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Abstract  

 

Functional recovery following spinal cord injury (SCI) depends on the remodeling of 

the preserved neuronal circuits. Injury-induced remodeling can be studied using the 

corticospinal tract (CST), an important descending motor tract that is involved in fine-skilled 

limb movements, as a model system. Previously it has been shown that the CST responds 

to a thoracic lesion by the formation of an intraspinal detour circuit that contributes to 

functional recovery. However the underlying principles that govern this CST remodeling are 

not fully understood. By reconstructing single CST collaterals after lesion, we reveal that 

CST remodeling occurs in three distinct phases. Initially following lesion, newly formed 

collaterals undergo a growth phase that is then followed by a collateral formation phase 

where newly formed collaterals develop a more mature and complex structure. Finally there 

is a maturation phase during which there are small scale refinements of the contact pattern.  

While such endogenous remodeling processes can lead to some degree of functional 

recovery, in many cases severe deficits persist. To this date there is no effective therapeutic 

treatment that restores sensorimotor function following SCI. In the injured peripheral nervous 

system (PNS), the activation of the intrinsic growth response can support axonal 

regeneration and functional recovery. In this thesis we investigated whether and how the 

initiation of the intrinsic neuronal growth program can improve axonal remodeling and 

functional recovery after injury. To initiate the intrinsic neuronal growth response we targeted 

the transcription factor STAT3, the expression of which had been shown to be associated 

with axonal regeneration. In a collaborative study, we used conditional genetics, viral gene 

transfer and in vivo timelapse imaging to show that sustained STAT3 expression is essential 

for the timely initiation of axonal regeneration in the PNS. In contrast to the PNS, STAT3 

expression is only transiently induced following a central nervous system (CNS) lesion. 

Therefore we next investigated whether and how intrinsic growth initiation by STAT3 

expression can be used to support the regeneration and remodeling of corticospinal fibers 

after spinal cord injury. Sustained expression of STAT3 induced by viral gene transfer was 

found to cause an increase in CST axonal sprouting and regeneration following a thoracic 

lesion. Interestingly, STAT overexpression could also stimulate axonal growth in the 

absence of any lesion. This led us to utilize a unilateral lesion pyramidotomy model to 

investigate whether sustained STAT3 expression can recruit the unlesioned tract to 

compensate for the loss of innervation in the lesioned side. Indeed STAT3 overexpression 
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was found to induce compensatory sprouting and remodeling of the unlesioned tract. Fibers 

from the unlesioned tract exited the unlesioned CST in the cervical spinal cord and grew 

across the midline into the denervated side of the cord. In addition these crossing collaterals 

were found to form contacts onto the interneurons and motorneurons responsible for 

forelimb movement. Behavioral and electrophysiological assessment validated that a new 

intraspinal circuit that was formed enabled functional recovery. 

 

 Taken together, our results show that axonal remodeling occurs in defined stages. 

Targeting the initial growth phase by viral gene transfer of STAT3, a transcription factor that 

can initiate the intrinsic neuronal growth program, is an effective strategy to enhance axonal 

remodeling and thereby promote functional recovery following injury. In this thesis, we were 

able to contribute to the further understanding of the mechanisms that underlie axonal 

remodeling. In addition we have identified a promising strategy to improve axonal 

remodeling following injury. 
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Zusammenfassung 
 

Die Wiederherstellung motorischer und sensibler Funktionen (oder die funktionelle 

Erholung) nach Rückenmarksverletzung (SCI) ist abhängig von der Reorganisationsfähigkeit 

der noch unversehrten neuronalen Schaltkreise. Die auf eine Verletzung folgende neuronale 

Umstrukturierung kann modellhaft am kortikospinalen Trakt (CST) untersucht werden. Es 

handelt sich hierbei um eine wichtige absteigende motorische Bahn, die vor allem an der 

Ausführung feinmotorischer Bewegungen beteiligt ist. Unsere Arbeitsgruppe konnte in 

vorangegangenen Studien zeigen, dass der CST nach einer thorakalen Rückenmarksläsion 

einen intraspinalen Umgehungsschaltkreis ausbildet, der maßgeblich zur funktionellen 

Erholung beiträgt. Jedoch hat man bislang die Prinzipien, auf denen diese Fähigkeit zur 

Reorganisation beruht, noch nicht vollständig verstanden.  

Durch Rekonstruktion einzelner axonaler Kollateralen des CST nach Läsion konnte 

ich  nun zeigen, dass der Umbau des CST in drei Phasen erfolgt. Initial durchlaufen 

neugebildete Kollateralen eine Wachstumsphase. Diese wird dann von einer Phase gefolgt, 

in der Kollateralen ausgebildet werden, welche zunehmend eine reife komplexe Struktur 

einnehmen. Die letzte Phase ist charakterisiert durch Verfeinerungen auf Ebene der 

interneuronalen Kontaktmuster.  

Während diese endogenen Reorganisationsprozesse zu einem gewissen Grad  

funktionelle Erholung herbeiführen, bleiben in vielen Fällen schwerwiegende Defizite zurück. 

Bislang gibt es keine effizienten Therapien, die nach einer Querschnittslähmung sensible 

und motorische Funktionen wiederherstellen.  Im peripheren Nervensystems (PNS) 

hingegen kann durch die Aktivierung des intrinsischen neuronalen Wachstumgsprogrammes 

axonale Regeneration und funktionelle Erholung erfolgreich induziert werden. In einem 

weiteren Abschnitt meiner Arbeit untersuchte ich, ob und in wie weit die Induktion des 

neuronalen Wachstumsprogramms auch im zentralen Nervensystem (ZNS)  axonales 

Remodeling und die Wiederherstellung von Funktionen verbessern würde. Um das 

intrinische neuronale Wachstumsprogramm zu initiieren, konzentrierte ich mich auf den 

Transkriptionsfaktor STAT3, dessen Expression während der axonaler Regeneration im 

peripheren Nervensystem induziert wird. Mithilfe konditioneller knock-out Mäuse,  viralen 

Gentransfers und in vivo timelapse Mikroskopie konnten wir zeigen, dass die anhaltende 

Expression von STAT3 essentiell für den zeitgemässen Beginn axonaler Regeneration im 

PNS ist. Im Gegensatz zum PNS wird die STAT3 Expression nach einer Läsion im ZNS nur 
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transient gesteigert.  Daher untersuchte ich im letzten Abschnitt meiner Arbeit, ob und wie 

die Initiierung des intrinischen neuronalen Wachstumsprograms durch STAT3 genützt 

werden könnte, um die Regeneration und Reorganisation kortikospinaler Fasern nach 

Rückenmarksläsion anzukurbeln. Ich konnte zeigen, dass die Überexpression von STAT3 

mittels viralen Gentransfers eine Zunahme des axonalen  Aussprossens und der 

Regeneration des CSTs nach einer thorakalen Läsionen bewirkte. Interessanterweise 

konnte die Überexpression von STAT 3 dabei auch das axonale Aussprossen in 

Abwesenheit einer Läsion fördern. Infolge führte ich dann eine einseitige Verletzung des 

CST auf der Höhe der Medulla oblongata (Pyramidotomie) durch und untersuchte, ob  die 

Überexpression von STAT3 in kortikalen Neuronen in der Lage ist, die unverletzte Seite des 

CST dazu zu stimulieren, den Innervationsverlust der lädierten Seite auszugleichen. 

Tatsächlich konnte ich zeigen, dass STAT3-Überexpression eine kompensatorische 

Reorganisation des unverletzten CST bewirkte. Der unverletzten CST bildete zunächst neue 

Kollateralen im zervikalen Rückenmark aus. Diese wuchsen dann über die Mittellinie auf die 

denervierte Seite des Rückenmarks, wo sie Kontakte mit kurzen propriospinalen Neuronen 

und ventralen Motoneuronen – welche die Bewegung der oberen Extremitäten kontrollieren 

– ausbildeten. Verhaltensexperimente und elektrophysiologische Messungen konnten 

bestätigen, dass diese neuen intraspinale Verschaltungen die funktionelle Erholung 

verbesserten. 

 

In der Gesamtschau meiner Ergebnisse kann man schlussfolgern, dass axonales 

Remodeling nach einer Rückenmarksverletzung in distinkten sukzessiven Phasen abläuft. 

Ich konnte weiterhin zeigen, dass der virale Gentransfer von STAT3 – einem 

Transkriptionsfaktor, der das intrinsiche neuronale Wachstumsprogramm aktiviert – eine 

effektive Strategie ist, diesen axonalen Umbau weiter zu verbessern und auf diese Weise 

die funktionelle Erholung nach Verletzung zu fördern. Ich hoffe, dass diese Arbeit dazu 

beitragen konnte, das Verständnis der Mechanismen, die axonale Umbauprozesse 

regulieren, zu erweitern. Aufbauend auf diesen Befunden konnten wir weiterhin eine 

vielversprechende Strategie identifizieren, welche axonalen Umbau und funktionelle 

Erholung nach ZNS-Verletzungen weiter verbessern kann.  
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General Introduction  

 
The worldwide incidence of spinal cord injury (SCI) is estimated to be 22 

people/million population in the western and developing world (source: International 

Campaign for Cures of Spinal Cord Injury Paralysis [ICCP]). In Germany, an estimated 18.5 

cases/million of the population suffer from SCI, with 1500  new cases reported per year 

(ICCP). SCI results from either direct or indirect trauma to the cord. Spinal cord lesions are 

commonly due to acute contusion caused by the displacement of bone fragments into the 

spinal cord (Schwab and Bartholdi 1996; Kraus 1996; Schwartz and Flanders 2006). A 

majority of injuries are caused by motor vehicle and sport accidents, while other causes 

include falls, acts of violence from stabbings or gunshot wounds, and sport-related injuries 

(Figure 1). SCI patients are commonly young males, therefore SCI presents an economical 

burden for society. Due to the organization of the spinal cord and the poor capacity of the 

central nervous system (CNS) to repair following injury, SCI disrupts descending and 

ascending motor pathways, causing a transient or permanent loss of sensorimotor and/or 

autonomic function below the level of the injury.  

 

Figure 1. Spinal Cord Injury facts and figures for the North American and European populations. (A) 
The economical impact of traumatic spinal cord injury. Data compiled from the National Spinal Cord Injury 
Statistical Center 2005 and 2011, Birmingham, Alabama, USA. (B) Etiology of traumatic spinal cord injuries 
for the European population (including Germany) by WHO 1959–2008 (Cripps et al., 2011)  



                                                                     Introduction 
 
 

    6 

Over 130,000 people worldwide are affected by a traumatic spinal cord injury 

resulting in paralysis and loss of sensory-motor function below the level of injury (source: 

ICCP).  Depending on the severity of the injury, the ability to control a majority of 

autonomous bodily functions that includes bowel, bladder and sexual function can be lost to 

various degrees (Figure 2; Ditunno et al., 1994; American Spinal Injury Association 2000; 

Rhee et al., 2006). Human spinal cord injury is classified clinically by the segmental level of 

injury, the completeness of the injury, and the mechanism of injury (Figure 2). An injury 

above the C4 cervical level leads to tetraplegia where there is paralysis in both the arms and 

legs. Conversely, patients with an injury at the lower thoracic to lumbar level can experience 

paralysis or reduced movement of their legs. In such cases of severe traumatic injury, the 

SCI patient will require long term care with elevated lifetime cost (Figure 1; The University of 

Alabama National Spinal Cord Injury Statistical Center 2002). In addition, the quality of life of 

many SCI patients is severely affected as they are both paralyzed and bound for life to a 

wheelchair (Westgren and Levi 1998; Krause 2003; Budh and Osteråker 2007).   

 

Figure 2. Spinal cord injury severity classification using the American Spinal Injury Association 
(ASIA) Impairment Scale (Modified from Thuret et al., 2006, Copyright © Nature Publishing Group 2006). 
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1.1. The pathophysiological response of the cord to injury 

Information regarding the pathology of human SCI is limited, though the available 

data indicates there are strong similarities between humans and rodent spinal contusion 

injuries (Kakulas 1984; Bunge et al., 1993; Kalb and Strittmatter 2010). In response to injury, 

the spinal cord undergoes three time-dependent phases (Tator 1995; Schwab and Bartholdi 

1996; Tartor 1998; Bareyre and Schwab 2003; Schwartz and Flanders 2006): The acute, 

sub-acute and chronic phase. 

 

1.1.1. The acute phase: 3-6hrs post injury 

The acute phase happens immediately to a few hours after injury. Injury to the cord 

can be caused by the displacement of bone fragments or direct compression of the cord. 

During this phase the cord undergoes biochemical and structural changes. Interneuronal 

tracts are damaged, blood flow is reduced, intracellular calcium levels rise, and there is 

cellular death and degeneration of axons (Tartor 1995; Martirosyan et al., 2011). The edema 

develops and there is a change in electrolyte levels, with an increase of extracellular 

potassium (Schwab and Bartholdi 1996). The biochemical changes lead to a state of spinal 

shock, where there is temporary flaccid paralysis and loss of tendon reflexes below the level 

of the lesion (Hiersemenzel et al., 2000; Ditunno et al., 2004).  

 

1.1.2. The sub-acute phase 6-72 hrs post injury 

During this phase there is an increase in free radical production and the release of 

excitatory neurotransmitters, such as glutamate and aspartate, up to cytotoxic levels (Park et 

al., 2004). Within hours and lasting for several days following injury, an inflammatory 

response develops (Balentine 1978; Dusart and Schwab 1994), with endothelial damage, 

release of inflammatory mediators, invasion of peripheral inflammatory cells and activation of 

microglia. Secondary damage is caused by immune cells such as neutrophils (appearing 6-

24h post-injury) macrophages (appearing 24h-2wks post-injury), and T-cells (Blight 1992; 

Schnell et al., 1999; Bethea and Dietrich, 2002; David and Kroner 2011).  
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At the lesion site a cavity and scar tissue are formed, consisting of extracellular 

matrix (ECM) proteins, mainly collagen and chondroitin sulphate proteoglycans (CSPGs), 

which secrete inhibitors hindering axonal regrowth (Fitch and Silver 2008; Fehlings and 

Hawryluk 2010). Fibroblast, Schwann cells and macrophages form the scar tissue by the 

deposit of ECM laminin, fibronectin and collagen. The sealing of the scar is dependent on 

pericytes, perivascular cells that associate with the endothelial cells of capillaries and are the 

source of scar-forming cells (Göritz et al., 2011). The glial/fibrotic scar is a hindrance to 

regeneration as it is an inhibitory environment that is made up of fibroblast-like cells, 

collagen surrounded by reactive astrocytes and microglial cells (Silver and Miller 2004; Xu et 

al., 2011; Leal-Filho 2011).  The reactive astrocytes are responsible for the upregulation, at 

the site of injury, of molecules such as semaphorin 3 (Pasterkamp et al., 2001), ephrin-B2 

(Bundesen et al., 2003), slit proteins (Hagino et al., 2003), and chondroitin sulfate 

proteoglycans (McKeon et al., 1995; Jones et al., 2003; Rhodes and Fawcett 2004). The 

scar however does serve a function as it separates the damaged tissue from healthy, hence 

protecting viable tissue from necrosis (Lindsay 1986; Reier and Houlse 1988; Schwab and 

Bartholdi 1996; Fitch and Silver 2001; Leal-Filho 2011). 

 

1.1.3. The late phase: weeks to months post injury  

In the late phase, there is the disappearance of phagocytic macrophages from the 

lesion area and what remains is a fluid-filled cyst (Figure 3). There is also the formation of 

cavities, which are filled with cerebrospinal fluid (Balentine 1978; Zhang et al., 1997). 

Examination of damaged human tissue found that necrosis is similar to animal models, 

including the cavities formed (Hughes 1974; Bunge et al., 1993). The dense network of 

reactive astrocytes makes up the major component of the scar, another albeit minor 

component is the reactive microglial cell and macrophages. At 3 weeks there is Wallerian 

degeneration (Blight and Descrecito 1986; Zhang et al., 1997), and to some extent, 

particularly in smaller lesions, remyelination by oligodendrocytes (Gledhill and McDonald 

1977; Harrison and McDonald 1977; Schwartz and Flanders 2006). There is some attempt of 

CNS axons to sprout after injury but the newly formed growth become dystrophic (Li and 

Raisman 1995; Kerschensteiner et al., 2005; Misgeld et al., 2007) after exposure to a 

gradient of inhibitory extracellular matrix molecules (Fitch and Silver 2008). Growth-

associated inhibitors such as myelin associated glycoproteins (MAGs), Nogo and 

oligodendrocyte myelin glycoprotein (OMgp) are expressed in the vicinity of the lesion area 

hindering any attempt of growth (Schwab and Bartholdi 1996; Sekhon and Fehlings 2001; 
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Filbin 2003). Near the vicinity of the lesion site, chronic demyelination occurs in both humans 

(Bunge et al., 1993; Guest et al., 2005) and experimental animals (Blight, 1983; Blight 1993; 

Cao et al., 2005; Totoiu and Keirstead 2005). Overall there is loss of myelin in the white 

matter and conduction deficits due to the biochemical and molecular changes that occur, 

interruption of tracts and demyelination (Waxman 1989; Waxman 1992; Taoka and Okajima 

1998; Sekhon and Fehlings 2001). 

 

 

 

Figure 3. Response of the spinal cord following injury.  (A) Dissected mouse spinal cord highlighting 
the thoracic spinal cord (red box). The events mentioned occur in the acute and subacute phase following a 
lesion. Scale bar represents 1mm (B) Sagittal section of a thoracic spinal cord 3 weeks following a dorsal 
T8 hemisection (neurons in blue and the corticospinal tract (CST) in red). Scale bar represents 100µm. (C) 
After spinal cord injury there is damage of ascending and descending tracts, upregulation of growth and 
inhibitory factors, accumulation of immune cells in the lesion site and the formation of the glial scar. The 
damaged axonal tracts can respond by sprouting new collaterals and by the formation of new circuits 
(Image C is modified from Thuret et al., 2006, Copyright © Nature Publishing Group 2006). 
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1.2. Clinical care and perspectives  

At present, in humans there is no treatment that is able to fully restore sensorimotor 

function following injury. Patients admitted with injury undergo surgery to remove bone 

fragments and have their spine stabilized. After surgery care involves the prevention of 

secondary damages and rehabilitation in the form of physiotherapy (Dietz 2002; Edgerton et 

al., 2006; Mehrholz et al., 2008; Markandaya et al., 2012). The acute standard of care 

involves the administration of corticosteroids such as methylprednisolone, which works by 

decreasing inflammation thereby limiting secondary damage (Bracken et al., 1985; Bracken 

et al., 1997; Bracken 2002; Hurlbert and Hamilton 2008). The use of this drug is somewhat 

controversial with some studies highlighting the benefits (Bracken et al., 1985; Bracken et 

al., 1997; Bracken and Holford 2002) and others finding the effects modest in light of 

associated side effects that can include glaucoma, hyperglycemia, depression, psychosis 

and the cessation of the natural production of cortisol (Nesathurai 1998; Sayer et al., 2006).  

 

Strategies for future treatment and management of spinal cord injury in humans are 

based on the pathophysiological changes that occur in the acute, sub-acute and late phases 

following injury. Research aims at understanding the different pathophysiological 

mechanisms that arise following injury in experimental models and that could be potentially 

targeted for therapeutic treatments. For example neuroprotective strategies have been 

developed by preventing excitotoxicity (Feldblum et al., 2000; Abdelkarim et al., 2001; 

Mazzone and Nistri 2011), by controlling the inflammatory response (Popovich et al., 1999; 

Fitch et al., 1999; Alexander and Popovich 2009; Pajoohesh-Ganji and Byrnes 2011), or by 

preventing apoptosis (Nicholson 2000; Nesic et al., 2001; Demjen et al, 2004). Other lines of 

work aim at promoting axonal growth or regeneration through the use of cell grafts and 

scaffolds that can act as bridges, through the application of growth promoting factors (Xu et 

al., 1995; Li et al., 1997; Li et al., 1998; Menei et al., 1998; Ramon-Cueto et al., 2000; 

Bamber et al., 2001;, Takami et al., 2002; Li et al., 2003; Bradbury and McMahon 2006) or 

through the manipulation of the intrinsic growth program of neurons (Qiu et al., 2002; Yip et 

al., 2010; Liu et al., 2010, Bareyre et al., 2011; Sun et al., 2011). Laboratory research has 

provided useful information in expanding the knowledge and contributing to the treatment of 

spinal cord injury. 

 

 



                                                                     Introduction 
 
 

    11 

1.3. Experimental models for SCI research  

In SCI research the use of appropriate animal models is important. In humans, spinal 

cord injuries can be diverse and it can be difficult to reproduce the same sort of injury in an 

experimental setting. The two main commonly used models of spinal cord injury employed 

by most laboratories are (Figure 4A):  

 

(1) The contusion injury performed using a NYU-MASCIS (New York University - 

Multicenter Animal Spinal Cord Injury Study) impactor device, which drops a weight from 

specific heights, can perform standardized grades of spinal cord injuries (Gruner 1992; 

Agrawal et al., 2010). This injury model is based on the Allen technique, developed in 1911, 

whereby a weight dropped through a tube onto the exposed thoracic cord of a dog resulting 

in a reproducible model. The contusion model is the most similar to the histological 

mechanics of human spinal cord injury (Schwab and Bartholdi 1996), however in this type of 

injury there is haemorrhage and variable tissue damage making the comparison of neuronal 

damage between different animals more challenging (David and Kroner 2011).  

 

(2) The dorsal hemisection injury involves transection of the dorsal half of the spinal 

cord at the thoracic level with fine iridectomy scissors. This model produces a smaller 

inflammatory response, is highly reproducible and allows for defined parts of the cord to be 

spared. This model is thus best suited for the precise investigation of axonal remodeling and 

was used in our studies on CST regeneration and remodeling.  

 

In addition to spinal lesion models that focus on the analysis of the corticospinal tract, 

we also used the dorsal root ganglia (DRG) model system to study the growth initiation of 

axons (Figure 4B). The DRG model system is often employed in outgrowth studies as it 

provides access to both the PNS, (known for its regenerative capabilities), and to the CNS, 

(where there is no successful regeneration) (Richardson and Issa 1984; Richardson and 

Verge 1987; Sjoberg and Kanje 1990; Chong et al., 1994; Neumann and Woolf 1999).  
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Figure 4. Localization of the Corticospinal tract (CST) and Dorsal root ganglia (DRG) neuron with its 
peripheral and central branch.  (A) The corticospinal tract (red) can be labeled or manipulated via 
stereotaxic injection of a compound (either a tracer or virus) of interest into defined coordinates in the 
cortex. In a dorsal T8 hemisection, only half of the cord is transected (dashed line) sparing fiber tracts and 
interneuronal pools located in the ventral grey and white matter. For a contusion injury, an impactor drops a 
weight from a fixed distance onto the cord enabling standardized grades of injuries. (B) The DRG can be 
exposed through surgery and also injected with a finely pulled micropipette. The neuronal cell body of the 
DRG, located in the ganglia, sends one branch into the periphery (peripheral branch) and another branch 
into the spinal cord (central branch). The peripheral branch is known for its regenerative capabilities.  
Regeneration of the central branch can occur only if the peripheral branch is first injured, an effect known 
as a conditioning lesion.  The DRG injection image is courtesy of Fabian Laage-Gaupp. Scale bar equals 
1mm in A and B. 

 



                                                                     Introduction 
 
 

    13 

1.4. Spontaneous corticospinal outgrowth and remodeling 
after SCI  

The corticospinal tract (CST), as one of the most important descending motor tract 

for skilled movements in all mammalian species (Nudo and Masterton 1988, 1990; Maier et 

al., 2008), has been a frequent model used to investigate axonal growth, regeneration and 

remodeling within the adult CNS (Schnell et al., 1994; Weidner et al., 2001; Zhou and Shine 

2003; Bareyre et al., 2004; Liu et al., 2010; Rosenzweig et al., 2010). In the mammalian 

system the CST is responsible for fine skilled movements, for example grasping and 

handling (Whishaw et al., 1998) and locomotor functions such as stride length (Bregman et 

al., 1995). In humans the CST has an even more important role and controls locomotion, 

posture as well as voluntary skilled movements (Ferguson et al., 2001; Hutson et al., 2011). 

The pyramidal neurons of the corticospinal tract originate in lamina V of the cortex. The 

fibers of this tract descend from the cerebral cortex sending axons via the internal capsule to 

the spinal cord (Dottori et al., 1998). The CST is composed of two components: a main 

component also known as the main CST which comprises of 95% of all CST axons; and a 

minor component constituted of the ventral and dorsolateral CST (Vahlsing and Feringa 

1980; Joosten et al., 1992; Brösamle and Schwab 1997; Weidner et al., 2001; Steward et al., 

2004). The tract in rodents decussates at the spinomedullary junction with the main 

component crossing over in the dorsal funiculus. In humans the CST fibers descend 

contralaterally in the lateral funiculus (Harel and Strittmatter 2006; Hutson et al., 2011). The 

remaining minor components of the CST do not decussate and the fibers run in the white 

matter of the ipsilateral dorsolateral side (Hutson et al., 2011).  At 4 weeks of age the rodent 

CST is matured and establishes contacts with the appropriate interneurons and with a 

subset of motorneurons (Ghosh et al., 2009). The topological organization of the CST is 

such that the forelimb CST (fCST) projects its collaterals in the cervical cord, while hindlimb 

CST (hCST) axons innervate the appropriate target in the lumbar cord (Akintunde and 

Buxton 1992; Ghosh et al., 2009).   

