Dissertation zur Erlangung des Doktorgrades
der Fakultät für Chemie und Pharmazie
der Ludwig-Maximilians-Universität München

Der Einfluss von Struktur- und Proteinwechselwirkungen
auf die Funktion von Steroidhormonrezeptoren am Beispiel von BAG-1M und
HspBP1 sowie Mutationen der Ligandenbindungsdomäne

Regina Theresia Maria-Anna Knapp

aus

Traunstein

2009
Erklärung

Ehrenwörtliche Versicherung

Diese Dissertation wurde selbstständig, ohne unerlaubte Hilfe erarbeitet.

München, am 28.10.2009

Regina Knapp

Dissertation eingereicht am: 28.10.2009
1. Gutachter: Prof. F. Holsboer
2. Gutachter: Prof. H. Zorbas
Mündliche Prüfung am: 28.04.2010
Für Sigrid
Die vorliegende Dissertation wurde unter der Leitung von Prof. Florian Holsboer und unter der Betreuung von Dr. Theo Rein am Max-Planck-Institut für Psychiatrie angefertigt.

Ich möchte mich sehr herzlich bei **Prof. Florian Holsboer** bedanken, der mir die Durchführung meiner Doktorarbeit ermöglicht hat. Die Arbeit in diesem anregenden wissenschaftlichen Umfeld war eine Bereicherung und eine sehr interessante Erfahrung.

Sehr herzlich bedanke ich mich bei **Prof. Haralabos Zorbas** dafür, dass er meine Arbeit an der LMU vertreten hat.

Mein besonderer Dank gilt **Dr. Theo Rein** für die bestmögliche wissenschaftliche Betreuung, seine Unterstützung, Diskussionsbereitschaft und seine unerschütterliche Ruhe.

Vielen herzlichen Dank an **Dr. Andreas Bracher** für die Strukturanalysen, seine Zeit und sein Engagement das er in „Flora“ investierte, bedanken.

Herzlich bedanken möchte ich mich bei **Prof. Chris Turck, Dr. Giuseppina Maccarrone** und **Christiane Rewerts** für die massenspektrometrischen Analysen.

Dr. Felix Hausch und **Dr. Christian Kozany** danke ich sehr für die gute Zusammenarbeit bei der Etablierung der Polarisationsexperimente und für die wissenschaftlichen Diskussionen.

Für ihre wissenschaftliche Unterstützung und die gute Zusammenarbeit möchte ich mich bei **Dr. Gabriela Wochnik und Dr. Ulrike Schmidt** bedanken.

Besonders herzlich möchte ich mich bei **Dr. Jürgen Zschocke** für seine Zeit zum Korrekturlesen, für wissenschaftliche Gespräche, für seinen Führungsstil (Tango, Salsa etc.) und meine ersten Erfahrungen im Klettern bedanken.

Kathi danke ich sehr herzlich für ihr Organisationstalent im Labor und für ihre Hilfe bei diversen Experimenten.

Meinen Kollegen, **Bärbel, Nicki, Vanessa, Nils, Jan, Tatjana, Ludwig** und **Nele** danke ich sehr für das inspirierende Arbeitsklima und ihre Kameradschaft innerhalb und außerhalb des Labors.

Den Kollegen vom **technischen Dienst** und der **EDV** möchte ich sehr herzlich für ihre Arbeit danken. Durch die Reparatur und Wartung wissenschaftlicher Geräte wie z. B. Brutschränke, Luminometer etc. trugen sie ihren Teil zum Gelingen dieser Arbeit bei.

Meiner **Mutter** und meinen **Freunden**, ganz besonders **Stefan, Xandi, Armin** und **Maria** möchte ich an dieser Stelle für ihre moralische Unterstützung und für ihre Freundschaft danken, die mich seit Beginn meines Studiums und länger begleitet.
Inhaltsverzeichnis...I-IV

Abkürzungen ..V

1 EINLEITUNG .. 1
1.1 Was ist Stress? ... 1
1.2 Die HPA-Achse .. 1
1.3 Veränderungen der HPA-Achsen Aktivität bei depressiver Störung 3
1.4 Die Hypothese des MR/GR-Gleichgewichts .. 4
1.5 Aufbau und strukturelle Domänen von Steroidhormonrezeptoren der Klasse I 6
1.6 Signaltransduktion durch Steroidhormonrezeptoren .. 9
1.7 Faltungszyklus der Steroidhormonrezeptoren .. 10
1.8 BAG-1M und HspBP1: alternative Hsc70/Hsp70-NEF ... 12
1.8.1 Bcl2-assoziiertes Athanogen 1: BAG-1 .. 12
1.8.2 Hsp70-bindendes Protein 1: HspBP1 .. 16
1.9 Zielsetzung dieser Arbeit ... 17

2 MATERIAL ... 19
2.1 Chemikalien und gebrauchsfertige Lösungen .. 19
2.2 Verbrauchsmaterial .. 22
2.3 Enzyme ... 22
2.3.1 Restriktionsendonucleasen ... 22
2.3.2 DNA-Polymerasen .. 23
2.3.3 Sonstige Enzyme ... 23
2.4 Marker .. 23
2.5 Antikörper ... 24
2.6 Zelllinien und Bakterienstämmen .. 25
2.6.1 Zelllinien .. 25
2.6.2 Bakterienstämmme ... 25
2.7 Allgemeine Plasmide ... 26
2.8 Klonierte Plasmide ... 27
2.9 Primer .. 29
Inhaltsverzeichnis

2.10 Kits, Geräte, Apparaturen und Software ... 31
2.10.1 Kits ... 31
2.10.2 Geräte und Apparaturen ... 32
2.10.3 Software ... 33

3 METHODEN .. 34
3.1 Zellkultur .. 34
3.1.1 Kultivierung von Säugetierzellen ... 34
3.1.2 Dauerhafte Lagerung und Inkulturnahme .. 34
3.1.3 Herstellung von steroidfreiem FBS .. 35
3.1.4 Herstellung von Trypsin und PBS ... 35
3.1.5 Mycoplasmentest ... 36
3.1.6 Transfektion von Säugetierzellen ... 37
3.1.7 Reportergen-Experimente .. 39

3.2 Mikrobiologische Standardmethoden .. 42
3.2.1 Herstellung von Nährmedien und Agar-Platten ... 42
3.2.2 Kultivierung und Lagerung von E. coli ... 42
3.2.3 Herstellung chemisch kompetenter E. coli .. 43
3.2.4 Hitzeschock Transformation von E. coli .. 43

3.3 DNA-Analytik ... 44
3.3.1 Plasmidpräparation .. 44
3.3.2 DNA-Fällung mit Natriumacetat .. 45
3.3.3 Photometrische Bestimmung der DNA-Konzentration 46
3.3.4 Isolierung von mRNA aus Säugetierzellen mit TRIZOL 46
3.3.5 Reverse Transkription ... 47
3.3.6 Amplifizierung von DNA mittels Polymerase-Ketten-Reaktion 47
3.3.7 Enzymatische Spaltung von DNA .. 53
3.3.8 Enzymatische Ligation ... 53
3.3.9 DNA-Agarosegel-Elektrophorese ... 54
3.3.10 DNA-Extraktion aus dem Agarosegel ... 54
3.3.11 Reinigung von DNA-Fragmenten mittels PCR-Reinigungs-Kit 55

3.4 Proteinbiochemische Methoden .. 55
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Unterkapitel</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.1</td>
<td></td>
<td>Bestimmung der Proteinkonzentration</td>
<td>55</td>
</tr>
<tr>
<td>3.4.2</td>
<td></td>
<td>SDS-Polyacrylamid-Gelektrophorese (SDS-PAGE)</td>
<td>57</td>
</tr>
<tr>
<td>3.4.3</td>
<td></td>
<td>Kolloidal Coomassie-Färbung von SDS-Gelen</td>
<td>58</td>
</tr>
<tr>
<td>3.4.4</td>
<td></td>
<td>Westernblot-Analyse</td>
<td>59</td>
</tr>
<tr>
<td>3.4.5</td>
<td></td>
<td>Färbung von Nitrozellulose-Membranen mit Amidoschwarz</td>
<td>61</td>
</tr>
<tr>
<td>3.4.6</td>
<td></td>
<td>Protein-Protein Co-Immunpräzipitation</td>
<td>61</td>
</tr>
<tr>
<td>3.4.7</td>
<td></td>
<td>Quantifizierung der Westernblots und Coomassie-Gele</td>
<td>63</td>
</tr>
<tr>
<td>3.4.8</td>
<td></td>
<td>Polarisationsexperiment: Hormonbindungsanalyse</td>
<td>64</td>
</tr>
<tr>
<td>3.4.9</td>
<td></td>
<td>Bestimmung der Menge an hormonbindungsfähigem Rezeptor mit $[^3]$H-Kortikosteron</td>
<td>66</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>ERGEBNISSE</td>
<td>67</td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td>Einfluss von BAG-1M auf den Progesteronrezeptor (PR): Funktions- und Interaktionsanalyse</td>
<td>67</td>
</tr>
<tr>
<td>4.1.1</td>
<td></td>
<td>Inhibition der Aktivität des Progesteronreceptors durch BAG-1M</td>
<td>67</td>
</tr>
<tr>
<td>4.1.2</td>
<td></td>
<td>Hsc70/Hsp70-vermittelte Interaktion des Progesteronrezeptors mit BAG-1M</td>
<td>69</td>
</tr>
<tr>
<td>4.1.3</td>
<td></td>
<td>Herstellung verschiedener Progesteronrezeptor-Mutanten</td>
<td>71</td>
</tr>
<tr>
<td>4.1.4</td>
<td></td>
<td>Funktionelle Analyse der Progesteronrezeptor-Mutanten</td>
<td>73</td>
</tr>
<tr>
<td>4.1.5</td>
<td></td>
<td>Interaktionsprofil von BAG-1M mit den PR-Mutanten – fehlende Interaktion mit PR_DBD</td>
<td>75</td>
</tr>
<tr>
<td>4.1.6</td>
<td></td>
<td>Verlust der Hsc70/Hsp70-Bindung an PR_DBD</td>
<td>79</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td>Vergleich von BAG-1M und HspBP1 bezüglich Ihrer Wirkung auf Funktion und Interaktion mit verschiedenen Steroidhormonrezeptoren und faltungsrelevanten Cofaktoren</td>
<td>82</td>
</tr>
<tr>
<td>4.2.1</td>
<td></td>
<td>Strategien zur Untersuchung der mechanistischen Grundlagen der Wirkung von BAG-1M und HspBP1</td>
<td>83</td>
</tr>
<tr>
<td>4.2.2</td>
<td></td>
<td>Rpt4 und Rpt6: Hsc70/Hsp70-unabhängige Interaktoren von BAG-1M</td>
<td>84</td>
</tr>
<tr>
<td>4.2.3</td>
<td></td>
<td>Verifizierung der Interaktion von Rpt4 und Rpt6 mit BAG-1M</td>
<td>85</td>
</tr>
<tr>
<td>4.2.4</td>
<td></td>
<td>Kein Verlust der Rezeptorbinding nach Deletion der ubiquitin-like Domäne in BAG-1M</td>
<td>87</td>
</tr>
<tr>
<td>4.2.5</td>
<td></td>
<td>Funktionelle Analyse des Einflusses von HspBP1 auf verschiedene Steroidhormonrezeptoren im Vergleich mit BAG-1M</td>
<td>89</td>
</tr>
<tr>
<td>4.2.6</td>
<td></td>
<td>Einfluss von HspBP1 und BAG-1M auf die Komposition der Chaperon-Rezeptor-Heterokomplexe</td>
<td>101</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

4.2.7 Etablierung eines zeitabhängigen Hormonbindungsexperiments in Gegenwart von BAG-1M und HspBP1 ... 107
4.3 Design eines murinen Mineralokortikoidrezeptors mit der Hormonaffinität des Glukokortikoidrezeptors .. 120
4.3.1 Zwei Strategien: mMR-GR-LBD Chimäre und Punktmutationen in der MR-LBD .. 120
4.3.2 Funktionelle Analyse der mMR-Mutanten ... 125
5 DISKUSSION .. 132
5.1 Modulation der Steroidhormonrezeptor-Funktion durch assoziierte Cochaperone ... 133
5.1.1 GR und PR: verschiedene Mechanismen der Inhibition durch BAG-1M? 134
5.1.2 Funktion der ubiquitin-like-Domäne von BAG-1M für die Regulation der Steroidhormonrezeptoren ... 138
5.1.3 Der mechanistische Unterschied zwischen BAG-1M und HspBP1 in der Regulation der Steroidhormonrezeptor-Funktion ... 144
5.1.4 Alles eine Frage der Zeit? ... 150
5.2 Modulation der Steroidhormonrezeptor-Aktivität durch gezielte Modifikationen der MR-LBD .. 152
5.2.1 Veränderung der Hormonbindungsaffinität des mMR durch Substitution und Mutationen der LBD .. 152
5.2.2 Ein neuer Ansatz zur Überprüfung der Relevanz der MR/GR-Balance für die Stressbewältigung ... 154
6 ZUSAMMENFASSUNG ... 156
7 LITERATURVERZEICHNIS .. 158
8 ANHANG ... 174
Lebenslauf .. 175
Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTH</td>
<td>adrenocorticotropes Hormon</td>
</tr>
<tr>
<td>ADP/ATP</td>
<td>Adenosin-5'-Diphosphat/-Triphosphat</td>
</tr>
<tr>
<td>AF</td>
<td>Aktivierungsfunktion</td>
</tr>
<tr>
<td>APS</td>
<td>Amoniumperoxodisulfat</td>
</tr>
<tr>
<td>AR</td>
<td>Androgenrezeptor</td>
</tr>
<tr>
<td>BAG-1</td>
<td>Bcl2-associated athanogene 1</td>
</tr>
<tr>
<td>CMV</td>
<td>Cytomegalovirus</td>
</tr>
<tr>
<td>CRH</td>
<td>corticotropin releasing hormon</td>
</tr>
<tr>
<td>Δ</td>
<td>Zeichen für Deletion</td>
</tr>
<tr>
<td>DBD</td>
<td>DNA-Bindungsdomäne</td>
</tr>
<tr>
<td>Dex</td>
<td>Dexamethason</td>
</tr>
<tr>
<td>DHT</td>
<td>Dihydrotestosteron</td>
</tr>
<tr>
<td>dNTPs</td>
<td>Desoxynucleosidtriphosphat</td>
</tr>
<tr>
<td>DST</td>
<td>Dex-Suppresions-Test</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>ER</td>
<td>Östrogenrezeptor (estrogen receptor)</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>FBS</td>
<td>featal bovine serum</td>
</tr>
<tr>
<td>FKBPs</td>
<td>FK506-binding protein</td>
</tr>
<tr>
<td>Flag-Tag</td>
<td>Flag-Epitop</td>
</tr>
<tr>
<td>Fludro</td>
<td>Fludrokortison</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>GRE</td>
<td>Glukokortikoid-responsive -Element</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>HA-Tag</td>
<td>Hemagglutinin-Epitop</td>
</tr>
<tr>
<td>hGR</td>
<td>humaner Glukokortikoidrezeptor</td>
</tr>
<tr>
<td>Hip</td>
<td>Hsp70-interacting protein</td>
</tr>
<tr>
<td>Hop</td>
<td>Hsp-organizing protein</td>
</tr>
<tr>
<td>HPA-Achse</td>
<td>hypothalamic-pituitary-adrenal axis</td>
</tr>
<tr>
<td>HRE</td>
<td>Hormon-responsives-Element</td>
</tr>
<tr>
<td>Hsc70</td>
<td>heat shock cognate 70 kDa protein</td>
</tr>
<tr>
<td>Hsp40</td>
<td>heat shock 40 kDa protein</td>
</tr>
<tr>
<td>Hsp70</td>
<td>heat shock 70 kDa protein</td>
</tr>
<tr>
<td>Hsp90</td>
<td>heat shock 90 kDa protein</td>
</tr>
<tr>
<td>HspBP1</td>
<td>Hsp70-binding protein 1</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>Kort.</td>
<td>Kortisol oder Kortikisteron</td>
</tr>
<tr>
<td>LBD</td>
<td>Ligandenbindungsdomäne</td>
</tr>
<tr>
<td>MCS</td>
<td>multiple cloning site</td>
</tr>
<tr>
<td>min</td>
<td>Minuten</td>
</tr>
<tr>
<td>mMR</td>
<td>muriner Mineralokortikoidrezeptor</td>
</tr>
<tr>
<td>MMTV</td>
<td>mouse mammary tumor virus</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Erklärung</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>NEF</td>
<td>nucleotide exchange factor</td>
</tr>
<tr>
<td>NLS</td>
<td>nukleäres Lokalisationssignal</td>
</tr>
<tr>
<td>p23</td>
<td>23 kDa protein</td>
</tr>
<tr>
<td>PMSF</td>
<td>Phenyl-methyl-sulfonyl-Fluorid</td>
</tr>
<tr>
<td>POMC</td>
<td>Proopiomelanocortin</td>
</tr>
<tr>
<td>PR</td>
<td>Progesteronrezeptor</td>
</tr>
<tr>
<td>RFU</td>
<td>relative fluorescence units</td>
</tr>
<tr>
<td>rpm</td>
<td>rounds per minute</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodiumdodecylsulfat</td>
</tr>
<tr>
<td>sek</td>
<td>Sekunden</td>
</tr>
<tr>
<td>SR</td>
<td>Steroidhormonrezeptor</td>
</tr>
<tr>
<td>TBS</td>
<td>tris buffered saline</td>
</tr>
<tr>
<td>TPR</td>
<td>tetratricopeptide repeats</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris(hydroxymethyl)-aminomethan</td>
</tr>
<tr>
<td>U</td>
<td>units</td>
</tr>
<tr>
<td>Ubidel</td>
<td>Deletion der ULD</td>
</tr>
<tr>
<td>ULD</td>
<td>ubiquitin-like domain</td>
</tr>
<tr>
<td>WT</td>
<td>Wildtyp</td>
</tr>
<tr>
<td>x g</td>
<td>x Gravitationsfaktor (9,81 m/s²)</td>
</tr>
<tr>
<td>ZNS</td>
<td>Zentrales Nervensystem</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 Was ist Stress?

1.2 Die HPA-Achse

Einleitung

Kortisolspiegeln führen, einem als Hyperkortisolismus bezeichneten Phänomen, und ernste psychopathologische Folgen haben. Eine mögliche Konsequenz kann die Entwicklung einer depressiven Störung sein.

1.3 Veränderungen der HPA-Achsen Aktivität bei depressiver Störung

Die unterschiedlichen HPA-Achsen-Parameter von Patienten und gesunden Kontroll-Gruppen werden im Dexamethason-Suppressionstest offensichtlich (Abb. 2).

Abbildung 2: Dex-Suppressionstest (DST) in depressiven Patienten und gesunden Probanden.
Beide Gruppen reagieren mit reduzierter Ausschüttung von ACTH und Kortisol in Abhängigkeit der Dexamethason-Dosis. Allerdings weisen Patienten, die an einer depressiven Störung leiden, bereits erhöhte Initialwerte auf, die auch nach Dex-Gabe deutlich über den der Kontrollen liegen (modifiziert, nach Modell et al., 1997). AUC: Fläche unter der Kurve der Zeitreihe (area under the curve)

Auf die Applikation steigender Mengen Dexamethason (Dex) reagieren beide Gruppen mit einer Reduktion der ACTH- und Kortisol-Ausschüttung. Im Gegensatz zu gesunden Probanden zeigen depressive Patienten anfangs und auch am Ende höhere Serumspiegel für ACTH und Kortisol (Modell et al., 1997). Um die Veränderungen der HPA-Achsen-Aktivität bei depressiven Erkrankungen detaillierter zu erforschen, wurde ein
kombinierter Dex-CRH-Test eingeführt (Holsboer et al., 1987; Bardeleben & Holsboer, 1989) und als Labortest für psychiatrische Erkrankungen eingesetzt (Heuser et al., 1994).

Die nachfolgende Verabreichung von CRH gibt Aufschluss über eine mögliche zentrale Störung der HPA-Achsen-Regulation. Mit diesem kombinierten Test können HPA-Achsen-Dysregulationen mit einer Rate von 100% (bei unter 35-jährigen) und 84% (bei über 70-jährigen) festgestellt werden (Heuser et al., 1994). Patienten, die nach der Behandlung ein Abklingen oder eine Verbesserung der psychopathologischen Symptome, aber keine verbesserte HPA-Achsen-Aktivität im Dex-CRH-Test zeigen, haben ein statistisch erhöhtes Risiko, einen Rückfall zu erleiden (Zobel et al., 1999).

Diese Beobachtungen führten zu der Annahme, dass die Verschlechterung der negativen Rückkopplung der HPA-Achse auf einer verminderten Funktion der Kortikosteroidrezeptoren beruht (Modell et al., 1997), und schließlich weiter zur „Kortikosteroidrezeptor-Hypothese der Depression“ (Holsboer, 2000).

1.4 Die Hypothese des MR/GR-Gleichgewichts

Im Gehirn wird der MR primär durch das Stresshormon Kortisol aktiviert.

Walter Cannon (1871-1945) prägte den Begriff „Fight or Flight“. Er bezeichnete damit die schnelle Stressantwort, die über das sympathische Nervensystem vermittelt wird. Bei akutem Stress erfolgt zunächst eine schnelle Reaktion, in der durch CRH die

Aus diesem Grund gilt die Balance zwischen der Funktion des GR und MR als essentiell für einen gesunden Organismus (de Kloet et al., 1998; de Kloet et al., 2007; de Kloet & DeRijk, 2004).

1.5 Aufbau und strukturelle Domänen von Steroidhormonrezeptoren der Klasse I

Die Familie der nukleären Rezeptoren umfasst eine Vielfalt ligandenabhängiger Transkriptionsfaktoren. SR wie der GR und MR, aber auch der Androgenrezeptor (AR), die beiden Östrogenrezeptoren (ERα und ERβ) und der Progesteronrezeptor (PR), gehören zur Subfamilie 3 der nukleären Rezeptoren (Nuclear Receptors Nomenclature Committee, 1999) und innerhalb der Streoidrezeptoren zur Klasse I. Somit ist die fachliche Bezeichnung z.B. für den GR NR3C1 (Germain et al., 2006).

SR bestehen hauptsächlich aus drei funktionellen Domänen. Im N-Terminus, dem variabelsten Bereich zwischen den Rezeptorspezies, befindet sich die Aktivierungsdomäne 1 (AF-1 oder τ1). Das Zentrum bildet die Zink-Finger-DNA-Bindungsdomäne und C-terminal befinden sich Ligandenbindungsdomäne (LBD) und eine zweite Aktivierungsdomäne (AF-2). Die DBD und LBD sind durch die sogenannte Hinge-Region miteinander verbunden (Abb. 4).
Die N-terminale AF1/τ1-Domäne des GR ist für die Transaktivierung und die Interaktionen mit bestimmten transkriptionellen Komponenten von Bedeutung (Almlöf et al., 1998; Giguere et al., 1986; Hollenberg et al., 1987; Hittelman et al., 1999; Wallberg et al., 2000; Hsiao et al., 2003). AF-1 moduliert die Transkription hormonunabhängig, anders als die C-terminale AF-2, die in ihrer Funktion ligandenabhängig ist (Hollenberg & Evans, 1988). AF-2 vermittelt die Bindung nukleärer Coaktivatoren (Ma et al., 1999; Kucera et al., 2002). Über ein Zink-Finger-Motiv der zentralen DNA-Bindungsdomäne (DBD) bindet der Rezeptor an Hormon-responsive-Elemente (HRE) und induziert die Transkription seiner Zielgene. Im Falle von GR und MR werden diese DNA-Sequenzen GRE (Glukokortikoid-responsive-Elemente) genannt. Die DBD vermittelt zudem die Dimerisierung des Rezeptors an der DNA (Luisi et al., 1991; Reichardt et al., 1998). Über GRE kann die Tanskription durch den GR nicht nur aktiviert, sondern auch reprimiert werden.

Abbildung 4: Domänenschtruktur von Steroidhormonrezeptoren am Beispiel von GR und MR. Die N-terminale Domäne beider Rezeptoren enthält die Aktivierungsdomäne 1 (AF-1) (A/B). Dieser Bereich besitzt die größte Variabilität zwischen GR und MR. Die größte Sequenzhomologie auf Proteinebene zwischen beiden Rezeptoren besteht in der DNA-Bindungsdomäne (DBD) (C). Die Hinge-Region (D) und die Ligandenbindungsdomäne (LBD) (E/F), die eine zweite Aktivierungsfunktion (AF-2) enthält, befinden sich am C-Terminus beider Rezeptoren. Die Sequenzhomologie zwischen diesen Domänen liegt bei 60% (modifiziert, nach van der & Meijer, 2008).

Bisher sind drei verschiedene Mechanismen der GR-abhängigen Transrepression bekannt: 1) die Bindung an negative GRE (nGRE) (Sakai et al., 1988; Cairns et al., 1993; Morrison & Eisman, 1993), 2) die Bindung an zusammengesetzte GRE, hier kann der GR sowohl aktivierend als auch reprimierend wirken (Diamond et al., 1990; Pearce & Yamamoto, 1993; Harrison et al., 1995) und 3) die Transrepression ohne Bindung an die DNA durch Interaktion mit anderen Transkriptionsfaktoren wie AP-1 oder NF-κB (Yang-Yen et al., 1990; Ray & Prefontaine, 1994; Scheinman et al., 1995; McKay & Cidlowski, 1998). Im zuletzt genannten Fall erwies sich allerdings die DBD notwendig für die transpressive Funktion (Jonat et al., 1990; Yang-Yen et al., 1990; Schule et al., 1990; Caldenhoven et al., 1995; Scheinman et al., 1995; McKay & Cidlowski, 1998; Tao et al., 2001).

Neben der Ligandenbindung befindet sich in der LBD eine dritte Aktivierungssdomäne (τ2) (Milhon et al., 1997) und die Bindungsstelle für Hsp90 (heat shock 90 kDa protein) (Xu et al., 1998; Carsonjurica et al., 1989; Schowalter et al., 1991; Chambraud et al., 1990).

Neben der DBD wird auch der Hinge-Region eine Rolle bei der Rezeptor-Dimerisierung zugeschrieben (Savory et al., 2001; Bledsoe et al., 2002).

Durch ihre evolutionäre Entwicklung aus einem gemeinsamen Vorläufer (Thornton, 2001) sind die DBD und die LBD die am höchsten konservierten Bereiche der nukleären Rezeptoren aus der Subfamilie 3 (Abb. 4).
1.6 Signaltransduktion durch Steroidhormonrezeptoren

SR sind hormonabhängige Transkriptionsfaktoren, die ligandeninduziert in den Zellkern wandern und die Transkription bestimmter Zielgene aktivieren (Abb. 5). In Abwesenheit des Liganden werden die Rezeptoren durch Chaperone, primär Hsp90, im Zytosol zurückgehalten. Im Hsp90-Rezeptor-Heterokomplex liegt der Rezeptor in seiner nativen und hormonbindungsfähigen Konformation vor. Nach der klassischen Lehrmeinung diffundieren lipophile Steroidhormone nach ihrer Sekretion in den Blutkreislauf passiv durch die Zellmembran und binden anschließend an die entsprechenden Rezeptoren. Mittlerweile gewinnen Transportproteine, wie z.B. das Kortikosteroid-bindende Globulin (corticosteroid-binding globulin, CBG), die durch Bindung der zirkulierenden Steroidhormone deren Verfügbarkeit regulieren, in der Literatur zunehmend an Bedeutung, für die steroidhormonabhängige Signaltransduktion (Petersen et al., 2006).

Abbildung 5: Modell für die hormonabhängige Genaktivierung durch einen nukleären Rezeptor am Beispiel des GR. Nach der Bindung des Liganden (Kortisol) dissoziiert der GR teilweise vom Chaperon-Komplex ab und wird in den Zellkern transportiert. Dort angekommen dimerisiert er an spezifische Glukokortikoid-responsive-Elemente (GRE) auf der DNA und aktiviert die Transkription seiner Zielgene (modifiziert, nach Lodish et al. 2004).

Der GR wird in Abhängigkeit von Hsp90 und einer FKBP-vermittelten Assoziation mit dem Mikrotubuli-Motorprotein Dynein in den Zellkern transportiert (Galigniana et al., 1998; Galigniana et al., 2001; Harrell et al., 2004). FKBPs und andere Hsp90-Cofaktoren enthalten eine sogenannte TPR-Domäne (Tetratricopeptide Repeats), die für die Interaktion
Einleitung

mit dem C-Terminus von Hsp90 und teilweise auch mit Hsc70/Hsp70 (*heat shock cognate 70 kDa protein/heat shock 70 kDa protein*) notwendig ist.

Auf ihrem Weg vom Zytosol bis hin zur Aktivierung der Transkription kann die Signaltransduktion von SR auf verschiedenen Ebenen reguliert werden. Durch eine Veränderung ihres Expressionsniveaus, durch Modifikationen wie z.B. Phosphorylierung und durch andere transkriptionelle oder nukleäre Komponenten kann die Signaltransduktion moduliert werden. Eine essentielle Voraussetzung jedoch für die meisten dieser potentiellen Einflussfaktoren ist die adäquate Faltung der SR. Damit SR die korrekte dreidimensionale Struktur erhalten und ihre Fähigkeit zur Ligandenbindung, sind sie auf die Faltungshilfe von Chaperonen angewiesen.

1.7 Faltungszyklus der Steroidhormonrezeptoren

Neben den Hauptakteuren Hsc70/Hsp70 und Hsp90 spielen noch eine Reihe anderer Proteine wie Hsp40, das Adapterprotein Hop, Hip und p23 für die Faltung von Steroidrezeptoren eine wichtige Rolle (Abb. 6).

Das 23 kDa kleine Protein p23 erwies sich, in vitro, als Stabilisator für den Hsp90-Hop-Hsc70/Hsp70-Heterokomplex (Dittmar et al., 1997). Es stabilisiert ATP-gebundenes Hsp90 und ist wahrscheinlich für die Substrat-Freisetzung von Hsp90 notwendig (Abb. 6d) (Young & Hartl, 2000). Im nächsten Schritt kann Hop vermutlich durch sogenannte „Target-Modulatoren“ ersetzt werden (Abb. 6e). Hierbei handelt es sich um Proteine, die mindestens eine TPR-Domäne besitzen, das Interaktionsmotiv für die EEVD-Sequenz am C-Terminus

1.8 BAG-1M und HspBP1: alternative Hsc70/Hsp70-NEF

1.8.1 Bcl2-assoziiertes Athanogen 1: BAG-1

Außerdem besitzt BAG-1 die Eigenschaft, an DNA zu binden und transkriptionelle Prozesse zu modulieren (Tab. 1). Im N-terminalen Bereich befindet sich eine E2X4-Domäne, die abhängig von der entsprechenden Isoform aus unterschiedlichen Wiederholungen von zwei Glutamat- und vier variablen Serin- und Threonin-reichen Aminosäure-Resten besteht (Abb. 7C). Die DNA-Bindung von BAG-1M erfordert drei N-terminale Lysin-Reste (siehe
Einleitung

Tab. 1. (Schmidt et al., 2003). BAG-1L besitzt am N-Terminus eine nukleäre Lokalisationssequenz (NLS) und ist als einzige BAG-1-Isoform fast ausschließlich im Zellkern zu finden (Packham et al., 1997; Takayama et al., 1998; Knee et al., 2001; Lee et al., 2007; Schmidt et al., in Vorbereitung).

BAG-1M wird laut Literatur mit dem GR in den Zellkern transportiert (Schneikert et al., 1999). Hauptsächlich befindet sich BAG-1M in unterschiedlichen Mengen sowohl im Zytosol als auch im Zellkern (Takayama et al., 1998; Knee et al., 2001; Lee et al., 2007; Schmidt et al., in Vorbereitung). BAG-1S wurde zytosolisch und auch nukleär detektiert (Takayama et al., 1998; Knee et al., 2001; Lee et al., 2007; Schmidt et al., in Vorbereitung). Diese Studien lassen vermuten, dass die intrazelluläre Verteilung der BAG-1-Isoformen zelltypabhängig ist.

Kurz nach seiner Entdeckung wurde die Eigenschaft eines Modulators der Hsc70/Hsp70-Chaperon-Aktivität an BAG-1 entdeckt (Takayama et al., 1997; Zeiner et al., 1997). Mit der Identifikation als Hsc70/Hsp70-NEF (Höhfeld & Jentsch, 1997) gelang es, die Funktion von BAG-1 detaillierter zu analysieren. Ungefähr im selben Zeitraum fand man heraus, dass BAG-1 die Chaperon-Aktivität von Hsc70/Hsp70 auch negativ regulieren kann (Bimston et al., 1998; Nollen et al., 2001). Im Zusammenhang mit faltungsrelevanten Cofaktoren verhindert BAG-1M die Bindung von Hop an Hsc70/Hsp70 (Gebauer et al., 1998) und ist ein dominanter Gegenspieler zu Hip (Kanelakis et al., 2000; Nollen et al., 2001). BAG-1 und Hip konkurrieren um die Bindung an die ATPase-Domäne von Hsc70/Hsp70 (Gebauer et al., 1997). Darüber hinaus ist BAG-1 in der Lage, konzentrationsabhängig die Faltung des GR auf unterschiedliche Weise zu beeinflussen (Kanelakis et al., 1999).

Im Laufe der Zeit wurden viele zelluläre Funktionen für BAG-1 aufgeklärt, manche davon Isoformen-spezifisch (Tab. 1). So wurde z.B. die Wirkung von BAG-1 auf verschiedene SR häufig untersucht (Froesch et al., 1998; Shatkina et al., 2003; Cutress et al., 2003; Guzey et al., 2000; Kullmann et al., 1998; Schneikert et al., 1999; Schmidt et al., 2003). Überraschenderweise konnte weder für BAG-1L noch BAG-1M, die beide die transkriptionelle Aktivität des GR inhibieren (Tab. 1), ein Einfluss auf die Transaktivierungsfunktion des Mineralokortikoidrezeptors (MR) beobachtet werden (Schneikert et al., 1999). BAG-1M gilt bis heute als Diskriminationsfaktor für GR und MR (Crocoll et al., 2000).
Tabelle 1: Auswahl einiger bekannter zellulärer Funktionen von BAG-1 (adaptiert, Lüders et al., 2000b)

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Isoform von BAG-1</th>
<th>Zitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bindung an Bcl-2, antiapoptotisch</td>
<td>BAG-1</td>
<td>(Takayama et al., 1995; Clevenger et al., 1997)</td>
</tr>
<tr>
<td>Bindung und Aktivierung der Raf-1 Kinase</td>
<td>BAG-1</td>
<td>(Wang et al., 1996)</td>
</tr>
<tr>
<td>Bindung und erhöhter Apoptose-Schutz durch HGF-Rezeptor (hepatocyte growth factor) und PDGF-Rezeptor (platelet-derived growth factor)</td>
<td>BAG-1</td>
<td>(Bardelli et al., 1996)</td>
</tr>
<tr>
<td>Unterdrückung der Siah-vermittelten Inhibition des Zellwachstums</td>
<td>BAG-1</td>
<td>(Matsuzawa et al., 1998)</td>
</tr>
<tr>
<td>Inhibition der DNA-Bindung und der Transaktivierung des GR; Schutz vor Hormon-induzierter Apoptose</td>
<td>BAG-1L, BAG-1M, BAG-1S kein Effekt</td>
<td>(Kullmann et al., 1998; Schneikert et al., 1999; Schmidt et al., 2003)</td>
</tr>
<tr>
<td>Stimulierung der Transaktivierungsaktivität des AR</td>
<td>BAG-1L, BAG-1M kein Effekt BAG-1S kein Effekt</td>
<td>(Froesch et al., 1998)</td>
</tr>
<tr>
<td>Stimulierung der Transaktivierungsaktivität des ER</td>
<td>BAG-1L</td>
<td>(Cutress et al., 2003)</td>
</tr>
<tr>
<td>Stimulierung der Transaktivierungsaktivität des Vitamin D-Rezeptors (VDR)</td>
<td>BAG-1L</td>
<td>(Guzey et al., 2000)</td>
</tr>
<tr>
<td>Bindung und Inhibition der Transaktivierungsaktivität des RAR; Inhibition der Retinsäure-induzierten Apoptose</td>
<td>BAG-1</td>
<td>(Liu et al., 1998)</td>
</tr>
<tr>
<td>Zunehmende Zell-Motilität von Magenkrebszellen</td>
<td>BAG-1</td>
<td>(Naishiro et al., 1999)</td>
</tr>
<tr>
<td>Bindung an DNA und Stimulierung der Transkription</td>
<td>BAG-1M, BAG-1L BAG-1S kein Effekt</td>
<td>(Niyaz et al., 2001; Zeiner et al., 1999)</td>
</tr>
<tr>
<td>Proteasomaler Abbau des GR in Kooperation mit der E3-Ligase CHIP</td>
<td>BAG-1</td>
<td>(Demand et al., 2001)</td>
</tr>
</tbody>
</table>
Einleitung

Bisher finden sich keine Studien zur Wirkungsweise von BAG-1 auf den Progesteronrezeptor (PR). Da dieser Verwandte des GR auch in Hirnregionen exprimiert wird, die relevant für die Stressregulation sind (Kato, 1994; Guerra-Araiza et al., 2002; Guerra-Araiza et al., 2003), ist er ein interessanter Kandidat für genauere Untersuchungen. Seit kurzem wird auch über die Beteiligung des PR an der Regulation der Neurogenese und Kognition diskutiert (Brinton et al., 2008).

