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I. Einleitung 

 

 

I.1.  KARDIALE UND KARDIOVASKULÄRE ERKRANKUNGEN 

 

 

Nach wie vor gehören Erkrankungen des Herzens trotz intensiver Forschung und 

konsequenter Behandlung zu den häufigsten Todesursachen in den westlichen 

Industrienationen7;90;91;146. Neben der hohen Mortalität bedingen sie bei höchster 

Morbidität enorme ökonomische Kosten28;67;86.  

 

Die therapeutischen Optionen basieren auf den drei Säulen der interventionell-

kardiologischen und operativen Verfahren, sowie der medikamentösen Therapie94 

beispielsweise einer Kardiomyopathie durch Betablocker, ACE-Hemmer und Nitrate 

mit der Aussicht auf Lebenszeitverlängerung und/oder Lebensqualitätverbesserung. 

 

Eine weiterführende innovative Option zur Behandlung von kardialen und 

kardiovaskulären Erkrankungen ist der Einsatz der Gentherapie. Gentherapie wird 

definiert als der Transfer von neuem genetischem Material in Zellen eines Patienten 

mit daraus resultierendem therapeutischem Benefit für denselben105. Eine weitere 

Quelle definiert Gentherapie als medizinische Intervention, um das genetische 

Programm von Zellen für therapeutische Zwecke zu nutzen1. Ziel einer kardialen 

Gentherapie ist es somit, durch den Transfer von Nukleinsäuren in Zellen des 

Herzens oder herznaher Strukturen die Expression des genetischen Materials so zu 

steuern, dass transient oder permanent kardial nützliche Effekte erzielt werden 

können. 

 

 

I.2.  ANSATZPUNKTE DER KARDIALEN GENTHERAPIE 

 

 

Die Ansatzpunkte einer kardialen Gentherapie sind vielfältig: Zur Behandlung der 

Kardiomyopathie26;85;99;101;135;136;139, der Reduktion des Ischaemie-
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Reperfusionsschadens45;69;70;81;88;129, zur Therapie einer Koronaren Herzerkrankung 

durch Induktion einer therapeutischen Arterio- und Angiogenese2;3;41;93;104;122;143 an 

den Koronarien, zur Behandlung von Herzrhythusstörungen32;118 oder im Bereich der 

Herzchirurgie zur Prophylaxe und Therapie von Transplantatabstoßungen23;25;119, 

Transplantatvaskulopathien64;65;74;132;137 und zur Prophylaxe der neointimalen 

Hyperplasie von venösen koronaren Bypassgefäßen4;8;98 existieren tierexperimentelle 

gentherapeutische Studien, die einen Benefit propagieren. 

 

Eine Verbesserung der Linksventrikulären Funktion zur Behandlung einer 

Kardiomyopathie kann beispielsweise durch die Transfektion von Sarkoplasmatischer-

Retikulum-Calcium-ATPase (SERCA)26 oder durch die adenoviral vermittelte 

gentherapeutische Überexpression von Beta(2)-Adrenergen Rezeptoren85;135;136 im 

Kleintiermodell erreicht werden. 

 

Der Ischaemie-Reperfusionsschaden konnte durch Transfektion von Fibroblast 

Growth Factor 5 (FGF-5)45 reduziert werden, Heat Schock Protein 70 (hsp70) 

transfizierte Herzen zeigten eine raschere Erholung der postischaemischen 

Linksventrikulären Funktion mit erniedrigter Creatinkinase (CK) – Freisetzung69 und 

nach Transfektion des Superoxiddismutase (SOD) - Gens zeigten Rattenherzen eine 

signifikant bessere Erholung des linksventrikulären enddiastolischen Druckes 

(LVEDP) und des koronaren Flusses129. 

 

Auch das arterio- und angiogenetische Potential der Wachstumsfaktoren Fibroblast 

Growth Factor 2 (FGF-2)33;114;133;152, Hypoxia Inducible Factor 1α (HIF 1α)27;71;150 und 

Vascular Endothelial Growth Factor (VEGF)17;21;37;42;108;109;152 konnte experimentell 

gezeigt werden und möglicherweise die Therapie der Koronaren Herzerkrankung 

revolutionieren. 

 

Dennoch brachten mehrere optimistisch initiierte placebokontrollierte humane 

klinische Studien noch keine eindeutig positiven Ergebnisse51;52;59-62;76;138;155. 

Ursachen hierfür sind in den erheblichen Limitationen der kardialen Gentherapie zu 

suchen. 
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I.3.  LIMITATIONEN DER KARDIALEN GENTHERAPIE  

 

 

Da die Effektivität der Einschleusung von nackter DNA in die Zellen gering ist, werden 

Transportvehikel, sogenannte Vektoren, zur Effektivitätssteigerung benötigt44. Für die 

kardiale Gentherapie existieren mit Liposomen65;100;140, Liposomen-Sendai-Virus-

Kombinationen (Liposomen mit Hemagglutinating Virus of Japan, HVJ)64;72;129;158, 

Rezeptoragonisten (v.a. Transferrinrezeptormediierter Gentransfer)159, 

Adenoviren10;18;30;31;40;85 und Retroviren46;126;160;161 zahlreiche gut experimentell 

untersuchte Vektorsysteme. Ein idealer Vektor konnte jedoch noch nicht gefunden 

werden101 – entweder ist die absolute Genexpression zu gering ausgeprägt, der 

Langzeiteffekt der Expression zu kurz, das Infektionspotential, bzw. die 

Immunogenität des viralen Vektors zu groß, oder es besteht ein nicht vertretbares 

Risiko einer insertionellen Mutagenese. 

 

Auch das beste Applikationssystem für Vektoren am Herzen ist noch nicht 

gesichert73;106: Systemische intravenöse Injektionen, Injektionen über die 

Aortenwurzel, kathetergestützte intrakoronare Injektionen, die intraperikardiale 

Applikation oder die direkte intramyokardiale Gabe bleiben Gegenstand der 

Untersuchungen. Verfahrensabhängig war entweder die Transduktionseffizienz zu 

gering, die Verteilung der Expression des transgenen Produkts zu inhomogen oder die 

systemischen Nebeneffekte durch Dissemination des Vektors in den Kreislauf zu 

ausgeprägt. 

 

Weiterhin bleibt limitierend festzustellen, dass die überwiegende Zahl der  bisherigen 

Untersuchungen an Nagern und anderen Kleintieren durchgeführt wurden. Um ein 

klinikrelevantes Tiermodell zu erstellen, erscheinen jedoch Großtierversuche 

unumgänglich29. 

 

Somit sind als Prämissen für einen Erfolgsversprechenden klinischen Gentransfer 

folgende Bedingungen zu fordern:  
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Studien sollten am Großtiermodell durchgeführt werden29. Eine effiziente langzeitige 

Genexpression könnte von entscheidender Bedeutung für die Induktion einer 

suffizienten Gentherapie am Herzen sein123. Eine Voraussetzung für einen klinisch 

anwendbaren Gentransfer ist die kardioselektive Expression des therapeutischen 

Gens, welche systemische Nebenwirkungen minimiert. Ein selektiver myokardialer 

Gentransfer kann an verschiedenen Stufen ansetzen, beispielsweise durch ein 

spezifisches Applikationssystem, die Verwendung eines Vektors, der in der Lage ist, 

Myokard effizient zu transduzieren und ein transkriptionelles Targeting durch die 

Verwendung eines kardioselektiven Promotors. Es wird ein Applikationssystem 

benötigt, welches eine selektive und homogene Genverteilung in das Zielgebiet 

gewährleistet.  

 

 

I.4.  MYOKARDIALER GENTRANSFER ADENOASSOZIIERTER VI RALER 

VEKTOREN ÜBER DIE SELEKTIVE DRUCKKONTROLLIERTE 

RETROINFUSION 

 

 

Die selektive druckkontrollierte Retroinfusion (SSRI) von kardialen Venen ist ein 

katheterbasiertes Applikationssystem, welches bewiesenermaßen für den Einsatz am 

Menschen sicher ist 9;117. Es ermöglicht sowohl am ischaemischen, wie auch am nicht-

ischaemischen Myokard einen effizienten Gentransfer, was anhand eines cDNA-

Transfers von Vascular Endothelial Growth Factor (VEGF) und Heat Shock Protein 90 

(hsp90) in einem chronischen Ischaemie/Reperfusionsmodell am Schwein dargestellt 

wurde81;82. Die selektive druckregulierte Retroinfusion zeigte bei einem Adenoviralen 

Gentransfer ihre Überlegenheit gegenüber einer antegraden intrakoronaren 

Vektorapplikation10. Zudem erweist sich der Gentransfer mittels Retroinfusion als 

effizienter und zeigt ein deutlich homogeneres Verteilungsverhalten als 

intramyokardiale Injektionen auf perkutanem oder direktem chirurgischen Weg120. 

Neben einem effektiven regionalen Applikationssystem ist ein Vektor unabdingbar, der 

über eine anhaltende Expression seines Genproduktes einen suffizienten 

myokardialen Langzeit-Gentransfer ermöglicht. Auf dem Adenoassoziierten Virus 

(AAV) basierende virale Vektoren bieten in Kleintierversuchen die einzigartige 

Möglichkeit, ein persistierend hohes Expressionsniveau im Herzen aufrechtzuerhalten, 
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ohne Anzeichen einer Immun- oder Entzündungsreaktion aufzuweisen19;149. Neun 

verschiedene AAV Serotypen mit heterogenem Organtropismus wurden bis zum 

Beginn unserer Studie bezüglich ihrer myokardialen Transduktionsfähigkeit 

ausschließlich an Nagern untersucht und verglichen47;63;107;110;112;142;162. Allerdings 

existieren signifikante speziesabhängige Unterschiede in den 

Transduktionscharakteristika22, so dass Versuche am Großtiermodell von 

entscheidender Notwendigkeit für die präklinische Evaluation von Adenoassoziierten 

Viralen Vektoren sind.  

 

 

I.5.  FRAGESTELLUNGEN 

 

 

In dieser Studie sollte in einem kliniknahen Tierexperimentellen Modell untersucht 

werden, ob mit der selektiven druckregulierten Retroinfusion, als neuem 

Applikationsverfahren für Adenoassoziierte Virale Vektoren (AAV) am Herzen, ein 

effektiver myokardialer Langzeitgentransfer erzielt werden kann. Die 

Transduktionseffizienz von Heparinbindungsstellen-gelöschtem-AAV-Serotyp 2 und 

pseudotypisiertem AAV Serotyp 6, die beide nach systemischer Applikation 

Mäusemyokard effektiv transduzieren47;107, sollte miteinander verglichen werden. 

Zusätzlich sollte untersucht werden, ob durch die simultane Anwendung von 

rekombinantem humanen Vascular Endothelial Growth Factor (rhVEGF) während der 

Retroinfusionsbehandlung eine Steigerung der myokardialen Transduktionseffizienz 

erzielt werden kann. Für ein transkriptionelles Targeting verwendeten wir den Myosin 

leichte Kette (MLC) 2v-Promotor, fusioniert mit dem Cytomegalievirus (CMV) 

immediate early (IE-) Enhancer, welcher nach systemischer Vektorapplikation im 

Mäusemyokard eine prädominante Expression ermöglichte107. 
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Somit lauten die konkreten Fragestellungen für die vorliegende Studie: 

 

- Kann durch selektive druckregulierte Retroinfusion eines Adenoassoziierten 

Viralen Vektors eine effektive Transduktion des myokardialen Zielareals im 

kliniknahen Grosstiermodell erreicht werden? 

 

- Welcher der untersuchten AAV Serotypen (Heparinbindungsstellen-gelöschter-

Serotyp 2 oder pseudotypisierter Serotyp 6) zeigt die höhere 

Transduktionseffizienz im myokardialen Zielgebiet?  

 

- Führt die Zunahme der vaskulären Permeabilität durch simultane Applikation 

von rekombinantem humanen Vascular Endothelial Growth Factor (rhVEGF) zu 

einer Steigerung der Transduktionseffizienz im Zielgewebe? 
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II. Material und Methoden 

 

 

Die vorliegende Studie wurde von der Regierung von Oberbayern gemäß §8 Absatz 1 

des Tierschutzgesetzes genehmigt (Aktenzeichen 209.1/211-2531-15/05) und 

entsprechend der Vorschriften des deutschen Tierschutzgesetzes von 1986 

durchgeführt. 