 

The CNS for a long time has had the reputation for being a “static” system in 

adulthood, where successful axonal growth, sprouting and regeneration does not occur. As 

research progresses, we are beginning to now realize that in the adult mammal the CNS has 

the capability for some spontaneous recovery of function in rodents and to some extent in 

humans (Schwab and Bartholdi 1996; Burns et al., 1997; Dietz et al., 1998; Rossignol et al., 

1999)  Many examples of injury-induced plasticity stem from the study of lesioned CST 
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connections (Bernstein and Stelzner 1983; Kuang and Kalil 1990; Schnell et al., 1994; 

Terashima 1995; Bregman et al., 1995; Li et al., 1997; Weidner et al., 2001; Bareyre et al., 

2002; Bareyre et al., 2005; Demjen et al., 2004). Prominent findings have found that the 

reorganization of neural circuits plays a key role in spontaneous recovery of function 

(Bareyre et al., 2004; Courtine et al., 2008; Ghosh et al., 2009; Alilain et al., 2011). In 2001, 

Fouad et al., (2001) observed that following an incomplete thoracic lesion in rats there were 

rearrangements in the cortical motor map. Stimulation of what was previously an area 

responsible for hindlimb muscle response instead invoked forelimb responses.  The shift in 

the cortical map was accompanied by spontaneous growth of hindlimb corticospinal axons in 

the cervical cord. However it was unknown what the neuronal targets of these newly formed 

collaterals were. 

 

Bareyre et al., (2004), then made a seminal discovery whereby functional recovery 

after SCI was attained via the formation of an intraspinal detour circuit (Figure 4). This study 

revealed that neural circuits are able to undergo spontaneous functional reorganization that 

lead to the reconnection of lesioned CST fibers with their original targets. Following a partial 

lesion of the CST, lesioned hindlimb CST axons sprouted newly formed collaterals in the 

cervical cord rostral to the lesion site. These collaterals were found to form contacts with a 

pool of excitatory interneurons known as propriospinal neurons. Propriospinal neurons were 

first described in 1902, as a network of axons extending from the proximal to distal spinal 

cord (Sherrington and Laslett 1902, 1903). These neurons are an important part of an 

intraspinal network of interneurons involved in motor reflexes, voluntary movement and 

sensory processing (Kostyuk and Vasilenko 1979; Jankowska 1992; Foreman 2000; Pierrot-

Deseilligny and Burke 2005; Alstermark et al., 2007; Conta and Stelzner, 2009; Cowley et 

al., 2010; Flynn et al., 2011). There are two main populations of propriospinal neurons. Short 

prospriospinal neurons (SPSNs), involved in the fine tuning of forelimb movement, have their 

cell bodies in C4 and their axons terminate at T2. Long propriospinal neurons (LPSNS) are 

known to coordinate forelimb and hindlimb movement. This population of PSNs has their cell 

bodies in C5/6 and their axons extend till T12/T13 (Nicolas et al., 2001; Dietz 2002).  In this 

study, it was found that initially, hCST collaterals contacted both long and short PSNs 

equally (Bareyre et al., 2004). Overtime, contacts onto SPSNs were removed while contacts 

onto LPSNs were maintained (Figure 5). Long PSNs are an ideal target as they are able to 

bypass the lesion site and contact motorneurons in the lumbar cord. Further examination 

revealed that the LPSNs had increased their contacts onto lumbar motorneurons, hence 

forming a new intraspinal circuit (Bareyre et al., 2004).  Behavioral and electrophysiological 
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experiments further proved that this circuit was functional and responsible for the 

spontaneous functional recovery seen following SCI.  

 
Figure 5. Reorganization of hindlimb CST collaterals following injury.  Timeline of the formation of a 
new intraspinal detour circuit following a dorsal T8 hemisection. (A) Normal connectivity, in absence of a 
lesion, in which the hindlimb CST (hCST) sprouts its collaterals into the lumbar cord to contact interneurons 
or motorneurons. (B) Three weeks post lesion, hCST collaterals are induced to sprout in the cervical cord 
where they were seen to form equal contacts onto both short and long propriospinal spinal relay neurons.  
(C) By 12 weeks post lesion contacts onto long propriospinal neurons (LPSNs) that bypass the lesion site 
and are involved in coordinating hindlimb and forelimb movement are strengthened and maintained. While 
contacts onto short propriospinal neurons that do not directly aid in functional recovery are pruned. LPSNs 
were seen to form contacts with lumbar motorneurons, thereby creating a new intraspinal circuit that can 
enable functional recovery. (D-F) Confocal photomicrographs showing contacts of hCST collaterals to (D) 
interneurons at 3 weeks following injury, (E) to short propriospinal neurons 3 weeks following injury, and to 
(F) LPSNs 3 weeks following injury. (D) is taken  from Lang et al., 2012. 

 

Further examining the importance of this newly formed intraspinal circuit for 

functional recovery after incomplete injuries, Courtine et al., (2008) performed a series of 

elegant experiments to examine the effects of eliminating the propriospinal relay connection. 

They demonstrated that severing the newly formed propriospinal relay connections whether 
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by a staggered hemisection or a high dose of N-methyl-D-asparate (NMDA), which in high 

doses can act as an excitotoxin, abolishes recovery. By severing the supraspinal axon 

connection, kinematic and physiological analyses showed that this results in permanent 

paralysis of the hindlimbs. The various lesion paradigms performed in this study, where 

lesions were separated both temporally and spatially, in combination with refined kinematic 

analysis, illustrated that the propriospinal relay circuit is responsible for the restoration of full, 

weight-bearing hindlimb locomotor function seen following even a severe injury. In summary, 

these studies revealed upon electrophysiological, behavioral and anatomical examination 

that a new detour circuit involving LPSNs can be formed and that this axonal remodeling 

contributed to functional recovery (Fouad et al., 2001; Bareyre et al., 2004; Courtine et al., 

2008).  

 

After injury, intraspinal circuits are spontaneously created and able to transmit 

descending supraspinal input to the lumbar motor circuits (Bareyre et al., 2004; 

Kerschensteiner et al., 2004; Ballermann and Fouad 2006; Courtine et al., 2008). These 

studies not only highlight the positive impacts that injury can induce in the form of 

remodeling, they can also help to identify the mechanisms that govern spontaneous 

remodeling and functional recovery. Exploiting this innate phenomenon by reinforcing 

beneficial axonal remodeling would be an advantageous strategy in facilitating functional 

recovery.   

 

 

1.5. Therapy-induced modulation of corticospinal 
remodeling  

 About half of SCI patients, approximately 54%, suffer from an incomplete injury 

where at an anatomical level there is some sparing of tissue and descending fibers 

(Raineteau and Schwab 2001; Spinal injury network 2011). In such cases, under the right 

conditions extensive remodeling can occur due to the preservation of the cortical, subcortical 

and remaining intact fibers and spinal circuitry. Molecular interventions to take advantage of 

spared fibers and circuits are one of the main types of therapies that are researched in the 

field of SCI (Thuret et al., 2006). In the search for successful therapeutic strategies one 

needs to consider the extrinsic and the intrinsic barriers that limit this process in the CNS.  
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Extrinsic cues that limit axonal remodeling appear to accumulate over time in the 

CNS. For example, in young animals the CST displays great plasticity and if injured the CST 

axons are able to pass the lesion site to innervate the appropriate area (Bregman et al., 

1989; Liu et al., 2011). As the animal matures the regenerative and plastic capability of the 

CNS is reduced, coinciding with the production of myelin and of inhibitory proteins such as 

associated neurite growth inhibitory proteins (Kapfhammer and Schwab 1994a,b; Steeves et 

al., 1994; Harel and Strittmatter 2006).  The glial scar forms an inhibitory environment and 

acts as a barrier to axonal regeneration. Injured axons when faced with such a barrier are 

unable to grow further and instead form retraction bulbs (Fitch and Silver 1997; Silver and 

Miller 2004; Leal-Filho 2011).  Neutralization of the inhibitory environment that is formed 

following injury is one strategy that has been used to enhance regeneration of lesioned 

axons. For example, the removal or neutralization of oligodendrocytes or myelin can improve 

regeneration (Bregman et al., 1995). When an antibody aimed against neutralizing inhibitory 

factors like Nogo-A (IN-1 antigen) is used, regenerative sprouts and long distance elongation 

is seen (Schnell and Schwab, 1990; Brosamle et al., 2000; Chen et al., 2000). Likewise 

treatment with the bacterial enzyme chondroitinase ABC (chABC), which has the ability to 

digest CSPG in the scar, also has beneficial effects in spinal cord injury models from 

contusion (Caggiano et al., 2005) hemisections (Bradbury et al., 2002; Yick et al., 2003; 

Barritt et al., 2006; Houle et al., 2006) and transections (Fouad et al., 2005). While some 

beneficial effects on axonal remodeling have been reported as well (Thallmair et al., 1998; 

Z’Graggen et al., 1998; Z'Graggen et al., 2000; Bradbury et al., 2002; Bareyre et al., 2002), 

the removal of extracellular inhibitory molecules has so far proven to be insufficient for 

extensive axonal remodeling and complete functional recovery. This might at least partially 

be due to the fact that this approach targets growth inhibitors at the lesion site, whereas 

axonal remodeling commonly occurs remote from this area.  

 

The intrinsic barrier, attributed to the decline in the intrinsic growth competence of a 

CNS neuron as it matures, affects the capabilities of injured CNS neurons to both regenerate 

and remodel. To promote axonal growth and remodeling, one commonly used strategy is the 

application of factors such as neurotrophins. When a unilateral lesion of the CST is 

performed at the pyramidal decussation (pyramidotomy lesion) in the medulla oblongata, the 

unlesioned CST tract can be recruited to compensate for the loss of the original input and 

enable functional recovery. This model system can be used to evaluate the effectiveness of 

potential molecules to promote remodeling. Following a pyramidotomy lesion, when 

motorneurons were transduced to express NT3, unlesioned CST axons were found to sprout 
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across the midline towards the transduced motorneurons (Zhou et al., 2003). Sustained 

concomitant expression of neurotrophic factors BDNF and NT3 in the cortex and spinal cord, 

respectively, further enhanced the axonal sprouting effect from the intact tract (Zhou and 

Shine 2003). An alternative and more direct approach is the manipulation of key regulatory 

genes involved in the intrinsic growth program and known to be activated in regenerating 

PNS neurons. The forced upregulation of molecules that contribute to axonal growth and 

that are normally downregulated in the CNS after injury can induce compensatory sprouting 

from the unlesioned tract. Genetically overexpressing factors such as neuronal calcium 

sensor-1 (NCS1) (Yip et al., 2010) and mTOR (Liu et al., 2010) has been reported to 

stimulate spared fibers to send their axons into to the denervated side leading to functional 

recovery of the injured limb. Remodeling requires axonal growth, as it has been shown that 

manipulation of the PI3K-Akt (of which NCS1 is a member) and PTEN/mTOR pathways can 

induce growth and lead to recovery following CNS injuries (Park et al., 2010; Yip et al., 2010; 

Liu et al., 2010). Hence the approach to induce growth through exploiting the intrinsic growth 

potential of a neuron would be an effective strategy to promote axonal remodeling.  

 

 

1.6. The Jak/STAT Pathway: A component of the intrinsic 
growth program  

In the adult mammalian system, it is well known that only in the peripheral nervous 

system (PNS) there is successful regeneration of lesioned axons. Following injury, even 

though successful regeneration does not occur in the CNS, CNS neurons are capable of 

mounting a transient regenerative response as evidenced by the expression of regeneration 

associated proteins and genes (RAGs) (Mikucki and Oblinger 1991; Tetzlaff et al., 1994; 

Fournier and McKerracher 1997; Neumann and Woolf 1999; Bulsara et al., 2002; Storer et 

al., 2003; Kruse et al., 2011). This indicates that the intrinsic growth program inherent to 

neurons is activated in response to injury, however it is not sustained. This is in contrast to 

what has been observed in the PNS, where following injury there is regeneration and a high 

expression of transcription factors and proteins associated with regeneration and growth. In 

the classical ‘conditioning lesion’ paradigm, regeneration of both the peripheral and central 

branch of the DRG neuron can occur, although regeneration of the central branch is 

dependent on prior injury of the peripheral branch (Richardson and Issa 1984; Richardson 

and Verge 1987; Sjoberg and Kanje 1990; Chong et al., 1994; Neumann and Woolf 1999; 
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Cai et al., 2002). Injury of the peripheral branch activates the intrinsic growth program and is 

thus the key for regeneration in both branches (Cai et al., 2002; Yang and Yang 2011) as 

this program is not activated in the mature CNS following an injury (Stam et al., 2007). 

Targeting factors involved in the intrinsic growth program would therefore be an effective 

strategy to promote axonal growth and regeneration following CNS injuries. Most commonly 

upregulated genes and transcription factors after injury that are found to be associated with 

regeneration are: c-Jun, Atf-3, Hspb1, HSP-27, Adcyap1, Gadd45a, Gap43, Actb, Tubb3 

and in particular the Signal transducer and activator of transcription 3 (STAT3) (Broude et 

al., 1997; Qiu et al., 2005; MacGillavry et al., 2009; Sun and He 2010; Smith et al., 2011).  

 

STAT3 has dual roles as a signal transducer and a transcription factor. The STAT3 

protein is essential during development as a complete knockout results in embryonic lethality 

(Takeda et al., 1997; Aaronson and Horvath 2002). In adulthood it is known to participate in 

various functions including neuronal cell survival, axonal growth, protection and remodeling 

(Levy and Darnell 2002). In the immune system, STAT3 plays a key role in the signal 

transduction of anti-inflammatory responses mediated via macrophages and neutrophils, in 

turn regulating the inflammation process (Kühn et al., 1993; Akira 2000; Shuai and Liu 

2003). The Janus kinase (Jak/STAT) pathway has also been implicated to be involved in 

synaptic plasticity, with pharmacological inhibition or knockdown of STAT3 blocking the 

induction of NMDAR (N-methyl-D-aspartate receptor)-LTD (long-term depression) (Nicolas 

et al., 2012). In normal conditions, STAT3 exists in the cytoplasm of a cell in an inactive form 

where it is associated with the glycoprotein 130 (gp130). The Jak/STAT3 signaling pathway 

is activated by cytokines interleukin 6 (Il6) (Zhong et al., 1994), ciliary neurotrophic factor 

(CNTF) (Rajan et al., 1996) and the leukemia inhibitory factor (LIF) (Kunisada et al., 1996). 

While the intensity and duration that the Jak/STAT pathway is activated for is tightly 

regulated and controlled by members of the suppressor of cytokine signaling (SOCS) family 

(Croker et al., 2008). Once activated by cytokines, JAK kinases phosphorylates the tyrosine 

residue (Tyr-705) of STAT3, leading to homodimerization or STAT1/3 heterodimerization 

(Figure 5). In its activated phosphorylated form, the dimerized complex is translocated to the 

nucleus where it binds to specific DNA-response elements activating the transcription of 

specific genes (Zhong et al., 1994; Akira 2000; Ng et al., 2006).  STAT3 can also be 

phosphorylated at serine 727 (Ser-727), and it has been suggested that Ser-727 

phosphorylation enables STAT3 to achieve its maximal transcriptional activity (Ceresa and 

Pessin 1996; Lim and Cao 1999; Ng et al., 2006). 
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Figure 6. Signal transducer and activator of transcription 3 (STAT3) is part of the Janus-family 
kinases (JAKs)/STAT3 pathway. This pathway can be activated in response to autocrine or paracrine 
signals, including cytokines. Upon activation, JAKs and SRC tyrosine kinases are able to phosphorylate 
STAT3 at its tyrosine residue. Following phosphorylation, STAT3 is able to dimerize and translocates to the 
nucleus where it will transcribe target genes. STAT3 signaling is tightly regulated by inhibitory molecules 
that include suppressor of cytokine signaling (SOCS) proteins, protein inhibitor of activated STAT (PIAS) 
proteins and protein tyrosine phosphatases (PTPases). 
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The following findings suggest that STAT3 signaling could be a key event in the 

regulation of axonal outgrowth:   

(i) The expression levels of phosphorylated STAT3 is increased in regenerating 

axons (Schwaiger et al., 2000; Sheu et al., 2000; Xia et al., 2002) and is associated with 

axonal remodeling (Bareyre et al., 2002).   

(ii) Molecules that have an influence on axonal regeneration and are expressed 

following a peripheral nerve injury, for example cytokines IL-6, ciliary neurotrophic factor, 

and leukemia inhibitory factor have an effect on STAT3 signaling (Curtis et al., 1994; Zhong 

et al., 1999; Cafferty et al., 2001; Cafferty et al., 2004).  

(iii) In cultured CNS neurons, STAT3 has been found to promote neuronal outgrowth 

(Smith et al., 2011) and in the DRG ‘conditioning lesion’ paradigm STAT3 is activated in the 

cell bodies of the DRG neurons only when the peripheral branch is injured (Schwaiger et al., 

2000; Qiu et al., 2005).  Taken together these findings suggest that STAT3 is an interesting 

candidate regulator of the intrinsic neuronal growth program. 
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Aims of the Thesis 
 

The overall goals of this thesis were to contribute to a better understanding of the 

structural principles underlying axonal remodeling following spinal cord injury and to 

determine whether we could enhance axonal growth, regeneration and remodeling of the 

corticospinal tract through the genetic manipulation of intrinsic neuronal growth pathways. 

Therefore the following questions were investigated within this thesis: 

 

 

1. What are the processes that underlie the maturation and remodeling of newly 

formed collaterals following injury? 

 

In aim I of this thesis we examined the manner in which the corticospinal tract 

remodels its axons following spinal cord injury. Our laboratory has previously shown that in 

response to injury, the CST can spontaneously sprout collaterals rostrally to the lesion site. 

In turn these collaterals contact interneuronal populations in the cervical cord creating a 

“detour circuit” to mediate functional recovery. Through the use of transgenic mice, genetic 

tracing methods and dye tracers, we selectively labeled the CST as well as different 

interneuronal populations in the spinal cord. Using bulk analysis and reconstructions of 

single CST collaterals we were able to follow the formation, maturation and refinement of 

CST collaterals over several months following lesion. 

 

 

2. How does the regenerative-associated transcription factor STAT3 regulate 

axonal regeneration in the PNS and CNS? 

 

In aim II of this thesis, we wanted to investigate whether the transcription factor 

STAT3 is a suitable tool to manipulate the intrinsic neuronal growth response. To reveal the 

role of STAT3 during PNS and CNS regeneration we focused on the DRG system which 

provides access to both the CNS and the PNS branches of the same neuron. The 

expression levels of STAT3 were manipulated in both the PNS (where STAT3 was ablated) 

and CNS (where STAT3 was overexpressed) through the combined use of transgenic mice 

and adeno-associated viral (AAV) viruses. With confocal and repetitive in vivo timelapse 
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microscopy, we were able to identify sustained STAT3 expression is a key requirement for 

the timely initiation of PNS axon regeneration.  

 

 

3. Can the sustained expression of STAT3 enhance axonal regeneration, 

remodeling and functional recovery following a CNS injury?  

 

In aim III of the thesis, we expanded on our previous studies in order to elucidate 

whether the initiation of an intrinsic neuronal growth response by STAT3 expression could 

also promote outgrowth of CNS axons following spinal cord injury. To address this question 

we performed two sets of experiments. First we deleted endogenous STAT3 expression in 

cortical projection neurons and analyzed the effects on endogenous CST axonal outgrowth. 

Second, through gene therapy we overexpressed STAT3 in upper corticospinal 

motorneurons and used several CST-lesion paradigms, along with behavioral and 

electrophysiological assessments to reveal the role of STAT3 in axonal remodeling, 

regeneration and functional recovery after spinal cord injury. 
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Results 
 

 

The work during this doctoral thesis has resulted in two peer-reviewed publications and one 
submitted manuscript. They are included in the thesis and constitute Chapter 3.  

 

• Lang C*, Guo, X*, Kerschensteiner, M., and Bareyre, F.M. (2012). Single Collateral 
Reconstructions Reveal Distinct Phases of Corticospinal Remodeling after Spinal 
Cord Injury. PLoS ONE. 7:e30461. 

 

• Bareyre FM, Garzorz N, Lang C, Misgeld T, Büning H, Kerschensteiner M. (2011). In 
vivo imaging reveals a phase-specific role of STAT3 during central and peripheral 
nervous system axon regeneration. Proc Natl Acad Sci U S A.108(15):6282-7. 
 
 

• Lang C, Bradley P, Kerschensteiner M, Bareyre FM. (2012). STAT3 promotes 
corticospinal remodeling, regeneration and functional recovery after spinal cord 
injury. An article submitted to the Journal of Neuroscience 
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Single collateral reconstructions reveal 
distinct phases of corticospinal 
remodeling after spinal cord injury  
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Single Collateral Reconstructions Reveal Distinct Phases
of Corticospinal Remodeling after Spinal Cord Injury
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Abstract

Background: Injuries to the spinal cord often result in severe functional deficits that, in case of incomplete injuries, can be
partially compensated by axonal remodeling. The corticospinal tract (CST), for example, responds to a thoracic transection
with the formation of an intraspinal detour circuit. The key step for the formation of the detour circuit is the sprouting of
new CST collaterals in the cervical spinal cord that contact local interneurons. How individual collaterals are formed and
refined over time is incompletely understood.

Methodology/Principal Findings: We traced the hindlimb corticospinal tract at different timepoints after lesion to show
that cervical collateral formation is initiated in the first 10 days. These collaterals can then persist for at least 24 weeks.
Interestingly, both major and minor CST components contribute to the formation of persistent CST collaterals. We then
developed an approach to label single CST collaterals based on viral gene transfer of the Cre recombinase to a small number
of cortical projection neurons in Thy1-STP-YFP or Thy1-Brainbow mice. Reconstruction and analysis of single collaterals for up
to 12 weeks after lesion revealed that CST remodeling evolves in 3 phases. Collateral growth is initiated in the first 10 days
after lesion. Between 10 days and 3–4 weeks after lesion elongated and highly branched collaterals form in the gray matter,
the complexity of which depends on the CST component they originate from. Finally, between 3–4 weeks and 12 weeks
after lesion the size of CST collaterals remains largely unchanged, while the pattern of their contacts onto interneurons
matures.

Conclusions/Significance: This study provides a comprehensive anatomical analysis of CST reorganization after injury and
reveals that CST remodeling occurs in distinct phases. Our results and techniques should facilitate future efforts to unravel
the mechanisms that govern CST remodeling and to promote functional recovery after spinal cord injury.
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Introduction

Injury to the spinal cord leads to a disruption of ascending and

descending fiber tracts followed by loss of sensation and voluntary

movements below the level of the lesion [1]. Whereas a complete

transection of the spinal cord often leads to permanent disabilities,

incomplete injuries can be followed by spontaneous functional

recovery [2–4]. An important anatomical feature underlying this

functional recovery is the remodeling of damaged axonal

connections [5–8]. Many insights into how axons remodel after

lesion stems from the study of the corticospinal tract (CST). The

CST is a major descending motor pathway that mediates skilled

movements in all mammalian species [9], [10]. The CST in

rodents consists of a main component that runs at the base of the

dorsal funiculus and minor components in the dorso-lateral and

ventral funiculus [11–13]. In recent years we and others have

studied how the hindlimb portion of the CST responds to a

thoracic dorsal hemisection. Using a combination of anterograde,

retrograde and trans-synaptic tracing techniques we have

previously shown that the formation of intraspinal detour circuits

are a key component of CST remodeling after injury [6], [14].

Detour circuits are formed in the following steps: First, the

lesioned CST fibers sprout new collaterals in the cervical spinal

cord above the level of lesion. These collaterals then extend to the

intermediate layers of the cervical gray matter. There they form

contacts with different populations of spinal interneurons,

including long propriospinal neurons, a population of interneurons

that are involved in coupling of forelimb and hindlimb movement

[15–18]. These long propriospinal neurons, the axons of which

bypass the lesion in the ventral funiculus, in return increase their

projections to hindlimb motoneurons in the lumbar spinal cord.

Electrophysiological and detailed behavioral and kinematic

analysis show that this and similar detour circuits play a key role

for the recovery of CST function [6], [7].
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While it is thus established that the formation of CST collaterals

is a key step of axonal remodeling after injury, we still know very

little about how long these collaterals persist, from which CST

components they originate and how their complexity and

projection pattern evolves over time. Analysis of mice traced by

injection with the anterograde tracer BDA (Biotin Dextran Amine)

in the hindlimb motor cortex and perfused at 10 days to 24 weeks

after a dorsal hemisection of the mid-thoracic spinal cord now

revealed the following findings: CST collaterals primarily started

to grow in the first 10 days after injury. Both major and minor

CST components contributed to this emergence of collaterals.

Once emerged, the majority of CST collaterals persisted at least

for up to 24 weeks after lesion. To study how these collaterals

evolve over a long period of time (for up to 12 weeks after lesion),

we labeled single CST collaterals by viral gene transfer of Cre

recombinase to a small number of cortical projection neurons in

Thy1-Stp-YFP [13] and Thy1-Brainbow mice [19]. The reconstruc-

tion of single collaterals emerging from main and minor CST

components showed that dramatic changes in collateral length and

complexity occur between 10 days and 4 weeks after injury. These

parameters remain largely stable between 4 weeks and 12 weeks

after lesion. Analysis of the CST contacts onto interneurons

however indicated that while the morphology of the collaterals

remained largely unchanged during the late stage of the

remodeling process, their synaptic projections were still refined.

We can further show that while the overall timing of the

remodeling is similar in main and minor CST collaterals their

individual complexity differed depending on their origin. Taken

together our result suggest that CST remodeling after SCI occurs

in 3 subsequent phases: a growth initiation phase (within the first

10 days after injury), which is followed by a collateral formation

phase (between 10 days and 3–4 weeks after injury) and a later

maturation phase (between 3–4 weeks and 12 weeks after injury).

