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Abstract

This thesis is devoted to the study of coherent storage of quantum information as well as

its potential applications. Quantum memories are crucial to harnessing the potential of

quantum physics for information processing tasks. They are required for almost all quantum

computation proposals. However, despite the large arsenal of theoretical techniques and

proposals dedicated to their implementation, the realization of long-lived quantum memories

remains an elusive task.

Encoding information in quantum states associated to many-body topological phases of

matter and protecting them by means of a static Hamiltonian is one of the leading proposals

to achieve quantum memories. While many genuine and well publicized virtues have been

demonstrated for this approach, equally real limitations were widely disregarded. In the first

two projects of this thesis, we study limitations of passive Hamiltonian protection of quantum

information under two different noise models.

Chapter 2 deals with arbitrary passive Hamiltonian protection for a many body system

under the effect of local depolarizing noise. It is shown that for both constant and time de-

pendent Hamiltonians, the optimal enhancement over the natural single-particle memory time

is logarithmic in the number of particles composing the system. The main argument involves

a monotonic increase of entropy against which a Hamiltonian can provide little protection.

Chapter 3 considers the recoverability of quantum information when it is encoded in a

many-body state and evolved under a Hamiltonian composed of known geometrically local

interactions and a weak yet unknown Hamiltonian perturbation. We obtain some

generic criteria which must be fulfilled by the encoding of information. For specific proposals

of protecting Hamiltonian and encodings such as Kitaev’s toric code and a subsystem code

proposed by Bacon, we additionally provide example perturbations capable of destroying the

memory which imply upper bounds for the provable memory times.
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Chapter 4 proposes engineered dissipation as a natural solution for continuously ex-

tracting the entropy introduced by noise and keeping the accumulation of errors under control.

Persuasive evidence is provided supporting that engineered dissipation is capable of preserv-

ing quantum degrees of freedom from all previously considered noise models. Furthermore, it

is argued that it provides additional flexibility over Hamiltonian thermalization models and

constitutes a promising approach to quantum memories.

Chapter 5 introduces a particular experimental realization of coherent storage, shifting

the focus in many regards with respect to previous chapters. First of all, the system is very

concrete, a room-temperature nitrogen-vacancy centre in diamond, which is subject

to actual experimental control and noise restrictions which must be adequately modelled.

Second, the relevant degrees of freedom reduce to a single electronic spin and a carbon 13 spin

used to store a qubit. Finally, the approach taken to battle decoherence consists of inducing

motional narrowing and applying dynamical decoupling pulse sequences, and is tailored to

address the systems dominant noise sources.

Chapter 6 analyses unforgeable tokens as a potential application of these room-temperature

qubit memories. Quantum information protocols based on Wiesner’s quantum money scheme

are proposed and analysed. We provide the first rigorous proof that such unentangled tokens

may be resistant to counterfeiting attempts while tolerating a certain amount of noise.

In summary, this thesis provides contributions to quantum memories in four different as-

pects. Two projects were dedicated to understanding and exposing the limitations of existing

proposals. This is followed by a constructive proposal of a new counter-intuitive theoretical

model for quantum memories. An applied experimental project achieves record coherent stor-

age times in room-temperature solids. Finally, we provide rigorous analysis for a quantum

information application of quantum memories. This completes a broad picture of quantum

memories which integrates different perspectives, from theoretical critique and constructive

proposal, to technological application going through a down-to-earth experimental implemen-

tation.



Zusammenfassung

Diese Arbeit widmet sich der kohärenten Speicherung von Quanteninformation, sowie ihren

potenziellen Anwendungen. Quantenspeicher sind wesentlich, wenn es darum geht das Po-

tential der Quantenmechanik für Aufgaben der Informationsverarbeitung zu nutzen. Sie sind

Voraussetzung in nahezu allen Vorschlägen zur Realisierung von Quantencomputern. Trotz

der Fülle an theoretischen Methoden und Vorschlägen zu ihrer experimentellen Implemen-

tierung, steht die Realisierung eines langlebigen Quantenspeichers bis heute aus.

Einer der vielversprechendsten Ansätze zur Implementierung von Quantenspeichern ist

es, Information in Quantenzuständen, die zu topologischen Phasen in Vielteilchensystemen

gehören und durch einen statischen Hamiltonoperator geschützt werden, zu codieren. Während

auf der einen Seite die Vorzüge dieses Ansatzes viel Beachtung gefunden haben und in zahlre-

ichen Arbeiten diskutiert wurden, hat man auf der anderen Seite viele ebenso wichtige

Einschränkungen bislang weitgehend ignoriert. In den ersten beiden Projekten dieser Ar-

beit untersuchen wir Schwierigkeiten, die bei dem Versuch Quanteninformation passiv durch

Hamiltonoperatoren zu schützen, auftreten. Hierbei konzentrieren wir uns auf zwei unter-

schiedliche Modelle zur Beschreibung der äusseren Störeinflüsse.

Kapitel zwei befasst sich mit den Möglichkeiten ein System, das lokalem depolarisieren-

den Rauschen ausgesetzt ist, durch beliebige Hamiltonoperatoren passiv zu schützen. Wir

zeigen, dass sich die optimale Erhöhung der Speicherzeit im Vergleich zu Einteilchenspeich-

ern sowohl für konstante als auch zeitabhängige Hamiltonoperatoren logarithmisch zu der

Teilchenzahl, aus denen das System besteht, verhält. Die Hauptursache für dieses Verhalten

liegt in dem monotonen Anstieg der Entropie.

In Kapitel drei betrachten wir Systeme die einer Zeitentwicklung durch Hamiltonop-

eratoren, die durch bekannte lokale Wechselwirkungen und eine beliebige hamiltonsche

Störung beschrieben werden, ausgesetzt sind. Wir leiten allgemeine Kriterien, die von der
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codierten Information erfüllt werden müssen, her. Für spezifische Hamiltonoperatoren und

Codierungen, wie Kitaevs torischen Code und Bacons 3D Kompas Code, beschreiben wir

Beispiele von Störungen, die dazu in der Lage sind den Speicher zu zerstören. Dies impliziert

eine obere Beschränkung für Speicherzeiten, die bewiesen werden können.

In Kapitel vier stellen wir ein Konzept vor, mit welchem Entropie, die dem System durch

Rauschen zugeführt wurde, durch manipulierbare Dissipation kontinuierlich extrahiert wer-

den kann. Gleichzeitig wird dabei die Akkumulation von Fehlern unter Kontrolle gehalten.

Wir zeigen, dass manipulierbare Dissipation die Quanteneigenschaften von all den von uns

betrachteten Modellen für Rauschen erhält.

In Kapitel fünf betrachten wir eine konkrete Realisierung von kohärentem Speichern.

Hier geht es um eine konkrete physikalische Anwendung in einem NV-Zentrum, in der ex-

perimentelle Kontrollmöglichkeiten und realistische Bedingungen für das Rauschen in Be-

tracht gezogen und adäquat modelliert werden müssen. Der Bewegungsfreiheitsgrad ist in

diesem System auf nur einen Elektronenspin und einen Kohlenstoff-13 Kernspin beschränkt.

Das Konzept, das wir hier zur Bekämpfung von Dekohärenz vorschlagen, besteht aus Bewe-

gungsmittelung und dynamischen Entkopplungs-Pulssequenzen und ist auf das System und

seine vornehmlichen Quellen für Rauschen optimiert.

Solch ein Quantenspeicher für Quantenbits in NV-Zentren, der bei Raumtemperatur funk-

tionsfähig ist, stellt unsere Motivation für Kapitel sechs dar. Dort stellen wir Konzepte vor,

welche die Realisierung fälschungssicherer Sicherheitslösungen mit derartigen Quantenbits er-

lauben. Basierend auf Wiesners Quantengeld-Schema entwickeln wir neue Quanteninformations-

Protokolle. Wir stellen hier den ersten rigorosen Beweis vor, dass derartige unverschränkte

Sicherheitslösungen gegen Fälschungsversuche sicher wären und außerdem eine bestimmte

Menge an Rauschen tolerieren könnten.

Zusammenfassend liefert diese Doktorarbeit einen Beitrag zu Quantenspeichern aus vier

verschiedenen Perspektiven. Zwei Projekte sind dem Verständnis und den Limitierungen von

bestehenden Konzepten gewidmet. Dann stellen wir ein neuartiges, kontraintuitives, theo-

retisches Konzept zur Realisierung eines Quantenspeichers vor. In Kollaboration mit einer

experimentellen Arbeit ist der Rekord von kohärenten Speicherzeiten bei Raumtemperatur

gebrochen worden. Außerdem stellen wir eine rigorose Beschreibung von Quanteninforma-

tionsanwendungen für Quantenspeicher vor.
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Chapter 1

Introduction

Quantum mechanics is the well established physical theory describing the world below the

Planck scale. With the advent of integrated circuits and Moore’s law [92] predicting a doubling

in their transistor density every two years, it soon became clear that it would eventually

become necessary to seriously take quantum effects into account. In this context, some ideas

of quantum computing and quantum information unavoidably began to emerge in the 1970’

and early 1980’ in the minds of physicists and computer scientists such as Charles H. Bennett,

Paul A. Benioff, David Deutsch and Richard P. Feynman [17, 15, 40, 33]. It was time to move

on from the models of billiard ball computing and embrace the era of quantum information.

While it became clear early on [33] that a quantum computer would be at least as pow-

erful as a classical one, expected advantages of a quantum computer were apparently limited

to simulating quantum-mechanical systems [40] in addition to solving a few relatively con-

trived mathematical problems. There was also no pressing urge from the microelectronics

industry to better understand the workings of quantum information. This all changed with

the break-through result of Peter Shor [112], who in 1994 proposed an algorithm by which

a quantum computer could factor large numbers in a time exponentially faster than most

practical classical algorithms. If implemented, Shors algorithm could be used to crack main-

stream cryptographic codes such as RSA [107] for which the difficulty of factoring is essential.

Since then, quantum computation has received a huge amount of attention, not only from

the scientific community, but from the whole world.

Ironically, in their seminal work of 1984, Charles Bennett and Gilles Brassard [16] had

already proposed a quantum key distribution scheme, which could potentially substitute RSA
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allowing for cryptographically secure private communication even in a world with quantum

computers. However, contrary to popular belief, this was not the first cryptographic protocol

relying on the quantum nature of information. Stephen Wiesner[129], had been ahead of

his time in proposing the use of bank notes which were impossible to duplicate due to the

quantum character of the state defining them, a topic which we will get back to in the last

chapter of this thesis.

As illustrated, quantum computing and quantum information are both of technological

and fundamental appeal. This brings us to the topic of this thesis, quantum memories, which

are expected to play a central role in the implementation of quantum information technologies.

They are required to perform entanglement swapping and are thus crucial for long-distance

quantum key distribution. They are necessary in almost all models of quantum computation,

where it is ubiquitous to have data wait. Finally, the quality of a quantum memory constitutes

a benchmark for the degree of coherent quantum control achievable within a system and may

be used to compare different technologies.

This thesis is devoted to the understanding and design of quantum memories and their

applications. We present the five projects in the subsequent chapters with these general goals

in mind. The first two (chapters 2 and 3) explore existing proposals for many-body quan-

tum memories exposing their limitations and understanding their virtues. The following two

(chapters 4 and 5) propose implementations of quantum memories, first paying attention to

scaling in an abstract many-body context and later concentrating on a concrete experimental

quantum optics setting, namely Nitrogen-vacancy centers. Inspired by record coherence times,

in the chapter 6, we propose an application consisting of tokens impossible to counterfeit.

The main contributions of this thesis are to the field of many-body quantum memories

(chapters 2 , 3 and 4). In order to better understand these contributions, it is convenient to set

the context in terms of pre-existing developments such as fault-tolerant quantum computation

[47] and topological quantum memory [73, 32, 74].

The theory of fault-tolerant quantum computation [47] proves that it is possible to sim-

ulate an ideal circuit model quantum computer using only imperfect (yet sufficiently good)

single and two qubit gates, initialization of ancillary qubits and measurements. Quantum

memories may be seen as representing the most trivial computation, the identity. In particu-

lar, one should be able to compute the identity function within universal models of quantum
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computation such as the fault tolerant circuit model. In practice however, the experimental

requirements imposed by fault tolerant quantum computation have up to now proven pro-

hibitively difficult to achieve. This has motivated ongoing research to find alternative routes

to both quantum computing and quantum memory.

Topological quantum computing and quantum memory, a revolutionary idea introduced

by Kitaev in 1997 [73, 32, 74], promises to attain fault-tolerance by means of an alternate

route, more akin to physics than to circuit engineering. At the core of this approach is the

independence of an anyonic quasi-particle picture from specific microscopic details of the

defining Hamiltonian. During the time of this thesis and the period preceding it many of the

claims pertaining to these proposals have been rigorously proven, and some of the folklore

that has arisen from it has been dissipated. The contributions of chapter 2 and 3 have been

partly responsible for this.

The toric code [74] is the most simple and hence the most widely popularized representative

for the topological approach to fault tolerance. It is associated to two related, yet distinct,

concepts both involving physical qubits placed on the edges of a 2d lattice on a torus. First,

the toric code refers to a stabilizer quantum error correcting code accommodating two

logical qubits. As such, it enjoys desirable properties such as

• Geometrically local check operators: Only quantum measurements involving groups

of four nearest neighbour qubits are needed in order to diagnose physical errors.

• Large code distance: The minimal number of single qubits that must be acted upon

in order to go from one logical state to an orthogonal one is proportional to the perimeter

of the torus. 1

• High error threshold: The code is capable of correcting random flip and phase errors

on up to ≈11% of the qubits in the limit of large torus.

Second, the toric-code Hamiltonian is obtained from interpreting the Hermitian stabilizer

operators as local Hamiltonian terms acting on groups of two-level systems. The resulting

Hamiltonian enjoys the following properties:

• Geometrically local interaction: Geometrically local terms in the Hamiltonian can

be associated to geometry local effective interactions.

1By perimeter, we mean the minimal number of edges to non-trivially wind around the torus.
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• Degenerate ground state: Information can be thought of as being accommodated in

a 4-fold degenerate ground space.2

• Robust degeneracy: For a weak geometrically local yet extensive perturbation, the

degeneracy of the ground space is approximately preserved.

• Energy gap: An energy gap suggests that excitations out of the ground space could

be thermally suppressed.

These two related notions of toric code have regretfully led to some confusion among part

of the quantum information community. The wide-spread belief that implementing a toric

code Hamiltonian would guarantee a quantum memory to be protected against any form

of local noise is a paragon example of such misconception. Results provided in this thesis

have been crucial in rigorously elucidating limitations of Hamiltonian protection models and

proposing alternatives to overcome them.

In particular, chapter 2 provides a definite proof that no Hamiltonian may by itself provide

significant protection against depolarizing noise. We consider a system which is subject

to both a unitary evolution generated by a Hamiltonian and the dissipative effect of local

depolarizing noise over the constituent particles. The motivation behind choosing a local

depolarizing noise model can be traced to infrequent yet highly energetic interactions capable

of randomizing the state of single components. For this noise model the approach towards a

maximally mixed steady state may not be postponed by a Hamiltonian. Entropy accumulates

at an unavoidable rate, and all that can be achieved by a Hamiltonian is to transfer it into

irrelevant degrees of freedom. We show that the optimal protection afforded by a constant

Hamiltonian only marginally increases the lifetime of quantum information from constant to

logarithmic in the number of system constituents.

Along similar lines, chapter 3 studies the degree of protection that may be afforded by

a protecting Hamiltonian against Hamiltonian perturbations and perturbative coupling to

an environment. Contrasting with the previous chapter, possible evolutions are unitary yet

our ignorance of the specific perturbation applied and/or entanglement with the environment

lead to effective loss of information. We show that an encoding through an error correcting

2The degeneracy of the ground space only depends on the genus of the surface represented by the lattice,

hence the name topological.
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code with a finite error threshold is a necessary condition for information to withstand such

perturbed evolutions. This justifies the assumption of an initial encoding and final decod-

ing of information before and after the free evolution of a many body system. We go on to

describe adversely chosen Hamiltonian perturbations which are capable of destroying infor-

mation “protected” by the toric code Hamiltonian even if the final state is decoded using the

underlying error correcting code. Finally, we show that either time dependent perturbations

or weak coupling to an energetic environment are sufficient to erase information from a large

class of protecting Hamiltonians and codes.

In chapter 4 we propose engineered dissipation as an alternative capable of protecting

quantum information against a wider variety of noise. In the spirit of protecting Hamilto-

nians, we consider the engineering of a constant Liouvillian to protect encoded information.

The hope, is that by imposing a constant dynamics one may sidestep the requirement of fast

time dependent external control. The advantage with respect to protecting Hamiltonians is

that Liouvillians are capable of extracting entropy from the system. We provide numerical

and analytical evidence that such dissipative protection can protect information against depo-

larizing noise. However, the challenge of simplifying the required Liouvillians to forms which

are also geometrically local and experimentally realistic remains open.

The first chapters of this thesis (2, 3 and4) study protecting Hamiltonians and dissipative

dynamics focusing on the thermodynamic limit for the number of particles used to encode

quantum information. In contrast, chapter 5 considers the opposite extreme, where quantum

information is stored in a single 13C nuclear spin. The system of choice is the Nitrogen-

Vacancy (NV) center, whose physics is similar to that of an isolated atom. Here attention

is directed at identifying leading decoherence sources and using available control to suppress

them to the highest degree achievable. As a result of the simultaneous combination of mul-

tiple decoupling techniques it was possible to achieve an experimental spin coherence time

of approximately two seconds, a time unprecedented among room temperature solid state

qubits.

In the case of these qubit memories one of the implicit requirements for quantum compu-

tation may actually be missing. Indeed, the approach taken and the chosen parameter regime

do not allow the coherent transfer of the stored qubit into another quantum system, i.e. the

memory system can become classically correlated during measurement but not entangled.
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This excludes the possibility of performing general quantum computation or implementing

entanglement-based protocols. A naturally arising question is how such a qubit with long

coherence can be applied. While magnetometry is likely to be the most immediate techno-

logical application, it turns out that the initialization, coherent storage and measurement of

single quantum bits is also sufficient for certain protocols which we will discuss.

Among the protocols realizable with prepare and measure qubits, is the original proposal

of Wiesner [129], which exploits the impossibility of cloning quantum information to devise

money tokens which are immune to forgery. In Wiesner’s scheme, a quantum bank-note con-

sists of a large number of qubits, each prepared in a secret pure state only known to the issuing

bank. In contrast to classical objects, the destructive nature of quantum measurements for-

bids the reproduction of the quantum-banknotes even by the holder of a perfect specimen.

Recently, extensions to Wiesner’s original “quantum money” protocol have attracted signifi-

cant attention, mainly focussing on resolving the pending issue of making the money tokens

publicly verifiable [1, 86, 94, 38, 39, 85]. One particular extension resolves the issue of public

authentication of quantum tokens by requiring a classical public communication channel with

the bank[44].

Under assumptions of ideal measurements and decoherence-free memories such security

can be quantitatively guaranteed by providing a bound on the success probability of any

counterfeiting attempt which is exponentially small in the number of qubits employed. These

results are a relatively straightforward generalization of optimal cloning[128] to pure product

states. However, in any practical situation, noise, decoherence and operational imperfections

abound. Furthermore, in non-scalable qubit memories such as for the 13C nuclear spins in

NV-centers, there is no single system parameter with which the storage fidelity can be made

to systematically converge to 1. These reasons motivate the development of secure “quantum

money”-type primitives capable of tolerating realistic infidelities, which is the main original

contribution presented in chapter 6.

In order to tolerate noise, the verification of quantum tokens must condone a certain finite

fraction of qubit failures; naturally, such a relaxation of the verification process enhances the

ability for a dishonest user to forge quantum tokens. While the definition of such a protocol

adapted to tolerate noise is straightforward, providing proofs for the security of such protocols

under counterfeiting attacks is significantly more involved. We provide such rigorous proofs
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and determining tight fidelity thresholds under which the security of the protocol can be

guaranteed. This is done for a natural relaxation of Wiesner’s original protocol [129] as well

as for a simplified version of Gavinsky’s protocol [44] which allows for public verification

provided a classical communication channel with the issuing bank.

This last project provides a suitable closure to this thesis. It demonstrates that new

quantum information applications will become available as soon as we achieve long time

coherent storage. It thus provides additional motivation to the work of previous chapters and

further reserach along those lines.
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Chapter 2

Hamiltonian memory model under

depolarizing noise

In this chapter, we investigate the possibilities and limitations of passive Hamil-

tonian protection of a quantum memory against depolarizing noise. Without

protection, the lifetime of an encoded qubit is independent of N , the number of

qubits composing the memory. In the presence of a protecting Hamiltonian, this

lifetime can increases at most logarithmically with N . We construct an explicit

time-independent Hamiltonian which saturates this bound, exploiting the noise

itself to achieve protection.

2.1 Introduction

A cornerstone for most applications in quantum information processing is the ability to re-

liably store qubits, protecting them from the adversarial effects of the environment. Quan-

tum Error Correcting Codes (QECC) achieve this task by encoding information in such a

way that regular measurements allow for the detection, and subsequent correction, of errors

[111, 3, 47, 48]. An alternative approach uses so-called protecting Hamiltonians [74, 11], which

permanently act on the quantum memory and immunize it against small perturbations. Pre-

sumably, its most attractive feature is that, in contrast to QECC, it does not require any

regular intervention on the quantum memory, encoding and decoding operations are only

performed at the time of storing and retrieving the information. Whereas this approach may
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tolerate certain types of perturbation [32, 9], it is not clear if it is suitable in the presence of

depolarizing noise, something which QECC can deal with.

We give a complete answer to this question. More specifically, we consider the situation

where a logical qubit is encoded in a set of N physical qubits and allowed to evolve in the

presence of depolarizing noise and a protecting Hamiltonian. The goal is to find the strategy

delivering the longest lifetime, τ , after which we can apply a decoding operation and reliably

retrieve the original state of the qubit. By adapting ideas taken from [4], it is established that

the lifetime cannot exceed logN . An analysis of the case in which no protecting Hamiltonian is

used presents markedly different behaviour depending on whether we intend to store classical

or quantum information. Finally, we construct a static protecting Hamiltonian that saturates

the upper bound τ ∼ O(logN). To this end, we first show how to achieve this bound using

a time–dependent Hamiltonian protection which emulates QECC. We then introduce a clock

gadget which exploits the noise to measure time (similar to radiocarbon dating) thus allowing

us to simulate the previous time dependent protection without explicit reference to time.

We consider a system of N qubits, each of which is independently subject to depolarizing

noise at a rate r. The total state evolves as

ρ̇(t) = −i[H(t), ρ(t)]− r
[
Nρ(t)−

N∑
n=1

trn(ρ(t))⊗ 1n
2

]
, (2.1)

where the sub-index n in the identity indicates the position it should take in the tensor

product. Note that the defined dynamics is Liouvilian and may also be explicitly expressed

in terms of Lindblad operators as

ρ̇(t) = L(t)ρ(t) = −i[H(t), ρ(t)] + r/4

 N∑
n=1

∑
L∈{σ(n)

x ,σ
(n)
y ,σ

(n)
z }

Lρ(t)L† − 1

2

{
L†L, ρ

}
+

 , (2.2)

where {σx, σy, σz} are the Pauli matrices and the supra-index (n) indicates in which of the

physical qubit they act on.

We shall allow for an arbitrary encoding of the initial state as well as a final decoding

procedure to recover the information. In this sense, the relevant memory channel will be

defined defined as

Λt = Dect ◦ eLt ◦ Enc (2.3)

where Enc and Dect are arbitrary encoding and decoding operations from/into a two level

system. A standard benchmark for the quality of a quantum memory will be the average
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channel fidelity [98] given by

F (Λt) =

∫
dψ 〈ψ|Λt(|ψ〉 〈ψ|) |ψ〉 , (2.4)

where the average is taken respect to the unitary invariant Haar measure over pure qubit

states.

2.2 Protection limitations

Using purely Hamiltonian protection, a survival time of τ ∼ O(logN) is the maximum achiev-

able. Intuitively, this is due to the fact that the depolarizing noise adds entropy to the system,

while any reversible unitary operation (i.e., Hamiltonian evolution) will never be able to re-

move this entropy from the system. Rather, in the best case, it can concentrate all the entropy

in a subsystem, keeping the remaining part as pure as possible. This entropic argument was

first presented in [4], where the authors investigated the power of reversible computation

(both classical and quantum) subject to noise in the absence of fresh ancillas. To this end,

they considered the information content I(ρ) = N − S(ρ) of the system, with N the number

of qubits and S(ρ) = − tr(ρ log2 ρ) the von Neumann entropy. The information content upper

bounds the number of classical bits extractable from ρ, and thus ultimately also the number

of qubits stored in ρ.

While the original statement about the decrease of I(ρ) is for discrete-time evolution, it

can be straightforwardly generalized to the continuous time setting of Eq. (2.1), where it

states that
dI(ρ)

dt
≤ −rI(ρ) (2.5)

In order to prove 2.5 we consider the channel described by eL∆t in the limit of small ∆t and

perform a Trotter decomposition which splits the Hamiltonian and dissipative terms of the

Liouvillian. The Hamiltonian term is seen to preserve the entropy and hence the information

content of any state whereas according to [4], the depolarizing term can be seen to increase

the entropy by at least (1 − e−r∆t)I(ρ) ≈ r∆tI(ρ). We may then integrate inequality 2.5

to bound I(ρ(t)) ≤ e−rtI(ρ(0)) ≤ e−rtN which implies that the information content of the

system is smaller than ε bits after a time lnN/ε
r . Finally, having the information content of

all evolved states be smaller than one implies severe bounds on the average fidelity F , even

when allowing for a final decoding step.



12 2. Hamiltonian memory model under depolarizing noise

Having established an upper bound for the scaling of τ with N , let us analyze whether

this bound can be reached under different circumstances. We start out with the simplest case

where we use no Hamiltonian protection (i.e., H = 0) and show that τ is independent of N ;

that is, no quantum memory effect can be achieved. For that, we note that the effect of Eq.

(2.1) on each physical qubit may be expressed in terms of a depolarizing channel

Et(ρ) = λ(t)ρ+ (1− λ(t))
1

2

where λ(t) = e−rt. For t ≥ tcl, where λ(tcl) = 1
3 , the resulting channel is entanglement

breaking [59]. This remains true if one incorporates encoding and decoding steps on the

full system. This is, the map Dec ◦ E⊗Nt ◦ Enc which incorporates encoding and decoding

from/into a two level system remains entanglement breaking with respect to any other system.

According to [59], the average fidelity [98] for any entanglement breaking channels is upper-

bounded by 2/3. Thus, we may say that the lifetime τ is smaller than tcl = ln 3/r, which is

independent of N .

The previous argument does not apply to classical information, for which an optimal

storage time logarithmic in N may be achieved. The classical version of Eq. 2.1, taking

H(t) ≡ 0, is a system of N classical bits subject to bit flipping noise (each bit is flipped at a

rate r/2). In this case, encoding in a repetition code, and decoding via majority voting, yields

an asymptotically optimal information survival time O(logN). Using optimal estimation [89]

and this classical protocol in the encoding phase, the bound 2/3 for the average channel fidelity

may be asymptotically reached. An intuitive way to see this is to consider an encoding which

produces N copies of a single observable (say σz) from the original qubit. This observable

may be restored as reliably as a classical memory whereas complementary observables (say

σy and σx) are effectively guessed leading to an average fidelity of 2/3.

2.3 Time dependent protection

We will now use the ideas of QECC to build a simple circuit based model that reaches

the upper bound on the protection time. This model assumes that unitary operations can

be performed instantaneously, which is equivalent to having a time–dependent protecting

Hamiltonian with unbounded strength; we will show how to remove both requirements later

on. Instead of using a repetition code, we encode the qubit to be protected in an l level
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Figure 2.1: Decoding a nested QECC. The “discarded” qubits carry most of the entropy

and are not used further.

concatenated QECC [3, 47, 48] (i.e., l levels of the QECC nested into each other), which

requires N = dl qubits, where d is the number of qubits used by the code. Each level of the

QECC can provide protection for a constant time tprot < tcl, and thus, after tprot one layer

of decoding needs to be executed. Each decoding consists of a unitary Udec on each d-tuple

of qubits in the current encoding level; after the decoding, only one of each of the d qubits is

used further (Fig. 2.1). The total time that such a concatenated QECC can protect a qubit

is given by tprotl = tprot logdN ∼ O(logN), as in the classical case.

2.4 Time-independent protection

In the following, we show that the same logN protection time which we can achieve using a

time-dependent protection circuit can also be obtained from a time-independent protecting

Hamiltonian. The basic idea of our construction is to simulate the time-dependent Hamil-

tonian presented before with a time independent one. To this end, a clock is built which

serves as control. The time-independent version performs the decoding gates conditioned on

the time estimate provided by the clock. In order to obtain a clock from (2.1) with a time-

independent H, we will make use of the noise acting on the system: we add a number, K, of

“clock qubits” which we initialize to |1〉⊗K and let the depolarizing noise act on them. The

behavior of the clock qubits is thus purely classical; they act as K classical bits initialized to

1 which are being flipped at a rate r/2. Thus, the polarization k, defined by the number of

“1” bits minus the number of “0” bits has an average expected value of k̄(t) = Ke−rt at time
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t. Conversely, this provides the time estimate

t̃(k) = min

(
ln(K/k)

r
, tmax

)
. (2.6)

Particular realizations of this random process of bit flips can be described by a polarization

trajectory k(t). Good trajectories are defined to be those such that

|k(t)− k̄(t)| < K1/2+ε (2.7)

for all 0 ≤ t ≤ tmax. For appropriate parameters tmax and 0 < ε < 1
2 , the following theorem

states that almost all trajectories are good and can provide accurate time estimates.

Theorem 2.4.1 (Depolarizing clock) For K ≥ 16, good trajectories have a probability

P [k(t) good traj.] ≥ 1−Krtmax + exp[−3K2ε/8]

exp[K2ε/8]
. (2.8)

Furthermore, for any good trajectory k(t), the time estimate t̃ returned by the clock will differ

from the real time t by at most

δ

2
:=

1

rK1/2−ε e
rtmax ≥ |t̃(k(t))− t| . (2.9)

Note that the theorem does not simply state that any time evolution will be outside (2.7)

for an exponentially small amount of time (which is easier to prove), but that there is only

an exponentially small number of cases in which (2.7) is violated at all. Although the former

statement would in principle suffice to use the clock in our construction, the stronger version

of the theorem makes the application of the clock, and in particular the error analysis, more

transparent and will hopefully lead to further applications of the clock gadget.

Proof. To prove the theorem, note that each of the bits undergoes an independent exponential

decay, so that the total polarization is the sum of K identical independent random variables.

We can thus use Hoeffding’s inequality [58] to bound the probability of finding a polarization

far from the expected average value k̄(t),

Pr
[
|k(t)− k̄(t)| ≥ K1/2+ε

]
≤ 2e−

K2ε

2 . (2.10)

This already implies that most of the trajectories violate (2.7) for no more than an ex-

ponentially small amount of time. To see why (2.10) implies that most trajectories are good

trajectories, we bound the average number of times a trajectory leaves the region (2.7) of
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Figure 2.2: A step-like trajectory in green illustrates the two ways of leaving region (2.7) of

good trajectories (dashed lines): either a spin flip can take the polarization out of the marked

region (thick blue), or polarization may leave region (2.7) as time passes without a spin flip

(red dots).

good trajectories. Since a non-good trajectory must leave (2.7) at least once, it is also an

upper bound on the probability of non-good trajectories. Hence, it suffices to consider the

average rate R(t) at which processes leave (2.7), and integrate over t to obtain a bound on

the probability of trajectories which are not good.

The rate at which a process leaves the set of good trajectories has two sources, as illustrated

in Fig. 2.2: First, the system can undergo a spin flip, thus leaving the region defined by (2.7)

vertically (rate Rv), and second, it can leave it horizontally if the time t passes the maximum

time allowed by (2.7) for the current value k(t) of the polarization (rate Rh). A vertical leave

can occur only if |k(t)− k̄(t)| ≥ K1/2+ε−2 ≥ K1/2+ε/2, provided K ≥ 16 (a spin flip changes

k(t) by ±2). Eqn. (2.10) thus gives an average bound

Rv(t) ≤ Kre−K
2ε/8 .

A horizontal leave can only occur at discrete times extremizing (2.7),

t ∈ T = {t : k̄(t) +K1/2+ε ∈ N} ,
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and the probability of a trajectory fulfilling k(t) = k̄(t)+K1/2+ε may again be bounded using

(2.10), such that

Rh(t) ≤ 2e−K
2ε/2

∑
τ∈T

δ(t− τ) .

The inequality (2.8) follows immediately by integrating Rh(t) +Rv(t) from 0 to tmax.

Assuming that k(t) corresponds to a good trajectory, the accuracy of the time estimate

(2.6) may be bounded by applying the mean value theorem to k̄:

|t̃(k(t))− t| = |k̄(t̃(k(t)))− k̄(t)|
|k̄′(tinterm)| ≤ Kε

r
√
K
ertmax .

2.4.1 Clock dependent Hamiltonian

Let us now show how the decoding circuit can be implemented using the clock gadget. The

circuit under consideration consists of the decoding unitaries U l,kdec (decoding the k’th encoded

qubit in level l, acting on d qubits each); after a time interval tprot (the time one level of the

code can protect the qubit sufficiently well), we perform all unitaries U l,kdec at the current level

l—note that they act on distinct qubits and thus commute. Each of these unitaries can be

realized by applying a d-qubit Hamiltonian H l,k
dec for a time t = tdec. Thus, we have to switch

on all the H l,·
dec for t ∈ [tl, tl + tdec], where tl = l tprot + (l − 1)tdec.

In order to control the Hamiltonian from the noisy clock, we define clock times kl,on =

bk̄(tl)c and kl,off = dk̄(tl + tdec)e, and introduce a time-independent Hamiltonian which turns

on the decoding Hamiltonian for level l between k ∈ [kl,on, kl,off ],

H =
∑
l

(
H l,1

dec + · · ·+H l,dL−l

dec

)
⊗Πl . (2.11)

The left part of the tensor product acts on the N code qubits, the right part on the K clock

(qu)bits, and

Πl =

kl,off∑
k=kl,on

∑
wx=(k+N)/2

|x〉 〈x| ,

where x is an N -bit string with Hamming weight wx. The initial state of the system is, as

for the circuit construction, the product of the encoded qubit in an l-level concatenated code

and the maximally polarized state |1〉⊗K on the clock gadget.
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2.4.2 Error analysis

We now perform the error analysis for the protecting Hamiltonian (2.11). In order to protect

the quantum information, we will require that the error probability per qubit in use is bounded

by the same threshold p∗ after each decoding step is completed (i.e. at t = tl + tdec + δ
2). We

will restrict to the space of good trajectories, since we know from the clock theorem that this

accounts for all but an exponentially small fraction, which can be incorporated into the final

error probability.

We will choose K large enough to ensure that the error δ
2 ≥ |t̃ − t| in the clock time

satisfies δ � tprot, tdec. In this way, we ensure that the decoding operations are performed in

the right order 1 and with sufficient precision. We may thus account for the following error

sources between tl + tdec + δ/2 and tl+1 + tdec + δ/2:

i) Inherited errors from the previous rounds which could not be corrected for. By assump-

tion, these errors are bounded by pinher ≤ p∗.
ii) Errors from the depolarizing noise during the free evolution of the system. The system

is sure to evolve freely for a time tprot − δ, i.e., the noise per qubit is bounded by pevol ≤
1− exp[−r(tprot − δ)] ≤ r(tprot − δ).

iii) Errors during the decoding. These errors affect the decoded rather than the encoded

system and stem from two sources: On the one hand, the time the Hamiltonian is active has

an uncertainty tdec ± δ, which gives an error in the implemented unitary of not more than

exp[δ‖Hk,l
dec‖] − 1. On the other hand, depolarizing noise can act during the decoding for at

most a time tdec + δ. In the worst case, noise on any of the code qubits during decoding

will destroy the decoded qubit, giving an error bound d(1− exp[−r(tdec + δ)]) ≤ dr(tdec + δ).

Thus, the error on the decoded qubit is

pdec ≤ exp[‖Hk,l
dec‖δ]− 1 + dr(tdec + δ) .

Since the noise is Markovian (i.e. memoryless), the clock does not correlate its errors in time.

In summary, the error after one round of decoding is at most B(pinher + pevol) + pdec, which

we require to be bounded by p∗ again. Here, B(p) is a property of the code, and returns the

error probability of the decoded qubit, given a probability p of error on each of the original

qubits; for example, for the 5-qubit perfect QECC [80], B(p) ≤ 10p2.

1The noisy clock has the potential to run backwards in time within its accuracy.
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We will now show that it is possible to fulfil the required conditions by appropriately

defining the control parameters. First, we choose p∗ ≤ 1/40 to have the QECC [80] work well

below threshold. We may take tprot := p∗

r and tdec := p∗

4dr . To minimize imprecision in the

implemented unitaries, the decoding Hamiltonians are chosen of minimal possible strength,

‖Hk,l
dec‖ ≤ 2π

tdec
. Finally we take δ := p∗tdec

8π . Inserting the proposed values in the derived

bounds, it is straightforward to show that B(pinher + pevol) + pdec < p∗.

The number of code qubits required is N := dl, with l := d τ
tprot+tdec

e. The required clock

lifetime tmax = τ and precision δ are guaranteed by taking ε = 1/6 and K := (2erτ

rδ )3 in the

clock theorem. For any fixed r and p∗, this allows a lifetime τ ∼ O(log(N +K)).

2.5 Conclusions

In this chapter, we have considered the ability of a Hamiltonian to protect quantum in-

formation from depolarizing noise. While without a Hamiltonian, quantum information is

destroyed in constant time, the presence of time-dependent control can provide protection for

logarithmic time, which is optimal. As we have shown, the same level of protection can be

attained with a time-independent Hamiltonian. The construction introduced a noise-driven

clock which allows a time dependent Hamiltonian to be emulated without explicit reference

to time.

Since depolarizing noise is a limiting case of local noise models, it is expected that the time-

independent Hamiltonian developed here can be tuned to give the same degree of protection

against weaker local noise models, although these models may admit superior strategies. For

instance, noise of certain forms (such as dephasing) allows for storage of ancillas, potentially

yielding a linear survival time by error correcting without decoding. In the case of amplitude

damping noise, the noise itself distills ancillas so that the circuit can implement a full fault-

tolerant scheme, which gives an exponential survival time, assuming that one can redesign

the clock gadget to also benefit from these properties.