 

 

II.1.  STUDIENPROTOKOLL 

 

 

Der Gentransfer mittels Adenoassoziierter Viraler Vektoren (AAV) wurde an insgesamt 

15 Versuchstieren der Rasse Deutsches Landschwein untersucht. Im Rahmen der 

Untersuchung wurden die Tiere in drei Gruppen (jeweils n=5) unterteilt, die am 

Versuchstag 0  

 

a)  AAV Serotyp 2 – Vektoren  (Heparinbindungsstelle gelöscht), 

b) AAV Serotyp 2 – Vektoren (Heparinbindungsstelle gelöscht)  

+ Vascular Endothelial Growth Factor (VEGF), oder 

c) AAV Serotyp 6 – Vektoren 

 

mittels selektiver druckregulierter Retroinfusion transduziert bekamen. An 

Versuchstag 28 wurden die Tiere euthanasiert und Gewebeproben entnommen. 

Daten zur Untersuchung der Effektivität des Gentransfers wurden histologisch, sowie 

mittels Polymerasekettenreaktion (PCR) und Luciferaseprobe gewonnen und 

statistisch analysiert. 
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Abbildung 1: Übersicht über den zeitlichen Ablauf des Versuchsprotokolls 

 

 

II.2.  GEWINNUNG VON ADENOASSOZIIERTEN VIRALEN VEKT OREN 

(AAV) 

 

 

Die AAV – Vektoren wurden uns zur Verfügung gestellt von den Herren Robert 

Kreuzpointner, Hugo A. Katus und Oliver J. Müller von der Universitätsklinik 

Heidelberg. 

 

 
Abbildung 2: Rekombinantes AAV Vektor Plasmid  

(aus Müller, „Improved cardiac gene transfer by transcriptional and transductional targeting of 

adeno-associated viral vectors” 107) 

 

Die Produktion aller Vektoren für diese Studie erfolgte durch die Heidelberger 

Arbeitsgruppe unter Verwendung eines Zwei-Plasmid-Systems49;75. Das 

Genomenthaltende Plasmid mit einer Gesamtlänge von 4,6kB besteht aus einem 

Photinus Pyralis Luciferasereportergen unter der Kontrolle einer CMV-verstärkten 

Myosin leichte Kette 5`-Regulator Sequenz (CMVenh-MLC1.5-Luc), verbunden mit 

einem Splice-Donor/Acceptor-Signal, beendet durch einen poly(A)-Schwanz und 

flankiert durch die AAV invertierten terminal repeats (ITRs) (siehe Abbildung 2)107. Zur 
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Produktion von Kapsiden ohne Bindungsaffinität an den primären 

Zelloberflächenrezeptor Heparan-Sulfat-Proteoglykan von AAV Serotyp 2 wurde der 

Helfervektor pDG(R484E; R585E) eingesetzt, der Mutationen zweier für das 

Heparinbindungsverhalten entscheidender Aminosäuren enthält75. Das 

Crosspackaging von AAV-6 pseudotypisierten Vektoren wurde mittels Helfervektor 

pDP6 vollendet49. Nach zwei Tagen wurden die Zellen geerntet und die Purifikation 

der Viren erfolgte durch Iodixanol Gradienten58. Die Gradientenfraktionen wurden 

durch Vivaspin Säulen (VIVASPIN Columns, Sartorius, Göttingen, Deutschland) 

konzentriert, wobei Iodixanol gegen PBS-Puffer ausgetauscht wurde. Die Anzahl der 

AAV Kapside und der effektive Replikationstiter wurden mittels Enzyme Linked 

Immunosorbent Assay (ELISA) mit Hilfe des monoklonalen Antikörpers A20, der 

selektiv an AAV-2 Kapside bindet, bestimmt50.  

 

 

II.3.  VERSUCHSTAG 0: GENTRANSFER 

 

 

Die Tiere wurden narkotisiert und nach einem chirurgischen Eingriff am seitlichen 

Halsdreieck wurden arterielle und venöse Gefäßzugänge geschaffen. Mittels 

Herzkathetergestützter Verfahren erfolgte die Virenapplikation durch selektive 

druckregulierte Retroinfusion. Nach erfolgter Transduktion wurden die OP-Wunden 

verschlossen und die Tiere über einen Aufwachraum zurück in den Stall befördert. 

 

 

II.3.1. VORBEREITUNG, NARKOSE UND ÜBERWACHUNG 

 

 

Zur Überprüfung der Narkotikaverträglichkeit wurden 52 Versuchstiere der Rasse 

Deutsches Landschwein einer Halothan-Vortestung unterzogen (Tierversuchsanstalt 

der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München, 

Unterschleißheim, Deutschland). 

 

Das mittlere Körpergewicht der 15 Versuchstiere betrug 22±3 kg. Die 

Narkoseeinleitung erfolgte mittels intramuskulärer Bolusinjektion von 20 mg/kg KG 
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Ketamin (Ketamin 50 Curamed, CuraMED Pharma, Karlsruhe, Deutschland), 10 

mg/kg KG Azaperone (Stresnil, Janssen-Cilag, Neuss, Deutschland) und 0,5 mg 

Atropinsulfat (Atropinsulfat Braun, B. Braun, Melsungen, Deutschland). Nach 

Erreichen einer ausreichenden Analgosedierung wurde den Tieren ein intravenöser 

Zugang über eine Ohrvene gelegt und die Narkose mittels intravenöser Gabe von 15 

mg Midazolam (Dormicum, Hoffmann-La Roche, Grenzach-Wyhlen, Schweiz) und 15 

mg Piritramid (Dipidolor, Janssen, Neuss, Deutschland) vertieft. Die Tiere wurden 

endotracheal intubiert (Tracheal Tube, Mallinckrodt, Hazelwood, Missouri, USA) und 

zur Narkoseaufrechterhaltung mit Sauerstoff, Lachgas (Stickoxydul pro narcosi, 

Widmann Gase, Elchingen, Deutschland) und unter Zumischung von 0,5 – 2 Vol% 

Enflurane (Ethrane, Abbott, Illinois, USA) beatmet (Ventilog, Dräger, Lübeck, 

Deutschland). Die Beatmungsparameter wurden anhand regelmäßiger arterieller 

Blutgasanalysen (ABL 300, Radiometer, Kopenhagen, Dänemark) angepasst. 

Angestrebte Zielgrößen waren: paO2 100-180 mmHg, paCO2 35-45 mmHg und pH 7,3-

7,5. Die Tiere wurden in waagerechter Rückenlage auf dem OP-Tisch fixiert. Die 

Überwachung der Vitalparameter erfolgte fortlaufend mittels EKG-Monitoring 

(Siemens Sirecust 341, Siemens Medical Solutions, Erlangen, Deutschland), 

Pulsoxymetrie (Nellcor N550, Nellcor, Boulder, USA) und nach Einführung einer 7F 

Katheterschleuse (Cordis, Reading, Miami, USA) in die rechte, bzw. linke Arteria 

Carotis erfolgte eine kontinuierliche invasive Blutdruckmessung über einen 

Druckabnehmer (Stetham Transducer, Hellige-Monitor, Freiburg, Deutschland).  

 

 

II.3.2.  ARTERIELLE UND VENÖSE GEFÄßZUGÄNGE 

 

 

Das laterale Halsdreieck wurde unter Narkose mit einem Longitudinalschnitt eröffnet 

und die Gefäßsituation dargestellt, sowie die Vagina Carotica freigelegt und eröffnet. 

Am Versuchstag 0 erfolgte die Einlage einer 7F Schleuse in die rechte A. Carotis 

(Cordis, Reading, Miami, USA) zur invasiven Blutdruckmessung und zur Durchführung 

einer Angiographie des Ramus interventricularis anterior (= Left anterior descending, 

LAD). In die rechte Vena jugularis externa wurde eine 11F Schleuse (Cordis, Reading, 

Miami, USA) eingeführt um einen Zugang für die selektive druckkontrollierte 

Retroinfusion zu schaffen. Nach erfolgtem Gentransfer wurden die Schleusen entfernt, 
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die Gefäße ligiert und das Operationsgebiet chirurgisch verschlossen. Die 

Versuchstiere zeigten trotz Ligatur der rechten A. carotis keine Zeichen zerebraler 

Ischämie. An Versuchstag 28 wurde die linke A. carotis zur Blutdruckmessung, sowie 

zur erneuten Angiographie des Ramus interventricularis anterior mit einer 7F 

Schleuse (Cordis, Reading, Miami) versehen. 

 

 

II.3.3. KATHETERISIERUNG DES RAMUS INTERVENTRICULARIS ANTERIOR 

DER LINKEN KORONARARTERIE 

 

 

Nach dem Einführen der Schleusen wurde eine Antikoagulation mit einem Bolus von 

10.000 IE Heparin (Heparin, Ratiopharm, Ulm, Deutschland) i.v. durchgeführt, gefolgt 

von einer kontinuierlichen intravenösen Applikation von 5.000 IE / Stunde. Ein 7F 

Judkins Rechts Führungskatheter (Cordis, Reading, Miami, USA) wurde über die 

arterielle Strombahn vor dem Koronarienostium plaziert, die linken Koronararterie 

mittels Kontrastmittelgabe (Solutrast, Byk-Gulden, Deutschland) aufgesucht und 

dargestellt. Unter Röntgendurchleuchtung wurde ein 0,014 Inch Führungsdraht (Road 

Runner Extra Support, Cook, Bjaeverskov, Dänemark) in den Ramus interventricularis 

anterior (RIVA / LAD) eingeführt. Über den mit der Spitze im distalen Teil der LAD 

liegenden Draht wurde ein abhängig vom Verlauf der LAD in der Regel 3,0 mm dicker 

und 20 mm langer PTCA-Ballon (AMG, Raesfeld-Erle, Deutschland) in der LAD gezielt 

distal des ersten Diagonalastes plaziert und zunächst noch nicht mittels In-/Deflator 

(Road Runner Extra Support, Cook, Bjaeverskov, Dänemark) inflatiert, so dass der 

arterielle Blutfluss über die LAD zunächst nicht unterbrochen wurde. 

 

 

II.3.4. KATHETERISIERUNG DER ANTERIOREN INTERVENTRIKULÄREN VENE 

DURCH DEN SINUS CORONARIUS 

 

 

Über die in der rechten Vena jugularis externa liegende 11F Schleuse (Cordis, 

Reading, Miami, USA) wurde zunächst ein 6F Cournand-Katheter (Cordis, Reading, 

Miami, USA) unter Röntgenkontrolle über den rechten Vorhof und den Sinus 
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coronarius in der Vena cordis magna vorgeschoben. Nun schob der Untersucher 

einen 0,018 Inch Führungsdraht (Road Runner Extra Support, Cook, Bjaeverskov, 

Dänemark) in die anteriore Herzvene (anterior interventricular vein, AIV), welche 

parallel zur LAD verläuft, vor. Der Führungskatheter wurde anschließend durch den 

7,8F Retroinfusionskatheter (SSR-Katheter) (MPK 002, PTC Pro-Med Technology 

Consult GmbH, Mödling, Österreich) ersetzt. Der inflatierbare Ballon an der Spitze des 

SSR-Katheters wurde dabei stets in Höhe des in der LAD liegenden PTCA-Ballons 

positioniert.  

 

 

II.3.5. VEKTORAPPLIKATION MITTELS SELEKTIVER DRUCKREGULIERTER 

RETROINFUSION 

 

II.3.5.1. DAS PRINZIP DER SELEKTIVEN DRUCKREGULIERTEN RETROINFUSION 

 

 

Entwickelt wurde die selektive druckregulierte Retroinfusion um akute 

Ischämieschäden im Rahmen einer Hochrisiko-PTCA zu verhindern, indem das 

infolge der Koronararterienstenose ischämische Myokard für die Dauer des Eingriffs 

retrograd gezielt mit arteriellem Blut über die Koronarvene versorgt werden kann9. 

Somit erfordert das Funktionsprinzip zum einen die Möglichkeit der Absaugung von 

arteriellem Blut aus einer Arterie, zum anderen die kontrollierte Abgabe des Blutes in 

das koronarvenöse System unter Überwachung des auftretenden hohen Druckes in 

der Koronarvene. Aufgebaut ist das System aus einem kleinen Extrakorporalkreislauf, 

dem SSR-Katheter (MPK 002, PTC Pro-Med Technology Consult GmbH, Mödling, 

Österreich) und einer Absaugeinheit. Weitere Bestandteile des Gerätes sind eine 

Rollerpumpe, ein Hochdruckreservoir, ein Exzenter-Ventil mit einer 

Schrittmotorsteuerung, ein Druckaufnehmer für die Überwachung des auftretenden 

hohen Druckes in der anterioren Herzvene und einer anhand des 

Koronarvenendruckes automatisch regulierten Volumenabgabe (Fuzzy-Logic) mittels 

einer Ballonpumpe. Zusätzlich verfügt das Gerät über eine EKG-Triggerung und eine 

Absaugeinheit (siehe Abbildung). Das sauerstoffreiche Blut wird dem System über die 

Rollerpumpe aus einer in einer Arterie liegenden Schleuse zugeführt. Die 

Rollerpumpe wird über den frei wählbaren Druck im Hochdruckreservoir gesteuert. 
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Aus dem Hochdruckreservoir wird das arterielle Blut über den SSR-Katheter in die 

anteriore Herzvene (AIV) abgegeben. Hierdurch wird der Blutfluss im koronarvenösen 

System umgekehrt und das Herz retrograd mit arteriellem Blut versorgt. Das System 

enthält aus Sicherheitsgründen eine Druckregulierung (gemessen wird der Druck in 

der AIV), die den Blutfluss in die anteriore Herzvene (AIV) mit Hilfe der 

Exzenterklappe steuert, um zu hohe, und damit schädliche Spitzendrücke in den 

Koronarvenen zu vermeiden. Die Messung des Flusses im patientenzuführenden Teil 

des Systems erfolgt mit einer Transsonic Flow-Probe (Transonic© Flowprobe, 

Transonic Systems, Ithaca, USA), die vor der Exzenterklappe an der 

Retroinfusionsleitung montiert ist. 