In den letzten Jahren häufen sich die Hinweise, dass BAG-1 auch für die neuronale Architektur und psychiatrische Erkrankungen eine Rolle spielt. BAG-1 gilt als Marker und Regulator für neuronale Differenzierung (Kermer et al., 2002), als neuroprotektiver Faktor (Götz et al., 2005; Liman et al., 2005) und fördert das Neuritenwachstum (Planchamp et al., 2008). Im Zusammenhang mit Alzheimer scheint BAG-1 den proteasomalen Abbau des tau-Proteins zu regulieren (Elliott et al., 2007). Unlangst wurden im Hippocampus von Alzheimer-Patienten eine erhöhte Menge BAG-1M sowie eine Assoziation mit tau und APP festgestellt (Elliott et al., 2009). Seit wenigen Jahren gilt BAG-1 als Ziel für Stimmungsstabilisatoren nach längerer Behandlung (Zhou et al., 2005). In einem Tiermodell wurde es bereits als wichtiger Faktor für die Revertierung von Verhaltensbeeinträchtigungen, ähnlich wie sie bei Depression oder Manie vorkommen (Maeng et al., 2008), diskutiert. Bisher galten alle Effekte von BAG-1 Hsc70/Hsp70-abhängig (Townsend et al., 2005).

1.8.2 Hsp70-bindendes Protein 1: HspBP1

Über HspBP1 (hsp70 binding protein) ist im Gegensatz zu BAG-1 weniger bekannt. 1998 wurde HspBP1 als Protein identifiziert, welches die ATPase-Aktivität von Hsp70 inhibiert und die Hsp40-abhängige Rückfaltung denaturierter Hsc70/Hsp70-Substratproteine inhibiert (Raynes & Guerriero, Jr., 1998). HspBP1 wird von sieben Exons codiert und besteht zu 35% aus α-helikalen Bereichen (McLellan et al., 2003). Es weist eine signifikante Homologie zum humanen Sil1 Protein, einem NEF des ER-Chaperones BiP (immunoglobulin heavy chain binding protein) (Tyson & Stirling, 2000) und Sequenzähnlichkeiten zu BAP (BiP-associated protein) auf (Chung et al., 2002). HspBP1 kann in zwei Domänen unterteilt werden, Domäne I (AS 1-83) und Domäne II (AS 84-359) (McLellan et al., 2003). 2005 wurde die Kristallstruktur von HspBP1 gelöst und es wurden vier zentrale, sich wiederholende Einheiten entdeckt, die aus drei Helices bestehen und strukturell die größte Ähnlichkeit mit dem Armadillo-Motiv aufweisen (Shomura et al., 2005). Für die Bindung an Hsp70, die Veränderung der ATPase-Domäne und auch für die Inhibition der Rückfaltung von Substratproteinen ist die Domäne II notwendig (McLellan et al., 2003). Des Weiteren besitzt HspBP1 eine höhere Bindungsaffinität für Hsp70, als Hsp40 (Oh & Song, 2003). Einhergehend mit der strukturellen Analyse wurde HspBP1 als alternativer Hsp70-NEF zu BAG-1 beschrieben, und der mechanistische Unterschied zwischen BAG-1 und HspBP1 in ihrer Wirkung auf die ATPase-Domäne von Hsp70 wurde aufgeklärt (Shomura et al., 2005).
Anders als BAG-1 inhibiert HspBP1 den CHIP-induzierten Proteinabbau (Alberti et al., 2004). In Tumorzellen scheint HspBP1 mit höherer Affinität an Hsp70 als an Hsc70 zu binden und die essentielle Funktion von Hsp70 zu antagonisieren (Tanimura et al., 2007).

1.9 Zielsetzung dieser Arbeit

In dieser Arbeit sollte der Einfluss von Cochaperonen auf die Funktion des GR und verwandter SR vergleichend untersucht werden.

Im zweiten Abschnitt werden die beiden Hsc70/Hsp70-Nukleotid-Austauschfaktoren BAG-1M und HspBP1 in ihrer Wirkung auf die SR-Funktion verglichen. Ziel war es, mit Hilfe unterschiedlicher Strategien herauszufinden, ob es mechanistische Unterschiede zwischen BAG-1M und HspBP1 gibt. Am Anfang sollte die Suche nach neuen und Hsc70/Hsp70-unabhängigen Interaktionspartnern stehen, um durch möglicherweise unterschiedliche Interaktionsspektren neue Informationen über den intrazellulären Wirkungsbereich von BAG-1M und HspBP1 als Hsc70/Hsp70-NEF zu erhalten. In einer weiteren Versuchsreihe sollte der Einfluss von HspBP1 auf die Aktivität verschiedener SR mit dem von BAG-1M verglichen werden. Im Anschluss daran sollte geklärt werden, ob sich die resultierenden Unterschiede durch einen differentiellen Einfluss auf das konstitutiv exprimierte Hsc70 erklären lassen. Mit Hilfe von Interaktionsanalysen sollte festgestellt werden, ob BAG-1M und HspBP1 die Zusammensetzung des Hsc70-Rezeptor-Heterokomplexes unterschiedlich beeinflussen. Mit Hormonbindungsanalysen sollte schließlich überprüft werden, ob sich der beobachtete Unterschied auch in Hsc70/Hsp70-abhängigen Faltungsprozessen bemerkbar macht.

Durch zwei strategisch unterschiedliche Ansätze sollten mMR-Mutanten generiert werden, die eine GR-ähnliche Kortikosteron-Affinität besitzen. Dies hätte zur Folge, dass beide MR-Mutanten erst in Anwesenheit höherer Kortikosteronkonzentrationen transkriptionell aktiv sind. Die Hormonabhängigkeit dieser mMR-Mutanten wurde anschließend funktionell validiert.
2 Material

2.1 Chemikalien und gebrauchsfertige Lösungen

<table>
<thead>
<tr>
<th>Material</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylamid-Bisacrylamid 30% (37,5:1)</td>
<td>Serva Electrophoresis, Heidelberg</td>
</tr>
<tr>
<td>AG 1-X8 Resin</td>
<td>BioRad, München</td>
</tr>
<tr>
<td>Agar-Agar</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Agarose</td>
<td>PEQLAB, Erlangen</td>
</tr>
<tr>
<td>Aktivkohle</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>Albumin Standard</td>
<td>Thermo scientific, Pierce</td>
</tr>
<tr>
<td>Aldosteron</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>Amidoschwarz</td>
<td>USB Corporation, Cleveland, USA</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>Antibiotikum/Antimycotikum 10x</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>APS (Ammonium-peroxo-disulfat)</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>ATP</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>Bisbenzimid</td>
<td>VWR, Ismaning</td>
</tr>
<tr>
<td>β-Mercaptoethanol</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>Borsäure</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Bovine Albumin Serum Fraktion V</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>Bradford-Reagenz</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>Bromphenolblau</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Coelenterazin</td>
<td>P.J.K GmbH, Kleinblittersdorf</td>
</tr>
<tr>
<td>Coomassie Brillant Blue G</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>Dexamethason</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>Dextran T70</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Dihydrotestosteron (5α-Arostan-17β-ol-3-on)</td>
<td>Fluka, Deisenhofen</td>
</tr>
<tr>
<td>Di-Kalium-Hydrogenphosphat</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>D-Luciferin</td>
<td>P.J.K GmbH, Kleinblittersdorf</td>
</tr>
<tr>
<td>DMEM-Medium</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>DMSO</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>dNTPs</td>
<td>PEQLAB, Erlangen</td>
</tr>
<tr>
<td>DTT</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
</tbody>
</table>
Material

<table>
<thead>
<tr>
<th>Item</th>
<th>Supplier/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dulbecco’s modified eagle Medium (DMEM)</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>EDTA</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>Eisessig</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Ethanol</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>Ethidiumbromid</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>ExGen 500</td>
<td>Fermentas, St. Leon-Roth</td>
</tr>
<tr>
<td>FBS</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>Fludrocortisonacetat</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>Glyzerin</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Glycin</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>HBSS 10x mit Phenolrot</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>HCl 1N</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>HCl 2N</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>HCl 37%</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>IgG</td>
<td>BioRad, München</td>
</tr>
<tr>
<td>Immobilon Western (chemiluminescent HRP substrate)</td>
<td>Millipore, Eschborn</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Kaliumacetat</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Kaliumdihydrogenphosphat</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Kaliumhydroxid</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Kanamycinsulfat</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>KCl</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Kodak GBX Developer</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>Kodak GBX Fixer</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>Kortikosteron</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>[1, 2, 6, 7-3H]-Kortikosteron</td>
<td>Perkin Elmer, Rotgau Jügesheim</td>
</tr>
<tr>
<td>Kortisol (17-Hydroxycorticosteron)</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>LB broth Base</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>Luminol</td>
<td>Fluka, Deisenhofen</td>
</tr>
<tr>
<td>Manganchlorid</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Methanol</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Material</td>
<td>Supplier, Location</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Milchpulver</td>
<td>Coop, Schweiz</td>
</tr>
<tr>
<td>Na₂MoO₄ (Natriummolydat-Dihydrat)</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>NaCl</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>NaMops</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>NaOH 1N</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>NaOH 2N</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Natriumhydroxid</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Natriumpyruvat 10x</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>ortho-Phosphorsäure</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>PBS 10x</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>Coumarinsäure (p-coumaric acid)</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>PCR-Primer</td>
<td>MWG, Ebersberg</td>
</tr>
<tr>
<td>PMSF (Penylmethysulfonyl-Fluorid)</td>
<td>Calbiochem, Frankfurt</td>
</tr>
<tr>
<td>Ponceau S Lösung</td>
<td>Serva Electrophoresis, Heidelberg</td>
</tr>
<tr>
<td>Progesteron</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>Proteaseinhibitor-Cocktail</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>Pyruvat 10x</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>RNAse A</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>Rubidiumchlorid</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Szintillationslösung (Luma safe-advanced safety LSC)</td>
<td>Perkin Elmer, Rotgau Jügesheim</td>
</tr>
<tr>
<td>SDS</td>
<td>Serva Electrophoresis, Heidelberg</td>
</tr>
<tr>
<td>SDS 20% (l)</td>
<td>Serva Electrophoresis, Heidelberg</td>
</tr>
<tr>
<td>SOC-Medium</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>TEMED</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Tris-Base</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Triton X-100</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>Trypsin-EDTA 10x</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>Tween 20</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>Xylencyanol</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
</tbody>
</table>
2.2 Verbrauchsmaterial

- Eppendorfreaktionsgefäße 1,5 ml, 2 ml
- Eppendorfreaktionsgefäße 1,5ml *low binding*
- Fujifilm X-Ray 18x24 100NF
- Kryoröhrchen 2 ml
- Mikrotiterplatte 384-Wel, schwarz, *"low binding"*
- Mikrotiterplatte 96-Well
- Nitrozellulose Transfer Membran Protran
- Petrischalen unsteril
- Szintillationsröhrchen
- Serologische Pipetten 2, 5, 10, 25 ml
- Whatman Papier 3mm
- Zellkulturlaschen 150 cm², 75 cm²
- Zellkulturschalen 60 cm²
- Zellschaber steril
- Zentrifugenröhrchen 15 ml, 50 ml

Alle Enzyme wurden mit den entsprechenden Puffern und, wenn benötigt, 100xBSA geliefert

2.3 Enzyme

2.3.1 Restriktionsendonucleasen

- BamHI
- DpnI
- EcoRI
- Hind III
- NotI
- XhoI

Alle Enzyme wurden mit den entsprechenden Puffern und, wenn benötigt, 100xBSA geliefert
2.3.2 DNA-Polymerasen

- Herculase fusion II incl. 5x Reaktionspuffer und DMSO
 Stratagene, Amsterdam
- Pico-Maxx incl. 10x Reaktionspuffer
 Stratagene, Amsterdam
- Pfu-Turbo incl. 10x Reaktionspuffer
 Stratagene, Amsterdam
- Pwo incl. 10x Reaktionspuffer komplett
 PEQLAB, Erlangen
- Taq incl. 10x Reaktionspuffer komplett
 Invitrogen, Karlsruhe

2.3.3 Sonstige Enzyme

- T4-DNA Ligase
 New England Biolab, Frankfurt am Main
- RNAse A
 Sigma-Aldrich, St. Louis, USA
- MutL-Reverse Transkriptase
 New England Biolab, Frankfurt am Main

2.4 Marker

- Benchmark TM Protein Ladder
 Invitrogen, Karlsruhe
- Peq-Gold Proteinmarker IV
 PEQLAB Biotechnologie, Erlangen
- Peq-Gold Proteinmarker V
 PEQLAB Biotechnologie, Erlangen
- PeqGold DNA Leiter-Mix
 PEQLAB Biotechnologie, Erlangen
Material

<table>
<thead>
<tr>
<th>Primär</th>
<th>Verdünnung</th>
<th>monoklonal</th>
<th>Wirt</th>
<th>Bezugsquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-Aktin</td>
<td>1:3000 1x TBST</td>
<td></td>
<td>Ziege</td>
<td>Santa Cruz, Kalifornien, USA</td>
</tr>
<tr>
<td>anti-BAG-1</td>
<td>1:3000; 5% Milch in 1x TBST</td>
<td></td>
<td>Kaninchen</td>
<td>Santa Cruz, Kalifornien, USA</td>
</tr>
<tr>
<td>anti-Flag M2</td>
<td>1:5000; 5% Milch in 1x TBST</td>
<td>+</td>
<td>Maus</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>anti-Flag-HRP</td>
<td>1:10.000; 5% Milch in 1x TBST</td>
<td>+</td>
<td>Maus</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>anti-HA-HRP, High Affinity (3F10)</td>
<td>1:10.000; 5% Milch in 1x TBST</td>
<td>+</td>
<td>Ratte</td>
<td>Roche Diagnostics, Mannheim</td>
</tr>
<tr>
<td>anti-Hip (p48)</td>
<td>1:5000; 5% Milch in 1x TBST</td>
<td></td>
<td>Kaninchen</td>
<td>Biomol GmbH, Hamburg</td>
</tr>
<tr>
<td>anti-Hop (p60)</td>
<td>1:5000; 5% Milch in 1x TBST</td>
<td>+</td>
<td>Maus</td>
<td>Biomol GmbH, Hamburg</td>
</tr>
<tr>
<td>anti-Hsc70 (B-6)</td>
<td>1:5000; 5% Milch in 1x TBST</td>
<td>+</td>
<td>Maus</td>
<td>Santa Cruz, Kalifornien, USA</td>
</tr>
<tr>
<td>anti-Hsp40 (Hdj1)</td>
<td>1:5000; 5% Milch in 1x TBST</td>
<td>+</td>
<td>Maus</td>
<td>Biomol GmbH, Hamburg</td>
</tr>
<tr>
<td>anti-Hsp70 (W27)</td>
<td>1:5000; 5% Milch in 1x TBST</td>
<td>+</td>
<td>Maus</td>
<td>Santa Cruz, Kalifornien, USA</td>
</tr>
<tr>
<td>anti-Hsp90</td>
<td>1:5000; 5% Milch in 1x TBST</td>
<td></td>
<td>Kaninchen</td>
<td>Santa Cruz, Kalifornien, USA</td>
</tr>
<tr>
<td>anti-HspBP1 (FL4)</td>
<td>1:1000; 5% Milch in1xTBST</td>
<td></td>
<td>Kaninchen</td>
<td>Delta Biolabs, Kalifornien, USA</td>
</tr>
<tr>
<td>anti-p23</td>
<td>1:3000; 5% Milch in 1x TBST</td>
<td></td>
<td>Maus</td>
<td>ABR Affinity Bio Reagents, Golden, USA</td>
</tr>
<tr>
<td>anti-Rpt6</td>
<td>1:3000; 5% Milch in 1x TBST</td>
<td></td>
<td>Maus</td>
<td>Biomol GmbH, Hamburg</td>
</tr>
</tbody>
</table>

Sekundär

<table>
<thead>
<tr>
<th>Sekundär</th>
<th>Verdünnung</th>
<th></th>
<th>Ziege</th>
<th>Sigma-Aldrich, St. Louis, USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-mouse IgG</td>
<td>1:10000; 5% Milch in 1x TBST</td>
<td></td>
<td>Ziege</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>anti-rabbit IgG</td>
<td>1:10000; 5% Milch in 1x TBST</td>
<td></td>
<td>Ziege</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>anti-goat IgG</td>
<td>1:5000; 2% Milch in 1x TBST</td>
<td></td>
<td>Esel</td>
<td>Santa Cruz, Kalifornien, USA</td>
</tr>
</tbody>
</table>
Material

Antikörpergekoppelte Agarose- und Elutionspeptide

<table>
<thead>
<tr>
<th>Material</th>
<th>+</th>
<th>Maus</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-Flag M2 Affinity Gel</td>
<td>+</td>
<td>Maus</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>anti-HA High Affinity</td>
<td>+</td>
<td>Maus</td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>1x Flag-Peptid 100 ng/µl in TBS</td>
<td></td>
<td></td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>1x Ha-Peptid 100 ng/µl in PBS</td>
<td></td>
<td></td>
<td>Sigma-Aldrich, St. Louis, USA</td>
</tr>
</tbody>
</table>

2.6 Zelllinien und Bakterienstämme

Zelllinien

Cos-7 Niere, *african green monkey* MPI für Neurobiologie (AG Klein, Martinsried)

HEK 293 Niere, embryonal, human ATCC, CCL 1573

SK-N-MC Neuroblastom, human ATCC, HTB10

HeLa Cervixkarzinom, human ATCC, CCL2

Neuro-2A Neuroblastom, murin DSMZ, ACC 148

HT22 hippocampal, Maus Dr. Schubert (The Salk Institut; San Diego, USA)

Bakterienstämme

DH5α Invitrogen, Karlsruhe

F- *φ80lacZΔM15 Δ(lacZYA-argF)U169 recA1 endA1 hsdR17 (rk−, mk+) phoA supE44 thi-1 gyrA96 relA1 λ−*
2.7 Allgemeine Plasmide

<table>
<thead>
<tr>
<th>Name</th>
<th>Insert</th>
<th>Vektor</th>
<th>Bezugsquelle/Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>pRK5-SV40-MCS</td>
<td>Klonierungs- und Kontrollvektor</td>
<td>Expressionsvektor für Säugerzellen; CMV-Promotor; Puromycin-Resistenz; Ampicillin-Resistenz</td>
<td>(Wochnik, 2004)</td>
</tr>
<tr>
<td>pRK7</td>
<td>Klonierungs- und Kontrollvektor</td>
<td>Expressionsvektor für Säugerzellen; CMV-Promotor; Ampicillin-Resistenz</td>
<td>D.Spengler, MPI für Psychiatrie</td>
</tr>
<tr>
<td>HA-PR</td>
<td>humaner PR; N-Terminals HA-Epitop</td>
<td>pRK7</td>
<td>D.Spengler, MPI für Psychiatrie</td>
</tr>
<tr>
<td>HA-AR</td>
<td>humaner AR; N-Terminals HA-Epitop</td>
<td>pRK7</td>
<td>D.Spengler, MPI für Psychiatrie</td>
</tr>
<tr>
<td>HA-GR</td>
<td>humaner GR; N-Terminals HA-Epitop</td>
<td>pRK7</td>
<td>D.Spengler, MPI für Psychiatrie</td>
</tr>
<tr>
<td>HA-MR</td>
<td>humaner MR; N-terminal HA-Epitop</td>
<td>pRK7</td>
<td>D.Spengler, MPI für Psychiatrie</td>
</tr>
<tr>
<td>pet-HspBP1</td>
<td>humanes HspBP1;</td>
<td>pet28 a (Novagen); bakt. Expressionsvektor; T7-Promotor; Kanamycin-Resistenz</td>
<td>U. Hartl; MPI für Biochemie (Martinsried)</td>
</tr>
<tr>
<td>BAG-1M-Mut</td>
<td>BAG-1M_mut (R237A); Hsc70/Hsp70-Interaktionsmutante</td>
<td>pRK5-SV40-MCS</td>
<td>U. Schmidt; MPI für Psychiatrie</td>
</tr>
<tr>
<td>Flag-BAG-1M</td>
<td>BAG-1M; N-terminales Flag-Epitop</td>
<td>pRK5-SV40-MCS</td>
<td>U. Schmidt; MPI für Psychiatrie</td>
</tr>
<tr>
<td>FKBP51-Flag</td>
<td>humanes FKBP51; C-Terminals Flag-Epitop</td>
<td>pRK5-SV40-MCS</td>
<td>(Wochnik, 2004)</td>
</tr>
<tr>
<td>EGFP-mGR</td>
<td>mGR; N-Terminal GFP fusioniert</td>
<td>pEGFP-C1</td>
<td>D.Spengler, MPI für Psychiatrie</td>
</tr>
<tr>
<td>Gaussia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaussia-KDEL</td>
<td>Gaussia princeps Luciferase</td>
<td>pRK5-SV50-MCS</td>
<td>(Schülke, 2009)</td>
</tr>
<tr>
<td>MMTV-Luc</td>
<td>Reporterplasmid; Firefly-Luciferase; MMTV-Promotor</td>
<td></td>
<td>(Hollenberg & Evans, 1988)</td>
</tr>
<tr>
<td>Name</td>
<td>Vektor</td>
<td>Herstellung</td>
<td>RE</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>HA-PRΔN</td>
<td>pRK5-SV40-MCS</td>
<td>PCR; Template: HA-PR</td>
<td>Xhol NotI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HA-PRΔC</td>
<td>pRK5-SV40-MCS</td>
<td>PCR; Template: HA-PR</td>
<td>Xhol NotI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HA-PRΔH1</td>
<td>pRK5-SV40-MCS</td>
<td>Klonierung und Ligation via PCR; Template: HA-PR, a) und b)</td>
<td>Xhol NotI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HA-PRΔH</td>
<td>pRK5-SV40-MCS</td>
<td>Klonierung und Ligation via PCR; Template: HA-PR, a) und b)</td>
<td>Xhol NotI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HA-PRΔDBD</td>
<td>pRK5-SV40-MCS</td>
<td>Klonierung und Ligation via PCR; Template: HA-PR, a + b</td>
<td>Xhol NotI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HA-PRΔ494-562</td>
<td>pRK5-SV40-MCS-HA</td>
<td>Klonierung und Ligation via PCR; Template: HA-PR, a + b</td>
<td>Xhol NotI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HA-PRΔ494-562/ΔH</td>
<td>pRK5-SV40-MCS</td>
<td>3-Fragmenten-Ligation aus HA-PR-Δ494-562 und HA-PRΔH</td>
<td>Xhol/NotI Dral</td>
</tr>
<tr>
<td>HA-PR-DBD</td>
<td>pRK5-SV40-MCS-HA</td>
<td>PCR; Template: HA-PR</td>
<td>Xhol NotI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HA-PR-DBD1</td>
<td>pRK5-SV40-MCS-HA</td>
<td>PCR; Template: HA-PR</td>
<td>BamHI NotI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HA-PR-494-641</td>
<td>pRK5-SV40-MCS</td>
<td>PCR; Template: HA-PR</td>
<td>BamHI NotI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BAG-1/HspBP1

<table>
<thead>
<tr>
<th>Flag-BAG-1M_mut (R237A)</th>
<th>pRK5-SV40-MCS</th>
<th>PCR; Template: BAG-1M_mut</th>
<th>EcoRI BamHI</th>
<th>17/18</th>
<th>5x 49°C; 25x 60°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flag-BAG-1M_Ubidel (Δ89-134)</td>
<td>pRK5-SV40-MCS;</td>
<td>Klonierung und Ligation via PCR; Template: Flag-BAG-1M, a + b</td>
<td>EcoRI BamHI</td>
<td>a: 17/20</td>
<td>a, b: 30x 60°C Ligation a + b TD: 66°C-60°C; insgesamt 30x</td>
</tr>
<tr>
<td>Flag-HspBP1</td>
<td>pRK5-SV40-MCS</td>
<td>PCR; Template: pet-HspBP1</td>
<td>XholNotI</td>
<td>21/22</td>
<td>5x 51°C; 25x 60°C</td>
</tr>
<tr>
<td>Flag-HspBP1_mut (A137R/K249A) (Shomura et al, 2005)</td>
<td>pRK5-SV40-MCS</td>
<td>Klonierung und Ligation via PCR; Template: pet-HspBP1, a + b + c</td>
<td>Xhol NotI</td>
<td>a: 23/26</td>
<td>a, b, c: 5x 51°C; 15x 60°C Ligation a + b + c: 30x 60°C</td>
</tr>
</tbody>
</table>

mMR/mGR

<table>
<thead>
<tr>
<th>pRK7-mMR</th>
<th>pRK7 Eagl/Xhol</th>
<th>PCR; Template: a) cDNA; b) Produkt a); c) Mutagenese</th>
<th>Eagl Xhol</th>
<th>a: 28/29</th>
<th>a, b: 30x 57°C c: 30x 55°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>mMR</td>
<td>pRK5-SV40-MCS</td>
<td>PCR; Template: pRK7-mMR</td>
<td>Xhol NotI</td>
<td>40/41</td>
<td>5x 53°C; 25x 60°C</td>
</tr>
<tr>
<td>Flag-mMR</td>
<td>pRK5-SV40-MCS</td>
<td>PCR; Template: pRK7-mMR</td>
<td>Xhol NotI</td>
<td>43/41</td>
<td>5x 53°C; 25x 60°C</td>
</tr>
<tr>
<td>mGR</td>
<td>pRK5-SV40-MCS</td>
<td>PCR; Template: EGFP-mGR</td>
<td>Xhol NotI</td>
<td>38/39</td>
<td>5x 53°C; 25x 60°C</td>
</tr>
<tr>
<td>Flag-mGR</td>
<td>pRK5-SV40-MCS</td>
<td>PCR; Template: mGR</td>
<td>Xhol NotI</td>
<td>43/39</td>
<td>5x 53°C; 25x 60°C</td>
</tr>
</tbody>
</table>

Die Klonierungsstrategie ist durch die Restriktionsstellen (RE) angegeben
<table>
<thead>
<tr>
<th>Nr.:</th>
<th>Name</th>
<th>Sequenz</th>
<th>RE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HA-PR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5-XhoI_HA</td>
<td>TATTA CTCGAGATGGCCTACCCTACGACGTGCCCG</td>
<td>XhoI</td>
</tr>
<tr>
<td>2</td>
<td>5-XhoI-HA-PR494_2</td>
<td>TATTA CTCGAGATGGCCTACCCTACGACGTGCCCG</td>
<td>XhoI</td>
</tr>
<tr>
<td>3</td>
<td>5-hPRwoH1</td>
<td>CCTTGAGAGGTCGAAAAATTTAACCATTGGGCGTTCCAATGAAAGCCAAG</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>5-BamHI_PRDBD</td>
<td>CCTC.GGATCCCTCAAGAAGTTTGAATCTTGAGGATG</td>
<td>BamHI</td>
</tr>
<tr>
<td>5</td>
<td>5-EcoRI_PRDBD</td>
<td>GCTAA GAATTC ATGCCTCAAGAAGATTTGTTTAATCTTGAGGATG</td>
<td>EcoRI</td>
</tr>
<tr>
<td>6</td>
<td>5-hPRwoDBD</td>
<td>CAATACAGCTCGAGTCAATAAAGTTCAATAAAGTCAAGAG</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>5deltaH</td>
<td>GGTCCTTGAGGTCGAAAAATTTAACCACACACTGATCAAATGTTAATG</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>5delta494</td>
<td>GCCTGGAGGTCGAAAATTTAACCACACCTGATCAAATGTTAATG</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>3-Not PR</td>
<td>ATAGCGGCGGCTCAGTCTTTTTATGAAAGAAGAAGGGG</td>
<td>NotI</td>
</tr>
<tr>
<td>10</td>
<td>3-hPRwoDBD</td>
<td>CTCTGACTTTATGAACTTTAATGACTCGAAGCTGATTG</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>3-hPRwoH1</td>
<td>CTTTGGGAGCCCTGAATTTTGCACCTCCAGAAGGACCAGGCAG</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>3deltaH</td>
<td>CATTAACAGGTTGATCAGGTTGTTGAAAATTTGACCTCCAAGGACC</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>3-Not PR641</td>
<td>ATAGCGGCGGCTCAGCTTTTTATGAAAGAAGAAGGGG</td>
<td>NotI</td>
</tr>
<tr>
<td>14</td>
<td>3delta494</td>
<td>CCAACGATTTAAACACTGCTCAGGCAGTGGG</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>3-NotPR_641</td>
<td>ATAGCGGCGGCTCAGCTTTTTATGAAAGAAGAAGGGG</td>
<td>NotI</td>
</tr>
<tr>
<td>16</td>
<td>BAG-1/HspBP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>BAGNFlag</td>
<td>TCCGAATCTACGGACTACAGAGCGAGATGACAAGATGGAAGAAGAAGAAACCCGG</td>
<td>BamHI</td>
</tr>
<tr>
<td>18</td>
<td>Bag1M DNAFLAG_Eco</td>
<td>CCAAGAATCTACGACTACAGAGCGAGATGACAAGATGGAAGAAGAAGAAGAAGAAGCAG</td>
<td>EcoRI</td>
</tr>
<tr>
<td>19</td>
<td>BAG1M_Ubidelfor</td>
<td>CAATGAGAAGCAGACCTTCCATGGGCAATACAAAGATGTTG</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>BAG1M_Ubidelrev</td>
<td>CAACCATCTGGATTTCAATATCAGGCTGATGAATGGAACG</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>HspBP1 start XhoFLAG</td>
<td>TGAATCGACGATGGAACCTTCCATGGGCAATACAAAGATGTTG</td>
<td>XhoI</td>
</tr>
<tr>
<td>22</td>
<td>HspBP1 endNot</td>
<td>ATAGCGGCGGCTCAGCTTTTTATGAAAGAAGAAGGGG</td>
<td>NotI</td>
</tr>
<tr>
<td>Material</td>
<td>BAG-1/HspBP1</td>
<td>mMR/mGR</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>5-HspBP1-A137R</td>
<td>GTGTGAGAACATGGACAAATCGGGCAAGACTTCTGCCAGCTG</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>5-HspBP1-K249A</td>
<td>GGGTGCAAGCGTCAAGGTCGCCTCACAGATTCTGCTGCAAG</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>3-HspBP1-A137R</td>
<td>CAGCTGGCAGAAGTCTGCCAGCTTCCATGTTCACAC</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>3-HspBP1-K249A</td>
<td>CTGCAGCAGAATGCTGAGGCGACCTTGAGCTTCTGCACC</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>mMR/mGR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>5-mMRfor</td>
<td>ATGGAAAACCAAGGCTACCACAG</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>3-mMR rev</td>
<td>TCACCTCCTGTGAAAGTAAAGGGG</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>5-Eagl_mMR</td>
<td>AATTCGCGCGATGAAAAACAAAGGCTACCACAG</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>3-mMR_Xhol</td>
<td>ATTCGCGAGTCACCTCCTGTGAAAGTAAAGGGG</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>5-mMR1289</td>
<td>GTACCAATAAAAGCAAGATCAAGCAGCAACTCATGTTC</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>3-mMR1902</td>
<td>CAAAAGAGCGCGGAGGACAAACACAAACTATCTGTGTG</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>5-mMR2149</td>
<td>AGGAGGCTACAGTGAACCTCTGCTGCTGCTCCGACGCTC</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>5-mMR2913</td>
<td>TGGGAAGTGGGAATCGGGAAGCAGCATATATCCTTTAC</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>5-mGRLBD</td>
<td>ACCCTTGTCGTCACCTGGAG</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>3-mMRGRLBD</td>
<td>CACCTCCAGCAGTGACACAGGGTTGGGCTGAGGACCGCTGATCG</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>5-mGR_Xhol</td>
<td>TATTA CTCGAGATGACTCAACAGGAAAGTGGGAACAAAGGCTACCAC</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>3-mGR_NotI</td>
<td>AAAGCGGCCGCTCACCTCCTGTGAAAGTAAAGGG</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>5-mMR_Xhol</td>
<td>TATTA CTCGAGATGACTCAACAGGAAAGTGGGAACAAAGGCTACCAC</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>3-mMR_NotI</td>
<td>AAACCGCGGCGCTCACCTCCTGTGAAAGTAAAGGG</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>5-mGRLBD</td>
<td>ACCCTTGTCGTCACCTGGAG</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>5-Flag-mMR_Xhol</td>
<td>TATTA CTCGAGATGACTCAACAGGAAAGTGGGAACAAAGGCTACCAC</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>5-Flag-mGR_Xhol</td>
<td>TATTA CTCGAGATGACTCAACAGGAAAGTGGGAACAAAGGCTACCAC</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>5-mMR-Q772E</td>
<td>CAACCGCGGCCTGCGGGAAGAGATGATCCAAAGTGGGAAGTGGGAACAAAGGCTACCAC</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>3-mMR-Q772E</td>
<td>CACCTCCCAGCAGTGACACAGGGTTGGGCTGAGGACCGCTGATCG</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>5-mMR-S811G</td>
<td>GTGTCTATCTATGCTTGGGGTGGGAGATGCTTACAAATACAC</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>3-mMR-S811G</td>
<td>GTATGTTTGTAGATCTTCCAACCAAGGCAAACGAGATGATAGACAC</td>
<td></td>
</tr>
</tbody>
</table>

Die entsprechenden Restriktionsstellen (RE) sind in den jeweiligen Primersequenzen unterstrichen.
2.10 Kits, Geräte, Apparaturen und Software

<table>
<thead>
<tr>
<th>Bezeichnung:</th>
<th>Verwendung:</th>
<th>Hersteller:</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCA-Kit</td>
<td>Proteinbestimmung</td>
<td>Thermo Fischer Scientific, Waltham, USA</td>
</tr>
<tr>
<td>EZ-PCR Mycoplasma Test Kit</td>
<td>Mycoplasmen-Test</td>
<td>Biological Industries, Beit Haemek, Israel</td>
</tr>
<tr>
<td>E.N.Z.A. Plasmid Minipreparation</td>
<td>DNA-Isolierung</td>
<td>PEQLAB Biotechnologie, Erlangen</td>
</tr>
<tr>
<td>Nucleobond AX 2000</td>
<td>DNA-Isolierung</td>
<td>Macherey-Nagel</td>
</tr>
<tr>
<td>PolarScreen™ Glucocorticoid Receptor Competitor Assay Kit, Far Red</td>
<td>Polarisationsexperiment (Messung der Hormonbindung des GR)</td>
<td>Invitrogen, USA</td>
</tr>
<tr>
<td>QuikChange Site-Directed mutagenesis</td>
<td>Mutagenese von Plasmid-DNA</td>
<td>Stratagene, Amsterdam</td>
</tr>
<tr>
<td>QuikChange Multi Site-Directed mutagenesis</td>
<td>Mutagenese von Plasmid-DNA</td>
<td>Stratagene, Amsterdam</td>
</tr>
<tr>
<td>QIAquick Gel Extraction</td>
<td>DNA-Extraktion aus dem Agarosegel</td>
<td>Qiagen, Hilden</td>
</tr>
<tr>
<td>QIAquick PCR Purification</td>
<td>Reinigung von DNA-Fragmenten</td>
<td>Qiagen, Hilden</td>
</tr>
<tr>
<td>TRIZOL</td>
<td>RNA-Isolierung</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
</tbody>
</table>
2.10.2 Geräte und Apparaturen

