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Abstract

This thesis is devoted to the study of coherent storage of quantum information as well as
its potential applications. Quantum memories are crucial to harnessing the potential of
quantum physics for information processing tasks. They are required for almost all quantum
computation proposals. However, despite the large arsenal of theoretical techniques and
proposals dedicated to their implementation, the realization of long-lived quantum memories
remains an elusive task.

Encoding information in quantum states associated to many-body topological phases of
matter and protecting them by means of a static Hamiltonian is one of the leading proposals
to achieve quantum memories. While many genuine and well publicized virtues have been
demonstrated for this approach, equally real limitations were widely disregarded. In the first
two projects of this thesis, we study limitations of passive Hamiltonian protection of quantum
information under two different noise models.

Chapter [2| deals with arbitrary passive Hamiltonian protection for a many body system
under the effect of local depolarizing noise. It is shown that for both constant and time de-
pendent Hamiltonians, the optimal enhancement over the natural single-particle memory time
is logarithmic in the number of particles composing the system. The main argument involves
a monotonic increase of entropy against which a Hamiltonian can provide little protection.

Chapter (3| considers the recoverability of quantum information when it is encoded in a
many-body state and evolved under a Hamiltonian composed of known geometrically local
interactions and a weak yet unknown Hamiltonian perturbation. We obtain some
generic criteria which must be fulfilled by the encoding of information. For specific proposals
of protecting Hamiltonian and encodings such as Kitaev’s toric code and a subsystem code
proposed by Bacon, we additionally provide example perturbations capable of destroying the

memory which imply upper bounds for the provable memory times.
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Chapter 4] proposes engineered dissipation as a natural solution for continuously ex-
tracting the entropy introduced by noise and keeping the accumulation of errors under control.
Persuasive evidence is provided supporting that engineered dissipation is capable of preserv-
ing quantum degrees of freedom from all previously considered noise models. Furthermore, it
is argued that it provides additional flexibility over Hamiltonian thermalization models and
constitutes a promising approach to quantum memories.

Chapter [5] introduces a particular experimental realization of coherent storage, shifting
the focus in many regards with respect to previous chapters. First of all, the system is very
concrete, a room-temperature nitrogen-vacancy centre in diamond, which is subject
to actual experimental control and noise restrictions which must be adequately modelled.
Second, the relevant degrees of freedom reduce to a single electronic spin and a carbon 13 spin
used to store a qubit. Finally, the approach taken to battle decoherence consists of inducing
motional narrowing and applying dynamical decoupling pulse sequences, and is tailored to
address the systems dominant noise sources.

Chapter[6lanalyses unforgeable tokens as a potential application of these room-temperature
qubit memories. Quantum information protocols based on Wiesner’s quantum money scheme
are proposed and analysed. We provide the first rigorous proof that such unentangled tokens
may be resistant to counterfeiting attempts while tolerating a certain amount of noise.

In summary, this thesis provides contributions to quantum memories in four different as-
pects. Two projects were dedicated to understanding and exposing the limitations of existing
proposals. This is followed by a constructive proposal of a new counter-intuitive theoretical
model for quantum memories. An applied experimental project achieves record coherent stor-
age times in room-temperature solids. Finally, we provide rigorous analysis for a quantum
information application of quantum memories. This completes a broad picture of quantum
memories which integrates different perspectives, from theoretical critique and constructive
proposal, to technological application going through a down-to-earth experimental implemen-

tation.



Zusammenfassung

Diese Arbeit widmet sich der kohérenten Speicherung von Quanteninformation, sowie ihren
potenziellen Anwendungen. Quantenspeicher sind wesentlich, wenn es darum geht das Po-
tential der Quantenmechanik fiir Aufgaben der Informationsverarbeitung zu nutzen. Sie sind
Voraussetzung in nahezu allen Vorschlidgen zur Realisierung von Quantencomputern. Trotz
der Fiille an theoretischen Methoden und Vorschldgen zu ihrer experimentellen Implemen-
tierung, steht die Realisierung eines langlebigen Quantenspeichers bis heute aus.

Einer der vielversprechendsten Ansédtze zur Implementierung von Quantenspeichern ist
es, Information in Quantenzustdnden, die zu topologischen Phasen in Vielteilchensystemen
gehoren und durch einen statischen Hamiltonoperator geschiitzt werden, zu codieren. Wahrend
auf der einen Seite die Vorziige dieses Ansatzes viel Beachtung gefunden haben und in zahlre-
ichen Arbeiten diskutiert wurden, hat man auf der anderen Seite viele ebenso wichtige
Einschriankungen bislang weitgehend ignoriert. In den ersten beiden Projekten dieser Ar-
beit untersuchen wir Schwierigkeiten, die bei dem Versuch Quanteninformation passiv durch
Hamiltonoperatoren zu schiitzen, auftreten. Hierbei konzentrieren wir uns auf zwei unter-
schiedliche Modelle zur Beschreibung der dusseren Storeinfliisse.

Kapitel zwei befasst sich mit den M6glichkeiten ein System, das lokalem depolarisieren-
den Rauschen ausgesetzt ist, durch beliebige Hamiltonoperatoren passiv zu schiitzen. Wir
zeigen, dass sich die optimale Erhohung der Speicherzeit im Vergleich zu Einteilchenspeich-
ern sowohl fiir konstante als auch zeitabhangige Hamiltonoperatoren logarithmisch zu der
Teilchenzahl, aus denen das System besteht, verhélt. Die Hauptursache fir dieses Verhalten
liegt in dem monotonen Anstieg der Entropie.

In Kapitel drei betrachten wir Systeme die einer Zeitentwicklung durch Hamiltonop-
eratoren, die durch bekannte lokale Wechselwirkungen und eine beliebige hamiltonsche

Storung beschrieben werden, ausgesetzt sind. Wir leiten allgemeine Kriterien, die von der
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codierten Information erfiillt werden miissen, her. Fiir spezifische Hamiltonoperatoren und
Codierungen, wie Kitaevs torischen Code und Bacons 3D Kompas Code, beschreiben wir
Beispiele von Stérungen, die dazu in der Lage sind den Speicher zu zerstoren. Dies impliziert
eine obere Beschrankung fiir Speicherzeiten, die bewiesen werden kénnen.

In Kapitel vier stellen wir ein Konzept vor, mit welchem Entropie, die dem System durch
Rauschen zugefiihrt wurde, durch manipulierbare Dissipation kontinuierlich extrahiert wer-
den kann. Gleichzeitig wird dabei die Akkumulation von Fehlern unter Kontrolle gehalten.
Wir zeigen, dass manipulierbare Dissipation die Quanteneigenschaften von all den von uns
betrachteten Modellen fiir Rauschen erhalt.