Die Steuerung des Systems erfolgt über ein an der Körperoberfläche abgeleitetes 

EKG-Signal. Das System lässt sich EKG-getriggert betreiben, wobei das Verhältnis 

von SSR-Pumpaktion zu Systole von 1:1 bis 1:8 wählbar ist. Auch die Latenzzeit 

zwischen R-Zacke und SSR-Pumpaktion ist frei wählbar, was die Möglichkeit bietet, 

die Retroinfusion auf die Dauer der Diastole zu beschränken. 

 

 

 

Abbildung 3: Schematischer Aufbau der selektiven druckregulierten Retroinfusion 
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II.3.5.2.  RETROGRADE APPLIKATION DER ADENOASSOZIIERTEN VIRALEN 

VEKTOREN IN DIE KORONARVENE 

 

 

In der vorliegenden Studie wurde auf das Prinzip der selektiven druckregulierten 

Retroinfusion zurückgegriffen. Für die Applikation der Viralen Vektoren wurde die 

Funktionsweise der Retroinfusion leicht modifiziert (siehe Abbildung 4): 

Es erfolgte keine Absaugung von arteriellem Blut aus einer (peripheren) Arterie, somit 

auch keine retrograde Applikation von sauerstoffreichem Blut in die Koronarvene. Das 

Hochdruckreservoir wurde mit auf 37°C erwärmter Natriumchloridlösung 0,9% (Braun, 

Melsungen, Deutschland) gefüllt, und ein Vordruck von 2500mbar gewählt. Die 

Absaugeinheit des Systems wurde deaktiviert. Drei der vier Lumina des in der 

anterioren Herzvene (AIV) liegenden SSR-Katheters wurden an das 

Retroinfusionssystem angeschlossen: Zum einen das Lumen zur Inflation des Ballons 

an der SSR-Katheter-Spitze, ferner die über einen Drei-Wege-Hahn (Discofix, Braun, 

Melsungen, Deutschland) führende Verbindung zwischen Katheter und 

Hochdruckreservoir und das Lumen des Druckabnehmers, um die Überwachung des 

AIV-Druckes zu gewährleisten. Das üblicherweise mit der Absaugeinheit zu 

verbindende Lumen des SSR-Katheters blieb in der aktuellen Untersuchung 

verschlossen. Die zu applizierenden Adenoassoziierten Viralen Vektoren (3,5 x 1010) 

wurden in 20ml Natriumchloridlösung 0,9% (Braun, Melsungen, Deutschland) 

verdünnt, in einen Perfusor (Braun Secura Perfusor F, Braun, Melsungen, 

Deutschland) eingespannt und der Perfusor über den Drei-Wege-Hahn zwischen 

Hochdruckreservoir des Systems und Lumen des SSR-Katheters zwischengeschaltet 

(siehe Abbildung).  

 

In Versuchsgruppe 2 erfolgte die zusätzliche Gabe von 100µg Vascular Endothelial 

Growth Factor (VEGF) über einen zweiten Perfusor (Braun Secura Perfusor F, Braun, 

Melsungen, Deutschland), der über einen Drei-Wege-Hahn neben dem Perfusor mit 

den viralen Vektoren und zwischen Hochdruckreservoir des Retroinfusionssystems 

und Lumen des SSR-Katheters zwischengeschaltet wurde (siehe Abbildung). Die 

100µg VEGF wurden analog zu den viralen Vektoren ebenfalls in 20ml 

Natriumchloridlösung 0,9% (Braun, Melsungen, Deutschland) verdünnt.  
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Vor der Gabe der Vektoren wurde zunächst der Retroinfusionsdruck auf 20mmHg 

oberhalb des systolischen Venenverschlußdruckes (VVD) in der anterioren Herzvene 

(AIV) eingestellt. Zur VVD-Bestimmung wurde der Ballon des SSR-Katheters inflatiert, 

somit die AIV bei noch bestehendem Zufluss über das arterielle System okkludiert, 

und der resultierende AIV-Druck über den Druckabnehmer gemessen.  Der 

eingestellte Druck von 20mmHg oberhalb des systolischen Venenverschlußdruckes 

gewährleistet optimale Retroinfusionsbedingungen9. Nach Gabe von 

Röntgenkontrastmittel (Solutrast, Byk-Gulden, Deutschland) über das SSR-

Katheterlumen wurde bei geblocktem SSR-Ballon die koronarvenöse Stauung und 

das Ausbreitungsgebiet des Kontrastmittels als Angiographievideosequenz (Exposcop 

8000, Ziehm Imaging, Nürnberg, Deutschland) gespeichert. Die EKG-Triggerung 

wurde auf ein Intervall von 1:4 bei einer Latenz von 10ms auf die R-Zacke eingestellt, 

woraus eine weitgehend intradiastolische SSR-Pumpaktion resultiert.  

 

 

 

Abbildung 4: Versuchsaufbau der selektiven druckregulierten Retroinfusion zum myokardialen 

Gentransfer mittels Adenoassoziierter Viraler Vektoren 
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Zu Beginn der Transduktion wurden der SSR-Ballon mit einem Druck von 150mmHg 

und der PTCA-Ballon in der LAD mit einem Druck von 2-3atm inflatiert. 

Retroinfusionsgerät und der Perfusor mit den viralen Vektoren (in Versuchsgruppe 2 

auch der Perfusor mit VEGF) wurden gestartet. Die Infusion erfolgte in zwei Zyklen à 

10 Minuten. Nach den ersten 10 Minuten wurde die Retroinfusion für 5 Minuten 

unterbrochen, Retroinfusionsgerät und Perfusor(en) pausiert und sowohl PTCA- als 

auch SSR-Ballon deflatiert, um ischämiebedingte Myokardschäden zu vermeiden. 

Nach Ablauf der fünfminütigen Pause wurden erneut in beschriebener Weise PTCA- 

und SSR-Ballon inflatiert und die Retroinfusion fortgesetzt, die Pause von SSR-Gerät 

und Perfusor(en) beendet. Während der gesamten Transduktion wurden der 

auftretende Druck in der anterioren Herzvene (AIV), der maximale Retroinfusatfluss 

und die Vitalparameter des Versuchstieres überwacht.  
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Abbildung 5.1:  

Durchgängigkeitsprüfung der LAD 

 

Abbildung 5.2: 

Ausgangssituation unmittelbar vor  Beginn 

der Retroinfusion 

 

Abbildung 5.3:  

Situation eine Sekunde nach Beginn der 

Retroinfusion; Das Kontrastmittel (KM) zeigt 

die Verteilung des Retroinfusats im 

Zielbereich 

 

Abbildung 5.4:  

Situation 12 Sekunden nach Abbildung 5.3; 

Das Kontrastmittel (KM) befindet sich immer 

noch im Zielbereich. Dies verdeutlicht die 

lange Kontaktzeit des Retroinfusats 

 

 

Mit Beendigung des zweiten Retroinfusionszyklus waren die gesamten zu 

transduzierenden Adenoassoziierten Viralen Vektoren (3,5 x 1010) und in 
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Versuchsgruppe 2 die 100µg Vascular Endothelial Growth Factor (VEGF) vollständig 

infundiert. Retroinfusionsgerät und Perfusoren wurden abgeschaltet, PTCA- und SSR-

Ballon deflatiert und alle Katheter und Führungsdrähte zurückgezogen und entfernt.  

 

 

II.3.6.  NARKOSEAUSLEITUNG UND POSTOPERATIVE ÜBERWACHUNG 

 

 

Arterielle und venöse Schleuse in der A. carotis und V. jugularis externa wurden 

gezogen und die Gefäße ligiert. Nach Ausschluss einer noch bestehenden 

Blutungsquelle im Operationsgebiet wurde das laterale Halsdreieck mit subkutanen 

und kutanen Nähten verschlossen und ein Verband angelegt. Die Narkose wurde 

unter Beatmung mit reinem Sauerstoff ausgeleitet. Bei ausreichender Spontanatmung 

und Wiederkehr der Schutzreflexe wurden die Tiere extubiert, der peripher-venöse 

Zugang in der Ohrvene wurde entfernt, die Wunde verbunden und die Tiere über 

einen Aufwachraum in den Stall zurückverlegt. Alle Versuchstiere erhielten eine 

perioperative Antibiose mit 1500mg Cefuroxim i.v. (Cefuroxim Sandoz parenteral, 

Sandoz pharmaceuticals, Holzkirchen, Deutschland). 

 

 

II.4.  GEWEBEGEWINNUNG 

 

 

An Versuchstag 28 wurden die Tiere erneut narkotisiert, über einen arteriellen 

Gefäßzugang wurde der Ramus interventricularis anterior (RIVA / LAD) dargestellt, 

die Versuchstiere wurden euthanasiert, das Herz entnommen und in verschiedene 

Schichten geschnitten, sowie periphere Gewebe entnommen.  

 

 

II.4.1. VORBEREITUNG, NARKOSE UND ÜBERWACHUNG 

 

 

Narkoseeinleitung, Aufrechterhaltung, Beatmung und Überwachung fanden analog 

zum Versuchstag 0 statt.  
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II.4.2. GEFÄßZUGÄNGE 

 

 

Das linke laterale Halsdreieck wurde unter Narkose mit einem Longitudinalschnitt 

eröffnet, die linke A. Carotis dargestellt und eine 7F Schleuse (Cordis, Reading, 

Miami, USA) zur invasiven Blutdruckmessung und zur Durchführung einer 

Angiographie des Ramus interventricularis anterior (RIVA / LAD) eingeführt.  

 

 

II.4.3. KATHETERISIERUNG DES RAMUS INTERVENTRICULARIS ANTERIOR 

DER LINKEN KORONARARTERIE 

 

 

Nach dem Einführen der arteriellen Schleuse wurde die Antikoagulation und die 

Darstellung des Ramus interventricularis anterior (RIVA / LAD) der linken 

Koronararterie analog zu Versuchstag 0 durchgeführt. Die LAD Darstellung diente 

lediglich der Durchgängigkeitsprüfung des Gefäßes, es wurde kein Führungsdraht 

eingelegt. Die mit Röntgenkontrastmittel durchgeführte Angiographievideosequenz 

(Exposcop 8000, Ziehm Imaging, Nürnberg, Deutschland) wurde archiviert. 

 

 

II.4.4. HERZEXPLANTATION, EUTHANASIE 

 

 

Zur Herzexplantation wurde eine mediane Thorakotomie angewendet. Zunächst 

wurde ein medianer Longitudinalschnitt der Haut von der Incisura jugularis bis ca. 3cm 

unterhalb des Processus xiphoideus durchgeführt. Subkutanes Fettgewebe und 

thorakale Muskulatur wurden mittels Elektrokauter durchtrennt. Das Sternum wurde 

mit einer kräftigen Schere beginnend vom Processus xiphoideus durch eine mediane 

Längssternotomie gespalten, mit Hilfe eines Thoraxspreizers wurden die Hälften 

voneinander getrennt und das Perikard eröffnet. Unter tiefer Narkose wurde durch 

intrakardiale Injektion einer letalen Kaliumdosis (Kaliumchlorid, Deltaselect, Dreieich, 

Deutschland) eine Asystolie induziert und das Herz abschließend entnommen. Des 
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Weiteren wurden Gewebeproben von Lunge, thorakaler Aorta, Leber, Milz, Niere, 

Duodenum und Interkostalmuskulatur entnommen. 

 

 

II.4.5. UNTERTEILUNG DES EXPLANTIERTEN HERZENS IN MEHRERE 

GEWEBEPROBEN 

 

 

Unmittelbar nach Herzexplantation 

wurde der linke Ventrikel nach 

einem definierten Protokoll120 in 

insgesamt 108 Einzelproben 

verschnitten (siehe Abbildung 6): 

Zunächst wurde das Herz 

senkrecht zur kürzesten 

Verbindung zwischen Apex und 

Basis in fünf Schichten von jeweils 

1cm Dicke geschnitten. Jede 

Schicht wurde in mehrere 

Segmente gleicher Größe unterteilt. 