Whether the same degree of protection can be obtained from a Hamiltonian which is local

on a 2D or 3D lattice geometry remains an open question2. However, intuition suggests this

2A first step is to incorporate the notion of boundedness. By controlling each decoding unitary in a given

round from a different clock (which does not affect the scaling properties), a constant bound to the sum of

Hamiltonian terms acting on any given finite subsystem can be shown.
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might be impossible; the crucial point in reversibly protecting quantum information from

depolarizing noise is to concentrate the entropy in one part of the system. Since the speed of

information (and thus entropy) transport is constant due to the Lieb-Robinson bound [83],

the rate at which entropy can be removed from a given volume is proportional to its surface

area, while the entropy increase goes as the volume. It thus seems impossible to remove the

entropy sufficiently quickly, although this argument is not fully rigorous, and the question

warrants further investigation.
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Chapter 3

Hamiltonian memory model under

Hamiltonian perturbations

In this chapter, we study limitations on the asymptotic stability of quantum

information stored in passive N-qubit systems. We consider the effect of small

imperfections in the implementation of the protecting Hamiltonian in the form

of Hamiltonian perturbations or weak coupling to a ground state environment.

We thus depart from the usual Markovian approximation for a thermal bath

by concentrating on models for which part of the evolution can be calculated

exactly. We prove that, regardless of the protecting Hamiltonian, there exists a

perturbed evolution that necessitates a final error correcting step for the state

of the memory to be read. Such an error correction step is shown to require a

finite error threshold, the lack thereof being exemplified by the 3D XZ-compass

model [11]. We go on to present explicit weak Hamiltonian perturbations which

destroy the logical information stored in the 2D toric code in a time O(log(N)).

3.1 Introduction

Quantum information processing promises exciting new capabilities for a host of computa-

tional [114, 28, 56] and cryptographic [16, 37] tasks, if only we can fabricate devices that

take advantage of the subtle and very fragile effects of quantum mechanics. The theory of

quantum error-correcting codes (QECCs) and fault-tolerance [113, 3, 47, 48] assure that this
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fragility can be overcome at a logical level once an error rate per element below a certain

threshold is achieved. However, providing a scalable physical implementation of computa-

tional elements with the required degree of precision and control has proven to be a task of

extreme difficulty. Thus, one might hope to design superior fault-tolerant components whose

robustness is enforced in a more natural way at a physical level.

A first step in this daunting task is to concentrate not on universal quantum computation,

but on one sub-protocol within this; the storage of quantum information. Thus, the aim is

to find systems naturally assuring the stability of quantum information, just like magnetic

domains in a hard disk provide stable storage of classical information. The quest for such a

passive quantum memory was pioneered by Kitaev [74], who introduced the toric code as the

first many body protecting Hamiltonian. The promising conjunction of properties shown by

his proposal has fueled a search, which is yet to provide a definitive result.

For families of protecting Hamiltonians, such as Kitaev’s toric code [74, 32], a constant

energy gap γ separates the degenerate ground space, used for encoding, from low energy

excited states. Furthermore, the stabilizer representation of these Hamiltonians naturally

associates it with a QECC, which permits an error threshold without the use of concatenation

[32]. A perturbation theoretic expansion of local errors V in the Hamiltonian must then cancel

to orders increasing with the distance of the associated QECC. Recently Bravyi et al. [21, 20]

have used this to rigorously prove that under the effect of sufficiently weak yet extensive

perturbations, the energy splitting of the degenerate ground space decays exponentially with

the system size. Together with previous results by Hastings and Wen [57], this guarantees

the existence of perturbed logical operators and local observable. Additionally, it also implies

that it takes this splitting an exponentially long time to implement logical rotations on the

perturbed ground space (e.g. a phase gate). A non trivial condition being that encoding is

actually performed onto the perturbed ground space.

However, such perturbation theoretic results must be applied with caution. The most im-

portant limitation probably arises from the fact that they deal with a closed quantum system

whereas actual noise may be better modeled by perturbative coupling to an environment.

Even if local observables can be adapted for to a high degree of accuracy [57], the global

eigenstates of the system may change and become very different. Within our understand-

ing, the possibility of adapting encoding and decoding protocols relies on the perturbation
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being characterized, something that seems unrealistic for such many-body systems1. This

is why we consider an uncharacterized perturbation introduced through a quench. By this

we mean that encoding is performed according to the ideal (unadapted) code-space of the

unperturbed Hamiltonian as will the decoding and order parameters considered. This allows

us to derive no-go, or limitation, results from the exact analysis of adversarially engineered

noise instances. However, it must be noted that error correction to the perturbed encoding

may be performed without explicit knowledge of the perturbation. This is for example the

case, for the self-correcting mechanism which is based on energy dissipation.

The first systematic study of limitations of passive quantum memories can be atributed

to Nussinov and Ortiz [99], finding constant (system size independent) bounds for the auto-

correlation times. They study the effect of infinitesimal symmetry breaking fields on topolog-

ical quantum order at finite temperature [100]. More recently, Alicki et. al. have presented

results supporting the thermal instability of quantum memories based on Kitaev’s 2D toric

code [8] and the stability of its 4D version [9] when coupled to a sufficiently cold thermal

environment. They analyse the evolution of correlation functions for the case of Markovian

dynamical semigroup [7]. Chesi et al. [26] have made progress in providing a general expres-

sion giving a lower bound for the lifetime of encoded information. The approach taken in

these articles is thermodynamic in nature and has the advantage of allowing the derivation

of positive results. A weak coupling Markovian approximation to an environment at thermal

equilibrium is assumed, thus neglecting any memory effects from the environment. In a pre-

vious article [103], we considered a Hamiltonian system subject to independent depolarizing

noise (corresponding to the infinite temperature limit of the above approach) and proved that

O(logN) is the optimal survival time for a logical qubit stored inside N physical qubits.

Our current approach directly deals with Hamiltonian perturbations and environment

couplings without going through a Markovian approximation for the environment. Thus,

approximations needed for a Markovian description of a bath are not required and do not

pose an issue. A comparative advantage of our approach is the capability of exactly dealing

with certain weak but finite perturbations and couplings, and providing restricted no go

results.

To falsify claims of protection against any possible noise of a certain class (such as weak

1A possible exception to this is given by proposals of adiabatic state preparation [54].
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local perturbations to the Hamiltonian), it suffices to consider an adversarial noise instance

within such a class. In such a noise model, different perturbations and environments are not

assigned probabilities; a perturbation is simply considered possible if it adheres to certain

conditions. There is a range of different conclusions that one may reach from such an analysis

of noise instances. One may simply provide upper bounds on how fast a passive memory may

be erased by a perturbation complying to a certain noise class. We may prove or extrapolate

requirements for a memory model to protect against the given noise class. We may find that a

class of noise is unreasonable by showing that it invalidates a memory model which we expect

to work (i.e. a magnetic domain). An intermediate scenario arises when we consider the

noise class to be reasonable but expect a certain notion of typicality for which the considered

instance is not representative. Such a typicality condition would then be needed explicitly to

provide proof of robustness for the memory model.

We consider the effect of relatively weak yet unknown perturbations of an N qubit local

protecting Hamiltonian and coupling to an ancillary environment starting out in its ground

state. We show that as the number N of physical subsystems used grows, it is impossible to

immunize a quantum subspace against such noise by means of local protecting Hamiltonians

only. We further show that if one wishes to recover the quantum state by means of an error

correction procedure, the QECC used must have some finite error threshold in order to guar-

antee a high fidelity; this result is applied to the 3D XZ-compass model [11] which is shown

not to have such a threshold. In the case of the 2D toric code [74], we propose Hamiltonian

perturbations capable of destroying encoded information after a time proportional to log(N),

suggesting that some form of macroscopic energy barrier may be necessary. Weak finite range

Hamiltonian perturbations are then presented which destroy classical information encoded

into the 2D Ising model; in this case interactions involving a large, yet N independent, num-

ber of qubits are required. Finally, we consider time dependent Hamiltonian perturbations

and coupling to an ancillary environment with a high energy density; here we provide con-

structions illustrating how these more powerful models may easily introduce logical errors in

constant time into information protected by any stabilizer Hamiltonians, and even certain

generalizations. Drawing from practical experience with classical memories, the one likely

conclusion here is that general time dependent Hamiltonian perturbations are not a relevant

noise model to consider, as it is in general too powerful to protect against.
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3.1.1 Noise model motivation

A prerequisite to assess protecting Hamiltonians is a precise definition of the noise model

they will be expected to counter. Our aim is to understand the protection lifetime they

provide to (quantum) information as well as to identify the properties a good protecting

Hamiltonian should have. In order to be able to make such predictions, we will study noise

models admitting a mathematically tractable description while striving to keep our choices

physically motivated.

The most elementary way in which the Hamiltonian evolution of a closed system can

be altered is by including a small perturbation V to the Hamiltonian H. A simple physical

interpretation for such a perturbation is to associate V to imperfections in the implementation

of the ideal protecting Hamiltonian H. Furthermore, Hamiltonian perturbations extending

beyond the system under experimental control are modeled by a weak coupling between

the system and an environment. We focus on families of protecting Hamiltonians satisfying

certain locality and boundedness conditions, and naturally extend similar restrictions on the

perturbations and couplings considered.

Let us first introduce some definitions. A family of protecting Hamiltonians {HN} is

parametrized by a natural number N which in most cases, will simply be the number of

physical subsystems (particles) on which HN acts. A Hamiltonian H is called “k-local” when

it can be represented as a sum

H =
∑
i

Ti, (3.1)

with at most k physical subsystems participating in each interaction term Ti. The interaction

strength of a physical subsystem s in a k-local Hamiltonian H is given by the sum
∑

i |Ti| of

operator norms over those interaction terms Ti in which the physical subsystem s participates.

A family of k-local Hamiltonians is called “J-bounded” if, for every Hamiltonian HN in the

family, the largest interaction strength among the physical subsystems involved is no greater

than J . Finally, a family of Hamiltonians will be D-dimensional if the physical subsystems

involved can be arranged into a D-dimensional square lattice, such that all interaction terms

are kept geometrically local.

We will concentrate on families of k-local, J-bounded protecting Hamiltonians, with J > 0,

and k, J ∼ O(1). Furthermore, the specific Hamiltonians treated in this chapter admit an

embedding into 2, 3 or 4 spatial dimensions and we may assume such embeddings also when
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dealing with generic protecting Hamiltonians.

The families of Hamiltonian perturbations {VN} which we will consider will be J̃-bounded,

with the strength J̃ small in comparison to J . The perturbations will be taken to be k̃-local,

with k̃ possibly different, and even larger, than k. This allows, for example, taking into

consideration undesired higher order terms which may arise from perturbation theory gadgets

[19]. Allowed perturbations should also admit a geometrically local interpretation under the

same arrangement of subsystems as the protecting Hamiltonian.

When considering coupling to an environment, an additional set of physical subsystems

will be included as the environment state. A family of local environment Hamiltonians {H(E)
N }

will be defined on these additional subsystems. The coupling between system and environment

will be given by a family of weak local Hamiltonian perturbations V
(SE)
N , acting on both

system and environment.

H̃N = H
(S)
N ⊗ I(E)

N + I
(S)
N ⊗H(E)

N + V
(SE)
N (3.2)

Finally, it should be possible to incorporate the additional physical subsystems from the

environment while preserving the number of spatial dimensions required for the Hamiltonian.

To simplify notation, the sub-index N shall in general be dropped.

The engineering of k-body interactions is increasingly difficult as k grows [130, 19]. This is

why we limit our study to families of k-local Hamiltonians (i.e. k independent ofN). It is under

such criteria that we exclude proposals such as quantum concatenated-code Hamiltonians

[12], for which the required degree of interactions would grow algebraically with the number

of qubits.

The J-bounded condition guarantees that the rate of change for local observables remain

bounded. This is a necessary condition to certifiably approximate a Hamiltonian through

perturbation theory gadgets [19]. There, constant bounds are imposed both on the norm of

each interaction as well as on the number of interactions in which each subsystem partici-

pates. The J-bounded condition also leaves out systems with long range interactions, as, for

those systems, the total interaction strength of individual physical subsystems diverges as the

system size grows. Such long range interacting systems are physically relevant, and may lead

to protecting Hamiltonian proposals [27, 53]. However, we abstain from treating such models

for which our notion of weak perturbation seems inappropriate.
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Each physical subsystem may independently be subject to control imprecision. Such is

the case for weak unaccounted “magnetic field” acting on every component of the system or

a weak coupling of each component to an independent environment. Thus, relevant physical

scenarios involve perturbations with extensive operator norm (i.e. scaling with the number

of subsystems). The J̃-bounded condition encapsulates these scenarios and seems to better

describe what we understand by a weak perturbation.

Finally, it is expected that scalable physical implementations should be mapped to at most

three spatial dimensions. This would rule out the 4D toric code Hamiltonian [32], a proposal

which was otherwise shown to provide increasing protection against weak local coupling to

a sufficiently cold thermal bath [9]. As would occur with an actual physical embedding, we

expect that the perturbations considered may be included into the same geometrical picture

as the protecting Hamiltonian they affect.

3.1.2 Outline of results

In the following sections, we analyze the problem of obtaining increased protection for quan-

tum information by means of an encoding and a protecting Hamiltonian acting on an in-

creasing number of physical subsystems. We consider the effect of adversarial noise models

consisting of local Hamiltonian perturbations and/or a weakly coupled environment. The

aim is to examine the assumptions and limitations of memory schemes based on Hamiltonian

protection with a growing number of physical subsystems as quantified by the survival time

of stored information.

We will prove in complete generality that the survival of information should be associ-

ated to a subsystem and not to a particular subspace. The figure of merit considered here

is S(t) = tr (|ψ(0)〉 〈ψ(0)| ρ(t)), the overlap between initial and evolved state after a constant

time t. For arbitrary protecting Hamiltonians we provide a completely general construction

involving a weakly coupled environment starting in its ground state (Sec. 3.2.2) which yields

an exponentially small (in N) upper bound on S(t) after a constant time. For gapped Hamil-

tonians, a proof proceeding without reference to an environment (Appendix 3.A) can provide

an upper bound to the time averaged overlap which is close to 1
2 . We thus infer that the

information should be associated to a subsystem.

Having found that subspaces can not provide robust encoding, we consider protecting
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Hamiltonians together with a recovery operation R, which can be thought of as applied on

read-out. This provides the formal means to project information from a logical subsystem onto

a code subspace and leads to a more robust figure of merit given by SR(t) = tr (ρ(0)R(ρ(t))).

Although throughout the chapter, we assume R to be an unperturbed error correction pro-

cedure associated to an encoding, it is important to emphasize that other means may allow

keeping information in a logical subsystem. In particular, self-correcting Hamiltonians advo-

cate the use of a local thermalizing coupling as a way of continuous error correction at finite

temperature. This is, while an unperturbed order parameter may be shown to be inadequate

for the storage of information, it may be possible for a robust yet implicit logical subsystem

to arise by including genuine dissipation.

In (Sec. 3.3), a weak coupling construction like that of (Sec. 3.2.2) shows that information

content of the 3D XZ-compass model [11] can be destroyed in constant time by a zero tem-

perature environment, despite of a final recovery operation R. From a broader perspective,

the structure of our proof strongly suggests that the underlying QECC defining the recovery

operation R must have a strictly positive error threshold.

We continue by considering the effect of Hamiltonian perturbations on the 2D toric code

[74]. The recovery mechanism R is then taken as the composition of a fixed syndrome mea-

surement followed by a correction operation pairing the detected anyons. It is shown (Sec. 3.4)

that, although the underlying QECC has an error threshold, it is not protected against com-

binations of unknown weak local Hamiltonian perturbations, even after a final round of error

correction is considered. Our claim is based on adversarial weak local perturbations that are

capable of destroying the stored information in a time logarithmic in N . This is stronger than

previous results [67] in that, the noise model requires no interaction with the environment

and the information is destroyed exponentially faster.

In a similar manner, we consider perturbations on the 2D Ising Hamiltonian (Sec. 3.5),

which is often used as an example of self-correcting classical memory. Here, Hamiltonian

perturbations may transform (classical) code states into an ambiguous state in constant time.

While the number k̃ of bodies in perturbation terms is required to grow as the overall pertur-

bation strength decreases, it shows no dependence on the size N of the system. In this model,

any sequence of local errors connecting the two classical code states must go through states

with a macroscopic amount of extra energy, showing that this property alone is not sufficient
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to give protection against this family of perturbations. There are two possible implications

of this result. First we may think that since ferromagnetic domains seem to be quite stable,

our choice of perturbation may not be significant in that it is by no means typical. On the

other hand, although the lifetime obtained is independent of N , this independence is only

found for very large N in terms of the perturbation strength, possibly allowing to reconcile

this model with experience and hinting that in practice, information lifetime scaling with N

may be unnecessary.

Beyond the Hamiltonian perturbation model and coupling to a ground state environment,

we consider more aggressive noise models (Sec. 3.6) in which the environment can introduce

large amounts of energy. The models considered are time dependent Hamiltonian perturba-

tions and weak Hamiltonian coupling to an environment starting in a high energy state. For

such noise models, even the information storage capabilities of the 4D toric code and any local

ferromagnetic Ising model, proposals shown to be stable under Markovian thermal coupling,

are completely destroyed. We thus argue that requiring robustness against an adversarial

noise model of such a class is asking for too much and is not a prerequisite for practical

quantum or classical memories.

One might expect that the results presented here are not limited to the task of designing

a quantum memory. Rather, they tell us about the difficulty of keeping a state and its time

evolution confined within a specific subspace of the system, under the effect of Hamiltonian

noise. Such considerations arise in other settings, such as in the models of adiabatic and

topological quantum computation. We will outline some of these connections in Sec. 3.7.

3.2 Subsystems instead of subspaces

We start our examination of passive quantum memories by proving that regardless of the

choice of encoding subspace and protecting Hamiltonian the weak coupling to an environment

can, in constant time, exponentially reduce the fidelity with the evolved state. By this, we

wish to convey that a more robust figure of merit is required. Such figures are in general

derived from associating the information to a logical subsystem.

First, we propose weak local perturbations showing an exponentially decreasing overlap

between perturbed and unperturbed eigenstates. For general local Hamiltonians and states,

we consider a local coupling V of the system with a γ-bounded environment initialized in its
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ground state. Averaging over such couplings V , we are able to derive an exponentially small

upper bound 〈S(tf )〉V ≤ [1 − sin2(2ε)]N for the overlap between initial and evolved system

states at a time tf = π
γ .

3.2.1 Eigenstate susceptibility to perturbations

Consider a k-local HamiltonianH, decomposable into k-body interaction terms Ti as described

in (3.1). We choose a perturbation V such that the initial and final Hamiltonians are related

by a composition of local unitary transformations,

H̃ = H + V = UHU†, with U =
N⊗
l=1

eiεPl , (3.3)

where Pl are normalized local Hermitian operators. Taking this definition, V can be written

as

V =
∑
i

UTiU† − Ti, (3.4)

and thus is also k-local. Furthermore, if 2kε� 1, it is justified to call V a perturbation with

respect to H, since all terms are small with respect to those of H.

Degeneracies in H are assumed to be infinitesimally lifted to ensure uniquely defined

eigenvectors. The overlap between eigenvectors |ψi〉 of H and the perturbed eigenvectors

U |ψi〉 is then given by FU = |〈ψi| U |ψi〉|2.

By averaging over all possible directions Pl, we effectively obtain an independent qubit

depolarization. ∫
U† |ψi〉 〈ψi| UdP1 . . . dPN = ∆⊗Nλ(ε)(|ψi〉 〈ψi|) (3.5)

Here, ∆λ(ρ) = λρ+ (1− λ) I2 is the qubit depolarizing channel and λ(ε) = 1− 3
2 sin2(ε). We

may then denote 〈F 〉U as average of the overlap FU over all local rotations U having a given

strength ε. This average is expressed in terms of the depolarizing channel as

〈F 〉U = 〈ψi|∆⊗Nλ(ε) (|ψi〉 〈ψi|) |ψi〉 . (3.6)

A result of King [72], known as multiplicativity of the maximum output p-norm for the

depolarizing channels, states that

max
|φ〉

∣∣∣∆⊗Nλ (|φ〉 〈φ|)
∣∣∣
p
≤
(

max
|φ〉
|∆λ (|φ〉 〈φ|)|p

)N
. (3.7)



3.2 Subsystems instead of subspaces 31

For qubit subsystems and for p =∞, Eq. (3.7) bounds the overlap of ∆⊗Nλ (|φ〉 〈φ|) with any

single pure state, leading to

〈F 〉U ≤
(

1 + λ

2

)N
=

(
1− 3

4
sin2(ε)

)N
. (3.8)

Not only does this imply the existence of specific rotations such that F becomes exponentially

small as the number of subsystems N grows, but that this is true for most rotations U .

While this is already known under the name of Anderson’s orthogonality catastrophe (see,

for example [10, 124]), we re-derive it for completeness and as an opportunity to introduce

techniques needed throughout the rest of the chapter.

3.2.2 State evolution in coupled Hamiltonians

In this section, we consider a weak Hamiltonian perturbation coupling the system to a “cold”

environment. The environment is assumed to start in its ground state, corresponding to a cold

environment assumption. Averaging over a specific family of such perturbations instances V ,

an exponentially small bound on the overlap between the initial state and the evolved state

is obtained. This bound, 〈S(tf )〉V ≤ [1− sin2(2ε)/3]N , is obtained after a constant evolution

time tf = π
γ , inversely proportional to the strength of the environment Hamiltonian.

Suppose that we start with a state |ψ0〉 “protected” by an N qubit system Hamiltonian

HS . We can introduce a simple environment, composed of 2N qubits, each of which starts in

its ground state, |0〉, and which is defined by its Hamiltonian

H = H(S) ⊗ I(E) + I(S) ⊗H(E) (3.9)

H(E) = γ

N∑
i=1

|1+〉〈1+|(E)
i − |00〉〈00|(E)

i . (3.10)

When necessary, we take the supraindices (S), (E1) and (E2) to denote the system, the first,

and second components of the environment respectively. While both environment components

will interact with the system, it is the presence of both which will allow a simple interpretation

of the induced decoherence as a probabilistic application of local errors.

We again use the trick of considering a perturbed Hamiltonian H̃ = UHU† which results

from the weak local rotations U =
⊗N

j=1 Uj of the decoupled Hamiltonian H. The rotation

elements will involve both system and environment components, Uj = eiεP
(S)
j ⊗X(E1)

j , where

the operators P
(S)
j are taken to be Pauli-like operators on site j of the system.
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The perturbation V = UHU† − H must be decomposable into small local terms. Such

a decomposition for V is given in terms of the decomposition H(S) =
∑

i Ti into at most

k-body terms. Each perturbation term Vi = UTiU† − Ti has an operator norm no greater

than 2εk |Ti| and involves up to 2k-body interactions2. The perturbation required to rotate

the environment Hamiltonian terms involve at most 3-body terms and a total norm bounded

by 2εγ.

The initial state, |ψ0〉 |00〉⊗N will thus evolve into e−itUHU
† |ψ0〉 |00〉⊗N . The survival

probability is then S(t) = 〈ψ0| ρS(t) |ψ0〉, where ρS(t) = trE (ρ(t)), and

ρ(t) = Ue−itHU† |ψ0〉〈ψ0| ⊗ |00〉〈00|⊗N UeitHU†. (3.11)

Here, U may be explicitly decomposed as

U = exp(iε
∑

j P
(S)
j ⊗X(E1)

j )

=
∑

p cos(ε)N−w(p)(i sin(ε))w(p)P
(S)
p ⊗X(E1)

p ,
(3.12)

where p denotes a binary vector indicating the sites on which rotations are applied in P
(S)
p

and w(p) is the weight of the bit string p (number of non identity factors in P
(S)
p ).

Now consider a time tf = π
γ such that e−itfH transforms components of the environment

from |10〉 to |11〉, while leaving components in state |00〉 unaltered. At such a time tf ,

substituting U into expressions (3.11) allows explicitly tracing over the environment to yield

ρS(tf ) =
∑
p,q

cos2(ε)2N−w(p)−w(q) sin2(ε)w(p)+w(q)×

Ppe
−itfH(S)

Pq |ψ0〉〈ψ0|Pqe
itfH

(S)
Pp.

(3.13)

Thus, ρS(tf ) may be considered as the density matrix resulting from the independent proba-

bilistic application of the local unitary rotations prescribed by U on |ψ0〉〈ψ0|, followed by the

evolution under the unperturbed system Hamiltonian, followed by a second round of random

application of the local rotations prescribed by U . Defining

ER,p(ρ) = pRρR+ (1− p)ρ, (3.14)

and the Hamiltonian evolution

Ht(ρ) = e−iH
(S)tρeiH

(S)t, (3.15)

2For εk � 1, a further decomposition of such terms can be provided in which subterms involving k + b

bodies are of strength O(εb), guaranteeing that the strength of terms decays exponentially with the number

of bodies involved.
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we can take p = sin2(ε) and define ρvirt :=
(⊗N

i=1 EPi,p
)
|ψ0〉〈ψ0|, so that we can express

S(tf ) as

S(tf ) = tr
(
ρvirte

−itfHSρvirte
itfHS

)
. (3.16)

This is the overlap between a density matrix and its own unitary evolution, and can be upper

bounded by

S(tf ) ≤ tr
(
ρ2
virt

)
. (3.17)

In turn, using the fact that Pi are Pauli-like operators we may rewrite it as

S(tf ) ≤ 〈ψ0|
(

N⊗
i=1

EPi,2p(1−p)
)

(|ψ0〉〈ψ0|) |ψ0〉 . (3.18)

Averaging over the Pauli-like operators, we obtain

〈S(tf )〉V ≤ 〈ψ0|∆⊗Nλ(ε)(|ψ0〉〈ψ0|) |ψ0〉 , (3.19)

which is the overlap at time tf averaged over the proposed family of weak perturbative

couplings. Here ∆λ(ρ) is again the depolarizing channel, and λ(ε) = is 1− 4
32p(1− p). Using

Eq. (3.8), we obtain

〈S(tf )〉V ≤ [1− 4

3
p(1− p)]N , (3.20)

which by substituting p for sin2(ε) yields

〈S(tf )〉V ≤ [1− sin2(2ε)/3]N . (3.21)

By averaging over different possible weak couplings, we obtain an overlap between initial and

evolved states which is exponentially decreasing in N .

The norm γ of Hamiltonian terms in the environment should be bounded, since it is in

part these terms which are rotated by U to introduce a weak coupling between system and

environment. Thus, the proposed evolution time tf = π
γ is constant. Furthermore, if one

considers an environment of N semi-infinite chains of coupled two level systems (such as

Heisenberg chains), it is possible to ensure that the overlap with the initial state is small for

all times larger than t ∼ π
γ , rather than have the recurrences that arise from the discrete

spectra of the described model.

In appendix (3.A), the evolution of an unperturbed eigenstate is considered under the

effect of pure Hamiltonian perturbations (no environment). In this case, a constant rate of
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change in the system state is guaranteed by an energy gap γ in the system Hamiltonian. If an

initial state belongs to an energy band separated from the rest of the Hilbert space by such an

energy gap γ, we provide an upper bound on the time averaged overlap 〈S(t′)〉t′∈[0,t] ≤ 1
2 + 1

2γt

between initial and evolved state.

3.2.3 Discussion

We were able to show after a constant time tf , an exponentially large degradation of the over-

lap S(tf ) in terms of N . If we are to find a benchmark by which to evaluate a memory scheme,

we expect that the memory improves as more resources are dedicated to its implementation.

It is now clear that many-body quantum states are inherently unstable with respect to the

uncorrected overlap, i.e. S(t) is not the appropriate benchmark.

The fact that we may count on N physical subsystems to implement a quantum memory

should not exclude using only one of them and ignoring whatever noisy evolution is affecting

the others. This corresponds to considering an overlap reduced to the relevant subsystem

and not on the whole state. Already such a simple idea guarantees that information storage

quality is non-decreasing with N .

One may further generalize this by realizing that the relevant subsystem need not corre-

spond to an actual physical subsystem. This corresponds to providing a new decomposition

for the physical Hilbert space which allows factoring out a logical subsystem. The resulting

benchmark is SR(t) = tr (ρ(0)R(ρ(t))), quantifying the quality of the information recoverable

from the evolved state and not of the state itself. Here, R may be thought of as an operation

zeroing the irrelevant subspace, which may also be interpreted as the recovery super-operator

of a QECC. Conversely, given the recovery operation R of a QECC, one may define the cor-

responding logical subsystem. Robust error corrected logical observables3 can analogously

be defined via the extension provided from the code space to the whole Hilbert space by the

recovery operation R. In the following sections, we shall consider protecting Hamiltonians

toghether with such error correcting codes and robust logical observables.

3 Alicki et al. [9] use the name dressed observables, whereas Chesi et al. [26] use the self-explanatory name

of error corrected logical operators, which we will adopt.
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3.3 Error threshold required

A desirable property for a quantum memory is that any sequence of local operators mapping

between different logical code-states should have energy penalties which grow with the system

size. It has been shown that this happens for schemes in four dimensions, such as the 4D toric

code [32]. Seeking to provide such an example in three spatial dimensions, Bacon proposed

the 3D XZ-compass model [11], a scheme based on subsystem error correcting codes [77] and

requiring only 2-body nearest neighbour interactions. Furthermore, mean field arguments

suggest that this model might show such an increasingly large energetic barrier.

However, we will show that the zero temperature (local, but non-Markovian) environment

construction of the previous section is capable of giving a false read-out from the code after

constant time. A recovery operationR is assumed on read-out, and taken to be the unadapted

version of the associated error correcting code. We show that the shortcoming is inherent to

the choice of recovery procedure R by illustrating that the same flaw is present for the 4D

toric code if one assumes an alternative recovery protocol similar to the one considered for

the 3D XZ-compass model. This failure is a general feature of recovery protocols not having

a local error threshold (i.e. those which are unable to handle errors on a constant fraction of

randomly chosen sites).

For the 3D XZ-compass model, quantum information is first encoded into the groundspace

of a 2-local Hamiltonian HS defined on a N×N×N arrangement of two level systems (where

N is an odd number).

HS = −λ
N∑

i,j=1

N−1∑
l=1

(Xl,i,jXl+1,i,j +Xi,l,jXi,l+1,j

+Zi,l,jZi,l+1,j + Zi,j,lZi,j,l+1) .

(3.22)

This is not a stabilizer code but a subsystem code. This means that a recovery operation need

not correct certain errors which have no effect on the logical observables, and information may

be preserved even if the recovered state is different.

First, note that pairs of planes of operators Ẑl =
∏
i,j Zi,j,lZi,j,l+1 and X̂l =

∏
i,j Xl,i,jXl+1,i,j

commute with the Hamiltonian H for all l. This also holds for logical operators, which con-

sist of products along a single plane Z̄ ≡ Z̄l =
∏
i,j Zi,j,l and X̄ ≡ X̄l =

∏
i,j Xl,i,j operators

respectively, for an arbitrarily chosen l. In the ground space, the choice of l is irrelevant, since

the operators Ẑl, X̂l all have +1 eigenvalues. Provided N is odd, X̄ and Z̄ anti-commute,
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giving a qubit algebra. In the presence of errors (outside of the ground space), the error

corrected logical observables will be defined as the majority vote among plane observables

Z̄ec = majlZ̄l X̄ec = majlX̄l (3.23)

where maj stands for a majority vote among the ±1 eigenvalued commuting operators. Mea-

suring all pairs of adjacent planes Ẑl allows a majority vote error correction scheme to be

performed on the value of the Z̄l plane observables without extracting whether the corrected

state yields +1 or −1 values for all such planes.

Considering a perturbation on the system plus an environment, as presented in section

3.2.2. By explicitly developing the final expectation values for the observables of interest

(tr[Z̄ecρS(tf )] and tr[X̄ecρS(tf )] ), it can be seen that the information stored in the code will

not be reliable after a time tf . For this, we can pick up from the evolved state of the system

in Eq. (3.16)

ρS(tf ) =

(
N⊗
i=1

EPi,p
)
◦ Htf ◦

(
N⊗
i=1

EPi,p
)
|ψ0〉〈ψ0| . (3.24)

Since all plane observables (X̄l and Z̄l) of a given type mutually commute, and also do so

with the Hamiltonian, we can independently consider the probability of each plane observable

having suffered a flip. If the Pi in Eq. (3.14) are taken to be single X or Z rotations, they will

anticommute with overlaping Z̄l or X̄l plane observables respectively, changing their value

upon an odd number of applications. Taking the Pi to be simple Z operators, the probability

of flipping the value of an X̄l plane observables by applying
⊗N3

i=1 EPi,p once is given by

pplane∗ =

i≤N∑
i∈odd

cos2N2−2i(ε) sin2i(ε)

(
N2

i

)

=
1− cosN

2
(2ε)

2
, (3.25)

which is exponentially close to 1/2. Since all observables involved commute with the system

Hamiltonian, the probability of observing any result configuration will be preserved by Htf .

Finally, a second round of errors
⊗N3

i=1 EPi,p will again flip the observed value for each plane

with a probability pplane∗. The final independent probability of flipping the value of each

plane is

pplane = 2pplane∗(1− pplane∗) =
1− cos2N2

(2ε)

2
. (3.26)
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The proposed correction scheme is equivalent to a majority voting among such planes.

Thus, if more than half the planes suffer such an error, the majority vote will fail. The

probability for incorrectly measuring the error corrected logical observable X̄ec on read-out

is then

plogic =
N∑

i=(N+1)/2

piplane(1− pplane)
N−i

(
N

i

)
. (3.27)

Given that 1
2 [1− cos2N2

(2ε)] ≤ pplane ≤ 1
2 , we have that

1

2
[1−N cos2N2

(2ε)] ≤ plogic ≤
1

2
. (3.28)

Assuming ε to be a small constant independent of N , the probability plogical will exponentially

approach 1/2 for large N . We conclude that the encoding is not robust against the error model

posed by local coupling to a cold adversarial environment.

The problem lies in the error correction mechanism rather than the protecting Hamiltonian

itself. This becomes apparent if one applies a similar analysis to the 4D Toric code. There,

the suggested noise model does not present a problem, since the usual error correction [32] of

the 4D toric code has an error threshold. That is, provided the probability of per-site error,

p = sin2 ε is below this threshold, there exist error correction criteria which succeed with a

probability approaching 1 exponentially with N . On the other hand, we could consider a

majority voting version of error correction in this setting, where we measure hyperplanes of

X operators, and apply a majority vote to choose the correct result. In this case, an analysis

completely analogous to that of the 3D XZ-compass code would hold proving such a read-out

technique unreliable. We conclude that the error correction procedure of the 3D XZ-compass

code does not allow sufficient resolution to use any potentially topological properties of the

encoded quantum information.

The errors introduced by
⊗N

i=1 EPi,p are sufficiently general to suggest a necessary crite-

rion for Hamiltonian protection of information from weak coupling to a cold environment.

Even if we consider the first round of errors and the Hamiltonian evolution as part of the

encoding procedure, information should still be able to withstand the probabilistic applica-

tion of arbitrary local errors. This means that the information, either quantum or classical,

should be encoded in such a way as to provide a finite error threshold in the thermodynamic

(large N) limit.



38 3. Hamiltonian memory model under Hamiltonian perturbations

3.4 Limitations of the 2D toric code

We will now show how local Hamiltonian perturbations are capable of introducing uncor-

rectable errors in Kitaev’s 2D toric code Hamiltonian. The introduction of such errors will

strongly rely on the lack of string tension on the toric code, suggesting a macroscopic energy

barrier may be a necessary requirement. A brief introduction to the toric code Hamiltonian

is provided in appendix 3.B, and is recommended to the unfamiliar reader.

Logical operations in the 2D toric code can be realized by creating a pair of anyons,

propagating them so as to complete a non-trivial loop, and finally annihilating them. It is

roughly such a scheme that will be followed by the perturbations we develop here. Repeating

techniques from section 3.2, we may consider the initial state as containing a superposition

of local errors which are interpreted as neighboring anyon pairs. A perturbation construction

due to Kay [67] allows the deterministic propagation of such anyon pairs along predefined

adversarial paths on the lattice. Syndrome measurement allows restricting to a probabilistic

picture where error strings corresponding to anyon propagation paths are present with a

predefined probability. It is finally the recovery procedure which may possibly complete these

errors into logical operations by selecting an incorrect anyon matching.

A family of weak local perturbations capable of probabilistically introducing distant anyon

pairs will first be presented. As before, the initial state |ψ(0)〉 is assumed to be a ground state

of the unperturbed Hamiltonian H, in this case an N ×N toric code as in Eq. (3.63). After

a time tf proportional to the maximum desired anyon propagation distance D, unperturbed

syndrome read-out on |ψ(tf )〉 will probabilistically detect distant (as well as local) anyon

pairs. Our construction will then be applied to produce a simple set of O(N) distance anyons

such that no syndrome based error correction may be reliably applied. Later, shorter yet

more elaborate anyon propagation paths will require explicit analysis of the error correcting

probability of different anyon pairing protocols. In this context, we find weak Hamiltonian

perturbations are capable of introducing logical errors with a large probability (≈ 1
2) in a

time tf logarithmic in the system size N .

3.4.1 Probabilistic introduction of distant anyons

Kay [67] showed that local errors (anyons) in the 2D toric code, and other local stabilizer

Hamiltonians lacking string tension, can be propagated into logical errors corresponding to
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almost complete loop operators by a local Hamiltonian perturbation P . While in his work

the initial presence of the anyons was assumed, here, anyons will be introduced with a certain

amplitude by a generalization of the Hamiltonian perturbation P .

Consider introducing perturbations of the form V = U(H + P )U† −H, where U =
⊗

i Ui

decomposes into weak local unitary rotations, and P is, as in [67], a weak local perturbation

capable of deterministically propagating anyons in a given time tf . The perturbed Hamilto-

nian

H̃ = U(H + P )U† (3.29)

induces a time evolution which can be written as

|ψ(t)〉 = e−itH̃ |ψ(0)〉 = Ue−it(H+P )U† |ψ(0)〉 . (3.30)

In this context, U and P are chosen such that:

1. By applying small Z rotations on connecting edges qubits, pairs of neighbouring vertex

anyon are created by U† with amplitude O(ε).

2. Each of the anyons is deterministically propagated by P along a predefined path. Thus,

local excitation pairs become strings of errors defining new positions for the anyon pair.

3. Finally, U is unable to remove anyon pairs created by U† after at least one of them has

been propagated. Moreover, U may create additional anyon pair with amplitude O(ε).

Propagation paths for each anyon are not allowed to overlap but are otherwise completely

independent. The propagation of the i-th anyon along its path `(i) may be attributed to a

specific component Pi of P =
∑

i Pi. In turn, each component Pi admits a decomposition

Pi =

|`(i)|∑
j=1

J
(i)
j T

`
(i)
j−1,`

(i)
j

, (3.31)

in terms of local interaction terms Tp,q, where `
(i)
j are the anyon locations along the path

`. As in [67], the scalar coefficients J
(i)
j are chosen to implement a perfect state transfer

[29, 66, 68] and each term Tp,q implement a swap among vertex anyons on p and q. If p and

q are neighboring vertices, Tp,q is defined as

Tp,q = Zs
(11−ApAq)

2
, (3.32)
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where Ap and Aq are the vertex stabilizer operators corresponding to p and q respectively

(appendix 3.B) and Zs is a Z rotation on physical site s corresponding to the edge connecting

p and q. Furthermore, by allowing p and q to be next nearest neighbors, it is possible to have

crossing anyon paths `(j), `(i) without having them overlap in the anyon locations used. If

vertices p and q are not neighbors, the same effect is obtained by substituting Zs in (3.32) for

a tensor product of Z operators along an edge path pq from p to q,

Tp,q =
⊗
s∈ pq

Zs
(11−ApAq)

2
. (3.33)

The distance D is the maximum number of steps among the different anyon propagation

paths D = maxi
∣∣`(i)∣∣. It will be taken as D = N/2−1 in section (3.4.2) and as D = O(logN)

in section (3.4.4). Fixing the strength of perturbation terms in P as J
(i)
j = ε

D

√
j(
∣∣`(i)∣∣+ 1− j)

allows the perturbation P to remain ε-bounded while allowing simultaneous perfect anyon

transfer in a time tf = Dπ
2ε . Similarly to previous sections, by taking the rotations Uj = eiεZj as

ε weak, the final perturbation required V will also be composed of O(ε) strength interactions

involving at most 8 bodies each.