In Kapitel flinf betrachten wir eine konkrete Realisierung von koharentem Speichern.
Hier geht es um eine konkrete physikalische Anwendung in einem NV-Zentrum, in der ex-
perimentelle Kontrollmoglichkeiten und realistische Bedingungen fiir das Rauschen in Be-
tracht gezogen und addquat modelliert werden miissen. Der Bewegungsfreiheitsgrad ist in
diesem System auf nur einen Elektronenspin und einen Kohlenstoff-13 Kernspin beschrankt.
Das Konzept, das wir hier zur Bekampfung von Dekohérenz vorschlagen, besteht aus Bewe-
gungsmittelung und dynamischen Entkopplungs-Pulssequenzen und ist auf das System und
seine vornehmlichen Quellen fiir Rauschen optimiert.

Solch ein Quantenspeicher fiir Quantenbits in NV-Zentren, der bei Raumtemperatur funk-
tionsfahig ist, stellt unsere Motivation fiir Kapitel sechs dar. Dort stellen wir Konzepte vor,
welche die Realisierung falschungssicherer Sicherheitslosungen mit derartigen Quantenbits er-
lauben. Basierend auf Wiesners Quantengeld-Schema entwickeln wir neue Quanteninformations-
Protokolle. Wir stellen hier den ersten rigorosen Beweis vor, dass derartige unverschrankte
Sicherheitslosungen gegen Félschungsversuche sicher waren und auflerdem eine bestimmte
Menge an Rauschen tolerieren konnten.

Zusammenfassend liefert diese Doktorarbeit einen Beitrag zu Quantenspeichern aus vier
verschiedenen Perspektiven. Zwei Projekte sind dem Verstéandnis und den Limitierungen von
bestehenden Konzepten gewidmet. Dann stellen wir ein neuartiges, kontraintuitives, theo-
retisches Konzept zur Realisierung eines Quantenspeichers vor. In Kollaboration mit einer
experimentellen Arbeit ist der Rekord von kohérenten Speicherzeiten bei Raumtemperatur
gebrochen worden. Auflerdem stellen wir eine rigorose Beschreibung von Quanteninforma-

tionsanwendungen flir Quantenspeicher vor.
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Chapter 1

Introduction

Quantum mechanics is the well established physical theory describing the world below the
Planck scale. With the advent of integrated circuits and Moore’s law [92] predicting a doubling
in their transistor density every two years, it soon became clear that it would eventually
become necessary to seriously take quantum effects into account. In this context, some ideas
of quantum computing and quantum information unavoidably began to emerge in the 1970’
and early 1980’ in the minds of physicists and computer scientists such as Charles H. Bennett,
Paul A. Benioff, David Deutsch and Richard P. Feynman [17], 15, 40, 33]. It was time to move
on from the models of billiard ball computing and embrace the era of quantum information.

While it became clear early on [33] that a quantum computer would be at least as pow-
erful as a classical one, expected advantages of a quantum computer were apparently limited
to simulating quantum-mechanical systems [40] in addition to solving a few relatively con-
trived mathematical problems. There was also no pressing urge from the microelectronics
industry to better understand the workings of quantum information. This all changed with
the break-through result of Peter Shor [112], who in 1994 proposed an algorithm by which
a quantum computer could factor large numbers in a time exponentially faster than most
practical classical algorithms. If implemented, Shors algorithm could be used to crack main-
stream cryptographic codes such as RSA [107] for which the difficulty of factoring is essential.
Since then, quantum computation has received a huge amount of attention, not only from
the scientific community, but from the whole world.

Ironically, in their seminal work of 1984, Charles Bennett and Gilles Brassard [16] had

already proposed a quantum key distribution scheme, which could potentially substitute RSA
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allowing for cryptographically secure private communication even in a world with quantum
computers. However, contrary to popular belief, this was not the first cryptographic protocol
relying on the quantum nature of information. Stephen Wiesner[129], had been ahead of
his time in proposing the use of bank notes which were impossible to duplicate due to the
quantum character of the state defining them, a topic which we will get back to in the last

chapter of this thesis.

As illustrated, quantum computing and quantum information are both of technological
and fundamental appeal. This brings us to the topic of this thesis, quantum memories, which
are expected to play a central role in the implementation of quantum information technologies.
They are required to perform entanglement swapping and are thus crucial for long-distance
quantum key distribution. They are necessary in almost all models of quantum computation,
where it is ubiquitous to have data wait. Finally, the quality of a quantum memory constitutes
a benchmark for the degree of coherent quantum control achievable within a system and may

be used to compare different technologies.

This thesis is devoted to the understanding and design of quantum memories and their
applications. We present the five projects in the subsequent chapters with these general goals
in mind. The first two (chapters [2| and [3) explore existing proposals for many-body quan-
tum memories exposing their limitations and understanding their virtues. The following two
(chapters 4| and [5)) propose implementations of quantum memories, first paying attention to
scaling in an abstract many-body context and later concentrating on a concrete experimental
quantum optics setting, namely Nitrogen-vacancy centers. Inspired by record coherence times,

in the chapter [6] we propose an application consisting of tokens impossible to counterfeit.

The main contributions of this thesis are to the field of many-body quantum memories
(chapters|2], [3|and . In order to better understand these contributions, it is convenient to set
the context in terms of pre-existing developments such as fault-tolerant quantum computation

[47] and topological quantum memory [73], 32, [74].

The theory of fault-tolerant quantum computation [47] proves that it is possible to sim-
ulate an ideal circuit model quantum computer using only imperfect (yet sufficiently good)
single and two qubit gates, initialization of ancillary qubits and measurements. Quantum
memories may be seen as representing the most trivial computation, the identity. In particu-

lar, one should be able to compute the identity function within universal models of quantum



computation such as the fault tolerant circuit model. In practice however, the experimental
requirements imposed by fault tolerant quantum computation have up to now proven pro-
hibitively difficult to achieve. This has motivated ongoing research to find alternative routes
to both quantum computing and quantum memory.

Topological quantum computing and quantum memory, a revolutionary idea introduced
by Kitaev in 1997 [73, B2, [74], promises to attain fault-tolerance by means of an alternate
route, more akin to physics than to circuit engineering. At the core of this approach is the
independence of an anyonic quasi-particle picture from specific microscopic details of the
defining Hamiltonian. During the time of this thesis and the period preceding it many of the
claims pertaining to these proposals have been rigorously proven, and some of the folklore
that has arisen from it has been dissipated. The contributions of chapter [2] and [3| have been
partly responsible for this.

The toric code [74] is the most simple and hence the most widely popularized representative
for the topological approach to fault tolerance. It is associated to two related, yet distinct,
concepts both involving physical qubits placed on the edges of a 2d lattice on a torus. First,
the toric code refers to a stabilizer quantum error correcting code accommodating two

logical qubits. As such, it enjoys desirable properties such as

e Geometrically local check operators: Only quantum measurements involving groups

of four nearest neighbour qubits are needed in order to diagnose physical errors.

e Large code distance: The minimal number of single qubits that must be acted upon
in order to go from one logical state to an orthogonal one is proportional to the perimeter

of the torus. [l

e High error threshold: The code is capable of correcting random flip and phase errors

on up to ~11% of the qubits in the limit of large torus.