Alle Schichten wurden hierbei in 8 

Segmente von etwa 45 Winkelgrad 

unterteilt, mit Ausnahme der 

distalen Apexschicht, die aufgrund 

ihrer geringeren Größe nur in 4 

Segmente à 90 Winkelgrad 

gegliedert wurde. Die 

Nummerierung der Segmente 

erfolgte nach einem logischen 

System: Die erste basisnahe 

Schicht enthält die Segmente 1 bis 

8, wobei unter Aufsicht auf die 

Schnittfläche Segment Nr. 1 bei 0 

Winkelgrad (3 Uhr) beginnt und die Nummerierung entgegen des Uhrzeigersinns 

 
 

Abbildung 6:  

Schneiden des Herzens in 108 definierte Segmente 

(aus Raake, „Myocardial gene transfer by selective 

pressure regulated retroinfusion of coronary 

veins”120) 
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erfolgt. Der Ramus interventricularis anterior (RIVA / LAD) kommt bei ca. 225 

Winkelgrad zu liegen und markiert somit im Bereich der ersten basisnahen Schicht 

den Übergang von Segment 5 zu Segment 6. Analog enthält die zweite Schicht die 

Segmente 9 bis 16, die dritte Schicht die Segmente 17 bis 24 und die vierte Schicht 

die Segmente 25 bis 32. Die fünfte, am weitesten distal gelegene Schicht an der Apex 

enthält nur die vier Segmente 33 bis 36, wobei Segment 33 bei 0 Winkelgrad (3 Uhr) 

beginnt und hier die Nummerierung in Segmente von je 90 Winkelgrad ebenfalls 

entgegen des Uhrzeigersinns erfolgt. Jedes der 36 Segmente wurde nun in eine 

epikardiale (EPI), eine midmyokardiale (MID) und eine subendokardiale (ENDO) 

Probe geschnitten, so dass insgesamt 108 in ihrer Position klar definierte 

Gewebeproben des linken Ventrikels gewonnen werden konnten120. 

 

 

II.4.6. ENTNAHME PERIPHERER GEWEBEPROBEN 

 

 

Neben den kardialen Gewebeproben wurden ca. 1cm3 große Gewebeproben aus 

Lunge, thorakaler Aorta, Leber, Milz, Niere, Duodenum und Interkostalmuskulatur 

entnommen.  

 

 

II.4.7. LAGERUNG DER GEWEBEPROBEN 

 

 

Alle kardialen und peripheren Gewebeproben wurden sofort nach dem Schneiden in 

flüssigem Stickstoff schockgefroren und in beschrifteten Behältern bis zur endgültigen 

Weiterverarbeitung zur Datenauswertung bei -80°C gelagert. 
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II.5. DATENGEWINNUNG 

 

II.5.1. HISTOLOGIE 

 

 

Zur Histologischen Aufarbeitung erfolgte eine HE-Färbung der Gewebeproben aus 

dem Bereich des Ramus interventricularis anterior (RIVA / LAD). Nach Entnahme der 

Proben aus dem -80°C Kühlschrank wurden diese mittels Kryostat (Leica CM3050, 

Leica, Bensheim, Deutschland) auf eine Dicke von 5µm geschnitten, auf Objektträger 

aufgezogen und über 20 Minuten bei 60°C im Brutschrank getrocknet. Die 

anschließende Färbung erfolgte zunächst für 2 Minuten in Hämalaun-Lösung (Mayer`s 

Hämalaunlösung, Merck, Darmstadt, Deutschland). Nach fünfminütigem Bläuen in 

klarem Leitungswasser wurden die Schnitte für weitere 10 Minuten in Eosin 0,5% 

(Eosin G-Lösung 0,5%, Merck, Darmstadt, Deutschland) eingelegt. Die Präparate 

wurden im Anschluss kurz in destilliertes Wasser getunkt, gefolgt von der 

aufsteigenden Alkoholreihe: dreimaliges kurzes Eintauchen in Ethanol 70%, dann 

fünfminütiges Baden in Ethanol 80%, gefolgt von einem 10minütigen Bad in 

absolutem Ethanol. Nach fünfzehnminütiger Einwirkzeit eines Lösungsmittels 

(Roticlear, Carl Roth, Karlsruhe, Deutschland) wurden die Schnitte mit Hilfe des Roti-

Histokitts (Carl Roth, Karlsruhe, Deutschland) eingeschlossen. Die Betrachtung 

erfolgte bei 20facher Vergrößerung unter dem Mikroskop (Zeiss, Oberkochen, 

Deutschland).  

 

 

II.5.2. POLYMERASEKETTENREAKTION 

 

 

Es erfolgte eine Polymerasekettenreaktion zur Detektion von Vektor-DNA aus 

myokardialen Gewebeproben aus dem Zielbereich des Ramus interventricularis 

anterior (RIVA / LAD), dem Kontrollbereich des Ramus circumflexus (RCX) und aus 

ausgewählten systemischen Organen (thorakale Aorta, Lunge, Leber, 

Interkostalmuskulatur).  
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Die Extraktion der DNA erfolgte mit dem DNeasy Tissue Kit (Quiagen, Hilden, 

Deutschland): Zunächst wurden die Gewebeproben aus dem -80°C Kühlschrank 

entnommen, in Hammer- und Meißeltechnik mehrere Fragmente von einem 

Gesamtgewicht von bis zu 25mg abgespalten und über eine Stunde bei 

Raumtemperatur aufgetaut. Im Anschluss wurden die Fragmente mit 180µl ATL-Puffer 

(aus DNeasy Tissue Kit) in einem 1,5ml Mikrozentrifugencup vermischt, es wurden 

20µl Proteinase K (aus DNeasy Tissue Kit) zupipettiert, die Lösung mittels Vortex 

(Fisher Vortex Genie 2, Fisher Scientific, Schwerte, Deutschland) gemischt und über 

Nacht für mindestens 12 Stunden im 55°C Schüttelwasserbad (SW21, Julabo, 

Schilbach, Deutschland) lysiert. Während aller folgenden Arbeitsschritte wurde die 

Lösung nach Zugabe einer Substanz durch 15sekündiges Vortexen vermischt: Durch 

Injektion von 4µl RNAse A (aus DNeasy Tissue Kit) und zweiminütger Inkubationszeit 

bei Raumtemperatur wurde der insbesondere in Leber und Niere hohe RNA-Gehalt 

eliminiert. Nach der Zugabe von 200µl AL-Puffer (aus DNeasy Tissue Kit) und einer 

10minütigen Inkubation im 70°C Wasserbad wurden 200µl absoluten Ethanols addiert. 

Diese Lösung wurde in die DNeasy Mini Spin Column (aus DNeasy Tissue Kit) 

eingesetzt, bei 8000rpm für eine Minute zentrifugiert (Zentrifuge Eppendorf 5414C, 

Eppendorf, Hamburg, Deutschland) und der Durchfluss verworfen. Nach Zusatz von 

500µl AW1-Puffer (aus DNeasy Tissue Kit)  wurde dieser Vorgang wiederholt. Nach 

dem Zupipettieren von 500µl AW2-Puffer (aus DNeasy Tissue Kit) erfolgte der 

Arbeitsschritt erneut, diesmal mit dreiminütiger Zentrifugation bei 14000rpm. 

Abschließend wurde die DNA durch direktes pipettieren von 100µl AE-Puffer (aus 

DNeasy Tissue Kit) auf die Membran des DNeasy Mini Spin Columns, einminütiger 

Inkubation bei Raumtemperatur und einminütiger Zentrifugation bei 8000rpm eluiert. 

Dieser Eluierungsschritt wurde zweimal pro Gewebeprobe durchgeführt.  

 

800ng genomische DNA wurden zur PCR-Amplifikation (40 Zyklen) eines 677bp 

Fragments des Luciferasegens mit den Primern 5`-GACGCCAAAAACATAAAGAAAG-

3` und 5`-CCAAAAATAGGATCTCTGGC-3` verwendet. Zur Durchführung der PCR 

wurden jeweils 800ng der eluierten DNA einem PCR-Reaktionsansatz von je 25µl 

(bestehend aus 2,5µl Taq-Puffer, 2,5µl Desoxynukleotide (dNTP, 2mM), je 0,5µl der 

o.g. Primer, 0,1µl Taq-Polymerase, 2,0µl MgCl2 (2,0mM) und 16,9µl deionisiertes 

H2O) zugegeben. Der so erhaltene PCR-Reaktionsansatz wurde unter Verwendung 

eines Thermocyclers (Mastercycler Pro, Eppendorf, Hamburg, Deutschland) zur 
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Vervielfältigung der Vektor-DNA in 40 Zyklen bearbeitet. Jeder Zyklus bestand aus: 

Denaturierung des DNA-Doppelstrangs über 30 Sekunden bei 94°C, Primerannealing  

über 30 Sekunden bei 60°C und DNA-Elongation über 30 Sekunden bei 72°C. Die 

PCR-Produkte wurden durch Gelelektrophorese (1,5%; w/v, Agarosegel 

Elektrophorese Kammern, Biorad, München, Deutschland) analysiert: Hierzu wurden 

40ml Agarose 1,5% (Gibco BRL, Paisley, Scotland) aufgekocht und nach Abkühlung 

auf 60°C bei Raumtemperatur 4µl Ethidiumbromid (Invitrogen, Karlsruhe, 

Deutschland) dazugegeben. Nach Entfernung des Kammes wurde das gefestigte Gel 

in TBE-Puffer (89mM Tris-(hydroxymethyl)-aminomethan (TRIS), 89mM Borat und 

2mM Ethylendiamintetraacetat (EDTA) ad 1000ml Aqua dest; ph 8,0) gelegt, und 20µl 

der DNA-Probe, und die DNA-Leiter (1Kb Plus DNA Ladder, Invitrogen, Karlsruhe, 

Deutschland) aufgetragen. Bei einer angelegten Spannung von 100V wurden nach 

einer dreißigminütigen Elektrophoresedauer die Laufweiten auf dem UV-Leuchttisch 

ausgewertet. 

 

 

II.5.3. LUCIFERASEPROBE 

 

 

Die Gewebeproben wurden aus dem -80°C Kühlschrank entnommen und während 

aller folgenden Arbeitsschritte intermittierend in flüssigem Stickstoff zwischengelagert. 

Als erster Schritt erfolgte die Fragmentierung der Gewebeproben. Hierzu wurden in 

Hammer- und Meißeltechnik Gewebefragmente mit einem Sollgewicht zwischen 100 

und 300mg abgesplittert, gewogen, in einem beschrifteten Cup verschlossen und 

umgehend wieder bei -80°C gelagert. Das Restgewebe wurde für etwaige 

Nachmessungen ebenfalls in den Tiefkühlschrank zurückgestellt. Im zweiten Schritt 

wurde das Gewebe lysiert: Die aus dem Kühlschrank entnommene und in flüssigem 

Stickstoff zwischengelagerte Probe wurde in ein sich in Trockeneis befindliches Tube 

gesetzt und eine gewichtsadaptierte Menge an Puffer- / Lyselösung 

(Zusammensetzung: 25mmol/l Trisphosphat (pH7,8), 2mmol/l Dithiothreitol (DTT), 

2mmol/l Ethylendiamintetraacetat (EDTA), 10% Glycerol und 1% Octoxynol-9 (Triton 

X-100)) hinzu pipettiert (Volumen der Puffer- / Lyselösung [µl] = Feuchtgewicht der 

Gewebeprobe [mg] * 4). Nach einer Einwirkzeit von ca. 30 Sekunden wurde der 

Tubeinhalt durch ein Ultramesser-Dispergiergerät (Ultra-Turrax® T 65 D, IKA Werke 
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GmbH & Co. KG, Staufen, Deutschland) zerstampft, mit einer Saugpipette in ein 

Eppendorfcup gegeben und in flüssigen Stickstoff getaucht. Zur Weiterverarbeitung 

wurde die Probe für drei Minuten im 37°C Wasserbad inkubiert und bei 14000rpm und 

+4°C für 30 Minuten zentrifugiert. Der Überstand, aus welchem die Luciferaseprobe 

gemessen wird, wurde in zwei Eppendorfcups abpipettiert und dabei quantitativ 

erfasst. 10µl des Überstandes wurden in ein weiteres Eppendorfcup zur 

Proteinbestimmung gegeben. Die Cups wurden über ein Bad in flüssigem Stickstoff 

bis zur Messung der Luciferaseaktivität im -80°C Kühlschrank aufbewahrt.  