<table>
<thead>
<tr>
<th>Gerät:</th>
<th>Bezeichnung/Typ:</th>
<th>Hersteller:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agarosegel-Elektrophoresekammern:</td>
<td></td>
<td>BioRad, München</td>
</tr>
<tr>
<td>Bioruptor</td>
<td></td>
<td>Diagenode, Liège, Belgien</td>
</tr>
<tr>
<td>Brutschränke:</td>
<td></td>
<td>Binder, Tüttlingen; Heraeus, Mannheim</td>
</tr>
<tr>
<td>Concentrator</td>
<td>5301</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Dounce-Homogenisator 2ml (Glas)</td>
<td></td>
<td>Sartorius, Göttingen</td>
</tr>
<tr>
<td>Elektroporator:</td>
<td>Gene Pulser II Capacitance extender Plus</td>
<td>BioRad, München</td>
</tr>
<tr>
<td>Heizblock:</td>
<td>Thermomixer comfort</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Imaging-System:</td>
<td>Image Station 440 CF</td>
<td>Kodak, USA</td>
</tr>
<tr>
<td>Luminometer/Fluorometer:</td>
<td>Tristar LB 941 Victor2 GENios Pro (incl. Software)</td>
<td>Berthold; Bad Wildbach Wallac, Finnland; Tecan, Crailsheim</td>
</tr>
<tr>
<td>Mikrotiterplatten-Lesegerät:</td>
<td>MR 7000</td>
<td>Dynatech, Denkendorf</td>
</tr>
<tr>
<td>PCR-Maschinen:</td>
<td>T Gradient; Primus 25 advanced; DNA-Engine PTC-200</td>
<td>Biometra, Göttingen; PeqLab, Erlangen; Biozym, Oldendorf</td>
</tr>
<tr>
<td>Power Pac 300 / 200:</td>
<td></td>
<td>BioRad, München</td>
</tr>
<tr>
<td>Rotamix Überkopf-Schüttler:</td>
<td></td>
<td>ELMI, Lativa</td>
</tr>
<tr>
<td>Scanner/Densitometer:</td>
<td>GS-800 calibrated Densitometer</td>
<td>BioRad, München</td>
</tr>
<tr>
<td>Scintillation Counter</td>
<td>LS 6500</td>
<td>Beckman Coulter, Krefeld</td>
</tr>
<tr>
<td>Schüttler:</td>
<td>DuoMax 1030; Polymax 1040</td>
<td>Heidolph, Schwabach</td>
</tr>
<tr>
<td>SDS-Gelelektrophoresekammern:</td>
<td>Mini-Protean 3</td>
<td>BioRad, München</td>
</tr>
<tr>
<td>Spektrophotometer:</td>
<td>DU 640</td>
<td>Beckman Coulter, Krefeld</td>
</tr>
<tr>
<td>UV-Transilluminator</td>
<td></td>
<td>Stratagene, Amsterdam</td>
</tr>
<tr>
<td>Vortex Genie 2:</td>
<td></td>
<td>Scientific Industries</td>
</tr>
<tr>
<td>Material</td>
<td>Vertrieb: Roth, Karlsruhe</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>Waage</td>
<td>Voyager 50187</td>
<td></td>
</tr>
<tr>
<td>Wasserbäder:</td>
<td>Ohaus, Giessen</td>
<td></td>
</tr>
<tr>
<td>Western Transfer-Apparatur:</td>
<td>Mini Trans Blot Cell BioRad, München</td>
<td></td>
</tr>
<tr>
<td>Zentrifugen:</td>
<td>Heraeus Biofuge pico; Eppendorf 5417R (Kühlzentrifuge); Beckman Allegra X22R (Rotor: SX4250); Beckman J2-MC (Rotor: JA-14); Beckman Allegra 21; Ultrazentrifuge (Rotor: SW60)</td>
<td>Haereus, Mannheim; Eppendorf, Hamburg; Beckman Coulter, Krefeld</td>
</tr>
</tbody>
</table>

2.10.3 Software

- **1D Image Analysis Software 3.6:** Quantifizierung der Western Blots Kodak, USA
- **PDQuest:** Scannen der Coomassie-Gele BioRad, München
- **SigmaPlot** Anpassung der Bindungskurven, L₅₀-Berechnung Systac Software Inc (www.sigmaplot.com)
- **Vector NTI 10:** Sequenzanalyse von Oligos, DNA und Proteinen; Archivierung Invitrogen, Karlsruhe
3 Methoden

3.1 Zellkultur

3.1.1 Kultivierung von Säugetierzellen

Bei allen hier verwendeten Zelllinien (vergleiche Kapitel 1.6.1) handelte es sich um adhäsente Zellen, die in sterilen 75 cm² bzw. 150 cm² Zellkulturflaschen kultiviert wurden. Als Nährmedium diente DMEM mit 10% FBS, 1% Antibiotikum und 1% Pyruvat. Alle Zellen wurden in einem 37°C-CO₂-Brutschrank (Heraeus) mit 5% CO₂ kultiviert. Sobald ein dichter Zellrasen (Konfluenz) erreicht wurde, erfolgte die Passage der Zellen. Je nach Zelltyp variierte diese vom Verhältnis 1:4 und 1:6 (SK-N-MC; HEK 293) bis zu 1:7 und 1:9 (Cos-7, Neuro-2A). Nach der Entfernung des verbrauchten Mediums wurden die Zellen mit 5 ml 1xPBS gewaschen. Anschließend wurden sie mit 2 ml Trypsin pro 75 cm² Flasche bzw. 3 ml pro 150 cm² Flasche für 2 min. im Brutschrank inkubiert, um den Zellrasen vom Flaschenboden abzulösen. Die enzymatische Reaktion wurde durch Zugabe von 3 ml bzw. 5 ml Kulturmedium gestoppt, die Zellen in ein steriles Falcon überführt und bei Raumtemperatur mit 180 x g für 4 min. zentrifugiert. Die präzipitierten Zellen wurden je nach Verdünungsfaktor in frischem Medium resuspendiert und auf Flächen mit vorgelegtem Medium verteilt.

3.1.2 Dauerhafte Lagerung und Inkulturnahme

Lösungen: Einfriermedium: 54,5% DMEM-Medium, 36,4% FBS, 9,1% DMSO

Das Einfriermedium wurde immer frisch hergestellt.

Die dauerhafte Lagerung der Zellen erfolgte im Stickstofftank. Die Zellen einer konfluenten Flasche wurden präzipitiert, anschließend in 1 ml Einfriermedium resuspendiert und in ein Kryoröhrchen überführt. Um Schäden durch spätere Kristallbildung zu vermeiden, wurden die Zellen erst bei -80°C gelagert und erst zwei bis drei Tage später in flüssigen Stickstoff überführt.

Werden eingefrorene Zellen wieder in Kultur genommen, muss das im Einfriermedium enthaltene DMSO entfernt werden. Die Zellen wurden schnell und somit schonend im 37°C warmen Wasserbad aufgetaut. Die Entfernung des Einfriermediums erfolgte durch einen Waschschritt mit vorgewärmtem Kulturmedium. Nach der Zentrifugation (180 x g/ 4 min) und Entfernung des Überstandes wurden die Zellen in frischem DMEM resuspendiert und in eine frische Zellkultur-Flasche überführt. Falls die Zellen nach zwei Tagen noch nicht vollständig dicht waren, wurde ein Medienwechsel vorgenommen. Sobald die Zellen 100% Konfluenz erreicht hatten, wurden sie für ca. drei Tage im 1:2 Rhythmus
passagiert. Anschließend erfolgte die regelmäßige Passage zweimal pro Woche. Abhängig vom Zelltyp kann es unter Umständen eine bis zwei Wochen dauern, bis sich die Zellen erholt haben.

3.1.3 Herstellung von steroidfreiem FBS

a) Herstellung der Aktivkohle Dextran T70 Mischung

50 g Aktivkohle wurden mit 500 ml 10 mM Tris-HCl pH 7,8 langsam 10 min. verrührt bis eine homogene Suspension entstand. Nach dem Dekantieren des Überstands wurde die Aktivkohle erneut mit 500 ml 10mM Tris-HCl pH 7,8 versetzt und der eben beschriebene Prozess wiederholt. Nach erneutem Dekantieren des Überstands wurden 5 g Dextran T70 und 400 ml 10 mM Tris-HCl pH 7,8 zugegeben. Das Aktivkohle-Dextran T70 Gemisch wurde autoklaviert und bei 4°C bis zur weiteren Verwendung gelagert.

b) Herstellung des steroidfreien FBS

3.1.4 Herstellung von Trypsin und PBS

Es wurden 100 ml 10x Trypsin-EDTA mit 100 ml phenolrothaltigem 10x HBSS gemischt und mit endotoxinfreiem ddH₂O auf 1000 ml Endvolumen aufgefüllt. Die Lösung wurde steril filtriert und bis zur weiteren Verwendung bei 4°C gelagert.

Zur Herstellung von 500 ml 1xPBS wurden 50 ml 10x PBS mit ddH₂O auf 500 ml Endvolumen aufgefüllt und autoklaviert. Bis zur weiteren Verwendung wurde das 1x PBS bei Raumtemperatur gelagert.
3.1.5 Mycoplasiementest

a) Zellbiologischer Nachweis von Mycoplasmen

Lösungen: Bisbenzimid: 1 mg/ml in ddH₂O MetOH
Arbeitslösung: 10 µg/ml Bisbenzimid in MetOH

b) Molekularbiologischer Nachweis von Mycoplasmen

3.1.6 Transfektion von Säugetierzellen

a) **Elektroporation**

Lösungen:
- Elektroporationspuffer pH 7,35: 50 mM K$_2$HPO$_4$ x 3 H$_2$O; 20 mM Kaliumacetat
- Magnesiumsulfat pH 6,7: 1M MgSO$_4$ (pH mit NaOH einstellen)

Beide Lösungen wurden autoklaviert und bis zur weiteren Verwendung bei 4°C gelagert.

Die Elektroporation ist eine „Methode zur Erzeugung von Löchern in biologischen Membranen, um DNA in lebende Zellen einzuschleusen. Durch die Pulse eines sich entladenden Kondensators wird kurzzeitig ein elektrisches Feld erzeugt, das in Zellwänden Löcher hervorruft, die sich sofort wieder schließen. Fremd-DNA kann durch diese Öffnungen [...] in Säugetierzellen eingeführt werden.‖

1 Je nach Experiment wurden HEK 239 Zellen 1:4 gesplittet und in der entsprechenden Anzahl an 60 cm2 oder 150 cm2 Schalen in steroidfreiem Medium ausgesät. Für die Elektroporation wurden die 95-100% konfluierenden Zellen mit 1x PBS gewaschen, trypsinisiert und zentrifugiert. Die präzipitierten Zellen wurden pro 60 cm2 Schale in 390 µl Elektroporationspuffer mit 10 µl MgSO$_4$ resuspendiert. Bei mehreren Schalen empfiehlt es sich, einen Mastermix aus Elektroporationspuffer und MgSO$_4$ herzustellen und die gesamten Zellen im entsprechenden Volumen aufzunehmen. Bei unterschiedlichen Ansätzen eines Experiments wurden jeweils 400 µl der Zellsuspension auf sterile 1,5 ml Eppendorf Reaktionsgefäße verteilt und die entsprechende Menge Plasmid-DNA (max. 10 µg/60 cm2 Schale) zugegeben. Die Zellen wurden sanft gevortex und anschließend ansatzweise in die Elektroporationsküvetten überführt. Die Elektroporation erfolgte mit 350 V und 700 µF. Wird mit 150 cm2 Schalen gearbeitet, so entsprechen zwei 150 cm2 Schalen jeweils fünf 60 cm2 Schalen. Nach der Elektroporation wurden die Zellen in 60 cm2 Schalen mit frischem und vorgewärmten steroidfreien Medium überführt und für 62-68 h im Brutschrank inkubiert. Je nach Konstitution der Zellen haben sie nach der ca. dreitägigen Ruhephase eine Dichte von 85-95% erreicht.

1 (http://www.biosicherheit.de/de/lexikon/123.elektroporation.html)
Methoden

b) Kationisches, polymeres Transfektionsreagenz

Lösungen:
- NaCl: 150 mM, autoklaviert
- ExGen 500

Diese Methode der Transfektion wurde für die Reportergen-Experimente im 96-well Format verwendet. Es wurde für jeden Zelltyp die optimale Anzahl der ExGen-Äquivalente bestimmt. Empfehlungen für die zu verwendenden DNA-Mengen und NaCl-Volumina zur Transfektion verschiedener Zellkulturschalenformate sind dem Handbuch des Herstellers zu entnehmen.

\[
Z = \frac{3 \times n}{5,47}
\]
\[
\mu l \text{ ExGen} = \mu g \text{ DNA} \times Z
\]
\[
n = \text{Äquivalente ExGen}
\]
Im Allgemeinen entspricht das Volumen NaCl inklusive aller Plasmide und der entsprechenden Menge ExGen pro Well 1/10 Volumen des Transfektionsvolumens.

3.1.7 Reportergen-Experimente

Lösungen:
- passiv Lysis-Puffer: 100 mM K$_3$PO$_4$; pH 7,8, 0,2% Triton X-100
- 2x Renilla-Puffer: 2, 2 M NaCl, 4, 4 mM EDTA, 0, 22 M K$_3$PO$_4$; pH 5, 1,
 0, 88 mg/ml BSA
- Gaussia-Puffer: 0, 22 M K$_3$PO$_4$; pH 5, 1,
- D-Luciferin: 10 mM in K$_3$PO$_4$, pH 7, 8 und Methanol
- Coelenterazin: 1 mg/ml in EtOH + HCl (5 mM)
- MgCl$_2$: 0, 1 M
- ATP: 0, 1 M
- Fireflylösung: 5 mM MgCl$_2$, 2 mM ATP, 100 µM D-Luciferin
- Gaussialösung: (1ml): 500 µl 2x Renilla-Puffer, 500 µl Gaussia-Puffer,
 2, 5µl Coelenterazin

Die Anzahl der ausgesäten Zellen pro Well ist abhängig von der Zelllinie, deren Größe und aktueller Wachstumsrate. Die Anzahl der ExGen-Äquivalente wurde für jede Zelllinie ermittelt. In dieser Arbeit wurden folgende Zellzahlen und Äquivalente ExGen verwendet (Tab. 2).
Methoden

Tabelle 2: Verwendete Zelllinien, Anzahl der Zellen pro 96-Well und Äquivalente ExGen für die Reportergen-Experimente

<table>
<thead>
<tr>
<th>Zelllinie</th>
<th>Zellzahl / Well</th>
<th>ExGen-Äquivalente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cos-7</td>
<td>8000</td>
<td>6</td>
</tr>
<tr>
<td>HEK 293</td>
<td>30000</td>
<td>6</td>
</tr>
<tr>
<td>SK-N-MC</td>
<td>60000</td>
<td>8</td>
</tr>
<tr>
<td>Neuro-2A</td>
<td>10000</td>
<td>8</td>
</tr>
</tbody>
</table>

Es wurden pro Well standardisiert 5 ng Gaussia-Plasmid verwendet und 60 ng MMTV-Luciferase-Plasmid für die humanen SR. Für die Aktivitäts-Bestimmung der murinen SR wurden 40 ng MMTV-Luciferase-Plasmid pro Well cotransfi ziert.

Die Messungen erfolgten in Triplikaten, die für die anschließende Westernblot-Analyse vereinigt wurden. Aufgrund der unterschiedlichen Expressionsniveaus der verschiedenen Rezeptoren wurden die Proben wie unter a-c) beschrieben für die Westernblot-Analyse (siehe 2.2.4) der Rezeptoren vorbereitet.

a) **Vorbereitung der Proben für die GR und PR-Detektion:**

Es wurden jeweils 30 µl pro Well der entsprechenden Triplikate vereinigt. Nach der Zugabe von 25 µl 5x Lämmli-Auftragspuffer wurden die Proben für 5 min. bei 95°C erhitzt. Für die Westernblot-Analyse wurden 20 µl Probe geladen.

b) **Vorbereitung der Proben für die MR-Detektion:**

Die entsprechenden Triplikate wurden mit 30 µl pro Well vereinigt und im Concentrator 30 min. bei 30°C einrotiert. Von diesen Proben wurden 30 µl Überstand abgenommen und mit 10 µl 5x Lämmli-Auftragspuffer für 5 min. bei 95°C denaturiert. Im Anschluss wurden je 15 µl Probe für die immunologische Analyse im Westernblot auf ein PAA-Gel geladen.

c) **Vorbereitung der Proben für die AR-Detektion:**

Die Triplikate wurden in gleicher Weise wie in b) mit 30 µl pro Well vereinigt und mittels Zentrifugation konzentriert. Ausgehend von einem 50 µl Endvolumen wurden 6,5 µl 20% SDS zugegeben. Im Anschluss daran erfolgte die Sonifizierung der Proben (8x 30 sek. Stufe 5, Bioruptor), um die Kerne vollständig aufzuschließen und die DNA zu fragmentieren. Danach wurden die Proben mit 15 µl 5xLämmli-Auftragspuffer versetzt und bei 90°C für 15 min. denaturiert. Für die Analyse im Westernblot wurden 20 µl Probe auf ein PAA-Gel geladen.
3.2 Mikrobiologische Standardmethoden

3.2.1 Herstellung von Nährmedien und Agar-Platten

Lösungen:
- Ampicillin-Stocklsg.: 50 mg/ml
 Endkonz.: 100 µg/ml
- Kanamycin-Stocklsg.: 50 mg/ml
 Endkonz.: 50 µg/ml

Die Stock-Lösungen wurden steril filtriert, aliquotiert und bei -20°C gelagert.

Für einen Liter LB-Medium wurden 20 g LB Broth Base in einem Liter ddH₂O gelöst und autoklaviert. Vor dem Animpfen einer 400 ml Bakterienkultur wurde die entsprechend Menge der gewünschten Antibiotikum-Stocklsg. beigefügt. Für die Herstellung von LB_{Antibiotikum}-Agar-Platten wurden 16 g Agar in einem Liter LB-Medium autoklaviert. Anschließend wurde der Agar im Wasserbad auf 60°C gekühlt, die gewünschte Menge Antibiotikum-Stocklsg. hinzugegeben und in Petrischalen gegossen.

3.2.2 Kultivierung und Lagerung von *E. coli*

Abhängig vom Verwendungszweck wurden die Bakterien unterschiedlich kultiviert. Für Klonierungen wurden nach der Transformation (siehe 3.2.3) 200 µl und Rest auf LB_{Antibiotikum}-Agar-Platten ausplattiert und über Nacht bei 37°C inkubiert.

Zur Herstellung einer Übernachtkultur (ÜK) für eine Plasmid-Mini-Präparation wurden 6ml LB_{Antibiotikum}-Medium in einem 15 ml Zentrifugenröhrchen mit einer Einzelkolonie (EK) inokuliert und ebenfalls über Nacht bei 37°C und 200 rpm auf einem Bakterienschüttler inkubiert.

Die Anzucht einer 400 ml ÜK im Erlenmeyerkolben für die Plasmid-Mega-Präparation erfolgte entweder mit 150-250 µl der „Mini“-ÜK oder einer Vorkultur (VK) aus einer Glyzerinkultur. Zur Herstellung der VK wurden 1 ml LB_{Antibiotikum}-Medium in einem 2 ml Eppendorf Reaktionsgefäß mit Glyzerinkultur angeimpft und anschließend bei 37°C und 700-800 rpm auf dem Heizblock für 8-10 h geschüttelt. Für die Inokulation der 400 ml LB_{Antibiotikum}-Medium wurde die gesamte VK verwendet.

Zur Herstellung einer Glyzerinkultur wurden 500 µl LB-Medium mit 50% Glyzerin, in einem 2 ml Eppendorf Reaktionsgefäß vorgelegt, und anschließend mit 1 ml ÜK gemischt. Alternativ, abhängig von der Dichte der ÜK, wurden 5ml ÜK bei 1734 x g 10 min. zentrifugiert, in 1 ml LB_{Antibiotikum} resuspendiert und ebenfalls in ein 2ml Reaktionsgefäß mit 500µl LB-Medium und 50% Glyzerin überführt. Die dauerhafte Lagerung erfolgt bei -80°C.
3.2.3 Herstellung chemisch kompetenter *E. coli*

Lösungen:

- **TfB I pH 5,8:** 30 mM Kaliumacetat, 100 mM RbCl, 10 mM CaCl₂, 50 mM Manganchlorid, 15% Glycerin
- **TfB II pH 6,5:** 10 mM NaMops; 75 mM CaCl₂, 10 mM RbCl, 15% Glycerin

Beide Lösungen wurden steril filtriert und bis zur weiteren Verwendung bei 4°C gelagert.

Die Herstellung kann bis zu drei Tagen dauern. DH5α Bakterien wurden auf einer LB-Agar-Platte ausgestrichen und über Nacht bei 37°C inkubiert. Am nächsten Tag wurden 5 ml LB-Medium mit einerEK des Ausstriches angeimpft. Alternativ kann man auch 10 µl kompetente Zellen verwenden. Die Bakterien wurden über Nacht bei 37°C und 200 rpm für 12-16 h geschüttelt. Am nächsten Tag wurden 400 ml LB-Medium mit der gesamten 5 ml ÜK inokuliert und wiederum bei 37°C geschüttelt bis eine optische Dichte (OD₆₀₀) von 0,48 erreicht war. Die optische Dichte wurde bei 600 nm gemessen. Nachdem die gewünschte optische Dichte erreicht war, wurden die Bakterien 5 min. auf Eis inkubiert. Im Anschluss wurden die Bakterien bei 4°C und 1381 x g für 10 min. zentrifugiert. Der Überstand wurde dekantiert und die präzipitierten Bakterien wurden in 80 ml TfBI-Puffer resuspendiert und in zwei 50 ml Zentrifugenröhrchen überführt. Nach einem Inkubationsschritt von 5 min. auf Eis, wurde die Bakteriensuspension erneut bei 4°C und 1734 x g für weitere 5 min. zentrifugiert. Der Überstand wurde wiederum entfernt und die Bakterienzellen jeweils in 8 ml TfB II-Puffer aufgenommen. Nach weiteren 15 min. auf Eis wurde die Bakteriensuspension in 1,5 ml Eppendorf Reaktionsgefäße à 200 µl aliquotiert. Die einzelnen Aliquots wurden mittels Trockeneis in einem Ethanol-Bad schockgekühlt und bei -80°C bis zur weiteren Verwendung gelagert.

3.2.4 Hitzeschock Transformation von *E. coli*

Die chemisch kompetenten DH5α Bakterien wurden auf Eis aufgetaut. 10-50 ng Plasmid-DNA bzw. 10 µl eines Ligationsansatzes wurden in einem 1,5 ml Eppendorfgefäße vorgelegt. Nach Zugabe von 100 µl Bakterien wurde der Transformationsansatz 30 min. auf Eis inkubiert. Der Hitzeschock erfolgte für 45 sek bei 42°C im Wasserbad. Nach dem Hitzeschock wurden die Bakterien sofort auf Eis gestellt. Nach zehn-minütiger Inkubation wurden 900 µl SOC Medium zugesetzt und der gesamte Ansatz 1 h bei 700-800 rpm auf dem 37°C erwärmten Heizblock geschüttelt. Je nach Bedarf wurden nun 400 ml LB Antibiotikum – Medium mit dem gesamten Transformationsansatz für eine Plasmid-Mega-Präparation angeimpft. Im Falle einer Klonierung wurden 200 µl und Rest auf LB Antibiotikum-Agar-Platten ausplattiert. Beide Ansätze wurden über Nacht bei 37°C inkubiert. Die 400 ml Kultur wurden bei 200 rpm geschüttelt um die Bakterienkultur mit ausreichend Sauerstoff zu versorgen.
3.3 DNA-Analytik

3.3.1 Plasmidpräparation

a) Mega-Präparation mittels Nucleo Bond AX-Kit

Lösungen:
S1-Puffer, pH 8, 0: 50 mM Tris, 10 mM EDTA pH 8,0, RNAse A 100 µg/ml
S2-Puffer: 200 mM NaOH, 1% SDS
S3-Puffer pH 5, 1: 2800 mM Kaliumacetat
N2-Puffer, pH 6, 3: 100 mM Tris, 900 mM KCl, 15% EtOH, 0, 15% Triton X-100
N3-Puffer pH 6, 3: 100 mM Tris, 1150 mM KCl, 15% EtOH
N5-Puffer pH 8, 5: 100 mM Tris, 1000 mM KCl, 15% EtOH
Ethanol: 70%
TE-Puffer pH 7,5-8: 10 mM Tris-HCl, 1mM EDTA pH 8,0

Für die Isolierung großer DNA-Mengen von hoher Reinheit wurde der Nucleobond AX Kit verwendet.

Die Plasmidisolierung erfolgte aus einer 400 ml ÜK nach dem Prinzip der alkalischen Lyse. Die Bakterien wurden mit 1381 x g für 15 min bei 4°C geerntet. Anschließend wurden sie in 45 ml S1-Puffer resuspendiert. Durch Zugabe von 45 ml S2-Puffer erfolgte die alkalische Lyse. Die Neutralisation und Fällung der Proteine wurde mit 45 ml S3-Puffer erreicht. Nach der Abtrennung von Proteinen und chromosomaler DNA bei 15344 x g und 4°C für 50 min. wurde der Überstand über einen Vorfilter auf AX-2000 Säulen geladen, die vorher mit 20 ml N2-Puffer equilibriert wurden. Es folgten zwei Waschschritte mit 35 ml N3-Puffer. Die Elution der DNA fand mit 25 ml N5-Puffer statt. Die Fällung der Plasmid-DNA durch 18 ml Isopropanol erfolgte mit 3901 x g, bei 4°C für 1 h. Nach einem zusätzlichen 30 minütigen Waschschritt mit 7 ml 70% Ethanol bei Raumtemperatur und 3901 x g, wurde die gefällte Plasmid-DNA luftgetrocknet, in TE-Puffer gelöst und die Konzentration bestimmt.

b) Plasmid Mini-Präparation mittels E.N.Z.A. Plasmid Miniprep Kit

c) **Plasmid Mini-Präparation manuell**

Die manuelle Methode der Plasmidisolierung lieferte eine höhere Ausbeute an Plasmid-DNA. Es wurden die gleichen Puffer verwendet wie für die Mega-Plasmid-Präparation (s. 2.3.1 a)

Es wurden 5 ml LB_Antibiotikum-Medium mit einer EK inokuliert und über Nacht bei 37°C und 200 rpm geschüttelt. Für die Plasmidisolierung wurden 1,5 ml bei Raumtemperatur und 5000 rpm zentrifugiert. Der Überstand wurde verworfen und die Bakterien in 1 ml S1-Puffer ohne RNAse A gewaschen. Anschließend wurden die Bakterien in 200 µl S1-Puffer mit RNAse A resuspendiert, mit 200 µl S2-Puffer lysiert und durch fünf-minütige Inkubation auf Eis nach Zugabe von 200 µl S3-Puffer neutralisiert. Die Abtrennung der Proteine erfolgte durch Zentrifugation bei 13000 rpm (Heraeus, Biofuge pico) für 15-30 min. Der Überstand wurde in ein frisches, autoklaviertes 1,5 ml Reaktionsgefäß überführt.

Die DNA-Fällung erfolgte mit dem 0,8-fachen Volumen Isopropanol für 10-20 min. bei 13000 rpm (Heraeus, Biofuge pico) und Raumtemperatur. Nach der vollständigen Entfernung des Überstandes wurde die DNA nach dem Lufttrocknen in 50-100 µl autoklaviertem ddH_2O gelöst.

3.3.2 DNA-Fällung mit Natriumacetat

Lösungen:
- 3 M Natriumacetat pH 5.2
- 100% Ethanol
- 70% Ethanol

Die DNA wurde mit 1/10 Volumen Natriumacetat versetzt und gemischt. Anschließend wurde das 2,5-fache Volumen Ethanol zugegeben, gemischt und der Ansatz wurde ca. 30 min bei -80°C gelagert. Nach einem 20-minütigen Zentrifugationsschritt bei 25000 x g und 4°C wurde der Überstand entfernt, gefolgt von einem Waschschritt mit 70%-igem Ethanol ebenfalls bei 25000 x g, bei 4°C für 10 min. Nach der vollständigen Entfernung des Ethans wurde die DNA luftgetrocknet und im gewünschten Volumen autoklavierten ddH_2O gelöst.
3.3.3 Photometrische Bestimmung der DNA-Konzentration

Bei einer Wellenlänge von 260 nm weisen DNA-Lösungen eine spektralphotometrisch nachweisbare Extinktion auf, die nach dem Lambert-Beer’schen Gesetz proportional zur Konzentration ist.

\[E = \varepsilon \cdot c \cdot d \]
(Lambert-Beer’sches Gesetz)
\[E = \text{Extinktion} \]
\[\varepsilon = \text{Extinktionskoeffizient} \]
\[c = \text{Konzentration} \]
\[d = \text{Schichtdicke} \]

Eine OD\(_{260}\) von 1 entspricht 50 µg/ml doppelsträngiger (ds) DNA, 40 µg/ml RNA, 33 µg/ml einzelsträngiger DNA (ss).

Der Quotient OD\(_{260}\)/OD\(_{280}\) sollte im idealen Fall zwischen 1,8 und 2,0 liegen. Zur Kontrolle oder bei sehr geringen DNA-Konzentrationen kann eine bestimmte Menge der Probe auf ein Agarosegel aufgetragen werden und anhand der Intensität mit einer Referenzbande des Standards bekannter Menge verglichen werden.

3.3.4 Isolierung von Gesamt-RNA aus Säugetierzellen mit TRIZOL

Lösungen:
- TRIZOL-Reagenz
- Chloroform
- Isopropanol
- Ethanol 75%
- RNAse freies H\(_2\)O

Die Gesamt-RNA-Isolierung erfolgte aus einer 60 cm\(^2\)-Schale mit 100% konfluenten HT22-Zellen. Die Zellen wurden mit 1x PBS gewaschen und anschließend durch Zugabe von 1 ml TRIZOL lysiert. Nach einer Inkubationszeit von 5 min. bei Raumtemperatur wurden 200 µl Chloroform zu gegeben und gut gemischt. Nach weiteren 2-3 min. Inkubation bei Raumtemperatur folgte ein Zentrifugationsschritt bei 12.000 x g und 4°C für 15 min. Die
Zentrifugation bewirkt eine Phasentrennung. Unten im Reaktionsgefäß befindet sich eine rote Phenol-Cloroformphase gefolgt von einer trüben Interphase. Als letzte Schicht ganz oben befindet sich die wässrige Phase. Sie ist farblos und beinhaltet die isolierte RNA. Diese Phase wurde in ein frisches autoklaviertes Reaktionsgefäß überführt, mit 500 µl Isopropanol versetzt und gut gemischt. Einer zehn-minütigen Inkubation bei Raumtemperatur folgte die Fällung der RNA mit 12.000 x g bei 4°C für 10 min. Nach Entfernung des Überstandes folgte ein Waschschnitt mit 75% Ethanol bei 7.500 x g und 4°C für weitere 5 min. Der Überstand wurde vollständig entfernt, das RNA-Präzipitat luftgetrocknet und im gewünschten Volumen RNase freiem H₂O gelöst.

3.3.5 Reverse Transkription

Vor der cDNA-Synthese wurde die isolierte mRNA 10 min. bei 60°C denaturiert. Für die reverse Transkription wurden 5 µg mRNA, 1/10 Volumen 10x Reaktionspuffer, 200 µM dNTPs, 100 pmol Oligo-dT-Primer (T₁₈), 10 U RNAsin und 200 U reverse Transkriptase eingesetzt. Die Reaktion fand in einem Endvolumen von 20 µl statt.

3.3.6 Amplifizierung von DNA mittels Polymerase-Ketten-Reaktion

Für Amplifikationen aus der cDNA wurde die PicoMaxx eingesetzt, eine Mischung aus Taq- und Pfu-Polymerase. Mit dieser Mischung konnte die Volllänge des murinen MR aus HT22-cDNA amplifiziert werden (s. 2.3.6d). Die Taq-Polymerase wurde für Kontrollreaktionen benutzt, hierbei war die Fehlerrate irrelevant, da die amplifizierten Produkte nicht weiter verarbeitet wurden.

a) Standard-PCR

Standard-PCR-Reaktionen wurden in einem 50 µl Endvolumen nach folgendem Schema durchgeführt:

<table>
<thead>
<tr>
<th>Menge</th>
<th>Komponente</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 µl</td>
<td>10x Polymerasepuffer</td>
</tr>
<tr>
<td>10 pmol</td>
<td>Primer 1</td>
</tr>
<tr>
<td>10 pmol</td>
<td>Primer 2</td>
</tr>
<tr>
<td>200 µM</td>
<td>dNTP-Mix</td>
</tr>
<tr>
<td>1-50 ng</td>
<td>DNA-Template</td>
</tr>
<tr>
<td>2.5 U</td>
<td>Polymerase</td>
</tr>
<tr>
<td>ad 50 µl</td>
<td>ddH₂O</td>
</tr>
</tbody>
</table>

Tabelle 3: Standardisierte PCR-Reaktion zur DNA-Amplifikation von verschiedenen Template

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Plasmid-DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Denaturierung</td>
<td></td>
</tr>
<tr>
<td>2. reguläre Denaturierung</td>
<td>94°C / 45 sek.</td>
</tr>
<tr>
<td>Annealing</td>
<td>max. 63°C / 45 sek.</td>
</tr>
<tr>
<td>Elongation</td>
<td>abhängig von Fragmentgröße, 68°C bzw. 72°C</td>
</tr>
<tr>
<td>Letzte Elongation</td>
<td>4-7 min. / 72°C</td>
</tr>
<tr>
<td>Zyklen</td>
<td>30</td>
</tr>
</tbody>
</table>

b) PCR für die Klonierung der HA-PR-Mutanten

10 µl 5x Herculase II Reaktionspuffer
12,5 pmol Primer1
12,5 pmol Primer2
250 µM dNTP-Mix
30 ng DNA-Template
8% DMSO
1 µl Herculase II
10 µl ddH2O
Tabelle 4: PCR-Reaktion zur DNA-Amplifikation von GC-reichen Templaten

<table>
<thead>
<tr>
<th>Schritt</th>
<th>GC-reiche DNA</th>
<th>Touch-down-PCR: z.B. HA-PRΔH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Denaturierung</td>
<td>95°C / 3 min.</td>
<td>95°C / 3 min.</td>
</tr>
<tr>
<td>2. reguläre Denaturierung</td>
<td>95°C / 45 sek.</td>
<td>95°C / 45 sek.</td>
</tr>
<tr>
<td>Annealing</td>
<td>max. 63°C / 45 sek.</td>
<td>56 °C-50°C schrittweise mit einer Differenz von 2°C; bis 52°C: 5 Zyklen mit 50°C: 25 Zyklen</td>
</tr>
<tr>
<td>Elongation</td>
<td>abhängig von Fragmentgröße, 72°C</td>
<td>72°C / 70 sek.</td>
</tr>
<tr>
<td>Letzte Elongation</td>
<td>4-7 min.</td>
<td>72°C / 4 min.</td>
</tr>
<tr>
<td>Zyklen</td>
<td>30</td>
<td>45</td>
</tr>
</tbody>
</table>

c) Ligation via PCR

Abb. 9: Ligation zweier DNA-Fragmente mittels Polymerase-Ketten-Reaktion.

Im Falle der mMR-GRLBD-Mutante so wie der meisten Flag-mMR-Mutanten wurde die erste PCR-Reaktion mit 20 Zyklen und die zweite Reaktion mit 30 Zyklen programmiert. Die Ligation dieser Fragmente im zweiten Schritt wurde in der Regel bei 68°C mit der Pfu turbo durchgeführt.

d) Amplifikation des murinen MR

Die Amplifikation des murinen MR zur Klonierung erfolgte in zwei Schritten. In der ersten PCR-Reaktion wurde die vollständige mMR-Sequenz aus HT22-cDNA amplifiziert. Die Reaktion wurde wie folgt durchgeführt:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA-Template</td>
<td>1 µl cDNA</td>
</tr>
<tr>
<td>10x Polymerasepuffer</td>
<td>5 µl</td>
</tr>
<tr>
<td>Primer (5-mMR for)</td>
<td>30 pmol</td>
</tr>
<tr>
<td>Primer (3-mMR rev)</td>
<td>30 pmol</td>
</tr>
<tr>
<td>dNTPs (10 mM)</td>
<td>2,5 µl (500 µM)</td>
</tr>
<tr>
<td>BSA (2 mg/ml)</td>
<td>10 µl (0,4 µg/ml)</td>
</tr>
<tr>
<td>DMSO</td>
<td>5 µl (10%)</td>
</tr>
<tr>
<td>PicoMaxx</td>
<td>5 U</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>ad 50 µl</td>
</tr>
</tbody>
</table>

Die Reaktion wurde in 30 Zyklen durchgeführt. Die erste Denaturierung erfolgte für 3 min. bei 95°C. Alle weiteren Denaturierungsschritte wurden für 45 sek. bei 95°C
Methoden

e) Mutagenese von DNA-Fragmenten via PCR

Diese Methode der Mutagenese wurde in dieser Arbeit für die Rückmutation des aus cDNA amplifizierten mMR eingesetzt.