Results

Cervical CST collaterals primarily emerge in the first 10
days after lesion and persist over time

Injection of BDA 10,000 into the hindlimb motor cortex

revealed three components of the hindlimb CST in the spinal cord

(Fig. 1A). The main CST component runs at the base of the

dorsal funiculus and contains 97.660.27% (n = 8 mice) of labeled

CST fibers. The minor CST components run in the dorso-lateral

and ventral funiculus and contain 2.160.23% (n = 8 mice) and

0.360.04% (n = 8 mice) of labeled CST fibers, respectively.

In unlesioned adult mice, axons arising from all hindlimb CST

components sent only very few collaterals into the gray matter of

the cervical spinal cord (level C3–C5, Fig. 1 A, D). However, as

early as 10 days following a mid-thoracic lesion, the number of

CST collaterals in the cervical cord gray matter increased more

than 4-fold (Fig. 1 B, D). Over the following weeks the number of

cervical collaterals slowly decreased. Still the majority of the

collaterals persisted long-term and was still detected as late as 24

weeks after injury (Fig. 1 C, D). Over this timeframe the

collaterals, which in most cases have just started to enter the spinal

gray matter at 10 days after lesion (Fig. 1 B), extended further and

mainly projected to the intermediate layers of the spinal cord

(Fig. 1 C). When we analyzed the contribution of different CST

components to the formation of cervical collaterals, we found that,

while in absolute number most of the collaterals arose from the

main CST, the relative number of new collaterals that emerge per

labeled fiber was several-fold higher for the minor dorso-lateral

and ventral CST components (Fig. 1 E–P). Notably, while the

number of newly formed CST collaterals emerging from the main

CST significantly declined over time (Fig. 1 H), the number of

collaterals derived from the minor CST components remained

stable for the entire observation period (Fig. 1 L, P).

Complex CST collaterals form between 10 days and 4
weeks after lesion

To label single CST collaterals, we took advantage of Thy1-Stp-

YFP [13] and Thy1-Brainbow [19] mice. In these mouse lines the

presence of Cre recombinase either starts (in the case of Thy1-Stp-YFP)

or changes (in the case of Thy1-Brainbow mice) the expression of

fluorescent proteins in the affected neurons. Expression of Cre

recombinase was restricted to a small number of cortical projection

neurons by stereotactically injecting small amounts of a recombi-

nant Adeno-Associated Virus expressing Cre recombinase (rAAV-

Cre) into the hindlimb motor cortex (Fig. 2 A, B). Single

collaterals emerging from the axons of transduced cortical

projection neurons could than be identified based on their unique

labeling in the cervical spinal cord and reconstructed from serial

cross-sections (Fig. 2 C–G).

We used this approach to analyze the structure of cervical

collaterals emerging from main and minor CST components at 10

days, 4 weeks and 12 weeks after a mid-thoracic hemisection of the

spinal cord (Fig. 3). At 10 days following the injury, CST

collaterals emerging from all CST components were fairly short

(Fig. 3 A–C, J), had a simple, mostly unbranched structure (Fig. 3
K) and showed very few, if any, boutons (Fig. 3 L). At 4 weeks

after lesion, the collaterals were substantially longer (Fig. 3 D–F,
J), had a complex often highly branched structure (Fig. 3 K) and a

higher number of boutons (Fig. 3 L). At this time, the anatomical

structure of a collateral depended on its white matter origin.

Compared to main CST collaterals, collaterals emerging from the

ventral CST were long but showed a relatively simple structure

with few branch points and boutons (Fig. 3 E, J–L). In contrast,

collaterals emerging from the dorso-lateral CST component had a

highly complex structure and significantly more branchpoints and

boutons compared to both ventral and main CST collaterals

(Fig. 3 J–L). While the structure of CST collaterals thus evolved

substantially between 10 days and 4 weeks after lesion, collaterals

emerging from all CST components remain largely unchanged

between 4 weeks and 12 weeks after injury (Fig. 3 G–L).

Consequently, at 12 weeks after lesion dorso-lateral CST

collaterals still had significantly more branchpoints than main

CST collaterals and more branchpoints and boutons than ventral

CST collaterals (Fig. 3 J–L).

Synaptic differentiation of newly formed CST boutons
To determine the synaptic differentiation of the newly formed

CST boutons we traced the hindlimb CST and then stained

cervical and lumbar spinal cord sections with antibodies against

two synaptic markers: bassoon, a marker of the presynaptic active

zone and synapsin I, a protein that regulates neurotransmitter

release at the synapse (Fig. 4). We first determined the percentage

of boutons that are immunoreactive for the synaptic markers in the

lumbar spinal cord of unlesioned mice (n = 2 mice). Of these

‘‘control’’ boutons 51% were immunoreactive for synapsin I and

52% were immunoreactive for bassoon. As these values likely

represent the mature expression pattern, this value was set as

100% and the immunoreactivity in newly formed boutons was

expressed as a percentage of the mature expression pattern. The

analysis of CST boutons in the cervical spinal cord at 10 days and

3 weeks after lesion then showed that the expression of both

bassoon (Fig 4 A–C) and synapsin I (Fig. 4 D–F) is low at 10 days

after lesion but is comparable to the expression pattern observed in

the lumbar spinal cord of unlesioned mice by 3 weeks. Double-
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immunostaining experiments further showed that 3 weeks after

lesion 80.564.5% of the immunoreactive CST boutons are double

positive for synapsin I and bassoon while comparably few of them

showed the expression of only one marker (862% are only

immunoreactive for synapsin I and 11.566.5% are only

immunoreactive for bassoon, Fig. 4 G).

Figure 1. Population analysis of hindlimb CST collateral formation at different timepoints after SCI. (A–C) Reconstruction of hindlimb
CST collaterals (black) from 5 consecutive sections in the cervical spinal cord of control mice (A) and of mice perfused 10 days (B) and 24 weeks (C)
following SCI. (D) Quantification of the total numbers of collaterals emerging from all CST components in the cervical gray matter of control mice and
of mice at different timepoints following SCI. (E–G) Confocal images of main CST (BDA, yellow) and the adjacent gray matter (Neurotrace, blue; border
shown by dashed white line) in control mice (E) and in mice perfused 10 days (F, arrow indicates CST collateral emerging from main CST) and 24
weeks (G, arrow indicates CST collateral emerging from main CST) following SCI. (H) Quantification of the number of collaterals emerging from the
main CST component at different timepoints following SCI. (I–K) Confocal images of the minor dorso-lateral CST (BDA, yellow) and the adjacent gray
matter (Neurotrace, blue; border shown by dashed white line) in control mice (I) and in mice perfused 10 days (J) and 24 weeks (K, arrow indicates
CST collateral emerging from dorso-lateral CST) following SCI. (L) Quantification of the number of collaterals emerging from the minor dorso-lateral
CST component at different timepoints following SCI. (M–O) Confocal images of the minor ventral CST (BDA, yellow) and the adjacent gray matter
(Neurotrace, blue; border shown by dashed white line) in control mice (M, arrow indicates ventral CST fiber) and in mice perfused 10 days (N) and 24
weeks (O, arrow indicates collateral emerging from ventral CST) following SCI. (P) Quantification of the number of collaterals emerging from the
minor ventral CST component at different timepoints following SCI. Asterisks indicate significance compared to the unlesioned controls. Pound signs
indicate significance compared to the 10-day timepoint. Scale bar in A (also for B,C), 500 mm; in M (also for E–O), 100 mm.
doi:10.1371/journal.pone.0030461.g001
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CST collaterals refine their contacts on interneurons
between 3 and 12 weeks after lesion

To investigate how the projection pattern of CST collaterals

evolves over time, we analyzed the number of contacts that an

individual collateral formed with the cell bodies of spinal

interneurons (Fig. 5). We first determined the mature projection

pattern by evaluating contacts of hindlimb CST collaterals onto

interneurons in the lumbar spinal cord. Here, we found that in

most cases (85.564.7%, n = 2 animals and 59 collaterals) a CST

collateral forms 1 and in some cases (14.564.7%) 2 contacts on

spinal interneurons (Fig. 5 C). In contrast, the majority of newly

emerging CST collaterals in the cervical spinal cord displayed

multiple (up to 4) contacts on spinal interneurons at 10 days after

lesion (Fig. 5 C). This ‘‘multiple contact’’ pattern still persisted at

3 weeks after lesion (Fig. 5 A, C). The mature contact pattern was

only present at 12 weeks after lesion and at this time more than

80% (81.163.1%, n = 3 animals and 168 collaterals) of collaterals

only showed 1 contact per interneuron (Fig. 5 B, C). The mature

pattern then persisted over time and was still present at 24 weeks

after injury (Fig. 5C). The analysis of the individual CST

components showed that at 3, 8 and 12 weeks after lesion most of

the contacts on interneurons were formed by collaterals emerging

from the main CST tract (Fig. 5D).

Discussion

The plastic reorganization of axonal connections is an

important element of the recovery process after CNS damage.

This is exemplified by the remodeling of lesioned CST fibers after

spinal cord injury. Previous work has shown that the sprouting of

new CST collaterals above the level of the lesion is a key step in

the formation of intraspinal detour circuits that contribute to

functional recovery after traumatic and inflammatory lesions of

the spinal cord [6], [7], [14], [20]. Here, we can show that these

collaterals form and mature in distinct phases (Fig. 6). In the

growth initiation phase that encompasses the first 10 days after

lesion, CST collaterals emerge and, at least in the case of the main

and dorso-lateral CST, start to enter the cervical gray matter. In

the collateral formation phase that covers the ensuing weeks, these

collaterals elongate, branch and form synaptic contacts in the

cervical gray matter. The final maturation phase, 12 weeks after

injury, is then characterized by the small-scale refinements of the

projection pattern that includes the removal of excessive inputs

Figure 2. Strategies for labeling individual CST collaterals. (A, B) Confocal images of the cortex of a Thy1-Brainbow (A; YFP, yellow; CFP, blue)
and Thy1-Stp-YFP mouse (B; YFP, green; Neurotrace, red) after local injection of rAAV-Cre. Boxed areas are magnified 2 times in insets. (C,D) Confocal
images of CST collaterals in the cervical spinal cord of a Thy1-Brainbow (C; YFP, yellow; CFP, blue) and Thy1-Stp-YFP (D; YFP, green; Neurotrace, red)
mouse after injection of rAAV-Cre in the cortex. Boxed areas are magnified 2 times in insets. Arrows in inset in C indicate different collaterals
expressing either CFP (blue), YFP (yellow) or a combination of both (white). Dashed white line indicates the outline of the spinal gray matter. (E–G)
Confocal images of individual collaterals (white) emerging from the main CST (F), the dorso-lateral CST (E) and the ventral CST (G) following SCI.
Arrows indicate individual collaterals. Dashed white lines indicate the outline of the spinal gray matter. Scale bar in B (also for A),100 mm; Scale bar in
D (also for C),100 mm; Scale bar in G (also for E,F), 50 mm.
doi:10.1371/journal.pone.0030461.g002
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from interneurons. Another example of this refinement process is

provided by our previous analysis [6] of CST contacts onto two

distinct interneuronal populations, the long propriospinal neurons

which connect the cervical spinal cord to the lumbar spinal cord

[15–18] and the short propriospinal neurons that form intracervi-

cal connections [21], [22]. The cell bodies of these interneurons

are located side by side in the cervical gray matter. Indeed, at 3

weeks after lesion - at the end of the formation phase - similar

fractions of long and short propriospinal neurons are contacted by

CST collaterals. However at 12 weeks - at the end of the

maturation phase - many of the contacts on short propriospinal

neurons have been removed while contacts on long propriospinal

neurons persisted [6]. Taken together with the results of this study,

it seems that the main aim of the maturation phase is the removal

of excessive connections and the strengthening of pertinent

connections. The emergence and selection of CST collaterals

thus shows interesting parallels to the initial formation and

refinement of neuronal connections in development. In the

neuromuscular system it has been shown that initially exuberant

connections between motor neurons and muscle fibers are formed,

leading to the innervation of single neuromuscular junctions by

multiple axons [23]. Over time, most of these inputs are then

removed and only a single axon remains to innervate the junction

[24], [25].

Similarly, during the development of the CNS initially excessive

connections are formed that are later pruned. A classical example

for the removal of excessive connections is the pruning of early

corticospinal projections that originate from the occipital cortex

[26], [27]. The refinement of CST connections during develop-

ment however extends beyond this large scale pruning. For

example, it is known that in different species the initial termination

pattern of the CST encompasses the entire gray matter from

dorsal to ventral horn and becomes more restricted later on [28–

31]. In addition, while most corticospinal fibers in adults terminate

contralateral to their origin in the cortex, during development

CST axons also show extensive projections to the ipsilateral spinal

gray matter. This can be at least partially explained by the findings

that during development a larger proportion of axons appear to

descend ipsilaterally without decussating in the pyramid while

other projections cross not only in the decussation but again in the

Figure 3. Reconstruction of individual hindlimb CST collaterals at different timepoints after spinal cord injury. (A–C) Reconstruction of
individual collaterals (blue asterisks indicate the entry point of the collateral in the gray matter) emerging from the main dorsal (A) and the minor
ventral (B) and dorso-lateral (C) CST components at 10 days following SCI. (D–F) Reconstruction of individual collaterals (green) emerging from the
main dorsal (D) and the minor ventral (E) and dorso-lateral (F) CST components at 4 weeks following SCI. (G–I) Reconstruction of individual collaterals
(red) emerging from the main dorsal (G) and the minor ventral (H) and dorso-lateral (I) CST components at 12 weeks following SCI. (J–L)
Quantification of the total collateral length (J), the number of branchpoints/collateral (K) and the number of boutons/collateral (L) measured in
individually reconstructed collaterals at different timepoints after SCI. Blue bars, 10-day timepoint; green bars, 3-week timepoint; red bars, 12-week
timepoint. Asterisks indicate significant differences compared to the 10-day timepoint. Pound signs indicate significant differences between
collaterals emerging from different CST components at 3 weeks (green) and 12 weeks (red) after injury. Scale bar in A (also for B–I), 50 mm.
doi:10.1371/journal.pone.0030461.g003
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spinal cord [32]. At least some of these initial CST connections,

including many of the double-crossed or uncrossed collaterals

appear to be transient and are removed during the maturation of

the CST [32], [33]. Further work will be necessary to determine to

what extend these structural commonalities between developmen-

tal and post-injury remodeling also imply common regulatory

mechanisms. For example, it will be interesting to see if neuronal

activity patterns, that are important determinants of competition

at the neuromuscular junction [34–36] or during CST develop-

ment [37] also regulate the fate of newly formed CST collaterals.

Likewise it will be important to explore to what extend molecules

that affect pruning such as the semaphorins/plexins [38], [39],

ephrins [40] or components of the wlds pathway [41] also

influence the removal of CST collaterals.

The excessive formation and subsequent sorting of connec-

tions is one way how the specificity of new CST connections

Figure 4. Synaptic differentiation of newly formed CST boutons. (A–B) Confocal images of bassoon immmunostaining (green) in the cervical
spinal cord of mice with a traced hindlimb CST (BDA, red) perfused 10 days (A) and 3 weeks following SCI (B). Yellow arrows indicate boutons that
were immunoreactive for bassoon, white arrows indicate those that were not. (A9–A90) Single plane confocal image of the boutons boxed in A
showing the collateral (A9; BDA, white), bassoon immunostaining (A0; white) and the overlay (A90; BDA, red; bassoon, green) at 10 days after SCI. (B9–
B90) Single plane confocal image of the bouton boxed in B showing the collateral (B9; BDA, white), bassoon immunostaining (B0, white) and the
overlay (B90; BDA, red; bassoon, green) at 3 weeks after SCI. (C) Quantification of the number of boutons on hindlimb CST collaterals that were
immunopositive for bassoon at 10 days and 3 weeks following SCI in the cervical cord. The percentages were normalized to the expression pattern in
the lumbar cord (L) of control animals (which was set to 100%). (D–E) Confocal images of synapsin I immunostaining in the cervical spinal cord of
mice with a traced hindlimb CST (BDA, red) perfused 10 days following SCI (D) and at 3 weeks post-injury (E). Yellow arrows indicate boutons that
were immunoreactive for synapsin I, white arrows indicate those that were not. (D9–D90) Single plane confocal image of the bouton boxed in D
showing the collateral (D9, BDA, white), the synapsin I staining (D0; white) and the overlay (D90; BDA, red; synapsin I, green) at 10 days after SCI. (E9–
E90) Single plane confocal image of the bouton boxed in E showing the collateral (E9; BDA, white), the bassoon staining (E0; white) and the overlay
(D90; BDA, red; synapsin I, green) at 3 weeks after SCI. (F) Quantification of the number of boutons on hindlimb CST collaterals that were
immunnopositive for synapsin I at 10 days and 3 weeks following SCI in the cervical cord. The percentages were normalized to the expression pattern
in the lumbar cord (L) of control animals (which was set to 100%). (G) Quantification of the co-expression of bassoon and synapsin I in boutons of CST
collaterals of animals perfused at 3 weeks after injury (expressed as percentages of all immunoreactive boutons). Scale bar in A (also for B, D, E),
10 mm and in A9 (also for A0–E90), 3 mm.
doi:10.1371/journal.pone.0030461.g004

Figure 5. Analysis of CST contacts onto cervical interneurons after SCI. (A,B) Confocal images of contacts (arrows, defined as boutons in
apposition to neuronal cell bodies) between hindlimb CST collaterals (YFP, green) and the cell bodies of cervical interneurons (Neurotrace, red) at 4
weeks (A) and 12 weeks (B) following SCI. (C) Quantification of the number of contacts a given hindlimb CST collateral makes with the cell body of a
single interneuron at different timepoints after SCI as well as in the lumbar spinal cord of unlesioned animals. (D) Quantification of the percentage of
Neurotrace (NT)-stained interneurons contacted by collaterals emerging from the different CST components at multiple timepoints following the
lesion. Asterisks indicate significant difference compared to main CST collaterals. Scale bar in A (also for B), 15 mm.
doi:10.1371/journal.pone.0030461.g005
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can be established. Another measure to ensure specificity is the

targeting of axons to specific neurons or regions of the spinal

cord. In the case of the newly formed CST connections, the

refinement of initial connections during the maturation phase

suggests that initial targeting is not established by specific

recognition of single neurons. On the other hand, the

distribution of newly formed CST collaterals in the spinal

cord gray matter indicates that specific regions of the spinal

cord, in particular the intermediate layers V–VII are

preferentially targeted by CST collaterals (see Fig. 1C). Taken

together our findings thus suggest that a combination of

‘‘region-specific’’ targeting that guides collaterals to the

intermediate layers of the spinal cord and a subsequent

refinement process that removes excessive connections collab-

orate to ensure specific targeting of newly formed CST

connections to intraspinal relay neurons.

Figure 6. Schematic representation of hindlimb CST remodeling following SCI. Scheme illustrating the formation of cervical collaterals
derived from the main CST (upper row) and the minor dorsolateral (2nd row) and ventral (3rd row) CST components at 10 days (blue), 3–4 weeks
(green) and 12 weeks (red) after SCI. Bottom row illustrates the refinement over time of the contacts between CST collaterals and cervical
interneurons.
doi:10.1371/journal.pone.0030461.g006
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It should be noted however, that while most newly formed CST

collaterals end in the intermediate layers of the spinal cord, some

fibers reach the ventral horn and might form contacts with ventral

motoneurons [42]. These direct connections of hindlimb CST

axons to forelimb motoneurons could be one anatomical substrate

that underlies the shift of motor maps that occurs both in animal

and humans in response to spinal cord injury [43–45].

A second important finding of our study is that different CST

components contribute to the remodeling of the CST. Antero-

grade tracing revealed three distinct localizations of CST fibers in

the spinal cord, with the majority of fibers located in the main

CST component at the bottom of the dorsal funiculus and a

smaller proportion of fibers located in the dorso-lateral funiculus.

Only very few fibers were observed in the ventral funiculus,

contralateral to the main and dorso-lateral CST. These ventral

fibers together with the fibers in the dorso-lateral funiculus form

the minor CST components. This structure of the CST is in

accordance with previous reports in mice, where the ventral CST

component is relatively small [13], [46], [47], as well as in other

rodents [11], [12], [48–50]. We further observed that following

injury the number of fibers in the ventral component that is spared

by the lesion is increased. This is probably due to sprouting of

additional CST collaterals that can enter the ventral white matter

tract as previously described [51]. Our analysis of collateral

formation reveals both commonalities and differences between the

distinct CST components. For example, the overall timecourse of

collateral initiation, formation and maturation appears mostly

similar in major and minor CST components. The comparably

lower number of CST collaterals derived from the minor CST

tracts detected in the gray matter at 10 days after injury likely does

not reflect a different growth initiation but rather the longer

distance between the parental axons and the gray matter border. It

is interesting to note that while the overall timecourse of collateral

formation is similar, the number of collaterals an individual CST

axon sends to the gray matter differs substantially between the

CST components. A CST axon running in the ventral funiculus,

for example, extends more than 10-fold more collaterals into the

gray matter at 3 weeks after lesion than a main CST axon (Fig. 1
H, P). These findings suggest an important role for ventral CST

fibers in the CST remodeling process. As after a midthoracic

lesion, the ventral funiculus consists of both pre-existing ventral

fibers as well as newly sprouted collaterals likely derived from

other CST components, it is possible that both unlesioned fibers

and new collaterals emerging from lesioned CST fibers contribute

to this response. An important role of ventral fibers is in line with

previous experiments in rats that have demonstrated that ventral

CST fibers can play an important role for the recovery of CST

function [52]. However, it appears that not only the relative

number of collaterals emerging from a given CST component but

also their complexity differs between CST components. For

example, collaterals emerging from the dorso-lateral CST contain

several-fold more branch points and boutons at 4 weeks after

lesion than collaterals emerging from main or ventral CST. This

might suggest that dorso-laterals CST contact different target cell

populations. The idea that distinct CST components target distinct

cell populations is consistent with our previous observation that

dorso-lateral CST collaterals appear to be primarily responsible

for direct contacts on motoneurons in the lumbar spinal cord [13].

Taken together the characteristic differences between main and

minor CST components strongly suggest that individual compo-

nents might play distinct roles in the recovery process. The single

collateral tracing techniques established in this study can in the

future help to further define these distinct roles in different lesion

paradigms. This is of interest as the remodeling process after a

spinal lesion likely extends beyond the corticospinal tract to other

supra- and intraspinal tract systems. For example, the reticulosp-

inal tract has been shown to spontaneously sprout after SCI [53],

[54] and the spontaneous restoration of serotonergic activity, likely

mediated by the remodeling of serotonergic circuits, was found to

contribute to functional recovery [55], [56].

Finally our study demonstrates that once collaterals from all

CST components are formed they by and large persist long-term -

in our experiments at least up to the end of the observation period

(24 weeks after lesion for the population analysis and 12 weeks

after lesion for the analysis of individual collaterals). Our analysis

further shows that after early formation and refinement of the

collaterals, very little changes to the collateral number, structure

and contact pattern are observed beyond 12 weeks after lesion.

This suggests that an early critical period for CST remodeling

exists during which the formation or refinement of collaterals can

be influenced. However after this period, newly formed connec-

tions appear to remain stable. This defines a time-window for

therapeutic interventions that are likely most effective in the first

10 days after lesion if the aim is to improve collateral initiation,

between 10 days and 3–4 weeks if they aim to support collateral

formation and between 3–4 and 12 weeks if the aim to modulate

target connections. This is of interest as despite the spontaneous

remodeling of axonal connections substantial functional impair-

ments often remain following experimental and clinical spinal cord

injuries. It will therefore be important to develop therapeutic

strategies that can enhance the remodeling process. One

promising approach could be to foster the intrinsic neuronal

growth response of cortical projection neurons targeting, for

example, c-AMP and its downstream mediators [57], the growth

cone-associated proteins GAP43 and CAP23 [58], components of

the PTEN/mTOR pathway [59], [60] or the JAK-STAT pathway

[60], [61]. Another possible way to enhance axonal remodeling is

through rehabilitation. Several studies [43], [62–64] have already

demonstrated the positive effect of rehabilitation on axonal

sprouting following spinal cord injury. Care needs to be taken

however not to favor task-specific rewiring at the cost of other

tasks. Several studies have indeed shown that experimental

rehabilitation schemes in which one task is trained repetitively

will lead to improvement in this task to the detriment of other tasks

[43], [65–67]. To our mind, the analysis techniques introduced in

this study can in the future help to evaluate whether and how these

therapeutic approaches can improve axonal remodeling after

injury.

Materials and Methods

Ethics Statement
All animal experiments conformed to the institutional guidelines

and were approved by the Animal Study Committee of the

Regierung von Oberbayern. Approval ID: 55.2-1-54-2531-127-

05.

Animals
Adult C57BL/6 female mice 6–8 weeks old, Thy1-Stp-YFP and

Thy1-Brainbow mice (line TYC9, kindly provided by J. Livet,

INSERM) were used in this study. C57BL/6 mice were used for

all conventional CST tracing experiments. Thy1-Stp-YFP mice

express yellow fluorescent protein (YFP) in neurons after Cre-

mediated excision of a floxed STOP-sequence [13], [68]. Thy1-

Brainbow mice show a combinatorial expression of different

fluorescent proteins after Cre-mediated excision of Lox sites [19].

Briefly, in the brainbow-1.0 mice used in this study, lox P sites

alternate with incompatible lox variant (lox2272) sites. The Cre
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recombinase thus randomly chooses between different initial excision

events. As the initial excision between a pair of identical lox sites

removes one of the other pair, it prevents multiple recombination.