 

Die Proteinbestimmung erfolgte nach Bradford: Hierzu wurde zunächst der 

Triphenylmethanfarbstoff Coomassie®-Brilliant-Blau G-250 (CBBG, Roti®-Quant, Carl 

Roth GmbH & Co KG, Karlsruhe, Deutschland) im Verhältnis von 1:4 mit Aqua dest. 

verdünnt und durch Cellulosepapier (Whatman® #1 Grad 540, Whatman International 

Ltd, Kent, England) gefiltert. Anschließend wurden einem Milliliter der gefilterten 

Farbstofflösung 5µl des Überstandes zur Proteinbestimmung zugegeben, die Probe 

bei Raumtemperatur für 5 Minuten inkubiert und die Absorption im Photometer 

(BioPhotometer plus, Eppendorf, Hamburg, Deutschland) bei 595nm abgelesen. Die 

Proteinkonzentrationen wurden durch Vergleich mit der Standardkurve (Bovines 

Serum Albumin (BSA) von 0,625mg/ml bis 10mg/ml bei 595nm) abgelesen. 

 

Die Ermittlung der Luciferaseaktivität jeder Gewebeprobe erfolgte durch 

Mittelwertbestimmung aus je zwei Messungen. Hierzu wurde die Lichtproduktion von 

20µl des Überstandes durch einem Transilluminator (Lumat LB 9501, Berthold, 

Wildbad, Deutschland) mit 100µl Reaktionsansatz (bestehend aus 20mmol/l N-

(Tris(hydroxymethyl)methyl)glycine (Tricin, pH 7,8), 1,07mmol/l (MgCO3)4Mg(OH)2 x 

5H2O, 2,67 mmol/l MgSO4, 0,1mmol/l Ethylendiamintetraessigsäure (EDTA), 

33,3mmol/l Dithiothreitol (DTT), 270µmol/l Coenzym A, 470µmol/l D-Luciferin und 

530µmol/l Adenosintriphosphat (ATP)) über 30 Sekunden gemessen. Von den 

bestimmten Relativen Lichteinheiten (relative light units, RLU) / ml wurden die 

Hintergrundwerte durch Messung der Cups, gefüllt mit phosphat-gepufferter 

Salzlösung (PBS bestehend aus 8,0g/l NaCl, 0,2g/l KCl, 1,44g/l Na2HPO4, 0.24g/l 

KH2PO4), welche äquivalent zum Hintergrundwert des Lysereagenzes ist10, 

subtrahiert. Abschließend wurde die Angabe der Luciferase Aktivität von RLU / ml aus 
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dem Lysereagenz mit Hilfe der Proteinkonzentrationsbestimmungen der Proben in 

RLU/mg Protein umgerechnet.  

 

 

II.6. STATISTISCHE DATENANALYSE 

 

 

Die Daten wurden mit Microsoft Office Excel 2003 Professional (Microsoft 

Corporation, Seattle, USA) und SPSS (SPSS 11.0.1., SPSS Incorporated, Chicago, 

USA) analysiert. Alle Daten sind als Mittelwerte ± Standardabweichung angegeben. 

Messungen der Luciferaseexpression wurden durch den verteilungsfreien (nicht-

parametrischen) Kruskal-Wallis-Test analysiert. Bei Erreichen eines signifikanten 

Effekts wurden mittels Mann-Whitney U-Test (Mann-Whitney-Wilcoxon-Test) 

zahlreiche Vergleichtests zwischen den Versuchsgruppen durchgeführt. Ein p-Wert < 

0,05 wurde als statistisch signifikant angesehen. 
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III. Ergebnisse 

 

 

15 Tiere der Rasse Deutsches Landschwein wurden in drei Versuchsgruppen 

unterteilt (n=5) und mittels selektiver druckregulierter Retroinfusion einem kardialen 

Gentransfer unterzogen. Transduziert wurden Adenoassoziierte Virale Vektoren 

(3,5x1010 virale Genome pro Tier) verschiedenen Serotyps mit Photinus Pyralis 

Luciferase als Reportergen unter der Kontrolle eines kardiospezifischen CMV-MLC2v 

- Promotors. Verglichen wurde die Transduktionseffizienz im kardialen Zielgebiet von 

Heparinbindungsstellen-gelöschtem AAV Serotyp 2 mit pseudotypisiertem AAV 

Serotyp 6. Ferner wurde untersucht, ob die Gabe von rekombinantem humanen 

Vascular Endothelial Growth Factor (rhVEGF) die Transduktionseffizienz von AAV 

Serotyp 2 steigern kann.  

 

Der Gentransfer erfolgte an Versuchstag 0, die Probengewinnung und Analyse der 

Transduktionseffizienz an Versuchstag 28. 

 

 

III.1. AUSGANGSSITUATION 

 

 

Die Ausgangssituation war sowohl an Versuchstag 0, als auch an Versuchstag 28 in 

Hinblick auf Körpergewicht, Hämodynamik und Durchgängigkeit des Ramus 

interventricularis anterior (LAD / RIVA) in allen Gruppen vergleichbar (Tabelle 1). 

 

 d0 d28 

   

Körpergewicht 22 ± 3 kg 38,8 ± 3,6 kg 

Hämodynamik HF 79 ± 8 min-1 

RRsyst 98 ± 12 mmHg 

HF 73 ± 10 min-1 

RRsyst 102 ± 11 mmHg 

LAD-Koronarangiographie  Unbeeinträchtigter Fluss Unbeeinträchtigter Fluss 
 

Tabelle 1: Vergleich von Körpergewicht, Hämodynamik und Blutfluss im Ramus 

interventricularis anterior an Versuchstag 0 (Baseline) und Versuchstag 28 
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III.2. TRANSDUKTIONSEFFIZIENZ IM ZIELGEBIET 

 

 

Die Untersuchung der Transduktionseffizienz basierte auf zwei Säulen: Zum einen der 

Nachweis von viralem Genom der Adenoassoziierten Viralen Vektoren in den 

Kardiomyozyten des Zielgebiets mittels Polymerasekettenreaktion. Zum zweiten die 

quantitative Messung der Expression des Genprodukts Luciferase im Zielgebiet durch 

die Luciferaseprobe. 

 

Als Beweis für das Vorhandensein von Vektor-DNA in den Zielzellen vier Wochen 

nach Transduktion wurde eine Polymerasekettenreaktion durchgeführt, die in allen 

Versuchsgruppen serotypunabhängig eindeutig Vektor-Genom im Zielbereich des 

Ramus interventricularis anterior (LAD / RIVA), insbesondere im proximalen und 

medialen Abschnitt, nachweisen konnte. Im Bereich des Ramus circumflexus der 

linken Koronararterie (Kontrollregion) konnten in den Versuchsgruppen lediglich 

diskrete, schwache Banden als Beweis für Vektor-DNA nachgewiesen werden, was 

die weitgehende Selektivität der druckregulierten Retroinfusion in das kardiale 

Zielgebiet untermauert. 

 

Die durchschnittliche Luciferaseaktivität im Zielgebiet zeigte signifikante Unterschiede 

in der Transduktionseffizienz von Heparinbindungsstellen-gelöschtem Serotyp 2 und 

Serotyp 6: In beiden Gruppen wurden insgesamt 3,5x1010 virale Genome unter 

gleichen Bedingungen und bei vergleichbarer Ausgangssituation in die anteriore 

Herzvene retroinfundiert. Der AAV Serotyp 2 zeigte eine moderate transgene 

Expression im Zielgebiet (durchschnittliche Luciferaseaktivität im Zielgebiet: 1365 ± 

707 RLU / mg Protein). AAV Serotyp 6 induzierte eine bedeutend höhere mittlere 

Luciferaseexpression im Zielgebiet (65943 ± 31122 RLU / mg Protein) und war im 

Vergleich zu AAV Serotyp 2 signifikant effektiver (p=0,05). Ferner wurde untersucht, 

ob die zusätzliche Gabe von rekombinantem humanen Vascular Endothelial Growth 

Factor (rhVEGF) den Gentransfer mit AAV Serotyp 2 erleichtert: Die Coapplikation 

von rhVEGF erhöhte die durchschnittliche transgene Expression im Zielgebiet des 

Ramus interventricularis anterior (LAD / RIVA) signifikant (1365 ± 707 ohne 

Coapplikation von rhVEGF versus 38760 ± 2448 mit Coapplikation von rhVEGF, 

p=0,001). Durch die zusätzliche Gabe von rhVEGF konnte der AAV Serotyp 2 
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annähernd die durchschnittlichen Luciferasewerte erreichen, die nach Behandlung mit 

AAV Serotyp 6 erzielt werden konnten (38760 ± 2448 RLU / mg Protein bei 

Coapplikation von rhVEGF bei AAV Serotyp 2 versus 65943 ± 31122 RLU / mg 

Protein bei AAV Serotyp 6, keine Signifikanz). 
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Abbildung 7: Luciferaseaktivität in Ziel- (LAD)- und Kontroll- (CX) -gebiet 

 

 

III.3. VERTEILUNGSMUSTER IM ZIELGEBIET 

 

 

Die Verprobung des linken Ventrikels in insgesamt 108 in ihrer Position klar definierte 

Segmente120 ermöglicht eine detaillierte Darstellung, in welchen Bereichen des 

Zielgebiets die transgene Expression besonders hoch ist. Die durchschnittliche 

Luciferaseaktivität wurde in allen Segmenten gemessen und das Verteilungsmuster 

der transgenen Expression im Zielgebiet bestimmt. Unabhängig von transduziertem 

AAV Serotyp und unabhängig von der zusätzlichen Gabe von rhVEGF zeigten sich 

Expressionsgradienten von epimyokardialen zu endomyokardialen Proben und von 

Gewebeproben im Bereich des proximalen zum distalen Ramus interventricularis 

anterior (LAD / RIVA). Der Gradient zeigt ein Gefälle von epimyokardial nach 

endomyokardial und von proximal nach distal.  
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Abbildung 8.1: 

 

Luciferaseaktivität im 

Zielgebiet 28 Tage nach 

Retroinfusion von  

AAV-2 Vektoren 

 

Abbildung 8.2: 

 

Luciferaseaktivität im 

Zielgebiet 28 Tage nach 

Retroinfusion von  

AAV-2 Vektoren  

+ 100µg VEGF 

 

 

Abbildung 8.3: 

 

Luciferaseaktivität im 

Zielgebiet 28 Tage nach 

Retroinfusion von  

AAV-6 Vektoren 
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III.4. ZYTOPATHISCHER EFFEKT 

 

 

Eine der Anforderungen an einen therapeutischen myokardialen Gentransfer ist, dass 

der Vektor möglichst keinen oder einen zu vernachlässigenden zytopathischen und 

damit immunogenen Effekt aufweist. Zur Detektierung schädlicher Effekte wurden 

deshalb die Kardiomyozyten der Proben im Zielbereich mit besonders hohen 

transgenen Expressionen histologisch untersucht. Die HE-Färbungen zeigten an 

Versuchstag 28 intaktes Myokard ohne Zeichen einer Leukozyteninfiltration. Während 

der Beobachtungsphase zwischen Versuchstag 0 und 28 konnten ferner 

augenscheinlich anhand des Verhaltens der Tiere keine Beeinträchtigung der 

Hämodynamik und keine Infektionszeichen beobachtet werden. 

 

 
 

Abbildung 9: HE Färbung des Myokards im Zielbereich zeigt 28 Tage nach Retroinfusion 

intaktes Myokard ohne Zeichen einer Leukozyteninfiltration 

 



 - 38 - 

III.5. TRANSDUKTION VON EXTRAKARDIALEN ORGANEN 

 

 

 Transduktion von nichtkardialen Geweben 

wurde mittels Polymerasekettenreaktion 28 

Tage nach erfolgtem Gentransfer untersucht. 

Hierzu wurden Gewebeproben aus Leber, 

Lunge, thorakaler Aorta und 

Interkostalmuskulatur auf das Vorhandensein 

von Vektor-DNA untersucht. In Aorta und 

Skelettmuskel konnte unabhängig vom 

transduzierten Serotyp und unabhängig von 

der Coapplikation von rhVEGF keine Virus-

DNA gefunden werden. In der mit AAV Serotyp 

6 transduzierten Versuchsgruppe wurden 

signifikante Mengen von viralen Genomen in 

Leber und Lunge detektiert. Trotz dieser mittels 

Polymerasekettenreaktion nachgewiesener 

Vektor-DNA konnte durch die Luciferaseprobe 

keine transgene Expression in Lunge und 

Leber nachgewiesen werden. Unabhängig von 

AAV Serotyp und der zusätzlichen Gabe von 

rhVEGF konnte in keinem der untersuchten 

nichtkardialen Gewebe (thorakale Aorta, 

Lunge, Duodenum, Leber, Milz, Niere, 

Interkostalmuskulatur) eine Reportergen 

Expression gefunden werden. Dieser Effekt ist 

am ehesten durch die Kardioselektivität des 

angewendeten CMV-MLC2v – Promotors 

bedingt. 

