 0.52 0.03 7.2 0.6 

 

01.11.1995 23:34 

       235 02.11.1995 01:57 3.06 0.00 0.00 0.50 0.03 15.8 1.3 

 

24.12.1995 22:49 

       236 25.12.1995 00:17 0.55 0.00 0.00 0.48 0.02 2 0.2 
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25.12.1995 03:28 

       237 25.12.1995 04:03 0.03 0.00 0.00 0.38 0.02 0.5 0.0 

 

25.12.1995 13:29 

       238 25.12.1995 17:51 2.76 0.00 0.00 0.51 0.03 11.9 1.0 

 

25.12.1995 22:13 

       239 25.12.1995 23:17 0.69 0.00 0.00 0.49 0.02 2.9 0.2 

 

26.12.1995 00:58 

       240 26.12.1995 01:04 0.01 0.00 0.00 0.35 0.02 0.6 0.0 

 

23.03.1996 04:26 

       241 23.03.1996 08:29 0.46 0.00 0.00 0.39 0.02 0.2 0.0 

 

27.03.1996 03:11 

       242 27.03.1996 04:30 0.15 0.00 0.00 0.36 0.02 0.5 0.0 

 

27.03.1996 08:36 

       243 27.03.1996 08:45 0.19 0.00 0.00 0.31 0.02 0.1 0.0 

 

08.05.1996 19:14 

       244 08.05.1996 20:43 69.54 0.09 0.05 1.51 0.08 3.9 0.3 

 

12.05.1996 19:31 

       245 12.05.1996 22:08 3.46 0.00 0.00 0.53 0.03 8 0.6 

 

19.05.1996 20:04 

       246 20.05.1996 01:19 28.27 0.04 0.02 0.81 0.04 20.9 1.7 

 

25.05.1996 19:13 

       247 25.05.1996 20:00 1.38 0.00 0.00 0.43 0.02 1.2 0.1 

 

27.05.1996 08:21 

       248 27.05.1996 08:47 0.43 0.00 0.00 0.34 0.02 0.3 0.0 

 

27.05.1996 17:16 

       249 27.05.1996 17:32 0.26 0.00 0.00 0.34 0.02 0.8 0.1 

 

27.05.1996 21:40 

       250 28.05.1996 00:13 3.36 0.00 0.00 0.43 0.02 6.5 0.5 

 

28.05.1996 02:56 

       251 28.05.1996 08:28 12.58 0.02 0.01 0.59 0.03 8.9 0.7 

 

10.06.1996 20:18 

       252 10.06.1996 20:28 0.2 0.00 0.00 0.36 0.02 0.1 0.0 

 

12.06.1996 20:01 

       253 12.06.1996 21:20 18.21 0.02 0.01 1.14 0.06 3 0.2 

 

22.06.1996 07:05 

       254 22.06.1996 07:46 0.43 0.00 0.00 0.30 0.02 1.3 0.1 

 

02.07.1996 17:34 

       255 02.07.1996 19:11 5.61 0.01 0.00 0.47 0.02 3.9 0.3 

 

05.07.1996 17:10 

       256 05.07.1996 18:07 1.5 0.00 0.00 0.44 0.02 1.8 0.1 

 

08.07.1996 00:55 

       257 08.07.1996 19:02 143.55 0.19 0.10 1.31 0.07 110 8.8 

 

09.07.1996 03:01 

       258 09.07.1996 03:28 0.44 0.00 0.00 0.60 0.03 0.3 0.0 

 

10.07.1996 19:24 

       259 10.07.1996 21:14 4.51 0.01 0.00 0.86 0.04 7.7 0.6 

 

10.07.1996 22:57 

       260 11.07.1996 00:17 1.53 0.00 0.00 0.62 0.03 3.4 0.3 

 

30.07.1996 06:39 

       261 30.07.1996 07:32 3.86 0.01 0.00 1.07 0.05 1.1 0.1 

 

30.07.1996 08:46 

       262 30.07.1996 09:26 1.44 0.00 0.00 0.68 0.03 0.2 0.0 

 

03.08.1996 13:25 
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263 03.08.1996 14:58 11.74 0.02 0.01 1.10 0.06 8.7 0.7 

 

11.08.1996 22:17 

       264 11.08.1996 22:52 1.01 0.00 0.00 0.74 0.04 1 0.1 

 

12.08.1996 02:37 

       265 12.08.1996 03:33 1.17 0.00 0.00 0.76 0.04 2.8 0.2 

 

27.08.1996 20:30 

       266 27.08.1996 21:15 0.61 0.00 0.00 0.56 0.03 2.7 0.2 

 

28.08.1996 02:46 

       267 28.08.1996 03:21 0.68 0.00 0.00 0.58 0.03 1.2 0.1 

 

28.08.1996 04:57 

       268 28.08.1996 07:11 13.03 0.02 0.01 0.88 0.04 10.3 0.8 

 