The quantum state before measurement at time tf is given in Eq. (3.30). Expanding U†

from Uj = eiεZj , we get

|ψ(tf )〉 = Ue−i(P+H)tf
⊗
j

(cos ε11j − i sin εZj) |ψ(0)〉 , (3.34)

where the index j ranges over sites of non trivial action for U . The state |ψ(0)〉 is a ground

space eigenstate of H, and assuming the locations j on which U acts are non neighboring,

each Zj will increase the energy respect to H by γ. Furthermore since the energy of a state

respects to H depends only on anyon number and P is anyon number preserving, we have

[H,P ] = 0, allowing us to write

|ψ(tf )〉 = Ue−iP tf
⊗
j

(cos ε11j − ie−iγtf sin εZj) |ψ(0)〉 . (3.35)

Since all the propagations in P commute and correspond to exact transfer of each anyon

created by U† precisely at time tf , we may write

|ψ(tf )〉 = U
∏
j

(cos ε11− ie−iγtf sin ε
⊗
i∈``(j)

Zi) |ψ(0)〉 (3.36)
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where ``(j) is the path given by the union of {j} and the two propagation paths `(j+) and

`(j−) of P corresponding to the each of the two anyons created by Zj . By expanding U , we

obtain

|ψ(tf )〉 =
∏
j

cos2 ε11− ie−iγtf sin ε cos ε
⊗
i∈``(j)

Zi

+i cos ε sin εZj + sin2 εe−iγtfZj
⊗
i∈``(j)

Zi

 |ψ(0)〉 .

(3.37)

The state |ψ(tf )〉 described by Eq. (3.37) corresponds to a coherent quantum superposition

of applying different error paths. For such unitary evolutions, initially orthogonal states will

remain orthogonal and thus fully distinguishable. However, there are at least two mechanisms

which lead us to consider a mixed density matrix as the final state. The first, is due to

the fact that the actual perturbation applied is not known, and can for instance be taken

probabilistically among the family of perturbations described. The second, is unperturbed

syndrome measurement M, which is the first step of a quantum error correction procedure

to recover the initial state.

Syndrome measurementM will probabilistically project the state |ψ(tf )〉 into a subspace

consistent with a fixed anyon distribution. This is the first step of the recovery operation

R = C ◦M, the sequential application of unperturbed syndrome measurement M followed

by a syndrome dependent correction operation C. Analysis of different correction strategies

C need only focus on the resulting mixed state M(|ψ(tf )〉〈ψ(tf )|). Since for any anyon

configuration there is at most one combination of operators yielding it in Eq. (3.37), the state

|ψ(tf )〉〈ψ(tf )| is reduced to a probabilistic application of these operators on |ψ(0)〉〈ψ(0)|.
Again, taking ER,p(ρ) = pRρR+ (1− p)ρ, one may verify that

M(|ψ(tf )〉〈ψ(tf )|) =©jEZj ,pE⊗
i∈``(j) Zi,p

(|ψ(tf )〉〈ψ(tf )|) (3.38)

with p = sin2 ε. Note that the order of application is arbitrary, since the ER,p superoperators

commute. Thus, one may consider independent probabilities p for observing each anyon pair

created by U† and propagated by P (or unpropagated anyon pairs created by U). Hence, when

instantiating the Hamiltonian perturbation described on a certain set of anyon propagation

paths, one need only deal with the independent probabilities of measuring propagated and

unpropagated anyon pairs.
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3.4.2 Simple error loops in O(N) time

The aim of this subsection is to provide a simple ensemble of perturbations, employing the

above construction in such a way that resulting anyon configurations are provably ambiguous,

by which we mean that a single anyon configuration could have, with equal likelihood, origi-

nated from logically inequivalent errors. This means that for such configurations, the anyon

pairing recovery procedure C can do no better than guessing, and will complete a logical error

with a 50% probability for any possible choice of C.

Figure 3.1: Two hollow dots indicate positions where a pair of vertex anyons may be created

by U† and/or by U with probability p. Anyons created by U† are propagated by P along the

darkening path. A table is provided indicating the probability of possible error configurations

and their corresponding syndrome observables (1 (0) representing anyon presence (absence)).

Let us first consider weakly perturbing only in the vicinity of a single row. The joint

effect of many such perturbations, will then be shown to produce further degradation of

stored information. So, U† introduces a single Z error (neighboring anyon pair) on a physical

start site s of the row with probability p. The paths for the perturbation P are chosen

such that both of the produced anyons propagate along the row in opposite directions up to

final neighboring locations which are diametrically opposite s (see figure 3.1). For ε weak

perturbations, this requires no more than O(N/ε) time. Finally, with probability p, U may

introduce an error at site s or counter an element of the propagated error chain. As can

be seen from the figure, if the anyon introduction site s is chosen uniformly at random,

there are observable anyon configurations which occur with probability 2p(1− p), which are

completely ambiguous (e.g. cases B and C are indistinguishable under exchange of initial site

s). However, if such a syndrome is measured, the correction protocol has a 50% chance of

completing a horizontal Z loop on the lattice, which is equivalent to applying a completely

dephasing channel on one of the encoded qubits with probability 2p− 2p2.
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By applying such a perturbation family to i ≤ N rows of the lattice, the probability of

not having such a logically dephasing action take place becomes (1−2p+2p2)i, which may be

made arbitrarily small for large N (i.e. an odd number of horizontal Z loops is completed with

a probability exponentially close to 1/2). Completely analogous string like perturbations exist

for any of four logical operators defining the 2-qubit algebra associated to the ground space.

Again, by simultaneously considering such perturbations on a sufficiently large set of parallel

lines these operators too will be completed with a probability exponentially close to 1/2.

Furthermore, by allowing anyons to hop directly to next nearest neighbors (i.e. Eq. (3.33)), it

becomes possible to simultaneously introduce perpendicular yet commuting loop operations

as a result of anyon removal.

Simultaneously introducing the four logical operators independently with probability ex-

ponentially close to 1
2 , would yield a state exponentially close to a maximal mixture over the

code space. Our proof requires terms from different perturbation paths to commute, indi-

cating a possible obstacle to achieving this. In practice however, given that different anyons

follow roughly ballistic trajectories with a relatively small spread, this does not pose an issue.

In appendix 3.C, we show how it is possible to select the set of anyon trajectories in the per-

turbation such that the order of anyon crossing is well defined (exponentially well in N). In

turn, this implies an exponentially small deviation from the result of performing such anyon

propagations in order, resulting in a state exponentially close to a maximal mixture on the

four dimensional code-space.

Finally, it is worth mentioning that exactly the same perturbation construction may be

applied to the protecting Hamiltonian proposed by Chesi et al. [27] which presents long

range repulsive interactions among anyons. However, it must be made clear that the resulting

perturbation will, like the unperturbed Hamiltonian, also involve long range interactions. In

the case that has been studied numerically, which introduces a constant energy penalty for

every arbitrarily distant pair of anyons, our perturbation construction provides exactly the

same result for the information lifetime as for the original TC Hamiltonian.

3.4.3 Localization in 2D stabilizer codes

In the perturbations constructed to introduce logical errors in the toric code, there is a strong

use of the energy degeneracy of subspaces with the same number of anyons. The strengths
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of the different stabilizer terms in the 2D toric code manifest as strengths of local magnetic

fields in the effective Hamiltonian of the propagation [67]. However, having exactly the same

strength for all local Hamiltonian terms is not an essential feature of the 2D toric code or of

stabilizer Hamiltonians in general.

In the unperturbed picture of stabilizer Hamiltonians, excitations are completely localized.

However, when different excitations live in a degenerate energy space, perturbations may be

very effective at propagating them. In the spirit of Anderson localization, different stabilizer

term strengths may be randomly chosen from some range γupper > γlower > 0, with the hope

of protecting against anyon propagation terms.

However, for each such random instance, a specific Hamiltonian perturbation may “smooth”

this distribution to take on, at random, only a finite number of discrete energy values, sepa-

rated by ε, the strength of the perturbation. The number of such possible values is given by

dγupper−γlower

ε e, which is therefore also the average spacing between sites of the same energy.

Hence, by selecting propagation terms of a similar size, the hopping scheme can route around

the uneven energy landscape and introduce a logical error. Thus, the argument is unable to

guarantee protection against any constant sized perturbation. Nevertheless, it may be that

the perturbation terms necessary to break the code should involve a larger number of bodies,

which would definitely be an improvement.

In the case of the 2D toric code [67], and all other 2D local stabilizer Hamiltonians [22, 69],

there are always logical operations with string like support. This means that, albeit with

some possible energetic smoothening, the scheme presented in section 3.4.2 can be adapted to

introduce logical errors in arbitrary 2D stabilizer Hamiltonians, meaning that the asymptotic

lifetime which 2D N × N stabilizer codes may guarantee against weak local perturbations

cannot be more than O(N).

3.4.4 Logical errors in O(logN) time

In the previous section, we gave a rigorous upper bound of O(N) on the information lifetime

of the toric code. This bound coincides with the one provided by Kay in [67], which required

initial anyons in the system to be introduced by an unspecified environment. In this subsec-

tion, we provide an exponentially tighter bound by concentrating on specific choices for error

correction protocols. We argue that it is possible for a Hamiltonian perturbation to introduce
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4S+4

Figure 3.2: Anyon pairs corresponding to each thick red edge may be created by U†. After

a time tf , the right anyon from each pair introduced will be propagated a distance 4S + 2 to

the right introducing Z errors along the darkening paths. Finally, U acting on the same red

segment may move an unpropagated anyon one position to the right or create a neighboring

anyon pair on it. The number of big steps (or equivalently of crossings) during the upward

propagation is given by S, which in the case of the figure is 2.

ambiguous distributions of anyon configurations in a time logarithmic in N , i.e. after a time

tf ∼ O(logN), error correction succeeds with probability not much higher than 1/2. Figure

3.2 schematically presents one such perturbation, indicating where anyon pairs should be

introduced, and paths Pk along which they should propagate. The fact that the trajectories

have only simple crossings allows them to be implemented by weak local Hamiltonian per-

turbation terms involving at most 8 bodies, as obtained from Eq. (3.33), with p, q being next

nearest neighbors. Furthermore, the trajectory length is no more than twice the distance at

which the anyon pair is finally separated.

The length of anyon propagation trajectories is 8S + 4, where

S =

⌈
lnN

2p

⌉
, (3.39)

and each has 2S simple crossings with other trajectories. The time required to perform such

a propagation by fixed strength local perturbations is proportional to S (i.e. logarithmic in

N).

A relevant property of such a perturbation is that anyons observed when performing

unperturbed error correction after an evolution time tf are always collinear. The anyon type

and line direction may be chosen to coincide with any of the logical operations, translating

to the fact that any logical error may be introduced. This also has the desirable effect of

simplifying the analysis of anyon matching criteria. There are only two logically inequivalent
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anyon matchings on the line, which are the two perfect matchings in which each anyon is paired

with one of its two nearest neighbors (i.e. right or left). The point is that one matching will be

logically equivalent to the actual trajectories performed by the anyons, canceling any errors

introduced, whereas the other will complete the actual paths into a logical error. A simple

criterion to determine which case we are dealing with is to count how many times the actual

trajectories, together with the anyon matching, cross a vertical line or any homologically

equivalent curve. An odd number of crossings means that a logical error has been completed,

whereas an even number of crossings means that the proposed pairing has been successful at

error correcting.

We study the success probability of two apparently reasonable matching criteria. The first

minimizes the furthest distance among paired anyons. The second, for which a polynomial

algorithm is known [122], consists of minimizing the sum of distances among paired anyons.

Proofs and numerics will be provided for the large N regime given by N � 4S + 2 which

convey a high logical error rate.

Anyon matching that minimizes L∞

Let us first consider minimizing the furthest distance among paired anyons. This is the L∞

norm of the vector with components given by the individual distances among anyons paired

by the matching. We will prove that the probability of introducing a particular logical error

is close to 1/2 by considering two disjoint scenarios. The first is the very unlikely scenario in

which, on syndrome measurement, two consecutive anyons are measured at a distance ≥ D

(by consecutive, we mean no additional anyons were measured in the interval between them).

The second is composed of anyon distributions consistent with the measurement of a fixed

pair of consecutive anyons at a distance ≤ D. For such distributions, the number of activated

anyon paths passing completely over the fixed pair is shown to be odd with probability very

close to 1/2.

Let us first bound the probability of observing two consecutive anyons at a distance greater

than D in the syndrome measurement for the evolved state. Given a fixed region of length

D, at least bD/4c different potential anyon paths start and end in it. Furthermore, assuming

D < 4S, the probabilities for not measuring anyons in this region are independent and are

1− p for each end of an anyon path and (1− p)2 for each start of an anyon path, since both
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U and U† could have created anyons in this case. The anyon-free region can begin in any

of N locations of the full loop. Thus, regardless of correlations, the probability of having D

consecutive anyon-free sites is upper bounded by N(1− p)3bD/4c.

Assume now that a pair of consecutive anyons is measured at a distance no greater than

D. There are at least b(4S − D)/4c potential anyon paths going over this region, each

with independent probability p of being observed. On syndrome read-out, the number of

such paths that is activated is odd with a probability approaching 1/2 at least as fast as

1
2(1± (1− 2p)b(4S−D)/4c). Since the L∞ norm correction completes a logical error if the most

distant consecutive anyon pair is covered by an odd number of activated anyon paths, then

by inserting S = d ln(N)
2p e and D = d8 ln(N)

5p e, we get a probability lower bound for logical errors

which approaches 1/2 as 1/2(1−N−1/5).

Anyon matching that minimizes L1

Let us now consider the anyon pairing criterion that minimizes the total sum of distances

among paired anyons. Since all anyons are found on a loop of length N , this criterion will

always choose a pairing with total distance no greater than N/2. Thus it will successfully

error correct if and only if the total distance of regions of the loop covered an odd number

of times by observed anyons is no greater than N/2. By taking S to be d lnN
2p e, we expect to

find roughly half of the sites flipped. To see this, note that, on average, each site is covered

approximately Sε times. Moreover, the probability of each site being covered an odd number

of times is 1
2 [1− (1−2p)S ]. For small p and the chosen value of S, the average number of sites

covered an odd number of times is approximated by N
2 − 1

2N . Furthermore, we expect the

actual number of such sites to approximately follow a normal distribution around this value,

which would imply that logical errors are completed with a probability close to 1
2 . However,

since the flipping of different nearby sites are highly correlated events, it is not clear how to

go about proving this. Instead, computer simulations (Fig. 3.3) provide very strong numerical

evidence.

3.4.5 Discussion

We have proven that Hamiltonian perturbations can completely destroy the information stored

in the 2D toric code in a time proportional to N . The only assumptions are that the precise
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Figure 3.3: The average probability of error for L1 correction after the system evolves for a

time tf under the described Hamiltonian perturbation. Here, anyon pairs arise, and evolve

to distances of d20 ln(N)e, with a probability of 10%, all collinear on a line of length N .

Each point represents an average over 106 random samples, with error bars representing the

magnitude of estimated statistical errors.

Hamiltonian perturbation is unknown, and that recovery begins by performing unperturbed

syndrome measurements. A simple family of Hamiltonian perturbations with associated prob-

abilities, was used to justify that the introduction of logical errors in O(N) time is fully in-

dependent from the correction protocol used. This approach remains applicable for arbitrary

2D stabilizer codes, even when the stabilizer terms are of uneven strength.

Furthermore, we have argued that logical errors may be introduced by weak local pertur-

bations in a time logarithmic with the system size. In particular, two apparently reasonable

anyon pairing schemes were shown to provide an unreliable recovery mechanism against weak

local perturbations acting for O(logN) time.

A fully general proof, including all possible error correction strategies based on syndrome

measurement is currently lacking for the O(logN) error introduction. The generality of the

O(N) construction is obtained by considering a family of different perturbations which could

produce the same syndrome outcomes through topologically inequivalent error paths. It may

be fruitful to apply such an approach for a general proof of logical errors produced in O(logN)

time.
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3.5 Limitations of the 2D Ising model

In present day classical computers, magnetic domains are widely used to provide passive

safekeeping of classical information. The Ising model is usually used to elucidate the origin of

such long lived magnetized states as a collective effect arising from microscopic local 2-body

interactions

HIsing = −J
∑
〈i,j〉

ZiZj . (3.40)

In two and higher spatial dimensions, the nearest neighbor Ising model presents a finite

temperature phase transition between a disordered phase and an ordered magnetized phase.

However, it has long been known that such a system looses its asymptotic bistability under

the bias produced by even the weakest of magnetic fields [106, 30, 51]

H̃Ising = −J
∑
〈i,j〉

ZiZj + ε
∑
j

Zj . (3.41)

Such studies consider the dynamics of minority droplets in a 2D Ising model as given by

phenomenological equations or the Metropolis algorithm. For a Metropolis algorithm in

which such a systematic magnetic field ε is included, there is only one stable phase parallel

to the field. The anti-parallel phase becomes metastable, with a lifetime exponential in J/ε.

Dependence of the information lifetime on lattice size N appears only for the small N ≤ 4J/ε

and will thus not appear if one first takes the limit for large N .

In this section we consider storing one bit of classical information subject to a quantum

evolution of a perturbed 2D Ising Hamiltonian. The observable on which the classical bit is

encoded is assumed to be the overall direction for magnetization Z̄ = majjZj . The pertur-

bations may conceptually be split into two parts, Z parallel magnetic fields which introduce

additional degeneracies to the Hamiltonian, and transverse magnetic fields or many body

terms which couple the new ground states, introducing a hopping between them. The pertur-

bation terms considered will not show support or intensity growing with N , and they will be

capable of introducing logical errors to the unperturbed logical observable Z̄ in a time also

independent of N .
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3.5.1 Hamiltonian perturbation proposal

Consider dividing the N × N 2D periodic lattice with a chessboard pattern of squares of

M×M spins where M > 4J/εmax and J is, again, the nearest neighbor Ising coupling constant

and εmax is the greatest local perturbation strength one expects the Hamiltonian to protect

information against. For simplicity, we assume N = 2nM , where n is an integer. Consider

alternately introducing ±εZj magnetic fields in the lattice site j belonging to white/black

squares of the chessboard pattern respectively. The value ε is chosen homogeneously for

each square such that the energy difference, 2εM2, from fully field parallel and anti-parallel

configurations of each square exactly matches the maximum energy difference for border Ising

terms 8MJ . For N � J/ε such a perturbation is always possible.

The point is that now, the ground space of the system acquires a much higher degeneracy,

i.e. between 22n2+1 − 1 and 24n2
. Each black square could be fully magnetized parallel to

its preferred field direction or parallel to the direction of its four neighboring squares if it is

opposite. By taking one spin variable for each square, the ground states may be identified

with those of a 2D n × n anti-ferromagnetic Ising model with magnetic field. Three impor-

tant ground states are the two fully magnetized lattice configurations and the checkerboard

configuration in which all spins are fully aligned to their local magnetic field. The gap of

these ground states with respect to low lying exited states is 2ε, which is the energy penalty

of flipping a corner lattice site of a square that is fully oriented in the direction of the field

but anti-parallel to the two neighboring squares adjacent to the stated corner.

A flipping term for each square of the chessboard should be of the form α
⊗

j Xj , where

the j is taken over all the M2 sites in the square. Such terms can be introduced either on

all black squares or all white squares. This would respectively couple one of the two fully

magnetized configurations with the checkerboard configuration, achieving a full swap of state

in a time tflip = π
α . This evolution is exact when such M2-body terms of norm α are allowed,

which implies that a proof of Hamiltonian stability will not only require assuming sufficiently

weak perturbation terms but also a specific bound for the number of bodies on which such

terms act.

Let us now focus on the magnitude of α. This is the coefficient for a many body term, in

which the size of the support scales like M2 = (4J/ε)2, independent of N . One may consider

obtaining such a term from theM2-th order degenerate perturbation theory expansion of fields
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of the form ε2
∑

j Xj . For perturbation theory to be strictly valid, one needs M2ε2 < ε. Even

then, this small magnitude must be taken to the M2-th power to obtain the first non vanishing

expansion term. The time required to flip all spins in a plaquette is then proportional to:

α ≈ ε2

(ε2

ε

)M2

≈ εM−2(M2−1) = ε
( ε

4J

) 32J2

ε2
+2
. (3.42)

This expression has no dependence on N and the same perturbation can be introduced in all

squares of a given color to yield a fixed flip time. Furthermore, we note that the state of those

chessboard squares which are not perturbed is fixed and may be traced out exactly. Hence,

the second set of perturbations applied are fully independent and degenerate perturbation

theory may be rigorously applied.

3.5.2 Discussion

Although the flip time shows no dependence on N , it grows faster than exponentially in

terms of 4J/ε. It may well be that for magnetic domains, describable by such a 2D Ising

Hamiltonian as Eq. (3.40), the ratio 4J/ε is sufficiently large to provide a lifetime longer than

would be experimentally verifiable. More importatntly, we are dealing with an extremely

simplified model, with the particularity of neglecting any long range interactions of actual

physical systems and more importantly, dissipative terms in the form of decoherence which

would dissallow the coherent evolution and thus help in preserving the classical information.

The fact that the perturbation is unknown means that if such a checkerboard state is

observed on read-out, information is not recoverable. Such schemes may clearly be generalized

to higher dimensions and to deformations of the checkerboard pattern. The existence of such

perturbations elucidates important limitations for statements one may formally prove about

the classical memory reliability of the Ising model, and therefore what conclusions one might

draw about the presence of a macroscopic energy barrier (string tension) which the 2D Ising

model certainly possesses. However, it is not clear that these arguments can be applied, for

instance, to the 4D toric code since it is a feature of classical memories, but not quantum

ones, that local fields can split degeneracies.
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3.6 Aggressive noise models

In previous sections, we explored the effects of Hamiltonian perturbations on quantum mem-

ories, and particularly on the 2D toric code. We also considered examples of local cold

environments perturbatively coupled to a system, as illustrated by Secs. 3.2.2 and 3.3. The

only energy available in these scenarios was due to local perturbations on the system plus

environment. Intuitively, a small but constant energy density proportional to ε was allowed.

While this energy is potentially O(Nd) for a d spatial dimension lattice of Nd qubits, it is

difficult to concentrate it in specific regions in order to generate logical errors. In compari-

son, stabilizer codes only require O(Nd−1) energy to implement a logical gate through local

rotations.

More aggressive noise models may locally introduce large amounts of energy into the

system while keeping perturbation magnitudes weak. Such an example is provided by weak yet

time dependent Hamiltonian perturbations. These are relevant when one considers effective

protecting Hamiltonians in the interaction picture [23]. Another possibility is to consider the

weak coupling of the system to an environment which starts in a high energy state. Noise

constructions for these models shall be presented in this section.

In calling such noise models aggressive, we convey the fact that we do not expect “rea-

sonable” Hamiltonian protection schemes to guarantee a long lifetime against such models.

Thus, their study may help identify required restrictions on the noise model in order to allow

for provably robust Hamiltonian protected memory models. Furthermore, it may provide

insight regarding potentially fruitful proof techniques.

3.6.1 Time-varying Perturbations

When considering Hamiltonian perturbations, we assumed that we were unable to determine

the new ground space due to the perturbation, and thus encoded in the original ground state

space. One might consider an intermediate setting where encoding can be achieved in the

perturbed code-space, perhaps due to an adiabatic evolution such as proposed by [54], or by

a precise characterization and compensation of the perturbations present at the start of the

storage time. However, in real experiments, stray fields responsible for perturbations may

fluctuate in time. Again, if one can track adiabatic changes in the perturbations, the proof of

Hastings and Wen [57] continues to hold because Lieb-Robinson bounds apply to time-varying
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local Hamiltonians, and we can therefore adapt the final error correction step as well. Instead,

we proceed assuming it is impossible to precisely learn this time variation.

Adiabatically varying perturbations

One extreme case to consider is that the perturbation varies adiabatically, so that the system

remains in its ground state space. If we do not apply error correction, then we are concerned

with how long it takes before the initial and final ground states have a small overlap. We

shall assume that the original Hamiltonian H of N qubits has an energy gap γ, and we will

consider the time-varying perturbation

V = U(t)HU†(t)−H

where, as before,

U(t) =

N∏
j=1

e−itεXj/T

and T is the total time of the evolution, i.e. small local rotations are gradually introduced.

At any time 0 ≤ t ≤ T , the effective Hamiltonian U(t)HU†(t) has the same energy gap as

H, which means that the adiabatic condition is satisfied for T ∼ 1/poly(γ). From previous

considerations, Eqn. (3.61), we know that the overlap of the initial state |ψ(0)〉 and the evolved

state, the ground state of the adiabatically perturbed Hamiltonian, have an average overlap

of no more than tr (P0) (1 − 3
4 sin2(tε/T ))N . For large N and small ε, this means that the

final overlap is of the order tr (P0) exp(−3ε2N
4 ) if a phase of error correction is not involved.

When error correction is introduced to this scenario, this maps into the situation where

our quantum memory is initially encoded in the perturbed subspace, but decoding is using the

original, unperturbed, error correction strategy. In the specific instance of the perturbation

U(T ), we find that X rotations are applied probabilistically on each site, and hence our QECC

must have a superior error threshold.

Hastings and Wen [57] reveal a similar interpretation holds for all possible perturbations

since all local terms are converted into quasi-local rotations.

Rapidly oscillating perturbations

Another extreme scenario is when perturbations are allowed to oscillate with arbitrary fre-

quencies. A simple construction shows that for stabilizer Hamiltonians, this allows the in-
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troduction of arbitrary errors in constant time. We expect that optimal control theory may

provide the tools to generalize such results to arbitrary Hamiltonians.

Consider a stabilizer HamiltonianH0 and a logical error to implement L = PMPM−1 . . . P2P1,

which is decomposed into Pauli operators Pi on different sites. We then consider the time

dependent Hamiltonian perturbation

V (t) = ε(t)
∑
i

e−iH0tPie
iH0t. (3.43)

This perturbation is weak if ε(t) is sufficiently small. Furthermore, given that H0 is a stabilizer

Hamiltonian, V (t) may be written as a sum of local terms (at least as local as the stabilizer

operators). Finally, the dependence of ε(t) on time, is to allow for ε(0) = 0 which makes the

initial encoding equivalent for both perturbed and unperturbed Hamiltonians.

The point of such a perturbation, is that it is possible to explicitly calculate the evolution

of the system state in the interaction picture.

|ψI(t)〉 = Πie
−iPi

∫ t
0 ε(t

′)dt′ |ψI(0)〉 (3.44)

This means that after a constant time tf such that π
2 =

∫ tf
0 ε(t′)dt′, the target operation L

is perfectly implemented in the interaction picture. If |ψ(0)〉 is an eigenstate, then L is also

implemented in the Schrödinger picture, modulo a global phase.

Taking L to be a logical operator of the stabilizer code used, this means that time depen-

dent perturbations of sufficiently high frequency can destroy stored information in constant

time. Here, sufficiently high frequency refers to having perturbation terms which oscillate

with frequencies at least as high as those corresponding to localized excitations.

3.6.2 Stabilizer Hamiltonians and energetic environment

In what follows, we consider a model in which an environment starts out in an arbitrarily

energetic state. However, the couplings between system and environment are required to

remain small and local.

For simplicity, we assume that the system is defined by a stabilizer Hamiltonian HS and

that it starts out in an eigenstate |ψ0〉 of all stabilizer operators. We will consider a sequence

of M Pauli operators on different sites L = PMPM−1 . . . P2P1 compounding to a logical

operation. In the case of translationally invariant stabilizer codes, explicit constructions
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for these operators are given in [69]. Finally, we may assume a code state |ψ0〉, such that

〈ψ0|L |ψ0〉 = 0.

Motivated by the realization that, in order to introduce logical errors, we need to transfer

some energy from the environment to the system, we choose a specific environment Hamilto-

nian HE = −H∗S (at this point, the complex conjugate is unnecessary, but will become useful

later). This means that all steps up in energy in the system correspond to an identical step

down in energy in the environment. We start the environment state in |ψ∗0〉.
In this scenario, the coupling

HSE = ε

M∑
i=1

PS,i ⊗ P ∗E,i (3.45)

is enough to produce the logical error L in constant time π
2ε . To see this, consider the two

states PS,i |ψ0〉P ∗E,i |ψ∗0〉 and PS,iPS,i |ψ0〉P ∗E,iP ∗E,i |ψ∗0〉. Here, the subindex i is an arbitrary

binary vector indicating which values of j a product of PS,j (respectively P ∗E,j) should be taken

over. First of all, since we have assumed HS is a stabilizer, and the PS,i are Pauli operators,

the aforementioned states are zero eigenstates of HS ⊗ 11E + 11S ⊗ HE . Furthermore, the

effective Hamiltonian for the perturbation term εPS,i ⊗ P ∗E,i acting on the pair of states

PS,i |ψ0〉P ∗E,i |ψ∗0〉 and PS,iPS,i |ψ0〉P ∗E,iP ∗E,i |ψ∗0〉 is just a matrix

ε

 0 1

1 0

 ,

independent of i. This means that we can consider the action of the different PS,i⊗P ∗E,i terms

independently:

e−iHSEt |ψ0〉 =

(
M⊗
i=1

e−iεPS,i⊗P
∗
E,it

)
|ψ0〉 .

Due to the effective Hamiltonian, PS,i |ψ0〉P ∗E,i |ψ∗0〉 is mapped to PS,iPS,i |ψ0〉P ∗E,iP ∗E,i |ψ∗0〉 in

a time π/(2ε). Thus, the effect of the entire perturbation is to rotate, in a time π/(2ε) from

|ψ0〉 to L |ψ0〉.
Of course, this approach requires the environment state to have a very high initial energy,

namely to start in one of its highest energy states. A refinement of this argument allows us

to only change the sign of stabilizers in HE which share support with L. For a local stabilizer

code in d spatial dimensions consisting of Nd qubits, it was shown [69, 22] that there are

logical operators L with support on k ∝ Nd−1 sites. The initial state of the environment
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|ψE〉 = |ψ∗0〉 is still an eigenvector of these stabilizers, with the same eigenvalues. Thus,

coupling to an environment with an energy proportional to Nd−1, may also introduce logical

errors in the same time. This means that the energy required from the environment per

system qubit tends to 0 as 1
N (compare to perturbations, which introduce an energy ε per

site). The catch however, is that the distribution of the energy in the initial environment is

highly specific and is in general very different from distributions that may be provided by low

temperature thermal states.

We conclude that no stabilizer Hamiltonian will be capable of providing a guarantee for the

logical integrity of stored information under the presence of an adversarial, weakly coupled,

local environment. Further statistical assumptions such as energy distribution associated to a

low temperature environment state need to be included in addition to the weak local coupling

assumptions.

3.6.3 Non-stabilizer Hamiltonians

Stabilizer Hamiltonians are not the only possible candidates for providing information pro-

tection, although they are particularly attractive because local errors remain as local errors

(not propagating or multiplying in the absence of perturbations). Let us now consider the

more general case of distance preserving Hamiltonians i.e. ones which might not leave local

errors perfectly localized, but do not increase the distance of the error as defined by an error

correcting code4. Using the same construction as in the previous section, we will show that

weak coupling to an environment can also introduce the relevant logical error into a distance

preserving Hamiltonian (i.e. a logical operation converting between the most distant code

states) for classical memories, by which we mean that one set of local errors becomes irrel-

evant, say Z errors, and the presence of a logical error on the classical bit depends only on

the local X errors present. The distance preserving assumption means that the number of X

errors is preserved, [HS ,
∑

i Zi] = 0. The maximum distance between any 2 states is for the

eigenstates
⊗

i |0〉i and
⊗

i |1〉i, suggesting we should use these states for encoding.

Similarly to the previous subsection, we introduce an environment, and a perturbative

4As an aside, note that the 3D XZ-compass code [11] is an example of a code where the errors do not

remain in fixed positions, but preserve the values of the observables (since the observables commute with the

Hamiltonian). This suggests that applying explicit error correction is already likely to become much more

problematic for these codes.
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coupling between system and environment,

H(ε) = HS ⊗ 11E + 11S ⊗HE + ε
∑
i

Xi,S ⊗Xi,E . (3.46)

The system Hamiltonian is weakly coupled to a “mirror” system HE = −H∗S . This pertur-

bative coupling is responsible for the evolution of a mirrored state |0〉⊗N |0〉⊗N , eigenstate of

the unperturbed Hamiltonian H(0).

To analyze the evolution, let us consider the action of the operators Xi in terms of the

eigenstates of HS . Due to the commutation relation, there must be
(
N
m

)
eigenstates {|ψm,j〉}

of HS which are simultaneous eigenvectors of
∑

i Zi with eigenvalue 2m − N . We can thus

express the eigenvectors |ψm,j〉 of HS in terms of the canonical basis as

|ψm,j〉 =
∑

i:w(i)=m

α(m)i,jXi |0〉⊗N =
∑

i:w(i)=m

α(m)i,j |i〉 , (3.47)

where i are binary vectors with m non zero components and |i〉 are the respective states from

the canonical basis. The matrix α(m) is unitary as it relates two orthonormal bases of the

same subspace. Define

|m〉 =
1√(
N
m

) ∑
i:w(i)=m

|i〉 |i〉

=
1√(
N
m

) ∑
j,k,(i):w(i)=m

α(m)∗i,jα(m)i,k |ψm,j〉
∣∣ψ∗m,k〉

=
1√(
N
m

)∑
j

|ψm,j〉
∣∣ψ∗m,j〉 . (3.48)

From this, one obtains that

(HS ⊗ 11E − 11S ⊗H∗S) |m〉 = 0, (3.49)

implying that any non trivial evolution of |m〉 arises exclusively from the perturbative coupling

and is given by

H(ε) |m〉 = εJm
∣∣m− 1

〉
+ εJm+1

∣∣m+ 1
〉
, (3.50)

with Jm =
√
m(N + 1−m). These are precisely the coefficients performing perfect state

transfer between
∣∣0〉 = |0〉⊗2N and

∣∣N〉 = |1〉⊗2N in a constant time t = π
2ε [29, 68].

These results exclude the possibility of proving robustness against weak adversarial cou-

pling to an arbitrarily initialized environment, even of many classical memories using the
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repetition code (such as Ising models). We learn that if the environment can provide enough

energy, then even weak local couplings may be sufficient to produce logical operations. This

also motivates the desire to encode in the ground state space of the Hamiltonian since, were

we to encode in a higher energy subspace, the environment needs less energy to cause de-

structive effects. Alternatively, the mechanism presented here could present a useful way to

implement gates on a memory.

3.7 Further applications

Constructed perturbations and results presented in this chapter have focused on elucidating

limitations of passive quantum memories. However, our results may be recast in the following

other scenarios.

Adiabatic Quantum Computation- The standard approach to adiabatic quantum

computation consists of implementing an adiabatic evolution

H(t) = f(t)Hi + (1− f(t))Hf , (3.51)

between Hamiltonians Hi and Hf , where f(0) = 1 and f(T ) = 0. While the ground state of

the initial Hamiltonian Hi is expected to be readily prepared, the ground state of the final

Hamiltonian Hf encodes the result of the desired quantum computation. An energy gap no

less than γ between ground state and excited states of H(t) is required for the duration of

the adiabatic evolution.

In this context, it is possible that Hamiltonian perturbations could change the initial or

final ground state, and maybe even close the gap during the Hamiltonian trajectory. For

example, a time dependent perturbation

V (t) = UH(t)U† −H(t), (3.52)

with U defined as in Eq. (3.3), can make the perturbed initial and final ground states almost

orthogonal to the unperturbed versions (see Eq. (3.8)), while keeping the same gap as H(t).

Even assuming the perturbed initial ground state is exactly prepared, only if the final state

belongs to a code space with an error threshold, will it be possible to reliably recover the

desired result, as in 3.6.1.
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Connections between adiabatic quantum computation and passive quantum memories

can be expected to continue into the regime where error correction is incorporated, and

future studies may better elucidate the issues involved in developing a fault-tolerant theory

of adiabatic quantum computation [82].

Topological Quantum Computation- Difficulties in implementing quantum memories

can also be related to some of the difficulties in implementing a topological quantum compu-

tation. In particular, in section 3.4 we illustrated how constant Hamiltonian perturbations

can create and propagate anyons in the 2D toric code. In the context of topological quantum

computation, where gates are implemented through the braiding of anyons, the existence of

perturbations capable of creating and propagating anyon pairs is at least equally disturbing

as in the memory scenario.

Quantum Simulations- One of the most interesting uses of a quantum computer is likely

to be the simulation of other quantum systems. While one could express these simulations

in terms of the circuit model of quantum computation, and from there create a circuit-based

theory of fault-tolerance for quantum simulation, it would be advantageous to understand

how this could be implemented more directly, via the simulation of an encoded Hamiltonian.

A logical first step would be to encode the state of each subsystem to be simulated into

a quantum memory. Thus, establishing when quantum memories exist, or when they fail,

has implications in this case. One of the most commonly applied techniques in Hamilto-

nian simulation is that of the Trotter-Suzuki decomposition, where pulses of non-commuting

Hamiltonians are combined into one effective Hamiltonian to some accuracy δ. This inaccu-

racy may be treated as a time dependent Hamiltonian perturbation. Given the power such

perturbations were shown to have, it is with great care that one should consider the use of

passive quantum memories as elements for such quantum simulators.

3.8 Conclusions

In this chapter, we have studied several constraints on the extent to which a many body Hamil-

tonian can be expected to protect quantum information against weak local coupling to an

environment. First of all, we showed that gapped local Hamiltonians have eigenstates which

are asymptotically unstable under local Hamiltonian perturbations. This result, commonly

referred to as Anderson’s orthogonality catastrophe [10] shows that a gap is not sufficient to
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guarantee protection against errors [65, 53]. We proved that a weakly coupled cold environ-

ment can alter the evolution of any quantum state leading to an exponentially small overlap

between initial and final states in constant time. Taking these results together, we conclude

that quantum memory schemes must encode information into a logical subsystem instead of

restricting to a particular subspace.