Second, the toric-code Hamiltonian is obtained from interpreting the Hermitian stabilizer
operators as local Hamiltonian terms acting on groups of two-level systems. The resulting

Hamiltonian enjoys the following properties:

e Geometrically local interaction: Geometrically local terms in the Hamiltonian can

be associated to geometry local effective interactions.

!By perimeter, we mean the minimal number of edges to non-trivially wind around the torus.
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e Degenerate ground state: Information can be thought of as being accommodated in

a 4-fold degenerate ground spaceﬂ

e Robust degeneracy: For a weak geometrically local yet extensive perturbation, the

degeneracy of the ground space is approximately preserved.

e Energy gap: An energy gap suggests that excitations out of the ground space could

be thermally suppressed.

These two related notions of toric code have regretfully led to some confusion among part
of the quantum information community. The wide-spread belief that implementing a toric
code Hamiltonian would guarantee a quantum memory to be protected against any form
of local noise is a paragon example of such misconception. Results provided in this thesis
have been crucial in rigorously elucidating limitations of Hamiltonian protection models and
proposing alternatives to overcome them.

In particular, chapter 2] provides a definite proof that no Hamiltonian may by itself provide
significant protection against depolarizing noise. We consider a system which is subject
to both a unitary evolution generated by a Hamiltonian and the dissipative effect of local
depolarizing noise over the constituent particles. The motivation behind choosing a local
depolarizing noise model can be traced to infrequent yet highly energetic interactions capable
of randomizing the state of single components. For this noise model the approach towards a
maximally mixed steady state may not be postponed by a Hamiltonian. Entropy accumulates
at an unavoidable rate, and all that can be achieved by a Hamiltonian is to transfer it into
irrelevant degrees of freedom. We show that the optimal protection afforded by a constant
Hamiltonian only marginally increases the lifetime of quantum information from constant to
logarithmic in the number of system constituents.

Along similar lines, chapter [3] studies the degree of protection that may be afforded by
a protecting Hamiltonian against Hamiltonian perturbations and perturbative coupling to
an environment. Contrasting with the previous chapter, possible evolutions are unitary yet
our ignorance of the specific perturbation applied and/or entanglement with the environment

lead to effective loss of information. We show that an encoding through an error correcting

2The degeneracy of the ground space only depends on the genus of the surface represented by the lattice,

hence the name topological.



code with a finite error threshold is a necessary condition for information to withstand such
perturbed evolutions. This justifies the assumption of an initial encoding and final decod-
ing of information before and after the free evolution of a many body system. We go on to
describe adversely chosen Hamiltonian perturbations which are capable of destroying infor-
mation “protected” by the toric code Hamiltonian even if the final state is decoded using the
underlying error correcting code. Finally, we show that either time dependent perturbations
or weak coupling to an energetic environment are sufficient to erase information from a large

class of protecting Hamiltonians and codes.

In chapter [4 we propose engineered dissipation as an alternative capable of protecting
quantum information against a wider variety of noise. In the spirit of protecting Hamilto-
nians, we consider the engineering of a constant Liouvillian to protect encoded information.
The hope, is that by imposing a constant dynamics one may sidestep the requirement of fast
time dependent external control. The advantage with respect to protecting Hamiltonians is
that Liouvillians are capable of extracting entropy from the system. We provide numerical
and analytical evidence that such dissipative protection can protect information against depo-
larizing noise. However, the challenge of simplifying the required Liouvillians to forms which

are also geometrically local and experimentally realistic remains open.

The first chapters of this thesis andd)) study protecting Hamiltonians and dissipative
dynamics focusing on the thermodynamic limit for the number of particles used to encode
quantum information. In contrast, chapter [5] considers the opposite extreme, where quantum
information is stored in a single '3C nuclear spin. The system of choice is the Nitrogen-
Vacancy (NV) center, whose physics is similar to that of an isolated atom. Here attention
is directed at identifying leading decoherence sources and using available control to suppress
them to the highest degree achievable. As a result of the simultaneous combination of mul-
tiple decoupling techniques it was possible to achieve an experimental spin coherence time
of approximately two seconds, a time unprecedented among room temperature solid state

qubits.

In the case of these qubit memories one of the implicit requirements for quantum compu-
tation may actually be missing. Indeed, the approach taken and the chosen parameter regime
do not allow the coherent transfer of the stored qubit into another quantum system, i.e. the

memory system can become classically correlated during measurement but not entangled.
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This excludes the possibility of performing general quantum computation or implementing
entanglement-based protocols. A naturally arising question is how such a qubit with long
coherence can be applied. While magnetometry is likely to be the most immediate techno-
logical application, it turns out that the initialization, coherent storage and measurement of

single quantum bits is also sufficient for certain protocols which we will discuss.

Among the protocols realizable with prepare and measure qubits, is the original proposal
of Wiesner [129], which exploits the impossibility of cloning quantum information to devise
money tokens which are immune to forgery. In Wiesner’s scheme, a quantum bank-note con-
sists of a large number of qubits, each prepared in a secret pure state only known to the issuing
bank. In contrast to classical objects, the destructive nature of quantum measurements for-
bids the reproduction of the quantum-banknotes even by the holder of a perfect specimen.
Recently, extensions to Wiesner’s original “quantum money” protocol have attracted signifi-
cant attention, mainly focussing on resolving the pending issue of making the money tokens
publicly verifiable [II, 86} [94], 38, [39] 85]. One particular extension resolves the issue of public
authentication of quantum tokens by requiring a classical public communication channel with

the bank[44].

Under assumptions of ideal measurements and decoherence-free memories such security
can be quantitatively guaranteed by providing a bound on the success probability of any
counterfeiting attempt which is exponentially small in the number of qubits employed. These
results are a relatively straightforward generalization of optimal cloning[128] to pure product
states. However, in any practical situation, noise, decoherence and operational imperfections
abound. Furthermore, in non-scalable qubit memories such as for the '3C nuclear spins in
NV-centers, there is no single system parameter with which the storage fidelity can be made
to systematically converge to 1. These reasons motivate the development of secure “quantum
money”-type primitives capable of tolerating realistic infidelities, which is the main original

contribution presented in chapter [6]

In order to tolerate noise, the verification of quantum tokens must condone a certain finite
fraction of qubit failures; naturally, such a relaxation of the verification process enhances the
ability for a dishonest user to forge quantum tokens. While the definition of such a protocol
adapted to tolerate noise is straightforward, providing proofs for the security of such protocols

under counterfeiting attacks is significantly more involved. We provide such rigorous proofs



and determining tight fidelity thresholds under which the security of the protocol can be
guaranteed. This is done for a natural relaxation of Wiesner’s original protocol [129] as well
as for a simplified version of Gavinsky’s protocol [44] which allows for public verification
provided a classical communication channel with the issuing bank.