21.10.1996 18:46 

       269 21.10.1996 20:09 16.29 0.02 0.01 1.07 0.05 3.6 0.3 

 

26.10.1996 06:32 

       270 26.10.1996 08:12 12.02 0.02 0.01 0.81 0.04 7 0.6 

 

07.11.1996 18:41 

       271 07.11.1996 21:36 34.5 0.05 0.02 0.99 0.05 16.6 1.3 

 

26.02.1997 12:12 

       272 26.02.1997 14:16 0.88 0.00 0.00 0.59 0.03 4.5 0.4 

 

28.03.1997 11:35 

       273 28.03.1997 13:34 1.43 0.00 0.00 0.66 0.03 8.1 0.6 

 

26.04.1997 06:58 

       274 26.04.1997 08:57 1.17 0.00 0.00 0.47 0.02 2.8 0.2 

 

27.04.1997 04:10 

       275 27.04.1997 05:46 2 0.00 0.00 0.50 0.03 4.2 0.3 

 

29.04.1997 01:08 

       276 29.04.1997 02:04 2.36 0.00 0.00 0.61 0.03 0.1 0.0 

 

29.04.1997 03:00 

       277 29.04.1997 04:13 1.67 0.00 0.00 0.59 0.03 2.7 0.2 

 

29.04.1997 18:12 

       278 29.04.1997 20:19 1.86 0.00 0.00 0.62 0.03 3.2 0.3 

 

07.06.1997 23:17 

       279 08.06.1997 00:34 17.22 0.02 0.01 1.21 0.06 5.5 0.4 

 

16.06.1997 17:40 

       280 16.06.1997 18:55 30.19 0.04 0.02 1.26 0.06 2.7 0.2 

 

22.06.1997 06:42 

       281 22.06.1997 08:21 1.69 0.00 0.00 0.50 0.03 5.7 0.5 

 

05.07.1997 17:08 

       282 05.07.1997 23:15 6.09 0.01 0.00 0.72 0.04 17.9 1.4 

 

06.07.1997 02:00 

       283 06.07.1997 07:43 4.59 0.01 0.00 0.93 0.05 4.8 0.4 

 

06.07.1997 21:06 

       284 06.07.1997 22:10 0.33 0.00 0.00 0.51 0.03 0.7 0.1 

 

18.07.1997 01:56 

       285 18.07.1997 02:35 3.56 0.00 0.00 0.91 0.05 0.3 0.0 

 

18.07.1997 08:32 

       286 18.07.1997 10:02 16.96 0.02 0.01 1.22 0.06 7 0.6 

 

18.07.1997 18:26 

       287 18.07.1997 19:26 2.02 0.00 0.00 0.74 0.04 3.1 0.2 

 

19.07.1997 00:27 

       288 19.07.1997 01:11 0.54 0.00 0.00 0.67 0.03 0.8 0.1 

 

25.07.1997 21:46 

       289 25.07.1997 22:23 0.59 0.00 0.00 0.54 0.03 1.9 0.2 
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26.07.1997 03:38 

       290 26.07.1997 03:52 0.13 0.00 0.00 0.49 0.02 0.5 0.0 

 

26.07.1997 06:24 

       291 26.07.1997 09:02 3.33 0.00 0.00 0.77 0.04 9.2 0.7 

 

25.08.1997 19:37 

       292 25.08.1997 20:27 2.85 0.00 0.00 0.81 0.04 4.3 0.3 

 

28.08.1997 14:49 

       293 28.08.1997 18:56 27.75 0.04 0.02 1.34 0.07 26.6 2.1 

 

12.09.1997 22:42 

       294 13.09.1997 01:00 222.72 0.30 0.15 3.12 0.16 23.1 1.8 

 

10.10.1997 23:34 

       295 10.10.1997 23:42 0.06 0.00 0.00 0.38 0.02 0 0.0 

 

12.10.1997 03:28 

       296 12.10.1997 04:08 0.89 0.00 0.00 0.57 0.03 1.4 0.1 

 

12.10.1997 05:34 

       297 12.10.1997 07:24 10.86 0.01 0.01 1.36 0.07 7.2 0.6 

 

12.10.1997 15:28 

       298 12.10.1997 17:09 5.33 0.01 0.00 0.63 0.03 3.9 0.3 

 

12.12.1997 01:02 

       299 12.12.1997 05:43 46.21 0.06 0.03 1.93 0.10 34.1 2.7 

 

26.12.1997 03:22 

       300 26.12.1997 05:05 2.92 0.00 0.00 0.64 0.03 14.7 1.2 

 

08.06.1998 00:18 

       301 08.06.1998 02:06 8 0.01 0.01 0.72 0.04 7.1 0.6 

 

10.06.1998 16:04 

       302 10.06.1998 17:19 0.56 0.00 0.00 0.56 0.03 2.2 0.2 

 

11.06.1998 07:42 

       303 11.06.1998 08:40 1.21 0.00 0.00 0.51 0.03 1.7 0.1 

 