When applied to the 3D XZ-compass model [11], a self-correcting quantum memory pro-

posal, we find that the standard QECC protocol is not capable of recovering the encoded

information after a constant time. This means that the unperturbed order parameter is not

preserved. Our results extend to other systems revealing that the code and error correct-

ing process must possess an error threshold. Similar conclusions may be drawn in scenarios

where information encoding and evolution follow a perturbed Hamiltonian but read-out and

decoding do not.

Further explicit local Hamiltonian perturbation constructions illustrate that while adapt-

ing for known perturbations is theoretically possible, arbitrary unknown perturbations can

destroy the storage properties of codes such as the 2D Toric code in a time O(logN). In

this case, the proposed adversarial Hamiltonian perturbation heavily relies on the absence

of a macroscopic energy barrier (it is possible to transform orthogonal encoded states via a

sequence of local operations while keeping intermediate states in a low energy subspace). By

considering the 2D Ising model, we have argued that, in and of itself, a macroscopic energy

barrier is not sufficient to protect against perturbations. Let us stress once more, that the

perturbations considered are highly atypical, and that furthermore, we expect that genuine

dissipation mechanisms will play a key role in analyzing the robustness of such models.

Finally, we have considered strong noise models such as time varying Hamiltonian per-

turbations and weak coupling to an arbitrarily initialized environment. We showed that

these noise models could apply logical transformations on information protected by stabilizer

Hamiltonians or distance preserving classical memories in constant time. Although we con-

sider such noise models to be too strong to be of practical relevance, we expect these result

to provide insight into how one may prove properties of passive quantum memories and un-

der which assumptions. For instance, since such time-varying Hamiltonian perturbations can

destroy the 4D toric code, then when trying to prove robustness against static perturbations,

Lieb-Robinson bounds are unlikely to be beneficial.
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Having proven a variety of limitations for quantum memory models and elucidated some

required conditions, the next step is to incorporate this deeper understanding into new de-

signs for quantum memories. One major route is to establish a set of necessary and sufficient

conditions under which a quantum memory is protected against unknown weak static per-

turbations. Under such a model, we may once again raise the question of whether good

protecting Hamiltonians in two or three spatial dimensions exist. Furthermore, one would

hope to find similar conditions under an extended perturbation model allowing a perturba-

tively coupled local environment. Here, a central problem is to determine which physically

realistic assumption may be made on the environment such that positive results are still at-

tainable (i.e. conditions on the initial state of the environment, such as it being prepared in

its ground state). Finally, one may study the possibility of engineering an out of equilibrium

environment to provide additional protection to quantum information.

3.A State evolution in perturbed gapped Hamiltonians

Energy gaps are considered as a positive feature for a protecting Hamiltonian, since they are

expected to provide an energetic barrier which an error process is required to overcome. How-

ever, it will be shown that for sufficiently large N , the fidelity of the unperturbed eigenstates

acquires an upper bound close to 1/2 after being evolved under the effect of a perturbed

Hamiltonian for a time inversely proportional to the gap energy γ.

If a system is perturbed, but we do not know the nature of the perturbation, the best

strategy is, arguably, to continue using the unperturbed encoding (i.e. the eigenstates of the

unperturbed Hamiltonian). The survival probability for an unperturbed eigenstate |ψ0〉 of H

after evolution under a perturbed Hamiltonian H̃ for a given time t (Eq. (3.3)) is, without

error correction

S(t) =
∣∣∣〈ψ0| e−itH̃ |ψ0〉

∣∣∣2 =
∣∣∣〈ψ0| Ue−itHU† |ψ0〉

∣∣∣2 , (3.53)

i.e. we can express S(t) as the overlap of U† |ψ0〉 with itself under the evolution of the

unperturbed Hamiltonian H. Furthermore, in terms of the eigenstate decomposition

U† |ψ0〉 =
∑
j

αj |ψj〉 where H |ψj〉 = Ej |ψj〉 , (3.54)
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Figure 3.4: There is an energy gap γ separating the eigenenergies corresponding to an expo-

nentially small subspace P0 from the energies of the Hamiltonian eigenstates giving rise to

the rest of the Hilbert space.

S(t) may be expanded as

S(t) =
∑
i,j

|αi|2 |αj |2 cos[(Ei − Ej)t]. (3.55)

Assume the initial state |ψ0〉 belongs to an energy subspace P0 of H (i.e. 〈ψ0|P0 |ψ0〉 = 1),

and that H imposes an energetic gap γ between the subspace P0 and its orthogonal subspace

(see figure 3.4). This allows the sum in Eq. (3.55) to be split as

S(t) =
∑

|ψi〉,|ψj〉∈P0

|αi|2 |αj |2 cos((Ei − Ej)t)

+
∑

|ψi〉,|ψj〉6∈P0

|αi|2 |αj |2 cos((Ei − Ej)t)

+ 2
∑

|ψi〉∈P0,|ψj〉6∈P0

|αi|2 |αj |2 cos((Ei − Ej)t)

(3.56)

We then define R, the UP0U† subspace overlap of |ψ0〉 as

R = 〈ψ0| UP0U† |ψ0〉 =
∑
|ψi〉∈P0

|αi|2 . (3.57)

Taking the time average 〈S(t′)〉t′∈[0,t] = 1
t

∫ t
0 S(t′)dt′, and noting that

|Ei − Ej | ≥ γ ⇒
∣∣∣∣∫ t

0
cos
(
(Ei − Ej)t′

)
dt′
∣∣∣∣ ≤ 1

γ
, (3.58)

Poincaré recurrences are averaged out, providing a bound

〈S(t′)〉t′∈[0,t] ≤ R2 + (1−R)2 +
2

γt
R(1−R). (3.59)
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Although the bound in Eq. (3.59) is minimized for R = 1/2, this does not imply that the

smallest values for 〈S(t′)〉t′∈[0,t] are actually obtained for R = 1/2.

A sufficient condition for the existence of a weak perturbation yielding R = 1
2 may now

be obtained by means of continuity arguments. First, note that R depends continuously on

the parameter ε appearing in the definition of the rotation U , and R = 1 for ε = 0. This

means that if, for some ε0 > 0, we find that R < 1/2, then R must be equal to 1/2 for some

smaller positive value 0 < ε < ε0.

As in the previous subsection, we may take 〈R〉U as an average of the overlap R over

different directions of the rotation U . An expression for 〈R〉U , in terms of the depolarizing

channel is given by

〈R〉U = tr
(
P0∆⊗Nλ(ε) (|ψi〉 〈ψi|)

)
. (3.60)

Including the dimension of the subspace P0, the same bound as in Eq. (3.8) may be used,

leading to

〈R〉U ≤ tr (P0)

(
1− 3

4
sin2(ε)

)N
. (3.61)

If the asymptotic growth of tr (P0) is slower than
(
1− 3

4 sin2(ε)
)−N

, the bound (3.61) will

be exponentially decreasing with N . This means that for sufficiently large N , and for most

directions of rotation, there is some small rotation parameter ε yielding R = 1/2. For the

important case of small ε and a constant dimension tr (P0), large N refers to N ∼ O(ε−2).

For those U leading to R = 1
2 , the time averaged survival probability 〈S(t′)〉t′∈[0,t] for the

corresponding perturbation may be bounded as

〈S(t′)〉t′∈[0,t] ≤
1

2
+

1

2γt
. (3.62)

We thus obtain that the overlap of initial encoded states and uncorrected evolved states will

drop to values not much larger than 1
2 in a time inversely proportional to the gap γ.

3.B The toric code

Kitaev introduced the toric code [74] with the intention of achieving reliable storage of quan-

tum information at the physical level, as in classical stable storage, rather than by periodi-

cally performing explicit error correction procedures. He proposed that the Hamiltonian of

the physical system being used to store the quantum information could, by its nature, make
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the information stable. His proposal consisted of a 2D system with non trivial topology (such

as the surface of a torus) with a stabilizer Hamiltonian composed of local terms. Qubits could

then be stored in the ground subspace with a degeneracy of 4g, with g being the genus of the

surface on which the physical qubits are located.

In the toric code Hamiltonian, the physical qubits are located on the edges of a planar

grid covering the 2D surface. For concreteness and simplicity, we shall restrict to the case

were the surface is a torus and the grid is an N ×N square lattice (i.e. 2N2 physical qubits).

The Hamiltonian is composed of commuting terms which are products of Pauli operators on

different sites (it is a stabilizer Hamiltonian). For each vertex s of the grid, there is a star

(or vertex) term As =
∏
j∈star(s)Xj which is the product of X operators over all the qubits

of edges reaching s. Analogously, for each face p of the grid, there is a plaquette (or face)

term Bp =
∏
j∈boundary(p) Zj which is the product of Z operators over all the qubits of edges

surrounding the face p. Since each vertex and face have either 0 or 2 common edges, the

terms As and Bp always commute. Hence all terms of the toric code Hamiltonian

H = −
∑
s

As −
∑
p

Bp (3.63)

commute, and may be simultaneously diagonalized. Since
∏
sAs = I and

∏
pBp = I, there

are only 2N2 − 2 independent binary quantum numbers asociated to these terms (stabilizer

operators) and each valid configuration determines a subspace of dimension 4. Due to this,

violations of plaquette (vertex) conditions As |ψ〉 = |ψ〉 (Bp |ψ〉 = |ψ〉) always come in respec-

tive pairs. Following usual nomenclature, virtual particles called vertex (plaquette) anyons

are respectively associated to these excitations. The set of stabilizers may be completed

with a pair of logical observables consisting of the product of Z (X) operators along non

contractible loops on the lattice (dual lattice), which may not be expressed as a product

of plaquette (star) terms as illustrated in figure 3.5. Together with the set of Hamiltonian

stabilizers any commuting pair of these four logical operators (X̄1, X̄2, Z̄1 and Z̄2) uniquely

determine the state.

A stated prerequisite for using the toric code as a protecting Hamiltonian is that the

energy splitting of the ground space due to Hamiltonian perturbations should be small. This

is argued through the use of degenerate perturbation theory and the fact that it only gives

non-zero splitting when the order taken is at least the lattice width/height, claiming an
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Figure 3.5: Each edge in the grid represents a physical qubit and opposite sides of the grid

are identified by toric periodic boundary conditions. Typical plaquette and vertex operators

are depicted near the center. Two vertical loop operators, X̄1 and Z̄2, which allow breaking

the degeneracy are also presented. One can take these to be the X and Z operators for the

first and second logically encoded qubits respectively. The complementary (anticommuting)

operators are given by analogous horizontal loops.

exponential suppression of perturbations in the ground space.

The interaction terms in this Hamiltonian may be used as the syndrome measurements

of an error correcting code with the desirable property that they are all geometrically local.

Such codes provide a way of obtaining a fault tolerance threshold without requiring the use of

concatenated quantum error correction. In this case, increasing the lattice size allows periodic

measurements to suppress the effect of errors up to any desired accuracy [32] provided the

accumulated error probability between measurements is below a certain threshold.

We will briefly review how error syndromes are interpreted and corrected, making the

simplifying assumption that the error syndromes are measured perfectly. These syndromes,

i.e. measurements of the stabilizers, reveal the presence of any anyons on the lattice, but do

not distinguish between their origin, so it is up to us to determine how these anyons should be

paired up in order to annihilate them. For each of the two kinds of anyon, the error correcting

procedure will pair up the anyons and annihilate them by applying a connecting string of

operators on them. If the connections performed and the actual origin of the anyons form

topologically trivial loops (contractible loops), the error correction will have been successful.

If however, the actual error pathways, together with the connections performed by the error
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Figure 3.6: Illustration of a possible configuration of three vertex anyon pairs (small circles).

Segments indicate possible qubits where Z rotations could be introduced in order to remove

the anyons. Solid and dotted segments illustrate the anyon matching arising from l1-EC

and l∞-EC respectively. Since together they complete a non-trivial loop, the matchings are

logically inequivalent.

correction procedure complete one, or an odd number of, non-trivial loops, then a logical

error will have been implemented.

Different criteria for pairing anyons may lead to logically different results. This is illus-

trated in figure 3.6, where two different criteria are used to pair up six anyons. In particular,

if one of the criteria compensates the actual error path, allowing recovery of the initial state,

the other will complete the error path into an undesired logical operation.

There are two correction protocols which we will consider, as they are expected to perform

adequately when correcting a small proportion of randomly located errors. The first, which

we refer to as l1-EC, consists of minimizing the sum of distances among paired anyons, for

which there is a polynomial time algorithm [122]. The second, l∞-EC minimizes the furthest

distance among paired anyons.

3.C Full Depolarization of the Toric Code’s Protected Sub-

space

In the section 3.4.2, we gave a construction for a single logical error X1, X2, Z1 or Z2 to

be applied with a probability exponentially close to 50%, independent of the model used
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for error correction. This is not sufficient to show that we get full depolarization of the

two-qubit subspace because it is not automatically clear that all 4 logical errors can be

introduced simultaneously in the same model; the problem being that crossing paths for anti-

commuting operations do not necessarily have a well-defined phase, and the perfect state

transfer operations can fail. Indeed, if two non commuting anyon propagation paths of equal

length cross at their midpoints, the amplitude corresponding to full propagation on both paths

can be seen to be 0 at times! It is the aim of this section to extend the setting of (Sec. 3.4.2) to

multiple logical errors while ensuring that the failure probability remain exponentially small

with system size, thereby allowing a fully depolarizing map on the code-space with probability

exponentially close to 1.

The basic idea behind this construction is that, for large systems, the propagation of

the anyons is essentially ballistic. Hence, we can divide our lattice into sections, and ensure

that the paths for anyons of different types only cross in regions where we can be (almost)

guaranteed of the order in which the anyons pass through. It is then our task to bound the

error probability.

Let us first consider the probability ps(t) of finding a propagated anyon at site s after a

propagation time t which is given in [70] as

ps(t) = f(s;D, sin2 t) = sin2s t cos2(D−s) t

(
D

s

)
, (3.64)

where f is the binomial distribution function and D is the propagation length (i.e. there are

D + 1 possible anyon sites in the path). Here time has been normalized such that perfect

transfer occurs at t = π
2 . Correspondingly, if P is the perfect transfer Hamiltonian for vertex

anyons and Π0 is the projector onto the subspace with a unique anyon at the transfer start

site, then

e−itPΠ0 =
∑

s αs(t)Z
⊗sΠ0

where |αs(t)| =
√
ps(t)

(3.65)

and Z⊗s is the tensor product of s consecutive Z operators along the anyon propagation path.

We are now in condition to compare an the actual evolution imposed by two non com-

muting anyon propagations |ψ(t)〉 and an ordered idealization of it |ψb;a(t)〉

|ψ(t)〉 = Ue−it(Pa+Pb)U† |ψ0〉
|ψb;a(t)〉 = Ue−itPae−itPbU† |ψ0〉 .

(3.66)
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We will assume that the physical qubit corresponding to the crossing of both paths is between

anyon sites sa − 1 and sa of the anyon path associated to Pa and between anyon sites sb − 1

and sb of the anyon path associated to Pb. Furthermore, we will assume sa � sb, where what

is meant by (�) will soon be made clear. Under these conditions, we will see that |ψ(t)〉
and |ψb;a(t)〉 are almost equal (at least during the time period corresponding to perfect state

transfer).

By definition, we have that 〈ψ(0)|ψb;a(0)〉 = 1. Let us now bound how fast this overlap

can actually decay

d 〈ψ(t)|ψb;a(t)〉
d t

= i 〈ψ(t)| [Pb, e−itPa ]e−itPbU† |ψ0〉 . (3.67)

This allows bounding ∣∣∣∣d 〈ψ(t)|ψb;a(t)〉
d t

∣∣∣∣ ≤ ∣∣∣[Pb, e−itPa ]e−itPbU† |ψ0〉
∣∣∣ . (3.68)

Now let Π
(a)
∅ and Π

(a)
0 be projectors onto the subspace with no anyons in the path of Pa

and the subspace where a single anyon is located at the initial site and define Π
(b)
∅ and Π

(b)
0

analogously. Recalling that |ψ0〉 is a code state and our choice of rotation U , we have

(Π
(a)
∅ + Π

(a)
0 )U† |ψ0〉 = U† |ψ0〉

(Π
(b)
∅ + Π

(b)
0 )U† |ψ0〉 = U† |ψ0〉 .

(3.69)

Commuting these projectors and using the expansion (3.65) of the perfect transfer we may

express the RHS of equation (3.68) by∣∣∣∣∣[Pb,∑
s

αs(t)Z
⊗sΠ

(a)
0 ]
∑
r

αr(t)X
⊗rΠ

(b)
0 U† |ψ0〉

∣∣∣∣∣ (3.70)

There is only one possible non commuting term in Pb and this only for s ≥ sa. Furthermore,

this term cancels for all but two terms in the sum over s′. We may then rewrite (3.70) as∣∣∣∣∣∣ 2Jsb
∑

s≥sa αs(t)Z
⊗sΠ

(a)
0 ×

×
(
αsb(t)X

⊗sb−1 + αsb−1(t)X⊗sb
)

Π
(b)
0 U† |ψ0〉

∣∣∣∣∣∣ (3.71)

Where Jsb is the strength of the term performing an anyon swap between sites sb and sb − 1.

Since each coefficient accompanies an orthogonal component of the state, we may recall the

definition in (3.65) and rewrite (3.71) as

2Jsb

√
[psb−1(t) + psb(t)]

∑
s≥sa

ps(t) sin2 ε, (3.72)
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where sin2 ε is the amplitude of Π
(a)
0 Π

(b)
0 U† |ψ0〉. An exponentially small upper bound will

now be given for the expression inside the square root .

[psb−1(t) + psb(t)]
∑

s≥sa ps(t)

≤ ∑
r≤sb f(r,D, sin2 t)

∑
s≥sa f(s,D, sin2 t)

= F (sb, D, sin
2 t)F (D − sa, D, cos2 t),

(3.73)

where F (k,N, p) =
∑k

i=0 f(i,N, p) is the cumulative binomial distribution function. Assum-

ing sb
D ≤ sin2 t ≤ sa

D we may use Hoeffding’s inequality [58] to bound (3.73) as

e−2
(D sin2 t−sb)

2

D e−2
(D sin2 t−sa)2

D ≤ e−
(sa−sb)

2

D , (3.74)

with equality holding for sin2 t = sa+sb
2D . In turn, a tighter bound can be obtained by using

Hoeffding’s inequality on a single factor of (3.73) when sin2 t ≥ sa
D or sb

D ≥ sin2 t.

Taking D = N/2 − 1 as in Sec. 3.4.2 and s − r ≥ sa − sb ≥ D/6 for instance, the

obtained upper bound becomes exponentially small in N . In turn, the derivative (3.68)

is exponentially small, meaning that the actual evolution is approximated by the ordered

evolution with exponentially good precision in N .

Figure 3.7: In an N ×N lattice, there are two sets of N/k rows (k ∼ O(1)) and two sets of

columns and rows, each of which corresponds to the construction of (Sec. 3.4.2) for a different

error type (X̄1, Z̄2 are introduced by columns starting at horizontal stripes and Z̄1 and X̄2

are introduced by rows starting from vertical stripes).

We have formally proven that for two non commuting anyon propagation paths which

intersect with a sufficiently large offset (i.e. ≥ D/6) the evolution can be accurately approxi-

mated by ordered anyon propagation. There is no obstacle in generalizing this result to many
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such anyon paths, as required to introduce logical errors with high probability. Some leading

factors of order N2 appear but crucial factors remain exponentially decreasing in N .

In Fig. 3.7, we illustrate a configuration allowing the simultaneous introduction of all

possible logical errors by anyon propagation within the lattice. The marked stripes of width

N/k indicate locations where perpendicular anyon propagations begin or end. The pertur-

bation to be introduced is chosen randomly as in Sec. 3.4.2, such that each propagation

row/column starts with equal probability in either of each pair of opposing stripes. Taking

k fixed allows sufficiently many repetitions of the single row/column construction that the

probability of introducing each type of logical error approaches 1
2 exponentially fast with N .

Thus, after a perturbed evolution for time tf = O(N), and a final application of an arbitrary

error correcting protocol based on unperturbed syndrome measurement, the resulting state

is exponentially close to the maximally mixed state 11/4 of the code-space.



Chapter 4

Quantum memories based on

engineered dissipation

Storing quantum information for long times without disruptions is a major re-

quirement for most quantum information technologies. A very appealing ap-

proach is to use self-correcting Hamiltonians, i.e. tailoring local interactions among

the qubits such that when the system is weakly coupled to a cold bath the ther-

malization process takes a long time. Here we propose an alternative but more

powerful approach in which the coupling to a bath is engineered, so that dis-

sipation protects the encoded qubit against more general kinds of errors. We

show that the method can be implemented locally in four dimensional lattice

geometries by means of a toric code, and propose a simple 2D set-up for proof of

principle experiments.

4.1 Introduction

There are two existing approaches to providing coherent quantum storage on many-body

systems. The first one corresponds to fault tolerant quantum circuits[113, 47]. If one can

perform quantum gates and provide fresh initialized qubits with a sufficiently high accuracy

and frequency, then quantum computing and in particular, quantum memory is possible for

a time exponential in the dedicated resources.

More recently, Kitaev [32, 74] proposed that it might be possible to protect quantum
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information passively by engineering of suitable Hamiltonian systems, in analogy to magnetic

domains for classical memories. While an energetically degenerate code subspace insensitive

to Hamiltonian perturbations is a necessary condition, it has become clear that there are

additional requirements for this approach to quantum memories to work. Possibly the most

important requirement is to cope with the undesired coupling between the storage system and

its environment. In this direction, the approach that has benefited from the most theoretical

progress goes by the moniker of self–correcting Hamiltonians, [11, 9, 53, 27].

For self–correcting Hamiltonians, a weak local coupling to a thermal bath is assumed.

Making a Born-Markov approximation, the evolution of the system can be described by a

thermalizing master equation. While for general local couplings, any initial state will decay to

the unique Gibbs state, it is still possible for the decay rate of specific observables to become

smaller as the number N of subsystems increases. This leads to the possibility of storing

quantum information by encoding it on a pair of slowly decaying anticommuting many-body

observables. A Hamiltonian will thus be called self–correcting provided that below a certain

finite bath temperature the dissipative dynamics leads to information lifetimes growing with

the system size (typically following an exponential increase). Alicky et al. [9] rigorously

proved an exponentially long relaxation time for protected observables in the 4D toric code.

Chesi et al. [26] generalized this result deriving a criteria for quantum memory based on

self–correcting Hamiltonians and lower bounds on the storage times. However, it is in general

not known how non thermal noise or even thermalization under a perturbed Hamiltonian

[104] affects this lifetime. In particular, this may be the case whenever the qubits are weakly

coupled to an additional bath which induces a small rate of depolarization[103].

Building on previous results, we propose and analyze an alternative way of protecting

quantum states. The method is similar to that of protecting Hamiltonians, but now the main

idea is to tailor the coupling of the qubits to a bath, so that the engineered dissipation extends

the life-time of the encoded qubit. Apart from being passive (i.e. not requiring the burden

of interrogating the quantum memory at intermediate times), the main advantage of this

scheme is that it can potentially correct for other kinds of errors beyond those generated by

thermalization, including depolarizing noise. In particular, we propose a specific method in

4 spatial dimensions inspired by toric codes and obtain evidence of its performance with the

help of numerical simulations. We also investigate a simplified 2-dimensional model protecting
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only from phase errors which could be a good candidate for proof of principle experiments.

Many-body classical memories based on dissipation (often under the name of asynchronous

celular automata) have naturally appeared in the context of classical fault tolerant computa-

tion. For example, using a simple local update rule on a 2D lattice, Toom [119, 50] showed

that classical information can be protected against weak local noise. A more elaborate update

rule by Gács [41] provide protection even on a 1D lattice. These results already suggest that

dissipation may offer a powerful alternative to the existing methods for constructing many-

body quantum memories, as investigated in the present work. In fact, several authors have

already proposed the use of continuous quantum error correcting codes [105, 5, 109, 101, 87].

However previous works concentrate on a single level of error correction and do not address

the large N many-body scenario. A notable exception is the work of Dennis et al. [32] intro-

ducing a heat bath algorithm (thermal dissipation for the 4D toric code) in order to simplify

the efficacy analysis of a local many body quantum error correction algorithm. At the crux

of this approach is that thermal dissipation can be interpreted not only as introducing deco-

herence (errors), but also as performing a form of error correction, with the balance between

the two effects roughly given by the bath temperature. Indeed, this heat bath algorithm can

already be seen as a dissipative quantum memory lending itself to more natural engineering.

In fact, engineered dissipation is more general in that it need not satisfy detailed balance

conditions and thus its power extends that of cooling a self–correcting Hamiltonian. In other

words, the steady state need not be an equilibrium state and its dynamics may show a net

flow (imagine a funnel receiving water from a hose). As the classical results show, this more

general kind of dissipation may be crucial in order to correct general kind of errors.

Our proposal can be viewed as another example where engineered dissipation may be-

come a useful and alternative tool in the context of quantum information processing, beyond

quantum computation [125], state engineering [125, 34], or entanglement creation [76]. In all

those cases, it is desirable to be able to couple small subsets of qubits to Markovian environ-

ments so that their evolution equation follows a prescribed master equation. As exposed in

[125], dissipative gadgets provide a direct way of implementing this is in terms of damped

qubits; that is, a set of qubits which themselves follow a damping master equation due to

their coupling to an environment. Those qubits can be directly coupled to the physical qubits

of the quantum memory or computer to provide the desired dissipation, and thus appear as
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an important resource in dissipative quantum information processing.

This chapter is organized as follows. In section 4.2 we briefly present the general idea of

engineered dissipative quantum memories. In section 4.3 we display two different but rather

obvious approaches to dissipative quantum memories and discuss why they are not entirely

satisfactory. In section 4.4 we present a specific method in 4 spatial dimensions as well as the

results of numerical simulations which validate the performance of the scheme. section 4.5

contains a simplified version in 2 spatial dimensions which corrects against phase errors and

that could be tested experimentally in the near future. In section 4.6 we show how one can

use dissipative qubits to engineer the dissipation and analyze under which condition one can

use them in this context. All previous section contain the main statements of our work. The

detailed proofs of our results and more thorough explanations are given in the appendices.

Figure 4.1: We assume that a piece of quantum information is encoded into a many body

system. The engineered dissipation, is then responsible for making the degrees of freedom

which carry the encoded quantum information resilient against the uncontrolled noise pro-

cesses taking place. Finally, the decoding process extracts the quantum information from the

collective degrees of freedom.

4.2 Statement of the problem

We consider a logical qubit encoded in N physical qubits, which are appropriately coupled to

an environment providing dissipation. We describe the action of the engineered environment,

as well as of the other sources of decoherence through a master equation

ρ̇ = Ldiss(ρ) + Lnoise(ρ) (4.1)

Here, ρ is the density operator for the qubits, Ldiss the Liouvillian describing the engineered

dissipation, and Lnoise will denote a noise term contribution to the master equation. This
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could be local depolarizing noise for instance

Lnoise(ρ) = ΓεLdep(ρ) = Γε

N∑
n=1

1n

2
⊗ trn(ρ)− ρ, (4.2)

or any other weak local noise term. Our goal is to show that for appropriate choices of Ldiss

we can extract the encoded qubit reliably after a time which substantially increases with N .

In general, any trace preserving dissipative master equation as Ldiss may be write in

Lindblad form [84]

ρ̇ = L(ρ) = −i[H, ρ] +
∑
k

2Lkρ0L
†
k − {L

†
kLkρ}+, (4.3)

consisting of a Hamiltonian term describing the unitary evolution, and a dissipative part

which may be written in terms of Lindblad or jump operators Lk. Furthermore, the models

of engineered dissipation we propose can be seen to adhere to a more benign form

ρ̇ =
∑
l

Γl [Tl(ρ)− ρ] , (4.4)

where Tl are positive trace preserving channels. For these particular cases, the time dependent

density matrix may be given an explicit stochastic expansion in the form of

ρ(t) = e−Γt
∞∑
n=0

Tnρ(0)

n!
, (4.5)

where Γ =
∑

l Γl and T (ρ) =
∑

l ΓlTl(ρ). This stochastic expansion will be useful for both

proofs and Monte Carlo simulations.

4.3 Straightforward QECC encoding

Here we introduce and analyze two straightforward methods of encoding a QECC in the

dissipation. The first one consist of coupling all the qubits with a reservoir in such a way

that each application of a jump operator a whole error correction procedure takes place. In

the second, we encode the QECC in several Lindblad terms, so that each jump correspond

to an execution of a part of the QEC. The main purpose of this section is to show that those

simple approaches do not work as one could imagine, and thus it illustrates why the design

of engineered quantum memories is not a trivial task. Both approaches require multibody

coupling to a single environment, where the number of system qubits coupled to the same
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damped qubit grows with N , the size of the memory. In principle perturbation theory gadgets

allow the engineering of such terms, provided their respective intensity decay exponentially

with the number of subsystems involved. Not withstanding, a strength increasing with N

would be required to make the first approach work, while in the second approach only a

polynomial decrease with the number of subsystems involved would preserve functionality. In

the next section we will present a scheme which circumvents these problems, although still

with the caveat that it requires non-local couplings (as it works in 4 spatial dimensions).

4.3.1 Single Jump Operator

One major obstacle to traducing the usual error correction strategies to a dissipative scenario

is due to the random times at which dissipative terms enact the recovery operations. We

illustrate this problem in the case of a straightforward approach to dissipative protection.

One can always implement in the dissipative Liouvillian a standard quantum error correction

procedure which preserves the logical qubit: Ldiss(ρ) = Γ[R(ρ)−ρ], where R is a full recovery

operation and Γ adjusts the rate at which the recovery operation is applied (imagine full

correction of an N qubit QECC). Apart from the unrealistic nature of highly many–body

dissipation terms required in this construction, it is easy to see that it does not serve our

purposes. The reason can be seen by unraveling the quantum jump operators [25], there is

a finite N independent probability for more than 1
Γε

time to elapse until the next recovery

operation. Such long times allow too many errors to accumulate for any QECC to recover

with high fidelity.

The alternative is to have dissipation implement many independent processes instead of

a single monolithic error correction procedure. Ideally, having independent processes take

care of removing independent error sets can make the accumulation of a critical fraction

of errors exponentially unlikely. The difficulty of having independent dissipation processes

is that contrary to the circuit model the order of their application is not enforced in any

way. Thus, directly encoding each gate of a QECC recovery circuit into a dissipation term

generally leads to a meaningless evolution. However, we will show that in specific cases where

dissipation terms commute or show some order property lending itself to rigorous analysis,

the asynchronous nature is not an obstacle.
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4.3.2 Concatenated QECC Dissipation

It is indeed possible to design a many-body dissipative quantum memory. The strategy is

to take the dissipation term as a sum of recovery operations occurring on different groups

of qubits. Those operations correspond to recovery of the different logical qubits at each

level of a simple concatenated QECC [75]. Intuitively, one may argue that the difficulty

of implementing a given dissipation term increases with the number of qubits involved. We

attempt to compensate for this difficulty by imposing that the operator norm required for such

Lindblad terms decays with a power law respect to the number of physical qubits involved.

More specifically, we take

Ldiss(ρ) = Γ
∑
l,n

δM−l[Rl,n(ρ)− ρ]. (4.6)

Here, l = 0, 1, . . . ,M − 1 denotes the level of concatenation, and n further specifies on which

set of qubits the recovery operations Rl,n are applied. In appendix 4.C, we show that if the

local noise rate Γε is sufficiently small then initially encoded information is lost at a rate which

is exponentially small with respect to the number of qubits used (i.e. double exponentially

small with the level of concatenation M). The weakness condition on the noise can be made

precise by

Γε < Γ?ε =
δ2Γ

k2
, (4.7)

where k is the number of physical qubits in the code to be concatenated. Assuming the

perfect 5 qubit QECC and taking the strength of many body terms inversely proportional to

the number of bodies (δ = 1/5), a threshold of Γ?ε = 1.6 × 10−3Γ is obtained for the noise

rate. When the error rate is below the error threshold, the relaxation rate for the encoded

information has an exponentially small upper bound given by

τ−1 ≤ Γεδ
M

(
Γε
Γ?ε

)2M−1

(4.8)

The above scheme is mainly of formal interest, since the non local recovery operations

encoded in the dissipative master equation require many qubits at different locations to in-

teract with the same environment. While the necessary scaling of such terms needs to be

polynomial for our proof to go through, the derivation of such terms based on effective many-

body Hamiltonians and the dissipative gadgets we propose is expected to decay exponentially

with the number of bodies involved. Even more realistically, one would expect many-body
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dissipation terms to cope with many body error terms arising from imperfect implementation.

In practice, it would be desirable to find a set up where the dissipation terms are spatially

localized by considering the qubits arranged in a lattice.

4.4 Local dissipative protection in 4D

In classical systems Toom’s rule [119] has been proven to be a simple translationally invariant

update rule in a 2D Periodic Boundary Condition (PBC) lattice which is capable of preserving

classical information, provided that the noise contribution to the dynamic is sufficiently weak.

While we have not been able to extend this rule for quantum protection in 2D, we will consider

a quantum analog of Toom’s rule for 4D. The underlying QECC used is the 4D toric code, a

stabilizer quantum error correcting code with 6 body stabilizer generators which can be made

spatially local in a 4D PBC lattice. Dennis et al.[32] proposed it as a local QECC, and the

corresponding stabilizer Hamiltonian was recently rigorously proven to be self–correcting by

Alicki et al. [9]. We derive a local master equation for protecting information encoded into

the 4D toric code based on a Toom like rule introduced by Ahn [6] and study its efficiency

for protecting encoded observables. We then consider the protection process and numerically

study the lifetime of information when depolarization errors are introduced extensively at a

small yet constant rate.

A fully rigorous description of the QECC and the local update rule used is provided in

the appendix 4.B. For the moment it is sufficient to specify that the master equation has the

form of eq. (4.1) where the specific Ldiss used associated to the 4D toric code will be called

L4D-TCToom and Lnoise is weak extensive depolarizing noise as in eq. (4.2). The numerical

results (Fig. 4.2) strongly support the existence of a critical error rate Γ?ε ≈ 0.004×Γ ( where

Γ is the correction rate to be specified ) below which, the lifetime of the encoded information

increases exponentially with the lattice size.

Although the results above have no obvious practical implication, they suggest that local

models may exist in spatial dimensions lower than 4 (for the search of quantum memories

based on protecting Hamiltonians in lower dimension see [11, 27, 53]). The hope, is that even

if self-correcting quantum memories fail to exist in lower dimensions, the use of engineered

dissipation may still provide a solution.
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(a) Lifetime Vs. error rate (b) Lifetime Vs. lattice size

Figure 4.2: The mean time to error for a logical observable is plotted in log scale units of

1
Γ . Error rates Γε are provided in units of Γ. The plots further suggests the existence of a

critical value for error rates Γ?ε ≈ 0.004. (a) Each curve corresponds to a fixed odd value of

the lattice size N . The independent axis Γε/Γ is also in log scale suggesting that for each

fixed N the information lifetime show an asymptotic (small Γε) power law dependence with

1/Γε with the exponent increasing for larger N . (b) Each curve corresponds to a fixed value

of the error rate Γε. For low error rates Γε < Γ?ε, lifetime is seen to improve exponentially

with N .

4.4.1 Numerical simulations

The key feature that allows us to perform efficient simulations of the relaxation times for

logical observables, is that the terms in L4D-TCToom may be naturally split in two subsets,

where terms in one subset commute with terms in the other. Thus, efficient classical Monte

Carlo simulations provide unbiased estimates for expectation values and correlations for half

of the stabilizers and half of the logical observables. Throughout each simulation the relevant

error corrected logical observable was measured on a copy of the system state after every

unit of simulated time. Simulation were interrupted when a measurement outcome differing

from the initial value was obtained. For each parameter, lattice size N and the depolarization

rate Γε, a total of 1000 such runs were performed and the simulated times were averaged

to obtain the relaxation time presented. These simulations where performed on 62 AMD

Opteron processors taking a total of five days to obtain the data presented (Fig. 4.2).
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4.5 Accessible toy model

As a a proof of principle, we now present an engineered dissipation toy model providing

protection for quantum information. One can implement the underlying ideas of dissipative

quantum memories with 2D lattices at the expense of being able to correct only for dephasing

noise

Lphase(ρ) = Γzε

N∑
n=1

σzn(ρ)σzn − ρ. (4.9)

Given a noise model including only one type of error (such as σz phase errors) we will be able

to cast a classical memory prescription into a quantum scenario. A first step, is to define two

logical observables

ZEC ≡
⊗
s

σzs XEC ≡ θ
(∑

s

σxs

)
(4.10)

where θ is the Heaviside step function. The first observable ZEC commutes with the noise

Lphase and is thus completely immune to it. The noise can only change the value of XEC ,

for the part of ρ which is in the ±1 eigenspace of
∑

s σ
x
s (i.e. states for which the absolute

magnetization in the X direction is minimal). Dissipation will protect the XEC observable

by keeping most of ρ in a high X magnetization subspace. The master equation ρ̇ = LNN(ρ)

for nearest neighbor majority voting is written as a Liouvillian in Lindblad form [84] as

LNN(ρ) = Γ
∑

<s,r,t>

Ls,r,tρL
†
s,r,t −

1

2
{L†s,r,tLs,r,t, ρ}+, (4.11)

where the index s runs over all sites, r 6= t are nearest neighbors of s and the Lindblad

operators are given by

Ls,r,t ≡ σzs
1− σxs ⊗ σxr

2

1− σxs ⊗ σxt
2

. (4.12)

This is, the first factor performs a phase flip when the second and third factors (projectors)

are non zero (i.e. when site s points differently than its two neighbors r and t). The Lindblad

operators are designed such that they also commute with ZEC and can only change XEC in

the portion of ρ with minimal X magnetization.

The stability of the XEC observable in such an evolution can be mapped to magnetization

metastability in classical studies [18, 30]. Restricting r and t to be north and east neighbors

in an N×N PBC lattice, one recovers Toom’s rule [119, 50] which is proven to provide an ex-

ponential survival time, even in the presence of biased errors. However, the PBC requirement

is experimentally unrealistic.
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We numerically consider an experimentally accessible setup which does not require peri-

odic boundary conditions. Physical qubits will be located on an N × N 2D square lattice

sites. The sites r and t are taken among all possible nearest neighbors of s. The number of

valid neighbor combinations are
(

4
2

)
= 6 for inner sites s,

(
3
2

)
= 3 for lattice border sites s and

only one combination for corner sites. In the following plot (Fig. 4.3), we show how having

a protective dissipation term LNN can increase the relaxation time of XEC , a many-body

encoded observable (red). This is in contrast to the complementary observable which does

not benefit from dissipative protection. On the contrary, given any depolarization rate, the

relaxation time of ZL decreases with the inverse of the number of physical qubits involved

(blue).

4.6 Dissipative gadgets

As we have shown, the possibility of controlled quantum dissipation opens a host of new pos-

sibilities for QIP [34, 125, 76]. However, while some naturally occurring forms of dissipation

may be readily exploited, it is crucial to have a systematic way of engineering arbitrary dissi-

pative dynamics. A way of achieving complete control over the dissipation is to be capable of

engineering independent Lindblad jump operators while keeping their interference with each

other weak. For this we must assume availability of many body Hamiltonians, achievable

through perturbation theory gadgets [64, 19] and of some naturally occurring dissipation,

namely in the form of damped qubits. We apply the approximation of independent rates of

variation [31] pg. 356 on the damped qubits which requires the bath correlation time for the

damping process to be much shorter than the inverse of any coupling constant in the system.