Before Cre action, only the gene following the promoter is

expressed (RFP). The recombination then switches expression to

either YFP or M-CFP depending on the site of the initial

recombination event. Further, the presence of multiple copies of

the brainbow construct that recombine independently can lead to

the co-expression of different fluorescent proteins [19]. Thy1-Stp-

YFP and Thy1-Brainbow mice were used for single collateral

analysis.

Spinal Cord Injury
Mice were anesthetized with a subcutaneous injection of

Ketamin/Xylazin (Ketamine 150 mg/kg, Xylazine 10 mg/kg).

A laminectomy was performed at thoracic level 8 (T8) and a dorsal

hemisection of the spinal cord was performed with fine iridectomy

scissors. This lesion interrupts the main dorsal and the minor

dorso-lateral CST components but not the minor ventral CST

component (Fig. 7). After surgery animals were heated,

rehydrated and treated with analgesics (which were also

administrated immediately before surgery).

rAAV-Cre
AAV1/2-CAG-HA-NLS-Cre-WPRE-BGH-polyA expression

vectors were used to generate viral particles in which the CAG

promoter consists of the chicken b-actin promoter hybridized with

the CMV immediate early enhancer sequence. The CAG

promoter drives the expression of the P1 Cre recombinase, the N-

terminus of which is fused to an HA-tag followed by a nuclear

localization signal (NLS). The woodchuck post-transcriptional

regulatory element (WPRE) and the presence of the bovine growth

hormone (BGH) polyadenylation sequence ensure high transcrip-

tion following transduction. AAV1/2 particles were generated by

GeneDetect.com Ltd.

Anatomical tracing of hindlimb corticospinal tract (CST)
Population analysis of CST collaterals. To study

reorganization of both the major and minor CST components

we traced the hindlimb CST in adult C57BL/6 mice by bilateral

pressure injections as previously described [14]. For this purpose,

1 ml of a 10% solution of biotinylated dextran amine (BDA

10 000, Molecular Probes) was slowly injected with a glass

capillary (tip diameter of about 20 mm) into lamina V of the

hindlimb motor cortex (coordinates: 21.3 mm posterior to

bregma, 1 mm lateral to bregma, 0.6 mm depth). The

micropipette remained in place for 2 minutes after completion

of the injection to minimize backflow and diffusion of the tracer.

Single CST collateral analysis. To study the projection

pattern of individual collaterals, we first determined the amount of

rAAV necessary to label single hindlimb CST collaterals by

varying the injected volume. We then performed bilateral pressure

injections of 0.3 ml of a rAAV-Cre (titer: 161012 genomic

particles/ml) into lamina V of the hindlimb motor cortices of

Thy1-Stp-YFP and Thy1-Brainbow mice. The micropipette remained

in place for 2 minutes after completion of the injection to

minimize backflow and diffusion of the virus.

Tissue preparation and immunohistochemistry
Animals were perfused transcardially with 4% paraformalde-

hyde (PFA). Brains and spinal cords were dissected, postfixed

overnight and cryoprotected in 30% sucrose for 3 days. For the

population analysis of CST collaterals we analyzed the cervical

spinal cord of C57BL/6 mice between the spinal level C3 and C5,

where the cell bodies of long propriospinal neurons are located.

For this purpose coronal sections (50 mm thickness) were cut on a

vibratome and processed as described previously [69]. The

hindlimb CST was revealed after BDA tracing using 0.4%

ammonium nickel sulfate (Sigma), 0.015% DAB (Sigma), 0.004%

H2O2 in 50 mM Tris buffer (pH 8) resulting in a black reaction

product. For the analysis of individual CST collaterals consecutive

coronal sections (100 mm thickness) of the cervical spinal cord of

Thy1-Stp-YFP and Thy1-Brainbow mice were cut on a vibratome

and mounted on gelatinized glass slides. Sections were then

incubated with a rabbit anti-GFP antibody (diluted 1:500,

Invitrogen) overnight at 4uC and on the next day with a goat-

anti-rabbit secondary antibody conjugated to Alexa Fluor 488

(Invitrogen). Finally, sections were counterstained with Neurotrace

435 (diluted 1:500, Invitrogen) to identify the cell bodies of spinal

interneurons.

For analysis of synaptic maturation 20 mm thick cryostat

sections derived from animals, in which the hindlimb CST was

Figure 7. Illustration of a dorsal hemisection of the thoracic spinal cord. (A) Confocal image of a cross-section of the thoracic (T8) spinal
cord of a mouse perfused 12 weeks after dorsal hemisection (counterstained with Neurotrace). Dashed line indicates lesion border. (B) Schematic
representation of the location of the different CST components (highlighted in different shades of green) in relation to this lesion (outlined by dashed
line from A). Scale bar in A, 200 mm.
doi:10.1371/journal.pone.0030461.g007
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labeled with BDA, were immunostained for synapsin I or bassoon

as follows. Sections were incubated with ABC (Vector Laborato-

ries) and primary polyclonal antibodies reactive against either

synapsin I (Millipore, 1:500) or bassoon (Synaptic System, 1:500)

in Tris buffer containing 0.3% Triton X-100 (Sigma) and 2.5%

goat serum serum (Invitrogen) overnight at 4uC. For double

immunostaining the polyclonal anti-synapsin I antibody (dilution

same as above) was combined with a mouse monoclonal anti-

bassoon antibody (dilution 1:100, Enzo Life Sciences). After a

20 min tyramide amplification (Biotin-XX, TSA Kit #21,

Invitrogen) to detect BDA, the sections were incubated overnight

with Streptavidin conjugated to Alexa Fluor 594 (1:500, Invitro-

gen) and a goat-anti-rabbit antibody conjugated to Alexa Fluor

488 (1:500, Invitrogen). Counterstaining was performed using

NeuroTrace 435 (1:500, Invitrogen) and sections were mounted in

Vectashield (Vector Laboratories).

Quantification of anatomical reorganization
Population analysis of CST collaterals. Fibers exiting

from main and minor CST components and entering the grey

matter were counted in 30 consecutive coronal sections of the

cervical spinal cord using a IX71 microscope (Olympus) with a

640 (NA 0.65) objective. To correct for inter-animal differences in

tracing efficiency, the number of CST collaterals was divided by

the number of traced fibers in the respective CST component and

expressed as a ratio of collaterals per CST fiber.
Single collateral analysis. Consecutive coronal sections of

the cervical spinal cord of Thy1-Stp-YFP and Thy1-Brainbow mice

were imaged on an Olympus FV1000 confocal microscope. Image

stacks were acquired with a 620 oil objective and processed using

ImageJ (http://rsbweb.nih.gov/ij/) and Adobe Photoshop

software. Alignment and tracing of collaterals in consecutive

sections was performed in Adobe Photoshop. Collateral properties

(collateral length, number of branch points) were measured using

the NeuronJ plugin in ImageJ.
Contacts on interneuronal cell bodies. To quantify the

contacts onto interneuronal cell bodies 20 mm sections of the

cervical spinal were scanned with a 620 (NA 0.85) oil immersion

objective. Single hindlimb CST collaterals (labelled with BDA)

were followed and the number of boutons in contact with the cell

body of an interneuron (labelled with Neurotrace) was counted.
Expression of synaptic markers. To determine the

percentage of boutons that express the synaptic markers

synapsin I and bassoon image stacks were acquired with an

Olympus FV1000 confocal microscope equipped with standard

filter sets and a 660 (NA 1.45) oil immersion objective. Tissue

from the population analysis was used for this analysis as the high

number of BDA-labelled collaterals in this tissue allowed us to

analyse sufficiently large numbers of CST boutons. The total

number of boutons as well as the number of these boutons that

expressed synapsin I or bassoon were counted. To analyze the co-

expression of synapsin I and bassoon, sections from the cervical

spinal cord of animals perfused 3 weeks after lesion (n = 3 mice)

were used. The number of CST boutons immunoreactive for

either bassoon, synapsin I or both was determined and expressed

as percentage of all immunoreactive boutons. All quantifications

were performed by a blinded observer.

Image processing
Image stacks obtained with confocal microscopy were processed

using ImageJ software to generate maximum intensity projections.

To obtain final images, these maximum intensity projections were

processed in Adobe Photoshop using gamma adjustments to

enhance visibility of intermediate gray values and median filtering

to suppress noise when necessary. For the representation of CST

collaterals (Fig. 1 A–C) 5 consecutive sections were reconstructed

and overlaid.

Statistical evaluation
Results are given as mean 6 SEM unless indicated otherwise.

For paired comparison data were analyzed by the Student’s t test.

For multiple comparisons a two-way ANOVA followed by a

Tukey’s or a Bonferroni post hoc was performed using Graphpad

Prism 5.01 for Windows (GraphPad Software). Significance levels

are indicated as follows: *p,0.05; **p,0.01; ***p,0.001.
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In the peripheral nervous system (PNS), damaged axons regenerate
successfully, whereas axons in the CNS fail to regrow. In neurons of
the dorsal root ganglia (DRG), which extend branches to both the
PNS and CNS, only a PNS lesion but not a CNS lesion induces axonal
growth. How this differential growth response is regulated in vivo
is only incompletely understood. Here, we combine in vivo time-
lapse fluorescence microscopy with genetic manipulations in mice
to reveal how the transcription factor STAT3 regulates axonal
regeneration. We show that selective deletion of STAT3 in DRG
neurons of STAT3-floxed mice impairs regeneration of peripheral
DRG branches after a nerve cut. Further, overexpression of STAT3
induced by viral gene transfer increases outgrowth and collateral
sprouting of central DRG branches after a dorsal column lesion by
more than 400%. Notably, repetitive in vivo imaging of individual
fluorescently labeled PNS and CNS axons reveals that STAT3
selectively regulates initiation but not later perpetuation of axonal
growth. With STAT3, we thus identify a phase-specific regulator of
axonal outgrowth. Activating STAT3might provide an opportunity
to “jumpstart” regeneration, and thus prime axons in the injured
spinal cord for application of complementary therapies that im-
prove axonal elongation.

in vivo microscopy | spinal cord injury | peripheral nerve lesion | intrinsic
growth program

Lesioned peripheral nervous system (PNS) axons regenerate
successfully, whereas lesioned CNS axons fail to regrow. This

differential behavior is exemplified by neurons located in the
dorsal root ganglia (DRG), which extend one branch into the PNS
and another into the CNS. In these neurons, a cut in the PNS but
not in the CNS is followed by neuronal outgrowth (1). If, however,
the DRG neuron is “conditioned” by a transection of its periph-
eral branch, a subsequent central lesion can be followed by ex-
tensive outgrowth (2, 3). This suggests the existence of a common
intrinsic neuronal growth program that can, in principle, support
both PNS and CNS growth but is normally initiated only after
a PNS lesion. In recent years, several intracellular components
that might regulate this intrinsic growth program have been
identified (4, 5). They include a number of transcriptional regu-
lators such as the transcription factors cJun (6), SMAD1 (7),
ATF3 (8), AKRD1 (9), NFIL3 (10), and several KLF family
members (11). One particularly interesting transcriptional regu-
lator is STAT3, which is activated as part of the JAK–STAT sig-
naling pathway (12). The following findings make STAT3 a good
candidate for regulating axon growth: first, increased levels of
STAT3 expression and phosphorylation are associated with axo-
nal regeneration (13–15) and axonal remodelling (16). Second,
molecules that can affect STAT3 signaling such as the neuro-
poietic cytokines IL-6, ciliary neurotrophic factor, and leukemia
inhibitory factor, as well as the intracellular regulator SOCS3,
have been shown to influence axonal regeneration (17–20). Third,

STAT3 expression promotes neuronal outgrowth in cultured CNS
neurons (21) and increased STAT3 expression is directly involved
in the conditioning response of DRG neurons (22).
The identification of STAT3 and other transcription factors

indicates that multiple transcriptional programs exist that can, in
principle, influence the neuronal growth response to injury.
Whether they operate in concert or in succession, e.g., by affecting
specific phases of the growth response, such as growth initiation or
elongation, is not known. A direct way to elucidate how a given
factor affects different phases of axonal growth is to visualize
progress of regenerating axons in vivo (3, 23–25) in the presence
or absence of such a factor.
Here we use in vivo imaging in combination with selective ge-

netic manipulations to address whether and when the transcrip-
tion factor STAT3 influences the divergent growth pattern of
lesioned PNS and CNS axons. We show that deletion of STAT3 is
sufficient to impair PNS axon regeneration. By comparing the in
vivo growth pattern of regrowing STAT3-competent and STAT3-
deficient axons, we discovered that STAT3 regulates the timing of
growth induction but not subsequent axon elongation. In line with
this finding, viral gene delivery of either STAT3 or its constitu-
tively active version, STAT3c, to DRG neurons significantly
improves terminal and collateral sprouting after a CNS lesion by
promoting growth induction but not elongation. Thus, STAT3
acts as a phase-specific regulator of axonal regeneration that se-
lectively controls the timing of growth induction after CNS and
PNS lesions.

Results
STAT3 Deletion Impairs the Regeneration of PNS Axons. To confirm
that STAT3 is activated after a PNS lesion, we studied the ex-
pression of STAT3 and its active, phosphorylated form P-STAT3
in DRG neurons by immunohistochemistry at different time
points after creation of bilateral lesions of the saphenous nerves,
which contain the axons of the third lumbar (L3) DRGs (26).
Starting within a few hours and lasting for weeks after transection,
we observed a significant increase in the number of P-STAT3–
positive nuclei in L3 DRG neurons (Fig. 1 A, B, and E). STAT3
expression in DRG neurons overall followed a similar time course
(Fig. S1). However, at early time points, hours after the lesion,
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STAT3 phosphorylation appears to precede increased STAT3
expression. Together these findings indicate that, after a PNS
lesion is created, STAT3 activity is regulated on both the phos-
phorylation and expression levels.
To assess the contribution of STAT3 activation to PNS re-

generation, we selectively deleted STAT3 expression in DRG
neurons. We constructed recombinant adeno-associated viral
vectors (rAAVs) expressing either a bicistronic combination of
Cre recombinase and GFP (rAAV-Cre-ires-GFP) or just GFP
(rAAV-ires-GFP; SI Materials and Methods). After injection of
rAAV-Cre-ires-GFP into the DRGs of STAT3-floxed (STAT3fl/fl)
mice (27), transduced DRG neurons become depleted of STAT3,
while at the same time their axons can be readily identified by
GFP expression. Injection of the control vector (rAAV-ires-GFP)
labels axons without affecting STAT3 expression. The efficiency
of STAT3 deletion was confirmed by analysis of P-STAT3 im-
munohistochemistry 4 d after lesion creation (Fig. 1 C–E and
Fig. S2). We then performed bilateral saphenous nerve trans-
ections in STAT3fl/fl mice that had been injected 10 d earlier with
rAAV-Cre-ires-GFP in the right L3 DRG and rAAV-ires-GFP in

the left L3 DRG. We compared the growth response of STAT3-
deficient and STAT3-competent GFP-positive axons over time
(Fig.1 F–M). At 4 d after lesion, STAT3-competent axons showed
substantial sprouting and regeneration along the nerve for as
much a several hundred micrometers (Fig. 1 F, J and K). In con-
trast, STAT3-deficient axons showed only minimal sprouting
(Fig. 1 H and J), as well as fewer and shorter regenerating axons
(Fig. 1 H and K). Two weeks after lesion, long-distance axonal
regeneration in STAT3-deficient axons was still impaired (Fig. 1 I
and M), while many STAT3-competent axons had grown several
millimeters to reenter the distal stump of the saphenous nerve
(Fig. 1 G and M). However, at this time, sprouting around the
lesion and axonal regeneration close to the lesion was comparable
between STAT3-deficient and STAT3-competent axons (Fig. 1 L
andM). This suggests that STAT3-deficient axons can still initiate
the regeneration process. Indeed, retrograde labeling from the
distal saphenous nerve performed at 28 d after lesion showed that
similar proportions of STAT3-competent and STAT3-deficient
axons had reapproached their termination zone (Fig. 1N).

Fig. 1. Deletion of STAT3 impairs regeneration of peripheral DRG axons after a saphenous nerve cut (SNC; A and B). Confocal images of L3 DRGs immu-
nostained for P-STAT3 (red) and counterstained with fluorescent Nissl-like stain (NeuroTrace, cyan) in a control (unlesioned) WT mouse (A) and 2 d following
an SNC (B). (C and D) L3 DRGs of STAT3fl/fl mice 4 d after SNC previously injected with rAAV-ires-GFP (C) or rAAV-Cre-ires-GFP (D; NeuroTrace, cyan; P-STAT3,
red; GFP, green). GFP-positive DRG neurons (Insets, C and D) are at a magnification of ×3. (E) Quantification of the number of P-STAT3–positive DRG neurons
(identified by NeuroTrace counterstaining) at different time points following SNC in WT mice and in STAT3fl/fl mice previously injected with rAAV-ires-GFP
(gray column) or rAAV-Cre-ires-GFP (blue column) at 4 d following a SNC (n = 6 animals per group). (F–I) Confocal images taken at 4 d (F and H) and 14 d (G
and I) after SNC display the proximal stump of STAT3fl/fl saphenous nerves that receive fibers from L3 DRGs injected with control rAAV-ires-GFP (F and G) or
rAAV-Cre-ires-GFP (H and I). (J–M) Quantification of axonal sprouting at the site of lesion (J and L) and regeneration ratios (K and M) at different distances
from the cut site (lines, H) of axons derived from STAT3-competent DRG neurons (ires-GFP, gray columns) and STAT3-deficient DRG neurons (Cre-ires-GFP,
blue columns) at 4 d (J and K) and 14 d (L and M) after SNC. (N) Quantification of the percentage of L3 DRG neurons retrogradely labeled with the tracer
Miniruby from distal STAT3-competent (ires-GFP, gray columns; n = 21 sections, n = 6 DRGs) and STAT3-deficient (Cre-ires-GFP, blue columns; n = 11 sections,
n = 4 DRGs) saphenous nerves 28 d following SNC (values were normalized to the percentage of Miniruby-positive DRG neurons traced from the same
anatomical localization in unlesioned mice). (Scale bars: A, 100 μm; F, 250 μm.)
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STAT3 Deletion Affects Initiation but Not Perpetuation of PNS Axon
Regeneration in Vivo. Impaired regeneration of STAT3-deficient
PNS axons could be caused by delayed growth induction or re-
duced elongation of regenerating axons. To differentiate these
possibilities, we followed the outgrowth of fluorescently labeled
STAT3-competent and STAT3-deficient axons by repetitive in
vivo imaging. We first imaged regrowing axons on consecutive
days when axonal regeneration is induced (day 2–4 after lesion).
Many STAT3-competent DRG axons initiate growth within 2 d
after lesion and progress with an average speed of 132 ± 23 μm/d
from day 2 to day 3 (Fig. 2 A and C). In contrast, the vast majority
of STAT3-deficient axons fail to initiate growth during the first 2 d
after lesion. Accordingly, the speed of regeneration is reduced
more than threefold in STAT3-deficient axons in this initiation
phase (33 ± 6 μm/d; Fig. 2 B and C). Notably during the axon
elongation phase 7 to 8 d after lesion, when regeneration speed
has increased to approximately 400 μm/d, there is no difference
between axons derived from STAT3-competent and STAT3-
deficient DRG neurons (411 ± 48 μm/d for axons from rAAV-
ires-GFP-injected DRGs vs. 341 ± 53 μm/d for axons from rAAV-
Cre-ires-GFP-injected DRGs; Fig. 2D). Taken together, these
results indicate that STAT3 is crucial for the timing of growth
initiation but not for subsequent elongation of PNS axons.

STAT3 and STAT3c Gene Therapy Can Initiate but Not Perpetuate CNS
Axon Outgrowth. The failure to initiate growth is a key impediment
to successful regeneration in the CNS. Therefore, we examined
whether STAT3 overexpression is sufficient to induce outgrowth
of CNS axons in vivo. We first evaluated the activation of en-
dogenous STAT3 after a CNS lesion by P-STAT3 and STAT3
immunostaining of cervical DRGs after a bilateral dorsal column
transection, which interrupts central projections from cervical
DRG neurons. In contrast to the sustained activation of STAT3
after a PNS lesion (cf. Fig. 1), a dorsal column lesion induces no
significant changes in the P-STAT3 and STAT3 immunoreactivity
in DRG neurons (Fig. 3 A and D and Fig. S1). To exogenously
increase STAT3 expression, we produced rAAVs expressing ei-
ther a control protein (enhanced CFP or Cre recombinase; con-
trol rAAV), STAT3 (rAAV-STAT3), or a constitutively active
variant of STAT3 (rAAV-STAT3c) and confirmed the efficiency
of viral gene transfer by immunofluorescence (Fig. 3 B–D). We
then injected the respective rAAVs into the DRGs of Thy1-GFPs

mice, which express GFP in a subset of DRG neurons (28). Ten to
12 d later we surgically reexposed the spinal cord, lesioned in-
dividual GFP-positive axons emerging from the injected DRGs in
the dorsal funiculus using a hand-held small-diameter needle, and
imaged their growth response over time. As expected, 2 d after
lesion, only 9% of axons emerging from DRGs injected with
control rAAV had formed sprouts (Fig. 3 E, F, andK and Fig. S3).
In contrast, 53% of r-AAV-STAT3–transduced axons (Fig. 3G,H
and K and Fig. S3) and 46% of the rAAV-STAT3c–transduced
axons (Fig. 3 I, J, and K and Fig. S3) showed an early growth re-
sponse. Interestingly, STAT3 expression not only increased ter-
minal sprouting, but also collateral sprouting along the axon (Fig.
3 G, I, and L). The finding that a similar growth induction was
observed after injection of rAAV-STAT3 and rAAV-STAT3c
indicates that overexpression of STAT3 alone is sufficient to in-
duce downstream effects on regeneration.
To determine how STAT3 overexpression affects different

phases of axonal outgrowth, we used repetitive multiphoton im-
aging to follow the growth pattern of individual GFP-labeled
DRG axons emerging from DRGs injected with control-rAAV,
rAAV-STAT3, or rAAV-STAT3c at 2, 4, and 10 d after lesion.
STAT3 and STAT3c overexpression increased the speed of axo-
nal growth in the early phase (2–4 d) of regeneration (Fig. 4 A-C).
However, this early growth cannot be sustained, and only very
limited axonal extension can be observed in all groups between 4
and 10 d after lesion (Fig. 4 A, B, and D). Thus, in the CNS, as in
the PNS, STAT3 regulates the initiation of axonal growth but not
the elongation of regenerating axons.

Discussion
The present study identifies the transcription factor STAT3 as
a phase-specific regulator of neuronal outgrowth in both the PNS
and CNS. InDRGneurons, the endogenous expression of STAT3
parallels the regenerative response. By using conditional deletion
of STAT3 in combination with in vivo imaging, we now also show
that STAT3 expression is not only associated with axonal re-
generation, but is in fact crucial for the timing of axonal growth
initiation after a PNS lesion. It is interesting to note, however, that
axons from STAT3-deficient neurons can still mount a growth
response, albeit with a prolonged “lag” phase compared with their
STAT3-competent counterparts. This suggests that in the PNS
compensatory mechanisms are in place that can induce neuronal
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growth in the absence of STAT3. Notably, additional over-
expression of STAT3 or STAT3c did not further improve PNS
regeneration (Fig. S4), indicating that a PNS lesion alone is suf-
ficient to induce optimal levels of STAT3 activation for re-
generation. When regeneration has been initiated, STAT3-
deficient axons grow with the same speed as STAT3-competent
axons. Thus, STAT3 is primarily needed to induce a neuronal
growth program. When the growth program has been initiated,
STAT3 is no longer required for perpetuation of axonal out-
growth. Given this role of STAT3 in PNS regeneration, it is
tempting to speculate that the failure of CNS lesions to up-regulate
STAT3 expression is directly linked to the failure of CNS axons to
initiate outgrowth. Indeed, we can show that overexpression of
STAT3 by viral vector gene transfer alone is sufficient to initiate
axonal growth initiation in more than half the lesioned CNS axons.
However, as the baseline sprouting response of CNS neurons is not
affected by STAT3 deletion (12% of axons with sprouts are
emerging from STAT3-competent DRGs, compared with 15.4%
emerging from STAT3-depleted DRG axons; n= 28–30 axons per
group), it is likely that, as in the PNS, additional regulators can
induce CNS outgrowth independent of STAT3.