12.06.1998 18:12 

       304 12.06.1998 18:17 0.08 0.00 0.00 0.44 0.02 0.4 0.0 

 

07.07.1998 17:24 

       305 07.07.1998 17:44 0.28 0.00 0.00 0.42 0.02 1.9 0.2 

 

13.07.1998 17:52 

       306 13.07.1998 19:09 8.7 0.01 0.01 1.04 0.05 2.5 0.2 

 

27.07.1998 23:18 

       307 28.07.1998 01:35 25.27 0.03 0.02 1.99 0.10 19.1 1.5 

 

22.08.1998 07:23 

       308 22.08.1998 08:01 0.72 0.00 0.00 0.48 0.02 3.1 0.2 

 

22.08.1998 21:13 

       309 22.08.1998 22:34 1.09 0.00 0.00 0.65 0.03 2.8 0.2 

 

22.08.1998 23:20 

       310 23.08.1998 02:52 19.66 0.03 0.01 1.76 0.09 28.7 2.3 

 

05.09.1998 06:38 

       311 05.09.1998 09:16 9.62 0.01 0.01 1.74 0.09 13.8 1.1 

 

11.09.1998 04:00 

       312 11.09.1998 04:29 0.78 0.00 0.00 0.56 0.03 0.7 0.1 

 

11.09.1998 08:30 

       313 11.09.1998 11:40 6.22 0.01 0.00 1.25 0.06 13.8 1.1 

 

11.09.1998 23:15 

       314 11.09.1998 23:21 0.05 0.00 0.00 0.55 0.03 0.4 0.0 

 

12.09.1998 01:52 

       315 12.09.1998 03:23 1.99 0.00 0.00 0.85 0.04 4.8 0.4 

 

29.09.1998 01:21 
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316 29.09.1998 01:40 0.3 0.00 0.00 0.45 0.02 0.2 0.0 

 

25.10.1998 05:34 

       317 25.10.1998 08:15 60.16 0.08 0.04 1.98 0.10 21.7 1.7 

 

29.10.1998 12:43 

       318 29.10.1998 14:08 2.46 0.00 0.00 0.84 0.04 10.9 0.9 

 

01.11.1998 11:39 

       319 01.11.1998 16:39 3.2 0.00 0.00 0.84 0.04 2.3 0.2 

 

10.11.1998 12:59 

       320 10.11.1998 15:51 5.53 0.01 0.00 0.86 0.04 15.2 1.2 

 

10.11.1998 22:12 

       321 10.11.1998 22:24 0.13 0.00 0.00 0.46 0.02 0.7 0.1 

 

20.02.1999 07:53 

       322 20.02.1999 11:05 1.09 0.00 0.00 0.54 0.03 2.8 0.2 

 

20.02.1999 13:43 

       323 20.02.1999 14:18 0.05 0.00 0.00 0.33 0.02 1.1 0.1 

 

21.02.1999 09:49 

       324 21.02.1999 09:58 0.14 0.00 0.00 0.29 0.01 0.7 0.1 

 

21.02.1999 11:55 

       325 21.02.1999 12:02 0.11 0.00 0.00 0.35 0.02 0.2 0.0 

 

07.04.1999 08:01 

       326 07.04.1999 10:16 1.15 0.00 0.00 0.89 0.04 3.8 0.3 

 

11.05.1999 21:44 

       327 11.05.1999 22:38 0.91 0.00 0.00 0.60 0.03 1.2 0.1 

 

12.05.1999 03:03 

       328 12.05.1999 11:49 51.51 0.07 0.03 1.96 0.10 45.1 3.6 

 

13.05.1999 02:12 

       329 13.05.1999 07:35 10.18 0.01 0.01 1.15 0.06 15.1 1.2 

 

13.05.1999 20:53 

       330 13.05.1999 21:48 0.65 0.00 0.00 0.69 0.03 0 0.0 

 

14.05.1999 08:37 

       331 14.05.1999 09:23 0.46 0.00 0.00 0.77 0.04 1.6 0.1 

 

14.05.1999 16:43 

       332 14.05.1999 16:49 0.06 0.00 0.00 0.58 0.03 0 0.0 

 

21.05.1999 05:25 

       333 21.05.1999 15:32 10.63 0.01 0.01 1.05 0.05 47 3.8 

 

08.06.1999 06:58 

       334 08.06.1999 09:34 10.05 0.01 0.01 1.20 0.06 18.9 1.5 

 

10.06.1999 18:07 

       335 10.06.1999 18:13 0.07 0.00 0.00 0.67 0.03 0.3 0.0 

 

11.06.1999 02:55 

       336 11.06.1999 03:01 0.09 0.00 0.00 0.65 0.03 0.2 0.0 

 

14.06.1999 00:13 

       337 14.06.1999 00:19 0.05 0.00 0.00 0.68 0.03 0.6 0.0 

 