 

 

 
Abbildung 10: 

Detektion von AAV-6-Vektorgenom im 

Zielgebiet (blauer Kasten) und 

Kontrollgebiet, sowie in Extrakardialen 

Organen 
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Abbildung 11: Luciferaseaktivität im Myokardialen Zielgebiet und in ausgewählten 

systemischen Organen 
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IV. Diskussion 

 

 

Ziel dieser Studie war es, in einem kliniknahen tierexperimentellen Modell zu 

untersuchen, ob mit der selektiven druckregulierten Retroinfusion, als neuem 

Applikationsverfahren für Adenoassoziierte Virale Vektoren (AAV) am Herzen, ein 

effektiver myokardialer Langzeitgentransfer erzielt werden kann. Die 

Transduktionseffizienz der von Heparinbindungsstellen-gelöschtem AAV Serotyp 2 

und pseudotypisiertem AAV Serotyp 6 wurde miteinander verglichen. Zusätzlich 

wurde untersucht, ob die simultane Anwendung von rekombinantem humanen 

Vascular Endothelial Growth Factor (VEGF) während der Retroinfusionsbehandlung 

zu einer Steigerung der myokardialen Transduktionseffizienz führt.  

 

 

IV.1. DURCHFÜHRUNG DER STUDIE 

 

IV.1.1. DIE SELEKTIVE DRUCKREGULIERTE RETROINFUSION (SSRI) 

 

 

Die selektive druckregulierte Retroinfusion ist ein seit 1998 klinisch etabliertes 

Herzkatheterverfahren9, dessen Sicherheit und Effektivität an über 300 Patienten 

nachgewiesen werden konnte9;117. Während die antegrade Applikation von 

Therapeutika in die koronararterielle Strombahn krankheitsbedingt oft behindert sein 

kann, so bietet die Retroinfusion in die anteriore Herzvene den Vorteil, dass das 

koronarvenöse System nicht von artherosklerotischen Prozessen betroffen ist, und 

selbst bei fortgeschrittener Grunderkrankung stets als Zugangsweg offen steht9;151. 

Entwickelt wurde die selektive druckregulierte Retroinfusion um akute 

Ischämieschäden im Rahmen einer Hochrisiko-PTCA zu verhindern, indem das 

infolge der Koronararterienstenose ischämische Myokard retrograd gezielt mit 

arteriellem Blut über die Koronarvene versorgt werden kann. Die retrograde 

Applikation von Therapeutika erlaubt durch die im Vergleich zur antegraden Gabe 

deutlich längere Kontaktzeit mit dem Zielgebiet eine effektivere regionale 

Myokardbehandlung120 und durch die Möglichkeit zur Absaugung des therapeutischen 
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Agens eine deutlich verringerte systemische Dissemination10. Die verlängerte 

Kontaktzeit und damit verbundene verbesserte Effizienz konnte in verschiedenen 

Studienprotokollen anhand des Wirkspektrums von Dobutamin151 und Metoprolol125 

nachgewiesen werden. Als Applikationsverfahren für Vektorsysteme konnte sich die 

SSRI anhand eines effizienten myokardialen adenoviralen Gentransfers beweisen10. 

 

Wir wählten die selektive druckregulierte Retroinfusion als Applikationsverfahren, da 

wir hiermit die effektivste Transduktion im Zielareal erwarteten und uns Vorteile 

gegenüber der antegraden Gabe über die Koronararterie, oder der intramyokardialen 

Injektion erwarteten. Die Überlegenheit der Transduktionseffizienz der SSRI konnte 

insbesondere bei Adenoviralen Vektoren bewiesen werden: Sie zeigte eine höhere 

Effizienz als die antegrade Gabe über die Koronararterie10 und eine homogenere 

Verteilung des Gentransfers als bei myokardialen Injektionen120. Eine Hauptlimitation 

der intrakoronaren Infusion ist die kurze Kontaktzeit des Vektors mit dem 

Koronarendothel. Somit wird der intrakoronar applizierte Vektor schnell in die 

systemische Zirkulation ausgeschwemmt. Variablen, die die Effizienz eines viralen 

Gentransfers über die Koronarzirkulation bestimmen können, sind der koronare Fluss, 

die Vektorkonzentraktion und die Endothelpermeabilität, was systemisch in isolierten 

Herzen analysiert werden konnte30;31. Durch die SSRI kann gezielt der koronare Fluss 

im Zielgebiet herabgesetzt werden10;120, was zum einen zu einer verlängerten 

Kontaktzeit des Vektors mit dem Koronarendothel führt, und zum anderen zur 

Aufrechterhaltung einer hohen Vektorkonzentration durch eine geringere 

Ausschwemmung in die systemische Zirkulation – zwei wesentliche Bedingungen für 

einen viralen Gentransfer von hoher Effizienz. 

 

 

IV.1.2. ADENOASSOZIIERTE VIRALE VEKTOREN (AAV) 

 

 

Adenoassoziierte Viren werden in Gruppe zwei der Baltimoreklassifikation eingestuft. 

Sie gehören zur Gattung der Dependoviren, welche zur Familie der Parvoviridae 

zählen15;163. Es handelt sich um kleine 20nm große, einsträngige, replikationsdefekte 

DNA Viren mit einem Genom von 4,7 kB und palindromisch invertierten terminal 

repeats (ITR)6;16;116. Zum Auslösen einer produktiven Infektion ist ein Helfervirus 
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(insbesondere Adenovirus oder Herpes simplex Virus) nötig12;68. In Abwesenheit einer 

Coinfektion durch ein geeignetes Helfervirus bleibt das Adenoassoziierte Virus 

nonpathogen, jedoch integriert sich das AAV-Genom über seine invertierten terminal 

repeats (ITR) in die zelluläre Wirts-DNA sowohl von sich teilenden, wie auch sich nicht 

teilenden Zellen116. Der AAV-Wildtyp integriert sich zudem ortsspezifisch in den q-Arm 

des humanen Chromosoms 1979;80;127, was das Virus als Vektor für einen humanen 

Gentransfer interessant macht, da das Risiko einer insertionellen Mutagenese und die 

Variabilität der transgenen Expression gering sind. 

Bis Mai 2008 konnten insgesamt vierzehn AAV-Serotypen identifiziert werden15, die 

aufgrund ihrer verschiedenen Capsideigenschaften über zelluläre Rezeptoren 

verschiedene Gewebearten infizieren können.  

 

Wir entschieden uns für Adenoassoziierte Virale Vektoren, da wir zum einen eine 

effektive Transduktion der Kardiomyozyten, kombiniert mit einer Langzeitexpression 

des Zielgens erreichen, zum anderen jede Form von Immun- und damit 

Entzündungsreaktion vermeiden wollten. In Kleintierversuchen konnten myokardiale 

Gentransfers erfolgreich unter Bestätigung dieser Prämissen durchgeführt 

werden19;149. Die stabile Integration in die Wirts-DNA ist der entscheidende Faktor für 

die Langzeitexpression des Genprodukts, welches über die Adenoassoziierten Viren 

übermittelt wird. Dies konnte sowohl in vitro6, wie auch in vivo5 für sich teilende, wie 

auch sich nicht teilende Zellen nachgewiesen werden. Die Dauer der Genexpression 

am Mäusemyokard ist hierbei für mindestens ein Jahr nachweisbar77, das Ausmaß der 

transgenen Expression zeigt keinen Unterschied zwischen den Zeitpunkten 4 Wochen 

und 3 Monate nach Transduktion19;56. Zudem konnte bis dato zumindest in Nagetieren 

gezeigt werden, dass bestimmte AAV-Serotypen in der Lage sind, die 

Blutgefäßbarriere effizient zu durchdringen, so dass geeignete pseudotypisierte AAV-

Vektoren für einen Gentrasfer erfolgreich transvaskulär gegeben werden können: Die 

pseudotypisierten AAV-6, -8, und -9 Vektoren zeigten bei systemischer Applikation in 

erwachsenen Mäusen einen ausgeprägten und einheitlichen Transfer eines lacZ 

Reportergens47;63;110;112. Die intravenöse Injektion von AAV-8 Vektoren ermöglichte die 

Wiederherstellung von Delta-Sarkoglykan in Delta-Sarkoglykan-defizienten TO-2 

Hamstern162 und verlängerte deren Lebensspanne durch Vermeiden des 

Herzversagens in diesem Tiermodell der dilatativen Kardiomyopathie. 

 



 - 43 - 

IV.1.3. AAV SEROTYPEN 2 UND 6 

 

 

Für die vorliegende Studie mussten wir Vektoren wählen, die aufgrund ihrer 

pseudotypisierten Eigenschaften sowohl in der Lage sind, Kardiomyozyten zu 

infizieren, wie auch nach der transvaskulären Gabe die Gefäßwand effizient zu 

durchdringen. AAV Serotyp 2 war der erste und ist der mit Abstand am besten 

untersuchte AAV-Vektor zur Durchführung eines Gentransfers15;43;78. AAV Serotyp 6 

zeigt einen ausgeprägten Herz- und Lungentropismus, weshalb in dieser Studie 

untersucht werden sollte, ob es im myokardialen Zielgewebe einen Unterschied in der 

Transduktionseffizienz von AAV Serotyp 6 und dem bereits weitgehend erforschten 

AAV-Serotyp 2 gibt. Beide Vektoren sind in der Lage, Mäusemyokard nach 

systemischer Vektorapplikation effektiv zu transduzieren47;107. 

 

In unserem Studienprotokoll, das den Einsatz der selektiven druckregulierten 

Retroinfusion als Applikationsverfahren vorsieht, ist es aus technischen Gründen 

notwendig, die Versuchstiere systemisch zu heparinisieren, um einen 

koagulationsbedingten Verschluss der Katheter zu vermeiden. Heparan-Sulfat-

Proteoglykan (HSPG) ist ein primärer Zelloberflächenrezeptor für AAV-Serotyp 

2111;121;141 und AAV Serotyp 3121. Damit die Gabe der AAV-2 Viren über die 

transvaskuläre Route in Frage kommt, haben wir einen Heparinbindungsstellen-

gelöschten AAV-2 Vektor (R484E, R585E)75 verwendet, da die AAV-2 Vektoren mit 

intakter Heparinbindungsstelle sonst noch intravaskulär inaktiviert würden. Der 

Bindungsverlust der AAV-2 Vektoren an Heparan-Sulfat-Proteoglykan wird hierbei 

durch die Inaktivierung von zwei Heparinbindungsmotiven an den Positionen 484 und 

585 ermöglicht75. AAV Serotyp 6 weist keine Heparinbindung auf134. 

 

 

IV.1.4. VASCULAR ENDOTHELIAL GROWTH FACTOR (VEGF) 

 

 

Vascular Endothelial Growth Factor (VEGF) gehört zur Subfamilie der 

Wachstumsfaktoren und ist ein bedeutendes Signalprotein sowohl zur Vaskulo- wie 

auch zur Angiogenese. Es sind sechs verschiedene VEGF-Formen bekannt144, wobei 
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VEGF-A der am besten erforschte und wohl wichtigste Vertreter ist156. Durch Migration 

und gesteigerte Mitoseraten von Endothelzellen fördert VEGF-A die 

Angiogenese36;83;87;108;144;145, es fördert die Bildung von Gefäßlumina und deren 

Größenwachstum20;87;108;130;144;145, es erzeugt Fensterungen in der 

Endothelschicht97;103;124;157, bildet einen chemotaktischen Reiz für Granulozyten und 

Makrophagen97;103;144 und führt über Stickstoffmonoxid (NO) – Freisetzung indirekt zur 

Vasodilatation38;66;92;102;147;154.  

 

In der vorliegenden Studie wollten wir keine Angiogenetischen Effekte durch VEGF 

erzielen, sondern untersuchen, ob die simultane kurzzeitige Applikation von 

rekombinantem humanem Vascular Endothelial Growth Factor (rhVEGF) zusammen 

mit den AAV-Vektoren über eine Erhöhung der vaskulären Permeabilität zu einer 

verbesserten Überwindung der Gefäßbarriere und damit zu einer Steigerung der 

Transduktionseffizienz führt.  

 

 

IV.2. DISKUSSION DER STUDIENERGEBNISSE 

 

IV.2.1. AAV SEROTYP 6 ZEIGT EINE HÖHERE TRANSDUKTIONSEFFIZIENZ 

 

 

Zur Untersuchung der Transduktionseffizienz wurde zum einen der Nachweis von 

viralem Genom der Adenoassoziierten Viralen Vektoren in den Kardiomyozyten des 

Zielgebiets mittels Polymerasekettenreaktion erbracht. Zum zweiten erfolgte die 

quantitative Messung der Expression des Genprodukts Luciferase im Ziel- und 

Kontrollgebiet. 

 

In allen Versuchsgruppen wurde serotypunabhängig eindeutig mittels PCR Vektor-

Genom im Zielbereich des Ramus interventricularis anterior (LAD / RIVA) 

nachgewiesen.  