The observation that early stages of axon growth can be initiated
in many transected axons, even in the hostile CNS environment, by
expression of a single intracellular molecule highlights the impor-
tance of intrinsic mediators of axonal growth. During recent years,
a number of molecules that can influence the intrinsic neuronal
growth response have been identified. These include c-AMP and its
downstream mediators (29), the growth cone-associated proteins
GAP43 and CAP23 (30), components of the PTEN/mTOR path-
way (31), as well as a number of transcription factors (6–11). Fur-
ther, a number of recent studies in Caenorhabditis elegans have
demonstrated an essential role of the DLK-1MAP kinase pathway
for axon regeneration, and in particular growth cone formation
and migration (32–34). As more and more components of the in-
trinsic growth response are emerging, it becomes increasingly im-
portant to understand how they act in concert to regulate the
complex process of axonal outgrowth.
The present study provides evidence that, in vivo, this intrinsic

growth response can be divided into at least two distinct phases:
initiation and elongation. The concept of a multiphasic growth
response suggests a number of conclusions. One is that the distinct
phases of axonal growth are likely regulated by distinct molecular
mechanisms. STAT3, for example, controls the timely initiation of

Fig. 3. Viral vector gene transfer of STAT3 and STAT3c induces terminal and collateral sprouting of DRG branches after a central lesion. (A–C) Confocal
images of cervical DRGs immunostained for P-STAT3 (red) and counterstained with fluorescent Nissl-like stain (NeuroTrace, cyan) in a WT mouse 2 d following
a dorsal column lesion (DCL, A) and in lesioned Thy1-GFPs mice (GFP, green) injected with control rAAV (B) or rAAV-STAT3 (C). Insets: Higher-magnification
(×3) of the GFP-positive neurons boxed in the images. (D) Quantification of the number of P-STAT3–positive DRG neurons (identified by NeuroTrace
counterstaining) at different time points following DCL in WT mice and in mice previously injected with control rAAV (gray column), rAAV-STAT3 (red
column), or rAAV-STAT3c (orange column) at 2 d after a central lesion (n = 6 animals per group). (E–J) Confocal images of lesioned spinal axon endings derived
from DRGs injected with control rAAV (bulbs, E and F), rAAV-STAT3 (terminal sprout, G and H), or rAAV-STAT3c (terminal sprout, I and J). (F, H, and J) Higher-
magnification views of details boxed in E, G, and I. Additional insets (G and I) show a magnification ×2 of the boxed collateral sprouts. (K and L) Quantification
of terminal (K) and collateral (L) sprouting of axons derived from DRGs injected with control rAAV, rAAV-STAT3, or rAAV-STAT3c and analyzed 2 d after
transection. (Scale bars: A and I, 100 μm; J, 25 μm.)
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axonal growth but does not affect axonal elongation. The molec-
ular mechanisms by which STAT3 initiates this axonal growth
program are currently not known. However, as STAT3 is a tran-
scription factor, it is likely that the downstream effects are medi-
ated by induction of gene expression. A large number of genes that
are affected by STAT3 have already been identified. Some of these
downstream targets like the cell cycle inhibitor P21/Cip1/Waf1 (35)
or the small proline rich protein 1a (SPRR1A) (36) can directly
affect neuronal outgrowth (37, 38). Notably, a recent transcrip-
tional profiling study has identified several additional genes that
are specifically regulated by STAT3 in DRG neurons. At least one
of these genes, the IFN regulatory factor 1 (IRF1), is sufficient to
increase neuronal outgrowth in cultured cerebellar neurons (21).
Our results further suggest that it is likely that environmental

cues play key roles in shaping the distinct stages of axonal regrowth.
For example, in the PNS, it is conceivable, that the transition from
growth initiation to elongation is induced by the interaction of axons
with Schwann cells. Schwann cells align after injury to form tubes,
also called bands of Büngner, that guide the axons to their target
cells (39). Axons could require STAT3 to initiate growth in-
dependently of Schwann cell guidance; however, when a regrowing
axon has contacted the Schwann cell tube, it shifts to the elongation
mode and no longer requires STAT3. In line with this scenario, we
can show that PNS crush lesions that do not interrupt Schwann cell
guidance do not induce STAT3 expression in the corresponding
DRG neurons (Fig. S5). Although the reasons behind this lack of
STAT induction are not yet understood and might include the in-
duction of differential injury signals by crush and cut lesions (40),
the rapid outgrowth of crushed axons (41) indicates that axonal
growth along glial support structures does not require STAT3. Like
in the PNS, changes in the environmentmay also help to explain the
transition (or lack thereof) between different growth phases after
a CNS lesion. Although, in the PNS, the regrowing axon can reach
Schwann cell support at some point, CNS axons that initiate growth
in response to STAT3 continue to encounter a growth-inhibitory
CNS environment that becomes even more hostile with the de-
velopment of a glial scar. These changes in the lesion environment
might help to explain why STAT3-transduced axons can initiate
growth early but fail to support it later. In line with this assumption,
when we combined the induction of STAT3 (by viral vector gene

transfer of rAAV-STAT3) with the neutralization of inhibitory scar
components (by application of chondroitinase ABC) (42), the av-
erage axonal outgrowth over a period of 10 d after a CNS lesion was
increased more than twofold (141 ± 53 μm for axons treated with
rAAV-STAT3 and chondroitinase ABC vs. 42 ± 26 μm for axons
treated with rAAV-STAT3 alone and 64 ± 28 μm for axons treated
with chondroitinase alone; n = 14–20 axons per group). These
results underline the importance of developing combined thera-
peutic strategies that target the molecularly distinct phases of the
axonal growth response. In this concept, phase-specific regulators of
axonal growth initiation such as STAT3 would be used to “jump-
start” the regenerationprocess andprime axons in the injured spinal
cord for application of complementary therapies that can sustain
axonal elongation in the growth-inhibitory CNS environment (43).

Materials and Methods
Mice. Animals used in this study were adult female WT mice on a C57BL/6
background (weight 20–30 g, 6–12 wk of age) with the following exceptions:
STAT3 was deleted by using STAT3fl/fl mice, which are maintained on a BL6
background (27). Further, central axon regeneration was investigated in
Thy1-GFPs mice (28), which express GFP in a subset of neurons and are
maintained on a mixed background. All animal experiments were per-
formed in accordance with regulations of the animal welfare act and pro-
tocols approved by the Regierung von Oberbayern.

AAV Vector Construction, Production, and Purification. The adeno-associated
viral vectors used in this study have been cloned into the pAAV-MCS vector
from Stratagene and were produced by the adenovirus-free AAV production
method as detailed in SI Materials and Methods.

Tissue Processing, Immunohistochemistry, and STAT Expression Analysis. Ani-
mals were deeply anesthetized with isoflurane and perfused transcardially
with saline followed by 4% paraformaldehyde in 0.01 M phosphate buffer.
DRGs were dissected out, immunostained for P-STAT3 and STAT3 and ana-
lyzed as detailed in SI Materials and Methods.

Gene Therapy with Recombinant Adeno-associated Viral Vectors. For analysis
of PNS regeneration, the left and right L3 DRGs of anesthetized STAT3fl/fl

mice were surgically exposed after a dorsal laminectomy. Then, 1 μL of
rAAV-ires-GFP was slowly injected into the left L3 DRG with a thinly drawn
glass capillary and the same amount of rAAV-Cre-ires-GFP was injected into
the right L3 DRG of the same animal. Ten days after the injection, the sa-
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phenous nerve was bilaterally transected at the midthigh level using fine
iridectomy scissors as previously described (23).

For analysis of CNS regeneration, a cervical dorsal laminectomy was
performed in Thy1-GFPs mice anesthetized by an i.p. injection of ketamine/
xylazine (ketamine 87 mg/kg, xylazine 13 mg/kg) as previously described
(24). DRGs, from which suitably labeled axons emerged, were identified by
in vivo imaging (SI Materials and Methods) and surgically exposed. Then,
1 μL of rAAV-STAT3, rAAV-STAT3c, rAAV-eCFP, or rAAV-Cre (control rAAV)
was slowly injected into the DRG with a thinly drawn glass capillary. Ten to
12 d later, Thy1-GFPs mice were reanesthetized, the spinal cord laminectomy
site was reaccessed, and selected fluorescently labeled axons were trans-
ected with a hand-held 32-gauge hypodermic needle.

Confocal Microscopy.Weobtained confocal images offixed tissue on a FV1000
confocal system mounted on an upright BX61 microscope (Olympus) and
equipped with 20×/0.85 and 60×/1.42 oil immersion objectives. We recorded
stacks of 12-bit images that were processed using MetaMorph software
(Universal Imaging) or the freeware ImageJ/Fiji (http://rsbweb.nih.gov/ij).

In Situ and in Vivo Analysis of Axon Regeneration. The regeneration of
transected peripheral and central DRG axons was evaluated as detailed in SI
Materials and Methods.

Statistical Analysis. Results are given as mean ± SEM unless indicated other-
wise. Statistical significance was determined using GraphPad Prism software
(GraphPad). All data were analyzed by using a one-way ANOVA followed
by a Tukey post-hoc test for multiple comparisons or a t test for single com-
parisons. For the statistical evaluation of the proportion of terminal sprouts
following rAAV treatment after CNS lesion, a frequency analysis was made
using a χ2 test.
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SI Materials and Methods
AAV Vector Construction, Production, and Purification. The adeno-
associated viral vectors used in this study have been cloned into the
pAAV-MCS vector from Stratagene as follows. Briefly, for the
control pAAV-ires-GFP vector, a strong modified internal ribo-
some entry site (ires) of the encephalomyocarditis virus, which
permits the translation of two genes of interest from a single bi-
cistronic mRNA, was cut with BamHI and BstXI from the pires2-
DsRed2 plasmid (Clontech) and inserted at the HincII site of
pAAV-MCS. Then the DNA coding for GFP was inserted at the
XhoI site of pAAV-MCS to create the pAAV-ires-GFP construct.
The pAAV-Cre-ires-GFP construct was cloned by excising the
coding sequence for Cre recombinase from pBS185 (gift of
Thomas Hughes, Montana State University, MT) with XhoI and
MluI and inserting it into the EcoRI site of pAAV-ires-GFP. For
the pAAV-STAT3, the STAT3 gene was excised from pcDNA3
STAT3 (Addgene plasmid 8706) with BamHI and XhoI and
cloned in the pAAV-MCS at the HincII site. For cloning the
pAAV-STAT3c, the STAT3c gene was excised from pRc/CMV
STAT3c Flag (Addgene plasmid 8722) with NotI and SwaI and
inserted in the HincII site of pAAV-MCS. Control pAAV-eCFP
was engineered by excising the eCFP gene from the peCFP N1
plasmid at BamHI and NotI and cloning it in the pAAV-MCS at
the HincII site.
AAV serotype 2 particles were then produced in HEK293 cells

by the adenovirus-free AAV production method (1, 2). Briefly,
HEK293 cells were seeded at 80% confluence and cotransfected
using the calcium phosphate method with 7.5 μg of pRC (3), 7.5 μg
of transgene plasmid, and 22.5 μg of pXX6 (1, 2). After 48 h, cells
were harvested and pelleted by low-speed centrifugation. Cells
were resuspended in 150 mM NaCl/50 mM Tris-HCl (pH 8.5),
freeze/thawed three times, and treated with Benzonase (50 U/mL
lysate) for 30 min at 37 °C. To purify viral vector preparations, cell
debris was removed by centrifugation at 3,700 × g for 20 min at
4 °C, and the supernatant was loaded onto a discontinuous io-
dixanol gradient (3). Following harvesting of the 40% phase, a
heparin affinity chromatography was conducted. Briefly, a hepa-
rin affinity column (HiTrap heparin HP; GE Healthcare) was
equilibrated with 1× PBS solution/MgCl2 (1 mM)/KCl (2.5 mM).
The vector solution was diluted 1:10 in the same buffer and ap-
plied to the column. After a washing step with 1× PBS solution/
MgCl2 (1 mM)/KCl (2.5 mM), the vector was eluted with 1× PBS/
MgCl2 (1 mM)/KCl (2.5 mM) plus 1 M NaCl in 500-μL steps.
To determine the genomic particle titer, vector genomes were

isolated by DNeasy Tissue Kit (Qiagen) and subjected to quan-
titative PCR analysis by using the LightCycler rapid thermal cycler
system (Roche Diagnostics) and the SYBR Green kit (Roche
Diagnostics). Genomic titers were as follows: rAAV-STAT3, 9 ×
1012 genome copies/mL; rAAV-STAT3c, 5.5 × 1012 genome
copies/mL; rAAV-eCFP, 9.2 × 1012 genome copies/mL; rAAV-
Cre, 9 × 1012 genome copies/mL; rAAV-Cre-ires-GFP, 5.7–7.1 ×
1011 genome copies/mL; and rAAV-ires-GFP, 1.4–3.8 × 1012

genome copies/mL.

Tissue Processing, Immunohistochemistry, and STAT Expression Analysis.
Animals were deeply anesthetized with isoflurane and perfused
transcardially with saline solution followed by 4% paraformal-
dehyde in 0.01 M phosphate buffer. Tissues were postfixed in 4%
paraformaldehyde at 4 °C for 24 h. For immunofluorescence
analysis, DRGs were dissected out, transferred to 30% sucrose for
at least 24 h, and embedded in Tissue-Tek optimal cutting tem-
perature compound (Sakura Finetek). Then, 20-μm-thick coronal

sections were cut on a cryostat. Immunofluorescence staining of
DRG sections was performed as described previously (4). Before
immunostaining, sections were heated in a microwave to improve
antigen retrieval. Antibodies were diluted in a working solution of
PBS containing 0.2% Triton X-100 (Sigma) and 10% normal horse
serum (Jackson Laboratory), and incubation was performed at
room temperature or at 4 °C overnight. Details of the primary
antibodies are as follows: STAT3 (dilution 1:500; Cell Signaling),
P-STAT3 (dilution 1:50; Cell Signaling), and cJun (dilution 1:500;
Santa Cruz Biotechnology). Secondary antibodies (goat anti-rabbit
594, goat anti-rabbit 488) were obtained from Jackson Laboratory
and used at a dilution of 1:500. Nuclei were counterstained using
NeuroTrace 435 (Invitrogen) and mounted in Vectashield (Vector
Laboratories).
P-STAT3 and STAT3 immunoreactivity was analyzed in L3

DRGs of animals perfused at 1 h, 6 h, 2 d, 1 wk, and 2 wk after
a bilateral saphenous nerve transection. P-STAT3 immunoreac-
tivity was also analyzed in L3 DRGs of mice perfused 1 h, 6 h, 2 d,
1 wk, and 2 wk after the saphenous nerve was double-crushed
with hand-held forceps. Immunofluorescence analysis of cJun
induction in DRG neurons and confocal microscopy analysis of
Wallerian degeneration in distal nerve segments of Thy1-YFP16

mice were used to confirm the success of the crush lesion (Fig. S5).
P-STAT3 and STAT3 immunoreactivity was further analyzed
in C6 DRGs of animals perfused at 1 h, 6 h, 2 d, 1 wk, and 2 wk
after a bilateral dorsal column lesion. For the dorsal column le-
sion, animals were anesthetized with isoflurane, and a dorsal
laminectomy was performed at the C4 to C6 spinal cord level as
previously described (4). A small incision was made in the dura,
and the dorsal column was then cut with fine iridectomy scissors.
Unlesioned animals were used as controls. All DRG sections were
counterstained with NeuroTrace 435 (as described earlier) to
reveal the total number of neuronal nuclei in the DRG, and the
proportion of DRG neurons showing STAT3 or P-STAT3 im-
munoreactivity was determined.

In Situ Analysis of Peripheral Axon Regeneration. To evaluate the
regeneration of peripheral DRG branches, STAT3fl/fl mice (5)
injected with rAAV-Cre-ires-GFP or rAAV-ires-GFP were
transcardially perfused with 4% paraformaldehyde at 4 or 14 d
after saphenous nerve transection. Cross-sections of the saphe-
nous nerve were cut rostrally to the injury site to quantify the
number of GFP-labeled axons above the lesion. The distal part of
the nerve containing the lesion site was dissected with the sur-
rounding muscular tissue and flat-mounted in Vectashield (Vec-
tor Laboratories). High-resolution image stacks of the axons were
taken on a FV 1000 confocal microscope system (Olympus). Then
lines were positioned on the confocal maximum intensity pro-
jections at 0.1 mm, 0.2 mm, 0.4 mm, 0.8 mm, 1.4 mm, 2 mm, and 5
mm distal from the lesion site (Fig. 1H). The number of axons
crossing these lines was counted. A ratio of regenerating axons
was calculated by dividing the number of regenerating axons at
a given distances from the lesion by the number of labeled axons
rostral to the lesion.
To determine the percentage of DRG neurons that reach the

proximity of their original target area, retrograde tracing
experiments were performed as follows: At 28 d following the
SNC, a gel foam impregnated with the tracer Miniruby (Invi-
trogen) was applied to the distal-most part of the saphenous nerve
(located approximately 10 mm distal to the cut nerve). Three days
later, mice were deeply anesthetized and transcardially perfused
with PFA. Then, L3 DRGs were dissected and 20-μm sections
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were cut on the cryostat as described earlier. Confocal images of
the sections were acquired on an Olympus FV 1000 confocal
microscope and the number of Miniruby-positive DRG neurons
and total DRGneurons (identified by costaining with NeuroTrace
435) were counted. The percentage of Miniruby-positive DRG
neurons was calculated and normalized to the percentage of
Miniruby-positive neurons that were retrogradely traced from the
same anatomical localization in unlesioned mice (45 ± 6% of
Miniruby-positive L3 DRG neurons; n= 14 sections, n= 2mice).
Mice traced from the same anatomical localization immediately
after the saphenous nerve was cut showed no labeling, indicating
that the labeling at 28 d is caused by long-distance regeneration.
To determinewhether the overexpression of STAT3or STAT3c

could increase peripheral axon regeneration, we injected 1 μL of
rAAV-STAT3, rAAV-STAT3c, or rAAV-Cre (control rAAV)
into the L3 DRG of Thy1-YFP16 mice (6), in which a large pro-
portion of DRG neurons are fluorescently labeled with the YFP.
We then performed an SNC and evaluated axonal sprouting and
regeneration at 4 d after the lesion as described earlier.

In Vivo Analysis of Peripheral Axon Regeneration. For in vivo imaging
experiments, we used sparsely labeled animals, lesioned the sa-
phenous nerve as described earlier, and marked the position of the
axons proximally and distally from the lesion site with a suspension
of 1-μm-diameter orange FluoSpheres (Invitrogen). Before each
imaging session, animals were anesthetized and placed directly
under a fluorescence dissection microscope (Olympus). An in-
cision was made on top of the lesion site and the axons in the sa-
phenous nerve were imaged with 20×magnification at day 2 and 3
or at day 7 and 8 after lesion. Images were captured with a cooled
Sensicam QE CCD camera (pco.imaging). To determine the
growth of the transected axon ends, we measured the distance
from the axon end to the FluoSpheres proximal to the lesion site at
2 and 3 d or 7 and 8 d after lesion and calculated the speed of
growth per day.

In Vivo and in Situ Analysis of Central Axon Outgrowth. To image
central branches of fluorescently labeled DRG neurons, we
adapted our previously established spinal in vivo imaging ap-
proach (4). Briefly, Thy1-GFPs mice were anesthetized by an i.p.
injection of ketamine/xylazine. To access the cervical spinal cord,
a laminectomy was performed and the dorsal surface of the
spinal cord was exposed. During the imaging session, the spinal
cord was superfused with mouse artificial cerebrospinal fluid. To
follow the outgrowth of individual axons in vivo, we first iden-
tified single fluorescently labeled axons emerging from a DRG
using a widefield set-up based on an Olympus BX51 microscope
equipped with ×4/0.13 dry, ×10/0.3 dry, and ×20/0.5 dipping cone
water-immersion objectives. To document these axons in vivo,
image streams of 25 to 50 images were acquired with a cooled
Sensicam QE CCD camera controlled by MetaMorph software
as previously described (4). The DRG from which the selected
axon was emerging was then surgically prepared and 1 μL of one
of the rAAVs was injected by using a glass capillary as described
earlier. Then, 10 to 12 d after the DRG injection, the dorsal
surface of the spinal cord was surgically reexposed. The pre-
viously identified axon was transected by using a hand-held
small-diameter needle and documented in vivo. Two different
imaging protocols were used as follows.
To determine the frequency of axonal sprouting, the animal was

perfused transcardially with 4% PFA 2 d after the lesion and the
previously imaged spinal cord segment was dissected. The
transected axon was then documented by using high-resolution
confocal microscopy as described earlier, first in the intact spinal
cord and then in 100- to 250-μm-thick vibratome sections.
Confocal stacks were processed as described earlier and the

transected axons were reconstructed from the DRG root to the
lesion site. Axons were then evaluated by two blinded observers
and terminal axon ends were classified as “sprouts” or “bulbs”
based on their characteristic morphological appearances. Fur-
ther, the number of collateral sprouts emerging from the trans-
ected axons was counted.
To determine the speed of axonal outgrowth we reimaged the

transected axon ends at 2 and 4 d after lesion in vivo using a
custom-built multiphoton imaging setup based on an Olympus
FV 300 scanner equipped with a femtosecond pulsed Ti:Sapphire
laser (Mai Tai HP; Newport/Spectra-Physics). We acquired image
stacks of 50 to 200 images per stack (spaced at 1–2 μm in z di-
mension) for each frame with a ×20/0.5 dipping cone water-
immersion objective. Animals were then perfused transcardially
with 4% PFA 10 d after the lesion. The imaged part of the spinal
cord was dissected out. The transected axons were reidentified in
the fixed tissue and imaged in the intact spinal cord by using an
Olympus FV1000 MPE multiphoton microscope or an Olympus
FV1000 confocal microscope. Image stacks of 20 to 100 frames
were acquired with a ×25/1.05 water-immersion or a ×20/0.85
oil-immersion objective. Imaging stacks were processed by using
MetaMorph or ImageJ/Fiji software. Frames containing the axon
were selected, and the transected axons were reconstructed using
Photoshop. To determine the growth of the transected axon
ends, we measured the distance from the axon end to a charac-
teristic proximal structure (in most cases the Y-branch point in
the dorsal root; in some cases a crossing point with another
axon) at 2, 4, and 10 d after lesion. To compensate for tissue
changes caused by fixation in the perfused samples, we measured
a “constant” distance e.g., between two branch points in the
same unlesioned axon both in vivo and in the corresponding
fixed tissue to determine a sample-specific “correction factor.”
The length of the transected axon end measured in fixed tissue
was then multiplied by this correction factor. Axons that showed
substantial die-back were excluded from the analysis.
To determine the influence of endogenous STAT3 expression

on axonal sprouting after a CNS lesion, we injected 1 μL of rAAV-
eCFP or a combination of rAAV-eCFP and rAAV-Cre into the
cervical DRGs of STAT3fl/fl mice. Ten days after the injection,
fluorescently labeled spinal DRG axons were lesioned by a pin as
described earlier. Then, 2 d following the lesion, animals were
perfused and axonal sprouting was evaluated based on confocal
stacks of the fixed intact spinal cord as described earlier.
To determine the effects of a combination therapy with STAT3

and chondroitinase ABC, we performed the following experi-
ment. We first injected 1 μL of rAAV-STAT3 or rAAV-Cre into
the cervical DRGs of Thy1-GFPs mice as described earlier. Ten
days after this injection, we then lesioned individual GFP-posi-
tive spinal axons and administered a first bolus of 6 μL of
chondroitinase ABC (10 U/mL in saline solution with 0,01%
BSA; Sigma-Aldrich) or vehicle only (saline solution with 0.01%
BSA) immediately following lesion creation. At the same time,
an osmotic minipump (1007B; Alzet), which was connected to
a brain infusion kit (Alzet) inserted into the lateral ventricle, was
installed and started to deliver 0.5 μL/h of chondroitinase ABC
(10 U/mL in saline solution with 0.01% BSA) or vehicle only for
7 d. At 10 d following the lesion, the animals were perfused with
PFA, the spinal cords were dissected, and the transected axons
were imaged in the intact fixed spinal cord by confocal micros-
copy as described earlier. On confocal image stacks, we then
measured the length of axonal sprouts to determine the axonal
outgrowth (axonal terminals that ended in tips or bulbs were
considered to be nongrowing axons and their outgrowth was set
to 0 μm).
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Fig. S1. Induction of STAT3 expression by a peripheral nerve cut but not by a central lesion. (A) Quantification of the number of STAT3-positive DRG neurons
(identified by NeuroTrace counterstaining) at different time points following SNC in WT mice. (B) Quantification of the number of STAT3-positive DRG neurons
(identified by NeuroTrace counterstaining) at different time points following DCL in WT mice.
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Fig. S2. rAAV-Cre-ires-GFP is an efficient tool to delete STAT3 and concomitantly express GFP in DRG neurons. (A and B) Quantification of the percentage of P-
STAT3–positive (A, also shown in Fig. 1E) and GFP-positive (B) neurons 4 d following SNC in DRGs of STAT3fl/fl mice previously injected with rAAV-ires-GFP (gray
columns) or rAAV-Cre-ires-GFP (blue columns; n = 6 animals per group). Although GFP expression is comparable in both groups of DRGs, only injection of the
rAAV-Cre-ires-GFP leads to a significant reduction of P-STAT3 expression. P-STAT3 expression is reduced by approximately 80% in DRG neurons, whereas only
50% of the neurons express GFP. This is expected because of the lower expression rate of the second reading frame, which encodes GFP, and the low number
of Cre molecules needed to ensure efficient excision of floxed sequences. (C) Analysis of P-STAT3 expression in GFP-positive DRG neurons confirms that P-STAT3
expression is completely abolished in DRG neurons infected with rAAV-Cre-ires-GFP.

Bareyre et al. www.pnas.org/cgi/content/short/1015239108 3 of 5

http://www.pnas.org/content/suppl/2011/03/28/1015239108.DCSupplemental/www.pnas.org/cgi/content/short/1015239108


Fig. S3. Gallery of central DRG axon endings after treatment with control rAAV, rAAV-STAT3, and r-AAV-STAT3c. (A–C) Representative images of axon
endings 2 d after a central lesion derived from DRG neurons treated with control rAAV (A), rAAV-STAT3 (B), or rAAV-STAT3c (C). Axonal sprouts (asterisks) are
rarely found in control axons (A) but are frequent in axons emerging from DRG neurons expressing STAT3 (B) or STAT3c (C). (Scale bar: A, 25 μm.)
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Abstract  

In contrast to peripheral neurons, neurons of the central nervous system (CNS) fail 

to grow after injury. As a result axonal regeneration and remodeling after CNS lesions 

remain limited and functional deficits persist. The transcription factor Signal Transducer 

and Activator of Transcription 3 (STAT3) has recently been identified as a key element of 

axonal growth induction and its sustained expression is required for timely growth 

initiation in the peripheral nervous system.  