21.06.1999 08:46 

       338 21.06.1999 09:51 0.93 0.00 0.00 0.89 0.04 7.7 0.6 

 

29.06.1999 22:08 

       339 29.06.1999 23:52 0.95 0.00 0.00 0.92 0.05 5.4 0.4 

 

12.07.1999 05:05 

       340 12.07.1999 05:26 0.34 0.00 0.00 0.68 0.03 0 0.0 

 

12.07.1999 07:17 

       341 12.07.1999 07:28 0.2 0.00 0.00 0.76 0.04 0 0.0 

 

12.07.1999 10:04 

       342 12.07.1999 10:37 0.96 0.00 0.00 0.88 0.04 0.4 0.0 
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11.08.1999 12:51 

       343 11.08.1999 13:04 0.31 0.00 0.00 0.63 0.03 0.1 0.0 

 

12.08.1999 21:44 

       344 12.08.1999 21:50 0.06 0.00 0.00 0.52 0.03 0.4 0.0 

 

28.08.1999 11:42 

       345 28.08.1999 12:24 2.21 0.00 0.00 0.89 0.04 1.8 0.1 

 

20.09.1999 15:47 

       346 20.09.1999 16:00 0.21 0.00 0.00 0.53 0.03 0.7 0.1 

 

20.09.1999 23:16 

       347 21.09.1999 00:12 1.24 0.00 0.00 0.66 0.03 2.6 0.2 

 

24.09.1999 02:47 

       348 24.09.1999 03:05 0.28 0.00 0.00 0.55 0.03 1.1 0.1 

 

30.09.1999 13:37 

       349 30.09.1999 14:15 1.11 0.00 0.00 0.60 0.03 1.6 0.1 

 

08.02.2000 22:47 

       350 09.02.2000 00:20 0.55 0.00 0.00 0.66 0.03 1.6 0.1 

 

15.03.2000 00:54 

       351 15.03.2000 02:54 1.63 0.00 0.00 0.87 0.04 20.8 1.7 

 

21.05.2000 23:53 

       352 22.05.2000 01:13 1.56 0.00 0.00 0.95 0.05 11.4 0.9 

 

22.05.2000 03:26 

       353 22.05.2000 03:52 0.18 0.00 0.00 0.58 0.03 1.2 0.1 

 

31.05.2000 05:19 

       354 31.05.2000 05:25 0.04 0.00 0.00 0.43 0.02 0.4 0.0 

 

31.05.2000 11:25 

       355 31.05.2000 14:18 6.13 0.01 0.00 1.39 0.07 30.6 2.4 

 

28.06.2000 12:57 

       356 28.06.2000 14:14 2.16 0.00 0.00 1.58 0.08 7.4 0.6 

 

08.07.2000 08:28 

       357 08.07.2000 08:44 0.09 0.00 0.00 0.61 0.03 1.8 0.1 

 

14.07.2000 17:47 

       358 14.07.2000 18:24 0.36 0.00 0.00 0.76 0.04 0 0.0 

 

14.07.2000 22:07 

       359 15.07.2000 00:35 1.02 0.00 0.00 1.03 0.05 18.6 1.5 

 

15.07.2000 09:20 

       360 15.07.2000 10:56 0.46 0.00 0.00 0.72 0.04 4 0.3 

 

28.07.2000 06:19 

       361 28.07.2000 06:46 0.39 0.00 0.00 0.91 0.05 1 0.1 

 

28.07.2000 07:50 

       362 28.07.2000 08:12 0.12 0.00 0.00 0.78 0.04 0 0.0 

 

06.08.2000 01:54 

       363 06.08.2000 05:27 9 0.01 0.01 1.85 0.09 49 3.9 

 

06.08.2000 13:57 

       364 06.08.2000 14:07 0.08 0.00 0.00 0.74 0.04 0 0.0 

 

03.09.2000 15:29 

       365 03.09.2000 15:35 0.04 0.00 0.00 0.51 0.03 4 0.3 

 

03.09.2000 21:51 

       366 03.09.2000 21:57 0.03 0.00 0.00 0.58 0.03 0 0.0 

 

20.09.2000 18:56 

       367 20.09.2000 20:36 1.15 0.00 0.00 1.52 0.08 21.4 1.7 

 

20.09.2000 23:04 

       368 21.09.2000 06:57 15.97 0.02 0.01 2.23 0.11 95.8 7.7 

 

21.09.2000 09:48 
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369 21.09.2000 09:54 0.02 0.00 0.00 1.08 0.05 0.2 0.0 

 

11.03.2001 17:01 

       370 12.03.2001 01:56 3.85 0.01 0.00 0.44 0.02 2.2 0.2 

 

12.03.2001 21:44 

       371 12.03.2001 22:38 0.34 0.00 0.00 0.26 0.01 1.4 0.1 

 

13.03.2001 01:14 

       372 13.03.2001 02:21 0.72 0.00 0.00 0.26 0.01 0.6 0.0 

 