This last project provides a suitable closure to this thesis. It demonstrates that new
quantum information applications will become available as soon as we achieve long time
coherent storage. It thus provides additional motivation to the work of previous chapters and

further reserach along those lines.



1. Introduction




Chapter 2

Hamiltonian memory model under

depolarizing noise

In this chapter, we investigate the possibilities and limitations of passive Hamil-
tonian protection of a quantum memory against depolarizing noise. Without
protection, the lifetime of an encoded qubit is independent of N, the number of
qubits composing the memory. In the presence of a protecting Hamiltonian, this
lifetime can increases at most logarithmically with N. We construct an explicit
time-independent Hamiltonian which saturates this bound, exploiting the noise

itself to achieve protection.

2.1 Introduction

A cornerstone for most applications in quantum information processing is the ability to re-
liably store qubits, protecting them from the adversarial effects of the environment. Quan-
tum Error Correcting Codes (QECC) achieve this task by encoding information in such a
way that regular measurements allow for the detection, and subsequent correction, of errors
[1111 3,47, [48]. An alternative approach uses so-called protecting Hamiltonians [74} 1], which
permanently act on the quantum memory and immunize it against small perturbations. Pre-
sumably, its most attractive feature is that, in contrast to QECC, it does not require any
regular intervention on the quantum memory, encoding and decoding operations are only

performed at the time of storing and retrieving the information. Whereas this approach may
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tolerate certain types of perturbation [32], 9], it is not clear if it is suitable in the presence of
depolarizing noise, something which QECC can deal with.

We give a complete answer to this question. More specifically, we consider the situation
where a logical qubit is encoded in a set of N physical qubits and allowed to evolve in the
presence of depolarizing noise and a protecting Hamiltonian. The goal is to find the strategy
delivering the longest lifetime, 7, after which we can apply a decoding operation and reliably
retrieve the original state of the qubit. By adapting ideas taken from [4], it is established that
the lifetime cannot exceed log V. An analysis of the case in which no protecting Hamiltonian is
used presents markedly different behaviour depending on whether we intend to store classical
or quantum information. Finally, we construct a static protecting Hamiltonian that saturates
the upper bound 7 ~ O(log N). To this end, we first show how to achieve this bound using
a time—dependent Hamiltonian protection which emulates QECC. We then introduce a clock
gadget which exploits the noise to measure time (similar to radiocarbon dating) thus allowing
us to simulate the previous time dependent protection without explicit reference to time.

We consider a system of N qubits, each of which is independently subject to depolarizing
noise at a rate r. The total state evolves as

Ly

N
p(t) = —ilH(2), p(t)] — 7 | No(t) = 3 tra(plt) & 2| (2.1)
n=1

where the sub-index m in the identity indicates the position it should take in the tensor
product. Note that the defined dynamics is Liouvilian and may also be explicitly expressed

in terms of Lindblad operators as

N
§0) = L) = i@ pw]+r/4 S S wor -3 {ri,) | @)

"=l Lefol ol oty
where {0,,0y,0.} are the Pauli matrices and the supra-index (n) indicates in which of the
physical qubit they act on.

We shall allow for an arbitrary encoding of the initial state as well as a final decoding
procedure to recover the information. In this sense, the relevant memory channel will be
defined defined as

Ay = Dec; 0 e“' o Enc (2.3)

where Enc and Dec; are arbitrary encoding and decoding operations from/into a two level

system. A standard benchmark for the quality of a quantum memory will be the average
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channel fidelity [98] given by

F(A) = / iy 6] A1) (1) 1) (2.4)

where the average is taken respect to the unitary invariant Haar measure over pure qubit

states.

2.2 Protection limitations

Using purely Hamiltonian protection, a survival time of 7 ~ O(log N) is the maximum achiev-
able. Intuitively, this is due to the fact that the depolarizing noise adds entropy to the system,
while any reversible unitary operation (i.e., Hamiltonian evolution) will never be able to re-
move this entropy from the system. Rather, in the best case, it can concentrate all the entropy
in a subsystem, keeping the remaining part as pure as possible. This entropic argument was
first presented in [4], where the authors investigated the power of reversible computation
(both classical and quantum) subject to noise in the absence of fresh ancillas. To this end,
they considered the information content I(p) = N — S(p) of the system, with N the number
of qubits and S(p) = — tr(plogs p) the von Neumann entropy. The information content upper
bounds the number of classical bits extractable from p, and thus ultimately also the number
of qubits stored in p.

While the original statement about the decrease of I(p) is for discrete-time evolution, it
can be straightforwardly generalized to the continuous time setting of Eq. , where it
states that

dI(p)

3 = —r1(p) (2.5)

In order to prove we consider the channel described by €2 in the limit of small At and
perform a Trotter decomposition which splits the Hamiltonian and dissipative terms of the
Liouvillian. The Hamiltonian term is seen to preserve the entropy and hence the information
content of any state whereas according to [4], the depolarizing term can be seen to increase
the entropy by at least (1 — e "2)I(p) ~ rAtI(p). We may then integrate inequality
to bound I(p(t)) < e "1(p(0)) < e "™ N which implies that the information content of the

system is smaller than ¢ bits after a time %

. Finally, having the information content of
all evolved states be smaller than one implies severe bounds on the average fidelity F', even

when allowing for a final decoding step.
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Having established an upper bound for the scaling of 7 with IV, let us analyze whether
this bound can be reached under different circumstances. We start out with the simplest case
where we use no Hamiltonian protection (i.e., H = 0) and show that 7 is independent of N;
that is, no quantum memory effect can be achieved. For that, we note that the effect of Eq.

(2.1) on each physical qubit may be expressed in terms of a depolarizing channel

Ep) = Mt + (1 - A1)

where A\(t) = e ™. For t > tq, where \(ty) = %, the resulting channel is entanglement
breaking [59]. This remains true if one incorporates encoding and decoding steps on the
full system. This is, the map Dec o E,?N o Enc which incorporates encoding and decoding
from/into a two level system remains entanglement breaking with respect to any other system.
According to [59], the average fidelity [08] for any entanglement breaking channels is upper-
bounded by 2/3. Thus, we may say that the lifetime 7 is smaller than ¢, = In3/r, which is
independent of N.

The previous argument does not apply to classical information, for which an optimal
storage time logarithmic in N may be achieved. The classical version of Eq. taking
H(t) =0, is a system of N classical bits subject to bit flipping noise (each bit is flipped at a
rate r/2). In this case, encoding in a repetition code, and decoding via majority voting, yields
an asymptotically optimal information survival time O(log N). Using optimal estimation [89]
and this classical protocol in the encoding phase, the bound 2/3 for the average channel fidelity
may be asymptotically reached. An intuitive way to see this is to consider an encoding which
produces N copies of a single observable (say o,) from the original qubit. This observable
may be restored as reliably as a classical memory whereas complementary observables (say

oy and o0;) are effectively guessed leading to an average fidelity of 2/3.