Für die Einführung mehrerer Mutationen (max. fünf) werden Primer mit der gleichen Orientierung verwendet, was zur Amplifikation eines Einzelstranges führt. Durch das methylierungssensitive Restriktionsenzym DpnI wird die Template-DNA abgebaut. Die Amplifikation des zweiten Stranges findet nach der Transformation in den Bakterien statt. Hierfür wurden die vom Hersteller empfohlenen Bakterien zur Transformation verwendet. Diese Methode wurde verwendet um einige der pRK7-mMR_Mutanten zu generieren.

Die genauen Angaben zur PCR-Reaktion und Transformation sind dem Handbuch des Herstellers zu entnehmen.
3.3.7 Enzymatische Spaltung von DNA

Der Restriktionsverdau von PCR-Produkten erfolgte in 100 µl Endvolumen mit 20 U Restriktionsenzym. Der Reaktionsansatz wurde, bis auf wenige Ausnahmen, über Nacht bei 37°C inkubiert. Anschließend erfolgte die Reinigung der DNA-Fragmente wie in 2.3.10 beschrieben.

3.3.8 Enzymatische Ligation

Während der Ligationsreaktion der Vektor- und Insert-DNA werden 3´-OH mit 5´-Phosphatgruppen durch die $T4$-DNA-Ligase unter ATP-Verbrauch kovalent durch die Ausbildung von Phosphodiesterbindungen verknüpft.

Ligation erfolgte für 16 h bei 16°C, 10 h bei 10°C und wurde anschließend auf 4°C gekühlt. In die Transformation wurden 10 µl eines Ligationsansatzes eingesetzt (vgl. 2.2.3).

3.3.9 DNA-Agarosegel-Elektrophorese

Lösungen: 10x TBE-Puffer pH 8,3: 90 mM Tris, 90 mM Borsäure, 2,5 mM EDTA

5x DNA-Auftragspuffer pH 7,6: 60% Glyzerin, 50 mM Tris, 50 mM EDTA, 0,025% Bromphenolblau, 0,0025% Xylenacyanol

Bei der Agarosegel-Elektrophorese können DNA-Fragmente entsprechend ihrer Größe aufgetrennt und analysiert werden. Für DNA-Fragmente unter 500 bp wurden 1,5-2% (w/v) Agarosegele gegossen, für größere Fragmente 1% (w/v) Agarosegele. Die entsprechende Menge Agarose wurde in 1x TBE-Puffer durch Aufkochen in der Mikrowelle gelöst. Nach der Zugabe von Ethidiumbromid (1:50000) in die etwas abgekühlte Lösung wurde das Gel in horizontalen Gelträgern inklusive Kamm gegossen und solange gelagert, bis es erstarrt war. Sobald das Gel fest war, wurde es zusammen mit dem Gelträger in die Elektrophoresekammer gelegt, mit 1x TBE-Puffer und Ethidiumbromid überschichtet. Nachdem der Kamm entfernt wurde, wurden der DNA-Standard und die DNA-Proben geladen. Letztere wurden mit 1/5 Auftragsvolumen mit 5x DNA-Auftragspuffer versetzt. Die Elektrophorese erfolgte, abhängig von der Größe der Kammer, bei 60-150 V.

3.3.10 DNA-Extraktion aus dem Agarosegel

Die Reinigung von DNA-Fragmenten nach enzymatischen Reaktionen erfolgte durch Isolierung aus dem Agarosegel mit dem „QIAquick Gel Extraction Kit“ nach Angabe des Herstellers.

3.3.11 Reinigung von DNA-Fragmenten mittels PCR-Reinigungs-Kit

Die Reinigung enzymatisch gespaltener PCR-Produkte erfolgte mit dem Qiagen „QIAquick PCR Purification Kit“ nach Angaben des Herstellers.

3.4 Proteinbiochemische Methoden

3.4.1 Bestimmung der Proteinkonzentration

a) BCA-Kit

b) **Bradford**

Tabelle 5: Pipettierschema der Eichkurve mit IgG (1,4 µg/µl) als Standard und der eingesetzten Proteinmenge für die Eichgerade.

<table>
<thead>
<tr>
<th>Standardreihe</th>
<th>µg IgG</th>
<th>µl Puffer</th>
<th>µl IgG</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>24,15</td>
<td>34,5</td>
<td>34,5 des Stocks</td>
</tr>
<tr>
<td>B</td>
<td>12,075</td>
<td>34,5</td>
<td>34,5 von Probe A</td>
</tr>
<tr>
<td>C</td>
<td>6,0375</td>
<td>34,5</td>
<td>34,5 von Probe B</td>
</tr>
<tr>
<td>D</td>
<td>3,01875</td>
<td>34,5</td>
<td>34,5 von Probe C</td>
</tr>
<tr>
<td>E</td>
<td>0,000</td>
<td>34,5</td>
<td>0-Wert = Blank</td>
</tr>
</tbody>
</table>

Das Bradford-Reagenz wurde vor der Zugabe zu den Proben 1:5 mit ddH₂O verdünnt. Anschließend wurde zu 34,5 µl Proteinextrakt (Standard und Probe) 1 ml Bradford-Reagenz hinzugegeben. Nach einer Inkubationszeit von 10 min. bei Raumtemperatur erfolgte die Proteinbestimmung bei 595 nm. Es ist darauf zu achten, dass sich die OD₅₉₅-Werte der gemessenen Proben innerhalb der OD-Werte der Eichgerade befinden.
3.4.2 SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE)

Lösungen:
- 4x Trenngel-Puffer pH 8,8: 1,5 M Tris-HCl
- Sammelgel-Puffer pH 6,8: 1 M Tris-HCl
- 10x Lämmli-Lauflaufpuffer: 250 mM Tris, 1,92 M Glycerin, 0,5% SDS
- 5x Lämmli-Auftragspuffer: 40% Glycerin, 160 mM Tris-HCl pH 6,8,
 5% β-Mercaptoethanol, 5% SDS,
 0,025% Bromphenolblau
- APS 10% (w/v): 1 g in 10 ml
- Acrylamid, TEMED, Isopropanol

<table>
<thead>
<tr>
<th>Trenngele (10ml):</th>
<th>10%</th>
<th>11%</th>
<th>12%</th>
<th>15%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylamid-Bis 30%</td>
<td>3,3</td>
<td>3,7</td>
<td>4,0</td>
<td>5</td>
<td>0,83</td>
</tr>
<tr>
<td>H₂O</td>
<td>4</td>
<td>3,6</td>
<td>3,3</td>
<td>2,3</td>
<td>3,4</td>
</tr>
<tr>
<td>4x Trenngel-Puffer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,5M Tris-HCl (pH 8,8)</td>
<td>2,5</td>
<td>2,5</td>
<td>2,5</td>
<td>2,5</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sammelgel-Puffer</th>
<th>1,0M Tris-HCl (pH 6,8)</th>
<th></th>
<th></th>
<th></th>
<th>0,63</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% SDS</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,05</td>
</tr>
<tr>
<td>10% APS</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,05</td>
</tr>
<tr>
<td>TEMED</td>
<td>0,004</td>
<td>0,004</td>
<td>0,004</td>
<td>0,004</td>
<td>0,005</td>
</tr>
</tbody>
</table>

3.4.3 Kolloidal Coomassie-Färbung von SDS-Gelen

Lösungen:
- 3x Fixierlösung: 90% EtOH, 6% Phosphorsäure
- Färbelösung: 17% Ammoniumsulfat, 2% Phosphorsäure, 34% Methanol
- Coomassie: Brilliant Blue G, 1 mg/ml

Coomassie färbt basische Aminosäuren und wurde hier für die Färbung der Gele für die quantitative Analyse verwendet.

Nach der SDS-Gelelektrophorese wurde das Gel kurz mit dH₂O gespült und anschließend in 50 ml 1x Fixierlösung über Nacht bei Raumtemperatur auf dem Schüttler inkubiert. Am nächsten Tag wurde das Gel dreimal für 20 min mit ddH₂O gewaschen. Anschließend folgte eine einstündige Equilibrierung in 50 ml Färbelösung. Für die Färbung wurden nach einer Stunde 50 mg Brilliant Blue G Coomassie auf der Oberfläche der Färbelösung verteilt. Die Endkonzentration der Coomassie-Lösung betrug somit 1 mg/ml. Das Gel wurde für drei Tage bei Raumtemperatur auf dem Schüttler gefärbt. War der Hintergrund zu stark war, wurde das Gel nach der Färbung so lange wie gewünscht in ddH₂O gewaschen,
um die Hintergrundfärbung zu minimieren. Die so gefärbten Gele können mit etwas ddH₂O in Plastikfolie eingeschweißt, bei 4°C gelagert werden.

3.4.4 Westernblot-Analyse:

Lösungen:
- Wetblot-Puffer: 125 mM Tris, 190 mM Glycin, 20% MetOH +/- 0,04% SDS
- 10x TBS pH 7,6: 100 mM Tris, 1,5 M NaCl
- 1x TBST: 10 mM Tris-HCl pH 7,6, 150 mM NaCl, 0,1% Tween
- Ponceau-Lösung
- 2-5% Milch in 1x TBST
- „Stripping”-Puffer pH 2,2: 0,2 M Glycin, 1% Tween, 1% SDS (frisch zugeben)
- Luminol: 250 mM 3-Aminophtahydraizid in DMSO
- Coumarinsäure: 90 mM Coumarinsäure in DMSO
- ECL-Reagenz: 100 mM Tris-HCl pH 8,5, 50 µl Luminol, 22 µl Coumarinsäure, 3 µl H₂O₂
- Immobilon Western (chemiluminescence HRP-Substrat, Millipore)

Der Protein-Transfer wurde im Wetblot-Verfahren durchgeführt. Hierbei werden die Proteine aus dem SDS-Polyacrylamid-Gel durch ein elektrisches Feld auf eine Nitrozellulose- oder PVDF-Membran übertragen, wo sie kovalent an das Membran-Material binden. Der Transfer wurde mit 250 mA (für zwei Gele) durchgeführt.

Die Polyacrylamid-Gele wurden nach der Elektrophorese in Wetblot-Puffer equilibriert, ebenso die Nitrozellulose-Membran. Der Blot wurde in den dafür vorgesehenen
- Blot-Schwamm
- zwei Whatman-Papiere
- Gel
- Nitrocellulose-Membran
- zwei Whatman-Papiere
- Blot-Schwamm

Alle benötigten Materialien wurden vorher in Blot-Puffer äquilibriert bzw. eingewechselt. Das Zusammenbauen des Blots erfolgte unter Blot-Puffer, um die Bildung von Luftblasen zu verhindern. Im Anschluss wurden die Blot-Vorrichtungen in die Blot-Kammern überführt, mit Kühl-Akkus versehen und mit Blot-Puffer aufgefüllt. Der Transfer erfolgte mit 250 mA pro Kammer (zwei Blots) für zwei Stunden bei Raumtemperatur. 15% Gele wurden mit 0,04% SDS im Wetblot-Puffer geblotet, darum erfolgte der Transfer ohne Kühl-Akkus bei 4°C unter Rühren.

Nach zwei Stunden wurden die Membranen zur Kontrolle des Proteintransfers mit Ponceau angefärbt. Mit 1x TBST wurden die Membranen wieder entfärbt, bevor sie mit 5%-Milchpulver in 1x TBST für mindestens 30 min. (Raumtemperatur), meistens aber über Nacht bei 4°C geblöckt wurden, um unspezifische Bindungsstellen abzusättigen. Anschließend wurden die Blots mit dem primären Antikörper versehen (siehe 2.5) und über Nacht bei 4°C inkubiert. Nach dreimaligem Waschen mit 1x TBST wurde für eine Stunde bei Raumtemperatur der sekundäre Antikörper zugegeben (siehe 2.5). Nach drei weiteren Washschritten mit 1x TBST erfolgte die Detektion mittels Immobilon Western HRP Substrat. Das ECL-Reagenz wurde zur Detektion der Cofaktoren der Westernblots der Reportergen-Experimentes verwendet. Alle in dieser Arbeit gezeigten Blots wurden mit dem Imaging-System von Kodak aufgenommen. Es wurde jedoch zusätzlich auch ein Röntgenfilm entwickelt, um sicher zu stellen, dass die Höhe der detektierten Banden der zu erwartenden Proteingröße entspricht.

Da mehrere Proteine auf einer Membran detektiert wurden, war es nötig, die gebundenen Antikörper wieder zu entfernen. Hierfür wurden die Membranen über Nacht bei Raumtemperatur in „Stripping“-Puffer inkubiert. Danach wurden die Membranen zweimal kurz mit 1x TBST gespült, anschließend erneut geblockt, und es wurde weiter verfahren wie oben beschrieben.
3.4.5 Färbung von Nitrozellulose-Membranen mit Amidoschwarz

Lösungen:

- **Amidoschwarz-Färbelösung:** 0,5% Amidoschwarz, 40% MetOH,
 10% Essigsäure
- **Entfärbelösung:** 40% MetOH, 10% Essigsäure

Diese Methode wurde ebenfalls zur Kontrolle des Transfers oder als Ladungskontrolle verwendet. Die Färbung ist reversibel aber nicht so sensitiv wie die Färbung von Proteinen im SDS-Gel mit kolloidal Coomassie. Die Membran wurde für 10 min. bei Raumtemperatur in Amidoschwarz-Färbelösung inkubiert. Anschließend wurde solange mit Entfärbelösung gewaschen, bis die Hintergrundfärbung so minimal wie möglich war. Die so gefärbten Membranen wurden kurz mit ddH₂O gespült und eingeschweißt und bei 4°C gelagert.

3.4.6 Protein-Protein Co-Immunpräzipitation

Lösungen:

- **Lysispuffer A':** 20 mM Tris-HCl pH 7,5, 130 mM NaCl,
 20 mM Na₂MoO₄, 1mM EDTA, 10% Glyzerin,
 0, 5% TritonX-100,
 Proteaseinhibitor-Cocktail (1:100), 2 mM PMSF
 (frisch hinzufügen)
- **1x TBS pH 7,6:** 10 mM Tris, 150 mM NaCl
- **1x PBS**
- **0,1M Glycin pH 3,5 und pH 2,5**
- **1x Flag-Peptid:** Stocklsg.: 5 mg/ml
 Endkonz.: 100 ng/µl in 1x TBS
- **1x HA-Peptid:** Stocklsg.: 5 mg/ml
 Endkonz.: 100 ng/µl in 1x PBS

Die Co-Immunpräzipitation (CoIP) ist eine Möglichkeit, physikalische Wechselwirkung zwischen Proteinen nachzuweisen. Das Prinzip einer Co-Immunpräzipitation ist in Abbildung 10 dargestellt.

Methoden

Abb. 10: Prinzip der Co-Immunpräzipitation (CoIP). Der Antikörper immobilisiert Protein A und gleichzeitig dessen Interaktionspartner B und C.

In dieser Arbeit wurden zwei verschiedene Antikörper für die CoIP verwendet, anti-Flag- und anti-HA. Beide Antikörper sind kovalent an eine Agarose-Matrix gekoppelt. Das im folgenden Abschnitt beschriebene experimentelle Vorgehen ist für beide Antikörper gleich, mit zwei Ausnahmen, im Falle der HA-Agarose wurde 1x PBS statt 1x TBS für die Waschschritte verwendet und 0,1 M Glycin pH 2,5 an Stelle von pH 3,5.

Pro Ansatz wurden 50 µl Antikörper-Agarose-Suspension verwendet. Die Vorbereitung der Agarose erfolgte mit der gesamten, für das Experiment benötigten Menge. Erst kurz vor Zugabe des Zellextraktes wurde die Antikörper-Agarose zu gleichen Mengen auf 1,5 ml Eppendorf-Reaktionsgefäße verteilt.

Die Agarose wurden dreimal mit 500 µl kaltem 1x TBS/1x PBS bei 10000 g und 4°C für 30 sek. gewaschen. Anschließend erfolgte ein Waschschritt mit kaltem 0,1 M Glycin pH 3,5/2,5 um ungebundene bzw. nicht vollständig gebundene Antikörper zu entfernen. In zwei weiteren Waschschritten wurde der pH-Wert wieder neutralisiert. Für den dritten Waschschritt wurde die Agarose in einem höheren Volumen resuspendiert und gemäß der Anzahl an Proben gleichmäßig auf frische 1,5 ml Eppendorf-Reaktionsgefäße verteilt und ein letztes Mal mit 10000 x g bei 4°C für 30 sek. zentrifugiert. Vor der Beladung der Agarose mit Zellextrakt wurde der Überstand vollständig entfernt. Jeder Ansatz wurde mit 1,5 mg Zellextrakt versehen und mit Lysipuffer A⁺ auf ein Endvolumen von 1 ml auf gefüllt. Hier
empfiehlt es sich, zuerst den Puffer auf die Agarose zu geben, um unspezifische Bindungen zu reduzieren. Nach Zugabe des Zellextrakts wurden die Proben über Nacht auf einem Überkopfschüttler bei 4°C inkubiert. Am nächsten Tag wurden die Proben dreimal mit kaltem 1x TBS/1x PBS gewaschen in dem sie wiederum mit 10000 x g bei 4°C für 30 sek. zentrifugiert wurden. Die Elution der gebundenen Proteine erfolgte mit 50µl Flag-Peptid/HA-Peptid (100 ng/µl) in 1x TBS/1x PBS bei 4°C für eine Stunde auf dem Überkopfschüttler. Im Anschluss daran wurden die Proben ein letztes Mal mit 10000 x g für 1 min. bei 4°C zentrifugiert. Der Überstand (50µl) wurde in ein frisches 1,5 ml Eppendorf-Reaktionsgefäss überführt und mit 15µl Lämmli-Auftragspuffer versehen. Die Proteine wurden bei 95°C für 5 min. denaturiert.

3.4.7 Quantifizierung der Westernblots und Coomassie-Gele

Die Quantifizierung der Co-Immunpräzipitationsexperimente wurde mit der 1D Image Analysis Software 3.6 durchgeführt. Für die Quantifizierung des Receptors sowie der endogenen Proteine wurde der Westernblot verwendet.

Die präzipitierte Menge an Rezeptor wurde zuerst auf die Expressionskontrolle (Lysat) normalisiert \(\left(\frac{HA(ColP)}{HA(Lys)} \right) = X \) und anschließend auf die Menge präzipitierten Cofaktors \(\left(\frac{X}{\text{Flag} - IP} \right) \). Die co-präzipitierten endogenen Proteine wurden direkt auf den Antikörper-präzipitierten Cofaktor normalisiert. Die Menge an präzipitiertem Cofaktor wurde in kolloidal Coomassie gefärbten Gelen quantifiziert. Da es sich bei den Cofaktoren um Hsc70/Hsp70 Cochaperone handelt, konnte die Menge an copräzipitiertem Hsc70/Hsp70 ebenfalls über Coomassie gefärbte Gele ermittelt werden. Die Quantifizierung kann auf zwei verschiedene Arten mit dieser Software erfolgen. Es können die ROI (region of interest) ermittelt werden oder die Bandendicke mit Hilfe des Histogramms. Wählt man die Methode der ROI, dann muss der Blot-Hintergrund mitbestimmt werden, der vor der Normalisierung von allen Proben-Werten abgezogen wird. Für die Quantitative Analyse wurden jeweils die Werte der Netto-Intensität (Net-Intensity) verwendet.

Für die Quantifizierung der CoIP-Westernblots wurde die Bandendicke mit Hilfe des Histogramms bestimmt. Das gleiche gilt für die Quantifizierung der Coomassie-Gele.

Die Quantifizierung der Westernblots der Hormonbindungsanalyse erfolgte mit der ROI-Methode, da die Banden teilweise schon stark gesättigt zu sein schienen.
3.4.8 Polarisationsexperiment: Hormonbindungsanalyse

Lösungen:
- 2x Tris-Puffer pH 7.4: 10 mM Tris, 2 mM EDTA
- TGW-Puffer (200 ml): 100 ml 2x Tris-Puffer, 10 ml Glycerin ad 200 ml auffüllen mit ddH$_2$O
- 200 mM PMSF: in EtOH
- TGW$^{++}$-Puffer (25 ml): 24,5 ml TGW-Puffer, 3,5 µl β-Mercaptoethanol 250 µl Proteaseinhibitor-Cocktail, 250 µl PMSF (200 mM)

Alle Puffer wurden bei 4°C gelagert. PMSF wurde aliquotiert und bei -20°C gelagert. Der Proteaseinhibitor-Cocktail, PMSF und β-Mercaptoethanol sind vor der Verwendung frisch hinzuzugeben.

\[
mp = \frac{parallel - senkrecht}{parallel + senkrecht} \times 1000
\]

Alle Arbeitsschritte mit Ausnahme der Proteinbestimmung und der Polarisations-Messung fanden auf Eis bzw. 4°C statt.
Tabelle 7: Pipettierschema für die Polarisationsexperimente. Bei einer konstanten Fluoromon-Konzentration (4nM) wurde die Proteinmenge in dreifachen Verdünnungsschritten titriert.

<table>
<thead>
<tr>
<th>Messpunkt</th>
<th>Assay-Puffer (AP) in µl</th>
<th>Probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>45 µl unverdünnte Probe</td>
</tr>
<tr>
<td>2 bis n</td>
<td>30</td>
<td>15 µl von n-1</td>
</tr>
</tbody>
</table>

3.4.9 Bestimmung der Menge an hormonbindungsfähigem Rezeptor mit [³H]-Kortikosteron

Lösungen:
- **TGW⁴⁰⁺:** 5 mM Tris, 40 mM Natriummolybdat, 1 mM EDTA, 10% (v/v) Glycerin
- Aktivkohle/Dextran-Suspension: 375 mg Aktivkohle, 37,5 mg Dextran
 In 10 ml TGW⁴⁰⁺ resuspendieren

Beide Lösungen wurden bis zu ihrer Verwendung bei 4°C gelagert.

4 Ergebnisse

4.1 Einfluss von BAG-1M auf den Progesteronrezeptor (PR): Funktions- und Interaktionsanalyse

Die Eigenschaft von BAG-1 (*Bcl-2 associated athanogene 1*), in seiner Wirkung zwischen dem Glukokortikoidrezeptor (GR) und dem Mineralokortikoidrezeptor (MR) zu diskriminieren, macht es zu einem attraktiven Kandidaten für zukünftige Studien. Aus diesem funktionellen Unterschied könnten sich vielversprechende Ansätze für die Entwicklung von spezifischen Medikamenten zur Verbesserung der GR-Signaltransduktion ergeben. In diesem Zusammenhang ist es wichtig, die Wirkung von BAG-1 auf verwandte SR zu kennen. Der GR, der Androgenrezeptor (AR) sowie der Östrogenrezeptor (ER) wurden diesbezüglich bereits untersucht (Kullmann et al., 1998; Schneikert et al., 1999; Froesch et al., 1998; Shatkina et al., 2003; Cutress et al., 2003). In der Literatur finden sich bislang keine Angaben über den Einfluss von BAG-1 auf den Progesteronrezeptor (PR), der zur Klasse I der SR gehört. Im folgenden Abschnitt soll untersucht werden, ob BAG-1M einen Einfluss auf die Funktion des PR ausübt, und ob sich dieser gegebenenfalls mechanistisch mit der Wirkungsweise von BAG-1M auf den GR oder AR vergleichen lässt.

4.1.1 Inhibition der Aktivität des Progesteronrezeptors durch BAG-1M

Da der inhibitorische Effekt von BAG-1 auf die GR-Aktivität von der Interaktion mit Hsc70/Hsp70 (*heat shock cognate 70 kDa protein/heat shock 70 kDa protein*) abhängig ist (Schneikert et al., 2000; Schmidt et al., 2003), wurde eine Mutante von BAG-1M (BAG-1M_mut) als Kontrolle für die Hsc70/Hsp70-Abhängigkeit mitgeführt. Ein
Aminosäureaustausch (R237A) in der C-terminalen BAG-Domäne führt bei dieser Mutante zum Verlust der Interaktion mit Hsp70 (Sondermann et al., 2002).

Wie in Abbildung 12 dargestellt ist, führte die Überexpression von BAG-1M in Cos-7 Zellen zu einer reduzierten transkriptionellen Aktivität des PR (Abb. 12A).

Die BAG-1M-Mutante, die nicht mehr an Hsp70 bindet, inhibierte den PR ebenfalls (Abb. 12A). Diesen Ergebnissen zufolge würde der negative Effekt von BAG-1M auf die PR-Funktion nicht über Hsp70 vermittelt werden, im Gegensatz zur Situation beim GR. In Abbildung 12B ist eine andere Art der Darstellung derselben Daten gezeigt. Hier ist die n-

Um die Expression des Receptors kontrollieren zu können, wurden Immunoblot-Analysen durchgeführt (Beispiel in Abb. 12C). Es zeigt sich, dass BAG-1M keinen Einfluss auf die Menge exprimierten Rezeptors verglichen mit der Kontrolle hatte. Folglich konnte für BAG-1M ein inhibitorischer Einfluss auf die transkriptionelle Aktivität des PR, der in einer Reduktion der Rezeptormenge begründet war, ausgeschlossen werden.

4.1.2 Hsc70/Hsp70-vermittelte Interaktion des Progesteronrezeptors mit BAG-1M

Zunächst wurde die Rezeptor-Expression überprüft. Wie im Lysat sichtbar, führte die ektopische Expression des PR alleine zu einem schwachen Genprodukt (Spur 1), welches nicht unspezifisch copräzipitiert wurde (Spur 4). Der Vergleich der PR-Spiegel mit und ohne BAG-1M_mut zeigte eine stärkere PR-Bande in Anwesenheit von BAG-1M_mut (Spur 3). Diese Unterschiede in den PR-Spiegeln könnte auf einen Unterschied in der Transfektionseffizienz zurückgeführt werden. In der Co-Immunpräzipitation zeigte sich in der PR-Interaktion mit BAG-1M eine deutliche Hsc70/Hsp70-Abhängigkeit (vgl. Spur 5 mit Spur 6). Die relativ schwache Bindung des Rezeptors an BAG-1M_mut (Spur 6) erklärte sich durch die ebenfalls sichtbare Restbindung von Hsc70/Hsp70 an die BAG-Mutante.

Diese Daten unterstützten die Schlussfolgerung, dass BAG-1M die transkriptionelle PR-Dynamik Hsp70-abhängig inhibiert (Abb. 12B). Die Relevanz der Hsp70-Abhängigkeit für die Bindung an BAG-1M konnte durch diese Interaktionsstudie bestätigt werden.

Nicht nur für den GR, auch für den AR wurde die Hsp70-Abhängigkeit des BAG-1 Effektes sowohl funktionell als auch in der Interaktion festgestellt (Schneikert et al., 2000); (Schmidt et al., 2003; Shatkina et al., 2003). Literaturdaten zu AR und GR lassen vermuten, dass eine Interaktion von BAG-1 mit N- und C-terminalen Bereichen der SR zu einer Stimulierung deren tanskriptioneller Aktivität führen könnte, während sich eine Interaktion mit der Hinge-Region inhibierend auswirkt (Shatkina et al., 2003); (Kullmann et al., 1998).

4.1.3 Herstellung verschiedener Progesteronrezeptor-Mutanten

Die DNA-Bindungsdomäne (DBD) wurde aus zwei Gründen kloniert. Einerseits ist bekannt, dass BAG-1M die DNA-Bindung des GR inhibiert (Kullmann et al., 1998) und BAG-1M unspezifisch an DNA bindet (Zeiner et al., 1999; Niyaz et al., 2003; Schmidt et al., 2003). Andererseits führt die Deletion der DNA-Bindungsdomäne zur Inaktivierung des PR in den Reporter-Experimenten, daher konnte nur durch die Interaktionsanalyse mit der reinen DBD oder der ΔDBD festgestellt werden, ob diese Domäne zur Bindung und deshalb unter Umständen zum inhibitorischen Effekt von BAG-1M beiträgt.

Da das PR-Fragment 494-641 in fast allen Konstrukten vorhanden war, wurde es als Einzelfragment hergestellt um alle Domänen, die als mögliche Interaktionsstellen für BAG-1M in Frage kommen, unterscheiden zu können. In diesem Zusammenhang wurden ebenfalls die Reste 494-562 in einem weiteren Konstrukt deletiert (PRΔ494-562).

Um ausschließen zu können, dass die Reste vor der DBD (AS 494-562) und die Hinge-Region (AS 641-684) aufgrund der Rezeptor-Faltung beide an der Bindung an BAG-1M-beteiligt sind, wurde die Doppelmutante PRΔ494-562/ΔH kreiert (Abb. 14B). Im nächsten Schritt wurde die Aktivität der verschiedenen PR-Mutanten untersucht.
4.1.4 Funktionelle Analyse der Progesteronrezeptor-Mutanten

Auf die funktionelle Analyse der kurzen Fragmente, PR_494-562, PR_DBDB und PR_DBDBH wurde verzichtet, da davon auszugehen ist, dass diese kurzen Fragmente nicht transkriptionell aktiv sind. Die Aktivität der verschiedenen PR-Mutanten wurde wie in 4.1.1 in Reportergen-Experimenten untersucht (Abb. 15). Die hier dargestellten Daten wurden in zwei verschiedenen Ansätzen generiert. Der Vergleich der Aktivitäten der einzelnen Mutanten mit PRwt (schwarz) zeigte, dass die Mutanten in zwei Gruppen unterteilt werden konnten. Zur Gruppe der aktiven PR-Mutanten gehörten PRAΔC (grün), PRAΔ494-562 (rosa) sowie PRAΔH1 (blau) (Abb. 7B). Im Gegensatz dazu zeigten PRAΔN (rot) sowie PRAΔH (hellblau) keine bzw. nur sehr geringe transkriptionelle Aktivität nach Stimulierung mit 10 nM Progesteron (Abb. 15C). PRAΔDBD (orange) war wie erwartet inaktiv bzw., allenfalls bei hohen Progesteron-Konzentrationen, schwach aktiv (Abb. 15C)

Deutlich zu sehen war die hormonunabhängige Aktivität von PRAΔC. Aus der Literatur ist bekannt, dass Trunkationen der Ligandenbindungsdomäne (LBD) des GR (AS 515-Ende) zu einer hormonunabhängigen Aktivität führt (Hollenberg et al., 1987). Später wurde dies auch für den PR beschrieben (Takimoto et al., 2003). Im Gegensatz zu C-terminalen Trunkation des GR, die zu einer schwächeren Reportergen-Expression führt (Hollenberg et al., 1987), war die PRAΔC deutlich aktiver als PRwt (Abb. 15B). Diese Beobachtung lässt sich möglicherweise durch die stärkere Expression dieses Rezeptors erklären (Abb. 15D, Spur 11-14). Obwohl im Vergleich nur die Hälfte HA-PRAΔC-Plasmid für die Transfektion eingesetzt wurde, war die Proteinmenge deutlich höher als bei PRwt (Abb. 15D, Spur 1-4).

Abb. 15: Funktionelle Analyse verschiedener PR-Mutanten im Vergleich zu PRwt. 8000 Cos-7 Zellen wurden mit den kodierenden Plasmiden für MMTV-Luc (60 ng), Gaussia-KDEL (5 ng) und einem der Expressionsplasmide für HA-PRwt, HA-PRΔH1, HA-PRΔ494-562, HA-PRΔH und HA-PRΔ494-562/ΔH (jeweils 12,5 ng) cotransfiziert. Für die Analyse von HA-PRΔC wurden 6 ng, für die von HA-PRΔN 25 ng Rezeptor-Plasmid transfiziert. Dargestellt sind die Mittelwerte der normalisierten Rezeptor-Aktivität (Firefly/Gaussia, ± SEM). Für PRwt wurden 6-14 unabhängige Experimente durchgeführt, für die Mutanten 3-7. (A) Darstellung der Aktivität aller Rezeptoren. (B-C) Aufteilung der Aktivitätsdaten in, verglichen mit dem PRwt (schwarz), aktive Mutanten: PRΔC (grün), PRΔ494-562 (rosa) und PRΔH (blau) (B), und inaktive bzw. schwach aktive Mutanten wie PRΔN (rot), PRΔ494-562/ΔH (grau) PRΔDBD (orange) und ΔH (hellblau) (C). (E-F) Repräsentativer Westernblot mit Extrakten aus den Reportergen-Experimenten. Es wurden jeweils 20 µl auf ein 12%iges PAA-Gel geladen. Für die Westernblot-Analysen wurden Extrakte von Zellen verwendet, die mit Ethanol bzw. 0,1, 1 und 10 nM Progesteron stimuliert wurden. In Spur 5 aller drei Gele wurde der Extrakt untransfizierter Zellen (L) als Kontrolle für die Antikörperspezifität mitgeführt. Die Detektion der Proteine wurde mit Antikörpern gegen HA (PR) und Aktin als Ladekontrolle durchgeführt.
Die Inaktivität der Doppelmutante PRΔ494-562/ΔH ließ sich durch die Deletion der Hinge-Region erklären, deren Deletion für sich genommen bereits zur Inaktivierung des Receptors führte (Abb. 15C). Als Grund könnte eine Strukturinstabilität bzw. Fehlfaltung angeführt werden. Eine Reduktion der exprimierten Rezeptormenge konnte als Erklärung für die Inaktivität ausgeschlossen werden, da die Rezeptormenge dieser Mutante (PRΔH) deutlich höher als die des Wildtyps war (Abb. 15F, Spur 6-9 vergl. mit Spur 1-4).

4.1.5 Interaktionsprofil von BAG-1M mit den PR-Mutanten – fehlende Interaktion mit PR_DBDB

Im Gegensatz zu BAG-1M, hat BAG-1M_mut nicht mehr an Hsc70/Hsp70 gebunden (Abb. 16 A und B, Coomassie-Gele). Die Proteine, die in einer schwachen Bande sichtbar copräzipitiert wurden, könnten unspezifische endogene Interaktionspartner sein, da sie auch in der Kontrolle (Abb. 16A, Spur 8) vorhanden waren.

Es gab keinen nennenswerten Expressionsunterschied zwischen PRwt, PRΔ494-562 und PRΔH1 in Gegenwart von BAG-1M (Abb. 16A, Spur 2-7). BAG-1M_mut jedoch schien einen „stabilisierenden“ Effekt auf die Rezeptor-Expression zu besitzen, der am stärksten
Ergebnisse

Obwohl zweimal mehr Plasmid für PRΔN als für PRΔC eingesetzt wurde, war die exprimierte Proteinmenge für PRΔN geringer (Abb. 16B, vgl. Spur 3 und Spur 4 mit Spur 1 und Spur 2). Dennoch wurde für diese Mutante eine Interaktion mit BAG-1M nachgewiesen (Abb. 16B, Spur 8). Die Deletion des C-Terminus des PR (PRΔC) hatte keinen negativen Einfluss auf die Bindung an BAG-1M (Abb. 16B, Spur 5). In beiden Fällen wurde die Interaktion mit BAG-1M von Hsc70/Hsp70 vermittelt, da die beiden Rezeptor-Mutanten mit
Ergebnisse

BAG-1M_mut nicht copräzipitiert wurden (Abb. 16B, Coomassie-Gel: vgl. Spur 5 mit Spur 6 und Spur 8 mit Spur 7).

Die Interaktionsanalyse von PRAH und PRA494-562/ΔH zeigte für beide PR-Mutanten eine Hsc70/Hsp70-abhängige Bindung an BAG-1M. Da es sich hierbei um transkriptionell inaktive Mutanten handelte, sind die entsprechenden Daten hier nicht gezeigt. Ein Grund für diese Interaktion könnte sein, dass die Deletion der gesamten Hinge-Region (AS 641-684) eine Fehlerfaltung zur Folge hatte, welche die Bindung an Hsc70/Hsp70 in seiner Funktion als Chaperon begünstigte. Dies könnte auch für die BAG-1M-Interaktion der PR-Doppelmutante (PRA494-562/ΔH) als Erklärung angeführt werden.