 

Die durchschnittliche Luciferaseaktivität im Zielgebiet zeigte hochsignifikante 

Unterschiede in der Transduktionseffizienz zugunsten des AAV Serotyps 6 verglichen 

mit AAV Serotyp 2.  
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Die Überlegenheit der Transduktionseffizienz des AAV Serotyps 6 ist bei gleichen 

Ausgangsbedingungen in allen Versuchsgruppen im Pseudotyp des Vektors zu 

suchen. Aufgrund der verschiedenen Beschaffenheit der Viruskapside ist der 

Gewebetropismus unter den AAV Serotypen weit gefächert15;163. Die Zellaufnahme 

erfolgt hierbei rezeptorvermittelt15;148;153. Der Herz- und Lungentropismus von AAV-6 

konnte in zahlreichen Studien belegt werden47;110;112;113;163. Die Ergebnisse unserer 

Untersuchung belegen, dass Serotyp 6 intravaskulär über selektive druckregulierte 

Retroinfusion gegeben, 28 Tage nach Vektorapplikation die höhere 

Transduktionseffizienz besitzt als AAV Serotyp 2.  

 

AAV Serotypen wurden nach systemischer Vektorapplikation in die Schwanzvene von 

Mäusen neben ihrem Gewebetropismus auch systematisch hinsichtlich ihres 

absoluten Expressionsvermögens und der Expressionskinetik ihres transgenen 

Produktes untersucht163. Die Serotypen zeigten in einer Untersuchung über 100 Tage 

unterschiedliche Expressionsvermögen, wobei AAV Serotyp 2 in die Gruppe mit dem 

niedrigsten Expressionsvermögen eingestuft wurde – Serotyp 6 zeigte in der 

moderaten Gruppe ein per se deutlich höheres Expressionsvermögen, konnte jedoch 

nicht mit den Serotypen 7 und 9 in der Spitzengruppe konkurrieren163. Auch 

hinsichtlich der Expressionskinetik unterscheiden sich die Serotypen: Gehört Serotyp 

6 der Gruppe mit dem schnellen Expressionsbeginn an, ist die Kinetik des 

Expressionsverlaufes bei Serotyp 2 deutlich langsamer163. Dies ist sicherlich ein 

Kritikpunkt an der von uns vorgenommenen Untersuchung, da lediglich eine 

Luciferaseaktivitätsbestimmung nach 28 Tagen und zu keinem späteren Zeitpunkt 

erfolgte. Aufgrund der langsameren Expressionskinetik des Serotyps 2 wäre hier 

zumindest ein moderater weiterer Anstieg der transgenen Expression möglich, bei 

dem jedoch kein Einfluss auf das Signifikanzniveau zu erwarten wäre. Zwar konnte 

die Arbeitsgruppe um Palomeque an Mäusekardiomyozyten zeigen, dass während die 

AAV-Serotypen 1, 6 und 8 einen hohen Tropismus zu den Herzmuskelzellen mit 

schneller Kinetik und dem Erreichen eines Plateaus der transgenen Expression nach 

vier Wochen aufweisen113, der Serotyp 2 einen langsameren Anstieg verzeichnet, 

aber nach drei Monaten sogar vergleichbare Expressionslevel erreichen kann113, so 

ist jedoch die Ursache dieses Untersuchungsergebnisses darin zu suchen, dass in 

letzterer Arbeitsgruppe die Vektoren nicht intravaskulär appliziert, sondern direkt in die 
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apikale Vorderwand des Herzens injiziert wurden, sich die Viren konsequent in 

ständigem Kontakt mit den Zielzellen befanden. Somit ist kein Vergleich gegenüber 

der intravasalen Applikation möglich, bei der die Kontaktzeit des Virus mit den 

Zielzellen und das Permeationsvermögen durch die Gefäßwand von entscheidender 

Bedeutung sind.  

 

Die Transduktionseffizienz des AAV Serotyps 6 ist 28 Tage nach intravaskulärer Gabe 

mittels selektiver druckregulierter Retroinfusion deutlich höher als dies beim Serotyp 2 

der Fall ist. Die verminderte Transduktionseffizienz von AAV Serotyp 2 scheint 

dadurch bedingt, dass das Virus zum einen über seine Interaktion mit den 

Oberflächenrezeptoren des Kardiomyozyten weniger effektiv in die Zielzelle gelangt 

und es zum anderen die Gefäßbarriere weniger effektiv passieren kann, was dadurch 

gestützt werden kann, dass eine Änderung der Gefäßpermeabilität durch VEGF die 

Transduktionseffizienz des Serotyps 2 beeinflusst. 

 

 

IV.2.2. SIMULTANE VEGF-APPLIKATION ERHÖHT DIE TRANSDUKTIONS-

EFFIZIENZ 

 

 

Die Annahme, dass in wesentlichem Maße Permeationsprobleme durch die 

Gefäßwand die geringere Transduktionseffizienz von AAV-2 bedingen, wird durch 

eine Verbesserung der transgenen Expression nach simultaner Zugabe von 

rekombinanten humanen VEGF untermauert. VEGF erzeugt Fensterungen in der 

Endothelschicht, was zu einer Zunahme der vaskulären Permeabilität, und damit zu 

einem verringerten Passagehindernis für die Vektoren führt97;103;124;157.  

 

Die simultane Coapplikation von rhVEGF, als zusätzliches Retroinfusat über die SSRI, 

erhöhte die durchschnittliche transgene Expression im Zielgebiet des Ramus 

interventricularis anterior (LAD / RIVA) signifikant, der AAV Serotyp 2 konnte 

annähernd die durchschnittlichen Luciferasewerte erreichen, die nach Behandlung mit 

AAV Serotyp 6 erzielt werden konnten (vgl. Ergebnisse). 
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Eine Studie, ob auch die Transduktionseffizienz von Serotyp 6 durch zusätzliche 

rhVEGF-Gabe noch weiter optimierbar gewesen wäre, ist sicherlich ein Kritikpunkt, 

der im Rahmen der vorliegenden Arbeit hätte untersucht werden können. Allerdings 

war die Gabe von AAV Serotyp 6 alleine bereits so effektiv, dass keine weiteren 

Adjuvantien unbedingt erforderlich waren. 

 

 

IV.2.3. VERTEILUNGSMUSTER DER TRANSGENEN EXPRESSION IM 

ZIELGEBIET 

 

 

Die Verprobung des linken Ventrikels in insgesamt 108 in ihrer Position klar definierte 

Segmente ermöglicht eine detaillierte Darstellung, in welchen Bereichen des 

Zielgebiets die transgene Expression besonders hoch ist. Die durchschnittliche 

Luciferaseaktivität wurde in allen Segmenten gemessen und das Verteilungsmuster 

der transgenen Expression im Zielgebiet bestimmt. Unabhängig von transduziertem 

AAV Serotyp und unabhängig von der zusätzlichen Gabe von rhVEGF, stieg die 

transgene Expression in allen myokardialen Zielsegmenten im Bereich des Ramus 

interventricularis anterior (LAD / RIVA) an, es zeigten sich Expressionsgradienten von 

epimyokardialen zu endomyokardialen Proben und von Gewebeproben im Bereich 

des proximalen zum distalen Ramus interventricularis anterior (LAD / RIVA). Der 

Gradient zeigt ein Gefälle von epimyokardial nach endomyokardial und von proximal 

nach distal.  

 

Ein Gefälle der Luciferaseaktivität von Epimyokardial nach Endomyokardial ist nicht 

verwunderlich, da die Coronargefäße epimyokardial verlaufen. Bei Gabe der viralen 

Vektoren in diese Gefäße wird sich die höchste Vektorkonzentration um das 

Ausgangsgefäß, dessen Abzweigungen und Kapillarbetten zunächst epimyokardial 

ausbreiten. Analog der zu überwindenden Strecke durch das Myokard bis zu den 

endomyokardialen Schichten wird die Anzahl der viralen Vektoren zunehmend 

abnehmen, so dass endomyokardial die geringsten Viruskonzentrationen zu erwarten 

sind. Zudem ist die Wandspannung in den inneren Myokardschichten am höchsten, 

was druckbedingt zu einem geringeren Fluss des Retroinfusats in diesem Bereich 

führt. Dieses Verteilungsverhalten zeigte sich bereits in zahlreichen 
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Voruntersuchungen, sowohl bei Adenoviralen Vektoren10, wie auch nach 

Medikamentenapplikation55;57;125 über die selektive druckregulierte Retroinfusion. 

 

Ein fallender Luciferaseaktivitätsgradient zwischen proximalem und distalem Ramus 

interventricularis anterior (LAD / RIVA), wurde bei Gabe von adenoviralen Vektoren 

insbesondere bei der Retroinfusionsbehandlung über einen einmaligen 10minütigen 

Zyklus beobachtet10. In letzterem Versuchsprotokoll konnte ein zugunsten der distalen 

LAD günstigeres Verteilungsverhalten durch Gabe von zweimaligen 10minütigen 

Zyklen Retroinfusat, unterbrochen von einer halbstündigen Pause zur Vermeidung 

von Ischämieschäden, erzielt werden.  

 

In unserer Untersuchung erfolgte ebenfalls die Retroinfusionsbehandlung über zwei 

10minütige Zyklen, jedoch mit einer Pause von fünf Minuten. Einzige Unterschiede zu 

beschriebenem Studienprotokoll bei adenoviraler Retroinfusionstherapie waren die bei 

uns kürzere Pausenzeit, die bei uns deaktivierte Absaugeinheit und die 

unterschiedliche Viruszahl und –art (3,5 * 1010 pfu AAV vs. 4.0-5.0 * 109 pfu 

Adenovirus). 

 

Die in unserer Studie höhere Viruszahl lässt ein inhomogeneres Verteilungsmuster 

nicht erwarten. Die Absaugeinheit der selektiven druckregulierten Retroinfusion, deren 

Funktion die Verminderung der systemischen Dissemination des Retroinfusates ist 

und in unserem Versuchsprotokoll deaktiviert wurde, hat ebenfalls keinen zu 

erwartenden negativen Effekt auf das Verteilungsmuster der Vektoren im Zielbereich. 

Die Dauer der Pause zwischen den Retroinfusionszyklen dient lediglich der 

Regeneration des Myokards zur Vermeidung von ischämiebedingten Schäden und 

erklärt ebenfalls nicht die vorliegende Luciferaseaktivitätsverteilung. Ursächlich zu 

diskutieren bleiben neben Eigenschaften der Adenoassoziierten Viralen Vektoren per 

se, anwenderbedingte Unterschiede in beiden Studien, insbesondere bei der 

Positionierung des SSRI-Katheters in die anteriore interventrikuläre Herzvene (AIV). 
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IV.2.4. NACHWEIS VON VEKTORGENOM IN LUNGE UND LEBER 

 

 

Ziel unseres Versuchsprotokoll war es, über die druckregulierte selektive 

Retroinfusion eine möglichst lange Kontaktzeit der viralen Vektoren im myokardialen 

Zielgebiet zu erreichen, um einen möglichst effektiven Gentransfer erzielen zu 

können. Die sekundäre systemische Dissemination, die durch die SSRI mithilfe ihrer 

Möglichkeit zur Absaugung des therapeutischen Agens minimiert werden kann10;11, 

stand in diesem Versuchsvorhaben nicht im Vordergrund. Daher wurde die 

Absaugeinheit der SSRI deaktiviert. Dies bot zwei Vorteile: Zum einen konnte die 

Kontaktzeit der Vektoren im Zielbereich maximiert werden. Zum anderen führte dies 

zu einer Vektordissemination in den Körperkreislauf, wodurch untersucht werden 

konnte, ob die AAV Serotypen 2 und 6 weitere Gewebe entsprechend ihres 

unterschiedlichen Gewebetropismus infizieren und ob es in diesen Geweben zur 

Expression des Genproduktes trotz des kardiospezifischen CMV-MLC2v – Promotors 

kommt. 

 

Die Transduktion der nichtkardialen Gewebe aus Leber, Lunge, Aorta und 

Skelettmuskel wurde mittels Polymerasekettenreaktion 28 Tage nach erfolgtem 

Gentransfer auf das Vorhandensein von Vektor-DNA untersucht. In Aorta und 

Skelettmuskel konnte unabhängig vom transduzierten Serotyp und unabhängig von 

der Coapplikation von rhVEGF keine Virus-DNA gefunden werden. In der mit AAV 

Serotyp 6 transduzierten Versuchsgruppe wurden signifikante Mengen von viralen 

Genom in Leber und Lunge detektiert, was sich mit den bisherigen Erkenntnissen des 

Gewebetropismus von AAV Serotyp 6 deckt22;113;163. 