2.3 Time dependent protection

We will now use the ideas of QECC to build a simple circuit based model that reaches
the upper bound on the protection time. This model assumes that unitary operations can
be performed instantaneously, which is equivalent to having a time-dependent protecting
Hamiltonian with unbounded strength; we will show how to remove both requirements later

on. Instead of using a repetition code, we encode the qubit to be protected in an [ level
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Udec ]

tprot

Udec il

Udec |

Figure 2.1: Decoding a nested QECC. The “discarded” qubits carry most of the entropy

and are not used further.

concatenated QECC [3], 47, [48] (i.e., I levels of the QECC nested into each other), which
requires N = d' qubits, where d is the number of qubits used by the code. Each level of the
QECC can provide protection for a constant time t,0t < tc1, and thus, after ¢,.o; one layer
of decoding needs to be executed. Each decoding consists of a unitary Uge. on each d-tuple
of qubits in the current encoding level; after the decoding, only one of each of the d qubits is
used further (Fig. . The total time that such a concatenated QECC can protect a qubit

is given by tprotl = tprot logg N ~ O(log N), as in the classical case.

2.4 Time-independent protection

In the following, we show that the same log N protection time which we can achieve using a
time-dependent protection circuit can also be obtained from a time-independent protecting
Hamiltonian. The basic idea of our construction is to simulate the time-dependent Hamil-
tonian presented before with a time independent one. To this end, a clock is built which
serves as control. The time-independent version performs the decoding gates conditioned on
the time estimate provided by the clock. In order to obtain a clock from with a time-
independent H, we will make use of the noise acting on the system: we add a number, K, of
“clock qubits” which we initialize to |1>®K and let the depolarizing noise act on them. The
behavior of the clock qubits is thus purely classical; they act as K classical bits initialized to
1 which are being flipped at a rate r/2. Thus, the polarization k, defined by the number of

—rt

“1” bits minus the number of “0” bits has an average expected value of k(t) = Ke™"" at time
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t. Conversely, this provides the time estimate
. In(K/k
F(k) = min (“( / ),tmax) . (2.6)
T

Particular realizations of this random process of bit flips can be described by a polarization

trajectory k(t). Good trajectories are defined to be those such that
k(t) — k()| < K1/%Fe (2.7)

for all 0 < ¢t < tax. For appropriate parameters t,,x and 0 < £ < %, the following theorem

states that almost all trajectories are good and can provide accurate time estimates.

Theorem 2.4.1 (Depolarizing clock) For K > 16, good trajectories have a probability

Ttmax + eXp[—3K2€/8]

Pk(t) good traj] > 1 — K
[k(t) good traj.] > xpKZ/8]

(2.8)

Furthermore, for any good trajectory k(t), the time estimate t returned by the clock will differ

from the real time t by at most

4] 1

5 = Weﬁfmax Z ’f(k(t)) — t| . (29)

Note that the theorem does not simply state that any time evolution will be outside
for an exponentially small amount of time (which is easier to prove), but that there is only
an exponentially small number of cases in which is violated at all. Although the former
statement would in principle suffice to use the clock in our construction, the stronger version
of the theorem makes the application of the clock, and in particular the error analysis, more
transparent and will hopefully lead to further applications of the clock gadget.

Proof. To prove the theorem, note that each of the bits undergoes an independent exponential
decay, so that the total polarization is the sum of K identical independent random variables.
We can thus use Hoeffding’s inequality [58] to bound the probability of finding a polarization

far from the expected average value k(t),

K25

Pr [|k:(t) — k(@) > K1/2+5] <27 . (2.10)

This already implies that most of the trajectories violate (2.7) for no more than an ex-
ponentially small amount of time. To see why (2.10]) implies that most trajectories are good

trajectories, we bound the average number of times a trajectory leaves the region (2.7 of
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k(t)

Figure 2.2: A step-like trajectory in green illustrates the two ways of leaving region of
good trajectories (dashed lines): either a spin flip can take the polarization out of the marked
region (thick blue), or polarization may leave region as time passes without a spin flip
(red dots).

good trajectories. Since a non-good trajectory must leave (2.7) at least once, it is also an
upper bound on the probability of non-good trajectories. Hence, it suffices to consider the
average rate R(t) at which processes leave (12.7)), and integrate over ¢ to obtain a bound on

the probability of trajectories which are not good.

The rate at which a process leaves the set of good trajectories has two sources, as illustrated
in Fig. First, the system can undergo a spin flip, thus leaving the region defined by
vertically (rate R,), and second, it can leave it horizontally if the time ¢ passes the maximum
time allowed by for the current value k(t) of the polarization (rate Rp,). A vertical leave
can occur only if |k(t) — k(t)| > K'/2t¢ —2 > K1/2*¢ /2 provided K > 16 (a spin flip changes
k(t) by £2). Eqn. thus gives an average bound

Ry(t) < Kre K*/8

A horizontal leave can only occur at discrete times extremizing (2.7)),

teT ={t:k(t)+K'/**ecN},
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and the probability of a trajectory fulfilling k(t) = k(t) + K /?>*¢ may again be bounded using

(2.10)), such that

Ry(t) < 275523 6t — 1) .
TET

The inequality (2.8) follows immediately by integrating R (t) + Ry (t) from 0 to tpax-
Assuming that k(t) corresponds to a good trajectory, the accuracy of the time estimate

(2.6) may be bounded by applying the mean value theorem to :

|k(E(k(t) — k()| _ K°
‘k/(tinterm)’ o T‘\/E

ertmax .

k(1) — t] =

2.4.1 Clock dependent Hamiltonian

Let us now show how the decoding circuit can be implemented using the clock gadget. The
circuit under consideration consists of the decoding unitaries Ué’e’i (decoding the k’th encoded
qubit in level [, acting on d qubits each); after a time interval ¢,.o¢ (the time one level of the
code can protect the qubit sufficiently well), we perform all unitaries U(ll’éf: at the current level
[—note that they act on distinct qubits and thus commute. Each of these unitaries can be
realized by applying a d-qubit Hamiltonian Hé’fc for a time t = t4e.. Thus, we have to switch

on all the HY

dec for t € [tl,tl + tdec], where t = ltprot + (l — ]-)tdec'

In order to control the Hamiltonian from the noisy clock, we define clock times k; o, =

|k(t)] and ki o = [k(t; + tdec) |, and introduce a time-independent Hamiltonian which turns

on the decoding Hamiltonian for level [ between k € [k on, ki o],
L—1
H=Y" (Hé’jc+---+HéfC >®HZ. (2.11)
!