Coupling to these damped qubits can thus be seen as a resource in the design of quantum

dynamics, analogous to freshly initializing qubits in quantum circuits.

Coupling the system to a damped qubit ancillary degree of freedom was proposed as a

possible path to engineer arbitrary effective dissipative dynamics [125]. More specifically, the

Hamiltonian coupling H = ω(L ⊗ σ+ + L† ⊗ σ−) to an ancilla with damping rate γ leads

to an effective dissipative dynamics of the system corresponding to the Lindblad operator

ω
√

2/γL. Here σ− = |0〉 〈1| and σ+ = |1〉 〈0|.
In order to use these dissipation gadgets as basic building blocks in more complex scenar-

ios, it is essential to make explicit possible limitations and restrictions of the implemented
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Figure 4.3: Relaxation time for ZEC (red curves) and XL (blue curves) in units of Γ−1.

Each red curve presents the relaxation time τZ (numerically obtained) corresponding to one

value of the relative dephasing rate Γ/Γphase given by the intercept at N = 1. Blue curve

have the functional form τX = Γ−1
dep ∗N−2 and each corresponds to one value of Γ/Γdep also

given by the intercept at N = 1. The lifetime τ of the encoded logical qubit can be seen

to be estimated by τ ≈ min{τX , τZ}. Given Γ/Γdep and Γ/Γphase, one may intersect the

corresponding curves to obtain the value of N leading to the optimal qubit lifetime τ . For

example, if Γdep = 5×10−5Γ and Γphase = 0.1Γ the optimal lattice size of 4×4 allows a ×100

increase in the quantum information relaxation time τ . A more extreme case may be seen

when Γphase = 0.01Γ and Γdep ≤ 5 × 10−5Γ where a factor ×50 is gained by simply using a

2× 2 lattice.

dissipation. In appendix 4.A we provide a detailed derivation of the effective system dy-

namics which makes three main contributions to our understanding of dissipative gadgets.

Firstly, while the usual approach of adiabatic elimination obtains an effective dynamics in

terms of a coarse grained time, our derivation shows that excluding a short initial transient

period, this temporal coarse graining is not necessary. Secondly, we provide explicit bounds

on the deviation from the desired state and instantaneous dynamics which are accompanied

by a smallness prefactor (ω/γ)2. Finally, we include an independent internal dynamic for

the system, and show, that the resulting effective dissipation carries through essentially un-

affected provided the strength of the internal dynamics is sufficiently weak. While the last
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point already suggests that the extensive application of local dissipation gadgets should be

well behaved, a fully rigorous analysis is beyond the scope of this thesis.

4.7 Conclusions and perspectives

We have introduced engineered dissipation as a tool to protect against general quantum noise

and proposed examples providing protection from local noise. In the case of concatenated code

dissipation, we prove that information can be made resilient against any strictly local noise.

Numerical simulations with depolarizing noise strongly suggest dissipative protection may be

made spatially local in 4D. For purely dephasing noise we propose a dissipative protection

scheme local in 2D. Proof of principle experiments could be realized with trapped ions, or

atoms in optical lattices.

A self-correcting thermalization scheme associated to the 4D toric code Hamiltonian can

provide encoded quantum information similar protection against depolarizing noise. In this

sense, we have not illustrated the advantage of engineered dissipation. While the approach we

have taken with the 4D TC is analogous to Toom’s 2D update rule for classical information

the thermalization of the 4D toric code can be seen as analogous to thermalization of the 2D

Ising model respect to unbiased noise. However, stretching such parallelism with the classical

problem suggests that engineered dissipation may be strictly more powerful and that it may

be possible to engineer a 2D local dissipation mechanism capable of protecting quantum

information. Indeed, while in 1D there can not be a self-correcting classical memory, a 1D

local dissipative master equation due to Gács [41] is proven to provide increased classical

information lifetime with the chain size. Inspired by Gács’ construction, Harrington [55]

has proposed a local quantum error correction scheme in 2D capable of protecting against

quantum errors. To make this into a dissipative scheme, the requirements of a) a global

synchronization clock, b) logarithmically increasing local storage space c) error free evolution

of classical information, all need to be relaxed. Whether these assumptions can be relaxed,

or other schemes in 2D or 3D exist are important questions that may dictate the fate of the

practical applications for dissipative quantum memories.
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4.A Adiabatic elimination of ancilla

In this section, we prove that Master equations with arbitrary Lindblad operators may be

engineered to high accuracy by coupling the system to ancillary resource qubits which are

themselves being cooled. The basic idea is to extend the system with an additional binary

degree (spin 1/2) of freedom per Lindblad operator L to be implemented. These degrees of

freedom are further assumed to be strongly dissipatively driven with a rate γ into a |0〉 〈0|
ground state. We will show that a target dissipative evolution composed of a single Lindblad

jump operator

Ltarget(ρ) = LρL† − 1

2

{
L†L, ρ

}
+
, (4.13)

may be implemented within a small error margin. The technique used for the proof follows

the adiabatic elimination of the excited ancilla subspace in spirit, but takes into account

corrections in order to provide rigorous bounds on the deviations from the intended evolution.

Our derivation starts by assuming that the full dynamics of the system can be written as

ρ̇ = −i[H, ρ] + 2γσ−ρσ+ − γ
{
σ+σ−, ρ

}
+

+ γLsys(ρ) (4.14)

where σ+ = |1〉 〈0|A and σ+ = |1〉 〈0|A are raising and lowering operators on the ancilla qubit

and the Hamiltonian H couples the system to the ancilla

H = ω(L⊗ σ+ + L† ⊗ σ−) (4.15)

and Lsys is an additional evolution term with no effect on the ancillas. Here, the assumption

that is implicitly being made, is that we may independently sum the interaction Hamiltonian

H to the dissipative dynamics on both the system and the ancilla. In the case of the ancilla

decay this is the approximation of independent rates of variation [31] pg. 356, which assumes

correlation times for the reservoir responsible for spontaneous decay to be much shorter than

any other relevant time in the system. An important example where this approximation

holds to a great degree of accuracy is for two level atoms at optical frequencies, where the

autocorrelation time of the coupled vacuum fluctuations can be as much as ten orders of

magnitude shorter than the inverse of any of the other coupling constants. Since our derivation

for the weak system Liouvillian does not require temporal coarse graining, the successively

incorporation of Hamiltonian interactions rigorously leads to the additive appearance of the

desired Liouville terms up to leading order. Assuming ε = ω/γ � 1 we can rescale to a
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unitless time by incorporating a factor γ leading to the following differential equations for the

reduced density matrices.

ρ̇00 := 〈0| ρ̇ |0〉 = 2ρ11 − iεL†ρ10 + iερ01L+ Lsys(ρ00) (4.16)

ρ̇01 := 〈0| ρ̇ |1〉 = −ρ01 + iερ00L
† − iεL†ρ11 + Lsys(ρ01) (4.17)

ρ̇11 := 〈1| ρ̇ |1〉 = −2ρ11 − iεLρ01 + iερ10L
† + Lsys(ρ11) (4.18)

From here, we may obtain the integral forms

ρ01(τ) =e−τρ01(0) +

∫ τ

0
e−t

′Lsys[ρ01(τ − t′)]dt′ (4.19)

+iε

∫ τ

0
e−t

′
[ρ00(τ − t′)L† − L†ρ11(τ − t′)]dt′

ρ11(τ) =e−2τρ11(0) +

∫ τ

0
e−2t′Lsys[ρ11(τ − t′)]dt′ (4.20)

−iε
∫ τ

0
e−2t′ [Lρ01(τ − t′)− ρ10(τ − t′)L†]dt′

Assuming the initial conditions ρ01(0) = ρ11(0) = 0, that ‖L‖ ≤ 1 and ‖Lsys‖ ≤ Eε2, and

using that ‖ρ00‖+ ‖ρ11‖ ≤ 1 we may bound

‖ρ01(τ)‖ ≤ ε̃ and ‖ρ11(τ)‖ ≤ ε̃2, (4.21)

with ε̃ = ε
1−Eε2 . It is now straightforward to bound ‖ρ̇00(τ)‖ ≤ (4 + E)ε̃2. We may now

concentrate on tighter bounds composed of higher order terms in ε but also, of exponentially

decaying terms. A first step to do this is to perform integraton by parts; on eq. (4.19) one

obtains

ρ01(τ) =iερ00(τ)L† − iεe−τρ00(0)L† (4.22)

−iε
∫ τ

0
e−t

′
[
ρ̇00(τ − t′)L† + L†ρ11(τ − t′)

]
dt′

+

∫ τ

0
e−t

′Lsys[ρ01(τ − t′)]dt′.

In the case of ρ11 we straightforwardly obtain

ρ11(τ) =− iε

2
Lρ01(τ) (4.23)

+
iε

2

∫ τ

0
e−2t′Lρ̇01(τ − t′)dt′ + h.c.

+

∫ τ

0
e−2t′Lsys[ρ11(τ − t′)]dt′
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This expression may be massaged into a form which may be more readily bounded. The steps

involved include, expanding ρ̇01 according to eq. (4.17), then expanding appearances of ρ01

according to eq. (4.22) and finally integrating numerical factors and grouping terms. After

such manipulation, one reaches the expression

ρ11(τ) =
ε2

2

[
Lρ00(τ)L† − e−τ (2− e−τ )Lρ00(0)L† (4.24)

−
∫ τ

0
e−t

′
(2− e−t′)Lρ̇00(τ − t′)L†dt′

−
∫ τ

0
e−t

′
(2− 2e−t

′
)LL†ρ11(τ − t′)dt′

]
+ h.c.

+
iε

2

∫ τ

0
e−2t′LLsys[ρ01(τ − t′)]dt′ + h.c.

+

∫ τ

0
e−2t′Lsys[ρ11(τ − t′)]dt′

Using eqs. (4.22) and (4.24), one may prove the following higher order bounds

‖ρ01 − iερ00L
†‖ ≤ (2E + 5)ε̃3 + εe−τ (4.25)

‖ρ11 − ε2Lρ00L
†‖ ≤ (3E + 7)ε̃4 + 2ε2e−τ , (4.26)

Inserting these bounds into the definition of ρ̇00 we may bound deviation from the target

evolution by

‖ρ̇00 − 2ε2Ltarget(ρ00)− Lsys(ρ00)‖ ≤ (10E + 24)ε̃4 + 4ε2e−τ (4.27)

After a short transient time of the order 1
γ log 1

ε , the exponential term can be neglected.

Furthermore, note that the internal system dynamics Lsys may be time dependent and thus

encode correlations of different components of the system in its time dependence.

4.B 4D Toric code

4.B.1 The 4D Toric code as a stabilizer code

We will now provide an informal description of the 4D toric code. For every vertex of an

N ×N ×N ×N lattice, there are 6 orientations of faces on which physical qubits are located.

Thus, the 6×N4 physical qubits are arranged on the 2D faces of a 4D PBC lattice. We can

now introduce an over-complete set of local stabilizer generators for the code, half of which

correspond to 1D edges, the other half corresponding to 3D cubes. For each 1D edge, there
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is a tensor product operator Z⊗6, the product of Z operators acting on the six 2D faces to

which this edge belongs. Dual to this, for each 3D cube, there is a tensor product operator

X⊗6, the product of X Pauli operators over the six 2D faces of the cube. Two edge and cube

stabilizers overlap iff the edge is an edge of the cube, and then their overlap will be in exactly

two faces. Thus all stabilizer generators are seen to commute.

4.B.2 Logical degrees of freedom

Counting of the remaining degrees of freedom additional to the stabilizer syndrome obtained

is not as straightforward as for the 2D toric code, where every syndrome with an even number

of anyons was possible. In the 4D case, the required condition is that the set of unsatisfied

stabilizers is only allowed to be a combination of closed loops (in the lattice and dual lattice

respectively). However, one can explicitly construct six pairs of anticommuting logical op-

erators which commute with all stabilizer terms, one pair for each of the six possible plane

orientations. From each pair, one operator is a full plane of X rotations along a full plane

wrapping around the grid in one of the six possible orientations. The second operator from

each pair consists of a dual plane of Z operators arranged along the perpendicular plane

orientation. Although analogous to the logical operators on the 2D toric code, this image

probably stretches our 2D or at most 3D imagination. Thus, to obtain an intuition about

this construction it is convenient to provide formal expressions which one may operate with.

4.B.3 4D PBC lattice notation

Each vertex of the 4D periodic lattice can be identified by a four component vector ~v =

v0, v1, v2, v3 ∈ Z4
N . For each vertex ~v, there are four edges ê, six faces p̂ and four cubes ĉ

having the vertex as a lower corner. These orientations may be described by four component

binary vectors

ê, p̂, ĉ ∈ {(v0, v1, v2, v3) | vi ∈ {0, 1}}, (4.28)

with edge ê, face p̂, or cube ĉ orientations satisfying the additional condition
∑3

i=0 vi equal

to 1, 2 or 3 respectively. Each physical qubit can be identified with a tuple ~v, p̂, where p̂

identifies the plane orientation and ~v its lower side corner. The Z type edge stabilizers E~v,ê
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are given by

E~v,ê =
⊗
ê⊂p̂

Z~v,p̂ ⊗ Z~v−p̂+ê,p̂, (4.29)

with six participating physical qubits. Finally, the X type cube stabilizer C~v,ĉ are given by

C~v,ĉ =
⊗
p̂⊂ĉ

X~v,p̂ ⊗X~v+ĉ−p̂,p̂, (4.30)

also with six participating physical qubits.

We will now describe a set of logical operators commuting with all stabilizers which will

be used to encode information in absence of errors. There is one pair of such anticommuting

logical operators for each plane orientation p̂ and they are given by

XL
p̂ =

N⊗
n,m=1

Xnê1+mê2,p̂ ZLp̂ =

N⊗
n,m=1

Znê3+mê4,p̂, (4.31)

with ê1 + ê2 ≡ p̂ and ê3 + ê4 ≡ p̂⊥. It is easy to see that according to this definition, the

two logical operator XL
p̂ and ZLp̂ anticommute, as they coincide only at qubit (~0, p̂). One can

further verify that such operators commute with the complete set of stabilizers. Finally, it is

not hard to see, that if one assumes the state to be in the code subspace (i.e. +1 eigenstate

to all stabilizers), then any homologically equivalent surfaces results in equivalent definition

for the operators.

4.B.4 4D Quantum Toom’s rule

We now define a local update rule which will later be used in two ways, first as a dissipa-

tion mechanism capable of keeping errors from accumulating too badly, second as the basic

component of an information recovery procedure permitting removal of all errors to allow

information read-out. The update rule is analogous to Toom’s rule for classical information

stored in a 2D lattice. While the prescription of Toom’s rule is to flip a bit if it is different to

both its two lower side neighbors, the prescription in 4D will be to X “flip” a qubit if both its

neighboring lower side Z edge stabilizers are not satisfied, but also to Z “flip” a qubit if both

its lower side X cube stabilizers are not satisfied. This is, a local rotation may be performed

depending on neighboring stabilizer state. This is in complete analogy to an interpretation of

Toom’s rule in terms of local stabilizers. One property that permits analytic and numerical

analysis of such a scheme is the decoupling of recovery for X and Z logical operators.
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For each qubit (~v, p̂), we can write the super-operator describing the quantum jump im-

plementing the update rule as

RZ~v,p̂(ρ) = Z~v,p̂P
X
~v,p̂ρP

X
~v,p̂Z~v,p̂ + PX⊥~v,p̂ ρP

X⊥
~v,p̂ (4.32)

where PX~v,p̂ is the projector onto the subspace where a Z flip should be performed on qubit

(~v, p̂) and PX⊥~v,p̂ the orthogonal subspace. Assuming p̂ = ê1 + ê2 the projector may be defined

as

PX~v,p̂ =
1

4
(1− E~v,ê1)(1− E~v,ê2). (4.33)

Analogously, one may define an update rule RX~v,p̂ which in a similar way, introduces an X

“flip” depending on the corresponding projectors PZ~v,p̂ in terms of Z type stabilizers.

4.B.5 Full recovery and error corrected operators

The superoperators RZ~v,p̂ and RX~v′,p̂′ always commute. Only recovery operators of the same

kind may lack commutation when considering neighboring plaquetes. In particular, to define

a full recovery operation R in terms of these local recovery update rules, it is necessary

to unambiguously specify an order of application. Indeed, in our simulation code, a sweep

through the lattice is taken as this order and we observe a good performance in recovering the

originally encoded observables (Fig. 4.4). Once the recovery operation R is unambiguously

specified, it is possible to define robust logical observables XEC
p̂ and ZECp̂ such that

tr(ZECp̂ ρ) = tr(ZLp̂ Rρ) tr(XEC
p̂ ρ) = tr(XL

p̂ Rρ). (4.34)

Or more compactly

ZECp̂ = R̄
(
ZLp̂
)

and XEC
p̂ = R̄

(
XL
p̂

)
. (4.35)

Thus, error corrected logical observables (super-index EC), provide a robust result when

evaluated on a state with sufficiently few errors and coincide with logical operators on the

error-free subspace.

4.B.6 Master equation

We study a master equation including a locally depolarizing noise term of strength Γε, and

the proposed Lindblad terms intended to avoid error clusters from growing. The simulated
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Figure 4.4: Recovery probability of an encoded observable in the 4D toric code is plotted as a

function of depolarization probability per qubit. Odd lattices sizes from 1 to 11 are represented

in the different curves and suggest a critical depolarization probability of approximately 7.5%.

master equation may be written as

ρ̇ = Lρ = ΓL4DToomρ+ ΓεLdepρ (4.36)

where the dissipative protection L4DToom is given by

L4DToomρ =
∑
~v,p̂

LX~v,p̂ρL
X†
~v,p̂ −

1

2

{
LX†~v,p̂L

X
~v,p̂, ρ

}
+

+LZ~v,p̂ρL
Z†
~v,p̂ −

1

2

{
LZ†~v,p̂L

Z
~v,p̂, ρ

}
+
.

(4.37)

The protecting Lindblad operators are

LZ~v,p̂ = Z~v,p̂P
X
~v,p̂ LX~v,p̂ = X~v,p̂P

Z
~v,p̂, (4.38)

corresponding to the Toom like quantum jump superoperators R{X,Z}~v,p̂ introduced in Eq. 4.32.

We perform numerical experiments to determine the relaxation time for logical observables

(i.e. tr[XECρ(t)] ≡ tr[XLRρ(t)].) Evolutions are taken to start in a code state with an

unambiguous XL or ZL logical value and consistency of the error corrected logical observables

are checked regularly in time. The mean time to the first change in the value observed for

XEC or ZEC is taken as an estimator of the relaxation time.
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4.B.7 Numerical considerations

Evolution under this master equation can be numerically simulated efficiently for a commuting

set of observables such as the edge stabilizers and a commuting set of logical observables. This

means that a classical Monte Carlo simulation is enough to study the probability of obtaining

the correct outcome when measuring distinct logical observables which were initially well

defined. The results of such simulations are presented in (Fig. 4.2) for different sizes of the

lattice grid up to 11 and different values for Γε. These suggest a critical value for the noise

rate Γ?ε ≈ 0.004, below which arbitrarily long relaxation times may be achieved by increasing

the lattice size. Given that below threshold error rates, the information lifetime seems to

grow exponentially with the lattice size, and that the simulation time per unit time is also

proportional to the fourth power of the lattice size, it is numerically costly to extend our

evidence to larger lattices.

4.B.8 Definition of efficient recovery R

To check whether the encoded observable is still recoverable at time t, we apply a correction

super-operator R on ρ(t). The definition of R consists of sequentially applying the local jump

superoperators R{X,Z}~v,p̂ in a sweeping order. This shows a high performance for removing all

error domains (i.e. it presents a numerical threshold to depolarizing noise on up to ≈ 7.5%

of the qubits as shown in (Fig. 4.4) .) Furthermore, computer simulations of R are efficient,

requiring a minimal amount of O(N4) operations. This is important since the Rρ(t) must

be checked every unit time to obtain an estimate of the relaxation times of error corrected

logical observables.

4.C Concatenated-code dissipation

Paz and Zurek [105] presented the first studies of protecting quantum information through

the use of a continuous dissipative process. They introduce a general master equation form

for the class of stabilizer QECC and analyze their performance in some simple cases. In

this section, we will adapt their construction and propose master equations for concatenated

QECC which are provably robust against sufficiently weak local noise.
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For stabilizer QECC, the recovery super-operator R can be written in Kraus form as

R(ρ) =
∑
(m)

R(m)P (m)ρP (m)†R(m)†, (4.39)

where P (m) are projectors onto orthogonal syndrome subspaces with
∑

(m) P
(m) = 1 and R(m)

are unitary recovery operators of tensor product Pauli form. The operators L(m) = R(m)P (m)

can be interpreted as Lindblad operators to give way to a protecting master equation. How-

ever, this approach can not provide more than a constant improvement in the relaxation time

for logical observables. It can be seen that given an error rate and a correction rate, there is

an upper bound on the relaxation time of the logical encoded bit which is independent of the

code and the number of physical subsystems it uses.

We propose extending this master equation model to one which allows performing many

such recovery operations in parallel. In the case of concatenated QECC these will correspond

to error correction at the different levels of concatenation. Recovery operations at the same

level of concatenation act independently of each other as they involve disjoint subsets of

physical qubits. Most of the work goes into designing recovery operations at different levels

of concatenation which do not interfere undesirably (i.e. commute) and proving that they

provide a similar protection from local errors to the one achieved by concatenated QECC in

the circuit model.

We will define a dissipative concatenated quantum memory based on a [[k, 3, 1]] QECC.

An M -level encoding will thus make use of kM physical qubits. A labeling for each physical

qubit may be given in terms of an M component vector ~v ∈ ZMk (i.e. with each component

going from 1 to k. Partial vectors ~v with M − l components will identify mutually disjoint

blocks of kl physical qubits. Thus if ~v denotes a particular set of kl physical qubit, then the

vector v0 : ~v, with one additional component v0 and identifies a sub-block of kl−1 physical

qubits. The number of components of a vector ~v will be denoted by | ~v |, with ∅ being the

unique zero component vector.

A stabilizer QECC on k qubits can be characterized by the definition of the Stabilizers S(j),

the projectors onto syndrome subspaces P (j) and the corresponding error recovery operators

R(j), the logical operators XL, Y L, ZL, the recovery super-operator R and the error corrected

Pauli observables XEC , Y EC , ZEC . It is instructive to present the definition of these objects

for a simple QECC making it easier to latter provide the recursive definitions required for the
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concatenated QECCs. These definitions are given by

S(j) = s1(j) ⊗ s2(j) ⊗ . . .⊗ sk(j)

P (j) =
∑

αi,jS
(i)

R(j) = r1(j) ⊗ r2(j) ⊗ . . .⊗ rk(j)

R(ρ) =
∑

R(k)P (k)ρP (k)R(k)

σL = σ1⊗ σ2⊗ . . .⊗ σk

σEC = R(σL).

(4.40)

The αi,j are coefficients relating stabilizer operators with specific projectors. Lowercase Latin

letters as well as σ, stand for one of the four single qubit Pauli operators {1, X, Y, Z}. Thus

σL, is a logical operator on the code and as a stabilizer code can be expressed as a tensor

product of single qubit operators. Finally Λ denotes the super-operator dual to Λ (i.e. if

Λ(ρ) =
∑

k AkρA
†
k, then Λ(O) =

∑
k A
†
kOAk).

We may now give the analogous definitions for the case of an M level concatenated code.

Here, objects must be further specified by a vector ~v of at most M components indicating

the physical qubit or group of qubits they act on. Some of these objects require a base case

definition for | ~v |= M ,

σL~v = σ~v

σEC~v = σ~v

F~v = 1.

(4.41)

In this case, ~v identifies on which physical qubit(s) the operators act on. The super-operator

F represents the full recovery operation which is trivial in the case of physical qubits. For

the rest of the objects, definitions are only required for | ~v |< M .

S
(j)
~v = (s1(j))EC1:~v ⊗ . . .⊗ (sk(j))ECk:~v

P
(j)
~v =

∑
αi,jS

(i)
~v

R
(j)
~v = (r1(j))L1:~v ⊗ . . .⊗ (rk(j))Lk:~v

R~v(ρ) =
∑

R
(k)
~v P

(k)
~v ρP

(k)
~v R

(k)
~v

σL~v = (σ1)L1:~v ⊗ . . .⊗ (σk)L1:~v

σEC~v = F~v(σL~v )

F~v = R~v ◦ (F1:~v ⊗ . . .⊗Fk:~v) .

(4.42)
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The main distinction from non-concatenated definitions is that the subindex ~v has been

incorporated everywhere. In addition, tensor product decomposition of operators now runs

either in terms of logical operators (super-index L) or error corrected observables (super-index

EC). Finally, a distinction is made between F~v, which corrects all errors in a given block of

qubits denoted by ~v and R~v which corrects for only the highest level errors within that block.

This distinction may seem artificial since for a simple code (i.e. | ~v |= M−1) a full correction

corresponds to correcting the highest level error blocks possible.

We will now concentrate on some of the properties these recursive definitions carry that

will later allow us to define the dissipative concatenated QECC and prove robustness results.

The main property relating logical and error corrected operators verified by definition is

tr[σEC~v ρ] = tr[σL~v F~v(ρ)]. (4.43)

The meaningfulness of error corrected operators thus stems from the fact that if relatively

few errors are applied to an encoded state, the error corrected operator provides the same

expectation value as the logical operator on the unerred state

tr[OEC~v E(ρ)] = tr[OL~v ρ] ∀ρ ∈ codespace~v, (4.44)

provided that the error super-operator E contains only “few error” Kraus operators. More

precisely, the expectation values are equal provided that the Kraus operators for E contain

less than bd+1
2 cM−|~v| errors. More can be said in terms of the structure of correctable errors.

Namely, there is a constant error threshold provided a random distribution of uncorrelated

errors is assumed.

Another key property which can be guaranteed inductively is that the commutation/anticommutation

relation between logical operators and error corrected observables should be the same as be-

tween bare operators.

[σ1EC~v , σ2L~v ]± = 0 ⇔ [σ1, σ2]± = 0 (4.45)

An even stronger statement can be made about products of logical operators (error corrected

observables)

σ1σ2 = θσ3⇒

 σ1L~v σ2L~v = θσ3L~v and

σ1EC~v σ2EC~v = θσ3EC~v

, (4.46)

where θ is a phase in {1,−1, i,−i}.
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The projector operators at each level are related to the presence of logical errors at the

immediately preceding level. This can be seen through the identity

P
(j)
~v = R

(j)
~v P

(0)
~v R

(j)
~v R

(0)
~v = 1, (4.47)

which relates P
(0)
~v , the trivial syndrome projector to other syndrome projectors. The relation

of this projector with the recovery operations is captured by

P
(0)
~v R~v(ρ)P

(0)
~v = R~v(ρ). (4.48)

The master equation.- considered for a dissipative protection on a concatenated QECC

will contain error terms Dnoise,~v on single physical qubits ~v as well as correction terms corre-

sponding to each of the blocks. The full master equation reads

ρ̇ =
∑
|~v|=M

Dnoise,~v(ρ) +
∑
|~v|<M

Dcorrect,~v(ρ). (4.49)

Error terms Dnoise,~v are single qubit superoperators with norm bounded by
∥∥Dnoise,~v∥∥ ≤

Γnoise. The protective dissipation Dcorrect,~v is defined by

Dcorrect,~v(ρ) = Γcorrect,~v[R~v(ρ)− ρ] (4.50)

which can be written in Lindblad form as

Dcorrect,~v(ρ) =
∑
(j)

L
(j)
~v ρL

(j)†
~v − 1

2

{
L

(j)†
~v L

(j)
~v , ρ

}
+

(4.51)

with Lindblad operators

L
(j)
~v =

√
Γcorrect,~vR

(j)
~v P

(j)
~v . (4.52)

We will prove the robustness of the highest level observables XEC
∅ , Y EC

∅ , ZEC∅ under the

combination of weak local noise and this dissipative protection. To do this, we focus on

the observables {P (j)
~v : |~v| < M}. Together with an arbitrary error corrected observable at

the highest level, these constitute a complete set of quantum numbers. The most attractive

features of these observables is that both single qubit Pauli errors and the recovery operations

may be described by classical deterministic transition rules in terms of this specific set of

quantum numbers. Furthermore, the events influencing each of these quantum numbers may

be simply characterized. Namely, only recovery or physical error events located at ~u < ~v can
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influence the validity of P
(j)
~v . This will allow us to provide upper bounds for the probability

of introducing logical errors.

It is useful to define certain additional projectors in terms of the set of commuting pro-

jectors {P (j)
~v : M > |~v|}

HasError(~v) = 1− P (0)
~v

IsError(j : ~v) = P
(Xj)
~v + P

(Yj)
~v + P

(Zj)
~v (4.53)

Enabled(j : ~v) = 1− P (0)
~v − P (Xj)

~v − P (Yj)
~v − P (Zj)

~v

The recovery operation R~v has a non trivial effect only for the subspace “HasError(~v)”.

Furthermore, in the subspace “IsError(j : ~v)”, the effect of applying the recovery operationR~v
is to apply a logical operation on j : ~v. Finally, the projector “Enabled(j : ~v)” the difference

between the two and indicates that there is already a logical error among the immediate

components of ~v, but that it is not at j : ~v. This last projector will be instrumental in

bounding the probability for physical errors to be raised as logical errors. In the case of the

perfect five qubit code, it is a necessary and sufficient condition for a logical operation at

j : ~v be seen (in terms of the stabilizers) as raising a logical operation at ~v. The following

short hand notation will be used to express the probability of satisfying these predicates

(projectors)

〈P 〉t = tr[Pρ(t)]. (4.54)

4.C.1 Bounding error probabilities

of constitute the core of proving the robustness of error corrected observables under such a

dissipative dynamics as Eq. (4.49). In particular, we wish to prove inductively that

∀t 〈HasError(~v)〉t ≤ pn wheren = M − |~v|. (4.55)

Since the initial state ρ(0) is by Hypothesis a code state at all levels, we have that

∀~v : 〈HasError(~v)〉t=0 = 0. (4.56)

The trick now is to obtain an upper bound on the rate at which these probabilities may

increase and upper-bound the actual probability by a fixed-point value. Let us first illustrate
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this method by considering a simple example provided by |~v| = M − 1.

d〈HasError(~v)〉t
dt

≤

kΓnoise − Γcorrect,~v〈HasError(~v)〉t
(4.57)

Note that we have excluded processes by which a physical error cancels a preexisting error.

From the rate bound, we may extract a fixed-point upper-bound and use it to bound the

actual probability

〈HasError(~v)〉t ≤
kΓnoise

kΓnoise + Γcorrect,~v
. (4.58)

Assuming Γcorrect,~v ≥ Γcorrect,M−|~v|, we may further simplify the bound to

〈HasError(~v)〉t ≤
kΓnoise

Γcorrect,1
=: p1. (4.59)

We may take a similar approach to bound the rate at which errors accumulate at higher levels

(i.e. M − |~v| = n+ 1). However, the expressions required here are a bit more complicated.

d〈HasError(~v)〉t
dt

(4.60)

≤
∑
~u�~v
|~u|=M

Γnoise,~u

〈 ∏
~u<~w��~v

Enabled(~w))

〉
t

(4.61)

−Γcorrect,~v〈HasError(~v)〉t

≤ Γnoise

∑
~u�~v
|~u|=M

∏
~u<~w��~v

〈Enabled(~w)〉t (4.62)

−Γcorrect,~v〈HasError(~v)〉t

≤ Γnoise

∑
~u�~v
|~u|=M

∏
~u�~w�~v

〈HasError(~w)〉t (4.63)

−Γcorrect,~v〈HasError(~v)〉t

≤ kn+1Γnoise

n∏
j=1

pj (4.64)

−Γcorrect,n+1〈HasError(~v)〉

A non trivial step is taken in going from [4.61] to [4.62], where the probability of a conjunction

is taken to be a product of probabilities (i.e. independent probabilities). This property will

be proven in appendix 4.D.

In turn, this leads to the fixed point bound

〈HasError(~v)〉t ≤
kn+1Γnoise

∏n
j=1 pj

Γcorrect,n+1
=: pn+1. (4.65)
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From here, we inductively derive the expression

pn =
Γ2n−1

noisek
2n−1

Γcorrect,n
∏n−1
j=1 Γ2n−1−j

correct,j

. (4.66)

Making the additional assumption Γcorrect,j = Γcorrectδ
j we may simplify this expression to

obtain

pn =

(
Γnoisek

2

Γcorrectδ2

)2n−1

δ

k
. (4.67)

In turn, this tells us that if Γnoise < (δ/k)2Γcorrect, then the probability of having non trivial

syndrome decreases double exponentially with the level of the syndrome.

Our final goal is to obtain an expression bounding the rate at which logical errors are

introduced. One possibility, is to study the decay rate for any of the three highest level

logical Pauli observables. Since these three constitute a full set of observables for the logical

subsystem, their preservation implies high fidelity storage of quantum information [7].

A logical error or flip of the highest level logical observables, can be introduced whenever

a physical error occurs at a site which is enabled to raise the error at all levels. Employing

bounds similar to those in Eqs. (4.61)-(4.64) one arrives at

d〈XEC
∅ ρ(t)〉t
dt

(4.68)

≤
∑
|~u|=M

Γnoise,~u

〈 ∏
~u<~w�∅

Enabled(~w)

〉
t

(4.69)

≤ Γnoiseδ
M

(
Γnoisek

2

Γcorrectδ2

)2M−1

, (4.70)

indicating that for a sufficiently low physical error rate, the logical error rate is suppressed

double exponentially in terms of M , similar to results for concatenated QECC in a quantum

circuit model.

4.D Proof of independence for the Enabled property

In this section we assume a Pauli noise model and prove that the Enabled property along

the different truncations of the same physical address are statistically independent. More

specifically, the factorization〈 ∏
~u<~w�~v

Enabled(~w)

〉
t

=
∏

~u<~w�~v
〈Enabled(~w)〉t (4.71)
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holds for a noise process of Pauli form

Dnoise,~v(ρ) =
∑

σ∈{X,Y,Z}

Γσ (σ~vρσ~v − ρ) . (4.72)

The restriction of the noise process to Pauli form Eq. (4.72) is clearly undesired. However,

it provides a sufficient condition to prove Eq. (4.71), which does not hold for general noise.

We expect the need for this assumption to be an artifact of our proof technique and that our

main result, i.e. Eq. (4.68), will essentially hold for any independent noise model.

The proof relies on the independence of the different processes which introduce physical

errors and perform recovery operations. An event Ev ~w will be associated to each vector

~w, with |~w| = M corresponding to the introduction of physical errors at ~w and |~w| < M

corresponding to recovery operation R~w. Each event Ev~w can be seen as the state dependent

application of a tensor product Pauli operator. Furthermore, for |~w| < M the operator only

depends on the quantum numbers P
(j)
~w and must be a logical Pauli operators at some w0 : ~w.

The correction operators satisfy this property by design. In turn, for |~w| = M , Ev ~w applies

a randomly chosen physical Pauli operator at ~w according to the Pauli form noise model Eq.

(4.72). It can be seen that under these conditions, only events Ev~w such that ~w � ~v can

directly affect the quantum numbers P
(j)
~v . Thus, given a history L of events Ev~w applied to

an initially encoded state, the quantum numbers P
(j)
~v are well defined and depend only on

the sub-history of events L′ containing the events Ev~w with ~w < ~v.

Since Enabled(v0 : ~v) can be defined in terms of the P
(j)
~v it may only depend on the

sub-history of events Ev~w with ~w < ~c. Furthermore, Enabled(v0 : ~v) will be shown not to

depend direct or indirectly on events Ev~u with ~u < v0 : ~v. This can be seen as a consequence

of Enabled(v0 : ~v) commuting with any Pauli operator acting on qubits ~w with ~w < v0 : ~v.
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Proving Eq. (4.71) may be split in the following steps〈 ∏
~u<~w�~v

Enabled(~w)

〉
t

(4.73)

=
∑
L

pL(t) tr[
∏

~u<~w�~v
Enabled(~w)Lρ0] (4.74)

=
∑
L

pL(t)
∏

~u<~w�~v
tr[Enabled(~w)Lρ0] (4.75)

=
∑
L

pL(t)
∏

~u<~w�~v
tr[Enabled(~w)L~wρ0] (4.76)

=
∏

~u<~w�~v

∑
L~w

pL~w(t) tr[Enabled(~w)L~wρ0] (4.77)

=
∏

~u<~w�~v
〈Enabled(~w)〉t, (4.78)

which will be subsequently explained and justified. As a first step, the master equation

defining ρ(t) is unraveled [25] into event histories L to obtain Exp. (4.74). Given that every

event history L implements a Pauli operator which produces eigenstates to all the projectors

Enabled(~w), the 0, 1 expectation values may be factorized to obtain Exp. (4.75). Expectation

values depend only on disjoint sub-histories Lw0:~w ( a history of events uniquely determined

by filtering events Ev~u such that ~u � ~w but not ~u � w0 : ~w from L ), leading to Exp.

(4.76). Furthermore, the sum of pL consistent with given sub-histories L~w may be written

as a product of the independent probabilities pL~w of such sub-histories, thus leading to Exp.

(4.77). Finally, each factors in Exp. (4.76) may be seen to be the history unraveling of each

of the factors in Exp. (4.78), which is what we set out to prove.



Chapter 5

Record qubit storage time using

NV-center proximal 13C

In this chapter we introduce Nitrogen-Vacancy (NV) centers in diamond, a

physical system which has demonstrated outstanding qualities for quantum in-

formation applications. Using this system, joint effort with the group of Mikhail

Lukin at Harvard have lead to the experimental realization of record coherent

storage times for room temperature solids. The emphasis of this chapter is the-

oretical, providing special attention to the authors contribution, namely, the

design and identification of decoupling techniques to extend the coherence time

of a 13C nuclear spin. As a complement, a copy of the original published article,

Science 336 (2012) 1283-1286, is appended to the printed version of this thesis

with permission of AAAS.

5.1 Introduction

Stable quantum bits, capable of both storing quantum information for prolonged times and

with the potential of being integrated into small portable devices can constitute a building

block for quantum information applications. In this chapter, we focus on a very specific

physical system with the goal of furthering the current record for room-temperature coherent

storage. Nitrogen-Vacancy center are a natural candidate for this endeavour since they have

been shown to permit coherent storage even at room temperature. The contribution of
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this work is to provide models for the dominant decoherence mechanisms and provide an

enhancement of coherence times via a combination of techniques such as material engineering,

dissipative environment engineering and dynamical decoupling.