Here we use the corticospinal tract (CST) to investigate the role of STAT3 during 

axon regeneration and remodeling in the CNS. We show that cortical projection neurons 

only transiently overexpress STAT3 after spinal cord injury. This transient STAT3 

expression is insufficient to initiate axonal outgrowth and its conditional deletion in CST 

projection neurons affects neither axon regeneration nor sprouting at or remote from the 

lesion. If however sustained expression and activation of STAT3 is induced in these 

neurons by viral gene transfer, their axons show increased terminal and collateral sprouting 

as well as regeneration after spinal cord injury. Furthermore, after a unilateral 

pyramidotomy, sustained STAT3 expression and activation initiates the de novo formation 

of collaterals from unlesioned CST fibers that cross the spinal midline and contact 

interneurons and motoneurons that control forelimb function. Behavioral and 

electrophysiological recordings indicate that these newly formed ‘midline crossing circuits’ 

establish ipsilateral forelimb activation and contribute to forelimb function recovery. These 

findings identify intrinsic growth induction by STAT3 as a promising approach to promote 

regeneration and remodeling and improve functional recovery after CNS injury.   
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Introduction  

Traumatic, inflammatory or ischemic lesions to the spinal cord lead to the 

transection of axonal tract systems and as a result are often followed by devastating motor 

and sensory deficits (1). If the lesion of the spinal cord is complete, i.e. if the entire spinal 

cord is transected, severe deficits persist. If the lesion is however incomplete, some 

functional recovery can occur in rodents (2-5) as well as in humans (6,7). Over recent years 

a number of studies have investigated the anatomical basis of this recovery process often 

using the corticospinal tract (CST), a major descending motor tract, as a model system (2,3, 

8-10). The results show that – while long-distance regeneration of transected CST fibers 

fails – lesioned CST connections spontaneously attempt to remodel after injury (2,3,11). 

We have previously identified sprouting of CST collaterals into the cervical cord and their 

contacts to long propriospinal neurons as key components of endogenous CST remodeling 

(2,12). Despite the formation of this detour circuit, however, spontaneous functional 

recovery in most cases remains incomplete. To further improve functional recovery we thus 

need to devise strategies that can not only enhance axonal regeneration but also improve 

endogenous remodeling.  

How the induction of axonal remodeling is regulated is however so far only 

incompletely understood. One of the reasons is that so far many studies have focused on 

the induction of axonal regeneration based on the neutralization of extrinsic growth-

inhibitory signals at the lesion site (13-16). These strategies are however less likely to 

affect axonal remodeling, which often requires the formation of new collaterals remote 

from the lesion site. Here, strategies that affect the intrinsic growth capability of the entire 

neuron are conceptually more suited (17). We have previously identified the sustained 

expression of the transcription factor STAT3 (Signal Transducer and Activator of 

Transcription 3) is a key requirement for the timely induction of the intrinsic growth 
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program in DRG neurons (18). A key role for STAT3 in the induction of the intrinsic 

growth program is supported by the following findings: (i) The expression and 

phosphorylation of STAT3 correlates with the regenerative response of the neuron after 

injury; neurons that express STAT3 start to regenerate while those that don´t generally fail 

to grow (18-21). (ii) Deletion of STAT3 impairs the timely initiation of PNS regeneration 

(18) and STAT3 inhibition blocks the growth-promoting effect of a conditioning lesion in 

the CNS (22). (iii) STAT3 over-expression or the deletion of its inhibitor, SOCS3, can 

improve sprouting of central DRG projections (18) and promote optic nerve regeneration in 

vivo (23,24). Whether and how STAT 3 can initiate the remodeling of central neurons and 

their projections is so far not known.  

Here, we investigate how growth initiation by STAT3 affects CST regeneration and 

remodeling as well as functional recovery in different spinal cord injury paradigms. We use 

conditional genetics to delete endogenous STAT3 expression and viral gene transfer to 

induce sustained STAT3 expression. Stereotactic tracing of hindlimb CST fibers then 

allowed us to reveal the effects of STAT3 deletion or over-expression on CST regeneration 

and remodeling, while behavioural testing and electrophysiological recordings were used to 

assess the resulting functional recovery.  

 

 

Results  

Cortical projection neurons only transiently express and activate STAT3 after spinal 

cord injury  

To examine whether STAT is expressed and activated in lesioned cortical projection 

neurons, we investigated the expression of STAT3 and its activated, phosphorylated form 
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(p-STAT3) immunohistochemically in the hindlimb motor cortices of mice perfused at 

different timepoints from 6 hrs to 3 weeks following a dorsal midthoracic hemisection. In 

unlesioned animals, only very few layer V pyramidal neurons in the motor cortex (that 

were identified based on their typical morphology after neurotrace labeling) expressed 

either p-STAT3 (Fig. 1 A, C) or STAT3 (Supplementary Fig. 1A, C). The number of 

STAT3 and p-STAT3-positive cortical projection neurons was then significantly increased 

at 24 hrs after lesion (Fig. 1 B, C and Supplementary Fig. 1 B, C). However, even at this 

time only a subset of cortical projection neurons expressed STAT3 (Supplementary Fig. 1 

C) or p-STAT (Fig. 1 C). Moreover, in these neurons STAT3 expression and 

phosphorylation is only transiently induced and has returned to baseline levels at 1 week 

after injury (Fig. 1 C and Supplementary Fig. 1 C).  

 

Transient expression of STAT3 does not contribute to endogenous axonal 

regeneration and remodeling after spinal cord injury 

To assess to what extend the transient STAT expression supports endogenous 

attempts of axonal regeneration and remodeling, we selectively deleted STAT3 expression 

in cortical projection neurons. For this purpose we crossed Emx-Cre mice, which express 

Cre recombinase in the forebrain (25) with STAT3fl/fl mice. As expected no STAT3 or p-

STAT3 expression is detected in cortical projection neurons of Cre-positive STAT3fl/fl mice 

(Fig. 1 D-F and Supplementary Fig. 1 D-F). We then performed midthoracic dorsal 

hemisections in STAT3 competent (Cre–) and conditional STAT3 deficient (Cre+) mice 

and examined the effects of STAT3 deletion on CST sprouting, regeneration, remodeling 

and functional recovery. Our analysis revealed no differences between STAT3 competent 

and conditional STAT3 deficient mice in all parameters analyzed: Axonal sprouting and 

regeneration at the lesion site was comparable between both groups both at 1 week 
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(Supplementary Fig. 1 G-K) as well as at 3 weeks after lesion (Fig. 1 G, H). Likewise, no 

differences in the formation of intraspinal detour circuits were detected as similar numbers 

of cervical collaterals form, which do not differ in length, complexity and number of 

boutons and contact similar proportions of long propriospinal neurons (Fig. 1 I, J 

Supplementary Fig. 1 L-O and data not shown). Consistent with these observations no 

differences in the recovery of hindlimb locomotion assessed by BMS and rotarod tests were 

detected between STAT3 competent and conditional STAT3 deficient mice 

(Supplementary Fig. 2 A-C). 

 

Sustained STAT3 expression induces corticospinal sprouting and regeneration 

As the transient induction of STAT3 expression after central lesions is thus 

insufficient to contribute to axonal regeneration and remodeling, we next investigated 

whether the exogenous induction of sustained STAT3 expression would be sufficient to 

promote axonal outgrowth. To induce sustained STAT3 expression in cortical neurons, we 

injected a recombinant adeno-associated viruses (rAAV) expressing STAT3 into the 

cortical hindlimb motor area (Fig. 2 A-C). Immunohistochemical analysis of STAT3 

expression and phosphorylation demonstrated that transfer of rAAV-STAT3 is sufficient to 

induce sustained expression and phosphorylation of STAT3 for at least 3 weeks after the 

injection of the virus.  

To assess the effect of sustained STAT3 expression on regeneration and remodeling 

of lesioned CST fibers, we injected rAAV-STAT3 or Control rAAV into the hindlimb 

motor cortex, lesioned the main dorsal and the minor dorso-lateral component of the CST 

by a midthoracic hemisection and performed the following analyses: First, to assess effects 

on CST regeneration we counted the number of sprouts at the lesion site as well as the 

number of regenerating CST fibers that extend for up to 500 µm beyond the lesion site 
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(Fig. 2 A, E). Our analysis showed that sustained STAT3 expression is sufficient to induce 

a significant increase in CST sprouting at the lesion site (Fig. 2 E-H, J). Moreover 

significantly more regenerated CST fibers were detected in mice injected with rAAV 

STAT3 at 200 – 400 µm from the lesion site (Fig. 2 E-I). Sustained expression of STAT3 is 

thus sufficient to induce CST sprouting at and regeneration beyond the lesion site. 

To assess to what extent sustained STAT3 expression can also support the 

remodeling of CST fibers distant from the lesion site, we quantified the formation of 

intraspinal detour circuits after midthoracic dorsal hemisections in mice injected with 

rAAV-STAT3 and Control rAAV (Fig. 3 A). Indeed mice injected with rAAV-STAT3 

showed an increased formation of cervical CST collaterals at 3 weeks after injury (Fig. 3 

B-D). However the intraspinal targeting of these collaterals is not affected and thus a 

similar proportion of long propriospinal neurons are contacted in mice injected with rAAV-

STAT3 and Control rAAV (Fig. 3 E, F). Notably, mice injected with rAAV-STAT3 

displayed the formation of cervical collaterals (Fig. 3 G-J) and contacts onto long 

propriospinal neurons (Fig. 3 K, L) even in the absence of a spinal lesion. This indicates 

that sustained STAT3 expression can also induce the remodeling of fibers that have not 

been primed to grow by their previous transection. 

 

Sustained expression of STAT3 induces the de novo formation of midline-crossing 

CST circuits after pyramidotomy 

To further investigate the capability of STAT3 to recruit unlesioned fibers to the 

remodeling process, we induced a unilateral lesion of the left CST at the level of the 

medulla oblongata (‘unilateral pyramidotomy’, Fig. 4 A). We then assessed whether and 

how unlesioned fibers from the contralateral, right forelimb portion of the CST remodel in 

response to the unilateral denervation. In animals injected with Control rAAV no 
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significant increase in the number of CST fibers that exit the right CST is detected at 1, 3 or 

12 weeks after pyramidotomy (Fig. 4 B, E). Further CST fibers that exit the CST rarely 

crossed the spinal midline (Fig. 4 B, F). In contrast in animals injected with rAAV-STAT3 

additional CST collaterals exit the CST at 3 weeks after injury (Fig. 4 C, E). These newly 

formed collaterals extend towards the denervated side of the spinal cord resulting in a 

significant increase in the number of midline-crossing fibers that is first detected at 3 weeks 

(Fig. 4 C, F) and persist for at least 12 weeks after lesion (Fig. 4 D, F). We next examined 

the projection pattern of these newly formed midline crossing CST collaterals and found 

that in animals injected with rAAV-STAT3, CST collaterals extended significantly further 

into the denervated spinal cord and often projected to the intermediate and ventral laminae 

VI-IX of the spinal cord (Fig. 4 G, H). As the cell bodies of short propriospinal neurons 

and spinal motoneurons that control forelimb movement are located in these laminae we 

next assessed to what extend these neurons are targeted by midline crossing CST collaterals 

at 12 weeks after pyramidotomy. Our results show that the proportions of short 

propriospinal neurons and spinal motoneurons that are contacted by CST collaterals are 

increased more than 4- and 20-fold, respectively, in animals injected with rAAV-STAT3 

(Fig. 4 I-L).  

 

De novo formation of midline crossing circuits improves behavioral and 

electrophysiological recovery after injury 

To investigate whether the newly formed midline crossing CST circuits induced by 

sustained STAT3 expression can foster functional recovery we performed the following 

analyses after unilateral pyramidotomy. First, we used the staircase test which measures the 

capability of mice to remove sugar pellets placed on different stairs of a staircase to 

evaluate skilled forelimb grasping as described in SI Materials and Methods (Fig. 5 A,). 
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While mice from both experimental groups showed similarly impaired forelimb grasping 

immediately after injury, mice injected with rAAV-STAT3 recovered quicker and 

performed significantly better in the staircase reaching task compared to mice injected with 

Control rAAV from 5 weeks after pyramidotomy onwards (Fig. 5 B). To study the 

contribution of midline-crossing circuits to this functional recovery, we recorded forelimb 

flexor electromyographs (EMGs) after intracortical stimulations (Fig. 5 C, D). Unlesioned 

animals elicited EMG responses in 100% of the cases (n=24 stimulations, Fig. 5 E). In the 

days following pyramidotomy, this response was basically abolished (Fig. 5 E). When we 

investigated the response to stimulation twelve weeks following pyramidotomy, we 

observed that animals treated with the Control rAAV exhibited 53±9% while animals 

treated with rAAV-STAT3 exhibited 94±4% of responsive sites in the ipsilateral cortex 

(Fig. 5 E). The finding that cortical stimulation in animals injected with rAAV-STAT3 

evoked an increased ipsilateral EMG response is consistent with the idea that newly formed 

midline crossing CST fibers mediate this recovery. To confirm the contribution of new 

CST connections below the level of the pyramids to the recovery we performed an 

additional pyramidotomy of the intact side in mice that had previously recovered 

responsiveness to stimulation at 12 weeks after lesion and injection with rAAV-STAT3. In 

these mice the second pyramidotomy completely abolishes the response to cortical 

stimulation (Fig. 5 E). Further analysis of the cortical stimulation parameters revealed 

lower stimulation thresholds and shorter latencies to an EMG response in mice 12 weeks 

after injection with rAAV-STAT3 compared with mice injected with Control rAAV (Fig. 5 

F, G). Taken together our electrophysiological and behavioral analysis strongly suggests 

that the midline crossing CST circuits induced by sustained expression of STAT3 are 

functional and contribute to improved recovery of forelimb function after injury.  
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Discussion  

  The sustained expression of p-STAT3 is required for the timely initiation of 

neuronal growth in the lesioned peripheral nervous system (18). Here, we show that in 

response to a central lesion STAT3 and p-STAT3 expression are only transiently 

upregulated in a subset of cortical projection neurons. This transient upregulation is 

consistent with previous reports that investigated STAT3 expression in layer V cortical 

projection neurons following transient cerebral ischemia in rats (26) and the expression of  

JAK-STAT family members (JAK1 and STAT3 in particular) in the injured spinal cord 

(19). The conditional deletion of STAT3 expression now shows that this transient 

expression of STAT3 does not contribute to the induction of endogenous attempts of 

axonal regeneration and remodeling. This suggests that at least in cortical projection 

neurons other pathways might be responsible for endogenous induction of axonal 

sprouting.  

While the transient STAT3 expression induced by central lesions can thus not 

influence axonal growth, we can now show that sustained expression of STAT3 induced by 

viral gene transfer is sufficient to substantially improve the neuronal growth induction of 

transduced cortical projection neuron and affect multiple aspects of the CST response to 

injury: First, sustained STAT3 expression improves axonal sprouting and regeneration at 

the lesion site. This pro-regenerative effect of STAT3 expression is consistent with 

previous reports that have shown that STAT3 over-expression can induce sprouting of 

central DRG projections (18) and that deletion of its negative regulator SOCS3 can 

improve optic nerve regeneration (23,24). The molecular mechanisms by which STAT3 

initiates this axonal growth are currently not fully understood. However, several genes that 

are induced by the transcription factor STAT3 have already been identified and include the 

cell cycle inhibitor P21/Cip1/Waf1 (27), the small proline rich protein 1a (SPRR1A, 28) 
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and the interferon regulatory factor 1 (IRF1; 21), all of which can directly affect neuronal 

outgrowth (21,29,30). When evaluating the effects of STAT3 in regeneration, it should be 

noted that axonal growth initiation by STAT3 appears to primarily increase the number of 

CST axons that attempt to regenerate after a lesion. As these axons still have to grow 

through the growth-inhibitory environment of the lesioned CNS (13-16,31) it is probably 

not surprising that even after STAT3 induction most regenerating fibers terminate within 

the first 500 µm from the lesion. By itself this pro-regenerative effect of STAT3 is thus 

unlikely to contribute to functional recovery, however improved growth induction by 

STAT3 can be an ideal therapeutic complement to strategies that counteract growth-

inhibitory signals in the glial scar and central myelin (13-16,31,32). In line with this 

concept we could previously show synergistic effects on axonal outgrowth of central 

sensory connections when we combined STAT3 induction with the neutralization of 

growth-inhibitory chondroitin sulfate proteoglycans (18).  

While the contribution of axonal regeneration to functional recovery is thus limited, at least 

in the untreated spinal cord, the remodeling of axonal connections can promote some 

recovery of function even in the absence of therapeutic support. We and others have 

previously shown that the formation of intraspinal detour circuits is a key component of the 

endogenous recovery process following spinal cord injury (2,3,12,33). For detour circuits 

to be formed lesioned CST fibers first extend new collaterals distant from the lesion site. 

These collaterals enter the intermediate layers of the cervical spinal cord and there contact 

different interneurons including long propriospinal neurons. Long propriospinal neurons 

act as relay neurons and increase their projections to the denervated target area of the 

transected hindlimb CST thereby completing the detour circuit. We can now show that 

sustained STAT3 expression can further increase the number of cervical CST collaterals 

that form after lesion. However increased collateral formation does not result in significant 
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changes to the CST connections to the long propriospinal relay neurons. This might 

indicate that the endogenous growth response of lesioned CST projection neurons is 

sufficient to promote the formation of detour circuits at an “optimal” rate that is not 

improved further by the presence of additional CST collaterals.  

While lesioned CST fibers thus spontaneously reorganize after injury, unlesioned fibers 

generally do not adapt in response to injury. Our results now indicate that the sustained 

expression of STAT3 is sufficient to recruit unlesioned fibers to the remodeling process.  

After a unilateral lesion of the CST at the level of the pyramids, sustained expression of 

STAT3 induces the formation of collaterals from the unlesioned CST. These collaterals 

enter the cervical gray matter, cross the spinal midline and form contacts to the previously 

denervated spinal interneurons and motoneurons that control forelimb function. The 

findings that neuronal growth initiation by STAT3 is sufficient to induce the de novo 

formation of these midline crossing circuits indicate that the guidance signals that attract 

newly formed collaterals are endogenously present in the denervated spinal cord. It is 

interesting to note in this context that the remodeling of unlesioned CST fibers can not only 

be induced by sustained STAT3 expression.  Indeed previous studies have, for example, 

shown that activation of the mTOR pathway through deletion of PTEN leads to sprouting 

of uninjured CST axons and regeneration of injured CST axons past the lesion site (10) and 

that the over-expression of the neuronal calcium sensor1 (NCS1), which acts via the 

PI3K/Akt pathway, induces sprouting and midline crossing of unlesioned CST fibers (9).  

The therapeutic potential of interventions that promote the remodeling of unlesioned 

connections is illustrated by our behavioral and electrophysiological analyses that 

demonstrate meaningful recovery of forelimb function in animals treated with rAAV-

STAT3 following pyramidotomy. One caveat of strategies that promote axonal remodeling 

is the induction of “unwanted” new connections that could in principle augment pain or 
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spasticity after spinal cord injury. Our results from this and previous studies however 

suggest that endogenous regulatory mechanisms might be in place that prevents the 

formation of functionally “unwanted” connections. For example, we could previously show 

that the formation of collaterals is followed by a phase of sprout sorting and refinement 

during which excessive connections e.g. to short propriospinal neurons that do offer a 

detour around the lesion are at least partially removed (2,33). Further, as discussed above 

our current experiments provide evidence for the existence of endogenous guidance cues 

that target sprouting collaterals to denervated areas of the spinal cord. Finally, the 

combination of strategies that promote axonal reorganization with neurorehabilitation 

approaches might further help to enhance desired and limit unwanted consequences of 

nervous system remodeling (34). Thus we believe that the support of endogenous axonal 

remodeling, for example by the induction of sustained expression of STAT3 or selective 

manipulation of its downstream targets, is a promising therapeutic avenue that can help to 

improve functional recovery in many neurological conditions in which trauma, 

inflammation or ischemia cause permanent axon damage.  

 

Materials and Methods 

Animals:  

To delete STAT3 expression in cortical projection neurons, we crossed STAT3fl/fl 

mice, in which deletion of the STAT3 gene depends on Cre-mediated excision of loxP 

sites, and EMX-Cre mice (25) in which regulatory elements of the Emx1 gene drive Cre 

expression in the forebrain. Adult female mice homozygous for the floxed STAT3 allele 

and either expressing Cre (STAT3-deficient group) or Cre-negative (control group) were 

used for experiments. For all other experiments we used adult female C57/Bl6 mice (6-8 
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weeks old).  All animal experiments were performed in accordance with regulations of the 

animal welfare act and protocols approved by the Regierung von Oberbayern. 

Generation and production of AAV vectors 

We cloned and produced rAAV-STAT3 and Control rAAV as previously described 

(25). Additional details can be found in SI Materials and Methods. Genomic titers were as 

follows: rAAV-STAT3, 9 ×1012 genome copies/ml; Control rAAV-eCFP, 9.2 × 1012 

genome copies/ml; Control rAAV-mbYFP, 8.6 x 1012 genome copies/ml. 

 Surgical procedures  

We performed midthoracic hemisections and pyramidotomies and labelled CST 

fibers and propriospinal neurons as described in detail in SI Materials and Methods.  

Tissue processing and histological analysis 

Animals were perfused transcardially with 4% paraformaldehyde (PFA). Brains and 

spinal cords were dissected and postfixed overnight in PFA. The tissue was then 

cryoprotected in 30% sucrose for 3 days. Coronal sections (50µm thick) were cut on a 

cryostat. To visualize CST collaterals, BDA detection was performed as described in SI 

Materials and Methods.  

Confocal microscopy and image processing 

  Stained sections were scanned using an Olympus FV1000 confocal microscope 

equipped with x20/0.85 and x60/1.42 oil immersion objectives. Image stacks were then 

later processed using the freeware ImageJ/Fiji (http://rsbweb.nih.gov/ij) to generate 

maximum intensity projections. To obtain final representations, these maximum intensity 

projections were further processed in Photoshop (Adobe) using gamma adjustments to 

enhance visibility of intermediate gray values.  
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Quantification of CST regeneration and remodelling 

The extent of CST regeneration and remodelling was quantified as detailed in SI 

Materials and Methods. 

Behavioral analysis and Electrophysiology  

To assess behavioural recovery we monitored the BMS score and performed Food 

pellet grasping and the Rotarod tests as described in SI Materials and Methods. We 

stimulated the forelimb motor cortex and performed electrophysiological recordings as 

described in SI Materials and Methods. 

Statistical evaluation 

Data were analyzed by the Student's t test in case of comparisons of two groups or 

two-way ANOVA with Tukey's post hoc test in case of multiple comparisons using 

Graphpad Prism 5.01 for Windows (GraphPad Software). 
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Figure Legends 

 

Figure 1. Transient upregulation of p-STAT3 expression in cortical neurons does not 

contribute to endogenous CST regeneration and remodeling after injury. 

(A,B) Confocal images of the expression of the activated form of STAT3, p-STAT3 in 

lamina V cortical neurons (green, NeuroTrace 435; red, p-STAT3) of an unlesioned mouse 

(A) and a mouse perfused 24hrs following a midthoracic hemisection (B). (C) 

Quantification of p-STAT3 expression in lamina V cortical neurons of unlesioned mice 

(white bar) and mice perfused at different timepoints following thoracic hemisection (grey 

bars). (D,E) Confocal images of p-STAT3 expression in lamina V cortical neurons (green, 

NeuroTrace 435; red, p-STAT3) of a STAT3 competent (D) and a conditional STAT3 

deficient mouse (E) perfused 3wks following a midthoracic hemisection. (F) Quantification 

of p-STAT3 expression in lamina V cortical neurons in STAT3 competent and conditional 

STAT3 deficient mice perfused 3wks following a midthoracic hemisection. (G,H) 

Quantification of axonal regeneration at different distances distal from the lesion site (G) 

and of axonal sprouting (H) at the site of the lesion in STAT3 competent (grey bars) and 

conditional STAT3 deficient (blue bars) mice perfused 3 wks following midthoracic 

hemisection. (I,J) Quantification of axonal sprouting in the cervical spinal cord (I) and of 

the percentage of long propriospinal neurons contacted by CST fibers (J) in STAT3 

competent (grey bars) and conditional STAT3 deficient (blue bars) mice perfused 3 wks 
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following thoracic hemisection. Scale bars equal 50μm B (also for A), 50μm in E (also for 

D). 

 

Figure 2. Sustained STAT3 expression promotes axonal sprouting and regeneration 

following spinal cord injury.  

(A) Schematic representation of the analysis of CST sprouting and regeneration following 

spinal cord injury. (B,C) Confocal images of p-STAT3 expression in lamina V cortical 

neurons (green, NeuroTrace 435; red, p-STAT3) of mice injected with Control rAAV (B) 

or rAAV-STAT3 (C) and perfused 3 wks following a midthoracic hemisection. (D) 

Quantification of p-STAT3 expression in lamina V cortical neurons of mice injected with 

Control rAAV (grey bars) or rAAV-STAT3 (red bars) and perfused 3wks following 

midthoracic hemisection. (E-H) Confocal image of a longitudinal section of the spinal cord 

(asterisk, indicates lesion site) illustrating sprouting and regeneration of the transected CST 

(BDA, white) in mice injected with rAAV-STAT3 (E-G) and in mice injected with Control 

rAAV (H).  The dotted lines in (H) represent the distances at which regenerating CST 

axons were counted. Boxed areas in (E) are magnified 2-times in (F) and (G). (I,J) 

Quantification of axonal regeneration at different distances distal from the lesion site (I) 

and of axonal sprouting (J) at the site of the lesion in control (grey bars) and STAT3 

overexpressing (red bars) mice perfused 3 wks following midthoracic hemisection. Scale 

bars equals 100μm in C (also for B). Scale bar in H (also for E) equals 60μm. 