The left part of the tensor product acts on the N code qubits, the right part on the K clock
(qu)bits, and

ki off

m=3% 3 lal,

k=Fki on we=(k+N)/2
where x is an N-bit string with Hamming weight w,. The initial state of the system is, as

for the circuit construction, the product of the encoded qubit in an I-level concatenated code

and the maximally polarized state \1>®K on the clock gadget.
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2.4.2 Error analysis

We now perform the error analysis for the protecting Hamiltonian . In order to protect
the quantum information, we will require that the error probability per qubit in use is bounded
by the same threshold p* after each decoding step is completed (i.e. at t = ¢; + tqec + g) We
will restrict to the space of good trajectories, since we know from the clock theorem that this
accounts for all but an exponentially small fraction, which can be incorporated into the final
error probability.

We will choose K large enough to ensure that the error % > |t — t| in the clock time
satisfies 0 < tprot, tdec- In this way, we ensure that the decoding operations are performed in
the right order E] and with sufficient precision. We may thus account for the following error
sources between t; + tgec + 0/2 and tj11 + tgec + 0/2:

i) Inherited errors from the previous rounds which could not be corrected for. By assump-
tion, these errors are bounded by pinher < p*.

ii) Errors from the depolarizing noise during the free evolution of the system. The system
is sure to evolve freely for a time t,.ot — 0, i.e., the noise per qubit is bounded by peyvol <
1 — exp[—7(tprot — )] < 7(tprot — 0).

iii) Errors during the decoding. These errors affect the decoded rather than the encoded
system and stem from two sources: On the one hand, the time the Hamiltonian is active has
an uncertainty tgec = 6, which gives an error in the implemented unitary of not more than
exp|d ||H§elc\|] — 1. On the other hand, depolarizing noise can act during the decoding for at
most a time fgec + §. In the worst case, noise on any of the code qubits during decoding
will destroy the decoded qubit, giving an error bound d(1 — exp[—7(tqec + 9)]) < dr(tgec + 9).

Thus, the error on the decoded qubit is

Pace < expl|[HEL|IS] — 1 + dr(tgee + 6) -

dec

Since the noise is Markovian (i.e. memoryless), the clock does not correlate its errors in time.
In summary, the error after one round of decoding is at most B(pinher + Pevol) + Pdec, Which
we require to be bounded by p* again. Here, B(p) is a property of the code, and returns the
error probability of the decoded qubit, given a probability p of error on each of the original
qubits; for example, for the 5-qubit perfect QECC [80], B(p) < 10p?.

'The noisy clock has the potential to run backwards in time within its accuracy.
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We will now show that it is possible to fulfil the required conditions by appropriately
defining the control parameters. First, we choose p* < 1/40 to have the QECC [80] work well

below threshold. We may take tp.ot 1= % and tgec = %. To minimize imprecision in the
implemented unitaries, the decoding Hamiltonians are chosen of minimal possible strength,
||H§elCH < ti—” Finally we take 0 := ﬁg%. Inserting the proposed values in the derived

bounds, it is straightforward to show that B(pinher + Pevol) + Pdec < P

The number of code qubits required is N := d', with [ := [ ]. The required clock

.
tprot"‘tdcc
lifetime ty,,x = 7 and precision § are guaranteed by taking e = 1/6 and K := (%)3 in the

clock theorem. For any fixed r and p*, this allows a lifetime 7 ~ O(log(N + K)).

2.5 Conclusions

In this chapter, we have considered the ability of a Hamiltonian to protect quantum in-
formation from depolarizing noise. While without a Hamiltonian, quantum information is
destroyed in constant time, the presence of time-dependent control can provide protection for
logarithmic time, which is optimal. As we have shown, the same level of protection can be
attained with a time-independent Hamiltonian. The construction introduced a noise-driven
clock which allows a time dependent Hamiltonian to be emulated without explicit reference
to time.

Since depolarizing noise is a limiting case of local noise models, it is expected that the time-
independent Hamiltonian developed here can be tuned to give the same degree of protection
against weaker local noise models, although these models may admit superior strategies. For
instance, noise of certain forms (such as dephasing) allows for storage of ancillas, potentially
yielding a linear survival time by error correcting without decoding. In the case of amplitude
damping noise, the noise itself distills ancillas so that the circuit can implement a full fault-
tolerant scheme, which gives an exponential survival time, assuming that one can redesign
the clock gadget to also benefit from these properties.

Whether the same degree of protection can be obtained from a Hamiltonian which is local

on a 2D or 3D lattice geometry remains an open questiorﬂ However, intuition suggests this

2A first step is to incorporate the notion of boundedness. By controlling each decoding unitary in a given
round from a different clock (which does not affect the scaling properties), a constant bound to the sum of

Hamiltonian terms acting on any given finite subsystem can be shown.
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might be impossible; the crucial point in reversibly protecting quantum information from
depolarizing noise is to concentrate the entropy in one part of the system. Since the speed of
information (and thus entropy) transport is constant due to the Lieb-Robinson bound [83],
the rate at which entropy can be removed from a given volume is proportional to its surface
area, while the entropy increase goes as the volume. It thus seems impossible to remove the
entropy sufficiently quickly, although this argument is not fully rigorous, and the question

warrants further investigation.
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Chapter 3

Hamiltonian memory model under

Hamiltonian perturbations

In this chapter, we study limitations on the asymptotic stability of quantum
information stored in passive N-qubit systems. We consider the effect of small
imperfections in the implementation of the protecting Hamiltonian in the form
of Hamiltonian perturbations or weak coupling to a ground state environment.
We thus depart from the usual Markovian approximation for a thermal bath
by concentrating on models for which part of the evolution can be calculated
exactly. We prove that, regardless of the protecting Hamiltonian, there exists a
perturbed evolution that necessitates a final error correcting step for the state
of the memory to be read. Such an error correction step is shown to require a
finite error threshold, the lack thereof being exemplified by the 3D XZ-compass
model [11]. We go on to present explicit weak Hamiltonian perturbations which

destroy the logical information stored in the 2D toric code in a time O(log(N)).

3.1 Introduction

Quantum information processing promises exciting new capabilities for a host of computa-
tional [114], 28, 56] and cryptographic [16] [37] tasks, if only we can fabricate devices that
take advantage of the subtle and very fragile effects of quantum mechanics. The theory of

quantum error-correcting codes (QECCs) and fault-tolerance [113, [3| 47, 48] assure that this



22 3. Hamiltonian memory model under Hamiltonian perturbations

fragility can be overcome at a logical level once an error rate per element below a certain
threshold is achieved. However, providing a scalable physical implementation of computa-
tional elements with the required degree of precision and control has proven to be a task of
extreme difficulty. Thus, one might hope to design superior fault-tolerant components whose

robustness is enforced in a more natural way at a physical level.