5.1.1 Outline

First the physical system of the NV-center is described taking care to enumerate the relevant

degrees of freedom at different energy scales: a) the orbital electronic levels which allow

for optical pumping and fluorescence detection, b) the electronic spin degrees of freedom

which can be optically detected and initialized, c) the nuclear spin degrees of freedom which

couple coherently to the electronic spin and are otherwise well isolated. We then proceed to

explain how the coherent coupling between a neighbouring 13C nuclear spin and the electronic

spin of the NV center can be used to achieve single shot readout and initialization with

fidelities as high as 97%. At this point, we reach the main contribution of this work, which

is the modelling of 13C nuclear spin decoherence and depolarization in tandem with the

design and implementation of techniques to prevent it. These techniques are of two kinds:

a) dissipative driving of the environment (electronic spin) to achieve a motional narrowing

regime b) coherent driving of the 13C memory spin to dynamically decouple it from nuclear

spins in its vicinity. Following the main theme of this thesis, we describe how to use available

controls to initialize, store and read out a qubit. Finally, perspectives on how to further

increase coherent storage times and applications are discussed.

5.2 An introduction to NV centers

Nitrogen-vacancy centers are deep center defects in the diamond crystal structure consisting of

a substitutional nitrogen impurity and a nearest neighbour vacant cite in the diamond lattice

(see figure 5.1(a)). These centers are extremely stable, even under continuous irradiation

and ambient conditions. Like atoms, NV centers respond to optical transitions and have

electronic and spin degrees of freedom. The host lattice, provides the advantage that the

center will be pined in space. This in turn, allows measuring the fluorescence of a single

center, optically addressing it and to some extent, characterizing its local environment. The

ab-initio calculation of the electronic structure continues to be a subject of research and is
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beyond the scope of this thesis [43, 42]. The widely accepted energy structure for these centers

is presented here in a phenomenological way.

(a) NV-center real-space layout (b) NV-center energy levels

Figure 5.1: a) An NV-center is obtained by removing two nearest neighbour carbons in

the diamond lattice and replacing one of them by a nitrogen atom (light grey) while keeping

the lattice location vacant (blue). In practice, a way to fabricate these centers is via high

temperature annealing of natural or implanted nitrogen impurities until they become attached

to a vacancy. b) Schematic level diagram for an NV center (left box) and a 13C nuclear spin

(right box) under illumination with green laser light. The green arrows indicate optical

transitions addressed by our green laser pulse, red arrows show electronic decay and blue

arrows indicate depolarization of the electronic spin. The transition rates for NV are taken

from [88] with the decay rate from the electronic excited state to the ground state γ̃ = 1
13ns ,

the decay rate from the singlet to ms = 0 of the electronic ground state Γ = 1
300ns and the

decay rate from the electronic excited states with ms = ±1 to the singlet γ̃b = 0.3γ̃. Moreover

we assumed the decay rate of the excited state of NV0 to be on the same order as for NV. The

deionization rate from NV to NV0 is taken to be γ1 = I/Isat
70ns and the ionization rate γ2 = 2γ1

[126]. The depolarization time for the electronic spin for NV is taken to be TNV
−

1e = 8ms

and for the case of NV0, TNV
0

1e = 6µs [126]. All the remaining rates are taken to be zero.

Reprinted from Science 336 (2012) 1283-1286 with permission from AAAS.
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5.2.1 Electronic energy levels

Two possible charge states have been found to be long lived for NV centers, a neutral state

NV0 and a singly charged state NV−. Each of these charge states can be electronically excited

with respective zero-phonon lines of 2.16eV (575nm) for NV0 and 1.945eV (637nm) for NV−.

Compare this to a band gap of 5.5eV for diamond. There are 6 electrons contributing to

the electronic structure of the NV−, one valence electron for each of the nearest neighbour

carbons of the vacancy, two from the substitutional nitrogen and an extra negative charge.

The nitrogen and the vacancy partially break the symmetries of the diamond lattice leaving

only a C3V symmetry around the axis they define (see figure 5.1(a)). The NV− is most

abundant in nautral diamond, and will also play a dominant role in this work. However, the

NV− can become deionized by optical irradiation so NV0 should not be dismissed completely.

The orbital ground state of NV− transforms as A1 (i.e. is invariant) under C3V symmetry

transformations. There are two dipole allowed excited states at 1.945eV with E character

which can be optically excited and fluoresce. By employing a Hanbury Brown and Twiss

type setup to collect NV-center fluorescence, it is possible to ascertain that a single center is

being detected[78]. Typically, excitation and fluorescence processes occur primarily through

the phonon sidebands (630–800nm), with the excited states showing a radiative lifetime of

≈13ns. However, there is also a slower non radiative decay channel for the excited states via

a shelf state which is responsible for polarizing the electronic spin.

While the NV− energy structure is relatively well understood, knowledge of NV0 states

and dynamics have not reached the same degree of maturity and consensus. In our study, we

consider a simple model for the NV0 in which only a doublet ground state and exited state

are involved [126]. However, there are a few reasons why our results do not show a strong

dependence on the detailed description of NV0. The main one, is that all of the coherent

manipulation of our system occurs exclusively in the NV− states. Furthermore, it is expected

that at the relevant filling conditions, the NV centers spend more than twice as much time in

NV− states than in NV0 states, even during optical irradiation. Finally, the electronic spin

depolarization is more than 1000 times faster for NV0 state than for NV− and experiments

suggest that NV0 states have no orbital angular momentum. This leads us to expect that the

weak hyperfine interaction with distant 13C can be neglected due to motional averaging.
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5.2.2 Electronic spin sublevels

Both the ground orbital state and the discussed excited states of NV− have an additional

triplet spin structure which is mainly preserved by optical transitions. Electronic spin-spin

interactions provide a zero-field splitting (ZFS) described by ∆gs/esS
2
z . In the long lived

electronic ground state ∆gs ≈ 2.87GHz allows microwave (MW) driving of electronic transi-

tions. For the excited states, the ZFS is approximately half as strong ∆es ≈ 1.43GHz [96].

However, due to the short lifetime of excited orbital states coherent control is more reliable

in the ground state. Additionally, the energy levels of electronic spin states are shifted by

an external magnetic field B which in our setup will be fixed along the NV symmetry axis.

Microwave pulses can coherently drive transitions among these electronic states. The feature

which makes NV center electronic spins most attractive, is their optical polarizability (into

ms = 0 state) and the possibility of optical measurement via spin dependent fluorescence.

5.2.3 Nuclear spin environment

At longer time scales, nuclear spins, which interact with the electronic spin degree of freedom

via hyperfine interaction begin to play a relevant role in NV-center dynamics. The Nitrogen

atom of the NV-center provides a nuclear spin which is universally present, either the naturally

occurring 14N with (I = 1) or its less likely (0.4%) stable isotope 15N with (I = 1/2) which

may also be selectively implanted. Due to its universality, many proposals have been made

involving the nitrogen nuclear spin[116], however, its strong coupling with the NV electronic

spin rule out prolonged coherent storage. Due to the strong electronic ZFS, and the symmetric

placement of the nitrogen the ANzzI
N
z Sz is the only remaining term of the hyperfine interaction

in the electronic ground space, with ANzz ≈ −2.16MHz. The nitrogen nuclear spin also present

a zero field splitting given by P (INz )2, with P ≈ −5MHz.

While most carbon atoms (12C) in the diamond lattice have no nuclear spins the remaining

13C nuclear spins (I = 1/2) provide a bath with which the electronic NV-spin may interact.

In particular, the hyperfine interaction of the electronic spin with nearest neighbour 13C, is

even greater than with the 14N nuclear spin. From first principles, the hyperfine interaction
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of the electronic spin with a 13C nuclear spins is given by

Hhf =− γeγ13C
2µ0π~2|ψe(r = 0)|2

3
S · I13C

+
~2µ0γeγ13C

4π

〈
1

r3

(
S · I13C − 3(n · S)(n · I13C)

)〉
,

(5.1)

where γe and γ13C are the gyromagnetic moments of the electron and the 13C nuclear spin

respectively, r and n are the magnitude and direction of the position r of the electron respect to

the nuclear spin and the brackets denote expectation value with respect to the electronic wave

function ψe(r) (taking coordinate origin at the nuclear spin). The first term corresponds to a

Fermi contact interaction whereas the second corresponds to the usual magnetic dipole-dipole

interaction. In the case of the NV-center, the electronic wave function actually corresponds to

six valence electrons. In practice, the hyperfine interaction can be represented by an orbital

state dependent hyperfine tensor

Hhf =
∑

µ,ν∈{x,y,z}

SµA
µ,νIν . (5.2)

For proximal nuclear spins, this tensor can be obtained experimentally and/or from first prin-

ciple electronic wave function calculations. For distant nuclear spins, the contact interaction

decays exponentially and can be discarded, and a point-dipole approximation which places

all electronic density at the NV is justified for estimating the hyperfine tensor[97].

In addition to the interaction with the electronic spin, each nuclear spin interacts directly

with the external magnetic field Hb = γ13C~B · I. Finally, relatively weak magnetic dipole-

dipole interactions exists among the nuclear spins

Hdd =
∑
j<k

−µ0

4π

γjγk~2

rjk3
(3(Ij · njk)(Ik · njk)− Ij · Ik) , (5.3)

where j, k index over the different nuclear spins and the vector rjk with length rjk and

orientation njk is the relative position of the two nuclear spins.

The stable 13C isotope occurs with a natural abundance of 1.1%, whereas material engi-

neering may reduce this ratio to as low as 0.01%. This reduction is a key ingredient to our

approach of using 13C nuclear spins as memories since it effectively reduces the dipole-dipole

coupling among neighbouring 13C and the typical hyperfine interaction with the NV elec-

tronic spin. This second effect allows reaching the motional narrowing regime in which the

electronic spin is driven faster than the hyperfine interaction time.
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The effective surrounding 13C concentration determines the coherence time of the elec-

tronic spin as having a time scale similar to the hyperfine coupling[14]. Thus, in order to

have some degree of coherent coupling between the NV electronic spin and a 13C, the closest

nuclear spin should be significantly closer than the others. In the case of the experiment

conducted the nearest 13C spin addressed was at a distance of 1.7nm. Given the sample 13C

to 12C concentration of 10−4, approximately 7% of the NV-centers have such a proximal 13C.

Thus, significant search needs to be conducted in order to locate an NV presenting a single

13C with such a strong hyperfine interaction which can be clearly singled out from the rest of

the nuclear spin environment. Alternatively it may be possible to improve on existing tech-

niques to place single 13C nuclear spins close to an NV-center [115] such that sample quality

is not compromised.

5.3 Qubit initialization and readout

Relatively long coherence times have been demonstrated in bulk electron spin resonance

(ESR) and nuclear magnetic resonance (NMR) experiments [79, 13, 121]. A shortfall of

theses systems is that single spin initialization and readout are quite challenging and only

global addressing can be used. In contrast, one of the attractive qualities of NV-centers is the

possibility of optically inducing spin polarization and optically detected magnetic resonance.

Due to diffraction limits, the optically achievable spatial resolution ≈200nm is orders of

magnitude higher than what is achievable with microwave or radio-frequency allowing to

resolve single NV centers at sufficiently low density. A second advantage is the large optically

achievable spin polarizations (90% for the electronic spin [36] or even 98% for isotopic 15N

nuclear spins [62]) which are unachievable by thermal equilibration in standard NMR or ESR

experiments. Furthermore, the single spin repetitive readout techniques that will be discussed

allow achieving an even higher degree of polarization on neighbouring 13C nuclear spins.

In this section we will describe 13C initialization and single shot readout following the work

by Neumann et al. [95] (see figure 5.3). The main ingredients of this approach are a) optical

readout and initialization of electronic spin b) CnNOTe logic gate which flips the electronic

spin conditioned on the 13C nuclear spin c) arbitrary gates acting on the 13C nuclear spin.

Finally, we may infer the nuclear state and our uncertainty of it from the photon counting

statistics which is obtained. We will describe these steps one by one in what follow and finally



108 5. Record qubit storage time using NV-center proximal 13C

combine them to provide high fidelity initialization and readout.

5.3.1 Electronic spin initialization and readout

The NV− center undergoes mostly spin preserving cycling transitions into its excited state

when driven by laser light at (λ =532nm). It quickly (≈13ns) fluoresces from the electronic

excited state emitting into the phonon sideband (630–800nm). Depending on factors such

as strain and magnetic field misalignment with the NV axis, the electronic spin preservation

may be imperfect. Additionally, the |ms = ±1〉 orbitally excited states decay non-radiatively

into an orbital singlet state which eventually decays mainly into the ms = 0 spin state of the

ground state space. The shelving of the |ms = ±1〉 states into a metastable states leads to a

differential fluorescence count with the ms = 0 state initially showing more counts (see figure

5.2). Repolarization of the electronic spin into the ms = 0 state occurs on the time scale

of ≈150ns so the electronic spin can be expected to be completely repolarized after ≈ 1µs.

Regretfully, due to relatively low collection efficiencies the probability of not collecting any

fluorescence photons during such a time is higher than 98% for both electronic spin states.

5.3.2 CnNOTe

For distant 13C nuclear spins the dominant energy scale is due to the external magnetic field

B = (244.42± 0.02)Gauss which leads to a precession frequency of ω13C ≈ 261.5kHz. Second

in strength comes the hyperfine interaction of the electronic spin with the closest 13C nuclear

spin was A‖ = (2π)(2.66 ± 0.08)kHz (approximately 1% of the Zeeman splitting due to the

external magnetic field). Taking the RWA with respect to the energy levels of the electronic

spin ground space the hyperfine interaction terms not commuting with Sz may be discarded

due to the huge zero field splitting ∆gs ≈ 2.87GHz. Furthermore, estimating A‖ ∼ A⊥ we may

conclude that A⊥ will have no first order contribution to the energy levels and can contribute

only a small O(A⊥/ω13C) modification to the magnetic 13C nuclear spins quantization axis.

In order to define a CnNOTe gate which flips the electronic qubit depending on the state

projection of the nuclear 13C qubit we first restrict ourselves to a two level subspace for the

electronic spin spanned by |ms = 0〉 and |ms = 1〉. First, a resonant microwave π/2 pulse

prepares the state (|ms = 0〉+ |ms = 1〉)/
√

2. This is followed by a free precession period of

τ = π/A‖ which is at the heart of the CnNOTe gate. Finally, a second π/2 microwave pulse is
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| ms = 0i | ms = ±1i

�

�̃b

�̃ �̃

Figure 5.2: The |ms = ±1〉 excited states decay into the singlet shelve state with a rate

γ̃b ≈ 0.3γ̃ which in turn decays mainly into the |ms = 0〉 ground state at a slower rate

Γ ≈ 1
300ns . No photons are emitted during the time spent in the shelf state leading to a lower

initial fluorescence intensity for the |ms = ±1〉 states. Eventually, the electronic spin becomes

polarized into the |ms = 0〉 independent of the initial state. Such a 1/e decay occurs on a

time scale of the order of 150ns and steady state polarization can be assumed after 1µs (these

rates depend on the strength of the optical driving).

applied, taking care to use the opposite phase as for the first one. This sequence implements

the

CnNOTe =


1 0 0 0

0 1 0 0

0 0 0 i

0 0 i 0

 (5.4)

which is the desired transformation (up to phases in the computational basis). Note that

if the relative phase of the π/2 microwave pulses is the opposite of the one expected, the

implemented gate will be

Cn̄NOTe =


0 1 0 0

−1 0 0 0

0 0 −i 0

0 0 0 +i

 , (5.5)
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which is also acceptable up to phases in the computational basis and a swap in the definition

of the computational basis states for the 13C nuclear spin. It is experimentally challenging

to control the MW frequency such that it does not drift from the electronic resonance fre-

quency over a period τ . A frequency mismatch δ such that δτ = ±π/2 would already erase

all measurable contrast. This requires the resonance frequency to be matched within 1kHz.

Such drifts may be induced by temperature since the ZFS ∆gs has been reported to show a

temperature dependence of around (2π)74kHzK imposing a thermal stability of 0.02K. This is

experimentally challenging, and is avoided by defining the nuclear states |↑〉, (|↓)〉 as corre-

sponding to high (low) fluorescence. In the experimental setup considered, such frequency

drifts do occur on the time scale of 30 minutes changing this definition.

The MW pulses manipulating the electronic spin were performed with a Rabi frequency

on the order of (2π)40MHz which is more than 10000 times faster than the hyperfine splitting

and provides pulses which are approximately instantaneous with respect to it. Additionally

the 14N nuclear spin can be assumed to be dynamically polarized to 71% by the optical driving

due to an anti-crossing in the electronic excited state [62].

5.3.3 Nuclear spin gates and preparation of arbitrary states

By repetitively mapping the state of the nuclear spin onto the electronic spin and performing

fluorescence detection, it is possible to determine the state (either |↑〉 or |↓〉) to a very high

precision (purity). A full set of single qubit gates allows us to prepare any known state from

such a known initial state. Using radio-frequency driving with well controlled phases and in

resonance with the ω13C magnetic Zeeman splitting, (261kHz) it is possible to drive coherent

transitions on the 13C nuclear spins. In the considered experimental setup, these transitions

could be driven with Rabi frequencies of ≈ (2π)100kHz.

5.3.4 Repetitive readout and initialization

As mentioned earlier, each time the nuclear spin state is mapped into the electronic spin,

fluorescence counts provide an average of no more than 0.02 photon detections. In addition

to the low photon collection efficiency and imperfect contrast between |ms = 0〉 and |ms = 1〉
states, there are other factors which lead to low contrast such as: imperfect initialization of

ms = 0, imperfect CnNOTe gate implementation due to electronic dephasing and unpolarized
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Figure 5.3: Nuclear 13C qubit readout. a) Circuit diagram of repetitive readout of the nu-

clear spin |n〉. The readout uses a CnNOTe gate consisting of multiple repetitions of an

electronic spin Ramsey sequence and subsequent repolarization. Many repetitions are needed

to accumulate the small amounts of information provided by each measurement attempt. b)

Fluorescence time trace showing single shot readout of the nuclear spin and corresponding

quantum jumps. The integration time for a single point is 4.4 s. c) Histogram of continu-

ous repetitive readouts (20000 in 4.4 s) showing two overlapping distributions of fluorescence

photon counts corresponding to nuclear spin states: | ↓〉 (blue) and | ↑〉 (red). d) Nuclear

spin orientation lifetime, T1n as a function of 532 nm laser power. As shown in the inset, each

data point is extracted from a series of two repetitive readout sequences, the first one corre-

sponding to initialization and the second to measurement. The solid red curve represents the

theoretical prediction from the simple model of nuclear depolarization induced by the off-axis

dipolar hyperfine field. Reprinted from Science 336 (2012) 1283-1286 with permission from

AAAS.

component of 14N, complete failure due to (de)ionization of the NV-center. These are the

reasons why the measurement is repeated 20000 times taking 4.4s in order to achieve a

reasonable contrast between nuclear spin states (see figure 5.4). However, due to the nuclear
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spin depolarization (T1n ≈ 25s during repetitive readout), further increase in the repetition

number provides little improvement for the readout fidelity.

In order to prepare definite nuclear spin states, it is possible to post select measurements

for which the number of photons counts is above/below predefined thresholds. In the case

of the experiment realized these were taken to be 147(195) photon counts during the last

10000 repetitions (2.2s) which leads to an initialization fidelity of ≈ 97%. In the case of

measurement, readout fidelity can be estimated at (91.9 ± 2.5)% from the overlap between

the count distributions associated to the two possible initial states.

Figure 5.4: Photon count statistics and initialization fidelity a) The number of events associ-

ated to a given number of detected photons is plotted in a histogram (blue) after initialization

of the nuclear spin in |↓〉 (green) and |↑〉 (red) and 10000 repetitive readouts (2.2s). The solid

curves correspond to a theoretical fit accounting for the effect of a possible nuclear spin flips

on the ideally Gaussian distributions. The green and red regions indicate photon count num-

bers for which initialization is assumed in the |↓〉 respectively |↑〉 nuclear states. b) The green

and red curves indicate the initialization fidelity of |↓〉 respectively |↑〉 nuclear states as a

function of the count threshold taken. Stricter count thresholds lead to higher fidelity but

to discarding a larger fraction of initializations with the net effect of prolonging the effective

initialization time required. Reprinted from Science 336 (2012) 1283-1286 with permission

from AAAS.
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5.4 Nuclear spin coherence and depolarization

One of the main achievements of this work is to demonstrate a prolonged coherent storage

time afforded by the 13C nuclear spin. In order to do this, we must first understand the

processes that lead to nuclear spin depolarization and dephasing. In the dark (laser turned

off), no decay of the 13C nuclear spin was detected in a time of 200s, so we may assume that

under these conditions, spin flip processes are suppressed on this time scale.

In order to measure the coherence time of the 13C nuclear spin, an NMR Ramsey exper-

iment is performed. After a measurement based initialization, a π/2 RF pulse puts the 13C

nuclear spin in a superposition |↑ + ↓〉 /
√

2. Then it is left to freely precess for a variable time

t. A second π/2 RF pulse is applied before a final repetitive readout of the 13C spin. Each

measurement must be repeated many times in order to get to estimate the expectation value

of |↑〉 〈↑|. The detected oscillation of |↑〉 〈↑| decay on a time scale of T ?2n = (8.2 ± 1.3)ms.

The origin of this relatively fast dephasing are electronic spin flips which occur on a longer

time scale than the hyperfine coupling T1e > A−1
‖ . Indeed, experimental measurements yield

T1e = (7.5 ± 0.8)ms confirming T1e ≈ T ?2n. The reason for this is that a single flip of the

electronic spin timed at random during a period π/A‖ imprints a completely random phase

on the 13C nuclear spin.

5.4.1 Spin fluctuator model and motional narrowing

The approach we take to reduce dephasing is to continuously drive the electronic spin from

the magnetic states |ms = ±1〉 into non magnetic |ms = 0〉 state. By doing this with a

green laser beam, electronic (de)ionization transitions are also driven at rates γ(2)1 as well

as increasing the effective depolarization time of the electronic spin. A regime analogous to

motional averaging [63] can be achieved when the mixing time of the defined process is faster

than the hyperfine coupling. In this regime, both T1n and T2n increase linearly with the laser

intensity.

In order to qualitatively understand the process of motional narrowing, let us consider

an illustrative simplified scenario with only two possible NV eigenstates
∣∣ms = ±1

2

〉
, each

having its own hyperfine interaction with the proximal 13C nuclear spin. We assume that the

NV state is driven incoherently as is the case for the laser driving. Finally, we assume that

transitions among electronic states occur at a rate γ. The nuclear spin Hamiltonian is then
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given by

Hn = (ω13C)BIz + f(t)
∑

β=x,y,z

Az,βIβ (5.6)

where the RWA has been taken respect to the electronic spin and the operator Sz has been

replaced by the time-dependent stochastic variable f(t) = {±1
2} described by a telegraph

process with a single forward/backward transition rate γ (we assume 〈f(t)〉 = 0). The two

time correlation function for this process is given by

〈f(t)f(0)〉 = 〈f2(0)〉e−2γ|t| =
1

4
e−2γ|t|. (5.7)

In the actual experimental scenario, a good fraction of the transition rates are proportional

to the laser intensity.

The nuclear spin Hamiltonian can be rewritten as

Hn = (ω13C)BIz + f(t)
(
A‖Iz +Az,+I+ +Az,−I−

)
(5.8)

where A‖ = Az,z, I± = (Ix ± iIy) and Az,± = A?z,∓ = (Az,x ∓ iAz,y)/2. Note that |Az,±| =√
A2
z,x +A2

z,y/2 ≡: Az,⊥/2.

We can now provide an estimate for the nuclear spin dephasing time T2n induced by

the term Az,z(t)Iz. The phase contribution to the nuclear spin at time T is given by

ΦFID =
∫ T

0 Az,z(t)dt. Assuming γ � 1/T,Az,z, the accumulated phase ΦFID will follow

an approximately normal distribution and we may compute the expectation value for the

nuclear coherence

〈eiΦFID〉 ≈ e− 1
2
〈Φ2
FID〉 ≈ e−T/T2n . (5.9)

Where we may calculate T2n = 8γ
A2
‖

from

1

2
〈Φ2

FID〉 =
1

2

∫ T

0
dt

∫ T

0
dt′A2

‖〈f(t)f(t′)〉 ≈ 1

2

∫ T

0
dt

∫ ∞
−∞

dt′A2
‖〈f(t)f(t′)〉 =

A2
‖

8γ
T. (5.10)

Thus, for transition rates increasing linearly with the laser intensity, the coherence time T2n

also increases proportionally. Indeed, applying this approach, it was possible to increase

the nuclear spin coherence time by two orders of magnitude T ?2n = (0.53 ± 0.14)s by simply

applying green laser light (10mW).

Let us now consider a simple estimate for the T1n or nuclear spin flipping process due

to the telegraph type switching of the hyperfine interaction. First order time-dependent
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perturbation theory provides an estimate for the transition rates in both directions (lowering

and raising), given by

Γ↑ =

(
A⊥
2

)2

Sq(−γ13CB) and Γ↓ =

(
A⊥
2

)2

Sq(γ13CB). (5.11)

where Sq(ω) is defined as

Sq(ω) =

∫ ∞
−∞

dτeiωτ 〈f(τ)f(0)〉 (5.12)

and according to eq. (5.7) can be calculated to be Sq(γ13CB) = γ
4γ2+(γ13CB)2 . This leads to

the transition rates,

1/T1n,opt = Γ↓ + Γ↑ =
A2
⊥

8

γ

γ2 + (ω13CB/2)2
(5.13)

In the dark, the nuclear spin lifetime is no longer limited by the optically induced depo-

larization (note that the numerator in eq. (5.13) vanishes but the denominator does not).

In this context resonant dipole-dipole interactions among 13C nuclear spins may provide a

significant contribution. The dipole-dipole interactions take the form

Hdd = Ddd

[
3(I · n)(I′ · n)− I · I′

]
, (5.14)

where I is the memory spin operator and I′ is the spin operator for a neighbouring 13C nuclear

spin and n is a unit vector oriented in the direction connecting the two nuclei. At the present

13C concentration, the Ddd can be expected to be of the order of 1Hz. Since we do not

know the precise direction of n with respect to the static magnetic field we shall assume an

intensity of approximately Ddd for each of the components. This is much smaller than the

Zeeman splitting of the nuclear spins due to the external magnetic field B and even smaller

than the dephasing rate at experimentally addressed laser intensity. Consider a simplified

model in which there is a single neighbouring 13C nuclear spin. The electronic spin spends

approximately 1/3 of the time in the |ms = 0〉 state, the only state which is expected to allow

resonant I−I
′
+ + I+I

′
− transitions from the dipole-dipole interaction. The permanence time

of the electronic spin in the |ms = 0〉 state is exponentially distributed with parameter 1/T1e.

The flip-flop probability per visit to |ms = 0〉 may be estimated by

1

T1e

∫ ∞
0

e−t/T1e sin2(Dddt)dt =
D2
dd

2T−2
1e + 2D2

dd

, (5.15)

whereas the rate of visits to the |ms = 0〉 state is half the depolarization rate 1
2T1e

. For

T1eA‖ � 1, the phase of the memory spin is lost on each |ms = ±1〉 visit and thus, spin flips
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accumulate incoherently with

T1n,dd ≈ 2
T−1

1e +D2
ddT1e

D2
dd

≈ 2

D2
ddT1e

. (5.16)

In practice, no significant depolarization was measured for the nuclear spin in a time scale of

200s, which is consistent with the long T1n,dd predicted by this last equation.

We may also analyse the dipole-dipole contribution to the memory flip rate in the motional

narrowing regime of T1eA‖ � 1. In this regime, we may start from a coarse grained time

dynamics with respect to T1e for the 13C memory spin where the effect of the electronic spin

are already included as a dissipative dephasing of rate T−1
2n . This is valid since the time scale

of the perturbation considered, nuclear dipole-dipole coupling, is expected to be of the order

of 1 second and hence much longer than the necessary time coarse graining. We now consider

the flip-flop between the memory spin and a neighbouring nuclear spin Ddd(I+I
′
− + I−I

′
+).

We may now take a time dependent perturbative expansion (now of a Liouvillian) in order

to extract the effective flip-flop rates, which we identify with T−1
1n,dd. We expand

Γ↑↓→↓↑t ≈ 〈↓↑| e(L0+Hdd)t(|↑↓〉 〈↑↓|) |↓↑〉 (5.17)

to first non vanishing (second) order in Ddd, where L0 includes the possibly different Zee-

man splitting of the two nuclear spins and the dephasing of the memory spin whereas

Hdd(ρ) = [Ddd(I+I
′
+I−I

′
+), ρ]. After some relatively straightforward calculations and stan-

dard approximations we arrive at

T−1
1n,dd ≈ Γ↑↓→↓↑ ≈ 2

D2
ddT

−1
2n

T−2
2n + ∆2

ω

(5.18)

where T2n is the effective dephasing time of the memory spin and ∆ω is the effective energy

detuning between the two nuclear spins (i.e. the difference between individual effective Zee-

man splitting possibly due to the presence of an effective field from the electronic spin or

magnetic field gradient). Note that homogeneous variations in the external magnetic field do

not contribute to the dephasing or energy detuning ∆ω, since they would act equally on both

nuclear spins.

This term may be ineffective on the memory spin due to a possibly large ∆ω or effective

dephasing rate T−1
2n . However, this same analysis applies for any pair of 13C spins in the

neighbourhood of memory nucleus. In turn, flipping of neighbouring 13C nuclear spins can
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produce dephasing of the memory spin due to a change in the effective magnetic field they

produce.

As evinced by the term ∆2
ω in the denominator of eq. (5.18), it is possible that the

nuclear spin flip-flop processes to be frozen by energy detuning. However, the nuclear IzI
′
z

term of the nuclear dipole-dipole interactions will imprint a phase on the memory spin which is

dependent on the environment state. Note that during coherence measurement experiments,

the π/2 initialization RF pulse (as all RF pulses) acts globally on the 13C nuclear spins and

removes any hope of having a preferred basis for the states. The accumulated phase may

not be reverted by applying a radio-frequency echo π pulses since these pulses flip both the

memory spin and the environment leading to a continued accumulation of phase instead of a

cancellation. This leads to the need of decoupling homo-nuclear dipole-dipole interactions.

5.4.2 Decoupling of homo-nuclear dipole-dipole interactions

As mentioned, the dipole-dipole interaction among 13C nuclear spins starts playing a relevant

role once one attempts to reach coherence times of the order of 1s. It is here that RF

decoupling pulse sequences can be of use. Decoupling pulse sequences have been extensively

studied in NMR where most of them have been introduced in order to study different aspect

of nuclear spin dynamics [123]. The pulse sequence that was experimentally used was derived

from MREV-8, which in turn is derived from a four pulse sequence named WaHuHa, after

Waungh, Huber and Haberlen designed to decouple homonuclear dipole-dipole interaction[91].

One of the fruitful approaches to analyse these sequences is to use the average Hamiltonian

theory. Here, the effect of the pulses are studied by moving into an interaction picture,

a toggling frame with respect to the applied RF pulses. Provided that the characteristic

frequencies ω of the natural Hamiltonian H satisfy ωt� 1, where t is the time during which

the Hamiltonian evolves between pulses and that the pulse time τp is negligible, a Magnus

expansion may be performed to describe the effective Hamiltonian Heff . The effective Heff

is defined such that the effective evolution of the system at times nt is given by U(nt) =

exp(−intHeff ) for integer values of n. The Magnus expansion gives a systematic series

development of Heff as

Heff = H(0) +H(1) +H(2) + . . . . (5.19)

Assuming the piecewise constant interaction Hamiltonians Hj =
∏j
l=1 U

−1
l H

∏1
l=j Ul corre-
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Figure 5.5: Decoupling pulse sequences The WHH sequence is capable of achieving dipole

dipole decoupling with only 4 π/2 pulses each applied around the indicated axis. The MREV-

8 has the same averaging effect as WHH for the dipole dipole coupling but shows a higher

robustness to RF pulse errors. Finally, CPMG/MREV sequence includes additional π pulses

to compensate external magnetic fields. Reprinted from Science 336 (2012) 1283-1286 with

permission from AAAS.

sponding equal time intervals τ = t/M the the first two terms of the Magnus expansion can

be reduced to

H(0) =
1

M

M∑
j=1

Hj

H(1) =
−iτ
2M

M∑
j=1

M∑
k>j

[Hk, Hj ].

(5.20)

Subsequent terms sum higher order nested commutators, with n-th order commutators cor-

responding to H(n) which are expected to vanish due to a quickly decreasing prefactor.

The secular approximation for equal spin dipole-dipole interactions under an external

magnetic field B in the z direction can be written as:

Hdd =
∑
j>k

Djk(3I
z
j I

z
k − Ij · Ik) (5.21)

where the coupling frequency is given by Djk = ~2γ2
13Cµ0/4π. We find that already the

WaHuHa pulse sequence cancels the effective dipolar interaction H
(0)
dd = 0. Moreover, due
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to the symmetry of the pulse sequence, Uk+1 = U †M−k, all odd order terms of the Magnus

expansion cancel H
(2n+1)
dd = 0. This leaves the second order term H

(2)
dd as the first potentially

non trivial correction. Assuming τ ≈ 0.04s for four repetitions of the CPMG/MREV-8

pulse sequence, in a 2s coherence measurement, and a typical dipole-dipole interaction of

Ddd ≈ 1Hz the prefactor for the leading correction is (Dddτ)2Ddd ≈ 10−3Hz which would not

be detectable in coherence measures of a few seconds.

Combined detuning and dipolar

At high laser power, the ionization induced decoherence is suppressed by motional averag-

ing. As discussed, the CPMG/MREV-8 RF pulse sequence can suppress the dipole-dipole

interaction among nuclear spins up to second order in Dddτ . Furthermore, the sequence can

also suppress, to all orders, the effect of finite detuning δIz of the RF driving with respect

to the actual Zeeman splitting of the nuclear spins which can be of the order of (2π)10Hz.

However, the pulse sequence is not designed to suppress the combined effect of dephasing and

dipolar interactions. Accordingly, the Magnus expansion can no longer be truncated to low

order. In particular, terms of the form (δτ)nD contribute to the expansion and the effective

decoherence time is set by the value of τ for which δτ ≈ 1. This time can be estimated

numerically yielding T2 ≈ 2s (see figure 5.6),in good agreement with experiments. Thus, the

dominant source of decoherence becomes the imperfect tuning of the RF driving used for the

pulse sequence.

5.5 Conclusions and perspective

In this chapter we have presented a physical model for readout, initialization and storage of

a 13C spin proximal to an NV-center. The main contribution of the work comes in the form

of characterization of decoherence and demonstration of decoherence avoiding mechanisms

for a proximal 13C nuclear spin. For (de)ionization rates γ much larger than the hyperfine

interaction, the dephasing rate depends on the parallel component of the dipole field, 1/T ∗2n =

Γopt + Γdd, where Γdd is the spin-bath induced dephasing rate and Γopt ∼
A2
‖
γ is the optically

induced decoherence. The dashed red line in figure 5.7(b) demonstrates that this model is in

good agreement with our data. Application of our decoupling sequence CPMG/MREV-8 (see



120 5. Record qubit storage time using NV-center proximal 13C

Figure 5.6: Combined dephasing from detuning and dipole-dipole interactions

The unitary evolution of a system consisting of a memory 13C nuclear spin and 5 bath spins

was numerically calculated following a CPMG/MREV-8 (with δ = (2π)10Hz driving detuning.

The bath nuclear spins were randomly distributed according to a 0.01% 13C concentration in

the diamond lattice and averaged over 50 realizations. The average predicted coherence shows

a significant decay after 2s. Reprinted from Science 336 (2012) 1283-1286 with permission

from AAAS.

figure 5.7(a)) also allows us to suppress nuclear-nuclear dephasing. We find that the main

imperfection in this decoupling procedure originates from a finite RF detuning. Accounting

for this imperfection, we find excellent agreement with our data, as shown by the dashed blue

line in figure 5.7(b). Moreover, this model indicates that the coherence time increases almost

linearly as a function of applied laser intensity, suggesting a large potential for improvement.

The use of even higher laser intensities is limited by heating of the diamond sample, which

causes drifts in the ESR transition [2]. However, this can be overcome via a combination of

temperature control and careful transition-frequency tracking, yielding an order of magnitude

improvement in the coherence time to approximately one minute. Further improvement can

be achieved by decreasing the hyperfine and the dipole-dipole interaction strength through a

reduction of the 13C concentration, potentially resulting in hour-long storage times. Finally,

it is possible to use coherent decoupling sequences and techniques based upon optimal control

theory [71], which scale more favorably than our current dissipation-based method. With

such techniques, we estimate that the memory lifetime can approach the timescale of phonon-

induced nuclear depolarization, measured to exceed Tmax1n ∼ 36 h [117].



5.5 Conclusions and perspective 121

(a) Decoupling pulse sequence (b) Intensity dependent coherence time

Figure 5.7: Experimental coherence extension a) Experimental sequence used to measure the

nuclear coherence time. A modified Mansfield Rhim Elleman Vaughan (MREV) decoupling

sequence [79] is utilized. It consists of 16 MREV-8 pulse trains interwoven with 8 phase-

refocusing π-pulses. Each MREV-8 pulse sequence can be achieved through π/2 rotations

around four different axes. b) Nuclear coherence as a function of green laser power. Red

data constitute a measurement of T2n using a nuclear spin echo; blue data T2n contain the

additional MREV sequence. The dashed fits are calculated from the spin-fluctuator model.

Reprinted from Science 336 (2012) 1283-1286 with permission from AAAS.

Advanced material engineering could lead to the possibility of generating an array with

a vast number of NV center, each with an associated proximal 13C nuclear spin. Further

progress needs to be demonstrated in order to be able to initialize and measure such an

ensemble qubits independently. In the following chapter 6 we consider the potential appli-

cations of such an array for the realization of fraud resistant quantum tokens in the spirit

of [129]. Furthermore, NV-based quantum registers can take advantage of the nuclear spin

for storage, while utilizing the electronic spin for quantum gates and readout [36, 108]. In

particular, recent progress in the deterministic creation of arrays of NV centers [120] and

NV-C pairs‘[115], enables the exploration of scalable architectures [97, 131]. Finally, recent

experiments have also demonstrated the entanglement of a photon with the electronic spin-

state of an NV center [118]. Combining the advantages of an ultra-long nuclear quantum

memory with the possibility of photonic entanglement opens up novel routes to long-distance
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quantum communication and solid state quantum repeaters [35].