 

Figure 3. Sustained STAT3 expression induces sprouting of lesioned and unlesioned 

fibers in the cervical spinal cord following injury.  

 (A) Schematic representation of the analysis of cervical CST sprouting and remodeling 

following a midthoracic spinal cord injury. (B,C) Confocal images of sprouting hindlimb 
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CST collaterals in lesioned mice injected with Control rAAV (B) or rAAV-STAT3 (C) and 

perfused 3 wks following injury. (D) Quantification of the number of collaterals exiting the 

hindlimb CST tract in the cervical spinal cord in mice injected with Control rAAV (grey 

bar) or rAAV-STAT3 (red bars) 3 wks following spinal cord injury. (E) Confocal image 

(single plane) of a contact between a hindlimb CST collateral (red) and a long 

propriospinal neuron (green) in a mouse injected with rAAV-STAT3 and perfused 3 wks 

following the lesion. (F) Quantification of the percentage of long propriospinal neurons 

contacted by hindlimb CST collaterals 3 wks following the lesion (grey bar: mice injected 

with Control rAAV, red bar: mice injected with rAAV-STAT3). (G) Schematic 

representation of the analysis of cervical CST sprouting and remodeling in unlesioned 

mice. (H,I) Confocal images of sprouting hindlimb CST collaterals in unlesioned mice 

injected with Control rAAV (H) or rAAV-STAT3 (I). (J) Quantification of the number of 

collaterals exiting the hindlimb CST in the cervical spinal cord of unlesioned mice injected 

with Control rAAV (grey bar) or rAAV-STAT3 (red bar). (K) Confocal image (single 

plane) of a contact between a hindlimb CST collateral (red) and a long propriospinal 

neuron (green) in an unlesioned mouse injected with rAAV-STAT3. (L) Quantification of 

the percentage of long propriospinal neurons contacted by hindlimb CST collaterals in 

unlesioned mice (grey bars: mice injected with Control rAAV, red bars: mice injected with 

rAAV-STAT3)., Scale bar equals 50μm in C (also for B, H, I) ,  25μm in E (K).  

 

Figure 4. Sustained STAT3 expression induces de novo formation of midline crossing 

circuits following pyramidotomy.  

(A) Schematic representation of the analysis of CST remodeling after unilateral 

pyramidotomy and injection of Control rAAV or a rAAV-STAT3. (B-D) Confocal images 

of midline crossing fibers in mice injected with Control rAAV (B) or rAAV-STAT3 (C, D) 



 21

and perfused 3 wks (B, C) or 12 wks (D) following pyramidotomy. (E, F) Quantification of 

the number of fibers exiting ipsilateral from the main CST (E) and crossing the spinal 

midline (F) in mice injected with Control rAAV (grey bars) or rAAV-STAT3 (red bars) 

and perfused 1, 3 or 12 wks following pyramidotomy. (G) Quantification of the percentage 

of midline crossing fibers that project to the contralateral (denervated) laminae VI to IX in 

mice injected with Control rAAV (grey bars) or rAAV-STAT3 (red bars) and perfused 3 

and 12 weeks following pyramidotomy. (H) Quantification of the density of midline 

crossing fibers in the contralateral (denervated) side of the spinal cord at different distances 

from the midline in mice injected with Control rAAV (grey line) or rAAV-STAT3 (red 

line) and perfused 12 weeks following pyramidotomy. (I, K) Confocal images (single 

planes) of contacts between midline crossing forelimb CST collaterals (red) and a short 

propriospinal neuron (I, green) or a motoneurons (K, green) in mice injected with rAAV-

STAT3 and perfused 12 wks following the pyramidotomy. (J, L) Quantification of the 

percentage of short propriospinal neurons (J) and motoneurons (L) contacted by mideline 

crossing forelimb CST collaterals in mice injected with Control rAAV (grey bars) or 

rAAV-STAT3 (red bars) and perfused 12wks following injury. Scale bars equal 200 μm in 

D (also for B, C), 50 μm in K (also for I). 

 

Figure 5. Sustained STAT3 expression promotes functional recovery following 

pyramidotomy.  

(A) Picture of a mouse in a “staircase test” which we used to evaluate forelimb reaching 

and grasping abilities in mice. (B) Quantification of the number of pellets eaten by mice 

injected with Control rAAV (grey line) or rAAV-STAT3 (red line) at different test 

intervals up to 10 weeks following pyramidotomy. (C) Schematic representation of the 

cortical electrostimulation and EMG recording that we used to quantify circuit 
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reconnection after pyramidotomy. (D) Trace of a forelimb EMG recording after cortical 

stimulation. (E) Quantification of the percentage of responsive sites contralateral to the 

lesion in unlesioned mice (black bar) and ipsilateral to the lesion acutely following 

pyramidotomy (white bar) and 12 wks following pyramidotomy in mice injected with 

Control rAAV (grey bar) or rAAV-STAT3 (red bar). A second pyramidotomy 12 weeks 

following pyramidotomy and injection of rAAV-STAT3n abolishes the ipsilateral 

responses (red bar, re-lesion). (F, G) Quantification of the stimulation thresholds (F) and 

latencies (G) of the forelimb responses in unlesioned mice (black bars, contralateral to 

lesion) in mice injected with Control rAAV (grey bar, ipsilateral to the lesion) or rAAV-

STAT3 (red barm ipsilateral to the lesion) at 12 weeks following pyramidotomy.  
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4.1. Structural remodeling of corticospinal tract collaterals 

4.1.1 Summary of key findings 

Following a dorsal hemisection, the corticospinal tract (CST) sprouts newly formed 

collaterals and remodels its axons rostral from the lesion site. The ability of the CST tract to 

remodel its connections to form new intraspinal detour circuits is a key feature in enabling 

spontaneous functional recovery following injury (Bareyre et al., 2004; Courtine et al., 2008).  

 

The reconstruction of single CST collaterals at different time points after injury allowed us to 

reveal that axonal remodeling occurs through three orchestrated phases (Figure 7; Lang et 

al., 2012):   

(1) A growth initiation phase, where there is growth of newly formed 

collaterals that are simple in structure (10 days following injury),  

(2) A collateral formation phase, where collaterals develop a complex 

structure (occurs between 10 days-4 weeks after injury),  

(3) A maturation phase where there is refinement and maturation of synaptic 

connections onto spinal interneurons (occurs 3-12 weeks after injury).  

 

 

Throughout these phases, newly formed collaterals undergo structural and synaptic 

changes before reaching a mature projection pattern. Once they reach a mature pattern, 

newly formed CST collaterals persist long-term for at least up to 6 months after injury. The 

reconstruction of single collaterals originating from different CST components further 

revealed that although the timing of the remodeling phases is similar between the main and 

minor CST components, their structural complexity differed depending on their tract of origin.   

 

In this study we were able to provide a detailed anatomical analysis and the time 

course of CST remodeling following injury. This improved understanding of the 

characteristics of the different phases will aid in the design and timing of therapeutic 

interventions that specifically target the individual phases of the remodeling process.  
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Figure 7. Schematic representation of hindlimb CST remodeling following SCI. Scheme illustrating 
the formation of cervical collaterals derived from the main CST (upper row) and the minor dorsolateral (2nd 
row) and ventral (3rd row) CST components at 10 days (blue), 3–4 weeks (green) and 12 weeks (red) after 
SCI. Bottom row illustrates the refinement over time of the contacts between CST collaterals and cervical 
interneurons (Taken from Lang et al., 2012; doi:10.1371/journal.pone.0030461.g006) 
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4.1.2 Stages of collateral remodeling  

A key feature of CST remodeling that emerged from our analysis is that initially 

extensive collaterals and contacts are established. However over time only some of these 

contacts and collaterals are maintained while others are eliminated. This maturation and 

refinement of the circuit following injury is reminiscent of similar mechanisms that occur 

during development. For example, during development, in systems such as the visual 

system (Sretavan and Shatz 1986), auditory system (Leake et al., 2002) and the neocortex 

(Portera-Cailliau et al., 2005), there is an excess of immature axonal projections. This is then 

followed by a refinement phase which eventually leads to a mature adult topographical 

pattern. In the developing CST, aberrant sprouts are also formed though these are then later 

pruned during maturation (Stanfield et al., 1982; Stanfield and O'Leary 1985; Chakrabarty 

and Martin 2000; Li and Martin 2002), indicating that this process is a common feature 

necessary for circuit formation. Molecules such as semphorins/plexins (Bagri et al., 2003; 

Low et al., 2008) and ephrins (O'Leary and Wilkinson 1999) have been implicated to be 

players in this refinement process. In our study we found that the injured CST undergoes a 

similar process of sprouting followed by pruning, which raises the possibility that similar 

molecular mechanisms may also regulate the refinement of neuronal circuits after injury.   

 

Our work further shows that during CST remodeling that not only the number of CST 

collaterals but also the CST contact pattern on interneurons evolves over time. Collaterals 

formed 10 days post injury emerging from all tracts were short in length and had very few 

boutons and branch points. These collaterals were immature in both structure and the 

synaptic machinery present in their boutons (Lang et al., 2012). Comparative observations 

from our population study revealed that at 10 days post injury, approximately 10% of newly 

formed collaterals formed more than 3 contacts onto one interneuronal cell body, with 

around 38% observed to form only one contact. At a late time point when a mature circuit is 

established, 12 weeks post injury, 80% of collaterals were found to make one contact onto a 

single neuronal cell body (Figure 7), while the remaining 20% were observed to form a 

maximum of 2 contacts. A majority of the CST collaterals boutons at this time point 

expressed the mature synaptic marker synapsin I (Lang et al., 2012). We considered this a 

“mature” contact pattern as a comparable synaptic marker expression was observed in the 

lumbar cord of unlesioned mice. Monosynaptic input appears to be the typical form of 

innervation as this is reminiscent of the innervation pattern at the neuromuscular junction. 

Here in this system, initially multiple axons innervate one junction.  Competition between the 
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axons then occurs and in the end only a single input remains (Balice-Gordon and Lichtman 

1993; Balice-Gordon et al., 1993).  

 
The mechanisms that determine which inputs are maintained and which are removed 

during CST remodeling after injury are currently only partly understood. In the developing 

nervous systems, where initial connections made by invading axons are often inaccurate, 

neural activity has emerged as the deciding factor in the formation of a precise neural circuit 

(Shatz 1996; Chakrabarty and Martin 2010; Kerschensteiner et al., 2009; Morgan et al., 

2011). In the case of the CST, it has been shown that inhibition of activity with an 

intramuscular injection of botulinum toxin A, which causes muscle paralysis, results in the 

development of immature CST axons (Martin et al., 2004). At maturity, CST axons are 

known to be morphologically complex when compared to the immature CST axons seen in 

development (Chakrabarty and Martin 2000; Li and Martin 2002). The complex structure of 

the mature CST axons, mainly due to an increase in the number of branches, has been 

noted to coincide with the establishment of the cortical motor map (Li and Martin 2002). To 

produce the mature projection pattern that is required for skilled movements, incorrect CST 

connections are eliminated and essential functional connections are maintained. In the CST 

system, motor experiences are known to be important for the development of CST 

terminations and function (Martin et al., 2004; Chakrabarty et al., 2009; Chakrabarty and 

Martin 2010).  

 

In general, synapse formation and elimination appears to be a recurrent occurrence 

throughout the lifetime of an animal as even the adult system, in response to injury can 

undergo cell type-specific plasticity and rearrangements. The observed parallels between 

post-injury remodeling and developmental circuit formation suggest that a combination of 

guidance cues and activity-dependent mechanisms governs the formation and refinement of 

specific connections during corticospinal remodeling (Martin et al., 1999; Martin et al., 2000; 

Li and Martin 2002). Collectively, the combination influences the permanency of a collateral, 

its structure, a synapse, and synaptic strength (Colicos et al., 2001; Nikonenko et al., 2003; 

De Paola et al., 2003; De Paola et al., 2006). 
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4.1.3 Contribution of main and minor CST components  

At maturation, the newly formed collaterals emerging from the different components 

of the CST, the main dorsal and the minor dorsolateral and ventral components, have 

distinct structures (Lang et al., 2012). Collaterals sprouting from different white matter 

locations displayed differences in branching and bouton number, suggesting that their 

contacts and their role in the de novo neural circuit may differ (Lang et al., 2012). Although 

the signals that govern the distinct structure of CST collaterals are unknown, one 

explanation is that structure is related to function. Newly sprouted collaterals emerging from 

different anatomical locations would have access to distinct interneuronal pools. Dorsolateral 

and main CST collaterals with their complex branching patterns are able to project into a 

larger area of the spinal grey matter, mainly into the intermediate and ventral horn near the 

vicinity of propriospinal interneurons and motorneurons (Steward et al., 2004). In contrast, 

the projection field of the simple-in-structure ventral CST collaterals is more confined to the 

region where the motorneurons are located.  Given their extensive projection pattern, newly 

formed main and dorsolateral CST collaterals after lesion are likely to have a more 

prominent role in the formation of the detour circuit. In particular, the contribution from the 

main component is more significant as this component sprouts the majority of fibers, 

followed by the dorsolateral component. As a result we found that collaterals emerging from 

the main and to a lesser extent from the dorsolateral CST, were responsible for the majority 

of contacts onto spinal interneurons. The complex structure of dorsolateral and main CST 

collaterals could be a requirement for creating strong functional connections and for the 

integration of different interneuronal pools to create an operational communicative neural 

circuit to enable the CST to regain control of skilled limb movement.  

 

This raises questions about the simple ventral CST collaterals and their role in the 

new neural circuit. While their simple structure might suggest an insignificant role, the 

following findings suggest that ventral CST collaterals also play an important role during the 

remodeling process. First, despite the fact that the ventral CST fibers are unlesioned in our 

model system they sprout, relative to the tract size, a high number of new collaterals. 

Second, previous work in rats has shown that the collaterals that sprout from this tract are 

important for functional recovery. Weidner et al., (2001) found that when the ventral CST 

component was lesioned there was no sprouting or functional recovery. Furthermore, lesion 

of the ventral component (at cervical level C2) 5 weeks after a dorsal column transection (at 

cervical level C3), eliminated the functional recovery that was previously observed with only 
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a dorsal lesion. In addition it was reported that the proportion of fibers remaining in the 

ventral or lateral funiculus after a T8 lesion in rats was proportional to the open field 

locomotor score (Schucht et al., 2002).  

 

 

4.1.4 Axonal remodeling following SCI and the implications for 
functional recovery and therapy  

The ability of newly formed CST collaterals for spontaneous axonal remodeling is a 

key mechanism that mediates functional recovery after spinal cord injury. Exploiting the 

natural tendency for collaterals to form compensatory detour circuits is an attractive strategy 

in terms of enhancing recovery following CNS lesions. Bareyre et al., (2004), illustrated that 

following a dorsal thoracic lesion, CST collaterals remodel their connections rostral from the 

lesion site. Contacts onto interneuronal pools that are not beneficial were lost while 

functional contacts were strengthened. Comprehensive behavioral and electrophysiological 

assessments validated that the CST remodeling, observed in this study, is a crucial step for 

the recovery of CST function (Bareyre et al., 2004).   

 

The CST is not the only tract that is known to spontaneously remodel following injury. 

Studies have observed that other tract systems such as the rubrospinal and reticulospinal 

tract and the serotonergic circuit respond to injury. For example, the rubrospinal tract that 

cooperates with the corticospinal tract in controlling fine skilled motor movements (Whishaw 

et al,. 1998) has been observed to sprout in the spinal cord following a CST transection at 

the brainstem (Raineteau et al., 2001). The reorganization of reticulospinal axons and the re-

establishment of serotonergic activity can also contribute to functional recovery after injury. 

The reticulospinal tract (RST) has its axons running in the lateral and ventral white matter 

and is often spared in a contusion lesion (Hill et al., 2001). The RST tract, which is involved 

in the initiation of walking, has been observed to sprout below the injury site (Ballermann and 

Fouad 2006). Spinal motor neurons require neuromodulators such as serotonin (5-HT) for 

the generation of rhythmic movement (Jordan et al., 2008; Fouad et al., 2010). Constitutive 

serotonergic activity following SCI can be beneficial in terms of enabling motorneuron 

recovery and hence walking. However there are detrimental effects should there be no 

cortical regulation as constant expression of serotonergic activity can lead to spasms 

(Murray et al., 2010).  
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Remodeling processes are likely not limited to descending tract systems as circuit 

refinement can also happen at the level of the spinal interneurons. Propriospinal 

interneurons are part of the central pattern generator (CPG). The CPG is a self-sustained 

spinal motor pattern able to produce neural activity that is modulated by sensory afferent and 

supraspinal commands (Grillner and Wallen 1985).  Courtine et al., (2008) found that 

elimination of propriospinal neurons causes a loss of functional recovery after injury. Using a 

staggered hemisection model they could show that when the propriospinal circuit was 

destroyed all recovered movement was abolished. Additional studies show that the CPG as 

a whole can spontaneously adapt and reorganize its connections following injury (Lovely et 

al., 1989; Rossignol et al., 1999; de Leon et al., 1999; Edgerton et al., 2004).  For example in 

cats, when the supraspinal input is cut and the muscles are paralyzed, thereby depriving the 

cord of sensory cues, the animals can still be trained to walk on a treadmill.  Continuous 

locomotor training further improves the stepping pattern. Cats with extensive treadmill 

training for 12 weeks are capable of full weight support and efficient stepping (Hodgson et 

al., 1994), demonstrating that the CPG circuits responds to task related plasticity (Raineteau 

and Schwab 2001).  However without constant training the cats have poor locomotor 

performance, though with retraining the stepping ability could be relearned (Hodgson et al., 

1994). In relation to humans, functional MRI studies have revealed that the supraspinal 

locomotor control between humans and quadruped animals is similar (Jahn et al., 2008; Filli 

et al., 2011). CPG circuits are also known to exist in humans, and can be therapeutically 

targeted to improve the recovery of SCI injured patients (Dietz et al., 1994; Barrière et al., 

2008; van Hedel and Dietz 2010).  

 

Extensive reorganization following SCI not only occurs in the spinal cord, it 

additionally transpires in the cortex. Intact areas of the cortex have been found to expand 

into de-afferented regions with various methods including intracortical microstimulation 

(Fouad et al., 2001; Emerick et al., 2003; Martinez et al., 2009), electrophysiology (Aguilar et 

al., 2010), trans-synaptic tracing (Bareyre et al., 2004), functional magnetic resonance 

imaging (fMRI) (Endo et al., 2007; Ghosh et al., 2009; Nishimura and Isa 2009; Ghosh et al., 

2010), voltage-sensitive dye imaging (VSD) (Ghosh et al., 2009; Ghosh et al., 2010) and 

retrograde tracing (Ghosh et al., 2010). For example, Ghosh et al., (2010) found through 

VSD and BOLDMRI imaging techniques that following a thoracic lesion there is expansion of 

the forelimb sensory representation into the affected hindlimb sensorimotor area. Input from 

the forelimb region could be a form of compensation or due to extensive reliance on the 

forelimb after injury. Even the human brain has been reported to undergo such 
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reorganization, utilizing these newly formed connections to regain functional recovery 

(Freund et al., 2011; Lu et al., 2011).  

 

Taken together, extensive axonal remodeling processes can be observed on multiple 

anatomical levels and likely form the basis for the spontaneous improvement in motor, 

sensory or other neurological function that can be observed in approximately 40% of SCI 

patients (Bracken et al., 1992; Frankel 1998; Weidner et al., 2001; Freund et al., 2011). 

Despite the fact that there is some spontaneous remodeling, in most cases functional 

impairments still persist following CNS injures. The further support of axonal remodeling 

processes is thus an attractive target for therapeutic strategies. The improved understanding 

of the remodeling process can now help to guide the development of new therapeutic 

strategies. Our investigations revealed that remodeling occurs in timely phases and these 

phases offer windows of opportunities to influence the remodeling process.  For example, to 

improve growth, one would target treatment within the first 10 days following lesion. 

Alternatively interventions that aim to modulate connectivity would be effective 3 weeks 

following injury.  
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4.2. Enhancing and modulating axonal outgrowth and 
remodeling 

4.2.1 Summary of key findings 

In the first study we investigated the role of STAT3 during the regeneration of 

lesioned peripheral and central DRG branches (Bareyre et al., 2011). The main findings of 

this study were: 

• Sustained STAT3 expression is induced by a peripheral but not a central 

lesion. Selective deletion of STAT3 impairs the regeneration of the peripheral 

branch following injury. While viral gene transfer of STAT3 promoted axonal 

outgrowth and sprouting of the DRG central branch. 

•  In vivo time-lapse imaging revealed that STAT3 is a phase-specific regulator 

of the intrinsic growth program and that it is essential for the initiation of 

axonal regeneration but does not affect axonal elongation. 

 

In a second study we then examined whether and how the induction of STAT3 

expression can be used to improve axonal regeneration, remodeling and functional recovery 

after spinal cord injury (Lang et al., Chapter 3 submitted). The main findings of this study 

were: 

• Following spinal cord injury, STAT3 expression in cortical projection neurons 

is only transiently induced and the conditional deletion of this expression 

affects neither spontaneous regeneration nor remodeling of CST axons. 

• Sustained expression and activation of STAT3 in cortical projection neurons 

can be induced by viral gene transfer leading to improved regeneration and 

remodeling of lesioned CST axons.  

• The forced upregulation of STAT3 can recruit unlesioned CST fibers to the 

remodeling process. In a unilateral CST lesion (pyramidotomy) paradigm, 

sustained STAT3 expression triggers the formation of new collaterals that 

emerge from the unlesioned tract. These collaterals were observed to cross 

the spinal midline and contact interneurons and motorneurons on the 

denervated side of the spinal cord (Figure 8). Moreover, behavioral and 
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electrophysiological assessments validated that a new intraspinal circuit is 

formed that contributes to the improved recovery of the impaired forelimb.  

 

In summary, the results from these studies identify STAT3 as a key regulator of axonal 

growth initiation and demonstrate that the induction of sustained STAT3 expression, for 

example through viral gene transfer, is a promising strategy to enhance axonal regeneration, 

remodeling and functional recovery after spinal cord injury.  

 

 
Figure 8. Schematic representation of the pyramidotomy paradigm used in this experiment in 
conjunction with treatment using a control rAAV or a rAAV-STAT3. STAT3 overexpression induces 
compensatory midline sprouting of fibers from the unlesioned tract following a pyramidotomy lesion. 
(adapted from Lang et al., Chapter Three, manuscript submitted) 
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4.2.2 STAT3 as an initiator of the intrinsic neuronal growth program 

Peripheral and central injuries can trigger differential changes in gene expression, 

hence explaining the difference in regenerative responses (Broude et al., 1997, Herdegen et 

al., 1997, Herdegen and Leah 1998, Schwaiger et al., 2000, Sheu et al., 2000, Snider et al., 

2002, Kruse et al., 2011, Mason et al., 2011). Regenerative associated genes (RAGs) and 

transcription factors are found to be upregulated in regenerating PNS neurons after a 

peripheral nerve injury (Richardson and Verge 1987, Mason et al., 2002). STAT3 is a 

regenerative associated transcription factor part of the intrinsic growth program present in a 

neuron. Injury to the peripheral branch of the DRG sensory neuron results in the increased 

expression of activated STAT3, even at two weeks post injury, and the activation of the 

regeneration program (Neumann and Woolf 1999; Qiu et al., 2005; Bareyre et al., 2011). 

The conditional deletion of STAT3 in the peripheral branch was found to only delay the 

regenerative response, thereby verifying the role of this transcription factor in the intrinsic 

neuronal growth program as an initiator (Bareyre et al., 2011). STAT3 was revealed to have 

a significant regulatory role in the PNS following injury, as the endogenous expression and 

activation of the transcription factor can influence the initiation of axonal growth. 

 

In the CNS, the intrinsic growth machinery has been shown to be activated in CNS 

neurons after axotomy (Richardson and Verge 1987; Benowitz and Routtenberg 1997; Smith 

et al., 2011), and in CNS neurons that have axons regenerating through a peripheral nerve 

graft (Benfey et al., 1985). However due to inhibitory factors and feedback pathways, the 

effect is only transient (Sun and He 2010; Kruse et al., 2011). In upper cortical neurons, 

following lesion, there is only a transient upregulation of activated STAT3 with return to 

baseline levels one week following injury (Lang et al., Chapter Three submitted). This is due 

to the fact that STAT3 activation is tightly regulated and controlled by SOCS3, which itself is 

also upregulated after injury (Croker et al., 2008; Smith etc al., 2009). The lack of sustained 

activation of factors in this program in injured mature CNS neurons is one of the main 

reasons why regeneration in the PNS is successful, while in the CNS there is failure.  This is 

in accordance with not only our studies but with others who have found impaired growth and 

regeneration when STAT3 levels were indirectly negatively affected via pharmacological 

means. Inhibition of the pathway with a Janus kinase 2 (JAK2) inhibitor AG490 (Qiu et al., 

2005) or by blockade of IL6 signaling, in essence inhibiting activation of the Jak/STAT3 

pathway (Zhong et al., 1999; Caffetry et al., 2001) resulted in regeneration failure of 

‘conditioned’ dorsal column axons, which usually have regenerative capabilities. 