20.03.2001 22:36 

       373 21.03.2001 02:19 2.22 0.00 0.00 0.44 0.02 1.1 0.1 

 

21.03.2001 04:02 

       374 21.03.2001 06:00 1.38 0.00 0.00 0.26 0.01 

 

0.0 

 

21.03.2001 11:08 

       375 21.03.2001 11:40 0.32 0.00 0.00 0.26 0.01 0.5 0.0 

 

21.03.2001 14:53 

       376 21.03.2001 20:03 1.57 0.00 0.00 2.02 0.10 6 0.5 

 

25.03.2001 03:17 

       377 25.03.2001 03:25 0.05 0.00 0.00 0.26 0.01 0 0.0 

 

25.03.2001 05:07 

       378 25.03.2001 08:11 1.62 0.00 0.00 0.48 0.02 1.4 0.1 

 

25.03.2001 09:37 

       379 25.03.2001 10:41 0.82 0.00 0.00 0.25 0.01 0 0.0 

 

25.03.2001 16:33 

       380 25.03.2001 16:37 0.78 0.00 0.00 0.22 0.01 0 0.0 

 

07.04.2001 00:00 

       381 07.04.2001 00:21 0.07 0.00 0.00 0.26 0.01 0.5 0.0 

 

07.04.2001 02:11 

       382 07.04.2001 03:19 0.57 0.00 0.00 0.26 0.01 0.1 0.0 

 

07.04.2001 06:16 

       383 07.04.2001 10:24 2.12 0.00 0.00 0.44 0.02 4.1 0.3 

 

07.04.2001 11:32 

       384 07.04.2001 12:50 0.89 0.00 0.00 0.27 0.01 0.6 0.0 

 

10.04.2001 00:01 

       385 10.04.2001 00:32 0.18 0.00 0.00 0.26 0.01 1 0.1 

 

10.04.2001 02:04 

       386 10.04.2001 04:20 1.4 0.00 0.00 0.26 0.01 1.3 0.1 

 

10.04.2001 05:50 

       387 10.04.2001 06:42 0.35 0.00 0.00 0.27 0.01 1.7 0.1 

 

10.04.2001 08:56 

       388 10.04.2001 09:27 0.06 0.00 0.00 0.35 0.02 0.2 0.0 

 

10.04.2001 11:13 

       389 10.04.2001 17:51 4.51 0.01 0.00 0.26 0.01 2.2 0.2 

 

05.05.2001 18:23 

       390 05.05.2001 23:10 3.36 0.00 0.00 0.51 0.03 4.4 0.4 

 

06.05.2001 00:34 

       391 06.05.2001 02:03 1.62 0.00 0.00 0.27 0.01 0.3 0.0 

 

24.05.2001 04:59 

       392 24.05.2001 08:09 3.42 0.00 0.00 0.56 0.03 3 0.2 

 

24.05.2001 17:54 

       393 24.05.2001 18:13 0.01 0.00 0.00 0.04 0.00 0 0.0 

 

24.05.2001 22:26 

       394 24.05.2001 23:24 2.13 0.00 0.00 1.87 0.09 1.1 0.1 

 

02.06.2001 22:02 

       395 02.06.2001 23:56 1.24 0.00 0.00 0.29 0.01 0.3 0.0 
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03.06.2001 05:04 

       396 03.06.2001 09:37 0.9 0.00 0.00 0.83 0.04 6.1 0.5 

 

06.06.2001 07:11 

       397 06.06.2001 07:45 0.46 0.00 0.00 1.41 0.07 0.5 0.0 

 

06.06.2001 10:47 

       398 06.06.2001 13:29 1.18 0.00 0.00 0.81 0.04 2.9 0.2 

 

06.06.2001 16:15 

       399 06.06.2001 16:32 0.17 0.00 0.00 0.25 0.01 0.1 0.0 

 

08.06.2001 21:49 

       400 09.06.2001 04:13 4.44 0.01 0.00 0.34 0.02 5.9 0.5 

 

09.06.2001 09:47 

       401 09.06.2001 13:56 2.92 0.00 0.00 0.29 0.01 1.9 0.2 

 

10.06.2001 07:18 

       402 10.06.2001 23:26 17.59 0.02 0.01 0.66 0.03 14.4 1.2 

 

15.06.2001 21:14 

       403 16.06.2001 00:26 5.29 0.01 0.00 0.82 0.04 3.6 0.3 

 

16.06.2001 05:17 

       404 16.06.2001 07:01 2.57 0.00 0.00 0.24 0.01 0.8 0.1 

 

16.06.2001 13:14 

       405 16.06.2001 17:07 3.66 0.00 0.00 0.49 0.02 1.8 0.1 

 

16.06.2001 23:01 

       406 16.06.2001 23:50 1.66 0.00 0.00 0.24 0.01 0.1 0.0 

 