Keine der deletierten Regionen im PR schien essentiell für die Bindung an BAG-1M zu sein. Als Erklärung können hier zwei Möglichkeiten angeführt werden. Zum einen könnte mehr als eine Region oder Domäne des PR an der Interaktion mit BAG-1M beteiligt sein. Zum anderen kann nicht ausgeschlossen werden, dass z.B. eine Fehlerfaltung, bedingt durch die Deletion der gesamten Hinge-Region, zu einer verstärkten Hsc70/Hsp70-Bindung führte. In seiner Eigenschaft als Chaperon, dessen Funktion unter anderem die Aufrechterhaltung der Proteinhomöostase ist, bindet es an fehlgefaltete Proteine und führt sie dem Abbau zu. Da es sich hier um Überexpressions-Experimente handelte, könnte die Kapazität der am Protein-Abbau beteiligten Komponenten jedoch nicht ausgereicht haben, um eine Abbau-bedingte Reduktion der Proteinmenge in der Westernblot-Analyse erkennbar zu machen.

Um zu untersuchen, ob die Hinge-Region bzw. die Reste 494-562 dennoch einen Beitrag zur Bindung an BAG-1M leisten, wurde im nächsten Schritt die Bindung von PR_DBDH und PR_494-641 an BAG-1M untersucht. Auch die Frage nach der Relevanz der DNA-Bindungsdomäne des PR für die BAG-1M-Interaktion wurde in nachfolgenden Experimenten beantwortet (Abb. 17).

Obwohl für die Expression der PR_DBDH-Mutante ebenfalls 5 µg Plasmid-DNA eingesetzt wurden, um das Expressionniveau anzugleichen, wurde sie schwächer exprimiert als PR_DBD (Abb. 17A, vgl. Spur 3 und Spur 4 mit Spur 1 und 2). Trotz des Expressionsvorteils von PR_DBD, war dieses Fragment nicht in der Lage, an BAG-1M zu binden. Das Anfügen der Hinge-Region in PR_DBDH führte im Gegensatz, zu einer Wiederherstellung der Interaktion mit BAG-1M. BAG-1M_mut hingegen hat an keines der beiden PR-Fragmente gebunden (Abb. 17A, Spur 6 und Spur 8). Damit wurde gezeigt, dass Hsc70/Hsp70 die Bindung von PR_DBDH an BAG-1M vermittelte.

Die Expression von PR_494-641 konnte in diesem Experiment nicht mit der Expression von PR_DBD und PR_DBDH verglichen werden, da beide Mutanten nicht auf dasselbe Gel geladen wurde. In anderen vergleichenden Expressionsanalysen aber wurde festgestellt, dass PR_494-641 ähnlich stark exprimiert wurde wie PR_DBD (Daten nicht gezeigt). Ähnlich wie im Falle der Hinge-Region führte das Anfügen der Reste 494-562 zur Wiederherstellung der Bindung an BAG-1M (Abb. 17B, Spur 3). Da PR_494-641 von BAG-
Ergebnisse

1M_mut nicht copräzipitiert wurde (Abb. 17B, Spur 4), wurde dadurch die Hsc70/Hsp70-Abhängigkeit der Interaktion von PR_494-641 mit BAG-1M erneut bestätigt.

Abbildung 17: Die DNA-Bindungsdomäne des PR bindet nicht an BAG-1M. Die Expressionsplasmide für Flag-BAG-1M oder Flag-BAG-1M_mut (jeweils 8 µg) und eines der Plasmide, kodierend für die verschiedenen PR-Fragmente, wurden zusammen in HEK 293 Zellen transfiziert. Nach der Elution des mit anti-Flag-Agarose präzipitierten Materials wurden für die Westernblot-Analyse jeweils 15 µg Lysat und 20 µl Eluat (Flag-IP) auf ein 15%-iges PAA-Gel geladen und nach dem Transfer auf eine Membran mit Antikörpern gegen HA (PR), Hsc70/Hsp70 und BAG-1 detektiert. (A) Für die Expression von HA-PR_DBD und HA-PR_DBDH wurden 2 µg bzw. 5 µg Plasmid-DNA in die Elektroporation eingesetzt. (B) Für die Transfektion des Expressionsplasmids von HA-PR_494-641 wurden 2 µg verwendet.

Zusammenfassend haben die Daten der Bindungsanalyse gezeigt, dass mit Ausnahme der PR_DBD sowohl der Wildtyp als auch alle PR-Mutanten und –Fragmente an BAG-1M gebunden haben. Anders als beim GR, schien die Hinge-Region des PR nicht essentiell für die Bindung an BAG-1M gewesen zu sein. Sie konnte aber die Bindung der PR_DBD an BAG-1M wiederherstellen. Das Gleiche galt auch für die Reste 494-562. Die Fusion dieser Aminosäure-Reste an die DBD des PR stellte die Interaktion mit BAG-1M wieder her. Die Deletionsmutante PR Δ494-562 wies eine unveränderte Bindung an BAG-1M auf.

Im Gegensatz zum AR, in dem besonders der N-Terminus, aber auch der C-Terminus zur Bindung an BAG-1M beiträgt, interagierten beide PR-Deletionsmutanten (PR ΔN und PR ΔC) mit BAG-1M.

Diese Daten legten den Schluss nahe, dass mehr als eine Domäne des PR an der Interaktion mit BAG-1M beteiligt ist. Darüber hinaus wurde gezeigt, dass jede Bindung der PR-Mutanten an BAG-1M Hsc70/Hsp70 abhängig war. Somit könnte der repressiven Wirkung von BAG-1M auf die PR-Aktivität ein anderer Mechanismus zu Grunde liegen, als bei der Inhibition der GR-Transaktivierung.
4.1.6 Verlust der Hsc70/Hsp70-Bindung an PR_DBDB

Erbgisse

Auch in diesem Experiment wiesen PRwt und PRA494-562 in der Expressionskontrolle in Gegenwart von Flag-BAG-1M_mut etwas erhöhte Proteinspiegel auf (Abb. 18A, Lysat, die Spur 2 und die Spur 10). Obwohl PRΔN im Vergleich schwach exprimiert wurde, liegt das Expressionsniveau deutlich über dem von PR_DBDH (Abb. 18A, Lysat, vgl. die Spuren 5-6 mit den Spuren 1-4 und den Spuren 7-10 und Abb. 18B, Lysat, vgl. die Spuren 5-6 mit den Spuren 7-8). Dennoch wurde in beiden Fällen die PR-Mutante präzipitiert (Abb. 18A und B, HA-IP, die Spuren 5-6). Die stärkste Expression zeigte PRΔC, was sich auch in der präzipitierten Proteinmenge widerspiegelte (Abb. 18A, die Spuren 7-8).

Interessanterweise wurde mit PR_DBDH, obwohl sehr schwach exprimiert und präzipitiert, eine vergleichsweise große Menge an Hsc70/Hsp70 copräzipitiert.

Ein anderes Bild zeigte sich in der Copräzipitation von Hsp90. Mit der Deletion der C-terminalen Ligandenbindungsdomäne verlor der PR die Bindungsstelle für Hsp90, wie sie in der Literatur für den GR, PR und ER beschrieben ist (Xu et al., 1998; Carsonjurica et al., 1989; Schowalter et al., 1991; Chambraud et al., 1990) (Abb. 18A, CoIP, vgl. die Spuren 7-8 mit den Spuren 1-2). Weder PR_DBDH noch PR_494-641 interagierten mit Hsp90 (Abb. 18B, CoIP, die Spuren 1-7). Im Falle von PR_DBDH musste die geringe Menge an präzipitiertem Protein berücksichtigt werden. Aber auch wenn Hsp90 vergleichbar gut an dieses Fragment gebunden hätte, wie an PRΔN, wäre es aller Wahrscheinlichkeit nach nicht detektierbar gewesen.

Für die Überprüfung der Bindung von BAG-1M an PRwt und die PR-Mutanten wurden PAA-Gele mit der doppelten Menge desselben Eluats geladen, mit kolloidal Coomassie gefärbt und anschließend im Westernblot analysiert. Die Coomassie-Gele und dazugehörigen Westernblots sind in Abbildung 19 zu sehen.

Hsc70/Hsp70 (Abb. 19, schwarzer Pfeil) wurde mit PRwt und allen PR-Mutanten, mit Ausnahme von PR_DBD, sichtbar copräzipitiert (Abb. 19A die Spuren 1-10 und B, die Spuren 3-6). Im Coomassie-Gel wurde die vergleichsweise starke Copräzipitation von Hsc70/Hsp70 mit PR_DBDH noch deutlicher (Abb. 19B, Spur 5-6).
Die Hsp90-Bande (Abb. 19, Stern) war nur in den Ansätzen mit PRwt, PRΔH1, PRΔN und PRΔ494-562 zu sehen (Abb. 19A, die Spuren 1-6 und die Spuren 9-10).

Da PR-DBD die einzige PR-Mutante war, die nicht mit Hsc70/Hsp70 interagierte, ließen die Ergebnisse dieser Experimente die Schlussfolgerung zu, dass die Bindung von Hsc70/Hsp70 an den PR und die hier getesteten Mutanten essentiell für die Interaktion mit BAG-1M ist.

Abbildung 19: Hsp70 ist essentiell für die Bindung von BAG-1M an PRwt und die PR-Mutanten.
4.2 Vergleich von BAG-1M und HspBP1 bezüglich Ihrer Wirkung auf Funktion und Interaktion mit verschiedenen Steroidhormonrezeptoren und faltungsrelevanten Cofaktoren

Der Einfluss von BAG-1 auf den AR, ER und GR wurde in den vergangenen Jahren in vielen Studien untersucht (Froesch et al., 1998; Shatkina et al., 2003; Cutress et al., 2003; Kullmann et al., 1998; Schneikert et al., 1999; Schmidt et al., 2003). Überraschenderweise konnte bisher kein Einfluss von BAG-1 auf den Mineralokortikoidrezeptor (MR) festgestellt werden (Schneikert et al., 1999). In der Literatur gilt BAG-1M daher als Diskriminationsfaktor zwischen GR und MR (Crocoll et al., 2000).

Im Gegensatz zu BAG-1 ist über das Hsp70 bindende Protein 1 (HspBP1) weit weniger bekannt. Beide Proteine sind Hsc70/Hsp70-Nukleotidaustauschfaktoren (NEF) und können die Chaperon-Aktivität von Hsc70/Hsp70 modulieren. Somit stellte sich die Frage, ob HspBP1 einen vergleichbaren Effekt auf SR ausübt wie BAG-1.

4.2.1 Strategien zur Untersuchung der mechanistischen Grundlagen der Wirkung von BAG-1M und HspBP1

Es wurden parallel verschiedene Strategien verfolgt, um gegebenenfalls vorhandene Unterschiede zwischen BAG-1M und HspBP1 festzustellen und zu untersuchen.

Ein Ansatzpunkt war, neue bzw. weitere Interaktionspartner von HspBP1 und BAG-1M zu finden. Als Methode wurden Co-Immuno-präzipitations-Experimente, Coomassie-Gel-Analysen gefolgt von massenspektrometrischen Analysen gewählt. Da bisher alle HspBP1-Interaktionen als Hsc70/Hsp70-abhängig beschrieben wurden, und diese Studie auch direkte Bindungspartner miteinschließen sollte, wurde eine Hsc70/Hsp70-Interaktionsmutante kloniert. Es wurden die Reste A137 und K249 durch Arginin bzw. Alanin ausgetauscht (Shomura et al., 2005), um HspBP1_mut zu generieren. Die Mutation der entsprechenden Reste im Hefe-Ortholog Fes1 führte zum vollständigen Verlust der Bindung an Ssa1p, dem Hsp70-Homolog der Hefe (Shomura et al., 2005). Um mögliche Unterschiede bezüglich der Bindungspartner von HspBP1 und BAG-1M feststellen zu können, und um weitere, nicht Hsc70/Hsp-70 vermittelte Interaktionspartner zu finden, wurde neben BAG-1M auch BAG-1M_mut (siehe 4.1) mitgeführt.

Im nächsten Schritt wurde, unter Einbeziehung der Ergebnisse dieser Interaktionsstudie, mittels Reporter-Gen-Experimenten der Einfluss von HspBP1 und BAG-1M auf die Funktion von GR, MR und AR verglichen.

In einer dritten Versuchsreihe wurde untersucht, ob sich HspBP1 und BAG-1M durch ihre Funktion als Hsc70/Hsp70-NEF in der Bindung von GR, MR und AR wie auch faltungsrelevanter Cofaktoren unterscheiden. Die Resultate dieser Experimente führten zu weiteren Fragen bezüglich der möglichen Folgen eines mechanistischen Unterschieds in der Wirkung von HspBP1 und BAG-1M auf Hsc70/Hsp70 und seine Bindung an Klienten-Proteine. Für die Beantwortung dieser Fragen wurde eine Methode entwickelt, die am Beispiel des GR Aussagen über den Einfluss von HspBP1 und BAG-1M auf die Faltung von Hsc70/Hsp70-Klienten-Proteinen zuließen. Eine Methode, festzustellen, ob der GR richtig gefaltet wurde, ist die Messung der Hormonbindung.
4.2.2 Rpt4 und Rpt6: Hsc70/Hsp70-unabhängige Interaktoren von BAG-1M

Zur Identifizierung neuer und Hsc70/Hsp70-unabhängiger Interaktionspartner wurden HspBP1, BAG-1M und die jeweiligen Hsc70/Hsp70-Interaktionsmutanten in Zellen überexprimiert und durch immobilisierte Antikörper präzipitiert. Mögliche Interaktionspartner wurden mittels Coomassie-Färbung im PAA-Gel visualisiert und für die massenspektrometrische Analyse präpariert.

Abbildung 20: Coomassie-Gel der Flag-Immunpräzipitation von BAG-1M und HspBP1. HEK 293 Zellen wurden in zwei Ansätzen mit jeweils 8 µg Plasmid-DNA, die für Flag-BAG-1M (1M), Flag-BAG-1M_mut (1M_mut), Flag-HspBP1 (BP1) und Flag-HspBP1_mut (BP1_mut) codieren, transfiziert. Als Kontrolle (K) für die Antikörperspezifität wurde für die Transfektion dieselbe Menge eines Leervektors (pRK5-SV40-MCS) verwendet. Nach der Lyse wurden die Zellextrakte mit anti-Flag-Agarose inkubierte und anschließend eluiert. Das präzipitierte Material wurde auf ein 12%-iges PAA-Gel geladen. Die Proteine wurden mittels kolloidal Coomassie detektiert. Der rote Stern markiert die erwartete Größe von Hsc70/Hsp70, die beiden schwarzen Sterne die von BAG-1M (Spur 2 und 3) und HspBP1 (Spur 4 und 5). Der schwarze Pfeil (Spur 2) und die Klammern (Spur 3 und Spur 5) markieren fünf massenspektrometrisch analysierte Proteine.

Eine Bande, die mit BAG-1M copräzipitiert wurde, konnte als regulatorische Untereinheit 10 der Serin/Threonin-Protein Phosphatase (PP1) identifiziert werden (Abb. 20,
Ergebnisse

Spur 2). In einer „Yeast two Hybrid“-Analyse wurde gezeigt, dass GADD34, ein zelluläres Stress-Protein, mit BAG-1 interagiert und Hsc70/Hsp70 wie auch hPP1 reversibel mit diesem Komplex assoziiert sind (Hung et al., 2003). Die Verifizierung der PP1-Interaktion bestätigte die Eignung dieses experimentellen Ansatzes. Die Analyse der beiden Banden, die mit BAG-1M_mut copräzipitiert wurden, ergab, dass es sich bei beiden Proteinen um zwei regulatorische Untereinheiten des 26S-Proteasomes handelt, Rpt4 und Rpt6 (Abb. 20, Spur 3, Markierung).

Bei den beiden gekennzeichneten Proteinbanden, die mit HspBP1_mut (Abb. 20, Spur 5) copräzipitiert wurden, handelte es sich um Abbauprodukte von HspBP1. Da beide Banden mit dem anti-Flag-Antikörper präzipitiert wurden, ist eine C-terminale Trunkation wahrscheinlich. Es wurden noch weitere, mit HspBP1 copräzipitierte Banden analysiert. Dabei konnte kein eindeutiger Bindungspartner identifiziert werden.

4.2.3 Verifizierung der Interaktion von Rpt4 und Rpt6 mit BAG-1M

Abbildung 21: Die Bindung von Rpt4 und Rpt6 an BAG-1M ist spezifisch und wird nicht von Hsc70/Hsp70 vermittelt. Es wurden jeweils 8 µg Plasmid-DNA mit den codierenden Sequenzen für Flag-BAG-1M, Flag-HspBP1, Flag-BAG-1M_mut und Flag-HspBP1_mut sowie der gleichen Menge des Leer vectors pRK5-SV40-MCS, als Kontrolle (K) für die Antikörperspezifität, in HEK 293 Zellen transzifiziert. Die überexprimierten Proteine wurden mit anti-Flag-Agarose präzipitiert und anschließend mit Flag-Peptid eluiert. (A) Für die Westernblot-Analyse wurden 15 µg Lysat und 20 µl Eluat (CoIP) auf ein 11%iges PAA-Gel aufgetragen. Für die Detektion im Coomassie-Gel (Flag-IP) wurden 2 µl Eluat auf ein weiteres PAA-Gel geladen. (B) Für die Expressionskontrolle wurden 10 µg Lysat und von dem präzipitierten Material 15 µl (CoIP) auf ein 12%iges PAA-Gel aufgetragen. Für die Analyse im Coomassie-Gel wurde ein 12%iges PAA-Gel mit 1,6 µl Eluat (Flag-IP) beladen. Die Detektion der einzelnen Proteine erfolgte mit Antikörpern gegen das Flag-Epitop (BAG-1M, HspBP1), Hsc70/Hsp70, Rpt4, Rpt6, sowie Aktin und CHIP als Lade kontrolle.

Im Gegensatz zu Rpt6 hat CHIP Hsc70/Hsp70-abhängig an BAG-1M und an HspBP1 gebunden (Abb. 21B, Spur 2 und Spur 4, CoIP). Die im Vergleich schwächere Bindung an HspBP1_mut (Abb. 21B, Spur 5, CoIP) wurde auf die Restbindung von Hsc70/Hsp70 an HspBP1_mut zurückgeführt (Abb. 21B, Spur 5, Flag-IP, siehe auch Abb. 20). Anders als für das Hefe-Homolog Fes1 beschrieben (Shomura et al., 2005), führten die Mutationen der entsprechenden Reste in HspBP1 nicht zum vollständigen Verlust der Hsc70/Hsp70 Interaktion.

Die Bindung von Rpt4 und Rpt6 an BAG-1M war nicht überraschend, da aus der Literatur bekannt ist, dass BAG-1 über die ubiquitin-like Domäne (ULD) mit dem 26S-Proteasom interagiert (Lüders et al., 2000a; Alberti et al., 2003a).

Da der GR durch BAG-1 und CHIP, eine E3-Ligase, auf proteasomalem Weg abgebaut werden kann (Demand et al., 2001), stellte sich die Frage, ob der inhibitorische Effekt von BAG-1M auf den GR durch den Abbau des Rezeptors hervorgerufen wird.
Demzufolge müsste sich die Deletion der ULD-Domäne positiv auf die Menge und somit auch auf die Funktion des GR auswirken. Diese Hypothese wurde in den nachfolgend beschriebenen Experimenten unter Einbeziehung einer BAG-1M-ULD-Deletionsmutante BAG-1M_Ubidel genauer überprüft.

4.2.4 Kein Verlust der Rezeptorbindung nach Deletion der ubiquitin-like Domäne in BAG-1M

Für die Klonierung von BAG-1M_Ubidel wurden durch eine Ligationsreaktion via PCR aus Wildtyp BAG-1M die Aminosäuren 89-134 entfernt. Um diese Mutante auch für Co-Immunpräzipitationsexperimente verwenden zu können, wurde in der PCR-Reaktion an das 5'-Ende die Nukleotidsequenz für die Expression des Flag-Peptids fusioniert.

Abbildung 22: GR, MR und AR binden ähnlich stark an BAG-1M_ubidel wie an BAG-1M-Wildtyp. HEK 293 Zellen wurden in getrennten Ansätzen mit den Expressionsplasmiden für Flag-BAG-1M, Flag-BAG-1M_mut und Flag-BAG-1M_Ubidel (je 8 µg) sowie mit jeweils 2 µg der codierenden Plasmide für HA-GR, HA-MR oder HA-AR cotransfiziert. Zur Überprüfung der Spezifität der Bindung wurde in einem zusätzlichen Ansatz anstelle von BAG-1M dieselbe Menge pRK5-SV40-MCS (K) elektroporiert. Nach Bindung an anti-Flag-Agarose und Elution wurden 15 µl des präzipitierten Materials (ColIP) und 10 µg Lysat auf 12%ige PAA-Gele geladen und im Westernblot (WB) immunologisch analysiert. Der GR (A), MR (B) und AR (C) wurden mit anti-HA-HRP detektiert. Für die Visualisierung der endogenen Proteine Hsp90, CHIP und Rpt6 wurden die entsprechenden Antikörper verwendet. Für die Detektion von Flag-BAG-1M, Flag-BAG-1M_mut und Flag-BAG-1M_Ubidel mit kolloidal Coomassie wurden jeweils 1,6 µl Eluat auf ein 12%iges PAA-Gel geladen (CG). Die Sterne markieren copräzipitiertes Hsc70/Hsp70. Die Bindung von GR, MR und AR an die BAG-1M-Isoformen aus drei unabhängigen Experimenten wurde quantifiziert. Das Ergebnis ist als Rezeptor-Bindung in % (± SEM) dargestellt (D).

Die Rezeptormengen, die mit BAG-1M_Ubidel copräzipitiert wurden, waren deutlich geringer, als jene, die mit BAG-1M angereichert werden konnten (Abb. 22A-C, vgl. Spur 6 und Spur 8). Dies ist wahrscheinlich auf die geringe Menge an präzipitiertem BAG-
Ergebnisse

1M_Ubidel zurückzuführen. Sowohl GR, MR als auch AR wurden sehr schwach mit BAG-1M_mut angereichert (Abb. 22A-C, Spur 7, WB). Der Grund hierfür könnte die beobachtete unspezifische Bindung von Hsc70/Hsp70 an die anti-Flag-Agarose gewesen sein.

Mit BAG-1M_Ubidel wurde, vermutlich aufgrund der geringeren Präzipitationseffizienz, deutlich weniger Hsp90 copräzipitiert als mit BAG-1M (Abb. 22A-C, vgl. Spur 6 und Spur 8, WB).

Um herauszufinden, ob es einen Unterschied in der Rezeptor-Bindung zwischen BAG-1M und BAG-1M_Ubidel gibt, wurden die Intensitäten der Rezeptor-Banden densitometrisch analysiert und verglichen (Abb. 22D). Hierfür wurde die Dichte der Bande der copräzipitierten Rezeptoren zur Dichte der Rezeptor-Bande der Lysate ins Verhältnis gesetzt. Dieser Quotient \(\frac{ColP_{Lys}}{ColP_{Flag-IP}} = X \) wiederum wurde auf die Intensität der Bande der präzipitierten BAG-1M-Isoform normalisiert \(\frac{X}{Flag-IP} \). Als Referenz für die Rezeptor-Bindung diente die Bindung von GR, MR und AR an BAG-1M. Dieser Wert wurde auf 100% festgelegt. Die Quantifizierungen der Rezeptor-Bindung ergaben, dass GR, MR und AR ähnlich stark mit BAG-1M_Ubidel interagierten wie mit BAG-1M (Abb. 22D). Somit hatte die Deletion der UL-Domäne in BAG-1M keinen Einfluss auf das Interaktionspotential mit GR, MR und AR. Im Vergleich banden GR, MR und AR kaum an BAG-1M_mut (Abb. 22D).

4.2.5 Funktionelle Analyse des Einflusses von HspBP1 auf verschiedene Steroidhormonrezeptoren im Vergleich mit BAG-1M

Der Einfluss von HspBP1, HspBP1_mut sowie BAG-1M, BAG-1M_mut, und BAG-1M_Ubidel auf die transkriptionelle Aktivität des GR, MR und AR wurde in Reporterexperimenten untersucht. Für die im Folgenden beschriebenen Experimente wurden Cos-7 Zellen verwendet, da sie ein etabliertes Zellsystem für die funktionelle Analyse von SR darstellen.

Im Vorfeld wurde abgeklärt, ob die Cofaktoren BAG-1M, BAG-1M_mut, BAG-1M_Ubidel, HspBP1 und HspBP1_mut einen Einfluss auf die häufig als Reporterenzyme verwendete Firefly-Luciferase haben, da diese ein gängiges Modell für Hsc70/Hsp70-abhängige Faltungsexperimente ist (Abb. 23A). Da die Aktivität der Firefly-Luciferase nicht nur von den Cofaktoren beeinflusst werden könnte, sondern auch von der Transfektionseffizienz, wurden die Experimente unter Einbeziehung der Gaussia-Luciferase, einem Chaperon-unabhängigen Enzym, als Transfektionskontrolle wiederholt (Abb. 23B).
Abbildung 23: Die Cofaktoren zeigen mit Plasmidmengen unter 300 ng keinen Hsc70/Hsp70-abhängigen Einfluss auf die Aktivität der Firefly-Luciferase. 8000 Cos-7 Zellen wurden mit 12,5 ng HA-PR Expressionsplasmid, 100 ng, 200 ng, 250 ng und 300 ng der kodierenden Plasmide für Flag-HspBP1, Flag-HspBP1_mut, Flag-BAG-1M, Flag-BAG-1M_mut und Flag-BAG-1M_Ubidel sowie 2,5 ng eines Plasmids das für HA-Luciferase unter der Kontrolle eines CMV-Promotors kodiert, cotransfiziert. Als Kontrolle wurde die entsprechende Menge Leervektor (pRK5-SV40-MCS) verwendet. (A) Dargestellt sind die Mittelwerte der *Firefly*-Luciferase-Aktivität (± SEM) im Verhältnis zur Kontrolle aus vier unabhängigen, in Triplikaten durchgeführten Experimenten. (B) Zur Kontrolle der Transfektionseffizienz wurden zusätzlich 5 ng Gaussia-Expressionsplasmid verwendet. Abgebildet sind die Mittelwerte (± SEM) aus vier unabhängigen Experimenten. Die relative Luciferase-Aktivität ist dargestellt als die durch die Gaussia-Luciferase normalisierten *Firefly*-Luciferase-Werte (± SEM) im Verhältnis zu den Werten der Kontrolle. Die Kontrollen wurden in beiden Versuchsreihen pro Experiment 10x mitgeführt. Der Mittelwert der Kontrollen wurde jeweils als Referenzwert auf 100% gesetzt (gestrichelte Linie). (C und D) Zusammenfassung der Verhältnisse (in %) der *Firefly*-Aktivität (C) bzw. der relativen *Firefly*-Aktivität (D) von HspBP1, BAG-1M und BAG-1M_Ubidel zu den entsprechenden Mutanten bzw. zur Kontrolle (± SEM) aus den Ansätzen mit 200-300 ng transfizierter Cofaktor-Plasmid-DNA.

Cos-7 Zellen wurden mit steigenden Mengen der codierenden Plasmide für Flag-HspBP1, Flag-HspBP1_mut, Flag-BAG-1M, Flag-BAG-1M_mut, BAG-1M_Ubidel und dem
Ergebnisse

Diese Experimente zeigten, dass die Firefly-Luciferase als Reporteren für die Untersuchung des Einflusses von HspBP1, BAG-1M und BAG-1M_Ubel auf die Funktion des GR, MR und AR unter Beachtung folgender Punkte geeignet war. Erstens, die maximal verwendete Menge Plasmid-DNA der Cofaktoren sollte 200 ng nicht überschreiten. Bei der Verwendung höherer Plasmidmengen hätte sich die Hsc70/Hsp70-Abhängigkeit einer möglichen Rezeptor-Inhibition nicht mehr von der Inhibition des Reporters unterscheiden lassen. Zweitens, eine eventuell beobachtete Reduktion der Rezeptor-Aktivität auf 60% durch
BAG-1M_Ubidel ist auf den negativen Effekt der Mutante auf die Reportergen-Aktivität zurückzuführen. Drittens, es empfiehlt sich die Verwendung der Gaussia-Luciferase als Transfektionskontrolle.

a) HspBP1 inhibiert die transkriptionelle Aktivität des Glukokortikoidrezeptors Hsc70/Hsp70-abhängig, ähnlich wie BAG-1M

Unter der Verwendung steigender Plasmidmengen für jeden Cofaktor wurde in der ersten Versuchsreihe überprüft, ob es in Abhängigkeit der DNA-Menge, Unterschiede zwischen HspBP1, HspBP1_mut, BAG-1M, BAG-1M_mut und BAG-1M_Ubidel in ihrer Wirkung auf die GR-Aktivität gab. Für die transkriptionelle Aktivierung des GR wurde mit 10 nM Kortisol eine subsaturierende Hormonkonzentration gewählt, da etwaige Einflüsse auf die Hormonaffinität mit sättigenden Hormonkonzentrationen nicht sichtbar sind. In einem zweiten Ansatz wurde untersucht, ob der Einfluss der Cofaktoren auf die GR-Aktivität unter Umständen von der Hormonkonzentration abhängig war. In diesen Experimenten wurde eine konstante Menge Plasmid-DNA für alle Cofaktoren verwendet.

HspBP1 führte mit steigenden Mengen Plasmid-DNA zu einer starken Inhibition der GR-Aktivität (Abb. 24A). In den Ansätzen mit jeweils 150 ng und 200 ng DNA zeigte sich eine deutliche Hsc70/Hsp70-Abhängigkeit verglichen mit HspBP1_mut. Allerdings schien HspBP1_mut im Vergleich zur Kontrolle ebenfalls einen negativen Effekt auf die transkriptionelle Aktivität des GR auszuüben. Dieser inhibitorische Effekt von HspBP1_mut war wahrscheinlich in der Restbindung von Hsc70/Hsp70 an HspBP1_mut begründet (vgl. 4.2.3, Abb. 21B). Die Westernblot-Analyse zeigte, dass sich die steigenden Plasmidmengen von HspBP1 und HspBP1_mut in einer Zunahme der Proteinexpression widerspiegelten und beide Proteine vergleichbare Expressionsniveaus aufwiesen (Abb. 24C). Die GR-Spiegel in Gegenwart von HspBP1 schienen etwas niedriger zu sein, was eine Erklärung für die geringere Rezeptor-Aktivität sein könnte. Allerdings wurde der GR in den Ansätzen mit 150 ng bzw. 200 ng Plasmid-DNA, in denen sich die stärkste Hsc70/Hsp70-Abhängigkeit zeigte, in Anwesenheit von HspBP1 und HspBP1_mut ähnlich stark exprimiert (Abb. 24C).
Abbildung 24: HspBP1 und BAG-1M inhibieren den GR in Abhängigkeit ihrer Proteinmenge und der Hormonkonzentration. 8000 Cos-7 Zellen wurden mit 60 ng MMTV-Luc Reporterplasmid, den Expressionsplasmiden für Gaussia-KDEL (5 ng) und HA-GR (12,5 ng), sowie unterschiedlichen Mengen Flag-HspBP1, Flag-HspBP1_mut, Flag-BAG-1M, Flag-BAG-1M_mut und Flag-BAG-1M_Ubidel (Cofaktoren) cotransfiziert. Die Zellen wurden 24 h mit Hormon behandelt. Es wurden jeweils vier unabhängige Experimente in Triplikaten durchgeführt. (A) Für die Transfektion wurden jeweils 50, 100, 150 und 200 ng der Expressionsplasmide der Cofaktoren transfiziert. Als Kontrolle wurden 200 ng der Plasmid-DNA jedes Cofaktors transfiziert. Die Hormonbehandlung erfolgte mit 0, 1, 10 und 100 nM Kortisol für 24 h. Die relative GR-Aktivität ist dargestellt als die durch die Gaussia-Luciferase normalisierten Firefly-Luciferase-Werte (± SEM) im Verhältnis zu den Werten der Kontrolle. Die Werte der Kontrolle (kein Cofaktor) wurden als Referenz auf 100% festgelegt (gestrichelte Linie). (B) Es wurden 200 ng der Plasmid-DNA jedes Cofaktors transfiziert. Die Hormonbehandlung erfolgte mit 0, 1, 10 und 100 nM Kortisol (Kort) für 24 h. Dargestellt sind die normalisierten Firefly-Luciferase-Werte (± SEM) im Verhältnis zu BAG-1M_mut als relative GR-Aktivität. Der Wert von BAG-1M_mut bei 100 nM Kortisol wurde als Referenz auf 100% festgelegt. (C und D) Repräsentative Westernblots. Für die Westernblot-Analysen wurden jeweils 20 µl Probe auf ein 12%iges PAA-Gel geladen. Die verschiedenen Proteine wurden mit Antikörpern gegen das HA-Epitop (GR), das Flag-Epitop (Cofaktor) und Aktin als Ladekontrolle detektiert.
Ergbnisse

Diese Daten zeigten, dass HspBP1 unter bestimmten Bedingungen einen ähnlichen Hsc70/Hsp70-abhängigen inhibitorischen Effekt auf die GR-Funktion hatte wie BAG-1M. Im Gegensatz zu HspBP1 führte BAG-1M allerdings in geringen Mengen zu einer Stimulierung des GR. Darüber hinaus wurde gezeigt, dass sowohl die Menge der Cofaktoren selbst, als auch die Hormonkonzentration das Ausmaß der GR-Inhibition beeinflussten. Je mehr Cofaktor im Verhältnis zum GR, desto stärker wurde die GR-Aktivität reduziert. Auf der anderen Seite nahm der inhibitorische Einfluss mit steigenden Kortisolkonzentrationen ab. Unter subsaturierenden Bedingungen hatten HspBP1 und BAG-1M den stärksten reprimierenden Effekt auf die GR-Funktion. Überraschenderweise führte BAG-1M_Ubidel zu einer drastischen Reduktion der GR-Aktivität, die sich nicht mit einer verminderten GR-Expression erklären ließ.

b) **BAG-1M und HspBP1 inhibieren die Transaktivierungsaktivität des Mineralokortikoidrezeptors**

Der MR ist der interessanteste Kandidat für eine vergleichende Studie der beiden Hsc70/Hsp70-Nukleotidaustauschfaktoren HspBP1 und BAG-1M. Bislang galt BAG-1 als Diskriminationsfaktor für die beiden am nächsten verwandten SR GR und MR (Crocoll *et al.*, 2000). Aus diesem Grund schien er ein geeignetes Modell zu sein, gegebenenfalls vorhandene Unterschiede in der Wirkung von HspBP1 und BAG-1M auf transkriptionelle Aktivität von SR zu untersuchen. Für die funktionelle Analyse des MR wurden Reporter-Expermente wie in 3.2.5a beschrieben in Cos-7 Zellen durchgeführt. Der Effekt von HspBP1, HspBP1_mut, BAG-1M, BAG-1M_mut und BAG-1M_Ubidel auf den MR wurde ebenfalls in Abhängigkeit der Cofaktor-Plasmidmenge wie auch in Abhängigkeit der Hormonkonzentration untersucht und verglichen. Da der MR, anders als der GR, bereits ohne Hormonbehandlung eine hohe Basalaktivität aufwies, wurde für die Transfektion und Stimulierung der Zellen der nachfolgenden Experimente Medium mit 0,5% statt mit 10% steroidfreiem FBS verwendet. Um das Expressionsniveau des MR anzupassen, wurde die doppelte Menge des Expressionsplasmids von HA-MR (25 ng) transfiziert. Die Stimulierung des MR erfolgte, wie auch in 4.2.5a beschrieben, mit einer konstanten Fludrokortisonkonzentration von 0,03 nM oder mit steigenden Konzentrationen (0-3 nM).
Ergebnisse

Abbildung 25: Mit steigender Proteinmenge und sinkender Hormonkonzentration inhibitieren HspBP1 und BAG-1M die MR-Aktivität. 8000 Cos-7 Zellen wurden mit 60 ng MMTV-Luc Reporter-Plasmid, den Expressionsplasmiden von Gaussia-KDEL (5 ng) und HA-MR (25 ng) und verschiedenen Mengen der Plasmide, die für die Cofaktoren kodieren, sowie teilweise mit dem Expressionsvektor pRK5-SV40-MCS (Kontrolle) transfiziert. Das Medium für die Transfektion und Stimulierung der Zellen enthielt 0,5% steroidfreies FBS. Es wurden jeweils vier unabhängige Experimente in Triplikaten durchgeführt. (A) Es wurden je 50, 100, 150 und 200 ng der Plasmid-DNA von Flag-HspBP1 (BP1), Flag-HspBP1_mut (BP1_mut), Flag-BAG-1M (1M), Flag-HBAG-1M_mut (1M_mut) und Flag-BAG-1M_Ubidel (1M_Ubidel) (Cofaktoren) transfiziert. Die Stimulierung erfolgte mit 0,03 nM Fludrokortison (Fludro.) für 24 h. Die relative MR-Aktivität ist dargestellt als die durch die Gaussia-Luciferase normalisierten Firefly-Luciferase-Werte (± SEM) im Verhältnis zu den Werten der Kontrolle. Der Wert der Kontrolle wurde als Referenz auf 100% festgelegt (gestrichelte Linie). (B) Für die Transfektion wurden jeweils 200 ng des Expressionsplasmids der Cofaktoren (Cof.) verwendet. Die Zellen wurden mit 0, 0,03, 0,3 und 3 nM Fludrokortison (Fludro.) für 24 h stimuliert. Die durch die Gaussia-Luciferase normalisierten Mittelwerte der Firefly-Luciferase sind als MR-Aktivität in % (± SEM) dargestellt. Als Referenz (100%) wurde der Mittelwert der MR-Aktivität in Gegenwart von BAG-1M_mut bei 3 nM Fludrokortison verwendet. (C-D) Abgebildet sind repräsentative Westernblot-Experimente. Für die Analysen im Westernblot wurden je 15 µl Probe auf ein 12%iges PAA-Gel geladen. Die Detektion der verschiedenen Proteine wurde mit Antikörpern gegen das Flag-Epitop (Cofaktor), das HA-Epitop (MR) und Aktin als Ladekontrolle durchgeführt.