Alternatively, a number of studies, ours included, have found that sustained activation of 
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STAT3 either by genetic deletion of its inhibitor SOCS3 (Smith et al., 2009; Sun et al., 2011) 

or through an rAAV-STAT3 (Bareyre et al., 2011; Lang et al., Chapter Three submitted) can 

promote axonal growth and regeneration after a CNS lesion.  

 

The upregulation of STAT3 following injury indicates that it is required for inducing 

axonal growth, but its deletion will not affect the spontaneous recovery system that the 

injured CST has in place in the form of spontaneous axonal remodeling and the formation of 

de novo detour circuits. The presence of axonal growth in both the PNS and CNS when 

STAT3 is deleted (Bareyre et al., 2011; Lang et al., Chapter Three submitted) indicates that 

there are other systems able to compensate for its deletion. Therefore there are likely to be 

substitute candidate factors that are able to initiate the growth response in the absence of 

STAT3. Members of the PTEN/mTOR pathway (Park et al., 2010; Liu et al., 2010) are 

potential candidates as they have been reported to influence the intrinsic growth response.  

Another such potential candidate is the cAMP signaling pathway, which is important for 

neuronal growth (McQuarrie et al., 1977; Qiu et al., 2000; Cai et al., 2001; Qiu et al., 2002). 

cAMP levels have been found to be up-regulated after sciatic nerve transection and 

administration of cAMP into the DRG can promote the regeneration of dorsal column axons 

(Neumann et al., 2002; Qiu et al., 2002).  

 

Additionally, the identification of STAT3 as a phase-specific regulator that only affects 

growth initiation implies that there are distinct phases of axonal growth modulated by 

different factors. What are the possible regulators that will switch the axon from a growing 

state to an elongation state?  Axonal elongation, for example, could be modulated by the 

interaction with Schwann cells, which following injury align to form tubes and are able to 

guide axons to their target cells (Höke 2006). Potentially, the Schwann cells are responsible 

for the shift from the growth phase to the elongation phase. In a crush injury, which leaves 

Schwann cell guidance intact, the absence of STAT3 has no effect on the elongation of 

injured PNS axons. This suggests that once axons enter the axonal elongation phase, 

STAT3 is no longer required. Nevertheless, sustained activation of pathways that enhance 

and promote growth, such as STAT3, in selective neuronal populations is a promising 

strategy that can further promote functional recovery. Indeed our studies (Bareyre et al., 

2011, Lang et al., Chapter Three manuscript submitted) found that direct overexpression of 

STAT3 through gene therapy is a strong therapeutic strategy that can trigger further growth, 

remodeling, regeneration compensatory sprouting and functional recovery following CNS 

lesions.   
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4.2.3 Integration of STAT3 into the signaling pathways that regulate 
neuronal growth 

How STAT3 initiates the neuronal growth program is an interesting question that is so 

far still only incompletely understood. However, as STAT3 is a transcription factor it is likely 

that the downstream effects are mediated by induction of gene expression. A large number 

of genes that are affected by STAT3 have already been identified. The small proline rich 

protein 1a (SPRR1A), the cell cycle inhibitor P21/Cip1/ and the regulatory factor 1 (IRF1) are 

known to be downstream targets of STAT3 (Coqueret and Gascan 200; Pradervand et al., 

2004; Smith et al., 2011). All of these molecules have also been implicated as regulators of 

axonal regeneration (Bonilla et al., 2002; Tanaka et al., 2004; Smith et al., 2011). For 

example, in cultured cerebellar neurons, IRF1 was found to increase neuronal outgrowth 

(Smith et al., 2011). In addition to these downstream targets, STAT3 also increases the 

expression of immediate early gene c-Jun. C-Jun expression has been previously identified 

as a key step in the induction of axonal regeneration and mice that lack c-Jun expression in 

the nervous system have impaired regeneration of motorneurons after injury (Raivich et al., 

2004). 

 

Another important question is which factors are responsible for the activation of 

STAT3 after injury. Referring to the Jak/STAT pathway, we know that the pathway is 

activated by cytokines that include CNTF (Rajan et al., 1996), IL-6 (Zhong et al., 1994) and 

LIF (Kunisada et al., 1996). Following injury the expression of these neuropoetic cytokines 

factors are increased at the lesion site and can influence STAT3 signaling (Bourde et al., 

1996; Kurek et al., 1996). At the lesion site, the secretion of cytokines would lead to the 

activation of STAT3, which is then transported retrogradely along the axon (Curtis et al., 

1994; Lee et al, 2004; Ben-Yaakov et al., 2012). Preventing expression of these classical 

inducers of the Jak/STAT pathway, results in impaired axonal regeneration and functional 

recovery (Zhong et al., 1994; Cafferty et al., 2001; Cafferty et al., 2004). Overall these 

studies indicate that the activation of STAT3 by cytokines is a key step in activating the 

intrinsic growth program and thus facilitating axonal regeneration.    

 

Furthermore it appears that STAT3 expression can also be affected by classical 

neurotrophin signaling. In particular the interaction between STAT3 and BDNF has been 

reported (McAllister et al., 1999; Bramham and Messaoudi 2005; Ng et al., 2006). Knockout 

of STAT3 by siRNA in hippocampal cells decreases the neurite outgrowth effect that BDNF 
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can elicit (Bramham and Messaoudi 2005). In PC12 cells, crosstalk between the BDNF and 

STAT3 signaling pathways was observed with STAT3 acting as a signal transducer for 

tyrosine kinase A (TrkA). STAT3 activation is downstream from TrkA activation, with TrkA 

able to phosphorylate STAT3 at Ser-727 thereby enhancing transcription (Ng et al., 2006).  

 

In addition it is likely that other intracellular signaling pathways of the intrinsic 

neuronal growth program can interact with STAT3.  As mentioned previously, Liu et al., 

(2010) and Yip, et al., (2010) illustrated that through genetic manipulation that leads to the 

inactivation of PTEN (Liu et al., 2010) or the overexpression of NCS1 (Yip et al., 2010), it is 

possible to induce axonal growth and regeneration. These experiments identified PTEN and 

NCS1 as key components of the intrinsic neuronal growth response. Inactivation of PTEN is 

known to activate Akt and mTOR signaling and inhibit signaling molecules such as GSK-3 

(Zhou et al., 2004; Ma and Blenis 2009; Park et al., 2010; Liu et al., 2010) and PIP3 (Zhao et 

al., 2006). The Akt pathway provides a link between PTEN signaling and NCS1 as it has 

been shown that overexpression of NCS1 increases the levels of phosphorylated Akt, 

thereby activating the pathway (Yip et al., 2010; Figure 8). The activation of the PI3K/Akt 

pathway is associated with enhanced neurite outgrowth in the DRG, perinatal cortical 

neurons (Markus et al., 2002; Ozdinler and Macklis 2006) and embryonic cortical neurons 

(Nakamura et al., 2006). Notably, STAT3 has also been reported to interact with the Akt 

pathway via PI3K (Figure 8; Park et al., 2006; Lu et al., 2008; Blando et al., 2011). In cell 

culture experiments, when STAT3 is deleted there is reduced expression of Akt (Park et al., 

2006; Lu et al., 2008). Further, in cancer cells interaction between the Jak/STAT3 and PTEN 

signaling pathways has been observed (Sun and Steinberg 2002; Yang et al., 2003; Saxena 

et al., 2007; Zhou et al., 2007; Blando et al., 2011). The Jak/STAT3 pathway was found to 

be positively regulated by PI3K/mTOR signaling, whereas PTEN served as a negative 

regulator of both Jak/STAT3 and mTOR signaling (Zhou et al., 2007). Sun et al., (2011) 

found that PTEN and SOCS3 independently regulate two different pathways that can act 

synergistically to promote axonal regeneration. Double deletion of the STAT3 inhibitor 

pathway, SOCS3, and PTEN resulted in enhanced and sustained axonal regeneration in the 

optic nerve, compared to a single deletion of either factor (Figure 8).  
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Figure 9. Simplified scheme of selected pathways that have been identified to be important for 
enhancing axonal growth following injury. Overexpression of neuronal calcium sensor 1 (NCS1) 
increases the levels of phosphorylated Akt, a serine/threonine protein kinase. Activation of the Akt signaling 
pathway is known to increase neurite outgrowth.  Inhibition of PTEN, which functions both as a dual 
specificity protein phosphatase and an inositol phospholipid, activates the Akt, and mTOR signaling 
pathway. PTEN is also known to negatively regulate the Jak/STAT3 signaling pathway. Deletion of both 
SOCS3 (an inhibitor of the Jak/STAT3 pathway) and PTEN was found to enhance axonal regeneration and 
growth in the optic nerve. While a single knockout of either will still result in axonal growth and regeneration 
following injury, the effect is not as great. Insert is of a layer 5 pyramidal cortical neuron.  

 

 

4.2.4 STAT3 as a therapeutic target 

Our results identify STAT3 as an attractive target for therapeutic strategies that aim 

at improving functional recovery after spinal cord injury. One resulting action of sustained 

STAT3 expression is that there is the induction of sprouting of lesioned CST axons at the 

lesion site, as well as regeneration up to 400µm into the lesion site (Lang et al., Chapter 

Three submitted). The finding that STAT3 can induce regeneration of corticospinal fibers is 

important as the CST projection has a reputation of being one of the difficult axonal systems 

to experimentally elicit regeneration (Blesch and Tuszynski 2009). Factors and proteins that 

elicit regeneration in other tracts may not have an effect on the CST.  For example, insulin-

like growth factor-1 (IGF-1) or BDNF are able to promote regeneration of raphespinal axons 

or rubrospinal axons respectively but not of corticospinal axons (Kobayashi et al., 1997; Lu 

et al., 2001; Jin et al., 2002; Liu et al., 2002; Kwon et al., 2002; Hollis et al., 2009). However 



  Discussion 
 

    93 

it should be noted that although the treatment of STAT3 resulted in the regeneration of CST 

fibers up to 400µm from the site of the lesion, long-distance regeneration that extends 

substantially past the lesion site was not observed. This indicates that even though the 

stimulation of growth can push CST neurons into a regenerative state, alone it is still not 

enough to enable successful regeneration across the lesion site. The failure of successful 

long-distance regeneration is due in part to the inhibitory environment formed after injury. It 

is difficult to override the inhibitory environment with the presence of growth inhibitory 

molecules that include chondroitin sulphate proteoglycans (CSPGs) (Fawcett and Asher 

1999; Silver and Miller 2004) and myelin-associated neurite growth inhibitors (McGee and 

Strittmatter 2003; Filbin 2003). In combination with the down-regulation of the CNS 

regenerative response (Schwab and Bartholdi 1996; Neumann and Woolf 1999), and the 

lack of trophic factor support (Widenfalk et al., 2001; Jones et al., 2001) it is not a surprise 

that it is difficult for axons to fully extend past the lesion site without additional assistance. 

For long-distance regeneration to be successful it is thus important to combine the induction 

of the intrinsic growth program with strategies that target extrinsic growth inhibition. Such 

strategies that target extrinsic inhibitors in the glial scar and myelin have been developed in 

the recent years. For example, the removal or neutralization of myelin can improve axonal 

regeneration. When an antibody aimed against neutralizing inhibitory factors like Nogo-A 

(IN-1 antigen) is used, regenerative sprouts and long distance elongation is seen (Schnell 

and Schwab 1990; Brosamle et al., 2000), as well as growth and sprouting of damaged and 

intact fibers (Schnell and Schwab 1990; Liebscher et al., 2005; Freund et al., 2007; Müllner 

et al., 2008; Maier et al., 2009; Gonzenbach et al., 2010). Chondroitinase ABC is a bacterial 

enzyme that is often used in SCI research due to its property to digest extracellular 

chondroitin sulfate proteoglycans (CSPGs) and the perineuronal nets (Carulli et al., 2010). 

Following injury it has been found to enhance axonal regeneration (Zuo et al., 1998; Yick et 

al., 2000; Bradbury et al., 2002) and reactivate plasticity in adult CNS by promoting sprouting 

and an increase in bouton number (Pizzorusso et al., 2002; Wang et al., 2011). In theory, the 

selective initiation of neuronal growth by sustained STAT3 expression is an ideal therapeutic 

complement to strategies that then counteract the growth-inhibitory signals in the inhibitory 

lesion environment that the regenerating axons encounters. In line with this concept we 

could show synergistic effects on axonal outgrowth of central sensory connections when we 

combined STAT3 induction with the neutralization of growth-inhibitory CSPGs (Bareyre et 

al., 2011). Combined treatments that include STAT3 induction may thus be promising 

strategies that might eventually enable successful regeneration of CST axons.
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At least equally important as the initiation of axon regeneration, are the effects of 

sustained STAT3 expression on the remodeling of CST fibers. Our laboratory and other 

groups have previously shown that lesioned CST fibers can spontaneously remodel after 

injury and that the formation of detour circuits using intraspinal relay neurons is a key 

mechanism that mediates recovery of CST function (Bareyre et al., 2004; Courtine et al., 

2008). We can show that sustained STAT3 expression can further increase the number of 

cervical CST collaterals that form after lesion. However increased collateral formation does 

not result in a significant increase of the CST connections to the long propriospinal relay 

neurons. This might indicate that the endogenous growth response of lesioned CST 

projection neurons is sufficient to promote the formation of detour circuits at an “optimal” rate 

and that is not improved further by the presence of additional CST collaterals. In line with 

this assumption, it was previously shown that the application of antibodies directed against 

the growth inhibitor NogoA does not further enhance detour circuit formation (Bareyre et al., 

2004). 

 

 In contrast to lesioned fibers, unlesioned fibers mostly do not remodel after injury. 

Our results now indicate that sustained STAT3 expression can also recruit unlesioned fibers 

to the remodeling process. Through the use of the pyramidotomy model, we were able to 

investigate the effects of STAT3 on unlesioned fibers.  This model is advantageous as it 

allows for a specific unilateral lesion of the CST, interrupting the direct cortical input 

(Thallmair et al., 1998). Pyramidotomy is known to affect voluntary movement of the 

forepaws (Steward et al., 2004; Lacroix et al., 2004), locomotion (Metz et al., 1998; 

Fanardjian et al., 2001), somatosensory sensation (Thallmair et al., 1998), fine-skilled paw 

reaching (Whishaw et al., 1998; Thallmair et al., 1998; Z’Graggen et al., 1998; Weidner et 

al., 2001), and cause asymmetrical limb use (Thallmair et al., 1998; Z’Graggen et al., 1998; 

Starkey et al., 2005). When STAT3 is overexpressed in cortical projection neurons, we found 

that the unlesioned tract sprouted more collaterals and sends these collaterals across the 

midline to the denervated side of the spinal cord, where they were found to contact both 

SPSNs and motorneurons responsible for forelimb movement. Our results thus show that 

after STAT3 overexpression the unlesioned tract can be recruited to the remodeling process 

and compensate for the loss of innervation by forming a new intraspinal circuit (Figure 10) 

that leads to functional recovery assessed electrophysiologically and behaviorally.  

 

It should be noted that sustained STAT3 expression is not the only way to improve 

recovery in the pyramidotomy model. For example, sprouting across the midline from the 
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intact CST can be induced by neurotrophic factors (Zhou and Shine 2003), inhibition of the 

neurite outgrowth inhibitor NOGO (Thallmair et al., 1998; Bareyre et al., 2002; Wiessner et 

al., 2003), and even electrical stimulation (Brus-Ramer et al., 2007). There are also other 

factors that if manipulated can also induce midline sprouting in the pyramidotomy model. Yip 

et al., (2010) demonstrated that overexpression of the protein neuronal calcium sensor1 

(NCS1) promotes midline sprouting and supports functional recovery. Thus, over the recent 

years a number of therapeutic targets and tools have been identified that can, in principle, 

improve axonal remodeling and functional recovery after spinal cord injury. STAT3 is a 

particularly attractive target as it can induce axonal regeneration and remodeling of spared 

fibers and due to its phase specific action it can selectively induce the initiation of axonal 

outgrowth.  

 
Figure 10. The effect of overexpression of STAT3 in layer 5 cortical neurons. (A) Overexpression of 
STAT3 promotes growth and regeneration of lesioned hindlimb corticospinal tract (hCST) fibers 3 weeks 
following a thoracic dorsal hemisection. (B) In the pyramidotomy paradigm, the overexpression of STAT3 
induces compensatory sprouting and remodeling of forelimb CST (fCST) fibers from the unlesioned tract. 
Fibers from the intact fCST tract cross the midline into the denervated side of the cord, where they are 
found to contact both SPSNs and motorneurons responsible for forelimb movement. A new intraspinal 
circuit is formed enabling substantial functional recovery of the forelimb.  (C) Image of pyramidotomy lesion 
performed at the level of the medulla and (D) of a mouse performing the pellet grasping test which 
assesses fine forelimb grasping ability.  Scale bar equals 0.5mm in (C) and 5mm (D).  
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The use of pharmacological inhibitors to manipulate STAT3 expression is not ideal as 

STAT3 signaling is not limited to selective neuronal populations, thereby presenting a risk of 

activating STAT3 action in other cell types. STAT3 signaling plays an essential part in many 

biological processes such as regulating the immune response (Shuai and Liu 2003) and 

astrogliosis (Okada et al., 2006; Herrmann et al., 2008). Additionally, sustained STAT3 

expression can cause uncontrolled cell growth and is linked to diseases such as cancer 

(Turkson and Jove 2000; Silver and Montell 2001; Sano et al., 2005). Therefore the use of 

viral gene therapy to specifically target STAT3 to particular neuronal cell population is a 

more suitable strategy. However with persistent expression the risk of tumor induction 

remains, hence in the long run it will be important to develop strategies to limit the duration 

of STAT3 overexpression. From our investigations, we have seen that through efficient 

genetic delivery of STAT3 to specific neuronal populations it is possible to manipulate axonal 

remodeling and regeneration. In terms of clinical implications, success with gene therapy 

has been seen in leukemia where T-cells were genetically engineered with lentiviruses to 

recognize and destroy leukemia tumor cells (Porter et al., 2011; Kalos et al., 2011). 

Recombinant adeno-associated viral vectors (rAAV) are well characterized in terms of safety 

profiles and are also used for gene therapy and clinical trials for neurodegenerative diseases 

such as Alzheimer's disease and Parkinson (Kaspar et al., 2002; Kaplitt et al., 2007; Lim et 

al., 2010). The vectors ability to infect CNS neurons and provide long term expression of the 

gene of interest without causing an immune response makes them attractive tools (Papale et 

al., 2009; Hutson et al., 2011; McCown 20011). 

 

 

4.3. Outlook and future directions  

The crucial step in the establishment of detour circuits is the formation of contacts 

between cortical projection neurons and intraspinal relay neurons (Bareyre et al., 2005, Lang 

et al., 2012). Newly formed dlCST and mCST collaterals display a complexity suggesting 

they are capable of contacting different population of spinal relay neurons. The spinal cord is 

full of excitatory and inhibitory interneuronal populations that could in principle be targeted by 

the newly formed CST collaterals. From our study (Lang et al., 2012), we observed contacts 

onto PSNs, an excitatory population of interneurons, and then wondered whether the 

targeting of newly sprouted CST collaterals was equal on all interneuronal populations. To 

address this question, we examined whether CST collaterals also formed contacts onto 

glycinergic neurons. To selectively label glycinergic neurons we used the GlyT2-GFP mouse 
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line that expresses enhanced green fluorescent protein (eGFP) in neurons under the Glycine 

Transporter 2 promoter (Zeilhofer et al., 2005). Surprisingly, we found that compared to 

excitatory interneurons such as long and short propriospinal neurons, only a very small 

percentage of GlyT2 interneurons were contacted by newly formed CST collaterals. This 

indicates that not all interneuronal populations are equally targeted by CST collaterals 

(Figure 11).  

 

This raises the question in what are the factors that determine which interneuronal 

populations are contacted by growing CST collaterals. This is an important question as the 

formation of functionally “meaningful” connections is key for functional recovery (Bareyre et 

al., 2004) and the formation of “incorrect” connections can lead to undesired symptoms that 

include neuropathic or phantom pain (Kaufmann and Moser 2000). The fact that 

propriospinal interneurons are preferentially contacted following injury suggests that this 

population of neurons express factors that attract the collaterals. Adhesive and repulsive 

interactions have been shown to guide cell-target recognition (Tessier-Lavigne and 

Goodman 1996; Sanes and Yamagata 1999; Matsuoka et al., 2011).  Understanding the 

molecules at play in guiding these new CST sprouts onto their target will be an important 

future challenge that will help us to better understand and therapeutically enhancing post-

injury circuit formation.  
 

 

Figure 11. Differential targeting of newly formed hCST collaterals following a dorsal thoracic 
hemisection. Newly formed hCST preferentially contact target short and long propriospinal interneurons 
(SPSN and LPSN), while only a small percentage of glycinergic (GlyT2) neurons were found to be 
contacted (insert). 
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The pyramidotomy model in combination with sustained STAT3 expression can now 

provide an experimental approach to address the identity of the molecules that guide newly 

sprouted CST collaterals to their targets. Here, we could show that STAT3 expression 

induces the emergence of CST collaterals from the unlesioned tract both with and without a 

lesion of the contralateral tract. However these newly emerging collaterals crossed the spinal 

midline only if the contralateral side was previously denervated. This indicates that 

denervation induces the expression of molecules that attract the CST collaterals across the 

midline. In order to identify these molecular cues that might be responsible for attracting the 

collaterals across the midline, we plan to perform quantitative gene expression profiling. 

Previous gene chip studies have provided evidence that the molecular composition of the 

denervated spinal cord changes in response to injury (Bareyre et al., 2002; Maier et al., 

2008). The denervated side was found to upregulate factors important for growth, adhesion, 

and synapse formation (Bareyre et al., 2002; Maier et al., 2008). In our current analysis we 

will focus the expression of guidance molecules that are differentially expressed following 

different treatment paradigms. The denervated and innervated sides of the spinal cord of 

mice lesioned at different timepoints and in which CST sprouting was induced by injection of 

rAAV-STAT3 will be analyzed and compared with untreated mice (Figure 12). From the data 

that will be collected we wish to identify candidate guidance molecules that attract fibers 

across the spinal midline. Then the manipulation of genes of interest could be envisaged 

using RNAi and viral gene transfer techniques to respectively knock out or overexpress 

candidate molecules and examine the effects on midline crossing of CST fibers.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Scheme of proposed microarray gene expression protocol to analyze the innervated 
(green) and denervated (red) side of the cord following a pyramidotomy lesion.  rAAV-STAT3-treated 
and untreated mice lesioned at different timepoints will be evaluated. 
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4.4. Conclusions 

Spontaneous remodeling after injury has been illustrated to be an important feature 

that contributes to functional recovery after CNS injuries (Fouad et al., 2001; Bareyre et al., 

2004; Courtine et al., 2008). Incomplete spinal cord injuries are susceptible to such 

remodeling because the cortical, subcortical and some of the local spinal cord circuitry 

remains largely intact and still partially interconnected by unlesioned fibers. In SCI, 

remodeling is characterized by three phases that consists of a growth initiation phase, which 

is then followed by a collateral formation phase, and finally there is a refinement period. In 

the process of anatomical remodeling, new circuits are established through the sprouting of 

axonal branches and dendrites, and reorganization of connections. A better understanding 

of this temporal sequence can help to guide future studies targeting the molecular regulation 

and therapeutic support of axonal remodeling.  

 

Despite the fact that there is spontaneous remodeling, functional impairments still 

persist following CNS injures. Studies have indicated that supporting growth in the CNS is an 

attractive strategy to enhance axonal remodeling (Zhou et al., 2003; Liu et al., 2010; Yip et 

al., 2010). Therefore targeting the initial growth phase is an attractive and direct approach. In 

our studies we have identified that the regenerative-associated transcription factor STAT3 is 

a key phase-specific regulator of the initial phase and is necessary for the initiation of 

regeneration in the PNS (Bareyre et al., 2011). Further investigations revealed that 

sustained activation of STAT3 after CNS injuries not only enhances axonal regeneration, it 

improves axonal growth and remodeling of both lesioned and unlesioned fibers, and 

functional recovery. This approach to enhance axonal remodeling by stimulating growth 

through the direct manipulation of the intrinsic growth program is a promising strategy for the 

future.  Nevertheless, from the published research it can be inferred that a successful 

strategy would be expected to utilize a combination of therapies to overcome both the 

intrinsic and extrinsic barriers. In particular, intrinsic growth induction can be ideally 

combined with already established strategies to neutralize the extrinsic growth-inhibitory 

environment of the lesioned CNS. 

 

 In the future, it is hoped that studies such as ours will lead to better understandings 

of the mechanisms that underlie axonal remodeling after injury and help to devise effective 

therapies to prevent the devastating consequences of spinal injuries. Recent groundbreaking 
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work showed that improving functional recovery after spinal cord injury might not be an 

unrealistic therapeutic goal. In 2011, Harkema et al. (2011) revealed that it is possible for a 

human after spinal cord injury to achieve full weight-bearing standing, take steps on a 

treadmill and regain other key functions. The human subject was a 23 year old man with 

paraplegia from a C7–T1. A 16-electrode device was implanted in his lower back and in 

combination with intensive training the patient was able to walk on a treadmill as long as his 

cord was stimulated. The field of SCI research is continually evolving and over the last few 

years encouraging results have been published and with them bringing hopes to long 

suffering patients.  The range of techniques available that include in vivo imaging, transgenic 

mice, RNAi, electrophysiology, and optogenetics are further advancing the field, making it an 

exciting time for scientific research and enabling us to further investigate, manipulate and 

understand the complicated vast intriguing system that is the CNS network. 
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