17.06.2001 01:28 

       407 17.06.2001 03:28 2.48 0.00 0.00 0.34 0.02 0.3 0.0 

 

17.06.2001 05:18 

       408 17.06.2001 06:07 0.49 0.00 0.00 0.22 0.01 0.4 0.0 

 

17.06.2001 18:21 

       409 17.06.2001 19:47 2.12 0.00 0.00 0.34 0.02 0.1 0.0 

 

18.06.2001 02:12 

       410 18.06.2001 03:25 2.8 0.00 0.00 0.25 0.01 0.1 0.0 

 

18.06.2001 05:46 

       411 19.06.2001 07:54 31.49 0.04 0.02 0.50 0.03 19.5 1.6 

 

27.06.2001 16:28 

       412 27.06.2001 17:33 3.27 0.00 0.00 0.24 0.01 1.1 0.1 

 

27.06.2001 22:16 

       413 27.06.2001 23:28 4.23 0.01 0.00 0.25 0.01 0 0.0 

 

28.06.2001 16:22 

       414 28.06.2001 21:13 13.42 0.02 0.01 0.56 0.03 1.4 0.1 

 

15.07.2001 12:21 

       415 16.07.2001 00:26 9.55 0.01 0.01 1.18 0.06 6.9 0.6 

 

16.07.2001 02:21 

       416 16.07.2001 06:02 0.97 0.00 0.00 0.37 0.02 1.8 0.1 

 

18.07.2001 07:02 

       417 18.07.2001 11:50 8.55 0.01 0.01 0.40 0.02 5.2 0.4 

 

20.07.2001 00:18 

       418 20.07.2001 03:28 4.81 0.01 0.00 0.71 0.04 2 0.2 

 

20.07.2001 06:12 

       419 20.07.2001 09:37 2.53 0.00 0.00 1.73 0.09 2.2 0.2 

 

20.07.2001 11:35 

       420 20.07.2001 13:09 0.65 0.00 0.00 0.26 0.01 1.8 0.1 

 

20.07.2001 14:30 

       421 20.07.2001 16:15 1.98 0.00 0.00 0.28 0.01 0.7 0.1 

 

04.08.2001 06:17 
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422 04.08.2001 09:41 10.12 0.01 0.01 0.66 0.03 1.5 0.1 

 

20.08.2001 17:48 

       423 20.08.2001 21:36 38.26 0.05 0.03 3.19 0.16 

  

 

31.08.2001 13:43 

       424 31.08.2001 15:24 3.09 0.00 0.00 0.41 0.02 0.8 0.1 

 

31.08.2001 19:18 

       425 01.09.2001 01:04 8.87 0.01 0.01 0.45 0.02 2.4 0.2 

 

04.09.2001 06:25 

       426 04.09.2001 08:26 2.2 0.00 0.00 0.31 0.02 0.9 0.1 

 

04.09.2001 15:51 

       427 04.09.2001 19:22 4.26 0.01 0.00 0.33 0.02 0 0.0 

 

04.09.2001 20:45 

       428 05.09.2001 23:12 26.8 0.04 0.02 0.70 0.04 3.1 0.2 

 

07.09.2001 05:14 

       429 07.09.2001 11:12 5.93 0.01 0.00 0.34 0.02 3.8 0.3 

 

09.09.2001 01:07 

       430 09.09.2001 01:46 3.34 0.00 0.00 1.58 0.08 1.2 0.1 

 

09.09.2001 02:56 

       431 09.09.2001 07:27 3.11 0.00 0.00 1.24 0.06 17.4 1.4 

 

16.09.2001 06:25 

       432 17.09.2001 03:46 10.76 0.01 0.01 1.12 0.06 16.1 1.3 

 

21.09.2001 00:53 

       433 21.09.2001 13:53 7.67 0.01 0.01 0.70 0.04 7 0.6 

 

30.11.2001 04:47 

       434 30.11.2001 23:31 7.61 0.01 0.01 1.03 0.05 21.8 1.7 

 

30.12.2001 00:01 

       435 30.12.2001 03:03 30.34 0.04 0.02 0.35 0.02 3.1 0.2 

 

30.12.2001 05:08 

       436 30.12.2001 05:36 0.09 0.00 0.00 0.21 0.01 0.7 0.1 

 

30.12.2001 07:28 

       437 30.12.2001 07:34 0.04 0.00 0.00 0.13 0.01 0.2 0.0 

 

28.06.2002 04:24 

       438 28.06.2002 13:13 5.63 0.01 0.00 0.70 0.04 27.5 2.2 

 

06.07.2002 07:58 

       439 06.07.2002 09:08 0.52 0.00 0.00 0.39 0.02 2.5 0.2 

 

06.07.2002 10:11 

       440 06.07.2002 10:38 0.34 0.00 0.00 0.20 0.01 0 0.0 

 

06.07.2002 13:04 

       441 06.07.2002 13:20 0.26 0.00 0.00 0.21 0.01 0.4 0.0 

 