Ergebnisse

In der Expressionskontrolle wurde kein Unterschied bezüglich der MR-Expression zwischen HspBP1 und HspBP1_Mut oder BAG-1M und den Mutanten BAG-1M_mut und BAG-1M–Ubidel festgestellt (Abb. 25D).

c) Im Gegensatz zu BAG-1M inhibiert HspBP1 Hsc70/Hsp70-abhängig die transkriptionelle Aktivität des Androgenrezeptors

In diesem Abschnitt der funktionellen Analyse wurde der Einfluss von HspBP1 und BAG-1M auf die Funktion des AR verglichen. Die Reportergen-Experimente wurden wie unter 4.5.2b durchgeführt. Anstelle von Fludrokortison wurde der AR mit Dihyddroxytestosteron (DHT) aktiviert. Für die Transfektion und Stimulierung der Zellen wurde Medium mit 10% steroidfreiem FBS verwendet.

Die prominentesten Unterschiede in der Wirkungsweise der beiden Hsc70/Hsp70-NEF wurden jedoch in der funktionellen Analyse des AR festgestellt. Im Gegensatz zu BAG-1M, das den AR in geringen Mengen Hsc70/Hsp70-abhängig stimulierte, führte HspBP1 zu einer starken Reduktion der AR-Funktion, die ebenfalls über Hsc70/Hsp70 vermittelt wurde (Abb. 26A).

Den funktionellen Analysen zufolge wies HspBP1 auf den GR, MR und AR vergleichbare inhibitorische Effekte auf. Diese Ergebnisse deuten darauf hin, dass HspBP1 und BAG-1M die Chaperon-Aktivität von Hsc70/Hsp70 auf unterschiedlichen Ebenen beeinflussen.
Um diese Hypothese zu überprüfen, wurde der Einfluss von HspBP1 und BAG-1M auf die Zusammensetzung der Chaperon-Substrat-Heterokomplexe untersucht. Als Substrat dienten die drei Steroidhormonrezeptoren GR, MR und AR.

4.2.6 Einfluss von HspBP1 und BAG-1M auf die Komposition der Chaperon-Rezeptor-Heterokomplexe

Für die Funktion von SR ist die richtige Faltung essentiell. Hsc70/Hsp70 binden bereits während der Translation an die naszierenden Polypeptidketten und führen sie dem Faltungszyklus zu. Neben Hsc70/Hsp70 und Hsp90 sind Hsp40, Hop, Hip und p23 maßgeblich an der SR-Faltung beteiligt. HspBP1 und BAG-1M sollten zusammen mit GR bzw. MR oder AR überexprimiert und präzipitiert werden, mit den folgenden Zielen:

1) gibt es einen Unterschied in der Rezeptor-Bindung (Substratbindung) ?
2) welche faltungsrelevanten Cofaktoren können copräzipitiert werden, und lassen sich diesbezüglich Unterschiede feststellen?
3) kann dadurch auf die chronologische Reihenfolge geschlossen werden, wann HspBP1 bzw. BAG-1M ihren Einfluss auf Hsc70/Hsp70 ausüben?

Um Aussagen über die Spezifität und Hsc70/Hsp70-Abhängigkeit der Interaktionen treffen zu können, wurden HspBP1_mut und BAG-1M_mut in diese Untersuchung mit einbezogen.

im Coomassie-Gel normalisiert \(\frac{X}{\text{Flag-IP}} \). Der letzte Schritt galt auch für die copräzipitierten endogenen Proteine. Die nachfolgenden drei Abbildungen (Abb. 27-29) zeigen jeweils repräsentative Westernblots der Interaktionsstudien von HspBP1 und BAG-1M sowie HspBP1_mut und BAG-1M_mut mit GR, MR und AR. Neben der Interaktion mit den Rezeptoren und Komponenten der Faltungsmaschinerie wurde auch die Bindung von Rpt6 und CHIP (E3-Ligase) untersucht, um gegebenenfalls für den Abbau relevante Aspekte mit einzubeziehen.

Abbildung 27: GR und Hsp40 binden bevorzugt an BAG-1M. HEK 293 Zellen wurden mit 8 µg der Expressionsplasmide für Flag-HspBP1 oder Flag-HspBP1_mut sowie Flag-BAG-1M und Flag-BAG-1M_mut und jeweils 2 µg der für HA-GR codierenden Plasmid-DNA cotransfiziert. Zur Kontrolle (K) der Spezifität der Rezeptor-Bindung wurde ein weiterer Ansatz mit gleichen DNA-Mengen HA-GR und pRK5-SV40 (Kontrolle) mitgeführt. Nach der Immunpräzipitation mit anti-Flag-Agarose und der Elution wurden jeweils 10 µg Zelllysat und 15 µl des präzipitierten Materials (CoIP) auf ein 12%iges PAA-Gel geladen und im Westernblot analysiert (A) Die endogenen Proteine wurden mittels Antikörper gegen das konstitutiv exprimierte Hsc70, Hop, Hsp90, Hip, CHIP, Rpt6, und Hsp40 detektiert. Für die Detektion des GR wurde anti-HA-HRP verwendet. Der Stern neben Spur 6 markiert die Position der schweren Kette des anti-Flag-Antikörpers. Die beiden violetten Sterne außerhalb des Westernblots markieren die Position von Hsc70 (oben) und Hop (unten) (B) Coomassie-Gel (Flag-IP) der immunpräzipitierten Cochaperonen und des copräzipitierten Hsc70/Hsp70. Es wurden 0,8 µl Eluat auf ein 12%iges PAA-Gel geladen und mit kolloidal Coomassie gefärbt. Der Stern markiert Hsc70/Hsp70. (C) Quantitative Analyse der Bindung von GR, Hsc70/Hsp70 und Hsp40 (farbig unterlegt), Hsp90, CHIP, Hsc70, Hop und Rpt6 an HspBP1, HspBP1_mut, BAG-1M und BAG-1M_mut (± SEM). Die Mittelwerte für die Bindung an BAG-1M wurden als Referenz auf 100% festgelegt. Es wurden drei unabhängige Experimente quantitativ analysiert.
Der GR, Hsp90 und Hop interagierten sowohl mit BAG-1M als auch mit HspBP1 Hsc70-abhängig (Abb. 27A, vgl. die Spuren 7 und 9 mit den Spuren 8 und 10). Der Vergleich der GR-Expression zeigte, dass BAG-1M in diesen Experimenten einen schwachen negativen Einfluss auf die GR-Expression auszuüben schien (Abb. 27A, Spur 2).

Hsc70 und CHIP konnte im Gegensatz zu BAG-1M copräzipitiert werden. Als Erklärung für diese Interaktionen könnte die Restbindung von Hsc70 an HspBP1_mut angeführt werden (Abb. 27A, Spur 10). Die E3-Ligase CHIP und Hsc70 interagierten ähnlich stark mit HspBP1 und BAG-1M (Abb. 27 die Spuren 7 und 9).

Hip, das Hsc70-interagierende Protein, konnte weder durch HspBP1 bzw. HspBP1_mut, noch durch BAG-1M bzw. BAG-1M_mut angereichert werden (Abb. 27A, die Spuren 7-8 und die Spuren 9-10).

Hsp40 und Rpt6 wurden ausschließlich mit BAG-1M copräzipitiert (Abb. 27A, die Spuren 7 und 8). Im Gegensatz zu Rpt6, das Hsc70-unabhängig mit BAG-1M interagiert, wurde die Bindung von Hsp40 über Hsc70 vermittelt (Abb. 27, vgl. Spur 7 mit Spur 8). In diesen Assoziationen unterschieden sich HspBP1 und BAG-1M.

Das Protein p23, ein Indikator für den spät im Zyklus gebildeten Hsp90-GR-Heterokomplex, wurde weder mit HspBP1 oder HspBP1_mut noch mit BAG-1M oder BAG-1M_mut angereichert (Abb. 27A). Es wurde nicht in die Quantifizierung mit einbezogen, da es hier als stellvertretendes Beispiel nur für den GR gezeigt wurde. Es ist jedoch anzunehmen, dass es nicht mit den Hsc70/Hsp70-NEF interagiert, bzw. nicht mit diesen im Komplex vorliegt. Diese Interaktion diente als Bestätigung, dass HspBP1 und BAG-1M an frühen SR-Faltungsstadien beteiligt sind.

Für die quantitative Analyse der Interaktionen mit HspBP1 und BAG-1M wurde die an BAG-1M gebundene Menge der entsprechenden Proteine jeweils als Referenz auf 100% festgelegt. Die Quantifizierung ergab, dass der GR etwas stärker mit BAG-1M interagierte als mit HspBP1 (Abb. 27C). Dies könnte ein Hinweis darauf sein, dass Hsp90 über die Bindung an den GR copräzipitiert wurde. Hsp40 hat, wie bereits erwähnt nur an BAG-1M gebunden (Abb. 27A). Die Analyse des Coomassie-Gels (Abb. 27B) zeigte deutlich, dass HspBP1_mut über eine viel stärkere Restbindung an das Chaperon verfügt als BAG-1M_mut (Abb. 27B und C). Dies bestätigte sich durch die quantitative Analyse von Hsc70 im Westernblot (Abb. 27C). Die Restbindung von Hsc70 führte wiederum zu der vergleichsweise schwachen Bindung von CHIP an HspBP1_mut (Abb. 27A und C). Rpt6 wurde durch BAG-1M mutated copräzipitiert als durch Wildtyp BAG-1M (Abb. 27C). Dieser Unterschied war in diesem Beispiel-Blot nicht eindeutig sichtbar, ergab sich aber durch die Quantifizierung der Rpt6-Bindung aus drei unabhängigen Experimenten und wurde bereits unter 4.2.3 beschrieben. Hip wurde weder mit HspBP1 noch mit BAG-1M copräzipitiert und konnte daher nicht quantitativ analysiert werden. Für die Interaktions-Analyse von Hop lieferten die drei Experimente widersprüchliche Ergebnisse.
Ergebnisse

(vgl. Abb. 27C, SEM), daher wurde angenommen, dass es über Hsc70 vermittelt, ähnlich stark an HspBP1 und BAG-1M bindet.

Ergebnisse

4.2.7 Etablierung eines zeitabhängigen Hormonbindungsexperiments in Gegenwart von BAG-1M und HspBP1

Im Folgenden wurde einerseits untersucht, ob sich der aufgrund der Bindungsanalysen zu vermutende zeitliche Unterschied auch in der Kinetik der Rezeptor-Faltung widerspiegelte, zum anderen ob HspBP1 Einfluss auf die Hormonbindungsaffinität des GR nahm. Als Methode, um Effekte auf die Faltung von SR zu untersuchen, wird im Allgemeinen der Einfluss auf die Hormonbindung betrachtet. Da der Einfluss von BAG-1M auf die Hormonbindungsaffinität des GR bekannt ist (Kanelakis et al., 1999), sollte HspBP1 diesbezüglich mit BAG-1M verglichen werden.

Die Messung des emittierten Lichtes erfolgt einmal parallel und einmal senkrecht zum eingestrahlten Licht. Für die Berechnung der Polarisierung ([mP]) wurde folgende Formel verwendet:

\[mP = \frac{parallel - senkrecht}{parallel + senkrecht} \times 1000 \]

Die Hormonbindung wurde in Extrakten von HEK 293 Zellen gemessen, die nur GR oder GR zusammen mit BAG-1M, BAG-1M_mut oder HspBP1 überexprimierten. Um zu testen, wie effizient die Hormonbindung im Extrakt funktionierte und ob diese spezifisch war, wurden drei Kontrollen mitgeführt. Erstens wurde die Plasmid-DNA des GR zusammen mit dem Expressionsvektor pRk5-SV40-MCS cotransfiziert. Es wurde die Bindung des Fluoromens an den GR gemessen. Zweitens wurde in einer zweiten Messreihe im selben Ansatz die Bindung des Fluoromens durch den 1000-fachen Überschuss an nicht markiertem Dexamethason (selektiver GR Agonist) kompetiert. Drittens wurde in einem weiteren Kontrollansatz die Fluoromon-Bindung im Extrakt untransfizierter HEK 293 Zellen gemessen. Der letzte Ansatz gab Auskunft über die Bindung an zelluläre Komponenten (Hintergrundbindung). Drei Tage nach der Elektroporation wurden die Zellen lysiert und differenziell zentrifugiert. Nach der Bestimmung der Proteinkonzentration wurden die Zellextrakte auf die gleiche Konzentration an Gesamt-Protein eingestellt und die

a) über die Zeit, bei konstanter Proteinmenge (GR-Menge)

b) über verschiedene Lysatmengen bei konstanter Zeit

Abbildung 30: Hormonbindungskurve des GR in Zellextrakt in Abhängigkeit von Zeit und Proteinmenge. HEK 293 Zellen wurden mit den Expressionsplasmiden von HA-GR (3,5 µg) entweder zusammen mit einem Leervektor (pRK5-SV40-MCS), oder der Plasmid-DNA von Flag-BAG-1M bzw. Flag-BAG-1M_mut (jeweils 6,5 µg) transfiziert. Die Hormonbindung wurde mit 4 nM Fluoromon im Extrakt in verschiedenen Messpunkten über 3 h gemessen. (A) Hormonbindung des GR. (B) Hormonbindung des GR in Anwesenheit von BAG-1M. (C) Hormonbindung des GR in Gegenwart von BAG-1M_mut. (D) Kompetition der Hormonbindung mit 1000-fachem Überschuss Dexamethason. (E) Hormonbindung im Extrakt untransfizierter Zellen („Leer“-Extrakt). Dargestellt ist die gemessene Polarisation [mPs] eines repräsentativen Einzelexperimentes. Die Ausgleichskurven wurden mit SigmaPlot nach folgender Formel berechnet: \(y = y_0 + a \cdot (1 - e^{-kt}) \).

a) **BAG-1M führt zu geringerer Hormonaffinität des GR**

Um den Einfluss von BAG-1M auf die Hormonbindungsfähigkeit festzustellen, wurde die Bindung zuerst nicht in Abhängigkeit der Zeit, sondern in Abhängigkeit der GR-Menge (µg Lysat) betrachtet. Anhand dieser Darstellung wurden die \(L_{50} \)-Werte der verschiedenen Bedingungen miteinander verglichen (Abb. 31A). Anschließend wurde der Einfluss von BAG-1M auf die Bindungskinetik genauer untersucht (Abb. 31B-E).

Die Berechnung der Proteinmenge, bei der die halbmaximale Hormonbindung (\(L_{50} \)) erreicht wurde, ergab für BAG-1M einen doppelt so hohen \(L_{50} \)-Wert verglichen mit der Kontroll-Reaktion oder in Gegenwart von BAG-1M_mut (Abb. 31A). Dies bedeutete, dass in Anwesenheit von BAG-1M mehr Rezeptor notwendig war, um die gleiche Menge Hormon zu
binden wie ohne BAG-1M bzw. mit BAG-1M_mut. Grafisch zeigte sich die reduzierte Hormonbindungsaffinität durch eine Rechtsverschiebung der Kurve (Abb. 31A). In beiden Negativ-Kontrollen fand Hormonbindung statt, jedoch wurde deutlich mehr Extrakt benötigt, um die halbmaximale Hormonbindung zu erreichen. In dieser Darstellung zeigte sich deutlicher, dass durch Dexamethason nicht nur die GR-abhängige Bindung, sondern auch die Hintergrundbindung kompetiert wurde.

Die Hsc70/Hsp70-abhängige Reduktion der Hormonbindungsaffinität des GR durch BAG-1M wurde auch sichtbar, wenn man die Bindung in unterschiedlichen Messpunkten in Abhängigkeit der Zeit verglich (Abb. 31 B-E).

Bei maximaler Lysatmenge wurde das Gleichgewichtsplateau in Anwesenheit von BAG-1M zwar erreicht (Abb. 31B), mit abnehmender Proteinmenge jedoch stellte sich das Bindungsgleichgewicht auf einem niedrigeren Niveau ein (Abb. 31C-E). Wie bereits erwähnt, ist die Höhe des Plateaus von der Proteinmenge bzw. von der Menge an ligandenbindungsfähigem GR abhängig. Da BAG-1M die Ligandenaffinität des GR herabsetzte, war unter der gegebenen Hormonkonzentration weniger Rezeptor bindungsfähig und somit mehr GR nötig, um dieselbe Menge Hormon unter den gleichen Bedingungen wie in der Kontrolle binden zu können.

Das Gleiche galt auch für die zeitliche Komponente. BAG-1M führte zu einer geringeren Menge bindungsfähigen Rezeptors, deshalb verzögerte sich die Einstellung des Bindungsgleichgewichts (Abb. 31B und Abb. 31 A-E). BAG-1M hatte dadurch einen Einfluss auf die Kinetik der Hormonbindung des GR.

Bei näherer Betrachtung der Reaktions-Startpunkte fiel jedoch auf, dass in den Ansätzen mit BAG-1M bereits vor Beginn der Bindungsreaktion deutlich weniger GR vorhanden gewesen zu sein schien.
Ergebnisse

Abbildung 31: BAG-1M reduziert die Hormonbindungsaffinität des GR. (A) Polarisation in Abhängigkeit von der Lysatmenge (GR-Menge). Der L₅₀-Wert gibt die Lysatmenge [µg] an, bei der die halbmaximale Hormonbindung erreicht wird. Berechnung des L₅₀ des in Abb. 30 gezeigten Experiments (Sigma Plot). Der Korrelationskoeffizient (R), die P-Werte sowie der L₅₀-Wert der Hormonbindung der verschiedenen Bedingungen sind in der Tabelle rechts zusammengefasst. (B-E) Vergleich der Hormonbindungsreaktion der einzelnen Konditionen für vier verschiedene Messpunkte in Abhängigkeit der Zeit (700 µg Lysat (B), 233,3 µg Lysat (C), 77,8 µg Lysat (D) und 25,9 µg Lysat (E). Die Kontrolle entspricht dem Reaktionsansatz, in dem nur HA-GR überexprimiert wurde (vgl. Abb. 30A).
b) **BAG-1M reduziert die Proteinmenge des GR**

Um diese Beobachtung besser interpretieren zu können, wurden die Bindungsreaktionen mit und ohne (Kontrolle) BAG-1M noch einmal im selben Diagramm in Abhängigkeit der Zeit aufgetragen (Abb. 32A).

Der direkte Vergleich der Bindungsreaktion für vier verschiedene Messpunkte zeigte, dass die GR-Menge in den Ansätzen mit BAG-1M etwa einem Drittel der GR-Menge in den Kontrollen entsprach (Abb. 32A). So verlief z.B. die Bindungsreaktion in 233,3 µg Kontroll-Lysat ähnlich wie die Hormonbindung in 700 µg BAG-1M-Lysat. Die Start-Punkte dieser Bindungskurven lagen in etwa auf gleicher Höhe. Der zeitliche Verlauf bis zur Einstellung des Bindungsgleichgewichts in den Ansätzen mit BAG-1M ähnelte dem Verlauf der Kontrollextrakt-Experimente, die ein Drittel der Proteinmenge enthielten (Abb. 32A). Aufgrund dieser Beobachtungen wurde die GR-Expression mittels Westernblot-Analyse kontrolliert (Abb. 32B und C). Für die quantitative Analyse der Westernblots wurden die Intensitäten (I) der Proteinbande des GR und Aktin densitometrisch bestimmt \(\frac{I_{GR}}{I_{A}} \). Es zeigte sich, dass BAG-1M zu einer starken Reduktion der GR-Menge führte (Abb. 32B und C). Die verbleibende und somit potentiell bindungsfähige Menge GR entsprach ca. 40-60% der GR-Menge im Kontrollextrakt. Das Bindungsverhalten des GR über die Zeit in Anwesenheit von BAG-1M entsprach etwa dem Bindungsverhalten des GR in einem Drittel der Extraktmenge ohne coexprimiertes BAG-1M. Da ohne weitere Analysen nicht klar war, ob ein Drittel des Kontrollextraktes und der Extrakt mit BAG-1M vergleichbare Mengen an bindungsfähigem GR enthielten, konnte nicht ausgeschlossen werden, dass BAG-1M die Hormonbindungsaffinität des GR reduziert.

Zusammenfassend kann gesagt werden, dass BAG-1M in unserem System in erster Linie die GR-Menge negativ beeinflusste. Aus diesem Grund schienen die beobachteten Effekte von BAG-1M auf die Kinetik der Hormonbindung sowie auch auf die Hormonaffinität des GR im Wesentlichen auf die reduzierten GR-Spiegel zurückgeführt werden zu können.
Ergebnisse

c) **HspBP1 hat keinen Einfluss auf die exprimierte oder hormonbindungsfähige Menge an GR**

Für eine korrekte Interpretation der Hormonbindungsstudien ist insbesondere die Menge an bindingfähigem GR Ausschlag gebend. Dies galt im Besonderen für den in diesem Zusammenhang beobachteten Einfluss von BAG-1M. Die Reduktion der GR-Spiegel durch BAG-1M alleine jedoch ließ noch nicht die Annahme zu, dass die beobachtete Abnahme der Hormonaffinität des GR durch BAG-1M einzig auf dem Abbau der Rezeptormoleküle beruhte. Theoretisch konnte die verbleibende GR-Menge ausreichen, um dieselbe Anzahl Liganden-Moleküle zu binden wie in der Kontrolle. Da das Gleiche auch für HspBP1 und FKBP51 der Fall hätte sein können, wurde im Vorfeld der Kinetik-Messung die Menge an hormonbindungsfähigem GR in denselben Extrakten bestimmt. Für die Herstellung der Extrakte wurden HEK 293 Zellen verwendet, die entweder HA-GR oder HA-GR zusammen mit Flag-BAG-1M, Flag-HspBP1 oder FKBP51-Flag coexprimierten. Als Kontrolle für die GR-unabhängige Hintergrundbindung des Zellextraktes wurde ein zusätzlicher Ansatz Zellen ohne Plasmid-DNA elektroporier.

Anstelle des Fluoromon wurde \[^{3}H\]-Kortikosteron (\[^{3}H\]-Kort) verwendet, das zur Bestimmung der Gesamt-Menge an bindingfähigem GR in hoher Konzentration (300 nM \[^{3}H\]-Kort) eingesetzt wurde. Nach der Bindungsreaktion wurde das ungebundene \[^{3}H\]-Kort mit Hilfe eines Aktivkohle-Dextran-Gemisches von der gebundenen GR-\[^{3}H\]-Kort-Fraktion abgetrennt. Anschließend erfolgte die Messung des gebundenen \[^{3}H\]-Kort. Zusätzlich wurde mittels Westernblot-Analyse die GR-Expression in den einzelnen Ansätzen kontrolliert und quantifiziert. Beide Ergebnisse sind in Abbildung 33 dargestellt.
Abbildung 33: HspBP1 reduziert im Gegensatz zu BAG-1M weder die Gesamtmenge an GR, noch die Menge an bindungsfähigem GR. HEK 293 Zellen wurden mit den Expressionsplasmiden von Flag-BAG-1M, bzw. Flag-HspBP1 oder FKBP51-Flag (6,5 µg) und jeweils 2 µg der Plasmid-DNA von HA-transfiziert. Als Kontrolle wurden zusätzlich Zellen nur mit 3,5 µg HA-GR-Plasmid und 6,5 µg Expressionsvektor (pRK5-SV40-MCS) elektroporiert. Für die Bestimmung der Hintergrundbindung wurden untransfizierte Zellen verwendet („Leer“-Extrakt). (A) Westernblot-Analyse der Extrakte für die Hormonbindungsstudie. Die Detektion des Rezeptors erfolgte mit anti-HA-HRP. BAG-1M (1M), HspBP1 (BP1) und FKBP51 (51) wurden mit anti-Flag-HRP visualisiert. Anti-Aktin wurde als Ladekontrolle mitgeführt. Das „Leer“-Extrakt (L) wurde zusätzlich mit aufgetragen (Spur 5 und Spur 10). (B) Quantifizierung der GR/Aktin-Verhältnisse des Experiments aus A relativ zur Kontrolle (nur HA-GR). Die Rezeptormenge der Kontrolle wurde als Referenz auf 100% festgelegt. (C) Dargestellt ist die Menge an hormonbindungsfähigem GR in % relativ zur Kontrolle abzüglich der zelligen Hintergrundbindung. Die Hormonbindung wurde mit [3H]-Kort. in zwei unabhängigen Experimenten bestimmt. Die Bestimmung der Menge an ligandenbindingsfähigem GR wurde in Duplikaten in 480-500 µg Zellextrakt durchgeführt.

Die Quantifizierung der Westernblot-Analyse ergab, dass BAG-1M im Vergleich zur Kontrolle die exprimierte GR-Menge auf ca. 30-40 % reduzierte (Abb. 33B). Dies spiegelte sich auch in der Menge an hormonbindungsfähigem GR wider (Abb. 33C). Im Gegensatz zu BAG-1M zeigten weder HspBP1 noch FKBP51 einen Einfluss auf das Expressionsniveau des
GR (Abb. 33B). Beide Proteine hatten auch keinen nennenswerten Einfluss auf die Menge an ligandenbindungsfähigem GR (Abb. 33C).

Diese Ergebnisse zeigten, dass die beschriebene Reduktion der Hormonbindungssaffinität des GR durch BAG-1 wahrscheinlich auf die Reduktion des Expressionsniveaus bzw. der Rezeptorstabilität zurückgeführt werden kann. HspBP1 und FKBP51 hingegen hatten keinen Einfluss auf die Expression und Hormonbindungsfähigkeit des GR. Im nächsten Schritt wurde die Hormonbindung des GR in Anwesenheit von BAG-1M, HspBP1 und FKBP51 verglichen.

d) **HspBP1 hat keinen Einfluss auf die Hormonbindungssaffinität des GR, jedoch auf die Kinetik der Hormonbindungsreaktion**

Nach der Bestimmung der Menge an ligandenbindungsfähigem GR in Anwesenheit von BAG-1M, HspBP1 und FKBP51 wurde im nächsten Schritt ihr Einfluss auf die Hormonbindung des GR verglichen. Dies diente vor allem dazu, einen Überblick über die Funktionalität und die Aussagekraft dieser Methode zu erhalten. Die Hormonbindungsanalyse fand unter den experimentellen Bedingungen wie unter 4.2.7 beschrieben statt.

Die Reduktion der exprimierten GR-Menge durch BAG-1M schlug sich in dieser Reaktion, wie erwartet, auch auf den L₅₀-Wert nieder (Abb. 34). Verglichen mit der Kontrolle war in Anwesenheit von BAG-1M mit einem L₅₀-Wert von 21,83 nM fast die drei-fache Menge an GR nötig, um unter gleichen Bedingungen dieselbe Menge Hormon zu binden (Abb. 34).

\[y = \text{min} + \frac{(\text{max} - \text{min})}{1 + \left(\frac{x}{\text{EC50}}\right)^{-\text{HillSlope}}} \]

Im Gegensatz zu den mP-Werten, die ein gleichbleibendes Plateau erreichten, fielen die Werte der Gesamt-Intensität der Fluoreszenz im Kontrollansatz, nachdem sie ein Maximum erreicht hatten, wieder ab (Abb. 35 vgl. A-C mit D-F). Da sich die Intensitäten der parallel und senkrecht gemessenen Fluoreszenz ähnlich verhielten, war dieser Effekt zwar in der Gesamt-Intensität der Fluoreszenz zu sehen, nicht aber in den Polarisationsdaten.

Der Einfluss von HspBP1 auf die Hormonbindung des GR war in der Darstellung der Gesamt-Intensität der Fluoreszenz wesentlich stärker sichtbar, als es die Werte der Polarisation (mP) widerspiegelten (Abb. 35, vgl. A-C mit D-F). HspBP1 zeigte einen Effekt auf die zeitliche Komponente dieser Reaktion, der am stärksten in den Ansätzen mit 166,7 und 55,6 µg Lysat beobachtet wurde (Abb. 35 E und F). Mit abnehmender Lysat- und daher GR-Menge, wurde in Anwesenheit von HspBP1, verglichen mit der Kontrolle, ein deutlicher Effekt auf die Kinetik der Hormonbindungsreaktion sichtbar. Das Bindungsgleichgewicht stellte sich später ein, erreichte jedoch ein vergleichbares Plateau wie in der Kontrollreaktion (Abb. 35D-F).

Auch der Einfluss von FKBP51 auf die Ligandenbindungsaffinität des GR war in der Darstellung der Fluoreszenz-Intensität am eindrücklichsten zu sehen. Es konnte ein Unterschied in der Plateauhöhe beobachtet werden, die ein Maß für die Menge an hormonbindungsfähigem GR darstellt. Am offensichtlichsten war dies in dem Messpunkt mit 166,7 µg Protein zu beobachten (Abb. 35B und E). Das Plateau der Reaktion mit FKBP51 befand sich unterhalb der Kontrolle und unterhalb von HspBP1. Somit zeigte FKBP51 in den zeitabhängigen Bindungsreaktionen einen stärkeren reduzierenden Einfluss auf die Ligandenaffinität des GR als es der berechnete L₅₀-Wert hatte vermuten lassen (vgl. Abb. 34). Eine Reduktion der Menge an bindungsfähigem GR hatte natürlich auch einen Einfluss auf die Kinetik der Reaktion, was sich auch im Kurvenverlauf der Reaktion, sowohl in der Polarisation, als auch in der Gesamt-Intensität der Fluoreszenz, widerspiegelte (Abb. 35A-C und D-E).

Zusammenfassend kann gesagt werden, dass BAG-1M in unserem System in erster Linie die GR-Menge beeinflusst, und nicht, wie beschrieben (Kanelakis et al., 1999), die Ligandenaffinität. Die beobachteten Effekte auf die Kinetik der Hormonbindung durch den GR wie auch auf die Hormon-Affinität wurden hier in diesen Experimenten auf die reduzierten GR-Spiegel zurückgeführt. HspBP1 zeigte, im Gegensatz zu BAG-1M, einen Effekt auf die Kinetik der Hormonbindungsreaktion im Polarisationsexperiment. Es hatte keinen Einfluss auf die exprimierte oder bindungsfähige Menge GR. Der beschriebene negative Einfluss von FKBP51 auf die Hormonbindungs-Affinität des GR (Denny et al., 2000), nicht deutlich in den berechneten L₅₀-Werten, wurde erst im Zeit-abhängigen Polarisationsexperiment eindeutig nachweisbar. Da kein Einfluss auf die Expression des GR oder auf die Menge an bindungsfähigem GR in Anwesenheit von 300 nM [³H]-Kort festgestellt wurde, konnte der bekannte Effekt von FKBP51 mit dieser Methode betätigt werden. Die Ergebnisse bezüglich des Einflusses von FKBP51 unterstützen somit zumindest teilweise die Eignung dieser Methode. In Anbetracht der Tatsache, dass BAG-1M einen Einfluss auf die GR-Expression zeigte, sollte stets eine Analyse der maximalen Bindungskapazität des Rezeptors zusätzlich durchgeführt werden.
Als Fazit des Vergleichs von HspBP1 und BAG-1M wurde gefolgert, dass sich der beschriebene mechanistische Unterschied der beiden NEF auf Hsc70/Hsp70 (Shomura et al., 2005) ebenfalls in einer unterschiedlichen Wirkung auf die Signaltransduktion von SR widerspiegelt. Durch funktionelle Analysen der Rezeptor-Aktivität und Interaktionsstudien wurde am Beispiel von GR, MR und AR gezeigt, dass sich der zugrunde liegende Mechanismus von HspBP1 und BAG-1M bezüglich ihres Effekts auf Hsc70/Hsp70-Klienten unterscheidet. Darüber hinaus ließen die Ergebnisse der Hormonbindungsanalyse des GR vermuten, dass sich ein Einfluss von HspBP1 auf frühe Aktionen von Hsc70/Hsp70, nämlich die durch Hsp40 getriebene ATP-Hydrolyse durch Hsc70/Hsp70, auch im zeitlichen Verlauf der von Hsc70/Hsp70-vermittelten Faltungsprozessen bemerkbar macht.

4.3 Design eines murinen Mineralokortikoidrezeptors mit der Hormonaffinität des Glukokortikoidrezeptors

4.3.1 Zwei Strategien: mMR-GR-LBD Chimäre und Punktmutationen in der MR-LBD

Ergebnisse

Abbildung 36: Schematische Darstellung der murinen Wildtyp-Rezeptoren (wt) und der mMR-Mutanten (mMR_mut). Das mMR-GR-LBD-Fusionsprotein (mCH) stellt eine Chimäre aus den N-terminalen Resten des mMR und der LBD des mGR dar. In der mMR-Punktmutante (mMR-PM) sind als Beispiel zwei Punktmutationen in der LBD markiert.

Zur Herstellung der transgenen Konstrukte wurde der murine Mineralokortikoidrezeptor (mMR) verwendet. Da zu diesem Zeitpunkt die cDNA des mMR nicht verfügbar war, wurde die codierende Region anhand einer vorhergesagten mRNA-Sequenz und der daraus resultierenden Proteinsequenz durch einen Sequenzvergleich der bekannten Proteinsequenzen des GR und MR aus Ratte, Maus und Mensch bestimmt. Die so erhaltene codierende Sequenz (CDS) diente als Vorlage für das Design der entsprechenden Klonierungsprimer. Anschließend wurde die Gesamt-RNA aus der murinen hippocampalen Zelllinie HT22 isoliert und mittels reverser Transkription in cDNA umgeschrieben. Die CDS des mMR wurde durch Polymerase-Ketten-Reaktion (PCR) aus dieser cDNA amplifiziert und in die entsprechenden Expressionsvektoren kloniert.

Im ersten Ansatz wurde die Ligandenbindungsdomäne (LBD) des mMR durch die LBD des mGR ersetzt. Somit entstand eine mMR-GR-LBD Chimäre, ein Fusionsprotein aus mMR und mGR (im Weiteren mCH genannt). Der zweite Ansatz verfolgte die Herstellung einer mMR-Punktmutante (siehe Abb. 36).

Mit Hilfe der Kristallstruktur der humanen GR-LBD (Bledsoe et al., 2002; pdb: 1M2Z) wurde ein Homologie-Modell der mMR-LBD erstellt (Swiss-Modell Server, www.expasy.ch/swissmod/SWISS.Model.html). Die Proteinsequenz der LBD des mMR wurde in silico in die Kristallstruktur des humanen MR-LBD (Bledsoe et al., 2005; pdb: 2AA2) eingepasst und mit der Struktur des humanen GR (hGR) verglichen (Abb. 37).
Abbildung 37: Überlagerung der Strukturen von hGR und der adaptierten LBD des mMR. Die Nomenklatur der Helices entspricht der des hMR anhand des Proteinsequenz-Alignments (siehe Anhang). Die mMR-Sequenz ist orange, die hGR-Sequenz hellblau dargestellt. Helix 7 (rot, mMR) und Helix 5 (hellblau, hGR) zeigen die stärkste Abweichung bzgl. ihrer strukturellen Ähnlichkeit. Als gebundener Ligand ist hier das synthetische Glukokortikoid Dexamethason (aus pdb: 1M2Z) dargestellt.