Chapter 6

Unforgeable noise-tolerant quantum

tokens

The realization of devices which harness the laws of quantum mechanics repre-

sents an exciting challenge at the interface of modern technology and fundamental

science. An exemplary paragon of the power of such quantum primitives is the

concept of “quantum money” [129]. A dishonest holder of a quantum bank-note

will invariably fail in any counterfeiting attempts; indeed, under assumptions of

ideal measurements and decoherence-free memories such security is guaranteed

by the no-cloning theorem. In any practical situation, however, noise, decoher-

ence and operational imperfections abound. Thus, the development of secure

“quantum money”-type primitives capable of tolerating realistic infidelities is of

both practical and fundamental importance. Here, we propose a novel class of

such protocols and demonstrate their tolerance to noise; moreover, we prove their

rigorous security by determining tight fidelity thresholds. Our proposed proto-

cols require only the ability to prepare, store and measure single qubit quantum

memories, making their experimental realization accessible with current tech-

nologies.
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6.1 Introduction

Recent extensions to Wiesner’s original “quantum money” protocol [129] have garnered sig-

nificant interest [1, 86, 94, 38, 39, 85]. One particular extension enables the authentication of

quantum tokens via classical public communication with a trusted verifier [44]. However, to

tolerate noise, the verification process must condone a certain finite fraction of qubit failures;

naturally, such a relaxation of the verification process enhances the ability for a dishonest

user to forge quantum tokens. It is exactly this interplay which we, here, seek to address,

by focusing on a class of ”quantum token”-protocols which involve either direct physical or

classical communication verification of qubit memories.

6.2 Qticket

Our approach to quantum tokens extends the original quantum money primitive[129] by

ensuring tolerance to finite errors associated with encoding, storage and decoding of individual

qubits. We denote the tokens within our first primitive as quantum tickets (qtickets); each

qticket is issued by the mint and consists of a unique serial number and N component quantum

states, ρ =
⊗

i ρi, where each ρi is drawn uniformly at random from the set, Q̃ = {|+〉, |−〉, |+
i〉, | − i〉, |0〉, |1〉}, of polarization eigenstates of the Pauli spin operators. The mint secretly

stores a classical description of ρ, distributed only among trusted verifiers. In order to redeem

a qticket, the holder physically deposits it with a trusted verifier, who measures the qubits in

the relevant basis. This verifier then requires a minimum fraction, Ftol, of correct outcomes

in order to authenticate the qticket; following validation, the only information returned by

the verifier is whether the qticket has been accepted or rejected.

The soundness of a qticket, e.g. the probability that an honest user is successfully verified,

depends crucially on the experimental fidelities associated with single qubit encoding, storage

and decoding. Thus, for a given qubit ρi, we define the map, Mi, which characterizes the

overall fidelity, beginning with the mint’s encoding and ending with the verifier’s validation;

the average channel fidelity[98] is then given by, Fi = 1/|Q̃|∑ρi
tr[ρiMi(ρi)]. With this

definition, the verification probability of an honest user is,

ph =
1

|Q|
∑
ρ∈Q

tr[PaccM(ρ)] ≥ 1− e−ND(Fexp‖Ftol), (6.1)
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where Q = Q̃⊗N , Pacc represents the projector onto the subspace of valid qtickets, M =⊗
iMi, Fexp = 1/N

∑
i Fi is the per qubit average experimental fidelity, and the relative

entropy D is a measure of distinguishability between two binary probability distributions.

Crucially, so long as the average experimental fidelity associated with single qubit processes

is greater than the tolerance fidelity, an honest user is exponentially likely to be verified.

To determine a tight security threshold, we consider the counterfeiting of a single qticket.

For a given tolerance fidelity (Ftol) set by the verifiers, a qticket is only accepted if at least

FtolN qubits are validated. In the event that a dishonest user attempts to generate two

qtickets from a single valid original, each must contain a minimum of FtolN valid qubits to

be authenticated. As depicted in Fig. 1a., in order for each counterfeit qticket to contain

FtolN valid qubits, a minimum of (2Ftol−1)N qubits must have been perfectly cloned. Thus,

for a set tolerance fidelity, in order for a dishonest user to succeed, he or she must be able

to emulate a qubit cloning fidelity of at least 2Ftol − 1. Crucially, so long as this fidelity is

above that achievable for optimal qubit cloning (2/3) [128], a dishonest user is exponentially

unlikely to succeed,

pd =
1

|Q|
∑
ρ∈Q

tr
[
P⊗2

accT (ρ)
]
≤ e−ND(2Ftol−1‖2/3), (6.2)

where T represents any completely positive trace preserving (CPTP) qticket counterfeiting

map. To ensure 2Ftol−1 > 2/3, the tolerance fidelity must be greater than 5/6, which is pre-

cisely the average fidelity of copies produced by an optimal qubit cloning map [128]. In certain

cases, an adversary may be able to sequentially engage in multiple verification rounds; how-

ever, the probability of successfully validating counterfeited qtickets grows at most quadrat-

ically in the number of such rounds, and hence, the likelihood of successful counterfeiting

can remain exponentially small even for polynomially large numbers of verifications. Rigor-

ous statement and proofs of these claims are published as supporting information available

online.

6.3 Cv-qticket

Our previous discussion of qtickets assumed that such tokens are physically transferable to

trusted verifiers (e.g. concert tickets); however, in many situations, this assumption of physical

deposition, may either be impossible or undesirable. Recently, it has been shown [44] that it
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Figure 6.1: a) Depicts the pigeonhole type argument which is utilized in the proof of qticket

soundness. For a tolerance fidelity Ftol, a qticket is only successfully authenticated if it

contains at least FtolN valid qubits. However, for two counterfeit qtickets, not all valid qubits

must coincide. The minimum number of perfectly cloned qubits enabling both qtickets to be

accepted is, (2Ftol − 1)N . b) Depicts the quantum retrieval type situation envisioned for cv-

qtickets. For two verifiers asking complementary “challenge” questions, the optimal strategy

is for the user to measure in an intermediate basis. Such a strategy saturates the tolerance

threshold, F cv
tol = 1+1/

√
2

2 .
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remains possible, even remotely, for a holder to prove the validity of a token by responding to

a set of “challenge” questions; these questions can only be successfully answered by measuring

an authentic token. The core behind this approach is to ensure that the “challenge” questions

reveal no additional information about the quantum state of the token.

We now discuss a specific realization of such an approach, the classical verification quan-

tum ticket (cv-qticket), and demonstrate its robustness against noise and operational imper-

fections. In contrast to the case of bare qtickets, a cv-qticket holder will be expected to answer

“challenge” questions and hence to measure qubits himself. Our treatment will contemplate

the possibility of a dishonest holder participating simultaneously in multiple remote verifica-

tions, which could in principle offer the counterfeiter an additional advantage with respect

to the qticket scenario; in particular, certain measurement strategies may yield an increased

likelihood for multiple successful authentications.

One example of a cv-qticket framework, is to utilize a set of eight possible two-qubit

product states with each qubit being prepared as a polarization eigenstate along either X or

Z directions (note that a single qubit framework is also possible):

{|0,+〉, |0,−〉, |1,+〉, |1,−〉, |+, 0〉, |−, 0〉, |+, 1〉, |−, 1〉}.

We then envision each cv-qticket to consist of n blocks, each containing r qubit pairs, and

thus, a total of n × r × 2 qubits; as before, each of the qubit pairs is chosen uniformly at

random from the allowed set above. A “challenge” question consists of requesting the holder

to measure each block (of qubits) along a basis chosen randomly among either X or Z;

naturally, as depicted in Table 1, a valid qubit pair (within a block) is one in which the holder

correctly answers the state for the particular qubit (within the pair) which was prepared along

the questioned basis. For a given tolerance threshold, an overall answer will only be deemed

correct if at least F cv
tolr qubits within each of the n blocks are found valid. By analogy to

the qticket case, honest users are exponentially likely to be verified so long as Fexp > F cv
tol; in

particular, since there now exist n blocks of qubits, each of which can be thought of as an

individual qticket (with r qubits),

pcv
h ≥

(
1− e−rD(Fexp‖F cv

tol)
)n
. (6.3)

The proof of cv-qticket security is based upon a generalized formalism of quantum retrieval

games [44, 52], in combination with a generalized Chernoff-Hoeffding bound [61] (details
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Table 6.1: Verification of a single cv-qticket. Here, we consider a cv-qticket with n = 4

and r = 2, totaling 8 qubit pairs and Ftol = 3/4 (for illustrative purposes only). The

prepared qubit-pairs are chosen at random, as are the bank’s requested measurement bases

(for each block). The holder’s answer has at most, a single error per block, which according

to, Ftol = 3/4, is allowed. Secure cv-qtickets require Ftol > 1/2 + 1/
√

8 and a larger number

of constituent qubits.

Prepare |−, 0〉 |0,+〉 |1,+〉 |0,+〉 |0,+〉 |+, 1〉 |−, 0〉 |1,+〉

B:Ask Z X

H:Ans. 0, 0 0, 1 1, 1 0, 1 −,+ +,− −,+ +,−
Correct X X X X X X X ×
Block X X

B:Res. Verified

in supporting information). So long as F cv
tol >

1+1/
√

2
2 , a dishonest user is exponentially

unlikely to be authenticated by two independent verifiers. For two complementary “challenge”

questions, one finds that on average, no more than 1+1/
√

2 ≈ 1.707 can be answered correctly.

Interestingly, the threshold F cv
tol corresponds exactly to that achievable by either covariant

qubit cloning[24] or by measurement in an intermediate basis (Fig. 1b.), suggesting that both

such strategies may be optimal [45]. Similar to the qticket case, one finds that a dishonest

user is exponentially likely to fail,

pcv
d ≤

(
v

2

)2(
1/2 + e−rD(Ftol‖ 1+1/

√
2

2
)

)n
, (6.4)

where v represents the number of repeated verification attempts . Thus, so long as the

hierarchy of fidelities is such that: 1+1/
√

2
2 < Ftol < Fexp, it is possible to prove both soundness

and security of the cv-qtickets protocol (see supporting information for rigorous statement

and proofs).

6.4 Applications

Next, we consider applications of the above primitives to practically relevant protocols. For

instance, one might imagine a composite cv-qticket which allows for multiple verification
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rounds while also ensuring that the token cannot be split into two independently valid subparts

[44]. Such a construction may be used to create a quantum-protected credit card. Indeed,

the classical communication which takes place with the issuer (bank) to verify the cv-qticket

(via “challenge” questions) may be intentionally publicized to a merchant who needs to be

convinced of the card’s validity. By contrast to modern credit card implementations, such

a quantum credit card would be unforgeable and hence immune to fraudulent charges (Fig.

2a).

An alternate advantage offered by the qticket framework is evinced in the case where veri-

fiers may not possess a secure communication channel with each other. Consider for example,

a dishonest user who seeks to copy multiple concert tickets, enabling his henchmen to enter

at different checkpoint gates. A classical solution would involve gate verifiers communicating

amongst one another to ensure that each ticket serial number is only allowed entry a single

time; however, as shown in Fig. 2b., such a safeguard can be overcome in the event that

communication has been severed. By contrast, a concert ticket based upon the proposed

qticket primitive would be automatically secure against such a scenario; indeed, the security

of qtickets is guaranteed even when verifiers are assumed to be isolated. Such isolation may

be especially useful for applications involving quantum identification tokens, where multiple

verifiers may exist who are either unable or unwilling to communicate with one another.

6.5 Discussion

While quantum primitives have been the subject of tremendous theoretical interest, their

practical realization demands robustness in the face of realistic imperfections. Our above

analysis demonstrates that such noise tolerance can be achieved for certain classes of unforge-

able quantum tokens. Moreover, the derived tolerance thresholds are remarkably mild and

suggest that proof of principle experiments are currently accessible in systems ranging from

trapped ions [60, 81] and superconducting devices [127, 46] to solid-state spins [36, 93, 14, 90].

In particular, recent advances on single nuclear spins situated in a compact room-temperature

solid, have demonstrated that ultra-long storage times can be attained in combination with

high fidelity initialization and readout [90]; such advances suggest that quantum devices based

upon single qubit quantum memories may be both practical and realistically feasible.

While our analysis has focused on describing a primitive based upon single tokens, natural
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Figure 6.2: a) Depicts the possibility of using the cv-qticket framework to implement a

quantum-protected credit card. Unlike its classical counterpart, the quantum credit card

would naturally be unforgeable; this prevents thieves from being able to simply copy credit

card information and perform remote purchases. b) Depicts a dishonest user who attempts to

copy a concert qticket (e.g. same serial number), enabling his friend to enter at an alternate

checkpoint gate. Naively, each verifier can communicate with one another to prevent such

abusive ticket cloning. However, such a safeguard can be overcome in the event that the

communication among verifiers is either unsecured, unavailable or severed (possibly by the

dishonest user himself). The qticket is exempt from this type of attack since security is

guaranteed even in the case of isolated verifiers.
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extensions to the case of multiple identical quantum tokens open up the possibility of even

more novel applications. In particular, as detailed in the supplementary information, it is

possible to extend our threshold results to the case where c identical copies of the quantum

token are issued. In this case, to ensure that the production of c + 1 valid tokens is ex-

ponentially improbable, the required threshold fidelity must be greater than 1 − 1
(c+1)(c+2) .

The existence of such multiple identical tokens can provide a certain degree of anonymity

for users and could be employed in primitives such as quantum voting. A crucial question

that remains is whether a rigorous proof of anonymity can be obtained in a noisy environ-

ment. Furthermore, our proposed quantum tokens can also be seen as a basic noise tolerant

building block for implementing more advanced application schemes; such schemes can range

from novel implementations of quantum key distribution [16, 45, 49, 110] based upon physical

qubit transport to complex one-time-entry identification cards. Beyond these specific appli-

cations, a number of scientific avenues can be explored, including for example, understanding

whether an interplay between computational assumptions and quantum memories can yield

fundamentally new approaches to encryption.

6.A Notation and external results

The following definitions and external results will be used extensively throughout the proofs

and are included here to provide a self-contained presentation.

Definition A quantum state t-design is a probability distribution over pure quantum states

(pi, | ψi〉) such that ∑
i

pi (| ψi〉〈ψi |)⊗t =

∫
Haar

(| ψ〉〈ψ |)⊗t dψ.

In other words, a quantum state t-design duplicates the properties of the unique unitarily

invariant Haar measure over quantum states for all polynomials up to degree t. We will use

the set of states

Q̃ = {| 0〉, | 1〉, | +〉, | −〉, | +i〉, | −i〉} (6.5)

with equal weights pi = 1/6; this constitutes a quantum state 3-design over H2 [132].

The average fidelity for a channel quantifies how well the channel preserves quantum

states.
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Definition The Average fidelity of a map M is defined as

F (M) =

∫
Haar
〈ψ |M (| ψ〉〈ψ |) | ψ〉dψ.

Note for example that the average fidelity of a map M is expressed as a Haar integral of

a degree 2 polynomial expression in bras and kets and can thus be equated to a weighted

average over a quantum state 2-design.

Throughout the text, boolean values B = {True, False} will be represented as True :=

1, False := 0 and the negation b̄ := 1 − b. We will also use the variable ~b to denote

boolean strings (i.e. ordered sequences of values in {0, 1}) with len(~b) denoting the length or

number of components of a sequence and tl(~b) denoting the string obtained from removing

the last element from ~b. We will denote by Pr[e] the probaility of an event e and Exp[v] the

expectation value of an expression v. Note that according to our convention, if the expression

is a boolean formula they may be used interchangeably.

The relative entropy is a distinguishability measure between two probability distributions.

It will be used extensively (particularly among binary or Bernoulli distributions) and appears

in the definition of auxiliary results. Let 0 ≤ p, q ≤ 1, by abuse of notation, we take D(p‖q) =

p ln p
q + (1 − p) ln 1−p

1−q , the relative entropy between two Bernoulli probability distributions

with respective parameters p and q. Note that this definition satisfies D(p‖q) ≥ 2(p− q)2.

The following generalization of the Chernoff-Hoeffding bound derived by Panconesi and

Srinivasan [102] provides the same thesis as a standard Chernoff bound while relaxing the

hypothesis to allow dependent random variables.

Theorem 6.A.1 (Generalized Chernoff-Hoeffding bound) Let X1, . . . , Xn be Boolean {0, 1}
random variables, such that for some δi and every S ⊆ {1, . . . , n}, it holds that Pr

[∧
i∈S Xi

]
≤∏

i∈S δi. Then for any γ ∈ [δ, 1] we have that Pr [
∑n

i=1Xi ≥ γn] ≤ e−nD(γ‖δ), with δ :=

n−1
∑n

i=1 δi.

A further generalization to real valued random variables will also be required. This is

adapted to our purpose from theorem 3.3 of Impagliazzo and Kabanets [61].

Theorem 6.A.2 Let X1, . . . , Xn be real valued random variables, with each Xi ∈ [0, 1]. Sup-

pose that there is a 0 ≤ δ ≤ 1 s.t., for every set S ⊆ {1, . . . , n}, Exp
[∏

i∈S Xi

]
≤ δ|S| and γ

s.t. δ ≤ γ ≤ 1 and γn ∈ N. Then we have that Pr [
∑n

i=1Xi ≥ γn] ≤ 2e−nD(γ‖δ).
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6.B Qtickets

We first provide a rigorous definition of qtickets and how they are verified. We then proceed

to our claims, and the soundness, security and tightness of our security bound (accompanied

with respective proofs). Namely, we show that qtickets may be successfully redeemed by an

honest holder achieving a sufficiently good storage fidelity. We then show that a dishonest

holder will have a negligible chance of producing two qtickets which are accepted by verifiers

from a single valid qticket, even after repeated verification attempts. Finally we show how

a simple counterfeiting strategy has a high probability of producing two such qtickets if the

verification tolerance is set below the threshold value. As an extension, we consider how our

results generalize to producing multiple identical qtickets.

6.B.1 Definition of qtickets

Each qticket consists of a serial number s and an N component pure product state ρ(s) =⊗N
i=1 ρ

(s)
i . For each serial number s, qticket components ρ

(s)
i are chosen uniformly at random

from Q̃. This means qtickets ρ(s) are taken uniformly at random from the set Q = Q̃⊗N

(where by abuse of notation, the elements of Q are N component pure product states in

HQ = H⊗N2 , with components taken from Q̃). The verifiers store a database containing, for

each s, a classical description of ρ(s) kept secret from ticket holders and the general public.

In order to simplify notation, the serial number s associated to individual qtickets will be

omitted from now on.

In order to use qtickets, they are transferred to a verification authority who can either

accept or reject them. In both cases however, the qticket is not returned, only the binary

outcome of verification. The qticket protocol is additionally parametrized by the fraction

Ftol of qubits that a verification authority requires to be correct in order for verification to

succeed. In order to verify a submitted qticket ρ̃, a full measurement will be performed in

the product basis associated to the original qticket ρ and the number of correct outcomes is

then counted. If more than at least FtolN are correct, the (possibly noisy) submitted qticket

ρ̃ is accepted, otherwise, it is rejected.

For any pure product state ρ =
⊗N

i=1 ρi we define a projector P ρacc ∈ L(HQ) associated

to the subspace of states that would be accepted if ρ were a qticket (i.e. states coinciding

with ρ in at least a fraction Ftol of the qubits). The projector P ρacc offers a more abstract
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interpretation and may be rigorously defined as

Acceptance projector Given a pure N qubit product state ρ =
⊗N

i=1 ρi and a security

parameter 0 ≤ Ftol ≤ 1, we define the acceptance projector

P ρacc =
∑

~b:
∑
bi≥FtolN

N⊗
i=1

(
biρi + b̄iρ

⊥
i

)
,

where ~b ∈ {0, 1}N is a boolean string.

By abused of notation, ρi and its orthogonal complement ρ⊥i := 12 − ρi are used as rank 1

projectors in L(H2).

6.B.2 Soundness

The soundness result states that even under imperfect storage and readout fidelity, legitimate

qtickets work well as long as the fidelity loss is not too severe. The completely positive trace

preserving (CPTP) maps Mi will be assumed to represent the encoding, storage and readout

of the i-th qubit component of the qticket. In this sense, the soundness statement takes place

at the level of single qubits. This is necessarily the case, since legitimate qtickets are ruined

if a significant fraction of the qubits fail in a correlated way. Given Fi = F (Mi), the average

fidelity of the qubit map Mi, we define Fexp := N−1
∑
Fi to be the average qubit fidelity

of the full map M =
⊗

iMi over all components. The probability that the “noisy” qticket

resulting from this map is accepted as valid is given by ph(M) = 1
|Q|
∑

ρ∈Q tr [P ρaccM (ρ)].

Theorem 6.B.1 (Soundness of qtickets) As long as Fexp > Ftol, an honest holder can suc-

cessfully redeem qtickets with a probability

ph(M) ≥ 1− e−ND(Ftol‖Fexp).

Proof. Consider the boolean random variables ~X = (X1, . . . , XN ) with joint distribution

given by

Pr[ ~X = ~b] =
1

|Q|
∑
ρ∈Q

tr

[
M(ρ)

N⊗
i=1

(
biρi + b̄iρ

⊥
i

)]
. (6.6)

Since M =
⊗

iMi, we may recast equation 2 as

Pr[ ~X = ~b] =

N∏
i=1

1

6

∑
ρi∈Q̃

tr
[
Mi(ρi)(biρi + b̄iρ

⊥
i )
]

(6.7)
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Since Q̃ is a quantum state 2-design over qubit space, each factor coincides with the definition

of the average fidelity Fi of Mi if bi = 1 and with 1−Fi if bi = 0. Hence the Xi are independent

boolean random variables with probability Pr[Xi] = Fi. Moreover, according to definition

6.B.1, we have 1
|Q|
∑

ρ∈Q tr[P ρaccM(ρ)] = Pr[
∑N

i=1Xi ≥ FtolN ]. Since the Xi are independent,

a standard Chernoff-Hoeffding bound allows us to conclude.

6.B.3 Security

Consider the probability of producing two tokens, both passing verification by means of the

most general possible transformation, a CPTP map T , applied on a single genuine qticket.

Definition (Counterfeiting fidelity) We define the average counterfeiting fidelity of a map

T ∈ HQ → H⊗2
Q as

pd(T ) =
1

|Q|
∑
ρ∈Q

tr
[
(P ρacc)

⊗2 T (ρ)
]

(6.8)

One of our main results states that as long as the verification threshold Ftol is set suffi-

ciently high (> 5/6), a counterfeiter will have negligible (exponentially small in N) chances

of producing two verified tokens from a single genuine original.

Theorem 6.B.2 (Security of qtickets) For Ftol > 5/6 and for any CPTP map T ∈ HQ →
H⊗2
Q we have that

pd(T ) ≤ e−ND(2Ftol−1‖2/3). (6.9)

Most of the work for proving this goes into excluding the possibility that a non-product

counterfeiting strategy could perform significantly better than any product strategy such as

performing optimal cloning on each individual qubit. That is, we take into account the fact

that the map T need not factorize with respect to the different components of the qticket.

Note also that D(2Ftol − 1‖2/3) = 0 precisely for Ftol = 5/6 and is positive otherwise. Fi-

nally, we prove that even if the holder of a qticket attempts to perform v succesive verification

attempts (each time possibly using information learned from the acceptance/rejection of pre-

vious attempts) the chances of having two or more submitted qtickets accepted grows by no

more than a factor of
(
v
2

)
.
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Theorem 6.B.3 (Security of qtickets with learning) If the holder of a valid qticket submits

v tokens for verification, the probability of having two or more accepted is upper bounded by

pd,v =

(
v

2

)
e−ND(2Ftol−1‖2/3).

Note that since
(
v
2

)
is a polynomial of degree 2 in v, this bound still allows for an exponentially

large number (in N) of qticket submissions v, while preserving exponentially good security.

Proof outline

We now outline the proof for theorems 6.B.2 and 6.B.3. First, the claim in theorem 6.B.2 is

equated to an equivalent one, which averages over the set of all pure product states instead

of Q. We then bound the average cloning probability by (2/3)N for the set of pure product

states following the lines of R. F. Werner [128] for the optimal cloning of pure states. From

there, the generalized Chernoff bound from theorem 6.A.1 for dependent random variables

allows us to derive the desired result. The result of theorem 6.B.3 is obtained from a counting

argument relating the security of multiple verification attempts with the static counterfeiting

fidelity bound of theorem 6.B.2.

Equivalence with continuous statement

For the qticket protocol, drawing each component from a discrete set of states is required in

order to provide an efficient classical description. However, certain statements are simpler to

analyze over the full set of pure product states. This is the case for the counterfeiting fidelity,

which can also be expressed as a uniform average over all pure product states.

Lemma 6.B.4 (Counterfeiting fidelity) The average counterfeiting fidelity of a map T can

be expressed as

pd(T ) =

∫
d~ρ tr

[(
P ~ρacc

)⊗2
T (~ρ)

]
(6.10)

where
∫
d~ρ represents N nested integrations on the Haar measure of qubit components and ~ρ

the resulting product state.

Proof. Definition 6.B.1 may seem unnecessarily cumbersome, yet it serves to make explicit

that the projector P ρacc is a polynomial of degree 1 in each of the components ρi of the qticket

ρ. Furthermore, note that regardless of what the multi-qubit map T is, its application T (ρ)
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has degree 1 in each of the components ρi of ρ. Together this implies that the integrand

of lemma 6.B.4 is a polynomial of degree at most 3 in each of the qubit components ρi of

~ρ. We may conclude by observing that the average taken in definition 6.B.3 is equivalent to

uniformly taking each component ρi from a qubit state 3-design.

Optimal cloning for pure product states

R. F. Werner [128] obtained a tight upper bound for the average probability of a CPTP map

T producing m clones from n copies of an unknown pure quantum state | ψ〉. Our statement

is that if one attempts to clone an N component pure product state, the optimal cloning

probability is achieved by independently cloning each of the components; neither generating

entanglement nor correlations may help with the cloning. We present this statement for the

case of cloning two copies from a qubit product state, but the derivation is fully generalizable.

Lemma 6.B.5 (Optimal cloning of pure product states) The average cloning fidelity over N

qubit component pure product states of a CPTP map T is bounded by∫
d~ρtr[~ρ⊗2T (~ρ)] ≤ (2/3)N .

Proof. One possible derivation of this lemma is by following the lines of the original proof

for optimal cloning of pure states [128]. First one shows that if there is a CPTP map T

achieving average cloning fidelity F ? then there is a covariant CPTP map T ? achieving the

same average cloning fidelity. This map can be explicitly constructed as

T ?(~ρ) =

∫
d~g ~g†⊗2T (~g~ρ~g†)~g⊗2, (6.11)

where the integral
∫
d~g averages over all possible local rotations ~g on N subsystems. This

covariant map achieves exactly the same cloning fidelity for any initial pure product state

since all pure product states are equivalent up to local unitaries. Finally, we observe

0 ≤ tr[~ρ⊗2T ?(12N − ~ρ)] (6.12)

since 12N − ~ρ is positive and T ? positivity preserving. We then obtain

F ? ≤ tr[~ρ⊗2T ?(12N )] (6.13)
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and may now average this inequality over ~ρ and use∫
d~ρ ~ρ⊗2 =

(S2)⊗N

3N
, (6.14)

where S2 is the rank 3 projector onto the symmetric space of two qubits. The operator norm

of this expression is 1/3N whereas tr[T ?(12N )] ≤ 2N leading to F ? ≤ (2
3)N , as desired.

Pigeonhole argument and Chernoff bound

We are now ready to prove the first no-counterfeiting result for qtickets.

Proof of theorem 6.B.2. Consider the boolean random variables ~E = (E1, . . . , EN ) with

joint distribution given by

Pr[ ~E = ~b] =

∫
d~ρtr

[
T (~ρ)

N⊗
i=1

(
biρ
⊗2
i + b̄i(14 − ρ⊗2

i )
)]
. (6.15)

Intuitively, the variable Ei represents the event of measuring the i-th component to be cor-

rectly cloned.

In order for the two qtickets to be accepted, there must be a total of at least FtolN com-

ponents yielding the correct measured outcome in each qticket. By the pigeonhole principle,

this means that there are at least 2FtolN −N components which were measured correctly on

both submitted qtickets,

pd(T ) ≤ Pr

[
N∑
i=1

Ei ≥ (2Ftol − 1)N

]
. (6.16)

For arbitrarily chosen T , the Ei may be dependent variables. However, according to lemma

6.B.5, for any subset S of qubit components, we may bound

Pr[∀i∈SEi] ≤
(

2

3

)|S|
. (6.17)

Theorem 6.A.1, is now invoked to provide an upper bound on the RHS of eq. 6.16, yielding

the thesis of theorem 6.B.2.

Combinatorial bound on learning

The bound on counterfeiting that we have provided assumes that two (possibly entangled)

counterfeits are produced by applying a CPTP map on a single original copy. In contrast, a

sequential strategy temporally orders the submitted qtickets where the production strategy
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(CPTP map) for the later submissions can depend on whether previous submissions where

accepted or not. The counterfeiter may learn valuable information about how to construct

valid qtickets from the feedback provided by the verifiers. The content of theorem 6.B.3 is

that even with a valid qticket and the information learned from v repeated submissions it is

very unlikely for a counterfeiter to produce more than one accepted qticket.

Proof of theorem 6.B.3. According to theorem 6.B.2, the probability pd(T ) for any

CP map T to produce two valid counterfeit copies from a single one, is upper bounded by

B = e−ND(2Ftol−1‖2/3). We bound the counterfeiting probability of an interactive strategy

S submitting v tokens for verification by the sum of the counterfeiting fidelity of
(
v
2

)
CP

maps Tk,l. Each of these maps corresponds to the case in which a specific pair {k, l} of the v

submitted tokens are the first to be accepted by the verifiers.

Without loss of generality, we assume that in an interactive strategy the holder waits

for the outcome of the j-th verification in order to decide how to continue and produce the

j + 1-th submission. We model a v step interactive strategy S as a collection of CPTP maps

{S~b} with ~b a boolean string of length between 0 and v−1 representing what the counterfeiter

does after receiving the first len(~b) verification outcomes.

Each S~b is a CPTP map fromHH toHQ⊗HH , whereHQ is a Hilbert space accommodating

qtickets and HH is a larger space representing the memory of the holder.

For any partial verification result~b we may write the CPTP map which produces the len(~b)

submissions as S̃
tl(~b)

, which is composed of successively applying S~b′ for all initial substrings

~b′ of ~b. That is

S̃∅ :=S∅

S̃~b :=
(

id
⊗ len(~b)
Q ⊗S~b

)
◦ S̃

tl(~b)
.

(6.18)

For an interactive strategy S the probability that the first len(~b) verification outcomes are

given by ~b is expressed as

p~b(S) =
1

|Q|
∑
ρ∈Q

tr[S̃
tl(~b)

(ρ)

len(~b)⊗
j=1

(
bjP

ρ
acc + b̄jP

ρ
rej

)
⊗ 1H ], (6.19)

where P ρrej := 1Q − P ρacc. The probability for the interactive strategy S to succeed at coun-

terfeiting in v steps can be described as the sum of these probabilities over all possible full
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Figure 6.3: a) We schematically illustrate how a dynamical strategy S works. Each step

of a strategy (grey rectangles) is a CPTP map S~b which depends on the classical outcome

~b of previous verifications. The first map S∅ takes an original qticket ρ as input, whereas

subsequent steps rely on an internal memory state of the holder. The content of internal

memory could range from no information at all, to a full original qticket and a detailed register

of previous submissions. The verifiers have a fixed strategy Πρ which consists of applying the

measurement {P ρacc, P
ρ
rej} and only returning the classical boolean measurement outcome. b)

By fixing the classical input ~b to the strategy, a CPTP map S̃~b ∈ HQ → H
⊗ len(~b)+1
Q ⊗HH is

constructed, corresponding to one possible partial application of the strategy S. This CPTP

map produces len(~b) + 1 possibly entangled outputs in HQ from a single input qticket.

verification outcomes including at least two acceptances

pd,v(S) =
∑

~b:
∑
bi≥2

len(~b)=v

p~b(S). (6.20)

The key idea now is to use p~b(S) = p~b0(S) + p~b1(S) to provide an alternate expression for

this sum. Namely, we combine verification outcomes starting in the same way into a single

summand while avoiding the inclusion of failed counterfeiting attempts. Each full verification

outcome containing two or more successful verifications has a unique shortest initial substring

containing exactly two successful verifications. That a given substring is the shortest can be

guaranteed by taking the last verification of the substring to be one of the two accepted.

pd,v(S) =
∑

~b:
∑
bi=2

b
len(~b)

=1

p~b(S). (6.21)
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Each of the
(
v
2

)
summands on the RHS of Eq. (S6.21), may be characterized by two indices

k, l s.t.

~b =

k−1︷ ︸︸ ︷
0 . . . 0 1

l−k−1︷ ︸︸ ︷
0 . . . 0 1 for some k < l ≤ v. (6.22)

For each one of these summands, we construct a static strategy Tk,l(ρ) = tr\k,l[S̃tl(~b)
(ρ)] which

takes as input a single valid qticket ρ and submits exactly two tokens. The counterfeiting

probability of this map on ρ is

tr
[
(P ρacc)

⊗2 Tk,l(ρ)
]

=tr
[
(P ρacc)

⊗2 tr\k,l[S̃tl(~b)
(ρ)]
]

=tr[S̃
tl(~b)

(ρ)

len(~b)⊗
j=1

(
bjP

ρ
acc + b̄j1Q

)
⊗ 1H ]

≥tr[S̃
tl(~b)

(ρ)

len(~b)⊗
j=1

(
bjP

ρ
acc + b̄jP

ρ
rej

)
⊗ 1H ].

(6.23)

By averaging over ρ ∈ Q we obtain p~b(S) ≤ pd(Tk,l) ≤ B and invoking Eq. (S6.21) we obtain

pd,v(S) ≤
(
v
2

)
B.

6.B.4 Tightness

For Ftol < 5/6 applying an optimal qubit cloning map[128] Λ(ρ) = 1
3ρ⊗ ρ+ 1

6ρ⊗ 1+ 1
61⊗ ρ

on each of the individual qubits of the qticket provides a good counterfeiting probability.

The plot in Fig. S6.4 illustrates the probability of counterfeiter to actually get two qtickets

accepted when taking this approach. For each of the two counterfeited qtickets, the probability

of failing verification is the cumulant of a binomial distribution B(N, 5/6) up to FtolN and

rejection probability may be upper bounded by 1
2 exp(−2N(5/6 − Ftol)

2) using Hoeffding’s

inequality. Even when failure of the two qtickets is anticorrelated, the probability of either of

them failing verification can not excede the sum. This shows that a the scheme can not be

made secure for Ftol < 5/6. While such a scheme provides optimal forging probability when

(Ftol = 1), other schemes could in principle outperform it in terms of counterfeiting capability.

Althought this is in principle possible, our security result shows that assymptotically in N ,

no other strategy may work for Ftol > 5/6.
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Figure 6.4: We numerically calculate the probability of accepting two copies of a qticket

when the adversary strategy is assumed to be independently cloning each of the N qubits

using an optimal cloning map. We see that the probability of producing two accepted qtickets

approaches a step function at 5/6 with N .

6.B.5 Extension: Issuing multiple identical qtickets

Our results admit generalization to a scenario where the c identical copies of each qtickets

are issued and succesful verification of c+ 1 is to be excluded. To obtain an analog of lemma

6.B.4 requires the individual qubits composing a qticket to be drawn at random from a state

t-design with t = c+(c+1) (for example t = 5 would already be needed if two identical copies

are issued). The optimal c → c + 1 cloning probability for N component product states is

in this case bounded by
(
c+1
c+2

)N
. The threshold fidelity required to guarante security is then

given by Ftol > 1 − 1
(c+1)(c+2) For such an Ftol, the analogous result to theorem 6.B.2 one

obtained is

pc→c+1(T ) ≤ e−ND((c+1)Ftol−c‖ c+1
c+2). (6.24)

Finally, if v > c + 1 verification attempts are allowed, the probability of counterfeiting can

be proven not to grow faster than
(
v
c+1

)
. The proofs of these claims completely follow the

lines that have been presented. Striving for legibility, we have limited the proof presented to

c = 1, thus avoiding the notational burdon imposed by the extra indices required.
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6.C CV-Qtickets

In this section we provide a proof that cv-qtickets are secure, not only against counterfeiting

but also against any other possible double usage. We first present definitions for cv-qtickets

and their verification. We then state the associated soundness and security guarantees and

outline the security proof. Only the proof of the security statement is provided, since prov-

ing soundness for cv-qtickets requires no additional techniques as compared to soundness of

qtickets.

6.C.1 CV-Qticket definition

Each cv-qticket is composed of n× r qubit pairs. Each qubit pair is prepared by choosing a

state from

{|0,+〉, |0,−〉, |1,+〉, |1,−〉, |+, 0〉, |−, 0〉, |+, 1〉, |−, 1〉}

uniformly at random.

A full verification question for the cv-qticket will consist of n randomly chosen axes from

{X,Z} each corresponding to a specific block of r qubit pairs. In principle, the holder of the

cv-qticket then measures the polarization of every qubit components along the corresponding

requested axis and communicates the measurement outcomes to the verifier. The criteria

to consider an answer correct is the following; within each of the n blocks, at least Ftolr of

the reported outcomes corresponding to qubits prepared in a polarization eigenstate of the

inquired axis should be given correctly.

6.C.2 Soundness

The soundness result states that even under imperfect storage and readout fidelity, legitimate

cv-qtickets work well as long as the fidelity loss is not too severe. Again, the completely pos-

itive trace preserving (CPTP) maps Mj will be assumed to represent the encoding, storage

and readout of the j-th qubit component of the cv-qticket, with the full map over all compo-

nents given by M =
⊗

j∈{1,...,2r×n}Mj . In the case of cv-qtickets, sufficiently many (Ftolr)

correct answers should be provided within each block, demanding that a sufficiently good

average fidelity be implemented for every single block. A random remapping of the Cartesian

axes for each qubit component of a cv-qticket is also necessary, and can be achieved via a
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random unitary (possibly from a unitary 2-design). This is required for example in the case

where an actual physical polarization, say X, is lost faster than other components. In this

case asking for the stored X polarization for all qubits in a block may yield a large failure

probability even though the average storage fidelity among the qubits is sufficiently high. A

random unitary remapping solves this and allows to connect with the average qubit storage

fidelity, even in the case where only two nominal axes are used.

Given Fj = F (Mj), the average fidelity of the qubit map Mj , we define Fexp,b :=

N−1
∑

j:d j
2r
e=b Fj to be the average qubit fidelity within block b ∈ {1, . . . , n}. Furthermore,

to simplify the final expression, let us define Fexp = minb Fexp,b.

Theorem 6.C.1 (Soundness of cv-qtickets) As long as Fexp > Ftol, an honest holder imple-

menting a map M can successfully redeems cv-qtickets with a probability

pcv
h (M) ≥

(
1− e−rD(Fexp‖Ftol)

)n
.

Observe that one may reduce this statement to n independent statements within each block

which are completely analogous to the soundness for qtickets theorem 6.B.1.

6.C.3 Security

A naive security statement expresses that the holder of a single cv-qticket is unable to produce

two copies from it, each with the potential of passing a verification. Since the verification of

cv-qtickets is achieved by sending a classical message to a verifier, the security statement for

cv-qtickets goes beyond this; it states that even with simultaneous access to two randomly

chosen verification questions, the holder of a cv-qticket is exponentially unlikely to provide

satisfactory answers to both. We further extend our security claim, to an even more adverse

scenario; the holder of a cv-qticket has simultaneous access to v independent verification ques-

tions and may proceed to answer them in any chosen order. Moreover failing in verification

attempts does not forbid the holder from further attempts which may possibly be performed

relying on the information accumulated from previous verification outcomes.