06.07.2002 14:29 

       442 06.07.2002 15:06 0.49 0.00 0.00 0.20 0.01 1 0.1 

 

06.07.2002 17:17 

       443 06.07.2002 17:19 0.23 0.00 0.00 0.17 0.01 2.9 0.2 

 

15.07.2002 21:01 

       444 16.07.2002 01:12 5.44 0.01 0.00 1.06 0.05 7.6 0.6 

 

16.07.2002 14:13 

       445 16.07.2002 20:28 5.84 0.01 0.00 0.73 0.04 9.7 0.8 

 

17.07.2002 12:05 

       446 18.07.2002 09:47 33.86 0.05 0.02 1.53 0.08 70.8 5.7 

 

05.08.2002 01:29 

       447 05.08.2002 02:37 1.2 0.00 0.00 0.22 0.01 0.4 0.0 

 

06.08.2002 10:43 

       448 06.08.2002 11:21 0.52 0.00 0.00 0.15 0.01 0.3 0.0 
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10.08.2002 14:39 

       449 10.08.2002 15:33 0.83 0.00 0.00 0.29 0.01 2.9 0.2 

 

10.08.2002 20:08 

       450 10.08.2002 22:56 2.83 0.00 0.00 0.30 0.02 1.3 0.1 

 

11.08.2002 06:26 

       451 11.08.2002 08:07 1.51 0.00 0.00 0.29 0.01 4.3 0.3 

 

11.08.2002 16:37 

       452 12.08.2002 09:27 31.54 0.04 0.02 1.79 0.09 57 4.6 

 

12.08.2002 12:20 

       453 12.08.2002 15:57 3.22 0.00 0.00 0.27 0.01 6.4 0.5 

 

12.08.2002 18:11 

       454 12.08.2002 19:18 1.27 0.00 0.00 0.19 0.01 1.1 0.1 

 

20.08.2002 14:25 

       455 20.08.2002 14:35 0.22 0.00 0.00 0.01 0.00 3.5 0.3 

 

20.08.2002 15:43 

       456 20.08.2002 16:06 0.28 0.00 0.00 0.01 0.00 7 0.6 

 

20.08.2002 18:52 

       457 20.08.2002 22:17 2.61 0.00 0.00 0.25 0.01 8.2 0.7 

 

31.08.2002 16:55 

       458 01.09.2002 14:07 31.64 0.04 0.02 1.56 0.08 56.9 4.6 

 

03.09.2002 10:10 

       459 03.09.2002 10:50 0.48 0.00 0.00 0.15 0.01 0.6 0.0 

 

10.09.2002 08:11 

       460 10.09.2002 08:24 0.5 0.00 0.00 0.13 0.01 0.1 0.0 

 

17.10.2002 16:50 

       461 17.10.2002 17:33 0.11 0.00 0.00 1.10 0.06 5.4 0.4 

 

02.11.2002 13:14 

       462 02.11.2002 13:43 0.14 0.00 0.00 1.07 0.05 4.5 0.4 

 

09.11.2002 16:07 

       463 09.11.2002 19:00 0.89 0.00 0.00 1.43 0.07 19.4 1.6 

 

11.11.2002 15:03 

       464 11.11.2002 16:15 0.39 0.00 0.00 1.09 0.05 6.1 0.5 

 

16.11.2002 11:20 

       465 16.11.2002 17:08 2.22 0.00 0.00 1.55 0.08 38.7 3.1 

 

26.04.2003 20:20 

       466 26.04.2003 20:42 0.26 0.00 0.00 1.04 0.05 2.6 0.2 

 

03.05.2003 02:42 

       467 03.05.2003 02:54 0.1 0.00 0.00 0.81 0.04 1.7 0.1 

 

19.05.2003 18:31 

       468 19.05.2003 19:21 0.61 0.00 0.00 1.43 0.07 4.9 0.4 

 

07.06.2003 18:26 

       469 07.06.2003 19:39 6.47 0.01 0.00 2.17 0.11 3.4 0.3 

 

12.06.2003 20:24 

       470 12.06.2003 20:45 0.73 0.00 0.00 1.12 0.06 1.1 0.1 

 

17.07.2003 06:41 

       471 17.07.2003 07:23 0.41 0.00 0.00 0.82 0.04 7.2 0.6 

 

24.07.2003 11:54 

       472 24.07.2003 13:32 2.32 0.00 0.00 1.94 0.10 14.2 1.1 

 

31.08.2003 06:09 

       473 31.08.2003 06:52 0.45 0.00 0.00 0.87 0.04 4.9 0.4 

 

09.10.2003 06:38 

       474 09.10.2003 08:47 0.64 0.00 0.00 1.12 0.06 8.2 0.7 

 

02.06.2004 21:23 
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475 03.06.2004 05:26 9.58 0.01 0.01 2.11 0.11 69.1 5.5 

 

12.06.2004 10:02 

       476 12.06.2004 10:39 0.17 0.00 0.00 1.39 0.07 2 0.2 

 