A first step in this daunting task is to concentrate not on universal quantum computation,
but on one sub-protocol within this; the storage of quantum information. Thus, the aim is
to find systems naturally assuring the stability of quantum information, just like magnetic
domains in a hard disk provide stable storage of classical information. The quest for such a
passive quantum memory was pioneered by Kitaev [74], who introduced the toric code as the
first many body protecting Hamiltonian. The promising conjunction of properties shown by

his proposal has fueled a search, which is yet to provide a definitive result.

For families of protecting Hamiltonians, such as Kitaev’s toric code [74, 32], a constant
energy gap -y separates the degenerate ground space, used for encoding, from low energy
excited states. Furthermore, the stabilizer representation of these Hamiltonians naturally
associates it with a QECC, which permits an error threshold without the use of concatenation
[32]. A perturbation theoretic expansion of local errors V' in the Hamiltonian must then cancel
to orders increasing with the distance of the associated QECC. Recently Bravyi et al. [21, 20]
have used this to rigorously prove that under the effect of sufficiently weak yet extensive
perturbations, the energy splitting of the degenerate ground space decays exponentially with
the system size. Together with previous results by Hastings and Wen [57], this guarantees
the existence of perturbed logical operators and local observable. Additionally, it also implies
that it takes this splitting an exponentially long time to implement logical rotations on the
perturbed ground space (e.g. a phase gate). A non trivial condition being that encoding is

actually performed onto the perturbed ground space.

However, such perturbation theoretic results must be applied with caution. The most im-
portant limitation probably arises from the fact that they deal with a closed quantum system
whereas actual noise may be better modeled by perturbative coupling to an environment.
Even if local observables can be adapted for to a high degree of accuracy [57], the global
eigenstates of the system may change and become very different. Within our understand-

ing, the possibility of adapting encoding and decoding protocols relies on the perturbation
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being characterized, something that seems unrealistic for such many-body systemsﬂ This
is why we consider an uncharacterized perturbation introduced through a quench. By this
we mean that encoding is performed according to the ideal (unadapted) code-space of the
unperturbed Hamiltonian as will the decoding and order parameters considered. This allows
us to derive no-go, or limitation, results from the exact analysis of adversarially engineered
noise instances. However, it must be noted that error correction to the perturbed encoding
may be performed without explicit knowledge of the perturbation. This is for example the

case, for the self-correcting mechanism which is based on energy dissipation.

The first systematic study of limitations of passive quantum memories can be atributed
to Nussinov and Ortiz [99], finding constant (system size independent) bounds for the auto-
correlation times. They study the effect of infinitesimal symmetry breaking fields on topolog-
ical quantum order at finite temperature [I00]. More recently, Alicki et. al. have presented
results supporting the thermal instability of quantum memories based on Kitaev’s 2D toric
code [§] and the stability of its 4D version [9] when coupled to a sufficiently cold thermal
environment. They analyse the evolution of correlation functions for the case of Markovian
dynamical semigroup [7]. Chesi et al. [26] have made progress in providing a general expres-
sion giving a lower bound for the lifetime of encoded information. The approach taken in
these articles is thermodynamic in nature and has the advantage of allowing the derivation
of positive results. A weak coupling Markovian approximation to an environment at thermal
equilibrium is assumed, thus neglecting any memory effects from the environment. In a pre-
vious article [I03], we considered a Hamiltonian system subject to independent depolarizing
noise (corresponding to the infinite temperature limit of the above approach) and proved that
O(log N) is the optimal survival time for a logical qubit stored inside N physical qubits.

Our current approach directly deals with Hamiltonian perturbations and environment
couplings without going through a Markovian approximation for the environment. Thus,
approximations needed for a Markovian description of a bath are not required and do not
pose an issue. A comparative advantage of our approach is the capability of exactly dealing
with certain weak but finite perturbations and couplings, and providing restricted no go

results.

To falsify claims of protection against any possible noise of a certain class (such as weak

! A possible exception to this is given by proposals of adiabatic state preparation [54].
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local perturbations to the Hamiltonian), it suffices to consider an adversarial noise instance
within such a class. In such a noise model, different perturbations and environments are not
assigned probabilities; a perturbation is simply considered possible if it adheres to certain
conditions. There is a range of different conclusions that one may reach from such an analysis
of noise instances. One may simply provide upper bounds on how fast a passive memory may
be erased by a perturbation complying to a certain noise class. We may prove or extrapolate
requirements for a memory model to protect against the given noise class. We may find that a
class of noise is unreasonable by showing that it invalidates a memory model which we expect
to work (i.e. a magnetic domain). An intermediate scenario arises when we consider the
noise class to be reasonable but expect a certain notion of typicality for which the considered
instance is not representative. Such a typicality condition would then be needed explicitly to

provide proof of robustness for the memory model.

We consider the effect of relatively weak yet unknown perturbations of an N qubit local
protecting Hamiltonian and coupling to an ancillary environment starting out in its ground
state. We show that as the number N of physical subsystems used grows, it is impossible to
immunize a quantum subspace against such noise by means of local protecting Hamiltonians
only. We further show that if one wishes to recover the quantum state by means of an error
correction procedure, the QECC used must have some finite error threshold in order to guar-
antee a high fidelity; this result is applied to the 3D XZ-compass model [I1] which is shown
not to have such a threshold. In the case of the 2D toric code [74], we propose Hamiltonian
perturbations capable of destroying encoded information after a time proportional to log(N),
suggesting that some form of macroscopic energy barrier may be necessary. Weak finite range
Hamiltonian perturbations are then presented which destroy classical information encoded
into the 2D Ising model; in this case interactions involving a large, yet N independent, num-
ber of qubits are required. Finally, we consider time dependent Hamiltonian perturbations
and coupling to an ancillary environment with a high energy density; here we provide con-
structions illustrating how these more powerful models may easily introduce logical errors in
constant time into information protected by any stabilizer Hamiltonians, and even certain
generalizations. Drawing from practical experience with classical memories, the one likely
conclusion here is that general time dependent Hamiltonian perturbations are not a relevant

noise model to consider, as it is in general too powerful to protect against.
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3.1.1 Noise model motivation

A prerequisite to assess protecting Hamiltonians is a precise definition of the noise model
they will be expected to counter. Our aim is to understand the protection lifetime they
provide to (quantum) information as well as to identify the properties a good protecting
Hamiltonian should have. In order to be able to make such predictions, we will study noise
models admitting a mathematically tractable description while striving to keep our choices
physically motivated.

The most elementary way in which the Hamiltonian evolution of a closed system can
be altered is by including a small perturbation V to the Hamiltonian H. A simple physical
interpretation for such a perturbation is to associate V' to imperfections in the implementation
of the ideal protecting Hamiltonian H. Furthermore, Hamiltonian perturbations extending
beyond the system under experimental control are modeled by a weak coupling between
the system and an environment. We focus on families of protecting Hamiltonians satisfying
certain locality and boundedness conditions, and naturally extend similar restrictions on the
perturbations and couplings considered.