 

 

IV.2.5. LUNGE UND LEBER ZEIGEN KEINE TRANSGENE EXPRESSION 

 

 

Trotz der mittels Polymerasekettenreaktion nachgewiesenen Vektor-DNA des AAV 

Serotyps 6 in Lunge und Leber, konnte mittels Messung der Luciferaseaktivität keine 

transgene Expression in genannten Organen nachgewiesen werden. In keinem der 

sonstigen geprüften nichtkardialen Organe konnte Vektor-DNA gefunden werden. 
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Die viralen Vektoren haben also aus der Blutbahn heraus hepatische und pulmonale 

Zellen gemäß ihres Gewebetropismus infiziert und es kam zur Integration viraler DNA 

in das Wirtsgenom, wo sie sich mittels PCR nachweisen ließ. Jedoch wurde kein 

transgenes Produkt des Reportergens exprimiert, es erfolgte also keine Transkription 

aus dem übertragenen genetischen Material. Diese Beobachtung unterstreicht die 

Spezifität der verwendeten Cytomegalievirus-verstärkten Myosin-Leichte-Ketten-2v-

Promotorsequenz (CMV-MLC2v) als kardioselektiven Promotor39;53.  

 

Es befand sich kein genetisches Material des AAV Serotyps 2 in der Leber, obwohl 

die Hepatozyten im Tropismusspektrum des nativen Serotyps 2 liegen34;163. Dies ist 

am ehesten dadurch bedingt, dass wir durch die Deletion der Heparinbindungsstellen 

an den Positionen 484 und 585 einen modifizierten AAV-2 Vektor erzeugten, dessen 

Tropismus zu Gunsten der Myokard- und zu Ungunsten der Lebertransduktion 

verschoben wurde107;115. Diese Möglichkeit der Modifikation von AAV-Vektoren mit der 

Folge einer Tropismusverschiebung zugunsten des gewünschten Zielorgans stellt 

einen herausragenden Vorteil von Adenoassoziierten Viralen Vektoren als Vektoren 

im Rahmen eines therapeutischen Gentransfers dar. 

 

 

IV.3. LIMITATIONEN UND ÜBERTRAGBARKEIT 

 

 

Adenoassoziierte Virale Vektoren besitzen eine Reihe von Eigenschaften, die sie für 

den Einsatz als Vektoren für einen therapeutischen Gentransfer prädestinieren: Ihre 

Nonpathogenität in Abwesenheit von Helferviren löst keine Toxizität oder 

Entzündungszeichen im Wirtsorganismus aus7;13;16;96, was einen wesentlichen 

Baustein für die Verträglichkeit der Viren und die Sicherheit des Empfängers darstellt. 

Die stabile Integration in die Wirts-DNA13;15;16;96 ermöglicht bei geeignetem Promotor 

eine langanhaltende Expression des Genproduktes13;95;96, so dass der gewünschte 

Zieleffekt beispielsweise im Rahmen einer therapeutischen Arterio- & Angiogenese 

nicht nur transient zum Tragen kommt. Die Möglichkeit der Pseudotypisierung von 

verschiedenen AAV Serotypen durch Änderung der Struktur des Viruskapsids 

ermöglicht eine Einflussnahme auf den Gewebetropismus der Viren, so dass die 
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Transduktion kontrolliert auf das Zielgewebe konzentriert werden kann84;89. 

Adenoassoziierte Virale Vektoren sind ferner in der Lage, sowohl sich teilende, wie 

auch sich nicht teilende Zellen zu infizieren13;24;116, womit sie einen großen Vorteil 

gegenüber etwa Retroviren haben, die aufgrund der mangelnden DNA-Synthese in 

sich nicht teilenden Zellen nicht suffizient eingesetzt werden können7. Und das 

Wildtypvirus zeigt, auf den Menschen übertragen, ein geringes Risiko einer 

insertionellen Mutagenese, da er sich ortsspezifisch in den Genlocus AAVS1 des q-

Armes (q13.2-13.4) des humanen Chromosoms 19 integriert35;54;79;80;95;127;128 und die 

Variabilität der transgenen Expression gering ist.  

 

Limitierend für den gentherapeutischen Einsatz Adenoassoziierter Viraler Vektoren ist 

vor allem deren geringe Beladungskapazität von 4,7kB, die es nur ermöglicht, relativ 

kleine Gene zu übertragen13-16;22;24;44;153. Ferner existieren Berichte von ausgeprägten 

Immunantworten durch präexistierende Antikörper gegenüber zahlreichen AAV 

Serotypen. Insbesondere anti-AAV-2-Antikörper sind hochprävalent in der 

menschlichen Population vorhanden48. Daher wäre vor einer Übertragung von AAV-

Vektoren auf den Menschen, entweder die Suche nach präexistierenden Antikörpern 

obligat, oder die Entwicklung eines neuen pseudotypisierten AAV Vektors, der keine 

Reaktivität mit den Antikörpern aufweist, erforderlich. Die Entdeckung des AAV 

Serotyps 12 und die Resistenz des rekombinanten AAV Serotyps 12 gegenüber 

zirkulierenden humanen Antikörpern131 ist ein viel versprechender Ansatz, der jedoch 

weiterer Forschung insbesondere bezüglich des Gewebetropismus der Viren bedarf.  
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V. Zusammenfassung 

 

 

Eckpfeiler für einen effizienten kardialen Gentransfer ist das Vorhandensein eines 

Vektorsystems, welches eine selektive und eine lang anhaltende Expression des 

Zielgens ermöglicht. In tierexperimentellen Modellen an Nagern konnte gezeigt 

werden, dass Adenoassoziierte Virale Vektoren wie der Serotyp 6 Kardiomyozyten 

effektiv transduzieren können. Da es signifikante speziesabhängige Unterschiede in 

den Transduktionscharakteristika gibt, sind Studien am Großtiermodell von 

entscheidender Bedeutung für präklinische Evaluationen.  

 

In der vorliegenden Untersuchung verglichen wir die Effizienz des Gentransfers von 

pseudotypisiertem AAV Serotyp 6 und Heparinbindungsstellen-gelöschten-AAV-

Serotyp-2-Vektoren in einem Tierexperimentellen Modell am Deutschen Landschwein. 

Die Applikation von jeweils 3,5x1010 Adenoassoziierten Viralen Vektoren erfolgte 

mittels selektiver druckregulierter Retroinfusion (SSRI) in die anteriore 

interventrikuläre Vene (AIV) des Herzens (n=5 Tiere pro Versuchsgruppe); ein 

Verfahren, von welchem zuvor die Effizienz eines viralen Gentransfers durch 

Adenoviren belegt werden konnte. Alle Vektoren beinhalteten ein 

Luciferasereportergen unter der Kontrolle eines kardiopezifischen Promotors (CMV-

MLC2v). Der Expressionsgrad wurde vier Wochen nach erfolgtem Gentransfer durch 

Messung der Luciferaseaktivitität bestimmt. Um systemische Nebenwirkungen durch 

Transduktion von peripheren Geweben zu erfassen, wurden Gewebeproben auf das 

Vorhandensein von Vektor-DNA mittels Polymerasekettenreaktion (PCR) untersucht. 

Die selektive druckregulierte Retroinfusion von pseudotypisierten-AAV-Serotyp-6 -

Vektoren in die anteriore interventrikuläre Vene (AIV) führte zu einer wesentlichen 

Erhöhung der Reportergenexpression im Zielgebiet des Ramus interventricularis 

anterior (RIVA / LAD) der linken Koronararterie (65943 ± 31122 vs. Kontrollgebiet 294 

± 69, p<0,05). Die Retroinfusion von Heparinbindungsstellen-gelöschten-AAV-

Serotyp-2-Vektoren zeigte eine geringere transgene Expression, welche durch 

Coadministration von rekombinantem humanem Vascular Endothelial Growth Factor 

(rhVEGF) erhöht werden konnte (1365 ± 707 ohne rhVEGF vs. 38760 ± 2448 mit 

rhVEGF, p<0,05). Es konnte keine signifikante transgene Expression in anderen 
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Organen als dem Herzen festgestellt werden, obwohl Vektorgenome des AAV 

Serotyps 6 auch in Leber und Lunge nachgewiesen wurden.  

 

Zusammenfassend führte am Großtiermodell des Deutschen Landschweins die 

selektive druckregulierte Retroinfusion (SSRI) von pseudotypisierten-AAV-Serotyp-6-

Vektoren in die anteriore interventrikuläre Vene (AIV) des Herzens zu einer 

effizienten, langzeitigen myokardialen Reportergenexpression in dem Zielgebiet des 

Ramus interventricularis anterior (RIVA / LAD) der linken Koronararterie. Die 

Coapplikation von rekombinantem humanem Vascular endothelial growth factor 

(rhVEGF) erhöhte die Transduktionseffizienz von Heparin-bindungsstellen-

gelöschtem-AAV-Serotyp-2 signifikant.  

 

Die höhere kardiale Transduktionseffizienz von AAV Serotyp 6 wird dabei auf seine 

dem Serotyp 2 überlegenen Tropismuseigenschaften, insbesondere bei der 

Permeation durch die Gefäßwand, zurückgeführt. 
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VII. Abkürzungen 

 

 

A. Arteria 

Aa. Arteriae 

AAV Adenoassoziiertes Virus 

AAVS1 Genlocus q-Arm (q13.2-13.4) humanes Chromosom 19 

ACE Angiotensin Converting Enzyme 

AIV anterior interventricular vein 

anti-AAV2-AK Anti-AAV2-Antikörper 

Aqua dest Destilliertes Wasser 

atm athmosphere (1 atm = 101,325 Pascal) 

ATP Adenosintriphosphat 

BSA Bovines Serum Albumin 

cDNA complementary DNA  

CK Creatinkinase 

cm Centimeter 

cm3 Kubikcentimeter 

CMV Cytomegalievirus 

CMVenh-MLC1.5-Luc cytomegalievirus enhanced myosin light chain 1.5 
luciferase Gen 

DNA   Deoxyribonucleic acid 

dNTP Deoxyribonucleotid 

DTT Dithiothreitol 

EDTA Ethylendiamintetraacetat 

EKG Elektrokardiogramm 
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ELISA enzyme linked immunosorbent assay  

ENDO Endomyokardial 

EPI Epimyokardial 

F Frech cathether scale 

FGF Fibroblast Growth Factor 

g Gramm 

H2O Wasser 

HCl Salzsäure 

HE Hämatoxylin-Eosin-Färbung 

HF Herzfrequenz 

HIF 1α Hypoxia Inducible Factor 1α 

HPSG Heparan-Sulfat-Proteoglykan 

hsp70 heat shock protein 70 

hsp90 heat shock protein 90 

HVJ Hemagglutinating Virus of Japan 

i.m. intramuskulär 

i.v. intravenös 

ICF Institut für Chirurgische Forschung der LMU München 

IE Injektionseinheit 

ITR inverted terminal repeat 

kB kilo-Basenpaare 

KCl Kaliumchlorid 

kDa Kilodalton 

KG Körpergewicht 
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kg Kilogramm 

KM Kontrastmittel 

LAD left anterior descending artery 

LVEDP Linksventrikulärer Enddiastolischer Druck 

m Meter 

mg  Milligramm 

µg Mikrogramm 

Mg(OH)2 Magnesiumhydroxid 

MgCl2 Magnesiumchlorid 

MgCO3 Magnesiumcarbonat 

MgSO4 Magnesiumsulfat 

MID Midmyokardial 

ml  Milliliter 

µl Mikroliter 

MLC myosin light chain 

µm Mikrometer 

mmHg millimeter Quecksilbersäule  

mmol Millilmol 

mol Molekulargewicht 

mV Millivolt 

Na2HPO4 Natriumhydrogenphosphat 

NaCl Natriumchlorid 

ng  Nanogramm 

nm Nanometer 
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NO Stickstoffmonooxid 

OP Operation 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

pfu plaque forming unit 

pH pH-Wert 

PTCA percutaneous transluminal coronary angioplasty 

R484E, R585E Heparinbindungsstellengelöschter AAV-2 Vektor 

RCX Ramus circumflexus 

rhVEGF recombinant human vascular endothelial growth factor 

RIVA Ramus interventricularis anterior 

RLU relative light units 

RNA Ribonucleic acid 

RNAse Ribonuclease  

rpm revolutions per minute 

RR Riva-Rocci 

SD/SA splice-donor / splice-acceptor signal 

SERCA Sarkoendoplasmatisches-Retikulum-ATPase 

SOD Superoxiddismutase 

SSRI selective synchronized suction and retroinfusion 

TBE TRIS-Borat-EDTA - Puffer 

Tricin N-(Tris(hydroxymethyl)methyl)glycine 

TRIS Tris-(hydroxymethyl)-aminomethan 

U Units 
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UV Ultraviolett 

V Volt 

V. Vena 

VEGF vascular endothelial growth factor 

Vol% Volumenprozent 

vs versus 

Vv. Venae 

VVD Venenverschlußdruck 
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