06.07.2004 07:37 

       477 06.07.2004 08:01 0.29 0.00 0.00 1.36 0.07 1.6 0.1 

 

26.08.2004 04:15 

       478 26.08.2004 09:26 3.15 0.00 0.00 2.02 0.10 34.1 2.7 

 

24.09.2004 01:26 

       479 24.09.2004 02:12 0.69 0.00 0.00 1.36 0.07 7.2 0.6 

 

07.06.2005 03:56 

       480 07.06.2005 04:23 0.43 0.00 0.00 0.96 0.05 1.9 0.2 

 

24.06.2005 22:04 

       481 24.06.2005 23:14 2.43 0.00 0.00 1.91 0.10 7.1 0.6 

 

26.07.2005 00:50 

       482 26.07.2005 01:29 0.62 0.00 0.00 0.93 0.05 2.1 0.2 

 

21.08.2005 15:55 

       483 21.08.2005 19:09 1.23 0.00 0.00 1.40 0.07 19.9 1.6 

 

21.08.2005 23:38 

       484 22.08.2005 00:16 0.32 0.00 0.00 1.23 0.06 1.8 0.1 

 

22.08.2005 10:15 

       485 22.08.2005 19:08 4.2 0.01 0.00 1.84 0.09 52.2 4.2 

 

22.08.2005 20:21 

       486 22.08.2005 21:53 0.66 0.00 0.00 1.68 0.08 10.4 0.8 

 

22.08.2005 22:55 

       487 23.08.2005 01:04 1.01 0.00 0.00 1.81 0.09 14.6 1.2 

 

28.05.2006 22:58 

       488 29.05.2006 00:09 0.45 0.00 0.00 1.11 0.06 8.4 0.7 

 

29.05.2006 14:33 

       489 29.05.2006 17:59 1.83 0.00 0.00 1.77 0.09 26.3 2.1 

 

13.07.2006 12:16 

       490 13.07.2006 13:16 0.44 0.00 0.00 1.29 0.06 4.3 0.3 

 

05.08.2006 05:12 

       491 05.08.2006 06:35 2.52 0.00 0.00 2.18 0.11 9.4 0.8 

 

28.08.2006 19:32 

       492 28.08.2006 20:09 0.5 0.00 0.00 1.07 0.05 3.6 0.3 

 

28.08.2006 23:46 

       493 29.08.2006 00:30 0.19 0.00 0.00 1.05 0.05 2.9 0.2 

 

07.09.2006 23:20 

       494 08.09.2006 03:21 44.85 0.06 0.03 5.23 0.26 35.8 2.9 

 

17.09.2006 03:45 

       495 17.09.2006 10:42 23.56 0.03 0.02 4.52 0.23 73.7 5.9 

 

01.01.2007 15:45 

       496 01.01.2007 15:57 0.02 0.00 0.00 0.26 0.01 0 0.0 

 

12.01.2007 10:02 

       497 12.01.2007 10:06 0.001 0.00 0.00 0.16 0.01 0.3 0.0 

 

17.05.2007 20:12 

       498 17.05.2007 20:26 0.06 0.00 0.00 0.74 0.04 1.6 0.1 

 

21.05.2007 21:33 

       499 21.05.2007 23:14 4.07 0.01 0.00 1.22 0.06 4.8 0.4 

 

12.06.2007 20:07 

       500 12.06.2007 22:31 9.38 0.01 0.01 1.98 0.10 22.9 1.8 

 

20.06.2007 19:45 

       501 20.06.2007 23:18 298.59 0.40 0.20 11.09 0.55 22.1 1.8 
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25.06.2007 09:51 

       502 25.06.2007 09:55 0.002 0.00 0.00 0.01 0.00 0 0.0 

 

25.06.2007 18:56 

       503 25.06.2007 23:01 7.51 0.01 0.01 0.45 0.02 15.8 1.3 

 

01.07.2007 20:45 

       504 01.07.2007 20:54 0.02 0.00 0.00 0.27 0.01 0.1 0.0 

 

03.07.2007 18:31 

       505 03.07.2007 18:57 0.08 0.00 0.00 0.24 0.01 0.1 0.0 

 

03.07.2007 22:34 

       506 03.07.2007 22:51 0.1 0.00 0.00 0.22 0.01 5.4 0.4 

 

04.07.2007 01:12 

       507 04.07.2007 05:50 39.7 0.05 0.03 0.64 0.03 14.4 1.2 

 

04.07.2007 13:40 

       508 04.07.2007 14:20 0.25 0.00 0.00 0.25 0.01 0.4 0.0 

 

05.07.2007 10:25 

       509 05.07.2007 12:06 1 0.00 0.00 0.24 0.01 2.2 0.2 

 

09.07.2007 11:32 

       510 09.07.2007 16:53 12.2 0.02 0.01 0.35 0.02 17.6 1.4 
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