Let S be a mathematical object denoting the counterfeiting strategy taken by the holder

of a valid cv-qticket. We will denote by pcv
d,v(S), the probability that strategy S leads to

two or more successful verifications when engaging in v verification attempts with possibly

independent verifiers. The probability is taken over the random generation of cv-qtickets, of
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verification questions, and of measurement outcomes (Born’s rule). The security statement

is then

Theorem 6.C.2 (Security of cv-qtickets) For any counterfeiting strategy S and tolerance

parameter Ftol >
1+1/

√
2

2 we have

pcv
d,v(S) ≤

(
v

2

)2(
1/2 + e−rD(Ftol‖ 1+1/

√
2

2
)

)n
.

The proof of this statement goes as follows. Since abstractly cv-qtickets consist of a set of

randomly produced states and questions requested on these states the formalism of quantum

retrieval games (QRGs) provides adequate modeling. This framework is presented in a largely

self-contained manner, since its generality and potential make it of independent interest. We

first provide basic definitions for QRGs and derive some simple results. Then we present

possible ways of composing QRGs together with associated quantitative bounds. The first

results are then applied to the qubit pair constituents of cv-qtickets to bound the holders

potential to provide answers to complementary question. Cv-qtickets are then modeled by

a QRG for scenarios in which the holder of a cv-qticket wishes to simultaneously answer

questions from two independent verifiers without any additional aid. Finally, a combinatorial

bound, similar to the one used for qtickets, is used to provide an upper limit on how the

double verification probability may increase with the number v of verification attempts.

6.C.4 Quantum retrieval games

Quantum retrieval games (QRGs), recently defined by Gavinsky [44] provide a framework to

analyze protocols in which information is to be extracted from a state produced according

to a classical probability distribution. We will here present a definition of QRGs following

Gavinsky as well as some additional results derived which may be of independent interest.

Alice prepares a normalized state ρs = %(s)/ps according to the probability ps := tr[%s]

and transfers it to Bob. Whereas Alice remembers the index s of the generated state, Bob is

only provided with ρs and a full description of the distribution from which it was generated.

Alice then asks Bob a question about s which Bob attempts to answer as best as possible.

A simple possibility is for Alice to directly ask Bob the value of s. In general however,

the set of possible answers A need not coincide with the set of indexes S over the possible

prepared states. If each answer a is either correct or incorrect the question may be modeled
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as σ ∈ S × A → {0, 1}. This is, σ(s, a) = 1 iff the answer a is correct for state index s

and σ(s, a) = 0 otherwise. This definition faithfully represents Gavinsky’s QRGs. We extend

this notion to weighted quantum retrieval games (WQRGs) to model situations where some

answers are “more correct” than others. Here for each prepared state s and possible answer

a the game will assign a non-negative real value σ(s, a) associated to the utility function of

answer a given input s (i.e. σ ∈ S ×A→ R+).

Bob needs to choose an answer a ∈ A and may use his copy of state ρs to do so. The most

general strategy that Bob can take according to the laws of quantum mechanics is to perform

a positive operator valued measurement (POVM). We will consider post-selected POVMs, as

opposed to a physical POVM, as those which may fail to produce a measurement outcome.

This is, whereas a physical POVM always produces an outcome from the expected set, for

post-selected POVM some “invalid” outcomes are discarded and excluded from statistics.

In order to express the random preparation of states by Alice we first define the notion of

an indexed ensemble.

Indexed ensemble We will say that % is an ensemble on H indexed over S iff ∀s ∈ S : %(s)

is a positive operator on H and
∑

s∈S tr[%(s)] = 1.

Note that if % is an indexed ensemble, then ρ =
∑

s %(s) is a normalized density matrix.

Although Alice gives a specific state %(s)/tr[%(s)] to Bob, since Bob does not know s, he does

not know which one has been received. The state ρ = trAlice[
∑

s∈S s⊗ %(s)] will be called the

reduced density matrix of % since it corresponds to tracing out Alice’s classically correlated

subsystem containing the index s. Without loss of generality, ρ can be assumed to be full

rank on H.

In other words, a physical/selective projection P indexed over A is simply a physical/post-

selected POVM equipped with an interpretation for each possible measurement outcome in

terms of possible answers in a ∈ A.

Selective and physical projections We will say that P is a selective projection indexed

over A iff ∀a ∈ A, P(a) are bounded positive semidefinite operators on H. It will also be a

physical projection iff
∑

a P(a) = 1.

Note that no normalization has been imposed for selective projections since induced proba-

bility distributions are normalized a posteriori. An indexed ensemble and a projection on the
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same Hilbert space induce a joint probability distribution over the indexes S×A of prepared

states and provided answers.

Induced probability distribution Let % be an ensemble on H indexed over S and let P
be a projection on H indexed over A. Then

p(s0, a0) =
tr[P(a0)%(s0)]∑
s,a tr[P(a)%(s)]

. (6.25)

is a probability distribution over S ×A which will be denoted by p = 〈%,P〉 and is undefined

unless
∑

s,a Tr[P(a)%(s)] > 0.

Furthermore, note that for physical projections the denominator in Eq. (S6.25) is 1 and

the marginal of the resulting distribution over S is p(s) =
∑

a p(s, a) = tr[%(s)] which is

independent of P.

Weighted quantum retrieval games Let % be an ensemble onH indexed over S. Consider

a utility function σ ∈ S×A→ R+. Then the pair G = (%, σ) is a weighted quantum retrieval

game. A WQRG is also a QRG when σ ∈ S ×A→ {0, 1}.

The value of a game G w.r.t. a projection P is the average utility obtained by Bob by

using a certain measurement strategy P. This value is given by the expectancy of the utility

function σ over the joint distribution of prepared states and measurement outcomes.

Definition The value of game G = (%, σ) w.r.t. projection P is defined as

Val(G,P) :=
∑
s,a

p(s, a)σ(s, a) (6.26)

where p = 〈%,P〉 is the induced probability distribution.

We now define the optimum value achievable by Bob for two distinct conditions depending

on whether selective or physical projections are allowed.

Definition The selective (respectively physical) value of a game G are defined as

Sel(G) := sup
P∈Selective projections

Val(G,P) (6.27)

Phys(G) := sup
P∈Physical projections

Val(G,P). (6.28)
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Note that according to this definition Sel(G) ≥ Phys(G) since the supremum is taken over a

larger set. However, for certain tailored games, the selective and physical values will coincide.

The advantage of selective values is that they may be straightforwardly computed and are

more amenable to compositional results. If Bob is forced to provide an answer, he can only

achieve the physical value of a game. If Bob is allowed to abort the game after measuring his

state ρs and aborted games are not considered when calculating his expected utility then he

will be able to achieve the selective value.

The following result provides an explicit formula to calculate the selective value of a game.

In this sense, it is a generalization of lemma 4.3 in [44].

Theorem 6.C.3 (Selective value of a game) Let G = (%, σ) be a WQRG with
∑

s %(s) =

ρ. Define O(a) :=
∑

s σ(s, a)ρ−1/2%(s)ρ−1/2. Then the selective value of G may be calculated

as Sel(G) = maxa ‖O(a)‖, where ‖ · ‖ denotes the operator norm.

Proof. We first use the definition of the value of a game G w.r.t. P, expand the induced

probability distribution and move the sum over s inside the trace

Val(G,P) =

∑
a Tr[P(a)

∑
s σ(s, a)%(s)]∑

a tr[P(a)
∑

s %(s)]
. (6.29)

We define P̃ such that P̃(a) = ρ1/2P(a)ρ1/2. Using this definition and that of ρ and Oa we

may rewrite

Val(G,P) =

∑
a Tr[P̃(a)O(a)]∑

a Tr[P̃(a)]

≤ max
a

Tr[P̃(a)O(a)]

Tr[P̃(a)]

≤ max
a
‖O(a)‖.

(6.30)

The first inequality uses the positivity of all summands. For the second inequality we note

that P̃(a) must be positive semidefinite and the variational definition of operator norm of

the positive semidefinite operator O(a). Equality can be achieved by taking P̃(a0) to be a

projector onto the highest eigenvalue subspace of O(a0) if ‖O(a0)‖ = maxa ‖O(a)‖ and taking

P̃(a0) = 0 otherwise.

The theorem provides an explicit construction of a projection achieving the selective value

of a game. Furthermore, the proof allows us to derive a necessary and sufficient condition

under which the selective and physical values of a game coincide.
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Corollary 6.C.4 Given a retrieval game G, we have that Sel(G) = Phys(G) iff there exist

positive P̃(a) such that

O(a)P̃(a) = Sel(G)P̃(a) and
∑
a

P̃(a) = ρ (6.31)

We now turn to the systematic composition of retrieval games in the form of product and

threshold games. This provides a way to construct more elaborate retrieval games together

with bounds on their associated values. A natural definition of tensor product may be given

for indexed ensembles, projections and utility functions.

(%1 ⊗ %2)(s1, s2) = %1(s1)⊗ %2(s2) (6.32)

(P1 ⊗ P2)(a1, a2) = P1(a1)⊗ P2(a2) (6.33)

(σ1 ⊗ σ2)((s1, s2), (a1, a2)) = σ1(s1, a1)σ2(s2, a2) (6.34)

These definitions have the property that the tensor product of physical projections is a physical

projection and that the induced probability distribution of two tensor product is the tensor

product of the individual induced probability distributions

〈(%1 ⊗ %2), (P1 ⊗ P2)〉 = 〈%1,P1〉 ⊗ 〈%2,P2〉

Tensor product WQRG Let G1 = (%1, σ1) and G2 = (%2, σ2). We define the tensor product

WQRG G1 ⊗ G2 as

G1 ⊗ G2 = (%1 ⊗ %2, σ1 ⊗ σ2).

Proposition 6.C.5 (Tensor product selective value) The selective value of a tensor prod-

uct game is the product of the selective value of the independent games.

Sel(G1 ⊗ G2) = Sel(G1) Sel(G2)

Proof. By using the definition of O(a) in theorem 6.C.3 with respect to the WQRG involved

we obtain

‖O(a1, a2)‖ = ‖O1(a1)⊗O2(a2)‖ = ‖O1(a1)‖‖O2(a2)‖.

Maximizing over a1 and a2 on both sides theorem 6.C.3 provides the desired equality.

The selective value of the product game is attained by the tensor product of projections,

each achieving the respective selective values.
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Corollary 6.C.6 (Tensor product physical value) If Phys(G1) = Sel(G1) and Phys(G2) =

Sel(G2) then Phys(G1 ⊗ G2) = Sel(G1 ⊗ G2).

Given a direct product game and a projection for it one may consider the inverse procedure

of defining a projection on one of the subcomponents of the game.

Restriction of a projection Let P be a projection on H1 ⊗ H2 indexed over A1 × A2.

Furthermore, let ρ2 be a normalized density matrix on H2. We define the restriction P|1 with

respect to ρ2 and A2 as

P|1(a1) =
∑
a2

tr2(P(a1, a2)1⊗ ρ2).

By abuse of notation, if ρ = ρ1 ⊗ ρ2 is a normalized product state in H1 ⊗H2 we may define

the restriction of P with respect to the normalized tensor factors of ρ. This is the case for the

reduced density matrix of product indexed ensembles. By restricting a projection one obtains

a new projection which induces the same reduced probability distribution

Lemma 6.C.7 (Restriction of a projection) Let P|1 be the restriction of P with respect

to ρ2 and A2, where ρ2 is the reduced density matrix of %2. Then

〈%1,P|1〉(s1, a1) =
∑
s2,a2

〈%1 ⊗ %2,P〉(s1s2, a1a2).

Theorem 6.C.8 (Selective value of threshold QRG) Let Gj = (%j , σj) be WQRGs s.t.

σj ∈ (Sj , Aj) → [0, 1] and Sel(Gj) = δj for all j ∈ {1, . . . , n}. Furthermore take δ =

n−1
∑n

j=1 δj and δ ≤ γ ≤ 1. Define the QRG Gγ = (
⊗

j %j), σγ) with a tensor product

ensemble distribution and boolean utility function

σγ(~s,~a) =

 n∑
j=1

σj(sj , aj) ≥ γn

 .

Then we have Sel(Gγ) ≤ 2e−nD(γ‖δ).

Proof. The direct product indexed ensemble % =
⊗

j %j and projection P induce a normalized

probability distribution over ~S × ~A given by

p(~s,~a) =
tr[P(~a)%(~s)]∑
~s~a tr[P(~a)%(~s)]

.

Define the dependent random variable Xj to be σj(sj , aj) where sj and aj are taken according

to this probability distribution. For any S ⊆ {1, . . . , n}, we may define P|S as the restriction
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of the projection P to the subsystems specified by S with respect to (ρ~s). By proposition

6.C.5 we have that

Exp

∏
j∈S

Xj

 = Val

⊗
j∈S
Gj ,P|S

 ≤∏
j∈S

δj . (6.35)

Using theorem 6.A.1 and definition 6.C.4 we obtain

Val (Gγ ,P) = Pr

∑
j

Xj ≥ γn

 ≤ 2e−nD(γ‖δ). (6.36)

Since this is true for arbitrary P we conclude that Sel(Gγ) ≤ 2e−nD(γ‖δ).

6.C.5 CV-Qticket qubit pair building block

Consider a game in which Alice transfers to Bob one of the following states chosen at random

S = {|0,+〉, |0,−〉, |1,+〉, |1,−〉, |+, 0〉, |−, 0〉, |+, 1〉, |−, 1〉},

each with probability 1/8. Alice then asks Bob for the Z polarization of both qubits, possible

answers being A = {00, 01, 10, 11}. An answer is correct iff it coincides in the polarization

of the qubit prepared in a Z eigenstate. Bob can always answer the question correctly by

measuring both qubits in the Z basis.

The quantum retrieval game formalism applies to this problem although one must admit

that it is like cracking a nut with a sledgehammer. We call this game GZ = (%, σZ) where we

have
∑

s %(s) = ρ = 14/4, and tr[%(s)] = 1/8 for all s ∈ S. A formal definition of the utility

function σZ can be given as σZ(s, a) = (s1 ≡ a1 or s2 ≡ a2). We first define the operators

O(a) from theorem 6.C.3. Due to symmetry we may restrict to considering one such operator

O(00) = 4 (%(0,+) + %(0,−) + %(+, 0) + %(−, 0)) (6.37)

and find that ‖O(00)‖ = 1 which is a non degenerate eigenvalue for all O(a). The fact that

the four corresponding eigenspaces are orthogonal confirms that 1 is also the physical value

of the game.

The same trivial value of 1 can be achieved for the game in which Alice requests the

X direction polarization of the states. We will call this game GX = (%, σX). The problem

becomes interesting if Bob is requested provide a guess for both complementary polarizations.

There are two relevant possibilities, both of which will require Bob to give an answer twice as
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long as before. The first scenario describes the best case probability of Bob answering both

questions correctly and may be modeled by a QRG with utility function

G∧ = (%, σ∧) σ∧(s, aXaZ) = σX(s, aX) ∧ σZ(s, aZ).

In the second scenario we are interested in the average number of questions answered correctly

when two complementary questions are posed and may be modeled by the WQRG with utility

function

Gavg = (%, σavg) σavg(s, aXaZ) =
σX(s, aX) + σZ(s, aZ)

2
.

Thanks to symmetries one need only calculate a single ‖O(a)‖ and for concreteness we choose

O(+ + 00). For the conjunction QRG we obtain

O(+ + 00) = 4 (%(0,+) + %(+, 0)) and ‖O++00‖ = 3/4.

For the average WQRG we obtain

O(+ + 00) =2[2%(0,+) + 2%(+, 0) + %(0,−)

+ %(−, 0) + %(+, 1) + %(1,+)]
(6.38)

and ‖O++00‖ = 1/2 + 1/
√

8 ≈ 0.8536. This is precisely the optimal fidelity for covariant

qubit cloning (i.e. cloning of equatorial qubits). On the other hand, if Bob is asked the

same question twice instead of complementary questions it is clear that he will be able to

repeat two correct answers. All in all, if Bob is asked complementary question half of the

time and coinciding questions half of the time he will be able to emulate an average fidelity

of 3/4 +
√

2/8 ≈ 0.927.

Indeed, once we have defined a concrete WQRG, calculating its selective value becomes

an exercise thanks to theorem 6.C.3. Furthermore, if the game has sufficient symmetry it will

be possible to prove a coinciding physical values for the game.

6.C.6 CV-Qticket retrieval games

We will first bound the probability of answering two of these randomly chosen questions by

bounding the selective value of the corresponding retrieval game. To do this, we bound the

value of a game where r complementary questions are asked on r qubit pairs (this is precisely
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the case for one block when the two random questions are complementary).

σ
(X)
Ftol

(~s,~a(X)) =

 r∑
j=1

σ
(X)
j (sj , a

(X)
j ) ≥ Ftolr


σ

(Z)
Ftol

(~s,~a(Z)) =

 r∑
j=1

σ
(Z)
j (sj , a

(Z)
j ) ≥ Ftolr


σ∧Ftol

(~s, (~a(X),~a(Z))) =σ
(X)
Ftol

(~s,~a(X)) ∧ σ(Z)
Ftol

(~s,~a(Z))

(6.39)

We will not calculate the selective value exactly but give a bound in terms of theorem

6.C.8. In order for the two block answers to be correct, among the two, at least 2Ftolr answers

should have been provided correctly for individual qubit pairs. This is a weaker condition

since it only imposes that the sum among the two block answers be sufficiently large, not

necessarily implying that they are both above threshold.

σ∧Ftol
(~s, (~a(X),~a(Z))) ≤

 r∑
j=1

σavgj (sj , (a
(X)
j , a

(Z)
j )) ≥ Ftolr

 (6.40)

The description on the right hand side has precisely the form required for theorem 6.C.8. We

conclude that the selective value and hence the probability within any strategy of provid-

ing valid answers to two complementary questions for the same block is upper bounded by

2 exp[−rD(Ftol‖1/2 + 1/
√

8)] (for Ftol > 1/2 + 1/
√

8).

Given two randomly chosen questions for a block there is a probability of 1/2 that they

will coincide and a probability 1/2 that they will be complementary. Taking this into account,

the probability for a dishonest holder to correctly answer two such randomly chosen block

questions is upper bounded by 1/2 + exp[−rD(Ftol‖1/2 + 1/
√

8)]. By taking r sufficiently

large, this value can be guaranteed to be smaller then 1. Hence, the probability of correctly

answering n such randomly chosen threshold question pairs will be upper bounded by B :=

(1/2 + exp[−rD(Ftol, 1/2 + 1/
√

8)])n which can be made exponentially close to 1 in n.

6.C.7 Combinatorial bound on choosing and learning

The formulation presented adequately models a scenario in which the holder of a cv-qticket

does not receive any feedback from the verifiers. However, if the holder of a cv-qticket can

engage in several verification protocols, new possibilities arise which should be taken into

account.
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Firstly, by simultaneously engaging in several (v) verification protocols with different ver-

ifiers, the holder may simultaneously have access to v challenge questions. The holder may

then for instance, choose the most similar questions and attempt to answer these. Further-

more, by successively participating in v verification protocols the holder can choose to perform

verifications sequentially and wait for the outcome of the k-th before choosing which question

to answer as the k + 1-th and providing an answer for it.

In general, if the holder engages in v verification attempts, he will receive v random ques-

tions providing no additional information on the cv-qticket. There are
(
v
2

)
possible question

pairs among these, each of which can be seen as randomly chosen. Thus if no feedback is

used the probability of answering at least one of these pairs correctly is upper bounded by(
v
2

)
B. An example scenario where this bound is relatively tight is when r is very large and n

is relatively small. In this case, the probability of answering two randomly chosen questions

is well approximated by the collision probability 2−n ( i.e. the probability that two questions

coincide ) which grows precisely as
(
v
2

)
if the holder has access to v independently drawn

questions and may choose to answer any pair.

Suppose now, that the answers to the verifiers are provided sequentially, so that the

decision of which answer to produce for each verifier may be made dependent on the outcome

of previous verifications. We can safely assume that the answers to challenge questions are

then provided sequentially, each after receiving the acceptance or rejection of the previous

ones. We can then apply a similar argument to the one exposed for the proof of qticket

security in section 6.B.3. This yields an additional factor of
(
v
2

)
corresponding to the possible

feedback scenarios up to the point of the second accepted answer, each of which can be

simulated statically (i.e. by assuming the given feedback and fixing a corresponding POVM

to generate answer up to that point). Hence the total probability for an interactive strategy

with v verification attempts of producing two or more accepted answers is upper bounded by(
v
2

)2
B.

It may seem artificial for verifiers to select a random question each time. Randomness is

important in order to avoid revealing information about the issued cv-qticket. However, the

verifier may choose a random question once and for all and ask it until it is answered correctly.

Once it has been answered correctly, the verifier knows that the cv-qticket has already been

redeemed and can thus reject all subsequent verification attempts. This is similar to the kind
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of scheme used for prepaid telephone cards discussed in the applications section. However,

the quantum case provides an advantage since one may have multiple verifiers which do not

communicate. In a simple example with two verifiers, two composite questions may be chosen

such that they are complementary on every qubit pair (i.e. one question is chosen at random

and uniquely determines the other).

6.D Applications

Our quantum information application attempts to reduce quantum requirements to a mini-

mum. However, even prepare and measure qubit memories remain technologically challenging.

For problems admitting a classical solution, such an approach is likely to be technologicaly less

demanding. In other words, relevant applications for prepare and measure quantum memories

will be those solving problems for which no classical solutions are known. In this section we

discuss some problems with classical solutions and propose refinement of such problems for

which no classical solution is possible.

6.D.1 Enforcing single usage with a single verifier

For some applications, the no cloning of quantum information is only an apparent advantage.

Our qticket and cv-qticket constructions can guarantee an exponentially small double usage

probability. However, this is not an impresive feat for scenarios where there is a single verifier

or if the verifiers have acces to realtime communication with a centralized database. In

this case, a randomly chosen classical ticket has equaly good properties. After a ticket is

succesfully redeemed once, it can be removed from the central database, making it invalid for

any succesive verification attempt. In fact this classical strategy is widely used for crediting

prepaid phone lines with a client calling a toll free number and typing the purchased ticket

number in order to credit a telephone account. Thus in such scenarios, the quantum strategy

does not provide additional protection with respect to a classical solution.

6.D.2 Multiple non communicating verifiers

In scenarios with multiple non communicating verifiers, (cv-)qtickets provide a soution to a

problem where all classical approaches fail. We describe a witness protection program as an
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example of how such a scenario might look like.

In a witness protection program, a governmental institution decides to give asylum to a

key eye witness to whom an unforgeable quantum token is issued. This token can be used

by the witness (holder) to claim asylum in any of a set of participating hotels (verifiers).

The issuer also provides all hotels with the necessary information to verify the tokens. When

using the token, neither the eye-witness nor the chosen hotel wish to divulge the locale where

the witness is hosted, thus protecting both from being targets of an attack. This includes

suspending communication between participating hotels as well as with the issuing authority.

Any classical solution can not prevent a sufficiently resourceful holder from making copies of

the received token, thus hotels are forced to communicate in order to avoid its double use.

In this case, a quantum solution based on unforgeable tokens is the sole possibility to satisfy

these unique constraints.

Figure 6.5: 1) The issuing entity hands a qticket to the key witness. 2) It provides the hotels

with the secret classical description which will be used to verify it. 3a) An honest witness

choses a hotel and physically transfer the qticket for verification. It will be accepted as long

as the level of accumulated noise is below threshold. 3b) A dishonest witness will fail to

counterfeit his/her qticker to provide acomodation for an additional guest. However, there is

no way of avoiding a valid qticket from changing hands.

6.D.3 Reduced availability under sporadic verification

In principle, a centralized database may guarante that classical ticket are only redeemed

once. However, there are situations where the ticket should be available only to one holder

at a time and the non-clonable nature of a qticket allows enforcing this. One such example is
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the sporadic control of tickets required for a given service. For concreteness, imagine a qticket

which is valid for making use of a public transportation network. Commuters are sporadically

controled, at which point if they are found to have a invalid qticket they are charged an

important fine, whereas if they are found to hold a valid qticket, they are provided with a

fresh substitute. If the transportation tickets are classical, sporadic control can not avoid

counterfeited copies in the hands of coluding commuters from circulating simultaneously.

The deceiving commuters need only communicate classicaly among each other before and

after they are controled, effectively sharing a single classical ticket to make use of the service

multiple times1. In contrast the unavailability of long distance quantum comunication would

disallows them to share a qticket in such a way (i.e. each valid qticket may only be at one

place at a time).

6.D.4 The quantum credit card

Having developed a single verification, noise tolerant, non-forgeable token, such as the cv-

qticket, it is now possible to examine generalizations to interesting composite protocols. For

instance, Gavinsky’s proposal[44] allows for multiple verification rounds to be performed on

a single token, while also ensuring that the token can not be split into two independently

valid subparts. Such a construction may be seen as a quantum credit card. Indeed, the

classical communication which takes place with the issuer (bank) to verify the cv-qticket

(via “challenge” questions) may be intentionally publicized to a merchant who needs to be

convinced of the card’s validity. An alternate possibility is to follow the original interpretation

as a quantum cash token where verification is performed by the receiver each time the “money”

changes hands.

6.D.5 Excluding eavesdropers

While qtickets do not provide additional advantage against dishonest holder in the scenario of

a single verifier quantumness may provide an advantage against eavesdroping and untrusted

communication. In order to make online banking more secure, Banks routinely use TANs

(transaction authentication numbers) as an additional security measure. The bank sends its

client a list of TANs via postal service in addition to an online password which is set up via

1If the classical ticket is not renewed upon control even communication is unnecesary.
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another channel. Each time a bank transaction is requested online by the client, the bank

requests a TAN from the list to guarantee the authenticity of the transaction. An impostor

then needs to know both a secret password used by the user and some TANs, thus increasing

the difficulty to succesfully impersonate a transaction with respect to any single security

measure. However, since TANs are classical objects it is conceivable that an eavesdroper may

learn them while remaining undetected (imagine an eavesdroper taking xray pictures of the

correspondence). This means that with some effort of the eavesdroper the additional security

measure becomes ineffective.

This problem can be straightforwardly resolved by using quantum prepare and measure

memories. Even if a cv-qticket is sent via an untrusted optical fiber or postal service, the

receiver may openly communicate with the issuer and sacrifice some of the received qubits in

order to obtain a bound on how much information could have leaked to eavesdropers. This is

precisely the approach taken in QKD to obtain a statistical bound on the information that has

leaked out. Gavinsky’s Q scheme, allowing multiple verification rounds may be reinterpreted

as quantum TAN lists. The holder of a quantum TAN list may verify its validity, and perform

a transaction by publicly communicating with the bank. If the quantum TAN list is verified

to be legitimate, then the probability of an eavesdroper getting verified by using the leaked

information will be negligible (exponentially small). In turn, the cv-qtickets described in

the main text and appendix may be used as basic building blocks for such a scheme in the

presence of noise.
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of big steps (or equivalently of crossings) during the upward propagation is

given by S, which in the case of the figure is 2. . . . . . . . . . . . . . . . . . 45

3.3 The average probability of error for L1 correction after the system evolves for a

time tf under the described Hamiltonian perturbation. Here, anyon pairs arise,

and evolve to distances of d20 ln(N)e, with a probability of 10%, all collinear on

a line of length N . Each point represents an average over 106 random samples,

with error bars representing the magnitude of estimated statistical errors. . . 48
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3.4 There is an energy gap γ separating the eigenenergies corresponding to an ex-

ponentially small subspace P0 from the energies of the Hamiltonian eigenstates

giving rise to the rest of the Hilbert space. . . . . . . . . . . . . . . . . . . . . 62

3.5 Each edge in the grid represents a physical qubit and opposite sides of the grid

are identified by toric periodic boundary conditions. Typical plaquette and

vertex operators are depicted near the center. Two vertical loop operators, X̄1

and Z̄2, which allow breaking the degeneracy are also presented. One can take

these to be the X and Z operators for the first and second logically encoded

qubits respectively. The complementary (anticommuting) operators are given

by analogous horizontal loops. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Illustration of a possible configuration of three vertex anyon pairs (small cir-

cles). Segments indicate possible qubits where Z rotations could be introduced

in order to remove the anyons. Solid and dotted segments illustrate the anyon

matching arising from l1-EC and l∞-EC respectively. Since together they com-

plete a non-trivial loop, the matchings are logically inequivalent. . . . . . . . 66

3.7 In an N × N lattice, there are two sets of N/k rows (k ∼ O(1)) and two

sets of columns and rows, each of which corresponds to the construction of

(Sec. 3.4.2) for a different error type (X̄1, Z̄2 are introduced by columns starting

at horizontal stripes and Z̄1 and X̄2 are introduced by rows starting from

vertical stripes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 We assume that a piece of quantum information is encoded into a many body

system. The engineered dissipation, is then responsible for making the degrees

of freedom which carry the encoded quantum information resilient against the

uncontrolled noise processes taking place. Finally, the decoding process ex-

tracts the quantum information from the collective degrees of freedom. . . . . 74
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4.2 The mean time to error for a logical observable is plotted in log scale units

of 1
Γ . Error rates Γε are provided in units of Γ. The plots further suggests

the existence of a critical value for error rates Γ?ε ≈ 0.004. (a) Each curve

corresponds to a fixed odd value of the lattice size N . The independent axis

Γε/Γ is also in log scale suggesting that for each fixed N the information

lifetime show an asymptotic (small Γε) power law dependence with 1/Γε with

the exponent increasing for larger N . (b) Each curve corresponds to a fixed

value of the error rate Γε. For low error rates Γε < Γ?ε, lifetime is seen to

improve exponentially with N . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Relaxation time for ZEC (red curves) and XL (blue curves) in units of Γ−1.

Each red curve presents the relaxation time τZ (numerically obtained) cor-

responding to one value of the relative dephasing rate Γ/Γphase given by the

intercept at N = 1. Blue curve have the functional form τX = Γ−1
dep ∗N−2 and

each corresponds to one value of Γ/Γdep also given by the intercept at N = 1.

The lifetime τ of the encoded logical qubit can be seen to be estimated by

τ ≈ min{τX , τZ}. Given Γ/Γdep and Γ/Γphase, one may intersect the corre-

sponding curves to obtain the value of N leading to the optimal qubit lifetime

τ . For example, if Γdep = 5× 10−5Γ and Γphase = 0.1Γ the optimal lattice size

of 4× 4 allows a ×100 increase in the quantum information relaxation time τ .

A more extreme case may be seen when Γphase = 0.01Γ and Γdep ≤ 5× 10−5Γ

where a factor ×50 is gained by simply using a 2× 2 lattice. . . . . . . . . . 82

4.4 Recovery probability of an encoded observable in the 4D toric code is plotted as

a function of depolarization probability per qubit. Odd lattices sizes from 1 to

11 are represented in the different curves and suggest a critical depolarization

probability of approximately 7.5%. . . . . . . . . . . . . . . . . . . . . . . . 90
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5.1 a) An NV-center is obtained by removing two nearest neighbour carbons in

the diamond lattice and replacing one of them by a nitrogen atom (light grey)

while keeping the lattice location vacant (blue). In practice, a way to fabri-

cate these centers is via high temperature annealing of natural or implanted

nitrogen impurities until they become attached to a vacancy. b) Schematic

level diagram for an NV center (left box) and a 13C nuclear spin (right box)

under illumination with green laser light. The green arrows indicate optical

transitions addressed by our green laser pulse, red arrows show electronic decay

and blue arrows indicate depolarization of the electronic spin. The transition

rates for NV are taken from [88] with the decay rate from the electronic ex-

cited state to the ground state γ̃ = 1
13ns , the decay rate from the singlet to

ms = 0 of the electronic ground state Γ = 1
300ns and the decay rate from the

electronic excited states with ms = ±1 to the singlet γ̃b = 0.3γ̃. Moreover we

assumed the decay rate of the excited state of NV0 to be on the same order as

for NV. The deionization rate from NV to NV0 is taken to be γ1 = I/Isat
70ns and

the ionization rate γ2 = 2γ1 [126]. The depolarization time for the electronic

spin for NV is taken to be TNV
−

1e = 8ms and for the case of NV0, TNV
0

1e = 6µs

[126]. All the remaining rates are taken to be zero. Reprinted from Science

336 (2012) 1283-1286 with permission from AAAS. . . . . . . . . . . . . . . 103

5.2 The |ms = ±1〉 excited states decay into the singlet shelve state with a rate

γ̃b ≈ 0.3γ̃ which in turn decays mainly into the |ms = 0〉 ground state at a

slower rate Γ ≈ 1
300ns . No photons are emitted during the time spent in the

shelf state leading to a lower initial fluorescence intensity for the |ms = ±1〉
states. Eventually, the electronic spin becomes polarized into the |ms = 0〉
independent of the initial state. Such a 1/e decay occurs on a time scale of the

order of 150ns and steady state polarization can be assumed after 1µs (these

rates depend on the strength of the optical driving). . . . . . . . . . . . . . . 109
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5.3 Nuclear 13C qubit readout. a) Circuit diagram of repetitive readout of the

nuclear spin |n〉. The readout uses a CnNOTe gate consisting of multiple rep-

etitions of an electronic spin Ramsey sequence and subsequent repolarization.

Many repetitions are needed to accumulate the small amounts of information

provided by each measurement attempt. b) Fluorescence time trace showing

single shot readout of the nuclear spin and corresponding quantum jumps.

The integration time for a single point is 4.4 s. c) Histogram of continuous

repetitive readouts (20000 in 4.4 s) showing two overlapping distributions of

fluorescence photon counts corresponding to nuclear spin states: | ↓〉 (blue) and

| ↑〉 (red). d) Nuclear spin orientation lifetime, T1n as a function of 532 nm

laser power. As shown in the inset, each data point is extracted from a series of

two repetitive readout sequences, the first one corresponding to initialization

and the second to measurement. The solid red curve represents the theoreti-

cal prediction from the simple model of nuclear depolarization induced by the

off-axis dipolar hyperfine field. Reprinted from Science 336 (2012) 1283-1286

with permission from AAAS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Photon count statistics and initialization fidelity a) The number of events as-

sociated to a given number of detected photons is plotted in a histogram (blue)

after initialization of the nuclear spin in |↓〉 (green) and |↑〉 (red) and 10000

repetitive readouts (2.2s). The solid curves correspond to a theoretical fit ac-

counting for the effect of a possible nuclear spin flips on the ideally Gaussian

distributions. The green and red regions indicate photon count numbers for

which initialization is assumed in the |↓〉 respectively |↑〉 nuclear states. b)

The green and red curves indicate the initialization fidelity of |↓〉 respectively

|↑〉 nuclear states as a function of the count threshold taken. Stricter count

thresholds lead to higher fidelity but to discarding a larger fraction of initializa-

tions with the net effect of prolonging the effective initialization time required.

Reprinted from Science 336 (2012) 1283-1286 with permission from AAAS. . 112
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5.5 Decoupling pulse sequences The WHH sequence is capable of achieving

dipole dipole decoupling with only 4 π/2 pulses each applied around the indi-

cated axis. The MREV-8 has the same averaging effect as WHH for the dipole

dipole coupling but shows a higher robustness to RF pulse errors. Finally,

CPMG/MREV sequence includes additional π pulses to compensate external

magnetic fields. Reprinted from Science 336 (2012) 1283-1286 with permission

from AAAS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.6 Combined dephasing from detuning and dipole-dipole interactions 120

5.7 Experimental coherence extension a) Experimental sequence used to measure

the nuclear coherence time. A modified Mansfield Rhim Elleman Vaughan

(MREV) decoupling sequence [79] is utilized. It consists of 16 MREV-8 pulse

trains interwoven with 8 phase-refocusing π-pulses. Each MREV-8 pulse se-

quence can be achieved through π/2 rotations around four different axes. b)

Nuclear coherence as a function of green laser power. Red data constitute a

measurement of T2n using a nuclear spin echo; blue data T2n contain the addi-

tional MREV sequence. The dashed fits are calculated from the spin-fluctuator

model. Reprinted from Science 336 (2012) 1283-1286 with permission from

AAAS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.1 a) Depicts the pigeonhole type argument which is utilized in the proof of qticket

soundness. For a tolerance fidelity Ftol, a qticket is only successfully authen-

ticated if it contains at least FtolN valid qubits. However, for two counterfeit

qtickets, not all valid qubits must coincide. The minimum number of perfectly

cloned qubits enabling both qtickets to be accepted is, (2Ftol − 1)N . b) De-

picts the quantum retrieval type situation envisioned for cv-qtickets. For two

verifiers asking complementary “challenge” questions, the optimal strategy is

for the user to measure in an intermediate basis. Such a strategy saturates the

tolerance threshold, F cv
tol = 1+1/

√
2

2 . . . . . . . . . . . . . . . . . . . . . . . . . 126
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6.2 a) Depicts the possibility of using the cv-qticket framework to implement a

quantum-protected credit card. Unlike its classical counterpart, the quantum

credit card would naturally be unforgeable; this prevents thieves from being

able to simply copy credit card information and perform remote purchases. b)

Depicts a dishonest user who attempts to copy a concert qticket (e.g. same

serial number), enabling his friend to enter at an alternate checkpoint gate.

Naively, each verifier can communicate with one another to prevent such abu-

sive ticket cloning. However, such a safeguard can be overcome in the event

that the communication among verifiers is either unsecured, unavailable or sev-

ered (possibly by the dishonest user himself). The qticket is exempt from this

type of attack since security is guaranteed even in the case of isolated verifiers. 130

6.3 a) We schematically illustrate how a dynamical strategy S works. Each step of

a strategy (grey rectangles) is a CPTP map S~b which depends on the classical

outcome ~b of previous verifications. The first map S∅ takes an original qticket

ρ as input, whereas subsequent steps rely on an internal memory state of the

holder. The content of internal memory could range from no information at

all, to a full original qticket and a detailed register of previous submissions.

The verifiers have a fixed strategy Πρ which consists of applying the mea-

surement {P ρacc, P
ρ
rej} and only returning the classical boolean measurement

outcome. b) By fixing the classical input ~b to the strategy, a CPTP map

S̃~b ∈ HQ → H
⊗ len(~b)+1
Q ⊗ HH is constructed, corresponding to one possible

partial application of the strategy S. This CPTP map produces len(~b) + 1

possibly entangled outputs in HQ from a single input qticket. . . . . . . . . 140

6.4 We numerically calculate the probability of accepting two copies of a qticket

when the adversary strategy is assumed to be independently cloning each of

the N qubits using an optimal cloning map. We see that the probability of

producing two accepted qtickets approaches a step function at 5/6 with N . . 142
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6.5 1) The issuing entity hands a qticket to the key witness. 2) It provides the ho-

tels with the secret classical description which will be used to verify it. 3a) An

honest witness choses a hotel and physically transfer the qticket for verification.

It will be accepted as long as the level of accumulated noise is below thresh-

old. 3b) A dishonest witness will fail to counterfeit his/her qticker to provide

acomodation for an additional guest. However, there is no way of avoiding a

valid qticket from changing hands. . . . . . . . . . . . . . . . . . . . . . . . . 156
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