Abbildung 38: Orientierung der bindungsrelevanten Helices der Ligandenbindungsdomäne. (A) Moleküloberfläche von H5 und Packung an H3 im hGR. (B) Orientierung der beiden Helices H7 und H5 zu einander in der in silico konstruierten mMR-LBD. Die exponierten Aminosäuren im hGR (G609 und M646) liegen an derselben Stelle innerhalb der Struktur wie die hervorgehobenen Reste S811 und M848 im mMR. Durch die Mutation S811G wird Helix 7 im mMR (B) verschoben. Die Substitution M848I führt zu einer lokalen „Korrektur“ der Bindungstasche.

In der Struktur des hGR (Abb. 38A) ist an der Position, die dem Serin-Rest 811 des mMR (Abb. 38B) entspricht, ein Glycin eingebaut (G609). Hier liegt die Helix 3 (mMR: H5) näher an Helix 5 (mMR: H7). Die Substitution des Serins durch Glycin (S811G) würde H7 (Abb. 38B) in eine vergleichbare räumliche Position zu Helix 5 und zum Liganden schieben, wie sie in der LBD des hGR gegeben ist (Abb. 38A).

Ähnliches gilt für die Nähe zum Liganden. Die Distanz von H5 zum Liganden ist in der hGR-Struktur deutlich geringer als in der des mMR (H7), obwohl beide Rezeptoren an derselben strukturgebenden Position ein Methionin besitzen. Ein Austausch von Methionin zu Isoleucin (M848I) in Helix 7 des mMR führt zu einer lokalen Vergrößerung der Bindungstasche.

Die in Abbildung 39 dargestellte Übersicht der Liganden-Umgebung verdeutlicht noch einmal die beiden Strategien und zeigt die Verschiebung der α-Helix 7 zwischen mMR und hGR.

Der Serin-Rest an Position 811 stellt eine sterische Barriere dar, der die Annäherung von H7 an H5 im mMR verhindert. Ein Austausch gegen Glycin (S811G) könnte H7 räumlich näher an H5 bringen, wie es auch in der hGR-Struktur der Fall ist. Somit könnte sich die bindungsrelevante Helix 7 im mMR verschieben und sich an die hGR-Struktur angleichen. Die Mutation zweier weiterer Reste sollte durch eine lokale „Korrektur“ der Bindungstasche die Ligandenaffinität des mMR schwächen. Die Substitution von M848 durch das sterisch weniger anspruchsvolle Isoleucin (M848I) schafft Raum in der Bindungstasche. Dadurch könnte H7 näher an den Liganden rücken und eine ähnliche Position wie Helix 5 im hGR einnehmen. Ein dritter Rest, das Glutamin (Q772) in H3 bildet eine Wasserstoff-Brückenbindung (H-Brücke) zum Keton am 3. Kohlenstoff (C3) im Dexamethason (Abb. 39). Die Substitution des Glutamins durch das ionische Glutamat (Q772E) verhindert die Ausbildung einer solchen Wasserstoff-Brücke.

Durch die strukturelle Anpassung der bindungsrelevanten Helices im mMR, so wie durch Schwächung der Liganden-Interaktion durch lokale Veränderungen in der mMR-Bindungstasche, sollte der mMR eine Kortikosteron-Affinität erhalten, die der des mGR entspricht.
Basierend auf diesen Überlegungen wurden verschiedene mMR-Mutanten generiert und funktionell mit den Wildtyp-Rezeptoren mMR und mGR und der mMR-Chimäre verglichen.

4.3.2 Funktionelle Analyse der mMR-Mutanten

a) Aktivierung der mMR-GR-LBD-Chimäre durch 100-fach höhere Hormonkonzentrationen verglichen mit mMR-Wildtyp

Zuerst wurde in HEK 293 Zellen untersucht, inwieweit sich die Substitution der mMR-LBD durch die mGR-LBD auf die Responsivität der Chimäre (mCH) verglichen mit den Wildtyp-Rezeptoren auswirkt (Abb. 40).

Verglich man den Anstieg der Rezeptor-Aktivität von mMR und mGR, so fiel auf, dass die Transkription durch den mMR in geringerem Umfang zunahm. Der Grund hierfür war die höhere Basal-Aktivität des mMR (Abb. 40B). Die wahrscheinlichste Erklärung ist, dass das steroidfreie FBS einen bisher nicht identifizierbaren MR-Liganden enthält, da Experimente mit nur 0,5% steroidfreiem FBS zu einer weitaus geringeren Basal-Aktivität des MR führten (nicht gezeigt für mMR, jedoch für den humanen MR, s. 4.2.5b).

Die relative Rezeptor-Aktivität zeigte, dass der mMR, im Gegensatz zum mGR und mCH bereits durch 0,1 nM Kortikosteron aktiviert wurde. Die mMR-Chimäre (mCH) responдиerte, wie der mGR, bei einer etwa 100-fach höheren Hormonkonzentration. Allerdings erreichte die Chimäre nicht das Aktivitätsplateau des mGR, sondern verhielt sich hier wie der mMR (Abb. 40 A).
Abbildung 40: Die mMR-Chimäre (mCH) wird, im Gegensatz zum Wildtyp, erst bei 100-fach höheren Hormonkonzentrationen aktiviert. 30000 HEK 293 Zellen wurden mit 25 ng der Expressions-Plasmide für mMR, mGR und mCH sowie 40 ng Reporter-Plasmid MMTV-Luc und 10 ng des Plasmids mit der codierenden Sequenz für eine sekretionierte Gaussia-Luciferase (Gaussia) co-transfiziert. Eine bis drei Stunden nach der Transfektion erfolgte die Stimulierung mit Kortikosteron bzw. Ethanol als Kontrolle (A) Relative Rezeptor-Aktivität (± SEM), dargestellt als die durch die Gaussia-Luciferase normalisierten Firefly-Luciferase-Werte dreier unabhängiger, in Duplikaten durchgeführter Experimente. (B) Die Rezeptor-Aktivität bei 100 nM Kortikosteron wurde auf 100% gesetzt und die anderen Aktivitäten hierauf bezogen.

In Abbildung 40B ist eine andere Art der Darstellung gewählt, um die halbmaximale Aktivität der Rezeptoren besser vergleichen zu können. Die Aktivität, die durch Stimulierung mit der höchsten Hormonkonzentration erreicht wurde, wurde als Referenz auf 100% festgelegt. Hier zeigte sich, dass der mMR bereits bei ca. 0,5 nM Kortikosteron, seine halbmaximale Aktivität erreicht hat. Der mGR und mCH hingegen erreichten ca. 50% ihrer Aktivität bei einer Hormonkonzentration zwischen 20 und 40 nM. Somit zeigte die Substitution der mMR-LBD durch die mGR-LBD den gewünschten Effekt bezüglich der Hormonresponsivität. Ähnlich wie der mGR, wurde mCH erst bei fast 100-fach höheren Hormonkonzentrationen aktiv als der mMR.
b) Veränderung der Hormonresponsivität durch Punktmutationen in der mMR-LBD

Im nächsten Schritt wurde die Responsivität der Punktmutanten mMR_Q772E, mMR_S811G und mMR_M848I mit der Hormonantwort von mMR, mGR und mCH verglichen. Hierfür wurden die Reporter-Experimente in SK-N-MC Zellen durchgeführt (Abb. 41).

Die mMR_Mutanten mit den Substitutionen der Aminosäure-Resten, die die Interaktion mit dem Liganden beeinflussen (Q772E und M848I), wiesen dagegen ein schlechteres Aktivierungspotential auf. Beide Mutanten wurden erst bei einer ca. 10-fach höheren Kortikosteronkonzentration (1 nM) aktiv als der mMR-Wildtyp (Abb. 41A).
Ergebnisse

Allerdings erreichte die mMR_Q772E-Mutante nicht das vollständige Aktivitätsniveau des Wildtyps. Ein ähnliches Bild ergab sich, wenn man die Hormonkonzentrationen betrachtete, die zu einer halbmaximalen Aktivität führten (Abb. 41B). Sowohl der mGR als auch mCH erreichten in SK-N-MC Zellen ebenfalls bei einer Hormonkonzentration zwischen 20 und 40 nM Kortikosteron 50% ihrer Gesamt-Aktivität. Hier zeigte sich, dass der S811G-Austausch zu einer geringeren Basalaktivität der Mutante führte, verglichen mit dem Wildtyp mMR. Jedoch wurde bei beiden Rezeptoren bereits mit 1 nM Kortikosteron die Hälfte der transkriptionellen Aktivität erreicht. Somit scheint diese Mutation die Responsivität des mMR nur marginal zu beeinträchtigen. Die anderen beiden Mutanten mMR_Q772E und _M848I waren bei einer Hormonkonzentration von ca. 3-5 nM Kortikosteron zur Hälfte aktiviert.

Im nächsten Schritt wurden verschiedene Mutationen in einem Rezeptor-Molekül kombiniert. Eine Doppelmutante zeigte die gewünschte Responsivität.

c) GR-ähnliche Responsivität durch die Doppelmutation S811G/M848I in der mMR-LBD

Die Ergebnisse der Reportergen-Experimente zeigten, dass die mMR-Mutante, die beide Mutationen in H5 (S811G) und H7 (M848I) besaß, in ihrem transkriptionellen Verhalten die größte Ähnlichkeit mit dem mGR aufwies. Um die Responsivität der Doppelmutante (mMR_GI) in den niedrigeren Konzentrationsbereichen besser auflösen zu können, wurde als geringste Hormonkonzentration 0,03 nM Kortikosteron gewählt. Die relative Rezeptor-Aktivität ist wie oben beschrieben in zwei verschiedenen Arten der Darstellung in Abbildung 42 zu sehen.

In diesen Experimenten fiel wiederum die höhere Basalaktivität des mMR auf. Bereits ohne Hormon erreichte der mMR die Hälfte seiner transkriptionellen Aktivität (Abb. 42B). Der murine GR war bei Kortikosteronkonzentrationen zwischen 5-10 nM aktiv und erreichte bei etwa 20 nM die Hälfte seiner Gesamt-Aktivität. Die M848I_Mutante des mMR wurde ab einer Konzentration von 0,03 nM Kortikosteron aktiv (Abb. 42A) und erreichte nach moderatem Anstieg bei ca. 1 nM 50% ihrer transkriptionellen Aktivität.

Ähnliches galt für die Hormonkonzentration, die nötig war, um die Doppelmutante zu aktivieren. mMR_GI startete die Transkription bei einer Hormonkonzentration ab 0,3 nM Kortikosteron. Allerdings war die Mutante, ähnlich wie mGR, bei 10-20 nM Cortison zu 50% transkriptionell aktiv. Darüber hinaus schien diese Mutante bei höheren Hormonkonzentrationen noch stimulierbar zu sein. Anders als der mMR war die maximale Stimulierbarkeit bei 3 nM Kortikosteron noch nicht erreicht (Abb. 42A).
Abbildung 42: Die Doppelmutation S811G/M848I führt zu einer GR-ähnlichen Hormonantwort des mMR. Reporter-Plasmid MMTV-Luc (40 ng), das Expressions-Plasmid für Gaussia-KDEL (5 ng) sowie je 25 ng der einzelnen Plasmide mit der cDNA für Flag-mMR, Flag-mGR, Flag-mMR_M848I und mMR_GI wurden in 30000 HEK 293 Zellen transfiziert. Die Stimulierung der Zellen erfolgte 24 h nach der Transfektion mit steigenden Konzentrationen Kortikosteron bzw. Ethanol. (A) Dargestellt ist die Rezeptor-Aktivität (± SEM), nach Normalisierung der Firefly-Werte durch die Gaussia-Werte, zweier unabhängiger, in Duplicaten gemessener Experimente. (B) Die Aktivität der Rezeptoren in Anwesenheit von 300 nM Kortikosteron wurde auf 100% festgelegt und als Referenz verwendet.

d) Chimäre und Doppelmutante im Vergleich: zwei mMR-Mutanten mit GR-ähnlicher Responsivität

In beiden Zelllinien war der mMR bereits ohne zusätzliches Hormon auffällig aktiv (Abb. 43 A und C). Da die Neuro-2A Zellen mit maximal 10 nM Kortikosteron stimuliert wurden, lag die Basalaktivität aller Rezeptoren zwischen 20-30% (Abb. 43D).

Ähnlich wie bei mGR (3 nM), waren für die Aktivierung von mCH und mMR_GI höhere Hormonkonzentrationen nötig als für den mMR (Abb. 43 A und C). Abhängig vom Zelltyp wurde mCH erst durch 1 nM (Neuro-2A Zellen) bzw. 3 nM (SK-N-MC Zellen) Kortikosteron transkriptionell aktiv (Abb. 43A und C). Die Transkription durch mMR_GI begann in einem Konzentrationsbereich von 0,1-1 nM Kortikosteron (Abb. 43B und C).

Da die Basal-Aktivität des mMR ohne Hormon schon beträchtlich hoch war, konnte der Unterschied in der halbmaximalen Aktivität zwischen mMR und den Mutanten aus diesen Experimenten nicht bestimmt werden. Da die Neuro-2A Zellen mit nur maximal 10 nM Kortikosteron behandelt wurden, kann die halbmaximale Aktivität einiger Rezeptoren deutlich unter dem Wert aus den vorhergehenden Experimenten liegen.

In SK-N-MC und Neuro-2A Zellen hat der mGR seine halbmaximale Aktivität bei Hormonkonzentrationen von ca. 5-10 nM erlangt. Um 50% der Gesamt-Aktivität zu erreichen, benötigte die Chimäre (mCH) in SK-N-MC-Zellen Hormonkonzentrationen im
Ergebnisse

Im Vergleich der Hormonresponsivität von mMR, mGR, mCH und mMR_GI wurde deutlich, dass mCH in den Reporter-Experimenten eine stärkere Ähnlichkeit in der Responsivität zur Stimulierbarkeit des mGR aufwies als zum mMR. Auch die Doppelmutationen (S811G/M848I) im mMR generierten einen Receptor, der, verglichen mit den mMR Wildtypen, eine ähnliche Responsivität wie der mGR aufwies, allerdings schon bei etwas niedrigeren Hormonkonzentrationen aktiv wurde als dieser.

Durch unterschiedliche Strategien gelang es, zwei mMR-Mutanten zu generieren, die, basierend auf den funktionellen Analysen, in der Lage sein müssten, im Tiermodell unter basalen Bedingungen inaktiv, jedoch unter Stress, die zellulären Funktionen eines MR auszuüben.
Diskussion

5 Diskussion

Maßgeblich für die Aufrechterhaltung dieser regulatorischen Prozesse ist die Funktionsfähigkeit von GR und MR. Eine wichtige Voraussetzung für die Funktion von SR ist die korrekte Faltung. So sind neben den Schlüsselkomponenten Hsc70/Hsp70 und Hsp90 drei weitere Proteine, Hsp40, Hop und p23, für die GR-Faltung relevant (Dittmar et al., 1998). Hsp90- oder Hsc70/Hsp70-abhängige Cofaktoren wie PP5, die Immunophiline FKBP51 und 52, oder der Hsc70/Hsp70 Nukleotid-Austauschfaktor (NEF) BAG-1 können die Faltung, posttranslationale Modifikationen, den nukleären Transport oder auch die DNA-Bindung von SR modulieren und dadurch die Signaltransduktion beeinflussen (Wandinger et al., 2006; Wang et al., 2007; Denny et al., 2000; Wochnik et al., 2005; Kullmann et al., 1998; Kanelakis et al., 1999; Schneikert et al., 1999; Schmidt et al., 2003; Hong et al., 2008). Zusätzliche Mechanismen, wie z.B. die ligandenabhängige Regulation der GR-mRNA (Okret et al., 1986; Dong et al., 1988; Burnstein et al., 1994) oder die Proteininstabilität per se (Wallace & Cidlowski, 2001) tragen ebenfalls zur Kontrolle der GR-vermittelten Signalweiterleitung bei. Eine Dysregulation der GR-Signaltransduktion kann unter Umständen zu einer Akkumulation des Stresshormons Kortisol, auch als Hyperkortisolismus bezeichnet, führen. Einhergehend mit erhöhten Kortisolwerten wird mehrfach über die Entwicklung einer Glukokortikoidresistenz berichtet. Dieses Phänomen wird in der klinischen Praxis oft assoziiert mit endogen oder exogen erhöhten Kortisolspiegeln beobachtet, wie sie häufig bei depressiven Patienten oder Patienten, die sich einer Immunsuppressionstherapie unterziehen müssen, vorkommen (Holsboer, 2000; Kino et al., 2003). Da Glukokortikoide starke Immunsuppressiva darstellen und eine anti-inflammatorische Wirkung besitzen, werden sie überwiegend zur Behandlung von Autoimmunerkrankungen eingesetzt (Boumpas et al., 1993; Barnes, 1998). Im Laufe der Jahre wurden einige der molekularen Ursachen erforscht, die im Hinblick auf Entzündungskrankheiten zur Glukokortikoidresistenz führen können (Barnes & Adcock, 2009).

In der vorliegenden Arbeit wurden mit BAG-1M und HspBP1, beides Hsc70/Hsp70-Nukleotid-Austauschfaktoren (NEF), zwei weitere Faktoren untersucht, die die Funktion und
somit Signaltransduktion von SR verändern können. In diesem Zusammenhang wurde gezeigt, dass sich HspBP1 und BAG-1M in dem zugrunde liegenden Mechanismus ihrer Wirkung auf die Funktion von SR unterscheiden.

Zusätzlich wurde die Möglichkeit untersucht, die transkriptionelle Aktivität des MR durch Mutationen direkt im Rezeptor zu modulieren. Dabei konnten murine MR hergestellt, werden, die eine GR-ähnliche Glukokortikoidaffinität aufweisen. Dies diente als Vorarbeit für ein transgenes Tiermodell, in dem ektopisch ein MR überexprimiert wird, der erst unter Stress, also mit steigenden Kortisolkonzentrationen, aktiv wird. In diesem Tiermodell soll in naher Zukunft die Relevanz der MR/GR-Balance für die Aufrechterhaltung der basalen und stressbedingten Homöostase überprüft werden.

5.1 Modulation der Steroidhormonrezeptor-Funktion durch assoziierte Cochaperone

BAG-1 wurde ursprünglich als Bcl2-assoziiertes Athanogen 1 identifiziert (Takayama et al., 1995), und ist mit vier translationalen Isoformen im menschlichen Gewebe vertreten (Yang et al., 1998). Es moduliert als NEF die Chaperon-Aktivität von Hsc70/Hsp70 (Takayama et al., 1997; Zeiner et al., 1997; Höhfeld & Jentsch, 1997). Mittlerweile wurde die Beteiligung von BAG-1 an der Regulation vieler zellulärer Signalwege nachgewiesen (Alberti et al., 2003b; Gehring, 2004). Zahlreiche Studien befassen sich mit der Eigenschaft von BAG-1, die Signaltransduktion von SR Hsc70/Hsp70-abhängig zu beeinflussen. Die Fähigkeit von BAG-1, verwandte SR auf unterschiedliche Weise zu modulieren, ist nicht nur aus Sicht der Grundlagenforschung interessant, sondern könnte BAG-1 als Zielprotein auch in den Fokus der Entwicklung von Medikamenten zur gezielten Beeinflussung der SR-Signaltransduktion rücken. Im Hinblick auf eine eingeschränkte GR-Signaltransduktion, die als Ursache für den in depressiven Patienten häufig beobachteten Hyperkortisolismus diskutiert wird (Holsboer, 2000), stellt BAG-1M aufgrund seiner inhibitorischen Wirkung auf die GR-Aktivität einen potentiellen kausalen Faktor für die Ausbildung depressiver Störungen dar.
5.1.1 GR und PR: verschiedene Mechanismen der Inhibition durch BAG-1M?

Für die gezielte Modulation einzelner SR über BAG-1 ist es wichtig, dessen Einfluss auf verwandte Rezeptoren zu kennen. Die Effekte verschiedener BAG-1-Isoformen auf die transkriptionelle Aktivität des GR, AR und ER wurden bereits dokumentiert (Kullmann et al., 1998; Schneikert et al., 1999; Schmidt et al., 2003; Froesch et al., 1998; Shatkina et al., 2003; Cутress et al., 2003). Bisher gab es jedoch keine Untersuchungen bezüglich der Wirkung von BAG-1 auf die Funktion des PR, einen verwandten SR. Der PR, ebenso wie GR und MR in stressrelevanten Hirnregionen exprimiert (Kato, 1994; Guerra-Araiza et al., 2002; Guerra-Araiza et al., 2003), wird neben der Regulation reproductiver Prozesse unter anderem auch im Zusammenhang mit der Regulation der Kognition oder Neurogenese diskutiert (Brinton et al., 2008). Daher war ein Ziel dieser Arbeit, den Einfluss von BAG-1M, der GR-inhibierenden Isoform, auf die Aktivität des PR zu untersuchen.

In der vorliegenden Arbeit wurde demonstriert, dass BAG-1M einen ähnlichen inhibitorischen Effekt auf die PR-Aktivität aufweist, wie auf die Funktion des GR. Anders als im Falle des GR, war die Inhibition des PR bezüglich der Hsc70/Hsp70-Abhängigkeit nicht eindeutig interpretierbar. Um die Ergebnisse der funktionellen Analysen bezüglich der Hsc70/Hsp70-Abhängigkeit der PR-Inhibition durch BAG-1M einschätzen zu können, wurden Bindungsanalysen von BAG-1M und verschiedenen PR-Mutanten durchgeführt.

Aus der Literatur ist bekannt, dass sich der stimulatorische Effekt von BAG-1L auf die AR-Transaktivierung durch eine Abhängigkeit von Hsc70/Hsp70 auszeichnet. Für den GR und den AR wird die Modulation der Transaktivierung durch BAG-1, auf die Beteiligung bestimmter Rezeptor-Domänen zurückgeführt. BAG-1M interagiert Chaperon-abhängig mit der Hinge-Region im GR (Kullmann et al., 1998). Für die Stimulierung durch BAG-1L ist die Interaktion von BAG-1L mit dem N-Terminus des AR notwendig (Shatkina et al., 2003).

Die Interaktionsstudien sollten Aufschluss darüber geben, ob eine Interaktion des PR mit BAG-1M Hsc70/Hsp70-abhängig erfolgt, ob diese Interaktion von ähnlichen Domänen im PR vermittelt wird, wie für GR oder AR beschrieben, und ob sich aus der Art der Interaktion generell ein Mechanismus für die Regulation der SR-Aktivität durch BAG-1 ableiten lässt.

In Tabelle 8 sind die Ergebnisse der funktionellen Analyse sowie der Interaktionsstudien des PR-Wildtyps und der verschiedenen PR-Mutanten mit BAG-1M, Hsc70/Hsp70 und Hsp90 zusammengefasst.

Die Rezeptor-Aktivität betreffend fielen drei Deletionsmutanten auf, PRΔC, PRΔH1 und PRΔ494-562, die eine stärkere transkriptionelle Aktivität aufwiesen als PRwt. Die Deletion der LBD in PRΔC hatte eine hormonunabhängige Aktivität zur Folge. PRΔC war aufgrund der, verglichen mit PRwt, stärkeren Expression, transkriptionell stärker aktiv. Die verstärkte Transkriptionsrate von PRΔH1 und PRΔ494-562 bei höheren Hormonkonzentrationen könnte in der Deletion einzelner Reste begründet liegen, die möglicherweise durch Modifikationen
und/oder Interaktionen mit bestimmten Cofaktoren die Aktivität negativ regulieren (Knotts et al., 2001).

Tabelle 8: Rezeptor-Aktivität und Interaktionsanalyse von PRwt und PR-Mutanten

<table>
<thead>
<tr>
<th>Rezeptor</th>
<th>Transkriptionelle Aktivität</th>
<th>Bindung an BAG-1M</th>
<th>Interaktion mit Hsc70/Hsp70</th>
<th>Interaktion mit Hsp90</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRwt</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>PRΔN</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>PRΔC</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>PRΔDBD</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>PRΔH1</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>PRΔH</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>PRΔ494-562</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>PRΔ494-562/ΔH</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>PR-DBD</td>
<td>n.t.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PR-494-641</td>
<td>n.t.</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>PR-DBDH</td>
<td>n.t.</td>
<td>+</td>
<td>++</td>
<td>-</td>
</tr>
</tbody>
</table>

Transkriptionelle Aktivität des PR-Wildtyps und der PR-Mutanten sowie ihre Interaktion mit BAG-1M, Hsc70/Hsp70 und Hsp90. Die Aktivität der Rezeptoren wurde jeweils in Bezug auf PRwt (+) angegeben. (+++) bedeutet verstärkte transkriptionelle Aktivität, (-) bezeichnet nicht aktive bzw. schwach aktive Mutanten, (n.t.) nicht getestete Konstrukte. Die Bindung an BAG-1M und die Chaperone wurde ebenfalls mit (+) Bindung, (++) sehr gute Bindung und (-) keine Bindung bewertet. Die Interaktion mit Hsc70/Hsp70 ist essentiell für die Bindung an BAG-1M.

Die Deletion des N-Terminus verringerte deutlich die Expression von PRΔN, was eine plausible Erklärung für dessen schwache Aktivität war. Möglicherweise ist die Deletion von Ser 400, dessen Phosphorylierung zur Stabilität des PR beiträgt (Faus & Haendler, 2006), die Ursache für die geringen PRΔN-Spiegel. Der Verlust der DBD führte wie erwartet zu einem kompletten Aktivitätsverlust. Die Deletion der gesamten Hinge-Region in PRΔH verursacht unter Umständen eine strukturelle Instabilität, wodurch keine adäquate Faltung mehr möglich ist. Eine andere Erklärungsmöglichkeit für die beobachtete Inaktivität ist der Verlust wichtiger regulatorischer Reste in der Hinge-Region (Knotts et al., 2001). Dies würde auch die Inaktivität der Mutante PRΔ494-562/ΔH erklären.

In den Bindungsanalysen wurde festgestellt, dass PR-DBD die einzige PR-Mutante war, die nicht mit BAG-1M interagierte. PRΔDBD hingegen wurde mit BAG-1M copräzipitiert. Weder die Deletion der Hinge-Region (H1 und H) noch des N- bzw. C-Terminus oder einer der anderen Domänen führten zum Verlust der Bindung an BAG-1M. Diese Ergebnisse deuten darauf hin, dass, anders als bei GR oder AR, mehr als eine Domäne
Diskussion

des PR die Bindung an BAG-1M und damit die Inhibition der PR-Funktion vermittelt. Somit ist der inhibitorische Effekt von BAG-1M auf die Aktivität von SR nicht generell durch eine Interaktion mit der Hinge-Region der Rezeptoren zu erklären.

Auch wenn die Hinge-Region nicht alleine entscheidend war, schien sie dennoch eine Schlüsselrolle für die Chaperon-Assoziation einzunehmen. Die Untersuchungen von PR-DBDHD ergaben, dass das Anfügen der Hinge-Region an PR-DBD zu einer stärkeren Bindung von Hsc70/Hsp70 führte. Diese Beobachtung stimmte mit einer Studie überein, in der die Hinge-Region im Vitamin D Rezeptor (VDR) als Bindungsstelle für DnaK, das bakterielle Hsp70-Homolog identifiziert wurde (Swamy et al., 1999). Die Hsp90-Bindung des PR war, wie erwartet, nicht relevant für die Interaktion mit BAG-1M. Sowohl PRΔC als auch die PR-Fragmente PR-DBD, PR-494-641 und PR-DBDHD konnten nicht mehr an Hsp90 binden, da mit der Deletion der LBD die Bindungsstelle der SR für Hsp90 entfernt wurde (Xu et al., 1998; Carsonjurica et al., 1989; Schowalter et al., 1991; Chambraud et al., 1990). Bis auf PR-DBD interagierten sie jedoch alle mit BAG-1M und Hsc70/Hsp70.

Die hier beschriebenen Daten führen zu der Annahme, dass dem inhibitorischen Effekt von BAG-1M auf die transkriptionelle Aktivität des PR wahrscheinlich ein anderer Mechanismus zu Grunde liegt, als er für den GR bekannt ist (Kullmann et al., 1998; Hong et al., 2008). Weder die Hinge-Region noch Hsc70/Hsp70 scheinen in vergleichbarem Ausmaß an der Vermittlung der PR-Inhibition durch BAG-1M beteiligt zu sein, wie es auf die Regulation der GR-Aktivität zu trifft. In diesem Zusammenhang stellt sich die Frage, worin der Unterschied in der Regulation der beiden SR begründet liegt.

Eine mögliche Erklärung hierfür ist, dass GR und PR unterschiedliche Chromatin-Modulatoren für die Transkription rekrutieren (Archer et al., 1997). So rekrutiert der GR Faktoren, die zur Modifikationen des Histons H3 führen, der PR hingegen Cofaktoren die zu einer erhöhten Azetylierung des Histons H4 führen (Li et al., 2003). Dies würde die differenzielle Aktivierung verschiedener Promotoren durch GR und PR erklären (Deroo & Archer, 2002).

Somit könnte BAG-1M durch direkte, also Hsc70/Hsp70-unabhängige, oder indirekte Interaktion mit einem oder mehreren Cofaktoren Einfluss auf die transkriptionelle Aktivität
der SR nehmen. Laut Literatur interagiert BAG-1M auch Chaperon-unabhängig mit Transkriptionsfaktoren (Niyaz et al., 2003). Eine Möglichkeit der Hsc70/Hsp70-unabhängigen Vermittlung bietet die Bindung an die proteasomalen Untereinheiten Rpt4 und Rpt6, die in dieser Arbeit nachgewiesen wurde. Ein Unterschied in der Relevanz verschiedener proteasomaler Untereinheiten für die hormoninduzierte Transkription durch GR oder PR könnte eine Erklärung für die gegensätzliche Wirkung sein, die Proteasom-Inhibitoren (z.B. MG132) auf die Transaktivierung der beiden Rezeptoren zeigen. Im Gegensatz zum GR, dessen transkriptionelle Aktivität durch die Inhibition von MG132 hormonabhängig verstärkt wird, führt die Verwendung von MG132 zur Inhibition der PR-abhängigen Transkription (Kinya & Archer, 2007; Dennis et al., 2005). Die Blockade der transkriptionellen PR-Aktivität durch MG132 geht nicht nur mit einer Inhibition der progesteronabhängigen Azetylierung des Histons H4, sondern auch mit einer Inhibition der progesteronabhängigen Rekrutierung der RNA-Polymerase II einher (Dennis et al., 2005). Bis vor kurzem war keine Literatur darüber vorhanden, ob BAG-1M, abhängig oder unabhängig von proteasomalen Untereinheiten oder Hsc70/Hsp70, Chromatin-Modulatoren wie z.B. Histon-Deazetylasen (HDACs) oder –Azetyltransferasen (HATs) rekrutiert oder deren Rekrutierung verhindert. In einer aktuellen Publikation wurde die Notwendigkeit von HDAC und Corepressoren für die BAG-1M-vermittelte GR-Inhibition berichtet (Hong et al., 2009). Die unspezifische Bindung von BAG-1 an DNA (Kullmann et al., 1998; Zeiner et al., 1999 Niyaz et al., 2003; Schmidt et al., 2003; Hong et al., 2008) könnte durch eine Interaktion mit bestimmten HDACs, HATs oder anderen Faktoren zu einer lokalen Veränderung der Chromatinstruktur führen und somit die Promotor-Bindung der RNA-Polymerase II und anderer Cofaktoren verhindern. Dies könnte auch die Bindung des PR selbst betreffen. Allerdings scheint die Histon-Deazetylierung eine Begleiterscheinung der MG132-induzierten PR-Inhibition zu sein, und nicht die Ursache dafür, dass die RNA-Polymerase II nicht mehr an PR-responsive Promotoren bindet (Dennis et al., 2005).

Ob Veränderungen der Chromatin-Struktur durch BAG-1 erfolgen und inwieweit die Beteiligung proteasomaler Untereinheiten und deren proteolytische oder Proteolyse-unabhängige Funktion eine Rolle spielen, muss erst noch untersucht werden. Es ist wahrscheinlich, dass der Unterschied in der Wirkung von BAG-1M auf die Aktivität des GR und PR durch eben genannte Faktoren sowohl promotor- als auch zeltypabhängig ist. Auf jeden Fall könnte eine Hsc70/Hsp70-unabhängige Regulation transkriptioneller Prozesse durch BAG-1 ein Grund für die beobachteten Unterschiede in der Regulation der transkriptionellen Aktivität verschiedener SR durch die BAG-1-Isoformen sein. Ein erster Ansatz für eine detailliertere Analyse wäre ein Vergleich der BAG-1M-vermittelten Wirkung auf die GR und PR-Aktivität an endogenen Promotoren. Protein-DNA und Protein-Protein Interaktionsanalysen sind eine probate Methode herauszufinden, ob BAG-1M auch mit dem PR an der DNA präzipitiert werden kann und inwieweit proteasomale Untereinheiten beteiligt sind. Darüber hinaus könnte in Co-Immunpräzipitationsexperimenten mit den verschiedenen
Diskussion

5.1.2 Funktion der ubiquitin-like-Domäne von BAG-1M für die Regulation der Steroidhormonrezeptoren

Neben ihrer Funktion als NEF, über die Hsc70/Hsp70 Chaperon-Aktivität die Signaltransduktion von SR zu beeinflussen, sind die BAG-1-Isoformen an der Regulation verschiedenerzellulärer Prozesse beteiligt. Hierzu zählen die Modulation transkriptioneller Prozesse auf DNA-Ebene durch BAG-1M (Kullmann et al., 1998; Zeiner et al., 1999; Niyaz et al., 2003; Schmidt et al., 2003; Hong et al., 2008) oder auch die Beteiligung am proteasomenalen Abbau von Chaperon-Substratproteinen wie des GR in Kooperation mit der E3-Ligase CHIP (Lüders et al., 2000a; Alberti et al., 2003a; Demand et al., 2001). In den meisten Fällen agiert BAG-1 in Abhängigkeit von Hsc70/Hsp70. Die Vernetzung der Proteinfaltung mit dem Proteinabbau, die der Qualitätskontrolle dient, wird von BAG-1 über seine Ubiquitin-ähnliche Domäne (ULD, ubiquitin-like domain) vermittelt (Lüders et al., 2000a; Alberti et al., 2003a). Wie andere Proteine, die ebenfalls eine ULD besitzen (Elsasser et al., 2002), interagiert BAG-1M sehr wahrscheinlich mit Rpn1, einer nicht-ATPase Untereinheit des 19S-regulatorischen Komplexes des 26S-Proteasoms. In dieser Arbeit wurden zwei weitere proteasomale Untereinheiten des 19S-Komplexes als Interaktionspartner für BAG-1M identifiziert, Rpt4 und Rpt6. Da beide Proteine mit Rpn1 im selben Modul organisiert sind, ist es wahrscheinlich, dass die Bindung von BAG-1M an Rpt4 und Rpt6 von Rpn1 vermittelt wird. Die Bindung ist Hsc70/Hsp70-unabhängig. Desweiteren war die Coexpression von BAG-1M und GR mit einer starken Reduktion der GR-Proteinmenge verbunden (s. 4.2.7b, Abb. 32). Im Gegensatz dazu gab es in den Expressionsanalysen der funktionellen Experimente keinen Hinweis auf eine ähnlich stark verminderte GR-Expression (Abb. 23). Eine mögliche Erklärung hierfür könnte in der verwendeten Methode liegen. Die Zellen für die funktionellen Analysen wurden nach der Cotransfektion von BAG-1M und GR mit Hormon behandelt (s. 4.2.5a). Im Gegensatz dazu wurden für die Hormonbindungsanalyse, deren Extrakt die stärkste GR-Reduktion in Anwesenheit von BAG-1M aufwies, das Zytosol lysierter Zellen mit Hormon (s. 4.2.7b) versetzt. Dies kann bedeuten, dass die Bindung des Liganden den GR unter bestimmten Bedingungen vor dem CHIP-abhängigen proteasomenalen Abbau durch BAG-1M schützt. Es kann auch bedeuten, dass BAG-1M den CHIP-induzierten proteasomenalen Abbau des Liganden-gebundenen GR verhindert. Bekanntermaßen führen Glukokortikoide zu reduzierten GR-Spiegeln (McIntyre & Samuels, 1985; Wallace & Cidlowski, 2001). Es ist vorstellbar, dass BAG-1M in seiner Eigenschaft als transkriptioneller Stimulator (Niyaz et al., 2003; Zeiner et al., 1999) den ligandeninduzierten GR-Abbau durch Hochregulation von

Überraschenderweise inhibierte diese Mutante konzentrationsabhängig die Aktivität des GR und MR stärker als BAG-1M Wildtyp. Dieser Effekt ging über den direkten Einfluss auf die Reporteren-Aktivität hinaus. Die stärkste Inhibierung der Receptor-Aktivität wurde bei subsaturierenden Hormonkonzentrationen beobachtet. Mit steigenden Hormonkonzentrationen nahm der inhibitorische Einfluss ab und entsprach bei maximaler
Hormonkonzentration in etwa dem direkten Effekt von BAG-1M_Ubidel auf die Aktivität der Firefly-Luciferase.