Let us first introduce some definitions. A family of protecting Hamiltonians {Hy} is
parametrized by a natural number N which in most cases, will simply be the number of
physical subsystems (particles) on which Hpy acts. A Hamiltonian H is called “k-local” when

it can be represented as a sum
H=> T, (3.1)
i
with at most k£ physical subsystems participating in each interaction term 7;. The interaction
strength of a physical subsystem s in a k-local Hamiltonian H is given by the sum ) . |T;| of
operator norms over those interaction terms 7; in which the physical subsystem s participates.
A family of k-local Hamiltonians is called “J-bounded” if, for every Hamiltonian Hy in the
family, the largest interaction strength among the physical subsystems involved is no greater
than J. Finally, a family of Hamiltonians will be D-dimensional if the physical subsystems
involved can be arranged into a D-dimensional square lattice, such that all interaction terms
are kept geometrically local.
We will concentrate on families of k-local, J-bounded protecting Hamiltonians, with J > 0,
and k,J ~ O(1). Furthermore, the specific Hamiltonians treated in this chapter admit an

embedding into 2, 3 or 4 spatial dimensions and we may assume such embeddings also when
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dealing with generic protecting Hamiltonians.

The families of Hamiltonian perturbations {Viy} which we will consider will be .J-bounded,
with the strength J small in comparison to J. The perturbations will be taken to be /N-c—local,
with &k possibly different, and even larger, than k. This allows, for example, taking into
consideration undesired higher order terms which may arise from perturbation theory gadgets
[19]. Allowed perturbations should also admit a geometrically local interpretation under the
same arrangement of subsystems as the protecting Hamiltonian.

When considering coupling to an environment, an additional set of physical subsystems
will be included as the environment state. A family of local environment Hamiltonians { H ](VE)}

will be defined on these additional subsystems. The coupling between system and environment

will be given by a family of weak local Hamiltonian perturbations V]E,SE), acting on both
system and environment.
Ay=HY o1y +1y o HY + V&P (3.2)

Finally, it should be possible to incorporate the additional physical subsystems from the
environment while preserving the number of spatial dimensions required for the Hamiltonian.
To simplify notation, the sub-index NV shall in general be dropped.

The engineering of k-body interactions is increasingly difficult as & grows [130} [19]. This is
why we limit our study to families of k-local Hamiltonians (i.e. k independent of N). It is under
such criteria that we exclude proposals such as quantum concatenated-code Hamiltonians
[12], for which the required degree of interactions would grow algebraically with the number
of qubits.

The J-bounded condition guarantees that the rate of change for local observables remain
bounded. This is a necessary condition to certifiably approximate a Hamiltonian through
perturbation theory gadgets [19]. There, constant bounds are imposed both on the norm of
each interaction as well as on the number of interactions in which each subsystem partici-
pates. The J-bounded condition also leaves out systems with long range interactions, as, for
those systems, the total interaction strength of individual physical subsystems diverges as the
system size grows. Such long range interacting systems are physically relevant, and may lead
to protecting Hamiltonian proposals [27, [53]. However, we abstain from treating such models

for which our notion of weak perturbation seems inappropriate.
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Each physical subsystem may independently be subject to control imprecision. Such is
the case for weak unaccounted “magnetic field” acting on every component of the system or
a weak coupling of each component to an independent environment. Thus, relevant physical
scenarios involve perturbations with extensive operator norm (i.e. scaling with the number
of subsystems). The J-bounded condition encapsulates these scenarios and seems to better
describe what we understand by a weak perturbation.

Finally, it is expected that scalable physical implementations should be mapped to at most
three spatial dimensions. This would rule out the 4D toric code Hamiltonian [32], a proposal
which was otherwise shown to provide increasing protection against weak local coupling to
a sufficiently cold thermal bath [9]. As would occur with an actual physical embedding, we
expect that the perturbations considered may be included into the same geometrical picture

as the protecting Hamiltonian they affect.

3.1.2 Outline of results

In the following sections, we analyze the problem of obtaining increased protection for quan-
tum information by means of an encoding and a protecting Hamiltonian acting on an in-
creasing number of physical subsystems. We consider the effect of adversarial noise models
consisting of local Hamiltonian perturbations and/or a weakly coupled environment. The
aim is to examine the assumptions and limitations of memory schemes based on Hamiltonian
protection with a growing number of physical subsystems as quantified by the survival time
of stored information.

We will prove in complete generality that the survival of information should be associ-
ated to a subsystem and not to a particular subspace. The figure of merit considered here
is S(t) = tr (J¥(0)) (x(0)| p(t)), the overlap between initial and evolved state after a constant
time ¢t. For arbitrary protecting Hamiltonians we provide a completely general construction
involving a weakly coupled environment starting in its ground state (Sec. which yields
an exponentially small (in N) upper bound on S(t) after a constant time. For gapped Hamil-
tonians, a proof proceeding without reference to an environment (Appendix can provide
an upper bound to the time averaged overlap which is close to % We thus infer that the

information should be associated to a subsystem.

Having found that subspaces can not provide robust encoding, we consider protecting
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Hamiltonians together with a recovery operation R, which can be thought of as applied on
read-out. This provides the formal means to project information from a logical subsystem onto
a code subspace and leads to a more robust figure of merit given by Sgr(t) = tr (p(0)R(p(t))).
Although throughout the chapter, we assume R to be an unperturbed error correction pro-
cedure associated to an encoding, it is important to emphasize that other means may allow
keeping information in a logical subsystem. In particular, self-correcting Hamiltonians advo-
cate the use of a local thermalizing coupling as a way of continuous error correction at finite
temperature. This is, while an unperturbed order parameter may be shown to be inadequate
for the storage of information, it may be possible for a robust yet implicit logical subsystem

to arise by including genuine dissipation.

In (Sec. , a weak coupling construction like that of (Sec. shows that information
content of the 3D XZ-compass model [11] can be destroyed in constant time by a zero tem-
perature environment, despite of a final recovery operation R. From a broader perspective,
the structure of our proof strongly suggests that the underlying QECC defining the recovery

operation R must have a strictly positive error threshold.

We continue by considering the effect of Hamiltonian perturbations on the 2D toric code
[74]. The recovery mechanism R is then taken as the composition of a fixed syndrome mea-
surement followed by a correction operation pairing the detected anyons. It is shown (Sec.
that, although the underlying QECC has an error threshold, it is not protected against com-
binations of unknown weak local Hamiltonian perturbations, even after a final round of error
correction is considered. Our claim is based on adversarial weak local perturbations that are
capable of destroying the stored information in a time logarithmic in N. This is stronger than
previous results [67] in that, the noise model requires no interaction with the environment

and the information is destroyed exponentially faster.

In a similar manner, we consider perturbations on the 2D Ising Hamiltonian (Sec. ,
which is often used as an example of self-correcting classical memory. Here, Hamiltonian
perturbations may tr