Auffällig waren die Effekte, die BAG-1M_Ubidel bereits in geringen Konzentrationen auf die Aktivität des GR und AR ausübte. In beiden Fällen stimulierte schon die geringste Menge BAG-1M_Ubidel-Plasmid deutlich die Rezeptor-Aktivität. Würde BAG-1M unter diesen experimentellen Bedingungen zum proteasomalen Abbau der Rezeptoren führen, hätte eine Deletion der ULD-Domäne diesen gegenteiligen, stimulierenden, Effekt. In diesem Zusammenhang würde man eine erhöhte Expression der Rezeptoren erwarten. Die Expressionsanalyse ergab jedoch keine Veränderung in der Proteinnenge der Rezeptoren; somit kann diese Erklärungsmöglichkeit ausgeschlossen werden. Da in den verwendeten Zellen auf Proteinebene kein endogenes BAG-1 detektiert wurde (Daten nicht gezeigt), ist anzunehmen, dass die Rezeptor-Stimulierung durch die exogene Menge BAG-1M_Ubidel bewirkt wurde. Diese Beobachtung stimmt mit Studien überein, in denen die positiven oder negativen Effekte von BAG-1 auf die Hsp90-Hsc70/Hsp70 Chaperon-Maschinerie auf das Verhältnis von BAG-1 zu Hsc70/Hsp70 und auch auf die Komposition zwischen Chaperonen und verschiedenen Cofaktoren zurückgeführt werden (Kanelakis et al., 1999; Tzankov et al., 2008). Somit würde in Gegenwart geringer Konzentrationen BAG-1M_Ubidel der positive Einfluss auf Hsc70/Hsp70 dominieren, wie es auch in unseren Experimenten beobachtet wurde.

Schwieriger ist es, den verstärkten inhibitorischen Effekt von BAG-1M_Ubidel auf die Aktivität des GR und MR zu erklären. Hierbei könnte die Beteiligung proteasomaler Untereinheiten des 19S-Komplexes, wie Rpt4 und Rpt6, an transkriptionellen Prozessen eine Rolle spielen. In den letzten Jahren häufen sich die Hinweise, dass proteasomale Untereinheiten neben ihrer proteolytischen Funktion auch Proteolyse-unabhängig zelluläre Prozesse, wie z.B. die Transkription, beeinflussen. Bereits 1995 wurde festgestellt, dass Sug1, das Hefehomolog zu Rpt6, durch einen möglicherweise antagonistischen Effekt auf die Coaktivator-Funktion von Cdc68 zur Repression der Transkription in vivo führt (Xu et al., 1995). Auch über eine Mitwirkung von Sug1 (Rpt6) an der Nukleotid-Exzisions-Reparatur wurde berichtet (Russell et al., 1999b). Wenige Jahre später wurde die Notwendigkeit des regulatorischen Komplex 19S des Proteasoms nicht nur für die Elongation in Hefe, sondern generell für die RNA-Polymerase II-abhängige Transkription in Eukaryoten aufgeklärt (Ferdous et al., 2001; Ferdous et al., 2002). Dies wurde ebenfalls, teilweise indirekt, bei der SR-abhängigen Transkription beobachtet. Für den AR scheint die Inhibition des Proteasoms durch MG132 die Freisetzung des AR vom Promotor des Prostata-spezifischen Antigens (PSA) zu verhindern, und somit die dynamische Zusammenlagerung des AR-
Diskussion

Transkriptionskomplexes zu beeinflussen (Kang et al., 2002). Auch die PR- und GR-abhängige Transkription werden durch die Inhibition des 26S Proteasoms mit MG132 moduliert (Dennis et al., 2005; Kinyamu & Archer, 2007).

Im Falle des GR wird die hormonabhängige Transkriptionsaktivität am stabil integrierten MMTV-Promotor durch MG132 deutlich verstärkt. Dieser Effekt wurde nicht mit dem Einfluss auf die Receptor-Stabilität, sondern mit der Beteiligung von Sug1 (Rpt6) assoziiert. Die Depletion von Sug1 (Rpt6) fördert die hormonabhängige transkriptionelle Aktivität des GR (Kinyamu & Archer, 2007). Ein weiteres Argument hierfür war der für die hormonabhängige Reduktion der GR-Proteinmenge wirkunglose knock down von Sug1 (Kinyamu & Archer, 2007). Basierend auf diesen Literaturangaben ergibt sich folgende Hypothese, um den verstärkten inhibitorischen Effekt von BAG-1M_Ubidel auf die GR- und MR-Aktivität zu erklären:

Nach der Behandlung mit Glukokortikoiden wird BAG-1M Hsc70/Hsp70-abhängig mit dem GR an hormonresponsive Elemente rekruitiert und kontrolliert die DNA-Bindung des GR (Hong et al., 2008). Durch seine UL-Domäne bindet BAG-1M an die proteasomalen Untereinheiten und rekruitiert deren transkriptionelle Komponenten. Die Deletion der UL-Domäne in BAG-1M hätte während der GR-abhängigen Transkription den Regulationsverlust der proteasomalen Untereinheiten zur Folge und somit ebenfalls eine stärkere GR-Inhibition. Da die Inhibition des Proteasoms mit MG132 je nach SR, und offenbar auch je nach Zelltyp, unterschiedliche Auswirkungen hat (Kang et al., 2002; Reid et al., 2003; Fan et al., 2004; Dennis et al., 2005; Kinyamu & Archer, 2007), wäre es denkbar, dass verschiedene proteasomale Untereinheiten, SR-abhängig, differenziell auf transkriptionelle Prozesse wirken. Dies ist im Einklang mit dem Befund, dass BAG-1M_Ubidel in der Lage ist, die GR-Aktivität zu inhibieren, nicht aber die AR-Aktivität. Transkriptionelle Prozesse müssen sehr dynamisch und kontrolliert ablaufen, damit sich die Zelle schnell und effizient an neue Gegebenheiten, wie z.B. Stress, anpassen kann. Die dynamische Zusammen- und Umlagerung transkriptioneller Komplexe wird auch bei SR-abhängiger Transkription durch zyklischen Abbau der beteiligten Komponenten reguliert (Kang et al., 2002; Reid et al., 2003). Daher ist es vorstellbar, dass BAG-1M sowohl die proteolytischen, als auch die Proteolyse-unabhängigen Funktionen proteasomaler Untereinheiten während der Transkription SR-abhängig moduliert. So könnte der Abbau oder die Interaktion mit verschiedenen Chromatin-Modulatoren (z.B. HDACs, HATs), Coaktivatoren oder Corepressoren reguliert werden. Auf diese Art könnte die transkriptionelle Aktivität der SR durch BAG-1M an die jeweiligen zellulären Bedürfnisse, adaptiert werden. Der über die proteasomalen Untereinheiten Hsc70/Hsp70-unabhängige Mechanismus würde die Hsc70/Hsp70-abhängigen Prozesse von BAG-1M komplementieren. Vermutlich überwiegt in Abhängigkeit der vorhandenen Menge BAG-1M und des vorhandenen Rezeptors die Funktion auf Hsc70/Hsp70 und/oder auf die proteasomalen Untereinheiten.
In Übereinstimmung mit der bisherigen Literatur demonstrieren die in dieser Arbeit erhobenen Daten, dass BAG-1M ein Protein ist, das auf verschiedenen Ebenen und auf unterschiedliche Art und Weise zur Regulation der SR-Signaltransduktion beitragen kann (Abb. 44). Einerseits beeinflusst es die Proteinfaltung und dient in diesem Zusammenhang wahrscheinlich der Qualitätskontrolle, um die Proteinhomeostase aufrecht zu erhalten. Auf der anderen Seite ist BAG-1M in der Lage, Hsc70/Hsp70 abhängig (Niyaz et al., 2003), und möglicherweise auch Chaperon-unabhängig, die transkriptionelle Aktivität induzierbarer Transkriptionsfaktoren wie GR, MR, AR und PR, durch die Interaktion mit proteasomalen Untereinheiten zu modulieren. Die Relevanz der UL-Domäne von BAG-1M für die Koordination unterschiedlicher Aktionsmodi, um diese kontrolliert und reguliert an zelluläre Bedürfnisse anzupassen, wurde in dieser Arbeit unterstützt. Darüber hinaus könnte eine potentiell Hsc70/Hsp70-unabhängige Regulation der Transkription, vermittelt durch die UL-Domäne von BAG-1, eine Erklärung für die unterschiedlichen Effekte der BAG-1 Isoformen auf verschiedene SR sein (Cutress et al., 2003; Froesch et al., 1998; Guzey et al., 2000; Kullmann et al., 1998; Schmidt et al., 2003; Schneikert et al., 1999; Shatkina et al., 2003). Um Klarheit bezüglich der Relevanz proteasomaler Untereinheiten bei der transkriptionellen Regulation verschiedener SR zu erlangen, sind weiterführende Experimente notwendig. Zum einen muss geklärt werden, ob und gegebenenfalls welche proteasomale Untereinheiten mit BAG-1M und anderen BAG-1-Isoformen an Promotoren assoziiert sind. Zum anderen sollte untersucht werden, ob die Deletion der ULD einen Einfluss auf diese Assoziationen hat. In diesem Zusammenhang könnte eine Mutante von BAG-1M, die weder mit Hsc70/Hsp70 noch mit dem Proteasom interagiert, Aufschluss über die Hsc70/Hsp70-Abhängigkeit einer möglichen ULD-abhängigen transkriptionellen Regulation geben. Abhängig von diesen Befunden wäre es interessant zu erfahren, inwieweit sich die Komposition transkriptioneller Komponenten der verschiedenen SR in Anwesenheit von BAG-1-Isoformen verändern.
5.1.3 Der mechanistische Unterschied zwischen BAG-1M und HspBP1 in der Regulation der Steroidhormonrezeptor-Funktion

Die meisten Funktionen von BAG-1 sind Hsc70/Hsp70-abhängig (Townsend et al., 2005) und wahrscheinlich in der Modulation der Chaperon-Aktivität begründet (Höhfeld & Jentsch, 1997; Takayama et al., 1997; Zeiner et al., 1997). Im Gegensatz zu BAG-1 ist über das Hsp70-bindende Protein 1 (HspBP1) weit weniger bekannt. Erst kürzlich wurde in einer Studie festgestellt, dass HspBP1 als alternativer NEF für Hsp70 dient und, als funktionelles Homolog zu BAG-1M, unterschiedlich auf die Struktur der ATPase-Domäne von Hsp70 wirkt (Shomura et al., 2005).

In diesem Zusammenhang wurde in der vorliegenden Arbeit der Einfluss von HspBP1 und BAG-1M auf die SR-Signaltransduktion verglichen. Neben funktionellen Analysen, die SR-Aktivität betreffend, boten Interaktionsstudien mit faltungsrelevanten Cofaktoren die Möglichkeit, gegebenenfalls Unterschiede in der Regulation von Hsc70/Hsp70 zu entdecken. Aus diesem Grund wurden zusätzlich zu BAG-1M und HspBP1 Mutanten untersucht, die nicht mehr an Hsc70/Hsp70 binden und dessen Chaperon-Aktivität beeinflussen (BAG-1M_mut und HspBP1_mut). Die daraus resultierenden Ergebnisse ließen bereits auf einen Teilaspekt des zugrundeliegenden Mechanismus der Hsc70/Hsp70-abhängigen Modulation der SR-Signaltransduktions durch BAG-1M und HspBP1 schließen.

Als Modelle wurden der GR, AR und MR verwendet. Alle drei Rezeptoren werden Hsc70/Hsp70-abhängig gefaltet, um ihre funktionelle dreidimensionale Struktur zu erlangen. Besonders aufgrund der unterschiedlichen Wirkung von BAG-1M auf die Funktion des GR (Inhibition), AR (kein Einfluss) und MR (kein Einfluss bekannt) boten sie ein gutes Vergleichsmodell für die Aufklärung mechanistischer Unterschiede von HspBP1 und BAG-1M.

a) BAG-1M stimuliert die Transaktivierung des GR und AR bei geringer Überexpression

Bisher war bekannt, dass eine Überexpression von BAG-1M die GR-abhängige Transkription inhibiert (Kullmann et al., 1998; Schneikert et al., 1999; Schmidt et al., 2003) und keinen Einfluss auf die transkriptionelle Aktivität des AR besitzt (Froesch et al., 1998; Shatkina et al., 2003).

nM). Mit steigenden Kortisolkonzentrationen nahm der inhibitorische Einfluss von BAG-1M ab.

Interessanterweise förderte BAG-1M, in geringem Maße überexprimiert, die AR-Transaktivierung. Entgegen bisherigen Literaturangaben scheint BAG-1M ebenso wie BAG-1L, die transkriptionelle Aktivität des AR zu stimulieren. Ebenso wie für BAG-1L ist die Interaktion von BAG-1M mit Hsc70/Hsp70 notwendig für diese Funktion.

Ein Grund für diese beobachtete Aktivitätssteigerung durch BAG-1M könnte in der verwendeten Menge Plasmid-DNA und daher in der exprimierten Menge BAG-1M liegen. Mit steigenden Mengen BAG-1M-Plasmid nahm die AR-Stimulierung ab und erreichte das Kontrollniveau. Auch mit der höchsten Plasmidmenge hatte BAG-1M wie erwartet keinen inhibitorischen Einfluss auf die AR-Aktivität. Offenbar wirkte BAG-1M konzentrationsabhängig auf die GR- und AR-Aktivität. Da BAG-1M_Ubidel denselben Effekt hatte (vgl. 4.2.5), BAG-1M_mut hingegen nicht, scheint diese Funktion von BAG-1M in erster Linie Hsc70/Hsp70-abhängig zu sein. Diese Beobachtung steht im Einklang mit Literaturangaben, denen zufolge das Verhältnis von BAG-1M zu Hsc70/Hsp70 für die Wirkung von BAG-1M entscheidend ist (Kanelakis et al., 1999; Tzankov et al., 2008).

b) **BAG-1M inhibiert die MR-Aktivität**

Der MR wurde zusätzlich in die Untersuchung mit einbezogen, da bisher kein Einfluss von BAG-1M festgestellt wurde (Schneikert et al., 1999). Nach bisheriger Literaturlage unterscheidet BAG-1M zwischen MR und GR (Crocoll et al., 2000). Diese Tatsache würde wiederum für die Relevanz von BAG-1M im Hinblick auf die MR/GR-Balance und somit für die Pathogenese psychiatrischer Erkrankungen sprechen.

In unserem System erfolgte auf die zunehmende Überexpression von BAG-1M überraschenderweise eine Inhibition der MR-Aktivität. Mit steigenden Mengen BAG-1M-Plasmid-DNA wurde die Rezeptor-Aktivität des MR deutlich reduziert. BAG-1M_mut hatte mit denselben Plasmidmengen keinen Einfluss auf die transkriptionelle Aktivität des MR. Eine Verstärkung der MR-abhängigen Transkription wurde nicht beobachtet. Ähnlich wie im
Falle des GR hatte BAG-1M den stärksten inhibitorische Effekt bei subsaturierenden Hormonkonzentrationen (0,03 nM Fludro). In Anbetracht dieser Ergebnisse stellte sich die Frage, warum der negative Einfluss von BAG-1M auf die MR-Funktion bisher nicht beobachtet wurde. Eine mögliche Erklärung könnte im verwendeten Hormon selbst oder in der verwendeten Hormonkonzentration liegen. Der deutlichste Effekt von BAG-1M auf den MR wurde mit sehr geringen Flutrokortisonkonzentrationen beobachtet. Laut Literaturangaben wurde der Einfluss von BAG-1M auf die MR-Aktivität in Anwesenheit von 100 nM Aldosteron untersucht (Schneikert et al., 1999). Mit einer Aldosteron-Konzentration von 100 nM ist die Sättigung des MR jedoch längst erreicht (Daten nicht gezeigt).

c) **HspBP1 inhibiert die Aktivität des GR, MR und AR in Abhängigkeit von Hsc70/Hsp70**

In den funktionellen Analysen reduzierte HspBP1 anders als BAG-1M, konzentrationsabhängig die transkriptionelle Aktivität der drei untersuchten Rezeptoren, GR, MR und AR. HspBP1_mut hingegen wies keine, bis schwach inhibitorische Effekte auf die Rezeptor-Aktivitäten auf. Letzteres liegt vermutlich an der Restbindung von Hsc70/Hsp70. Anders als BAG-1M_mut bindet HspBP1_mut noch geringe Mengen Hsc70/Hsp70 und wirkt daher wahrscheinlich noch als NEF. Trotzdem wurde die Hsc70/Hsp70-Abhängigkeit des inhibitorischen Einflusses von HspBP1 deutlich.

Ähnlich wie unter dem Einfluss von BAG-1M nimmt die inhibitorische Wirkung von HspBP1 auf die transkriptionelle Aktivität mit steigenden Hormonkonzentrationen ab. Anders ausgedrückt, damit die Rezeptoren in Anwesenheit von BAG-1M und HspBP1 die gleiche Aktivität wie in Gegenwart von HspBP1_mut oder BAG-1M_mut erreichen, sind höhere Hormonkonzentrationen nötig. Dies könnte bedeuten, dass HspBP1 und BAG-1M, neben den oben genannten Effekten, die Hormonbindungsaffinität der entsprechenden Rezeptoren herabsetzen.
d) Modellvorschlag zur Funktionsweise von BAG-1M und HspBP1: zwei Wege der Modulation der Substratbindung von Hsc70

Es stellte sich heraus, dass GR, MR und AR, Hsc70/Hsp70-abhängig schwächer an HspBP1 gebunden haben als an BAG-1M. Dies deutet darauf hin, dass HspBP1 einen negativen Einfluss auf die Substratbindung von Hsc70/Hsp70 besitzt. Unterstützt wurde diese Hypothese dadurch, dass in Gegenwart von HspBP1, im Gegensatz zu BAG-1M, kein Hsp40 präzipitiert wurde. Da Hsp40 zu frühen Zeitpunkten der Rezeptor-Faltung auftritt, könnte dies ein Hinweis darauf sein, dass HspBP1 und BAG-1M die Chaperon-Aktivität von Hsc70/Hsp70 zu unterschiedlichen Zeiten im Verlauf der Rezeptor-Faltung beeinflussen.

Basierend auf den hier erläuterten Resultaten und den vorhandenen Literaturangaben wurde das in Abbildung 45 dargestellte Modell für den Wirkmechanismus von HspBP1 auf die Chaperon-Aktivität von Hsc70/Hsp70 in der SR-Faltung entwickelt. Die Hypothese dieses Modells für den inhibitorischen Mechanismus von HspBP1 ist die Konkurrenz zwischen HspBP1 und Hsp40 um die Bindung an Hsc70. Diese Hypothese wird weiter durch die Beobachtung unterstützt, dass Hsp40 alleine nicht in der Lage ist, den Komplex HspBP1-Hsp70 zu dissozieren, sondern dafür die Kooperation eines weiteren Cofaktors nötig ist (Oh & Song, 2003).

Abbildung 45: HspBP1 und BAG-1M inhibieren Hsc70/Hsp70 in unterschiedlichen Stadien in seiner Funktion als Chaperon der SR-Faltung. (a) Während der Translation am Ribosom wird das Substrat (GR) zuerst von Hsp40 gebunden und anschließend an Hsc70 übergeben (Laufen et al., 1999; Hernandez et al., 2002). Zeitgleich zur Übergabe des Substrats (GR) an Hsc70 fördert Hsp40 die ATP-Hydrolyse durch Hsc70, die eine starke Bindung des Klienten (GR) bewirkt (Russell et al., 1999a). (b1) Hip tritt in den Zyklus ein und stabilisiert den Hsc70-Substrat-Komplex (Höhfeld et al., 1995). (c1) BAG-1M konkurriert mit Hip um die Bindung an Hsc70 (Gebauer et al., 1997). Zusätzlich entkoppelt BAG-1M die ATP-Hydrolyse durch Hsc70. Dies führt zur Freisetzung des unvollständig gefalteten Substrats, welches mit Hsc70 und BAG-1M einen Komplex bildet (Bimston et al., 1998). (b2, b3) HspBP1 besitzt eine deutlich höhere Affinität für Hsc70 als Hsp40 (Oh & Song, 2003) und könnte die Bindung von Hsp40 an Hsc70 dissozieren oder ganz verhindern. Eine Überexpression von HspBP1 würde die Hsp40-abhängige ATP-Hydrolyse durch Hsc70/Hsp70 und somit die Substratbindung verhindern. Dies könnte entweder nach der Ablösung vom Ribosom (b2) oder am Ribosom selbst (Dragovic et al., 2006b) (b3) geschehen. Eine Auswirkung wäre die beobachtete reduzierte Bindung des GR, MR und AR an Hsc70-HspBP1 (c2), verglichen mit Hsc70-BAG-1M (c1). Darüber hinaus stimuliert HspBP1 ähnlich wie BAG-1 die Freisetzung nicht-nativer Substrate von Hsp70 (Shomura et al., 2005). Hsc70 ist stellvertretend für Hsc70 und Hsp70 abgebildet.

Dies könnte sich auch differenziell auf den zeitlichen Ablauf der GR-Faltung in Anwesenheit von BAG-1M oder HspBP1 auswirken.

Es stellte sich heraus, dass die Coexpression von BAG-1M und GR in Abwesenheit von Hormon zu einer stark reduzierten GR-Expression führt. Wie bereits erwähnt (vgl. 5.1.2) ist dieser Effekt sehr wahrscheinlich auf den BAG-1-induzierten Abbau des GR (Demand et
Diskussion

Der Einfluss von FKBP51, das aufgrund seines bekannten inhibitorischen Effekts auf den GR in diese Untersuchung mit eingeschlossen wurde, auf die Hormonbindungssaffinität konnte bestätigt werden. Am deutlichsten war der Effekt in den Messungen der Bindungskinetik zu beobachten. HspBP1 hatte keinen nennenswerten Einfluss auf die Hormonbindungssaffinität des GR, verzögerte aber die Einstellung des Bindungsgleichgewichtes. Somit scheint HspBP1 die kinetischen Eigenschaften der Hormonbindungreaktion zu modulieren.

Im Fluoreszenz-Polarisationsexperiment war ein Vergleich von HspBP1 und BAG-1M nicht möglich, da gleiche GR-Mengen nicht gewährleistet werden konnten. Besonders die Kinetik der Hormonbindung ist in diesen Versuchen sehr empfindlich gegenüber variablen Rezeptormengen. Kleinste Unterschiede können zu einer Verfälschung der Ergebnisse führen. Um detaillierte Einblicke in die zeitliche Regulation von HspBP1 und BAG-1M auf die Hsc70/Hsp70-Aktivität zu gewinnen, empfiehlt sich die Wiederholung dieser Experimente mit gereinigten Proteinen. Nicht nur der Einfluss von HspBP1 und BAG-1M kann konzentrationsabhängig bestimmt werden, sondern es können auch konkrete Angaben über die effektivsten Konzentrationen gemacht werden. Da die Reinigung von SR als Volllängenprotein schwierig ist, und sich diese gereinigten Proteine teilweise anders verhalten als im Zellextrakt beobachtet (Dr. Christian Kozany, persönliche Kommunikation), ist in diesem Falle eine Überexpression im Zellextrakt vorzuziehen.

Zusammenfassend wurde in der vorliegenden Arbeit festgestellt, dass BAG-1M und HspBP1 auf unterschiedliche Weise die Hsc70/Hsp70-Aktivität beeinflussen und folglich auch die SR-Funktion. Im Gegensatz zu BAG-1M, das zusammen mit den anderen BAG-1-Isoformen auf verschiedenen Ebenen die Signaltransduktion von SR moduliert, scheint HspBP1 nach einem „allgemeinen“ Prinzip, das möglicherweise auf alle SR zutrifft, zu agieren. Da die richtige Faltung essentiell für die SR-Funktion ist, hat ein inhibitorischer Einfluss auf den Faltungssyklus, gleich zu welchem Zeitpunkt, drastische Folgen für die SR-Signaltransduktion.

Ob HspBP1 auch physiologisch eine Rolle für die SR-Signaltransduktion spielt, bedarf weiterer eingehender Studien. Bisher konnten die endogenen HspBP1-Spiegel in unserem Zellsystem aufgrund der schlechten Antikörperqualität nicht detektiert werden. Es ist nicht bekannt, ob Stress zu einer Überexpression von HspBP1, in z.B. neuronalen Zellen führt. Das

5.1.4 Alles eine Frage der Zeit?

Zusammenfassend wurde in dieser Arbeit demonstriert, dass zwischen HspBP1 und BAG-1M ein mechanistischer Unterschied in ihrer Wirkung auf SR besteht. Basierend auf ihrem differenziellen Einfluss auf Hsc70/Hsp70, wirken HspBP1 und BAG-1M ähnlich, aber teils auch gegensätzlich auf die Aktivität von SR. Anders als BAG-1M scheint HspBP1 dies ausschließlich über Hsc70/Hsp70 zu bewirken. Davon ist auch die zeitliche Abfolge Hsc70/Hsp70-koordinierter Prozesse betroffen. Im Gegensatz dazu moduliert BAG-1M, aufgrund seines breiteren Interaktionsspektrums (Hsc70/Hsp70, Rpt6 etc.), die Signaltransduktion von SR auf verschiedenen Ebenen. In jedem Fall besitzt HspBP1, ebenso wie BAG-1M, das Potenzial, den in depressiven Patienten beobachteten Hyperkortisolismus zu verursachen und zu fördern.
5.2 Modulation der Steroidhormonrezeptor-Aktivität durch gezielte Modifikationen der MR-LBD

5.2.1 Veränderung der Hormonbindungsaffinität des mMR durch Substitution und Mutationen der LBD

Für die Herstellung eines mMR mit der Kortikosteron-Affinität des mGR wurden zwei unterschiedliche Strategien angewandt. Basierend auf strukturellen Unterschieden zwischen den LBDs von GR und MR wurde eine MR-GR-Chimäre (mCH) kloniert, deren mMR-LBD durch die mGR-LBD ersetzt wurde. In Anlehnung an die bereits existierenden Kristallstrukturen des hGR (Bledsoe et al., 2002; pdb: 1M2Z) und hMR (Bledsoe et al., 2005; pdb: 2AA2) wurden verschiedene MR-Mutanten hergestellt, die Mutationen in der mMR-LBD tragen. Diese Mutationen sollten einerseits zu einer lokalen Korrektur der Hormonbindungstasche führen, andererseits zur Verschiebung der bindungsrelevanten Helix 7 im MR. Auf diese Weise wurde angestrebt, die Position von Helix 7 im mMR strukturell an die der homologen Helix 5 im hGR anzupassen.

Die Mutation S811G sollte die Re-Positionierung der Helix 7 in der mMR-LBD bewirken, um sie an die Struktur der hGR-LBD anzulegen.

Die lokale Korrektur erfolgte durch den Austausch von Q772E und M848I. Diese Mutationen sollten die Bindung von Mineralokortikoiden, den bevorzugten Liganden des mMR, schwächen (Q772E) und Raum schaffen, für die Re-Positionierung (M848I) von H7.
Im funktionellen Vergleich besaß sowohl die MR-GR-Chimäre (mCH) als auch eine MR-Mutante, die beide Mutationen (S811G/M848I, mGI) trägt, eine mGR-ähnliche Responsivität auf Kortikosteron (Tab. 9). Allerdings variierten die Konzentrationen, die zu einer Aktivität von 50% führten, zelltypabhängig. Beide MR-Mutanten respondierten bei deutlich höheren Konzentrationen als der Wildtyp mMR, jedoch teilweise bei etwas niedrigeren Kortikosteronkonzentrationen als der Wildtyp mGR.

Tabelle 9: Kortikosteronresponsivität im Vergleich

<table>
<thead>
<tr>
<th>Rezeptor</th>
<th>mMR</th>
<th>mGR</th>
<th>mCH</th>
<th>mGI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zelllinie</td>
<td>SK</td>
<td>SK</td>
<td>SK</td>
<td>SK</td>
</tr>
<tr>
<td>Kort. [nM]</td>
<td>basal</td>
<td>basal</td>
<td>3-10</td>
<td>3-10</td>
</tr>
<tr>
<td></td>
<td>10-20</td>
<td>1-3</td>
<td>1-3</td>
<td>0,1-1</td>
</tr>
</tbody>
</table>

Kortikosteronkonzentration (Kort) in nM, bei der mMR, MGR, mCH und mGI 50% ihrer Aktivität erreichen. Die Abkürzungen SK und N2A bezeichnen die verwendeten Zelllinien SK-N-MC und Neuro-2A.

In den Zelllinien SK-N-MC und N2a erreichte der mMR bereits unter basalen Bedingungen 50% seiner maximalen Aktivität. Dies ist sehr wahrscheinlich auf einen bisher unbekannten Liganden in dem für die Medien-Herstellung verwendeten steroidfreien FBS zurückzuführen.

In einer Masterarbeit wurden beide MR-Mutanten noch genauer bezüglich ihrer Responsivität auf Kortikosteron, Aldosteron und Dexamethason, wie auch ihrer Bindungssaffinität für Kortikosteron, charakterisiert und mit den Wildtyp-Rezeptoren verglichen (Weidinger, 2009).

Diskussion

5.2.2 Ein neuer Ansatz zur Überprüfung der Relevanz der MR/GR-Balance für die Stressbewältigung

Viele dieser Veränderungen der neuronalen Architektur wurden nach chronischem Stress oder nach Belastung mit Glukokortikoiden, wie auch bei einer Hyperaktivität der HPA-Achse bei manchen depressiven Erkrankungen, festgestellt (Woolley et al., 1990; Bowley et al., 2002). Teilweise konnten sie durch die Behandlung mit Antidepressiva oder Glukokortikoid-Antagonisten korrigiert werden (Malberg & Schechter, 2005; Oomen et al., 2007).

Die Relevanz des MR für die Regulation der Kortikosteron-Ausschüttung oder die Überlebensrate von Neuronen (Macleod et al., 2003; Mitra et al., 2009), wie auch der damit
verbundene Einfluss auf Verhaltensparameter, wurde mehrfach beschrieben. So führt die Überexpression des mMR im Vorderhirn zu einer Reduktion eines Angst-ähnlichen Verhaltens, sowie zu einer veränderten Stressantwort (Rozeboom et al., 2007). In Ratten führt die MR-Überexpression unter basalen Bedingungen oder Stress zu vermindelter Angst (Mitra et al., 2009). In Mäusen, in denen das für MR kodierende Gen inaktiviert wurde, erwies sich die MR-Funktion wichtig für die Kontrolle der emotionalen Erregbarkeit und für das adaptive Verhalten auf Angst (Brinks et al., 2009). In all diesen Tiermodellen ist das Gleichgewicht zwischen MR und GR schon unter basalen Bedingungen in Richtung der MR- oder GR-Funktionen verschoben.

Hier bietet das angestrebte Tiermodel einen stressrelevanteren Ansatz für die Untersuchung zur Bedeutung der MR/GR-Balance. Im Gegensatz zu den bisherigen Tiermodellen wird die MR-Manipulation erst bei erhöhten Kortikosteronspiegeln relevant, also genau in den Situationen (Stress), in denen zusätzlich MR benötigt wird.

Neben den eben beschriebenen Parametern ist die dauerhafte Aktivierung des GR ebenso ein Risikofaktor für metabolische Erkrankungen wie Typ II Diabetes oder Gefäßerkrankungen. Zusammengefasst werden die metabolischen Veränderungen unter dem Begriff metabolisches Syndrom (Anagnostis et al., 2009).

Dieses Tiermodell, in dem durch einen modifizierten mMR unter Stress das Gleichgewicht zwischen MR und GR wiederhergestellt werden soll, bietet in vielerlei Hinsicht einen neuen Ansatz, um Einblicke in die Regulation und Modulation adaptiver Prozesse, struktureller Veränderungen der neuronalen Architektur wie auch veränderter kognitiver Fähigkeiten und emotionaler Parameter zu gewinnen. Die daraus resultierenden Ergebnisse könnten einen wesentlichen Beitrag zum Verständnis der Pathophysiologie und – biologie leisten, wie sie nicht nur bei depressiven, sondern auch bei anderen psychiatrischen Erkrankungen stressbedingt auftreten.
Zusammenfassung

6 Zusammenfassung

Im Gegensatz zu HspBP1 ist BAG-1 ein bereits beschriebener Modulator der Funktion verschiedener SR, mit Ausnahme des Progesteronrezeptors (PR). In dieser Arbeit wurde gezeigt, dass BAG-1M, ein GR-Inhibitor, ähnliche inhibitorische Effekte auf die transkriptionelle Aktivität des PR ausübte. Die scheinbar Hsc70/Hsp70-unabhängige Reduktion der PR-Aktivität in Reporteragen-Experimenten, sowie die Interaktionsanalyse verschiedener PR-Mutanten mit BAG-1M mittels Co-Immunpräzipitationsexperimenten, weisen darauf hin, dass der PR-Inhibition durch BAG-1M ein zum GR unterschiedlicher Mechanismus zu Grunde liegt.

In einer vergleichenden Studie über die Wirkung von HspBP1 und BAG-1M auf die transkriptionelle Aktivität des GR, MR und AR wurde ein funktioneller und mechanistischer Unterschied zwischen den beiden Hsc70/Hsp70-NEF festgestellt. Anders als BAG-1M führte HspBP1 in den funktionellen Analysen bei allen drei Rezeptoren zur Reduktion der Transaktivierung des Reportergens. Für BAG-1M wurde erstmals ein inhibitorischer Effekt auf die MR-Aktivität gezeigt. Darüber hinaus verstärkte BAG-1M in geringen Konzentrationen die transkriptionelle Aktivität des GR und AR. Im Falle des AR wurde eine deutliche Hsc70/Hsp70-Abhängigkeit der Rezeptor-Stimulierung beobachtet.

Basierend auf diesen Befunden wurde die Hypothese entwickelt, dass HspBP1 die Hsp40-Bindung an Hsc70/Hsp70 verhindert. Die daraus resultierende Inhibition der Hsp40-abhängigen ATP-Hydrolyse durch Hsc70/Hsp70 ist in Übereinstimmung mit der verminderten Bindung von Hsc70 an seine Substrate GR, MR und AR. Dieses Modell führte

Zusammenfassend lieferte diese Studie neue Einblicke in die Chaperon-abhängige Regulation von SR und trägt zur Identifizierung potentieller Einflussfaktoren der HPA-Achsen-Aktivität bei.
7 Literaturverzeichnis

Okret S, Poellinger L, Dong Y, & Gustafsson JA (1986). Down-regulation of glucocorticoid receptor mRNA by glucocorticoid hormones and recognition by the receptor of a specific binding sequence within a receptor cDNA clone. Proc Natl Acad Sci U S A 83, 5899-5903.

Tyson JR & Stirling CJ (2000). LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum. *EMBO J* **19**, 6440-6452.

Vergleich der Proteinsequenzen von hGR und hMR

Anhang
Lebenslauf

Name: Regina Theresia Maria-Anna Knapp
Geburtsdatum: 14.08.1975
Geburtsort: Traunstein
Nationalität: Deutsch
Familienstand: ledig

Ausbildung:

09/ 1997-06/ 2004 Studium der Biologie an der Ludwig-Maximilian-Universität, München Hauptfach: Zellbiologie; Nebenfächer: Biochemie, Mikrobiologie, medizinische Mikrobiologie

1986-1996 Rottmayr-Gymnasium Laufen, Erhalt der Allgemeinen Hochschulreife
1982-1986 Grundschule Tittmoning
Zur Veröffentlichung vorgesehene Manuskripte:

Schülke, J.P., Wochnik, G.M., Lang-Rollin I., Knapp R.T., Berning B., Rein T.
Differential impact of tetratricopeptide repeat proteins on the steroid hormone receptors. (zur Veröffentlichung eingereicht)

Schmidt U., Knapp R.T., Schülke J.P., Pyka T., Holsboer F., Rein T.
Requirement of the DNA binding domain of BAG-1 for inhibition of corticosteroid signaling. (in Vorbereitung)

Knapp R.T., Kozany C., Weidinger E., Hafner K., Holsboer F., Hausch F., Rein T.
The two nucleotide exchange factors HspBP1 and BAG-1M use different mechanisms to modulate steroid hormone receptor function.